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Abstract

Over the past twenty years, the field of quantum computing has progressed from the
investigation of individual quantum systems towards the implementation of many-
qubit processors. Distributing information processing over a quantum network con-
sisting of many nodes that communicate via itinerant photons is one potential frame-
work for achieving modular and extensible quantum computation. Systems of super-
conducting qubits strongly coupled to a continuum of photonic modes in 1D coplanar
waveguides, described by the formalism known as waveguide Quantum Electrody-
namics (wQED), are emerging as a promising platform for quantum communication.
In this work, we develop a quantum module comprised of superconducting qubits
strongly coupled to a 1D waveguide that can bidirectionally emit and absorb propa-
gating microwave photons on-demand. These modules can be tiled in series along a
waveguide to form an all-to-all, extensible quantum network.
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Chapter 1

Introduction

Modern computer networks at a high level are composed of nodes that store and

process information, and communication interconnects that mediate the transfer of

information between nodes [1]. Large-scale networks such as the Internet connect end-

systems, including computers, servers, and mobile devices, over long distances. These

end-systems communicate via electromagnetic waves in the atmosphere or through

physical media such as fiber-optic cables.

Even these end-systems themselves, however, contain internal small networks com-

prising interconnected integrated circuits on a motherboard with specified functions

that fall into two main categories: logic and memory. These chips communicate

locally through electronic signal lines known as busses to execute a program [2, 3].

The individual integrated circuits are nodes in the network that communicate via

electronic circuit interconnects and data busses.

Quantum networks are built on similar principles, but they handle a fundamen-

tally different type of information. At a high level, quantum networks also comprise

computational nodes that store and process information. These nodes transmit and

receive, or — in more suggestive physical language — emit and absorb, informa-

tion from other nodes in the network through a communication interconnect. There

are several developing quantum network architectures consisting of different physi-

cal nodes and communication channels. Nodes are composed of stationary qubits

— or physical two-level quantum systems — such as trapped ions, trapped neutral

13



MemoryProcessor

Address

Data

ba

Control

Address

D
ata

Control

I/O 
Devices

Disk

Display

Figure 1-1: Types of classical computing networks. a) Illustration of the In-
ternet, adapted from [1]. Information transfer between end-systems is either wireless
or mediated by physical cables. b) Simple computer architecture. Information flows
(both data and instruction) between the processor and memory through data busses
in a Von Neumann architecture [2] – the architecture of nearly all modern comput-
ers. The processor also controls the flow of data through input/output devices to the
outside world. This illustration shows that computers rely on the communication of
logic and memory components in order to execute a program.

atoms, and superconducting artificial atoms. Communication channels rely on so-

called flying qubits that travel between nodes with the intention of generating remote

entanglement. Examples of flying qubits include optical photons propagating in op-

tical fibers or photonic waveguides [4–10], mobile ions or neutral atoms in laser trap

systems [11–13], and microwave photons in resonators or waveguides [14–24].

The so-called quantum internet operates through the distribution of entanglement

across nodes to teleport quantum information with error-correction [25]. Optical

photons (telecom-wavelength) are ideal flying qubits because of their ability to travel

quickly over metropolitan-scale distances in optical fibers or the atmosphere [26]. In

fact, optical photons in a single-mode fiber have teleported qubits over a distance of

44 km [27]. Optical quantum networks advance towards the realization of quantum

key distribution for secure communication and the quantum internet [25,26].

Superconducting artificial atoms offer several advantages as stationary qubits be-

cause they can be custom-designed, controlled with conventional microwave electron-

ics, and scaled due to established fabrication techniques. However, superconducting

14
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Figure 1-2: Quantum interconnects with superconducting circuits. a) Co-
herent coupling of distant qubits through resonant modes of a cavity, which serve
as the communication link. b) Quantum information transfer via itinerant single-
photon propagation through a unidirectional waveguide. c) Proposed architecture
for a quantum interconnect where communication modules communicate via itiner-
ant microwave photons in a bidirectional waveguide.

qubits interact with microwave photons, which have a much lower energy than optical

photons. Thermal radiation at microwave wavelengths dominates at room tempera-

ture and coaxial cables are generally more lossy than optical fibers [28]. Therefore,

microwave photons are not ideal flying qubits for long-distance communication. In-

tegrating superconducting qubits into low-loss optical quantum networks requires

efficient microwave-to-optical transduction [29,30].

Though the ideal long-distance quantum internet is not yet physically compati-

ble with the superconducting systems, local networks within superconducting circuits

offer the opportunity to distribute quantum information amongst nodes for robust

computation. In analogy to classical computer processors, a potential architecture

for quantum processors uses microwave resonators or waveguides as data busses to

connect superconducting chips. In this quantum computer architecture, the super-

conducting nodes communicate via microwave photons.

15



A module that can store, communicate, and process quantum information has

been realized within a circuit Quantum Electrodynamics (cQED) architecture, where

artificial atoms interact with confined microwave photons. These modules use reso-

nant modes in cavities as communication channels [14–18] as illustrated in Fig. 1-2a.

This approach results in high-fidelity, bidirectional communication between modules,

but it is not easily extensible. Module connectivity is limited in a quantum network

of arbitrary size, and the free-spectral range of the resonant cavity constrains the

distance between modules. Increasing resonator length decreases the frequency spac-

ing between resonant modes, which limits communication protocols between distant

modules. An alternative recent approach involves communication via itinerant (prop-

agating) photons on a single-ended waveguide, which offers more versatile module con-

nectivity [20,23,24] as pictured in Fig. 1-2b. However, to create a 50-Ω environment

for photon propagation while interfacing with another qubit, this approach requires

lossy, non-reciprocal microwave elements, such as circulators, which limit state trans-

fer fidelity and render intra-module communication unidirectional. Instead, we seek

to create an quantum network architecture with conventional waveguides as the bidi-

rectional communication link and itinerant photons as the information carriers, as

shown in Fig. 1-2c.

To develop modules for these quantum interconnects, we turn to waveguide Quan-

tum Electrodynamics (wQED): a formalism that describes the interaction of super-

conducting qubits with a continuum of propagating photonic modes. The strong

coupling regime is readily accessed in wQED systems because of the 1D confinement

of photonic modes in the waveguide and the innately large electric dipole moment of

superconduting qubits [31,32]. This platform provides the opportunity to simultane-

ously explore light-matter interaction and develop quantum communication systems.

In this work, we experimentally demonstrate on-demand, directional, microwave

photon emission based on the quantum interference of indistinguishable photons emit-

ted from a superconducting module into a bidirectional waveguide [33]. We theoreti-

cally develop photon absorption and remote entanglement protocols, building towards

an extensible superconducting quantum network with all-to-all connectivity.

16



1.1 Outline of thesis

To provide the necessary theoretical background for this work, we introduce circuit

QED in Chapter 2. First, we quantize the classical LC circuit as a simple harmonic

oscillator. Then we introduce the Josephson junction, a non-linear inductor, to even-

tually derive the Hamiltonian of both the fixed-frequency and flux-tunable transmon

qubit.

In Chapter 3, we study several theoretical models of a single qubit coupled to

a waveguide to develop the building blocks of the wQED formalism. We begin by

drawing the analogy to an atom coupled to a 1D continuum of photonic modes. Then,

we perform a classical circuit treatment for the qubit-waveguide system to study

classical scattering parameters. We perform a detailed circuit quantization to derive

the wQED Hamiltonian describing the interaction of a qubit with the continuum of

modes in a waveguide. We also derive the input-output relations of a qubit coupled

to a bidirectional waveguide. Finally, we model the system with a master equation

to study the steady-state behavior of the qubit-waveguide system in the presence of

several loss channels.

We study and simulate multi-qubit wQED phenomena in Chapter 4. First, we de-

rive the master equation formalism for many qubits coupled to a common waveguide.

We employ this formalism to study systems of two qubits coupled to a waveguide

at specified inter-qubit distances. At the end of this chapter, we survey some of the

superconducting wQED experiments in the last decade.

In Chapter 5, we discuss the first experimental demonstration of directional pho-

ton emission in a microwave waveguide. We lay out the device module design and

theoretical model before outlining the directional emission protocol. We explain the

device calibration process in detail. We use a heterodyne detection scheme to measure

the photon temporal envelope and obtain statistics for photon state tomography.

We propose a quantum interconnect capable of both photon emission and ab-

sorption by placing two identical modules along a common bidirectional waveguide in

Chapter 6. With this quantum interconnect, we develop a photon absorption protocol.

17



We provide the theory of photon shaping with this module to produce time-symmetric

photons such that the absorption protocol is identical to the emission protocol. We

also construct a remote entanglement protocol for the quantum interconnect. We

conclude the thesis with a proposal to implement emission, absorption, and remote

entanglement with an array of these modules in order to create a quantum network.

18



Chapter 2

Circuit Quantum Electrodynamics

A qubit is a quantum two-level system consisting of a ground and an excited state

that represent the computational states 0 and 1, respectively. In contrast to a classical

bit, which can only be in state 0 or 1, a qubit can be placed in a superposition of its

ground and excited states. The energy levels of atoms found in nature can be used to

form a qubit. We can also engineer qubits – or artificial atoms – with classical lumped

circuit elements such as capacitors and inductors, and quantum circuit elements such

as the Josephson junction. By designing artificial atoms to have transition frequencies

in the microwave regime, we can use commonplace microwave electronics to control

these qubits and their interactions. In this chapter, we provide a brief overview of

circuit quantum electrodynamics (cQED), the study of light-matter interaction with

engineered quantum systems, which is the foundation for the work in this thesis.

2.1 Quantum Harmonic Oscillator

Following the discussion in Ref. [34], we begin by quantizing a simple harmonic oscil-

lator composed of a capacitor with capacitance 𝐶 and inductor with inductance 𝐿 in

parallel. We define the voltage across the capacitor as 𝑉 (𝑡) and the current through

the inductor as 𝐼(𝑡), as shown in Fig. 2-1a. We write the classical Hamiltonian for
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this system, or the total energy of the 𝐿𝐶 circuit, as

𝐻 =
1

2
𝐶𝑉 2(𝑡) +

1

2
𝐿𝐼2(𝑡) =

𝑄2(𝑡)

2𝐶
+

Φ2(𝑡)

2𝐿
, (2.1)

where we define the charge at the node as 𝑄(𝑡) = 𝐶𝑉 (𝑡) and the flux through the

circuit loop as Φ(𝑡) = 𝐿𝐼(𝑡). We see that this Hamiltonian resembles that of the

simple harmonic oscillator, for example, a block of mass 𝑚 on a spring with spring

constant 𝑘. The Hamiltonian for the analogous mechanical system is

𝐻 =
𝑝2(𝑡)

2𝑚
+

1

2
𝑘𝑥2(𝑡), (2.2)

where 𝑥(𝑡) is the position of the block and 𝑝(𝑡) is the momentum of the block. The

flux variable Φ(𝑡) is analogous to the position variable 𝑥(𝑡) of the block, and the

charge variable 𝑄(𝑡) = 𝐶Φ̇(𝑡) is analogous to the momentum variable 𝑝(𝑡) = 𝑚�̇�(𝑡).

The "mass" of the circuit is the capacitance 𝐶, and the "spring constant" of the

circuit is the inverse of the inductance 1/𝐿. The resonance frequency of the circuit

is 𝜔 = 1/
√
𝐿𝐶, whereas in the block-spring analogy the frequency is 𝜔 =

√︀
𝑘/𝑚.

Because we assign the flux variable as the position-like variable, the potential energy

of the circuit is the inductive energy 𝑈 = Φ2(𝑡)/2𝐿 and the kinetic energy is the

capacitive energy 𝐾 = 𝑄2/2𝐶. We see from this analogy that flux and charge are

conjugate variables and Fourier pairs with a Poisson bracket equal to one

{Φ, 𝑄} =
𝛿Φ

𝛿Φ

𝛿𝑄

𝛿𝑄
− 𝛿𝑄

𝛿Φ

𝛿Φ

𝛿𝑄
= 1. (2.3)

We promote the 𝑄(𝑡) and Φ(𝑡) quantum operators �̂� and Φ̂. It follows that the oper-

ators have the commutation relation [Φ̂, �̂�] = 𝑖ℎ̄. We write the quantum-mechanical

Hamiltonian for the LC circuit as

�̂� =
�̂�2(𝑡)

2𝐶
+

Φ̂2(𝑡)

2𝐿
= 4𝐸C�̂�

2 +
1

2
𝐸L𝜑

2, (2.4)
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Figure 2-1: Superconducting LC oscillator circuit and energy potential a)
Parallel LC oscillator circuit schematic. The voltage across the capacitor is denoted
as 𝑉 (𝑡) and the current through the inductor is denoted 𝐼(𝑡). The reduced node flux
𝜑 – or the phase across the inductor – is illustrated the node of the circuit. b) Energy
potential of LC oscillator 𝑈 = 𝐸L𝜑

2/2 in terms of the reduced flux, adapted from [34].
The energy levels are equally spaced by the energy quantum of the LC oscillator ℎ̄𝜔.

where we define the reduced charge operator �̂� = �̂�/2𝑒 and reduced flux operator

𝜑 = 2𝜋Φ̂/Φ0; 𝑒 is the elementary charge and Φ0 = ℎ/2𝑒 is the magnetic flux quantum.

The charging energy 𝐸C = 𝑒2/2𝐶 signifies the energy required to add an electron to

the node of the LC circuit. In a superconductor, electrons are effectively attracted to

each other and form a condensate of Cooper pairs [35]. The reduced charge operator

�̂� is the excess number of Cooper-pairs at the node of the LC circuit. The inductive

energy is defined as 𝐸L = Φ2
0/4𝜋

2𝐿, which means the reduced flux 𝜑 is the so-called

gauge-invariant phase across the inductor. The commutator of the reduced operators

is [𝜑, �̂�] = 𝑖. We redefine the charge and flux operators in terms of the creation and

annihilation operators of the quantum harmonic oscillator

𝜑 =
1√
2

(︂
8𝐸C

𝐸L

)︂ 1
4

(�̂�† + �̂�)

�̂� =
𝑖√
2

(︂
𝐸L

8𝐸C

)︂ 1
4

(�̂�† − �̂�).

(2.5)

We use these relations to rewrite the Hamiltonian of the LC circuit as

�̂� = ℎ̄𝜔

(︂
�̂�†�̂�+

1

2

)︂
, (2.6)
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where 𝜔 =
√
8𝐸C𝐸J = 1/

√
𝐿𝐶 is the resonant frequency of the circuit, and all energy

levels of the circuit are evenly spaced by ℎ̄𝜔, as illustrated in Fig. 2-1b. There are

ideally infinitely many available energy levels in the quantum harmonic oscillator. To

excite the oscillator from the ground state |0⟩ to the first excited state |1⟩, we add a

photon of energy ℎ̄𝜔 to the oscillator. These energy levels are only distinguishable in

the low-temperature limit 𝑘B𝑇 ≪ ℎ̄𝜔 such that there is little ambient thermal photon

population. We work with superconducting LC circuits that operate at frequencies

around 𝜔/2𝜋 ≈ 5 GHz, which we equate to an effective temperature 𝑇 = ℎ̄𝜔/𝑘B ≈ 240

mK. Our experiments take place in a dilution refrigerator that cools our devices down

to 15 mK, which is well within the low-temperature limit.

Because all energy levels of the quantum harmonic oscillator are equidistantly

spaced, there is no uniquely addressable energy transition between two specific levels.

This is can be attributed to the linearity of the energy levels as a function of number

of photons in the LC oscillator. Therefore, we cannot easily create a qubit from the

LC oscillator.

2.2 The Josephson Junction

To engineer an individually addressable two-level system with superconducting cir-

cuits, we need to introduce nonlinearity to the circuit, which creates anharmonicity

in the energy levels. Typically, we use the lowest two energy levels of a system to

form a qubit. We define the term anharmonicity 𝛼 = 𝜔12 − 𝜔01 as the difference be-

tween the energies of the |0⟩ → |1⟩ and |1⟩ → |2⟩ transitions. The quantum harmonic

oscillator has zero anharmonicity (𝛼 = 0) because of the linearity of the system. We

use anharmonicity as a metric for the distinguishability of the energy of the two-level

system of choice from the energy of the nearest transitions in the system.

The Josephson junction is a nonlinear circuit element composed of two super-

conducting electrodes separated by a thin layer of insulating material [36, 37]. In

this work, all Josephson junctions are composed of aluminum superconducting elec-

trodes separated by aluminum oxide insulators. In each superconducting electrode,
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the electrons form bosonic Cooper pairs that are indistinguishable from each other

and occupy the same ground state. This allows us to treat the Cooper pair fluids

in each electrode as having a collective wavefunction with a well-defined supercon-

ducting phase [38]. For sufficiently thin insulating barriers, Cooper pairs can tunnel

from one electrode to another. The Josephson junction effectively creates a cosine

potential for Cooper pairs for small superconducting phases, and the tunneling events

can be captured as the hybridization of the wavefunctions of the Cooper pair fluids

on each superconducting electrode. The Josephson relations are [38,39]:

𝐼(𝑡) = 𝐼𝑐 sin𝜑,

𝑉 (𝑡) =
Φ0

2𝜋

𝑑𝜑

𝑑𝑡
,

(2.7)

where 𝐼𝑐 is the critical current of the junction – or the maximum supercurrent that

the junction can support. These relations show how the voltage across and current

through the junction depend on the superconducting phase. We define the inductance

of the Josephson junction

𝐿J =
𝑉
𝑑𝐼
𝑑𝑡

=
Φ0

2𝜋𝐼𝑐 cos𝜑
. (2.8)

The Josephson inductance is nonlinear with current. There is also a small capacitance

between the two superconducting metal layers in the Josephson junction, which we

usually lump into a larger parallel capacitance in the circuit. Next, we calculate the

energy of the junction using the Josephson relations

𝑈J =

∫︁
𝑉 (𝑡)𝐼(𝑡)𝑑𝑡 = −𝐸J cos𝜑 (2.9)

where 𝐸J = Φ0𝐼𝑐
2𝜋

is defined as the Josephson energy. We can interpret 𝐸J as the

coupling between the two superconducting electrodes of the Josephson junction.
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Figure 2-2: Transmon circuit and energy potential a) Transmon circuit
schematic. The voltage across the capacitor is denoted as 𝑉 (𝑡) and the current
through the Josephson junction is denoted 𝐼(𝑡). The reduced node flux 𝜑 – or the
phase across the Josephson junction – is illustrated the node of the circuit. b) Energy
potential of transmon circuit 𝑈 = −𝐸J cos𝜑 in terms of the reduced flux, adapted
from [34]. The nonlinearity introduced by the Josephson junction results in energy
levels that are not equally spaced. This allows us to use the lowest energy levels |0⟩
and |1⟩ to form a qubit with transition energy ℎ̄𝜔01.

2.3 The Transmon Qubit

To create a qubit with an addressable two-level subspace, the inductor in the LC

oscillator with the nonlinear Josephson inductance depicted in Fig. 2-2a. We continue

to treat the reduced flux of the circuit 𝜑 as the position-like variable of the system.

Thus, the potential energy of the circuit is 𝑈J in Eq. 2.9. The Hamiltonian for this

system is replaced by

�̂� = 4𝐸C�̂�
2 − 𝐸J cos𝜑. (2.10)

We work in the limit 𝐸J ≫ 𝐸C because charge noise sensitivity is suppressed [40]

– known as the transmon regime. In practice, we connect the Josephson junction

to a larger superconducting electrode that has a shunt capacitance to the ground

plane, which we denote as 𝐶. For large shunt capacitances 𝐶, the transmon qubit

is insensitive to fluctuations in the number of charges on the large superconducting

electrode [41].

In the transmon regime, the superconducting phase 𝜑 has small zero-point fluc-

tuations, or phase-spread of the transmon wavefunction, 𝜑zpf = (2𝐸C/𝐸J)
1/4. As a
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result, the low energy eigenstates of the transmon are well-localized in phase [40]. To

approximate the lowest eigenenergies, we use the Taylor expansion for the potential

energy 𝑈J, keeping only up to second-order terms [34],

�̂� = 4𝐸C𝑛J − 𝐸J

(︃
1− 𝜑2

2!
+
𝜑4

4!

)︃
. (2.11)

We write the charge and flux operators in terms of the creation and annihilation op-

erators of the quantum harmonic oscillator given in Eq. 2.5 and rewrite the transmon

Hamiltonian

�̂� = ℎ̄𝜔01�̂�
†�̂�+

ℎ̄𝛼

2
�̂�†�̂�†�̂��̂�, (2.12)

where we define the qubit frequency as 𝜔01 = (
√
8𝐸J𝐸C−𝐸C)/ℎ̄ and the anharmonic-

ity as 𝛼 = 𝜔12 − 𝜔01 ≈ −𝐸C. We design the qubit frequency to be much larger than

the aharmonicity (𝜔01 ≫ |𝛼|), which allows us treat the transmon as a weakly anhar-

monic oscillator. The |1⟩ → |2⟩ transition is detuned from the |0⟩ → |1⟩ transition,

so we can effectively treat the transmon as a two-level system:

�̂� =
ℎ̄𝜔01

2
�̂�𝑧, (2.13)

where 𝜎𝑧 is the Pauli-z operator. We use this Hamiltonian throughout the thesis to

represent the transmon circuit as a simple two-level system.

2.4 Flux-Tunable Transmon Qubit

In this work, we need to control the interaction strength between pairs of qubits, which

depends on the difference between their frequencies. Resonant qubits swap energy,

while detuned qubits shift each other’s frequencies [34, 42]. Detuned and resonant

interactions between qubits are resources for the execution of quantum gates, i.e.

operations that manipulate qubit states to perform computations. Thus, we need to

introduce an external parameter that enables in situ qubit frequency tunability.

We use superconducting quantum interference devices (dc-SQUIDs) which consist
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of two Josephson junctions in parallel, as illustrated in Fig. 2-3a, to introduce an

external flux parameter to tune the qubit frequency. To understand the origin of

frequency tunability, we consider the dc-SQUID as a superconducting ring. We define

the reduced flux across each junction with Josephson energy 𝐸J1/2 as 𝜑1/2 referenced

to the ground node. Because of the phase coherence of the condensate wavefunction,

the phase related to the current around a superconducting ring must be an integer

multiple of 2𝜋 – or in other words the total flux is quantized [38]. If we thread the

superconducting ring with an external magnetic flux Φext, the total fluxoid around

the ring obeys the flux quantization condition

𝜑1 − 𝜑2 + 2𝜑ext = 2𝜋𝑚 (2.14)

where 𝑚 is an integer and 𝜑ext = 𝜋Φext/Φ0 is the reduced external flux. Using the

Josephson relations and Kirchoff’s current law, we find the effective current through

the dc-SQUID and write the flux-tunable transmon Hamiltonian

�̂� = 4𝐸C�̂�
2 − (𝐸J1 + 𝐸J2) cos𝜑

√︁
cos2 𝜑ext + 𝑑2 sin2 𝜑ext, (2.15)

where 𝑑 = (𝐸J2−𝐸J1)/(𝐸J2+𝐸J1) is defined as the asymmetry parameter. For 𝑑 = 1,

the circuit is effectively a fixed-frequency transmon qubit with a single junction. For

𝑑 = 0, the dc-SQUID is symmetric with 𝐸J1 = 𝐸J2, providing the maximum qubit

frequency tunability range. The reduced external flux bias Φext changes the effective

Josephson energy and therefore the qubit frequency. The qubit frequency now varies

as a function of the external flux bias,

𝜔01(𝜑ext) = 𝜔01,max

[︀
𝑑2 + (1− 𝑑2) cos2(𝜑ext)

]︀ 1
4 − 𝐸C. (2.16)

If there is ambient flux noise, the qubit frequency jitters, resulting in qubit de-

phasing. Flux-tunable qubits are most sensitive to flux noise where the slope of the

spectrum 𝑑𝜔/𝑑𝜑ext is large, for example 𝜑ext = 𝜋/4. For this reason, we choose to

operate the qubit near its peak frequency where 𝑑𝜔/𝑑𝜑ext is near zero. In Fig. 2-3b,
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Figure 2-3: Flux-tunable asymmetric transmon circuit and qubit frequency
spectrum. a) Flux-tunable transmon circuit schematic composed of a capacitance 𝐶
in parallel with a dc-SQUID. The dc-SQUID is composed of two asymmetric Joseph-
son junctions of energies 𝐸J1 and 𝐸J2 where 𝐸J1 ≪ 𝐸J2. The reduced flux across each
junction is 𝜑1/2 b) Flux-tunable qubit frequency spectrum. The qubit has charging
energy 𝐸C/ℎ = 268 MHz and Josephson energies 𝐸J1 = 1.07 GHz and 𝐸J2 = 11.72
GHz. For this qubit, the junction asymmetry parameter is 𝑑 = 0.834, indicating that
the dc-SQUID is highly asymmetric.

we show an example flux-tunable transmon qubit spectrum, where the dc-SQUID

was designed to be highly asymmetric. We designed this qubit to have some range

of frequency tunability in order to place multiple qubits near resonance, as discussed

in Chapter 5. Because of the large asymmetry, we have a smaller range of frequency

tunability as compared to the case of the symmetric dc-SQUID. The slope of the

spectrum 𝑑𝜔/𝑑𝜑ext away from the peak frequency is larger in the case of the symmet-

ric transmon. As a result, by using a highly asymmetric transmon we decrease the

sensitivity to flux noise away from the peak frequency, as discussed in Chapter 6.
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Chapter 3

A Single Qubit on a Waveguide

The formalism of interest for this work is waveguide Quantum Electrodynamics

(wQED), which describes atoms coupled to a 1D waveguide. In our platform, su-

perconducting qubits are coupled to a coplanar waveguide, which can host the prop-

agation of electromagnetic modes of a wide range of frequencies. The qubit couples

to the 1D continuum of photonic modes in the waveguide. Because of the 1D confine-

ment of these modes and the innately large electric dipole moment of superconducting

qubits [31], the strong-coupling regime is readily accessed. The qubit couples more

strongly to the 1D continuum of modes in the waveguide than to any other decay

channel in the system, which enables us to study light-matter interaction with the

wQED formalism.

We begin by describing the interaction of a single qubit with the 1D continuum

of modes in the waveguide. We start from an abstract quantum model, comparing a

transmon on a waveguide to an atom coupled to the continuum of modes in its envi-

ronment. Then we employ a classical circuit model for the qubit-waveguide system to

study scattering parameters and motivate the idea that a wide range of frequencies can

propagate in the waveguide. We then take this circuit model one step further through

circuit quantization to derive the wQED Hamiltonian, which describes the interaction

of the qubit with modes in the waveguide. To relate the qubit to propagating fields

in the waveguide, we introduce a formalism known as input-output theory. Finally,

we employ a master equation formalism to the qubit-waveguide system, adding loss

29



Figure 3-1: Schematic and abstract quantum model of a single supercon-
ducting qubit coupled to a coplanar waveguide. In the strong-coupling regime,
we model this system as an atom of frequency 𝜔 coupled at rate 𝛾 to a continuum of
1D modes.

mechanisms to the quantum-mechanical model. We derive the scattering parameters

of the system from the quantum-mechanical model, and discuss the behavior of a

qubit as a mirror to single photons in the waveguide. These are the building blocks

of the wQED formalism.

3.1 Spontaneous Emission - Fermi’s Golden Rule

We model our system of a superconducting qubit coupled to a waveguide as an atom

at frequency 𝜔 coupled to a continuum of 1D modes at rate 𝛾, as pictured in Fig. 3-1.

Following the analysis of Ref. [42] using the Wigner-Weisskopf theory of spontaneous

emission, we write the system Hamiltonian as

�̂�

ℎ̄
= 𝜔q|1, 0𝑘⟩⟨1, 0𝑘|+

∑︁
𝑘

𝜔𝑘|0, 𝑘⟩⟨0, 𝑘|+
∑︁
𝑘

(𝑔𝑘|0, 𝑘⟩⟨1, 0𝑘|+ 𝑔*𝑘|1, 0𝑘⟩⟨0, 𝑘|) (3.1)

The first two terms describe the energies of the qubit and the modes in the waveguide,

respectively. The first index in the bras and kets denotes the state of the qubit, and

the second index denotes the state of the 𝑘th mode in the waveguide. The third term

describes the interaction between the qubit and the photonic modes. The qubit can

emit a photon into the continuum of available modes in the waveguide, and it can also
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absorb a single photon from the collective fields present in the waveguide. The Rabi

frequency 𝑔𝑘/2𝜋 describes the rate of the coupling interaction between each available

mode in the waveguide and the excited state of the qubit. Moving to the frame of

the qubit, the Hamiltonian becomes

�̂�

ℎ̄
=
∑︁
𝑘

(𝜔𝑘 − 𝜔q)|0, 𝑘⟩⟨0, 𝑘|+
∑︁
𝑘

(𝑔𝑘|0, 𝑘⟩⟨1, 0𝑘|+ 𝑔*𝑘|1, 0𝑘⟩⟨0, 𝑘|) (3.2)

To determine the time dynamics of the system, we start with a general time-dependent

wavefunction for the system

|𝜓(𝑡)⟩ = 𝑐1(𝑡)|1, 0𝑘⟩+
∑︁
𝑘

𝑐𝑘(𝑡)|0, 𝑘⟩, (3.3)

which evolves in time according to the Schrodinger equation,

𝑖ℎ̄
𝑑

𝑑𝑡
|𝜓(𝑡)⟩ = �̂�|𝜓(𝑡)⟩. (3.4)

This yields the equations of motion for the probability amplitudes

�̇�1(𝑡) = 𝑖
∑︁
𝑘

𝑔*𝑘𝑐𝑘(𝑡) (3.5)

�̇�𝑘(𝑡) = 𝑖𝛿𝑘𝑐𝑘(𝑡) + 𝑖𝑔𝑘𝑐𝑖(𝑡), (3.6)

where 𝛿𝑘 = 𝜔q − 𝜔𝑘 is the detuning of the qubit frequency from the frequency of 𝑘th

mode. At time 𝑡 = 0, we place the qubit in the excited state, such that the system

is in the initial state |𝜓(0)⟩ = |1, 0𝑘⟩ (initial amplitudes 𝑐1(0) = 1 and 𝑐𝑘(0) = 0).

Formally integrating Eq. 3.6, we obtain

𝑐𝑘(𝑡) = 𝑖𝑔𝑘

∫︁ 𝑡

0

𝑐1(𝑡
′)𝑒−𝑖𝛿𝑘(𝑡−𝑡

′)𝑑𝑡′ (3.7)
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which we then substitute into Eq. 3.5 to arrive at a differential equation that describes

the evolution of 𝑐1(𝑡),

�̇�1(𝑡) = −
∑︁
𝑘

|𝑔𝑘|2
∫︁ 𝑡

0

𝑐1(𝑡
′)𝑒−𝑖𝛿𝑘(𝑡−𝑡

′)𝑑𝑡′ (3.8)

To simplify this, we make a series of approximations. We assume that 𝑐1(𝑡) varies

slowly, so that we can set 𝑐1(𝑡′) = 𝑐1(𝑡) and pull it out of the time integral. Since we

sum over all modes, we include all detunings 𝛿𝑘. The detunings are both positive, for

modes with frequencies 𝜔𝑘 less than the qubit frequency 𝜔, and negative, for modes

with frequencies 𝜔𝑘 greater than the qubit frequency 𝜔. After summing over all modes,

the integral in Eq. 3.8 only survives when 𝑡 ≈ 𝑡′. This assumption implies that the

continuum states impact system dynamics only locally in time. In other words, we

can consider the continuum states to be a so-called "Markovian environment", which

has the following conditions:

1. The 1D photonic continuum states in the waveguide are not significantly af-

fected by their interaction with the qubit. The continuum states are time-

independent/stationary.

2. The bandwidth of the continuum is much larger than the bandwidth of the

qubit. The frequency range of the propagating modes in the waveguide is much

broader than the qubit-waveguide coupling rate 𝛾. In the time domain, this

corresponds to environment dynamics that are much faster than the dynamics of

the qubit-continuum interaction. As a result, the environment has no "memory"

of its interaction with the qubit, which consequently renders these interactions

irreversible.

Returning to our calculation, we implement a mathematical trick by working in the

long-time limit: after summing over all detunings 𝛿𝑘, the integral in Eq. 3.8 is zero

when 𝑡 ̸= 𝑡′, this enables us to integrate over all time. We take 𝑡 → ∞ and then use
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an identity from complex analysis,

lim
𝑡→∞

∫︁ 𝑡

0

𝑒−𝑖𝛿𝑘(𝑡−𝑡
′)𝑑𝑡′ = 𝜋𝛿(𝛿𝑘)− 𝑃

[︂
1

𝛿𝑘

]︂
, (3.9)

where 𝑃
[︁

1
𝛿𝑘

]︁
is the principal value taken when integrating over 𝛿𝑘, and 𝛿 is the Dirac

delta function. We rewrite Eq. 3.8 as

�̇�1(𝑡) = −𝑐1(𝑡)

(︃
𝜋
∑︁
𝑘

|𝑔𝑘|2𝛿(𝛿𝑘)− 𝑖
∑︁
𝑘

|𝑔𝑘|2𝑃
[︂
1

𝛿𝑘

]︂)︃
. (3.10)

We define the first term in Eq. 3.10 as 𝛾
2
= 𝜋

∑︀
𝑘 |𝑔𝑘|2𝛿(𝛿𝑘), a real number, which

is the decay rate of 𝑐1(𝑡), corresponding to population decay from the excited state

of the qubit into the available photonic modes. This expression is equivalent to

Fermi’s Golden Rule. The matrix element of the Hamiltonian that couples the states

|1, 0𝑘⟩ and |0, 𝑘⟩ is 𝑔𝑘 = ⟨1, 0𝑘|�̂�|0, 𝑘⟩. The density of states into which the qubit

can decay is
∑︀

𝑘 𝛿(𝛿𝑘), as the qubit will only decay into modes near its frequency

(𝛿𝑘 = 𝜔 − 𝜔𝑘 ≈ 0). The second term in Eq. 3.10 corresponds to an energy shift

known as the Lamb shift, ∆ =
∑︀

𝑘 |𝑔𝑘|2𝑃
[︁

1
𝛿𝑘

]︁
, is a constant that can be incorporated

into the problem by redefining the qubit frequency as �̃� = 𝜔 + ∆. The solution to

Eq. 3.10 is 𝑐1(𝑡) = 𝑒−𝛾𝑡/2+𝑖Δ𝑡 and the population of the qubit is,

𝜌11(𝑡) = 𝑐*1(𝑡)𝑐1(𝑡) = 𝑒−𝛾𝑡. (3.11)

In the long-time limit, the probability amplitudes of modes in the waveguide are

𝑐𝑘(𝑡) =
𝑖𝑔𝑘𝑒

𝑖𝛿𝑘𝑡

𝛾/2 + 𝑖𝛿𝑘
(3.12)

We interpret the resulting state of the fields in the waveguide as a photon wavepacket

that is a superposition of continuum states
∑︀

𝑘 𝑐𝑘(𝑡)|0, 𝑘⟩ that move away from the

qubit. The modes with frequencies closest to the qubit frequency will have higher

population after emission. Revisiting the assumption of Markovianity, when the qubit

emits a photon into the 1D waveguide, the excitation is distributed amongst many
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Figure 3-2: Ideal lumped-element circuit model of an infinite transmission
line. We model the transmission line as a series of unit cells of lumped capacitors
and inductors of length 𝑥0 with capacitance per unit length 𝑐 and inductance per unit
length 𝑙. We define time-dependent voltages 𝑉 (𝑛𝑥0, 𝑡) at each circuit node.

modes. Because there is a quasicontinuum of modes, or in other words, the envi-

ronment has a large bandwidth compared to the qubit decay rate, the information

becomes scrambled, and we lose track of the initial excited state population. In this

sense, this process is not time-reversible.

3.2 Classical Model: Qubit-Waveguide System

In the model outlined in Sec. 3.1, we stipulated that the qubit is coupled to a con-

tinuum of photonic modes in the 1D coplanar waveguide (transmission line). To

demonstrate that modes of any frequency can propagate in the line in the ideal, loss-

less case, we use the lumped-element circuit model for the transmission line shown

in Fig. 3-2. We divide the transmission line into small sections of length 𝑥0. Each

section has a total lumped capacitance 𝑐𝑥0 and total lumped inductance 𝑙𝑥0, where

𝑐 and 𝑙 are the capacitance and inductance per unit length of the transmission line,

which are quantities defined by the geometry of the transmission line. First, using

Kirchoff’s Laws we relate the voltage of each node to the current through each lumped

inductance with

𝑉 (𝑛𝑥0, 𝑡)− 𝑉 ((𝑛+ 1)𝑥0, 𝑡) = 𝑙𝑥0
𝜕

𝜕𝑡
𝐼(𝑛𝑥0, 𝑡) (3.13)
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We also relate the current through each lumped capacitance to the node voltage with

𝐼(𝑛𝑥0, 𝑡)− 𝐼((𝑛+ 1)𝑥0, 𝑡) = 𝑐𝑥0
𝜕

𝜕𝑡
𝑉 (𝑛𝑥0, 𝑡). (3.14)

In the limit that 𝑥0 approaches zero, we arrive at the telegrapher equations for a

lossless transmission line

𝜕

𝜕𝑥
𝑉 (𝑥, 𝑡) = −𝑙 𝜕

𝜕𝑡
𝐼(𝑥, 𝑡)

𝜕

𝜕𝑥
𝐼(𝑥, 𝑡) = −𝑐 𝜕

𝜕𝑡
𝑉 (𝑥, 𝑡).

(3.15)

In the Fourier domain, the telegrapher equations are

𝜕

𝜕𝑥
𝑉 (𝑥, 𝑡) = −𝑗𝜔𝑙𝐼(𝑥, 𝑡)

𝜕

𝜕𝑥
𝐼(𝑥, 𝑡) = −𝑗𝜔𝑐𝑉 (𝑥, 𝑡).

(3.16)

Combining these equations, we derive 1D scalar wave equations for the voltage and

current in an infinite lossless transmission line.(︂
𝜕2

𝜕𝑥2
+ 𝜔2𝑙𝑐

)︂
𝑉 (𝑥, 𝑡) = 0(︂

𝜕2

𝜕𝑥2
+ 𝜔2𝑙𝑐

)︂
𝐼(𝑥, 𝑡) = 0.

(3.17)

We choose rightward-propagating plane wave solutions 𝑉 (𝑘, 𝑤) = 𝑉0𝑒
−𝑖(𝑘𝑥−𝜔𝑡) and

𝐼(𝑘, 𝑤) = 𝑉0
𝑍0
𝑒−𝑖(𝑘𝑥−𝜔𝑡) without loss of generality, because they can be used in infinite

series to construct arbitrary signals. The characteristic impedance of the line is given

by 𝑍0 =
√︀
𝑙/𝑐. We derive the dispersion relation for the voltage and current waves to

be 𝑘2 = 𝜔2𝑙𝑐. The speed of these waves in the transmission line is 𝜈 = 1/
√
𝑙𝑐. Note

that 𝑙 and 𝑐 are fixed by the geometry of the transmission line. From the dispersion

relation, a wave of any wavelength 𝜆 = 2𝜋/𝑘 can propagate in the waveguide. This

falls in line with our model in Sec. 3.1, where we posited that the waveguide hosts a

continuum of photonic modes. In other words, in the ideal case of no dielectric loss,

the waveguide has infinite bandwidth. Next, we derive the scattering parameters
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Figure 3-3: Classical circuit model of qubit-waveguide system composed
of a lumped element resonator coupled to a transmission line. a) Circuit
diagram of qubit coupled to transmission line with characteristic impedance of 𝑍0

through coupling capacitance 𝐶g. There is a voltage source 𝑉in which sends a signal
down the transmission line, which is terminated on the other end with a matched
load. The qubit is modeled as a classical LC oscillator, with capacitance 𝐶s and
inductance 𝐿J. b) Transmission and reflection spectra of the circuit shown in (a).

of the qubit-waveguide system, namely reflection and transmission. Based off the

approach taken in Ref. [43], we model the qubit as a classical LC circuit with a

lumped element shunt capacitance of value 𝐶s and inductance 𝐿J in parallel. The LC

circuit is coupled to the transmission line, now modeled as a continuous transmission

line with effective impedance 𝑍0 with capacitance 𝐶g, as shown in Fig. 3-3.

We consider the coherent scattering of a incident coherent tone through the waveg-

uide. We perform circuit analysis of the classical qubit-waveguide model to extract

the modified qubit frequency and the strength of the qubit-waveguide coupling 𝛾.

We treat the circuit as a loaded parallel resonant circuit [44]. We first find the input

impedance of the system

𝑍in(𝜔) = 𝑍0 ||

(︃
1

𝑗𝜔𝐶g

+

(︂
𝑗𝜔𝐶s +

1

𝑗𝜔𝐿J

)︂−1
)︃
, (3.18)

which we can use to derive the reflection coefficient at the position of the qubit,

𝑟 =
𝑍in − 𝑍0

𝑍in + 𝑍0

, (3.19)
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On resonance, the input impedance of a parallel resonant circuit is maximized,

while the input admittance is minimized. We set Im(𝑌in(𝜔)) = 0 to effectively mini-

mize the input admittance, which yields the loaded resonance frequency of the system

𝜔q =
1√︀

𝐿J(𝐶s + 𝐶g)
. (3.20)

We see that the coupling capacitance modifies the effective qubit resonance frequency.

This can be interpreted as the classical explanation for the Lamb shift. The presence

of the waveguide near the qubit loads the resonant circuit and shifts the resonance

frequency from the bare frequency 1/
√
𝐿J𝐶s. In the abstract quantum model, the

coupling to a continuum of 1D modes shifts the qubit frequency. These are two sides

of the same coin.

Next, we seek to derive 𝛾 in terms of classical circuit parameters. Near the qubit

frequency, the reflection and transmission parameters take the form

𝑟 ≈
1− 𝑖𝛿𝜔

𝛾

1 + 𝛿𝜔2

𝛾2

𝑡 ≈ 1−
1− 𝑖𝛿𝜔

𝛾

1 + 𝛿𝜔2

𝛾2

(3.21)

where the qubit-tone detuning is 𝛿𝜔 = 𝜔−𝜔q and the qubit-waveguide coupling rate

from the classical circuit model is

𝛾 =
𝜔2
q𝐶

2
g𝑍0

4(𝐶g + 𝐶s)
. (3.22)

We use this expression during the device design process, where we use classical mi-

crowave circuit simulators to extract parameters from the device geometry. The

transmission and reflection spectra take the form of Lorentzian line-shapes. In the

low input field power limit, we measure this transmission spectrum directly with a

Vector Network Analyzer. The qubit behaves as a load on the transmission line that

reflects input radiation near the qubit frequency.
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Figure 3-4: Lumped-element circuit model of a transmon qubit coupled to
an infinite transmission line. We model the transmission line as a series of unit
cells of capacitors and inductors of length 𝑥0 with capacitance per unit length 𝑐 and
inductance per unit length 𝑙. The transmon has shunt capacitance 𝐶s and Josephson
Energy 𝐸J. The transmon’s capacitance to the transmission line is 𝐶g.

3.3 The waveguide QED Hamiltonian

Thus far, we have modeled a qubit coupled to a waveguide as an atom coupled to a

continuum of available modes in the environment. This model abstracts the details

of the system to help us understand the dynamics, but it is incomplete. From the

abstract quantum model, we have derived general expressions for the decay rate

of the qubit 𝛾, which is a function of the single-mode Rabi frequency 𝑔𝑘. Then

we focused more closely on the qubit-waveguide system and applied classical circuit

analysis, and we observed the classical analog of the Lamb shift and arrived at an

expression for the qubit-waveguide coupling rate 𝛾. We also derived the transmission

and reflection spectra of the classical model. We will take our analysis one step

further by implementing a circuit quantization approach [37] to derive the wQED

Hamiltonian, which describes a single transmon coupled to an infinite waveguide,

following the discussion outlined in [45,46].

In the circuit model presented in Fig. 3-4, we divide the transmission line of

capacitance per unit length 𝑐 and inductance per unit length 𝑙 into 𝑚 unit cells. We

couple the transmon qubit to the transmission line at the 𝑛th unit cell. We define a

flux variable at each node, which is the time integral of the instantaneous voltage of

the node referenced to ground 𝜑(𝑡) =
∫︀ 𝑡
−∞ 𝑣(𝑡′)𝑑𝑡′. We choose the flux variable to be
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position-like as we set up the Langrangian, which is the difference of the kinetic and

potential energy of the system, ℒ = 𝐸kin − 𝐸pot. As the fluxes are the position-like

variables, the inductive energy of the system will serve as the potential energy and

the capacitive energy will serve as the kinetic energy. We write the Langrangian for

the qubit-waveguide system,

ℒ =
1

2
𝐶s�̇�

2
J +

∑︁
𝑚

1

2
𝑐𝑥0�̇�(𝑚𝑥0)

2 +
1

2
𝐶g(�̇�(𝑛𝑥0)− �̇�J)

2

+𝐸J cos
2𝜋𝜑J

𝜑0

−
∑︁
𝑚

1

2𝑙𝑥0
(𝜑((𝑚+ 1)𝑥0)− 𝜑(𝑚𝑥0))

2

(3.23)

and find the charge (momentum-like) conjugate variables using 𝑞𝑘 = 𝜕ℒ
𝜕�̇�𝑘

.

𝑞(𝑛𝑥0) = 𝐶g(�̇�(𝑛𝑥0)− �̇�J) + 𝑐𝑥0�̇�(𝑛𝑥0)

𝑞(𝑚𝑥0) = 𝑐𝑥0�̇�(𝑚𝑥0)

𝑞J = 𝐶s�̇�J − 𝐶g(�̇�(𝑛𝑥0)− �̇�J)

(3.24)

We construct the classical Hamiltonian of the system from the Lagrangian using

𝐻 =
∑︁
𝑚

𝑞(𝑚𝑥0)�̇�(𝑚𝑥0) + 𝑞(𝑛𝑥0)�̇�(𝑛𝑥0) + 𝑞J�̇�J − ℒ. (3.25)

We aim to write the quantum Hamiltonian of the system as the sum of the transmon

Hamiltonian, the transmission line Hamiltonian, and the interaction Hamiltonian,

�̂� = 𝐻J + �̂�TX + �̂�int (3.26)

First, we approximate the transmon qubit as an ideal two-level system with the free-

transmon Hamiltonian from Eq. 2.13,

�̂�J =
ℎ̄𝜔q

2
�̂�𝑧. (3.27)

where the qubit frequency is defined as 𝜔q = (
√
8𝐸J𝐸C−𝐸C)/ℎ̄. The charging energy
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is modified by the coupling to the transmission line

𝐸C =
𝑒2

2𝐶J

=
𝑒2(𝐶g + 𝑐𝑑)

2[𝑐𝑑(𝐶g + 𝐶s) + 𝐶g𝐶s]
. (3.28)

Next, we study the transmission line Hamiltonian,

�̂�TX =
∑︁
𝑚

𝑥0

[︃
𝑞(𝑚𝑥0)

2

2𝑐TX(𝑚𝑥0)
+

1

2𝑙

(︂
𝜑((𝑚+ 1)𝑥0)− 𝜑(𝑚𝑥0)

𝑥0

)︂2
]︃
, (3.29)

where we define the effective transmission line capacitance per unit length

𝑐TX(𝑚𝑥0) = 𝑐+
𝐶g𝐶s

(𝐶g + 𝐶s)

𝛿𝑛𝑚
𝑥0

. (3.30)

Since 𝑞(𝑚𝑥0) and 𝜑(𝑚𝑥0) are conjugate variables, we can promote them to quantum

operators (𝑞(𝑚𝑥0) → 𝑞(𝑚𝑥0), 𝜑(𝑚𝑥0) → 𝜑(𝑚𝑥0)) with the commutator

[𝜑(𝑚𝑥0), 𝑞(𝑚
′𝑥0)] = 𝑖ℎ̄𝛿𝑚𝑚′ . (3.31)

We move from a lumped-element to a distributed circuit model through the assump-

tion that 𝑥0 and the effective qubit length 𝑑 are much smaller than the wavelength

of the modes of interest in the waveguide, which are those near the qubit frequency.

To work in the continuum limit, we take 𝑥0 → 0, and the Hamiltonian for the trans-

mission line becomes

�̂�TX =

∫︁ ∞

−∞
𝑑𝑥

⎡⎣ 𝑞(𝑥)2

2𝑐TX(𝑥)
+

1

2𝑙

(︃
𝜕𝜑(𝑥)

𝜕𝑥

)︃2
⎤⎦ , (3.32)

and

𝑐TX(𝑥) = 𝑐+
𝐶g𝐶s

(𝐶g + 𝐶s)
𝛿(𝑥− 𝑥J) (3.33)

where the position of the center of the qubit is 𝑥J. As argued in [45], we treat the

qubit and coupling capacitances as small perturbations to the total capacitance 𝑐𝐿

of the transmission line of length L and approximate 𝑐TX(𝑥) ≈ 𝑐.
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The discrete-valued charge and flux operators are now continuous operators 𝑞(𝑥)

and 𝜑(𝑥). The commutator [𝜑(𝑚𝑥0), 𝑞(𝑚
′𝑥0)] = [𝜑(𝑚𝑥0), 𝑐𝑥0

ˆ̇𝜑(𝑚′𝑥0)] = 𝑖ℎ̄𝛿𝑚𝑚′ be-

comes

lim
𝑥0→0

(︂
[𝜑(𝑚𝑥0), 𝑐

ˆ̇𝜑(𝑚′𝑥0)] =
𝑖ℎ̄𝛿𝑚𝑚′

𝑥0

)︂
(3.34)

[𝜑(𝑥), 𝑞(𝑥′)] = 𝑖ℎ̄𝛿(𝑥− 𝑥′) (3.35)

where the continuous charge density operator is 𝑞(𝑥) = 𝑐
˙̂
𝜑(𝑥).

Next, we work in Fourier space,

𝜑(𝑥) =

∫︁ ∞

−∞

𝑑𝑘√
2𝜋
𝜑(𝑘)𝑒𝑖𝑘𝑥

𝑞(𝑥) =

∫︁ ∞

−∞

𝑑𝑘√
2𝜋
𝑞(𝑘)𝑒𝑖𝑘𝑥

(3.36)

We take the derivative of the flux variable with respect to position,

𝜕𝜑(𝑥)

𝜕𝑥
=

∫︁ ∞

−∞

𝑑𝑘√
2𝜋
𝑖𝑘𝜑(𝑘)𝑒𝑖𝑘𝑥 (3.37)

which we substitute into Eq. 3.32,

�̂�TX =

∫︁ ∞

−∞
𝑑𝑘

∫︁ ∞

−∞
𝑑𝑘′
∫︁ ∞

−∞

𝑑𝑥

2𝜋
𝑒𝑖(𝑘+𝑘

′)𝑥

[︂
1

2𝑐
𝑞(𝑘)𝑞(𝑘′)− 𝑘𝑘′

2𝑙
𝜑(𝑘)𝜑(𝑘′)

]︂
. (3.38)

Using the identity 2𝜋𝛿(𝑘) =
∫︀∞
−∞ 𝑑𝑥𝑒𝑖𝑘𝑥,

�̂�TX =

∫︁ ∞

−∞
𝑑𝑘

∫︁ ∞

−∞
𝑑𝑘′𝛿(𝑘 + 𝑘′)

[︂
1

2𝑐
𝑞(𝑘)𝑞(𝑘′)− 𝑘𝑘′

2𝑙
𝜑(𝑘)𝜑(𝑘′)

]︂
. (3.39)

Next, we integrate with respect to 𝑘′, and integrating over 𝛿(𝑘+𝑘′) results in equating

𝑘′ = −𝑘. We note that 𝜑(𝑥) and 𝑞(𝑥) are real functions, whose Fourier pairs obey

the relation 𝜑(−𝑘) = 𝜑*(𝑘) and 𝑞(−𝑘) = 𝑞*(𝑘).

�̂�TX =

∫︁ ∞

−∞
𝑑𝑘

[︃
|𝑞(𝑘)|2

2𝑐
+
𝑘2|𝜑(𝑘)|2

2𝑙

]︃
. (3.40)

This is the Hamiltonian of a set of simple quantum harmonic oscillators. In the anal-
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ogy, the mass quantity is the capacitance per unit length 𝑐, and the frequency of each

oscillator is 𝜔𝑘 = 𝑘√
𝑙𝑐
. This can be interpreted as a continuum of electromagnetic

waves in the transmission line propagating at speed 𝜈 = 1/
√
𝑙𝑐. Using second quan-

tization, we write the operators 𝑞(𝑘) and 𝜑(𝑘) in terms of creation and annihilation

operators

𝜑(𝑘) =

√︂
ℎ̄𝑍0

2𝑘
(�̂�†(−𝑘) + �̂�(𝑘))

𝑞(𝑘) = 𝑖

√︂
ℎ̄𝑘

2𝑍0

(�̂�†(−𝑘)− �̂�(𝑘))

(3.41)

where 𝑍0 =
√︁

𝑙
𝑐

is the characteristic impedance of the transmission line. We rewrite

the transmission line Hamiltonian in the eigenbasis of the quantum Harmonic oscil-

lator,

�̂�TX =

∫︁ ∞

−∞
𝑑𝑘
ℎ̄𝜔𝑘
2

(�̂�†(𝑘)�̂�(𝑘) + 𝑎†(−𝑘)�̂�(−𝑘)). (3.42)

In the literature, it is common to distinguish leftward and rightward propagating

modes to prepare for an input-output theory-style analysis of the system [45–47]. We

implement this by using positive wave numbers only, and we write the transmission

line Hamiltonian as

�̂�TX =

∫︁ ∞

0

𝑑𝑘ℎ̄𝜔𝑘(�̂�
†
L(𝑘)�̂�L(𝑘) + �̂�†R(𝑘)�̂�R(𝑘)). (3.43)

Alternatively, we define the operators as a function of the harmonic oscillator fre-

quency 𝜔.

𝜑(𝜔) =

√︂
ℎ̄

2𝜔𝑐
(�̂�†(−𝜔) + �̂�(𝜔))

𝑞(𝜔) = 𝑖

√︂
ℎ̄𝜔𝑐

2
(�̂�†(−𝜔)− �̂�(𝜔))

(3.44)

which leads to an equivalent transmission line Hamiltonian,

�̂�TX =

∫︁ ∞

0

𝑑𝜔ℎ̄𝜔(�̂�†L(𝜔)�̂�L(𝜔) + 𝑎†R(𝜔)�̂�R(𝜔)). (3.45)
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We take the Fourier transform to obtain the charge density and flux operators as a

function of position,

𝜑(𝑥) =

√︂
ℎ̄

4𝜋𝑐

∫︁ ∞

−∞

𝑑𝑘
√
𝜔𝑘

(�̂�†−𝑘 + �̂�𝑘)𝑒
𝑖𝑘𝑥 =

√︂
ℎ̄𝑍0

4𝜋

∫︁ ∞

−∞

𝑑𝜔√
𝜔
(�̂�†𝜔𝑒

−𝑖𝜔𝑥
𝜈 + �̂�𝜔𝑒

𝑖𝜔𝑥
𝜈 )

𝑞(𝑥) = 𝑖

√︂
ℎ̄𝑐

4𝜋

∫︁ ∞

−∞
𝑑𝑘

√
𝜔𝑘(�̂�

†
−𝑘 − �̂�𝑘)𝑒

𝑖𝑘𝑥 = 𝑖

√︂
ℎ̄𝑍0𝑐2

4𝜋

∫︁ ∞

−∞
𝑑𝜔

√
𝜔(�̂�†𝜔𝑒

−𝑖𝜔𝑥
𝜈 − �̂�𝜔𝑒

𝑖𝜔𝑥
𝜈 ).

(3.46)

Finally, returning to the assembly of the Hamiltonian of the qubit-waveguide system

initiated in Eq. 3.26, we write the interaction Hamiltonian in terms of the defined

quantum operators,

�̂�int =

∫︁ ∞

−∞
𝑑𝜔𝑖ℎ̄𝑔(𝜔)�̂�𝑦(�̂�𝜔𝑒

𝑖
𝜔𝑥J
𝜈 − �̂�†𝜔𝑒

−𝑖𝜔𝑥J
𝜈 ) (3.47)

where we define the effective coupling capacitance per unit length

𝑐g =
𝑐𝑑(𝐶g + 𝐶s) + 𝐶g𝐶s

𝐶g𝑑
(3.48)

and the single-mode coupling rate

𝑔(𝜔) =

√︃
𝜔𝑍0𝑒2𝑐2

2𝜋ℎ̄𝑐2g

(︂
𝐸J

8𝐸C

)︂ 1
4

. (3.49)

Finally, we arrive at the the waveguide QED Hamiltonian, derived from the circuit

quantization of a transmon qubit coupled to a coplanar waveguide,

�̂�

ℎ̄
=
𝜔q

2
�̂�𝑧 +

∫︁ ∞

−∞
𝑑𝜔
(︀
𝜔�̂�†𝜔�̂�𝜔 + 𝑖𝑔(𝜔)�̂�𝑦(�̂�

†
𝜔𝑒

−𝑖𝜔𝑥
𝜈 − �̂�𝜔𝑒

𝑖𝜔𝑥
𝜈

)︀
. (3.50)

This Hamiltonian maps directly to the abstract Hamiltonian in Eq. 3.2, which de-

scribes a two-level system coupled to a 1D continuum of propagating modes. Distin-

guishing between leftward and rightward propagating modes in the waveguide and
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using the rotating wave approximation, the waveguide QED Hamiltonian is

�̂�

ℎ̄
=
𝜔q

2
�̂�𝑧 +

∫︁ ∞

0

𝑑𝜔[𝜔(�̂�†L(𝜔)�̂�L(𝜔) + �̂�†R(𝜔)�̂�R(𝜔))+

𝑔(𝜔)(�̂�+�̂�R(𝜔)𝑒
𝑖
𝜔𝑥J
𝜈 + �̂�−�̂�†L(𝜔)𝑒

−𝑖𝜔𝑥J
𝜈 + ℎ.𝑐.)].

(3.51)

We revist the key parameters of the analysis of this Hamiltonian in the Sec. 3.2, the

Rabi frequency 𝑔𝑘, the decay rate 𝛾. Following Fermi’s Golden Rule, the decay rate

𝛾 of the qubit population into the waveguide modes depends on the density of states

in the waveguide and the coupling rate 𝑔(𝜔),

𝛾 = 2𝜋

∫︁ ∞

−∞
𝑑𝜔|𝑔(𝜔)|2𝛿(𝜔 − 𝜔q) =

𝜔q𝑒
2𝑍0

ℎ̄

(︂
𝑐

𝑐g

)︂2(︂
𝐸J

8𝐸C

)︂ 1
2

. (3.52)

Note that we are working in the continuum limit of modes in the waveguide. We

have arrived at an expression for 𝛾 in terms of circuit parameters. Through circuit

quantization of the qubit-waveguide system, we have filled in more details of the

quantum model of a single qubit coupled to a waveguide.

3.4 Input-Output Theory

We have derived the waveguide QED Hamiltonian, which governs the dynamics of

a single qubit coupled to the 1D continuum of modes in the waveguide. Our next

goal is to adopt the input-output theory formalism in order to define a relationship

between the qubit and propagating fields in the waveguide. This is a preliminary

step towards determining the scattering spectra of the qubit-waveguide system. We

use the Hamiltonian in Eq. 3.51 and move to the Heisenberg picture to obtain the

evolution of the rightward-propagating field operator �̂�R(𝜔)

𝑑�̂�R(𝜔)

𝑑𝑡
=

1

𝑖ℎ̄
[�̂�R(𝜔), �̂�] = −𝑖𝜔�̂�R(𝜔)− 𝑖𝑔(𝜔)�̂�−𝑒−𝑖

𝜔𝑥J
𝜈 . (3.53)
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Next, through formal integration, the evolution equation becomes

�̂�R(𝜔, 𝑡)𝑒
𝑖𝜔𝑡 = −𝑖𝑔(𝜔)

∫︁ 𝑡

−∞
�̂�−(𝑡′)𝑒𝑖𝜔(𝑡

′−𝑡0)𝑑𝑡′ (3.54)

where we define 𝑡0 = 𝑥J/𝜈 as a time delay determined by the position of the qubit.

We choose time 𝑡 = 0 to be the time at which the qubit begins to interact with the

initial field in the waveguide �̂�R(𝜔, 0),

�̂�R(𝜔, 𝑡) = �̂�R(𝜔, 0)𝑒
−𝑖𝜔𝑡 − 𝑖𝑔(𝜔)

∫︁ 𝑡

0

�̂�−(𝑡′)𝑒𝑖𝜔(𝑡
′−𝑡−𝑡0)𝑑𝑡′ (3.55)

In order to define the time boundary conditions of the input-output relation, we

also redefine this equation in terms of a final time 𝑡𝑓 > 𝑡 after the qubit-waveguide

interaction

�̂�R(𝜔, 𝑡) = �̂�R(𝜔, 𝑡𝑓 )𝑒
−𝑖𝜔𝑡 + 𝑖𝑔(𝜔)

∫︁ 𝑡𝑓

𝑡

�̂�−(𝑡′)𝑒𝑖𝜔(𝑡
′−𝑡−𝑡0)𝑑𝑡′. (3.56)

We define the input and output field as functions of time respectively with Fourier

transforms

�̂�inR(𝑡) =

∫︁ ∞

0

𝑑𝜔√
2𝜋
�̂�R(𝜔, 0)𝑒

−𝑖𝜔𝑡

�̂�outR (𝑡) =

∫︁ ∞

0

𝑑𝜔√
2𝜋
�̂�R(𝜔, 𝑡𝑓 )𝑒

−𝑖𝜔𝑡
(3.57)

We set Eq. 3.55 equal to Eq. 3.56 and integrate over 𝜔,

�̂�outR (𝑡) = �̂�inR(𝑡)−
∫︁ ∞

0

𝑑𝜔√
2𝜋
𝑖𝑔(𝜔)

∫︁ 𝑡𝑓

0

�̂�−(𝑡′)𝑒𝑖𝜔(𝑡
′−𝑡−𝑡0)𝑑𝑡′. (3.58)

We observe that 𝑔(𝜔) ∝
√
𝜔, which means that higher frequencies will contribute the

most to the integral. However, at high frequencies, the integrand oscillates quickly

and the contribution of higher frequencies will average to zero. The only time at which

the integrand is not an oscillatory function is at 𝑡′ = 𝑡. At times |𝑡′− 𝑡| ≪ 1/𝑔(𝜔), we

make the approximation that the qubit is evolving freely, i.e. �̂�−(𝑡′) ≈ �̂�−(𝑡)𝑒−𝑖𝜔q(𝑡′−𝑡).
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Here, we neglect the interaction term of the waveguide QED Hamiltonian in Eq.

3.51. At this time scale, the coupling rate is much slower than the qubit frequency,

and we proceed as if the qubit is not coupled to the waveguide at all. This is an

implementation of the Markov approximation, see [45] for more details. If 𝜔q𝑡 ≫ 1,

we are integrating over many periods of evolution, so we can take the long-time limit

𝜔q𝑡→ ∞ [45]. With these simplifications, we have

�̂�outR (𝑡) = �̂�inR(𝑡)− 𝑖�̂�−(𝑡)

∫︁ ∞

0

𝑑𝜔√
2𝜋
𝑔(𝜔)𝑒−𝑖𝜔𝑡0

∫︁ ∞

0

𝑒𝑖(𝜔−𝜔q)(𝑡′−𝑡)𝑑𝑡′. (3.59)

Using the identity given in Eq. 3.9, we simplify

�̂�outR (𝑡) = �̂�inR(𝑡)− 𝑖�̂�−(𝑡)

∫︁ ∞

0

𝑑𝜔
√
𝜋√

2
𝑔(𝜔)𝑒−𝑖𝜔𝑡0𝛿(𝜔 − 𝜔q). (3.60)

Finally, we arrive at the input-output relations for the qubit coupled to the waveguide.

The same analysis for a leftward-propagating field yields a similar expression.

�̂�outR (𝑡) = �̂�in
R(𝑡)− 𝑖

√︂
𝛾

2
�̂�−(𝑡)𝑒−𝑖

𝜔q𝑥J
𝜈

�̂�outL (𝑡) = �̂�in
L (𝑡)− 𝑖

√︂
𝛾

2
�̂�−(𝑡)𝑒𝑖

𝜔q𝑥J
𝜈 .

(3.61)

Alternatively, we will use an equivalent expression where we remove the −𝑖 phase in

front of the qubit operators. This would imply that during the second quantization

of the fields in the waveguide, we chose the charge density operator 𝑞(𝑥) to be the

position-like variable instead of the momentum-like variable, which would result in

a −𝑖 phase in the single-mode coupling 𝑔(𝜔) in Eq. 3.49. This choice does not alter

the system dynamics. Equivalently, we write the input-output relations for a qubit

coupled to a bidirectional waveguide,

�̂�outR (𝑡) = �̂�in
R(𝑡) +

√︂
𝛾

2
�̂�−(𝑡)𝑒−𝑖

𝜔q𝑥J
𝜈

�̂�outL (𝑡) = �̂�in
L (𝑡) +

√︂
𝛾

2
�̂�−(𝑡)𝑒𝑖

𝜔q𝑥J
𝜈 .

(3.62)
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For the single qubit case, this position parameter 𝑥J is an arbitrary reference point in

a waveguide of effectively infinite length, but will prove important in Chapter 4 in the

discussion of the collective effects of multiple qubits coupled to a common waveguide.

These equations describe the relationship between the qubit and field amplitudes in

the waveguide. We can use them to inject an input field through the waveguide and

determine the output field after the qubit-waveguide interaction. We see from these

relations that when a qubit emits a photon into the waveguide, on average, the photon

will propagate to the right or left with equal probability.

3.5 Qubit as a Single Photon Mirror

Now that we have established a model for the quantum dynamics of the qubit-

waveguide system, we see that coupling the qubit to the continuum of 1D modes

serves as a mechanism of population decay through spontaneous emission at rate 𝛾.

Our next goal is to use the quantum qubit-waveguide model to derive the transmission

and reflection spectra of a coherent tone incident on the qubit through the waveguide.

By assuming the 1D continuum of modes is a Markovian environment, we can uti-

lize the master-equation formalism for the qubit-waveguide system. A more detailed

derivation of a general master equation for qubit-waveguide systems can be found in

Sec. 4.2. We assume we are in the strong-coupling regime, where the qubit is more

strongly coupled to the waveguide than to any other decay channel in the environ-

ment. In other words, the qubit-waveguide coupling rate 𝛾 ≫ 𝛾nr, the non-radiative

decay, which we will neglect in this analysis. We add a few more ingredients to our

model: a coherent tone in the waveguide incident upon the qubit, the presence of

thermal photons, and qubit dephasing, following [48]. The Hamiltonian of the system

is the sum of the qubit energy and the coupling to the coherent field in the rotating

frame of the qubit,
�̂�q

ℎ̄
= −𝛿

2
�̂�𝑧 +

Ωp

2
�̂�𝑥, (3.63)

where 𝜔p is the input field frequency, 𝛿 = 𝜔p − 𝜔q is the qubit-tone detuning, and

Ωp is the Rabi frequency of the coherent tone that probes the qubit. The tone is
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coherent, producing a field corresponding to that of a classical oscillating dipole [42].

Therefore, the expression for the Rabi frequency is [45]

Ωp = −2𝑖⟨�̂�in⟩
√︂
𝛾

2
, (3.64)

where �̂�in corresponds to the coherent input field amplitude. We assume we send a

rightward-propagating coherent tone through the waveguide. We also know that the

average input field amplitude ⟨�̂�in⟩ =
√︁

𝑃
ℎ̄𝜔d

, where 𝑃 is the input power, which is

obtained from an average power calculation using the charge and flux variables [49].

This allows us to relate the resonant input power to the Rabi frequency

Ωp = −𝑖

√︃
2𝛾𝑃

ℎ̄𝜔q

(3.65)

The master-equation that describes the dynamics of the driven qubit coupled to a

waveguide is

𝜕𝑡𝜌 =
1

𝑖ℎ̄

[︀
�̂�q, 𝜌

]︀
+ (�̄�th + 1)𝛾𝐷

[︀
�̂�−]︀𝜌+ �̄�th𝛾𝐷

[︀
�̂�+
]︀
𝜌+

𝛾𝜑
2
𝐷
[︀
�̂�𝑧
]︀
𝜌, (3.66)

where 𝜌 is the density matrix operator of the qubit and 𝐷[�̂�] = �̂�𝜌�̂�†− 1
2
{�̂�†�̂�, 𝜌} is

the Lindblad dissipator. The qubit is coupled to a thermal bath of photons present in

the waveguide, with temperature 𝑇 and average photon number �̄�th = 1/(𝑒
ℎ̄𝜔q
𝑘B𝑇 − 1).

The pure dephasing rate is denoted by 𝛾𝜑. There are four processes that contribute

to the system dynamics:

1. Coherent drive at rate Ωp – population transfer between the ground and

excited state of the qubit.

2. Spontaneous emission at rate 𝛾 – population decay from the excited state

to the photonic modes in the waveguide.

3. Thermal excitation at rate 𝛾�̄�th – incoherent transitions between the ground

and excited states of the qubit in both directions.
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4. Pure dephasing at rate 𝛾𝜑 – ambient noise processes decrease the coherences

of the density matrix (off-diagonal elements) without affecting populations.

These processes compete with each other, and the resulting system dynamics will

depend on their interplay. More precisely, we yield four differential equations for the

elements of the qubit’s density matrix, ⟨𝑖|𝜌|𝑗⟩ = 𝜌𝑖𝑗, and these are known as the

optical Bloch equations

�̇�11 = −𝛾(�̄�th + 1)𝜌11 + 𝛾�̄�th𝜌00 +
𝑖Ωp

2
(𝜌10 − 𝜌01)

�̇�00 = 𝛾(�̄�th + 1)𝜌00 − 𝛾�̄�th𝜌11 −
𝑖Ωp

2
(𝜌10 − 𝜌01)

�̇�10 = [𝑖𝛿 − 𝛾

2
(2�̄�th + 1)− 𝛾𝜑]𝜌10 +

𝑖Ωp

2
(𝜌11 − 𝜌00)

�̇�01 = [−𝑖𝛿 − 𝛾

2
(2�̄�th + 1)− 𝛾𝜑]𝜌01 −

𝑖Ωp

2
(𝜌11 − 𝜌00)

(3.67)

Note that only two of these equations are independent, because conservation of

probability dictates 𝜌00 + 𝜌11 = 1 and the hermiticity of the density matrix re-

quires 𝜌01 = 𝜌*10. We also define a thermally enhanced decay and dephasing rate,

𝛾th1 = (2�̄�th + 1)𝛾 and 𝛾th2 = 𝛾th1 /2 + 𝛾𝜑. We are concerned with the steady state

solution of the system dynamics, ˙̂𝜌 = 0. This is justified because we will be applying

the coherent drive for an undefined amount of time, and our goal is to determine the

frequency response of the system from the quantum model. We are interested in the

steady state coherence of the qubit

𝜌10 =
−𝑖Ωp(1 + 𝛿/𝛾th2 )

2𝛾th2 (2�̄�th + 1)[1 + (𝛿/𝛾th2 )2 + Ω2
p/(𝛾

th
1 𝛾

th
2 )]

. (3.68)

This coherence 𝜌01 ≡ ⟨�̂�−⟩ is the key ingredient in using input-output theory to relate

the qubit and field steady state dynamics. We invoke the following input-output

relation for a specified field frequency 𝜔, setting the qubit position 𝑥J = 0

⟨�̂�out⟩ = ⟨�̂�in⟩+
√︂
𝛾

2
⟨�̂�−⟩. (3.69)
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We can use the input-output relations to relate the input tone to the output field after

interaction with the qubit. The scattering parameters of the system, transmissivity

𝑡 (or 𝑆21) and reflectivity 𝑟 = 1− 𝑡 (or 𝑆11) through the qubit-waveguide system are

defined as

𝑡 =
⟨�̂�out⟩
⟨�̂�in⟩

𝑟 = 1− ⟨�̂�out⟩
⟨�̂�in⟩

(3.70)

Finally, we can study the scattering parameters as a function of the coherent tone

detuning, or in other words, we have derived the frequency response of the qubit-

waveguide system

𝑡(𝛿) = 1− 𝛾(1 + 𝑖𝛿/𝛾th2 )

2𝛾th2 (2�̄�th + 1)[1 + (𝛿/𝛾th2 )2 + Ω2
p/(𝛾

th
1 𝛾

th
2 )]

. (3.71)

The transmission spectrum |𝑡(𝛿)|2 takes the shape of a Lorentzian, which was also

the case for the spectrum derived from the classical circuit model in Eq. 3.21. The

transmission depends on the interplay of competing processes: a coherent drive, spon-

taneous emission, thermal excitations, and pure dephasing. These parameters are key

to understanding the system behavior, and we can extract them with a simple trans-

mission scan with a Vector Network Analyzer (VNA).

We send a coherent tone through the waveguide with the VNA and sweep the

frequency of this tone near the qubit frequency. From this transmission curve, we

extract the qubit-waveguide coupling rate 𝛾, the qubit’s pure dephasing rate 𝛾𝜑, and

the temperature of the waveguide from �̄�th. We must operate in the low field power

limit, such that the average photon number |𝛼| << 1. This enables us consider the

interaction of the qubit with a single photon. We can track all of the energy we put

into the system with the coherent tone (|𝑟|2 + |𝑡|2 = 1), otherwise known as elastic

scattering.

Fig. 3-5a depicts the steady-state quantum interference effect of the probed qubit-

waveguide system. The coherent tone propagates to the right in the waveguide and
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Figure 3-5: Steady-state interference effect of a qubit driven by a low-power
coherent tone in a waveguide. a) A shows the coherent tone propagating to the
right, which excites the qubit. B shows the qubit decaying into the waveguide. The
emission travels in either direction with equal probability. A + B shows the sum
of the excitation and emission events. The coherent tone excites the qubit, and the
resulting qubit rightward emission is completely out of phase with the coherent tone.
This results in complete destructive interference in the rightward direction, which
explains the extinction in transmission at the qubit frequency. b) Transmission data
of a qubit-waveguide system. We can extract key parameters of our system from the
transmission scan by fitting to Eq. 3.71. We find the qubit-waveguide coupling rate
𝛾/2𝜋 = 3.22 MHz, the pure dephasing rate 𝛾𝜑/2𝜋 = 6.23 kHz, and the temperature
of the waveguide 𝑇 = 28.5 mK.

excites the qubit. The qubit will then emit into the waveguide, sending a photon

either to the left or right with equal probability. We can define the emitted photon

to be in the superposition state |𝜓ph⟩ = (|01⟩ + |10⟩)/
√
2, where first index denotes

the number of photons propagating to the left, and the second index denotes the

number of photons propagating to the right in the waveguide. The emission in either

direction picks up a 𝜋 phase shift relative to the input tone as seen in Eq. 3.71. In

the event that the qubit emits the photon to the right, the photon will destructively

interfere with the coherent tone. Alternatively, if the qubit emits the photon to

the left, no radiation will be transmitted through the right-end of the waveguide.

As a result, the only possible outcome is the reflection of the coherent tone. This

appears in the spectrum as the extinction of the transmission at the qubit frequency,

as predicted by Eq. 3.71. The rightward-propagating tone effectively reflects off of

the qubit, picking up a 𝜋 phase shift and reversing its direction of propagation in
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the waveguide. Hence, the qubit acts as a mirror to resonant fields in the waveguide.

We note that this analysis applies to single photons in the waveguide incident on the

qubit as well. In this case, the interference process is simultaneous with the photon

absorption and subsequent reimission. The qubit effectively reflects the photon in the

direction opposite of its initial propagation direction.

Possible culprits that diminish the interference effect and cause inelastic scattering

are qubit saturation by a high-power field, qubit dephasing, thermal excitations in

the waveguide, and non-radiative decay. All of this information is encapsulated in

Eq. 3.71, but here, we provide an intuitive picture for each source of imperfection:

1. Qubit saturation with high coherent field power – if the average photon

number of the coherent tone |𝛼| ≈ 1, that means sometimes two or more photons

are incident upon the qubit from the input field. Because of the anharmonicity

of the transmon qubit, the qubit can only interact with one photon at the qubit-

frequency at a time. The qubit emission will only fully destructively interfere

with one photon in the coherent field, the other photons in the input field will

pass by unaffected. This means that the transmission will not become fully

extinct at the qubit frequency in cases of high field powers with |𝛼| ≥ 1.

2. Qubit dephasing – the interference effect relies on the 𝜋 phase shift of the

qubit emission relative to the coherent tone. If the qubit has a non-negligible

dephasing rate, the qubit will dephase during the absorption of the input field

and the decay back into the waveguide. As a result, the phase of the qubit emis-

sion relative to the input field is no longer well-defined, limiting the interference

effect.

3. Thermal excitations in the waveguide – Because of the presence of thermal

photons, the qubit is no longer only interacting with photons sent from the

coherent tone. This randomizes the phase of the emission relative to the input

field and also limits the interference effect.

4. Non-radiative decay – We did not include non-radiative decay, the loss of

qubit population to decay channels other than the waveguide, in our model.
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Figure 3-6: Transmission power scan of qubit-waveguide system. a) Real (left)
and imaginary (right) components of the transmission spectrum of a coherent tone
incident on the qubit through the waveguide as a function of the qubit-tone detuning
𝛿/2𝜋 and the input power 𝑃 . b) Transmittance |𝑆21|2 as a function of input field
power 𝑃 at zero qubit-tone detuning (𝛿/2𝜋 = 0). The measured data is plotted in
red, and the theoretical fit is plotted in black. The inset shows the frequency response
of the emitter qubit at input field power 𝑃 = -160 dBm.

However, we can add it to the model easily by setting the thermally enhanced

relaxation rate 𝛾th1 = (2n̄th+1)(𝛾+𝛾nr), where 𝛾0. The presence of non-radiative

decay means that the excitation of the qubit provided by the input field will

not decay back into the waveguide in full. The qubit will absorb the input

field and decay into the other channels in the environment, so the emission

into the waveguide decreases in amplitude, decreasing the level of extinction in

transmission at the qubit frequency.

One more parameter of interest is the absolute field power 𝑃 incident on the

qubit. This is difficult to measure directly because of the attenuators and amplifiers

present in the measurement line – we can only measure relative powers. We note that

during the fitting process shown in Fig. 3-5b, we omit the Rabi frequency (Ωp = 0)

under the assumption that the field power is very low, and Ωp is much slower than

other processes in the system. This omission is non-physical, but simplifies the fitting

process. Therefore, we do not extract Ωp from the transmission scan. Instead, we

perform a 2D transmission scan and sweep the input power to perform a 2D fit. We

know the step size of power sweep, so we can use the Rabi frequency of the lowest
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power transmission scan Ωp0 as a fit parameter to calibrate the power 𝑃 and confirm

the other key fit parameters of Eq. 3.71, as shown in Fig 3-6.

In this chapter, we have discussed several models of a qubit-waveguide system: an

abstract quantum model of an atom coupled to a continuum of environmental modes,

a classical circuit model, a detailed quantum model through circuit quantization, and

a master equation model. Each model helps us gain a different perspective for the

same system. We derived the wQED Hamiltonian, and we used input-output theory to

relate the qubit dynamics to the dynamics of the fields in the waveguide. We discussed

the interaction of a qubit with coherent and single-photon fields in the waveguide. In

Chapter 4, we use these tools to discuss the collective, distance-dependent interaction

of multiple qubits coupled to a common waveguide.
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Chapter 4

Multiple Qubits on a Waveguide

Waveguide Quantum Electrodynamics has been explored in the context of atoms

coupled to nanofibers [50]. Though the incoming field is sent through the waveguide

in one dimension, the atom re-emits the radiation isometrically in three dimensions.

This results in poor spatial-mode matching, which is an indication that the atom is

not strongly-coupled to the waveguide. This makes it difficult to study interference

effects in the waveguide, let alone interactions between atoms coupled to the same

waveguide.

Alternatively, the macroscopic nature of superconducting artificial atoms results in

natively large electric dipole moments [31], and waveguides confine photonic modes in

1D, increasing the field density. This enables artificial atoms to strongly-couple to the

1D continuum of modes in a waveguide. Thus, artificial atoms coupled to waveguides

are ideal for the exploration of waveguide-mediated atom-atom interactions.

In this chapter, we investigate the collective effects that emerge when multiple

superconducting qubits are coupled to a common waveguide. First, we discuss inter-

ference effects of two qubits coupled to the same continuum of modes with an abstract

quantum model. We derive a general master equation for a system of many qubits

coupled to the same waveguide. Then, we perform case studies for systems of two

qubits coupled to the same waveguide at two key inter-qubit spacings. At the end of

this chapter, we highlight wQED experiments in superconducting circuits in recent

years.
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Figure 4-1: Abstract quantum model of two atoms (qubits) coupled to a
common continuum of ambient modes. Two qubits Q1 and Q2 of frequencies
𝜔1 and 𝜔2 coupled to the same continuum, which represents photonic modes in the
waveguide, at rates 𝛾1 and 𝛾2.

Throughout this chapter, we identify the key parameters and interactions of the

multiple-qubit waveguide systems, which enable the design of systems to study the

effects of choice. We leverage these effects to control qubit-photon interaction in

qubit-waveguide systems for applications in long-distance quantum communication.

4.1 Interference in Spontaneous Emission

To begin our discussion of multiple-qubit interaction through a continuum of modes in

a waveguide, we revisit the abstract quantum model constructed in Sec. 3.1, following

the discussion in Ref. [42]. Now we have two qubits, Q1 and Q2, coupled to the same

1D continuum as illustrated in Fig. 4-1. We write the system Hamiltonian

�̂�

ℎ̄
=
∑︁
𝑞=1,2

𝜔𝑞�̂�
+
𝑞 �̂�

−
𝑞 +

∑︁
𝑘

𝜔𝑘�̂�
†
𝑘�̂�𝑘 +

∑︁
𝑞=1,2

∑︁
𝑘

𝑔*𝑘�̂�
†
𝑘�̂�

−
𝑞 + 𝑔𝑘�̂�𝑘�̂�

+
𝑞 , (4.1)

where 𝜔𝑞=1,2 are the qubit frequencies, 𝜔𝑘 is the mode frequency, and 𝑔𝑘 is the single-

mode Rabi frequency for each qubit-mode pair. We make the implicit assumption

that 𝑔𝑘 is the same for each qubit. After rotating frame transformations into the

frames of each qubit and all waveguide modes, the interaction Hamiltonian is

�̂�int

ℎ̄
=
∑︁
𝑘

�̂�𝑘(𝑔𝑘𝑒
−𝑖(𝜔1−𝜔𝑘)𝑡�̂�+

1 + 𝑔𝑘𝑒
−𝑖(𝜔2−𝜔𝑘)𝑡�̂�+

2 ) + ℎ.𝑐. (4.2)
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The most general wavefunction of the system in the single-excitation manifold is

|𝜓(𝑡)⟩ = 𝑐1(𝑡)|1, 0, 0𝑘⟩+ 𝑐2(𝑡)|0, 1, 0𝑘⟩+
∑︁
𝑘

𝑐𝑘(𝑡)|0, 0, 𝑘⟩, (4.3)

where the first index of the kets denotes the state of Q1, the second index denotes the

state of Q2, and the third index denotes the number of excitations in mode 𝑘. The

implementation of the Wigner-Weisskopf theory of spontaneous emission detailed in

Sec. 3.1 on this system yields the following equations of motions for the probability

amplitudes

�̇�1(𝑡) =
[︁
𝑖(𝜔1 − 𝜔2)−

𝛾

2

]︁
𝑐1(𝑡)−

𝛾

2
𝑐2(𝑡)

�̇�2(𝑡) = −𝛾
2
(𝑐2(𝑡) + 𝑐1(𝑡))

(4.4)

where 𝛾 = 𝛾1 = 𝛾2 and 𝛾2 is the coupling rate of each qubit to the waveguide.

Assuming that at time 𝑡 = 0, Q1 is excited and Q2 is in the ground state. The initial

probability amplitudes are 𝑐1(0) = 1, 𝑐2(0) = 0, and 𝑐𝑘(0) = 0. In the case that the

qubits are resonant (|𝜔1 − 𝜔2| = 0), the time-dependent population of each qubit is

|𝑐1(𝑡)|2 = 𝑒−𝛾𝑡 cosh2

(︂
𝛾𝑡

2

)︂
=

1

4
(𝑒−2𝛾𝑡 + 2𝑒−𝛾𝑡 + 1)

|𝑐2(𝑡)|2 = 𝑒−𝛾𝑡 sinh2

(︂
𝛾𝑡

2

)︂
=

1

4
(−𝑒−2𝛾𝑡 + 2𝑒−𝛾𝑡 + 1).

(4.5)

From these equations, as plotted in Fig. 4-2a, we see several key differences from bare

qubit decay due to the presence of Q2 on the same waveguide:

1. Q2 absorbs some of the emission from Q1.

2. Q1 does not fully emit the excitation. In steady state (𝑡→ ∞), Q1 and Q2 both

have a population of 0.25.

3. The decay from Q1 is enhanced by the presence of Q2 on the same waveguide

– that is, Q1 decays more quickly to its steady state value than in the case of

individual qubit decay into the waveguide. This effect is called correlated decay.
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Figure 4-2: Time dynamics of two qubits coupled to a common continuum of
modes. Q1 is initialized into the excited state. a) Correlated decay of Q1 and Q2 in
the waveguide. The qubits have identical single-mode coupling rates. b) Waveguide-
mediated coherent exchange of Q1 and Q2. The single-mode coupling rates of the two
qubits have a relative phase of 𝜋/2.

Note, we obtained this result by assuming that each qubit is coupled to the waveguide

at rate 𝛾. This was implicit in the interaction Hamiltonian given in Eq. 4.2. Next,

we will impose a relative phase of 𝜋/2 between the single-mode Rabi frequencies of

each qubit. Though this seems contrived in our abstract model, this phase is a key

parameter we can design into our wQED systems by changing the distance between

the two qubits. This can be interpreted as the two qubits coupling to the same mode,

but because they are spatially separated, they experience the mode at a different

phase. The modified interaction Hamiltonian is

�̂�int

ℎ̄
=
∑︁
𝑘

�̂�𝑘(𝑔𝑘𝑒
−𝑖(𝜔1−𝜔𝑘)𝑡�̂�+

1 − 𝑖𝑔𝑘𝑒
−𝑖(𝜔2−𝜔𝑘)𝑡�̂�+

2 ) + ℎ.𝑐. (4.6)

A similar analysis will yield the population of each qubit as a function of time

|𝑐1(𝑡)|2 = 𝑒−𝛾𝑡 cos2
(︂
𝛾𝑡

2

)︂
|𝑐2(𝑡)|2 = 𝑒−𝛾𝑡 sin2

(︂
𝛾𝑡

2

)︂
.

(4.7)

The time dynamics now resemble decaying Rabi oscillations. In this case, the qubits
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are exchanging population during the decay process, as shown in Fig. 4-2b. These are

the dynamics of a lossy Jaynes-Cummings interaction, or lossy Rabi oscillations [42].

The qubits experience an effective coherent exchange interaction mediated by the

waveguide while they decay into the continuum modes. We note that the steady-

state population is zero for both qubits, as the emission fully propagates away from

the qubits through the waveguide modes.

Through this abstract model of two qubits coupled to a continuum of modes, we

have peaked into the two main types of collective, distance-dependent interactions

qubits experience when coupled to a common waveguide: correlated decay and co-

herent exchange. We dive deeper into the details with a master equation approach in

the following sections.

4.2 Master Equation Derivation

The discussion of the time-dynamics of the system of two qubits coupled to the same

continuum helps us gain insight. However, we seek a more general model to capture

the collective effects that emerge when multiple qubits share a common waveguide,

following the approaches of Refs. [45, 47]. We revisit the Hamiltonian derived in Eq.

3.51, which we extend for two qubits coupled to a common waveguide,

�̂� = �̂�q + �̂�wg + �̂�int

�̂�q =
∑︁
𝑗=1,2

ℎ̄𝜔𝑗�̂�
+
𝑗 �̂�

−
𝑗

�̂�wg =

∫︁ ∞

0

𝑑𝑘[ℎ̄𝜈𝑘(�̂�†L(𝑘)�̂�L(𝑘) + �̂�†R(𝑘)�̂�R(𝑘))]

�̂�int =
∑︁
𝑗=1,2

∫︁ ∞

0

𝑑𝑘[ℎ̄𝑔(𝑘)(�̂�+
𝑗 �̂�R(𝑘)𝑒

𝑖𝑘𝑥𝑗 + �̂�−
𝑗 �̂�

†
L(𝑘)𝑒

−𝑖𝑘𝑥𝑗 + ℎ.𝑐.)].

(4.8)

where �̂�q is the free-qubit Hamiltonian, �̂�wg is the Hamiltonian of the photonic

modes in the waveguide, and �̂�int is the interaction Hamiltonian. In the interaction

Hamiltonian, the integral over mode 𝑘 is negligible except near the qubit frequencies,

because each qubit only interacts with the photonic modes near the qubit frequency.
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Therefore, we can extend the lower bound of the integrals over mode 𝑘 to −∞.

Defining the Fourier pairs,

�̂�𝑗,R = �̂�R(𝑥𝑗, 𝑡) =

∫︁ ∞

−∞

𝑑𝑘√
2𝜋
�̂�R(𝑘)𝑒

𝑖𝑘𝑥𝑗

�̂�𝑗,L = �̂�L(𝑥𝑗, 𝑡) =

∫︁ ∞

−∞

𝑑𝑘√
2𝜋
�̂�L(𝑘)𝑒

−𝑖𝑘𝑥𝑗 ,

(4.9)

we rewrite the interaction Hamiltonian as

�̂�int

ℎ̄
=
∑︁
𝑗

√︂
𝛾𝑗
2
(�̂�+

𝑗 �̂�𝑗,R + �̂�−
𝑗 �̂�

†
𝑗,L + �̂�−

𝑗 �̂�
†
𝑗,R + �̂�+

𝑗 �̂�𝑗,L). (4.10)

where 𝛾𝑗 is the coupling rate of each qubit to the waveguide, defined in Eq. 3.52.

We define an operator �̂� that acts only on the subspace of the qubits. Using the

Heisenberg equation of motion, we find

𝑑�̂�

𝑑𝑡
=
𝑖

ℎ̄
[�̂�𝑞, �̂�] + 𝑖

∑︁
𝑗=1,2

√︂
𝛾𝑗
2

[︁
(�̂�†𝑗,R + �̂�†𝑗,L)[�̂�

−
𝑗 , �̂�] + [�̂�+

𝑗 , �̂�](�̂�𝑗,R + �̂�𝑗,L)
]︁

(4.11)

To obtain the relationship between the two-qubit dynamics and the field dynamics in

the waveguide, we use the input-output relations, referencing the location of the first

qubit 𝑥1 in Eq. 3.61 for zero input field,

�̂�1,R = −𝑖
√︂
𝛾1
2
�̂�−
1 − 𝑖

√︂
𝛾2
2
�̂�−
2 𝑒

−𝑖𝜔2𝑑
𝜈

�̂�1,L = −𝑖
√︂
𝛾1
2
�̂�−
1 − 𝑖

√︂
𝛾2
2
�̂�−
2 𝑒

𝑖
𝜔2𝑑
𝜈 .

(4.12)

where we specify the distance between the two qubits along the waveguide as 𝑑 =

𝑥2 − 𝑥1. We note that we have implicitly adopted the assumptions of Markovianity

and the long-time limit presented in Sec. 3.4. We assume that Q2 is further to the

right along the waveguide than Q2 (𝑥2 > 𝑥1), and the corresponding input-output
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relations at the location of the second qubit 𝑥2 are

�̂�2,R = −𝑖
√︂
𝛾2
2
�̂�−
2 − 𝑖

√︂
𝛾1
2
�̂�−
1 𝑒

𝑖
𝜔1𝑑
𝜈

�̂�2,L = −𝑖
√︂
𝛾2
2
�̂�−
2 − 𝑖

√︂
𝛾1
2
�̂�−
1 𝑒

−𝑖𝜔1𝑑
𝜈 .

(4.13)

We substitute these operators into Eq. 4.11 and arrive at an evolution equation for

�̂� in terms of operators that only act on the qubit subspace

𝑑�̂�

𝑑𝑡
=
𝑖

ℎ̄
[�̂�𝑞, �̂�] +

∑︁
𝑗=1,2

𝛾𝑗
2

[︁
[�̂�+
𝑗 , �̂�]�̂�

−
𝑗 + �̂�+

𝑗 [�̂�
−
𝑗 , �̂�]

]︁
+

∑︁
𝑗=1,2,𝑚=�̄�

√
𝛾1𝛾2

2

[︁
[�̂�+
𝑗 , �̂�]�̂�

−
𝑚𝑒

𝑖𝜔𝑚𝑑
𝜈 + �̂�+

𝑚𝑒
−𝑖𝜔𝑚𝑑

𝜈 [�̂�−
𝑗 , �̂�]

]︁ (4.14)

where 𝑚 = �̄� is the index opposite 𝑗. Next, we denote the total density matrix of

the entire system as 𝜌Σ. We can obtain the density matrix of the two-qubit system

through a partial trace over the photonic modes in the waveguide, i.e. 𝜌 = Trwg[𝜌Σ],

where 𝜌 is the density matrix of the two-qubit system. Because we know that �̂� acts

on the subspace of the qubit states only, we use the cyclic invariance of the trace

operation to show
𝑑⟨�̂�⟩
𝑑𝑡

= Tr

[︃
𝑑�̂�

𝑑𝑡
𝜌Σ

]︃
= Tr𝑞

[︂
�̂�
𝑑𝜌

𝑑𝑡

]︂
. (4.15)

Combining this relation with Eq. 4.14, we arrive at the reduced master equation for

the two-qubit system

𝑑𝜌

𝑑𝑡
=
𝑖

ℎ̄
[�̂�𝑞 + �̂�𝐽 , 𝜌] +

∑︁
𝑗,𝑘=1,2

𝛾𝑗𝑘𝐷[�̂�−
𝑗 , �̂�

−
𝑘 ]𝜌, (4.16)

where

�̂�𝐽 = ℎ̄(𝐽�̂�+
1 �̂�

−
2 + 𝐽*�̂�+

2 �̂�
−
1 ) (4.17)
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is the waveguide-mediated coherent exchange interaction Hamiltonian between the

two qubits of strength

𝐽 =

√
𝛾1𝛾2

2

(︃
𝑒𝑖

𝜔2𝑑
𝜈 − 𝑒−𝑖

𝜔1𝑑
𝜈

2𝑖

)︃
. (4.18)

We specify the individual decay rates of each qubit as 𝛾𝑗𝑗 = 𝛾𝑗, and the correlated

decay rate

𝛾21 = 𝛾*12 =
√
𝛾1𝛾2

(︃
𝑒𝑖

𝜔2𝑑
𝜈 + 𝑒−𝑖

𝜔1𝑑
𝜈

2

)︃
. (4.19)

Finally, we define the Lindblad superoperator, which is a linear operator that acts

on a vector space of operators, 𝐷[𝐴, �̂�]𝜌 = �̂�𝜌𝐴† − 1
2
{�̂�†𝐴, 𝜌}. The Lindblad su-

peropertor accounts for the collapse operators/loss mechanisms built into the master

equation formalism.

From this analysis, in addition to individual decay from each qubit into the waveg-

uide, we see two key distance-dependent collective effects emerge when two qubits are

coupled to a common waveguide: coherent-exchange mediated by the modes in the

waveguide and correlated decay between the qubits. This equation governs the time-

dynamics of the two-qubit system in the presence of the waveguide modes. In practice,

we use this matrix differential equation to construct analytical models of the popula-

tions and coherences of each qubit, as demonstrated in Sec. 3.5.

This master equation can be extended to include an indefinite number of qubits

𝑑𝜌

𝑑𝑡
=
𝑖

ℎ̄
[�̂�𝑞 + �̂�𝐽 + �̂�𝑑, 𝜌] +

∑︁
𝑗,𝑘

𝛾𝑗𝑘𝐷[�̂�−
𝑗 , �̂�

−
𝑘 ]𝜌, (4.20)

with the waveguide-mediated coherent exchange Hamiltonian,

�̂�𝐽 =
∑︁
𝑗,𝑘

ℎ̄(𝐽𝑗,𝑘�̂�
+
𝑗 �̂�

−
𝑘 + 𝐽*

𝑗,𝑘�̂�
+
𝑘 �̂�

−
𝑗 ). (4.21)

We add a coherent drive through the waveguide by including a general drive term in

the system Hamiltonian

�̂�𝑑 =
∑︁
𝑗

ℎ̄𝑑𝑗(𝑡)(�̂�
+
𝑗 + �̂�−

𝑗 ) (4.22)
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where the drive amplitude is

𝑑𝑗(𝑡) =

√︃
2𝛾𝑗
ℎ̄𝜔𝑗

[︁√︀
𝑃L sin

(︁
𝜔𝑑

(︁
𝑡+

𝑥𝑗
𝜈

+ 𝜃L

)︁)︁
+
√︀
𝑃R sin

(︁
𝜔𝑑

(︁
𝑡− 𝑥𝑗

𝜈
+ 𝜃R

)︁)︁]︁
,

(4.23)

which accommodates coherent drives traveling towards the left and right of frequency

𝜔𝑑, phase 𝜃L/R, and power 𝑃L/R. We assume the input field takes the form of a scaled

coherent field |𝛼⟩, where |𝛼|2 is the average photon number [49],

�̂�L/R(𝜔, 0)|𝛼⟩ =

√︃
𝑃L/R

ℎ̄𝜔𝑑
𝑒−𝑖𝜔𝑑𝜃L/R𝛿(𝜔 − 𝜔𝑑)|𝛼⟩ (4.24)

We take the Fourier transform using the definition in Eq. 3.57 to find a general time-

dependent amplitude of the input field

�̂�inL/R(𝑡)|𝛼⟩ =

√︃
𝑃L/R

ℎ̄𝜔𝑑
𝑒−𝑖𝜔𝑑(𝑡+𝜃L/R)|𝛼⟩. (4.25)

In practice, we assume that our drive is resonant with the qubit frequencies 𝜔𝑑 ≈ 𝜔𝑞

such that the probe power and Rabi frequency are approximately constant over the

qubit linewidths 𝛾. The derivation of the master equation in this section can be

distilled to the single driven qubit case shown in Sec. 3.5.

In the following sections, we use this master equation formalism to study resonant

two-qubit systems coupled to a common waveguide at integer multiples of two key

inter-qubit distances: 𝑑 = 𝜆/2 and 𝑑 = 𝜆/4, where 𝜆 = 2𝜋𝜈/𝜔 is the wavelength of

the qubit emission in the waveguide. Each inter-qubit distance highlights a collective

effect that emerges in the two-qubit waveguide system – correlated dissipation and

waveguide-mediated exchange respectively.

4.3 Superradiance and Subradiance

We consider a system of two resonant, identical qubits Q1 and Q2 of frequency 𝜔

and decay rate 𝛾 coupled to a common waveguide at a separation of 𝑑 = 𝜆/2, where
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Figure 4-3: Illustration of two resonant qubits of frequency 𝜔 coupled to
a waveguide with inter-qubit distance 𝑑 = 𝜆/2. Below the qubit-waveguide
system we draw a field of wavelength 𝜆 to elucidate the inter-qubit distance. The
qubits always couple to the resonant field at points of equal and opposite amplitudes.

𝜆 = 2𝜋𝜈/𝜔 is the wavelength of the qubit emission. This system is illustrated in Fig.

4-3. The position of Q2 is to the right of the position of Q1 (𝑥2 > 𝑥1). We assume

the non-radiative decay is negligible (𝛾nr = 0). The waveguide-mediated coherent

exchange interaction between the two-qubits from Eq. 4.18 is

𝐽 =
𝛾

2
sin

(︂
𝜔𝑑

𝜈

)︂
= 0, (4.26)

and the correlated decay rate from Eq. 4.19 is

𝛾21 = 𝛾 cos

(︂
𝜔𝑑

𝜈

)︂
= −𝛾. (4.27)

We see that for an inter-qubit distance of 𝑑 = 𝜆/2, there is no waveguide-mediated

exchange interaction and the correlated decay strength is maximized. The master

equation for the dynamics of this two-qubit system in the frame of the rightward-

propagating drive frequency 𝜔𝑑 is

𝑑𝜌

𝑑𝑡
=
𝑖

ℎ̄
[�̂�𝑞 + �̂�𝑑, 𝜌] + 𝛾

(︀
𝐷[�̂�−

1 ] +𝐷[�̂�−
2 ]
)︀
𝜌− 𝛾

(︀
𝐷[�̂�−

1 , �̂�
−
2 ] +𝐷[�̂�−

2 , �̂�
−
1 ]
)︀
𝜌, (4.28)

where the free-qubit Hamiltonian is
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�̂�𝑞 = ˆ̄ℎ(𝜔 − 𝜔𝑑)(�̂�
+
1 �̂�

−
1 + �̂�+

2 �̂�
−
2 ), (4.29)

the drive Hamiltonian is

�̂�𝑑 =
∑︁
𝑗=1,2

ℎ̄(Ω�̂�+
𝑗 + Ω*�̂�−

𝑗 ), (4.30)

with drive strength/Rabi frequency

Ω = −𝑖
√︂
𝛾

2
⟨�̂�inR⟩𝑒−𝑖

𝜔𝑑𝑥𝑗
𝜈 , (4.31)

and 𝐷[𝐴, �̂�]𝜌 = �̂�𝜌𝐴† − 1
2
{�̂�†𝐴, 𝜌} is the Lindblad superoperator. To elucidate the

dynamics of the system with correlated decay, we move from the standard basis of

qubit states to the dressed basis composed of a dark (𝐷) and bright (𝐵) state. We

rewrite the master equation of Eq. 4.28 following [45],

𝑑𝜌

𝑑𝑡
=
𝑖

ℎ̄
[�̂�𝑞 + �̂�𝑑, 𝜌] +

∑︁
𝑖=𝐵,𝐷

Γ𝑖𝐷[�̂�−
𝑖 ]𝜌, (4.32)

where we define the correlated decay rates Γ𝐵 = 2𝛾 and Γ𝐷 = 0. The dressed lowering

operators are

�̂�−
𝐵 =

1√
2
(�̂�−

1 − �̂�−
2 )

�̂�−
𝐷 = − 1√

2
(�̂�−

1 + �̂�−
2 ).

(4.33)

The bright and dark states |𝐵/𝐷⟩ are defined by �̂�−
𝐵/𝐷|𝐵/𝐷⟩ = 0. In the standard

qubit basis |𝑞1𝑞2⟩, where the first index denotes the state of Q1 and the second index

denotes the state of Q2, the bright and dark states are

|𝐵⟩ = 1√
2
(|𝑔𝑒⟩ − |𝑒𝑔⟩)

|𝐷⟩ = 1√
2
(|𝑔𝑒⟩+ |𝑒𝑔⟩).

(4.34)
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The presence of the bright state |𝐵⟩ is a phenomenon known as superradiance, as

population in this state decays at double the individual qubit decay rate. Alterna-

tively, the presence of the dark state |𝐷⟩ is a phenomenon known as subradiance, as

there is zero radiative decay from this state into the waveguide.

We revisit the time dynamics of our abstract model in Sec. 4.1. The qubit pop-

ulations over time for the analogous system are presented in Fig. 4-1a. The initial

condition of this system in the standard qubit basis was |𝑞1𝑞2⟩ = |𝑒𝑔⟩. In the dressed

basis, the initial state of the system is |𝜓(𝑡 = 0)⟩ = (|𝐷⟩ − |𝐵⟩)/
√
2. This means

that the system is in a superposition of dressed states at 𝑡 = 0. We can clearly see

the dynamics of superradiance and subradiance superimposed in Fig. 4-1a. At early

times, we see the bright state decay at a rate faster than the individual qubit decay.

As 𝑡→ ∞, we see that the system is in a mixed state composed of the dark state and

the joint ground state, which explains why the steady-state population in the excited

states of both qubits is non-zero, while the steady state system coherences are zero

(𝑐1(𝑡→ ∞)*𝑐2(𝑡→ ∞) = 0) following from Eq. 4.5.

We note that the example in Fig. 4-1a is analogous to a pair of qubits that

are spaced 𝑑 = 𝜆 along the waveguide. In this section, the inter-qubit distance is

𝑑 = 𝜆/2. The population dynamics are identical for all 𝑑 = 𝑛𝜆/2, where 𝑛 is any

integer, however, the coherences of the dark and bright states will alternate signs for

even and odd 𝑛.

Next, we study the system’s response to a resonant drive. We rewrite the drive

Hamiltonian in the dressed basis

�̂�𝑑 = ℎ̄(Ω𝐵�̂�
+
𝐵 + Ω*

𝐵�̂�
−
𝐵), (4.35)

where the bright state is driven with strength

Ω𝐵 = −𝑖√𝛾⟨�̂�inR⟩𝑒−𝑖
𝜔𝑑𝑥𝑗

𝜈 . (4.36)

We see that the state |𝐷⟩ is "dark" to the drive Hamiltonian �̂�𝑑, i.e. �̂�𝑑|𝐷⟩ = 0.

This means that we cannot drive the dark state through the waveguide. We also see
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that Ω𝐵 =
√
2Ω, which means the bright state couples more strongly to the modes

in the waveguide than in the single-qubit case. The effective drive power incident on

the bright state doubles.

To study the limitations of superradiance and subradiance, we consider the energy

level diagram shown in Fig 4-4a. The dark state cannot be populated through the

waveguide, as the corresponding matrix element between the joint ground state and

the dark state is zero. The joint excited state |𝑒𝑒⟩ can be reached from the bright state

|𝐵⟩ with a strong drive through the waveguide, opening up pathways for populating

the dark state |𝐷⟩. We will see imperfect subradiance and superradiance due to:

1. Non-negligible non-radiative decay – the |𝑒𝑒⟩ state is populated with a

strong drive through the waveguide. Spontaneous emission of either qubit from

the excited state to the ground state into external environmental modes popu-

lates the dark state. Non-radiative decay can be added as an ingredient to this

model by modifying the the correlated decay rates Γ𝐷 = 𝛾nr and Γ𝐵 = 2𝛾−𝛾nr.

2. Mismatched decay rates – if the decay rates of the qubits are not symmetric

(𝛾1 ̸= 𝛾2), the coupling between the |𝑒𝑒⟩ and |𝐷⟩ states is non-zero. The matrix

element ⟨𝐷|�̂�−
𝐵 |𝑒𝑒⟩ is proportional to (𝛾1−𝛾2)/(𝛾1+𝛾2). Once there is population

in the |𝑒𝑒⟩ state, strongly driving the bright state through the waveguide will

also populate the dark state. The effect of this asymmetry can be counteracted

by tuning the qubit frequencies to match decay rates more precisely, however,

this will modify the effective inter-qubit distance 𝑑 = 𝜆/2 and break previous

assumptions.

3. Qubit dephasing – the dark state can be populated via qubit dephasing caused

by ambient flux noise. This can be visualized with the two-qubit Bloch sphere,

where the ±𝑧 axes are single-qubit excited states and the ±𝑥 are the dark and

bright states as illustrated in Fig. 4-4b. If the system is prepared into the bright

state, the state vector lies on the equator of the Bloch sphere. Fluctuations of

the qubit frequencies due to environmental variables cause this Bloch vector to

gradually rotate towards the dark state during system evolution.
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Figure 4-4: Steady-state dynamics and scattering parameters of a two-qubit
system spaced 𝑑 = 𝜆/2 along a common waveguide. a) 4-level energy diagram
of resonant two-qubit system coupled to a common waveguide. For an inter-qubit
distance along the waveguide of 𝑑 = 𝜆/2, the qubits experience superradiance and
subradiance, resulting in the presence of a bright |𝐵⟩ and dark state |𝐷⟩. The qubits
can only be driven from the joint ground state to the bright state, as denoted by the
black arrow labeled �̂�−

𝐵 . Drives with strong powers can populate the joint excited
state |𝑒𝑒⟩, which will decay into the bright state at rate Γ𝐵, denoted with a blue
curvy arrow. In the presence of non-radiative decay of strength 𝛾nr, pictured as a red
curvy arrow, the joint excited state decays into both the dark and bright states. For
mismatched decay rates (𝛾1 ̸= 𝛾2), the dark state couples to the joint excited state,
also denoted by �̂�−

𝑏 . The dark state can also be populated directly from the bright
state through dephasing, as pictured with an orange curvy arrow. b) Two-qubit Bloch
sphere representation of the system in the single-excitation subspace. If the system
is prepared in |𝐵⟩, dephasing due to environmental fluctuations illustrated by the
blurred red arrow populates the dark state during system evolution. c) Simulated
scattering parameters, transmission and reflection, for the two-qubit system. The
transmission matches the spectrum of a single qubit coupled to a waveguide with a
linewidth Γ𝐵, which is twice the decay rate 𝛾 of each individual qubit.

Our next goal is to evaluate the scattering parameters of a coherent probe incident

on the two-qubit system. We see that from the perspective of the waveguide, the

two-qubit system is effectively a single two-level system coupled to the waveguide at

rate Γ𝐵. In other words, the waveguide only "sees" the bright state. Therefore, we

can write the input-output relations to relate the qubit emission to the fields in the

waveguide in the absence of non-radiative decay and dephasing using Eq. 3.62,

�̂�outL/R = �̂�inL/R ∓ 𝑖
√
𝛾�̂�−

𝐵 . (4.37)
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We are interested in the steady-state dynamics of the system, so we set ˙̂𝜌 = 0. We

use the steady-state density matrix to evaluate the coherence ⟨�̂�−
𝐵⟩ = Tr[𝜌𝜎−

𝐵 ]. We

assume the probe is propagating to the right and ⟨�̂�inL ⟩ = 0. To first order of the input

amplitude ⟨�̂�inR⟩, we evaluate the transmission and reflection coefficients

𝑡 =
⟨�̂�outR ⟩
⟨�̂�inR⟩

= 1 +
𝑖Γ𝐵

2𝛿 − 𝑖Γ𝐵

𝑟 =
⟨�̂�outL ⟩
⟨�̂�inR⟩

=
−𝑖Γ𝐵

2𝛿 − 𝑖Γ𝐵
,

(4.38)

where 𝛿 = 𝜔 − 𝜔𝑑 is the qubit-drive detuning. Notably, these scattering parameters

correspond to those of a single qubit-waveguide system, as first demonstrated in [32].

Because the probe is low power and the model is ideal, we see full extinction in the

transmission for a resonant probe. To include imperfections in the model such as

high probe power, non-radiative decay, thermal photons, and qubit dephasing, we

can apply the same analysis demonstrated in Sec. 3.5 for a single qubit coupled to a

waveguide.

4.4 Waveguide-Mediated Exchange Interaction

Next, we study a system of two identical resonant qubits Q1 and Q2 of frequency 𝜔.

The qubits are strongly coupled to a common waveguide (𝛾nr = 0) with an inter-qubit

distance 𝑑 = 𝜆/4, as shown in Fig. 4-5. For this inter-qubit distance, the waveguide-

mediated coherent exchange interaction is maximized, as follows from the derivation

in Sec. 4.2 (Eq. 4.18)

𝐽 =
𝛾

2
sin

(︂
𝜔𝑑

𝜈

)︂
=
𝛾

2
, (4.39)

The two qubits do not experience correlated decay as given by Eq. 4.19

𝛾21 = 𝛾 cos

(︂
𝜔𝑑

𝜈

)︂
= 0. (4.40)

We see that the qubits exchange population at rate 𝐽 = 𝛾/2 while they each individ-

ually decay into the waveguide at rate 𝛾. This situation is analogous to the example
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Figure 4-5: Illustration of two resonant qubits of frequency 𝜔 coupled to
a waveguide at distance 𝑑 = 𝜆/4. Below the qubit-waveguide system we draw
a resonant field of wavelength 𝜆 in red to compare and highlight the inter-qubit
distance of 𝑑 = 𝜆/4. The qubits experience a waveguide-mediated coherent exchange
interaction of strength 𝐽 = 𝛾/2, due to virtual interaction mediated by the detuned
modes colored in blue and green.

discussed in Fig. 4-2b – the lossy Jaynes-Cummings interaction. Recall that we

achieved this result in the abstract quantum model of Sec. 4.1 by assuming a relative

phase of 𝜋/2 between the single-mode couplings 𝑔𝑘 of each qubit. We implement this

relative phase physically by choosing an inter-qubit distance of 𝑑 = 𝜆/4. The master

equation that describes the qubit time dynamics in the frame of a rightward drive at

frequency 𝜔𝑑 is

𝑑𝜌

𝑑𝑡
=
𝑖

ℎ̄
[�̂�𝑞 + �̂�𝐽 + �̂�𝑑, 𝜌] + 𝛾

(︀
𝐷[�̂�−

1 ] +𝐷[�̂�−
2 ]
)︀
𝜌. (4.41)

We write the waveguide-mediated exchange Hamiltonian,

�̂�𝐽 =
ℎ̄𝛾

2
(�̂�+

1 �̂�
−
2 + �̂�+

2 �̂�
−
1 ), (4.42)

the free-qubit Hamiltonian,

�̂�𝑞 = ˆ̄ℎ(𝜔 − 𝜔𝑑)(�̂�
+
1 �̂�

−
1 + �̂�+

2 �̂�
−
2 ), (4.43)
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and the drive Hamiltonian,

�̂�𝑑 =
∑︁
𝑗=1,2

ℎ̄(Ω�̂�+
𝑗 + Ω*�̂�−

𝑗 ), (4.44)

with drive strength/Rabi frequency is

Ω = −𝑖
√︂
𝛾

2
⟨�̂�inR⟩𝑒−𝑖

𝜔𝑑𝑥𝑗
𝜈 . (4.45)

The Lindblad dissipator is defined as 𝐷[𝐴]𝜌 = 𝐴𝜌𝐴† − 1
2
{𝐴†𝐴, 𝜌}.

We provide an intuitive explanation for the waveguide-mediated exchange inter-

action by extending the interaction term of the wQED Hamiltonian in Eq. 3.51 for

two qubits,

�̂�int =

∫︁ ∞

0

𝑑𝜔𝑘ℎ̄𝑔(𝜔𝑘)(�̂�
+
1 �̂�R(𝜔𝑘)+ �̂�

−
1 �̂�

†
L(𝜔𝑘)+ 𝑖�̂�

+
2 �̂�R(𝜔𝑘)− 𝑖�̂�−

2 �̂�
†
L(𝜔𝑘)+ℎ.𝑐.). (4.46)

We know from Sec. 3.3, in the single-qubit case, this interaction Hamiltonian gives

rise to the decay of a real photon into the resonant modes and the detuned modes only

contribute in the form of a Lamb shift. However, in the two-qubit case, the detuned

modes can mediate virtual/Raman interactions between the two qubits of strength

𝐽(𝜔𝑘) = 𝑔1(𝜔𝑘)𝑔2(𝜔𝑘)/(𝜔𝑘 − 𝜔) [42]. In other words, Q1 can emit a virtual photon

at a detuned frequency that Q2 can absorb. The rough effective virtual interaction

Hamiltonian between the two qubits through all of the detuned modes (𝜔 ̸= 𝜔𝑘) in

the waveguide is

�̂�𝐽 =

∫︁ ∞

−∞
𝑑𝜔𝑘

𝑖ℎ̄𝑔2(𝜔𝑘)

𝜔𝑘 − 𝜔
(�̂�−

1 �̂�
+
2 − �̂�+

1 �̂�
−
2 ), (4.47)

which takes the form of a Jaynes-Cummings style coherent exchange interaction

through each detuned mode 𝜔𝑘 in the waveguide. In the formal master equation

approach, these virtual exchange interactions form the final waveguide-mediated ex-

change Hamiltonian in Eq. 4.42 [45]

We show a clear picture for the origin of the exchange interaction between two-

qubits spaced 𝑑 = 𝜆/4 along a common waveguide in Fig. 4-5. The qubit on the
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right, Q2, couples to the fields with wavelengths greater than 𝜆, represented in blue,

at points of positive amplitude in the instance of the illustration. The detuning of the

blue field 𝛿b = 𝜔 − 𝜔b, from the qubit frequency is positive, which yields a positive

interaction strength 𝐽(𝜔b) = 𝑔2(𝜔b)/𝛿b > 0. For fields with wavelengths less than 𝜆,

represented in green, Q2 couples to the fields at points of negative amplitude. The

field shown in green has a negative detuning 𝛿g from the qubit frequency, also yielding

a positive interaction strength 𝐽(𝜔g) = 𝑔2(𝜔g)/𝛿g > 0. The total exchange interaction

strength results from an integral of 𝐽(𝜔𝑘) over all detuned modes (𝜔𝑘 ̸= 𝜔). Because

all detuned modes will have a virtual coupling of the same sign, we arrive at a net

finite interaction strength of 𝐽 = 𝛾/2 between the two qubits.

We note that the dynamics of the system are identical for inter-qubit distances of

𝑑 = 𝑛𝜆/4, where n is an odd integer. In the case of an inter-qubit distance of 𝑑 = 𝜆/2

discussed in Sec. 4.3, the virtual couplings have opposite signs for modes greater/less

than the qubit frequency. The total exchange interaction after integration over all

virtual couplings 𝐽 is zero. Next, we evaluate the scattering parameters, specifically

the transmission and reflection coefficients, of a coherent probe incident upon the

two-qubit system through the waveguide. Referencing the position of Q1 to 𝑥1 = 0,

the input-output relations from Eq. 3.62 are

�̂�outR (𝑡) = �̂�in
R(𝑡) +

√︂
𝛾

2
(�̂�−

1 − 𝑖�̂�2),

�̂�outL (𝑡) = �̂�in
L (𝑡) +

√︂
𝛾

2
(�̂�−

1 + 𝑖�̂�2).

(4.48)

We use the steady-state density matrix to evaluate the coherences ⟨�̂�−
1/2⟩ = Tr[𝜌𝜎−

1/2].

Assuming our input probe propagates to the right and ⟨�̂�inL ⟩ = 0, to first order of the

input amplitude ⟨�̂�inR⟩, the transmission and reflection coefficients are

𝑡 =
⟨�̂�outR ⟩
⟨�̂�inR⟩

=
𝐽2 − 𝛿2 − (𝛾/2)2

𝐽2 − (𝛿 − 𝑖𝛾/2)2

𝑟 =
⟨�̂�outL ⟩
⟨�̂�inR⟩

=
−|𝐽 |𝛾

𝐽2 − (𝛿 − 𝑖𝛾/2)2
,

(4.49)

where 𝛿 = 𝜔−𝜔𝑑 is the qubit-drive detuning. For 𝐽 = 𝛾/2, we predict full extinction
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Figure 4-6: Scattering parameters of two qubits coupled a waveguide at
a distance of 𝑑 = 𝜆/4. a) Simulated transmission and reflection of a coherent
probe incident on the two qubits through the waveguide. In the ideal model without
dephasing, non-radiative decay, or thermal photons, we should see perfect extinction
in transmission. In this master equation simulation, we include a low, but non-zero,
probe power that dresses the system, as reflected by the doublet structure in the
reflection spectrum. b) Transmission simulation of the coherent probe as a function
of probe detuning 𝛿 and qubit detuning ∆ to visualize an avoided crossing of splitting
2𝐽 = 𝛾. Because the splitting is equal to the linewidth of each qubit frequency in
the spectrum, the waveguide-mediated exchange interaction strength 𝐽 is difficult
to resolve through avoided crossing spectroscopy. The dashed line for zero qubit
detuning highlights the trace shown in (a).

in transmission for a resonant probe, as plotted in Fig. 4-6a. We see imperfect ex-

tinction and reflection in our master equation simulation, which we attribute to the

non-zero probe power that dresses the two-qubit system.

Each qubit decays into the waveguide, and therefore appears in the spectrum

as a Lorentzian curve with a linewidth of 𝛾. Because the resonant qubits are cou-

pled with strength 𝐽 , we predict a splitting of the energy eigenstates 2𝐽 = 𝛾. In

the dressed basis, the energy of the two eigenstates that describe the system differ

by 2
√︀
(∆/2)2 + 𝐽2, where ∆ = 𝜔2 − 𝜔1 is the qubit detuning. We simulate the

eigenspectrum as a function of probe detuning 𝛿 and qubit detuning ∆, shown in

Fig. 4-6b. Because the qubit frequencies are split by 𝛾, and they both have linewidth

𝛾, the avoided crossing on resonance is difficult to resolve. Therefore, avoided crossing
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spectroscopy is not a precise method to measure the waveguide-mediated exchange

coupling 𝐽 for any inter-qubit distance.

4.5 Timeline of wQED Experiments

Now that we have established the formalism to discuss qubit-waveguide interactions,

we provide background on wQED experiments with superconducting circuits. We

note that this is survey does not cover every relevant experiment in the last decade,

but we discuss those that are most closely related to this thesis. While expanding

fundamental quantum optics in a superconducting platform, these experiments build

off of each other towards robust and extensible quantum computation and communi-

cation systems.

The first scattering measurements of a coherent probe incident on a superconduct-

ing qubit through a 1D coplanar waveguide, as discussed throughout Chapter 3, were

demonstrated by Astafiev et al. in 2010 [32]. In this work, they observe resonance

fluoresence, the absorption and reimmision of electromagnetic waves, with an artifi-

cial atom known as a flux qubit. This was a big step for the field of wQED in general,

because the authors achieve efficient spatial-mode matching in the superconducting

circuit platform and observe the interference effects discussed in Fig. 3-5. They also

study inelastic scattering by measuring the power spectral density of the signal under

a strong resonant drive through the waveguide. They observe the Mollow Triplet in

the power spectrum, which highlights the transitions between the dressed states of

the system [51]. Similarly, Abdumalikov et al. measure the time dynamics of a flux

qubit coupled to a waveguide in 2011 [52]. They characterize the qubit-waveguide

system by measuring the evolution of its coherent and incoherent emission. They

send pump and readout pulses directly through the waveguide to measure population

decay and coherence as a function of time.

The first demonstration of experimental state tomography of propagating mi-

crowave photons – a key measurement technique for wQED experiments – was con-

ducted by Eichler et al. in 2011 [53]. Instead of coupling a transmon qubit directly
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to a single-ended waveguide, the authors use a transmission line resonator as an in-

termediary between the qubit and the waveguide. To prepare a single photon, the

transmon qubit is excited when its frequency is far-detuned from the resonator. The

qubit is then tuned to the resonator frequency for half of a Rabi oscillation, resulting

in photon transfer to the resonator. The resonator decays into the single-ended waveg-

uide, which routes the emitted photon to a phase-insensitive amplifier and quadrature

amplitude detector. The authors establish a method to separate the amplified signal

from the amplified noise and reconstruct the single-photon Fock states by analyzing

the moments of the measured amplitude distribution. This is a key tool in experi-

mental wQED and it is used throughout many future experiments to characterize the

states of microwave photons.

In 2011, Hoi et al. extended the work of Astafiev et al. to demonstrate a microwave

single-photon router using electromagnetically-induced transparency (EIT) [54]. The

authors strongly couple a floating transmon qubit to a coplanar waveguide and input

a weak coherent probe at the qubit frequency through the waveguide. They also

apply a control tone at the frequency of the |1⟩ → |2⟩ transition of the transmon to

determine whether their input probe is reflected or transmitted. If the control pulse is

off, the input probe is reflected due to the interference effect we discuss in Fig. 3-5. A

strong control tone dresses the qubit states, a phenomenon known as Autler-Townes

splitting, and as a result, the authors observe full transmission of the input probe.

In 2012, Hoi et al. used the same device to study the statistics of the resonant

field reflected by the transmon qubit [55]. They demonstrate that the scattered

field is nonclassical with a Hanbury Brown and Twiss-type measurement, a classic

experiment of quantum optics at with photons at visible wavelengths [56] and single-

mode electrons [57]. The waveguide is effectively a beamsplitter for the qubit emission.

By measuring the power at each end of the waveguide, the authors measure the

second-order correlation between the two powers to verify the quantum nature of the

reflected field.

In 2013, van Loo et al. demonstrate the interactions between two qubits coupled

to a common waveguide mediated by both real and virtual photons [58]. This work
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implements the case studies discussed in this chapter of inter-qubit distances along the

waveguide of 𝑑 = 𝜆 and 𝑑 = 3𝜆/4 with two flux-tunable transmon qubits coupled to

a common coplanar waveguide. To change the inter-qubit distance, the authors tune

the qubit frequency. The authors measure the transmission, reflection, and power

spectra of the system for both configurations of the inter-qubit distance. For 𝑑 = 𝜆,

the authors observe superradiance in the transmission spectrum, as simulated in Fig.

4-4c. For 𝑑 = 3𝜆/4, the authors also measure the expected transmission of the system

and the avoided crossing we discuss in Fig. 4-6a/b respectively.

In 2015, Hoi et al. couple a transmon qubit to a waveguide terminated in a short

circuit to create a mirror [59]. The qubit is physically located a specified distance

away from the short circuit, and they can effectively tune this distance by changing

the qubit frequency. This mirror creates a standing wave because of interference

between the incoming and reflected field, with a voltage node at the short circuit of the

waveguide. This voltage amplitude varies periodically along the waveguide, altering

the structure of the continuum modes. The qubit decay rate into the waveguide varies

as a function of the distance from the mirror. The authors measure the decay rate

by probing the reflection spectrum as a function of qubit frequency. They show that

when the qubit is coupled to a voltage node, the qubit is no longer coupled to the

waveguide. The authors effectively shape the modes of the continuum with a mirror

and demonstrate tunable qubit-waveguide coupling.

Extending upon the work in [59], Forn-Diaz et al. demonstrate a generator of

shaped, single, microwave photons by coupling a fixed-frequency transmon qubit to a

semi-infinite, or single-ended, transmission line [60] in 2017. The authors use a circuit

set up similar to [59], except they use a dc-SQUID as a tunable inductive shunt at

the end of the transmission line a certain distance away from the qubit. By tuning

the flux through the dc-SQUID, they change the transmon-waveguide coupling by

modifying the structure of the photonic continuum in the waveguide. To release a

photon, they park the qubit at a voltage node of the standing wave determined by the

boundary condition imposed by the dc SQUID, excite the transmon, and increase the

transmon-waveguide coupling as a function of time to shape the released photon. This
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technical paper illustrates a theme/goal in the general quantum optics community of

executing precise control over the wave-packet and propagation direction of single-

photons. Microwave single-photons show promise as information carriers in quantum

networks for robust quantum computation.

Following the theme of single-ended waveguides, in 2017, Gasparinetti et al. de-

velop an excitation scheme for the emission of multiple correlated photons. They drive

the two-photon |0⟩ → |2⟩ transition of a transmon coupled to a semi-infinite waveg-

uide to generate two correlated photons at frequencies 𝜔12 and 𝜔01. The emission of

the transmon in the waveguide is routed with an on-chip switch with a tunable center

frequency to separate the two emitted photons by frequency into different paths. The

authors measure power correlations between the two paths under a continuous drive

at frequency 𝜔02. The authors also measure the temporal wave-packet of of the indi-

vidual photons and conduct photon state tomography following the scheme of [53] to

fully characterize the quantum nature of the emitted photons.

In 2020, Mirhosseini et al. extend upon the work in [58] by designing a system of

two qubits spaced at a distance of 𝑑 = 𝜆/2 apart along a waveguide. They insert a

probe qubit halfway between the two qubits, such that the probe qubit is 𝑑 = 𝜆/4

away from each qubit along the waveguide. The probe qubit couples to the dark state

formed by the two neighboring qubits at rate 𝐽 =
√︀
𝛾𝛾𝑝/2 where 𝛾𝑝 is the decay rate

of the probe qubit into the waveguide. The dark state behaves as a cavity-like mode

that couples to the qubit but does not decay into the waveguide. They perform

transmission spectroscopy and time-domain measurements, such as Rabi oscillations

between the probe qubit and the dark state, to characterize the three-qubit system.

This work is a step towards exploring correlated decay at the many-body level.

In 2020, Besse et al. also use a qutrit to generate photonic states in a semi-

infinite waveguide [61]. Their system is composed of a qutrit tunably coupled to

an emitter qubit which decays directly into the single-ended waveguide. Through a

sequence of single-qubit gates on the qutrit and two-qubit gates between the qutrit

and the emitter, they generate a family of entangled states of photons, including

cluster states, GHZ states, and W states. They perform photon state tomography
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to visualize the density matricies of these entangled states. This work has direct

applications in cluster state-based quantum computation and state teleportation and

communication with with GHZ and W states.

Since the onset of experimental wQED with superconducting circuits, these exper-

iments continued to explore fundamental quantum optics in addition to their applica-

tions in quantum communication. In 2020, Kannan et al. design giant atoms by cou-

pling a transmon qubit to a common waveguide at several specified locations/coupling

points [62]. This approach implements an interference phenomenon that protects the

qubit from decay into the waveguide while preserving waveguide-mediated exchange

interactions. The authors find a decoherence-free frequency for a single giant atom,

despite the qubit’s interaction with the continuum of photonic modes in the bidi-

rectional waveguide. Configurations of multiple qubits braided at different coupling

points of the waveguide enable two-qubit gates to entangle the qubits. With this

architecture, the mode of operation can be switched between a protected mode for

high-fidelity qubit state preparation and an emissive mode for photon emission and

applications in communication.

In 2020, Kannan et al. generate spatially entangled itinerant photons by coupling

three emitter qubits to a common waveguide in [63]. They operate the device with

two qubits at a time, in a configuration of an inter-qubit distance of either 𝑑 = 3𝜆/4 or

𝑑 = 𝜆/2. The authors prepare both qubits in the excited state and study the distance-

dependent interference of the simultaneous emission the qubits in the waveguide.

Implementing the techniques in [53], the authors show a reconstructed density matrix

of a variety of photonic entangled states.

Most of the wQED experiments thus far were conducted with 1D coplanar waveg-

uides. In 2022, Zanner et al. coupled four floating transmon qubits to a three-

dimensional rectangular waveguide. There are two pairs of qubits spaced 𝑑 = 𝜆/2

along the waveguide, where each qubit in a pair share a spatial location. Each pair

is addressed with its own drive port to adjust the relative phase in the preparation

of collective dark states. The two qubits in each pair have an effective inter-qubit

distance of 𝑑 = 0 and will form a bright and dark state, in addition to their local ex-
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change interaction. Non-local pairs of qubits with an inter-qubit distance of 𝑑 = 𝜆/2

form bright and dark states as discussed in Sec. 4.3. The authors prepare a variety of

many-body bright and dark states by exploiting local and waveguide-mediated inter-

actions. They demonstrate long coherence times of many-body states in the presence

of an open quantum system.

Throughout the last decade, wQED experiments have explored the interaction

between superconducting qubits and the photonic modes in a continuum. Multiple

qubits interact with each other through the common photonic continuum. Qubit-

qubit interactions have been manipulated to generate propagating photons in waveg-

uides, and photon state tomography has been developed to characterize photonic

states and wQED systems. To control the propagation direction of photon emission,

most of the experiments discussed rely on single-ended waveguides. The goal of the

work in this thesis is to build off these ideas, and use qubit-waveguide systems to

shape and direct propagating microwave photons in a bidirectional waveguide. We

develop a device module that is in principle capable of photon directional photon

emission and absorption, such that it forms the unit cell of an all-to-all, tileable

quantum communication network.
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Chapter 5

Directional Emission

5.1 Introduction

In recent years, directional emission into a waveguide has become a new sub-field of

research known as chiral waveguide QED [9]. The chiral regime is naturally accessible

within a nanophotonics platform, because the transverse confinement of light in opti-

cal nanowaveguides links the propagation direction of an emitted photon to the local

polarization of an atom [9, 64]. This effect has been leveraged to achieve directional

emission of optical photons in photonic waveguides and nanofibers [5–8]. However,

to the best of our knowledge, directional emission of microwave photons into chiral

waveguides for integration with circuit QED systems has not yet been demonstrated

experimentally.

In this work, we experimentally demonstrate on-demand directional photon emis-

sion based on the quantum interference of indistinguishable photons emitted by a

giant artificial molecule [33]. We arrange qubits that are spatially separated along

a bidirectional waveguide to form a giant artificial molecule that can emit photons

in a chosen direction [46, 47, 65, 66]. Effectively, we create a chiral waveguide by

linking the propagation direction of an emitted photon to the relative phase of a two-

qubit entangled state of the giant artificial molecule. We use quadrature amplitude

detection to obtain the moments of the two output fields of the waveguide. Using

these moments, we reconstruct the state of the photon and quantify its fidelity. The
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Figure 5-1: Directional emission in a waveguide QED architecture. a) A
false-colored optical micrograph of the device. The state of the data qubits (pink) is
transferred into the emitter qubits (orange) via an exchange interaction mediated by
tunable couplers (blue). The emitter qubits continuously emit any population into
the waveguide (purple). b) Schematic diagram of the two resonant emitter qubits
Q1 and Q2 coupled to a common waveguide with equal strength 𝛾 and inter-qubit
distance 𝜆/4. The phase delay for photons in the waveguide is given by 𝑒±𝑖𝑘𝑥, where
𝑘 = 2𝜋/𝜆 is the photon wavevector and 𝜆 is the photon wavelength. The sign of
this phase delay is determined by the propagation direction of the photon (+ for
leftward, and − for rightward). An external coupler-mediated exchange interaction
of strength 𝐽c = −𝛾/2 is applied to fully cancel the waveguide mediated interaction
between the qubits. The four possible coherent pathways for qubit emission into
the left/right travelling modes of the waveguide are shown below. Each pathway
obtains a phase from the initial state |𝜓qb⟩ and position 𝑥 of the qubit that emits the
photon. When the qubits are initialized into |𝜓qb⟩ = (|𝑒𝑔⟩+𝑒𝑖𝜋/2|𝑔𝑒⟩)/

√
2, the emitted

photon only propagates towards the right due to destructive interference between the
left-propagating pathways. c) The same setup as (b), but with the initial qubit
state |𝜓qb⟩ = (|𝑒𝑔⟩ + 𝑒−𝑖𝜋/2|𝑔𝑒⟩)/

√
2. In this case, the right-propagating pathways

destructively interfere, and the emitted photon only propagates towards the left.

architecture realized here can be used for both photon emission and absorption [47],

thus this demonstration is the first step towards implementing an interconnect for an

extensible quantum network.

5.2 Model and Protocol

Our device comprises four frequency-tunable transmon qubits [40] and four tunable

transmon couplers [67,68] between each neighboring qubit pair, as shown in Fig. 5-1a.

The artificial molecule is composed of two identical resonant qubits Q1 and Q2, with
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frequencies 𝜔1/2𝜋 = 𝜔2/2𝜋 = 4.93 GHz and decay into a common waveguide at the

rate 𝛾/2𝜋 = 3.2 MHz. The qubits are spatially separated along the waveguide by a

distance ∆𝑥 = 𝜆/4, where 𝜆 is the wavelength of the emitted photon, following the

model described in Sec. 4.4. The other two qubits, Q3 and Q4, serve as data qubits

that are not subject to direct dissipation into the waveguide. These qubits would

function as the interface between a quantum processor and the emitter qubits within

a computational node in a quantum network. Because the data qubits are distant

from the waveguide, the state of Q3 and Q4 can be prepared with high fidelity with a

combination of single- and two-qubit gates. We generate photons by transferring the

state of the data qubits Q3/4 to the emitter qubits Q1/2 via an exchange interaction

mediated by the couplers C13/24.

The directional emission protocol relies on the dynamics of the sub-system of the

emitter qubits Q1/2 and the waveguide. From the derivation of Eq. 4.42 in Sec. 4.4,

the master equation governing the time dynamics of the resonant emitter qubits with

identical decay rates into the waveguide 𝛾 and inter-qubit distance ∆𝑥 = 𝜆/4 [45,47]:

𝜕𝜌

𝜕𝑡
= −𝑖

[︀
�̂�qb + �̂�c, 𝜌

]︀
+ 𝛾

2∑︁
𝑗

𝐷
[︀
�̂�−
𝑗

]︀
𝜌, (5.1)

where 𝜌 is the density matrix of the sub-system, 𝐷[�̂�] = �̂�𝜌�̂�† − 1
2
{�̂�†�̂�, 𝜌} is the

Lindblad dissipator, �̂�qb =
∑︀2

𝑗 𝜔𝑗�̂�
+
𝑗 �̂�

−
𝑗 is the free-qubit Hamiltonian of the emitters,

setting ℎ̄ to unity for simplicity, and �̂�±
𝑗 are the raising and lowering Pauli operators

of each qubit with 𝑗 ∈ {1, 2}.

Finally, �̂�c = (𝛾/2+𝐽c)(�̂�
+
1 �̂�

−
2 + �̂�+

2 �̂�
−
1 ) is the total coherent exchange interaction

Hamiltonian between the emitters. There are two sources coherent emitter-emitter

coupling:

1. A static waveguide-mediated interaction of strength 𝛾/2. This coherent coupling

of qubits through the modes in the waveguide is characteristic of resonant,

identical two-qubit systems with inter-qubit distance ∆𝑥 = 𝜆/4 along a common

waveguide, as seen in Eq. 4.39.
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2. A tunable-coupler-mediated interaction between the emitter qubits (via C12)

of strength 𝐽c. The tunability in 𝐽c is used to cancel the waveguide-mediated

interaction such that the emitters are decoupled from each other and the ex-

change Hamiltonian �̂�c = 0. The emitter qubits must not exchange population

during emission into the waveguide to avoid disrupting the interference effect

that enables the directional emission protocol illustrated in Fig. 5-1b/c.

The final state of the photons emitted by Q1 and Q2 depends on the interference

between their simultaneous emission. Specifically, when the initial state of the emitter

qubits is

|𝜓±⟩ = |𝑒𝑔⟩+ 𝑒±𝑖
𝜋
2 |𝑔𝑒⟩√

2
, (5.2)

the artificial atom emits a single photon that propagates either leftward or rightward,

depending on the sign of the relative phase of the initial entangled state. To see this,

consider the emitter qubits initialized to |𝜓qb⟩ = |𝜓+⟩, as shown in Fig. 5-1b. For

simplicity, we define the positions of Q1 and Q2 along the waveguide to be 𝑥 = 0 and

𝑥 = ∆𝑥, respectively. Here, 𝑘 = 2𝜋/𝜆 is the wavevector of the emitted photon, and

the sign of the phase 𝑒±𝑖𝑘𝑥 is determined by the propagation direction of the photon

(+ for leftward, and − for rightward). We denote the state of the emission from the

emitter qubits as |𝜓ph⟩ = |𝑛L𝑛R⟩, where 𝑛L(R) is the number of photons propagating

to the left (right) in the waveguide. There are four possible emission pathways from

the initial state |𝜓qb⟩ = |𝜓+⟩ as shown in Fig. 5-1b, each involving one of the emitter

qubits, Q1 or Q2, releasing a photon that propagates towards the left or the right:

1. If Q1 emits a rightward-propagating photon, the emission accumulates phases

from both the relative phase of 𝑒𝑖0 from the state |𝜓+⟩ and a phase 𝑒−𝑖𝑘𝑥 = 𝑒−𝑖0

given by the position of Q1 at 𝑥 = 0. The resulting state of the photon emission

is |𝜓ph⟩ = 𝑒𝑖0|01⟩.

2. If Q2 emits a rightward-propagating photon, the emission accumulates the rel-

ative phase of 𝑒𝑖𝜋/2 from the state |𝜓+⟩ and a phase 𝑒−𝑖𝑘𝑥 = 𝑒−𝑖𝜋/2 given by

the position of Q2 at 𝑥 = 𝜆/4. The total phase accumulated by the rightward

emission from Q2 is also 𝑒𝑖0, resulting in the state |𝜓ph⟩ = 𝑒𝑖0|01⟩.
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3. If Q1 emits a leftward-propagating photon, the state phase and position phase

are both 𝑒𝑖0, and the resulting state of the emission is |𝜓ph⟩ = 𝑒𝑖0|10⟩.

4. If Q2 emits a leftward-propagating photon, the emission accumulates the relative

state phase of 𝑒𝑖𝜋/2 and a position phase of 𝑒+𝑖𝑘𝑥 = 𝑒𝑖𝜋/2. The total phase

accumulated by the leftward emission from Q2 is 𝑒𝑖𝜋, resulting in the state

|𝜓ph⟩ = 𝑒𝑖𝜋|10⟩.

These additional phases result in the total constructive interference between right-

ward emission pathways and the total destructive interference between leftward emis-

sion pathways. Therefore, when the qubits are initialized into |𝜓+⟩ , the emitted

photon always propagates to the right, as described by the state |𝜓ph⟩ = |01⟩. If the

emitter qubits are instead initialized into the state |𝜓qb⟩ = |𝜓−⟩, a similar analysis, as

shown in Fig. 5-1c, results in a leftward propagating photon in the state |𝜓ph⟩ = |10⟩.

The directional emission of photons from this system of entangled emitter qubits

can be formally verified using the input-output relations for leftward- and rightward-

propagating modes in the waveguide, as discussed in the derivation of Eq. 4.48: [45]

�̂�L = �̂�in
L +

√︂
𝛾

2
(�̂�−

1 + �̂�−
2 𝑒

𝑖𝑘Δ𝑥) = �̂�in
L +

√︂
𝛾

2
(�̂�−

1 + 𝑖�̂�2),

�̂�R = �̂�in
R +

√︂
𝛾

2
(�̂�−

1 + �̂�−
2 𝑒

−𝑖𝑘Δ𝑥) = �̂�in
R +

√︂
𝛾

2
(�̂�−

1 − 𝑖�̂�−
2 ).

(5.3)

Here, �̂�in
L(R) represents the input field of photons propagating to the left (right) in

the waveguide. From these relations, the number of photons in either mode of the

waveguide, or the photon flux, ⟨�̂�L(R)⟩ = ⟨�̂�†L(R)�̂�L(R)⟩, can be directly related to the

state of the qubits. For zero input field (�̂�in
L(R) = 0), the number of photons emitted

to either the left or right in the waveguide is

⟨�̂�L⟩ =
𝛾

2
(⟨𝜎+

1 𝜎
−
1 ⟩+ ⟨𝜎+

2 𝜎
−
2 ⟩ − 𝑖⟨𝜎+

2 𝜎
−
1 ⟩+ 𝑖⟨𝜎+

1 𝜎
−
2 ⟩)

⟨�̂�R⟩ =
𝛾

2
(⟨𝜎+

1 𝜎
−
1 ⟩+ ⟨𝜎+

2 𝜎
−
2 ⟩+ 𝑖⟨𝜎+

2 𝜎
−
1 ⟩ − 𝑖⟨𝜎+

1 𝜎
−
2 ⟩)

(5.4)

For the emitter qubit state |𝜓qb⟩ = |𝜓+⟩, we find the leftward photon flux ⟨�̂�L⟩ = 0
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and rightward photon flux ⟨�̂�R⟩ = 𝛾. Alternatively, for |𝜓qb⟩ = |𝜓−⟩, we find ⟨�̂�R⟩ = 0

and ⟨�̂�L⟩ = 𝛾, formally verifying the discussion in Fig. 5-1b/c. These photon fluxes

encapsulate the physics of the directional emission protocol.

Given that the emitters are initialized into |𝜓qb⟩ = |𝜓±⟩, the interference described

above is only perfect when ∆𝑥 = (2𝑚+1)𝜆/4, where 𝑚 is an integer, and the external

tunable coupling 𝐽c = −𝛾/2. The first condition ensures that the interfering emission

pathways are fully in/out of phase. In our system, we choose 𝑚 = 0 such that the

emitter qubits have an inter-qubit distance along the waveguide of ∆𝑥 = 𝜆/4. The

propagation directions of the photons emitted by the states |𝜓qb⟩ = |𝜓±⟩ alternate

for even and odd 𝑚. Additionally, for this inter-qubit distances ∆𝑥, the qubits do not

experience correlated dissipation [45], which would further disrupt the interference

during the emission process. The second condition on the external tunable coupling,

𝐽c = −𝛾/2, prevents any population transfer between the qubits during the emission

process by setting the exchange Hamiltonian �̂�c to zero.

5.3 Device Calibration

The strong and always-on dissipation into the waveguide makes it difficult to measure

the strength of the coupling between the emitters, 𝐽Σ = 𝛾/2 + 𝐽c. The typical

methods, such as observations of avoided crossings in qubit spectroscopy as discussed

in Fig. 4-6b, or population exchange in time domain as simulated in Fig. 4-1b, are

limited in resolution for small total emitter coupling 𝐽Σ < 𝛾. To go beyond this limit,

we infer the value of 𝐽Σ by measuring the elastic scattering of a weak input probe tone

incident on the emitter qubits through the waveguide. Specifically, we measure the

transmission amplitude 𝑆21 of a coherent tone as a function of the detuning between

the emitter qubit frequencies, ∆ = 𝜔2 − 𝜔1, and the detuning between the probe and

Q1 frequencies, 𝛿 = 𝜔𝑝 − 𝜔1, as shown in Fig. 5-2a. When the qubits are detuned

(∆ > 𝛾), they will each act as a mirror to single photons at their respective frequencies

(see discussion in Sec. 3.5) [32, 48, 54], such that there are two dips in |𝑆21(𝛿)|. This

is a consequence of the destructive interference between the probe and the forward-
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Figure 5-2: Verifying protocol conditions via elastic scattering. a) The trans-
mittance |𝑆21| of an input probe tone incident upon the two emitter qubits Q1 and
Q2 through the waveguide. |𝑆21| is plotted as a function ∆, the detuning of Q2 from
Q1, and 𝛿, the detuning between the probe and Q1. In the case of far detuned emit-
ters (∆ > 𝛾), each qubit acts as a mirror (|𝑆21| ≪ 1) to a resonant probe (𝛿 = 0
or 𝛿 = ∆), as discussed in Sec. 3.5. However, for resonant emitters (∆ = 0), the
transmittance returns to unity and the emitters are effectively transparent to fields in
the waveguide. b) |𝑆21| as a function of the total coupling strength |𝐽Σ| and 𝛿 while
Q1 and Q2 are resonant, using the same probe power as in (a). The level diagram of
the three states |𝑔𝑔⟩, |𝜓+⟩, and |𝜓−⟩ is shown as an inset (|𝑒𝑒⟩ is ignored for weak
probes). The rightward-propagating probe used to obtain this data only couples the
states |𝑔𝑔⟩ ↔ |𝜓+⟩, and a finite exchange interaction between the emitters will couple
|𝜓+⟩ ↔ |𝜓−⟩. The state |𝜓+⟩ can only emit a rightward-propagating photon and
|𝜓−⟩ can only emit a leftward-propagating photon. We observe two dips in the trans-
mission at 𝛿 = ±𝐽Σ, corresponding to the energy splitting from the hybridization of
|𝜓±⟩. When |𝐽Σ| → 0, the transmission approaches unity for all 𝛿 because the probe
can only excite the |𝜓+⟩ state, which can only emit in the same direction (right) as
the probe. This measurement is used to set |𝐽Σ| = 0. c) The measured |𝑆21| (red
points) as a function of the probe power with ∆ = 0, 𝛿 = 0, and 𝐽Σ = 0. The data
agrees well with a fit (black curve) to a simulation of the master equation in Eq. 5.1.

propagating, out-of-phase emission of the driven qubit. Therefore, |𝑆21| is suppressed

for weak coherent inputs (average photon number ≪ 1) that are resonant with either

qubit.

The elastic scattering behavior changes when the emitter qubits are resonant

(∆ = 0). First, given that the qubits are equally coupled to the waveguide at rate 𝛾,

the input probe tone will only drive the |𝑔𝑔⟩ ↔ |𝜓(𝜑)⟩ and |𝜓(𝜑)⟩ ↔ |𝑒𝑒⟩ transitions,

where |𝜓(𝜑)⟩ = (|𝑒𝑔⟩+𝑒𝑖𝜑|𝑔𝑒⟩)/
√
2. The sign of 𝜑 = ±𝑘∆𝑥 is determined by the prop-
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agation direction of the probe. Furthermore, the transition to the joint excited state

|𝑒𝑒⟩ can be ignored for low probe powers 𝑃 , as it requires an appreciable population in

|𝜓(𝜑)⟩ to play a role. Therefore, if ∆𝑥 = 𝜆/4 and �̂�c = 0, the state of the qubits are

driven into a mixture of only |𝑔𝑔⟩ and either |𝜓+⟩ or |𝜓−⟩, depending on the direction

of the probe. However, these states can only re-emit photons in the same direction as

the input, as depicted in the level-diagram in Fig. 5-2b for a rightward-propagating

probe. This ideally results in perfect transmission, |𝑆21(∆ = 0)| = 1, and the emitters

are effectively transparent to fields in the waveguide.

The magnitude of the transmission deviates from unity if the emitters experience

non-zero coupling, �̂�c ̸= 0, as any population transfer between |𝜓+⟩ ↔ |𝜓−⟩ causes

part of the qubit emission to propagate in the direction opposite to that of the probe.

To verify this, we measure |𝑆21(∆ = 0)| as a function of |𝐽Σ| in Fig. 5-2b. For

|𝐽Σ| > 𝛾/2 we see two dips in the transmission at 𝛿 = ±𝐽Σ, which now correspond to

the hybridized energy splitting of |𝜓+⟩ and |𝜓−⟩. For |𝐽Σ| < 𝛾/2, the energy splitting

is within the linewidth of the qubits, which is set by 𝛾. However, as described above,

we observe the |𝑆21(𝛿)| → 1 as 𝐽Σ → 0. Therefore, we can use the transmission as a

metric to set 𝐽Σ = 0 and ensure the emitter qubits are uncoupled despite the large

decay rate 𝛾 of these qubits.

Finally, in Fig. 5-2c we show the transmission |𝑆21(∆ = 0, 𝛿 = 0, 𝐽Σ = 0)| as

a function of the probe power. Here, we clearly see |𝑆21| ≈ 1 for low powers, as

previously discussed. We observe that |𝑆21| slightly exceeds unity for low probe

powers, which we attribute to impedance mismatches in our experimental setup

We use a master equation model to simulate the steady-state dynamics of both

emitter qubits Q1 and Q2 of frequencies 𝜔1 and 𝜔2 at positions 𝑥1 and 𝑥2 along the

waveguide. In order to calibrate the device, we perform a series of elastic scattering

measurements discussed in Fig. 5-2. In the frame of the probe, the system Hamilto-

nian is [45]

�̂� = �̂�qb+�̂�p+�̂�c =
2∑︁
𝑗

[𝛿𝑗�̂�
+
𝑗 �̂�

−
𝑗 +Ωp(�̂�

+
𝑗 𝑒

−𝑖𝑘𝑥𝑗+�̂�−
𝑗 𝑒

𝑖𝑘𝑥𝑗)]+𝐽Σ(�̂�
+
1 �̂�

−
2 +�̂�

+
2 �̂�

−
1 ) (5.5)
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where 𝛿𝑗 = 𝜔𝑗 − 𝜔p is the probe detuning from each qubit frequency. The total

emitter-emitter coupling is 𝐽Σ = 𝛾/2+𝐽c, where 𝐽c is the coupling induced by tunable

coupler C12 as discussed in the main text. We define the positions of the emitters

as 𝑥1 = 0 and 𝑥2 = 𝜆/4, where 𝜆 is the wavelength of the qubit emission in the

waveguide. The master equation of the driven qubit system is

𝜕𝑡𝜌 = −𝑖
[︀
�̂�, 𝜌

]︀
+

2∑︁
𝑗

(︁
𝛾𝐷
[︀
�̂�−
𝑗

]︀
𝜌+

𝛾𝜑,𝑗
2
𝐷
[︀
�̂�𝑧,𝑗
]︀
𝜌
)︁
. (5.6)

For a rightward-propagating input probe with average field amplitude ⟨�̂�inR⟩ =√︁
𝑃
ℎ̄𝜔p

, the input-output relations of the driven two-qubit system are

⟨�̂�L⟩ =
√︂
𝛾

2

(︀
⟨�̂�−

1 ⟩+ 𝑖⟨�̂�−
2 ⟩
)︀
,

⟨�̂�R⟩ = ⟨�̂�inR⟩+
√︂
𝛾

2

(︀
⟨�̂�−

1 ⟩ − 𝑖⟨�̂�−
2 ⟩
)︀
.

(5.7)

We use numerical master equation simulations to determine the transmission am-

plitude 𝑆21 = ⟨�̂�R⟩/⟨�̂�in
R⟩ as a function of probe detuning 𝛿, emitter detuning ∆, and

the total emitter-emitter coupling 𝐽Σ as shown in Fig. ??. We also simulate the

transmission of a resonant probe as a function of probe power as shown in Fig. 5-2c.

The simulations mirror our calibration spectroscopic experiments, indicating that this

model captures the steady-state dynamics of the driven two-qubit system.

We experimentally find the |𝐽Σ| = 0 point by varying the frequency of the tunable

coupler 𝐶12, which in turn adjusts the net interaction between the two emitter qubits.

In particular, we measure |𝑆21| for when the input probe is resonant with both emit-

ter qubits 𝛿 = 0 while sweeping the frequency of 𝐶12, as shown in Fig. 5-3a. The

frequency for which |𝑆21| is maximized corresponds to the operating point when |𝐽Σ|

is minimized, and is ideally zero. To see this more clearly, we map the frequency of

𝐶12 onto 𝐽Σ (see Refs. [67,68]) in Fig. 5-3b. For the plotted range (𝐽Σ ∈ [−𝛾/2, 𝛾/2],

we can clearly see that |𝑆21| is maximized when 𝐽Σ = 0. Note that the |𝑆21| slightly

exceed unity at its maximum value, which we attribute to impedance mismatches
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Figure 5-3: Cancelling coupling between emitter qubits. a) The transmission
|𝑆21| as a function of the frequency of the tunable coupler 𝐶12 for resonant emitters.
The coupling between the two emitter qubits is tuned via the frequency 𝐶12, and the
point of highest |𝑆21| corresponds to the point of operation for a net-zero interaction
between these qubits. b) The same data presented in (a), but with the frequency
of 𝐶12 mapped onto the net coupling strength 𝐽Σ. For the range 𝐽Σ ∈ [−𝛾/2, 𝛾/2],
|𝑆21| is maximal at 𝐽Σ = 0. c) Four representative traces of |𝑆21| as a function of the
detuning 𝛿 between the probe and resonant emitter qubits. A clear splitting splitting
can be seen for |𝐽Σ| = 2𝛾. The |𝑆21| approaches unity for all 𝛿 as |𝐽Σ| approaches 0.

in our experimental setup [69, 70]. Finally, we plot |𝑆21| as a function of the probe

detuning ∆ from the emitter qubits in Fig. 5-3c. We show four representative traces

for different values of |𝐽Σ|. When |𝐽Σ| > 𝛾/2, we observe a splitting from the hy-

bridization of the qubits. However, when |𝐽Σ| < 𝛾/2 we simply observe a single dip

that shallows as the coupling decreases.

5.4 Photon Generation and Measurement

Now that we have met the conditions required to observe directional photon emission,

we now run the full protocol using the pulse sequence shown in Fig. 5-4a. The emitter

qubits continuously dissipate into the waveguide resulting in low coherence and low-

fidelity state preparation. Instead of directly preparing the initial state of the emitter

qubits into |𝜓±⟩, we initialize the data qubits Q3 and Q4. The data qubits have

longer lifetimes because they are not directly coupled to the waveguide, and we can
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Figure 5-4: Pulse sequence and time-domain measurements. a) The pulse
sequence for generating a photon. The qubit state initialization begins by exciting
either Q3 (orange solid curve) or Q4 (blue dashed curve). These qubits are then
entangled via a

√
iSWAP gate by parametrically modulating the frequency of the

tunable coupler C34 at the detuning of Q3 and Q4. Finally, a photon is released via a
parametric exchange interaction between the data qubits Q3/4 and the emitter qubits
Q1/2. The measurement schematic below the pulse-sequence shows that the field
amplitudes �̂�L/R are measured at both outputs of the waveguide. b) The measured
(circles) time-dependent field amplitudes for a photon emitted towards the right. The
data is fit (solid curve) using the solution to the master equation in Eq. 5.8. The
initial state of the data qubits is |𝜓qb⟩ = (|𝑔𝑔⟩ + |𝜓+⟩)/

√
2. The field amplitude of

the leftward emission channel is nearly zero. This data is averaged over 1.5 × 107

repetitions. c) The same measurement as (b), but with |𝜓qb⟩ = (|𝑔𝑔⟩ + |𝜓−⟩)/
√
2

such that the emitted photon now propagates to the left.

faithfully prepare them into an entangled state with high fidelity. We describe the

directional photon emission pulse sequence:

1. Detune data qubits - we first detune Q3 and Q4 (∆34 = |𝜔3−𝜔4|) such that they

are decoupled. Both data qubits are detuned from the emitters (∆13 = |𝜔1−𝜔3|

and ∆24 = |𝜔2 − 𝜔4|).

2. Introduce excitation - we excite Q3 with a 𝜋-pulse to emit a photon to the right.

To emit a photon to the left, we excite Q4 with a 𝜋-pulse instead.

3. Entangle data qubits - we implement a parametric
√
iSWAP gate between Q3

and Q4 by modulating the frequency of the tunable coupler C34 at the detuning

∆34 to prepare the entangled state |𝜓±⟩ [71]. We note that we prepare the data
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qubits into the state |𝜓+⟩ when we excite Q3, or |𝜓−⟩ when we excite Q4 in step

2.

4. Transfer |𝜓±⟩ to the emitter qubits - we execute parametric exchange interac-

tions with the tunable couplers C13 and C24. We modulate the frequency of

the tunable couplers at the detunings ∆13 and ∆24 respectively. The shape of

the emitted photon is determined by both the parametrically induced coupling

𝑔eff between the qubit pairs Q1/2 ↔ Q3/4 and the emitter-waveguide coupling

strength 𝛾.

5. Emission and interference in the waveguide - the interference process described

in Fig. 5-1 results in a photon propagating in the direction of choice.

In the following sections, we study the temporal dynamics of the photon field ampli-

tudes. We also dig deeper into the details of the parametric exchange interactions

that are key the directional emission protocol.

5.4.1 Temporal Dynamics

Next, we seek to study the temporal dynamics of the photon by measuring the field

amplitude at each end of the waveguide �̂�L/R(𝑡) as illustrated in Fig. 5-4a. In practice,

we measure amplified voltage signals in the time-domain which are proportional to the

field amplitudes �̂�L/R(𝑡). The average field amplitudes are zero for the single-photon

Fock state that results from the emission protocol ⟨1L/R|�̂�L/R(𝑡)|1L/R⟩ = 0. This

is because the photon is emitted with random phase, which averages to zero upon

repeated measurements. The average field amplitude is only non-zero when there is

finite coherence between the vacuum state |00⟩ and a single photon state |01⟩ or |10⟩.

Therefore, to measure non-zero field amplitudes, we initially excite Q3 (Q4) with a
𝜋
2
-pulse, such that the emitted photon will be in the state |𝜓ph⟩ = [|00⟩ + |01⟩]/

√
2

(|𝜓ph⟩ = [|00⟩+ |10⟩]/
√
2). We can now observe the temporal envelope of the photon

wavepacket, as shown in Figs. 5-4b and 5-4c. The amplitude of the photon is non-zero

in the direction determined by the phase in the initial state of Q3 and Q4. This is a

signature of the controlled directional emission.
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Next, we seek to derive an analytical form of the temporal envelope of the photon

when we prepare the data qubits in the state |𝜓±
qb⟩ = (|𝑔𝑔⟩ + |𝜓±⟩)/

√
2. The state

of the data qubits is then transferred to the emitter qubits with parametric exchange

interactions as part of the photon release protocol. The four-qubit master equation

that describes this system is written as

𝜕𝑡𝜌 = −𝑖[�̂�, 𝜌] +
∑︁
𝑘=1,2

𝑐𝑘𝜌𝑐
†
𝑘 −

1

2
{𝑐†𝑘𝑐𝑘, 𝜌}, (5.8)

where

�̂� = 𝑔eff (�̂�
−
3 �̂�

+
1 + �̂�+

3 �̂�
−
1 ) + 𝑔eff (�̂�

−
4 �̂�

+
2 + �̂�+

4 �̂�
−
2 ), (5.9)

is the system’s Hamiltonian and

𝑐𝑘 ∈ {√𝛾�̂�−
1 ,

√
𝛾�̂�−

2 }, (5.10)

are the collapse operators, which represent the decay of the emitter qubits into the

waveguide. The raising and lowering operators of each qubit Q𝑖 is denoted as �̂�±
𝑖 ,

where 𝑖 ∈ {1, 2, 3, 4} is the qubit number.

We work in the superoperator representation of Eq. 5.8. Vectorizing the density

matrix as 𝜌→ |𝜌⟩⟩, we rewrite the master equation as

𝜕𝑡|𝜌⟩⟩ = ℒ̂|𝜌⟩⟩, (5.11)

where ℒ̂ is the Liouvillian superoperator [72]

ℒ̂ = −𝑖
(︁
1⊗ �̂� − �̂�𝑇 ⊗ 1

)︁
+
∑︁
𝑘

𝑐*𝑘 ⊗ 𝑐𝑘 −
1

2

(︁
1⊗ 𝑐†𝑘𝑐𝑘 + 𝑐𝑇𝑘 𝑐

*
𝑘 ⊗ 1

)︁
(5.12)

We can formally express the solution to Eq. 5.11 as

|𝜌(𝑡)⟩⟩ = 𝑆(𝑡)|𝜌(0)⟩⟩, (5.13)

where 𝑆(𝑡) = exp(ℒ̂ 𝑡) is the quantum channel described by the original master equa-
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Figure 5-5: Excited state population of data qubits during photon emission.
We utilize dispersive readout to measure the population of the data qubits during the
photon release protocol immediately after the initialization of the data qubits into
the state |𝜓±

qb⟩ = |𝑔𝑔⟩/
√
2+ (|𝑒𝑔⟩+ 𝑒±𝑖

𝜋
2 |𝑔𝑒⟩)/2. The theoretical fit of the population

is presented as a solid line in both plots.

tion in superoperator form. In this simplified model, the subspace formed by Q1 and

Q3 is not coupled to the subspace formed by Q2 and Q4, which allows us to write the

Liouvillian superoperator as ℒ̂ = ℒ̂13 + ℒ̂24, where ℒ̂13(24) is the Liouvillian superop-

erator of each two-qubit subsystem. Because ℒ̂13 and ℒ̂24 commute, we can factorize

the quantum channel as

𝑆(𝑡) = exp(ℒ̂13 𝑡) · exp(ℒ̂24 𝑡). (5.14)

We solve for the density matrix of the four-qubit system 𝜌, which we use to compute

system observables, i.e. ⟨�̂�⟩ = Tr[𝜌�̂�].

To obtain the temporal wavepacket of the photon field amplitude, we use the

input-output relations from Eq. 5.3:

⟨�̂�L⟩ =
√︂
𝛾

2

(︀
⟨�̂�−

1 ⟩+ 𝑖⟨�̂�−
2 ⟩
)︀
,

⟨�̂�R⟩ =
√︂
𝛾

2

(︀
⟨�̂�−

1 ⟩ − 𝑖⟨�̂�−
2 ⟩
)︀
.

(5.15)

Here, we assume that there is no input into the waveguide ⟨�̂�inL/R⟩ = 0. Using the

solution to the master equation, we compute the wavepacket shape, given the initial
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state of the emitter qubits:

|𝜓−
qb⟩ =

|𝑔𝑔⟩+ |𝜓−⟩√
2

→ ⟨�̂�L⟩ = −
𝑔eff

√
𝛾

Γ
𝑒−

𝛾
4
𝑡 sinh

(︂
Γ

2
𝑡

)︂
, ⟨�̂�R⟩ = 0,

|𝜓+
qb⟩ =

|𝑔𝑔⟩+ |𝜓+⟩√
2

→ ⟨�̂�R⟩ =
𝑔eff

√
𝛾

Γ
𝑒−

𝛾
4
𝑡 sinh

(︂
Γ

2
𝑡

)︂
, ⟨�̂�L⟩ = 0,

(5.16)

where we define Γ = 2
√︁(︀

𝛾
4

)︀2 − 𝑔2eff . We use these expressions to fit the photon

field amplitudes in Fig. 5-4b/c and extract the effective coupling between each emit-

ter/data qubit pair 𝑔eff/2𝜋 ≈ 1.28 MHz.

Next, we examine the data qubit population as a function of time during the

photon release. Using the calculated system density matrix 𝜌, we obtain the analytical

expression for the excited state population of each data qubit as a function of time:

𝜌
(𝑑)
33 (𝑡) = 𝜌

(𝑑)
44 (𝑡) =

𝑒−
𝛾
2
𝑡

16Γ2

[︀
(𝛾2 − 8𝑔2eff) cosh (Γ𝑡) + 2𝛾Γ sinh (Γ𝑡)− 8𝑔2eff

]︀
, (5.17)

We use Eq. 5.17 to fit the dispersive readout measurement of the data qubits dur-

ing the photon release protocol, shown in Fig. 5-5. The decay in population here

corresponds to to transfer into the emitter qubits and subsequent release into the

waveguide.

5.4.2 Parametric Exchange Interactions

The exchange interactions used to execute the directional emission protocol are me-

diated by the parametric modulation of the tunable coupler frequencies. To see this,

consider two qubits at frequencies 𝜔𝑖 and 𝜔𝑗, and a tunable coupler at frequency 𝜔𝑐,

as illustrated in Fig. 5-6a. Each qubit is capacitively coupled to the tunable coupler

at rates 𝑔𝑖𝑐 and 𝑔𝑗𝑐, and to each other at rate 𝑔𝑖𝑗. The coupler is far-detuned from

both qubit frequencies 𝜔𝑐− 𝜔𝑖/𝑗 ≫ 𝑔𝑖𝑐, 𝑔𝑗𝑐, 𝑔𝑖𝑗, and the qubits are slightly detuned by

∆ = 𝜔𝑗 − 𝜔𝑖. The Hamiltonian of the system in the rotating frame of the qubit Q𝑖

is [67]

�̂� = ∆�̂�+
𝑗 �̂�

−
𝑗 +

(︁𝑔𝑖𝑐𝑔𝑗𝑐
𝛿

+ 𝑔𝑖𝑗

)︁
(�̂�+

𝑖 �̂�
−
𝑗 + �̂�−

𝑖 �̂�
+
𝑗 ), (5.18)
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where 𝛿 = 2
(︁

1
𝜔𝑖−𝜔𝑐

+ 1
𝜔𝑗−𝜔𝑐

)︁−1

= 2
(︁

1
𝛿𝑖
+ 1

𝛿𝑗

)︁−1

. The coupling rates 𝑔𝑖𝑐, 𝑔𝑗𝑐, and 𝑔𝑖𝑗

are determined by the the qubit frequencies and the capacitances 𝐶𝑖𝑗, 𝐶𝑐, 𝐶𝑖/𝐶𝑗, and

𝐶𝑗,𝑐/𝐶𝑖,𝑐 as defined in Fig. 5-6a:

𝑔𝑖𝑗 ≈
1

2

(︃
𝐶𝑖𝑗√︀
𝐶𝑖𝐶𝑗

+
𝐶𝑖,𝑐𝐶𝑗,𝑐√︀
𝐶𝑖𝐶𝑗𝐶2

𝑐

)︃
√
𝜔𝑖𝜔𝑗 =

𝐶𝑖𝑗
2

√
𝜔𝑖𝜔𝑗,

𝑔𝑛𝑐 ≈
𝐶𝑛,𝑐

2
√
𝐶𝑛𝐶𝑐

√
𝜔𝑛𝜔𝑐 =

𝐶

2

√
𝜔𝑛𝜔𝑐 𝑛 = 𝑖, 𝑗.

(5.19)

Here, we assume that Q𝑖 and Q𝑗 are identical qubits, with equal self-capacitances

𝐶𝑖 = 𝐶𝑗 and capacitances to the coupler 𝐶𝑖,𝑐 = 𝐶𝑗,𝑐. Substituting these expressions

for the coupling rates into the Hamiltonian gives

�̂� = ∆�̂�+
𝑗 �̂�

−
𝑗 +

√
𝜔𝑖𝜔𝑗

(︃
𝐶2𝜔𝑐
4𝛿

+
𝐶𝑖𝑗
2

)︃
(�̂�+

𝑖 �̂�
−
𝑗 + �̂�−

𝑖 �̂�
+
𝑗 ). (5.20)

Next, we modulate the frequency of the tunable coupler 𝜔𝑐 = 𝜔𝑐0 + 𝐴 cos∆𝑡. In

practice, this is realized by modulating the flux applied into the SQUID loop of the

coupler. Since 𝜔𝑐 ≫ 𝜔𝑖, 𝜔𝑗, we can approximate the total detuning as 𝛿 ≈ 𝛿𝑖 = 𝜔𝑖−𝜔𝑐.

Assuming the amplitude of the coupler frequency modulation 𝐴 ≪ 𝛿𝑖, we separate

the qubit coupling into a static component and a time-varying component,

�̂� = ∆�̂�+
𝑗 �̂�

−
𝑗 +

√
𝜔𝑖𝜔𝑗

(︃
𝐶2𝜔𝑐0
4𝛿

+
𝐶𝑖𝑗
2

+
𝐶2𝐴 cos∆𝑡

4𝛿

)︃
(�̂�+

𝑖 �̂�
−
𝑗 + �̂�−

𝑖 �̂�
+
𝑗 ). (5.21)

Finally, we rotate into the frame of the qubit detuning ∆ and neglect the fast rotating

terms. This approximation holds as long as the effective coupling rate 𝑔eff ≪ ∆. The

final time-independent Hamiltonian is given by

�̂� =
𝐴𝐶2√𝜔𝑖𝜔𝑗

8𝛿
(�̂�+

𝑖 �̂�
−
𝑗 + �̂�−

𝑖 �̂�
+
𝑗 ). (5.22)

This Hamiltonian shows that the two detuned qubits Q𝑖 and Q𝑗 are effectively coupled

at rate 𝑔eff = 𝐴𝐶2√𝜔𝑖𝜔𝑗/8𝛿. We show in Fig. 5-6c measurements of the chevron

pattern for population exchange between qubits Q3 and Q4 mediated by a parametric
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Figure 5-6: Parametric interactions with a tunable coupler. a) The circuit
diagram of a system with a tunable coupler CPLR𝑖𝑗 capacitively coupled two tunable
transmon qubits Q𝑖 and Q𝑗. The coupling capacitance between the qubits is 𝐶𝑖𝑗
and the coupling capacitances between each qubit and the coupler is 𝐶𝑖,𝑐 (𝐶𝑗,𝑐). b)
The single-excitation manifold level diagram of the system. The coupler frequency
𝜔𝑐 is far-detuned from the frequencies of the qubits 𝜔𝑖 and 𝜔𝑗, and the two qubits
are slightly detuned from each other by ∆ = 𝜔𝑗 − 𝜔𝑖. The capacitance between the
qubits 𝐶𝑖𝑗 mediates a direct coupling with strength 𝑔𝑖𝑗. The capacitances between
the coupler and each qubit give rise to couplings between each qubit-coupler pair
at the rates 𝑔𝑖𝑐 and 𝑔𝑗𝑐. c) The measured population exchange between qubits Q3

and Q4 as a function of the parametric modulation pulse length and frequency offset
∆𝑐 = 𝛿𝑐 −∆, where 𝛿𝑐 is the frequency of the modulation.

exchange interaction. Note that we can also vary we vary the effective coupling rate as

a function of time by varying the frequency modulation amplitde 𝐴(𝑡). This feature

can be used to shape the wavepacket of the emitted photon, which will be necessary

in future work for perfect absorption of the emitted photons [20,47,60,73].

5.5 Heterodyne Detection Scheme

Until this point, we have spoken vaguely about measuring photons in the form of time-

dependent voltage signals. To study quantum properties of the emission, we must

measure higher order signal correlations, as first demonstrated in [53, 74]. While

single-photon detectors are common in optical experiments in the form of avalanche

photodetectors, the smaller energy of microwave photons makes them difficult to

measure. Microwave photon detectors in superconducting systems are an active area

97



LO

IL

QL

IR

QR

hR
†

aR

aL

hL
† VQ(t)L

VI(t)L

VQ(t)R

VI (t)R

GL

GR

Figure 5-7: Linear, phase-insensitive amplification and heterodyne detection
scheme used to measure photon field amplitudes. The emitter qubits shown
in orange are coupled to a waveguide. Each end of the waveguide is connected to
series of linear, phase-insensitive amplifiers, which we simplify as one amplifier with
gain 𝐺L/R. The phase-insensitive amplifier introduces noise (ℎ̂L/R) to the output
field amplitudes (�̂�L/R). The amplified noisy voltage signals at the qubit frequency
𝑓 = 𝜔/2𝜋 are routed to an IQ mixer, where they are down-converted with a local
oscillator at frequency 𝑓LO to an intermediate frequency 𝑓IF = 𝑓 ± 𝑓LO. These signals
are low-pass filtered such that only signals at the difference frequency are digitized,
further demodulated to baseband, and integrated over time to output a complex
number at each end of the waveguide 𝑆L/R = 𝐼L/R + 𝑖𝑄L/R.

of research [75, 76]. The detection scheme we use in this experiment is composed of

a chain of linear amplifiers and analog-to-digital converters (ADCs), as illustrated in

Fig. 5-7.

For single emitters, the waveguide behaves as a beamsplitter for radiation, and

the set-up we use is the microwave analog of the Hanbury Brown and Twiss ex-

periment [56]. The directional emission protocol allows us effectively to tune the

transmission and reflection coefficients of the beamsplitter in situ for single-photons.

At each end of the waveguide, we represent a series of linear, phase-insensitive ampli-

fiers with a single amplifier of gain 𝐺L/R. Because our amplification chain is phase-

insensitive, noise represented by the field amplitude ℎ̂L/R is introduced to the output

field amplitudes �̂�L/R at the amplifier. Phase-insensitive amplifiers act equally on both

quadratures of a signal �̂�L/R = �̂�
(1)
L/R + 𝑖�̂�

(2)
L/R, where we define the signal quadratures

�̂�
(1)
L/R = Re[�̂�L/R] and �̂�L/R(2) = Im[�̂�L/R].
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Ideally, we want to measure both quadratures of �̂�L/R simultaneously to character-

ize the output fields efficiently. However, the quadratures do not commute and cannot

be measured simultaneously. Because the phase-insensitive amplifer adds additional

noise to the system, which is always at least in the vacuum state, we can measure the

amplified signals

𝑆L/R =
√︀
𝐺L/R�̂�L/R +

√︀
𝐺L/R − 1ℎ̂†L/R (5.23)

simultaneously while preserving Heisenberg’s uncertainty principle. To clarify, for the

large gain 𝐺 >> 1 in our measurement chain, we can rewrite this equation for the

normalized signals as

𝑆 ′
L/R =

𝑆L/R√︀
𝐺L/R

≈ �̂�L/R + ℎ̂†L/R. (5.24)

In the large gain limit, we see that the quadratures of 𝑆 ′
L/R commute and can therefore

be measured simultaneously. Once we amplify the field phase-insensitively, at least the

vacuum noise is added to the measurement regardless of whether we measure one or

both quadratures simultaneously [77]. Thus, it is natural to detect both quadratures

with the heterodyne detection scheme shown in Fig. 5-7 [77,78].

The IQ mixer splits both the input signal 𝑉L/R(𝑡) at frequency 𝑓 and a local

oscillator at frequency 𝑓LO equally into two branches, namely the in-phase (𝐼) branch

and the quadrature (𝑄) branch. In the 𝐼-branch, the input signal is multiplied by the

local oscillator, while in the 𝑄-branch, the phase of the local oscillator is shifted by

𝜋/2 before multiplication with the input signal. Multiplication of these signals results

in ouptput signals at intermediate frequencies 𝑓IF = 𝑓±𝑓LO, which are sent through a

low-pass filter such that only the difference frequency arrives at the analog-to-digital

converters (ADCs). See [34] for more details about the IQ-demodulation scheme. The

signal in each branch is digitized, demodulated once again to baseband with digital

signal processing techniques, and then integrated over time with custom FPGA code.

The output of this measurement is a complex number

𝑆L/R = 𝐼L/R + 𝑖𝑄L/R =

∫︁ 𝑡0

0

𝑑𝑡(𝑉 𝐼
L/R(𝑡) + 𝑖𝑉 𝑄

L/R(𝑡)) (5.25)
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at each end of the waveguide for each photon measurement, where 𝑡0 is the integration

time of our measurement. The temporal envelopes in Fig. 5-4b/c are the amplified

voltage signals of the emitted directional photons before time-integration.

5.6 Photon State Tomography

The signal we measure at the ADCs is noisy, and we seek to extract the signal field

amplitude �̂�L/R. Our goal is to use these signals to measure higher-order correlations

to fully characterize the state of the emitted photon. Following the prescription

described by [53, 63, 74, 77], we repeat the directional emission protocol to construct

a 4D probability distribution 𝐷(𝑆L, 𝑆
*
L, 𝑆R, 𝑆

*
R, ) we can use to obtain the moments

of 𝑆L and 𝑆R,

⟨𝑆†𝑤
L 𝑆𝑥L𝑆

†𝑦
R 𝑆

𝑧
R⟩ =

∫︁
𝑑2𝑆L𝑑

2𝑆R𝑆
*𝑤
L 𝑆𝑥L𝑆

*𝑦
R 𝑆

𝑧
R𝐷(𝑆L, 𝑆

*
L, 𝑆R, 𝑆

*
R), (5.26)

where 𝑤, 𝑥, 𝑦, 𝑧 ∈ {0, 1, 2, ...}. The measured signals 𝑆L/R are composed of both the

field of interest at each end of the waveguide �̂�L/R as well as noise added by the

amplification chain as described by the input-output relation for the amplified signal

for large gain (Eq. 5.23). Employing the Binomial theorem, and assuming the signal

and noise fields are uncorrelated, we can write the moments of the normalized signals

as

⟨𝑆
′†𝑛
L 𝑆

′𝑚
L 𝑆

′†𝑘
R 𝑆

′𝑙
R⟩ =

𝑛∑︁
𝑤=0

𝑚∑︁
𝑥=0

𝑘∑︁
𝑦=0

𝑙∑︁
𝑧=0

(︂
𝑛

𝑤

)︂(︂
𝑚

𝑥

)︂(︂
𝑘

𝑦

)︂(︂
𝑙

𝑧

)︂
⟨�̂�†𝑤L �̂�𝑥L�̂�

†𝑦
R �̂�

𝑧
R⟩⟨ℎ̂

†𝑛−𝑤
L ℎ̂𝑚−𝑥

L ℎ̂†𝑘−𝑦R ℎ̂𝑙−𝑧R ⟩.

(5.27)

We rewrite Eq. 5.26 in terms of the normalized signals

⟨𝑆
′†𝑤
L 𝑆

′𝑥
L 𝑆

′†𝑦
R 𝑆

′𝑧
R ⟩ =

∫︁
𝑑2𝑆L𝑑

2𝑆R𝑆
*𝑤
L 𝑆𝑥L𝑆

*𝑦
R 𝑆

𝑧
R𝐷(𝑆L, 𝑆

*
L, 𝑆R, 𝑆

*
R)𝐺

−𝑛+𝑚
2

L 𝐺
− 𝑘+𝑙

2
R . (5.28)
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In realistic measurements, the noise field is in the thermal state,

𝜌ℎ =
∑︁
𝑖

𝑛𝑖noise
(1 + 𝑛noise)𝑖+1

|𝑖⟩⟨𝑖|, (5.29)

where the average number of photons in the noise field 𝑛noise is related by the noise

temperature 𝑇noise by the Bose-Einstein distribution 𝑛noise = 1/(𝑒ℎ̄𝜔/𝑘B𝑇noise − 1). To

measure the moments of the noise signals ⟨ℎ̂†𝑛L ℎ̂𝑚L ℎ̂
†𝑘
R ℎ̂

𝑙
R⟩, we can repeatedly measure

𝑆L and 𝑆R while leaving the emitter qubits in their ground states such the emitted

photon field is in the state |𝜓ph⟩ = |𝑛L𝑛R⟩ = |00⟩. The assumption that the signal field

is in the vacuum state is valid for low system temperatures 𝑇 such that 𝑘B𝑇 ≪ ℎ̄𝜔,

and as a result the moments of the vacuum signal fields are

⟨�̂�†𝑤L �̂�𝑥L�̂�
†𝑦
R �̂�

𝑧
R⟩|00⟩ =

⎧⎪⎨⎪⎩1 if 𝑤, 𝑥, 𝑦, 𝑧 = 0

0 otherwise

. (5.30)

This helps us simplify Eq. 5.27 to obtain the moments of the noise field directly from

measurements of the normalized signal fields

⟨ℎ̂
′†𝑛
L ℎ̂

′𝑚
L ℎ̂

′†𝑘
R ℎ̂

′𝑙
R⟩ = ⟨𝑆

′†𝑛
L 𝑆

′𝑚
L 𝑆

′†𝑘
R 𝑆

′𝑙
R⟩|00⟩. (5.31)

We interleave these noise measurements with measurements of the desired (non-

vacuum) signals to account for system drifts.

Before collecting statistics of the fields emitted by the directional emission proto-

col, we must characterize the effective gain of the measurement chain from the emitter

qubits to each end of the waveguide. In our experiment, we calibrate the gain in three

ways, which yield similar results in practice:

1. We repeatedly measure 𝑆L/R after preparing a single emitter qubit in the super-

position state |𝜓qb⟩ = (|𝑔⟩+ |𝑒⟩)/
√
2. Because the photon is released into both

propagation directions with equal probability, the emitted photon state will be

|𝜓ph⟩ = |𝑛L𝑛R⟩ = |00⟩/
√
2 + (|01⟩ + |10⟩)/2. After measuring the moments

of the noise fields with Eq. 5.31, we calculate the signal first and second order
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moments directly with the obtained probability distribution 𝐷(𝑆L, 𝑆
*
L, 𝑆R, 𝑆

*
R, ).

The first and second order moments for the field amplitude have the relation

⟨�̂�L/R⟩|𝜓ph⟩ =
√
2⟨�̂�†L/R�̂�L/R⟩|𝜓ph⟩. By inverting the normalized signal amplifica-

tion input-output relation in Eq. 5.24, we back out the effective gain of each

measurement chain. Though the measurement is the simplest, it is the least

precise because of error in the measurement of the signal moments.

2. We measure the absolute power delivered to an emitter qubit by the VNA

through both ends of the waveguides, using the method discussed in Fig. 3-6.

We send a resonant tone at this power with the VNA, and then we measure

the power of the signal that arrives at the ADCs in Fig. 5-7. The ratio of these

signals is the gain 𝐺 = 𝑃out/𝑃in.

3. We send a high power coherent tone resonant with one of the emitter qubits

through one end of the waveguide and measure the power spectral density at the

other end. We also calibrate the absolute power delivered to the emitter with

the VNA and measure the power at the ADCs as a function of demodulation

frequency. We observe the Mollow Triplet, a signature of strong coupling of the

emitter and the probe field [51], which we fit to theory and master equation

simulation to calibrate the effective gain of each measurement chain [61,73].

Now we have all the information we need to proceed with the measurement of repeated

directional photon emission experiments. After measuring both ⟨ℎ̂
′†𝑛
L ℎ̂

′𝑚
L ℎ̂

′†𝑘
R ℎ̂

′𝑙
R⟩ and

⟨𝑆
′†𝑛
L 𝑆

′𝑚
L 𝑆

′†𝑘
R 𝑆

′𝑙
R⟩ separately, we can solve for ⟨�̂�

′†𝑤
L �̂�

′𝑥
L �̂�

′†𝑦
R �̂�

′𝑧
R⟩ by inverting a system of

linear equations. We define the vectors �⃗� and �⃗�, where each element is a different

moment defined by ⟨𝑆
′†𝑛
L 𝑆

′𝑚
L 𝑆

′†𝑘
R 𝑆

′𝑙
R⟩ and ⟨�̂�

′†𝑤
L �̂�

′𝑥
L �̂�

′†𝑦
R �̂�

′𝑧
R⟩ respectively for all combina-

tions of 𝑛,𝑚, 𝑘, 𝑙 ≤ 𝑁 and 𝑤, 𝑥, 𝑦, 𝑧 ≤ 𝑁 , where 𝑁 = 2 is the highest order of the

moments under consideration. The vectors each have length (𝑁 +1)4 and are related

by the noise field matrix 𝐻, such that �⃗� = 𝐻�⃗�. By inverting 𝐻, we can solve for the

moments of the field amplitude �̂�L/R with �⃗� = 𝐻−1�⃗�. Note that for a certain ordering

of moments in the vectors �⃗� and �⃗�, the matrix 𝐻 is lower triangular and the system

can be solved efficiently with back substitution [63].
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Figure 5-8: Photon state tomography. a) The moments and correlations of the
left and right propagating channels of the waveguide up to 4th order with |𝜓qb⟩ = |𝜓+⟩.
All moments are nearly zero, except ⟨�̂�†R�̂�R⟩ ≈ 0.95. This data is averaged over 5×108

repetitions b) The same as (a) but with |𝜓qb⟩ = |𝜓−⟩. All moments are once again
nearly zero, except ⟨�̂�†L�̂�L⟩ ≈ 0.95. c) The real part of the density matrix of the
photon emitted to the right based on the moments shown in (a) with a state fidelity
of 𝐹|01⟩⟨01| = 0.96 ± 0.003. The Hilbert space of the emitted photon is truncated to
𝑁 ≤ 2 photons. d) The real part of the density matrix of the photon emitted to the
left based on the moments shown in (b) with a state fidelity of 𝐹|10⟩⟨10| = 0.954±0.001.

The moments of and correlations between �̂�L and �̂�R for the photons we generate

with the directional emission protocol are shown in Fig. 5-8a and 5-8b up to fourth

order. When Q3 and Q4 are initialized to |𝜓+⟩, we obtain ⟨�̂�†R�̂�R⟩ ≈ 1 as the only

appreciably non-zero moment, as expected for a single photon which only propagates

towards the right. Similarly, we measure ⟨�̂�†L�̂�L⟩ ≈ 1 as the only non-zero moment

for the leftward-propagating photon emitted when the qubits are initialized to |𝜓−⟩.

All third and fourth order moments are nearly zero (maximum magnitude of 0.05),

demonstrating the single-photon nature of the emission process.

Finally, we use these moments and their respective standard deviations 𝜈𝑛,𝑚 to

obtain the density matrices of the emitted photons, shown in Figs. 5-8c/d, using max-

imum likelihood estimation. Here, we truncate the Hilbert space to 𝑁 ≤ 2 photons.

Assuming each calculated moment is normally-distributed with standard deviation
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𝜈𝑛,𝑚, the conditional probability of measuring the expected moment ⟨�̂�†𝑛L/R�̂�𝑚L/R⟩ given

a density matrix 𝜌L/R for leftward/rightward emission respects a normal distribution

via the central limit theorem

𝑝(⟨�̂�†𝑛L/R�̂�
𝑚
L/R⟩|𝜌L/R) ∝ 𝑒−|⟨�̂�†𝑛

L/R
�̂�𝑚
L/R

⟩−Tr[𝜌L/R�̂�
†𝑛
L/R

�̂�𝑚
L/R

]|/𝜈2𝑛,𝑚 (5.32)

We maximize the log-likelihood function with respect to the elements of the density

matrix 𝜌L/R [77, 79],

ℒLog = −
∑︁
𝑛,𝑚

1

𝜈2𝑛,𝑚
|⟨�̂�†𝑛L/R�̂�

𝑚
L/R⟩ − Tr[𝜌L/R�̂�

†𝑛
L/R�̂�

𝑚
L/R]|2 (5.33)

We use the properties that 𝜌L/R ≥ 0 and Tr[𝜌L/R] = 1 as constraints in the maximiza-

tion of Eq. 5.33 to obtain the density matrix 𝜌L/R that best represents measured set of

moments. From these density matrices, we obtain a state fidelity of 𝐹 = 0.960±0.003

and 𝐹 = 0.954± 0.001 for the rightward- and leftward-propagating photons, respec-

tively. We observe a small, non-zero number of photons in the right (left) output of

the waveguide when the qubits are initialized to |𝜓+⟩ (|𝜓−⟩). This infidelity is the

result of imperfect interference between the emission pathways caused by qubit de-

coherence during emission and small deviations from necessary conditions ∆𝑥 = 𝜆/4

and 𝐽Σ = 0.

5.7 Conclusions

Our results demonstrate that quantum interference between emitters in a waveguide

QED architecture can be used to realize a directional single photon source. While we

have only performed photon generation in this work, the time-reverse of the emission

protocol can be used to capture photons with this same architecture if the wavepacket

of the incoming photon is symmetric in time [20–22, 47]. Note that the wavepacket

of the generated photon can be shaped arbitrarily, in principle, by varying the time-

dependence of the coupling between the data and emitter qubits [20–22, 47, 60, 73,
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80, 81]. Looking forward, we envision building a quantum network by tiling devices

with the presented architecture in series and applying our protocol for both photon

generation and capture. Such a network will enable entanglement distribution and

information shuttling with high fidelity in support of extensible quantum information

processing.
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Chapter 6

Directional Absorption

To date, we have used a superconducting wQED architecture to implement direc-

tional emission of itinerant photons on demand. This module is a potential building

block of distributed, modular quantum computation within a network comprised of

distant, non-local nodes [82, 83]. The next step to perform simple quantum commu-

nication is to absorb the photon and receive the transmitted quantum information.

The directional emission module can be operated as an absorber module for itinerant

photons.

6.1 A Quantum Interconnect

Two modules tiled along the same waveguide as shown in Fig. 6-1 comprise the sim-

plest quantum interconnect in this architecture. The most basic communication pro-

tocol in this architecture requires only two modules: the emitter module sends a

single photon along the waveguide towards the absorber module, which captures the

photon.

We note that the devices presented in Fig. 6-1 are modified versions of the original

device used for directional emission shown in Fig. 5-1a. We increase the emitter-

waveguide coupling rate to 𝛾/2𝜋 = 17.2 MHz, which is the upper bound on the rate

of decay of the photon from the module into the waveguide. By increasing 𝛾, we

lessen the impact of dephasing due to environmental flux noise on the directional
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Photon

Emitter Absorber

Figure 6-1: The simplest bidirectional quantum interconnect with super-
conducting wQED. Two identical modules interface with the same bidirectional
waveguide: the emitter module (left) sends a photon to the right towards the ab-
sorber module (right). This is the simplest form of quantum communication in this
architecture.

emission protocol. We also increase the asymmetry of the Josephson junctions in the

dc-SQUIDs of the data and emitter qubits to decrease the frequency range of the

qubits to reduce sensitivity to flux noise away from the peak frequency, as discussed

in Chapter 2.4. We also increase the range of tunable coupling strength between

qubit pairs by decreasing the distance between qubit pairs. These modifications

grant more flexibility in shaping the wavepacket of emitted photon, which is critical

to the efficiency of the absorption protocol.

6.2 Photon Shaping

As discussed throughout Chapter 5, we use the data qubits to prepare the desired

entangled state |𝜓qb⟩ for directional photon emission. We can faithfully prepare this

state because the data qubits are not directly coupled to the waveguide and do not ex-

perience the associated loss. We use parametric exchange interactions (see Sec. 5.4.2)

to transfer the state |𝜓qb⟩ to the emitter qubits. The effective data-emitter coupling

strength 𝑔eff is proportional to the amplitude of the pulse used to drive the couplers.

Tuning the amplitude of the coupler pulse shapes the temporal envelope of the cou-

pling 𝑔eff(𝑡) and thereby controls the rate at which the photon is released into the

waveguide.
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For the temporal envelope of the photon shown in Figs. 5-4b–c, we choose a

constant 𝑔eff . By changing 𝑔eff , we vary the length of the temporal envelope of the

photon. To simplify the photon absorption scheme, we impose the condition that

the emitted photons must be time-symmetric [82]. This way, the time-reverse of the

pulses that emit the photon on the emitter module can be used to absorb the photon

with the absorber module.

In addition to a time-symmetric photon, we seek to create a photon that decays

as quickly as possible in order to minimize the impact of dephasing and non-radiative

decay. As seen in Sec. 3.4, the coherence ⟨�̂�−⟩ of an emitter qubit naturally decays

exponentially at rate 𝛾/2. Thus, the temporal envelope of the photon amplitude

decays exponentially at rate 𝛾/2. In our setup, we transfer population between data

and emitter qubits at rate 𝑔eff . The population then decays from the emitters into the

waveguide at rate 𝛾. The emitter-waveguide coupling rate 𝛾 is the upper-bound on

the total rate of decay of the photon into the waveguide. Therefore, a time-symmetric

photon wavepacket 𝑓(𝑡) with features of exponential decay is optimal, and a natural

candidate is

𝑓(𝑡) ∝ sech

(︂
𝛾𝑡

2

)︂
. (6.1)

We derive the pulse shapes necessary to produce a photon wavepacket of this shape,

following the discussion in [84]. We simplify the discussion by considering a single

driven emitter qubit which decays into a single-ended waveguide. The results of this

discussion can be expanded straightforwardly to our system. The state vector of the

emitter qubit |𝜓(𝑡)⟩ evolves according to the non-unitary Schrödinger equation:

𝑑

𝑑𝑡
|𝜓(𝑡)⟩ =

(︁
−𝑖�̂�(𝑡)− 𝛾

2
|𝑒⟩⟨𝑒|

)︁
|𝜓(𝑡)⟩. (6.2)

The qubit state vector is not properly normalized and its norm decays over time

according to
𝑑

𝑑𝑡
⟨𝜓(𝑡)|𝜓(𝑡)⟩ = −𝛾|⟨𝑒|𝜓(𝑡)⟩|2, (6.3)

which depends on the overlap between the qubit state vector and the excited state.
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The square norm of the qubit state vector ⟨𝜓(𝑡)|𝜓(𝑡)⟩ can be interpreted as the

probability that a photon has not been emitted at time 𝑡. The probability of emitting

a photon in the interval (𝑡, 𝑡+ 𝑑𝑡) is therefore 𝛾|⟨𝑒|𝜓(𝑡)⟩|2𝑑𝑡. This allows us to write

a combined state vector for the qubit-photon system,

|Ψ(𝑡)⟩ = |𝜓(𝑡)⟩|0⟩+ |𝑔⟩
∫︁ 𝑡

−∞
𝑑𝜏

√
𝛾⟨𝑒|𝜓(𝑡)⟩�̂�†(𝜏)|0⟩ (6.4)

where �̂�†(𝜏) is the creation operator for a photon emitted into the waveguide in

the time interval (𝜏, 𝜏 + 𝑑𝜏). The continuous creation operator has the commutator

[�̂�(𝜏 ′), �̂�†(𝜏)] = 𝛿(𝜏 ′ − 𝜏). This implies that the single photon state
√
𝑑𝜏 �̂�†(𝜏)|0⟩ is

properly normalized. We define the photon amplitude wavepacket

𝑓(𝑡) =
√
𝛾⟨𝑒|𝜓(𝑡)⟩, (6.5)

We impose the condition that the photon is always emitted in the infinite time limit

𝑡→ ∞, which we use to properly normalize the photon wavepacket,

∫︁ ∞

−∞
|𝑓(𝜏)|2𝑑𝜏 = 1. (6.6)

Using the ideal photon wavepacket shape in Eq. 6.1, we arrive at the expression for

the normalized wavepacket,

𝑓(𝑡) =

√
𝛾

2
sech

(︂
𝛾𝑡

2

)︂
. (6.7)

From conservation of probability, we know that

∫︁ 𝑡

−∞
|𝑓(𝜏)|2𝑑𝜏 + ⟨𝜓(𝑡)|𝜓(𝑡)⟩ = 1. (6.8)

We seek to find the Hamiltonian that yields the desired photon shape. The Hamil-

tonian of the qubit subject to a time-dependent resonant drive of strength 𝑔(𝑡) is

�̂�(𝑡) = 𝑖𝑔(𝑡)(�̂�− − �̂�+) (6.9)
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Before proceeding, we properly normalize the qubit state vector to impose unitary

dynamics. The normalized state vector is |𝜑(𝑡)⟩ = |𝜓(𝑡)⟩/
√︀

⟨𝜓(𝑡)|𝜓(𝑡)⟩ which obeys

the Schrödinger equation

𝑑

𝑑𝑡
|𝜑(𝑡)⟩ =

(︁
−𝑖�̂�(𝑡)− 𝛾

2
|𝑒⟩⟨𝑒|+ 𝛾

2
|⟨𝜑(𝑡)|𝑒⟩|2

)︁
|𝜑(𝑡)⟩ (6.10)

We derive the relationship between the photon wavepacket and the overlap of the

normalized state with the excited state by combining Eq. 6.5 and Eq. 6.8:

⟨𝑒|𝜑(𝑡)⟩ = 𝑓(𝑡)√︁
𝛾(1−

∫︀ 𝑡
−∞ |𝑓(𝜏)|2𝑑𝜏)

=
1√

1 + 𝑒−𝛾𝑡
. (6.11)

We parameterize the normalized state vector against a time-dependent angle 𝜃(𝑡)

|𝜑(𝑡)⟩ = cos
𝜃(𝑡)

2
|𝑔⟩+ sin

𝜃(𝑡)

2
|𝑒⟩ (6.12)

We substitute this parameterized qubit state into Eq. 6.10 and arrive at two coupled

differential equations. Combining the differential equations yields

𝜃(𝑡) = 2𝑔(𝑡)− 𝛾

2
sin

𝜃(𝑡)

2
. (6.13)

We note that ⟨𝑒|𝜑(𝑡)⟩ = sin 𝜃(𝑡)
2

relates 𝜃(𝑡) to the desired photon wavepacket 𝑓(𝑡) via

Eq. 6.11. This allows us to write

𝜃(𝑡) = 2 arcsin

(︂
1√

1 + 𝑒−𝛾𝑡

)︂
, (6.14)

which we substitute into Eq. 6.13 to solve for the time-dependent drive strength that

yields the desired time-symmetric photon shape in Eq. 6.7

𝑔(𝑡) =
𝛾

2
sech

(︂
𝛾𝑡

2

)︂
. (6.15)

This model can be generalized to produce a photon with arbitrary linewidth 𝛾ph ≤ 𝛾
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with shape

𝑓(𝑡) =

√
𝛾ph

2
sech

(︂
𝛾ph𝑡

2

)︂
. (6.16)

The photon linewidth is limited by the decay rate of the emitter qubit population

into the waveguide 𝛾ph ≤ 𝛾. Larger photon linewidths translate to a faster overall

photon emission process. To release a photon with the largest linewidth, and therefore

the fastest possible symmetric emission, we chose 𝛾ph = 𝛾 in the above analysis. To

produce a time-symmetric photon shape with linewidth 𝛾ph ≤ 𝛾, we conduct a similar

analysis, yielding the time-dependent drive strength,

𝑔(𝑡) =
𝛾ph

4cosh
(︁
𝛾ph𝑡

2

)︁ (1 + 𝑒𝛾ph𝑡)𝛾/𝛾ph + 1− 𝑒𝛾ph𝑡√︀
(1 + 𝑒𝛾ph𝑡)𝛾/𝛾ph − 𝑒𝛾ph𝑡

. (6.17)

This simplified single-emitter model can be extended naturally to capture a data

qubit coupled to the emitter with time-dependent coupling strength 𝑔(𝑡). The same

time-dependent coupling strength can be implemented with a parametric exchange

interaction mediated by a tunable coupler between the data and emitter qubits de-

tailed in Sec. 5.4.2. We modulate the data-emitter coupling strength at the frequency

of the detuning ∆ of the two qubits 𝑔eff(𝑡) = 𝑔(𝑡) cos∆𝑡, depicted for different photon

bandwidths in Fig. 6-2a. Going one step further, we can extend the model to include

two pairs of data and emitter qubits to integrate this photon shaping scheme with

our directional emission protocol discussed in Chapter 5.

Following the tunable coupling model discussed in Sec. 5.4.2, the relationship

between the frequency of the tunable coupler 𝜔c and the coupling between the relevant

pair of qubits Q𝑖 and Q𝑗 is [67, 68]

𝑔(𝜔c) =
𝑔𝑖c𝑔𝑗c
2

(︂
1

𝜔𝑖 − 𝜔c

+
1

𝜔𝑗 − 𝜔c

− 1

𝜔𝑖 + 𝜔c

− 1

𝜔𝑗 + 𝜔c

)︂
+ 𝑔𝑖𝑗 (6.18)

where 𝑔𝑖c, 𝑔𝑗c, and 𝑔𝑖𝑗 are defined in Eq. 5.19. We numerically invert Eq. 6.18 to

find 𝜔c(𝑔eff(𝑡)) = 𝜔c(𝑔(𝑡) cos∆𝑡), the time-dependent tunable coupler frequency re-

quired to release a time-symmetric photon of bandwidth 𝛾ph ≤ 𝛾 with parametric

interactions, as shown in Fig. 6-2b.
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Figure 6-2: Time-dependent data-emitter qubit coupling and tunable cou-
pler frequency for time-symmetric photon emission with parametric inter-
actions. a) Data-emitter qubit coupling during symmetric photon emission, based
on device parameters. The qubit frequencies are 𝜔𝑖 = 5.05 GHz and 𝜔𝑗 = 5.1 GHz.
The coupling is modulated at the qubit detuning ∆ = 𝜔𝑗 − 𝜔𝑖 = 50 MHz. The bare
qubit-qubit coupling based on device simulations is 𝑔𝑖𝑗 = 18.9 MHz, and the couplings
of each qubit to the tunable coupler are 𝑔𝑖c = 158.2 MHz and 𝑔𝑗c = 149.1 MHz, refer-
enced at the zero-coupling point coupler frequency 6.417 GHz. The emitter-waveguide
coupling is 𝛾 = 17.2 MHz, and the time-dependent coupling is shown for the release
of a photon with bandwidth 𝛾ph = 𝛾/2 and 𝛾ph = 𝛾. b) The time-dependent tunable
coupler frequencies required to execute the data-emitter couplings shown in a) and
release time-symmetric bandwidths 𝛾ph = 𝛾/2 and 𝛾ph = 𝛾 with parametric exhange
interactions.

We plan to simplify the device design to use only one data qubit to prepare

the emitters in the appropriate entangled state. This simplifies the photon emission

protocol, as the initial
√
iSWAP gate used to entangle the original two data qubits

is no longer necessary. Instead, we can create the entangled state of choice |𝜓±⟩

by first exciting the single data qubit with a 𝜋 pulse, and then using parametric

exchange interactions to distribute the population evenly and simultaneously amongst

the emitter qubits. The key is to ensure that the parametric exchanges interactions

are ∓90 degrees out of phase. This relative phase can be induced via the parametric

modulation pulses. We scale the data-emitter qubit coupling 𝑔(𝑡) in the three-qubit

design by a factor of 1/
√
2 to emit a photon of the form in Eq. 6.7.
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6.3 Symmetric Emission and Absorption Simulations

We model our emission and absorption module with four resonant qubits — two

emitter qubits, denoted Q1 and Q2, each coupled with strength 𝑔(𝑡) to a different

data qubit (Q3 and Q4, respectively) as shown in Fig. 6-3a. The emitter qubits are

spaced by a distance 𝑑 = 𝜆/4 along a common waveguide, where 𝜆 is the wavelength

of the emission in the waveguide. We assume that the device is properly calibrated

and the emitters are uncoupled as discussed in Fig. 5-2. We write the interaction

Hamiltonian for this system, setting ℎ̄ to unity,

�̂� = 𝑔(𝑡) (�̂�−
3 �̂�

+
1 + �̂�+

3 �̂�
−
1 ) + 𝑔(𝑡)(�̂�−

4 �̂�
+
2 + �̂�+

4 �̂�
−
2 ) (6.19)

where the raising and lowering operators of each qubit Q𝑖 is denoted as �̂�±
𝑖 , where

𝑖 ∈ {1, 2, 3, 4} is the qubit number. We assume the only loss mechanism is the decay

of the emitter qubits into the waveguide at rate 𝛾. The master equation for this

four-qubit system with density matrix 𝜌 is

𝑑𝜌

𝑑𝑡
= −𝑖

[︀
�̂�, 𝜌

]︀
+

2∑︁
𝑗

𝛾𝐷
[︀
�̂�−
𝑗

]︀
𝜌. (6.20)

where 𝐷[�̂�] = �̂�𝜌�̂�†− 1
2
{�̂�†�̂�, 𝜌} is the Lindblad dissipator. To emit time-symmetric

photon with linewidth 𝛾, we execute the time-dependent coupling discussed in Sec. 6.2,

𝑔(𝑡) =
𝛾

2
sech

(︂
𝛾𝑡

2

)︂
. (6.21)

We initialize the data qubits at time 𝑡0 into the appropriate entangled state to emit

a photon with the desired propagation direction, as discussed in Chapter 5 (+ for

rightward emission, - for leftward emission),

|𝜓(𝑡 = 𝑡0)⟩ = |Q1Q2Q3Q4⟩ = |𝜓±⟩ = |𝑔𝑔𝑒𝑔⟩ ± 𝑖|𝑔𝑔𝑔𝑒⟩√
2

, (6.22)
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Figure 6-3: Time-symmetric photon emission simulations. a) Simplified model
of device with two emitter qubits in orange and two data qubits in pink. The emitter
qubits are spaced 𝑑 = 𝜆/4 along the waveguide in purple. The emitter-waveguide
decay rate is 𝛾. Each data-emitter qubit pair is coupled with time-dependent strength
𝑔(𝑡) shaped to produce a time-symmetric photon with the wavepacket shape in Eq. 6.7.
b) Qubit population during the photon emission simulation. Note that the emitter
qubits have equal population, as do the data qubits, throughout the emission process.
The emitter qubits are only slightly populated before releasing the excitation into the
waveguide. c) Photon flux in both propagation directions in the waveguide during
emission. In this simulation, we initialized the data qubits into |𝜓+⟩ such that the
shaped photon propagates in the rightward direction.

We numerically solve the master equation for 𝜌(𝑡), which we use to solve for critical

system observables over time such as qubit populations and coherences (i.e. ⟨�̂�(𝑡)⟩ =

Tr[𝜌(𝑡)�̂�(𝑡)] ). For example, from the input-output relations in Eq. 5.3, we calculate

the average photon flux through each end of the waveguide

⟨�̂�L(𝑡)⟩ =
𝛾

2

[︀
⟨𝜎+

1 (𝑡)𝜎
−
1 (𝑡)⟩+ ⟨𝜎+

2 (𝑡)𝜎
−
2 (𝑡)⟩ − 𝑖⟨𝜎+

2 (𝑡)𝜎
−
1 (𝑡)⟩+ 𝑖⟨𝜎+

1 (𝑡)𝜎
−
2 (𝑡)⟩

]︀
⟨�̂�R(𝑡)⟩ =

𝛾

2

[︀
⟨𝜎+

1 (𝑡)𝜎
−
1 (𝑡)⟩+ ⟨𝜎+

2 (𝑡)𝜎
−
2 (𝑡)⟩+ 𝑖⟨𝜎+

2 (𝑡)𝜎
−
1 (𝑡)⟩ − 𝑖⟨𝜎+

1 (𝑡)𝜎
−
2 (𝑡)⟩

]︀ (6.23)

The time-dependent photon fluxes represent the photon wavepacket, shown in

Fig. 6-3c. We also use the density matrix 𝜌(𝑡) to calculate the qubit populations

during the photon emission process, shown in Fig. 6-3b.

To simulate photon absorption, we extend the model to include an identical ab-

sorber device module, also composed of two emitter qubits Q5 and Q6 and two data

qubits Q7 and Q8. The absorber module shares the same waveguide as the emitter

module, as depicted in Fig. 6-1 and Fig. 6-4a. In this model, the modules are spaced
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an arbitrary distance 𝐷 = 𝑥5 − 𝑥1, where 𝑥1 and 𝑥5 are the positions of the qubits

along the waveguide. Our master equation approach operates under the Markov ap-

proximation discussed in Sec. 3.1 and 3.4, which assumes that the 1D continuum

of modes in the waveguide has a much larger bandwidth than the emitter qubits.

The qubits interact with the modes in the waveguide approximately instantaneously.

For absorption simulations, a photon with the same bandwidth as the emitter qubits

(𝛾ph = 𝛾) acts an input to the device module through the waveguide. Thus, for large

arbitrary inter-module distances 𝐷, the Markov approximation breaks down and the

master equation approach is no longer valid.

We proceed with our numerical master equation simulation by assuming that

𝐷 ≪ 2𝜋𝜈/𝛾, where 𝜈 is the speed of the emitted photon in the waveguide. This

assumption allows us to ignore the large space-correlation of the photon and continue

to use the master equation approach because the modules interact approximately

instantaneously. Using our physical system parameters and a photon bandwidth of

𝛾/2𝜋 = 17.2 MHz, we approximate the spatial extent of the photon as 2𝜋𝜈/𝛾 ≈ 7

meters. In our experiment, the modules are about 𝐷 ≈ 10 cm apart along the

waveguide, well within the spatial extent of the photon. However, it is important to

note that the emission and absorption scheme works for any distance 𝐷, even though

the master equation formalism can no longer be used to capture the system dynamics.

The photon experiences more propagation loss for longer inter-module distances 𝐷,

but there is no required short-range interaction that limits the absorption process.

We write the local interaction Hamiltonian of the emitter and absorber modules

�̂�E = 𝑔(𝑡) (�̂�−
3 �̂�

+
1 + �̂�+

3 �̂�
−
1 ) + 𝑔(𝑡)(�̂�−

4 �̂�
+
2 + �̂�+

4 �̂�
−
2 )

�̂�A = 𝑔(−𝑡) (�̂�−
7 �̂�

+
5 + �̂�+

7 �̂�
−
5 ) + 𝑔(−𝑡)(�̂�−

8 �̂�
+
6 + �̂�+

8 �̂�
−
6 ).

(6.24)

We execute the coupling strength 𝑔(𝑡) to produce a photon with bandwidth 𝛾ph = 𝛾

𝑔(𝑡) = 𝑔(−𝑡) = 𝛾

2
sech

(︂
𝛾𝑡

2

)︂
. (6.25)

We emphasize that the coupling strength on the absorption module is the time reverse
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Figure 6-4: Photon absorption simulation. a) Model of the quantum intercon-
nect, with the photon emission module on the left and absorption module on the
right. The modules are each composed of two emitter qubits in orange Q1/5 and
Q2/6 and two data qubits in pink Q3/7 and Q4/8. The emitter qubits of each module
are each spaced 𝑑 = 𝜆/4 along a shared waveguide in purple, and the inter-module
distance along the waveguide is 𝐷. The coupling between the data-emitter qubit
pairs on the emitter module is 𝑔(𝑡) = 𝛾

2
sech

(︀
𝛾𝑡
2

)︀
, which releases a time-symmetric

rightward propagating photon into the waveguide illustrated in Fig. 6-3c. In order
to execute efficient absorption, the coupling between the data-emitter qubit pairs on
the absorber module must be the time reverse 𝑔(−𝑡). b) Simulated qubit population
throughout the rightward-propagating photon emission and absorption process. Note
that data qubits on each module have identical population in this ideal simulation,
and all emitter qubits have identical population dynamics throughout emission and
absorption.

𝑔(−𝑡). To produce a photon with the maximum bandwidth 𝛾ph = 𝛾, 𝑔(𝑡) is already a

time-symmetric function, but for smaller photon bandwidths 𝛾ph < 𝛾 this is not the

case, as the coupling strength takes the form in Eq. 6.17.

Next we write the waveguide-mediated interaction Hamiltonian the emitter qubit

pairs on different modules, noting that in practice and in this model we cancel the

waveguide-mediated interaction betweeen the emitter qubits on the same module,

�̂�J =
𝛾

2
sin (𝑘𝐷)[�̂�−

5 �̂�
+
1 + �̂�+

5 �̂�
−
1 + �̂�−

6 �̂�
+
2 + �̂�+

6 �̂�
−
2 ]

+
𝛾

2
sin
(︁
𝑘𝐷 +

𝜋

2

)︁
[�̂�−

6 �̂�
+
1 + �̂�+

6 �̂�
−
1 ]

+
𝛾

2
sin
(︁
𝑘𝐷 − 𝜋

2

)︁
[�̂�−

5 �̂�
+
2 + �̂�+

5 �̂�
−
2 ].

(6.26)
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where 𝑘 = 2𝜋/𝜆 is the wave number of the emitted photon. Each emitter qubit is

coupled to the waveguide at rate 𝛾. The decay of each emitter qubit is also correlated

with the decay of both emitter qubits on the other module. The master equation the

governs the dynamics of the interconnect is

𝑑𝜌

𝑑𝑡
= −𝑖

[︀
�̂� + �̂�J, 𝜌

]︀
+

∑︁
𝑖,𝑗=1,2,5,6

𝛾 cos(𝜑𝑖,𝑗)𝐷
[︀
�̂�−
𝑖 , �̂�

−
𝑗

]︀
𝜌 (6.27)

where 𝐷[𝐴, �̂�]𝜌 = �̂�𝜌𝐴†− 1
2
{�̂�†𝐴, 𝜌} is the Lindblad superoperator. The phase 𝜑𝑖,𝑗 =

𝑘(𝑥𝑗 − 𝑥𝑖) represents the relative position phase between the emitter qubits. This

master equation captures all time dynamics throughout photon emission, propagation

in the waveguide, and absorption. We initialize the data qubits on the emitter module

into the entangled state to emit a photon in the rightward direction towards the

absorber module

|𝜓(𝑡 = 𝑡0)⟩ = |𝜓+⟩ = |Q3Q4⟩ =
|𝑒𝑔⟩+ 𝑖|𝑔𝑒⟩√

2
. (6.28)

We numerically solve the master equation to find the eight-qubit density matrix 𝜌(𝑡),

which we use to extract the individual qubit populations shown in Fig. 6-4b. At the

end of this simulation, the data qubits Q7 and Q8 on the absorber module are in the

state |𝜓+⟩, indicating perfect state transfer.

This model can be modified to study the effects of many systemic imperfections,

including and not limited to:

1. Qubit dephasing due to environmental flux noise

2. Deviations from an inter-qubit distance from 𝑑 = 𝜆/4

3. Imperfect cancellation of emitter qubit coupling

4. Slight qubit detunings

5. Non-radiative decay

6. Thermal photons in the waveguide
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7. Unequal emitter-waveguide decay rates 𝛾

8. Initial entangled state preparation error

9. Photon shaping imprecision

10. Hybridization of qubits with tunable couplers

In practice and in simulation, we find that dephasing disrupts the critical interference

process in the waveguide during emission, which limits the emission and absorption

efficiency. More details about systemic imperfects and their effects on directionality

and absorption efficiency can be found in [47].

6.4 Remote Entanglement

Once photon absorption is successfully executed, the next step towards a viable quan-

tum network is the demonstration of remote entanglement, the key to distributed

quantum computing. Remote entanglement is a resource for gate teleportation [85,86].

The ability to teleport multi-qubit gates across different modules enables communi-

cation and computation schemes in large-scale quantum networks.

The quantum interconnect discussed throughout this chapter can facilitate the

remote entanglement of the data qubits on the emitter module and their counterpart

on the absorber module. The remote entanglement protocol builds on the photon

absorption protocol. Instead of emitting and absorbing a photon, we can design

data-emitter qubit couplings 𝑔(𝑡) such that the emitter module releases an excitation

into the waveguide exactly half the time. In other words, instead of fully emitting

the photon, we entangle the data qubits on the emitter module with the propagating

photon in the waveguide.

We approach the problem of deriving the data-qubit emitter coupling as 𝑔(𝑡)

similar to the derivation in Sec. 6.2 for the emission of a symmetric photon. When

emitting a photon, we assume that the probability of emitting a photon is one as

𝑡 → ∞. The desired emitted photon probability amplitude or wavepacket 𝑓(𝑡) is
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normalized such that
∫︀∞
−∞ |𝑓(𝑡)|2𝑑𝑡 = 1. We seek to emit a photon of the same

symmetric shape 𝑓(𝑡) ∝ sech(𝛾𝑡/2) with probability
∫︀∞
−∞ |𝑓(𝑡)|2𝑑𝑡 = 1/2. Therefore,

with the proper normalization, the desired "half-photon" wavepacket is

𝑓(𝑡) =

√
𝛾

2
√
2
sech

(︂
𝛾𝑡

2

)︂
(6.29)

We follow the same analysis in Sec. 6.2 to derive the corresponding data-emitter qubit

coupling rate

𝑔(𝑡) =
𝛾sech

(︀
𝛾𝑡
2

)︀
(tanh

(︀
𝛾𝑡
2

)︀
− 1)

2
√︁

tanh2
(︀
𝛾𝑡
2

)︀
− 2 tanh

(︀
𝛾𝑡
2

)︀
+ 5

. (6.30)

To emit a photon with linewidth 𝛾ph < 𝛾 with probability 1/2, a similar analysis

yields the appropriate data-emitter qubit coupling rate

𝑔(𝑡) =

√
𝛾ph sech

(︁
𝛾ph𝑡

2

)︁ [︁
𝛾 − 𝛾ph tanh

(︁
𝛾ph𝑡

2

)︁]︁
2

√︂
𝛾ph tanh

2
(︁
𝛾ph𝑡

2

)︁
− 2𝛾 tanh

(︁
𝛾ph𝑡

2

)︁
+ 6𝛾 − 𝛾ph

(6.31)

Notably, the necessary absorption data-emitter coupling rate is not the time reverse

of 𝑔(𝑡) when a "half-photon" is emitted. Instead, for an emitted "half-photon" with

bandwidth 𝛾ph = 𝛾, the absorption data-emitter coupling rate is 𝑔(−𝑡) from Eq. 6.21

– the same coupling rate necessary for the full photon absorption process. For this

remote entanglement protocol, the emitter module releases the photon with proba-

bility 1/2. The other half of the time, the excitation remains in the data qubits of

the emitter module and the absorber module never receives the photon. When the

photon is emitted, the absorber should always prepare to capture the photon in full.

If the absorption data-emitter coupling rate is 𝑔(−𝑡), only a "quarter-photon" arrives

at the data qubits on the absorber module. Therefore, the proper data-emitter cou-

pling rate to absorb this "half-photon" is 𝑔(−𝑡) from Eq. 6.21, as was the case for full

photon absorption.

We use the model outlined in Sec. 6.3 for absorption to numerically simulate the

remote entanglement protocol shown in Fig. 6-5a. On the absorption model, the data-

emitter qubit coupling used for the emitter module is 𝑔(𝑡) in Eq. 6.30, and 𝑔(−𝑡) in
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Figure 6-5: Remote entanglement simulation. a) Model of the quantum in-
terconnect, with the photon emission module on the left and absorption module on
the right. The modules are each composed of two emitter qubits in orange Q1/5 and
Q2/6 and two data qubits in pink Q3/7 and Q4/8. The emitter qubits of each module
are each spaced 𝑑 = 𝜆/4 along a shared waveguide in purple, and the inter-module
distance along the waveguide is 𝐷. The coupling between the data-emitter qubit
pairs on the emitter module is shown in Eq. 6.30, which releases a time-symmetric
rightward propagating photon into the waveguide with probability 1/2. The coupling
between the data-emitter qubit pairs on the absorber module must be the time re-
verse 𝑔(−𝑡) in Eq. 6.21 to fully absorb the entangled photon. b) Simulated qubit
population throughout the remote entanglement process. Note that data qubits on
each module have identical population in this ideal simulation, and all emitter qubits
have identical population dynamics. All data qubits are equally populated at the end
of the protocol - a signature of the final four-qubit entangled state.

Eq. 6.21 for the absorber module. This adjustment is made in the system Hamiltonian.

We use the master equation shown in Eq. 6.27 to calculate the population of each

qubit in the emitter and absorber modules shown in Fig 6-5b.

Once the entangled photon is absorbed by the emitter module, the data qubits on

both modules are in the four-qubit entangled state

|𝜓⟩ = |Q3Q4Q7Q8⟩ =
1

2

[︀
|𝑒𝑔𝑔𝑔⟩+ 𝑖|𝑔𝑒𝑔𝑔⟩+ 𝑒−𝑖𝑘𝐷 (|𝑔𝑔𝑒𝑔⟩+ 𝑖|𝑔𝑔𝑔𝑒⟩)

]︀
(6.32)

where 𝑘 is the wavenumber of the emitted photon and 𝐷 is the distance between the

modules. The relative phase 𝑒−𝑖𝑘𝐷 results from rightward photon propagation across a

distance 𝐷 in the waveguide between the emitter and absorber modules. Local single-
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and two-qubit gates can be used to switch between different combinations of remote

two-qubit entangled states – a prerequisite for gate teleportation schemes [85,86].

We extend this approach to remotely entangle 2𝑁 data qubits on 𝑁 identical

modules connected to a common waveguide. This network architecture and remote

entanglement protocol can be used to generate W states with 2𝑁 non-local qubits:

|𝜓qb⟩ =
1√
2𝑁

(|𝑒𝑔𝑔...𝑔⟩+ |𝑔𝑒𝑔...𝑔⟩+ |𝑔𝑔𝑒...𝑔⟩+ ...+ |𝑔𝑔𝑔...𝑒⟩) . (6.33)

We have the freedom to design data-emitter qubit coupling rates such as 𝑔(𝑡) in

Eq. 6.30 to release a photon with (𝑁 − 1)/𝑁 probability from the first module in

this array. Then, we also design absorption data-emitter qubit coupling rates for

each sequential module in the array such that they each absorb the propagating

photon with probability 1/𝑁 . Once the 2𝑁 -qubit state is prepared, local operations

on each qubit can be used to prepare the non-local W state [87] for photon loss

resilient communication schemes. Error mitigation strategies compatible with this

network architecture include heralding, entanglement purification [88], teleportation

with GHZ states [89], and quantum communication with W states [87].
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Chapter 7

Conclusions: A Quantum Network

Superconducting circuits are a promising platform for the exploration of microwave

quantum optics, in addition to the development of large-scale, extensible quantum

computation. Superconducting systems are custom-designed and compatible with

modern microelectronic fabrication techniques. However, in contrast to optical and

atomic quantum systems that utilize optical photons or mobile atoms as informa-

tion carriers for quantum communication, shuttling information across long distances

remains an outstanding challenge in superconducting systems. The distribution of

entanglement over distant, non-local modules enables robust quantum computation

schemes.

In the last decade, waveguide Quantum Electrodynamics (wQED), a formalism

that describes the interaction of atoms with a continuum of propagating photonic

modes, has been explored within superconducting systems with artificial atoms. The

original motivation for this exploration was rooted in the pursuit of novel, fundamen-

tal physics and quantum optics. More recently, the development of wQED within

superconducting systems has motivated practical applications in quantum networks

and communication.

In this thesis, we create a communication module for superconducting systems

based on wQED. This module comprises four qubits and four tunable couplers that

interface with a bidirectional waveguide. We engineer a quantum interference effect

that results in the emission of an itinerant microwave photon in the direction of
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Figure 7-1: An extensible, all-to-all quantum network. An array of modules
tiled along the same waveguide. The emitter module on the right emits a rightward
propagating photon towards the absorber module on the left. The modules in between
the absorber and emitter are placed in a transparency mode, such that they do not
interact with the propagating photon.

propagation of choice in the waveguide. The time-reverse of this directional photon

emission protocol can be used to absorb the photon with a different module on the

waveguide. An emitter and absorber module together form a quantum interconnect

capable of facilitating remote entanglement and gate teleportation.

By tiling many modules along a common waveguide as shown in Fig. 7-1, we can

create an extensible quantum network with all-to-all connectivity. Any two modules

can communicate with each other in the network via itinerant microwave photons.

In addition to its utility for quantum communication applications, this set of cas-

caded modules can generate and manipulate stabilizer codes for quantum error cor-

rection [46]. This quantum network architecture enables high-fidelity entanglement

distribution and information shuttling in support of extensible quantum information

processing.
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Appendix A

Experimental Setup

Throughout experiment detailed in Chapter 5, we use one device with two transmon

emitter qubits (Q1/2) [40] and two transmon data qubits (Q3/4) arranged in a two

by two lattice. There is a tunable coupler [67, 68] between the emitter qubits (C12),

between the data qubits (C34), and between adjacent data/emitter qubit pairs (C13

and C24). All qubits and couplers (except C12) are coupled to a 𝜆/4 resonator with

a resonance frequency between 8.0-8.4 GHz for dispersive readout. The key device

parameters are summarized in Table A.1.

Parameter Q1 Q2 Q3 Q4

Frequency 4.93 GHz 4.93 GHz 4.8 GHz 4.85 GHz
Anharmonicity -274 MHz -273 MHz -307 MHz -307 MHz

𝛾/2𝜋 3.2 MHz 3.2 MHz - -
𝛾𝜑/2𝜋 8 kHz 41 kHz - -
𝑇1 - - 13.8 𝜇s 13.4𝜇s
𝑇 *
2 - - 18.1 𝜇s 23.6 𝜇s

Table A.1: Summary of directional emission device parameters. The oper-
ational qubit frequencies, anharmonicities, emitter-waveguide coupling strengths 𝛾,
emitter dephasing rates 𝛾𝜑, and 𝑇1 and 𝑇 *

2 of the data qubits are given for the emitter
(Q1/2) and data qubits (Q3/4) on the device used throughout the experiment.

This experiment was conducted in a Bluefors XLD600 dilution refrigerator, which

can reach a base temperature of 10 mK. The device is protected from ambient mag-

netic fields by superconducting and Cryoperm-10 shields below the mixing chamber

(MXC). Each end of the waveguide that hosts the emitted photons is connected to
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Component Manufacturer Model
Dilution Fridge Bluefors XLD1000

RF Source Rohde & Schwarz SGS100
DC Source QDevil QDAC

Control Chassis Keysight M9019A
AWG Keysight M3202A
ADC Keysight M3102A

Frequency Standard SRS FS725

Table A.2: Summary of control equipment. The manufacturers and model num-
bers of the control equipment used for the experiment.

a microwave circulator for dual input-output operation. To minimize thermal noise

from higher temperature stages, the inputs are attenuated by 20 dB at the 4 K stage,

10 dB at the Still, and 60 dB (40 dB for resonator readout input) at the MXC. The

output signals are each filtered with a 3 GHz high-pass and 12 GHz low-pass filters.

Two additional isolators are placed after the circulator in the MXC to prevent noise

from higher-temperature stages traveling back into the device. A detailed schematic

of the experimental setup is shown in Fig. A-1.

All eight qubit and coupler frequencies are tuned with both static flux biasing

(DC) and fast flux control (RF). The DC and RF inputs are joined by a RF choke

below the MXC before passing through a 300 MHz low pass filter. The RF flux control

lines are attenuated by 20 dB at the 4K stage, and by 10 dB at the Still. The data

qubits are equipped with local charge lines for independent single-qubit XY gates.

Outside of the dilution refrigerator, we use control electronics to generate signals

for device operation, as specified in Table A.2. The pulse envelopes of the signals

used for XY and Z control, readout input, and waveguide input are programmed in

the Labber software and then uploaded to Arbitrary Waveform Generators (AWG)

that are controlled by the Keysight PXIe Chassis. For XY control, waveguide, and

readout inputs, these envelopes are then mixed with high-frequency local oscillator

tones generated by RF sources. All microwave electronics are frequency-locked at

10 MHz by a common rubidium frequency standard. We place 1 kΩ resistors at the

output of each DC voltage source to generate the current used to flux bias qubit

frequencies.
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Figure A-1: Setup for directional emission experiment. Wiring schematic of
the device and all electronics used to perform the experiment. Note that only one
flux line configuration is shown (green), but each qubit and coupler is coupled to a
flux line with separate, but identical, control electronics.

To provide further signal amplification on the output lines, we use a Traveling

Wave Parametric Amplifier (TWPA) [90] at the MXC, a High Electron Mobility

Transistor (HEMT) amplifiers at the 4K stage and MITEQ HEMT amplifiers at the

room temperature stage. We then use an IQ mixer to down-convert the amplified

signal to an intermediate frequency. The Analog to Digital Converter (ADC), which

is also controlled by the same PXIe chassis, associated with the signal line digitizes

and filters this signal. Finally, we use custom FPGA code to demodulate the signal

for analysis.
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T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl,
“Deterministic photon–emitter coupling in chiral photonic circuits,” Nature Nan-
otechnology, vol. 10, pp. 775–778, Sept. 2015.

[6] R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P. Kok, M. S.
Skolnick, A. M. Fox, and M. N. Makhonin, “Chirality of nanophotonic waveg-
uide with embedded quantum emitter for unidirectional spin transfer,” Nature
Communications, vol. 7, p. 11183, Mar. 2016.

[7] J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide
interface based on spin-orbit interaction of light,” Science, vol. 346, pp. 67–71,
Oct. 2014.

[8] R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel,
“Quantum state-controlled directional spontaneous emission of photons into a
nanophotonic waveguide,” Nature Communications, vol. 5, p. 5713, Dec. 2014.

[9] P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss,
J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature, vol. 541,
pp. 473–480, Jan. 2017.

[10] P. Solano, J. A. Grover, J. E. Hoffman, S. Ravets, F. K. Fatemi, L. A. Orozco, and
S. L. Rolston, “Chapter Seven - Optical Nanofibers: A New Platform for Quan-
tum Optics,” in Advances In Atomic, Molecular, and Optical Physics, vol. 66,
pp. 439–505, Academic Press, Jan. 2017.

129



[11] Y. Wan, D. Kienzler, S. D. Erickson, K. H. Mayer, T. R. Tan, J. J. Wu, H. M.
Vasconcelos, S. Glancy, E. Knill, D. J. Wineland, A. C. Wilson, and D. Leibfried,
“Quantum gate teleportation between separated qubits in a trapped-ion proces-
sor,” Science, vol. 364, no. 6443, pp. 875–878, 2019.

[12] J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses, M. S. All-
man, C. H. Baldwin, M. Foss-Feig, D. Hayes, K. Mayer, C. Ryan-Anderson,
and B. Neyenhuis, “Demonstration of the trapped-ion quantum ccd computer
architecture,” Nature, vol. 592, pp. 209–213, Apr 2021.

[13] D. Bluvstein, H. Levine, G. Semeghini, T. T. Wang, S. Ebadi, M. Kalinowski,
A. Keesling, N. Maskara, H. Pichler, M. Greiner, V. Vuletic, and M. D. Lukin,
“A quantum processor based on coherent transport of entangled atom arrays,”
2021.

[14] Y. P. Zhong, H.-S. Chang, K. J. Satzinger, M.-H. Chou, A. Bienfait, C. R.
Conner, É. Dumur, J. Grebel, G. A. Peairs, R. G. Povey, D. I. Schuster, and A. N.
Cleland, “Violating bell’s inequality with remotely connected superconducting
qubits,” Nature Physics, vol. 15, pp. 741–744, Aug 2019.

[15] N. Leung, Y. Lu, S. Chakram, R. K. Naik, N. Earnest, R. Ma, K. Jacobs, A. N.
Cleland, and D. I. Schuster, “Deterministic bidirectional communication and re-
mote entanglement generation between superconducting qubits,” npj Quantum
Information, vol. 5, no. 1, p. 18, 2019.

[16] H.-S. Chang, Y. P. Zhong, A. Bienfait, M.-H. Chou, C. R. Conner, E. Dumur,
J. Grebel, G. A. Peairs, R. G. Povey, K. J. Satzinger, and A. N. Cleland, “Re-
mote entanglement via adiabatic passage using a tunably dissipative quantum
communication system,” Phys. Rev. Lett., vol. 124, p. 240502, Jun 2020.

[17] Y. Zhong, H.-S. Chang, A. Bienfait, É. Dumur, M.-H. Chou, C. R. Conner,
J. Grebel, R. G. Povey, H. Yan, D. I. Schuster, and A. N. Cleland, “Deterministic
multi-qubit entanglement in a quantum network,” Nature, vol. 590, pp. 571–575,
Feb 2021.

[18] L. D. Burkhart, J. D. Teoh, Y. Zhang, C. J. Axline, L. Frunzio, M. Devoret,
L. Jiang, S. Girvin, and R. Schoelkopf, “Error-detected state transfer and en-
tanglement in a superconducting quantum network,” PRX Quantum, vol. 2,
p. 030321, Aug 2021.

[19] J. Ramette, J. Sinclair, Z. Vendeiro, A. Rudelis, M. Cetina, and V. Vuletić, “Any-
to-any connected cavity-mediated architecture for quantum computing with
trapped ions or rydberg arrays,” 2021.

[20] P. Kurpiers, P. Magnard, T. Walter, B. Royer, M. Pechal, J. Heinsoo, Y. Salathé,
A. Akin, S. Storz, J.-C. Besse, S. Gasparinetti, A. Blais, and A. Wallraff, “De-
terministic quantum state transfer and remote entanglement using microwave
photons,” Nature, vol. 558, no. 7709, pp. 264–267, 2018.

130



[21] C. J. Axline, L. D. Burkhart, W. Pfaff, M. Zhang, K. Chou, P. Campagne-
Ibarcq, P. Reinhold, L. Frunzio, S. M. Girvin, L. Jiang, M. H. Devoret, and
R. J. Schoelkopf, “On-demand quantum state transfer and entanglement between
remote microwave cavity memories,” Nature Physics, vol. 14, pp. 705–710, July
2018.

[22] P. Campagne-Ibarcq, E. Zalys-Geller, A. Narla, S. Shankar, P. Reinhold,
L. Burkhart, C. Axline, W. Pfaff, L. Frunzio, R. J. Schoelkopf, and M. H. De-
voret, “Deterministic remote entanglement of superconducting circuits through
microwave two-photon transitions,” Phys. Rev. Lett., vol. 120, p. 200501, May
2018.

[23] P. Kurpiers, M. Pechal, B. Royer, P. Magnard, T. Walter, J. Heinsoo, Y. Salathé,
A. Akin, S. Storz, J.-C. Besse, S. Gasparinetti, A. Blais, and A. Wallraff, “Quan-
tum communication with time-bin encoded microwave photons,” Phys. Rev. Ap-
plied, vol. 12, p. 044067, Oct 2019.

[24] P. Magnard, S. Storz, P. Kurpiers, J. Schär, F. Marxer, J. Lütolf, T. Walter, J.-
C. Besse, M. Gabureac, K. Reuer, A. Akin, B. Royer, A. Blais, and A. Wallraff,
“Microwave quantum link between superconducting circuits housed in spatially
separated cryogenic systems,” Phys. Rev. Lett., vol. 125, p. 260502, Dec 2020.

[25] H. J. Kimble, “The quantum internet,” Nature, vol. 453, no. 7198, pp. 1023–1030,
2008.

[26] N. Gisin and R. Thew, “Quantum communication,” Nature Photonics, vol. 1,
pp. 165–171, Mar 2007.

[27] R. Valivarthi, S. I. Davis, C. Peña, S. Xie, N. Lauk, L. Narváez, J. P. Allmaras,
A. D. Beyer, Y. Gim, M. Hussein, G. Iskander, H. L. Kim, B. Korzh, A. Mueller,
M. Rominsky, M. Shaw, D. Tang, E. E. Wollman, C. Simon, P. Spentzouris,
D. Oblak, N. Sinclair, and M. Spiropulu, “Teleportation systems toward a quan-
tum internet,” PRX Quantum, vol. 1, p. 020317, Dec 2020.

[28] P. Kurpiers, T. Walter, P. Magnard, Y. Salathe, and A. Wallraff, “Characterizing
the attenuation of coaxial and rectangular microwave-frequency waveguides at
cryogenic temperatures,” EPJ Quantum Technology, vol. 4, p. 8, May 2017.

[29] R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds,
C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between
microwave and optical light,” Nature Physics, vol. 10, pp. 321–326, Apr 2014.

[30] M. Mirhosseini, A. Sipahigil, M. Kalaee, and O. Painter, “Superconducting qubit
to optical photon transduction,” Nature, vol. 588, pp. 599–603, Dec 2020.

[31] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-. S. Huang, J. Majer, S. Ku-
mar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to
a superconducting qubit using circuit quantum electrodynamics,” Nature, Sep
2004.

131



[32] O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto,
K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single
artificial atom,” Science, vol. 327, no. 5967, pp. 840–843, 2010.

[33] B. Kannan, A. Almanakly, Y. Sung, A. Di Paolo, D. A. Rower, J. Braumüller,
A. Melville, B. M. Niedzielski, A. Karamlou, K. Serniak, A. Vepsäläinen, M. E.
Schwartz, J. L. Yoder, R. Winik, J. I.-J. Wang, T. P. Orlando, S. Gustavsson,
J. A. Grover, and W. D. Oliver, “On-demand directional photon emission using
waveguide quantum electrodynamics,” 2022.

[34] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D.
Oliver, “A quantum engineer's guide to superconducting qubits,” Applied Physics
Reviews, vol. 6, p. 021318, June 2019.

[35] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,”
Phys. Rev., vol. 108, pp. 1175–1204, Dec 1957.

[36] B. Josephson, “Possible new effects in superconductive tunnelling,” Physics Let-
ters, vol. 1, no. 7, pp. 251–253, 1962.

[37] U. Vool and M. Devoret, “Introduction to quantum electromagnetic circuits,”
International Journal of Circuit Theory and Applications, vol. 45, no. 7, pp. 897–
934, 2017.

[38] M. Tinkham, Introduction to Superconductivity. Dover Publications, 2 ed., June
2004.

[39] R. P. Feynman, R. B. Leighton, and M. Sands, The feynman lectures on physics,
vol. III: The New Millennium Edition: Quantum Mechanics. Basic Books, 2015.

[40] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais,
M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Charge-insensitive qubit
design derived from the cooper pair box,” Phys. Rev. A, vol. 76, p. 042319, Oct
2007.

[41] J. A. Schreier, A. A. Houck, J. Koch, D. I. Schuster, B. R. Johnson, J. M. Chow,
J. M. Gambetta, J. Majer, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, “Suppressing charge noise decoherence in superconducting charge
qubits,” Phys. Rev. B, vol. 77, p. 180502, May 2008.

[42] M. D. Lukin, “Modern atomic and optical physics - harvard university,” 2021.

[43] H. Io-Chun, “Quantum optics with propagating microwaves in superconducting
circuits,” 2013.

[44] D. M. Pozar, Microwave engineering; 4th ed. Hoboken, NJ: Wiley, 2012.

[45] K. Lalumière, B. C. Sanders, A. F. van Loo, A. Fedorov, A. Wallraff, and A. Blais,
“Input-output theory for waveguide qed with an ensemble of inhomogeneous
atoms,” Phys. Rev. A, vol. 88, p. 043806, Oct 2013.

132



[46] P.-O. Guimond, B. Vermersch, M. L. Juan, A. Sharafiev, G. Kirchmair, and
P. Zoller, “A unidirectional on-chip photonic interface for superconducting cir-
cuits,” npj Quantum Information, vol. 6, p. 32, Mar 2020.

[47] N. Gheeraert, S. Kono, and Y. Nakamura, “Programmable directional emitter
and receiver of itinerant microwave photons in a waveguide,” Phys. Rev. A,
vol. 102, p. 053720, Nov 2020.

[48] M. Mirhosseini, E. Kim, X. Zhang, A. Sipahigil, P. B. Dieterle, A. J. Keller,
A. Asenjo-Garcia, D. E. Chang, and O. Painter, “Cavity quantum electrody-
namics with atom-like mirrors,” Nature, vol. 569, no. 7758, pp. 692–697, 2019.

[49] R. Loudon, The Quantum Theory of Light. Oxford: Clarendon Press, 1973.

[50] P. Solano, J. A. Grover, J. E. Hoffman, S. Ravets, F. K. Fatemi, L. A. Orozco, and
S. L. Rolston, “Chapter seven - optical nanofibers: A new platform for quantum
optics,” vol. 66 of Advances In Atomic, Molecular, and Optical Physics, pp. 439–
505, Academic Press, 2017.

[51] B. R. Mollow, “Power spectrum of light scattered by two-level systems,” Phys.
Rev., vol. 188, pp. 1969–1975, Dec 1969.

[52] A. A. Abdumalikov, O. V. Astafiev, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai,
“Dynamics of coherent and incoherent emission from an artificial atom in a 1d
space,” Phys. Rev. Lett., vol. 107, p. 043604, Jul 2011.

[53] C. Eichler, D. Bozyigit, C. Lang, L. Steffen, J. Fink, and A. Wallraff, “Exper-
imental state tomography of itinerant single microwave photons,” Phys. Rev.
Lett., vol. 106, p. 220503, Jun 2011.

[54] I.-C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P. Dels-
ing, “Demonstration of a single-photon router in the microwave regime,” Phys.
Rev. Lett., vol. 107, p. 073601, Aug 2011.

[55] I.-C. Hoi, T. Palomaki, J. Lindkvist, G. Johansson, P. Delsing, and C. M. Wilson,
“Generation of nonclassical microwave states using an artificial atom in 1d open
space,” Phys. Rev. Lett., vol. 108, p. 263601, Jun 2012.

[56] R. HANBURY BROWN and R. Q. TWISS, “A test of a new type of stellar
interferometer on sirius,” Nature, vol. 178, pp. 1046–1048, Nov 1956.

[57] W. D. Oliver, J. Kim, R. C. Liu, and Y. Yamamoto, “Hanbury brown and twiss-
type experiment with electrons,” Science, vol. 284, no. 5412, pp. 299–301, 1999.

[58] A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, and A. Wall-
raff, “Photon-mediated interactions between distant artificial atoms,” Science,
vol. 342, no. 6165, pp. 1494–1496, 2013.

133



[59] I.-C. Hoi, A. F. Kockum, L. Tornberg, A. Pourkabirian, G. Johansson, P. Delsing,
and C. M. Wilson, “Probing the quantum vacuum with an artificial atom in front
of a mirror,” Nature Physics, vol. 11, no. 12, pp. 1045–1049, 2015.

[60] P. Forn-Díaz, C. W. Warren, C. W. S. Chang, A. M. Vadiraj, and C. M. Wilson,
“On-demand microwave generator of shaped single photons,” Phys. Rev. Applied,
vol. 8, p. 054015, Nov 2017.

[61] J.-C. Besse, K. Reuer, M. C. Collodo, A. Wulff, L. Wernli, A. Copetudo, D. Malz,
P. Magnard, A. Akin, M. Gabureac, G. J. Norris, J. I. Cirac, A. Wallraff, and
C. Eichler, “Realizing a deterministic source of multipartite-entangled photonic
qubits,” Nature Communications, vol. 11, p. 4877, Sep 2020.

[62] B. Kannan, M. J. Ruckriegel, D. L. Campbell, A. Frisk Kockum, J. Braumüller,
D. K. Kim, M. Kjaergaard, P. Krantz, A. Melville, B. M. Niedzielski, A. Vep-
säläinen, R. Winik, J. L. Yoder, F. Nori, T. P. Orlando, S. Gustavsson, and
W. D. Oliver, “Waveguide quantum electrodynamics with superconducting arti-
ficial giant atoms,” Nature, vol. 583, pp. 775–779, Jul 2020.

[63] B. Kannan, D. L. Campbell, F. Vasconcelos, R. Winik, D. K. Kim, M. Kjaer-
gaard, P. Krantz, A. Melville, B. M. Niedzielski, J. L. Yoder, T. P. Orlando,
S. Gustavsson, and W. D. Oliver, “Generating spatially entangled itinerant pho-
tons with waveguide quantum electrodynamics,” Science Advances, vol. 6, no. 41,
p. eabb8780, 2020.

[64] K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin–orbit
interactions of light,” Nature Photonics, vol. 9, pp. 796–808, Dec 2015.

[65] P. Solano, P. Barberis-Blostein, and K. Sinha, “Collective directional emission
from distant emitters in waveguide QED,” arXiv:2108.12951 [quant-ph], Aug.
2021. arXiv: 2108.12951.

[66] E. S. Redchenko, A. V. Poshakinskiy, R. Sett, M. Zemlicka, A. N. Poddubny, and
J. M. Fink, “Tunable directional photon scattering from a pair of superconducting
qubits,” arXiv:2205.03293 [quant-ph], 2022.

[67] F. Yan, P. Krantz, Y. Sung, M. Kjaergaard, D. L. Campbell, T. P. Orlando,
S. Gustavsson, and W. D. Oliver, “Tunable coupling scheme for implementing
high-fidelity two-qubit gates,” Phys. Rev. Applied, vol. 10, p. 054062, Nov 2018.

[68] Y. Sung, L. Ding, J. Braumüller, A. Vepsäläinen, B. Kannan, M. Kjaergaard,
A. Greene, G. O. Samach, C. McNally, D. Kim, A. Melville, B. M. Niedzielski,
M. E. Schwartz, J. L. Yoder, T. P. Orlando, S. Gustavsson, and W. D. Oliver,
“Realization of high-fidelity cz and 𝑧𝑧-free iswap gates with a tunable coupler,”
Phys. Rev. X, vol. 11, p. 021058, Jun 2021.

[69] M. S. Khalil, M. J. A. Stoutimore, F. C. Wellstood, and K. D. Osborn, “An anal-
ysis method for asymmetric resonator transmission applied to superconducting
devices,” Journal of Applied Physics, vol. 111, no. 5, p. 054510, 2012.

134



[70] S. Probst, F. B. Song, P. A. Bushev, A. V. Ustinov, and M. Weides, “Efficient and
robust analysis of complex scattering data under noise in microwave resonators,”
Review of Scientific Instruments, vol. 86, no. 2, p. 024706, 2015.

[71] D. C. McKay, S. Filipp, A. Mezzacapo, E. Magesan, J. M. Chow, and J. M.
Gambetta, “Universal gate for fixed-frequency qubits via a tunable bus,” Phys.
Rev. Applied, vol. 6, p. 064007, Dec 2016.

[72] T. F. Havel, “Robust procedures for converting among lindblad, kraus and ma-
trix representations of quantum dynamical semigroups,” Journal of Mathematical
Physics, vol. 44, no. 2, pp. 534–557, 2003.

[73] K. Reuer, J.-C. Besse, L. Wernli, P. Magnard, P. Kurpiers, G. J. Norris, A. Wall-
raff, and C. Eichler, “Realization of a universal quantum gate set for itinerant
microwave photons,” Phys. Rev. X, vol. 12, p. 011008, Jan 2022.

[74] C. Eichler, D. Bozyigit, and A. Wallraff, “Characterizing quantum microwave ra-
diation and its entanglement with superconducting qubits using linear detectors,”
Phys. Rev. A, vol. 86, p. 032106, Sep 2012.

[75] K. Inomata, Z. Lin, K. Koshino, W. D. Oliver, J.-S. Tsai, T. Yamamoto, and
Y. Nakamura, “Single microwave-photon detector using an artificial l-type three-
level system,” Nature Communications, vol. 7, no. 1, p. 12303, 2016.

[76] S. Kono, K. Koshino, Y. Tabuchi, A. Noguchi, and Y. Nakamura, “Quantum non-
demolition detection of an itinerant microwave photon,” Nature Physics, vol. 14,
pp. 546–549, Jun 2018.

[77] C. Eichler, “Experimental characterization of quantum microwave radiation and
its entanglement with a superconducting qubit,” 2013.

[78] J. Shapiro, “Quantum optical communication,” 2016.

[79] J. M. Chow, J. M. Gambetta, A. D. Córcoles, S. T. Merkel, J. A. Smolin,
C. Rigetti, S. Poletto, G. A. Keefe, M. B. Rothwell, J. R. Rozen, M. B. Ketchen,
and M. Steffen, “Universal quantum gate set approaching fault-tolerant thresh-
olds with superconducting qubits,” Phys. Rev. Lett., vol. 109, p. 060501, Aug
2012.

[80] Y. Yin, Y. Chen, D. Sank, P. J. J. O’Malley, T. C. White, R. Barends, J. Kelly,
E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N.
Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave
photon states,” Phys. Rev. Lett., vol. 110, p. 107001, Mar 2013.

[81] M. Pechal, L. Huthmacher, C. Eichler, S. Zeytinoğlu, A. A. Abdumalikov,
S. Berger, A. Wallraff, and S. Filipp, “Microwave-controlled generation of shaped
single photons in circuit quantum electrodynamics,” Phys. Rev. X, vol. 4,
p. 041010, Oct 2014.

135



[82] J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and
entanglement distribution among distant nodes in a quantum network,” Phys.
Rev. Lett., vol. 78, pp. 3221–3224, Apr 1997.

[83] J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum
computation over noisy channels,” Phys. Rev. A, vol. 59, pp. 4249–4254, Jun
1999.

[84] Pechal, Marek, Microwave photonics in superconducting circuits. PhD thesis,
2016.

[85] L. Jiang, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Distributed quantum
computation based on small quantum registers,” Phys. Rev. A, vol. 76, p. 062323,
Dec 2007.

[86] K. S. Chou, J. Z. Blumoff, C. S. Wang, P. C. Reinhold, C. J. Axline, Y. Y.
Gao, L. Frunzio, M. H. Devoret, L. Jiang, and R. J. Schoelkopf, “Deterministic
teleportation of a quantum gate between two logical qubits,” Nature, vol. 561,
pp. 368–373, Sep 2018.

[87] W. Dür, “Multipartite entanglement that is robust against disposal of particles,”
Phys. Rev. A, vol. 63, p. 020303, Jan 2001.

[88] H. Yan, Y. Zhong, H.-S. Chang, A. Bienfait, M.-H. Chou, C. R. Conner, E. Du-
mur, J. Grebel, R. G. Povey, and A. N. Cleland, “Entanglement purification and
protection in a superconducting quantum network,” Phys. Rev. Lett., vol. 128,
p. 080504, Feb 2022.

[89] D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem
without inequalities,” American Journal of Physics, vol. 58, no. 12, p. 1131–1143,
1990.

[90] C. Macklin, K. O’Brien, D. Hover, M. E. Schwartz, V. Bolkhovsky, X. Zhang,
W. D. Oliver, and I. Siddiqi, “A near–quantum-limited Josephson traveling-wave
parametric amplifier,” Science, vol. 350, no. 6258, pp. 307–310, 2015.

136


	Introduction
	Outline of thesis

	Circuit Quantum Electrodynamics
	Quantum Harmonic Oscillator
	The Josephson Junction
	The Transmon Qubit
	Flux-Tunable Transmon Qubit

	A Single Qubit on a Waveguide
	Spontaneous Emission - Fermi's Golden Rule
	Classical Model: Qubit-Waveguide System
	The waveguide QED Hamiltonian
	Input-Output Theory
	Qubit as a Single Photon Mirror

	Multiple Qubits on a Waveguide
	Interference in Spontaneous Emission
	Master Equation Derivation
	Superradiance and Subradiance
	Waveguide-Mediated Exchange Interaction
	Timeline of wQED Experiments

	Directional Emission
	Introduction
	Model and Protocol
	Device Calibration
	Photon Generation and Measurement
	Temporal Dynamics
	Parametric Exchange Interactions

	Heterodyne Detection Scheme
	Photon State Tomography
	Conclusions

	Directional Absorption
	A Quantum Interconnect
	Photon Shaping
	Symmetric Emission and Absorption Simulations
	Remote Entanglement

	Conclusions: A Quantum Network
	Experimental Setup

