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Abstract

Face recognition is widely acknowledged to be a very complex visual task for both
humans and computers. Previous studies which analyze robustness of facial recogni-
tion systems have revealed that the ability to recognize faces becomes worse as the
blur levels of face images increases, and that naturalistic color is important for facial
recognition at high blur levels. Additionally, previous studies of current state of the
art face recognition technologies have found bias in face recognition amongst differ-
ent races, resulting in a worse recognition performance for people of color. In this
study, we evaluate the performance and robustness of a current state-of-the-art facial
recognition neural network architecture (ResNet-101) trained on an augmented facial
identity dataset (Augmented Casia Webface) and perform a thorough comparison
between White, Black and East Asian identities. We created a full-color, a grayscale
and many hue-shifted datasets and then Gaussian blurred each dataset at different
intensities and compared how AI systems perform relative to humans and amongst
the different races.
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Chapter 1

Introduction

From unlocking personal devices to criminal justice applications, face recognition is

a commonly used biometric authentication method in the world today. As such,

vulnerabilities within face recognition systems have real world implications. Face

recognition systems have been used to establish probable cause for arrests, such as

in cases involving identity theft [14], passport fraud [29], and the U.S. Capitol mob

where the actions of assailants were filmed and uploaded to YouTube [35]. The imple-

mentation of face recognition systems have been particularly successful at identifying

suspects involved in driver’s license fraud. For example, over 10,000 people within

the state of New York were found to illegally possess more than one driver’s license

using face recognition systems [14]. As such, it can be seen that face recognition,

when accurate, can be a useful tool for increasing the reach of our judicial system.

Given the ubiquity and power of face recognition systems, it is paramount that such

systems be able to perform robustly under real world conditions and also free from

certain societal biases before being fully deployed and trusted. Characterizing poten-

tial vulnerabilities to these systems, like discrepancies between test sets and training

set material, should thus be explored.

This project dived into real world scenarios that may tamper and introduce degra-

dations to data as well as how those degradations affect gender and racial biases that

already exist within face recognition. This project is divided into a face recognition

problem with the goal of presenting how different scenarios and degradations affect
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face recognition of those of different races and genders.

1.1 Availability of Face Recognition

Since the introduction of AlexNet in 2012 [21], the number of deep learning methods

that recognize faces has exploded, with networks such as ResNet [15], VGGNet [38],

and FaceNet [37] serving as the baseline for high accuracy recognition networks [43].

Several companies with substantial investment in AI technologies, such as Google,

Meta and Baidu, have declared success on the profoundly important task of face

recognition, with Meta developing a face classifier (DeepFace [41]) with an accuracy

of 97.35% on the famous benchmark dataset ”Labeled Faces in the Wild (LFW)” [16].

The accuracy of DeepFace has since risen above 99.80% in the span of only three

years. These companies have even released simple APIs for this technology to be

used by the public, such as Amazon Rekognition[1], Google’s Cloud Vision API [3],

and Microsoft Face Service [4].

Figure 1-1: Example of low quality surveillance footage.
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1.2 Robustness of Face Recognition

Although face recognition systems have now reached incredibly high accuracy rates

and are widely available, these systems are not as robust as we might think and really

only works in ideal situations. The real world images which these models are used

on are not drawn from the same distribution as the training set, which can lead to

vulnerabilities in these systems. For example, in surveillance footage, much of the data

is of low resolution, taken in unusual lighting conditions, and occasionally in grayscale

as shown in Figure 1-1 [13]. This is inconsistent with typical training data fed through

networks which is high-quality and restricts pose and lighting parameters. Research

indicates that when testing photos originating from an uncontrolled environment, the

accuracy of face recognition systems decreases [25], leading to models that are not

necessarily robust enough to deploy in the real world.

On the other hand, humans have an incredibly robust ability to recognize faces un-

der strange conditions. We are able to recognize faces under strong degradations, such

as identifying celebrities without eyebrows or identifying friends from long distances

[36]. By identifying similarities and discrepancies between humans and machines, we

stand to gain deeper insights into understanding how humans achieve their remark-

able robustness in recognition performance while also potentially improving general

knowledge regarding how computational vision systems can be enhanced to exhibit

human-like robustness. Studying these neuroscience concepts on neural networks may

give us more insight into the incredibly complex task that humans execute naturally:

recognizing faces.

1.3 Gender and Racial Bias

In addition to these scenario-introduced degradations such as grainy security footage,

there are many steps to machine learning where racial and gender biases can be

introduced and ultimately sways the final results of a machine learning model. The

first place where these biases can be introduced is within gathering the data for the
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training dataset. For face recognition, lots of the public datasets are composed of

faces scraped from photo datasets like Wikipedia, Facebook, or Flickr. While this

seems harmless for the most part, one must also take into account who is using the

platforms that the data is being collected from, and whether or not the audience and

the photos being uploaded to these platforms are diverse enough to not introduce

bias. For example,around 30% of the users of Flickr are from the United States, 60%

of the users are male, and 80% of the users are below the age of 55 [2]. With these

statistics, one would expect any machine learning model trained on this dataset to be

much better at detecting and recognizing a white man in his 30s over a black woman

in her 60s. Although these datasets might have demographic imbalances, researchers

can easily review the demographic composition of the datasets because they are public

and raise awareness by auditing them to call attention to possible biases that may be

introduced.

Research has also found that models trained on biased data result in algorithmic

discrimination [8]. Within the word embedding space, researchers have found that

Word2Vec encodes societal gender biases. In the experiment, researchers trained

an analogy generator using Word2Vec which fills in missing words. For example,

“man is to computer programmer as woman is to X”. The completed result of this

example was “homemaker”, which conforms to the stereotype that men are associated

with programming and that women are associated with homemaking [8]. On top of

the direct bias visible in the model, this Word2Vec model is widely available and

thus commonly used, allowing gender biases to trickle down into many other systems

that rely on the model. In addition to word embeddings, research has found that

commercial gender classifiers which use images as input significantly favor white men

over black women [9]. Some of the key takeaways from Buolamwini et al. were that

all of the commercial gender classifiers performed better on male faces over female

faces, all the classifiers performed better on light faces over darker faces, and that all

the classifiers performed worse on darker female faces [9].
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1.4 Project Overview

The ultimate goal for this thesis is to evaluate how a current state of the art face

recognition systems perform under certain degradations, to evaluate how different

races and genders’ recognition performances are affected by those degradations, and

to compare the performance of these recognition systems to the human ability to

recognize faces. We will accomplish this by creating a dataset with different racial

subgroups and an equal number of male and female subjects, creating an algorithm

which calculates how well a neural network can recognize and organize faces, evaluat-

ing the algorithm over different degradations alongside human results, and comparing

and contrasting the results from the different racial and gender groups.
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Chapter 2

Background and Related Works

This chapter goes into more depth on how face recognition systems work and how

bias can be introduced to face recognition systems. This chapter also discusses how

human face recognition can be affected by certain image degradations and how we

could link face recognition systems with human perception.

2.1 Face Recognition Systems

Face recognition within the space of artificial intelligence is the ability to confirm or

recognize the identity of an individual using a photo of an individual’s face. These

face recognition systems are used to recognize individuals in photos, videos, or in real

time.

Early approaches to face recognition began with taking a face and manually defin-

ing landmarks, then using distance metrics across the face to identify an individual.

From then until 2012, landmark based recognition dominated the face recognition

space with techniques like Eigenface [42], Gabor [26], and LBP [7], reaching accura-

cies of up to 95% on a popular face recognition benchmark, Labeled Faces in the Wild

(LFW) [16]. However, much changed when AlexNet won the ImageNet competition

in 2012 by a large margin using a method called deep learning [21]. Deep learning

works by using a cascade of multiple layers of processing units to extract different sets

of features from a large volume of data. Deep convolutional neural network (CNN)
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layers automatically learn features from images, many of which were designed for

years in previous research especially regarding face recognition, and additionally have

more layers which learn higher levels of abstraction. In face recognition, the combi-

nation of all of these layers of abstraction finally represent a facial identity with an

unprecedented level of stability.

2.1.1 Where is Face Recognition Used?

Face recognition is used worldwide, from biometric authentication on phones to bio-

metric border checks in Europe. As companies got a hold of more computational

power and deep neural networks became popular, face recognition became a stan-

dard feature in modern technology. In 2014, Facebook publicly released DeepFace,

which was a photo-tagging software embedded in their website [41]. The same year,

Chicago, for the first time, arrested a man based on face recognition technology which

was acquired via a 5.4 million dollar federal grant [11]. Face recognition started to

trickle in as a security feature for personal devices in 2015, with its introduction in

Windows Hello and Android’s Trusted Face, then later in 2017 with Apple’s intro-

duction of Face ID [5]. Since then, face recognition use has exploded, with China

rapidly increasing its usage on its citizens, retailers experimenting with the technol-

ogy to track shoplifters, and even Taylor Swift’s security team using the technology

to identify stalkers [5]. Given the ubiquity of these systems today, it is incredibly

important that these face recognition systems are robust and able to be used in a

growing and unique set of scenarios.

2.1.2 How does Face Recognition Work?

To perform face recognition, there are three key components: face detection and

adjustment, face extraction, and face classification as shown in Figure 2-1. When

presented with an image, the first step is to find the face within the image with face

detection software, which has been created previously using deep learning methods.

Next, with a face landmark detector, the face in the image is aligned using the land-
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marks and cropped. Afterwards, a face recognition module, or a deep convolutional

network, is trained and tested with these aligned face images. Using the trained face

recognition module, one performs feature extraction where test images are passed

through the network and given a deep feature representation. The last step is face

classification, where one can calculate the distance between face representations to

either determine if two images have the same identity, or to identify an individual in

the image.

Figure 2-1: Simple face recognition pipeline.

2.1.3 Face Recognition Datasets

A prerequisite to training a successful deep neural network is a sufficiently large

dataset. In the early stages of deep face recognition, models were usually trained on

private datasets. For example, Facebook trained their model DeepFace [41] on 4M

images of 4K people and Google trained their model FaceNet [37] on 200M images

of 3M people. Both of these models achieved groundbreaking performance, but their

work was not reproducible as the training data was proprietary. To address this

issue, CASIA-Webface [27] provided the first ever widely-used public dataset which

consisted of 0.5M images of 10K celebrities from around the world. Since then, there

have been more large scale databases used for training face recognition models such

as VGGFace2 [10], MillionCelebs [47], and MS-Celeb-1M [12]. For testing, the gold

standard for face recognition is the Labeled Faces in the Wild (LFW) [16] which

contains around 13,000 images of faces collected on the web.
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Table 2.1: Commonly used Face Recognition Datasets for Training

Datasets Publish
Time # photos # subjects

Facebook [41] 2014 4.4M 4K
CelebFaces+ [40] 2014 202,599 10,177
CASIA WebFace [45] 2014 494,414 10,575
Google [37] 2015 >500M >10M
MS-Celeb-1M
(Challenge 1) [12] 2016 10M 100,000

VGGFace2 [10] 2017 3.31M 9,131
MillionCelebs [47] 2020 18.8M 636K

2.1.4 Data Bias

Deep learning networks rely on finding patterns in training data to generalize repre-

sentations to new data. For example, to train a network to recognize an apple, one

would present many example images of apples to the network and ensure that those

images are labeled as apples. That way, when the network sees another apple, it

would classify the image as an apple. However, if all of those apples were red and the

network is told to classify a green apple, the network could falter, as a green apple

was not present in the data that the network was trained on. The network would

have a positive bias towards red apples.

These large scale face recognition datasets such as CASIA-WebFace [45], VG-

GFace2 [10], and MS-Celeb-1M [12] are usually created by scraping websites such

as Google Images. Usually these datasets also consist of famous celebrities in some

formal setting. For example, a common photo would be of a celebrity on the runway

smiling as shown in Figure 2-2. These types of photos are incredibly different from

daily life photos as external factors such as high camera quality or professional light-

ing are much more common in these celebrity photos. Given this type of training

data, researchers have found that the performance of a model trained on one dataset

can drop when tested on a completely different dataset. For example, a model trained

on VGGFace [30] achieved a 98.95% accuracy on LFW [16] but only obtained 26%,

52%, and 85% on the Ugly, Bad, and Good partitions of the GBU [33] dataset, which

is a dataset made up of difficult to recognize, average difficulty to recognize, and easy
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to recognize photos respectively [32].

Figure 2-2: Example of celebrity image.

2.1.5 Degradations on Face Recognition

Images in the real world are not so clear-cut and face recognition systems will run into

images that have certain degradations. However, it has been shown that degraded

image examples using increased Gaussian blur, Gaussian noise, and JPEG encoding

have a destructive impact on the accuracy of a pre-trained ImageNet classifier, with

destructive rates reaching 80% to 90% [22]. The impact of adversarial attacks and

physical facial disguises (such as wigs or makeup) on pre-trained networks has been

shown to decrease accuracy of face recognition, with VGG-Face achieving 33.76%

Genuine Acceptance Rate (GAR) at 1% False Acceptance Rate (FAR) and 17.73%

GAR at 0.1% FAR [31]. Other work has focused on the role of illumination and

lighting on the accuracy of the face recognition models, indicating that accuracy can

increase by roughly 40% when a model is trained with images that are illuminated

from various angles. This could be due to a wide variety of factors, such as textural
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values in the image changing as a result of the illumination or the minimization

between classes leading to increased false classifications [25] [18]. Some work has

been done regarding the impact of color cues on recognition of faces by humans,

revealing a statistically significant impact of color cues on recognition accuracy when

the image quality is degraded ([46]). Similarly, the impact of related color cues on

the recognition of objects by pre-trained networks has been explored, showing that

different methodologies for transforming colored images to grayscale produce different

accuracies by the network, with a coefficient of variation of up to approximately

10% [20]. Little work has been performed regarding the impact of color cues on

the recognition of faces by pre-trained networks that are currently used as the ‘gold

standard’ for face recognition and the comparison of those results to human-subject

research.

2.1.6 Racial and Gender Bias within Face Recognition Sys-

tems

Within the data bias field, demographic bias is an urgent issue that has yet to be

solved. Within the most common datasets used for training, white, middle-aged men

tend to appear more frequently than other demographic groups as shown in Table

2.2 and Figure 2-3. It has recently been shown that around 80% of the existing large

face datasets are biased towards "lighter skin" faces compared to "darker skin" faces

[28]. This skew towards a certain group of people nonetheless becomes amplified,

and causes deep learning models to have significantly different accuracies when the

models are applied to different demographic groups. A prime example of this skew was

demonstrated in Wang et al. [17], where researchers created the dataset Racial Faces

in-the-Wild (RFW) [44] and demonstrated that commercial APIs work unequally in

verifying faces for different races, with the maximum difference between mean error

rates between Caucasians and African faces being 8.38% [17] as shown in Table 2.3.

Some research has been done on creating fair datasets that represent a wider range

of races and also have an equal balance of each race. One example of a representative
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Table 2.2: Demographic Information of Commonly Used Face Datasets [17][6].
Datasets Race (%) Gender (%)

Caucasian Asian Indian Black Female Male
CASIA WebFace 84.5 2.6 1.6 11.3 41.1 58.9

MS-Celeb-1M 76.3 6.6 2.6 14.5 - -
VGGFace2 74.2 6.0 4.0 15.8 40.7 59.3

LFW 66.0 9.8 7.2 17.0 - -

Figure 2-3: Racial composition in face datasets.

dataset is the Pilot Parliaments Benchmark, which is composed of parliament repre-

sentatives from around the world and has around an equal number of lighter males,

lighter females, darker males and darker females. For skin type labels, they used the

Fitzpatrick six-point labeling system, which dermatologists have been using as a gold

standard for skin classification. Using this labeling system which essentially works as

a sliding scale for skin pigmentation, they created an intersectional dataset of 1270

individuals that range in both gender and skin color. The FairFace dataset [23] is an-

other dataset which aims to mitigate bias by having a balanced number of images of

these groups: Western White, Middle Eastern, East Asian, South East Asian, Black,

Indian, and Latino. Research has found that more balanced racial datasets lead to

a less biased model in the end. A model trained on the FairFace dataset achieved
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Table 2.3: Commercial API Verification Accuracies for RFW [17]
Commercial

APIS
LFW

Accuracy (%)
Race Verification

Accuracy (%)
Caucasian Asian Indian Black

Face++ 97.03 93.90 92.47 88.55 87.50
Baidu 98.67 89.13 90.27 86.53 77.97

Amazon 98.50 90.45 84.87 87.20 86.27
Microsoft 98.22 87.60 79.67 82.83 75.83
Mean 98.11 90.27 86.82 86.28 81.89

a gender accuracy mean of 94.89% across races while models trained on UTKFace,

LFWA+, and CelebA achieved means of 89.54%, 82.46% and 86.03% respectively [23]

.

2.1.7 Evaluation of Face Recognition Models

Since many models for face recognition are designed to solve different problems, there

are testing datasets that are designed to evaluate the models for different tasks. The

two main classes of evaluation are face verification and face identification and are

broken down further in Figure 2-4.

Figure 2-4: Comparison of different face recognition evaluation protocols [43].

Face Verification

The most common evaluation metrics are face verification, close-set face identification

and open-set face identification. Face verification takes two images and determines
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whether or not the two faces are the same. The LFW testing dataset is specifically

designed for face verification, and most of the accuracies presented throughout face

recognition research relies on this metric.

Close-set face identification

Face identification works by taking a probe image and determining the identity of the

subject. For close-set identification, there exists a gallery of identities, and models are

to determine the identity of a probe image from the gallery. This type of identification

is especially relevant for user driven searches such as forensic identification.

Open-set face identification

Open-set face identification works similar to close-set face identification, except some

probe images may not exist in the gallery. This type of identification is most useful

for face search systems, such as watch-list identification, where systems may need to

reject images that do not exist in the gallery. As of now, there are few databases

which cover the task of open-set face identification.

2.2 Human Face Recognition

One goal for artificial intelligence is to create systems which rival, and even surpass,

that of human ability. The best way to understand how these deep neural networks

could perform better is to take a look at how humans understand and conceptualize

human faces. More specifically, we take a look at some examples of how humans are

able to robustly recognize faces.

2.2.1 Image Color Degradation over Blur

The role of naturalistic image degradation on face recognition performed by humans

has been highlighted in previous research [46]. In the study, humans were given

degraded faces and asked to recognize the face. Specifically, the degradations cho-

sen were normal full-color images, grayscale images, and hue shifted images across
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many levels of blur. In humans, experimental evidence showed that recognition per-

formance on grayscale images is not significantly different than on full-color images,

at least at high resolutions [46]. However, as the blur level progressively increases,

humans perform significantly better in recognizing the blurred full-color images than

the blurred grayscale images, showing that color cues are in fact important for recog-

nition. When the hue of the face images is shifted 21.6° in addition to the applied

blur, human recognition is at the same level as for full-color images, which is in turn

significantly better than for the grayscale images [46]. The results are summarized

in Figure 2-5. This suggests that color is important for low level tasks such as seg-

menting out different parts of the face, and not higher level diagnostic information,

like identifying eye color.

Figure 2-5: Human face recognition performance with full color, pseudo-color and
grayscale images at decreasing levels of blur [46]. One "cycle" is equivalent to 2
pixels, so more cycles between the eyes corresponds to a higher resolution image.
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2.2.2 Importance of Eyebrows

In another human study performed by Sadr et al. [36], the eyebrows were found as an

important facial feature for face recognition by humans. Researchers erased the eyes

or the eyebrows off of 50 celebrity face images, as shown in Figure 2-6. The subjects

were then shown these images and asked to name the celebrities. The performance

was measured by the percentage of images the subject could correctly identify. The

study found that performance with images lacking eyebrows was significantly worse

than the normal, unmodified images and the images without eyes. One reason for

why eyebrows are important for human face recognition could be that the eyebrows

convey emotion and other nonverbal signals, thus humans are biased to attend to the

eyebrows to interpret these signals. Another explanation could be that eyebrows serve

as a "stable" facial feature. Since eyebrows are large and generally are high-contrast

facial features, eyebrows can survive a substantial amount of image degradation, like

viewing from a far distance, and thus have become important for human recognition.

Figure 2-6: Sample images of President Nixon and Winona Ryder with no eyebrows,
no eyes, and no alteration.
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2.2.3 Other Human Results

Other noteworthy degradations summarized in Sinha et al. [39] are the following:

• Vertical or horizontal compression of face images do not affect recognition per-

formance (Figure 2-7).

• Contrast polarity inversion dramatically decreases recognition performance (Fig-

ure 2-8).

• High-frequency information on its own does not result in good face recognition

performance (Figure 2-9).

Figure 2-7: Images of celebrity faces that have been compressed to 25% of their
original width. The celebrities from left to right are as follows: Harry Styles, Dwayne
"The Rock" Johnson, Olivia Rodrigo, Lupita Nyong’o, and Chris Hemsworth.
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Figure 2-8: Normal image and negative contrast image containing several well-known
celebrities. (Photographed during the 2020 Oscars.)

Figure 2-9: Sample high-spatial frequency information images of Jim Carrey and
Kevin Costner.
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Chapter 3

Exploration of Methods

This chapter steps through design decisions and experiment elements given the prob-

lem we are trying to solve. This chapter discusses the degradations that we apply in

the experiments, the model we chose to evaluate, and the evaluation metric.

3.1 Degradations

The first step was to choose the degradation we would like to apply to images in order

to compare to humans. Within the human results, the choices were vertical and hori-

zontal compression, color cues over different levels of blur, creating line drawings from

images, removing certain facial features, and contrast polarity. For this experiment,

we wanted to choose a degradation that is encountered often in the application of face

recognition, so we experimented with color cues over varying levels of blur. In other

words, how does face recognition technology perform at full color, grayscale, and at

different shifts of hue at increasing levels of blur.

3.1.1 Grayscale

There are number of ways to convert RGB (red-green-blue) images to grayscale im-

ages, such as the average method and the weighted method. The average method is

as follows:
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Grayscale = (𝑅 +𝐺+𝐵)/3

This method is simple but does not work as well as expected as humans react

differently to red, green and blue. Generally, humans are more sensitive to green

light, less sensitive to red light and even less sensitive to blue light. Due to this

sensitivity, the more common conversion is using the weighted method:

Grayscale = 0.299𝑅 + 0.587𝐺+ 0.114𝐵

This method is also called the luminosity method and weighs red, green and blue

according to their wavelengths. Throughout the paper, when we refer to grayscale

images, we use this method to convert to grayscale.

3.1.2 Hue

Figure 3-1: The color wheel. All of the colors in this wheel have the same saturation
and the same lightness, but differ in hue.

Hue is defined as the degree which stimulus can be described as red, orange, yellow,

green, blue, or violet. Hue is represented by a single number which corresponds to a
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position on the color wheel, and is thus represented by degrees ranging from 0 degrees

to 360 degrees as shown in Figure 3-1.

Apply a hue shift

The easiest way to apply a hue shift is to convert an RGB image to an HSB (hue-

saturation-brightness) image and then shift the hue values of all the pixels in the

image by adding a certain amount to the Hue value 𝐻. In other words, one could

shift the hue by the desired angle 𝑎 to get the new hue 𝐻 ′:

𝐻 ′ = 𝐻 + 𝑎 mod 360∘

In Figure 3-2, the image is hue shifted by 180∘ which translates each pixel’s color

to the color opposite of the color wheel from Figure 3-1.

Figure 3-2: Example image of a rainbow hue shifted by 0∘ and 180∘.

3.1.3 Gaussian Blur

In order to blur an image, there are multiple different methods. The version that is

generally known to be the smoothest way to blur an image is through Gaussian blur,

which is a type of image-blurring filter that uses a Gaussian function (which also

expresses the formula for a normal distribution) for calculating the transformation to

apply to each pixel.
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The formula for a two dimensional Gaussian function is as follows:

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒−

𝑥2+𝑦2

2𝜎2

Using this formula, one can create a Gaussian matrix of radius 𝑟, or of size (2𝑟 +

1) × (2𝑟 + 1) and standard deviation 𝜎 to convolve the image. When we refer to an

image of blur radius 𝑟, we create a (2𝑟 + 1)× (2𝑟 + 1) Gaussian matrix where 𝜎 = 𝑟
2

and convolve the image with the matrix. As the blur radius increases, the strength

of blur increases, and as the blur radius decreases, the strength of the blur decreases.

An example of an image with blur radius 5px and blur radius 30px is shown in Figure

3-3.

Figure 3-3: Example image of Saturn at blur radius 0px, 5px, and 30px.

3.2 Evaluated Neural Network

In these experiments, we chose to use the ResNet-101 architecture for our model.

3.2.1 Residual Network

The main goal of a residual network is to create a deeper network with more layers.

It was created to solve the degradation problem within neural networks, where much

of the accuracy of a model is concentrated in a handful of layers and then degrades

rapidly. In other words, if one were to take out a layer in a traditional deep CNN, the

layer could possibly be important and rapidly decrease the accuracy of the network
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by nearly 40%.

Figure 3-4: Comparison between plain neural network block and a residual neural
network block.

Instead of learning a direct mapping from 𝑥 −→ 𝑦 (or from input to actual output)

using a function 𝐻(𝑥) (a few stacked non-linear layers), we will define a residual

function using 𝐹 (𝑥) = 𝐻(𝑥)− 𝑥 where 𝐹 (𝑥) represents the stacked non-linear layers

and 𝑥 represents the identity function where the input is equal to the output. We

can reframe this equation to get 𝐻(𝑥) = 𝐹 (𝑥) + 𝑥.

If the identity mapping 𝑥 is optimal, we can easily push 𝐹 (𝑥) to 0, or push the

residuals to 0, rather than creating a function that tries to map 𝑥 to 𝑥, or an identity

function. In other words, it is much easier to come up with a solution like 𝐹 (𝑥) = 0

rather than 𝐹 (𝑥) = 𝑥 using a stack of non-linear convolutional neural network layers.

Figure 3-4 shows a comparison between a plain block and a residual block. This

function 𝐹 (𝑥) in a residual network is called the residual function.

There are two types of residual connections:

• The identity 𝑥 can be used directly if the input and output are the same di-

mension:

𝑦 = 𝐹 (𝑥, {𝑊𝑖}) + 𝑥
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Figure 3-5: One block of the ResNet architecture.

• The dimensions can different between the input and output, so the network can

either A) perform the same identity mapping but with extra zeros as padding,

or B) the projection shortcut can be used to match dimension using the formula

below:

𝑦 = 𝐹 (𝑥, {𝑊𝑖}) +𝑊𝑠𝑥

Within ResNet-101, each block is 3 layers deep, as shown in Figure 3-6.

3.2.2 Evaluated Model: ResNet-101

The specific model that we used contains 104 convolution layers, 104 batch normaliza-

tion layers, 100 element-wise layers, 1 padding layer, 2 pooling layers, 33 total layers

and 1 flatten layer. The network was originally trained as a classifier, but for gener-

alization on new faces, the final classification layer was removed to turn the network

into an encoder. This encoding gives us a unique vector for each image that is passed

through the network. The network is available for download on the Wolfram Neural

Net Repository [19].

3.3 Training Dataset

The ResNet-101 model was trained on the Augmented CASIA-WebFace dataset [27].

The original dataset, CASIA-WebFace, is a collection of 494,414 facial photographs

42



Figure 3-6: Summary graphic of ResNet-101 Trained on Augmented CASIA-WebFace
Data.

of 10,575 subjects. Additionally, a far greater per-subject appearance was achieved

by synthesizing pose, shape and expression variations from each single image.

3.3.1 CASIA-WebFace Dataset

The original CASIA-WebFace dataset has a racial distribution of 84.5% Caucasian,

2.6% Indian, 1.6% East Asian, 11.3% Black as shown in Figure 3-7.

Figure 3-7: Racial breakdown of CASIA-WebFace dataset.

43



Table 3.1: Verification Accuracy of ResNet-34 on RFW [44]
Training
Database

LFW
Accuracy (%)

Race Verification
Accuracy (%)

Caucasian Asian Indian Black
Casia WebFace [45] 99.40 92.15 83.98 88.00 84.93

Previous studies have compared how a ResNet-34 model trained on Casia-WebFace

[45] has performed for different races using the RFW dataset [44]. In terms of verifica-

tion accuracy, the model performs the best on Caucasian faces (92.15%) and performs

the worst on East Asian faces (83.98%). The results are summarized in Table 3.1.

3.3.2 Augmented CASIA-WebFace

To enlarge the dataset, additional images were synthesized by varying the pose, shape

and expression of existing images.

Pose

To synthesize variations of pose for a face image, researchers first applied a landmark

detector to pinpoint certain facial features. Given these landmarks, one can then

estimate the six degrees of freedom pose for the face using correspondences between

detected landmarks in a 2D space and points labeled on a 3D generic face model.

After creating the face model, one can render novel pose variations, as shown in

Figure 3-8.

Figure 3-8: Adding pose variation by synthesizing new viewpoints.

Note, these new faces are rendered on a black background as the original back-

ground is not preserved during rendering.
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3D Shape Variation

3D shape variation is similar to pose synthesis, where given a 2D face, one can project

the face onto a 3D model to create new photos at different angles. However, instead

of simply choosing different angles, researchers chose 10 different 3D face shapes to

project onto, greatly expanding the number of images per identity.

Expression

For expression, researchers synthesized expression variations specifically reducing de-

formations around the mouth. Given the 2D detected landmarks, one can fit images

to 3D generic face models with expressions such as mouth-opened, mouth-closed, and

smile. Some slight artifacts are created with this method, however it does not alter

the general facial appearances and are less pronounced than noise often present in

large image databases.

Final Model

The final trained model with the augmented dataset has a 98.06% accuracy on LFW

and a 100% Equal Error Rate.

3.4 Evaluation Metric

In order to most closely resemble the results of the human study of recognition on de-

graded datasets, we chose to work with an open-set evaluation metric. More precisely,

we were interested in how the network clusters images based on its encoding.

3.4.1 Recognition Percentage

The images were passed into the ResNet-101 model and encoded, which transforms

an image into a vector within a vector space that preserves high quality clustering

for similar images that are within the training distribution. An overly-simplified two-

dimensional caricature is shown in Figure 3-9 to help the reader visualize the encoding
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Figure 3-9: Identities Encoded to 2D Vector Space Generalization

with ideal theoretical clustering. From these encodings, we were able to assess the

accuracy and consistency of the network for each degraded dataset.

Classifying an image

Figure 3-10: Individual Image Classification: In this example, we calculate the dis-
tance between 𝐶1 and 𝐵5 and 𝐶1 and 𝐶2. 𝐶1’s identity classification would be 𝐶,
𝐴1’s would be 𝐵, 𝐵1 would be 𝐵 and so on.

For a given image, we calculated the Euclidean distance from the image to all

of the other images of that individual and averaged the result. Then we took that

same image and calculate the Euclidean distance to all images of another individual,

and calculated the average of those distances. We continued this process until we
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calculated the average Euclidean distance between the initial image and all images of

all the other individuals as shown in Figure 3-9. If, on average, the image is closer to

the images in its own class, then it is classified correctly (i.e. if a particular image of

Brad Pitt is on average closer to the other images of Brad Pitt than it is to photos

of other celebrities, then that photo will be classified as Brad Pitt). A photo is

misclassified when the image is, on average, closer to the images of another celebrity.

For example, if a particular image of Brad Pitt is, on average, closer to images of

Barack Obama, it would thus be misclassified as Barack Obama. In summary, the

identity that an image is closest to (on average) determines the classification of the

image, where the identity is the group of all images of that identity excluding the one

being assessed.

"Recognizing" an Identity

After finding the identity classification of each image of a certain individual, we

determine an identity as “recognized” when at least 75% of the images of the individual

are classified correctly according to the ground truth. This threshhold measure of 75%

arises from research standards from brain and cognitive science, on which much of

this research is based [46].

47



48



Chapter 4

Experiment and Results

4.1 Experiment 1: Degradations’ Effects on the Net-

work

The goal of this study was to compare the task performance of neural networks to

developmentally-typical adult humans. We compared our results to the previous

human trials where humans identified the name of a celebrity based on an image

of their face [46]. We designed our computational experiment as an analogy to this

celebrity face recognition task by evaluating the ability of a neural network to encode

images of celebrities in a vector space that keeps images of each celebrity closely

clustered together with ideally non-overlapping clusters that represent each celebrity.

4.1.1 Testing Dataset

Our final base dataset, or 𝐷color(0), for this analysis had 97 unique celebrity identities,

each with 19-25 face images. We took these images from the CelebAMask-HQ dataset

[24], which is a large-scale image dataset with 30,000 high-resolution face images

selected from the larger CelebA-HQ dataset. For our experiment, we wanted to

analyze how well the trained model groups the vector encodings of images by identity,

so we needed identities with enough images that a cluster quality score could be

computed; we thus only kept identities with 19 to 25 unique images of them.
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4.1.2 Degraded Datasets

We created 3 sets of degraded datasets from 𝐷color(0). We created a grayscale dataset

(𝐷grayscale(0)), a 21.6° hue shifted dataset (𝐷21.6°(0)), and 180° hue shifted dataset

(𝐷180°(0)) by applying grayscale and hue shift filters to 𝐷color(0). Examples of an

image from each dataset is shown in Figure 4-1. The 21.6° hue shift transforms

images to have a yellow tint which still retains lots of natural human skin colors while

the 180° hue shift transforms images to have a blue tint which does not resemble

human skin tones and is not naturalistic. The 21.6° was chosen since it is the same

hue shift used in the human study [46] which will be used later in the discussion.

We then blurred every image in each of the datasets using a Gaussian blur radius

of 𝑟 and a standard deviation of 𝑟
2

to created new blurred datasets 𝐷*(𝑟). In total,

we generated 60 datasets: 𝐷color(𝑟), 𝐷grayscale(𝑟), 𝐷21.6°(𝑟) and 𝐷180°(𝑟), each with 𝑟 =

0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150.

Figure 4-1: Dwayne "The Rock" Johnson in full color, grayscale, 21.6° hue shift, and
180° hue shift conditions.

4.1.3 The Network’s Performance on Different Levels of Blur

Figure 4-2 summarizes our analysis of the recognition robustness of ResNet-101 on

degraded datasets. The graph shows how the ResNet-101’s “Recognition” performance

changes over different blur radii for full color images, grayscale images, and hue shifted

images (both 21.6° and 180°). Additionally, Figure 4-3 focuses on blur radii of 0 to 60

pixels and shows, with error bars, how the recognition performance changes for each

color degradation over different blur radii. At different blur levels, the neural net

displays interesting “recognition” performances for each of the degradations – these

are discussed in the following subsections.
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Figure 4-2: Line graph of all results for ResNet-101 comparing recognition percentage
vs blur radius.

0 to 35 pixel radius blur

Figure 4-4 shows an example of images blurred from 0 to 35 pixels. For this range of

blur, we see that the model’s performance on full color, grayscale and the 21.6° hue

shifted images is statistically the same. Additionally, its performance on the 180° hue

shift was significantly worse than on full color, for this range of blur. This behavior is

similar to the human study, where human subjects performed similarly well on color,

hue shift and grayscale images at a high resolution, with an exception for the worst

color hue shift.

36 to 80 pixel blur radius

Figure 4-5 shows an example of images blurred from 35 to 80 pixels. In this range

of blur, the performance on full color is still statistically the same as on the 21.6°

hue shift. We also see that the performance on grayscale and 180° hue shifted images

are statistically the same. However, a difference now is that the grayscale performs

significantly worse than the full color images.
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Figure 4-3: Bar chart of all results for ResNet-101 comparing recognition percentage
vs blur radius.

Figure 4-4: Dwayne "The Rock" Johnson blurred from 0 pixels to 35 pixels with
increasing intervals of 5 pixels.

81 and beyond pixel blur radius

Figure 4-6 shows an example of images blurred from 80 to 170 pixels. At this level

of blur, the model performs identically on all of the degradations, between 0% and 5%.

4.1.4 Comparing Humans and ResNet-101

Next, we aimed to compare our network results to the human results from Sinha 2002

[46].

Converting Human Results to Gaussian Blur

The first step in standardizing our results with those from Sinha 2002 [46] was to scale

“cycles between the eyes” to Gaussian blur radius. One cycle is equal to 2 pixels, so

this is essentially a measure of the distance between the eyes in a given image. For
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Figure 4-5: Dwayne "The Rock" Johnson blurred from 35 pixels to 80 pixels with
increasing intervals of 5 pixels.

Figure 4-6: Dwayne "The Rock" Johnson blurred from 80 pixels to 170 pixels with
increasing intervals of 10 pixels.

the human experiment, the researchers scaled down the images so that there was a

certain number of cycles between the eyes and used Photoshop to blur images so

that it minimized the distance between the scaled-up image and the blurred image.

For this study, we found the average cycles of the eyes for all of the faces in our

dataset. Celeb-A-Mask-HQ provides masks for different parts of the face, and we

used the masks for the right and left eyes to find the number of pixels between the

center of the eyes. The next step was to apply the same amount of Gaussian blur,

corresponding to cycles between the eyes as done in the human study. To do this, we

first resized our images to smaller images and then enlarged them to get the correct

cycles between the eyes. Then we applied different radii of Gaussian blur to find the

radius which minimized the image distance of the enlarged version of the face as seen

in Figure 4-7. This follows the same methodology as in Sinha 2002 [46] and allows us

to directly compare the blur from the human study to our results.

Figure 4-7: Re-scaled images vs corresponding image distance minimizing radius
Gaussian blur.
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Comparison between Humans and ResNet-101

In Figure A-1, we directly compared each degradation from the human study to

the corresponding degradation from our results. For full color, 21.6° hue shift and

grayscale images, the recognition performances display the same characteristics and

are monotonically decreasing. We also see that humans performed better than the

trained model. It’s difficult to directly compare the recognition accuracies as the

methods of quantifying accuracy are not the same. Additionally, we can characterize

the model’s recognition performance curve and the human subjects’ curve as decreas-

ing logistic functions as shown in Figure A-1. We see that for full color and grayscale

images, the human logistic function is essentially shifted about 5 to 10 pixels to the

right of the model’s curve. The curves for humans and for the model does not align

nearly as well for the 21.6° hue shift. This suggests that for full color and grayscale

images, the ResNet-101 model trained on augmented data can serve as an accurate

tool which resembles humans’ ability to recognize.

4.2 Experiment 2: Degradations’ Effects on Differ-

ent Races and Genders

The goal of this experiment was to compare the performance of the network for

different races.

4.2.1 Testing Dataset

We noticed that many of the datasets that are publicly available contain lots of noise,

so we handcrafted a dataset of 102 individuals with 20 front facing photos each.

Similar to the previous experiment, we needed enough images of each identity in

order to calculate the cluster quality score. Additionally, we balanced the dataset by

race and gender and selected celebrities in between the age range of 20 and 55. In

terms of race, we chose to work with Black, East Asian and White identities.
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4.2.2 Degraded Datasets

Instead of creating 3 sets of degraded datasets, we expanded the range of hue shifted

values by choosing from 36𝑖∘ where 𝑖 ranges from 0 to 10. This gives us tints from

the full color spectrum as shown in Figure 4-8. Additionally, we created a grayscale

dataset as in the original experiment. After collecting all of these faces, we cropped

the images tightly around the face.

Figure 4-8: Hue shifts ranging from 0∘ to 324∘, shifted by 36∘ from each other.

4.2.3 The Network’s Performance on Different Races

The results from this experiment was surprising given the prior research done in this

field. Usually White identities perform better overall followed by East Asian and then

Black identities. However, the results for the different degradations did not follow

this trend.

Full Color Results

We found that overall, East Asian identities performed the best, with Black identities

performing second best and White identities performing the worst at full color as blur

increases (also shown in Figure 4-9). In terms of race and gender, at full color and

between 0px to 60px of blur, we found that Black and East Asian men perform the

best overall while White and Black women perform the poorest in terms of recognition

as shown in Figure B-1. After 60px of blur, Black women perform the poorest in terms
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Figure 4-9: Line graph of ResNet-101’s performance on each race as blur increases
for full color.

of recognition (recognition goes to 0% by 80px of blur) and East Asian men perform

the best in terms of recognition.

Grayscale Results

For grayscale, East Asian identities continued to have the best performance through-

out all levels of blur, followed by Black identities and then White identities as shown

in Figure 4-10. At around 80px of blur, Black and White identities perform similarly

and at 100px of blur all of the race perform poorly. Within each gender and race,

White women perform the poorest until 60px of blur and East Asian men perform

the best until 60px of blur as shown in Figure B-2. After 80px of blur, there is enough

noise to not be able to accurately report the results.

Hue shift results

Unsurprisingly, throughout all of the hue shifts, the same pattern as the full color and

grayscale results occur as shown in Figure 4-11. Throughout all of the hue shifts, East

Asian men, Black men and East Asian women were the top 3 performers, usually in

this order as shown in Figure B-3. At hue shift of 216∘, East Asian women surpassed
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Figure 4-10: Line graph of ResNet-101’s performance on each race blur increases for
grayscale.

Black men at lower levels of blur (below 50px of blur), but overall the performances

stayed in the same order (East Asian men, Black men, East Asian women) for these

subgroups. White women performed the poorest for all hue shifts at low levels of

blur, usually followed by White men and then Black women.

Worst performing hue shifts per race

We wanted to see if there was any significance in the hue shifts that made each race

perform the worst. For White, Black and East Asian identities, the hue shifts that

resulted in the worst performance was 108∘, 216∘, and 108∘ respectively. The worst

case tints are also shown in Figure 4-12. This follows similar results to experiment 1,

where drastic hue shifts, like changing natural skin tones to green or blue, resulted in

the worst performance of the network.

How does hue shift affect recognition?

In seeing the results over all of the hue shifts for the different demographic subgroups,

we found that the accuracy differed wildly for some subgroups, and not as much for

others. For the hue shifts, we calculated the standard deviation of the accuracy for
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Figure 4-11: Line graph of ResNet-101’s performance on each race blur increases for
full color, grayscale and hue shift of 180∘.

Figure 4-12: The worst case hue shifts for White, Black and East Asian identities.

each race for all of the hue shifts at each point in blur as shown in Figure 4-13. All

of the identities’ standard deviations peak 40px to 50px of blur and then decrease

significantly after that. White and Black identities’ standard deviations of recognition

performance peak at around 17%, while East Asian identities peak at around 12%

indicating that East Asian identities were slightly less affected by hue shift in general.

Overall, it seems that hue does not affect recognition performance at low levels of blur

(< 20%) but rapidly becomes more important in detecting faces at 30px to 40px of

blur. After around 60px of blur, the standard deviation decreases again, indicating

that the network has an equally poor performance for all of the hue shifts. This is
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also reinforced by how the performance curves level off at around 0% to 20% after

60px of blur as shown in Figure 4-9.

Figure 4-13: The standard deviation in performance over all of the hue shifts for each
race.

4.3 Discussion and Conclusions

4.3.1 Experiment 1: Network’s Overall Performance

The neural network used in this experiment was trained on full color images, so we

expected to see the model perform worse on any kind of hue shift and grayscale degra-

dation. However, that is not exactly reflected in the results, as the 21.6° hue shifted

images never significantly under-performed in comparison to the full color images as

shown in Figure 4-3. For humans, Sinha hypothesized that color may contribute to

recognition primarily by facilitating low-level image analysis tasks, such as segmen-

tation of different parts of the face, rather than providing diagnostic information,

like eye color [46]. For the model, the same applies for the 21.6° hue shift. How-
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ever, the 180° hue shift did significantly affect the model’s ability to recognize, which

contradicts the idea that color (even if hue shifted) is needed for low level tasks.

However, this suggests that natural color is important to the network’s recognition

performance, and that simply having a colored image does not necessarily contribute

to better facial recognition. This also suggests that the original color of the faces are

represented in each image’s vector encoding in some way.

The similarities in the human trials and the model trials for full color, grayscale

and 21.6° hue shift also leads us to wonder how humans would perform on facial

recognition tasks that utilized 180 degree hue shifted images. It might be the case

that naturalistic color is important for humans as well in recognizing faces, and further

work could include a human trial along different levels of hue shift.

The idea that naturalistic color is important at higher levels of blur has further

implications for downstream usage of these networks. In the security aspect of facial

recognition, a simply hue shift or grayscale degradation on low resolution data has

the ability to significantly affect recognition performance. Some examples of when

this could occur is trying to determine the identity of someone from low resolution

black and white security camera footage.

There are some limitations to our study. First, the diversity of this testing dataset

is limited: the dataset was mostly Caucasian faces with an even split between male

and female genders. Additionally, the human experiment used in comparison with

our results was performed in 2002 with limited data and limited participants. It

would be ideal to collect more human data from a wider range of participants using

the same dataset we used for the face recognition system. In terms of neural network

architectures, further work could include a wider range of neural networks such as

FaceNet [37] and CLIP [34]. Finally, similar work with different degradations (such

as line drawings of human faces as shown in Figure 2-9) would be worth studying

with a similar methodology as the one defined in this paper.

60



4.3.2 Experiment 2: Network’s Performance on Demographic

Subgroups

The neural network used in this experiment was trained on mostly White faces (84.5%

White), so we expected the network to perform the best on White identities. How-

ever, the performance curve for White identities was the poorest overall and best for

East Asian identities, which consisted of 1.6% of the dataset. This could be due to a

multitude of factors. The first is that there simply was not enough data per demo-

graphic subgroup. There are not many publicly available datasets that have around

20 facial images per identity and are grouped in this manner. On top of that, there

are not many publicly available datasets which are diverse and have these qualities

and are diverse.

Another reason for why the network performed in this order for the different races

might be the contrast of hair color against skin tone. For both Black and East Asian

folks, the color of their hair is much darker than their skin tone, which adds an extra

high contrast facial feature to look for at high levels of blur. On the other hand,

for White identities, their hair color is a bit lighter and can sometimes get blurred

away. An example of the three women of each race at 40px blur is shown in Figure

4-14, and one can see how prominently eyebrows stand out against skin tone. This

idea might also explain why men in general also have a higher accuracy score as their

eyebrows tend to be thicker and more prominent than eyebrows of women, allowing

the facial feature to survive blurring. This idea that eyebrows play an integral role in

recognition is a similar phenomenon among humans, as mentioned in Section 2.2.2.

The next step in this experiment would be to create this dataset of faces without

eyebrows and test the network’s performance on the dataset and see how each race

and gender performs accordingly. From there, it would be insightful to compare those

results with those of humans to pinpoint similarities and differences.

Part of the experiment in addition to characterizing the network’s performance

was simply collecting diverse data. Next time, we would like to collect more diverse

identities across the world or expand upon some of the work that has already been
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Figure 4-14: Example images of each race at the critical 40px blur.

done. Many datasets generally include Indian identities as well and it would have

been interesting to see the recognition performances on this race in addition.
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Chapter 5

Conclusion

The project has presented an overview of the transformation tolerance of current state

of the art systems and the current demographic biases that exist in these systems to-

day (Chapter 2) as well as tested a state of the art system on common degradations

amongst different races (Chapter 3 and 4). This project aimed to link two simi-

lar but independent fields, neuroscience and artificial intelligence, to draw stronger

conclusions about each other and about face recognition technology.

In our first experiment, our main results are that natural human tones are impor-

tant to the ResNet-101 model’s ability to recognize and group human faces together

at high levels of blur, which resembles the features necessary for humans to recog-

nize faces. In our second experiment, we found a demographic bias leaning towards

East Asian identities and against White identities at high levels of blur, which sways

against popular demographic bias research today.

These results have implications on current widely available networks; simple degra-

dations of hue and blur have the ability to destroy a network’s ability to recognize

faces at similar accuracy levels as humans. Numerous industries already are relying

on facial recognition, from security to criminal justice, even though there are simple

ways to destroy the credibility of these systems. Lastly, if the ResNet-101 model is

in fact analogous to a human’s ability to recognize faces, further work with humans

and different hue shifts should be performed to understand how color truly plays a

role in human face recognition.
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Appendix A

Human vs Network’s Accuracy

Performance
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Figure A-1: ResNet-101 vs Human results for full color, 21.6° hue shifted and grayscale
images Gaussian blurred at different levels.
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Appendix B

Network’s Accuracy Performance

Comparing Race and Gender

Figure B-1: ResNet-101’s performance for all races and genders at full color.
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Figure B-2: ResNet-101’s performance for all races and genders at grayscale.

Figure B-3: ResNet-101’s performance for all races and genders at a 180∘ hue shift.
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Appendix C

Network’s Accuracy Performance

Comparing Different Degradations

Per Race

Figure C-1: ResNet-101’s performance for all of the degradations for White identities.
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Figure C-2: ResNet-101’s performance for all of the degradations for Black identities.

Figure C-3: ResNet-101’s performance for all of the degradations for East Asian
identities.
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