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Abstract

Mixtures of Gaussians (GMMs) are one of the most commonly used statistical models.
They are typically used to model data coming from two or more heterogenous sources
and have applications in a wide variety of fields including statistics, biology, physics and
computer science. A fundamental task at the core of many of these applications is to
learn the parameters of a mixture of Gaussians from samples. Starting with the seminal
work of Karl Pearson in 1894 [81], there has been a long line of work on this problem
[32, 6, 93, 48, 63, 78, 59, 49, 46, 39, 13, 65].

Despite extensive work, several important questions have remained open for decades.
We address two of those here. First, we study the problem of clustering in polynomial
time, in terms of both the dimension 𝑑 and number of components 𝑘. While an exponential
dependence on 𝑘 is necessary for learning in the worst case, it is possible to achieve a better
dependence if one assumes that the components are clusterable. More precisely, for a mixture
of 𝑘 isotropic Gaussians in R𝑑, as long as the means are separated by Ω(

√
log 𝑘), then it is

information-theoretically possible to cluster and learn the parameters in polynomial time.
Despite recent advances [67, 55, 46], existing polynomial time algorithms all require a larger
separation of Ω(𝑘𝛿) for some 𝛿 > 0. In this work, we give an algorithm that has runtime and
sample complexity poly(𝑘, 𝑑) and provably works with essentially minimal separation.

Second, we seek to address robustness. In particular, real data generally does not come
from a distribution that is exactly a mixture of Gaussians, but rather a distribution that is
close to a mixture of Gaussians. To address this, we consider a more challenging setting,
that is now ubiquitous in the field of robust statistics, where an 𝜖-fraction of the datapoints
may be arbitrarily altered, potentially adversarially. There has been a flurry of recent work
towards developing robust algorithms for learning mixtures of Gaussians [39, 13, 65], but
these results all require restrictions on the class of mixtures considered. In this work, we
give an algorithm that attains provable robustness guarantees and works in full generality.

Thesis Supervisor: Ankur Moitra
Title: Norbert Wiener Professor of Mathematics, MIT
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Chapter 1

Introduction

1.1 Background

Mixtures of Gaussians (GMMs) are one of the most enduring, well-weathered models of ap-

plied statistics. First introduced by Karl Pearson in his seminal work in 1894 [82], since then,

GMMs have found a wide variety of applications spanning statistics, biology, physics and

computer science. Formally, a mixture of Gaussiansℳ with 𝑘 components (abbreviated 𝑘-

GMM) in 𝑑 dimensions is a distribution specified by 𝑘 non-negative mixing weights 𝑤1, . . . , 𝑤𝑘

which sum to 1, and 𝑘 component 𝑑-dimensional Gaussians 𝑁(𝜇1,Σ1), . . . , 𝑁(𝜇𝑘,Σ𝑘) where

𝑁(𝜇𝑖,Σ𝑖) denotes a Gaussian with mean 𝜇𝑖 and covariance Σ𝑖. The probability density

function of the mixtureℳ is given by

ℳ =
𝑘∑︁

𝑖=1

𝑤𝑖𝑁(𝜇𝑖,Σ𝑖) .

In other words, to draw a sample fromℳ, we select the 𝑖-th component with probability 𝑤𝑖,

and then draw an independent sample from 𝑁(𝜇𝑖,Σ𝑖). Henceforth, we will use 𝑘 to denote

the number of components and 𝑑 to denote the dimension of the space.

Typically, GMMs are used to model data that may come from several possible sources,

e.g. subpopulations within a population. The data from each source is modeled by a single
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Gaussian, corresponding to a component in the mixture. Usually, the data we receive is

unlabelled and mixed between the various sources. Given this unlabelled data, a question

that often arises is what can we learn about the components of the original mixture? There

are myriad of possible approaches to this problem. However, many early approaches were

heuristic or only asymptotic in nature i.e. it is not clear how many samples they require to

learn the components up to some desired accuracy or whether the estimates can be computed

efficiently. In a seminal work, Sanjoy Dasgupta [32] introduced the problem to theoretical

computer science and asked:

Is there an efficient algorithm for provably learning the parameters of the mixture?

1.2 The Method of Moments

Over the past few decades, there has been extensive work on learning GMMs. The method of

moments is a general framework for learning latent variable models, dating back to Pearson’s

work in 1894 [82], that has been at the heart of many advances [64, 79, 21, 53, 67, 55, 46,

39, 44]. At a high-level, the method of moments proceeds as follows. Given samples from

an unknown distribution ℳ, we can estimate the moments E𝑥∼ℳ[𝑥𝑡] empirically, using

the samples. We refer to 𝑡 as the degree of the moment; note that 𝑡 = 1 corresponds to

the mean and 𝑡 = 2 is related to the variance, while higher degree moments contain more

precise information about the tails of the distribution. On the other hand, if we knew the

true parameters of the distribution ℳ =
∑︀𝑘

𝑖=1𝑤𝑖𝑁(𝜇𝑖,Σ𝑖), we could write the moments as

explicit polynomials in terms of the parameters. We could write

E
𝑥∼ℳ

[𝑥𝑡] = 𝑄𝑡({𝑤𝑖}, {𝜇𝑖}, {Σ𝑖})

for some polynomial 𝑄𝑡. In fact, we can explicitly compute these polynomials 𝑄𝑡. Thus, to

learn the parameters, it suffices to empirically estimate some number of moments and then

set up and solve a polynomial system of equations for the unknowns {𝑤𝑖}, {𝜇𝑖}, {Σ𝑖}. Of

course, there are still many complications to deal with. It is necessary to analyze the stability
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of this system as we only have polynomially many samples and thus can only estimate the

moments of ℳ to a certain accuracy. Also, it is necessary to give an efficient algorithm for

solving this polynomial system as generic methods would require exponential time. Most

importantly, to learn the true parameters, we need to argue about the uniqueness of solutions

to this polynomial system – we need to prove that any valid solution for the unknowns must

be close to the true parameters. In other words, we need to prove identifiability – that any

two mixturesℳ,ℳ′ that are close on a certain number of moments must actually be close

in their parameters. It turns out that a proof of identifiability is at the heart of virtually all

parameter learning algorithms.

Over the decades, progress on learning GMMs has generally relied on gaining a better

understanding of a few fundamental questions concerning identifiability. Firstly, how many

moments are necessary for identifiability? Since we only have polynomially many samples

and runtime, we can only afford to estimate a finite number of moments. Furthermore, high-

degree moments also require more samples to estimate to good accuracy. Thus, it is crucial

that learning algorithms and their associated proofs of identifiability only require a bounded

number of moments. Understanding the trade-offs between the number of moments being

used and the sample complexity and computational efficiency is at the core of improving

algorithms for learning GMMs.

Secondly, how strong is the quantitative relationship in the identifiability? To get an

algorithm with polynomial sample complexity, it is necessary to prove a polynomial relation-

ship for the distance between the moments of two mixturesℳ,ℳ′ and the distance between

their parameters. This polynomial relationship may depend on 𝜖 (the accuracy), 𝑘 and 𝑑.

On the other hand, we can view this relationship as the “robustness" of the algorithm. It

roughly governs how much the moment estimates can be perturbed while still guaranteeing

to learn the parameters. If one hopes to develop robust algorithms (in a sense that will be

more precisely specified in Section 1.4.1), it is important to prove quantitatively stronger

forms of identifiability where the quantitative relationship does not depend on the dimension

𝑑.
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With these overarching questions in mind, we now delve into more concrete learning goals

and discuss our contributions.

1.3 Clustering

Many early works on learning GMMs were based on clustering i.e. grouping the samples

into which component generated them [34, 6, 93, 3, 26, 68]. Formally, given 𝑛 independent

samples {𝑋1, . . . , 𝑋𝑛} drawn from an unknown 𝑘-GMM, the goal of clustering is to recover

a partition of the data into 𝑘 parts 𝑆1, . . . , 𝑆𝑘 so that each part corresponds to exactly one

component of the original mixture and contains essentially all of the samples generated from

that component.

Of course, clustering is only possible if one assumes that there is some separation be-

tween the components. An overarching theme in clustering is to understand what separation

assumptions are necessary and how these assumptions affect the sample complexity and ef-

ficiency of clustering algorithms. We focus on an important special class of GMMs, namely

isotropic GMMs (also sometimes called spherical), where all of the covariances are equal

to the identity matrix i.e. Σ1, . . . ,Σ𝑘 = 𝐼. In this case, separation between components

amounts to separation between their means. In other words, we assume ‖𝜇𝑖 − 𝜇𝑗‖2 ≥ ∆ for

all 𝑖 ̸= 𝑗 for some parameter ∆. The question now becomes how small can we take ∆ so

that we can still cluster?

1.3.1 Separation Assumptions

Even isotropic GMMs have proven to be remarkably complex and there is a rich literature

on clustering algorithms for this case. Information-theoretically, it is known (see e.g. [84])

that ∆ = Θ(
√
log 𝑘) is both necessary and sufficient (as long as the mixing weights are lower

bounded by say 𝑤𝑖 ≥ 1/poly(𝑘)). However, the landscape becomes more complicated if we

ask for efficient algorithms i.e. sample complexity and runtime poly(𝑘, 𝑑). The first note-

worthy algorithmic result by Dasgupta in 1999 [32] gives a polynomial time algorithm when
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the separation is at least Ω(
√
𝑘). Follow-up works [6, 93] improve the required separation

to Ω(𝑘1/4). These works can be viewed as using only degree-2 moment information – the

algorithms use only very simple low-degree tests to cluster the data.

Recent advances [67, 55, 46], based on the sum-of-squares hierarchy, make further im-

provements. Their algorithms have sample complexity and runtime poly(𝑑1/𝛾, 𝑘) when the

separation is ∆ = Ω(𝑘𝛾) for some 𝛾 > 0. These works can be viewed as using degree-

1/𝛾 moment information to cluster down to separation ∼ 𝑘𝛾. Unfortunately, if we wish

to achieve the optimal separation of Ω(
√
log 𝑘)—or indeed, any polylogarithmic amount of

separation—these algorithms would require quasipolynomial runtime and sample complexity.

The barrier at quasipolynomial time The previously mentioned algorithms all get

stuck at quasipolynomial time when ∆ = Θ(poly(log 𝑘)) for the same reason. Fundamentally,

they all rely on the following geometric identifiability fact:

Given enough samples from an isotropic 𝑘-GMM with separation ∆ = Ω(𝑘𝛾), then

any sufficiently large subset of samples whose empirical moments of degree up to

𝑡 = Θ(1/𝛾) approximately match those of a standard Gaussian must essentially

recover one of the true clusters.

Algorithmically, this amounts to finding a subset of points whose empirical 𝑡-th moment

tensor is close to that of a standard Gaussian (i.e. 𝑁(0, 𝐼)) in the appropriate norm. Since

this results in a computationally hard optimization problem whenever 𝑡 > 2, these algorithms

often solve some suitable relaxation of this using e.g. the sum-of-squares hierarchy. Crucially

though, as the separation decreases, the number of moments that must be matched grows. In

particular, to achieve ∆ = Θ(poly log 𝑘), one must set 𝑡 = poly log 𝑘, that is, one must match

polylogarithmically many moments. However, even writing down the degree 𝑡 = poly log 𝑘

moment tensor requires quasipolynomial time, and guaranteeing that the empirical moment

tensor is a reasonable approximation to the truth requires quasipolynomially many samples.

As a result, the aforementioned algorithms all require quasipolynomial time and sample
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complexity, as they need to not only write down the moment tensor, but perform some fairly

complex optimization tasks on top of it.

On the flip side, there is no concrete reason for pessimism either. While there are lower

bounds against large classes of efficient algorithms for clustering mixtures of arbitrary Gaus-

sians, see e.g. [45, 25], none of these apply when the components are isotropic. In particular,

this leaves open the appealing possibility that one could even cluster down to separation

∆ = Θ(
√
log 𝑘) in polynomial time. Stated another way:

Can we cluster any clusterable mixture of isotropic Gaussians in polynomial time?

Our Results In this work, we (almost) resolve this question in the affirmative. Namely,

for any constant 𝑐 > 0, we give an algorithm which takes polynomially many samples

and time, and which can cluster with high probability, so long as the separation satis-

fies ∆ = Ω(log1/2+𝑐 𝑘). In other words, our algorithm can almost match the information

theoretically optimal separation, up to sub-polylogarithmic factors. The main conceptual

contribution of our work that allows us to circumvent the quasipolynomial barrier for pre-

vious algorithms is a novel way to implicitly access degree 𝑡 = 𝑂(log 𝑘/ log log 𝑘) moment

information with polynomially many samples and time. We do so by carefully constructing

an implicitly maintained projection that maps moment tensors living in a 𝑑𝑡-dimensional

space (which are too large to store naively) down to a 𝑘-dimensional subspace, while still

preserving all of the necessary information about the components. In other words, we still

need to use moment information of degree ∼ log 𝑘 but develop a novel way to process this

information that requires only polynomial sample complexity and runtime. More broadly,

we believe that our techniques for implicitly representing and manipulating moment tensors

may have further applications in speeding up other moment-based algorithms such as for

tensor decomposition [57, 75, 85, 56] and refuting random CSPs [83]. Our main result for

clustering GMMs is stated below.

Theorem 1.3.1 (Informal). Let 𝑐 > 0 be fixed but arbitrary. Let ℳ be a mixture of 𝑘

isotropic Gaussians in R𝑑 with minimum mixing weight lower bounded by 1/poly(𝑘), and
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minimum mean separation at least ∆ = Ω(log1/2+𝑐 𝑘). Then, there is an algorithm which,

given samples 𝑋1, . . . , 𝑋𝑛 ∼ℳ for 𝑛 = poly(𝑘, 𝑑), outputs a clustering which is correct for

all of the points, with high probability. Moreover, this algorithm runs in time poly(𝑑, 𝑘).

We briefly remark that we can handle arbitrary mixing weights as well, but for simplicity

we only state the theorem here in the more natural regime where all the mixing weights are

not too small. Our results and proofs are discussed in more detail in Chapter 2. Our main

theorem for clustering is stated formally in Theorem 2.2.5. We also generalize our result

beyond GMMs to mixtures of translates of a distribution satisfying the Poincaré inequality

under a mild additional condition (see Theorem 2.2.3).

1.4 Learning without Clustering

Given samples from an unknown GMM, clustering is a natural goal. Unfortunately, clustering

may be asking for too much – when the components of a GMM overlap with each other,

clustering is no longer possible. Nevertheless, we may still hope to learn the parameters of the

mixture, namely the weights 𝑤1, . . . , 𝑤𝑘 and means and covariances 𝜇1, . . . , 𝜇𝑘,Σ1, . . . ,Σ𝑘,

even when the components overlap. In this vein, Kalai, Moitra and Valiant [63] gave an

algorithm for learning the parameters of a mixture of two Gaussians that works even if the

components are almost entirely overlapping. Their approach was based on reducing the high-

dimensional problem to a series of one-dimensional problems and exploiting the structure

of the moments in one dimension. In particular, they proved that every one-dimensional

mixture of two Gaussians is uniquely determined by its first six moments. Subsequently,

Moitra and Valiant [78] and Belkin and Sinha [20] were able to give an algorithm for learning

the parameters of a mixture of any constant number of Gaussians in high dimensions. These

algorithms crucially make use of even higher moments along with several new ingredients

like methods for recursively separating out submixtures that are difficult to directly learn

via one-dimensional projections. Compared to clustering, a crucial difference is that these

results assume that the number of components is a constant. In other words, the runtime and
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sample complexity may grow with say 𝑑𝑘 in contrast to the previous section where we ask

for runtime and sample complexity poly(𝑘, 𝑑). Actually, an exponential dependence on 𝑘 is

information-theoretically necessary for learning when the components may overlap [53] and

thus throughout this section, we will treat 𝑘 as a constant and only worry about dependence

on 𝑑.

1.4.1 Robustness

The aforementioned algorithms have a key shortcoming – they break down when the data

does not exactly come from a mixture of Gaussians. In fact in Karl Pearson’s original

application [81], and in many others, mixtures of Gaussians are only intended as an approx-

imation to the true data generating process. The field of robust statistics was launched by

the seminal works of John Tukey [90, 91] and Peter Huber [60] and seeks to address this

kind of shortcoming by designing estimators that are provably robust to some 𝜖-fraction of

their data being altered, potentially even adversarially. The field of robust statistics had

many successes and explicated some of the general principles behind what makes estimators

robust [61, 51]. Provably robust estimators were discovered for fundamental tasks such as

estimating the mean and covariance of a distribution and for linear regression. There are a

variety of types of robustness guarantees but the crucial point is that these estimators can

all tolerate a constant fraction of corruptions that is independent of the dimension. However

all of these estimators turn out to be hard to compute in high-dimensions [62, 22, 52].

Recently Diakonikolas et al. [40] and Lai et al. [70] designed the first provably robust

and computationally efficient estimators for the mean and covariance. They operate under

some kind of assumption on the uncorrupted data – either that they come from a simple

generative model like a single Gaussian or that they have bounded moments. To put this

in perspective, without corruptions this is a trivial learning task because it is possible to

learn the mean and covariance of any distribution with bounded moments by simply using

the empirical mean and empirical covariance respectively. Algorithmic robust statistics has

transformed into a highly active area [42, 29, 15, 66, 41, 55, 67, 73, 86, 43, 14, 30] with many
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successes. Since then, a much sought-after goal has been to answer the following challenge:

Is there a provably robust and computationally efficient algorithm for learning

mixtures of Gaussians? Can we robustify the existing learning results?

There has been steady progress on this problem. Diakonikolas et al. [40] gave a robust

algorithm for learning mixtures of spherical Gaussians. In recent breakthroughs Bakshi and

Kothari [13] and Diakonikolas et al. [39] gave a robust algorithm for learning clusterable

mixtures of Gaussians using the powerful sum-of-squares hierarchy [80]. Building on this,

Kane [65] gave a robust algorithm for learning mixtures of two Gaussians. We note that these

works do place some mild restrictions on the mixing weights and the component covariance

matrices.

1.4.2 Key Challenges

Robust Identifiability As mentioned before, behind every polynomial time algorithm for

learning the parameters of a mixture model is a proof of identifiability. It needs to be proven

that if two mixtures are 𝜖 close on some family of test functions (usually moments), then

they must be poly(𝑑, 𝜖) close in their parameters. This is called polynomial identifiability

[89, 77]. Because this relationship allows a polynomial dependence on 𝑑, the precise choices

for how to measure distance between moments and distance between parameters generally

do not matter.

However we need much stronger bounds when it comes to robust learning problems

where we want to be able to tolerate a constant fraction of corruptions that is dimension-

independent. In particular, we need to prove that for a certain measure of distance, whenever

we have two mixtures that are 𝜖-close on their moments with respect to this distance, then

their parameters must be poly(𝜖)-close. Crucially, this relationship cannot involve depen-

dence on the dimension 𝑑. We will call this robust identifiability. Recall that the non-robust

learning algorithms for mixtures of Gaussians reduce to a series of one-dimensional problems.

Unfortunately this strategy inherently introduces polynomial factors in 𝑑 and it cannot give

what we are after. For the special case of clusterable mixtures of Gaussians, Bakshi and
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Kothari [13] and Diakonikolas et al. [39] proved robust identifiability and their approach

was based on classifying the ways in which two single Gaussians can be very separated (i.e.

have total variation distance close to one). When it comes to the more general problem of

handling mixtures where the components can overlap non-trivially it seems difficult to follow

the same route because we can no longer match components from the two mixtures to each

other and peel them off.

Reasoning About the Sum-of-Squares Relaxation Even if we had proved robust

identifiability in the general case, we would still need to devise an efficient algorithm for

learning the parameters. Recall that at a high-level, we can measure the moments of the

distribution empirically and then set up a polynomial system in the parameters that we are

trying to solve for. To solve this system, we rely on the sum-of-squares (SoS) hierarchy [80]

which is a general framework for relaxing and solving polynomial systems via semidefinite

programming and has been at the heart of recent progress on robustly learning GMMs

[13, 39] and many other problems [17, 18, 58, 19]. Of course, solving polynomial systems in

general requires exponential time so instead SoS solves a relaxation. One view is that the

SoS hierarchy treats each low-degree monomial in the variables as an independent unknown

and then computes a pseudo-expectation which assigns values to these monomials while

enforcing certain consistency constraints. Roughly, the consistency constraints force these

assigned values to, in some vague sense, behave like a real solution i.e. as if we had actually

assigned values to the original variables and simply evaluated the corresponding monomials.

The SoS hierarchy gives a natural way to incorporate systems of polynomial constraints into

a relaxation which can model complex primitives. It can often be used to turn proofs (e.g.

of identifiability) into algorithms. In particular, if we prove some property about the actual

solution to a polynomial system and the proof only uses certain types of allowable steps,

then the proof can be translated into the SoS framework and the same properties must hold

for the pseudo-expectation obtained by solving the SoS relaxation of the polynomial system.

Furthermore, the pseudo-expectation can be efficiently computed. Thus at a high-level, we

can hope to translate our proof of robust identifiability into the SoS framework to deduce a
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sort of robust identifiability of the pseudo-expectation obtained from the SoS relaxation. We

can then extract information about the components of the original mixture from this pseudo-

expectation. Of course, it is often quite challenging to set up the polynomial system in a

way that all of the necessary constraints are enforced and so that the proof of identifiability

can actually be translated into the SoS framework [57, 54]. Previous works [13, 39] have a

comparatively easier task because they can set up the system to find individual components

of the mixture. However, in our setting this is no longer possible and our system must involve

all of the components of the mixture simultaneously. It is clear that we need to exploit the

structure of the moments of a mixture of Gaussians but we cannot reduce to low dimensions

as in [79, 64]. The structure of moments in high dimensions is very complex so how exactly

do we leverage them in our analysis?

Our Results In this work, we solve the question of robustly learning mixtures of Gaussians

in full generality modulo mild assumptions on the mixing weights. We overcome both of the

aforementioned obstacles using the same approach. We store the relevant moments and

variables we would like to solve for in certain generating functions. We use the structure of

the moments of a mixture of Gaussians to write a concise generating function that stores

all of the necessary moment information. Then by manipulating the generating functions

using differential operators to algebraically isolate the parameters of individual components,

we are able to prove robust identifiability. Furthermore, these manipulations are all formal

algebraic manipulations that can be translated into the SoS framework and thus we can

reason about the SoS relaxation of the polynomial system that encodes the parameters that

we want to learn. In particular, we show that from the solution to this SoS relaxation,

we can still extract the parameters of the original mixture. More broadly, learning GMMs

may just be a first step. We believe that our technique of using generating functions and

differential operators to leverage structure in the moments is quite general and could have

further applications for learning other types of latent variable models. Our main result is

stated below.

Theorem 1.4.1. [Informal] Let 𝑘 be a constant. Let ℳ = 𝑤1𝐺1 + · · ·+𝑤𝑘𝐺𝑘 be a mixture
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of Gaussians in R𝑑 whose components are non-degenerate and such that the mixing weights

and TV distances between different components are lower bounded. Given 𝑛 = poly(𝑑/𝜖)

samples from ℳ of which an 𝜖-fraction may be arbitrarily corrupted, there is an algorithm

that runs in time poly(𝑛) and with high probability outputs a set of mixing weights ̃︁𝑤1, . . . ,̃︁𝑤𝑘

and components ̃︁𝐺1, . . . ,̃︁𝐺𝑘 that are poly(𝜖)-close to the true components (up to some per-

mutation).

Our results and proofs are discussed in more detail in Chapter 3. Our main theorem for

robustly learning mixtures of Gaussians is stated formally in Theorem 3.8.3. In Section 3.1.1,

we include a more detailed discussion of the mixing weight assumptions and concurrent work

[11] which obtains similar results and subsequent improvements in [74] and [12].

1.5 Other Related Work

The literature on learning GMMs is vast and here we briefly survey some other lines of work.

There are several lines of work that seek to circumvent the exponential in 𝑘 lower bound of

[53] for learning general mixtures of Gaussians by weakening the learning goal. Firstly, there

are approaches based on tensor decompositions [59, 23, 49] that get poly(𝑘, 𝑑) runtime and

sample complexity and use only moments up to degree 3 or 4 but need to assume that the

parameters are non-degenerate and subject to some kind of random smoothing.

There are also lines of work that consider easier learning goals such as proper or semi-

proper learning, where the goal is to output a mixture of Gaussians which is close to the

unknown mixture in statistical distance (but not necessarily with the same components). A

learning algorithm is said to be proper if its output is a mixture of 𝑘 Gaussians, where 𝑘

is the number of components in the true mixture, and semi-proper if it outputs a mixture

of 𝑘′ ≥ 𝑘 Gaussians. While the sample complexity of proper learning is polynomial in all

parameters, all known algorithms still incur a runtime which is exponential in 𝑘, even in the

univariate setting [47, 36, 2, 72, 8]. When the hypothesis is only constrained to be semi-

proper, polynomial time algorithms are known in the univariate setting [38, 24, 71], but these
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do not extend to high dimensional settings. In the more challenging high dimensional regime,

a remarkable recent result of [44] demonstrate that for a mixture of isotropic Gaussians,

one can achieve semi-proper learning with quasipolynomial sample complexity and runtime.

They do this by explicitly constructing a small cover for the candidate means, by techniques

inspired by algebraic geometry.

An even weaker goal that has been commonly considered is that of density estimation,

where the objective is to output any hypothesis which is close to the unknown mixture in

statistical distance. Efficient (in fact, nearly optimal) algorithms are again known for this

problem in low dimensions, see e.g. [38, 28, 27, 1], but as was the case with proper learning,

these techniques do not extend nicely to high dimensional settings. In high dimensions, there

has been a line of work [10, 9] that focuses on achieving optimal sample complexity even

with robustness. However, these works do not give efficient algorithms as they are based on

discretization and brute-force search, requiring exponential time.

We also mention a line of work studying the theoretical behavior of the popular expectation-

maximization (EM) algorithm for learning mixtures of Gaussians [35, 37, 96]. However, while

the above works can prove that the dynamics of EM converge in limited settings, it is known

that EM fails to converge in general, even for mixtures of three Gaussians [95, 37].
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Chapter 2

Clustering Mixtures of Gaussians

2.1 Overview

In this chapter, we focus on clustering isotropic GMMs. Recall that this means we receive

samples say 𝑋1, . . . , 𝑋𝑛 from an unknown mixture of 𝑘 isotropic Gaussians in R𝑑

ℳ = 𝑤1𝑁(𝜇1, 𝐼) + · · ·+ 𝑤𝑘𝑁(𝜇𝑘, 𝐼)

with some mean separation ‖𝜇𝑖 − 𝜇𝑗‖2 ≥ ∆ and our goal is to group the samples into clusters

corresponding to the component that generated them. Here, we give a polynomial time

algorithm that can cluster with separation that nearly matches the information-theoretic

optimum of Θ(
√
log 𝑘). In particular, for any constant 𝑐 > 0, we give an algorithm that

takes polynomially many samples and time, and which can cluster with high probability, so

long as the separation satisfies ∆ = Ω(log1/2+𝑐 𝑘). This is the first polynomial time algorithm

that works with any poly-logarithmic separation. Our main theorem is:

Theorem 2.1.1. [Informal, see Theorem 2.2.5, Corollary 2.2.6] Let 𝑐 > 0 be fixed but

arbitrary. Let ℳ be a mixture of 𝑘 isotropic Gaussians with minimum mixing weight lower

bounded by 1/poly(𝑘), and minimum mean separation at least ∆ = Ω(log1/2+𝑐 𝑘). Then,

there is an algorithm which, given samples 𝑋1, . . . , 𝑋𝑛 ∼ ℳ for 𝑛 = poly(𝑑, 𝑘), outputs a
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clustering which is correct for all of the points, with high probability. Moreover, this algorithm

runs in time poly(𝑑, 𝑘).

We briefly remark that we can handle arbitrary mixing weights as well, but for simplicity we

only state the theorem here in the more natural regime where all the mixing weights are not

too small. We also remark that a simple corollary of this is that we can also estimate the

parameters of ℳ to good accuracy in polynomial time. In fact, by using our algorithm as

a warm start for the method proposed in [84], we can achieve arbitrarily good accuracy for

parameter estimation, in polynomial time. It is known that ∆ = Ω(
√
log 𝑘) is also necessary

to achieve nontrivial parameter estimation with polynomially many samples [84], so our

results for parameter estimation are also almost-optimal, in terms of the separation that

they handle. We note that our formal theorems are actually stated for parameter estimation,

rather than clustering, however, in light of [84], these two problems are equivalent in the

regime we consider.

Our main technique (as we will discuss in more detail later) extends to beyond Gaussians,

and in fact also allows us to cluster any mixture of translations of a distribution 𝒟, so long

as this distribution satisfies the Poincaré inequality, under a mild technical condition. Recall

that a distribution 𝒟 over R𝑑 is said to be 𝜎-Poincaré if for all differentiable functions

𝑓 : R𝑑 → R, we have

Var
𝑋∼𝒟

[𝑓(𝑋)] ≤ 𝜎2 · E
𝑋∼𝒟

[︀
‖∇𝑓(𝑋)‖22

]︀
.

This condition is widely studied in probability theory, and is satisfied by many natural

distribution classes. For instance, isotropic Gaussians are 1-Poincaré, and any isotropic

logconcave distribution is 𝜓-Poincaré, where 𝜓 is the value of the KLS constant (see e.g. [88]

for an overview of the KLS conjecture).

In fact, the family of Poincaré distributions is the most general family of distributions

for which the SoS-based methods for clustering [67, 55, 46] discussed in the introduction are

known to work. For a mixture of 1-Poincaré distributions, [67] shows that if the minimum

mean separation is ∆ = Ω(𝑘𝛾), then their algorithm successfully clusters the points in time

𝑂(𝑑poly(1/𝛾)). As before, when the separation is polylogarithmic, the runtime and sample
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complexity of their method is once again quasipolynomial.

We show that one can improve the runtime and sample complexity to polynomial time,

under two additional assumptions: first, the mixture must consist of translated versions of

the same Poincaré distribution which we can get samples from, and second, the maximum

and minimum separations between any two components must be polynomially related. More

concretely, we show:

Theorem 2.1.2 (informal, see Theorem 2.2.3, Corollary 2.2.4). Let 𝑐 > 0 be fixed but

arbitrary. Let 𝒟 be a fixed distribution with mean zero over R𝑑 which is 1-Poincaré. Let ℳ

be a mixture of 𝑘 distributions where each component is of the form 𝜇𝑖 + 𝒟. Assume that

the minimum mixing weight in this distribution is at least 1/poly(𝑘), and moreover, assume

that

min
𝑖 ̸=𝑗
‖𝜇𝑖 − 𝜇𝑗‖2 ≥ Ω(log1+𝑐 𝑘)

max
𝑖 ̸=𝑗
‖𝜇𝑖 − 𝜇𝑗‖2 ≤ poly

(︂
min
𝑖 ̸=𝑗
‖𝜇𝑖 − 𝜇𝑗‖2

)︂
.

Then, there is an algorithm which, given samples 𝑋1, . . . , 𝑋𝑛 ∼ℳ and samples 𝑧1, . . . , 𝑧𝑛 ∼

𝒟 for 𝑛 = poly(𝑘, 𝑑), outputs a clustering of 𝑋1, . . . , 𝑋𝑛 which is correct for all of the points,

with high probability. Moreover, this algorithm runs in time poly(𝑑, 𝑘).

Remark. Note that we only need the samples from 𝒟. We do not need to actually know the

distribution or access the p.d.f.

We note that separation Ω(log 𝑘) is optimal for general Poincaré distributions, as Poincaré

distributions include some distributions with exponential tails, for which Ω(log 𝑘) separation

is necessary to cluster. Thus, the separation that we require is almost optimal for gen-

eral Poincaré distributions. We also note that one immediate consequence of this theorem,

alongside Chen’s recent breakthrough result [31] for KLS that 𝜓 ≤ exp(𝐶
√
log 𝑑 log log 𝑑)

for some universal constant 𝐶, and a simple application of PCA, is that we can cluster a

mixture of translates of an isotropic logconcave distribution in polynomial time, as long as

the separation is Ω(exp(𝐶
√
log 𝑘 log log 𝑘)).
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2.1.1 Our Techniques

In this section, we describe how our techniques work at a high level. Our goal will be to

devise a method which can, given samples 𝑋,𝑋 ′ ∼ℳ, detect whether or not 𝑋 and 𝑋 ′ are

from the same components or from different ones.

We first make the following reduction. Notice that ifℳ is a mixture with separation ∆,

then (𝑋 −𝑋 ′)/
√
2 can be thought of as a sample from the difference mixture ℳ′. This is a

mixture with
(︀
𝑘
2

)︀
+ 1 components, each with covariance 𝐼. It has one component with mean

zero, and the means of the remaining components all have norm at least ∆/
√
2. Moreover,

given 𝑋,𝑋 ′ ∼ ℳ, we have that 𝑋 − 𝑋 ′ is drawn from the mean zero component of the

difference mixture if and only if 𝑋,𝑋 ′ were drawn from the same component in the original

mixture. Thus, to check if two samples from the original mixture 𝑋,𝑋 ′ are from the same

component, it suffices to be able to detect, given a sample from the difference mixture,

whether or not this sample comes from the mean zero component or not.

In the remainder of this section, in a slight abuse of notation, we will let ℳ denote the

difference mixture, we will assume it has 𝑘 components with nonzero mean, and we will

assume that all nonzero means of the difference mixture have norm at least ∆. We will

henceforth refer to the components with nonzero mean as the nonzero components of the

mixture. This reparameterization of the problem only changes things by polynomial factors,

which do not impact our qualitative results.

Rough clustering via implicit moment tensors

The main conceptual contribution of our work is a novel way to implicitly access degree

𝑡 = 𝑂(log 𝑘/ log log 𝑘) moment information with polynomially many samples and time. We

do so by carefully constructing an implicitly maintained projection map from R𝑑𝑡 down to

a subspace of dimension 𝑘, which still preserves meaningful information about the nonzero

components. For now, let us first focus on the case where the maximum norm of any

mean in the difference mixture is upper bounded by poly(∆), or equivalently, the maximum

separation between any two components in the original mixture is at most polynomially
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larger than the minimum separation.

Low rank estimators for Hermite polynomials Central to our methods is the 𝑡-

th Hermite polynomial tensor, a classical object in probability theory, which we denote

ℎ𝑡 : R𝑑 → R𝑑𝑡 . These are explicit polynomials, and are the natural analog of the univariate

Hermite polynomials to high dimensions. A well-known fact about the Hermite polynomial

tensor is that

E
𝑋∼𝑁(𝜇,𝐼)

[ℎ𝑡(𝑋)] = 𝜇⊗𝑡 . (2.1)

Throughout the introduction, we will treat all tensors as flattened into vectors in R𝑑𝑡 (in

a canonical way) e.g. we view the RHS of the above as a vector in R𝑑𝑡 . One simple but

important implication of (2.1) is that

E
𝑋∼ℳ

[ℎ𝑡(𝑋)] =
𝑘∑︁

𝑖=1

𝑤𝑖𝜇
⊗𝑡
𝑖 . (2.2)

This fact will be crucial for us going forward.

However, a major bottleneck for algorithmically using the Hermite polynomial tensors

is that we cannot write down ℎ𝑡(𝑋) in polynomial time when 𝑡 gets large, e.g. when 𝑡 =

Ω(log 𝑘/ log log 𝑘), which is the regime we will require.

To get around this, we will use a modification of the Hermite polynomial tensors that

can still be used to estimate the RHS of (2.2) but can also be easily manipulated implicitly.

In particular, we will construct a random polynomial 𝑅𝑡 : R𝑑 → R𝑑𝑡 i.e. we can imagine 𝑅𝑡

is actually a polynomial in 𝑥 whose coefficients are randomly chosen. The polynomial 𝑅𝑡

(constructed in Corollary 2.9.11) satisfies two key properties.

1. 𝑅𝑡(𝑥) is an unbiased estimator for ℎ𝑡(𝑥) with bounded variance i.e. for a fixed 𝑥,

E[𝑅𝑡(𝑥)] = ℎ𝑡(𝑥) where the expectation is over the random coefficients of 𝑅𝑡.

2. For any choice of the randomness in the coefficients, the polynomial 𝑅𝑡(𝑥) can be
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written as a sum of polynomially many rank-1 tensors i.e. tensors of the form

𝑣 = 𝑣1 ⊗ . . .⊗ 𝑣𝑡 , where 𝑣𝑖 ∈ R𝑑 for all 𝑖 = 1, . . . , 𝑡 .

Note that the first property implies that

E
𝑅𝑡,𝑋∼𝑁(𝜇,𝐼)

[𝑅𝑡(𝑋)] = 𝜇⊗𝑡 , and E
𝑅𝑡,𝑋∼ℳ

[𝑅𝑡(𝑋)] =
𝑘∑︁

𝑖=1

𝑤𝑖𝜇
⊗𝑡
𝑖 . (2.3)

The second property is the main motivation behind the definition of 𝑅𝑡, as it implies that we

can have efficient, but restricted access to it. The key point is that if our algorithm can be

implemented with techniques that only require accesses to rank-1 tensors, we can implicitly

access 𝑅𝑡 in polynomial time.

Implicitly finding the span of the tensorized means Motivated by the above discus-

sion, our goal will be to find a projection matrix Π : R𝑑𝑡 → R𝑘 with the following properties:

(i) Efficient application If 𝑣 ∈ R𝑑𝑡 is a rank-1 tensor, then Π𝑣 can be evaluated in

polynomial time.

(ii) Zero component is small If 𝑋 ∼ 𝑁(0, 𝐼), then ‖Π𝑅𝑡(𝑋)‖2 < 𝑘50 with high proba-

bility.

(iii) Nonzero components are large If 𝑋 ∼ ℳ is a sample from a nonzero component

of the difference mixture, then ‖Π𝑅𝑡(𝑋)‖2 ≥ 𝑘100 with high probability.

Given such a projection map, our clustering procedure is straightforward: given two samples

𝑋,𝑋 ′ from the original mixture, we apply the projection map to many copies of 𝑅𝑡((𝑋 −

𝑋 ′)/
√
2), and cluster them in the same component if and only if their projected norm is small

on average. We show that the above properties, as well as some facts about the concentration

of 𝑅𝑡, imply that this clustering algorithm succeeds with high probability, assuming we have

access to Π.
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It thus remains how to construct Π. In fact, there is a natural candidate for such a map.

Let 𝜇1, . . . , 𝜇𝑘 denote the means of the nonzero components, and let

𝑆𝑡 = span
(︁{︀
𝜇⊗𝑡
𝑖

}︀𝑘
𝑖=1

)︁
.

If we could find the projection Γ𝑡 : R𝑑𝑡 → R𝑘 onto the subspace 𝑆𝑡, it can be verified that

this projection map would satisfy Conditions (ii) and (iii).1

Moreover, there is a natural estimator for this subspace. In particular (2.3) implies that

E[𝑅2𝑡(𝑋)] rearranged as a 𝑑𝑡 × 𝑑𝑡 matrix in a canonical way is exactly

𝑘∑︁
𝑖=1

𝑤𝑖

(︀
𝜇⊗𝑡
𝑖

)︀ (︀
𝜇⊗𝑡
𝑖

)︀⊤
.

Notice that this matrix is rank 𝑘, and moreover, the span of its nonzero eigenvectors is

exactly 𝑆𝑡. Consequently, if we could estimate this quantity, then find the projection onto

the span of the top 𝑘 eigenvectors, we would be done.

As alluded to earlier, the difficulty is that doing this naively would not be efficient;

writing down any of these objects would take quasipolynomial time. Instead, we seek to

find an implicit representation of Γ𝑡 with the key property that it can be applied to rank-1

tensors in polynomial time.

We will do so by iteratively building an approximation to this subspace. Namely, we give

a method which, given a good approximation to Γ𝑠−1 : R𝑑𝑠−1 → R𝑘 which can be efficiently

applied to flattenings of rank-1 tensors, constructs a good approximation to Γ𝑠 with the

same property. We do so by obtaining a good approximation to the 𝑑𝑘 × 𝑑𝑘 sized matrix

𝑀𝑠 =
𝑘∑︁

𝑖=1

𝑤𝑖

(︁
𝜇𝑖 ⊗ Γ𝑠−1𝜇

⊗(𝑠−1)
𝑖

)︁(︁
𝜇𝑖 ⊗ Γ𝑠−1𝜇

⊗(𝑠−1)
𝑖

)︁⊤
. (2.4)

1Here and throughout the introduction, we will assume for simplicity of exposition that the vectors
𝜇⊗𝑠
1 , . . . , 𝜇⊗𝑠

𝑘 are linearly independent, for all 𝑠 = 1, . . . , 𝑡, so that 𝑆𝑠 is always a 𝑘-dimensional subspace, for
all 𝑠 = 1, . . . , 𝑡. In general, our algorithms work even if they are not linearly independent, and will always
find a subspace which contains 𝑆𝑡, which will suffice for our purposes.
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Notice that 𝑀𝑠 has rank 𝑘, and moreover, the span of its 𝑘 largest eigenvectors is equal to

the span of
{︁
𝜇𝑖 ⊗ Γ𝑠−1𝜇

⊗(𝑠−1)
𝑖

}︁𝑘

𝑖=1
. Therefore, if we let Π𝑠 : R𝑑𝑘 → R𝑘 denote the projection

onto the span of the 𝑘 largest eigenvectors of 𝑀𝑠, then one can easily verify that

Γ𝑠 = Π𝑠 (𝐼 ⊗ Γ𝑠−1) . (2.5)

Moreover, if Γ𝑠−1 can be efficiently applied to flattenings of rank-1 tensors in R𝑑𝑠−1 , then

the form of (2.5) immediately implies that Γ𝑠 can also be applied efficiently to flattenings of

rank-1 tensors in R𝑑𝑠 .

It remains to demonstrate how to efficiently approximate 𝑀𝑠, given Γ𝑠−1. There is again

a fairly natural estimator for this matrix. Namely, each component of the sum in (2.4) can

be formed by rearranging the length-(𝑑𝑘)2 vector

(𝐼 ⊗ Γ𝑠−1)
⊗2 𝜇⊗2𝑠

𝑖 = E
𝑅2𝑠,𝑋∼𝑁(𝜇𝑖,𝐼)

[︀
(𝐼 ⊗ Γ𝑠−1)

⊗2𝑅2𝑠(𝑋)
]︀
.

into a 𝑑𝑘 × 𝑑𝑘 sized matrix in the canonical way. In particular, this implies that the overall

matrix is the rearrangement of the length-(𝑑𝑘)2 vector

𝑘∑︁
𝑖=1

𝑤𝑖 (𝐼 ⊗ Γ𝑠−1)
⊗2 𝜇⊗2𝑠

𝑖 = E
𝑅2𝑠,𝑋∼ℳ

[︀
(𝐼 ⊗ Γ𝑠−1)

⊗2𝑅2𝑠(𝑋)
]︀

(2.6)

into a 𝑑𝑘 × 𝑑𝑘 sized matrix in the canonical way. Since 𝑅2𝑠 is a sum of polynomially many

rank-1 tensors, and by our inductive hypothesis, Γ𝑠−1 can be efficiently applied to rank-1

tensors, we can efficiently estimate the right hand side of (2.6), given samples fromℳ.

Putting it all together, this allows us to approximate 𝑀𝑠 efficiently given Γ𝑠−1, which,

by (2.5), gives us the desired expression for Γ𝑠. Iterating this procedure gives us a way to

estimate Γ𝑡 as a sequence of nested projection maps, i.e.

Γ𝑡 ≈ Π𝑡 (𝐼 ⊗ Π𝑡−1 (𝐼 ⊗ . . .)) ,

where we can compute Π1, . . . ,Π𝑡 efficiently, given samples from ℳ. This form allows us
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to evaluate Γ𝑡 efficiently on any flattening of a rank-1 tensor, thus satisfying Condition (i),

and we previously argued that Γ𝑡 satisfies Conditions (ii) and (iii). Combining all of these

ingredients gives us our clustering algorithm, when the minimum and maximum separations

are at most polynomially separated.

Implicit moment tensors for Poincaré distributions So far, we have only discussed

how to do this implicit moment estimation for isotropic Gaussians. It turns out that all of the

quantities discussed above have very natural analogues for any Poincaré distribution. For

instance, given any Poincaré distribution 𝒟 with zero mean, there is an explicit polynomial

tensor we call the 𝒟-adjusted polynomial 𝑃𝑡,𝒟 (see Section 2.4) that essentially satisfies all

the same properties that we needed above. If we use these polynomials instead of the

Hermite polynomial tensor, it turns out that all of these proofs directly lift to any Poincaré

distribution. In fact, in the actual technical sections, we directly work with arbitrary Poincaré

distributions, as everything is stated very naturally there. The resulting clustering algorithm

immediately gives us Theorem 2.2.3.

Sample complexity Previous approaches always needed to estimate high degree moment

tensors, and as a result, their sample complexity was quasipolynomial. While we may also

need to estimate fairly high degree polynomials, notice that all quantities that we will deal

with will be polynomially bounded. This is because we can terminate our procedure at any

𝑡 which satisfies Conditions (ii) and (iii). Therefore, all the quantities that we need are

polynomially large. As a result, one can verify that the polynomials we construct will also

only ever have polynomially large range, with high probability. Therefore, all quantities we

need to estimate can be estimated using polynomially many samples. We defer the detailed

proofs outlined in this discussion to Sections 2.4, 2.5, 2.6 and 2.7. Note that in those sections,

we work with a general Poincaré distribution but the outline follows the description here.
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Fine-grained clustering for Gaussians

We now discuss how to handle general mixtures of isotropic Gaussians, without any as-

sumption on the maximum separation. The problem with applying the implicit moment

estimation method outlined above to this general setting is that the signal from the compo-

nents in the difference mixture with relatively small mean will be drowned out by the signal

from the components with much larger norm. Consequently, we can reliably cluster points

from the components with large mean, but we could obtain an imperfect clustering for some

components with somewhat smaller mean, and we will be unable to detect components with

very small mean.

To overcome this, we devise a recursive clustering strategy. One somewhat simple ap-

proach is as follows. We first use our rough clustering algorithm described above to find a

“signal direction” 𝑣 ∈ R𝑑. This direction will have the property that there is a pair of well-

separated means along this direction. Thus, if we project the data points on this direction,

and take only points which lie within a randomly chosen small interval on this interval, we

can guarantee that with reasonable probability, we only accept points from at most half of

the components of the mixture. Of course, after restricting to this interval, the resulting

distribution is no longer a mixture of Gaussians. However, if we consider the projection of

these accepted points to the subspace orthogonal to 𝑣, the resulting distribution will again

be a mixture of fewer isotropic Gaussians. We can then recurse on this mixture with fewer

components. Here, we are crucially using the fact that isotropic Gaussians remain isotropic

Gaussians after slicing and projecting orthogonally.

While this strategy described above, when implemented carefully, would work down to

∆ = poly(log 𝑘), it would not be able to achieve the nearly optimal separation in Theorem

2.2.5. To achieve the nearly optimal separation, there are several more technical details that

need to be dealt with and thus there will be several additional steps in the algorithm. We

defer the details of this to Sections 2.9, 2.10 and 2.11.

34



2.1.2 Related Work

The literature on mixture models—and Gaussian mixture models in particular—is incredibly

vast and has already been discussed in Chapter 1 so we will focus only on the most related

papers here and discuss those in more detail. Our results are most closely related to the

line of work on studying efficient algorithms for clustering and parameter estimation under

mean-separation conditions [33, 35, 7, 94, 46, 55, 84, 67, 44]. There are also a number of

papers also generalize from mixtures of Gaussians to mixtures of more general classes of

distributions [4, 69, 76, 55, 67]. These algorithms fall into two classes: either they require

separation which is at least Ω(𝑘1/2) or even larger, but they can handle general subgaussian

distributions, or they require more structure on the higher moments of the distribution, but

they can tolerate much less separation.

The most general condition under which the latter is known to work is the condition

commonly referred to as certifiable hypercontractivity, which roughly states that the Sum-

of-Squares hierarchy can certify that the distribution has bounded tails. While there is no

complete characterization of what distributions satisfy this condition, the most general class

of distributions for which it is known to hold is the class of Poincaré distributions [67], which

is also the class of distributions we consider here.

We note that our work bears some vague resemblance to the general line of work that uses

spectral-based methods to speed up Sum-of-Squares (SoS) algorithms. Spectral techniques

have been used to demonstrate to speed up SoS-based algorithms in various settings such

as tensor decomposition [57, 75, 85, 56] and refuting random CSPs [83]. Similarly, it has

been observed that in some settings, SoS-based algorithms can be sped up, when the SoS

proofs are much smaller than the overall size of the program [50, 87]. Our algorithm shares

some qualitative similarities with some of these approaches—for instance, it is based on a

(fairly complicated) spectral algorithm. However, we do not know of a concrete connection

between our algorithm and this line of work. It is possible, for instance, that our algorithm

could be interpreted as extracting a specific randomized polynomially-sized SoS proof of

identifiability, but we leave further investigations of this to future work.
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2.2 Formal Problem Setup and Results

In this section, we formally define the problems we consider, and state our formal results.

For the remainder of this paper, we will always let ‖·‖ denote the ℓ2 norm.

2.2.1 Clustering Mixtures of Poincare Distributions

The general problem that we study involves clustering mixtures of Poincare distributions.

We begin with a few definitions.

Definition 2.2.1 (Poincare Distribution). For a parameter 𝜎, we say a distribution 𝒟 on

R𝑑 is 𝜎-Poincare if for all differentiable functions 𝑓 : R𝑑 → R,

Var
𝑧∼𝒟

[𝑓(𝑧)] ≤ 𝜎2 E
𝑧∼𝒟

[‖∇𝑓(𝑧)‖2] .

Definition 2.2.2. Let 𝒟 be a distribution on R𝑑. We use 𝒟(𝜇1) for 𝜇1 ∈ R𝑑 to denote the

distribution obtained by shifting 𝒟 by the vector 𝜇1.

We assume that there is some 𝜎-Poincare distribution 𝒟 on R𝑑 that we have sample

access to. Since everything will be scale invariant, it will suffice to focus on the case 𝜎 = 1.

For simplicity we assume that 𝒟 has mean 0 (it is easy to reduce to this case since we can

simply estimate the mean of 𝒟 and subtract it out). We also assume that we have sample

access to a mixture

ℳ = 𝑤1𝒟(𝜇1) + · · ·+ 𝑤𝑘𝒟(𝜇𝑘)

where the mixing weights 𝑤1, . . . , 𝑤𝑛 and means 𝜇1, . . . , 𝜇𝑘 are unknown. We will assume

that we are given a lower bound on the mixing weights 𝑤min. We consider the setting where

there is some minimum separation between all pairs of means 𝜇𝑖, 𝜇𝑗 so that the mixture is

clusterable. In the proceeding sections, when we say an event happens with high probability,

we mean that the failure probability is smaller than any inverse polynomial in 𝑘, 1/𝑤min.

Our main theorem is stated below.
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Theorem 2.2.3. Let 𝒟 be a 1-Poincare distribution on R𝑑. Let

ℳ = 𝑤1𝒟(𝜇1) + · · ·+ 𝑤𝑘𝒟(𝜇𝑘)

be a mixture of translated copies of 𝒟. Let 𝑤min, 𝑠 be parameters such that 𝑤𝑖 ≥ 𝑤min for all

𝑖 and ‖𝜇𝑖 − 𝜇𝑗‖ ≥ 𝑠 for all 𝑖 ̸= 𝑗. Let 𝛼 = (𝑤min/𝑘)
𝑂(1) be some desired accuracy ( that is

inverse polynomial) 2. Assume that

𝑠 ≥ (log(𝑘/𝑤min))
1+𝑐

for some 0 < 𝑐 < 1. Also assume that

max ‖𝜇𝑖 − 𝜇𝑗‖ ≤ 𝑠𝐶

for some 𝐶. There is an algorithm that takes 𝑛 = poly((𝑘𝑑/(𝑤min𝛼))
𝐶/𝑐) samples from ℳ

and 𝒟 and runs in poly(𝑛) time and with high probability, outputs estimates

̃︁𝑤1, . . . ,̃︁𝑤𝑘, ̃︀𝜇1, . . . ,̃︁𝜇𝑘

such that for some permutation 𝜋 on [𝑘],

|𝑤𝑖 − ̃︂𝑤𝜋(𝑖)| ≤ 𝛼,
⃦⃦
𝜇𝑖 −̃︂𝜇𝜋(𝑖)

⃦⃦
≤ 𝛼

for all 𝑖.

Remark. If we could remove the assumption ‖𝜇𝑖 − 𝜇𝑗‖ ≤ 𝑠𝐶, then we would get a complete

polynomial time learning result. Still, our learning algorithm works in polynomial time for

mixtures where the maximum separation is polynomially bounded in terms of the minimum

separation.

2If 𝑑 is much larger than 𝑘 and we wanted inverse polynomial accuracy like 1/𝑑 then we can simply
decrease the parameter 𝑤min (and then we would need separation log(𝑑𝑘) instead of log 𝑘)
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An immediate consequence of Theorem 2.2.3 is that we can cluster samples from the

mixture with accuracy better than any inverse polynomial.

Corollary 2.2.4. Under the same assumptions as Theorem 2.2.3, we can recover the ground-

truth clustering of the samples with high probability i.e. we output 𝑘 clusters 𝑆1, . . . 𝑆𝑘 such

that for some permutation 𝜋 on [𝑘], the set 𝑆𝜋(𝑖) consists precisely of the samples from the

component 𝒟(𝜇𝑖) for all 𝑖.

2.2.2 Clustering Mixtures of Gaussians

In the case where the distribution 𝒟 in the setup in Section 2.2.1 is a Gaussian, we can

obtain a stronger result that works in full generality, without any assumption about the

maximum separation. The result for Gaussians also works with a smaller separation of

(log(𝑘/𝑤min))
1/2+𝑐 which, as mentioned before, is essentially optimal for Gaussians.

Theorem 2.2.5. Let ℳ = 𝑤1𝑁(𝜇1, 𝐼) + · · ·+𝑤𝑘𝑁(𝜇𝑘, 𝐼) be an unknown mixture of Gaus-

sians in R𝑑 such that 𝑤𝑖 ≥ 𝑤min for all 𝑖 and ‖𝜇𝑖 − 𝜇𝑗‖ ≥ (log(𝑘/𝑤min))
1/2+𝑐 for some

constant 𝑐 > 0. Then for any desired (inverse polynomial) accuracy 𝛼 ≥ (𝑤min/𝑘)
𝑂(1), given

𝑛 = poly((𝑑𝑘/(𝑤min𝛼))
1/𝑐) samples and poly(𝑛) runtime, there is an algorithm that with high

probability outputs estimates { ̃︀𝜇1, . . . ,̃︁𝜇𝑘} and {̃︁𝑤1, . . . ,̃︁𝑤𝑘} such that for some permutation

𝜋 on [𝑘], we have

|𝑤𝑖 − ̃︂𝑤𝜋(𝑖)|,
⃦⃦
𝜇𝑖 −̃︂𝜇𝜋(𝑖)

⃦⃦
≤ 𝛼

for all 𝑖 ∈ [𝑘].

Again, once we have estimated the parameters of ℳ, it is easy to cluster samples from

ℳ into each of the components with accuracy better than any inverse polynomial.

Corollary 2.2.6. Under the same assumptions as Theorem 2.2.5, with high probability, we

can recover the ground-truth clustering of the samples i.e. we output 𝑘 clusters 𝑆1, . . . 𝑆𝑘

such that for some permutation 𝜋 on [𝑘], the set 𝑆𝜋(𝑖) consists precisely of the samples from

the component 𝑁(𝜇𝑖, 𝐼) for all 𝑖.
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Note that throughout this paper, we do not actually need to know the true number of

components 𝑘. All of the algorithms that we write will work if instead of the number of

components being 𝑘, the number of components is upper bounded by 𝑘 i.e. we only need to

be told an upper bound on the number of components. In fact, we can simply use 1/𝑤min as

the upper bound on the number of components.

2.2.3 Organization

In Section 2.3, we introduce basic notation and prove a few basic facts that will be used later

on.

Clustering Test: In Sections 2.4 - 2.7, we develop our key clustering test i.e. we show

how to test if two samples are from the same component or not. Note that throughout these

sections, when we work with a mixture

ℳ = 𝑤1𝒟(𝜇1) + · · ·+ 𝑤𝑘𝒟(𝜇𝑘) ,

this will correspond to the “difference mixture" of the mixture that we are trying to learn

and thus our goal will be to test whether a sample came from a component with 𝜇𝑖 = 0 or

𝜇𝑖 far from 0.

In Section 2.4, we discuss how to construct estimators for the moments of a Poincare dis-

tribution that can be manipulated implicitly. In the end, we construct a random polynomial

𝑅𝑡 such that

E
𝑥∼𝒟(𝜇)

[𝑅𝑡(𝑥)] = 𝜇⊗𝑡

and such that 𝑅𝑡 can be written as the sum of polynomially many rank-1 tensors (see

Corollary 2.4.10). In Section 2.5, we describe our iterative projection technique and explain

how it can be used to implicitly store and apply a projection map Γ : R𝑑𝑡 → R𝑘 in polynomial

time to rank-1 tensors. In Section 2.6, we combine the techniques in Section 2.4 and Section
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2.5 to achieve the following: given samples from

ℳ = 𝑤1𝒟(𝜇1) + · · ·+ 𝑤𝑘𝒟(𝜇𝑘)

we can find a 𝑘 × 𝑑𝑡 projection matrix Γ𝑡 (where 𝑡 ∼ log 𝑘/ log log 𝑘) whose row span es-

sentially contains all of 𝜇⊗𝑡
1 , . . . 𝜇

⊗𝑡
𝑘 (see Lemma 2.6.5). Finally, in Section 2.7, we use the

projection map computed in the previous step and argue that if 𝑥 ∼ 𝒟(0) then ‖Γ𝑡𝑅𝑡(𝑥)‖

is small and if 𝑥 ∼ 𝒟(𝜇𝑖) for 𝜇𝑖 far from 0, then ‖Γ𝑡𝑅𝑡(𝑥)‖ is large with high probability.

Thus, to test a sample 𝑥, it suffices to measure the length of ‖Γ𝑡𝑅𝑡(𝑥)‖.

Main Result for Mixtures of Poincare Distributions: In Section 2.8, we prove The-

orem 2.2.3, our main result for mixtures of Poincare distributions. It will follow fairly easily

from the guarantees of the clustering test in Section 2.7.

Main Result for Mixtures of Gaussians: Proving our main result for mixtures of

Gaussians requires some additional work although all of the machinery from Sections 2.4 -

2.7 can still be used. In particular, we will need a few quantitatively stronger versions of the

bounds in Sections 2.4 - 2.7 that exploit special properties of Gaussians in order to get down

from log1+𝑐 𝑘 to log1/2+𝑐 𝑘 separation. We prove these stronger bounds in Section 2.9. Then

in Sections 2.10 and 2.11, we show how to do recursive clustering to eliminate the assumption

that the maximum separation is polynomially bounded in terms of the minimum separation.

In Section 2.10, we introduce a few basic building blocks in our recursive clustering algorithm

and we put them together in Section 2.11.

2.3 Preliminaries

We now introduce some notation that will be used throughout the paper. We use 𝐼𝑛 to

denote the 𝑛×𝑛 identity matrix. For matrices 𝐴,𝐵 we define 𝐴⊗kr𝐵 to be their Kronecker

product. This is to avoid confusion with our notation for tensor products. For a tensor 𝑇 ,
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we use flatten(𝑇 ) to denote the flattening of 𝑇 into a vector. We assume that this is done in

a canonical way throughout this paper.

2.3.1 Manipulating Tensors

We will need to do many manipulations with tensors later on so we first introduce some

notation for working with tensors.

Definition 2.3.1 (Tensor Notation). For an order-𝑡 tensor, we index its dimensions {1, 2, . . . , 𝑡}.

For a partition of [𝑡] into subsets 𝑆1, . . . , 𝑆𝑎 and tensors 𝑇1, . . . , 𝑇𝑎 of orders |𝑆1|, . . . , |𝑆𝑎|

respectively we write

𝑇
(𝑆1)
1 ⊗ · · · ⊗ 𝑇 (𝑆𝑎)

𝑎

to denote the tensor obtained by taking the tensor product of 𝑇1 in the dimensions indexed

by 𝑆1, 𝑇2 in the dimensions indexed by 𝑆2, and so on for 𝑇3, . . . , 𝑇𝑎.

Definition 2.3.2. For a vector 𝑥 (viewed as an order-1 tensor), we will use the shorthand

𝑥⊗𝑆 to denote (𝑥⊗|𝑆|)(𝑆) (i.e. the product of copies 𝑥 in dimensions indexed by elements of

𝑆). For example,

𝑥⊗{1,3} ⊗ 𝑦⊗{2,4} = 𝑥⊗ 𝑦 ⊗ 𝑥⊗ 𝑦 .

Definition 2.3.3 (Tensor Slicing). For an order-𝑡 tensor 𝑇 , we can imagine indexing its

entries with indices (𝜂1, . . . , 𝜂𝑡) ∈ [𝑑1] × · · · × [𝑑𝑡] where 𝑑1, . . . , 𝑑𝑡 are the dimensions of 𝑇 .

We use the notation

𝑇𝜂𝑎1=𝑏1,...,𝜂𝑎𝑗=𝑏𝑗

to denote the slice of 𝑇 of entries whose indices satisfy the constraints 𝜂𝑎1 = 𝑏1, . . . , 𝜂𝑎𝑗 = 𝑏𝑗.

Definition 2.3.4 (Unordered Partitions). We use 𝑍𝑡(𝑆) to denote all partitions of 𝑆 into 𝑡

unordered, possibly empty, parts.

Remark. Note the partitions are not ordered so {{1}, {2}} is the same as {{2}, {1}}.

Definition 2.3.5. For a collection of sets 𝑆1, . . . , 𝑆𝑡, we define 𝒞({𝑆1, . . . , 𝑆𝑡}) to be the

number of sets among 𝑆1, . . . , 𝑆𝑡 that are nonempty.
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Definition 2.3.6 (Symmetrization). Let 𝐴1, . . . , 𝐴𝑛 be tensors such that 𝐴𝑖 is an order 𝑎𝑖

tensor having dimensions 𝑑× · · · × 𝑑⏟  ⏞  
𝑎𝑖

for some integers 𝑎1, . . . , 𝑎𝑛. We define

∑︁
𝑠𝑦𝑚

(𝐴1 ⊗ · · · ⊗ 𝐴𝑛) =
∑︁

𝑆1∪···∪𝑆𝑛=[𝑎1+···+𝑎𝑛]
𝑆𝑖∩𝑆𝑗=∅
|𝑆𝑖|=𝑎𝑖

𝐴
(𝑆1)
1 ⊗ · · · ⊗ 𝐴(𝑆𝑛)

𝑛 .

In other words, we sum over all ways to tensor 𝐴1, . . . , 𝐴𝑛 together to form a tensor of order

𝑎1 + · · ·+ 𝑎𝑛.

2.3.2 Properties of Poincare Distributions

Here we state a few standard facts about Poincare distributions that will be used later on.

Fact 2.3.7. Poincare distributions satisfy the following properties:

• Direct Products: If 𝒟1 and 𝒟2 are 𝜎-Poincare distributions then their product 𝒟1×𝒟2

is 𝜎-Poincare

• Linear Mappings: If 𝒟 is 𝜎-Poincare and 𝐴 is a linear mapping then the distribution

𝐴𝑥 for 𝑥 ∼ 𝒟 is 𝜎 ‖𝐴‖op-Poincare

• Concentration: If 𝒟 is 𝜎-Poincare then for any 𝐿-Lipchitz function 𝑓 and any pa-

rameter 𝑡 ≥ 0, we have

Pr
𝑧∼𝒟

[|𝑓(𝑧)− E[𝑓(𝑧)]| ≥ 𝑡] ≤ 6𝑒−𝑡/(𝜎𝐿) .

The following concentration inequality for samples from a Poincare distribution is also

standard.

Claim 2.3.8. Let 𝒟 be a distribution in R𝑑 that is 1-Poincare. Let 0 < 𝜖 < 0.1 be some

parameter. Given 𝑛 ≥ (𝑑/𝜖)8 independent samples 𝑧1, . . . , 𝑧𝑛 ∼ 𝒟, with probability at least

1− 2−𝑑/𝜖, we have ⃦⃦⃦⃦
𝑧1 + · · ·+ 𝑧𝑛

𝑛
− E

𝑧∼𝒟
[𝑧]

⃦⃦⃦⃦
≤ 𝜖 .
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2.3.3 Basic Observations

Before we begin with the main proofs of Theorem 2.2.3 and Theorem 2.2.5, it will be useful

to make a few simple reductions that allow us to make the following simplifying assumptions:

• Means Polynomially Bounded: For all 𝑖, we have ‖𝜇𝑖 − 𝜇𝑗‖ ≤ 𝑂((𝑘/𝑤min)
2), and

• Dimension Not Too High: We have 𝑑 ≤ 𝑘.

Since reducing to the case when the above assumptions hold is straight-forward, we defer the

details to Section 2.12. The reductions work in both settings (general Poincare distributions

and Gaussians) so in all future sections, we will be able to work assuming that the above

properties hold.

2.4 Moment Estimation

We will now work towards proving our result for Poincare distributions. A key ingredient

in our algorithm will be estimating the moment tensor of a mixtureℳ i.e. for an unknown

mixture

ℳ = 𝑤1𝒟(𝜇1) + · · ·+ 𝑤𝑘𝒟(𝜇𝑘)

we would like to estimate the tensor

𝑤1𝜇
⊗𝑡
1 + · · ·+ 𝑤𝑘𝜇

⊗𝑡
𝑘

for various values of 𝑡 using samples from ℳ. Naturally, it suffices to consider the case

where we are given samples from 𝒟(𝜇) for some unknown 𝜇 and our goal is to estimate the

tensor 𝜇⊗𝑡. For our full algorithm, we will need to go up to 𝑡 ∼ log 𝑘/ log log 𝑘 but of course

for such 𝑡, our estimate has to be implicit because we cannot write down the full tensor in

polynomial time. In this section, we address this task by constructing an unbiased estimator

with bounded variance that can be easily manipulated implicitly.
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We make the following definition to simplify notation later on.

Definition 2.4.1. For integers 𝑡 and a distribution 𝒟, we define the tensor

𝐷𝑡,𝒟 = E
𝑧∼𝒟

[𝑧⊗𝑡] .

We will drop the subscript 𝒟 when it is clear from context.

2.4.1 Adjusted Polynomials

First, we just construct an unbiased estimator for 𝜇⊗𝑡 (without worrying about making it

implicit). This estimator is given in the definition below.

Definition 2.4.2. Let 𝒟 be a distribution on R𝑑. For 𝑥 ∈ R𝑑, define the polynomials 𝑃𝑡,𝒟(𝑥)

for positive integers 𝑡 as follows. 𝑃0,𝒟(𝑥) = 1 and for 𝑡 ≥ 1,

𝑃𝑡,𝒟(𝑥) = 𝑥⊗𝑡 −
∑︁
𝑠𝑦𝑚

𝐷1,𝒟 ⊗ 𝑃𝑡−1,𝒟(𝑥)−
∑︁
𝑠𝑦𝑚

𝐷2,𝒟 ⊗ 𝑃𝑡−2,𝒟(𝑥)− · · · −𝐷𝑡,𝒟 . (2.7)

We call 𝑃𝑡,𝒟 the 𝒟-adjusted polynomials and will sometimes drop the subscript 𝒟 when it is

clear from context.

We now prove that the 𝒟-adjusted polynomials give an unbiased estimator for 𝜇⊗𝑡 when

given samples from 𝒟(𝜇).

Claim 2.4.3. For any 𝜇 ∈ R𝑑,

E
𝑧∼𝒟(𝜇)

[𝑃𝑡,𝒟(𝑧)] = 𝜇⊗𝑡 .

Proof. To simplify notation, we will drop all of the 𝒟 from the subscripts as there will be

no ambiguity. We prove the claim by induction on 𝑡. The base case for 𝑡 = 1 is clear. Now
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for the inductive step, note that

E
𝑧∼𝒟(𝜇)

[𝑃𝑡(𝑧)] = E
𝑧∼𝒟(𝜇)

[︃
𝑧⊗𝑡 −

∑︁
𝑠𝑦𝑚

𝐷1 ⊗ 𝑃𝑡−1(𝑧)−
∑︁
𝑠𝑦𝑚

𝐷2 ⊗ 𝑃𝑡−2(𝑧)− · · · −𝐷𝑡

]︃

= E
𝑥∼𝒟

[(𝑥+ 𝜇)⊗𝑡]− E
𝑧∼𝒟(𝜇)

[︃∑︁
𝑠𝑦𝑚

𝐷1 ⊗ 𝑃𝑡−1(𝑧) +
∑︁
𝑠𝑦𝑚

𝐷2 ⊗ 𝑃𝑡−2(𝑧) + · · ·+𝐷𝑡

]︃

= E
𝑥∼𝒟

[︃
𝜇⊗𝑡 −

∑︁
𝑠𝑦𝑚

(𝐷1 − 𝑥⊗1)⊗ 𝜇𝑡−1 −
∑︁
𝑠𝑦𝑚

(𝐷2 − 𝑥⊗2)⊗ 𝜇𝑡−2 − · · · − (𝐷𝑡 − 𝑥⊗𝑡)

]︃

= 𝜇⊗𝑡 .

where we used the induction hypothesis and then the definition of𝐷𝑡 in the last two steps. ■

2.4.2 Variance Bounds for Poincare Distributions

In the previous section, we showed that the 𝒟-adjusted polynomials give an unbiased es-

timator for 𝜇⊗𝑡. We now show that they also have bounded variance when 𝒟 is Poincare.

This will rely on the following claim which shows that the 𝒟-adjusted polynomials recurse

under differentiation.

Claim 2.4.4. Let 𝒟 be a distribution on R𝑑. Then

𝜕𝑃𝑡,𝒟(𝑥)

𝜕𝑥𝑖
=
∑︁
sym

𝑒𝑖 ⊗ 𝑃𝑡−1,𝒟(𝑥)

where we imagine 𝑥 = (𝑥1, . . . , 𝑥𝑑) so 𝑥𝑖 is the 𝑖th coordinate of 𝑥 and

𝑒𝑖 = (0, . . . , 1⏟  ⏞  
𝑖

, . . . , 0)

denotes the 𝑖th coordinate basis vector.

Proof. We will prove this by induction on 𝑡. The base case for 𝑡 = 1 is clear. In the

proceeding computations, we drop the 𝒟 from all subscripts as there will be no ambiguity.
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Differentiating the definition of 𝑃𝑡,𝒟 and using the induction hypothesis, we get

𝜕𝑃𝑡(𝑥)

𝜕𝑥𝑖
=
∑︁
𝑠𝑦𝑚

𝑒𝑖 ⊗ 𝑥⊗𝑡−1 −
∑︁
𝑠𝑦𝑚

𝐷1 ⊗ 𝑒𝑖 ⊗ 𝑃𝑡−2(𝑥)− · · · −
∑︁
𝑠𝑦𝑚

𝐷𝑡−2 ⊗ 𝑒𝑖 ⊗ 𝑃1(𝑥)−
∑︁
𝑠𝑦𝑚

𝐷𝑡−1 ⊗ 𝑒𝑖

=
∑︁
𝑠𝑦𝑚

𝑒𝑖 ⊗

(︃
𝑥⊗𝑡−1 −

∑︁
𝑠𝑦𝑚

𝐷1 ⊗ 𝑃𝑡−2(𝑥)− · · · −𝐷𝑡−1

)︃

=
∑︁
𝑠𝑦𝑚

𝑒𝑖 ⊗ 𝑃𝑡−1(𝑥)

where in the last step we again used (2.7), the recursive definition of 𝑃𝑡−1. This completes

the proof. ■

Now, by using the Poincare property, we can prove a bound on the variance of the

estimator 𝑃𝑡,𝒟(𝑥).

Claim 2.4.5. Let 𝒟 be a distribution on R𝑑 that is 1-Poincare. Let 𝑣 ∈ R𝑑𝑡 be a vector.

Then

E
𝑧∼𝒟(𝜇)

[(𝑣 · flatten(𝑃𝑡,𝒟(𝑧)))
2] ≤ (‖𝜇‖2 + 𝑡2)𝑡 ‖𝑣‖2 .

Proof. We will prove the claim by induction on 𝑡. The base case for 𝑡 = 1 follows because

E
𝑧∼𝒟(𝜇)

[(𝑣 · flatten(𝑃1,𝒟(𝑧)))
2] = (𝑣 · 𝜇)2 + Var

𝑧∼𝒟(𝜇)
(𝑣 · flatten(𝑃1,𝒟(𝑧))) ≤ (𝑣 · 𝜇)2 + ‖𝑣‖2

≤ (‖𝜇‖2 + 1) ‖𝑣‖2
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where we used the fact that 𝒟 is 1-Poincare. Now for the inductive step, we have

E
𝑧∼𝒟(𝜇)

[(𝑣 · flatten(𝑃𝑡,𝒟(𝑧)))
2] = (𝑣 · flatten(𝜇⊗𝑡))2 + Var

𝑧∼𝒟(𝜇)
(𝑣 · flatten(𝑃𝑡,𝒟(𝑧)))

≤ ‖𝜇‖2𝑡 ‖𝑣‖2 + E
𝑧∼𝒟(𝜇)

[︃
𝑑∑︁

𝑖=1

(︂
𝑣 · 𝜕𝑃𝑡,𝒟(𝑥)

𝜕𝑥𝑖

)︂2
]︃

= ‖𝜇‖2𝑡 ‖𝑣‖2 + E
𝑧∼𝒟(𝜇)

⎡⎣ 𝑑∑︁
𝑖=1

(︃
𝑡∑︁

𝑗=1

𝑣𝜂𝑗=𝑖 · 𝑃𝑡−1,𝒟(𝑧)

)︃2
⎤⎦

≤ ‖𝜇‖2𝑡 ‖𝑣‖2 + E
𝑧∼𝒟(𝜇)

[︃
𝑡

𝑡∑︁
𝑗=1

𝑑∑︁
𝑖=1

(︀
𝑣𝜂𝑗=𝑖 · 𝑃𝑡−1,𝒟(𝑧)

)︀2]︃

≤ ‖𝜇‖2𝑡 ‖𝑣‖2 + 𝑡
𝑡∑︁

𝑗=1

𝑑∑︁
𝑖=1

(‖𝜇‖2 + (𝑡− 1)2)𝑡−1
⃦⃦
𝑣𝜂𝑗=𝑖

⃦⃦2
= ‖𝜇‖2𝑡 ‖𝑣‖2 + 𝑡2(‖𝜇‖2 + (𝑡− 1)2)𝑡−1 ‖𝑣‖2

≤ (‖𝜇‖2 + 𝑡2)𝑡 ‖𝑣‖2

where in the above manipulations, we first used Claim 2.4.3, then the fact that 𝒟 is 1-

Poincare, then Claim 2.4.4, then Cauchy Schwarz, then the inductive hypothesis, and finally

some direct manipulation. This completes the inductive step and we are done. ■

2.4.3 Efficient Implicit Representation

In the previous section, we showed that for 𝑥 ∼ 𝒟(𝜇) for unknown 𝜇, 𝑃𝑡,𝒟(𝑥) gives us an

unbiased estimator of 𝜇⊗𝑡 with bounded variance. Still, it is not feasible to actually compute

𝑃𝑡,𝒟(𝑥) in polynomial time because we cannot write down all of its entries and there is no

nice way to implicitly work with terms such as 𝐷𝑡,𝒟 that appear in 𝑃𝑡,𝒟(𝑥). In this section,

we construct a modified estimator that is closely related to 𝑃𝑡,𝒟(𝑥) but is also easy to work

with implicitly because all of the terms will be rank-1 i.e. of the form 𝑣1 ⊗ · · · ⊗ 𝑣𝑡 for some

vectors 𝑣1, . . . , 𝑣𝑡 ∈ R𝑑. Throughout this section, we will assume that the distribution 𝒟

that we are working with is fixed and we will drop it from all subscripts as there will be no

ambiguity.
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Roughly, the way that we construct this modified estimator is that we take multiple

variables 𝑥1, . . . , 𝑥𝑡 ∈ R𝑑. We start with 𝑃𝑡(𝑥1). We then add various products

𝑃𝑎1(𝑥1)⊗ · · · ⊗ 𝑃𝑎𝑡(𝑥𝑡)

to it in a way that when expanded as monomials, only the leading terms, which are rank-

1 since they are a direct product of the form 𝑥⊗𝑎1
1 ⊗ · · · ⊗ 𝑥⊗𝑎𝑡

𝑡 , remain. If we then take

𝑥1 ∼ 𝒟(𝜇) and 𝑥2, . . . , 𝑥𝑡 ∼ 𝒟, then Claim 2.4.3 will immediately imply that the expecta-

tion is 𝜇⊗𝑡. The key properties are stated formally in Corollary 2.4.10, Corollary 2.4.11 and

Corollary 2.4.12.

First, we write out an explicit formula for 𝑃𝑡(𝑥).

Claim 2.4.6. We have

𝑃𝑡(𝑥) =∑︁
𝑆0⊆[𝑡]

(︀
𝑥⊗𝑆0

)︀
⊗

⎛⎝ ∑︁
{𝑆1,...,𝑆𝑡}∈𝑍𝑡([𝑡]∖𝑆0)

(−1)𝒞{𝑆1,...,𝑆𝑡}(𝒞{𝑆1, . . . , 𝑆𝑡})!(𝐷|𝑆1|)
(𝑆1) ⊗ · · · ⊗ (𝐷|𝑆𝑡|)

(𝑆𝑡)

⎞⎠
Proof. We use induction. The base case is trivial. Now, it suffices to compute the coefficient

of some “monomial" in 𝑃𝑡. Note that the coefficient of the monomial 𝑥⊗𝑡 is clearly 1 which

matches the desired formula. Otherwise, consider a monomial

𝐴 =
(︀
𝑥⊗𝑆0

)︀
⊗ (𝐷|𝑆1|)

(𝑆1) ⊗ · · · ⊗ (𝐷|𝑆𝑎|)
(𝑆𝑎)

where 𝑆1, . . . , 𝑆𝑎 are nonempty for some 1 ≤ 𝑎 ≤ 𝑡. Recall the recursive definition of 𝑃𝑡 in

(2.7). There are exactly 𝑎 terms on the RHS of (2.7) that can produce the monomial 𝐴.

These terms are

−𝐷(𝑆1)
|𝑆1| ⊗ 𝑃𝑡−|𝑆1|(𝑥)

([𝑡]∖𝑆1), . . . ,−𝐷(𝑆𝑎)
|𝑆𝑎| ⊗ 𝑃𝑡−|𝑆𝑎|(𝑥)

([𝑡]∖𝑆𝑎) .
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However, by the inductive hypothesis, the coefficient of 𝐴 produced by each of these terms is

exactly (−1)𝑎(𝑎− 1)!. Thus, combining over all 𝑎 terms, the resulting coefficient is (−1)𝑎𝑎!

which matches the desired formula. This completes the proof. ■

Now, we are ready to write out our estimator that can be written as a sum of few rank-1

terms. The key identity is below.

Definition 2.4.7. For 𝑥1, . . . , 𝑥𝑡 ∈ R𝑑, define the polynomial

𝑄𝑡(𝑥1, . . . , 𝑥𝑡) =
∑︁

𝑆1∪···∪𝑆𝑡=[𝑡]
|𝑆𝑖∩𝑆𝑗 |=0

(−1)𝒞{𝑆1,...,𝑆𝑡}(︀
𝑡−1

𝒞{𝑆1,...,𝑆𝑡}−1

)︀ (︀𝑃|𝑆1|(𝑥1)
)︀(𝑆1) ⊗ · · · ⊗

(︀
𝑃|𝑆𝑡|(𝑥𝑡)

)︀(𝑆𝑡)
. (2.8)

Lemma 2.4.8. All nonzero monomials in 𝑄𝑡 either have total degree 𝑡 in the variables

𝑥1, . . . , 𝑥𝑡 or are constant.

Proof. Consider substituting the formula in Claim 2.4.6 into the RHS for all occurrences of

𝑃 . Consider a monomial

𝐴 =
(︀
𝑥⊗𝑈1
𝑖1

)︀
⊗ · · · ⊗

(︀
𝑥⊗𝑈𝑎
𝑖𝑎

)︀
⊗ (𝐷|𝑉1|)

(𝑉1) ⊗ · · · ⊗ (𝐷|𝑉𝑏|)
(𝑉𝑏)

where 𝑈1, . . . , 𝑈𝑎, 𝑉1, . . . , 𝑉𝑏 are nonempty. Note that when we expand out the RHS, all

monomials are of this form. It now suffices to compute the coefficient of this monomial 𝐴 in

the expansion of the RHS.

The terms in the sum on the RHS are of the form

(−1)𝑐(︀
𝑡−1
𝑐−1

)︀ 𝑃|𝑆𝑗1
|(𝑥𝑗1)

(𝑆𝑗1
) ⊗ · · · ⊗ 𝑃|𝑆𝑗𝑐 |(𝑥𝑗𝑐)

(𝑆𝑗𝑐 )

where 𝑆𝑗1 , . . . , 𝑆𝑗𝑐 are nonempty. We now consider summing over all such terms that can pro-

duce the monomial 𝐴 and sum the corresponding coefficient to get the overall coefficient of 𝐴.

In order for the monomial 𝐴 to appear in the expansion of this term, we need {𝑖1, . . . , 𝑖𝑎} ⊆
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{𝑗1, . . . , 𝑗𝑐}. Once the indices 𝑗1, . . . , 𝑗𝑐 are fixed, it remains to assign each of the terms

(𝐷|𝑉1|)
(𝑉1), . . . , (𝐷|𝑉𝑏|)

(𝑉𝑏)

to one of the variables 𝑥𝑗1 , . . . , 𝑥𝑗𝑐 . This will correspond to which of the polynomials

𝑃|𝑆𝑗1
|(𝑥𝑗1)

(𝑆𝑗1
), . . . , 𝑃|𝑆𝑗𝑐 |(𝑥𝑗𝑐)

(𝑆𝑗𝑐 )

that the term came from. Specifically, for each integer 𝑓 with 1 ≤ 𝑓 ≤ 𝑐, let 𝐵𝑓 ⊂ [𝑏] be

the indices of the terms that are assigned to the variable 𝑥𝑗𝑓 . The sets 𝐵1, . . . , 𝐵𝑐 uniquely

determine the sets 𝑆𝑗1 , . . . , 𝑆𝑗𝑐 but also need to satisfy the constraint that if 𝑗𝑓 /∈ {𝑖1, . . . , 𝑖𝑎}

then 𝐵𝑓 ̸= ∅. Once these sets are all fixed, by Claim 2.4.6, the desired coefficient is simply

(−1)𝑐(︀
𝑡−1
𝑐−1

)︀ (−1)|𝐵1|+···+|𝐵𝑐||𝐵1|! · · · |𝐵𝑐|! =
(−1)𝑐(︀
𝑡−1
𝑐−1

)︀ (−1)𝑏|𝐵1|! · · · |𝐵𝑐|! .

Now overall, the desired coefficient is

𝑎+𝑏∑︁
𝑐=𝑎

(−1)𝑐(︀
𝑡−1
𝑐−1

)︀ (︂𝑡− 𝑎
𝑐− 𝑎

)︂
(−1)𝑏

∑︁
𝐵1∪···∪𝐵𝑐=[𝑏]

𝐵𝑖∩𝐵𝑗=∅
𝐵𝑎+1,...,𝐵𝑐 ̸=∅

|𝐵1|! · · · |𝐵𝑐|! . (2.9)

This is because there are
(︀
𝑡−𝑎
𝑐−𝑎

)︀
to choose the set {𝑗1, . . . , 𝑗𝑐} (since it must contain {𝑖1, . . . , 𝑖𝑎}

). Once we have chosen this set, WLOG we can label 𝑗1 = 𝑖1, . . . , 𝑗𝑎 = 𝑖𝑎 so that 𝑗𝑎+1, . . . , 𝑗𝑐

are the elements that are not contained in {𝑖1, . . . , 𝑖𝑎} and thus the constraint on 𝐵1, . . . , 𝐵𝑐

is simply that 𝐵𝑎+1, . . . , 𝐵𝑐 are nonempty.

To evaluate (2.9), we will evaluate the inner sum differently. Imagine first choosing the

sizes 𝑠1 = |𝐵1|, . . . , 𝑠𝑐 = |𝐵𝑐| and then choosing the sets 𝐵1, . . . , 𝐵𝑐 to satisfy these size
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constraints. The inner sum can then be rewritten as

∑︁
𝑠1+···+𝑠𝑐=𝑏
𝑠𝑎+1,...,𝑠𝑐>0

(︂
𝑏

𝑠1, . . . , 𝑠𝑐

)︂
𝑠1! · · · 𝑠𝑐! = 𝑏!

∑︁
𝑠1+···+𝑠𝑐=𝑏
𝑠𝑎+1,...,𝑠𝑐>0

1 = 𝑏!

(︂
𝑏+ 𝑎− 1

𝑐− 1

)︂

where the last equality follows from counting using stars and bars. Now we can plug back

into (2.9). Assuming that 𝑎, 𝑏 ≥ 1, the coefficient of the monomial 𝐴 is

𝑎+𝑏∑︁
𝑐=𝑎

(−1)𝑐(︀
𝑡−1
𝑐−1

)︀ (︂𝑡− 𝑎
𝑐− 𝑎

)︂
(−1)𝑏𝑏!

(︂
𝑏+ 𝑎− 1

𝑐− 1

)︂
= (−1)𝑏𝑏!

𝑎+𝑏∑︁
𝑐=𝑎

(−1)𝑐(𝑡− 𝑎)!(𝑏+ 𝑎− 1)!

(𝑐− 𝑎)!(𝑡− 1)!(𝑏+ 𝑎− 𝑐)!

= (−1)𝑏 (𝑡− 𝑎)!(𝑏+ 𝑎− 1)!

(𝑡− 1)!

𝑎+𝑏∑︁
𝑐=𝑎

(−1)𝑐
(︂

𝑏

𝑐− 𝑎

)︂
= 0 .

Thus, the only monomials that have nonzero coefficient either have 𝑎 = 0 (meaning they are

constant) or 𝑏 = 0 (meaning they have degree 𝑡). This completes the proof. ■

Now, we can easily eliminate the constant term by subtracting off 𝑄(𝑥𝑡+1, . . . , 𝑥2𝑡) for

some additional variables 𝑥𝑡+1, . . . , 𝑥2𝑡 and we will be left with only degree-𝑡 terms. It will

be immediate that the degree-𝑡 terms are all rank-1 and this will give us an estimator that

can be efficiently manipulated implicitly.

Definition 2.4.9. For 𝑥1, . . . , 𝑥2𝑡 ∈ R𝑑, define the polynomial

𝑅𝑡(𝑥1, . . . , 𝑥2𝑡) = −𝑄𝑡(𝑥1, . . . , 𝑥𝑡) +𝑄𝑡(𝑥𝑡+1, . . . , 𝑥2𝑡) .

Corollary 2.4.10. We have the identity

𝑅𝑡(𝑥1, . . . , 𝑥2𝑡) =
∑︁

𝑆1∪···∪𝑆𝑡=[𝑡]
|𝑆𝑖∩𝑆𝑗 |=0

(−1)𝒞{𝑆1,...,𝑆𝑡}−1(︀
𝑡−1

𝒞{𝑆1,...,𝑆𝑡}−1

)︀ (︀
𝑥⊗𝑆1
1 ⊗ · · · ⊗ 𝑥⊗𝑆𝑡

𝑡 − 𝑥⊗𝑆1
𝑡+1 ⊗ · · · ⊗ 𝑥⊗𝑆𝑡

2𝑡

)︀
.

Proof. This follows immediately from Lemma 2.4.8 and the definition of 𝑅𝑡(𝑥1, . . . , 𝑥2𝑡) be-
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cause the constant terms cancel out and the degree-𝑡 terms clearly match the RHS of the

desired expression. ■

Corollary 2.4.10 gives us a convenient representation for working implicitly with𝑅𝑡(𝑥1, . . . , 𝑥2𝑡).

We now show why this polynomial is actually useful. In particular, we show that for

𝑥1 ∼ 𝒟(𝜇) and 𝑥2, . . . , 𝑥2𝑡 ∼ 𝒟, 𝑅𝑡(𝑥1, . . . , 𝑥2𝑡) is an unbiased estimator of 𝜇⊗𝑡 and further-

more that its variance is bounded. These properties will follow directly from the definitions

of 𝑅𝑡, 𝑄𝑡 combined with Claim 2.4.3 and Claim 2.4.5.

Corollary 2.4.11. We have

E
𝑧1∼𝒟(𝜇),𝑧2,...,𝑧2𝑡∼𝒟

[𝑅𝑡(𝑧1, . . . , 𝑧2𝑡)] = 𝜇⊗𝑡

and for fixed 𝑧1, we have

E
𝑧2,...,𝑧2𝑡∼𝒟

[𝑅𝑡(𝑧1, . . . , 𝑧2𝑡)] = 𝑃𝑡(𝑧1) .

Proof. Using the definition of 𝑄𝑡 in (2.8) and Claim 2.4.3, the expectations of all of the terms

are 0 except for the leading term 𝑃𝑡(𝑧1). Thus,

E
𝑧2,...,𝑧2𝑡∼𝒟

[𝑅𝑡(𝑧1, . . . , 𝑧2𝑡)] = 𝑃𝑡(𝑧1) .

Also by Claim 2.4.3,

E
𝑧1∼𝒟(𝜇)

[𝑃𝑡(𝑧1)] = 𝜇⊗𝑡

and this gives us the two desired identities. ■

Corollary 2.4.12. Let 𝒟 be a distribution that is 1-Poincare. We have

E
𝑧1∼𝒟(𝜇),𝑧2,...,𝑧2𝑡∼𝒟

[︀
flatten(𝑅𝑡(𝑧1, . . . , 𝑧2𝑡))

⊗2
]︀
⪯ (20𝑡)2𝑡(‖𝜇‖2𝑡 + 1)𝐼𝑑𝑡 .

where recall 𝐼𝑑𝑡 denotes the 𝑑𝑡-dimensional identity matrix.
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Proof. Using the definition of 𝑅𝑡 and 𝑄𝑡 and Cauchy Schwarz, we have

E
𝑧1∼𝒟(𝜇),𝑧2,...,𝑧2𝑡∼𝒟

[︀
flatten(𝑅𝑡(𝑧1, . . . , 𝑧2𝑡))

⊗2
]︀

⪯ 2 E
𝑧1∼𝒟(𝜇),𝑧2,...,𝑧𝑡∼𝒟

[︀
flatten (𝑄𝑡(𝑧1, . . . , 𝑧𝑡))

⊗2]︀+ 2 E
𝑧𝑡+1,...,𝑧2𝑡∼𝒟

[︀
flatten (𝑄𝑡(𝑧𝑡+1, . . . , 𝑧2𝑡))

⊗2]︀ .

Now by Cauchy Schwarz again,

E
𝑧1∼𝒟(𝜇),𝑧2,...,𝑧𝑡∼𝒟

[︀
flatten (𝑄𝑡(𝑧1, . . . , 𝑧𝑡))

⊗2]︀ ⪯
⎛⎜⎜⎝ ∑︁

𝑆1∪···∪𝑆𝑡=[𝑡]
|𝑆𝑖∩𝑆𝑗 |=0

|𝑆1|! · · · |𝑆𝑡|!

⎞⎟⎟⎠

·

⎛⎜⎜⎝ ∑︁
𝑆1∪···∪𝑆𝑡=[𝑡]
|𝑆𝑖∩𝑆𝑗 |=0

E𝑧1∼𝒟(𝜇),𝑧2...,𝑧𝑡∼𝒟

[︂
flatten

(︁(︀
𝑃|𝑆1|(𝑧1)

)︀(𝑆1) ⊗ · · · ⊗
(︀
𝑃|𝑆𝑡|(𝑧𝑡)

)︀(𝑆𝑡)
)︁⊗2
]︂

|𝑆1|! · · · |𝑆𝑡|!

⎞⎟⎟⎠ .

Let the first term above be 𝐶1 and the second term be 𝐶2. We can rearrange the sum

over partitions of [𝑡] as follows. We can first choose the sizes 𝑠1 = |𝑆1|, . . . , 𝑠𝑡 = |𝑆𝑡| and

then choose the partition according to these constraints. We get

𝐶1 =
∑︁

𝑠1+···+𝑠𝑡=𝑡

(︂
𝑡

𝑠1, . . . , 𝑠𝑡

)︂
𝑠1! · · · 𝑠𝑡! = 𝑡!

(︂
2𝑡− 1

𝑡

)︂
≤ (2𝑡)𝑡
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and similarly (and also using Claim 2.4.5)

𝐶2 ⪯

⎛⎜⎜⎝ ∑︁
𝑆1∪···∪𝑆𝑡=[𝑡]
|𝑆𝑖∩𝑆𝑗 |=0

(‖𝜇‖2 + |𝑆1|2)|𝑆1||𝑆2|2|𝑆2| · · · |𝑆𝑡|2|𝑆𝑡|

|𝑆1|! · · · |𝑆𝑡|!

⎞⎟⎟⎠ 𝐼𝑑𝑡

⪯

⎛⎜⎜⎝20𝑡
∑︁

𝑆1∪···∪𝑆𝑡=[𝑡]
|𝑆𝑖∩𝑆𝑗 |=0

(︁
‖𝜇‖2|𝑆1| + (|𝑆1|!)2

)︁
(|𝑆2|!)2 · · · (|𝑆𝑡|!)2

|𝑆1|! · · · |𝑆𝑡|!

⎞⎟⎟⎠ 𝐼𝑑𝑡

⪯

(︃
20𝑡(‖𝜇‖2𝑡 + 1)

∑︁
𝑠1+···+𝑠𝑡=𝑡

(︂
𝑡

𝑠1, . . . , 𝑠𝑡

)︂
𝑠1!𝑠2! · · · 𝑠𝑡!

)︃
𝐼𝑑𝑡

⪯ (40𝑡)𝑡(‖𝜇‖2𝑡 + 1)𝐼𝑑𝑡 .

Note that in the first step above, we also used the fact that 𝑧1, . . . , 𝑧𝑡 are drawn independently.

Thus, overall we have shown

E
𝑧1∼𝒟(𝜇),𝑧2,...,𝑧𝑡∼𝒟

[︀
flatten (𝑄𝑡(𝑧1, . . . , 𝑧𝑡))

⊗2]︀ ⪯ (10𝑡)2𝑡(‖𝜇‖2𝑡 + 1)𝐼𝑑𝑡 .

Similarly, we have

E
𝑧𝑡+1,...,𝑧2𝑡∼𝒟

[︀
flatten (𝑄𝑡(𝑧1, . . . , 𝑧𝑡))

⊗2]︀ ⪯ (10𝑡)2𝑡𝐼𝑑𝑡

and putting everything together, we conclude

E
𝑧1∼𝒟(𝜇),𝑧2,...,𝑧2𝑡∼𝒟

[︀
flatten(𝑅𝑡(𝑧1, . . . , 𝑧2𝑡))

⊗2
]︀
⪯ (20𝑡)2𝑡(‖𝜇‖2𝑡 + 1)𝐼𝑑𝑡

and we are done. ■
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2.5 Iterative Projection

In this section, we explain our technique for implicitly working with tensors that have too

many entries to write down. Recall that we would like to estimate the moment tensor

𝑤1𝜇
⊗𝑡
1 + · · ·+ 𝑤𝑘𝜇

⊗𝑡
𝑘

for

𝑡 ∼ log(𝑘/𝑤min)

log log(𝑘/𝑤min)
.

However doing this directly requires quasipolynomial time (because there are quasipolyno-

mially many entries). Roughly, the way we get around this issue is by, iteratively for each 𝑡,

computing a 𝑘-dimensional subspace that contains the span of 𝜇⊗𝑡
1 , . . . , 𝜇

⊗𝑡
𝑘 . We then only

need to compute the projection of 𝑤1𝜇
⊗𝑡
1 + · · · + 𝑤𝑘𝜇

⊗𝑡
𝑘 onto this subspace. Of course, the

subspace and projection need to be computed implicitly because we cannot explicitly write

out these expressions in polynomial time.

2.5.1 Nested Projection Maps

At a high level, to implicitly estimate the span of 𝜇⊗𝑡
1 , . . . , 𝜇

⊗𝑡
𝑘 , we will first estimate the span

of 𝜇⊗𝑡−1
1 , . . . , 𝜇⊗𝑡−1

𝑘 and then bootstrap this estimate to estimate the span of 𝜇⊗𝑡
1 , . . . , 𝜇

⊗𝑡
𝑘 .

Since we cannot actually write down the span even though it is 𝑘-dimensional (because the

vectors have super-polynomial length), we will store the span implicitly through a sequence

of projections. We explain the details below.

Definition 2.5.1 (Nested Projection). Let 𝑐0 = 1 and 𝑐1, . . . , 𝑐𝑡 be positive integers. Let

Π1 ∈ R𝑐1×𝑑𝑐0 ,Π2 ∈ R𝑐2×𝑑𝑐1 , . . . ,Π𝑡 ∈ R𝑐𝑡×𝑑𝑐𝑡−1 be matrices. Define the 𝑐𝑡×𝑑𝑡 nested projection

matrix

ΓΠ𝑡,...,Π1 = Π𝑡 (𝐼𝑑 ⊗kr (Π𝑡−1 (𝐼𝑑 ⊗kr · · · ))) .

It is not hard to verify (see below) that when Π1, . . . ,Π𝑡 are projection matrices then

ΓΠ𝑡,...,Π1 is as well.
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Claim 2.5.2. Let 𝑐0 = 1 and 𝑐1, . . . , 𝑐𝑡 be positive integers. Let Π1 ∈ R𝑐1×𝑑𝑐0 ,Π2 ∈

R𝑐2×𝑑𝑐1 , . . . ,Π𝑡 ∈ R𝑐𝑡×𝑑𝑐𝑡−1 be matrices whose rows are orthonormal. Then ΓΠ𝑡,...,Π1 has

orthonormal rows.

Proof. We prove the claim by induction on 𝑡. The base case is clear. Next, by the induction

hypothesis, the matrix

ΓΠ𝑡−1,...,Π1 = Π𝑡−1 (𝐼𝑑 ⊗kr (Π𝑡−2 (𝐼𝑑 ⊗kr · · · )))

has orthonormal rows. Thus, the matrix

Π𝑡

(︀
𝐼𝑑 ⊗kr ΓΠ𝑡−1,...,Π1

)︀
has orthonormal rows as well, completing the induction. ■

Note that in our paper, Π1, . . . ,Π𝑡 will always have orthonormal rows so ΓΠ𝑡,...,Π1 always

does as well. This fact will often be used without explicitly stating it. The key point about

the construction of ΓΠ𝑡,...,Π1 is that instead of storing a full 𝑐𝑡× 𝑑𝑡-sized matrix, it suffices to

store the individual matrices Π1, . . . ,Π𝑡 which are all polynomially sized. The next important

observation is that for certain vectors 𝑣 ∈ R𝑑𝑡 that are “rank-1" i.e. those that can be written

in the form

𝑣 = flatten(𝑣𝑡 ⊗ · · · ⊗ 𝑣1) ,

the expression ΓΠ𝑡,...,Π1𝑣 can be computed efficiently. This is shown in the following claim.

Claim 2.5.3. Let 𝑐0 = 1 and 𝑐1, . . . , 𝑐𝑡 be positive integers. Let Π1 ∈ R𝑐1×𝑑𝑐0 ,Π2 ∈

R𝑐2×𝑑𝑐1 , . . . ,Π𝑡 ∈ R𝑐𝑡×𝑑𝑐𝑡−1 be matrices. Let 𝑣 ∈ R𝑑𝑡 satisfy 𝑣 = flatten(𝑣1 ⊗ · · · ⊗ 𝑣𝑡) for

some 𝑣1, . . . , 𝑣𝑡 ∈ R𝑑. Then in poly(𝑑, 𝑡,max(𝑐𝑖)) time, we can compute ΓΠ𝑡,...,Π1𝑣.

Proof. We will prove the claim by induction on 𝑡. For each 𝑡′ = 1, 2, . . . , 𝑡, we compute

ΓΠ𝑡′ ,...,Π1flatten(𝑣𝑡′ ⊗ · · · ⊗ 𝑣1) .
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The base case of the induction is clear. To do the induction step, note that

ΓΠ𝑡′+1,...,Π1flatten(𝑣𝑡′+1 ⊗ · · · ⊗ 𝑣1) = Π𝑡′+1flatten
(︀
𝑣𝑡′+1 ⊗

(︀
ΓΠ𝑡′ ,...,Π1flat(𝑣𝑡′ ⊗ · · · ⊗ 𝑣1)

)︀)︀
.

It is clear that this computation can be done in poly(𝑑, 𝑡,max(𝑐𝑖)) time so iterating this

operation completes the proof. ■

As a trivial consequence of the above, we can also compute direct products of nested

projections applied to a “rank-1" vector 𝑣.

Corollary 2.5.4. Let 𝑐0 = 1 and 𝑐1, . . . , 𝑐𝑡 be positive integers. Let Π1 ∈ R𝑐1×𝑑𝑐0 ,Π2 ∈

R𝑐2×𝑑𝑐1 , . . . ,Π𝑡 ∈ R𝑐𝑡×𝑑𝑐𝑡−1 be matrices. Let 𝑣 ∈ R𝑑𝑡 satisfy 𝑣 = flatten(𝑣1⊗· · ·⊗ 𝑣𝑡) for some

𝑣1, . . . , 𝑣𝑡 ∈ R𝑑. Then for any integers 1 < 𝑠1 < 𝑠2 < · · · < 𝑠𝑛 < 𝑡, in poly(𝑑, 𝑡,max(𝑐𝑖))

time, we can compute the expression

(︀
ΓΠ𝑡,...,Π𝑠𝑛+1 ⊗kr · · · ⊗kr ΓΠ𝑠1 ,...,Π1

)︀
𝑣 .

Throughout our paper, we will only compute nested projections of the above form so it

will be easy to verify that all steps can be implemented in polynomial time.

2.6 Implicitly Estimating the Moment Tensor

In this section, we combine the iterative projection techniques from Section 2.5 with the

estimators from Section 2.4 to show how to implicitly estimate the moment tensor given

sample access to the distribution 𝒟 and the mixture

ℳ = 𝑤1𝒟(𝜇1) + · · ·+ 𝑤𝑘𝒟(𝜇𝑘) .

By implicitly estimate, we mean that we will compute projection matrices Π𝑡, . . . ,Π1 such

that the row-span of ΓΠ𝑡,...,Π1 essentially contains all of the flattenings of 𝜇⊗𝑡
1 , . . . , 𝜇

⊗𝑡
𝑘 .
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Remark. Once we have these matrices, we will also be able to estimate expressions such as

ΓΠ𝑡,...,Π1flatten
(︀
𝑤1𝜇

⊗𝑡
1 + · · ·+ 𝑤𝑘𝜇

⊗𝑡
𝑘

)︀
.

It will be convenient to make the following definitions.

Definition 2.6.1. For a mixtureℳ = 𝑤1𝒟(𝜇1)+ · · ·+𝑤𝑘𝒟(𝜇𝑘), we use 𝑇𝑡,ℳ to denote the

tensor 𝑤1𝜇
⊗𝑡
1 + · · ·+𝑤𝑘𝜇

⊗𝑡
𝑘 . We may drop the subscriptℳ and just write 𝑇𝑡 when it is clear

from context.

Definition 2.6.2. For a mixtureℳ = 𝑤1𝒟(𝜇1)+ · · ·+𝑤𝑘𝒟(𝜇𝑘), we define 𝑀2𝑠,ℳ to be the

tensor 𝑇2𝑠,ℳ rearranged (in a canonical way) as a 𝑑𝑠 × 𝑑𝑠 square matrix. Again, we may

drop the subscript ℳ when it is clear from context.

We define 𝜇max = max(1, ‖𝜇1‖ , . . . , ‖𝜇𝑘‖). We do not assume that we know 𝜇max in ad-

vance. However, the reduction in Section 2.3.3 means that it suffices to consider when 𝜇max

is polynomially bounded. Also we can assume 𝑑 = 𝑘 i.e. the dimension of the underlying

space is equal to the number of components. This is because we can use the reduction in

Section 2.3.3 and if 𝑑 < 𝑘, then we can simply add independent standard Gaussian entries

in the remaining 𝑘 − 𝑑 dimensions.

We now describe our algorithm for implicitly estimating the moment tensor. For the re-

mainder of this section, we will only work with a fixed mixture ℳ so we will drop it from

all subscripts e.g. in Definitions 2.6.1 and 2.6.2. At a high level, we will recursively compute

a sequence of projection matrices Π1 ∈ R𝑘×𝑑,Π2, . . . ,Π𝑠 ∈ R𝑘×𝑑𝑘. Our goal will be to ensure

that ΓΠ𝑠,...,Π1 (which is a 𝑘 × 𝑑𝑠 matrix) essentially contains the flattenings of 𝜇⊗𝑠
1 , . . . , 𝜇⊗𝑠

𝑘

in its row span.

To see how to do this, assume that we have computed Π𝑠−1, . . . ,Π1 so far. By the

inductive hypothesis, ΓΠ𝑠−1,...,Π1 tells us a 𝑘-dimensional subspace that essentially contains

the flattenings of 𝜇⊗𝑠−1
1 , . . . , 𝜇⊗𝑠−1

𝑘 . Thus, we trivially have a 𝑑𝑘 dimensional subspace,

given by the rows of
(︀
𝐼𝑑 ⊗kr ΓΠ𝑠−1,...,Π1

)︀
that must essentially contain all of the flattenings of
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𝜇⊗𝑠
1 , . . . , 𝜇⊗𝑠

𝑘 . It remains to reduce from this 𝑑𝑘-dimensional space back to a 𝑘-dimensional

space. However, we can now write everything out in this 𝑑𝑘-dimensional space and simply

run PCA and take the top-𝑘 singular subspace. Formally, we estimate the 𝑑𝑘 × 𝑑𝑘 matrix

𝐴2𝑠 =
(︀
𝐼𝑑 ⊗kr ΓΠ𝑠−1,...,Π1

)︀
𝑀2𝑠

(︀
𝐼𝑑 ⊗kr ΓΠ𝑠−1,...,Π1

)︀𝑇
=

𝑘∑︁
𝑖=1

𝑤𝑖

(︀(︀
𝐼𝑑 ⊗kr ΓΠ𝑠−1,...,Π1

)︀
flatten(𝜇𝑖)

⊗𝑠
)︀⊗2

using techniques from Section 2.4 and then simply set Π𝑠 to have rows given by the top 𝑘

singular vectors of 𝐴2𝑠. To gain some intuition for why this works, imagine that the subspace

spanned by the rows of ΓΠ𝑠−1,...,Π1 exactly contains the flattenings of 𝜇⊗𝑠−1
1 , . . . , 𝜇⊗𝑠−1

𝑘 . Also

assume that our estimate of 𝐴2𝑠 is exact. Then 𝐴2𝑠 has rank at most 𝑘 and the top-𝑘 singular

subspace must contain all of the vectors

(︀
𝐼𝑑 ⊗kr ΓΠ𝑠−1,...,Π1

)︀
flatten(𝜇𝑖)

⊗𝑠 = flatten
(︀
𝜇𝑖 ⊗ ΓΠ𝑠−1,...,Π1flatten(𝜇𝑖)

⊗𝑠−1
)︀
.

The above then immediately implies that the subspace spanned by the rows of ΓΠ𝑠,...,Π1

exactly contains the flattenings of 𝜇⊗𝑠
1 , . . . , 𝜇⊗𝑠

𝑘 . Of course, the actual analysis will need to

be much more precise quantitatively in tracking the errors in each step.

Our algorithm is described in full below. The main algorithm, Algorithm 1, computes

the projection matrices Π1, . . .Π𝑠 following the outline above. As a subroutine, it needs to

estimate the matrix 𝐴2𝑠. This is done in Algorithm 2 which relies on the results in Section

2.4, namely Corollary 2.4.11 and Corollary 2.4.12.
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Algorithm 1 Iterative Projection Step
Input: Samples 𝑧1, . . . , 𝑧𝑛 from unknown mixture

ℳ = 𝑤1𝒟(𝜇1) + · · ·+ 𝑤𝑘𝒟(𝜇𝑘)

Input: integer 𝑡 > 0
Split samples into 𝑡 sets 𝑆1, . . . , 𝑆𝑡 of equal size
Let Π1 = 𝐼𝑑 (recall 𝑘 = 𝑑)
for s = 2, . . . , t do

Run Estimate Moment Tensor using samples 𝑆𝑠 to get approximation ̃︂𝐴2𝑠 ∈
R𝑑𝑘×𝑑𝑘 to

𝐴2𝑠 =
(︀
𝐼𝑑 ⊗kr ΓΠ𝑠−1,...,Π1

)︀
𝑀2𝑠

(︀
𝐼𝑑 ⊗kr ΓΠ𝑠−1,...,Π1

)︀𝑇
Let Π𝑠 ∈ R𝑘×𝑑𝑘 have rows forming an orthonormal basis of the top 𝑘 singular subspace

of ̃︂𝐴2𝑠

Output: (Π𝑡, . . . ,Π1)

Algorithm 2 Estimate Moment Tensor
Input: Samples 𝑧1, . . . , 𝑧𝑛 from unknown mixture

ℳ = 𝑤1𝒟(𝜇1) + · · ·+ 𝑤𝑘𝒟(𝜇𝑘)

Input: Integer 𝑠 > 0

Input: Matrices Π𝑠−1 ∈ R𝑘×𝑑𝑘, . . . ,Π2 ∈ R𝑘×𝑑𝑘,Π1 ∈ R𝑘×𝑑

for i = 1,2, . . . , n do

Independently draw samples 𝑥1, . . . , 𝑥4𝑠−1 from 𝒟

Compute the (𝑘𝑑)2-dimensional vector (recall Definition 2.4.9)

𝑋𝑖 = ((𝐼𝑑 ⊗kr ΓΠ𝑠−1,...,Π1)⊗kr (𝐼𝑑 ⊗kr ΓΠ𝑠−1,...,Π1))flatten (𝑅2𝑠(𝑧𝑖, 𝑥1, . . . , 𝑥4𝑠−1)) .

Let 𝐾𝑖 be the rearrangement of 𝑋𝑖 into a square 𝑑𝑘 × 𝑑𝑘-dimensional matrix

Output: 𝐴 = (𝐾1 + · · ·+𝐾𝑛)/𝑛

60



2.6.1 Efficient Implementation

A naive implementation of Algorithm 1 requires 𝑑𝑡 time, which is too large. However, in

this section, we show that we can implement all of the steps more efficiently using only

poly(𝑛𝑑𝑘, 𝑡𝑡) time.

Remark. We will later show that it suffices to consider

𝑡 ∼ 𝑂

(︂
log(𝑘/𝑤min)

log log(𝑘/𝑤min)

)︂

so this runtime is actually polynomial in all parameters that we need.

Claim 2.6.3. Algorithm 1 can be implemented to run in poly(𝑛, 𝑑, 𝑘, 𝑡𝑡) time.

Proof. First we analyze the runtime of Algorithm 2. Note that by Corollary 2.4.10, we can

write

𝑅𝑠(𝑧𝑖, 𝑥1, . . . , 𝑥4𝑠−1) = 𝑉1 + · · ·+ 𝑉𝑙

where 𝑉1, . . . , 𝑉𝑙 are all rank-1 tensors and 𝑙 = 𝑠𝑂(𝑠). Now by Corollary 2.5.4, this means

that computing

𝑋𝑖 = ((𝐼𝑑 ⊗kr ΓΠ𝑠−1,...,Π1)⊗kr (𝐼𝑑 ⊗kr ΓΠ𝑠−1,...,Π1))flatten (𝑄2𝑠(𝑧𝑖, 𝑥1, . . . , 𝑥4𝑠−1))

= ((𝐼𝑑 ⊗kr ΓΠ𝑠−1,...,Π1)⊗kr (𝐼𝑑 ⊗kr ΓΠ𝑠−1,...,Π1))(flatten(𝑉1) + · · ·+ flatten(𝑉𝑙))

can be done in poly(𝑑, 𝑘, 𝑠𝑠) time by expanding out the RHS and computing each term

separately. It is then immediate that all of Algorithm 2 runs in poly(𝑛, 𝑑, 𝑘, 𝑠𝑠) time. Now in

Algorithm 1, the only additional steps involve computing an SVD of the matrices̃︂𝐴2𝑠 (which

are polynomially sized) so we conclude that the entire algorithm runs in poly(𝑛, 𝑑, 𝑘, 𝑡𝑡)

time. ■
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2.6.2 Accuracy Analysis

Now, we analyze the correctness of Algorithm 1 namely that the span of the rows of the

matrix ΓΠ𝑡,...,Π1 indeed essentially contain all of 𝜇⊗𝑡
1 , . . . , 𝜇

⊗𝑡
𝑘 . To simplify notation, we make

the following definition.

Definition 2.6.4. For all 𝑠, we define the matrix

𝐴2𝑠 =
(︀
𝐼𝑑 ⊗kr ΓΠ𝑠−1,...,Π1

)︀
𝑀2𝑠

(︀
𝐼𝑑 ⊗kr ΓΠ𝑠−1,...,Π1

)︀𝑇
.

Remark. Note that in the execution of Algorithm 1, ̃︂𝐴2𝑠 is intended to be an estimate of

𝐴2𝑠.

The main result that we will prove is stated below. Note that this lemma does not require

any assumptions about minimum mixing weights or means in the mixture. Instead, it simply

says that the subspace spanned by the rows of ΓΠ𝑠,...,Π1 essentially contains flatten(𝜇⊗𝑠
𝑖 ) for

all components 𝒟(𝜇𝑖) with mean and mixing weight bounded away from 0.

Lemma 2.6.5. Let 𝒟 be a distribution on R𝑑 that is 1-Poincare and let ℳ = 𝑤1𝒟(𝜇1) +

· · · + 𝑤𝑘𝒟(𝜇𝑘) be a mixture of translations of 𝒟. Let 𝑤*, 𝜖 > 0 be parameters. Assume that

the number of samples satisfies

𝑛 ≥
(︂
𝑡𝑡𝜇𝑡

max𝑘𝑑

𝑤*𝜖

)︂𝐶

for some sufficiently large universal constant 𝐶. Then with probability at least 1− 𝑛−0.2, in

the execution of Algorithm 1, the following condition holds: for all 𝑖 ∈ [𝑘] such that ‖𝜇𝑖‖ ≥ 1

and 𝑤𝑖 ≥ 𝑤*, we have ⃦⃦
ΓΠ𝑠,...,Π1flatten(𝜇⊗𝑠

𝑖 )
⃦⃦
≥ (1− 𝑠𝜖) ‖𝜇𝑖‖𝑠

for all 𝑠 = 1, 2, . . . , 𝑡.

Remark. The parameter 𝜖 represents the desired accuracy and the parameter 𝑤* is a weight

cutoff threshold where we guarantee to recover “significant" components whose mixing weight

is at least 𝑤*.
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Roughly, the proof of Lemma 2.6.5 will involve following the outline at the beginning of

this section but quantitatively tracking the errors more precisely. Before we prove Lemma

2.6.5, we first prove a preliminary claim that our estimation error
⃦⃦⃦
𝐴2𝑠 −̃︂𝐴2𝑠

⃦⃦⃦
𝐹

is small.

Claim 2.6.6. Assume that for a fixed integer 𝑠, Algorithm 2 is run with a number of samples

𝑛 ≥
(︂
𝑠𝑠𝜇𝑠

max𝑘𝑑

𝑤*𝜖

)︂𝐶

for some sufficiently large universal constant 𝐶. Then with probability at least 1− 𝑛−0.4, its

output ̃︂𝐴2𝑠 satisfies ⃦⃦⃦̃︂𝐴2𝑠 − 𝐴2𝑠

⃦⃦⃦
𝐹
≤ 0.5𝑤*𝜖2 .

Proof. Recall that we are trying to estimate 𝐴2𝑠 which is a 𝑑𝑘 × 𝑑𝑘 matrix. It will suffice

for us to obtain a concentration bound for our estimate of each entry and then union bound.

Recall that in Algorithm 2, we estimate 𝐴2𝑠 by averaging 𝐾1, . . . , 𝐾𝑛. By Corollary 2.4.11,

we have that

E[𝐾𝑖] = 𝐴2𝑠 (2.10)

so our estimator is unbiased. Next, observe that each entry of 𝐾𝑖, say 𝐾𝑖[𝑎, 𝑏] where 1 ≤

𝑎, 𝑏 ≤ 𝑑𝑘 can be written as

𝐾𝑖[𝑎, 𝑏] = 𝑣 · flatten(𝑅2𝑠(𝑧𝑖, 𝑥1, . . . , 𝑥4𝑠−1))

where 𝑣 ∈ R𝑑2𝑠 is some unit vector (this is by Claim 2.5.2). By Corollary 2.4.12, we have

E
[︀
(𝐾𝑖[𝑎, 𝑏]− 𝐴2𝑠[𝑎, 𝑏])

2
]︀
≤ E[𝐾𝑖[𝑎, 𝑏]

2] ≤ (20𝑠)2𝑠(𝜇2𝑠
max + 1)

where the first inequality above is true by (2.10). Since our final estimate is obtained by

averaging over 𝑛 independent samples, we have

E
[︁
(̃︂𝐴2𝑠[𝑎, 𝑏]− 𝐴2𝑠[𝑎, 𝑏])

2
]︁
≤ (20𝑠)2𝑠(𝜇2𝑠

max + 1)

𝑛
.
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Thus, with probability at least 1− 𝑛−0.5, we must have

⃒⃒⃒̃︂𝐴2𝑠[𝑎, 𝑏]− 𝐴2𝑠[𝑎, 𝑏]
⃒⃒⃒
≤ (20𝑠)2𝑠(𝜇2𝑠

max + 1)√
𝑛

≤ 0.5𝑤*𝜖2

𝑑𝑘

where the last inequality holds as long as we choose 𝑛 sufficiently large. Union bounding the

above over all entries (there are only (𝑑𝑘)2 entries to union bound over) and ensuring that

𝑛 is sufficiently large, we get the desired bound. ■

Now we are ready to prove Lemma 2.6.5.

Proof of Lemma 2.6.5. We will prove the claim by induction on 𝑠. The base case for 𝑠 = 0

is clear. Now let 𝑖 ∈ [𝑘] be such that ‖𝜇𝑖‖ ≥ 1 and 𝑤𝑖 ≥ 𝑤*. Define the vector 𝑣𝑖,𝑠 ∈ R𝑑𝑘 as

𝑣𝑖,𝑠 = flatten
(︀
𝜇𝑖 ⊗ ΓΠ𝑠−1,...,Π1flatten(𝜇𝑠−1

𝑖 )
)︀
.

Note that this allows us to rewrite the matrix 𝐴2𝑠 as

𝐴2𝑠 = 𝑤1(𝑣1,𝑠 ⊗ 𝑣1,𝑠) + · · ·+ 𝑤𝑘(𝑣𝑘,𝑠 ⊗ 𝑣𝑘,𝑠) .

Let 𝑢𝑖,𝑠 be the projection of 𝑣𝑖,𝑠 onto the orthogonal complement of Π𝑠. Note that

𝑢𝑖,𝑠 · 𝑣𝑖,𝑠 = ‖𝑢𝑖,𝑠‖2 .

Thus, we must have

𝑢𝑇𝑖,𝑠𝐴2𝑠𝑢𝑖,𝑠 ≥ 𝑤𝑖 ‖𝑢𝑖,𝑠‖4 .

On the other hand, note that 𝐴2𝑠 has rank at most 𝑘. Assuming that the hypothesis of

Claim 2.6.6 holds, the 𝑘 + 1st singular value of ̃︂𝐴2𝑠 has size at most 𝑤*𝜖2. Thus,

𝑢𝑇𝑖,𝑠
̃︂𝐴2𝑠𝑢𝑖,𝑠 ≤ 0.5𝑤*𝜖2 ‖𝑢𝑖,𝑠‖2 .
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Finally, using the hypothesis of Claim 2.6.6 again, we must have

⃒⃒⃒
𝑢𝑇𝑖,𝑠(𝐴2𝑠 −̃︂𝐴2𝑠)𝑢𝑖,𝑠

⃒⃒⃒
≤ 0.5𝑤*𝜖2 ‖𝑢𝑖,𝑠‖2 .

Putting the previous three inequalities together, we deduce that we must have

𝑤𝑖 ‖𝑢𝑖,𝑠‖4 ≤ 𝑤*𝜖2 ‖𝑢𝑖,𝑠‖2

which implies ‖𝑢𝑖,𝑠‖ ≤ 𝜖. Also, the induction hypothesis implies that

⃦⃦
ΓΠ𝑠−1,...,Π1flatten(𝜇𝑠−1

𝑖 )
⃦⃦
≥ (1− (𝑠− 1)𝜖) ‖𝜇𝑖‖𝑠−1

and thus

‖𝑣𝑖,𝑠‖ ≥ (1− (𝑠− 1)𝜖) ‖𝜇𝑖‖𝑠 .

Finally, note that

‖ΓΠ𝑠,...,Π1flatten(𝜇𝑠
𝑖 )‖ = ‖𝑣𝑖,𝑠 − 𝑢𝑖,𝑠‖ ≥ (1− (𝑠− 1)𝜖) ‖𝜇𝑖‖𝑠 − 𝜖 ≥ (1− 𝑠𝜖) ‖𝜇𝑖‖𝑠 .

This completes the inductive step. Finally, it remains to note that the overall failure proba-

bility can be bounded by union bounding over all applications of Claim 2.6.6 and is clearly

at most 𝑛−0.2 as long as we choose 𝑛 sufficiently large. This completes the proof. ■

2.7 Testing Samples Using Implicit Moments

Now we show how to use the projection maps Π𝑡, . . . ,Π1 computed by Algorithm 1 to test

whether a sample came from a component with mean close to 0 or mean far away from

0. Roughly, given a sample 𝑧, the test simply works by computing 𝑅𝑡(𝑧, 𝑧1, . . . , 𝑧2𝑡−1) for

𝑧1, . . . , 𝑧2𝑡−1 ∼ 𝒟 and computing

‖ΓΠ𝑡,...,Π1flatten(𝑅𝑡(𝑧, 𝑧1, . . . , 𝑧2𝑡−1))‖ .
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We output Far if the above is larger than some threshold and otherwise we output Close.

For technical reasons, we will actually average over multiple independent draws for 𝑧1, . . . , 𝑧2𝑡−1 ∼

𝒟.

Roughly, the intuition for why this test works is as follows. Note that if 𝑧 ∼ 𝒟 then by

Corollary 2.4.11,

E [ΓΠ𝑡,...,Π1flatten(𝑅𝑡(𝑧, 𝑧1, . . . , 𝑧2𝑡−1))] = 0

and if we control the variance using Corollary 2.4.12, then we can upper bound the length

with reasonable probability. On the other hand if 𝑧 ∼ 𝒟(𝜇𝑖) for some 𝜇𝑖 with large norm,

then

E [ΓΠ𝑡,...,Π1flatten(𝑅𝑡(𝑧, 𝑧1, . . . , 𝑧2𝑡−1))] = ΓΠ𝑡,...,Π1flatten(𝜇⊗𝑡
𝑖 )

and since the algorithm in the previous section can ensure that 𝜇⊗𝑡
𝑖 is essentially contained

in the row span of ΓΠ𝑡,...,Π1 , the RHS above has large norm. The details of our algorithm for

testing samples are described below.

Algorithm 3 Test Samples

Input: Projection matrices Π𝑡, . . . ,Π2 ∈ R𝑘×𝑑𝑘,Π1 ∈ R𝑘×𝑑

Input: Sample 𝑧 ∈ R𝑑 to test

Input: Threshold 𝜏 , desired accuracy 𝛿

Set 𝑛 = ((103𝑡)𝑡/𝛿)3

for 𝑖 = 1, 2, . . . , 𝑛 do

Draw samples 𝑧1, . . . , 𝑧2𝑡−1 ∼ 𝒟

Let 𝐴𝑖 = ΓΠ𝑡,...,Π1flatten(𝑅𝑡(𝑧, 𝑧1, . . . , 𝑧2𝑡−1))

Set 𝐴 = (𝐴1 + · · ·+ 𝐴𝑛)/𝑛

if ‖𝐴‖ ≥ 𝜏 then

Output: Far

else

Output: Close
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2.7.1 Analysis of Test Samples

Now we analyze the behavior of Algorithm 3. The key properties that the test satisfies are

summarized in the following two lemmas. Lemma 2.7.2 say that with 1− 𝛿 probability the

test will successfully output Far for samples from a component with mean far from 0 and

Lemma 2.7.1 says that with 1 − 𝛿 probability, the test will successfully output Close for

samples from a component with mean 0.

Note that Lemma 2.7.2 requires that the row span of ΓΠ𝑡,...,Π1 essentially contains flatten(𝜇⊗𝑡
𝑖 )

(which can be guaranteed by Algorithm 1 and Lemma 2.6.5). Lemma 2.7.1 actually does not

require anything about Π𝑡, . . . ,Π1 (other than the fact that they are actually projections).

Lemma 2.7.1. Let 𝒟 be a distribution that is 1-Poincare. Let 𝑡 ∈ N and 0 < 𝛿 < 0.01

be some parameters. Let Π𝑡, . . . ,Π2 ∈ R𝑘×𝑑𝑘,Π1 ∈ R𝑘×𝑑 be any matrices whose rows are

orthonormal. Let 𝜏 be some parameter satisfying 𝜏 ≥ (20𝑡)𝑡𝑘/𝛿. Let 𝑧 ∼ 𝒟. Then with

probability at least 1 − 𝛿, Algorithm 3 run with these parameters outputs Close where the

randomness is over 𝑧 and the random choices within Algorithm 3.

Lemma 2.7.2. Let 𝒟 be a distribution that is 1-Poincare. Let 𝑡 ∈ N and 0 < 𝛿 < 0.01 be

some parameters. Let 𝑧 ∼ 𝒟(𝜇𝑖) where ‖𝜇𝑖‖ ≥ 104(log 1/𝛿 + 𝑡). Let 𝜏 be some parameter

satisfying 𝜏 ≤ (0.4 ‖𝜇𝑖‖)𝑡. Assume that the matrices Π𝑡, . . . ,Π2 ∈ R𝑘×𝑑𝑘,Π1 ∈ R𝑘×𝑑 satisfy

that ⃦⃦
ΓΠ𝑡,...,Π1flatten(𝜇⊗𝑡

𝑖 )
⃦⃦
≥ (1− 𝑡𝜖) ‖𝜇𝑖‖𝑡 .

where

𝜖 <
𝛿

(10𝑡 ‖𝜇𝑖‖)4𝑡
.

Then with probability at least 1 − 𝛿, Algorithm 3 run with these parameters outputs Far

(where the randomness is over 𝑧 and the random choices within Algorithm 3).

Remark. Note that we will want to run the test with some inverse polynomial failure prob-

ability i.e. 𝛿 = poly(𝑘/𝑤*) for some weight threshold 𝑤*. In order to be able to combine
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Lemma 2.7.1 and Lemma 2.7.2 meaningfully, we need

(0.4 ‖𝜇𝑖‖)𝑡 ≥ (20𝑡)𝑡𝑘/𝛿 .

If ‖𝜇𝑖‖ ≥ (log(𝑘/𝑤*))1+𝑐 for some constant 𝑐 > 0 then setting 𝑡 ∼ 𝑂 (𝑐−1 log(𝑘/𝑤*)/ log log(𝑘/𝑤*))

ensures that the above inequality is true. Note that for this setting, 𝑡𝑡 = poly(𝑘/𝑤*) (where

we treat 𝑐 as a constant) and thus we will be able to ensure that our overall runtime is

polynomial.

We will first prove Lemma 2.7.1 (which is much easier to prove than Lemma 2.7.2). In

fact, a direct variance bound using Corollary 2.4.12 will suffice.

Proof of Lemma 2.7.1. Note that the matrix ΓΠ𝑡,...,Π1 has (up to) 𝑘 orthonormal rows, say

𝑣1, . . . , 𝑣𝑘. Let 𝑅 be the average of 𝑅𝑡(𝑧, 𝑧1, . . . , 𝑧2𝑡−1) over 𝑛 = ((103𝑡)𝑡/𝛿)3 trials where 𝑧 is

drawn once and 𝑧1, . . . , 𝑧2𝑡−1 are sampled independently in each trial. By Cauchy Schwarz,

for any vector 𝑣,

E[(𝑣 · flatten(𝑅))2] ≤ E
𝑧∼𝒟(𝜇𝑖),𝑧1,...,𝑧2𝑡−1∼𝒟

[(𝑣 · flatten(𝑅𝑡(𝑧, 𝑧1, . . . , 𝑧2𝑡−1)))
2] .

In other words, the covariance matrix of𝑅 is smaller than the covariance of𝑅𝑡(𝑧, 𝑧1, . . . , 𝑧2𝑡−1)

(in the semidefinite ordering). Now fix 𝑖 ∈ [𝑘]. By Corollary 2.4.12 and Markov’s inequality,

we have with probability at least 1− 𝛿/𝑘

|𝑣𝑖 · flatten(𝑅)| ≤
√︂
𝑘

𝛿
(20𝑡)𝑡 .

Union bounding over all 𝑖, with probability at least 1− 𝛿, we have

‖ΓΠ𝑡,...,Π1flatten(𝑅)‖ ≤ 𝑘

𝛿
(20𝑡)𝑡 .

Note that the expression ΓΠ𝑡,...,Π1flatten(𝑅) is exactly equivalent to the vector 𝐴 that is tested

by Algorithm 3 so with probability at least 1− 𝛿, the final output is Close. ■
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A direct variance bound will not work for Lemma 2.7.2. This is because we want the norm

to be large with 1−𝛿 probability but the variance is comparable to the squared length of the

mean so we cannot get strong enough concentration with just a variance bound. Instead, we

need a more precise argument. We will first, in the next claim, prove a bound on evaluations

of the polynomial 𝑃𝑡,𝒟 (recall Definition 2.4.2). Essentially, we will argue that under the

conditions of Lemma 2.7.2, for 𝑧 ∼ 𝒟(𝜇𝑖), with high probability, the tensor 𝑃𝑡,𝒟(𝑧) has large

inner product with 𝜇⊗𝑡
𝑖 . Since flatten(𝜇⊗𝑡

𝑖 ) is essentially contained in the row span of ΓΠ𝑡,...,Π1 ,

this implies that

ΓΠ𝑡,...,Π1flatten(𝑃𝑡,𝒟(𝑧))

must have large norm. By Corollary 2.4.11,

E
𝑧1,...,𝑧2𝑡−1∼𝒟

[𝑅𝑡(𝑧, 𝑧1, . . . , 𝑧2𝑡−1)] = 𝑃𝑡,𝒟(𝑧)

so if we average over enough independent samples for 𝑧1, . . . , 𝑧2𝑡−1 then the estimator 𝐴

computed in Algorithm 3 will concentrate around its mean and also have large norm which

is exactly what we want. From now on, we will drop the subscript 𝒟 as the adjusted

polynomial will always be defined with respect to 𝒟.

Claim 2.7.3. Let 𝑥 ∈ R𝑑. Let 𝑣 ∈ R𝑑 be a vector such that 𝑣 · 𝑥 ≥ 200𝑡 ‖𝑣‖. Then

⟨𝑃𝑡(𝑥), 𝑣
⊗𝑡⟩ ≥ (0.9𝑣 · 𝑥)𝑡 .

Proof. WLOG we may assume 𝑣 is a unit vector. Let 𝑎 = 𝑣 · 𝑥. We will use Claim 2.4.6 to

rewrite 𝑃𝑡(𝑥). Note that for any integer 𝑠, ⟨𝐷𝑠, 𝑣
⊗𝑠⟩ = E𝑧∼𝒟[(𝑧 · 𝑣)𝑠]. Combining with Fact

2.3.7, we have

|⟨𝐷𝑠, 𝑣
⊗𝑠⟩| ≤ 6 · 𝑠! .
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Now by Claim 2.4.6, we have

⟨𝑃𝑡(𝑥), 𝑣
⊗𝑡⟩

=

⟨
𝑣⊗𝑡,

∑︁
𝑆0⊂[𝑡]

(︀
𝑥⊗𝑆0

)︀
⊗⎛⎝ ∑︁

{𝑆1,...,𝑆𝑡}∈𝑍𝑡([𝑡]∖𝑆0)

(−1)𝒞{𝑆1,...,𝑆𝑡}(𝒞{𝑆1, . . . , 𝑆𝑡})!(𝐷|𝑆1|)
(𝑆1) ⊗ · · · ⊗ (𝐷|𝑆𝑡|)

(𝑆𝑡)

⎞⎠⟩

≥ 𝑎𝑡 −
∑︁

𝑆0⊂[𝑡],𝑆0 ̸=[𝑡]

𝑎|𝑆0|

⎛⎝ ∑︁
{𝑆1,...,𝑆𝑡}∈𝑍𝑡([𝑡]∖𝑆0)

6𝒞{𝑆1,...,𝑆𝑡}(𝒞{𝑆1, . . . , 𝑆𝑡})!|𝑆1|! · · · |𝑆𝑡|!

⎞⎠

≥ 𝑎𝑡 −
∑︁

𝑆0⊂[𝑡],𝑆0 ̸=[𝑡]

𝑎|𝑆0|6𝑡−|𝑆0|

⎛⎜⎜⎝𝑡−|𝑆0|∑︁
𝑐=1

∑︁
𝑆1∪···∪𝑆𝑐=[𝑡]∖𝑆0

𝑆𝑖∩𝑆𝑗=∅,𝑆𝑖 ̸=∅

|𝑆1|! · · · |𝑆𝑐|!

⎞⎟⎟⎠

= 𝑎𝑡 −
∑︁

𝑆0⊂[𝑡],𝑆0 ̸=[𝑡]

𝑎|𝑆0|6𝑡−|𝑆0|

⎛⎜⎜⎝𝑡−|𝑆0|∑︁
𝑐=1

∑︁
𝑠1+···+𝑠𝑐=𝑡−|𝑆0|

𝑠𝑖>0

(𝑡− |𝑆0|)!

⎞⎟⎟⎠
≥ 𝑎𝑡 −

∑︁
𝑆0⊂[𝑡],𝑆0 ̸=[𝑡]

𝑎|𝑆0|6𝑡−|𝑆0|(𝑡− |𝑆0|)!2𝑡−|𝑆0|

≥ 𝑎𝑡 −
𝑡∑︁

𝑐=1

(︂
𝑡

𝑐

)︂
𝑐!12𝑐𝑎𝑡−𝑐 ≥ 𝑎𝑡 −

𝑡∑︁
𝑐=1

(12𝑡)𝑐𝑎𝑡−𝑐 = 𝑎𝑡

(︃
1−

𝑡∑︁
𝑐=1

(︂
12𝑡

𝑎

)︂𝑐
)︃
≥ 0.9𝑎𝑡 .

This completes the proof. ■

Now we are ready to prove Lemma 2.7.2.

Proof of Lemma 2.7.2. Let 𝑣 = 𝜇𝑖/ ‖𝜇𝑖‖. By Fact 2.3.7, with probability at least 1 − 𝛿/10,

we have

𝑣 · 𝑧 ≥ 0.9 ‖𝜇𝑖‖ . (2.11)

Now by Claim 2.7.3, we have

⟨𝑃𝑡(𝑧), 𝑣
⊗𝑡⟩ ≥ (0.8 ‖𝜇𝑖‖)𝑡 . (2.12)
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Now by assumption (and the fact that 𝑣 is a scalar multiple of 𝜇𝑖), we have

Γ𝑇
Π𝑡,...,Π1

ΓΠ𝑡,...,Π1flatten(𝑣⊗𝑡) = flatten(𝑣⊗𝑡) + 𝑢

where 𝑢 is a vector with

‖𝑢‖ ≤
√︀
1− (1− 𝑡𝜖)2 ≤

√
2𝑡𝜖 .

By Claim 2.4.5 and Markov’s inequality, we have that with probability at least 1− 𝛿/10 over

the choice of 𝑧,

|𝑢 · flatten(𝑃𝑡(𝑧))| ≤
√︀

10/𝛿 · (𝑡+ ‖𝜇𝑖‖)𝑡 ‖𝑢‖ ≤
√︀

20𝑡𝜖/𝛿(2𝑡 ‖𝜇𝑖‖)𝑡 ≤ 1

where the last step follows from our condition on 𝜖. Now we can combine this with (2.12) to

get that

⟨flatten(𝑃𝑡(𝑧)),Γ
𝑇
Π𝑡,...,Π1

ΓΠ𝑡,...,Π1flatten(𝑣⊗𝑡)⟩ ≥ (0.8 ‖𝜇𝑖‖)𝑡 − 1 ≥ (0.5 ‖𝜇𝑖‖)𝑡 . (2.13)

Now let

𝑤 = Γ𝑇
Π𝑡,...,Π1

ΓΠ𝑡,...,Π1flatten(𝑣⊗𝑡) .

Note that ‖𝑤‖ ≤ 1 because it is the projection of a unit vector flatten(𝑣⊗𝑡) onto some

subspace. By Corollary 2.4.12 and Markov’s inequality, with probability at least 1 − 𝛿/10

over the randomness in 𝑧, we have

E
𝑧1,...,𝑧2𝑡−1∼𝒟

[︀
(𝑤 · flatten(𝑅(𝑧, 𝑧1, . . . , 𝑧2𝑡−1)))

2]︀ ≤ (10/𝛿)(20𝑡)2𝑡(‖𝜇𝑖‖2𝑡 + 1) .

Assuming that the above holds, we now treat 𝑧 as fixed. Note that the mean of𝑅(𝑧, 𝑧1, . . . , 𝑧2𝑡−1)

is 𝑃𝑡(𝑧) by Corollary 2.4.11. Let 𝑅 be obtained by averaging 𝑅(𝑧, 𝑧1, . . . , 𝑧2𝑡−1) over 𝑛 =

((103𝑡)𝑡/𝛿)3 independent trials for 𝑧1, . . . , 𝑧2𝑡−1. Of course the mean of 𝑅 is also 𝑃𝑡(𝑧). Using
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the above, we have that

E
[︀
(𝑤 · (flatten(𝑅)− flatten(𝑃𝑡(𝑧))))

2]︀
=

1

𝑛
E

𝑧1,...,𝑧2𝑡−1∼𝒟

[︀
(𝑤 · (flatten(𝑅(𝑧, 𝑧1, . . . , 𝑧2𝑡−1)− 𝑃𝑡(𝑧))))

2]︀
≤ 1

𝑛
E

𝑧1,...,𝑧2𝑡−1∼𝒟

[︀
(𝑤 · flatten(𝑅(𝑧, 𝑧1, . . . , 𝑧2𝑡−1)))

2]︀
≤ (𝛿/(103𝑡)𝑡)2(20𝑡)2𝑡(‖𝜇𝑖‖2𝑡 + 1)

≤ 𝛿

10

(︂
‖𝜇𝑖‖
20

)︂2𝑡

.

Thus, with probability at least 1− 𝛿/10, we have

|𝑤 · (flatten(𝑅)− flatten(𝑃𝑡(𝑧)))| ≤ (0.05 ‖𝜇𝑖‖)𝑡 .

If this holds, then combining with (2.13) implies

𝑤 · flatten(𝑅) ≥ (0.4 ‖𝜇𝑖‖)𝑡

but since 𝑣⊗𝑡 is a unit vector and 𝑤 is its projection onto the subspace spanned by the rows

of ΓΠ𝑡,...,Π1 , the above implies

‖ΓΠ𝑡,...,Π1flatten(𝑅)‖ ≥ (0.4 ‖𝜇𝑖‖)𝑡 .

Note that the expression ΓΠ𝑡,...,Π1flatten(𝑅) is exactly equivalent to the vector 𝐴 that is

tested by Algorithm 3 so combining all of the failure probabilities, we conclude that with

probability at least 1− 𝛿, the output of Algorithm 3 will be Far. ■

2.8 Learning Mixtures of Poincare Distributions

We are now ready to prove Theorem 2.2.3, our full result for mixtures of Poincare dis-

tributions. Let 𝒟′ = (𝒟 − 𝒟)/
√
2 i.e. 𝒟′ is the distribution of the difference between
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two independent samples from 𝒟 scaled down by
√
2. The

√
2 scaling ensures that 𝒟′ is

1-Poincare by Fact 2.3.7. Note that we can take pairwise differences between samples to

simulate access to the mixture

ℳ′ = (𝑤2
1 + · · ·+ 𝑤2

𝑘)𝒟′ +
∑︁
𝑖 ̸=𝑗

𝑤𝑖𝑤𝑗𝒟′((𝜇𝑖 − 𝜇𝑗)/
√
2) .

We will run Algorithm 1 and Algorithm 3 for the distribution 𝒟′ and mixtureℳ′. Note that

the test in Algorithm 3 will test for a pair of samples say 𝑧, 𝑧′, from components 𝒟(𝜇𝑖),𝒟(𝜇𝑗)

of the original mixture, whether ‖𝜇𝑖 − 𝜇𝑗‖ is large or zero. Running this test between all pairs

of samples will let us form clusters of samples that correspond to each of the components.

We begin with a lemma that more precisely specifies the guarantees of this test and then

Theorem 2.2.3 will follow easily from it.

Lemma 2.8.1. Let 𝒟 be a 1-Poincare distribution on R𝑑. Let

ℳ = 𝑤1𝒟(𝜇1) + · · ·+ 𝑤𝑘𝒟(𝜇𝑘)

be a mixture of translated copies of 𝒟. Let 𝑤*, 𝑠, 𝛿 be parameters and assume that 𝑠 ≥

(log 𝑘/(𝑤*𝛿))1+𝑐 for some 0 < 𝑐 < 1. Also assume that

max ‖𝜇𝑖 − 𝜇𝑗‖ ≤ min((𝑘/(𝑤*𝛿))2, 𝑠𝐶)

for some 𝐶. There is an algorithm that takes 𝑛 = poly((𝑘𝑑/(𝑤*𝛿))𝐶/𝑐) samples from ℳ

and 𝒟 and runs in poly(𝑛) time and achieves the following testing guarantees: for a pair of

(independent) samples 𝑧 ∼ 𝒟(𝜇𝑖), 𝑧
′ ∼ 𝒟(𝜇𝑗),

• If 𝑖 = 𝑗 and 𝑤𝑖 ≥ 𝑤* then with probability 1− 𝛿 the output is accept

• If 𝑤𝑖, 𝑤𝑗 ≥ 𝑤* and ‖𝜇𝑖 − 𝜇𝑗‖ ≥ 𝑠 then with probability 1− 𝛿 the output is reject

where the randomness is over the samples 𝑧, 𝑧′ and the random choices in the algorithm.
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Remark. Note that Lemma 2.8.1 actually does not require a minimum separation or mini-

mum mixing weight but instead just guarantees to detect when two samples come from com-

ponents that have nontrivial mixing weights and whose means are far apart. We will focus

on achieving inverse polynomial accuracy i.e. 𝛿 = (𝑤*/𝑘)𝑂(1) so the required separation will

be (log 𝑘/𝑤*)1+𝑐 and the runtime will be polynomial in 𝑘, 𝑑, 1/𝑤*.

Proof. Let 𝑡 be the minimum integer such that

(︂
𝑠

log(𝑘/(𝑤*𝛿))

)︂𝑡

≥ (𝑘/(𝑤*𝛿))10 .

Note that we clearly must have that

max ‖𝜇𝑖 − 𝜇𝑗‖𝑡 ≤ 𝑠𝑡𝐶 ≤
(︂

𝑠

log(𝑘/(𝑤*𝛿))

)︂𝐶𝑡/𝑐

≤ (𝑘/(𝑤*𝛿))20𝐶/𝑐

𝑡 ≤ 20 log(𝑘/(𝑤*𝛿))

𝑐 log log(𝑘/(𝑤*𝛿))
.

Now we run Algorithm 1 with distribution 𝒟′ and mixture ℳ′ and parameter 𝑡 to obtain

projection matrices Π𝑡, . . . ,Π1. Set

𝜖 =
𝛿

(10𝑡𝑠𝐶)4𝑡
.

Note that by the above, the runtime and sample complexity of 𝑛 = poly((𝑘𝑑/(𝑤*𝛿))𝐶/𝑐)

suffices for us to apply Lemma 2.6.5 with accuracy parameter 𝜖 and weight threshold (𝑤*)2.

This implies that for all 𝑖 ̸= 𝑗 such that ‖𝜇𝑖 − 𝜇𝑗‖ ≥
√
2 and 𝑤𝑖, 𝑤𝑗 ≥ 𝑤*, we have

⃦⃦
ΓΠ𝑠,...,Π1flatten((𝜇𝑖 − 𝜇𝑗)

⊗𝑠)
⃦⃦
≥ (1− 𝑠𝜖) ‖𝜇𝑖 − 𝜇𝑗‖𝑠 (2.14)

for all 𝑠 = 1, 2, . . . , 𝑡. Now we run Algorithm 3 with projection matrices Π𝑡, . . . ,Π1, accuracy

𝛿 and threshold

𝜏 = (0.2𝑠)𝑡 .

We use Algorithm 3 to test (𝑧 − 𝑧′)/
√
2 and we output Accept if Algorithm 3 returns
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Close and we output Reject if Algorithm 3 returns Far. Note that runtime and sample

complexity of 𝑛 = poly((𝑘𝑑/(𝑤*𝛿))𝐶/𝑐) suffice. Also (𝑧 − 𝑧′)/
√
2 is equivalent to a sample

from 𝒟′((𝜇𝑖− 𝜇𝑗)/
√
2). We now apply Lemma 2.7.1 to verify the first guarantee of our test.

Note that it suffices to verify that

𝜏 ≥ (20𝑡)𝑡𝑘

𝛿

but this clearly holds because

𝜏

(20𝑡)𝑡
=

(︂
0.2𝑠

20𝑡

)︂𝑡

≥
(︂

𝑐𝑠

104 log(𝑘/(𝑤*𝛿))

)︂𝑡

≥ 𝑘

𝛿
, .

Thus, we conclude that if 𝑧, 𝑧′ are drawn from the same component then the output is

Accept with probability at least 1 − 𝛿. Now we use Lemma 2.7.2 to verify the second

guarantee of our test. Note that

‖𝜇𝑖 − 𝜇𝑗‖√
2

≥ 𝑠√
2
≥ 104(log 1/𝛿 + 𝑡) .

Also note that the threshold clearly satisfies 𝜏 ≤ (0.4 ‖𝜇𝑖 − 𝜇𝑗‖ /
√
2)𝑡 (note that the

√
2

comes from the fact that we scale the difference down by
√
2). Combined with the guarantee

in (2.14), we conclude that the output is Reject with probability at least 1− 𝛿 and we are

done. ■

Using Lemma 2.8.1, it is not difficult to prove Theorem 2.2.3.

Proof of Theorem 2.2.3. Recall by the reduction in Section 2.3.3 that we may assume 𝑑 ≤ 𝑘

and that ‖𝜇𝑖 − 𝜇𝑗‖ ≤ 𝑂((𝑘/𝑤min)
2) for all 𝑖, 𝑗. Now we will do the following process to

estimate the means of the components.

1. Draw a sample 𝑧 ∼ℳ

2. Take 𝑚 = (𝑘/(𝑤min𝛼))
102 samples 𝑧1, . . . , 𝑧𝑚 ∼ℳ

3. Use Lemma 2.8.1 with parameters 𝑤* = 𝑤min and 𝛿 = (𝑤min𝛼/𝑘)
104 to test the pair of

samples 𝑧, 𝑧𝑖 for all for all 𝑖 ∈ [𝑚]
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4. Let 𝑆 ⊂ [𝑚] be the set of all 𝑖 that are Accepted and compute 𝜇 = 1
|𝑆|
∑︀

𝑖∈𝑆 𝑧𝑖

We first argue that if 𝑧 is a sample from 𝒟(𝜇𝑖) for some 𝑖, then with 1 − (𝑤min𝛼/𝑘)
102

probability, the procedure returns 𝜇 such that ‖𝜇− 𝜇𝑖‖ ≤ 0.1𝛼. This is because by the

guarantees of Lemma 2.8.1, with probability at least 1 − (𝑤min𝛼/𝑘)
103 the test will accept

all samples from among 𝑧1, . . . , 𝑧𝑚 that are from the component 𝒟(𝜇𝑖) and reject all of

the others. Also, with high probability, there will be at least (𝑘/(𝑤min𝛼))
99 samples from

the component 𝒟(𝜇𝑖) so by Claim 2.3.8 and union bounding all of the failure probabilities,

we have that if 𝑧 is a sample from 𝒟(𝜇𝑖) then ‖𝜇− 𝜇𝑖‖ ≤ 0.1𝛼 with probability at least

1− (𝑤min𝛼/𝑘)
102 .

Now it suffices to repeat the procedure in steps 1− 4 for 𝑙 = (𝑘/(𝑤min𝛼))
102 independent

samples 𝑧 ∼ℳ. This gives us a list of means say 𝑆 = { ̃︀𝜇1, . . . , ̃︀𝜇𝑙}. The previous argument

implies that most of these estimates will be close to one of the true means and that all of

the true means will be represented. To ensure that with high probability we output exactly

one estimate corresponding to each true mean and no extraneous estimates, we do a sort of

majority voting.

We will inspect the estimates in 𝑆 one at a time and decide whether to output them or

not. Let 𝑇 be the set of estimates that we will output. Note that 𝑇 is initially empty. Now

for each 𝑖, let 𝑆𝑖 be the subset of { ̃︀𝜇1, . . . , ̃︀𝜇𝑙} consisting of all means with ‖ ̃︀𝜇𝑗 − ̃︀𝜇𝑖‖ ≤ 0.2𝛼.

If |𝑆𝑖| ≥ 0.9𝑤min𝑙 and ̃︀𝜇𝑖 is not within 𝛼 of any element of 𝑇 then add ̃︀𝜇𝑖 to 𝑇 . Otherwise

do nothing.

We claim that with high probability, this procedure returns one estimate corresponding

to each true means and nothing extraneous. First, with high probability there will be no

extraneous outputs because if say ̃︀𝜇𝑖 is at least 0.5𝛼 away from all of the true means, then with

high probability we will have |𝑆𝑖| < 0.9𝑤min𝑙. Now it is also clear that with high probability

we output exactly one estimate corresponding to each true mean (since 𝑙 is sufficiently large

that with high probability we get enough samples from each component). Thus, with high

probability, the final output will be a set of means that are within 𝛼 of the true means up

to some permutation. Once we have learned the means, we can learn the mixing weights
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by simply taking fresh samples from ℳ and clustering since with high probability, we can

uniquely identify which component a sample came from. This completes the proof. ■

The clustering guarantee in Corollary 2.2.4 follows as an immediate consequence of The-

orem 2.2.3.

Proof of Corollary 2.2.4. Let the estimated means computed by Theorem 2.2.3 for 𝛼 =

(𝑤min/𝑘)
10 be ̃︀𝜇1, . . . ,̃︁𝜇𝑘. Now for all 𝑗1, 𝑗2 ∈ [𝑘] with 𝑗1 ̸= 𝑗2, let

𝑣𝑗1𝑗2 =
̃︁𝜇𝑗1 − ̃︁𝜇𝑗2

‖̃︁𝜇𝑗1 − ̃︁𝜇𝑗2‖
.

Now given a sample 𝑧 fromℳ, we compute the index 𝑗 such that for all 𝑗1, 𝑗2, we have

|𝑣𝑗1𝑗2 · ( ̃︀𝜇𝑗 − 𝑧)| ≤ (log(𝑘/𝑤min))
1+0.5𝑐 .

Note that by the guarantees of Theorem 2.2.3, there is a permutation 𝜋 such that
⃦⃦̃︂𝜇𝜋(𝑖) − 𝜇𝑖

⃦⃦
≤

𝛼 for all 𝑖. If 𝑧 is a sample from 𝒟(𝜇𝑖), then by the tail bound in Fact 2.3.7, with high prob-

ability the unique index 𝑗 that satisfies the above is exactly 𝑗 = 𝜋(𝑖) and thus, we recover

the ground truth clustering with high probability. ■

2.9 Sharper Bounds for Gaussians

For spherical Gaussians, i.e. when 𝒟 = 𝑁(0, 𝐼), we can obtain stronger results. Our results

are stronger in two ways. First, we can improve the minimum separation to (log(𝑘/𝑤min))
1/2+𝑐

instead of (log(𝑘/𝑤min)
1+𝑐. Secondly, we can remove the assumption about the maximum

separation by using a recursive clustering routine. We first focus on improving the mini-

mum separation. To get this improvement, we will prove sharper quantitative bounds in our

implicit moment tensor and testing subroutines.
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2.9.1 Hermite Polynomials

Naturally, for the standard Gaussian 𝑁(0, 𝐼), the adjusted polynomials 𝑃𝑡,𝑁(0,𝐼) are exactly

the Hermite polynomials. In this section, we define and go over a few basic properties of

the Hermite polynomials. Many of these are from [65]. In the next subsection, we will show

how to exploit specific properties of the Hermite polynomials to get sharper versions of the

results in Sections 2.6 and 2.7.

Definition 2.9.1. We will use 𝑃 (𝑆) to denote the set of partitions of a set 𝑆. We use 𝑃 2(𝑆)

to denote the set of partitions of 𝑆 into subsets of size 2. We use 𝑃 1,2(𝑆) to denote the set

of partitions of 𝑆 into subsets of size 1 and 2.

Definition 2.9.2 (Hermite Polynomial Tensor (see [65])). Let 𝑋 = (𝑋1, . . . , 𝑋𝑑) be a vector

of 𝑑 formal variables. We define the Hermite polynomial tensor

ℎ𝑡(𝑋) =
∑︁

𝑃∈𝑃 1,2([𝑡])

⨂︁
{𝑎,𝑏}∈𝑃

(−𝐼)(𝑎,𝑏) ⊗
⨂︁
{𝑐}∈𝑃

𝑋(𝑐)

where 𝐼 denotes the 𝑑× 𝑑 identity matrix.

Below we summarize several well-known properties that the Hermite polynomials satisfy.

Claim 2.9.3 (See [65]). Let 𝐺 = 𝑁(𝜇, 𝐼). Then

E
𝑧∼𝐺

[ℎ𝑡(𝑧)] = 𝜇⊗𝑡 .

Claim 2.9.4 (See [65]). We have the identity

E
𝑧∼𝑁(0,𝐼)

[𝑧⊗𝑡] =
∑︁

𝑃∈𝑃 2([𝑡])

⨂︁
{𝑎,𝑏}∈𝑃

𝐼(𝑎,𝑏) .

We also have that the Hermite polynomials are exactly the adjusted polynomials (recall

Definition 2.4.2) for the standard Gaussian.
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Claim 2.9.5. For any 𝑥 ∈ R𝑑 and integer 𝑡, we have

𝑃𝑡,𝑁(0,𝐼)(𝑥) = ℎ𝑡(𝑥) .

Proof. We can verify the desired statement by induction. The base cases for 𝑡 = 1, 2 are

clear. To finish, we can simply plug Claim 2.9.4 into the recursion in (2.7) to verify the

inductive step. ■

We could get a bound on the variance of the Hermite polynomials using Claim 2.4.5. How-

ever, since our goal for Gaussians will be to get separation (log(𝑘/𝑤min))
1/2+𝑐 instead of

separation (log(𝑘/𝑤min))
1+𝑐, we will obtain a stronger bound by hand. Fortunately, we will

only need the stronger bound for when the mean is 0 and can get away with using the general

bounds from Section 2.4 for when the mean 𝜇 is nonzero.

Claim 2.9.6 (From [65]). We have

E
𝑧∼𝑁(𝜇,𝐼)

[ℎ𝑡(𝑧)⊗ ℎ𝑡(𝑧)] =
∑︁

𝑆1,𝑆2⊂[𝑡],|𝑆1|=|𝑆2|

∑︁
Matchings 𝒫

of 𝑆1,𝑆2

⨂︁
{𝑎,𝑏}∈𝒫

𝐼(𝑎,𝑡+𝑏)
⨂︁
𝑐/∈𝑆1

𝜇(𝑐)
⨂︁
𝑐/∈𝑆2

𝜇(𝑡+𝑐) .

Flattening the above expression for E𝑧∼𝐺[ℎ𝑡(𝑧)⊗ℎ𝑡(𝑧)] into a 𝑑𝑡×𝑑𝑡 matrix in the natural

way, we immediately get a bound on the covariance of ℎ𝑡(𝑧) for 𝑧 ∼ 𝐺

Corollary 2.9.7. Let

𝑀(𝑧) = flat(ℎ𝑡(𝑧))⊗ flat(ℎ𝑡(𝑧)) .

Then

E
𝑧∼𝑁(0,𝐼)

[𝑀(𝑧)] ⪯ 𝑡!𝐼

where 𝐼 is the 𝑑𝑡 × 𝑑𝑡 identity matrix.

Proof. This follows immediately from the formula in Claim 2.9.6 since there are 𝑡! terms that

are a tensor product of 𝑡 copies of the identity matrix and each of these has spectral norm

1. ■
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We will also need the following property, that the Hermite polynomials are an orthogonal

family. Again, this property was not true for general Poincare distributions but will be used

in getting stronger quantitative bounds that will let us deal with smaller separation.

Claim 2.9.8. For integers 𝑡 ̸= 𝑡′, we have

E
𝑧∼𝑁(0,𝐼)

[flat(ℎ𝑡(𝑧))⊗ flat(ℎ𝑡′(𝑧))] = 0 .

Proof. WLOG 𝑡′ < 𝑡. We first prove

E
𝑧∼𝑁(0,𝐼)

[ℎ𝑡(𝑧)⊗ 𝑧⊗𝑡′ ] = 0 .

Substitute the expression in Definition 2.9.2 into the LHS and then use Claim 2.9.4. The

above then follows from direct computation. Next, since the above holds for all 𝑡′ < 𝑡 and

ℎ′𝑡(𝑧) is a sum of monomials of degree at most 𝑡′, we immediately get that

E
𝑧∼𝑁(0,𝐼)

[ℎ𝑡(𝑧)⊗ ℎ𝑡′(𝑧)]

as desired. ■

2.9.2 Implicit Representations of Hermite Polynomials

Similar to Section 2.4.3, we will need implicit representations of the Hermite polynomial

tensors. While technically the representation in Definition 2.9.2 is already implicit, the

identity matrices 𝐼𝑎,𝑏 do not behave well when we try to apply our iterative projection map

in Section 2.5 and thus we will again, similar to Section 2.4.3, need to obtain a representation

as a sum of a polynomial number of “rank-1" tensors.

The next set of definitions exactly parallel those in Section 2.4.3.

80



Definition 2.9.9. For 𝑥1, . . . , 𝑥𝑡 ∈ R𝑑, define the polynomial

𝑄𝑡(𝑥1, . . . , 𝑥𝑡) =
∑︁

𝑆1∪···∪𝑆𝑡=[𝑡]
|𝑆𝑖∩𝑆𝑗 |=0

(−1)𝒞{𝑆1,...,𝑆𝑡}(︀
𝑡−1

𝒞{𝑆1,...,𝑆𝑡}−1

)︀ (︀ℎ|𝑆1|(𝑥1)
)︀(𝑆1) ⊗ · · · ⊗

(︀
ℎ|𝑆𝑡|(𝑥𝑡)

)︀(𝑆𝑡)
. (2.15)

Definition 2.9.10. For 𝑥1, . . . , 𝑥2𝑡 ∈ R𝑑, define the polynomial

𝑅𝑡(𝑥1, . . . , 𝑥2𝑡) = −𝑄𝑡(𝑥1, . . . , 𝑥𝑡) +𝑄𝑡(𝑥𝑡+1, . . . , 𝑥2𝑡) .

Remark. Note we will use the same letters 𝑄𝑡, 𝑅𝑡 as in the general case. All of the proceeding

sections deal specifically with GMMs and we will only consider the corresponding 𝑄𝑡, 𝑅𝑡 so

there will be no ambiguity.

By Claim 2.9.5, we have the following (which is the exact same as Corollary 2.4.10).

Corollary 2.9.11. We have the identity

𝑅𝑡(𝑥1, . . . , 𝑥2𝑡) =
∑︁

𝑆1∪···∪𝑆𝑡=[𝑡]
|𝑆𝑖∩𝑆𝑗 |=0

(−1)𝒞{𝑆1,...,𝑆𝑡}−1(︀
𝑡−1

𝒞{𝑆1,...,𝑆𝑡}−1

)︀ (︀
𝑥⊗𝑆1
1 ⊗ · · · ⊗ 𝑥⊗𝑆𝑡

𝑡 − 𝑥⊗𝑆1
𝑡+1 ⊗ · · · ⊗ 𝑥⊗𝑆𝑡

2𝑡

)︀
.

Claim 2.9.5 also implies that Corollary 2.4.11 and Corollary 2.4.12 still hold and can be

used in the analysis. We now prove the one strengthened bound that we will need.

Lemma 2.9.12. We have

E
𝑧1,...,𝑧2𝑡∼𝑁(0,𝐼)

[flatten(𝑅𝑡(𝑧1, . . . , 𝑧2𝑡))
⊗2] ⪯ (2𝑡)𝑡𝐼𝑑𝑡 .

81



Proof. Note that by Claim 2.9.8 and Corollary 2.9.7,

E
𝑧1,...,𝑧2𝑡∼𝑁(0,𝐼)

[flatten(𝑅𝑡(𝑧1, . . . , 𝑧2𝑡))
⊗2]

= 2
∑︁

𝑆1∪···∪𝑆𝑡=[𝑡]
|𝑆𝑖∩𝑆𝑗 |=0

1(︀
𝑡−1

𝒞{𝑆1,...,𝑆𝑡}−1

)︀2flatten
(︁(︀
ℎ|𝑆1|(𝑥1)

)︀(𝑆1) ⊗ · · · ⊗
(︀
ℎ|𝑆𝑡|(𝑥𝑡)

)︀(𝑆𝑡)
)︁⊗2

⪯ 2
∑︁

𝑆1∪···∪𝑆𝑡=[𝑡]
|𝑆𝑖∩𝑆𝑗 |=0

|𝑆1|!|𝑆2| · · · |𝑆𝑡|!𝐼𝑑𝑡

⪯ 2𝐼𝑑𝑡
∑︁

𝑠1+···+𝑠𝑡=𝑡
𝑠𝑖≥0

(︂
𝑡

𝑠1, . . . , 𝑠𝑡

)︂
𝑠1! · · · 𝑠𝑡!

⪯ (2𝑡)𝑡𝐼𝑑𝑡

where as before we use the trick of reindexing the sum so that 𝑠1, . . . , 𝑠𝑡 are the sizes of

𝑆1, . . . , 𝑆𝑡 respectively. This completes the proof. ■

Note that the key difference of the above compared to Corollary 2.4.12 is that the RHS

is 𝑡𝑡 instead of 𝑡2𝑡. This is the key to improving the separation.

2.9.3 Testing Samples

All of the algorithms and results in Section 2.6 still hold (with the distribution 𝒟 set to

𝑁(0, 𝐼)). We also run the testing algorithm in Section 2.7. It remains to prove that the

distinguishing power of the test is stronger when specialized to Gaussians. Recall that the

key lemmas were Lemma 2.7.1 and Lemma 2.7.2. The strengthened versions are stated

below.

Lemma 2.9.13. Let 𝑡 ∈ N and 0 < 𝛿 < 0.01 be some parameters. Let Π𝑡, . . . ,Π2 ∈

R𝑘×𝑑𝑘,Π1 ∈ R𝑘×𝑑 be any matrices with orthonormal rows. Let 𝜏 be some parameter satisfying

𝜏 ≥ (2𝑡)𝑡/2𝑘/𝛿. Let 𝑧 ∼ 𝑁(0, 𝐼). Then with probability at least 1 − 𝛿, Algorithm 3 run with

these parameters outputs Close where the randomness is over 𝑧 and the random choices

within Algorithm 3.
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Lemma 2.9.14. Let 𝑡 ∈ N and 0 < 𝛿 < 0.01 be some parameters. Let 𝑧 ∼ 𝑁(𝜇𝑖, 𝐼) where

‖𝜇𝑖‖ ≥ 104(
√︀

log 1/𝛿 +
√
𝑡). Let 𝜏 be some parameter satisfying 𝜏 ≤ (0.4 ‖𝜇𝑖‖)𝑡. Assume

that the matrices Π𝑡, . . . ,Π2 ∈ R𝑘×𝑑𝑘,Π1 ∈ R𝑘×𝑑 satisfy that

⃦⃦
ΓΠ𝑡,...,Π1flatten(𝜇⊗𝑡

𝑖 )
⃦⃦
≥ (1− 𝑡𝜖) ‖𝜇𝑖‖𝑡 .

where

𝜖 <
𝛿

(10𝑡 ‖𝜇𝑖‖)4𝑡
.

Then with probability at least 1 − 𝛿, Algorithm 3 run with these parameters outputs Far

(where the randomness is over 𝑧 and the random choices within Algorithm 3).

There are two key difference compared to Lemma 2.7.1 and Lemma 2.7.2. First, in

Lemma 2.9.13, the bound on 𝜏 involves 𝑡𝑡/2 instead of 𝑡𝑡. Second, in Lemma 2.9.14, we

require separation 𝑂(
√︀

log 1/𝛿 +
√
𝑡) instead of 𝑂(log 1/𝛿 + 𝑡). When we combine the two,

the inequality that we need for our test to be meaningful is

(0.4 ‖𝜇𝑖‖)𝑡 ≥ (2𝑡)𝑡/2𝑘/𝛿 .

All of the settings of parameters will be the same as before i.e. 𝑡 ∼ 𝑂 (𝑐−1 log(𝑘/𝑤*)/ log log(𝑘/𝑤*))

and 𝛿 = poly(𝑤*/𝑘) except now we can get away with ‖𝜇𝑖‖ ≥ (log(𝑘/𝑤*))1/2+𝑐 for some con-

stant 𝑐 > 0 which allows us to improve the minimum separation.

The proof of Lemma 2.9.13 is essentially exactly the same as the proof of Lemma 2.7.1.

Proof of Lemma 2.9.13. Exactly the same as the proof of Lemma 2.7.1 except use Lemma

2.9.12 instead of Corollary 2.4.12 to bound the variance of 𝑅𝑡. ■

The proof of Lemma 2.9.14 requires one additional modification. In particular, we will

use a stronger version of Claim 2.7.3 that we now prove.
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Claim 2.9.15. Let 𝑥 ∈ R𝑑. Let 𝑣 ∈ R𝑑 be a vector such that 𝑣 · 𝑥 ≥ 20
√
𝑡 ‖𝑣‖. Then

⟨ℎ𝑡(𝑥), 𝑣⊗𝑡⟩ ≥ (0.9𝑣 · 𝑥)𝑡 .

Proof. WLOG 𝑣 is a unit vector. Let 𝑎 = 𝑣 · 𝑥. Using Definition 2.9.2 and elementary

counting, we have

⟨ℎ𝑡(𝑥), 𝑣⊗𝑡⟩ =
⌊𝑡/2⌋∑︁
𝑗=0

(−1)𝑗𝑎𝑡−2𝑗 𝑡!

2𝑗𝑗!(𝑡− 2𝑗)!
.

The RHS is a polynomial in 𝑎 and is exactly the standard univariate Hermite polynomial,

which we denote𝐻𝑡(𝑎). Note it can be easily verified that the univariate Hermite polynomials

satisfy the recurrence

𝐻𝑡(𝑎) = 𝑎𝐻𝑡−1(𝑎)− (𝑡− 1)𝐻𝑡−2(𝑎) .

Thus, we can write

𝐻𝑡(𝑎) = det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎 1

1 𝑎
√
2

√
2 𝑎

. . .
. . . . . .

√
𝑡− 1

√
𝑡− 1 𝑎

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where the blank entries are 0. Let the matrix on the RHS be 𝑀 . 𝑀 is a 𝑡× 𝑡 matrix that has

𝑎 on the diagonal and adjacent to the diagonal the entries are 𝑀𝑖(𝑖+1) =𝑀(𝑖+1)𝑖 =
√
𝑖 and 0

everywhere else. Note that this implies that 𝐻𝑡 has 𝑡 real roots (since it is the characteristic

polynomial of a symmetric matrix). Also, all roots have magnitude at most 2
√
𝑡 since if

|𝑎| ≥ 2
√
𝑡 then the matrix is diagonally dominant and cannot have determinant 0. Thus, we

can write 𝐻𝑡(𝑎) = (𝑎 − 𝑟1) · · · (𝑎 − 𝑟𝑡) where −2
√
𝑡 ≤ 𝑟1, . . . , 𝑟𝑡 ≤ 2

√
𝑡. For 𝑎 ≥ 20

√
𝑡, we

clearly have 𝐻𝑡(𝑎) ≥ (0.9𝑎)𝑡 and this completes the proof. ■

Proof of Lemma 2.9.14. Exactly the same as the proof of Lemma 2.7.2 except using Claim

2.9.15 instead of Claim 2.7.3. ■
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2.10 Clustering Part 1: Building Blocks

In order to prove our full result for GMMs, we need to be able to deal with mixtures for which

the maximum separation is much larger (superpolynomial) than the minimum separation. To

do this, we will have a recursive clustering procedure where we are able to remove half of the

components each time. Roughly, we find a direction 𝑣 for which there are two components

whose separation along direction 𝑣 is large (say at least (log(𝑘/𝑤min))
1/2+𝑐). We call this a

signal direction.

Next, imagine projecting all of our samples onto the direction 𝑣. For each component,

essentially all of its samples will be in an interval of width 𝑂(
√︀
log(𝑘/𝑤min)). Thus, since

there are two components that are sufficiently separated, we can find an interval of width

𝑂(
√︀

log(𝑘/𝑤min)) for which

• For at least one component, essentially all of its samples are in this interval

• At most half of the components ever generate samples in this interval

We then imagine going back to R𝑑 but only keeping the samples whose projection onto 𝑣

lies in this interval. Of course, after this restriction, the distribution is no longer a mixture

of Gaussians because there could be a component that is cut in half by the boundary of the

interval. The key observation is that we can project all of the remaining samples (after the

restriction) onto the orthogonal complement of 𝑣. This new distribution will be a mixture of

Gaussians in 𝑑−1 dimensions with at most half as many components. Furthermore, because

we restricted to an interval of width 𝑂(
√︀
log(𝑘/𝑤min)), we can argue that this projection

onto the orthogonal complement of 𝑣 does not reduce separations by too much.

The actual clustering algorithm will be more complicated than the outline above for

technical reasons. There are several additional details that we need to deal with such as

the fact that we may create components with very small mixing weights when we restrict to

samples in an interval. Also, the procedure for halving the number of remaining components

only works when there is some pair of means whose separation is at least poly(log(𝑘/𝑤min))

(which is larger, but polynomially related to the minimum separation). Thus, after running
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the halving procedure sufficiently many times, we then have to run a full clustering routine

that has guarantees similar to Theorem 2.2.3.

Remark. Note that for general Poincare distributions, this type of approach seems infeasible

because after restricting to an interval in direction 𝑣, projecting onto the orthogonal com-

plement still may not “fix" all of the components of the mixture be translations of the same

distribution again.

In this section, we introduce the building blocks for our complete clustering algorithm.

The two main components in this section are Lemma 2.10.11 which roughly allows us to,

in an arbitrary mixture, find a signal direction along which some two components have

separation comparable to the maximum separation and Lemma 2.10.12 which allows us to

do full clustering when the maximum separation is at most poly(log(𝑘/𝑤min)).

2.10.1 Notation and Terminology

Throughout the proceeding sections, we will use 0 < 𝑐 < 1 do denote an arbitrary (small)

positive constant that does not change with the other problem parameters.

Definition 2.10.1. For a subspace 𝑉 ⊂ R𝑑 and a point 𝑥 ∈ R𝑑, we use Proj𝑉 (𝑥) to denote

the projection of 𝑥 onto 𝑉 .

Definition 2.10.2. For a subspace 𝑉 ⊂ R𝑑 we use 𝑉 ⊥ to denote its orthogonal complement.

Definition 2.10.3. For a Gaussian with mean 𝜇 and covariance Σ, we use 𝑁𝑉 (𝜇,Σ) to

denote its projection onto a subspace 𝑉 .

We will now introduce terminology for describing mixtures and how well-behaved they

are.

Definition 2.10.4. We say a GMM ℳ = 𝑤1𝑁(𝜇1, 𝐼) + · · · + 𝑤𝑘𝑁(𝜇𝑘, 𝐼) is 𝑠-separated if

for all 𝑖 ̸= 𝑗, ‖𝜇𝑖 − 𝜇𝑗‖ ≥ 𝑠.
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Definition 2.10.5. For a GMMℳ = 𝑤1𝑁(𝜇1, 𝐼)+ · · ·+𝑤𝑘𝑁(𝜇𝑘, 𝐼) and parameter 𝑤* > 0,

we say that ℳ is 𝑤*-reasonable if the following holds:

max
𝑖,𝑗

𝑤𝑖,𝑤𝑗≥𝑤*

‖𝜇𝑖 − 𝜇𝑗‖ ≥
√︁

max
𝑖,𝑗
‖𝜇𝑖 − 𝜇𝑗‖ .

We also use the convention that a trivial mixture consisting of one component is reasonable.

Remark. Note the choice that the RHS is a square root is arbitrary. Any constant power

would suffice.

Roughly, the inequality in the definition says that there are two components whose mixing

weights are at least 𝑤* such that the separation between their means is comparable to the

maximum separation between any two means. Note that the notion of comparable is very

loose (the two quantities can be off by a square).

Definition 2.10.6. For a distributionℳ and parameters 𝑝,∆, we say that a direction, given

by a unit vector 𝑣 ∈ R𝑑, is a (𝑝,∆)-signal direction for ℳ if there is a real number 𝜃 such

that

Pr
𝑧∼ℳ

[𝑣 · 𝑧 ≤ 𝜃 −∆] ≥ 𝑝

Pr
𝑧∼ℳ

[𝑣 · 𝑧 ≥ 𝜃 +∆] ≥ 𝑝 .

Roughly, a direction is a signal direction if the distribution ℳ is nontrivially spread

out along that direction. It will be important to note that we can easily check whether a

direction is a signal direction.

Claim 2.10.7. Letℳ be a distribution on R𝑑 and let 𝑣 ∈ R𝑑 be a unit vector. For parameters

𝑝,∆, given poly(𝑑, 1/𝑝) samples from ℳ, we can distinguish with high probability when 𝑣 is

a (𝑝,∆)-signal direction and when 𝑣 is not a (0.9𝑝,∆)-signal direction.

Proof. We can simply take sufficiently many samples and check if 𝑣 is a (0.95𝑝,∆)-signal

direction for the empirical distribution on the samples. ■
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We will also need the following concentration inequalities about tails of a Gaussian. The

first one is standard.

Claim 2.10.8. Consider a Gaussian 𝑁(𝜇, 𝐼) in R𝑑. For any parameter 𝛽, we have

Pr
𝑧∼𝑁(𝜇,𝐼)

[‖𝑧 − 𝜇‖ ≤
√︀

2𝑑+ 𝛽] ≥ 1− 2−𝛽/8 .

The next inequality is closely connected to the notion of stability (see [43]) that has

recently proved very useful in the field of robust statistics.

Claim 2.10.9 (See [43]). Consider the standard Gaussian 𝑁(0, 𝐼) in R𝑑. Let 𝜖 > 0 be

some parameter. Given 𝑛 ≥ (𝑑/𝜖)8 samples 𝑧1, . . . , 𝑧𝑛 from 𝑁(0, 𝐼), with probability at least

1− 2−𝑑/𝜖 the following property holds: for any subset 𝑆 ⊂ [𝑛] with |𝑆| ≥ 𝜖𝑛, we have⃦⃦⃦⃦
⃦ 1

|𝑆|
∑︁
𝑖∈𝑆

𝑧𝑖

⃦⃦⃦⃦
⃦ ≤ 10

√︀
log 1/𝜖 .

2.10.2 Clustering Test

Recall that for arbitrary Poincare distributions, one of the key ingredients was Lemma 2.8.1,

an algorithm for testing whether two samples from a mixture ℳ are from the same com-

ponent or not. The analog (with strengthened quantitative bounds) that we will need for

GMMs is stated below.

Lemma 2.10.10. Let

ℳ = 𝑤1𝑁(𝜇1, 𝐼) + · · ·+ 𝑤𝑘𝑁(𝜇𝑘, 𝐼)

be a GMM in R𝑑. Let 𝑤*, 𝑠, 𝛿 be parameters and assume that 𝑠 ≥ (log 𝑘/(𝑤*𝛿))1/2+𝑐 for some

0 < 𝑐 < 1. Also assume that

max
𝑖,𝑗
‖𝜇𝑖 − 𝜇𝑗‖ ≤ min((𝑘/(𝑤*𝛿))2, 𝑠𝐶)

for some 𝐶. There is an algorithm that takes 𝑛 = poly((𝑘𝑑/(𝑤*𝛿))𝐶/𝑐) samples fromℳ and
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runs in poly(𝑛) time and achieves the following testing guarantees: for a pair of (indepen-

dent) samples 𝑧 ∼ 𝑁(𝜇𝑖, 𝐼), 𝑧
′ ∼ 𝑁(𝜇𝑗, 𝐼),

• If 𝑖 = 𝑗 and 𝑤𝑖 ≥ 𝑤* then with probability 1− 𝛿 the output is accept

• If 𝑤𝑖, 𝑤𝑗 ≥ 𝑤* and ‖𝜇𝑖 − 𝜇𝑗‖ ≥ 𝑠 then with probability 1− 𝛿 the output is reject

where the randomness is over the samples 𝑧, 𝑧′ and the random choices in the algorithm.

Proof. The proof is exactly the same as the proof of Lemma 2.8.1 except we use Lemma

2.9.14 and Lemma 2.9.13 in place of Lemma 2.7.2 and Lemma 2.7.1 respectively. ■

2.10.3 Finding a Signal Direction

As mentioned before, to remove the constraint on the maximum separation, we will need

to do recursive clustering. The key ingredient in the recursive clustering is finding a signal

direction. In the next lemma, we show how to find a signal direction in a reasonable mixture.

Note that if a mixture is not reasonable, then we have no guarantees. Roughly this is because

if there are some components with means 𝜇𝑖, 𝜇𝑗 such that ‖𝜇𝑖 − 𝜇𝑗‖ is very large but whose

mixing weights are very small then the few samples from these components will drastically

affect all of our estimators. Fortunately, in the next section (see Claim 2.11.7), we show how

to ensure that we always work with a reasonable mixture.

The main algorithm for finding a signal direction is summarized below. Roughly, we

just randomly take two samples 𝑧, 𝑧′ fromℳ. We then take the mean 𝜇 of samples 𝑧𝑖 such

that (𝑧, 𝑧𝑖) passes the test in Lemma 2.10.10 and the mean 𝜇′ of samples 𝑧′𝑖 such that (𝑧, 𝑧′𝑖)

passes the test in Lemma 2.10.10. We then test whether the direction 𝜇 − 𝜇′ is indeed a

good enough signal direction and otherwise just try again with new samples.
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Algorithm 4 Finding a Signal Direction
Input: Sample access to GMMℳ

Input: Parameters 𝑘, 𝑤*, positive constant 𝑐 > 0

Input: Desired separation ∆

Take two samples 𝑧, 𝑧′ ∼ℳ

Take samples 𝑧1, . . . , 𝑧𝑚, 𝑧′1, . . . , 𝑧′𝑚 fromℳ where 𝑚 = (𝑘/𝑤*)10
2

for i = 1,2, . . . , m do

Test pairs 𝑧, 𝑧𝑖 and 𝑧′, 𝑧′𝑖 using Lemma 2.10.10 with parameters 𝑤*, 𝛿 = (𝑤*/𝑘)10
4
, 𝑠 =

0.01∆

Let 𝑆 be the set of 𝑖 such that the pair 𝑧, 𝑧𝑖 is accepted.

Let 𝑆 ′ be the set of 𝑖 such that the pair 𝑧′, 𝑧′𝑖 is accepted.

Compute 𝜇 = 1
|𝑆|
∑︀

𝑖∈𝑆 𝑧𝑖 and 𝜇′ = 1
|𝑆′|
∑︀

𝑖∈𝑆′ 𝑧′𝑖

Set 𝑣 = (𝜇− 𝜇′)/ ‖𝜇− 𝜇′‖

Test if 𝑣 is a (0.8𝑤*, 0.8∆) signal direction using Claim 2.10.7

Output 𝑣 if test passes

Lemma 2.10.11. Let ℳ = 𝑤1𝑁(𝜇1, 𝐼) + · · · + 𝑤𝑘𝑁(𝜇𝑘, 𝐼) be a GMM. Let 𝑤* be a pa-

rameter and assume that ℳ is 𝑤*-reasonable and ‖𝜇𝑖 − 𝜇𝑗‖ ≤ 𝑂((𝑘/𝑤*)2) for all 𝑖, 𝑗. Also

assume that there are 𝑖, 𝑗 such that 𝑤𝑖, 𝑤𝑗 ≥ 𝑤* and ‖𝜇𝑖 − 𝜇𝑗‖ ≥ (log(𝑘/𝑤*))1/2+𝑐 for some

positive constant 𝑐. There is an algorithm that takes 𝑛 = poly((𝑑𝑘/𝑤*)1/𝑐) samples from

ℳ and poly(𝑛) runtime and with high probability outputs a unit vector 𝑣 such that 𝑣 is a

(𝑤*/2,max𝑤𝑖,𝑤𝑗≥𝑤* ‖𝜇𝑖 − 𝜇𝑗‖ /2)-signal direction.

Proof. Let

∆ = max
𝑤𝑖,𝑤𝑗≥𝑤*

‖𝜇𝑖 − 𝜇𝑗‖ .

It suffices now to find a (𝑤*/2,∆/2)-signal direction. While we technically do not know ∆,

we can guess ∆ within a factor of 1.1 by using a multiplicative grid. We then try to find

a (0.8𝑤*, 0.8∆) signal direction for various guesses of ∆ and test them using Claim 2.10.7

and output the one for the largest ∆ that succeeds. Thus, we can essentially assume that
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we know ∆ up to a factor of 1.1.

Now we can just run Algorithm 4 repeatedly. It suffices to prove that with some inverse

polynomial probability, the output 𝑣 is a (0.8𝑤*, 0.8∆)-signal direction. We can then just re-

peat polynomially many times and test each output using Claim 2.10.7 to guarantee success

with high probability. Let 𝑖, 𝑖′ be indices such that ‖𝜇𝑖 − 𝜇′
𝑖‖ = ∆. With at least (1/𝑤*)2

probability, 𝑧 is drawn from 𝑁(𝜇𝑖, 𝐼) and 𝑧′ is drawn from 𝑁(𝜇′
𝑖, 𝐼). Now using the guarantee

of Lemma 2.10.10 and union bounding (note this is valid becauseℳ is 𝑤*-reasonable), with

at least 1− (𝑤*/𝑘)10
2 probability, we have the following properties

• For all 𝑖 ∈ 𝑆, 𝑧𝑖 is a sample from 𝑁(𝜇𝑗, 𝐼) where ‖𝜇𝑗 − 𝜇𝑖‖ ≤ 0.01∆

• For all 𝑖 ∈ 𝑆 ′, 𝑧𝑖 is a sample from 𝑁(𝜇𝑗, 𝐼) where ‖𝜇𝑗 − 𝜇𝑖′‖ ≤ 0.01∆

• |𝑆|, |𝑆 ′| ≥ 0.9𝑤*𝑚

However, combining these properties with Claim 2.10.9 implies that with high probability

‖𝜇− 𝜇𝑖‖ , ‖𝜇′ − 𝜇𝑖′‖ ≤ 0.02∆. This then implies that 𝑣 has correlation 0.9 with the unit

vector in the direction 𝜇𝑖−𝜇𝑖′ which clearly implies that it is a (0.8𝑤*, 0.8∆)-signal direction.

Overall, the success probability of a single trial is at least 0.9 · (1/𝑤*)2 so repeating over

polynomially many trials guarantees that we succeed with high probability. ■

2.10.4 Full Clustering with Bounded Maximum Separation

Similar to Theorem 2.2.3, we can do full clustering if the maximum separation is polynomially

bounded in terms of the minimum separation. We have a slightly more technical requirement

here that there may be some components with very small mixing weights but we only need

to recover the means of the components with substantial mixing weights. This result will

be used as the final step in our complete clustering algorithm when we have reduced to a

submixture where the maximum separation is sufficiently small and then we can just fully

cluster the remaining components.
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Lemma 2.10.12. Letℳ = 𝑤1𝑁(𝜇1, 𝐼)+· · ·+𝑤𝑘𝑁(𝜇𝑘, 𝐼) be a GMM. Let 𝑐 > 0 be a positive

constant and let 𝑤* be a parameter that we are given. Assume that ℳ is 𝑠-separated where

𝑠 = (log(𝑘/𝑤*))1/2+𝑐 for some positive constant 𝑐. Also assume that max𝑖,𝑗 ‖𝜇𝑖 − 𝜇𝑗‖ ≤

(log(𝑘/𝑤*))4. Given 𝑛 = poly((𝑑𝑘/𝑤*)1/𝑐) samples from ℳ and poly(𝑛) runtime, there is

an algorithm that with high probability outputs a set of means { ̃︀𝜇1, . . . , ̃︀𝜇𝑟} such that the

following properties hold:

• 𝑟 ≤ 𝑘

• For all 𝑖 ∈ [𝑘] such that 𝑤𝑖 ≥ 𝑤*, there is some 𝑗 ∈ [𝑟] such that ‖𝜇𝑖 − ̃︀𝜇𝑗‖ ≤ 0.1

• We have ‖̃︀𝜇𝑖 − ̃︀𝜇𝑗‖ ≥ 𝑠/2 for all 𝑖 ̸= 𝑗

Proof. The proof will be very similar to the proof of Theorem 2.2.3 except using the test

in Lemma 2.10.10. Now we will do the following process to estimate the means of the

components.

1. Draw a sample 𝑧 ∼ℳ

2. Take 𝑚 = (𝑘/𝑤*)10
2 samples 𝑧1, . . . , 𝑧𝑚 ∼ℳ

3. Use Lemma 2.10.10 with parameters 𝑤* = (𝑤*/𝑘)10, 𝛿 = (𝑤*/𝑘)10
4
, 𝑠 to test the pair

of samples 𝑧, 𝑧𝑖 for all for all 𝑖 ∈ [𝑚]

4. Let 𝑆 ⊂ [𝑚] be the set of all 𝑖 that are Accepted and compute 𝜇 = 1
|𝑆|
∑︀

𝑖∈𝑆 𝑧𝑖

Note that if 𝑧 is a sample from 𝑁(𝜇𝑖, 𝐼) for some 𝑖 with 𝑤𝑖 ≥ (𝑤*/𝑘)5, then with 1−(𝑤*/𝑘)10
2

probability, the procedure returns 𝜇 such that ‖𝜇− 𝜇𝑖‖ ≤ 0.01. This is because by the

guarantees of Lemma 2.10.10, with probability at least 1− (𝑤*/𝑘)10
3 the test will accept all

samples from among 𝑧1, . . . , 𝑧𝑚 that are from the component 𝑁(𝜇𝑖, 𝐼). Also, the only other

samples that are accepted must be from components 𝑁(𝜇𝑗, 𝐼) with 𝑤𝑗 ≤ (𝑤*/𝑘)10. With

high probability, among 𝑧1, . . . , 𝑧𝑚, there will be at least 0.9𝑤𝑖𝑚 ≥ 0.9(𝑤*/𝑘)5𝑚 samples

from the component 𝑁(𝜇𝑖, 𝐼) and at most 2𝑘(𝑤*/𝑘)10𝑚 ≤ (𝑤*/𝑘)9𝑚 from other components

𝑁(𝜇𝑗, 𝐼) with mixing weight smaller than (𝑤*/𝑘)10. Since we have a bound on the maximum
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separation ‖𝜇𝑖 − 𝜇𝑗‖ ≤ (log(𝑘/𝑤*))4, with high probability, the mean 𝜇 of all of these samples

satisfies ‖𝜇− 𝜇𝑖‖ ≤ 0.01.

Now we repeat the procedure in steps 1−4 for 𝑙 = (𝑘/𝑤*)10
2 independent samples 𝑧 ∼ℳ.

This gives us a list of means say 𝑆 = { ̂︀𝜇1, . . . , ̂︀𝜇𝑙}. The previous argument implies that

most of these estimates will be close to 𝜇𝑖 for some 𝑖 with 𝑤𝑖 ≥ (𝑤*/𝑘)5 and furthermore

that all such components will be represented. As in Theorem 2.2.3, to ensure that with

high probability we output exactly one estimate corresponding to each true mean and no

extraneous estimates, we do a sort of majority voting.

We will inspect the estimates in 𝑆 one at a time and decide whether to output them or

not. Let 𝑇 be the set of estimates that we will output. Note that 𝑇 is initially empty. Now

for each 𝑖, let 𝑆𝑖 be the subset of { ̂︀𝜇1, . . . , ̂︀𝜇𝑙} consisting of all means with ‖ ̂︀𝜇𝑗 − ̂︀𝜇𝑖‖ ≤ 0.02.

If |𝑆𝑖| ≥ 0.9𝑤*𝑙 and ̂︀𝜇𝑖 is not within 0.1 of any element of 𝑇 then add ̂︀𝜇𝑖 to 𝑇 . Otherwise do

nothing. At the end we output everything in 𝑇 .

We now argue that with high probability, the set 𝑇 satisfies the desired properties. First,

note that with high probability, all elements of 𝑇 must be within 0.05 of one of the true

means 𝜇𝑖 since otherwise, there would not be enough elements in the set 𝑆𝑗. Also it is clear

that there can be at most one element ̂︀𝜇𝑗 ∈ 𝑇 corresponding to each true mean 𝜇𝑖. It remains

to argue that with high probability, for all 𝑖 ∈ [𝑘] such that 𝑤𝑖 ≥ 𝑤*, there must be some

element in 𝑇 within 0.05 of 𝜇𝑖. This is because for such an 𝑖, with high probability there

will be at least 0.9𝑤𝑖𝑙 elements ̂︀𝜇𝑗 in 𝑆 such that ‖ ̂︀𝜇𝑗 − 𝜇𝑖‖ ≤ 0.01. Thus, if there are no

elements already in 𝑇 that are close to 𝜇𝑖, then one of these ̂︀𝜇𝑗 will be added to 𝑇 . Overall,

we have shown that with high probability, the set 𝑇 satisfies the desired properties and we

are done. ■

2.11 Clustering Part 2: Recursive Clustering

In this section, we put together the building blocks from Section 2.10 in our complete clus-

tering algorithm and complete the proof of Theorem 2.2.5.
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2.11.1 Clustering Checkers

First, we introduce the concept of a checker. This will ease notation for later on when

we need to consider various restrictions of a mixture involving restricting to samples whose

projection onto a subspace 𝑉 is close to a certain point 𝑝 ∈ 𝑉 .

Definition 2.11.1 (Checker). A checker, denoted (𝑉, 𝑝, 𝑟) consists of a subspace 𝑉 ⊂ R𝑑, a

point 𝑝 ∈ 𝑉 and a positive real number 𝑟.

Definition 2.11.2. We say that a checker (𝑉, 𝑝, 𝑟) contains a point 𝑥 if ‖Proj𝑉 (𝑥)− 𝑝‖ ≤ 𝑟.

We write chk𝑉,𝑝,𝑟(𝑥) = 1 if the checker contains the point 𝑥 and chk𝑉,𝑝,𝑟(𝑥) = 0 otherwise.

Definition 2.11.3. Given a distribution ℳ and a checker (𝑉, 𝑝, 𝑟), we may take samples

from ℳ, delete all of them that do not lie inside the checker (𝑉, 𝑝, 𝑟), and then project the

remaining samples onto 𝑉 ⊥. We call the resulting distribution the reduction of ℳ by the

checker (𝑉, 𝑝, 𝑟) and denote it red𝑉,𝑝,𝑟(ℳ).

2.11.2 Basic Properties

The key observation is that reducing a mixture of Gaussians by a checker (𝑉, 𝑝, 𝑟) results

in a new mixture with the same components (projected onto 𝑉 ⊥) but with different mixing

weights.

Claim 2.11.4. Assume that we have a checker (𝑉, 𝑝, 𝑟) and let 𝑎 be the dimension of 𝑉 .

Given a GMM ℳ = 𝑤1𝑁(𝜇1, 𝐼) + · · ·+ 𝑤𝑘𝑁(𝜇𝑘, 𝐼), the reduction of ℳ is

red𝑉,𝑝,𝑟(ℳ) =

∑︀𝑘
𝑖=1𝑤𝑖 Pr𝑧∼𝑁(𝜇𝑖,𝐼)[chk𝑉,𝑝,𝑟(𝑧) = 1]𝑁𝑉 ⊥(𝜇𝑖, 𝐼)∑︀𝑘

𝑖=1𝑤𝑖 Pr𝑧∼𝑁(𝜇𝑖,𝐼)[chk𝑉,𝑝,𝑟(𝑧) = 1]
.

Proof. This follows immediately from the fact that for a sample 𝑧 from a standard Gaussian

𝑁(0, 𝐼), for any subspace 𝑉 , the projections Proj𝑉 (𝑧) and Proj𝑉 ⊥(𝑧) are independent and

distributed as standard Gaussians in the respective subspaces. ■

In light of Claim 2.10.8, reducing a GMM by a checker (𝑉, 𝑝, 𝑟) where 𝑉 has dimen-

sion 𝑎 essentially removes all components whose means 𝜇𝑖 satisfy ‖Proj𝑉 (𝜇𝑖)− 𝑝‖ ≥ 𝑟 +
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𝜔(
√
𝑎+ log 𝑘). We now make this notion more formal by defining a truncation of a reduced

mixture that involves deleting such components. We then argue that the truncation only

affects the overall distribution by a negligible amount.

Definition 2.11.5. Let ℳ = 𝑤1𝑁(𝜇1, 𝐼) + · · · + 𝑤𝑘𝑁(𝜇𝑘, 𝐼) be a GMM and 𝜃 be some

parameter. For a checker (𝑉, 𝑝, 𝑟), define the truncated reduction of ℳ as

red(𝜃)
𝑉,𝑝,𝑟(ℳ) =

∑︀
𝑖∈𝑆 𝑤𝑖 Pr𝑧∼𝑁(𝜇𝑖,𝐼)[chk𝑉,𝑝,𝑟(𝑧) = 1]𝑁𝑉 ⊥(𝜇𝑖, 𝐼)∑︀

𝑖∈𝑆 𝑤𝑖 Pr𝑧∼𝑁(𝜇𝑖,𝐼)[chk𝑉,𝑝,𝑟(𝑧) = 1]

where 𝑆 is defined as the set of 𝑖 ∈ [𝑘] such that 𝜇𝑖 is in the checker (𝑉, 𝑝, 𝑟 + 𝜃). We say

that the set 𝑆 is the set of relevant components in the truncation red(𝜃)
𝑉,𝑝,𝑟(ℳ).

Combining Claim 2.10.8 and Claim 2.11.4, we deduce that we can truncate after reducing

by a checker while changing the distribution by only a negligible amount.

Corollary 2.11.6. Let ℳ = 𝑤1𝑁(𝜇1, 𝐼) + · · · + 𝑤𝑘𝑁(𝜇𝑘, 𝐼) be a GMM. Let 𝑤*, 𝛿 be some

parameters and let 𝜃 ≥ (log(𝑘/(𝑤*𝛿)))(1+𝑐)/2 for some positive constant 𝑐 > 0. Let (𝑉, 𝑝, 𝑟) be

a checker where 𝑉 has dimension at most (𝜃/10)2. Assume that for some 𝑖, we have 𝑤𝑖 ≥ 𝑤*

and chk𝑉,𝑝,𝑟−𝜃(𝜇𝑖) = 1. Then

𝑑TV

(︁
red(𝜃)

𝑉,𝑝,𝑟(ℳ), red𝑉,𝑝,𝑟(ℳ)
)︁
≤ 2−(log(𝑘/(𝑤*𝛿)))1+0.1𝑐

.

Proof. Note that by Claim 2.10.8, for any 𝜇 ∈ R𝑑 we have

Pr
𝑧∼𝑁(𝜇,𝐼)

[‖Proj𝑉 (𝑧 − 𝜇)‖ ≥ 0.5𝜃] ≤ 2−0.01𝜃2 .

In particular, for any 𝜇𝑗 that is not in the checker (𝑉, 𝑝, 𝑟+ 𝜃), the probability that a sample

from 𝑁(𝜇𝑗, 𝐼) lands in (𝑉, 𝑝, 𝑟) is at most 2−0.01𝜃2 . Also we assume that there is some 𝑖 such

that 𝜇𝑖 is in (𝑉, 𝑝, 𝑟 − 𝜃) and for this component 𝑁(𝜇𝑖, 𝐼), the probability that a sample

lands in (𝑉, 𝑝, 𝑟) is at least 1 − 2−0.01𝜃2 . Combining these observations gives the desired

inequality. ■

95



Note that we can simulate samples from red𝑉,𝑝,𝑟(ℳ) (using samples from ℳ) and the

above implies that this is essentially equivalent to simulating samples from red(𝜃)
𝑉,𝑝,𝑟(ℳ) since

their TV distance is negligible. One more important claim that we will need is that if a

checker contains the mean of one of the components, then by adjusting the radius slightly,

we can find a truncation for which the resulting mixture is reasonable (recall Definition

2.10.5). This will allow us to apply Lemma 2.10.12 to find a new signal direction in 𝑉 ⊥.

Claim 2.11.7. Letℳ = 𝑤1𝑁(𝜇1, 𝐼)+· · ·+𝑤𝑘𝑁(𝜇𝑘, 𝐼) be a GMM. Let 𝑤* be some parameter

and let 𝜃 ≥ (log(𝑘/𝑤*))(1+𝑐)/2 for some positive constant 𝑐 > 0. Assume that

• max ‖𝜇𝑖 − 𝜇𝑗‖ ≤ 𝑂((𝑘/𝑤*)2)

• The mixture ℳ is 𝜃 · (log(𝑘/𝑤*))0.1𝑐/2-separated

• 𝑤𝑖 ≥ 𝑤* for all 𝑖

Let 𝑉 be a subspace of dimension at most (𝜃/10)2 and 𝑝 be a point in 𝑉 . Assume that for

some 𝑖, the checker (𝑉, 𝑝, 𝜃) contains 𝜇𝑖. Then for a random integer 𝛾 chosen from among

{1, . . . , ⌈104 log log(𝑘/𝑤*)⌉}, with probability at least 1/2, the mixture

red(𝜃)
𝑉,𝑝,𝛾𝜃(ℳ)

is 0.9𝑤*-reasonable.

Proof. For any real number 𝑙, define 𝛼𝑙 as follows.

𝛼𝑙 = max
chk𝑉,𝑝,𝑙(𝜇𝑖)=1
chk𝑉,𝑝,𝑙(𝜇𝑗)=1

‖Proj𝑉 ⊥(𝜇𝑖 − 𝜇𝑗)‖ .

Now for any 𝛾, the only way that

red(𝜃)
𝑉,𝑝,𝛾𝜃(ℳ)

is not reasonable is if

𝛼2
(𝛾−1)𝜃 ≤ 𝛼(𝛾+1)𝜃 . (2.16)
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This is because by Claim 2.10.8, for all means 𝜇𝑖 that are in (𝑉, 𝑝, (𝛾 − 1)𝜃), essentially

all of the samples from 𝑁(𝜇𝑖, 𝐼) are contained in (𝑉, 𝑝, 𝛾𝜃). However, we now consider the

sequence

𝛼𝜃, 𝛼2𝜃, . . . .

We can lower bound the first nonzero element of the sequence as follows. If there are two

distinct means 𝜇𝑖, 𝜇𝑗 both contained in (𝑉, 𝑝, 𝛾𝜃) for 𝛾 ≤ ⌈104 log log(𝑘/𝑤*)⌉, we must have

𝛼𝛾𝜃 ≥ ‖𝜇𝑖 − 𝜇𝑗‖ − ‖Proj𝑉 (𝜇𝑖 − 𝜇𝑗)‖ ≥ 𝜃 · (log(𝑘/𝑤*))0.1𝑐/2 − 2𝛾𝜃 ≥ 2 .

Thus, since 𝛼𝑙 is upper bounded by 𝑂((𝑘/𝑤*)2), the condition in (2.16) can fail for at most

half of the choices of 𝛾 and we are done. ■

We will need one more preliminary result. It simply states that we can correctly cluster

any sample with high probability if we are given a candidate set of means 𝑆 = { ̃︀𝜇1, . . . , ̃︀𝜇𝑡}

that are all separated and such that there is one that is close to each true mean.

Claim 2.11.8. Let N(𝜇1, 𝐼), . . . , 𝑁(𝜇𝑙.𝐼) be some unknown Gaussians such that ‖𝜇𝑖 − 𝜇𝑗‖ ≥

𝑠 for all 𝑖 ̸= 𝑗 where 𝑠 = (log 𝑙)(1+𝑐)/2 and 𝑐 > 0 is some constant. Assume we are given a

candidate set of means 𝑆 = { ̃︀𝜇1, . . . , ̃︀𝜇𝑟} such that

• 𝑟 ≤ 𝑙

• For all 𝑖 ∈ [𝑙], there is some 𝑓(𝑖) ∈ [𝑟] such that
⃦⃦̃︂𝜇𝑓(𝑖) − 𝜇𝑖

⃦⃦
≤ 0.1

• For all distinct 𝑗1, 𝑗2 ∈ [𝑟], ‖̃︁𝜇𝑗1 − ̃︁𝜇𝑗2‖ ≥ 0.5𝑠

Then there is an efficient algorithm that with probability at least 1− 2−0.01𝑠2, given a sample

from 𝑁(𝜇𝑖, 𝐼) for any 𝑖 ∈ [𝑘], returns 𝑓(𝑖).

Proof. For all 𝑗1, 𝑗2 ∈ [𝑟] with 𝑗1 ̸= 𝑗2, define

𝑣𝑗1𝑗2 =
̃︁𝜇𝑗1 − ̃︁𝜇𝑗2

‖̃︁𝜇𝑗1 − ̃︁𝜇𝑗2‖
.
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Given a sample 𝑧, we find a 𝑗 such that for all 𝑗1, 𝑗2 ∈ [𝑟], we have

|𝑣𝑗1𝑗2 · (𝑧 − ̃︀𝜇𝑗)| ≤ 0.1𝑠 .

If 𝑧 ∼ 𝑁(𝜇𝑖, 𝐼), then with probability at least 1 − 2−0.02𝑠2 , setting 𝑗 = 𝑓(𝑖) clearly satisfies

the above. Also, by the assumption that ‖̃︁𝜇𝑗1 − ̃︁𝜇𝑗2‖ ≥ 0.5𝑠 for all distinct 𝑗1, 𝑗2, it is clear

that with probability at least 1− 2−0.02𝑠2 that no other 𝑗′ ∈ [𝑟] will satisfy the above. This

completes the proof. ■

2.11.3 Putting Everything Together

We can now put everything together and describe our complete clustering algorithm. At a

high level there will be two phases.

In the first phase, we will keep track of a subspace 𝑉 and point 𝑝 ∈ 𝑉 and keep refining

it. In particular, in each step we will add a dimension to 𝑉 to get a higher dimensional

subspace 𝑉 ′ and we will compute a new point 𝑝′ ∈ 𝑉 ′. Our goal in each step will be to

maintain (roughly) the following properties

• For a certain radius 𝑟 = 𝑂((log(𝑘/𝑤*))(1+𝑐)/2), the checker (𝑉, 𝑝, 𝑟) always contains one

of the true means 𝜇𝑖

• If there are two means 𝜇𝑖, 𝜇𝑗 in (𝑉, 𝑝, 𝑟) with separation at least 0.1 log4(𝑘/𝑤min), then

with at least 0.1 probability, the refinement 𝑉 ′, 𝑝′ satisfies that (𝑉 ′, 𝑝′, 𝑟′) contains at

most half as many means 𝜇𝑖 as (𝑉, 𝑝, 𝑟′) for some larger radius 𝑟′.

The first guarantee is not difficult to achieve as we simply need to check that there are

enough samples in the checker. To achieve the second guarantee, we rely on Lemma 2.10.11

to find a signal direction and add this direction to 𝑉 to get 𝑉 ′. We then argue that because

this new direction is a signal direction, the set of true means in (𝑉, 𝑝, 𝑟) can be split into two

parts along this new direction and one of these parts will have at most half as many. The

guarantees are stated formally in Lemma 2.11.9.
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We will run the first phase sufficiently many times that with high probability, at some

point, we must have 𝑉, 𝑝 such that all means in (𝑉, 𝑝, 𝑟) have separation at most log4(𝑘/𝑤min).

We can actually test this condition (with some slack) using Lemma 2.11.10. If the test passes,

in the second phase, we can simply use Lemma 2.10.12 to fully cluster the remaining sub-

mixture obtained by reducingℳ by (𝑉, 𝑝, 𝑟). This allows us to learn one of the components

of the mixture. In fact, we can obtain a stronger guarantee and actually identify all of the

samples from this component. See Lemma 2.11.11 for more details. Once we have done this,

we can remove these samples and recurse on the remaining mixture. This completes the

entire clustering algorithm. Below is an outline that summarizes our algorithm.

Algorithm 5 Complete Clustering Algorithm (Outline)

Initialize 𝑉 = 0 (i.e. 0-dimensional subspace), 𝑝 = 0

Set 𝑟 = 𝑂((log(𝑘/𝑤min))
(1+𝑐)/2)

for 𝑗 = 1, 2, . . . , (log(𝑘/𝑤min))
1+0.1𝑐 do

Refine (𝑉, 𝑝)← (𝑉 ′, 𝑝′) using Lemma 2.11.9

Test if means in (𝑉, 𝑝, 𝑟) have max-separation at most log4(𝑘/𝑤min) using Lemma

2.11.10

Break if above test passes

Fully cluster samples in (𝑉, 𝑝, 𝑟) and identify samples from one component 𝑁(𝜇𝑖, 𝐼) (see

Lemma 2.11.11)

Remove samples from 𝑁(𝜇𝑖, 𝐼) and recurse on remaining

The next lemma formalizes the guarantees of the refinement step.

Lemma 2.11.9. Let ℳ = 𝑤1𝑁(𝜇1, 𝐼) + · · · + 𝑤𝑘𝑁(𝜇𝑘, 𝐼) be a GMM. Let 𝑤* > 0 be a

parameter and 𝑐 > 0 be a positive constant. Assume that ℳ is 𝑠-separated where 𝑠 =

(log(𝑘/𝑤*))1/2+𝑐 and satisfies 𝑤𝑖 ≥ 𝑤* for all 𝑖. Also assume that max ‖𝜇𝑖 − 𝜇𝑗‖ ≤ 𝑂((𝑘/𝑤*)2).

Assume that we are given a subspace 𝑉 and a point 𝑝 ∈ 𝑉 where the dimension of 𝑉

is 𝑎 < (log(𝑘/𝑤*))1+0.1𝑐. Assume that the checker (𝑉, 𝑝, 10(log(𝑘/𝑤*))(1+𝑐)/2) contains some
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𝜇𝑖. Also let 𝐶 be the number of indices 𝑖 such that 𝜇𝑖 is contained in the checker

(︀
𝑉, 𝑝, (log(𝑘/𝑤*))2((log(𝑘/𝑤*))1+0.1𝑐 − 𝑎)

)︀
.

Then there exists an algorithm that takes 𝑛 = poly((𝑑𝑘/𝑤*)1/𝑐) samples and poly(𝑛) runtime

and returns a subspace 𝑉 ′ and a point 𝑝′ ∈ 𝑉 ′ with the following properties

• 𝑉 ′ has dimension 𝑎+ 1 and is obtained by adding one orthogonal direction to 𝑉

• The checker (︀
𝑉 ′, 𝑝′, (log(𝑘/𝑤*))2((log(𝑘/𝑤*))1+0.1𝑐 − 𝑎− 1)

)︀
contains at most 𝐶 of the 𝜇𝑖.

• With high probability, the checker (𝑉 ′, 𝑝′, 10(log(𝑘/𝑤*))(1+𝑐)/2) contains some 𝜇𝑖

• If there are two 𝜇𝑖1 , 𝜇𝑖2 contained in the checker (𝑉, 𝑝, (log(𝑘/𝑤*))(1+1.1𝑐)/2) such that

‖𝜇𝑖1 − 𝜇𝑖2‖ ≥ 0.1(log(𝑘/𝑤*))4

then with probability at least 0.1, the checker

(︀
𝑉 ′, 𝑝′, (log(𝑘/𝑤*))2((log(𝑘/𝑤*))1+0.1𝑐 − 𝑎− 1)

)︀
contains at most 𝐶/2 of the 𝜇𝑖.

Proof. We first focus on the last guarantee as it will not be difficult to maintain the first

three guarantees. Let 𝜃 = (log(𝑘/𝑤*))(1+𝑐)/2 and 𝛽 = (log(𝑘/𝑤*))(1+1.1𝑐)/2. Choose some 𝛾

randomly from {1, . . . , ⌈104 log log(𝑘/𝑤*)⌉}. Now by Claim 2.11.7, with probability at least

1/2, the mixture

red(𝜃)
𝑉,𝑝,𝛽+𝛾𝜃(ℳ)

is 0.9𝑤*-reasonable. Also note that the two components 𝜇𝑖1 and 𝜇𝑖2 promised in the last

100



condition must satisfy

‖Proj𝑉 ⊥(𝜇𝑖2)− Proj𝑉 ⊥(𝜇𝑖1)‖ ≥ 0.09(log(𝑘/𝑤*))4 .

and furthermore, their respective mixing weights in red(𝜃)
𝑉,𝑝,𝛽+𝛾𝜃(ℳ) are at least 0.9𝑤*. Now

by Corollary 2.11.6 we can, with high probability, simulate a polynomial number of samples

from red(𝜃)
𝑉,𝑝,𝛽+𝛾𝜃(ℳ) by taking samples from red𝑉,𝑝,𝛽+𝛾𝜃(ℳ) (which we can simulate using

samples fromℳ). Also note that since the checker

(𝑉, 𝑝, 10(log(𝑘/𝑤*))(1+𝑐)/2)

contains some 𝜇𝑖, samples fromℳ are contained in the checker (𝑉, 𝑝, 𝛽+𝛾𝜃) with probability

at least 0.9𝑤*. Thus we can apply Lemma 2.10.11 and with high probability we can find

a signal direction. Note this signal direction is a unit vector 𝑣 ∈ 𝑉 ⊥ such that it is a

(0.4𝑤*, 0.04(log(𝑘/𝑤*))4)-signal direction for the distribution red(𝜃)
𝑉,𝑝,𝛽+𝛾𝜃(ℳ). Note that we

can check this last condition so if we repeat the above polynomially many times (for random

choices of 𝛾), we can guarantee that we have found such a signal direction.

We let 𝑉 ′ = 𝑉 + 𝑣 (i.e. 𝑉 ′ is obtained by adding 𝑣 to the span of 𝑉 ). Note that by the

assumption that 𝑣 is a signal direction, we can find a real number 𝑡 such that there must be

two components 𝜇𝑖 and 𝜇𝑗 that are relevant in red(𝜃)
𝑉,𝑝,𝛽+𝛾𝜃(ℳ) such that

𝑡− 𝑣 · 𝜇𝑖 ≥ 0.01‘(log(𝑘/𝑤*))4

𝑣 · 𝜇𝑗 − 𝑡 ≥ 0.01(log(𝑘/𝑤*))4 .

Now to find the new center 𝑝′, we do the following. Draw a fresh set of poly(𝑑𝑘/𝑤*) samples

from ℳ. For each sample, we keep it if and only if it is contained in the checker (𝑉, 𝑝, 𝛽 +

(𝛾 + 2)𝜃). We say a sample 𝑧 is good if at least 0.9𝑤*-fraction of other samples 𝑧′ satisfy

‖Proj𝑉 ′(𝑧′)− Proj𝑉 ′(𝑧)‖ ≤ (log(𝑘/𝑤*))(1+𝑐)/2 .
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Note that with high probability, we will be able to find two samples 𝑧1, 𝑧2 that are both good

and such that |𝑣 ·𝑧1−𝑣 ·𝑧2| ≥ 0.01(log(𝑘/𝑤*))4 (this will happen as long as we take a sample

from 𝜇𝑖 and a sample from 𝜇𝑗 for the two separated components promised in the previous

paragraph). Now with 1/2 probability take 𝑝′ = 𝑧1 and with 1/2 probability take 𝑝′ = 𝑧2.

Note that the checkers

(︀
𝑉 ′, 𝑧1, (log(𝑘/𝑤

*))2((log(𝑘/𝑤*))1+0.1𝑐 − 𝑎− 1)
)︀

(︀
𝑉 ′, 𝑧2, (log(𝑘/𝑤

*))2((log(𝑘/𝑤*))1+0.1𝑐 − 𝑎− 1)
)︀

are disjoint since 𝑧1, 𝑧2 are sufficiently separated along direction 𝑣. Also,

‖Proj𝑉 (𝑧1)− 𝑝‖ , ‖Proj𝑉 (𝑧2)− 𝑝‖ ≤ 𝛽 + (𝛾 + 2)𝜃

and thus both of the above checkers are contained in the checker

(︀
𝑉, 𝑝, (log(𝑘/𝑤*))2((log(𝑘/𝑤*))1+0.1𝑐 − 𝑎)

)︀
.

Thus, with 1/2 probability, the number of means contained in the new checker is at most

𝐶/2. It remains to verify the first three conditions. The first is trivial. The second is also

trivial. To see why the third is true, note that since 𝑧1 is good, with high probability, there

must be some 𝜇𝑖1 such that ‖Proj𝑉 ′(𝜇𝑖1)− Proj𝑉 ′(𝑧1)‖ ≤ 2(log(𝑘/𝑤*))(1+𝑐)/2 by Claim 2.10.8

and similar for 𝑧2. This immediately implies the third condition. ■

Next, we show that we can actually check the termination condition (with some slack),

that the maximum separation of any two means in (𝑉, 𝑝, 𝑟) is at most 𝑂(log4(𝑘/𝑤*)) where

𝑟 = 𝑂((log(𝑘/𝑤*))(1+𝑐)/2).

Lemma 2.11.10. Let ℳ = 𝑤1𝑁(𝜇1, 𝐼) + · · · + 𝑤𝑘𝑁(𝜇𝑘, 𝐼) be a GMM. Let 𝑤* > 0 be

a parameter and 𝑐 > 0 be a positive constant. Assume that ℳ is 𝑠-separated where 𝑠 =

(log(𝑘/𝑤*))1/2+𝑐 and satisfies 𝑤𝑖 ≥ 𝑤* for all 𝑖. Also assume that ‖𝜇𝑖 − 𝜇𝑗‖ ≤ 𝑂((𝑘/𝑤*)2)

for all 𝑖, 𝑗. Say that we are given a subspace 𝑉 and a point 𝑝 ∈ 𝑉 where the dimension of 𝑉
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is 𝑎 < (log(𝑘/𝑤*))1+0.1𝑐. Assume that the checker (𝑉, 𝑝, 10(log(𝑘/𝑤*))(1+𝑐)/2) contains some

𝜇𝑖. Then there is an algorithm that takes 𝑛 = poly((𝑑𝑘/𝑤*)1/𝑐) samples and runs in poly(𝑛)

time, and with high probability,

• Outputs Reject if there are 𝑖, 𝑗 such that 𝜇𝑖 and 𝜇𝑗 are both contained in the checker

(𝑉, 𝑝, 20(log(𝑘/𝑤*))(1+𝑐)/2)

and that ‖𝜇𝑖 − 𝜇𝑗‖ ≥ (log(𝑘/𝑤*))4.

• Outputs Accept if for all 𝑖, 𝑗 such that 𝜇𝑖 and 𝜇𝑗 are both contained in the checker

(𝑉, 𝑝, (log(𝑘/𝑤*))(1+1.1𝑐)/2)

we have that ‖𝜇𝑖 − 𝜇𝑗‖ ≤ 0.1(log(𝑘/𝑤*))4.

Proof. Let 𝜃 = (log(𝑘/𝑤*))(1+𝑐)/2. We consider red(𝜃)
𝑉,𝑝,(30+𝛾)𝜃(ℳ) for all

𝛾 = {1, . . . , ⌈104 log log(𝑘/𝑤*)⌉} .

We simulate samples from red(𝜃)
𝑉,𝑝,(30+𝛾)𝜃(ℳ) using samples from red𝑉,𝑝,(30+𝛾)𝜃(ℳ) (which can

be simulated using samples from ℳ), which by Corollary 2.11.6 is equivalent with high

probability for polynomially many samples. We attempt to find a signal direction in this

reduced mixture for each 𝛾 using Lemma 2.10.11. If for any 𝛾, we find a direction that we

can check is a (0.4𝑤*, 0.4(log(𝑘/𝑤*))4)-signal direction using Claim 2.10.7, then we output

Reject. Otherwise we output Accept. To see why this works, first note that clearly we

will always output Accept when we are supposed to accept. Now to see that we reject

when we are supposed to reject, consider the choice of 𝛾 guaranteed by Claim 2.11.7 for

which the mixture red(𝜃)
𝑉,𝑝,(30+𝛾)𝜃(ℳ) is reasonable. For this choice of 𝛾, by the guarantees of

Lemma 2.10.11, we will find a (0.4𝑤*, 0.4(log(𝑘/𝑤*))4)-signal direction with high probability

and thus we will Reject. ■
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Finally, we show how to do the final step where we do full clustering and isolate samples

from a single component.

Lemma 2.11.11. Let ℳ = 𝑤1𝑁(𝜇1, 𝐼) + · · · + 𝑤𝑘𝑁(𝜇𝑘, 𝐼) be a GMM. Let 𝑤* > 0 be

a parameter and 𝑐 > 0 be a positive constant. Assume that ℳ is 𝑠-separated where 𝑠 =

(log(𝑘/𝑤*))1/2+𝑐 and satisfies 𝑤𝑖 ≥ 𝑤* for all 𝑖. Assume that we are given a subspace

𝑉 and a point 𝑝 ∈ 𝑉 where the dimension of 𝑉 is 𝑎 < (log(𝑘/𝑤*))1+0.1𝑐. Assume that

the checker (𝑉, 𝑝, 10(log(𝑘/𝑤*))(1+𝑐)/2) contains some 𝜇𝑖. Also assume that for all 𝑖, 𝑗 such

that 𝜇𝑖 and 𝜇𝑗 are both contained in the checker (𝑉, 𝑝, 20(log(𝑘/𝑤*))(1+𝑐)/2), we have that

‖𝜇𝑖 − 𝜇𝑗‖ ≤ (log(𝑘/𝑤*))4. Then there is an algorithm that takes 𝑛 = poly((𝑑𝑘/𝑤*)1/𝑐)

samples and runs in poly(𝑛) time, and with high probability, returns a test (which we denote

test) that can be computed in poly(𝑑𝑘) time and has the following properties

• There is some 𝑖 such that for a random sample 𝑧 ∼ 𝑁(𝜇𝑖, 𝐼), with high probability

test(𝑧) = accept

• For all other 𝑖′ ̸= 𝑖, for a random sample 𝑧 ∼ 𝑁(𝜇𝑖, 𝐼), with high probability test(𝑧) =

reject

Proof. Let 𝜃 = (log(𝑘/𝑤*))(1+𝑐)/2. Consider the truncated reduced mixture

red(𝜃)
𝑉,𝑝,19𝜃(ℳ) .

By Corollary 2.11.6, we can simulate a polynomial number of samples from this mixture by

instead taking samples from red𝑉,𝑝,19𝜃(ℳ) (which we can simulate using samples from ℳ).

Now, by assumption, all relevant components 𝜇𝑖, 𝜇𝑗 in red(𝜃)
𝑉,𝑝,19𝜃(ℳ) must have

0.9(log(𝑘/𝑤*))1/2+𝑐 ≤ ‖Proj𝑉 ⊥(𝜇𝑖)− Proj𝑉 ⊥(𝜇𝑗)‖ ≤ (log(𝑘/𝑤*))4 .

Thus, we can apply Lemma 2.10.12 to this mixture with parameter 𝑤* = (𝑤*/𝑘)10. With

high probability, we obtain a list of candidate means { ̃︀𝜇1, . . . , ̃︀𝜇𝑟} such that 𝑟 ≤ 𝑘, all of

the candidate means are 0.4(log(𝑘/𝑤*))1/2+𝑐-separated and for all 𝑖 ∈ [𝑘] such that 𝜇𝑖 is
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contained in the checker (𝑉, 𝑝, 18𝜃), there is some 𝑓(𝑖) ∈ [𝑟] such that

⃦⃦
Proj𝑉 ⊥(̃︂𝜇𝑓(𝑖))− Proj𝑉 ⊥(𝜇𝑖)

⃦⃦
≤ 0.1 .

Note the last condition is because any component whose mean 𝜇𝑖 is contained in the checker

(𝑉, 𝑝, 18𝜃) must be almost entirely contained in the checker (𝑉, 𝑝, 19𝜃) and thus will have

significant mixing weight in red(𝜃)
𝑉,𝑝,19𝜃(ℳ).

Now we draw poly(𝑘/𝑤*) fresh samples from ℳ and restrict to those that are contained

in the checker (𝑉, 𝑝, 17𝜃). With high probability, this is equivalent to drawing samples from

the mixture

red(𝜃)
𝑉,𝑝,17𝜃(ℳ) .

All of the relevant components in this mixture have mean 𝜇𝑖 that is contained in the checker

(𝑉, 𝑝, 18𝜃). Thus, we can apply Claim 2.11.8 to fully cluster these samples with high prob-

ability. Recall that by assumption, there is some true mean 𝜇𝑖 contained in the checker

(𝑉, 𝑝, 10𝜃). Thus, we can find one of the clusters with weight at least 0.5𝑤* and such that

at least half of the points in the cluster are contained in the checker (𝑉, 𝑝, 11𝜃). Say that

this cluster corresponds to 𝜇𝑗 and estimated mean ̃︂𝜇𝑓(𝑗). This cluster must be almost en-

tirely contained in the checker (𝑉, 𝑝, 17𝜃). To isolate exactly the points from 𝑁(𝜇𝑗, 𝐼) with

high probability, we can first restrict to points contained in the checker (𝑉, 𝑝, 17𝜃) and then

apply Claim 2.11.8 and restrict to points for which the output is 𝑓(𝑗). Thus, we have an

efficiently computable test that, with high probability, isolates exactly the points from the

cluster 𝑁(𝜇𝑗, 𝐼) and we are done. ■

Now can complete the proof of our main theorem, Theorem 2.2.5, for learning clusterable

mixtures of Gaussians.

Proof of Theorem 2.2.5. First we apply the reductions in Section 2.3.3 to ensure that 𝑑 ≤ 𝑘

and ‖𝜇𝑖 − 𝜇𝑗‖ ≤ 𝑂((𝑘/𝑤min)
2) for all 𝑖, 𝑗. Now we apply the algorithm in Lemma 2.11.9

for (log(𝑘/𝑤min))
1+0.1𝑐 times (where we set 𝑤* = 𝑤min). Note that the lemma works with
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a trivial initialization where 𝑉 is 0-dimensional and 𝑝 is just 0. Using the guarantees of

Lemma 2.11.9, with high probability at some point, we will get 𝑉, 𝑝 (where 𝑉 has dimension

(log(𝑘/𝑤min))
1+0.1𝑐) which satisfy that

• The checker (𝑉, 𝑝, 10(log(𝑘/𝑤min))
(1+𝑐)/2) contains at least one of the 𝜇𝑖

• For any 𝜇𝑖, 𝜇𝑗 contained in the checker (𝑉, 𝑝, (log(𝑘/𝑤min))
(1+1.1𝑐)/2), we have

‖𝜇𝑖 − 𝜇𝑗‖ ≤ 0.1(log(𝑘/𝑤min))
4 .

Thus, when we run Lemma 2.11.10 to check this pair 𝑉, 𝑝, we will Accept this pair of 𝑉, 𝑝

and move to the final step. Note that Lemma 2.11.10 also implies that for any pair 𝑉, 𝑝 that

we Accept and move to the final step, we have the slightly weaker guarantees that

• The checker (𝑉, 𝑝, 10(log(𝑘/𝑤min))
(1+𝑐)/2) contains at least one of the 𝜇𝑖

• For any 𝜇𝑖, 𝜇𝑗 contained in the checker (𝑉, 𝑝, 20(log(𝑘/𝑤min))
(1+𝑐)/2), we have

‖𝜇𝑖 − 𝜇𝑗‖ ≤ (log(𝑘/𝑤min))
4

These weaker guarantees still suffice to apply the algorithm in Lemma 2.11.11 to isolate

one of the components of ℳ (again with 𝑤* = 𝑤min). With high probability, we can

take poly(𝑘/𝑤min) samples from this component and estimate its mean and mixing weight

to within 𝛼 (since 𝛼 = (𝑘/𝑤min)
𝑂(1)). We can also remove all of the samples from this

component from the mixture and recurse on a mixture of 𝑘− 1 Gaussians. Note that we can

do this because our test for checking whether a sample belongs to the removed component

succeeds with high probability (meaning its failure probability is smaller than any inverse

polynomial) and the recursive call only takes polynomially many samples. Thus overall the

algorithm succeeds with high probability and we are done. ■

The clustering guarantee in Corollary 2.2.6 follows as an immediate consequence of The-

orem 2.2.5.
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Proof of Corollary 2.2.6. Let the estimated means computed by Theorem 2.2.5 for 𝛼 =

(𝑤min/𝑘)
10 be ̃︀𝜇1, . . . ,̃︁𝜇𝑘. Now for all 𝑗1, 𝑗2 ∈ [𝑘] with 𝑗1 ̸= 𝑗2, let

𝑣𝑗1𝑗2 =
̃︁𝜇𝑗1 − ̃︁𝜇𝑗2

‖̃︁𝜇𝑗1 − ̃︁𝜇𝑗2‖
.

Now given a sample 𝑧 fromℳ, we compute the index 𝑗 such that for all 𝑗1, 𝑗2, we have

|𝑣𝑗1𝑗2 · ( ̃︀𝜇𝑗 − 𝑧)| ≤ (log(𝑘/𝑤min))
(1+𝑐)/2 .

Note that by the guarantees of Theorem 2.2.5, there is a permutation 𝜋 such that
⃦⃦̃︂𝜇𝜋(𝑖) − 𝜇𝑖

⃦⃦
≤

𝛼 for all 𝑖. If 𝑧 is a sample from 𝑁(𝜇𝑖, 𝐼), then with high probability the unique index 𝑗 that

satisfies the above is exactly 𝑗 = 𝜋(𝑖) and thus, we recover the ground truth clustering with

high probability. ■

2.12 Omitted Proofs from Section 2.3.3

Here we explain the reductions for Section 2.3.3. When explaining the reductions, we will

work with a mixture of Poincare distributions

ℳ = 𝑤1𝒟(𝜇1) + · · ·+ 𝑤𝑘𝒟(𝜇𝑘)

but it will be obvious that these reductions also work for Gaussians.

Reducing to all Means Polynomially Bounded

By Fact 2.3.7, with 1− 2−10(𝑑+𝑘)/𝑤min probability, a sample 𝑧 ∼ 𝒟(𝜇𝑖) satisfies

‖𝑧 − 𝜇𝑖‖ ≤ 104 · (𝑑+ 𝑘)/𝑤min .
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Now, we look for a pair of samples 𝑧, 𝑧′ such that

‖𝑧 − 𝑧′‖ ≥ 106((𝑑+ 𝑘)/𝑤min)
2 .

Note that with high probability, such a pair exists if

‖𝜇𝑖 − 𝜇𝑗‖ ≥ 1.1 · 106((𝑑+ 𝑘)/𝑤min)
2

for some 𝑖, 𝑗. Let 𝑣 be the unit vector in the direction 𝑧−𝑧′ and let 𝜇𝑖, 𝜇𝑗 be the components

that 𝑧, 𝑧′ were drawn from. We must have that

|⟨𝑣, 𝜇𝑖 − 𝜇𝑗⟩| ≥ 0.99 · 106((𝑑+ 𝑘)/𝑤min)
2 .

Now imagine projecting all of the samples onto the direction 𝑣. Note that by Fact 2.3.7,

with high probability all of the samples from a given component will lie in an interval of

width at most 102(𝑑+ 𝑘)/𝑤min after projecting onto the direction 𝑣. Thus, there must be an

empty interval of width at least 103(𝑑 + 𝑘)/𝑤min between the projections of 𝑧 and 𝑧′. This

means that no 𝜇𝑖 has projection in this interval and we can subdivide the mixture into two

submixtures with strictly fewer components by cutting via a hyperplane normal to 𝑣 through

the middle of this interval. Note that for each of the two submixtures, a sample will be on

the wrong side of this cut with exponentially small probability but our algorithm will only

use polynomially many samples. Thus, we can simply run our learning algorithm on each

submixture.

We have reduced to ‖𝜇𝑖 − 𝜇𝑗‖ ≤ 𝑂(((𝑑 + 𝑘)/𝑤min)
2). Now we can simply estimate the

mean of the distribution ℳ and subtract it out. Note that we have proved the reduction

with a bound of 𝑂(((𝑑+ 𝑘)/𝑤min)
2). To reduce to 𝑂((𝑘/𝑤min)

2), we can apply the reduction

in the next section, which will ensure that 𝑑 ≤ 𝑘 and then we can apply this reduction again.
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Reducing the Dimension

Next, we show that we can reduce to the case when 𝑑 ≤ 𝑘. We can estimate the empricial

covariance of 𝒟, say Σ𝒟. We can also estimate the empirical covariance ofℳ, which is

Σℳ = 𝑤1(𝜇1 ⊗ 𝜇1) + · · ·+ 𝑤𝑘(𝜇𝑘 ⊗ 𝜇𝑘) + Σ𝒟 .

Note that since all means ‖𝜇𝑖‖ are polynomially bounded by the previous reduction, we can

obtain estimates for Σℳ and Σ𝒟 that are accurate to within 𝜖 in Frobenius norm for any

inverse polynomial 𝜖. Thus, we have an estimate ̃︁𝑀 such that

⃦⃦⃦̃︁𝑀 − (𝑤1(𝜇1 ⊗ 𝜇1) + · · ·+ 𝑤𝑘(𝜇𝑘 ⊗ 𝜇𝑘))
⃦⃦⃦
𝐹
≤ 2𝜖

for any desired inverse polynomial 𝜖. We can then take 𝑉 to be the subspace spanned by

the top 𝑘 principal components of ̃︁𝑀 . Using the above, we can ensure that all of the 𝜇𝑖

are within distance 0.1𝛿 · (𝑤min/𝑘)
10 of the subspace 𝑉 . Let 𝒟Proj,𝑉 be the projection of the

distribution 𝒟 onto the subspace 𝑉 . If we project all of our samples onto the subspace 𝑉 ,

we would have a mixture of translated copies of 𝒟Proj,𝑉 where the separations are decreased

by at most 0.2𝛿 · (𝑤min/𝑘)
10. Thus, we have reduced to a 𝑘-dimensional problem.
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Chapter 3

Robustly Learning Mixtures of

Gaussians

3.1 Overview

In this chapter, we consider the problem of robustly learning a mixture of Gaussians. For-

mally, there is some unknown GMM in 𝑑 dimensions

ℳ = 𝑤1𝑁(𝜇1,Σ1) + · · ·+ 𝑤𝑘𝑁(𝜇𝑘,Σ𝑘) .

We receive samples from ℳ except an 𝜖-fraction of them may be corrupted, possibly ad-

versarially. Our goal is to learn the parameters 𝑤1, . . . , 𝑤𝑘, 𝜇1, . . . , 𝜇𝑘,Σ1, . . . ,Σ𝑘. We treat

𝑘 as a constant and focus on the dependence on 𝑑 and 𝜖. In particular, we ask for sample

complexity and runtime poly(𝑑/𝜖) and accuracy poly(𝜖) and independent of 𝑑.
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3.1.1 Key Techniques

We now give an overview of our techniques. For simplicity, assume that the mixture is in

isotropic position. First, we have the unknown parameters of the mixture. Let

ℳ = 𝑤1𝑁(𝜇1, 𝐼 + Σ1) + · · ·+ 𝑤𝑘𝑁(𝜇𝑘, 𝐼 + Σ𝑘)

where 𝑤𝑖 are the mixing weights and 𝜇𝑖 and 𝐼+Σ𝑖 denote the mean and covariance of the 𝑖th

component – note that we have re-parametrized the covariances in a way that will be useful

later on. Second, we have the indeterminates we would like to solve for. These will be denoted̃︀𝜇𝑖 and ̃︀Σ𝑖 and our intention is for these to be the means and covariances of a hypothetical

mixture of Gaussians 1. We will also guess the mixing weights of the hypothetical mixturẽ︀𝑤𝑖. Finally, we have a 𝑑-dimensional vector 𝑋 = (𝑋1, . . . , 𝑋𝑑) of formal variables and one

auxiliary formal variable 𝑦. These will mostly be used to help us organize everything in

a convenient way. Roughly, we would like to solve for ̃︀𝜇𝑖 and ̃︀Σ𝑖 so that the hypothetical

mixture ̃︁ℳ = ̃︁𝑤1𝑁( ̃︀𝜇1, 𝐼 +̃︁Σ1) + · · ·+̃︁𝑤𝑘𝑁(̃︁𝜇𝑘, 𝐼 + Σ𝑘)

is close toℳ on the family of test functions (which will be low-degree multivariate Hermite

polynomials). It turns out that this amounts to solving a polynomial system for the inde-

terminates.

Now we explain in more detail how to actually reason about and solve the polynomial

system. It will be useful to work with the following generating functions. First let

𝐹 (𝑦) =
𝑘∑︁

𝑖=1

𝑤𝑖𝑒
𝜇𝑖(𝑋)𝑦+ 1

2
Σ𝑖(𝑋)𝑦2

1Technically our setup is slightly different in that we solve for vectors 𝑢1, . . . , 𝑢𝑘 and 𝑣1, . . . , 𝑣𝑘 that are
supposed to form an orthonormal basis for the span of the { ̃︀𝜇𝑖} and {̃︁Σ𝑖} respectively. Regardless, the
argument is conceptually the same.
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Here we have used the notation that 𝜇𝑖(𝑋) denotes the inner product of 𝜇𝑖 with the 𝑑-

dimensional vector 𝑋 and that Σ𝑖(𝑋) denotes the quadratic form of 𝑋 on Σ𝑖. Second let

̃︀𝐹 (𝑦) = 𝑘∑︁
𝑖=1

̃︀𝑤𝑖𝑒
̃︀𝜇𝑖(𝑋)𝑦+ 1

2
̃︁Σ𝑖(𝑋)𝑦2

As is familiar from elementary combinatorics we can tease out important properties of the

generating function by applying carefully chosen operators that involve differentiation. This

requires a lot more bookkeeping than usual because there are unknown parameters of the

mixture, indeterminates and formal variables. But it turns out that there are simple differen-

tial operators we can apply which can isolate components. To gain some intuition, consider

the operator

𝒟𝑖 = 𝜕𝑦 − (𝜇𝑖(𝑋) + Σ𝑖(𝑋)𝑦) .

Note that

𝒟𝑖

(︁
𝑒𝜇𝑖(𝑋)𝑦+ 1

2
Σ𝑖(𝑋)𝑦2

)︁
= 0 ,

in other words, this operator annihilates the 𝑖th component. Thus, by composing such

operators, we can annihilate all but one of the components in 𝐹 2. On the other hand, note

that applying differential operators is just a rearrangement of the polynomials that show up

in the infinite sum representation of the generating function but using differential operators

and generating functions in exponential form gives a particularly convenient way to derive

useful expressions that would otherwise be extremely complex to write down.

Ultimately we derive a symbolic identity

̃︁𝑤𝑘

𝑘∏︁
𝑖=1

(̃︁Σ𝑘(𝑋)− Σ𝑖(𝑋))2
𝑖−1

𝑘−1∏︁
𝑖=1

(̃︁Σ𝑘(𝑋)− ̃︀Σ𝑖(𝑋))2
𝑘+𝑖−1

=
𝑚∑︁
𝑖=1

𝑃𝑖(𝑋)(̃︀ℎ𝑖(𝑋)− ℎ𝑖(𝑋)) (3.1)

where 𝑚 is a function of 𝑘. In the above, the ℎ𝑖(𝑋)’s are the expectations of the multivariate

Hermite polynomials for the true mixtureℳ and the ̃︀ℎ𝑖’s are the expectations of the multi-

2There are some additional details because applying 𝒟𝑖 to a different component creates an extra poly-
nomial factor in front. Section 3.4.3 shows how to deal with this complication.
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variate Hermite polynomials for the hypothetical mixture ̃︁ℳ. A more detailed explanation

of Hermite polynomials is given in Section 3.3 but for now we may simply think of them

as modified moments. The reason that we use Hermite polynomials instead of standard

moments is that they can be robustly estimated without losing dimension-dependent factors

(see e.g. [65]).

The above identity (when combined with a few others of a similar form) allows us to

deduce robust identifiability. Roughly, this is because if we have a mixture ̃︁ℳ with means̃︀𝜇𝑖 and covariances 𝐼 + ̃︀Σ𝑖 that don’t match those of ℳ, then the LHS of (3.1) will be

bounded away from 0, implying that some term on the RHS must also be bounded away

from 0. This means that there must be some 𝑖 ≤ 𝑚 = 𝑂𝑘(1) such that ℎ𝑖(𝑋) and ℎ̃𝑖(𝑋)

are substantially different – i.e. there is some test function that is a low-degree multivariate

Hermite polynomial that distinguishes the two mixtures.

Robust identifiability alone does not give us a polynomial time learning algorithm. How-

ever, it turns out that we can use SOS to obtain a polynomial time learning algorithm from

the argument for robust identifiability i.e. we essentially get the learning algorithm “for free".

The key point is that the ℎ𝑖(𝑋) can be estimated using our samples and the coefficients of

the ̃︀ℎ𝑖 are explicit polynomials in the indeterminates that we can write down. Also the 𝑃𝑖’s

are polynomials in everything: the unknown parameters, the indeterminates and the formal

variables (except for 𝑦). To set up an SOS system, we obtain robust estimates ℎ𝑖 for the

expectations of the Hermite polynomials ℎ𝑖(𝑋) for the true mixture that we can compute

from existing techniques in the literature. We then enforce that the expectations of the

Hermite polynomials for the hypothetical mixture ̃︀ℎ𝑖(𝑋) are close to these robust estimates

where closeness is defined in terms of the distance between their coefficient vectors.

It is not immediately clear why the expression in (3.1) ought to be useful for solving the

SOS system that we set up. After all, we cannot explicitly compute it because it depends on

things we do not have, like the true parameters, the 𝜇𝑖’s and Σ𝑖’s. However the sum-of-squares

relaxation enforces that the pseudo-expectation operator assigns values to polynomials in the

indeterminates in a way that behaves like an actual distribution on solutions when we are
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evaluating certain types of low degree expressions that contain the one above. So even though

we do not know the actual polynomials in the identity, they exist and the fact that they are

enforced is enough to ensure that we can estimate the covariance of the 𝑘th component We

stress that this is just the high-level picture and many more details are needed to fill it in.

Using these techniques, we come to the main result of our paper, which is a polynomial-

time algorithm for robustly learning the parameters of a high-dimensional mixture of a

constant number of Gaussians. Our main theorem is (informally) stated below. A formal

statement can be found in Theorem 3.8.3.

Theorem 3.1.1. Let 𝑘 be a constant. Letℳ = 𝑤1𝐺1+· · ·+𝑤𝑘𝐺𝑘 be a mixture of Gaussians

in R𝑑 whose components are non-degenerate and such that the mixing weights have bounded

fractionality and TV distances between different components are lower bounded. (Both of

these bounds can be any function of 𝑘). Given 𝑛 = poly(𝑑/𝜖) samples from ℳ that are

𝜖-corrupted, there is an algorithm that runs in time poly(𝑛) and with high probability outputs

a set of mixing weights ̃︁𝑤1, . . . ,̃︁𝑤𝑘 and components ̃︁𝐺1, . . . ,̃︁𝐺𝑘 that are poly(𝜖)-close to the

true components (up to some permutation).

Discussion of Assumptions and Later Improvements

Bounded Fractionality of Mixing Weights: The assumption of bounded fractionality

stems from an issue in previous work [39] about learning clusterable mixtures of Gaussians

i.e. when the components have essentially no overlap. We use some of their subroutines

in our algorithm for clustering the mixture into submixtures where the components are not

too far apart from each other (see Section 3.6). While [39] claims to handle general mixing

weights, the analysis of the algorithm in [39] is only done in detail for the case of uniform

mixing weights and the argument in Appendix C for reducing from general mixing weights

to uniform mixing weights does not work. The authors of [39] along with the authors of

[14] were able to fix these arguments to handle general mixing weights in [11]. The modified

proof uses essentially the same techniques. Plugging this improved clustering result into our

analysis, instead of using the weaker guarantees for uniform mixing weights, we are able
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to straightforwardly remove the bounded fractionality assumption. See Section 3.6.3 for a

formal statement and explanation.

Separation Assumption: While our original proof required constant separation be-

tween components, we show in a follow-up paper, [74], that this assumption can be replaced

with a separation of 𝜖Ω𝑘(1) (which is a necessary assumption for parameter learning) using

standard tricks (see Theorem 9.2 in [74]). This argument works independently of the im-

provement for the mixing weight assumption. See Section 3.8.1 for a more formal statement

and explanation.

Non-degeneracy of Components: This assumption was included so there are no bit

complexity issues. In fact, dealing with potentially degenerate covariance matrices requires

a formal specification of the model of computation.

To make the timeline of events clear, we stated our original result above. However,

plugging in these improvements (for removing the bounded fractionality and separation as-

sumption), we obtain an improved result, stated below. The formal statement can be found

in Theorem 3.8.6. We emphasize that these modifications are completely independent of our

main contributions, but are rather tools that we employ to reduce to the case where the

components are not too far from each other. We reduce to this case by running a preprocess-

ing step where we cluster the mixture into such submixtures. All of the assumptions stem

from the clustering step, which is done via modifications to the techniques for learning fully

clusterable mixtures in [39, 13].

Theorem 3.1.2. Let 𝑘 be a constant. Letℳ = 𝑤1𝐺1+· · ·+𝑤𝑘𝐺𝑘 be a mixture of Gaussians

in R𝑑 whose components are non-degenerate and such that the mixing weights are lower

bounded by some function of 𝑘. Also assume that the TV distances between components are

at least 𝜖Ω𝑘(1). Then given 𝑛 = poly(𝑑/𝜖) samples from ℳ that are 𝜖-corrupted, there is an

algorithm that runs in time poly(𝑛) and with high probability outputs a set of mixing weights̃︁𝑤1, . . . ,̃︁𝑤𝑘 and components ̃︁𝐺1, . . . ,̃︁𝐺𝑘 that are poly(𝜖)-close to the true components (up to
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some permutation).

Remark. The improved clustering arguments of [11] are able to get polynomial dependence

on the minimum mixing weight instead of exponential dependence so they are actually able

to deal with mixing weights that are 𝜖Ω𝑘(1). This improvement also plugs into our result as

well.

3.1.2 Proof Overview

The proof of our main theorem can be broken down into several steps. We first present

our main contribution, an algorithm for learning mixtures of Gaussians when no pair of

components are too far apart. We introduce the necessary generating function machinery in

Section 3.3 and then present our algorithm in Sections 3.4 and 3.5. Specifically, in Section 3.4

we show how to learn the parameters once we have estimates for the Hermite polynomials

of the true mixture. And in Section 3.5, we show how to robustly estimate the Hermite

polynomials, using similar techniques to [65].

To complete our full algorithm for learning general mixtures of Gaussians, we combine

our aforementioned results with a clustering algorithm similar to [39]. Combining these

algorithms, we prove that our algorithm outputs a mixture that is close to the true mixture

in TV distance. This is done in Sections 3.6 and 3.7. We then prove identifiability in Section

3.8, implying that our algorithm actually learns the true parameters.

3.1.3 Concurrent and Subsequent Work

There are three main pieces of work that we discuss. The first by Bakshi et. al [11], was

independent and concurrent to this one. The next is a subsequent work by Bakshi et. al

[12] that improves their earlier result but also borrows techniques from our paper. We also

discuss our follow-up work [74] that was after [11] but before [12] (and the contributions are

essentially disjoint).

Bakshi et. al in [11] obtain a result that is similar to our main result Theorem 3.1.1,

but using rather different techniques. There are a few key differences, which we discuss
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below. We learn the mixture to accuracy 𝜖Ω𝑘(1) while their result only achieves accuracy

(1/ log(1/𝜖))Ω𝑘(1), an exponentially worse guarantee. Also, our result solves parameter learn-

ing – i.e. we estimate the parameters of the true mixture – while their algorithm solves

proper density estimation – i.e. it outputs a mixture of 𝑘 Gaussians that is close to the true

density. Their algorithm does not need any lower bound on the mixing weights or on the

pairwise separation of the components. In fact lower bounds on these quantities are neces-

sary for parameter learning. However, our original result makes an even stronger assumption

about the bounded fractionality of the mixing weights and pairwise separation.

Subsequently in [12], Bakshi et. al improve their earlier result to achieve parameter

learning and accuracy 𝜖Ω𝑘(1). In fact the analysis of their new parameter learning algorithm

relies crucially on the robust identifiability result from our paper (see Section 9 in [12]).

Thus, all known algorithms for robust parameter learning go through our machinery and

robust identifiability. Compared to our result, the main improvement in [12] is an improved,

polynomial dependence on the minimum mixing weight.

Our follow-up work [74] improves the results here in a different direction. We are able to

obtain an algorithm that solves density estimation to accuracy ̃︀𝑂(𝜖) (instead of 𝜖Ω𝑘(1)). Note

that parameter learning to this accuracy is information-theoretically impossible. The work

in [74] does need a stronger assumption that the components have variances in all directions

lower and upper bounded by a constant and the learning algorithm is improper, outputting

a mixture of polynomials times Gaussians, instead of just a mixture of Gaussians. The main

relevance of [74] to this paper is that as a first step, [74] shows how to improve the separation

assumption in Theorem 3.1.1 from some constant to 𝜖Ω𝑘(1).

3.2 Preliminaries

3.2.1 The Model

We use 𝑁(𝜇,Σ) to denote a Gaussian with mean 𝜇 and covariance Σ. We use 𝑑TV(𝒟,𝒟′) to

denote the total variation distance between two distributions 𝒟,𝒟′. We begin by formally
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defining the problem that we will study. First we define the contamination model. This is a

standard definition from robust learning (see e.g. [39]).

Definition 3.2.1 (Strong Contamination Model). We say that a set of vectors 𝑌1, . . . , 𝑌𝑛

is an 𝜖-corrupted sample from a distribution 𝒟 over R𝑑 if it is generated as follows. First

𝑋1, . . . , 𝑋𝑛 are sampled i.i.d. from 𝒟. Then a (malicious, computationally unbounded)

adversary observes 𝑋1, . . . , 𝑋𝑛 and replaces up to 𝜖𝑛 of them with any vectors it chooses.

The adversary may then reorder the vectors arbitrarily and output them as 𝑌1, . . . , 𝑌𝑛

In this paper, we study the following problem. There is an unknown mixture of Gaussians

ℳ = 𝑤1𝐺1 + · · ·+ 𝑤𝑘𝐺𝑘

where 𝐺𝑖 = 𝑁(𝜇𝑖,Σ𝑖). We receive an 𝜖-corrupted sample 𝑌1, . . . , 𝑌𝑛 from ℳ where 𝑛 =

poly(𝑑/𝜖). The goal is to output a set of parameters ̃︁𝑤1, . . . ,̃︁𝑤𝑘 and ( ̃︀𝜇1,̃︁Σ1), . . . , (̃︁𝜇𝑘,̃︁Σ𝑘)

that are poly(𝜖) close to the true parameters in the sense that there exists a permutation 𝜋

on [𝑘] such that for all 𝑖

|𝑤𝑖 − 𝑤𝜋(𝑖)|, 𝑑TV

(︁
𝑁(𝜇𝑖,Σ𝑖), 𝑁(̃︂𝜇𝜋(𝑖), Σ̃𝜋(𝑖))

)︁
≤ poly(𝜖).

Throughout our paper, we will assume that all of the Gaussians that we consider have

variance at least poly(𝜖/𝑑) and at most poly(𝑑/𝜖) in all directions i.e. they are not too flat.

This implies that their covariance matrices are invertible so we may write expressions such

as Σ−1
𝑖 . We will also make the following assumptions about the mixture:

• The 𝑤𝑖 are rational with denominator at most 𝐴

• For all 𝑖 ̸= 𝑗, 𝑑TV(𝐺𝑖, 𝐺𝑗) > 𝑏

for some positive constants 𝐴, 𝑏. Note that a lower bound on the minimum mixing weight and

a lower bound on the TV distance between components is necessary for parameter learning.

Throughout this paper, we treat 𝑘,𝐴, 𝑏 as constants – i.e. 𝐴 and 𝑏 could be any function of
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𝑘 – and when we say polynomial, the exponent may depend on these parameters. We are

primarily interested in dependence on 𝜖 and 𝑑 (the dimension of the space).

3.2.2 Sum of Squares Proofs

We will make repeated use of the sum-of-squares (SOS) proof system. We review a few basic

facts here (see [16] for a more extensive treatment). Our exposition here closely mirrors [39].

Definition 3.2.2 (Symbolic Polynomials). A degree-𝑡 symbolic polynomial 𝑃 is a collection

of indeterminates ̂︀𝑃 (𝛼), one for each multiset 𝛼 ⊆ [𝑛] of size at most 𝑡. We think of it as

representing a polynomial 𝑃 : R𝑛 → R in the sense that

𝑃 (𝑥) =
∑︁

𝛼⊆[𝑛],|𝛼|≤𝑡

̂︀𝑃 (𝛼)𝑥𝛼
Definition 3.2.3 (SOS proof). Let 𝑥1, . . . , 𝑥𝑛 be indeterminates and let 𝒜 be a set of poly-

nomial inequalities

{𝑝1(𝑥) ≥ 0, . . . , 𝑝𝑚(𝑥) ≥ 0}

An SOS proof of an inequality 𝑟(𝑥) ≥ 0 from constraints 𝒜 is a set of polynomials {𝑟𝑆(𝑥)}𝑆⊆[𝑚]

such that each 𝑟𝑆 is a sum of squares of polynomials and

𝑟(𝑥) =
∑︁
𝑆⊆[𝑚]

𝑟𝑆(𝑥)
∏︁
𝑖∈𝑆

𝑝𝑖(𝑥)

The degree of this proof is the maximum of the degrees of 𝑟𝑆(𝑥)
∏︀

𝑖∈𝑆 𝑝𝑖(𝑥) over all 𝑆. We

write

𝒜 ⊢𝑘 𝑟(𝑥) ≥ 0

to denote that the constraints 𝒜 give an SOS proof of degree 𝑘 for the inequality 𝑟(𝑥) ≥ 0.

Note that we can represent equality constraints in 𝒜 by including 𝑝(𝑥) ≥ 0 and −𝑝(𝑥) ≥ 0.

The dual objects to SOS proofs are pseudoexpectations. We will repeatedly make use of

pseudoexpectations later on.
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Definition 3.2.4. Let 𝑥1, . . . , 𝑥𝑛 be indeterminates. A degree-𝑘 pseudoexpectation ̃︀E is a

linear map ̃︀E : R[𝑥1, . . . , 𝑥𝑛]≤𝑘 → R

from degree-𝑘 polynomials to R such that ̃︀E[𝑝(𝑥)2] ≥ 0 for any 𝑝 of degree at most 𝑘/2 and̃︀E[1] = 1. For a set of polynomial constraints 𝒜 = {𝑝1(𝑥) ≥ 0, . . . , 𝑝𝑚(𝑥) ≥ 0}, we say that̃︀E satisfies 𝒜 if ̃︀E[𝑠2(𝑥)𝑝𝑖(𝑥)] ≥ 0

for all polynomials 𝑠(𝑥) and 𝑖 ∈ [𝑚] such that 𝑠(𝑥)2𝑝𝑖(𝑥) has degree at most 𝑘.

The key fact is that given a set of polynomial constraints, we can solve for a constant-

degree pseudoexpectation that satisfies those constraints (or determine that none exist) in

polynomial time as it reduces to solving a polynomially sized SDP.

Theorem 3.2.5 (SOS Algorithm [16]). There is an algorithm that takes a natural number 𝑘

and a satisfiable system of polynomial inequalities 𝒜 in varibles 𝑥1, . . . , 𝑥𝑛 with coefficients

at most 2𝑛 containing an inequality of the form ‖𝑥‖2 ≤ 𝑀 for some real number 𝑀 and

returns in time 𝑛𝑂(𝑘) a degree-𝑘 pseudoexpectation ̃︀E which satisfies 𝒜 up to error 2−𝑛.

Note that there are a few technical details with regards to only being able to compute

a pseudoexpectation that nearly satisfies the constraints. These technicalities do not affect

our proof (as 2−𝑛 errors will be negligible) so we will simply assume that we can compute

a pseudoexpectation that exactly satisfies the constraints. See [16] for more details about

these technicalities.

Finally, we state a few simple inequalities for pseudoexpectations that will be used re-

peatedly later on.

Claim 3.2.6 (Cauchy Schwarz for Pseudo-distributions). Let 𝑓, 𝑔 be polynomials of degree

at most 𝑘 in indeterminates 𝑥 = (𝑥1, . . . , 𝑥𝑛). Then for any degree 𝑘 pseudoexpectation,

̃︀E[𝑓𝑔] ≤√︁̃︀E[𝑓 2]

√︁̃︀E[𝑔2].
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Corollary 3.2.7. Let 𝑓1, 𝑔1, . . . , 𝑓𝑚, 𝑔𝑚 be polynomials of degree at most 𝑘 in indeterminates

𝑥 = (𝑥1, . . . , 𝑥𝑛). Then for any degree 𝑘 pseudoexpectation,

̃︀E[𝑓1𝑔1 + · · ·+ 𝑓𝑚𝑔𝑚] ≤
√︁̃︀E[𝑓 2

1 + · · ·+ 𝑓 2
𝑚]

√︁̃︀E[𝑔21 + · · ·+ 𝑔2𝑚].

Proof. Note

̃︀E[𝑓1𝑔1 + · · ·+ 𝑓𝑚𝑔𝑚] ≤
√︁̃︀E[𝑓 2

1 ]

√︁̃︀E[𝑔21] + · · ·+√︁̃︀E[𝑓 2
𝑚]

√︁̃︀E[𝑔2𝑚]
≤
√︁̃︀E[𝑓 2

1 + · · ·+ 𝑓 2
𝑚]

√︁̃︀E[𝑔21 + · · ·+ 𝑔2𝑚]

where the first inequality follows from Cauchy Schwarz for pseudoexpectations and the second

follows from standard Cauchy Schwarz. ■

3.3 Fun with Generating Functions

We now introduce the generating function machinery that we will use in our learning algo-

rithm. We begin with a standard definition.

Definition 3.3.1. Let ℋ𝑚(𝑥) be the univariate Hermite polynomials ℋ0 = 1,ℋ1 = 𝑥,ℋ2 =

𝑥2 − 1 · · · defined by the recurrence

ℋ𝑚(𝑥) = 𝑥ℋ𝑚−1(𝑥)− (𝑚− 1)ℋ𝑚−2(𝑥)

Note that in ℋ𝑚(𝑥), the degree of each nonzero monomials has the same parity as 𝑚. In

light of this, we can write the following:

Definition 3.3.2. Let ℋ𝑚(𝑥, 𝑦
2) be the homogenized Hermite polynomials e.g. ℋ2(𝑥, 𝑦

2) =

𝑥2 − 𝑦2,ℋ3(𝑥, 𝑦
2) = 𝑥3 − 3𝑥𝑦2.

It will be important to note the following fact:
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Claim 3.3.3. We have

𝑒𝑥𝑧−
1
2
𝑦2𝑧2 =

∞∑︁
𝑚=0

1

𝑚!
ℋ𝑚(𝑥, 𝑦

2)𝑧𝑚

where the RHS is viewed as a formal power series in 𝑧 whose coefficients are polynomials in

𝑥, 𝑦.

Now we define a multivariate version of the Hermite polynomials. This is similar to the

definition in Section 2.9.1 except instead of representing these objects using a tensor, we will

represent them as a polynomial as this will be more useful for the modes of analysis that we

use here.

Definition 3.3.4. Let 𝐻𝑚(𝑋, 𝑧) be a formal polynomial in variables 𝑋 = 𝑋1, . . . , 𝑋𝑑 whose

coefficients are polynomials in 𝑑 variables 𝑧1, . . . , 𝑧𝑑 that is given by

𝐻𝑚(𝑋, 𝑧) = ℋ𝑚(𝑧1𝑋1 + · · ·+ 𝑧𝑑𝑋𝑑, 𝑋
2
1 + · · ·+𝑋2

𝑑)

Note that 𝐻𝑚 is homogeneous of degree 𝑚 as a polynomial in 𝑋1, . . . , 𝑋𝑑

Definition 3.3.5. For a distribution 𝐷 on R𝑑, we let

ℎ𝑚,𝐷(𝑋) = E
(𝑧1,...,𝑧𝑑)∼𝐷

[𝐻𝑚(𝑋, 𝑧)]

where we take the expectation of 𝐻𝑚 over (𝑧1, . . . , 𝑧𝑑) drawn from 𝐷. Note that ℎ𝑚,𝐷(𝑋)

is a polynomial in (𝑋1, . . . , 𝑋𝑑). We will omit the 𝐷 in the subscript when it is clear from

context. Moreover for a mixture of Gaussians

ℳ = 𝑤1𝑁(𝜇1,Σ1) + . . . 𝑤𝑘𝑁(𝜇𝑘,Σ𝑘)

we will refer to the Hermite polynomials ℎ𝑚,ℳ as the Hermite polynomials of the mixture.

We remark that if there is a mixtureℳ = 𝑤1𝑁(𝜇1,Σ1) + . . . 𝑤𝑘𝑁(𝜇𝑘,Σ𝑘) where instead

of real numbers, the 𝑤𝑖, 𝜇𝑖,Σ𝑖 are given in terms of indeterminates, the Hermite polynomials
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will be polynomials in those indeterminates. We will repeatedly make use of this abstraction

later on.

The first important observation is that the Hermite polynomials for Gaussians can be

written in a simple closed form via generating functions.

Claim 3.3.6. Let 𝐷 = 𝑁(𝜇, 𝐼 + Σ). Let 𝑎(𝑋) = 𝜇 ·𝑋 and 𝑏(𝑋) = 𝑋𝑇Σ𝑋 . Then

𝑒𝑎(𝑋)𝑦+ 1
2
𝑏(𝑋)𝑦2 =

∞∑︁
𝑚=0

1

𝑚!
· ℎ𝑚,𝐷(𝑋)𝑦𝑚

as formal power series in 𝑦.

Proof. By Claim 3.3.3, we have

𝑒𝑎(𝑋)𝑦+ 1
2
𝑏(𝑋)𝑦2 =

∞∑︁
𝑚=0

1

𝑚!
ℋ𝑚(𝑎(𝑋),−𝑏(𝑋))𝑦𝑚

It now suffices to verify that

E
(𝑧1,...𝑧𝑑)∼𝐷

[︀
ℋ𝑚(𝑧1𝑋1 + · · ·+ 𝑧𝑑𝑋𝑑, 𝑋

2
1 + · · ·+𝑋2

𝑑)
]︀
= ℋ𝑚(𝑎(𝑋),−𝑏(𝑋))

This can be verified through straight-forward computations using the moment tensors of a

Gaussian (see Lemma 2.7 in [65]). ■

We now have two simple corollaries to the above.

Corollary 3.3.7. Letℳ = 𝑤1𝑁(𝜇1, 𝐼 +Σ1) + . . . 𝑤𝑘𝑁(𝜇𝑘, 𝐼 +Σ𝑘). Let 𝑎𝑖(𝑋) = 𝜇𝑖 ·𝑋 and

𝑏𝑖(𝑋) = 𝑋𝑇Σ𝑖𝑋. Then

∞∑︁
𝑚=0

1

𝑚!
· ℎ𝑚,ℳ(𝑋)𝑦𝑚 = 𝑤1𝑒

𝑎1(𝑋)𝑦+ 1
2
𝑏1(𝑋)𝑦2 + · · ·+ 𝑤𝑘𝑒

𝑎𝑘(𝑋)𝑦+ 1
2
𝑏𝑘(𝑋)𝑦2

Corollary 3.3.8. Let ℳ = 𝑤1𝑁(𝜇1, 𝐼 + Σ1) + . . . 𝑤𝑘𝑁(𝜇𝑘, 𝐼 + Σ𝑘). Let 𝑎𝑖(𝑋) = 𝜇𝑖 · 𝑋

and 𝑏𝑖(𝑋) = 𝑋𝑇Σ𝑖𝑋. Then the Hermite polynomials ℎ𝑚,ℳ(𝑋) can be written as a linear

combination of products of the 𝑎𝑖(𝑋), 𝑏𝑖(𝑋) such that the number of terms in the sum, the
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number of terms in each product, and the coefficients in the linear combination are all bounded

as functions of 𝑚, 𝑘.

The next important insight is that the generating functions for the Hermite polynomials

behave nicely under certain differential operators. We can use these differential operators

to derive identities that the Hermite polynomials must satisfy and these identities will be a

crucial ingredient in our learning algorithm.

The proceeding claims all follow from direct computation.

Claim 3.3.9. Let 𝜕 denote the differential operator with respect to 𝑦. If

𝑓(𝑦) = 𝑃 (𝑦,𝑋)𝑒𝑎(𝑋)𝑦+ 1
2
𝑏(𝑋)𝑦2

where 𝑃 is a polynomial in 𝑦 of degree 𝑘 (whose coefficients are polynomials in 𝑋) then

(𝜕 − (𝑎(𝑋) + 𝑦𝑏(𝑋)))𝑓(𝑦) = 𝑄(𝑦,𝑋)𝑒𝑎(𝑋)𝑦+ 1
2
𝑏(𝑋)𝑦2

where 𝑄 is a polynomial in 𝑦 with degree exactly 𝑘 − 1 whose leading coefficient is 𝑘 times

the leading coefficient of 𝑃 .

Corollary 3.3.10. Let 𝜕 denote the differential operator with respect to 𝑦. If

𝑓(𝑦) = 𝑃 (𝑦,𝑋)𝑒𝑎(𝑋)𝑦+ 1
2
𝑏(𝑋)𝑦2

where 𝑃 is a polynomial in 𝑦 of degree 𝑘 then

(𝜕 − (𝑎(𝑋) + 𝑦𝑏(𝑋)))𝑘+1𝑓(𝑦) = 0.

Claim 3.3.11. Let 𝜕 denote the differential operator with respect to 𝑦. Let

𝑓(𝑦) = 𝑃 (𝑦,𝑋)𝑒𝑎(𝑋)𝑦+ 1
2
𝑏(𝑋)𝑦2
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where 𝑃 is a polynomial in 𝑦 of degree 𝑘. Let the leading coefficient of 𝑃 (viewed as a

polynomial in 𝑦) be 𝐿(𝑋). Let 𝑐(𝑋), 𝑑(𝑋) be a linear and quadratic polynomial in the 𝑋

variables respectively such that {𝑎(𝑋), 𝑏(𝑋)} ≠ {𝑐(𝑋), 𝑑(𝑋)}. If 𝑏(𝑋) ̸= 𝑑(𝑋) then

(𝜕 − (𝑐(𝑋) + 𝑦𝑑(𝑋)))𝑘
′
𝑓(𝑦) = 𝑄(𝑦,𝑋)𝑒𝑎(𝑋)𝑦+ 1

2
𝑏(𝑋)𝑦2

where 𝑄 is a polynomial of degree 𝑘 + 𝑘′ in 𝑦 with leading coefficient

𝐿(𝑥)(𝑏(𝑋)− 𝑑(𝑋))𝑘
′

and if 𝑏(𝑋) = 𝑑(𝑋) then

(𝜕 − (𝑐(𝑋) + 𝑦𝑑(𝑋)))𝑘
′
𝑓(𝑦) = 𝑄(𝑦,𝑋)𝑒𝑎(𝑋)𝑦+ 1

2
𝑏(𝑋)𝑦2

where 𝑄 is a polynomial of degree 𝑘 in 𝑦 with leading coefficient

𝐿(𝑋)(𝑎(𝑋)− 𝑐(𝑋))𝑘
′

3.3.1 Polynomial Factorizations

The analysis of our SOS-based learning algorithm will rely on manipulations of Hermite

polynomials. An important piece of our analysis is understanding how the coefficients of

polynomials behave under addition and (polynomial) multiplication. Specifically, if we have

two polynomials 𝑓(𝑋), 𝑔(𝑋) and we have bounds on the coefficients of 𝑓 and 𝑔, we now want

to give bounds on the coefficients of the polynomials 𝑓(𝑋) + 𝑔(𝑋) and 𝑓(𝑋)𝑔(𝑋). Most of

these bounds are easy to obtain. The one that is somewhat nontrivial is lower bounding the

coefficients of 𝑓(𝑋)𝑔(𝑋) i.e. if the coefficients of 𝑓 and 𝑔 are not all small, then the product

𝑓(𝑋)𝑔(𝑋) cannot have all of its coefficients be too small.

Definition 3.3.12. For a polynomial 𝑓(𝑋) in the 𝑑 variables 𝑋1, . . . , 𝑋𝑑 with real coeffi-

cients define 𝑣(𝑓) to be the vectorization of the coefficients. (We will assume this is done in
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a consistent manner so that the same coordinate of vectorizations of two polynomials corre-

sponds to the coefficient of the same monomial.) We will frequently consider expressions of

the form ‖𝑣(𝑓)‖ i.e. the 𝐿2 norm of the coefficient vector.

Definition 3.3.13. For a polynomial 𝐴(𝑋) of degree 𝑘 in 𝑑 variables 𝑋1, . . . , 𝑋𝑑 and a

vector 𝑣 ∈ R𝑑 with nonnegative integer entries summing to at most 𝑘, we use 𝐴𝑣 to denote

the corresponding coefficient of 𝐴.

First, we prove a simple result about the norm of the vectorization of a sum of polyno-

mials.

Claim 3.3.14. Let 𝑓1, . . . , 𝑓𝑚 be polynomials in 𝑋1, . . . , 𝑋𝑑 whose coefficients are polynomi-

als in formal variables 𝑢1, . . . , 𝑢𝑛 of degree 𝑂𝑘(1). Then

‖𝑣(𝑓1 + · · ·+ 𝑓𝑚)‖2 ≤ 𝑚(‖𝑣(𝑓1)‖2 + · · ·+ ‖𝑣(𝑓𝑚)‖2)

Furthermore, the difference can be written as a sum of squares of polynomials of degree 𝑂𝑘(1)

in 𝑢1, . . . , 𝑢𝑛.

Proof. Note

(𝑎1 + · · ·+ 𝑎𝑚)
2 ≤ 𝑚(𝑎21 + · · ·+ 𝑎2𝑚)

and the difference between the two sides can be written as a sum of squares

∑︁
𝑖 ̸=𝑗

(𝑎𝑖 − 𝑎𝑗)2

The desired inequality can now be obtained by summing expressions of the above form over

all coefficients. ■

Next, we upper bound the norm of the vectorization of a product of polynomials.

Claim 3.3.15. Let 𝑓, 𝑔, ℎ1, . . . , ℎ𝑘 be polynomials in 𝑋1, . . . , 𝑋𝑑 of degree at most 𝑘 with

coefficients that are polynomials in formal variables 𝑢1, . . . , 𝑢𝑛 of degree 𝑂𝑘(1) Then for any
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pseudoexpectation ̃︀E of degree 𝐶𝑘 for some sufficiently large constant 𝐶𝑘 depending only on

𝑘,

̃︀E[‖𝑣(ℎ1)‖2 . . . ‖𝑣(ℎ𝑘)‖2 ‖𝑣(𝑓𝑔)‖2] ≤ 𝑂𝑘(1)̃︀E[‖𝑣(ℎ1)‖2 . . . ‖𝑣(ℎ𝑘)‖2 ‖𝑣(𝑓)‖2 ‖𝑣(𝑔)‖2]
where the pseudoexpectation operates on polynomials in 𝑢1, . . . , 𝑢𝑛.

Proof. Note that each monomial in the product 𝑓𝑔 has degree at most 2𝑘 and thus can only

be split in 𝑂𝑘(1) ways. Specifically, each entry of 𝑣(𝑓𝑔) can be written as a sum of 𝑂𝑘(1)

entries of 𝑣(𝑓)⊗ 𝑣(𝑔) so

‖𝑣(𝑓𝑔)‖2 ≤ 𝑂𝑘(1) ‖𝑣(𝑓)‖2 ‖𝑣(𝑔)‖2

where the difference between the two sides can be written as a sum of squares. This implies

the desired inequality. ■

Before we prove the final result in this section, we introduce a few definitions.

Definition 3.3.16. For a vector 𝑣 ∈ R𝑑 with integer coordinates, we define 𝜏(𝑣) to be the

multiset formed by the coordinates of 𝑣. We call 𝜏 the type of 𝑣.

Definition 3.3.17. For a monomial say 𝑋𝑎1
1 . . . 𝑋𝑎𝑑

𝑑 , we call (𝑎1, . . . , 𝑎𝑑) ∈ R𝑑 its degree

vector.

Now we can prove a lower bound on the norm of the vectorization of the product of

polynomials.

Claim 3.3.18. Let 𝑓, 𝑔, ℎ1, . . . , ℎ𝑘 be polynomials in 𝑋1, . . . , 𝑋𝑑 of degree at most 𝑘 with

coefficients that are polynomials in formal variables 𝑢1, . . . , 𝑢𝑛 of degree 𝑂𝑘(1). Then for any

pseudoexpectation ̃︀E of degree 𝐶𝑘 for some sufficiently large constant 𝐶𝑘 depending only on

𝑘,

̃︀E[‖𝑣(ℎ1)‖2 . . . ‖𝑣(ℎ𝑘)‖2 ‖𝑣(𝑓𝑔)‖2] ≥ Ω𝑘(1)̃︀E[‖𝑣(ℎ1)‖2 . . . ‖𝑣(ℎ𝑘)‖2 ‖𝑣(𝑓)‖2 ‖𝑣(𝑔)‖2]
where the pseudoexpectation operates on polynomials in 𝑢1, . . . , 𝑢𝑛.
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Proof. We will first prove the statement for ℎ1 = · · · = ℎ𝑘 = 1.

Let 𝑆 be the set of all types that can be obtained by taking the sum of two degree vec-

tors for monomials of degree at most 𝑘 and let 𝑇 be the set of all types that can be obtained

by taking the difference of two degree vectors for monomials of degree at most 𝑘. Note that

|𝑆|, |𝑇 | = 𝑂𝑘(1). Now

̃︀E[‖𝑣(𝑓𝑔)‖2] = ̃︀E
⎡⎣∑︁

𝑎

(︃ ∑︁
𝑢+𝑣=𝑎

𝑓𝑢𝑔𝑣

)︃2
⎤⎦ = ̃︀E[︃ ∑︁

𝑢1+𝑣1=𝑢2+𝑣2

𝑓𝑢1𝑔𝑣1𝑓𝑢2𝑔𝑣2

]︃

= ̃︀E[︃ ∑︁
𝑢1−𝑣2=𝑢2−𝑣1

𝑓𝑢1𝑔𝑣1𝑓𝑢2𝑔𝑣2

]︃
= ̃︀E

⎡⎣∑︁
𝑏

(︃ ∑︁
𝑢−𝑣=𝑏

𝑓𝑢𝑔𝑣

)︃2
⎤⎦

where the sums in the above expression are over all 𝑎 and all 𝑏 that are vectors in Z𝑑 for

which the inner summands are nonempty. Let 𝑇 = {𝑡1, . . . , 𝑡𝑛} where the types 𝑡1, . . . , 𝑡𝑛

are sorted in non-increasing order of their 𝐿2 norm. Recall that 𝑇 consists of all types that

can be obtained by taking the difference of two degree vectors corresponding to monomials

of degree at most 𝑘. Now first note

̃︀E[‖𝑣(𝑓𝑔)‖2] ≥ ̃︀E
⎡⎣ ∑︁

𝑏,𝜏(𝑏)=𝑡1

(︃ ∑︁
𝑢−𝑣=𝑏

𝑓𝑢𝑔𝑣

)︃2
⎤⎦ = ̃︀E

⎡⎣ ∑︁
𝑏,𝜏(𝑏)=𝑡1

(︃ ∑︁
𝑢−𝑣=𝑏

(𝑓𝑢𝑔𝑣)
2

)︃⎤⎦
since 𝑡1 corresponds to the type (𝑘,−𝑘) and each of the inner summands only contains one

term. Now consider 𝑡𝑖 for 𝑖 > 1.

̃︀E
⎡⎣ ∑︁

𝑏,𝜏(𝑏)=𝑡𝑖

(︃ ∑︁
𝑢−𝑣=𝑏

𝑓𝑢𝑔𝑣

)︃2
⎤⎦ = ̃︀E

⎡⎣ ∑︁
𝑏,𝜏(𝑏)=𝑡𝑖

(︃ ∑︁
𝑢−𝑣=𝑏

(𝑓𝑢𝑔𝑣)
2

)︃⎤⎦

+ 2̃︀E
⎡⎢⎢⎣ ∑︁

𝑏,𝜏(𝑏)=𝑡𝑖

⎛⎜⎜⎝ ∑︁
{𝑢1,𝑣1}≠{𝑢1,𝑣2}
𝑢1−𝑣1=𝑢2−𝑣2=𝑏

𝑓𝑢1𝑓𝑢2𝑔𝑣1𝑔𝑣2

⎞⎟⎟⎠
⎤⎥⎥⎦

Note that in the second sum, either 𝑢1 − 𝑣2 ∈ 𝑡𝑗 for 𝑗 < 𝑖 or 𝑢2 − 𝑣1 ∈ 𝑡𝑗 for 𝑗 < 𝑖. To see
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this, let 𝑎 = 𝑣1 − 𝑣2. Then 𝑢1 − 𝑣2 = 𝑏+ 𝑎 and 𝑢2 − 𝑣1 = 𝑏− 𝑎. Now

‖𝑏− 𝑎‖22 + ‖𝑏+ 𝑎‖22 > ‖𝑏‖
2
2

since 𝑎 ̸= 0 so one of the differences must be of an earlier type.

Next, note that for a fixed 𝑢1, 𝑣2, there are at most 𝑂𝑘(1) possible values for 𝑢′2, 𝑣′1 such

that the term 𝑓𝑢1𝑓𝑢′
2
𝑔𝑣′1𝑔𝑣2 appears. This is because we must have 𝑢1 + 𝑣2 = 𝑢′2 + 𝑣′1 and

there are only 𝑂𝑘(1) ways to achieve this. Thus, by Cauchy Schwarz

̃︀E
⎡⎣ ∑︁

𝑏,𝜏(𝑏)=𝑡𝑖

(︃ ∑︁
𝑢−𝑣=𝑏

𝑓𝑢𝑔𝑣

)︃2
⎤⎦ ≥ ̃︀E

⎡⎣ ∑︁
𝑏,𝜏(𝑏)=𝑡𝑖

(︃ ∑︁
𝑢−𝑣=𝑏

(𝑓𝑢𝑔𝑣)
2

)︃⎤⎦
−𝑂𝑘(1)

⎯⎸⎸⎸⎷̃︀E
⎡⎣∑︁

𝑗<𝑖

∑︁
𝑏,𝜏(𝑏)=𝑡𝑗

(︃ ∑︁
𝑢−𝑣=𝑏

(𝑓𝑢𝑔𝑣)2

)︃⎤⎦ ·√︁̃︀E[‖𝑣(𝑓)‖2 ‖𝑣(𝑔)‖2]
Now combining the above with the fact that |𝑇 | = 𝑛 = 𝑂𝑘(1) and that

̃︀E[‖𝑣(𝑓)‖2 ‖𝑣(𝑔)‖2] = ̃︀E
⎡⎣ 𝑛∑︁

𝑖=1

∑︁
𝑏,𝜏(𝑏)=𝑡𝑖

(︃ ∑︁
𝑢−𝑣=𝑏

(𝑓𝑢𝑔𝑣)
2

)︃⎤⎦
we can complete the proof. To see this, for each 𝑖, let

𝑄𝑖 = ̃︀E
⎡⎣ ∑︁

𝑏,𝜏(𝑏)=𝑡𝑖

(︃ ∑︁
𝑢−𝑣=𝑏

(𝑓𝑢𝑔𝑣)
2

)︃⎤⎦
𝑅𝑖 = ̃︀E

⎡⎣ ∑︁
𝑏,𝜏(𝑏)=𝑡𝑖

(︃ ∑︁
𝑢−𝑣=𝑏

𝑓𝑢𝑔𝑣

)︃2
⎤⎦

Also normalize so that ̃︀E[‖𝑣(𝑓)‖2 ‖𝑣(𝑔)‖2] = 1.

Let 𝛿 be some suitably chosen constant depending only on 𝑘. If 𝑄1 ≥ 𝛿 then we are done.
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Otherwise, we have an upper bound on the square root terms that are subtracted in the

expression for 𝑅2. If 𝑄2 ≥ Ω1(𝑘)
√
𝛿 then we are again done (since we have now reduced to

the case where 𝑄1 ≤ 𝛿). Iteratively repeating this procedure, we are done whenever one of

the 𝑄𝑖 is sufficiently large compared to 𝑄1, . . . , 𝑄𝑖−1. However, not all of 𝑄1, . . . , 𝑄𝑛 can be

small since their sum is 1. Choosing 𝛿 to be a sufficiently small constant but depending only

on 𝑘 we conclude that

̃︀E[‖𝑣(𝑓𝑔)‖2] ≥ Ω𝑘(1)̃︀E[‖𝑣(𝑓)‖2 ‖𝑣(𝑔)‖2]
as desired.

For the general case when not all of the ℎ𝑖 are 1, we can multiply the insides of all of the

pseudoexpectations above by ‖𝑣(ℎ1)‖2 . . . ‖𝑣(ℎ𝑘)‖2 and the same argument will work. ■

3.4 Components Are Not Far Apart

Now we are ready to present our main contribution: an algorithm that learns the parameters

of a mixture of Gaussians ℳ = 𝑤1𝐺1 + · · · + 𝑤𝑘𝐺𝑘 from an 𝜖-corrupted sample when the

components are not too far apart. In this section, we will assume that the mixture is in

nearly isotropic position and that we have estimates for the Hermite polynomials. We will

show how to learn the parameters from these estimates. In the next section, Section 3.5, we

show how to actually place the mixture in isotropic position and obtain estimates for the

Hermite polynomials.

We use the following conventions:

• The true means and covariances are given by (𝜇1, 𝐼 + Σ1), . . . , (𝜇𝑘, 𝐼 + Σ𝑘)

• The true mixing weights are 𝑤1, . . . , 𝑤𝑘 and are all bounded below by some value 𝑤min

• ∆ is an upper bound that we have on ‖𝜇𝑖‖ and ‖Σ𝑖‖ i.e. the components are not too
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far separated.

• ‖𝜇𝑖 − 𝜇𝑗‖2 + ‖Σ𝑖 − Σ𝑗‖2 ≥ 𝑐 for all 𝑖 ̸= 𝑗 i.e. no pair of components is too close

• We should think of 𝑤min, 𝑐 as being at least 𝜖𝑟 and ∆ being at most 𝜖−𝑟 for some

sufficiently small value of 𝑟 > 0.

• Let the Hermite polynomials for the true mixture be given by ℎ1 = ℎ1,ℳ, ℎ2 = ℎ2,ℳ, . . .

where

ℳ = 𝑤1𝑁(𝜇1, 𝐼 + Σ1) + · · ·+ 𝑤𝑘𝑁(𝜇𝑘, 𝐼 + Σ𝑘)

In this section we assume that we have the following:

• Estimates ℎ𝑖(𝑋) for the Hermite polynomials such that
⃦⃦
𝑣(ℎ𝑖(𝑋)− ℎ𝑖(𝑋))

⃦⃦2 ≤ 𝜖′ =

poly(𝜖)

and our only interaction with the actual samples is through these estimates. We will show

how to obtain these estimates in Section 3.5 (closely mirroring the method in [65]).

The main theorem that we prove in this section is as follows.

Theorem 3.4.1. Let 𝜖′ be a parameter that is sufficiently small in terms of 𝑘. There is a

sufficiently small function 𝑓(𝑘) and a sufficiently large function 𝐹 (𝑘) such that if

ℳ = 𝑤1𝑁(𝜇1, 𝐼 + Σ1) + · · ·+ 𝑤𝑘𝑁(𝜇𝑘, 𝐼 + Σ𝑘)

is a mixture of Gaussians with

• ‖𝜇𝑖‖2 , ‖Σ𝑖‖2 ≤ ∆ for all 𝑖

• ‖𝜇𝑖 − 𝜇𝑗‖2 + ‖Σ𝑖 − Σ𝑗‖2 ≥ 𝑐 for all 𝑖 ̸= 𝑗

• 𝑤1, . . . , 𝑤𝑘 ≥ 𝑤min
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for parameters 𝑤min, 𝑐 ≥ 𝜖′𝑓(𝑘) and ∆ ≤ 𝜖′−𝑓(𝑘) and we are given estimates ℎ𝑖(𝑋) for the

Hermite polynomials for all 𝑖 ≤ 𝐹 (𝑘) such that

⃦⃦
𝑣(ℎ𝑖(𝑋)− ℎ𝑖(𝑋))

⃦⃦2 ≤ 𝜖′

where ℎ𝑖 are the Hermite polynomials for the true mixture ℳ, then there is an algorithm

that returns poly(1/𝜖′)𝑂1(𝑘) candidate mixtures, at least one of which satisfies

‖𝑤𝑖 − ̃︀𝑤𝑖‖+ ‖𝜇𝑖 − ̃︀𝜇𝑖‖2 +
⃦⃦⃦
Σ𝑖 − ̃︀Σ𝑖

⃦⃦⃦
2
≤ 𝜖′𝑓(𝑘)

for all 𝑖.

Informally, assuming that the parameters of the components of the mixture are bounded

by poly(1/𝜖′) and that their separation is at least poly(𝜖′), given 𝜖′-accurate estimates for

the Hermite polynomials, we can learn the parameters of the mixture to within Frobenius

error poly(𝜖′).

3.4.1 Reducing to all pairs of parameters equal or separated

We claim that it suffices to work under the following assumption. All pairs of parameters

are either separated of equal. More specifically, for each pair of parameters 𝜇𝑖, 𝜇𝑗 (and same

for Σ𝑖,Σ𝑗), either 𝜇𝑖 = 𝜇𝑗 or

‖𝜇𝑖 − 𝜇𝑗‖2 ≥ 𝑐

We now prove that it suffices to work with the above simplification. For any function

0 < 𝑓(𝑘) < 1 depending only on 𝑘, there is some 𝐶 ≥ (𝑓(𝑘))𝑘
2 such that there is no pair of

parameters 𝜇𝑖, 𝜇𝑗 or Σ𝑖,Σ𝑗 whose distance is in the interval [𝜖′𝐶 , 𝜖′𝑓(𝑘)𝐶 ]. Now consider the

graph on the 𝑘 nodes where 𝑖, 𝑗 are connected if and only if

‖𝜇𝑖 − 𝜇𝑗‖ ≤ 𝜖′𝑓(𝑘)𝐶

We now construct a new mixture 𝑁(𝜇′
𝑖,Σ

′
𝑖). For each connected component say {𝑖1, . . . , 𝑖𝑗}
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, pick a representative and set 𝜇′
𝑖1

= 𝜇′
𝑖2

= · · · = 𝜇′
𝑖𝑗

= 𝜇𝑖1 . Do this for all connected

components and similar in the graph on covariance matrices. For all 𝑖, we have

‖𝜇′
𝑖 − 𝜇𝑖‖ , ‖Σ′

𝑖 − Σ𝑖‖ ≤ 𝑂𝑘(1)𝜖
′𝐶

because there is a path of length at most 𝑘 connecting 𝑖 to the representative in its component

that it is rounded to, and all edges correspond to pairs within distance of 𝜖′𝐶 .

The Hermite polynomials of this new mixture satisfy

‖𝑣(ℎ′𝑚 − ℎ𝑚)‖
2 ≤ 𝑂𝑘(1)∆

𝑂𝑘(1)𝜖′Ω𝑘(1)𝐶

as long as 𝑚 is bounded as a function of 𝑘. If we pretend that the new mixture is the true

mixture, we have estimates ℎ𝑖(𝑋) such that

⃦⃦
𝑣(ℎ′𝑖 − ℎ𝑖)

⃦⃦2 ≤ 𝑂𝑘(1)∆
𝑂𝑘(1)𝜖′Ω𝑘(1)𝐶

and all pairs of parameters in the new mixture are either equal or 𝜖′𝑓(𝑘)𝐶 separated. If we

prove Theorem 3.4.1 with the assumption that the pairs of parameters are separated or

equal, then we can choose 𝑓(𝑘) accordingly and then we deduce that the theorem holds in

the general case (with worse, but still polynomial, bounds on ∆, 𝑐, 𝑤min and the accuracy of

our output as a function of 𝜖′).

From now on we will work with the assumption that each pair of parameters is either equal

or separated by 𝑐.

3.4.2 SOS Program Setup

Our algorithm for learning the parameters when given estimates of the Hermite polynomials

involves solving an SOS program. Here we set up the SOS program that we will solve.
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We will let 𝐷 =
(︀
𝑑
2

)︀
+ 𝑑. We think of mapping between symmetric 𝑑 × 𝑑 matrices and

R𝐷 as ⎡⎢⎢⎢⎣
𝑎11 . . . 𝑎1𝑑
... . . . ...

𝑎𝑑1 . . . 𝑎𝑑𝑑

⎤⎥⎥⎥⎦↔ (𝑎11, 2𝑎12, 2𝑎13, . . . , 𝑎𝑑𝑑)

Definition 3.4.2 (Parameter Solving Program 𝒮). We will have the following variables

• 𝑢1 = (𝑢11, . . . , 𝑢1𝑑), . . . , 𝑢𝑘 = (𝑢𝑘1, . . . , 𝑢𝑘𝑑)

• 𝑣1 = (𝑣1,(1,1), 𝑣1,(1,2), . . . , 𝑣1,(𝑑,𝑑)), . . . , 𝑣𝑘 = (𝑣𝑘,(1,1), 𝑣𝑘,(1,2), . . . , 𝑣𝑘,(𝑑,𝑑))

In the above 𝑢1, . . . , 𝑢𝑘 ∈ R𝑑 and 𝑣1, . . . 𝑣𝑘 ∈ R𝐷. Our goal will be to solve for these variables

in a way so that the solutions form orthonormal bases for the span of the 𝜇𝑖 and the span of

the Σ𝑖. Note 𝑣1, . . . , 𝑣𝑘 live in R𝐷 because the Σ𝑖 must be symmetric.

We guess coefficients 𝑎𝑖𝑗, 𝑏𝑖𝑗 where 𝑖, 𝑗 ∈ [𝑘] expressing the means and covariances in this

orthonormal basis. We ensure that the guesses satisfy the property that for every pair of

vectors 𝐴𝑖 = (𝑎𝑖1, . . . , 𝑎𝑖𝑘), 𝐴𝑗 = (𝑎𝑗1, . . . , 𝑎𝑗𝑘) either 𝐴𝑖 = 𝐴𝑗 or

‖𝐴𝑖 − 𝐴𝑗‖2 ≥
𝑐

2

and similarly for 𝐵𝑖, 𝐵𝑗. We ensure that

‖𝐴𝑖‖2 ≤ 2∆

Ensure similar conditions for the {𝐵𝑖}. We also guess the mixing weights ̃︁𝑤1, . . . ,̃︁𝑤𝑘 and

ensure that our guesses are all at least 𝑤min/2.

Now we set up the constraints. Let 𝐶 be a sufficiently large integer depending only on 𝑘.

Define ̃︀𝜇𝑖 = 𝑎𝑖1𝑢1 + · · · + 𝑎𝑖𝑘𝑢𝑘 and define ̃︀Σ𝑖 similarly. These are linear expressions in the

variables that we are solving for. Now consider the hypothetical mixture with mixing weights̃︀𝑤𝑖, means ̃︀𝜇𝑖, and covariances 𝐼+ ̃︀Σ𝑖. The Hermite polynomials for this hypothetical mixturẽ︀ℎ𝑖(𝑋) can be written as formal polynomials in 𝑋 = (𝑋1, . . . , 𝑋𝑑) with coefficients that are
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polynomials in 𝑢, 𝑣. Note that we can explicitly write down these Hermite polynomials. The

set of constraints for our SOS system is as follows:

• ‖𝑢𝑖‖22 = 1 for all 1 ≤ 𝑖 ≤ 𝑘

• ‖𝑣𝑖‖22 = 1 for all 1 ≤ 𝑖 ≤ 𝑘

• 𝑢𝑖 · 𝑢𝑗 = 0 for all 𝑖 ̸= 𝑗

• 𝑣𝑖 · 𝑣𝑗 = 0 for all 𝑖 ̸= 𝑗

• For all 𝑝 = 1, 2, . . . , 𝐶 ⃦⃦⃦
𝑣( ̃︀ℎ𝑝(𝑋)− ℎ𝑝(𝑋))

⃦⃦⃦2
≤ 100𝜖′

Note that we can explicitly write down the last set of constraints because we have esti-

mates ℎ𝑖.

It is important to note that the ̃︀𝑤𝑖, 𝐴𝑖, 𝐵𝑖 are real numbers. We will attempt to solve the

system for each of our guesses and show that for some set of guesses, we obtain a solution

from which we can recover the parameters. We can brute-force search over an 𝜖′-net because

there are only 𝑂𝑘(1) parameters to guess. We call the SOS program that we set up 𝒮.

3.4.3 Analysis

We now prove a set of properties that must be satisfied by any pseudoexpectation of degree

𝐶𝑘 satisfying 𝒮 where 𝐶𝑘 is a sufficiently large constant depending only on 𝑘. What we

would ideally want to show is that

• The span of the ̃︀Σ𝑖 is close to the span of the Σ𝑖

• The span of the ̃︀𝜇𝑖 is close to the span of the 𝜇𝑖
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However, it appears to be difficult to prove a statement of the above form within an SOS

framework. Instead, we will look at the pseudoexpectations of the matrices

𝑀𝑖 = ̃︀E[ ̃︀Σ𝑖
̃︀Σ𝑖

𝑇
]

(where ̃︀Σ𝑖 is viewed as a length-𝐷 vector so ̃︀Σ𝑖
̃︀Σ𝑖

𝑇
is a 𝐷×𝐷 matrix.) The two key properties

that we will prove about these matrices are in Lemmas 3.4.11 and 3.4.12.

Roughly Lemma 3.4.11 says that any singular vector that corresponds to a large singu-

lar value of 𝑀𝑖 must be close to the span of the {Σ𝑖}. Lemma 3.4.12 says that any vector

𝑣 that has large projection onto the subspace spanned by the {Σ𝑖} must have the property

that 𝑣𝑇𝑀𝑖𝑣 is large for some 𝑖. Putting these together, we can take the the top-𝑘 principal

components of each of 𝑀1, . . . ,𝑀𝑘 and show that the span of these essentially contains the

span of the {Σ𝑖} (this last step is done outside the SOS framework). We can now brute-force

over an 𝜖′-net and guess the Σ𝑖 (since we have narrowed them down to an 𝑂𝑘(1)-dimensional

subspace). We can then plug in real values for the covariances and solve for the means using

a similar method.

Algebraic Identities

First we will prove several purely algebraic identities. We will slightly abuse notation and

for 𝜇 ∈ R𝑑, we use 𝜇(𝑋) to denote the inner product of 𝜇 with the formal variables

(𝑋1, . . . , 𝑋𝑑) and for Σ ∈ R𝐷, we will use Σ(𝑋) to denote the quadratic form in formal

variables (𝑋1, . . . , 𝑋𝑑) given by 𝑋𝑇Σ𝑋 (when Σ is converted to a symmetric 𝑑× 𝑑 matrix).

It will be useful to consider the following two formal power series (in 𝑦)

𝐹 (𝑦) =
𝑘∑︁

𝑖=1

𝑤𝑖𝑒
𝜇𝑖(𝑋)𝑦+ 1

2
Σ𝑖(𝑋)𝑦2

̃︀𝐹 (𝑦) = 𝑘∑︁
𝑖=1

̃︀𝑤𝑖𝑒
̃︀𝜇𝑖(𝑋)𝑦+ 1

2
̃︁Σ𝑖(𝑋)𝑦2

137



We view these objects in the following way: the coefficients of 1, 𝑦, 𝑦2, · · · are formal

polynomials in (𝑋1, . . . , 𝑋𝑑). In the first expression, the coefficients of these polynomials

are (unknown) constants. In the second, the coefficients are polynomials in the variables

𝑢1, . . . , 𝑢𝑘, 𝑣1, . . . , 𝑣𝑘. In fact, the coefficients in the first power series are precisely ℎ1, ℎ2, . . .

while the coefficients in the second power series are precisely ̃︀ℎ1, ̃︀ℎ2, . . . . The key insight is

the following:

After taking derivatives and polynomial combinations of either of the above formal

power series, the coefficients can still be expressed as polynomial combinations of

their respective Hermite polynomials.

Definition 3.4.3. Let 𝒟𝑖 denote the differential operator (𝜕 − (𝜇𝑖(𝑋) + Σ𝑖(𝑋)𝑦)) and ̃︁𝒟𝑖

denote the differential operator (𝜕− (̃︀𝜇𝑖(𝑋)+ ̃︀Σ𝑖(𝑋)𝑦)). As usual, the partial derivatives are

taken with respect to 𝑦.

To simplify the exposition, we make the following definition:

Definition 3.4.4. Consider a polynomial 𝑃 (𝑋) that is a formal polynomial in 𝑋1, . . . , 𝑋𝑑

whose coefficients are polynomials in the indeterminates 𝑢1, . . . , 𝑢𝑘, 𝑣1, . . . , 𝑣𝑘. We say 𝑃 is

𝑚-simple if 𝑃 can be written as a linear combination of a constant number of terms that are

a product of some of {𝜇𝑖(𝑋)}, {Σ𝑖(𝑋)}, {̃︀𝜇𝑖(𝑋)}, { ̃︀Σ𝑖(𝑋)} where

1. The coefficients in the linear combination are bounded by a constant depending only on

𝑚, 𝑘

2. The number of terms in the sum depends only on 𝑚 and 𝑘

3. The number of terms in each product depends only on 𝑚 and 𝑘

Claim 3.4.5. Consider the power series

𝒟𝑘−1

22𝑘−2

. . .̃︁𝒟1

2𝑘

𝒟2𝑘−1

𝑘 . . .𝒟1
1( ̃︀𝐹 )
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For any 𝑚, the coefficient of 𝑦𝑚 when the above is written as a formal power series can be

written in the form

𝑃0(𝑋) + 𝑃1(𝑋) ̃︀ℎ1(𝑋) + · · ·+ 𝑃𝑚′(𝑋)̃︂ℎ𝑚′(𝑋)

where

• 𝑚′ depends only on 𝑚 and 𝑘

• Each of the 𝑃𝑖 is 𝑚-simple

• We have

𝑃0(𝑋) + 𝑃1(𝑋)ℎ1(𝑋) + · · ·+ 𝑃𝑚′(𝑋)ℎ𝑚′(𝑋) = 0

as an algebraic identity over formal variables 𝑋1, . . . , 𝑋𝑑, {𝑢𝑖}, {𝑣𝑖}.

Proof. Note the coefficients of ̃︀𝐹 (as a formal power series in 𝑦) are exactly given by the ̃︀ℎ𝑖.
Now the number of differential operators we apply is 𝑂𝑘(1). The first two statements can be

verified through straightforward computations since when applying each of the differential op-

erators, we are simply multiplying the coefficients by some of {𝜇𝑖(𝑋)}, {Σ𝑖(𝑋)}, {̃︀𝜇𝑖(𝑋)}, { ̃︀Σ𝑖(𝑋)}

and taking a linear combination. Next, note that by Corollary 3.3.10

𝒟2𝑘−1

𝑘 . . .𝒟1
1(𝐹 ) = 0.

To see this, we prove by induction that the differential operator

𝒟2𝑗−1

𝑗 . . .𝒟1
1(𝐹 )

annihilates the components of 𝐹 corresponding to Gaussians 𝑁(𝜇1, 𝐼+Σ1), . . . , 𝑁(𝜇𝑗, 𝐼+Σ𝑗).

The base case is clear. To complete the induction step, note that by Corollary 3.3.10, the

above operator puts polynomials of degree at most 1+ 2+ · · ·+2𝑗−1 = 2𝑗 − 1 in front of the
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other components. Thus the operator

𝒟2𝑗

𝑗+1 . . .𝒟1
1(𝐹 )

annhiliates the first 𝑗 + 1 components, completing the induction. We now conclude that

𝒟𝑘−1

22𝑘−2

. . .̃︁𝒟1

2𝑘

𝒟2𝑘−1

𝑘 . . .𝒟1
1(𝐹 ) = 0

implying that if the coefficients of ̃︀𝐹 were ℎ1, . . . , ℎ𝑚, then the result would be identically

zero. ■

Claim 3.4.6. Consider the power series

𝒟22𝑘−2

𝑘−1 . . .𝒟2𝑘

1
̃︁𝒟𝑘

2𝑘−1

. . .̃︁𝒟1

1
(𝐹 )

For any 𝑚, the coefficient of 𝑦𝑚 when the above is written as a formal power series can be

written in the form

𝑃0(𝑋) + 𝑃1(𝑋)ℎ1(𝑋) + · · ·+ 𝑃𝑚′(𝑋)ℎ𝑚′(𝑋)

where

• 𝑚′ depends only on 𝑚 and 𝑘

• Each of the 𝑃𝑖 is 𝑚-simple

• We have

𝑃0(𝑋) + 𝑃1(𝑋) ̃︀ℎ1(𝑋) + · · ·+ 𝑃𝑚′(𝑋)̃︂ℎ𝑚′(𝑋) = 0

as an algebraic identity over formal variables 𝑋1, . . . , 𝑋𝑑, {𝑢𝑖}, {𝑣𝑖}.

Proof. The proof is identicial to the proof of Claim 3.4.5. ■

Note that the polynomials 𝑃𝑖 in Claim 3.4.5 and Claim 3.4.6 are not necessarily the same.
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Warm-up: All Pairs of Parameters are Separated

As a warm-up, we first analyze the case where all pairs of true parameters 𝜇𝑖, 𝜇𝑗 and Σ𝑖,Σ𝑗

satisfy ‖𝜇𝑖 − 𝜇𝑗‖2 ≥ 𝑐 and ‖Σ𝑖 − Σ𝑗‖2 ≥ 𝑐. We will show how to deal with the general case

where parameters may be separated or equal in Section 3.4.3.

We can assume that our guesses satisfy ‖𝐴𝑖 − 𝐴𝑗‖2 ≥ 𝑐/2 and ‖𝐵𝑖 −𝐵𝑗‖2 ≥ 𝑐/2 for all

𝑖, 𝑗. The key expressions to consider are applying the following differential operators

𝒟 = ̃︁𝒟𝑘

22𝑘−1−1
𝒟𝑘−1

22𝑘−2

. . .̃︁𝒟1

2𝑘

𝒟2𝑘−1

𝑘 . . .𝒟1
1̃︀𝒟 = 𝒟22𝑘−1−1

𝑘 𝒟22𝑘−2

𝑘−1 . . .𝒟2𝑘

1
̃︁𝒟𝑘

2𝑘−1

. . .̃︁𝒟1

1

to 𝐹 and ̃︀𝐹 respectively. The reason these differential operators are so useful is that 𝒟 zeros

out the generating function for the true mixture and also zeros out all but one component of

the generating function for the hypothetical mixture with parameters ̃︀𝑤𝑖, ̃︀𝜇𝑖, 𝐼 + ̃︀Σ𝑖. For the

one component that is not zeroed out, only the leading coefficient remains and we can use

Claim 3.3.11 to explicitly compute the leading coefficient. Thus, we can compare the results

of applying these operators on the generating functions for the true and hypothetical mixtures

and, using the fact that the Hermite polynomials for these mixtures must be close, we obtain

algebraic relations that allow us to extract information about individual components.

We begin by explicitly computing the relevant leading coefficients.

Claim 3.4.7. Write

̃︁𝒟𝑘

22𝑘−1−1
𝒟𝑘−1

22𝑘−2

. . .̃︁𝒟1

2𝑘

𝒟2𝑘−1

𝑘 . . .𝒟1
1( ̃︀𝐹 )

as a formal power series in 𝑦. Its evaluation at 𝑦 = 0 is

𝐶𝑘̃︁𝑤𝑘

𝑘∏︁
𝑖=1

(̃︁Σ𝑘(𝑋)− Σ𝑖(𝑋))2
𝑖−1

𝑘−1∏︁
𝑖=1

(̃︁Σ𝑘(𝑋)− ̃︀Σ𝑖(𝑋))2
𝑘+𝑖−1
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where 𝐶𝑘 is a constant depending only on 𝑘.

Proof. Write ̃︀𝐹 (𝑦) = 𝑘∑︁
𝑖=1

̃︀𝑤𝑖𝑒
̃︀𝜇𝑖(𝑋)𝑦+ 1

2
̃︁Σ𝑖(𝑋)𝑦2

When applying the differential operator, by Corollary 3.3.10, all of the terms become 0

except for ̃︁𝑤𝑘𝑒
̃︁𝜇𝑘(𝑋)𝑦+ 1

2
̃︁Σ𝑖(𝑋)𝑦2 .

We now use Claim 3.3.11 and Claim 3.3.9 to analyze what happens when applying the

differential operator to this term. We know that

𝒟𝑘−1

22𝑘−2

. . .̃︁𝒟1

2𝑘

𝒟2𝑘−1

𝑘 . . .𝒟1
1( ̃︀𝐹 ) = 𝑃 (𝑦)𝑒̃︁𝜇𝑘(𝑋)𝑦+ 1

2
̃︁Σ𝑖(𝑋)𝑦2

where 𝑃 has leading coefficient

̃︁𝑤𝑘

𝑘∏︁
𝑖=1

(̃︁Σ𝑘(𝑋)− Σ𝑖(𝑋))2
𝑖−1

𝑘−1∏︁
𝑖=1

(̃︁Σ𝑘(𝑋)− ̃︀Σ𝑖(𝑋))2
𝑘+𝑖−1

and degree 22𝑘−1 − 1. Thus,

̃︁𝒟𝑘

22𝑘−1−1
𝒟𝑘−1

22𝑘−2

. . .̃︁𝒟1

2𝑘

𝒟2𝑘−1

𝑘 . . .𝒟1
1( ̃︀𝐹 )

= (22𝑘−1 − 1)!̃︁𝑤𝑘

𝑘∏︁
𝑖=1

(̃︁Σ𝑘(𝑋)− Σ𝑖(𝑋))2
𝑖−1

𝑘−1∏︁
𝑖=1

(̃︁Σ𝑘(𝑋)− ̃︀Σ𝑖(𝑋))2
𝑘+𝑖−1

𝑒̃︁𝜇𝑘(𝑋)𝑦+ 1
2
̃︁Σ𝑖(𝑋)𝑦2

and plugging in 𝑦 = 0, we are done. ■

Claim 3.4.8. Write

𝒟22𝑘−1−1
𝑘 𝒟22𝑘−2

𝑘−1 . . .𝒟2𝑘

1
̃︁𝒟𝑘

2𝑘−1

. . .̃︁𝒟1

1
(𝐹 )

as a formal power series in 𝑦. Its evaluation at 𝑦 = 0 is

𝐶𝑘𝑤𝑘

𝑘∏︁
𝑖=1

(Σ𝑘(𝑋)− ̃︀Σ𝑖(𝑋))2
𝑖−1

𝑘−1∏︁
𝑖=1

(Σ𝑘(𝑋)− Σ𝑖(𝑋))2
𝑘+𝑖−1

142



where 𝐶𝑘 is a constant depending only on 𝑘.

Proof. This can be proved using the same method as Claim 3.4.7. ■

Combining the previous two claims with Claim 3.4.5 and Claim 3.4.6, we can write the

expressions for the leading coefficients as polynomial combinations of the Hermite polyno-

mials.

Lemma 3.4.9. Consider the polynomial

̃︁𝑤𝑘

𝑘∏︁
𝑖=1

(̃︁Σ𝑘(𝑋)− Σ𝑖(𝑋))2
𝑖−1

𝑘−1∏︁
𝑖=1

(̃︁Σ𝑘(𝑋)− ̃︀Σ𝑖(𝑋))2
𝑘+𝑖−1

It can be written in the form

𝑃0(𝑋) + 𝑃1(𝑋) ̃︀ℎ1(𝑋) + · · ·+ 𝑃𝑚(𝑋)̃︁ℎ𝑚(𝑋)

where

• 𝑚 is a function of 𝑘

• Each of the 𝑃𝑖 is 𝑚-simple

• We have

𝑃0(𝑋) + 𝑃1(𝑋)ℎ1(𝑋) + · · ·+ 𝑃𝑚(𝑋)ℎ𝑚(𝑋) = 0

as an algebraic identity over formal variables 𝑋1, . . . , 𝑋𝑑, {𝑢𝑖}, {𝑣𝑖}.

Proof. Consider the power series

̃︁𝒟𝑘

22𝑘−1−1
𝒟𝑘−1

22𝑘−2

. . .̃︁𝒟1

2𝑘

𝒟2𝑘−1

𝑘 . . .𝒟1
1( ̃︀𝐹 )

Now using Claim 3.4.7 and repeating the proof of Claim 3.4.5, we get the desired. ■

Similarly, we have:
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Lemma 3.4.10. Consider the polynomial

𝑤𝑘

𝑘∏︁
𝑖=1

(Σ𝑘(𝑋)− ̃︀Σ𝑖(𝑋))2
𝑖−1

𝑘−1∏︁
𝑖=1

(Σ𝑘(𝑋)− Σ𝑖(𝑋))2
𝑘+𝑖−1

It can be written in the form

𝑃0(𝑋) + 𝑃1(𝑋)ℎ1(𝑋) + · · ·+ 𝑃𝑚(𝑋)ℎ𝑚(𝑋)

where

• 𝑚 is a function of 𝑘

• Each of the 𝑃𝑖 is 𝑚-simple

• We have

𝑃0(𝑋) + 𝑃1(𝑋) ̃︀ℎ1(𝑋) + · · ·+ 𝑃𝑚(𝑋)̃︁ℎ𝑚(𝑋) = 0

as an algebraic identity over formal variables 𝑋1, . . . , 𝑋𝑑, {𝑢𝑖}, {𝑣𝑖}.

Everything we’ve done so far has been symbolic manipulations and the claims in this

section are all true as algebraic identities. We are now ready to analyze the SOS program.

Note the polynomials 𝑃0, . . . , 𝑃𝑚 in Lemma 3.4.9 are unknown because they depend on the

true parameters. This is fine because we will simply use their existence to deduce properties

of pseudoexpectations that solve the SOS-system 𝒮.

Let 𝑈 be the subspace spanned by the true 𝜇1, . . . , 𝜇𝑘 and let 𝑉 denote the subspace

spanned by the true (flattened) Σ1, . . . ,Σ𝑘. We will use Γ𝑉 ,Γ𝑉 ⊥ to denote projections onto

𝑉 and the orthogonal complement of 𝑉 (and similar for 𝑈,𝑈⊥). Note that these are linear

maps.

Our goal now will be to show that 𝑉 is essentially contained within the span of the union

of the top 𝑘 principal components of the matrices

̃︀E[̃︁Σ1
̃︁Σ1

𝑇
], . . . , ̃︀E[̃︁Σ𝑘

̃︁Σ𝑘

𝑇
]
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This gives us a 𝑘2-dimensional space that essentially contains 𝑉 and then we can guess the

true covariance matrices via brute force search. In the first key lemma, we prove that the

matrix ̃︀E[ ̃︀Σ𝑖
̃︀Σ𝑖

𝑇
] lives almost entirely within the subspace 𝑉 .

Lemma 3.4.11. Let ̃︀E be a pseudoexpectation of degree 𝐶𝑘 for some sufficiently large con-

stant 𝐶𝑘 depending only on 𝑘 that solves 𝒮. Consider the matrix

𝑀 = ̃︀E[̃︁Σ𝑘
̃︁Σ𝑘

𝑇
]

where by this we mean we construct the 𝐷×𝐷 matrix ̃︁Σ𝑘
̃︁Σ𝑘

𝑇
whose entries are quadratic in

the variables {𝑢}, {𝑣} and then take the entry-wise pseudoexpectation. Then

Tr𝑉 ⊥(𝑀) ≤ 𝜖′2
−𝑘

𝑂𝑘(1)

(︂
∆

𝑤min𝑐

)︂𝑂𝑘(1)

where Tr𝑉 ⊥(𝑀) denotes the trace of 𝑀 on the subspace 𝑉 ⊥.

Proof. Using Lemma 3.4.9, we may write

̃︁𝑤𝑘

𝑘∏︁
𝑖=1

(̃︁Σ𝑘(𝑋)− Σ𝑖(𝑋))2
𝑖−1

𝑘−1∏︁
𝑖=1

(̃︁Σ𝑘(𝑋)− ̃︀Σ𝑖(𝑋))2
𝑘+𝑖−1

= 𝑃1(𝑋)( ̃︀ℎ1(𝑋)− ℎ1(𝑋)) + · · ·+ 𝑃𝑚(𝑋)(̃︁ℎ𝑚(𝑋)− ℎ𝑚(𝑋))

where 𝑚 = 𝑂𝑘(1)

Now we bound

̃︀E [︂⃦⃦⃦𝑣 (︁𝑃1(𝑋)( ̃︀ℎ1(𝑋)− ℎ1(𝑋)) + · · ·+ 𝑃𝑚(𝑋)(̃︁ℎ𝑚(𝑋)− ℎ𝑚(𝑋))
)︁⃦⃦⃦2]︂

145



Using Claim 3.3.15 and Claim 3.3.14,

̃︀E [︂⃦⃦⃦𝑣 (︁𝑃1(𝑋)( ̃︀ℎ1(𝑋)− ℎ1(𝑋)) + · · ·+ 𝑃𝑚(𝑋)(̃︁ℎ𝑚(𝑋)− ℎ𝑚(𝑋))
)︁⃦⃦⃦2]︂

≤ 𝑂𝑘(1)
𝑚∑︁
𝑖=1

̃︀E [︂‖𝑣(𝑃𝑖(𝑋))‖2 ·
⃦⃦⃦
𝑣(̃︀ℎ𝑖(𝑋)− ℎ𝑖(𝑋))

⃦⃦⃦2]︂
≤ 𝑂𝑘(1)

𝑚∑︁
𝑖=1

̃︀E [︂‖𝑣(𝑃𝑖(𝑋))‖2 · 2
(︂⃦⃦⃦

𝑣(̃︀ℎ𝑖(𝑋)− ℎ𝑖(𝑋))
⃦⃦⃦2

+
⃦⃦
𝑣(ℎ𝑖(𝑋)− ℎ𝑖(𝑋))

⃦⃦2)︂]︂

Where the last step is true because Claim 3.3.14 allows us to write the difference between

the two sides as a sum of squares.

Now
⃦⃦
𝑣(ℎ𝑖(𝑋)− ℎ𝑖(𝑋))

⃦⃦2 is just a real number and is bounded above by 𝜖′ by assump-

tion. We also have the constraint that

⃦⃦⃦
𝑣(̃︀ℎ𝑖(𝑋)− ℎ𝑖(𝑋))

⃦⃦⃦2
≤ 100𝜖′

so

̃︀E [︂⃦⃦⃦𝑣 (︁𝑃1(𝑋)( ̃︀ℎ1(𝑋)− ℎ1(𝑋)) + · · ·+ 𝑃𝑚(𝑋)(̃︁ℎ𝑚(𝑋)− ℎ𝑚(𝑋))
)︁⃦⃦⃦2]︂

≤ 𝑂𝑘(1)𝜖
′

𝑚∑︁
𝑖=1

̃︀E [︀‖𝑣(𝑃𝑖(𝑋))‖2
]︀

Now we use the properties from Lemma 3.4.9 that each of the 𝑃𝑖 can be written as a linear

combination of a constant number of terms that are a product of some of

{𝜇𝑖(𝑋)}, {Σ𝑖(𝑋)}, {̃︀𝜇𝑖(𝑋)}, { ̃︀Σ𝑖(𝑋)}

where

• The coefficients in the linear combination are bounded by a constant depending only

on 𝑘
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• The number of terms in the sum depends only on 𝑘

• The number of terms in each product depends only on 𝑘

Note for each ̃︀𝜇𝑖(𝑋), since we ensured that our guesses for the coefficients that go with the

orthonormal basis 𝑢1, . . . , 𝑢𝑘 are at most ∆ and we have the constraints ‖𝑢𝑖‖22 = 1, 𝑢𝑖 ·𝑢𝑗 = 0,

we have

‖𝑣(̃︀𝜇𝑖(𝑋))‖2 ⪯𝑆𝑂𝑆 𝑂𝑘(1)∆
2

where ⪯𝑆𝑂𝑆 means the difference can be written as a sum of squares. We can make similar

arguments for ̃︀Σ𝑖(𝑋), 𝜇𝑖(𝑋),Σ𝑖(𝑋). Now using Claim 3.3.14 and Claim 3.3.15 we can deduce

̃︀E [︀‖𝑣(𝑃𝑖(𝑋))‖2
]︀
≤ 𝑂𝑘(1)∆

𝑂𝑘(1)

Overall, we have shown

̃︀E [︂⃦⃦⃦𝑣 (︁𝑃1(𝑋)( ̃︀ℎ1(𝑋)− ℎ1(𝑋)) + · · ·+ 𝑃𝑚(𝑋)(̃︁ℎ𝑚(𝑋)− ℎ𝑚(𝑋))
)︁⃦⃦⃦2]︂

≤ 𝑂𝑘(1)𝜖
′∆𝑂𝑘(1)

Now we examine the expression

̃︀E
⎡⎣⃦⃦⃦⃦⃦𝑣

(︃̃︁𝑤𝑘

𝑘∏︁
𝑖=1

(̃︁Σ𝑘(𝑋)− Σ𝑖(𝑋))2
𝑖−1

𝑘−1∏︁
𝑖=1

(̃︁Σ𝑘(𝑋)− ̃︀Σ𝑖(𝑋))2
𝑘+𝑖−1

)︃⃦⃦⃦⃦
⃦
2
⎤⎦

By Claim 3.3.18 (recall ̃︁𝑤𝑘 is a constant that we guess),

̃︀E
⎡⎣⃦⃦⃦⃦⃦𝑣

(︃̃︁𝑤𝑘

𝑘∏︁
𝑖=1

(̃︁Σ𝑘(𝑋)− Σ𝑖(𝑋))2
𝑖−1

𝑘−1∏︁
𝑖=1

(̃︁Σ𝑘(𝑋)− ̃︀Σ𝑖(𝑋))2
𝑘+𝑖−1

)︃⃦⃦⃦⃦
⃦
2
⎤⎦

≥ ̃︁𝑤𝑘Ω𝑘(1)̃︀E[︃ 𝑘∏︁
𝑖=1

(︂⃦⃦⃦
𝑣(̃︁Σ𝑘(𝑋)− Σ𝑖(𝑋))

⃦⃦⃦2)︂2𝑖−1 𝑘−1∏︁
𝑖=1

(︂⃦⃦⃦
𝑣(̃︁Σ𝑘(𝑋)− ̃︀Σ𝑖(𝑋))

⃦⃦⃦2)︂2𝑘+𝑖−1
]︃

Note that ⃦⃦⃦
𝑣(̃︁Σ𝑘(𝑋)− Σ𝑖(𝑋))

⃦⃦⃦2
⪰𝑆𝑂𝑆

⃦⃦⃦
Γ𝑉 ⊥(̃︁Σ𝑘)

⃦⃦⃦2
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(recall that Γ𝑉 ⊥ is a projection map with unknown but constant coefficients). Next, since we

ensure that the coefficients 𝐵𝑖 that we guess for the orthonormal basis satisfy ‖𝐵𝑖 −𝐵𝑗‖2 ≥
𝑐
2
,

we have ⃦⃦⃦
𝑣(̃︁Σ𝑘(𝑋)− ̃︀Σ𝑖(𝑋))

⃦⃦⃦2
⪰𝑆𝑂𝑆

𝑐2

4

where we use the constraints in 𝒮 that ‖𝑣𝑖‖22 = 1, 𝑣𝑖 · 𝑣𝑗 = 0. Overall, we conclude

̃︀E
⎡⎣⃦⃦⃦⃦⃦𝑣

(︃̃︁𝑤𝑘

𝑘∏︁
𝑖=1

(̃︁Σ𝑘(𝑋)− Σ𝑖(𝑋))2
𝑖−1

𝑘−1∏︁
𝑖=1

(̃︁Σ𝑘(𝑋)− ̃︀Σ𝑖(𝑋))2
𝑘+𝑖−1

)︃⃦⃦⃦⃦
⃦
2
⎤⎦

≥ Ω𝑘(1)E
[︂⃦⃦⃦

Γ𝑉 ⊥(̃︁Σ𝑘)
⃦⃦⃦2𝑘+1−2

]︂
(̃︁𝑤𝑘𝑐)

𝑂𝑘(1)

Note

̃︀E
⎡⎣⃦⃦⃦⃦⃦𝑣

(︃̃︁𝑤𝑘

𝑘∏︁
𝑖=1

(̃︁Σ𝑘(𝑋)− Σ𝑖(𝑋))2
𝑖−1

𝑘−1∏︁
𝑖=1

(̃︁Σ𝑘(𝑋)− ̃︀Σ𝑖(𝑋))2
𝑘+𝑖−1

)︃⃦⃦⃦⃦
⃦
2
⎤⎦ =

̃︀E [︂⃦⃦⃦𝑣 (︁𝑃1(𝑋)( ̃︀ℎ1(𝑋)− ℎ1(𝑋)) + · · ·+ 𝑃𝑚(𝑋)(̃︁ℎ𝑚(𝑋)− ℎ𝑚(𝑋))
)︁⃦⃦⃦2]︂

because the inner expressions are equal symbolically. Thus

̃︀E [︂⃦⃦⃦Γ𝑉 ⊥(̃︁Σ𝑘)
⃦⃦⃦2𝑘+1−2

]︂
≤ 𝑂𝑘(1)𝜖

′
(︂

∆

𝑤min𝑐

)︂𝑂𝑘(1)

Thus ̃︀E [︂⃦⃦⃦Γ𝑉 ⊥(̃︁Σ𝑘)
⃦⃦⃦2]︂
≤ 𝜖′2

−𝑘

𝑂𝑘(1)

(︂
∆

𝑤min𝑐

)︂𝑂𝑘(1)

It remains to note that

Tr𝑉 ⊥(𝑀) = ̃︀E [︂⃦⃦⃦Γ𝑉 ⊥(̃︁Σ𝑘)
⃦⃦⃦2]︂

and we are done. ■

In the next key lemma, we prove that any vector that has nontrivial projection onto 𝑉

must also have nontrivial projection onto ̃︀E[ ̃︀Σ𝑖
̃︀Σ𝑖

𝑇
] for some 𝑖.
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Lemma 3.4.12. Let ̃︀E be a pseudoexpectation of degree 𝐶𝑘 for some sufficiently large con-

stant 𝐶𝑘 depending only on 𝑘 that solves 𝒮. Consider the matrix

𝑁 =
𝑘∑︁

𝑖=1

̃︀E[ ̃︀Σ𝑖
̃︀Σ𝑖

𝑇
]

where by this we mean we construct the 𝐷 × 𝐷 matrix whose entries are quadratic in the

variables {𝑢}, {𝑣} and then take the entry-wise pseudoexpectation. Then for any unit vector

𝑧 ∈ R𝐷,

𝑧𝑇𝑁𝑧 ≥
(︂
𝑤min(𝑧 · Σ𝑘)

𝑂𝑘(1) −𝑂𝑘(1)𝜖
′∆𝑂𝑘(1)

𝑂𝑘(1)∆𝑂𝑘(1)

)︂2

as long as

𝑤min(𝑧 · Σ𝑘)
𝑂𝑘(1) > 𝑂𝑘(1)𝜖

′∆𝑂𝑘(1)

Proof. Using Lemma 3.4.10, we may write

𝑤𝑘

𝑘∏︁
𝑖=1

(Σ𝑘(𝑋)− ̃︀Σ𝑖(𝑋))2
𝑖−1

𝑘−1∏︁
𝑖=1

(Σ𝑘(𝑋)− Σ𝑖(𝑋))2
𝑘+𝑖−1

= 𝑃1(𝑋)( ̃︀ℎ1(𝑋)− ℎ1(𝑋)) + · · ·+ 𝑃𝑚(𝑋)(̃︁ℎ𝑚(𝑋)− ℎ𝑚(𝑋))

where 𝑚 = 𝑂𝑘(1).

Using the same method as the proof in Lemma 3.4.11, we have

̃︀E [︂⃦⃦⃦𝑣 (︁𝑃1(𝑋)( ̃︀ℎ1(𝑋)− ℎ1(𝑋)) + · · ·+ 𝑃𝑚(𝑋)(̃︁ℎ𝑚(𝑋)− ℎ𝑚(𝑋))
)︁⃦⃦⃦2]︂

≤ 𝑂𝑘(1)𝜖
′∆𝑂𝑘(1)
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Now by Claim 3.3.18,

̃︀E
⎡⎣⃦⃦⃦⃦⃦𝑣

(︃
𝑤𝑘

𝑘∏︁
𝑖=1

(Σ𝑘(𝑋)− ̃︀Σ𝑖(𝑋))2
𝑖−1

𝑘−1∏︁
𝑖=1

(Σ𝑘(𝑋)− Σ𝑖(𝑋))2
𝑘+𝑖−1

)︃⃦⃦⃦⃦
⃦
2
⎤⎦

≥ 𝑤𝑘̃︀E[︃ 𝑘∏︁
𝑖=1

(︂⃦⃦⃦
𝑣
(︁
Σ𝑘(𝑋)− ̃︀Σ𝑖(𝑋)

)︁⃦⃦⃦2)︂2𝑖−1 𝑘−1∏︁
𝑖=1

(︀
‖(Σ𝑘(𝑋)− Σ𝑖(𝑋))‖2

)︀2𝑘+𝑖−1

]︃

≥ 𝑤𝑘̃︀E[︃ 𝑘∏︁
𝑖=1

(︁
(𝑧 · Σ𝑘 − 𝑧 · ̃︀Σ𝑖)

2
)︁2𝑖−1

𝑐𝑂𝑘(1)

]︃

where the second inequality is true because

⃦⃦⃦
𝑣
(︁
Σ𝑘(𝑋)− ̃︀Σ𝑖(𝑋)

)︁⃦⃦⃦2
⪰𝑆𝑂𝑆 (𝑧 · Σ𝑘 − 𝑧 · ̃︀Σ𝑖)

2

Now we claim

̃︀E[︃ 𝑘∏︁
𝑖=1

(︁
(𝑧 · Σ𝑘 − 𝑧 · ̃︀Σ𝑖)

2
)︁2𝑖−1

]︃
≥ (𝑧 · Σ𝑘)

𝑂𝑘(1) −𝑂𝑘(1)∆
𝑂𝑘(1)

⎯⎸⎸⎷̃︀E[︃∑︁
𝑖

(𝑧 · ̃︀Σ𝑖)2

]︃

To see this, first recall that 𝑧 · Σ𝑘 is just a constant. Next, we can expand the LHS into a

sum of monomials in the 𝑧 · ̃︀Σ𝑖. In particular, we can write the expansion in the form

(𝑧 · Σ𝑘)
𝑂𝑘(1) +

∑︁
𝑖

(𝑧 · ̃︀Σ𝑖)𝑃𝑖(𝑧 ·̃︁Σ1, . . . , 𝑧 ·̃︁Σ𝑘)

wjhere 𝑃 is some polynomial in 𝑘 variables. We can upper bound the coefficients of the

polynomial in terms of ∆, 𝑘 and we also know that

(𝑧 · ̃︀Σ𝑖)
2 ⪯𝑆𝑂𝑆 𝑂𝑘(1)∆

𝑂(1)

due to the constraints in our system. Thus, we can bound the pseudoexpectation

−̃︀E[︃∑︁
𝑖

(𝑧 · ̃︀Σ𝑖)𝑃𝑖(𝑧 ·̃︁Σ1, . . . , 𝑧 ·̃︁Σ𝑘)

]︃
≤ 𝑂𝑘(1)∆

𝑂𝑘(1)

⎯⎸⎸⎷̃︀E[︃∑︁
𝑖

(𝑧 · ̃︀Σ𝑖)2

]︃
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via Cauchy Schwarz. Putting everything together the same way as in Lemma 3.4.11, we

deduce ̃︀E[︃∑︁
𝑖

(𝑧 · ̃︀Σ𝑖)
2

]︃
≥
(︂
𝑤min(𝑧 · Σ𝑘)

𝑂𝑘(1) −𝑂𝑘(1)𝜖
′∆𝑂𝑘(1)

𝑂𝑘(1)∆𝑂𝑘(1)

)︂2

and now we are done. ■

Putting Lemmas 3.4.11 and 3.4.12 together, we now prove that 𝑉 is essentially contained

within the span of the union of the top principal components of ̃︀E[ ̃︀Σ𝑖
̃︀Σ𝑖

𝑇
] over all 𝑖.

Lemma 3.4.13. For each 𝑖, let 𝑀𝑖 be the 𝐷 ×𝐷 matrix given by

𝑀𝑖 = ̃︀E[ ̃︀Σ𝑖
̃︁Σ𝑇
𝑖 ].

Assume that for a sufficiently small function 𝑓 depending only on 𝑘,

∆ ≤ 𝜖′−𝑓(𝑘)

𝑤min, 𝑐 ≥ 𝜖′𝑓(𝑘)

Let 𝑉𝑖 be the subspace spanned by the top 𝑘 singular vectors of 𝑀𝑖. Then for all 𝑖, the

projection of the true covariance matrix Σ𝑖 onto the orthogonal complement of spn(𝑉1, . . . , 𝑉𝑘)

has length at most 𝜖′Ω𝑘(1).

Proof. Assume for the sake of contradiction that the desired statement is false for Σ𝑖. Let

𝑧 be the projection of Σ𝑖 onto the orthogonal complement of spn(𝑉1, . . . , 𝑉𝑘). By Lemma

3.4.12, ∑︁
𝑗

𝑧𝑇𝑀𝑗𝑧 ≥
(︂
𝑤min(𝑧 · Σ𝑖)

𝑂𝑘(1) −𝑂𝑘(1)𝜖
′∆𝑂𝑘(1)

𝑂𝑘(1)∆𝑂𝑘(1)

)︂2

(3.2)

so there is some 𝑗 for which

𝑧𝑇𝑀𝑗𝑧 ≥
1

𝑘

(︂
𝑤min(𝑧 · Σ𝑖)

𝑂𝑘(1) −𝑂𝑘(1)𝜖
′∆𝑂𝑘(1)

𝑂𝑘(1)∆𝑂𝑘(1)

)︂2

On the other hand, Lemma 3.4.11 implies that the sum of the singular values of 𝑀𝑗 outside
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the top 𝑘 is at most

𝜖′2
−𝑘

𝑂𝑘(1)

(︂
∆

𝑤min𝑐

)︂𝑂𝑘(1)

Since 𝑧 is orthogonal to the span of the top-𝑘 singular vectors of 𝑀𝑗, we get

𝑧𝑇𝑀𝑗𝑧 ≤ 𝜖′2
−𝑘

𝑂𝑘(1)

(︂
∆

𝑤min𝑐

)︂𝑂𝑘(1)

‖𝑧‖22 (3.3)

Note 𝑧 · Σ𝑖 = ‖𝑧‖22 since 𝑧 is a projection of Σ𝑖 onto a subspace. Now combining (3.2) and

(3.3) we get a contradiction unless

‖𝑧‖2 ≤ 𝜖′Ω𝑘(1)

■

Finishing Up: Finding the Covariances and then the Means

Now we can brute-force search over the subspace spanned by the union of the top 𝑘 singular

vectors of 𝑀1, . . . ,𝑀𝑘. Note that the SOS system 𝒮 is clearly feasible as it is solved when

the 𝑢𝑖, 𝑣𝑖 form orthonormal bases for the true subspaces and the ̃︀𝑤𝑖, 𝐴𝑖, 𝐵𝑖 are within 𝜖′𝑂𝑘(1)

of the true values (i.e. the values needed to express the true means and covariances in the

orthonormal basis given by the 𝑢𝑖, 𝑣𝑖).

Thus, brute forcing over an 𝜖′𝑂𝑘(1)-net for the ̃︀𝑤𝑖, 𝐴𝑖, 𝐵𝑖, we will find a feasible solution.

By Lemma 3.4.12 and Lemma 3.4.13, once we find any feasible solution, we will be able to

obtain a set of (1/𝜖′)𝑂𝑘(1) estimates at least one of which, say Σ1, . . . ,Σ𝑘, satisfies

⃦⃦
Σ𝑖 − Σ𝑖

⃦⃦2
2
≤ 𝜖′Ω𝑘(1)

for all 𝑖. With these estimates we will now solve for the means. Note we can assume that

our covariance estimates are exactly correct because we can pretend that the true mixture

is actually 𝑁(𝜇1,Σ1), . . . , 𝑁(𝜇𝑘,Σ𝑘) and our estimates for the Hermite polynomials of this

mixture will be off by at most 𝑂𝑘(1)𝜖
′Ω𝑘(1). Thus, making this assumption will only affect

the dependence on 𝜖′ that we get at the end. From now on we can write Σ𝑖 to denote the
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true covariances and treat these as known quantities.

Now we set up the same system as in Section 3.4.2 except we no longer have the vari-

ables 𝑣1, . . . , 𝑣𝑘 and no longer have the ̃︀Σ𝑖. These will instead be replaced by real values

from Σ𝑖. Formally:

Definition 3.4.14 (SOS program for learning means). We will have the following variables

• 𝑢1 = (𝑢11, . . . , 𝑢1𝑑), . . . , 𝑢𝑘 = (𝑢𝑘1, . . . , 𝑢𝑘𝑑)

In the above 𝑢1, . . . , 𝑢𝑘 ∈ R𝑑. We guess coefficients 𝑎𝑖𝑗 where 𝑖, 𝑗 ∈ [𝑘] expressing the means

in this orthonormal basis. We ensure that the guesses satisfy the property that for every pair

of vectors 𝐴𝑖 = (𝑎𝑖1, . . . , 𝑎𝑖𝑘), 𝐴𝑗 = (𝑎𝑗1, . . . , 𝑎𝑗𝑘) either 𝐴𝑖 = 𝐴𝑗 or

‖𝐴𝑖 − 𝐴𝑗‖2 ≥
𝑐

2

We ensure that

‖𝐴𝑖‖2 ≤ 2∆

We also guess the mixing weights ̃︁𝑤1, . . . ,̃︁𝑤𝑘 and ensure that our guesses are all at least

𝑤min/2.

Now we set up the constraints. Let 𝐶 be a sufficiently large integer depending only on

𝑘. Define ̃︀𝜇𝑖 = 𝑎𝑖1𝑢1 + · · · + 𝑎𝑖𝑘𝑢𝑘. These are linear expressions in the variables that we

are solving for. Now consider the hypothetical mixture with mixing weights ̃︀𝑤𝑖, means ̃︀𝜇𝑖,

and covariances 𝐼 +Σ𝑖. The Hermite polynomials for this hypothetical mixture ̃︀ℎ𝑖(𝑋) can be

written as formal polynomials in 𝑋 = (𝑋1, . . . , 𝑋𝑑) with coefficients that are polynomials in

𝑢. Note that we can explicitly write down these Hermite polynomials. The set of constraints

for our SOS system is as follows:

• ‖𝑢𝑖‖22 = 1 for all 1 ≤ 𝑖 ≤ 𝑘

• 𝑢𝑖 · 𝑢𝑗 = 0 for all 𝑖 ̸= 𝑗
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• For all 𝑝 = 1, 2, . . . , 𝐶 ⃦⃦⃦
𝑣( ̃︀ℎ𝑝(𝑋)− ℎ𝑝(𝑋))

⃦⃦⃦2
≤ 100𝜖′

Now we can repeat the same arguments from Section 3.4.3 to prove that once we find a

feasible solution, we can recover the span of the 𝜇𝑖. The important generating functions are

𝐹 (𝑦) =
𝑘∑︁

𝑖=1

𝑤𝑖𝑒
𝜇𝑖(𝑋)𝑦+ 1

2
Σ𝑖(𝑋)𝑦2

̃︀𝐹 (𝑦) = 𝑘∑︁
𝑖=1

̃︀𝑤𝑖𝑒
̃︀𝜇𝑖(𝑋)𝑦+ 1

2
Σ𝑖(𝑋)𝑦2

Define the differential operators as before except with ̃︀Σ𝑖 replaced with Σ𝑖. Let 𝒟𝑖 denote

the differential operator (𝜕 − (𝜇𝑖(𝑋) + Σ𝑖(𝑋)𝑦)) and ̃︁𝒟𝑖 denote the differential operator

(𝜕− (̃︀𝜇𝑖(𝑋)+Σ𝑖(𝑋)𝑦)). All derivatives are taken with respect to 𝑦. The two key differential

operators to consider are

̃︁𝒟𝑘

22𝑘−1−2𝑘−1−1
𝒟𝑘−1

22𝑘−2

. . .̃︁𝒟1

2𝑘

𝒟2𝑘−1

𝑘 . . .𝒟1
1

𝒟22𝑘−1−2𝑘−1−1
𝑘 𝒟22𝑘−2

𝑘−1 . . .𝒟2𝑘

1
̃︁𝒟𝑘

2𝑘−1

. . .̃︁𝒟1

1

Note the change to 22𝑘−1 − 2𝑘−1 − 1 from 22𝑘−1 − 1 in the exponent of the first term. This

is because when operating on 𝑃 (𝑦)𝑒𝜇𝑘(𝑋)𝑦+ 1
2
Σ𝑘(𝑋)𝑦2 for some polynomial 𝑃 , the operator 𝒟𝑘

reduces the degree of 𝑃 by 1 while the operator ̃︁𝐷𝑘 does not change the degree of 𝑃 (whereas

before this operator increased the degree of the formal polynomial 𝑃 ). Similar to Claim 3.4.7

and Claim 3.4.8 in Section 3.4.3, we have

Claim 3.4.15. Write

̃︁𝒟𝑘

22𝑘−1−2𝑘−1−1
𝒟𝑘−1

22𝑘−2

. . .̃︁𝒟1

2𝑘

𝒟2𝑘−1

𝑘 . . .𝒟1
1( ̃︀𝐹 )
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as a formal power series in 𝑦. Its evaluation at 𝑦 = 0 is

𝐶𝑘̃︁𝑤𝑘(̃︁𝜇𝑘(𝑋)− 𝜇𝑘(𝑋))2
𝑘−1

𝑘−1∏︁
𝑖=1

(Σ𝑘(𝑋)− Σ𝑖(𝑋))2
𝑖−1

𝑘−1∏︁
𝑖=1

(Σ𝑘(𝑋)− Σ𝑖(𝑋))2
𝑘+𝑖−1

where 𝐶𝑘 is a constant depending only on 𝑘.

Claim 3.4.16. Write

𝒟22𝑘−1−2𝑘−1−1
𝑘 𝒟22𝑘−2

𝑘−1 . . .𝒟2𝑘

1
̃︁𝒟𝑘

2𝑘−1

. . .̃︁𝒟1

1
(𝐹 )

as a formal power series in 𝑦. Its evaluation at 𝑦 = 0 is

𝐶𝑘𝑤𝑘(̃︁𝜇𝑘(𝑋)− 𝜇𝑘(𝑋))2
𝑘−1

𝑘−1∏︁
𝑖=1

(Σ𝑘(𝑋)− Σ𝑖(𝑋))2
𝑖−1

𝑘−1∏︁
𝑖=1

(Σ𝑘(𝑋)− Σ𝑖(𝑋))2
𝑘+𝑖−1

where 𝐶𝑘 is a constant depending only on 𝑘.

Now repeating the arguments in Lemmas 3.4.9, 3.4.10, 3.4.11,3.4.12, 3.4.13, we can prove

that for any feasible solution, the subspace spanned by the top 𝑘 singular vectors of each

of ̃︀E[ ̃︀𝜇1 ̃︀𝜇1
𝑇 ], . . . , ̃︀E[̃︁𝜇𝑘̃︁𝜇𝑘

𝑇 ] approximately contains all of 𝜇1, . . . , 𝜇𝑘. We can now brute force

search over this subspace (and since we are already brute-force searching over the mixing

weights), we will output some set of candidate components that are close to the true com-

ponents.

All Pairs of Parameters are Equal or Separated

In the case where some pairs of parameters may be equal (but pairs (𝜇𝑖,Σ𝑖) and (𝜇𝑗,Σ𝑗)

cannot be too close), we can repeat essentially the same arguments from the previous section

but with minor adjustments in the number of times we are applying each differential operator.

We can assume that our guesses for the coefficients 𝐴𝑖, 𝐵𝑖 satisfy the correct equality

pattern in the sense that 𝐴𝑖 = 𝐴𝑗 if and only if 𝜇𝑖 = 𝜇𝑗 and otherwise ‖𝐴𝑖 − 𝐴𝑗‖ ≥ 𝑐/2

and similar for the parameters 𝐵𝑖. This is because there are only 𝑂𝑘(1) different equality

patterns.
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Now without loss of generality let {Σ1, . . . ,Σ𝑗} (𝑗 < 𝑘) be the set of covariance matrices

that are equal to Σ𝑘. The key differential operators to consider are

̃︁𝒟𝑘

22𝑘−1−1−2𝑘−···−2𝑘+𝑗

𝒟𝑘−1

22𝑘−2

. . .̃︁𝒟1

2𝑘

𝒟2𝑘−1

𝑘 . . .𝒟1
1

𝒟22𝑘−1−1−20−···−2𝑗

𝑘 𝒟22𝑘−2

𝑘−1 . . .𝒟2𝑘

1
̃︁𝒟𝑘

2𝑘−1

. . .̃︁𝒟1

1

Similar to Claim 3.4.7 and Claim 3.4.8, we get

Claim 3.4.17. Let {Σ1, . . . ,Σ𝑗} (𝑗 < 𝑘) be the set of covariance matrices that are equal to

Σ𝑘. Note this also implies {̃︁Σ1, . . . ,̃︁Σ𝑗} are precisely the subset of { ̃︀Σ𝑖} that are equal to ̃︁Σ𝑘.

Write ̃︁𝒟𝑘

22𝑘−1−1−2𝑘−···−2𝑘+𝑗−1

𝒟𝑘−1

22𝑘−2

. . .̃︁𝒟1

2𝑘

𝒟2𝑘−1

𝑘 . . .𝒟1
1( ̃︀𝐹 )

as a formal power series in 𝑦. Its evaluation at 𝑦 = 0 is

𝐶𝑘̃︁𝑤𝑘

𝑘∏︁
𝑖=1

(̃︁Σ𝑘(𝑋)− Σ𝑖(𝑋))2
𝑖−1

𝑗∏︁
𝑖=1

(̃︁𝜇𝑘(𝑋)− ̃︀𝜇𝑖(𝑋))2
𝑘+𝑖−1

𝑘−1∏︁
𝑖=𝑗+1

(̃︁Σ𝑘(𝑋)− ̃︀Σ𝑖(𝑋))2
𝑘+𝑖−1

where 𝐶𝑘 is a constant depending only on 𝑘.

Claim 3.4.18. Let {Σ1, . . . ,Σ𝑗} (𝑗 < 𝑘) be the set of covariance matrices that are equal to

Σ𝑘. Note this also implies {̃︁Σ1, . . . ,̃︁Σ𝑗} are precisely the subset of { ̃︀Σ𝑖} that are equal to ̃︁Σ𝑘.

Write

𝒟22𝑘−1−1−2𝑘−···−2𝑘+𝑗−1

𝑘 𝒟22𝑘−2

𝑘−1 . . .𝒟2𝑘

1
̃︁𝒟𝑘

2𝑘−1

. . .̃︁𝒟1

1
(𝐹 )

as a formal power series in 𝑦. Its evaluation at 𝑦 = 0 is

𝐶𝑘̃︁𝑤𝑘

𝑘∏︁
𝑖=1

(Σ𝑘(𝑋)− ̃︀Σ𝑖(𝑋))2
𝑖−1

𝑗∏︁
𝑖=1

(𝜇𝑘(𝑋)− 𝜇𝑖(𝑋))2
𝑘+𝑖−1

𝑘−1∏︁
𝑖=𝑗+1

(Σ𝑘(𝑋)− Σ𝑖(𝑋))2
𝑘+𝑖−1

where 𝐶𝑘 is a constant depending only on 𝑘.

Now we can repeat the arguments in Lemmas 3.4.9, 3.4.10, 3.4.11,3.4.12, 3.4.13. The key
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point is that the constraints in our SOS program give explicit values for

‖𝑣(̃︀𝜇𝑖(𝑋)− ̃︀𝜇𝑗(𝑋))‖2⃦⃦⃦
𝑣( ̃︀Σ𝑖(𝑋)−̃︁Σ𝑗(𝑋))

⃦⃦⃦2
in terms of 𝐴𝑖, 𝐵𝑖 (which are explicit real numbers). We can then repeat the arguments in

Section 3.4.3 (with appropriate modifications to the number of times we apply each differ-

ential operator) to find the means.

3.5 Robust Moment Estimation

In Section 3.4, we showed how to learn the parameters of a mixture of Gaussians ℳ with

components that are not too far apart when we are given estimates for the Hermite polyno-

mials. In this section, we show how to estimate the Hermite polynomials from an 𝜖-corrupted

sample. Putting the results together, we will get a robust learning algorithm in the case when

the components are not too far apart.

While the closeness of components in Section 3.4 is defined in terms of parameter distance,

we will need to reason about TV-distance between components in order to integrate our

results into our full learning algorithm. We begin with a definition.

Definition 3.5.1. We say a mixture of Gaussians 𝑤1𝐺1 + · · ·+ 𝑤𝑘𝐺𝑘 is 𝛿-well-conditioned

if

1. Let 𝒢 be the graph on [𝑘] obtained by connecting two nodes 𝑖, 𝑗 if 𝑑TV(𝐺𝑖, 𝐺𝑗) ≤ 1− 𝛿.

Then 𝒢 is connected

2. 𝑑TV(𝐺𝑖, 𝐺𝑗) ≥ 𝛿 for all 𝑖 ̸= 𝑗

3. 𝑤min ≥ 𝛿

The main theorem that we will prove in this section is as follows.
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Theorem 3.5.2. There is a function 𝑓(𝑘) > 0 depending only on 𝑘 such that given an

𝜖-corrupted sample from a 𝛿-well-conditioned mixture of Gaussians

ℳ = 𝑤1𝑁(𝜇1,Σ1) + · · ·+ 𝑤𝑘𝑁(𝜇𝑘,Σ𝑘)

where 𝛿 ≥ 𝜖𝑓(𝑘), there is a polynomial time algorithm that outputs a set of (1/𝜖)𝑂𝑘(1) candidate

mixtures {̃︂𝑤1𝑁( ̃︀𝜇1,̃︁Σ1) + · · · + ̃︁𝑤𝑘𝑁(̃︁𝜇𝑘,̃︁Σ𝑘} and with high probability, at least one of them

satisfies that for all 𝑖:

|𝑤𝑖 − ̃︀𝑤𝑖|+ 𝑑TV(𝑁(𝜇𝑖,Σ𝑖), 𝑁(̃︀𝜇𝑖, ̃︀Σ𝑖)) ≤ poly(𝜖)

3.5.1 Distance between Gaussians

As mentioned earlier, we will first introduce a few tools for relating parameter distance and

TV distance between Gaussians.

The following is a standard fact.

Claim 3.5.3. For two Gaussians 𝑁(𝜇1,Σ1), 𝑁(𝜇2,Σ2)

𝑑TV(𝑁(𝜇1,Σ1), 𝑁(𝜇2,Σ2)) = 𝑂
(︁(︀

(𝜇1 − 𝜇2)
𝑇Σ−1

1 (𝜇1 − 𝜇2)
)︀1/2

+
⃦⃦⃦
Σ

−1/2
1 Σ2Σ

−1/2
1 − 𝐼

⃦⃦⃦
𝐹

)︁
Proof. See e.g. Fact 2.1 in [65]. ■

Next, we will prove a bound in the opposite direction, that when Gaussians are not too

far apart in TV distance, then their parameters also cannot be too far apart.

Lemma 3.5.4. Let ℳ be a mixture of 𝑘 Gaussians that is 𝛿-well conditioned. Let Σ be the

covariance matrix of the mixture. Then

1. Σ𝑖 ≤ poly(𝛿)−1Σ for all components of the mixture

2. Σ𝑖 ≥ poly(𝛿)Σ for all components of the mixture

3. For any two components 𝑖, 𝑗, we have
⃦⃦
Σ−1/2(𝜇𝑖 − 𝜇𝑗)

⃦⃦
≤ poly(𝛿)−1
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4. For any two components 𝑖, 𝑗, we have
⃦⃦
Σ−1/2(Σ𝑖 − Σ𝑗)Σ

−1/2
⃦⃦
2
≤ poly(𝛿)−1

where the coefficients and degrees of the polynomials may depend only on 𝑘.

Proof. The statements are invariant under linear transformations so without loss of generality

let Σ = 𝐼. Assume for the sake of contradiction that the first condition is failed. Then there

is some direction 𝑣 such that say

𝑣𝑇Σ1𝑣 ≥ 𝛿−10𝑘

There must be some 𝑖 ∈ [𝑘] such that 𝑣𝑇Σ𝑖𝑣 ≤ 1 since otherwise the variance of the mixture

in direction 𝑣 would be bigger than 1. Now we claim that 𝑖 and 1 cannot be connected in 𝒢,

the graph defined in Definition 3.5.1. To see this, if they were connected, then there must

be two vertices 𝑗1, 𝑗2 that are consecutive along the path between 1 and 𝑖 such that

𝑣𝑇Σ𝑗1𝑣

𝑣𝑇Σ𝑗2𝑣
≥ 𝛿−10

But then 𝑑TV(𝐺𝑗1 , 𝐺𝑗2) ≥ 1 − 𝛿. To see this, let
√︀
𝑣𝑇Σ𝑗2𝑣 = 𝑐. We can project both Gaus-

sians onto the direction 𝑣 and note that the Gaussian 𝐺𝑗1 is spread over width 𝛿−5𝑐 whereas

the Gaussian 𝐺𝑗2 is essentially contained in a strip of width 𝑂(log 1/𝛿)𝑐.

Now we may assume that the first condition is satisfied. Now we consider when the third

condition is failed. Assume that

‖(𝜇𝑖 − 𝜇𝑗)‖ ≥ 𝑘𝛿−20𝑘

Now let 𝑣 be the unit vector in direction 𝜇𝑖 − 𝜇𝑗. Projecting the Gaussians 𝐺𝑖, 𝐺𝑗 onto

direction 𝑣 and considering the path between them, we must find 𝑗1, 𝑗2 that are connected

such that

‖(𝜇𝑗1 − 𝜇𝑗2)‖ ≥ 𝛿−20𝑘

Now, using the fact that the first condition must be satisfied (i.e. 𝑣𝑇Σ𝑗1𝑣, 𝑣
𝑇Σ𝑗2𝑣 ≤ 𝛿−10𝑘)

we get that 𝑑TV(𝐺𝑗1 , 𝐺𝑗2) ≥ 1− 𝛿, a contradiction.
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Now we may assume that the first and third conditions are satisfied. Assume now that

the second condition is not satisfied. Without loss of generality, there is some vector 𝑣 such

that

𝑣𝑇Σ1𝑣 ≤ (𝛿/𝑘)10
2𝑘

If there is some component 𝑖 such that

𝑣𝑇Σ𝑖𝑣 ≥ (𝛿/𝑘)50𝑘

then comparing the Gaussians along the path between 𝑖 and 1 in the graph 𝒢, we get a

contradiction. Thus, we now have

𝑣𝑇Σ𝑖𝑣 ≤ (𝛿/𝑘)50

for all components. Note that the covariance of the entire mixture is the identity. Thus,

there must be two components with

|𝑣 · 𝜇𝑖 − 𝑣 · 𝜇𝑗| ≥
1

2𝑘
.

Taking the path between 𝑖 and 𝑗, we must be able to find two consecutive vertices 𝑗1, 𝑗2 such

that

|𝑣 · 𝜇𝑗1 − 𝑣 · 𝜇𝑗2| ≥
1

2𝑘2
.

However, we then get 𝑑TV(𝐺𝑗1 , 𝐺𝑗2) > 1− 𝛿, a contradiction.

Now we consider when the first three conditions are all satisfied. Using the first two con-

ditions, we have bounds on the smallest and largest singular value of Σ1/2
𝑖 Σ

−1/2
𝑗 for all 𝑖, 𝑗.

Thus,

‖Σ𝑖 − Σ𝑗‖2 ≤ poly(𝛿)−1
⃦⃦⃦
𝐼 − Σ

−1/2
𝑖 Σ𝑗Σ

−1/2
𝑖

⃦⃦⃦
2
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for all 𝑖, 𝑗. However if for some 𝑖, 𝑗 that are connected in 𝒢, we have

‖(Σ𝑖 − Σ𝑗)‖2 ≥ (𝑘/𝛿)10
4

then we would have ⃦⃦⃦
𝐼 − Σ

−1/2
𝑖 Σ𝑗Σ

−1/2
𝑖

⃦⃦⃦
2
≥ (𝑘/𝛿)10

3

and this would contradict the assumption that 𝑑TV(𝐺𝑖, 𝐺𝑗) ≤ 1 − 𝛿 (this follows from the

same argument as in Lemma 3.2 of [65]). Now using triangle inequality along each path, we

deduce that for all 𝑖, 𝑗

‖(Σ𝑖 − Σ𝑗)‖2 ≤ (𝑘/𝛿)10
5

completing the proof. ■

As a corollary to the previous lemma, in a 𝛿-well conditioned mixture, all component

means and covariances are close to the mean and covariance of the overall mixture.

Corollary 3.5.5. Let ℳ be a mixture of 𝑘 Gaussians that is 𝛿-well conditioned. Let 𝜇,Σ

be the mean and covariance matrix of the mixture. Then we have for all 𝑖

•
⃦⃦
Σ−1/2(𝜇− 𝜇𝑖)

⃦⃦
2
≤ poly(𝛿)−1

•
⃦⃦
Σ−1/2(Σ− Σ𝑖)Σ

−1/2
⃦⃦
2
≤ poly(𝛿)−1

Proof. The statement is invariant under linear transformation so we may assume Σ = 𝐼 and

𝜇 = 0. Then noting

𝜇𝑖 = 𝜇+ 𝑤1(𝜇𝑖 − 𝜇1) + · · ·+ 𝑤𝑘(𝜇𝑖 − 𝜇𝑘)

and using Lemma 3.5.4, we have proved the first part. Now for the second part, note

Σ =
∑︀𝑘

𝑖=1𝑤𝑖(Σ𝑖 + 𝜇𝑖𝜇
𝑇
𝑖 ) and hence we have

Σ = Σ𝑖 + 𝑤1(Σ1 − Σ𝑖) + · · ·+ 𝑤𝑘(Σ𝑘 − Σ𝑖) +
𝑘∑︁

𝑖=1

𝑤𝑖𝜇𝑖𝜇
𝑇
𝑖

and using Lemma 3.5.4 and the first part, we are done.
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■

3.5.2 Hermite Polynomial Estimation

Now we show how to estimate the Hermite polynomials of a 𝛿-well-conditioned mixture ℳ

if we are given an 𝜖-corrupted sample (where 𝛿 ≥ 𝜖𝑓(𝑘) for some sufficiently small function

𝑓(𝑘) > 0 depending only on 𝑘). Our algorithm will closely mirror the algorithm in [65].

The first step will be to show that we can robustly estimate the mean and covariance of

the mixture ℳ and then we will use these estimates to compute a linear transformation to

place the mixture in isotropic position.

Lemma 3.5.6. There is a sufficiently small function 𝑓(𝑘) depending only on 𝑘 such that

given a 𝜖-corrupted sample from a 𝛿-well-conditioned mixture of Gaussians ℳ with true

mean and covariance 𝜇,Σ respectively, where 𝛿 ≥ 𝜖𝑓(𝑘), then with high probability we can

output estimates ̂︀𝜇 and ̂︀Σ such that

1.
⃦⃦⃦
Σ−1/2(̂︀Σ− Σ)Σ−1/2

⃦⃦⃦
2
≤ 𝜖Ω𝑘(1)

2.
⃦⃦
Σ−1/2(̂︀𝜇− 𝜇)⃦⃦

2
≤ 𝜖Ω𝑘(1)

Proof. This can be proven using a similar argument to Proposition 4.1 in [65]. First we will

estimate the covariance of the mixture. Note that the statement is invariant under linear

transformation (and the robust estimation algorithtm that we will use, Theorem 2.4 in [65],

is also invariant under linear transformation), so it suffices to consider when Σ = 𝐼. Let the

components of the mixture be 𝐺1, . . . , 𝐺𝑘. Note that by pairing up our samples, we have

access to a 2𝜖-corrupted sample from the distribution ℳ−ℳ′ (i.e. the difference of two

independent samples from ℳ). For each such sample say 𝑌 ∼ ℳ−ℳ′, Σ = 0.5E[𝑌 𝑌 𝑇 ].

We will now show that 𝑍 = 𝑌 𝑌 𝑇 where 𝑍 is flattened into a vector, has bounded covariance.

Note that we can view 𝑌 as being sampled from a mixture of 𝑂(𝑘2) Gaussians 𝐺𝑖−𝐺𝑗 (where

we may have 𝑖 = 𝑗). We now prove that

• For 𝑌 ∼ 𝐺𝑖 −𝐺𝑗 and 𝑍 = 𝑌 𝑌 𝑇 , E[𝑍 ⊗ 𝑍]− E[𝑍]⊗ E[𝑍] ≤ poly(𝛿)−1𝐼
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• For 𝑌 ∼ 𝐺𝑖−𝐺𝑗, 𝑌
′ ∼ 𝐺𝑖′−𝐺𝑗′ and 𝑍 = 𝑌 𝑌 𝑇 , 𝑍 ′ = 𝑌 ′𝑌 ′𝑇 , ‖E[𝑍 − 𝑍 ′]‖22 = poly(𝛿)−1

Using Lemma 3.5.4 and Corollary 3.5.5, we have poly(𝛿)−1 bounds on ‖𝜇𝑖‖2, ‖Σ𝑖‖op and

‖Σ𝑖 − Σ𝑗‖2 for all 𝑖, 𝑗. We can now follow the same argument as Proposition 4.1 in [65] to

bound the above two quantities. With these bounds, by Theorem 2.4 in [65], we can robustly

estimate the covariance. Once we have an estimate for the covariance ̂︀Σ, we can apply the

linear transformation ̂︀Σ−1/2 and robustly estimate the mean (which now has covariance close

to identity). ■

Using the above, we can place our mixture in isotropic position. This mirrors Proposition

4.2 in [65].

Corollary 3.5.7. There is a sufficiently small function 𝑓(𝑘) depending only on 𝑘 such that

given a 𝜖-corrupted sample from a 𝛿-well-conditioned mixture of Gaussiansℳ = 𝑤1𝐺1+· · ·+

𝑤𝑘𝐺𝑘 with mean and covariance 𝜇,Σ where 𝛿 ≥ 𝜖𝑓(𝑘), there is a polynomial time algorithm

that with high probability outputs an invertible linear transformation 𝐿 so that

1. ‖𝐿(𝜇)‖2 ≤ poly(𝜖)

2. ‖𝐼 − 𝐿(Σ)‖2 ≤ poly(𝜖)

Proof. We can first obtain estimates ̂︀𝜇 and ̂︀Σ using Lemma 3.5.6. We can then apply the

linear transformation

𝐿(𝑥) = ̂︀Σ−1/2(𝑥− ̂︀𝜇)
It follows from direct computation that this transformation satisfies the desired properties.

■

Once our mixture is placed in isotropic position, we will estimate the Hermite polynomials

and then we will be able to use Theorem 3.4.1. The following lemma can be easily derived

from the results in [65] (see Lemmas 2.7,2.8 and 5.2 there).
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Lemma 3.5.8. Letℳ be a mixture of Gaussians 𝑤1𝑁(𝜇1, 𝐼 +Σ1) + · · ·+𝑤𝑘𝑁(𝜇𝑘, 𝐼 +Σ𝑘).

Then ⃦⃦⃦⃦
E

𝑧∼ℳ
(𝑣𝑋(𝐻𝑚(𝑋.𝑧))⊗ 𝑣𝑋(𝐻𝑚(𝑋.𝑧)))]

⃦⃦⃦⃦
2

= 𝑂𝑚(1 + max ‖Σ𝑖‖2 +max ‖𝜇𝑖‖)2𝑚

where 𝐻𝑚(𝑋, 𝑧) is defined as in definition 3.3.4 and 𝑣𝑋(𝐻𝑚(𝑋.𝑧)) denotes vectorizing as a

polynomial in 𝑋 so that the entries of the vector are polynomials in 𝑧.

Kane [65] works with Hermite polynomial tensors, which are tensorized versions of the

Hermite polynomials we are using. It is clear that these two notions are equivalent up to

𝑂𝑘(1) factors as long as 𝑚 is 𝑂𝑘(1) (writing them as formal polynomials instead of tensors

simply collapses symmetric entries of the tensor but this collapses at most 𝑂𝑚(1) entries

together at once).

We can now combine everything in this section with Theorem 3.4.1 to complete the proof

of Theorem 3.5.2.

Proof of Theorem 3.5.2. We can split the samples into 𝑂(1) parts that are each 𝑂(1)𝜖 cor-

rupted samples. First, we use Corollary 3.5.7 to compute a transformation 𝐿 that places the

mixture in nearly isotropic position. Now Lemma 3.5.4 and Corollary 3.5.5 gives us bounds

on how far each of the means is from 0 and how far each of the covariances is from 𝐼. We

can apply Lemma 3.5.8 and standard results from robust estimation of bounded covariance

distributions (see e.g. Theorem 2.2 in [65]) to obtain estimates ℎ𝑚,𝐿(ℳ)(𝑋) for the Hermite

polynomials of the mixture 𝐿(ℳ) such that

⃦⃦
𝑣
(︀
ℎ𝑚,𝐿(ℳ)(𝑋)− ℎ𝑚,𝐿(ℳ)(𝑋)

)︀⃦⃦
2
≤ poly(𝜖)

where 𝑚 is bounded as a function of 𝑘. Now we must verify that the remaining hypotheses

of Theorem 3.4.1 are satisfied with 𝜖′ = poly(𝜖) for the transformed mixture 𝐿(ℳ).

• Corollary 3.5.5 gives the required upper bound on ‖𝐿(𝜇𝑖)‖ and ‖𝐿(Σ𝑖)− 𝐼‖
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• The first two conditions of Lemma 3.5.4, combined with Claim 3.5.3, imply the condi-

tion that no pair of components has essentially the same mean and covariance

• Finally, the mixing weights are unchanged by the linear transformation so the third

condition is easily verified (since the original mixture is 𝛿-well-conditioned)

Thus, by Theorem 3.4.1 we can obtain a list of (1/𝜖)𝑂𝑘(1) candidate mixtures at least one

of which satisfies

‖𝑤𝑖 − ̃︀𝑤𝑖‖+ ‖𝐿(𝜇𝑖)− ̃︀𝜇𝑖‖2 +
⃦⃦⃦
𝐿(Σ𝑖)− ̃︀Σ𝑖

⃦⃦⃦
2
≤ poly(𝜖)

for all 𝑖. By Claim 3.5.3, we know that the components we compute are close in TV to the

true components. Now applying the inverse transformation 𝐿−1 to all of the components,

we are done.

■

3.6 Rough Clustering

As mentioned earlier in the proof overview, the first step in our full algorithm will be to

cluster the points. We present our clustering algorithm in this section. This section closely

mirrors the work in [39]. We first define a measure of closeness between Gaussians that we

will use throughout the paper.

Definition 3.6.1. We say that two Gaussians 𝑁(𝜇,Σ) and 𝑁(𝜇′,Σ′) are 𝐶-close if all of

the following conditions hold

1. (mean condition) For all unit vectors 𝑣 ∈ R𝑑, we have (𝑣 · 𝜇− 𝑣 · 𝜇′)2 ≤ 𝐶𝑣𝑇 (Σ +Σ′)𝑣

2. (variance condition) For all unit vectors 𝑣 ∈ R𝑑, we have

max(𝑣𝑇Σ𝑣, 𝑣𝑇Σ′𝑣) ≤ 𝐶min(𝑣𝑇Σ𝑣, 𝑣𝑇Σ′𝑣)

3. (covariance condition) Finally, we have
⃦⃦
𝐼 − Σ′−1/2ΣΣ′−1/2

⃦⃦2
2
≤ 𝐶
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The main theorem that we aim to prove in this section is the following, which implies

that if the true mixture can be well-clustered into submixtures, then we can recover this

clustering with constant-accuracy.

Theorem 3.6.2. Let 𝑘,𝐷, 𝛾 be parameters. Assume we are given 𝜖-corrupted samples from

a mixture of Gaussians 𝑤1𝐺1 + · · · + 𝑤𝑘𝐺𝑘 where the mixing weights 𝑤𝑖 are all rational

numbers with denominator bounded by a constant 𝐴. Let 𝐴1, . . . , 𝐴𝑙 be a partition of the

components such that

1. For any 𝑗1, 𝑗2 in the same piece of the partition 𝐺𝑗1 , 𝐺𝑗2 are 𝐷-close

2. For any 𝑗1, 𝑗2 in different pieces of the partition, 𝐺𝑗1 , 𝐺𝑗2 are not 𝐷′-close

where 𝐷′ > 𝐹 (𝑘,𝐴,𝐷, 𝛾) for some sufficiently large function 𝐹 . Assume that 𝑡 > 𝐹 (𝑘,𝐴,𝐷, 𝛾)

and 𝜂, 𝜖, 𝛿 < 𝑓(𝑘,𝐴,𝐷, 𝛾) for some sufficiently small function 𝑓 . Then with probability at

least 1− 𝛾, if 𝑋1, . . . , 𝑋𝑛 is an 𝜖-corrupted sample from the mixture 𝑤1𝐺1 + · · ·+𝑤𝑘𝐺𝑘 with

𝑛 ≥ poly(1/𝜖, 1/𝜂, 1/𝛿, 𝑑)𝑂(𝑘,𝐴), then one of the clusterings returned by Rough Clustering

(see Algorithm 6) gives a 𝛾-corrupted sample of each of the submixtures given by 𝐴1, . . . , 𝐴𝑙.

Remark. Note that the last statement is well defined because the assumption about the

partition essentially implies that all pairs of components in different submixtures are separated

so 𝛾-corrupted sample simply means correctly recovering a 1−𝛾-fraction of the original points

that were drawn from the corresponding submixture.

In this section, it will suffice to consider when the mixing weights are equal as we can

subdivide one component into many identical ones so from now on we assume 𝑤1 = · · · =

𝑤𝑘 = 1/𝑘 and all dependencies on 𝐴 become dependencies on 𝑘.

We begin with a few preliminaries. The following claim is a simple consequence of the

definition.

Claim 3.6.3. Let 𝐺1, 𝐺2, 𝐺3 be Gaussians such that 𝐺1 and 𝐺2 are 𝐶-close and 𝐺2 and 𝐺3

are 𝐶-close. Then 𝐺1 and 𝐺3 are poly(𝐶)-close.
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Proof. The second condition follows immediately from the fact that 𝐺1 and 𝐺2 are 𝐶-close

and 𝐺2 and 𝐺3 are 𝐶-close. Now we know that for all vectors 𝑣, 𝑣𝑇Σ1𝑣, 𝑣
𝑇Σ2𝑣, 𝑣

𝑇Σ3𝑣 are

all within a poly(𝐶) factor of each other. This means that the singular values of Σ1/2
𝑖 Σ

−1/2
𝑗

are all bounded above and below by poly(𝐶). From this and the triangle inequality, we get

the first and third conditions. ■

The next claim follows immediately from Lemma 3.6 in [39].

Claim 3.6.4. There is a decreasing function 𝑓 such that 𝑓(𝐶) > 0 for all 𝐶 > 0 such that

if two Gaussians 𝐺1, 𝐺2 are 𝐶-close then

𝑑TV(𝐺1, 𝐺2) ≤ 1− 𝑓(𝐶)

We will now show that either all pairs in the mixture are not too far apart, or there

exists a nontrivial partition of the mixture into two parts that are separated in either mean,

variance in some direction, or covariance. This parallels Corollary 3.7 in [39]. However, we

require a slightly different statement because their paper specializes to the case where all

pairs of components are separated. We use 𝜇,Σ to denote the mean and covariance of the

overall mixture.

Claim 3.6.5. Let 𝐶 > 100 be a constant. Let 𝐶𝑘 be a sufficiently large constant depending

only on 𝐶 and 𝑘. Assume that there are 𝑖, 𝑗 ∈ [𝑘] such that 𝑁(𝜇𝑖,Σ𝑖) and 𝑁(𝜇𝑗,Σ𝑗) are not

𝐶𝑘-close. Then there exists a partition of [𝑘] into two disjoint sets 𝑆, 𝑇 such that for any

𝑎 ∈ 𝑆, 𝑏 ∈ 𝑇 , 𝑁(𝜇𝑎,Σ𝑎) is not 𝑘𝐶-close to 𝑁(𝜇𝑏,Σ𝑏) and at least one of the following holds:

1. There is a direction 𝑣 such that for all 𝑎 ∈ 𝑆, 𝑏 ∈ 𝑇 ,

((𝜇𝑎 − 𝜇𝑏) · 𝑣) ≥ max

(︂
𝑘𝐶(𝑣𝑇 (Σ𝑎 + Σ𝑏)𝑣),

𝑣𝑇Σ𝑣

𝑘2

)︂

2. There is a direction 𝑣 such that for all 𝑎 ∈ 𝑆, 𝑏 ∈ 𝑇 ,

𝑣𝑇Σ𝑎𝑣

𝑣𝑇Σ𝑏𝑣
≥ 𝑘𝐶 and

𝑣𝑇Σ𝑎𝑣

𝑣𝑇Σ𝑣
≥ 1

𝑘2𝐶𝑘
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3. We have

⃦⃦
𝐼 − Σ−1/2

𝑎 Σ𝑏Σ
−1/2
𝑎

⃦⃦2 ≥ 𝑘𝐶 max
(︁⃦⃦

Σ1/2
𝑎 𝐴𝑎𝑏Σ

1/2
𝑎

⃦⃦
,
⃦⃦⃦
Σ

1/2
𝑏 𝐴𝑎𝑏Σ

1/2
𝑏

⃦⃦⃦
,
⃦⃦
Σ1/2𝐴𝑎𝑏Σ

1/2
⃦⃦)︁

where 𝐴𝑎𝑏 = Σ
−1/2
𝑎

(︁
𝐼 − Σ

−1/2
𝑎 Σ𝑏Σ

−1/2
𝑎

)︁
Σ

−1/2
𝑎

Proof. We break into a few cases:

Case 1: Suppose that there is a 𝑣 such that for some 𝑎, 𝑏

((𝜇𝑎 − 𝜇𝑏) · 𝑣)2 ≥ 10𝑘2 · 𝑘𝐶 max
𝑖

(𝑣𝑇Σ𝑖𝑣)

then we claim we are done. To see this, first observe that

𝑣𝑇Σ𝑣 =
1

𝑘2

∑︁
𝑖 ̸=𝑗

((𝜇𝑖 − 𝜇𝑗) · 𝑣)2 +
1

𝑘

∑︁
𝑣𝑇Σ𝑖𝑣

so then choosing 𝑎, 𝑏 such that ((𝜇𝑎−𝜇𝑏) ·𝑣)2 is maximal, we have ((𝜇𝑎−𝜇𝑏) ·𝑣)2 ≥ 0.1𝑣𝑇Σ𝑣.

Now we can partition the components based on the value of 𝜇𝑖 · 𝑣. We can ensure that the

gap between the clusters has size at least (𝜇𝑎−𝜇𝑏)·𝑣
𝑘

. This will imply for all 𝑎 ∈ 𝑆, 𝑏 ∈ 𝑇

((𝜇𝑎 − 𝜇𝑏) · 𝑣)2 ≥ 𝑘𝐶𝑣𝑇 (Σ𝑎 + Σ𝑏)𝑣)

i.e. the corresponding components are not 𝑘𝐶-close. Since we can choose 𝐶𝑘 sufficiently

large, the first condition is also satisfied and we are done in this case.

Case 2: Alternatively suppose there is a 𝑣 such that

max𝑖(𝑣
𝑡Σ𝑖𝑣)

min𝑖(𝑣𝑇Σ𝑖𝑣)
≥ 𝑘4𝐶𝑘
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In this case, we can partition the components based on the value of 𝑣𝑇Σ𝑖𝑣. Without loss of

generality we have

𝑣𝑇Σ1𝑣 ≥ · · · ≥ 𝑣𝑇Σ𝑘𝑣

Note that since we are not in the first case 𝑣𝑇Σ1𝑣 ≥ 𝑣𝑇Σ𝑣
20𝑘2+𝐶 . Next, because 𝑣𝑇Σ𝑘𝑣

𝑣𝑇Σ𝑣
≤ 1

𝑘2𝐶𝑘

there must be some consecutive 𝑖, 𝑖+ 1 such that

(︂
𝑣𝑇Σ𝑖𝑣

𝑣𝑇Σ𝑣

)︂
≥ 𝑘𝐶

(︂
𝑣𝑇Σ𝑖+1𝑣

𝑣𝑇Σ𝑣

)︂
and

(︂
𝑣𝑇Σ𝑖𝑣

𝑣𝑇Σ𝑣

)︂
≥ 1

𝑘2𝐶𝑘

partitioning into 𝑆 = {1, 2, . . . , 𝑖} and 𝑇 = {𝑖 + 1, . . . , 𝑘}, we immediately verify that the

desired conditions (second condition) are satisfied.

Case 3: Finally, it remains to consider the situation where neither the condition in Case

1 nor the condition in Case 2 holds. Note that by assumption, there is some pair 𝑎, 𝑏 ∈ [𝑘]

for which 𝑁(𝜇𝑎Σ𝑎), 𝑁(𝜇𝑏,Σ𝑏) are not 𝐶𝑘-close. Since we can choose

𝐶𝑘 > (𝑘𝐶)10𝑘𝐶

this pair cannot fail the variance condition in any direction (second condition of Definition

3.6.1). This pair also cannot fail the mean condition in any direction (first condition of

Definition 3.6.1) because then we would have

((𝜇𝑎 − 𝜇𝑏) · 𝑣)2 ≥ 𝐶𝑘𝑣
𝑇Σ𝑎𝑣 ≥

𝐶𝑘

𝑘4𝐶𝑘
max

𝑖
(𝑣𝑇Σ𝑖𝑣)

and we would be in the first case. Thus, we must actually have

⃦⃦
𝐼 − Σ−1/2

𝑎 Σ𝑏Σ
−1/2
𝑎

⃦⃦2
2
≥ 𝐶𝑘
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Next, we claim that for all 𝑖, 𝑗, Σ
1/2
𝑖 Σ

−1/2
𝑗 has smallest and largest singular value in the

interval

ℐ ≜

[︂
1

𝑘4𝐶𝑘
, 𝑘4𝐶𝑘

]︂
If this were not true, without loss of generality we can find a unit vector 𝑣 such that⃦⃦⃦
Σ

1/2
𝑖 Σ

−1/2
𝑗 𝑣

⃦⃦⃦
2
≥ 𝑘4𝐶𝑘. But this implies

(Σ
−1/2
𝑗 𝑣)𝑇Σ𝑖(Σ

−1/2
𝑗 𝑣)

(Σ
−1/2
𝑗 𝑣)𝑇Σ𝑗(Σ

−1/2
𝑗 𝑣)

≥ 𝑘8𝐶𝑘

meaning we are actually in case 2. Similarly, we can show that Σ
1/2
𝑖 Σ−1/2 has smallest and

largest singular value in the interval ℐ or else we would be in Case 1.

To complete the proof, let 𝑎0, 𝑏0 be indices corresponding to a pair of components that

are not 𝐶𝑘-close and construct the following graph. Two nodes 𝑖, 𝑗 are connected if and only

if ⃦⃦
Σ−1/2

𝑎0
Σ𝑗Σ

−1/2
𝑎0
− Σ−1/2

𝑎0
Σ𝑖Σ

−1/2
𝑎0

⃦⃦2
2
≤ 𝐶𝑘

𝑘2

This graph must not be connected since otherwise there would be a path of length at most 𝑘

between 𝑎0 and 𝑏0 and summing the above inequalities along this path, this would contradict

the fact that ⃦⃦
𝐼 − Σ−1/2

𝑎0
Σ𝑏0Σ

−1/2
𝑎0

⃦⃦2
2
≥ 𝐶𝑘.

We claim that it suffices to take 𝑆 and 𝑇 to be two connected components of the graph.

Indeed, for any 𝑎 ∈ 𝑆, 𝑏 ∈ 𝑇 , we have

⃦⃦
Σ−1/2

𝑎0
Σ𝑎Σ

−1/2
𝑎0
− Σ−1/2

𝑎0
Σ𝑏Σ

−1/2
𝑎0

⃦⃦2
2
≥ 𝐶𝑘

𝑘2

Now observe

𝐼 − Σ−1/2
𝑎 Σ𝑏Σ

−1/2
𝑎 = (Σ−1/2

𝑎 Σ1/2
𝑎0

)
(︀
Σ−1/2

𝑎0
Σ𝑎Σ

−1/2
𝑎0
− Σ−1/2

𝑎0
Σ𝑏Σ

−1/2
𝑎0

)︀
(Σ1/2

𝑎0
Σ−1/2

𝑎 )
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and combining with the singular value bounds we showed for Σ
1/2
𝑖 Σ

−1/2
𝑗 and Σ

1/2
𝑖 Σ−1/2, we

have ⃦⃦
𝐼 − Σ−1/2

𝑎 Σ𝑏Σ
−1/2
𝑎

⃦⃦2
2
≥ max

(︀
𝑘𝐶 , 𝑘𝐶 ‖𝐴𝑎𝑏‖

)︀
for any 𝑎, 𝑏 on different sides of the partition. The other quantities in the third condition

can be bounded similarly as long as 𝐶𝑘 is chosen to be sufficiently large. ■

3.6.1 SOS Program

To solve the clustering problem, we set up the same polynomial constraints as in Diakonikolas

et al. [39]. Recall that Definition 3.2.4 gives a recipe for turning this into an SDP relaxation.

Definition 3.6.6 (Clustering Program𝒜, restated from [39]). Let 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑 represent

the samples. Let 𝑤1, . . . , 𝑤𝑛, 𝑧1, . . . , 𝑧𝑛, 𝑋
′
1, . . . , 𝑋

′
𝑛 and Σ,Σ1/2,Σ−1/2 ∈ R𝑑×𝑑 (we think of

the Σ as 𝑑× 𝑑 matrices whose entries are variables) be indeterminates that we will solve for

in the system. We think of the 𝑤 variables as weights on the points and the 𝑧 variables as

representing whether points are outliers. We will enforce that the subset of points weighted by

𝑤 has moments that are approximately Gaussian. The full system of polynomial constraints

is given below:

1. We have parameters 𝑡 ∈ N that is even and 𝛿, 𝜖 > 0.

2. Let 𝒜corruptions = {𝑧2𝑖 = 𝑧𝑖}𝑖∈[𝑛], {𝑧𝑖(𝑋𝑖 −𝑋 ′
𝑖) = 0}𝑖∈[𝑛], {

∑︀
𝑖∈[𝑛] 𝑧𝑖 = (1− 𝜖)𝑛/𝑘}

3. Let 𝒜subset = {𝑤2
𝑖 = 𝑤𝑖}𝑖∈[𝑛], {

∑︀
𝑖∈[𝑛]𝑤𝑖 = 𝑛/𝑘}

4. Let 𝜇(𝑤) = 𝑘
𝑛

∑︀
𝑖∈[𝑛]𝑤𝑖𝑋

′
𝑖

5. Let Σ(𝑤) = 𝑘
𝑛

∑︀
𝑖∈[𝑛]𝑤𝑖(𝑋

′
𝑖 − 𝜇(𝑤))(𝑋 ′

𝑖 − 𝜇(𝑤))𝑇

6. Let 𝒜matrices = {(Σ1/2)2 = Σ(𝑤)}, {(Σ−1/2Σ1/2)2 = Σ−1/2Σ1/2}, {Σ−1/2Σ1/2𝑤𝑖(𝑋
′
𝑖 −

𝜇(𝑤)) = 𝑤𝑖(𝑋
′
𝑖 − 𝜇(𝑤))}𝑖∈[𝑛]
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7. Let 𝒜moments be the following set of polynomial inequalities for all 𝑠 ≤ 𝑡

⃦⃦⃦⃦
⃦⃦𝑘𝑛∑︁

𝑖∈[𝑛]

𝑤𝑖[Σ
−1/2(𝑋 ′

𝑖 − 𝜇(𝑤))]⊗𝑠 −𝑀𝑠

⃦⃦⃦⃦
⃦⃦
2

≤ 𝛿𝑑−2𝑡

where 𝑀𝑠 = E𝑔∈𝑁(0,𝐼)[𝑔
⊗𝑠] is the moment tensor of a standard Gaussian.

We will work with the same set of deterministic conditions on the samples as in Di-

akonikolas et al. [39]. These conditions hold with high probability for the uncorrupted

points.

Definition 3.6.7 (Deterministic conditions, restated from [39]). Fix Gaussians 𝐺1, . . . , 𝐺𝑘

on R𝑑. For 𝛿, 𝜓 > 0 and 𝑡 ∈ N. The (𝛿, 𝜓, 𝑡)-deterministic conditions with respect to

𝐺1, . . . , 𝐺𝑘 on a set of samples 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑 are

1. There is a partition of {𝑋1, . . . , 𝑋𝑛} into 𝑘 pieces 𝑆1, . . . , 𝑆𝑘 each of size 𝑛/𝑘 such that

for all 𝑖 ∈ [𝑘] and 𝑠 ≤ 𝑡

⃦⃦⃦⃦
⃦𝑘𝑛∑︁

𝑗∈𝑆𝑖

[Σ
−1/2

𝑖 (𝑋𝑗 − 𝜇𝑖)]
⊗𝑠 −𝑀𝑠

⃦⃦⃦⃦
⃦
2

𝐹

≤ 𝑑−2𝑡𝛿

where Σ𝑖 and 𝜇𝑖 denote the empirical mean and covariance of the uniform distribu-

tion over elements of 𝑆𝑖 and 𝑀𝑠 = E𝑔∈𝑁(0,𝐼)[𝑔
⊗𝑠] is the moment tensor of a standard

Gaussian.

2. For 𝑎 ∈ [𝑘], 𝑣 ∈ R𝑑, 𝐴 ∈ R𝑑×𝑑 we define

(a) 𝐸𝑎(𝑣) = {𝑋𝑖 ∈ 𝑆𝑎|((𝑋𝑖 − 𝜇𝑎) · 𝑣)2 ≤ 𝑂(1) log(1/𝜓)𝑣𝑇Σ𝑎𝑣}

(b) 𝐹𝑎(𝑣) = {(𝑋𝑖, 𝑋𝑗) ∈ 𝑆2
𝑎|((𝑋𝑖 −𝑋𝑗) · 𝑣)2 ≥ Ω(1) · 𝜓𝑣𝑇Σ𝑎𝑣}

(c) 𝐺𝑎(𝐴) = {(𝑋𝑖, 𝑋𝑗) ∈ 𝑆2
𝑎|(𝑋𝑖 − 𝑋𝑗)

𝑇𝐴(𝑋𝑖 − 𝑋𝑗) = 2⟨Σ𝑎, 𝐴⟩ ± 𝑂(1) log(1/𝜓) ·

‖Σ𝑎𝐴‖𝐹}.

Then for every 𝑣 ∈ R𝑑, 𝐴 ∈ R𝑑×𝑑 we have
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• |𝐸𝑎(𝑣)| ≥ (1− 𝜓)(𝑛/𝑘)

• |𝐹𝑎(𝑣)|, |𝐺𝑎(𝐴)| ≥ (1− 𝜓)(𝑛/𝑘)2

Claim 3.6.8 (Restated from [39]). For all even 𝑡, if

𝑛 ≥ log(1/𝛾)𝐶𝑡𝑑10𝑘𝑡/𝛿2

for some sufficiently large constant 𝐶 and 𝜓 ≥ 𝛿, then 𝑋1, . . . , 𝑋𝑛 drawn i.i.d from 1
𝑘

∑︀𝑘
𝑖=1𝐺𝑖

satisfy Definition 3.6.7 with probability at least 1− 𝛾.

We will use the following key lemmas from [39]. The setup is exactly the same. Let

𝑋1, . . . , 𝑋𝑛 ∈ R𝑑 satisfy the (𝛿, 𝜓, 𝑡)-deterministic conditions (Definition 3.6.7) with respect

to Gaussians 𝐺1, . . . , 𝐺𝑘. Let 𝑆1, . . . , 𝑆𝑘 be the partition guaranteed in the definition. Let

𝑌1, . . . , 𝑌𝑛 be an 𝜖-corruption of 𝑋1, . . . , 𝑋𝑛 and let 𝒜 be the clustering program (Definition

3.6.6) for 𝑌1, . . . , 𝑌𝑛. For indeterminates 𝑤1, . . . , 𝑤𝑛, define

𝛼𝑖(𝑤) =
∑︁
𝑗∈𝑆𝑖

𝑤𝑗.

Below we will assume 𝜓, 𝜏 are smaller than some universal constants 𝜓0, 𝜏0 > 0.

Recall in Claim 3.6.5 that there are essentially three different ways that two Gaussians

can be separated in TV distance. We call these mean separation, variance separation, and

covariance separation. The lemmas below roughly assert that if two Gaussians are sepa-

rated in one of these ways, then a valid solution to the clustering program 𝒜 cannot assign

significant weight to both of them.

Lemma 3.6.9 (Mean Separation, restated from [39]). For every 𝜏 > 0, there is 𝑠 = ̃︀𝑂(1/𝜏 2)
such that if 𝜖, 𝛿 ≤ 𝑠−𝑂(𝑠)𝑘−20 then for all 𝑎, 𝑏 ∈ [𝑘], all 𝑣 ∈ R𝑑 and all sufficiently small

𝜌 > 0, if

⟨𝜇𝑎 − 𝜇𝑏, 𝑣⟩2 ≥ 𝜌 E
𝑋,𝑋′∼ 1

𝑘

∑︀
𝐺𝑖

⟨𝑋 −𝑋 ′, 𝑣⟩2,
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then

𝒜 ⊢𝑂(𝑠)

(︂
𝛼𝑎(𝑤)𝛼𝑏(𝑤)

𝑛2

)︂𝑠

≤ (𝑠 log 1/𝜓)𝑂(𝑠) ·
(︂
⟨𝑣,Σ𝑎𝑣⟩+ ⟨𝑣,Σ𝑏𝑣⟩
⟨𝜇𝑎 − 𝜇𝑏, 𝑣⟩2

)︂Ω(𝑠)

+𝜌−𝑂(𝑠)(𝜏Ω(𝑠) + 𝜖Ω(𝑠)𝑘𝑂(𝑠)𝑠𝑂(𝑠2) + 𝜓Ω(𝑠))

Lemma 3.6.10 (Variance Separation, restated from [39]). For every 𝜏 > 0, there is 𝑠 =̃︀𝑂(1/𝜏 2) such that if 𝜖, 𝛿 ≤ 𝑠−𝑂(𝑠)𝑘−20 then for all 𝑎, 𝑏 ∈ [𝑘], all 𝑣 ∈ R𝑑 and all sufficiently

small 𝜌 > 0, if

⟨𝑣,Σ𝑏𝑣⟩ ≥ 𝜌 E
𝑋,𝑋′∼ 1

𝑘

∑︀
𝐺𝑖

⟨𝑋 −𝑋 ′, 𝑣⟩2,

then

𝒜 ⊢𝑂(𝑠)

(︂
𝛼𝑎(𝑤)𝛼𝑏(𝑤)

𝑛2

)︂𝑠

≤ 𝜓−𝑂(𝑠) ·

(︃
𝑠𝑂(𝑠)

(︂
⟨𝑣,Σ𝑎𝑣⟩
⟨𝑣,Σ𝑏𝑣⟩

)︂Ω(𝑠)

+ 𝜌−𝑂(𝑠)(𝜏Ω(𝑠) + 𝜖Ω(𝑠)𝑘𝑂(𝑠)𝑠𝑂(𝑠2))

)︃
+𝜌−𝑂(𝑠)𝜓Ω(𝑠)

Lemma 3.6.11 (Covariance Separation, restated from [39]). Let Σ be the covariance of the

mixture 1
𝑘

∑︀
𝐺𝑖. If 𝜖, 𝛿 < 𝑘−𝑂(1), then for all 𝑎, 𝑏 ∈ [𝑘] and 𝐴 ∈ R𝑑×𝑑,

𝒜 ⊢𝑂(1)

(︂
𝛼𝑎(𝑤)𝛼𝑏(𝑤)

𝑛2

)︂16

≤ 𝑂(log 1/𝜓)8 ·

⃦⃦
Σ1/2𝐴Σ1/2

⃦⃦8
𝐹
+
⃦⃦⃦
Σ

1/2
𝑎 𝐴Σ

1/2
𝑎

⃦⃦⃦8
𝐹
+
⃦⃦⃦
Σ

1/2
𝑏 𝐴Σ

1/2
𝑏

⃦⃦⃦8
𝐹

⟨Σ𝑎 − Σ𝑏𝐴⟩8

+𝑂(𝜓4) +𝑂(𝜖2𝑘20)

3.6.2 Clustering Algorithm

We use essentially the same clustering algorithm as [39].

Proof of Theorem 3.6.2. We can use Claim 3.6.8 to ensure that with 1−𝛾/2 probability, the

deterministic conditions in Definition 3.6.7 are satisfied for all submixtures and the various

values of 𝛿, 𝜓, 𝑡 that we will need.

First, if all pairs of components are 𝐷′ close, then returning the entire sample as one
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Algorithm 6 Rough Clustering
Input: 𝜖-corrupted samples 𝑋1, . . . , 𝑋𝑛 and parameters 𝑡, 𝛿, 𝜖, 𝑘, 𝜂
Initialize a list of subsets 𝐿 = {}
for count = 0, 1, . . . , 100𝑘 log 1/𝜂 do

Let 𝒜 be the clustering program (Definition 3.6.6) for 𝑋1, . . . , 𝑋𝑛

Compute the pseudoexpectation ̃︀𝐸 that satisfies the constraints 𝒜 (Definition 3.6.6)
and maximizes

̃︀𝐸
⎡⎣ ∑︁

𝑖 ̸∈∪𝑅∈𝐿𝑅

𝑤𝑖

⎤⎦
Choose a random 𝑖 ∼ [𝑛] with probability 𝑝𝑖 =

̃︀E[𝑤𝑖]∑︀̃︀E[𝑤𝑖]

Create set 𝑅 by adding each element 𝑗 ∈ [𝑛] independently with probability ̃︀E[𝑤𝑖𝑤𝑗 ]̃︀E[𝑤𝑖]

Add 𝑅 to the list 𝐿
Let 𝐿 = {𝑅1, . . . , 𝑅𝑚}
for all subsets 𝑆 ⊂ 𝐿 do

Recurse on ∪𝑖∈𝑆𝑅𝑖 for each of 𝑘 → 1, 2, . . . , 𝑘 − 1 and 𝑡, 𝛿, 𝜖, 𝜂 unchanged
Return {𝑋1, . . . , 𝑋𝑛} (as one cluster) and all unions of some combination of the clusters
returned in each computation branch

cluster suffices. Now, we may assume that there is some pair that is not 𝐷′-close. We apply

Claim 3.6.5 and let 𝑈, 𝑉 be the partition of the components given by the claim. Let 𝐶 be

a sufficiently large function of 𝑘,𝐷, 𝛾 that we will set later. We can do this as long as we

ensure that 𝐷′ is a sufficiently large function of 𝑘, 𝐶. We ensure that 𝑘𝐶 > 𝐷. Note that

each of the pieces 𝐴1, . . . , 𝐴𝑙, must be entirely in 𝑈 or in 𝑉 because of our assumption about

closeness between the components. We claim that

̃︀E
⎡⎣⎛⎝ ∑︁

𝑖∈∪𝑗∈𝑈𝑆𝑗

𝑤𝑖

⎞⎠⎛⎝ ∑︁
𝑖∈∪𝑗∈𝑉 𝑆𝑗

𝑤𝑖

⎞⎠⎤⎦ ≤ 𝛾′𝑛2 (3.4)

where we can make 𝛾′ sufficiently small in terms of 𝛾,𝐷, 𝑘 by choosing 𝐷′ and the functions

𝑓, 𝐹 suitably.

Below we will let 𝑎, 𝑏 be indices such that 𝑎 ∈ 𝑈 and 𝑏 ∈ 𝑉 . If the first clause of Claim 3.6.5

is satisfied, then we can take 𝜌 = 𝑝𝑜𝑙𝑦(1/𝑘) and for 𝜏 sufficiently small in terms of 𝛾, 𝑘,𝐷,𝐶,
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we have ̃︀E(︂𝛼𝑎(𝑤)𝛼𝑏(𝑤)

𝑛2

)︂𝑠

≤ 𝑘−𝐶/2𝑠

Summing over all 𝑎 ∈ 𝑈, 𝑏 ∈ 𝑉 , this gives (3.4).

If the second clause of Claim 3.6.5 is satisfied, then we can take

𝜌 = min
𝑎∈𝑈

𝑣𝑇Σ𝑎𝑣

𝑣𝑇Σ𝑣
≥ 1

𝑘2𝐶𝑘

We choose 𝜏 sufficiently small in terms of 𝛾, 𝑘, 𝐶,𝐷 and combining with the fact that

(𝑣𝑡Σ𝑎𝑣) ≥ 𝑘𝐶(𝑣𝑇Σ𝑏𝑣) for all 𝑎 ∈ 𝑈, 𝑏 ∈ 𝑉 we get

̃︀E(︂𝛼𝑎(𝑤)𝛼𝑏(𝑤)

𝑛2

)︂𝑠

≤ 𝑘−Ω(𝐶)𝑠

Finally, when the third clause of Claim 3.6.5 is satisfied follows similarly after setting 𝐴 =

𝐴𝑎𝑏. In all cases, we now have (3.4). The next step will be to analyze our random sampling

to select the subset 𝑅. First note

̃︀E[|𝑅|] = ∑︀
𝑖,𝑗
̃︀E[𝑤𝑖𝑤𝑗]∑︀

𝑖
̃︀E[∑︀𝑖𝑤𝑖]

=
𝑛

𝑘

Next we analyze the intersections with the two sides of the partition 𝑈, 𝑉 . We will slightly

abuse notation and use 𝑖 ∈ 𝑈 when 𝑖 ∈ ∪𝑗∈𝑈𝑆𝑗 and it is clear from context that we are

indexing the samples. Conditioned on the first index that is randomly chosen satisfying

𝑖 ∈ 𝑈 then

E[|𝑅 ∩ 𝑉 |] =
∑︀

𝑖1∈𝑈,𝑖2∈𝑉
̃︀E[𝑤𝑖1𝑤𝑖2 ]∑︀

𝑖∈𝑈
̃︀E[𝑤𝑖]

≤ 𝛾′𝑛2∑︀
𝑖∈𝑈
̃︀E[𝑤𝑖]

repeating the same argument for when 𝑖 ∈ 𝑉 , we have E[min(|𝑅 ∩ 𝑈 |, |𝑅 ∩ 𝑉 |)] ≤ 𝛾′𝑘𝑛.

Finally, we lower bound the expected number of new elements that 𝑅 adds to the list 𝐿.

This quantity is ̃︀E[∑︀𝑖∈[𝑛],𝑗 /∈𝐿𝑤𝑖𝑤𝑗]

𝑛/𝑘
=
∑︁
𝑗 /∈𝐿

̃︀E[𝑤𝑗]
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where by 𝑗 /∈ 𝐿 we mean 𝑗 is not in the union of all previous subsets in the list 𝐿. Note that

indicator functions of the components 𝑆1, . . . , 𝑆𝑘 are all valid pseudoexpectations and since

we are picking the pseudoexpectation that maximizes
∑︀

𝑗 /∈𝐿
̃︀E[𝑤𝑗], the expected number of

new elements added to 𝐿 is at least

𝑛− | ∪𝑅∈𝐿 𝑅|
𝑘

Now we analyze the recombination step once we finalize 𝐿 = {𝑅1, . . . , 𝑅𝑚}. For any suf-

ficiently small function ℎ(𝑘, 𝛾,𝐷), we claim that by choosing 𝐷′ and the functions 𝑓, 𝐹

appropriately, we can ensure with 1 − ℎ(𝑘,𝐷, 𝛾) probability, there is some recombination

that gives a 1 − ℎ(𝑘,𝐷, 𝛾)-corrupted sample of the submixture corresponding to 𝑈 . To see

this, it suffices to set 𝜂 < ℎ(𝑘,𝐷, 𝛾) and then look at the first 𝑚′ = 100𝑘 log 1/ℎ(𝑘,𝐷, 𝛾)

subsets in 𝐿. Their union has expected size (1− ℎ(𝑘,𝐷, 𝛾)100)𝑛. Next, among 𝑅1, . . . , 𝑅𝑚′ ,

E

[︃
𝑚′∑︁
𝑖=1

min(|𝑅𝑖 ∩ 𝑈 |, |𝑅𝑖 ∩ 𝑉 |)

]︃
≤ 𝛾′𝑘𝑚′𝑛

If we ensure that 𝛾′ is sufficiently small in terms of 𝛾,𝐷, 𝑘, then using Markov’s inequality,

with 1 − ℎ(𝑘,𝐷, 𝑦) probability, there is some recombination that gives a 1 − ℎ(𝑘,𝐷, 𝛾)-

corrupted sample of the submixture corresponding to 𝑈 . We can make the same argument

for 𝑉 . Now we can recurse and repeat the argument because each of these submixtures only

contains at most 𝑘 − 1 true components. ■

3.6.3 Improved Clustering Result from [11]

In [11], the authors obtain a rough clustering result similar to Theorem 3.6.2 but are able

to remove the bounded fractionality assumption. Their result is restated using our notation

below.

Theorem 3.6.12 ([11]). Let 𝑘,𝐷, 𝛾 be parameters. Assume we are given 𝜖-corrupted samples

from a mixture of Gaussians 𝑤1𝐺1 + · · ·+𝑤𝑘𝐺𝑘 where the mixing weights 𝑤𝑖 are all at least
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1/𝐴 for some constant 𝐴. Let 𝐴1, . . . , 𝐴𝑙 be a partition of the components such that

1. For any 𝑗1, 𝑗2 in the same piece of the partition 𝐺𝑗1 , 𝐺𝑗2 are 𝐷-close

2. For any 𝑗1, 𝑗2 in different pieces of the partition, 𝐺𝑗1 , 𝐺𝑗2 are not 𝐷′-close

where 𝐷′ > 𝐹 (𝑘,𝐴,𝐷, 𝛾) for some sufficiently large function 𝐹 . Assume that 𝑡 > 𝐹 (𝑘,𝐴,𝐷, 𝛾)

and 𝜂, 𝜖, 𝛿 < 𝑓(𝑘,𝐴,𝐷, 𝛾) for some sufficiently small function 𝑓 . Then with probability at

least 1− 𝛾, if 𝑋1, . . . , 𝑋𝑛 is an 𝜖-corrupted sample from the mixture 𝑤1𝐺1 + · · ·+𝑤𝑘𝐺𝑘 with

𝑛 ≥ poly(1/𝜖, 1/𝜂, 1/𝛿, 𝑑)𝑂(𝑘,𝐴), then there is an algorithm that runs in poly(𝑛) time and

returns 𝑂𝑘(1) candidate clusterings, at least one of which gives a 𝛾-corrupted sample of each

of the submixtures given by 𝐴1, . . . , 𝐴𝑙.

Observe that Theorem 3.6.12 is the same as Theorem 3.6.2 but with the bounded frac-

tionality assumption removed. Theorem 3.6.2 is the only source of the bounded fractionality

assumption in our paper. In the subsequent sections, replacing all uses of Theorem 3.6.2

with Theorem 3.6.12 allows us to remove the bounded fractionality assumption from our

main result.

3.7 Putting Everything Together

We can now combine our clustering results and our results for learning mixtures of Gaussians

that are not too separated to get a learning algorithm in the fully general case. Our main

theorem is stated below.

Theorem 3.7.1. Let 𝑘,𝐴, 𝑏 > 0 be constants. There is a sufficiently large function 𝐺 and

a sufficiently small function 𝑔 depending only on 𝑘,𝐴, 𝑏 (with 𝐺(𝑘,𝐴, 𝑏), 𝑔(𝑘,𝐴, 𝑏) > 0) such

that given an 𝜖-corrupted sample 𝑋1, . . . , 𝑋𝑛 from a mixture of Gaussians ℳ = 𝑤1𝐺1 +

· · ·+ 𝑤𝑘𝐺𝑘 ∈ R𝑑 where the 𝐺𝑖 have variance at least poly(𝜖/𝑑) and at most poly(𝑑/𝜖) in all

directions and

• The 𝑤𝑖 are all rational with denominator at most 𝐴
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• 𝑑TV(𝐺𝑖, 𝐺𝑗) ≥ 𝑏

and 𝑛 ≥ (𝑑/𝜖)𝐺(𝑘,𝐴,𝑏), then there is an algorithm that runs in time poly(𝑛) and with 0.99

probability outputs a mixture ̃︁ℳ = ̃︁𝑤1
̃︁𝐺1 + · · ·+̃︁𝑤𝑘

̃︁𝐺𝑘

such that 𝑑TV(̃︁ℳ,ℳ) ≤ 𝜖𝑔(𝑘,𝐴,𝑏).

3.7.1 Distance Between Gaussians

We will need to prove a few preliminary results. The main lemma we prove in this section

is the following, which gives a stronger bound than the triangle inequality for TV distance

between Gaussians.

Lemma 3.7.2. Let 𝜆 be a constant. Let 𝐴,𝐵,𝐶 be Gaussian distributions. Assume that

𝑑TV(𝐴,𝐵) ≤ 1− 𝜆. If 𝑑TV(𝐴,𝐶) ≥ 1− 𝜖 and 𝜖 is sufficiently small then

𝑑TV(𝐵,𝐶) ≥ 1− poly(𝜖)

(where the RHS may depend on 𝜆).

Note that this result is not true for arbitrary distributions 𝐴,𝐵,𝐶. We actually need to

exploit the fact that 𝐴,𝐵,𝐶 are Gaussian.

Our proof will parallel results in Section 8 of [39]. First, a definition:

Definition 3.7.3. For two distributions 𝑃,𝑄 let

ℎ(𝑃,𝑄) = − log(1− 𝑑TV(𝑃,𝑄)).

The key ingredient is the following result from [39]:

Lemma 3.7.4 (Restated from [39]). Let 𝐴 and 𝐵 be two Gaussians with ℎ(𝐴,𝐵) = 𝑂(1).

If 𝐷 ∈ {𝐴,𝐵} then

𝑃𝑥∼𝐷

[︂
𝜖 ≤ 𝐴(𝑥)

𝐵(𝑥)
≤ 1

𝜖

]︂
≥ 1− poly(𝜖)
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Proof of Lemma 3.7.2. Note that

𝑃𝑥∼𝐴

[︂
𝜖0.5 ≤ 𝐴(𝑥)

𝐶(𝑥)
≤ 1

𝜖0.5

]︂
≤ 𝜖0.5

If this weren’t the case, then 𝐴 and 𝐶 would have more than 𝜖 overlap, contradicting our

assumption. Next, by Lemma 3.7.4,

𝑃𝑥∼𝐴

[︂
𝜖0.1 ≤ 𝐴(𝑥)

𝐵(𝑥)
≤ 1

𝜖0.1

]︂
≥ 1− poly(𝜖) (3.5)

Combining the above two inequalities, we deduce

𝑃𝑥∼𝐴

[︂
𝜖0.4 ≤ 𝐶(𝑥)

𝐵(𝑥)
≤ 1

𝜖0.4

]︂
≤ poly(𝜖) (3.6)

Let 0 < 𝑐 < 0.1 be a constant such that the RHS of (3.6) is at most 𝜖𝑐. By Lemma 3.7.4

𝑃𝑥∼𝐵

[︂
𝜖𝑐/2 ≤ 𝐴(𝑥)

𝐵(𝑥)
≤ 1

𝜖𝑐/2

]︂
≥ 1− poly(𝜖)

and combining with (3.6), we deduce

𝑃𝑥∼𝐵

[︂
𝜖0.4 ≤ 𝐶(𝑥)

𝐵(𝑥)
≤ 1

𝜖0.4

]︂
≤ poly(𝜖)

which implies 𝑑TV(𝐵,𝐶) ≥ 1− poly(𝜖). ■

3.7.2 Full Algorithm

We are now ready to prove Theorem 3.7.1. We begin by describing the algorithm. Our full

algorithm consists of several phases.

1. Cluster with constant accuracy into constant-separated submixtures

2. Learn parameters of submixtures to constant accuracy

3. Recluster all points and form new poly(𝜖)-separated submixtures
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4. Learn parameters of submixtures to poly(𝜖) accuracy

The algorithm Learn Parameters (well-conditioned) for learning the parameters

of a well-conditioned mixture of Gaussians (see Theorem 3.5.2) is summarized in Algorithm

7.

Algorithm 7 Learn Parameters (well-conditioned)

Input: 𝜖-corrupted sample𝑋1, . . . , 𝑋𝑛 from 𝛿-well-conditioned mixture of Gaussiansℳ =
𝑤1𝐺1 + · · ·+ 𝑤𝑘𝐺𝑘

Estimate Hermite polynomials ofℳ
Solve for parameters using SOS (see Section 3.4)

Our full algorithm is described in the next block Algorithm 8.

Algorithm 8 Full Algorithm
Input: 𝜖-corrupted sample 𝑋1, . . . , 𝑋𝑛 from mixture of Gaussiansℳ = 𝑤1𝐺1+· · ·+𝑤𝑘𝐺𝑘

Run Rough Clustering Algorithm to split sample into subsamples for submixtures
where all pairs are 𝐷-close for constant 𝐷
for each candidate clustering do

Run Learn Parameters (well-conditioned) for each submixture
Output candidate components

for each set of candidate components ̃︁𝐺1, . . .̃︁𝐺𝑘 do
Assign samples to components according to maximum likelihood to form sets of samples

{ ̃︀𝑆1, . . . ,̃︁𝑆𝑘}
for all partitions of [𝑘] into sets 𝑅1, . . . , 𝑅𝑙 do

Run Learn Parameters (well-conditioned) on each of ∪𝑖∈𝑅𝑗
𝑆𝑖 for all 𝑗 ∈ [𝑙]

Output candidate components
Hypothesis test over all candidate components to find a mixture ̃︁ℳ that is poly(𝜖)-close
toℳ

3.7.3 Analysis of Full Algorithm

The first step will be to show that among the first set of candidate components that we

output, there are some that are within constant distance (say < 𝑐(𝑘) for some sufficiently

small function 𝑐) of the true components.
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Lemma 3.7.5. Let 𝑘,𝐴, 𝑏 > 0 be constants and 𝜃 be a desired accuracy. There is a suffi-

ciently large function 𝐺 and a sufficiently small function 𝑔 depending only on 𝑘,𝐴, 𝑏, 𝜃 such

that given an 𝜖-corrupted sample 𝑋1, . . . , 𝑋𝑛 from a mixture of Gaussiansℳ = 𝑤1𝐺1+ · · ·+

𝑤𝑘𝐺𝑘 ∈ R𝑑 where

• The 𝑤𝑖 are all rational with denominator at most 𝐴

• 𝑑TV(𝐺𝑖, 𝐺𝑗) ≥ 𝑏

and

• 𝜖 < 𝑔(𝑘,𝐴, 𝑏, 𝜃)

• 𝑛 ≥ (𝑑/𝜖)𝐺(𝑘,𝐴,𝑏,𝜃)

then there is an algorithm that runs in time poly(𝑛) and with 0.999 probability outputs a set

of (1/𝜃)𝐺(𝑘,𝐴,𝑏,𝜃) candidate mixtures at least one of which satisfies

max
(︁
𝑑TV(̃︁𝐺1, 𝐺1), . . . , 𝑑TV(̃︁𝐺𝑘, 𝐺𝑘)

)︁
≤ 𝜃

max (|̃︁𝑤1 − 𝑤1|, . . . , |̃︁𝑤𝑘 − 𝑤𝑘|) ≤ 𝜃

Proof. We will use Theorem 3.6.2 to argue that the clustering algorithm finds some set of

candidate clusters that can then be used to learn the parameters via Theorem 3.5.2. The

main thing we need to prove is that we can find the 𝐷,𝐷′ satisfying the hypotheses of

Theorem 3.6.2. In the argument below, all functions may depend on 𝑘,𝐴, 𝑏, 𝜃 but we may

omit writing some of these variables in order to highlight the important dependences.

Note that Claim 3.6.4 combined with Theorem 3.5.2 imply that if we have a 𝛾-corrupted

sample of a submixture of ℳ where all pairs are 𝐷-close and 𝛾 < 𝑓(𝐷, 𝜃) for some suffi-

ciently small function 𝑓 then we can learn the components of the submixture to the desired

accuracy. Now if the separation condition of Theorem 3.6.2 were satisfied with 𝛾 = 𝑓(𝐷, 𝜃)

and 𝐷′ > 𝐹 (𝑘,𝐷, 𝛾) then we would be done.
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We now show that there is some constant 𝐷 depending only on 𝑘,𝐴, 𝑏, 𝜃 for which this

is true. Assume that the condition does not hold for some value of 𝐷0. Then construct a

graph 𝐺𝐷0 on nodes 1, 2, . . . , 𝑘 where two nodes are connected if and only if they are 𝐷-close.

Take the connected components in this graph. Note that by Claim 3.6.3, all pairs in the

same connected component are poly(𝐷0)-close. Thus, there must be an edge between two

components such that 𝐺𝑖 and 𝐺𝑗 are 𝐷1-close for

𝐷0 < 𝐷1 < 𝐹 (𝑘, poly(𝐷0), 𝑓(poly(𝐷0), 𝜃))

Now the graph 𝐺𝐷1 has one less connected component than 𝐺𝐷0 . Starting from say 𝐷0 = 2,

we can iterate this argument and deduce that the entire graph will be connected for some

constant value of 𝐷 depending only on 𝑘,𝐴, 𝑏, 𝜃. Now by Claim 3.6.3 it suffices to treat the

entire mixture as one mixture and we can apply Claim 3.6.4 and Theorem 3.5.2 to complete

the proof. ■

Our next step is to show that if our algorithm starts with component estimates that

are accurate within some constant and guesses a good set of clusters, then the resulting

subsamples (after assigning according to maximum likelihood) are equivalent to poly(𝜖)-

corrupted samples from the corresponding submixtures. First, we prove a preliminary claim

which implies that a good set of clusters exists.

Claim 3.7.6. Letℳ = 𝑤1𝐺1+· · ·+𝑤𝑘𝐺𝑘 be a mixture of Gaussians. For any constant 𝑐 > 0

and parameter 𝜖, there exists a function 𝑓(𝑐, 𝑘) such that there exists a partition (possibly

trivial) of [𝑘] into sets 𝑅1, . . . , 𝑅𝑙 such that

• If we draw edges between all 𝑖, 𝑗 such that 𝑑TV(𝐺𝑖, 𝐺𝑗) ≤ 1− 𝜖𝑐𝜅 then each piece of the

partition is connected

• For any 𝑖, 𝑗 in different pieces of the partition 𝑑TV(𝐺𝑖, 𝐺𝑗) ≥ 1− 𝜖𝜅

and 𝑓(𝑐, 𝑘) < 𝜅 < 1.
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Proof. For a real number 𝑓 , let 𝒢𝑓 be the graph on [𝑘] obtained by connecting two nodes 𝑖, 𝑗

if and only if 𝑑TV(𝐺𝑖, 𝐺𝑗) ≤ 1−𝑓 . Consider 𝒢
𝜖𝑐𝑘

. Consider the partition formed by taking all

connected components in this graph. If this partition does not satisfy the desired condition,

then there are some two 𝐺𝑖, 𝐺𝑗 in different components such that

𝑑TV(𝐺𝑖, 𝐺𝑗) ≤ 1− 𝜖𝑐𝑘−1

Thus, the graph 𝒢
𝜖𝑐𝑘−1 has strictly fewer connected components than 𝒢

𝜖𝑐𝑘
. We can now

repeat this argument on 𝒢
𝜖𝑐𝑘−1 . However, the number of connected components in 𝒢

𝜖𝑐𝑘
is at

most 𝑘 so we conclude that there must be some 𝑐𝑘 < 𝜅 < 1 for which the desired condition

is satisfied. ■

We will also need the following results about the VC-dimension of hypotheses obtained by

comparing the density functions of two mixtures of Gaussians. The reason we need these VC

dimension bounds is that we will need to argue that given any constant-accuracy estimates,

we can obtain a clustering that is poly(𝜖) accurate. While naively this would require union

bounding over infinitely many possibilities for the initial estimates, the VC dimension bound

allows to get around this and obtain uniform convergence over all possible initial estimates.

Technically for our clustering result, we only need the VC dimension bound for single

Gaussians (instead of mixtures of 𝑘 Gaussians). However, we will need the VC dimension

bound for mixtures of Gaussians later when we do hypothesis testing so we state the full

result below. First we need a definition.

Definition 3.7.7. Let ℱ be a family of distributions on some domain 𝒳 . Let ℋℱ ,𝑎 be the

set of functions of the form 𝑓ℳ1,ℳ2,...,ℳ𝑎 where ℳ1,ℳ2, . . . ,ℳ𝑎 ∈ ℱ and

𝑓ℳ1,ℳ2,...,ℳ𝑎(𝑥) =

⎧⎪⎨⎪⎩1 if ℳ1(𝑥) ≥ℳ2(𝑥), . . . ,ℳ𝑎(𝑥)

0 otherwise

where ℳ𝑖(𝑥) denotes the pdf of the corresponding distribution at 𝑥.
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Lemma 3.7.8 (Theorem 8.14 in [5]). Let ℱ𝑘 be the family of distributions that are a mixture

of at most 𝑘 Gaussians in R𝑑. Then the VC dimension of ℋℱ𝑘,𝑎 is poly(𝑑, 𝑎, 𝑘).

It is a standard result in learning theory that for a hypothesis class with bounded VC

dimension, taking a polynomial number of samples suffices to get a good approximation for

all hypotheses in the class.

Lemma 3.7.9 ([92]). Let ℋ be a hypothesis class of functions from some domain 𝒳 to {0, 1}

with VC dimension 𝑉 . Let 𝒟 be a distribution on 𝒳 . Let 𝜖, 𝛿 > 0 be parameters. Let 𝑆 be

a set of 𝑛 = poly(𝑉, 1/𝜖, log 1/𝛿) i.i.d samples from 𝒟. Then with 1 − 𝛿 probability, for all

𝑓 ∈ ℋ ⃒⃒⃒⃒
E

𝑥∼𝑆
[𝑓(𝑥)]− E

𝑥∼𝒟
[𝑓(𝑥)]

⃒⃒⃒⃒
≤ 𝜖 .

Now we can prove our lemma about obtaining a poly(𝜖)-accurate clustering into submix-

tures when given constant-accuracy estimates for the components.

Lemma 3.7.10. Let ℳ = 𝑤1𝐺1 + · · ·+ 𝑤𝑘𝐺𝑘 ∈ R𝑑 be a mixture of Gaussians where

• The 𝑤𝑖 are all rational with denominator at most 𝐴

• 𝑑TV(𝐺𝑖, 𝐺𝑗) ≥ 𝑏

There exists a sufficiently small function 𝑔(𝑘,𝐴, 𝑏) > 0 depending only on 𝑘,𝐴, 𝑏 such that

the following holds. Let 𝑋1, . . . , 𝑋𝑛 be an 𝜖-corrupted sample from the mixture ℳ where

𝜖 < 𝑔(𝑘,𝐴, 𝑏) and 𝑛 = poly(𝑑/𝜖) for some sufficiently large polynomial. Let 𝑆1, . . . , 𝑆𝑘 ⊂

{𝑋1, . . . , 𝑋𝑛} denote the sets of samples from each of the components 𝐺1, . . . , 𝐺𝑘 respectively.

Let 𝑅1, . . . , 𝑅𝑙 be a partition such that for 𝑖1 ∈ 𝑅𝑗1 , 𝑖2 ∈ 𝑅𝑗2 with 𝑗1 ̸= 𝑗2,

𝑑TV(𝐺𝑖1 , 𝐺𝑖2) ≥ 1− 𝜖′

where 𝜖 ≤ 𝜖′ ≤ 𝑔(𝑘,𝐴, 𝑏). Let ̃︁𝐺1, . . . ,̃︁𝐺𝑘 be any Gaussians such that 𝑑TV(𝐺𝑖,̃︁𝐺𝑖) ≤ 𝑔(𝑘,𝐴, 𝑏)

for all 𝑖. Let ̃︀𝑆1, . . . ,̃︁𝑆𝑘 ⊂ {𝑋1, . . . , 𝑋𝑛} be the subsets of samples obtained by assigning each
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sample to the component ̃︁𝐺𝑖 that gives it the maximum likelihood. Then with probability at

least 0.999, ⃒⃒⃒(︀
∪𝑖∈𝑅𝑗

𝑆𝑖

)︀
∩
(︁
∪𝑖∈𝑅𝑗

̃︀𝑆𝑖

)︁⃒⃒⃒
≥ (1− poly(𝜖′))

⃒⃒(︀
∪𝑖∈𝑅𝑗

𝑆𝑖

)︀⃒⃒
for all 𝑗.

Proof. First, we will upper bound the expected number of uncorrupted points that are mis-

classified for each 𝑗 ∈ [𝑙] when the Gaussians ̃︁𝐺1, . . . ,̃︁𝐺𝑘 are fixed. This quantity can be

upper bounded by ∑︁
𝑗1 ̸=𝑗2

∑︁
𝑖1∈𝑅𝑗1
𝑖2∈𝑅𝑗2

∫︁
1̃︂𝐺𝑖1

(𝑥)>̃︂𝐺𝑖2
(𝑥)𝑑𝐺𝑖2(𝑥)

Clearly we can ensure 𝑑TV(𝐺𝑖,̃︁𝐺𝑖) ≤ 1/2. Thus, by Lemma 3.7.2 and the assumption

about 𝑅1, . . . , 𝑅𝑙, 𝑑TV(̃︁𝐺𝑖1 , 𝐺𝑖2) ≥ 1− poly(𝜖′) for all 𝐺𝑖2 where 𝑖2 is not in the same piece of

the partition as 𝑖1. Let 𝑐 be such that

𝑑TV(̃︁𝐺𝑖1 , 𝐺𝑖2) ≥ 1− 𝜖′𝑐

By Lemma 3.7.4,

Pr
𝑥∈𝐺𝑖2

[︃
𝜖′𝑐/2 ≤

̃︁𝐺𝑖2(𝑥)

𝐺𝑖2(𝑥)
≤ 𝜖′𝑐/2

]︃
≥ 1− poly(𝜖′)

and combining the above two inequalities, we deduce

∫︁
1̃︂𝐺𝑖1

(𝑥)>̃︂𝐺𝑖2
(𝑥)𝑑𝐺𝑖2(𝑥) ≤ poly(𝜖′)

Since we are only summing over 𝑂𝑘(1) pairs of components, as long as 𝜖′ is sufficiently small

compared to 𝑘,𝐴, 𝑏, the expected fraction of misclassified points is poly(𝜖′).

Next, note that the clustering depends only on the comparisons between the values of the

pdfs of the Gaussians ̃︁𝐺1, . . . ,̃︁𝐺𝑘 at each of the samples 𝑋1, . . . , 𝑋𝑛. Since 𝑛 = poly(𝑑/𝜖) for

some sufficiently large polynomial, applying Lemma 3.7.8 and Lemma 3.7.9 completes the

proof (note that the fraction of corrupted points is at most 𝜖 so it does not matter how they
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are clustered). ■

Combining Lemma 3.7.5, Claim 3.7.6, Lemma 3.7.10 and Theorem 3.5.2, we can show

that at least one of the sets of candidate parameters that our algorithm outputs is close to

the true parameters.

Lemma 3.7.11. Let 𝑘,𝐴, 𝑏 > 0 be constants. There is a sufficiently large function 𝐺 and a

sufficiently small function 𝑔 depending only on 𝑘,𝐴, 𝑏 such that given an 𝜖-corrupted sample

𝑋1, . . . , 𝑋𝑛 from a mixture of Gaussians ℳ = 𝑤1𝐺1 + · · ·+ 𝑤𝑘𝐺𝑘 ∈ R𝑑 where

• The 𝑤𝑖 are all rational with denominator at most 𝐴

• 𝑑TV(𝐺𝑖, 𝐺𝑗) ≥ 𝑏

and 𝑛 ≥ (𝑑/𝜖)𝐺(𝑘,𝐴,𝑏), with 0.999 probability, among the set of candidates output by Full

Algorithm, there is some {̃︁𝑤1,̃︁𝐺1, . . . ,̃︁𝑤𝑘,̃︁𝐺𝑘} such that for all 𝑖 we have

|𝑤𝑖 − ̃︀𝑤𝑖|+ 𝑑TV(𝐺𝑖,̃︁𝐺𝑖) ≤ poly(𝜖)

Proof. This follows from combining Lemma 3.7.5, Claim 3.7.6, Lemma 3.7.10 and finally

applying Theorem 3.5.2. Note we can choose 𝑐 in Claim 3.7.6 so that when combined with

Lemma 3.7.10, the resulting accuracy that we get on each submixture is high enough that we

can then apply Theorem 3.5.2 (we can treat the subsample corresponding to each submixture

as a poly(𝜖′)-corrupted sample). We apply Lemma 3.7.10 with 𝜖′ = 𝜖𝜅 where the 𝜅 is obtained

from Claim 3.7.6. ■

We have shown that our algorithm recovers a list of candidate mixtures, at least one of

which is close to the true mixture. The last result that we need is a hypothesis testing routine.

This is similar to the hypothesis testing result in [65]. However, there is a subtle difference

that the samples we use to hypothesis test may not be independent of the hypotheses. This is

because the adversary sees all of the data points and may corrupt the data in a way to affect

the list of hypotheses that we output. Thus, we must prove that given an 𝜖-corrupted sample
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and any list of hypotheses with the promise that at least one of the hypotheses is close to

the true distribution, we must output a hypothesis that is close to the true distribution.

Lemma 3.7.12. Let ℱ be a family of distributions on some domain 𝒳 with explicitly com-

putable density functions that can be efficiently sampled from. Let 𝑉 be the VC dimension of

ℋℱ ,2 (recall Definition 3.7.7). Let 𝒟 be an unknown distribution in ℱ . Let 𝑚 be a parameter.

Let 𝑋1, . . . , 𝑋𝑛 be an 𝜖-corrupted sample from 𝒟 with 𝑛 ≥ poly(𝑚, 𝜖, 𝑉 ) for some sufficiently

large polynomial. Let 𝐻1, . . . , 𝐻𝑚 be distributions in ℱ given to us by an adversary with the

promise that

min(𝑑TV(𝒟, 𝐻𝑖)) ≤ 𝜖 .

Then there exists an algorithm that runs in time poly(𝑛, 𝜖) and outputs an 𝑖 with 1 ≤ 𝑖 ≤ 𝑚

such that with 0.999 probability

𝑑𝑇𝑉 (𝒟, 𝐻𝑖) ≤ 𝑂(𝜖) .

Proof. The proof will be very similar to the proof in [65] except we will use the VC dimension

bound and Lemma 3.7.9 to obtain a bound over all possible hypothesis distributions given

to us by the adversary.

For each 𝑖, 𝑗, define 𝐴𝑖,𝑗 to be the subset of 𝒳 where 𝐻𝑖(𝑥) ≥ 𝐻𝑗(𝑥) (where we abuse

notation and use 𝐻𝑖, 𝐻𝑗 to denote their respective probability density functions). Note

𝑑TV(𝐻𝑖, 𝐻𝑗) = |𝐻𝑖(𝐴𝑖,𝑗)−𝐻𝑗(𝐴𝑖,𝑗)|. By Lemma 3.7.9, we can ensure that with high proba-

bility, for all 𝑖, 𝑗, the empirical estimates of 𝐴𝑖,𝑗 are close to their true values, i.e.

|𝒟(𝐴𝑖,𝑗)−𝑋(𝐴𝑖,𝑗)| ≤ 2𝜖 .

Now, since the distributions 𝐻1, . . . , 𝐻𝑚 can be efficiently sampled from, we can obtain

estimates ̂︁𝐻𝑙(𝐴𝑖,𝑗) that are within 𝜖 of 𝐻𝑙(𝐴𝑖,𝑗) for all 𝑖, 𝑗, 𝑙. Now, it suffices to return any 𝑙

such that for all 𝑖, 𝑗,

|𝑋(𝐴𝑖,𝑗)−̂︁𝐻𝑙(𝐴𝑖,𝑗)| ≤ 4𝜖 .

Note that any 𝑙 such that 𝑑TV(𝒟, 𝐻𝑙) ≤ 𝜖 must satisfy the above by the triangle inequality.

Next, we argue that any such 𝑙 must be sufficient. To see this, let 𝑙′ be such that 𝑑TV(𝒟, 𝐻𝑙′) ≤
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𝜖. Then

𝑑TV(𝒟, 𝐻𝑙) ≤ 𝜖+ 𝑑TV(𝐻𝑙, 𝐻𝑙′) = 𝜖+ |𝐻𝑙(𝐴𝑙,𝑙′)−𝐻𝑙′(𝐴𝑙,𝑙′)| ≤ 2𝜖+ |𝐻𝑙(𝐴𝑙,𝑙′)−𝒟(𝐴𝑙,𝑙′)|

≤ 2𝜖+ |𝑋(𝐴𝑙,𝑙′)−𝒟(𝐴𝑙,𝑙′)|+ |𝑋(𝐴𝑙,𝑙′)−̂︁𝐻𝑙(𝐴𝑙,𝑙′)|+ |̂︁𝐻𝑙(𝐴𝑙,𝑙′)−𝐻𝑙(𝐴𝑙,𝑙′)| = 𝑂(𝜖) .

■

We can now complete the proof of our main theorem.

Proof of Theorem 3.7.1. Combining Lemma 3.7.11, Lemma 3.7.12 and Lemma 3.7.8, we im-

mediately get the desired bound. ■

3.8 Identifiability

Theorem 3.7.1 implies that we can learn a mixture that is close to the true mixture in TV

distance. In order to prove that we recover the individual components, it suffices to prove

identifiability. In this section we prove the following.

Theorem 3.8.1. Letℳ = 𝑤1𝐺1+ · · ·+𝑤𝑘1𝐺𝑘1 andℳ′ = 𝑤′
1𝐺

′
1+ · · ·+𝑤′

𝑘2
𝐺′

𝑘2
be mixtures

of Gaussians such that 𝑇𝑉 (ℳ,ℳ′) ≤ 𝜖 and the 𝐺𝑖, 𝐺
′
𝑖 have variance at least poly(𝜖/𝑑) and

at most poly(𝑑/𝜖) in all directions. Further assume,

• 𝑑TV(𝐺𝑖, 𝐺𝑗) ≥ 𝑏, 𝑑TV(𝐺
′
𝑖, 𝐺

′
𝑗) ≥ 𝑏 for all 𝑖 ̸= 𝑗

• 𝑤𝑖, 𝑤
′
𝑖 ≥ 𝑤min

where 𝑤min ≥ 𝑓(𝑘), 𝑏 ≥ 𝜖𝑓(𝑘) where 𝑘 = max(𝑘1, 𝑘2) and 𝑓(𝑘) > 0 is sufficiently small

function depending only on 𝑘. Then 𝑘1 = 𝑘2 and there exists a permutation 𝜋 such that

|𝑤𝑖 − 𝑤′
𝜋(𝑖)|+ 𝑑TV(𝐺𝑖, 𝐺

′
𝜋(𝑖)) ≤ poly(𝜖)

While technically, we do not need to prove identifiability in an algorithmic manner, our

proof will mirror our main algorithm. We will first prove identifiability in the case where the

two mixtures are 𝛿-well conditioned for 𝛿 = poly(𝜖).

189



Lemma 3.8.2. Let ℳ = 𝑤1𝐺1 + · · · + 𝑤𝑘1𝐺𝑘1 and ℳ′ = 𝑤′
1𝐺

′
1 + · · · + 𝑤′

𝑘2
𝐺′

𝑘2
be two

𝛿-well conditioned mixtures of Gaussians such that 𝑑TV(ℳ,ℳ′) ≤ 𝜖 and 𝛿 ≥ 𝜖𝑓(𝑘) where

𝑘 = max(𝑘1, 𝑘2) and 𝑓(𝑘) > 0 is sufficiently small function depending only on 𝑘. Then

𝑘1 = 𝑘2 and there exists a permutation 𝜋 such that

|𝑤𝑖 − 𝑤′
𝜋(𝑖)|+ 𝑑TV(𝐺𝑖, 𝐺

′
𝜋(𝑖)) ≤ poly(𝜖)

Proof. Let 𝜇,Σ, 𝜇′,Σ′ be the means and covariances of the mixtures ℳ and ℳ′. Let

𝜇𝑖,Σ𝑖, 𝜇
′
𝑖,Σ

′
𝑖 be the means and covariances of the respective components. Without loss of

generality we may assume 𝜇 = 0, Σ = 𝐼. The results in Section 3.5, namely Corollary 3.5.7,

imply that

‖𝐼 − Σ′‖ = poly(𝜖)

‖𝜇′‖ = poly(𝜖)

This is because we can simulate an 𝜖-corrupted sample from ℳ′ by just sampling from ℳ

(since 𝑑TV(ℳ,ℳ′) ≤ 𝜖) and then robustly estimate the mean and covariance of this sample.

Thus, by Corollary 3.5.5, we have for all 𝑖,

‖𝜇𝑖‖ , ‖𝜇′
𝑖‖ ≤ poly(𝛿)−1

‖Σ𝑖 − 𝐼‖ , ‖Σ′
𝑖 − 𝐼‖ ≤ poly(𝛿)−1

Now, we can use Lemma 3.5.8 to estimate the Hermite polynomials of the mixturesℳ,ℳ′.

Since we can robustly estimate the means of bounded-covariance distributions (see Theorem

2.2 in [65], Lemma 3.5.8), we must have

‖𝑣 (ℎ𝑚,ℳ(𝑋)− ℎ𝑚,ℳ′(𝑋))‖2 ≤ poly(𝜖)

Also note that since each of the mixtures is 𝛿-well conditioned, using Claim 3.5.3 and Lemma
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3.5.4 implies that

‖𝜇𝑖 − 𝜇𝑗‖2 + ‖Σ𝑖 − Σ𝑗‖2 ≥ poly(𝛿)

and similar for the components of the mixtureℳ′. Repeating the argument in Section 3.4.1,

it suffices to prove the lemma in the case when all pairs of parameters are separated or equal

i.e. among the sets {𝜇𝑖} ∪ {𝜇′
𝑖} and {Σ𝑖} ∪ {Σ′

𝑖}, each pair of parameters is either equal or

separated by at least poly(𝛿). If we prove this. we can then deduce the statement of the

lemma in the general case with worse, but still polynomial dependencies on 𝜖.

Now we consider the generating functions

𝐹 =

𝑘1∑︁
𝑖=1

𝑤𝑖𝑒
𝜇𝑖(𝑋)𝑦+ 1

2
Σ𝑖(𝑋)𝑦2 =

∞∑︁
𝑚=0

1

𝑚!
ℎ𝑚,ℳ(𝑋)𝑦𝑛

𝐹 ′ =

𝑘2∑︁
𝑖=1

𝑤′
𝑖𝑒

𝜇′
𝑖(𝑋)𝑦+ 1

2
Σ′

𝑖(𝑋)𝑦2 =
∞∑︁

𝑚=0

1

𝑚!
ℎ𝑚,ℳ′(𝑋)𝑦𝑛

where similar to in Section 3.4, 𝜇𝑖(𝑋) = 𝜇𝑖·𝑋,Σ𝑖(𝑋) = 𝑋𝑇Σ𝑖𝑋. Consider the pair (𝜇′
𝑘2
,Σ′

𝑘2
).

We claim that there must be some 𝑖 such that

(𝜇𝑖,Σ𝑖) = (𝜇′
𝑘2
,Σ′

𝑘2
)

Assume for the sake of contradiction that this is not the case. Let 𝑆1 be the subset of [𝑘1]

such that Σ𝑖 = Σ𝑘′2
and let 𝑆2 be the subset of [𝑘2 − 1] such that Σ′

𝑗 = Σ′
𝑘2

. Define the

differential operators

𝒟𝑖 = 𝜕 − 𝜇𝑖(𝑋)− Σ𝑖(𝑋)𝑦

𝒟′
𝑖 = 𝜕 − 𝜇′

𝑖(𝑋)− Σ′
𝑖(𝑋)𝑦

where as before, partial derivatives are taken with respect to 𝑦. Now consider the differential

operator

𝒟 =
(︀
𝒟′

𝑘2−1

)︀2𝑘1+𝑘2−2

(𝒟′
1)

2𝑘1 𝒟2𝑘1−1

𝑘1
𝒟1

1
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Note by Claim 3.3.9, 𝒟(𝐹 ) = 0. Using Claim 3.3.11,

𝒟(𝐹 ′) = 𝑃 (𝑦,𝑋)𝑒𝜇
′
𝑘2

(𝑋)𝑦+ 1
2
Σ′

𝑘2
(𝑋)𝑦2

where 𝑃 is a polynomial of degree

deg(𝑃 ) = 2𝑘1+𝑘2−1 − 1−
∑︁
𝑖∈𝑆1

2𝑖−1 −
∑︁
𝑖∈𝑆2

2𝑘1+𝑖−2

and has leading coefficient

𝐶0 = 𝑤′
𝑘2

∏︁
𝑖∈[𝑘1]∖𝑆1

(Σ′
𝑘2
−Σ𝑖)

2𝑖−1
∏︁
𝑖∈𝑆1

(𝜇′
𝑘2
−𝜇𝑖)

2𝑖−1
∏︁

𝑖∈[𝑘2−1]∖𝑆2

(Σ′
𝑘2
−Σ′

𝑖)
2𝑘1+𝑖−2

∏︁
𝑖∈𝑆2

(𝜇′
𝑘2
−𝜇′

𝑖)
2𝑘1+𝑖−2

.

If there is no 𝑖 such that (𝜇𝑖,Σ𝑖) = (𝜇′
𝑘2
,Σ′

𝑘2
) then

𝐶0 ≥ 𝛿𝑂𝑘(1)

We can now compare

(︀
𝒟′

𝑘2

)︀deg(𝑃 )𝒟(𝐹 )(︀
𝒟′

𝑘2

)︀deg(𝑃 )𝒟(𝐹 ′)

evaluated at 𝑦 = 0. The first quantitiy is 0 because 𝒟(𝐹 ) is identically 0 as a formal power

series. The second expression is equal to Ω𝑘(1)𝐶0. However, the coefficients of the formal

power series 𝐹, 𝐹 ′ are the Hermite polynomials ℎ𝑚,ℳ(𝑋) and ℎ𝑚,ℳ′(𝑋). We assumed that

‖𝑣 (ℎ𝑚,ℳ(𝑋)− ℎ𝑚,ℳ′(𝑋))‖2 ≤ poly(𝜖)

so this is a contradiction as long as 𝜖 is smaller than 𝛿𝐹 (𝑘) for some sufficiently large function

𝐹 depending only on 𝑘. Thus, there must be some component of the mixture ℳ that

matches each component of ℳ′. We can then repeat the argument in reverse to conclude
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that ℳ and ℳ′ have the same components. Finally, assume that we have two mixtures

ℳ = 𝑤1𝐺1 + · · · + 𝑤𝑘𝐺𝑘 and ℳ′ = 𝑤′
1𝐺1 + · · · + 𝑤′

𝑘𝐺𝑘 on the same set of components.

WLOG

𝑤1 − 𝑤′
1 < · · · < 𝑤𝑙 − 𝑤′

𝑙 < 0 < 𝑤𝑙+1 − 𝑤′
𝑙+1 < · · · < 𝑤𝑘 − 𝑤′

𝑘

Then we can consider

(𝑤′
1 − 𝑤1)𝐺1 + · · ·+ (𝑤′

𝑙 − 𝑤𝑙)𝐺𝑙 and

(𝑤𝑙+1 − 𝑤′
𝑙+1)𝐺𝑙+1 + · · ·+ (𝑤𝑘 − 𝑤′

𝑘)𝐺𝑘

each treated as a mixture. If
𝑘∑︁

𝑖=1

|𝑤𝑖 − 𝑤′
𝑖| > 𝜖𝜁

for some sufficiently small 𝜁 depending only on 𝑘, we can then normalize each of the above

into a mixture (i.e. make the mixing weights sum to 1) and repeat the same argument,

using the fact that pairs of components cannot be too close, to obtain a contradiction. Thus,

actually the components and mixing weights of the two mixtures must be poly(𝜖)-close and

this completes the proof. ■

To complete the proof of Theorem 3.8.1, we will prove a sort of cluster identifiability that

mirrors our algorithm and then combine with Lemma 3.8.2.

Proof of Theorem 3.8.1. Let 𝑐 be a sufficiently small constant that we will set later. We

apply Claim 3.7.6 on the mixture ℳ with parameter 𝑐 to find a partition 𝑅1, . . . , 𝑅𝑙. Let

𝜅 be the parameter obtained from the statement of Claim 3.7.6 i.e. 𝜅 depends on 𝑘 and

𝑐. First, we claim that each of the components 𝐺′
1, . . . , 𝐺

′
𝑘2

must be essentially contained

within one of the clusters. To see this, for each 𝑗 ∈ [𝑘2] there must be some 𝑖 such that

𝑑TV(𝐺𝑖, 𝐺
′
𝑗) ≤ 1− 𝑤min

2𝑘
≤ 1− Ω𝑘(1)
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without loss of generality 𝑖 ∈ 𝑅1. Then by Lemma 3.7.2, for all 𝑎 /∈ 𝑅1,

𝑑TV(𝐺𝑎, 𝐺
′
𝑗) ≥ 1− poly(𝜖𝜅)

where the polynomial may depend on 𝑘 but does not depend on 𝑐. The above implies that

we can match each of the components 𝐺′
1, . . . , 𝐺

′
𝑘2

uniquely to one of the clusters 𝑅1, . . . , 𝑅𝑙

where it has constant overlap with ∪𝑖∈𝑅𝑗
𝐺𝑖. Let 𝑆1 be the subset of [𝑘2] corresponding to

the components among 𝐺′
1, . . . , 𝐺

′
𝑘2

that are matched to 𝑅1. Consider the mixtures

ℳ1 =

∑︀
𝑖∈𝑅1

𝑤𝑖𝐺𝑖∑︀
𝑖∈𝑅1

𝑤𝑖

ℳ′
1 =

∑︀
𝑖∈𝑆1

𝑤′
𝑖𝐺

′
𝑖∑︀

𝑖∈𝑆1
𝑤′

𝑖

The above (combined with our assumed lower bound on the minimum mixing weight) implies

that

𝑑TV(ℳ1,ℳ′
1) ≤ poly(𝜖𝜅)

where again the polynomial may depend on 𝑘 but not 𝑐. Now if we choose 𝑐 sufficiently

small, we can apply Lemma 3.8.2 to deduce that the components and mixing weights of

ℳ1,ℳ′
1 must be close. We can then repeat this argument for all of the clusters 𝑅1, . . . , 𝑅𝑙

to complete the proof. ■

Combing Theorem 3.7.1 and Theorem 3.8.1. we have

Theorem 3.8.3. Let 𝑘,𝐴, 𝑏 > 0 be constants. There is a sufficiently large function 𝐺 and

a sufficiently small function 𝑔 depending only on 𝑘,𝐴, 𝑏 (with 𝐺(𝑘,𝐴, 𝑏), 𝑔(𝑘,𝐴, 𝑏) > 0) such

that given an 𝜖-corrupted sample 𝑋1, . . . , 𝑋𝑛 from a mixture of Gaussians ℳ = 𝑤1𝐺1 +

· · ·+ 𝑤𝑘𝐺𝑘 ∈ R𝑑 where the 𝐺𝑖 have variance at least poly(𝜖/𝑑) and at most poly(𝑑/𝜖) in all

directions and

• The 𝑤𝑖 are all rational with denominator at most 𝐴

• 𝑑TV(𝐺𝑖, 𝐺𝑗) ≥ 𝑏
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and 𝑛 ≥ (𝑑/𝜖)𝐺(𝑘,𝐴,𝑏), then there is an algorithm that runs in time poly(𝑛) and with 0.99

probability outputs a set of components ̃︁𝐺1, . . . ,̃︁𝐺𝑘 and mixing weights ̃︁𝑤1, . . . ,̃︁𝑤𝑘 such that

there exists a permutation 𝜋 on [𝑘] with

|𝑤𝑖 − ̃︀𝑤𝜋(𝑖)|+ 𝑑TV(𝐺𝑖, ̃︀𝐺𝜋(𝑖)) ≤ 𝜖𝑔(𝑘,𝐴,𝑏)

for all 𝑖.

3.8.1 Improving the Separation Assumption

With simple modifications to the analysis, we obtain the following improvement of Theorem

3.7.1 in [74].

Theorem 3.8.4 ([74]). Let 𝑘,𝐴 > 0 be constants. There is a sufficiently large function 𝐺

and a sufficiently small function 𝑔 depending only on 𝑘,𝐴 such that given an 𝜖-corrupted

sample 𝑋1, . . . , 𝑋𝑛 from a mixture of Gaussians ℳ = 𝑤1𝐺1 + · · · + 𝑤𝑘𝐺𝑘 ∈ R𝑑 where

𝜖 < 𝑔(𝑘,𝐴), the 𝑤𝑖 are all rational with denominator at most 𝐴, and 𝑛 ≥ (𝑑/𝜖)𝐺(𝑘,𝐴), there is

an algorithm that runs in time poly(𝑛) and with 0.999 probability, outputs a set of (1/𝜖)𝑂𝑘,𝐴(1)

candidate mixtures such that for at least one of these candidates, {̃︁𝑤1,̃︁𝐺1, . . . ,̃︁𝑤𝑘,̃︁𝐺𝑘}, we

have

|𝑤𝑖 − ̃︀𝑤𝑖|+ 𝑑TV(𝐺𝑖,̃︁𝐺𝑖) ≤ 𝜖𝑔(𝑘,𝐴)

for all 𝑖 ∈ [𝑘].

To go from Theorem 3.7.1 to Theorem 3.8.4, the main idea to remove the constant

separation assumption is just that we can find a scale 𝛿 such that all pairs of components

either have 𝑑TV(𝐺𝑖, 𝐺𝑗) ≤ 𝛿 or 𝑑TV(𝐺𝑖, 𝐺𝑗) ≥ 𝛿′ for 𝛿′ ≫ 𝛿. This is possible because the

number of components 𝑘 is a constant. We can then merge components whose TV distance

is less than 𝛿, treating them as the same component and the remaining components will be

sufficiently separated. See [74] for more details.

The results of [74] were obtained using the previous clustering subroutine of [39]. If

we instead plug in the updated clustering results of [11] (see Theorem 3.6.12 vs Theorem
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3.6.2), we can remove the bounded fractionality assumption on the mixing weights. Also,

we can ensure that the algorithm outputs a unique mixture instead of a list by running the

hypothesis testing routine in Lemma 3.7.12.

Theorem 3.8.5. Let 𝑘,𝐴 > 0 be constants. There is a sufficiently large function 𝐺 and a

sufficiently small function 𝑔 depending only on 𝑘,𝐴 such that given an 𝜖-corrupted sample

𝑋1, . . . , 𝑋𝑛 from a mixture of Gaussians ℳ = 𝑤1𝐺1 + · · · + 𝑤𝑘𝐺𝑘 ∈ R𝑑 where 𝜖 < 𝑔(𝑘,𝐴),

the 𝑤𝑖 are all at least 1/𝐴, and 𝑛 ≥ (𝑑/𝜖)𝐺(𝑘,𝐴), there is an algorithm that runs in time

poly(𝑛) and with 0.999 probability, outputs a mixture ̃︁𝑀 = ̃︁𝑤1
̃︁𝐺1 + · · ·+̃︁𝑤𝑘,̃︁𝐺𝑘, such that

𝑑TV(ℳ, ̃︁ℳ) ≤ 𝜖𝑔(𝑘,𝐴) .

Finally, combining the above with identifiability (Theorem 3.8.1), we immediately get an

improved version of our main theorem for parameter learning.

Theorem 3.8.6. Let 𝑘,𝐴 > 0 be constants. There is a sufficiently large function 𝐺 and

a sufficiently small function 𝑔 depending only on 𝑘,𝐴 (with 𝐺(𝑘,𝐴), 𝑔(𝑘,𝐴) > 0) such that

given an 𝜖-corrupted sample 𝑋1, . . . , 𝑋𝑛 from a mixture of Gaussians ℳ = 𝑤1𝐺1 + · · · +

𝑤𝑘𝐺𝑘 ∈ R𝑑 where the 𝐺𝑖 have variance at least poly(𝜖/𝑑) and at most poly(𝑑/𝜖) in all

directions and

• The 𝑤𝑖 are all at least 1/𝐴

• 𝑑TV(𝐺𝑖, 𝐺𝑗) ≥ 𝜖𝑔(𝑘,𝐴)

and 𝑛 ≥ (𝑑/𝜖)𝐺(𝑘,𝐴), then there is an algorithm that runs in time poly(𝑛) and with 0.99

probability outputs a set of components ̃︁𝐺1, . . . ,̃︁𝐺𝑘 and mixing weights ̃︁𝑤1, . . . ,̃︁𝑤𝑘 such that

there exists a permutation 𝜋 on [𝑘] with

|𝑤𝑖 − ̃︀𝑤𝜋(𝑖)|+ 𝑑TV(𝐺𝑖, ̃︀𝐺𝜋(𝑖)) ≤ 𝜖𝑔(𝑘,𝐴)

for all 𝑖.
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