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Abstract
In this thesis, we study sequential decision-making models where the feedback received
by the principal depends on strategic uncertainty (e.g., agents’ willingness to follow
a recommendation) and/or random uncertainty (e.g., loss or delay in arrival of
information). Such challenges often arise in AI-driven platforms, with applications
in recommender systems, revenue management or transportation. We model and
study this class of problems through the lens of multi-armed and contextual bandits
evolving in censored environments. Our goal is to estimate the performance loss due to
censorship in the context of classical algorithms designed for uncensored environments.
Our main contributions include the introduction of a broad class of censorship models
and their analysis in terms of the effective dimension of the problem – a natural
measure of its underlying statistical complexity and main driver of the regret bound.
In particular, the effective dimension allows us to maintain the structure of the original
problem at first order, while embedding it in a bigger space, and thus naturally
leads to results analogous to uncensored settings. Our analysis involves a continuous
generalization of the Elliptical Potential Inequality, which we believe is of independent
interest. We also discover an interesting property of decision-making under censorship:
a transient phase during which initial misspecification of censorship is self-corrected
at an extra cost; followed by a stationary phase that reflects the inherent slowdown of
learning governed by the effective dimension.
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Chapter 1

Introduction

1.1 Motivation and Focus

Bandit problems are prototypical models of sequential decision-making under uncer-

tainty. They are widely studied due to their applications in recommender systems,

online advertising, medical treatment assignment, revenue management, network

routing and control [29, 42]. Our work is motivated by settings in which the feedback

received by the decision-maker in each round of decision is censored by a stochastic

process that depends on the current action as well as past history of feedbacks and

actions. For instance, in typical missing data problems, the decision-maker needs to

deal with frequent losses of information (or delays in arrival of information) due to exo-

geneous failures such as faulty and/or unreliable communication. Missing observations

in dynamical interactions with the environment are a common concern in diverse fields

ranging from operations management to health sciences to physical sciences [48, 23, 32].

In other settings, such as AI-driven platforms for health alerts, route guidance, and

product recommendations [6, 49], the reception of feedback depends on whether or

not the decision (or recommendation) is adopted by strategic agents (e.g. patients,

customers or drivers) with private valuations. Thus, from the platform’s viewpoint, the

adoption behavior of heterogeneous agents can be regarded as a stochastic censorship

process.

A typical application is dynamic decision-making in logistics systems where an

13



operator (principal) aims to maximize a cumulative reward metric (e.g. timeliness or

fuel usage efficiency) by recommending routes to drivers (agents). At a given time

(stage), the principal can only revise estimates on specific routes based on the data

from agents who follow its recommendation to take those routes. The choice model

of the agents endogenizes the censorship process. Additionally, censorship can also

arise due to unreliable or insecure communication between principal and agents. The

“optimality” in this decision-making problem depends on how fast the underlying

latent condition of the network that governs the stage-wise rewards can be learned.

The challenge arises from the fact that the data generating process is mediated by

agents’ behavior and the data available is incomplete due to censorship. The question

then is to develop efficient algorithms that account for censorship and estimate the

performance loss (relative to no censorship benchmark).

Similar questions were also raised in the recent value alignment literature in order

to study the extent to which an artificial agent can infer a agent’s preferences and

beliefs from her choices or decisions i.e. the learning from human feedback question. A

variety of settings, ranging from pure learning [21, 11] to sequential and/or cooperative

games under partial information[20, 9], as well as the training of Large Language

Models were raised. This thesis contributes to this field by establishing some first

theoretical foundations for evaluating the statistical value of received feedback and by

providing model based insights to algorithmic designers in experimental settings.

In static environments, the bias induced by the presence of randomly missing

information has been thoroughly studied [32, 36]. However, in online settings, the

dynamics of learning and acting are inherently coupled: since censorship mediates

current information of the environment, it impacts the outcome of data-driven decision

process; this in turn conditions the future decisions and future censored feedback,

creating a complex and endogenous joint temporal dependency. Our work contributes

to the analysis of such phenomena for a broad classes of decision and censorship models.

Importantly, it is the first normative inquiry of how censorship impacts the statistical

complexity of bandit problems. We develop an analysis approach that is useful for both

estimating the performance loss due to censorship and refining the classical algorithms

14



designed for uncensored environments. We also arrive at worst-case guarantees on the

performance of resulting strategies. This effort contributes to a systematic study of

sequential decision making problems in strategic and adversarial environments.

1.2 Related Work

Within the extensive bandits literature, well-surveyed in [29, 42], our work is most

closely related to stochastic delayed bandits. Initially, this line of work focused on the

joint evolution of actions and information in settings where the reception of the latter

is delayed [17]. Of particular interest is the packet loss model recently introduced

in [27], which provides the regret bound O(1pRT ) where RT is the uncensored regret

and p the censorship probability. Analogous results have been shown in the context

of Combinatorial Multi-Armed Bandits with probabilistically triggered arms; see for

example, [10] and [46]. Our work provides a systematic approach to study more

general censorship models, and sheds light on how the impact of coupled feedback

and censorship realizations on the expected regret can be evaluated in terms of the

effective dimension of the problem.

Importantly, we also tackle the contextual bandit problems, where relatively few

results are available on the regret under missing or censored feedback. A notable

exception is the work of [45], who focus on a different information structure and

obtain a scaling of 1/p (see Remark 4). A related contribution by [2] provides both a

potential-based analysis of UCB for multi-armed bandits and an algorithmic variant

leveraging Kaplan-Meier estimator, although their censorship setting is different than

ours. In particular, our results are applicable to settings when delay is significantly

large (possibly infinite). This is in contrast to prior results on bandits with delayed

information structure which assume either that the delay is constant, upper bounded,

has a finite mean, or simply provide regret guarantees that are linear in the cumulative

delays up to time T [17, 25, 33, 50, 37]. Under such assumptions on delay, one usually

gets an additive dependency of the regret in terms of delay parameters.

The abovementioned works primarily focus on modifying well-known bandit algo-
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rithms to account for delays, or propose new delay-robust algorithms which may be

difficult to implement in practice; a notable exception includes [47]. In our work, we

instead focus on estimating the performance loss due to censorship and derive insights

on the behavior of well-known UCB class of algorithms [30, 12, 1]. These algorithms

are widely used in practice; moreover, their theoretical study has been shown to be

useful for analysis of broader class of algorithms (notably Thompson Sampling [3, 40]

and Information-Directed Sampling [41, 26]).

Our work contributes to the Generalized Linear Contextual Bandits literature

[18, 31] in two ways: Firstly, through the use of these models in a sequential decision-

making framework on which the impact of censorship is assessed in Sec. 4. Secondly,

by showing that our multi-threshold censorship model MT induces, at first order, a

non-linear structure that closely mirrors such models. Our results provide new tools to

study this structure. It is useful to note that the notion of effective dimension has been

well-studied in the statistical learning and kernels literature [43, 44] (where it is defined

for a Gram matrix Kn and regularization � as dneff(�) = tr(Kn(Kn + �Id)�1)). Our

work shows that an analogous quantity governs the regret bound of bandit problems

in censored settings.

The literature on non-stochastic multi-armed bandit problems with delays prob-

lems [35, 8, 24] also tackles multiplicative dependency, although in a different setting

than ours. Another related line of work is Partial Monitoring [5, 28] which deals with

generic categorization of learnability, rather than a fine-grained analysis of dimension-

ality in relation to censorship. We also mention recent work on computational and

statistical properties of estimators that work under truncated or censored samples

[14, 15, 16]. Albeit the setting (mostly offline learning with Gaussian noise) and

the tools (variant of stochastic gradient descent on modified log-likelihood) are quite

different from our work, they showcase a growing interest in the study of censored

learning.

Finally, there is a rich literature on classical missing and censored data problems,

well surveyed in [32] or [36]. Our work contributes to this broad field since we deal

with endogenous and sequentially generated censorship process.
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1.3 Summary of Contributions

In Chap. 3, we consider Multi-Armed Bandit (MAB) models and prove that the regret

scales as Õ(de↵
p
T ) (Thm. 3.1.1), where de↵ is the effective dimension with value

P
a2[d]

1
pa

, mirroring the Õ(d
p
T ) for uncensored case. In doing so, we recover and

generalize related results from [27, 10] to more complex regularized settings and noise

models. In particular, we prove that the effective dimension results from characterizing

the so-called censored cumulative potential V↵. Our proof methodology easily allows

to extend this result to the instance-dependence case, as demonstrated in Prop.3.1.2.

The second part of Chap. 3 focuses on a technical study of the adaptive nature of

censorship for V↵. Interestingly, we show in Lemma 3.3.1 and Prop. 3.3.2 that the

adaptivity only plays a second order role, that is, impact of censorship can be treated

in an offline manner at first order. To the best of our knowledge, this set of results

brings considerably new insights on the statistical nature of the censorship.

Importantly, our study of MAB under censorship instantiates an analysis framework

which extends to Linear Contextual Bandits (LCB) (Chap. 4). Our main result

provides that regret is still governed by the effective dimension, but now with a

dependency of Õ(
p

d · de↵
p
T ) (Thm. 4.1.1), also mirroring the usual Õ(d

p
T ) for

UCB in uncensored case. To the best of our knowledge, these regret bounds provide

the first theoretical characterization in LCB with censorship, and contribute to the

literature by evaluating the impact of censorship on the performance of UCB-type

algorithms. Our second main contribution is identifying the effective dimension for

a broad class of multi-threshold models MT as well as a precise understanding of

the dynamic behavior induced by these models (Thm. 4.3.2). In particular, we find

that censorship introduces a two-phase behavior: a transient phase during which the

initial censoring misspecification is self-corrected at an additional cost; followed by

a stationary phase that reflects the inherent slowdown of learning governed by the

effective dimension. In extending our analysis from MAB to LCB, we also develop

a continuous generalization of the widely used Elliptical Potential Inequality (Prop.

4.2.2), which we believe is also of independent interest.
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Chapter 2

Preliminaries

In this chapter, we formally introduce the mathematical framework used throughout

this work, as well as key notations. We first formally introduce the classes of Multi-

Armed and Contextual bandit problems. We then give a generic definition of the

censoring model and instantiate it specifically in chapters 3 and 4. We present the

design principle of the upper confidence bound (UCB). We conclude by presenting the

notion of regret, the performance criterion.

2.1 Bandit models

We successively consider stochastic multi-armed bandits (MAB) (Chap. 3) and Linear

Contextual Bandits (LCB) (Chap. 4) in censored environments. In both settings, at

each round t  T , the agent observes an action set At ⇢ A. She then selects an action

at 2 At (i.e. an arm) to which a noisy feedback r(at) + ✏t is associated, where r(at) is

a bounded reward and ✏t is an i.i.d. sub-Gaussian noise of pseudo-variance �2. For

action a, the sub-optimality gap at time t is denoted �t(a) , maxã2At r(ã) � r(a),

and the maximal gap �max , maxa,t �t(a). We now recall the specifics of each model:

• MAB: There is a finite number of actions d, enumerated as A , [d], each having

a scalar reward ✓?a. Arms are independent : playing one arm gives no information

about the others.
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• LCB: The action set At is a subset of the unit ball Bd, possibly infinite. Non-

stochastic contexts are modeled by the fact that At is drawn by an oblivious

adversary. Here one does not need to rely on the typical i.i.d assumption on their

generating process [50, 18]. Unless explicitly mentioned, the reward is assumed

to be linear with respect to a latent unknown vector ✓? 2 Rd, i.e., r(a) = ha, ✓?i.

2.2 Information Structure and Censorship

In the classical uncensored setting, the noisy feedback is immediately observed post-

decision and utilized to make decisions in the next round. We introduce the following

censorship model: an independent Bernoulli random variable of parameter pat

denoted as xat is drawn after each decision at and the feedback is observed, i.e.,

realized, if and only if xat = 1; else the feedback is said to be censored. We recover the

uncensored setting when pa ⌘ 1. As briefly mentioned above, such censorship can also

be seen as an infinite delay. One of the main novelties of this work and a key factor of

difficulty is the fact that we allow the censoring probability to depend on the action,

i.e. we consider a heterogeneous censoring. We instantiate the precise relationship

between the censorship probability and the action chosen a in Chap.3 and 4. While

this has already been partially done for the MAB case [19], it is an open challenge in

the LCB case. Note also that this generic censorship model slows down the learning

but doesn’t introduce any bias in the estimation of the latent parameter [27].

Owing to the online nature of the problem where the principal learns endoge-

nously about the environment while acting, the design of the information struc-

ture is paramount. More formally, in the case of uncensored bandits, the latter

is characterized by the filtration (FNC
t )tT where FNC

t ⇢ F is the sigma algebra

generated by (a1, r(a1) + ✏1, . . . , at�1, r(at�1) + ✏t�1). Such actions are in turn gen-

erated by a (possibly randomized) policy ⇡ , (⇡t)tT that is FNC
t -adapted. In

other word, ⇡t can be seen as a distribution probability over actions conditioned

by FNC
t . In the censored case, the complete information structure can be charac-

terized by the filtration (FC
t )tT where FC

t ⇢ F is the sigma algebra generated by

20



(a1, r(a1)+✏1, xa1 , . . . , at�1, r(at�1)+✏t�1, xat�1). We introduce ⇧adapt the set of policies

time-measurable with respect to this filtration and refer to them as adaptive policies.

Yet, as described above, our main focus is on the more realistic setting where a reward

is observed conditionally on realization and absence of realization i.e. censorship

doesn’t convey any information. In other words, we introduce the filtration (Ft)tT

where Ft ⇢ F is the sigma algebra generated recursively by:

Ft+1

8
><

>:

Ft, if xat = 0

Ft [ �(at, r(at) + ✏t), otherwise

and we shall note ⇧off ⇢ ⇧adapt the subset of policies time-measurable with respect

to this filtration.

2.3 Upper Confidence Bound Algorithms

To study the impact of censorship on bandit problems, we consider the class of

high-probability index algorithms based on the optimism under uncertainty principle,

commonly referred as UCB-algorithms. Beyond the fact that they are widely used in

practice, their theoretical study has proven to be intimately linked to that of a larger

class of algorithms (notably Thompson Sampling and Information Directed Sampling).

Algorithm 1 summarizes the generic UCB design framework. We detail bellow the

specific instances of UCB for MAB (resp. LCB) used in Chap.3 (resp. Chap.4).
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Algorithm 1: Generic UCB
Input: Total time T , Regularization �, Precision �

for t = 1, . . . , T do
Provide reward estimator r̃�t verifying w.p. 1� �:

8a 2 At, r(a)  r̃�t (a);

Play action at = argmaxa2At
r̃�t (a) ;

if (at, r(at) + ✏t) is realized i.e. xat = 1 then

Update r̃�t ;

end

end

• UCB-MAB: Following [29], the UCB algorithms for the MAB case with

homogeneous regularization � > 0 uses the following optimistic reward estimator

at time t:

r̃�t (a) , ✓̂�t�1(a) +

s
6�2 log(T )

�+Na(t� 1)
+

�k✓?k1
�+Na(t� 1)

.

It is based on the use of the regularized empirical mean to estimate the reward

of action a at the end of round t:

✓̂�t (a) ,
1

Na(t) + �

tX

⌧=1

(r(a⌧ ) + ⌧)1{a⌧ = a, xa⌧ = 1}

=
Na(t)

Na(t) + �
✓?a +

1

Na(t) + �

tX

⌧=1

✏a⌧1{a⌧ = a, xa⌧ = 1}.

The high-confidence property of this algorithm is proven in Lemma 3.5.1.1Under

a-priori known heteroskedasticity, the reward estimator can be expressed as:

r̃�t (a) , ✓̂�t�1(a) +

s
6�2

a log(T )

�+Na(t� 1)
+

�k✓?k1
�+Na(t� 1)

.

1Typically, an upper bound on k✓?k1 for MAB (resp. k✓?k2 for LCB) is used instead of this
unknown quantity. We keep k✓?k1 (resp. k✓?k2) not to overload notations but our results immediately
extends to the use of the latter.
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• UCB for LCB Following [1, 29], the UCB algorithms for the LCB case with

homogeneous regularization � > 0 uses the following optimistic reward estimator

at time t:

r̃�t (a) , ha, ✓̂�t�1i+ �t�1(�)kakWC
t�1

, ,

where we introduced the random quantity:

�t�1(�) ,
s

�2 log

✓
det(WC

t�1)

det(�Id)

◆
+ 2�2 log(

1

�
) +
p
�k✓?k2.

It is based on the use of the regularized least square estimator to estimate the

vector ✓? at the end of round t:

✓̂�t = (WC
t )

�1
tX

⌧=1

(✏⌧ + ha⌧ , ✓?i)xa⌧a⌧

The high-confidence property of this estimator is proven in Lemma 4.6.1. Ex-

tension to Generalized Linear Contextual Bandits is discussed in Sec. 4.6.6,

where a regularized MLE estimator is used instead of a regularized least square

estimator.

2.4 Performance Criterion

The frequentist performance of the agent is measured by the notion of pseudo regret,

i.e., the difference between the algorithm’s cumulative reward and the best total

reward. More formally, we introduce for any policy ⇡ 2 ⇧:

R(T, ⇡) =
TX

t=1

max
a2At

r(a)�
TX

t=1

r(at) =
TX

t=1

�t(at).

We aim to provide guarantees on E[R(T, ⇡)] with respect to the number of rounds

T and quantities that govern the complexity of the problem (for example number of

arms, ambient dimension d, parameters of censorship model or smoothness properties
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of the reward r). Here, the expectation is with respect to the noise induced by the

feedback, the censorship and a possibly randomized policy. This work provides both a

proof methodology and an an answer to the following open questions:

• How to assess the quantitative impact of the presence of censorship on the

expected regret for the UCB class of algorithms ?

• Are the dynamics of learning similar in Multi-Armed and Contextual Bandits

model ? More precisely, how does the multiplicity of information acquisition

means interacts with the censorship during learning for the latter ?

• What is the normative relationship between the difficulty of the problem i.e. the

scaling of the regret and the parameters of the censorship model ? Stated differ-

ently, is there a way to characterize the class of censorship models corresponding

to a given level of effective dimension ?

2.5 Notations

Transpose of a vector u is denoted by u>, classical Euclidean inner product by h., .i

and trace operator by Tr. For positive semi-definite matrix ⌃ 2 Rd⇥d and for any

vector u 2 Rd, notation kuk⌃ refers to
p
u>⌃u. We use notation Id to denote the d⇥d

identity matrix. Bd is the unit ball in Rd. [n] is the set of integers {1, 2, · · · , n}. For

a given function f , we note f (i) the ith derivative of f . To avoid confusion with the

dimension d, we use @x instead of dx to denote an infinitesimal increase of x. We use

the asymptotic notations ⇠, O, ⇥ and Õ (O when log factors are removed). Finally,

for an event H, we use ¬H to denote its complement.

To help the reader, we recall the notations used throughout the paper in Tab.2.1,2.2

and 2.3.
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Table 2.1: Summary of Notations: Bandit Problem Variables

T , Total number of rounds of the sequential decision-making problem.
d , Number of arms in Chap.3, Dimension of action feature vector in

Chap.4.
(At,A) , Action set at time t; Union of all action sets At.

at , Action picked at time t; selected by policy ⇡, seen as a function of
previous history.

(✏t, �2) , Stochastic feedback noise a time t. Sub-Gaussian with pseudo-
variance parameter �2. If �2 depends on the action selected (het-
eroskedasticity), we use �2

a instead.
(r, ✓?) , Unknown reward function, maps action to scalar reward. Parame-

terized by unknown latent state ✓?.
�t(a) , Sub-optimality gap of action a at time t, reward difference with

optimal decision of clairvoyant policy
(�a,�max) , If �t(a) is independent of t, we use �a ⌘ �t(a). �max is an upper

bound of �t(a) for all actions a and time t.
R(T, ⇡) , Pseudo regret of policy ⇡ over T rounds.

Table 2.2: Summary of Notations: Censorship Variables

pa , Probability that action a is censored if selected, used in Chap. 3.
Notation p(a) is used in Chap.4 to emphasize the dependency of p
on action a.

(�j, u, pj) , Parameters of the multi-threshold censorship model. Vector u defines
the direction of censorship, (�j)jk+1 define the censorship regions
with fixed censorship probability and (pj)jk define the probability
of being censored for each region j.

xat , Random variable indicating if feedback is censored as round t. Fol-
lows i.i.d Bernoulli distribution of parameter p(at).
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Table 2.3: Summary of Notations: Algorithmic and Analysis Variables

� , Regularization tuning parameter. �a is used if heterogeneous action-
based regularization.

�̃�
t (a) , High-probability upper bound on the sub-optimality gap, used in

UCB algorithms.
V↵(T, ⇡) , Random cumulative censored potential, seen as a function of policy

⇡ and number of rounds T . First introduced in Chap.3 and extended
in Chap.4.

 ↵ , Primitive of the function x 7! x�↵, for a given ↵ > 0.
Na(t) , Total number of time action a is realized at the end of round t by

policy ⇡. Used in Chap.3.
⌧a(t) , Total number of time action a is played at the end of round t by

policy ⇡. Used in Chap.3.
WC

t , Censored Design Matrix. Linear generalization of (Na(t))a2[d]. Used
in Chap.4.

Wt , Expected Design Matrix. Linear generalization of (pa⌧a(t))a2[d].
Used in Chap.4.

W(t) , Continuous generalization of the expected design matrixWt.
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Chapter 3

Multi-Armed Bandits

In this chapter, we focus specifically on the seminal Multi-Armed Bandit model. To

evaluate the impact of censoring on decision making, we instantiate a proof framework

based on the study of the Cumulative Censored Potential which is naturally extended

in Chap.4 for more complex parameters. Thanks to this new methodology, we derive a

precise estimate of the performance loss induced and introduce the notion of effective

dimension resulting from the characterization of this potential. Finally, we perform a

statistical analysis of the adaptive nature of censoring and derive precise asymptotic

guarantees on the adaptivity power.

3.1 Effective Dimension and Regret Bounds

The main result of this section is that censorship effectively enlarges the dimension

of the problem. We define the effective dimension as de↵ ,Pa2[d]
1
pa

and our result

(Thm. 3.1.1) shows that, at first order, the regret is guaranteed to be the same as the

uncensored problem with de↵ arms instead of d.

Theorem 3.1.1. Under censorship, the UCB algorithm with regularization � has an

instance-independent expected regret of:

E[R(T, ⇡UCB)]  Õ(�
p
de↵ T ).
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Furthermore, we obtain analogous regret guarantees for instance-dependent cases

where, at first order, the uncensored dimension
P

a 6=a?
�2

�a
enlarges to

P
a 6=a?

�2

pa�a
:

Proposition 3.1.2. For a fixed action set At ⌘ [d] and for a-priori known action gap

�a , maxã ✓?ã�✓?a, the UCB algorithm with regularization � has the instance-dependent

expected regret:

E[R(T, ⇡UCB)]  O
⇣
log(T )

X

a 6=a?

1

pa
max(

�2

�a
,�a)

⌘
.

On one hand, a preliminary understanding of censorship posits an increase of the

average "regret per information gain" [26] (as it takes longer on average to get the

same amount of information) but does not change the underlying complexity of the

problem. One the other hand, our results (Thm. 3.1.1 and Prop. 3.1.2) postulate that

the censored problem is equivalent at first order to a higher dimensional problem but

explored with the same "regret per information gain".

The abovementioned results extends to a-priori known heteroskedasticity (see

SI). For this general setting, the effective dimension for instance-independent (resp.

dependent) case is given by
P

a
�2
a

pa
(resp.

P
a 6=a?

�2
a

pa�a
), where �2

a is the variance

proxy of arm a. Although the scaling in
P

a
1

�apa
was already mentioned in [27] for

unregularized setting with homogeneous variance �2 and proven to be optimal, our

results generalize these findings.

3.2 Cumulative Censored Potential

We now provide a proof sketch of Thm. 3.1.1, and in doing so, we instantiate an

analysis framework that will be extended in Sec. 4. This proof consists in the

successive elimination of the noise induced by the feedback and censorship. This leads

to regret guarantees on a resulting deterministic quantity by characterizing worst-case

learning conditions. The first step of the proof is a variant of the classical reduction

of the UCB regret to another quantity we refer to as the expected cumulative censored

potential. Before stating it, we define at the end of a round t 2 [T ], the random
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number of times an arm a has been pulled as ⌧a(t) , Pt
l=1 1{al = a}. Similarly,

the number of times an action a has been realized at the end of round t is denoted

Na(t) ,
Pt

l=1 1{al = a, xal = 1}. We then have:

Lemma 3.2.1. Given an uniform regularization of � > 0, the UCB algorithm verifies:

E[R(T, ⇡UCB)]  2
p

6�2 log(T )E[V 1
2
(T, ⇡UCB)] + 2�k✓?k1E[V1(T, ⇡UCB)] +

2d�max

T

where, for any ↵ > 0 and ⇡ 2 ⇧, the cumulative potential under censorship is given

by:

V↵(T, ⇡) =
TX

t=1

(Nat(t� 1) + �)�↵.

In contrast to the classical non-regularized analysis or to the LCB case of Sec. 4,

we observe two different orders of ↵ (1/2 and 1) coming from the use of the L1-norm

instead of the L2-norm. Taken independently, they lead to respective contributions

of O(de↵ log(T )) and O(
p

de↵ T ). To further study V↵, we introduce the following

property:

Proposition 3.2.2. For all ↵ > 0, � 2]0, 1] and given  ↵ a primitive of x 7! x�↵, we

have:

max
⇡2⇧

E[V↵(T, ⇡)] 
de↵

(1� �)↵


 ↵(

T

de↵
+

�

1� � )�  ↵(
�

1� � )
�
+

24de↵ log(T )

�↵
+

4de↵
�↵�2T 12�2

.

The proof of this proposition involves two steps: firstly, we remove the stochastic

dependence induced by the censorship through concentration properties (See SI), and

we then solve the resulting policy maximization problem (Lemma 3.2.3). In the first

step, we consider for a given � 2]0, 1] the event:

HCEN(�) = {9a 2 [d], t 2 [T ], Na(t) < (1� �)pa⌧a(t) and ⌧a(t) � T0(a)} ,

where T0(a) , 24 log(T )/pa and claim that P(HCEN(�))  4de↵
�2 T�12�2 , improving a

result of [27]. Our second step makes use of the following lemma (also known as a
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water-filling process in information theory [13]):

Lemma 3.2.3. For  ↵ a primitive of x 7! x�↵ where ↵ 2]0, 1], regularization

(�a)a2[d] 2 (R>0)d and censorship vector (pa)a2[d], the solution of the optimization

problem:

max
⌧1...,⌧d�0

X

a2[d]

1

pa

⇣
 ↵(pa⌧a + �a)�  ↵(�a)

⌘
s.t.

X

a2[d]

⌧a = T

is given by ⌧ ?a = 1
pa
[C � �a]+, where C ensures the total budget constraint

P
a2[d] ⌧

?
a =

T . In particular, with �eff , 1
de↵

P
a2[d]

�a
pa

and �0a , de↵ (�a � �eff), the optimal

solution is given by ⌧ ?a , 1
pade↵

(T � �0a) for T � max
a
�0a and the optimal value is

de↵ ↵(
T
de↵

+ �eff)�
P

a2[d]
1
pa
 ↵(�a).

Remark 1. Note that by working with general ↵, our analysis naturally extends

beyond sub-Gaussian noise to more general assumptions about the Laplace transform

of noise (e.g., lighter or heavier tails). Indeed, we note that assuming tails distribution

for the reward noise ✏ of the form:

P (✏ � x)  exp
n�x1+q

2�2

o

for a given q > 0, as suggested for instance in [50], would lead the use of the confidence

interval:

H�,q
UCB =

n
9a 2 [d], t 2 [T ], |✓̂�t (a)� ✓?a| >

⇣
6�2 log(T )

⌘ 1
1+q
⇣
�+Na(t)

⌘� q
1+q

+
�k✓?k1
�+Na(t)

o
.

The same reasoning as in the proof of Lemma 3.5.1 would then yield:

P
⇣
|
Pk

l=1 ✏l
k + �

| > (6�2 log(T ))
1

1+q (k + �)�
a

1+q

⌘
= P

⇣
|

kX

l=1

✏l| > (6�2(k + �) log(T ))
1

1+q

⌘

 2 exp{�6�2(k + �) log(T )

2k�2
)}  2

T 3

and therefore P(H�,q
UCB)  2d

T 2 . For q = 1, we recover the sub-Gaussian case, which

in turns lead to the study of V1/2, as done in Lemma 3.2.1. For general q > 0, we
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would would then consider Vq/(1+q), which lead to the upper bound O(dq/(1+q)
e↵ T 1/(1+q))

through the use of Prop. 3.2.2.

For unregularized algorithms, this framework can be easily applied to provide

instances-dependent guarantees by adding constraints of type ⌧a  f(�a) within

Lemma 3.2.3. Optimal guarantees under regularization such as the ones given in Prop.

3.1.2 require however to consider both orders of V↵ (1/2 and 1) simultaneously and not

independently, leading to slight variations as shown in the proof of Prop. 3.1.2 in SI.

Next, we further discuss the properties of V↵ given its importance in our analysis and

therefore provide additional insights to the main result of this section (Thm. 3.1.1).

3.3 Evaluating Adaptivity Gain

In particular, we seek to gain intuition about how the policies that are adaptive to

the realization of censorship process would perform in expectation against a class of

non-adaptive (i.e. offline ) policies. In order to precisely derive asymptotic behavior of

such policies, we introduce and study a continuous counterpart of the discrete original

policy maximization problem max⇡2⇧ E[V↵(T, ⇡)]. In fact, through the introduction

of HCEN (�) and for any ↵ 2 [0, 1], � 2]0, 1], we showed in Prop. 3.2.2 the upper bound
de↵

(1��)↵ ↵(
T
de↵

+ �
1�� ) for maxE[V↵(T, ⇡)] where the maximum is taken over the class

of adaptive policies ⇧adapt , i.e., measurable with respect to the censorship. Note that

the exact value of such maximum is notoriously difficult to study due to the adaptive

nature of censorship induced by the decision-making process. Interestingly, we obtain a

surprising result that the gain due to adaptivity is not significant. Indeed, Lemma 3.3.1

provides the basis for continuous approach in the case of offline policies by leveraging

concentration inequalities for inverse Binomial distribution. We then extend this

approach in the proof of Prop. 3.3.2. This extension enables us to provide an exact

expression for the asymptotic gain of a policy class that monitors the censorship at a

single point in time, as well as estimate the gain from fully adaptive policies. More

precisely, we introduce ⇧o↵ , the class of policies that are not adaptive with respect to

the censorship and we prove that :
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Lemma 3.3.1. For ↵ 2]0, 1] and � > 0, we have max
⇡2⇧off

E[V↵(T, ⇡)] ⇠ de↵ ↵(
T

de↵
+�).

In other words, restricting attention to offline policies is sufficient to obtain the

correct scaling. The next step to complete our claim is the asymptotic expansion:

Proposition 3.3.2. For ↵ 2]0, 1], by denoting �↵(p) ,
↵

2d1�↵
e↵

X

a2[d]

1

pa

⇣X

ã 6=a

1� pã
pã

⌘
,

we have:

max
⇡2⇧adapt

E[V↵(T, ⇡)]� max
⇡2⇧off

E[V↵(T, ⇡)] = �↵(p)
1

T ↵
+ o(

1

T ↵
). (?)

Moreover, if for a given � 2]0, 1[, we introduce ⇧single(�T ) the policy class whose

censorship information set has a single updating at time b�T c, we have:

max
⇡2⇧single(�T )

E[V↵(T, ⇡)]� max
⇡2⇧off

E[V↵(T, ⇡)] = �↵(p)
�

T ↵
+ o(

1

T ↵
). (??)

Thus, we find that (??), the power of a single monitoring is sufficient to ensure

almost the same gain as adaptivity i.e. constant monitoring. The linear dependency in

T0 (due to the linear increase of variance in Binomial models) is also surprising. In non-

asymptotic regime, it is still true but for � verifying 0 < ��  �  �+ < 1 for given

(��, �+). We also observe a more general concave property of the single monitoring

gain seen as a function of T0, with limits equals to 0 on the borders on the interval. We

conjecture that this concavity is likely to turn in a submodular dependency for several

monitoring shots. Moreover, �↵(p) can be viewed as an adaptivity gain resulting from

the continuous correction of the cumulative variance induced by the action selection

process. Essentially, it is closely related to the Jensen Gap of an appropriate random

variable and the proof involves the study of the Taylor expansion of the potential

function  ↵. This shows that censorship in MAB can be treated in an offline manner

at first order.
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3.4 Conclusion of Chap. 3

In this chapter, we considered Multi-Armed Bandit (MAB) models and proved in

particular that the regret scales as Õ(de↵
p
T ) (Thm. 3.1.1), where de↵ is the effective

dimension with value
P

a2[d]
1
pa

, mirroring the Õ(d
p
T ) for uncensored case. In

particular, we prove that the effective dimension results from characterizing the so-

called censored cumulative potential V↵. Our proof methodology easily allows to

extend this result to the instance-dependence case, as demonstrated in Prop.3.1.2.

In the second part of the chapter, we focused on a technical study of the adaptive

nature of censorship for V↵. Interestingly, we show in Lemma 3.3.1 and Prop. 3.3.2

that the adaptivity only plays a second order role, that is, impact of censorship can

be treated in an offline manner at first order.
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3.5 Proof of Chap. 3 - Multi-Armed Bandits

In this section, we prove the results of Chap.3. We start by proving Lemmas 3.2.1,

3.5.1, 3.5.2, 3.2.3 and Prop. 3.2.2. Thanks to those results, we then tackle Thm.

3.1.1 and Prop. 3.1.2. To conclude the section, we further study the properties of

the adaptivity gain, by proving Lemma 3.3.1 and Prop. 3.3.2. Recall that effective

dimension de↵ is referring to
P

a2[d]
1
pa

in this section.

3.5.1 Proof of Lemma 3.2.1

Lemma 3.2.1. Given an uniform regularization of � > 0, the UCB algorithm verifies:

E[R(T, ⇡UCB)]  2
p

6�2 log(T )E[V 1
2
(T, ⇡UCB)] + 2�k✓?k1E[V1(T, ⇡UCB)] +

2d�max

T

where, for any ↵ > 0 and ⇡ 2 ⇧, the cumulative potential under censorship is given

by:

V↵(T, ⇡) =
TX

t=1

(Nat(t� 1) + �)�↵.

Proof. At a given round t 2 [T ], we have under the event ¬H�
UCB introduced in Lemma

3.5.1:

�t(a) = max
a2At

✓?a � ✓?at  2

s

6�2
log(T )

Nat(t� 1) + �
+ 2

�k✓?k1
�+Nat(t� 1)

,

where the inequality comes from the definition of the UCB algorithm and the condi-

tioning on ¬H�
UCB. We find there the origin of the two different orders of Na (1/2 and

1). Taken independently, those lead to a contribution of respectively O(de↵ log(T ))

and O(
p

de↵ T ) . More precisely, we have:

R(T, ⇡UCB|¬H�
UCB)  2

p
6�2 log(T )

TX

t=1

s
1

Nat(t� 1) + �
+ 2�k✓?k1

TX

t=1

1

Nat(t� 1) + �

= 2
p

6�2 log(T )V 1
2
(T, ⇡UCB) + 2�k✓?k1V1(T, ⇡UCB).
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Therefore, thanks to Lemma 3.5.1, we deduce that:

R(T, ⇡UCB)  (1� P(H�
UCB))R(T, ⇡UCB|¬H�

UCB) + P(H�
UCB)�maxT

 2
p

6�2 log(T )V 1
2
(T, ⇡UCB) + 2�k✓?k1V1(T, ⇡UCB) +

2d�max

T
.

Finally, we conclude that:

E[R(T, ⇡UCB)]  2
p

6�2 log(T )E[V 1
2
(T, ⇡UCB)] + 2�k✓?k1E[V1(T, ⇡UCB)] +

2d�max

T
.

3.5.2 Statement and Proof of Lemma 3.5.1

The main step in this reduction from regret to cumulative censored potential is the

study of the failure of optimism event thanks to the following result:

Lemma 3.5.1. For a regularization � > 0 and � 2]0, 1], we introduce the event:

H�
UCB =

n
9a 2 [d], t 2 [T ], |✓̂�t (a)� ✓?a| >

s
6�2 log(T )

�+Na(t)
+

�k✓?k1
�+Na(t)

o
.

We then have P(H�
UCB)  2d

T 2 .

Proof. Although this event is similar to the one introduced in the classical UCB proof

idea, the subtlety comes from the randomness induced by the censorship as well as

the impact of regularization. The main idea is adopt a worst-case agnostic approach.

First, let’s note that for a given t 2 [T ], a 2 [d], we have:

|✓̂�t (a)� ✓?a| = | 1

Na(t) + �

tX

⌧=1

✏⌧1{a⌧ = a, xa⌧ = 1}� �

Na(t) + �
✓?a|

 | 1

Na(t) + �

tX

⌧=1

✏⌧1{a⌧ = a, xa⌧ = 1}|+ �

Na(t) + �
k✓?k1.

Therefore, for a given a 2 [d], t 2 [T ], by introducing the event B(t,a) ,
n
|✓̂�t (a)� ✓?a| >
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q
6�2 log(T )
�+Na(t)

+ �k✓?k1
�+Na(t)

o
, we deduce:

B(t,a) ⇢
n
| 1

Na(t) + �

tX

⌧=1

✏⌧1{a⌧ = a, xa⌧ = 1}|+ �

Na(t) + �
k✓?k1 >

s
6�2 log(T )

�+Na(t)

+
�k✓?k1
�+Na(t)

o

⇢
n
| 1

Na(t) + �

tX

⌧=1

✏⌧1{a⌧ = a, xa⌧ = 1}| >

s
6�2 log(T )

�+Na(t)

o
.

Then, we have:

P(H�
UCB) = P

⇣ [

a2[d]

[

t2[T ]

B(t,a)

⌘

 P
⇣ [

a2[d]

[

t2[T ]

n
| 1

Na(t) + �

tX

⌧=1

✏⌧1{a⌧ = a, xa⌧ = 1}| >

s
6�2 log(T )

�+Na(t)

o⌘


X

a2[d]

P
⇣ [

t2[T ]

n
| 1

Na(t) + �

tX

⌧=1

✏⌧1{a⌧ = a, xa⌧ = 1}| >

s
6�2 log(T )

�+Na(t)

o⌘

=
X

a2[d]

P
⇣ [

k2[T ],t2[T ]

n
| 1

Na(t) + �

tX

⌧=1

✏⌧1{a⌧ = a, xa⌧ = 1}|2 > 6�2 log(T )

�+Na(t)
;Na(t) = k

o⌘

=
X

a2[d]

X

k2[T ]

P(Na(t) = k)

· P
⇣ [

t2[T ]

n
| 1

k + �

tX

⌧=1

✏⌧1{a⌧ = a, xa⌧ = 1}|2 > 6�2 log(T )

k

���Na(t) = k
o⌘


X

a2[d]

X

k2[T ]

P
⇣ [

t2[T ]

n
| 1

k + �

tX

⌧=1

✏⌧1{a⌧ = a, xa⌧ = 1}|2 > 6�2 log(T )

�+ k

���Na(t) = k
o⌘

=
X

a2[d]

X

k2[T ]

P
⇣
|
Pk

l=1 ✏l
k + �

|2 > 6�2 log(T )

�+ k

⌘
,

where we successively used union bounds over the action set and number of realizations

and conditioned over number of realizations k. We re-indexed the random sub-Gaussian

variables (✏t) for last expression thanks to the i.i.d property. Then, for a given k, using
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Hoeffding inequality for sub-Gaussian variables, we have:

P
⇣
|
Pk

l=1 ✏l
k + �

|2 > 6�2 log(T )

k + �

⌘
= P

⇣
|

kX

l=1

✏l| >
p

6�2(k + �) log(T )
⌘

 2 exp{�6�2(k + �) log(T )

2k�2
}  2

T 3
,

where the used that fact that
Pk

l=1 ✏l is sub-Gaussian of pseudo-variance parameter

k�2 Therefore, this yields:

X

a2[d]

X

k2[T ]

P
⇣
|
Pk

l=1 ✏l
k + �

|2 > 6�2 log(T )

k + �

⌘
 2d

T 2
.

Finally, we conclude that P(H�
UCB)  2d

T 2 .

3.5.3 Statement and Proof of Lemma 3.5.2

Lemma 3.5.2. For any � 2]0, 1], � > 0 and censorship model, let’s introduce the

event:

HI
CEN(�) = {9a 2 [d], t 2 [T ], Na(t) < (1� �)pa⌧a(t) and ⌧a(t) � T0(a)} ,

where T0(a) , 24 log(T )/pa. We then have P(HI
CEN(�)) 

4de↵
�2 T�12�2.

Proof. First, we apply successively two unions bounds over the action set and the

number of realizations, mirroring the analysis of [27]:

P(HI
CEN(�)) 

X

a2[d]

P
⇣n
9t 2 [T ], ⌧a(t) � T0(a), Na(t) < (1� �)pa⌧a(t)

o⌘

=
X

a2[d]

P
⇣ [

ka2[T0(a),T ]

[

t2[T ]

n
⌧a(t) � T0(a), Na(t) < (1� �)pa⌧a(t), ⌧a(t) = ka

o⌘


X

a2[d]

X

ka�T0(a)

P
⇣ [

t2[T ]

n
Na(t) < (1� �)pa⌧a(t)

���⌧a(t) = ka
o⌘

.
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We then use a multiplicative Chernoff inequality for Binomial Distribution to deduce:

X

a2[d]

X

ka�T0(a)

P
⇣
Na(t) < (1� �)pa⌧a(t)

���⌧a(t) = ka
⌘

X

a2[d]

X

ka�T0(a)

exp{��
2kapa
2

}.

The novelty of our proof is to leverage a integral comparison to deduce the improved

control:

X

a2[d]

X

ka�T0(a)

exp{��
2kapa
2

}  2
X

a2[d]


� 2

�2pa
exp{��

2kapa
2

}
�⌧a(t)

T0(a)�1

 4

�2
de↵

1

T 12�2
� 4

�2

X

a2[d]

1

pa
exp{��

2⌧a(t)pa
2

}  4

�2
de↵

1

T 12�2
.

Picking for instance � = 1
2 yields P(HI

CEN(
1
2)) 

16de↵
T 3 .

3.5.4 Proof of Lemma 3.2.3

Lemma 3.2.3. For  ↵ a primitive of x 7! x�↵ where ↵ 2]0, 1], regularization

(�a)a2[d] 2 (R>0)d and censorship vector (pa)a2[d], the solution of the optimization

problem:

max
⌧1...,⌧d�0

X

a2[d]

1

pa

⇣
 ↵(pa⌧a + �a)�  ↵(�a)

⌘
s.t.

X

a2[d]

⌧a = T

is given by ⌧ ?a = 1
pa
[C � �a]+, where C ensures the total budget constraint

P
a2[d] ⌧

?
a =

T . In particular, with �eff , 1
de↵

P
a2[d]

�a
pa

and �0a , de↵ (�a � �eff), the optimal

solution is given by ⌧ ?a , 1
pade↵

(T � �0a) for T � max
a
�0a and the optimal value is

de↵ ↵(
T
de↵

+ �eff)�
P

a2[d]
1
pa
 ↵(�a).

Proof. We first introduce the Lagrangian of the problem L(⌧1, . . . , ⌧d, µ) :=
P

a2[d]
1
pa

⇣
 ↵(pa⌧a+

�a) �  ↵(�a)
⌘
+ µ(T �

P
a2[d] ⌧a). Differentiating with respect to ⌧a for all a 2 [d]

yields the equations:

1

(pa⌧a + �a)↵
� µ = 0.
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We then write it equivalently as:

⌧a =
1

pa
[µ�1/↵ � �a].

However, since (⌧a) must be nonnegative, it may not always be possible to find a

solution of this form. We then verify using KKT conditions that the solution:

⌧a =
1

pa
[C � �a]+,

where C ensures the total budget constraint
P

a2[d] ⌧
?
a = T , is optimal. In particular,

whenever T � maxa �0a, we recover the solution provided in the second part the

Lemma.

3.5.5 Proof of Prop. 3.2.2

Proposition 3.2.2. For all ↵ > 0, � 2]0, 1] and given  ↵ a primitive of x 7! x�↵, we

have:

max
⇡2⇧

E[V↵(T, ⇡)] 
de↵

(1� �)↵


 ↵(

T

de↵
+

�

1� � )�  ↵(
�

1� � )
�
+

24de↵ log(T )

�↵
+

4de↵
�↵�2T 12�2

.

Proof. For a given ↵ 2]0, 1], we condition on the event HI
CEN(�) introduced in Lemma

3.5.2 and consider the cases ⌧a(t) � T0(a) and ⌧a(t) < T0(a). This yields for any policy

⇡ 2 ⇧:

V↵(T, ⇡|HI
CEN(�)) 

P
a2[d] T0(a)

�↵
+

TX

t=1

((1� �)pat⌧at(t� 1) + �)�↵

 24de↵ log(T )

�↵
+

1

(1� �)↵
TX

t=1

✓
pat⌧at(t� 1) +

�

1� �

◆�↵

 24de↵ log(T )

�↵
+

1

(1� �)↵
X

a2[d]

Z ⌧a(T )

0

✓
pau+

�

1� �

◆�↵

@u

=
24de↵ log(T )

�↵
+

1

(1� �)↵
X

a2[d]

1

pa
[ ↵(pa⌧a(T ) +

�

1� � )�  ↵(
�

1� � )].
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We then apply the Lemma 3.2.3 with constant �̃ , �/(1� �) to deduce:

max
⇡2⇧

V↵(T, ⇡|¬HI
CEN(�)) 

24de↵ log(T )

�↵
+

de↵
(1� �)↵

h
 ↵(

T

de↵
+

�

1� � )�  ↵(
�

1� � )
i
.

Then, we conclude thanks to Lemma 3.5.2 that:

max
⇡2⇧

E[V↵(T, ⇡)]  P(¬HI
CEN(�))max

⇡2⇧
V↵(T, ⇡|¬HI

CEN(�)) + (1� P(¬HI
CEN(�)))

1

�↵

 1

(1� �)↵de↵

 ↵(

T

de↵
+

�

1� � )�  ↵(
�

1� � )
�
+

24de↵ log(T )

�↵

+
4

�2
de↵

1

�↵T 12�2
.

In particular, for ↵ = 1 and � = 1
2 , this involves:

max
⇡2⇧

E[V1(T, ⇡)]  2de↵ log(
T

2�
+ 1) +

24de↵ log(T )

�↵
+ 16de↵

1

�T 2
,

and for ↵ = 1
2 and � = 1

2 , this yields:

max
⇡2⇧

E[V 1
2
(T, ⇡)] 

p
2de↵

"s
T

de↵
+ 2��

p
2�

#
+

24de↵ log(T )p
�

+ 16de↵
1p
�T 2

.

3.5.6 Proof of Thm. 3.1.1

Theorem 3.1.1. Under censorship, the UCB algorithm with regularization � has an

instance-independent expected regret of:

E[R(T, ⇡UCB)]  Õ(�
p
de↵ T ).

Proof. We first apply Lemma 3.2.1 to deduce:

E[R(T, ⇡UCB)]  2
p

6�2 log(T )E[V 1
2
(T, ⇡UCB)] + 2�k✓?k1E[V1(T, ⇡UCB)] +

2d�max

T

 2
p

6�2 log(T )max
⇡2⇧

E[V 1
2
(T, ⇡)] + 2�k✓?k1 max

⇡2⇧
E[V1(T, ⇡)] +

2d�max

T
.
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We then apply proposition 3.2.2, with � = 1/2 in order to deduce:

E[R(T, ⇡UCB)]  2
p

6�2 log(T )
⇣p

2de↵
hs T

de↵
+ 2��

p
2�
i
+

24de↵ log(T )p
�

+ 16de↵
1p
�T 2

⌘

+ 2�k✓?k1
⇣
2de↵ log

⇣ T

2�
+ 1
⌘
+

24de↵ log(T )

�↵
+ 16de↵

1

�T 2

⌘
+

2d�max

T
.

By taking � = o(log(T )) and considering only the leading order, we conclude that:

E[R(T, ⇡UCB)]  Õ(�
p
de↵ T ).

Note that our proof easily allows to get high-probability bounds on regret instead of

bounds on its expected value.

3.5.7 Proof of Prop. 3.1.2

Proposition 3.1.2. For a fixed action set At ⌘ [d] and for a-priori known action gap

�a , maxã ✓?ã�✓?a, the UCB algorithm with regularization � has the instance-dependent

expected regret:

E[R(T, ⇡UCB)]  O
⇣
log(T )

X

a 6=a?

1

pa
max(

�2

�a
,�a)

⌘
.

Proof. As in the proof of Lemma 3.2.2, for a given round t 2 [T ], we have under the

event ¬H�
UCB

�a = max
ã2A

✓?ã � ✓?a  2

s

6�2
log(T )

Nat(t� 1) + �
+ 2

�k✓?k1
�+Nat(t� 1)

.

It is as an inequality of the second degree and thus for any t 2 [T ], a 2 [d]:

x1

 s
1

�+Na(t)

!2

+ x2

s
1

�+Na(t)
��a � 0,
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where x1 = 2�k✓?k1 and x2 = 2
p
6�2 log(T ). Solving it yields:

s
1

�+Na(t)
� 1

2x1
(�x2 +

q
x2
2 + 4�ax1),

or equivalently:

Na(t) 
⇣ 4�k✓?k1p

24�2 log(T ) + 8�a�k✓?k1 �
p
24�2 log(T )

⌘2
� �.

Therefore, under ¬HI
CEN(

1
2), we have:

⌧a(t)  max(T0(a),
2

pa

⇣ 4�k✓?k1p
24�2 log(T ) + 8�a�k✓?k1 �

p
24�2 log(T )

⌘2
� �).

This yields a conditional regret of:

R(T |¬(HI
CEN(

1

2
) [H�

UCB)) 
X

a2[d],a 6=a?

�a⌧a(t)

=
X

a2[d],a 6=a?

2�a

pa
max(12 log(T ),

⇣ 4�k✓?k1p
24�2 log(T ) + 8�a�k✓?k1 �

p
24�2 log(T )

⌘2
� �),

where a? , argmaxã2A ✓
?
ã and an expected regret of:

E[R(T, ⇡UCB)] 
X

a2[d],a 6=a?

2�a

pa
max(12 log(T ),

⇣ 4�k✓?k1p
24�2 log(T ) + 8�a�k✓?k1 �

p
24�2 log(T )

⌘2

� �) + d�max

T
+

16de↵�max

T 2
.

In particular, for the regularization � = o(log(T )), we have the asymptotic:

⇣ 4�k✓?k1p
24�2 log(T ) + 8�a�k✓?k1 �

p
24�2 log(T )

⌘2
=

24�2 log(T )

�2
a

+
8�k✓?k1
2�a

+ o(1).

And thus, we conclude that:

E[R(T, ⇡UCB)]  O
⇣
log(T )

X

a2[d],a 6=a?

1

pa
max(

�2

�a
,�a)

⌘
.
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Again, note that our proof easily allows to get high-probability bounds on regret

instead of bounds on its expected value.

Remark 2. As in the instance-independent case, previous reasoning immediately

extends to a-priori known heteroskedasticity and yields the upper bound:

E[R(T, ⇡UCB)]  O
⇣
log(T )

X

a2[d],a 6=a?

1

pa
max(

�2
a

�a
,�a)

⌘
.
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Chapter 4

Contextual Bandits

In this chapter, we study Linear Contextual Bandits under censorship. The regret

analysis for this general setting under censorship is significantly more complex than for

the MAB model. This is due among other to the multiplicity of information acquisition

means: observing the reward of a given action allows to partially learn the reward of

some others. Henceforth, this leads to a complex trade-off between the information

gain and censorship probability of an action. Nevertheless, by extending the analysis

of Chap.3, we derive an equivalent notion of effective dimension for a broad class

of censorship models and characterize new insights on the impact of censorship on

sequential decision making.

4.1 Multi-threshold Censorship Models and Regret

Bounds

We now introduce the class of multi-threshold censorship models defined as:

p : a 2 Bd 7!
kX

j=0

1{sin(�j)  ha, ui < sin(�j+1)}pj, (MT )

where (�j)jk+1 is an increasing sequence verifying �0 = �⇡
2 , �k+1 =

⇡
2 and u 2 Rd

is a unit vector. We assume that (pj)jk is decreasing, i.e. the censorship is increasing
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Figure 4-1: Example of a multi-threshold model for k = 2 (Green). Logistic censorship
model (Red).

with j in direction u. Henceforth, we refer to the interval [sin(�j), sin(�j+1)[ as region

j. Note that simple models such as uniform censorship are subsumed by this family

(for k equals 0). Furthermore, MT can be seen as a piecewise constant approximation

of any generalized linear model [34]. Thus, we do not see this modeling abstraction as

an inherently limiting factor on the generality of our subsequent results.

Moreover, MT admits a natural behavioral interpretation: Such a distribution can

be seen as induced by a population model of heterogeneous random-utility maximizers

agents. A single threshold model (i.e. k equals 1) corresponds to a given agent

type, and the multi-threshold model naturally results from aggregate responses of

heterogeneous population [4]. We now state the main result of this section:

Theorem 4.1.1. For a given multi-threshold censorship model MT , there exits de↵

such that the UCB algorithm with regularization � has an instance-independent expected

regret of:

E[R(T, ⇡UCB)]  Õ(�
p
d · de↵

p
T ).

Note that the mapping from the original dimension d to the enlarged
p

d · de↵
is more surprising than previous dilation d 7! de↵ in the case of MAB problems.

An extension to Generalized Linear Contextual Bandits is provided in the SI where
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we show that the dimension is governed by
p
d · de↵ /, with  corresponding to a

minimum of the derivative of the link function (encompassing the smoothness of the

generalized linear model at its maximum) [31, 18]. We conjecture that this result and

the notion of effective dimension can be extended to more general censorship models

as long as the radial property of censorship is verified i.e. p only depends on the action

a through ha, ui for a given potentially time dependent vector u.

4.2 Generalized Cumulative Censored Potential

Analogous to the MAB case, we now introduce for LCB the random matrices cor-

responding to the effective realization WC
t , �Id +

Pt
n=1 xatata

>
t and the expected

realization Wt , �Id +
Pt

n=1 p(at)ata
>
t . We also introduce the continuous counterpart

of Wt defined as W(t) , �Id +
R t

u=0 p(a(u))a(u)a(u)
>@u, where (a(u))uT is an inte-

grable deterministic path.1 We emphasise that the use of continuous counterpart is

key in enabling our next results. As in the MAB case, we bound the regret although

now using a generalization of V↵:

Lemma 4.2.1. For all � 2]0, 1], there exists a constant �̃�(T ) = ⇥(
p
d log(T )) such

that

E[R(T, ⇡UCB)]  2�̃�(T )
p

TE[V1(T, ⇡UCB)] + �T�max,

where, for ↵ > 0 and ⇡ 2 ⇧, the linear extension of the cumulative censored potential

is given by:

V↵(T, ⇡) ,
TX

t=1

katk2(WC
t�1)

�↵ =
TX

t=1

Tr((WC
t�1)

�↵ata
>
t ).

The proof idea is analogous (albeit more complex) than in the finite action case

(see SI). In order to get a handle on V↵, we again leverage a two-step approach: first

we eliminate the randomness due to censorship (here, we utilize matrix martingale
1In this section, the generic notation X(t) is used for continuous time quantities and Xt for

discrete time.
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inequalities) and then optimize the resulting deterministic quantity seen through a

continuous lens. The first step requires the following result:

Proposition 4.2.2. For any � 2]0, 1], � > 0, ↵ > 0 and policy ⇡ 2 ⇧, we have:

E[V↵(T, ⇡)] 
�

�↵
+ C(�)↵ Tr

⇣Z T

0

W(t)�↵a(t)a(t)>@t
⌘
,

where C(�) , 8(�+ 1)max(log(d/�))/�, 1)/�.

Remark 3. The key idea of this result is to observe that the telescopic sum on which

the classical Elliptical Potential lemma [1, 39, 7] heavily relies on is, in fact, the

discrete approximation of an integral over a matrix path.2 For the simpler case of

classical uncensored environment, we obtain for ↵ > 0,↵ 6= 1:

TX

t=1

katk2W�↵
t�1

⇣�+ 1

�

⌘↵Tr
⇣ R T

0 @W(t)1�↵
⌘

1� ↵ =
⇣�+ 1

�

⌘↵Tr(W1�↵
T �W1�↵

0 )

1� ↵ .

For ↵ = 1, a similar reasoning is applied using the formula Tr(log(A)) = log(detA):

TX

t=1

katk2W�1
t�1
 �+ 1

�

Z T

0

@ log det(W(t))

@t
@t =

�+ 1

�
Tr(logWT � logW0)

 �+ 1

�
log

detWT

detW0
.

A deeper study of the eigenvalues of W1�↵
T then yields the worst-case upper bound

d↵(d� + T )1�↵/(1 � ↵) for ↵ < 1 and d�1�↵/(↵ � 1) for ↵ > 1, recovering more

naturally and extending the results of [7]. Thus, analogous to the water filling process

highlighted in the MAB case in Lemma 3.2.3, we now consider a spectral water-filling

process [13] for the eigenvalues of  ↵(WT ) with a slight abuse of notations ( W1�↵
T

and logWT in this discussion).

One of the main challenge introduced by the censorship is therefore to identify

a suitable matrix operator on which the spectral maximization can be performed.
2Note that the rank 1 assumption is not needed in the continuous relaxation and therefore our

results still hold whenever a(t)a(t)T is replaced by any positive semi-definite matrix H(t).
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Motivated by Lemma 4.2.1, we henceforth focus on the case of ↵ = 1 for which Prop.

4.2.2 implies that for any policy:

Tr
⇣Z T

0

W(t)�1a(t)a(t)>@t
⌘
=

Z T

0

1

p(a(t))

@ log det(W(t))

@t
@t.

4.3 Effective Dimension in Linear Settings

Again, the notion of effective dimension naturally appears. We now highlight intuition

provided by this quantity, and then present its general study for the multi-threshold

model MT .

Remark 4. Let us consider an uniform censorship model p : a 7! p̄. By leveraging

the case of equality in the Arithmetic-Geometric inequality applied to the eigenvalues

of WT , we then simply deduce the associated effective dimension de↵ , d/p̄:

max
⇡2⇧

Z T

0

1

p̄

@ log det(W(t))

@t
@t = de↵ log(1 +

T

�de↵
).

We next illustrate the logarithmic scaling of this quantity in the general case as

well as the importance of the leading dimension factor, crudely upper bounded by

d/pmin in the next lemma:

Lemma 4.3.1. For any censorship function p, by introducing lower and upper bounds

(pmin , pmax ) of p, we have:

d

pmax
log(1 +

pminT

d�
)  max

⇡2⇧

Z T

0

1

p(a(t))

@ log det(W(t))

@t
@t  d

pmin
log(1 +

pmaxT

d�
).

Related problems in the generalized linear models literature [50, 31, 18] are implic-

itly solved in the spirit of Lemma 4.3.1, where a minimum of the derivative of the link

function plays the role of pmin above. However, when the function p varies with action

a, a more careful analysis is required to derive useful dimensional bounds. Our next

major result addresses this gap in the literature by improving the bounds provided in

Lemma 4.3.1:
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Theorem 4.3.2. For a multi-threshold censorship model MT , we have:

max
⇡2⇧

Z T

0

1

p(a(t))

@ log det(W(t))

@t
@t = de↵ log(T ) + o(log(T )), (P)

where de↵ is the effective dimension. Furthermore, de↵ is characterized by two cases:

• Case 1: Single region j effective dimension de↵ = d
pj

.

• Case 2: Bi-region (i, j) effective dimension, with i < j:

de↵ =
1

pj

"
(d� 1)

1� l(i, j)
pi
pj
� l(i, j)

+
u(i, j)� 1

u(i, j)� pi
pj

#
<

d

pj
. (D)

where l(i, j) , sin2(�i)
sin2(�j)

and u(i, j) , cos2(�i)
cos2(�j)

.

Before moving to a discussion of the proof idea behind Thm. 4.3.2, we mention a

few important remarks. First, a necessary condition for the bi-region (i, j) effective

dimension to arise is the constraint on pi
pj

:

max(1,
dl(i, j)u(i, j)

u(i, j) + (d� 1)l(i, j)| {z }
,s?(i,j)

) <
pi
pj

<
(d� 1)u(i, j) + l(i, j)

d| {z }
,r?(i,j)

As summarized in Figure 4-5, in the limit pi
pj
! r?(i, j), de↵ goes again to d/pj. We

interpret this limiting case as locally hard in the sense that censorship in region j is

sufficiently important in comparison to all other regions to impose a maximal effective

dimension to the problem, irrespective of the values of pi, matching Lemma 4.3.1.

On the other hand, for the other limiting case (under additional mild assumptions),

we find that de↵ also goes to d/pj, but now for a uniformly hard reason: that is,

censorship is approximately constant and equal to pj, recovering the Remark 4. Note

that in between these two extremes lies the minimum effective dimension for a given

value of pi
pj

.

50



Figure 4-2: Sketch plot of normalized effective dimension pjde↵ with respect to pi
pj

.
We recover the uniform and local hardness conditions mentioned in the discussion of
Thm. 4.3.2, as well as the existence of a minimum effective dimension for a certain
value of pi

pj
. The necessary conditions of reachability and dual reachability (Lemma

4.4.2 and 4.4.1) verified by pi
pj

impose that it belongs to the orange open interval.

4.4 Temporal dynamics of learning under censorship

We first summarize the dynamics of the optimal policy of (P) through an algorithmic

description in Alg. 2. Two key notions of our analysis are the concepts of reachability

and dual reachability of a region i from a base region j, as described in Lemmas 4.4.1

and 4.4.2 and schematized in Fig.4-4,4-3 and 4-5. Formally, they can be written as

two independent necessary constraints on the ratio pi
pj

: pi
pj

< r?(i, j) for reachability

and pi
pj

> r†(i, j) for dual reachability.

The categorization result provided in the statement of Thm. 4.3.2 follows from the

two possible termination condition of the algorithm. We use as algorithmic invariant to

ensure the termination the fact that the set of reachable regions is strictly decreasing
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Algorithm 2: Algorithmic description of the dynamics of W(t)

Initalization: Set current region S  k
while a region is reachable from region S do /* Lemma 4.4.1,Fig.4-3 */

play region S optimal policy until first reachable region i? is reached;
if region i? is dual reachable from region S then /* Lemma 4.4.2,
Fig.4-4 */

Bi-region (i?, S) effective dimension (case 2); /* Lemma 4.7.1 */
play Bi-region (i?, S) optimal policy;
End;

else
Update current region S  i?; /* Lemma 4.4.2, Fig.4-5 */

end
end
Single region S effective dimension (case 1); /* Lemma 4.4.1 */
play region S optimal policy;

for inclusion and finite. Hence, the while loop will terminate either because a dual

reachable region is reached or because no more regions are reachable. In order to not

overload the presentation, time aspect is not present in the algorithmic description

but is extensively covered in Lemmas 4.4.1, 4.4.2, 4.7.1 and Cor. 4.7.0.1, as well as in

what follows. One of our main finding is that the dynamics of the optimal policy of

(P) are described through W(t) by two qualitatively different regimes. We emphasize

that our continuous approach to analyzing cumulative censored potential is key to

obtaining these results.

Transient Regime: From the while loop in the algorithmic description results

a so-called transient regime. More precisely, there exists a decreasing sequence of

censorship regions {i1 = k, . . . , il} of length l 2 [k + 1] and associated time sequence

{t0 , 0, t1, . . . , tl} such that whenever tj  t  tj+1 for a given index j  l � 1, the

evolution of W(t) is given by:

W(t) = pij+1(t� tj)Wij+1 +W(tj) = pij+1(t� tj)Wij+1 +
jX

n=1

pin(tn � tn�1)Win + �Id.

This result follows from a simple induction with repeated use of Lemma 4.4.1, giving

the exact sequence of censorship regions, Moreover, closed-formed formula for the
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time sequence is provided in Cor. 4.7.0.1. We interpret this transient step as an

adversarial self-correction of the initial misspecification of censorship at an extra cost.

This characterization of transient regime highlights an important consequence of using

classical algorithms in censored environments.

Steady State Regime: Post-transient regime, the dynamics of W(t) enter a steady

state regime, where one of the two cases necessarily arise:

• Case 1: Single region il. This case arises when the while loop ends because

no other regions are reachable. It is equivalent to have last element of the time

sequence tl is equal to +1 and we have the single region evolution for all t � tl�1

thanks to Lemma 4.4.1:

W(t) = pil(t� tl�1)Wil +W(tl�1) = pil(t� tl�1)Wil +
l�1X

n=1

pin(tn � tn�1)Win + �Id.

The effective dimension corresponding to this dynamics is d/pil , with the following

equality for T � tl�1:

Z T

0

1

p(a(t))

@ log det(W(t))

@t
@t =

1

pil
log det(W(T )) +

l�1X

n=1

(
1

pin
� 1

pin+1

) log detW(tn),

where the closed-form formula for W(tn) is provided in Cor. 4.7.0.1 for all

n  l � 1.

• Case 2: Bi-region (il+1, il). This case arises when the while loop ends because

dual reachable region il+1 is reached from region il, with il+1 < il. For all t � tl,

Lemma 4.4.2 yields the evolution:

W(t) / pil+1
(t+ �?)

0

@cos2(�il)(u(il+1, il)�
pil+1

pil
)Id�1 (0)

(0) sin2(�il)(
pil+1

pj
� l(il+1, il))

1

A .

where �? and the proportionality factor are specified in the proof. The corre-

sponding effective dimension is given by (D) and the following equality holds
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for all T � tl thanks to Lemma 4.7.1:

Z T

0

1

p(a(t))

@ log det(W(t))

@t
@t = de↵ log(1 +

T � tl
tl + �?

) +
lX

n=1

(
1

pin
� 1

pin+1

) log detW(tn),

where the closed-form formula for W(tn) is provided in Cor. 4.7.0.1 for all n  l.

Remark 5. Fig.4-3 and 4-5 provide further insights on formula (D) for de↵ . Through-

out the proof and as illustrated on Fig.4-3, we see that for (D) to arise, pi
pj

must

belong to a certain interval J ,] max(1, r†(i, j)), r?(i, j)[. As r?(i, j) < u(i, j) and

r†(i, j) > l(i, j), we see (D) as a weighted average of the relative distance of pi
pj

to

u(i, j) and l(i, j). Fig.4-5 provides a sketch of the variations of de↵ as pi
pj

evolves in

this interval.

Then, we formally present the key notions of reachability and dual reachability,

used in the study of (P) and illustrate possible behaviors thanks to sketch plots.

In what follows, we show that the optimal policy adopts a greedy-like behavior by

selecting in a specific way actions in a sequence of decreasingly censored regions.

Reachability is a binary directed relation from a highly censored region i to a less

censored region j. The latter is said to be reachable from the former if the playing only

the highly censored region i leads to a point in time where region i and j are equally

attractive from a greedy perspective. This happens whenever playing only region i

create a potential gap between different actions that can be exploited to compensate

the gap in censorship. Dual reachability is the symmetric relation: a highly censored

region i is said to be dual reachable from a less censored region j if the playing only

the weakly censored region i leads to a point in time where region i and j are equally

attractive from a greedy perspective. For effective dimension of case 2 to arise, it is

necessary to have two regions i and j such that j is both reachable and dual reachable

from i.

Lemma 4.4.1. [Reachability Analysis] Let’s assume we start at a given time t1 in
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transient censored region j, with a matrix

W(t1) =

0

@�aId�1 (0)

(0) �b

1

A ,

where �a � �b. We introduce Ij , {i; i < j and pi
pj

< r?(i, j)}, the set of reachable

regions from region j and affirm that we have the two possible cases:

• If Ij = ?, i.e. no region is reachable from region j, we switch to a steady state

regime with single region j effective dimension de↵ = d/pj.

• Otherwise, next region added to the transient sequence is i? , argmini2Ij µ
?(i, j,�a,�b),

at time t2 , t1 +
1
pj
µ?(i?, j,�a,�b) and we have:

W(t2) =
(d� 1) sin2(�j)�a � cos2(�j)�b
d cos2(�j) sin

2(�j)(r?(i?, j)� pi
pj
)
W(i?, j).

Lemma 4.4.2. [Dual Reachability Analysis] Let’s assume we are currently playing

transient region j and we reach the region i at time tl. We then have the following

two possible cases:

• If pi
pj

> r†(i, j), we say that regions i is dual reachable from region j, leading to

a steady state regime with bi-region (i, j) effective dimension. In such case, for

t � tl, the potential increase is of the form:

W(t) =
1

pi/pj +
d

u+(d�1)l
r?(i,j)�pi/pj
pi/pj�r†(i,j)

u� l

u+ (d� 1)l

1

pi/pj � r†(i, j)
pi(t+ �?)W(i, j).

• Otherwise, we switch from base region j to base region i and continue in the

transient regime.
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Figure 4-3: Illustration of the set of reachable regions from a base region k, as a
function of pi

pk
. Black dots and lines correspond to censorship regions defined by MT .

In this figure, we see that a region is reachable if and only if the black dot is below
the red reachability line. As time increases, the green line rotates with region k as
pivot and asymptotically approaches to the red line. Hence, the first reachable region
is the one first reached by the green line.

To conclude this section, we present our results in the context of the canonical

single-threshold model and effectively witness the full range of variation of the effective

dimension between the local and uniform hardness edge scenarios. This variation is

parameterized by the ratio of the censorship values and the value of the threshold.

Corollary 4.4.2.1. For the single threshold model with two regions 0 and 1 and

associated censorship probabilities p0 < p1, our main theorem yields:

• If p0
p1

< d�1
d cos2(�1)

, then we reach bi-region steady state regime and have the effective

dimension:

de↵ =
d� 1

p0
+

1

p0

sin2(�1)
p1
p0
� cos2(�1)

2 [
d

p0
,
d

p1
].

• Otherwise, we are from t = 0 in single-region steady state regime and have the
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Figure 4-4: Sketch plot of reachability and dual reachability conditions from base
region k associated with the black dot (Lemma 4.4.2 and 4.4.1) as a function of pi

pj
.

For a region i to be reachable, pi
pj

has to be below the red line. For a region i to be
dual reachable, pi

pj
has to be above the blue line. Henceforth, the red dot here is a

censorship region that is both reachable and dual reachable whereas the purple dot is
a reachable but not dual reachable region. Orange lines represent the functions u(i, k)
and l(i, k) introduced above in Sec.4.7.1.

effective dimension de↵ = d/p1.

4.5 Conclusion of Chap. 4

The main result of this chapter yields that regret of LCB with censorship is still

governed by the effective dimension, but now with a dependency of Õ(
p

d · de↵
p
T )

(Thm. 4.1.1). To the best of our knowledge, these regret bounds provide the first

theoretical characterization in LCB with censorship, and contribute to the literature

by evaluating the impact of censorship on the performance of UCB-type algorithms.

In proving this result, we derive the value of the effective dimension for a broad class
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Figure 4-5: Sketch plot of the evolution of reachability and dual reachability conditions
after a region j is reached from region k but is not dual reachable (Else condition in Alg.
2). Doted red (resp. blue) line is reachability (resp. dual reachability) condition for
previous region k and full red (resp. blue) lines is reachability (resp. dual reachability)
condition for new region j. Instead of starting from horizontal line at t = 0 to find
new reachable state, rotation with region j as pivot is initialized at the green line
associated with t =

µ?
j

pk
. Note that the y-axis is not normalized here.

of multi-threshold models MT as well as a precise understanding of the dynamic

behavior induced by these models (Thm. 4.3.2). In particular, we find that censorship

introduces a two-phase behavior: a transient phase during which the initial censoring

misspecification is self-corrected at an additional cost; followed by a stationary phase

that reflects the inherent slowdown of learning governed by the effective dimension.

Moreover, in extending our analysis from MAB to LCB, we also develop a continuous

generalization of the widely used Elliptical Potential Inequality (Prop. 4.2.2), which

we believe is also of independent interest.
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4.6 Proof of Chap. 4 - Contextual Bandits

In this section, we prove Thm. 4.1.1 of Chap.4, extending the results of MAB to LCB.

To do so, we prove Lemmas 4.2.1, 4.6.1 and Prop. 4.2.2. Note that the proof of Thm.

4.3.2 is differed to next section. We conclude the section by discussing the extension

of our analysis to Generalized Linear Contextual Bandits.

4.6.1 Proof of Lemma 4.2.1

Lemma 4.2.1. For all � 2]0, 1], there exists a constant �̃�(T ) = ⇥(
p
d log(T )) such

that

E[R(T, ⇡UCB)]  2�̃�(T )
p

TE[V1(T, ⇡UCB)] + �T�max,

where, for ↵ > 0 and ⇡ 2 ⇧, the linear extension of the cumulative censored potential

is given by:

V↵(T, ⇡) ,
TX

t=1

katk2(WC
t�1)

�↵ =
TX

t=1

Tr((WC
t�1)

�↵ata
>
t ).

Proof. We have under the event ¬HII
UCB(�) introduced in Lemma 4.6.1 and thanks to

Holder inequality:

�t(a) , max
ã2At

h✓?, ãi � h✓?, ati  2��(t� 1)katk(WC(t�1))�1 .

Therefore, the conditional regret is upper-bounded by:

R(T |¬HII
UCB(�))  ��(T )

TX

t=1

katk(WC(t�1))�1 = ��(T )Ṽ 1
2
(T, ⇡),

where we introduced Ṽ 1
2
(T, ⇡) , PT

t=1 katkWC(t�1)�1 . Cauchy Schwartz inequality

then allows to make the junction Ṽ 1
2
(T, ⇡) 

p
T
p

V1(T, ⇡). We then introduce �̃�(T )
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a deterministic upper bound on ��(T ):

��(T ) =

s

�2 log

✓
det(WC

T )

det(�Id)

◆
+ 2�2 log(

1

�
) +
p
�k✓?k2


r
�2d log(1 +

T

d�
) + 2�2 log(

1

�
) +
p
�k✓?k2

| {z }
,�̃�(T )

= ⇥(
p

d log(T )).

Using the concavity of square root and Jensen’s inequality, we have E[
p
V1(T, ⇡)] 

p
E[V1(T, ⇡)]. Finally, thanks to Lemma 4.6.1, we conclude that:

E[R(T, ⇡UCB)]  2�̃�(T )
p
TE[V1(T, ⇡UCB)] + �T�max.

4.6.2 Statement and Proof of Lemma 4.6.1

Analogous to Lemma 3.5.1 for the MAB case, one key step in the proof is introduction

of the failure of optimism event. Nevertheless, note the difference with the choice of

norm.

Lemma 4.6.1. For any � 2]0, 1], uniform regularization � > 0 and censored action

generating process (WC
t )tT , let’s introduce the event:

HII
UCB(�) ,

n
9t � 0, k✓̂�t � ✓?kWC

t
>

s

�2 log

✓
det(WC

t )

det(�Id)

◆
+ 2�2 log(

1

�
) +
p
�k✓?k2

| {z }
,��(t)

o
.

We then have P(HII
UCB(�))  �.

Proof. The proof closely mirrors the self-normalized bound for vector-valued martin-

gales of Thm.1 from [1]. The main subtlety is to apply the results to the censored

measurable vectors (xatat) instead of classically (at). This yields that with probability

60



1� �, for all t � 0:

k
tX

n=1

✏nxanank2WC
t
 �2 log

det(WC
t )

det(�Id)
+ 2 log(

1

�
).

Thus, still on this event, for any t � 0 and action a 2 Rd, we have by definition of ✓̂�t :

ha, ✓̂�t i � ha, ✓?i = ha, (WC
t )

�1
tX

n=1

✏nxanani � �ha, (WC
t )

�1✓?i,

and therefore, thanks to Cauchy-Schwartz inequality:

|ha, ✓̂�t i � ha, ✓?i|  kak(WC
t )�1

⇣
k

tX

n=1

✏txatatkWC
t
+ �1/2k✓?k2

⌘

Using previous result, for all a 2 Bd, t � 0, with probability 1� �, we have:

|ha, ✓̂�t i � ha, ✓?i|  �

s

log
⇣det(WC

t )

det(�Id)

⌘
+ 2 log(

1

�
) + �1/2k✓?k2

To conclude, we classically plug-in the value a = WC
t (✓̂

�
t � ✓?) and divide both sides

by k✓̂�t � ✓?kWC
t

to get that for all t � 0, with probability 1� �, we have:

k✓̂�t � ✓?kWC
t
 �

s

log
⇣det(WC

t )

det(�Id)

⌘
+ 2 log(

1

�
) + �1/2k✓?k2

and therefore, by definition P(HII
UCB(�))  �.

4.6.3 Proof of Prop. 4.2.2

Proposition 4.2.2. For any � 2]0, 1], � > 0, ↵ > 0 and policy ⇡ 2 ⇧, we have:

E[V↵(T, ⇡)] 
�

�↵
+ C(�)↵ Tr

⇣Z T

0

W(t)�↵a(t)a(t)>@t
⌘
,

where C(�) , 8(�+ 1)max(log(d/�))/�, 1)/�.
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Proof. First, we use Lemma 4.6.2 to deduce that under HII
CEN(�):

V↵(T, ⇡|HII
CEN(�)) =

TX

t=1

Tr((WC
t�1)

�↵ata
>
t )  c↵�

TX

t=1

Tr(W�↵
t�1ata

>
t ).

For all t � 1, we then use the fact that Wt � (1 + 1
�)Wt�1 to deduce Tr(W�↵

t�1ata
>
t ) 

(1 + 1
�)

↵ Tr(W�↵
t ata>t ). The last and most important step is the integral comparison:

TX

t=1

Tr(W�↵
t ata

>
t ) 

Z T

0

Tr(W(t)�↵a(t)a(t)>)@t = Tr
⇣Z T

0

W(t)�↵a(t)a(t)>@t
⌘
.

In the previous result, the continuous extension (a(t),W(t))tT of (at,Wt)t2[T ] for a

given policy ⇡ is defined for any time t � 1 as:

a(t) , abtc and W(t) ,
Z t

u=1

pa(u)a(u)a(u)
>@u = Wbtc + (t� btc)p(adte)adtea>dte.

This yields the result:

V↵(T, ⇡|HII
CEN(�))  c↵� (1 +

1

�
)↵ Tr

⇣Z T

0

W(t)�↵a(t)a(t)>@t
⌘
.

Finally, we conclude thanks to Lemma 4.6.2 that:

E[V↵(T, ⇡)] 
�

�↵
+ C(�)↵ Tr

⇣Z T

0

W(t)�↵a(t)a(t)>@t
⌘
.

Remark 6. The main tour de force of the continuous approximation we employ is to

relax the maximization problem by considering the class of continuous deterministic

integrable policies, which is considerably more tractable from an analysis perspective.

On the one hand, it allows to get closed-form solution for the maximization problem

whereas the discrete approach can only deal with approximations and upper bounds. On

the other hand, it clearly reveals the underlying matrix function the discrete approach

is approximating and henceforth allows to leverage powerful integration results. We

leverage again this idea in the context of Chap.4 to tackle impact of censorship.
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To illustrate the abovementioned points, we remark that for the simpler case of

classical uncensored environment, we obtain for ↵ > 0,↵ 6= 1:

TX

t=1

katk2W�↵
t�1

⇣�+ 1

�

⌘↵Tr
⇣ R T

0 @W(t)1�↵
⌘

1� ↵ =
⇣�+ 1

�

⌘↵Tr(W1�↵
T �W1�↵

0 )

1� ↵ .

For ↵ < 1, we then have thanks to Lemma 3.2.3 the worst case bound Tr(W1�↵
T ) 

d↵(d�+ T )1�↵ and henceforth:

TX

t=1

katk2W�↵
t�1

⇣�+ 1

�

⌘↵d↵(d�+ T )1�↵ � d�1�↵

1� ↵

On the other hand, for ↵ > 1, we deduce:

TX

t=1

katk2W�↵
t�1

⇣�+ 1

�

⌘↵d�1�↵

↵� 1
.

Finally, for ↵ = 1, we use the formula Tr(log(A)) = log(detA) to deduce:

TX

t=1

katk2W�1
t�1
 �+ 1

�

Z T

0

@ log det(W(t))

@t
@t =

�+ 1

�
Tr(logWT � logW0)

=
�+ 1

�
log

detWT

detW0
 �+ 1

�
log(1 +

T

�d
),

where we used again Lemma 3.2.3 to obtain the last (worst-case) upper bound. In

doing so, we recover and extend the recent results of [7] in a more natural way.3

4.6.4 Statement of Lemma 4.6.2

In order to prove previous property on V↵, a key step mirroring the MAB case is the

use of high confidence lower bound on the censorship process, proven using anytime

matrix martingale inequalities:

3Yet, we conjecture that the preliminary use of Cauchy Schwartz inequality in the case ↵ > 1 to

affirm
PT

t=1 katkW�↵
t�1

r
T
PT

t=1 katk2W�↵
t�1

is suboptimal in this case as it imposes a O(
p
T ) scaling.
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Lemma 4.6.2. ([39]) For any � 2]0, 1], � > 0 and policy ⇡, let’s introduce the event:

HII
CEN(�) ,

n
9t � 0,WC

t �
1

c�
Wt

o
,

where c� , 8max( log(d/�))� , 1). We then have P(HII
CEN(�))  �.

Note that picking as in the MAB case � ⇠ d/T 2 would lead to a constant c� =

⇥(log(T )), that is a worsening confidence interval, except if we manage to control the

initialization. One interesting technical question for future work would be to allow an

initialization condition as in Lemma 3.5.2 ensuring W(T0) counterbalance log(d/�).

4.6.5 Proof of Thm. 4.1.1

Theorem 4.1.1. For a given multi-threshold censorship model MT , there exits de↵

such that the UCB algorithm with regularization � has an instance-independent expected

regret of:

E[R(T, ⇡UCB)]  Õ(�
p
d · de↵

p
T ).

Proof. Analogous to the MAB case, we use Lemma 4.2.1 to deduce:

E[R(T, ⇡UCB)]  2�̃�(T )
p
TE[V1(T, ⇡UCB)] + �T�max,

where we have:

�̃�(T ) =

r
�2d log(1 +

T

d�
) + 2�2 log(

1

�
) +
p
�k✓?k2.

We then pick � = d
T 2 , which yields:

E[R(T, ⇡UCB)]  2
⇣r

�2d log(1 +
T

d�
) + 2�2 log(

T 2

d
) +
p
�k✓?k2

⌘p
TE[V1(T, ⇡UCB)]

+
d�max

T
.
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We then apply Lemma 4.2.2 with ↵ = 1 and � = d
T 2 to deduce:

E[V↵(T, ⇡)] 
d

�T 2
+ 8

�+ 1

�
max(

2 log(T )

�
, 1)Tr

⇣Z T

0

W(t)�1a(t)a(t)>@t
⌘

 d

�T 2
+ 8

�+ 1

�
max(

2 log(T )

�
, 1)max

⇡2⇧
Tr
⇣Z T

0

W(t)�1a(t)a(t)>@t
⌘
.

By applying Thm. 4.3.2, we deduce the two possibilities:

• Case 1: Single region il. The effective dimension corresponding to this

dynamics is d/pil , with the following equality for T � tl�1:

max
⇡2⇧

Tr
⇣Z T

0

W(t)�1a(t)a(t)>@t
⌘
=

1

pil
log det(W(T )) +

l�1X

n=1

(
1

pin
� 1

pin+1

) log detW(tn),

where we have for T � tl�1 W(T ) = pil(T � tl�1)Wil +W(tl�1). Explicit formula

of (tn,W(tn)) are given for all n  l in Cor. 4.7.0.1. We then note that:

1

pil
log det(W(T )) =

1

pil
log det(pil(T � tl�1)Wil +W(tl�1))

= de↵ log(T ) +
1

pil
log det(pil(1�

tl�1

T
)Wil +

1

T
W(tl�1)).

For T � tl�1, we then write this in the form:

max
⇡2⇧

Tr
⇣Z T

0

W(t)�1a(t)a(t)>@t
⌘
= de↵ log(T ) + f(T ),

where f(T ) = o(log(T )).
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• Case 2: Bi-region (il+1, il). Similarly, for T � tl, we have:

max
⇡2⇧

Tr
⇣Z T

0

W(t)�1a(t)a(t)>@t
⌘
= de↵ log(1 +

T � tl
tl + �?

)

+
lX

n=1

(
1

pin
� 1

pin+1

) log detW(tn)

= de↵ log(T ) + de↵ log(
1

T
+

1� tl
T

tl + �?
)

+
lX

n=1

(
1

pin
� 1

pin+1

) log detW(tn)

= de↵ log(T ) + f(T ),

where f(T ) = o(log(T )).

Therefore, for given de↵ , f and t0, we know that the following holds for all T � t0:

E[V↵(T, ⇡)] 
d

�T 2
+ 8

�+ 1

�
max(

2 log(T )

�
, 1)Tr

⇣Z T

0

W(t)�1a(t)a(t)>@t
⌘

 d

�T 2
+ 8

�+ 1

�
max(

2 log(T )

�
, 1)(de↵ log(T ) + f(T )).

Putting the pieces together yields for T � t0:

E[R(T, ⇡UCB)]  2
⇣r

�2d log(1 +
T

d�
) + 2�2 log(

T 2

d
) +
p
�k✓?k2

⌘p
T
⇣ d

�T 2

+ 8
�+ 1

�
max(

2 log(T )

�
, 1)(de↵ log(T ) + f(T ))

⌘1/2
+

d�max

T
.

By imposing regularization of order � = o(log(T )) only considering the leading order,

this yields:

E[R(T, ⇡UCB)]  Õ(
p

(d+ 4)�2
p
de↵
p
T ).

Finally, by working in large d regime, we finally conclude that:

E[R(T, ⇡UCB)]  Õ(�
p
d · de↵

p
T ).
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Again, we note that our proof easily allows to get high-probability bounds on regret

instead of bounds on its expected value.

4.6.6 Extension to Generalized Linear Contextual Bandits

On what follows, we provide a sketch of the extension our results to Generalized Linear

Contextual Bandits (GLCB) but differ the complete treatment to future work. In this

model, the reward of a given action a is assumed to be of the form:

r(a) = µ(ha, ✓?i)

for a given function µ strictly increasing, continuously differentiable and real-valued.

Notable instances of such a problem include the Logistic bandit and the Poisson

bandit. Of particular importance in the dimensionality study of the problem are the

constants:

Lµ = sup
a2[At

µ(1)(ha, ✓?i) and  = inf
a2[At

µ(1)(ha, ✓?i).

An important requirement of GLCB is the assumption  > 0 needed to ensure

identifiability of ✓? and asymptotic normality. Given this, the suited definition of

pseudo-regret considered is:

R(T, ⇡) ,
TX

t=1

max
a2At

µ(ha, ✓?i)� µ(hat, ✓?i)

Note that this regret can be easily mapped to the one studied above thanks to the

fact that Lµ is a Lipschitz constant for µ: for all a, ã 2 [At, |µ(ha, ✓?i)�µ(hã, ✓?i)| 

Lµ|ha, ✓?i � hã, ✓?i|. Mirroring the proof of [31], we use a Maximum Likelihood

Estimator (MLE) instead of a Least-Square Estimator for ✓?. More precisely, we define
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✓̂MLE
t as the solution of the equation:

tX

n=1

han, ✏t + µ(han, ✓?i)� µ(han, ✓i) = 0

A minor difference between the approach of [31] and what precedes is the use of a

period of initial random sampling (e.g. exploration) instead of the regularization to

ensure inversibility of the design matrix WC
t . More precisely, the initial sampling

ensures that with high-probability, �min(WC
t ) > 0 in a finite time Tinit. To be possible,

this requires the assumption that there exists �2
0 > 0 such that for all t � 1, we

have �min

�
Ea2At

⇥
aa>

⇤�
� �2

0, where the expectation E is associated with an uniform

sampling of actions. Under the same assumption, the impact of censorship on this

initialization step is at worst an increase of the sampling time to ˜Tinit , Tinit/pmin,

which is still constant. Following Lemma 9 of [31], we then consider the censored

high-probability confidence set for any � 2 [ 1T , 1]:

HIII
UCB(�) ,

n
9t � 0, k✓̂MLE

t � ✓?kWC
t
>
�



r
d

2
log(1 + 2

t

d
) + log(1/�) and �min(WC

t ) > 1
o
.

and a direct extension of their results allows us to conclude P(HIII
UCB(�))  �. Note

that the constant  appears when upper bounding in the Loewner order the Fischer

Information Matrix of the MLE by the matrix WC
t . Post-initialization, the conditional

regret is then upper bounded by:

R(T, ⇡UCB|¬HIII
UCB(�))  ˜Tinit�max +

TX

t=Tinit

Lµ
�



r
d

2
log(1 + 2

t

d
) + log(1/�)katk(WC

t )�1

 ˜Tinit�max + Lµ
�



r
d

2
log(1 + 2T/d) + log(1/�)

p
TV1(⇡UCB, T ),

Combining these elements and taking � = 1
T , we conclude that:

E[R(T, ⇡UCB)]  Õ
⇣Lµ



p
d
p
TE[V1(⇡UCB, T )]

⌘
 Õ

⇣
Lµ

p
d · de↵


p
T
⌘
,

where we used Thm. 4.3.2 to control E[V1(⇡UCB, T )] as done in the proof of Th,4.1.1.
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4.7 Proof of Chap. 4 - Temporal Dynamics for Multi-

Threshold Models

In this section, we prove Thm. 4.3.2 and discuss its implications. In doing so, we

introduce and prove Lemmas 4.4.1, 4.4.2, 4.7.1 and Cor. 4.7.0.1. We conclude the

section by illustrating results for the single-threshold model, through Cor. 4.4.2.1.

4.7.1 Supplementary Notations

Without loss of generality (i.e. up to an orthogonal transformation), we can consider

that u ⌘ ed, the dth basis vector. Given this, for two regions i < j, we introduce the

notations:

l(i, j) , sin2(⇢i)

sin2(⇢j)
and u(i, j) , cos2(⇢i)

cos2(⇢j)

r?(i, j) , (d� 1)u(i, j) + l(i, j)

d
and r†(i, j) , 1

r?(j, i)
=

dl(i, j)u(i, j)

u(i, j) + (d� 1)l(i, j)

Wi ,

0

@
cos2(⇢i)
d�1 Id�1 (0)

(0) sin2(⇢i)

1

A

W(i, j) ,

0

@cos2(⇢j)(u(i, j)� pi
pj
)Id�1 (0)

(0) sin2(⇢j)(
pi
pj
� l(i, j))

1

A .

Whenever i and j are clear from context, we use in u (resp. l) as abbreviation for

u(i, j) (resp. l(i, j)).

4.7.2 Proof of Lemma 4.4.1

Lemma 4.4.1. [Reachability Analysis] Let’s assume we start at a given time t1 in

transient censored region j, with a matrix

W(t1) =

0

@�aId�1 (0)

(0) �b

1

A ,
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where �a � �b. We introduce Ij , {i; i < j and pi
pj

< r?(i, j)}, the set of reachable

regions from region j and affirm that we have the two possible cases:

• If Ij = ?, i.e. no region is reachable from region j, we switch to a steady state

regime with single region j effective dimension de↵ = d/pj.

• Otherwise, next region added to the transient sequence is i? , argmini2Ij µ
?(i, j,�a,�b),

at time t2 , t1 +
1
pj
µ?(i?, j,�a,�b) and we have:

W(t2) =
(d� 1) sin2(�j)�a � cos2(�j)�b
d cos2(�j) sin

2(�j)(r?(i?, j)� pi
pj
)
W(i?, j).

Proof. First, we note that the initial starting point is recovered for t1 = 0, base

censored state k and �a = �b = � but this Lemma allows to go beyond the first step

in the study of the behavior of the system. We know the temporal evolution for

normalized budget µ , p1(t� t1) is of the form:

W(t) =

0

@(µ cos2(�j)
d�1 + �a)Id (0)

(0) µ sin2(�j) + �b

1

A = µWj +W(t1).

We recall that the set of actions associated with region j is {a 2 Bd, sin(�j)  ha, edi <

sin(�j+1)}. Therefore, the use of Kiefer-Wolfowitz theorem [29] combined with the

fact �a � �b yields that the optimal policy while evolving in region j only plays unit

action vector vj ⌘ (cos(�j)/(d� 1)1/2, . . . , cos(�j)/(d� 1)1/2, sin(�j)). By noting that

vjv>j = Wj, we obtain the formula announced. Reachability of a given state i < j

from state j after time t1 is then defined as:

9t � tt,
1

pi
Tr(W(t)�1Wi) =

1

pj
Tr(W(t)�1Wj).

We interpret this as a classical a first-order optimally condition for convex maximization

problems, where the matrix Wj is weighted by the censorship probability representing
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the speed of increase in region j. We then rewrite this condition as:

9µ � 0,
1 + f(µ) cos2(�i)

1 + f(µ) cos2(�j)
=

pi
pj

where f(µ) , µ sin2(�j) + �b

µ cos2(�j)
d�1 + �a

� 1.

We know that f is increasing in µ and the LHS of the equation above is decreasing in

f(µ) as i < j. Hence, the reachability condition than be stated by looking at the limit

of f in +1. By using the fact that limµ!+1 f(µ) = d sin2(�j)�1
cos2(�j)

, we deduce that the

reachability condition is equivalent to looking at the position of pi
pj

with respect to:

r?(i, j) , 1 + ud[sin2(�j)� 1
d ]

d sin2(�j)
=

(d� 1)u+ l

d
=

1

d
Tr(W�1

j Wi).

On the one hand, if pi
pj
� r?(i, j), the state in never reachable in a finite time. On

the other hand, whenever pi
pj

< r?(i, j), the state is reachable by investing a budget

µ?(i, j,�a,�b) such that:

f(µ?(i, j,�a,�b)) =
1

cos2(�j)

pi
pj
� 1

u� pi
pj

,

which in turn involves:

µ?(i, j,�a,�b) =
d� 1

d sin2(�j) cos2(�j)

(sin2(�j)�a + cos2(�j)�b)
pi
pj
� (sin2(�i)�a + cos2(�i)�b)

r?(i, j)� pi
pj

.

In particular, at t1 = 0 whenever �b = �a = � and j = k, this gives:

µ?(i, k,�,�) =
(d� 1)�

d sin2(�k) cos2(�k)

pi
pk
� 1

r?(i, k)� pi
pk

.

The first reachable region from region j is then defined as i? , argmini2I µ
?(i, j,�a,�b),

where I , {i; i < j and pi
pj

< r?(i, j)}. Note that at the moment t2 , t1 +

1
pj
µ?(i?, j,�a,�b) when this region is reached, we have:

W(t2) =
(d� 1) sin2(�j)�a � cos2(�j)�b
d cos2(�j) sin

2(�j)(r?(i?, j)� pi
pj
)
W(i, j).
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On the other hand, whenever the set I is empty, by definition, the process reaches case

1 steady-state regime and only plays optimal policy of region j for remaining budget.

To be fully general, we note that two or more regions can be reached simultaneously.

In this case, the optimal policy tie-breaks by taking the region with maximal index

i.e. higher censorship, as further described in Lemma 4.4.2.

4.7.3 Statement and Proof of Cor. 4.7.0.1

More generally, this allows us to deduce the next technical corollary:

Corollary 4.7.0.1. For a sequence of censored regions {i1 = k, . . . , il, il+1, . . . }, we

have for the lth region of the transient sequence, with starting time tl�1 and ending

time tl:

W(tl) = �Id +
lX

n=1

µ?(in+1, in,�
W(tn�1)
a ,�W(tn�1)

b )Win

=

� (d�1) sin2(�k)�cos2(�k)
cos2(�il

) sin2(�il
)

l�1Y

n=1

⇣
r†(in+1, in)�

pin+1

pin

⌘

dl
lY

n=1

⇣
r?(in+1, in)�

pin+1

pin

⌘ l�1Y

n=1

⇣
u(in+1, in) + dl(in+1, in)

⌘W(il+1, il),

where tl is characterized by:

tl =
lX

n=1

1

pin
µ?(in+1, in,�

W(tn�1)
a ,�W(tn�1)

b ),

and where �W(tn)
a and �W(tn)

b refer respectively to the upper and lower coefficient of the

diagonal matrix W(tn).

Proof. We leverage a simple induction reasoning using for l � 1 the formula given
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within the proof of lemma 4.4.1:

tl = tl�1 +
1

pil
µ?(il+1, il,�

W(tl�1)
a ,�

W(tl�1)
b )

W(tl) =
(d� 1) sin2(�il)�

W(tl�1)
a � cos2(�il)�

W(tl�1)
b

d cos2(�il) sin
2(�il)(r

?(il+1, il)�
pil+1

pil
)

W(il+1, il),

and the initialization conditions t0 = 0 and W(0) = �Id.

4.7.4 Proof of Lemma 4.4.2

Lemma 4.4.2. [Dual Reachability Analysis] Let’s assume we are currently playing

transient region j and we reach the region i at time tl. We then have the following

two possible cases:

• If pi
pj

> r†(i, j), we say that regions i is dual reachable from region j, leading to

a steady state regime with bi-region (i, j) effective dimension. In such case, for

t � tl, the potential increase is of the form:

W(t) =
1

pi/pj +
d

u+(d�1)l
r?(i,j)�pi/pj
pi/pj�r†(i,j)

u� l

u+ (d� 1)l

1

pi/pj � r†(i, j)
pi(t+ �?)W(i, j).

• Otherwise, we switch from base region j to base region i and continue in the

transient regime.

Proof. Using previous section, we know that W(tl) /W(i, j) where we recall that the

matrix W(i, j) has the strong property that the gains in regions i and j are equal i.e.:

1

pi
Tr(W(i, j)�1Wi) =

1

pj
Tr(W(i, j)�1Wj).

One of the main result we show in the multi-threshold censorship model is that for

t � tl, we have:

W(t)�W(tl) / (t� tl)W(i, j),
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which involves in particular that for t � tl,W(t) /W(i, j). This is possible thanks to

the fact that the optimal policy produces a combination of piWi and pjWj proportional

to W(i, j) so that optimally of both regions i and j is maintained while maximal first-

order gain is simultaneously ensured. The proportionality condition is then written as

the existence of µi, µj > 0 such that piµiWi + pjµjWj /W(i, j) or equivalently as:

9µi, µj > 0,
1

d�1 [piµi cos2(�i) + pjµj cos2(�j)]

piµi sin
2(�i) + pjµj sin

2(�j)
=

cos2(�j)(u(i, j)� pi
pj
)

sin2(�j)(
pi
pj
� l(i, j))

, R,

where µi and µj are the infinitesimal time increase in regions i and j. It leads in turn

to the ratio equality:

piµi

pjµj
=

sin2(�j)(d� 1)R� cos2(�j)

cos2(�i)� sin2(�i)(d� 1)R
=

(d� 1)u+ l � d pi
pj

(u+ (d� 1)l) pipj � dlu
=

d

u+ (d� 1)l

r?(i, j)� pi
pj

pi
pj
� r†(i, j)

.

Thus, we see that bi-region stationarity is possible if and only if pi
pj

> r†(i, j) where

we introduced the dual reachability condition:

r†(i, j) , dl(i, j)u(i, j)

u(i, j) + (d� 1)l(i, j)
=
⇣ d�1

u(i,j) +
1

l(i,j)

d

⌘�1

=
⇣1
d
Tr(W�1

i Wj)
⌘�1

=
1

r?(j, i)
.

Hence, the use of the term dual reachability comes from the fact that region i is dual

reachable from region j if and only if region j is reachable from region j. In such case,

further algebraic calculation then lead to the instantaneous potential increase @W for

infinitesimal time @t , µj + µj:

@W (@t) , pjµjWj + piµiWi =
u� l

u+ (d� 1)l

1
pi
pj
� r†(i, j)

pjµjW(i, j).

We then note that:

µi + µj

µj
= 1 +

1
pi
pj

d

u+ (d� 1)l

r?(i, j)� pi
pj

pi
pj
� r†(i, j)

.
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Therefore, we conclude that:

@W (@t) =
1

pi/pj +
d

u+(d�1)l
r?(i,j)�pi/pj
pi/pj�r†(i,j)

u� l

u+ (d� 1)l

1

pi/pj � r†(i, j)
pi(µj + µi)W(i, j)

=
1

pi/pj +
d

u+(d�1)l
r?(i,j)�pi/pj
pi/pj�r†(i,j)

u� l

u+ (d� 1)l

1

pi/pj � r†(i, j)
pi@tW(i, j).

We then introduce �? defined such that:

(tl + �?)W(i, j) , 1

pi

(u+ (d� 1)l)(pi/pj � r†(i, j))

u� l

⇣
pi/pj +

d

u+ (d� 1)l

r?(i, j)� pi/pj
pi
pj
� r†(i, j)

⌘
W(tl).

Given the previous two results, we conclude that for all t � tl:

W(t) =
1

pi/pj +
d

u+(d�1)l
r?(i,j)�pi/pj
pi/pj�r†(i,j)

u� l

u+ (d� 1)l

1

pi/pj � r†(i, j)
pi(t+ �?)W(i, j).

Note that entering the bi-region stationary regime impedes new regions to be reachable.

Indeed, going back to the initial definition of reachability, region n is said to be

reachable from region j after time tl if and only if:

9t � tl,
1

pn
Tr(W(t)�1Wn) =

1

pj
Tr(W(t)�1Wj).

Yet, using previous result on the evolution of W(t), we know that the ratio of those

two quantities remain equal for any t � tl i.e. no new regions can be reached.

Moreover, using the optimality criterion of Lemma 4.4.1, when several regions

are reached simultaneously, the tie-breaking is performed by considering the most

censored region, i.e. the one with the highest i index. If the chosen region is not dual

reachable, then the next one is considered. In the case where none of them is dual

reachable, the base region becomes the maximally censored region and we immediately

reiterate the procedure described in Lemma 4.4.2.
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4.7.5 Proof of Lemma 4.7.1

Lemma 4.7.1 (Bi-Region Effective Dimension). Let’s assume we reach a bi-region

(i, j) steady state regime at time tl  T . Then, we have:

Z T

tl

1

p(a(t))

@ log det(W(t))

@t
@t = de↵ log(1 +

T � tl
tl + �?

) ⇠ de↵ log(T ),

where de↵ = 1
pj

h
(d� 1) 1�l(i,j)

pi/pj�l(i,j) +
u(i,j)�1

u(i,j)�pi/pj

i
and �? is given in the proof of Lemma

4.4.2. Moreover, we have the cumulative transient potential:

Z tl

0

1

p(a(t))

@ log det(W(t))

@t
@t =

lX

n=1

1

pin

Z tn

tn�1

@ log det(W(t)) =
lX

n=1

1

pin
log

det(W(tn))

det(W(tn�1))

=
lX

n=1

(
1

pin
� 1

pin+1

) log detW(tn).

Proof. For t � tl, we have the infinitesimal two-step increase @G during the infinitesi-

mal time @t , µi + µj:

@G(@t) , µi Tr(W(t)�1Wi) + µj Tr((W(t) + µipiWi)
�1Wj)

= µi Tr(W(t)�1Wi) + µj Tr(W(t)�1Wj) + o(@t)

=
piµi + pjµj

pj
Tr(W(t)�1Wj) + o(@t),

where we used the property of W(i, j). Invoking lemma 4.4.2, we know the evolution

of W(t) for t � tl:

W(t) =
1

1 + 1
pi/pj

d
u+(d�1)l

r?(i,j)�pi/pj
pi/pj�r†(i,j)

u� l

u+ (d� 1)l

1

pi/pj � r†(i, j)
pj(t+ �?)W(i, j),

as well as the relations between µi and µj:

8
><

>:

piµi+pjµj

pj
= µj(1 +

d
u+(d�1)l

r?(i,j)�pi/pj
pi/pj�r†(i,j) )

µi+µj

µj
= 1 + 1

pi/pj
d

u+(d�1)l
r?(i,j)�pi/pj

pi
pj

�r†(i,j)
.
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We invoke the fact that Tr(W(i, j)�1Wj) =
1

u�pi/pj
+ 1

pi/pj�l to conclude that:

@G(@t) =
1

pj

[(d� 1)l + u� d] pipj � [dlu� ((d� 1)u+ l)]

(u� pi
pj
)( pipj � l)

(1 + 1
pi/pj

d
u+(d�1)l

r?(i,j)�pi/pj
pi/pj�r†(i,j) )µj

t+ �?

=
1

pj

"
(d� 1)

1� l
pi
pj
� l

+
u� 1

u� pi
pj

#
@t

t+ �?

= de↵
@t

t+ �?
.

Given that @t is an infinitesimal time increase, we have in the steady state regime:

Z T

tl

@G = de↵

Z T

tl

@t

t+ �?
= de↵ log(

T + �?

tl + �?
) = de↵ log(1 +

T � tl
tl + �?

).

We finally note that the cumulative potential coming from the transient period is

equal to:

Z tl

0

@G =
lX

n=1

1

pin

Z tn

tn�1

@ log det(W(t)) =
lX

n=1

1

pin
log

det(W(tn))

det(W(tn�1))

=
lX

n=1

(
1

pin
� 1

pin+1

) log detW(tn),

where the closed-form expression of W(tn) is given in Corollary 4.7.0.1.

4.7.6 Special case: Single-threshold model

Corollary 4.4.2.1. For the single threshold model with two regions 0 and 1 and

associated censorship probabilities p0 < p1, our main theorem yields:

• If p0
p1

< d�1
d cos2(�1)

, then we reach bi-region steady state regime and have the effective

dimension:

de↵ =
d� 1

p0
+

1

p0

sin2(�1)
p1
p0
� cos2(�1)

2 [
d

p0
,
d

p1
].

• Otherwise, we are from t = 0 in single-region steady state regime and have the
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effective dimension de↵ = d/p1.

Proof. Using Lemma 4.4.2 in the case of the single threshold model, we note that

if region 0 is reachable, it is necessarily dual reachable given that r†(0, 1) = 0 and

henceforth, we always have p0/p1 > r†(0, 1). Thanks to the results of Lemma 4.4.1,

we also note that r?(0, 1) = p0
p1

< d�1
d cos2(�1)

and that if region 0 is reachable, it is done

in a time:

t1 =
1

p1

(d� 1)�

d sin2(�1) cos2(�1)

p0
p1
� 1

d�1
d cos2(�1)

� p0
p1
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Chapter 5

Conclusion and Future Directions

In this work, we demonstrate that the complexity of bandit learning under censorship

is governed by the notion of effective dimension. To do so, we developed a novel

analysis framework which enables us to precisely estimate this quantity first for general

censored MAB bandits and then for a broad class of censorship models in the CB

case. From a methodological viewpoint, the key contributions are the analysis of the

dynamics of learning through a continuous lens, the characterization of the adaptivity

gain and the fruitful introduction of the multi-threshold models. An important future

work would be to extend our approach to Bayesian settings, which will likely provide

us with useful insights on the cumulative censored potential V↵, as initiated by [22].

Future work also includes the study of time-dependent censorship models such as

exponential counting processes or Markov Decision Processes. Moreover, we believe

that our new perspective can be exploited to design robust algorithms operating

efficiently in unknown (and possibly adversarial) environments. To conclude this work,

we further detail two directions deemed of particular relevance with respect to our

initial questioning:

• Towards a generic assessment of the value of information in sequential

settings: More generally, modelling relations between user preferences (i.e.

latent state) and perceived feedback(s) as a Dynamic Choice Structural Models

[4] allows to extend our approach to more complex behavioral processes. Building
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blocks of this structure include sequences of nested interdependent decisions

(censorship process in what precedes) and of feedback (realized reward). On

the one hand, regarding decision modeling, a first degree of variability is to be

introduced in terms of amount of randomness present in the decision making

process, ranging in term of difficulty from deterministic utility maximization

to uniformly random decisions. Another one degree deals with identifiability

of the underlying latent state driving the output. For instance, the multi-

threshold decision model doesn’t allow direct identifiability of the latent state

in the neighborhood of the optimal action as the derivative with respect to

such latent state is null. On the other hand, feedback analysis also presents

similar complexity of randomness and identifiability issues but usually under

a different class of parametric models. A complete and normative study of

the resulting difficulty of decision making under uncertainty arising from the

Graphical structure of the Dynamic Choice Model is to the best of our knowledge

an open and fascinating challenge.

• Some connections with Information Directed Sampling and Partial

Monitoring: Finally, we believe that this work sketches some deeper connections

between online statistical learning literature and information theory. Indeed, it is

possible to see the effective dimension as a form of measure of the communication

capacity between the principal and the environment and this raises several

fascinating questions. Firstly, it would seem very relevant to further investigate

the links between adaptativity in the MAB framework and the impact of feedback

in non-asymptotic channel coding [38]. Secondly, and more related to the recent

literature on Information Directed Sampling (IDS) and partial monitoring, our

work allows us to study in a tractable way the evolution of information flows

through a continuous lens. An open challenge would be to extend the analysis

of IDS to allow for the adoption of this methodology as well, thus unlocking

more subtle dimensional estimates for a larger class of problems.
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