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1 Introduction.

The regression model
i =zifo+e

with E(e;|z;) = 0, has played a prominent role in econometric analysis. At the same time
careful inspections of economic problems revealed the limit of the regression model and
induced efforts to overcome the limitations of the basic model. Recognition of the simul-
taneous equations problem, nonnegativity restrictions, probabilistic choices, disequilibra
in markets, the selectivity bias problem, or the time dependence of economic decisions
all lead to constructing appropriate econometric models.

While most models are carefully specified, estimations almost always involve casual
specification of error distributions, except for the simultaneous equations model. At first
sight specifying distributions seem inevitable, because error terms enter structural models
nonlinearly and they are entangled with the conditional expectation. Thus in models
within which error terms enter nonlinearly, the reduced forms embody the specification
of the error distribution. This is in contrast with the basic regression model where
E(y;|z:) = =!8 so long as E(¢;|z;) = 0, regardless of the distribution of ¢;.

Yet, the necessity of the appended distributional assumption is not at all obvious for
identifying the parameters in nonlinear error models. In fact not only is it unnecessary,
a misspecification of error distributions in general lead to an inconsistent estimator.
Therefore it is desirable to construct an estimator which treats distributions as infinite
dimensicnal nuisance parameters: a semiparametric estimator.

Manski (1975) initiated research to relax distributicnal assumptions studying proba-
bilistic choice models.! Since then much effort has been directed towards this goal, but
proposed semiparametric estimators rarely have known asymptotic distributions. Even
when an asymptotic distribution is known the asymptotic covariance matrix is not easily

estimable. An exception is Powell’s (1985) least absolute deviation (LAD) estimator for

! Manski (1985) proves consistency of Maximum Score (MS) estimator for binary choice
models. Amemiya (1985) (pp. 339-346) proves consistency of MS estimator for multino-
mial choice models.



censored Tobit models.? Without a measure of accuracy semiparametric estimators are
not widely in use despite their potential usefulness.

This thesis proposes a semiparametric estimator for a class of single index models.
Single index models are a strict subclass of the nonadditive error models which include
limited dependent variable models, binary choice models, and censored duration models
without necessarily assuming proportional hazards model. Under some regularity condi-
tions the estimator is consistent with rate y/n, the typical rate achieved by parametric
estimators under i.i.d. sampling. The asymptotic distribution is normal. A consistent
estimator of the covariance matrix is also presented. The result allows economists to fo-
cus in specifying structural models and frees them from distributional worries for broader
class than before. In addition, even when the error distribution has a theoretical justi-
fication it is now possible to perform a specification test of the theoretical distribution
with an alternative set of estimates ready when the test is rejected.

The second section defines the class of single index models. There, the class is shown
to include censored Tobit models, binary choice models, and duration models among
others. The third section motivates the proposed estimator geometrically. The fourth
section formally defines the proposed estimator and discusses the identification of the
parameters of the model. We show that under some regularity conditions the estimation
technique identifies the true parameters up to a multiplicative constant in the linear sin-
gle index models. We also show that that is the best we can do in the context of single
index models. The following two sections provide proofs of consistency and asymptotic
normality, respectively. The seventh section presents a consistent estimator for the co-
variance matrix. The eighth section discusses small sample properties of the estimator
examining the result from a Monte Carlo experiment. The last section discusses some

directions for future research.

2Powell also proposed an estimator for truncated Tobit models which requires the
symmetricity of the error distribution.



2 Single Index Models.

This thesis studies estimation of single index models.
DEFINITION 2.1 (Single Index Models)
¥ = o (h(zi; 00)) + € fort=1,...,n,
where

1. (i, zl,€&) fori=1,...,n are i.i.d. sample of size n,

2. y; € R and z; € RX are observed, ¢; € R is an unobserved distur-

bance, and 8, € R™ is an unknown true parametor to be estimated,
The distribution of €; depends on z; only through the index h(z;; 6),
E ( €,‘|$.’ ) = 0,

The function h : RX x R™ — R is known up to a parameter 8, and

U T o

The function ¢ : R — R is not known.

If the function ¢ : R — R is known, the LS method is feasible. Thus assumption six
differentiates the single index model from the conventional additive error models. We
shall see that the third assumption is redundunt for consistency but that the assumption
plays a crucial role in proving asymptotic normality.

Brillinger (1983) apparently first proposed considering limited dependent variable
models using this class of models. He calls this model a generalized linear model, for he
considers a case where h(z;8) = z'8. Since a class of models defined by the same name
already exists® we refer to this class as single index models, following Stoker {1986).

As an illustration of a single index model, consider the following latent dependent vari-
able model. In this model we do not observe y! but observe y;, which is a transformation

of y;. Formally,
{ y; = h(zi;00) + v
v = 7(v) (i=1,...,n)

3See McCullagh and Nelder (1983)




where we do not observe y;.

We assume that z; and v; are independent, and (z!,v;) for 1 = 1,...,n are i.i.d.
Furthermore we assume that z; € RX and §, € R™. The function 7 : R — R may or may
not be known.

If the function 7 : R — R takes

; (s) _ s ifs>0
~ 10 ifs<o0
then censored Tobit model results.

If the function 7 : R — R takes

r(s)={ 1 ifs>0
0 ifs<O0
then binary choice model results.

In both cases the transformation function 7 is known but E(y | ) is not known unless
the distribution of the error term is specified. Knowing the transformation function 7
does not allow the LS estimation.

Regardless of a transformation function, the reduced form takes the specification of
a single index model as the following calculation shows:

E(y|z)= /+mr(h(x;00) +v)dF,

where F, is the distribution function of a random variable v;. By defining the difference

between the observable y; and the conditional expectation to be ¢;,
& =Y — E(yilzi),

we can transform this class of latent variable models into the single index model defined
in 2.1.

Applications of single index models are not restricted to censored Tobit models and bi-
nary choice models. Since the transformation function r is completely unspecified, single

index models can be regarded also as an alternative to the errors in variable formulation



of regression models. For example,* suppose y; is unobserved true profit of firm ¢ and we
only observe reported profit y;. We could assume that reported profit is true profit plus
an error term. This is the errors in variable formulation. An alternative is the model
y = r(y*). With this modeling strategy we allow reported profit to systematically differ
from true profit and yet we are able to consistently estimate the relative determinants of
firm profitability.

Another model which can be regarded as a member of the single index class is trun-
cated Tobit models. Here, unlike censored Tobit models, we do not observe r; when the
corresponding dependent variable y; is censored. Truncated Tobit models can be written
as

¥ = h(zi;00) + u;
where u; has a density
1 (‘U. > —h(:c.-; 00)) Fv(du)[l - Fv (_h(xi; 00))]—1’
where 1(-) is an indicator function. Therefore E( yi|z;) is

h(z:;60) +/ (z.,ﬂo) F,(du)[1 — F, (--h(zi;60))] 7%,

and thus it has the form ¢ (h(z;;00)). Thus the truncated Tobit model also belongs to
the class of single index models.
Finally we show that as a special case, the class of single index models also includes

duration models if
1. censoring is random,
2. exogenous variables are time independent, and

3. individual heterogeneity is independent from exogenous variables.

4] thank Rob Gertner for suggesting this example. A conversation with Jonathan
Feinstein was also helpful.



To see this, let the conditional density function of a duration spell ¢; given z; for individual

1 without censoring be

fr:(t:) = f1 (ti; h(z:; 60)) fa(ew),

where f2(a;) denotes a density for individual heterogeneity. Let fc be the density for

censoring. Then the density function of a duration spell ¢; with censoring is
fr,(t:) + fo(ts) — Fr,(t) fo(t:) — Fo(t:) fr.(t),

where Fr, and F¢ denote distribution functions of the duration spell and the censoring
point, respectively. Therefore the conditional expectation of the duration spell condi-
tioned on the regressors has the form ¢ (h(z;;60o)) as desired.

The single index class abstracts specific structures of models included in the class.
In consequence we do not take advantage of particular restrictions each model posszsses
other than those already exploited by the formulation of single index class.

For binary choice models the unknown function @ is the cumulative distribution
function. Thus it is a nondecreasing function with range between zero and one. For
censored Tobit models

h(z;;60)
o(h(zi; 00)) = /_ R ()ds,
and thus ¢ is nondecreasing function which is an integral of the cumulative distribution
function of the error term.

Nevertheless in single index framework both functions are specified only as a measur-
able function with some finite moments. We shall see that the abstraction costs a loss in
identification for some models in single index class, but not all.

Typically, Tobit models allow identification of all parameters and binary choice models
allow identification of parameters up to a multiplicative constant. In both cases we shall

see slope coefficients are identified up to a multiplicative constant.



3 Idea Behind the Estimation Method.

Before defining the estimation method for single index class, I give a geometric explana-

tion for why the proposed estimator works. Recall the definition of the model
Y =(p(h(z,';oo)) + € (2= 1,...,71.).
The estimation method is based on the following three facts:

1. The variation in y results both from the variation in k(z; ;) and from

the variation in €.

2. Nevertheless, on the contour line h(z;0,) = ¢ where ¢ is a given

constant, the variability in y results only from the variation in e.

3. Fact 2 does not necessarily hold on a contour line defined by k(z;8) =
c for 8 # 6y. Along this contour line the value of h(z;6) changes and
therefore the variability in y on the contour line h(z;6) = ¢ again

results from both the variations in h(z;6,) and in e.
These three facts indicate a way to identify 6,. Since the conditional variance
Var(y | h(z;0) = ¢)

measures the variability in y on a contour line h(z;8) = ¢, a sensible way to estimate 8,

is, first construct a sample analog of
E[Var (y | h(z;0))]

as the objective function, and second, find 6 which minimizes the objective function.
Here, a particular weighting implied by the expectation operator is not only a natural

choice but also a necessity. Namely, objective function

/W(c)Var(y | h(z;8) = c)de,

10



where W (c) is some weighting function, does not yield a consistent estimator in general.

Rewriting the objective function obviates the reason . Using the identity
Var (y | hiz;0) ) = Var (o (h(z;00)) | h(z;6) ] + Var(€* | h(z;6)),
the objective function is
/W(c)Va.r[tp (h(z;00)) | h(z;8) = c]dc+/W(c)Var(e= | h(z;8) = ¢)de.

Although 6 = 6, makes the first term vanish, it does not necessarily minimize the sum.
But for weighting implied by the expectation operator the second term is constant by the
iterated expectation argument. That is E [Var (€ | h(z; 8) )] is the unconditional variance
of € which is a constant, say o?. Therefore § = 0, does minimize the sum.

For identification we should ask whether 8, is the only 8 which achieves the minimum
value 0. Unfortunately this is not the case in general. Since the function ¢ is not
restricted, two 6s, say 8; and 8,, are not distinguishable if @ (k(z;0,)) = & (h(z;02))

almost surely in z for some J. For example, consider a linear single index model
¥ = (a0 + 2'Bo) + €.
Considering the identity
p(ao + z'Bo) = Blar + z'(16o)),

for any a; and v # 0, where 3(s) = (v (s — a1) + ap), at best slope coefficients are
identified up to a multiplicative constant, and the costant term is not identified.

Thus define equivalence classes in R™ where s lie :
;= {0 € R™ | g(h(z;0)) = p(h(z; 8)) a.s. in z for some @ } .

©; denotes an equivalence class represented by . In single index class we identify 6o
up to the equivalence class ©,, at best. In the following section I define the estimator

formally and prove that in fact we do identify 6y up to the equivalence class Q.

11



4 The Estimator and the Identification Condition.
The heuristic argument in the previous section suggests
E [Var (y|h(z;0) )]

as the objective function. In this section we formally prove the identification theorem
and define the estimator.

The following theorem shows that minimizing
E [Var (y|h(z;0) )]
does identify puarameters as much as we can expect in single index class.

THEOREM 4.1 (Identification) Suppose we have a single index model
defined in Definition 2.1. For each 6 € R™ define the equivalence class

0; = { 8 € R™ | & (k(z;0)) = ©(k(z;0)) as. in z for some $ } ,
where ©; denotes an equivalence class represented by d. Let
H(0) = E[Var (y | h(z:9))].
Then 6 & ©,, implies H(6,) < H(0).

PROOF.
If § ¢ ©,,, then E(p|h(z;0)) # o(h(z;00)) with positive probability. Hence, for this 4,
E[Var(p|h(z;8))] is strictly positive. Then, inequality

H(68,) = o < E[Var(p|h(z;0))] + 0 = H(0)

implies the claim.

12



Usefulness of the estimator crucially deperds on the size of the equivalence class ©y,.
Suppose ¢ is almost surely constant. Then ©4 = R™, and thus the estimator is not
useful. Consider another example where all the regressors in a linear model are discrete.
Then in general, once again we can not identify the parameters.® To see this consider the
example illustrated by Figure 1. Black dots in Figure 1 denote the probability masses.
They are located at the intersections of vertical and horizontal lines drawn through the
points z; = {...,—2d,—d,0,d,2d,...} and z, = {...,—2d,—d,0,d,2d,...}, where d is
a positive number. Any line with a slope r where r is an irrational number intersects
with black dots at most once. Therefore there is no variation in ¢ along any line with

irrational slope.

5We may be able to bound the region in which the true parameters lie.

13



Nevertheless Lemma 4.1 does show the identification of the coefficients up to a mul-

tiplicative constant in linear single index models.

LEMMA 4.1 (Identification of the Linear SIM) Consider a linear sin-
gle index model
v = p(ao + zifo) + €.
Let B C R™ be the parameter space and S, be the support of z'b. Assume
1. The coefficient of at least one continuous regressor is nonzero.
2. The range of the support of a continuous regressor is infinite.
3. The unknown function o is differentiable.

4. ¢ is not periodic, namely for each b € B the following holds:
Ve #0, 3t€ S, such that o(t +c) # p(t).
Then we identify By up to a multiplicative constant.

PROOF.

If for some b € B which is not proportional to Sy,

E[Var (y|z'8, )] = E [Var (y|z'd)].
Then using y = p(z'Bo) + € and E(e|z) =0,

©o(z'Bo) = E (p|2'b) a.e. in z.

Defining z'b = t,

© (Mt + Y222 + -+ TmZm) = E (p]t),
where v; = ;/b, and ~; = B; — mb; for ¢ = 2,...,m. Suppose z; is a continuous random
variable. Take a partial derivative with respect to z;. Then ©'(z'G) - 7 = 0. From
assumption four ¢ is not constant. Therefore 4; = 0. Substituting 74; = 0 we have

without loss of generality
o (mt+mz2+ -+ 1mzm) = E(p|t),

14



where z,,...,Z, are all discrete random variables. Furthermore since b is not propor-
tional to o, there exits at least one ¢ such that 4; # 0. Rename such ¢ as 2. Take two

different values of z,, say ¢; and ¢;. Then for all ¢,

o (nt+mer+ -+ Imzm) = E(plt) = o (nt +y2)ez + -+ + YmZm) -
Defining s = it + Y261 + * +* + YmZm and ¢ = Y2(c2 — ¢1),
ols) = pls +2).
But this contradicts no periodicity.
|
These identification conditions provide sufficient conditions for warrranting the func-
tion
H(0) = E [Var (y|h(z;0) )]
to attain the minimum only at the true value. Of course function H(6) itself is not known
without a distributional assumption, and hence we construct a sample analog of H(#).
The feasible estimator is then defined as the minimizer of the sample analog.

There are at least a few ways to estimate H(#). The one which lead to the simplest

expression is based on the identity

E [Var (y|h(z;0))] = E{y [y — E (y|~(=;6))]}-

Since E(y?) is constant with respect to 4, the identity leads to an estimator which maxi-
mizes a sample analog of E[yE (y|h(z;0))]. Unfortunately, I cannot show that the second
derivative of a sample analog converges to a negative definite matrix.

Instead, we estimaie H(#) based on the identity
E[Var (y|h(z;0))] = E{[v - E (ylh(z;9))]*}.

If E (y|h(z;0)) is known, then the sample analog of H(f) is,

n

n'3" [w — E (wlh(zi;0))] .

=1

Since E (y|h(z;0)) is not known we replace it with a kernel estimator. Thus:

15



DEFINITION 4.1 (Objective Function) Let

J.(8) =n7! zn:(ye - E.(0)%,

=1

where

1. n is the sample size,

2. A sk (h(z.-;a) ;h(z,-;ﬂ))
Bn(0) = ’?;K (h(z,-;ﬁ)a—nh(a:,;O)) ’

3. K: R — R is a one dimensional density function,

4. a, >0 and a, — 0.

E,;(8) is a kernel estimator for E (y; | h(z:;0) ). Conceivably one can use any esimator
of E (yi | h(zi;0) ) in place of a kernel estimator. At least there are two advantages in
using a kernel estimator.® The first advantage is that the objective function is differen-
tiable if a differentiable kernel function is used. The second advantage is that when a
kernel estimator is used, a derivative of the objective function converges to a derivative
of the limiting function.”

In order to identify the parameters the parameter space © needs to be restricted. A
restriction depends on the function h(z;0). For example if h(z;0) = a + z'f then we
can set a to zero and set a coefficient, say §;, to one. Assuming that the assumptions
in Lemma 4.1 hold, the rest of the parameters are identified. Then f; estimates f; /B1o-
We assume that the identifying restrictions are already imposed in the parameter space
O.

With these caveats in mind we can now define the estimator. I call the estimator

semiparametric least squares (SLS).

DEFINITION 4.2 (SLS) The estimator 6., minimizes Jn(6), where b, € o.

81 thank professor McFadden for a suggestion to use a kernel estimator.
7See Appendix 1 for a brief explanation of a kernel estimator.
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5 Consistency Proof.

Now we turn to the large sample properties of the estimator. In this section consistency
of the estimator is proven. In the following section asymptotic normality shall be proven.
The approach taken is first used by A. Wald (1949). We prove that the objective function
Jn(0) converges uniformly in 6 to E [Var (y|k(z;0))]. The identification condition guaran-
tees that the true value 6, minimizes the limiting function. For example Theorem 4. 1. 1.
of Amemiya (1985) shows that this result together with the compactness of the parame-
ter space and continuity of the objective function with respect to the parameters implies
consistency.

We prove uniform convergence of J,(8) to E[Var (y|k(z;0))] in two steps. First we

prove that J,(8) converges uniformly to E [Var (y|k(z;6))], where
~ 12
Jn(6) = - > [w — E (wlh(=:9)))*.
=1

Second we prove that J,(6) — fn(ﬂ) converges uniformly to zero. The inequality
sup |Jo(0) — E[Var (y|a(z; 0))ll
< sup|J.(60) - E[Var (y]h(z;0)]| + sup | Ja(6) — Ta(0)|

then implies the uniform convergence of J,(6) to E [Var (y|h(z;8))]. The first step is well
established in literature. For example Mickey et.al. (1963) establish

LEMMA 5.1 Let g be a function on X X © where X is a Euclidean space
and © is a compact subset of a Euclidean space. Let g(z,0) be a continuous
function of 8 for each z and a measurable function of = for each 6. Assume
also that |g(z,0)| < h(z) for all z and 8, where h is integrable with respect
to a probability distribution function F on X. If z,,%3,... is a random

sample from F then for almost every sequence (z;)
nty " g(zi,0) — /g(:c,O)dF(:r:)
=1
uniformly in 8.

17



PROOF.

See Jennrich (1969).
|

The second step is intrinsic to our approach. It shows that approximating the condi-
tional expectation does not alter the consistency of the estimator. We use the following

lemma in proving the second step.

LEMMA 5.2 Let K be a symmetric, bounded density function on [—e¢,c]
and suppose the parameter space © x T is compact. Let f(t;0) be a density
function for a random variable h(z;0). Assume also that E(y|h = t)f(t;0)
is uniformly continuous, twice continuously differentiable, and the second
derivative satisfies a Lipschitz condition. If (z1,y1), (Z2,¥2), ... is a random
sample, |y| < M for some M € R, na, — oo, and a, — 0 then

(nan)™ _Z;y-'K [(t — Ri(0)) /an] — E(y|h = t) £(t;0)

converges uniformly to zero int and in 6.

PROOF.
We first break

(nan)~! ﬁ;y.x [(t - hi(6)) /an] — E(ylh = ) £(£:0)
into two parts:

(naa) ™' Y wK [(t — ki(6)) /an] — E{y/as K [(t — h(0)) /an]}
=1
and
E{y/anK [(t — h(08)) /anl} — E(ylh = £)f(5;0).
Since the second part is O(a2) we only need to show that the first part converges uniformly
to zero.

For conciseness denote

Ka(t,0) = K|(t — h(z;0))/an]

18



and

Pog =n"'3 g(z:)-

i=1

Without loss of generality assume that |§| < 1foralld € © and [t|<1forallteT.
Partition © into N; cubes with the length of a side ¢,,6 and T into N; intervals of length
an8, where 6 is a small and positive real number. Then N; = O(a;™) and N, = O(a;?)
and space © x T is partitioned into N; x N, = N of (m + 1)-dimensional cubes, BY,
{k = 1,...,N} which become smaller and smaller as n gets larger. Now pick a point
(6¥,tY) from each B for k =1,...,N. Then

Pr {sup(,’,)eexr |P, {ya; K. (t,0) — E[ya;'K,(t,0)]}] > e}

< Pr{UN,supesesy [Pa{yaz'Ka(t,0) — E[ya; Ka(t,0)]}| > ¢}
< =N, Pr{suppyepy |Pa{ya; Kna(t,6) — E[ya; ' Ka(t,0)]} > €}
< TN, Pr{|Pu{va;' Ka(t],0)) — Elya;  Ka(t),08)]} > ¢/2}

+ N, Pr{supesy [Elya;! Ka(t),6F)] — Elya; K (t,0)]| > ¢/4}
+ =N, Pr{|Pafsuppgesy var (Ka(t, 8) — Ka(t),61))]} > ¢/4]

From Bernstein’s inequality each element in the summation of the first term of the last
expression is bounded by 2exp[—n?a?/(na, + Mna,/3)]. Since N = O(a;(™*V) the
expression converges to zero if na, goes to infinity.

The second term of the last expression ‘s zero for small enough § > 0, because by
assumption E(y|h = t)f(t;8) is uniformly continuous.

We turn to the third term of the last expression. The expectation of

sup {y[Ka(t,0) — Ka(ty,0))]}
(6.)eBY

is o(1). Applying Bernstein’s inequality as before the third term is also o(1).

The following is an immediate Corollary.

19



COROLLARY 5.1 Under the same assumption as in Lemma 5.2 if in addi-
tion the density of h satisfies

f(t;8) >6>0,

then
T tK [(t — hi(6)) /an]
w1 K [(t — hi(0)) /an]

converges uniformly in t and in 8 to E(y|h(8) = t).

PROOF.
Apply Lemma 5.2 to the denominator with y; = 1.

Now it is straight forward to show

LEMMA 5.3 Under the assumptions of Lemma 5.2 and Corollary 5.1
Ja(6) — Jn(6)
converges uniformly to zero.

PROOF.
The difference between J,(0) and J,(0) is

n n
n Y (Bai(6) — Ei(0)) (Eni(6) + Ei(8)) — 2071 Y s (Bni(9) — E:(9)) -

i=1 i=1
To prove that both terms converge in probability to zero uniformly in 8 it is sufficient to

invoke Corollary 5.1 and note that by assumption y and E;(8) are uniformly bounded.
B

As noted at the beginning of the section if we use continuous kernel, then Lemma 5.3

implies consistency of the estimator.
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6 Asymptotic Normality Proof.

In this section we show that the estimator has normal distribution asymptotically. The

following two theorems are useful for our purpose.
THEOREM 6.1 (/n-Consistency) Suppose

1.

9J, (90)

Jn(8) = Jn(00) +(0—80) —=—=+1/2(0—05)'Voio (8 — 05) +0,(|0—6o]?),

3J,(60)
a9

3. |Vao — Vo| = 0p(1) for some Vy,

= Op(1/v/n),

4. V, is positive definite,

5. 8, is consistent and minimizes J,(0).

Then
6n ~ 8] = Op(1/ V).

PROOF.

From assumption five
Jn(én) - Jn(ao) S 0-
Assumption one then implies

- aJ,.(6 - - A
(6, — ao)'—é(?‘ﬁ +1/2(6,, — 80)' Viso (8 — 80) + 0, (16 — 60[?) <O

Multiply both sides by n(1 + \/ﬁ|§n — 65])7%. Then defining
¢a(d) = (L + v/nl0 — 8o])~*v/n(8 — 60),

3Jn (90)

ch(Bn)VR—2 =% (1 + V|8 — B0[) ™" + 1/2¢,(6a) Voca(0n) + 0p(1) < O.
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If \/ﬁlé,. — 8o| — 0o, then the inequality implies ¢/, (8,)Vocn () < 0p(1). Because Vg
is positive definite ¢n(f,) = &,(1), or /|0, — 6c| = 0,(1). This is a contradiction.

We next examine the sufficient conditions for asymptotic normality.

THEOREM 6.2 (Asymptotic Normality) Suppose

1.
Ja(8) = Ju(06)+(0— ao)"” (”°)+1/z(o 80)"Vauo (0—96) + 0, (10— Bo]?),
% 3J,.(60)
VA

has the asymptotic distribution N (0, (),
3. |Vao — Vo| = 0,(1) for some V,,
4. V, is positive definite,

5. 0, is consistent and minimizes J,(9).

Then \/n(0, — 6o) has asymptotic distribution N(0,Vy Qo(Vg)™?).
PROOF.

These assumptions imply those of the Lemma above and hence V7l — 85) = Op(1).
Evaluate J,(6) at 6, then

,0J, (oo)

Tn(0n) = Ja(B0) + (6 —80)' ==L +1/2(8n 80) ' Vino (8 — 00) + 0, (18, — 00]*).

Rewriting we have

Ja(6,)

1/2((6. — 8) + vy 2 (9°)] Vol(6n — 6) + vo-la" ("°)]

8Jn(60) ,-18Jn(00)
a6’ a6

+ Jn(6) —1/2 Vot +0,(n71) <O0.
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Next evaluate J,(8) at 6, =06, — V5 18J,.(60)/890, then®

3Ja(80) -1 09a(80) | s
ar 0 ap o)

Jo(0n) = Jn(80) —1/2

Since §, minimizes Jn(9),
Jo(6,) < Jn(62).

Therefore

_laJ (oo) 18J, (ao)] -

[(6n — 0) + Vi =2 =1Vl (6 — 6) + V5 op(n 7).

Multiply both sides by n. Since Vj is positive definite,

VA - 00) = v tya220) o).

Finally assumption two implies the result.
E
To apply these theorems to the estimator under consideration we verify the sufficient
conditions which guarantee the five assumptions made in Theorem 6.2.
Assuming that the objective function is twice continuously differentiable the following

expantion is valid:®

LEMMA 6.1 Suppose J,(6) is twice continuously differentiable. Then for
0 near 8y, J,(8) equals

dJ, (00) 32 J,(00)

Jn(00) + (0 — 60)' —— EYET

+1/2(0 — 6o)’ (8 — 8o) + 0,(|0 — 6o]2).

PROOF.
Define

¢:(0) = J,.(ﬂ)-—.]n(ao) (g a)la‘] (00)
9%J.,.(6o)
2006

8In fact, f,, and 6,, have the same asymptotic distribution.
9See I'ardy (1952) pp.289-290.

— 1/2(8 — 6y)’ (6 — 60) +1/2(8 — 8o)' (6 — 60)$,
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for 6§ > 0. Then

¥ (6) =0, M =0, and

St () _ .
af -

a6oo L

Therefore 6, is the local minimum for ¥}. Thus

0= (8) < ¥7(0),

near #,. Next define

8J,.(80)

¥, (0) = Ja(0) — Ja(80) - (6 - 90)' 30

2
- 1/2(6 - 0o)'—a-;9%';9—(g,i)(0 — 0o) +1/2(8 — 60)'(8 — 60)5,
Then -8 .
¥, (60) =0, %9):0, and —(;/g'—a—(a,ﬁ =—6-1

Therefore 8, is the local maximum for ;. Thus

¥n (0) < ¥ (6o) =0.

These two inequalities imply the result.

B
Thus assumption one is satisfied. Sufficient conditions to satisfy the rest of the assump-
tions are verified in Lemmas 6.4 and 6.5, respectively. In turn, these lemmas make use
of Lemmas 6.2 and 6.3.

We use the following notations:

Ow;;(0)

mii(0) = —p > wii(0) = Kii(a)/§Kil(0)’ Ki;(8) = K[(z:6—7}0)/an),
@i = g p(zi0)wi;(0),  Pi= ; p(z;00)mi; (0o),
fn(zwo) = fi=(n—1)7" ga;lK,-,-(%),

and

z = [z; — E(z;|z;00 = zi60)]¢' (zi00)-
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LEMMA 6.2 Let K be a symmetric, bounded density function on [—c,c].
Assume that @ is twice continuously differentiable and the secend derivative

satisfies a Lipschitz condition. Futhermore assume that
E((p;5 — pi)* Kij(60)*/ f*(zi00)] < oo,

where f is the density function of z'6y. If z,Z;,...,Zn is a random sample,

then
E[(@i — vi)?] < O(an/n) + O(ay).

PROOF.
Since 2.1#‘ w”(oo) = 1,

Y ojwii(80) — i = _[(pi — wi)wij(6o)]

J# J#i
= [(n = Daa]™ X2 [(w; — wi) Kis(60)]/ fri-
J#E
Hence
2 _ . 72
E[(Cejwi — i) | =[(n — 1)an] 2E{ [>le; - i) Kii(80)]/ fui] }-
I# J#
In view of Lemma 5.2,
Sltlp Ifn(t) - f(t)l - 0,
as n goes to infinity. Therefore the right-hand side of the above equation has the same

order with
[(n — 1)an]*E{ [;uso(z;-oo) — p(<}60)) K (60)]/ £ (z10)] '}

which in tern has the order of O(a,/n) + O(a}).
|

Next we prove the mean square convergence of a derivative of a kernel regression

estimator.
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LEMMA 6.3 Let K be a symmetric, differentiable, and bounded density
function on [—e,¢|, which satisfies [ K'(s)ds = 0, [sK'(s)ds = —1, and
[ s*K'(s)ds = 0. Assume that ¢ and z; are three times continuously differ-
entiable and the third derivative satisfies a Lipschitz condition. Futhermore
assume that

Elpiz:z, K} K2 [ (zi00)] < oo,
where f is the density function of z'0,. If z,,Z,...,Z, is a random sample,

a, goes to zero, and na goes to infinity, then
E[(@; — #)(&; — z)'] = o{1).

PROOF.

Since

(n—1)%a3 (z ©imi; — z;)

i
= 3 3 (il — ;) KL Kin — 0j(zi ~ z2) Kij Kl — anzi Kis Kl / £
J# k#w
+ Z an :g’
J#s

it is sufficient to prove that the mean squares of the last two terms have at most order
o(n*al), respectively.
Rewriting the second term

Z a" 3:

J#E
= a, ) (K% - E(K3|)]/f% + (n — 1)a}E(a; K |2) /2,
J#
The mean square of the first term is of order nal and the mean square of the second
term is of order n?a%. Thus the mean square of (n — 1)72a;® ¥,; an K%/ f2 is of order
O(n=3a;3) + O(n71al).
"Ye turn to the first term,

S 3 loj(e — ) KL Ki — (i — z4) Kij Kl — anziKij Ku) | 5.
34 ki g
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By the same argument as in Lemma 6.2, the mean is of order O(a2). The variance is of
order O(n®a}

|
Although we assume i.i.d. sampling, J,(#) is not a sum of independent random functions
because we estimate E(y|z'0). Therefore we cannot apply a central limit theorem directly
to

aJ, (6o)
VR =58 a0

Nevertheless Lemma 6.4 holds.

LEMMA 6.4 Under the assumptions of Lemma 6.2 and 6.3,
aJ, (6,)
v a0
has the asymptotic distribution of N(0,40), where
Qo = E{€} (})*[z: — E(z;]2j00 = zi00)](z: — E(z;|z}00 = 7;60)]'}

PROOF.

Since

VARl - - Bl

1—1

= -—Z 6z (1)

(2 — =) (2)

U
[v];,

1

E :(80) — E:(60)) 5. (3)

i Ma

f
it is sufficient to prove that (2) and (3) are both o,(1). Note that

Zeg(Z.

r’l

Z D &Eimi; + —= Z & [Z pjmi; — ] .

:—1 F# =1 JFs
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To prove that (2) is 0,(1) we show that the two terms on the right hand side are both
0p(1). Since the means of two terms are both zero, it suffices to show that the variances

converge to zero. The variance of the first term has the order
nE(e2e2ml,),
which in turn is of order
(na}) 'Elele; fzfn(xpxoo)_zl-

Applying the dominating convergence argument to f,, (z160) as in the proof of Lemma

6.2, the variance has the order
(na?) 'Ele}e; K f (z100) %] = O((nan)™").

Therefore the first term of (2) is 0,(1). The variance of the second term of (2) is
2
E[e (X pimij— =) -
i#1

Because E(€f|z;) is bounded by assumption, mean square convergence of 3, p;m;; to
z;, which is verified in Lemma 6.3, implies the convergence of the variance. Hence (2) is
op(1).
Now we turn to (3) Rewriting (3) we have
}Z(E (00) — 35+ =3 3 ey
t—l \/_ =177
By Lemma 6.2, 6.3, and by Minkowski’s inequality the first term is 0,(1). The second

term is 0,(1) by a similar argument as that for the first term in (2).

LEMMA 8.5 Under the assumptions of Lemma 6.2 and 6.3
32 J, (o)
2006

converges in probability to

2E{(v})*[z: — E(z;|z}80 = zi00)][z: — E(z;|z}60 = zi00)]'}.
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PROOF.
Note that 2 (0 ) JO (%)
Jn(bo 53! 2 & N i(0o
aoaa, n E 2 ‘—Zl(yl Es(ao)) EYElD .
The second term is 0, (1) by the similar argument as in Lemma 6.4. Repeated applications
of Lemma 6.3 and Minkowski’s inequality prove that

-Z“’——Zaz

s—l l—l

is 0p(1). Finally an application of law of large number proves that

-Zz'z

gt
converges to the desired limit.

Note that the covariance matrix V5 1QoV; ! is similar to the covariance matrix of
the conventional nonlinear LS estimator with heteroscedasticity, but that the covariance
matrices differ because the current approach only looks at the variation along the known
function.

Thus one can identify two sources of inefficiency in this approach. First one arises
from not adjusting for the heteroscedasticity. We may be able to improve the efficienzy
by using the present estimator as the first step estimator and correcting for heteroscedas-
ticity in the second step. The second source of inefficiency seems to be intrinsic to the
semiparametric approach. Ii comes from the fact that we are only able to look at the
variation along a known function z'6. If we are to look at the total variation we would

need the knowledge of .

29



7 Estimation of the Covariance Matrix.

In order to perform hypothesis tests and construct confidence interval we need a consistent

estimator of the covariance matrix. The following Lemma is useful.

LEMMA 7.1 In addstion to the assumptions in Lemma 5.2, if K’ i3 bounded

and na3 goes to infinity, then
(na2)~t Y yj(zi — z;) K'[2}0 — z0/an] — E{a;?y;(z: — z;) K'[zi0 — Z;0/a.]}
i=1

converges unsformly to zero in 0.

PROOF.
Identical to the proof of Lemma 5.2.

Since 6, converges in probability to 8o, Lemma 7.1 and 5.2 imply
é(ﬂ:.) — z(0) = o0p(1).

Therefore

=5 5i(0)3(8a) ~ Vo = 0y(1).

l—l
Next it is straight forward to show that

—Z(ya Ei(0.))*2(6) 2:(05)

|—1
estimates (1.
Thus

[Zz.(o,.)zg(on)]-li(y. £:(6,))22(6.) [ s z‘(én)]_l

estimates the covariance matrix. Note that this matrix is guaranteed to be positive

semidefinite.
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8 Monte Carlo Results.

In this section we look at the small sample properties of the estimator by a Monte Carlo
experiment. The construction of the experiment is identical to that of Cosslett’s (1986).

He considers a binary choice model with two regressors.
Y;i = ao + ProZ1 + Paoz2 + €.

As usual, observed indicator y; takes value 1 if latent variable y; is positive and y; takes
value O if y; is nonpositive.

The true parameter values are ap = 0, B1p = —2, and Bz = 1. In his specification,
exogenous variables take two different distributions and the error distributions take three
different distributions, giving rise to six different models. The exogenous variables z; and

z, are independently distributed. Two distribution of exogenous variables are:
(A) Standard normal.

(B) Standard exponential.

Three different mixtures of normal distributions are considered for the error distribu-

tions.

(1) Standard normal.
(2) 0.75- N(0,1) + 0.25 - N(0,25)
(3) 0.75 - N(—0.5,1) + 0.25 - N(L.5, 25)

According to Cosslett’s calculation the second distribution has standard error 2.65, skew-
ness 0, and kurtosis 6.61. Similarly the third distribution has standard error 2.78, skew-
ness 1.29, and kurtosis 6.29.

We take his models in order to facilitate the comparison of the small sample perfor-
mance of the estimator with others presented in his paper. He presents the results for
Maximum Score Estimator (MSE), Maximum Rank Correlation Estimator (MRC), Semi-

parametric Maximum Likelihood Estimator (SML), and its smoothed version (SML-1)
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of it along with the conventional Probit MLE. Note that none of these semiparametric
estimators has known asymptotic distribution.

Our results are not directly comparable with his beacause of two reasons. The first
reason is that random number generators used are different. Second, the optimization
methods employed are different.

Cosslett optimizes by a grid search method. Initial grid search between -2.5 and -1.5
is done and when the objective function is still improving at the boundaries further search
was performed.

This particular method of optimization might have a risk of choosing the values closer
to the truth more often than we really would when we did not know the truth. In our
experiment we employ a different grid search method which treats different parameter
values identically.

The first stage grid search is done between -50 and 50 with grid width 1. Pick seven
values which performed best. Then move to the second stage. This time the grid search
is done around the selected seven values with the grid width of 0.1. Pick five values which
performed best. Then move to the third stage. This time the grid search is done around
the selected five values with the grid width of 0.01. The final stage is performed around
the five selected values with grid width 0.001. The FORTRAN code is in Appendix 2.
IBM 3090-600E at Cornell is used for the computation. Each calculation took about 1.8
seconds of cpu. Computational speed increases with roughly square of the sample size
using current algorithm. The results are presented in Table 8.1 and in Table 8.2. The
results for other estimators are from Cosslett (1986).

Ruud (1983) showed that ML estimators are consistent in (A). Furthermore, obviously
Probit estimator in case (B-1) is consistent. Therefore cases (B-2) and (B-3) are the only
cases where Probit estimator is not consistent. In those two cases the SLS performs the
best in terms of the estimated mean square error.

The MSEs lie between 0.45 and 0.70. Compared with other estimators MSEs are not
affected so much by the differences in distributions either in the error term or in the

regressors.
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9 Concluding Remarks.

This thesis studied a semiparametric estimation of single index models. We established
y/n-consistency and asymptotic normality of the semiparametric least squares estimator.
Consistent estimator of the covariance matrix is also given.

While the results extend the applicability of semiparametric estimation, there are a
number of related issues I did not address in this thesis. First of all, I did not consider
estimation of the unknown function ¢ explicitly. In each specific single index model
there exists an infinite dimensional problem corresponding to the unknown function ¢.
In binary choice model this is particularly interesting for prediction purposes. In duration
models if we are willing to postulate the proportional hazard specification, then it may
be of interest to estimate the base line hazard.

Since
E(y|k(z;00)) = p(h(z;60)),

E,.(é,.) is a natural estimator for . We established uniform convergence of E.(6) to
E(y|h(z;0)) and convergence of 6, to 0, in probability. These are sufficient to imply that
E,‘(é,.) converges in probability to ¢(h(z;8,)). The asymptotic distribution is not yet
known.

Also, I did not consider an extention of the estimation method to multiple index mod-
els. The extention will be a useful one, for the extention naturally includes multinomial
choice models. At the same time, the extention is not a trivial one, because a straight
forward extention of SLS involves nonparametric estimation of more than one dimension
function.

Furthermore, I have not studied how we should choose the band width or a kernel
function. At this point we have a spectrum of estimators corresponding to different
choices of band width or kernel functions, and we have no way of choosing among them.
As we showed, the choice does not affect the asymptotic distribution and hence the
decision should be based on small sample properties, such as mean square error.

There is another approach to the basic problem studied in this thesis. The basic
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problem was that forms of the error terms are too often casually assumed without any
justification. Rather than asking what the error terms are and how they might be dis-
tributed in specific context, we proposed an estimator which does not require knowing
the error distribution at all, namely we took a semiparametric approach. We could have
faced the problem directly and tried to model errors. Specifically, we could have tried to
derive the error distribution within a specific model based on the uniform distribution,
rather than casually assume it. The alternative approach produced the Gaussian dis-
tribution, the exponential distribution, Wiener process, or the Poisson process in other
disciplines. )

Although two approaches are very different in attitude toward the error terms, ulti-
mately they should be complements. For the first approach offers a way of testing the
assumptions behind the derived distribution with an alternative set of estimates ready
when the specification is rejected.

These are a few of the probiems which await our future research.
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APPENDIX 1

As many other nonparametric estimators, a kernel estimator is also a local averaging
estimator. A natural estimator for a conditional expectation E(y | z = t) is to take an
average of those y;s whose corresponding z;s are close to ¢, say between ¢t — a, and t + a,,
where a, > 0. The estimator

2_ui - |(t —z;)/an| < 1)

i=1

gl(l(t — z)/an| < 1)

results. To estimate the conditional expectation at z = t consistently we have to shrink
a,, usually referred to as the band width, to zero. But we cannot set a, = 0 because
then there is no sample to take an average over. Therefore we must shrink a, to zero as
the sample size gets large while insuring that a positive fraction of the whole sample falls
within distance a,, from ¢.

The kernel estimator generalizes this natural estimator. Instead of using zero-or-one
weights it uses a weight function which is smooth in ¢ and in z. Restricting K to be a
density function does not bind once deciding to use nonnegative weights because the de-
nominator and the numerator are homogeneous of the same degree in K. Parzen (1962)
first proposed kernel estimators for the estimation of density functions. Subsequently
Nadaraja (1964) and Watson (1964) applied the method to the estimation of the condi-

tional expectations. A useful survey is available in Bierens (1985).
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APPENDIX 2

integer n, k

parameter (n=250, k=2)

real expdev, rmix2

integer i, ii, iii, m, ind, idum , y(n)

double precision x(n,k), bO(k), sumy, ymean, £(100),

1 b(100), beta(1000)
double precision bb(70), £1(70), bbb(50), £2(60), bbbb(50),
1 £3(50) , sum

double precision bias
b0(1)=dble(-2.0)
b0(2)=dble(1.0)
idum=-68302619

do 1000 m=1,1000

c

¢ generate the data

c

do b i=1,n

x(i,1)=dble (expdev(idum))
x(i.2)=dble (expdev(idum))
y(i)=ind (x(i,1)*b0(1)+x(i,2)+dble(rmix2(idum)))
5 continue

c

¢ calculate the mean of y

c

sumy=dble(0.)

do 6 i=1,n

sumy=sumy+dble(y(i))

6 continue

ymean=sumy/dble(n)

b(1)=dble(-50.)

do 7 i=2,100

b(i)=b(i-1)+dble(1.)

7 continue

do 8 i=1,100

call J(b(i),y.x,ymean,f(i))

8 continue

call sort(100,f,b)

do 11 i=1,7

do 10 ii=1,10
iii=ii+10%(i-1)
bb(i2i)=b(i)-dble(.5) +dble(.1)*dble(ii)

10 continue

i1 continue

do 12 i=1,70
call J(bb(i),y.x,ymean,f1(i))

12 continue
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call sort(70,f1,bb)
do 14 i=1,5
do 13 ii=1,10
1ii=ii+10*(i-1)
bbb(iii)=bb(i)-dble(.05)+dble(.01)*dble(ii)
13 continus
14 continue
do 16 i=1,50
call J(bbb(i),y.x,ymean,£2(i))
15 continue
call sort(50,f2,bbdb)
do 17 i=1.,5
do 16 ii=1,10
1ii=ii+10*(i-1)
bbbb(iii)=bbb(i)-dble (.008)+dble(.001)*dble(ii)
186 continue
17 continue
do 18 i=1,50
call J(bbbb(i).y.x,ymean,£3(i))
18 continue
call sort(50,£3,bbbb)
beta(m)=bbbb(1)
print *, °'this is the’,m,’th iteration’
print *, ‘'the estimate is', bbbb(1)
1C00 continue
call sort(1000,beta,beta)
do 1010 i=1,9
print *, beta(100*i)
1010 continue
sum=dble (0.)
do 1020 i=1,1000
sum=sum+beta (i)
1020 continue
bias=sum/dble (1000)
print *, ’'bias is’, bias+2
sum=dble(0.)
do 1030 i=1,1000
sum=sum+ (beta(i)-bias)**2
1030 continue
print *, ‘variance is’, sum/dble(1000)
end
c
¢ subroutine to calculate the objective function
c
subroutine J(b,y,x,ymean,f)
integer n, k, index, i, ii
parameter (n=260, k=2)
integer y(n)
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double precision b, x(n,k), w, ymean, f

double precision kern(n,n), reg(n), sumi, sum2, sumk
c

¢ set kern(i,i)=0.

c

do 2 i=1,n
kern(i,i)=dble(0.)

2 continue

w=dble(n) **dble(-0.297)
c

c calculate kern here

c

do 110 i=1,n-1

do 100 ii=i+i,n

kern(i,ii)=((min(abs((x(i,1)-x(ii,1))*b+x(i,2)x(ii,2)),w)/w)
1 **2-dble (1.))**2

100 continue

110 continue

c

¢ estimate regression line

c

do 160 i=1i,n

sumi=dble(0.)

sum2=dble(0.)
do 120 index=1,i
sumi=gsumi+kern(index, i)

120 continue
do 130 index=i,n
sum2=sum2+kern(i, index)

130 continue

sumk=sumi+sum?

if (sumk.eq.dble(0.))then
reg(i)=ymean

else

sumi=dble(0.)

sum2=dble(0.)
do 140 index=1,i
sumi=sumi+dble (y(index))*kern(index,i)

140 continue
do 150 index=i.,n
sum2=sum2+dble(y(index)) *kern(i, index)

160 continue

reg(i)=(sumi+sum2)/sumk

endif

160 continue

c

¢ now calculate sum of squares

[
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f=dble(0.)

do 170 i=1,n
f=f+(dble(y(i))-reg(i))**2

170 continue

return

end

c

¢ uniform random number generator of Knuth
c as implemented by PFTV
c

function ran3(idum)

parameter (mbig=1000000000., mseed=1818033., mz=0.,
1 fac=1./mbig)
dimension ma(55)
data iff /0/
if(idum.1t.0 .or. iff .eq. O) then
iff=1
mj=mseed-iabs(idum)
mj=mod(mj,mbig)
ma(56)=mj
mk=1
do 10 i=1,54
ii=mod(21%i,55)
ma(ii)=mk
mk=mj-mk
if(mk .1t. mz) mk=mk+mbig
mj=ma(ii)
10 continue
do 30 k=1,4
do 20 i=1,566
ma(i)=ma(i) -ma(i+mod(i+30,566))
if(ma(i) .1lt. mz) ma(i)=ma(i)+mbig
20 continue
30 continue
inext=0
inextp=31
idum=1
endif
inext=inext+i
if(inext .eq. 56) inext=1
inextp=inextp+1
if (inextp .eq. 56) inextp=1
mj=ma (inext) -ma(inextp)
if(mj .1t. mz) mj=mj+mbig
ma (inext)=nj
ran3=mj*fac
return
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c

¢ mixture of normal random number generator using ran3
c w/ 0.76 --- N(-0.5,1), w/ 0.256 --- N(1.5,25)

c

function rmix2(idum)

if (ran3(idum).1t.0.75)then
rmix2=gasdev(idum)-0.5
else
rmix2=5.*gasdev(idev)+1.5
endif

return

end

c

¢ indicator function: 1 if arg>0, O otherwise.
c

integer function ind(arg)

double precision arg
if (arg .gt. dble(.0)) then
ind=1
else
ind=0
endif
return
end
c
c subroutine sort
c
c
subroutine sort(n,ra,rb)
double precision ra(n), rb(n), rra, rrb
integer 1, n, ir, i, j

1=n/2+1
ir=n
10 continue
if(1.gt.1)then
1=1-1
rra=ra(l)
rrb=rb(1)
else
rra=ra(ir)
rrb=rb(ir)
ra(ir)=ra(1)
rb(ir)=rb(1)
ir=ir-1

41



if(ir.eq.1)then
ra(i)=rra
rb(1)=rrdb
return
endif
endif
i=1
j=1+1
20 if(j.le.ir)then
if(j.1lt.ir)then
if(ra(j).1t.ra(j+1))j=j+1
endif
if(rra.lt.ra(j))then
ra(i)=ra(j)
rb(1)=rb(j)
i=j
J=j+]
else
j=ir+t
endif
go to 20
endif
ra(i)=rra
rb(i)=rrd
go to 10
end
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Table 1: z; and z; normal

Error (1) Error (2) Error (3)
Estimator | Bias | RMSE | Bias | RMSE | Bias | RMSE
SLS 0.077| 045 [0.174| 056 |0.178 | 0.56
Probit -0.04 029 |-0.11| 049 | -0.11 0.50
MS -0.22 0.76 -0.34 1.16 | -0.36 1.27
MRC -0.05 0.34 -0.11 049 | -0.11 0.52
SML -0.08 0.43 -0.20 | 0.67 | -0.20 | 0.70
SML-1 -0.05 0.31 -0.11 0.48 | -0.10 | 0.47
Table 2: z; and z, exponential
Error (1) Error (2) Error (3)
Estimatcr | Bias | RMSE | Bias | RMSE | Bias | RMSE
SLS 0.187| 0.53 |0.288 | 0.70 | 0.259| 0.69
Probit -0.03 0.35 -0.23 0.72 | -0.69 1.24
MS -0.37 1.29 | -0.51 1.87 | -0.55 1.64
MRC -0.05 0.43 | -0.13| 0.71 -0.27 1.32
SML -0.10 0.53 -0.23 | 0.84 | -0.29 1.01
SML-1 -0.06 | 039 | -0.23 | 0.73 | -0.43 1.38
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