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Abstract

The natural world is full of patterns that spontaneously emerge across length scales and
material properties. Examples range from microscopic dendritic snowflakes to macroscopic
sand ripples and intricate river networks. Central to the formation of patterns is the con-
cept of an instability; complex forms spontaneously develop when a system is driven out of
equilibrium. Nature leverages instabilities to ‘fabricate’ complex structures that maximize
performance using minimal resources, exploiting the self-amplification of small perturba-
tions. The potential to use instabilities in practical applications, for example to engineer or
assemble structured materials, is barely exploited due to the notorious difficulty and limited
available strategies to control the self-amplified and non-linear growth that characterizes in-
stabilities. In this thesis, we focus on fluid instabilities due to the adaptivity of fluids to their
environments, and establish novel strategies to tune the growth morphology of interfacial
instabilities and flow-induced structures at different length scales.

At the macroscale, we induce a morphology transition from the generic dense-branching
growth characterized by repeated tip-splitting of the growing fingers to dendritic growth
characterized by stable fingertips in the presence of anisotropy in the viscous-fingering in-
stability. This instability arises when a less viscous fluid displaces a more viscous one in a
confined environment. When the growth environment is rendered anisotropic by engraving
a lattice of channels on a Hele-Shaw cell, we show that the morphology transition and the
global symmetry of the dendrites can be controlled by tuning the viscosity ratio between
the two fluids or the degree of anisotropy set by the lattice topography. We further exploit
a material with shear-enhanced anisotropy where the anisotropy is intrinsic to the fluid,
a lyotropic chromonic liquid crystal (LCLC) in the nematic phase. For high enough flow
velocities, the tumbling behavior of LCLC solutions can be suppressed, which results in a
flow-alignment of the material. This microscopic change in the director field macroscopi-
cally enhances the liquid crystal anisotropy to induce the transition from dense-branching
to dendritic growth.

Microscopically, we discover the emergence of flow-induced defects and structures in
LCLC solutions. Pure-twist disclination loops form in a range of shear rates as a consequence
of the low twist elastic constant of LCLC solutions. We demonstrate that the size of the pure-
twist disclination loops is governed by the balance between nucleation and annihilation forces,
which can be tuned by controlling the flow velocity. Strikingly, at lower shear rates, chiral
periodic double-twist structures spontaneously emerge, even though the LCLC is achiral. We
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show that the mirror symmetry breaking is triggered at regions of biaxial-splay deformations
that are unstable and evolve into the energetically cheaper double-twist elastic mode. Our
results reveal a novel path to structural chirality in an achiral system.

The control gained over the pattern morphology and structure formation from fluid in-
stabilities can open pathways to harnessing unstable growth to design programmable mi-
crostructures in materials and to control assembly and flow of biological systems in microflu-
idic devices.

Thesis Supervisor: Irmgard Bischofberger

Title: Class of 1942 Career Development Professor; Associate Professor of Mechanical Engi-
neering
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pressure (denoted by red contours) to a maximum pressure around the inlet

(denoted by blue contours), which is different for each panel as it varies with

time and viscosity ratio; the colors are guides to the eye. (b) Schematic

representation of the path followed by the main dendrites 𝑅m and the sub

dendrites 𝑅s. At a lattice junction (indicated by the red dot in the dotted

circle), the flow predominantly selects the direction along the red arrow, which

leads to the growth of the sub dendrites along the 30˝ direction, as observed

in both experiment (top image) and simulation (bottom image). (c) Zoomed

schematics of the lattice junction. The combination of the global pressure

distribution from the main dendrites and the local pressure distribution from

the tip of the sub dendrites leads to flow into channel 1 along the direction of

the red arrow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Simulated patterns (𝜂in{𝜂out = 0.05 and ℎ{𝑏 = 0.49) obtained for different

diffusion coefficients 𝐷. The dashed box denotes the conditions used in the

main part of Chapter 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
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3.7 Simulated patterns (𝜂in/𝜂out = 0.05, ℎ/𝑏 = 0.49) for different mesh resolutions.

The mesh used for the results reported in the main part of Chapter 3 is denoted

by the dashed box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.8 Schematic of the simplified channel texture. (a) The main dendrites grow

along channels parallel to the flow direction. (b) The sub dendrites grow along

channels perpendicular to the flow direction. (c) The effective slip length 𝑏slip

at the interface between the two fluids modifies the local permeability as the

inner fluid flows above the channels. The light blue region represents the less-

viscous inner fluid, the white region represents the more-viscous outer fluid

within the channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.9 Formation and growth of sub dendrites. (a) At early stage, two fingers emerge

between the neighboring main dendrites (white contour). They further split

as they reach the center of a next lattice (blue contour). (b) One of the fingers

outgrows the other one and becomes a sub dendrite (in this example, the one

below the red 30˝ line). The colored contours represent the interface position

at different times. (c) The sub dendrite further grows along the zig-zag path

illustrated by the solid yellow arrows. A smaller amount of flow also goes

towards the dashed yellow arrows, leading to the formation of side branches. 73
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3.10 Path selection towards 30˝ direction governed by pressure profile. (a) As the

tip of a sub dendrite reaches a junction that is not on the 30˝ line, indicated

by a green dot, the pressure profile in the outer fluid imposed by the two

neighboring main dendrites pushes the tip towards the 30˝ line through chan-

nel 1, as shown in the left inset of (b). As the tip reaches a junction on the

30˝ line, indicated by a cyan dot, through channel 4, it grows towards channel

2 because the local pressure gradient is highest in that direction, as shown in

the middle inset of (b). The sub dendrite continues to grow on the same side

of the 30˝ line where it first developed. The pink arrows denote the path of a

sub dendrite formed above the 30˝ line, the yellow arrows denote the path of

a sub dendrite formed below the 30˝ line. The solid arrows indicate the main

direction of the flow, but a small amount of flow goes towards the dashed

arrows and leads to the side-branch decoration of the dendrites. . . . . . . . 74

4.1 Morphology transition from dense-branching to dendritic growth

observed as silicone oil displaces aqueous solutions of disodium cro-

moglycate in the nematic phase. (A, B) With increasing volumetric flow

rate 𝑞, the pattern transitions from dense-branching growth (left) to dendritic

growth (right). (A) Silicone oil viscosity 𝜂in = 0.83 mPa, and 𝑞 = 0.1 ml/min

(left) and 𝑞 = 0.4 ml/min (right). (B) Silicone oil viscosity 𝜂in = 48 mPa s,

and 𝑞 = 0.05 ml/min (left) and 𝑞 = 1 ml/min (right). The scale bar is 5 mm.

The images are captured using a crossed polarizer, P, and analyzer, A. (C)

The width of the fingertip 𝑤 varies with time 𝑡 for dense-branching growth

characterized by repeated tip-splitting (upper panel). The width 𝑤 remains

constant for dendritic growth characterized by stable parabolic tips (lower

panel). The scale bar is 2 mm. (D) Temporal evolution of 𝑤 for dense-

branching growth (‚) and dendritic growth (˝) for 𝜂in = 0.83 mPa s. 𝑡max

denotes the time when the fingers reach a length of 30 mm. . . . . . . . . . . 80
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4.2 Distinct director fields for dense-branching and dendritic growth.

(A) The difference in color observed in DSCG solutions far from the fingertip

denotes distinct director fields for dense-branching growth at 𝑞 = 0.05 ml/min (left)

and for dendritic growth at 𝑞 = 1 ml/min (right). We define a local coordi-

nate system where the 𝑥-axis is in the direction of the fingertip growth, the

𝑦-axis is perpendicular to the growth direction, and the 𝑧-axis denotes the

direction of the plate spacing. 𝐿 is the distance from the fingertip along the

𝑥-direction. The scale bar is 1 mm. (B) Schematic of the director orientation.

The in-plane azimuthal angle is denoted as 𝜙 and the out-of-plane polar angle

as 𝜃. (C) The optical retardance 𝛿 along the distance 𝐿 for dense-branching

growth (˛) and dendritic growth (3). The data correspond to the images in

A. The gray area at 𝐿 ă 0 denotes the isotropic oil phase, where the retar-

dance is zero. Inset: Mean optical retardance far from the fingertip averaged

over 1.5 mm ă 𝐿 ă 4 mm, 𝛿, versus the fingertip velocity, 𝑉 , for silicone oils

with viscosities 𝜂in = 9.8 mPa s (˝) and 𝜂in = 48 mPa s (3). The dashed line

marks the transition between dense-branching and dendritic growth. . . . . . 81

4.3 Morphology diagrams denoting the transition from dense-branching

to dendritic growth controlled by the fingertip velocity, 𝑉 . (A) Exper-

iments performed at fixed plate spacing, 𝑏 “ 25𝜇m, for three concentrations

of DSCG in water: 𝑐 = 14 wt% (˝), 𝑐 = 16 wt% (△), and 𝑐 = 18 wt% (3).

Closed symbols denote dense-branching growth, open symbols denote den-

dritic growth. The dashed lines mark the transitions between dense-branching

growth and dendritic growth occurring at critical fingertip velocities 𝑉𝑐. (B)

Experiments performed at fixed concentration of DSCG in water, 𝑐 = 18 wt%,

for three plate spacings: 𝑏 “ 12𝜇m (˝), 𝑏 “ 25𝜇m (3), and 𝑏 “ 50𝜇m (△).

(C) Morphology diagram where 𝑉 is normalized with 𝑉 ˚, the velocity de-

noting the balance of the elastic torques from the nematic ordering and the

viscous torques from the shear flow. . . . . . . . . . . . . . . . . . . . . . . . 84
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4.4 Extensional shear at the fingertip induces isotropic liquid crystal

phase. (A) Zoomed image of the fingertip region for a volumetric flow rate 𝑞

= 1.5 ml/min. A dark region of length 𝐿𝑐 is seen in front of the fingertip (top

image), which remains dark upon tilting the Hele-Shaw cell by 20˝ (bottom

image). The scale bar is 200 𝜇m. (B) Optical retardance, 𝛿, measured at

the center line of a finger for experiments at different volumetric flow rates

𝑞 (see legend to the right). Closed symbols denote 𝜂in “ 0.83 mPa s, open

symbols denote 𝜂in “ 48 mPa s. 𝐿𝑐, indicated by the dashed line, denotes

the region characterized by a low 𝛿. (C) Map of the relative velocity (arrows)

in the frame of the moving fingertip and the strain rate 9𝛾 (color map) for

𝑞 = 1.5 ml/min. The scale bar is 200 𝜇m. (D) Extensional component of the

strain rate, 9𝛾𝑒, measured at the center line of a finger versus the distance from

the fingertip, 𝐿. The blue line denotes the critical extensional component of

the strain rate above which an aggregate breaks, 9𝛾𝑒,𝑐𝑟. Inset: The mean shear

component of the strain rate, 9𝛾𝑠, increases with increasing fingertip velocity,

𝑉 . (E) Scaled master curve of 9𝛾𝑒{ 9𝛾𝑠 versus 𝐿. The dashed line indicates 𝐿𝑐.

Inset: A DSCG aggregate aligns parallel to the uniaxial extensional flow when

9𝛾𝑒 ą 9𝛾𝑠. Strong shear can break the aggregate, which results in the isotropic

liquid crystal phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5 Director orientation in DSCG solutions for dense-branching growth

and dendritic growth. Imaged under crossed polarizer and analyzer, re-

gions away from the fingertip show distinct colors for dense-branching growth

(A) and dendritic growth (B), denoting differences in the optical retardance.

The shift in the optical retardance upon adding a static full-wave-plate optical

compensator (𝜆g = 560 nm) allows us to estimate the in-plane azimuthal angle

for dense-branching growth (C) and dendritic growth (D). The viscosity of

the displacing silicone oil is 𝜂in = 48 mPa s. The flow rate is 𝑞 = 0.05 ml/min

for dense-branching growth and 𝑞 = 1 ml/min for dendritic growth. The scale

bar denotes 0.5 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
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4.6 Dependence of shear component of strain rate on fingertip velocity.

(A) Map of the relative velocity (arrows) and the shear component of the

strain rate 9𝛾𝑠 (color map) for 𝑞 = 1.5 ml/min and 𝜂in “ 48 mPa s. 𝑑𝑡𝑖𝑝 is the

diameter of fingertip curvature. The scale bar denotes 200 𝜇m. (B) Average

shear component of the strain rate, 9𝛾𝑠, measured in the range 𝑑𝑡𝑖𝑝 versus the

distance from the fingertip, 𝐿. Closed symbols denote 𝜂in “ 0.83 mPa s, open

symbols denote 𝜂in “ 48 mPa s. (C) The mean shear component of the strain

rate, 9𝛾𝑠, increases with increasing fingertip velocity, 𝑉 . . . . . . . . . . . . . 92

5.1 Schematic diagram of polarized shearing interference microscopy

(PSIM). The filter is a band pass filter centered at wavelength 633 nm with

bandwidth 10 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Flow-induced structures in nematic DSCG solutions. (A) Structures

observed in polarizing optical microscopy for (from left to right): 𝑞 “ 0.07 𝜇l/min,

0.2 𝜇l/min, 0.5 𝜇l/min, and 3 𝜇l/min, using a full-wave-plate optical compen-

sator with its slow axis, 𝜆g, aligned parallel to the flow direction. The flow is

in the 𝑥-direction, the height of the microfluidic channel is in the 𝑧-direction.

A denotes the analyzer and P denotes the polarizer. (B) Schematic of the

director orientation. 𝑛e is the extraordinary refractive index, 𝑛o is the ordi-

nary refractive index. The in-plane orientation angle (azimuthal angle) and

out-of-plane orientation angle (polar angle) are 𝜙 and 𝜃. (C ) Retardance

maps obtained from PSIM images for (from left to right): 𝑞 “ 0.07 𝜇l/min,

0.2 𝜇l/min, 0.5 𝜇l/min, 3 𝜇l/min and 25 𝜇l/min. The color represents the

optical retardance. The scale bars in (A) and (C ) are 50 𝜇m. . . . . . . . . . 103
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5.3 Characteristic size of structures in flowing DSCG solutions con-

trolled by average shear rate. (A) Normalized 2D spatial autocovariance

in the 𝑥-direction (top) and in the 𝑦-direction (bottom), for different flow

rates 𝑞. The solid lines denote compressed single or double exponential fits.

(B) Characteristic domain sizes versus average shear rate 9𝛾. Along the 𝑥-

direction for intermediate average flow rates, 𝐿𝑥 (■), and for low and high

average flow rates, 𝐿𝑥1 (˝), 𝐿𝑥2 (ˆ); along the 𝑦-direction for intermediate flow

rates, 𝐿𝑦 (▲), and for low and high flow rates, 𝐿𝑦1 (△), 𝐿𝑦2 (+); and the av-

erage characteristic size 𝐿 “
a

𝐿𝑥𝐿𝑦 (‚). The black line denotes 𝐿 9 9𝛾
´0.19

.

(C ) Aspect ratio 𝐿𝑥{𝐿𝑦 (‚) for intermediate average flow rates, 𝐿𝑥1{𝐿𝑦1 (˝)

and 𝐿𝑥2{𝐿𝑦2 (ˆ) for low and high average flow rates. The black line indicates

𝐿𝑥{𝐿𝑦 «
a

𝐾3{𝐾1 “ 1.9. In (B) and (C ), some of the error bars are

smaller than the symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
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5.4 Simulations of the director field in pressure-driven flow for Er = 7438.

(A) Top view of a disclination loop (blue isosurface of order parameter 0.35).

The loop is located in the 𝑥𝑦-plane. The dark rods denote the directors in

the plane of the disclination loop. The color bar denotes the value of the

scalar order parameter. The scale bar corresponds to 3 𝜇m in the experiment.

(B) Map of the optical retardance averaged along the 𝑧-axis and determined

from the director field. (C ) Structure of a pure-twist disclination loop (blue

isosurface). The arrows indicate the local buildup of the twist distortion. The

scale bar is 2 𝜇m. (D) Probability distribution of the twist angle 𝛽 extracted

from approximately 100 loops in the simulations. 𝛽 is the angle between the

rotation vector Ω and the local tangent vector t of a disclination loop (left

inset). 𝛽 is close to 𝜋{2, which reveals the prevalence of twist winding. Right

inset: The coloring of the disclination loop indicates the twist angle 𝛽. (E )

Cross-section along the flow direction. The directors align perpendicular to

the flow direction in the center of the channel and parallel to the flow direction

near the channel walls. The defects predominantly nucleate at the interface

between these two regions. The color bar denotes the value of the scalar order

parameter. The scale bar is 2 𝜇m. (F ) Schematics indicating the log-rolling

layer ( 9𝛾 < 9𝛾𝑐), the layers aligned in the flow direction ( 9𝛾 > 9𝛾𝑐), and the lo-

cation of defects. The red arrows schematically represent the velocity profile,

the green arrows represent the shear rate profile 9𝛾. . . . . . . . . . . . . . . . 106

5.5 Dynamics of pure-twist disclination loops. (A) Normalized spatiotem-

poral autocovariance for different flow rates 𝑞, for a frame of reference velocity

𝑉𝑓 equal to the average velocity 𝑉 . The lines denote stretched/compressed

exponential fits. (B) Inverse characteristic time, 𝜏´1, versus 𝑉𝑓{𝑉 for different

flow rates 𝑞. The dashed lines denote best-fits to Eq. 5.14. (C ) The fluctu-

ation time 𝜏1 decreases linearly with the average shear rate. The black line

denotes 𝜏𝑓 « 3
4

𝛾1?
´𝛼2𝛼3

1
9̄𝛾
. (D) Comparison between 𝐿𝑥 from fitting 𝜏´1 (3)

and 𝐿𝑥 from fitting the normalized spatial autocovariance (■). . . . . . . . . 111
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5.6 Simulation snapshots of the director field in pressure-driven flow for Ericksen

numbers Er = 1147 (A), Er = 2480 (B), Er = 5734 (C ), and Er = 7438 (D).

The scale bar corresponds to 5 𝜇m in the experiment. Top row: top view of

the center plane of the channel. Bottom row: side view of the channel. The

short black lines denote the director field, the color indicates the scalar order

parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.7 Elastic power analysis of different deformation modes in simulations. Tem-

poral evolution upon the onset of flow of the power of twist, 𝑃twist (red), the

power of splay, 𝑃splay (blue) and the power of bend, 𝑃bend (green) for Ericksen

numbers Er = 6509 (△), Er = 7438 (˝) and Er = 8214 (˝). In steady state,

the power of twist is significantly larger than the powers of the other two modes.119

5.8 Local winding in wedge-twist and pure-twist disclination loops. (A) Schemat-

ics illustrating the tangent vector t, the rotation vector Ω, the disclination

loop normal N, the azimuthal angle 𝜑, the twist angle 𝛽, and the angle 𝛾.

(B) A designed wedge-twist disclination loop and (C ) a designed pure-twist

disclination loop. The color map indicates the twist angle 𝛽. In (B) and

(C ), the yellow background indicates the 𝑥𝑧-plane across the center line of

the loop; the blue background indicates the 𝑥𝑦-plane across the center line

of the loop. The blue rods denote directors in the 𝑥𝑧-plane; the brown rods

denote directors in the 𝑥𝑦-plane. (D) Distribution of 𝛽 for the wedge-twist

disclination loop shown in (B). (E ) Distribution of 𝛽 for the pure-twist discli-

nation loop shown in (C ). (F ) Distribution of 𝛾 inferred from the distribution

of 𝛽 for the wedge-twist disclination loop. (G) Distribution of 𝛾 inferred from

the distribution of 𝛽 for the pure-twist disclination loop. . . . . . . . . . . . 120

5.9 Local winding in disclination loops emerging in pressure-driven DSCG solu-

tions. (A) Distribution of the twist angle 𝛽 extracted from approximately

100 disclination loops forming in the simulations of pressure-driven DSCG

solutions. (B) Distribution of the angle 𝛾 inferred from the distribution of 𝛽.

Inset: Definition of 𝛽 and 𝛾. . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
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6.1 Stripe patterns emerge from uniformly aligned nematic lyotropic

chromonic liquid crystals in a weak flow. (A) The flow is in the 𝑥-

direction, the thickness of the microfluidic channel is in the 𝑧-direction. The

images are captured using a crossed polarizer, P, an analyzer, A, and a full-

wave-plate optical compensator with its slow axis, 𝜆g, oriented in the direction

perpendicular to the flow direction. The scale bar is 200 𝜇m. (B) Schematics

of the transition from a uniform planar alignment of the director field in the

static state to a periodic double-twist structure in weak flow. . . . . . . . . . 137

6.2 Mirror symmetry breaking in weak flows of a nematic liquid crystal.

(A) Retardance map (upper panel), where the color represents the optical re-

tardance averaged in the thickness direction 𝛿, and the direction of the black

rods denotes the orientation of directors averaged in the thickness direction

projected in the 𝑥𝑦-plane. The scale bar is 50 𝜇m. Along the distance 𝐿

indicated as a red line in the retardance map normalized by the plate spacing,

𝑏, the retardance varies periodically (lower panel). The low retardance region

of stripes is denoted as region I, and the region in between low-retardance

stripes is denoted as region II. (B) Schematic of the director orientation. 𝜙 is

the azimuthal angle and 𝜃 is the polar angle. 𝑛e is the extraordinary refrac-

tive index, 𝑛o is the ordinary refractive index. (C) Fluorescence image of the

stripe pattern in the 𝑥𝑦-plane imaged at the bottom layer of the microfluidic

channel (upper panel). The white arrow represents the polarization of the

probing beam. The scale bar is 50 𝜇m. Along the red line, 𝐿, the normalized

fluorescence intensity at the top layer (black line) is out of phase with that

at the bottom layer (blue line) in a 𝑥𝑧-cross-section (lower panel). 𝐿 is nor-

malized by the plate spacing, 𝑏. (D) Schematics of the periodic double-twist

deformation in the 𝑥𝑧-plane (upper panel) and the corresponding stripe pat-

tern (lower panel). (E) A map of the normalized light intensity, 𝐼, imaged

through crossed polarizer and analyzer (lower panel) recovered from the sim-

ulated periodic double-twist director field (upper panel). 𝑆 denotes the scalar

order parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
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6.3 Three-dimensional director field inducing periodic double-twist struc-

tures. (A) The stripe patterns are surrounded by regions of uniform director

fields, imaged through a crossed polarizer, P, and analyzer, A. The scale bar is

200 𝜇m. (B) The director fields surrounding the stripe patterns appear alter-

natively blue and yellow when imaged using a full-wave-plate optical compen-

sator. The blue color indicates that the director is more perpendicular to 𝜆g;

the yellow color indicates that the director is more parallel to 𝜆g. The scale

bar is 200 𝜇m. (C) Map of the polar and azimuthial angles. The black rods

represent the azimuthal angle of directors, 𝜙, averaged in the cell thickness

direction. The color bar denotes the value of the polar angle, 𝜃, averaged in

the cell thickness direction. The regions neighboring the stripe patterns are

denoted as regions (i) and (ii); the regions neighboring the domain walls are

denoted as regions (iii) and (iv). The scale bar is 500 𝜇m. (D) Probability

density function (PDF) of the azimuthal angle 𝜙 in regions (i)-(iv) (upper

panel). PDF of the polar angle 𝜃 in regions neighboring the stripe patterns

and the domain walls (lower panel). Inset: schematics indicating a divergent

splay deformation in the 𝑥𝑧-plane induced by the Poiseuille flow in the mi-

crofluidic channel. The black arrows represent the velocity profile, the blue

arrows represent the shear rate profile. (E) A domain wall forms at divergent

splay deformations. (F) Stripe patterns occur at convergent splay deforma-

tions. (G) Schematics of the biaxial splay configuration (upper panel) and

the double-splay configuration (lower panel). (H) Evolution of 𝜃 on the chan-

nel walls at Ericksen number Eraverage “ 30 for double-splay (blue line) and

biaxial-splay (red line) configurations. Eraverage “ ´𝛼2 9̄𝛾𝑏2{𝐾̄, where 𝛼2 is a

Leslie viscosity coefficient and 𝐾̄ is the average Frank elastic constant. . . . 140
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6.4 Period of periodic double-twist structures controlled by velocity of

stripes and plate spacing. (A) Definition of the period of the double-

twist structure, 𝑝 (upper panel). Bend deformations occur in the periodic

double-twist structure, as highlighted by the orange line. The region of bend

deformation is indicated by the red dashed box (lower panel). (B) Period of

the periodic double-twist structure, 𝑝, versus the velocity of the stripes, 𝑉 ,

for plate spacings 𝑏 “ 8 𝜇m (‚), 𝑏 “ 15 𝜇m (˛), and 𝑏 “ 26 𝜇m (▲). (C) 𝑝

normalized with 𝑝𝑐, the critical period denoting the competition between the

bend elastic torque and the viscous torque from the flow. . . . . . . . . . . . 143

6.5 Polar angle on the channel walls (A) Distribution of polar angle, 𝜃, in the

𝑧-direction for different presumed polar angles on the walls, 𝜃𝑏, in steady state.

(B) 𝑘𝑤
𝐾̄𝜏

`

𝑑𝜃
𝑑𝑡˚

˘

𝑠
versus 𝜃, demonstrating the evolution of the polar angle on the

walls. The open circles denote 𝜃𝑏. (C) 𝑘𝑤
𝐾̄𝜏

`

𝑑𝜃
𝑑𝑡˚

˘

𝑠
versus 𝜃𝑏. At 𝑘𝑤

𝐾̄𝜏

`

𝑑𝜃
𝑑𝑡˚

˘

𝑠
“ 0,

this curve gives rise to a critical polar angle, 𝜃𝑐. (D) 𝜃𝑐 versa Eraverage. . . . 147

6.6 Surface anchoring strength for assigned critical polar angles on the

channel walls, 𝜃𝑐. (A) Distribution of polar angle, 𝜃, in the 𝑧-direction,

corresponding to different 𝜃𝑐 at different Eraverage in steady state. The extrap-

olation length, 𝐿0, is obtained by extrapolating the curve from the walls to the

location where 𝜃 reaches 90˝. (B) The anchoring strength, 𝑊 , for different 𝜃𝑐

in the regime of Eraverage = 25 – 50, is on the order of 10´6 ´ 10´7 J{m2. . . 148
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6.7 Director field of stripe patterns. (A) Stripe patterns are observed through

crossed polarizer, P, and analyzer, A, where the polarizer is either parallel to

flow direction along 𝑥-axis (upper panel) or is oriented at 45˝ to the flow

direction (middle panel). Dark stripes remain dark as indicated by the white

arrows. With crossed polarizer and analyzer oriented in the direction at 45˝ to

the flow direction and compensated with full-wave-plate optical compensator

with its slow axis, 𝜆g = 560 nm, perpendicular to the flow direction, regions
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7.1 Dendrite formation in drying drops. (A) Quasi-two-dimensional den-

dritic patterns form during the drying of sessile drops composed of aqueous

solutions of peptone and salt. From left to right, the salt concentrations are
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dimensional crystals grow in drying drops of aqueous salt solutions (9 wt%)
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7.2 Pattern formation in biological systems. (A) An instability occurs at the

free surface of organoids during the development of the organoids (the initial

instability is indicated by the white arrows) and leads to finger-like structures

and wrinkles. The scale bar is 50 𝜇m. Adapted from [238]. Copyright 2018

Nature Publishing Group. (B) A fingering instability emerges during the

spreading of epithelial cells. The scale bar is 200 𝜇m. Adapted from [239].
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Chapter 1

Introduction

1.1 Pattern growth in the viscous-fingering instability

Patterns, ubiquitously forming in nature, are found across different material properties and

length scales ranging from microscopic snowflakes, to flames, river networks, and lightning [1].

Despite the variety and complexity of patterns, many of them share similar features and can

be grouped into two ‘essential shapes’ or morphologies: dense-branching growth and dendritic

growth [2]. Dense-branching growth arises from repeated tip-splitting of the growing finger

and leads to a disordered pattern with many branches [2, 3] (Fig. 1.1(a)). Veins of leaves,

neural networks, and blood vessels are all examples of dense-branching growth. In contrast,

dendritic growth is characterized by stable protrusions where tip-splitting is prevented, and

leads to structures with global symmetries [4–9] (Fig. 1.1(b)). Snowflakes or solidified alloys

are examples of dendritic structures. Given the astonishing regularities in these structures,

particular interest lies in identifying the common principles governing the pattern formation.

Indeed, many patterns result from interfacial instabilities that are triggered by perturbations

and driving forces [1]. Reaching control over interfacial pattern growth by gradient-driven

transport of mass, heat or charge to the interface could not only provide insight into pattern

selection in nature, but could also be exploited in engineering to build functional materials

and structures [1, 10, 11]. In Chapters 3–4, we establish novel strategies to control interfacial

pattern growth, particularly the growth of dense-branching and dendritic patterns.

The viscous-fingering instability has played an important role in elucidating basic prin-
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a b

2 cm

Figure 1.1: Two common growth morphologies. (a) Dense-branching growth. (b)
Dendritic growth.

ciples of interfacial pattern formation [12–15]. It occurs when a fluid is displaced by a less

viscous one in a quasi-two-dimensional geometry [16]. Such a geometry, consisting of two

parallel plates placed on top of each other and separated by a small gap, is called a Hele-

Shaw cell [17]. The instability has helped reveal the key role of interfacial anisotropy for

the selection of the growth morphology; dendritic growth only occurs in anisotropic systems,

where the interfacial dynamics becomes directionally dependent [5, 18–20]. In the absence

of anisotropy, dense branching is instead the generic mode of growth [5, 18–20].

Experimentally, different strategies have been developed to introduce anisotropy in the

interfacial dynamics. The most well-established means is by making geometric changes to the

growth environment by engraving a symmetric lattice of channels on one plate of the Hele-

Shaw cell or by placing air bubbles at the tips of growing fingers [18, 21–26]. The engraved

channels, for example, modulate the local plate spacing and become the preferred growth

direction, as the fluid velocity is proportional to the square of the plate spacing [18]. Another

strategy is to use nematic thermotropic liquid crystals (TLCs) as one of the fluids, where the

anisotropy is an intrinsic property of the medium itself [27]. In particular, the directors can

be aligned by flow, which gives rise to a lower viscosity parallel to the flow direction compared

to that perpendicular to the flow direction, and the lower viscosity direction becomes the

preferred growth direction [28]. These strategies have successfully been applied to study

dendritic growth, but only in the limit of very low viscosity ratio between the less-viscous

inner fluid and the more-viscous outer one, 𝜂in/𝜂out, typically with either air or water as
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the invading fluid, where the growth is characterized by a single growing length scale, the

finger length. However, it has been recently shown that the viscosity ratio, 𝜂in/𝜂out, acts

as a key parameter for pattern growth in the viscous-fingering instability: For larger values

of 𝜂in/𝜂out, unstable growth emerges that is not just characterized by a growing finger, but

that exhibits a concomitant growth of an inner circular region within which the outer fluid

is completely displaced [29]. This inner circular region becomes increasingly pronounced as

the viscosity ratio between the two fluids increases. If and how dendritic growth occurs at

higher viscosity ratios where the inner circular region appears is entirely unexplored.

In Chapter 3, we reveal that the previously overlooked control parameter, 𝜂in/𝜂out, can

lead to a rich variety of structures in an anisotropic environment, using a Hele-Shaw cell

with engraved ordered channels. Previous experiments using the same anisotropic system

in the limit of low 𝜂in/𝜂out have identified the degree of anisotropy, defined as the ratio

between the channel height ℎ and the plate spacing 𝑏, ℎ/𝑏, as a control parameter for the

morphology transition from dense-branching to dendritic growth [18]; dendritic structures

form beyond a critical value of ℎ/𝑏. For miscible fluids and for immiscible fluids at high

capillary number, the dendrites have been shown to directly reflect the underlying symmetry

of the lattice [8]. In our study, we show that 𝜂in/𝜂out serves a new control parameter in

addition to ℎ/𝑏, determining the morphology transition between dense-branching growth and

dendritic growth in miscible fluids. Remarkably, upon approaching the morphology transition

governed by 𝜂in/𝜂out and ℎ/𝑏, the dendrites spontaneously change from six-fold towards

twelve-fold symmetric dendrites even though the symmetry of the growth environment is

fixed to be six fold. Varying either control parameter provides a new method to tune the

symmetry of complex patterns, which may also have relevance for analogous phenomena of

gradient-driven interfacial dynamics, such as directional solidification or electrodeposition.

In addition to investigating interfacial pattern formation in anisotropic environments by

engraving an ordered lattice on one of the plates of the Hele-Shaw cell where the patterns,

to an extent, are slaved to the topology of the lattice, we exploit the intrinsic anisotropy

of nematic liquid crystals. Previous studies have employed this strategy using thermotropic

liquid crystals (TLCs) as the displaced fluid [27], which, however, allows for dendritic growth

in only a narrow range of temperature and pressure. In Chapter 4, we show how we can
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controllably induce a transition from dense-branching to dendritic growth over a large range

of control parameters in a different class of liquid crystals; aqueous solutions of lyotropic

chromonic liquid crystals (LCLCs). We show that the morphology transition to dendritic

growth is induced by the suppression of the intrinsic tumbling behavior of nematic LCLC

solutions, which leads to flow-alignment of the material that provides a shear-enhanced

anisotropy. Using a molecular theory framework to describe the dynamics of flowing LCLC

solutions, we reveal the relation between the microscopic alignment and the macroscopic

growth morphology selection, which provides a quantitative criterion for controlling the

morphology of interfacial fluid instabilities.

1.2 Structure formation in nematic lyotropic chromonic

liquid crystals

Liquid crystals (LCs) are materials composed of anisotropic mesogens [30, 31]. Due to their

sensitivity to external perturbations, including temperature, electrical, and mechanical per-

turbations, liquid crystals have been extensively applied in sensors and stimuli-responsive

elastomers [32, 33]. In particular, a class of LCs, lyotropic chromonic liquid crystals (LCLCs),

have gained increasing attention in both fundamental and applied research in recent decades,

as their structural properties are distinct from the more traditional thermotropic liquid crys-

tals (TLCs) [34–42]. In contrast to TLCs formed by small organic molecules, LCLCs are

aqueous suspensions of rod-like aggregates composed of disk-shaped molecules, as schemat-

ically shown in Fig. 1.2. These molecular stacks are 1 – 2 nm in diameter and tens to

hundreds of nm in length; up to hundreds of times longer than TLC molecules, depending

on the LCLC concentration and temperature [31, 39, 43–47].

The distinct structural properties of the nematic LCLCs lead to unique material prop-

erties, and results in peculiar mechanical behaviors that have so far been mostly studied

at rest [48–50]. For example, due to the large aspect ratio and the semi-flexibility of the

aggregates, LCLCs have significant elastic anisotropy compared to TLCs; the twist Frank

elastic constant, 𝐾2, is much smaller than the splay and bend Frank elastic constants, 𝐾1
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aligned LCLC aggregates self-assemble into a nematic 
phase.

n

Figure 1.2: LCLC aggregates. At certain temperature and concentration, self-assembled
LCLC aggregates align in the direction n and form a nematic phase.

and 𝐾3 [50, 51]. The resulting relative ease with which twist deformations can occur can

lead to a spontaneous symmetry breaking and the emergence of chiral structures in static

LCLCs under spatial confinement, despite the achiral nature of the aggregates [39, 49, 52–

56]. Additionally, the noncovalent hydrophobic interactions between disc-shaped molecules

result in a small ‘scission energy’, i.e., the energy required to break one aggregate into two,

on the order of 10 kT [50]. The low scission energy allows the DSCG aggregates to break

under large distortion of the director field, for example at the cores of singular disclinations,

and consequently form an isotropic phase with a significant decrease of the order parameter

that can extend over large scales, „ 10𝜇m [52].

In addition to the special mechanical behaviors at rest, nematic LCLCs in flow exhibit

rich phenomena, which are currently poorly understood [57–60]. Different from most nematic

TLCs, nematic LCLCs are tumbling liquid crystals characterized by a non-zero viscous torque

for any orientation of the director, with 𝛼2𝛼3 ă 0, where the director does not adopt a

stationary angle and can rotate in the shear plane [61]. The tumbling nature of LCLCs leads

to enhanced sensitivity to shear. A recent study has revealed a variety of complex textures

that emerge in simple shear flow in a nematic LCLC [61]. At shear rates 9𝛾 ă 1 s´1, the

director realigns perpendicular to the flow direction adapting a so-called log-rolling state

characteristic of tumbling nematics. For 1 s´1 ă 9𝛾 ă 10 s´1, polydomain textures form due

to the nucleation of pure-twist disclination loops, for which the rotation vector is parallel

to the loop normal, and mixed wedge-twist disclination loops, for which the rotation vector

is perpendicular to the loop normal [60, 61]. Above 9𝛾 ą 10 s´1, the disclination loops

gradually transform into periodic stripes, which are parallel to the flow direction and in
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which the director aligns predominantly along the flow direction [61].

In Chapter 4, we show that the director field of nematic LCLCs can transition from the

tumbling state to the shear aligned state with increasing shear rate in a strong flow. We

demonstrate that this transition is a consequence of the large length of the LCLC aggre-

gates, which leads to slow orientational relaxation and which makes high Deborah number

regimes experimentally accessible. The Deborah number (De) is the ratio of the rotational

relaxation time of the aggregates and the characteristic time of the shear flow [62]. For De

of order unity, the director field cannot be considered as a continuum field and the classical

Ericksen-Leslie theory does not apply; instead, the transition to shear alignment is described

by molecular theories considering the nematic potential resisting the shear flow deforming

individual aggregates [62]. Additionally, we show how the low scission energy differentiates

the dynamics of nematic LCLCs from nematic TLCs. We reveal that a transition to the

isotropic phase can occur in a unaxial externsional flow.

In the intermediate and low shear rate regimes, we explore microstructures emerging in

a pressure-driven nematic lyotropic chromonic liquid crystal in a microfluidic channel.

In Chapter 5, we show that pure-twist disclination loops emerge in the bulk flow for a

certain range of intermediate shear rates. These loops are elongated in the flow direction and

exhibit a constant aspect ratio. We demonstrate that the disclination loops nucleate at the

boundary between regions where the director aligns predominantly along the flow direction

close to the channel walls and regions where the director aligns predominantly perpendicular

to the flow direction in the center of the channel. The large elastic stresses of the director

gradient at the boundary are then released by the formation of disclination loops. We show

that both the characteristic size and the fluctuations of the pure-twist disclination loops can

be tuned by controlling the flow rate.

In Chapter 6, we reveal unexpected chiral structures in the absence of curved or pre-

patterned surfaces at lower shear rates than those triggering the defects. We show that the

chiral structures are a result of the formation of a complex periodic double-twist structure

where the director field twists along both the flow direction and the gap thickness direction.

The periodic double-twist structure leads to striking stripe patterns vertical to the flow di-

rection. We reveal that the mirror symmetry breaking is triggered at regions of biaxial-splay
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deformation characterized by opposite directions of the splay deformation in two orthogonal

planes. We show that the biaxial-splay deformation is unstable and evolves into a lower

energy-cost elastic mode, i.e., the periodic double-twist structure, as a consequence of the

small twist Frank elastic constant of LCLCs.
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Chapter 2

Experimental methods

Parts of this chapter are based on Ref. [63–67].

2.1 Experimental setups

We use Hele-Shaw cells and design microfluidic cells to explore instabilities and flow-induced

structures in anisotropic systems.

2.1.1 Hele-Shaw cell

We use radial Hele-Shaw cells consisting of two flat glass plates of thickness 19 mm and

diameter 𝐿 280 mm or 140 mm, separated by a uniform gap 𝑏, as shown in Fig. 2.1(a).

The plate spacing 𝑏 is maintained by spacers (McMASTER-CARR) placed around the plate

perimeter. We tune 𝑏 over a large range from 12 𝜇m to 1350 𝜇m. We inject the fluids into

the Hele-Shaw cell through a 2 mm tube at the center of the top plate. The injection rate is

controlled by a syringe pump (Harvard PHD 2000). Images are taken from below.

To explore the viscous-fingering instability in an anisotropic environment, we modify

the Hele-Shaw cell by engraving six-fold symmetric lattices of channels on acrylic plates

with diameter 145 mm using a laser cutter (Universal Laser Systems). The engraved plate

is placed on the bottom glass plate of the Hele-Shaw cell, as shown in Fig. 2.1(b). The

channels have a width, 𝑤 = 800 𝜇m, and the distance between the edges of two channels is
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Figure 2.1: Schematics of the Hele-Shaw cells. (a) A radial Hele-Shaw cell is a quasi-
two-dimensional geometry consisting of two flat plates with diameter, 𝐿, separated by a
uniform gap, 𝑏, where 𝐿 ąą 𝑏. A 2 mm diameter hole in the center of top plate allows
fluids to be injected into the cell. (b) Top view of the modified Hele-Shaw cell where an
acrylic plate engraved with six-fold symmetric lattices is placed on the bottom plate of the
Hele-Shaw cell. In the experiments, a less viscous fluid displaces a more viscous fluid to
induce the viscous-fingering instability.

𝑑 = 850 𝜇m. We use channel depths ℎ of 10 𝜇m, 28 𝜇m, 50 𝜇m, and 250 𝜇m. The depth of

the channels is measured using a profilometer (Dektak).

In the experiments where anisotropy is introduced intrinsically in the outer more fluid by

using nematic lyotropic chromonic liquid crystals (LCLCs), we employ a regular Hele-Shaw

cell. We control the surface anchoring condition by circularly rubbing the glass plates with a

paste of diamond particles of diameter 50 nm (TechDiamondTools, Diamond Polishing Com-

pound Polishing Paste), which yields a circularly planar alignment with anchoring strength

10´6 ´ 10´7 J{m2 [68, 69].

2.1.2 Microfluidic channel

To investigate the properties of flowing nematic lyotropic chromonic liquid crystals (LCLCs),

we design rectilinear microfluidic channels that are made of two rectangular glass plates.

The glass plates are 6 mm in thickness and 51 mm by 76 mm or 25 mm by 76 mm in width

and length. We use a paste of diamond particles of diameter « 50 nm to rub both glass

plates along the channel length direction, which induces a uniform planar alignment [68].

Rectangular spacers (Specac, MY SPR RECT 0.006 mm OMNI, and PRECISION BRAND)

are placed between the two glass plates to create a rectangular channel and to maintain a
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constant plate spacing. We seal three edges of the channel using 2 Ton Epoxy (DEVCON).

We build two types of channels with different inlet conditions: i) a radial flow at the inlet

is induced by a hole drilled at the centerline and close to one end of the channel (Fig. 2.2(a)),

and ii) a uniform flow at the inlet achieved by placing a customized reservoir on one end

of the channel. The reservoir is glued to the channel using 5 minute Epoxy (DEVCON).

The reservoir has a height of 25 mm, a width of 40 mm, and an inner thickness of 2 –

3 mm (Fig. 2.2(b)).

LCLC directors in shear flow tend to align in the direction either perpendicular or parallel

to the shear plane [61, 65]. An injection protocol that uses a center hole as an inlet induces a

radial flow which leads to bend or splay elastic deformations of the nematic LCLC solutions

at the inlet. When we focus exclusively on structures forming far downstream, further than

15 mm away from the inlet where the structures are uniform in space, we use the center hole

as inlet to simplify the channel fabrication process (Fig. 2.2(a)). To probe the director field

of the flow-induced structures everywhere in the microfluidic channel, we use the reservoir

to induce a uniform velocity profile at the inlet (Fig. 2.2(b)). This is particularly important

in the small Ericksen number regime, where the elastic deformation at the inlet becomes

non-negligible. The Ericksen number evaluates the relative importance of the viscous forces

compared to the elastic forces [31, 50].

Flow

x

y
z

Plate spacing: 6.5 m

Flow

Reservoir

a                                                             b

x

y
z

Figure 2.2: Schematics of microfluidic channels. (a) The microfluidic channel with an
inlet at the centerline of the top glass plate and close to one end of the channel. (b) The
microfluidic channel with a uniform flow at the inlet, induced by a reservoir connected to
the rectilinear channel. The channel has a thickness of 6.5–26 𝜇m, a length of 50 mm and a
width of 15–40 mm.
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2.2 Optical techniques

To reveal the director field of nematic liquid crystals, we need to access the out-of-plane

polar angle, 𝜃, and the azimuthal angle, 𝜙, of the directors. 𝜃 is reflected in the optical

retardance, 𝛿, through [70]

𝛿 “ |
𝑛0𝑛𝑒

a

𝑛2
0cos

2𝜃 ` 𝑛2
𝑒sin

2𝜃
´ 𝑛0|, (2.1)

where 𝑛e and 𝑛o are the extraordinary and ordinary refractive indices.

A crossed polarizer and analyzer are employed to qualitatively identify the director field,

as shown in Fig. 2.3. The linear polarized light entering the nematic liquid crystal sample

with a thickness 𝑏 and birefringence ∆𝑛 “ 𝑛e ´𝑛o is resolved into two rays that propagate at

different velocities and recombine at the analyzer. The transmitted intensity of light passing

the analyzer is [70]

𝐼𝜆𝑤 “
1

2
𝐸0

2sin2
p2𝛼q sin2

ˆ

𝜋𝛿

𝜆𝑤

˙

, (2.2)

where 𝐸0 is the polarization of the linear polarized light, 𝜆𝑤 is the wavelength of light, and

𝛼 is the angle between the liquid crystal director and the transmission axis of the polarizer.

At fixed 𝛼, the transmitted intensity depends only on 𝛿. 𝛿 causes destructive interference for

certain wavelength of white light, resulting in an interference image [71]. We compare the

interference colors with a customized Michel-Lévy color chart (see Chapter 2.3) to determine

the optical retardance of the nematic liquid crystals, and therefore the polar angle, 𝜃.

To identify the azimuthal angle, 𝜙, we insert a static full-wave-plate optical compensator

(560 nm) between the crossed polarizer and analyzer. The slow axis of the compensator 𝜆⃗g is

oriented at 45˝ to the polarizer. We determine the alignment of the directors in the 𝑥𝑦-plane

with respect to 𝜆⃗g by comparing the change of retardance before and after insertion of the

compensator. An increase in retardance by 560 nm indicates that the director is oriented

in the direction perpendicular to 𝜆⃗g; a decrease in retardance by 560 nm indicates that the

director is oriented in the direction parallel to 𝜆⃗g. This can be quantitatively understood

by considering the transmitted light intensity of different wavelengths of white light. The
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Figure 2.3: Schematics of the optical setup with crossed polarizer and analyzer.
The arrows represent the polarization of light.

transmitted beam defined by the Stokes vector is calculated as [61]

S “ M𝐿𝑃 p𝜋{2q ¨ M𝜆𝑔 p𝜋{4q ¨ M𝐿𝐶 p𝜙q ¨ M𝐿𝑃 p0q ¨ S0, (2.3)

where S0 is the Stokes vector of the incident beam with unit intensity and 𝜙 is the azimuthal

angle between the director and the 𝑥-direction. The transformation matrices

M𝐿𝑃 p0q “
1

2

¨

˚

˚

˚

˚

˚

˚

˝

1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

(2.4)

and

M𝐿𝑃 p𝜋{2q “
1

2

¨

˚

˚

˚

˚

˚

˚

˝

1 ´1 0 0

´1 1 0 0

0 0 0 0

0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

(2.5)
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are the Mueller matrices for a linear polarizer with transmission axes that have angles of 0˝

and 90˝ with respect to the 𝑥-direction.

M𝐿𝐶 p𝜙q “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0

0 cos22𝜙 ` sin22𝜙 cos Γ cos 2𝜙 sin 2𝜙 p1 ´ cos Γq sin 2𝜙 sin Γ

0 cos 2𝜙 sin 2𝜙 p1 ´ cos Γq cos22𝜙 cos Γ ` sin22𝜙 ´ cos 2𝜙 sin Γ

0 ´ sin 2𝜙 sin Γ cos 2𝜙 sin Γ cos Γ

˛

‹

‹

‹

‹

‹

‹

‚

(2.6)

is the Mueller matrix for the nematic liquid crystal sample of thickness 𝑏 and birefringence

∆𝑛, where Γ “ 2𝜋𝑏∆𝑛{𝜆𝑤.

M𝜆𝑔 p𝜋{4q “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0

0 cos
´

2𝜋𝜆𝑔

𝜆𝑤

¯

0 sin
´

2𝜋𝜆𝑔

𝜆𝑤

¯

0 0 1 0

0 ´ sin
´

2𝜋𝜆𝑔

𝜆𝑤

¯

0 cos
´

2𝜋𝜆𝑔

𝜆𝑤

¯

˛

‹

‹

‹

‹

‹

‹

‚

(2.7)

is the Mueller matrix for the compensator of wavelength 𝜆𝑔 “ 560 nm, with its optical axis

at 45˝ to the 𝑥-direction. The first component of the Stokes vector of the outgoing beam in

Eq. 2.3 determines the transmitted light intensity:

𝐼 p𝜙, 𝜆𝑤q “
1

2

„

1 ´
`

cos22𝜙 ` cos Γsin22𝜙
˘

cos

ˆ

2𝜋𝜆𝑔
𝜆𝑤

˙

` sin 2𝜙 sin Γ sin

ˆ

2𝜋𝜆𝑔
𝜆𝑤

˙ȷ

. (2.8)

For a given Γ and 𝜆𝑔, Eq. 2.8 shows that the transmitted light intensity, 𝐼, depends on

both the azimuthal angle, 𝜙, and the wavelength of light, 𝜆𝑤. When a beam of white light,

where the light spectrum is assumed to be uniform, incidents the system, the wavelength

holding the highest transmitted light intensity, 𝜆𝑤,𝑚𝑎𝑥, is dominant in the outgoing beam

and appears as the corresponding color. 𝜆𝑤,𝑚𝑎𝑥 and the corresponding color vary with 𝜙.

We can thus identify the azimuthal angle, 𝜙, by assessing the color of the interference image.

For example, let us consider a microfluidic channel with 𝑏 “ 6.5 𝜇m filled with a liquid

crystal solution with ∆𝑛 “ ´0.015 [72]. As a demonstration, we choose three representative

wavelengths, 480 nm, 550 nm, 620 nm, in the visible light spectrum (corresponding to blue,

green, and orange), and calculate their transmitted intensity at different azimuthal angles
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Figure 2.4: The transmitted light intensity versus the azimuthal angle, 𝜙. The
transmitted light intensity, 𝐼, at different wavelengths (𝜆𝑤 “ 480 nm (blue line), 𝜆𝑤 “

550 nm (green line), 𝜆𝑤 “ 620 nm (orange line)) transmitted through the setup with crossed
polarizer and analyzer compensated with the full-wave-plate optical compensator and the
LC sample.

based on Eq. 2.8. The results are shown in Fig. 2.4. The maximum intensity at 𝜙 “ ´45˝

is found for the blue color, whereas the maximum intensity at 𝜙 “ 45˝ is found for the

orange color. This indicates that when the director is oriented parallel to the slow axis of

the compensator, the image appears orange. From the Michel-Lévy color chart, we see that

orange corresponds to a retardance of „ 460 nm. We further know that the retardance

before the compensator is inserted is approximately 98 nm. The retardance thus decreases

by 560 nm, which indicates that the director is oriented parallel to the slow axis of the

compensator. In contrast, when the director is oriented perpendicular to the slow axis of the

compensator, the image appears blue („ 658 nm), which corresponds to an increase of the

retardance by 560 nm. As a result, we can estimate the azimuthal angle by assessing the

change of retardance upon insertion of the static optical compensator.

We visualize the structures forming in flowing nematic liquid crystals and image their

dynamics using a LUMIX GH5 camera at frame rates up to 60 fps, and a high-speed cam-

era (Chronos 1.4) at frame rates of 1069 fps.
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2.3 Customized Michel-Lévy color chart
We customize the Michel-Lévy color chart by measuring the transmitted spectrum of a

light-emitting diode (LED, Tiktecklab) through the Hele-Shaw cell using a spectroscope

(Maya2000 Prob Series, Ocean Insight). The normalized transmitted light intensity 𝐷 at

different wavelengths 𝜆𝑤 is shown in Fig. 2.5(a).
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Figure 2.5: Customized Michel-Lévy color chart. (a) Transmitted spectrum of a light-
emitting diode through the Hele-Shaw cell. (b) Customized Michel-Lévy color chart.

For a given wavelength 𝜆𝑤 of light passing through a liquid crystal sample placed between

a crossed polarizer and analyzer, the transmission 𝑇 is expressed as [73]

𝑇 “ sin2
p
𝜋

𝜆𝑤
𝑏|𝑛e ´ 𝑛o|qsin2

p2𝛼q, (2.9)

where 𝑛e and 𝑛o are the extraordinary and ordinary refractive indices of the liquid crystal,

𝑏 is the plate spacing of the Hele-Shaw cell, and 𝛼 is the angle between the liquid crystal
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director and the transmission axis of the polarizer. By fixing 𝛼, Eq. 2.9 gives a spectral

transmission matrix, I𝜆w , for the visible range. We convert I𝜆w to human vision colors using

the CIE 1931 color matching functions (𝑟⃗, 𝑔⃗, and 𝑏⃗ describe the sensitivity of the human eye

to red, green and blue) and considering the spectrum measured in our experimental system:

»

—

—

—

–

𝑋⃗

𝑌⃗

𝑍⃗

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

𝐷⃗ d 𝑟⃗

𝐷⃗ d 𝑔⃗

𝐷⃗ d 𝑏⃗

fi

ffi

ffi

ffi

fl

I𝜆w , (2.10)

where 𝑋⃗, 𝑌⃗ , 𝑍⃗ are the human vision color coordinates. d is the Hadamard product. Eq. 2.10

is then transformed to RGB format used by digital devices employing the matrix of Adobe

RGB MRGB, following the method reported in [73]. The output is the Michel-Lévy color

chart shown in Fig. 2.5(b).

2.4 Single-shot quantitative polarization imaging of com-

plex birefringent structure dynamics

Polarized shearing interference microscopy (PSIM), developed by our collaborators in the

So Lab at MIT, is a single-shot quantitative polarization imaging method for extracting the

retardance and orientation angle of the laser beam transmitting through optically anisotropic

specimens with complex structures. We employ PSIM to quantify the dynamics of a flowing

lyotropic chromonic liquid crystal in a microfluidic channel at an imaging speed of 506 frames

per second (only limited by the camera frame rate), with a field-of-view of up to 350ˆ̂̂350𝜇m2

and a diffraction-limit spatial resolution of « 2m2.

2.4.1 Polarized shearing interference microscopy (PSIM)

A supercontinuum laser (Fianium SC-400) generates a broadband, spatially uniform illu-

mination beam that is coupled to a single-mode optical fiber, as shown in Fig. 2.6. The

beam is collimated and transmits through a bandpass filter centered at 633 nm with 10 nm

bandwidth. A linear polarizer (LP1) and a quarter wave plate (QWP1) are crossed at an
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Figure 1. System design of polarized shearing interference microscopy. LP1,
LP2, linear polarizers; M1, M2, mirrors; QWP1, QWP2, quarter wave plates;
TL, tube lens; L1, L2, lenses. The z-axis is the direction of the optical axis, and
the x-y plane is the sample plane. The zoomed region denotes the location of the
masks and polarizer sheets on the Fourier plane.

Figure 2.6: System design of polarized shearing interference microscopy. LP1, LP2,
linear polarizers; M1, M2, mirrors; QWP1, QWP2, quarter wave plates; TL, tube lens; L1,
L2, lenses. The 𝑧-axis is the direction of the optical axis, and the 𝑥𝑦-plane is the sample
plane. The zoomed region denotes the location of the masks and polarizer sheets on the
Fourier plane.

angle of 45˝ to generate a circularly polarized illumination. The scattered light is collected

by an objective (Olympus UPLFLN10X2, NA = 0.3, 10X) and collimated by a tube lens

(TL). The beam, which bears the polarization information of the sample, transmits through

another quarter wave plate (QWP2) and then is separated into multiple orders by a 100

line-pair per millimeter (LP) diffraction grating. The grating is positioned at the conjugated

plane of the sample plane. A 4f system is positioned after the diffraction grating to relay the

beams. On the Fourier plane, a mask is placed that lets only the +1st order and ´1st order

beams pass. Two polarizer sheets are placed on the mask: For the +1st order, the direction

of the polarization sheet is 45˝ to the slow axis of QWP2, for the ´1st order, the direction

of the polarization sheet is ´45˝ to the slow axis of QWP2. Another linear polarizer (LP2)
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with polarization direction 45˝ to both polarizer sheets is placed in front of the camera to

produce interference between the two orders. The interferogram is recorded by a CMOS

camera (Optronics CP80-4-M-500, full frame 2304ˆ 1720 pixels, pixel size 7ˆ 7𝜇m2), whose

maximum frame rate is 506 frames per second (fps). The imaging speed of PSIM is limited

only by the camera frame rate.

2.4.2 Derivation of the Polarization retrieval algorithm

We have developed a new algorithm based on digital holography to quantitatively retrieve the

2D polarization parameters of birefringent samples. In particular, we extract the retardance

map from the amplitude of the retrieved complex field, and the orientation angle from the

phase. The algorithm for retrieving the retardance and the orientation angle is derived with

Jones calculus. The Jones matrix of the sample is:

𝐽𝑠𝑎𝑚𝑝𝑙𝑒 “

¨

˝

cos𝜙 sin𝜙

´ sin𝜙 cos𝜙

˛

‚

¨

˝

𝑒𝑗𝜑𝑒 0

0 𝑒𝑗𝜑𝑜

˛

‚

¨

˝

cos𝜙 ´ sin𝜙

sin𝜙 cos𝜙

˛

‚

“

¨

˝

𝑒𝑖𝜑𝑒cos2𝜙 ` 𝑒𝑖𝜑𝑜sin2𝜙 ´
`

𝑒𝑖𝜑𝑒 ´ 𝑒𝑖𝜑𝑜
˘

sin𝜙 cos𝜙

´
`

𝑒𝑖𝜑𝑒 ´ 𝑒𝑖𝜑𝑜
˘

sin𝜙 cos𝜙 𝑒𝑖𝜑𝑒sin2𝜙 ` 𝑒𝑖𝜑𝑜cos2𝜙

˛

‚,

(2.11)

where 𝜑𝑒 is the phase delay in the extraordinary axis of the birefringent sample, 𝜑𝑜 is the

phase delay in the ordinary axis, and 𝜙 is the orientation angle. The retardance ∆ is the

difference between the phase delay in the extraordinary axis and that in the ordinary axis,

∆ “ 𝜑𝑒 ´ 𝜑𝑜. These parameters are mapped in real space, and the notations for Cartesian

coordinates (𝑥, 𝑦) are omitted for clarity. We utilize a linear polarizer (LP1) and a quarter

wave plate (QWP1) to generate a left-handed circular polarization illumination:

𝐸𝑖𝑛 “
1

?
2

¨

˝

1

𝑖

˛

‚. (2.12)
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After the beam is transmitted through the sample, the scattered light is collected by an

objective and passes through another quarter wave plate (QWP2). The output field is:

𝐸𝑜𝑢𝑡 “ 𝑒𝑖
𝜋
4

¨

˝

1 0

0 𝑖

˛

‚𝐽𝑠𝑎𝑚𝑝𝑙𝑒𝐸𝑖𝑛

“ 1?
2
𝑒𝑖

𝜋
4

¨

˝

𝑒𝑖𝜑𝑒 pcos2𝜙 ´ 𝑖 sin𝜙 cos𝜙q ` 𝑒𝑖𝜑𝑜
`

sin2𝜙 ` 𝑖 sin𝜙 cos𝜙
˘

𝑒𝑖𝜑𝑒
`

´sin2𝜙 ´ 𝑖 sin𝜙 cos𝜙
˘

` 𝑒𝑖𝜑𝑜 p´cos2𝜙 ` 𝑖 sin𝜙 cos𝜙q

˛

‚.

(2.13)

Subsequently, the light is separated by a diffraction grating. Only the `1 and ´1 orders of

the light pass through the Fourier plane. After a polarizer with orientation direction of 45˝

to the slow axis of QWP2, an output field is produced:

𝐸𝑜𝑢𝑡,45˝ “
1

2
𝑒𝑖

𝜋
4

`

𝑒𝑖𝜑𝑒 ´ 𝑒𝑖𝜑𝑜
˘

exp p´𝑖2𝜙q “ sin
∆

2
exp

„

𝑖

ˆ

𝜑𝑒 ` 𝜑𝑜

2
´ 2𝜙 `

3𝜋

4

˙ȷ

. (2.14)

Note that the retardance is only contained in the amplitude part and the orientation angle

is only contained in the phase part. However, the presence of an average phase delay 𝜑𝑒`𝜑𝑜

2

prevents the retrieval of the orientation angle. The output electric field for a linear polarizer

set to ´45˝ to the slow axis of QWP2 is expressed as:

𝐸𝑜𝑢𝑡,´45˝ “
1

2
𝑒𝑖

𝜋
4

`

𝑒𝑖𝜑𝑒 ` 𝑒𝑖𝜑𝑜
˘

“ cos
∆

2
exp

„

𝑖

ˆ

𝜑𝑒 ` 𝜑𝑜

2
`
𝜋

4

˙ȷ

. (2.15)

The orientation angle contained in the phase part disappears and only the average phase

delay remains. This offers a strategy to cancel out the average phase delay. Two perpendic-

ularly oriented polarizers are placed on the Fourier plane to generate these two output fields

simultaneously: one is in the `1st, the other is in the ´1st order:

𝐸`1 “ sin
∆

2
exp

„

𝑖

ˆ

𝜑𝑒 ` 𝜑𝑜

2
´ 2𝜙 `

3𝜋

4
`
𝑘𝑥

2

˙ȷ

, (2.16)

and

𝐸´1 “ cos
∆

2
exp

„

𝑖

ˆ

𝜑𝑒 ` 𝜑𝑜

2
`
𝜋

4
´
𝑘𝑥

2

˙ȷ

. (2.17)
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𝑘𝑥 denotes the spatial modulation caused by the separation of the diffraction grating. A

second polarizer (LP2) with orientation 45˝ to both polarizers on the Fourier plane is used

to produce interference, and an interferogram is recorded by a CMOS camera:

𝐼 “ xp𝐸`1 ` 𝐸´1q p𝐸`1 ` 𝐸´1q ˚y

“ |𝐸`1|
2

` |𝐸´1|
2

`
@

𝐸`1𝐸
˚
´1

D

`
@

𝐸´1𝐸
˚
`1

D

“ sin2Δ
2

` cos2Δ
2

` 2 sin Δ
2
cos Δ

2
cos

“`

𝜑𝑒`𝜑𝑜

2
´ 2𝜙 ` 3𝜋

4

˘

´
`

𝜑𝑒`𝜑𝑜

2
` 𝜋

4

˘

` 𝑘𝑥
‰

“ 1 ` sin∆ sin p2𝜙 ´ 𝑘𝑥q .

(2.18)

By recording the interferogram, 𝐼, the complex field from the 1st order signal, i.e., the

alternating current (AC) term, and the 0 order signal, i.e., the direct current (DC) term,

can be retrieved. Recovering the 0 and 1st order signals allows us to calculate the retardance

map and orientation angle distribution [74].

As a demonstration of this algorithm, we recover the polarization parameters of a crystal-

lized Orange II fiber from its interferogram, as shown in Fig. 2.7(a). The Orange II (Sigma-

Aldrich) aqueous solutions with weight concentration 𝑐 = 35.0 wt% are prepared in the

nematic phase. In the interferogram, fringes appear only in regions with high birefringence.

We perform a two-dimensional Fourier transform to the interferogram and show the loga-

rithm of the 2D spectrum in decibel (dB), as shown in Fig. 2.7(b), which reveals three orders

on the Fourier domain (´1st, 0, `1st order). By extracting the `1st order with a circular

linear filter and shifting it to the center of the Fourier plane, we can map the amplitude

𝐸 and the phase 𝜑 of the light field after an inverse Fourier transform. The 0 order gives

access to the amplitude of the DC term 𝐴 in the Fourier domain. The retardance ∆ can be

calculated as [74]

∆ “ sin´1

ˆ

2𝐸

𝐴

˙

, (2.19)

and the distribution of the orientation angle 𝜙 is calculated as [74]

𝜙 “
1

2
𝜑. (2.20)

The retardance ∆ and the orientation angle distribution 𝜙 are decoupled into the measured
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Figure 2. Demonstration of the polarization parameter retrieval algorithm. (a)
Interferogram of a crystal fiber sample. The zoomed region denotes the fiber region
with a high birefringence signal. (b) Logarithm map of the Fourier domain of (a),
reported in decibel (dB), where the 0th and +1st orders are labeled with yellow and
white circles, respectively. (c) Quantitative map of the retardance distribution. (d)
Quantitative map of the orientation angle distribution. The scale bar denotes 20 mm.

Figure 2.7: Demonstration of the polarization parameter retrieval algorithm. (a)
Interferogram of a crystal fiber sample. The zoomed region denotes the fiber region with a
high birefringence signal. (b) Logarithm map of the Fourier domain of (a), reported in decibel
(dB), where the 0 and `1st orders are labeled with yellow and white circles, respectively. (c)
Quantitative map of the retardance distribution. (d) Quantitative map of the orientation
angle distribution. The scale bar denotes 20 𝜇m.

amplitude 𝐸 and the measured phase 𝜑, respectively, as shown in Fig. 2.7(c) and (d). Details

of the derivations of Eq. 2.19 and Eq. 2.20 can be found in [74].
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Chapter 3

Growth morphology and symmetry

selection of interfacial instabilities in

anisotropic environments

This chapter is based on Ref. [63].

Pattern growth is ubiquitous in nature and leads to the formation of complex struc-

tures [1, 75, 76]. Many interfacial patterns can be grouped into two ‘essential shapes’ or

morphologies: isotropic dense-branching growth and anisotropic dendritic growth. Dense-

branching growth arises from repeated tip-splitting of the structures and leads to a ramified

pattern with many branches [2, 3], controlled by the gradient-driven transport of mass, heat

or charge to the interface. In contrast, anisotropic dendritic growth is characterized by pro-

trusions that are stable towards tip-splitting and leads to more regular patterns with global

symmetries [4–9]. Here, we show that dendritic patterns – with tunable symmetry – can

arise when the growth occurs in anisotropic environments.

The phenomenon of viscous fingering has played an important role in elucidating the

basic principles of these two types of growth [12–15], as well as methods to control the

resulting patterns [77–88]. Viscous fingers result from the Saffman-Taylor instability, when

one fluid is displaced by another less viscous one in the quasi-two dimensional geometry of a
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Hele-Shaw cell [16, 17]. It has been shown that dendritic growth requires anisotropy in the

interfacial dynamics [5, 18–20]. In its absence, dense branching is instead the generic mode of

growth [13]. Anisotropy fixes the tip of an advancing interface into a stable parabolic shape

that prevents it from splitting [5, 21, 89, 90] and introduces global symmetries along preferred

growth directions, which are also seen in discrete models of diffusion-limited aggregation

on crystal lattices [91–93]. Experimentally, anisotropy can be introduced either externally

in the growth environment or internally in one of the fluids. External anisotropy can be

imposed by engraving ordered channels on one of the plates of a Hele-Shaw cell, by using

channels confined with elastic membranes or by placing air bubbles at the tips of growing

fingers [18, 21–26]. Internal anisotropy can be induced by replacing one of the fluids with a

liquid crystal in the nematic phase [27].

Previous studies have considered a particular limit of the viscous-fingering instability;

the limit where the viscosity ratio between the less-viscous inner fluid and the more-viscous

outer fluid, 𝜂in/𝜂out, is very low, which is typically the case when air or water displace a

viscous liquid. The patterns are then characterized by one single growing length scale, the

finger length. Under these conditions, experiments using a Hele-Shaw cell with engraved

ordered channels have identified the degree of anisotropy, defined as the ratio between the

channel height ℎ and the plate spacing 𝑏, ℎ/𝑏, as a control parameter for the morphology

transition from dense-branching to dendritic growth [18]; dendritic structures form beyond

a critical value of ℎ/𝑏. When the two fluids are miscible, the degree of anisotropy is the

only control parameter for the morphology transition. In the case of two immiscible fluids,

the capillary number sets the critical ℎ/𝑏 for the transition [19, 94]. For miscible fluids and

for immiscible fluids at high capillary number, the dendrites directly reflect the underlying

symmetry of the lattice; four-fold symmetric dendrites grow in a four-fold symmetric lattice,

six-fold symmetric dendrites grow in a six-fold symmetric lattice [8]. Dendrites grow in the

direction of the channels, which are the regions of largest effective plate spacing within which

the flow velocity is highest [18, 19].

We here reveal how a previously unexplored control parameter, the ratio of the viscosi-

ties of the inner and the outer fluid, 𝜂in/𝜂out, modifies both the morphology transition and,

remarkably, the symmetry of the dendritic structures in miscible fluids in anisotropic envi-
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ronments. Recent studies in isotropic environments have identified the viscosity ratio as an

important control parameter that governs not only the onset of the instability [29, 95–98],

but also the global features of the patterns introducing a second length scale, the radius

of a central region of complete outer-fluid displacement that grows concomitantly with the

fingers [29, 99–101]. This central region becomes increasingly larger, and therefore the rela-

tive length of the fingers increasingly smaller, as the viscosity ratio between the two fluids

increases. Here we show that a morphology transition from dense-branching to dendritic

growth can occur over a large range of viscosity ratios. We engrave channels creating a six-

fold symmetric lattice on one of the plates and show that the critical degree of anisotropy,

ℎ/𝑏, required for the transition to dendritic growth depends on the viscosity ratio between

the two liquids. Remarkably, the dendrites can adopt a rich variety of emergent structures:

they exhibit six-fold symmetric growth far from the morphology boundary and systemat-

ically transition towards twelve-fold symmetric structures as the boundary is approached.

Our study reveals novel ways to tune both the morphology transition and the symmetry

of dendritic patterns by either controlling the viscosity ratio between the two fluids or the

geometric features of the growth environment.

3.1 Methods

3.1.1 Experimental methods

Our experiments are performed in a radial Hele-Shaw cell consisting of two 19 mm thick

circular glass plates of diameter 280 mm. Six-fold symmetric lattices of diameter 145 mm

are engraved on acrylic plates with a laser cutter (Universal Laser Systems) and placed on

the bottom glass plate of the Hele-Shaw cell. The width of the lattice channels 𝑤 and the

distance between the edges of two channels 𝑑 are fixed to 𝑤 = 800 𝜇m and 𝑑 = 850 𝜇m

(Fig. 3.1a). Four channel depths ℎ of 10 𝜇m, 28 𝜇m, 50 𝜇m, and 250 𝜇m are used. The plate

spacing between the engraved acrylic plate and the top glass plate, 𝑏, is maintained by six

spacers around the perimeter and varies from 125 𝜇m to 1350 𝜇m. The ratio between the

height of the channel and the plate spacing, ℎ/𝑏, defines the degree of anisotropy.
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The miscible fluids used in our study are glycerol (PTI Process Chemicals) and wa-

ter (VWR). We tune the viscosity of the inner fluid by mixing glycerol and water in different

proportions and we use pure glycerol as the outer fluid. The composition of the water-

glycerol mixtures used in the experiments, and the values of the viscosity ratios 𝜂in/𝜂out,

the viscosities of the inner fluids 𝜂in and the viscosities of the outer fluids 𝜂out are shown in

Table 3.1. The flow rate 𝑞, the channel depth ℎ, the plate spacing 𝑏 and the viscosity ratio

𝜂in/𝜂out for each experiment are reported in Table 3.2.

Table 3.1: Composition and viscosities of the water-glycerol mixtures

𝑐glycerol (wt%) 𝜂in/𝜂out 𝜂in (Pa s) 𝜂out (Pa s)
0 0.0011 0.0013 1.176

12.3 0.0013 0.0015 1.176
39.1 0.0025 0.0029 1.176
52.9 0.005 0.0059 1.176
59.6 0.0075 0.0088 1.176
63.4 0.0125 0.0147 1.176
72.4 0.0234 0.0275 1.176
76.6 0.03 0.0351 1.176
79 0.04 0.0468 1.176

81.3 0.05 0.0592 1.176
84.4 0.068 0.08 1.176
86.8 0.1 0.118 1.176
89.9 0.157 0.185 1.176

The fluids are injected through a 2 mm diameter hole in the center of one of the plates

at a precise volumetric flow rate set by a syringe pump (Harvard PHD 2000). We use flow

rates of 1 ml/min and 10 ml/min, which allows us to probe an order of magnitude difference

in flow rate while staying in the high Péclet number regime (Pe = 𝑈𝑏{𝐷12, where 𝑈 is the

fingertip velocity and 𝐷12 is the inter-diffusion coefficient [81]), here ranging between 2100

– 45240. Within this regime, the inter-diffusion of the fluids is negligible so that the fluids

remain separated by a well-defined interface [81]. The patterns are recorded with either a

Point Grey camera (Grasshopper 3 GS3-U3-91S6M) at frame rates up to 9 fps or a LUMIX

GH5 camera at frame rates up to 60 fps.
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Table 3.2: Flow rates, channel depths, plate spacings, and viscosity ratios used in the
experiments

q = 1 ml/min q = 10 ml/min
h (𝜇m) 𝜂in/𝜂out b (𝜇m) b (𝜇m) b (𝜇m) b (𝜇m) b (𝜇m) b (𝜇m) b (𝜇m) b (𝜇m)

10 0.0013 254
28 0.0013 762 508 254 203 127 762

0.0025 762
0.03 762 508 254 127
0.005 508
0.068 762 508

50 0.0011 508 254
0.0013 1000 762 508 127 100 55 762 508
0.0025 1000 508 254
0.005 1000 508 254
0.0075 508 254
0.0125 1000 508 254 762
0.0234 1000 762 508 203
0.03 254
0.05 1000 762 508 254 203
0.068 1350 375 254 508

250 0.0013 1000 762 508 254 127 508
0.0025 508 254
0.005 762 508 254
0.0075 762
0.0125 762 508 254 508
0.0234 762 508 203 508
0.03 508 254
0.04 508 762 508
0.05 508 508 254 508
0.068 508 508
0.1 508 762

0.157 508

3.1.2 Numerical simulations

We complement the experiments with two-dimensional (2D) high-resolution numerical sim-

ulations using the finite element software COMSOL Multiphysics (v5.4), which allows us to

access the pressure distribution in the fluids. Our model replicates the geometry of the Hele-

Shaw cell in terms of the cell diameter and the six-fold symmetric lattice dimensions. The

lowest viscosity ratio we can access in our simulations (𝜂in{𝜂out “ 0.006) is slightly higher

than that probed in experiments (𝜂in{𝜂out “ 0.0011), as for very low 𝜂in{𝜂out the fingertip

velocity becomes too fast compared to the mean flow velocity, which results in numerically
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unstable solutions. This is a known issue for a number of numerical approaches [102], but one

that could be overcome by designing numerical schemes suited for low viscosity ratios [103].

It, however, does not prevent us from accessing the full range of patterns observed in the

experiments.

We employ the finite element method to solve the partial differential equations. We cou-

ple the convection-diffusion mass-transport equation from the Transport of Diluted Species

Module with the continuity equation for the single-phase, incompressible flow velocity from

the Darcy’s Law Module. The governing equations are:

B𝑐

B𝑡
` ∇ ¨ p´𝐷∇𝑐 ` 𝑐uq “ 0 (3.1)

u “ ´
𝑘

𝜂
∇𝑝 (3.2)

∇ ¨ u “ 0 (3.3)

where 𝑐 is the concentration of the inner fluid and 𝐷 the molecular diffusion coefficient. The

latter is chosen as 𝐷 “ 10´14 m2/s given the high Péclet numbers of the experiments. We

note that the pattern morphology remains independent of 𝐷 for 𝐷 ă 10´8 m2/s, confirming

that our simulations are in the high Péclet number regime (see Appendix 3.A.1 for further

details). ∇ is the in-plane gradient operator, u is the Darcy velocity set by the pressure

gradient ∇𝑝, and 𝑘 and 𝜂 are the permeability and viscosity of the fluids, respectively.

The flow in a Hele-Shaw cell can be approximated as quasi-2D as the plate spacing, 𝑏,

is much smaller than the radial dimension. The gap-averaged velocity of the fluids is then

u “ ´
𝑏2𝑖
12𝜂

∇𝑝 with 𝑘 “ 𝑏𝑖
2
{12, where 𝑏𝑖 describes the gap thickness at any point of the

textured surface. The spatial variability in the plate spacing is incorporated in the numerical

model by defining a binary spatial distribution of permeability [L2], consisting of a perme-

ability value for the obstacles (assigned to the triangles forming the lattice cells), denoted as

𝑘1, and a permeability value for the channels (assigned to the background domain), denoted

as 𝑘2. The ratio between the two permeabilities, 𝑘2/𝑘1, is p1 ` ℎ{𝑏q2. We use an exponential
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mixing rule for the mixture viscosity 𝜂 and 𝜂 “ 𝜂out𝑒
´𝑀𝑐, where 𝜂out is the viscosity of

the outer fluid and 𝜂in{𝜂out “ 𝑒´𝑀 . For miscible fluids, both the pressure and the nor-

mal velocity are continuous at the interface. We define a small circular inlet region around

the cell center which provides a smooth boundary, to avoid a point-source injection that

could lead to a singularity in the domain. A normal inflow velocity for flow and a Dirichlet

boundary condition (𝑐 = 1) for transport are applied at the perimeter of the circular inlet

region, and atmospheric pressure (open-flow) condition for flow and an outflow condition

(n ¨𝐷∇𝑐 “ 0) for transport are imposed on the outer cell boundary. The initial conditions

in the entire domain are 𝑐 = 0 and 𝑝 = 0. The absolute values of the injection velocity and

the permeability within the computational domain differ from those in experiments. This

does not affect the resulting patterns, as only the ratio of the permeabilities („ ℎ{𝑏) governs

the pattern morphology.

We solve for pressure and concentration fields in a fully coupled approach using the

Parallel Direct Sparse Solver Interface (PARDISO) and Newton’s method with dynamic

damping for highly nonlinear systems. The implicit Generalized-𝛼 Method is used for the

time stepping scheme [104, 105]. We use the default discretization settings that govern the

order of discretization in the shape functions for the dependent variables of each module:

first-order discretization for the convection-diffusion equation and second-order discretization

for Darcy’s law, as these settings work efficiently and robustly. The optimal mesh resolution is

found with these discretization orders. The annular mesh area used is 0.00606 m2 discretized

by 222,162 triangular elements. We have confirmed the numerical validity and convergence

of our simulations (see Appendix 3.A.2). The discretization by a triangular mesh provides a

source of perturbation sufficient for the instability to occur; the apparent slight asymmetry of

the computed patterns is mesh driven due to the spatial non-uniformity of the perturbation

and the triangularization of the domain.
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3.2 Results

3.2.1 Morphology transitions in an anisotropic Hele-Shaw cell

We investigate the growth of patterns in anisotropic environments by engraving channels

creating a six-fold symmetric lattice on one of the Hele-Shaw plates, as shown in Fig. 3.1a.

We use pairs of miscible fluids with different ratios of viscosities between the less-viscous

inner fluid and the more-viscous outer fluid, 𝜂in/𝜂out. The use of miscible fluids allows us to

investigate the role of viscosity ratio without concurrently varying the capillary number.

In agreement with previous studies at very low viscosity ratios and high capillary numbers,

we find that the morphology transition from dense-branching growth to dendritic growth
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0.001 0.01 0.1
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Figure 3.1: (a) Schematic of the modified Hele-Shaw cell. Top image: top view of the bottom
plate of the Hele-Shaw cell with an engraved six-fold symmetric lattice, with width of the
lattice channels 𝑤 and distance between the edges of two channels 𝑑. Bottom image: side
view of the modified Hele-Shaw cell, denoting the plate spacing 𝑏 and the channel height ℎ.
(b) Examples of dendritic growth (top, for ℎ/𝑏 = 0.5, ℎ = 50 𝜇m, 𝑏 = 100 𝜇m) and dense-
branching growth (bottom, for ℎ/𝑏 = 0.04, ℎ = 10 𝜇m, 𝑏 = 254 𝜇m) at low viscosity ratio
𝜂in/𝜂out = 0.0013. The scale bar is 1 cm. (c) Morphology diagram controlled by the viscosity
ratio 𝜂in/𝜂out and the degree of anisotropy ℎ/𝑏. Blue symbols denote dense-branching growth,
black symbols denote dendritic growth. Experiments are performed with engraved plates
with different channel heights ℎ and plate spacings 𝑏 and at different volumetric flow rates 𝑞.
(▽) ℎ = 10 𝜇m, 𝑞 = 1ml/min; (ˆ̂̂) ℎ = 28 𝜇m, 𝑞 = 1ml/min; (˝̋̋) ℎ = 28 𝜇m, 𝑞 = 10 ml/min;
(˛) ℎ = 50 𝜇m, 𝑞 = 1 ml/min; (△△△) ℎ = 50 𝜇m, 𝑞 = 10 ml/min; (˝) ℎ = 250 𝜇m, 𝑞 = 1ml/min;
(+) ℎ = 250 𝜇m, 𝑞 = 10 ml/min. The value of 𝑏 for each experiment is listed in Table 3.2.
The solid line denotes a fit to (ℎ/𝑏 ´ (ℎ/𝑏)˚) / (𝜂in/𝜂out) = 𝐴 (𝐴 = 3 and (ℎ/𝑏)˚ = 0.04 are
best-fit parameters).
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occurs above a value of ℎ/𝑏 « 0.05 [18, 94] for our lowest 𝜂in/𝜂out. Below this value, fingers

grow by repeated tip-splitting which results in dense-branching growth, above this value, the

fingertip is stabilized which results in dendritic growth, as shown in Fig. 3.1b. Remarkably

though, this critical ℎ/𝑏 depends strongly on the viscosity ratio: as 𝜂in/𝜂out increases, a larger

ℎ/𝑏 is needed to transition from dense-branching growth to dendritic growth, as shown in

Fig. 3.1c. We find that neither the absolute values of the channel height ℎ and the plate

spacing 𝑏, nor the volumetric flow rate are control parameters for the morphology transition,

as shown by the different symbols in Fig. 3.1c, which denote experiments performed with

plates of various channel heights ℎ ranging from 10 𝜇m to 250 𝜇m, various plate spacings

𝑏 ranging from 125 𝜇m to 1350 𝜇m, and at two volumetric flow rates of 1 ml/min and

10 ml/min. For a given viscosity ratio, any combination of ℎ and 𝑏 yielding a certain value

of ℎ/𝑏 leads to the same growth morphology.

3.2.2 Dendritic growth adopts different symmetries

The viscosity ratio 𝜂in/𝜂out and the degree of anisotropy ℎ/𝑏 not only determine the mor-

phology boundary, but have a more dramatic effect on the pattern growth in the dendritic

regime. For a fixed ℎ/𝑏, an increase in the viscosity ratio 𝜂in/𝜂out leads to a systematic change

in the pattern symmetry. Remarkably, the imposed six-fold symmetry of the engraved plate

leads to six-fold symmetric growth only at the lowest viscosity ratio. At higher viscosity

ratios, the pattern instead transitions towards a twelve-fold symmetry; in addition to the six

main dendrites evolving along the straight channels, additional six sub dendrites emerge at

a 30˝ angle to the preferred growth direction, as shown in Fig. 3.2a. The length of the sub

dendrites becomes larger with increasing viscosity ratio and eventually comparable to that

of the main dendrites. A similar trend is recovered in the simulations, as shown in Fig. 3.2b.

A transition from six- towards twelve-fold symmetry also occurs for a fixed 𝜂in/𝜂out with

a decrease in ℎ/𝑏, as shown in Fig. 3.3 for 𝜂in/𝜂out = 0.0125 and a flow rate of 1 ml/min.

Previous studies in the limit of low viscosity ratios have seen hints towards the onset of these

additional sub dendrites [106–108]. Here we show their systematic growth and that they can

become comparable in size to the main dendrites within a certain range of viscosity ratio

and ℎ/𝑏.
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hin/hout = 0.0013 hin/hout = 0.0125 hin/hout = 0.05

hin/hout = 0.006 hin/hout = 0.018 hin/hout = 0.05

Figure 3.2: Systematic change from six- towards twelve-fold symmetric dendrites. (a) Den-
dritic patterns for different viscosity ratios obtained at ℎ/𝑏 = 0.49. As 𝜂in/𝜂out increases, the
additional generation of sub dendrites grows progressively larger. The scale bar is 1 cm. (b)
Snapshots of the simulations at ℎ/𝑏 = 0.49.

To quantify the change from six- towards twelve-fold symmetry, we define the length of

the main dendrites, 𝑅m, corresponding to the structures growing in the direction of the six

straight channels, and the length of the sub dendrites, 𝑅s, corresponding to the structures

growing at an angle of 30˝ with respect to the six straight channels, as shown in the inset

of Fig. 3.4b. The ratio 𝑅s/𝑅m exhibits a transient regime at early times and then remains

Figure 3.3: Dendritic patterns formed at 𝜂in/𝜂out = 0.0125 for (a) ℎ/𝑏 = 1 and (b) ℎ/𝑏 = 0.2.
The scale bar is 1 cm.
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Figure 3.4: (a) Temporal evolution of 𝑅s/𝑅m for 𝜂in/𝜂out = 0.0013, ℎ/𝑏 = 0.49 and
𝑞 = 1 ml/min (△△△), 𝜂in/𝜂out = 0.0125, ℎ/𝑏 = 0.49 and 𝑞 = 1 ml/min (˝), 𝜂in/𝜂out = 0.0125,
ℎ/𝑏 = 0.49 and 𝑞 = 10 ml/min (‚), 𝜂in/𝜂out = 0.05, ℎ/𝑏 = 0.49 and 𝑞 = 1 ml/min (˝̋̋)
in experiments, and for 𝜂in/𝜂out = 0.05, ℎ/𝑏 = 0.49 (ˆ) in simulations. 𝑡40mm is the time
when 𝑅m “ 40 mm. (b) 𝑅s/𝑅m versus 𝜂in/𝜂out for different ℎ/𝑏 and 𝑞. 𝑅s/𝑅m is mea-
sured when 𝑅m = 40 mm. The symbols are defined in the table. Open symbols denote
𝑞 = 1 ml/min, closed symbols denote 𝑞 = 10 ml/min. (c) Scaled master curve of 𝑅s/𝑅m

versus (𝜂in/𝜂out)/(ℎ/𝑏´ pℎ/𝑏)˚). The monotonic increase in 𝑅s/𝑅m denotes the change from
six-fold towards twelve-fold symmetric dendritic patterns. The symbols are the same as in
(b).

almost constant in time for fully developed patterns. Moreover, 𝑅s/𝑅m is independent of the

interfacial velocity for the range of flow rates investigated, as shown in Fig. 3.4a, where we

normalize the time by 𝑡40mm denoting the time when 𝑅m “ 40 mm. To compare the patterns

formed at different viscosity ratios, we measure 𝑅s/𝑅m when 𝑅m “ 40 mm, which is well

within the fully developed regime. For a fixed ℎ/𝑏, the ratio 𝑅s/𝑅m monotonically increases

with viscosity ratio. In addition, a decrease in ℎ/𝑏 leads to an increase in 𝑅s/𝑅m, as shown in

Fig. 3.4b. We can rescale all data by normalizing the viscosity ratio with (ℎ/𝑏 ´ (ℎ/𝑏)˚), as

shown in Fig. 3.4c. The factor (ℎ/𝑏)˚ will become evident in the discussion of the morphology

boundary. The numerical results are in good qualitative agreement with the experiments

and exhibit the same scaling with ℎ/𝑏, but yield slightly lower values of 𝑅s/𝑅m compared

to the experimental results. This is likely due to the 2D nature of the simulations (where

we average the flow in the third dimension across the gap and assume a parabolic velocity

profile in the gap direction [109–111]), which do not capture effects related to the partial
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displacement of the outer fluid or to the three-dimensional tongue-like structures that form

between miscible fluids in a Hele-Shaw cell [29, 112, 113]. Exploring further improvements

to the model, e.g., solving Stokes flow in the full 3D domain, and a deeper investigation into

quantitative comparisons with experiments are interesting topics for future work.

3.3 Discussion

The observation that both 𝜂in/𝜂out and ℎ/𝑏 allow one to systematically tune the symmetry of

the patterns reveals a novel aspect of dendritic growth. Remarkably, the change in symmetry

is also directly linked to the morphology transition to dense-branching growth: When 𝑅s/𝑅m

reaches „ 0.85, corresponding to patterns with twelve dendrites of almost equal size, a further

decrease in ℎ/𝑏 or a further increase in 𝜂in/𝜂out induces the transition to dense-branching

growth. The morphology transition can therefore be described by the same functional form

used to normalize the data in Fig. 3.4c; the morphology boundary denoted by a solid line in

Fig. 3.1c corresponds to
ℎ

𝑏
“ 𝐴

𝜂𝑖𝑛
𝜂𝑜𝑢𝑡

`

ˆ

ℎ

𝑏

˙˚

(3.4)

where 𝐴 = 3 and pℎ{𝑏q˚ = 0.04 are best-fit parameters determined by logistic regression.

pℎ{𝑏q˚ denotes the critical ℎ/𝑏 for the morphology transition in the limit of low viscosity

ratio.

Why do six-fold dendritic patterns only form far from the morphology boundary, and

what leads to the growth of an additional generation of dendrites as we approach the bound-

ary? The importance of the viscosity ratio and the degree of anisotropy for determining

𝑅s{𝑅m can be seen in a simplified analysis taking into account the effective permeability at

different locations corresponding to the growth of sub dendrites or main dendrites, as detailed

in the Appendix 3.A.3. Note that the effective permeability in our system is isotropic and

lacks a macroscopic preferred direction for single-phase flow. In general, the permeability

tensor must be symmetric (by Onsager reciprocity for Stokes flow) and positive definite (by

the Second Law of Thermodynamics) and thus represented by an orthogonal matrix [114],

so its eigenvectors, corresponding to the fastest and slowest directions, must be mutually

perpendicular [115]. This orthogonality is incompatible with triangular symmetry, thus
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the permeability eigenvalues in our textured Hele-Shaw cell must be degenerate, implying

isotropic single-phase flow.

For two-phase flow, however, the gradient of viscosity at the interface between the two

fluids can locally break the symmetry and induce an anisotropic effective permeability near

the interface. Using concepts derived for the hydrodynamics of slippage on textured surfaces

for two-phase flows over hydrophobic surfaces [116, 117], we consider that the more-viscous

outer fluid is partially trapped in the texture as the tip of the less-viscous fluid passes over the

texture in the middle of the channel along the “path of least resistance”. For small textures,

the trapped fluid leads to a local effective slip length tensor [118, 119], bslip, which causes

the effective permeability tensor to become anisotropic and orthogonal in the vicinity of the

interface [115], leading to the appearance of sub dendrites that impart this square symmetry

to the pattern. In the limit of “weak anisotropy” in the slip tensor, Trpbslipq ăă 𝑏, as is the

case for our experiments, we find that the interface velocities of the sub dendrites and the

main dendrites, and therefore 𝑅s{𝑅m, are indeed governed by 𝜂in/𝜂out and ℎ{𝑏.

To get further insight into the growth of the dendrites, we consider their macroscopic path

selection. The main dendrites 𝑅m grow along the six straight channels. The sub dendrites

𝑅s select a path at a 30˝ angle from these straight channels. At early stage, two fingers form

between each pair of neighboring main dendrites on each side of the 30˝ direction, due to

the anisotropy of the lattice. This is observed at any viscosity ratio, as shown in Fig. 3.5a.

Whether these fingers will merge towards each other and grow into a sub dendrite or merge

with the main dendrites resulting in a six-fold symmetric pattern depends on the pressure

distribution imposed both globally by the main dendrites and locally at the tip of the sub

dendrites. At low 𝜂in/𝜂out and high ℎ/𝑏, the rapid growth of the main dendrites sets up a

large pressure gradient at their tip which in turn induces a small pressure gradient in the

30˝ direction, as shown in Fig. 3.5a, which prevents the sub dendrites from growing. With

increasing 𝜂in/𝜂out and decreasing ℎ/𝑏, however, the sub dendrites themselves build locally a

high pressure gradient at their tips which amplifies their growth. We provide further details

on the growth of the sub dendrites in Appendix 3.A.4.

Once the sub dendrites have emerged, they continue to grow along the 30˝ direction

following a zig-zag path, as illustrated in Fig. 3.5b. As the tip of the sub dendrite reaches
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Figure 3.5: Formation and growth of sub dendrites. (a) Pressure field for patterns with
𝜂in/𝜂out = 0.006 (top) and 𝜂in/𝜂out = 0.05 (bottom) at two different times. The lines indicate
pressure contours. The pressure field ranges from atmospheric pressure (denoted by red
contours) to a maximum pressure around the inlet (denoted by blue contours), which is
different for each panel as it varies with time and viscosity ratio; the colors are guides to the
eye. (b) Schematic representation of the path followed by the main dendrites 𝑅m and the
sub dendrites 𝑅s. At a lattice junction (indicated by the red dot in the dotted circle), the
flow predominantly selects the direction along the red arrow, which leads to the growth of
the sub dendrites along the 30˝ direction, as observed in both experiment (top image) and
simulation (bottom image). (c) Zoomed schematics of the lattice junction. The combination
of the global pressure distribution from the main dendrites and the local pressure distribution
from the tip of the sub dendrites leads to flow into channel 1 along the direction of the red
arrow.

a lattice junction, indicated by a red dot, the path towards the 30˝ direction (red arrow)

is selected, rather than the straight path (blue arrow). This selection results from the

pressure profile induced in the outer fluid by the main dendrites, which effectively shields

the sub dendrites from growing towards the main dendrites and pushes them towards the

30˝ direction. Indeed, when the tip of a sub dendrite reaches the entrance of a lattice

junction, as schematically shown in the zoomed-in region in Fig. 3.5c, it does not grow

straight towards channel 2, but is deviated towards the 30˝ direction as a result of the

global pressure distribution built up by the neighboring main dendrites. The local pressure

distribution at the tip of the sub dendrite then induces a maximum pressure gradient towards
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channel 1, and most of the flow goes into channel 1. It is this combination of the global

pressure distribution from the main dendrites and the local pressure distribution from the

tip of the sub dendrites that leads to the rich pattern selection in dendritic growth.

These different paths selected by the main dendrites and sub dendrites also reveal the

origin of the maximum value of 𝑅s{𝑅m « 0.85. It reflects the condition where the velocity

of the main and sub dendrites becomes approximately equal. As the path selected by the

sub dendrites deviates from the radial direction at each junction, the total path is 2/
?
3

times longer than that of the main dendrites in the straight radial channels. The length of

the main dendrite, 𝑅m, is therefore p2{
?
3q𝑅s, i.e., 𝑅s{𝑅m «

?
3{2 “ 0.866. Interestingly,

our experiments show that once this condition is reached, a further increase in 𝜂in/𝜂out or

decrease in ℎ/𝑏 induces the morphology transition to dense-branching growth. This suggests

that the morphology transition occurs when the difference between the pressure gradient

in the straight channels and the 30˝ direction becomes negligible, and therefore the role of

anisotropy becomes negligible, such that the parabolic tips can no longer be stabilized allow-

ing for tip-splitting to occur. Reaching a full understanding of this morphology transition

can be topic of further research.

3.4 Conclusions

Our results reveal a rich morphology of patterns created by pairs of miscible fluids in

anisotropic systems. They demonstrate the important role of the viscosity ratio between

the two fluids, which, together with the degree of anisotropy, governs both the morphol-

ogy transition from dense-branching to dendritic growth and the selected symmetry of the

dendrites. Upon approaching the morphology boundary, the dendritic patterns systemati-

cally transition from six-fold towards twelve-fold symmetry in the parameter regime where

interfacial flow is governed by an effective slip tensor, whose orthogonality imparts square

symmetry to the original pattern.

This diversity of different dendritic patterns provides novel opportunities for tuning the

growth of complex structures, not only in viscous fingering, but perhaps also in other cases

of interfacial motion limited by gradient-driven transport processes, which lie in the same
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universality class [120]. In general, we expect that dendritic growth following the preferred

directions of an anisotropic environment will tend to acquire orthogonal symmetry for “weak

anisotropy”, whenever transport near the interface is governed by a local effective conduc-

tance tensor, which must be orthogonal like the effective slip tensor in a weakly textured

Hele-Shaw cell [115]. For example, in template-assisted directional solidification [121, 122],

a similar morphological transition may arise, controlled by the ratio of thermal diffusivities

(analogous to the ratio of inverse viscosities here), whenever the pattern is controlled by the

conduction of latent heat away from the interface in the liquid phase. Similarly, in template-

assisted electrodeposition [123–126], it may be possible to tune the symmetry of dendritic

patterns by varying the strength of diffusion anisotropy in the electrolyte domain. Active

control of anisotropic dendritic growth may also be achieved, for example, by applying elec-

tric fields to control viscous fingering [79, 80] over patterned, charged surfaces [127] having

anisotropic electro-osmotic slip tensors [128].

3.A Appendices

3.A.1 Negligible effects of diffusion in the numerical simulations

The numerical simulations are governed by the second-order advection-diffusion transport

equation, and in accordance with the experiments the simulations are performed in the high

Péclet number regime where advection dominates over diffusive effects. We confirm this by

varying the diffusion coefficient by several orders of magnitude and showing that the pattern

morphology is independent of the diffusion coefficient (or equivalently of a dimensionless

Péclet number) over eight orders of magnitude, as shown in Fig. 3.6. At low enough Péclet

number, diffusive effects dominate the pattern growth and stabilize the instability. All the

simulations reported in the main part of Chapter 3 are performed far from this low Péclet

number regime.

To provide a dimensionless point of reference, we define the Péclet number as Pe “

𝑈𝐿{𝐷, where 𝑈 is the characteristic velocity, 𝐿 is a characteristic length scale and 𝐷 is

the diffusion coefficient [129]. For a radial flow, Pe “ 𝑄{𝐷 has been used [97, 130] with 𝑄
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Figure 3.6: Simulated patterns (𝜂in{𝜂out = 0.05 and ℎ{𝑏 = 0.49) obtained for different diffu-
sion coefficients 𝐷. The dashed box denotes the conditions used in the main part of Chapter
3.

[m2/s] the gap-averaged flow rate, i.e. the volumetric flow rate per unit depth. As discussed

in [131], this implies that the characteristic velocity for radial source flows is 𝑈 “ 𝑄{𝐿,

where 𝐿 is the distance from the center of the cell. For a constant injection rate and a stable

displacement, 𝑈91{𝐿 and 𝑈𝐿 is equal to 𝑄 at any point. However, this equality and hence

the applicability of the expression Pe “ 𝑄{𝐷 holds only for a stable radial flow propagation.

When instabilities are present, the velocity does not vary as 1{𝐿 and 𝑈𝐿 at a finger tip can

be larger than 𝑄. Pe “ 𝑄{𝐷 therefore provides a lower bound for radial flows subject to

viscous fingering instabilities. Keeping this in mind, we now use this definition of Pe.

The injection velocity is set to 0.14 m/s and imposed on an inner circle (inlet hole) of

radius 1.4 mm. This gives a depth-averaged 𝑄 „ 0.0002 m2/s, comparable to the depth-

averaged 𝑄 used in the experiments ranging from 0.00012 to 0.0033 m2/s. We have confirmed

that 𝑈𝐿 at any point beyond the injection source and sufficiently behind the unstable inter-

face maintains this value, but it increases at a finger tip. Given a certain diffusion coefficient

and 𝑄, we can estimate a lower bound for the Péclet number. For instance, a Péclet num-

ber „ 𝑂p1q required to suppress the instability [130] in an isotropic system would imply a

diffusion coefficient „ 10´4 m2/s, in good agreement with our value of „ 10´5 m2/s for an

anisotropic system reported in Fig. 3.6. Exploring the stabilizing effect of diffusion on the

transition between dendritic and dense-branching growth in anisotropic media is an exciting
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line of future research.

3.A.2 Convergence of the numerical simulations

We have paid careful attention to the robustness and validity of the numerical modeling

and have confirmed the numerical convergence, as demonstrated in Fig. 3.7. An optimal

numerical mesh is chosen such that the fine features of the domain are well discretized, the

simulations are computationally feasible, and a good degree of convergence is achieved in

the flow dynamics and the pattern morphology. The optimal mesh that meets these criteria

consists of 222,162 triangular elements that discretize an annular mesh area encompassing

arrays of triangular objects. The average mesh element quality is above 0.9 with respect

to various mesh quality measures including skewness, maximum angle, and growth rate of

elements. The mesh element quality is a dimensionless quantity between 0 and 1, where

1 represents a perfectly regular element and 0 represents a degenerated element. A larger

than 0.9 mesh quality represents a geometrically well-behaved and high-quality mesh that

facilitates numerical convergence.

146118 50574222162No. of Elements: 349604 59206

Figure 3.7: Simulated patterns (𝜂in/𝜂out = 0.05, ℎ/𝑏 = 0.49) for different mesh resolutions.
The mesh used for the results reported in the main part of Chapter 3 is denoted by the
dashed box.
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3.A.3 Simplified model to account for the effect of the degree of

anisotropy and the viscosity ratio on the pattern growth

Our experiments and simulations reveal that the degree of anisotropy ℎ/𝑏 and the viscosity

ratio 𝜂in/𝜂out govern the growth of the sub and main dendrites in an anisotropic environment.

We simplify our topology by considering flow in two directions with respect to the direction

of parallel engraved channels, to capture the role of ℎ/𝑏 and 𝜂in/𝜂out in governing the pattern

growth: (a) the pressure gradient ∇𝑝 is parallel to the channels, corresponding to the growth

of the main dendrites and (b) the pressure gradient ∇𝑝 is perpendicular to the channels,

representing the growth of the sub dendrites, as shown in Figs. 3.8a and b. We note that

such a texture, as well as that of our more complex six-fold symmetric lattice, is isotropic

for a single-phase flow. For a two-phase flow, however, the presence of the interface leading

to a gradient of viscosity in the flow direction can locally break the symmetry and lead to

an anisotropic two-phase permeability of the interface region. To account for this, we use

concepts derived for the hydrodynamics of slippage on textured surfaces for two-phase flows

over hydrophobic surfaces [116, 117].

h
b

bslip


c

a                                             b

p p

Figure 3.8: Schematic of the simplified channel texture. (a) The main dendrites grow along
channels parallel to the flow direction. (b) The sub dendrites grow along channels perpen-
dicular to the flow direction. (c) The effective slip length 𝑏slip at the interface between the
two fluids modifies the local permeability as the inner fluid flows above the channels. The
light blue region represents the less-viscous inner fluid, the white region represents the more-
viscous outer fluid within the channel.
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In analogy to these concepts, and to account for the local asymmetry, we consider that

the more-viscous outer fluid can get partially trapped in the channels as the less-viscous

fluid flows above the texture following the path of least resistance, as schematically shown in

Fig. 3.8c. This conceptualization allows us to introduce a local effective slip length to model

the interface region [116, 118, 119, 132, 133].

We denote the height of the layer of trapped outer fluid as 𝛿 “ 𝛼ℎ, where 𝛼 denotes a

direction-dependent coefficient. The local effective slip length felt by the inner fluid over a

valley of height ℎ, measured from the no-slip boundary at the surface of the channel-free

region (dashed line in Fig. 3.8c), scales as

𝑏slip “ ℎ ´ 𝛿

ˆ

1 ´
𝜂in
𝜂out

˙

“ ℎ ´ 𝛼ℎ

ˆ

1 ´
𝜂in
𝜂out

˙

(3.5)

The enhancement of permeability due to 𝑏slip scales as

𝑏slip
𝑏

“
ℎ

𝑏
´
ℎ

𝑏
𝛼

ˆ

1 ´
𝜂in
𝜂out

˙

. (3.6)

For single-phase flow, where 𝜂in/𝜂out = 1, 𝑏slip = ℎ and the permeability above the channel is

proportional to ℎ ` 𝑏. For two-phase flow, however, 𝑏slip decreases with decreasing viscosity

ratio leading to a smaller enhancement of the permeability. The decrease of 𝑏slip depends on

the direction of the channels with respect to the flow, leading to a local symmetry breaking

and the rich anisotropic pattern selection.

When Trpbslipq{𝑏 " 1, the effect of the channels dominates and an analysis in terms of an

effective slip tensor is not applicable. The case of interest here is when Trpbslipq{𝑏 ! 1, where

the texture can be analyzed locally in terms of an effective slip tensor. This effective slip

tensor is positive definite and 90˝ symmetric between the fast and slow directions [115, 132],

bslip “ S𝜃

¨

˝

𝑏slip,‖ 0

0 𝑏slip,K

˛

‚S´𝜃 (3.7)

where S𝜃 “

¨

˝

cos 𝜃 sin 𝜃

´ sin 𝜃 cos 𝜃

˛

‚ and 𝜃 is the angle between the pressure gradient and the
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texture. 𝑏slip,‖, 𝑏slip,K are two eigenvalues of bslip. The subscripts ‖,K denote the fast direction

and the slow direction, respectively. Note that here, the fast direction of the effective slip

tensor corresponds to the direction of the main dendrites, the slow direction corresponds to

the direction of the sub dendrites. The two corresponding eigenvectors have a 90˝ symmetry

[115], corresponding to the formation of, respectively, the main dendrites at 0˝, 60˝, 120˝

and the sub dendrites at 30˝, 90˝, 150˝.

From Eq. (3.5), we have

𝑏slip,‖ “ ℎ

ˆ

1 ´ 𝛼‖ ` 𝛼‖
𝜂in
𝜂out

˙

(3.8)

and

𝑏slip,K “ ℎ

ˆ

1 ´ 𝛼K ` 𝛼K

𝜂in
𝜂out

˙

(3.9)

where 𝛼‖,K denotes the coefficient for the fast and slow direction, respectively, related to the

effective slip tensor. As 𝑏𝑠𝑙𝑖𝑝,‖ ą 𝑏𝑠𝑙𝑖𝑝,K, we have 𝛼K ą 𝛼‖.

The dimensionless effective permeability tensor, scaled to its value without slip, is ex-

pressed as

K “ I ` 3Ap (3.10)

where Ap is a dimensionless matrix describing a slip-driven plug flow in the Ap∇𝑝 direction

[115]. We have

Ap “ S𝜃

¨

˝

𝐴𝑠

`

𝑏‖
˘

0

0 𝐴𝑠 p𝑏Kq

˛

‚S´𝜃 (3.11)

where 𝐴𝑠

`

𝑏K,‖
˘

“
𝑏K,‖

𝑏`𝑏K,‖
. For 𝜃 “ 0˝, this gives

K “

¨

˝

𝐾𝑥𝑥 𝐾𝑥𝑦

𝐾𝑦𝑥 𝐾𝑦𝑦

˛

‚“

¨

˚

˚

˝

1 ` 3
𝑏

𝑏slip,‖
`1

0

0 1 ` 3
𝑏

𝑏slip,K

`1

˛

‹

‹

‚

(3.12)
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Substituting Eq. (3.8) and Eq. (3.9) into Eq. (3.12) yields

K “

¨

˚

˚

˝

1 ` 3
𝑏

ℎp1´𝛼‖`𝛼‖
𝜂in
𝜂out q

`1
0

0 1 ` 3
𝑏

ℎp1´𝛼K`𝛼K
𝜂in
𝜂out q

`1

˛

‹

‹

‚

(3.13)

For our case where 𝑏slip{𝑏 ! 1, the effective permeability tensor can be expressed as

𝜅 «
𝑏2

12𝜂in

¨

˚

˝

1 `
3ℎ

´

1´𝛼‖`𝛼‖
𝜂in
𝜂out

¯

𝑏
0

0 1 `
3ℎ

´

1´𝛼K`𝛼K
𝜂in
𝜂out

¯

𝑏

˛

‹

‚

(3.14)

For the simplified topology in Fig. 3.8, the main dendrites form along the fast direction of

the effective permeability and the sub dendrites form along the slow direction of the effective

permeability:

𝜅m “
𝑏2

12𝜂in
𝐾𝑥𝑥 «

𝑏2

12𝜂in

ˆ

1 `
3ℎ

𝑏

ˆ

1 ´ 𝛼‖ ` 𝛼‖
𝜂in
𝜂out

˙˙

(3.15)

𝜅s “
𝑏2

12𝜂in
𝐾𝑦𝑦 «

𝑏2

12𝜂in

ˆ

1 `
3ℎ

𝑏

ˆ

1 ´ 𝛼K ` 𝛼K

𝜂in
𝜂out

˙˙

(3.16)

This shows that as 𝜂in{𝜂out increases, the effective permeabilities in the main and sub chan-

nels, 𝜅m and 𝜅s, increase. Accordingly, the interface velocities in the main and sub channels,

um “ ´𝜅m∇𝑝 and us “ ´𝜅s∇𝑝, increase. Let us now discuss the role of the viscosity ratio

𝜂in/𝜂out for the increase in permeability for both the main dendrites and the sub dendrites.

The ratio of the derivatives of the permeability for sub dendrites and main dendrites is

B𝜅s{B p𝜂in{𝜂outq

B𝜅m{B p𝜂in{𝜂outq
„
𝛼K

𝛼‖
ą 1 (3.17)

Therefore, for increasing viscosity ratio, the increase in permeability along the sub dendrites

(slow direction) is larger than the increase in permeability along the main dendrites (fast

direction).

The ratio of the interface velocities between the sub dendrites and the main dendrites
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scales as

𝑢s
𝑢m

»
𝜅s
𝜅m

» 1 ´

3
´

1 ´
𝜂in
𝜂out

¯

`

𝛼K ´ 𝛼‖
˘

𝑏
ℎ

` 3
´

1 ´ 𝛼‖

´

1 ´
𝜂in
𝜂out

¯¯ (3.18)

where 𝛼K ´ 𝛼‖ ě 0.

This analysis shows that for the case of 𝑏slip{𝑏 ! 1, 𝑢s/𝑢m increases with an increase in

the viscosity ratio 𝜂in/𝜂out or a decrease in the degree of anisotropy ℎ/𝑏. When the viscosity

ratio 𝜂in/𝜂out approaches 1, 𝑢s/𝑢m will be close to 1. When ℎ/𝑏 approaches zero, 𝑢s/𝑢m

approaches 1. Clearly, this description is oversimplified but it does capture the essential

features of how the viscosity ratio 𝜂in/𝜂out and the degree of anisotropy ℎ/𝑏 affect the interface

velocities of the main and sub dendrites, and therefore the growth of 𝑅m and 𝑅s.

3.A.4 Growth of sub dendrites

At early stage, two fingers grow between pairs of neighboring main dendrites on each side

of the 30˝ direction to the straight channels, as shown in Fig. 3.9a. This is observed at

any viscosity ratio. At low viscosity ratio and large ℎ{𝑏, these fingers soon merge with the

main dendrites, which results in a six-fold symmetric pattern. With increasing 𝜂in/𝜂out and

decreasing ℎ{𝑏, each of the two fingers will further split into two as they reach the next lattice

a b c

Figure 3.9: Formation and growth of sub dendrites. (a) At early stage, two fingers emerge
between the neighboring main dendrites (white contour). They further split as they reach
the center of a next lattice (blue contour). (b) One of the fingers outgrows the other one
and becomes a sub dendrite (in this example, the one below the red 30˝ line). The colored
contours represent the interface position at different times. (c) The sub dendrite further
grows along the zig-zag path illustrated by the solid yellow arrows. A smaller amount of
flow also goes towards the dashed yellow arrows, leading to the formation of side branches.
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Figure 3.10: Path selection towards 30˝ direction governed by pressure profile. (a) As the
tip of a sub dendrite reaches a junction that is not on the 30˝ line, indicated by a green
dot, the pressure profile in the outer fluid imposed by the two neighboring main dendrites
pushes the tip towards the 30˝ line through channel 1, as shown in the left inset of (b). As
the tip reaches a junction on the 30˝ line, indicated by a cyan dot, through channel 4, it
grows towards channel 2 because the local pressure gradient is highest in that direction, as
shown in the middle inset of (b). The sub dendrite continues to grow on the same side of the
30˝ line where it first developed. The pink arrows denote the path of a sub dendrite formed
above the 30˝ line, the yellow arrows denote the path of a sub dendrite formed below the 30˝

line. The solid arrows indicate the main direction of the flow, but a small amount of flow
goes towards the dashed arrows and leads to the side-branch decoration of the dendrites.

junction. One branch advances parallel to the main dendrite and eventually merges with it.

The other branch diverts towards the 30˝ direction and will merge with its counterpart on

the other side of the 30˝ direction into a sub dendrite, as shown in Fig. 3.9b. Depending on

which finger grew slightly faster, the sub dendrite will grow in a zig-zag path along the 30˝

direction either right below or above this direction, as illustrated by the arrows in Fig. 3.9c

and Fig. 3.9a. The absence of interfacial tension implies that the flow is unaffected by pinning

effects on corners that become important in immiscible fluids [107, 108]. As a result, when

the tip of a sub dendrite reaches an entrance of a junction, as shown in the schematics of the

zoomed-in region in Fig. 3.10, its path is governed by the combination of the global pressure

distribution from the main dendrites and the local pressure distribution from the tip of the

sub dendrites.

When the tip of a sub dendrite reaches a junction that is not on the 30˝ line, indicated
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by a green dot in Fig. 3.10a, the pressure profile in the outer fluid imposed by the main

dendrites pushes the tip predominantly towards the 30˝ line through channel 1. When the

tip of a sub dendrite reaches a junction on the 30˝ line through channel 4, indicated by a

cyan dot in Fig. 3.10a, it grows towards channel 2 as the local pressure field at the tip is

biased towards its initial side of the 30˝ line, where it first started to grow. Note that in

Fig. 3.10a, we differentiate between these two sides by the pink and yellow arrows; the sub

dendrite follows either the yellow or the pink zig-zag path depending on the side it first

appeared.

We note that a small amount of fluid also goes towards the direction that is not selected

by the sub dendrite tip (channel 1 from the cyan dot for an incoming liquid through the

horizontal channel 4, for example). This flow leads to the side-branch decoration along the

sub dendrites.
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Chapter 4

Dendritic patterns from shear-enhanced

anisotropy in nematic liquid crystals

This chapter is based on Ref. [66].

Spontaneous pattern growth at an unstable interface between two fluids is a common

phenomenon in many nonequilibrium systems [1, 8, 75, 76, 134, 135]. A famous example is

the viscous-fingering instability, in which one fluid is displaced by another less viscous one

in the quasi two-dimensional geometry of a Hele-Shaw cell [16]. In this instability, fingers

of the displacing fluid grow into the displaced one and undergo successive tip-splitting,

which leads to ramified patterns with many branches that belong to the class of dense-

branching growth [2, 3, 12]. Remarkably, the ubiquitous tip-splitting can be prevented

by introducing anisotropy in the interfacial dynamics, which stabilizes the fingertips into

parabolic shapes; the resulting pattern transitions to dendritic growth [4–9, 63]. Dense-

branching growth and dendritic growth are two essential morphologies that emerge in a

diverse range of physical phenomena, including electrochemical deposition and the growth

of bacteria colonies [75, 76, 83, 84, 136].

Given the important role of anisotropy in selecting the growth morphology, various ex-

perimental methods have been developed to introduce anisotropy in the viscous-fingering

instability [18, 22–24, 26, 27, 137, 138]. The most well-established means is to geometrically
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modify the growth environment by engraving ordered channels on one of the plates of the

Hele-Shaw cell [18, 63]. Another strategy is to use nematic liquid crystals as one of the

fluids, where the anisotropy is an intrinsic property of the medium itself [27]. Previous stud-

ies have exploited this strategy using thermotropic liquid crystals (TLCs) as the displaced

fluid [27]. Most TLCs in the nematic phase are flow-aligned materials [61], for which the

director maintains a stable angle in the shear plane set by the viscous torques acting on the

director [28]. The flow-alignment gives rise to a smaller viscosity parallel to the flow direction

compared to that perpendicular to the flow direction [28]. This difference in viscosities leads

to a direction-dependent velocity of the interface and introduces anisotropy in the interfacial

dynamics, causing the transition from dense-branching to dendritic growth [28]. The flow-

alignment, and thus the growth morphology transition, occurs when the viscous torque from

the shear flow becomes dominant over the Frank elastic torque produced by the gradient in

the continuum director field. This condition is reached when the Ericksen number, which

denotes the ratio between the viscous torque and the Frank elastic torque, is larger than

unity [31].

Here, we demonstrate a different pathway to dendritic growth that occurs at much

higher Ericksen numbers deep in the flow-dominated regime. We observe this pathway

when a low viscosity silicone oil displaces a solution of nematic lyotropic chromonic liquid

crystals (LCLCs). LCLCs are aqueous dispersions of organic disk-like molecules that self-

assemble into cylindrical aggregates, which are responsible for the formation of liquid crystal

phases [39, 43–47]. In contrast to most nematic TLCs that flow-align for Ericksen numbers

Er ą 1, nematic LCLCs exhibit a flow-tumbling behavior where the material does not adopt

a stable director field but experiences a non-zero viscous torque acting on the director. In

this tumbling state, defects can form in the nematic LCLC solutions [61, 65]. Since LCLC

aggregates are about 100 times longer than TLC molecules, their rotational relaxation is

slow compared to the timescales of the flow and flows can reach the regime of Deborah num-

bers close to unity, a regime not accessible in TLCs [46, 61]. The Deborah number denotes

the ratio of the rotational relaxation time of the aggregates to the characteristic time of

the flow. We demonstrate how these unique characteristics lead to dendritic growth in the

viscous-fingering instability by a different mechanism than that reported for nematic TLCs,
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and over a large range of injection flow rates for different viscosities of the displacing fluid.

We reveal that the morphology transition from dense-branching to dendritic growth ne-

cessitates an enhancement of anisotropy of the tumbling nematic liquid crystal solution.

In the tumbling state, the viscous-fingering instability adopts dense-branching growth. We

find that the tumbling behavior can be suppressed by high enough shear leading to a flow-

alignment of the material, which enhances the LCLC anisotropy and induces the transition

to dendritic growth. This flow-alignment occurs deep in the flow-dominated regime for

Er ąą 1. The shear-enhanced anisotropy is reached when the viscous torque induced by

the shear flow becomes dominant over the elastic torque from the nematic potential. This

provides a quantitative criterion for the growth morphology transition and establishes the

relation between the orientation of the LCLC aggregates at the microscale and the growth

morphology selection at the macroscale.

In a small range very close to the fingertip of the invading fluid, the LCLC aggregates

experience a uniaxial extensional flow induced by the finger growth. We show how LCLC

aggregates can break when the uniaxial extensional flow dominates over simple shear flow,

and how this can locally induce a phase transition of the LCLC solution from the nematic

phase to the isotropic phase. Such flow-induced phase transition, which is tunable and

reversible, could be exploited in applications using LCLC solutions as flow field sensors.

4.1 Methods

Our experiments are performed in a radial Hele-Shaw cell consisting of two 19 mm thick

circular glass plates of diameter 140 mm. The spacing between the two plates, 𝑏, is main-

tained by spacers placed around the plate perimeter and varies from 12 𝜇m to 50 𝜇m. We

use silicone oils (Sigma Aldrich and Consolidated Chemical & Solvents LLC) with viscosities

ranging from 0.83 mPa s to 48 mPa s as the displacing inner fluid, and aqueous solutions of

the lyotropic chromonic liquid crystal disodium cromoglycate (DSCG) (TCI America, purity

ą 98.0%) as the displaced outer fluid. We prepare nematic DSCG solutions with concentra-

tions of 14 wt%, 16 wt%, and 18 wt% DSCG in water at room temperature 𝑇 “ 23 ˘ 0.5˝C;

the three concentrations cover the regime of nematic phase [50]. The fluids are injected

78



through a 2 mm diameter hole in the center of one of the plates at a volumetric flow rate

ranging from 𝑞 = 0.05 ´ 5.5 ml/min controlled by a syringe pump (Harvard PHD 2000).

We visualize the patterns through crossed polarizers and record their growth with a LUMIX

GH5 camera at frame rates up to 60 fps.

To investigate the director field and the flow field in the region close to the fingertips, we

use a smaller Hele-Shaw cell with plate spacing 25 𝜇m, consisting of two 6 mm thick square

glass plates of size 75 mm x 75 mm. The director field is observed through crossed polarizers

in an optical microscope (OMAX M837T) with an objective of magnification M = 4ˆ and nu-

merical aperture NA = 0.1. The flow field is quantified by tracking polystyrene microspheres

(Alpha Nanotech Inc.) of diameter 2 𝜇m using the optical microscope. The microspheres are

dispersed in the DSCG solutions at a concentration of 0.05 wt%. The director field and the

flow field are captured using a high-speed camera (Chronos 1.4) at frame rates of 1069 fps.

We determine the two-dimensional velocity field using a digital particle image velocimetry

tool for MATLAB (PIVlab) [139, 140].

4.2 Results and Discussion

4.2.1 Growth morphology transition in nematic LCLC solutions

Two distinct pattern morphologies emerge as a nematic solution of the lyotropic liquid crystal

disodium cromoglycate (DSCG) is displaced by a lower viscosity silicone oil in a radial Hele-

Shaw cell. At low volumetric flow rates, fingers grow by repeated tip-splitting which results

in the generic dense-branching growth. Above a certain volumetric flow rate, however,

the fingertips are stabilized, and the morphology transitions to dendritic growth, as shown

in Fig. 4.1(A and B). Such a morphology transition occurs for different viscosities of the

displacing silicone oils (𝜂in = 0.83 mPa s in Fig. 4.1A and 𝜂in = 48 mPa s in Fig. 4.1B).

The global features of the patterns depend on the viscosity ratio between the displacing

and displaced fluids. In particular, an inner circular region within which the outer fluid is

completely displaced appears for larger viscosity ratios [29, 63, 141]. To classify the pattern

morphologies, we consider the temporal evolution of the fingertip width, 𝑤, measured 300 𝜇m

79



0

1

2

0 0.5 1

w
 (

m
m

)

t/tmax

A                                                                              C

                                                                                  

B                                                                              D                                                                                 

A
P

A
P

A
P

A
P

t

t

ww w w

w

w

w w w

Figure 4.1: Morphology transition from dense-branching to dendritic growth ob-
served as silicone oil displaces aqueous solutions of disodium cromoglycate in
the nematic phase. (A, B) With increasing volumetric flow rate 𝑞, the pattern transitions
from dense-branching growth (left) to dendritic growth (right). (A) Silicone oil viscosity
𝜂in = 0.83 mPa, and 𝑞 = 0.1 ml/min (left) and 𝑞 = 0.4 ml/min (right). (B) Silicone oil
viscosity 𝜂in = 48 mPa s, and 𝑞 = 0.05 ml/min (left) and 𝑞 = 1 ml/min (right). The scale
bar is 5 mm. The images are captured using a crossed polarizer, P, and analyzer, A. (C)
The width of the fingertip 𝑤 varies with time 𝑡 for dense-branching growth characterized
by repeated tip-splitting (upper panel). The width 𝑤 remains constant for dendritic growth
characterized by stable parabolic tips (lower panel). The scale bar is 2 mm. (D) Temporal
evolution of 𝑤 for dense-branching growth (‚) and dendritic growth (˝) for 𝜂in = 0.83 mPa
s. 𝑡max denotes the time when the fingers reach a length of 30 mm.

behind the fingertip. For dense-branching growth, 𝑤 increases until it reaches a width of

twice the most unstable wavelength set by the competition between surface tension forces

and viscous forces [16], whereupon the tip splits and 𝑤 decreases. By contrast, 𝑤 remains

constant for the stabilized parabolic tips of dendritic patterns, as shown in Fig. 4.1(C and

D).

4.2.2 Growth morphology transition induced by shear-enhanced

anisotropy

To understand what governs the morphology transition from dense-branching to dendritic

growth, we measure the optical retardance of the DSCG solutions that gives information

80



0

100

200

300

400

500

600

-1 0 1 2 3 4 5

d
(n

m
)

L (mm)

0

300

600

0.1 1 10

d
(n

m
)

V (mm/s)

600

300

0
10-1        100                                 101

A                                                                            B  

C

L L
APAP

x

y
x

y

z

j


Figure 4.2: Distinct director fields for dense-branching and dendritic growth. (A)
The difference in color observed in DSCG solutions far from the fingertip denotes distinct
director fields for dense-branching growth at 𝑞 = 0.05 ml/min (left) and for dendritic growth
at 𝑞 = 1 ml/min (right). We define a local coordinate system where the 𝑥-axis is in the
direction of the fingertip growth, the 𝑦-axis is perpendicular to the growth direction, and
the 𝑧-axis denotes the direction of the plate spacing. 𝐿 is the distance from the fingertip
along the 𝑥-direction. The scale bar is 1 mm. (B) Schematic of the director orientation.
The in-plane azimuthal angle is denoted as 𝜙 and the out-of-plane polar angle as 𝜃. (C)
The optical retardance 𝛿 along the distance 𝐿 for dense-branching growth (˛) and dendritic
growth (3). The data correspond to the images in A. The gray area at 𝐿 ă 0 denotes the
isotropic oil phase, where the retardance is zero. Inset: Mean optical retardance far from the
fingertip averaged over 1.5 mm ă 𝐿 ă 4 mm, 𝛿, versus the fingertip velocity, 𝑉 , for silicone
oils with viscosities 𝜂in = 9.8 mPa s (˝) and 𝜂in = 48 mPa s (3). The dashed line marks the
transition between dense-branching and dendritic growth.

about the director field. Imaged under crossed polarizers, the interference color is distinct for

the two growth morphologies, as shown in Fig. 4.2A, indicating differences in the alignment

of the director field. We determine the in-plane azimuthal angle, 𝜙 (Fig. 4.2B), by adding a

static 560 nm full-wave-plate optical compensator with its slow axis oriented at 45˝ to the

crossed polarizers and find that 𝜙 « 0; the directors are, on average, uniformly aligned in the

radial flow direction for both dense-branching and dendritic growth (see Appendix 4.A.1).
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The optical retardance, 𝛿 “
ş𝑏

0
|𝑛eff,local p𝜃q ´ 𝑛o|𝑑𝑧 “ 𝑏|𝑛eff

`

𝜃
˘

´ 𝑛o|, then provides infor-

mation about the average out-of-plane polar angle, 𝜃, where 𝑏 is the plate spacing of the

Hele-Shaw cell, and 𝑛eff and 𝑛o are the effective and ordinary refractive indices [142].

Comparing the interference color with a customized Michel-Lévy color chart, we deter-

mine the optical retardance 𝛿 along the center line in front of a fingertip, 𝐿 (see Chapter 2.3

and Appendix 4.A.1). In the isotropic oil phase, the retardance is close to zero. Within

a small region in front of the fingertip, 𝛿 is similar for both types of patterns, as shown

in Fig. 4.2C. Away from the fingertip, however, the retardance is higher for the dendritic

pattern than for the dense-branching pattern. These features are consistently observed for

different silicone oil viscosities and different fingertip velocities, 𝑉 , where 𝑉 is measured at

the fingertips as they grow from a radius of 𝑅 = 15 mm to 𝑅 = 30 mm: Dendritic growth

occurs beyond a critical value of retardance, as shown in the inset of Fig. 4.2C.

A low value of retardance in flowing DSCG solutions reflects the tumbling character of

the material that leads to a non-zero viscous torque for any orientation of the director with

𝛼2𝛼3 ă 0, where 𝛼2 and 𝛼3 are the Leslie viscosity coefficients [31]. As a result of the

non-zero viscous torque, twist-type topological defects spontaneously occur in the material,

which lead to a low retardance [61, 65]. That the viscous-fingering instability adopts dense-

branching growth in this regime indicates that the tumbling state at the microscale makes

the liquid behave isotropically at the macroscale, even for a material that exhibits global

nematic ordering. A high value of retardance, by contrast, reflects a small average polar angle

(𝜃 À 15˝) indicative of a stable flow-aligned state. High shear can thus, remarkably, suppress

the tumbling of DSCG solutions. Our results suggest that this transition from tumbling to

the flow-aligned state introduces a large enough shear-enhanced anisotropy that allows for

the growth morphology transition from dense-branching growth to dendritic growth.

To test this hypothesis, we consider that the morphology transition in DSCG solutions

occurs in the regime of high Ericksen number Er = 𝜂2 9𝛾𝑥𝑧𝑏
2

𝐾2
ranging from 1.7ˆ 106 – 9.4ˆ 107

in our experiments, where 𝜂2 is the twist viscosity, 𝐾2 is the twist Frank elastic constant,

and 9𝛾𝑥𝑧 “ 𝑉 {𝑏 is the average shear rate in the 𝑥𝑧-plane [31, 50]. In this regime, the material

response is flow-dominated. Moreover, given the large size of DSCG aggregates [50], the

Deborah number De “ 𝜏𝑟{𝜏𝑓 « 1, where 𝜏𝑟 “ 1{𝐷𝑟 is the rotational relaxation time of the
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aggregates, 𝐷𝑟 “
3𝑘𝐵𝑇 plnp𝑙{𝑑q´0.8q

𝜋𝜂𝑠𝑙3
is the rotational diffusion coefficient, 𝑙 is the length and 𝑑 is

the diameter of the DSCG aggregate, 𝜂𝑠 is the solvent viscosity, 𝑘𝐵 is the Boltzmann constant,

𝑇 is the temperature, and 𝜏𝑓 “ 1{ 9𝛾𝑥𝑧 is the characteristic time of the shear flow [62]. For

Deborah numbers of order unity, the director field cannot be considered as a continuum field

and the classical Ericksen-Leslie theory does not apply [62]. Instead, we need to consider the

dynamics of individual molecular aggregates, which is set by the competition between the

elastic torque from the nematic potential that induces collective tumbling of the directors and

the viscous torque from shear flow that drives individual aggregates to reorient towards the

stationary angle adopted in the flow-aligned state. We express the elastic torque acting on

the aggregates as 𝑀el “ 𝑙 𝑑𝑈nem

𝑑𝑧
« 𝑙𝑈nem

𝑏
, where 𝑈nem is the nematic potential that we express

using the Onsager excluded-volume potential 𝑈nem “ 2𝑑𝑙2𝐶𝑘𝐵𝑇 , 𝐶 “ 4𝜑{𝜋𝑑2𝑙 is the number

of aggregates per unit volume, and 𝜑 is the volume fraction of DSCG in water [46, 143].

The viscous torque from the shear flow is 𝑀visc « 𝜂eff 9𝛾𝑥𝑧 p𝑧q 𝑏𝑙2, where 𝜂eff «
𝜑
𝑑𝑙2
𝜉 is the

effective viscosity that is related to the drag coefficient 𝜉 « 𝜋
6
𝜂𝑠𝑙

3 [143]. The competition

between 𝑀visc and 𝑀el can be expressed by Π “
𝑀visc

𝑀el
« 𝜋2

48
𝜂𝑠𝑙𝑏2 9𝛾𝑥𝑧p𝑧q

𝑘𝐵𝑇
. A similar expression

can be more rigorously obtained from the Smoluchowski equation (see Appendix 4.A.2). We

consider almost all directors to be flow-aligned when the shear rate in the center region of

the gap reaches 9𝛾𝑥𝑧,𝑐 “ 12𝑧𝑐
𝑏

9𝛾𝑥𝑧,𝑐, where 9𝛾𝑥𝑧,𝑐 “ 𝑉 ˚

𝑏
is the average critical shear rate, 𝑉 ˚ is

the gap-averaged critical velocity denoting the transition from tumbling to flow-alignment,

and 𝑧𝑐 « 10´4 𝑏
2

is a characteristic length scale denoting the center region chosen of the order

of the radius of a DSCG aggregate (« 1 nm). Setting Π “ 1 then yields 𝑉 ˚ « 8ˆ104

𝜋2
𝑘𝐵𝑇
𝜂𝑠𝑙𝑏

.

We can now probe whether 𝑉 ˚ governs the transition from dense-branching to dendritic

growth by varying the plate spacing, 𝑏, and the length of the aggregates, 𝑙. The length of the

aggregates can be tuned by using different concentrations of DSCG in water [46, 50]. For a

set of experiments at a given 𝑏 and 𝑙, the growth morphology transition occurs at a critical

fingertip velocity 𝑉𝑐, which is independent of the viscosity of the displacing silicone oil, 𝜂in,

as shown in Fig. 4.3(A and B). Both changing 𝑏 and 𝑙 systematically shifts 𝑉𝑐. We can indeed

rescale all data by normalizing the fingertip velocity 𝑉 with 𝑉 ˚, as shown in Fig. 4.3C. This

corroborates that the microscopic transition from tumbling to flow alignment occurring at

𝑉 ˚ governs the macroscopic growth morphology transition.
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Figure 4.3: Morphology diagrams denoting the transition from dense-branching to
dendritic growth controlled by the fingertip velocity, 𝑉 . (A) Experiments performed
at fixed plate spacing, 𝑏 “ 25𝜇m, for three concentrations of DSCG in water: 𝑐 = 14 wt% (˝),
𝑐 = 16 wt% (△), and 𝑐 = 18 wt% (3). Closed symbols denote dense-branching growth, open
symbols denote dendritic growth. The dashed lines mark the transitions between dense-
branching growth and dendritic growth occurring at critical fingertip velocities 𝑉𝑐. (B)
Experiments performed at fixed concentration of DSCG in water, 𝑐 = 18 wt%, for three
plate spacings: 𝑏 “ 12𝜇m (˝), 𝑏 “ 25𝜇m (3), and 𝑏 “ 50𝜇m (△). (C) Morphology diagram
where 𝑉 is normalized with 𝑉 ˚, the velocity denoting the balance of the elastic torques from
the nematic ordering and the viscous torques from the shear flow.

It is interesting to note that for both nematic thermotropic liquid crystals (TLCs) and

nematic lyotropic chromonic liquid crystals (LCLCs), the transition from dense-branching

to dendritic growth occurs as the directors adopt a flow-aligned state. The mechanism that

governs the flow alignment, however, is distinct for the two classes of liquid crystals. The flow

alignment in nematic TLCs is described within the framework of the Ericksen-Leslie theory,

where the dynamics of the director is set by the competition between the Frank elastic torque

produced by the gradient of the continuum director field and the viscous torque from the

shear flow expressed by the Ericksen number [31]. Flow alignment occurs for Er ą 1. In a

tumbling liquid crystal such as the nematic DSCG solution, by contrast, the flow alignment

occurs at much higher Er ą 106 and at high Deborah numbers De « 10´2–101 compared

to De ă 10´5 for TLCs. In this Deborah number regime, the Ericksen-Leslie theory is not
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applicable and instead molecular theories considering the nematic potential resisting the

shear flow deforming individual aggregates, as expressed by Π, describe the flow alignment.

Our experiments show that dendritic growth can occur for De Á 1 in nematic tumbling

LCLCs, and not only in the previously reported regime of De ăă 1 in nematic flow-aligned

TLCs, and that distinct mechanisms govern the morphology transition in the two regimes.

4.2.3 Extensional flow locally breaks DSCG aggregates at fingertips

. While the morphology selection is determined by the state of alignment of LCLC aggregates

far from the fingertip, the invading oil finger modifies the state of the LCLC aggregates close

to the oil-liquid crystal interface. In a small region directly in front of the fingertip, we

observe a dark region that denotes a significant decrease in retardance compared to the

region away from the tip, as shown in Fig. 4.4A. Such a low value of retardance could be

due to three possible effects: i) a homeotropic alignment (𝜃 “ 90˝) of the director field,

ii) a twist deformation of the director in the gap direction, or iii) a decrease of the order

parameter [61]. To test which of these effects is the cause of the lower retardance, we tilt the

Hele-Shaw cell by 20˝. We find that the dark area remains dark upon tilting the Hele-Shaw

cell, as shown in Fig. 4.4A, which indicates that the lower retardance is due to a decrease of

the order parameter as the two other possible effects would induce a change in retardance

upon tilting the cell. The decrease in retardance occurs over a similar range 𝐿𝑐 for different

volumetric flow rates, as shown in Fig. 4.4B.

To understand why the order parameter is lower in the region in front of the fingertip,

we measure the two-dimensional velocity field vp𝑥, 𝑦, 𝑡q using tracer particles. The relative

velocity of the DSCG solution in the frame of the moving fingertip reveals a combination of

uniaxial extensional flow and simple shear flow, as shown by the black arrows in Fig. 4.4C.

The color map of the strain rate calculated as 9𝛾 “
a

9𝛾2𝑒 ` 9𝛾2𝑠 shows that the maximum strain

rate occurs in the fingertip region, where 9𝛾𝑒 “ 1
2

´

B𝑣𝑥
B𝑥

´
B𝑣𝑦
B𝑦

¯

is the extensional component of

the strain rate and 9𝛾𝑠 “ 1
2

´

B𝑣𝑥
B𝑦

`
B𝑣𝑦
B𝑥

¯

is the shear component of the strain rate. We hypoth-

esize that the order parameter decreases in the region of high strain rate as a result of the

strong extensional flow. This might appear counter-intuitive, as extensional flows have been

reported to increase the order parameter in rigid rods suspended in a fluid by promoting the
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Figure 4.4: Extensional shear at the fingertip induces isotropic liquid crystal phase.
(A) Zoomed image of the fingertip region for a volumetric flow rate 𝑞 = 1.5 ml/min. A dark
region of length 𝐿𝑐 is seen in front of the fingertip (top image), which remains dark upon
tilting the Hele-Shaw cell by 20˝ (bottom image). The scale bar is 200 𝜇m. (B) Optical
retardance, 𝛿, measured at the center line of a finger for experiments at different volumetric
flow rates 𝑞 (see legend to the right). Closed symbols denote 𝜂in “ 0.83 mPa s, open symbols
denote 𝜂in “ 48 mPa s. 𝐿𝑐, indicated by the dashed line, denotes the region characterized by
a low 𝛿. (C) Map of the relative velocity (arrows) in the frame of the moving fingertip and
the strain rate 9𝛾 (color map) for 𝑞 = 1.5 ml/min. The scale bar is 200 𝜇m. (D) Extensional
component of the strain rate, 9𝛾𝑒, measured at the center line of a finger versus the distance
from the fingertip, 𝐿. The blue line denotes the critical extensional component of the strain
rate above which an aggregate breaks, 9𝛾𝑒,𝑐𝑟. Inset: The mean shear component of the strain
rate, 9𝛾𝑠, increases with increasing fingertip velocity, 𝑉 . (E) Scaled master curve of 9𝛾𝑒{ 9𝛾𝑠
versus 𝐿. The dashed line indicates 𝐿𝑐. Inset: A DSCG aggregate aligns parallel to the
uniaxial extensional flow when 9𝛾𝑒 ą 9𝛾𝑠. Strong shear can break the aggregate, which results
in the isotropic liquid crystal phase.

rods to align [144, 145]. However, distinct from rigid rods, the DSCG aggregates can break

and consequently form an isotropic phase [52], which would indeed significantly decrease the

order parameter.

To test this hypothesis, we estimate the effect of the extensional flow on the DSCG

aggregates by considering: i) The energy balance between the scission energy of aggregates,
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𝐸𝑠𝑐𝑖, which describes the energy required to break an aggregate into two, and the energy

input from extensional flow, 𝐸𝑒𝑥𝑡. ii) The alignment of DSCG aggregates in the extensional

flow, which determines whether the aggregates are in tension or in compression.

The scission energy is 𝐸𝑠𝑐𝑖 « 10𝑘𝐵𝑇 [50]. The energy from extensional flow is expressed

as 𝐸𝑒𝑥𝑡 “ 𝜎𝑒Λ𝜑
´1, where 𝜎𝑒 “ ´p𝛼2 ` 𝛼3q 9𝛾𝑒 is the extensional stress, 𝛼2 and 𝛼3 are the

Leslie viscosity coefficients, Λ « 𝑑𝑙2, and 𝜑 is the volume fraction of DSCG aggregates

in water (see Appendix 4.A.3). Balancing the two energies, 𝐸𝑠𝑐𝑖 “ 𝐸𝑒𝑥𝑡, yields a critical

extensional strain rate inducing breakage of the aggregates, 9𝛾𝑒,𝑐𝑟 « 1 s´1, shown as a blue

line in Fig. 4.4D. The measured extensional component of the strain rate 9𝛾𝑒 intersects 9𝛾𝑒,𝑐𝑟

at different distances 𝐿 from the fingertip for experiments performed at different volumetric

flow rates 𝑞. This is inconsistent with the independence of 𝐿𝑐 on 𝑞 (Fig. 4.4B). Indeed, 9𝛾𝑒,𝑐𝑟

denotes the onset of aggregate breakage only for the condition where the aggregates are in

tension, which is the case when the aggregates are oriented parallel to the uniaxial extensional

direction (inset of Fig. 4.4E). Conversely, when the aggregates are oriented perpendicular

to the uniaxial extensional direction, they are in compression, and 9𝛾𝑒,𝑐𝑟 does not induce

breakage. To determine the orientation of the aggregates in the fingertip region, we consider

that the aggregates undergo a simple shear flow in the 𝑥-direction that favors alignment

in the 𝑥-direction and an uniaxial extensional flow in the 𝑦-direction that favors alignment

in the 𝑦-direction [61, 144, 145]. The competition between 9𝛾𝑒 and 9𝛾𝑠 governs the aggregate

orientation. 9𝛾𝑠 is almost constant in the fingertip region (see Appendix 4.A.4), and the mean

shear component of the strain rate, 9𝛾𝑠, systematically increases with fingertip velocity, as

shown in the inset of Fig. 4.4D. We thus normalize 9𝛾𝑒 with 9𝛾𝑠, which indeed rescales all data

and shows that 9𝛾𝑒{ 9𝛾𝑠 ą 1 for 𝐿 ă 𝐿𝑐, as displayed in Fig. 4.4E. The DSCG aggregates align

in the 𝑦-direction close to the fingertip and break as 9𝛾𝑒 ą 9𝛾𝑒,𝑐𝑟, which induces the transition

from the nematic to the isotropic phase reflected in the decrease in retardance.

4.3 Conclusions

We demonstrate how fast flows can suppress the tumbling behavior of nematic lyotropic

chromonic liquid crystal solutions and induce a flow alignment of the director field. As a
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result of such a shear-enhanced anisotropy of the liquid crystal, the pattern obtained in the

viscous-fingering instability transitions from dense-branching growth to dendritic growth.

We have established a quantitative criterion for this growth morphology transition in terms

of the competition between the elastic torque from the nematic potential and the viscous

torque from shear flow, which allows us to controllably tune the pattern growth occurring in

interfacial fluid instabilities.

The self-assembled nature of LCLC solutions introduces the potential of aggregate break-

age. We show that the high uniaxial extensional shear close to a fingertip during finger growth

can break LCLC aggregates and induce a phase transition from the nematic to the isotropic

phase. This might be exploited to design flow field sensors with reversible phase transitions

that can easily be induced by tuning the flow rate [34, 146].

4.A Appendices

4.A.1 Far-field director orientation in DSCG solutions
To estimate the average in-plane azimuthal angle across the plate spacing, 𝜙, of the director

field of DSCG solutions, we add a static full-wave-plate optical compensator (560 nm) with

the slow axis 𝜆⃗g oriented at 45˝ to the crossed polarizers and in the direction parallel to the

flow. The optical birefringence of a 18 wt% DSCG solution at rest is ∆𝑛 “ 𝑛e ´ 𝑛o “ ´0.02

at a wavelength 𝜆𝑤 = 633 nm, where 𝑛e and 𝑛o are the extraordinary and ordinary refractive

indices [72]. At 𝑏 “ 25 ˘ 1 𝜇m, the maximum optical retardance is 𝛿 “ 𝑏| p𝑛e ´ 𝑛oq | “

500 ˘ 20 nm.

We compare the birefringence colors with the customized Michel-Lévy color chart to

determine the optical retardance of DSCG solutions (see Chapter 2.3). In experiments

performed without the full-wave-plate optical compensator, we find that the retardance of

flowing DSCG solutions is approximately 330 nm (light yellow color) for dense-branching

growth, Fig. 4.5(A), and 500 nm (purple color) for dendritic growth, Fig. 4.5(B). After

the compensator is inserted, a change in color, representing a change in the retardance,

gives information about the azimuthal angle of the director field: an increase of the re-

tardance by 560 nm indicates that the director is perpendicular to 𝜆⃗g; a decrease of the
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Figure 4.5: Director orientation in DSCG solutions for dense-branching growth
and dendritic growth. Imaged under crossed polarizer and analyzer, regions away from
the fingertip show distinct colors for dense-branching growth (A) and dendritic growth (B),
denoting differences in the optical retardance. The shift in the optical retardance upon
adding a static full-wave-plate optical compensator (𝜆g = 560 nm) allows us to estimate the
in-plane azimuthal angle for dense-branching growth (C) and dendritic growth (D). The
viscosity of the displacing silicone oil is 𝜂in = 48 mPa s. The flow rate is 𝑞 = 0.05 ml/min
for dense-branching growth and 𝑞 = 1 ml/min for dendritic growth. The scale bar denotes
0.5 mm.

retardance by 560 nm indicates that the director is parallel to 𝜆⃗g. For dense-branching

growth, the retardance of the flowing DSCG solution away from the fingertip is approxi-

mately 230 nm = |330 ´ 560| nm (change in birefringence color from light yellow (330 nm)

to light gray (230 nm), Fig. 4.5(A and C)). For dendritic growth, the retardance similarly

decreases by 560 nm; 60 nm = |500 ´ 560| nm (change in birefringence color from pur-

ple (500 nm) to deep gray (60 nm), Fig. 4.5(B and D)). The director field of DSCG solutions

is thus parallel to 𝜆⃗g and to the flow direction (𝑥-direction) for both dense-branching and

dendritic growth.

4.A.2 Flow behavior of DSCG solutions described by the Smoluchowski equa-

tion
We complement our scaling arguments describing the effect of flow on the orientation of

DSCG aggregates outlined in the main part of Chapter 4 with a more rigorous description
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using the Smoluchowski equation. We consider a DSCG aggregate at a position x with

orientation m, where m “ pcos 𝜃1 cos𝜙1, cos 𝜃1 sin𝜙1, sin 𝜃1q with 𝜃1 the out-of-plane polar

angle and 𝜙1 the in-plane azimuthal angle of an aggregate [147]:

𝐷𝑓

𝐷𝑡
“ ∇ ¨

"

“

𝐷‖mm ` 𝐷K pI ´ mmq
‰

¨

ˆ

∇𝑓 `
1

𝑘𝐵𝑇
𝑓∇𝑈nem

˙*

`𝐷𝑟 Re ¨

ˆ

Re 𝑓 `
1

𝑘𝐵𝑇
𝑓 Re𝑈nem

˙

´ Re
´

m ˆ p∇vq
T

¨ m𝑓
¯

,

(4.1)

where 𝑓 is the orientation distribution of the DSCG aggregates, 𝑈nem is the nematic potential,

𝑘𝐵 is the Boltzmann constant, 𝑇 is the temperature, v is the velocity, Re “ mˆ pB{Bmq, 𝜂𝑠

is the solvent viscosity, 𝐷𝑟 “
3𝑘𝐵𝑇 plnp𝑙{𝑑q´0.8q

𝜋𝜂𝑠𝑙3
is the rotational diffusion coefficient for rod-like

aggregates in dilute solution, 𝑙 is the length and 𝑑 is the diameter of the DSCG aggregate,

𝐷‖“1
6
𝐷𝑟𝑙

2 and 𝐷K“ 1
12
𝐷𝑟𝑙

2 are the translational diffusivities parallel and perpendicular to

the aggregate orientation.

Eq. 4.1 can be expressed using the plate spacing 𝑏 as the characteristic length scale,

𝑡0 “ 𝑏{𝑉𝑓 as the characteristic time, where 𝑉𝑓 is a characteristic velocity of the flow field

that we set to be the fingertip velocity 𝑉 , and 𝑈0 “ 𝑘𝐵𝑇 as the characteristic potential:

x˚ “ x
𝑏
, v˚ “ v

𝑉
, 𝑡˚ “ 𝑡

𝑡0
, 𝑈˚ “ 𝑈nem

𝑈0
. This yields the non-dimensional form:

B𝑓

B𝑡˚
` v˚

¨ ∇˚𝑓 “ 𝜀2
𝐷𝑟𝑏

𝑉
∇˚

¨ tr𝐷˚
K pI ` mmqs ¨ p∇˚𝑓 ` 𝑓∇˚𝑈˚

qu

`
𝐷𝑟𝑏

𝑉
Re ¨

ˆ

1

Re
𝑓 ` 𝑓 Re𝑈˚

˙

´ Re
´

m ˆ p∇˚v˚
q
T

¨ m𝑓
¯

,
(4.2)

where 𝜀 “ 𝑙
𝑏

and 𝐷˚
K “ 1

12
. The term ln p𝑙{𝑑q ranges from 3.2–5; we here approximate it as a

constant such that 𝐷𝑟9
𝑘𝐵𝑇
𝜋𝜂𝑠𝑙3

. The dimensionless term 𝜀2𝐷𝑟𝑏
𝑉

in Eq. 4.2 can be expressed as

Π1 “
𝑉

𝜀2𝐷𝑟𝑏
9
𝜂𝑠𝑙𝑏𝑉

𝑘𝐵𝑇
. (4.3)

Π1 has a similar form as the dimensionless number we obtain from the scaling analysis

described in Chapter 4, Π “
𝑀visc

𝑀el
« 𝜋2

48
𝜂𝑠𝑙𝑏2 9𝛾𝑥𝑧p𝑧q

𝑘𝐵𝑇
, where 9𝛾𝑥𝑧p𝑧q9𝑉

𝑏
.

90



4.A.3 Extensional viscosity of DSCG solutions and director characteristics

under uniaxial extensional flow
Considering the average strain rate 9𝛾 in the 𝑥𝑦-plane in front of a fingertip, where the 𝑥-axis

is in the direction of the fingertip growth and the 𝑦-axis is perpendicular to the growth

direction, we find the Deborah number in the 𝑥𝑦-plane De𝑥𝑦 “ 9𝛾{𝐷𝑟 « 10´3 ăă 1. For

De𝑥𝑦 ăă 1, we use the Ericksen-Leslie theory to determine the extensional viscosity of

DSCG solutions assuming that the DSCG aggregates are not broken by the flow. Given the

velocity field v and the nematic liquid crystal director field n “ pcos 𝜃 cos𝜙, cos 𝜃 sin𝜙, sin 𝜃q,

where 𝜃 is the out-of-plane polar angle and 𝜙 is the in-plane azimuthal angle, the general

form of the nematodynamic equation is [31]

𝑑𝑛𝑖

𝑑𝑡
“

1

𝛾1
𝛿K
𝑖𝑗ℎ𝑗 ` 𝑊𝑖𝑘𝑛𝑘 ` 𝜆𝛿K

𝑖𝑗𝐴𝑗𝑘𝑛𝑘, (4.4)

where 𝛾1 is the rotational viscosity, 𝐴𝑗𝑘 “ 1
2

´

B𝑣𝑗
B𝑥𝑘

`
B𝑣𝑘
B𝑥𝑗

¯

and 𝑊𝑖𝑘 “ 1
2

´

B𝑣𝑖
B𝑥𝑘

´
B𝑣𝑘
B𝑥𝑖

¯

are the

symmetric and antisymmetric parts of the velocity gradients, 𝛿K
𝑖𝑗 is the transverse Kro-

necker delta and 𝜆 “ 𝛼2`𝛼3

𝛼2´𝛼3
with 𝛼2 and 𝛼3 the Leslie viscosity coefficients. ℎ𝑖 “ ´

B𝑓𝐹𝑂

B𝑛𝑖
`

B

B𝑥𝑗

´

B𝑓𝐹𝑂

BpB𝑛𝑖{B𝑥𝑗q

¯

, where 𝑓𝐹𝑂 is the Frank–Oseen elastic energy density.

We consider the high Ericksen number regime (Er ąą 1) where the elastic term ℎ𝑖 is

negligible, and assume steady state so that 𝑑𝑛𝑖

𝑑𝑡
“ 0. Eq. 4.4 then simplifies to

𝑊𝑖𝑘𝑛𝑘 ` 𝜆𝛿K
𝑖𝑗𝐴𝑗𝑘𝑛𝑘 “ 0. (4.5)

Further assuming a negligible out-of-plane polar angle (𝜃 « 0) at high Er [65], the director

field simplifies to n “ pcos𝜙, sin𝜙, 0q, which yields

p𝛼2 ´ 𝛼3q𝜔𝑥𝑦 ` p𝛼2 ` 𝛼3q sin 2𝜙 9𝛾𝑒 ` p𝛼2 ` 𝛼3q
`

1 ´ 2cos2𝜙
˘

9𝛾𝑠 “ 0, (4.6)

where 𝜔𝑥𝑦 “ 1
2

´

B𝑣𝑥
B𝑦

´
B𝑣𝑦
B𝑥

¯

is the vorticity in the 𝑥𝑦-plane, 9𝛾𝑠 “ 1
2

´

B𝑣𝑥
B𝑦

`
B𝑣𝑦
B𝑥

¯

is the shear

component of the strain rate in the 𝑥𝑦-plane, and 9𝛾𝑒 “ 1
2

´

B𝑣𝑥
B𝑥

´
B𝑣𝑦
B𝑦

¯

is the extensional

component of the strain rate in the 𝑥𝑦-plane. The term for the extensional component in

Eq. 4.6 gives a viscosity coefficient characteristic of extensional flow, ´p𝛼2 ` 𝛼3q.
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We investigate the dynamics of a director that initially aligns along the 𝑥-direction

(𝜙p𝑡 “ 0q “ 0) under a uniaxial extensional flow along the 𝑦-direction. For an uniaxial ex-

tensional flow, Eq. 4.4 yields

𝑑𝜙

𝑑𝑡
“

ˆ

𝛼2 ` 𝛼3

𝛼2 ´ 𝛼3

˙

cos𝜙 sin𝜙| 9𝛾𝑒|. (4.7)

We conduct a linear stability analysis by considering a small in-plane perturbation 𝜙1. Lin-

earizing Eq. 4.7 yields:
𝑑𝜙1

𝑑𝑡
“

ˆ

𝛼2 ` 𝛼3

𝛼2 ´ 𝛼3

˙ ˆ

1 ´
𝜙2
1

2

˙

𝜙1| 9𝛾𝑒|. (4.8)

From Eq. 4.8, we obtain 𝜙 “ 𝜙1 “ ˘
?
2𝑒𝐴𝑡

?
𝑒2𝐴𝑡`𝐶

, where 𝐴 “

´

𝛼2`𝛼3

𝛼2´𝛼3

¯

| 9𝛾𝑒| and 𝐶 is a constant.

For 𝑡 ąą 1, 𝜙 approaches ˘
?
2, which demonstrates that the director under a uniaxial

extensional flow rotates towards the extensional direction.

4.A.4 Shear flow in the fingertip region
We measure the shear component of the strain rate 9𝛾𝑠 in the fingertip region, as shown in

the color map in Fig. 4.6(A). 9𝛾𝑠 is zero at the center line of a finger due to the symmetry
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Figure 4.6: Dependence of shear component of strain rate on fingertip velocity.
(A) Map of the relative velocity (arrows) and the shear component of the strain rate 9𝛾𝑠 (color
map) for 𝑞 = 1.5 ml/min and 𝜂in “ 48 mPa s. 𝑑𝑡𝑖𝑝 is the diameter of fingertip curvature. The
scale bar denotes 200 𝜇m. (B) Average shear component of the strain rate, 9𝛾𝑠, measured
in the range 𝑑𝑡𝑖𝑝 versus the distance from the fingertip, 𝐿. Closed symbols denote 𝜂in “

0.83 mPa s, open symbols denote 𝜂in “ 48 mPa s. (C) The mean shear component of the
strain rate, 9𝛾𝑠, increases with increasing fingertip velocity, 𝑉 .
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of the flow field, which induces theoretically a singularity and generates experimentally a

large noise in the ratio between the extensional component of the strain rate 9𝛾𝑒 and 9𝛾𝑠. To

circumvent this issue, we consider the average of 9𝛾𝑠 within a region of characteristic width

𝑑𝑡𝑖𝑝, where 𝑑𝑡𝑖𝑝 is the diameter of fingertip curvature, as shown in Fig. 4.6(A). 9𝛾𝑠 fluctuates

around an approximately constant mean, 9𝛾𝑠, along the distance away from the fingertip, 𝐿,

as displayed in Fig. 4.6(B). 9𝛾𝑠 increases with an increase in fingertip velocity, as shown in

Fig. 4.6(C).
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Chapter 5

Structures and topological defects in

pressure-driven lyotropic chromonic

liquid crystals

This chapter is based on Ref. [65].

Lyotropic chromonic liquid crystals (LCLCs) are aqueous dispersions of organic disk-like

molecules that self-assemble into cylindrical aggregates, which form nematic or columnar liq-

uid crystal phases under appropriate conditions of concentration and temperature [39, 43–47].

These materials have gained increasing attention in both fundamental and applied research

over the past decade, due to their distinct structural properties and bio-compatiblility [34–

42]. Used as a replacement for isotropic fluids in microfluidic devices, nematic LCLCs have

been employed to control the behavior of bacteria and colloids [41, 148–153].

Nematic liquid crystals form topological defects under flow, which gives rise to com-

plex dynamical structures that have been extensively studied in thermotropic liquid crys-

tals (TLCs) and liquid crystal polymers (LCPs) [62, 154–161]. In contrast to lyotropic liquid

crystals that are dispersed in a solvent and whose phase can be tuned by either concentration

or temperature, TLCs do not need a solvent to possess a liquid-crystalline state and their

phase depends only on temperature [31]. Most thermotropic liquid crystals are shear-aligned
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nematics, in which the director evolves towards an equilibrium out-of-plane polar angle. De-

fects nucleate beyond a critical Ericksen number due to the irreconcilable alignment of the

directors from surface anchoring and shear alignment in the bulk flow [157, 162–164]. With

an increase in shear rate, the defect type can transition from 𝜋-walls (domain walls that

separate regions whose director orientation differs by an angle of 𝜋) to ordered disclinations

and to a disordered chaotic regime [165]. Recent efforts have aimed to tune and control the

defect structures by understanding the relation between the selection of topological defect

types and the flow field in flowing TLCs. Strategies to do so include tuning the geometry of

microfluidic channels, inducing defect nucleation through the introduction of isotropic phases

or designing inhomogeneities in the surface anchoring [166–170]. Liquid crystal polymers are

typically tumbling nematics for which 𝛼2𝛼3 < 0, where 𝛼2 and 𝛼3 are the Leslie viscosities.

This leads to a non-zero viscous torque for any orientation of the director, which allows the

director to rotate in the shear plane [31, 155, 161, 171]. The tumbling character of LCPs

facilitates the nucleation of singular topological defects [155, 171]. Moreover, the molecular

rotational relaxation times of LCPs are longer than those of TLCs, and they can exceed

the time scales imposed by the shear rate. As a result, the rheological behavior of LCPs

is governed not only by spatial gradients of the director field from the Frank elasticity, but

also by changes in the molecular order parameter [62, 172–174]. With increasing shear rate,

topological defects in LCPs have been shown to transition from disclinations to rolling cells

and to worm-like patterns [62, 158, 174].

Topological defects occurring in the flow of nematic LCLCs have so far received much

more limited attention [61, 175]. At rest, LCLCs exhibit unique properties distinct from

those of TLCs and LCPs [39, 43, 44, 46, 47, 61]. In particular, LCLCs have significant

elastic anisotropy compared to TLCs; the twist Frank elastic constant, 𝐾2, is much smaller

than the splay and bend Frank elastic constants, 𝐾1 and 𝐾3. The resulting relative ease

with which twist deformations can occur can lead to a spontaneous symmetry breaking

and the emergence of chiral structures in static LCLCs under spatial confinement, despite

the achiral nature of the molecules [39, 49, 52–56]. When driven out of equilibrium by an

imposed flow, the average director field of LCLCs has been reported to align predominantly

along the shear direction under strong shear but to reorient to an alignment perpendicular

95



to the shear direction below a critical shear rate [57–59]. A recent study has revealed a

variety of complex textures that emerge in simple shear flow in the nematic LCLC disodium

cromoglycate (DSCG) [61]. The tumbling nature of this liquid crystal leads to enhanced

sensitivity to shear rate. At shear rates 9𝛾 ă 1 s´1, the director realigns perpendicular to the

flow direction adapting a so-called log-rolling state characteristic of tumbling nematics. For

1 s´1 ă 9𝛾 ă 10 s´1, polydomain textures form due to the nucleation of pure-twist disclination

loops, for which the rotation vector is parallel to the loop normal, and mixed wedge-twist

disclination loops, for which the rotation vector is perpendicular to the loop normal [60, 61].

Above 9𝛾 ą 10 s´1, the disclination loops gradually transform into periodic stripes in which

the director aligns predominantly along the flow direction [61].

Here we report on the structure and dynamics of topological defects occurring in the

pressure-driven flow of nematic disodium cromoglycate. A quantitative evaluation of such

dynamics has so far remained challenging, in particular for fast flow velocities, due to the

slow image acquisition rate of current quantitative polarization-resolved imaging techniques.

Quantitative polarization imaging traditionally relies on three commonly used techniques:

fluorescence confocal polarization microscopy, polarizing optical microscopy and LC-Polscope

imaging. Fluorescence confocal polarization microscopy can provide accurate maps of bire-

fringence and orientation angle, but the fluorescent labeling may perturb the flow proper-

ties [176]. Polarizing optical microscopy requires a mechanical rotation of the polarizers and

multiple measurements, which severely limits the imaging speed. LC-Polscope, an extension

of conventional polarization optical microscopy, utilizes liquid crystal universal compensators

to replace the compensator used in conventional polarization microscopes [177]. This leads

to an enhanced imaging speed and better compensation for polarization artifacts of the opti-

cal system. The need for multiple measurements to quantify retardance, however, still limits

the acquisition rate of LC-Polscopes.

We overcome these challenges by using a novel single-shot quantitative polarization mi-

croscopy technique, termed polarized shearing interference microscopy (PSIM). PSIM com-

bines circular polarization light excitation with off-axis shearing interferometry detection.

Using a custom polarization retrieval algorithm, we achieve single-shot mapping of the re-

tardance, which allows us to reach imaging speeds that are limited only by the camera frame
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rate while preserving a large field-of-view and micrometer spatial resolution. We provide a

brief discussion of the optical design of PSIM in the Methods section; further details of the

measurement accuracy and imaging performance of PSIM are reported in [64].

Using a combination of experiments, numerical simulations and scaling analysis, we show

that in the pressure-driven flow of nematic disodium cromoglycate solutions in a microfluidic

channel, pure-twist disclination loops emerge for a certain range of shear rates. These loops

are elongated in the flow with a fixed aspect ratio. We demonstrate that the disclination

loops nucleate at the boundary between regions where the director aligns predominantly

along the flow direction close to the channel walls and regions where the director aligns

predominantly perpendicular to the flow direction in the center of the channel. The large

elastic stresses of the director gradient at the boundary are then released by the formation

of disclination loops. We show that both the characteristic size and the fluctuations of the

pure-twist disclination loops can be tuned by controlling the flow rate.

5.1 Methods

5.1.1 Experimental methods

We dissolve disodium cromoglycate (DSCG) (TCI America, purity ą 98.0%) at 13.0 wt%

in deionized water. The sample is sealed in a glass tube and heated until it reaches the

isotropic phase, indicated by a turbidity change from turbid to transparent. The sample

is subsequently cooled to room temperature (22.5 ˘ 0.5 ˝C), where it is in the nematic

phase [50, 178]. The rectangular microfluidic channel consists of two glass plates separated

by 6.5 ˘ 1 𝜇m spacers. To ensure a well-controlled initial condition of the liquid crystal,

we use a protocol of surface rubbing which induces a planar alignment of DSCG along the

direction of the flow, where both glass plates are rubbed along the cell length direction using

diamond particles of diameter « 50 nm [68].

An aqueous solution of 13 wt% disodium cromoglycate (DSCG) is injected into a rect-

angular microfluidic channel of length 𝑙 “ 50 mm, width 𝑤 “ 15 mm, and thickness

𝑏 “ 6.5 ˘ 1 𝜇m. At this concentration, DSCG is in the nematic phase at room temperature
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𝑇 “ 22.5˘0.5 ˝C [50, 178]. The optical birefringence of 13 wt% DSCG at rest, ∆𝑛 “ 𝑛e´𝑛o,

is ´0.015 at a wavelength 𝜆𝑤 = 633 nm, where 𝑛e and 𝑛o are the extraordinary and ordi-

nary refractive indices [72]. The corresponding maximum retardance, Γ𝑚𝑎𝑥 “ 2𝜋
𝜆𝑤

∆𝑛𝑏, is

0.98 ˘ 0.15 rad. The liquid crystal is initially planar aligned along the direction of the flow.

The flow is induced by injecting DSCG solutions at a volumetric flow rate 𝑞, ranging from

𝑞 = 0.07–25 𝜇l/min, controlled by a syringe pump (Harvard PHD 2000). The corresponding

Ericksen numbers Er = 𝜂2 9𝛾𝑏2

𝐾2
vary from 306–109,267, where Er characterizes the relative

importance of the viscous forces to the elastic forces. Here, 𝜂2 is the twist viscosity, 𝐾2 is

the twist Frank elastic constant, and 9𝛾 “ 𝑞{p𝑤𝑏2q is the average shear rate [46, 50].

After injecting the sample in the microfluidic channel, we allow it to relax for 1 h, until it

appears black when imaged through crossed polarizers, where one polarizer is placed parallel

to the channel direction. The flow is controlled by a syringe pump (Harvard PHD 2000)

set to a volumetric flow rate 𝑞 ranging between 𝑞 = 0.07–25 𝜇l/min. Once the flow has

reached steady state, we image the sample at the center line of the channel at a frame rate

of 506 frames per second in a 250 ˆ 250 𝜇m2 region far from the inlet (20–30 mm) to avoid

artifacts due to the injection protocol. At the lowest flow rate (0.07 𝜇l/min), we start the

measurement 40–50 min after the onset of flow. At intermediate flow rates (0.1–0.5 𝜇l/min),

we start the measurement after 15–20 min. At higher flow rates (1–25 𝜇l/min), we start

the measurement after 5–10 min. These times are well within the steady-state regime, as

determined in additional experiments.

5.1.2 Numerical methods

We adopt a hybrid lattice Boltzmann method to simulate the pressure-driven flow of nematic

DSCG solutions. This method has been used in prior studies of passive and active lyotropic

nematics [149, 168, 179–181]. The nematic is described by a symmetric and traceless tensorial

order parameter, defined as [30]

Q “ 𝑆pnn ´ I{3q, (5.1)

where 𝑆 is the scalar order parameter, n is the unit vector representing the local nematic

orientation, and I is an identity tensor. The governing Beris-Edwards equation of the nematic
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microstructure (5.2) reads [182]

pB𝑡 ` u ¨ ∇qQ ´ SpW,Qq “ ΓH (5.2)

where u is the velocity vector and Γ is related to the rotational viscosity of the nematic 𝛾1

via Γ “ 2𝑆2
0{𝛾1, with 𝑆0 the equilibrium scalar order parameter. The generalized advection

term SpW,Qq is defined as

SpW,Qq “p𝜉A ` ΩqpQ ` I{3q ` pQ ` I{3qp𝜉A ´ Ωq

´ 2𝜉pQ ` I{3qq trpQAq,
(5.3)

where A “ p∇u ` p∇uq𝑇 q{2 is the strain rate tensor, Ω “ p∇u ´ p∇uq𝑇 q{2 the vorticity,

and 𝜉 a flow-alignment parameter. Here we choose 𝜉 ă 3𝑆0{p2`𝑆0q to enter a flow-tumbling

regime [183]. The molecular field H is a symmetric, traceless projection of the functional

derivative of the free energy of the nematic. Its index form reads

𝐻𝑖𝑗 “
1

2

ˆ

𝛿𝐹

𝛿𝑄𝑖𝑗

`
𝛿𝐹

𝛿𝑄𝑗𝑖

˙

´
𝛿𝑖𝑗
3

tr

ˆ

𝛿𝐹

𝛿𝑄𝑖𝑗

˙

(5.4)

in which the free energy functional is 𝐹 “
ş

𝑉
𝑓𝑑𝑉 . The density 𝑓 consists of a short-range

Landau-de Gennes component and a long-range elastic component [184]:

𝑓 “
𝐴0

2

ˆ

1 ´
𝑈

3

˙

𝑄𝑖𝑗𝑄𝑖𝑗 ´
𝐴0𝑈

3
𝑄𝑖𝑗𝑄𝑗𝑘𝑄𝑘𝑖 `

𝐴0𝑈

4
p𝑄𝑖𝑗𝑄𝑖𝑗q

2

`
1

2
𝐿1𝑄𝑖𝑗,𝑘𝑄𝑖𝑗,𝑘 `

1

2
𝐿2𝑄𝑗𝑘,𝑘𝑄𝑗𝑙,𝑙

`
1

2
𝐿3𝑄𝑖𝑗𝑄𝑘𝑙,𝑖𝑄𝑘𝑙,𝑗 `

1

2
𝐿4𝑄𝑗𝑘,𝑙𝑄𝑗𝑙,𝑘,

(5.5)

where 𝐴0 and 𝑈 are material constants, 𝑄𝑖𝑗,𝑘 denotes B𝑘𝑄𝑖𝑗, and 𝐿1 to 𝐿4 are related to the

Frank elastic constants through [181]

𝐿1 “
1

2𝑆2
0

„

𝐾2 `
1

3
p𝐾3 ´ 𝐾1q

ȷ

,

𝐿2 “
1

𝑆2
0

p𝐾1 ´ 𝐾24q, (5.6)

𝐿3 “
1

2𝑆3
0

p𝐾3 ´ 𝐾1q,
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𝐿4 “
1

𝑆2
0

p𝐾24 ´ 𝐾2q,

where 𝐾1, 𝐾2, 𝐾3, and 𝐾24 denote the splay, twist, bend and saddle-splay Frank elastic

constants, respectively. Eq. 5.2 is solved using a finite difference method.

The hydrodynamic flow is governed by a momentum equation [183, 185, 186]:

𝜌pB𝑡 ` 𝑢𝑗B𝑗q𝑢𝑖 “ B𝑗Π𝑖𝑗

` 𝜂B𝑗 rB𝑖𝑢𝑗 ` B𝑗𝑢𝑖 ` p1 ´ 3B𝜌𝑃0qB𝛾𝑢𝛾𝛿𝑖𝑗s ,
(5.7)

where 𝜌 is the density, 𝜂 is the isotropic viscosity, and 𝑃0 “ 𝜌𝑇 ´𝑓 is the hydrostatic pressure

with 𝑇 being the temperature. The additional stress accounting for the nematic anisotropy

is defined as [183, 185, 186]

Π𝑖𝑗 “ ´ 𝑃0𝛿𝑖𝑗 ´ 𝜉𝐻𝑖𝑘

ˆ

𝑄𝑘𝑗 `
1

3
𝛿𝑘𝑗

˙

´ 𝜉

ˆ

𝑄𝑖𝑘 `
1

3
𝛿𝑖𝑘

˙

𝐻𝑘𝑗

` 2𝜉

ˆ

𝑄𝑖𝑗 `
1

3
𝛿𝑖𝑗

˙

𝑄𝑘𝑙𝐻𝑘𝑙

´ B𝑗𝑄𝑘𝑙
𝛿𝐹

𝛿B𝑖𝑄𝑘𝑙

` 𝑄𝑖𝑘𝐻𝑘𝑗 ´ 𝐻𝑖𝑘𝑄𝑘𝑗.

(5.8)

Eq. 5.7 is solved simultaneously via a lattice Boltzmann method over a D3Q15 grid [185].

The simulation is performed in a rectangular box r𝑋, 𝑌, 𝑍s “ r150, 150, 50s in simulation units

with periodic boundary conditions in the 𝑥- and 𝑦-direction, and no-slip and planar anchoring

condition in the 𝑧-direction. A body force 𝑔 P r2.5 ˆ 10´5 ´ 5 ˆ 10´5s is applied to generate

a pressure-driven flow. Additional details on this method can be found in [186]. Typical

simulation parameters are Γ “ 0.1, 𝜂 “ 0.33, 𝐴 “ 0.01, 𝑈 “ 3.5 corresponding to 𝑆0 „ 0.62,

𝜉 “ 0.6 giving rise to 𝛼3{𝛼2 “ ´0.08, and r𝐿1, 𝐿2, 𝐿3, 𝐿4s “ r0.01, 0, 0.03247, 0.01333s leading

to 𝐾1 : 𝐾2 : 𝐾3 : 𝐾24 “ 1 : 0.33 : 3 : 1.
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5.1.3 Polarized shearing interference microscopy

The optical design of polarized shearing interference microscopy (PSIM) is based on the com-

bination of off-axis shearing interferometry and circular polarization microscopy, as shown

in Fig. 5.1. A supercontinuum laser serves as the illumination source with center wavelength

at 633 nm set by a bandpass filter with a 10 nm pass band. The excitation is transmitted

through a quarter waveplate to produce circular polarization light before impinging on the

birefringent sample. The scattered light is then collected by a microscope and transmitted

through a second quarter wave plate to transform the electric field’s polarization states back

to linear polarization. The electric field component parallel and perpendicular to the slow

axis of the quarter wave plate encode specimen birefringence information. To quantify the

ratio of these two electric field components, the image is duplicated by a diffraction grating,

each polarization component is selected by a linear polarizer at the Fourier plane, and they

are recombined after a linear polarizer set at 45˝ to form an interferogram on the CMOS

camera.

In the interferogram, interference fringes will only appear in the region that has birefrin-

Figure 5.1: Schematic diagram of polarized shearing interference microscopy
(PSIM). The filter is a band pass filter centered at wavelength 633 nm with bandwidth
10 nm.
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gent signals. The retrieval of the optical retardance is thus related to the extraction of the

interference fringe’s amplitude. Similar to quantitative phase microscopy [187], we extract

the amplitude of the retrieved +1 order 𝐸, along with the amplitude of the DC term 𝐴 from

the interferograms with a digital holography algorithm. The retardance Γ is extracted as

Γ “ sin´1

ˆ

2𝐸

𝐴

˙

. (5.9)

This straightforward polarization parameter retrieval algorithm avoids the amplification of

noise while quantitatively mapping the retardance from a single interferogram.

During image processing, we down-sample each frame by a factor of 10 (1200 ˆ 1200

pixels to 120ˆ120 pixels) to reduce the data size. This significantly increases the processing

speed, but negligibly affects the information retrieved from the images as the down-sampled

pixel size is still comparable to the diffraction limit (the diffraction limit is 1.54 𝜇m, the

down-sampled pixel size is 2.08 ˆ 2.08 𝜇m2). The time interval between two consecutive

frames is 1.97 ms.

5.2 Results and Discussion

5.2.1 Emerging structures in pressure-driven flow of nematic DSCG

solutions

When we inject the nematic disodium cromoglycate (DSCG) solution at 13 wt% into the

rectangular microfluidic channel, distinct structures emerge in the material upon the onset

of the pressure-driven flow, as shown in the snapshots in Fig. 5.2A which are imaged in

polarizing optical microscopy with a static full-wave-plate optical compensator (560 nm)

with the slow axis oriented at 45˝ to the crossed polarizers and in the direction parallel

to the flow. Orange colors indicate that the director is parallel to the flow direction (𝑥-

direction), blue colors indicate that the director is perpendicular to the flow direction [72].

At low flow rate, DSCG is preferentially aligned perpendicular to the flow, adopting a log-

rolling state with in-plane orientation angle 𝜙 “ 90˝, even though before the onset of flow the

director is parallel to the flow direction 𝜙 “ 0˝ (Fig. 5.2B). This realignment of the director
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Figure 5.2: Flow-induced structures in nematic DSCG solutions. (A) Structures ob-
served in polarizing optical microscopy for (from left to right): 𝑞 “ 0.07 𝜇l/min, 0.2 𝜇l/min,
0.5 𝜇l/min, and 3 𝜇l/min, using a full-wave-plate optical compensator with its slow axis, 𝜆g,
aligned parallel to the flow direction. The flow is in the 𝑥-direction, the height of the mi-
crofluidic channel is in the 𝑧-direction. A denotes the analyzer and P denotes the polarizer.
(B) Schematic of the director orientation. 𝑛e is the extraordinary refractive index, 𝑛o is the
ordinary refractive index. The in-plane orientation angle (azimuthal angle) and out-of-plane
orientation angle (polar angle) are 𝜙 and 𝜃. (C ) Retardance maps obtained from PSIM
images for (from left to right): 𝑞 “ 0.07 𝜇l/min, 0.2 𝜇l/min, 0.5 𝜇l/min, 3 𝜇l/min and
25 𝜇l/min. The color represents the optical retardance. The scale bars in (A) and (C ) are
50 𝜇m.

is a consequence of the tumbling character of DSCG and the significant anisotropy in the

splay Frank elastic constant 𝐾1 and twist Frank elastic constant 𝐾2, where 𝐾1{𝐾2 « 10;

the director reorients by a twist deformation towards the 𝑦-axis, instead of deforming in

the shear plane which would involve splay deformations [61, 188]. With an increase in flow

rate, domains appear where the director increasingly aligns in the direction of the flow. The

characteristic size of these domains becomes systematically smaller with increasing flow rate.

To quantify these structures, we use PSIM to obtain a map of the effective optical retar-

dance, as shown in Fig. 5.2C where the colors represent the value of the optical retardance

averaged over the thickness of the channel (𝑧-direction). We determine the characteristic size

of the domains of varying retardance by calculating the normalized 2D spatial autocovari-

ance in the 𝑥- and 𝑦-directions, 𝐶𝑥 and 𝐶𝑦, as shown in Fig. 5.3A (see Appendix 5.A.1 for

details) [189]. The observed decrease in domain size with increasing flow rate is reflected in a

decay of the autocovariance at increasingly smaller ∆𝑥 and ∆𝑦, which denote the shift in the
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Figure 5.3: Characteristic size of structures in flowing DSCG solutions controlled
by average shear rate. (A) Normalized 2D spatial autocovariance in the 𝑥-direction
(top) and in the 𝑦-direction (bottom), for different flow rates 𝑞. The solid lines denote
compressed single or double exponential fits. (B) Characteristic domain sizes versus average
shear rate 9𝛾. Along the 𝑥-direction for intermediate average flow rates, 𝐿𝑥 (■), and for low
and high average flow rates, 𝐿𝑥1 (˝), 𝐿𝑥2 (ˆ); along the 𝑦-direction for intermediate flow rates,
𝐿𝑦 (▲), and for low and high flow rates, 𝐿𝑦1 (△), 𝐿𝑦2 (+); and the average characteristic
size 𝐿 “

a

𝐿𝑥𝐿𝑦 (‚). The black line denotes 𝐿 9 9𝛾
´0.19

. (C ) Aspect ratio 𝐿𝑥{𝐿𝑦 (‚) for
intermediate average flow rates, 𝐿𝑥1{𝐿𝑦1 (˝) and 𝐿𝑥2{𝐿𝑦2 (ˆ) for low and high average flow
rates. The black line indicates 𝐿𝑥{𝐿𝑦 «

a

𝐾3{𝐾1 “ 1.9. In (B) and (C ), some of the
error bars are smaller than the symbols.

𝑥- and 𝑦-direction, respectively. For the two lowest and the highest flow rates probed, 𝐶𝑥 and

𝐶𝑦 exhibit a two-step decay suggesting a coexistence of structures of two characteristic sizes.

We use a double compressed exponential fit to access the characteristic length scales 𝐿𝑥1 ,

𝐿𝑥2 , 𝐿𝑦1 and 𝐿𝑦2 , characterizing the average sizes of structures along the 𝑥- and 𝑦-direction.

For the intermediate range of flow rates, we fit 𝐶𝑥 and 𝐶𝑦 with a single compressed expo-

nential function, which yields 𝐿𝑥 and 𝐿𝑦. Details on the fits and fit parameters are provided

in the Appendix 5.A.1. Remarkably, 𝐿𝑥 and 𝐿𝑦 decrease monotonically with the average

shear rate for 4 s´1 ă 9𝛾 ă 500 s´1, as displayed in Fig. 5.3B. The average characteristic size,

defined as 𝐿 “
a

𝐿𝑥𝐿𝑦, exhibits a power-law dependence with the shear rate, 𝐿9 9𝛾
´0.19

. The

domains are elongated in the flow direction, with an approximately constant aspect ratio

𝐿𝑥{𝐿𝑦 “ 1.8 ˘ 0.3, as shown in Fig. 5.3C. A decrease or an increase in shear rate leads to

different characteristics of the domain sizes and the aspect ratio. We focus our discussion

on the intermediate range of shear rates.
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5.2.2 Structures represent pure-twist disclination loops

To identify the nature of the structures, we need to understand the observed changes in the

optical retardance, which could be attributed to three possible effects: (i) changes of the

out-of-plane orientation angle 𝜃, (ii) changes of the order parameter at topological defects

or (iii) twist deformations along the 𝑧-direction [61]. To reveal the dominant effect leading

to the observed retardance and the nature of the structures formed in DSCG solutions,

we perform hydrodynamic simulations of tumbling nematic liquid crystals using a hybrid

lattice Boltzmann method, which allows us to access the director field for Ericksen numbers

Er = 𝜂2 9𝛾𝑏2

𝐾2
varying from 579–8214, a range which overlaps with the lower flow rates probed

in the experiments. At Er < 2480, the directors are predominantly aligned perpendicular

to the flow direction (see Appendix 5.A.2 for details). With increasing Er, the directors

gradually reorient towards the flow direction. Disclination loops nucleate in the flow, shown

as blue lines denoting isosurfaces of order parameter 0.35 in Fig. 5.4A for Er = 7438, where

the dark rods denote the director field in the plane of the loop. To link the simulations to the

experiments, we calculate the effective optical retardance averaged over the channel thickness,

as shown in Fig. 5.4B (see Appendix 5.A.3). This reveals that the low retardance regions

correspond to disclination loops. The majority of the disclination loops are topologically

neutral pure-twist disclination loops, where the rotation vector is parallel to the normal

direction of the loop [60], as shown in Fig. 5.4C.

We can rationalize the formation of pure-twist disclination loops by considering the elastic

powers of splay, twist and bend deformations, which can be expressed as 𝑃splay “
ş

Λ
𝑑Λp∇ ¨

nq2, 𝑃twist “
ş

Λ
𝑑Λpn ¨∇ ˆ nq2 and 𝑃bend “

ş

Λ
𝑑Λpnˆ∇ ˆ nq2, where Λ is a control volume.

The simulations indeed show that 𝑃twist is larger than the powers associated with splay

and bend modes (see Appendix 5.A.4). Therefore, even though the tumbling property of

DSCG allows for the formation of wedge disclinations [61], twist-type defects are dominant in

pressure-driven flow. To further quantify the prevalence of pure-twist disclination loops, we

determine the local winding of the director field along the loop, which is characterized by the

twist angle 𝛽 between the rotation vector Ω and the local tangent vector t of a disclination

loop (see inset of Fig. 5.4D). A value of 𝛽 “ 𝜋{2 denotes a local twist winding; a value of
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Figure 5.4: Simulations of the director field in pressure-driven flow for Er = 7438.
(A) Top view of a disclination loop (blue isosurface of order parameter 0.35). The loop is
located in the 𝑥𝑦-plane. The dark rods denote the directors in the plane of the disclination
loop. The color bar denotes the value of the scalar order parameter. The scale bar corre-
sponds to 3 𝜇m in the experiment. (B) Map of the optical retardance averaged along the
𝑧-axis and determined from the director field. (C ) Structure of a pure-twist disclination loop
(blue isosurface). The arrows indicate the local buildup of the twist distortion. The scale bar
is 2 𝜇m. (D) Probability distribution of the twist angle 𝛽 extracted from approximately 100
loops in the simulations. 𝛽 is the angle between the rotation vector Ω and the local tangent
vector t of a disclination loop (left inset). 𝛽 is close to 𝜋{2, which reveals the prevalence of
twist winding. Right inset: The coloring of the disclination loop indicates the twist angle
𝛽. (E ) Cross-section along the flow direction. The directors align perpendicular to the flow
direction in the center of the channel and parallel to the flow direction near the channel walls.
The defects predominantly nucleate at the interface between these two regions. The color
bar denotes the value of the scalar order parameter. The scale bar is 2 𝜇m. (F ) Schematics
indicating the log-rolling layer ( 9𝛾 < 9𝛾𝑐), the layers aligned in the flow direction ( 9𝛾 > 9𝛾𝑐),
and the location of defects. The red arrows schematically represent the velocity profile, the
green arrows represent the shear rate profile 9𝛾.

𝛽 “ 0 or 𝜋 denotes a local ˘1{2 wedge winding [60]. For a pure-twist disclination loop, the

distribution of 𝛽 is a delta function with 𝛽 “ 𝜋{2 everywhere along the loop. A wedge-twist

disclination loop, by contrast, is characterized by a 𝛽 that continuously varies from 0 to 𝜋

and back to 0 upon one full revolution around the loop (see Appendix 5.A.5 for details).

The distribution of 𝛽 measured for the disclination loops emerging in the flow of DSCG

solutions exhibits a peak at 𝛽 “ 𝜋{2, as shown in Fig. 5.4D, which reveals that pure-twist

disclination loops are indeed prevalent compared to wedge-twist disclination loops. This is
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further evidenced by the finding that the rotation vector Ω is almost uniformly parallel to

the loop normal N (see Appendix 5.A.5). The emergence of pure-twist disclination loops

is a consequence of the smallness of the twist Frank elastic constant, which favors the local

buildup of twist distortions in the 𝑧-direction, from which the loops nucleate [30, 31, 61].

The pure-twist disclination loops form at the boundary between two regions of irrecon-

cilable director alignments: close to the two channel walls, the directors are aligned in the

shear plane, while in a region at the center of the channel the directors adopt a log-rolling

state, as shown in Fig. 5.4E. Due to the high stored energy in the director gradient at the

interface between these two frustrated regions, the elastic stress is released by forming topo-

logical defects. This complex director field within the channel gap results from the tumbling

character of DSCG and the non-uniform shear rate across the gap; DSCG is in a log-rolling

state below a critical shear rate 9𝛾𝑐, but rotates towards the shear plane above 9𝛾𝑐 [59, 61], as

schematically shown in Fig. 5.4F.

To understand the transition to a different regime of flow structures at lower shear rates,

we note that twist deformations can, a priori, lead to two types of topological defects: twist

walls aligned parallel to the 𝑥𝑦-plane, and pure-twist disclination loops [30, 60]. The energy

required to form a twist wall is 𝐸twist wall « 0.4𝐿𝑤𝑏
?

´𝛼2𝐾2 9𝛾, where 𝐿𝑤 is the length of the

twist wall, 𝐾2 « 0.4 pN is the twist Frank elastic constant and 𝛼2 « ´1.66 Pa s is the Leslie

viscosity coefficient for 13 wt% DSCG solutions [50] (see Appendix 5.A.6 for details). The

energy required to form a pure-twist disclination loop is 𝐸pure-twist “ 𝜋
4
𝐾2𝐿𝑝 ln

`

𝐿
𝑎

˘

[30], where

𝐿𝑝 and 𝐿 are the perimeter and the diameter of a pure-twist disclination loop, respectively,

and 𝑎 is the diameter of the defect core in the nematic phase which we estimate to be

approximately 0.1 𝜇m. Pure-twist disclination loops rather than twist walls form when

𝐸pure-twist ă 𝐸twist wall; this condition is reached for a critical shear rate 9𝛾˚ « 0.8 s´1.

Considering the nonuniform shear rates across the thickness of the channel, twist walls

become negligible when the shear rate in the center region (within a nematic coherence length

« 𝑎 [31]) reaches 0.8 s´1, which corresponds to a critical average shear rate 9̄𝛾˚ “
9𝛾˚𝑏
12𝑎

« 4 s´1.

This value indeed denotes the onset of the intermediate shear rate regime in Fig. 5.3B.
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5.2.3 Characteristic size and aspect ratio of pure-twist disclination

loops

Having established the emergence of pure-twist disclination loops in the range of intermedi-

ate average shear rates now allows us to rationalize the observed power-law dependence of

𝐿 9 9𝛾
´0.19

. To do so, we consider the nucleation forces and annihilation forces acting on the

loop. The non-uniform twist deformation across the gap favors the nucleation, the viscous

force imposed by the flow acts to annihilate the nucleated defects. The energy input to

nucleate 𝑁 pure-twist disclination loops is 𝐸n “ 𝑁𝐸pure-twist. Simulations have determined

that the number of nucleated twist defects at a given time induced by shear flow scales as

𝑁9pEr ´ Ercq
0.5 [190], where Erc is the critical Ericksen number above which defects nucle-

ate and Er “
𝜂2 9𝛾𝑏2

𝐾2
is the Ericksen number that governs the nucleation of twist-type defects.

We here set pEr ´ Ercq
0.5

« Er0.5, as we focus on the range where Er ąą Erc. This then

yields the nucleation energy per unit volume as 𝑒𝑛 “ 𝐸n{Λ9 1
Λ

´

𝜂2 9𝛾𝑏2

𝐾2

¯0.5

𝐾2𝐿𝑝 ln
`

𝐿
𝑎

˘

, where Λ

is a control volume. The annihilation of pure-twist disclination loops is driven by the viscous

force and resisted by the elasticity, and can be expressed as the sum of the viscous forces

and the elastic forces in a control volume Λ: 𝑓𝑎 “ 1
Λ

`ş

𝜂2 9𝛾𝑑𝑆 ` 𝐾2

˘

, where
ş

𝑑𝑆9𝐿2 is the

area occupied by a twist loop of size 𝐿. For our range of intermediate average shear rates,

Er ąą 1, indicating that viscous effects dominate, thus 𝑓𝑎9
𝜂2 9𝛾𝐿2

Λ
. Balancing the nucleation

and annihilation forces, 𝑑𝑒𝑛
𝑑𝐿

` 𝑓𝑎 “ 0, gives an expression for the average characteristic size

of the disclination loops:

𝐿9

ˆ

𝐾2

𝜂2

˙0.25

𝑏0.5 9𝛾
´0.25

. (5.10)

This scaling argument indeed yields a power-law exponent for 9𝛾 fairly close to that observed

in experiments, 𝐿 9 9𝛾
´0.19

. The characteristic loop size is thus governed by a balance between

the nucleation force and the annihilation force acting on the loop.

We can likewise understand the aspect ratio of the pure-twist disclination loops, 𝐿𝑥{𝐿𝑦

« 1.8 ˘ 0.3, as being due to the asymmetric elastic deformation that results from the non-

negligible splay-bend anisotropy of DSCG. We consider the aspect ratio to be dominated by

the elastic relaxation related to the deformation of the director field at the boundary of the

disclination loop. This is a justified assumption given that the timescales related to the loop
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fluctuations induced by the viscous torque are much shorter than those characterizing the

elastic deformation. The director field within the plane of a pure-twist disclination loop is

described by n “ pcos 𝜃 cos𝜙, cos 𝜃 sin𝜙, sin 𝜃q, where 𝜃 “ 0˝. The director field outside the

loop is uniform and predominantly along the 𝑥-direction, so that 𝜙 is a small angle close to

0˝. Inside the loop, the director field is likewise uniform, but 𝜙 > 0. With these assumptions,

and realizing that the deformation at the boundary of a pure-twist disclination loop along

the 𝑥-direction involves bend deformations, while that along the 𝑦-direction involves splay

deformations, the nematodynamic equation [30, 31] along the 𝑥-direction then reads (see

Appendix 5.A.7 for details)

𝐾3
B2𝜙

B𝑥2
` 𝐾2

B2𝜙

B𝑧2
“ 𝛾1

𝑑𝜙

𝑑𝑡
, (5.11)

and along the 𝑦-direction

𝐾1
B2𝜙

B𝑦2
` 𝐾2

B2𝜙

B𝑧2
“ 𝛾1

𝑑𝜙

𝑑𝑡
, (5.12)

where 𝛾1 is the rotational viscosity, B2𝜙
B𝑥2 9 1

𝐿𝑥
2 , B2𝜙

B𝑦2
9 1

𝐿𝑦
2 , and B2𝜙

B𝑧2
9 1

𝑏2
. We interrogate the

characteristic length scales in the 𝑥- and 𝑦-directions related to the spatial gradient of the

director field within a certain time window. The time scales related to the elastic deformation

in the 𝑥- and 𝑦-direction then scale as ∆𝑡𝑥9
𝛾1

´

𝐾3
𝐿𝑥2 `

𝐾2
𝑏2

¯ and ∆𝑡𝑦9
𝛾1

ˆ

𝐾1
𝐿𝑦2 `

𝐾2
𝑏2

˙ , respectively. With

𝐾1, 𝐾3 ąą 𝐾2 [46], this simplifies to ∆𝑡𝑥9
𝛾1𝐿𝑥

2

𝐾3
and ∆𝑡𝑦9

𝛾1𝐿𝑦
2

𝐾1
. At steady state, ∆𝑡𝑥 “ ∆𝑡𝑦,

which yields
𝐿𝑥

𝐿𝑦

«

c

𝐾3

𝐾1

“ 1.9. (5.13)

The value of 1.9 is in good agreement with the experimentally determined value of 1.8 ˘ 0.3.

5.2.4 Dynamics of pure-twist disclination loops

Our single-shot imaging technique PSIM allows us to resolve the dynamics of the pure-twist

disclination loops. We calculate the normalized spatiotemporal autocovariance, 𝐶𝑡, which

contains the coupled information of two contributions: the fluctuations of the disclination

loops characterized by a fluctuation time 𝜏1 and the translation of the disclination loops

imposed by the background flow characterized by a translation time 𝜏2. To remove the

contribution from the background flow, we need to place ourselves in the frame of reference
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of the disclination loop. In this Lagrangian framework, we move the region of interest by

∆𝑥 “ 𝑉𝑓∆𝑡 at each time lag ∆𝑡, where 𝑉𝑓 is the velocity of the frame of reference. Only if 𝑉𝑓

is equal to the center of mass velocity of the disclination loop, 𝑉 ˚, we access the fluctuations.

In our pressure-driven flow, the flow velocity varies across the thickness of the channel. As the

location of the pure-twist disclination loops within the channel is unknown, 𝑉 ˚ is unknown.

We thus calculate 𝐶𝑡 for different frame of reference velocities, as shown in Fig. 5.5A for 𝑉𝑓

equal to the average velocity across the channel 𝑉 , and determine the characteristic time 𝜏 by

fitting to a stretched exponential function (details on the fit and fit parameters are provided

in the Appendix 5.A.1). The relation between the fluctuation time 𝜏1, the translation time

𝜏2 and the characteristic time 𝜏 can be expressed as (see Appendix 5.A.8 for details)

1

𝜏
“

1

𝜏1
`

1

𝜏2
, (5.14)

where 1
𝜏2

“
|𝑉 ˚´𝑉𝑓 |

𝐿𝑥
with 𝐿𝑥 the characteristic length scale along the 𝑥-direction. This

expression indeed well describes the dependence of 𝜏´1 on 𝑉𝑓{𝑉 , as shown in Fig. 5.5B for

different flow rates.

The frame of reference velocity 𝑉𝑓 at which 𝜏´1 reaches a minimum denotes the center

of mass velocity, 𝑉 ˚, which is between 1.1–1.4𝑉 . This indicates that the disclination loops

are located in the bulk flow rather than near the channel walls, in agreement with our

simulations. Fitting 𝜏´1 with Eq. 5.14 yields the fluctuation time 𝜏1 and the characteristic

length scale along the 𝑥-direction, 𝐿𝑥, as shown in Fig. 5.5C and D. The agreement between

𝐿𝑥 from this fit and 𝐿𝑥 from the normalized spatial autocovariance validates our approach.

The fluctuation time 𝜏1 scales as 1{ 9̄𝛾. To understand this dependence, we consider the

nematodynamic equations for the director field n “ pcos 𝜃 cos𝜙, cos 𝜃 sin𝜙, sin 𝜃q. Given the

high Ericksen number regime of our experiments, we here neglect the elastic contributions [30,

31]:

𝛾1 cos 𝜃 9𝜙 “ ´𝛼2 sin 𝜃 sin𝜙 9𝛾, (5.15)

𝛾1 9𝜃 “ p𝛼2sin
2𝜃 ´ 𝛼3cos

2𝜃q cos𝜙 9𝛾, (5.16)

where 𝛼2 and 𝛼3 are the Leslie viscosity coefficients, and 𝛾1 is the rotational viscosity. We
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Figure 5.5: Dynamics of pure-twist disclination loops. (A) Normalized spatiotemporal
autocovariance for different flow rates 𝑞, for a frame of reference velocity 𝑉𝑓 equal to the
average velocity 𝑉 . The lines denote stretched/compressed exponential fits. (B) Inverse
characteristic time, 𝜏´1, versus 𝑉𝑓{𝑉 for different flow rates 𝑞. The dashed lines denote
best-fits to Eq. 5.14. (C ) The fluctuation time 𝜏1 decreases linearly with the average shear
rate. The black line denotes 𝜏𝑓 « 3

4
𝛾1?

´𝛼2𝛼3

1
9̄𝛾
. (D) Comparison between 𝐿𝑥 from fitting

𝜏´1 (3) and 𝐿𝑥 from fitting the normalized spatial autocovariance (■).

account for the tumbling character of nematic DSCG solutions by considering small out-of-

plane perturbations 𝜃1 and in-plane perturbations 𝜙1 for directors aligned perpendicular to

the flow direction: 𝜃 “ 𝜃1 and 𝜙 “ 𝜋
2

` 𝜙1. Linearizing Eq. 5.15 and Eq. 5.16 in terms of

these perturbations yields a characteristic fluctuation time of the tumbling nematics: 𝜏𝑓 «

3
4

𝛾1?
´𝛼2𝛼3

1
9𝛾
(see Appendix 5.A.9 for details). Using 𝛼2 « ´1.66 Pa s and 𝛼3 « 0.03 Pa s [50],

we observe a good agreement with 𝜏1 from our experiments, as shown by the black line in

Fig. 4C. This shows that the fluctuations of the pure-twist disclination loops are a direct

reflection of the tumbling dynamics of the director.
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5.3 Conclusions

Our studies reveal the emergence of pure-twist disclination loops in a range of intermediate

shear rates in pressure-driven flow of nematic DSCG solutions. The disclination loops form

at the boundary between two regions of irreconcilable director alignments. Their nucleation

releases the high elastic stresses of the director gradient at the boundary, which induces

twist-type defects because of the low elastic cost associated with the twist mode compared

to bend and splay modes in DSCG solutions. By controlling the shear rate we can tune both

the size and the dynamics of the pure-twist disclination loops, which could provide guidelines

for using flowing LCLCs to guide the assembly of active matter or particles [151]. We demon-

strate the power of polarized shearing interference microscopy in unraveling fluctuations of

defects, which may also enable investigations of the dynamics of other non-equilibrium sys-

tems, including active nematics or turbulent elongated cells [60, 191, 192].

5.A Appendices

5.A.1 Normalized Autocovariance

We calculate the normalized 2D spatial autocovariance in the 𝑥- and 𝑦-direction as

𝐶𝑥𝑦p∆𝑥,∆𝑦q “

B

𝐸 rpΓ𝑥,𝑦,𝑡 ´ 𝜇𝑥,𝑦q pΓ𝑥`Δ𝑥,𝑦`Δ𝑦,𝑡 ´ 𝜇𝑥,𝑦qs

𝜎2
𝑥,𝑦

F

𝑡

, (5.17)

where Γ𝑥,𝑦,𝑡 denotes the retardance at a location p𝑥, 𝑦q at time 𝑡. 𝜇𝑥,𝑦 is the average spatial

retardance and 𝜎2
𝑥,𝑦 is the spatial variance at time 𝑡. The bracket xy𝑡 denotes the temporal

average. ∆𝑥 and ∆𝑦 are shifts in the 𝑥- and 𝑦-direction, respectively. The normalized

2D spatial autocovariance in the 𝑥-direction, 𝐶𝑥, is defined as 𝐶𝑥𝑦p∆𝑥,∆𝑦 “ 0q, and the

normalized 2D spatial autocovariance in the 𝑦-direction, 𝐶𝑦, is defined as 𝐶𝑥𝑦p∆𝑥 “ 0,∆𝑦q.

The normalized temporal autocovariance is calculated as

𝐶𝑡p∆𝑡q “

B

𝐸 rpΓ𝑥,𝑦,𝑡 ´ 𝜇𝑡q pΓ𝑥,𝑦,𝑡`Δ𝑡 ´ 𝜇𝑡qs

𝜎2
𝑡

F

𝑥,𝑦

, (5.18)

where 𝜇𝑡 is the average temporal retardance and 𝜎2
𝑡 is the temporal variance at a location
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p𝑥, 𝑦q. The brackets xy𝑥,𝑦 denote the spatial average.

We use a Lagrangian framework where we move the region of interest by ∆𝑥 “ 𝑉𝑓∆𝑡 at

each time lag ∆𝑡, where 𝑉𝑓 denotes the velocity of the frame of reference. The normalized

temporal autocovariance in this moving framework then becomes a normalized spatiotem-

poral autocovariance:

𝐶𝑡p∆𝑡q “

C

𝐸
“

pΓ𝑥,𝑦,𝑡 ´ 𝜇̃𝑡q
`

Γ𝑥`𝑉𝑓Δ𝑡,𝑦,𝑡`Δ𝑡 ´ 𝜇̃𝑡

˘‰

𝜎̃2
𝑡

G

𝑥,𝑦

, (5.19)

where 𝜇̃𝑡 is the average temporal retardance and 𝜎̃𝑡 is the temporal variance at a fixed point

in the moving framework.

Fitting method for the normalized autocovariance

In the range of shear rates 4 s´1 ă 9𝛾 ă 500 s´1, we fit 𝐶𝑥 and 𝐶𝑦 with a single com-

pressed/stretched exponential function:

𝐶𝑥 “ exp

ˆ

´

ˆ

∆𝑥

𝐿𝑥

˙𝛼𝑥
˙

,

𝐶𝑦 “ exp

ˆ

´

ˆ

∆𝑦

𝐿𝑦

˙𝛼𝑦
˙

,

(5.20)

where 𝛼𝑥 and 𝛼𝑦 are the compressed exponents for 𝐶𝑥 and 𝐶𝑦, and 𝐿𝑥 and 𝐿𝑦 are the

characteristic length scales of the structures along each direction. The values of 𝛼𝑥 and 𝛼𝑦

are reported in Table 5.1.

For 9𝛾 ă 4 s´1 and 9𝛾 ą 500 s´1, we fit 𝐶𝑥 and 𝐶𝑦 with a double compressed/stretched

exponential function:

𝐶𝑥 “ p1 ´ 𝑐𝑥q exp

ˆ

´

ˆ

∆𝑥

𝐿𝑥,1

˙𝛼𝑥1
˙

` 𝑐𝑥 exp

ˆ

´

ˆ

∆𝑥

𝐿𝑥,2

˙𝛼𝑥2
˙

,

𝐶𝑦 “ p1 ´ 𝑐𝑦q exp

ˆ

´

ˆ

∆𝑦

𝐿𝑦,1

˙𝛼𝑦1
˙

` 𝑐𝑦 exp

ˆ

´

ˆ

∆𝑦

𝐿𝑦,2

˙𝛼𝑦2
˙

,

(5.21)

where 𝑐𝑥 and 𝑐𝑦 are weight coefficients of the second decay. We then obtain four characteristic

length scales: 𝐿𝑥1 and 𝐿𝑥2 along the 𝑥-direction, and 𝐿𝑦1 and 𝐿𝑦2 along the 𝑦-direction,

suggesting the coexistence of structures of two characteristic sizes. The values of 𝛼𝑥1 , 𝛼𝑥2 ,
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Table 5.1: Exponents and weight coefficients of the decays along the 𝑥-direction and the
𝑦-direction

9̄𝛾 (s´1) 𝛼𝑥 𝛼𝑥1 𝛼𝑥2 𝑐𝑥 𝛼𝑦 𝛼𝑦1 𝛼𝑦2 𝑐𝑦
2.16 0.98 1.26 0.45 1.83 1.40 0.47
3.09 0.93 1.78 0.32 1.45 1.76 0.25
6.17 0.97 1.65
10.80 1.06 1.64
15.43 1.36 1.65
30.86 1.35 1.63
92.59 1.23 1.48
154.32 1.23 1.44
308.64 1.16 1.34
771.60 0.95 1.29 0.68 1.16 1.49 0.58

𝛼𝑦1 and 𝛼𝑦2 , and the values for 𝑐𝑥 and 𝑐𝑦, are reported in Table 5.1.

Finally, in the range of shear rates 4 s´1 ă 9𝛾 ă 500 s´1, we fit the normalized spatiotem-

poral autocovariance, 𝐶𝑡, calculated for different frame of reference velocities, 𝑉𝑓 , with a

stretched/compressed exponential function:

𝐶𝑡 “ exp

˜

´

ˆ

∆𝑡

𝜏

˙𝛽
¸

, (5.22)

where 𝛽 is the exponent and 𝜏 the characteristic time. The values of 𝛽 for different 𝑉𝑓 are

reported in Table 5.2.

Table 5.2: Fitting parameters for the normalized spatiotemporal autocovariance 𝐶𝑡

𝑉𝑓{𝑉0 0 0.5 0.9 1 1.1 1.2 1.3 1.5
9̄𝛾 (s´1) 𝛽 𝛽 𝛽 𝛽 𝛽 𝛽 𝛽 𝛽

6.17 1.49 1.40 1.23 1.28 1.16 1.29 1.20 1.10
10.8 1.46 1.36 1.29 1.32 1.36 1.25 1.08 0.97
15.43 1.53 1.40 1.26 1.24 0.97 1.05 1.01 0.97
30.86 1.50 1.32 1.10 1.04 0.86 0.83 0.90 1.07
92.59 1.42 1.22 1.06 0.93 0.90 0.68 0.70 0.84
154.32 1.44 1.28 1.06 0.99 0.94 0.74 0.68 0.72
308.64 1.53 1.30 1.09 0.74 0.64 0.64 0.59 0.87
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5.A.2 Director field in the numerical simulations

With an increase in Ericksen number Er from 579 to 8214, the directors in the center of

the channel transition from being aligned perpendicular to the flow direction to exhibiting

undulations, as shown in the top panel of Fig. 5.6.

The director field across the thickness of the channel exhibits distinct features at different

average shear rates. For lower shear rates (Er = 1147 and Er = 2480), most directors are

aligned perpendicular to the flow direction (Fig. 5.6A and B); at higher shear rates (Er = 5734

and Er = 7438), directors in the center of the channel remain perpendicular to the flow direc-

tion but those close to the two channel walls reorient parallel to the flow direction (Fig. 5.6C

and D). Disclinations nucleate at the boundary between these two frustrated regions. Cal-

culating the retardance maps in simulations and evaluating the characteristic length scales

𝐿𝑥 and 𝐿𝑦 following the same procedure as in the experiments, we find an aspect ratio

𝐿𝑥{𝐿𝑦 « 2.4 ˘ 0.2 for Er = 5734 and Er = 7438, fairly close to the value obtained in exper-

iments at comparable Ericksen numbers, 𝐿𝑥{𝐿𝑦 « 1.8 ˘ 0.3. The aspect ratio measured in

simulations increases significantly („ 9) at lower shear rates (Er = 2480), again in qualita-

tive agreement with the experimental findings. In these low Ericksen number flows, twist

walls are the dominant type of defect in pressure-driven DSCG solutions. The undulations
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Figure 5.6: Simulation snapshots of the director field in pressure-driven flow for Ericksen
numbers Er = 1147 (A), Er = 2480 (B), Er = 5734 (C ), and Er = 7438 (D). The scale
bar corresponds to 5 𝜇m in the experiment. Top row: top view of the center plane of the
channel. Bottom row: side view of the channel. The short black lines denote the director
field, the color indicates the scalar order parameter.
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observed in simulations (Fig. 5.6B) indicate the coexistence of left-twist and right-twist walls

along the 𝑧-direction. Forming a boundary of these domains in the 𝑦-direction would involve

a splay-mode elastic penalty, while forming a boundary in the 𝑥-direction would involve a

bend-mode elastic penalty. As 𝐾3 ą 𝐾1, the splay-mode elastic penalty is lower, and thus

the domain walls align in the 𝑥-direction, which results in the large aspect ratio.

5.A.3 Forward model for the determination of the retardance map

from simulation data

We develop a model to calculate the retardance map from the liquid crystal director field

obtained in simulations. This allows us to qualitatively compare the retardance maps ob-

tained experimentally in PSIM with those from simulations. The model is based on the

Beam Propagation Method [193, 194], where the specimen volume is divided into multiple

layers and the optical field is updated after accounting for the layer perturbation on the

field. The relation between the optical field at axial position 𝑧, and the optical field at axial

position 𝑧 ` 𝛿𝑧, can be expressed as

𝑎p𝑥, 𝑦, 𝑧 ` 𝛿𝑧q “ 𝑒𝑗𝑘0p𝛿𝑛prqq𝛿𝑧
ˆ Im´1

¨

˝Imtp𝑎p¨, ¨, 𝑧qqu ˆ 𝑒
´𝑗

˜

𝜔2
𝑥`𝜔2

𝑦

𝑘0𝑛0`

?
𝑘20𝑛

2
0´𝜔2

𝑥´𝜔2
𝑦

¸

𝛿𝑧

˛

‚, (5.23)

where 𝑎prq is the complex envelope of the paraxial optical wave 𝑢prq “ 𝑎prq exptp𝑗𝑘0𝑛0𝑧qu,

and r “ p𝑥, 𝑦, 𝑧q denotes the position in three-dimensional (3D) space. 𝑘0 is the wave

number of the illumination light, 𝑛0 is the refractive index of the medium, 𝜔𝑥 and 𝜔𝑦 denote

the spatial frequencies along the 𝑥- and 𝑦-directions, Im represents a two-dimensional (2D)

spatial Fourier transform, 𝛿𝑧 is the interval between layers, and 𝛿𝑛prq “ 𝑛prq ´ 𝑛0 is the

refractive index difference between the medium and the sample.

This equation though only describes the isotropic scattering of a scalar light field and must

be generalized to account for the material birefringence on a vector field. Eq. 5.23 is rewritten
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as

Ep𝑥, 𝑦, 𝑧`𝛿𝑧q “ 𝐽p𝑥, 𝑦, 𝑧`𝛿𝑧qˆ Im´1

¨

˝ImtpEp¨, ¨, 𝑧qqu ˆ 𝑒
´𝑗

˜

𝜔2
𝑥`𝜔2

𝑦

𝑘0𝑛0`

?
𝑘20𝑛

2
0´𝜔2

𝑥´𝜔2
𝑦

¸

𝛿𝑧

˛

‚, (5.24)

where Ep., ., 𝑧q is the vectorial expression of the paraxial light wave field at axial position

𝑧. The three components of the electric field along the 𝑥-, 𝑦- and 𝑧-directions at a location

denoted by a 3D position vector r are

Eprq “

¨

˚

˚

˚

˝

𝐸𝑥prq

𝐸𝑦prq

𝐸𝑧prq

˛

‹

‹

‹

‚

. (5.25)

A Jones matrix formulation is used to describe the birefringent properties of the medium.

𝐽prq is the Jones matrix of the sample at position r and describes the anisotropic scattering

property of the specimen. The expression of the Jones matrix can be expressed as

𝐽prq “

¨

˚

˚

˚

˝

𝐽𝑥𝑥 𝐽𝑥𝑦 𝐽𝑥𝑧

𝐽𝑦𝑥 𝐽𝑦𝑦 𝐽𝑦𝑧

𝐽𝑧𝑥 𝐽𝑧𝑦 𝐽𝑧𝑧

˛

‹

‹

‹

‚

prq. (5.26)

Each component of the Jones matrix can be related to the local director field of liquid crystals

at a position r:

𝐽𝑥𝑥 “ 𝑒𝑗𝜑e cos2 𝜙 sin2 𝜃 ` 𝑒𝑗𝜑opsin2 𝜙 ` cos2 𝜙 sin2 𝜃q,

𝐽𝑥𝑦 “ ´
`

𝑒𝑗𝜑e ´ 𝑒𝑗𝜑o
˘

sin𝜙 cos𝜙 cos2 𝜃,

𝐽𝑥𝑧 “
`

𝑒𝑗𝜑e ´ 𝑒𝑗𝜑o
˘

cos𝜙 sin 𝜃 cos 𝜃,

𝐽𝑦𝑥 “ 𝐽𝑥𝑦,

𝐽𝑦𝑦 “ 𝑒𝑗𝜑e sin2 𝜙 cos2 𝜃 ` 𝑒𝑗𝜑opcos2 𝜙 ` sin2 𝜙 sin2 𝜃q, (5.27)

𝐽𝑦𝑧 “ ´
`

𝑒𝑗𝜑e ´ 𝑒𝑗𝜑o
˘

sin𝜙 sin 𝜃 cos 𝜃,

𝐽𝑧𝑥 “ 𝐽𝑥𝑧,

117



𝐽𝑧𝑦 “ 𝐽𝑦𝑧,

𝐽𝑧𝑧 “ 𝑒𝑗𝜑e sin2 𝜃 ` 𝑒𝑗𝜑o cos2 𝜃.

For notational simplicity, we have not explicitly expressed the position r of the Jones matrix

components. 𝜙 and 𝜃 are the in-plane and out-of-plane orientation angles of the director

field at position r. 𝜑e and 𝜑o are the phase delays caused by the local refractive index of the

sample along the extraordinary axis 𝑛e and the ordinary axis 𝑛o:

𝜑e “ 𝑘0𝑛e𝛿𝑧,

𝜑o “ 𝑘0𝑛o𝛿𝑧.
(5.28)

In PSIM, right-hand circular polarization illumination is used; the electric field at layer 0 is

thus expressed as

Ep¨, ¨, 𝑧 “ 0q “
1

?
2

¨

˝

1

𝑖

˛

‚. (5.29)

We keep track of the components along the 𝑥- and 𝑦-directions since the camera can only

detect the intensity distribution in the 𝑥-𝑦 plane. Eq. 5.24 is used recursively to calculate the

light field scattered by the birefringent specimen layer by layer, and the light field exiting the

specimen is denoted as E𝑜𝑢𝑡. After exiting the specimen, the light field transmits through a

quarter wave plate (QWP). Thereafter, the components of the light field along the 𝑥-direction

and the 𝑦-direction are separated by a diffraction grating, and interfere at the image plane

with a linear polarizer with a polarization direction that is 45˝ to the 𝑥-direction. The light

field after transmitting the QWP is expressed as

E
p1q

𝑜𝑢𝑡 “ 𝐽QWPE𝑜𝑢𝑡 “

¨

˝

1 0

0 𝑖

˛

‚E𝑜𝑢𝑡. (5.30)

The vectorial optical field after the grating is expressed as

E
p2q

𝑜𝑢𝑡 “
1

?
2

¨

˝

1 1

´1 1

˛

‚E
p1q

𝑜𝑢𝑡. (5.31)

118



Finally, the retardance distribution is determined as

Γ “ sin´1
´

|𝐸
p2q

𝑜𝑢𝑡,𝑥 ¨ 𝐸
p2q

𝑜𝑢𝑡,𝑦|

¯

, (5.32)

where 𝐸p2q

𝑜𝑢𝑡,𝑥 and 𝐸p2q

𝑜𝑢𝑡,𝑦 are the components of Ep2q

𝑜𝑢𝑡 along the 𝑥- and 𝑦-directions. | ¨ | denotes

the operation of extracting the amplitude value from a complex number. This simulation is

performed in a box of size 150ˆ150ˆ50 pixels, and the pixel size in the 𝑥-𝑦 plane is „ 0.2 𝜇m

same as in the experiment, while the interval along the 𝑧-direction is 𝛿𝑧 “ 0.12 𝜇m. The

refractive index values along the extraordinary axis 𝑛e and the ordinary axis 𝑛o are 1.350

and 1.365, while the refractive index of the medium 𝑛0 is 1.337.

5.A.4 Elastic powers of splay, twist and bend deformations

From the director field in the numerical simulations, we calculate the elastic powers of

splay, twist and bend deformations, which are expressed as 𝑃splay “
ş

Λ
𝑑Λp∇ ¨ nq2, 𝑃twist “

ş

Λ
𝑑Λpn ¨ ∇ ˆ nq2 and 𝑃bend “

ş

Λ
𝑑Λpn ˆ ∇ ˆ nq2, where Λ is a control volume. 𝑃twist is

larger than the powers associated with splay and bend deformations (Fig. 5.7).

P t
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Figure 5.7: Elastic power analysis of different deformation modes in simulations. Temporal
evolution upon the onset of flow of the power of twist, 𝑃twist (red), the power of splay, 𝑃splay

(blue) and the power of bend, 𝑃bend (green) for Ericksen numbers Er = 6509 (△), Er = 7438
(˝) and Er = 8214 (˝). In steady state, the power of twist is significantly larger than the
powers of the other two modes.
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5.A.5 Topological structure of disclination loops in numerical sim-

ulations

We characterize the topological structure of the disclination loops by calculating the local

winding of the director field along the loop [60, 168, 195]. We introduce the twist angle 𝛽,

which denotes the angle between the rotation vector Ω and the local tangent vector t of

a disclination loop, as illustrated in Fig. 5.8A; cos 𝛽 “ t ¨ Ω. In a wedge-twist disclination

loop, 𝛽 varies continuously from 0 (denoting `1{2 wedge winding) to 𝜋 (denoting ´1{2 wedge

winding) and back to 0 upon a full revolution along the loop. In a pure-twist disclination

loop, 𝛽 “ 𝜋{2 at all points on the loop [60].

Validation of 𝛽 and 𝛾 determination

By choosing an appropriate ansatz, we construct a wedge-twist disclination loop and a pure-

twist disclination loop in simulation as shown in Fig. 5.8B and C, to validate our calculation
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Figure 5.8: Local winding in wedge-twist and pure-twist disclination loops. (A) Schematics
illustrating the tangent vector t, the rotation vector Ω, the disclination loop normal N,
the azimuthal angle 𝜑, the twist angle 𝛽, and the angle 𝛾. (B) A designed wedge-twist
disclination loop and (C ) a designed pure-twist disclination loop. The color map indicates
the twist angle 𝛽. In (B) and (C ), the yellow background indicates the 𝑥𝑧-plane across the
center line of the loop; the blue background indicates the 𝑥𝑦-plane across the center line of
the loop. The blue rods denote directors in the 𝑥𝑧-plane; the brown rods denote directors
in the 𝑥𝑦-plane. (D) Distribution of 𝛽 for the wedge-twist disclination loop shown in (B).
(E ) Distribution of 𝛽 for the pure-twist disclination loop shown in (C ). (F ) Distribution of
𝛾 inferred from the distribution of 𝛽 for the wedge-twist disclination loop. (G) Distribution
of 𝛾 inferred from the distribution of 𝛽 for the pure-twist disclination loop.
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of the distribution of the twist angle 𝛽. We define the angle 𝜓 as the angle between the

director and the 𝑥-axis. For a wedge-twist disclination loop, we set n “ x cosp𝜓q ` z sinp𝜓q

inside and n “ x outside a cylindrical region, with 𝜓 continuously changing from 0 at the

bottom channel wall to 𝜋 at the top channel wall. For a pure-twist disclination loop, we

set n “ x cosp𝜓q ` y sinp𝜓q inside and n “ x outside a cylindrical region, with 𝜓 again

continuously varying from 0 to 𝜋 along the 𝑧-direction. We equilibrate the system for 30,000

time steps and then evaluate 𝛽 for all grid points within the disclination region characterized

by a scalar order parameter 𝑆 ď 0.37 following a similar method as discussed in [60]. By

calculating the tangent vector t and the rotation vector Ω, we find 𝛽 “ arccos t ¨ Ω. For the

wedge-twist disclination loop, the distribution of 𝛽 is approximately uniform from 0 to 𝜋,

as shown in Fig. 5.8D. The distribution of 𝛽 for the pure-twist disclination loop exhibits a

peak at 𝛽 “ 𝜋{2, as shown in Fig. 5.8E. These findings are in agreement with the expected

values for 𝛽.

Given that the rotation vector Ω is spatially uniform for both types of disclination

loops [60], we can define the angle 𝛾 as the angle between Ω and the normal of the discli-

nation loop N, another measure used to infer the topological structure of disclination loops.

In a wedge-twist disclination loop 𝛾 “ 𝜋{2, in a pure-twist disclination loop 𝛾 “ 0. We here

show how we can estimate 𝛾 from the statistics of 𝛽.

We first derive the distribution of 𝛽 for a disclination loop. We introduce the azimuthal

angle 𝜑 to get the expressions t “ p´ sin𝜑qx ` pcos𝜑qy and Ω “ psin 𝛾qx ` pcos 𝛾qz, which

yields the relation cos 𝛽 “ ´ sin𝜑 sin 𝛾. The symmetry of the problem allows us to focus

on ´𝜋{2 ă 𝜑 ď 𝜋{2. We denote the probability of having a value of 𝛽 for a given 𝛾

as 𝑃 p𝛽|𝛾q, and the probability of having a value of 𝜑 for a given 𝛾 as 𝑃 p𝜑|𝛾q, such that

𝑃 p𝛽|𝛾q𝑑𝛽 “ 𝑃 p𝜑|𝛾q𝑑𝜑.

Because of the circular geometry of a disclination loop that implies that 𝑃 p𝜑|𝛾q “ 1{𝜋,

we have 𝑃 p𝛽|𝛾q “ 𝑃 p𝜑|𝛾q
𝑑𝜑
𝑑𝛽

“ 1
𝜋

sin𝛽?
sin2 𝛽´cos2 𝛾

. The non-negativity of probability requires

𝜋{2 ´ 𝛾 ď 𝛽 ď 𝜋{2 ` 𝛾, or equivalently |𝜋{2 ´ 𝛽| ď 𝛾. For wedge-twist disclination loops

with 𝛾 “ 𝜋{2, 𝑃 p𝛽|𝛾q “ 1{𝜋 corresponding to a uniform distribution for 0 ď 𝛽 ď 𝜋. For

pure-twist disclination loops with 𝛾 “ 0, 𝑃 p𝛽|𝛾q “ 𝛿p𝛽 ´ 𝜋{2q corresponding to a delta

function distribution centered at 𝛽 “ 𝜋{2.
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The unconditional probability distribution 𝑃 p𝛾q is the solution of 𝑃 p𝛽q, where 𝑃 p𝛽q “
ş

𝜋
2

|𝜋
2

´𝛽|
𝑃 p𝛽|𝛾q𝑃 p𝛾q𝑑𝛾 and 𝑃 p𝛽|𝛾q are known. To numerically solve for 𝑃 p𝛾q, we convert the

integral into a linear algebra problem 𝑃 p𝛽q “
ř

𝛾 𝑃 p𝛽|𝛾q𝑃 p𝛾q∆𝛾, where 𝑃 p𝛽q and 𝑃 p𝛾q are

one-dimensional arrays, 𝑃 p𝛽|𝛾q is a two-dimensional matrix, and ∆𝛾 is the choice of integral

step. The unknown distribution 𝑃 p𝛾q can then be calculated as 𝑃 p𝛾q “ ∆𝛾
ř

𝛽 𝑃 p𝛽|𝛾q´1𝑃 p𝛽q.

We validate our numerical method by calculating the distribution of 𝛾 from the distribution

of 𝛽 for the two designed loops. For the wedge-twist disclination loop, the peak of the dis-

tribution of 𝛾 is approximately at 𝜋{2, as shown in Fig. 5.8F. For the pure-twist disclination

loop, the distribution of 𝛾 exhibits a peak at « 0, as shown in Fig. 5.8G.

Topological structure of disclination loops in pressure-driven DSCG solutions

In the main part of Chapter 5, we determine the structure of the disclination loops formed

in pressure-driven DSCG solutions by evaluating the twist angle 𝛽 for approximately 100

loops for an Ericksen number of Er = 7438. We here show this data again in Fig. 5.9A; the

location of the peak at 𝛽 “ 𝜋{2 indicates that the disclination loops are of pure-twist type.

The structure of the disclination loops is fairly complex; multiple loops can be entangled,

which makes it difficult to directly determine 𝛾 of an individual loop. We therefore use

the statistics of the twist angle 𝛽 to infer the distribution of 𝛾, as outlined in the previous

section. We make the simplifying assumptions that (i) the disclination loops are circular
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Figure 5.9: Local winding in disclination loops emerging in pressure-driven DSCG solutions.
(A) Distribution of the twist angle 𝛽 extracted from approximately 100 disclination loops
forming in the simulations of pressure-driven DSCG solutions. (B) Distribution of the angle
𝛾 inferred from the distribution of 𝛽. Inset: Definition of 𝛽 and 𝛾.
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and (ii) they are disconnected. We find that 𝛾 indeed exhibits a peak close to zero, as

shown in Fig. 5.9B. This confirms that the disclination loops are composed predominantly

of pure-twist structures.

5.A.6 Estimate of the energy of twist walls

The director field is described by n “ pcos 𝜃 cos𝜙, cos 𝜃 sin𝜙, sin 𝜃q, where 𝜃 is the out-of-

plane polar angle and 𝜙 the in-plane azimuthal angle (𝜃 “ 0˝ for a director in the 𝑥𝑦

plane, 𝜙 “ 0˝ for a director in the shear plane). As the spatial confinement in our channel

suppresses the tumbling behavior significantly, 𝜃 remains close to 𝜃 “ 0˝ across the channel

thickness, such that B𝜃
B𝑧

« 0. The nematodynamic equation in the limit of high Ericksen

numbers simplifies to [31]

𝛼2 sin 𝜃 sin𝜙 9𝛾 “
`

𝐾2cos
2𝜃 ` 𝐾3sin

2𝜃
˘

cos 𝜃
B2𝜙

B𝑧2
, (5.33)

´
`

𝛼2sin
2𝜃 ´ 𝛼3cos

2𝜃
˘

cos𝜙 9𝛾 “
`

sin2𝜃𝐾3 ` cos2𝜃𝐾1

˘ B2𝜃

B𝑧2

´
`

𝐾2cos
2𝜃 ` 𝐾3sin

2𝜃
˘

sin 𝜃 cos 𝜃

ˆ

B𝜙

B𝑧

˙2

. (5.34)

where 𝛼2 and 𝛼3 are the Leslie viscosity coefficients, and 𝐾1, 𝐾2 and 𝐾3 are the splay, twist

and bend Frank elastic constants [50]. For simplicity, we here consider a simple shear flow

with a constant shear rate. As sin 𝜃 ăă 1, 𝐾2cos
2𝜃 ` 𝐾3sin

2𝜃 « 𝐾2. Eq. 5.33 then yields

𝑑𝜙

𝑑𝑧
“

c

´2
𝛼2 9𝛾 sin 𝜃

𝐾2 cos 𝜃
cos𝜙, (5.35)

where we use the average value of 𝜃 « 4˝ obtained in our simulations. Substituting Eq. 5.35

into the expression of the energy of a twist wall yields

𝐸twist wall “
1

2
𝐿𝑤𝐾2𝑏

ż 𝑏
2

´ 𝑏
2

ˆ

𝑑𝜙

𝑑𝑧

˙2

𝑑𝑧 « 0.4𝐿𝑤𝑏
a

´𝛼2𝐾2 9𝛾, (5.36)

where 𝐿𝑤 is the length of twist-wall and 𝑏 is the thickness of the channel.
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5.A.7 Derivation of simplified nematodynamic equation to describe

the aspect ratio of pure-twist disclination loops

Given the nematic liquid crystal’s director field n “ pcos 𝜃 cos𝜙, cos 𝜃 sin𝜙, sin 𝜃q, where 𝜃 is

the out-of-plane polar angle and 𝜙 the in-plane azimuthal angle, and the velocity field v, the

general form of the nematodynamic equation is [30, 31]

𝑑𝑛𝑖

𝑑𝑡
“

1

𝛾1
𝛿K
𝑖𝑗ℎ𝑗 ` 𝑊𝑖𝑘𝑛𝑘 ` 𝜆𝛿K

𝑖𝑗𝐴𝑗𝑘𝑛𝑘. (5.37)

where 𝛾1 is the rotational viscosity, 𝐴𝑗𝑘 “ 1
2

´

B𝑣𝑗
B𝑥𝑘

`
B𝑣𝑘
B𝑥𝑗

¯

is the symmetric part of the

velocity gradients, 𝑊𝑖𝑘 “ 1
2

´

B𝑣𝑖
B𝑥𝑘

´
B𝑣𝑘
B𝑥𝑖

¯

is the antisymmetric part of the velocity gradi-

ents, and 𝛿K
𝑖𝑗 is the transverse Kronecker delta. 𝜆 “ 𝛼2`𝛼3

𝛼2´𝛼3
, where 𝛼2 and 𝛼3 are the

Leslie viscosity coefficients. ℎ𝑖 “ ´
B𝑓𝐹𝑂

B𝑛𝑖
` B

B𝑥𝑗

´

B𝑓𝐹𝑂

BpB𝑛𝑖{B𝑥𝑗q

¯

, where 𝑓𝐹𝑂 “ 1
2
𝐾1p∇ ¨ nq

2
`

1
2
𝐾2pn ¨ p∇ ˆ nqq

2
`1

2
𝐾3pn ˆ p∇ ˆ nqq

2 is the Frank–Oseen elastic energy density. 𝐾1, 𝐾2

and 𝐾3 are the splay, twist, and bend Frank elastic constants, respectively.

Our assumption that the aspect ratio of the disclination loops is dominated by the elastic re-

laxation related to the deformation of the director field at the boundary of the loop simplifies

Eq. 5.37 to
𝑑𝑛𝑖

𝑑𝑡
“

1

𝛾1
𝛿K

𝑖𝑗
ℎ𝑗. (5.38)

We consider the director field within the plane of the pure-twist disclination loops, and

assume that the out-of-plane polar angle 𝜃 “ 0˝, which simplifies the director field to n “

pcos𝜙, sin𝜙, 0q. Eq. 5.38 is then expressed as

𝛾1
𝑑𝜙

𝑑𝑡
“ cos𝜙ℎ𝑦 ´ sin𝜙ℎ𝑥. (5.39)

Moreover, we find that the director field outside the loop is uniform and predominantly along

the 𝑥-direction, such that 𝜙 « 0. Inside the loop, the director field is likewise uniform, with

𝜙 ą 0. Considering the director deformation across the center planes of the loop, we note

that B𝜙
B𝑦

“ 0 in the 𝑥-direction and B𝜙
B𝑥

“ 0 in the 𝑦-direction, given the uniformity of the

director field both outside and inside the loop. Along the 𝑥-direction, Eq. 5.39 then simplifies
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to

𝛾1
𝑑𝜙

𝑑𝑡
“ 𝐾3

B2𝜙

B𝑥2
` 𝐾2

B2𝜙

B𝑧2
, (5.40)

and along the 𝑦-direction to

𝛾1
𝑑𝜙

𝑑𝑡
“ 𝐾1

B2𝜙

B𝑦2
` 𝐾2

B2𝜙

B𝑧2
. (5.41)

5.A.8 Decoupling the contributions of fluctuations and translation

to the dynamics of disclination loops

A disclination loop initially at a location 𝑅⃗ and at time 𝑡 moves with a center of mass velocity

𝑉⃗ ˚ while simultaneously undergoing fluctuations. To remove the contribution of the center

of mass velocity to the dynamics, we move the observation window with a velocity 𝑉⃗𝑓 for

our calculation of the spatiotemporal autocovariance. In such a moving coordinate system,

the normalized spatiotemporal autocovariance of the retardance, Γ, can be described by an

exponential function:

A

∆Γp𝑅⃗, 𝑡q∆Γp𝑅⃗ ` 𝑉⃗∆𝑡, 𝑡 ` ∆𝑡q
E

𝑅⃗
“ 𝑒´Δ𝑡

𝜏 , (5.42)

where 𝑉⃗ “ 𝑉⃗𝑓 ´ 𝑉⃗ ˚, ∆𝑡 denotes the lag time, and 𝜏 is the time characterizing the dynamics

of the disclination loop, which can contain contributions of both the fluctuations and the

translation. Linearizing both sides of Eq. 5.42 gives

1 `

B

𝑉⃗∆𝑡∆Γp𝑅⃗, 𝑡q
B∆Γ

B𝑡

F

𝑅⃗

`

B

∆𝑡∆Γp𝑅⃗, 𝑡q
B∆Γ

B𝑡

F

𝑅⃗

` 𝑂p∆𝑡2q « 1 ´
∆𝑡

𝜏
. (5.43)

Likewise, the normalized spatial autocovariance of Γ can be described by an exponential

function:
A

∆Γp𝑅⃗, 𝑡q∆Γp𝑅⃗ ` 𝑟⃗, 𝑡q
E

𝑅⃗
“ 𝑒´| 𝑟⃗

𝐿𝑥
|, (5.44)

where 𝑟⃗ is a shift in space and 𝐿𝑥 is the characteristic length of the disclination loop along

the 𝑥-direction. Linearizing both sides of Eq. 5.44 and reorganizing yields

B

∆Γp𝑅⃗, 𝑡q
B∆Γ

B𝑅⃗
𝑖⃗

F

𝑅⃗

« ´
1

𝐿𝑥

. (5.45)
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When 𝑉⃗ “ 0, the dynamics of the disclination loop is only determined by the fluctuations,

which are characterized by a fluctuation time 𝜏1. We then have the normalized temporal

autocovariance:
A

∆Γp𝑅⃗, 𝑡q∆Γp𝑅⃗, 𝑡 ` ∆𝑡q
E

𝑅⃗
“ 𝑒

´Δ𝑡
𝜏1 . (5.46)

Linearizing both sides of Eq. 5.46 yields

1 `

B

∆𝑡∆Γp𝑅⃗, 𝑡q
B∆Γ

B𝑡

F

𝑅⃗

« 1 ´
∆𝑡

𝜏1
. (5.47)

Substituting Eq. 5.45 and Eq. 5.47 into Eq. 5.43 gives the relation between the translation,

the fluctuations and the combined dynamics:

ˇ

ˇ

ˇ
𝑉⃗ ˚ ´ 𝑉⃗𝑓

ˇ

ˇ

ˇ

𝐿𝑥

`
1

𝜏1
“

1

𝜏
. (5.48)

5.A.9 Fluctuation time determined by tumbling character of ne-

matic DSCG

The dynamics can be described by the nematodynamic equations in the limit of high Ericksen

numbers, where the director field is n “ pcos 𝜃 cos𝜙, cos 𝜃 sin𝜙, sin 𝜃q [30, 31]

𝛾1 cos 𝜃 9𝜙 “ ´𝛼2 sin 𝜃 sin𝜙 9𝛾, (5.49)

𝛾1 9𝜃 “ 9𝛾p´𝛼2sin
2𝜃 ` 𝛼3cos

2𝜃q cos𝜙. (5.50)

where 𝛼2 and 𝛼3 are the Leslie viscosity coefficients and 𝛾1 is the rotational viscosity. We

consider the directors to undergo small out-of-plane perturbations 𝜃1 and small in-plane

perturbations 𝜙1. For directors aligned perpendicular to the flow direction, this gives 𝜃 “ 𝜃1

and 𝜙 “ 𝜋
2

` 𝜙1. Linearizing Eq. 5.49 and Eq. 5.50 in terms of these angle deviations yields

𝛾1

ˆ

1 ´
𝜃1

2

2

˙

9𝜙1 “ 𝛼2𝜃1

ˆ

1 ´
𝜙1

2

2

˙

9𝛾 (5.51)

𝛾1 9𝜃1 “ 9𝛾𝜙1

`

´𝛼2𝜃1
2

` 𝛼3

`

1 ´ 𝜃1
2
˘˘

. (5.52)
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We neglect the higher order terms in Eq. 5.51 and Eq. 5.52, and take the second derivative

of Eq. 5.52 to get

9𝜙1 “
𝛼2𝜃1
𝛾1

9𝛾, (5.53)

and
:𝜃1 “

𝛼3

𝛾1
9𝛾 9𝜙1. (5.54)

Substituting Eq. 5.53 into Eq. 5.54 yields

:𝜃1 “
𝛼3𝛼2

𝛾12
9𝛾2𝜃1. (5.55)

From Eq. 5.55, we obtain a timescale characterizing the fluctuations of a tumbling director:

𝜏𝑓 « 3
4

𝛾1?
´𝛼2𝛼3

1
9𝛾
. We find that 𝜏𝑓 corresponds well to our experimentally determined time 𝜏1

characterizing the fluctuations of the disclination loops, suggesting that the loop fluctuations

are a reflection of the tumbling character of nematic DSCG.
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Chapter 6

Flow-induced periodic chiral structures

in an achiral nematic liquid crystal

This chapter is based on Ref. [67]

Chirality, or the absence of mirror symmetry, is ubiquitous in living systems, from

DNA to the placement of organs in mammals [196, 197], and chiral objects in chemistry

and material science have revolutionized chemical catalysis [198], optical sensors [199], and

metamaterial design [200, 201]. There are two common ways how supramolecular chiral

structures emerge. They can either be induced by a chiral input which in turn generates

a chiral output, or they are composed of molecular building blocks that are themselves

chiral [202]. By contrast, the emergence of chirality in centrosymmetric systems is much

less common, and it requires a spontaneous mirror symmetry breaking [56]. Elucidating the

routes to induce chirality in achiral molecular assemblies will help reveal the mechanism of

mirror symmetry breaking [203–205].

Liquid crystals (LCs) are materials composed of anisotropic mesogens. Achiral LCs of

specific molecular shapes can form chiral structures [206]. The molecular bow shape of

bend-core liquid crystals in the smectic phase, for instance, can introduce chirality through

an intralayer polar orientational ordering combined with a collective tilt of the smectic

planes [207]. Mirror symmetry breaking has also been shown to emerge in rod-shaped liquid
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crystals in the nematic phase when the material is confined to a specific spatial confinement

that can be imposed by curved or inclined surfaces, or by hybrid anchoring boundary con-

ditions [56, 208, 209]. The spontaneous mirror breaking induced by spatial confinement is

particularly prevalent in nematic lyotropic chromonic liquid crystals (LCLCs) [49, 210, 211].

LCLCs are aqueous dispersions of disk-shaped molecules that self-assemble into cylindrical

aggregates. Over a range of temperature and concentration, LCLCs exhibit a nematic phase.

Due to the semi-flexibility of the aggregates, nematic LCLCs have a large elastic anisotropy;

the twist Frank elastic constant, 𝐾2, is an order of magnitude lower than the elastic constants

of splay, 𝐾1, and bend, 𝐾3 [50, 51]. If nematic LCLCs are forced to adapt with bend and

splay deformations to a curved surface, they will instead relieve these deformations through

a twist deformation to minimize the elastic free energy as a consequence of the small 𝐾2.

Such a twist deformation is a pivotal element in forming chiral helices [49, 210]. In addi-

tion to these three elastic constants, the saddle-splay Frank elastic constant, 𝐾24, also plays

an essential role in triggering and stabilizing chiral structures through lowering the elastic

energy in cylindrical and toroidal geometries [53, 54, 212]. Exploiting the ease with which

twist deformations occur and the non-negligible saddle-splay elasticity that stabilizes chiral

structures, programmed anchoring conditions have been developed to control chiral struc-

tures in achiral nematic LCLCs [55, 213]. To date, structural chirality in achiral nematic

LCs induced by anisotropic elasticities and confined boundary conditions has been explored

exclusively in the static state, where an imposed curvature or a pre-patterned surface are

necessary for the emergence of chirality [56].

In this study, we report our discovery of shear-driven mirror symmetry breaking in ne-

matic LCLCs in the absence of curved or pre-patterned surfaces. We reveal the emergence

of an unexpected chiral structure when the material is flowing in a microfluidic channel. The

chirality results from a periodic double-twist deformation of the liquid crystal and leads to

striking stripe patterns perpendicular to the flow direction. We show that the stripe period is

determined by a competition between the viscous torque and the bend elastic torque acting

on directors, and can be easily tuned by varying the plate spacing of the microfluidic channel

and the flow velocity.

We demonstrate that the mirror symmetry breaking of the director field is induced by
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i) the tumbling property of nematic LCLCs and ii) an elastic instability of a specific config-

uration of the director field. The tumbling nature leads to non-zero viscous torque for any

orientation of the director (𝛼2𝛼3 ă 0, where 𝛼2 and 𝛼3 are the Leslie viscosities [61]), and

destabilizes the director field in shear flow. This induces different configurations, including a

biaxial-splay configuration characterized by opposite directions of the splay deformation in

two orthogonal planes. We show that this biaxial-splay configuration, in which the stability

solution is dictated by the saddle-splay elasticity, is unstable and evolves towards a lower

energy state of the director field; the periodic double-twist configuration that is selected due

to the small twist Frank elastic constant of LCLCs. This path to chirality is unique. The

structural chirality is here triggered by a dynamic process when an achiral nematic system

is driven away from equilibrium and adopts a chiral lower energy state.

6.1 Methods

6.1.1 Experimental methods

Nematic disodium cromoglycate (DSCG) (TCI America, purity ą 98.0%) solutions are

prepared by dissolving DSCG in deionized water at 13.0 wt% [50]. The sample is heated

to 𝑇 « 90 ˝C where it reaches the isotropic phase, which allows the DSCG to fully dissolve

into water. The sample is then cooled to room temperature (𝑇 “ 23.2 ˘ 0.5˝C) where it

adopts the nematic phase [50, 178]

The microfluidic channel consists of two glass plates separated by 8 – 26 𝜇m spac-

ers (Specac, MY SPR RECT 0.006 mm OMNI, and PRECISION BRAND). The width

of the channel is 40 mm, the length is 50 mm. A reservoir of 25 mm in height, 40 mm in

width, and 2 – 3 mm in interior thickness is connected to one end of the channel to induce

a uniform velocity profile at the inlet. Both channel walls are treated to introduce a uni-

form planar anchoring condition along the flow direction by following a protocol of surface

rubbing, where the glass plates are rubbed along the cell length direction using a diamond

particle paste with particle diameter of « 50 nm (TechDiamondTools) [68].

To obtain the stripe patterns, the nematic DSCG solution is injected into the microfluidic
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channel through a 1 mm diameter hole at the top of the reservoir at controlled volumetric

flow rates, 𝑞, ranging between 𝑞 = 0.25–0.375 𝜇l/min. The volumetric flow rate is set by a

syringe pump (Harvard PHD 2000).

The flow field is observed through crossed polarizers compensated with a retarder (560 nm),

placed at 45˝ to the polarizer, using an optical microscope (OMAX M837T) with an objective

of magnification M = 4ˆ and numerical aperture NA = 0.1, and M = 10ˆ and NA = 0.25.

This setup allows to us identify the director field averaged in the channel thickness direction.

We further quantify the director field averaged in the gap direction using a PolScope (Open-

PolScope).

We employ fluorescence confocal polarizing microscopy (Leica SP5) with a water immer-

sion objective of magnification of M = 25ˆ and numerical aperture NA = 0.95 to determine

the director field of the stripe patterns in the thickness direction. We add fluorescent par-

ticles (Acridine Orange, Biotium) at a concentration of 100 ppm to the DSCG solutions.

In the nematic phase, the fluorescent molecules are aligned by the orientation of the disk-

like DSCG molecules that is perpendicular to the direction of the directors. The polarized

probing beam excites the fluorescent molecules and causes fluorescence. The efficiency of ex-

citation depends on the angle between the transition dipole of the fluorescent molecules and

the polarization of the probing beam [214]. A high fluorescence intensity indicates that the

polarization of the probing beam is parallel to the fluorescent molecules and thus perpendic-

ular to the aligned direction of the DSCG aggregates. A low fluorescence intensity indicates

that the polarization of the probing beam is perpendicular to the fluorescent molecules and

thus parallel to the aligned direction of the DSCG aggregates. In our experiments, the po-

larization of the probing beam is perpendicular to the flow direction. A high fluorescence

intensity then indicates that the director is either aligned more parallel to the flow direction

or homeotropically in the thickness direction; a low fluorescence intensity indicates that the

director is more perpendicular to the flow direction pointing in the 𝑦-direction. When cap-

turing the director field in the thickness direction, we scan eight layers from the top wall to

the bottom wall of the microfluidic channel. During the scan, the stripe pattern moves with

the flow. We therefore analyze the cross-section through the thickness of the channel in a

Lagrangian framework in the frame of reference of the stripes. While taking fluorescence im-
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ages, we simultaneously capture images through crossed polarizer and analyzer. This allows

us to trace the displacement of stripes during the scanning process, and to correspondingly

shift the region of interest for each layer accounting for the motion of the stripes.

6.1.2 Numerical methods

The numerical simulations employ the Leslie-Ericksen theory to account for the dynamics of

directors on the domain wall that forms at divergent splay deformations in pressure-driven

flow. The velocity field u and the director field n describe the nematodynamics of nematic

liquid crystals. The polar angle 𝜃 and the azimuthal angle 𝜙 describe the director n =

psin 𝜃 cos𝜙, sin 𝜃 sin𝜙, cos 𝜃q. The director field n at steady state is governed by an angular

momentum equation, the nematodynamic equation [31]:

1

𝛾1
𝛿K
𝑖𝑗ℎ𝑗 ` 𝑊𝑖𝑘𝑛𝑘 ` 𝜆𝛿K

𝑖𝑗𝐴𝑗𝑘𝑛𝑘 “ 0, (6.1)

where 𝛾1 is the rotational viscosity, 𝐴𝑗𝑘 “ 1
2

´

B𝑢𝑗

B𝑥𝑘
`

B𝑢𝑘

B𝑥𝑗

¯

and 𝑊𝑖𝑘 “ 1
2

´

B𝑢𝑖

B𝑥𝑘
´

B𝑢𝑘

B𝑥𝑖

¯

are

the symmetric and antisymmetric parts of the velocity gradients, 𝛿K
𝑖𝑗 is the transverse Kro-

necker delta and 𝜆 “ 𝛼2`𝛼3

𝛼2´𝛼3
with 𝛼2 and 𝛼3 the Leslie viscosity coefficients. ℎ𝑖 “ ´

B𝑓𝐹𝑂

B𝑛𝑖
`

B

B𝑥𝑗

´

B𝑓𝐹𝑂

BpB𝑛𝑖{B𝑥𝑗q

¯

, where 𝑓𝐹𝑂 is the Frank–Oseen elastic energy density. We focus on the con-

figuration of the director field at the domain wall that forms at divergent splay deforma-

tions in the 𝑥𝑧-plane, which allows us to simplify the nematodynamic equation to one-

dimensional (1D) governing equations. We note that 𝜑 « 0˝ and B𝜙
B𝑧

« 0 at the domain wall.

We further approximate 𝐾1 « 𝐾3 « 𝐾̄ « p𝐾1 ` 𝐾3q{2 for simplification, which is justified

as 𝐾1 and 𝐾3 are of the same order of magnitude. Eq. 6.1 can then be simplified to

𝐾̄
B2𝜃

B𝑧2
“

`

𝛼2 cos
2 𝜃 ´ 𝛼3 sin

2 𝜃
˘

9𝛾, (6.2)

where 9𝛾 “ B𝑢𝑥

B𝑧
is the shear rate and 𝑢𝑥 is the velocity in the 𝑥-direction.

To describe the velocity field u in the 𝑥-direction, we employ a linear momentum equa-

tion [215]:

𝜂eff
B2𝑢𝑥
B𝑧2

“ ´𝐺, (6.3)
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where ´𝐺 is the pressure gradient in the 𝑥-direction. 𝜂eff is the effective viscosity, which is

a function of the director field n and can be expressed as [31]

𝜂eff “ 𝛼1 sin
2 𝜃 cos2 𝜃 sin𝜙 ` 𝜂𝑏 sin2 𝜃 sin2 𝜙 ` 𝜂𝑐 cos2 𝜃 `

1

2
𝛼4 sin

2 𝜃 cos2 𝜙, (6.4)

where 𝛼1 and 𝛼4 are the Leslie viscosity coefficients. 𝜂𝑏 and 𝜂𝑐 are the Miesowicz viscosities.

We non-dimensionalize Eqs. 6.2, 6.3, and 6.4 using 𝑧 “ 𝑏𝑧˚, 𝑢𝑥 “ 𝐺𝑏2

𝛼2
𝑢˚
𝑥, 𝜂˚

eff “
𝜂eff
𝛼2

and

9𝛾˚ “
B𝑢˚

𝑥

B𝑧˚ :
B2𝜃

B𝑧˚2
“
𝐺𝑏3

𝐾̄
9𝛾˚

ˆ

cos2 𝜃 ´
𝛼3

𝛼2

sin2 𝜃

˙

, (6.5)

𝜂˚
eff

B2𝑢˚
𝑥

B𝑧˚2
“ ´1, (6.6)

𝜂eff˚ “
𝛼1

𝛼2

sin2 𝜃 cos2 𝜃 `
𝜂𝑏

𝛼2

sin2 𝜃 `
𝜂𝑐

𝛼2

cos2 𝜃. (6.7)

We numerically solve Eqs. 6.5–6.6 using the finite difference method, applying no-slip

boundary conditions and infinite anchoring conditions. In reality, however, the anchoring

strength of LCLCs on rubbed glass is weak [216], corresponding to finite anchoring conditions

in which the directors can deviate from the initial anchoring condition in shear flow. To mimic

the finite anchoring conditions and to account for the tumbling characteristics of nematic

LCLCs [61], we assign different polar angles at the top and bottom walls: 𝜃𝑏,𝑡𝑜𝑝 “ 𝜃𝑏 and

𝜃𝑏,𝑏𝑜𝑡𝑡𝑜𝑚 “ 90˝ ´𝜃𝑏 (90˝ ě 𝜃𝑏 ě 45˝) [217] and validate it by comparing the anchoring strength

at 𝜃𝑏 with the anchoring strength in reality (See Appendix 6.A.1 for details).

Eq. 6.5 gives an expression for the Ericksen number Ernumerical “ 𝐺𝑏3{𝐾̄. With 𝐺 „

´𝛼2 9̄𝛾{𝑏, we have Ernumerical „ ´𝛼2 9̄𝛾𝑏2{𝐾̄ “ Eraverage, where 9̄𝛾 is the average shear rate. We

investigate the regime of Ernumerical “ 25 ´ 50, which corresponds to the regime of Eraverage

in which the stripe patterns form in the experiments. The Leslie viscosity coefficients are

chosen to satisfy the tumbling character of flowing nematic LCLCs; 𝛼1 “ ´0.0181 Pa s,

𝛼2 “ ´0.1104 Pa s, 𝛼3 “ 0.0011 Pa s, 𝜂𝑏 “ 0.0251 Pa s, 𝜂𝑐 “ 0.1355 Pa s.

To further access the azimuthal angles of the director field neighboring the domain

wall that forms at divergent splay deformations, we employ the hybrid lattice Boltzmann
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method (LBM) where the microstructure and hydrodynamic flow of the nematic LC are de-

scribed by a tensorial order parameter Q and a velocity vector u, respectively. For a uniaxial

nematic LC, Q “ 𝑆pnn´ I{3q, where the unit vector n represents the nematic director field,

𝑆 is the scalar order parameter of the nematic LC and I is the identity tensor. By defining

the strain rate D “ p∇u ` p∇uq𝑇 q{2 and the vorticity Ω “ p∇u ´ p∇uq𝑇 q{2, we introduce

an advection term S “ p𝜉D`Ωq ¨ pQ` I
3
q ` pQ` I

3
q ¨ p𝜉D´Ωq ´ 2𝜉pQ` I

3
qpQ : ∇uq, where

𝜉 is the flow aligning parameter. We use 𝜉 “ 0.6 for the tumbling nematic LCLCs.

The governing equation of the Q-tensor, the Beris–Edwards equation, reads [182]

BQ

B𝑡
` u ¨ ∇Q ´ S “ ΓH, (6.8)

where Γ is related to the rotational viscosity of the nematic LC via 𝛾1 “ 2𝑆2
0{Γ [218], and

H is the molecular field defined as H “ ´p 𝛿𝐹
𝛿Q

´ I
3
tr

´

𝛿𝐹
𝛿Q

¯

q that drives the system towards

thermodynamic equilibrium with a free energy functional 𝐹 “
ş

𝑏𝑢𝑙𝑘
𝑓LdG𝑑𝑉 `

ş

𝑏𝑢𝑙𝑘
𝑓elastic𝑑𝑉 `

ş

𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑓surf𝑑𝑆. The first term is the short-range Landau–de Gennes free energy density,

which reads 𝑓LdG “ 𝐴0

2
p1 ´ 𝑈

3
q trpQ2q ´ 𝐴0𝑈

3
trpQ3q ` 𝐴𝑈0

4
ptrpQ2qq2 [30], where 𝐴0 and 𝑈 are

material constants. The second term, the long-range elastic energy density, reads 𝑓elastic “

1
2
𝐿1𝑄𝑖𝑗,𝑘𝑄𝑖𝑗,𝑘 ` 1

2
𝐿2𝑄𝑗𝑘,𝑘𝑄𝑗𝑙,𝑙 ` 1

2
𝐿3𝑄𝑖𝑗𝑄𝑘𝑙,𝑖𝑄𝑘𝑙,𝑗 ` 1

2
𝐿4𝑄𝑗𝑘,𝑙𝑄𝑗𝑙,𝑘 [219], where 𝑄𝑖𝑗,𝑘 denotes

B𝑘𝑄𝑖𝑗, where we use the Einstein summation convention. The elastic constants 𝐿1 to 𝐿4 can

be mapped onto the commonly used Frank elastic constants via [218]:

𝐿1 “
1

2𝑆2
0

„

𝐾2 `
1

3
p𝐾3 ´ 𝐾1q

ȷ

,

𝐿2 “
1

𝑆2
0

p𝐾1 ´ 𝐾24q,

𝐿3 “
1

2𝑆3
0

p𝐾3 ´ 𝐾1q,

𝐿4 “
1

𝑆2
0

𝐾4.

(6.9)

where 𝐾1, 𝐾2, 𝐾3 and 𝐾24 denote the splay, twist, bend and saddle-splay Frank elastic

constants. The nematic coherence length is defined as 𝜉𝑁 “
a

𝐿1{𝐴0 [219], and sets the unit

of length in our simulations. The surface free energy density 𝑓surf “ 1
2
𝑊 pQ ´ Q0q2 imposes
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a boundary condition to the Q-tensor by quadratically penalizing any deviation of Q at a

surface from its preferred order parameter Q0 ” 𝑆0pn0n0 ´ I{3q [220]. The parameter 𝑊 is

the anchoring strength. We consider planar anchoring, n0 “ x, with x the surface anchoring

condition. The planar anchoring is weak with an anchoring strength 𝑊 “ 0.02 in simulation

units.

The local fluid density 𝜌 and the velocity u are governed by a linear momentum equa-

tion [149, 221]

𝜌

ˆ

B

B𝑡
` u ¨ ∇

˙

u “ ∇ ¨ Π ` 𝐺x, (6.10)

The viscoelastic properties of the nematic LC are lumped in the passive stress, which is the

sum of viscous and elastic terms. The stress, Π is written as [218, 220],

Π “ 2𝜂D´𝑃0I`2𝜉pQ`
I

3
qpQ : Hq´𝜉H¨pQ`

I

3
q´𝜉pQ`

I

3
q¨H´∇Q :

𝛿𝐹

𝛿∇Q
`Q¨H´H¨Q,

(6.11)

where 𝜂 is the isotropic viscosity and 𝑃0 is the isotropic bulk pressure. We consider a

pressure-driven flow along the 𝑥-direction.

We employ a hybrid lattice Boltzmann method to solve the coupled governing partial dif-

ferential Eq. 6.8 and Eq.6.10 [149, 220, 221]. The simulation box size is [𝐿𝑥, 𝐿𝑦, 𝐿𝑧] = [5, 51, 5],

with periodic boundary conditions in the 𝑥- and 𝑦-directions. We chose the following pa-

rameters: 𝜂 “ 1{3 and Γ “ 0.1, 𝜉 “ 0.6, 𝑈 “ 3.5, which results in 𝑆0 » 0.62. We

further use 𝐴0 “ 0.1, 𝐿1 “ 0.1, 𝐿2 “ 0, 𝐿3 “ 0.3247, and 𝐿4 “ 0.133, corresponding to

𝐾1 “ 3𝐾2 “ 1
3
𝐾3 “ 𝐾24 in Eq. 6.9 for a tumbling nematic LC. A no-slip boundary condition

is imposed at the two walls of a microfluidic channel.

6.1.3 Simulated director field

To reconstruct the 3D director field of the stripe patterns, we use continuum simulations to

generate a nematic field that satisfies the experimentally observed director field, starting the

simulation with an ansatz that satisfies the twisted structure found in the experiment. The

chiral structure is then stabilized by minimizing the free energy representing a chiral nematic

LC. The equilibrated director field is further processed to generate a crossed polarized im-
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age, which agrees with the experimental image, supporting the validity of the reconstructed

director field.

6.2 Results and Discussion

Flow-induced periodic double-twist structures in achiral nematic liquid crystals.

An aqueous solution of 13 wt% disodium cromoglycate (DSCG) is placed in a rectangular

microfluidic channel of length 𝑙 “ 55 mm, width 𝑤 “ 40 mm, and thickness 𝑏 “ 26 ˘ 1 𝜇m

at room temperature 𝑇 “ 23.2 ˘ 0.5 ˝C. At this concentration and the temperature, DSCG

solutions form a nematic phase [50, 178]. The surface anchoring condition is controlled to

be planar in the direction of the cell length, along the 𝑥-direction. We probe the alignment

of the nematic liquid crystal using polarizing optical microscopy. In the static state, the

optical birefringence of a 13 wt% DSCG solution, ∆𝑛 “ 𝑛e ´ 𝑛o, is ´0.015, where 𝑛e and

𝑛o are the extraordinary and ordinary refractive indices [65, 72]. The maximum retardance,

𝛿𝑚𝑎𝑥 “ ∆𝑛𝑏, is then 375 ˘ 15 nm. When imaged under crossed polarizer (placed along

𝑥-direction) and analyzer the material appears black; when imaged with an additional static

full-wave-plate optical compensator (560 nm) with the slow axis oriented at 45˝ to the crossed

polarizers and in the direction perpendicular to 𝑥-direction, the material appears green. This

confirms that the director field is planar aligned in the 𝑥-direction, as shown in Fig. 6.1(A

and B). Such uniform alignment governed by the surface anchoring conditions is the minimal

energy state of static nematic liquid crystals in a rectangular channel [222].

Remarkably, under a weak flow at a volumetric flow rate of 𝑞 = 0.25 𝜇l/min, a stripe

pattern perpendicular to the flow direction spontaneously emerges over large regions, as

shown in Fig. 6.1(A). With the compensation of the retarder, the orange birefringence

color in between two blue stripes indicates that the directors in that region are predomi-

nately perpendicular to the flow direction along the 𝑦-direction, adopting almost a log-rolling

state (see Appendix 6.A.2). Using a PolScope (OpenPolScope) to quantify the retardance

map, we find that the retardance is close to zero in certain regions of the stripes, indicating

a homeotropic alignment where the directors are parallel to the cell thickness direction, as

shown in Fig. 6.2(A). We denote this low-retardance region as region I in Fig. 6.2(A), and the
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Figure 6.1: Stripe patterns emerge from uniformly aligned nematic lyotropic
chromonic liquid crystals in a weak flow. (A) The flow is in the 𝑥-direction, the
thickness of the microfluidic channel is in the 𝑧-direction. The images are captured using
a crossed polarizer, P, an analyzer, A, and a full-wave-plate optical compensator with its
slow axis, 𝜆g, oriented in the direction perpendicular to the flow direction. The scale bar is
200 𝜇m. (B) Schematics of the transition from a uniform planar alignment of the director
field in the static state to a periodic double-twist structure in weak flow.

region in between as region II. The directors rotate from being parallel to the 𝑧-direction (re-

gion I) with azimuthal angle 𝜙 « 90˝ (Fig. 6.2(B)), to being more parallel to the 𝑦-direction

(region II) with polar angle 𝜃 « 0˝. This indicates a periodic twist deformation in the flow

direction, as schematically shown in Fig. 6.1(B). The selection of the twist deformation is a

consequence of the small twist Frank elastic constant of nematic DSCG solutions [50].

To probe the alignment in the cell thickness direction, we use fluorescence confocal polar-

izing microscopy. A low fluorescence intensity 𝐼 indicates an alignment of the director in the

𝑦-direction, a high fluorescence intensity indicates an alignment of the director in either the

flow direction (𝑥-direction) or the cell thickness direction (𝑧-direction) [214]. In region II,

the stripes have alternatively high and low fluorescence intensity when measured at the bot-

tom layer of the microfluidic channel. As we scan across the cell thickness direction towards

the top layer of the microfluidic channel, the fluorescence intensity switches; dark regions
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Figure 6.2: Mirror symmetry breaking in weak flows of a nematic liquid crystal.
(A) Retardance map (upper panel), where the color represents the optical retardance aver-
aged in the thickness direction 𝛿, and the direction of the black rods denotes the orientation
of directors averaged in the thickness direction projected in the 𝑥𝑦-plane. The scale bar is
50 𝜇m. Along the distance 𝐿 indicated as a red line in the retardance map normalized by
the plate spacing, 𝑏, the retardance varies periodically (lower panel). The low retardance
region of stripes is denoted as region I, and the region in between low-retardance stripes is
denoted as region II. (B) Schematic of the director orientation. 𝜙 is the azimuthal angle and
𝜃 is the polar angle. 𝑛e is the extraordinary refractive index, 𝑛o is the ordinary refractive
index. (C) Fluorescence image of the stripe pattern in the 𝑥𝑦-plane imaged at the bottom
layer of the microfluidic channel (upper panel). The white arrow represents the polarization
of the probing beam. The scale bar is 50 𝜇m. Along the red line, 𝐿, the normalized fluo-
rescence intensity at the top layer (black line) is out of phase with that at the bottom layer
(blue line) in a 𝑥𝑧-cross-section (lower panel). 𝐿 is normalized by the plate spacing, 𝑏. (D)
Schematics of the periodic double-twist deformation in the 𝑥𝑧-plane (upper panel) and the
corresponding stripe pattern (lower panel). (E) A map of the normalized light intensity, 𝐼,
imaged through crossed polarizer and analyzer (lower panel) recovered from the simulated
periodic double-twist director field (upper panel). 𝑆 denotes the scalar order parameter.
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become bright and bright regions become dark, indicating an alternating twist deformation

for adjacent stripes in the cell thickness direction, as shown in Fig. 6.1(B) and Fig. 6.2(C).

The combination of the periodic twist deformation in the flow direction and the alter-

nating twist deformation in the cell thickness direction results in a periodic double-twist

structure, as schematically shown in Fig. 6.2(D). To further verify that the periodic double-

twist structure corresponds to the stripe pattern, we calculate the effective optical retardance

averaged over the channel thickness from a simulated director field; the retardance map is

indeed in good agreement with the experimentally observed pattern (Fig. 6.2(E)). The peri-

odic double-twist structure is remarkable in two aspects: i) It is a chiral structure built by

an achiral nematic liquid crystal, which involves a spontaneous mirror symmetry breaking,

and ii) the chiral structure possesses a well-defined characteristic period despite the absence

of a pitch length in the achiral building blocks.

Mechanism of mirror symmetry breaking. To reveal the mechanism of the spon-

taneous mirror symmetry breaking, we analyze the dynamics of the director field associated

with the different elastic deformation modes induced by the weak flow. Looking at a larger

section of the cell through a crossed polarizer and analyzer shows that the stripe patterns

are surrounded by regions of uniform director fields (Fig. 6.3(A)). Adding a full-wave-plate

optical compensator with its slow axis, 𝜆g, oriented at 45 ˝ to the polarizer, reveals that the

regions surrounding the stripe patterns appear alternatively blue and yellow, which demon-

strates that the directors tilt in opposite directions in the different domains (Fig. 6.3(B)).

We further quantify the director field in these domains using a PolScope, which confirms the

opposite tilt of the directors, as shown in Fig. 6.3(C). This tilted director field is induced by

the competition between the shear flow and the elastic deformation as the directors resist

the deviation from the initial anchoring condition induced by the flow. At low shear rate,

the tumbling DSCG solutions would prefer to align perpendicular to the flow direction along

the 𝑦-direction, adopting a log-rolling state [61, 65], as the log-rolling state avoids the more

costly deformations of splay and bend that the director would experience if oriented in the

shear plane [61, 65]. The log-rolling state, however, is inconsistent with the initial anchor-

ing condition, which causes the director to tilt in the 𝑥𝑦-plane adopting azimuthal angles

of 𝜙 « 65˝ and 𝜙 « 115˝, as shown in Fig. 6.3(D) (see Appendix 6.A.3). Given that the
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Figure 6.3: Three-dimensional director field inducing periodic double-twist struc-
tures. (A) The stripe patterns are surrounded by regions of uniform director fields, imaged
through a crossed polarizer, P, and analyzer, A. The scale bar is 200 𝜇m. (B) The director
fields surrounding the stripe patterns appear alternatively blue and yellow when imaged us-
ing a full-wave-plate optical compensator. The blue color indicates that the director is more
perpendicular to 𝜆g; the yellow color indicates that the director is more parallel to 𝜆g. The
scale bar is 200 𝜇m. (C) Map of the polar and azimuthial angles. The black rods represent
the azimuthal angle of directors, 𝜙, averaged in the cell thickness direction. The color bar
denotes the value of the polar angle, 𝜃, averaged in the cell thickness direction. The regions
neighboring the stripe patterns are denoted as regions (i) and (ii); the regions neighboring the
domain walls are denoted as regions (iii) and (iv). The scale bar is 500 𝜇m. (D) Probability
density function (PDF) of the azimuthal angle 𝜙 in regions (i)-(iv) (upper panel). PDF of the
polar angle 𝜃 in regions neighboring the stripe patterns and the domain walls (lower panel).
Inset: schematics indicating a divergent splay deformation in the 𝑥𝑧-plane induced by the
Poiseuille flow in the microfluidic channel. The black arrows represent the velocity profile,
the blue arrows represent the shear rate profile. (E) A domain wall forms at divergent splay
deformations. (F) Stripe patterns occur at convergent splay deformations. (G) Schematics
of the biaxial splay configuration (upper panel) and the double-splay configuration (lower
panel). (H) Evolution of 𝜃 on the channel walls at Ericksen number Eraverage “ 30 for double-
splay (blue line) and biaxial-splay (red line) configurations. Eraverage “ ´𝛼2 9̄𝛾𝑏2{𝐾̄, where 𝛼2

is a Leslie viscosity coefficient and 𝐾̄ is the average Frank elastic constant.

cylindrical DSCG aggregates are symmetric, left- and right-handed twists are stochastically

equal, and opposite twist deformations leads to the domains tilting in opposite directions.
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The boundary of domains creates a splay deformation that can be either open to the flow

direction, denoted as divergent splay deformation (Fig. 6.3(E)), or closed to the flow direc-

tion, denoted as convergent splay deformation (Fig. 6.3(F)). Remarkably, the stripe patterns

only form at the boundary with the convergent splay; by contrast, the divergent splay leads

to a domain wall with splay deformations appearing as a sharp line (Fig. 6.3(A–C)) [30].

Divergent splay deformations and convergent splay deformations cost the same amount

of energy; why is the divergent splay deformation stable at a splay domain wall but the

convergent splay deformation unstable evolving into stripe patterns? The answer lies in the

three-dimensional director field at the boundary of the domains. Indeed, in addition to the

splay deformation in the 𝑥𝑦-plane, the shear torques induced by the Poiseuille flow in the gap

of the microfluidic channel lead to a divergent splay deformation across the cell thickness,

as shown in the inset of Fig. 6.3(F). This deformation of the director field is reflected in the

value of the gap-averaged out-of-plane polar angle 𝜃 “ 45˝, compared to the initial planar

alignment where 𝜃 “ 90˝ (Fig. 6.3(F)). The combination of the divergent splay deformation

in the 𝑥𝑦-plane and the divergent splay deformation in the 𝑥𝑧-plane gives rise to a double-

splay deformation, as schematically shown in Fig. 6.3(G). Conversely, the convergent splay

deformation in the 𝑥𝑦-plane and the divergent splay deformation in the 𝑥𝑧-plane induces a

biaxial-splay deformation.

The observation that periodic double-twist structures are triggered at regions with biaxial-

splay configuration, but not at regions with double-splay configuration, suggests different

dynamics of the director field for the two configurations. Analyzing the nematodynamic

equations describing the dynamics of the directors near the channel walls, we find that

the two configurations have different stable solutions, dictated by the saddle-splay elas-

ticity. In the Oseen-Frank elastic energy density 𝑓 “ 1{2r𝐾1p∇ ¨ nq
2
` 𝐾2pn ¨ ∇ ˆ nq

2
`

𝐾3pn ˆ ∇ ˆ nq
2

´𝐾24∇ ¨ pn ¨ ∇ ˆ n ` n ˆ ∇ ˆ nqs, where n is the director and 𝐾1, 𝐾2, 𝐾3

and 𝐾24 are the splay, twist, bend and saddle-splay Frank elastic constants, respectively,

the saddle-splay term enters the free energy only through the boundary conditions given

that it is a pure divergence. On a flat surface and when the anchoring condition or the

bulk energy become dominant, this saddle-splay term is usually neglected [53]. The planar

anchoring strength of DSCG solutions, however, has been reported to be weak, on the order
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of 10´6 ´ 10´7 J{m2 [69]. When the flow induces either a biaxial-splay or a double-splay

deformation, the directors on the walls can thus deviate from the anchored state. This leads

to spatial gradients of the director field in the orthogonal directions near the walls. As a

consequence, the saddle-splay term plays here an important role. This deformation at the

walls will ultimately affect the director field in the bulk.

To understand the stability of the biaxial-splay and double-splay deformations under

perturbations, we consider the director field, n “ psin 𝜃 cos𝜙, sin 𝜃 sin𝜙, cos 𝜃q in the vicin-

ity of the symmetry axis in the 𝑥𝑦-plane of the biaxial-splay and double-splay regions. In

steady state, the change of the polar angle 𝜃 and the azimuthal angle 𝜙 in the 𝑥-direction is

negligible. Assuming that 𝜙 „ 0˝, 𝑑𝜙{𝑑𝑥 “ 0 and 𝑑𝜃{𝑑𝑥 “ 0, the nondimensionalized nema-

todynamic equation at the top wall of the microfluidic channel reads (see Appendix 6.A.1

for details):
𝑘𝑤

𝐾̄𝜏

ˆ

𝑑𝜃

𝑑𝑡˚

˙

𝑠

“ ´
𝑤

𝑏

ˆ

B𝜃

B𝑧˚

˙

𝑠

`
1

2

𝐾24

𝐾̄

`

cos2𝜃 ´ sin2𝜃
˘ B𝜙

B𝑦˚
, (6.12)

where 𝑡˚ “ 𝑡{𝜏 , 𝑦˚ “ 𝑦{𝑤, and 𝑧˚ “ 𝑧{𝑏, with 𝜏 the characteristic time, 𝑤 the characteristic

width of double-splay and biaxial-splay configurations. 𝑘 is related to the rotational viscosity

of the LCLC, the subscript 𝑠 denotes the evolution of the director at the channel walls,

and 𝐾̄ “ p𝐾1 ` 𝐾3q{2 is an average elastic constant. The surface gradient of 𝜃 in the 𝑧-

direction, B𝜃{B𝑧 « 0.836, is solved numerically from the bulk nematodynamic equation (see

Appendix 6.A.1). In the stationary state, for directors on the walls where the flow velocity

is zero, p𝑑𝜃{𝑑𝑡q𝑠 “ 0, Eq. (1) yields a stationary solution of the polar angle at the top wall

𝜃𝑠 « 57˝ for biaxial-splay configurations and 𝜃𝑠 « 33˝ for double-splay configurations. We

now probe whether this is a stable angle for double-splay and biaxial-splay configurations.

For the double-splay configuration, the gradient of 𝜙 in the 𝑦-direction, B𝜙{B𝑦 is positive.

When 𝜃 is perturbed to an angle smaller than 𝜃𝑠, 𝑑𝜃{𝑑𝑡 ą 0 and 𝜃 increases back to 𝜃𝑠.

Inversely, when 𝜃 is perturbed to an angle larger than 𝜃𝑠, 𝑑𝜃{𝑑𝑡 ă 0 and 𝜃 decreases back

to 𝜃𝑠 (Fig. 6.3(H)). The director thus always returns to the stationary polar angle, and

it is stabilized by a splay domain wall. In contrast, for the biaxial-splay configuration,

B𝜙{B𝑦 ă 0. When the director is perturbed from 𝜃𝑠, it thus will not return to 𝜃𝑠 but is

unstable. Due to the weak anchoring strength, 𝜃 on the walls is larger than 𝜃𝑠 and goes
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to 90˝ (see Appendix 6.A.1). The unstable biaxial-splay configuration evolves to a lower

energy state, which is the double-twist configuration. To show this, we consider that in

principle, there are three possible configurations out of biaxial-splay configuration: double-

twist and double-splay configurations. By analyzing the Oseen-Frank elastic energy density

for each configuration, we find that the double-twist configuration costs the least elastic free

energy (see Appendix 6.A.4), and is therefore selected.

Period of periodic double-twist structures. In addition to the spontaneous mirror

symmetry breaking, the second remarkable characteristics of the stripe patterns is their

periodicity. Periodic structures frequently appear in cholesteric liquid crystals induced by

the intrinsic pitch length of the material, but are rarely observed in achiral nematic liquid

crystals [208].

The period of the stripes, corresponding to the period of the double-twist structure, 𝑝,

can experimentally be tuned by varying the plate spacing, 𝑏, and the local velocity of stripes,

𝑉 (Fig. 6.4(A and B)). For a given plate spacing, 𝑝 decreases with a power law with exponent

« ´0.5 with increasing velocity; for a constant velocity, 𝑝 increases with 𝑏.

The elastic deformation modes in the periodic double-twist configuration are mainly

bend and twist deformations. Both compete with the viscous torque from the flow and this
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Figure 6.4: Period of periodic double-twist structures controlled by velocity of
stripes and plate spacing. (A) Definition of the period of the double-twist structure, 𝑝
(upper panel). Bend deformations occur in the periodic double-twist structure, as highlighted
by the orange line. The region of bend deformation is indicated by the red dashed box (lower
panel). (B) Period of the periodic double-twist structure, 𝑝, versus the velocity of the stripes,
𝑉 , for plate spacings 𝑏 “ 8 𝜇m (‚), 𝑏 “ 15 𝜇m (˛), and 𝑏 “ 26 𝜇m (▲). (C) 𝑝 normalized
with 𝑝𝑐, the critical period denoting the competition between the bend elastic torque and
the viscous torque from the flow.
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competition sets the period of the structures. The bend mode dominates over the twist most

in this competition as a consequence of the smallness of the twist Frank elastic constant.

The relative importance between the viscous torque and the bend elastic torque is expressed

by the Ericksen number Er “ 𝜂𝑒𝑓𝑓𝑉 𝑏{𝐾3, where 𝜂𝑒𝑓𝑓 « 0.1 Pas is the effective viscosity and

𝐾3 « 10 pN is the bend Frank elastic constant [46, 61]. An increase in Er, which corresponds

to an increase in 𝑉 or 𝑏 in the experiments, represents an increased viscous torque compared

to the elastic torque. This induces a stronger bend deformation of the director field and a

decrease of the period. To express the selection of the period in terms of the competition

between the bend elastic torque and the viscous torque, we consider the director field in

the region of bend deformation, as indicated in Fig. 6.4(A), n “ psin 𝜃, 0, cos 𝜃q. With the

assumption that 𝜃 „ 90˝, the nematodynamic equation then reads (see Appendix 6.A.5 for

details) [31]:

𝛼3 9𝛾𝑥𝑧 “ ´𝐾3
B2𝜃

B𝑥2
, (6.13)

where 𝛼3 is a Leslie viscosity coefficient and 9𝛾𝑥𝑧 is the shear rate. A scaling analysis gives

B2𝜃{B𝑥29 ´1{p𝑝𝑐{2q
2 and 9𝛾𝑥𝑧 9 𝑉 {𝑏 (see Appendix 6.A.5 for details), with the characteristic

period,

𝑝𝑐 9 2

c

𝐾3𝑏

𝛼3𝑉
. (6.14)

This scaling argument gives a power-law exponent for 𝑉 that is in good agreement with that

observed in the experiments, 𝑝 9 𝑉 ´0.5. Indeed, we can rescale all the data at different 𝑉 and

𝑏 onto a master curve by normalizing 𝑝 with 𝑝𝑐, as shown in Fig. 6.4(C). This corroborates

that the period of the periodic double-twist structure is set by the competition between the

bend elastic torque and the viscous torque from shear flow. We further non-dimensionalize

the abscissa using the Ericksen number. The stripes emerge at Er of order one, confirming

that both the viscous and the elastic torque are important for the formation of stripe patterns.

The configuration of the periodic double-twist structures is reminiscent of the periodic

chiral structures that result from the Helfrich-Hurault elastic instability in cholesteric liquid

crystals, where the period is set by the competition between the bend deformation and the

pitch length-induced twist deformations [223]. Our achiral liquid crystal, however, does not

have an intrinsic pitch length; instead, it is here the viscous torque that resists the bend
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elastic deformation.

Conclusions

We discover the spontaneous emergence of a chiral structure in the weak flow of an achiral

lyotropic chromonic liquid crystal. The mirror symmetry breaking is facilitated by the

tumbling character of the LCLC that triggers the three-dimensional director field to form a

biaxial-splay configuration. This biaxial-splay configuration is unstable, as dictated by the

saddle-splay elasticity, and evolves into a lower energy state, a chiral double-twist structure,

as a consequence of the small twist Frank elastic constant of LCLCs. The flow-induced

mirror symmetry breaking provides a novel pathway to chiral structures in achiral molecular

assemblies. Similar emergence of chirality might occur in other nematic materials that share

the characteristics of tumbling and a small twist Frank elastic constant, for example in

liquid crystal polymers. The flow-induced mirror symmetry breaking might also serve as

a controllable and tunable platform with which to investigate chiral symmetry breaking

of supramolecular assemblies that has been conjectured to be a key for understanding the

prebiotic processes [224, 225].

6.A Appendices

6.A.1 Evolution of directors on walls of the microfluidic channel
The nematodynamic equation describing the evolution of directors on the walls of the mi-

crofluidic channel is

𝑘

ˆ

𝑑n

𝑑𝑡

˙

𝑠

“ 𝑣 ¨
B𝑓𝑏

B∇n
`

B𝑓𝑠
Bn

, (6.15)

where 𝑣 is the surface normal, n “ psin 𝜃 cos𝜙, sin 𝜃 sin𝜙, cos 𝜃q is the director field, 𝜃 is the

polar angle, 𝜙 is the azimuthal angle, and 𝑘 is a resistant coefficient. 𝑓𝑏 “ 1
2
𝐾1p∇ ¨ nq

2
`

1
2
𝐾2pn ¨ ∇ ˆ nq

2
` 1

2
𝐾3pn ˆ p∇ ˆ nqq

2 is the bulk term in the Oseen-Frank elastic free energy

density, and 𝑓𝑠 “ 1
2
𝐾24∇ ¨ ppn p∇ ¨ nqq ` n ˆ p∇ ˆ nqq is the surface term.

For the flow of nematic disodium cromoglycate (DSCG) solutions in the rectangular

microfluidic channel, we have 𝑣 “ p0, 0, 1q for the top wall. In steady state, 𝑑𝜙{𝑑𝑥 “ 0 and
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𝑑𝜃{𝑑𝑥 “ 0. We consider the vicinity of the symmetry axis in the 𝑥𝑦-plane of the biaxial-splay

and double-splay regions, where the directors are predominantly aligned in the shear plane,

so that 𝜙 „ 0˝. The contribution of the bulk term to the evolution of directors on the walls

simplifies to

𝑣 ¨
B𝑓𝑏

B∇n
« ´𝐾̄

ˆ

B𝜃

B𝑧

˙

𝑠

. (6.16)

Likewise, the effect of the surface term on the evolution of directors on the walls simplifies

to
B𝑓𝑠
Bn

«
1

2
𝐾24

`

cos2𝜃 ´ sin2𝜃
˘ B𝜙

B𝑦
. (6.17)

Substituting Eq. 6.16 and Eq. 6.17 into Eq. 6.15 yields

𝑘

ˆ

𝑑𝜃

𝑑𝑡

˙

𝑠

“ ´𝐾̄

ˆ

B𝜃

B𝑧

˙

𝑠

`
1

2
𝐾24

`

cos2𝜃 ´ sin2𝜃
˘ B𝜙

B𝑦
. (6.18)

We nondimensionalize Eq. 6.18 using 𝑦˚ “ 𝑦{𝑤, 𝑧˚ “ 𝑧{𝑏, and 𝑡˚ “ 𝑡{𝜏 , where 𝑏 is the

plate spacing, 𝑤 « 𝑏{2 is the characteristic width of double-splay or biaxial-splay configura-

tions, and 𝜏 is the characteristic time:

𝑘𝑤

𝐾̄𝜏

ˆ

𝑑𝜃

𝑑𝑡˚

˙

𝑠

“ ´
𝑤

𝑏

ˆ

B𝜃

B𝑧˚

˙

𝑠

`
1

2

𝐾24

𝐾̄

`

cos2𝜃 ´ sin2𝜃
˘ B𝜙

B𝑦˚
. (6.19)

For a double-splay configuration, the gradient of 𝜙 in the 𝑦-direction is positive and scales

as B𝜙
B𝑦˚ „ 1, whereas for a biaxial-splay configuration, B𝜙

B𝑦˚ „ ´1.

To solve Eq. 6.19 at stationary state, we need to know the distribution of 𝜃 in the 𝑧-

direction, which can be obtained by solving the one-dimensional nematodynamic equation

in the bulk [31]:

𝛾1

ˆ

𝑑𝜃

𝑑𝑡

˙

𝑏

“ 𝐾̄
B2𝜃

B𝑧2
´ 9𝛾

`

𝛼2cos
2𝜃 ´ 𝛼3sin

2𝜃
˘

, (6.20)

where 𝛾1 is the rotational viscosity and 𝛼2 and 𝛼3 are the Leslie viscosity coefficients. In

steady state, Eq 6.20 simplifies to

𝐾̄
B2𝜃

B𝑧2
´ 9𝛾

`

𝛼2cos
2𝜃 ´ 𝛼3sin

2𝜃
˘

“ 0, (6.21)

To solve Eq. 6.21, we need to determine the polar angle 𝜃 on the walls, denoted as 𝜃𝑏 (see
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numerical methods). As the anchoring strength of nematic lyotropic chromonic liquid crystal

solutions on rubbed glass is weak [216], the directors on the walls can deviate from the initial

planar anchoring condition in shear flow; correspondingly, 𝜃𝑏 can deviate from the initial

angle 𝜃𝑏,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 “ 90˝.

To determine 𝜃𝑏 in the flowing nematic LCLC solutions, we assume a sequence of 𝜃𝑏

ranging from 45˝ to 90˝. Using Eq. 6.21, each presumed 𝜃𝑏 yields a distribution of 𝜃 in

the 𝑧-direction (Fig. 6.5(A)), which further gives the gradient of 𝜃 on the walls,
`

B𝜃
B𝑧˚

˘

𝑠
.

By substituting the values of
`

B𝜃
B𝑧˚

˘

𝑠
into Eq. 6.19, we obtain the evolution of 𝜃 on the

walls for a biaxial-splay configuration, as shown in Fig. 6.5(B). In stationary state where
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Figure 6.5: Polar angle on the channel walls (A) Distribution of polar angle, 𝜃, in the
𝑧-direction for different presumed polar angles on the walls, 𝜃𝑏, in steady state. (B) 𝑘𝑤

𝐾̄𝜏

`

𝑑𝜃
𝑑𝑡˚

˘

𝑠
versus 𝜃, demonstrating the evolution of the polar angle on the walls. The open circles denote
𝜃𝑏. (C) 𝑘𝑤

𝐾̄𝜏

`

𝑑𝜃
𝑑𝑡˚

˘

𝑠
versus 𝜃𝑏. At 𝑘𝑤

𝐾̄𝜏

`

𝑑𝜃
𝑑𝑡˚

˘

𝑠
“ 0, this curve gives rise to a critical polar angle,

𝜃𝑐. (D) 𝜃𝑐 versa Eraverage.
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𝑘𝑤
𝐾̄𝜏

`

𝑑𝜃
𝑑𝑡˚

˘

𝑠
“ 0, we get the stationary angle denoted as 𝜃𝑠. If 𝜃𝑏 ą 𝜃𝑠, 𝑘𝑤

𝐾̄𝜏

`

𝑑𝜃
𝑑𝑡˚

˘

𝑠
ą 0, which

indicates that 𝜃 increases with time to reach 90˝, corresponding to a planar alignment. By

contrast, for 𝜃𝑏 ă 𝜃𝑠, a negative 𝑘𝑤
𝐾̄𝜏

`

𝑑𝜃
𝑑𝑡˚

˘

𝑠
indicates a decrease of 𝜃 to 0˝, corresponding to a

homeotropic alignment. We indicate the presumed 𝜃𝑏 on its corresponding curve of 𝑘𝑤
𝐾̄𝜏

`

𝑑𝜃
𝑑𝑡˚

˘

𝑠

versus 𝜃 in Fig. 6.5(B and C). Fig. 6.5(C) elucidates whether the directors at different 𝜃𝑏

in a biaxial-splay configuration eventually reach homeotropic or planar alignments. The

condition 𝑘𝑤
𝐾̄𝜏

`

𝑑𝜃
𝑑𝑡˚

˘

𝑠
“ 0 denotes a critical angle, 𝜃𝑐, that governs the evolution of directors

on the walls. If 𝜃𝑏 ă 𝜃𝑐, the director adopts a homeotropic alignment rather than a planar

alignment. In the regime of Ericksen number Eraverage “ ´𝛼2 9̄𝛾𝑏2{𝐾̄ “ 25 ´ 50, where the

stripe patterns form in the experiments, the critical angle 𝜃𝑐 increases with an increase in

Eraverage, as shown in Fig. 6.5(D).

Given the importance of 𝜃𝑐 in setting the evolution of directors on the walls, we check

whether 𝜃𝑏 “ 𝜃𝑐 can be a proper boundary condition by estimating the anchoring strength,

𝑊 , for different 𝜃𝑐. 𝑊 can be evaluated by considering an extrapolation length, 𝐿0 (Fig. 6.6(A)),

as the ratio between the surface and bulk distortion energy is the ratio between 𝐿0 and the
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Figure 6.6: Surface anchoring strength for assigned critical polar angles on the
channel walls, 𝜃𝑐. (A) Distribution of polar angle, 𝜃, in the 𝑧-direction, corresponding to
different 𝜃𝑐 at different Eraverage in steady state. The extrapolation length, 𝐿0, is obtained
by extrapolating the curve from the walls to the location where 𝜃 reaches 90˝. (B) The
anchoring strength, 𝑊 , for different 𝜃𝑐 in the regime of Eraverage = 25 – 50, is on the order
of 10´6 ´ 10´7 J{m2.
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plate spacing 𝑏 [30]:
𝐹𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝐹𝑏𝑢𝑙𝑘

“
𝐿0

𝑏
, (6.22)

where 𝐹𝑠𝑢𝑟𝑓𝑎𝑐𝑒 “ 1
2
𝑊𝜃2𝑏 and 𝐹𝑏𝑢𝑙𝑘 “ 1

2

ş𝑏

0
𝐾̄

´

B𝜃
B𝑦

¯2

𝑑𝑦. The anchoring strength is expressed as

𝑊 “
𝐿0

𝑏𝜃2𝑏

ż 𝑏

0

𝐾̄

ˆ

B𝜃

B𝑦

˙2

𝑑𝑦 «
𝐿0𝐾̄

𝑏2
. (6.23)

From 𝜃𝑐 obtained in the regime of Eraverage “ 25 ´ 50, we find that 𝑊 is on the order

of 10´6 ´ 10´7 J{m2, as shown in Fig. 6.6(B). These values are in good agreement with

experiment results that report anchoring strengths of nematic DSCG solutions on rubbed

glass on the order of 10´6 ´ 10´7 J{m2 [216].

6.A.2 Director field of stripe patterns
Using an optical microscope with crossed polarizer and analyzer, we identify the director

field at the dark stripes by rotating the crossed polarizer and analyzer by 45˝. The dark

stripes remain dark, which indicates that the directors are homeotropically aligned in these

regions (Fig. 6.7(A)). The dark stripes correspond to region I of the stripes, as indicated in

Fig. 1(C).

We then determine the director field between two dark stripes, denoted as region II, by

adding a full-wave-plate optical compensator (560 nm) with the slow axis oriented at 45˝

to the polarizer and in the direction perpendicular to the flow. In experiments performed

without the full-wave-plate optical compensator, we find that the retardance in between two

dark stripes is approximately 150 nm (light grey color) by comparing with a commercial

Michel-Lévy color chart (issued by Zeiss Microscopy) (Fig. 6.7(A)). After the compensator is

inserted, we can distinguish the directors in the direction more perpendicular or more parallel

to the flow by considering the change in color, which represents a change in the retardance:

an increase of the retardance by 560 nm, appearing as light blue, indicates that the director

is aligned parallel to the flow direction; a decrease of the retardance by 560 nm, appearing

as orange, indicates that the director is aligned perpendicular to the flow direction. We

observe an orange color, indicating that the director is aligned more perpendicular to the flow
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Figure 6.7: Director field of stripe patterns. (A) Stripe patterns are observed through
crossed polarizer, P, and analyzer, A, where the polarizer is either parallel to flow direction
along 𝑥-axis (upper panel) or is oriented at 45˝ to the flow direction (middle panel). Dark
stripes remain dark as indicated by the white arrows. With crossed polarizer and analyzer
oriented in the direction at 45˝ to the flow direction and compensated with full-wave-plate
optical compensator with its slow axis, 𝜆g = 560 nm, perpendicular to the flow direction,
regions in between stripe lines appear orange (lower panel). The scale bar is 100 𝜇m. (B)
Retardance map of the stripe patterns. The color represents the optical retardance, 𝛿. The
scale bar is 50 𝜇m. (C) Along the line in 𝑥-direction across stripes, the azimuthal angle
shows alternatively « 62˝ and « 115˝.

direction (Fig.S1(A)). The director rotates from being perpendicular to the flow direction

pointing in the 𝑦-direction to being parallel to the thickness direction, which indicates a

periodic twist deformation along the flow direction.

We quantify the director field averaged in the thickness direction by using PolScope. The

azimuthal angle in between the low retardance regions (region I) is alternatively « 62˝ and

« 115˝ (Fig. 6.7(B, C)). The angles closer to 90˝ rather than 0˝ and 180˝ demonstrate that

the director field averaged in the thickness direction is more perpendicular to the flow, which

is consistent with the observation using polarized microscopy in Fig. 6.7(A).
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Figure 6.8: Azimuthal angle of directors in weak flows. With increasing pressure
gradient (𝐺 = 5 ˆ 10´6 (blue), 8 ˆ 10´6 (purple), 1 ˆ 10´5 (red), and 2 ˆ 10´5 (orange) (in
simulation units)), the azimuthal angle, 𝜙, in the center region of the channel increases from
´180 ˝ (initial anchored direction) to ´90 ˝ (log-rolling state); 𝜙 on the walls also deviates
from ´180 ˝.

6.A.3 Azimuthal angles of nematic LCLC solutions in weak flows
To investigate the azimuthal angles of the directors of nematic LCLC solutions in weak flows,

we simulate the director field based on the two-dimensional nematodynamic equation (see

numerical methods). As the pressure gradient, 𝐺, increases from 5 ˆ 10´6 to 2 ˆ 10´5, the

azimuthal angle of the directors in the center of the channel increases from being parallel to

the flow direction maintaining the initial anchoring condition to being tilted and to gradually

approaching 90˝ corresponding to the log-rolling state, as shown in Fig. 6.8. The tilted

director field in weak flows is in agreement with the experimental observations.

6.A.4 Frank elastic free energy for different configurations of the director field
Three configurations can possibly emerge in the weak flow of nematic disodium cromoglycate

solutions: biaxial-splay, double-splay and double-twist configurations. We describe these con-

figurations in a cylindrical coordinate system, where the longitudinal axis is in the 𝑧-direction.

For a biaxial-splay configuration, the director field is n “ psin 𝜃 cos𝛼, sin 𝜃 sin𝛼, cos 𝜃q, where
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𝜃 “ 𝜃p𝜌q is the polar angle between the director and the 𝑧-axis, 𝜌 the radial distance from

the 𝑧-axis to the center point of the director, 𝛼 “ ´2𝜑 is the azimuthal angle between the

director and the 𝜌-axis, and 𝜑 is the angle between the reference direction on the chosen

plane perpendicular to the longitudinal axis and the line from the origin to the projection of

the director on the plane. Substituting the director field of the biaxial-splay configuration

into the general form of the Oseen-Frank elastic free energy density,

𝑓 “ 1{2r𝐾1p∇ ¨ nq
2

`𝐾2pn ¨ ∇ ˆ nq
2

`𝐾3pn ˆ ∇ ˆ nq
2

´𝐾24∇ ¨ pn ¨ ∇ ˆ n ` n ˆ ∇ ˆ nqs,

(6.24)

yields

𝑓biaxial´splay “
1

2
𝐾1cos

2𝛼

ˆ

cos 𝜃
B𝜃

B𝜌
´

sin 𝜃

𝜌

˙2

`
1

2
𝐾2sin

2𝛼

ˆ

B𝜃

B𝜌
´

sin 𝜃 cos 𝜃

𝜌

˙2

`
1

2
𝐾3sin

2𝜃

˜

sin2𝜃sin2𝛼

𝜌2
` cos2𝛼

ˆ

B𝜃

B𝜌

˙2
¸

` 𝐾24

ˆ

sin 𝜃 cos 𝜃

𝜌

B𝜃

B𝜌

˙

. (6.25)

For the double-splay configuration, the director field is n “ psin 𝜃, 0, cos 𝜃q, and the

Oseen-Frank elastic free energy density can be expressed as

𝑓double´splay “
1

2
𝐾1

ˆ

cos 𝜃

ˆ

B𝜃

B𝜌

˙

`
sin 𝜃

𝜌

˙2

`
1

2
𝐾3sin

2𝜃

ˆ

B𝜃

B𝜌

˙2

´ 𝐾24

ˆ

sin 𝜃 cos 𝜃

𝜌

B𝜃

B𝜌

˙

.

(6.26)

The director field for the double-twist configuration can be expressed as n “ p0, sin 𝜃, cos 𝜃q,

and the corresponding Oseen-Frank elastic free energy density is

𝑓double´twist “
1

2
𝐾2

ˆ

sin 𝜃 cos 𝜃

𝜌
`

ˆ

B𝜃

B𝜌

˙˙2

`
1

2
𝐾3

ˆ

sin4𝜃

𝜌2

˙

´𝐾24

ˆ

sin 𝜃 cos 𝜃

𝜌

B𝜃

B𝜌

˙

. (6.27)

The comparison of Eq. 6.25, Eq. 6.26, and Eq. 6.27 reveals that the saddle-splay elasticity

term, 𝐾24

´

sin 𝜃 cos 𝜃
𝜌

B𝜃
B𝜌

¯

, is negative for both double-twist and double-splay configurations, but

positive for the biaxial-splay configuration. This indicates that the saddle-splay elasticity

lowers the energy for double-splay and double-twist configurations, but increases the energy

for the biaxial-splay configuration. Given that 𝐾24 « 𝐾3 « 3𝐾1 « 30𝐾2 [222], 𝑓biaxial´splay is
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larger than 𝑓double´splay and 𝑓double´twist. This indicates that the biaxal-splay configuration is

much more costly and less preferred than the double-twist and double-splay configurations.

We further compare the Frank elastic free energy for the double-twist and double-splay

configurations by integrating 𝑓double´splay and 𝑓double´twist in a cylinder with a radius of 𝑅

and a unit length:

∆𝐹elastic “ 𝐹double´splay ´ 𝐹double´twist “

ż ż

p𝑓double´splay ´ 𝑓double´twistq𝜌𝑑𝜌𝑑𝜃. (6.28)

We assume that the distribution 𝜃 in the radial direction, 𝜌, is linear and follows 𝜃 “ 2𝜋𝜌{𝑅.

Eq. 6.28 then yields ∆𝐹elastic « 3.69𝐾1 ´ 5.32𝐾2 ´ 0.21𝐾3. Because the twist Frank elastic

constant, 𝐾2, is small compared to 𝐾1 and 𝐾3, ∆𝐹elastic “ 25.28𝐾2 ą 0. This reveals that

𝐹double´splay ą 𝐹double´twist . Therefore, the double-twist configuration costs the least elastic

energy among these three configurations and is therefore selected.

6.A.5 Derivation of the period of stripes
Given that the twist Frank elastic constant is much smaller than the splay and bend Frank

elastic constants, 𝐾2 ăă 𝐾1,3, we neglect the contribution of twist deformation to the total

elastic energy of the periodic double-twist structure and consider the regions close to the walls

of the microfluidic channel that are dominated by bend and splay deformations (Fig 6.4).

The director field is described as n “ psin 𝜃, 0, cos 𝜃q, where 𝜃 is the polar angle that is a

function of 𝑥. The nematodynamic equation in steady state is [31]

p𝐾1 ´ 𝐾3q cos 𝜃 sin 𝜃

ˆ

B𝜃

B𝑥

˙2

`
`

𝐾3sin
2𝜃 ` 𝐾1cos

2𝜃
˘ B2𝜃

B𝑥2
“

`

𝛼2cos
2𝜃 ´ 𝛼3sin

2𝜃
˘

9𝛾𝑥𝑧. (6.29)

For simplicity, we assume a small 𝜃 in the region close to the channel walls, so that

𝛼2cos
2𝜃 ´ 𝛼3sin

2𝜃 « ´𝛼3, p𝐾1 ´ 𝐾3q cos 𝜃 sin 𝜃 « 0, and 𝐾3sin
2𝜃 ` 𝐾1cos

2𝜃 « 𝐾3. Eq. 6.29

then yields:

𝛼3 9𝛾𝑥𝑧 “ ´𝐾3
B2𝜃

B𝑥2
. (6.30)
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We conduct a scaling analysis based on Eq. 6.30. The characteristic length scale of bend

deformation in the 𝑥-direction scales as half of the period of stripes, 𝑝𝑐{2, and the shear rate

is scaled by 9𝛾𝑥𝑧 9 𝑉 {𝑏. The elastic term and the viscous term can then be expressed as

𝐾3{p𝑝𝑐{2q
2 and 𝛼3𝑉 {𝑏, respectively. The balance between the elastic torque and the viscous

torque, 𝐾3{p𝑝𝑐{2q
2

9 𝛼3𝑉 {𝑏, yields an expression for the characteristic period of stripes:

𝑝𝑐 9 2
a

𝐾3𝑏{𝛼3𝑉 .
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Chapter 7

Conclusions

7.1 Summary

In this thesis, we establish strategies to control the non-equilibrium growth processes in

anisotropic systems, in which the anisotropy either allows for a preferred growth direction of

the interfacial motion of fluids or induces specific configurations of molecular aggregates. We

investigate two anisotropic systems: a system that exhibits external anisotropy in the growth

environment, and a system that possesses intrinsic anisotropy imposed by the orientation of

nematic lyotropic chromonic liquid crystals (LCLCs). By analyzing the nonlinear dynamics

and the competition among driving forces, we demonstrate the principles governing the

selection of patterns in the interfacial viscous-fingering instability at the macroscale and the

flow-induced structures created by supramolecular assemblies at the microscale. The key

conclusions are summarized as follows.

1. In the viscous-fingering instability with two miscible fluids in an externally anisotropic

system, where the anisotropy is introduced by engraving an ordered lattice on one

of the plates of a Hele-Shaw cell, the morphology transition from dense-branching

to dendritic growth and the selected symmetry of the dendrites are governed by the

viscosity ratio between the two fluids and the degree of anisotropy. Upon approaching

the morphology boundary, the dendritic patterns systematically transition from six-fold

towards twelve-fold symmetry.
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2. In the viscous-fingering instability with intrinsic anisotropy introduced by nematic

lyotropic chromonic liquid crystal (LCLCs) solutions, the morphology transition to

dendritic growth is induced by the suppression of the intrinsic tumbling behavior of

nematic LCLC solutions, which leads to flow-alignment of the material that provides a

shear-enhanced anisotropy. By relating the microscopic alignment to the macroscopic

growth morphology selection, we develop a quantitative criterion for controlling the

growth of interfacial fluid instabilities in terms of the competition between the elastic

torque from the nematic potential and the viscous torque from shear flow.

3. When nematic LCLC solutions are pushed out-of-equilibrium by a pressure-driven flow,

pure-twist disclination loops emerge in a certain range of shear rates. The disclination

loops form at the boundary between two regions of irreconcilable director alignments,

where the director aligns predominantly along the flow direction close to the chan-

nel walls but perpendicular to the flow direction in the center of the channel. The

nucleation of the defects releases the high elastic stresses of the director gradient at

the boundary. Pure-twist disclination loops emerge because of the significant elastic

anisotropy characteristic of LCLCs, where twist deformations are energetically cheaper

than bend or splay deformations.

4. The mirror symmetry of the assemblies of achiral LCLC aggregates can be broken

by weak flow. We show that the mirror symmetry breaking is triggered at regions

of biaxial-splay deformations, which are unstable and evolve into a lower energy-cost

configuration of the director field, a periodic double-twist structure. This structure

exhibits a characteristic period that is set by the competition between the elastic

torque and the viscous torque acting on the director field, and that can be tuned by

controlling the flow velocity.
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7.2 Future work

7.2.1 Instability-mediated fabrication methods

The diversity of structures resulting from fluid instabilities opens the potential for using

instabilities to impart shape and function to materials in manufacturing processes. Indeed,

instability-mediated fabrication methods are in development [1, 226], as, distinct from current

manufacturing techniques including 3D printing, instability-mediated methods do not require

a layer-by-layer approach [227, 228] but rely on spontaneous self-amplified growth. Given the

limited need for external assistance, these methods could significantly simplify manufacturing

processes and minimize the environmental footprint. Recent approaches exploit instabilities

to impart desired shapes [10, 11]. For example, thousands of uniform microscale droplets

have been created from the Plateau-Rayleigh instability [10]. Harnessing instabilities to

fabricate structures at multiscales, e.g., organizing structures of molecular assemblies at the

microscale to mediate the properties of metamaterials at the macroscale, however, is barely

explored [200].

Flowing nematic lyotropic chromonic liquid crystal (LCLC) solutions provide an ideal

platform to explore instability-mediated configurations of supramolecular assemblies for fab-

ricating functional materials. We have demonstrated a rich variety of flow-induced structures

resulting from the configurations of the director field in nematic LCLC solutions, as discussed

in Chapters 5 and 6. As nematic LCLC directors can serve as a host to align monomers [229],

monomers can potentially be assembled by the flow-induced structures. At the same time,

we could ‘freeze’ the configuration of monomers through polymerization. For example, the

periodic double-twist structures forming in weak flows of LCLC solutions discussed in Chap-

ter 6, could be expected to impart helical structures to the polymerized material. Helical

structures are known to strengthen materials with respect to deformations in multiple direc-

tions [230], and are useful elements in metamaterials [231].

To realize instability-mediated multiscale fabrication methods, a generic framework for

triggering instabilities that provide the desired function to materials needs to be established.

Such a framework is currently lacking, because of two main challenges: i) finding generalized

analytic solutions describing the dynamics of flow-induced structures; ii) predicting the final
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material properties of instability-mediated microstructures. Moreover, freezing the flow-

induced structures will affect the non-linear growth dynamics during solidification [1]; the

instability and the freezing process are interlinked. Experimental, numerical and theoretical

efforts are required to reveal these intricate dynamic processes.

7.2.2 Pattern formation in drying droplets

Drying droplets of aqueous solutions of macromolecules such as polymers or microfibers

are an intriguing model system that couples flow and phase transition to form complex

patterns [232–236]. The morphologies of final dried patterns are affected by the interplay

between capillary flows in the droplet and the phase transition of the macromolecular solu-

tions [232, 237].

We find that aqueous solutions containing mixtures of the protein peptone (Sigma-

Aldrich) and the salt sodium chloride (Sigma-Aldrich) form dendritic patterns during drying

for salt concentrations ranging from 2 wt% to 20 wt% at a fixed peptone concentration of

9 wt%. How the nonlinear growth selects characteristic length scales and growth rates of

the dendrites, and how the resulting pattern is affected by the growth environment that may

be altered by the concentrations of peptone and salt, the humidity and the contact angle, is

currently unknown. Remarkably, the characteristics of the dendrites and the location where

nucleation occurs depend sensitively on the concentration of salt, as shown in Fig. 7.1(A).

A                                                                                                                            B

Figure 7.1: Dendrite formation in drying drops. (A) Quasi-two-dimensional dendritic
patterns form during the drying of sessile drops composed of aqueous solutions of peptone
and salt. From left to right, the salt concentrations are 2 wt%, 4.5 wt% and 18 wt%. The
peptone concentration is 9 wt%. The red circles indicate the nucleation locations. The scale
bar is 500 𝜇m. (B) Three dimensional crystals grow in drying drops of aqueous salt solutions
(9 wt%) that do not contain peptone . The scale bar is 500 𝜇m.
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At lower salt concentration, the nucleation occurs closer to the center of the drop, and the

width of the dendritic fingers decreases. In the absence of peptone, only three-dimensional

crystals, rather than quasi-two dimensional dendrites, emerge, as shown in Fig. 7.1(B). This

suggests that peptone is necessary for the formation of dendritic patterns. Previous studies

provide hints that suggest that the macromolecules pin the contact line of the drop, which

can alter the capillary flows and might modify the growth environment and lead to the emer-

gence of complex patterns [237]. An understanding of the role of peptone for the formation

of dendritic patterns, and the mechanisms governing their growth, is currently lacking.

7.2.3 Extension of the principles of pattern formation in physical

systems to biological systems

The patterns induced by interfacial instabilities in physical systems exhibit remarkable simi-

larities to structures growing in biological systems. Examples range from bacteria colonies to

neural networks and human lungs, which all exhibit ramified branching structures similar to

those resulting from dense-branching growth [1]. Indeed, the collective motion of cells in liv-

ing systems involves unstable processes, and the resulting patterns have recently been shown

to share analogies with instabilities in physical systems [238–240]. For example, the folding

brain orgnoids (Fig. 7.2(A)) and the fingering-like structures of epithelial cells (Fig. 7.2(B))

are results of instabilities arising during the growth process [238–240]. In the spreading of ep-

ithelial cells, a fingering instability arises from initial small perturbations and the boundary

of the cells becomes unstable and evolves into finger-like structures [241, 242]. Similar to the

viscous-fingering instability in immiscible fluids that results from two competing effects, the

pressure gradient and the surface tension, the instability in the cells results from a competi-

tion between two forces, the active cellular traction force imposing a velocity gradient that

induces an unstable accelerated front and the contractile intercellular stresses that stabilize

the perturbation [242, 243].

Compared to physical systems, however, biological systems exhibit more complex dynam-

ics induced by their activity sustained by a continuous energy consumption and interaction

forces between cells [244]. For example, when the fingering instability arises in the spreading
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A B

Figure 7.2: Pattern formation in biological systems. (A) An instability occurs at the
free surface of organoids during the development of the organoids (the initial instability is
indicated by the white arrows) and leads to finger-like structures and wrinkles. The scale bar
is 50 𝜇m. Adapted from [238]. Copyright 2018 Nature Publishing Group. (B) A fingering
instability emerges during the spreading of epithelial cells. The scale bar is 200 𝜇m. Adapted
from [239]. Copyright 2019 APS.

of epithelial cells, due to the distinct velocity fields at different locations of the finger-like

structures, the fastest moving cells at the fingertip tend to transition from non-epithelial to

fibroblast appearance and behavior [241]. This transition creates an intercellular mechanical

tension between the leader and follower cells that prevents the splitting of the fingertip [241].

The unstable processes in biological systems are thus more complex than instabilities con-

trolled only by gradient-driven transport. To which extent we can adapt principles of pattern

growth in physical systems to growth in biological systems requires extensive explorations.

A recent study [243], in an attempt to model the spreading of cells on substrates, has

modified Darcy’s law that describes flow in a porous medium

v “ ´
𝑘

𝜂
∇𝑃, (7.1)

where v is the flow velocity, 𝑃 is the pressure, 𝑘 is the permeability, and 𝜂 is the viscosity

of the fluid, by adding a term accounting for the interaction between cells when the friction
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with the substrate is large

v “ ´
1

𝜉
∇𝑃 `

1

𝜉
∇ ¨ 𝜎, (7.2)

where 𝜎 is the intercellular stress and 𝜉 is the friction coefficient. Based on Eq. 7.2, a linear

stability analysis has been performed to describe the velocity and pressure fields in the initial

unstable state [243]. The later nonlinear growth stages, however, are not yet understood.

The collective motion of cells has been considered within the framework of active nematics

with preferred orientations [192]. Indeed, the polar field of cells can be expressed in analogy

to the director field of nematic liquid crystals. Epithelia cells in the fingers are oriented

along the growth direction of the fingers [242]. This is reminiscent of the patterns formed in

nematic liquid crystals, where we have shown that the growth morphology depends on the

alignment of the director field: a shear-aligned director field can prevent the fingertip from

splitting, as discussed in Chapter 4. Would the oriented cells in the fingers also suppress the

instability and prevent the fingertips from splitting? The interplay between the alignment

of cells and the selected growth morphology involves rich dynamics with fascinating open

questions.

Revealing general mechanisms for pattern growth in biological systems is at the crossroad

of several fields including biology, physics and chemistry. It might give insight into the

development of organs and could be exploited in practical applications related to synthetic

tissues.

7.2.4 Role of anchoring conditions for tuning flow-induced struc-

tures in nematic lyotropic chromonic liquid crystals

The surface anchoring conditions can sensitively affect the configuration of nematic liquid

crystals (LCs) in the static state [31]. Under flow, it has so far been thought that the role

of the surface anchoring condition for the dynamics of the director field is negligible if the

viscous torque from the flow dominates over the elastic torque imposed as the directors

resist the deviation from the initial anchoring condition induced by the flow [31]. The

relative importance of the viscous torque compared to the elastic torque is evaluated by the

Ericksen number Er “ 𝜂 9𝛾𝑙𝑐
2
{𝐾, where 9𝛾 is the shear rate, 𝑙𝑐 is a characteristic length
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scale, 𝜂 is the characteristic viscosity, and 𝐾 is the characteristic Frank elastic constant [31].

In nematic lyotropic chromonic liquid crystal (LCLC) solutions, the value of the Ericksen

number strongly depends on which deformation mode is considered, i.e., twist, bend, or

splay deformations, as nematic LCLC solutions have significant anisotropy in viscosity and

elasticity [50]. For example, the twist viscosity can be hundreds of times larger than the

bend viscosity, and the twist Frank elastic constant can be tens of times smaller than the

bend Frank elastic constant [50]. Given that the dynamics of nematic LCLCs have been

shown to be distinct from thermotropic liquid crystals and the current understanding of

flowing nematic LCLC solutions is at a very early stage [61, 65], it is often unclear which the

dominant deformation modes are in flowing nematic LCLC solutions, and the importance of

the surface anchoring condition for the director alignment, particularly for the stability of

the director field, under flow is currently unknown.

We have investigated flowing nematic lyotropic chromonic liquid crystal (LCLC) solutions

with planar anchoring condition where the directors are in the direction parallel to the flow

in Chapters 5 and 6. For this anchoring condition, pure-twist disclination loops and chiral

periodic double-twist structures emerge in different regimes of shear rates. Would the flow-

induced structures also form for different anchoring conditions, such as planar anchoring

perpendicular to the flow direction or homeotropic anchoring? Indeed, when we tune the

planar anchoring condition to be perpendicular to the flow direction, we discover entirely

different structures, even though the Ericksen number based on the twist deformation mode

can reach high values of « 104. Remarkable band textures perpendicular to flow direction,

which coexist with small domains, emerge across the entire flow field at steady state, as

shown in Fig. 7.3(A). The band textures become blurred and appear darker as we rotate

the crossed polarizer and analyzer by 45 ˝, as shown in Fig. 7.3(B), which indicates that the

directors are tilted in the directions close to either 45 ˝ or 135 ˝. Adding a full-wave-plate

optical compensator with its slow axis, 𝜆g, oriented at 45 ˝ to the polarizer reveals that the

directors in neighboring bands tilt in opposite directions, i.e., alternatively adopt azimuthal

angles of 45 ˝ and 135 ˝, as shown in Fig. 7.3(C).

Exploring the flow-induced structures in nematic LCLCs for different surface anchoring

conditions can provide guidance to programming the director field under flow by patterning
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Figure 7.3: Flow-induced band textures in nematic lyotropic chromonic liquid
crystals. An aqueous solution of 13 wt% disodium cromoglycate (DSCG) in the nematic
phase at room temperature 𝑇 “ 23.2 ˘ 0.5 ˝C is injected into a microfluidic cell with plate
spacing of 15 𝜇m at a volumetric flow rate of 𝑞 = 25 𝜇l/min. Band textures emerge in the
flow of DSCG solutions, imaged through a crossed polarizer, P, and an analyzer, A, for the
polarizer (A) parallel to the flow direction and (B) oriented at 45 ˝ to the flow direction. (C)
The band textures appear alternatively blue and magenta when imaged using a full-wave-
plate optical compensator. The blue color indicates that the director is more perpendicular
to 𝜆g; the magenta color indicates that the director is more parallel to 𝜆g. The scale bars
are 500 𝜇m.

the anchoring on surfaces. Such control over the director field under flow may open new

routes for using LCLCs to control assembly and flow of biological systems or particles in

microfluidic devices [48, 245, 246].

163



Bibliography

[1] F. Gallaire and P.-T. Brun, “Fluid dynamic instabilities: theory and application to
pattern forming in complex media,” Phil. Trans. Math. Phys. Eng. Sci. 375, 20160155
(2017).

[2] L. Paterson, “Radial fingering in a Hele-Shaw cell,” J. Fluid Mech. 113, 513–529 (1981).

[3] E. Ben-Jacob, G. Deutscher, P. Garik, N. D. Goldenfeld, and Y. Lareah, “Formation
of a dense branching morphology in interfacial growth,” Phys. Rev. Lett. 57, 1903
(1986).

[4] J. S. Langer, “Instabilities and pattern formation in crystal growth,” Rev. Mod. Phys.
52, 1 (1980).

[5] J. S. Langer, “Dendrites, viscous fingers, and the theory of pattern formation,” Science
243, 1150–1156 (1989).

[6] Y. Couder, F. Argoul, A. Arnéodo, J. Maurer, and M. Rabaud, “Statistical properties
of fractal dendrites and anisotropic diffusion-limited aggregates,” Phys. Rev. A 42,
3499 (1990).

[7] E. Ben-Jacob, N. Goldenfeld, J. S. Langer, and G. Schön, “Dynamics of interfacial
pattern formation,” Phys. Rev. Lett. 51, 1930 (1983).

[8] E. Ben-Jacob and P. Garik, “The formation of patterns in non-equilibrium growth,”
Nature 343, 523–530 (1990).

[9] H. Yasuda, K. Morishita, N. Nakatsuka, T. Nishimura, M. Yoshiya, A. Sugiyama,
K. Uesugi, and A. Takeuchi, “Dendrite fragmentation induced by massive-like 𝛿–𝛾
transformation in Fe–C alloys,” Nat. Commun. 10, 1–8 (2019).

[10] J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G.
Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre
fluid instability,” Nature 487, 463–467 (2012).

[11] E. Jambon-Puillet, M. R. Piéchaud, and P.-T. Brun, “Elastic amplification of the
rayleigh–taylor instability in solidifying melts,” Proc. Natl. Acad. Sci. U.S.A. 118,
e2020701118 (2021).

164



[12] F. M. Orr and J. J. Taber, “Use of carbon dioxide in enhanced oil recovery,” Science
224, 563–569 (1984).

[13] G. M. Homsy, “Viscous fingering in porous media,” Ann. Rev. Fluid Mech. 19, 271–311
(1987).

[14] M. B. Amar and D. Bonn, “Fingering instabilities in adhesive failure,” Physica D 209,
1–16 (2005).

[15] Y. Cinar, A. Riaz, and H. A. Tchelepi, “Experimental study of CO2 injection into
saline formations,” Soc. Petrol. Eng. J. 14, 588–594 (2009).

[16] P. G. Saffman and G. I. Taylor, “The penetration of a fluid into a porous medium or
Hele-Shaw cell containing a more viscous liquid,” Proc. R. Soc. Lond. A 245, 312–329
(1958).

[17] H. S. Hele-Shaw, “The flow of water,” Nature 58, 34–36 (1898).

[18] E. Ben-Jacob, R. Godbey, N. D. Goldenfeld, J. Koplik, H. Levine, T. Mueller, and
L. Sander, “Experimental demonstration of the role of anisotropy in interfacial pattern
formation,” Phys. Rev. Lett. 55, 1315 (1985).

[19] E. Ben-Jacob, P. Garik, T. Mueller, and D. Grier, “Characterization of morphology
transitions in diffusion-controlled systems,” Phys. Rev. A 38, 1370–1380 (1988).

[20] V. Horváth, T. Vicsek, and J. Kertész, “Viscous fingering with imposed uniaxial
anisotropy,” Phys. Rev. A 35, 2353–2356 (1987).

[21] M. Rabaud, Y. Couder, and N. Gerard, “Dynamics and stability of anomalous Saffman-
Taylor fingers,” Phys. Rev. A 37, 935–947 (1988).

[22] Y. Couder, O. Cardoso, D. Dupuy, P. Tavernier, and W. Thom, “Dendritic growth in
the Saffman-Taylor experiment,” EPL 2, 437–443 (1986).

[23] G. Zocchi, B. E. Shaw, A. Libchaber, and L. P. Kadanoff, “Finger narrowing un-
der local perturbations in the Saffman-Taylor problem,” Phys. Rev. A 36, 1894–1900
(1987).

[24] L. Ducloué, A. L. Hazel, D. Pihler-Puzović, and A. Juel, “Viscous fingering and
dendritic growth under an elastic membrane,” J. Fluid Mech. 826, R2 (2017).

[25] S. W. McCue, “Short, flat-tipped, viscous fingers: novel interfacial patterns in a Hele-
Shaw channel with an elastic boundary,” J. Fluid Mech. 834, 1–4 (2018).

[26] A. Juel, D. Pihler-Puzović, and M. Heil, “Instabilities in blistering,” Annu. Rev. Fluid
Mech. 50, 691–714 (2018).

[27] A. Buka, J. Kertész, and T. Vicsek, “Transitions of viscous fingering patterns in
nematic liquid crystals,” Nature 323, 424–425 (1986).

165



[28] A. Buka, P. Palffy-Muhoray, and Z. Racz, “Viscous fingering in liquid crystals,” Phys.
Rev. A 36, 3984 (1987).

[29] I. Bischofberger, R. Ramachandran, and S. R. Nagel, “Fingering versus stability in
the limit of zero interfacial tension,” Nat. Commun. 5, 1–6 (2014).

[30] P.-G. De Gennes and J. Prost, The physics of liquid crystals (Oxford University Press,
1993).

[31] M. Kleman and O. D. Lavrentovich, Soft matter physics: an introduction (Springer
Science & Business Media, 2007).

[32] S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new
order in biomedical applications,” Nat. Mater. 6, 929–938 (2007).

[33] S. W. Ula, N. A. Traugutt, R. H. Volpe, R. R. Patel, K. Yu, and C. M. Yakacki,
“Liquid crystal elastomers: an introduction and review of emerging technologies,” Liq.
Cryst. Rev. 6, 78–107 (2018).

[34] S. Shiyanovskii, O. Lavrentovich, T. Schneider, T. Ishikawa, I. Smalyukh, C. Woolver-
ton, G. Niehaus, and K. Doane, “Lyotropic chromonic liquid crystals for biological
sensing applications,” Mol. Cryst. Liq. 434, 259–587 (2005).

[35] T. Sergan, T. Schneider, J. Kelly, and O. D. Lavrentovich, “Polarizing-alignment layers
for twisted nematic cells,” Liq. Cryst. 27, 567–572 (2000).

[36] S.-W. Tam-Chang, W. Seo, K. Rove, and S. M. Casey, “Molecularly designed
chromonic liquid crystals for the fabrication of broad spectrum polarizing materials,”
Chem. Mater. 16, 1832–1834 (2004).

[37] V. G. Nazarenko, O. P. Boiko, M. I. Anisimov, A. K. Kadashchuk, Y. A. Nastishin,
A. B. Golovin, and O. D. Lavrentovich, “Lyotropic chromonic liquid crystal semicon-
ductors for water-solution processable organic electronics,” Appl. Phys. Lett. 97, 284
(2010).

[38] F. Guo, A. Mukhopadhyay, B. W. Sheldon, and R. H. Hurt, “Vertically aligned
graphene layer arrays from chromonic liquid crystal precursors,” Adv. Mater. 23, 508–
513 (2011).

[39] S. Zhou, Y. A. Nastishin, M. M. Omelchenko, L. Tortora, V. G. Nazarenko, O. P.
Boiko, T. Ostapenko, T. Hu, C. C. Almasan, S. N. Sprunt, et al., “Elasticity of lyotropic
chromonic liquid crystals probed by director reorientation in a magnetic field,” Phys.
Rev. Lett. 109, 037801 (2012).

[40] H. S. Park and O. D. Lavrentovich, Liquid crystals beyond displays: chemistry, physics,
and applications (John Wiley & Sons, 2012).

[41] S. Zhou, A. Sokolov, O. D. Lavrentovich, and I. S. Aranson, “Living liquid crystals,”
Proc. Natl. Acad. Sci. U. S. A. 111, 1265–1270 (2014).

166



[42] A. Masters, “Chromonic liquid crystals: more questions than answers,” Liq. Cryst.
Today 25, 30–37 (2016).

[43] H.-S. Park, S.-W. Kang, L. Tortora, Y. Nastishin, D. Finotello, S. Kumar, and O. D.
Lavrentovich, “Self-assembly of lyotropic chromonic liquid crystal Sunset Yellow and
effects of ionic additives,” J. Phys. Chem. B 112, 16307–16319 (2008).

[44] M. P. Renshaw and I. J. Day, “NMR characterization of the aggregation state of the
azo dye Sunset Yellow in the isotropic phase,” J. Phys. Chem. B 114, 10032–10038
(2010).

[45] J. Lydon, “Chromonic liquid crystalline phases,” Liq. Cryst. 38, 1663–1681 (2011).

[46] S. Zhou, K. Neupane, Y. A. Nastishin, A. R. Baldwin, S. V. Shiyanovskii, O. D.
Lavrentovich, and S. Sprunt, “Elasticity, viscosity, and orientational fluctuations of a
lyotropic chromonic nematic liquid crystal disodium cromoglycate,” Soft Matter 10,
6571–6581 (2014).

[47] P. J. Collings, J. N. Goldstein, E. J. Hamilton, B. R. Mercado, K. J. Nieser, and M. H.
Regan, “The nature of the assembly process in chromonic liquid crystals,” Liq. Cryst.
Rev. 3, 1–27 (2015).

[48] H.-S. Park and O. D. Lavrentovich, “Lyotropic chromonic liquid crystals: Emerging
applications,” in Liquid crystals beyond displays: chemistry, physics, and applications
(John Wiley & Sons: Hoboken, NJ, 2012) pp. 449–484.

[49] L. Tortora and O. D. Lavrentovich, “Chiral symmetry breaking by spatial confinement
in tactoidal droplets of lyotropic chromonic liquid crystals,” Proc. Natl. Acad. Sci. U.
S. A. 108, 5163–5168 (2011).

[50] S. Zhou, “Elasticity, viscosity, and orientational fluctuations of a lyotropic chromonic
nematic liquid crystal disodium cromoglycate,” in Lyotropic chromonic liquid crystals:
from viscoelastic properties to living liquid crystals (Springer, 2017) pp. 51–75.

[51] C. F. Dietrich, P. J. Collings, T. Sottmann, P. Rudquist, and F. Giesselmann, “Ex-
tremely small twist elastic constants in lyotropic nematic liquid crystals,” Proc. Natl.
Acad. Sci. U.S.A. 117, 27238–27244 (2020).

[52] S. Zhou, S. V. Shiyanovskii, H.-S. Park, and O. D. Lavrentovich, “Fine structure
of the topological defect cores studied for disclinations in lyotropic chromonic liquid
crystals,” Nat. Commun. 8, 1–7 (2017).

[53] K. Nayani, R. Chang, J. Fu, P. W. Ellis, A. Fernandez-Nieves, J. O. Park, and
M. Srinivasarao, “Spontaneous emergence of chirality in achiral lyotropic chromonic
liquid crystals confined to cylinders,” Nat. Commun. 6, 1–7 (2015).

[54] Z. S. Davidson, L. Kang, J. Jeong, T. Still, P. J. Collings, T. C. Lubensky, and A. G.
Yodh, “Chiral structures and defects of lyotropic chromonic liquid crystals induced by
saddle-splay elasticity,” Phys. Rev. E 91, 050501 (2015).

167



[55] G. Park, S. Čopar, A. Suh, M. Yang, U. Tkalec, and D. K. Yoon, “Periodic arrays
of chiral domains generated from the self-assembly of micropatterned achiral lyotropic
chromonic liquid crystal,” ACS Cent. Sci. 6, 1964–1970 (2020).

[56] O. D. Lavrentovich, “Design of chiral domains by surface confinement of liquid crys-
tals,” ACS Cent. Sci. 6, 1858–1861 (2020).

[57] K. V. Kaznatcheev, P. Dudin, O. D. Lavrentovich, and A. P. Hitchcock, “X-ray mi-
croscopy study of chromonic liquid crystal dry film texture,” Phys. Rev. E 76, 061703
(2007).

[58] T. Suzuki and Y. Kojima, “Direct structural observation of the alignment and elonga-
tion in lyotropic chromonic liquid crystals under shear flow,” Mol. Cryst. Liq. Cryst.
648, 162–167 (2017).

[59] Y. J. Cha, M.-J. Gim, H. Ahn, T. J. Shin, J. Jeong, and D. K. Yoon, “Orthogonal
liquid crystal alignment layer: templating speed-dependent orientation of chromonic
liquid crystals,” ACS Appl. Mater. Interfaces 9, 18355–18361 (2017).

[60] G. Duclos, R. Adkins, D. Banerjee, M. S. Peterson, M. Varghese, I. Kolvin,
A. Baskaran, R. A. Pelcovits, T. R. Powers, A. Baskaran, et al., “Topological structure
and dynamics of three-dimensional active nematics,” Science 367, 1120–1124 (2020).

[61] H. Baza, T. Turiv, B.-X. Li, R. Li, B. M. Yavitt, M. Fukuto, and O. D. Lavrentovich,
“Shear-induced polydomain structures of nematic lyotropic chromonic liquid crystal
disodium cromoglycate,” Soft Matter 16, 8565–8576 (2020).

[62] R. G. Larson, The structure and rheology of complex fluids (Oxford University Press,
1999).

[63] Q. Zhang, A. Amooie, M. Z. Bazant, and I. Bischofberger, “Growth morphology and
symmetry selection of interfacial instabilities in anisotropic environments,” Soft Matter
17, 1202–1209 (2021).

[64] B. Ge, Q. Zhang, R. Zhang, J.-T. Lin, P.-H. Tseng, C.-W. Chang, C.-Y. Dong, R. Zhou,
Z. Yaqoob, I. Bischofberger, et al., “Single-shot quantitative polarization imaging of
complex birefringent structure dynamics,” ACS Photonics 8, 3440–3447 (2021).

[65] Q. Zhang, R. Zhang, B. Ge, Z. Yaqoob, P. T. So, and I. Bischofberger, “Structures
and topological defects in pressure-driven lyotropic chromonic liquid crystals,” Proc.
Natl. Acad. Sci. U. S. A. 118 (2021).

[66] Q. Zhang, S. Zhou, R. Zhang, and I. Bischofberger, “Dendritic patterns from shear-
enhanced anisotropy in nematic liquid crystals,” In review (2022).

[67] Q. Zhang, W. Wang, S. Zhou, R. Zhang, and I. Bischofberger, “Flow-induced periodic
chiral structures in an achiral nematic liquid crystal,” In preparation (2022).

168



[68] L. Parry-Jones, “Alignment properties of liquid crystals,” in Handbook of visual display
technology (Springer, 2016) pp. 2003–2020.

[69] C. K. McGinn, L. I. Laderman, N. Zimmermann, H.-S. Kitzerow, and P. J. Collings,
“Planar anchoring strength and pitch measurements in achiral and chiral chromonic
liquid crystals using 90-degree twist cells,” Phys. Rev. E 88, 062513 (2013).

[70] B. D. Guenther, Modern optics (OUP Oxford, 2015).

[71] A. Jákli, One-and two-dimensional fluids: properties of smectic, lamellar and columnar
liquid crystals (CRC Press, 2006).

[72] Y. A. Nastishin, H. Liu, T. Schneider, V. Nazarenko, R. Vasyuta, S. Shiyanovskii, and
O. Lavrentovich, “Optical characterization of the nematic lyotropic chromonic liquid
crystals: light absorption, birefringence, and scalar order parameter,” Phys. Rev. E
72, 041711 (2005).

[73] B. E. Sørensen, “A revised Michel-Lévy interference colour chart based on first-
principles calculations,” Eur. J. Mineral. 25, 5–10 (2013).

[74] B. Ge, R. Zhou, Y. Takiguchi, Z. Yaqoob, and P. T. So, “Single-shot optical anisotropy
imaging with quantitative polarization interference microscopy,” Laser Photonics Rev.
12, 1800070 (2018).

[75] X. Cheng, L. Xu, A. Patterson, H. M. Jaeger, and S. R. Nagel, “Towards the zero-
surface-tension limit in granular fingering instability,” Nat. Phys. 4, 234–237 (2008).

[76] R. Zenit, “Some fluid mechanical aspects of artistic painting,” Phys. Rev. Fluids 4,
110507 (2019).

[77] T. T. Al-Housseiny, P. A. Tsai, and H. A. Stone, “Control of interfacial instabilities
using flow geometry,” Nat. Phys. 8, 747–750 (2012).

[78] T. T. Al-Housseiny and H. A. Stone, “Controlling viscous fingering in tapered Hele-
Shaw cells,” Phys. Fluids 25, 092102 (2013).

[79] M. Mirzadeh and M. Z. Bazant, “Electrokinetic control of viscous fingering,” Phys.
Rev. Lett. 119, 174501 (2017).

[80] T. Gao, M. Mirzadeh, P. Bai, K. M. Conforti, and M. Z. Bazant, “Active control of
viscous fingering using electric fields,” Nat. Commun. 10, 1–8 (2019).

[81] T. E. Videbæk and S. R. Nagel, “Diffusion-driven transition between two regimes of
viscous fingering,” Phys. Rev. Fluids 4, 033902 (2019).

[82] S. Suo, M. Liu, and Y. Gan, “Fingering patterns in hierarchical porous media,” Phys.
Rev. Fluids 5, 034301 (2020).

169



[83] S. Parsa, E. Santanach-Carreras, L. Xiao, and D. A. Weitz, “Origin of anomalous
polymer-induced fluid displacement in porous media,” Phys. Rev. Fluids 5, 022001
(2020).

[84] M. E. Rosti, S. Pramanik, L. Brandt, and D. Mitra, “The breakdown of Darcy’s law
in a soft porous material,” Soft Matter 16, 939–944 (2020).

[85] L. C. Morrow, T. J. Moroney, and S. W. McCue, “Numerical investigation of control-
ling interfacial instabilities in non-standard Hele-Shaw configurations,” J. Fluid Mech.
877, 1063–1097 (2019).

[86] D. Lu, F. Municchi, and I. C. Christov, “Computational analysis of interfacial dy-
namics in angled Hele-Shaw cells: Instability regimes,” Transport Porous Med 131,
907–934 (2020).

[87] I. Bischofberger and S. R. Nagel, “Fluid instabilities that mimic animal growth,” Phys.
Today 69, 70–71 (2016).

[88] S. A. Setu, I. Zacharoudiou, G. J. Davies, D. Bartolo, S. Moulinet, A. A. Louis, J. M.
Yeomans, and D. G. Aarts, “Viscous fingering at ultralow interfacial tension,” Soft
Matter 9, 10599–10605 (2013).

[89] R. Almgren, W.-S. Dai, and V. Hakim, “Scaling behavior in anisotropic Hele-Shaw
flow,” Phys. Rev. Lett. 71, 3461–3464 (1993).

[90] J. Ignés-Mullol and J. V. Maher, “Experiments on anisotropic radial viscous fingering,”
Phys. Rev. E 53, 3788–3793 (1996).

[91] P. Meakin, “Universality, nonuniversality, and the effects of anisotropy on diffusion-
limited aggregation,” Phys. Rev. A 33, 3371 (1986).

[92] J. Kertész and T. Vicsek, “Diffusion-limited aggregation and regular patterns: fluctu-
ations versus anisotropy,” J. Phys. A 19, L257 (1986).

[93] M. Stepanov and L. Levitov, “Laplacian growth with separately controlled noise and
anisotropy,” Phys. Rev. E 63, 061102 (2001).

[94] E. L. Decker, J. Ignés-Mullol, A. Baratt, and J. V. Maher, “Effect of lattice defects
on Hele-Shaw flow over an etched lattice,” Phys. Rev. E 60, 1767–1774 (1999).

[95] C. Rana and M. Mishra, “Interaction between shock layer and viscous fingering in a
Langmuir adsorbed solute,” Phys. Fluids 29, 032108 (2017).

[96] C. Rana, S. Pramanik, M. Martin, A. De Wit, and M. Mishra, “Influence of Langmuir
adsorption and viscous fingering on transport of finite size samples in porous media,”
Phys. Rev. Fluids 4, 104001 (2019).

[97] V. Sharma, S. Nand, S. Pramanik, C.-Y. Chen, and M. Mishra, “Control of radial
miscible viscous fingering,” J. Fluid Mech. 884, A16 (2020).

170



[98] T. E. Videbæk, “Delayed onset and the transition to late time growth in viscous fin-
gering,” Phys. Rev. Fluids 5, 123901 (2020).

[99] I. Bischofberger, R. Ramachandran, and S. R. Nagel, “An island of stability in a sea
of fingers: emergent global features of the viscous-flow instability,” Soft Matter 11,
7428–7432 (2015).

[100] S. J. Jackson, D. Stevens, H. Power, and D. Giddings, “A boundary element method
for the solution of finite mobility ratio immiscible displacement in a Hele-Shaw cell,”
Int. J. Numer. Meth. Fl. 78, 521–551 (2015).

[101] P. H. A. Anjos, E. O. Dias, and J. A. Miranda, “Radial fingering under arbitrary
viscosity and density ratios,” Phys. Rev. Fluids 2, 084004 (2017).

[102] B. Jha, L. Cueto-Felgueroso, and R. Juanes, “Quantifying mixing in viscously unstable
porous media flows,” Phys. Rev. E 84, 066312 (2011).

[103] M. Islam and J. Azaiez, “Fully implicit finite difference pseudo-spectral method for
simulating high mobility-ratio miscible displacements,” Int. J. Numer. Methods Fluids
47, 161–183 (2005).

[104] J. Chung and G. M. Hulbert, “A time integration algorithm for structural dynamics
with improved numerical dissipation: the deneralized-𝛼 method,” J. Appl. Mech. 60,
371–375 (1993).

[105] K. E. Jansen, C. H. Whiting, and G. M. Hulbert, “A generalized-𝛼 method for inte-
grating the filtered Navier–Stokes equations with a stabilized finite element method,”
Comput. Methods Appl. Mech. Eng. 190, 305–319 (2000).

[106] J. D. Chen, “Radial viscous fingering patterns in Hele-Shaw cells,” Exp. Fluids 5,
363–371 (1987).

[107] A. G. Banpurkar, A. S. Ogale, A. V. Limaye, and S. B. Ogale, “Viscous finger-
ing of miscible fluids in an anisotropic radial Hele-Shaw cell: coexistence of kinetic
and surface-tension dendrite morphology types and an exploration of small-scale influ-
ences,” Phys. Rev. E 59, 2188–2191 (1999).

[108] A. G. Banpurkar, A. V. Limaye, and S. B. Ogale, “Occurrence of coexisting dendrite
morphologies: immiscible fluid displacement in an anisotropic radial Hele-Shaw cell
under a high flow rate regime,” Phys. Rev. E 61, 5507–5511 (2000).

[109] G. K. Batchlor, An introduction to fluid dynamics, Vol. 543 (London: Cambridge
University Press, 1967).

[110] P. G. Saffman, “Viscous fingering in Hele-Shaw cells,” J. Fluid Mech. 173, 73–94 (1986).

[111] P. Gondret, N. Rakotomalala, M. Rabaud, D. Salin, and P. Watzky, “Viscous parallel
flows in finite aspect ratio Hele-Shaw cell: Analytical and numerical results,” Phys.
Fluids 9, 1841–1843 (1997).

171



[112] E. Lajeunesse, J. Martin, N. Rakotomalala, and D. Salin, “3D instability of miscible
displacements in a Hele-Shaw cell,” Phys. Rev. Lett. 79, 5254 (1997).

[113] E. Lajeunesse, J. Martin, N. Rakotomalala, D. Salin, and Y. Yortsos, “Miscible dis-
placement in a Hele-Shaw cell at high rates,” J. Fluid Mech. 398, 299–319 (1999).

[114] S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Prop-
erties, Vol. 16 (Springer Science & Business Media, 2013).

[115] M. Z. Bazant and O. I. Vinogradova, “Tensorial hydrodynamic slip,” J. Fluid Mech.
613, 125–134 (2008).

[116] O. I. Vinogradova, “Slippage of water over hydrophobic surfaces,” Int. J. Miner. Pro-
cess. 56, 31–60 (1999).

[117] F. Feuillebois, M. Z. Bazant, and O. I. Vinogradova, “Effective slip over superhy-
drophobic surfaces in thin channels,” Phys. Rev. Lett. 102, 026001 (2009).

[118] A. D. Stroock, S. K. Dertinger, G. M. Whitesides, and A. Ajdari, “Patterning flows
using grooved surfaces,” Anal. Chem. 74, 5306–5312 (2002).

[119] H. A. Stone, A. D. Stroock, and A. Ajdari, “Engineering flows in small devices:
microfluidics toward a lab-on-a-chip,” Annu. Rev. Fluid Mech. 36, 381–411 (2004).

[120] M. Z. Bazant, J. Choi, and B. Davidovitch, “Dynamics of conformal maps for a class
of non-laplacian growth phenomena,” Phys. Rev. Lett. 91, 045503 (2003).

[121] C. De Rosa, C. Park, E. L. Thomas, and B. Lotz, “Microdomain patterns from direc-
tional eutectic solidification and epitaxy,” Nature 405, 433–437 (2000).

[122] Y. Liu, J. Goebl, and Y. Yin, “Templated synthesis of nanostructured materials,”
Chem. Soc. Rev. 42, 2610–2653 (2013).

[123] D. Bera, S. C. Kuiry, and S. Seal, “Synthesis of nanostructured materials using
template-assisted electrodeposition,” JOM 56, 49–53 (2004).

[124] H. Liu, X. Zhao, Y. Yang, Q. Li, and J. Lv, “Fabrication of infrared left-handed
metamaterials via double template-assisted electrochemical deposition,” Adv. Mater.
20, 2050–2054 (2008).

[125] J.-H. Han, E. Khoo, P. Bai, and M. Z. Bazant, “Over-limiting current and control of
dendritic growth by surface conduction in nanopores,” Sci. Rep. 4, 7056 (2014).

[126] J.-H. Han, M. Wang, P. Bai, F. R. Brushett, and M. Z. Bazant, “Dendrite suppression
by shock electrodeposition in charged porous media,” Sci. Rep. 6, 28054 (2016).

[127] A. Ajdari, “Transverse electrokinetic and microfluidic effects in micropatterned chan-
nels: lubrication analysis for slab geometries,” Phys. Rev. E 65, 016301 (2001).

172



[128] S. S. Bahga, O. I. Vinogradova, and M. Z. Bazant, “Anisotropic electro-osmotic flow
over super-hydrophobic surfaces,” J. Fluid Mech. 644, 245–255 (2010).

[129] G. M. Homsy, “Viscous fingering in porous media,” Annu. Rev. Fluid Mech 19, 271–311
(1987).

[130] C. T. Tan and G. M. Homsy, “Stability of miscible displacements in porous media:
radial source flow,” Phys. Fluids 30, 1239–1245 (1987).

[131] A. Riaz and E. Meiburg, “Radial source flows in porous media: Linear stability analysis
of axial and helical perturbations in miscible displacements,” Phys. Fluids 15, 938–946
(2003).

[132] S. Schmieschek, A. V. Belyaev, J. Harting, and O. I. Vinogradova, “Tensorial slip of
superhydrophobic channels,” Phys. Rev. E 85, 016324 (2012).

[133] K. Kamrin, M. Z. Bazant, and H. A. Stone, “Effective slip boundary conditions for
arbitrary periodic surfaces: the surface mobility tensor,” J. Fluid Mech. 658, 409–437
(2010).

[134] S. Wei, Z. Cheng, P. Nath, M. D. Tikekar, G. Li, and L. A. Archer, “Stabilizing
electrochemical interfaces in viscoelastic liquid electrolytes,” Sci. Adv. 4, eaao6243
(2018).

[135] S. Alqatari, T. E. Videbæk, S. R. Nagel, A. E. Hosoi, and I. Bischofberger,
“Confinement-induced stabilization of the rayleigh-taylor instability and transition to
the unconfined limit,” Sci. Adv. 6, eabd6605 (2020).

[136] Z. Ahmad, Z. Hong, and V. Viswanathan, “Design rules for liquid crystalline elec-
trolytes for enabling dendrite-free lithium metal batteries,” Proc. Natl. Acad. Sci.
U.S.A. 117, 26672–26680 (2020).

[137] A. Sonin and R. Bartolino, “Air viscous fingers in isotropic fluid and liquid crystals
obtained in lifting hele-shaw cell geometry,” Il Nuovo Cimento D 15, 1–8 (1993).

[138] T. Tóth-Katona and A. Buka, “Nematic-liquid-crystal–air interface in a radial hele-
shaw cell: Electric field effects,” Phys. Rev. E 67, 041717 (2003).

[139] W. Thielicke and E. Stamhuis, “Pivlab–towards user-friendly, affordable and accurate
digital particle image velocimetry in matlab,” J. Open Res. Softw. 2 (2014).

[140] W. Thielicke and R. Sonntag, “Particle image velocimetry for matlab: Accuracy and
enhanced algorithms in pivlab,” J. Open Res. Softw. 9 (2021).

[141] I. Bischofberger, R. Ramachandran, and S. R. Nagel, “An island of stability in a sea
of fingers: emergent global features of the viscous-flow instability,” Soft Matter 11,
7428–7432 (2015).

[142] P. Yeh and C. Gu, Optics of liquid crystal displays, Vol. 67 (John Wiley & Sons, 2009).

173



[143] R. Larson, “Arrested tumbling in shearing flows of liquid-crystal polymers,” Macro-
molecules 23, 3983–3992 (1990).

[144] V. Calabrese, S. J. Haward, and A. Q. Shen, “Effects of shearing and extensional flows
on the alignment of colloidal rods,” Macromolecules 54, 4176–4185 (2021).

[145] M. Trebbin, D. Steinhauser, J. Perlich, A. Buffet, S. V. Roth, W. Zimmermann,
J. Thiele, and S. Förster, “Anisotropic particles align perpendicular to the flow direc-
tion in narrow microchannels,” Proc. Natl. Acad. Sci. U.S.A. 110, 6706–6711 (2013).

[146] P. Popov, L. W. Honaker, E. E. Kooijman, E. K. Mann, and A. I. Jákli, “A liquid
crystal biosensor for specific detection of antigens,” Sens. Bio-Sens. 8, 31–35 (2016).

[147] H. Yu and P. Zhang, “A kinetic–hydrodynamic simulation of microstructure of liq-
uid crystal polymers in plane shear flow,” J. Non-Newton. Fluid Mech. 141, 116–127
(2007).

[148] M. M. Genkin, A. Sokolov, O. D. Lavrentovich, and I. S. Aranson, “Topological defects
in a living nematic ensnare swimming bacteria,” Phys. Rev. X 7, 011029 (2017).

[149] A. Sokolov, A. Mozaffari, R. Zhang, J. J. De Pablo, and A. Snezhko, “Emergence of
radial tree of bend stripes in active nematics,” Phys. Rev. X 9, 031014 (2019).

[150] P. C. Mushenheim, R. R. Trivedi, S. S. Roy, M. S. Arnold, D. B. Weibel, and N. L.
Abbott, “Effects of confinement, surface-induced orientations and strain on dynamical
behaviors of bacteria in thin liquid crystalline films,” Soft Matter 11, 6821–6831 (2015).

[151] C. Peng, T. Turiv, Y. Guo, Q.-H. Wei, and O. D. Lavrentovich, “Command of active
matter by topological defects and patterns,” Science 354, 882–885 (2016).

[152] S. Zhou, O. Tovkach, D. Golovaty, A. Sokolov, I. S. Aranson, and O. D. Lavrentovich,
“Dynamic states of swimming bacteria in a nematic liquid crystal cell with homeotropic
alignment,” New J. Phys. 19, 055006 (2017).

[153] C. Peng, T. Turiv, Y. Guo, S. V. Shiyanovskii, Q.-H. Wei, and O. D. Lavrentovich,
“Control of colloidal placement by modulated molecular orientation in nematic cells,”
Sci. Adv. 2, e1600932 (2016).

[154] I. Janossy, P. Pieranski, and E. Guyon, “Poiseuille flow in nematics: experimental
study of the instabilities,” J. Phys. 37, 1105–1113 (1976).

[155] D. J. Graziano and M. R. Mackley, “Shear induced optical textures and their relaxation
behaviour in thermotropic liquid crystalline polymers,” Mol. Cryst. Liq. Cryst. 106,
73–93 (1984).

[156] J. Vermant, P. Moldenaers, S. J. Picken, and J. Mewis, “A comparison between texture
and rheological behaviour of lyotropic liquid crystalline polymers during flow,” J. Non-
Newton. Fluid 53, 1–23 (1994).

174



[157] P. T. Mather, D. S. Pearson, and R. G. Larson, “Flow patterns and disclination-
density measurements in sheared nematic liquid crystals I: Flow-aligning 5CB,” Liq.
Cryst. 20, 527–538 (1996).

[158] J. A. Müller, R. S. Stein, and H. H. Winter, “Rotation of liquid crystalline macro-
molecules in shear flow and shear-induced periodic orientation patterns,” Rheol. Acta
35, 160–167 (1996).

[159] A. Sengupta, U. Tkalec, M. Ravnik, J. M. Yeomans, C. Bahr, and S. Herminghaus,
“Liquid crystal microfluidics for tunable flow shaping,” Phys. Rev. Lett. 110, 048303
(2013).

[160] A. D. Rey and M. M. Denn, “Dynamical phenomena in liquid-crystalline materials,”
Annu. Rev. Fluid Mech. 34, 233–266 (2002).

[161] D. H. Klein, L. G. Leal, C. J. García-Cervera, and H. D. Ceniceros, “Three-dimensional
shear-driven dynamics of polydomain textures and disclination loops in liquid crys-
talline polymers,” J. Rheol. 52, 837–863 (2008).

[162] D. J. Graziano and M. R. Mackley, “Disclinations observed during the shear of MBBA,”
Mol. Cryst. Liq. Cryst. 106, 103–119 (1984).

[163] A. Sengupta, B. Schulz, E. Ouskova, and C. Bahr, “Functionalization of microfluidic
devices for investigation of liquid crystal flows,” Microfluid Nanofluidics 13, 941–955
(2012).

[164] Z. Liu, D. Luo, and K.-L. Yang, “Flow-driven disclination lines of nematic liquid
crystals inside a rectangular microchannel,” Soft Matter 15, 5638–5643 (2019).

[165] A. Sengupta, U. Tkalec, and C. Bahr, “Nematic textures in microfluidic environment,”
Soft Matter 7, 6542–6549 (2011).

[166] H. Agha and C. Bahr, “Connecting and disconnecting nematic disclination lines in
microfluidic channels,” Soft Matter 12, 4266–4273 (2016).

[167] L. Giomi, Ž. Kos, M. Ravnik, and A. Sengupta, “Cross-talk between topological defects
in different fields revealed by nematic microfluidics,” Proc. Natl. Acad. Sci. U. S. A.
114, E5771–E5777 (2017).

[168] T. Emeršič, R. Zhang, Ž. Kos, S. Čopar, N. Osterman, J. J. De Pablo, and U. Tkalec,
“Sculpting stable structures in pure liquids,” Sci. Adv. 5, eaav4283 (2019).

[169] S. Čopar, Ž. Kos, T. Emeršič, and U. Tkalec, “Microfluidic control over topological
states in channel-confined nematic flows,” Nat. Commun. 11, 1–10 (2020).

[170] T. Ouchi, K. Imamura, K. Sunami, H. Yoshida, M. Ozaki, et al., “Topologically pro-
tected generation of stable wall loops in nematic liquid crystals,” Phys. Rev. Lett. 123,
097801 (2019).

175



[171] T. De’Nève, P. Navard, and M. Kleman, “Nature of the flow-induced worm texture of
thermotropic polymers,” Macromolecules 28, 1541–1546 (1995).

[172] M. Doi and S. F. Edwards, The theory of polymer dynamics (Oxford University Press,
1988).

[173] G. Marrucci and F. Greco, “Flow behavior of liquid crystalline polymers,” Adv. Chem.
Phys. 86, 331–404 (1993).

[174] G. Sgalari, G. L. Leal, and J. J. Feng, “The shear flow behavior of LCPs based on a
generalized Doi model with distortional elasticity,” J. Non-Newton. Fluid 102, 361–382
(2002).

[175] A. Sharma, I. L. H. Ong, and A. Sengupta, “Time dependent lyotropic chromonic
textures in microfluidic confinements,” Crystals 11, 35 (2021).

[176] I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imag-
ing of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys.
Lett. 336, 88–96 (2001).

[177] M. Shribak and R. Oldenbourg, “Techniques for fast and sensitive measurements of
two-dimensional birefringence distributions,” Appl. Opt. 42, 3009–3017 (2003).

[178] N. Zimmermann, G. Jünnemann-Held, P. J. Collings, and H.-S. Kitzerow, “Self-
organized assemblies of colloidal particles obtained from an aligned chromonic liquid
crystal dispersion,” Soft Matter 11, 1547–1553 (2015).

[179] R. Zhang, Y. Zhou, M. Rahimi, and J. J. de Pablo, “Dynamic structure of active
nematic shells,” Nat. Commun. 7, 13483 (2016).

[180] R. Zhang, N. Kumar, J. L. Ross, M. L. Gardel, and J. J. de Pablo, “Interplay of
structure, elasticity, and dynamics in actin-based nematic materials,” Proc. Natl. Acad.
Sci. U. S. A. 115, E124–E133 (2018).

[181] N. Kumar, R. Zhang, J. J. de Pablo, and M. L. Gardel, “Tunable structure and
dynamics of active liquid crystals,” Sci. Adv. 4, eaat7779 (2018).

[182] A. N. Beris and B. J. Edwards, Thermodynamics of flowing systems with internal
microstructure (Oxford University Press, 1994).

[183] C. Denniston, E. Orlandini, and J. M. Yeomans, “Lattice Boltzmann simulations of
liquid crystal hydrodynamics,” Phys. Rev. E 63, 056702 (2001).

[184] M. Ravnik and S. Žumer, “Landau-de Gennes modelling of nematic liquid crystal
colloids,” Liq. Crys. 36, 1201–1214 (2009).

[185] C. Denniston, D. Marenduzzo, E. Orlandini, and J. M. Yeomans, “Lattice Boltzmann
algorithm for three-dimensional liquid-crystal hydrodynamics,” Phil. Trans. R. Soc.
Lond. A 362, 1745–1754 (2004).

176



[186] R. Zhang, T. Roberts, I. Aranson, and J. J. de Pablo, “Lattice Boltzmann simulation
of asymmetric flow in nematic liquid crystals with finite anchoring,” J. Chem. Phys.
14, 084905 (2016).

[187] Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in
biomedicine,” Nat. Photonics 12, 578–589 (2018).

[188] P. Manneville, “Non-linearities and fluctuations at the threshold of a hydrodynamic
instability in nematic liquid crystals,” J. Phys. 39, 911–925 (1978).

[189] Q. Ouyang and H. L. Swinney, “Transition to chemical turbulence,” Chaos 1, 411–420
(1991).

[190] D. Grecov and A. D. Rey, “Shear-induced textural transitions in flow-aligning liquid
crystal polymers,” Phys. Rev. E 68, 061704 (2003).

[191] C. Blanch-Mercader, V. Yashunsky, S. Garcia, G. Duclos, L. Giomi, and P. Silberzan,
“Turbulent dynamics of epithelial cell cultures,” Phys. Rev. Lett. 120, 208101 (2018).

[192] A. Doostmohammadi, J. Ignés-Mullol, J. M. Yeomans, and F. Sagués, “Active nemat-
ics,” Nat. Commun. 9, 1–13 (2018).

[193] U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and
D. Psaltis, “Learning approach to optical tomography,” Optica 2, 517–522 (2015).

[194] U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and
D. Psaltis, “Optical tomographic image reconstruction based on beam propagation and
sparse regularization,” IEEE Trans. Comput. Imaging 2, 59–70 (2016).

[195] E. Terentjev, “Disclination loops, standing alone and around solid particles, in nematic
liquid crystals,” Phys. Rev. E 51, 1330 (1995).

[196] G. Joyce, G. Visser, C. Van Boeckel, J. Van Boom, L. Orgel, and J. Van Westre-
nen, “Chiral selection in poly (c)-directed synthesis of oligo (g),” Nature 310, 602–604
(1984).

[197] M. Inaki, J. Liu, and K. Matsuno, “Cell chirality: its origin and roles in left–right
asymmetric development,” Philos. Trans. R. Soc. B: Biol. Sci. 371, 20150403 (2016).

[198] R. Noyori, “Asymmetric catalysis: Science and opportunities (nobel lecture),” Angew.
Chem. Int. Ed. 41, 2008–2022 (2002).

[199] J. R. Brandt, F. Salerno, and M. J. Fuchter, “The added value of small-molecule
chirality in technological applications,” Nat. Rev. Chem. 1, 1–12 (2017).

[200] B. Pokroy, S. H. Kang, L. Mahadevan, and J. Aizenberg, “Self-organization of a
mesoscale bristle into ordered, hierarchical helical assemblies,” Science 323, 237–240
(2009).

177



[201] W. Wu, W. Hu, G. Qian, H. Liao, X. Xu, and F. Berto, “Mechanical design and
multifunctional applications of chiral mechanical metamaterials: A review,” Mater.
Des. 180, 107950 (2019).

[202] W. Xiao, K.-H. Ernst, K. Palotas, Y. Zhang, E. Bruyer, L. Peng, T. Greber, W. A.
Hofer, L. T. Scott, and R. Fasel, “Microscopic origin of chiral shape induction in
achiral crystals,” Nat. Chem. 8, 326–330 (2016).

[203] Y. Snir and R. D. Kamien, “Entropically driven helix formation,” Science 307, 1067–
1067 (2005).

[204] S. M. Morrow, A. J. Bissette, and S. P. Fletcher, “Transmission of chirality through
space and across length scales,” Nat. Nanotechnol. 12, 410–419 (2017).

[205] X. Ma, M. Pu, X. Li, Y. Guo, P. Gao, and X. Luo, “Meta-chirality: Fundamentals,
construction and applications,” J. Nanomater. 7, 116 (2017).

[206] A. Jákli, O. D. Lavrentovich, and J. V. Selinger, “Physics of liquid crystals of bent-
shaped molecules,” Rev. Mod. Phys. 90, 045004 (2018).

[207] D. Link, G. Natale, R. Shao, J. Maclennan, N. Clark, E. Körblova, and D. Walba,
“Spontaneous formation of polar chiral layers from achiral molecules in a novel anti-
ferroelectric liquid crystal phase,” Science 278, 1924 (1997).

[208] O. Lavrentovich and V. Pergamenshchik, “Periodic domain structures in thin hybrid
nematic layers,” Mol. Cryst. Liq. Cryst. 179, 125–132 (1990).

[209] R. Ondris-Crawford, G. Crawford, S. Zumer, and J. Doane, “Curvature-induced con-
figuration transition in confined nematic liquid crystals,” Phys. Rev. Lett. 70, 194
(1993).

[210] J. Jeong, Z. S. Davidson, P. J. Collings, T. C. Lubensky, and A. Yodh, “Chiral
symmetry breaking and surface faceting in chromonic liquid crystal droplets with giant
elastic anisotropy,” Proc. Natl. Acad. Sci. U.S.A. 111, 1742–1747 (2014).

[211] J. Jeong, L. Kang, Z. S. Davidson, P. J. Collings, T. C. Lubensky, and A. Yodh,
“Chiral structures from achiral liquid crystals in cylindrical capillaries,” Proc. Natl.
Acad. Sci. U.S.A. 112, E1837–E1844 (2015).

[212] P. W. Ellis, K. Nayani, J. P. McInerney, D. Z. Rocklin, J. O. Park, M. Srinivasarao,
E. A. Matsumoto, and A. Fernandez-Nieves, “Curvature-induced twist in homeotropic
nematic tori,” Phys. Rev. Lett. 121, 247803 (2018).

[213] Y. Xia, A. A. DeBenedictis, D. S. Kim, S. Chen, S.-U. Kim, D. J. Cleaver, T. J. Ather-
ton, and S. Yang, “Programming emergent symmetries with saddle-splay elasticity,”
Nat. Commun. 10, 1–9 (2019).

[214] O. Lavrentovich, “Fluorescence confocal polarizing microscopy: Three-dimensional
imaging of the director,” Pramana 61, 373–384 (2003).

178



[215] P. K. Kundu, I. M. Cohen, and D. R. Dowling, Fluid mechanics (Academic press,
2015).

[216] P. J. Collings, P. van der Asdonk, A. Martinez, L. Tortora, and P. H. Kouwer, “Anchor-
ing strength measurements of a lyotropic chromonic liquid crystal on rubbed polyimide
surfaces,” Liq. Cryst. 44, 1165–1172 (2017).

[217] W. Wang, “Interplay of active stress and driven flow in self-assembled, tumbling active
nematics,” Crystals 11, 1071 (2021).

[218] C. Denniston, E. Orlandini, and J. M. Yeomans, “Lattice boltzmann simulations of
liquid crystal hydrodynamics,” Phys. Rev. E 63, 056702 (2001).

[219] M. Ravnik and S. Žumer, “Landau–de gennes modelling of nematic liquid crystal col-
loids,” Liquid Crystals 36, 1201–1214 (2009).

[220] R. Zhang, T. Roberts, I. S. Aranson, and J. J. De Pablo, “Lattice boltzmann simulation
of asymmetric flow in nematic liquid crystals with finite anchoring,” J. Chem. Phys.
144, 084905 (2016).

[221] C. Denniston, D. Marenduzzo, E. Orlandini, and J. Yeomans, “Lattice boltzmann
algorithm for three–dimensional liquid–crystal hydrodynamics,” Philos. Trans. Royal
Soc. A . 362, 1745–1754 (2004).

[222] R. Chang, Chiral configurations from achiral lyotropic chromonic liquid crystals under
confinements, Ph.D. thesis, Georgia Institute of Technology (2018).

[223] W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,”
Appl. Phys. Lett. 17, 531–532 (1970).

[224] I. Weissbuch, L. Leiserowitz, and M. Lahav, “Stochastic “mirror symmetry break-
ing” via self-assembly, reactivity and amplification of chirality: Relevance to abiotic
conditions,” in Prebiotic Chemistry (Springer Berlin Heidelberg, 2005) pp. 123–165.

[225] W. D. Piñeros and T. Tlusty, “Spontaneous chiral symmetry breaking in a random
driven chemical system,” Nat. Commun. 13, 1–8 (2022).

[226] P. M. Reis, “A perspective on the revival of structural (in) stability with novel oppor-
tunities for function: from buckliphobia to buckliphilia,” J. Appl. Mech. 82, 111001
(2015).

[227] C.-W. Park, K.-S. Kwon, W.-B. Kim, B.-K. Min, S.-J. Park, I.-H. Sung, Y. S. Yoon,
K.-S. Lee, J.-H. Lee, and J. Seok, “Energy consumption reduction technology in
manufacturing—a selective review of policies, standards, and research,” Int. J. Precis.
Eng. Manuf. 10, 151–173 (2009).

[228] M. D. Bambach, M. Bambach, A. Sviridov, and S. Weiss, “New process chains involv-
ing additive manufacturing and metal forming–a chance for saving energy?” Procedia
Eng. 207, 1176–1181 (2017).

179

http://dx.doi.org/10.1007/b137067


[229] S. Wang, D. P. Maruri, J. M. Boothby, X. Lu, L. K. Rivera-Tarazona, V. D. Varner,
and T. H. Ware, “Anisotropic, porous hydrogels templated by lyotropic chromonic
liquid crystals,” J. Mater. Chem. B 8, 6988–6998 (2020).

[230] S. E. Naleway, M. M. Porter, J. McKittrick, and M. A. Meyers, “Structural design
elements in biological materials: application to bioinspiration,” Adv. Mater. 27, 5455–
5476 (2015).

[231] J. Kaschke and M. Wegener, “Optical and infrared helical metamaterials,” Nanopho-
tonics 5, 510–523 (2016).

[232] I. I. Smalyukh, O. V. Zribi, J. C. Butler, O. D. Lavrentovich, and G. C. Wong,
“Structure and dynamics of liquid crystalline pattern formation in drying droplets of
dna,” Phys. Rev. Lett. 96, 177801 (2006).

[233] J. M. Gómez Gómez, J. Medina, D. Hochberg, E. Mateo-Martí, J. Martínez-Frías,
and F. Rull, “Drying bacterial biosaline patterns capable of vital reanimation upon
rehydration: novel hibernating biomineralogical life formations,” Astrobiology 14, 589–
602 (2014).

[234] Z. S. Davidson, Y. Huang, A. Gross, A. Martinez, T. Still, C. Zhou, P. J. Collings, R. D.
Kamien, and A. Yodh, “Deposition and drying dynamics of liquid crystal droplets,”
Nat. Commun. 8, 1–7 (2017).

[235] M. Parsa, S. Harmand, and K. Sefiane, “Mechanisms of pattern formation from dried
sessile drops,” Adv. Colloid Interface Sci. 254, 22–47 (2018).

[236] B. Pathak, J. Christy, K. Sefiane, and D. Gozuacik, “Complex pattern formation in
solutions of protein and mixed salts using dehydrating sessile droplets,” Langmuir 36,
9728–9737 (2020).

[237] D. Kaya, V. Belyi, and M. Muthukumar, “Pattern formation in drying droplets of
polyelectrolyte and salt,” J. Chem. Phys. 133, 114905 (2010).

[238] E. Karzbrun, A. Kshirsagar, S. R. Cohen, J. H. Hanna, and O. Reiner, “Human brain
organoids on a chip reveal the physics of folding,” Nat. phys. 14, 515–522 (2018).

[239] R. Alert, C. Blanch-Mercader, and J. Casademunt, “Active fingering instability in
tissue spreading,” Phys. rev. lett. 122, 088104 (2019).

[240] T. Büscher, A. L. Diez, G. Gompper, and J. Elgeti, “Instability and fingering of
interfaces in growing tissue,” New J. Phys. 22, 083005 (2020).

[241] M. Poujade, E. Grasland-Mongrain, A. Hertzog, J. Jouanneau, P. Chavrier, B. Ladoux,
A. Buguin, and P. Silberzan, “Collective migration of an epithelial monolayer in re-
sponse to a model wound,” Proc. Natl. Acad. Sci. U.S.A. 104, 15988–15993 (2007).

[242] L. Petitjean, M. Reffay, E. Grasland-Mongrain, M. Poujade, B. Ladoux, A. Buguin,
and P. Silberzan, “Velocity fields in a collectively migrating epithelium,” Biophys. J.
98, 1790–1800 (2010).

180



[243] A. Callan-Jones, J.-F. Joanny, and J. Prost, “Viscous-fingering-like instability of cell
fragments,” Phys. rev. lett. 100, 258106 (2008).

[244] G. Gompper, R. G. Winkler, T. Speck, A. Solon, C. Nardini, F. Peruani, H. Löwen,
R. Golestanian, U. B. Kaupp, L. Alvarez, et al., “The 2020 motile active matter
roadmap,” J. Condens. Matter Phys. 32, 193001 (2020).

[245] O. D. Lavrentovich, “Active colloids in liquid crystals,” Curr. Opin. Colloid Interface
Sci. 21, 97–109 (2016).

[246] T. Turiv, I. Lazo, A. Brodin, B. I. Lev, V. Reiffenrath, V. G. Nazarenko, and O. D.
Lavrentovich, “Effect of collective molecular reorientations on brownian motion of col-
loids in nematic liquid crystal,” Science 342, 1351–1354 (2013).

181


	Introduction
	Pattern growth in the viscous-fingering instability
	Structure formation in nematic lyotropic chromonic liquid crystals

	Experimental methods
	Experimental setups
	Hele-Shaw cell
	Microfluidic channel

	Optical techniques
	Customized Michel-Lévy color chart
	Single-shot quantitative polarization imaging of complex birefringent structure dynamics
	Polarized shearing interference microscopy (PSIM)
	Derivation of the Polarization retrieval algorithm


	Growth morphology and symmetry selection of interfacial instabilities in anisotropic environments
	Methods
	Experimental methods
	Numerical simulations

	Results
	Morphology transitions in an anisotropic Hele-Shaw cell
	Dendritic growth adopts different symmetries

	Discussion
	Conclusions
	Appendices
	Negligible effects of diffusion in the numerical simulations
	Convergence of the numerical simulations
	Simplified model to account for the effect of the degree of anisotropy and the viscosity ratio on the pattern growth
	Growth of sub dendrites


	Dendritic patterns from shear-enhanced anisotropy in nematic liquid crystals
	Methods
	Results and Discussion
	Growth morphology transition in nematic LCLC solutions
	Growth morphology transition induced by shear-enhanced anisotropy
	Extensional flow locally breaks DSCG aggregates at fingertips

	Conclusions
	Appendices
	Far-field director orientation in DSCG solutions
	Flow behavior of DSCG solutions described by the Smoluchowski equation
	Extensional viscosity of DSCG solutions and director characteristics under uniaxial extensional flow
	Shear flow in the fingertip region


	Structures and topological defects in pressure-driven lyotropic chromonic liquid crystals
	Methods
	Experimental methods
	Numerical methods
	Polarized shearing interference microscopy

	Results and Discussion
	Emerging structures in pressure-driven flow of nematic DSCG solutions
	Structures represent pure-twist disclination loops
	Characteristic size and aspect ratio of pure-twist disclination loops
	Dynamics of pure-twist disclination loops

	Conclusions
	Appendices
	Normalized Autocovariance
	Director field in the numerical simulations
	Forward model for the determination of the retardance map from simulation data
	Elastic powers of splay, twist and bend deformations
	Topological structure of disclination loops in numerical simulations
	Estimate of the energy of twist walls
	Derivation of simplified nematodynamic equation to describe the aspect ratio of pure-twist disclination loops
	Decoupling the contributions of fluctuations and translation to the dynamics of disclination loops
	Fluctuation time determined by tumbling character of nematic DSCG


	Flow-induced periodic chiral structures in an achiral nematic liquid crystal
	Methods
	Experimental methods
	Numerical methods
	Simulated director field

	Results and Discussion
	Appendices
	Evolution of directors on walls of the microfluidic channel
	Director field of stripe patterns
	Azimuthal angles of nematic LCLC solutions in weak flows
	Frank elastic free energy for different configurations of the director field
	Derivation of the period of stripes


	Conclusions
	Summary
	Future work
	Instability-mediated fabrication methods
	Pattern formation in drying droplets
	Extension of the principles of pattern formation in physical systems to biological systems
	Role of anchoring conditions for tuning flow-induced structures in nematic lyotropic chromonic liquid crystals



