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Abstract

The following treatise explores the use of natural language processing to accelerate
the design process in various domains by automating idea filtering. During the de-
sign of products or programs, a bottleneck often arises when experts need to filter
through an exorbitant number of ideas, searching for which ones are most innovative,
creative, relevant, or any other number of subjective characteristics. We observe this
bottleneck when filtering entrepreneurial ideas for innovation, when filtering early-
stage design concepts for creativity and usefulness, and when filtering literature for
relevance toward policy-informing evidence syntheses. Motivated by the common
challenge of idea filtering in various design domains, my research explores the use of
natural language processing (NLP) for accelerating design through automated idea fil-
tering. My team and I investigate the possibility of using machine learning to predict
expert-derived creativity assessments of design ideas from more accessible non-expert
survey results. We demonstrate the ability of machine learning models to predict
design metrics from the design itself and textual survey information. Our results
show that incorporating NLP improves prediction results across design metrics, and
that clear distinctions in the predictability of certain metrics exist. We go on to
explore the effectiveness of using NLP to accelerate literature screening for design-
ing evidence-based policies and programs. In this research, we introduce the use of
transformer models for idea filtering and evaluation. Transformer-based models have
produced state of the art results in NLP tasks such as language translation, ques-
tion answering, reading comprehension, and sentiment analysis. Our results show
that the fine-tunable transformer-based models achieve the highest text classifica-
tion accuracy, 79%, therefore accurately evaluating and filtering our textual dataset.
Furthermore, we observe that the model accuracy improves with the training data
size with diminishing marginal effect. The findings can facilitate informed decision
making regarding the trade-off between model accuracy and manual labeling efforts,
increasing efficiency. After demonstrating the effectiveness of using NLP to accelerate
literature screening, we aimed to next decrease the level of effort required of expert re-
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viewers to generate training data. To train an idea-filtering model, we need a labeled
dataset of ideas, however obtaining labeled data is a challenge for engineering and
design applications, as experts are expensive and, therefore, expert labeled datasets
are as well. We were motivated to explore avenues to decrease the size of training
data needed by using active learning (AL). AL is the concept that a machine learning
algorithm can perform better with less training data if it is allowed to choose the data
from which it learns. We find that data selection techniques that incorporate active
learning result in higher F1 scores, a more balanced training set, and fewer necessary
labeled training instances. These results suggest that active learning is effective in
decreasing expert level of effort for NLP-based idea filtering with highly imbalanced
data. We ultimately find that NLP can accelerate design processes in various do-
mains by automating idea filtering and further decreasing the level of effort required
of human experts.

Thesis Supervisor: Faez Ahmed
Title: Assistant Professor of Mechanical Engineering
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Chapter 1

Introduction

During the design of products or programs, a bottleneck often arises when experts

need to filter through an exorbitant number of ideas, searching for which ones are

most innovative, creative, relevant, or any other number of subjective characteristics.

We have seen this bottleneck arise in Google’s Project 10ˆ100th. This project was

launched as a “call for ideas that could help as many people as possible” [25]. However,

upon receiving over 150,000 ideas, Google was forced to postpone the selection of

winners until two years later due to the time and resources required to evaluate all

submissions [127]. We see this bottleneck again arise when designing evidence-based

policies and programs. To design such policies and programs, decision-makers must

distill key information from a vast and rapidly growing literature base. Identifying

relevant literature from raw search results is time and resource intensive, and often

requires significant manual screening. Given that one of the main barriers to evidence

use among policymakers is the lack of timely research outputs, there is a critical need

to reduce the time and effort needed to complete such literature reviews [89].

Motivated by the common challenge of idea filtering in various design domains,

my research explores the use of natural language processing (NLP) for accelerating

design through automated idea filtering.

In Chapter 2, my team and I investigate the possibility of using machine learning

to predict expert-derived creativity assessments of design ideas from more accessi-

ble non-expert survey results. When evaluating early-stage design concepts, the aim
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is to capture a range of information, including usefulness, uniqueness, and novelty

of a design. The subjective nature of these concepts makes their evaluation diffi-

cult. Still, many attempts have been made and metrics developed to do so, because

design evaluation is integral to the creation of novel solutions. The most common

metrics used are the consensual assessment technique (CAT) and the Shah, Vargas-

Hernandez, and Smith (SVS) method. While CAT is accurate and often regarded

as the “gold standard,” it relies on using expert ratings, making CAT expensive and

time-consuming. Comparatively, SVS is less resource-demanding, but often criticized

as lacking sensitivity and accuracy. We utilize the complementary strengths of both

methods through machine learning. This study investigates the possibility of using

machine learning to predict expert creativity assessments from more accessible non-

expert survey results. The SVS method results in a text-rich dataset about a design.

We utilize these textual design representations and the deep semantic relationships

that words and sentences encode to predict more desirable design metrics, includ-

ing CAT metrics. We demonstrate the ability of machine learning models to predict

design metrics from the design itself and SVS survey information. We show that

incorporating natural language processing improves prediction results across design

metrics, and that clear distinctions in the predictability of certain metrics exist.

In Chapter 3, we go on to explore the effectiveness of using NLP to accelerate

literature screening for designing evidence-based policies and programs. We compare

three transformer-based text classification models: the universal sentence encoder

(USE), bidirectional encoder representations from transformers (BERT), and BERT

integrated with a rule-based model. We further study the influence of training data

size on accuracy. Results show that the fine-tunable BERT-based models outperform

the USE model by 10% in terms of accuracy; the integrated BERT model surpasses

the BERT model by 2%, achieving an accuracy of 79%. The model accuracy im-

proves with the training data size with diminishing marginal effect. The findings can

facilitate informed decision making regarding the trade-off between model accuracy

and manual labeling efforts, increasing efficiency.

After demonstrating the effectiveness of using NLP to accelerate literature screen-
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ing, we aimed to next decrease the level of effort required of expert reviewers to gener-

ate training data. In Chapter 4, we were motivated to explore avenues to decrease the

size of training data needed by using active learning (AL). AL is the concept that a

machine learning algorithm can perform better with less training data if it is allowed

to choose the data from which it learns. We experiment on classifier models with four

different data selection scenarios with our highly imbalanced real-world dataset. We

find that data selection techniques that incorporate active learning result in higher F1

scores, a more balanced training set, and fewer necessary labeled training instances.

These results suggest that active learning is effective in decreasing expert level of

effort for NLP-based idea filtering with highly imbalanced data.

1.1 List of Contributions

The contributions from our three studies are listed below:

• Chapter 2

– Incorporating natural language processing in the representation of a design

consistently improves a model’s ability to predict expert design metrics.

– Different design metrics vary distinctly in their predictability. Usefulness

and Elegance perform the best, and Creativity and Uniqueness perform

the worst.

• Chapter 3

– For classifying documents for inclusion in evidence syntheses, the fine-

tunable BERT-based models outperform the USE model by 10% in terms

of accuracy; the integrated BERT model surpasses the BERT model by

2%, achieving an accuracy of 79%.

– Model accuracy improves with the training data size until a size of 10,000

with diminishing marginal effect.

• Chapter 4
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– Incorporating active learning in data selection results in an F1 score of

0.78, which is 7.7% higher than the baseline data selection technique.

– Incorporating active learning in data selection results in more balanced,

and consequently more diverse, training datasets.The two techniques in-

corporating AL end up with training sets comprised of 30% and 33% of

minority class instances, while the two techniques without AL result in 7%

and 16% minority class training sets.

– If an active learning technique is used to identify new samples to query,

then a random initial training set will perform just as well as a balanced

initial training set. Since obtaining a balanced initial training set requires

non-trivial expert labeling effort, an equally high performance from the

random initial training set means we can propose a technique that maxi-

mizes model performance while minimizing human expert level of effort.

We ultimately find that NLP can accelerate design processes in various domains by

automating idea filtering and decreasing the level of effort required of human experts.

1.2 Publications Supporting this Thesis

• If a Picture is Worth 1000 Words, Is a Word Worth 1000 Features for Design

Metric Estimation? Journal of Mechanical Design [45]

• If a Picture is Worth 1000 Words, Is a Word Worth 1000 Features for Design

Metric Estimation? International Design Engineering Technical Conferences &

Computers and Information in Engineering Conference, 2021 [46]

• Accelerated Evidence Synthesis in International Development using Integrated

Transformer-based Language Models (Submitted)
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Chapter 2

Natural Language Processing for

Filtering Design Ideas based on

Creativity

2.1 Introduction

A picture is often said to be worth a thousand words because of the amount of in-

formation it can transmit. A picture captures not only the object or concept of

interest, but also potentially embedded interactions with the environment and, pos-

sibly, the preferences of the picture owner [118]. The same can be said with words in

design concept evaluation due to the nature of languages being complex and context-

dependent. For example, the same word may have different meanings and different

words may have the same meanings when used in different contexts. As a result, the

number of features used to capture the dynamic state of a word increases. This is also

what makes creative design evaluations difficult. The need for creative design eval-

uations stems from the increased attention in research on creativity and innovation

in engineering, as they are crucial in providing novel solutions to new and existing

problems [12, 80, 7]. It has even been said that creativity is mankind’s most valuable

resource, as innovation and progress rely heavily on creativity [24]. Creativity and
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innovation mark an individual’s ability to produce new ideas, a skill that is crucial

in the production of novel technology [14, 122, 87, 72]. As a result, there has been

a surge in research that examines possible methods to boost student creative and

innovative behaviors [78, 125, 106].

Methods to engage students in creativity require separate methods that assess the

outcomes. Assessments can help identify creative ideas and individuals, and facilitate

improvements in both [105, 124, 35, 48]. Assessments can also serve as a way of

evaluating the design metrics in terms of their effectiveness at aiding the process of

creative idea generation [112]. A lack in assessment strategy is not only a setback

to assessing the suitability and effectiveness of these creativity-enhancing techniques

in specific projects, but also may bring into question their overall effectiveness [72].

Therefore, there is a need to measure not only if a concept is creative, but also to

what degree it is creative [105].

There are a plethora of metrics that aim to measure creativity today [39, 24, 112].

These metrics include, but are not limited to, expert panels [9, 33, 32, 20, 51], the

Consensual Assessment Technique (CAT) [10, 14, 21], the Shah, Vargas-Hernandez,

and Smith (SVS) method [112], and the Comparative Creativity Assessment (CCA),

which is built upon the SVS method [73]. Among all of the metrics created, the most

common are the CAT [10, 14, 21] and the SVS method [112]. Despite the fact that

many metrics exist, measuring creativity is still difficult. One of the reasons could be

due to the multi-faceted nature of creativity and what it entails [101]. In addition,

the unique characteristics of the measurement methods can also result in increased

challenges for researchers to establish an assessment standard [72, 85, 17]. The abun-

dance of metrics available has resulted in great variability between the methodology

of different studies, which makes comparing findings increasingly difficult [85]. For

example, SVS results have been found to not match expert ratings in design variabil-

ity [74], while the heavy dependence of CAT assessments on the experience, number,

and subjectivity of the experts can result in the experiment being significantly re-

stricted by their time and financial budget [39].

To address these limitations with the creativity assessment metrics, this study
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tries to uncover how machine learning methods can enable automated assessment of

creativity. Specifically, we investigate how regression models can be used to predict

the design metrics for unseen designs using SVS features. A total of five design

metrics relating to creativity will be measured, including creativity itself, since in

addition to measuring the different aspects of creativity, it is also important to gauge

the overall creativity of the design. Creativity can be defined here as a measure of the

capacity to generate original work that is useful [14, 122, 87]. In the rating process for

CAT, the ratings of the experts rely heavily on their own internal heuristics and prior

experience. At the beginning of the rating process, ideas will be picked out from the

group that represent high, medium, and low creativity [102]. The rating of each expert

will be different, as this is heavily based on the individual expert’s own definition of

what creativity is, and how they perceive the ideas. The expert raters will then

be asked to use the low, medium, and high creativity concepts as the baseline, and

use them to evaluate all the other concepts [54]. This comparative evaluation will be

captured through a 7-point Likert scale [54], and can be an accurate assessment of how

relatively creative each concept is. Then, the expert will examine the concepts further

in terms of its usefulness (quality and utility of the idea), uniqueness (originality of

the idea), and elegance (well-crafted), which are CAT sub-metrics [26]. It will also

be used to evaluate the drawing of the concepts as it has been found to be correlated

with design outcome [133].

In this study, we will further show how natural language processing (NLP) based

models, which capture semantic relationships between words, can help overcome the

issue of attribute dependencies in SVS features and improve the prediction results.

NLP is a subset of speech and language processing that aims to train the computer

to interpret the text in a more naturalistic, human way [28]. Applications of NLP

include text sentiment detection and response generation [28], all of which could be

helpful in completing the goal of this study. More specifically, this study can help to

examine the plausibility of using SVS ratings to predict and produce design metrics

including CAT ratings; CAT ratings are very resource demanding, whereas utilizing

SVS ratings would be faster, easier, and cheaper to gather. Our code and additional
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information about our work are available at http://decode.mit.edu/projects/

nlp-design-eval/

2.2 Related Works

Creativity and innovation are traits that are greatly valued in the current market, as

they are crucial in the formation of new ideas [12, 80, 7]. As a result, there has been

an abundance of research on methods that aim to encourage and improve creativity

in students [78, 125, 106]. An important step following the promotion of creativity is

the assessment of creativity, which is important in the identification and evaluation of

progress [105, 124, 35, 48, 112]. The two most commonly used metrics for creativity

measurement are the CAT [10, 14, 21] and the SVS method [112]. Although the

CAT method is valued as more accurate in the measurement process, it is also very

resource consuming [61, 39, 64] due to the time needed to have expert raters code

hundreds or thousands of ideas, plus the time needed to train novice raters if experts

are unavailable. By comparison, the SVS method is faster and cheaper, as novice

raters can achieve high levels of inter-rater agreement. However, it lacks sensitivity

and accuracy, and does not match the rating of expert reviewers [74]. Therefore, this

study was constructed to investigate the plausibility of using SVS data to predict and

produce design metrics that accurately assess the creativity of the concepts.

2.2.1 Creativity Assessment Methods

Creative assessment methods are a crucial after-step of engineering design research,

and are often seen as a ”means to an end” to researchers studying engineering design

creativity. They are an effective tool in identifying and evaluating the effectiveness

of creativity-enhancing techniques, and helping assess the novelty of ideas generated

[105, 124, 35, 48, 112]. There have been many metrics designed that aim to measure

the creativity of concepts [62] or aspects related to creativity. Research has classified

these assessment methods into two categories: process-based and outcome-based [88].

More specifically, process-based methods focus on the cognitive processes that are in-
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volved during the concept generation process [88]. Comparatively, outcome-based

methods examine the outcomes of the ideation process [88, 112]. Of these two cate-

gories, the outcome-based methods are more commonly known and used [88]. This

is primarily due to the complexity and difficulty associated with process-based ap-

proaches [88, 112]. Although research has been done to classify the different methods,

there has not been one method that is denoted as the standardized method [62]. This

is because each of the metrics available have their respective advantages and disad-

vantages. For example, although CAT has been praised as the “gold standard of

creativity assessment,” [23] it is still flawed because its methods are very time and

resource consuming [61, 39, 64]. Therefore, it is up to the researchers to determine,

based on their needs and their resources, which method their study will employ. For

this study, the focus will primarily be on CAT and SVS, two of the most commonly

used metrics.

The CAT was first conceptualized and developed by Teresa Amabile to assess

creativity in a subjective manner [10, 12, 13, 85], and is often regarded as the best

rating method [61, 39, 23, 68]. It measures creativity by employing a panel with

appropriate expertise in the field of interest and asking them to provide their own

ratings on the products or ideas generated based on a Likert scale [68, 23, 22, 10,

14, 21, 85, 39]. The process for attaining CAT ratings is as follows: (1) a group of

creative concepts are gathered [68, 23, 39, 85] and (2) raters are then asked to provide

ratings from 1 (low in a factor) to 7 (high in a factor) based on the definition of each

factor[85]. During the assessment, it is stressed that the experts should make their

assessments independently, subjectively, and take into consideration other products

under review [68, 23, 39, 85].

The basis for this method is that an idea is only creative to the extent that experts

agree, independently, that it is creative. [85, 61]. Because of this, the accuracy of

these assessments heavily depends on the expertise of the reviewer in that field [11, 10].

This is supported by previous research that found expert ratings to have a higher

agreement (higher inter-rater reliability) than non-expert ratings [11, 10, 39, 65].

Therefore, it could be said that there is no standard scoring system available for
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CAT, as it is entirely based on subjective comparison within a certain group [64].

This is because concepts designed in the same environment, same situation, and

same predisposition can be evaluated with respect to each other [54].

Although CAT ratings are accurate because they are based on the opinion of

experts in the field, they are also relatively difficult to gather [39]. Experts are often

very expensive, relatively hard to find, and extremely busy [39]. This aspect of CAT

makes it more difficult to implement than some of the other metrics. Human raters

have also been shown to be inconsistent between each other, which can be a result of

different expertise levels, as well as differences in their beliefs about creativity [77].

These are among the reasons why current researches are looking into alternatives,

such as using novice raters [65], quasi-novice raters [66, 67], or in the case of this

chapter, machine learning.

Another common metric that is used is the SVS method [112]. This method is

an example of a model using the genealogical tree approach [7] and is more com-

monly used and accepted in engineering [112, 91]. Here, the focus is more on using

effectiveness to quantify creativity of ideation [85]. When using the SVS approach,

the role of the human rater is replaced by predefined components as an attempt to

increase repeatability and reduce subjectivity [6]. This type of metric usually breaks

down the concepts into components, and quantitatively measures the creativity of

each component based on relative frequencies [112, 85, 111]. More specifically, the

concepts will be broken down based on the function of the components [85, 17]. How-

ever, this metric has been criticized as lacking in its sensitivity and accuracy [6].

For example, Linsey’s research reported that SVS results were inconsistent with the

ratings produced by experts in terms of variety of concepts [74]. Other studies have

reported that SVS results can have decreased accuracy as a result of an increase in

sample size [115, 94]. In addition, one study by Sluis-Tiescheffer et al. [115] found the

SVS approach was unable to provide comparison between different attributes, only

allowing for comparison between the same attribute.

SVS encompasses four sub-metrics: (1) novelty, (2) variety, (3) quality, and (4)

quantity of ideation [112]. In this case, novelty can be defined as how different the
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concept is from other concepts; variety is how different the concept is from other

concepts generated by the same designer; quality is a subjective measure of feasibility

and degree of success at meeting desired requirement; and quantity is the number of

concepts generated [88, 85, 112]. Of these four sub-metrics, quality and novelty are

usually the more focused factors, as novel and appropriateness of ideas being part

of the definition of creativity [85, 14]. The novelty component of SVS examines how

similar the idea is with other ideas from the same group [112, 88, 85]. Through the

genealogical tree, also known as the feature tree approach, SVS proposes that novelty

can be calculated based on the type of features the concept includes, as well as how

each feature is satisfied [112]. Therefore, concepts that have features in categories

with lower overall frequency will indicate that not many other concepts share their

idea, which would then indicate higher novelty for that idea [85]. Comparatively, the

quality component of SVS measures the feasibility of the concepts in terms of how

successful they are at meeting the desired design requirements [85, 88, 112].

2.2.2 Machine Learning and Creativity Assessment

Data-driven research approaches and methods, like machine learning, are advanta-

geous for analyzing large amounts of data for meaning, patterns, relationships, and

even development and formation of theories [86]. In recent years, machine learning

algorithms can even be used to construct models from data that are not necessarily

linearly related [86]. This characteristic is what gives machine learning the poten-

tial to be used in the analysis of subjective measures. This is supported by prior

research, where machine learning has been successfully used to predict subjective

measures, such as mental workload [86]. It has also been used in objective quality-

assessments of videos that would otherwise demand a much larger-scale and a more

expensive experiment [8]. The result of this study shows that machine learning was

able to significantly reduce the amount of work needed without compromising the

conclusion [8]. Machine learning also shows promise in contributing to opinion-based

data-mining [123]. It has already been found that opinion mining can be used to

determine whether a sentence or a document is expressing positive or negative sen-
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timent [123]. Machine learning and opinion mining has also been used with natural

language processing to assess online reviews [123, 60], where opinion spam detection

would be used to separate out reviews while usefulness measurements [123, 60] can

be used to identify the usefulness and subjectivity of a review [123, 52, 75, 79, 53].

Therefore, the ability of machine learning to assist in the assessment of subjective

measures, like creativity, is investigated in this study. More specifically, this study

focuses on using the natural language processing.

NLP is a type of machine learning process that attempts to teach computers to

interpret language in a natural, “human,” way [28]. More specifically, it seeks to

explore how computers can be used to understand and manipulate natural language

to accomplish useful tasks [34]. Therefore, it could be said that the ultimate goal

of NLP is to achieve “human-like language processing” abilities [71]. NLP has been

found to be helpful in the completion of tasks like understanding the sentiment behind

text and generating responses to questions [28]. For example, NLP has been used

to extract information from narrative text in the medical field, and has found the

results to be reasonable [82]. In another study by Li et al., NLP was used to assess

Chinese subjective answers [70]. Design researchers have used NLP based methods

on a plethora of tasks ranging from identifying manager interventions [55], predicting

contest winners [5], sentiment analysis of conversations [41] to understanding product

reviews [63]. In this chapter, we show how these models, when combined with design

feature information, can also enable prediction of multiple design metrics.

2.3 Methods

Our goal is to predict design metrics including expert CAT ratings of a design using

SVS features and a description gathered from that design. Details on the rating

process can be found in the work by Miller et al. [85]. More specifically, for the

CAT ratings, two expert raters were used. One rater has a graduate degree and the

other has completed graduate coursework. Both raters were in engineering-related

fields. Both raters had at least four years of experience in design and assessment, and
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Figure 2-1: The overall architecture of our model. From a design, we initially have
a dataset of SVS features in numerical form as well as a written text description
provided by the designer. We convert the numerical SVS features into text and
combine that text with the original description to gain an all-text representation
of the design. We encode this text representation in Google’s Universal Sentence
Encoder to gain a numerical text embedding for each design. We input this text
embedding into a regression model to predict five expert acquired design metrics:
Usefulness, Elegance, Drawing, Uniqueness, and Creativity.

had published papers in the related fields. The rating process followed the guidelines

established by Besemer [26] and Besemer and O’Quinn [27]. The raters received

around 20 hours of training sessions that included a history of CAT and how to use

it, potential biases that might arise when rating, and the meaning of the different

ratings. The raters then engaged in a practice round of rating and discussed their

different ratings. Following the training session, the raters independently rated all

the ideas. Their independent ratings were then aggregated. For the SVS ratings,

two raters were recruited. Both raters are engineering students, with one graduate

student and one undergraduate student. One of the raters had previous experience

using the CAT process. Both raters received training on the design process and the

rating process. The interrater agreement for this approach was 0.85.

We experiment with different methods to predict the five different design metrics:

Usefulness, Elegance, Drawing, Uniqueness, and Creativity. Our different methods

stem from using three different representations of a design, as well as three different re-
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gression models. The different design representations are derived from data available

in the design itself and the unprocessed SVS features. The three design representa-

tions are (1) One-hot-encoded SVS Features, (2) One-hot-encoded SVS Features +

Text Embedded Description, (3) Text Embedded SVS Features and Description.

Figure 2-1 shows how we created each of the three design representations and we

will explain what each of the design representations is in detail in the first five subsec-

tions of the Methodology section. In addition to the three distinct design representa-

tions, we explore the use of three different regression models: (1) Linear regression,

(2) Gradient Boosting (GB) regression, and (3) Random Forest (RF) regression.

As shown in Figure 2-1, we originally start with a design. Initially, we have both

a text description and a completed SVS Survey about the design. In the follow-

ing sections, we will discuss our methods of processing the data, our motivation for

converting data into different design representations, which design representations

provided the most predictive power, and how this varied for different expert-gathered

design metrics.

2.3.1 SVS Data Processing

The original SVS data comes from a survey where raters are asked to examine different

designs of milk frothers and answer questions such as: “ How is the device powered?”

[121] There are 91 questions total. This survey was developed based on the feature-

tree approach, where the designs are first reviewed and categories of features that

are common in the current designs are identified. These categories were then used

to design the SVS survey used in this study, where each question and its respective

response serves as an initial feature for the design. An example of two of these survey

questions is shown in Figure 2-1, labelled by SVS survey. As the figure shows, the

survey responses are categorical. Therefore, the responses have been pre-processed

such that each distinct response to a question is given a number. For example, for the

question “How is the device powered?” the provided response options are (1) Manually

powered, (2) Electric, or (3) Other, and the corresponding number represents the

response.
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For example, Figure 2-1 shows that the responses for the two questions can be

mapped to a two-dimensional vector, where the first value of “3” corresponds to the

third category “Other” and the second value “1” corresponds to the first category

“Yes” for the second question. Although the responses were given numerical values,

their relationships were not numerical, i.e. the difference between “1” and “3” is

not necessarily greater than the difference between “1” and “2.” Consequently, we

converted these categorical features through one-hot-encoding into vectors.

One-hot-encoding is the most widely used method for converting categorical data

into numerical data that can be used for a machine learning model [98]. This method

is commonly used when there is not ordinal relationship between categories, since

giving each category a varying numerical value would add an ordinal relationship that

does not exist [98, 56]. Categorical data often contains labels rather than numbers,

for example, an image might be labeled “cat” or “dog”. One-hot-encoding converts

these labels into binary features. If the variable were “Type of pet” and the options

were “cat” and “dog,” then “cat” can be given a value [0,1] and “dog” can be given a

value [1,0].

In the example shown in Figure 2-1, the first question had three possible answers,

designated “1,” “2,” and “3.” This single question became three binary questions,

where response “1” is now [1,0,0], response “2” is now [0,1,0], and response “3” is now

[0,0,1]. Each value is considered a feature, so this overall process increased the number

of features from the initial 91 to 522. These 522 dimensional one-hot-encoded SVS

features serve as our first design representation.

2.3.2 Converting SVS Values to Text Embeddings

We were motivated to convert our SVS values into text embeddings in order to utilize

the relationships between certain features. In our first design representation, all of the

features are one-hot-encoded.One-hot-encoding creates features that are all assumed

to be completely independent of one another, so a design that is labeled “bolt” is as far

away from a design labeled “nail,” as it is from a design labeled “hammer.” However,

humans recognize that the first two words are semantically closer to each other than
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Figure 2-2: The process of generating text embedding using Google’s Universal Sen-
tence Encoder. Shown on the left, the text descriptions for each design are inputted
into the autoencoder. The 1 x 512 numerical embeddings for each description are
found, and a heat map of the semantic textual similarity is shown on the right, where
a score of 1 indicates maximum similarity.

the first and third word. In this sense, one-hot-encoding all of our features forced us

to lose many relationships between designs.

To address this, we converted all information about a design into text and we

combined all of the text such that each design was defined by a long text string. We

demonstrate this process in Figure 2-1. Our method used the original SVS survey

responses in numerical form. For each question that had a response other than “No,”

we included both the question and the response as text in the representation of a

design. For example, for the second question in Figure 2-1, “Is there a rod in the

design?” the response is “Yes,” therefore, the question and the response are both

included in the string of text that represents the design.

If a question’s response was “No,” we chose to exclude the question and the re-

sponse from the text string representation. This was an algorithmic choice. We

decided to only represent the features which a design has, and not the features which

it did not have, in the representation scheme.

For the first question in Figure 2-1, “How is the device powered?,” the response

is “Other.” Whenever a respondent selected “Other,” the respondents provided a

description themselves. In this case, the description was “Cattle,” so both the question

“How is the device powered?” and the response “Cattle” are included in the string of

text that represents the design.

Lastly, we add the original text description to the text string representation. The
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handwritten text descriptions were manually read and entered as strings into the

SVS feature dataset during pre-processing [121]. The process of adding the text

description to the overall text string representation was automated. With this new

design representation, all of the features are in text format. The next step is to

convert this textual design representation into numerical continuous embeddings that

can be used in regression models.

2.3.3 Universal Sentence Encoder

Figure 2-1 shows that we run both the text description and the SVS features as text

through a sentence encoder in order to get text embeddings. A text embedding is

a vector representation of text in which text with similar meanings are represented

with similar vectors.

We use Google’s Universal Sentence Encoder, which maps text into 512-dimensional

space [31]. Figure 2-2 demonstrates how we use the Universal Sentence Encoder. We

input a string of text such as “spins and heats the milk,” then the Universal Sentence

Encoder maps the text into 512-dimensional space and outputs a text embedding: a

512-dimensional vector of numbers that represents the inputted text.

The Semantic Textual Similarity plot shown in Figure 2-2 illustrates the effec-

tiveness of the Universal Sentence Encoder. In the plot, the original sentences are

represented with letters A-G. After calculating the text embeddings, we use cosine

vector similarity to find which sentences are more similar. The similarities between

the seven sentences are shown by the 7x7 matrix at the right. A darker square in-

dicates a higher similarity between two sentences. For example, sentences B-D all

include the word “milk frother,” and these sentences are shown to have some of the

most similarity (darkest squares). In contrast, sentences E-G are quite different from

each other and consequently have low similarity scores and light squares. We also

notice deeper relationships being captured by the Universal Sentence Encoder. For

instance, the most similar item in this list to “pogo stick frother” is a “shoe frother,”

which relates to the deeper connection between a “shoe” and a “pogo stick.”

33



2.3.4 Dimensionality Reduction

In the above sections, we discussed using both one-hot-encoding and text embeddings

to represent our designs. Both of these methods output vectors of over 500 dimensions,

or features. The higher the dimensionality, the greater number of datapoints, designs

in this case, are needed for a model to learn effectively [120]. Because we have 934

designs, we need to reduce the number of dimensions in our feature space.

We utilize principal component analysis (PCA) to reduce the dimensions of our

feature space. PCA is a tool from linear algebra that projects our original features into

a lower-dimensional space. PCA accomplishes this by taking linear combinations of

the original features, thereby creating new features. These new features are principal

components, and they are independent of one another and also retain most of the

information from the original features. PCA aims to put the most information possible

in the first component, and the second most in the second component, and so on.

Finally, PCA drops the principal components that have the least information, thereby

reducing the number of features we have.

2.3.5 Design Representations

The three different design representations come from applying various combinations

of the data processing methods mentioned above. Ultimately, the first design repre-

sentation is a one-hot-encoding of all of the SVS features - resulting in 522 features

total. We illustrate the process of generating this representation in Figure 2-1, where

it is denoted as “1.”

The second design representation combines one-hot-encoding, text embedding,

and PCA, as illustrated in Figure 2-1. This design representation results in 30 fea-

tures total, 15 from the one-hot-encoded SVS features after PCA, and 15 from the

embeddings of the text descriptions after PCA.

The third design representation converts all of the information available about a

design into text - the SVS data as well as the text descriptions. From that complete

text representation, the third design representation finds a text embedding. This text
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embedding is reduced via PCA from 512 dimensions to a final form of 30 dimensions.

2.3.6 Regression Models and Evaluation Metrics

We experimented with generating design metric predictions with three different re-

gression models: linear regression, gradient boosting (GB) regression, and random

forest (RF) regression.

Linear regression attempts to model the relationship between independent vari-

ables and a dependent variable through a linear equation. We train the linear regres-

sion by minimizing the sum of squared differences between our predicted and actual

values. This method is known as the least-squares method.

The gradient boosting and random forest regression models are both ensembles of

decision trees. An ensemble means that these models are aggregations of other models.

The motivation behind an ensemble method is to combine predictions from multiple

base models into a prediction that is better than that of any single model [108].

GB trains multiple decision trees sequentially, which is an ensemble method called

boosting. The first decision tree is able to predict the majority of the data, and the

following trees work to capture areas of the data that have been missed.

RF utilizes bagging, or training individual models in parallel on a randomized

subset of the data, as the ensemble method [108]. RF takes the average of the

predictions. This combination of decision trees yields better predictions because it

has lower variance compared to a single decision tree. We train both GB and RF

using the least-squares method.

We perform supervised learning with an 80-20 train-test split for each of our

models. The train-test split procedure is typically done to avoid the phenomena of

overfitting in a model [132]. The train-test split values of 80% and 20% describe what

percentage of our data we use for training our model vs. what percentage we keep

out to test how well our model works on data it has never seen before. We have 934

designs total, so we train using 747 designs, and test using the remaining 187.

We use the 𝑅2 value as the evaluation metric of our regression models. For each

model we predict design metrics for the designs in the test set. We compare these
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predictions to the actual design metrics and use this comparison as a means for

evaluating how effective our model is. The 𝑅2 value, or coefficient of determination,

quantifies the degree to which our predicted values are linearly correlated with our

actual values. A perfect 𝑅2 score is 1, indicating perfect linear correlation, and an

𝑅2 score of 0.3 is generally accepted as indicating a weak positive correlation.

2.4 Results

In this section, we discuss how effectively we predicted CAT expert ratings, with

three varying parameters: (1) which design metric we are predicting, (2) which design

representation we are inputting, and (3) which regression model we are using. We

found that all three of these parameters impact the effectiveness of our predictions,

as evaluated by the 𝑅2 metric. The following sections are divided based on design

representation, and, within each section, we explore results for predicting each design

metric with each regression model.

2.4.1 Predicting Design Metrics From One-Hot-Encoded SVS

Features

The left three columns of Table 2.1 shows the 𝑅2 score obtained using the first design

representation: one-hot-encoded SVS features. Overall, linear regression performs the

worst, with consistently large and negative 𝑅2 scores. Gradient boosting and random

forest regressions perform comparably, with gradient boosting slightly outperforming

random forest for every CAT metric. The trends along the design metrics are also

distinct. Due to the poor nature of the linear regression results in this particular

experiment, we will only discuss trends seen within the gradient boosting and random

forest regressions. For the GB and RF models, the Usefulness design metric shown in

the final row of Table 2.1 has the highest 𝑅2 value, with Elegance following behind.

Creativity and Uniqueness show some of the worst 𝑅2 scores, Creativity being the

worst with negative 𝑅2 values across both the GB and RF models.
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One-hot encoded SVS features One-hot encoded SVS features
+ Description text embeddings

Text-based SVS features
+ Description text embeddings

Linear
Regression

Gradient
Boosting

Random
Forest

Linear
Regression

Gradient
Boosting

Random
Forest

Linear
Regression

Gradient
Boosting

Random
Forest

Creativity -9.54E+25 -0.033 -0.263 -0.023 -0.114 -0.098 -0.014 -0.085 0.034
Uniqueness -7.24E+25 0.070 -0.020 -0.109 -0.099 -0.043 0.016 -0.159 0.057
Drawing -5.57E+24 0.117 -0.031 0.163 0.114 0.113 0.150 0.064 0.099
Elegance -2.53E+25 0.162 0.100 0.140 0.058 0.139 0.179 0.079 0.211
Usefulness -4.05E+26 0.171 0.162 0.149 0.131 0.214 0.209 0.180 0.263

Table 2.1: 𝑅2 Score by Regression Model using three different design representations.

P
re

di
ct

ed
C

la
ss

Actual Class

Low Medium High

Low 39 20 7
Medium 13 24 15

High 11 18 40

Table 2.2: Confusion matrix for classifying the Usefulness of a design using a ran-
dom forest regression and percentile classification. The precision values for the low,
medium, and high classes are 0.619, 0.387, and 0.645 respectively. The recall values
for the low, medium, and high classes were 0.591, 0.462, and 0.580 respectively.

2.4.2 Converting SVS Values to Text Embeddings

Figure 2-5 demonstrates the motivation and effectiveness of using NLP in this context.

The figure displays three designs for milk frothers, from left to right: a Bicycle design,

a Cattle design, and a Rodeo design. The Bicycle design involves attaching containers

of milk to the spokes of a bicycle wheel and frothing the milk through the motion

of riding a bike. The Cattle design involves putting milk inside a horizontal wheel,

cattle will push the spokes of the wheel as they walk in circles, which froths the milk.

The Rodeo design involves attaching a container of milk to the back of a mechanical

bull, and the motion of riding that bull will froth milk. For context, many other

designs in the dataset are a variation of whipping milk with a whisk, so these three

designs are qualitatively unique and similar to each other.

Our goal is to create an objective model (as opposed to subjective expert rat-

ings) that captures relationships among designs in order to more effectively predict

their design metrics. The results shown in Figure 2-5 illustrate that using NLP in

design representation captures these relationships much more effectively than using
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Figure 2-3: This graph shows the 𝑅2 score for each of the five CAT metrics with
three different design representations. The line marked at 0.3 indicates an 𝑅2 score
threshold of a weak positive relationship. These results are generated with the RF
regression model. We observe that, overall, adding text embeddings improves the
regression results, as seen by the increase in 𝑅2 scores. The figure highlights that
despite the improvements, the regression results for all the design metrics are still
below the threshold of weak relationship.

discontinuous one-hot-encoding representations.

The bar chart in Figure 2-5 displays the cosine similarity between designs for two

design representations: One-Hot-Encoded SVS Features, and Text Embedded SVS

Features and Description. Cosine similarity is a measure of similarity between two

vectors, and ranges from 0 to 1. For two vectors A and B, it is defined as:

𝑆𝑖𝑚(𝐴,𝐵) = 𝑐𝑜𝑠(𝜃) =
𝐴 ·𝐵

‖𝐴‖ ‖𝐵‖
(2.1)

In the example of the Bicycle and Rodeo designs, the cosine similarity between

their one-hot-encoded representations is 0.333, whereas the cosine similarity between
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Figure 2-4: A scatterplot of the predicted Usefulness rating vs. the actual Usefulness
rating found using a Random Forest Regression Model. A perfect prediction would
follow a line with a slope of one and intercept at the origin, represented in the plot
by a black line. This prediction has an 𝑅2 score of 0.270.

the text embedded representations is 0.810. This may suggest that the text embedded

representations maintained relationships between the designs that are lost when using

one-hot-encoded representations. These results comply with our understanding of the

two types of representation. One-hot-encoded vectors ensure that each feature has a

cosine similarity of 0 with any other feature, since each feature that exists has a value

of 0 in all dimensions except one, where it has a value of 1. Each one-hot-encoded

vector of a feature is orthogonal to all others. In contrast, text embeddings found

through NLP, such as those we used through Google’s Universal Sentence Encoder,

map all of the features in a continuous space, which preserves deeper relationships

between them.
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Figure 2-5: The left shows three student-generated designs for milk frothers: a Bi-
cycle design, Cattle design, and Rodeo design. Under each design is a handwritten
description provided by the designer. We measure the similarity of these designs via
the cosine similarity of their representations. We use two different representation
methods as shown in the bar chart. Note that when using one-hot-encoded features,
the similarity between Bicycle & Rodeo is less than that between Bicycle & Cattle.
However, text embeddings highlight their semantic similarity where riding is involved
in both the devices to froth the milk.

2.4.3 Predicting Design Metrics From One-Hot-Encoded SVS

features + Text Embedded Description

Our second design representation utilizes NLP and represents designs using one-hot-

encoded SVS features and a text embedding of the design’s description. As described

in the Design Representations section of Methodology, we perform PCA dimension-

ality reduction on both of these vectors, resulting in 30 features for the second design

representation.

The middle three columns of Table 2.1 shows the 𝑅2 scores for each of the design

metrics with predictions from each of the three regression models. As compared to

Table 2.1, the linear regression model performs significantly better with this design

representation. All three regression models perform comparably. The performance of

the design metrics matches the general trend seen in the first design representation.

Usefulness and Elegance are the best predicted. With the new design representation,

Drawing is more accurately predicted in both linear regression and random forest,

while gradient boosting’s prediction is comparable to its prediction from the first
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design representation.

The overall trend across different design representations is illustrated in Figure 2-

3 for the random forest regression. The figure indicates an overall improvement in

𝑅2 scores from the first design representation: One-Hot-Encoded SVS Features, to

the second design representation: One-Hot-Encoded SVS Features + Text Embedded

Description.

2.4.4 Predicting Design Metrics From Text Embedded SVS

Features and Description

Our third design representation is a text embedding of both SVS features and the

text description. All of the information from the SVS Features is converted to text,

combined with the original text description, mapped to a continuous space, and then

encoded as text embeddings that preserve the semantic relationships from the con-

tinuous mapping.

Regression Results: The results from using this design representation are shown

in the right three columns of Table 2.1, which shows the 𝑅2 score found for each

combination of design metric and regression model. The results are consistent with

the overall trend seen in both design representation one and two. Usefulness and

Elegance are the design metrics that are best predicted, as demonstrated by the

highest 𝑅2 scores across all three regression models. For both of these metrics, all

three regression models perform the better with this NLP based design representation

than with the other two design representations. Additionally, for both the linear

regression and random forest models, the performance of Usefulness and Elegance

have consistently improved from design representation one to design representation

three. This overall trend can be observed in Figure 2-3 for the random forest model.

In agreement with the trend we have observed in the other two design represen-

tations, the Creativity and Uniqueness metrics have the lowest 𝑅2 scores. We will

discuss our hypotheses explaining why certain CAT metrics are consistently more or

less accurately predicted in the Discussion section to follow.
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We show a visual representation of the predicted design metrics vs. the actual

design metrics in Figure 2-4. This scatter plot is generated using predictions from the

random forest regression model using the third design representation: Text Embedded

SVS Features and Description, and the Usefulness metric. A set of perfect predictions

would follow the black line with a one-to-one slope between the Actual and Predicted

Ratings.

The plot reveals that most of the Predicted Ratings range between 2 and 4. This

trend appears for other CAT ratings as well. Remedying the models to more suc-

cessfully predict values on the high and low extremes, perhaps through increasing the

weight of designs with extreme Actual Ratings, could be an area of future exploration.

Classification results: In response to the low 𝑅2 values we found with a regression

model, we tested how effective our model is at predicting the relative class of a design

metric. Our classes are determined by the percentile of a design’s rating with regard

to all other designs in a test set. Designs with ratings between the 1-33 percentiles are

in the low class, designs with ratings between the 34-67 percentiles are in the medium

class, and designs with ratings between the 67-100 percentiles are in the high class.

The results are demonstrated in the confusion matrix in Table 2.2. The confusion

matrix is a machine learning concept that contains information outputted from a

classification system about actual and predicted outputs [104]. Confusion matrices

typically have two dimensions, where one dimension categorizes the information by

the actual outputs and the other categorizes the information by the predicted outputs

[42]. Together, these two dimensions can illustrate agreement between the predicted

and actual outputs, where perfect classification is when the matrix only has numbers

along the diagonal and zeroes everywhere else. Not all errors are equal in confusion

matrices. Predicting a high value when the true value is low (or vice versa) is an

extreme error, which we aim to minimize the most.

In Table 2.2, we see that we predict a low class when the real class is high 7 times,

and do the opposite 11 times. This compares to correctly predicting the low class 39

times and the high class 40 times.
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We also observe the precision and recall metrics. Precision indicates how many

positive predictions are true, and recall, also known as the true positive rate (TPR),

measures how many of the positive cases our model is able to correctly predict. They

are defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2.2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2.3)

For the low, medium, and high classes the precision values are 0.619, 0.387, and

0.645 respectively.

For the low, medium, and high classes the recall values were 0.591, 0.462, and

0.580 respectively. The high recall values show that our regression model is able to

effectively classify designs into low, medium and high categories, which can enable

human raters to use these models for initial filtering of ideas and then focusing on

individual categories to identify the top ideas.

2.5 Discussion

The goal of this study was to identify how to take advantage of the distinct strengths

of both the SVS and CAT method through machine learning. More specifically,

this study sought to investigate the possibility of using machine learning to facilitate

automated creativity assessment. Our results revealed two major and consistent

trends:

Trend 1 is displayed visually in Figure 2-3. Each design representation, from one

to three, incorporates more text and NLP in the design representation. On the figure

this is visually displayed with the lightest bar incorporating the least NLP and the

darkest bar incorporating the most. Across all design metrics a general trend emerges.

In design representation three, Text Embedded SVS Features and Description tends to

outperform both other design representations, while design representation two tends
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to outperform design representation one.

We propose that this trend is due to Universal Sentence Encoder’s ability to cap-

ture relationships between features by mapping them in a continuous space. Universal

Sentence Encoder’s ability to do this is in contrast to one-hot-encoding vectorizations,

which assume all features are independent. We note that the overall 𝑅2 values are

low. Our predictions have much room for improvement, as visualized in Figure 2-4.

However, the emerging trends still provide insight that we find valuable in how we

can predict classically subjective ratings of designs objectively.

The other emerging trend that we found compelling is the consistent difference in

the ability to predict certain design metrics. We found that Usefulness and Elegance

metrics were consistently the most predictable. This trend could result from the

objective nature of Usefulness and Elegance. More raters may agree on what charac-

teristics of a design qualifies as useful. Furthermore, elegance is tied to the simplicity

of a design, which can be more objectively agreed upon than, say, creativity. To

that note, Creativity and Uniqueness were the least predictable across all regression

models. We attribute this to the subjectivity of these ratings. In fact, Creativity is

often not agreed upon by experts, and expert ratings are the basis of our regression

models.

This finding opens another discussion centered around the availability of expert

vs. novice design ratings. Novice design ratings are less expensive and more easily

acquired than expert design ratings. However, expert design ratings naturally hold

more weight - novices must be trained to be ‘expert-proxies’ using some sample set

from expert ratings. Even when you can train novices to be ‘expert-like,’ they still

lack the mental models and experiences of experts which ultimately impact rating

performance. However, some areas do exist where experts and novices tend to agree

such as in the novelty of design ratings [85]; thus, one could argue that there are

instances where novice ratings can supplement or replace expert ones.

Following the discussion of expert vs. novice design ratings is that of the type

and level of automation our study has achieved. We note that the initial SVS survey

needs to be done for all designs. This survey, however, is objective and does not need
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to be performed by experts. None of the questions directly asks the surveyor to assess

the creativity of the design. So while this survey does need to be done manually, we

have explored whether we can automatically predict an expert creativity assessment

rating from objective, non-expert survey results.

Our findings have inspired work that combines sketch understanding via computer

vision methods and text understanding via NLP to predict design metrics [119]. Fu-

ture work in this direction may be be training models to identify design features from

the sketch and text description. Such a model can augment our understanding of

sketches and help in automated categorization and assessment of design sketches.

2.6 Summary

Creativity and innovation are important steps in the development of novel solutions

to existing and new problems and for making important technological progress [12,

80, 7]. As a result, both creativity and innovation have often been viewed to be

mankind’s most valuable resources [24]. There have been many attempts to help

boost creativity. One important step that follows the implementation of improvement

methods is creativity evaluation, which helps identify whether progress has been

made. Currently, the most common evaluation methods used by researchers are

the CAT and the SVS method. However, both techniques have their advantages

and disadvantages. While CAT has been widely accepted as the “gold standard,” it

relies heavily on the subjective judgement of human experts in that domain, and is

highly resource consuming. The SVS method, on the other hand, is less resource

intensive but has been criticized for lacking sensitivity and accuracy. In light of

these complementary strengths and weaknesses, this study was created to investigate

the possibility of using machine learning to facilitate automated creativity assessment.

More specifically, this study seeks the possibility of taking advantage of both methods

by incorporating machine learning to use SVS ratings, which are easier to collect, to

predict design metrics. This is done by using regression models in the prediction

process, and also by exploring the possibility of using NLP based models to improve
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the results.

Our results, although preliminary, show that incorporating NLP in the prediction

process can improve the model’s prediction of design metrics, including CAT ratings.

This study also found that the predictability of different aspects of the design metrics

vary, with Usefulness and Elegance having the best predictability. These findings can

serve as empirical evidence supporting the investigation of novice vs expert usage in

creativity assessment. In addition, the results can also serve as empirical evidence

of the plausibility of using machine learning to facilitate creativity assessment. The

preliminary success in using NLP to predict design metrics can help to show the wide

application of NLP, and also support its usage in modeling subjective ratings like

creativity.

Being able to model and evaluate design metrics provides basis for automatically

filtering design ideas based in these metrics. We hope that the results of this study

can shed some light on the ongoing debate of using novices vs experts in creativity

assessments. The potential of utilizing a small number of expert assessments to train

a model to then predict future design idea assessments can decrease the level of effort

of expert reviewers. This work addresses two common challenges in idea filtering, that

manual filtering by experts is expensive and time consuming, and that large labeled

datasets are not frequently available and are expensive to generate.

In this chapter we have explored the potential for NLP to accelerate idea filtering

of creative early-stage designs with a small dataset of 934 documents. In the following

chapters, we will look at automated idea filtering of text documents and datasets of

over 50,000 documents.
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Chapter 3

Accelerating Evidence Synthesis for

the Design of International

Development Projects Using Natural

Language Processing-based Idea

Filtering

3.1 Introduction

Our goal is to use state of the art natural language processing (NLP) methods to

perform automatic document inclusion classification to aid the creation of evidence

gap maps (EGMs), a form of evidence synthesis.

We are currently in an information explosion. The National Science Foundation

reports that in 2018 alone, global research output in science and engineering was 2.6

million articles, and that it grew at a rate of 4% annually from 2008-2018 [49]. A

person’s capacity to understand all available research is limited. This poses a problem

in scenarios like designing policies, in which decision-makers seek a full understanding

of all available research. To make informed decisions and understand the growing
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corpus of research available, researchers have turned to evidence synthesis. Evidence

synthesis refers to the process of compiling information and knowledge from many

sources and disciplines to inform decisions [44, 117]. However, creating evidence

synthesis products like EGMs requires extensive time and effort from human experts.

We are motivated to reduce the manual level of effort and human hours required

to create EGMs, while maintaining or improving their robustness and quality. By

automating aspects of the EGM creation process, we can reduce the amount of work

human experts have to do, and in turn produce EGMs quicker. These EGMs can be

used to inform policy with all relevant evidence.

NLP has long been used to promote evidence based decisions in the medical field.

One example of this is BioMedICUS, which is a system for large-scale text analy-

sis and processing of biomedical and clinical reports being developed by the Natural

Language Processing and Information Extraction Program at the University of Min-

nesota Institute for Health Informatics [99]. NLP based models have since been

used in other domains like the legal field to automatically extract information from

text [19]. However, there are particular challenges to applying NLP to literature

in the social sciences because social science papers, including titles and abstracts,

are less likely than those in medicine or the “hard” sciences to adopt standardized

structures and terminology [92, 116]. These challenges motivated us to apply NLP

to understanding and classifying text in the international development domain. We

propose incorporating state of the art transformer-based NLP models in order to un-

derstand, extract information from, and classify international development text will

allow for the quicker creation of EGMs.

Many information extraction techniques already build off of NLP in order to in-

terpret and identify important parts of documents. These automated information

extraction techniques can reduce the time required to create EGMs by identifying

key information about a document and clustering similar documents. This reduces

the time needed to provide EGMs to policy makers and researchers. However, recent

improvements in NLP have yet to be incorporated in information extraction for the

field of EGMs. We propose incorporating state of the art transformer-based NLP
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models in order to extract information such as study type, population, intervention,

and outcome from unstructured text and ultimately aid and quicken the typically

manual creation of EGMs.

Exploring the fields of NLP and EGMs reveals a gap in the literature. While there

has been great success in the field of NLP, few studies have specifically focused on NLP

for text within the policy and international development domain. The work that has

successfully done so may be improved upon by incorporating the latest transformer

and transfer learning based methods. By doing so, we can specifically aid the creation

of EGMs, which are valuable tools for decision-makers in policy and research funding.

Through collaborations with members of 3ie we have identified the most useful

ways to aid EGM creation through machine learning. We aim to create a classification

model that determines whether a document should be included in an EGM based on

its title and abstract. We also use rule-based models and transformer-based models to

perform information-extraction for entities that are relevant to EGM creation in the

international development field: country of study, language of document, and type of

study. To improve the performance of the classification model, we will explore whether

merging the information extracted by the rule-based model into the transformer-based

model helps.

3.2 Related Works

Here we discuss the fields of natural language processing (NLP), information extrac-

tion (IE), evidence gap maps (EGMs), and active learning (AL). NLP and IE have

developed hand-in-hand, while EGMs and AL have each grown largely independently

for many decades. We explore existing and potential work that lies at the intersection

of these fields in the following sections.

3.2.1 Natural Language Processing

NLP is a field of machine learning in which computational machines are trained to

understand text and spoken language. Historically in NLP words are represented
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as vectors where similar words are located near each other in continuous space [84,

83, 95]. Early research in NLP built off of these word representations and recurrent

neural networks (RNNs) [96]. RNNs take in sequential inputs, which proved useful

with data like language where the ordering of words and sentences is important.

However, RNNs face the problem of vanishing and exploding gradients, which limited

the length of sequences, or the number of words that a model could intake. This

problem was solved by the development of Long Short-Term Memory (LSTM) which

applies additional computation in the hidden layers of RNNs [58]. RNNs already

took a long time to train, and while LSTMs solved issues in vanishing and exploding

gradients, the cost was even longer training times. The need for sequential inputs in

LSTMs does not utilize the computational power of modern GPUs which allow for

the parallelization of tasks.

In 2017, Vaswani et al. introduced the transformer, which allowed inputs to be

fed in in parallel and had state of the art results in many NLP tasks [128]. Since then,

many NLP models have built off of the transformer and have produced state of the

art results in NLP tasks such as language translation, question answering, reading

comprehension, and sentiment analysis [43, 30, 76, 134]. One of the most well-known

transformer-based language models is BERT, which stands for Bidirectional Encoder

Representations from Transformers [43]. From BERT, many other researchers have

made various improvements by adjusting aspects of the model like the pre-training

objective, training dataset, architecture, and transfer learning technique used. In

response to the large corpus of research done to make small adjustments to the BERT

architecture, researchers at Google produced Google T5, a model which explores the

landscape of transfer learning techniques to find the optimal combination of NLP

techniques [100].

NLP has long been used to promote evidence based decisions in the medical

field. Models such as BioMedICUS perform large-scale text analysis and process-

ing of biomedical and clinical reports [99]. The success of NLP in the medical field

has led to its use in other fields, with models like LexNLP which automatically ex-

tracts information from legal text [19]. NLP has also been utilized in the design
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field, for example to predict expert design creativity ratings from a design and its

descriptions [45].

3.2.2 Information Extraction

Information extraction (IE) is a high level task within NLP [114]. IE specifically

aims to automatically retrieve (recognize and extract) certain types of information

from natural language text [131]. In this sense, IE can also be understood as taking

unstructured language data and producing structured information specified by certain

criteria [114]. IE subtasks include:

• Named entity recognition

• Temporal information extraction

• Coreference resolution

• Named entity linking

• Relation extraction

• Knowledge base reasoning

In order to perform these tasks, some kind of model that specifies what to look

for (e.g. country name, study type, population, outcome) is needed to guide the

process [131].

In 2018, Singh et al. produced a survey of state of the art IE methods. They

present three main categories for IE approaches: pattern matching (identifying speech

patterns like Inc. or Co. coming after a company name), gazetteer (pre-defining a

complete dictionary of words, like all country names, and searching for words included

in that dictionary), and machine learning (algorithms automatically learn IE patterns

from a set of training data) [114].

Machine learning has produced state of the art results for many IE subtasks,

and produced models like BERT that are capable of performing multiple subtasks at

once [43, 76, 100, 131]. Researchers have successfully produced IE models that are

51



specific to certain industries. For example, LexNLP was developed to perform NLP

based IE on legal and regulatory texts [19]. LexNLP’s key functionality is to take

unstructured legal text and a) segment documents, b) identify key text such as titles

and section headings, c) extract over eighteen types of structured information like

distances and dates, d) extract named entities such as companies and geopolitical

entities, e) transform text into features for model training, and f) build unsupervised

and supervised models such as word embedding or tagging models.

LexNLP is specific to the legal field, but it was largely inspired by success in

applying IE to the medical field [19]. Such examples include BioMedICUS, which is a

system for large-scale text analysis and processing of biomedical and clinical reports

being developed by the Natural Language Processing and Information Extraction

Program at the University of Minnesota Institute for Health Informatics [99]. These

domain specific IE programs demonstrate the success and exigence of NLP. However,

many of these tasks were trained specifically for their domain. Additionally, many

of these programs do not yet incorporate state of the art NLP techniques, such as

transformer-based models.

3.2.3 Evidence Gap Maps

EGMs are one form of evidence synthesis - the process of compiling information and

knowledge from many sources and disciplines to inform decisions [44, 117]. Evidence

synthesis provides more reliable information about a topic than a single study by

systematically collecting, categorizing, and analyzing a broad range of studies [29].

Thus, evidence synthesis is an incredibly valuable tool for decision-makers seeking to

design policies and fund research [44].

The International Initiative for Impact Evaluation (3ie) has pioneered the use of

EGMs, which present a visual overview of completed and ongoing impact evaluations

and systematic reviews in a specific sector [3]. 3ie creates these EGMs via the “the-

matic [collection] of information about impact evaluation and systematic reviews that

measure the effects of international development policies and programme” [2]. The

final product is a matrix, organized by “intervention” categories on the vertical axis
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and “outcome” categories on the horizontal axis. Interventions are the action taken in

the study, and outcomes are the result of the action. Each cell of the matrix contains

studies that rigorously evaluate the impact of a specific intervention on a specific

outcome.

3ie sets the global standard for EGMs, and the mapping method has been adapted

by organizations including the Campbell Collaboration, the World Bank Independent

Evaluation Group, and USAID [3]. Like other forms of evidence synthesis, EGMs

begin with an expansive and systematic search of scholarly databases and ”grey lit-

erature” sources (such as repositories of government documents or websites of think-

tanks) to identify potentially relevant studies. EGM teams then screen these search

results to identify studies that meet the EGM’s criteria for interventions evaluated,

outcomes measured, implementation setting, and study design. Once eligible studies

are identified, the EGM team extracts information on interventions, outcomes, and

other key characteristics of each study to determine its placement in the EGM matrix

and to allow for analysis of trends in the literature.

3ie uses a software called EPPI-Reviewer which aids in the creation of EGMs.

While EPPI-Reviewer has some machine learning functions that can accelerate screen-

ing [92], most EGM tasks are still performed manually. Thus, each EGM requires

significant human effort and expertise, with typical EGMs taking nearly six months

to complete [117]. Given that one of the main barriers to evidence use among poli-

cymakers is the lack of timely research outputs [89], there is a critical need to reduce

the time and effort needed to complete EGMs and other evidence synthesis products.

The creation of an EGM is shown in Figure 3-1. Our work focuses on step 3,

in which reviewers screen documents for inclusion in an EGM based on their title

and abstract. Selected documents will move on to full-text review. We create three

transformer-based NLP models that automatically classify documents for inclusion

at this step.

In 2020, Porciello et al. introduced a machine learning model, Persephone, that

aids humans in the creation of EGMs [97]. Persephone analysed 500,000 unstructured

text summaries from prominent sources of agricultural research, and determined with

53



Figure 3-1: A high level view of the current EGM creation process.

90% accuracy the subset of studies that would eventually be selected by expert re-

searchers [97]. This work builds from past success in incorporating machine learning

in evidence synthesis within the health sciences community [81, 59].

The results of this paper exemplify the effectiveness of machine learning mod-

els in reducing the human effort to create EGMs. The research showed that machine

learning model assistance allows human reviewers to screen and extract relevant infor-

mation from large datasets more quickly. Human and machine learning teams could

reduce datasets by at least 50% in three days, allowing experts to dedicate their time

to fewer documents and ideally hasten the creation of an EGM [97]. Additionally, the

results showed that document inclusion decisions made using information extracted

from machine learning models match those decisions made from an entirely manual

process with an average accuracy of 90% [97].

This work demonstrates the great potential of machine learning aided EGM cre-

ation. We can build upon this work by incorporating the most novel and effective

NLP models. For example, we will move away from some of the rule-based informa-

tion extraction techniques used in this work, and incorporate state-of-the-art NLP

models instead.
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Additionally, the model created by Porciello et al. automatically extracts infor-

mation that a human reviewer can then observe to decide if a document should be

included. However, the model does not provide a probability of inclusion itself. We

can expand upon this work by developing an inclusion vs. exclusion classification

model based on the text and information we extract.

3.3 Methods

In the following sections we discuss our methodology including the dataset we used,

our data preprocessing, and the three NLP-based classification models we created.

We also describe how we tested our models with different training data sizes in order

to gain insight on how many documents must be manually labeled in real-world

applications of our process.

3.3.1 Dataset Description

Our data is provided by 3ie and is derived from manually labeled documents from

3ie’s Development Evidence Portal (DEP) [1], an expansive repository of impact

evaluations and systematic reviews in international development across a wide range

of sectors. For the classification model, we utilize a dataset of 53,521 documents

from 3ie’s DEP. For each document we have the following information: title, year of

publication, abstract, and inclusion decision.

For the information extraction tasks that support the integrated model, we utilize

a dataset derived from previously created EGMs. For each document in the dataset

we have both the title/abstract and the manually labeled information relevant to the

model we are training. There are approximately 75 fields in the dataset, encompass-

ing:

1. Bibliographic metadata

2. Thematic keywords

3. Country of study

4. Study methodology
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5. Funding sources for the program

and research

6. Populations targeted

7. Interventions and outcomes

8. Whether the study reports on the

cost of the intervention or performs

cost-effectiveness analysis

3.3.2 Data Pre-processing

To guarantee the performance of the classifier models, the original documents were

pre-processed for noise removal.Two types of noise were identified and removed in this

step. The first type is non-English texts. A part of the documents provide titles and

abstracts in multiple languages. Since the classier models considered in this paper

only take text in English as input, all the sentences in other language than English are

noise to the models and should be removed. A substantial portion of the the original

documents contain content not relevant to the topic of the the document, such as

copyright statement. The pre-processing consists of three steps: (1) Each document

is parsed into sentences; (2) the sentences from 500 documents were labeled manually

as relevant content or irrelevant content; (3) a BERT classifier model was trained on

the manually labeled data to identify irrelevant sentences automatically. The accuracy

of the model is higher than 0.99. After the irrelevant sentences were identified and

removed, the relevant sentences in English were integrated back to the abstracts of

the original documents.

3.3.3 Universal Sentence Encoder Model

We utilize Google’s Universal Sentence Encoder (USE) embeddings and a neural net

classifier as our base model. USE is a pre-trained model that encodes text into

embedding vectors [31]. An embedding vector is a numerical vector representation of

text in which text strings with similar meanings are represented by similar vectors.

Google’s USE is pre-trained on a variety of web sources including Wikipedia, web

news, web question-answer pages, and discussion forums [31]. In the 2018 paper in
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which USE was introduced, Google provided two models: one that is transformer-

based and targets high accuracy at the cost of greater model complexity, and one

that uses a Deep Averaging Network which targets efficiency with reduced accuracy.

We utilize the transformer-based USE model. This model builds from the encoding

portion of the transformer architecture [128] in order to produce text embeddings.

The USE model’s architecture is shown in Figure 3-2. For each document, we input

a concatenated string of the document’s title and abstract. The USE model outputs a

512 dimensional vector that represents the inputted text string. We perform principal

component analysis (PCA) reduction from 512 dimensions to 30 in order to decrease

our feature space and therefore the number of parameters our model must learn.

Lastly, we built a neural network with one hidden linear layer, batch normalization,

dropout, and a rectified linear unit ReLU activation function. This neural network

serves as a binary classifier, it produces the probability (𝒫) of including a document,

and from this determines the class: included if 𝒫 > 0.5, and excluded if 𝒫 < 0.5.

3.3.4 Fine-Tuned BERT Model

The second model we utilize is a pre-trained BERT model for sequence classification

that we then fine-tune using our dataset. We show the architecture of this model in

Figure 3-2. Our expectation is that this model’s performance will be higher than the

USE model since it learns domain specific information when being fine-tuned with a

corpus of international development text.

We specifically use the uncased BERT base model [43]. This model is comprised

of twelve modules of transformer blocks, each transformer block has sixteen layers,

and the model has a total of 110 million parameters. Because our implementation of

the BERT model is almost identical to the original, we encourage interested readers

to learn more about the model in the original paper [43].

A the key strength of the BERT model is that it enables the use of transfer learn-

ing that transfers language patterns learned from very large dataset to smaller target

datasets. The base BERT model is pre-trained with unlabeled data on two unsuper-

vised tasks (1) masked language modeling, and (2) next sentence prediction. This
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trains the 110 aforementioned parameters. Compared to the original BERT model,

the pre-trained BERT model specifically for sequence classification additionally in-

clude a dropout layer and a dense layer was the output layer. In addition to the

parameters of the BERT model the weights of the output layer are also pre-trained

and transferred to the downstream tasks. Next, we fine-tune a subset of the param-

eters with our dataset of text on a supervised classification task. We use the manual

inclusion and exclusion classifications, and train a binary classifier to predict prob-

ability of inclusion from the title and abstract of a document. Similar to our USE

model, we input a concatenated string of a document’s title and abstract, and we

output the predicted class.

3.3.5 Integrated BERT Model

The fine-tuned BERT model is purely trained on the pre-processed texts of the doc-

uments. NLP models, such as our fine-tuned BERT, typically ignore domain knowl-

edge, however research has shown that expert domain knowledge greatly improves

model performance in NLP tasks [93, 130]. Domain knowledge is particularly critical

for idea filtering, in which many ideas within a domain must be evaluated based on

criteria that is often nuanced and specific to that domain. Furthermore, in the man-

ual screening process humans decide whether a document should be included or not

based on multiple domain specific criteria, such as the study type, country of study,

and presence of an intervention.

Given the importance of domain knowledge for idea filtering in the manual pro-

cess, we were inspired to integrate the information extracted for assessing whether a

document satisfies a certain inclusion criterion into the BERT model. On this basis,

we developed an integrated BERT (iBERT) model by integrating the information

regarding country of study and study methodology into the BERT model.

In the human screening process, all documents only focusing on high-income coun-

tries and all documents using laboratory study methods are excluded. Two models

have been developed to respectively assess theses two criteria, including: (1) a rule-

based country name search model was has been developed to extract country informa-
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tion from document texts and detect whether a document should be excluded due to

only involving high-income countries with an accuracy of 93%; (2) a BERT classifier

model to detect detect whether a document reports a laboratory study or not with

an accuracy of 97%. The outcomes from these two models are integrated into the

BERT models as two indicators that are multiplied with the text embeddings from

the BERT model before the embeddings are input into the dropout layer. Specifically,

if a document only involves high-income countries, it get an indicator of 0 for this

criterion, otherwise the indicator is 0; if a document focuses on a laboratory study,

the indicator for it is 0, otherwise it is 1. In such an approach, any document only

evolving high-income countries or focusing on laboratory studies gets an embedding

of all 0s as input to the last classifier layer. The architecture of the iBERT model is

shown in Fig. 4.

3.3.6 Training Size Variation

We test the effect of training size on the accuracy of our classification models. Our

complete dataset is comprised of 53,521 documents, so we try different train-test splits

of our data. We explore the effect of training with different training data sizes ranging

from 100 datapoints to 40,000, as shown in Figure 3-4. For each training data size,

we run the model five times with different and randomly selected training data each

time. We also present the average accuracy for each model when training on 70% of

the dataset, or 37,472 documents. These results are shown in Figure 3-3.

3.4 Results

In this section we demonstrate our results, namely comparing the three models we

introduced in the Methods section and exploring the effect of training size on the

accuracy of the USE and fine-tuned BERT model.

Figure 3-3 shows the model accuracy for our three models: USE, fine-tuned

BERT, and the iBERT model. We find that the iBERT model performs the best,

slightly outperforming the fine-tuned BERT model from which it is largely derived.
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Figure 3-3: The average classification accuracy of each model when trained on 70% of
the data. We observe that the iBERT, which combines the fine-tuned BERT model
with extracted information performs the best.

This result matches our intuition, as the iBERT model builds from the fine-tuned

BERT model, but also directly incorporates information automatically extracted from

the text. We chose to extract information that human experts look towards to decide

inclusion and exclusion decisions: the country of study and the study type. Our

results suggest that including this extracted information improves the model’s ability

to decide whether a document should be included or excluded in and EGM.

We also observe how training size impacts the accuracy of the USE and fine-

tuned BERT models. Our results are shown in Figure 3-4. We observe a logarithmic

relationship between training size and accuracy. Accuracy increases with training

size, but the rate of improvement slows past a training size of approximately 10,000

documents.

Overall, we see that the fine-tuned BERT model has a higher classification ac-

curacy than the USE model at all training sizes. This suggests that the fine-tuned

BERT model is better able to predict whether a document should be included in or

excluded from an EGM based on the document’s title and abstract.
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Figure 3-4: Model classification accuracy for different training sizes. Both models are
influenced by training size, but we note that BERT outperforms our USE model at
all training sizes.

We only study this trend for the fine-tuned BERT and USE models, and not

the iBERT model because the iBERT model requires information extraction models

that are trained on another dataset. Therefore it is inaccurate to present iBERT

trained on smaller datasets, since it would require at least the larger information

extraction training data. We note, however, that iBERT is built off of and tends to

slightly outperform the fine-tuned BERT model, as shown in Figure 3-3. We therefore

hypothesize that a training size that is successful for the classification model of the

fine-tuned BERT will also be successful for the classification model portion of iBERT.

Our motivation for exploring the influence of training size on accuracy was to

strike a balance between improving the accuracy with more training data and the

level of effort required to generate the manual training data. We can utilize these

results in real-world applications of our models, in order to ensure that the amount

of training data needed to achieve the desired accuracy is feasible.
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3.5 Discussion

Our research reveals two overall findings:

1. The iBERT model which combines the fine-tuned BERT model with additional

extracted information has the highest accuracy.

2. Accuracy increases with training data size, but the rate of increase slows sig-

nificantly after 10,000 documents. This demonstrates that just a small training

dataset of 10,000 documents can produce very high accuracy, leading to saved

effort in training dataset creation and in inclusion screening.

These results align with our intuition. Both the USE model and the BERT models

transfer patterns learned from very large datasets to our own data by using the pre-

trained embedding modules to encode the titles and abstracts of the documents.

Why the BERT-based models outperform USE The key differences between

the USE model and the BERT models lies in two aspects. First, the multi-head

attention mechanism and the deep bidirectional learning adopted in BERT enables it

to capture more delicate features from texts. BERT is also trained on a larger set of

data. These factors make BERT a better model than USE in general for NLP tasks.

Second, the BERT models in this study are fine-tuned, which allows the models to

learn features from our own dataset, while the USE embedding model are totally

frozen with the embeddings being fixed. These two aspects explain why the BERT

models perform better than the USE model.

Why iBERT outperforms fine-tuned BERT The iBERT model exhibits better

performance than the BERT model alone, since more information of the documents

are encoded into the embeddings. For example, the rule-based model for detecting

high-income countries first extracts country information from the text and then as-

sesses whether a country is a high income country based on the data from World Bank.

The second part of the information cannot been learned from the texts directly. Sim-

ilarly, since the model for laboratory study detection was trained on different labels,
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the model learned different features from the texts. When both indicators are en-

coded to the BERT model, the iBERT model receives more information of the texts,

improving its performance.

Effects of training data size The marginal effect of increasing training data size

decreases as the training data size gets larger. This is because when the training data

size is small, it is more likely that the newly added data can bring data that have

not been seen by the model; when the training data is large enough, the newly added

data largely repeats the data that have been seen by the model and hardly bring

brand new data.

Our findings about the influence of training size on model accuracy can be used

during real world applications. Since effort is required to generate a manually labeled

training dataset, human-AI EGM-creation teams face a tradeoff between maximizing

model accuracy while minimizing level of effort to create a training dataset. Our

results suggest that model accuracy increases greatly with training size until about

10,000 datapoints. After this point we notice diminishing returns. We anticipate this

being a very useful result when applying these models, since users can make informed

decisions regarding accuracy vs. training data size.

Applying NLP models to evidence synthesis tasks has significant untapped poten-

tial to increase efficiency and reduce the time and human effort required to produce

high-quality evidence syntheses. Preliminary testing with the models described in this

paper suggest that by automatically excluding documents with inclusion scores < .2,

a synthesis team could reduce the screening load by 27% while still achieving over 99

percent recall. Although experienced screeners can screen 50-75 abstracts per hour,

EGM searches routinely retrieve 50,000-100,000 documents. Thus, the reduction in

screening load represents a significant reduction in person-hours required to identify

relevant documents.
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3.6 Summary

The aim of this thesis is to accelerate the design process and lower expert level of ef-

fort through automated idea filtering. One challenge of manual idea filtering is that it

is both time and resource intensive for experts to filter through a plethora of ideas. In

this chapter, we explore idea filtering with a dataset of over 50,000 textual documents,

which would entail significant effort from experts. Our research explores the effec-

tiveness of three NLP classification models on evaluating documents for inclusion in

an international development evidence synthesis. We find that an iBERT model com-

prised of a fine-tuned BERT model with additional extracted information performs

the best with an accuracy of 79%. We further explore the influence of the amount

of training data on the accuracy. As our intuition suggests, accuracy improves with

the amount of training data used. However, the rate of improvement slows down as

the amount of training data increases, and after about 10,000 training datapoints the

improvements are small. Our results can inform decisions between increased accuracy

and the level of effort to manually create training data in real-world applications of

this work. Our work is motivated by the potential of NLP to automate time-intensive

aspects of evidence synthesis models like filtering through tens of thousands of text

documents. By automatically and accurately filtering documents for inclusion in an

evidence gap map, we can quickly provide decision-makers with the tools to design

evidence-based policies.

In the next chapter, we will investigate the creation of a training dataset used

to train a model for automated idea filtering, and how we might decrease the expert

effort required to label such a training set.

65



66



Chapter 4

Active Learning for Real-World

Imbalanced Natural Language

Processing Applications

4.1 Introduction

After demonstrating the efficacy of using NLP to accelerate literature screening in

Chapter 3, we aimed to next decrease the level of effort required of expert reviewers

to generate training data. The NLP models that we utilized must be fine tuned

with labeled documents. In the engineering and design fields, obtaining large labeled

datasets is difficult as there is a lack of large publicly available design datasets [103,

93]. Generating a labeled training set is no trivial task, and is often expensive and

resource intensive as it requires labels from expert reviewers [93, 39]. To add to

that, in most real-world evidence synthesis scenarios, the positive class of included

documents will represent a small percentage of the total literature base. Therefore,

obtaining a training set that includes instances from the positive class may require

labeling many more documents than desired. Given our goal of decreasing human

effort and accelerating the design process through automated idea filtering, we turned

to a strategy that was developed to increase model performance while decreasing the

67



number of required training points: active learning.

While most machine learning models involve the learner passively receiving train-

ing data, this is divergent from human learning tasks. In many human learning tasks,

the learner interactively makes queries, takes actions, or performs experiments on

specific data to best gain understanding [38]. Active learning is the concept that a

machine learning algorithm can perform better with less training data if it is allowed

to choose the data from which it learns [38, 109]. Interested readers can find a survey

of classical active learning approaches from Burr Settles in [109].

We experiment on classifier models with four different data selection scenarios

with our highly imbalanced real-world dataset. The four data selection scenarios have

varied methods of selecting the initial training set and selecting additional instances

to add to the training set. We compare the model performance as measured by the F1

score for scenarios that begin with a class-balanced vs. random initial seed, and for

scenarios that utilize active learning to select additional training data vs. scenarios

that do not. Our contributions are as follows, we demonstrate that:

• Incorporating active learning in data selection results in an F1 score of 0.78,

which is 7.7% higher than the baseline data selection technique.

• Incorporating active learning (AL) in data selection results in more balanced,

and consequently more diverse, training datasets.The two techniques incorpo-

rating AL end up with training sets comprised of 30% and 33% of minority class

instances, while the two techniques without AL result in 7% and 16% minority

class training sets.

• If an AL technique is used to identify new samples to query, then a random

initial training set will perform just as well as a balanced initial training set.

Since obtaining a balanced initial training set requires non-trivial expert labeling

effort, an equally high performance from the random initial training set means

we can propose a technique that maximizes model performance while minimizing

human expert level of effort.
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4.2 Related Works

Active learning has been a prominent research area for nearly three decades, but

recent research in the field continues to explore the benefit of applying active learning

to deep learning problems such as image classification [4, 50], speech recognition [126],

data exfiltration detection [36], and many NLP tasks [90].

Active learning (AL) is desirable because, in many instances, obtaining labeled

training data is expensive and time consuming [47, 109]. Training data often come

from human experts. For example, accurate speech labels for speech recognition

problems require trained linguists, and [135] reports that annotation at the word

level can take ten times longer than the actual audio being annotated. Furthermore,

manual information extraction can take half an hour for even brief news articles

[110]. Settles notes specifically that for tasks like our own, classifying documents as

“relevant” or “not relevant” to specific groups may classically require thousands of

annotated instances, and procuring these can be both “tedious and even redundant”

[109].

AL combats the problem of data scarcity by asking “queries,” generally in the form

of unlabeled instances, to be answered by an “oracle,” often a human annotator or

an existing labeled dataset [109]. There are three main problem setups, or scenarios,

in which a learner may be able to ask queries: membership query synthesis [15, 16],

stream-based selective sampling [18, 37], and pool-based sampling[69]. I will focus

primarily on pool-based sampling, which assumes there is a small set of labeled data

ℒ and a large pool of unlabeled data 𝒰 available. Queries are selectively drawn from

𝒰 in a “greedy” fashion, according to some informativeness measure that has been

used to evaluate all of the instances in the pool. The key attribute of pool-based

sampling is that in this scenario, the model evaluates and ranks the entire unlabeled

pool for informativeness, and then selects the best queries [109].

Just as there are different scenarios for AL, there are also several different methods

for choosing which unlabeled instances from 𝒰 to query. The decision method is called

the query strategy. The most commonly used query strategy is uncertainty sampling,
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introduced in [69]. In this strategy, the learner queries the instances for which the

learner is least certain how to label [109]. Within the uncertainty sampling strategy

there are three primary measures that evaluate how uncertain the learner is about

each instance: least confidence [40], margin sampling [107], and entropy [113]. The

equations for these sampling techniques are as follows:

𝑥*
𝐿𝐶 = argmax

𝑥
1− 𝑃𝜃 (𝑦 | 𝑥) (4.1)

𝑥*
𝑀 = argmin

𝑥
𝑃𝜃 (𝑦1 | 𝑥)− 𝑃𝜃 (𝑦2 | 𝑥) (4.2)

𝑥*
𝐻 = argmax

𝑥
−
∑︁
𝑖

𝑃𝜃 (𝑦𝑖 | 𝑥) log𝑃𝜃 (𝑦𝑖 | 𝑥) (4.3)

Ein-Dor et al. explore using AL in a realistic case - one in which data is both

imbalanced and scarce [47]. These are two characteristics that are quite common

in real world problems, and characterize the problem we are researching as well.

Works such as [4] and [47] explore how AL can work for highly imbalanced datasets.

Typically, high data imbalance presents a challenge for both deep learning and AL, as

the low prior of the minority class often leads to low recall of that class. Aggarwal et

al. present a method for combating data imbalance by using a large model pretrained

on a source domain to start with, and then modifying the query strategies, which

they refer to as acquisition functions, to focus on not just sampling for instances with

high uncertainty, but also ones that most represented the overall dataset [4]. This

research is in the computer vision domain, rather than NLP domain, however the

framework can be applied to the imbalanced AL task we research here.

4.3 Methods

In this section, we describe our methodology for employing AL to an NLP problem

using a real, highly imbalanced dataset.
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4.3.1 Dataset

Similar to the dataset described in Chapter 3, our data is provided by 3ie and is

derived from manually labeled documents from 3ie’s Development Evidence Portal

(DEP) [1], an expansive repository of impact evaluations and systematic reviews in

international development across a wide range of sectors. For the classification model,

we utilize a dataset of 68,539 documents from 3ie’s DEP. This dataset is highly

imbalanced, with the positive class, or class 1, (indicating an included document) in

the minority. An imbalanced dataset represents a realistic corpus of literature that

experts would filter through for relevance in an EGM. For each document we have

the following information: title, year of publication, abstract, and inclusion decision.

For our imbalanced dataset, the positive class has a prior distribution of just 7.7%.

Past research has measured data imbalance by observing the ratio 𝜎
𝜇

where 𝜎 is the

standard deviation and 𝜇 is the mean of instances per class in a dataset [4]. By this

metric, our dataset’s imbalance ratio is 𝑖𝑟 = 28,988
34,269

= 0.846. This is more imbalanced

than the other highly imbalanced datasets noted in [4], which had imbalance ratios

ranging from 0.739 − 0.793. Other studies have measured data imbalance in terms

of the positive class having a prior distribution of 15% or less [47]. Using the prior

distribution percentage, we compare our dataset to other common imbalanced NLP

datasets in Table 4.1. As this table indicates, our dataset is highly imbalanced, with

a lower prior for our positive class than all of the example imbalanced datasets used

in [47].

We perform a 70%/15%/15% train/test/validation split of our data. We use only

the training data as possible candidates for labelling and training. Therefore, our

unlabeled dataset, 𝒰 , is the training dataset. We have the ground truth labels for

all of 𝒰 , and use these as the oracle which provides the true labels to the queried

instances in our AL approaches.
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No. Dataset Size Positive Class Prior
1 TREC 5,952 location 15%
2 ISEAR 7,666 fear 14%
3 Wiki attack 21,000 general 12%
4 AG’s news-imb 17,538 world 10%
5 Polarity-imb 5,923 positive 10%
6 Subjectivity-imb 5,556 subjective 10%
7 Ours 68,539 include 7.7%

Table 4.1: Common imbalanced datasets in NLP and their size, positive class, and
the prior distribution of the positive class. Our dataset has a notably low prior
distribution, indicating that it is very imbalanced.

4.3.2 Implementation Strategy

We compare four different data selection scenarios, which differ in how their initial

seed ℒ is selected, and how additional data from 𝒰 is selected to be added to the

training set ℒ. The four scenarios are as follows.

1. Balanced Initial + Least Confidence Selection

2. Balanced Initial + Random Selection

3. Random Initial + Least Confidence Selection

4. Random Initial + Random Selection

We chose these four scenarios in order to observe the effects of the initial training

set on model performance, and the effects of the additional training data selection

strategy on model performance. We compare two initial scenarios: a balanced initial

training set and a random, and likely highly imbalanced, initial set. Our initial selec-

tion techniques are influenced by [47] which considers different scenarios for creating

initial seeds for imbalanced datasets. They found that a randomly selected initial

seed led to unstable BERT runs, and consequently ran experiments in which they

started with either (1) a truly balanced ℒ, or (2) a hopefully balanced ℒ derived from

using a key-word based query which aims to find instances of the positive minority

class. To note, [47] start with a smaller ℒ than we start with, which likely impacts

the instability of a BERT model trained on a random initial seed.
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Generating a balanced initial dataset will require labeling more initial training

points than generating a random initial dataset. Therefore, we aim to measure the

effect of such an initial set to see if that effort is justified. Similarly, we experiment

with a random data selection technique and a least confidence sampling technique,

which is a form of AL. Our goal with these experiments is to measure the effect of AL

on our model performance. Once again, we aim to determine which data selection

technique results in the best model performance with the smallest size of required

training data.

For each of the scenarios, we begin by selecting an initial seed of labeled data, ℒ,

from 𝒰 and providing their associated labels. For the two Balanced Initial scenar-

ios, we choose 1,000 instances total: 500 from class 0, the negative class indicating

excluded documents, and 500 from class 1, the positive class indicating included doc-

uments. For the Random Initial scenario we randomly select 1,000 instances from 𝒰

to become our initial seed, ℒ.

With our initial labeled set ℒ, we train the classification model. We start with

a pretrained BERT for Sequence Classification model [43], that we fine-tune using

ℒ. This method is similar to Aggarwal, Popescu, and Hudelot’s work in which they

performed AL on imbalanced image datasets. They utilized the pretrained ResNet-

18 model [57] as a base model and fine-tuned it to for classification tasks for each of

their four imbalanced datasets [4]. We similarly start with a large pretrained model,

but within the natural language processing domain, and go on to fine-tune it for our

specific classification task.

After fine-tuning our model, we turn to one of our two methods for selecting addi-

tional data: Least Confidence Selection or Random Selection. For Least Confidence

Selection we evaluate the model on both the test data, to examine model performance,

and the unseen training data, 𝒰 , to choose new training data. We use the least confi-

dence variant of uncertainty sampling shown in Equation 4.1 to select new instances

from 𝒰 to label. This method selects the instances that the model most believes it

could have mislabeled [110], and therefore those ground truth labels should be very

informative. We select 500 instances at a time, add those to the labeled training
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set ℒ, and then retrain the learner. For Random Selection we randomly select 500

instances from the unseen training data and add them to the labeled training set ℒ.

We repeat the selection of new data until we reach a training size of 5,000 labeled

instances. To accurately compare the four data selection scenarios described above,

we hold the hyperparameters of the model the same for each of the scenarios. We

use a learning rate of 2 · 10−5 and keep the best model based on performance on the

validation set.

4.4 Results

We follow the standard of evaluating the performance of a classifier model on an

imbalanced dataset with the F1 score. We have both a baseline and a goal perfor-

mance. The baseline, shown in 4-1, is Random Initial + Random Selection scenario,

which shows how the model performs given random training data at different training

sizes. The goal performance is the F1 score achieved when the model is trained on

all training points in 𝒰 , which is 70% of the data or 47,977 training points. This goal

F1 score is 0.81 and is achieved with a learning rate of 4 · 10−5.

The results for our four data selection scenarios are shown in 4-1. For these exper-

iments we are concerned with the relative performance of each scenario to the others,

since we are keeping standard hyperparameters for all scenarios and not optimizing

the hyperparameters of each model to achieve its highest F1 score. We observe that

all three non-baseline scenarios outperform the Random Initial + Random Selection

baseline. Additionally, we see that for the maximum number of training points, the

top scenarios are the two with the Least Confidence Selection technique. These are

the two scenarios which employ AL, and they reach an F1 score of 0.78 within a

training size of 4,000, less than 10% of the training dataset.

These results align with our intuition that using the AL least confidence sampling

strategy to select additional training points will improve model performance. This

can inform model selection for AI assisted idea filtering. One unexpected and highly

informative result is that the Random Initial + Least Confidence Selection scenario
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Figure 4-1: The F1 score vs. training data size for the four data selection techniques.

and Balanced Initial + Least Confidence Selection scenario perform equally well, as

the two top performing models. Given the positive impact of a balanced training set

on classification accuracy [129], we might anticipate that the scenarios with a balanced

initial training set would outperform scenarios with a random initial training set. We

find, however, that this is not the case for the two scenarios that use AL. This suggests

that we do not need a balanced initial training set to reach top model performance.

Since generating a balanced labeled training set takes more effort than generating a

random labeled training set, this finding can lead to a decreased level of effort required

from experts.

Furthermore, while both of the Random Initial scenarios start at a much lower

F1 score than the Balanced Initial scenario, the Random Initial + Least Confidence

Selection scenario reaches high F1 scores within one data selection iteration. We do

observe that the Balanced Initial cases have a smoother positive trend between train-

ing size and F1 score, while the two Random Initial scenarios exhibit a less smooth

positive trend, with outlying dips such as the Random Initial + Least Confidence
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Figure 4-2: The class breakdown of training data from the initial training set of 1,000
instances to the final set of 5,000 instances.

Selection dip at 3,500 training points.

Both cases which employed an active learning strategy selected many more in-

stances from the positive minority class than the two strategies which did not. These

results can be seen in Figure 4-2, as well as in larger scale in Figures A-1, A-2, A-3,

and A-4 included in the Appendix. Of the 4,000 additional instances selected after

the initial seed was chosen, the Balanced Initial + Least Confidence Selection sce-

nario selected 25% of instances from class 1. The Random Initial + Least Confidence

Selection scenario started with an initial seed of 73 class 1 instances out of 1,000 total.

This scenario selected 1,552 or 39% of additional training instances from class 1. The

Random Initial + Random Selection scenario selected the fewest training instances

from class 1. Only 7%, or 281, of the 4,000 additional training instances were class

1, resulting in a final training set that was more imbalanced than the full dataset.
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Figure 4-3: Class 1 Recall vs. Percent of Training Data that is Class 1. We observe a
positive linear relationship between the percent of the training data that is from the
positive minority class, class 1, and the recall of the positive class. The 𝑅2 value is
0.412.

4.5 Discussion

In this section, we return to our overarching goal of reducing expert reviewers’ level

of effort while still accurately classifying documents for inclusion. We will use this

section to discuss how our results tie into this goal.

A key result of this research is that both scenarios that employ an AL strategy

have the highest F1 scores. By 4,000 training points, less than 10% of the total

training data, both the Balanced Initial + Least Confidence Selection scenario and

the Random Initial + Least Confidence Selection scenario achieve F1 scores of 0.78.

We would like to emphasize that these results were generated without tuning hyper-

parameters for an optimal F1 score, since the hyperparameters were standardized to

allow for comparison of scenarios. We hypothesize that with hyperparameter tun-

ing, these two scenarios would reach greater F1 scores. Future work could explore

the training size, scenario, and hyperparameters required to reach the global best F1
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score.

The fact that we obtain quite similar performance with the Random Initial + Least

Confidence Selection and Balanced Initial + Least Confidence Selection scenarios

suggests to us that the former scenario would be the best in practice. This is because

getting an initial balanced dataset required for the Balanced Initial scenario is not a

trivial task.

While one may employ a similar keyword search technique as the one used in [47]

with the aim of identifying instances from the positive minority class, expert reviewers

would likely have to screen many more documents from the negative class before

getting a desired number of documents from the positive class. Take, for instance,

our balanced 500 negative class instances and 500 positive class instances scenario.

We can find a worst case estimate of the number of documents an expert reviewer

would have to screen to get 500 positive class instances using the prior distribution of

7.7% positive class. The reviewer would have to screen 500/0.077 = 6, 494 documents

to identify 500 positive class documents to be used for the initial seed. Therefore, since

we observe similarly high performance from the Random Initial + Least Confidence

Selection scenario, this scenario may be the most beneficial in practice.

From Figure 4-2, we can see that the AL strategies result in a more balanced

training dataset. The Random Initial + Least Confidence Selection scenario resulted

in the most balanced training dataset (32.5% class 1 data), even moreso than the two

scenarios which started with balanced initial training sets. Past research has shown

that using balanced training data to train binary classification models for real-world

applications results in the highest balanced accuracy (the average of True Positive

Rate and True Negative Rate), Matthews correlation coefficient, and area under ROC

curves [129]. These results hold regardless of the distribution of the test data, and

suggest that a balanced training set will produce the best classification results even

for imbalanced real-world applications like ours [129].

Figure 4-3 shows the impact that a more balanced training set might have. We

observe a positive linear relationship between the proportion of training data that

is from class 1, the positive class, and the class 1 recall. These results align with
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[129], which suggests that more balanced training data produces the highest model

performance.

In practice, an improved class 1 recall means our model would identify a greater

number of the included documents from the entire literature corpus, as documents

that should be included. Since the minority class is the class we are most concerned

about identifying and including in an evidence synthesis product, class 1 recall is a

high impact metric in this real-world scenario.

Given the nature of our experiments, we need to disaggregate the impact of total

training size with the impact of proportion of class 1 in the training set on class 1

recall. In Figure A-5, included in the Appendix, we observe a very weak relationship

between class 1 recall and training size, as indicated by an 𝑅2 value of 0.02. This

helps confirm that the positive linear relationship we observe between class 1 recall

and the proportion of the training data from class 1 is, in fact, that relationship, and

is not confounded by training data size.

4.6 Summary

In this chapter we address a common challenge found in automated idea filtering and

in the engineering design field in general: difficulty in obtaining large labeled datasets.

In the engineering design field there is a lack of large labeled datasets [93, 103], and

generating such datasets using expert labels is expensive and time consuming [93, 39].

However, labeled training sets that allow for automated idea filtering with ML models

can provide great benefit and effort-reduction for experts during the design process.

Therefore, the research in this chapter explores ways to reduce the effort required

to generate expert-labeled training data for NLP-based idea filtering. We find that

data selection scenarios that incorporate active learning result in higher F1 scores, a

more balanced training set, and fewer necessary labeled training instances. A model

trained with 4,000 datapoints (less than 10% of the training dataset) selected via

an active learning strategy reaches an F1 score of 0.78, compared to the baseline

model with has an F1 score of 0.73 here. Furthermore, our research demonstrates
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that if a scenario incorporates active learning in its selection strategy, it reaches high

performance regardless of its initial training set. In practice, this finding is useful in

identifying the Random Initial + Least Confidence Selection scenario as that which

produces the best model performance while requiring the lowest level of effort from

expert reviewers, since it does not require a balanced initial training set. Lastly, the

two data selection techniques that incorporate active learning result in training sets

with 30% and 33% of minority class instances, while the two techniques without AL

result in 7% and 16% minority class training sets. More balanced training sets are

associated with higher classification accuracy [129], and our results show that class

1 recall increases with more balanced training sets. Overall, this research suggest

that active learning is effective in decreasing expert level of effort for NLP-based

idea filtering with highly imbalanced data. Future work should explore various active

learning strategies, especially ones which specifically address the high level of class

imbalance in our real-world dataset. Additionally, future work might aim to quantify

the effort of labeling instances in batches, as required for AL, versus labeling instances

all at once. This will help create a full picture of the effort-saving benefit of AL in

real-world automated idea filtering applications.
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Chapter 5

Conclusion

This treatise examines three research scenarios that employ NLP-based idea filter-

ing to lower the level of effort required of human experts and therefore accelerate

the design process. There are several common challenges surrounding idea filtering.

Firstly, manual idea filtering is often a bottleneck in the design process, as evaluating

a plethora of ideas is both time and resource intensive for experts [25, 127, 89]. We

aim to address this by automating idea filtering, which brings us to our second large

challenge. In engineering and design, there is a lack of large labeled datasets [93, 103].

Furthermore, generating a labeled dataset for a specific application entails significant

effort from expert reviewers, which increases with the size of required training data.

We address these challenges through three research scenarios in order to understand

the possibility and benefits of using NLP-based idea filtering to accelerate the design

process.

In Chapter 2, we explore the efficacy of using machine learning to predict expert

ratings of design characteristics like creativity, usefulness, and elegance. In particular,

we explore whether we can predict expert creativity ratings from non-expert design

survey results. Our results demonstrate that incorporating NLP in the prediction

process improve the model’s predictive power across design metrics, including CAT

ratings. This study also found that the predictability of different design metrics varies,

with Usefulness and Elegance having the best predictability, likely because these are

the least subjective design metrics. These findings also serve as empirical evidence
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supporting the investigation of novice vs expert usage in creativity assessment. As

the surveys can be completed by novices, utilizing the surveys more can decrease the

level of effort required of experts. The preliminary success in using NLP to predict

design metrics helps show the wide application of NLP, and also supports its usage in

modeling subjective ratings like creativity. Being able to model and evaluate design

metrics provides basis for automatically filtering design ideas based in these metrics.

The potential of utilizing a small number of expert assessments to train a model to

then predict future design idea assessments can decrease the level of effort of expert

reviewers. Therefore, this work addresses two common challenges in idea filtering,

that manual filtering by experts is expensive and time consuming, and that large

labeled datasets are not frequently available and are expensive to generate.

In Chapter 3, we move to a different domain: accelerating evidence synthesis for

the design of international development projects using NLP-based idea filtering. Our

research explores the effectiveness of three NLP classification models on determining

if a document should be included in an international development evidence synthesis.

In this chapter we work with a much larger dataset of over 50,000 documents, which

would require significan effort for human experts to filter through. We find that an

iBERT model comprised of a fine-tuned BERT model with additional extracted infor-

mation performs the best with an accuracy of 79%. We further explore the influence

of the amount of training data on the accuracy. As our intuition suggests, accuracy

improves with the amount of training data used. However, the rate of improvement

slows down as the amount of training data increases, and after about 10,000 training

datapoints the improvements are small. Our results can inform decisions between in-

creased accuracy and the level of effort to manually create training data in real-world

applications of this work. Our work is motivated by the potential of NLP to auto-

mate time-intensive aspects of evidence synthesis models like filtering through tens of

thousands of text documents. By automatically and accurately filtering documents

for inclusion in an evidence gap map, we can quickly provide decision-makers with

the tools to design evidence-based policies.

Our work in Chapter 4 builds from Chapter 3, where we demonstrate the efficacy

82



of using NLP to classify literature for inclusion in an evidence synthesis product. In

Chapter 4 we address the idea filtering challenge that generating a labeled training

dataset entails significant effort from expert reviewers, which increases with the size

of required training data. In Chapter 3, our work relies on a labeled training set of

documents that we use to fine tune a BERT-based model. As mentioned, generating

this training set requires significant expert resources and time, especially in the real-

istic setting where the positive class is in the minority. Motivated by this, we aimed

to decrease the level of effort required of expert reviewers to generate training data.

We turned to the field of active learning (AL) to decrease the necessary training size

while retaining or improving model performance. We compared classifier models with

four different data selection scenarios using our highly imbalanced real-world dataset.

We found that data selection techniques that incorporate active learning result in

higher F1 scores, a more balanced training set, and fewer necessary labeled training

instances. These results suggest that active learning is effective in decreasing expert

level of effort for NLP-based idea filtering with highly imbalanced data.

To conclude, throughout these three projects we address the common idea filtering

challenges we identified above. In Chapters 2, 3, and 4, we address the overarching

bottleneck of manual idea filtering by presenting automated NLP-based models. In

Chapters 2 and 4, we address the challenge of obtaining large expertly labeled datasets

in the engineering design domain because of their scarcity and expense by maximizing

learning from a smaller number of expertly labeled datapoints. Lastly, in Chapter 4,

we address the challenge of the effort required to generate a sufficient training dataset

by utilizing AL. Through working on these three research projects, we find that NLP

can accelerate design processes in various domains by automating idea filtering and

decreasing the level of effort required of human experts.
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Appendix A

Figures

Figure A-1: Training data breakdown per iteration for the Balanced Initial + Least
Confidence Selection Technique.
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Figure A-2: Training data breakdown per iteration for the Random Initial + Least
Confidence Selection Technique.

Figure A-3: Training data breakdown per iteration for the Balanced Initial + Random
Selection Technique.

86



Figure A-4: Training data breakdown per iteration for the Random Initial + Random
Selection Technique.
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Figure A-5: Class 1 recall vs. Total Training Size. We observe a very weak relationship
between class 1 recall and training size, as indicated by an 𝑅2 value of 0.02. This
helps confirm that the positive linear relationship we observe between class 1 recall
and the proportion of the training data from class 1 is in fact that relationship, and
is not confounded by training data size.
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