
Geometric Properties of Learned Representations
by

Tongzhou Wang
B.A. Computer Science and Statistics

University of California, Berkeley (2017)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 26, 2022
Certified by. .

Phillip Isola
Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor
Certified by. .

Antonio Torralba
Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Geometric Properties of Learned Representations

by

Tongzhou Wang

Submitted to the Department of Electrical Engineering and Computer Science
on August 26, 2022, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

In machine learning, reprensentation learning refers to optimizing a mapping from data
to some representation space (usually generic vectors in R𝑑 for some pre-determined 𝑑
much lower than data dimensions). While such training often uses no supervised labels,
the learned representations have proved very useful for solving downstream tasks.
Such successes sparkled an enormous amount of interests in representation learning
methods among both academic researchers and practitioners. Despite the popularity,
it is not always clear what the representation learning objectives are optimizing
for, and how to design representation learning methods for new domains and tasks
(such as reinforcement learning). In this thesis, we consider the structures captured
by two geometric properties of learned representations: invariances and distances.
From these two perspectives, we start by thoroughly analyzing the widely adopted
contrastive representation learning, uncovering that it learns certain structures and
relations among data. Then, we describe two new representation learning methods
for reinforcement learning and control, where they respectively capture the optimal
planning cost (distance) and the information invariant to environment noises.

Thesis Supervisor: Phillip Isola
Title: Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Antonio Torralba
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I would like to first thank my thesis advisors, Professor Phillip Isola and Professor

Antonio Torralba, for their continued support, encouragements, and mentorship

throughout my time here at MIT. I am extremely grateful for the opportunity of

working with and learning from them.

Many thanks goes to my collaborators near and far, some of whom I have yet met

in person due to the pandemic. It is truly an amazing journey working with each

of you. Thank you to Jun-Yan Zhu, Alyosha Efros, George Cazenavette, Yuandong

Tian, Simon S. Du and Amy Zhang for the wonderful collaborations and for always

opening to disucssing new ideas and more. I also learned tremendously from and

thoroughly enjoyed collaborations here at MIT with David Bau, Lucy Chai, Minyoung

Huh, Manel Baradad and Jonas Wulf. I am greatly thankful to them. Special thanks

goes to Steven Liu, Jingwei Ma and David Wu for trusting me with their valuable

undergraduate research opportunities, teaching me many new knowledge, and helping

me become a better researcher and mentor.

Among many other things, two have supported me the most during the most

stressful hours of this journey—caffeine and friends. I appreciate Broadsheet for their

fantastic coffee, Bluebottle for their fancy coffee, Flour cafe for their affordable and

accessible coffee, Passenger for their tasty beans, Counter Culture for their reliable and

consistent beans, and Vigilante for supplying caffeine during the darkest COVID-19

days. I am extremely lucky to have many great friends here at MIT accompanying me

and giving me hope through this time—Wei-Chiu Ma, Ching-Yao Chuang, Yen-Chen

Lin, Lucy Chai, Minyoung Huh, Caroline Chan, Hyojin Bahng, Yonglong Tian, Xavier

Puig, Manel Baradad, Joanna Materzynska, Shuang Li,and many more.

Finally, my deepest appreciation goes to my parents, Wenjuan and Guangbin, my

brother, Andrew, my girlfiend, Jiaxi Chen, and our fluffy family members, Mochi,

Tabby and Kiwi, for their endless love, company, and support.

5

6

Contents

1 Introduction 25

2 Understanding Contrastive Representation Learning through Align-

ment and Uniformity on the Hypersphere 27

2.1 Introduction . 28

2.2 Related Work . 30

2.3 Preliminaries on Unsupervised Contrastive Representation Learning . 31

2.4 Feature Distribution on the Hypersphere 33

2.4.1 Quantifying Alignment and Uniformity 35

2.4.2 Limiting Behavior of Contrastive Learning 37

2.5 Experiments . 41

2.6 Discussion . 47

3 On the Learning and Learnability of Quasimetrics 49

3.1 Introduction . 49

3.2 Preliminaries on Quasimetrics and Poisson Processes 51

3.3 Quasimetric Learning . 53

3.3.1 Learning Algorithms and Hypothesis Spaces 53

3.3.2 A Toy Example . 54

3.4 Theoretical Analysis of Various Learning Algorithms 55

3.4.1 Distortion and Violation Metrics for Quasimetric Learning . . 56

3.4.2 Learning Algorithms Equivariant to Orthogonal Transforms . 57

3.4.3 Quasimetric Embeddings . 59

7

3.5 Poisson Quasimetric Embeddings (PQEs) 59

3.5.1 Distributions of Latent Quasipartitions 61

3.5.2 General PQE Formulation . 62

3.5.3 Continuous-valued Stochastic Processes 63

3.5.4 Theoretical Guarantees . 63

3.6 Experiments . 64

3.7 Related Work . 67

3.8 Implications . 68

4 Denoised MDPs: Learning World Models Better Than the World

Itself 69

4.1 Introduction . 70

4.2 Different Types of Information in the Wild 73

4.2.1 Controllability . 74

4.2.2 Reward-Relevance . 75

4.2.3 Which Information Do Existing Methods Learn? 75

4.2.4 Possible Extensions to Further Factorizations 77

4.3 Denoised MDPs . 77

4.4 Related Work . 82

4.5 Experiments . 83

4.5.1 RoboDesk with Various Noise Distractors 84

4.5.2 DeepMind Control Suite (DMC) 86

4.6 Implications . 88

A Proofs, Details, and Additional Discussions for Chapter 2 91

A.1 Proofs and Additional Theoretical Analysis 91

A.1.1 Proofs for Section 2.4.1 and Properties of ℒuniform 92

A.1.2 Proofs and Additional Results for Section 2.4.2 99

A.2 Experiment Details . 111

A.2.1 CIFAR-10, STL-10 and NYU-Depth-V2 Experiments . . . 111

8

A.2.2 ImageNet and ImageNet-100 with Momentum Contrast

(MoCo) Variants . 114

A.2.3 BookCorpus with Quick-Thought Vectors Variants 117

B Proofs, Details, and Additional Discussions for Chapter 3 145

B.1 Discussions for Section 3.2: Preliminaries on Quasimetrics and Poisson

Processes . 145

B.1.1 Quasimetric Spaces . 145

B.1.2 Poisson Processes . 151

B.2 Proofs, Discussions and Additional Results for Section 3.4: Theoretical

Analysis of Various Learning Algorithms 155

B.2.1 Theorem 3.4.3: Distortion and Violation Lower-Bound General-

ization Error . 157

B.2.2 Lemma 3.4.5: Examples of OrthEquiv Algorithms 158

B.2.3 Theorem 3.4.6: Failure of OrthEquiv Algorithms 162

B.3 Proofs and Discussions for Section 3.5: Poisson Quasimetric Embeddings

(PQEs) . 183

B.3.1 Non-differentiability of Continuous-Valued Stochastic Processes 183

B.3.2 PQE-GG: Gaussian-based Measure and Gaussian Shapes . . . 184

B.3.3 Theoretical Guarantees for PQEs 187

B.3.4 Implementing Poisson Quasimetric Embeddings (PQEs) . . . 196

B.4 Experiment Settings and Additional Results 204

B.4.1 Experiments from Section 3.3.2: A Toy Example 204

B.4.2 Experiments from Section 4.5: Experiments 205

C Details and Additional Discussions for Chapter 4 227

C.1 Denoised MDP Discussions . 227

C.1.1 Loss Derivation . 227

C.1.2 Discussions . 228

C.2 Experiment Details . 229

C.2.1 Implementation Details . 229

9

C.2.2 Compute Resources . 234

C.2.3 Visualization Details . 234

C.2.4 RoboDesk Result Details . 235

C.2.5 DeepMind Control Suite (DMC) Result Details 238

10

List of Figures

2-1 Illustration of alignment and uniformity of feature distributions on the

output unit hypersphere. STL-10 [31] images are used for demonstration. 28

2-2 Hypersphere: When classes are well-clustered (forming spherical

caps), they are linearly separable. The same does not hold for Euclidean

spaces. 29

2-3 Representations of CIFAR-10 validation set on 𝒮1. Alignment anal-

ysis: We show distribution of distance between features of positive

pairs (two random augmentations). Uniformity analysis: We plot

feature distributions with Gaussian kernel density estimation (KDE) in

R2 and von Mises-Fisher (vMF) KDE on angles (i.e., arctan2(𝑦, 𝑥) for

each point (𝑥, 𝑦) ∈ 𝒮1). Four rightmost plots visualize feature dis-

tributions of selected specific classes. Representation from contrastive

learning is both aligned (having low positive pair feature distances) and

uniform (evenly distributed on 𝒮1). 33

2-4 Average pairwise 𝐺2 potential as a measure of uniformity. Each plot

shows 10000 points distributed on 𝒮1, obtained via either applying an

encoder on CIFAR-10 validation set (same as those in Figure 2-3) or

sampling from a distribution on 𝒮1, as described in plot titles. We show

the points with Gaussian KDE and the angles with vMF KDE. 35

11

2-5 Metrics and performance of STL-10 and NYU-Depth-V2 experiments.

Each point represents a trained encoder, with its 𝑥- and 𝑦-coordinates

showing ℒalign and ℒuniform metrics and color showing the performance

on validation set. Blue is better for both tasks. Encoders with low

ℒalign and ℒuniform are consistently the better performing ones (lower left

corners). 40

2-6 PyTorch implementation of ℒalign and ℒuniform. 41

2-7 Effect of optimizing different weighted combinations of ℒalign(𝛼=2) and

ℒuniform(𝑡=2) for STL-10. For each encoder, we show the ℒalign and

ℒuniform metrics, and validation accuracy of a linear classifier trained on

encoder outputs. ℒuniform is exponentiated for plotting purposes. . . . 43

2-8 Finetuning trajectories from a STL-10 encoder trained with ℒcontrastive

using a suboptimal temperature 𝜏 = 2.5. Finetuning objectives are

weighted combinations of ℒalign(𝛼=2) and ℒuniform(𝑡=2). For each

intermediate checkpoint, we measure ℒalign and ℒuniform metrics, as well

as validation accuracy of a linear classifier trained from scratch on

the encoder outputs. ℒuniform is exponentiated for plotting purpose.

Left and middle: Performance degrades if only one of alignment and

uniformity is optimized. Right: Performance improves when both are

optimized. 44

2-9 Metrics and performance of ImageNet-100 and BookCorpus ex-

periments. Each point represents a trained encoder, with its 𝑥- and

𝑦-coordinates showing ℒalign and ℒuniform metrics and color showing

the validation accuracy. Blue is better. Encoders with low ℒalign and

ℒuniform consistently perform well (lower left corners), even though the

training methods (based on MoCo and Quick-Thought Vectors) are

different from directly optimizing the contrastive loss in Equation (2.1). 45

3-1 Examples of quasimetric spaces. The car drawing is borrowed from

Sutton and Barto [145]. 51

12

3-2 Quasimetric learning on a 3-element space. Leftmost: Training set

contains all pairs except for (𝑎, 𝑐). Arrow labels show quasimetric

distances (rather than edge weights). A quasimetric 𝑑 should predict

𝑑(𝑎, 𝑐) ∈ [28, 30]. Right three: Different formulations are trained to

fit training pairs distances, and then predict on the test pair. Plots

show distribution of the prediction over 100 runs. 54

3-3 Two training sets pose incompatible constraints () for the test pair

distance 𝑑(𝑦, 𝑧). With one-hot features, an orthogonal transform can

exchange (*, 𝑦) ↔ (*, 𝑦′) and (*, 𝑤) ↔ (*, 𝑤′), leaving the test pair

(𝑦, 𝑧) unchanged, but transforming the training set from one scenario to

the other. Given either set, an OrthEquiv algorithm must attain same

training distortion and predict identically on (𝑦, 𝑧). For appropriate 𝑐,

this implies large distortion (not fitting training set) or violation (not

approximately a quasimetric) in one of these cases. 58

3-4 Comparison of PQE and baselines on quasimetric learning in random

directed graphs. 66

3-5 Offline Q-learning results. 66

4-1 Illustrative example: (a) Four distinct kinds of information in the

scenario described in Section 4.1, where the person desires to increase

the amount of sunlight let into the room. Their opening of the curtain

scares away the bird. (b) A denoised world model only includes a small

subset of all information. 71

13

4-2 MDP transition structures consisting of dynamics and reward func-

tions. Unlike the regular structure of (a), (b, c) factorized (yet still

general) structures inherently separate information into controllable

(Ctrl) versus uncontrollable (Ctrl), and reward-relevant (Rew) versus

reward-irrelevant (Rew). Presence of a variable in a cell means possible

containing of respective information. E.g., in (c), 𝑧 can only contain

reward-irrelevant information. In (b, c), the 𝑥 dynamics form an MDP

with less noise and sufficient for optimal planning. Our Denoised MDP

(see Section 4.3) is based on these two factorizations. 74

4-3 Categorization of information learned and removed by various methods

with distinct formulations. 76

4-4 Visualization of learned models for RoboDesk by using decoders to

reconstruct from encoded latents. For TIA and Denoised MDP, we

visualize how they separate information as signal versus noise. In

each row, what changes over frames is the information modeled by the

corresponding latent component. E.g., in the bottom row, only the TV

content, camera pose and lighting condition change, so Denoised MDP

considers these factors as noises, while modelling the TV hue as signal.

See our website for clearer video visualizations. 83

4-5 Policy optimization on RoboDesk. We give state-space SAC a less noisy

reward so it can learn (see appendix). 86

4-6 Performance of finetuning various encoders to infer joint position from

RoboDesk image observation. 86

4-7 Visualization of the different DMC variants and factorizations learned

by TIA and Denoised MDP. E.g., bottom Noise row often shows a static

agent but varying background, indicating that only the background is

modeled as noises in Denoised MDP. Visualizations of full reconstruc-

tions are in appendix. See our website for clearer video visualizations.

. 87

14

https://ssnl.github.io/denoised_mdp/#signal-noise-factorization
https://ssnl.github.io/denoised_mdp/#signal-noise-factorization

A-1 Asymptotic behavior of 0𝐹 1(;𝛼; 𝑧). For 𝑧 > 0, as 𝛼 grows larger, the

function converges to 1. 98

A-2 Asymptotic behavior of optimal ℒuniform(𝑓, 𝑡), attained by a perfectly

uniform encoder 𝑓 *. As the feature dimension 𝑚 grows larger, the value

converges to −2𝑡. 98

B-1 Two training sets pose incompatible constraints () for the test pair

distance 𝑑(𝑦, 𝑧). With one-hot features, an orthogonal transform can

exchange (*, 𝑦) ↔ (*, 𝑦′) and (*, 𝑤) ↔ (*, 𝑤′), leaving the test pair

(𝑦, 𝑧) unchanged, but transforming the training set from one scenario to

the other. Given either set, an OrthEquiv algorithm must attain same

training distortion and predict identically on (𝑦, 𝑧). For appropriate 𝑐,

this implies large distortion (not fitting training set) or violation (not

approximately a quasimetric) in one of these cases. 162

B-2 Training unconstrained MLPs on the toy failure construction discussed

in Section 3.4.2 (reproduced as Figure B-1). Two patterns in the

construction have different constraints on distance of the heldout pair

(𝑦, 𝑧). Plots show mean and standard deviations over 5 runs. Left:

All training conclude with small training error. Right: Trained MLPs

predict identically for both patterns. Here standard deviation is small

compared to mean and thus not very visible. 182

B-3 Bivariate distributions from different stochastic processes. Left: In

a continuous-valued process (where (𝑁𝜃, 𝑁𝜃′) has bounded density if

𝜃 ̸= 𝜃′), perturbing one 𝜃 → 𝜃 + 𝜖 leaves P [𝑁𝜃 = 𝑁𝜃+𝜖] = 0. Then

one of P
[︀
𝑁𝜃 ≤ 𝑁𝜃+𝜖

]︀
and P

[︀
𝑁𝜃+𝜖 ≤ 𝑁𝜃

]︀
must be far away from 1 (as

they sum to 1), breaking differentiability at either P [𝑁𝜃 ≤ 𝑁𝜃] = 1

or P [𝑁𝜃+𝜖 ≤ 𝑁𝜃+𝜖] = 1. Right: For discrete-valued processes, most

probability can still be left on 𝑁𝜃 = 𝑁𝜃+𝜖 and thus do not break

differentiability. 183

15

B-4 The 3-element quasimetric space, and the training pairs.Training set

contains all pairs except for (𝑎, 𝑐). Arrows show quasimetric distances

(rather than edge weights of some graph). 204

B-5 Training different formulations to fit training pairs distances via MSE,

and using them to predict on the test pair. Plots show distribution of

the prediction over 100 runs. Standard deviations of the training error

are shown. 206

B-6 A dense graph. Individual plots on the right show standard deviations. 214

B-7 A sparse graph. Individual plots on the right show standard deviations. 215

B-8 A sparse graph with block structure. Individual plots on the right show

standard deviations. 216

B-9 Ablation studies of PQE-LH and PQE-GG on three random graphs. . 217

B-10 Grid-world offline Q-learning average planning success rates. Right

shows the environment. 221

B-11 Grid-world offline Q-learning full results. Individual plots on show

standard deviations. 224

C-1 Effect of weight decay on RoboDesk joint position regression. The

curves show final test MSE for various training set sizes. Weight decay

generally helps when finetuning from a pretrained encoder, but hurts

when training from scratch. 236

C-2 Performance of all TIA settings on RoboDesk joint position regression.

Only using the signal encoder is necessary for good performance. . . . 236

C-3 Training curve comparisons for the RoboDesk joint position regression

task across many training set sizes. 236

C-4 Performance comparison of finetuning from Denoised MDP encoders

and frame-stacked encoders that take in 3 consecutive frames. For

Denoised MDP and training from scratch, the encoders take in only

a single frame and are applied for each of the frame, with output

concatenated together before feeding to the prediction head. 237

16

C-5 Performance of all DBC settings on RoboDesk joint position regression.

Using the output features (after layer normalization) is necessary for

good performance. 237

C-6 Performance of all CURL settings on RoboDesk joint position regression.

Using the output features (after layer normalization) is necessary for

good performance. 237

C-7 Performance of all PI-SAC settings on RoboDesk joint position regression.

Using the activations before layer normalization gives best performance.237

C-8 Policy optimization results on DMC. Each plot focuses on a single task

variant, showing total episode return versus environment steps taken.

For three model-based approaches, we use two policy optimization

choices to train on the learned model: (top half) backpropagate via

learned dynamics and (bottom half) SAC on the learned MDP. We

also compare with DBC, a model-free baseline. For an “upper bound”

(not plotted due to presentation clarity), SAC on true state-space (i.e.,

optimal representation) in 106 environment steps reaches episode return

≈ 800 on Cheetah Run variants, ≈ 980 on Walker Walk variants,

and ≈ 960 on Reacher Easy variants. CURL’s specific augmentation

choice (random crop) potentially helps significantly for Reacher Easy

(where the reacher and the target appear in random spatial locations)

and Camera Jittering. However, unlike Denoised MDP, it does not

generally perform well across all environments and noise variants. . . 240

C-9 Complete visualization of the different DMC variants and factorizations

learned by TIA and Denoised MDP. In addition to visualizations of

Figure 4-7, we also visualize full reconstructions from Dreamer, TIA,

and Denoised MDP. 241

C-10 Effect of choosing 𝛽 in Denoised MDP on DMC policy optimization

results. Setting 𝛽 = 1 disables regularization and is only run on

noiseless variants. 242

17

18

List of Tables

2.1 STL-10 encoder evaluations. Numbers show linear and 5-nearest neigh-

bor (5-NN) classification accuracies on the validation set. The best

result is picked by encoder outputs linear classifier accuracy from a

5-fold training set cross validation, among all 150 encoders trained from

scratch with 128-dimensional output and 768 batch size. 42

2.2 NYU-Depth-V2 encoder evaluations. Numbers show depth prediction

mean squared error (MSE) on the validation set. The best result is

picked based on conv5 layer MSE from a 5-fold training set cross valida-

tion, among all 64 encoders trained from scratch with 128-dimensional

output and 128 batch size. 42

2.3 ImageNet-100 encoder evaluations. Numbers show validation set

accuracies of linear classifiers trained on encoder penultimate layer

activations. The encoders are trained using MoCo-based methods. The

best result is picked based on top1 accuracy from a 3-fold training

set cross validation, among all 45 encoders trained from scratch with

128-dimensional output and 128 batch size. 46

2.4 BookCorpus encoder evaluations. Numbers show Movie Review Sen-

tence Polarity (MR) and Customer Product Sentiment (CR) validation

set classification accuracies of logistic classifiers fit on encoder outputs.

The encoders are trained using Quick-Thought-Vectors-based methods.

The best result is picked based on accuracy from a 5-fold training set

cross validation, individually for MR and CR, among all 108 encoders

trained from scratch with 1200-dimensional output and 400 batch size. 46

19

2.5 ImageNet encoder evaluations with MoCo v2, and its variant with

ℒalign and ℒuniform. MoCo v2 results are from the MoCo v2 official

implementation [27], with mean and standard deviation across 5 runs.

Both settings use 200 epochs of unsupervised training. 46

3.1 Quasimetric learning on large-scale web graph. “Best” is selected by

test MSE w.r.t. 𝛾-discounted distances. 66

4.1 DMC policy optimization results. For each variant, we aggregate

performance across three tasks (Cheetah Run, Walker Walk, Reacher

Easy) by averaging. Denoised MDP performs well across all four variants

with distinct noise types. Bold numbers show the best model-learning

result for specific policy learning choices, or the best overall result.

On Camera Jittering, Denoised MDP greatly outperforms all other

methods except for CURL, which potentially benefits from its specific

data augmentation choice (random crop) on this task, and can be seen

as using extra information (i.e., knowing the noise distractor form).

In fact, Denoised MDP is the only method that consistently performs

well across all tasks and noise variants, which can be seen from the full

results in the appendix. 86

A.1 NYU-Depth-V2 CNN depth predictor architecture. Each Conv.Trans-

pose+BN+ReLU block increases the spatial shape by a factor of 2,

where BN denotes Batch Normalization [82]. A sequence of such blocks

computes a tensor of the correct spatial shape, from an input containing

intermediate activations of a CNN encoder (which downsamples the

input RGB image by a power of 2). A final convolution at the end

computes the single-channel depth prediction. 113

A.2 100 randomly selected ImageNet classes forming the ImageNet-100

subset. These classes are the same as the ones used by Tian et al. [153].114

20

A.3 Experiment specifications for all 304 STL-10 encoders. We report the

encoder representation quality measured by accuracy of linear and 𝑘-

nearest neighbor (𝑘-NN) with 𝑘 = 5 classifiers on either encoder outputs

or fc7 activations, via both a 5-fold cross validation of the training

set and the held out validation set. For encoder initialization, “rand”

refers to standard network initialization, and symbols denote finetuning

from a pretrained encoder, obtained via the experiment row marked

with the same symbol. Initial learning rates (LRs) are usually either

fixed as 0.12 or computed via a linear scaling (0.12 per 256 batch size).

Dimensionality (abbreviated as “Dim.”) shows the ambient dimension

of the output features, i.e., they live on the unit hypersphere of one less

dimension. The last three rows show encoders that are used to initialize

finetuning, but are not part of the 285 encoders plotted in main paper

Figure 3, due to their unusual batch size of 786. Their accuracy and

ℒalign & ℒuniform metrics follow the same trend shown in Figure 2-5a. 120

A.4 Experiment specifications for all 64 NYU-Depth-V2 encoders. We

report the encoder representation quality measured by mean squared

error (MSE) of a CNN depth predictor trained on conv5 or conv4

activations, via both a 5-fold cross validation of the training set and

the held out validation set. All encoders in this table use standard

network initialization (denoted as “rand”). Dimensionality (abbreviated

as “Dim.”) shows the ambient dimension of the output features, i.e.,

they live on the unit hypersphere of one less dimension. 133

21

A.5 Experiment specifications for all 45 ImageNet-100 ResNet50 encoders

trained using methods based on Momentum Contrast (MoCo) [70].

We report the encoder representation quality measured by accuracy

of a linear classifier on penultimate layer activations, via both a 3-

fold cross validation of the training set and the held out validation

set. All encoders in this table use standard network initialization

(denoted as “rand”). Dimensionality (abbreviated as “Dim.”) shows the

ambient dimension of the output features, i.e., they live on the unit

hypersphere of one less dimension. For ℒuniform, the “Intra-batch” column

denotes whether ℒuniform calculation includes pairwise distances within

batch in addition to distances w.r.t. to the queue (i.e., Equation (A.20)

vs. Equation (A.19)). 136

A.6 Experiment specifications for all 108 BookCorpus recurrent encoders

trained using methods based on Quick-Thought Vectors [106]. We report

the encoder representation quality measured by accuracy of logistic

classifiers on encoder outputs for the Movie Review Sentence Polarity

(MR) and Customer Product Sentiment (CR) binary classification tasks,

via both a 5-fold cross validation of the training set (of the downstream

task) and the held out validation set (of the downstream task). All

encoders in this table use standard network initialization (denoted as

“rand”). Dimensionality (abbreviated as “Dim.”) shows the ambient

dimension of the output features, i.e., features from 𝑙2-normalized

encoders live on the unit hypersphere of one less dimension. Regardless

of whether the encoder is 𝑙2-normalized (indicated in “Normalization”

column), the features are always normalized before being used for

downstream tasks, following Logeswaran and Lee [106]. The only

unnormalized encoder is obtained using the unmodified Quick-Thought

Vectors algorithm. 6 configurations that suffer from training instability

(i.e., NaN occurring) are also reported. 139

22

B.1 Quasimetric learning on the large-scale directed Berkeley-StanfordWebGraph.218

B.2 Metric learning on the large-scale undirected Youtube graph. This graph

does not have unreachable pairs so the last column is always NaN. . . 219

C.1 Categorization of various information in the environments we evaluated

with. 229

C.2 Encoder architecture for (96×96)-resolution observation. The output of

this encoder is then fed to other network for inferring posteriors. 𝑚 and

𝑘 are two architectural hyperparameters. 𝑚 controls the output size

(unrelated to the actual latent variable sizes). 𝑘 controls the network

width. 231

C.3 Decoder architecture for (96 × 96)-resolution observation. 𝑚 and 𝑘

are two architectural hyperparameters. 𝑚 controls width the fully

connected part. 𝑘 controls width of the convolutional part. They are

the same values as in Table C.2. 231

C.4 The specific architecture parameters for model learning methods. Since

RSSM uses a deterministic part and a stochastic part to represent

each latent variable, we use (deterministic_size+ stochastic_size)

to indicate size of a latent variable. TIA and Denoised MDP have

more than one latent variable. Note that while TIA has lower 𝑚

and 𝑘, it has multiple encoder and decoders, whereas Dreamer and

Denoised MDP only have one encoder and one decoder. The total

number of parameters is measured with the actor model, but without

any additional components from policy optimization algorithm (e.g.,

critics in SAC). Total number of parameters is lower for RoboDesk as

the encoder and decoder architecture is narrower than those of DMC for

the purpose of reducing memory usage, despite with a higher resolution. 233

23

C.5 𝛽 choices for Denoised MDP results shown in Table 4.1 and Figure C-

8. We choose 𝛽 = 1 (i.e., disabling regularization) for all noiseless

environments, and tuned others. However, as seen in Figure C-10, the

results often are not too sensitive to small 𝛽 changes. 242

24

Chapter 1

Introduction

Representation learning methods have gained enormous attention in machine learning

research [97, 119, 90, 71, 63]. In such methods, an encoder function is optimized to

map each data samples to a high-dimensional vector, which is called the latent or the

representation of that sample. By learning on (usually) large quantities of unlabeled

data, such methods enjoy the benefits of avoiding laborious and expensive human

labelling, and have proven to show strong empirical results on downstream tasks,

where particular tasks on learned on top of the learned representations (e.g., a linear

classifier trained on top features from a deep image encoder). Across computer vision

(CV) [71], natural language processing (NLP) [90], and reinforcement learning (RL)

[97, 63, 121], such methods are hugely successful and become increasingly popular.

These methods are often motivated as capturing some information / relation of

data [149, 172, 7]. However, in some cases, it is not well understood what exact

relation is captured in learned representations [158], and which structure we should

capture for different tasks (e.g., reinforcement learning).

For example, contrastive representation learning [119] currently enjoys wide em-

pirical usage and popularity, but the understanding and analysis of representation

learning methods are rather lacking, and have only recently begin to catch up [6, 154].

CV and NLP representation learning ideas were directly adopted in reinforcement

learning and control [119], but do not always find similar successes [97].

In this thesis, we propose to understand and develop representation learning algo-

25

rithms by looking at the induced geometric properties on the learned representations.

In particular, we focus on two properties: (1) the invariances captured by the many-

to-one representation mappings and (2) the structures captured by the distance in the

representation space.

From such perspectives, we are able to

1. Analyze one of the most popular representation learning methods for vision and

language, contrastive learning, via alignment (i.e., invariance) and uniformity

on the hyperspherical representation space;

2. Propose a novel representation learning technique for RL and general quasimetric

structures, where the quasimetric distances are preserved in embedding space;

3. Highlight and a common issue in RL representation learning with respect to

irrelevant noises in the environment, and propose a method to address this

shortcoming and learn representations invariant to such noises.

Each of these three parts is presented in a chapter.

26

Chapter 2

Understanding Contrastive

Representation Learning through

Alignment and Uniformity on the

Hypersphere

Contrastive representation learning has been outstandingly successful in practice. In

this chapter, we identify two key properties related to the contrastive loss: (1) alignment

(closeness) of features from positive pairs, and (2) uniformity of the induced distribution

of the (normalized) features on the hypersphere. We prove that, asymptotically, the

contrastive loss optimizes these properties, and analyze their positive effects on

downstream tasks. Empirically, we introduce an optimizable metric to quantify each

property. Extensive experiments on standard vision and language datasets confirm the

strong agreement between both metrics and downstream task performance. Directly

optimizing for these two metrics leads to representations with comparable or better

performance at downstream tasks than contrastive learning.

27

Alignment: Similar samples have similar features
Alignment: Similar samples have similar

features.
(Figure inspired by Tian et al. [153].)

Feature Density

Uniformity: Preserve maximal informationUniformity: Preserve maximal information.

Figure 2-1: Illustration of alignment and uniformity of feature distributions on the output
unit hypersphere. STL-10 [31] images are used for demonstration.

2.1 Introduction

A vast number of recent empirical works learn representations with a unit ℓ2 norm

constraint, effectively restricting the output space to the unit hypersphere [123,

137, 104, 67, 165, 15, 114, 78, 34, 173], including many unsupervised contrastive

representation learning methods [171, 7, 153, 70, 25].

Intuitively, having the features live on the unit hypersphere leads to several desirable

traits. Fixed-norm vectors are known to improve training stability in modern machine

learning where dot products are ubiquitous [173, 165]. Moreover, if features of a class

are sufficiently well clustered, they are linearly separable with the rest of feature space

(see Figure 2-2), a common criterion used to evaluate representation quality.

While the unit hypersphere is a popular choice of feature space, not all encoders

that map onto it are created equal. Recent works argue that representations should

additionally be invariant to unnecessary details, and preserve as much information as

possible [119, 153, 76, 7]. Let us call these two properties alignment and uniformity

(see Figure 2-1). Alignment favors encoders that assign similar features to similar

samples. Uniformity prefers a feature distribution that preserves maximal information,

i.e., the uniform distribution on the unit hypersphere.

In this work, we analyze the alignment and uniformity properties. We show

28

Hypersphere: Clustered sets are linearly separable

 Linear
 classifier

Figure 2-2: Hypersphere: When classes are well-clustered (forming spherical caps), they
are linearly separable. The same does not hold for Euclidean spaces.

that a currently popular form of contrastive representation learning in fact directly

optimizes for these two properties in the limit of infinite negative samples. We propose

theoretically-motivated metrics for alignment and uniformity, and observe strong

agreement between them and downstream task performance. Remarkably, directly

optimizing for these two metrics leads to comparable or better performance than

contrastive learning.

Our main contributions are:

• We propose quantifiable metrics for alignment and uniformity as two measures

of representation quality, with theoretical motivations.

• We prove that the contrastive loss optimizes for alignment and uniformity

asymptotically.

• Empirically, we find strong agreement between both metrics and downstream

task performance.

• Despite being simple in form, our proposed metrics, when directly optimized

with no other loss, empirically lead to comparable or better performance at

downstream tasks than contrastive learning.

29

2.2 Related Work

Unsupervised Contrastive Representation Learning has seen remarkable suc-

cess in learning representations for image and sequential data [106, 171, 119, 72, 153,

76, 7, 153, 70, 25]. The common motivation behind these work is the InfoMax principle

[103], which we here instantiate as maximizing the mutual information (MI) between

two views [153, 7, 170]. However, this interpretation is known to be inconsistent with

the actual behavior in practice, e.g., optimizing a tighter bound on MI can lead to

worse representations [158]. What the contrastive loss exactly does remains largely a

mystery. Analysis based on the assumption of latent classes provides nice theoretical

insights [134], but unfortunately has a rather large gap with empirical practices: the

result that representation quality suffers with a large number of negatives is incon-

sistent with empirical observations [171, 153, 70, 25]. In this paper, we analyze and

characterize the behavior of contrastive learning from the perspective of alignment and

uniformity properties, and empirically verify our claims with standard representation

learning tasks.

Representation learning on the unit hypersphere. Outside contrastive learn-

ing, many other representation learning approaches also normalize their features to

be on the unit hypersphere. In variational autoencoders, the hyperspherical latent

space has been shown to perform better than the Euclidean space [173, 34]. Directly

matching uniformly sampled points on the unit hypersphere is known to provide good

representations [15], agreeing with our intuition that uniformity is a desirable property.

Mettes et al. [114] optimizes prototype representations on the unit hypersphere for

classification. Hyperspherical face embeddings greatly outperform the unnormalized

counterparts [123, 104, 165, 137]. Its empirical success suggests that the unit hyper-

sphere is indeed a nice feature space. In this work, we formally investigate the interplay

between the hypersphere geometry and the popular contrastive representation learning.

Distributing points on the unit hypersphere. The problem of uniformly dis-

tributing points on the unit hypersphere is a well-studied one. It is often defined as

30

minimizing the total pairwise potential w.r.t. a certain kernel function [17, 96], e.g., the

Thomson problem of finding the minimal electrostatic potential energy configuration of

electrons [150], and minimization of the Riesz 𝑠-potential [52, 66, 105]. The uniformity

metric we propose is based on the Gaussian potential, which can be used to represent

a very general class of kernels and is closely related to the universally optimal point

configurations [17, 32]. Additionally, the best-packing problem on hyperspheres (often

called the Tammes problem) is also well studied [148].

2.3 Preliminaries on Unsupervised Contrastive Rep-

resentation Learning

The popular unsupervised contrastive representation learning method (often referred

to as contrastive learning in this paper) learns representations from unlabeled data. It

assumes a way to sample positive pairs, representing similar samples that should have

similar representations. Empirically, the positive pairs are often obtained by taking

two independently randomly augmented versions of the same sample, e.g. two crops

of the same image [171, 76, 7, 70, 25].

Let 𝑝data(·) be the data distribution over R𝑛 and 𝑝pos(·, ·) the distribution of positive

pairs over R𝑛 × R𝑛. Based on empirical practices, we assume the following property.

Assumption 2.3.1. Distributions 𝑝data and 𝑝pos should satisfy

• Symmetry: ∀𝑥, 𝑦, 𝑝pos(𝑥, 𝑦) = 𝑝pos(𝑦, 𝑥).

• Matching marginal: ∀𝑥,
∫︀
𝑝pos(𝑥, 𝑦) d𝑦 = 𝑝data(𝑥).

We consider the following specific and widely popular form of contrastive loss for

training an encoder 𝑓 : R𝑛 → 𝒮𝑚−1, mapping data to ℓ2 normalized feature vectors

of dimension 𝑚. This loss has been shown effective by many recent representation

31

learning methods [106, 171, 153, 70, 76, 7, 25].

ℒcontrastive(𝑓 ; 𝜏,𝑀) ,

E
(𝑥,𝑦)∼𝑝pos

{𝑥−𝑖 }𝑀𝑖=1
i.i.d.∼ 𝑝data

[︃
− log

𝑒𝑓(𝑥)
T𝑓(𝑦)/𝜏

𝑒𝑓(𝑥)T𝑓(𝑦)/𝜏 +
∑︀

𝑖 𝑒
𝑓(𝑥−𝑖)T𝑓(𝑦)/𝜏

]︃
,

(2.1)

where 𝜏 > 0 is a scalar temperature hyperparameter, and 𝑀 ∈ Z+ is a fixed number

of negative samples.

The term contrastive loss has also been generally used to refer to various objectives

based on positive and negative samples, e.g., in Siamese networks [30, 62]. In this

work, we focus on the specific form in Equation (2.1) that is widely used in modern

unsupervised contrastive representation learning literature.

Necessity of normalization. Without the norm constraint, the softmax distribu-

tion can be made arbitrarily sharp by simply scaling all the features. Wang et al.

[165] provided an analysis on this effect and argued for the necessity of normalization

when using feature vector dot products in a cross entropy loss, as is in Eqn. (2.1).

Experimentally, Chen et al. [25] also showed that normalizing outputs leads to superior

representations.

The InfoMax principle. Many empirical works are motivated by the InfoMax

principle of maximizing 𝐼(𝑓(𝑥); 𝑓(𝑦)) for (𝑥, 𝑦) ∼ 𝑝pos [153, 7, 170]. Usually they

interpret ℒcontrastive in Eqn. (2.1) as a lower bound of 𝐼(𝑓(𝑥); 𝑓(𝑦)) [119, 76, 7, 153].

However, this interpretation is known to have issues in practice, e.g., maximizing a

tighter bound often leads to worse downstream task performance [158]. Therefore,

instead of viewing it as a bound, we investigate the exact behavior of directly optimizing

ℒcontrastive in the following sections.

32

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
2 Distances

0

1000

2000

3000

4000

5000
Co

un
ts

Alignment
Positive Pair Feature Distances

Mean

1 0 1
Features

1.0

0.5

0.0

0.5

1.0

Uniformity
Feature Distribution

2 0 2
Angles

0

1000

Co
un

ts

1 0 1
Features

1.0

0.5

0.0

0.5

1.0

Class 0

2 0 2
Angles

0

100
1 0 1

Features

1.0

0.5

0.0

0.5

1.0

Class 3

2 0 2
Angles

0

100
1 0 1

Features

1.0

0.5

0.0

0.5

1.0

Class 6

2 0 2
Angles

0

100
1 0 1

Features

1.0

0.5

0.0

0.5

1.0

Class 9

2 0 2
Angles

0

100

(a) Random Initialization. Linear classification validation accuracy: 12.71%.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
2 Distances

0

1000

2000

3000

4000

5000

Co
un

ts

Alignment
Positive Pair Feature Distances

Mean

1 0 1
Features

1.0

0.5

0.0

0.5

1.0

Uniformity
Feature Distribution

2 0 2
Angles

0

1000

Co
un

ts

1 0 1
Features

1.0

0.5

0.0

0.5

1.0

Class 0

2 0 2
Angles

0

100
1 0 1

Features

1.0

0.5

0.0

0.5

1.0

Class 3

2 0 2
Angles

0

100
1 0 1

Features

1.0

0.5

0.0

0.5

1.0

Class 6

2 0 2
Angles

0

100
1 0 1

Features

1.0

0.5

0.0

0.5

1.0

Class 9

2 0 2
Angles

0

100

(b) Supervised Predictive Learning. Linear classification validation accuracy: 57.19%.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
2 Distances

0

1000

2000

3000

4000

5000

Co
un

ts

Alignment
Positive Pair Feature Distances

Mean

1 0 1
Features

1.0

0.5

0.0

0.5

1.0

Uniformity
Feature Distribution

2 0 2
Angles

0

1000

Co
un

ts

1 0 1
Features

1.0

0.5

0.0

0.5

1.0

Class 0

2 0 2
Angles

0

100
1 0 1

Features

1.0

0.5

0.0

0.5

1.0

Class 3

2 0 2
Angles

0

100
1 0 1

Features

1.0

0.5

0.0

0.5

1.0

Class 6

2 0 2
Angles

0

100
1 0 1

Features

1.0

0.5

0.0

0.5

1.0

Class 9

2 0 2
Angles

0

100

(c) Unsupervised Contrastive Learning. Linear classification validation accuracy: 28.60%.

Figure 2-3: Representations of CIFAR-10 validation set on 𝒮1. Alignment analysis: We
show distribution of distance between features of positive pairs (two random augmentations).
Uniformity analysis: We plot feature distributions with Gaussian kernel density estimation
(KDE) in R2 and von Mises-Fisher (vMF) KDE on angles (i.e., arctan2(𝑦, 𝑥) for each point
(𝑥, 𝑦) ∈ 𝒮1). Four rightmost plots visualize feature distributions of selected specific classes.
Representation from contrastive learning is both aligned (having low positive pair feature
distances) and uniform (evenly distributed on 𝒮1).

2.4 Feature Distribution on the Hypersphere

The contrastive loss encourages learned feature representation for positive pairs

to be similar, while pushing features from the randomly sampled negative pairs

apart. Conventional wisdom says that representations should extract the most shared

information between positive pairs and remain invariant to other noise factors [103,

153, 170, 7]. Therefore, the loss should prefer two following properties:

• Alignment : two samples forming a positive pair should be mapped to nearby

features, and thus be (mostly) invariant to unneeded noise factors.

33

• Uniformity : feature vectors should be roughly uniformly distributed on the unit

hypersphere 𝒮𝑚−1, preserving as much information of the data as possible.

To empirically verify this, we visualize CIFAR-10 [156, 94] representations on 𝒮1

(𝑚 = 2) obtained via three different methods:

• Random initialization.

• Supervised predictive learning: An encoder and a linear classifier are jointly

trained from scratch with cross entropy loss on supervised labels.

• Unsupervised contrastive learning: An encoder is trained w.r.t. ℒcontrastive with

𝜏 = 0.5 and 𝑀 = 256.

All three encoders share the same AlexNet based architecture [95], modified to map

input images to 2-dimensional vectors in 𝒮1. Both predictive and contrastive learning

use standard data augmentations to augment the dataset and sample positive pairs.

Figure 2-3 summarizes the resulting distributions of validation set features. Indeed,

features from unsupervised contrastive learning (bottom in Figure 2-3) exhibit the

most uniform distribution, and are closely clustered for positive pairs.

The form of the contrastive loss in Eqn. (2.1) also suggests this. We present

informal arguments below, followed by more formal treatment in Section 2.4.2. From

the symmetry of 𝑝, we can derive

ℒcontrastive(𝑓 ; 𝜏,𝑀) = E
(𝑥,𝑦)∼𝑝pos

[︀
−𝑓(𝑥)T𝑓(𝑦)/𝜏

]︀
+ E

(𝑥,𝑦)∼𝑝pos
{𝑥−𝑖 }𝑀𝑖=1

i.i.d.∼ 𝑝data

[︃
log

(︃
𝑒𝑓(𝑥)

T𝑓(𝑦)/𝜏 +
∑︁
𝑖

𝑒𝑓(𝑥
−
𝑖)T𝑓(𝑥)/𝜏

)︃]︃
.

Because the
∑︀

𝑖 𝑒
𝑓(𝑥−𝑖)T𝑓(𝑥)/𝜏 term is always positive and bounded below, the loss favors

smaller E
[︀
−𝑓(𝑥)T𝑓(𝑦)/𝜏

]︀
, i.e., having more aligned positive pair features. Suppose

the encoder is perfectly aligned, i.e., P [𝑓(𝑥) = 𝑓(𝑦)] = 1, then minimizing the loss is

34

1 0 1
Features

1.0

0.5

0.0

0.5

1.0

Random Initialization

2 0 2
Angles

0

1000

Co
un

ts

Average G2

0.8474

1 0 1
Features

1.0

0.5

0.0

0.5

1.0

0.4 vMF([1, 0], = 103)+ 0.6 vMF([0, 1], = 1)
Samples

2 0 2
Angles

0

1000

Co
un

ts

Average G2

0.3439

1 0 1
Features

1.0

0.5

0.0

0.5

1.0

Supervised Predictive Learning

2 0 2
Angles

0

1000

Co
un

ts

Average G2

0.2380 1 0 1
Features

1.0

0.5

0.0

0.5

1.0

Unsupervised Contrastive Learning

2 0 2
Angles

0

1000

Co
un

ts

Average G2

0.2088 1 0 1
Features

1.0

0.5

0.0

0.5

1.0

Uniform Distribution Samples

2 0 2
Angles

0

1000

Co
un

ts

Average G2

0.2070

Figure 2-4: Average pairwise 𝐺2 potential as a measure of uniformity. Each plot shows 10000
points distributed on 𝒮1, obtained via either applying an encoder on CIFAR-10 validation
set (same as those in Figure 2-3) or sampling from a distribution on 𝒮1, as described in plot
titles. We show the points with Gaussian KDE and the angles with vMF KDE.

equivalent to optimizing

E
𝑥∼𝑝data

{𝑥−𝑖 }𝑀𝑖=1
i.i.d.∼ 𝑝data

[︃
log

(︃
𝑒1/𝜏 +

∑︁
𝑖

𝑒𝑓(𝑥
−
𝑖)T𝑓(𝑥)/𝜏

)︃]︃
,

which is akin to maximizing pairwise distances with a LogSumExp transformation.

Intuitively, pushing all features away from each other should indeed cause them to be

roughly uniformly distributed.

2.4.1 Quantifying Alignment and Uniformity

For further analysis, we need a way to measure alignment and uniformity. We propose

the following two metrics (losses).

Alignment

The alignment loss is straightforwardly defined with the expected distance between

positive pairs:

ℒalign(𝑓 ;𝛼) , E
(𝑥,𝑦)∼𝑝pos

[‖𝑓(𝑥) − 𝑓(𝑦)‖𝛼2] , 𝛼 > 0.

Uniformity

We want the uniformity metric to be both asymptotically correct (i.e., the distribution

optimizing this metric should converge to uniform distribution) and empirically

35

reasonable with finite number of points. To this end, we consider the Gaussian potential

kernel (also known as the Radial Basis Function (RBF) kernel) 𝐺𝑡 : 𝒮𝑑 × 𝒮𝑑 → R+

[32, 17]:

𝐺𝑡(𝑢, 𝑣) , 𝑒−𝑡‖𝑢−𝑣‖
2
2 = 𝑒2𝑡·𝑢

T𝑣−2𝑡, 𝑡 > 0,

and define the uniformity loss as the logarithm of the average pairwise Gaussian

potential:

ℒuniform(𝑓 ; 𝑡) , log E
𝑥,𝑦

i.i.d.∼ 𝑝data

[𝐺𝑡(𝑢, 𝑣)]

= log E
𝑥,𝑦

i.i.d.∼ 𝑝data

[︁
𝑒−𝑡‖𝑓(𝑥)−𝑓(𝑦)‖

2
2

]︁
, 𝑡 > 0.

The average pairwise Gaussian potential is nicely tied with the uniform distribution

on the unit hypersphere.

Definition 2.4.1 (Uniform distribution on 𝒮𝑑). 𝜎𝑑 denotes the normalized surface

area measure on 𝒮𝑑.

First, we show that the uniform distribution is the unique distribution that minimize

the expected pairwise potential.

Proposition 2.4.2. For ℳ(𝒮𝑑) the set of Borel probability measures on 𝒮𝑑, 𝜎𝑑 is

the unique solution of

min
𝜇∈ℳ(𝒮𝑑)

∫︁
𝑢

∫︁
𝑣

𝐺𝑡(𝑢, 𝑣) d𝜇 d𝜇.

Proof. See Appendix A.1.1.

In addition, as number of points goes to infinity, distributions of points minimizing

the average pairwise potential converge weak* to the uniform distribution. Recall the

definition of the weak* convergence of measures.

Definition 2.4.3 (Weak* convergence of measures). A sequence of Borel measures

{𝜇𝑛}∞𝑛=1 in R𝑝 converges weak* to a Borel measure 𝜇 if for all continuous function

𝑓 : R𝑝 → R, we have

lim
𝑛→∞

∫︁
𝑓(𝑥) d𝜇𝑛(𝑥) =

∫︁
𝑓(𝑥) d𝜇(𝑥).

36

Proposition 2.4.4. For each 𝑁 > 0, the 𝑁 point minimizer of the average pairwise

potential is

u*
𝑁 = arg min

𝑢1,𝑢2,...,𝑢𝑁∈𝒮𝑑

∑︁
1≤𝑖<𝑗≤𝑁

𝐺𝑡(𝑢𝑖, 𝑢𝑗).

The normalized counting measures associated with the {u*
𝑁}∞𝑁=1 sequence converge

weak* to 𝜎𝑑.

Proof. See Appendix A.1.1.

Designing an objective minimized by the uniform distribution is in fact nontrivial.

For instance, average pairwise dot products or Euclidean distances is simply optimized

by any distribution that has zero mean. Among kernels that achieve uniformity at

optima, the Gaussian kernel is special in that it is closely related to the universally

optimal point configurations and can also be used to represent a general class of

other kernels, including the Riesz 𝑠-potentials. We refer readers to Borodachov et al.

[17] and Cohn and Kumar [32] for in-depth discussions on these topics. Moreover, as

we show below, ℒuniform, defined with the Gaussian kernel, has close connections with

ℒcontrastive.

Empirically, we evaluate the average pairwise potential of various finite point

collections on 𝒮1 in Figure 2-4. The values nicely align with our intuitive understanding

of uniformity.

We further discuss properties of ℒuniform and characterize its optimal value and

range in Appendix A.1.1.

2.4.2 Limiting Behavior of Contrastive Learning

In this section, we formalize the intuition that contrastive learning optimizes alignment

and uniformity, and characterize its asymptotic behavior. We consider optimization

problems over all measurable encoder functions from the 𝑝data measure in R𝑛 to the

Borel space 𝒮𝑚−1.

We first define the notion of optimal encoders for each of these two metrics.

37

Definition 2.4.5 (Perfect Alignment). We say an encoder 𝑓 is perfectly aligned if

𝑓(𝑥) = 𝑓(𝑦) a.s. over (𝑥, 𝑦) ∼ 𝑝pos.

Definition 2.4.6 (Perfect Uniformity). We say an encoder 𝑓 is perfectly uniform if

the distribution of 𝑓(𝑥) for 𝑥 ∼ 𝑝data is the uniform distribution 𝜎𝑚−1 on 𝒮𝑚−1.

Realizability of perfect uniformity. We note that it is not always possible to

achieve perfect uniformity, e.g., when the data manifold in R𝑛 is lower dimensional

than the feature space 𝒮𝑚−1. Moreover, in the case that 𝑝data and 𝑝pos are formed from

sampling augmented samples from a finite dataset, there cannot be an encoder that is

both perfectly aligned and perfectly uniform, because perfect alignment implies that

all augmentations from a single element have the same feature vector. Nonetheless,

perfectly uniform encoder functions do exist under the conditions that 𝑛 ≥ 𝑚− 1 and

𝑝data has bounded density.

We analyze the asymptotics with infinite negative samples. Existing empirical

work has established that larger number of negative samples consistently leads to

better downstream task performances [171, 153, 70, 25], and often uses very large

values (e.g., 𝑀 = 65536 in He et al. [70]). The following theorem nicely confirms that

optimizing w.r.t. the limiting loss indeed requires both alignment and uniformity.

Theorem 2.4.7 (Asymptotics of ℒcontrastive). For fixed 𝜏 > 0, as the number of

negative samples 𝑀 → ∞, the (normalized) contrastive loss converges to

lim
𝑀→∞

ℒcontrastive(𝑓 ; 𝜏,𝑀) − log𝑀 =

− 1

𝜏
E

(𝑥,𝑦)∼𝑝pos

[︀
𝑓(𝑥)T𝑓(𝑦)

]︀
+ E

𝑥∼𝑝data

[︂
log E

𝑥−∼𝑝data

[︁
𝑒𝑓(𝑥

−)T𝑓(𝑥)/𝜏
]︁]︂
.

(2.2)

We have the following results:

1. The first term is minimized iff 𝑓 is perfectly aligned.

2. If perfectly uniform encoders exist, they form the exact minimizers of the second

term.

38

3. For the convergence in Equation (2.2), the absolute deviation from the limit

decays in 𝒪(𝑀−1/2).

Proof. See Appendix A.1.2.

Relation with ℒuniform. The proof of Theorem 2.4.7 in the Appendix A.1.2

connects the asymptotic ℒcontrastive form with minimizing average pairwise Gaussian

potential, i.e., minimizing ℒuniform. Compared with the second term of Equation (2.2),

ℒuniform essentially pushes the log outside the outer expectation, without changing the

minimizer (perfectly uniform encoders). However, due to its pairwise nature, ℒuniform

is much simpler in form and avoids the computationally expensive softmax operation

in ℒcontrastive [51, 10, 59, 54, 24].

Relation with feature distribution entropy estimation. When 𝑝data is uniform

over finite samples {𝑥1, 𝑥2, . . . , 𝑥𝑁} (e.g., a collected dataset), the second term in

Equation (2.2) can be alternatively viewed as a resubstitution entropy estimator of

𝑓(𝑥) [2], where 𝑥 follows the underlying distribution 𝑝nature that generates {𝑥𝑖}𝑁𝑖=1, via

a von Mises-Fisher (vMF) kernel density estimation (KDE):

E
𝑥∼𝑝data

[︂
log E

𝑥−∼𝑝data

[︁
𝑒𝑓(𝑥

−)T𝑓(𝑥)/𝜏
]︁]︂

=
1

𝑁

𝑁∑︁
𝑖=1

log

(︃
1

𝑁

𝑁∑︁
𝑗=1

𝑒𝑓(𝑥𝑖)
T𝑓(𝑥𝑗)/𝜏

)︃

=
1

𝑁

𝑁∑︁
𝑖=1

log 𝑝vMF-KDE(𝑓(𝑥𝑖)) + log𝑍vMF

, −𝐻̂(𝑓(𝑥)) + log𝑍vMF, 𝑥 ∼ 𝑝nature

, −𝐼(𝑥; 𝑓(𝑥)) + log𝑍vMF, 𝑥 ∼ 𝑝nature,

where

• 𝑝vMF-KDE is the KDE based on samples {𝑓(𝑥𝑗)}𝑁𝑗=1 using a vMF kernel with

𝜅 = 𝜏−1,

• 𝑍vMF is the normalization constant for vMF distribution with 𝜅 = 𝜏−1,

• 𝐻̂ denotes the resubstitution entropy estimator,

39

−4 −3 −2 −1 0
uniform(t= 2)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00


al

ig
n(
α

=
2)

Linear Classification on Outputs
contrastive only
align, uniform only
All three mixed

50

55

60

65

70

75

80

85

Va
l A

cc
ur

ac
y

−4 −3 −2 −1 0
uniform(t= 2)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00


al

ig
n(
α

=
2)

5-NN Classification on fc7
contrastive only
align, uniform only
All three mixed

50

55

60

65

70

75

80

85

Va
l A

cc
ur

ac
y

(a) 304 STL-10 encoders are evaluated with linear classification on
output features and 5-nearest neighbor (5-NN) on fc7 activations.
Higher accuracy (blue color) is better.

4 3 2 1 0
uniform(t = 2)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

al
ig

n(
=

2)

Depth Prediction on conv5

contrastive only
align, uniform only

All three mixed

0.70

0.72

0.74

0.76

0.78

0.80

Va
l M

SE

(b) 64 NYU-Depth-V2 encoders
are evaluated with CNN depth
regressors on conv5 activations.
Lower MSE (blue color) is better.

Figure 2-5: Metrics and performance of STL-10 and NYU-Depth-V2 experiments. Each
point represents a trained encoder, with its 𝑥- and 𝑦-coordinates showing ℒalign and ℒuniform

metrics and color showing the performance on validation set. Blue is better for both tasks.
Encoders with low ℒalign and ℒuniform are consistently the better performing ones (lower left
corners).

• 𝐼 denotes the mutual information estimator based on 𝐻̂, since 𝑓 is a deterministic

function.

Relation with the InfoMax principle. Many empirical works are motivated by

the InfoMax principle, i.e., maximizing 𝐼(𝑓(𝑥); 𝑓(𝑦)) for (𝑥, 𝑦) ∼ 𝑝pos. However, the

interpretation of ℒcontrastive as a lower bound of 𝐼(𝑓(𝑥); 𝑓(𝑦)) is known to be inconsistent

with its actual behavior in practice [158]. Our results instead analyze the properties of

ℒcontrastive itself. Considering the identity 𝐼(𝑓(𝑥); 𝑓(𝑦)) = 𝐻(𝑓(𝑥))−𝐻(𝑓(𝑥) | 𝑓(𝑦)), we

can see that while uniformity indeed favors large 𝐻(𝑓(𝑥)), alignment is stronger than

merely desiring small 𝐻(𝑓(𝑥) | 𝑓(𝑦)). In particular, both Theorem 2.4.7 and the above

connection with maximizing an entropy estimator provide alternative interpretations

and motivations that ℒcontrastive optimizes for aligned and information-preserving

encoders.

Finally, even for the case where only a single negative sample is used (i.e., 𝑀 = 1),

we can still prove a weaker result, which we describe in details in the Appendix A.1.2.

40

bsz : batch size (number of positive pairs)
d : latent dim
x : Tensor, shape=[bsz, d]
latents for one side of positive pairs
y : Tensor, shape=[bsz, d]
latents for the other side of positive pairs
lam : hyperparameter balancing the two losses

def lalign(x, y, alpha=2):
return (x - y).norm(dim=1).pow(alpha).mean()

def lunif(x, t=2):
sq_pdist = torch.pdist(x, p=2).pow(2)
return sq_pdist.mul(-t).exp().mean().log()

loss = lalign(x, y) + lam * (lunif(x) + lunif(y)) / 2

Figure 2-6: PyTorch implementation of ℒalign and ℒuniform.

2.5 Experiments

In this section, we empirically verify the hypothesis that alignment and uniformity

are desired properties for representations. Recall that our two metrics are

ℒalign(𝑓 ;𝛼) , E(𝑥,𝑦)∼𝑝pos [‖𝑓(𝑥) − 𝑓(𝑦)‖𝛼2]

ℒuniform(𝑓 ; 𝑡) , log E
𝑥,𝑦

i.i.d.∼ 𝑝data

[︁
𝑒−𝑡‖𝑓(𝑥)−𝑓(𝑦)‖

2
2

]︁
.

We conduct extensive experiments with convolutional neural network (CNN) and

recurrent neural network (RNN) based encoders on four popular representation learning

benchmarks with distinct types of downstream tasks:

• STL-10 [31] classification on AlexNet-based encoder outputs or intermediate

activations with a linear or 𝑘-nearest neighbor (𝑘-NN) classifier.

• NYU-Depth-V2 [118] depth prediction on CNN encoder intermediate activa-

tions after convolution layers.

• ImageNet and ImageNet-100 (random 100-class subset of ImageNet) clas-

sification on CNN encoder penultimate layer activations with a linear classifier.

• BookCorpus [177] RNN sentence encoder outputs used for Moview Review

Sentence Polarity (MR) [122] and Customer Product Review Sentiment (CR)

41

Loss Formula
Validation Set Accuracy ↑

Output + Linear Output + 5-NN fc7 + Linear fc7 + 5-NN

Best ℒcontrastive only ℒcontrastive(𝜏=0.19) 80.46% 78.75% 83.89% 76.33%

Best ℒalign and ℒuniform only 0.98 · ℒalign(𝛼=2) + 0.96 · ℒuniform(𝑡=2) 81.15% 78.89% 84.43% 76.78%

Best among all encoders ℒcontrastive(𝜏=0.5) + ℒuniform(𝑡=2) 81.06% 79.05% 84.14% 76.48%

Table 2.1: STL-10 encoder evaluations. Numbers show linear and 5-nearest neighbor (5-NN)
classification accuracies on the validation set. The best result is picked by encoder outputs
linear classifier accuracy from a 5-fold training set cross validation, among all 150 encoders
trained from scratch with 128-dimensional output and 768 batch size.

Loss Formula
Validation Set MSE ↓

conv5 conv4

Best ℒcontrastive only 0.5 · ℒcontrastive(𝜏=0.1) 0.7024 0.7575

Best ℒalign and ℒuniform only 0.75 · ℒalign(𝛼=2) + 0.5 · ℒuniform(𝑡=2) 0.7014 0.7592

Best among all encoders 0.75 · ℒalign(𝛼=2) + 0.5 · ℒuniform(𝑡=2) 0.7014 0.7592

Table 2.2: NYU-Depth-V2 encoder evaluations. Numbers show depth prediction mean
squared error (MSE) on the validation set. The best result is picked based on conv5 layer
MSE from a 5-fold training set cross validation, among all 64 encoders trained from scratch
with 128-dimensional output and 128 batch size.

[167] binary classification tasks with logisitc classifiers.

For image datasets, we follow the standard practice and choose positive pairs as

two independent augmentations of the same image. For BookCorpus, positive pairs

are chosen as neighboring sentences, following Quick-Thought Vectors [106].

We perform majority of our analysis on STL-10 and NYU-Depth-V2 encoders,

where we calculate ℒcontrastive with negatives being other samples within the minibatch

following the standard practice [76, 7, 153, 25], and ℒuniform as the logarithm of average

pairwise feature potentials also within the minibatch. Due to their simple forms, these

two losses can be implemented in PyTorch [124] with less than 10 lines of code, as

shown in Figure 2-6.

To investigate alignment and uniformity properties on recent contrastive learning

methods and larger datasets, we also analyze ImageNet and ImageNet-100 encoders

trained with Momentum Contrast (MoCo) [70, 26], and BookCorpus encoders

trained with Quick-Thought Vectors [106], with these methods modified to also allow

ℒalign and ℒuniform.

We optimize a total of 304 STL-10 encoders, 64 NYU-Depth-V2 encoders,

45 ImageNet-100 encoders, and 108 BookCorpus encoders without supervision.

42

0.0
align only

0.2 0.4 0.6 0.8 1.0
uniform only

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Optimize (1) align + uniform

uniform(t = 2) (exp)
align(= 2)

Val accuracy

Figure 2-7: Effect of optimizing different weighted combinations of ℒalign(𝛼=2) and
ℒuniform(𝑡=2) for STL-10. For each encoder, we show the ℒalign and ℒuniform metrics, and
validation accuracy of a linear classifier trained on encoder outputs. ℒuniform is exponentiated
for plotting purposes.

The encoders are optimized w.r.t. weighted combinations of ℒcontrastive, ℒalign, and/or

ℒuniform, with varying

• (possibly zero) weights on the three losses,

• temperature 𝜏 for ℒcontrastive,

• 𝛼 ∈ {1, 2} for ℒalign,

• 𝑡 ∈ {1, 2, . . . , 8} for ℒuniform,

• batch size (affecting the number of (negative) pairs for ℒcontrastive and ℒuniform),

• embedding dimension,

• number of training epochs and learning rate,

• initialization (from scratch vs. a pretrained encoder).

See Appendix A.2 for more experiment details and the exact configurations used.

ℒalign and ℒuniform strongly agree with downstream task performance. For

each encoder, we measure the downstream task performance, and the ℒalign, ℒuniform

metrics on the validation set. Figure 2-5 visualizes the trends between both metrics

and representation quality. We observe that the two metrics strongly agrees the

43

0 2 4 6 8 10 12
Finetune Epochs

0.0

0.2

0.4

0.6

0.8

1.0
Finetune with 0.0025 align

uniform(t = 2) (exp)
align(= 2)

Val accuracy

0 2 4 6 8 10 12
Finetune Epochs

0.0

0.2

0.4

0.6

0.8

1.0
Finetune with 0.0005 uniform

uniform(t = 2) (exp)
align(= 2)

Val accuracy

0 2 4 6 8 10 12
Finetune Epochs

0.0

0.2

0.4

0.6

0.8

1.0
Finetune with 0.025 align + 0.025 uniform

uniform(t = 2) (exp)
align(= 2)

Val accuracy

Figure 2-8: Finetuning trajectories from a STL-10 encoder trained with ℒcontrastive using
a suboptimal temperature 𝜏 = 2.5. Finetuning objectives are weighted combinations of
ℒalign(𝛼=2) and ℒuniform(𝑡=2). For each intermediate checkpoint, we measure ℒalign and
ℒuniform metrics, as well as validation accuracy of a linear classifier trained from scratch on
the encoder outputs. ℒuniform is exponentiated for plotting purpose. Left and middle: Per-
formance degrades if only one of alignment and uniformity is optimized. Right: Performance
improves when both are optimized.

representation quality overall. In particular, the best performing encoders are exactly

the ones with low ℒalign and ℒuniform, i.e., the lower left corners in Figure 2-5.

Directly optimizing only ℒalign and ℒuniform can lead to better representa-

tions. As shown in Tables 2.1 and 2.2, encoders trained with only ℒalign and ℒuniform

consistently outperform their ℒcontrastive-trained counterparts, for both tasks. Theo-

retically, Theorem 2.4.7 showed that ℒcontrastive optimizes alignment and uniformity

asymptotically with infinite negative samples. This empirical performance gap suggests

that directly optimizing these properties can be superior in practice, when we can

only have finite negatives.

Both alignment and uniformity are necessary for a good representation.

Figure 2-7 shows how the final encoder changes in response to optimizing differently

weighted combinations of ℒalign and ℒuniform on STL-10. The trade-off between the

ℒalign and ℒuniform indicates that perfect alignment and perfect uniformity are likely

hard to simultaneously achieve in practice. However, the inverted-U-shaped accuracy

curve confirms that both properties are indeed necessary for a good encoder. When

ℒalign is weighted much higher than ℒuniform, degenerate solution occurs and all inputs

are mapped to the same feature vector (expℒuniform = 1). However, as long as the ratio

between two weights is not too large (e.g., < 4), we observe that the representation

44

4 3 2 1 0
uniform(t = 2)

0

0.1

0.2

0.3

0.4

0.5

0.6
al

ig
n(

=
2)

Linear Classification on Penultimate Layer
contrastive only
align, uniform only

All three mixed

68.0

68.5

69.0

69.5

70.0

70.5

71.0

71.5

72.0

Va
l A

cc
ur

ac
y

(a) 45 ImageNet-100 encoders
are trained with MoCo-based
methods, and evaluated with lin-
ear classification.

4 3 2 1 0
uniform(t = 2)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

al
ig

n(
=

2)

Moview Review Classification on Outputs

contrastive only
align, uniform only

All three mixed 66

68

70

72

74

Va
l A

cc
ur

ac
y

4 3 2 1 0
uniform(t = 2)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

al
ig

n(
=

2)

Customer Review Classification on Outputs

contrastive only
align, uniform only

All three mixed
72

73

74

75

76

77

78

79

80

Va
l A

cc
ur

ac
y

(b) 108 BookCorpus encoders are trained with Quick-Thought-
Vectors-based methods, and evaluated with logistic binary classifi-
cation on Movie Review Sentence Polarity and Customer Product
Review Sentiment tasks.

Figure 2-9: Metrics and performance of ImageNet-100 and BookCorpus experiments.
Each point represents a trained encoder, with its 𝑥- and 𝑦-coordinates showing ℒalign and
ℒuniform metrics and color showing the validation accuracy. Blue is better. Encoders with
low ℒalign and ℒuniform consistently perform well (lower left corners), even though the training
methods (based on MoCo and Quick-Thought Vectors) are different from directly optimizing
the contrastive loss in Equation (2.1).

quality remains relatively good and insensitive to the exact weight choices.

ℒalign and ℒuniform causally affect downstream task performance. We take an

encoder trained with ℒcontrastive using a suboptimal temperature 𝜏 = 2.5, and finetune

it according to ℒalign and/or ℒuniform. Figure 2-8 visualizes the finetuning trajectories.

When only one of alignment and uniformity is optimized, the corresponding metric

improves, but both the other metric and performance degrade. However, when both

properties are optimized, the representation quality steadily increases. These trends

confirm the causal effect of alignment and uniformity on the representation quality,

and suggest that directly optimizing them can be a reasonable choice.

Alignment and uniformity also matter in other contrastive representation

learning variants. MoCo [70] and Quick-Thought Vectors [106] are contrastive

representation learning variants that have nontrivial differences with directly optimizing

ℒcontrastive in Equation (2.1). MoCo introduces a memory queue and a momentum

encoder. Quick-Thought Vectors uses two different encoders to encode each sentence

in a positive pair, only normalizes encoder outputs during evaluation, and does not

use random sampling to obtain minibatches. After modifying them to also allow

45

Loss Formula
Validation Set Accuracy ↑

top1 top5

Best ℒcontrastive only ℒcontrastive(𝜏=0.07) 72.80% 91.64%

Best ℒalign and ℒuniform only 3 · ℒalign(𝛼=2) + ℒuniform(𝑡=3) 74.60% 92.74%

Best among all encoders 3 · ℒalign(𝛼=2) + ℒuniform(𝑡=3) 74.60% 92.74%

Table 2.3: ImageNet-100 encoder evaluations. Numbers show validation set accuracies of
linear classifiers trained on encoder penultimate layer activations. The encoders are trained
using MoCo-based methods. The best result is picked based on top1 accuracy from a 3-fold
training set cross validation, among all 45 encoders trained from scratch with 128-dimensional
output and 128 batch size.

MR Classification CR Classification

Loss Formula Val. Set
Accuracy ↑ Loss Formula Val. Set

Accuracy ↑

Best ℒcontrastive only ℒcontrastive(𝜏=0.075) 77.51% ℒcontrastive(𝜏=0.05) 83.86%

Best ℒalign and ℒuniform only 0.9 · ℒalign(𝛼=2) + 0.1 · ℒuniform(𝑡=5) 73.76% 0.9 · ℒalign(𝛼=2) + 0.1 · ℒuniform(𝑡=5) 80.95%

Best among all encoders ℒcontrastive(𝜏=0.075) 77.51% ℒcontrastive(𝜏=0.05) 83.86%

Table 2.4: BookCorpus encoder evaluations. Numbers show Movie Review Sentence
Polarity (MR) and Customer Product Sentiment (CR) validation set classification accuracies
of logistic classifiers fit on encoder outputs. The encoders are trained using Quick-Thought-
Vectors-based methods. The best result is picked based on accuracy from a 5-fold training set
cross validation, individually for MR and CR, among all 108 encoders trained from scratch
with 1200-dimensional output and 400 batch size.

ℒalign and ℒuniform, we train these methods on ImageNet-100 and BookCorpus,

respectively. Figure 2-9 shows that ℒalign and ℒuniform metrics are still correlated with

the downstream task performances. Tables 2.3 and 2.4 show that directly optimizing

them also leads to comparable or better representation quality. Table 2.5 also shows

improvements on full ImageNet when we use ℒalign and ℒuniform to train MoCo v2 [26]

(an improved version of MoCo). These results suggest that alignment and uniformity

are indeed desirable properties for representations, for both image and text modalities,

and are likely connected with general contrastive representation learning methods.

Loss Formula Validation Set top1 Accuracy ↑

ℒcontrastive(𝜏=0.2)

(MoCo v2 Chen et al. [26]) 67.5%± 0.1%

3 · ℒalign(𝛼=2) + ℒuniform(𝑡=3) 67.69%

Table 2.5: ImageNet encoder evaluations with MoCo v2, and its variant with ℒalign and
ℒuniform. MoCo v2 results are from the MoCo v2 official implementation [27], with mean and
standard deviation across 5 runs. Both settings use 200 epochs of unsupervised training.

46

2.6 Discussion

Alignment and uniformity are often alluded to as motivations for representation

learning methods (see Figure 2-1). However, a thorough understanding of these

properties is lacking in the literature.

Are they in fact related to the representation learning methods? Do they actually

agree with the representation quality (measured by downstream task performance)?

In this work, we have presented a detailed investigation on the relation between

these properties and the popular paradigm of contrastive representation learning.

Through theoretical analysis and extensive experiments, we are able to relate the

contrastive loss with the alignment and uniformity properties, and confirm their

strong connection with downstream task performances. Remarkably, we have revealed

that directly optimizing our proposed metrics often leads to representations of better

quality.

Below we summarize several suggestions for future work.

Niceness of the unit hypersphere. Our analysis was based on the empirical ob-

servation that representations are often ℓ2 normalized. Existing works have motivated

this choice from a manifold mapping perspective [104, 34] and computation stability

[173, 165]. However, to our best knowledge, the question of why the unit hypersphere

is a nice feature space is not yet rigorously answered. One possible direction is to

formalize the intuition that connected sets with smooth boundaries are nearly linearly

separable in the hyperspherical geometry (see Figure 2-2), since linear separability is

one of the most widely used criteria for representation quality and is related to the

notion of disentanglement [74].

Beyond contrastive learning. Our analysis focused on the relationship between

contrastive learning and the alignment and uniformity properties on the unit hyper-

sphere. However, the ubiquitous presence of ℓ2 normalization in the representation

learning literature suggests that the connection may be more general. In fact, several

existing empirical methods are directly related to uniformity on the hypersphere

47

[15, 34, 173]. We believe that relating a broader class of representations to uniformity

and/or alignment on the hypersphere will provide novel insights and lead to better

empirical algorithms.

48

Chapter 3

On the Learning and Learnability of

Quasimetrics

Our world is full of asymmetries. Gravity and wind can make reaching a place easier

than coming back. Social artifacts such as genealogy charts and citation graphs are

inherently directed. In reinforcement learning and control, optimal goal-reaching

strategies are rarely reversible (symmetrical). Distance functions supported on these

asymmetrical structures are called quasimetrics. Despite their common appearance,

little research has been done on the learning of quasimetrics.

Our theoretical analysis reveals that a common class of learning algorithms, includ-

ing unconstrained multilayer perceptrons (MLPs), provably fails to learn a quasimetric

consistent with training data. In contrast, our proposed Poisson Quasimetric Embed-

ding (PQE) is the first quasimetric learning formulation that both is learnable with

gradient-based optimization and enjoys strong performance guarantees. Experiments

on random graphs, social graphs, and offline Q-learning demonstrate its effectiveness

over many common baselines.

3.1 Introduction

Learned symmetrical metrics have been proven useful for innumerable tasks including

dimensionality reduction [149], clustering [172], classification [169, 77], and information

49

retrieval [166]. However, the real world is largely asymmetrical, and symmetrical

metrics can only capture a small fraction of it.

Generalizing metrics, quasimetrics (Definition 3.2.1) allow for asymmetrical dis-

tances and can be found in a wide range of domains (see Figure 3-1). Ubiquitous

physical forces, such as gravity and wind, as well as human-defined rules, such as

one-way roads, make the traveling time between places a quasimetric. Furthermore,

many of our social artifacts are directed graphs— genealogy charts, follow-relation on

Twitter [101], citation graphs [129], hyperlinks over the Internet, etc. Shortest paths on

these graphs naturally induce quasimetric spaces. In fact, we can generalize to Markov

Decision Processes (MDPs) and observe that optimal goal-reaching plan costs (i.e.,

universal value/Q-functions [136, 146]) always form a quasimetric [12, 151]. Moving

onto more abstract structures, quasimetrics can also be found as expected hitting

times in Markov chains, and as conditional Shannon entropy 𝐻(· | ·) in information

theory. (See the appendix for proofs and discussions of these quasimetrics.)

In this work, we study the task of quasimetric learning. Given a sampled training

set of pairs and their quasimetric distances, we ask: how well can we learn a quasimetric

that fits the training data? We define quasimetric learning in analogy to metric learning:

whereas metric learning is the problem of learning a metric function, quasimetric

learning is the problem of learning a quasimetric function. This may involve searching

over a hypothesis space constrained to only include quasimetric functions (which is

what our method does) or it could involve searching for approximately quasimetric

functions (we compare to and analyze such approaches). Successful formulations

have many potential applications, such as structural priors in reinforcement learning

[136, 151], graph learning [132] and causal relation learning [8].

Towards this goal, our contributions are

• We study the quasimetric learning task with two goals: (1) fitting training data

well and (2) respecting quasimetric constraints (Section 3.3);

• We prove that a large family of algorithms, including unconstrained networks

trained in the Neural Tangent Kernel (NTK) regime [83], fail at this task, while

a learned embedding into a latent quasimetric space can potentially succeed

50

 
 Quasimetrics   Metrics

000

001

010

011

100 110

101 111 Hamming
Distance

Conditional Entropy 
H(⋅ | ⋅)

Shortest Paths on
Directed Graphs

Euclidean  
Distance

Any Normed Space 
∥x − y∥

Divergences 
(e.g.,)DKL

Unconstrained
Functions

<latexit sha1_base64="IC9ho7m4i1i+m3nG9pyN9d0Mn8k=">AAACanicjVHLSgMxFE3HV33XuhI3wSq4scyIoktBRXcqWBXaUjKZWxvMY0juWMvQL/Br3OqX+A9+hGntwid4IHA451ySexKnUjgMw9dCMDY+MTlVnJ6ZnZtfWCwtla+cySyHGjfS2JuYOZBCQw0FSrhJLTAVS7iO7w4H/vU9WCeMvsReCk3FbrVoC87QS63SRgPhAbM0P7Ei6RorE9oV2KFnGra6rEePjLGu3ypVwmo4BP1JohGpkBHOW0uFrUZieKZAI5fMuXoUptjMmUXBJfRnGpmDlPE7dgt1TzVT4Jr5cJ8+3fBKQtvG+qORDtXPE/nDf4NMOddTsU8qhh333RuIf3nYUb9Z9Qzb+81c6DRD0PzjDe1MUjR0UDBNhAWOsucJ41b4fSnvMMs4+m/4colzWiqfMcOCo+91/iRX29Votxpe7FQOjkdVF8kqWSObJCJ75ICcknNSI5w8kifyTF4Kb0E5WAlWP6JBYTSzTL4gWH8HokS9Vg==</latexit>

Gridworld with One-way Doors

Time to Target Location  
Under Gravity

Optimal Goal-Reaching
Plan Costs in MDPs

General Kernels
(and Inner Products)

Figure 3-1: Examples of quasimetric spaces. The car drawing is borrowed from Sutton and
Barto [145].

(Section 3.4);

• We propose Poisson Quasimetric Embeddings (PQEs), the first quasimetric

embedding formulation learnable with gradient-based optimization that also

enjoys strong theoretical guarantees on approximating arbitrary quasimetrics

(Section 3.5);

• Our experiments complement the theory and demonstrate the benefits of PQEs

on random graphs, social graphs and offline Q-learning (Section 4.5).

3.2 Preliminaries on Quasimetrics and Poisson Pro-

cesses

Quasimetric space is a generalization of metric space where all requirements of

metrics are satisfied, except that the distances can be asymmetrical.

Definition 3.2.1 (Quasimetric Space). A quasimetric space is a pair (𝒳 , 𝑑), where

𝒳 is a set of points and 𝑑 : 𝒳 ×𝒳 → [0,∞] is the quasimetric, satisfying the following

conditions:

∀𝑥, 𝑦 ∈ 𝒳 , 𝑥 = 𝑦 ⇐⇒ 𝑑(𝑥, 𝑦) = 0, (Identity of Indiscernibles)

∀𝑥, 𝑦, 𝑧 ∈ 𝒳 , 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ≥ 𝑑(𝑥, 𝑧). (Triangle Inequality)

Being asymmetric, quasimetrics are often thought of as (shortest-path) distances

of some (possibly infinite) weighted directed graph. A natural way to quantify the

51

complexity of a quasimetric is to consider that of its underlying graph. Quasimetric

treewidth is an instantiation of this idea.

Definition 3.2.2 (Treewidth of Quasimetric Spaces [113]). Consider a quasimetric

space 𝑀 as shortest-path distances on a positively-weighted directed graph. Treewidth

of 𝑀 is the minimum over all such graphs’ treewidths.

Poisson processes are commonly used to model events (or points) randomly

occurring across a set 𝐴 [89] , e.g., raindrops hitting a windshield, photons captured

by a camera. The number of such events within a subset of 𝐴 is modeled as a Poisson

distribution, whose mean is given by a measure 𝜇 of 𝐴 that determines how “frequently

the events happen at each location”.

Definition 3.2.3 (Poisson Process). For nonatomic measure 𝜇 on set 𝐴, a Poisson

process on 𝐴 with mean measure 𝜇 is a random countable subset 𝑃 ⊂ 𝐴 (i.e., the

random events / points) such that

• for any disjoint measurable subsets 𝐴1, . . . , 𝐴𝑛 of 𝐴, the random variables

𝑁(𝐴1), . . . , 𝑁(𝐴𝑛) are independent, where 𝑁(𝐵) , #{𝑃 ∩𝐵} is the number of

points of 𝑃 in 𝐵, and

• 𝑁(𝐵) has the Poisson distribution with mean 𝜇(𝐵), denoted as Pois(𝜇(𝐵)).

Fact 3.2.4 (Differentiability of P [𝑁(𝐴1) ≤ 𝑁(𝐴2)]). For two measurable subsets

𝐴1, 𝐴2,

P [𝑁(𝐴1) ≤ 𝑁(𝐴2)] = P
[︀

Pois(𝜇(𝐴1 ∖ 𝐴2)) ≤ Pois(𝜇(𝐴2 ∖ 𝐴1))⏟ ⏞
two independent Poissons

]︀
. (3.1)

Furthermore, for independent 𝑋 ∼ Pois(𝜇1), 𝑌 ∼ Pois(𝜇2), the probability P [𝑋 ≤ 𝑌]

is differentiable w.r.t. 𝜇1 and 𝜇2. In the special case where 𝜇1 or 𝜇2 is zero, we can

simply compute

P [𝑋 ≤ 𝑌] =

⎧⎪⎨⎪⎩P [0 ≤ 𝑌] = 1 if 𝜇1 = 0

P [𝑋 ≤ 0] = P [𝑋 = 0] = 𝑒−𝜇1 if 𝜇2 = 0
(Pois(0) is always 0)

= exp
(︀
−(𝜇1 − 𝜇2)

+
)︀
, (3.2)

52

where 𝑥+ , max(0, 𝑥). For general 𝜇1, 𝜇2, this probability and its gradients can be

obtained via a connection to noncentral 𝜒2 distribution [84]. We derive the formulas

in the appendix.

Therefore, if 𝐴1 and 𝐴2 are parametrized by some 𝜃 such that 𝜇(𝐴1 ∖ 𝐴2) and

𝜇(𝐴2 ∖ 𝐴1) are differentiable w.r.t. 𝜃, so is P [𝑁(𝐴1) ≤ 𝑁(𝐴2)].

3.3 Quasimetric Learning

Consider a quasimetric space (𝒳 , 𝑑). The quasimetric learning task aims to infer

a quasimetric from observing a training set {(𝑥𝑖, 𝑦𝑖, 𝑑(𝑥𝑖, 𝑦𝑖))}𝑖 ⊂ 𝒳 × 𝒳 × [0,∞].

Naturally, our goals for a learned predictor 𝑑 : 𝒳 × 𝒳 → R are: respecting the quasi-

metric constraints and fitting training distances.

Crucially, we are not simply aiming for the usual sense of generalization, i.e.,

low population error. Knowing that true distances have a quasimetric structure,

we can better evaluate predictors and desire ones that fit the training data and are

(approximately) quasimetrics. These objectives also indirectly capture generalization

because a predictor failing either requirement must have large error on some pairs,

whose true distances follow quasimetric constraints. We formalize this relation in

Theorem 3.4.3.

3.3.1 Learning Algorithms and Hypothesis Spaces

Ideally, quasimetric learning should scale well with data, potentially generalize to

unseen samples, and support integration with other deep learning systems (e.g., via

differentiation).

Relaxed hypothesis spaces. One can simply learn a generic function approxi-

mator that maps the (concatenated) input pair to a scalar as the prediction of the

pair’s distance, or its transformed version (e.g., log distance). This approach has

been adopted in learning graph distances [132] and plan costs in MDPs [151]. When

the function approximator is a deep neural network, we refer to such methods as

unconstrained networks. While they are known to fit training data well [83], in this

53

paper we also investigate whether they learn to be (approximately) quasimetrics.

Restricted hypothesis spaces. Alternatively, we can encode each input to a

latent space 𝒵, where a latent quasimetric 𝑑𝑧 gives the distance prediction. This

guarantees learning a quasimetric over data space 𝒳 . Often 𝑑𝑧 is restricted to a subset

unable to approximate all quasimetrics, i.e., an overly restricted hypothesis space,

such as metric embeddings and the recently proposed DeepNorm and WideNorm

[127]. While our proposed Poisson Quasimetric Embedding (PQE) (specified in

Section 3.5) is also a latent quasimetric, it can approximate arbitrary quasimetrics

(and is differentiable). PQE thus searches in a space that approximates all

quasimetrics and only quasimetrics.

3.3.2 A Toy Example

To build up intuition on how various algorithms perform according to our two goals,

we consider a toy quasimetric space with only 3 elements in Figure 3-2. The space has

a total of 9 pairs, 8 of which form the training set. Due to quasimetric requirements

(esp. triangle inequality), knowing distances of these 8 pairs restricts valid values

for the heldout pair to a particular range (which is [28, 31] in this case). If a model

approximates 8 training pairs well and respects quasimetric constraints well, its

prediction on that heldout pair should fall into this range.

We train three models w.r.t. mean squared error (MSE) over the training set using

𝑎 𝑏

𝑐

: Train : Test

Triangle inequality =⇒
? ≤ 𝑑(𝑎, 𝑏) + 𝑑(𝑏, 𝑐) = 31
? ≥ 𝑑(𝑎, 𝑏) − 𝑑(𝑐, 𝑏) = 28

0

0

029
2

1

11?

0

20

40

60

80

100

Count

Unconstrained Network
(Training MSE = 0.02 ± 0.06)

0 10 20 30

Valid
Range

0

20

40

60

80

100

Euclidean Space Embedding
(Training MSE = 58.83 ± 0.00)

0 10 20 30

0

20

40

60

80

100

Poisson Quasimetric Embedding
(Training MSE = 0.02 ± 0.07)

0 10 20 30

Figure 3-2: Quasimetric learning on a 3-element space. Leftmost: Training set contains all
pairs except for (𝑎, 𝑐). Arrow labels show quasimetric distances (rather than edge weights).
A quasimetric 𝑑 should predict 𝑑(𝑎, 𝑐) ∈ [28, 30]. Right three: Different formulations
are trained to fit training pairs distances, and then predict on the test pair. Plots show
distribution of the prediction over 100 runs.

54

gradient descent:

• Unconstrained deep network that predicts distance,

• Metric embedding into a latent Euclidean space with a deep encoder,

• Quasimetric embedding into a latent PQE space with a deep encoder (our

method from Section 3.5).
The three approaches exhibit interesting qualitative differences. Euclidean em-

bedding, unable to model asymmetries in training data, fails to attain a low training

error. While both other methods approximate training distances well, unconstrained

networks greatly violate quasimetric constraints; only PQEs respect the constraints

and consistently predicts within the valid range.

Here, the structural prior of embedding into a quasimetric latent space appears

important to successful learning. Without any such prior, unconstrained networks fail

badly. In the next section, we present a rigorous theoretical study of the quasimetric

learning task, which confirms this intuition.

3.4 Theoretical Analysis of Various Learning Algo-

rithms

In this section, we define concrete metrics for the two quasimetric learning objectives

stated above, and present positive and negative theoretical findings for various learning

algorithms.

Overview. Our analysis focuses on data-agnostic bounds, which are of great interests

in machine learning (e.g., VC-dimension [161]). We prove a strong negative result for a

general family of learning algorithms (including unconstrained MLPs trained in NTK

regime, 𝑘-nearest neighbor, and min-norm linear regression): they may arbitrarily

badly fail to fit training data or respect quasimetric constraints (Theorem 3.4.6).

Our informative construction reveals the core reason of their failure. Quasimetric

embeddings, however, enjoy nice properties as long as they can approximate arbitrary

55

quasimetrics, which motivates searching for “universal quasimetrics”. The next section

presents PQEs as such universal approximators and states their theoretical guarantees.

Assumptions. We consider quasimetric spaces (𝒳 , 𝑑) with 𝒳 ⊂ R𝑑, finite size

𝑛 = |𝑋| <∞, and finite distances (i.e., 𝑑 has range [0,∞)). It allows discussing deep

networks which can’t handle infinities well. This mild assumption can be satisfied

by simply capping max distances in quasimetrics. For training, 𝑚 < 𝑛2 pairs are

uniformly sampled as training pairs 𝑆 ⊂ 𝒳 × 𝒳 without replacement.

In the appendix, we provide all full proofs, further discussions of our assump-

tions and presented results, as well as additional results concerning specific learning

algorithms and settings.

3.4.1 Distortion and Violation Metrics for Quasimetric Learn-

ing

We use distortion as a measure of how well the distance is preserved, as is standard

in embedding analyses (e.g., Bourgain [18]). In this work, we especially consider

distortion over a subset of pairs, to quantify how well a predictor 𝑑 approximates

distances over the training subset 𝑆.

Definition 3.4.1 (Distortion). Distortion of 𝑑 over a subset of pairs 𝑆 ⊂ 𝒳 × 𝒳

is dis𝑆(𝑑) ,
(︀

max(𝑥,𝑦)∈𝑆,𝑥̸=𝑦
𝑑(𝑥,𝑦)
𝑑(𝑥,𝑦)

)︀(︀
max(𝑥,𝑦)∈𝑆,𝑥̸=𝑦

𝑑(𝑥,𝑦)

𝑑(𝑥,𝑦)

)︀
, and its overall distortion is

dis(𝑑) , dis𝒳×𝒳 (𝑑).

For measuring consistency w.r.t. quasimetric constraints, we define the (quasimet-

ric) violation metric. Violation focuses on triangle inequality, which can often be more

complex (e.g., in Figure 3-2), compared to the relatively simple non-negativity and

Identity of Indiscernibles.

Definition 3.4.2 (Quasimetric Violation). Quasimetric violation (violation for short)

of 𝑑 is vio(𝑑) , max𝐴1,𝐴2,𝐴3∈𝒳
𝑑(𝐴1,𝐴3)

𝑑(𝐴1,𝐴2)+𝑑(𝐴2,𝐴3)
, where we define 0

0
= 1 for notation

simplicity.

56

Both distortion and violation are nicely agnostic to scaling. Furthermore, assuming

non-negativity and Identity of Indiscernibles, vio(𝑑) ≥ 1 always, with equality iff 𝑑 is a

quasimetric.

Distortion and violation also capture generalization. Because the true distance 𝑑

has optimal training distortion (on 𝑆) and violation, a predictor 𝑑 that does badly on

either must also be far from truth.

Theorem 3.4.3 (Distortion and Violation Lower-Bound Generalization Er-

ror). For non-negative 𝑑, dis(𝑑) ≥ max(dis𝑆(𝑑),
√︀

vio(𝑑)), where dis(𝑑) captures gen-

eralization over the entire 𝒳 space.

3.4.2 Learning Algorithms Equivariant to Orthogonal Trans-

forms

For quasimetric space (𝒳 , 𝑑), 𝒳 ⊂ R𝑑, we consider applying general learning algorithms

by concatenating pairs to form inputs ∈ R2𝑑 (e.g., unconstrained networks). While

straightforward, this approach means that algorithms are generally unable to relate

the same element appearing as 1st or 2nd input. As we will show, this is sufficient for

a wide family of learning algorithms to fail badly– ones equivariant to orthogonal

transforms (OrthEquiv algorithms; Definition 3.4.4).

For an OrthEquiv algorithm, training on orthogonally transformed data does not

affect its prediction, as long as test data is identically transformed. In fact, many

standard learning algorithms are OrthEquiv, including unconstrained MLP trained in

NTK regime (Lemma 3.4.5).

Definition 3.4.4 (Equivariant Learning Algorithms). Given training set 𝒟 = {(𝑧𝑖, 𝑦𝑖)}𝑖,

where 𝑧𝑖 ∈ 𝒵 are inputs and 𝑦𝑖 ∈ 𝒴 are targets, a learning algorithm Alg produces a

function Alg(𝒟) : 𝒵 → 𝑌 such that Alg(𝒟)(𝑧′) is the function’s prediction on sample

𝑧′. Consider 𝒯 a set of transformations 𝒵 → 𝒵. Alg is equivariant to 𝒯 iff for all trans-

form 𝑇 ∈ 𝒯 , training set 𝒟, Alg(𝒟) = Alg(𝑇𝒟)∘𝑇 , where 𝑇𝒟 = {(𝑇𝑧, 𝑦) : (𝑧, 𝑦) ∈ 𝒟}

is the training set with transformed inputs.

57

𝑦

𝑥

𝑧

𝑦′

𝑤′

𝑤

vio(𝑑) ≥ 𝑑(𝑥, 𝑧)

𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)
≥ 𝑐

dis𝑆(𝑑)(dis𝑆(𝑑) + 𝑑(𝑦, 𝑧))

Training () : 𝑑(𝑥, 𝑧) = 𝑐, 𝑑(𝑤, 𝑧) = 1,
𝑑(𝑥, 𝑦) = 1, 𝑑(𝑦, 𝑤′) = 1.

Test () : 𝑑(𝑦, 𝑧) = ?

𝑐

1

1 1

? 𝑦

𝑥

𝑧

𝑦′

𝑤′

𝑤

vio(𝑑) ≥ 𝑑(𝑦, 𝑧)

𝑑(𝑦, 𝑤) + 𝑑(𝑤, 𝑧)
≥ 𝑑(𝑦, 𝑧)

2 · dis𝑆(𝑑)

Training () : 𝑑(𝑥, 𝑧) = 𝑐, 𝑑(𝑤, 𝑧) = 1,
𝑑(𝑥, 𝑦′) = 1, 𝑑(𝑦, 𝑤) = 1.

Test () : 𝑑(𝑦, 𝑧) = ?

𝑐

1

1

1?

Figure 3-3: Two training sets pose incompatible constraints () for the test pair distance
𝑑(𝑦, 𝑧). With one-hot features, an orthogonal transform can exchange (*, 𝑦) ↔ (*, 𝑦′) and
(*, 𝑤) ↔ (*, 𝑤′), leaving the test pair (𝑦, 𝑧) unchanged, but transforming the training set
from one scenario to the other. Given either set, an OrthEquiv algorithm must attain same
training distortion and predict identically on (𝑦, 𝑧). For appropriate 𝑐, this implies large
distortion (not fitting training set) or violation (not approximately a quasimetric) in one of
these cases.

Lemma 3.4.5 (Examples of OrthEquiv Algorithms). 𝑘-nearest-neighbor with

Euclidean distance, dot-product kernel ridge regression (including min-norm linear

regression and MLP trained with squared loss in NTK regime) are OrthEquiv.

Failure case. These algorithms treat the concatenated inputs as generic vectors. If

a transform fundamentally changes the quasimetric structure but is not fully reflected

in the learned function (e.g., due to equivariance), learning must fail. The two training

sets in Figure 3-3 are sampled from two different quasimetrics over the same 6 elements

An orthogonal transform links both training sets without affecting the test pair, which

is constrained differently in two quasimetrics. An OrthEquiv algorithm, necessarily

predicting the test pair identically seeing either training set, must thus fail on one. In

the appendix, we empirically verify that unconstrained MLPs indeed do fail on this

construction.

Extending to larger quasimetric spaces, we consider graphs containing many copies

of both patterns in Figure 3-3. With high probability, our sampled training set fails in

the same way—the learning algorithm can not distinguish it from another training set

with different quasimetric constraints.

Theorem 3.4.6 (Failure of OrthEquiv Algorithms). Let (𝑓𝑛)𝑛 be an arbitrary

58

sequence of large values. There is an infinite sequence of quasimetric spaces ((𝒳𝑛, 𝑑𝑛))𝑛

with |𝒳𝑛| = 𝑛, 𝒳𝑛 ⊂ R𝑛 such that, over a random training set 𝑆 of size 𝑚, any

OrthEquiv algorithm outputs a predictor 𝑑 that

• 𝑑 fails non-negativity, or

• max(dis𝑆(𝑑), vio(𝑑)) ≥ 𝑓𝑛 (i.e., 𝑑 approximates training 𝑆 badly or is far from a

quasimetric),
with probability 1/2 − 𝑜(1), as long as 𝑆 does not contain almost all of the pairs

1 −𝑚/𝑛2 = 𝜔(𝑛−1/3), and does not only include few pairs 𝑚/𝑛2 = 𝜔(𝑛−1/2).

Furthermore, standard NTK results show that unconstrained MLPs trained in

NTK regime converge to a function with zero training loss. By the above theorem,

the limiting function is not a quasimetric with nontrivial probability. In the appendix,

we formally state this result. Despite their empirical usages, these results suggest that

unconstrained networks are likely not suited for quasimetric learning.

3.4.3 Quasimetric Embeddings

A quasimetric embedding consists of a mapping 𝑓 from data space 𝒳 to a latent

quasimetric space (𝒵, 𝑑𝑧), and predicts 𝑑(𝑥, 𝑦) , 𝑑𝑧(𝑓(𝑥), 𝑓(𝑦)). Therefore, they

always respect all quasimetric constraints and attain optimal violation of value 1,

regardless of training data.

However, unlike deep networks, their distortion (approximation) properties depend

on the specific latent quasimetrics. If the latent quasimetric is not overly restrictive

and can approximate any quasimetric (with flexible learned encoders), we have nice

guarantees for both distortion and violation.

In the section below, we present Poisson Quasimetric Embedding (PQE) as such a

latent quasimetric, along with its theoretical distortion and violation guarantees.

3.5 Poisson Quasimetric Embeddings (PQEs)

Motivated by above theoretical findings, we aim to find a latent quasimetric space

(R𝑑, 𝑑𝑧) with a deep network encoder 𝑓 : 𝒳 → R𝑑, and a quasimetric 𝑑𝑧 that is both

59

universal and differentiable:

• (universality) for any data quasimetric (𝒳 , 𝑑), there exists an encoder 𝑓 such

that 𝑑𝑧(𝑓(𝑥), 𝑓(𝑦)) ≈ 𝑑(𝑥, 𝑦);

• (differentiability) 𝑑𝑧 is differentiable (for optimizing 𝑓 and possible integration

with other gradient-based systems).

Notation 3.5.1. We use 𝑥, 𝑦 for elements of the data space 𝒳 , 𝑢, 𝑣 for elements of

the latent space R𝑑, upper-case letters for random variables, and (·)𝑧 for indicating

functions in latent space (e.g., 𝑑𝑧).

An existing line of machine learning research learns quasipartitions, or partial

orders, via Order Embeddings [162]. Quasipartitions are in fact special cases of

quasimetrics whose distances are restricted to be binary, denoted as 𝜋. An Order

Embedding is a representation of a quasipartition, where 𝜋OE(𝑥, 𝑦) = 0 (i.e., 𝑥 is

related to 𝑦) iff 𝑓(𝑥) ≤ 𝑓(𝑦) coordinate-wise:

𝜋OE(𝑥, 𝑦) , 𝜋OE
𝑧 (𝑓(𝑥), 𝑓(𝑦)) , 1 −

∏︁
𝑗

1𝑓(𝑥)𝑗−𝑓(𝑦)𝑗≤0. (3.3)

Order Embedding is universal and can model any quasipartition (see appendix and

Hiraguchi [75]).

Can we extend this discrete idea to general continuous quasimetrics? Quite naïvely,

one may attempt a straightforward soft modification of Order Embedding:

𝜋SoftOE
𝑧 (𝑢, 𝑣) , 1 −

∏︁
𝑗

exp
(︀
− (𝑢𝑗 − 𝑣𝑗)

+
)︀

= 1 − exp
(︁
−
∑︁
𝑗

(𝑢𝑗 − 𝑣𝑗)
+
)︁
, (3.4)

which equals 0 if 𝑢 ≤ 𝑣 coordinate-wise, and increases to 1 as some coordinates violate

this condition more. However, it is unclear whether this gives a quasimetric.

A more principled way is to parametrize a (scaled) distribution of latent quasi-

partitions Π𝑧, whose expectation naturally gives a continuous-valued quasimetric:

𝑑𝑧(𝑢, 𝑣; Π𝑧, 𝛼) , 𝛼 · E𝜋𝑧∼Π𝑧 [𝜋𝑧(𝑢, 𝑣)] , 𝛼 ≥ 0. (3.5)

60

Poisson Quasimetric Embedding (PQE) gives a general recipe for constructing

such Π𝑧 distributions so that 𝑑𝑧 is universal and differentiable. Within this framework,

we will see that 𝜋SoftOE
𝑧 is actually a quasimetric based on such a distribution and is

(almost) sufficient for our needs.

3.5.1 Distributions of Latent Quasipartitions

A random latent quasipartition 𝜋𝑧 : R𝑑 × R𝑑 → {0, 1} is a difficult object to model,

due to complicated quasipartition constraints. Fortunately, the Order Embedding

representation (Equation (3.3)) is without such constraints. If, instead of fixed latents

𝑢, 𝑣, we have random latents 𝑅(𝑢), 𝑅(𝑣), we can compute:

E𝜋𝑧 [𝜋𝑧(𝑢, 𝑣)] = E𝑅(𝑢),𝑅(𝑣)

[︀
𝜋OE
𝑧 (𝑅(𝑢), 𝑅(𝑣))

]︀
= 1 − P [𝑅(𝑢) ≤ 𝑅(𝑣) coordinate-wise] .

(3.6)

In this view, we represent a random 𝜋𝑧 via a joint distribution of random vectors1

{𝑅(𝑢)}𝑢∈R𝑑 , i.e., a stochastic process. To easily compute the probability of this

coordinate-wise event, we assume that each dimension of random vectors is from an

independent process, and obtain

E𝜋𝑧 [𝜋𝑧(𝑢, 𝑣)] = 1 −
∏︁
𝑗

P [𝑅𝑗(𝑢) ≤ 𝑅𝑗(𝑣)] . (3.7)

The choice of stochastic process is flexible. Using Poisson processes (with Lebesgue

mean measure; Definition 3.2.3) that count random points on half-lines2 (−∞, 𝑎], we

can have 𝑅𝑗(𝑢) = 𝑁𝑗((∞, 𝑢𝑗]), the (random) count of events in (∞, 𝑢𝑗] from 𝑗-th

1In general, these random vectors 𝑅(𝑢) do not have to be of the same dimension as 𝑢 ∈ R𝑑,
although the dimensions do match in the PQE variants we experiment with.

2Half-lines has Lebesgue measure ∞. More rigorously, consider using a small value as the lower
bounds of these intervals, which leads to same result.

61

Poisson process:

E𝜋𝑧∼Π𝑧 [𝜋𝑧(𝑢, 𝑣)] = 1 −
∏︁
𝑗

P
[︀
𝑁𝑗((−∞, 𝑢𝑗]) ≤ 𝑁𝑗((−∞, 𝑣𝑗])

]︀
(3.8)

= 1 −
∏︁
𝑗

exp
(︀
− (𝑢𝑗 − 𝑣𝑗)

+
)︀

= 𝜋SoftOE
𝑧 (𝑢, 𝑣), (3.9)

where we used Fact 3.2.4 and the observation that one half-line is either subset

or superset of another. Indeed, 𝜋SoftOE
𝑧 is an expected quasipartition (and thus a

quasimetric), and is differentiable.

Considering a mixture of such distributions for expressiveness, the full latent

quasimetric formula is

(3.10)

where we slightly abuse notation and consider latents 𝑢 and 𝑣 as (reshaped to) 2-

dimensional. We will see that this is a special PQE case with Lebesgue measure and

half-lines, and thus denoted PQE-LH.

3.5.2 General PQE Formulation

We can easily generalize the above idea to independent Poisson processes of general

mean measures 𝜇𝑗 and (sub)set parametrizations 𝑢→ 𝐴𝑗(𝑢), and obtain an expected

quasipartition as:

E𝜋𝑧∼ΠPQE
𝑧 (𝜇,𝐴)[𝜋𝑧(𝑢, 𝑣)] (3.11)

,1 −
∏︁
𝑗

P [𝑁𝑗(𝐴𝑗(𝑢)) ≤ 𝑁𝑗(𝐴𝑗(𝑣))] (3.12)

=1 −
∏︁
𝑗

P
[︁
Pois(𝜇𝑗(𝐴𝑗(𝑢) ∖ 𝐴𝑗(𝑣))⏟ ⏞

Poisson rate of points landing only in 𝐴𝑗(𝑢)

) ≤ Pois(𝜇𝑗(𝐴𝑗(𝑣) ∖ 𝐴𝑗(𝑢)))
]︁
, (3.13)

which is differentiable as long as the measures and set parametrizations are (after set

differences). Similarly, considering a mixture gives us an expressive latent quasimetric.

A general PQE latent quasimetric is defined with {(𝜇𝑖,𝑗, 𝐴𝑖,𝑗)}𝑖,𝑗 and weights 𝛼𝑖 ≥ 0

62

as:

𝑑PQE
𝑧 (𝑢, 𝑣;𝜇,𝐴, 𝛼)

,
∑︁
𝑖

𝛼𝑖 · E𝜋𝑧∼ΠPQE
𝑧 (𝜇𝑖,𝐴𝑖)

[𝜋𝑧(𝑢, 𝑣)] (3.14)

=
∑︁
𝑖

𝛼𝑖

(︁
1 −

∏︁
𝑗

P
[︁
Pois(𝜇𝑖,𝑗(𝐴𝑖,𝑗(𝑢) ∖ 𝐴𝑖,𝑗(𝑣))) ≤ Pois(𝜇𝑖,𝑗(𝐴𝑖,𝑗(𝑣) ∖ 𝐴𝑖,𝑗(𝑢)))

]︁)︁
,

whose optimizable parameters include {𝛼𝑖}𝑖, possible ones from {(𝜇𝑖,𝑗, 𝐴𝑖,𝑗)}𝑖,𝑗 (and

encoder 𝑓).

This general recipe can be instantiated in many ways. Setting 𝐴𝑖,𝑗(𝑢) → (−∞, 𝑢𝑖,𝑗]

and Lebesgue 𝜇𝑖,𝑗, recovers PQE-LH. In the appendix, we consider a form with

Gaussian-based measures and Gaussian-shapes, denoted as PQE-GG. Unlike PQE-

LH, PQE-GG always gives nonzero gradients.

The appendix also includes several implementation techniques that empirically

improve stability, including learning 𝛼𝑖’s with deep linear networks, a formulation that

outputs discounted distance, etc.

3.5.3 Continuous-valued Stochastic Processes

But why Poisson processes over more common choices such as Gaussian processes? It

turns out that common continuous-value processes fail to give a differentiable formula.

Consider a non-degenerate process {𝑅(𝑢)}𝑢, where (𝑅(𝑢), 𝑅(𝑣)) has bounded

density if 𝑢 ̸= 𝑣. Perturbing 𝑢→ 𝑢+ 𝛿 leaves P [𝑅(𝑢) = 𝑅(𝑢+ 𝛿)] = 0. Then one of

P
[︀
𝑅(𝑢) ≤ 𝑅(𝑢+ 𝛿)

]︀
and P

[︀
𝑅(𝑢+ 𝛿) ≤ 𝑅(𝑢)

]︀
must be far away from 1 (as they sum

to 1), breaking differentiability at P [𝑅(𝑢) ≤ 𝑅(𝑢)] = 1. (This argument is formalized

in the appendix.) Discrete-valued processes, however, can leave most probability mass

on 𝑅(𝑢) = 𝑅(𝑢+ 𝛿) and thus remain differentiable.

3.5.4 Theoretical Guarantees

Our PQEs bear similarity with the algorithmic quasimetric embedding construction

in Mémoli et al. [113]. Extending their analysis to PQEs, we obtain the following

63

distortion and violation guarantees.

Theorem 3.5.2 (Distortion and violation of PQEs). Under the assumptions of

Section 3.4, any quasimetric space with size 𝑛 and treewidth 𝑡 admits a PQE-LH and

a PQE-GG with distortion 𝒪(𝑡 log2 𝑛) and violation 1, with an expressive encoder

(e.g., a ReLU network with ≥ 3 layers and polynomial width).

In fact, these guarantees apply to any PQE formulation that satisfies a mild

condition. Informally, any PQE with ℎ× 𝑘 Poisson processes (i.e., ℎ mixtures) enjoys

the above guarantees if it can approximate the discrete counterpart: mixtures of ℎ

Order Embeddings, each specified with 𝑘 dimensions. In the appendix, we make this

condition precise and provide a full proof of the above theorem.

3.6 Experiments

Our experiments are designed to (1) confirm our theoretical findings and (2) compare

PQEs against a wider range of baselines, across different types of tasks. In all

experiments, we optimize 𝛾-discounted distances (with 𝛾 ∈ {0.9, 0.95}), and compare

the following five families of methods:

• PQEs (2 formulations): PQE-LH and PQE-GG with techniques mentioned

in Section 3.5.2.

• Unconstrained networks (20 formulations): Predict raw distance (directly,

with exp transform, and with (·)2 transform) or 𝛾-discounted distance (directly,

and with a sigmoid-transform). Each variant is run with a possible triangle

inequality regularizer E𝑥,𝑦,𝑧
[︀

max(0, 𝛾𝑑(𝑥,𝑦)+𝑑(𝑦,𝑧) − 𝛾𝑑(𝑥,𝑧))2
]︀

for each of 4 weights

∈ {0, 0.3, 1, 3}.

• Asymmetrical dot products (20 formulations): On input pair (𝑥, 𝑦), en-

code each into a feature vector with a different network, and take the dot product.

Identical to unconstrained networks, the output is used in the same 5 ways, with

the same 4 triangle inequality regularizer options.

64

• Metric encoders (4 formulations): Embed into Euclidean space, ℓ1 space,

hypersphere with (scaled) spherical distance, or a mixture of all three.

• DeepNorm (2 formulations) and WideNorm (3 formulations): Quasi-

metric embedding methods that often require significantly more parameters

than PQEs (often on the order of 106 ∼ 107 more effective parameters; see the

appendix for detailed comparisons) but can only approximate a subset of all

possible quasimetrics [127].

We show average results from 5 runs. The appendix provides experimental details,

full results (including standard deviations), additional experiments, and ablation

studies.

Random directed graphs. We start with randomly generated directed graphs of

300 nodes, with 64-dimensional node features given by randomly initialized neural

networks. After training with MSE on discounted distances, we test the models’

prediction error on the unseen pairs (i.e., generalization), measured also by MSE on

discounted distances. On three graphs with distinct structures, PQEs significantly

outperform baselines across almost all training set sizes (see Figure 3-4). Notably,

while DeepNorm and WideNorm do well on the dense graph quasimetric, they struggle

on the other two, attaining both high test MSE (Figure 3-4) and train MSE (not

shown). This is consistent with the fact that they can only approximate a subset of

all quasimetrics, while PQEs can approximate all quasimetrics.

Large-scale social graph. We choose the Berkeley-Stanford Web Graph [101] as the

real-wold social graph for evaluation. This graph consists of 685,230 pages as nodes,

and 7,600,595 hyperlinks as directed edges. We use 128-dimensional node2vec features

[55] and the landmark method [132] to construct a training set of 2,500,000 pairs,

and a test set of 150,000 pairs. PQEs generally perform better than other methods,

accurately predicting finite distances while predicting high values for infinite distances

(see Table 3.1). DeepNorms and WideNorms learn finite distances less accurately here,

and also do much worse than PQEs on learning the (quasi)metric of an undirected

65

0.0 0.2 0.4 0.6
Training Set Fraction

10 3

10 2

He
ld

ou
t M

SE

PQE
Unconstrained Net.
Asym. Dot Product
Metric Embedding
DeepNorm
WideNorm

Groundtruth
Distance Matrix

0

10

20

(a) A dense graph.

0.0 0.2 0.4 0.6
Training Set Fraction

10 3

10 2

10 1

He
ld

ou
t M

SE

Groundtruth
Distance Matrix

0

10

20

30

(b) A sparse graph.

0.0 0.2 0.4 0.6
Training Set Fraction

10 4

10 3

10 2

10 1

He
ld

ou
t M

SE

Groundtruth
Distance Matrix

0

5

10

(c) A sparse graph with block struc-
ture.

Figure 3-4: Comparison of PQE and baselines on quasimetric learning in random directed
graphs.

Triangle
inequality
regularizer

MSE w.r.t.
𝛾-discounted

distances (×10−3) ↓

L1 Error
when true
𝑑 <∞ ↓

Prediction 𝑑
when true
𝑑 = ∞ ↑

PQE-LH 7 3.043 1.626 69.942
PQE-GG 7 3.909 1.895 101.824

Best Unconstrained Net.
7 3.086 2.115 59.524
3 2.813 2.211 61.371

Best Asym. Dot Product
7 48.106 2.520 ×1011 2.679 ×1011

3 48.102 2.299 ×1011 2.500 ×1011

Best Metric Embedding 7 17.595 7.540 53.850

Best DeepNorm 7 5.071 2.085 120.045

Best WideNorm 7 3.533 1.769 124.658

Table 3.1: Quasimetric learning on large-scale
web graph. “Best” is selected by test MSE w.r.t.
𝛾-discounted distances.

0 200 400 600 800 1000
Number of Training Trajectories

0.0

0.2

0.4

0.6

0.8

1.0

[s
uc

ce
ss

]

PQE
Unconstrained Network
Asym. Dot Product
Metric Embedding
DeepNorm
WideNorm

Figure 3-5: Offline Q-learning results.

social graph (shown in the appendix).

Offline Q-learning. Optimal goal-reaching plan costs in MDPs are quasimetrics

[12, 151] (see also the appendix). In practice, optimizing deep Q-functions often suffers

from stability and sample efficiency issues [73, 46]. As a proof of concept, we use PQEs

as goal-conditional Q-functions in offline Q-learning, on the grid-world environment

with one-way doors built upon gym-minigrid [28] (see Figure 3-1 right), following the

algorithm and data sampling procedure described in Tian et al. [151]. Adding strong

quasimetric structures greatly improves sample efficiency and greedy planning success

rates over popular existing approaches such as unconstrained networks used in Tian

et al. [151] and asymmetrical dot products used in Schaul et al. [136] (see Figure 3-5).

As an interesting observation, some metric embedding formulations work comparably

well.

66

3.7 Related Work

Metric learning. Metric learning aims to approximate a target metric/similarity

function, often via a learned embedding into a metric space. This idea has successful

applications in dimensionality reduction [149], information retrieval [166], clustering

[172], classification [169, 77], etc. While asymmetrical formulations have been explored,

they either ignore quasimetric constraints [119, 106, 136], or are not general enough

to approximate arbitrary quasimetric [8], which is the focus of the present paper.

Isometric embeddings. Isometric (distance-preserving) embeddings is a highly

influential and well-studied topic in mathematics and statistics. Fundamental results,

such as Bourgain’s random embedding theorem [18], laid important ground work

in understanding and constructing (approximately) isometric embeddings. While

most such researches concern metric spaces, Mémoli et al. [113] study an algorithmic

construction of a quasimetric embedding via basic blocks called quasipartitions. Their

approach requires knowledge of quasimetric distances between all pairs and thus is

not suitable for learning. Our formulation takes inspiration from the form of their

embedding, but is fully learnable with gradient-based optimization over a training

subset.

Quasimetrics and partial orders. Partial orders (quasipartitions) are special

cases of quasimetrics (see Section 3.5). A line of machine learning research studies em-

bedding partial order structures into latent spaces for tasks such as relation discovery

and information retrieval [162, 147, 68, 47]. Unfortunately, unlike PQEs, such formu-

lations do not straightforwardly generalize to arbitrary quasimetrics, which are more

than binary relations. Similar to PQEs, DeepNorm and WideNorm are quasimetric

embedding approaches learnable with gradient-based optimization [127]. Theoreically,

they universally approximates a subset of quasimetrics (ones induced by asymmetrical

norms). Despite often using many more parameters, they are restricted to this subset

and unable to approximate general quasimetrics like PQEs do (Figure 3-4).

67

3.8 Implications

In this work, we study quasimetric learning via both theoretical analysis and empirical

evaluations.

Theoretically, we show strong negative results for a common family of learning

algorithms, and positive guarantees for our proposed Poisson Quasimetric Embedding

(PQE). Our results introduce the novel concept of equivariant learning algorithms,

which may potentially be used for other learnability analyses with algorithms such

as deep neural networks. Additionally, a thorough average-case or data-dependent

analysis would nicely complement our results, and may shed light on conditions where

algorithms like deep networks can learn decent approximations to quasimetrics in

practice.

PQEs are the first quasimetric embedding formulation that can be learned via

gradient-based optimization. Empirically, PQEs show promising performance in

various tasks. Furthermore, PQEs are fully differentiable, and (implicitly) enforce a

quasimetric structure in any latent space. They are particularly suited for integration

in large deep learning systems, as we explore in the Q-learning experiments. This can

potentially open the gate to many practical applications such as better embedding for

planning with MDPs, efficient shortest path finding via learned quasimetric heuristics,

representation learning with quasimetric similarities, causal relation learning, etc.

68

Chapter 4

Denoised MDPs: Learning World

Models Better Than the World Itself

The ability to separate signal from noise, and reason with clean abstractions, is

critical to intelligence. With this ability, humans can efficiently perform real world

tasks without considering all possible nuisance factors. How can artificial agents

do the same? What kind of information can agents safely discard as noises? In

this chapter, we categorize information out in the wild into four types based on

controllability and relation with reward, and formulate useful information as that

which is both controllable and reward-relevant. This framework clarifies the kinds

information removed by various prior work on representation learning in reinforcement

learning (RL), and leads to our proposed approach of learning a Denoised MDP that

explicitly factors out certain noise distractors. Extensive experiments on variants

of DeepMind Control Suite and RoboDesk demonstrate superior performance of our

denoised world model over using raw observations alone, and over prior works, across

policy optimization control tasks as well as the non-control task of joint position

regression.

69

4.1 Introduction

The real world provides us a plethora of information, from microscopic physical inter-

actions to abstracted semantic signals such as the latest COVID-19 news. Fortunately,

processing each and every signal is unnecessary (and also impossible). In fact, any

particular reasoning or decision often only relies on a small portion of information.

Imagine waking up and wanting to embrace some sunlight. As you open the curtain,

a nearby resting bird is scared away and you are pleasantly met with a beautiful sunny

day. Far away, a jet plane is slowly flying across the sky.

This may seem a simple activity, but in fact highlights four distinct types of

information (see Figure 4-1), with respect to the goal of letting in as much sunlight as

possible:

• Controllable and reward-relevant: curtain, influenced by actions and affect-

ing incoming sunlight;

• Controllable and reward-irrelevant: bird, influenced by actions but not

affecting sunlight;

• Uncontrollable and reward-relevant: weather, independent with actions

but affecting sunlight;

• Uncontrollable and reward-irrelevant: plane, independent with both ac-

tions and the sunlight.

Our optimal actions towards the goal, however, only in fact depend on information

that is controllable and reward-relevant, and the three other kinds of information

are merely noise distractors. Indeed, no matter how much natural sunlight there is

outside, or how the plane and the bird move, the best plan is always to open up the

curtain.

When performing a particular task, we humans barely think about the other three

types of information, and usually only plan on how our actions affect information

that is controllable and reward-relevant. Our mental model is an abstract and

condensed version of the real world that is actually better suited for the task.

The notion of better model/data is ubiquitous in data science and machine learning.

70

(a) GOAL: Letting in as much sunlight as possible.

Denoise

Uncontrollable

Controllable

Reward-
Relevant

Reward-
Irrelevant

(b) Optimal control only relies on information that is both
controllable and reward-relevant. Good world models
should ignore other factors as noisy distractors.

Figure 4-1: Illustrative example: (a) Four distinct kinds of information in the scenario
described in Section 4.1, where the person desires to increase the amount of sunlight let into
the room. Their opening of the curtain scares away the bird. (b) A denoised world model
only includes a small subset of all information.

71

Algorithms rarely perform well on raw noisy real data. The common approach is to

perform data cleaning and feature engineering, where we manually select the useful

signals based on prior knowledge and/or heuristics. Years of research have identified

ways to extract good features for computer vision [108, 37], natural language processing

[40, 115], reinforcement learning (RL) [109, 9], etc. Similarly, system identification

aligns real observation with a predefined set of abstract signals/states. Yet for tasks

in the wild (in the general form of (partially observable) Markov Decision Processes),

there can be very little prior knowledge of the optimal set of signals. In this work,

we ask: can we infer and extract these signals automatically, in the form of a learned

world model?

The general idea of a mental world model have long been under active research in

philosophy and social science [33, 36], cognitive science, where an intuitive physics

model is hypothesized to be core in our planning capabilities [141], and in reinforcement

learning, where various methods investigate state abstractions for faster and better

learning [144, 143].

In this work, we explore this idea within the context of machine learning and rein-

forcement learning, where we aim to make concrete the different types of information

in the wild, and automatically learn a world model that removes noise distractors and

is beneficial for both control (i.e., policy optimization) and non-control tasks. Toward

this goal, our contributions are

• We categorize information into four distinct kinds as in Figure 4-1, and review

prior approaches under this framework (Section 4.2).

• Based on the above framework, we propose Denoised MDPs, a method for

learning world models with certain distractors removed (Section 4.3).

• Through experiments in DeepMind Control Suite and RoboDesk environments,

we demonstrate superior performance of policies learned our method, across

many distinct types of noise distractors (Sections 4.5.1 and 4.5.2).

• We show that Denoised MDP is also beneficial beyond control objectives, im-

proving the supervised task of robot joint position regression (Section 4.5.1).

72

4.2 Different Types of Information in the Wild

In Section 4.1, we illustrated the four types of information available in the wild w.r.t.

a task. Here we make these notions more concrete, and relate them to existing works.

For generality, we consider tasks in the form of Markov Decision Processes (MDPs),

described in the usual manner: ℳ , (𝒮,𝒜, 𝑅, 𝑃, 𝑝𝑠0) [130], where 𝒮 is the state space,

𝒜 is the action space, 𝑅 : 𝒮 → ∆([0, 𝑟max]) defines the reward random variable 𝑅(𝑠′)

received for arriving at state 𝑠′ ∈ 𝒮, 𝑃 : 𝒮 × 𝒜 → ∆(𝒮) is the transition dynamics,

and 𝑝𝑠0 ∈ ∆(𝒮) defines the distribution of initial state. We use ∆(𝐴) to denote the

set of all distributions over 𝐴. 𝑃 and 𝑅 define the most important components of a

MDP: the transition dynamics P[𝑠′ | 𝑠, 𝑎] and the reward function P[𝑟 | 𝑠′]. Usually,

the objective is to find a policy 𝜋 : 𝒮 → ∆(𝒜) acting based on current state, that

maximizes the expected cumulative (discounted) reward.

Indeed, MDPs provide a general formulation that encompasses many tasks. In fact,

the entire real world may be viewed as an MDP with a rich state/observation space 𝒮

that contains all possible information/signal. For an artificial agent to successfully

perform real world tasks, it must be able to process observations that are incredibly

rich and high-dimensional, such as visual or audio signals.

We characterize different types of information in such observations by considering

two intuitive notions of “noisy and irrelevant” signals: (1) uncontrollable information

and (2) reward-irrelevant information. Such factors can often be ignored without

affecting optimal control, and are referred to as noise distractors.

To understand their roles in MDPs, we study different formulations of the transition

dynamics and reward functions, and show how different structures naturally leads to

decompositions that may help identify such distractors. Removing these distractors

can thus transform the original noisy MDP to a clean denoised one, to be used in

downstream tasks.

For starters, the most generic transition model in Figure 4-2a has little to no

structure. The state 𝑠 can contain both the useful signals and noise distractors.

Therefore, it is not directly useful for extracting important information.

73

𝑠 𝑠′

𝑎

𝑎 𝑟

𝑠 𝑠

𝑠 𝑠Ctrl

Ctrl

Rew Rew

(a) Transition without useful
structure. 𝑠 may contain any
type of information.

𝑠

𝑦𝑅

𝑦𝑅

𝑥

𝑠′

𝑥′

𝑦′𝑅

𝑟𝑥

𝑟𝑦

𝑦′
𝑅

𝑎

+ 𝑟

𝑥

𝑥 𝑥

𝑥
𝑦𝑅

𝑦𝑅 𝑦𝑅

𝑦𝑅𝑦𝑅

𝑦𝑅 𝑦𝑅

𝑦𝑅

Ctrl

Ctrl

Rew Rew

(b) Transition that factorizes out
uncontrollable information in 𝑦𝑅
and 𝑦𝑅.

𝑠

𝑧

𝑦

𝑥

𝑠′

𝑥′

𝑦′

𝑟𝑥

𝑟𝑦

𝑧′

𝑎

+ 𝑟

𝑥

𝑥 𝑥

𝑥
𝑦

𝑦 𝑦

𝑦𝑧

𝑧 𝑧

𝑧

Ctrl

Ctrl

Rew Rew

(c) Transition that factorizes
out uncontrollable 𝑦 and reward-
irrelevant 𝑧.

Figure 4-2: MDP transition structures consisting of dynamics and reward functions. Unlike
the regular structure of (a), (b, c) factorized (yet still general) structures inherently separate
information into controllable (Ctrl) versus uncontrollable (Ctrl), and reward-relevant (Rew)
versus reward-irrelevant (Rew). Presence of a variable in a cell means possible containing of
respective information. E.g., in (c), 𝑧 can only contain reward-irrelevant information. In
(b, c), the 𝑥 dynamics form an MDP with less noise and sufficient for optimal planning. Our
Denoised MDP (see Section 4.3) is based on these two factorizations.

4.2.1 Controllability

Intuitively, if something is not controllable, an agent might be able to do well without

considering it. Yet it is not enough to only require some variable to be unaffected by

actions (e.g., wind directions should not be ignored while sailing). Instead, we focus

on factors that simply evolve on their own, without influencing or being influenced by

others.

Not all such information can be safely ignored, as they still may affect reward

(e.g., traffic lights when driving). Fortunately, in the usual objective of maximizing

expected return, we can ignore ones that only additively affect reward.

Concretely, if an MDP transition can be represented in the form of Figure 4-2b, we

say variables 𝑦𝑅 and 𝑦𝑅 are uncontrollable information, as they evolve independently

of actions and do not affect controllable 𝑥. Here 𝑦𝑅 (additively) affects reward, but

can be ignored. One can safely discard both 𝑦𝑅 and 𝑦𝑅 as noise distractors. Operating

with the compressed MDP of only 𝑥 is sufficient for optimal control.

74

4.2.2 Reward-Relevance

Among controllable information, there can still be some that is completely unrelated to

reward. In Figure 4-1, the bird is affected by the opening curtain, but is irrelevant to

the task of letting in sunlight. In such cases, the information can be safely discarded,

as it does not affect the objective.

If an MDP transition can be represented in the form of Figure 4-2c, we say 𝑧 is

reward-irrelevant because it evolves by potentially using everything (i.e., all latent

variables and actions), but crucially does not affect anything but itself.

Similar to uncontrollable information, 𝑧 (and 𝑦) is a noise distractor that can be

discarded. The compressed MDP of only 𝑥 contains all signals needed for optimal

control.

4.2.3 Which Information Do Existing Methods Learn?

In RL, many prior work have explored state abstractions in some form. Here we cast

several representative ones under the framework described above, and show which

kinds of information they learn to remove, summarized in Figure 4-3, together with

our proposed method (explained in Section 4.3). Below we discuss each prior work in

detail.

Reconstruction-Based Model-Based RL. Many model-based RL methods learn

via reconstruction from a single latent code, often as a result of a variational formulation

[63, 64, 99]. The latent code must try to compress all information present in the

observation, and necessarily contains all types of information.

Bisimulation. Bisimulation defines a state abstraction where states aggregated

together must have the same expected return and transition dynamics up to the

abstraction [50], and is known to optimally ignore reward-irrelevant information [44].

While its continuous version, bisimilation metric, is gaining popularity, learning them is

computationally difficult [117]. Even with many additional assumptions, it is generally

only possible to learn an on-policy variant that loses the above guarantee [22, 176].

75

Reconstruction-Based
Model-Based RL
(e.g., SLAC [99],
Dreamer [63])

Model-Based
3 3

3 3Ctrl

Ctrl

Rew Rew

Bisimulation
(e.g., Ferns et al. [44],

Castro [22], Zhang et al. [176])
Model-Free

3 7

3 7Ctrl

Ctrl

Rew Rew

Task Informed
Abstractions (TIA)

[45]
Model-Based

3 ?

3 ?Ctrl

Ctrl

Rew Rew

Denoised MDP
(Figure 4-2b variant)

(Our method from Section 4.3)
Model-Based

7 7

3 3Ctrl

Ctrl

Rew Rew

Denoised MDP
(Figure 4-2c variant)

(Our method from Section 4.3)
Model-Based

7 7

3 7Ctrl

Ctrl

Rew Rew

Information Grid Legend: 3 Kept 7 Reduced

? Depending on how the information
is integrated in observations

Figure 4-3: Categorization of information learned and removed by various methods with
distinct formulations.

Task Informed Abstractions (TIA). TIA [45] extends Dreamer by modelling

two independent latent MDPs, representing signal and noise. The noise latent is

enforced to be independent with reward and reconstruct the observation as well as

possible. Reconstructions from each latent are composed together using an inferred

mask in pixel-space, to form the full reconstruction for the reconstruction loss. Because

of its special structure, TIA can remove reward-irrelevant noise distractors that are

present via pixel-wise composing two images from independent processes (e.g., agent

moving on a noisy background), but not general ones (e.g., a shaky camera affecting

both the agent and the noisy background).

76

Predictive Information, Data Augmentation, etc. Another set of researches

learn state representation that only contains information useful for predicting future

states (e.g., CPC [119] and PI-SAC [100]) or augmented views of the current state

(e.g., CURL [97]). These methods do not guarantee removal of any of the three

redundant piece of information identified above. Non-i.i.d. noises (e.g., people moving

in background) are predictive of future and may be kept by CPC and PI-SAC. The

performance of augmentation-based methods can critically rely on specific types of

augmentation used and relevance to the tasks. As we show in experiments (see

Section 4.5), indeed they struggle to handle certain noise types.

4.2.4 Possible Extensions to Further Factorizations

The above framework is sufficient for characterizing most prior work and related tasks,

and can also be readily extended with further factorized transition structures. E.g.,

if an independent process confounds a signal process and a noise process, fitting the

Figure 4-2c structure must group all three processes into 𝑥 (to properly model the

dependencies). However, a further factorization shows that only considering the signal

and the confounding processes is theoretically sufficient for control. We leave such

extensions as future work.

4.3 Denoised MDPs

Figures 4-2b and 4-2c show two special MDP structures that automatically identify

certain information that can be ignored, leaving 𝑥 as the useful information (which

also forms an MDP). This suggests a naïve approach: directly fitting such structures

to collected trajectories, and then extract 𝑥.

However, the same MDP dynamics and rewards can be decomposed as Figures 4-

2b and 4-2c in many different ways. In the extreme case, 𝑥 may even contain all

information in the raw state 𝑠, and such extraction may not help at all. Instead, we

desire a fit with the minimal 𝑥, defined as being least informative of 𝑠 (so that removal

of the other latent variables discards the most information possible). Concretely, we

77

aim for a fit with least 𝐼({𝑥𝑡}𝑇𝑡=1; {𝑠𝑡}𝑇𝑡=1 | {𝑎𝑡}𝑇𝑡=1), the mutual information 𝑥 contains

about 𝑠 over 𝑇 steps. Then from this fit, we can extract a minimal Denoised MDP

of only 𝑥. For notation simplicity, we use bold symbols to denote variable sequences,

and thus write, e.g., 𝐼(𝑥; 𝑠 | 𝑎).

Practically, we consider regularizing model-fitting with 𝐼(𝑥; 𝑠 | 𝑎). As we show

below, this amounts to a modification to the well-established variational objective [63].

The resulting method is easy-to-implement yet effective, enabling clean removal of

various noise distractors the original formulation cannot handle (see Section 4.5).

We instantiate this idea with the structure in Figure 4-2c. The Figure 4-2b

formulation can be obtained by simply removing the 𝑧 components and viewing 𝑦 as

combined 𝑦𝑅 and 𝑦𝑅.

The transition structure is modeled with components:

𝑝
(𝑥𝑡)
𝜃 , 𝑝𝜃(𝑥𝑡 | 𝑥𝑡−1, 𝑎) (𝑥 dynamics)

𝑝𝜃(𝑟𝑥 | 𝑥𝑡) (𝑥 reward)

𝑝
(𝑦𝑡)
𝜃 , 𝑝𝜃(𝑦𝑡−1 | 𝑦𝑡−1) (𝑦 dynamics)

𝑝𝜃(𝑟𝑦 | 𝑦𝑡) (𝑦 reward)

𝑝
(𝑧𝑡)
𝜃 , 𝑝𝜃(𝑧𝑡 | 𝑥𝑡, 𝑦𝑡, 𝑧𝑡−1, 𝑎) (𝑧 dynamics)

𝑝𝜃(𝑠𝑡 | 𝑥𝑡, 𝑦𝑡, 𝑧𝑡). (obs. emission)

Consider training data in the form of trajectory segments 𝑠,𝑎, 𝑟 sampled from some

data distribution 𝑝data (e.g., stored agent experiences from a replay buffer). We perform

model learning by minimizing the negative log likelihood:

ℒMLE(𝜃) , −E𝑠,𝑎,𝑟∼𝑝data
[︀

log 𝑝𝜃 (𝑠, 𝑟 | 𝑎)
]︀
.

To obtain a tractable form, we jointly learn three variational posterior components

78

(i.e., encoders):

𝑞
(𝑥𝑡)
𝜓 , 𝑞𝜓(𝑥𝑡 | 𝑥𝑡−1, 𝑦𝑡−1, 𝑧𝑡−1, 𝑠𝑡, 𝑎𝑡) (𝑥 posterior)

𝑞
(𝑦𝑡)
𝜓 , 𝑞𝜓(𝑦𝑡 | 𝑥𝑡−1, 𝑦𝑡−1, 𝑧𝑡−1, 𝑠𝑡, 𝑎𝑡) (𝑦 posterior)

𝑞
(𝑧𝑡)
𝜓 , 𝑞𝜓(𝑧𝑡 | 𝑥𝑡, 𝑦𝑡, 𝑠𝑡, 𝑎𝑡), (𝑧 posterior)

whose product defines the posterior 𝑞𝜓(𝑥,𝑦, 𝑧 | 𝑠,𝑎)1. We choose this factorized form

based on the forward (prior) model structure of Figure 4-2c.

Then, the model can be optimized w.r.t. the standard variational bound on log

likelihood:

ℒMLE(𝜃) = min
𝜓

E
𝑠,𝑎,𝑟

E
𝑥,𝑦,𝑧∼

𝑞𝜓(·|𝑠,𝑎,𝑟)

[︂
− log 𝑝𝜃(𝑠, 𝑟 | 𝑥,𝑦, 𝑧,𝑎)⏟ ⏞

, ℒrecon(𝜃, 𝜓)

+
𝑇∑︁
𝑡=1

𝐷KL

(︀
𝑞
(𝑥𝑡)
𝜓

⃦⃦
𝑝
(𝑥𝑡)
𝜃

)︀
⏟ ⏞
, ℒKL-𝑥(𝜃, 𝜓)

+
𝑇∑︁
𝑡=1

𝐷KL

(︀
𝑞
(𝑦𝑡)
𝜓

⃦⃦
𝑝
(𝑦𝑡)
𝜃

)︀
⏟ ⏞
, ℒKL-𝑦(𝜃, 𝜓)

+

𝑇∑︁
𝑡=1

𝐷KL

(︀
𝑞
(𝑧𝑡)
𝜓

⃦⃦
𝑝
(𝑧𝑡)
𝜃

)︀
⏟ ⏞
, ℒKL-𝑧(𝜃, 𝜓)

]︂
, (4.1)

where equality is attained by optimal 𝑞𝜓 that is compatible with 𝑝𝜃, i.e., 𝑞𝜓 is the

exact posterior of 𝑝𝜃.

The mutual information regularizer 𝐼(𝑥; 𝑠 | 𝑎), using a variational formulation,

can be written as

𝐼(𝑥; 𝑠 | 𝑎) = min
𝜃

ℒKL-𝑥(𝜃, 𝜓), (4.2)

with equality attained when 𝑞𝜓 and 𝑝𝜃 are compatible. The appendix describes this

derivation in detail.

Therefore, for a regularizer weight of 𝑐 ≥ 0, we can optimize Equations (4.1)

1Following Dreamer [63], we define posterior of first-step latents 𝑞𝜓(𝑥1, 𝑦1, 𝑧1 | 𝑠1) , 𝑞𝜓(· , · , · |
0,0,0, 𝑠1,0), where 0 is the all zeros vector of appropriate size.

79

and (4.2) together as

min
𝜃

ℒMLE(𝜃) + 𝑐 · 𝐼(𝑥; 𝑠 | 𝑎)

= min
𝜃,𝜓

ℒrecon(𝜃, 𝜓) + (1 + 𝑐) · ℒKL-𝑥(𝜃, 𝜓)

+ ℒKL-𝑦(𝜃, 𝜓) + ℒKL-𝑧(𝜃, 𝜓). (4.3)

Recall that we fit to the true MDP with the structure of Figure 4-2c, which inherently

guarantees all useful information in the 𝑥 latent variable. As the regularizer ensures

learning the minimal 𝑥 latents, the learned model extracts an MDP of condensed

useful information with 𝒳 as the denoised state space, 𝑝𝜃(𝑥′ | 𝑥, 𝑎) as the transition

dynamics, 𝑝𝜃(𝑟𝑥 | 𝑥′) as the reward function. This MDP is called the Denoised MDP,

as it discards the noise distractors contained in 𝑦 and 𝑧. Additionally, we also obtain

𝑞𝜓(𝑥 | 𝑠,𝑎) as the encoder mapping from raw noisy observation 𝑠 to the denoised 𝑥.

A loss variant for improved stability. When using a large 𝑐 ≥ 0 (e.g. when the

environment is expected to be very noisy), Equation (4.3) contains to a term with a

large weight. Thus Equation (4.3) often requires learning rates to be tuned for different

𝑐. To avoid this, we use the following loss form that empirically has better training

stability and does not require tuning learning rates w.r.t. other hyperparameters:

min
𝜃,𝜓

ℒrecon + 𝛼 · (ℒKL-𝑥 + 𝛽ℒKL-𝑦 + 𝛽ℒKL-𝑧) , (4.4)

where 𝜃, 𝜓 in arguments are omitted, and the hyperparameters are 𝛼 > 0 and 0 < 𝛽 ≤ 1.

Here 𝛽 is bounded, where 𝛽 = 1 represents no regularization. 𝛼 is also generally

small and simply chosen according to the state-space dimensionality (see the appendix;

𝛼 ∈ {1, 2} in our experiments). This form is justified from the observation that in

practice we use isotropic Gaussians with fixed variance to parameterize the distributions

of observation 𝑝𝜃(𝑠 | . . .) and reward 𝑝𝜃(𝑟 | . . .), where scaling log likelihoods is

essentially changing the variance hyperparameter. Thus, Equation (4.4) is effectively

a scaled Equation (4.3) with different variance hyperparameters.

80

Algorithm 1 Denoised MDP
Input: Model 𝑝𝜃. Posterior encoder 𝑞𝜓. Policy 𝜋 : 𝒳 → Δ(𝒜).

Policy optimization algorithm Pi-Opt.
Output: Denoised MDP of 𝑥 in 𝑝𝜃. Encoder 𝑞𝜓. Policy 𝜋.
1: while training do
2: // Exploration
3: Collect trajectories with 𝜋 acting on 𝑞𝜓 encoded outputs
4: // Model learning
5: Sample a batch of (𝑠,𝑎, 𝑟) segments from reply buffer
6: Train 𝑝𝜃 and 𝑞𝜓 with Equation (4.4) on (𝑠,𝑎, 𝑟)
7: // Policy optimization
8: Sample 𝑥 ∼ 𝑞𝜓(𝑥 | 𝑠,𝑎)
9: Compute 𝑟𝑥 = E [𝑝𝜃(𝑟𝑥 | 𝑥)]

10: Train 𝜋 by running Pi-Opt on (𝑥,𝑎, 𝑟𝑥)
11: end while

Online algorithm with policy optimization. The model fitting objective of

Equation (4.4) can be used in various settings, e.g., offline over a collected trajectory

dataset. Without assuming existing data, we explore an online setting, where the

training process iteratively performs (1) exploration, (2) model-fitting, and (3) policy

optimization, as shown in Algorithm 1. The policy 𝜋 : 𝒳 → ∆(𝒜) soley operates

on the Denoised MDP of 𝑥, which has all information sufficient for control. For

policy optimization, the learned posterior encoder 𝑞𝜓(𝑥 | 𝑠,𝑎) is used to extract

𝑥 information from the raw trajectory (𝑠,𝑎, 𝑟), obtaining transition sequences in

𝒳 space. Paired with the 𝑝𝜃(𝑟𝑥 | 𝑥) rewards, we obtain (𝑥,𝑎, 𝑟𝑥) as trajectories

collected from the Denoised MDP on 𝑥. Any general-purpose MDP policy optimization

algorithm may be employed on these data, such as Stochastic Actor-Critic (SAC) [61].

We can also utilize the learned differentiable Denoised MDP, e.g., optimizing policy by

backpropagating through additional roll-outs from the model, as is done in Dreamer.

While presented in the fully observable setting, Denoised MDP readily handles

partial observability without extra changes. In the appendix, we discuss this point in

details, and provide a guideline for choosing hyperparameters 𝛼, 𝛽.

81

4.4 Related Work

Model-Based Learning for Control jointly learns a world model and a policy.

Such methods often enjoy good sample efficiency on RL tasks with rich observations.

Some formulations rely on strong assumptions, e.g., deterministic transition in Deep-

MDP [49] and bilinear transition in FLAMBE [1]. Most general-setting methods use

a reconstruction-based objective [64, 87, 60, 99]. Among them, Dreamer [63] trains

world models with a variational formulation and optimizes policies by backpropagating

through latent-space rollouts. It has proven effective across a variety of environments

with image observations. However, such reconstruction-based approaches can struggle

with the presence of noise distractors. TIA [45] partially addresses this limitation (see

Section 4.2.3) but can not handle general distractors, unlike our method.

Representation Learning and Reinforcement Learning. Our work automates

selecting useful signals from noisy MDPs by learning denoised world models, and

can be viewed as an approach for learning general representations [37, 115, 70, 79].

In model-free RL, various methods learn state embeddings that are related to value

functions [136, 9], transition dynamics [109, 100], recent action [125], bisimulation

structure [44, 22, 176], data augmentations [97] etc. Recently, Eysenbach et al. [42]

proposes a regularizer similar to ours but for the different purpose of robust compressed

policies. The theoretical work by Efroni et al. [39] is closest to our setting but concerns

a more restricted set of distractors (ones both uncontrollable and reward-irrelevant).

Unlike Denoised MDP, their proposed algorithm is largely impractical and does not

produce a generative model of observations (i.e., no decoder).

System Identification. Our work is related to system identification, where an

algorithm infers from real world an abstract state among a predefined limited state

space, e.g., pose estimation [131, 175] and material estimation [65]. Such results are

useful for robotic manipulation [110], image generation [57], etc. Our setting is not

limited to a predefined abstract state space, but instead focuses on automatic discovery

of such valuable states.

82

TV Image Green-ness:
Ctrl & Rew

TV Semantic Content:
Ctrl & Rew

Green Button & Light:
Ctrl & Rew

Blocks on Desk:
Ctrl & Rew

Shaky/Flickering Camera & Lights:
Ctrl & Rew

Env.
Rollout

Dreamer

TIA

Denoised
MDP

Reward

Obs.

Recon.

Signal

Recon.

Noise

Signal

Recon.

Noise

<latexit sha1_base64="2Iv/3i2hbQBcJJvODDrynrkogxE=">AAACaHicjVHLSgMxFE3Hd321uhBxEyyCLiwzoqgLQRTBpYJVoR0kk96xwSQzJHekZZgP8Gvc6qf4C36Fae1CrYIXAodzziU5J1EqhUXffyt5Y+MTk1PTM+XZufmFxUp16dommeHQ4IlMzG3ELEihoYECJdymBpiKJNxED6d9/eYRjBWJvsJeCqFi91rEgjN01F2lttlSDDtRlJ8VzRZCF22cG8DM6CKkR3QvONxyLr/uD4aOgmAIamQ4F3fV0narnfBMgUYumbXNwE8xzJlBwSUU5VZmIWX8gd1D00HNFNgwH6Qp6IZj2jROjDsa6YD9upF3/2tkytqeipyzn9H+1PrkXxp21G9SM8P4IMyFTjMEzT/fEGeSYkL79dK2MMBR9hxg3AiXl/IOM4yj+4Rvl1irpXKexBau4OBnnaPgeqce7NX9y93a8cmw6mmyRtbJJgnIPjkm5+SCNAgnT+SZvJDX0rtX8Va81U+rVxruLJNv461/AAe3u44=</latexit>

(E[return] = 519)

<latexit sha1_base64="detSQHFar06ldxZUdWoplWvpw3s=">AAACaHicjVHLSgMxFE3H97vVhYibYBF0YZnxvRFEEVwqWBXaQTLpnTaYZIbkjrQM8wF+jVv9FH/BrzCtXfgELwQO55xLck6iVAqLvv9a8kZGx8YnJqemZ2bn5hfKlcVrm2SGQ50nMjG3EbMghYY6CpRwmxpgKpJwE92f9vWbBzBWJPoKeymEirW1iAVn6Ki7cnWjqRh2oig/KxpNhC7aODeAmdFFSI/o7s7+pnP5NX8w9CcIhqBKhnNxVyltNVsJzxRo5JJZ2wj8FMOcGRRcQjHdzCykjN+zNjQc1EyBDfNBmoKuO6ZF48S4o5EO2M8befe/Rqas7anIOfsZ7XetT/6lYUf9JjUyjA/DXOg0Q9D84w1xJikmtF8vbQkDHGXPAcaNcHkp7zDDOLpP+HKJtVoq50ls4QoOvtf5E1xv14K9mn+5Wz0+GVY9SVbJGtkgATkgx+ScXJA64eSRPJFn8lJ688resrfyYfVKw50l8mW8tXcD9buM</latexit>

(E[return] = 436)

<latexit sha1_base64="ftE/OHSJy3ovK5tqHIptkB9eUHM=">AAACaHicjVHLSgMxFE3H97vqQsRNaBF0YZkRXxtBFMGlgtVCO0gmvWODSWZI7ohlmA/wa9zqp/gLfoVp7UJbBS8EDuecS3JOolQKi77/XvLGxicmp6ZnZufmFxaXyssrNzbJDIc6T2RiGhGzIIWGOgqU0EgNMBVJuI0eznr67SMYKxJ9jd0UQsXutYgFZ+iou3J1q6UYdqIoPy+aLYQntHFuADOji5Ae04Pdo23n8mt+f+goCAagSgZzebdc2mm1E54p0Mgls7YZ+CmGOTMouIRitpVZSBl/YPfQdFAzBTbM+2kKuumYNo0T445G2me/b+RP/zUyZW1XRc7Zy2iHtR75l4Yd9ZvUzDA+CnOh0wxB8683xJmkmNBevbQtDHCUXQcYN8LlpbzDDOPoPuHHJdZqqZwnsYUrOBiucxTc7NaC/Zp/tVc9OR1UPU02SIVskYAckhNyQS5JnXDyTF7IK3krfXhlb81b/7J6pcHOKvkxXuUTCZu7jw==</latexit>

(E[return] = 628)

Robot Joints:
Ctrl & Rew

Figure 4-4: Visualization of learned models for RoboDesk by using decoders to reconstruct from
encoded latents. For TIA and Denoised MDP, we visualize how they separate information as
signal versus noise. In each row, what changes over frames is the information modeled by
the corresponding latent component. E.g., in the bottom row, only the TV content, camera
pose and lighting condition change, so Denoised MDP considers these factors as noises, while
modelling the TV hue as signal. See our website for clearer video visualizations.

4.5 Experiments

In this section, we contrast our method with existing approaches on environments

with image observations and many distinct types of noise distractors. Our experiments

are designed to include a variety of noise distractors and to confirm our analysis on

various methods in Section 4.2.3.

Environments. We choose DeepMind Control (DMC) Suite [159] (Section 4.5.2) and

RoboDesk [86] (Section 4.5.1) with image observations, where we explore adding various

noise distractors. Information types in all evaluated environments are categorized

in Table C.1 of the appendix. Tasks include control (policy optimization) and a

non-control task of regressing robot joint position from RoboDesk image observations.

83

https://ssnl.github.io/denoised_mdp/#signal-noise-factorization

Methods. We compare not only model-based RL methods, but also model-free

algorithms and general representation learning approaches, when the task is suited:

• Model Learning: Denoised MDP (our method), Dreamer [63], and TIA [45];

• Model-Free: DBC [176], CURL [97], PI-SAC [?], and SAC on true state-space

[61] (instead of using image observations, this is roughly an “upper bound”);

• General Image Representation Learning for Non-Control Tasks: Con-

trastive learning with the Alignment+Uniformity loss [168] (a form of contrastive

loss theoretically and empirically comparable to the popular InfoNCE loss [119]).

Model-learning methods can be used in combination with any policy optimization

algorithm. For a complete comparison for general control, we compare the models

trained with these two policy learning choices: (1) backpropagating via the learned

dynamics and (2) SAC on the learned latent space (which roughly recovers SLAC [99]

when used with an unfactorized model such as Dreamer).

Most compared methods do not apply data augmentations, which is known to

strongly boost performance [174, 98]. Therefore, for a fair comparison, we run PI-

SAC without augmentation to highlight its main contribution—representation of only

predictive information.

All results are aggregated from 5 runs, showing mean and standard deviations.

The appendix contains more details, hyperparameter studies, and additional results.

Our website presents videos showing clearer video visualizations.

For Denoised MDP, we use the Figure 4-2b variant. Empirically, the Figure 4-2c

variant leads to longer training time and sometimes inferior performance (perhaps

due to having to optimize extra components and fit a more complex model). The

appendix provides a comparison between them.

4.5.1 RoboDesk with Various Noise Distractors

We augment RoboDesk environment with many noise distractors that models realistic

noises (e.g., flickering lights and shaky camera). Most importantly, we place a large

84

TV in the scene, which plays natural RGB videos. A green button on the desk controls

the TV’s hue (and a light on the desk). The agent is tasked with using this button

to shift the TV to a green hue. Its reward is directly affected by how green the TV

image is. The first row of Figure 4-4 shows a trajectory with various distractors

annotated. All four types of information exist (see Table C.1), with the controllable

and reward-relevant information being the robot arm, the green button, the light on

the desk, and the TV screen green-ness.

Only Denoised MDP learns a clean denoised model. Using learned decoders,

Figure 4-4 visualizes how the models captures various information. As expected,

Dreamer model captures all information. TIA also fails to separate any noise distractors

out (the Noise row fails to capture anything), likely due to its limited ability to model

different noises. In contrast, Denoised MDP cleanly extracts all controllable and

reward-relevant information as signals—the Signal row only tracks changes in robot

arms, green button and light, and the TV screen green-ness. All other information is

modeled as noises (see the Noise row). We recommend viewing video visualizations on

our website.

Denoised models improve policy learning. Figure 4-4 also shows the total

episode return achieved by policies learned with each of the three models, where

the cleanest model from Denoised MDP achieves the best performance. Aggregating

over 5 runs, the complete comparison in Figure 4-5 shows that Denoised MDP (with

backpropagating via dynamics) generally outperforms all baselines, suggesting that

its clean models are helpful for control.

Denoised models benefit non-control tasks. We evaluate the learned represen-

tations on a supervised non-control task—regressing the robot arm joint position from

observed images. Using various pretrained encoders, we finetune on a labeled training

set, and measure mean squared error (MSE) on a heldout test set. In addition to RL

methods, we compare encoders learned via general contrastive learning on the same

amount of data. In Figure 4-6, Denoised MDP representations lead to best converged

85

https://ssnl.github.io/denoised_mdp/#signal-noise-factorization

Joint Position Regression
Final Test MSE vs. Training Set Size

Joint Position Regression
Learning Curve for |Train Set|=104

State-Space SAC with Modified Reward

Figure 4-5: Policy optimization on RoboDesk.
We give state-space SAC a less noisy reward
so it can learn (see appendix).

Figure 4-6: Performance of finetuning various
encoders to infer joint position from RoboDesk
image observation.

Policy Learning: Backprop via Dynamics Policy Learning: SAC (Latent-Space)
DBC

PI-SAC
(No Aug.)

CURL
(Use Aug.)

State-Space SAC
(Upper Bound)

Denoised MDP TIA Dreamer Denoised MDP TIA Dreamer

Noiseless 801.4 ± 96.6 769.7 ± 97.1 848.6 ± 137.1 587.1 ± 98.7 480.2 ± 125.5 575.4 ± 146.2 297.4 ± 72.5 246.4 ± 56.6 417.3 ± 183.2 910.3 ± 28.2

Video Background 597.7 ± 117.8 407.1 ± 225.4 227.8 ± 102.7 309.8 ± 153.0 318.1 ± 123.7 188.7 ± 78.2 188.0 ± 67.4 131.7 ± 20.1 478.0 ± 113.5 910.3 ± 28.2

Video Background
+ Noisy Sensor 563.1 ± 143.0 261.2 ± 200.4 212.4 ± 89.7 288.2 ± 123.4 197.3 ± 124.2 218.2 ± 58.1 79.9 ± 36.0 152.5 ± 12.6 354.3 ± 119.9 919.8 ± 100.7

Video Background
+ Camera Jittering 254.1 ± 114.2 151.7 ± 160.5 98.6 ± 27.7 186.8 ± 47.7 126.5 ± 125.6 105.2 ± 33.8 68.0 ± 38.4 91.6 ± 7.6 390.4 ± 64.9 910.3 ± 28.2

Table 4.1: DMC policy optimization results. For each variant, we aggregate performance
across three tasks (Cheetah Run, Walker Walk, Reacher Easy) by averaging. Denoised MDP
performs well across all four variants with distinct noise types. Bold numbers show the
best model-learning result for specific policy learning choices, or the best overall result. On
Camera Jittering, Denoised MDP greatly outperforms all other methods except for CURL,
which potentially benefits from its specific data augmentation choice (random crop) on this
task, and can be seen as using extra information (i.e., knowing the noise distractor form). In
fact, Denoised MDP is the only method that consistently performs well across all tasks and
noise variants, which can be seen from the full results in the appendix.

solutions across a wide range of training set sizes, achieve faster training, and avoid

overfitting when the training set is small. DBC, CURL and PI-SAC encoders, which

take in stacked frames, are not directly comparable and thus absent from Figure 4-6.

In the appendix, we compare them with running Denoised MDP encoder on each frame

and concatenating the output features, where Denoised MDP handily outperforms

both DBC and CURL by a large margin.

4.5.2 DeepMind Control Suite (DMC)

To evaluate a diverse set of noise distractors, we consider four variants for each DMC

task (see Figure 4-7 top row):

86

Env.
Rollout

TIA

Denoised
MDP

Reward

Obs.

Signal

Noise

Signal

Noise

Cheetah Run
Noiseless

Reacher Easy
Video Background

Walker Walk
Video Background

+ Noisy Sensor

Cheetah Run
Video Background
+ Camera Jittering

Figure 4-7: Visualization of the different DMC variants and factorizations learned by TIA and
Denoised MDP. E.g., bottom Noise row often shows a static agent but varying background,
indicating that only the background is modeled as noises in Denoised MDP. Visualizations
of full reconstructions are in appendix. See our website for clearer video visualizations.

• Noiseless: Original environment without distractors.

• Video Background: Replacing noiseless background with natural videos [176]

(Ctrl + Rew).

• Video Background + Sensor Noise: Imperfect sensors sensitive to intensity

of a background patch (Ctrl + Rew).

• Video Background + Camera Jittering: Shifting the observation by a

smooth random walk (Ctrl + Rew).

Denoised MDP consistently removes noise distractors. In Figure 4-7, TIA

struggles to learn clean separations in many settings. Consistent with analysis in

Section 4.2.3, it cannot handle Sensor Noise or Camera Jittering, as the former is

reward-relevant noise that it cannot model, and the latter (although reward-irrelevant)

cannot be represented by masking. Furthermore, it fails on Reacher Easy with Video

Background, where the reward is given by the distance between the agent and a

randomly-located ball. TIA encourages its noise latent to be independent of reward,

but does not prevent it from capturing the controllable agent. These failures lead to

87

https://ssnl.github.io/denoised_mdp/#signal-noise-factorization

either TIA trying to model everything as useful signals, or a badly-fit model (e.g.,

wrong agent pose in the last column). In contrast, Denoised MDP separates out noise

in all cases, obtaining a clean and accurate MDP (its Signal rows only have the agent

moving).

Denoised models consistently improve policy learning. We evaluate the

learned policies in Table 4.1, where results are aggregated by the noise distractor

variant. Other methods, while sometimes handling certain noise types well, struggle to

deal with all four distinct variants. TIA, as expected, greatly underperforms Denoised

MDP under Noisy Sensor or Camera Jittering. CURL, whose augmentation

choice potentially helps handling Camera Jittering, underperforms in other three

variants. In contrast, Denoised MDP policies consistently perform well for all noisy

variants and also the noiseless setting, regardless of the policy optimizer.

Model-based approaches have a significant lead over the model-free ones, as seen

from the DBC results in Table 4.1 and the well-known fact that direct model-free

learning on raw image observations usually fails [98, 93, 174]. These results show that

learning in a world model is useful, and that learning in a denoised world model is

even better.

4.6 Implications

In this work we explore learning denoised and compressed world models in the presence

of environment noises.

As a step towards better understanding of such noises, we categorize of information

in the wild into four types (Section 4.2). This provides a framework to contrast

and understand various methods, highlighting where they may be successful and

where they will suffer (Section 4.2.3). Insights gained this way empirically agrees

with findings from extensive experiments (Section 4.5). It can potentially assist

better algorithm design and analysis of new MDP representation methods, as we have

done in designing Denoised MDP (Section 4.3). We believe that this categorization

88

will be a useful framework for investigation on learning under noises, revealing not

just the (conceptual) success scenarios, but also the failure scenarios at the same

time. Additionally, the framework can be readily extended with more sophisticated

factorizations (Section 4.2.4), which can lead to corresponding Denoised MDP variants

and/or new algorithms.

Based on the framework, our proposed Denoised MDP novelly can remove all

noise distractors that are uncontrollable or reward-irrelevant, in distinction to prior

works. Empirically, it effectively identifies and removes a diverse set of noise types,

obtaining clean denoised world models (Section 4.5). It may serve as an important step

towards efficient learning of general tasks in the noisy real world. Our experiments also

highlight benefits of cleanly denoised world models on both standard control tasks as

well as non-control tasks. The success in both cases highlights the general usefulness

of such models. Given the generality of MDPs, this opens up the possibility of casting

non-RL tasks as MDPs and automatically learn representations from denoised world

models, as an alternative to manual feature engineering.

89

90

Appendix A

Proofs, Details, and Additional

Discussions for Chapter 2

A.1 Proofs and Additional Theoretical Analysis

In this section, we present proofs for propositions and theorems in main paper

Sections 2.4.1 and 2.4.2.

The propositions in Section 2.4.1 illustrate the deep relations between the Gaussian

kernel 𝐺𝑡 : 𝒮𝑑 ×𝒮𝑑 → R and the uniform distribution on the unit hypersphere 𝒮𝑑. As

we will show below in Appendix A.1.1, these properties directly follow well-known

results on strictly positive definite kernels.

In Appendix A.1.2, we present a proof for Theorem 2.4.7. Theorem 2.4.7 describes

the asymptotic behavior of ℒcontrastive as the number of negative samples 𝑀 approaches

infinity. The theorem is strongly related to empirical contrastive learning, given

an error term (deviation from the limit) decaying in 𝒪(𝑀−1/2) and that empirical

practices often use a large number of negatives (e.g., 𝑀 = 65536 in He et al. [70]) based

on the observation that using more negatives consistently leads to better representation

quality [171, 153, 70]. Our proof further reveals connections between ℒcontrastive and

ℒuniform which is defined via the Gaussian kernel.

Finally, also in Appendix A.1.2, we present a weaker result on the setting where

only a single negative is used in ℒcontrastive (i.e., 𝑀 = 1).

91

A.1.1 Proofs for Section 2.4.1 and Properties of ℒuniform

To prove Proposition 2.4.2 and 2.4.4, we utilize the strict positive definiteness [13, 142]

of the Gaussian kernel 𝐺𝑡:

𝐺𝑡(𝑢, 𝑣) , 𝑒−𝑡‖𝑢−𝑣‖
2
2 = 𝑒2𝑡·𝑢

T𝑣−2𝑡, 𝑡 > 0.

From there, we apply a known result about such kernels, from which the two proposi-

tions directly follow.

Definition A.1.1 (Strict positive definiteness [13, 142]). A symmetric and lower

semi-continuous kernel 𝐾 on 𝐴×𝐴 (where 𝐴 is infinite and compact) is called strictly

positive definite if for every finite signed Borel measure 𝜇 supported on 𝐴 whose

energy

𝐼𝐾 [𝜇] ,
∫︁
𝒮𝑑

∫︁
𝒮𝑑
𝐾(𝑢, 𝑣) d𝜇(𝑣) d𝜇(𝑢)

is well defined, we have 𝐼𝐾 [𝜇] ≥ 0, where equality holds only if 𝜇 ≡ 0 on the 𝜎-algebra

of Borel subsets of 𝐴.

Definition A.1.2. Let ℳ(𝒮𝑑) be the set of Borel probability measures on 𝒮𝑑.

We are now in the place to apply the following two well-known results, which

we present by restating Proposition 4.4.1, Theorem 6.2.1 and Corollary 6.2.2 of

Borodachov et al. [17] in weaker forms. We refer readers to Borodachov et al. [17] for

their proofs.

Lemma A.1.3 (Strict positive definiteness of 𝐺𝑡). For 𝑡 > 0, the Gaussian

kernel 𝐺𝑡(𝑢, 𝑣) , 𝑒−𝑡‖𝑢−𝑣‖
2
2 = 𝑒2𝑡·𝑢

T𝑣−2𝑡 is strictly positive definite on 𝒮𝑑 × 𝒮𝑑.

Lemma A.1.4 (Strictly positive definite kernels on 𝒮𝑑). Consider kernel𝐾𝑓 : 𝒮𝑑×

𝒮𝑑 → (−∞,+∞] of the form,

𝐾𝑓 (𝑢, 𝑣) , 𝑓(‖𝑢− 𝑣‖22). (A.1)

If 𝐾𝑓 is strictly positive definite on 𝒮𝑑 × 𝒮𝑑 and 𝐼𝐾𝑓 [𝜎𝑑] is finite, then 𝜎𝑑 is the

unique measure (on Borel subsets of 𝒮𝑑) in the solution of min𝜇∈ℳ(𝒮𝑑) 𝐼𝐾𝑓 [𝜇], and the

92

normalized counting measures associated with any 𝐾𝑓 -energy minimizing sequence of

𝑁 -point configurations on 𝒮𝑑 converges weak* to 𝜎𝑑.

In particular, this conclusion holds whenever 𝑓 has the property that −𝑓 ′(𝑡) is

strictly completely monotone on (0, 4] and 𝐼𝐾𝑓 [𝜎𝑑] is finite.

We now recall Propositions 2.4.2 and 2.4.4.

Proposition 2.4.2. 𝜎𝑑 is the unique solution (on Borel subsets of 𝒮𝑑) of

min
𝜇∈ℳ(𝒮𝑑)

𝐼𝐺𝑡 [𝜇] = min
𝜇∈ℳ(𝒮𝑑)

∫︁
𝒮𝑑

∫︁
𝒮𝑑
𝐺𝑡(𝑢, 𝑣) d𝜇(𝑣) d𝜇(𝑢). (A.2)

Proof of Proposition 2.4.2. This is a direct consequence of Lemmas A.1.3 and A.1.4.

Proposition 2.4.4. For each 𝑁 > 0, the 𝑁 point minimizer of the average pairwise

potential is

u*
𝑁 = arg min

𝑢1,𝑢2,...,𝑢𝑁∈𝒮𝑑

∑︁
1≤𝑖<𝑗≤𝑁

𝐺𝑡(𝑢𝑖, 𝑢𝑗).

The normalized counting measures associated with the {u*
𝑁}∞𝑁=1 sequence converge

weak* to 𝜎𝑑.

Proof of Proposition 2.4.4. This is a direct consequence of Lemmas A.1.3 and A.1.4.

More Properties of ℒuniform

Range of ℒuniform. It’s not obvious what the optimal value of ℒuniform is. In the

following proposition, we characterize the exact range of the expected Gaussian

potential and how it evolves as dimensionality increases. The situation for ℒuniform

directly follows as a corollary.

Proposition A.1.5 (Range of the expected pairwise Gaussian potential 𝐺𝑡).

For 𝑡 > 0, the expected pairwise Gaussian potential w.r.t. Borel probability measure

𝜇 ∈ ℳ(𝒮𝑑)

𝐼𝐺𝑡 [𝜇] =

∫︁
𝒮𝑑

∫︁
𝒮𝑑
𝐺𝑡(𝑢, 𝑣) d𝜇(𝑣) d𝜇(𝑢)

93

has range [𝑒−2𝑡
0𝐹 1(;

𝑑+1
2

; 𝑡2), 1], where 0𝐹 1 is the confluent hypergeometric limit

function defined as

0𝐹 1(;𝛼; 𝑧) ,
∞∑︁
𝑛=0

𝑧𝑛

(𝛼)𝑛𝑛!
, (A.3)

where we have used the Pochhammer symbol

(𝑎)𝑛 =

⎧⎪⎨⎪⎩1 if 𝑛 = 0

𝑎(𝑎+ 1)(𝑛+ 2) . . . (𝑎+ 𝑛− 1) if 𝑛 ≥ 1.

We have

• The minimum 𝑒−2𝑡
0𝐹 1(;

𝑑+1
2

; 𝑡2) is achieved iff 𝜇 = 𝜎𝑑 (on Borel subsets of 𝒮𝑑).

Furthermore, this value strictly decreases as 𝑑 increases, converging to 𝑒−2𝑡 in

the limit of 𝑑→ ∞.

• The maximum is achieved iff 𝜇 is a Dirac delta distribution, i.e., 𝜇 = 𝛿𝑢 (on

Borel subsets of 𝒮𝑑), for some 𝑢 ∈ 𝒮𝑑.

Proof of Proposition A.1.5.

• Minimum.

We know from Proposition 2.4.2 that 𝜎𝑑 uniquely achieves the minimum, given

by the following integral ratio

𝐼𝐺𝑡 [𝜎𝑑] =

∫︀ 𝜋
0
𝑒−𝑡(2 sin

𝜃
2
)2 sin𝑑−1 𝜃 d𝜃∫︀ 𝜋

0
sin𝑑−1 𝜃 d𝜃

=

∫︀ 𝜋
0
𝑒−2𝑡(1−cos 𝜃) sin𝑑−1 𝜃 d𝜃∫︀ 𝜋

0
sin𝑑−1 𝜃 d𝜃

= 𝑒−2𝑡

∫︀ 𝜋
0
𝑒2𝑡 cos 𝜃 sin𝑑−1 𝜃 d𝜃∫︀ 𝜋
0

sin𝑑−1 𝜃 d𝜃
.

The denominator, with some trigonometric identities, can be more straightfor-

wardly evaluated as ∫︁ 𝜋

0

sin𝑑−1 𝜃 d𝜃 =
√
𝜋

Γ(𝑑
2
)

Γ(𝑑+1
2

)
.

94

The numerator is

∫︁ 𝜋

0

𝑒2𝑡 cos 𝜃 sin𝑑−1 𝜃 d𝜃 = −
∫︁ 𝜋

0

𝑒2𝑡 cos 𝜃 sin𝑑−2 𝜃 cos′ 𝜃 d𝜃

=

∫︁ 1

−1

𝑒2𝑡𝑠(1 − 𝑠2)𝑑/2−1 d𝑠

=
Γ(𝑑−1

2
+ 1

2
)
√
𝜋

Γ(𝑑−1
2

+ 1) 0𝐹 1(;
𝑑− 1

2
+ 1;−1

4
(−2𝑖𝑡)2)

=
Γ(𝑑

2
)
√
𝜋

Γ(𝑑+1
2

) 0𝐹 1(;
𝑑+ 1

2
; 𝑡2),

where we have used the following identity based on the Poisson formula for

Bessel functions and the relationship between 0𝐹 1 and Bessel functions:

∫︁ 1

−1

𝑒𝑖𝑧𝑠(1 − 𝑠2)𝜈−
1
2 d𝑠 =

Γ(𝜈 + 1
2
)
√
𝜋

(𝑧
2
)𝜈

𝐽𝜈(𝑧) =
Γ(𝜈 + 1

2
)
√
𝜋

Γ(𝜈 + 1) 0𝐹 1(; 𝜈 + 1;−1

4
𝑧2).

Putting both together, we have

𝐼𝐺𝑡 [𝜎𝑑] = 𝑒−2𝑡

∫︀ 𝜋
0
𝑒2𝑡 cos 𝜃 sin𝑑−1 𝜃 d𝜃∫︀ 𝜋
0

sin𝑑−1 𝜃 d𝜃

= 𝑒−2𝑡

Γ(𝑑
2
)
√
𝜋

Γ(𝑑+1
2

) 0𝐹 1(;
𝑑+1
2

; 𝑡2)

√
𝜋

Γ(𝑑
2
)

Γ(𝑑+1
2

)

= 𝑒−2𝑡
0𝐹 1(;

𝑑+ 1

2
; 𝑡2)

= 𝑒−2𝑡

∞∑︁
𝑛=0

𝑡2𝑛

(𝑑+1
2

)𝑛𝑛!
,

where we have used the definition of 0𝐹 1 in Equation (A.3) to expand the

formula.

Notice that each summand strictly decreases as 𝑑→ ∞. So must the total sum.

For the asymptotic behavior at 𝑑→ ∞, it only remains to show that

lim
𝑑→∞

∞∑︁
𝑛=0

𝑡2𝑛

(𝑑+1
2

)𝑛𝑛!
= 1. (A.4)

95

For the purpose of applying the Dominated Convergence Theorem (DCT) (on

the counting measure). We consider the following summable series

∞∑︁
𝑛=0

𝑡2𝑛

𝑛!
= 𝑒𝑡

2

,

with each term bounding the corresponding one in Equation (A.4):

𝑡2𝑛

𝑛!
≥ 𝑡2𝑛

(𝑑+1
2

)𝑛𝑛!
, ∀𝑛 ≥ 0, 𝑑 > 0.

Thus,

lim
𝑑→∞

∞∑︁
𝑛=0

𝑡2𝑛

(𝑑+1
2

)𝑛𝑛!
=

∞∑︁
𝑛=0

lim
𝑑→∞

𝑡2𝑛

(𝑑+1
2

)𝑛𝑛!
= 1 + 0 + 0 + · · · = 1.

Hence, the asymptotic lower range is 𝑒−2𝑡.

• Maximum.

Obviously, Dirac delta distributions 𝛿𝑢, 𝑢 ∈ 𝒮𝑑 would achieve a maximum of 1.

We will now show that all Borel probability measures 𝜇 s.t. 𝐼𝐺𝑡 [𝜇] = 1 are delta

distributions.

Suppose that such a 𝜇 is not a Dirac delta distribution. Then, we can take distinct

𝑥, 𝑦 ∈ supp(𝜇) ⊆ 𝒮𝑑, and open neighborhoods around 𝑥 and 𝑣, 𝑁𝑥, 𝑁𝑦 ∈ 𝒮𝑑

such that they are small enough and disjoint:

𝑁𝑥 , {𝑢 ∈ 𝒮𝑑 : ‖𝑢− 𝑥‖2 <
1

3
‖𝑥− 𝑦‖2}

𝑁𝑦 , {𝑢 ∈ 𝒮𝑑 : ‖𝑢− 𝑦‖2 <
1

3
‖𝑥− 𝑦‖2}.

96

Then,

𝐼𝐺𝑡 [𝜇] =

∫︁
𝒮𝑑

∫︁
𝒮𝑑
𝐺𝑡(𝑢, 𝑣) d𝜇(𝑣) d𝜇(𝑢)

=

∫︁
𝒮𝑑

∫︁
𝒮𝑑
𝑒−𝑡‖𝑢−𝑣‖

2
2 d𝜇(𝑣) d𝜇(𝑢)

≤ (1 − 2𝜇(𝑁𝑥)𝜇(𝑁𝑦))𝑒
−𝑡·0 + 2

∫︁
𝑁𝑥

∫︁
𝑁𝑦

𝑒−𝑡‖𝑢−𝑣‖
2
2 d𝜇(𝑣) d𝜇(𝑢)

< 1 − 2𝜇(𝑁𝑥)𝜇(𝑁𝑦) + 2𝜇(𝑁𝑥)𝜇(𝑁𝑦)𝑒
−𝑡(‖𝑥−𝑦‖2/3)2

= 1 − 2𝜇(𝑁𝑥)𝜇(𝑁𝑦)(1 − 𝑒−
𝑡
9
‖𝑥−𝑦‖22)

< 1.

Hence, only Dirac delta distributions attain the maximum.

Corollary A.1.6 (Range of ℒuniform). For encoder 𝑓 : R𝑛 → 𝒮𝑚−1, ℒuniform(𝑓 ; 𝑡) ∈

[−2𝑡 + log 0𝐹 1(;
𝑚
2

; 𝑡2), 0], where the lower bound −2𝑡 + log 0𝐹 1(;
𝑚
2

; 𝑡2) is achieved

only by perfectly uniform encoders 𝑓 , and the upper bound 0 is achieved only by

degenerate encoders that output a fixed feature vector almost surely.

Furthermore, the lower bound strictly decreases as the output dimension 𝑚 in-

creases, attaining the following asymptotic value

lim
𝑚→∞

−2𝑡+ log 0𝐹 1(;
𝑚

2
; 𝑡2) = −2𝑡. (A.5)

Intuition for the optimal ℒuniform value in high dimensions. If we ignore the

log 0𝐹 1(;
𝑚
2

; 𝑡2) term, informally, the optimal value of −2𝑡 roughly says that any pair

of feature vectors on 𝒮𝑑 has distance about
√

2, i.e., are nearly orthogonal to each

other. Indeed, vectors of high dimensions are usually nearly orthogonal, which is also

consistent with the asymptotic result in Equation (A.5).

Figures A-1 and A-2 visualize how 0𝐹 1 and the optimal ℒuniform (given by perfectly

uniform encoders) evolve.

97

��� ��� ��� ��� ���
�

�

�

�

�

�

Figure A-1: Asymptotic behavior of
0𝐹 1(;𝛼; 𝑧). For 𝑧 > 0, as 𝛼 grows larger,
the function converges to 1.

��� ��� ��� ��� ����

-��

-��

-��

-�

Figure A-2: Asymptotic behavior of opti-
mal ℒuniform(𝑓, 𝑡), attained by a perfectly uni-
form encoder 𝑓*. As the feature dimension
𝑚 grows larger, the value converges to −2𝑡.

Lower bound of ℒuniform estimates. In practice, when ℒuniform calculated using

expectation over (a batch of) empirical samples {𝑥𝑖}𝐵𝑖=1, 𝐵 > 1, the range in Corol-

lary A.1.6 is indeed valid, since it bounds over all distributions:

ℒ̂(1)
uniform , log

1

𝐵2

𝐵∑︁
𝑖=1

𝐵∑︁
𝑗=1

𝑒−𝑡‖𝑓(𝑥𝑖)−𝑓(𝑥𝑗)‖
2

> −2𝑡+ log 0𝐹 1(;
𝑚

2
; 𝑡2). (A.6)

However, often ℒuniform is empirically estimated without considering distances between

a vector and itself (e.g., in Figure 2-6 and in our experiment settings as described in

Appendix A.2):

ℒ̂(2)
uniform , log

1

𝐵(𝐵 − 1)

𝐵∑︁
𝑖=1

∑︁
𝑗∈{1,...,𝐵}∖{𝑖}

𝑒−𝑡‖𝑓(𝑥𝑖)−𝑓(𝑥𝑗)‖
2

. (A.7)

While both quantities converge to the correct value in the limit, the lower bound is

not always true for this one, because it is not the expected pairwise Gaussian kernel

based on some distribution. Note the following relation:

ℒ̂(2)
uniform = log

(︃
𝐵 · exp(ℒ̂(1)

uniform) − 1

𝐵 − 1

)︃
.

We can derive a valid lower bound using Equation (A.6): for 0𝐹 1(;
𝑚
2

; 𝑡2) > 𝑒2𝑡

𝐵
,

ℒ̂(2)
uniform > log

(︂
𝐵 · exp(−2𝑡+ log 0𝐹 1(;

𝑚
2

; 𝑡2)) − 1

𝐵 − 1

)︂
= log

(︂
𝐵𝑒−2𝑡

0𝐹 1(;
𝑚
2

; 𝑡2) − 1

𝐵 − 1

)︂
.

98

Since this approaches fails for cases that 0𝐹 1(;
𝑚
2

; 𝑡2) ≤ 𝑒2𝑡

𝐵
, we can combine it with

the naive lower bound −4𝑡, and have

ℒ̂(2)
uniform >

⎧⎪⎨⎪⎩max(−4𝑡, log
(︁
𝐵𝑒−2𝑡

0𝐹 1(;
𝑚
2
;𝑡2)−1

𝐵−1

)︁
) if 0𝐹 1(;

𝑚
2

; 𝑡2) > 𝑒2𝑡

𝐵

−4𝑡 otherwise.

Non-negative versions of ℒuniform for practical uses. By definition, ℒuniform

always non-positive. As shown above, different ℒuniform empirical estimates may admit

different lower bounds. However, in our experience, for reasonably large batch sizes,

adding an offset of 2𝑡 often ensures a non-negative loss that is near zero at optimum.

When output dimensionality 𝑚 is low, it might be useful to add an additional offset of

− log 0𝐹 1(;
𝑚
2

; 𝑡2), which can be computed with the help of the SciPy package function

scipy.special.hyp0f1(m/2, t**2) [164].

A.1.2 Proofs and Additional Results for Section 2.4.2

The following lemma directly follows Theorem 3.3 and Remarks 3.4 (b)(i) of Serfozo

[138]. We refer readers to Serfozo [138] for its proof.

Lemma A.1.7. Let 𝐴 be a compact second countable Hausdorff space. Suppose

1. {𝜇𝑛}∞𝑛=1 is a sequence of finite and positive Borel measures supported on 𝐴 that

converges weak* to some finite and positive Borel measure 𝜇 (which is same as

vague convergence since 𝐴 is compact);

2. {𝑓𝑛}∞𝑛=1 is a sequence of Borel measurable functions that converges continuously

to a Borel measurable 𝑓 ;

3. {𝑓𝑛}𝑛 are uniformly bounded over 𝐴.

Then, we have the following convergence:

lim
𝑛→∞

∫︁
𝑥∈𝐴

𝑓𝑛(𝑥) d𝜇𝑛(𝑥) =

∫︁
𝑥∈𝐴

𝑓(𝑥) d𝜇(𝑥).

We now recall Theorem 2.4.7.

99

Theorem 2.4.7 (Asymptotics of ℒcontrastive). For fixed 𝜏 > 0, as the number of

negative samples 𝑀 → ∞, the (normalized) contrastive loss converges to

lim
𝑀→∞

ℒcontrastive(𝑓 ; 𝜏,𝑀) − log𝑀

= lim
𝑀→∞

E
(𝑥,𝑦)∼𝑝pos

{𝑥−𝑖 }𝑀𝑖=1
i.i.d.∼ 𝑝data

[︃
− log

𝑒𝑓(𝑥)
T𝑓(𝑦)/𝜏

𝑒𝑓(𝑥)T𝑓(𝑦)/𝜏 +
∑︀

𝑖 𝑒
𝑓(𝑥−𝑖)T𝑓(𝑦)/𝜏

]︃
− log𝑀

= −1

𝜏
E

(𝑥,𝑦)∼𝑝pos

[︀
𝑓(𝑥)T𝑓(𝑦)

]︀
+ E

𝑥∼𝑝data

[︂
log E

𝑥−∼𝑝data

[︁
𝑒𝑓(𝑥

−)T𝑓(𝑥)/𝜏
]︁]︂
. (2.2)

We have the following results:

1. The first term is minimized iff 𝑓 is perfectly aligned.

2. If perfectly uniform encoders exist, they form the exact minimizers of the second

term.

3. For the convergence in Equation (2.2), the absolute deviation from the limit

(i.e., the error term) decays in 𝒪(𝑀−1/2).

Proof of Theorem 2.4.7. We first show the convergence stated in Equation (2.2) along

with its speed (result 3), and then the relations between the two limiting terms and

the alignment and uniformity properties (results 1 and 2).

• Proof of the convergence in Equation (2.2) and the 𝒪(𝑀−1/2) decay

rate of its error term (result 3).

Note that for any 𝑥, 𝑦 ∈ R𝑛 and {𝑥−𝑖 }𝑀𝑖=1
i.i.d.∼ 𝑝data, we have, almost surely,

lim
𝑀→∞

log

(︃
1

𝑀
𝑒𝑓(𝑥)

T𝑓(𝑦)/𝜏 +
1

𝑀

𝑀∑︁
𝑖=1

𝑒𝑓(𝑥
−
𝑖)T𝑓(𝑥)/𝜏

)︃
= log E

𝑥−∼𝑝data

[︁
𝑒𝑓(𝑥

−)T𝑓(𝑥)/𝜏
]︁
,

(A.8)

by the strong law of large numbers (SLLN) and the Continuous Mapping

Theorem.

100

Then, we can derive

lim
𝑀→∞

ℒcontrastive(𝑓 ; 𝜏,𝑀) − log𝑀

= E
(𝑥,𝑦)∼𝑝pos

[︀
−𝑓(𝑥)T𝑓(𝑦)/𝜏

]︀
+ lim

𝑀→∞
E

(𝑥,𝑦)∼𝑝pos
{𝑥−𝑖 }𝑀𝑖=1

i.i.d.∼ 𝑝data

[︃
log

(︃
1

𝑀
𝑒𝑓(𝑥)

T𝑓(𝑦)/𝜏 +
1

𝑀

𝑀∑︁
𝑖=1

𝑒𝑓(𝑥
−
𝑖)T𝑓(𝑥)/𝜏

)︃]︃

= E
(𝑥,𝑦)∼𝑝pos

[︀
−𝑓(𝑥)T𝑓(𝑦)/𝜏

]︀
+ E

[︃
lim
𝑀→∞

log

(︃
1

𝑀
𝑒𝑓(𝑥)

T𝑓(𝑦)/𝜏 +
1

𝑀

𝑀∑︁
𝑖=1

𝑒𝑓(𝑥
−
𝑖)T𝑓(𝑥)/𝜏

)︃]︃

= −1

𝜏
E

(𝑥,𝑦)∼𝑝pos

[︀
𝑓(𝑥)T𝑓(𝑦)

]︀
+ E

𝑥∼𝑝data

[︂
log E

𝑥−∼𝑝data

[︁
𝑒𝑓(𝑥

−)T𝑓(𝑥)/𝜏
]︁]︂
,

where we justify the switching of expectation and limit by the convergence stated

in Equation (A.8), the boundedness of 𝑒𝑢T𝑣/𝜏 (where 𝑢, 𝑣 ∈ 𝒮𝑑, 𝜏 > 0), and the

Dominated Convergence Theorem (DCT).

For convergence speed, we have

⃒⃒⃒(︁
lim
𝑀→∞

ℒcontrastive(𝑓 ; 𝜏,𝑀) − log𝑀
)︁
− (ℒcontrastive(𝑓 ; 𝜏,𝑀) − log𝑀)

⃒⃒⃒

=

⃒⃒⃒⃒
⃒⃒⃒⃒ E

(𝑥,𝑦)∼𝑝pos
{𝑥−𝑖 }𝑀𝑖=1

i.i.d.∼ 𝑝data

[︃
log E

𝑥−∼𝑝data

[︁
𝑒𝑓(𝑥

−)T𝑓(𝑥)/𝜏
]︁
− log

(︃
1

𝑀
𝑒𝑓(𝑥)

T𝑓(𝑦)/𝜏 +
1

𝑀

𝑀∑︁
𝑖=1

𝑒𝑓(𝑥
−
𝑖)T𝑓(𝑥)/𝜏

)︃]︃⃒⃒⃒⃒⃒⃒⃒⃒
≤ E

(𝑥,𝑦)∼𝑝pos
{𝑥−𝑖 }𝑀𝑖=1

i.i.d.∼ 𝑝data

[︃⃒⃒⃒⃒
⃒log E

𝑥−∼𝑝data

[︁
𝑒𝑓(𝑥

−)T𝑓(𝑥)/𝜏
]︁
− log

(︃
1

𝑀
𝑒𝑓(𝑥)

T𝑓(𝑦)/𝜏 +
1

𝑀

𝑀∑︁
𝑖=1

𝑒𝑓(𝑥
−
𝑖)T𝑓(𝑥)/𝜏

)︃⃒⃒⃒⃒
⃒
]︃

≤ 𝑒1/𝜏 E
(𝑥,𝑦)∼𝑝pos

{𝑥−𝑖 }𝑀𝑖=1
i.i.d.∼ 𝑝data

[︃⃒⃒⃒⃒
⃒ E
𝑥−∼𝑝data

[︁
𝑒𝑓(𝑥

−)T𝑓(𝑥)/𝜏
]︁
−

(︃
1

𝑀
𝑒𝑓(𝑥)

T𝑓(𝑦)/𝜏 +
1

𝑀

𝑀∑︁
𝑖=1

𝑒𝑓(𝑥
−
𝑖)T𝑓(𝑥)/𝜏

)︃⃒⃒⃒⃒
⃒
]︃

≤ 1

𝑀
𝑒2/𝜏 + 𝑒1/𝜏 E

𝑥,{𝑥−𝑖 }𝑀𝑖=1
i.i.d.∼ 𝑝data

[︃⃒⃒⃒⃒
⃒ E
𝑥−∼𝑝data

[︁
𝑒𝑓(𝑥

−)T𝑓(𝑥)/𝜏
]︁
− 1

𝑀

𝑀∑︁
𝑖=1

𝑒𝑓(𝑥
−
𝑖)T𝑓(𝑥)/𝜏

⃒⃒⃒⃒
⃒
]︃

=
1

𝑀
𝑒2/𝜏 + 𝒪(𝑀−1/2), (A.9)

101

where the first inequality follows the Intermediate Value Theorem and the 𝑒1/𝜏

upper bound on the absolute derivative of log between the two points, and the

last equality follows the Berry-Esseen Theorem given the bounded support of

𝑒𝑓(𝑥
−
𝑖)T𝑓(𝑥)/𝜏 as following: for i.i.d. random variables 𝑌𝑖 with bounded support

⊂ [−𝑎, 𝑎], zero mean and 𝜎2
𝑌 ≤ 𝑎2 variance, we have

E

[︃⃒⃒⃒⃒
⃒ 1

𝑀

𝑀∑︁
𝑖=1

𝑌𝑖

⃒⃒⃒⃒
⃒
]︃

=
𝜎𝑌√
𝑀

E

[︃⃒⃒⃒⃒
⃒ 1√
𝑀𝜎𝑌

𝑀∑︁
𝑖=1

𝑌𝑖

⃒⃒⃒⃒
⃒
]︃

=
𝜎𝑌√
𝑀

∫︁ 𝑎
√
𝑀

𝜎𝑌

0

P

[︃⃒⃒⃒⃒
⃒ 1√
𝑀𝜎𝑌

𝑀∑︁
𝑖=1

𝑌𝑖

⃒⃒⃒⃒
⃒ > 𝑥

]︃
d𝑥

≤ 𝜎𝑌√
𝑀

∫︁ 𝑎
√
𝑀

𝜎𝑌

0

P [|𝒩 (0, 1)| > 𝑥] +
𝐶𝑎√
𝑀

d𝑥 (Berry-Esseen)

≤ 𝜎𝑌√
𝑀

(︂
𝑎𝐶𝑎
𝜎𝑌

+

∫︁ ∞

0

P [|𝒩 (0, 1)| > 𝑥] d𝑥

)︂
=

𝜎𝑌√
𝑀

(︂
𝑎𝐶𝑎
𝜎𝑌

+ E [|𝒩 (0, 1)|]
)︂

≤ 𝐶𝑎√
𝑀

+
𝑎√
𝑀

E [|𝒩 (0, 1)|]

= 𝒪(𝑀−1/2),

where the constant 𝐶𝑎 only depends on 𝑎 (which controls both the second and

the third moment).

• Proof of result 1: The first term is minimized iff 𝑓 is perfectly aligned.

Note that for 𝑢, 𝑣 ∈ 𝒮𝑑,

‖𝑢− 𝑣‖22 = 2 − 2 · 𝑢𝑇𝑣.

Then the result follows directly the definition of perfect alignment, and the

existence of perfectly aligned encoders (e.g., an encoder that maps every input

to the same output vector).

• Proof of result 2: If perfectly uniform encoders exist, they form the

exact minimizers of the second term.

102

For simplicity, we define the following notation:

Definition A.1.8. ∀𝜇 ∈ ℳ(𝒮𝑑), 𝑢 ∈ 𝒮𝑑, we define the continuous and Borel

measurable function

𝑈𝜇(𝑢) ,
∫︁
𝒮𝑑
𝑒𝑢

T𝑣/𝜏 d𝜇(𝑣). (A.10)

with its range bounded in [𝑒−1/𝜏 , 𝑒1/𝜏].

Then the second term can be equivalently written as

E
𝑥∼𝑝data

[︂
log E

𝑥−∼𝑝data

[︁
𝑒𝑓(𝑥

−)T𝑓(𝑥)/𝜏
]︁]︂

= E
𝑥∼𝑝data

[log𝑈𝑝data∘𝑓−1(𝑓(𝑥))] ,

where 𝑝data ∘ 𝑓−1 ∈ ℳ(𝒮𝑑) is the probability measure of features, i.e., the

pushforward measure of 𝑝data via 𝑓 .

We now consider the following relaxed problem, where the minimization is taken

over ℳ(𝒮𝑑), all possible Borel probability measures on the hypersphere 𝒮𝑑:

min
𝜇∈ℳ(𝒮𝑑)

∫︁
𝒮𝑑

log𝑈𝜇(𝑢) d𝜇(𝑢). (A.11)

Our strategy is to show that the unique minimizer of Equation (A.11) is 𝜎𝑑,

from which the result 2 directly follows. The rest of the proof is structured in

three parts.

1. We show that minimizers of Equation (A.11) exist, i.e., the above

infimum is attained for some 𝜇 ∈ ℳ(𝒮𝑑).

Let {𝜇𝑚}∞𝑚=1 be a sequence in ℳ(𝒮𝑑) such that the infimum of Equa-

tion (A.11) is reached in the limit:

lim
𝑚→∞

∫︁
𝒮𝑑

log𝑈𝜇𝑚(𝑢) d𝜇𝑚(𝑢) = inf
𝜇∈ℳ(𝒮𝑑)

∫︁
𝒮𝑑

log𝑈𝜇(𝑢) d𝜇(𝑢).

From the Helly’s Selection Theorem, let 𝜇* denote some weak* cluster point

of this sequence. Then 𝜇𝑚 converges weak* to 𝜇* along a subsequence

103

𝑚 ∈ 𝒩 ∈ N. For simplicity and with a slight abuse of notation, we denote

this convergent (sub)sequence of measures by {𝜇𝑛}∞𝑛=1.

We want to show that 𝜇* attains the limit (and thus the infimum), i.e.,

∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d𝜇*(𝑢) = lim
𝑛→∞

∫︁
𝒮𝑑

log𝑈𝜇𝑛(𝑢) d𝜇𝑛(𝑢). (A.12)

In view of Lemma A.1.7, since 𝒮𝑑 is a compact second countable Hausdorff

space and {log𝑈𝜇𝑛}𝑛 is uniformly bounded over 𝒮𝑑, it remains to prove

that {log𝑈𝜇𝑛}𝑛 is continuously convergent to log𝑈𝜇* .

Consider any convergent sequence of points {𝑥𝑛}∞𝑛=1 ∈ R𝑑+1 s.t. 𝑥𝑛 → 𝑥

where 𝑥 ∈ 𝒮𝑑.

Let 𝛿𝑛 = 𝑥𝑛 − 𝑥. By simply expanding 𝑈𝜇𝑛 and 𝜇𝜇* , we have

𝑒−‖𝛿𝑛‖/𝜏𝑈𝜇𝑛(𝑥) ≤ 𝑈𝜇𝑛(𝑥𝑛) ≤ 𝑒‖𝛿𝑛‖/𝜏𝑈𝜇𝑛(𝑥).

Since both the upper and the lower bound converge to 𝑈𝜇*(𝑥) (by the weak
* convergence of {𝜇𝑛}𝑛 to 𝜇*), 𝑈𝜇𝑛(𝑥𝑛) must as well. We have proved the

continuous convergence of {log𝑈𝜇𝑛}𝑛 to log𝑈𝜇* .

Therefore, the limit in Equation (A.12) holds. The infimum is thus attained

at 𝜇*:

lim
𝑛→∞

∫︁
𝑢

log𝑈𝜇𝑛(𝑢) d𝜇𝑛 =

∫︁
𝑢

log𝑈𝜇*(𝑢) d𝜇*.

2. We show that 𝑈𝜇* is constant 𝜇*-almost surely for any minimizer

𝜇* of Equation (A.11).

Let 𝜇* be any solution of Equation (A.11):

𝜇* ∈ arg min
𝜇∈ℳ(𝒮𝑑)

∫︁
𝑢

log𝑈𝜇(𝑢) d𝜇.

Consider the Borel sets where 𝜇* has positive measure: 𝒯 , {𝑇 ∈

ℬ(𝒮𝑑) : 𝜇*(𝑇) > 0}. For any 𝑇 ∈ 𝒯 , let 𝜇*
𝑇 denote the conditional distribu-

104

tion of 𝜇* on 𝑇 , i.e., ∀𝐴 ∈ ℬ(𝒮𝑑),

𝜇*
𝑇 (𝐴) =

𝜇*(𝐴 ∩ 𝑇)

𝜇*(𝑇)
.

Note that for any such 𝑇 ∈ 𝒯 , the mixture (1 − 𝛼)𝜇* + 𝛼𝜇*
𝑇 is a valid

probability distribution (i.e., in ℳ(𝒮𝑑)) for 𝛼 ∈ (−𝜇*(𝑇), 1), an open

interval containing 0.

By the first variation, we must have

0 =
𝜕

𝜕𝛼

∫︁
𝒮𝑑

log𝑈(1−𝛼)𝜇*+𝛼𝜇*𝑇 (𝑢) d((1 − 𝛼)𝜇* + 𝛼𝜇*
𝑇)(𝑢)

⃒⃒⃒⃒
𝛼=0

=
𝜕

𝜕𝛼
(1 − 𝛼)

∫︁
𝒮𝑑

log𝑈(1−𝛼)𝜇*+𝛼𝜇*𝑇 (𝑢) d𝜇*(𝑢)

⃒⃒⃒⃒
𝛼=0

+
𝜕

𝜕𝛼
𝛼

∫︁
𝒮𝑑

log𝑈(1−𝛼)𝜇*+𝛼𝜇*𝑇 (𝑢) d𝜇*
𝑇 (𝑢)

⃒⃒⃒⃒
𝛼=0

= −
∫︁
𝒮𝑑

log𝑈(1−𝛼)𝜇*+𝛼𝜇*𝑇 (𝑢) d𝜇*(𝑢)

⃒⃒⃒⃒
𝛼=0

+
𝜕

𝜕𝛼

∫︁
𝒮𝑑

log𝑈(1−𝛼)𝜇*+𝛼𝜇*𝑇 (𝑢) d𝜇*(𝑢)

⃒⃒⃒⃒
𝛼=0

+

∫︁
𝒮𝑑

log𝑈(1−𝛼)𝜇*+𝛼𝜇*𝑇 (𝑢) d𝜇*
𝑇 (𝑢)

⃒⃒⃒⃒
𝛼=0

+ 0 · 𝜕
𝜕𝛼

∫︁
𝒮𝑑

log𝑈(1−𝛼)𝜇*+𝛼𝜇*𝑇 (𝑢) d𝜇*
𝑇 (𝑢)

⃒⃒⃒⃒
𝛼=0

= −
∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d𝜇*(𝑢) +

∫︁
𝒮𝑑

𝑈𝜇*𝑇 (𝑢) − 𝑈𝜇*(𝑢)

𝑈𝜇*(𝑢)
d𝜇*(𝑢)

+

∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d𝜇*
𝑇 (𝑢) + 0 ·

∫︁
𝒮𝑑

𝑈𝜇*𝑇 (𝑢) − 𝑈𝜇*(𝑢)

𝑈𝜇*(𝑢)
d𝜇*

𝑇 (𝑢)

=

∫︁
𝒮𝑑

𝑈𝜇*𝑇 (𝑢)

𝑈𝜇*(𝑢)
d𝜇*(𝑢) +

∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d(𝜇*
𝑇 − 𝜇*)(𝑢) − 1, (A.13)

where the Leibniz rule along with the boundedness of 𝑈𝜇* and 𝑈𝜇*𝑇𝑛 together

justify the exchanges of integration and differentiation.

Let {𝑇𝑛}∞𝑛=1 be a sequence of sets in 𝒯 such that

lim
𝑛→∞

∫︁
𝒮𝑑
𝑈𝜇*(𝑢) d𝜇*

𝑇𝑛(𝑢) = sup
𝑇∈𝒯

∫︁
𝒮𝑑
𝑈𝜇*(𝑢) d𝜇*

𝑇 (𝑢) , 𝑈*,

where the supremum must exist since 𝑈𝜇* is bounded above.

Because 𝑈𝜇* is a continuous and Borel measurable function, we have

105

{𝑢 : 𝑈𝜇*(𝑢) > 𝑈*} ∈ ℬ(𝒮𝑑) and thus

𝜇*({𝑢 : 𝑈𝜇*(𝑢) > 𝑈*}) = 0,

𝜇*
𝑇𝑛({𝑢 : 𝑈𝜇*(𝑢) > 𝑈*}) = 0, ∀𝑛 = 1, 2, . . . ,

otherwise {𝑢 : 𝑈𝜇*(𝑢) > 𝑈*} ∈ 𝒯 , contradicting the definition of 𝑈* as the

supremum.

Asymptotically, 𝑈𝜇* is constant 𝜇*
𝑇𝑛

-almost surely:

∫︁
𝒮𝑑

⃒⃒⃒⃒
𝑈𝜇*(𝑢) −

∫︁
𝒮𝑑
𝑈𝜇*(𝑢′) d𝜇*

𝑇𝑛(𝑢′)

⃒⃒⃒⃒
d𝜇*

𝑇𝑛(𝑢)

= 2

∫︁
𝒮𝑑

max

(︂
0, 𝑈𝜇*(𝑢) −

∫︁
𝒮𝑑
𝑈𝜇*(𝑢′) d𝜇*

𝑇𝑛(𝑢′)

)︂
d𝜇*

𝑇𝑛(𝑢)

≤ 2(𝑈* −
∫︁
𝒮𝑑
𝑈𝜇*(𝑢) d𝜇*

𝑇𝑛(𝑢))

→ 0, as 𝑛→ ∞,

where the inequality follows the boundedness of 𝑈𝜇* and that 𝜇*
𝑇𝑛

({𝑢 : 𝑈𝜇*(𝑢) >

𝑈*}) = 0.

Therefore, given the continuity of log and the boundedness of 𝑈𝜇* , we have

lim
𝑛→∞

∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d𝜇*
𝑇𝑛 = log𝑈*.

Equation (A.13) gives that ∀𝑛 = 1, 2, . . . ,

1 =

∫︁
𝒮𝑑

𝑈𝜇*𝑇𝑛 (𝑢)

𝑈𝜇*(𝑢)
d𝜇* +

∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d(𝜇*
𝑇𝑛 − 𝜇*)

≥ 1

𝑈*

∫︁
𝒮𝑑
𝑈𝜇*𝑇𝑛 (𝑢) d𝜇*(𝑢) +

∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d𝜇*
𝑇𝑛 −

∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d𝜇*

=
1

𝑈*

∫︁
𝒮𝑑
𝑈𝜇*(𝑢) d𝜇*

𝑇𝑛(𝑢) +

∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d𝜇*
𝑇𝑛 −

∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d𝜇*,

where the inequality follows the boundedness of
𝑈𝜇*

𝑇𝑛

𝑈𝜇*
and that 𝜇*({𝑢 : 𝑈𝜇*(𝑢) >

𝑈*}) = 0.

106

Taking the limit of 𝑛→ ∞ on both sides, we have

1 = lim
𝑛→∞

1 ≥ 1

𝑈* lim
𝑛→∞

∫︁
𝒮𝑑
𝑈𝜇*(𝑢) d𝜇*

𝑇𝑛(𝑢) + lim
𝑛→∞

∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d𝜇*
𝑇𝑛(𝑢)

−
∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d𝜇*(𝑢)

= 1 + log𝑈* −
∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d𝜇*(𝑢)

≥ 1 + log𝑈* − log

∫︁
𝒮𝑑
𝑈𝜇*(𝑢) d𝜇*(𝑢)

≥ 1,

where the last inequality holds because the supremum taken over 𝒯 ⊃ {𝒮𝑑}.

Since 1 = 1, all inequalities must be equalities. In particular,

∫︁
𝒮𝑑

log𝑈𝜇*(𝑢) d𝜇*(𝑢) = log

∫︁
𝒮𝑑
𝑈𝜇*(𝑢) d𝜇*(𝑢).

That is, for any solution 𝜇* of Equation (A.11), 𝑈𝜇* must be constant

𝜇*-almost surely.

3. We show that 𝜎𝑑 is the unique minimizer of the relaxed problem

in Equation (A.11).

Let 𝑆 ⊂ ℳ(𝒮𝑑) be the set of measures where the above property holds:

𝑆 ,
{︀
𝜇 ∈ ℳ(𝒮𝑑) : 𝑈𝜇 is constant 𝜇-almost surely

}︀
.

107

The problem in Equation (A.11) is thus equivalent to minimizing over 𝑆:

arg min
𝜇∈ℳ(𝒮𝑑)

∫︁
𝒮𝑑

log𝑈𝜇(𝑢) d𝜇(𝑢) = arg min
𝜇∈𝑆

∫︁
𝒮𝑑

log𝑈𝜇(𝑢) d𝜇(𝑢)

= arg min
𝜇∈𝑆

log

∫︁
𝒮𝑑
𝑈𝜇(𝑢) d𝜇(𝑢)

= arg min
𝜇∈𝑆

log

∫︁
𝒮𝑑

∫︁
𝒮𝑑
𝑒𝑢

T𝑣/𝜏 d𝜇(𝑣) d𝜇(𝑢)

= arg min
𝜇∈𝑆

(︂
1

𝜏
+ log

∫︁
𝒮𝑑

∫︁
𝒮𝑑
𝑒−

1
2𝜏

‖𝑢−𝑣‖2 d𝜇(𝑣) d𝜇(𝑢)

)︂
= arg min

𝜇∈𝑆

∫︁
𝒮𝑑

∫︁
𝒮𝑑
𝐺 1

2𝜏
(𝑢, 𝑣) d𝜇(𝑣) d𝜇(𝑢).

By Proposition 2.4.2 and 𝜏 > 0, we know that the uniform distribution 𝜎𝑑

is the unique solution to

arg min
𝜇∈ℳ(𝒮𝑑)

∫︁
𝒮𝑑

∫︁
𝒮𝑑
𝐺 1

2𝜏
(𝑢, 𝑣) d𝜇(𝑣) d𝜇(𝑢). (A.14)

Since 𝜎𝑑 ∈ 𝑆, it must also be the unique solution to Equation (A.11).

Finally, if perfectly uniform encoders exist, 𝜎𝑑 is realizable, and they are the

exact encoders that realize it. Hence, in such cases, they are the exact minimizers

of

min
𝑓

E
𝑥∼𝑝data

[︂
log E

𝑥−∼𝑝data

[︁
𝑒𝑓(𝑥

−)T𝑓(𝑥)/𝜏
]︁]︂
.

Relation between Theorem 2.4.7, ℒalign and ℒuniform. The first term of Equa-

tion (2.2) is equivalent with ℒalign when 𝛼 = 2, up to a constant and a scaling. In

the above proof, we showed that the second term favors uniformity, via the feature

distribution that minimizes the pairwise Gaussian kernel (see Equation (A.14)):

arg min
𝜇∈ℳ(𝒮𝑑)

∫︁
𝒮𝑑

∫︁
𝒮𝑑
𝐺 1

2𝜏
(𝑢, 𝑣) d𝜇(𝑣) d𝜇(𝑢), (A.15)

108

which can be alternatively viewed as the relaxed problem of optimizing for the

uniformity loss ℒuniform:

arg min
𝑓

ℒuniform(𝑓 ;
1

2𝜏
) = arg min

𝑓
E
𝑥,𝑦

i.i.d.∼ 𝑝data

[︁
𝐺 1

2𝜏
(𝑓(𝑥), 𝑓(𝑦))

]︁
. (A.16)

The relaxation comes from the observation that Equation (A.15) minimizes over all

feature distributions on 𝒮𝑑, while Equation (A.16) only considers the realizable ones.

Relation between Equation (A.11) and minimizing average pairwise Gaus-

sian potential (i.e., minimizing ℒuniform). In view of the Proposition 2.4.2 and

the proof of Theorem 2.4.7, we know that the uniform distribution 𝜎𝑑 is the unique

minimizer of both of the following problems:

{𝜎𝑑} = min
𝜇∈ℳ(𝒮𝑑)

log

∫︁
𝒮𝑑

∫︁
𝒮𝑑
𝑒𝑢

T𝑣/𝜏 d𝜇(𝑣) d𝜇(𝑢),

{𝜎𝑑} = min
𝜇∈ℳ(𝒮𝑑)

∫︁
𝒮𝑑

log

∫︁
𝒮𝑑
𝑒𝑢

T𝑣/𝜏 d𝜇(𝑣) d𝜇(𝑢).

So pushing the log inside the outer integral doesn’t change the solution. However, if

we push the log all the way inside the inner integral, the problem becomes equivalent

with minimizing the norm of the mean, i.e.,

min
𝜇∈ℳ(𝒮𝑑)

E𝑈∼𝜇 [𝑈]T E𝑈∼𝜇 [𝑈] ,

which is minimized for any distribution with mean being the all-zeros vector 0,

e.g., 1
2
𝛿𝑢 + 1

2
𝛿−𝑢 for any 𝑢 ∈ 𝒮𝑑 (where 𝛿𝑢 is the Dirac delta distribution at 𝑢 s.t.

𝛿𝑢(𝑆) = 1𝑆(𝑢), ∀𝑆 ∈ ℬ(𝒮𝑑)). Therefore, the location of the log is important.

Theorem A.1.9 (Single negative sample). If perfectly aligned and uniform en-

coders exist, they form the exact minimizers of the contrastive loss ℒcontrastive(𝑓 ; 𝜏,𝑀)

for fixed 𝜏 > 0 and 𝑀 = 1.

109

Proof of Theorem A.1.9. Since 𝑀 = 1, we have

ℒcontrastive(𝑓 ; 𝜏, 1) = E
(𝑥,𝑦)∼𝑝pos
𝑥−∼𝑝data

[︂
−1

𝜏
𝑓(𝑥)T𝑓(𝑦) + log

(︁
𝑒𝑓(𝑥)

T𝑓(𝑦)/𝜏 + 𝑒𝑓(𝑥
−)T𝑓(𝑥)/𝜏

)︁]︂

≥ E
𝑥∼𝑝data
𝑥−∼𝑝data

[︂
−1

𝜏
+ log

(︁
𝑒1/𝜏 + 𝑒𝑓(𝑥

−)T𝑓(𝑥)/𝜏
)︁]︂

(A.17)

≥ −1

𝜏
+ min

𝜇∈ℳ(𝒮𝑑)

∫︁
𝒮𝑑

∫︁
𝒮𝑑

log
(︁
𝑒1/𝜏 + 𝑒𝑢

T𝑣/𝜏
)︁

d𝜇(𝑢) d𝜇(𝑣) (A.18)

= −1

𝜏
+ min

𝜇∈ℳ(𝒮𝑑)

∫︁
𝒮𝑑

∫︁
𝒮𝑑

log
(︁
𝑒1/𝜏 + 𝑒(2−‖𝑢−𝑣‖22)/(2𝜏)

)︁
d𝜇(𝑢) d𝜇(𝑣).

By the definition of perfect alignment, the equality in Equation (A.17) is satisfied iff

𝑓 is perfectly aligned.

Consider the function 𝑓 : (0, 4] → R+ defined as

𝑓(𝑡) = log(𝑒
1
𝜏 + 𝑒

2−𝑡
2𝜏).

It has the following properties:

• −𝑓 ′(𝑡) = 1
2𝜏

𝑒−
𝑡
2𝜏

1+𝑒−
𝑡
2𝜏

= 1
2𝜏

(1 − (1 + 𝑒−
𝑡
2𝜏)−1) is strictly completely monotone on

(0,+∞):

∀𝑡 ∈ (0,+∞),

1

2𝜏
(1 − (1 + 𝑒−

𝑡
2𝜏)−1) > 0

(−1)𝑛
d𝑛

d𝑡𝑛
1

2𝜏
(1 − (1 + 𝑒−

𝑡
2𝜏)−1) =

𝑛!

(2𝜏)𝑛+1
(1 + 𝑒−

𝑡
2𝜏)−(𝑛+1) > 0, 𝑛 = 1, 2,

• 𝑓 is bounded on (0, 4].

In view of Lemma A.1.4, we have that the equality in Equation (A.18) is satisfied iff

the feature distribution induced by 𝑓 (i.e., the pushforward measure 𝑝data ∘ 𝑓−1) is 𝜎𝑑,

that is, in other words, 𝑓 is perfectly uniform.

110

Therefore,

ℒcontrastive(𝑓 ; 𝜏, 1) ≥ −1

𝜏
+

∫︁
𝒮𝑑

∫︁
𝒮𝑑

log
(︁
𝑒1/𝜏 + 𝑒𝑢

T𝑣/𝜏
)︁

d𝜎𝑑(𝑢) d𝜎𝑑(𝑣)

= constant independent of 𝑓,

where equality is satisfied iff 𝑓 is perfectly aligned and uniform. This concludes the

proof.

Difference between conditions of Theorems 2.4.7 and A.1.9. We remark

that the statement in Theorem A.1.9 is weaker than the previous Theorem 2.4.7.

Theorem A.1.9 is conditioned on the existence perfectly aligned and uniform encoders.

It only shows that ℒcontrastive(𝑓 ; 𝜏,𝑀 = 1) favors alignment under the condition that

perfect uniformity is realizable, and vice versa. In Theorem 2.4.7, ℒcontrastive decomposes

into two terms, each favoring alignment and uniformity. Therefore, the decomposition

in Theorem 2.4.7 is exempof t from this constraint.

A.2 Experiment Details

All experiments are performed on 1-4 NVIDIA Titan Xp, Titan X PASCAL, Titan

RTX, or 2080 Ti GPUs.

A.2.1 CIFAR-10, STL-10 and NYU-Depth-V2 Experiments

For CIFAR-10, STL-10 and NYU-Depth-V2 experiments, we use the following

settings, unless otherwise stated in Tables A.3 and A.4 below:

• Standard data augmentation procedures are used for generating positive pairs,

including resizing, cropping, horizontal flipping, color jittering, and random

grayscale conversion. This follows prior empirical work in contrastive represen-

tation learning [171, 153, 76, 7].

• Neural network architectures follow the corresponding experiments on these

111

datasets in Tian et al. [153]. For NYU-Depth-V2 evaluation, the architecture

of the depth prediction CNN is described in Table A.1.

• We use minibatch stochastic gradient descent (SGD) with 0.9 momentum and

0.0001 weight decay.

• We use linearly scaled learning rate (0.12 per 256 batch size) [53].

– CIFAR-10 and STL-10: Optimization is done over 200 epochs, with

learning rate decayed by a factor of 0.1 at epochs 155, 170, and 185.

– NYU-Depth-V2: Optimization is done over 400 epochs, with learning

rate decayed by a factor of 0.1 at epochs 310, 340, and 370.

• Encoders are optimized over the training split. For evaluation, we freeze the

encoder, and train classifiers / depth predictors on the training set samples, and

test on the validation split.

– CIFAR-10 and STL-10: We use standard train-val split. Linear classifiers

are trained with Adam [88] over 100 epochs, with 𝛽1 = 0.5, 𝛽2 = 0.999, 𝜖 =

10−8, 128 batch size, and an initial learning rate of 0.001, decayed by a

factor of 0.2 at epochs 60 and 80.

– NYU-Depth-V2: We use the train-val split on the 1449 labeled images

from Nathan Silberman and Fergus [118]. Depth predictors are trained

with Adam [88] over 120 epochs, with 𝛽1 = 0.5, 𝛽2 = 0.999, 𝜖 = 10−8, 128

batch size, and an initial learning rate of 0.003, decayed by a factor of 0.2

at epochs 70, 90, 100, and 110.

At each SGD iteration, a minibatch of 𝐾 positive pairs is sampled {(𝑥𝑖, 𝑦𝑖)}𝐾𝑖=1,

and the three losses for this minibatch are calculated as following:

• ℒcontrastive: For each 𝑥𝑖, the sample contrastive loss is taken with the positive being

𝑦𝑖, and the negatives being {𝑦𝑗}𝑗 ̸=𝑖. For each 𝑦𝑖, the sample loss is computed

112

Operator
Input

Spatial Shape
Input

#Channel
Kernel
Size Stride Padding

Output
Spatial Shape

Output
#Channel

Input [ℎin, 𝑤in] 𝑐in — — — [ℎin, 𝑤in] 𝑐in

Conv. Transpose + BN + ReLU [ℎin, 𝑤in] 𝑐in 3 2 1 [2ℎin, 2𝑤in] ⌊𝑐in/2⌋
Conv. Transpose + BN + ReLU [2ℎin, 2𝑤in] ⌊𝑐in/2⌋ 3 2 1 [4ℎin, 4𝑤in] ⌊𝑐in/4⌋

...
...

...
...

...
...

...
...

Conv. Transpose + BN + ReLU [ℎout/2, 𝑤out/2]
⌊︀
𝑐in/2

𝑛−1
⌋︀

3 2 1 [ℎout, 𝑤out] ⌊𝑐in/2𝑛⌋
Conv. [ℎout, 𝑤out] ⌊𝑐in/2𝑛⌋ 3 1 1 [ℎout, 𝑤out] 1

Table A.1: NYU-Depth-V2 CNN depth predictor architecture. Each Conv.Trans-
pose+BN+ReLU block increases the spatial shape by a factor of 2, where BN denotes
Batch Normalization [82]. A sequence of such blocks computes a tensor of the correct
spatial shape, from an input containing intermediate activations of a CNN encoder (which
downsamples the input RGB image by a power of 2). A final convolution at the end computes
the single-channel depth prediction.

similarly. The minibatch loss is calculated by aggregating these 2𝐾 terms:

1

2𝐾

𝐾∑︁
𝑖=1

log
𝑒𝑓(𝑥𝑖)

T𝑓(𝑦𝑖)/𝜏∑︀𝐾
𝑗=1 𝑒

𝑓(𝑥𝑖)T𝑓(𝑦𝑗)/𝜏
+

1

2𝐾

𝐾∑︁
𝑖=1

log
𝑒𝑓(𝑥𝑖)

T𝑓(𝑦𝑖)/𝜏∑︀𝐾
𝑗=1 𝑒

𝑓(𝑥𝑗)T𝑓(𝑦𝑖)/𝜏
.

This calculation follows empirical practices and is similar to Oord et al. [119],

Hénaff et al. [72], and end-to-end in He et al. [70].

• ℒalign: The minibatch alignment loss is straightforwardly computed as

1

𝐾

𝐾∑︁
𝑖=1

‖𝑓(𝑥𝑖) − 𝑓(𝑦𝑖)‖𝛼2 .

• ℒuniform: The minibatch uniform loss is calculated by considering each pair of

{𝑥𝑖}𝑖 and {𝑦𝑖}𝑖:

1

2
log

(︂
2

𝐾(𝐾 − 1)

∑︁
𝑖 ̸=𝑗

𝑒−𝑡‖𝑓(𝑥𝑖)−𝑓(𝑥𝑗)‖
2
2

)︂
+

1

2
log

(︂
2

𝐾(𝐾 − 1)

∑︁
𝑖 ̸=𝑗

𝑒−𝑡‖𝑓(𝑦𝑖)−𝑓(𝑦𝑗)‖
2
2

)︂
.

Tables A.3 and A.4 below describe the full specifications of all 304 STL-10 and 64

NYU-Depth-V2 encoders. These experiment results are visualized in main paper

Figure 2-5, showing a clear connection between representation quality and ℒalign &

ℒuniform metrics.

113

ImageNet-100 Classes

n02869837 n01749939 n02488291 n02107142 n13037406 n02091831 n04517823 n04589890 n03062245 n01773797

n01735189 n07831146 n07753275 n03085013 n04485082 n02105505 n01983481 n02788148 n03530642 n04435653

n02086910 n02859443 n13040303 n03594734 n02085620 n02099849 n01558993 n04493381 n02109047 n04111531

n02877765 n04429376 n02009229 n01978455 n02106550 n01820546 n01692333 n07714571 n02974003 n02114855

n03785016 n03764736 n03775546 n02087046 n07836838 n04099969 n04592741 n03891251 n02701002 n03379051

n02259212 n07715103 n03947888 n04026417 n02326432 n03637318 n01980166 n02113799 n02086240 n03903868

n02483362 n04127249 n02089973 n03017168 n02093428 n02804414 n02396427 n04418357 n02172182 n01729322

n02113978 n03787032 n02089867 n02119022 n03777754 n04238763 n02231487 n03032252 n02138441 n02104029

n03837869 n03494278 n04136333 n03794056 n03492542 n02018207 n04067472 n03930630 n03584829 n02123045

n04229816 n02100583 n03642806 n04336792 n03259280 n02116738 n02108089 n03424325 n01855672 n02090622

Table A.2: 100 randomly selected ImageNet classes forming the ImageNet-100 subset.
These classes are the same as the ones used by Tian et al. [153].

A.2.2 ImageNet and ImageNet-100 with Momentum Con-

trast (MoCo) Variants

MoCo and MoCo v2 with ℒalign and ℒuniform. At each SGD iteration, let

• 𝐾 be the minibatch size,

• {𝑓(𝑥𝑖)𝑖}𝐾𝑖=1 be the batched query features encoded by the current up-to-date

encoder 𝑓 (i.e., q in Algorithm 1 of He et al. [70]),

• {𝑓EMA(𝑦𝑖)}𝐾𝑖=1 be the batched key features encoded by the exponential moving

average encoder 𝑓EMA (i.e., k in Algorithm 1 of He et al. [70]),

• {queue𝑗}𝑁𝑗=1 be the feature queue, where 𝑁 is the queue size.

ℒalign and ℒuniform for this minibatch are calculated as following:

• ℒalign: The minibatch alignment loss is computed as disparity between features

from the two encoders:

1

𝐾

𝐾∑︁
𝑖=1

‖𝑓(𝑥𝑖) − 𝑓EMA(𝑦𝑖)‖𝛼2 .

• ℒuniform: We experiment with two forms of ℒuniform:

114

1. Only computing pairwise distance between {𝑓(𝑥𝑖)}𝑖 and {queue𝑗}𝑗:

log

(︂
1

𝑁𝐾

𝐾∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑒−𝑡‖𝑓(𝑥𝑖)−queue𝑗‖2

2

)︂
. (A.19)

2. Also computing pairwise distance inside {𝑓(𝑥𝑖)}𝑖:

log

(︂
2

2𝑁𝐾 +𝐾(𝐾 − 1)

𝐾∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑒−𝑡‖𝑓(𝑥𝑖)−queue𝑗‖2

2

+
2

2𝑁𝐾 +𝐾(𝐾 − 1)

∑︁
𝑖 ̸=𝑗

𝑒−𝑡‖𝑓(𝑥𝑖)−𝑓(𝑥𝑗)‖
2
2

)︂
.

(A.20)

ImageNet-100 with MoCo

ImageNet-100 details. We use the same ImageNet-100 sampled by Tian et al.

[153], containing the 100 randomly selected classes listed in Table A.2.

MoCo settings. Our MoCo experiment settings below mostly follow He et al. [70]

and the unofficial implementation by Tian [152], because the official implementation

was not released at the time of performing these analyses:

• Standard data augmentation procedures are used for generating positive pairs,

including resizing, cropping, horizontal flipping, color jittering, and random

grayscale conversion, following Tian [152].

• Encoder architecture is ResNet50 [69].

• We use minibatch stochastic gradient descent (SGD) with 128 batch size, 0.03

initial learning rate, 0.9 momentum and 0.0001 weight decay.

• Optimization is done over 240 epochs, with learning rate decayed by a factor of

0.1 at epochs 120, 160, and 200.

• We use 0.999 exponential moving average factor, following He et al. [70].

• For evaluation, we freeze the encoder, and train a linear classifier on the training

set samples, and test on the validation split. Linear classifiers are trained with

115

minibatch SGD over 60 epochs, with 256 batch size, and an initial learning rate

of 10, decayed by a factor of 0.2 at epochs 30, 40, and 50.

Table A.5 below describes the full specifications of all 45 ImageNet-100 encoders.

These experiment results are visualized in main paper Figure 2-9a, showing a clear

connection between representation quality and ℒalign & ℒuniform metrics.

ImageNet with MoCo v2

MoCo v2 settings. Our MoCo v2 experiment settings directly follow Chen et al.

[26] and the official implementation [27]:

• Standard data augmentation procedures are used for generating positive pairs,

including resizing, cropping, horizontal flipping, color jittering, random grayscale

conversion, and random Gaussian blurring, following Chen et al. [27].

• Encoder architecture is ResNet50 [69].

• We use minibatch stochastic gradient descent (SGD) with 256 batch size, 0.03

initial learning rate, 0.9 momentum and 0.0001 weight decay.

• Optimization is done over 200 epochs, with learning rate decayed by a factor of

0.1 at epochs 120 and 160.

• We use 0.999 exponential moving average factor, 65536 queue size, 128 feature

dimensions.

• For evaluation, we freeze the encoder, and train a linear classifier on the training

set samples, and test on the validation split. Linear classifiers are trained with

minibatch SGD over 100 epochs, with 256 batch size, and an initial learning

rate of 30, decayed by a factor of 0.1 at epochs 60 and 80.

Unlike the MoCo experiments on ImageNet-100, which were based on unofficial

implementations for reasons stated in Sec. A.2.2, the MoCo v2 experiments on full

ImageNet were based on the official implementation by Chen et al. [27]. We

116

provide a reference implementation that can fully reproduce the results in Table 2.5

at https://github.com/SsnL/moco_align_uniform, where we also provide a model

checkpoint (trained using ℒalign and ℒuniform) of 67.694% validation top1 accuracy.

A.2.3 BookCorpus with Quick-Thought Vectors Variants

BookCorpus details. Since the original BookCorpus dataset [177] is not dis-

tributed anymore, we use the unofficial code by Kobayashi [91] to recreate our copy.

Our copy ended up containing 52,799,513 training sentences and 50,000 validation

sentences, compared to the original copy used by Quick-Thought Vectors [106], which

contains 45,786,400 training sentences and 50,000 validation sentences.

Quick-Thought Vectors with ℒalign and ℒuniform. With Quick-Thought Vectors,

the positive pairs are the neighboring sentences. At each optimization iteration, let

• {𝑥𝑖}𝐾𝑖=1 be the 𝐾 consecutive sentences forming this minibatch, where 𝐾 be the

minibatch size,

• 𝑓 and 𝑔 be the two RNN sentence encoders.

The original Quick-Thought Vectors [106] does not 𝑙2-normalize on encoder outputs

during training the encoder. Here we describe the calculation of ℒcontrastive, ℒalign, and

ℒuniform for 𝑙2-normalized encoders, in our modified Quick-Thought Vectors method.

Note that this does not affect evaluation since features are 𝑙2-normalized before

using in downstream tasks, following the original Quick-Thought Vectors [106]. For a

minibatch, these losses are calculated as following:

• ℒcontrastive with temperature:

1

𝐾
ce(softmax({𝑓(𝑥1)

T𝑔(𝑥𝑗)}𝑗), {0, 1, 0, . . . , 0})

+
1

𝐾

𝐾−1∑︁
𝑖=2

ce(softmax({𝑓(𝑥𝑖)
T𝑔(𝑥𝑗)}𝑗), {0, . . . , 0⏟ ⏞

(𝑖− 2) 0’s

,
1

2
, 0,

1

2
, 0, . . . , 0⏟ ⏞
(𝐾 − 𝑖− 1) 0’s

})

+
1

𝐾
ce(softmax({𝑓(𝑥𝐾)T𝑔(𝑥𝑗)}𝑗), {0, . . . , 1, 0}),

117

https://github.com/SsnL/moco_align_uniform

where ce(𝑝, 𝑞) is the cross entropy between prediction 𝑝 and target 𝑞.

This is almost identical with the original contrastive loss used by Quick-Thought

Vectors, except that this does not additionally manually masks out the entries

𝑓(𝑥𝑖)
T𝑔(𝑥𝑖) with zeros, which is unnecessary with 𝑙2-normalization.

• ℒalign: The minibatch alignment loss is computed as disparity between features

from the two encoders encoding neighboring sentences (assuming 𝐾 >= 2):

1

𝐾
‖𝑓(𝑥1) − 𝑔(𝑥2)‖𝛼2 +

1

2𝐾

𝐾−2∑︁
𝑖=2

(‖𝑓(𝑥𝑖−1) − 𝑔(𝑥𝑖)‖𝛼2 + ‖𝑓(𝑥𝑖) − 𝑔(𝑥𝑖+1)‖𝛼2)

+
1

𝐾
‖𝑓(𝑥𝐾−1) − 𝑔(𝑥𝐾)‖𝛼2 .

• ℒuniform: We combine the uniformity losses for each of 𝑓 and 𝑔 by summing them

(instead of averaging since 𝑓 and 𝑔 are two different encoders):

2

𝐾(𝐾 − 1)

∑︁
𝑖 ̸=𝑗

𝑒−𝑡‖𝑓(𝑥𝑖)−𝑓(𝑥𝑗)‖
2
2 +

2

𝐾(𝐾 − 1)

∑︁
𝑖 ̸=𝑗

𝑒−𝑡‖𝑔(𝑥𝑖)−𝑔(𝑥𝑗)‖
2
2 .

Our experiment settings below mostly follow the official implementation by Lo-

geswaran and Lee [106]:

• Sentence encoder architecture is bi-directional Gated Recurrent Unit (GRU)

[29] with inputs from a 620-dimensional word embedding trained jointly from

scratch.

• We use Adam [88] with 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−8, 400 batch size, 0.0005

constant learning rate, and 0.5 gradient norm clipping.

• Optimization is done during 1 epoch over the training data.

• For evaluation on a binary classification task, we freeze the encoder, and fit

a logistic classifier with 𝑙2 regularization on the encoder outputs. A 10-fold

cross validation is performed to determine the regularization strength among

118

{1, 2−1, . . . , 2−8}, following Kiros et al. [90] and Logeswaran and Lee [106]. The

classifier is finally tested on the validation split.

Table A.6 below describes the full specifications of all 108 BookCorpus encoders

along with 6 settings that lead to training instability (i.e., NaN occurring). These

experiment results are visualized in main paper Figure 2-9b, showing a clear connection

between representation quality and ℒalign & ℒuniform metrics. For the unnormalized

encoders, the features are normalized before calculated ℒalign and ℒuniform metrics, since

they are nonetheless still normalized before being used in downstream tasks [106].

119

Table A.3: Experiment specifications for all 304 STL-10 encoders. We report the encoder representation quality measured by accuracy of
linear and 𝑘-nearest neighbor (𝑘-NN) with 𝑘 = 5 classifiers on either encoder outputs or fc7 activations, via both a 5-fold cross validation
of the training set and the held out validation set.
For encoder initialization, “rand” refers to standard network initialization, and symbols denote finetuning from a pretrained encoder,
obtained via the experiment row marked with the same symbol. Initial learning rates (LRs) are usually either fixed as 0.12 or computed
via a linear scaling (0.12 per 256 batch size). Dimensionality (abbreviated as “Dim.”) shows the ambient dimension of the output features,
i.e., they live on the unit hypersphere of one less dimension. The last three rows show encoders that are used to initialize finetuning, but
are not part of the 285 encoders plotted in main paper Figure 3, due to their unusual batch size of 786. Their accuracy and ℒalign &
ℒuniform metrics follow the same trend shown in Figure 2-5a.

Losses

Init. Epochs
Batch
Size Initial LR Dim.

Training Set 5-Fold Cross Val. Accuracy ↑ Validation Set Accuracy ↑

ℒcontrastive ℒalign ℒuniform

Output
+ Linear

Output
+ 5-NN

fc7
+ Linear

fc7
+ 5-NN

Output
+ Linear

Output
+ 5-NN

fc7
+ Linear

fc7
+ 5-NN

— 1.25 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 2 0.0009375 128 — — — — 19.31% 22.56% 47.58% 35.30%

— 1.25 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 3 0.00140625 128 — — — — 43.97% 42.89% 56.89% 47.63%

— 1.25 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 4 0.001875 128 — — — — 53.96% 52.89% 62.86% 55.06%

ℒc(𝜏=0.07) — — rand 200 16 0.0075 128 — — — — 70.46% 70.54% 75.54% 69.63%

ℒc(𝜏=0.5) — — rand 200 16 0.0075 128 — — — — 69.59% 70.04% 76.23% 68.38%

— ℒa(𝛼=2) ℒu(𝑡=2) rand 200 16 0.0075 128 — — — — 74.68% 74.34% 79.06% 73.68%

— 1.25 · ℒa(𝛼=1) ℒu(𝑡=2) rand 200 16 0.0075 128 — — — — 74.75% 73.00% 77.84% 71.70%

— 1.25 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 16 0.0075 128 — — — — 73.93% 74.09% 79.25% 73.38%

ℒc(𝜏=0.5) — — rand 200 16 0.12 128 — — — — 67.30% 66.36% 71.53% 66.38%

— ℒa(𝛼=2) ℒu(𝑡=2) rand 200 16 0.12 128 — — — — 71.93% 71.24% 75.49% 69.89%

— 1.25 · ℒa(𝛼=1) ℒu(𝑡=2) rand 200 16 0.12 128 — — — — 71.85% 70.21% 74.65% 69.88%

ℒc(𝜏=0.07) — — rand 200 32 0.015 128 — — — — 71.80% 72.04% 77.29% 70.74%

ℒc(𝜏=0.5) — — rand 200 32 0.015 128 — — — — 73.39% 73.39% 79.43% 73.85%

— ℒa(𝛼=2) ℒu(𝑡=2) rand 200 32 0.015 128 — — — — 78.04% 76.60% 82.23% 76.04%

— 1.25 · ℒa(𝛼=1) ℒu(𝑡=2) rand 200 32 0.015 128 — — — — 78.71% 76.45% 81.66% 76.25%

120

ℒc(𝜏=0.5) — — rand 200 32 0.12 128 — — — — 70.43% 69.66% 74.95% 69.69%

— ℒa(𝛼=2) ℒu(𝑡=2) rand 200 32 0.12 128 — — — — 75.40% 73.70% 78.56% 73.21%

— 1.25 · ℒa(𝛼=1) ℒu(𝑡=2) rand 200 32 0.12 128 — — — — 75.83% 73.95% 78.48% 73.55%

ℒc(𝜏=0.5) — — rand 200 64 0.03 128 — — — — 74.59% 74.48% 80.64% 75.52%

— ℒa(𝛼=2) ℒu(𝑡=2) rand 200 64 0.03 128 — — — — 79.25% 77.84% 82.84% 76.53%

— ℒa(𝛼=2) ℒu(𝑡=2) rand 200 64 0.12 128 — — — — 77.80% 75.75% 81.45% 75.49%

— 1.25 · ℒa(𝛼=1) ℒu(𝑡=2) rand 200 64 0.12 128 — — — — 78.66% 76.19% 81.40% 75.30%

— ℒa(𝛼=2) ℒu(𝑡=2) rand 200 64 0.03 512 — — — — 80.44% 78.05% 83.04% 77.29%

— 0.5 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 64 0.03 1024 — — — — 81.48% 78.49% 82.88% 77.11%

— ℒa(𝛼=2) ℒu(𝑡=2) rand 200 64 0.03 1024 — — — — 80.81% 77.80% 83.18% 77.15%

ℒc(𝜏=0.07) — — rand 200 128 0.06 128 — — — — 73.14% 73.73% 79.90% 72.58%

ℒc(𝜏=0.5) — — rand 200 128 0.06 128 — — — — 75.26% 74.88% 80.98% 75.36%

— ℒa(𝛼=2) ℒu(𝑡=2) rand 200 128 0.06 128 — — — — 79.55% 78.09% 83.39% 76.96%

ℒc(𝜏=0.07) — — rand 200 128 0.12 128 — — — — 73.11% 73.84% 78.44% 72.11%

ℒc(𝜏=0.5) — — rand 200 128 0.12 128 — — — — 75.65% 74.80% 80.74% 74.58%

ℒc(𝜏=0.687) — — rand 200 128 0.12 128 — — — — 74.13% 73.14% 79.81% 74.10%

— ℒa(𝛼=2) ℒu(𝑡=2) rand 200 128 0.12 128 — — — — 79.74% 77.78% 82.70% 75.23%

— 1.25 · ℒa(𝛼=1) ℒu(𝑡=2) rand 200 128 0.12 128 — — — — 80.19% 77.91% 82.75% 75.91%

— 0.75 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 256 0.12 64 — — — — 78.40% 78.26% 83.46% 76.25%

ℒc(𝜏=0.07) — — rand 200 256 0.12 128 — — — — 75.23% 75.86% 80.64% 73.56%

♡ ℒc(𝜏=0.5) — — rand 200 256 0.12 128 — — — — 76.09% 75.81% 81.49% 75.52%

ℒc(𝜏=0.6) — — rand 200 256 0.12 128 — — — — 75.61% 74.56% 81.09% 75.36%

— 0.75 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 256 0.12 128 — — — — 80.54% 78.55% 83.54% 76.81%

— ℒa(𝛼=2) ℒu(𝑡=2) rand 200 256 0.12 128 — — — — 80.76% 78.57% 84.24% 76.60%

△ — 1.25 · ℒa(𝛼=1) ℒu(𝑡=2) rand 200 256 0.12 128 — — — — 81.29% 78.49% 83.55% 74.08%

— 0.5 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 256 0.12 256 — — — — 81.79% 79.13% 84.11% 76.60%

121

— 0.75 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 256 0.12 256 — — — — 81.48% 79.61% 83.86% 76.79%

— ℒa(𝛼=2) ℒu(𝑡=2) rand 200 256 0.12 256 — — — — 80.95% 78.74% 83.69% 77.11%

— ℒa(𝛼=2) ℒu(𝑡=2) rand 200 256 0.12 512 — — — — 81.33% 78.76% 83.81% 76.88%

— 0.5 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 360 0.16875 8192 — — — — 82.49% 78.96% 83.86% 76.68%

— 0.5 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 512 0.24 4096 — — — — 82.34% 78.84% 84.06% 75.74%

ℒc(𝜏=0.07) — — rand 200 768 0.36 2 — — — — 29.46% 25.50% 59.95% 52.83%

ℒc(𝜏=0.5) — — rand 200 768 0.36 2 — — — — 30.66% 25.39% 48.61% 42.49%

— 0.5 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 2 — — — — 27.85% 26.04% 49.29% 43.10%

— ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 2 — — — — 29.05% 23.94% 45.39% 38.48%

ℒc(𝜏=0.07) — — rand 200 768 0.36 3 — — — — 39.59% 39.66% 63.24% 56.64%

ℒc(𝜏=0.5) — — rand 200 768 0.36 3 — — — — 42.29% 39.70% 68.35% 59.82%

— 0.5 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 3 — — — — 41.10% 39.63% 65.64% 56.04%

— ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 3 — — — — 41.40% 41.45% 67.88% 58.78%

ℒc(𝜏=0.07) — — rand 200 768 0.36 4 — — — — 46.94% 47.08% 64.35% 58.10%

ℒc(𝜏=0.5) — — rand 200 768 0.36 4 — — — — 53.39% 55.41% 73.93% 67.89%

— 0.5 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 4 — — — — 47.19% 51.69% 70.00% 62.36%

ℒc(𝜏=0.07) — — rand 200 768 0.36 16 — — — — 64.20% 68.73% 75.66% 69.55%

ℒc(𝜏=0.5) — — rand 200 768 0.36 16 — — — — 71.93% 73.54% 80.53% 74.66%

— 0.5 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 16 — — — — 65.41% 70.41% 77.18% 70.55%

— ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 16 — — — — 70.25% 74.99% 81.59% 74.52%

— 0.5 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 32 — — — — 70.30% 73.50% 79.63% 72.21%

— ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 32 — — — — 73.65% 76.93% 82.81% 75.19%

— ℒa(𝛼=2.5) ℒu(𝑡=2) rand 200 768 0.36 32 — — — — 73.71% 77.40% 82.93% 75.86%

— 0.75 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 64 — — — — 77.33% 78.35% 84.00% 76.63%

— ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 64 — — — — 77.94% 78.23% 83.51% 76.59%

ℒc(𝜏=0.005) — — rand 200 768 0.36 128 67.88% 70.15% 74.64% 68.19% 68.14% 71.13% 75.14% 68.88%

122

ℒc(𝜏=0.01) — — rand 200 768 0.36 128 69.63% 70.62% 75.68% 68.99% 69.86% 70.98% 76.13% 69.65%

ℒc(𝜏=0.07) — — rand 200 768 0.36 128 75.01% 75.11% 80.93% 73.20% 75.46% 75.58% 81.34% 73.93%

ℒc(𝜏=0.08) — — rand 200 768 0.36 128 76.12% 76.06% 81.72% 73.95% 76.58% 76.79% 81.81% 74.43%

ℒc(𝜏=0.09) — — rand 200 768 0.36 128 77.15% 77.15% 82.52% 73.96% 77.74% 77.46% 83.23% 74.81%

ℒc(𝜏=0.1) — — rand 200 768 0.36 128 77.55% 77.40% 82.93% 74.29% 77.83% 77.81% 83.39% 75.19%

ℒc(𝜏=0.11) — — rand 200 768 0.36 128 78.48% 78.20% 83.29% 74.99% 79.01% 78.73% 83.73% 75.60%

ℒc(𝜏=0.125) — — rand 200 768 0.36 128 79.05% 78.06% 83.30% 74.53% 79.59% 78.55% 84.09% 75.55%

ℒc(𝜏=0.13) — — rand 200 768 0.36 128 79.46% 78.55% 83.98% 75.16% 79.80% 78.60% 84.45% 75.98%

ℒc(𝜏=0.15) — — rand 200 768 0.36 128 79.81% 78.47% 83.62% 74.64% 80.16% 78.99% 84.19% 75.20%

ℒc(𝜏=0.16) — — rand 200 768 0.36 128 79.54% 78.38% 83.35% 74.42% 80.04% 78.68% 83.88% 75.06%

ℒc(𝜏=0.175) — — rand 200 768 0.36 128 79.74% 78.20% 83.56% 74.80% 80.29% 78.49% 83.96% 75.81%

ℒc(𝜏=0.19) — — rand 200 768 0.36 128 80.14% 78.30% 83.52% 75.39% 80.46% 78.75% 83.89% 76.33%

ℒc(𝜏=0.2) — — rand 200 768 0.36 128 79.64% 77.80% 83.37% 75.07% 79.99% 77.96% 83.73% 75.98%

ℒc(𝜏=0.25) — — rand 200 768 0.36 128 79.27% 77.24% 82.70% 75.33% 79.50% 77.49% 83.10% 76.31%

ℒc(𝜏=0.3) — — rand 200 768 0.36 128 78.79% 77.01% 82.58% 75.16% 78.98% 77.18% 82.84% 75.74%

ℒc(𝜏=0.5) — — rand 200 768 0.36 128 76.57% 75.30% 81.18% 75.30% 76.66% 75.61% 81.61% 75.71%

ℒc(𝜏=0.75) — — rand 200 768 0.36 128 74.59% 73.41% 79.72% 74.27% 74.63% 73.52% 80.18% 75.01%

ℒc(𝜏=1) — — rand 200 768 0.36 128 72.88% 72.14% 79.16% 74.08% 73.00% 72.31% 79.54% 74.61%

ℒc(𝜏=2) — — rand 200 768 0.36 128 67.79% 67.15% 77.04% 71.65% 67.13% 66.77% 77.35% 71.84%

F ℒc(𝜏=2.5) — — rand 200 768 0.36 128 66.11% 65.30% 75.80% 70.59% 65.33% 65.30% 76.31% 70.93%

ℒc(𝜏=5) — — rand 200 768 0.36 128 55.56% 55.74% 70.29% 65.25% 55.75% 55.83% 70.75% 65.58%

ℒc(𝜏=0.07) 0.5 · ℒa(𝛼=2) — rand 200 768 0.36 128 75.13% 75.59% 81.52% 73.55% 75.59% 76.26% 82.10% 74.33%

ℒc(𝜏=0.1) 0.5 · ℒa(𝛼=2) — rand 200 768 0.36 128 77.76% 78.02% 83.28% 74.56% 78.04% 78.44% 83.73% 75.33%

ℒc(𝜏=0.5) 0.5 · ℒa(𝛼=2) — rand 200 768 0.36 128 74.86% 73.92% 80.16% 74.55% 74.96% 73.93% 80.63% 75.13%

ℒc(𝜏=0.5) 0.5 · ℒa(𝛼=2) — rand 200 768 0.36 128 74.69% 74.10% 80.53% 74.77% 74.80% 74.28% 80.91% 75.31%

ℒc(𝜏=0.5) ℒa(𝛼=2) — rand 200 768 0.36 128 73.31% 72.84% 79.82% 73.73% 73.54% 72.94% 80.26% 74.58%

123

ℒc(𝜏=0.07) 0.4 · ℒa(𝛼=2) 0.2 · ℒu(𝑡=2) rand 200 768 0.36 128 75.77% 75.98% 81.50% 73.48% 76.11% 76.45% 82.08% 74.00%

ℒc(𝜏=0.1) 0.4 · ℒa(𝛼=2) 0.2 · ℒu(𝑡=2) rand 200 768 0.36 128 78.17% 77.61% 83.04% 74.54% 78.64% 78.10% 83.26% 75.45%

ℒc(𝜏=0.5) 0.4 · ℒa(𝛼=2) 0.2 · ℒu(𝑡=2) rand 200 768 0.36 128 77.73% 76.23% 81.96% 75.10% 77.98% 76.60% 82.38% 75.45%

ℒc(𝜏=0.07) 0.3 · ℒa(𝛼=2) 0.4 · ℒu(𝑡=2) rand 200 768 0.36 128 75.93% 75.55% 81.45% 73.18% 76.13% 76.00% 81.95% 74.11%

ℒc(𝜏=0.1) 0.3 · ℒa(𝛼=2) 0.4 · ℒu(𝑡=2) rand 200 768 0.36 128 77.98% 77.18% 82.77% 74.12% 78.38% 77.79% 83.51% 74.99%

ℒc(𝜏=0.5) 0.3 · ℒa(𝛼=2) 0.4 · ℒu(𝑡=2) rand 200 768 0.36 128 78.69% 76.99% 82.57% 75.12% 79.03% 77.38% 82.93% 75.46%

ℒc(𝜏=0.07) 0.2 · ℒa(𝛼=2) 0.6 · ℒu(𝑡=2) rand 200 768 0.36 128 75.71% 75.22% 80.94% 72.80% 76.05% 75.60% 81.56% 73.46%

ℒc(𝜏=0.1) 0.2 · ℒa(𝛼=2) 0.6 · ℒu(𝑡=2) rand 200 768 0.36 128 78.38% 77.85% 82.87% 74.36% 78.84% 78.54% 83.10% 74.73%

ℒc(𝜏=0.5) 0.2 · ℒa(𝛼=2) 0.6 · ℒu(𝑡=2) rand 200 768 0.36 128 79.72% 77.94% 83.03% 75.32% 80.04% 78.24% 83.28% 75.66%

ℒc(𝜏=0.07) 0.1 · ℒa(𝛼=2) 0.8 · ℒu(𝑡=2) rand 200 768 0.36 128 76.19% 75.62% 81.15% 73.09% 76.90% 76.21% 81.61% 74.48%

ℒc(𝜏=0.1) 0.1 · ℒa(𝛼=2) 0.8 · ℒu(𝑡=2) rand 200 768 0.36 128 78.59% 78.02% 83.18% 74.63% 78.68% 78.48% 83.76% 75.49%

ℒc(𝜏=0.5) 0.1 · ℒa(𝛼=2) 0.8 · ℒu(𝑡=2) rand 200 768 0.36 128 80.25% 78.32% 83.35% 74.26% 80.43% 78.71% 83.76% 75.44%

ℒc(𝜏=0.07) — ℒu(𝑡=2) rand 200 768 0.36 128 76.31% 75.78% 81.59% 72.79% 76.69% 76.33% 82.23% 73.63%

ℒc(𝜏=0.1) — ℒu(𝑡=2) rand 200 768 0.36 128 78.55% 77.94% 83.21% 74.67% 79.03% 78.45% 83.75% 75.71%

ℒc(𝜏=0.5) — ℒu(𝑡=2) rand 200 768 0.36 128 79.93% 78.25% 82.92% 75.22% 80.30% 78.54% 83.34% 76.04%

ℒc(𝜏=0.5) — ℒu(𝑡=2) rand 200 768 0.36 128 80.84% 78.87% 83.72% 75.56% 81.06% 79.05% 84.14% 76.48%

ℒc(𝜏=0.5) — 2 · ℒu(𝑡=2) rand 200 768 0.36 128 77.49% 76.15% 80.99% 74.41% 78.09% 76.83% 81.63% 75.11%

0.5 · ℒc(𝜏=0.07) 0.5 · ℒa(𝛼=2) — rand 200 768 0.36 128 75.40% 75.53% 81.53% 73.91% 75.74% 76.19% 82.00% 74.63%

0.5 · ℒc(𝜏=0.1) 0.5 · ℒa(𝛼=2) — rand 200 768 0.36 128 77.70% 77.70% 83.39% 75.27% 78.06% 78.26% 83.93% 76.21%

0.5 · ℒc(𝜏=0.5) 0.5 · ℒa(𝛼=2) — rand 200 768 0.36 128 73.86% 73.12% 80.08% 74.54% 74.05% 73.18% 80.53% 75.14%

0.5 · ℒc(𝜏=0.07) 0.4 · ℒa(𝛼=2) 0.2 · ℒu(𝑡=2) rand 200 768 0.36 128 76.12% 76.22% 81.75% 73.68% 76.46% 76.75% 82.36% 74.44%

0.5 · ℒc(𝜏=0.1) 0.4 · ℒa(𝛼=2) 0.2 · ℒu(𝑡=2) rand 200 768 0.36 128 78.40% 78.01% 83.39% 75.21% 78.83% 78.30% 83.74% 75.84%

0.5 · ℒc(𝜏=0.5) 0.4 · ℒa(𝛼=2) 0.2 · ℒu(𝑡=2) rand 200 768 0.36 128 78.35% 76.49% 82.02% 75.60% 78.60% 77.18% 82.65% 76.19%

0.5 · ℒc(𝜏=0.07) 0.3 · ℒa(𝛼=2) 0.4 · ℒu(𝑡=2) rand 200 768 0.36 128 76.59% 75.74% 81.48% 73.59% 77.20% 76.43% 82.03% 74.36%

0.5 · ℒc(𝜏=0.1) 0.3 · ℒa(𝛼=2) 0.4 · ℒu(𝑡=2) rand 200 768 0.36 128 78.85% 77.43% 82.98% 74.87% 79.20% 77.95% 83.29% 75.60%

0.5 · ℒc(𝜏=0.5) 0.3 · ℒa(𝛼=2) 0.4 · ℒu(𝑡=2) rand 200 768 0.36 128 79.53% 77.56% 82.84% 75.19% 79.71% 77.95% 83.19% 76.08%

124

0.5 · ℒc(𝜏=0.07) 0.2 · ℒa(𝛼=2) 0.6 · ℒu(𝑡=2) rand 200 768 0.36 128 77.07% 76.49% 81.78% 73.10% 77.44% 76.98% 82.33% 73.85%

0.5 · ℒc(𝜏=0.1) 0.2 · ℒa(𝛼=2) 0.6 · ℒu(𝑡=2) rand 200 768 0.36 128 78.55% 78.04% 83.20% 74.30% 78.91% 78.38% 83.81% 75.18%

0.5 · ℒc(𝜏=0.5) 0.2 · ℒa(𝛼=2) 0.6 · ℒu(𝑡=2) rand 200 768 0.36 128 80.47% 78.36% 83.42% 75.82% 80.88% 78.51% 83.83% 76.65%

0.5 · ℒc(𝜏=0.07) 0.1 · ℒa(𝛼=2) 0.8 · ℒu(𝑡=2) rand 200 768 0.36 128 76.30% 76.43% 81.72% 73.35% 76.56% 77.11% 82.11% 74.00%

0.5 · ℒc(𝜏=0.1) 0.1 · ℒa(𝛼=2) 0.8 · ℒu(𝑡=2) rand 200 768 0.36 128 78.71% 78.00% 83.35% 74.46% 79.29% 78.44% 83.81% 75.45%

0.5 · ℒc(𝜏=0.5) 0.1 · ℒa(𝛼=2) 0.8 · ℒu(𝑡=2) rand 200 768 0.36 128 80.51% 78.99% 83.57% 75.47% 80.95% 79.44% 83.98% 76.45%

0.5 · ℒc(𝜏=0.07) — ℒu(𝑡=2) rand 200 768 0.36 128 75.48% 76.10% 81.47% 72.97% 75.80% 76.86% 82.06% 73.81%

0.5 · ℒc(𝜏=0.1) — ℒu(𝑡=2) rand 200 768 0.36 128 77.78% 78.07% 83.23% 74.51% 78.38% 78.46% 83.89% 75.49%

0.5 · ℒc(𝜏=0.5) — ℒu(𝑡=2) rand 200 768 0.36 128 78.04% 76.18% 81.89% 73.67% 78.43% 76.44% 82.33% 74.44%

— ℒa(𝛼=2) — rand 200 768 0.36 128 10.00% 10.36% 11.07% 14.20% 10.00% 9.40% 12.53% 14.27%

— 0.9875 · ℒa(𝛼=2) 0.025 · ℒu(𝑡=2) rand 200 768 0.36 128 10.00% 9.90% 11.04% 13.72% 10.00% 10.94% 13.03% 13.64%

— 0.975 · ℒa(𝛼=2) 0.05 · ℒu(𝑡=2) rand 200 768 0.36 128 10.00% 9.98% 10.65% 14.29% 10.00% 9.75% 12.11% 14.77%

— 0.9 · ℒa(𝛼=2) 0.1 · ℒu(𝑡=2) rand 200 768 0.36 128 10.00% 10.08% 10.10% 13.62% 10.00% 9.95% 10.00% 13.49%

— 0.95 · ℒa(𝛼=2) 0.1 · ℒu(𝑡=2) rand 200 768 0.36 128 10.00% 10.51% 10.15% 13.27% 10.00% 9.85% 10.00% 11.99%

— ℒa(𝛼=2) 0.1 · ℒu(𝑡=2) rand 200 768 0.36 128 10.00% 9.93% 10.39% 14.38% 10.00% 10.26% 10.00% 14.03%

— 0.56 · ℒa(𝛼=2) 0.12 · ℒu(𝑡=2) rand 200 768 0.36 128 75.93% 75.10% 80.88% 74.87% 75.99% 75.41% 81.40% 75.66%

— 0.88 · ℒa(𝛼=2) 0.12 · ℒu(𝑡=2) rand 200 768 0.36 128 10.00% 10.13% 10.00% 12.89% 10.00% 11.18% 10.03% 12.43%

— 0.9375 · ℒa(𝛼=2) 0.125 · ℒu(𝑡=2) rand 200 768 0.36 128 10.00% 10.52% 10.42% 13.71% 10.00% 9.14% 10.05% 14.26%

— 0.57 · ℒa(𝛼=2) 0.14 · ℒu(𝑡=2) rand 200 768 0.36 128 76.35% 75.51% 81.07% 75.27% 76.55% 75.86% 81.69% 75.70%

— 0.86 · ℒa(𝛼=2) 0.14 · ℒu(𝑡=2) rand 200 768 0.36 128 10.00% 9.07% 10.33% 14.24% 10.00% 9.91% 10.73% 15.08%

— 0.855 · ℒa(𝛼=2) 0.145 · ℒu(𝑡=2) rand 200 768 0.36 128 10.00% 10.67% 10.30% 14.11% 10.00% 9.35% 11.70% 13.30%

— 0.85 · ℒa(𝛼=2) 0.15 · ℒu(𝑡=2) rand 200 768 0.36 128 10.00% 10.17% 10.00% 12.97% 10.00% 10.05% 10.00% 13.16%

— 0.925 · ℒa(𝛼=2) 0.15 · ℒu(𝑡=2) rand 200 768 0.36 128 10.00% 9.79% 10.10% 13.11% 10.00% 9.73% 10.11% 12.91%

— 0.845 · ℒa(𝛼=2) 0.155 · ℒu(𝑡=2) rand 200 768 0.36 128 74.56% 74.06% 80.10% 74.93% 74.99% 74.39% 80.44% 75.83%

— 0.58 · ℒa(𝛼=2) 0.16 · ℒu(𝑡=2) rand 200 768 0.36 128 77.03% 76.34% 81.25% 75.26% 77.33% 76.76% 81.80% 75.89%

— 0.84 · ℒa(𝛼=2) 0.16 · ℒu(𝑡=2) rand 200 768 0.36 128 74.49% 74.03% 80.30% 74.72% 74.73% 74.10% 80.70% 75.13%

125

— 0.9125 · ℒa(𝛼=2) 0.175 · ℒu(𝑡=2) rand 200 768 0.36 128 10.00% 9.41% 10.39% 13.64% 10.00% 10.14% 10.10% 14.14%

— 0.59 · ℒa(𝛼=2) 0.18 · ℒu(𝑡=2) rand 200 768 0.36 128 77.25% 76.38% 81.39% 75.41% 77.65% 77.06% 81.68% 76.19%

— 0.82 · ℒa(𝛼=2) 0.18 · ℒu(𝑡=2) rand 200 768 0.36 128 76.09% 75.10% 80.99% 75.63% 76.45% 75.48% 81.45% 76.48%

— 0.91 · ℒa(𝛼=2) 0.18 · ℒu(𝑡=2) rand 200 768 0.36 128 75.11% 74.63% 80.50% 75.28% 75.40% 75.04% 80.85% 75.83%

— 0.9075 · ℒa(𝛼=2) 0.185 · ℒu(𝑡=2) rand 200 768 0.36 128 75.29% 74.83% 80.64% 75.04% 75.69% 75.41% 80.93% 75.65%

— 0.905 · ℒa(𝛼=2) 0.19 · ℒu(𝑡=2) rand 200 768 0.36 128 75.69% 74.61% 80.80% 74.98% 75.99% 74.95% 81.21% 75.59%

— 0.9025 · ℒa(𝛼=2) 0.195 · ℒu(𝑡=2) rand 200 768 0.36 128 75.81% 74.93% 80.75% 74.66% 76.06% 75.29% 81.16% 75.14%

— 0.8 · ℒa(𝛼=2) 0.2 · ℒu(𝑡=2) rand 200 768 0.36 128 76.52% 75.96% 81.05% 75.38% 76.75% 76.24% 81.29% 75.83%

— 0.9 · ℒa(𝛼=2) 0.2 · ℒu(𝑡=2) rand 200 768 0.36 128 75.92% 75.02% 80.85% 75.36% 76.15% 75.29% 81.15% 76.24%

— ℒa(𝛼=2) 0.2 · ℒu(𝑡=2) rand 200 768 0.36 128 75.14% 74.29% 80.39% 74.76% 75.46% 74.44% 80.64% 75.34%

— 0.7 · ℒa(𝛼=2) 0.3 · ℒu(𝑡=2) rand 200 768 0.36 128 78.61% 77.00% 82.14% 75.73% 78.94% 77.50% 82.26% 76.34%

— 0.6 · ℒa(𝛼=2) 0.4 · ℒu(𝑡=2) rand 200 768 0.36 128 79.36% 77.80% 82.63% 75.55% 79.60% 77.93% 82.86% 76.63%

— 0.8 · ℒa(𝛼=2) 0.4 · ℒu(𝑡=2) rand 200 768 0.36 128 79.24% 77.52% 82.44% 75.23% 79.65% 77.89% 82.69% 75.71%

— ℒa(𝛼=2) 0.4 · ℒu(𝑡=2) rand 200 768 0.36 128 78.45% 77.09% 82.30% 75.38% 78.85% 77.53% 82.86% 76.02%

— 0.5 · ℒa(𝛼=2) 0.5 · ℒu(𝑡=2) rand 200 768 0.36 128 80.03% 78.47% 83.12% 75.14% 80.39% 78.70% 83.56% 75.70%

— 0.75 · ℒa(𝛼=2) 0.5 · ℒu(𝑡=2) rand 200 768 0.36 128 79.72% 77.30% 82.69% 75.44% 79.96% 77.55% 83.35% 76.14%

— ℒa(𝛼=2) 0.5 · ℒu(𝑡=2) rand 200 768 0.36 128 79.09% 77.50% 82.80% 75.46% 79.27% 77.96% 83.10% 76.45%

— 0.4 · ℒa(𝛼=2) 0.6 · ℒu(𝑡=2) rand 200 768 0.36 128 80.23% 78.67% 83.49% 75.61% 80.45% 78.83% 84.01% 76.61%

— 0.5 · ℒa(𝛼=2) 0.6 · ℒu(𝑡=2) rand 200 768 0.36 128 80.37% 78.82% 83.05% 75.54% 80.48% 79.11% 83.33% 76.50%

— 0.7 · ℒa(𝛼=2) 0.6 · ℒu(𝑡=2) rand 200 768 0.36 128 80.29% 78.16% 83.40% 75.59% 80.59% 78.66% 83.83% 76.24%

— 0.3 · ℒa(𝛼=2) 0.7 · ℒu(𝑡=2) rand 200 768 0.36 128 80.16% 78.91% 83.39% 76.21% 80.58% 79.51% 83.78% 77.03%

— 0.2 · ℒa(𝛼=2) 0.8 · ℒu(𝑡=2) rand 200 768 0.36 128 74.67% 78.15% 82.53% 75.83% 75.13% 78.63% 83.03% 76.45%

— 0.5 · ℒa(𝛼=2) 0.8 · ℒu(𝑡=2) rand 200 768 0.36 128 80.59% 78.73% 83.73% 76.05% 81.08% 79.10% 84.04% 76.88%

— 0.6 · ℒa(𝛼=2) 0.8 · ℒu(𝑡=2) rand 200 768 0.36 128 80.29% 78.74% 83.53% 75.75% 80.65% 78.89% 83.89% 76.86%

— 0.1 · ℒa(𝛼=2) 0.9 · ℒu(𝑡=2) rand 200 768 0.36 128 69.77% 75.72% 80.55% 73.38% 70.29% 76.13% 80.88% 74.14%

— 0.08 · ℒa(𝛼=2) 0.92 · ℒu(𝑡=2) rand 200 768 0.36 128 67.65% 73.97% 79.35% 71.86% 68.04% 74.90% 79.84% 72.50%

126

— 0.96 · ℒa(𝛼=2) 0.92 · ℒu(𝑡=2) rand 200 768 0.36 128 80.74% 78.71% 83.49% 76.14% 81.08% 79.26% 83.95% 77.26%

— 0.06 · ℒa(𝛼=2) 0.94 · ℒu(𝑡=2) rand 200 768 0.36 128 66.88% 73.81% 79.21% 72.32% 67.46% 74.68% 79.56% 73.09%

— 0.97 · ℒa(𝛼=2) 0.94 · ℒu(𝑡=2) rand 200 768 0.36 128 80.28% 78.45% 83.51% 75.68% 80.63% 78.63% 83.83% 76.33%

— 0.04 · ℒa(𝛼=2) 0.96 · ℒu(𝑡=2) rand 200 768 0.36 128 63.89% 70.80% 76.33% 69.55% 64.21% 71.49% 77.10% 70.38%

— 0.98 · ℒa(𝛼=2) 0.96 · ℒu(𝑡=2) rand 200 768 0.36 128 80.76% 78.69% 83.97% 75.63% 81.15% 78.89% 84.43% 76.78%

— ℒa(𝛼=2) 0.975 · ℒu(𝑡=2) rand 200 768 0.36 128 79.94% 78.45% 83.34% 75.23% 80.44% 78.86% 83.65% 75.83%

— 0.02 · ℒa(𝛼=2) 0.98 · ℒu(𝑡=2) rand 200 768 0.36 128 56.39% 63.06% 69.48% 62.85% 56.78% 63.90% 69.80% 63.82%

— 0.99 · ℒa(𝛼=2) 0.98 · ℒu(𝑡=2) rand 200 768 0.36 128 80.24% 78.90% 83.34% 74.89% 80.45% 79.40% 83.76% 75.55%

— ℒa(𝛼=2) 0.98 · ℒu(𝑡=2) rand 200 768 0.36 128 80.29% 78.64% 83.46% 75.23% 80.77% 78.84% 83.96% 75.90%

— — ℒu(𝑡=2) rand 200 768 0.36 128 20.62% 15.96% 24.52% 16.13% 20.50% 16.14% 24.64% 16.24%

— 0.0025 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 128 36.14% 33.19% 46.82% 35.22% 36.28% 33.76% 47.04% 36.05%

— 0.005 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 128 48.38% 49.74% 59.67% 49.55% 48.69% 50.41% 59.81% 50.40%

— 0.0125 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 128 51.31% 57.94% 64.95% 57.49% 51.80% 58.75% 65.40% 58.01%

— 0.025 · ℒa(𝛼=1) ℒu(𝑡=2) rand 200 768 0.36 128 46.13% 51.81% 58.51% 51.30% 46.61% 52.65% 59.03% 51.99%

— 0.025 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 128 57.34% 62.50% 69.09% 61.76% 57.89% 63.43% 69.58% 62.51%

— 0.25 · ℒa(𝛼=1) ℒu(𝑡=2) rand 200 768 0.36 128 70.80% 75.24% 80.59% 72.59% 71.40% 75.54% 81.20% 73.36%

— 0.25 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 128 76.14% 78.45% 82.97% 75.90% 76.83% 78.88% 83.51% 76.74%

— 0.3 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 128 76.72% 78.01% 83.26% 75.61% 77.30% 78.43% 83.79% 76.25%

— 0.4 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 128 78.71% 77.76% 83.13% 75.42% 79.36% 78.01% 83.64% 76.24%

— 0.5 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 128 80.41% 79.18% 83.85% 75.54% 80.03% 79.35% 84.20% 76.84%

� — 0.75 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 128 80.54% 78.84% 83.61% 75.26% 80.89% 79.29% 84.23% 76.28%

— ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 128 80.32% 78.90% 83.48% 74.97% 80.76% 79.23% 83.75% 76.15%

— 1.025 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 128 80.37% 78.69% 83.48% 75.78% 80.74% 79.06% 84.00% 76.56%

— 1.25 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 128 80.50% 78.41% 83.54% 75.89% 80.84% 78.65% 83.95% 76.56%

— 0.4 · ℒa(𝛼=2) 1.2 · ℒu(𝑡=2) rand 200 768 0.36 128 75.37% 73.62% 78.88% 71.55% 75.78% 73.83% 79.15% 72.35%

— 0.3 · ℒa(𝛼=2) 1.4 · ℒu(𝑡=2) rand 200 768 0.36 128 72.69% 75.62% 80.67% 73.49% 73.14% 75.99% 81.49% 74.20%

127

— 0.25 · ℒa(𝛼=2) 1.5 · ℒu(𝑡=2) rand 200 768 0.36 128 70.61% 73.50% 78.53% 71.85% 71.03% 74.10% 79.13% 72.50%

— 0.2 · ℒa(𝛼=2) 1.6 · ℒu(𝑡=2) rand 200 768 0.36 128 67.35% 70.98% 76.84% 69.13% 67.69% 71.64% 77.40% 69.91%

— 0.1 · ℒa(𝛼=2) 1.8 · ℒu(𝑡=2) rand 200 768 0.36 128 64.43% 68.89% 74.24% 68.15% 65.01% 69.34% 74.70% 68.80%

— 0.0875 · ℒa(𝛼=2) 1.825 · ℒu(𝑡=2) rand 200 768 0.36 128 63.38% 68.83% 73.56% 67.33% 64.05% 69.76% 73.91% 68.14%

— 0.075 · ℒa(𝛼=2) 1.85 · ℒu(𝑡=2) rand 200 768 0.36 128 63.02% 69.32% 74.49% 68.22% 63.44% 69.91% 75.05% 69.06%

— 0.0625 · ℒa(𝛼=2) 1.875 · ℒu(𝑡=2) rand 200 768 0.36 128 58.73% 64.37% 70.93% 63.74% 59.23% 65.14% 71.54% 64.69%

— 0.05 · ℒa(𝛼=2) 1.9 · ℒu(𝑡=2) rand 200 768 0.36 128 57.61% 64.13% 69.13% 63.09% 58.03% 65.09% 69.43% 64.09%

— 0.025 · ℒa(𝛼=2) 1.95 · ℒu(𝑡=2) rand 200 768 0.36 128 50.89% 57.70% 63.93% 57.83% 51.46% 58.39% 64.45% 58.34%

— 0.0125 · ℒa(𝛼=2) 1.975 · ℒu(𝑡=2) rand 200 768 0.36 128 44.71% 50.89% 57.75% 51.21% 45.14% 51.99% 57.98% 52.11%

— — 2 · ℒu(𝑡=2) rand 200 768 0.36 128 21.99% 19.46% 28.94% 20.10% 21.91% 19.75% 29.65% 20.76%

— 0.1 · ℒa(𝛼=2) 2 · ℒu(𝑡=2) rand 200 768 0.36 128 63.63% 70.70% 75.85% 69.41% 64.14% 71.43% 76.50% 69.99%

— 0.2 · ℒa(𝛼=2) 2 · ℒu(𝑡=2) rand 200 768 0.36 128 66.52% 72.89% 77.66% 70.98% 67.16% 73.52% 78.19% 71.79%

— ℒa(𝛼=1) 2 · ℒu(𝑡=2) rand 200 768 0.36 128 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00%

— ℒa(𝛼=1) 2.5 · ℒu(𝑡=2) rand 200 768 0.36 128 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00%

— ℒa(𝛼=1) 3 · ℒu(𝑡=2) rand 200 768 0.36 128 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00%

— ℒa(𝛼=1) 4 · ℒu(𝑡=2) rand 200 768 0.36 128 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00%

— — 5 · ℒu(𝑡=2) rand 200 768 0.36 128 19.61% 14.29% 21.70% 14.97% 19.64% 14.19% 21.61% 15.58%

— 0.05 · ℒa(𝛼=2) 5 · ℒu(𝑡=2) rand 200 768 0.36 128 50.49% 55.71% 61.45% 55.15% 50.91% 56.71% 61.58% 56.19%

— ℒa(𝛼=1) 5 · ℒu(𝑡=2) rand 200 768 0.36 128 10.00% 10.00% 10.00% 10.01% 10.00% 10.00% 10.00% 10.00%

— 0.5 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 256 — — — — 82.10% 79.45% 84.15% 77.10%

— 0.75 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 256 — — — — 81.53% 79.03% 83.54% 76.35%

— ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 256 — — — — 81.33% 79.06% 84.03% 75.89%

— 0.025 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 512 — — — — 75.76% 72.75% 78.29% 71.04%

— 0.375 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 512 — — — — 82.33% 79.18% 83.91% 76.44%

— 0.5 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 512 — — — — 82.55% 79.64% 84.29% 75.74%

— ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 512 — — — — 82.04% 78.79% 83.98% 76.50%

128

— 0.025 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 1024 — — — — 76.39% 72.45% 78.23% 70.59%

— 0.05 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 1024 — — — — 79.68% 75.43% 80.81% 73.45%

— 0.25 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 1024 — — — — 83.03% 79.63% 84.15% 76.10%

— 0.25 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 1024 — — — — 82.85% 79.44% 83.91% 75.35%

— 0.375 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 1024 — — — — 82.63% 79.33% 83.69% 76.09%

— 0.5 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 1024 — — — — 82.85% 79.75% 83.85% 76.81%

— ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 1024 — — — — 81.89% 79.09% 84.03% 75.51%

— 0.25 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 768 0.36 1536 — — — — 82.93% 79.55% 84.00% 75.81%

— 0.5 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 1024 0.48 512 — — — — 82.20% 79.36% 83.69% 75.73%

— ℒa(𝛼=2) ℒu(𝑡=2) rand 200 1024 0.48 512 — — — — 81.66% 79.03% 83.88% 75.49%

— 0.25 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 1024 0.48 1024 — — — — 82.40% 78.98% 83.34% 75.85%

— 0.375 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 1024 0.48 1024 — — — — 82.74% 79.48% 83.70% 76.59%

— 0.5 · ℒa(𝛼=2) ℒu(𝑡=2) rand 200 1024 0.48 1024 — — — — 82.51% 79.11% 83.46% 74.94%

ℒc(𝜏=0.5) — — △ 12 256 0.12 128 — — — — 79.31% 77.45% 83.34% 76.60%

— 5𝑒− 05 · ℒa(𝛼=2) — ♣ 12 256 0.12 128 — — — — 64.11% 62.45% 77.96% 68.56%

— 0.0005 · ℒa(𝛼=2) — ♣ 12 256 0.12 128 — — — — 63.90% 62.40% 77.81% 68.55%

— 0.005 · ℒa(𝛼=2) — ♣ 12 256 0.12 128 — — — — 61.53% 61.66% 76.83% 66.68%

— 0.5 · ℒa(𝛼=2) — ♣ 12 256 0.12 128 — — — — 10.36% 23.01% 49.19% 39.39%

— — 0.01 · ℒu(𝑡=2) ♣ 12 256 0.12 128 — — — — 44.75% 41.79% 55.59% 38.59%

— 0.5 · ℒa(𝛼=2) 0.01 · ℒu(𝑡=2) ♣ 12 256 0.12 128 — — — — 10.03% 32.81% 57.95% 41.53%

— — 0.1 · ℒu(𝑡=2) ♣ 12 256 0.12 128 — — — — 54.78% 54.05% 65.77% 50.13%

— — ℒu(𝑡=2) ♣ 12 256 0.12 128 — — — — 55.74% 52.03% 63.90% 50.59%

— 0.005 · ℒa(𝛼=2) ℒu(𝑡=2) ♣ 12 256 0.12 128 — — — — 57.85% 55.18% 65.64% 53.33%

— 0.05 · ℒa(𝛼=2) ℒu(𝑡=2) ♣ 12 256 0.12 128 — — — — 68.46% 66.07% 72.88% 64.65%

— 0.4 · ℒa(𝛼=2) ℒu(𝑡=2) ♡ 12 256 0.12 128 — — — — 77.63% 76.65% 81.75% 75.95%

— 0.5 · ℒa(𝛼=1) ℒu(𝑡=2) ♠ 12 256 0.12 128 — — — — 70.00% 68.21% 74.15% 66.77%

129

— 0.5 · ℒa(𝛼=2) ℒu(𝑡=2) ♡ 12 256 0.12 128 — — — — 77.73% 76.33% 81.61% 76.00%

— 0.5 · ℒa(𝛼=2) ℒu(𝑡=2) ♦ 12 256 0.12 128 — — — — 74.23% 72.89% 79.01% 71.46%

— 0.625 · ℒa(𝛼=1) ℒu(𝑡=2) ♦ 12 256 0.12 128 — — — — 74.40% 72.84% 79.29% 71.41%

— ℒa(𝛼=2) ℒu(𝑡=2) ♡ 12 256 0.12 128 — — — — 76.48% 75.86% 81.04% 75.43%

— ℒa(𝛼=2) ℒu(𝑡=2) ♦ 12 256 0.12 128 — — — — 73.13% 72.24% 78.33% 71.15%

— 1.25 · ℒa(𝛼=1) ℒu(𝑡=2) ♡ 12 256 0.12 128 — — — — 76.80% 75.75% 81.00% 75.11%

— 1.25 · ℒa(𝛼=1) ℒu(𝑡=2) ♦ 12 256 0.12 128 — — — — 73.11% 71.73% 78.23% 71.79%

— 1.25 · ℒa(𝛼=1) ℒu(𝑡=2) ♠ 12 256 0.12 128 — — — — 69.10% 67.21% 74.19% 66.25%

— 1.875 · ℒa(𝛼=1) ℒu(𝑡=2) ♦ 12 256 0.12 128 — — — — 72.63% 71.08% 77.79% 70.98%

ℒc(𝜏=0.5) — — � 12 768 0.36 128 — — — — 75.34% 74.00% 81.09% 73.23%

ℒc(𝜏=0.5) — — F 12 768 0.36 128 — — — — 65.60% 64.25% 70.73% 64.79%

0.5 · ℒc(𝜏=0.5) — — F 12 768 0.36 128 — — — — 69.64% 67.70% 74.89% 68.74%

0.25 · ℒc(𝜏=0.5) — — F 12 768 0.36 128 — — — — 69.11% 68.34% 74.30% 69.30%

0.05 · ℒc(𝜏=0.5) — — F 12 768 0.36 128 — — — — 70.43% 69.70% 76.08% 71.31%

0.025 · ℒc(𝜏=0.5) — — � 12 768 0.36 128 — — — — 80.27% 78.65% 83.93% 77.00%

0.025 · ℒc(𝜏=0.5) — — F 12 768 0.36 128 — — — — 70.00% 68.74% 76.24% 71.86%

0.01 · ℒc(𝜏=0.5) — — � 12 768 0.36 128 — — — — 80.46% 78.88% 83.64% 77.38%

0.01 · ℒc(𝜏=0.5) — — F 12 768 0.36 128 — — — — 68.13% 67.38% 75.63% 71.28%

— 0.00025 · ℒa(𝛼=2) — F 12 768 0.36 128 — — — — 65.94% 64.33% 75.14% 70.90%

— 0.0005 · ℒa(𝛼=2) — F 12 768 0.36 128 — — — — 64.88% 63.18% 74.78% 70.88%

— 0.0005 · ℒa(𝛼=2) — F 12 768 0.36 128 — — — — 64.89% 63.53% 74.76% 70.89%

— 0.001 · ℒa(𝛼=2) — F 12 768 0.36 128 — — — — 62.65% 61.93% 74.31% 70.36%

— 0.0025 · ℒa(𝛼=2) — F 12 768 0.36 128 — — — — 59.18% 60.09% 72.98% 69.41%

— 0.005 · ℒa(𝛼=2) — F 12 768 0.36 128 — — — — 52.18% 55.06% 71.40% 67.10%

— 0.005 · ℒa(𝛼=2) — F 12 768 0.36 128 — — — — 52.86% 55.95% 71.63% 67.76%

— 0.5 · ℒa(𝛼=2) — F 12 768 0.36 128 — — — — 10.00% 17.42% 36.69% 34.94%

130

— — 0.0001 · ℒu(𝑡=2) F 12 768 0.36 128 — — — — 60.32% 59.49% 70.65% 64.70%

— — 0.0005 · ℒu(𝑡=2) F 12 768 0.36 128 — — — — 44.34% 43.41% 61.06% 53.97%

— 0.0005 · ℒa(𝛼=2) 0.0005 · ℒu(𝑡=2) F 12 768 0.36 128 — — — — 66.14% 66.13% 75.29% 70.20%

— — 0.001 · ℒu(𝑡=2) F 12 768 0.36 128 — — — — 41.61% 40.73% 56.91% 48.24%

— 0.001 · ℒa(𝛼=2) 0.001 · ℒu(𝑡=2) F 12 768 0.36 128 — — — — 66.23% 66.55% 75.16% 70.25%

— 0.5 · ℒa(𝛼=2) 0.001 · ℒu(𝑡=2) F 12 768 0.36 128 — — — — 10.00% 17.79% 35.06% 34.11%

— 0.002 · ℒa(𝛼=2) 0.002 · ℒu(𝑡=2) F 12 768 0.36 128 — — — — 66.35% 67.07% 74.50% 70.33%

— — 0.01 · ℒu(𝑡=2) F 12 768 0.36 128 — — — — 44.64% 41.55% 50.75% 42.90%

— 0.01 · ℒa(𝛼=2) 0.01 · ℒu(𝑡=2) F 12 768 0.36 128 — — — — 71.54% 70.71% 75.45% 70.43%

— 0.5 · ℒa(𝛼=2) 0.01 · ℒu(𝑡=2) F 12 768 0.36 128 — — — — 10.00% 18.05% 32.93% 31.53%

— 0.03 · ℒa(𝛼=2) 0.02 · ℒu(𝑡=2) F 12 768 0.36 128 — — — — 72.13% 71.86% 76.33% 71.78%

— 0.025 · ℒa(𝛼=2) 0.025 · ℒu(𝑡=2) F 12 768 0.36 128 — — — — 73.40% 72.58% 76.44% 72.09%

— 0.0375 · ℒa(𝛼=2) 0.025 · ℒu(𝑡=2) F 12 768 0.36 128 — — — — 72.54% 71.56% 76.14% 71.89%

— 0.05 · ℒa(𝛼=2) 0.05 · ℒu(𝑡=2) F 12 768 0.36 128 — — — — 73.94% 72.63% 77.05% 72.36%

— — 0.1 · ℒu(𝑡=2) F 12 768 0.36 128 — — — — 54.51% 48.40% 60.60% 49.00%

— 0.1 · ℒa(𝛼=2) 0.1 · ℒu(𝑡=2) F 12 768 0.36 128 — — — — 73.30% 72.21% 76.54% 72.13%

— 0.5 · ℒa(𝛼=2) 0.1 · ℒu(𝑡=2) F 12 768 0.36 128 — — — — 67.45% 67.03% 74.04% 68.73%

— 0.25 · ℒa(𝛼=2) 0.25 · ℒu(𝑡=2) F 12 768 0.36 128 — — — — 73.09% 71.66% 76.80% 71.16%

— 0.5 · ℒa(𝛼=2) 0.5 · ℒu(𝑡=2) F 12 768 0.36 128 — — — — 72.18% 71.56% 76.38% 70.93%

— — ℒu(𝑡=2) F 12 768 0.36 128 — — — — 39.45% 35.56% 47.18% 35.60%

— 0.0005 · ℒa(𝛼=2) ℒu(𝑡=2) F 12 768 0.36 128 — — — — 43.58% 38.19% 49.38% 38.64%

— 0.005 · ℒa(𝛼=2) ℒu(𝑡=2) F 12 768 0.36 128 — — — — 50.10% 47.36% 56.66% 48.73%

— 0.05 · ℒa(𝛼=2) ℒu(𝑡=2) F 12 768 0.36 128 — — — — 65.65% 66.15% 71.48% 66.10%

— 0.5 · ℒa(𝛼=2) ℒu(𝑡=2) F 12 768 0.36 128 — — — — 70.34% 70.04% 74.88% 68.76%

— 0.5 · ℒa(𝛼=2) ℒu(𝑡=2) F 12 768 0.36 128 — — — — 70.84% 69.88% 75.61% 69.34%

— ℒa(𝛼=2) ℒu(𝑡=2) F 12 768 0.36 128 — — — — 66.83% 65.59% 72.09% 65.30%

131

— 1.5 · ℒa(𝛼=2) 1.5 · ℒu(𝑡=2) F 12 768 0.36 128 — — — — 65.18% 62.32% 69.77% 62.31%

— ℒa(𝛼=2) 2 · ℒu(𝑡=2) F 12 768 0.36 128 — — — — 63.21% 61.86% 68.66% 60.80%

— 2 · ℒa(𝛼=2) 2 · ℒu(𝑡=2) F 12 768 0.36 128 — — — — 61.93% 60.78% 68.54% 60.18%

♦ ℒc(𝜏=1) — — rand 200 786 0.12 128 — — — — 70.35% 70.11% 80.41% 73.15%

♣ ℒc(𝜏=2) — — rand 200 786 0.12 128 — — — — 64.19% 62.38% 78.11% 68.77%

♠ ℒc(𝜏=3) — — rand 200 786 0.12 128 — — — — 55.04% 53.94% 74.95% 64.04%

132

Table A.4: Experiment specifications for all 64 NYU-Depth-V2 encoders. We report the encoder representation quality measured by
mean squared error (MSE) of a CNN depth predictor trained on conv5 or conv4 activations, via both a 5-fold cross validation of the
training set and the held out validation set.
All encoders in this table use standard network initialization (denoted as “rand”). Dimensionality (abbreviated as “Dim.”) shows the
ambient dimension of the output features, i.e., they live on the unit hypersphere of one less dimension.

Losses
Init. Epochs Batch

Size Initial LR Dim.

Training Set 5-Fold
Cross Val. MSE ↓

Validation Set
MSE ↓

ℒcontrastive ℒalign ℒuniform conv5 conv4 conv5 conv4

— 0.5 · ℒa(𝛼=2) ℒu(𝑡=2) rand 400 128 0.06 128 0.7405 0.7979 0.7378 0.7969

ℒc(𝜏=0.25) — — rand 400 128 0.06 128 0.7188 0.7747 0.7259 0.7761

— 4.375 · ℒa(𝛼=2) ℒu(𝑡=2) rand 400 128 0.06 128 0.8039 0.8297 0.8032 0.8281

— 3.625 · ℒa(𝛼=1) ℒu(𝑡=2) rand 400 128 0.06 128 0.7290 0.7775 0.7303 0.7749

— ℒa(𝛼=2) ℒu(𝑡=2) rand 400 128 0.06 128 0.7121 0.7689 0.7191 0.7725

— 3.5 · ℒa(𝛼=2) ℒu(𝑡=2) rand 400 128 0.06 128 0.7270 0.7741 0.7260 0.7772

ℒc(𝜏=4) — — rand 400 128 0.06 128 0.7592 0.8195 0.7598 0.8175

— ℒa(𝛼=2) 0.3333 · ℒu(𝑡=2) rand 400 128 0.06 128 0.7165 0.7697 0.7215 0.7693

— 2 · ℒa(𝛼=2) ℒu(𝑡=2) rand 400 128 0.06 128 0.7300 0.7669 0.7226 0.7699

ℒc(𝜏=0.05) — — rand 400 128 0.06 128 0.7170 0.7672 0.7206 0.7637

ℒc(𝜏=1) — — rand 400 128 0.06 128 0.7505 0.7958 0.7560 0.7965

— 0.5 · ℒa(𝛼=2) 7.5 · ℒu(𝑡=2) rand 400 128 0.06 128 0.8188 0.8556 0.8302 0.8590

— 1.25 · ℒa(𝛼=2) 0.5 · ℒu(𝑡=2) rand 400 128 0.06 128 0.7237 0.7788 0.7224 0.7806

— 4.625 · ℒa(𝛼=1) ℒu(𝑡=2) rand 400 128 0.06 128 0.8692 0.8820 0.8724 0.8840

— 3.375 · ℒa(𝛼=2) ℒu(𝑡=2) rand 400 128 0.06 128 0.7663 0.7935 0.7691 0.7938

— 0.75 · ℒa(𝛼=2) 0.5 · ℒu(𝑡=2) rand 400 128 0.06 128 0.7008 0.7621 0.7014 0.7592

— ℒa(𝛼=2) 0.25 · ℒu(𝑡=2) rand 400 128 0.06 128 0.7293 0.7997 0.7313 0.8013

ℒc(𝜏=0.07) — — rand 400 128 0.06 128 0.7079 0.7468 0.7105 0.7460

ℒc(𝜏=0.005) — — rand 400 128 0.06 128 0.7608 0.8109 0.7633 0.8149

133

— 4 · ℒa(𝛼=2) ℒu(𝑡=2) rand 400 128 0.06 128 0.7721 0.8195 0.7737 0.8190

— 1.5 · ℒa(𝛼=1) ℒu(𝑡=2) rand 400 128 0.06 128 0.7231 0.7810 0.7193 0.7889

— ℒa(𝛼=2) 0.5 · ℒu(𝑡=2) rand 400 128 0.06 128 0.7044 0.7714 0.7047 0.7718

— 0.5 · ℒa(𝛼=2) 0.5 · ℒu(𝑡=2) rand 400 128 0.06 128 0.7329 0.7751 0.7454 0.7786

— 2.5 · ℒa(𝛼=1) ℒu(𝑡=2) rand 400 128 0.06 128 0.7295 0.7747 0.7304 0.7785

— 4.125 · ℒa(𝛼=2) ℒu(𝑡=2) rand 400 128 0.06 128 0.7497 0.8129 0.7478 0.8128

— 0.125 · ℒa(𝛼=2) 2.5 · ℒu(𝑡=2) rand 400 128 0.06 128 0.8109 0.8535 0.8092 0.8523

— 1.25 · ℒa(𝛼=2) ℒu(𝑡=2) rand 400 128 0.06 128 0.7509 0.7892 0.7324 0.7926

— 3.75 · ℒa(𝛼=2) ℒu(𝑡=2) rand 400 128 0.06 128 0.7514 0.8005 0.7531 0.8003

— 2.25 · ℒa(𝛼=2) ℒu(𝑡=2) rand 400 128 0.06 128 0.7360 0.7706 0.7413 0.7747

— 4.875 · ℒa(𝛼=1) ℒu(𝑡=2) rand 400 128 0.06 128 0.8699 0.8882 0.8717 0.8918

— 3.125 · ℒa(𝛼=2) ℒu(𝑡=2) rand 400 128 0.06 128 0.7203 0.7713 0.7138 0.7682

— 1.5 · ℒa(𝛼=2) ℒu(𝑡=2) rand 400 128 0.06 128 0.7261 0.7744 0.7259 0.7715

ℒc(𝜏=0.5) — — rand 400 128 0.06 128 0.7334 0.7743 0.7293 0.7701

— ℒa(𝛼=2) 0.2857 · ℒu(𝑡=2) rand 400 128 0.06 128 0.7456 0.8070 0.7423 0.8030

— 2.5 · ℒa(𝛼=2) ℒu(𝑡=2) rand 400 128 0.06 128 0.7289 0.7591 0.7250 0.7597

— 0.5 · ℒa(𝛼=2) 3 · ℒu(𝑡=2) rand 400 128 0.06 128 0.7819 0.8352 0.7808 0.8314

— 0.5 · ℒa(𝛼=2) 10 · ℒu(𝑡=2) rand 400 128 0.06 128 0.8422 0.8896 0.8430 0.8857

— 3 · ℒa(𝛼=2) ℒu(𝑡=2) rand 400 128 0.06 128 0.7203 0.7642 0.7160 0.7643

— 3.875 · ℒa(𝛼=2) ℒu(𝑡=2) rand 400 128 0.06 128 0.7477 0.7980 0.7476 0.7960

ℒc(𝜏=0.4) — — rand 400 128 0.06 128 0.7181 0.7628 0.7163 0.7651

— 0.75 · ℒa(𝛼=1) ℒu(𝑡=2) rand 400 128 0.06 128 0.7670 0.8225 0.7700 0.8224

— 1.25 · ℒa(𝛼=1) ℒu(𝑡=2) rand 400 128 0.06 128 0.7311 0.7922 0.7265 0.7942

— 1.75 · ℒa(𝛼=2) 0.5 · ℒu(𝑡=2) rand 400 128 0.06 128 0.7323 0.7900 0.7297 0.7884

— 4.5 · ℒa(𝛼=2) ℒu(𝑡=2) rand 400 128 0.06 128 0.7592 0.8350 0.7585 0.8297

— 0.5 · ℒa(𝛼=2) 5 · ℒu(𝑡=2) rand 400 128 0.06 128 0.7909 0.8517 0.7891 0.8526

134

0.5 · ℒc(𝜏=0.07) — — rand 400 128 0.06 128 0.7068 0.7594 0.7028 0.7624

— 3.75 · ℒa(𝛼=1) ℒu(𝑡=2) rand 400 128 0.06 128 0.7352 0.7853 0.7294 0.7817

— 3.125 · ℒa(𝛼=1) ℒu(𝑡=2) rand 400 128 0.06 128 0.7152 0.7661 0.7060 0.7667

— 3.625 · ℒa(𝛼=2) ℒu(𝑡=2) rand 400 128 0.06 128 0.7420 0.7925 0.7505 0.7970

— 5 · ℒa(𝛼=2) ℒu(𝑡=2) rand 400 128 0.06 128 0.8072 0.8631 0.8084 0.8617

ℒc(𝜏=0.1) — — rand 400 128 0.06 128 0.7074 0.7539 0.7124 0.7491

— 1.5 · ℒa(𝛼=2) 0.5 · ℒu(𝑡=2) rand 400 128 0.06 128 0.7255 0.7793 0.7199 0.7765

— 7.5 · ℒa(𝛼=2) ℒu(𝑡=2) rand 400 128 0.06 128 0.8160 0.8512 0.8131 0.8505

— 4.75 · ℒa(𝛼=2) ℒu(𝑡=2) rand 400 128 0.06 128 0.8102 0.8633 0.8084 0.8721

— 0.5 · ℒa(𝛼=2) 2.5 · ℒu(𝑡=2) rand 400 128 0.06 128 0.7696 0.8208 0.7669 0.8141

— 2 · ℒa(𝛼=1) ℒu(𝑡=2) rand 400 128 0.06 128 0.7209 0.7839 0.7370 0.7867

0.5 · ℒc(𝜏=0.1) — — rand 400 128 0.06 128 0.7062 0.7586 0.7024 0.7575

ℒc(𝜏=10) — — rand 400 128 0.06 128 0.7860 0.8375 0.7850 0.8335

— 3.375 · ℒa(𝛼=1) ℒu(𝑡=2) rand 400 128 0.06 128 0.7236 0.7703 0.7230 0.7728

— 0.25 · ℒa(𝛼=2) ℒu(𝑡=2) rand 400 128 0.06 128 0.7596 0.8122 0.7574 0.8107

ℒc(𝜏=0.3) — — rand 400 128 0.06 128 0.7337 0.7653 0.7361 0.7640

ℒc(𝜏=5) — — rand 400 128 0.06 128 0.7801 0.8278 0.7715 0.8355

— 3.25 · ℒa(𝛼=2) ℒu(𝑡=2) rand 400 128 0.06 128 0.7495 0.7903 0.7503 0.7941

— 0.5 · ℒa(𝛼=2) 4 · ℒu(𝑡=2) rand 400 128 0.06 128 0.8062 0.8597 0.8042 0.8608

135

Table A.5: Experiment specifications for all 45 ImageNet-100 ResNet50 encoders trained using methods based on Momentum Contrast
(MoCo) [70]. We report the encoder representation quality measured by accuracy of a linear classifier on penultimate layer activations, via
both a 3-fold cross validation of the training set and the held out validation set.
All encoders in this table use standard network initialization (denoted as “rand”). Dimensionality (abbreviated as “Dim.”) shows the
ambient dimension of the output features, i.e., they live on the unit hypersphere of one less dimension.
For ℒuniform, the “Intra-batch” column denotes whether ℒuniform calculation includes pairwise distances within batch in addition to distances
w.r.t. to the queue (i.e., Equation (A.20) vs. Equation (A.19)).

Losses

Init. Epochs
Batch
Size

Queue
Size Initial LR Dim.

Training Set 3-Fold
Cross Val. Accuracy ↑

Validation Set
Accuracy ↑

ℒcontrastive ℒalign

ℒuniform
top1 top5 top1 top5

Form Intra-batch

ℒc(𝜏=0.01) — — rand 240 128 16384 0.03 128 62.45% 85.64% 64.14% 86.12%

ℒc(𝜏=0.07) — — rand 240 128 16384 0.03 128 71.68% 91.00% 72.80% 91.64%

ℒc(𝜏=0.5) — — rand 240 128 16384 0.03 128 68.56% 91.21% 69.98% 91.80%

ℒc(𝜏=1) — — rand 240 128 16384 0.03 128 62.19% 87.73% 64.06% 88.32%

ℒc(𝜏=2) — — rand 240 128 16384 0.03 128 53.62% 83.03% 55.46% 84.18%

ℒc(𝜏=5) — — rand 240 128 16384 0.03 128 37.52% 68.93% 39.00% 70.86%

— 2 · ℒa(𝛼=2) — rand 240 128 16384 0.03 128 1.03% 5.12% 1.22% 5.42%

— ℒa(𝛼=2) 0.125 · ℒu(𝑡=8) 3 rand 240 128 16384 0.03 128 65.89% 88.28% 67.42% 88.96%

— ℒa(𝛼=2) 0.15 · ℒu(𝑡=7) 3 rand 240 128 16384 0.03 128 67.51% 88.95% 68.90% 89.68%

— ℒa(𝛼=2) 0.17 · ℒu(𝑡=6) 3 rand 240 128 16384 0.03 128 67.90% 89.83% 69.18% 90.76%

— ℒa(𝛼=2) 0.2 · ℒu(𝑡=5) 3 rand 240 128 16384 0.03 128 69.27% 90.08% 70.46% 90.86%

— 1.8 · ℒa(𝛼=2) 0.2 · ℒu(𝑡=2) 3 rand 240 128 16384 0.03 128 1.00% 4.94% 1.00% 5.00%

— ℒa(𝛼=2) 0.25 · ℒu(𝑡=4) 3 rand 240 128 16384 0.03 128 69.77% 90.57% 70.70% 91.14%

— ℒa(𝛼=2) 0.33 · ℒu(𝑡=3) 3 rand 240 128 16384 0.03 128 70.67% 91.14% 71.86% 91.58%

— 1.6 · ℒa(𝛼=2) 0.4 · ℒu(𝑡=2) 3 rand 240 128 16384 0.03 128 67.34% 90.27% 69.16% 91.00%

— ℒa(𝛼=2) 0.5 · ℒu(𝑡=2) 7 rand 240 128 16384 0.03 128 70.91% 91.38% 72.34% 91.86%

136

— ℒa(𝛼=2) 0.5 · ℒu(𝑡=2) 3 rand 240 128 16384 0.03 128 71.03% 91.61% 71.90% 92.06%

— 1.4 · ℒa(𝛼=2) 0.6 · ℒu(𝑡=2) 3 rand 240 128 16384 0.03 128 71.11% 91.69% 72.06% 92.28%

— 1.2 · ℒa(𝛼=2) 0.8 · ℒu(𝑡=2) 3 rand 240 128 16384 0.03 128 71.76% 91.51% 72.78% 91.90%

— 0.75 · ℒa(𝛼=2) ℒu(𝑡=2) 3 rand 240 128 16384 0.03 128 70.23% 91.01% 71.40% 91.36%

— ℒa(𝛼=2) ℒu(𝑡=1) 3 rand 240 128 16384 0.03 128 68.07% 90.66% 69.54% 91.14%

— ℒa(𝛼=2) ℒu(𝑡=2) 7 rand 240 128 16384 0.03 128 69.59% 90.67% 70.64% 91.28%

— ℒa(𝛼=2) ℒu(𝑡=2) 3 rand 240 128 16384 0.03 128 70.45% 91.25% 71.48% 91.72%

— 1.5 · ℒa(𝛼=2) ℒu(𝑡=2) 3 rand 240 128 16384 0.03 128 72.39% 91.71% 73.80% 92.22%

— 2 · ℒa(𝛼=2) ℒu(𝑡=2) 7 rand 240 128 16384 0.03 128 72.19% 92.35% 73.30% 92.74%

— 2 · ℒa(𝛼=2) ℒu(𝑡=2) 7 rand 240 128 32768 0.03 128 72.41% 92.08% 73.54% 92.74%

— 2 · ℒa(𝛼=2) ℒu(𝑡=2) 3 rand 240 128 16384 0.03 128 72.69% 92.21% 73.74% 92.80%

— 2 · ℒa(𝛼=2) ℒu(𝑡=2) 3 rand 240 128 32768 0.03 128 72.65% 92.09% 73.68% 92.46%

— 2.5 · ℒa(𝛼=2) ℒu(𝑡=2) 7 rand 240 128 16384 0.03 128 71.77% 91.99% 73.00% 92.14%

— 2.5 · ℒa(𝛼=2) ℒu(𝑡=2) 3 rand 240 128 16384 0.03 128 72.31% 91.99% 73.50% 92.38%

— 3 · ℒa(𝛼=2) ℒu(𝑡=2) 3 rand 240 128 16384 0.03 128 72.03% 92.09% 73.48% 92.56%

— 3 · ℒa(𝛼=2) ℒu(𝑡=3) 3 rand 240 128 16384 0.03 128 73.49% 92.24% 74.60% 92.74%

— 4 · ℒa(𝛼=2) ℒu(𝑡=4) 3 rand 240 128 16384 0.03 128 72.93% 92.03% 74.30% 92.54%

— 5 · ℒa(𝛼=2) ℒu(𝑡=5) 3 rand 240 128 16384 0.03 128 71.96% 91.67% 73.04% 92.28%

— 6 · ℒa(𝛼=2) ℒu(𝑡=6) 3 rand 240 128 16384 0.03 128 70.49% 90.63% 72.02% 91.24%

— 7 · ℒa(𝛼=2) ℒu(𝑡=7) 3 rand 240 128 16384 0.03 128 70.66% 90.83% 72.32% 91.86%

— 8 · ℒa(𝛼=2) ℒu(𝑡=8) 3 rand 240 128 16384 0.03 128 69.47% 90.33% 70.86% 91.26%

— 0.8 · ℒa(𝛼=2) 1.2 · ℒu(𝑡=2) 3 rand 240 128 16384 0.03 128 70.45% 90.72% 71.22% 91.06%

— 0.6 · ℒa(𝛼=2) 1.4 · ℒu(𝑡=2) 3 rand 240 128 16384 0.03 128 69.03% 90.53% 70.44% 90.92%

— 0.4 · ℒa(𝛼=2) 1.6 · ℒu(𝑡=2) 3 rand 240 128 16384 0.03 128 67.04% 89.24% 68.32% 89.76%

— 0.2 · ℒa(𝛼=2) 1.8 · ℒu(𝑡=2) 3 rand 240 128 16384 0.03 128 66.71% 88.93% 68.10% 89.48%

— — 2 · ℒu(𝑡=2) 3 rand 240 128 16384 0.03 128 2.43% 9.97% 2.92% 10.56%

137

— ℒa(𝛼=2) ℒu(𝑡=2) 3 rand 240 128 16384 0.03 128 58.43% 84.67% 60.36% 85.02%

— 2 · ℒa(𝛼=2) ℒu(𝑡=2) 7 rand 240 128 32768 0.03 128 69.68% 91.13% 70.80% 91.80%

— 2 · ℒa(𝛼=2) ℒu(𝑡=2) 3 rand 240 128 16384 0.03 128 69.62% 90.77% 70.92% 91.42%

138

Table A.6: Experiment specifications for all 108 BookCorpus recurrent encoders trained using methods based on Quick-Thought Vectors
[106]. We report the encoder representation quality measured by accuracy of logistic classifiers on encoder outputs for the Movie Review
Sentence Polarity (MR) and Customer Product Sentiment (CR) binary classification tasks, via both a 5-fold cross validation of the training
set (of the downstream task) and the held out validation set (of the downstream task).
All encoders in this table use standard network initialization (denoted as “rand”). Dimensionality (abbreviated as “Dim.”) shows the
ambient dimension of the output features, i.e., features from 𝑙2-normalized encoders live on the unit hypersphere of one less dimension.
Regardless of whether the encoder is 𝑙2-normalized (indicated in “Normalization” column), the features are always normalized before being
used for downstream tasks, following Logeswaran and Lee [106].
The only unnormalized encoder is obtained using the unmodified Quick-Thought Vectors algorithm. 6 configurations that suffer from
training instability (i.e., NaN occurring) are also reported.

Losses
Normalization Init. Epochs

Batch
Size Initial LR Dim.

Training Set 5-Fold
Cross Val. Accuracy ↑

Validation Set
Accuracy ↑

ℒcontrastive ℒalign ℒuniform MR CR MR CR

ℒc(𝜏=1) — — 7 rand 1 400 0.0005 1200 76.33% 81.90% 77.23% 83.07%

ℒc(𝜏=0.005) — — 3 rand 1 400 0.0005 1200 74.97% 82.94% 76.85% 82.54%

ℒc(𝜏=0.01) — — 3 rand 1 400 0.0005 1200 75.02% 82.20% 75.54% 82.28%

ℒc(𝜏=0.05) — — 3 rand 1 400 0.0005 1200 75.48% 83.64% 77.69% 83.86%

ℒc(𝜏=0.075) — — 3 rand 1 400 0.0005 1200 76.37% 83.32% 77.51% 82.28%

ℒc(𝜏=0.1) — — 3 rand 1 400 0.0005 1200 75.82% 81.90% 74.79% 83.86%

ℒc(𝜏=0.2) — — 3 rand 1 400 0.0005 1200 74.33% 81.08% 75.63% 80.16%

ℒc(𝜏=0.25) — — 3 rand 1 400 0.0005 1200 72.33% 79.49% 71.51% 78.84%

ℒc(𝜏=0.3) — — 3 rand 1 400 0.0005 1200 72.85% 78.54% 73.57% 79.10%

ℒc(𝜏=0.4) — — 3 rand 1 400 0.0005 1200 69.72% 77.28% 67.85% 77.51%

ℒc(𝜏=0.5) — — 3 rand 1 400 0.0005 1200 68.97% 76.27% 68.98% 74.07%

ℒc(𝜏=0.6) — — 3 rand 1 400 0.0005 1200 68.61% 75.48% 68.88% 73.81%

ℒc(𝜏=0.7) — — 3 rand 1 400 0.0005 1200 67.89% 74.01% 67.76% 76.46%

ℒc(𝜏=0.8) — — 3 rand 1 400 0.0005 1200 67.02% 74.77% 66.07% 74.34%

ℒc(𝜏=0.9) — — 3 rand 1 400 0.0005 1200 66.78% 74.01% 65.32% 72.75%

139

ℒc(𝜏=1) — — 3 rand 1 400 0.0005 1200 66.67% 74.12% 65.79% 74.34%

ℒc(𝜏=1.5) — — 3 rand 1 400 0.0005 1200 63.92% 70.47% 65.42% 75.93%

ℒc(𝜏=2) — — 3 rand 1 400 0.0005 1200 63.97% 72.06% 62.79% 71.69%

ℒc(𝜏=5) — — 3 rand 1 400 0.0005 1200 62.21% 69.50% 62.98% 73.54%

ℒc(𝜏=0.075) ℒa(𝛼=2) — 3 rand 1 400 0.0005 1200 69.16% 73.39% 68.13% 72.75%

ℒc(𝜏=1) ℒa(𝛼=2) — 3 rand 1 400 0.0005 1200 49.68% 63.81% 49.77% 63.49%

ℒc(𝜏=0.075) 0.9 · ℒa(𝛼=2) 0.1 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 71.26% 77.90% 71.42% 76.72%

ℒc(𝜏=1) 0.9 · ℒa(𝛼=2) 0.1 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 51.26% 63.78% 52.01% 63.49%

ℒc(𝜏=0.075) 0.8 · ℒa(𝛼=2) 0.2 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 76.25% 83.05% 76.48% 83.33%

ℒc(𝜏=1) 0.8 · ℒa(𝛼=2) 0.2 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 71.33% 79.31% 70.48% 78.31%

ℒc(𝜏=0.075) 0.7 · ℒa(𝛼=2) 0.3 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 75.67% 81.20% 74.60% 81.48%

ℒc(𝜏=1) 0.7 · ℒa(𝛼=2) 0.3 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 71.59% 78.72% 73.66% 78.84%

ℒc(𝜏=0.075) 0.6 · ℒa(𝛼=2) 0.4 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 75.06% 82.23% 74.41% 81.48%

ℒc(𝜏=1) 0.6 · ℒa(𝛼=2) 0.4 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 70.53% 78.43% 68.88% 75.93%

ℒc(𝜏=0.075) 0.5 · ℒa(𝛼=2) 0.5 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 74.45% 81.61% 74.51% 84.66%

ℒc(𝜏=1) 0.5 · ℒa(𝛼=2) 0.5 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 66.06% 72.97% 63.64% 73.02%

ℒc(𝜏=0.075) 0.4 · ℒa(𝛼=2) 0.6 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 73.23% 80.61% 74.32% 82.54%

ℒc(𝜏=1) 0.4 · ℒa(𝛼=2) 0.6 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 57.75% 67.55% 57.92% 69.84%

ℒc(𝜏=0.075) 0.3 · ℒa(𝛼=2) 0.7 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 72.99% 79.46% 74.88% 77.25%

ℒc(𝜏=1) 0.3 · ℒa(𝛼=2) 0.7 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 56.96% 64.31% 55.30% 65.34%

ℒc(𝜏=0.075) 0.2 · ℒa(𝛼=2) 0.8 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 71.94% 79.43% 70.95% 78.04%

ℒc(𝜏=1) 0.2 · ℒa(𝛼=2) 0.8 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 54.90% 64.22% 55.11% 63.76%

ℒc(𝜏=0.075) 0.1 · ℒa(𝛼=2) 0.9 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 70.53% 78.25% 69.82% 78.57%

ℒc(𝜏=1) 0.1 · ℒa(𝛼=2) 0.9 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 55.56% 64.90% 53.98% 65.08%

ℒc(𝜏=0.075) — ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 70.13% 77.66% 70.67% 77.25%

ℒc(𝜏=1) — ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 54.76% 63.45% 53.98% 64.81%

140

— ℒa(𝛼=2) — 3 rand 1 400 0.0005 1200 49.85% 63.81% 50.05% 63.49%

— ℒa(𝛼=2) — 3 rand 1 400 0.0005 1200 50.02% 63.81% 49.30% 63.49%

— ℒa(𝛼=2) — 3 rand 1 400 0.0005 1200 50.04% 63.81% 49.95% 63.49%

— 0.9091 · ℒa(𝛼=2) 0.0909 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 49.67% 63.81% 49.86% 63.49%

— 0.9 · ℒa(𝛼=2) 0.1 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 49.71% 63.81% 49.77% 63.49%

— 0.9 · ℒa(𝛼=2) 0.1 · ℒu(𝑡=5) 3 rand 1 400 0.0005 1200 73.42% 81.23% 73.76% 80.95%

— 0.9 · ℒa(𝛼=2) 0.1 · ℒu(𝑡=7) 3 rand 1 400 0.0005 1200 70.59% 78.57% 71.60% 77.51%

— 0.8889 · ℒa(𝛼=2) 0.1111 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 50.14% 63.81% 49.86% 63.49%

— 0.875 · ℒa(𝛼=2) 0.125 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 50.33% 63.98% 49.86% 63.49%

— 0.875 · ℒa(𝛼=2) 0.125 · ℒu(𝑡=7) 3 rand 1 400 0.0005 1200 64.70% 72.71% 64.10% 71.69%

— 0.8571 · ℒa(𝛼=2) 0.1429 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 59.80% 66.52% 59.51% 67.72%

— 0.8333 · ℒa(𝛼=1) 0.1667 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 68.42% 76.07% 68.60% 75.13%

— 0.8333 · ℒa(𝛼=2) 0.1667 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 66.69% 73.09% 67.95% 71.69%

— 0.833 · ℒa(𝛼=2) 0.167 · ℒu(𝑡=5) 3 rand 1 400 0.0005 1200 54.35% 64.49% 56.33% 63.49%

— 0.8298 · ℒa(𝛼=1) 0.1702 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 67.38% 74.68% 67.29% 73.81%

— 0.8298 · ℒa(𝛼=2) 0.1702 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 66.24% 73.33% 64.76% 77.25%

— 0.8261 · ℒa(𝛼=1) 0.1739 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 65.91% 75.27% 66.82% 74.07%

— 0.8261 · ℒa(𝛼=2) 0.1739 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 67.65% 73.56% 67.95% 72.49%

— 0.8222 · ℒa(𝛼=1) 0.1778 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 66.73% 75.13% 67.85% 73.54%

— 0.8222 · ℒa(𝛼=2) 0.1778 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 69.33% 73.42% 69.54% 74.60%

— 0.8182 · ℒa(𝛼=1) 0.1818 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 66.17% 74.36% 65.70% 74.34%

— 0.8182 · ℒa(𝛼=2) 0.1818 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 69.61% 75.51% 70.10% 75.40%

— 0.814 · ℒa(𝛼=1) 0.186 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 63.43% 72.74% 63.82% 73.28%

— 0.814 · ℒa(𝛼=2) 0.186 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 71.32% 77.72% 70.85% 77.25%

— 0.8095 · ℒa(𝛼=1) 0.1905 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 63.47% 72.33% 63.82% 73.28%

— 0.8095 · ℒa(𝛼=2) 0.1905 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 71.33% 77.19% 71.13% 75.40%

141

— 0.8049 · ℒa(𝛼=1) 0.1951 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 61.17% 70.79% 61.01% 73.54%

— 0.8049 · ℒa(𝛼=2) 0.1951 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 72.04% 77.93% 73.38% 77.51%

— 0.8 · ℒa(𝛼=1) 0.2 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 60.91% 69.41% 59.14% 70.37%

— 0.8 · ℒa(𝛼=2) 0.2 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 72.60% 80.34% 73.48% 79.89%

— 0.8 · ℒa(𝛼=2) 0.2 · ℒu(𝑡=5) 3 rand 1 400 0.0005 1200 54.82% 63.19% 51.64% 64.02%

— 0.8 · ℒa(𝛼=2) 0.2 · ℒu(𝑡=7) 3 rand 1 400 0.0005 1200 53.67% 63.90% 57.92% 65.61%

— 0.75 · ℒa(𝛼=1) 0.25 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 55.29% 63.63% 55.11% 70.11%

— 0.75 · ℒa(𝛼=2) 0.25 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 72.60% 80.72% 71.88% 79.63%

— 0.7 · ℒa(𝛼=1) 0.3 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 54.24% 63.87% 55.01% 68.52%

— 0.7 · ℒa(𝛼=2) 0.3 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 71.80% 78.93% 73.76% 77.78%

— 0.7 · ℒa(𝛼=2) 0.3 · ℒu(𝑡=5) 3 rand 1 400 0.0005 1200 55.34% 62.07% 53.51% 63.23%

— 0.7 · ℒa(𝛼=2) 0.3 · ℒu(𝑡=7) 3 rand 1 400 0.0005 1200 54.22% 64.28% 55.20% 60.85%

— 0.6667 · ℒa(𝛼=1) 0.3333 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 55.42% 63.25% 54.83% 68.78%

— 0.6667 · ℒa(𝛼=2) 0.3333 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 68.49% 76.48% 67.20% 74.60%

— 0.6 · ℒa(𝛼=1) 0.4 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 54.86% 63.63% 55.30% 67.46%

— 0.6 · ℒa(𝛼=2) 0.4 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 60.60% 69.35% 61.29% 68.25%

— 0.6 · ℒa(𝛼=2) 0.4 · ℒu(𝑡=5) 3 rand 1 400 0.0005 1200 54.64% 63.96% 56.61% 62.43%

— 0.6 · ℒa(𝛼=2) 0.4 · ℒu(𝑡=7) 3 rand 1 400 0.0005 1200 55.28% 63.63% 55.20% 63.76%

— 0.5 · ℒa(𝛼=1) 0.5 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 53.61% 64.40% 52.86% 66.14%

— 0.5 · ℒa(𝛼=2) 0.5 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 55.42% 64.75% 55.76% 66.40%

— 0.5 · ℒa(𝛼=2) 0.5 · ℒu(𝑡=5) 3 rand 1 400 0.0005 1200 55.49% 63.16% 55.39% 64.29%

— 0.5 · ℒa(𝛼=2) 0.5 · ℒu(𝑡=7) 3 rand 1 400 0.0005 1200 56.06% 63.90% 57.73% 64.81%

— 0.4 · ℒa(𝛼=1) 0.6 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 54.27% 64.37% 54.45% 63.49%

— 0.4 · ℒa(𝛼=2) 0.6 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 55.22% 63.69% 57.73% 67.72%

— 0.4 · ℒa(𝛼=2) 0.6 · ℒu(𝑡=5) 3 rand 1 400 0.0005 1200 53.26% 63.57% 53.70% 65.87%

— 0.4 · ℒa(𝛼=2) 0.6 · ℒu(𝑡=7) 3 rand 1 400 0.0005 1200 54.53% 63.66% 53.14% 64.55%

142

— 0.3 · ℒa(𝛼=1) 0.7 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 54.75% 63.43% 53.42% 64.02%

— 0.3 · ℒa(𝛼=2) 0.7 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 53.64% 63.84% 54.64% 62.70%

— 0.3 · ℒa(𝛼=2) 0.7 · ℒu(𝑡=5) 3 rand 1 400 0.0005 1200 55.13% 63.81% 55.39% 64.81%

— 0.3 · ℒa(𝛼=2) 0.7 · ℒu(𝑡=7) 3 rand 1 400 0.0005 1200 56.56% 63.87% 56.04% 66.67%

— 0.2 · ℒa(𝛼=1) 0.8 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 53.86% 64.04% 54.83% 69.31%

— 0.2 · ℒa(𝛼=2) 0.8 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 53.73% 65.34% 53.98% 64.55%

— 0.2 · ℒa(𝛼=2) 0.8 · ℒu(𝑡=5) 3 rand 1 400 0.0005 1200 54.76% 64.37% 55.76% 65.87%

— 0.2 · ℒa(𝛼=2) 0.8 · ℒu(𝑡=7) 3 rand 1 400 0.0005 1200 54.86% 63.51% 53.89% 66.40%

— 0.1 · ℒa(𝛼=1) 0.9 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 54.60% 65.72% 56.42% 68.52%

— 0.1 · ℒa(𝛼=2) 0.9 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 54.60% 64.90% 57.26% 60.85%

— 0.1 · ℒa(𝛼=2) 0.9 · ℒu(𝑡=5) 3 rand 1 400 0.0005 1200 56.23% 63.66% 55.48% 66.14%

— 0.1 · ℒa(𝛼=2) 0.9 · ℒu(𝑡=7) 3 rand 1 400 0.0005 1200 54.65% 65.22% 55.95% 64.02%

— — ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 55.02% 62.69% 57.36% 67.72%

— — ℒu(𝑡=5) 3 rand 1 400 0.0005 1200 54.95% 64.04% 56.04% 64.02%

— — ℒu(𝑡=7) 3 rand 1 400 0.0005 1200 54.55% 63.48% 56.33% 63.49%

— ℒa(𝛼=1) — 3 rand 1 400 0.0005 1200 NaN occurred

— 0.9091 · ℒa(𝛼=1) 0.0909 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 NaN occurred

— 0.9 · ℒa(𝛼=1) 0.1 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 NaN occurred

— 0.8889 · ℒa(𝛼=1) 0.1111 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 NaN occurred

— 0.875 · ℒa(𝛼=1) 0.125 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 NaN occurred

— 0.8571 · ℒa(𝛼=1) 0.1429 · ℒu(𝑡=2) 3 rand 1 400 0.0005 1200 NaN occurred

143

144

Appendix B

Proofs, Details, and Additional

Discussions for Chapter 3

B.1 Discussions for Section 3.2: Preliminaries on

Quasimetrics and Poisson Processes

B.1.1 Quasimetric Spaces

Definition 3.2.1 (Quasimetric Space). A quasimetric space is a pair (𝒳 , 𝑑), where

𝒳 is a set of points and 𝑑 : 𝒳 ×𝒳 → [0,∞] is the quasimetric, satisfying the following

conditions:

∀𝑥, 𝑦 ∈ 𝒳 , 𝑥 = 𝑦 ⇐⇒ 𝑑(𝑥, 𝑦) = 0, (Identity of Indiscernibles)

∀𝑥, 𝑦, 𝑧 ∈ 𝒳 , 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ≥ 𝑑(𝑥, 𝑧). (Triangle Inequality)

Definition B.1.1 (Quasipseudometric Space). As a further generalization, we say

(𝒳 , 𝑑) is a quasipseudometric space if the Identity of Indiscernibles requirement is only

145

satisfied in one direction:

∀𝑥, 𝑦 ∈ 𝒳 , 𝑥 = 𝑦 =⇒ 𝑑(𝑥, 𝑦) = 0, (Identity of Indiscernibles)

∀𝑥, 𝑦, 𝑧 ∈ 𝒳 , 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ≥ 𝑑(𝑥, 𝑧). (Triangle Inequality)

Examples of Quasimetric Spaces

Proposition B.1.2 (Expected Hitting Time of a Markov Chain). Let random

variables (𝑋𝑡)𝑡 be a Markov Chain with support 𝒳 . Then (𝒳 , 𝑑hitting) is a quasimetric

space, where

𝑑hitting(𝑠, 𝑡) , E [time to hit 𝑡 | start from 𝑠] , (B.1)

where we define the hitting time of 𝑠 starting from 𝑠 to be 0.

Proof of Proposition B.1.2. Obviously 𝑑hitting is non-negative. We then verify the

following quasimetric space properties:

• Identity of Indiscernibles. By definition, we have, ∀𝑥, 𝑦 ∈ 𝒳 , 𝑥 ̸= 𝑦,

𝑑hitting(𝑥, 𝑥) = 0 (B.2)

𝑑hitting(𝑥, 𝑦) ≥ 1. (B.3)

• Triangle Inequality. For any 𝑥, 𝑦, 𝑧 ∈ 𝒳 , we have

𝑑hitting(𝑥, 𝑦) + 𝑑hitting(𝑦, 𝑧) = E [time to hit 𝑦 then hit 𝑧 | start from 𝑥] (B.4)

≥ E [time to hit 𝑧 | start from 𝑥] (B.5)

= 𝑑hitting(𝑥, 𝑧). (B.6)

Hence, (𝒳 , 𝑑hitting) is a quasimetric space.

Proposition B.1.3 (Conditional Shannon Entropy). Let 𝒳 be the set of random

variables (of some probability space). Then (𝒳 , 𝑑𝐻) is a quasipseudometric space,

where

𝑑𝐻(𝑋, 𝑌) , 𝐻(𝑌 | 𝑋). (B.7)

146

If for all distinct (𝑋, 𝑌) ∈ 𝒳 × 𝒳 , 𝑋 can not be written as (almost surely) a

deterministic function of 𝑌 , then (𝒳 , 𝑑𝐻) is a quasimetric space.

Proof of Proposition B.1.3. Obviously 𝑑𝐻 is non-negative. We then verify the follow-

ing quasipseudometric space properties:

• Identity of Indiscernibles. By definition, we have, ∀𝑋, 𝑌 ∈ 𝒳 ,

𝑑𝐻(𝑋,𝑋) = 𝐻(𝑋 | 𝑋) = 0 (B.8)

𝑑𝐻(𝑌,𝑋) = 𝐻(𝑌 | 𝑋) ≥ 0, (B.9)

where ≤ is = iff 𝑌 is a (almost surely) deterministic function of 𝑋.

• Triangle Inequality. For any 𝑋, 𝑌, 𝑍 ∈ 𝒳 , we have

𝑑𝐻(𝑋, 𝑌) + 𝑑𝐻(𝑌, 𝑍) = 𝐻(𝑌 | 𝑋) +𝐻(𝑍 | 𝑌) (B.10)

≥ 𝐻(𝑌 | 𝑋) +𝐻(𝑍 | 𝑋𝑌) (B.11)

= 𝐻(𝑌 𝑍 | 𝑋) (B.12)

≥ 𝐻(𝑍 | 𝑋) (B.13)

= 𝑑𝐻(𝑋,𝑍). (B.14)

Hence, (𝒳 , 𝑑𝐻) is a quasipseudometric space, and a quasimetric space when the last

condition is satisfied.

Conditional Kolmogorov Complexity. From algorithmic information theory, the

conditional Kolmogorov complexity 𝐾(𝑦 | 𝑥) also similarly measures “the bits needed to

create 𝑦 given 𝑥 as input” [92]. It is also almost a quasimetric, but the exact definition

affects some constant/log terms that may make the quasimetric constraints non-

exact. For instance, when defined with the prefix-free version, conditional Kolmogorov

complexity is always strictly positive, even for 𝐾(𝑥 | 𝑥) > 0 [102]. One may remedy

this with a definition using a universal Turing machine (UTM) that simply outputs the

input on empty program. But to make triangle inequality work, one needs to reason

147

about how the input and output parts work on the tape(s) of the UTM. Nonetheless,

regardless of the definition details, conditional Kolmogorov complexity do satisfy

a triangle inequality up to log terms [56]. So intuitively, it behaves roughly like a

quasimetric defined on the space of binary strings.

Optimal Goal-Reaching Plan Costs in Markov Decision Processes (MDPs)

We define MDPs in the standard manner: ℳ = (𝒮,𝒜,ℛ,𝒫 , 𝛾) [130], where 𝒮 is

the state space, 𝒜 is the action space, ℛ : 𝒮 × 𝒜 → R is the reward function,

𝒫 : 𝒮 ×𝒜 → ∆(𝒮) is the transition function (where ∆(𝒮) is the set of all distributions

over 𝒮), and 𝛾 ∈ (0, 1) is the discount factor.

We define Π as the collection of all stationary policies 𝜋 : 𝒮 → ∆(𝒜) on ℳ. For a

particular policy 𝜋 ∈ Π, it induces random trajectories :

• Trajectory starting from state 𝑠 ∈ 𝒮 is the random variable

𝜉𝜋(𝑠) = (𝑠1, 𝑎1, 𝑟1, 𝑠2, 𝑎2, 𝑟2, . . .), (B.15)

distributed as

𝑠1 = 𝑠 (B.16)

𝑎𝑖 ∼ 𝜋(𝑠𝑖), ∀𝑖 ≥ 1 (B.17)

𝑠𝑖+1 ∼ 𝒫(𝑠𝑖, 𝑎𝑖), ∀𝑖 ≥ 1. (B.18)

• Trajectory starting from state-action pair (𝑠, 𝑎) ∈ 𝒮 ×𝒜 is the random variable

𝜉𝜋(𝑠, 𝑎) = (𝑠1, 𝑎1, 𝑟1, 𝑠2, 𝑎2, 𝑟2, . . .), (B.19)

148

distributed as

𝑠1 = 𝑠 (B.20)

𝑎1 = 𝑎 (B.21)

𝑎𝑖 ∼ 𝜋(𝑠𝑖), ∀𝑖 ≥ 2 (B.22)

𝑠𝑖+1 ∼ 𝒫(𝑠𝑖, 𝑎𝑖), ∀𝑖 ≥ 1. (B.23)

Proposition B.1.4 (Optimal Goal-Reaching Plan Costs in MDPs). Consider

an MDP ℳ = (𝒮,𝒜,ℛ,𝒫 , 𝛾). WLOG, assume that ℛ : 𝒮 × 𝒜 → (−∞, 0] has only

non-positive rewards (i.e., negated costs). Let 𝒳 = 𝒮 ∪ (𝒮 ×𝒜). Then (𝒳 , 𝑑sum) and

(𝒳 , 𝑑𝛾) are quasipseudometric spaces, where

𝑑sum(𝑥, 𝑦)

, min
𝜋∈Π

E [total costs from 𝑥 to 𝑦 under 𝜋] (B.24)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min𝜋∈Π E(𝑠1,𝑎1,𝑟1,...)=𝜉𝜋(𝑥)

[︀
−
∑︀

𝑡 𝑟𝑡 1𝑠′ /∈{𝑠𝑖}𝑖∈[𝑡]⏟ ⏞
not reached 𝑠′ yet

]︀
if 𝑦 = 𝑠′ ∈ 𝒮⏟ ⏞

goal is a state

,

min𝜋∈Π E(𝑠1,𝑎1,𝑟1,...)=𝜉𝜋(𝑥)

[︀
−
∑︀

𝑡 𝑟𝑡 1(𝑠′,𝑎′)/∈{(𝑠𝑖,𝑎𝑖)}𝑖∈[𝑡−1]⏟ ⏞
not reached 𝑠′ and performed 𝑎′ yet

]︀
if 𝑦 = (𝑠′, 𝑎′) ∈ 𝒮 ×𝒜⏟ ⏞

goal is a state-action pair

,

(B.25)

and

𝑑𝛾(𝑥, 𝑦) , log𝛾 max
𝜋∈Π

E
[︀
𝛾total costs from 𝑥 to 𝑦 under 𝜋]︀ (B.26)

is defined similarly.

If the reward function is always negative, (𝒳 , 𝑑sum) and (𝒳 , 𝑑𝛾) are quasimetric

spaces.

Proof of Proposition B.1.4. Obviously both 𝑑sum and 𝑑𝛾 are non-negative, and satisfy

Identity of Indiscernibles (for quasipseudometric spaces). For triangle inequality, note

that for each 𝑦, we can instead consider alternative MDPs:

• If 𝑦 = 𝑠′ ∈ 𝒮, modify the original MDP to make 𝑠′ a sink state, where performing

149

any action yields 0 reward (i.e., 0 cost);

• If 𝑦 = (𝑠′, 𝑎′) ∈ 𝒮 ×𝒜, modify the original MDP such that performing action 𝑎′

in state 𝑠′ surely transitions to a new sink state, where performing any action

yields 0 reward (i.e., 0 cost).

Obviously, both are Markovian. Furthermore, they are Stochastic Shortest Path

problems with no negative costs [58], implying that there are Markovian (i.e., sta-

tionary) optimal policies (respectively w.r.t. either minimizing expected total cost or

maximizing expected 𝛾total cost). Thus optimizing over the set of stationary policies,

Π, gives the optimal quantity over all possible policies, including concatenation of two

stationary policies. Thus the triangle inequality is satisfied by both.

Hence, (𝒳 , 𝑑sum) and (𝒳 , 𝑑𝛾) are quasipseudometric spaces.

Finally, if the reward function is always negative, 𝑥 ̸= 𝑦 =⇒ 𝑑sum(𝑥, 𝑦) >

0 and 𝑑𝛾(𝑥, 𝑦) > 0, so (𝒳 , 𝑑sum) and (𝒳 , 𝑑𝛾) are quasimetric spaces.

Remark B.1.5. We make a couple remarks:

• Any MDP with a bounded reward function can be modified to have only non-

positive rewards by subtracting the maximum reward (or larger);

• We have

𝑑sum(𝑠, (𝑠, 𝑎)) = 𝑑𝛾(𝑠, (𝑠, 𝑎)) = −ℛ(𝑠, 𝑎). (B.27)

• When the dynamics is deterministic, 𝑑sum ≡ 𝑑𝛾, ∀𝛾 ∈ (0, 1).

• Unless 𝑦 is reachable from 𝑥 with probability 1 under some policy, 𝑑sum(𝑥, 𝑦) = ∞.

• Unless 𝑦 is unreachable from 𝑥 with probability 1 under all policies, 𝑑sum(𝑥, 𝑦) <

∞. Therefore, it is often favorable to consider 𝑑𝛾 types.

• In certain MDP formulations, the reward is stochastic and/or dependent on the

reached next state. The above definitions readily extend to those cases.

150

• 𝛾𝑑𝛾((𝑠,𝑎),𝑦) is very similar to Q-functions except that Q-function applies discount

based on time, and 𝛾𝑑𝛾((𝑠,𝑎),𝑦) applies discount based on costs. We note that a

Q-learning-like recurrence can also be found for 𝛾𝑑𝛾((𝑠,𝑎),𝑦).

If the cost is constant in the sense for some fixed 𝑐 < 0, ℛ(𝑠, 𝑎) = 𝑐, ∀(𝑠, 𝑎) ∈

𝒮 × 𝒜, then time and cost are equivalent up to a scale. Therefore, 𝛾𝑑𝛾((𝑠,𝑎),𝑦)

coincides with the optimal Q-functions for the MDPs described in proof, and

𝛾𝑑𝛾(𝑠,𝑦) coincides with the optimal value functions for the respective MDPs.

Quasimetric Treewidth and Graph Treewidth

Definition 3.2.2 (Treewidth of Quasimetric Spaces [113]). Consider representations

of a quasimetric space 𝑀 as shortest-path distances on a positively-weighted directed

graph. Treewidth of 𝑀 is the minimum over all such graphs’ treewidths. (Recall that

the treewidth of a graph (after replacing directed edges with undirected ones) is a

measure of its complexity.)

Graph treewidth is a standard complexity measure of how “similar” a graph is to a

tree [133]. Informally speaking, if a graph has low treewidth, we can represent it as a

tree, preserving all connected paths between vertices, except that in each tree node,

we store a small number of vertices (from the original graph) rather than just 1.

Graph treewidth is widely used by the Theoretical Computer Science and Graph

Theory communities, since many NP problems are solvable in polynomial time for

graphs with bounded treewidth [11].

B.1.2 Poisson Processes

Definition 3.2.3 (Poisson Process). For nonatomic measure 𝜇 on set 𝐴, a Poisson

process on 𝐴 with mean measure 𝜇 is a random countable subset 𝑃 ⊂ 𝐴 (i.e., the

random events / points) such that

• for any disjoint measurable subsets 𝐴1, . . . , 𝐴𝑛 of 𝐴, the random variables

𝑁(𝐴1), . . . , 𝑁(𝐴𝑛) are independent, where 𝑁(𝐵) , #{𝑃 ∩𝐵} is the number of

points of 𝑃 in 𝐵, and

151

• 𝑁(𝐵) has the Poisson distribution with mean 𝜇(𝐵), denoted as Pois(𝜇(𝐵)).

Poisson processes are usually used to model events that randomly happens “with

no clear pattern”, e.g., visible stars in a patch of the sky, arrival times of Internet

packages to a data center. These events may randomly happen all over the sky / time.

To an extent, we can say that their characteristic feature is a property of statistical

independence [89].

To understand this, imagine raindrops hitting the windshield of a car. Suppose that

we already know that the rain is heavy, knowing the exact pattern of the raindrops

hitting on the left side of the windshield tells you little about the hitting pattern on

the right side. Then, we may assume that, as long as we look at regions that are

disjoint on the windshield, the number of raindrops in each region are independent.

This is the fundamental motivation of Poisson processes. In a sense, from this

characterization, Poisson processes are inevitable (see Sec. 1.4 of [89]).

Poisson Race Probability P [Pois(𝜇1) ≤ Pois(𝜇2)] and Its Gradient Formulas

In Fact 3.2.4 we made several remarks on the Poisson race probability, i.e., for

independent 𝑋 ∼ Pois(𝜇1), 𝑌 ∼ Pois(𝜇2), the quantity P [𝑋 ≤ 𝑌]. In this section,

we detailedly describe how we arrived at those conclusions, and provide the exact

gradient formulas for differentiating P [𝑋 ≤ 𝑌] w.r.t. 𝜇1 and 𝜇2.

From Skellam distribution CDF to Non-Central 𝜒2 distribution CDF. Dis-

tribution of the difference of two independent Poisson random variables is called the

Skellam distribution [139], with its parameter being the rate of the two Poissons.

That is, 𝑋 − 𝑌 ∼ Skellam(𝜇1, 𝜇2). Therefore, P [𝑋 ≤ 𝑌] is essentially the cumulative

distribution function (CDF) of this Skellam at 0. In Eq. (4) of [84], a connection is

made between the CDF of Skellam(𝜇1, 𝜇2) distribution, and the CDF of a non-central

𝜒2 distribution (which is a non-centered generalization of 𝜒2 distribution) with two

parameters 𝑘 > 0 degree(s) of freedom and non-centrality parameter 𝜆 ≥ 0): for

152

integer 𝑛 > 0,

P [Skellam(𝜇1, 𝜇2) ≥ 𝑛] = P
[︀
NonCentral𝜒2(2𝑛⏟ ⏞

degree(s) of freedom

, 2𝜇2⏟ ⏞
non-centrality parameter

) < 2𝜇1

]︀
, (B.28)

which can be evaluated using statistical computing packages such as SciPy [163] and

CDFLIB [21, 19].

Marcum-Q-Function and gradient formulas. To differentiate through Equa-

tion (B.28), we consider representing the non-central 𝜒2 CDF as a Marcum-Q-function

[111]. One definition of the Marcum-Q-function 𝑄𝑀 : R× R → R in statistics is

𝑄𝑀(𝑎, 𝑏) ,
∫︁ ∞

𝑏

𝑥
(︁𝑥
𝑎

)︁𝑀−1

exp

(︂
−𝑥

2 + 𝑎2

2

)︂
𝐼𝑀−1(𝑎𝑥) d𝑥, (B.29)

where 𝐼𝑀−1 is the modified Bessel function of order 𝑀 − 1. (When 𝑀 is non-integer,

we refer readers to [20, 111] for definitions, which are not relevant to the discussion

below.) When used in CDF of non-central 𝜒2, we have

P
[︀
NonCentral𝜒2(𝑘, 𝜆) < 𝑥

]︀
= 1 −𝑄 𝑘

2
(
√
𝜆,

√
𝑥). (B.30)

Combining with Equation (B.28), and using the symmetry Skellam(𝜇1, 𝜇2)
𝑑
= −Skellam(𝜇2, 𝜇1),

we have, for integer 𝑛,

P [𝑋 ≤ 𝑌 + 𝑛] = P [Skellam(𝜇1, 𝜇2) ≤ 𝑛] (B.31)

=

⎧⎪⎨⎪⎩P [NonCentral𝜒2(−2𝑛, 2𝜇1) < 2𝜇2] if 𝑛 < 0

1 − P [NonCentral𝜒2(2(𝑛+ 1), 2𝜇2) < 2𝜇1] if 𝑛 ≥ 0

(B.32)

=

⎧⎪⎨⎪⎩1 −𝑄−𝑛(
√

2𝜇1,
√

2𝜇2) if 𝑛 < 0

𝑄𝑛+1(
√

2𝜇2,
√

2𝜇1) if 𝑛 ≥ 0.

(B.33)

Prior work [20] provides several derivative formula for the Marcum-Q-Function:

153

• For 𝑛 < 0, we have

𝜕

𝜕𝜇1

P [𝑋 ≤ 𝑌 + 𝑛] =
𝜕

𝜕𝜇1

(︁
1 −𝑄−𝑛(

√︀
2𝜇1,

√︀
2𝜇2)

)︁
(B.34)

= 𝑄−𝑛(
√︀

2𝜇1,
√︀

2𝜇2) −𝑄−𝑛+1(
√︀

2𝜇1,
√︀

2𝜇2)

(Eq. (16) of [20])

= −
(︂
𝜇2

𝜇1

)︂−𝑛
2

𝑒−(𝜇1+𝜇2)𝐼−𝑛(2
√
𝜇1𝜇2) (Eq. (2) of [20])

= −
(︂
𝜇2

𝜇1

)︂−𝑛
2

𝑒−(
√
𝜇1−

√
𝜇2)2𝐼

(𝑒)
−𝑛(2

√
𝜇1𝜇2), (B.35)

where 𝐼(𝑒)𝑣 (𝑥) , 𝑒−|𝑥|𝐼𝑣(𝑥) is the exponentially-scaled version of 𝐼𝑣 that computing

libraries often provide due to its superior numerical precision (e.g., SciPy [163]),

𝜕

𝜕𝜇2

P [𝑋 ≤ 𝑌 + 𝑛] =
𝜕

𝜕𝜇2

(︁
1 −𝑄−𝑛(

√︀
2𝜇1,

√︀
2𝜇2)

)︁
(B.36)

=

(︂
𝜇2

𝜇1

)︂−𝑛+1
2

𝑒−(𝜇1+𝜇2)𝐼−𝑛−1(2
√
𝜇1𝜇2) (Eq. (19) of [20])

=

(︂
𝜇2

𝜇1

)︂−𝑛+1
2

𝑒−(
√
𝜇1−

√
𝜇2)2𝐼

(𝑒)
−𝑛−1(2

√
𝜇1𝜇2), (B.37)

• For 𝑛 ≥ 0, we have

𝜕

𝜕𝜇1

P [𝑋 ≤ 𝑌 + 𝑛] =
𝜕

𝜕𝜇1

𝑄𝑛+1(
√︀

2𝜇2,
√︀

2𝜇1) (B.38)

= −
(︂
𝜇1

𝜇2

)︂𝑛
𝑒−(𝜇1+𝜇2)𝐼𝑛(2

√
𝜇1𝜇2) (Eq. (19) of [20])

= −
(︂
𝜇1

𝜇2

)︂𝑛
𝑒−(

√
𝜇1−

√
𝜇2)2𝐼(𝑒)𝑛 (2

√
𝜇1𝜇2), (B.39)

154

and,

𝜕

𝜕𝜇2

P [𝑋 ≤ 𝑌 + 𝑛] =
𝜕

𝜕𝜇2

𝑄𝑛+1(
√︀

2𝜇2,
√︀

2𝜇1) (B.40)

= 𝑄𝑛+2(
√︀

2𝜇2,
√︀

2𝜇1) −𝑄𝑛+1(
√︀

2𝜇2,
√︀

2𝜇1)

(Eq. (16) of [20])

=

(︂
𝜇1

𝜇2

)︂𝑛+1
2

𝑒−(𝜇1+𝜇2)𝐼𝑛+1(2
√
𝜇1𝜇2) (Eq. (2) of [20])

=

(︂
𝜇1

𝜇2

)︂𝑛+1
2

𝑒−(
√
𝜇1−

√
𝜇2)2𝐼

(𝑒)
𝑛+1(2

√
𝜇1𝜇2). (B.41)

Setting 𝑛 = 0 gives the proper forward and backward formulas for P [𝑋 ≤ 𝑌].

B.2 Proofs, Discussions and Additional Results for

Section 3.4: Theoretical Analysis of Various Learn-

ing Algorithms

Assumptions. Recall that we assumed a quasimetric space, which is stronger than

a quasipseudometric space (Definition B.1.1), with finite distances. These are rather

mild assumptions, since any quasipseudometric with infinities can always be modified

to obey these assumptions by (1) adding a small metric (e.g., 𝑑𝜖(𝑥, 𝑦) , 𝜖1𝑥 ̸=𝑦 with

small 𝜖 > 0) and (2) capping the infinite distances to a large value higher than any

finite distance.

Worst-case analysis. In this work we focus on the worst-case scenario, as is

common in standard (quasi)metric embedding analyses [18, 85, 81, 113]. Such results

are important because embeddings are often used as heuristics in downstream tasks

(e.g., planning) which are sensitive to any error. While our negative result readily

extends to the average-case scenario (since the error (distortion or violation) is

arbitrary), we leave a thorough average-case analysis as future work.

155

Data-independent bounds. We analyze possible data-independent bounds for

various algorithms. In this sense, the positive result for PQEs (Theorem B.3.4) is

really strong, showing good guarantees regardless data quasimetric. The negative

result (Theorem 3.4.6) is also revealing, indicating that a family of algorithms should

probably not be used, unless we know something more about data. Data-independent

bounds are often of great interest in machine learning (e.g., concepts of VC-dimension

[161] and PAC learning [160]). An important future work is to explore data-dependent

results, possibly via defining a quasimetric complexity metric that is both friendly for

machine learning analysis, and connects well with combinatorics measures such as

quasimetric treewidth.

Violation and distortion metrics. The optimal violation has value 1. Specifically,

it is 1 iff 𝑑 is a quasimetric on 𝒳 (assuming non-negativity). Distortion (over training

set) and violation together quantify how well 𝑑 learns a quasimetric consistent with

the training data. A predictor can fit training data well (low distortion), but ignores

basic quasimetric constraints on heldout data (high violation). Conversely, a predictor

can perfectly obey the training data constraints (low violation), but doesn’t actually

fit training data well (high distortion). Indeed, (assuming non-negativity and Identity

of Indiscernibles), perfect distortion (value 1) and violation (value 1) imply that 𝑑 is a

quasimetric consistent with training data.

Relation with classical in-distribution generalization studies. Classical gen-

eralization studies the prediction error over the underlying data distribution, and

often involves complexity of the hypothesis class and/or training data [161, 112]. Our

focus on quasimetric constraints violation is, in fact, not an orthogonal problem, but

potentially a core part of in-distribution generalization for this setting. Here, the

underlying distribution is supported on all pairs of 𝒳 × 𝒳 . Indeed, if a learning

algorithm has large distortion, it must attain large prediction error on 𝑆 ⊂ 𝒳 × 𝒳 ;

if it has large violation, it must violates the quasimetric constraints and necessarily

admits bad prediction error on some pairs (whose true distances obey the quasimetric

156

constraints). Theorem 3.4.3 (proved below) formalizes this idea, where we characterize

generalization with the distortion over all possible pairs in 𝒳 × 𝒳 .

B.2.1 Theorem 3.4.3: Distortion and Violation Lower-Bound

Generalization Error

Theorem 3.4.3 (Distortion and Violation Lower-Bound Generalization Er-

ror). For non-negative 𝑑, dis(𝑑) ≥ max(dis𝑆(𝑑),
√︀

vio(𝑑)), where dis(𝑑) captures gen-

eralization over the entire 𝒳 space.

Proof

Proof of Theorem 3.4.3. It is obvious that

dis(𝑑) ≥ dis𝑆(𝑑). (B.42)

Therefore, it remains to show that dis(𝑑) ≥
√︁

vio(𝑑).

WLOG, say vio(𝑑) > 1. Otherwise, the statement is trivially true.

By the definition of violation (see Definition 3.4.2), we have, for some 𝑥, 𝑦, 𝑧 ∈ 𝒳 ,

with 𝑑(𝑥, 𝑧) > 0,
𝑑(𝑥, 𝑧)

𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)
= vio(𝑑). (B.43)

If 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) = 0, then we must have one of the following two cases:

• If 𝑑(𝑥, 𝑦) > 0 or 𝑑(𝑦, 𝑧) > 0, the statement is true because dis(𝑑) = ∞.

• If 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑧) = 0, then 𝑑(𝑥, 𝑧) = 0 and the statement is true since

dis(𝑑) ≥ 𝑑(𝑥,𝑧)
𝑑(𝑥,𝑧)

= ∞.

157

It is sufficient to prove the case that 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) > 0. We can derive

𝑑(𝑥, 𝑧) = vio(𝑑)
(︁
𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)

)︁
(B.44)

≥ vio(𝑑)

dis(𝑑)

(︁
𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)

)︁
(B.45)

≥ vio(𝑑)

dis(𝑑)
𝑑(𝑥, 𝑧). (B.46)

If 𝑑(𝑥, 𝑧) = 0, then dis(𝑑) = ∞ and the statement is trivially true.

If 𝑑(𝑥, 𝑧) > 0, above Equation (B.46) implies

dis(𝑑) ≥ 𝑑(𝑥, 𝑧)

𝑑(𝑥, 𝑧)
≥ vio(𝑑)

dis(𝑑)
=⇒ dis(𝑑) ≥

√︁
vio(𝑑). (B.47)

Combining Equations (B.42) and (B.47) gives the desired statement.

B.2.2 Lemma 3.4.5: Examples of OrthEquiv Algorithms

Lemma 3.4.5 (Examples of OrthEquiv Algorithms). 𝑘-nearest-neighbor with

Euclidean distance, dot-product kernel ridge regression (including min-norm linear

regression and MLP trained with squared loss in NTK regime) are OrthEquiv.

Recall the definition of Equivariant Learning Transforms.

Definition 3.4.4 (Equivariant Learning Algorithms). Given training set 𝒟 = {(𝑧𝑖, 𝑦𝑖)}𝑖,

where 𝑧𝑖 ∈ 𝒵 are inputs and 𝑦𝑖 ∈ 𝒴 are targets, a learning algorithm Alg produces a

function Alg(𝒟) : 𝒵 → 𝑌 such that Alg(𝒟)(𝑧′) is the function’s prediction on sample

𝑧′. Consider 𝒯 a set of transformations 𝒵 → 𝒵. Alg is equivariant to 𝒯 iff for all trans-

form 𝑇 ∈ 𝒯 , training set 𝒟, Alg(𝒟) = Alg(𝑇𝒟)∘𝑇 , where 𝑇𝒟 = {(𝑇𝑧, 𝑦) : (𝑧, 𝑦) ∈ 𝒟}

is the training set with transformed inputs.

Proof

Proof of Lemma 3.4.5. We consider the three algorithms individually:

158

• 𝑘-nearest neighbor with Euclidean distance.

It is evident that if a learning algorithm only depend on pairwise dot products

(or distances), it is equivariant to orthogonal transforms, which preserve dot

products (and distances). 𝑘-nearest-neighbor with Euclidean distance only

depends on pairwise distances, which can be written in terms of dot products:

‖𝑥− 𝑦‖22 = 𝑥T𝑥+ 𝑦T𝑦 − 2𝑥T𝑦. (B.48)

Therefore, it is equivariant to orthogonal transforms.

• Dot-product kernel ridge regression.

Since orthogonal transforms preservers dot-products, dot-product kernel ridge

regression is equivariant to them.

As two specific examples, let’s look at linear regression and NTK for fully-

connected MLPs.

– Min-norm least-squares linear regression.

Recall that the solution to min-norm least-squares linear regression 𝐴𝑥 = 𝑏

is given by Moore–Penrose pseudo-inverse 𝑥 = 𝐴+𝑏. For any matrix

𝐴 ∈ R𝑚×𝑛 with SVD 𝑈Σ𝑉 * = 𝐴, and 𝑇 ∈ 𝑂(𝑛) (where 𝑂(𝑛) is the

orthogonal group in dimension 𝑛), we have

(𝐴𝑇T)+ = (𝑈Σ𝑉 *𝑇T)+ = 𝑇𝑉 Σ+𝑈* = 𝑇𝐴+, (B.49)

where we used 𝑇 * = 𝑇T for 𝑇 ∈ 𝑂(𝑛). The solution for the transformed

data 𝐴𝑇T and 𝑏 is thus

(𝐴𝑇T)+𝑏 = 𝑇𝐴+𝑏. (B.50)

159

Thus, for any new data point 𝑥̃ ∈ R𝑛 and its transformed version 𝑇 𝑥̃ ∈ R𝑛,

(𝑇 𝑥̃)T(𝐴𝑇T)+𝑏⏟ ⏞
transformed problem prediction

= 𝑥̃T𝑇T𝑇𝐴+ = 𝑥̃𝐴+⏟ ⏞
original problem prediction

. (B.51)

Hence, min-norm least-squares linear regression is equivariant to orthogonal

transforms.

– MLP trained with squared loss in NTK regime.

We first recall the NTK recursive formula from [83].

Denote the NTK for a MLP with 𝐿 layers with the scalar kernel Θ(𝐿) : R𝑑×

R𝑑 → R. Let 𝛽 > 0 be the (fixed) parameter for the bias strength in the

network model, and 𝜎 be the activation function. Given 𝑥, 𝑧 ∈ R𝑑, it can

be recursively defined as following. For ℎ ∈ [𝐿],

Θ(ℎ)(𝑥, 𝑧) , Θ(ℎ−1)(𝑥, 𝑧)Σ̇(ℎ)(𝑥, 𝑧) + Σ(ℎ)(𝑥, 𝑧), (B.52)

where

Σ(0)(𝑥, 𝑧) =
1

𝑑
𝑥T𝑧 + 𝛽2, (B.53)

Λ(ℎ−1)(𝑥, 𝑧) =

⎛⎝Σ(ℎ−1)(𝑥, 𝑥) Σ(ℎ−1)(𝑥, 𝑧)

Σ(ℎ−1)(𝑧, 𝑥) Σ(ℎ−1)(𝑧, 𝑧)

⎞⎠ , (B.54)

Σ(ℎ)(𝑥, 𝑧) = 𝑐 · E(𝑢,𝑣)∼𝒩 (0,Λ(ℎ−1)) [𝜎(𝑢)𝜎(𝑣)] + 𝛽2, (B.55)

Σ̇(ℎ)(𝑥, 𝑧) = 𝑐 · E(𝑢,𝑣)∼𝒩 (0,Λ(ℎ−1)) [𝜎̇(𝑢)𝜎̇(𝑣)] , (B.56)

for some constant 𝑐.

It is evident from the recursive formula, that Θ(ℎ)(𝑥, 𝑧) only depends on 𝑥T𝑥,

𝑧T𝑧 and 𝑥T𝑧. Therefore, the NTK is invariant to orthogonal transforms.

Furthermore, training an MLP in NTK regime is the same as kernel

regression with the NTK [83], which has a unique solution only depending

on the kernel matrix on training set, denoted as 𝐾train ∈ R𝑛×𝑛, where 𝑛

is the training set size. Specifically, for training data {(𝑥𝑖, 𝑦𝑖)}𝑖∈[𝑛], the

160

solution 𝑓 *
NTK : R → R can be written as

𝑓 *
NTK(𝑥) =

(︁
Θ(𝐿)(𝑥, 𝑥1) Θ(𝐿)(𝑥, 𝑥2) · · · Θ(𝐿)(𝑥, 𝑥𝑛)

)︁
𝐾−1

train𝑦, (B.57)

where 𝑦 =
(︁
𝑦1 𝑦2 . . . 𝑦𝑛

)︁
is the vector of training labels.

Consider any orthogonal transform 𝑇 ∈ 𝑂(𝑑), and the NTK regression

trained on the transformed data {(𝑇𝑥𝑖, 𝑦𝑖)}𝑖∈[𝑛]. Denote the solution as

𝑓 *
NTK,𝑇 : R → R. As we have shown, 𝐾−1

train is invariant to such transforms,

and remains the same. Therefore,

𝑓 *
NTK,𝑇 (𝑇𝑥) =

(︁
Θ(𝐿)(𝑇𝑥, 𝑇𝑥1) Θ(𝐿)(𝑇𝑥, 𝑇𝑥2) · · · Θ(𝐿)(𝑇𝑥, 𝑇𝑥𝑛)

)︁
𝐾−1

train𝑦

(B.58)

=
(︁

Θ(𝐿)(𝑥, 𝑥1) Θ(𝐿)(𝑥, 𝑥2) · · · Θ(𝐿)(𝑥, 𝑥𝑛)
)︁
𝐾−1

train𝑦 (B.59)

= 𝑓 *
NTK(𝑥). (B.60)

Hence, MLPs trained (with squared loss) in NTK regime is equivariant to

orthogonal transforms.

Furthermore, we note that there are many variants of MLP NTK formulas

depending on details such as the particular initialization scheme and bias

settings. However, they usually only lead to slight changes that do not

affect our results. For example, while the above recursive NTK formula

are derived assuming that the bias terms are initialized with a normal

distribution [83], the formulas for initializing bias as zeros [48] does not

affect the dependency only on dot product, and thus our results still hold

true.

These cases conclude the proof.

161

𝑦

𝑥

𝑧

𝑦′

𝑤′

𝑤

vio(𝑑) ≥ 𝑑(𝑥, 𝑧)

𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)
≥ 𝑐

dis𝑆(𝑑)(dis𝑆(𝑑) + 𝑑(𝑦, 𝑧))

Training () : 𝑑(𝑥, 𝑧) = 𝑐, 𝑑(𝑤, 𝑧) = 1,
𝑑(𝑥, 𝑦) = 1, 𝑑(𝑦, 𝑤′) = 1.

Test () : 𝑑(𝑦, 𝑧) = ?

𝑐

1

1 1

? 𝑦

𝑥

𝑧

𝑦′

𝑤′

𝑤

vio(𝑑) ≥ 𝑑(𝑦, 𝑧)

𝑑(𝑦, 𝑤) + 𝑑(𝑤, 𝑧)
≥ 𝑑(𝑦, 𝑧)

2 · dis𝑆(𝑑)

Training () : 𝑑(𝑥, 𝑧) = 𝑐, 𝑑(𝑤, 𝑧) = 1,
𝑑(𝑥, 𝑦′) = 1, 𝑑(𝑦, 𝑤) = 1.

Test () : 𝑑(𝑦, 𝑧) = ?

𝑐

1

1

1?

Figure B-1: Two training sets pose incompatible constraints () for the test pair distance
𝑑(𝑦, 𝑧). With one-hot features, an orthogonal transform can exchange (*, 𝑦) ↔ (*, 𝑦′) and
(*, 𝑤) ↔ (*, 𝑤′), leaving the test pair (𝑦, 𝑧) unchanged, but transforming the training set
from one scenario to the other. Given either set, an OrthEquiv algorithm must attain same
training distortion and predict identically on (𝑦, 𝑧). For appropriate 𝑐, this implies large
distortion (not fitting training set) or violation (not approximately a quasimetric) in one of
these cases.

B.2.3 Theorem 3.4.6: Failure of OrthEquiv Algorithms

Theorem 3.4.6 (Failure of OrthEquiv Algorithms). Let (𝑓𝑛)𝑛 be an arbitrary

sequence of large values. There is an infinite sequence of quasimetric spaces ((𝒳𝑛, 𝑑𝑛))𝑛

with |𝒳𝑛| = 𝑛, 𝒳𝑛 ⊂ R𝑛 such that, over a random training set 𝑆 of size 𝑚, any

OrthEquiv algorithm outputs a predictor 𝑑 that

• 𝑑 fails non-negativity, or

• max(dis𝑆(𝑑), vio(𝑑)) ≥ 𝑓𝑛 (i.e., 𝑑 approximates training 𝑆 badly or is far from a

quasimetric),
with probability 1/2 − 𝑜(1), as long as 𝑆 does not contain almost all of the pairs

1 −𝑚/𝑛2 = 𝜔(𝑛−1/3), and does not only include few pairs 𝑚/𝑛2 = 𝜔(𝑛−1/2).

Recall that the little-Omega notation means 𝑓 = 𝜔(𝑔) ⇐⇒ 𝑔 = 𝑜(𝑓).

Proof

Proof strategy. In our proof below, we will extend the construction discussed in

Section 3.4.2 to large quasimetric spaces (reproduced here as Figure B-1). To do so,

we

162

1. Construct large quasimetric spaces containing many copies of the (potentially

failing) structure in Figure B-1, where we can consider training sets of certain

properties such that

• we can pair up such training sets,

• an algorithm equivariant to orthogonal transforms must fail on one of them,

• for each pair, the two training sets has equal probability of being sampled;

Then, it remains to show that with probability 1−𝑜(1) we end up with a training

set of such properties.

2. Consider sampling training set as independently collecting each pair with a

certain probability 𝑝, and carefully analyze the conditions to sample a training

set with the special properties with high probability 1 − 𝑜(1).

3. Extend to fixed-size training sets and show that, under similar conditions, we

sample a training set with the special properties with high probability 1 − 𝑜(1).

In the discussion below and the proof, we will freely speak of infinite distances

between two elements of 𝒳 , but really mean a very large value (possibly finite). This

allows us to make the argument clearer and less verbose. Therefore, we are not

restricting the applicable settings of Theorem 3.4.6 to quasimetrics with (or without)

infinite distances.

In Section 3.4.2, we showed how orthogonal-transform-equivariant algorithms can

not predict 𝑑(𝑦, 𝑧) differently for the two particular quasimetric spaces and their

training sets shown in Figure B-1.

But are these the only bad training sets? Before the proof, let us consider what kinds

of training sets are bad for these two quasimetric spaces. Consider the quasimetrics

𝑑left and 𝑑right over 𝒳 , {𝑥, 𝑦, 𝑦′, 𝑧, 𝑤, 𝑤′}, with distances as shown in the left and

right parts of Figure B-1, where we assume that the unlabeled pairs have infinite

distances except in the left pattern 𝑑(𝑥,𝑤′) ≤ 2, and in the both patterns 𝑑(𝑦, 𝑧) has

some appropriate value consistent with the respective triangle inequality.

Specifically, we ask:

163

• For what training sets 𝑆left ⊂ 𝒳 ×𝒳 can we interchange 𝑦 ↔ 𝑦′ and 𝑤 ↔ 𝑤′ on

2nd input to obtain a valid training set for 𝑑right, regardless of 𝑐?

• For what training sets 𝑆right ⊂ 𝒳 × 𝒳 can we interchange 𝑦 ↔ 𝑦′ and 𝑤 ↔ 𝑤′

on 2nd input to obtain a valid training set for 𝑑left, regardless of 𝑐?

Note that if 𝑆left (or 𝑆right) satisfies its condition, the predictor 𝑑 from an algorithm

equivariant to orthogonal transforms must (1) predict 𝑑(𝑦, 𝑧) identically and (2) attain

the same training set distortion on it and its transformed training set. As we will see

in the proof for Theorem 3.4.6, this implies large distortion or violation for appropriate

𝑐.

Intuitively, all we need is that the transformed data do not break quasimetric

constraints. However, its conditions are actually nontrivial as we want to set 𝑐 to

arbitrary:

• We can’t have (𝑥,𝑤) ∈ 𝑆right because it would be transformed into (𝑥,𝑤′) which

has 𝑑left(𝑥,𝑤′) ≤ 2. Then 𝑑right(𝑥,𝑤) ≤ 2 and then restricts the possible values

of 𝑐 due to triangle inequality with 𝑑right(𝑤, 𝑧) = 1. For similar reasons, we can’t

have (𝑥,𝑤′) ∈ 𝑆left. In fact, we can’t have a path of finite total distance from 𝑥

to 𝑤 (or 𝑤′) in 𝑆right (or 𝑆left).

• We can not have (𝑦′, 𝑦′) ∈ 𝑆(·) (which has distance 0), which would get trans-

formed into (𝑦′, 𝑦) with distance 0, which (on the other pattern) would restrict

the possible values of 𝑐 due to triangle inequality. For similar reasons (𝑤′, 𝑤′),

and cycles containing 𝑦′ or 𝑤′ with finite total distance, should be avoided.

• For the theoretical analysis, we assumed that the truth 𝑑 is a quasimetric rather

than just being a quasipseudometric. The difference is that quasipseudometric

additionally allows two distinct elements to have 0 distance. This assumptions

allows us to freely talk about distance ratios for defining distortion and violation.

For this particular reason, we can’t allow (𝑦, 𝑦′), (𝑦′, 𝑦), (𝑤,𝑤′), (𝑤′, 𝑤), (𝑦, 𝑦)

or (𝑤,𝑤), as they break this assumption. However, with metrics more friendly

to zero distances (than distortion and violation, which are based on distance

164

ratios), it might be possible to allow them and obtain better bounds in the

second-moment argument below in the proof for Theorem 3.4.6.

With these understandings of the pattern shown in Figure B-1, we are ready to

discuss the constructed quasimetric space and training sets.

Proof of Theorem 3.4.6. Our proof follows the outline listed above.

1. Construct large quasimetric spaces containing many copies of the

(potentially failing) structure in Figure B-1.

For any 𝑛 > 0, consider the following quasimetric space (𝒳𝑛, 𝑑𝑛) of size 𝑛, with

one-hot features. WLOG, assume 𝑛 = 12𝑘 is a multiple of 12. If it is not, set at

most 11 elements to have infinite distance with every other node. This won’t

affect the asymptotics. Let the 𝑛 = 12𝑘 elements of the space be

𝒳𝑛 ={𝑥left1 , . . . , 𝑥left𝑘 , 𝑥right1 , . . . , 𝑥right𝑘 ,𝑤left
1 , . . . , 𝑤left

𝑘 , 𝑤right
1 , . . . , 𝑤right

𝑘 ,

𝑦left1 , . . . , 𝑦left𝑘 , 𝑦right1 , . . . , 𝑦right𝑘 ,𝑤′left
1 , . . . , 𝑤′left

𝑘 ,𝑤′right
𝑘+1 , . . . , 𝑤

′right
2𝑘 ,

𝑦′left1 , . . . , 𝑦′left𝑘 ,𝑦′right𝑘+1 , . . . 𝑦
′right
2𝑘 , 𝑧1, . . . , 𝑧𝑘, 𝑧𝑘+1, . . . , 𝑧2𝑘}, (B.61)

with quasimetric distances, ∀𝑖, 𝑗,

𝑑𝑛(𝑥left𝑖 , 𝑧𝑗) = 𝑑𝑛(𝑥right𝑖 , 𝑧𝑗) = 𝑐 (B.62)

𝑑𝑛(𝑤left
𝑖 , 𝑧𝑗) = 𝑑𝑛(𝑤right

𝑖 , 𝑧𝑗) = 1 (B.63)

𝑑𝑛(𝑥left𝑖 , 𝑦left𝑖) = 𝑑𝑛(𝑥right𝑖 , 𝑦′right𝑖) = 1 (B.64)

𝑑𝑛(𝑦left𝑖 , 𝑤′left
𝑖) = 𝑑𝑛(𝑦right𝑖 , 𝑤right

𝑖) = 1 (B.65)

𝑑𝑛(𝑥left𝑖 , 𝑤′left
𝑖) = 2 (B.66)

𝑑𝑛(𝑦left𝑖 , 𝑧𝑗) = 𝑐 (B.67)

𝑑𝑛(𝑦right𝑖 , 𝑧𝑗) = 2, (B.68)

where subscripts are colored to better show when they are the same (or different),

unlisted distances are infinite (except that 𝑑𝑛(𝑢, 𝑢) = 0,∀𝑢 ∈ 𝒳). Essentially, we

165

equally divide the 12𝑘 nodes into 6 “types”, {𝑥, 𝑦, 𝑤, 𝑧, 𝑤′, 𝑦′}, corresponding to

the 6 nodes from Figure B-1, where each type has half of its nodes corresponding

to the left pattern (of Figure B-1), and the other half corresponding to the right

pattern, except for the 𝑧 types.

Furthermore,

• Among the left-pattern nodes, each set with the same subscript are bundled

together in the sense that 𝑥left𝑖 only has finite distance to 𝑦left𝑖 which only

has finite distance to 𝑤′left
𝑖 (instead of other 𝑦left𝑗 ’s or 𝑤′left

𝑘 ’s). However, since

distance to/from 𝑦left𝑖 and 𝑤left
𝑖 are infinite anyways, we can pair

(𝑥left𝑖 , 𝑦left𝑖 , 𝑤′left
𝑖 , 𝑦′left𝑗 , 𝑤left

𝑙 , 𝑧ℎ) (B.69)

for any 𝑖, 𝑗, 𝑙, ℎ, to obtain a left pattern.

• Among the right-pattern nodes, each set with the same subscript are

bundled together in the sense that 𝑥right𝑖 only has finite distance to 𝑦′right𝑖 ,

and 𝑦right𝑗 which only has finite distance to 𝑤right
𝑗 (instead of other 𝑦′right𝑗 ’s

or 𝑤right
𝑘 ’s). However, since are distances are infinite anyways, we can pair

(𝑥right𝑖 , 𝑦′right𝑖 , 𝑦right𝑗 , 𝑤right
𝑗 , 𝑤′right

𝑙 , 𝑧ℎ) (B.70)

for any 𝑖, 𝑗, 𝑙, ℎ, to obtain a right pattern.

We can see that (𝒳 , 𝑑) indeed satisfies all quasimetric space requirements (Defi-

nition 3.2.1), including triangle inequalities (e.g., by, for each (𝑎, 𝑏) with finite

distance 𝑑𝑛(𝑎, 𝑏) <∞, enumerating finite-length paths from 𝑎 to 𝑏).

Now consider the sampled training set 𝑆.

166

• We say 𝑆 is bad on a left pattern specified by 𝑖left, 𝑗left, 𝑙left, ℎleft, if

𝑆 ⊃ {(𝑥left𝑖left
, 𝑧ℎleft), (𝑥

left
𝑖left
, 𝑦left𝑖left

), (𝑦left𝑖left
, 𝑤′left

𝑖left
), (𝑤left

𝑙left
, 𝑧ℎleft)} (B.71)

∅ = 𝑆 ∩ {(𝑦left𝑖left
, 𝑧ℎleft), (𝑦

left
𝑖left
, 𝑦left𝑖left

), (𝑤left
𝑙left
, 𝑤left

𝑙left
), (𝑦′left𝑗left

, 𝑦′left𝑗left
), (𝑤′left

𝑖left
, 𝑤′left

𝑖left
),

(𝑥left𝑖left
, 𝑤′left

𝑖left
), (𝑦left𝑖left

, 𝑦′left𝑗left
), (𝑤left

𝑙left
, 𝑤′left

𝑖left
), (𝑦′left𝑗left

, 𝑦left𝑖left
), (𝑤′left

𝑖left
, 𝑤left

𝑙left
)}

(B.72)

• We say 𝑆 is bad on a right pattern specified by 𝑖right, 𝑗right, 𝑙right, ℎright, if

𝑆 ⊃ {(𝑥right𝑖right
, 𝑧ℎright), (𝑥

right
𝑖right

, 𝑦′right𝑖right
), (𝑦′right𝑗right

, 𝑤right
𝑗right

), (𝑤right
𝑗right

, 𝑧ℎright)} (B.73)

∅ = 𝑆 ∩ {(𝑦right𝑗right
, 𝑧ℎright), (𝑦

right
𝑗right

, 𝑦right𝑗right
), (𝑤right

𝑗right
, 𝑤right

𝑗right
), (𝑦′right𝑖right

, 𝑦′right𝑖right
),

(𝑤′right
𝑙right

, 𝑤′right
𝑙right

), (𝑥right𝑖right
, 𝑤′right

𝑗right
), (𝑦right𝑗right

, 𝑦′right𝑖right
), (𝑤right

𝑗right
, 𝑤′right

𝑙right
),

(𝑦′right𝑖right
, 𝑦right𝑗right

), (𝑤′right
𝑙right

, 𝑤right
𝑗right

)} (B.74)

Most importantly,

• If 𝑆 is bad on a left pattern specified by 𝑖left, 𝑗left, 𝑙left, ℎleft, consider the

orthogonal transform that interchanges 𝑦left𝑖left
↔ 𝑦′left𝑗left

and 𝑤left
𝑙left

↔ 𝑤′left
𝑖left

on

2nd input. In 𝑆, the possible transformed pairs are

𝑑(𝑥left𝑖left
, 𝑦left𝑖left

) = 1 −→ 𝑑(𝑥left𝑖left
, 𝑦′left𝑗left

) = 1, (known in 𝑆)

𝑑(𝑦left𝑖left
, 𝑤′left

𝑖left
) = 1 −→ 𝑑(𝑦left𝑖left

, 𝑤left
𝑙left

) = 1, (known in 𝑆)

𝑑(𝑢, 𝑦left𝑖left
) = ∞ −→ 𝑑(𝑢, 𝑦′left𝑗left

) = ∞,

(poissble in 𝑆 for some 𝑢 ̸= 𝑥left𝑖left
)

𝑑(𝑢, 𝑦′left𝑗left
) = ∞ −→ 𝑑(𝑢, 𝑦left𝑖left

) = ∞, (poissble in 𝑆 for some 𝑢)

𝑑(𝑢,𝑤′left
𝑖left

) = ∞ −→ 𝑑(𝑢,𝑤left
𝑙left

) = ∞,

(poissble in 𝑆 for some 𝑢 /∈ {𝑥left𝑖left
, 𝑦left𝑖left

})

𝑑(𝑢,𝑤left
𝑙left

) = ∞ −→ 𝑑(𝑢,𝑤′left
𝑖left

) = ∞. (poissble in 𝑆 for some 𝑢)

The crucial observation is that the transformed training set just look like

167

one sampled from a quasimetric space where

– the quasimetric space has one less set of left-pattern elements,

– the quasimetric space has one more set of right-pattern elements, and

– transformed training set is bad on that extra right pattern (given by

the extra set of right-pattern elements),

which can be easily verified by comparing the transformed training set with

the requirements in Equations (B.73) and (B.74).

• Similarly, if 𝑆 is bad on a right pattern specified by 𝑖right, 𝑗right, 𝑙right, ℎright,

consider the orthogonal transform that interchanges 𝑦right𝑗right
↔ 𝑦′right𝑖right

and

𝑤right
𝑗right

↔ 𝑤′right
𝑙right

on 2nd input. In 𝑆 the possible transformed pairs are

𝑑(𝑥right𝑖right
, 𝑦′right𝑖right

) = 1 −→ 𝑑(𝑥right𝑖right
, 𝑦right𝑗right

) = 1, (known in 𝑆)

𝑑(𝑦right𝑗right
, 𝑤right

𝑗right
) = 1 −→ 𝑑(𝑦right𝑗right

, 𝑤′right
𝑙right

) = 1, (known in 𝑆)

𝑑(𝑢, 𝑦right𝑗right
) = ∞ −→ 𝑑(𝑢, 𝑦′right𝑖right

) = ∞,

(poissble in 𝑆 for some 𝑢)

𝑑(𝑢, 𝑦′right𝑖right
) = ∞ −→ 𝑑(𝑢, 𝑦right𝑗right

) = ∞,

(poissble in 𝑆 for some 𝑢 ̸= 𝑥right𝑖right
)

𝑑(𝑢,𝑤′right
𝑙right

) = ∞ −→ 𝑑(𝑢,𝑤right
𝑗right

) = ∞,

(poissble in 𝑆 for some 𝑢)

𝑑(𝑢,𝑤right
𝑗right

) = ∞ −→ 𝑑(𝑢,𝑤′right
𝑙right

) = ∞.

(poissble in 𝑆 for some 𝑢 /∈ {𝑥right𝑖right
, 𝑦right𝑗right

})

Again, the crucial observation is that the transformed training set just look

like one sampled from a quasimetric space where

– the quasimetric space has one less set of right-pattern elements,

– the quasimetric space has one more set of left-pattern elements, and

– transformed training set is bad on that extra left pattern (given by the

extra set of left-pattern elements),

168

which can be easily verified by comparing the transformed training set with

the requirements in Equations (B.71) and (B.72).

Therefore, when 𝑆 is bad on both a left pattern and a right pattern (necessarily on

disjoint sets of pairs), we consider the following orthogonal transform composed

of:

(a) both transforms specified above (which only transforms 2nd inputs),

(so that after this we obtain another possible training set of same size from

the quasimetric space that is only different up to some permutation of 𝒳)

(b) a permutation of 𝒳 (on both inputs) so that the bad left-pattern nodes

and the bad right-pattern nodes exchange features,

This transforms gives another possible training set of same size from the same

quasimetric space, also is bad on a left pattern and a right pattern. Moreover,

with a particular way of select bad patterns (e.g., by the order of the subscripts),

this process is reversible. Therefore, we have defined a way to pair up all such

bad training sets.

Consider the predictors 𝑑before and 𝑑after trained on these two training sets (before

and after transform) with an learning algorithm equivariant to orthogonal trans-

forms. Assuming that they satisfy non-negativity and Identity of Indiscernibles,

we have,

• The predictors have the same distortion over respective training sets.

Therefore we denote this distortion as dis𝑆(𝑑) without specifying the pre-

dictor 𝑑 or training set 𝑆.

• the predictors must predict the same on heldout pairs in the sense that

𝑑before(𝑦
left
𝑖left
, 𝑧ℎleft) = 𝑑after(𝑦

right
𝑗right

, 𝑧ℎright) (B.75)

𝑑before(𝑦
right
𝑗right

, 𝑧ℎright) = 𝑑after(𝑦
left
𝑖left
, 𝑧ℎleft). (B.76)

169

Focusing on the first, we denote

𝑑(𝑦, 𝑧) , 𝑑before(𝑦
left
𝑖left
, 𝑧ℎleft) = 𝑑after(𝑦

right
𝑗right

, 𝑧ℎright) (B.77)

without specifying the predictor 𝑑 or the specific 𝑦 and 𝑧.

However, the quasimetric constraints on heldout pairs (𝑦left𝑖left
, 𝑧ℎleft) and (𝑦right𝑗right

, 𝑧ℎright)

are completely different (see the left vs. right part of Figure B-1). Therefore, as

shown in Figure B-1, assuming non-negativity, one of the two predictors must

have total violation at least

vio(𝑑) ≥ max

(︃
𝑐

dis𝑆(𝑑)(dis𝑆(𝑑) + 𝑑(𝑦, 𝑧)) ,

𝑑(𝑦, 𝑧)

2 · dis𝑆(𝑑)

)︃
. (B.78)

Fixing a large enough 𝑐, two terms in the max of Equation (B.78) can equal for

some 𝑑(𝑦, 𝑧), and are respectively decreasing and increasing in 𝑑(𝑦, 𝑧). In that

case, we have

vio(𝑑) ≥ 𝛿

2 · dis𝑆(𝑑)
, (B.79)

for 𝛿 > 0 such that

𝑐

dis𝑆(𝑑)(dis𝑆(𝑑) + 𝛿)
=

𝛿

2 · dis𝑆(𝑑)
. (B.80)

Solving the above quadratic equation gives

𝛿 =
−dis𝑆(𝑑) +

√︁
dis𝑆(𝑑)2 + 8𝑐

2
, (B.81)

leading to

vio(𝑑) ≥
−1 +

√︁
1 + 8𝑐/dis𝑆(𝑑)2

4
. (B.82)

170

Therefore, choosing 𝑐 ≥ 𝑓 2
𝑛(4𝑓𝑛 + 1)2 gives

dis𝑆(𝑑) ≤ 𝑓𝑛 (B.83)

=⇒ vio(𝑑) ≥
−1 +

√︁
1 + 8𝑐/dis𝑆(𝑑)2

4
(B.84)

≥
−1 +

√︀
1 + 8𝑓 2

𝑛(4𝑓𝑛 + 1)2/𝑓 2
𝑛

4
(B.85)

=
−1 +

√︀
1 + 8(4𝑓𝑛 + 1)2

4
(B.86)

≥ −1 + 4𝑓𝑛 + 1

4
(B.87)

= 𝑓𝑛. (B.88)

Hence, for training sets that are bad on both a left pattern and a right pattern,

we have shown a way to pair them up such that

• each pair of training sets have the same size, and

• the algorithm fail on one of each pair by producing a distance predictor

that

– has either distortion over training set ≥ 𝑓𝑛, or violation ≥ 𝑓𝑛, and

– has test MSE ≥ 𝑓𝑛.

Remark B.2.1. Note that all training sets of size 𝑚 has equal probability of

being sampled. Therefore, to prove the theorem, it suffices to show that with

probability 1 − 𝑜(1), we can sample a training set of size 𝑚 that is bad on both

a left pattern and a right pattern.

2. Consider sampling training set as individually collecting each pair

with a certain probability 𝑝, and carefully analyze the conditions to

sample a training set with the special properties with high probability

1 − 𝑜(1).

In probabilistic methods, it is often much easier to work with independent

random variables. Therefore, instead of considering uniform sampling a training

171

set 𝑆 of fixed size 𝑚, we consider including each pair in 𝑆 with probability 𝑝,

chosen independently. We will first show result based on this sampling procedure

via a second moment argument, and later extend to the case with a fixed-size

training set.

First, let’s define some notations that ignore constants:

𝑓 ∼ 𝑔 ⇐⇒ 𝑓 = (1 + 𝑜(1))𝑔 (B.89)

𝑓 ≪ 𝑔 ⇐⇒ 𝑓 = 𝑜(𝑔). (B.90)

We start with stating a standard result from the second moment method [3].

Corollary B.2.2 (Corollary 4.3.5 of [3]). Consider random variable 𝑋 =

𝑋1 + 𝑋2 + · · · + 𝑋𝑛, where 𝑋𝑖 is the indicator random variable for event 𝐴𝑖.

Write 𝑖 ∼ 𝑗 if 𝑖 ̸= 𝑗 and the pair of events (𝐴𝑖, 𝐴𝑗) are not independent. Suppose

the following quantity does not depend on 𝑖:

∆* ,
∑︁
𝑗∼𝑖

P [𝐴𝑗 | 𝐴𝑖] . (B.91)

If E [𝑋] → ∞ and ∆* ≪ E [𝑋], then 𝑋 ∼ E [𝑋] with probability 1 − 𝑜(1).

We will apply this corollary to obtain conditions on 𝑝 such that 𝑆 with probability

1− 𝑜(1) is bad on some left pattern, and conditions such that 𝑆 with probability

1−𝑜(1) is bad on some right pattern. A union bound would then give the desired

result.

• 𝑆 is bad on some left pattern.

Recall that a left pattern is specified by 𝑖left, 𝑗left, 𝑙left, ℎleft all ∈ [𝑘]:

(𝑥left𝑖left
, 𝑦left𝑖left

, 𝑤′left
𝑖left
, 𝑦′left𝑗left

, 𝑤left
𝑙left
, 𝑧ℎleft) (B.92)

172

Therefore, we consider 𝑘4 = (𝑛
12

)4 events of the form

𝐴𝑖left,𝑗left,𝑙left,ℎleft , {𝑆 is bad on the left pattern at 𝑖left, 𝑗left, 𝑙left, ℎleft}.

(B.93)

Obviously, these events are symmetrical, and the ∆* in Equation (B.91)

does not depend on 𝑖.

By the quasimetric space construction and the requirement for 𝑆 to be

bad on a left pattern in Equations (B.71) and (B.72), we can see that

(𝑖left, 𝑗left, 𝑙left, ℎleft) ∼ (𝑖′left, 𝑗
′
left, 𝑙

′
left, ℎ

′
left) only if 𝑖left = 𝑖′left or 𝑗left = 𝑗′left or

𝑙left = 𝑙′left or ℎleft = ℎ′left.

173

Therefore, we have

E [𝑋] ∼ 𝑛4𝑝4(1 − 𝑝)10 (include 4 pairs & exclude 10 pairs)

∆* ≪ 𝑛3𝑝4(1 − 𝑝)9 (share 𝑗left)

+ 𝑛3𝑝2(1 − 𝑝)7 (share 𝑖left)

+ 𝑛3𝑝4(1 − 𝑝)9 (share 𝑙left)

+ 𝑛3𝑝4(1 − 𝑝)10 (share ℎleft)

+ 𝑛2𝑝2(1 − 𝑝)4 (share 𝑗left, 𝑖left)

+ 𝑛2𝑝4(1 − 𝑝)8 (share 𝑗left, 𝑙left)

+ 𝑛2𝑝4(1 − 𝑝)9 (share 𝑗left, ℎleft)

+ 𝑛2𝑝2(1 − 𝑝)4 (share 𝑖left, 𝑙left)

+ 𝑛2𝑝(1 − 𝑝)6 (share 𝑖left, ℎleft)

+ 𝑛2𝑝3(1 − 𝑝)9 (share 𝑙left, ℎleft)

+ 𝑛(1 − 𝑝)3 (share 𝑖left, 𝑙left, ℎleft)

+ 𝑛𝑝3(1 − 𝑝)8 (share 𝑗left, 𝑙left, ℎleft)

+ 𝑛𝑝(1 − 𝑝)3 (share 𝑗left, 𝑖left, ℎleft)

+ 𝑛𝑝2(1 − 𝑝) (share 𝑗left, 𝑖left, 𝑙left)

∼ 𝑛3𝑝2(1 − 𝑝)7 + 𝑛2(𝑝2(1 − 𝑝)4 + 𝑝(1 − 𝑝)6) (B.94)

+ 𝑛((1 − 𝑝)3 + 𝑝2(1 − 𝑝)). (B.95)

Therefore, to apply Corollary B.2.2, we need to have

𝑛4𝑝4(1 − 𝑝)10 → ∞ (B.96)

𝑛3𝑝2(1 − 𝑝)7 ≪ 𝑛4𝑝4(1 − 𝑝)10 (B.97)

𝑛2(𝑝2(1 − 𝑝)4 + 𝑝(1 − 𝑝)6) ≪ 𝑛4𝑝4(1 − 𝑝)10 (B.98)

𝑛((1 − 𝑝)3 + 𝑝2(1 − 𝑝)) ≪ 𝑛4𝑝4(1 − 𝑝)10, (B.99)

174

which gives

𝑝≫ 𝑛−1/2 (B.100)

1 − 𝑝≫ 𝑛−1/3 (B.101)

as a sufficient condition to for 𝑆 to be bad on some left pattern with

probability 1 − 𝑜(1).

• 𝑆 is bad on some right pattern.

Recall that a right pattern is specified by 𝑖right, 𝑗right, 𝑙right, ℎright all ∈ [𝑘]:

(𝑥right𝑖right
, 𝑦′right𝑖right

, 𝑦right𝑗right
, 𝑤right

𝑗right
, 𝑤′right

𝑙right
, 𝑧ℎright) (B.102)

Similarly, we consider 𝑘4 = (𝑛
12

)4 events of the form

𝐴𝑖right,𝑗right,𝑙right,ℎright , {𝑆 is bad on the left pattern at 𝑖right, 𝑗right, 𝑙right, ℎright}.

(B.103)

Again, these events are symmetrical, and ∆* in Equation (B.91) does not

depend on 𝑖.

175

Similarly, we have

E [𝑋] ∼ 𝑛4𝑝4(1 − 𝑝)10 (include 4 pairs & exclude 10 pairs)

∆* ≪ 𝑛3𝑝3(1 − 𝑝)9 (share 𝑖right)

+ 𝑛3𝑝3(1 − 𝑝)8 (share 𝑗right)

+ 𝑛3𝑝4(1 − 𝑝)10 (share ℎright)

+ 𝑛3𝑝4(1 − 𝑝)9 (share 𝑙right)

+ 𝑛2𝑝2(1 − 𝑝)4 (share 𝑖right, 𝑗right)

+ 𝑛2𝑝2(1 − 𝑝)9 (share 𝑖right, ℎright)

+ 𝑛2𝑝3(1 − 𝑝)8 (share 𝑖right, 𝑙right)

+ 𝑛2𝑝2(1 − 𝑝)7 (share 𝑗right, ℎright)

+ 𝑛2𝑝3(1 − 𝑝)5 (share 𝑗right, 𝑙right)

+ 𝑛2𝑝4(1 − 𝑝)9 (share ℎright, 𝑙right)

+ 𝑛𝑝2(1 − 𝑝)4 (share 𝑗right, ℎright, 𝑙right)

+ 𝑛𝑝2(1 − 𝑝)8 (share 𝑖right, ℎright, 𝑙right)

+ 𝑛𝑝2(1 − 𝑝) (share 𝑖right, 𝑗right, 𝑙right)

+ 𝑛(1 − 𝑝) (share 𝑖right, 𝑗right, ℎright)

∼ 𝑛3𝑝3(1 − 𝑝)8 + 𝑛2𝑝2(1 − 𝑝)4 (B.104)

+ 𝑛(1 − 𝑝). (B.105)

Therefore, to apply Corollary B.2.2, we need to have

𝑛4𝑝4(1 − 𝑝)10 → ∞ (B.106)

𝑛3𝑝3(1 − 𝑝)8 ≪ 𝑛4𝑝4(1 − 𝑝)10 (B.107)

𝑛2𝑝2(1 − 𝑝)4 ≪ 𝑛4𝑝4(1 − 𝑝)10 (B.108)

𝑛(1 − 𝑝) ≪ 𝑛4𝑝4(1 − 𝑝)10, (B.109)

176

which gives

𝑝≫ 𝑛−3/4 (B.110)

1 − 𝑝≫ 𝑛−1/3 (B.111)

as a sufficient condition to for 𝑆 to be bad on some right pattern with

probability 1 − 𝑜(1).

So, by union bound, as long as

𝑝≫ 𝑛−1/2 (B.112)

1 − 𝑝≫ 𝑛−1/3, (B.113)

𝑆 is bad on some left pattern and some right pattern with probability 1 − 𝑜(1).

3. Extend to fixed-size training sets and show that, under similar condi-

tions, we sample a training set with the special properties with high

probability 1 − 𝑜(1).

To extend to fixed-size training sets, we consider the following alteration proce-

dure:

(a) Sample training set 𝑆 by independently include each pair with probability

𝑝 , 𝑚+𝛿
𝑛2 , for some 𝛿 > 0.

(b) Show that with high probability 1− 𝑜(1), we end up with [𝑚,𝑚+ 2𝛿] pairs

in 𝑆.

(c) Make sure that 𝑝 satisfy Equation (B.112) and Equation (B.113) so that 𝑆

is bad on some left pattern and some right pattern with high probability

1 − 𝑜(1).

(d) Randomly discard the additional pairs, and show that with high probability

1− 𝑜(1) this won’t affect that 𝑆 is bad on some left pattern and some right

pattern.

177

We now consider each step in details:

(a) Sample training set 𝑆 by independently include each pair with

probability 𝑝 , 𝑚+𝛿
𝑛2 , for some 𝛿 > 0.

For 𝑝 , 𝑚+𝛿
𝑛2 , the number of pairs in the training set is distributed as

Binomial(𝑛2,
𝑚+ 𝛿

𝑛2
). (B.114)

(b) Show that with high probability 1−𝑜(1), we end up with [𝑚,𝑚+2𝛿]

pairs in 𝑆.

Standard Binomial concentration tells us that,

𝛿 ≫ 𝑛
√︀
𝑝(1 − 𝑝) =⇒ P

[︂
Binomial(𝑛2,

𝑚+ 𝛿

𝑛2
) /∈ [𝑚,𝑚+ 2𝛿]

]︂
→ 0,

(B.115)

which can be satisfied if

𝛿 ≫ 𝑛. (B.116)

(c) Make sure that 𝑝 satisfy Equation (B.112) and Equation (B.113)

so that 𝑆 is bad on some left pattern and some right pattern with

high probability 1 − 𝑜(1).

Therefore, we want

𝑚+ 𝛿

𝑛2
≫ 𝑛−1/2 (B.117)

1 − 𝑚+ 𝛿

𝑛2
≫ 𝑛−1/3. (B.118)

(d) Randomly discard the additional pairs, and show that with high

probability 1 − 𝑜(1) this won’t affect that 𝑆 is bad on some left

pattern and some right pattern.

Consider any specific bad left pattern and a right pattern in 𝑆. It is

sufficient that we don’t break these two patterns during discarding.

Since we only discard pairs, it suffices to only consider the pairs we want

178

to preserve, which are a total of 8 pairs across two patterns.

Each such pair is discarded the probability ≤ 2𝛿
𝑚

, since we remove at most

2𝛿 pairs. By union bound,

P [all 8 pairs are preserved] ≥ 1 − 16𝛿

𝑚
. (B.119)

Hence, it suffices to make sure that

𝛿 ≪ 𝑚. (B.120)

Collecting all requirements, we have

𝛿 ≫ 𝑛 (B.121)
𝑚+ 𝛿

𝑛2
≫ 𝑛−1/2 (B.122)

1 − 𝑚+ 𝛿

𝑛2
≫ 𝑛−1/3 (B.123)

𝛿 ≪ 𝑚. (B.124)

Assume that

𝑚

𝑛2
≫ 𝑛−1/2 (B.125)

1 − 𝑚

𝑛2
≫ 𝑛−1/3. (B.126)

It can be easily verified that using 𝛿 , 𝑛1.1 satisfies all conditions.

Hence, for a uniformly randomly sampled training set 𝑆 with size 𝑚, 𝑆 is bad

on some left pattern and some right pattern with high probability 1 − 𝑜(1), as

long as

𝑚

𝑛2
≫ 𝑛−1/2 (B.127)

1 − 𝑚

𝑛2
≫ 𝑛−1/3. (B.128)

179

This is exactly the condition we need to prove the theorem (see Remark B.2.1).

This concludes the proof.

Discussions

Training set size dependency. Intuitively, when the training set has almost all

pairs, violation can be lowered by simply fitting training set well; when it is small

and sparse, the learning algorithm may have an easier job finding some consistent

quasimetric. Theorem 3.4.6 shows that, outside these two cases, algorithms equivariant

to orthogonal transforms can fail. Note that for the latter case, Theorem 3.4.6 requires

the training fraction to decrease slower than 𝑛−1/2, which rules out training sizes that is

linear in 𝑛. We leave improving this result as future work. Nonetheless, Theorem 3.4.6

still covers common scenarios such as a fixed fraction of all pairs, and highlights that

a training-data-agnostic result (such as the ones for PQEs) is not possible for these

algorithms.

Proof techniques. In embedding theory, it is quite standard to analyze quasimet-

rics as directed graphs due to their lack of nice metric structure. In the proof for

Theorem 3.4.6, we used abundant techniques from the probabilistic method, which

are commonly used for analyzing graph properties in the asymptotic case, including

Corollary B.2.2 from the second moment technique, and the alteration technique to

extend to fixed-size training sets. While such techniques may be new in learning

theory, they are standard for characterizing asymptotic probabilities on graphs, which

quasimetrics are often analyzed as [23, 113].

To provide more intuition on why these techniques are useful here, we note that the

construction of a training set of pairs is essentially like constructing an Erdős-Rényi

random graph on 𝑛2 vertices. Erdős-Rényi (undirected) random graphs come in two

kinds:

• Uniformly sampling a fixed number of 𝑚 edges;

• Adding an edge between each pair with probability 𝑝, decided independently.

180

The latter, due to its independent decisions, is often much easy to analyze and preferred

by many. The alteration technique (that we used in the proof) is also a standard way

to transfer a result on a random graph of the latter type, to a random graph of the

former type [16]. Readers can refer to [3, 16, 41] for more in-depth treatment of these

topics.

Generalization to other transforms. The core of this construction only relies

on the ability to swap (concatenated) inputs between (𝑥, 𝑦) ↔ (𝑥, 𝑦′) and between

(𝑦, 𝑤) ↔ (𝑦, 𝑤′) via a transform. For instance, here the orthogonal transforms satisfy

this requirement on one-hot features. Therefore, the result can also be generalized to

other transforms and features with the same property. Our stated theorem focuses on

orthogonal transforms because they correspond to several common learning algorithms

(see Lemma 3.4.5). If a learning algorithm is equivariant to some other transform

family, it would be meaningful to generalize this result to that transform family, and

obtain a similar negative result. We leave such extensions as future work.

Corollary of Distortion and Violation for Unconstrained MLPs

Corollary B.2.3 (Distortion and Violation of Unconstrained MLPs). Let

(𝑓𝑛)𝑛 be an arbitrary sequence of desired violation values. There is an infinite collection

of quasimetric spaces ((𝒳𝑛, 𝑑𝑛))𝑛=1,2,... with |𝒳𝑛| = 𝑛, 𝒳𝑛 ⊂ R𝑛 such that MLP trained

with squared loss in NTK regime converges to a function 𝑑 that either

• fails non-negativity, or

• vio(𝑑) ≥ 𝑓𝑛,
with probability 1/2 − 𝑜(1) over the random training set 𝑆 of size 𝑚, as long as 𝑆

does not contain almost all pairs 1 −𝑚/𝑛2 = 𝜔(𝑛−1/3), and does not only include few

pairs 𝑚/𝑛2 = 𝜔(𝑛−1/2).

Proof of Corollary B.2.3. This follows directly from Theorem 3.4.6 and standard NTK

convergence results obtained from the kernel regression optimality and the positive-

definiteness of the NTK. In particular, Proposition 2 of [83] claims that the NTK is

positive-definite when restricted to a hypersphere. Since the construction in proof of

181

0 200 400 600 800 1000
c

0

1

2

3

4

5

6 1e 8
Training MSE for MLPs trained on the left pattern
Training MSE for MLPs trained on the right pattern

(a) Training losses for varying 𝑐. Note the scale
of the vertical axis.

0 200 400 600 800 1000
c

0

100

200

300

400 d(y, z) for MLPs trained on the left pattern
d(y, z) for MLPs trained on the right pattern

(b) Prediction on heldout pair 𝑑(𝑦, 𝑧) for varying
𝑐.

Figure B-2: Training unconstrained MLPs on the toy failure construction discussed in
Section 3.4.2 (reproduced as Figure B-1). Two patterns in the construction have different
constraints on distance of the heldout pair (𝑦, 𝑧). Plots show mean and standard deviations
over 5 runs. Left: All training conclude with small training error. Right: Trained MLPs
predict identically for both patterns. Here standard deviation is small compared to mean
and thus not very visible.

Theorem 3.4.6 uses one-hot features, the input (concatenation of two features) lie on

the hypersphere with radius
√

2. Hence, the NTK is guaranteed positive definite.

Empirical Verification of the Failure Construction

We train unconstrained MLPs on the toy failure construction discussed in Section 3.4.2

(reproduced as Figure B-1). The MLP uses 12-1024-1 architecture with ReLU acti-

vations, takes in the concatenated one-hot features, and directly outputs predicted

distances. Varying 𝑐 ∈ {1, 10, 100, 1000}, we train the above MLP 5 times on each of

the two patterns in Figure B-1, by regressing towards the training distances via MSE

loss.

In Figure B-2, we can see that all training runs conclude with small training error,

and indeed the trained MLPs predict very similarly on the heldout pair, regardless

whether it is trained on the left or right pattern of Figure B-1, which restricts the

heldout pair distance differently.

This verifies our theory (Theorem 3.4.6 and Corollary B.2.3) that algorithms equiv-

ariant to orthogonal transforms (including MLPs in NTK regime) cannot distinguish

these two cases and thus must fail on one of them.

182

<latexit sha1_base64="SR80GvteEkahOgNRpYqC43fc0gs=">AAACinicjVFdaxNBFJ1stcba1rQ++jKYCoI07BalFV8CKvgYwbSFTAizszfZIfOxzNxpE5b9Rf4aH9U/4yTNg20VvDBwOOdczp1780pJj2n6o5VsPXi4/aj9eOfJ7t7+087B4bm3wQkYCqusu8y5ByUNDFGigsvKAde5got8/mGlX1yB89Kar7isYKz5zMipFBwjNel8YggLDFXNfGkdeuRiXg/AYXA5Y0eBOTkrkTtnr2nN1nm1g6IJ9DVlBSjkzVHTTDrdtJeui94H2QZ0yaYGk4PWMSusCBoMCsW9H2VpheOaO5RCQbPDgocqzsJnMIrQcA1+XK/zG/oyMgWdWhefQbpm/+yoF/9r5Nr7pc6jU3Ms/V1tRf5Lw1L/TRoFnJ6Na2mqgGDEzQzToChaujoALaQDgWoZARdOxv9SUXLHBcYz3Qrx3igdPdavFpzdXed9cH7Sy9720i9vuv3+ZtVt8py8IK9IRk5Jn3wmAzIkgnwj38lP8ivZTU6Sd8n7G2vS2vQ8I7cq+fgbrzbKxQ==</latexit> Perturb
u æ u+ ”

<latexit sha1_base64="4LUp5/sFvdjBEUkf07rJbxtgk50=">AAAC9nicjVJdaxNBFJ1dv2r8SuuDD74MZoUEbdgtSkUIFAT1MQbTFjJrmJ2ddIfOxzJzVxKW/Su+ia/6c/w3zqYp2NaCFwYO55x779w7k5VSOIjj30F44+at23e27nbu3X/w8FF3e+fQmcoyPmVGGnucUcel0HwKAiQ/Li2nKpP8KDt91+pHX7l1wujPsCp5quiJFgvBKHhq3v1FgC+hKmviCmPBAWWnM5vWnag/6VeDl3jSr8m6TW153lQvSM4l0GYwiHBBHc5MpXOe45xrJ2CFjcYRURSKLKsnzZe9CBPSiYhQfhju8Lk0bmZteTy6tn46iklRFlSDUfV5fhM1zbzbi4fxOvBVkGxAD21iPN8OdkluWKW4Biapc7MkLiGtqQXBJG86pHK89HPTEz7zUFPFXVqvL9Xg557J8cJYfzTgNft3Rr38XyNVzq1U5p3tEtxlrSWv06BQ/5JmFSzepLXQZQVcs7M7LCqJweD2sXEuLGcgVx5QZoWfF7OCWsrAf4kLTZzTUnmPce2Ck8vrvAoO94bJ62H86VXv4O1m1VvoKXqG+ihB++gAfURjNEUseBKMgvfBh3AZfgu/hz/OrGGwyXmMLkT48w8qNe+t</latexit>

(R(u), R(u + ”)) has bounded density on R2

=∆ P[R(u) = R(u + ”)] = 0
<latexit sha1_base64="y5w5D7fW4btDnQ1M52di62+LgKY=">AAACaXicjVHLSgMxFE3H97vVjegmOBV0YZkRRRGEghuXVWwrTIeSSVMbmmSG5I60DP0Bv8at/onf4E+YabvwCV5IOJxzLjf3JEoEN+B5bwVnZnZufmFxaXlldW19o1jabJg41ZTVaSxifR8RwwRXrA4cBLtPNCMyEqwZ9a9yvfnItOGxuoNhwkJJHhTvckrAUu1iuQVsAGmSlVuSQC+KstoouD1IDy/zK8SX2C+P2kXXq3jjwj+BPwUumlatXSoctToxTSVTQAUxJvC9BMKMaOBUsNFyKzUsIbRPHlhgoSKSmTAbrzPC+5bp4G6s7VGAx+znjmzwXyORxgxlZJ35cua7lpN/adCTv0lBCt3zMOMqSYEpOnlDNxUYYpzniztcMwpiaAGhmtt9Me0RTSjYX/gyxBglpPXEJg/Y/x7nT9A4rvinFe/mxK1eTKNeRLtoDx0gH52hKrpGNVRHFD2hZ/SCXgvvTsnZdnYmVqcw7dlCX8pxPwAdZ7r9</latexit>

P[R(u) = R(u)] = 1

(a) Continuous-valued stochastic process.

<latexit sha1_base64="SR80GvteEkahOgNRpYqC43fc0gs=">AAACinicjVFdaxNBFJ1stcba1rQ++jKYCoI07BalFV8CKvgYwbSFTAizszfZIfOxzNxpE5b9Rf4aH9U/4yTNg20VvDBwOOdczp1780pJj2n6o5VsPXi4/aj9eOfJ7t7+087B4bm3wQkYCqusu8y5ByUNDFGigsvKAde5got8/mGlX1yB89Kar7isYKz5zMipFBwjNel8YggLDFXNfGkdeuRiXg/AYXA5Y0eBOTkrkTtnr2nN1nm1g6IJ9DVlBSjkzVHTTDrdtJeui94H2QZ0yaYGk4PWMSusCBoMCsW9H2VpheOaO5RCQbPDgocqzsJnMIrQcA1+XK/zG/oyMgWdWhefQbpm/+yoF/9r5Nr7pc6jU3Ms/V1tRf5Lw1L/TRoFnJ6Na2mqgGDEzQzToChaujoALaQDgWoZARdOxv9SUXLHBcYz3Qrx3igdPdavFpzdXed9cH7Sy9720i9vuv3+ZtVt8py8IK9IRk5Jn3wmAzIkgnwj38lP8ivZTU6Sd8n7G2vS2vQ8I7cq+fgbrzbKxQ==</latexit> Perturb
u æ u+ ”

<latexit sha1_base64="y5w5D7fW4btDnQ1M52di62+LgKY=">AAACaXicjVHLSgMxFE3H97vVjegmOBV0YZkRRRGEghuXVWwrTIeSSVMbmmSG5I60DP0Bv8at/onf4E+YabvwCV5IOJxzLjf3JEoEN+B5bwVnZnZufmFxaXlldW19o1jabJg41ZTVaSxifR8RwwRXrA4cBLtPNCMyEqwZ9a9yvfnItOGxuoNhwkJJHhTvckrAUu1iuQVsAGmSlVuSQC+KstoouD1IDy/zK8SX2C+P2kXXq3jjwj+BPwUumlatXSoctToxTSVTQAUxJvC9BMKMaOBUsNFyKzUsIbRPHlhgoSKSmTAbrzPC+5bp4G6s7VGAx+znjmzwXyORxgxlZJ35cua7lpN/adCTv0lBCt3zMOMqSYEpOnlDNxUYYpzniztcMwpiaAGhmtt9Me0RTSjYX/gyxBglpPXEJg/Y/x7nT9A4rvinFe/mxK1eTKNeRLtoDx0gH52hKrpGNVRHFD2hZ/SCXgvvTsnZdnYmVqcw7dlCX8pxPwAdZ7r9</latexit>

P[R(u) = R(u)] = 1
<latexit sha1_base64="IuEMZgmqClAqT9+SxX9BZhdpdj4=">AAACjnicjVFdSxtBFJ1sbf3oV7SPvgzGQqQYdotfFKRCX+xDwYpRIRvC7OyNGZwvZu6IYdnf1F/Th77Uv+Ik5qFqBS8MHM45l3Pn3sJK4TFN/zSSF3MvX80vLC69fvP23fvm8sqpN8Fx6HIjjTsvmAcpNHRRoIRz64CpQsJZcfltop9dgfPC6BMcW+grdqHFUHCGkRo0v+cI1xhslYOyo+qH8VhT60zBCiEFjqlHISU1mq4ft8PG/nG7yqeplYOyDp/yEiSyemO9HjRbaSedFn0MshlokVkdDZYbm3lpeFCgkUvmfS9LLfYr5lBwCfVSHjxYxi/ZBfQi1EyB71fT9Jp+jExJh8bFp5FO2X87quvnGpnyfqyK6FQMR/6hNiGf0nCk/if1Ag73+pXQNiBofjfDMEiKhk6OQEvhgKMcR8C4E/G/lI+YYxzjqe6FeK+lih7jJwvOHq7zMTj93Mm2O+nPrdbBl9mqF8gqWSNtkpFdckAOyRHpEk5+kd/kL7lJmslOsp98vbMmjVnPB3KvksNbn73K9g==</latexit>

Most probability still on R(u) = R(u+ ”)

(b) Discrete-valued stochastic process.

Figure B-3: Bivariate distributions from different stochastic processes. Left: In a continuous-
valued process (where (𝑁𝜃, 𝑁𝜃′) has bounded density if 𝜃 ̸= 𝜃′), perturbing one 𝜃 → 𝜃 + 𝜖
leaves P [𝑁𝜃 = 𝑁𝜃+𝜖] = 0. Then one of P

[︀
𝑁𝜃 ≤ 𝑁𝜃+𝜖

]︀
and P

[︀
𝑁𝜃+𝜖 ≤ 𝑁𝜃

]︀
must be far

away from 1 (as they sum to 1), breaking differentiability at either P [𝑁𝜃 ≤ 𝑁𝜃] = 1 or
P [𝑁𝜃+𝜖 ≤ 𝑁𝜃+𝜖] = 1. Right: For discrete-valued processes, most probability can still be left
on 𝑁𝜃 = 𝑁𝜃+𝜖 and thus do not break differentiability.

B.3 Proofs and Discussions for Section 3.5: Poisson

Quasimetric Embeddings (PQEs)

B.3.1 Non-differentiability of Continuous-Valued Stochastic Pro-

cesses

In this section we formalize the argument presented in Section 3.5.3 to show why

continuous-valued stochastic processes lead to non-differentiability. Figure B-3 also

provides a graphical illustration of the general idea.

Proposition B.3.1 (Quasimetric Embeddings with Continuous-Valued Stochas-

tic Processes are not Differentiable). Consider any R𝑘-valued stochastic process

{𝑅(𝑢)}𝑢∈R𝑑 such that 𝑢 ̸= 𝑢′ =⇒ P [𝑅(𝑢) = 𝑅(𝑢′)] < 𝑐 for some universal constant

𝑐 < 1. Then P [𝑅(𝑢) ≤ 𝑅(𝑢′)] is not differentiable at any 𝑢 = 𝑢′.

Proof of Proposition B.3.1. Assume that the quantity is differentiable. Then it must

be continuous in 𝑢 and 𝑣.

We will use the (𝜖, 𝛿)-definition of continuity.

At any 𝑢 ∈ R𝑑, consider small 𝜖 ∈ (0, 1−𝑐
3

). By continuity, since

P [𝑅(𝑢) ≤ 𝑅(𝑢)] = P [𝑅(𝑢+ 𝛿) ≤ 𝑅(𝑢+ 𝛿)] = 1 (B.129)

183

we can find 𝜖 ∈ R𝑑 such that

P [𝑅(𝑢) ≤ 𝑅(𝑢+ 𝛿)] ≥ 1 − 𝜖 (B.130)

P [𝑅(𝑢+ 𝛿) ≤ 𝑅(𝑢)] ≥ 1 − 𝜖. (B.131)

However, by assumption, P [𝑅(𝑢) = 𝑅(𝑢+ 𝛿)] < 𝑐. Therefore,

P [𝑅(𝑢) ≤ 𝑅(𝑢+ 𝛿)] ≥ 1 − 𝜖 (B.132)

P [𝑅(𝑢+ 𝛿) < 𝑅(𝑢)] ≥ 1 − 𝜖− 𝑐, (B.133)

which implies

1 = P [𝑅(𝑢) ≤ 𝑅(𝑢+ 𝛿)] + P [𝑅(𝑢+ 𝛿) < 𝑅(𝑢)] ≥ 2 − 2𝜖− 𝑐 ≥ 5

3
− 2

3
𝑐 > 1. (B.134)

By contradiction, the quantity must not be differentiable at any 𝑢 = 𝑢′.

B.3.2 PQE-GG: Gaussian-based Measure and Gaussian Shapes

In Section 3.5.1, we presented the following PQE-LH formulation for Lebesgue measures

and half-lines:

𝑑PQE-LH
𝑧 (𝑢, 𝑣) ,

∑︁
𝑖

𝛼𝑖 ·
(︁

1 − exp
(︀
−
∑︁
𝑗

(𝑢𝑖,𝑗 − 𝑣𝑖,𝑗)
+
)︀)︁
. (??)

Here, 𝑢𝑖,𝑗 and 𝑣𝑖,𝑗 receive zero gradient when 𝑢𝑖,𝑗 ≤ 𝑣𝑖,𝑗.

Gaussian shapes parametrization. We therefore consider a set parametrization

where no one set is entirely contained in a different set— the regions regions ⊂ R2

between an axis and a 1D Gaussian density function of fixed variance 𝜎2
shape = 1. That

is, for each given 𝑢 ∈ 𝑅, we consider sets

𝐴𝒩 (𝜇) , {(𝑎, 𝑏) : 𝑏 ∈ [0, 𝑓𝒩 (𝑎;𝜇, 1)]}, (B.135)

184

where 𝑓𝒩 (𝑏;𝜇, 𝜎2) denotes the density of 1D Gaussian 𝒩 (𝜇, 𝜎2) with mean 𝜇 and

variance 𝜎2 evaluated at 𝑏. Since the Gaussian density function have unbounded

support, these sets, which are translated versions of each other, never have one set fully

contained in another. For latent 𝑢 ∈ Rℎ×𝑘 reshaped as 2D, our set parametrizations

are,

𝑢→ 𝐴𝑖,𝑗(𝑢) , 𝐴𝒩 (𝑢𝑖,𝑗), 𝑖 ∈ [ℎ], 𝑗 ∈ [𝑘]. (B.136)

A Gaussian-based measure. These subsets of R2 always have Lebesgue measure

1, which would make PQE symmetrical (if used with a (scaled) Lebesgue measure).

Thus, we use an alternative R2 measure given by the product of a R Lebesgue measure

on the 𝑏-dimension (i.e., dimension of the function value of the Gaussian density)

and a R Gaussian measure on the 𝑎-dimension (i.e., dimension on the input of the

Gaussian density) centered at 0 with learnable variances (𝜎2
measure)𝑖,𝑗. To avoid being

constrained by the bounded total measure of 1, we also optimize learnable positive

scales 𝑐𝑖,𝑗 > 0. Hence, the each Poisson process has a mean measure as the product

of a R Lebesgue measure and a R Gaussian with learnable standard deviation, then

scaled with a learnable scale.

Note that the Gaussian measure should not be confused with the Gaussian shape.

Their parameters also are fully independent with one another.

Computing measures of Gaussian shapes and their intersections. The in-

tersection of two such Gaussian shapes is formed by two Gaussian tail shapes, reflected

around the middle point of the two Gaussian means (since they have the same standard

deviation 𝜎shape = 1). Hence, it is sufficient to describe how to integrate a Gaussian

density on a Gaussian measure over an interval. Applying this with different intervals

would give the measure of the intersection, and the measures of the two Gaussian

shapes. Omit indices 𝑖, 𝑗 for clarity. Formally, we integrate the Gaussian density

𝑓𝒩 (𝑎;𝑢, 𝜎2
shape) over the centered Gaussian measure with variance 𝜎2

measure, which has

185

density 𝑓𝒩 (𝑎; 0, 𝜎2
measure):∫︁

𝑐 · 𝑓𝒩 (𝑎;𝑢, 𝜎2
shape)𝑓𝒩 (𝑎; 0, 𝜎2

measure) d𝑎, (B.137)

which is also another Gaussian integral (e.g., considered as integrating the product

measure along the a line of the form 𝑦 = 𝑥+𝑢). After standard algebraic manipulations

(omitted here), we obtain

∫︁
𝑐 · 𝑓𝒩 (𝑎;𝑢, 𝜎2

shape)𝑓𝒩 (𝑎; 0, 𝜎2
measure) d𝑎 (B.138)

=
𝑐 · exp (−𝑢2/𝜎2

total)√︀
2𝜋𝜎2

total

∫︁
𝑓𝒩

(︂
𝑎;𝑢

𝜎2
measure

𝜎2
total

,
𝜎2
shape𝜎

2
measure

𝜎2
total

)︂
d𝑎, (B.139)

for

𝜎2
total , 𝜎2

shape + 𝜎2
measure. (B.140)

This can be easily evaluated using statistical computing packages that supports

computing the error function and/or Gaussian CDF. Moreover, this final form is also

readily differentiable with standard gradient formulas. To summarize,

• each set 𝐴(𝑢) has total measure

𝑐√︀
2𝜋𝜎2

total

exp
(︀
−𝑢2/𝜎2

total

)︀
; (B.141)

• the intersection of 𝐴(𝑣) and 𝐴(𝑢2), for 𝑣 ≤ 𝑢2 has measure

𝑐 · exp (−𝑢22/𝜎2
total)√︀

2𝜋𝜎2
total

∫︁ 𝑣+𝑢2
2

−∞
𝑓𝒩

(︂
𝑎;𝑢2

𝜎2
measure

𝜎2
total

,
𝜎2
shape𝜎

2
measure

𝜎2
total

)︂
d𝑎 (B.142)

+
𝑐 · exp (−𝑣2/𝜎2

total)√︀
2𝜋𝜎2

total

∫︁ +∞

𝑣+𝑢2
2

𝑓𝒩

(︂
𝑎; 𝑣

𝜎2
measure

𝜎2
total

,
𝜎2
shape𝜎

2
measure

𝜎2
total

)︂
d𝑎. (B.143)

Interpretation and representing any total order. Consider two Gaussian

shapes 𝐴(𝑣) and 𝐴(𝑢2). Note that the Gaussian-based measure 𝜇Gaussian is symmetric

186

around and centered at 0. Therefore,

|𝑣| < |𝑢2| =⇒ 𝜇Gaussian(𝐴(𝑣)) > 𝜇Gaussian(𝐴(𝑢2)) (B.144)

=⇒ 𝜇Gaussian(𝐴(𝑣) ∖ 𝐴(𝑢2)) > 𝜇Gaussian(𝐴(𝑢2) ∖ 𝐴(𝑣)). (B.145)

Moreover, scaling the rates of a Poisson makes it more concentrated (as a Poisson’s

mean grows as the square of its standard deviation) so that lim𝑐→∞ P [Pois(𝑐𝜇1) ≤ Pois(𝑐𝜇2)] =

1𝜇1<𝜇2 for 𝜇1 ̸= 𝜇2. Then any total order can be represented as the limit of a Poisson

process with Gaussian shapes, with the shapes’ having their means arranged according

to the total order, as the scale on the Gaussian-based measure grows to infinity.

B.3.3 Theoretical Guarantees for PQEs

Theorem 3.5.2 (Distortion and violation of PQEs). Under the assumptions of

Section 3.4, any quasimetric space with size 𝑛 and treewidth 𝑡 admits a PQE-LH and

a PQE-GG with distortion 𝒪(𝑡 log2 𝑛) and violation 1, with an expressive encoder

(e.g., a ReLU network with ≥ 3 layers and polynomial width).

In Section 3.5.4, we presented the above theoretical distortion and violation

guarantees for PQE-LH and PQE-GG. Furthermore, we commented that the same

guarantees apply to more generally to PQEs satisfying a mild condition. Here, we first

precisely describe this condition, show that PQE-LH and PQE-GG do satisfy it, state

and prove the general result, and then show the above as a straightforward corollary.

The Concentration Property

Recall that PQEs are generally defined with measures 𝜇 and set parametrizations 𝐴

as

𝑑PQE
𝑧 (𝑢, 𝑣;𝜇,𝐴, 𝛼) ,

∑︁
𝑖

𝛼𝑖 · E𝜋𝑧∼ΠPQE
𝑧 (𝜇𝑖,𝐴𝑖)

[𝜋𝑧(𝑢, 𝑣)] , (3.14)

where

E𝜋𝑧∼ΠPQE
𝑧 (𝜇,𝐴)[𝜋𝑧(𝑢, 𝑣)] , 1 −

∏︁
𝑗

P [𝑁𝑗(𝐴𝑗(𝑢)) ≤ 𝑁𝑗(𝐴𝑗(𝑣))] . (3.13)

187

Because the measures 𝜇 and set parametrizations 𝐴 themselves may have parame-

ters (e.g., as in PQE-GG), we consider them as classes of PQEs. E.g., PQE-GG is

a class of PQEs such that the 𝜇 is the specific Gaussian-based form, and 𝐴 is the

specific Guassian-shape.

Definition B.3.2 (Concetration Property of PQEs). Consider a PQE class with

ℎ mixtures of quasipartition distributions, each from 𝑘 Poisson processes. We say

that it has concentration property if it satisfies the following. Consider any finite

subset of 𝒳 ′ ⊂ 𝒳 , and arbitrary function 𝑔 : 𝒳 → Rℎ×𝑘. There exists a sequence of

((𝑓 (𝑛), 𝜇(𝑛), 𝐴(𝑛))𝑛 such that

• 𝑓 (𝑛) : 𝒳 ′ → R𝑑,

• 𝜇(𝑛), 𝐴(𝑛) are valid members of this PQE,

• E𝜋𝑧∼ΠPQE
𝑧 (𝜇𝑖,𝐴𝑖)

[︀
𝜋𝑧(𝑓

(𝑛)(𝑥′), 𝑓 (𝑛)(𝑦′))
]︀

uniformly converges to 1−
∏︀

𝑗 1𝑔(𝑥)𝑖,𝑗≤𝑔(𝑦)𝑖,𝑗 ,

over all mixtures 𝑖 and pairs 𝑥, 𝑦 ∈ 𝒳 ′.

A sufficient condition. It suffices to make the probabilities

(𝑥, 𝑦, 𝑖, 𝑗) → P [𝑁𝑗(𝐴𝑗(𝑢)) ≤ 𝑁𝑗(𝐴𝑗(𝑣))] , (B.146)

along some PQE sequence uniformly converge to the indicators

(𝑥, 𝑦, 𝑖, 𝑗) → 1𝑔(𝑥′)𝑖,𝑗≤𝑔(𝑦′)𝑖,𝑗 . (B.147)

This is sufficient since product of bounded functions is uniformly convergent, if

each function is. Both statements below together form a sufficient condition for

Equation (B.146) to uniformly converge to Equation (B.147):

1. For any 𝑔, there exists a specific PQE of this class satisfying

• Measures (of set differences) are consistent with 𝑔 with some margin 𝜖 > 0:

188

∀𝑖 ∈ [ℎ], 𝑗 ∈ [𝑘], 𝑥 ∈ 𝒳 ′, 𝑦 ∈ 𝒳 ′,

𝑔(𝑥)𝑖,𝑗 < 𝑔(𝑦)𝑖,𝑗

⇐⇒ 𝜇𝑖,𝑗(𝐴𝑖,𝑗(𝑓(𝑥)) ∖ 𝐴𝑖,𝑗(𝑓(𝑦))) + 𝜖 < 𝜇𝑖,𝑗(𝐴𝑖,𝑗(𝑓(𝑦)) ∖ 𝐴𝑖,𝑗(𝑓(𝑥)))

𝑔(𝑥)𝑖,𝑗 = 𝑔(𝑦)𝑖,𝑗

⇐⇒ 𝜇𝑖,𝑗(𝐴𝑖,𝑗(𝑓(𝑥)) ∖ 𝐴𝑖,𝑗(𝑓(𝑦))) = 𝜇𝑖,𝑗(𝐴𝑖,𝑗(𝑓(𝑦)) ∖ 𝐴𝑖,𝑗(𝑓(𝑥))) = 0.

• Either of the following:

– One side must be zero: ∀𝑖 ∈ [ℎ], 𝑗 ∈ [𝑘], 𝑥 ∈ 𝒳 , 𝑦 ∈ 𝒳 ,

(𝜇𝑖,𝑗(𝐴𝑖,𝑗(𝑓(𝑥)) ∖ 𝐴𝑖,𝑗(𝑓(𝑦)))) (𝜇𝑖,𝑗(𝐴𝑖,𝑗(𝑓(𝑦)) ∖ 𝐴𝑖,𝑗(𝑓(𝑥)))) = 0,

(B.148)

– Max measure is bounded by some constant 𝑐 > 0:

max
𝑥,𝑦,𝑖,𝑗

𝜇𝑖,𝑗(𝐴𝑖,𝑗(𝑓(𝑥)) ∖ 𝐴𝑖,𝑗(𝑓(𝑦))) ≤ 𝑐. (B.149)

2. For any given specific PQE of this class, for any positive scale 𝑑 > 0, there is

another PQE (with same formulation) whose measures (of set differences) equal

exactly those of the given PQE scaled by 𝑑.

We now show that this is a sufficient condition. Note that a Poisson distribution has

standard deviation equal to square root of its mean. This means that as we scale the

rate of a Poisson, it becomes more concentrated. Applying to Poisson race probability,

we have, for 0 ≤ 𝜇1 + 𝜖 < 𝜇2,

189

• one direction of Poisson race probability:

P [Pois(𝑑 · 𝜇1) ≤ Pois(𝑑 · 𝜇2)] (B.150)

≥ P [|Pois(𝑑 · 𝜇2) − Pois(𝑑 · 𝜇1) − 𝑑(𝜇2 − 𝜇1)| ≤ 𝑑(𝜇2 − 𝜇1)] (B.151)

≥ 1 − 𝜇1 + 𝜇2

𝑑(𝜇2 − 𝜇1)2
(B.152)

≥

⎧⎪⎨⎪⎩1 − 2
𝑑𝜖

if 𝜇1 = 0

1 − 2𝑐
𝑑𝜖2

if 𝜇2 < 𝑐;

(B.153)

• the other direction of Poisson race probability:

P [Pois(𝑑 · 𝜇2) ≤ Pois(𝑑 · 𝜇1)] (B.154)

≤ P [|Pois(𝑑 · 𝜇2) − Pois(𝑑 · 𝜇1) − 𝑑(𝜇2 − 𝜇1)| ≥ 𝑑(𝜇2 − 𝜇1)] (B.155)

≤ 𝜇1 + 𝜇2

𝑑(𝜇2 − 𝜇1)2
(B.156)

≤

⎧⎪⎨⎪⎩
2
𝑑𝜖

if 𝜇1 = 0

2𝑐
𝑑𝜖2

if 𝜇2 < 𝑐.

(B.157)

Therefore, applying to scaled versions of the PQE from Item 1 above, we have

thus obtained the desired sequence, where Equation (B.146) uniformly converges to

Equation (B.147) with rate 𝒪(1/𝑑).

Lemma B.3.3. PQE-LH and PQE-GG both have the concentration property.

Proof of Lemma B.3.3. We show that both classes satisfy the above sufficient condi-

tion.

• PQE-LH: Lebesgue measure 𝜆 and half-lines.

WLOG, since 𝒳 is countable, we assume that 𝑔 satisfies

𝑔(𝑥)𝑖,𝑗 ̸= 𝑔(𝑦)𝑖,𝑗 =⇒ |𝑔(𝑥)𝑖,𝑗 − 𝑔(𝑦)𝑖,𝑗| > 1, ∀𝑖 ∈ [ℎ], 𝑗 ∈ [𝑘], 𝑥 ∈ 𝒳 ′, 𝑦 ∈ 𝒳 ′.

(B.158)

190

The encoder in Item 1 above 𝑓 : 𝒳 → Rℎ×𝑘 can simply be 𝑔. We then have

𝜇𝑖,𝑗(𝐴𝑖,𝑗(𝑓(𝑦))∖𝐴𝑖,𝑗(𝑓(𝑥))) = Leb((−∞, 𝑔(𝑦)]∖(−∞, 𝑔(𝑥)]) = (𝑔(𝑦)𝑖,𝑗−𝑔(𝑥)𝑖,𝑗)
+.

(B.159)

This ensures that one side is always zero. Furthermore, scaling can be done by

simply scaling the encoder 𝑓 . Hence, PQE-LH satisfies this constraint.

• PQE-GG: Gaussian-based measure and Gaussian shapes (see Appendix B.3.2).

Because 𝒳 ′ is finit, we can have positive constant margin for the PQE require-

ments in Item 1. (Infinite 𝒳 ′ does not work because the total measure is finite

(for a specific PQE-GG with specific values of the scaling).) Concretely, we

satisfy both requirements via

– in descending order of 𝑔(·)𝑖,𝑗 we assign Gaussian shapes increasingly further

from the origin;

– scaling comes from that we allow scaling the Gaussian-based measure.

Hence, PQE-GG satisfies this constraint for finite 𝒳 .

A General Statement

We now state the general theorem for PQEs with the above concentration property.

Theorem B.3.4 (Distortion and violation of PQEs (General)). Consider any

PQE class with the concentration property. Under the assumptions of Section 3.4,

any quasimetric space with size 𝑛 and treewidth 𝑡 admits such a PQE with distortion

𝒪(𝑡 log2 𝑛) and violation 1, with an expressive encoder (e.g., a ReLU network with

≥ 3 hidden layers, 𝒪(𝑛) hidden width, and 𝒪(𝑛2) quasipartition distributions, each

with 𝒪(𝑛) Poisson processes.).

Before proving this more general theorem, let us extend a result from Mémoli et al.

[113].

191

Lemma B.3.5 (Quasimetric Embeddings with Low Distortion; Adapted

from Corollary 2 in Mémoli et al. [113]). Let𝑀 = (𝑋, 𝑑) be a quasipseudometric

space with treewidth 𝑡, and 𝑛 = |𝑋|. Then 𝑀 admits an embedding into a convex

combination (i.e., scaled mixture) of 𝒪(𝑛2) quasipartitions with distortion 𝒪(𝑡 log2 𝑛).

Proof of Lemma B.3.5. The distortion bound is proved in Corollary 2 in [113], which

states that any quasipseudometric space with 𝑛 elements and 𝑡 treewidth admits an

embedding into a convex combination of quasipartitions with distortion 𝒪(𝑡 log2 𝑛).

To see that 𝑛2 quasipartitions suffice, we scrutinize their construction of quasipar-

titions in Algorithm 2 of [113], reproduced below as Algorithm 2.

Algorithm 2 Random quasipartition of a graph with bounded treewidth. Algorithm 2
of [113].
Input: A digraph 𝐺 of treewidth 𝑡, a hierarchical tree of separators of 𝐺 (𝐻, 𝑓) with width

𝑡, and 𝑟 > 0.

Output: A random 𝑟-bounded quasipartition 𝑅.

Initialization: Set 𝐺* = 𝐺, 𝐻* = 𝐻 and 𝑅 = 𝐸(𝐺). Perform the following recursive

algorithm on 𝐺* and 𝐻*.

Step 1. Pick 𝑧 ∈ [0, 𝑟/2] uniformly at random.

Step 2. If |𝑉 (𝐺*)| ≤ 1,terminate the current recursive call. Otherwise pick the set

of vertices 𝐾 = 𝐺*. Let 𝐻1, . . . ,𝐻𝑚 be the sub-trees of 𝐻* below root(𝐻*) that are

hierarchical trees of separators of 𝐶1, . . . , 𝐶𝑚 respectively.

Step 3. For all (𝑢, 𝑣) ∈ 𝐸(𝐺*) remove (𝑢, 𝑣) from 𝑅 if one of the following holds:

(a) 𝑑𝐺(𝑢, 𝑥) > 𝑧 and 𝑑𝐺(𝑣, 𝑥) ≤ 𝑧 for some vertex 𝑥 ∈ 𝐾.

(b) 𝑑𝐺(𝑥, 𝑣) > 𝑧 and 𝑑𝐺(𝑥, 𝑢) ≤ 𝑧 for some vertex 𝑥 ∈ 𝐾.

Step 4. For all 𝑖 ∈ {1, . . . ,𝑚} perform a recursive call of Steps 2-4 setting 𝐺* = 𝐺*[𝐶𝑖]

and 𝐻* = 𝐻𝑖.

Step 5. Once all branches of the recursive terminate, enforce transitivity on 𝑅: For all

𝑢, 𝑣, 𝑤 ∈ 𝑉 (𝐺) if (𝑢, 𝑣) ∈ 𝑅 and (𝑣, 𝑤) ∈ 𝑅, add (𝑢,𝑤) to 𝑅.

Many concepts used in Algorithm 2 are not relevant for our purpose (e.g., 𝑟-

bounded quasipartition). Importantly, we observe that for a given quasimetric space,

192

the produced quasipartition is entirely determined by the random choice of 𝑧 in Step 1,

which is only used to compare with distance values between node pairs. Note that

there are 𝑛2 node pairs, whose minimum distance is exactly 0 (i.e., distance from a

node to itself). Since 𝑧 ≥ 0, there are at most 𝑛2 choices of 𝑧 that lead to at most 𝑛2

different quasipartitions, for all possible values of 𝑟.

The construction used to prove Corollary 2 of [113] uses exactly quasipartitions

given by this algorithm. Therefore, the lemma is proved.

Lemma B.3.5 essentially proves the first half of Theorem B.3.4. Before proving

the full Theorem B.3.4, we restate the following result from [75], which gives us a

bound on how many total orders are needed to represent a general partial order (i.e.,

quasipartition).

Theorem B.3.6 (Hiraguchi’s Theorem [75, 14]). Let (𝑋,𝑃) be a partially or-

dered set such that |𝑋| ≥ 4. Then there exists a mapping 𝑓 : 𝑋 → R⌊|𝑋|/2⌋ such that

∀𝑥, 𝑦 ∈ 𝑋, 𝑥𝑃𝑦 ⇐⇒ 𝑓(𝑥) ≤ 𝑓(𝑦) coordinate-wise . (B.160)

Proof of Theorem B.3.4. It immediately follows from Lemma B.3.5 and Theorem B.3.6

that any quasimetric space with 𝑛 elements and treewidth 𝑡 admits an embedding with

distortion 𝒪(𝑡 log2 𝑛) into a convex combination of 𝑛2 quasipartitions, each represented

with an intersection of 𝒪(𝑛) total orders.

Because the PQE class has concentration property, for any finite quasimetric space,

we can simply select a PQE that is close enough to the desired convex combination

of 𝑛2 quasipartitions, to obtain distortion 𝒪(𝑡 log2 𝑛). Since each Poisson process in

PQE takes a constant number of latent dimensions, we can have such a PQE with

𝒪(𝑛3)-dimensional latents and 𝑛2 quasipartition distributions.

It remains only to prove that we can compute such required latents using the

described architecture.

Consider any 𝑥 ∈ 𝒳 ⊂ R𝑑. Since 𝒳 is finite, we can always find direction 𝑢𝑥 ∈ R𝑑

such that ∀𝑦 ∈ 𝒳 ∖ {𝑥}, 𝑦T𝑢𝑥 ̸= 𝑥T𝑢𝑥. That is, 𝑥 has a unique projection onto 𝑢𝑥.

193

Therefore, we can have 𝑐, 𝑏+, 𝑏− ∈ R such that

𝑐 · 𝑢T𝑥𝑥+ 𝑏+ = 1 (B.161)

−𝑐 · 𝑢T𝑥𝑥+ 𝑏− = 1, (B.162)

but for 𝑦 ∈ 𝒳 ∖ {𝑥}, we have, for some 𝑎 > 0, either

𝑐 · 𝑢T𝑥𝑦 + 𝑏+ = −𝑎 (B.163)

−𝑐 · 𝑢T𝑥𝑦 + 𝑏− = 𝑎+ 2, (B.164)

or

𝑐 · 𝑢T𝑥𝑦 + 𝑏+ = 𝑎+ 2 (B.165)

−𝑐 · 𝑢T𝑥𝑦 + 𝑏− = −𝑎. (B.166)

Then, consider computing two of the first layer features as, on input 𝑧,

[ReLU(𝑐 · 𝑢T𝑥𝑧 + 𝑏+) ReLU(−𝑐 · 𝑢T𝑥𝑧 + 𝑏−)], (B.167)

which, if 𝑧 = 𝑥, is [1, 1]; if 𝑧 ̸= 𝑥, is either [0, 2 + 𝑎] or [2 + 𝑎, 0], for some 𝑎 > 0.

Then, one of the second layer features may sum these two features and threshold

it properly would single out 𝑥, i.e., activate only when input is 𝑥.

After doing this for all 𝑥 ∈ 𝒳 , we obtain an 𝑛-dimensional second layer feature

space that is just one-hot features.

The third layer can then just be a simple embedding look up, able to represent

any embedding, including the one allowing a PQE to have distortion 𝒪(𝑡 log 𝑛), as

described above.

Because quasimetric embeddings naturally have violation 1, this concludes the

proof.

194

Proof of Theorem 3.5.2: Distortion and violation of PQEs

Proof of Theorem 3.5.2. Lemma B.3.3 and Theorem B.3.4 imply the result. To see

that polynomial width is sufficient, note that the hidden width are polynomial by

Theorem B.3.4, and that the embedding dimensions needed to represent each of the

𝒪(𝑛3) Poisson processes is constant 1 in both PQE-LH and PQE-GG. Hence the

latent space is also polynomial. This concludes the result.

Discussions

Dependency on log 𝑛. log 𝑛 dependency frequently occurs in distortion results.

Perhaps the most well-known ones are Bourgain’s Embedding Theorem [18] and the

Johnson-Lindenstrauss Lemma [85], which concern metric embeddings into Euclidean

spaces.

Dependency on treewidth 𝑡. Treewidth 𝑡 here works as a complexity measure of

the quasimetric. We will use a simple example to illustrate why low-treewidth is easy.

Consider the extreme case where the quasimetric is the shortest-path distance on a tree,

whose each edge is converted into two opposing directed ones and assigned arbitrary

non-negative weights. Such a quasimetric space has treewidth 1 (see Definition 3.2.2).

On a tree,

1. the shortest path between two points is fixed, regardless of the weights assigned,

2. for each internal node 𝑢 and one of its child 𝑐, the followings are quasipartitions:

𝑑′01(𝑥, 𝑦) , 1shortest path from 𝑥 to 𝑦 passes (𝑢, 𝑐)

𝑑′′01(𝑥, 𝑦) , 1shortest path from 𝑥 to 𝑦 passes (𝑐, 𝑢).

Hence it can be exactly represented as a convex combination of quasipartitions.

However, both of observations becomes false when the graph structure becomes more

complex (higher treewidth) and the shortest paths can are less well represented as

tree paths of the tree composition.

195

Comparison with unconstrained MLPs. Theorem B.3.4 requires a poly-width

encoder to achieve low distortion. This is comparable with deep unconstrained MLPs

trained in NTK regime, which can reach 0 training error (distortion 1 on training set)

in the limit but also requires polynomial width [5].

Quasipseudometrics and infinite distances. Theorem B.3.4 relies on our

assumptions that (𝒳 , 𝑑) is not a quasipseudometric space and has all finite distances.

In fact, if we allow a PQE to have infinite convex combination weights, it can readily

represent quasipseudometric spaces with infinite distances. Additionally, PQE can still

well approximate the quasimetric space with infinities replaced with any sufficiently

large finite value (e.g., larger than the maximum finite distance). Thus, this limit is

generally not important in practice (e.g., learning 𝛾-discounted distances), where a

large value and infinity are usually not treated much differently.

Optimizing quasimetric embeddings. From Theorem B.3.4, we know that op-

timizing PQEs over the training set 𝑆 w.r.t. distortion achieves low distortion (and

optimal violation by definition). While directly optimizing distortion (or error on

log distance or distance ratios, equivalently) seems a valid choice, such objectives do

not always train stably in practice, with possible infinities and zeros. Often more

stable losses are used, such as MSE over raw distances or 𝛾-discounted distances

𝛾𝑑, for 𝛾 ∈ (0, 1). These objectives do not directly relate to distortion, except for

some elementary loose bounds. To better theoretically characterize their behavior, an

alternative approach with an average-case analysis might be necessary.

B.3.4 Implementing Poisson Quasimetric Embeddings (PQEs)

Section 3.5.2 mentioned a couple implementation techniques for PQEs. In this section,

we present them in full details.

196

Normalized Measures

Consider a PQE whose each of 𝑗 expected quasipartitions is defined via 𝑘 Poisson

processes, with set parametrizations 𝑢→ 𝐴𝑖,𝑗(𝑢), 𝑖 ∈ [ℎ], 𝑗 ∈ [𝑘]. To be robust to the

choice of 𝑘, we instead use the normalized set parametrizations 𝐴′
𝑖,𝑗’s:

𝐴′
𝑖,𝑗(𝑢) , 𝐴𝑖,𝑗(𝑢)/𝑘, 𝑖 ∈ [ℎ], 𝑗 ∈ [𝑘]. (B.168)

This does not change the PQE’s concentration property (Definition B.3.2) or its

theoretical guarantees (e.g., Theorems 3.5.2 and B.3.4).

Outputting 𝛾-Discounted Distances

Recall the PQE quasimetric formulation in Equation (3.14), for 𝛼𝑖 ≥ 0, and encoder

𝑓 : 𝒳 → R𝑑 (with set parametrizations 𝐴𝑖,𝑗’s and measures 𝜇𝑖,𝑗’s):

𝑑(𝑥, 𝑦) ,
∑︁
𝑖

𝛼𝑖

(︂
1−
∏︁
𝑗

P
[︁
Pois(𝜇𝑖,𝑗(𝐴

𝑓
𝑖,𝑗(𝑥) ∖ 𝐴𝑓𝑖,𝑗(𝑦)) ≤ Pois(𝜇𝑖,𝑗(𝐴

𝑓
𝑖,𝑗(𝑦) ∖ 𝐴𝑓𝑖,𝑗(𝑥))

]︁)︂
,

(3.14)

where we used shorthands 𝐴𝑓𝑖,𝑗(𝑥) , 𝐴𝑖,𝑗(𝑓(𝑥)).

With discount factor 𝛾 ∈ (0, 1), we can write the 𝛾-discounted PQE distance as

𝛾𝑑(𝑥,𝑦) =
∏︁
𝑖

(𝛾𝛼𝑖⏟ ⏞
a scalar that can take value in any (0, 1)

)1−
∏︀
𝑗 P[Pois(𝜇𝑖,𝑗(𝐴

𝑓
𝑖,𝑗(𝑥)∖𝐴

𝑓
𝑖,𝑗(𝑦))≤Pois(𝜇𝑖,𝑗(𝐴

𝑓
𝑖,𝑗(𝑦)∖𝐴

𝑓
𝑖,𝑗(𝑥))]. (B.169)

Therefore, instead of learning 𝛼𝑖 ∈ [0,∞), we can learn bases 𝛽𝑖 ∈ (0, 1) such and

define the 𝛾-discounted PQE distance as

𝛾𝑑(𝑥,𝑦) ,
∏︁
𝑖

𝛽
1−

∏︀
𝑗 P[Pois(𝜇𝑖,𝑗(𝐴

𝑓
𝑖,𝑗(𝑥)∖𝐴

𝑓
𝑖,𝑗(𝑦))≤Pois(𝜇𝑖,𝑗(𝐴

𝑓
𝑖,𝑗(𝑦)∖𝐴

𝑓
𝑖,𝑗(𝑥))]

𝑖 . (B.170)

These bases 𝛽𝑖 ∈ (0, 1) can be parametrized via a sigmoid transform. Consider

quasimetric learning w.r.t. errors on 𝛾-discounted distances (e.g., MSE). Unlike the

parametrization with directly learning the convex combination weights 𝛼𝑖’s, such a

parametrization (that learns the bases 𝛽𝑖’s) does not explicitly include 𝛾 and thus can

197

potentially be more stable for a wider range of 𝛾 choices.

Initialization. Consider learning bases 𝛽𝑖’s via a sigmoid transform: learning 𝑏𝑖

and defining 𝛽𝑖 , 𝜎(𝑏𝑖). We must take care in initializing these 𝑏𝑖’s so that 𝜎(𝑏𝑖)’s are

not too close to 0 or 1, since we take a product of powers with these bases. To be

robust to different ℎ numbers of quasipartition distributions, we initialize the each 𝑏𝑖

to be from the uniform distribution

𝒰 [𝜎−1(0.52/ℎ), 𝜎−1(0.752/ℎ)], (B.171)

which means that, at initialization,

∏︁
𝑖∈[ℎ]

𝛽0.5
𝑖 =

∏︁
𝑖∈[ℎ]

𝜎(𝑏𝑖)
0.5 ∈ [0.5, 0.75], (B.172)

providing a good range of initial outputs, assuming that the exponents (expected

outputs of quasipartition distributions) are close to 0.5. Alternatively, 𝑏𝑖’s maybe

parametrized by a deep linear network, a similar initialization is employed. See

Appendix B.3.4 below for details.

Learning Linear/Convex Combinations with Deep Linear Networks

Deep linear networks have the same expressive power as regular linear models, but enjoy

many empirical and theoretical benefits in optimization [135, 126, 80]. Specifically,

instead of directly learning a matrix ∈ R𝑚×𝑛, a deep linear network (with bias) of 𝑙

198

layers learns a sequence of matrices

𝑀1 ∈ R𝑚1×𝑛 (B.173)

𝑀2 ∈ R𝑚2×𝑚1 (B.174)
...

... (B.175)

𝑀𝑙−1 ∈ R𝑚𝑙−1×𝑚𝑙−2 (B.176)

𝑀𝑙 ∈ R𝑚×𝑚𝑙−1 (B.177)

𝐵 ∈ R𝑚×𝑛, (B.178)

where the linear matrix can be obtained with

𝑀𝑙 𝑀𝑙−1 . . .𝑀2 𝑀1 +𝐵, (B.179)

and we require

min(𝑚1,𝑚2, . . . ,𝑚𝑙−1) ≥ min(𝑚,𝑛). (B.180)

In our case, the convex combination weights for the quasipartition distributions

often need to be large, in order to represent large quasimetric distances; in Poisson pro-

cess mean measures with learnable scales (e.g., the Gaussian-based measure described

in Appendix B.3.2), the scales may also need to be large to approximate particular

quasipartitions (see Appendix B.3.3).

Therefore, we choose to use deep linear networks to optimize these parameters. In

particular,

• For the convex combination weights for ℎ quasipartition distributions,

– When learning the convex combination weights {𝛼𝑖}𝑖∈[ℎ], we use a deep

linear network to parametrize a matrix ∈ R1×ℎ (i.e., a linear map from Rℎ

to R), which is then viewed as a vector ∈ Rℎ and applied an element-wise

square transform 𝑎→ 𝑎2 to obtain non-negative weights 𝛼 ∈ [0,∞)ℎ;

– When learning the bases for discounted quasimetric distances 𝛽𝑖’s (see

Appendix B.3.4), we use a deep linear network to parametrize a matrix

199

∈ Rℎ×1, which is then viewed as a vector ∈ Rℎ and applied an element-wise

sigmoid transform 𝑎→ 𝜎(𝑎) to obtain bases 𝛽 ∈ (0, 1)ℎ.

Note that here we parametrize a matrix ∈ Rℎ×1 rather than R1×ℎ as above

for 𝛼𝑖’s. The reason for this choice is entirely specific to the initialization

scheme we use (i.e., (fully-connected layer weight matrix initialization, as

discussed below). Here the interpretation of a linear map is no longer

true. If we use R1×ℎ, the initialization method would lead to the entries

distributed with variance roughly 1/𝑛, which only makes sense if they are

then added together. Therefore, we use Rℎ×1, which would lead to constant

variance.

• For scales of the Poisson process mean measure, such as PQE-GG, we

consider a slightly different strategy.

Consider a PQE formulation with ℎ× 𝑘 independent Poisson processes, from

which we form ℎ quasipartition distributions, each from 𝑘 total orders parametrized

by 𝑘 Poisson processes. The Poisson processes are defined on sets

{𝐴𝑖,𝑗}𝑖∈[ℎ],𝑗∈[𝑘], (B.181)

use mean measures

{𝜇𝑖,𝑗}𝑖∈[ℎ],𝑗∈[𝑘], (B.182)

and set parametrizations

{𝑢→ 𝐴𝑖,𝑗(𝑢)}𝑖∈[ℎ],𝑗∈[𝑘], (B.183)

to compute quantities

𝜇𝑖,𝑗(𝐴𝑖,𝑗(𝑢) ∖ 𝐴𝑖,𝑗(𝑣)) for 𝑢 ∈ R𝑑, 𝑣 ∈ R𝑑, 𝑖 ∈ [ℎ], 𝑗 ∈ [𝑘]. (B.184)

Scaling each mean measure independently. Essentially, adding learnable

scales (of mean measures) 𝑤 ∈ [0,∞)ℎ×𝑘 (or, equivalently, {𝑤𝑖,𝑗 ∈ [0,∞)}𝑖,𝑗)

200

gives a scaled set of measures

{𝑤𝑖,𝑗 · 𝜇𝑖,𝑗}𝑖∈[ℎ],𝑗∈[𝑘]. (B.185)

This means that the quantities in Equation (B.184) becomes respectively scaled

as

𝑤𝑖,𝑗 · 𝜇𝑖,𝑗(𝐴𝑖,𝑗(𝑢) ∖ 𝐴𝑖,𝑗(𝑣)) for 𝑢 ∈ R𝑑, 𝑣 ∈ R𝑑, 𝑖 ∈ [ℎ], 𝑗 ∈ [𝑘]. (B.186)

Convex combinations of all measures. However, we can be more flexible

here, and allow not just scaling each measure independently, but also convex

combinations of all measures. Instead of having 𝑤 as a collection of ℎ× 𝑘 scalar

numbers ∈ [0,∞), we have a collection of (ℎ × 𝑘) vectors each having length

(ℎ× 𝑘) (or ℎ× 𝑘-shape tensors)

{𝑤𝑖,𝑗 ∈ [0,∞)ℎ×𝑘}𝑖∈[ℎ],𝑗∈[𝑘], (B.187)

and have the quantities in Equation (B.184) respectively scaled and combined

as

∑︁
𝑖′,𝑗′

𝑤𝑖,𝑗,𝑖′,𝑗′ · 𝜇𝑖′,𝑗′(𝐴𝑖′, 𝑗′(𝑢) ∖ 𝐴𝑖′,𝑗′(𝑣)) for 𝑢 ∈ R𝑑, 𝑣 ∈ R𝑑, 𝑖 ∈ [ℎ], 𝑗 ∈ [𝑘].

(B.188)

Note that these still are valid Poisson processes for a PQE. Specifically, the new

Poisson processes now all use the same set parametrization (as the collection of

original ones), with different measures (as different weighted combinations of

the original measures). This generalizes the case where each mean measure is

scaled independently (as 𝑤 can be diagonal).

Therefore, we will apply this more general strategy using convex combinations

of all measures.

Similarly to learning the convex combination weights of quasipartition distribu-

201

tions, we collapse a deep linear network into a tensor ∈ Rℎ×𝑘×ℎ×𝑘, and apply an

element-wise square 𝑎→ 𝑎2, result of which is used as the convex combination

weights 𝑤 to ensure non-negativity.

Initialization. For initializing the matrices (𝑀1,𝑀2, . . . ,𝑀𝑙) of a deep linear net-

work (Equation (B.177)), we use the standard weight matrix initialization of fully-

connected layers in PyTorch [124]. The bias matrix 𝐵 (Equation (B.178)) is initialized

to all zeros.

When used for learning the bases for discounted quasimetric distances 𝛽𝑖’s (as

described in Appendix B.3.4), we have a deep linear network parametrizing a matrix

∈ Rℎ×1, initialized in the same way as above (including initializing 𝐵 as all zeros).

Consider the matrix up to before the last one:

𝑀* ,𝑀𝑙−1 ·𝑀2 𝑀1 ∈ R𝑚𝑙−1×1. (B.189)

𝑀* is essentially a projection to be applied on each row of the last matrix𝑀𝑙 ∈ Rℎ×𝑚𝑙−1 ,

to obtain 𝑏𝑖 (which is then used to obtain bases 𝛽𝑖 , 𝜎(𝑏𝑖)). Therefore, we simply

rescale the 𝑀* subspace for each row of 𝑀𝑙 and keep the orthogonal space intact, such

that the projections would be distributed according to the distribution specified in

Equation (B.171):

𝒰 [𝜎−1(0.52/ℎ), 𝜎−1(0.752/ℎ)], , (B.171)

which has good initial value properties, as shown in Appendix B.3.4.

Choosing ℎ the Number of Quasipartition Distributions and 𝑘 the Number

of Poisson Processes for Each Quasipartition Distribution

A PQE (class) is defined with ℎ × 𝑘 independent Poisson processes with means

{𝜇𝑖,𝑗}𝑖∈[ℎ],𝑗∈[𝑘] along with ℎ × 𝑘 set parametrizations {𝐴𝑖,𝑗}𝑖∈[ℎ],𝑗∈[𝑘]. For 𝑘 pairs of

means and set parametrizations, we obtain a random quasipartition. A mixture

(convex combination) of the resulting ℎ random quasipartitions gives the quasimetric.

The choices of 𝜇 and 𝐴 are flexible. In this work we explore PQE-LH and PQE-GG

202

as two options, both using essentially the same measure and parametrization across

all 𝑖, 𝑗 (up to individual learnable scales). These two instantiations both perform well

empirically. In this section we aim to provide some intuition on choosing these two

hyperparameters ℎ and 𝑘.

ℎ the Number of Quasipartition Distributions Theoretical result Theorem B.3.4

suggest thats, for a quasimetric space with 𝑛 elements, 𝑛2 quasipartition distributions

suffice to learn a low distortion embedding. Since this is a worst-case result, the prac-

tical scenario may require much fewer quasipartitions. For instance, Appendix B.3.3

shows that 𝒪(𝑛) quasipartitions is sufficient for any quasimetric space with a tree

structure. In our experiments, ℎ ∈ [8, 128] quasipartition distributions are used.

𝑘 the Number of Poisson Processes for Each Quasipartition Distribution

(Random Partial Order) It is well-known that such intersection of sufficiently

many total orders can represent any partial order [157, 75]. This idea is equivalent with

the dominance drawing dimension of directed graphs [120], which concerns an order

embedding of the vertices to preserve the poset specified by the reachability relation.

In this graph theoretical view, several results are known. [43] prove that planar graphs

have at most 8 dimension. [120] show that the dimension of any graph with 𝑛 vertices

is at most min(𝑤𝑃 ,
𝑛
2
), where 𝑤𝑃 the maximum size of a set of incomparable vertices.

A simpler and more fundamental result can be traced to Hiraguchi from 1951:

Theorem B.3.6 (Hiraguchi’s Theorem [75, 14]). Let (𝑋,𝑃) be a partially or-

dered set such that |𝑋| ≥ 4. Then there exists a mapping 𝑓 : 𝑋 → R⌊|𝑋|/2⌋ such that

∀𝑥, 𝑦 ∈ 𝑋, 𝑥𝑃𝑦 ⇐⇒ 𝑓(𝑥) ≤ 𝑓(𝑦) coordinate-wise . (B.160)

Theorem B.3.6 states that 𝑛
2

dimensions generally suffice for any poset of size

𝑛 ≥ 4.

In our formulation, this means that using 𝑘 = 𝑛
2

Poisson processes (giving 𝑛
2

random

total orders) will be maximally expressive. In practice, this is likely unnecessary and

sometimes impractical. In our experiments, we choose a small fixed number 𝑘 = 4.

203

𝑎 𝑏

𝑐

: Train : Test

Triangle inequality =⇒
? ≤ 𝑑(𝑎, 𝑏) + 𝑑(𝑏, 𝑐) = 31

? ≥ 𝑑(𝑎, 𝑏) − 𝑑(𝑐, 𝑏) = 28

0

0

029
2

1

11?

Figure B-4: The 3-element quasimetric space, and the training pairs.Training set contains all
pairs except for (𝑎, 𝑐). Arrows show quasimetric distances (rather than edge weights of some
graph).

B.4 Experiment Settings and Additional Results

Computation power. All our experiments run on a single GPU and finish within

3 hours. GPUs we used include NVIDIA 1080, NVIDIA 2080 Ti, NVIDIA 3080 Ti,

NVIDIA Titan Xp, NVIDIA Titan RTX, and NVIDIA Titan V.

B.4.1 Experiments from Section 3.3.2: A Toy Example

In Section 3.3.2 and Figure 3-2, we show experiment results on a simple 3-element

quasimetric space.

Quasimetric space. The quasimetric space has 3 elements with one-hot features

∈ R3. Thequasimetric and training pairs are shown in Figure B-4.

Unconstrained network. The unconstrained network has architecture 6-128-128-

32-1, with ReLU activations.

Metric embedding. The embedding space is 32-dimensional, upon which corre-

sponding metric is applied. The encoder network has architecture 6-128-128-32, with

ReLU activations.

204

Asymmetric dot products. The embedding space is 32-dimensional. The two

inputs are encoded with a different encoder of architecture 6-128-128-32, with ReLU

activations. Then the dot product of the two 32-dimensional vector is taken, which

parametrizes a distance estimate

Poisson Quasimetric Embeddings. The embedding space is 32-dimensional,

which parametrizes 8 quasimetric distributions, each from 4 independent Poisson

processes using (scaled) Lebesgue measure and half-lines. We use deep linear networks,

as described in Appendix B.3.4. A deep linear network (without bias) of architecture

8-32-32-1 parametrizes the convex combination weights {𝛼𝑖}𝑖∈[8]. Another deep linear

network (without bias) of architecture 32-64-64-32 parametrizes convex combination

weights of the mean measures 𝑑 ∈ [0,∞)32×32. Note that these do not give many more

effective parameters to PQEs as they are equivalent with simple linear transforms.

Optimization. All models are trained w.r.t. MSE on distances with the Adam

optimizer [88] with learning rate 0.0003 for 1000 iterations (without mini-batching

since the training set has size 8).

Additional results. Results with additional formulations (together with the ones

presented in Figure 3-2) are shown in Figure B-5.

B.4.2 Experiments from Section 4.5: Experiments

Triangle inequality regularizer. For methods that do not inherently respect

triangle inequalities (e.g., unconstrained networks and asymmetrical dot products),

we explore training with a regularizer that encourages following these inequalities. By

sampling random triplets uniformly over the training set, the regularizer is formulated

as,

E𝑥,𝑦,𝑧
[︀

max(0, 𝛾𝑑(𝑥,𝑦)+𝑑(𝑦,𝑧) − 𝛾𝑑(𝑥,𝑧))2
]︀
, (B.190)

where the 𝛾-discounted terms and the squared form allows easier balancing with the

training loss, which, across all experiments, are MSEs on some 𝛾-discounted distances.

205

0

20

40

60

80

100

Count

Unconstrained Network
(Output Distance)

(Training MSE = 0.02 ± 0.06)

0 10 20 30

Valid
Range

(a) Unconstrained network that
directly predicts distance.

0

20

40

60

80

100

Unconstrained Network
(Output Square Root of Distance)

(Training MSE = 0.00 ± 0.02)

0 10 20 30

(b) Unconstrained network that
predicts distance with a square
𝑎→ 𝑎2 transform.

0

20

40

60

80

100

Asym. Dot Product
(Output Square Root of Distance)

(Training MSE = 0.00 ± 0.00)

0 10 20 30

(c) Asymmetrical dot product
that predicts distance with a
square 𝑎→ 𝑎2 transform.

0

20

40

60

80

100

Count

1 Space Embedding
(Training MSE = 58.83 ± 0.00)

0 10 20 30

Valid
Range

(d) Metric embedding into an ℓ1
space.

0

20

40

60

80

100

Euclidean Space Embedding
(Training MSE = 58.83 ± 0.00)

0 10 20 30

(e) Metric embedding into an
Euclidean space.

0

20

40

60

80

100

Poisson Quasimetric Embedding
(Training MSE = 0.02 ± 0.07)

0 10 20 30

(f) Poisson Quasimetric
Embedding specified in
Appendix B.4.1.

Figure B-5: Training different formulations to fit training pairs distances via MSE, and using
them to predict on the test pair. Plots show distribution of the prediction over 100 runs.
Standard deviations of the training error are shown.

206

PQE settings. Across all experiments of this section, when given an encoder

architecture mapping input to an R𝑑 latent space, we construct PQEs according to the

following general recipe, to obtain the two PQEs settings used across all experiments:

PQE-LH (PQE with Lebesgue measure and half-lines) and PQE-GG (PQE with

Gaussian-based measure and Gaussian shapes, see see Appendix B.3.2):

• (Assuming 𝑑 is a multiple of 4,) We use ℎ ,= 𝑑/4 quasipartition distributions,

each given by 𝑘 , 4 Poisson processes;

• A deep linear network (see Appendix B.3.4), is used for parametrizing the convex

combination weights 𝛼 ∈ R𝑑/4 or the bases 𝛽 ∈ R𝑑/4 (see Appendix B.3.4),

we follow the initialization and parametrization described in Appendix B.3.4,

with hidden sizes [𝑛hidden, 𝑛hidden, 𝑛hidden] (i.e., 4 matrices/layers), where 𝑛hidden ,

max(64, 21+⌈log2(𝑑/4)⌉).

• For PQE-GG,

– The learnable 𝜎2
measure ∈ (0,∞)𝑑 (one for each Poisson Process) is achieved

by optimizing the log variance, which is initialized as all zeros.

– The Gaussian-based measures need learnable scales. We use a deep lin-

ear network to parametrize the [0,∞)𝑑×𝑑 weights for the convex com-

binations of measures, as described in Appendix B.3.4. Similarly, it

has hidden sizes [𝑛hidden, 𝑛hidden, 𝑛hidden] (i.e., 4 matrices/layers), where

𝑛hidden , max(64, 21+⌈log2 𝑑⌉).

Note that the PQEs add only a few extra effective parameters on top of the encoder

(𝑑 for PQE-LH, and 𝑑 + 𝑑2 for PQE-GG), as the deep linear networks do not add

extra effective parameters.

Mixed space metric embedding settings. Across all experiments of this section,

when given an encoder architecture mapping input to an R𝑑 latent space, we construct

the metric embedding into mixed space as follows:

207

• (Assuming 𝑑 is a multiple of 4,) We use (1) a (𝑑/2)-dimensional Euclidean space

(2) a (𝑑/4)-dimensional ℓ1 space, and a (𝑑/4)-dimensional spherical distance

space (without scale).

• Additionally, we optimize three scalar values representing the log weights of the

convex combination to mix these spaces.

DeepNorm and WideNorm method overview and parameter count com-

parison with PQEs. Both DeepNorm and WideNorm parametrize asymmetrical

norms. When used to approximate quasimetrics, they are applied as 𝑑(𝑥, 𝑦) ,

𝑓AsymNorm(𝑓Enc(𝑥) − 𝑓Enc(𝑦)), where 𝑓Enc is the encoder mapping from data space to an

R𝑑 latent space and 𝑓AsymNorm is either the DeepNorm or the WideNorm predictor on

that latent space [127].

• DeepNorm is a modification from Input Convex Neural Network (ICNN; Amos

et al. [4]), with restricted weight matrices and activation functions for positive

homogeneity (a requirement of asymmetrical norms), and additional concave

function for expressivity.

For an input latent space of R𝑑, consider an 𝑛-layer DeepNorm with width 𝑤

(i.e., ICNN output size) and the suggested intermediate MaxReLU activation

and MaxMean final aggregation (see [127] for details of these functions). This

208

DeepNorm predictor 𝑓DeepNorm (on latent space) has

#parmaters of 𝑓DeepNorm = 𝑛× (𝑑× 𝑤)⏟ ⏞
𝑈 matrices from input to each layer

+ (𝑛− 1) × 𝑤2⏟ ⏞
𝑊 matrices between neighboring layer activations

+ 𝑛× 𝑤⏟ ⏞
intermediate MaxReLU activations

+ 𝑤 × (4 + 5)⏟ ⏞
concave function (with 5 components) parameters

+ 1⏟ ⏞
final MaxMean aggregation

,

which is on the order of 𝒪(𝑛𝑤max(𝑑, 𝑤)). In the common case where the hidden

size 𝑤 is chosen to be on the same magnitude as 𝑑, this becomes 𝒪(𝑛𝑑2).

• WideNorm is based on the observation that

𝑥→ ‖𝑊 ReLU(𝑥 :: −𝑥)‖2 (B.191)

is an asymmetric norm when 𝑊 is non-negative, where :: denotes vector concate-

nation. WideNorm then learns many such norms each with a different 𝑊 matrix

parameter, before (again) feeding the norm values into a concave function and

aggregating them together with MaxMean.

For an input latent space of R𝑑, consider a WideNorm with 𝑐 such learned

norms with 𝑊 matrices of shape R(2𝑑)×𝑤
≥>0 . This WideNorm predictor 𝑓WideNorm

209

(on latent space), has

#parmaters of 𝑓WideNorm = 𝑐× (2𝑑× 𝑤)⏟ ⏞
𝑊 matrices

+ 𝑐× (4 + 5)⏟ ⏞
concave function (with 5 components) parameters

+ 1⏟ ⏞
final MaxMean aggregation

,

which is on the order of 𝒪(𝑐𝑑𝑤). In the common case where both the number

of components 𝑐 and the output size of each component (before applying the

𝑙2-norm) are chosen to be on the same magnitude as 𝑑, this becomes 𝒪(𝑑3).

For both DeepNorm and WideNorm, their parameter counts are much larger than the

number of effective parameters of PQEs (𝑑 for PQE-LH and 𝑑+ 𝑑2 for PQE-GG). For

a 256-dimensional latent space, this difference can be on the order of 106 ∼ 107.

DeepNorm and WideNorm settings. Across all experiments of this section,

we evaluate 2 DeepNorm settings and 3 WideNorm settings, all derived from the

experiment setting of the original paper [127]. For both DeepNorm and WideNorm,

we use MaxReLU activations, MaxMean aggregation, and concave function of 5

components. For DeepNorm, we use 3-layer networks with 2 different hidden sizes: 48

and 128 for the 48-dimensional latent space in random directed graphs experiments,

512 and 128 for the 512-dimensional latent space in the large-scale social graph

experiments, 128 and 64 for the 128-dimensional latent space in offline Q-learning

experiments. For WideNorm, we components of size 32 and experiment with 3 different

numbers of components: 32, 48, and 128.

Error range. Results are gathered across 5 random seeds, showing both averages

and population standard deviations.

210

Random Directed Graphs Quasimetric Learning

Graph generation. The random graph generation is controlled by three parameters

𝑑, 𝜌un and 𝜌di. 𝑑 is the dimension of the vertex features. 𝜌un specifies the fraction

of pairs that should have at least one (directed) edge between them. 𝜌di specifies

the fraction of such pairs that should only have one (directed) edge between them.

Therefore, if 𝜌un = 1, 𝜌di = 0, we have a fully connected graph; if 𝜌un = 0.5, 𝜌di = 1, we

have a graph where half of the vertex pairs have exactly one (directed) edge between

them, and the other half are not connected. For completeness, the exact generation

procedure for a graph of 𝑛 vertices is the following:

1. randomly add 𝜌un ·𝑛2 undirected edges, each represented as two opposite directed

edges;

2. optimize R𝑛×𝑑 vertex feature matrix using Adam [88] w.r.t. ℒalign(𝛼 = 2) + 0.3 ·

ℒuniform(𝑡 = 3) from [168], where each two node is considered a positive pair if

they are connected;

3. randomly initialize a network 𝑓 of architecture 𝑑-4096-4096-4096-4096-1 with

tanh activations;

4. for each connected vertex pair (𝑢, 𝑣), obtain 𝑑𝑢→𝑣 , 𝑓(feature(𝑢))−𝑓(feature(𝑣))

and 𝑑𝑣→𝑢 = −𝑑𝑢→𝑣;

5. for each (𝑢, 𝑣) such that 𝑑𝑢→𝑣 is among the top 1 − 𝜌di/2 of such values (which

is guaranteed to not include both directions of the same pair due to symmetry

of 𝑑𝑢→𝑣), make 𝑣 → 𝑢 the only directed edge between 𝑢 and 𝑣.

We experiment with three graphs of 300 vertices and 64-dimensional vertex features:

• Figure B-6: A graph generated with 𝜌un = 0.15, 𝜌di = 0.85;

• Figure B-7: A sparser graph generated with 𝜌un = 0.05, 𝜌di = 0.85;

• Figure B-8: A sparse graph with block structure by

211

1. generating 10 small dense graphs of 30 vertices and 32-dimensional vertex

features, using 𝜌un = 0.18, 𝜌di = 0.15,

2. generating a sparse 10-vertex “supergraph” with 32-dimensional vertex

features, using 𝜌un = 0.22, 𝜌di = 0.925,

3. for each supergraph vertex

(a) associating it with a different small graph,

(b) for all vertices of the small graph, concatenate the supergraph vertex’s

feature to the existing feature, forming 64-dimensional vertex features

for the small graph vertices,

(c) picking a random representative vertex from the small graph,

4. connecting all 10 representative vertices in the same way as their respective

supergraph vertices are connected in the supergraph.

Architecture. All encoder based methods (PQEs, metric embeddings, dot products)

use 64-128-128-128-48 network with ReLU activations, mapping 64-dimensional inputs

to a 48-dimensional latent space. Unconstrained networks use a similar 128-128-

128-128-48-1 network, mapping concatenated the 128-dimensional input to a scalar

output.

Data. For each graph, we solve the groundtruth distance matrix and obtain 3002

pairs, from which we randomly sample the training set, and use the rest as the test set.

We run on 5 training fractions evenly spaced on the logarithm scale, from 0.01 to 0.7.

Training. We use 2048 batch size with the Adam optimizer [88], with learning rate

decaying according to the cosine schedule without restarting [107] starting from 10−4 to

0 over 3000 epochs. All models are optimized w.r.t. MSE on the 𝛾-discounted distances,

with 𝛾 = 0.9. When running with the triangle inequality regularizer, 683 ≈ 2048/3

triplets are uniformly sampled at each iteration.

212

Full results and ablation studies. Figures B-6 to B-8 show full results of all

methods running on all three graphs. In Figure B-9, we perform ablation studies on

the implementation techniques for PQEs mentioned in Appendix B.3.4: outputting

discounted distance and deep linear networks. On the simple directed graphs such as

the dense graph, the basic PQE-LH without theses techniques works really well, even

surpassing the results with both techniques. However, on graphs with more complex

structures (e.g., the sparse graph and the sparse graph with block structure), basic

versions of PQE-LH and PQE-GG starts to perform badly and show large variance,

while the versions with both techniques stably trains to the best results. Therefore,

for robustness, we use both techniques in other experiments.

Large-Scale Social Graphs Quasimetric Learning

Data source. We choose the Berkeley-StanfordWebGraph [101] as the large-scale

directed social graph, which consists of 685,230 pages as nodes, and 7,600,595 hyperlinks

as directed edges. Additionally, we also use the Youtube social network [101, 116] as

a undirected social graph, which consists of 1,134,890 users as nodes, and 2,987,624

friendship relations as undirected edges. Both datasets are available from the SNAP

website [101] under the BSD license.

Data processing. For each graph, we use node2vec to obtain 128-dimensional node

features [55]. Since the graph is large, we use the landmark method [132] to construct

training and test sets. Specifically, we randomly choose 150 nodes, called landmarks,

and compute the distances between these landmarks and all nodes. For directed

graph, this means computing distances of both directions. From the obtained pairs

and distances, we randomly sample 2,500,000 pairs to form the training set. Similarly,

we form a test set of 150,000 from a disjoint set of 50 landmarks. For the undirected

graph, we double the size of each set by reversing the pairs, since the distance is

symmetrical.

213

Groundtruth Distance Matrix
(2.96% pairs are unreachable)

0

5

10

15

20

25

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Training Set Fraction

10 3

10 2

He
ld

ou
t M

SE

PQE
Unconstrained Network
Metric Embedding
Asym. Dot Product
DeepNorm
WideNorm

0.0 0.5
10 3

10 2

PQE-LH

0.0 0.5
10 3

10 2

PQE-GG

0.0 0.5
10 3

10 2

DeepNorm
(3-layer 128-width)

0.0 0.5
10 3

10 2

DeepNorm
(3-layer 48-width)

0.0 0.5
10 3

10 2

WideNorm
(32-component)

0.0 0.5
10 3

10 2

WideNorm
(48-component)

0.0 0.5
10 3

10 2

WideNorm
(128-component)

0.0 0.5
10 3

10 2

Unconstrained Net
(Output Distance)

0.0 0.5
10 3

10 2

Unconstrained Net
(Output Distance

via exp)

0.0 0.5
10 3

10 2

Unconstrained Net
(Output Distance

via Square)

0.0 0.5
10 3

10 2

Unconstrained Net
(Output -Discounted Distance)

0.0 0.5
10 3

10 2

Unconstrained Net
(Output -Discounted Distance

via Sigmoid)

0.0 0.5
10 3

10 2

Unconstrained Net
(Output Distance)

-ineq. Reg. Weight = 0.3

0.0 0.5
10 3

10 2

Unconstrained Net
(Output Distance

via exp)
-ineq. Reg. Weight = 0.3

0.0 0.5
10 3

10 2

Unconstrained Net
(Output Distance

via Square)
-ineq. Reg. Weight = 0.3

0.0 0.5
10 3

10 2

Unconstrained Net
(Output -Discounted Distance)

-ineq. Reg. Weight = 0.3

0.0 0.5
10 3

10 2

Unconstrained Net
(Output -Discounted Distance

via Sigmoid)
-ineq. Reg. Weight = 0.3

0.0 0.5
10 3

10 2

Unconstrained Net
(Output Distance)

-ineq. Reg. Weight = 1

0.0 0.5
10 3

10 2

Unconstrained Net
(Output Distance

via exp)
-ineq. Reg. Weight = 1

0.0 0.5
10 3

10 2

Unconstrained Net
(Output Distance

via Square)
-ineq. Reg. Weight = 1

0.0 0.5
10 3

10 2

Unconstrained Net
(Output -Discounted Distance)

-ineq. Reg. Weight = 1

0.0 0.5
10 3

10 2

Unconstrained Net
(Output -Discounted Distance

via Sigmoid)
-ineq. Reg. Weight = 1

0.0 0.5
10 3

10 2

Unconstrained Net
(Output Distance)

-ineq. Reg. Weight = 3

0.0 0.5
10 3

10 2

Unconstrained Net
(Output Distance

via exp)
-ineq. Reg. Weight = 3

0.0 0.5
10 3

10 2

Unconstrained Net
(Output Distance

via Square)
-ineq. Reg. Weight = 3

0.0 0.5
10 3

10 2

Unconstrained Net
(Output -Discounted Distance)

-ineq. Reg. Weight = 3

0.0 0.5
10 3

10 2

Unconstrained Net
(Output -Discounted Distance

via Sigmoid)
-ineq. Reg. Weight = 3

0.0 0.5
10 3

10 2

Euclidean Metric Embedding

0.0 0.5
10 3

10 2

1 Metric Embedding

0.0 0.5
10 3

10 2

Spherical Distance
Metric Embedding

0.0 0.5
10 3

10 2

Mixed Space
Metric Embedding

0.0 0.5
10 3

10 2

Asym. Dot Product
(Output Distance)

0.0 0.5
10 3

10 2

Asym. Dot Product
(Output Distance

via exp)

0.0 0.5
10 3

10 2

Asym. Dot Product
(Output Distance

via Square)

0.0 0.5
10 3

10 2

Asym. Dot Product
(Output -Discounted Distance)

0.0 0.5
10 3

10 2

Asym. Dot Product
(Output -Discounted Distance

via Sigmoid)

0.0 0.5
10 3

10 2

Asym. Dot Product
(Output Distance)

-ineq. Reg. Weight = 0.3

0.0 0.5
10 3

10 2

Asym. Dot Product
(Output Distance

via exp)
-ineq. Reg. Weight = 0.3

0.0 0.5
10 3

10 2

Asym. Dot Product
(Output Distance

via Square)
-ineq. Reg. Weight = 0.3

0.0 0.5
10 3

10 2

Asym. Dot Product
(Output -Discounted Distance)

-ineq. Reg. Weight = 0.3

0.0 0.5
10 3

10 2

Asym. Dot Product
(Output -Discounted Distance

via Sigmoid)
-ineq. Reg. Weight = 0.3

0.0 0.5
10 3

10 2

Asym. Dot Product
(Output Distance)

-ineq. Reg. Weight = 1

0.0 0.5
10 3

10 2

Asym. Dot Product
(Output Distance

via exp)
-ineq. Reg. Weight = 1

0.0 0.5
10 3

10 2

Asym. Dot Product
(Output Distance

via Square)
-ineq. Reg. Weight = 1

0.0 0.5
10 3

10 2

Asym. Dot Product
(Output -Discounted Distance)

-ineq. Reg. Weight = 1

0.0 0.5
10 3

10 2

Asym. Dot Product
(Output -Discounted Distance

via Sigmoid)
-ineq. Reg. Weight = 1

0.0 0.5
10 3

10 2

Asym. Dot Product
(Output Distance)

-ineq. Reg. Weight = 3

0.0 0.5
10 3

10 2

Asym. Dot Product
(Output Distance

via exp)
-ineq. Reg. Weight = 3

0.0 0.5
10 3

10 2

Asym. Dot Product
(Output Distance

via Square)
-ineq. Reg. Weight = 3

0.0 0.5
10 3

10 2

Asym. Dot Product
(Output -Discounted Distance)

-ineq. Reg. Weight = 3

0.0 0.5
10 3

10 2

Asym. Dot Product
(Output -Discounted Distance

via Sigmoid)
-ineq. Reg. Weight = 3

Figure B-6: A dense graph. Individual plots on the right show standard deviations.

214

Groundtruth Distance Matrix
(67.23% pairs are unreachable)

0

5

10

15

20

25

30

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Training Set Fraction

10 3

10 2

10 1

He
ld

ou
t M

SE

PQE
Unconstrained Network
Metric Embedding
Asym. Dot Product
DeepNorm
WideNorm

0.0 0.5

10 2

PQE-LH

0.0 0.5

10 2

PQE-GG

0.0 0.5

10 2

DeepNorm
(3-layer 128-width)

0.0 0.5

10 2

DeepNorm
(3-layer 48-width)

0.0 0.5

10 2

WideNorm
(32-component)

0.0 0.5

10 2

WideNorm
(48-component)

0.0 0.5

10 2

WideNorm
(128-component)

0.0 0.5

10 2

Unconstrained Net
(Output Distance)

0.0 0.5

10 2

Unconstrained Net
(Output Distance

via exp)

0.0 0.5

10 2

Unconstrained Net
(Output Distance

via Square)

0.0 0.5

10 2

Unconstrained Net
(Output -Discounted Distance)

0.0 0.5

10 2

Unconstrained Net
(Output -Discounted Distance

via Sigmoid)

0.0 0.5

10 2

Unconstrained Net
(Output Distance)

-ineq. Reg. Weight = 0.3

0.0 0.5

10 2

Unconstrained Net
(Output Distance

via exp)
-ineq. Reg. Weight = 0.3

0.0 0.5

10 2

Unconstrained Net
(Output Distance

via Square)
-ineq. Reg. Weight = 0.3

0.0 0.5

10 2

Unconstrained Net
(Output -Discounted Distance)

-ineq. Reg. Weight = 0.3

0.0 0.5

10 2

Unconstrained Net
(Output -Discounted Distance

via Sigmoid)
-ineq. Reg. Weight = 0.3

0.0 0.5

10 2

Unconstrained Net
(Output Distance)

-ineq. Reg. Weight = 1

0.0 0.5

10 2

Unconstrained Net
(Output Distance

via exp)
-ineq. Reg. Weight = 1

0.0 0.5

10 2

Unconstrained Net
(Output Distance

via Square)
-ineq. Reg. Weight = 1

0.0 0.5

10 2

Unconstrained Net
(Output -Discounted Distance)

-ineq. Reg. Weight = 1

0.0 0.5

10 2

Unconstrained Net
(Output -Discounted Distance

via Sigmoid)
-ineq. Reg. Weight = 1

0.0 0.5

10 2

Unconstrained Net
(Output Distance)

-ineq. Reg. Weight = 3

0.0 0.5

10 2

Unconstrained Net
(Output Distance

via exp)
-ineq. Reg. Weight = 3

0.0 0.5

10 2

Unconstrained Net
(Output Distance

via Square)
-ineq. Reg. Weight = 3

0.0 0.5

10 2

Unconstrained Net
(Output -Discounted Distance)

-ineq. Reg. Weight = 3

0.0 0.5

10 2

Unconstrained Net
(Output -Discounted Distance

via Sigmoid)
-ineq. Reg. Weight = 3

0.0 0.5

10 2

Euclidean Metric Embedding

0.0 0.5

10 2

1 Metric Embedding

0.0 0.5

10 2

Spherical Distance
Metric Embedding

0.0 0.5

10 2

Mixed Space
Metric Embedding

0.0 0.5

10 2

Asym. Dot Product
(Output Distance)

0.0 0.5

10 2

Asym. Dot Product
(Output Distance

via exp)

0.0 0.5

10 2

Asym. Dot Product
(Output Distance

via Square)

0.0 0.5

10 2

Asym. Dot Product
(Output -Discounted Distance)

0.0 0.5

10 2

Asym. Dot Product
(Output -Discounted Distance

via Sigmoid)

0.0 0.5

10 2

Asym. Dot Product
(Output Distance)

-ineq. Reg. Weight = 0.3

0.0 0.5

10 2

Asym. Dot Product
(Output Distance

via exp)
-ineq. Reg. Weight = 0.3

0.0 0.5

10 2

Asym. Dot Product
(Output Distance

via Square)
-ineq. Reg. Weight = 0.3

0.0 0.5

10 2

Asym. Dot Product
(Output -Discounted Distance)

-ineq. Reg. Weight = 0.3

0.0 0.5

10 2

Asym. Dot Product
(Output -Discounted Distance

via Sigmoid)
-ineq. Reg. Weight = 0.3

0.0 0.5

10 2

Asym. Dot Product
(Output Distance)

-ineq. Reg. Weight = 1

0.0 0.5

10 2

Asym. Dot Product
(Output Distance

via exp)
-ineq. Reg. Weight = 1

0.0 0.5

10 2

Asym. Dot Product
(Output Distance

via Square)
-ineq. Reg. Weight = 1

0.0 0.5

10 2

Asym. Dot Product
(Output -Discounted Distance)

-ineq. Reg. Weight = 1

0.0 0.5

10 2

Asym. Dot Product
(Output -Discounted Distance

via Sigmoid)
-ineq. Reg. Weight = 1

0.0 0.5

10 2

Asym. Dot Product
(Output Distance)

-ineq. Reg. Weight = 3

0.0 0.5

10 2

Asym. Dot Product
(Output Distance

via exp)
-ineq. Reg. Weight = 3

0.0 0.5

10 2

Asym. Dot Product
(Output Distance

via Square)
-ineq. Reg. Weight = 3

0.0 0.5

10 2

Asym. Dot Product
(Output -Discounted Distance)

-ineq. Reg. Weight = 3

0.0 0.5

10 2

Asym. Dot Product
(Output -Discounted Distance

via Sigmoid)
-ineq. Reg. Weight = 3

Figure B-7: A sparse graph. Individual plots on the right show standard deviations.

215

Groundtruth Distance Matrix
(67.13% pairs are unreachable)

0

2

4

6

8

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Training Set Fraction

10 4

10 3

10 2

10 1

100

He
ld

ou
t M

SE

PQE
Unconstrained Network
Metric Embedding
Asym. Dot Product
DeepNorm
WideNorm

0.0 0.5

10 3

10 1

PQE-LH

0.0 0.5

10 3

10 1

PQE-GG

0.0 0.5

10 3

10 1

DeepNorm
(3-layer 128-width)

0.0 0.5

10 3

10 1

DeepNorm
(3-layer 48-width)

0.0 0.5

10 3

10 1

WideNorm
(32-component)

0.0 0.5

10 3

10 1

WideNorm
(48-component)

0.0 0.5

10 3

10 1

WideNorm
(128-component)

0.0 0.5

10 3

10 1

Unconstrained Net
(Output Distance)

0.0 0.5

10 3

10 1

Unconstrained Net
(Output Distance

via exp)

0.0 0.5

10 3

10 1

Unconstrained Net
(Output Distance

via Square)

0.0 0.5

10 3

10 1

Unconstrained Net
(Output -Discounted Distance)

0.0 0.5

10 3

10 1

Unconstrained Net
(Output -Discounted Distance

via Sigmoid)

0.0 0.5

10 3

10 1

Unconstrained Net
(Output Distance)

-ineq. Reg. Weight = 0.3

0.0 0.5

10 3

10 1

Unconstrained Net
(Output Distance

via exp)
-ineq. Reg. Weight = 0.3

0.0 0.5

10 3

10 1

Unconstrained Net
(Output Distance

via Square)
-ineq. Reg. Weight = 0.3

0.0 0.5

10 3

10 1

Unconstrained Net
(Output -Discounted Distance)

-ineq. Reg. Weight = 0.3

0.0 0.5

10 3

10 1

Unconstrained Net
(Output -Discounted Distance

via Sigmoid)
-ineq. Reg. Weight = 0.3

0.0 0.5

10 3

10 1

Unconstrained Net
(Output Distance)

-ineq. Reg. Weight = 1

0.0 0.5

10 3

10 1

Unconstrained Net
(Output Distance

via exp)
-ineq. Reg. Weight = 1

0.0 0.5

10 3

10 1

Unconstrained Net
(Output Distance

via Square)
-ineq. Reg. Weight = 1

0.0 0.5

10 3

10 1

Unconstrained Net
(Output -Discounted Distance)

-ineq. Reg. Weight = 1

0.0 0.5

10 3

10 1

Unconstrained Net
(Output -Discounted Distance

via Sigmoid)
-ineq. Reg. Weight = 1

0.0 0.5

10 3

10 1

Unconstrained Net
(Output Distance)

-ineq. Reg. Weight = 3

0.0 0.5

10 3

10 1

Unconstrained Net
(Output Distance

via exp)
-ineq. Reg. Weight = 3

0.0 0.5

10 3

10 1

Unconstrained Net
(Output Distance

via Square)
-ineq. Reg. Weight = 3

0.0 0.5

10 3

10 1

Unconstrained Net
(Output -Discounted Distance)

-ineq. Reg. Weight = 3

0.0 0.5

10 3

10 1

Unconstrained Net
(Output -Discounted Distance

via Sigmoid)
-ineq. Reg. Weight = 3

0.0 0.5

10 3

10 1

Euclidean Metric Embedding

0.0 0.5

10 3

10 1

1 Metric Embedding

0.0 0.5

10 3

10 1

Spherical Distance
Metric Embedding

0.0 0.5

10 3

10 1

Mixed Space
Metric Embedding

0.0 0.5

10 3

10 1

Asym. Dot Product
(Output Distance)

0.0 0.5

10 3

10 1

Asym. Dot Product
(Output Distance

via exp)

0.0 0.5

10 3

10 1

Asym. Dot Product
(Output Distance

via Square)

0.0 0.5

10 3

10 1

Asym. Dot Product
(Output -Discounted Distance)

0.0 0.5

10 3

10 1

Asym. Dot Product
(Output -Discounted Distance

via Sigmoid)

0.0 0.5

10 3

10 1

Asym. Dot Product
(Output Distance)

-ineq. Reg. Weight = 0.3

0.0 0.5

10 3

10 1

Asym. Dot Product
(Output Distance

via exp)
-ineq. Reg. Weight = 0.3

0.0 0.5

10 3

10 1

Asym. Dot Product
(Output Distance

via Square)
-ineq. Reg. Weight = 0.3

0.0 0.5

10 3

10 1

Asym. Dot Product
(Output -Discounted Distance)

-ineq. Reg. Weight = 0.3

0.0 0.5

10 3

10 1

Asym. Dot Product
(Output -Discounted Distance

via Sigmoid)
-ineq. Reg. Weight = 0.3

0.0 0.5

10 3

10 1

Asym. Dot Product
(Output Distance)

-ineq. Reg. Weight = 1

0.0 0.5

10 3

10 1

Asym. Dot Product
(Output Distance

via exp)
-ineq. Reg. Weight = 1

0.0 0.5

10 3

10 1

Asym. Dot Product
(Output Distance

via Square)
-ineq. Reg. Weight = 1

0.0 0.5

10 3

10 1

Asym. Dot Product
(Output -Discounted Distance)

-ineq. Reg. Weight = 1

0.0 0.5

10 3

10 1

Asym. Dot Product
(Output -Discounted Distance

via Sigmoid)
-ineq. Reg. Weight = 1

0.0 0.5

10 3

10 1

Asym. Dot Product
(Output Distance)

-ineq. Reg. Weight = 3

0.0 0.5

10 3

10 1

Asym. Dot Product
(Output Distance

via exp)
-ineq. Reg. Weight = 3

0.0 0.5

10 3

10 1

Asym. Dot Product
(Output Distance

via Square)
-ineq. Reg. Weight = 3

0.0 0.5

10 3

10 1

Asym. Dot Product
(Output -Discounted Distance)

-ineq. Reg. Weight = 3

0.0 0.5

10 3

10 1

Asym. Dot Product
(Output -Discounted Distance

via Sigmoid)
-ineq. Reg. Weight = 3

Figure B-8: A sparse graph with block structure. Individual plots on the right show standard
deviations.

216

0.0 0.2 0.4 0.6
Training Fraction

10 3

2 × 10 3

3 × 10 3

4 × 10 3

6 × 10 3

He
ld

ou
t M

SE
PQE-LH
PQE-LH Discounted Dist.
PQE-LH Discounted Dist. Deep Linear Net

Groundtruth Distance Matrix

0

10

20

Ablation Study of PQE-LH on the Dense Graph

0.0 0.2 0.4 0.6
Training Fraction

10 3

2 × 10 3

3 × 10 3

4 × 10 3

6 × 10 3

He
ld

ou
t M

SE

PQE-GG
PQE-GG Discounted Dist.
PQE-GG Discounted Dist. Deep Linear Net

Groundtruth Distance Matrix

0

10

20

Ablation Study of PQE-GG on the Dense Graph

0.0 0.2 0.4 0.6
Training Fraction

10 3

10 2

He
ld

ou
t M

SE

PQE-LH
PQE-LH Discounted Dist.
PQE-LH Discounted Dist. Deep Linear Net

Groundtruth Distance Matrix

0

10

20

30

Ablation Study of PQE-LH on the Sparse Graph

0.0 0.2 0.4 0.6
Training Fraction

10 3

10 2

He
ld

ou
t M

SE

PQE-GG
PQE-GG Discounted Dist.
PQE-GG Discounted Dist. Deep Linear Net

Groundtruth Distance Matrix

0

10

20

30

Ablation Study of PQE-GG on the Sparse Graph

0.0 0.2 0.4 0.6
Training Fraction

10 4

10 3

10 2

He
ld

ou
t M

SE

PQE-LH
PQE-LH Discounted Dist.
PQE-LH Discounted Dist. Deep Linear Net

Groundtruth Distance Matrix

0

5

10

Ablation Study of PQE-LH on the Sparse Graph with Block Structure

0.0 0.2 0.4 0.6
Training Fraction

10 4

10 3

10 2

He
ld

ou
t M

SE

PQE-GG
PQE-GG Discounted Dist.
PQE-GG Discounted Dist. Deep Linear Net

Groundtruth Distance Matrix

0

5

10

Ablation Study of PQE-GG on the Sparse Graph with Block Structure

Figure B-9: Ablation studies of PQE-LH and PQE-GG on three random graphs.

Architecture. All encoder based methods (PQEs, metric embeddings, dot products)

use 128-2048-2048-2048-512 network with ReLU activations and Batch Normalization

[82] after each activation, mapping 128-dimensional inputs to a 512-dimensional

latent space. Unconstrained networks use a similar 256-2048-2048-2048-512-1 network,

mapping concatenated the 256-dimensional input to a scalar output.

Training. We use 1024 batch size with the Adam optimizer [88], with learning rate

decaying according to the cosine schedule without restarting [107] starting from 10−4 to

0 over 80 epochs. All models are optimized w.r.t. MSE on the 𝛾-discounted distances,

with 𝛾 = 0.9. When running with the triangle inequality regularizer, 342 ≈ 1024/3

triplets are uniformly sampled at each iteration.

Full results. Tables B.1 and B.2 show full results of distance learning on these

two graphs. On the directed Berkeley-StanfordWebGraph, PQE-LH performs the best

(w.r.t. discounted distance MSE). While PQE-GG has larger discounted distance MSE

than some other baselines, it accurately predicts finite distances and outputs large

217

Method Family Formulation
MSE w.r.t.
𝛾-discounted

distances (×10−3) ↓

L1 Error
when true
𝑑 <∞ ↓

Prediction 𝑑
when true
𝑑 = ∞ ↑

PQEs
PQE-LH 3.0427 ± 0.1527 1.6263 ± 0.0550 69.9424 ± 0.4930

PQE-GG 3.9085 ± 0.1258 1.8951 ± 0.0336 101.8240 ± 10.3970

Unconstrained Nets
(without Triangle Inequality

Regularizer)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥, 𝑦) 3.0862 ± 0.0392 2.1151 ± 0.0241 59.5243 ± 0.3700

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥, 𝑦)) 3.3541 ± 0.1759 1.0090 × 1023 ± 2.0179 × 1023 5.3583 × 105 ± 1.0582 × 106

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥, 𝑦))2 4.5663 ± 0.2294 3.3459 ± 0.2494 68.2613 ± 11.6061

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥, 𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥, 𝑦)) 3.1823 ± 0.1133 ∞ ± NaN 65.8630 ± 0.4287

Unconstrained Nets
(Triangle Inequality

Regularizer Weight = 0.3)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥, 𝑦) 2.8128 ± 0.0625 2.2109 ± 0.0341 61.3709 ± 0.3936

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥, 𝑦)) 2.9344 ± 0.0455 ∞ ± NaN ∞ ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥, 𝑦))2 4.9947 ± 0.4198 16.5445 ± 29.3175 58.9205 ± 6.4216

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥, 𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥, 𝑦)) 2.9178 ± 0.1351 ∞ ± NaN ∞ ± NaN

Unconstrained Nets
(Triangle Inequality

Regularizer Weight = 1)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥, 𝑦) 3.0481 ± 0.1272 2.3729 ± 0.1378 60.4040 ± 0.1890

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥, 𝑦)) 3.0161 ± 0.0718 ∞ ± NaN 3.1289 × 1016 ± 6.2579 × 1016

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥, 𝑦))2 4.4921 ± 0.3534 3.6930 ± 0.4896 90.6206 ± 66.5704

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥, 𝑦) 4.4046 ± 0.5167 2.7873 ± 0.0770 31.3195 ± 0.9929

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥, 𝑦)) 2.9314 ± 0.1022 2.2634 ± 0.1147 ∞ ± NaN

Unconstrained Nets
(Triangle Inequality

Regularizer Weight = 3)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥, 𝑦) 5.2955 ± 0.5279 3.8060 ± 0.2908 58.1193 ± 0.4383

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥, 𝑦)) 3.5713 ± 0.2002 212.5421 ± 416.9256 ∞ ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥, 𝑦))2 4.3745 ± 0.3709 2.9491 ± 0.2228 53.1119 ± 5.5452

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥, 𝑦) 7.3416 ± 0.6486 3.5232 ± 0.1352 26.9200 ± 0.4697

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥, 𝑦)) 3.5818 ± 0.3565 ∞ ± NaN 65.7709 ± 0.8646

Asym. Dot Products
(without Triangle Inequality

Regularizer)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥)T𝑔(𝑦) 3.1622 × 1019 ± NaN 23.4270 ± NaN 0.1529 ± NaN

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥)T𝑔(𝑦)) NaN ± NaN NaN ± NaN NaN ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥)T𝑔(𝑦))2 48.1056 ± 0.0056 2.5195 × 1011 ± 2.1751 × 1011 2.6794 × 1011 ± 2.5398 × 1011

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥)T𝑔(𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥)T𝑔(𝑦)) 48.1073 ± 0.0112 ∞ ± NaN ∞ ± NaN

Asym. Dot Products
(Triangle Inequality

Regularizer Weight = 0.3)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥)T𝑔(𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥)T𝑔(𝑦)) NaN ± NaN NaN ± NaN NaN ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥)T𝑔(𝑦))2 48.1041 ± 0.0035 1.9498 × 1011 ± 7.9641 × 1010 1.6049 × 1011 ± 3.7099 × 1010

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥)T𝑔(𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥)T𝑔(𝑦)) 48.1103 ± 0.0110 ∞ ± NaN ∞ ± NaN

Asym. Dot Products
(Triangle Inequality

Regularizer Weight = 1)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥)T𝑔(𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥)T𝑔(𝑦)) NaN ± NaN NaN ± NaN NaN ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥)T𝑔(𝑦))2 48.1021 ± 0.0002 2.2986 × 1011 ± 9.1970 × 1010 2.5002 × 1011 ± 1.4464 × 1011

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥)T𝑔(𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥)T𝑔(𝑦)) 58.4894 ± 23.2224 ∞ ± NaN ∞ ± NaN

Asym. Dot Products
(Triangle Inequality

Regularizer Weight = 3)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥)T𝑔(𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥)T𝑔(𝑦)) NaN ± NaN NaN ± NaN NaN ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥)T𝑔(𝑦))2 48.1031 ± 0.0020 2.3522 × 1011 ± 2.6429 × 1011 1.7025 × 1011 ± 1.0700 × 1011

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥)T𝑔(𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥)T𝑔(𝑦)) 48.3034 ± 0.4485 ∞ ± NaN ∞ ± NaN

Metric Embeddings

Euclidean space 𝑑(𝑥, 𝑦) , ‖𝑓(𝑥)− 𝑓(𝑦)‖2 17.5952 ± 0.2667 7.5399 ± 0.0742 53.8500 ± 3.8430

ℓ1 space 𝑑(𝑥, 𝑦) , ‖𝑓(𝑥)− 𝑓(𝑦)‖1 18.0521 ± 0.3546 7.1154 ± 0.1835 66.2507 ± 3.3308

Spherical distance space w/ learnable scale 𝛼 𝑑(𝑥, 𝑦) , 𝛼 · arccos(𝑓(𝑥)T𝑓(𝑦)
‖𝑓(𝑥)‖2‖𝑓(𝑦)‖2

) 19.2990 ± 0.2032 6.9545 ± 0.0887 32.1458 ± 0.4562

Mixing above three spaces w/ learnable weights 17.8312 ± 0.3099 7.3493 ± 0.1086 51.7481 ± 3.6248

DeepNorms
3-layer 128-width 7.0862 ± 0.3170 2.4498 ± 0.0617 111.2209 ± 2.5045

3-layer 512-width 5.0715 ± 0.1348 2.0853 ± 0.0633 120.0452 ± 4.3525

WideNorms

32-component (each of size 32) 3.5328 ± 0.2120 1.7694 ± 0.0213 124.6580 ± 2.8678

48-component (each of size 32) 3.6842 ± 0.2385 1.8081 ± 0.0680 122.6833 ± 5.5026

128-component (each of size 32) 3.8125 ± 0.2331 1.8096 ± 0.0765 128.5427 ± 5.1412

Table B.1: Quasimetric learning on the large-scale directed Berkeley-StanfordWebGraph.

218

Method Family Formulation
MSE w.r.t.
𝛾-discounted

distances (×10−3) ↓

L1 Error
when true
𝑑 <∞ ↓

Prediction 𝑑
when true
𝑑 = ∞ ↑

PQEs
PQE-LH 2.4400 ± 0.0695 0.6480 ± 0.0119 NaN ± NaN

PQE-GG 2.5895 ± 0.0318 0.6697 ± 0.0042 NaN ± NaN

Unconstrained Nets
(without Triangle Inequality

Regularizer)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥, 𝑦) 1.4883 ± 0.0168 0.5084 ± 0.0029 NaN ± NaN

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥, 𝑦)) 1.5223 ± 0.0160 0.4910 ± 0.0151 NaN ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥, 𝑦))2 2.2955 ± 1.1674 0.6185 ± 0.1409 NaN ± NaN

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥, 𝑦) 1.5069 ± 0.0228 0.4975 ± 0.0211 NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥, 𝑦)) 1.4802 ± 0.0197 0.5082 ± 0.0036 NaN ± NaN

Unconstrained Nets
(Triangle Inequality

Regularizer Weight = 0.3)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥, 𝑦) 1.5009 ± 0.0208 0.5107 ± 0.0032 NaN ± NaN

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥, 𝑦)) 1.5206 ± 0.0444 0.4935 ± 0.0098 NaN ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥, 𝑦))2 1.7398 ± 0.3896 0.5488 ± 0.0600 NaN ± NaN

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥, 𝑦) 1.5005 ± 0.0148 0.4986 ± 0.0121 NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥, 𝑦)) 1.4851 ± 0.0168 0.5089 ± 0.0026 NaN ± NaN

Unconstrained Nets
(Triangle Inequality

Regularizer Weight = 1)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥, 𝑦) 1.4999 ± 0.0243 0.5107 ± 0.0046 NaN ± NaN

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥, 𝑦)) 1.5224 ± 0.0376 0.4948 ± 0.0169 NaN ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥, 𝑦))2 1.8875 ± 0.5078 0.5692 ± 0.0683 NaN ± NaN

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥, 𝑦) 1.4769 ± 0.0176 0.4919 ± 0.0128 NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥, 𝑦)) 1.4846 ± 0.0115 0.5088 ± 0.0021 NaN ± NaN

Unconstrained Nets
(Triangle Inequality

Regularizer Weight = 3)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥, 𝑦) 1.4939 ± 0.0110 0.5099 ± 0.0018 NaN ± NaN

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥, 𝑦)) 1.5154 ± 0.0389 0.4871 ± 0.0174 NaN ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥, 𝑦))2 2.4747 ± 1.0850 0.6505 ± 0.1357 NaN ± NaN

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥, 𝑦) 1.4915 ± 0.0127 0.4983 ± 0.0160 NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥, 𝑦)) 1.4829 ± 0.0153 0.5084 ± 0.0029 NaN ± NaN

Asym. Dot Products
(without Triangle Inequality

Regularizer)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥)T𝑔(𝑦) 2633.7907 ± NaN 11.3879 ± NaN NaN ± NaN

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥)T𝑔(𝑦)) NaN ± NaN NaN ± NaN NaN ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥)T𝑔(𝑦))2 339.1550 ± 0.0022 7.8948 × 1011 ± 7.4010 × 1011 NaN ± NaN

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥)T𝑔(𝑦) 2.6920 ± 1.2655 0.7062 ± 0.2156 NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥)T𝑔(𝑦)) 182.2068 ± 1.2382 ∞ ± NaN NaN ± NaN

Asym. Dot Products
(Triangle Inequality

Regularizer Weight = 0.3)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥)T𝑔(𝑦) 9.9748 × 105 ± NaN 8.1867 ± NaN NaN ± NaN

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥)T𝑔(𝑦)) NaN ± NaN NaN ± NaN NaN ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥)T𝑔(𝑦))2 339.1560 ± 0.0010 6.8658 × 1011 ± 3.4985 × 1011 NaN ± NaN

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥)T𝑔(𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥)T𝑔(𝑦)) 183.3337 ± 1.0384 ∞ ± NaN NaN ± NaN

Asym. Dot Products
(Triangle Inequality

Regularizer Weight = 1)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥)T𝑔(𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥)T𝑔(𝑦)) NaN ± NaN NaN ± NaN NaN ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥)T𝑔(𝑦))2 339.1552 ± 0.0021 7.4588 × 1011 ± 3.7277 × 1011 NaN ± NaN

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥)T𝑔(𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥)T𝑔(𝑦)) 191.0928 ± 9.7137 ∞ ± NaN NaN ± NaN

Asym. Dot Products
(Triangle Inequality

Regularizer Weight = 3)

Output distance 𝑑(𝑥, 𝑦) , 𝑓(𝑥)T𝑔(𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output distance via exp(·) 𝑑(𝑥, 𝑦) , exp(𝑓(𝑥)T𝑔(𝑦)) NaN ± NaN NaN ± NaN NaN ± NaN

Output distance via squaring 𝑎→ 𝑎2 𝑑(𝑥, 𝑦) , (𝑓(𝑥)T𝑔(𝑦))2 339.1556 ± 0.0020 9.0283 × 1011 ± 6.0203 × 1011 NaN ± NaN

Output 𝛾-discounted distance 𝛾𝑑(𝑥,𝑦) , 𝑓(𝑥)T𝑔(𝑦) NaN ± NaN NaN ± NaN NaN ± NaN

Output 𝛾-discounted distance via sigmoid 𝜎(·) 𝛾𝑑(𝑥,𝑦) , 𝜎(𝑓(𝑥)T𝑔(𝑦)) 228.0300 ± 37.0632 ∞ ± NaN NaN ± NaN

Metric Embeddings

Euclidean space 𝑑(𝑥, 𝑦) , ‖𝑓(𝑥)− 𝑓(𝑦)‖2 1.3131 ± 0.0671 0.4833 ± 0.0128 NaN ± NaN

ℓ1 space 𝑑(𝑥, 𝑦) , ‖𝑓(𝑥)− 𝑓(𝑦)‖1 3.5993 ± 1.5986 0.7787 ± 0.1842 NaN ± NaN

Spherical distance space w/ learnable scale 𝛼 𝑑(𝑥, 𝑦) , 𝛼 · arccos(𝑓(𝑥)T𝑓(𝑦)
‖𝑓(𝑥)‖2‖𝑓(𝑦)‖2

) 6.7731 ± 0.1915 1.0829 ± 0.0177 NaN ± NaN

Mixing above three spaces w/ learnable weights 2.1014 ± 0.0685 0.5923 ± 0.0109 NaN ± NaN

DeepNorms
3-layer 128-width 8.0192 ± 0.2476 1.1834 ± 0.0213 NaN ± NaN

3-layer 512-width 5.4366 ± 0.0855 0.9666 ± 0.0072 NaN ± NaN

WideNorms

32-component (each of size 32) 3.0841 ± 0.0667 0.7272 ± 0.0068 NaN ± NaN

48-component (each of size 32) 3.0438 ± 0.1322 0.7247 ± 0.0173 NaN ± NaN

128-component (each of size 32) 2.9964 ± 0.1363 0.7173 ± 0.0166 NaN ± NaN

Table B.2: Metric learning on the large-scale undirected Youtube graph. This graph does not
have unreachable pairs so the last column is always NaN.

219

values for unreachable pairs. On the undirected Youtube graph, perhaps as expected,

metric embedding methods have an upper hand, with the best performing method

being an Euclidean space embedding. Notably, DeepNorms and WideNorms do much

worse than PQEs on this symmetric graph.

Offline Q-Learning

As shown in Proposition B.1.4 and Remark B.1.5, we know that a quasimetric is

formed with the optimal goal-reaching plan costs in a MDP ℳ = (𝒮,𝒜,ℛ,𝒫 , 𝛾)

where each action has unit cost (i.e., negated reward). The quasimetric is defined on

𝒳 , 𝒮 ∪ (𝒮 ×𝒜).

Similarly, Tian et al. [151] also make this observation and propose to optimize

a distance function by Q-learning on a collected set of trajectories. The optimized

distance function (i.e., Q-function) is then used with standard planning algorithms

such as the Cross Entropy Method (CEM) [35]. The specific model they used is an

unconstrained network 𝑓 : (𝑠, 𝑎, 𝑠′) → R, outputting discounted distances (Q-values).

Due to the existing quasimetric structure, we explore using PQEs as the distance

function formulation. We mostly follow the algorithm in Tian et al. [151] except for

the following minor differences:

• Tian et al. [151] propose to sample half of the goal from future steps of the same

trajectory, and half of the goal from similar states across the entire dataset,

defined by a nearest neighbor search. For simplicity, in the latter case, we instead

sample a random state across the entire dataset.

• In Tian et al. [151], target goals are defined as single states, and the Q-learning

formulation only uses quantities distances from state-action pairs (𝑠, 𝑎) ∈ 𝒮 ×𝒜

to states 𝑠′: 𝑑((𝑠, 𝑎), 𝑠′).

However, if we only train on 𝑑((𝑠, 𝑎), 𝑠′), quasimetric embeddings might not

learn much about the distance to state-action pairs, or from states, because it

may simply only assign finite distances to 𝑑((𝑠, 𝑎), 𝑠′), and set everything else to

infinite. To prevent such issues, we choose to use state-action pairs as target

220

goals, by adding a random action. Then, the embedding methods only need to

embed state-action pairs.

In planning when the target is actually a single goal 𝑠′ ∈ 𝒮, we use the following

distance/Q-function

𝑑((𝑠, 𝑎), 𝑠′) , −1 +
1

|𝒜|
∑︁
𝑎′∈𝒜

𝑑((𝑠, 𝑎), (𝑠′, 𝑎′)). (B.192)

Such a modification is used for all embedding methods (PQEs, metric embeddings,

asymmetrical dot products). For unconstrained networks, we test both the

original formulation (of using single state as goals) and this modification.

0 200 400 600 800 1000
Number of Training Trajectories

0.0

0.2

0.4

0.6

0.8

1.0

[s
uc

ce
ss

]

PQE
Unconstrained Network
Asym. Dot Product
Metric Embedding
DeepNorm
WideNorm

Figure B-10: Grid-world offline Q-learning average planning success rates. Right shows the
environment.

Environment. The environment is a grid-world with one-way doors, as shown in

of Figure B-10, which is built upon gym-minigrid [28] (a project under Apache 2.0

License). The agent has 4 actions corresponding to moving towards 4 directions.

When it moves toward a direction that is blocked by a wall or an one-way door,

it does not move. States are represented as 18-dimensional vectors, containing the

2D location of the agent (normalized to be within [−1, 1]2). The other dimensions

are always constant in our enviroment as they refer to information that can not be

221

changed in this particular environment (e.g., the state of the doors). The agent always

starts at a random location in the center room (e.g., the initial position of the red

triangle in Figure B-10). The environment also defines a goal sampling distribution

as a random location in one of the rooms on the left or right side. Note that this

goal distribution is only used for data collection and evaluation. In training, we train

goal-conditional policies using the goal sampling mechanism adapted from Tian et al.

[151], as described above.

Training trajectories. To collect the training trajectories, we use an 𝜖-greedy

planner with groundtruth distance toward the environment goal, with a large 𝜖 = 0.6.

Each trajectory is capped to have at most 200 steps.

Architecture. All encoder based methods (PQEs, metric embeddings, dot products)

use 18-2048-2048-2048-1024 network with ReLU activations and Batch Normalization

[82] after each activation, mapping a 18-dimensional state to four 256-dimensional latent

vectors, corresponding to the embeddings for all four state-action pairs. Unconstrained

networks use a similar architecture and take in concatenated 36-dimensional inputs.

With the original formulation with states as goals, we use a 36-2048-2048-2048-256-4

network to obtain a R|𝒜| output, representing the distance/Q-values from each state-

action pair to the goal; with the modified formulation with state-action pairs as goals,

we use a 36-2048-2048-2048-256-16 network to obtain a R|𝒜|×|𝒜| output.

Training. We use 1024 batch size with the Adam optimizer [88], with learning rate

decaying according to the cosine schedule without restarting [107] starting from 10−4

to 0 over 1000 epochs. Since we are running Q-learning, all models are optimized w.r.t.

MSE on the 𝛾-discounted distances, with 𝛾 = 0.95. When running with the triangle

inequality regularizer, 341 ≈ 1024/3 triplets are uniformly sampled at each iteration.

Planning details. To use the learned distance/Q-function for planning towards a

given goal, we perform greedy 1-step planning, where we always select the best action

in 𝒜 according to the learned model, without any lookahead. In each of 50 runs, the

222

planner is asked to reach a goal given by the environment within 300 steps. The set

of 50 initial location and goal states is entirely decided by the seed used, regardless of

the model. We run each method 5 times using the same set of 5 seeds.

Full results. Average results across 5 runs are shown in Figure B-10, with full

results (with standard deviations) shown in Figure B-11. Planning performance across

the formulations vary a lot, with PQEs and the Euclidean metric embedding being

the best and most data-efficient ones. Using either formulation (states vs. state-action

pairs as goals) does not seem to affect the performance of unconstrained networks.

We note that the the asymmetrical dot product formulation outputting discounted

distance is similar to Universal Value Function Approximators (UVFA) formulation

[136]; the unconstrained network outputting discounted distance with states as goals

is the same formulation as the method from Tian et al. [151].

223

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00
PQE-LH

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00
PQE-GG

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

DeepNorm
(3-layer 128-width)

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

DeepNorm
(3-layer 64-width)

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

WideNorm
(128-component)

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

WideNorm
(32-component)

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

WideNorm
(48-component)

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

Unconstrained Net
State as Goals

(Output Distance)

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

Unconstrained Net
State as Goals

(Output Distance via exp)

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

Unconstrained Net
State as Goals

(Output Distance via Square)

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

Unconstrained Net
State as Goals

(Output -Discounted Distance)

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

Unconstrained Net
State as Goals

(Output -Discounted Distance
via Sigmoid)

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

Unconstrained Net
State as Goals

(Output Distance)
-ineq. Reg. Weight = 0.3

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

Unconstrained Net
State as Goals

(Output Distance via exp)
-ineq. Reg. Weight = 0.3

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

Unconstrained Net
State as Goals

(Output Distance via Square)
-ineq. Reg. Weight = 0.3

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

Unconstrained Net
State as Goals

(Output -Discounted Distance)
-ineq. Reg. Weight = 0.3

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

Unconstrained Net
State as Goals

(Output -Discounted Distance
via Sigmoid)

-ineq. Reg. Weight = 0.3

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

Unconstrained Net
State as Goals

(Output Distance)
-ineq. Reg. Weight = 1

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

Unconstrained Net
State as Goals

(Output Distance via exp)
-ineq. Reg. Weight = 1

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

Unconstrained Net
State as Goals

(Output Distance via Square)
-ineq. Reg. Weight = 1

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

Unconstrained Net
State as Goals

(Output -Discounted Distance)
-ineq. Reg. Weight = 1

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

Unconstrained Net
State as Goals

(Output -Discounted Distance
via Sigmoid)

-ineq. Reg. Weight = 1

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

Unconstrained Net
State as Goals

(Output Distance)
-ineq. Reg. Weight = 3

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

Unconstrained Net
State as Goals

(Output Distance via exp)
-ineq. Reg. Weight = 3

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

Unconstrained Net
State as Goals

(Output Distance via Square)
-ineq. Reg. Weight = 3

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

Unconstrained Net
State as Goals

(Output -Discounted Distance)
-ineq. Reg. Weight = 3

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

Unconstrained Net
State as Goals

(Output -Discounted Distance
via Sigmoid)

-ineq. Reg. Weight = 3

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

Unconstrained Net
State-Action as Goals

(Output Distance)

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

Unconstrained Net
State-Action as Goals

(Output Distance via exp)

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

Unconstrained Net
State-Action as Goals

(Output Distance via Square)

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

Unconstrained Net
State-Action as Goals

(Output -Discounted Distance)

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

Unconstrained Net
State-Action as Goals

(Output -Discounted Distance
via Sigmoid)

Figure B-11: Grid-world offline Q-learning full results. Individual plots on show standard
deviations.

224

0 250 500 750 1000
0.0

0.5

1.0

Unconstrained Net
State-Action as Goals

(Output Distance)
-ineq. Reg. Weight = 0.3

0 250 500 750 1000
0.0

0.5

1.0

Unconstrained Net
State-Action as Goals

(Output Distance via exp)
-ineq. Reg. Weight = 0.3

0 250 500 750 1000
0.0

0.5

1.0

Unconstrained Net
State-Action as Goals

(Output Distance via Square)
-ineq. Reg. Weight = 0.3

0 250 500 750 1000
0.0

0.5

1.0

Unconstrained Net
State-Action as Goals

(Output -Discounted Distance)
-ineq. Reg. Weight = 0.3

0 250 500 750 1000
0.0

0.5

1.0

Unconstrained Net
State-Action as Goals

(Output -Discounted Distance
via Sigmoid)

-ineq. Reg. Weight = 0.3

0 250 500 750 1000
0.0

0.5

1.0

Unconstrained Net
State-Action as Goals

(Output Distance)
-ineq. Reg. Weight = 1

0 250 500 750 1000
0.0

0.5

1.0

Unconstrained Net
State-Action as Goals

(Output Distance via exp)
-ineq. Reg. Weight = 1

0 250 500 750 1000
0.0

0.5

1.0

Unconstrained Net
State-Action as Goals

(Output Distance via Square)
-ineq. Reg. Weight = 1

0 250 500 750 1000
0.0

0.5

1.0

Unconstrained Net
State-Action as Goals

(Output -Discounted Distance)
-ineq. Reg. Weight = 1

0 250 500 750 1000
0.0

0.5

1.0

Unconstrained Net
State-Action as Goals

(Output -Discounted Distance
via Sigmoid)

-ineq. Reg. Weight = 1

0 250 500 750 1000
0.0

0.5

1.0

Unconstrained Net
State-Action as Goals

(Output Distance)
-ineq. Reg. Weight = 3

0 250 500 750 1000
0.0

0.5

1.0

Unconstrained Net
State-Action as Goals

(Output Distance via exp)
-ineq. Reg. Weight = 3

0 250 500 750 1000
0.0

0.5

1.0

Unconstrained Net
State-Action as Goals

(Output Distance via Square)
-ineq. Reg. Weight = 3

0 250 500 750 1000
0.0

0.5

1.0

Unconstrained Net
State-Action as Goals

(Output -Discounted Distance)
-ineq. Reg. Weight = 3

0 250 500 750 1000
0.0

0.5

1.0

Unconstrained Net
State-Action as Goals

(Output -Discounted Distance
via Sigmoid)

-ineq. Reg. Weight = 3

0 250 500 750 1000
0.0

0.5

1.0
Euclidean Metric Embedding

0 250 500 750 1000
0.0

0.5

1.0
1 Metric Embedding

0 250 500 750 1000
0.0

0.5

1.0

Spherical Distance
Metric Embedding

0 250 500 750 1000
0.0

0.5

1.0

Mixed Space
Metric Embedding

0 250 500 750 1000
0.0

0.5

1.0

Asym. Dot Product
(Output Distance)

0 250 500 750 1000
0.0

0.5

1.0

Asym. Dot Product
(Output Distance via exp)

0 250 500 750 1000
0.0

0.5

1.0

Asym. Dot Product
(Output Distance via Square)

0 250 500 750 1000
0.0

0.5

1.0

Asym. Dot Product
(Output -Discounted Distance)

0 250 500 750 1000
0.0

0.5

1.0

Asym. Dot Product
(Output -Discounted Distance

via Sigmoid)

0 250 500 750 1000
0.0

0.5

1.0

Asym. Dot Product
(Output Distance)

-ineq. Reg. Weight = 0.3

0 250 500 750 1000
0.0

0.5

1.0

Asym. Dot Product
(Output Distance via exp)
-ineq. Reg. Weight = 0.3

0 250 500 750 1000
0.0

0.5

1.0

Asym. Dot Product
(Output Distance via Square)

-ineq. Reg. Weight = 0.3

0 250 500 750 1000
0.0

0.5

1.0

Asym. Dot Product
(Output -Discounted Distance)

-ineq. Reg. Weight = 0.3

0 250 500 750 1000
0.0

0.5

1.0

Asym. Dot Product
(Output -Discounted Distance

via Sigmoid)
-ineq. Reg. Weight = 0.3

0 250 500 750 1000
0.0

0.5

1.0

Asym. Dot Product
(Output Distance)

-ineq. Reg. Weight = 1

0 250 500 750 1000
0.0

0.5

1.0

Asym. Dot Product
(Output Distance via exp)

-ineq. Reg. Weight = 1

0 250 500 750 1000
0.0

0.5

1.0

Asym. Dot Product
(Output Distance via Square)

-ineq. Reg. Weight = 1

0 250 500 750 1000
0.0

0.5

1.0

Asym. Dot Product
(Output -Discounted Distance)

-ineq. Reg. Weight = 1

0 250 500 750 1000
0.0

0.5

1.0

Asym. Dot Product
(Output -Discounted Distance

via Sigmoid)
-ineq. Reg. Weight = 1

0 250 500 750 1000
0.0

0.5

1.0

Asym. Dot Product
(Output Distance)

-ineq. Reg. Weight = 3

0 250 500 750 1000
0.0

0.5

1.0

Asym. Dot Product
(Output Distance via exp)

-ineq. Reg. Weight = 3

0 250 500 750 1000
0.0

0.5

1.0

Asym. Dot Product
(Output Distance via Square)

-ineq. Reg. Weight = 3

0 250 500 750 1000
0.0

0.5

1.0

Asym. Dot Product
(Output -Discounted Distance)

-ineq. Reg. Weight = 3

0 250 500 750 1000
0.0

0.5

1.0

Asym. Dot Product
(Output -Discounted Distance

via Sigmoid)
-ineq. Reg. Weight = 3

Figure B-11: Grid-world offline Q-learning full results (cont.). Individual plots on show
standard deviations.

225

226

Appendix C

Details and Additional Discussions

for Chapter 4

C.1 Denoised MDP Discussions

C.1.1 Loss Derivation

To apply our mutual information regularizer 𝐼(𝑥; 𝑠 | 𝑎), we can consider a form using

another variational distribution 𝜌 (see, e.g., Poole et al. [128]),

𝐼(𝑥; 𝑠 | 𝑎) = min
𝜌

E𝑎E𝑝𝜃(𝑠|𝑎) [𝐷KL(𝑝𝜃(𝑥 | 𝑠,𝑎) ‖ 𝜌(𝑥 | 𝑎))]

≈ min
𝜌

E𝑎E𝑞𝜓(𝑠|𝑎) [𝐷KL(𝑞𝜓(𝑥 | 𝑠,𝑎) ‖ 𝜌(𝑥 | 𝑎))]

(assume 𝑞𝜓 is roughly the posterior of 𝑝𝜃)

= min
𝜃′

ℒKL-𝑥(𝜓, 𝜃′). (C.1)

The assumption that 𝑞𝜓 is roughly the posterior of 𝑝𝜃 is acceptable because it is the

natural consequence of optimizing the variational MLE objective in Equation (4.1)

over 𝜃, 𝜓.

Alternatively, we can consider the MI defined by a joint conditional distribution

𝑃 (𝑥, 𝑠 | 𝑎) not from the forward model 𝑝𝜃, but from the data distribution and posterior

model 𝑞𝜓(𝑥 | 𝑠,𝑎). This is also sensible because the variational MLE objective in

227

Equation (4.1) optimizes for compatible 𝑝𝜃 and 𝑞𝜓 that both fit data and consistently

describe (conditionals of) the same underlying distribution. Thus regularizing either

can encourage a low MI. This approach leads to exactly Equation (C.1), without

approximation.

Then, the total loss in Equation (4.3) from combining Equations (4.1) and (C.1) is

given by

min
𝜃

ℒMLE(𝜃) + 𝑐 · 𝐼(𝑥; 𝑠 | 𝑎)

= min
𝜃,𝜃′,𝜓

ℒrecon(𝜃, 𝜓) + ℒKL-𝑥(𝜃, 𝜓) + ℒKL-𝑦(𝜃, 𝜓) + ℒKL-𝑧 + 𝑐 · +ℒKL-𝑥(𝜃′, 𝜓)

= min
𝜃,𝜓

ℒrecon(𝜃, 𝜓) + (1 + 𝑐) · ℒKL-𝑥(𝜃, 𝜓) + ℒKL-𝑦(𝜃, 𝜓) + ℒKL-𝑧(𝜃, 𝜓).

C.1.2 Discussions

We discuss some algorithmic choices of Denoised MDP below. Specific implementation

details (e.g., architectures) can be found at Appendix C.2.1.

Posterior distributions of 𝑟𝑥 and 𝑟𝑦. The 𝑝𝜃 reward distributions 𝑝𝜃(𝑟𝑥 | 𝑥𝑡) and

𝑝𝜃(𝑟𝑦 | 𝑦𝑡) are modelled via Gaussians (as is done usually in world models, such as

Dreamer [63]). By the transition structure of Denoised MDPs, these distributions are

inherently independent. Recall that 𝑟 = 𝑟𝑥 + 𝑟𝑦. Therefore, we can easily compute

the distribution of 𝑝𝜃(𝑟 | 𝑥𝑡, 𝑦𝑡) and its log likelihoods. This enables easy optimization

of the variational MLE objective, without requiring the posterior model to also infer

𝑟𝑥 and 𝑟𝑦 from observed 𝑟 subject to the addition relation.

Partial observability. Sections 4.2 and 4.3 discussions are mostly based in the fully

observable setting. Yet most benchmarks and real-world tasks are partially observable,

e.g., robot joint speeds that can not be inferred from a single frame. Fortunately,

the transition models used in Denoised MDP are fully capable of handle such cases,

as long as the encoder 𝑞𝜓 is not deterministic and the observation model 𝑝𝜃(𝑠 | . . .)

does not have the block structure [38] (which would make 𝑥, 𝑦, 𝑧 fully determined

from 𝑠). In practice, we let both components to be generic conditional distributions

228

Ctrl + Rew Ctrl + Rew Ctrl + Rew Ctrl + Rew

DMC

Noiseless Agent — — —

Video Background Agent — — Background

Video Background
+ Noisy Sensor Agent — Background —

Video Background
+ Camera Jittering Agent — —

Background,
Jittering camera

RoboDesk
Agent, Button,
Light on desk,

Green hue of TV

Blocks on desk,
Handle on desk,

Other movable objects

TV content,
Button sensor noise

Jittering and flickering environment lighting,
Jittering camera

Table C.1: Categorization of various information in the environments we evaluated with.

(parameterized by regular deep neural networks). Therefore, Denoised MDP does not

require full observability.

Hyperparameter choice. The loss in Equation (4.4) has two hyperparameters: 𝛼 ∈

(0,∞) and 𝛽 ∈ (0, 1). To maintain relative ratio with the observation reconstruction

loss, we recommend scaling 𝛼 roughly proportionally with dimensionality of the

observation space, as is done in our experiments presented in this paper. A smaller 𝛽

means stronger regularization. Therefore, 𝛽 can be chosen based on training stability

and the level of noise distractors in the task.

C.2 Experiment Details

All code (including code for our environment variants and code for our Denoised MDP

method) will be released upon publication.

C.2.1 Implementation Details

Environments and Tasks

In all environments, trajectories are capped at 1000 timesteps. Table C.1 shows a

summary of what kinds of information exist in each environment.

229

DeepMind Control Suite (DMC). Our Video Background implementation

follows Deep Bisimulation for Control [176] on most environments, using Kinetics-400

grayscale videos [140], and replacing pixels where blue channel is strictly the greatest

of three. This method, however, does not cleanly remove most of background in the

Walker Walk environment, where we use an improved mask that replaces all pixels

where the blue channel is among the greatest of three. For Camera Jittering, we shift

the observation image according to a smooth random walk, implemented as, at each

step, Gaussian-perturbing acceleration, decaying velocity, and adding a pulling force

if the position is too far away from origin. For Sensor Noise, we select one sensor,

and perturb it according to intensity of a patch of the natural video background (i.e.,

adding average patch value − 0.5). We perturb the speed sensor for Cheetah Run, the

torso_height sensor for Walker Walk, and the normalized finger_to_target_dist

sensor for Reacher Easy. These sensor values undergo non-linear (mostly piece-wise

linear) transforms to compute rewards. While they can not be perfectly modelled by

additive reward noise, such a model is usually sufficient in most cases when the sensor

values are not too extreme and stay in one linear region.

RoboDesk. We modify the original RoboDesk environment by adding a TV screen

and two neighboring desks. The TV screen places (continuously horizontally shifting)

natural RGB videos from the Kinetics-400 dataset [140]. The environment has

three light sources from the above, to which we added random jittering and flickering.

The viewing camera is placed further to allow better view of the noise distractors.

Resolution is increased from 64 × 64 to 96 × 96 to compensate this change. Camera

jittering is implemented by a 3D smooth random walk. Finally, the button sensor (i.e.,

detected value of how much the button is pressed) is also offset by a random walk.

Each of the three button affects the corresponding light on the desk. Additionally,

pressing the green button also shifts the TV screen content to a green hue. Following

RoboDesk reward design, we reward the agent for (1) placing arm close to the button,

(2) pressing the button, and (3) how green the TV screen content is.

230

Operator
Input
Shape

Kernel
Size Stride Padding

Input [3, 96, 96] — — —

Conv. + ReLU [𝑘, 47, 47] 4 2 0

Conv. + ReLU [2𝑘, 22, 22] 4 2 0

Conv. + ReLU [4𝑘, 10, 10] 4 2 0

Conv. + ReLU [8𝑘, 4, 4] 4 2 0

Conv. + ReLU [8𝑘, 2, 2] 3 1 0

Reshape + FC [𝑚] — — —

Table C.2: Encoder architecture for (96×
96)-resolution observation. The output of
this encoder is then fed to other network
for inferring posteriors. 𝑚 and 𝑘 are two
architectural hyperparameters. 𝑚 con-
trols the output size (unrelated to the
actual latent variable sizes). 𝑘 controls
the network width.

Operator
Input
Shape

Kernel
Size Stride Padding

Input [input_size] — — —

FC + ReLU + Reshape [𝑚, 1, 1] — — —

Conv. Transpose + ReLU [4𝑘, 3, 3] 5 2 0

Conv. Transpose + ReLU [4𝑘, 9, 9] 5 2 0

Conv. Transpose + ReLU [2𝑘, 21, 21] 5 2 0

Conv. Transpose + ReLU [𝑘, 46, 46] 6 2 0

Conv. Transpose + ReLU [3, 96, 96] 6 2 0

Table C.3: Decoder architecture for (96 × 96)-
resolution observation. 𝑚 and 𝑘 are two archi-
tectural hyperparameters. 𝑚 controls width the
fully connected part. 𝑘 controls width of the con-
volutional part. They are the same values as in
Table C.2.

RoboDesk Joint Position Regression Datasets. To generate training and test set,

we use four policies trained by state-space SAC at different stages of training (which is

not related to any of the compared methods) and a uniform random actor, to obtain

five policies of different qualities. For each policy, we sample 100 trajectories, each

containing 1001 pairs (from 1000 interactions) of image observation and groundtruth

joint position (of dimension 9). This leads to a total of 500.5 × 103 samples from each

policy. From these, 100 × 103 samples are randomly selected as test set. Training sets

of sizes 5 × 103, 10 × 103, 25 × 103, 50 × 103, 100 × 103, 150 × 103 are sampled from the

rest. For all test sets and training sets, we enforce each policy to strictly contribute

an equal amount.

Model Learning Methods

For all experiments, we let the algorithms use 106 environment steps. For PI-SAC

and CURL, we follow the original implementations [97, 100] and use an action repeat

of 4 for Cheetah Run and Reacher Easy, and an action repeat of 2 for Walker Walk.

For Denoised MDP, Dreamer, TIA and DBC, we always use an action repeat of 2,

following prior works [63, 45, 176].

231

Denoised MDP, Dreamer, and TIA. Both Dreamer and TIA use the same

training schedule and the Recurrent State-Space Model (RSSM) as the base architecture

[64]. Following them, Denoised MDP also uses these components, and follow the

same prefilling and training schedule (see Dreamer [64] for details). These three

model learning methods take in 64 × 64 RGB observations for DMC, and 96 × 96

RGB observations for RoboDesk. Dreamer only implements encoder and decoder for

the former resolution. To handle the increased resolution, we modify the 64 × 64

architectures and obtain convolutional encoder and decoder shown in Tables C.2

and C.3. For fair comparison, we ensure that each method has roughly equal number

of parameters by using different latent variable sizes, encoder output sizes (𝑚 of

Table C.2) and convolutional net widths (𝑘 of Table C.3). Details are shown in

Table C.4.

KL clipping (free nats). For Denoised MDP, we follow Dreamer [64, 63] and TIA

[45], and allow 3 free nats for the ℒKL-𝑥 term. In other words, for each element of

a batch, we do not optimize the KL term if it is less than 3 (e.g., implemented via

clipping). However, we do not allow this for the ℒKL-𝑦 and ℒKL-𝑧 terms, as these

variables are to be discarded and information is not allowed to hide in them unless

permitted by the structure. An alternative strategy, which we find also empirically

effective, is to consider ℒKL-𝑥 = 𝛽 · ℒKL-𝑥⏟ ⏞
VAE KL term

+ (1 − 𝛽) · ℒKL-𝑥⏟ ⏞
MI regularizer term

, and to allow free nats

only for the first term that is a part of the variational model fitting objective. All

results presented in this paper use the first strategy. Both strategies are implemented

in our open source code repository: github.com/facebookresearch/denoised_mdp.

Policy Optimization Algorithms Used with Model Learning

Backpropagate via Dynamics. We use the same setting as Dreamer [63], optimiz-

ing a 𝜆-return over 15-step-long rollouts with 𝜆 = 0.95, clipping gradients with norm

greater than 100. TIA uses the same strategy, except that it groups different models

together for gradient clipping. We strictly follow the official TIA implementation.

232

https://github.com/facebookresearch/denoised_mdp/

DMC RoboDesk

Latent Sizes 𝑚 𝑘
Total Number
of Parameters Latent Sizes 𝑚 𝑘

Total Number
of Parameters

Dreamer (220 + 33) 1024 32 7,479,789 (220 + 33) 1024 32 6,385,511

TIA (120 + 20) + (120 + 20) 490 24 7,475,567 (120 + 20) + (120 + 20) 490 24 6,384,477

Denoised MDP (120 + 20) + (120 + 20) 1024 32 7,478,826 (120 + 20) + (120 + 20) 1024 32 6,384,248

Table C.4: The specific architecture parameters for model learning methods. Since RSSM
uses a deterministic part and a stochastic part to represent each latent variable, we use
(deterministic_size + stochastic_size) to indicate size of a latent variable. TIA and
Denoised MDP have more than one latent variable. Note that while TIA has lower 𝑚 and
𝑘, it has multiple encoder and decoders, whereas Dreamer and Denoised MDP only have
one encoder and one decoder. The total number of parameters is measured with the actor
model, but without any additional components from policy optimization algorithm (e.g.,
critics in SAC). Total number of parameters is lower for RoboDesk as the encoder and decoder
architecture is narrower than those of DMC for the purpose of reducing memory usage,
despite with a higher resolution.

Latent-Space SAC. We use the regular SAC with automatic entropy tuning,

without gradient clipping. This works well for almost all settings, except for Walker

Walk variant of DMC, where training often collapses after obtaining good return,

regardless of the model learning algorithm. To address instability in this case, we

reduce learning rates from 3 × 10−4 to 1 × 10−4 and clip gradients with norm greater

than 100 for all latent-space SAC run on these variants.

Model-Free Methods

DBC. For DMC, we used 84×84-resolution observation following original work (even

though other methods train on 64 × 64-resolution observations). For RoboDesk, DBC

uses the encoder in Table C.2 for 96 × 96-resolution observation, for fair comparison

with other methods. Following the original work, we stack 3 consecutive frames to

approximate the required full observability. In the robot arm joint position regression

experiment Section 4.5.1, DBC encoders also see stacked observations. For DMC

evaluations, we use the data provided by Zhang et al. wherever possible, and run the

official repository for other cases.

State-Space SAC. The state space usually contains robot joint states, including

position, velocity, etc. For DMC, when Sensor Noise is present, this is not the true

233

optimal state space, as we do not supply it with the noisy background that affects

the noisy reward. However, it still works well in practice. For RoboDesk, the TV’s

effect on reward is likely stronger and direct state-space SAC fails to learn. Since

this evaluation is to obtain a rough “upper bound”, we train state-space SAC with

a modified reward with less noise— the agent is rewarded by pressing the button,

independent of the TV content. This still encourages the optimal strategy of the task

allows achieving good policies.

Non-RL methods

Contrastive Learning. We used the Alignment+Uniformity contrastive learning

loss from Wang and Isola [168]. The hyperparameters and data augmentations strictly

follow their experiments on STL-10 [31], which also is of resolution 96× 96. The exact

loss form is ℒalign(𝛼 = 2) + ℒuniform(𝑡 = 2), a high-performance setting for STL-10.

C.2.2 Compute Resources

All our experiments are run on a single GPU, requiring 8GB memory for DMC tasks,

and 16GB memory for RoboDesk tasks. We use NVIDIA GPUs of the following types:

1080 Ti, 2080 Ti, 3080 Ti, P100, V100, Titan XP, Titan RTX. For MuJoCo [155], we

use the EGL rendering engine. Training time required for each run heavily depends

on the CPU specification and availability. In general, a Denoised MDP run needs

12 ∼ 36 hours on DMC and 24 ∼ 50 hours on RoboDesk. TIA uses about 1.5× of

these times, due to the adversarial losses. For a comparison between the two Denoised

MDP variants, running the same DMC task on the same machine, the Figure 4-2b

variant used 23 hours while the Figure 4-2c variant used 26 hours.

C.2.3 Visualization Details

Visualizations of components in learned models. We use different methods

to visualize signal and noise information learned by TIA and Denoised MDP in

Figures 4-4 and 4-7. For TIA, we used the reconstructions from the two latent (before

234

mask-composing them together as the full reconstruction). For Denoised MDP, we

only have one decoder (instead of three for TIA), and thus we decode (𝑥𝑡, const)

and (const, 𝑦𝑡) to visualize information contained in each variable, with const chosen

by visual clarity (usually as value of the other variable at a fixed timestep). Due

to the fundamental different ways to obtain these visualizations, in DMC, TIA can

prevent the agent from showing up in noise visualizations, while Denoised MDP cannot.

However, as stated in Section 4.5.2, our focus should be on what evolves/changes in

these images, rather than what is visually present, as static components are essentially

not modelled by the corresponding transition dynamics. Visualizations in Figures 4-4

and 4-7 use trajectories generated by a policy trained with state-space SAC. To

obtain diverse behaviors, policy outputs are randomly perturbed before being used as

actions. From the same trajectory, we use the above described procedure to obtain

visualizations. The specific used trajectory segments are chosen to showcase both the

modified environment and representative behavior of each method. Please see the

supplementary video for clearer visualizations.

C.2.4 RoboDesk Result Details

Environment modifications. The agent controls a robotic arm placed in front of

a desk and a TV, and is tasked to push down the green button on the desk, which

turns on a small green light and makes the TV display have a green hue. The intensity

of the TV image’s green channel is given to the agent as part of their reward, in

addition to distance between the arm to the button, and how much the button is

pressed. Additionally, the environment contains other noise distractors, including

moveable blocks on the desk (Ctrl + Rew), flickering environment light and camera

jittering (Ctrl + Rew), TV screen hue (Ctrl + Rew), TV content (Ctrl + Rew),

and noisy button sensors (Ctrl + Rew).

Denoised MDP hyperparameters. RoboDesk has roughly twice as many pixels

as DMC has. For Denoised MDP, we scale 𝛼 with the observation space dimensionality

(see Section 4.3) and use 𝛼 = 2, with a fixed 𝛽 = 0.125. When using the alternative

235

10 2

10 1
Te

st
 S

et
 M

SE

Denoised MDP

With Weight Decay
No Weight Decay

Dreamer TIA Contrastive

0.5 1.0 1.5
Training Set Size1e5

10 2

10 1

Te
st

 S
et

 M
SE

From Scratch

0.5 1.0 1.5
Training Set Size1e5

DBC
(Stacked Frames)

0.5 1.0 1.5
Training Set Size1e5

CURL
(Stacked Frames)

0.5 1.0 1.5
Training Set Size1e5

PI-SAC
without Augmentation

(Stacked Frames)

Figure C-1: Effect of weight decay on RoboDesk
joint position regression. The curves show final
test MSE for various training set sizes. Weight
decay generally helps when finetuning from a
pretrained encoder, but hurts when training
from scratch.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Training Set Size 1e5

10 2

10 1

100

101

102

103

Te
st

 S
et

 M
SE

TIA
With Weight Decay + Only Signal Encoder
No Weight Decay + Only Signal Encoder
With Weight Decay + Both Encoders
No Weight Decay + Both Encoders

Figure C-2: Performance of all TIA settings
on RoboDesk joint position regression. Only
using the signal encoder is necessary for good
performance.

0 20 40 60 80 100
Training Epoch

0.18

0.19

0.20

0.21

0.22
0.23
0.24
0.25

Learning Curve for 104 Training Samples
Denoised MDP
TIA
Dreamer
Contrastive
From Scratch

0 20 40 60 80 100
Training Epoch

0.14

0.16

0.18

0.20

0.22

0.24

Learning Curve for 2.5 × 104 Training Samples

0 20 40 60 80 100
Training Epoch

0.100
0.09

0.20

0.30

0.40
Learning Curve for 5 × 104 Training Samples

0 20 40 60 80 100
Training Epoch

0.100

0.04
0.05
0.06
0.07
0.08
0.09

0.20

Learning Curve for 150 × 104 Training Samples

Figure C-3: Training curve comparisons for the RoboDesk joint position regression task across
many training set sizes.

KL free nats strategy discussed in Appendix C.2.1 (results not shown in paper), we

find 𝛼 = 1 and 𝛽 = 0.25 also effective.

TIA hyperparameters. We follow recommendations in the TIA paper, setting

𝜆Radv = 25,000 to match reconstruction loss in magnitude, and setting 𝜆𝑂𝑠 = 2 where

training is stable.

Robot Arm Joint Position Regression.

Training details. For this task, we jointly train the pre-trained backbone and a

three-layer MLP head that has 256 hidden units at each layer, with a learning rate

of 8 × 10−5. For finetuning from pretrained encoders, we follow common finetuning

practice and apply a weight decay of 3 × 10−5 whenever it is helpful (all cases except

CURL and training from scratch). See Figure C-1 for comparisons for weight decay

options over all methods.

236

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Training Set Size 1e5

10 2

10 1
Te

st
 S

et
 M

SE

Ours (Stacked Frames)
Ours (Single Frame)
DBC (Stacked Frames)
PI-SAC (Stacked Frames)
CURL (Stacked Frames)
From Scratch (Stacked Frames)

Figure C-4: Performance comparison of fine-
tuning from Denoised MDP encoders and
frame-stacked encoders that take in 3 consec-
utive frames. For Denoised MDP and train-
ing from scratch, the encoders take in only a
single frame and are applied for each of the
frame, with output concatenated together
before feeding to the prediction head.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Training Set Size 1e5

10 1

100

101

102

103

Te
st

 S
et

 M
SE

DBC
With Weight Decay, Output Features
No Weight Decay, Output Features
With Weight Decay, No Layer Norm
No Weight Decay, No Layer Norm
With Weight Decay, Conv Features
No Weight Decay, Conv Features

Figure C-5: Performance of all DBC settings
on RoboDesk joint position regression. Using
the output features (after layer normaliza-
tion) is necessary for good performance.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Training Set Size 1e5

10 2

10 1

100

101

102

103

Te
st

 S
et

 M
SE

CURL
With Weight Decay, Output Features
No Weight Decay, Output Features
With Weight Decay, No Layer Norm
No Weight Decay, No Layer Norm
With Weight Decay, Conv Features
No Weight Decay, Conv Features

Figure C-6: Performance of all CURL set-
tings on RoboDesk joint position regression.
Using the output features (after layer normal-
ization) is necessary for good performance.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Training Set Size 1e5

10 2

10 1
Te

st
 S

et
 M

SE

PI-SAC

With Weight Decay, Output Features (Stacked Frames)
No Weight Decay, Output Features (Stacked Frames)
With Weight Decay, No Layer Norm (Stacked Frames)
No Weight Decay, No Layer Norm (Stacked Frames)
With Weight Decay, Conv Features (Stacked Frames)
No Weight Decay, Conv Features (Stacked Frames)

Figure C-7: Performance of all PI-SAC set-
tings on RoboDesk joint position regression.
Using the activations before layer normaliza-
tion gives best performance.

• For model-based RL, we take encoders trained with backpropagating via dynam-

ics as the policy optimization algorithm.

• In training the contrastive encoder, for a (more) fair comparison with RL-trained

encoders that are optimized over 106 environment steps, we train contrastive

encoders on 106 samples, obtained in the exact same method of the training sets

of this task. In a sense, these contrastive encoders have the advantage of training

on the exact same distribution, and seeing more samples (since RL-trained

encoders use action repeat of 2 and thus only ever see 0.5 × 106 samples).

• TIA has two sets of encoders. Using concatenated latents from both unfortunately

hurts performance greatly (see Figure C-2). So we use only the encoder for the

237

signal latent.

We also compare training speeds over a wide range of training set sizes in Figure C-3.

Denoised MDP encoders lead to faster and better training in all settings.

Additional comparison with frame-stacking encoders. Other pretrained en-

coders (DBC, CURL and PI-SAC) take in stacked 3 consecutive frames, and are not

directly comparable with the other methods. To compare, we also try running Denoised

MDP encoders on the 3 consecutive frames, whose feature vector is concatenated

before feeding into the head. The result in Figure C-4 shows that our encoder outper-

forms all but PI-SAC encoders. Finally, for DBC, CURL and PI-SAC, we attempted

evaluating intermediate features, features before the final layer normalization, and the

output space, and find the last option best-performing for DBC and CURL, and the

second option best-performing for PI-SAC (see Figures C-5 to C-7). Therefore, we

use these respective spaces, which arguably gives a further edge to these methods, as

we essentially tune this additional option on test results. Notably, these respective

choices are often the only one achieving relatively good performance, highlighting the

necessity of tuning for these methods.

C.2.5 DeepMind Control Suite (DMC) Result Details

Full policy optimization results. Figure C-8 presents the full results on each

DMC environment (task + variant). For environment, a comparison plot is made

based on which policy learning algorithm is used with the model learning method

(with model-free baselines duplicated in both). Such separation is aimed to highlight

the performance difference caused by model structure (rather than policy learning

algorithm). Across most noisy environments, Denoised MDP performs the best. It

also achieves high return on noiseless environments.

Visualization of learned models. Figure C-9 is the extended version of Figure 4-

7 in main text, with full reconstructions from all three models. Please see the

supplementary video for clearer visualizations.

238

Comparison between Denoised MDP variants. We compare the two Denoised

MDP variants based Figures 4-2b and 4-2c on Cheetah Run environments with policy

trained by packpropagating via learned dynamics. The comparison is shown in the top

row of Figure C-8, where we see the Figure 4-2b variant often performing a bit better.

We hypothesize that this may due to the more complex prior and posterior structure

of Figure 4-2c, which may not learn as efficiently. This also makes Figure 4-2c variant

needing longer (wall-clock) time to optimize, as mentioned above in Appendix C.2.2.

TIA hyperparameters and instability. We strictly follow recommendations of

the original paper, and use their suggested value for each DMC task. We also note

that TIA runs sometimes collapse during training, leading to sharp drops in rewards.

After closely inspecting the models before and after collapses, we note that in many

cases, such collapses co-occur with sudden spikes in TIA’s reward disassociation loss,

which is implemented as an adversarial minimax loss, and the noise latent space

instantly becomes degenerate (i.e., not used in reconstruction). We hypothesize that

this adversarial nature can cause training instability. However, a few collapses do

not co-occur with such loss spikes, which maybe alternatively due to that TIA model

structure cannot model the respective noise types and that better fitting the model

naturally means a degenerate noise latent space.

PI-SAC hyperparameters. For each task, we use the hyperparameters detailed

in the original paper [100]. PI-SAC is usually run with augmentations. However,

unlike CURL, augmentation is not an integral part of the PI-SAC algorithm and is

completely optional. For a fair comparisons with other methods and to highlight

the effect of the predictive information regularizer, the main mechanism proposed by

PI-SAC, we do not use augmentations for PI-SAC.

Denoised MDP hyperparameters. For DMC, we always use fixed 𝛼 = 1. 𝛽 can

be tune according to amount of noises in environment, and to training stability. In

Figure C-10, we compare effects of choosing different 𝛽’s. On noiseless environments,

larger 𝛽 (i.e., less regularization) performs often better. Whereas on noisy environments,

239

Po
lic

y
O

pt
im

iz
at

io
n

Ba
ck

pr
op

ag
at

e
vi

a
D

yn
am

ic
s

Po
lic

y
O

pt
im

iz
at

io
n

SA
C

(L
at

en
t-

Sp
ac

e)

Figure C-8: Policy optimization results on DMC. Each plot focuses on a single task variant,
showing total episode return versus environment steps taken. For three model-based ap-
proaches, we use two policy optimization choices to train on the learned model: (top half)
backpropagate via learned dynamics and (bottom half) SAC on the learned MDP. We also
compare with DBC, a model-free baseline. For an “upper bound” (not plotted due to presen-
tation clarity), SAC on true state-space (i.e., optimal representation) in 106 environment
steps reaches episode return ≈ 800 on Cheetah Run variants, ≈ 980 on Walker Walk variants,
and ≈ 960 on Reacher Easy variants. CURL’s specific augmentation choice (random crop)
potentially helps significantly for Reacher Easy (where the reacher and the target appear in
random spatial locations) and Camera Jittering. However, unlike Denoised MDP, it does
not generally perform well across all environments and noise variants.

240

Env.
Rollout

TIA

Denoised
MDP

Reward

Obs.

Signal

Noise

Signal

Noise

Cheetah Run
Noiseless

Reacher Easy
Video Background

Walker Walk
Video Background

+ Noisy Sensor

Cheetah Run
Video Background
+ Camera Jittering

Recon.

Recon.

Recon.

Dreamer

Figure C-9: Complete visualization of the different DMC variants and factorizations learned
by TIA and Denoised MDP. In addition to visualizations of Figure 4-7, we also visualize full
reconstructions from Dreamer, TIA, and Denoised MDP.

241

Po
lic

y
O

pt
im

iz
at

io
n

Ba
ck

pr
op

ag
at

e
vi

a
D

yn
am

ic
s

Po
lic

y
O

pt
im

iz
at

io
n

SA
C

(L
at

en
t-

Sp
ac

e)

Figure C-10: Effect of choosing 𝛽 in Denoised MDP on DMC policy optimization results.
Setting 𝛽 = 1 disables regularization and is only run on noiseless variants.

Noiseless Video Background
Video Background
+ Noisy Sensor

Video Background
+ Camera Jittering

Policy Learning:
Backprop via Dynamics

Cheetah Run 1 0.125 0.25 0.25

Walker Walk 1 0.25 0.25 0.5

Reacher Easy 1 0.25 0.25 0.25

Policy Learning:
SAC (Latent-Space)

Cheetah Run 1 0.125 0.125 0.25

Walker Walk 1 0.25 0.125 0.5

Reacher Easy 1 0.125 0.25 0.25

Table C.5: 𝛽 choices for Denoised MDP results shown in Table 4.1 and Figure C-8. We
choose 𝛽 = 1 (i.e., disabling regularization) for all noiseless environments, and tuned others.
However, as seen in Figure C-10, the results often are not too sensitive to small 𝛽 changes.

242

sometimes stronger regularization can boost performance. However, overall good

performance can be obtained by usually several 𝛽 values. In Table C.5, we summarize

our 𝛽 choices for each environment in Table C.5.

243

244

Bibliography

[1] Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. FLAMBE:
Structural complexity and representation learning of low rank mdps. arXiv
preprint arXiv:2006.10814, 2020.

[2] Ibrahim Ahmad and Pi-Erh Lin. A nonparametric estimation of the entropy for
absolutely continuous distributions (corresp.). IEEE Transactions on Informa-
tion Theory, 22(3):372–375, 1976.

[3] Noga Alon and Joel H Spencer. The probabilistic method. John Wiley & Sons,
2004.

[4] Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In
International Conference on Machine Learning, pages 146–155. PMLR, 2017.

[5] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and
Ruosong Wang. On exact computation with an infinitely wide neural net. arXiv
preprint arXiv:1904.11955, 2019.

[6] Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis,
and Nikunj Saunshi. A theoretical analysis of contrastive unsupervised represen-
tation learning. arXiv preprint arXiv:1902.09229, 2019.

[7] Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning represen-
tations by maximizing mutual information across views. In Advances in Neural
Information Processing Systems, pages 15509–15519, 2019.

[8] Ananth Balashankar and Lakshminarayanan Subramanian. Learning faithful
representations of causal graphs. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pages
839–850, 2021.

[9] Marc Bellemare, Will Dabney, Robert Dadashi, Adrien Ali Taiga, Pablo Samuel
Castro, Nicolas Le Roux, Dale Schuurmans, Tor Lattimore, and Clare Lyle.
A geometric perspective on optimal representations for reinforcement learning.
Advances in neural information processing systems, 32:4358–4369, 2019.

[10] Yoshua Bengio et al. Quick training of probabilistic neural nets by importance
sampling.

245

[11] Umberto Bertele and Francesco Brioschi. On non-serial dynamic programming.
J. Comb. Theory, Ser. A, 14(2):137–148, 1973.

[12] Dimitri P Bertsekas and John N Tsitsiklis. An analysis of stochastic shortest
path problems. Mathematics of Operations Research, 16(3):580–595, 1991.

[13] S Bochner. Monotone funktionen, stieltjessche integrale und harmonische analyse.
Collected Papers of Salomon Bochner, 2:87, 1992.

[14] Kenneth P Bogart. Maximal dimensional partially ordered sets i. hiraguchi’s
theorem. Discrete Mathematics, 5(1):21–31, 1973.

[15] Piotr Bojanowski and Armand Joulin. Unsupervised learning by predicting noise.
In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 517–526. JMLR. org, 2017.

[16] Béla Bollobás and Bollobás Béla. Random graphs. Number 73. Cambridge
university press, 2001.

[17] Sergiy V Borodachov, Douglas P Hardin, and Edward B Saff. Discrete energy
on rectifiable sets. Springer, 2019.

[18] Jean Bourgain. On lipschitz embedding of finite metric spaces in hilbert space.
Israel Journal of Mathematics, 52(1-2):46–52, 1985.

[19] Barry Brown, James Lovato, and Kathy Russell. CDFLIB: library of fortran
routines for cumulative distribution functions, inverses, and other parameters,
1994.

[20] Yury Brychkov. On some properties of the marcum q function. Integral Trans-
forms and Special Functions, 23:177–182, 03 2012. doi: 10.1080/10652469.2011.
573184.

[21] John Burkardt. C++ source code for CDFLIB. https://people.sc.fsu.edu/
~jburkardt/cpp_src/cdflib/cdflib.html, 2021.

[22] Pablo Samuel Castro. Scalable methods for computing state similarity in
deterministic markov decision processes. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 10069–10076, 2020.

[23] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Directed
metrics and directed graph partitioning problems. In SODA, volume 6, pages
51–60. Citeseer, 2006.

[24] Patrick H Chen, Si Si, Sanjiv Kumar, Yang Li, and Cho-Jui Hsieh. Learning to
screen for fast softmax inference on large vocabulary neural networks. 2018.

[25] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A
simple framework for contrastive learning of visual representations. arXiv
preprint arXiv:2002.05709, 2020.

246

https://people.sc.fsu.edu/~jburkardt/cpp_src/cdflib/cdflib.html
https://people.sc.fsu.edu/~jburkardt/cpp_src/cdflib/cdflib.html

[26] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines
with momentum contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

[27] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Im-
proved baselines with momentum contrastive learning. GitHub
repository https://github.com/facebookresearch/moco/tree/
78b69cafae80bc74cd1a89ac3fb365dc20d157d3, 2020.

[28] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalis-
tic gridworld environment for openai gym. https://github.com/maximecb/
gym-minigrid, 2018.

[29] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using RNN encoder–decoder for statistical machine translation. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1724–1734, Doha, Qatar, October 2014. Association
for Computational Linguistics. doi: 10.3115/v1/D14-1179.

[30] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric
discriminatively, with application to face verification. In 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’05),
volume 1, pages 539–546. IEEE, 2005.

[31] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks
in unsupervised feature learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pages 215–223, 2011.

[32] Henry Cohn and Abhinav Kumar. Universally optimal distribution of points on
spheres. Journal of the American Mathematical Society, 20(1):99–148, 2007.

[33] Kenneth James Williams Craik. The nature of explanation, volume 445. CUP
Archive, 1952.

[34] Tim R. Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M. Tom-
czak. Hyperspherical variational auto-encoders. 34th Conference on Uncertainty
in Artificial Intelligence (UAI-18), 2018.

[35] Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein.
A tutorial on the cross-entropy method. Annals of operations research, 134(1):
19–67, 2005.

[36] Daniel C Dennett. Why the law of effect will not go away. Journal for the
Theory of Social Behaviour, 1975.

[37] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric
Tzeng, and Trevor Darrell. Decaf: A deep convolutional activation feature for
generic visual recognition. In International conference on machine learning,
pages 647–655. PMLR, 2014.

247

https://github.com/facebookresearch/moco/tree/78b69cafae80bc74cd1a89ac3fb365dc20d157d3
https://github.com/facebookresearch/moco/tree/78b69cafae80bc74cd1a89ac3fb365dc20d157d3
https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid

[38] Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik,
and John Langford. Provably efficient rl with rich observations via latent state
decoding. In International Conference on Machine Learning, pages 1665–1674.
PMLR, 2019.

[39] Yonathan Efroni, Dipendra Misra, Akshay Krishnamurthy, Alekh Agarwal, and
John Langford. Provable rl with exogenous distractors via multistep inverse
dynamics. arXiv preprint arXiv:2110.08847, 2021.

[40] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211,
1990.

[41] Paul Erdős and Alfréd Rényi. On random graphs. i. Publicationes Mathematicae
Debrecen, 6:290–297, 1959.

[42] Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. Robust pre-
dictable control. arXiv preprint arXiv:2109.03214, 2021.

[43] Stefan Felsner, Ching Man Li, and William T. Trotter. Adjacency posets of
planar graphs. Discrete Mathematics, 310(5):1097–1104, 2010. ISSN 0012-365X.

[44] Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov
decision processes. In UAI, volume 4, pages 162–169, 2004.

[45] Xiang Fu, Ge Yang, Pulkit Agrawal, and Tommi Jaakkola. Learning task
informed abstractions. In International Conference on Machine Learning, pages
3480–3491. PMLR, 2021.

[46] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approxi-
mation error in actor-critic methods. In International Conference on Machine
Learning, pages 1587–1596. PMLR, 2018.

[47] Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic entailment
cones for learning hierarchical embeddings. In International Conference on
Machine Learning, pages 1646–1655. PMLR, 2018.

[48] Amnon Geifman, Abhay Yadav, Yoni Kasten, Meirav Galun, David Jacobs, and
Ronen Basri. On the similarity between the laplace and neural tangent kernels.
arXiv preprint arXiv:2007.01580, 2020.

[49] Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G
Bellemare. Deepmdp: Learning continuous latent space models for representation
learning. In International Conference on Machine Learning, pages 2170–2179.
PMLR, 2019.

[50] Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and
model minimization in markov decision processes. Artificial Intelligence, 147
(1-2):163–223, 2003.

248

[51] Joshua Goodman. Classes for fast maximum entropy training. In 2001 IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing. Proceedings
(Cat. No. 01CH37221), volume 1, pages 561–564. IEEE, 2001.

[52] Mario Götz and Edward B Saff. Note on d—extremal configurations for the
sphere in r d+1. In Recent Progress in Multivariate Approximation, pages
159–162. Springer, 2001.

[53] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677,
2017.

[54] Edouard Grave, Armand Joulin, Moustapha Cissé, Hervé Jégou, et al. Efficient
softmax approximation for gpus. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 1302–1310. JMLR. org, 2017.

[55] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 855–864, 2016.

[56] Peter Grunwald and Paul Vitányi. Shannon information and kolmogorov com-
plexity. arXiv preprint cs/0410002, 2004.

[57] Shuyang Gu, Jianmin Bao, Hao Yang, Dong Chen, Fang Wen, and Lu Yuan.
Mask-guided portrait editing with conditional gans. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
3436–3445, 2019.

[58] Matthieu Guillot and Gautier Stauffer. The stochastic shortest path problem: a
polyhedral combinatorics perspective. European Journal of Operational Research,
285(1):148–158, 2020.

[59] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models. In Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics,
pages 297–304, 2010.

[60] David Ha and Jürgen Schmidhuber. World models. arXiv preprint
arXiv:1803.10122, 2018.

[61] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon
Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al.
Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,
2018.

[62] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by
learning an invariant mapping. In 2006 IEEE Computer Society Conference

249

on Computer Vision and Pattern Recognition (CVPR’06), volume 2, pages
1735–1742. IEEE, 2006.

[63] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi.
Dream to control: Learning behaviors by latent imagination. arXiv preprint
arXiv:1912.01603, 2019.

[64] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha,
Honglak Lee, and James Davidson. Learning latent dynamics for planning from
pixels. In International Conference on Machine Learning, pages 2555–2565.
PMLR, 2019.

[65] David Hahn, Pol Banzet, James M Bern, and Stelian Coros. Real2sim: Visco-
elastic parameter estimation from dynamic motion. ACM Transactions on
Graphics (TOG), 38(6):1–13, 2019.

[66] DP Hardin and EB Saff. Minimal riesz energy point configurations for rectifiable
d-dimensional manifolds. Advances in Mathematics, 193(1):174–204, 2005.

[67] Md Hasnat, Julien Bohné, Jonathan Milgram, Stéphane Gentric, Liming Chen,
et al. von mises-fisher mixture model-based deep learning: Application to face
verification. arXiv preprint arXiv:1706.04264, 2017.

[68] Nozomi Hata, Shizuo Kaji, Akihiro Yoshida, and Katsuki Fujisawa. Nested
subspace arrangement for representation of relational data. In International
Conference on Machine Learning, pages 4127–4137. PMLR, 2020.

[69] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[70] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momen-
tum contrast for unsupervised visual representation learning. arXiv preprint
arXiv:1911.05722, 2019.

[71] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum
contrast for unsupervised visual representation learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
9729–9738, 2020.

[72] Olivier J Hénaff, Ali Razavi, Carl Doersch, SM Eslami, and Aaron van den
Oord. Data-efficient image recognition with contrastive predictive coding. arXiv
preprint arXiv:1905.09272, 2019.

[73] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup,
and David Meger. Deep reinforcement learning that matters. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 32, 2018.

250

[74] Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic Matthey,
Danilo Rezende, and Alexander Lerchner. Towards a definition of disentangled
representations. arXiv preprint arXiv:1812.02230, 2018.

[75] Toshio Hiraguchi. On the dimension of partially ordered sets. The science
reports of the Kanazawa University, 1(2):77–94, 1951.

[76] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil
Bachman, Adam Trischler, and Yoshua Bengio. Learning deep representa-
tions by mutual information estimation and maximization. arXiv preprint
arXiv:1808.06670, 2018.

[77] Elad Hoffer and Nir Ailon. Deep metric learning using triplet network. In
International workshop on similarity-based pattern recognition, pages 84–92.
Springer, 2015.

[78] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning
a unified classifier incrementally via rebalancing. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 831–839, 2019.

[79] Minyoung Huh, Pulkit Agrawal, and Alexei A Efros. What makes imagenet
good for transfer learning? arXiv preprint arXiv:1608.08614, 2016.

[80] Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal,
and Phillip Isola. The low-rank simplicity bias in deep networks. arXiv preprint
arXiv:2103.10427, 2021.

[81] Piotr Indyk. Algorithmic applications of low-distortion geometric embeddings.
In Proceedings 42nd IEEE Symposium on Foundations of Computer Science,
pages 10–33. IEEE, 2001.

[82] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International Conference
on Machine Learning, pages 448–456, 2015.

[83] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Con-
vergence and generalization in neural networks. arXiv preprint arXiv:1806.07572,
2018.

[84] N. L. Johnson. On an extension of the connexion between poisson and 𝜒2

distributions. Biometrika, 46(3/4):352–363, 1959. ISSN 00063444.

[85] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings
into a hilbert space. Contemporary mathematics, 26(189-206):1, 1984.

[86] Harini Kannan, Danijar Hafner, Chelsea Finn, and Dumitru Erhan. Ro-
boDesk: A multi-task reinforcement learning benchmark. https://github.
com/google-research/robodesk, 2021.

251

https://github.com/google-research/robodesk
https://github.com/google-research/robodesk

[87] Seung Wook Kim, Yuhao Zhou, Jonah Philion, Antonio Torralba, and Sanja
Fidler. Learning to Simulate Dynamic Environments with GameGAN. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2020.

[88] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[89] John Frank Charles Kingman. Poisson processes. Encyclopedia of biostatistics,
6, 2005.

[90] Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, Richard Zemel, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. Skip-thought vectors. In Advances in neural
information processing systems, pages 3294–3302, 2015.

[91] Sosuke Kobayashi. Homemade bookcorpus. GitHub
repository https://github.com/soskek/bookcorpus/tree/
5fe0cec8d7fd83940e48c799739496dc68ab2798, 2019.

[92] Andrei N Kolmogorov. On tables of random numbers. Sankhyā: The Indian
Journal of Statistics, Series A, pages 369–376, 1963.

[93] Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you
need: Regularizing deep reinforcement learning from pixels. arXiv preprint
arXiv:2004.13649, 2020.

[94] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features
from tiny images. 2009.

[95] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[96] Naum Samŏılovich Landkof. Foundations of modern potential theory, volume
180. Springer, 1972.

[97] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. CURL: Contrastive unsu-
pervised representations for reinforcement learning. In International Conference
on Machine Learning, pages 5639–5650. PMLR, 2020.

[98] Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and
Aravind Srinivas. Reinforcement learning with augmented data. Advances in
Neural Information Processing Systems, 33:19884–19895, 2020.

[99] Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic
latent actor-critic: Deep reinforcement learning with a latent variable model.
arXiv preprint arXiv:1907.00953, 2019.

[100] Kuang-Huei Lee, Ian Fischer, Anthony Liu, Yijie Guo, Honglak Lee, John
Canny, and Sergio Guadarrama. Predictive information accelerates learning in
rl. Advances in Neural Information Processing Systems, 33:11890–11901, 2020.

252

https://github.com/soskek/bookcorpus/tree/5fe0cec8d7fd83940e48c799739496dc68ab2798
https://github.com/soskek/bookcorpus/tree/5fe0cec8d7fd83940e48c799739496dc68ab2798

[101] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014.

[102] Ming Li, Paul Vitányi, et al. An introduction to Kolmogorov complexity and its
applications, volume 3. Springer, 2008.

[103] Ralph Linsker. Self-organization in a perceptual network. Computer, 21(3):
105–117, 1988.

[104] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song.
Sphereface: Deep hypersphere embedding for face recognition. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 212–220,
2017.

[105] Weiyang Liu, Rongmei Lin, Zhen Liu, Lixin Liu, Zhiding Yu, Bo Dai, and
Le Song. Learning towards minimum hyperspherical energy. In Advances in
Neural Information Processing Systems, pages 6222–6233. 2018.

[106] Lajanugen Logeswaran and Honglak Lee. An efficient framework for learning sen-
tence representations. In International Conference on Learning Representations,
2018.

[107] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm
restarts. arXiv preprint arXiv:1608.03983, 2016.

[108] David G Lowe. Object recognition from local scale-invariant features. In
Proceedings of the seventh IEEE international conference on computer vision,
volume 2, pages 1150–1157. Ieee, 1999.

[109] Sridhar Mahadevan and Mauro Maggioni. Proto-value functions: A laplacian
framework for learning representation and control in markov decision processes.
Journal of Machine Learning Research, 8(10), 2007.

[110] Lucas Manuelli, Wei Gao, Peter Florence, and Russ Tedrake. kpam: Key-
point affordances for category-level robotic manipulation. arXiv preprint
arXiv:1903.06684, 2019.

[111] J. I. Marcum. Table of Q Functions. RAND Corporation, Santa Monica, CA,
1950.

[112] David A McAllester. Some pac-bayesian theorems. Machine Learning, 37(3):
355–363, 1999.

[113] Facundo Mémoli, Anastasios Sidiropoulos, and Vijay Sridhar. Quasimetric
embeddings and their applications. Algorithmica, 80(12):3803–3824, 2018.

[114] Pascal Mettes, Elise van der Pol, and Cees Snoek. Hyperspherical prototype
networks. In Advances in Neural Information Processing Systems, pages 1485–
1495, 2019.

253

http://snap.stanford.edu/data

[115] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[116] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel, and
Bobby Bhattacharjee. Measurement and Analysis of Online Social Networks. In
Proceedings of the 5th ACM/Usenix Internet Measurement Conference (IMC’07),
San Diego, CA, October 2007.

[117] Aditya Modi, Nan Jiang, Ambuj Tewari, and Satinder Singh. Sample complexity
of reinforcement learning using linearly combined model ensembles. In Inter-
national Conference on Artificial Intelligence and Statistics, pages 2010–2020.
PMLR, 2020.

[118] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. Indoor
segmentation and support inference from rgbd images. In ECCV, 2012.

[119] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with
contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[120] Giacomo Ortali and Ioannis G Tollis. Multidimensional dominance drawings.
arXiv preprint arXiv:1906.09224, 2019.

[121] Sherjil Ozair, Yazhe Li, Ali Razavi, Ioannis Antonoglou, Aäron van den Oord,
and Oriol Vinyals. Vector quantized models for planning. arXiv preprint
arXiv:2106.04615, 2021.

[122] Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment
categorization with respect to rating scales. In Proceedings of the 43rd annual
meeting on association for computational linguistics, pages 115–124. Association
for Computational Linguistics, 2005.

[123] Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisserman. Deep face recognition.
2015.

[124] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8026–8037. 2019.

[125] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-
driven exploration by self-supervised prediction. In ICML, 2017.

[126] Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. The emergence of
spectral universality in deep networks. In International Conference on Artificial
Intelligence and Statistics, pages 1924–1932. PMLR, 2018.

254

[127] Silviu Pitis, Harris Chan, Kiarash Jamali, and Jimmy Ba. An inductive bias
for distances: Neural nets that respect the triangle inequality. arXiv preprint
arXiv:2002.05825, 2020.

[128] Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker.
On variational bounds of mutual information. In International Conference on
Machine Learning, pages 5171–5180. PMLR, 2019.

[129] DJ de S Price. Networks of scientific papers. Princeton University Press, 2011.

[130] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. John Wiley & Sons, Inc., USA, 1st edition, 1994. ISBN
0471619779.

[131] Iasonas Kokkinos Rıza Alp Güler, Natalia Neverova. Densepose: Dense human
pose estimation in the wild. 2018.

[132] Fatemeh Salehi Rizi, Joerg Schloetterer, and Michael Granitzer. Shortest path
distance approximation using deep learning techniques. In 2018 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining
(ASONAM), pages 1007–1014. IEEE, 2018.

[133] Neil Robertson and Paul D Seymour. Graph minors. iii. planar tree-width.
Journal of Combinatorial Theory, Series B, 36(1):49–64, 1984.

[134] Nikunj Saunshi, Orestis Plevrakis, Sanjeev Arora, Mikhail Khodak, and
Hrishikesh Khandeparkar. A theoretical analysis of contrastive unsupervised
representation learning. In International Conference on Machine Learning, pages
5628–5637, 2019.

[135] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions
to the nonlinear dynamics of learning in deep linear neural networks. arXiv
preprint arXiv:1312.6120, 2013.

[136] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value
function approximators. In International conference on machine learning, pages
1312–1320. PMLR, 2015.

[137] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified
embedding for face recognition and clustering. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 815–823, 2015.

[138] Richard Serfozo. Convergence of lebesgue integrals with varying measures.
Sankhyā: The Indian Journal of Statistics, Series A, pages 380–402, 1982.

[139] J. G. Skellam. The frequency distribution of the difference between two poisson
variates belonging to different populations. Journal of the Royal Statistical
Society. Series A (General), 109(Pt 3):296–296, 1946.

255

[140] Lucas Smaira, João Carreira, Eric Noland, Ellen Clancy, Amy Wu, and Andrew
Zisserman. A short note on the kinetics-700-2020 human action dataset. arXiv
preprint arXiv:2010.10864, 2020.

[141] Elizabeth S Spelke and Katherine D Kinzler. Core knowledge. Developmental
science, 10(1):89–96, 2007.

[142] James Stewart. Positive definite functions and generalizations, an historical
survey. The Rocky Mountain Journal of Mathematics, 6(3):409–434, 1976.

[143] Richard S Sutton. An adaptive network that constructs and uses and internal
model of its world. Cognition and Brain Theory, 4(3):217–246, 1981.

[144] Richard S Sutton. Dyna, an integrated architecture for learning, planning, and
reacting. ACM Sigart Bulletin, 2(4):160–163, 1991.

[145] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[146] Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M
Pilarski, Adam White, and Doina Precup. Horde: A scalable real-time ar-
chitecture for learning knowledge from unsupervised sensorimotor interaction.
In The 10th International Conference on Autonomous Agents and Multiagent
Systems-Volume 2, pages 761–768, 2011.

[147] Ryota Suzuki, Ryusuke Takahama, and Shun Onoda. Hyperbolic disk em-
beddings for directed acyclic graphs. In International Conference on Machine
Learning, pages 6066–6075. PMLR, 2019.

[148] Pieter Merkus Lambertus Tammes. On the origin of number and arrangement of
the places of exit on the surface of pollen-grains. Recueil des travaux botaniques
néerlandais, 27(1):1–84, 1930.

[149] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric
framework for nonlinear dimensionality reduction. science, 290(5500):2319–2323,
2000.

[150] Joseph John Thomson. Xxiv. on the structure of the atom: an investigation
of the stability and periods of oscillation of a number of corpuscles arranged
at equal intervals around the circumference of a circle; with application of the
results to the theory of atomic structure. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, 7(39):237–265, 1904.

[151] Stephen Tian, Suraj Nair, Frederik Ebert, Sudeep Dasari, Benjamin Eysen-
bach, Chelsea Finn, and Sergey Levine. Model-based visual planning with
self-supervised functional distances. arXiv preprint arXiv:2012.15373, 2020.

256

[152] Yonglong Tian. Contrastive multiview coding. GitHub
repository https://github.com/HobbitLong/CMC/tree/
58d06e9a82f7fea2e4af0a251726e9c6bf67c7c9, 2019.

[153] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding.
arXiv preprint arXiv:1906.05849, 2019.

[154] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and
Phillip Isola. What makes for good views for contrastive learning? arXiv
preprint arXiv:2005.10243, 2020.

[155] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5026–5033. IEEE, 2012.

[156] Antonio Torralba, Rob Fergus, and William T Freeman. 80 million tiny images: A
large data set for nonparametric object and scene recognition. IEEE transactions
on pattern analysis and machine intelligence, 30(11):1958–1970, 2008.

[157] William T Trotter. Partially ordered sets. Handbook of combinatorics, 1:433–480,
1995.

[158] Michael Tschannen, Josip Djolonga, Paul K Rubenstein, Sylvain Gelly, and
Mario Lucic. On mutual information maximization for representation learning.
arXiv preprint arXiv:1907.13625, 2019.

[159] Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez,
Josh Merel, Tom Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa.
dm_control: Software and tasks for continuous control. Software Impacts, 6:
100022, 2020.

[160] Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27
(11):1134–1142, 1984.

[161] Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence of
relative frequencies of events to their probabilities. In Measures of complexity,
pages 11–30. Springer, 2015.

[162] Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel Urtasun. Order-embeddings
of images and language. arXiv preprint arXiv:1511.06361, 2015.

[163] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,

257

https://github.com/HobbitLong/CMC/tree/58d06e9a82f7fea2e4af0a251726e9c6bf67c7c9
https://github.com/HobbitLong/CMC/tree/58d06e9a82f7fea2e4af0a251726e9c6bf67c7c9

Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algo-
rithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020.
doi: 10.1038/s41592-019-0686-2.

[164] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, et al. Scipy 1.0: fundamental algorithms for scientific computing
in python. Nature methods, 17(3):261–272, 2020.

[165] Feng Wang, Xiang Xiang, Jian Cheng, and Alan Loddon Yuille. Normface: L2
hypersphere embedding for face verification. In Proceedings of the 25th ACM
international conference on Multimedia, pages 1041–1049, 2017.

[166] Jiang Wang, Yang Song, Thomas Leung, Chuck Rosenberg, Jingbin Wang,
James Philbin, Bo Chen, and Ying Wu. Learning fine-grained image similarity
with deep ranking. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1386–1393, 2014.

[167] Sida Wang and Christopher D Manning. Baselines and bigrams: Simple, good
sentiment and topic classification. In Proceedings of the 50th annual meeting
of the association for computational linguistics: Short papers-volume 2, pages
90–94. Association for Computational Linguistics, 2012.

[168] Tongzhou Wang and Phillip Isola. Understanding contrastive representation
learning through alignment and uniformity on the hypersphere. In International
Conference on Machine Learning, pages 9929–9939. PMLR, 2020.

[169] Kilian Q Weinberger, John Blitzer, and Lawrence K Saul. Distance metric
learning for large margin nearest neighbor classification. In Advances in neural
information processing systems, pages 1473–1480, 2006.

[170] Mike Wu, Chengxu Zhuang, Daniel Yamins, and Noah Goodman. On the
importance of views in unsupervised representation learning. 2020.

[171] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature
learning via non-parametric instance discrimination. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 3733–3742,
2018.

[172] Eric P Xing, Andrew Y Ng, Michael I Jordan, and Stuart Russell. Distance
metric learning with application to clustering with side-information. In NIPS,
volume 15, page 12. Citeseer, 2002.

[173] Jiacheng Xu and Greg Durrett. Spherical latent spaces for stable variational
autoencoders. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 4503–4513, 2018.

258

[174] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering
visual continuous control: Improved data-augmented reinforcement learning.
arXiv preprint arXiv:2107.09645, 2021.

[175] Lin Yen-Chen, Pete Florence, Jonathan T. Barron, Alberto Rodriguez, Phillip
Isola, and Tsung-Yi Lin. iNeRF: Inverting neural radiance fields for pose
estimation. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2021.

[176] Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey
Levine. Learning invariant representations for reinforcement learning without
reconstruction. arXiv preprint arXiv:2006.10742, 2020.

[177] Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. Aligning books and movies: Towards
story-like visual explanations by watching movies and reading books. In arXiv
preprint arXiv:1506.06724, 2015.

259

	Introduction
	Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere
	Introduction
	Related Work
	Preliminaries on Unsupervised Contrastive Representation Learning
	Feature Distribution on the Hypersphere
	Quantifying Alignment and Uniformity
	Limiting Behavior of Contrastive Learning

	Experiments
	Discussion

	On the Learning and Learnability of Quasimetrics
	Introduction
	Preliminaries on Quasimetricsand Poisson Processes
	QuasimetricLearning
	Learning Algorithms and Hypothesis Spaces
	A Toy Example

	Theoretical Analysis of Various Learning Algorithms
	Distortionand ViolationMetrics for QuasimetricLearning
	Learning Algorithms Equivariant to Orthogonal Transforms
	QuasimetricEmbeddings

	Poisson Quasimetric Embeddings(PQEs)
	Distributions of Latent Quasipartitions
	General PQE Formulation
	Continuous-valued Stochastic Processes
	Theoretical Guarantees

	Experiments
	Related Work
	Implications

	Denoised MDPs: Learning World Models Better Than the World Itself
	Introduction
	Different Types of Information in the Wild
	Controllability
	Reward-Relevance
	Which Information Do Existing Methods Learn?
	Possible Extensions to Further Factorizations

	Denoised MDPs
	Related Work
	Experiments
	RoboDeskwith Various Noise Distractors
	DeepMind Control Suite (DMC)

	Implications

	Proofs, Details, and Additional Discussions for ch1
	Proofs and Additional Theoretical Analysis
	Proofs for sec:unif and Properties of Luniform
	Proofs and Additional Results for sec:limit

	Experiment Details
	CIFAR-10, STL-10 and NYU-Depth-V2 Experiments
	ImageNet and ImageNet-100 with Momentum Contrast (MoCo) Variants
	BookCorpus with Quick-Thought Vectors Variants

	Proofs, Details, and Additional Discussions for ch2
	Discussions for Preliminaries Section
	QuasimetricSpaces
	Poisson Processes

	Proofs, Discussions and Additional Results for Theory Section
	Distortionand ViolationLower-Bound Generalization
	Algorithms Equivariant to Orthogonal Transforms
	Failure of Algorithms Equivariant to Orthogonal Transforms

	Proofs and Discussions for PQE Section
	Non-differentiability of Continuous-Valued Stochastic Processes
	PQEGG: Gaussian-based Measure and Gaussian Shapes
	Theoretical Guarantees for PQEs
	Implementing Poisson Quasimetric Embeddings(PQEs)

	Experiment Settings and Additional Results
	Experiments from Toy Example Section
	Experiments from Experiments Section

	Details and Additional Discussions for ch3
	Denoised MDP Discussions
	Loss Derivation
	Discussions

	Experiment Details
	Implementation Details
	Compute Resources
	Visualization Details
	RoboDeskResult Details
	DeepMind Control Suite (DMC) Result Details

