
Program Synthesis over Noisy Data
by

Shivam Handa
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

July 29, 2022

Certified by. .
Martin Rinard

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Program Synthesis over Noisy Data

by

Shivam Handa

Submitted to the Department of Electrical Engineering and Computer Science
on July 29, 2022, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract
I present a new framework and associated synthesis algorithms for program synthesis
over noisy data, i.e., data that may contain incorrect/corrupted input-output exam-
ples. I model the process that produced the noisy dataset as the selection of inputs
and a hidden program from an input source and program source followed by the ap-
plication of a noise source to the correct outputs from the hidden program to obtain
the noisy dataset. This model makes it possible to formulate the problem of noisy
program synthesis as an optimization problem formulated over the loss of a candidate
program over the noisy dataset and the complexity of the candidate program.

I present a noisy program synthesis algorithm based on finite tree automaton.
Results from an implemented system running this algorithm on problems from the
SyGuS 2018 benchmark suite highlight the algorithm’s ability to successfully synthe-
size programs in the face of noisy data.

I extend the noisy program synthesis framework to formally define the concepts
of an optimal loss function and the convergence of a program synthesis algorithm
to a correct program. Working with these concepts, I present optimal loss functions
and convergence results for a wide range of program synthesis problems in the text
manipulation domain, including results that characterize optimality and convergence
properties of noise sources and loss functions used in experiments with the imple-
mented synthesis algorithm. These results provide insight into the reasons for the
success of the presented technique and can help enable the development of effective
loss functions and noisy program synthesis algorithms in a range of contexts.

I also present a new noisy program synthesis algorithm that uses an abstraction
refinement based optimization process to synthesize programs. The presented exper-
imental results demonstrate the significant performance improvements that this new
technique can deliver. Building on this abstraction refinement technique, I present
new noisy program synthesis algorithms that can work with both noisy inputs and
noisy outputs as well as domain specific languages that include infinite sets of con-
stants.

Thesis Supervisor: Martin Rinard
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I would like to give my thanks to my supervisor Prof. Martin Rinard who made

this work possible. His guidance and advice carried my through all stages of my

Ph.D study and research. His stories for me was what sustained and motivated me

throughout this process.

Besides my advisor, I would like to thank the rest of my thesis commitee: Prof.

Michael Carbin and Prof. Armando Solar-Lezema for their brilliant comments and

suggestions.

Last but not the least, I would also like to give a special thanks to my parents

Sanjay Handa and Geeta Handa, for supporting me throughout my life.

5

6

This doctoral thesis has been examined by a Committee of the
Department of Electrical Engineering and Computer Science as

follows:

Professor Armando Solar-Lezema .
Chairman, Thesis Committee

Professor of Electrical Engineering and Computer Science

Professor Martin Rinard .
Thesis Supervisor

Professor of Electrical Engineering and Computer Science

Professor Michael Carbin .
Member, Thesis Committee

Assistant Professor of Electrical Engineering and Computer Science

8

Contents

1 Introduction 13

1.1 Tree Automaton Based Synthesis Technique 15

1.2 Experimental Results . 15

1.3 Optimal Noisy Program Synthesis . 16

1.4 Convergence . 16

1.5 Abstraction Refinement in Noisy Program Synthesis 17

1.6 Domain Specific Languages With Infinite Sets of Constants 18

1.7 Datasets With Noisy Inputs . 19

1.8 Contributions . 20

2 Noisy Program Synthesis 25

2.1 Noisy Dataset and Program Synthesis 25

2.2 Noisy Program Synthesis as an Optimization Problem 27

2.2.1 Domain Specific Languages 27

2.2.2 Loss Functions . 28

2.2.3 Regularizer . 28

2.2.4 Complexity Measure . 29

2.2.5 Objective Function . 30

2.2.6 Optimization Problem . 31

3 Synthesis Using Tree-Automata 33

3.1 Preliminaries . 33

3.1.1 Finite Tree Automata . 33

9

3.1.2 Concrete Finite Tree Automata 34

3.2 Synthesis Algorithm . 36

3.3 Implementation . 40

3.4 Discussion . 41

4 Experimental Results 43

4.1 Scalability . 43

4.2 Noisy Data Sets, Character Deletion 48

4.3 Noisy Data Sets, Character Replacements 52

4.4 Approximate Program Synthesis . 53

4.5 Discussion . 55

5 Optimal Loss Function and Convergence Properties 61

5.1 Optimal Loss Function . 62

5.1.1 Optimal Loss Function, Perfect Information 63

5.1.2 Optimal Loss Function, Imperfect Information 64

5.2 Convergence . 66

5.2.1 Differentiating Input Distributions 71

5.2.2 Differentiating Noise Sources 72

5.3 Application of These Concepts to Text Manipulating Noise Sources . 75

5.3.1 Connecting Theory With Experiments 82

5.4 Experimental Results . 88

5.5 Discussion . 103

6 Synthesis Using Abstraction Refinement Based Optimization 105

6.1 Abstractions . 106

6.2 Abstract Finite Tree Automaton . 109

6.3 Synthesis Algorithm . 112

6.4 Minimum Cost Candidate . 113

6.5 Termination Condition and Tolerance 115

6.6 Abstraction Refinement Based Optimization 117

10

6.7 Implementation . 123

6.8 Experimental Results . 126

6.9 Discussion . 132

7 Domain Specific Languages With Infinite Sets of Constants 133

7.1 Framework . 134

7.2 Synthesis Algorithm . 135

7.3 Implementation . 140

7.4 Experimental Results . 140

7.4.1 Scalability . 140

7.4.2 Noisy Data Sets, Character Deletions 141

7.5 Discussion . 143

8 Dealing With Noisy Inputs 145

8.1 Framework . 146

8.2 Synthesis Algorithm . 151

8.2.1 Creating Input Partitions . 152

8.2.2 Abstract Finite Tree Automata 154

8.2.3 Minimum Cost Candidate . 155

8.2.4 Termination Condition and Tolerance 158

8.2.5 Abstraction Refinement Based Optimization 159

8.3 Implementation . 162

8.4 Experimental Results . 163

8.4.1 Scalability . 163

8.4.2 Noisy Datasets, Character Replacements 164

9 Related Work 167

9.1 Programming-by-Example . 167

9.2 Techniques to Tolerate Data Corruptions 169

9.3 Connections to Learning Theory . 171

10 Conclusion 173

11

12

Chapter 1

Introduction

In recent years, there has been significant interest in learning programs from input-

output examples. These techniques have been successfully used to synthesize pro-

grams for domains such as string and format transformations [20, 35], data wran-

gling [15], data completion [43], and data structure manipulation [16, 27, 47]. Even

though these efforts have been largely successful, they generally do not aspire to work

with noisy datasets that may contain corrupted input-output examples.

In the real world, data contains noise [45, 34, 19, 21]. To extract information from

a noisy dataset, users either 1) clean the dataset to remove noise and use a technique

that works on noise-free data to extract information [19, 45, 34], or 2) use a technique

which can tolerate noise and can extract information from the noisy dataset [21].

Using these methods, the user aims to learn information the user would have learned

over noise-free data.

Given a dataset and a domain specific language (DSL), program synthesis tech-

niques generally aim to synthesize a program which 1) is accepted by the DSL and 2)

satisfies all input-output examples (i.e., given an input in the dataset, the program

produces the corresponding output in the dataset) [16, 27, 47, 43, 42]. When examples

contain noise, these techniques typically find it impossible to synthesize a program

which satisfies all of the input-output examples. Even if the synthesis algorithm is

able to synthesize a program which satisfies the noisy input-output examples, this

synthesized program may not be the desired or most likely program given the noisy

13

dataset.

I present a framework and associated program synthesis algorithms that, given

a potentially noisy dataset of input-output examples, are designed to synthesize a

program which best-fits the noisy dataset. I start by formalizing a model of the process

which generated the noisy dataset (Chapter 2). In this model a program source

randomly selects a hidden program from a given DSL. An input source randomly

generates 𝑛 inputs. The hidden noise free outputs are the outputs generated by the

hidden program over these inputs. A noise source then corrupts these noise free

outputs to construct corresponding noisy outputs. Only the original inputs and the

noisy outputs are visible to the synthesis algorithm.

I formalize the concept of best-fit using the concepts of a loss function, a regularizer,

a complexity measure, and an objective function. Given a dataset and a program, the

loss function measures the cost of the input-output examples on which the program

produces a different output than the output in the dataset. Given inputs and a

program, a regularizer penalizes the program based on the probability that a random

program in our search space produces the same output as the given program on the

given inputs. This allows us to bias the synthesis algorithm away from programs which

produce spurious or erroneous outputs. Given a program, the complexity measure

measures how complex a program is. This measure makes it possible to bias the

synthesis algorithm towards simpler programs. The objective function combines all

these scores to return a combined score. The objective function allows us to trade

off between these scores. For example, similar to machine learning, we can trade off

between the loss of a program and the complexity of a program, i.e., stop a program

from overfitting the data by synthesizing a simpler program. This turns the problem

of synthesizing the best-fit program into a problem of synthesizing a program which

solves an optimization problem, i.e., synthesizing the program which minimizes the

objective function.

14

1.1 Tree Automaton Based Synthesis Technique

I present a new synthesis algorithm which uses finite tree automata (FTA) to synthe-

size the best fit program (Chapter 3). Given a dataset 𝒟, the synthesis algorithm uses

a finite tree automaton to partition programs and sub-expressions, as defined by a

grammar, into equivalence classes. Each accepting state in the finite tree automaton

corresponds to a set of programs, in the given grammar, which map inputs in dataset

𝒟 to the same output. For all programs in the given grammar, there exists exactly

one accepting state which accepts this program. All programs accepted by a given

accepting state have the same input-output behavior over dataset 𝒟. Therefore, they

have the same loss and regularizer weight over the dataset 𝒟. My technique uses

dynamic programming to find the minimum complexity program accepted by a given

state. For a given accepting state, the simplest program has the minimum objective

function value over all programs accepted by this state. Since all programs in the

given grammar are accepted by exactly one accepting state, the technique iterates

over all accepting states and uses the simplest program accepted by each state to

synthesize the program which minimizes the objective function.

1.2 Experimental Results

I have implemented this technique and applied it to various synthesis problems in

the SyGuS 2018 benchmark set [1]. I present the results of these experiments in

Chapter 4. The results indicate that the technique is effective at solving program

synthesis problems over strings with modestly sized solutions even in the presence

of substantial noise. For discrete noise sources and a loss function that is a good

match for the noise source, the technique is typically able to extract enough infor-

mation left intact in corrupted outputs to synthesize a correct program even when

all outputs are corrupted (I consider a synthesized program to be correct if it agrees

with all input-output examples in the original hidden noise-free dataset). Overall the

results highlight the potential for effective program synthesis even in the presence of

substantial noise.

15

1.3 Optimal Noisy Program Synthesis

My experiments show that the choice of the loss function can have a significant impact

on the effectiveness of the synthesis algorithm. This phenomenon motivated me to

formalize the conditions under which a loss function makes it possible to synthesize

the correct program with high probability. The effectiveness of the loss function

depends on the noise source which corrupted the dataset.

Chapter 5 presents a Bayesian inference based framework to characterize the ef-

fectiveness of noisy program synthesis under a variety of conditions. Together, the

components of this framework provide guidance for selecting a good loss function

given information about the context in which the loss function will be deployed. It

also identifies situations in which noisy program synthesis is not possible, for example

because the noise source that corrupts the input/output examples destroys too much

information for any synthesis algorithm to succeed.

1.4 Convergence

Successful noisy program synthesis may be impossible if the combination of noise

source and loss function fails to preserve enough information to differentiate programs

with different behaviors. I approach this issue by considering convergence, specifically

the conditions under which a noisy program synthesis algorithm can identify a pro-

gram 𝑝 with identical behavior as the hidden program 𝑝ℎ given enough input/output

examples.

I model the set of available input/output examples via an input source, which is

a probability distribution 𝜌𝑖(𝑥𝑥𝑥) over inputs 𝑥𝑥𝑥 that models the probability of selecting

inputs 𝑥𝑥𝑥 from the set of available inputs. The first requirement for successful con-

vergence is that the input source must be differentiating, i.e., given two programs 𝑝

and 𝑝ℎ with different behaviors on some inputs, the probability of distinguishing the

programs given enough inputs approaches one. More formally, for all 𝛿 > 0 and 𝜖 > 0,

there must exist a dataset size 𝑘 such that for all 𝑛 > 𝑘, sampling inputs 𝑥𝑥𝑥 of length

𝑛 from 𝜌𝑖(𝑥𝑥𝑥|𝑛) and computing the distance between the corresponding outputs 𝑝[𝑥𝑥𝑥]

and 𝑝ℎ[𝑥𝑥𝑥] must produce a distance greater than 𝜖 with at least probability 1− 𝛿.

16

By itself, a differentiating noise source does not ensure convergence. We must also

have a noise source and corresponding loss function pair that together preserve the

ability of the input source to distinguish programs with different behaviors. I therefore

also characterize the conditions on the noise source and loss function that ensure that

they can distinguish programs with different behaviors. A key convergence theorem

(Theorem 7) establishes that any synthesis algorithm that minimizes the loss function

and works with a differentiating input source and a differentiating noise source/loss

function pair converges.

1.5 Abstraction Refinement in Noisy Program Synthesis

I present a new noisy program synthesis algorithm based on (a generalization of) ab-

straction refinement in Chapter 6. This algorithm also uses a finite tree automaton to

partition the space of the programs. Each accepting state in the finite tree automaton

is associated with a set of output vectors. This set is expressed using abstract values.

Each accepting state corresponds to a set of programs. These programs map inputs

in 𝒟 to outputs within the set associated with this state. A program, in our search

space, corresponds to exactly one accepting state. An abstract value allows us to

compute the minimum loss value and regularizer weight over all outputs represented

by this abstract value. Given an accepting state, the technique computes a lower

bound of the objective function value over all programs accepted by this state. By

iterating over all accepting states, the technique selects the state with the minimum

lower bound value, then synthesizes the simplest program accepted by this state. This

program is the candidate program.

If the objective function value of the candidate program is equal to the lower bound

value, then the candidate program minimizes the objective function. The technique

therefore halts and synthesizes this candidate program.

If the objective function value of the candidate program is greater than the lower

bound, then this candidate program may not minimize the objective function. In

this case there exists at least one input-output example such that the candidate

program’s loss/regularizer weight on this counterexample is greater than the lower

17

bound loss/regularizer weight on this counterexample. Based on this counterexample,

the technique then refines the abstract values in the finite tree automaton, further

partitioning the space of programs and improving the lower bound on the objective

function value for each partition. My technique then repeats this process until it

halts. My technique is guaranteed to halt.

I have implemented my algorithm in the Rose synthesis tool. Rose can be instan-

tiated to work in different domains by providing suitable domain specific languages,

abstract semantics, and concrete semantics of functions within the language. Rose is

parameterized over a large class of objective functions, loss functions, and complexity

measures. I benchmark Rose using the SyGuS 2018 benchmark suite [3]. The empir-

ical evaluation demonstrates that Rose is significantly faster than my tree automaton

based technique.

1.6 Domain Specific Languages With Infinite Sets of

Constants

The noisy program synthesis framework presented in Chapters 3 and 6 only work

on program spaces which are finite, including programs spaces which can only draw

upon constants from a small finite set of constants. This is a standard practice in

enumeration/non-solver based program synthesis techniques [43, 42, 3]. In Chapter 7,

I extend the framework to deal with program spaces which can draw constants from

a large (potentially infinite) set.

I modify my abstraction refinement based synthesis algorithm that synthesizes

programs drawn from domain specific languages with infinite sets of constants. The

algorithm partitions the space of constants using a set of predicates, treating each

partition as an abstract value. The algorithm then uses these partitions to build

a finite tree automaton. Each accepting state is associated with a set of programs

(where programs are built using a set of constants represented using abstract values)

which map the inputs in the dataset to the same set of abstract value outputs.

On a higher level, the rest of my algorithm proceeds in a similar manner to my

abstraction refinement based synthesis algorithm. I prove that the algorithm is guar-

18

anteed to halt. When the algorithm halts, the algorithm synthesizes the program

which minimizes the objective function.

I have implemented the algorithm in the Rose synthesis tool and instantiated

Rose to work with a DSL that contains programs that manipulate text. This DSL

allows its programs to use arbitrary strings as constants.

1.7 Datasets With Noisy Inputs

In Chapter 8, I extend the framework to deal with both noisy inputs and noisy out-

puts. I also present a modified version of my abstraction refinement based synthesis

algorithm to synthesize programs over noisy inputs and noisy outputs.

Similar to my approach in dealing with noisy outputs, I formalize this problem

as an optimization problem. The original algorithm for noisy outputs but noise-

free inputs computes the output loss and the regularizer weight. To compute these

measures, the algorithm also computes the noise-free outputs of candidate programs

in our search space. With noisy inputs, a challenge is that the algorithm does not

have access to the noise-free inputs to compute the noise-free outputs. I overcome this

challenge by parameterizing the optimization problem with a program and also a set

of noise-free inputs. The goal of the synthesis algorithm, in this case, is to synthesize

a program and a set of noise-free inputs which best-fit the noisy dataset.

I introduce the concept of an input loss function which measures the distance be-

tween the noisy inputs in the dataset and our predicted noise-free inputs. A modified

objective function makes it possible to trade off the input loss, the output loss, the

regularizer, and the complexity. The ability to trade off the input loss and output

loss is important, as it prevents the synthesis algorithm from overfitting the noisy

inputs. It also prevents the synthesis algorithm from synthesizing a program which

overfits the noisy outputs, by selecting arbitrary noise-free inputs.

I modify my abstraction refinement based synthesis algorithm to synthesize the

program which minimizes such objective functions. The algorithm partitions the

space of all possible inputs using a set of predicates. These partitions serve as abstract

input values for partitioning the space of programs. The algorithm constructs these

19

partitions by building a finite tree automaton on these abstract input values. Each

accepting state in the finite tree automaton is associated with a set of abstract output

values. A program is accepted by an accepting state if the program maps the abstract

input values to these abstract output values. For an accepting state and a mapping

between noisy input-output examples to input partitions, we can estimate a lower

bound on the objective function value for each program in a given partition based

on this mapping. For an accepting state, the algorithm synthesizes a mapping, such

that, the mapping minimizes the lower bound across all possible mappings. The

algorithm iterates through all accepting states and selects an accepting state and

associated mapping which minimizes the lower bound. The algorithm computes the

simplest program accepted by this accepting state as the candidate program. Using

this mapping, the algorithm computes the candidate noise-free input for each noisy

input. For a noisy input, the candidate noise-free input is the input drawn from the

noisy input’s mapped partition that minimizes the input loss.

If the objective function value of the candidate program and noise-free inputs is

equal to the lower bound of the accepting state’s objective function value then our

technique halts and synthesizes this program. This program minimizes the objective

function.

Otherwise, the algorithm generates a counterexample to refine the input partitions

and the finite tree automaton. The candidate program’s loss/regularizer weight on

this counterexample is greater than the lower bound loss/regularizer weight (over all

programs accepted by the candidate accepting state) on this counterexample. My

algorithm then refines the input partitions and the finite tree automaton to further

improve our estimates of the lower bound. My algorithm then repeats this process

until it halts. I prove that the algorithm is guaranteed to halt. When the algorithm

halts, it synthesizes a program which minimizes the objective function.

1.8 Contributions

This thesis makes the following contributions:

20

• Noisy Program Synthesis and Correctness: It presents and formalizes a

novel framework for noisy program synthesis. The framework introduces the

concepts of a program source, an input source, and a noise source to formal-

ize the program synthesis problem over noisy data. This formalization uses

the concepts of a loss function, regularizer, complexity measure, and objective

function to define correct noisy program synthesis as an optimization problem

over the objective function.

• Tree Automaton based Synthesis Algorithm: It presents a novel noisy

program synthesis algorithm. This algorithm uses finite tree automaton to

synthesize programs that minimize the objective function.

• Experimental Results: It presents experimental results from the novel tree

automaton based noisy program synthesis algorithm on the SyGuS 2018 bench-

mark set. These results characterize the scalability of the technique and high-

light interactions between the DSL, the noise source, the loss function, and the

overall effectiveness of the synthesis technique. In particular, they highlight the

ability of the technique to often (given a close match between the noise source

and the loss function) synthesize a correct program 𝑝 even when 1) there are

only a handful of input-output examples in the data set 𝒟 and 2) all outputs

are corrupted.

• Optimal Loss Functions: The noisy program synthesis algorithm uses loss

functions to drive the search process for the best-fit program. The thesis demon-

strates how to design optimal loss functions when: 1) we are given a noise source

in the form of conditional probability distribution that, given correct outputs,

characterizes the probability of obtaining corresponding noisy outputs, 2) we

are given only a prior probability distribution over possible noise sources, or 3)

the noise source is any one of a number of noise sources appropriate for text

manipulation problems.

21

• Convergence: Convergence is an important property which is well studied in

the statistics and machine learning literature [25, 17]. Given a synthesis setting

(i.e., a set of programs, an input source, a noise source, a program source, and a

loss function), the thesis defines a convergence property that makes it possible to

guarantee that, given a large enough random dataset, the synthesis algorithm

will synthesize a program equivalent to a conceptual hidden correct program

with high probability. It identifies conditions that ensure convergence, includ-

ing results that guarantee convergence in a range of noisy program synthesis

contexts.

• Text Manipulation: The thesis presents general noise sources, corresponding

optimal loss functions, and convergence results appropriate for a wide range

of text manipulation contexts. These results provide insight into the empirical

results presented in this thesis.

• Abstraction Refinement Technique: It presents a new program synthesis

technique for synthesizing programs over noisy datasets. This technique uses the

abstract semantics of DSL constructs to partition the program search space. For

each partition, the technique uses the abstract semantics to compute an abstract

value representing the outputs of all programs in that partition. The abstract

value also allows the technique to soundly estimate the minimum possible loss

value over all programs in each partition. It presents a new refinement tech-

nique that works with the sound approximation of the minimum loss values to

refine the current partition, then discard partitions that cannot possibly contain

the optimal program. Iteratively applying this refinement technique delivers a

program which optimizes the objective function. It also presents the Rose syn-

thesis system, which implements the abstraction refinement based algorithm

for the string domain. The experimental evaluation shows that Rose delivers

substantial speedups over our original tree automaton based technique.

• Synthesis over Domain Specific Languages with an Infinite Set of

Constants: It formalizes a new framework for noisy program synthesis over

22

languages with infinite sets of constants. These languages have programs with

constant sub-expressions drawn from this infinite set of constants. It presents a

modification to our abstraction refinement based synthesis algorithm that can

synthesize programs over such languages. It also evaluates this algorithm on

text manipulation languages with string constants.

• Synthesis over Noisy Inputs: It formalizes a new framework for noisy pro-

gram synthesis over datasets containing both noisy outputs and noisy inputs.

It introduces a concept of input loss function and formalizes the synthesis of the

best-fit program as an optimization problem. It presents a modification to our

abstraction refinement based synthesis algorithm that can synthesize programs

even in the presence of input noise. The presented experimental results show

that the algorithm can synthesize the correct program over datasets containing

input and output noise.

Data in the real world contains noise. This thesis presents a novel framework and

associated algorithms to synthesize programs over datasets containing noise. I believe

the framework, algorithms, and results presented in this thesis will pave the way to

formulate and design robust methods which can synthesize programs over real world

data.

23

24

Chapter 2

Noisy Program Synthesis

I first introduce the concept of a noisy dataset and the problem of program synthesis

over noisy datasets. I formalize the concept of a noisy dataset using the concept of

a program source, which generates a hidden underlying program, an input source,

which generates a set of 𝑛 inputs, hidden outputs, which are computed by the hidden

program using the generated inputs, and a noise source, which corrupts these hidden

outputs to produce a set of noisy outputs. Using these concepts, I formalize the

concept of synthesizing the best-fit program over the noisy dataset as an optimization

problem.

2.1 Noisy Dataset and Program Synthesis

Let 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦) be a dataset, where 𝑥𝑥𝑥 = ⟨𝑥1, . . . 𝑥𝑛⟩ are the inputs and 𝑦𝑦𝑦 = ⟨𝑦1, . . . 𝑦𝑛⟩

are the noisy outputs. The program space 𝐺 is a set of programs containing

the hidden underlying program 𝑝ℎ (i.e., 𝑝ℎ ∈ 𝐺), which generated the noise-free

dataset, which was then corrupted by a noise source to create the noisy dataset. I use

the notation 𝜌𝑝 to denote a program source, which is a prior probability distribution

over programs in 𝐺. The hidden program 𝑝ℎ is sampled from the prior distribution

𝜌𝑝.

Input Source: An input source is a probabilistic process which generates the inputs

provided to the hidden underlying program. Formally, an input source is a probability

distribution 𝜌𝑖, from which 𝑛 inputs 𝑥𝑥𝑥 = ⟨𝑥1, . . . 𝑥𝑛⟩ are sampled with probability

25

𝜌𝑖(𝑥𝑥𝑥 | 𝑛).

Given a program 𝑝 ∈ 𝐺 and an input 𝑥, I use the notation 𝑝(𝑥) to denote the

output of program 𝑝 when executed on input 𝑥. Given a vector of input values

𝑥𝑥𝑥 = ⟨𝑥1, 𝑥2, . . . 𝑥𝑛⟩, I use the notation 𝑝[𝑥𝑥𝑥] to denote vector ⟨𝑝(𝑥1), 𝑝(𝑥2), . . . 𝑝(𝑥𝑛)⟩.

Noise Source: A noise source is a probabilistic process which corrupts the correct

outputs returned by the hidden program to create the noisy outputs. Formally, a

noise source 𝜌𝑁 is a probability distribution. Given a hidden program 𝑝ℎ and outputs

𝑧𝑧𝑧 = ⟨𝑧1, . . . 𝑧𝑛⟩, the noisy outputs 𝑦𝑦𝑦 = ⟨𝑦1, . . . 𝑦𝑛⟩ are sampled from the probability

distribution 𝜌𝑁 , with probability 𝜌𝑁(𝑦𝑦𝑦 | 𝑧𝑧𝑧).

Equivalent Programs: Given two programs 𝑝1, 𝑝2 ∈ 𝐺, I use the notion 𝑝1 ≈ 𝑝2 to

denote program 𝑝1 is equivalent to 𝑝2, i.e., for all 𝑥 ∈ 𝑋, 𝑝1(𝑥) = 𝑝2(𝑥).

Noisy Dataset: A noisy dataset 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦) is composed of a set of input values,

denoted by 𝑥𝑥𝑥, and corresponding noisy output values, denoted by 𝑦𝑦𝑦. I assume the

dataset 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦) of size 𝑛 is constructed by the following process:

• A hidden program 𝑝ℎ ∈ 𝐺 is sampled from the probability distribution 𝜌𝑝.

• 𝑛 inputs 𝑥𝑥𝑥 = ⟨𝑥1, . . . 𝑥𝑛⟩ are sampled from probability distribution 𝜌𝑖(· | 𝑛).

• The process compute outputs 𝑧𝑧𝑧 = ⟨𝑧1, . . . 𝑧𝑛⟩, where 𝑧𝑖 = 𝑝ℎ(𝑥𝑖).

• The noise source introduces noise by corrupting outputs 𝑧𝑧𝑧 to 𝑦𝑦𝑦 with probability

𝜌𝑁(𝑦𝑦𝑦 | 𝑧𝑧𝑧)

A potential goal, that one can explore, is the problem of synthesizing the hidden

program 𝑝ℎ, or any program equivalent to 𝑝ℎ. Because of the probabilistic nature

of the noise process, given inputs 𝑥𝑥𝑥, noisy outputs 𝑦𝑦𝑦, program space 𝐺, and nothing

else, it may be impossible to infer any information about the hidden process. Even if

we are given the program source 𝜌𝑝, the input source 𝜌𝑖, and the noise source 𝜌𝑁 , in

addition to the inputs 𝑥𝑥𝑥, noisy outputs 𝑦𝑦𝑦, and the program space 𝐺, it may still be

impossible to infer any information about the hidden program. Instead, I explore

the problem of synthesizing a program 𝑝 which best-fits the given noisy dataset.

26

J𝑐K𝑥⇒ 𝑐
(Constant)

J𝑡K𝑥⇒ 𝑥(𝑡)
(Variable)

J𝑛1K𝑥⇒ 𝑣1 J𝑛2K𝑥⇒ 𝑣2 . . . J𝑛𝑘K𝑥⇒ 𝑣𝑘

J𝑓(𝑛1, 𝑛2, . . . 𝑛𝑘)K𝑥⇒ 𝑓(𝑣1, 𝑣2, . . . 𝑣𝑘)
(Function)

Figure 2-1: Execution semantics for program 𝑝.

2.2 Noisy Program Synthesis as an Optimization Problem

I next formalize the problem of synthesizing the best-fit program as an optimization

problem, given a space of candidate programs and a noisy dataset.

2.2.1 Domain Specific Languages

I first define the set of programs the synthesis process will consider, how inputs to the

program are specified, and the program semantics. I assume programs are specified

as parse trees in a domain-specific language (DSL) grammar 𝒢. Internal nodes

represent function invocations; leaves are constants/0-arity symbols in the DSL. Given

a program 𝑝 and an input 𝑥, J𝑝K𝑥 denotes the output of 𝑝 on input 𝑥 (J.K is defined

in Figure 2-1).

All valid programs are defined by a DSL grammar 𝒢 = (𝑇,𝑁, 𝑃, 𝑠0) where:

• 𝑇 is a set of terminal symbols. These may include constants and symbols which

may change value depending on the input 𝑥.

• 𝑁 is the set of nonterminals that represent subexpressions in our DSL.

• 𝑃 is the set of production rules of the form 𝑠→ 𝑓(𝑠1, . . . , 𝑠𝑛), where 𝑓 is a built-in

function in the DSL and 𝑠, 𝑠1, . . . , 𝑠𝑛 are non-terminals in the grammar.

• 𝑠0 ∈ 𝑁 is the start non-terminal in the grammar.

I assume that we are given a black box implementation of each built-in function 𝑓

in the DSL. In general, all techniques explored within this thesis can be generalized

to any DSL which can be specified within the above framework. This is a standard

way of specifying DSLs in the program synthesis literature [22, 42].

27

2.2.2 Loss Functions

Given a noisy dataset 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦) and a program 𝑝, a Loss Function ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦)

measures how incorrect the program is with respect to the given dataset. Formally,

a loss function ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦) maps the noise free outputs 𝑝[𝑥𝑥𝑥] and noisy outputs 𝑦𝑦𝑦 to a

non-negative real number or ∞.

Definition 1. 0/1 Loss Function: The 0/1 loss function ℒ0/1(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦) counts the

number of input-output examples where 𝑝 does not agree with the dataset 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦):

ℒ0/1(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦) =
|𝑥𝑥𝑥|∑︁
𝑖=1

1 if (𝑦𝑖 ̸= J𝑝K𝑥𝑖) else 0

Definition 2. 0/∞ Loss Function: The 0/∞ loss function ℒ0/∞(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦) is 0 if 𝑝

matches all outputs in the dataset 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦) and ∞ otherwise:

ℒ0/∞(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦) = 0 if 𝑦𝑦𝑦 = 𝑝[𝑥𝑥𝑥] else ∞

Definition 3. Damerau-Levenshtein (DL) Loss Function: The DL loss function

ℒ𝐷𝐿(𝑝,𝒟) uses the Damerau-Levenshtein metric [10] to measure the distance between

the output from the synthesized program and the corresponding output in the noisy

dataset:

ℒ𝐷𝐿(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦) =
|𝑥𝑥𝑥|∑︁
𝑖=1

𝐿J𝑝K𝑥𝑖,𝑦𝑖

(︁
|J𝑝K𝑥𝑖| , |𝑦𝑖|

)︁
where, 𝐿𝑎,𝑏(𝑖, 𝑗) is the Damerau-Levenshtein metric [10].

This metric counts the number of single character deletions, insertions, substitu-

tions, or transpositions required to convert one text string into another. Because more

than 80% of all human misspellings are reported to be captured by a single one of

these four operations [10], the DL loss function may be appropriate for computations

that work with human-provided text input-output examples.

2.2.3 Regularizer

Given a program 𝑝*, space of programs 𝐺, and inputs 𝑥𝑥𝑥, a Regularizer ℛ(𝑥𝑥𝑥, 𝑝*[𝑥𝑥𝑥])

assigns a weight based on the probability that a random program 𝑝 ∈ 𝐺 will produce

28

outputs 𝑝*[𝑥𝑥𝑥] on inputs 𝑥𝑥𝑥 (𝑝[𝑥𝑥𝑥] = 𝑝*[𝑥𝑥𝑥]). Formally a regularizer ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]) maps the

noise-free outputs 𝑝[𝑥𝑥𝑥] and inputs 𝑥𝑥𝑥 to a non-negative real number or ∞.

Definition 4. Uniform Regularizer: The uniform regularizer ℛ𝑈(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]) assigns

a uniform weight to all programs 𝑝 ∈ 𝐺, i.e.,

ℛ𝑈(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]) = 1

Definition 5. Subspace Regularizer: Given a subset of programs 𝐴 ⊆ 𝐺, a sub-

space regularizer ℛ𝐴(𝑥𝑥𝑥,𝑧𝑧𝑧) returns 1 if there exists a program in 𝐴 which maps 𝑥𝑥𝑥 to

𝑧𝑧𝑧, else infinity. Formally,

ℛ𝐴(𝑥𝑥𝑥,𝑧𝑧𝑧) = 1 if ∃𝑝 ∈ 𝐴.𝑝[𝑥𝑥𝑥] = 𝑧𝑧𝑧 else ∞

Let 𝐺 be a space of programs and let 𝐴 ⊆ 𝐺 be a subset of programs in 𝐺. Given

inputs 𝑥𝑥𝑥 and a program 𝑝*, the regularizer ℛ𝐴(𝑥𝑥𝑥, 𝑝*[𝑥𝑥𝑥]) is finite, if and only if, there

exists a program 𝑝 ∈ 𝐴, such that, 𝑝[𝑥𝑥𝑥] = 𝑝*[𝑥𝑥𝑥]. This regularizer biases the synthesis

process to synthesize a program 𝑝*, which given inputs 𝑥𝑥𝑥, produces the same outputs

as a program 𝑝 ∈ 𝐴, i.e., ∃𝑝 ∈ 𝐴.𝑝*[𝑥𝑥𝑥] = 𝑝[𝑥𝑥𝑥].

Definition 6. Distribution Regularizer: Given a space of programs 𝐺 and a prob-

ability distribution 𝜋 over programs in 𝐺, a distribution regularizer ℛ𝜋(𝑥𝑥𝑥,𝑧𝑧𝑧) weights

the output vector 𝑧𝑧𝑧 based on the probability that a random program 𝑝 ∈ 𝐺 will map

inputs 𝑥𝑥𝑥 to outputs 𝑧𝑧𝑧. Formally,

ℛ𝜋(𝑥𝑥𝑥,𝑧𝑧𝑧) = − log 𝜋(𝐺𝑥𝑥𝑥,𝑧𝑧𝑧) where 𝐺𝑥𝑥𝑥,𝑧𝑧𝑧 = {𝑝 ∈ 𝐺 | 𝑝[𝑥𝑥𝑥] = 𝑧𝑧𝑧}

Given prior probability 𝜋 of programs in 𝐺, the distribution regularizer allows us

to bias the synthesis process towards programs which produce more likely outputs.

2.2.4 Complexity Measure

Given a program 𝑝, a Complexity Measure 𝐶(𝑝) ranks programs independent of

the input-output examples in the dataset 𝒟. This measure is used to trade off per-

29

formance on the noisy dataset vs. complexity of the synthesized program. Formally,

a complexity measure is a function 𝐶(𝑝) that maps each program 𝑝 expressible in the

given DSL 𝐺 to a real number. The following Cost(𝑝) complexity measure computes

the complexity of given program 𝑝 represented as a parse tree recursively as follows:

Cost(𝑡) = cost(𝑡)

Cost(𝑓(𝑒1, 𝑒2, . . . 𝑒𝑘)) = cost(𝑓) +
𝑘∑︀

𝑖=1
Cost(𝑒𝑖)

where 𝑡 and 𝑓 are terminals and built-in functions in my DSL respectively. Setting

cost(𝑡) = cost(𝑓) = 1 delivers a complexity measure Size(𝑝) that computes the size

of 𝑝.

2.2.5 Objective Function

Given a noisy dataset 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦), loss function ℒ, regularizer ℛ, and a complexity

measure 𝐶, an Objective Function 𝑈(ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑝[𝑥𝑥𝑥],𝑥𝑥𝑥), 𝐶(𝑝)) combines the loss,

regularizer weight, and complexity to assign a single combine weight to a program 𝑝.

Definition 7. Tradeoff Objective Function: Given tradeoff parameters 𝜆, 𝛾 >

0, the tradeoff objective function 𝑈𝑇 is a linear combination of the loss, regularizer

weight, and the complexity measure, weighted using parameters 𝜆 and 𝛾. Formally,

𝑈𝑇 (ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑝[𝑥𝑥𝑥],𝑥𝑥𝑥), 𝐶(𝑝)) = ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦) + 𝜆ℛ(𝑝[𝑥𝑥𝑥],𝑥𝑥𝑥) + 𝛾𝐶(𝑝)

This objective function trades the loss of the synthesized program off against the

regularization weight and the complexity of the synthesized program. Similarly to

how regularization can prevent a machine learning model from overfitting noisy data

by biasing the training algorithm to pick a simpler model, the tradeoff objective

function may prevent the algorithm from synthesizing a program which overfits the

data by biasing it to pick a simpler program (based on the complexity measure).

Definition 8. Lexicographic Objective Function: Given a tradeoff parameter

𝜆 > 0, a lexicographic objective function 𝑈𝐿(ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑝[𝑥𝑥𝑥],𝑥𝑥𝑥), 𝐶(𝑝)) = ⟨𝑙, 𝑐⟩,

30

where 𝑙 = ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦)+𝜆ℛ(𝑝[𝑥𝑥𝑥],𝑥𝑥𝑥) and 𝑐 = 𝐶(𝑝), maps 𝑙 and 𝑐 into a lexicographically

ordered space, i.e., ⟨𝑙1, 𝑐1⟩ < ⟨𝑙1, 𝑐2⟩ if and only if either 𝑙1 < 𝑙2 or 𝑙1 = 𝑙2 and 𝑐1 < 𝑐2.

This objective function first minimizes the combination of loss function and reg-

ularizer, then the complexity.

2.2.6 Optimization Problem

Given a set of programs 𝐺 (specified using a DSL), noisy dataset 𝒟, a loss function

ℒ, a regularizer ℛ, a complexity measure 𝐶, and an objective function 𝑈 , a program

𝑝* is the best-fit program if 𝑝* minimizes the objective function, i.e.,

𝑝* = arg min
𝑝∈𝐺

𝑈(ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑝[𝑥𝑥𝑥],𝑥𝑥𝑥), 𝐶(𝑝))

I introduce synthesis algorithms which synthesize the best-fit program, given a DSL,

noisy dataset, loss function, regularizer, complexity measure, and an objective func-

tion, in Chapters 3 and 6. In Chapter 4, I present experimental results which showcase

the ability of my synthesis algorithms to synthesize a program 𝑝*, which is equivalent

to the hidden program which generated the noisy dataset. In Chapter 5, I make con-

nections between the optimization based framework and the process which generated

the noisy dataset. These connections allow us to quantify the probability of a syn-

thesis algorithm synthesizing a correct program. They also allow us to pick suitable

loss functions, regularizers, and complexity measures, which can improve our chances

of synthesizing a correct program.

31

32

Chapter 3

Synthesis Using Tree-Automata

I next introduce a new synthesis algorithm which uses the loss-based framework to

synthesize programs over noisy datasets. This algorithm builds upon the concept of

a finite tree automaton [8] to compactly represent programs of a given DSL. The

finite tree automaton also allows us to cluster programs based on their loss value.

This technique builds upon a prior programming-by-example noise-free synthesis al-

gorithm [43].

3.1 Preliminaries

I first review finite tree automata (FTA) and the FTA-based programming-by-example

solution introduced in [43].

3.1.1 Finite Tree Automata

Finite tree automata are a type of state machine which accept trees rather than

strings. These machines describe a regular language over trees.

Definition 9 (FTA). A (bottom-up) finite tree automaton (FTA) over alphabet 𝐹 is

a tuple 𝒜 = (𝑄,𝐹,𝑄𝑓 ,Δ) where 𝑄 is a set of states, 𝑄𝑓 ⊆ 𝑄 is the set of accepting

states and Δ is a set of transitions of the form 𝑓(𝑞1, . . . , 𝑞𝑘) → 𝑞 where 𝑞, 𝑞1, . . . 𝑞𝑘

are states, 𝑓 ∈ 𝐹 .

Every symbol 𝑓 in alphabet 𝐹 has an associated arity. The set 𝐹𝑘 ⊆ 𝐹 is the

set of all 𝑘-arity symbols in 𝐹 . 0-arity terms 𝑡 in 𝐹 are viewed as single node trees

33

and

True

not False

Figure 3-1: Tree for formula and(True, not(False))

(leaves of trees). 𝑡 is accepted by an FTA if we can rewrite 𝑡 to some state 𝑞 ∈ 𝑄𝑓

using rules in Δ. The language of an FTA 𝒜, denoted by ℒ(𝒜), corresponds to the

set of all ground terms accepted by 𝒜.

Example 1. Consider the tree automaton 𝒜 defined by states 𝑄 = {𝑞𝑇 , 𝑞𝐹}, 𝐹0 =

{True,False}, 𝐹1 = not, 𝐹2 = {and}, final states 𝑄𝑓 = {𝑞𝑇} and the following transi-

tion rules Δ:

True→ 𝑞𝑇 False→ 𝑞𝐹 not(𝑞𝑇)→ 𝑞𝐹 not(𝑞𝐹)→ 𝑞𝑇

and(𝑞𝑇 , 𝑞𝑇)→ 𝑞𝑇 and(𝑞𝐹 , 𝑞𝑇)→ 𝑞𝐹 and(𝑞𝑇 , 𝑞𝐹)→ 𝑞𝐹 and(𝑞𝐹 , 𝑞𝐹)→ 𝑞𝐹

or(𝑞𝑇 , 𝑞𝑇)→ 𝑞𝑇 or(𝑞𝐹 , 𝑞𝑇)→ 𝑞𝑇 or(𝑞𝑇 , 𝑞𝐹)→ 𝑞𝑇 or(𝑞𝐹 , 𝑞𝐹)→ 𝑞𝐹

The above tree automaton accepts all propositional logic formulas over True

and False which evaluate to True. Figure 3-1 presents the tree for the formula

and(True, not(False)).

3.1.2 Concrete Finite Tree Automata

I review the technique, introduced by [43], which uses finite tree automata to solve

synthesis tasks over a broad class of DSLs. Given a DSL and a set of input-output

examples, a Concrete Finite Tree Automaton (CFTA) is a tree automaton which

accepts all trees representing DSL programs consistent with the input-output exam-

ples and nothing else. The states of the FTA correspond to concrete values and the

transitions are obtained using the semantics of the DSL constructs.

Given input-output examples (𝑥𝑥𝑥,𝑦𝑦𝑦) and DSL 𝐺, the rules for constructing a CFTA

is presented in Figure 3-2. The alphabet of the CFTA contains built-in functions

34

𝑡 ∈ 𝑇,𝑧𝑧𝑧 = ⟨J𝑡K𝑥1, . . . J𝑡K𝑥𝑛⟩
𝑞𝑧𝑧𝑧

𝑡 ∈ 𝑄
(Term)

𝑞𝑦𝑦𝑦
𝑠0 ∈ 𝑄

𝑞𝑦𝑦𝑦
𝑠0 ∈ 𝑄𝑓

(Final)

𝑠← 𝑓(𝑠1, . . . 𝑠𝑘) ∈ 𝑃, {𝑞𝑧𝑧𝑧1
𝑠1 , . . . 𝑞

𝑧𝑧𝑧𝑘
𝑠𝑘
} ⊆ 𝑄,

𝑧𝑧𝑧 = ⟨𝑧1, . . . 𝑧𝑛⟩, 𝑧𝑖 = J𝑓(𝑧𝑧𝑧1,𝑖, . . . 𝑧𝑧𝑧𝑘,𝑖)K
𝑞𝑧𝑧𝑧

𝑠 ∈ 𝑄, 𝑓(𝑞𝑧𝑧𝑧1
𝑠1 , . . . 𝑞

𝑧𝑧𝑧𝑘
𝑠𝑘

)→ 𝑞𝑧𝑧𝑧
𝑠 ∈ Δ

(Prod)

Figure 3-2: Rules for constructing a CFTA 𝒜 = (𝑄,𝑄𝑓 ,Δ) given inputs 𝑥𝑥𝑥 =
⟨𝑥1, . . . 𝑥𝑛⟩ and DSL 𝐺 = (𝑇,𝑁, 𝑃, 𝑠0).

within the DSL. The states in the CFTA are of the form 𝑞𝑧𝑧𝑧
𝑠 , where 𝑠 is a symbol

(terminal or non-terminal) in 𝐺 and 𝑧𝑧𝑧 is a vector of concrete values. The existence

of state 𝑞𝑧𝑧𝑧
𝑠 implies that there exists a partial program which can map inputs 𝑥𝑥𝑥 to

concrete values 𝑧𝑧𝑧. Similarly, the existence of transition 𝑓(𝑞𝑧𝑧𝑧1
𝑠1 , 𝑞

𝑧𝑧𝑧2
𝑠2 . . . 𝑞

𝑧𝑧𝑧𝑘
𝑠𝑘

)→ 𝑞𝑧𝑧𝑧
𝑠 implies

𝑓(𝑧𝑧𝑧1,𝑗, 𝑧𝑧𝑧2,𝑗 . . . 𝑧𝑧𝑧𝑘,𝑗) = 𝑧𝑗, for all 𝑗 ∈ [1, 𝑛] (𝑧𝑖,𝑗 denotes the 𝑗𝑡ℎ element of vector 𝑧𝑧𝑧𝑖).

The Term rule states that if we have a terminal 𝑡 (either a constant in the given

language or input symbol 𝑥), execute it with the input 𝑥𝑖 and construct a state

𝑞𝑧𝑧𝑧
𝑡 (where 𝑧𝑧𝑧𝑖 = J𝑡K𝑥𝑖). The Prod rule states that, if we have a production rule

𝑓(𝑠1, 𝑠2, . . . 𝑠𝑘) → 𝑠 ∈ Δ, and there exists states 𝑞𝑧𝑧𝑧1
𝑠1 , 𝑞

𝑧𝑧𝑧2
𝑠2 . . . 𝑞

𝑧𝑧𝑧𝑘
𝑠𝑘
∈ 𝑄, then we also

have state 𝑞𝑧𝑧𝑧
𝑠 in the FTA and a transition 𝑓(𝑞𝑧𝑧𝑧1

𝑠1 , 𝑞
𝑧𝑧𝑧2
𝑠2 , . . . 𝑞

𝑧𝑧𝑧𝑘
𝑠𝑘

) → 𝑞𝑧𝑧𝑧
𝑠 . The CFTA Final

rule (Figure 3-2) marks the state 𝑞𝑦𝑦𝑦
𝑠0 with start symbol 𝑠0 as accepting state.

The language of the CFTA constructed from Figure 3-2 is exactly the set of parse

trees of DSL programs that are consistent with the given input-output examples (i.e.,

maps inputs 𝑥𝑥𝑥 to outputs 𝑦𝑦𝑦).

In general, the rules presented in Figure 3-2 may result in a CFTA which has

infinitely many states. To control the size of the resulting CFTA, we do not add a

new state within the constructed CFTA if the smallest tree accepted by this state is

larger than a given threshold 𝑑. This results in a CFTA which accepts all programs

which are consistent with the input-output examples but are smaller than the given

threshold (it can accept some programs which are larger than the given threshold

but it never accepts a program which is inconsistent with the given input-output

examples). This is standard practice in the synthesis literature [42, 30].

35

1: procedure Synthesize(𝒟, 𝐺)
input: noisy dataset 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦), DSL 𝐺.
output: A program 𝑝*, such that, 𝑝* ∈ arg min𝑝∈𝐺 𝑈(ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]), 𝐶(𝑝))

2: (𝑄,𝑄𝑓 ,Δ) := ConstructFTA(𝑥𝑥𝑥,𝐺);
3: for 𝑞 ∈ 𝑄𝑓 do
4: 𝑝, 𝑐 := LeastComplex(𝑞, (𝑄,𝑄𝑓 ,Δ), 𝐺);
5: 𝑃 [𝑞] := 𝑝;

◁ Least complex program for a given accepting state.
6: 𝑞𝑣𝑣𝑣

𝑠0 ∈ 𝑄𝑓 ; 𝑞* := 𝑞𝑣𝑣𝑣
𝑠0 ; 𝑣𝑣𝑣* := 𝑣𝑣𝑣;

7: for 𝑞𝑣𝑣𝑣
𝑠0 ∈ 𝑄𝑓 do

8: if 𝑈(ℒ(𝑣𝑣𝑣*, 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥,𝑣𝑣𝑣*), 𝐶(𝑃 [𝑞*])) ≤ 𝑈(ℒ(𝑣𝑣𝑣,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥,𝑣𝑣𝑣), 𝐶(𝑃 [𝑞𝑣𝑣𝑣
𝑠0])) then

9: 𝑣𝑣𝑣* = 𝑣𝑣𝑣;
10: 𝑞* := 𝑞𝑣𝑣𝑣

𝑠0 ;
◁ 𝑞* is the accepting state which accepts a program which minimizes the

objective function.
11: return 𝑃 [𝑞*];

Figure 3-3: Algorithm for noisy program synthesis using finite tree automaton.

3.2 Synthesis Algorithm

Figure 3-3 presents my algorithm for synthesizing programs over noisy datasets. The

algorithm, given a noisy dataset 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦), a DSL 𝐺, an objective function 𝑈 , a

loss function ℒ, a regularizer ℛ, and a complexity measure 𝐶, synthesizes a program

which minimizes the objective function, i.e., the program 𝑝* returned by the algorithm

satisfies the following constraint:

𝑝* ∈ argmin𝑝∈𝐺𝑈(ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]), 𝐶(𝑝))

The algorithm first constructs a finite tree automaton (line 2) based on the rules

presented in Figure 3-2 with a single exception. All states attached with the start

symbol are added to the set of accepting states, i.e,

𝑞𝑣𝑣𝑣
𝑠0 ∈ 𝑄

𝑞𝑣𝑣𝑣
𝑠0 ∈ 𝑄𝑓

(Final)

Even states with start symbol 𝑠0 and attached values 𝑣𝑣𝑣 not equal to the noisy

36

dataset outputs 𝑦𝑦𝑦 are added to the set of accepting states.

Given an accepting state of the form 𝑞𝑣𝑣𝑣
𝑠0 , a program 𝑝 ∈ 𝐺 is accepted by the

automaton (𝑄, {𝑞𝑣𝑣𝑣
𝑠0},Δ) if and only if 𝑝[𝑥𝑥𝑥] = 𝑣𝑣𝑣.

Theorem 1. Given a dataset 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦), DSL 𝐺, and automaton (𝑄,𝑄𝑓 ,Δ) =

ConstructFTA(𝑥𝑥𝑥,𝐺), for all symbols 𝑠 ∈ 𝐺, for all expressions 𝑒 starting from symbol

𝑠 (and height less than bound 𝑏), there exists a state 𝑞𝑣𝑣𝑣
𝑠 ∈ 𝑄, such that, 𝑒 is accepted by

the automaton (𝑄, {𝑞𝑣𝑣𝑣
𝑠},Δ), where 𝑣𝑣𝑣 = J𝑒K𝑥𝑥𝑥. Given a state 𝑞𝑣𝑣𝑣

𝑠 ∈ 𝑄, if the automaton

(𝑄, {𝑞𝑣𝑣𝑣
𝑠},Δ) accepts an expression 𝑒, then 𝑒 starts from symbol 𝑠, and J𝑒K𝑥𝑥𝑥 = 𝑣𝑣𝑣.

Proof. I prove this theorem by using induction over height of the expression 𝑒.

Base Case: Height of expression 𝑒 is 1. This implies 𝑠 is either 𝑥 or a constant.

According to Var and Const rules (Figure 3-2), there exists a state 𝑞𝑣𝑣𝑣
𝑒 ∈ 𝑄 (for

terminal 𝑡), such that, 𝑒 is accepted by the automaton (𝑄, {𝑞𝑣𝑣𝑣𝑡},Δ), where 𝑣𝑣𝑣 = J𝑒K𝑥𝑥𝑥.

For a terminal 𝑡, if state 𝑞𝑣𝑣𝑣
𝑡 ∈ 𝑄 and 𝑒 is accepted by (𝑄, {𝑞𝑣𝑣𝑣𝑡},Δ), then 𝑒 = 𝑡 and

J𝑒K𝑥𝑥𝑥 = 𝑣𝑣𝑣 (Const and Var rules in Figure 3-2).

Induction Hypothesis: For all symbols 𝑠 ∈ 𝐺, for all expressions 𝑒 starting from

symbol 𝑠 of height less than equal to 𝑛 (and height less than bound 𝑏), there exists a

state 𝑞𝑣𝑣𝑣
𝑠 ∈ 𝑄, such that, 𝑒 is accepted by the automaton (𝑄, {𝑞𝑣𝑣𝑣

𝑠},Δ), where 𝑣𝑣𝑣 = J𝑒K𝑥𝑥𝑥.

Given a state 𝑞𝑣𝑣𝑣
𝑠 ∈ 𝑄, if the automaton (𝑄, {𝑞𝑣𝑣𝑣

𝑠},Δ) accepts an expression 𝑒 of height

less than equal to 𝑛, then 𝑒 starts form symbol 𝑠, and J𝑒K𝑥𝑥𝑥 = 𝑣𝑣𝑣.

Induction Step: For any symbol 𝑠 in 𝐺, consider an expression 𝑒 = 𝑓(𝑒1, . . . 𝑒𝑘) of

height equal to 𝑛 + 1, created from production 𝑠 ← 𝑓(𝑠1, . . . 𝑠𝑘). Note the height

of expressions 𝑒1, . . . 𝑒𝑘 is less than equal to 𝑛, therefore using induction hypothesis,

there exists states 𝑞𝑣𝑣𝑣1
𝑠1 , . . . 𝑞

𝑣𝑣𝑣𝑘
𝑠𝑘
∈ 𝑄, such that 𝑒𝑖 is accepted by automaton (𝑄, {𝑞𝑣𝑣𝑣𝑖

𝑠𝑖
},Δ),

where 𝑣𝑣𝑣𝑖 = ⟨J𝑒𝑖K𝑥1, . . . J𝑒𝑖K𝑥𝑛⟩.

According to Prod rule (Figure 3-2), there exists a state 𝑞𝑣𝑣𝑣
𝑠 ∈ 𝑄, where

𝑣𝑣𝑣 = ⟨J𝑒K𝑥1, . . . J𝑒K𝑥𝑛⟩

and 𝑒 is accepted by (𝑄, {𝑞𝑣𝑣𝑣
𝑠},Δ).

37

1: procedure LeastComplex(𝑞𝑣𝑣𝑣
𝑠 ,𝒜, 𝐺,ℳ)

2: if 𝑞 ∈ keys(ℳ) then
3: return ℳ[𝑞𝑣𝑣𝑣

𝑠]
4: if 𝑠 ∈ 𝑇 then
5: return 𝑡, cost(𝑡);
6: ℳ[𝑞𝑣𝑣𝑣

𝑠] := ⊥,∞;
7: 𝑐* :=∞;
8: for 𝑓(𝑞𝑣𝑣𝑣1

𝑠1 , . . . , 𝑞
𝑣𝑣𝑣𝑘
𝑠𝑘

)→ 𝑞𝑣𝑣𝑣
𝑠 ∈ Δ do

9: for 𝑖 := 1 . . . 𝑘 do
10: 𝑒𝑖, 𝑐𝑖 := LeastComplex(𝑞𝑣𝑣𝑣𝑖

𝑠𝑖
,𝒜, 𝐺,ℳ);

11: 𝑒 := 𝑓(𝑒1, . . . 𝑒𝑘);
12: 𝑐 := cost(𝑓) +∑︀𝑛

𝑖=1 𝑐𝑖;
13: if 𝑐 < 𝑐* then
14: 𝑒* := 𝑒
15: 𝑐* := 𝑐;
16: ℳ[𝑞𝑣𝑣𝑣

𝑠] := 𝑒*, 𝑐*;
17: return 𝑒*, 𝑐*;
18: procedure LeastComplex(𝑞𝑣𝑣𝑣

𝑠 ,𝒜, 𝐺)
input: State 𝑞𝑣𝑣𝑣

𝑠 , FTA 𝒜 = (𝑄,𝑄𝑓 ,Δ), and DSL 𝐺.
input: Recursively defined complexity measure cost.
output: Least complex expression 𝑒* and it’s complexity 𝑐*.

19: ℳ := ∅ ◁ Empty map
20: return LeastComplex(𝑞𝑓 ,𝒜, 𝐺,ℳ)

Figure 3-4: Algorithm for synthesizing a least complex program for automaton 𝒜,
DSL 𝐺, and state 𝑞𝑣𝑣𝑣

𝑠 .

Therefore, by induction, for all symbols 𝑠 in 𝐺, for all expressions 𝑒 starting from

symbol 𝑠 (and height less than bound 𝑏), there exists a state 𝑞𝑣𝑣𝑣
𝑠 ∈ 𝑄, such that, 𝑒 is

accepted by the automaton (𝑄, {𝑞𝑣𝑣𝑣
𝑠},Δ), where 𝑣𝑣𝑣 = ⟨J𝑒K𝑥1, . . . J𝑒K𝑥𝑛⟩.

Consider a state 𝑞𝑣𝑣𝑣
𝑠 , which accepts an expression 𝑒 = 𝑓(𝑒1, . . . 𝑒𝑘) of height 𝑛+ 1.

This implies, for all 𝑖 ∈ [1, 𝑘], there exists a state 𝑞𝑣𝑣𝑣𝑖
𝑠𝑖

which accepts expression 𝑒𝑖.

Using induction hypothesis, 𝑒𝑖 starts from symbol 𝑠𝑖 and J𝑒𝑖K𝑥𝑥𝑥 = 𝑣𝑣𝑣.

According to Prod rule (Figure 3-2), there exists a production rule 𝑠← 𝑓(𝑠1, . . . 𝑠𝑘).

Therefore, 𝑒 starts from symbol 𝑠 and 𝑣𝑣𝑣 = J𝑒K𝑥𝑥𝑥.

Given this finite tree automaton (𝑄,𝑄𝑓 ,Δ), the algorithm finds the least complex

program (i.e., the program which minimizes the complexity measure) for each accept-

ing state 𝑞 ∈ 𝑄𝑓 (line 3-4). I present the pseudo code for LeastComplex algorithm in

38

Figure 3-4.

Given an accepting 𝑞𝑣𝑣𝑣
𝑠0 , 𝑃 [𝑞𝑣𝑣𝑣

𝑠0] is the least complex program which maps input

vector 𝑥𝑥𝑥 to outputs 𝑣𝑣𝑣, i.e.,

𝑃 [𝑞𝑣𝑣𝑣
𝑠0] ∈ argmin𝑝∈𝐺[𝑥𝑥𝑥→𝑣𝑣𝑣]𝐶(𝑝)

where 𝐺[𝑥𝑥𝑥→ 𝑣𝑣𝑣] = {𝑝 |𝑝 ∈ 𝐺, 𝑝[𝑥𝑥𝑥] = 𝑣𝑣𝑣}.

Theorem 2. Given a DSL 𝐺, a dataset 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦), (𝑄,𝑄𝑓 ,Δ) = ConstructFTA(𝑥𝑥𝑥,𝐺),

for all states 𝑞𝑣𝑣𝑣
𝑠0 ∈ 𝑄𝑓 , if 𝑝*, 𝑐 = LeastComplex(𝑞𝑣𝑣𝑣

𝑠0 , (𝑄,𝑄𝑓 ,Δ), 𝐺), then

𝑝* ∈ argmin𝑝∈𝐺[𝑥𝑥𝑥→𝑣𝑣𝑣]𝐶(𝑝)

where 𝐺[𝑥𝑥𝑥→ 𝑣𝑣𝑣] = {𝑝 |𝑝 ∈ 𝐺, 𝑝[𝑥𝑥𝑥] = 𝑣𝑣𝑣}.

Proof. From pseudo code of LeastComplex, the procedure returns the small cost tree

accepted by (𝑄, {𝑞𝑣𝑣𝑣
𝑠0},Δ). From Theorem 1,

𝑝* ∈ argmin𝑝∈𝐺[𝑥𝑥𝑥→𝑣𝑣𝑣]𝐶(𝑝)

where 𝐺[𝑥𝑥𝑥→ 𝑣𝑣𝑣] = {𝑝 |𝑝 ∈ 𝐺, 𝑝[𝑥𝑥𝑥] = 𝑣𝑣𝑣}.

The algorithm then finds an accepting state 𝑞𝑣𝑣𝑣*
𝑠0 ∈ 𝑄𝑓 , such that, for all accepting

states 𝑞𝑣𝑣𝑣
𝑠0 ∈ 𝑄𝑓 ,

𝑈(ℒ(𝑣𝑣𝑣*, 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥,𝑣𝑣𝑣*), 𝐶(𝑃 [𝑞𝑣𝑣𝑣*

𝑠0]) ≤ 𝑈(ℒ(𝑣𝑣𝑣,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥,𝑣𝑣𝑣), 𝐶(𝑃 [𝑞𝑣𝑣𝑣
𝑠0])

Since, for all programs 𝑝 ∈ 𝐺, there exists an accepting state 𝑞𝑣𝑣𝑣
𝑠0 , such that, 𝑝 is

accepted by (𝑄, {𝑞𝑣𝑣𝑣
𝑠0},Δ), the following statement is true:

𝑈(ℒ(𝑣𝑣𝑣,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥,𝑣𝑣𝑣), 𝐶(𝑃 [𝑞𝑣𝑣𝑣
𝑠0]) ≤ 𝑈(ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]), 𝐶(𝑝))

Therefore, the program 𝑃 [𝑞𝑣𝑣𝑣*
𝑞𝑠0

] is the best-fit program which minimizes the objective

39

function, i.e.,

𝑃 [𝑞𝑣𝑣𝑣*

𝑠0] ∈ argmin𝑝∈𝐺𝑈(ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]), 𝐶(𝑝))

Theorem 3. Given a dataset 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦) and a DSL 𝐺, the synthesis algorithm

Synthesize (Figure 3-3) returns the program which minimizes the objective function.

Proof. Let (𝑄,𝑄𝑓 ,Δ) = ConstructFTA(𝒟, 𝐺). For all programs 𝑝 ∈ 𝐺 (of height less

than the given bound), there exits a state 𝑞𝑣𝑣𝑣
𝑠0 ∈ 𝑄𝑓 , such that, 𝑝[𝑥𝑥𝑥] = 𝑣𝑣𝑣 (Theorem 1).

Let 𝐺𝑥𝑥𝑥,𝑣𝑣𝑣 be the subset of programs 𝑝 ∈ 𝐺, such that, 𝑝[𝑥𝑥𝑥] = 𝑣𝑣𝑣.

For each state 𝑞𝑣𝑣𝑣
𝑠0 , LeastComplex returns program 𝑃 [𝑞𝑣𝑣𝑣

𝑠0], such that, 𝑃 [𝑞𝑣𝑣𝑣
𝑠0] ∈

arg min𝑝∈𝐺𝑥𝑥𝑥,𝑣𝑣𝑣
𝐶(𝑝). Note that, this implies

𝑃 [𝑞𝑣𝑣𝑣
𝑠0] ∈ arg min

𝑝∈𝐺𝑥𝑥𝑥,𝑣𝑣𝑣

𝑈(ℒ(𝑣𝑣𝑣,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥,𝑣𝑣𝑣), 𝐶(𝑝))

Algorithm Synthesize returns program 𝑃 [𝑞*], such that,

𝑞* ∈ arg min
𝑞𝑣𝑣𝑣

𝑠0 ∈𝑄𝑓

𝑈(ℒ(𝑣𝑣𝑣,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥,𝑣𝑣𝑣), 𝐶(𝑃 [𝑞]))

This implies

𝑃 [𝑞*] ∈ arg min
𝑝∈

⋃︀
𝑞𝑣𝑣𝑣

𝑠0 ∈𝑄𝑓

𝐺𝑥𝑥𝑥,𝑣𝑣𝑣

𝑈(ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]), 𝐶(𝑝))

Note that, ⋃︀
𝑞𝑣𝑣𝑣

𝑠0 ∈𝐺
𝐺𝑥𝑥𝑥,𝑣𝑣𝑣 = 𝐺 (Theorem 1). Therefore,

𝑃 [𝑞*] ∈ arg min
𝑝∈𝐺

𝑈(ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]), 𝐶(𝑝))

Therefore, Synthesize returns the program which minimizes the objective function.

3.3 Implementation

With string transformations as a potential application domain, I implemented our tree

automaton based technique (in 6k lines of Java code) for a DSL from [42] (Figure 3-

5). The DSL supports extracting and concatenating (Concat) substrings of the input

string 𝑥; each substring is extracted using the SubStr function with a start and end

40

String expr 𝑒 := Str(𝑓) | Concat(𝑓, 𝑒);
Substring expr 𝑓 := ConstStr(𝑠) | SubStr(𝑥, 𝑝1, 𝑝2);

Position 𝑝 := Pos(𝑥, 𝜏, 𝑘, 𝑑) | ConstPos(𝑘)
Direction 𝑑 := Start | End;

Figure 3-5: DSL for string transformation, 𝜏 is a token, 𝑘 is an integer, and 𝑠 is a
string constant.

position. A position can either be a constant index (ConstPos) or the start or end of

the 𝑘𝑡ℎ occurrence of the match token 𝜏 in the input string (Pos).

Implementation Optimizations: My implementation applies two techniques that

constrain the size of the final FTA. First, it bounds the number of recursive applica-

tions of the production 𝑒 := Concat(𝑓, 𝑒) by applying a bounded scope height threshold

𝑑. This restricts the search space to programs in our DSL which contains a maximum

of 𝑑 concatenations. Since the production 𝑒 := Concat(𝑓, 𝑒) is the only recursive pro-

duction rule, the bounded scope height threshold restricts our search space to finite set

of programs. Second, during construction of the FTA, a state with symbol 𝑒 is only

added to the FTA if the length of the state’s output value is not greater than the

length of the output string plus one.

3.4 Discussion

This chapter presents a new program synthesis algorithm for synthesizing programs

over noisy dataset. This algorithm builds upon a prior technique [43] which uses con-

crete finite tree automaton (CFTA) to synthesize programs over noise-free datasets.

The CFTA constructed by the original technique has a single accepting state. This

state is of the form 𝑞𝑦𝑦𝑦
𝑠0 , where 𝑠0 is the start symbol in the given DSL and 𝑦𝑦𝑦 is the

noise-free outputs in the noise-free dataset. One can identify that CFTA, in this

technique, is an efficient data structure to represent programs which map inputs to

the corresponding outputs.

Our technique builds upon this property of CFTA. It builds a CFTA that accepts

all programs in the given DSL. If a program is accepted by state 𝑞𝑧𝑧𝑧
𝑠0 , then that program

returns 𝑧𝑧𝑧 on the given inputs. For each accepting state, our technique synthesizes

the least complex program accepted by that state. Our technique then iterates over

all accepting states and, using the least complex program accepted by the accepting

41

state, synthesizes the program which minimizes the objective function. Our technique

generalizes the efficient CFTA data structure from the prior technique to synthesize

programs over noisy datasets [42].

42

Chapter 4

Experimental Results

String transformations have been extensively studied within the programming by

example community [20, 30, 35]. I use the SyGuS 2018 benchmark suite [1] to bench-

mark my technique. This benchmark suite contains a range of string transformation

problems, a class of problems that has been extensively studied in past program

synthesis projects [20, 30, 35].

I use the size complexity measure Size(𝑝) (Subsection 2.2.4) and the uniform

regularizer ℛ𝑈 (Definition 4) for these experiments.

4.1 Scalability

Before I start exploring the performance of this technique in presence of different

noise sources and loss functions for different noisy datasets, I first evaluate the run-

time performance and scalability of my technique. I evaluate my implementation by

applying it to all problems in the SyGuS 2018 benchmark suite [1]. My technique

applies the same loss function and regularizer on each accepting state, independent

of the noisy output values. The number of accepting states and the values attached

to each accepting state is dependent of the domain specific language and the inputs

in the dataset, but is independent of the noisy outputs in the dataset. The perfor-

mance of my technique is independent of the noise in the noisy dataset. Therefore,

for each problem, I use a clean (noise-free) dataset for the problem provided with the

benchmark suite to evaluate the runtime performance and scalability of my technique.

43

I use the lexicographic objective function 𝑈𝐿 with the 0/∞ loss function, uniform

regularizer ℛ𝑈 , and the 𝑐 = Size(𝑝) complexity measure. I run each benchmark with

bounded scope height threshold 𝑑 = 1, 2, 3, and 4 and record the running time on

that benchmark problem and the number of states in the FTA (Section 6.7). I use

the bounded scope height threshold 𝑑 to restrict the search space to a finite set of

programs. Given a bounded threshold 𝑑, our search space only contains programs

contains at most 𝑑 instances of function Concat. A state with symbol 𝑒 is only added

to the FTA if the length of its output value is not greater than the length of the

output string.

Because the running time of my technique does not depend on the specific objective

function (except for the time required to evaluate the objective function, which is

typically negligible for most objective functions), we anticipate that these results will

generalize to other objective functions. All experiments are run on an 3.00 GHz

Intel(R) Xeon(R) CPU E5-2690 v2 machine with 512GB memory running Linux

4.15.0. With a timeout limit of 10 minutes and bounded scope height threshold

of 4, the implementation is able to solve 64 out of the 108 SyGuS 2018 benchmark

problems. For the remaining 48 benchmark problems, either fails to return the correct

program or it times out.

Figures 4-1 and 4-2 present my results for SyGuS 2018 benchmarks. There is a row

for each benchmark problem. The first column presents the name of the benchmark.

The next four columns present results for the technique running with bounded scope

height threshold 𝑑 = 1, 2, 3, and 4, respectively. Each column has two subcolumns:

the first presents the running time on that benchmark problem (in seconds); the

second presents the number of states in the FTA (in thousands of states). An entry

X indicates that the implementation terminated but did not synthesize a correct

program that agreed with all provided input-output examples. An entry - indicates

that the implementation did not terminate.

In general, both the running times and the number of states in the FTA increase as

the number of provided input-output examples and/or the bounded height threshold

increases. The FTA size sometimes stops increasing as the height threshold increases.

44

Threshold 1 2 3 4
Benchmark name time(sec) FTA size time(sec) FTA size time(sec) FTA size time(sec) FTA size
bikes 0.16 1.08 0.73 10.56 4.72 56.4 19.83 145.8
bikes-long 0.21 1.02 1.37 9.42 6.04 49.9 26.99 139.35
bikes-long-repeat 0.18 1.02 1.06 9.42 6.03 49.9 27.47 139.35
bikes-short 0.15 1.08 0.79 10.56 3.98 56.4 18.62 145.8
dr-name X X 7.54 107.5 107.18 1547.2 - -
dr-name-long X X 17.4 70.28 300.9 1077.6 - -
dr-name-long-repeat X X 19.15 70.28 301.3 1077.6 - -
dr-name-short X X 10.2 107.5 101.5 154.8 - -
firstname 0.28 1.02 1.46 4.34 4.024 4.33 3.97 4.34
firstname-long 1.72 1.04 12.03 4.36 39.08 4.36 41.22 4.36
firstname-long-repeat 1.64 1.04 13.96 4.36 42.4 4.36 43.1 4.36
firstname-short 0.26 1.02 1.47 4.37 3.93 4.34 3.9 4.34
initials X X X X 8.7 42.3 30.4 42.34
initials-long X X X X 86.44 42.36 376.56 42.36
initials-long-repeat X X X X 86.23 42.36 386.25 42.36
initials-short X X X X 8.92 42.34 31.72 42.34
lastname 0.43 2.56 4.78 28.3 27.29 208.35 159.41 741.44
lastname-long 1.93 1.37 15.1 11.34 112.04 50.81 485.98 50.8
lastname-long-repeat 1.85 1.37 18.35 11.34 113.36 50.81 486.35 50.8
lastname-short 0.6 2.56 3.07 28.3 28.3 208.35 160.54 741.44
name-combine X X 8.49 269.9 224.074 7485.83 - -
name-combine-long X X 32.28 161.54 - - - -
name-combine-long-repeat X X 98.46 299 - - - -
name-combine-short X X 6.5 269.9 207.86 7485.83 - -
name-combine-2 X X X X 63.490 855.34 - -
name-combine-2-long X X X X 591.6 851.44 - -
name-combine-2-long-repeat X X X X 592.0 851.44 - -
name-combine-2-short X X X X 57.26 855.34 - -
name-combine-3 X X X X 43.082 911.53 527.29 8104.7
name-combine-3-long X X X X 193.42 649.13 - -
name-combine-3-long-repeat X X X X 192.81 649.13 - -
name-combine-3-short X X X X 42.266 911.53 526.13 8104.7
name-combine-4 X X X X X X - -
name-combine-4-long X X X X - - - -
name-combine-4-long-repeat X X X X - - - -
name-combine-4-short X X X X X X - -
reverse-name X X 6.9 269.9 217.19 7495.9 - -
reverse-name-long X X 29.55 161.53 - - - -
reverse-name-long-repeat X X 27.6 161.53 - - - -
reverse-name-short X X 6.84 269.9 228.24 7485.8 - -

Figure 4-1: Runtime and FTA size for SyGuS 2018 benchmarks.

I attribute this phenomenon to the application of a search space pruning technique

that terminates the recursive application of the production 𝑒 := Concat(𝑓, 𝑒); when

the generated string becomes longer than the current output string — in this case

any resulting synthesized program will produce an output that does not match the

output in the dataset.

I compare my technique with a previous technique that uses FTAs to solve pro-

gram synthesis problems [42]. This previous technique requires clean data and only

synthesizes programs that agree with all input-output examples in the dataset. My

technique builds FTAs with similar structure, with additional overhead coming from

the evaluation of the objective function. I obtained the implementation of the tech-

nique presented in [42] and ran this implementation on all benchmarks in the SyGuS

2018 benchmark suite. If both of these techniques construct the CFTA on all ex-

amples at the same time, the running times of my implementation and this previous

implementation are comparable.

45

Threshold 1 2 3 4
Benchmark name time(sec) FTA size time(sec) FTA size time(sec) FTA size time(sec) FTA size
phone 0.12 0.46 0.47 1.58 0.87 1.58 0.78 1.58
phone-long 0.8 0.46 3.9 1.58 7.79 1.58 32.79 1.58
phone-long-repeat 0.69 0.46 3.29 1.58 7.76 1.58 43.24 1.58
phone-short 0.12 0.46 0.37 1.58 0.804 1.578 4.97 1.58
phone-1 0.15 0.46 0.44 1.58 0.84 1.58 3.017 1.58
phone-1-long 0.99 0.46 3.8 1.58 8.23 1.58 16.58 1.58
phone-1-long-repeat 0.90 0.46 4.1 1.58 8.42 1.58 17.5 1.58
phone-1-short 0.14 0.46 0.45 1.58 0.8 1.58 1.5 1.58
phone-2 0.13 0.46 0.44 1.58 0.83 1.58 3.176 1.58
phone-2-long 0.64 0.46 2.84 1.58 8.36 1.58 16 1.58
phone-2-long-repeat 0.85 0.46 3.8 1.58 9.83 1.58 17.55 1.58
phone-2-short 0.09 0.46 0.47 1.58 0.83 1.58 2.78 1.58
phone-3 X X X X X X - -
phone-3-long X X X X - - - -
phone-3-long-repeat X X X X - - - -
phone-3-short X X X X X X - -
phone-4 X X X X X X - -
phone-4-long X X X X - - - -
phone-4-long-repeat X X X X - - - -
phone-4-short X X X X X X - -
phone-5 0.18 0.23 0.16 0.23 0.11 0.23 0.7 0.23
phone-5-long 1.24 0.23 0.94 0.23 0.75 0.23 4.2 0.23
phone-5-long-repeat 1.27 0.23 1.19 0.23 0.77 0.23 2.96 0.23
phone-5-short 0.17 0.23 0.17 0.23 0.11 0.23 0.9 0.23
phone-6 0.27 0.64 1.38 2.6 2.67 2.61 9.3 2.61
phone-6-long 1.84 0.64 6.48 2.6 24.66 2.61 103.3 2.61
phone-6-long-repeat 2.16 0.64 7.12 2.6 24.69 2.61 143.9 2.61
phone-6-short 0.28 0.64 0.76 2.6 2.27 2.61 11.19 2.61
phone-7 0.24 0.64 1.04 2.6 2.87 2.61 11.141 2.61
phone-7-long 2.6 0.64 7.8 2.6 26.1 2.61 108.1 2.61
phone-7-long-repeat 2.58 0.64 6.68 2.6 26.15 2.61 115.42 2.61
phone-7-short 0.23 0.64 1.13 2.6 3.26 2.61 10.71 2.61
phone-8 0.23 0.64 1 2.6 2.65 2.61 8.51 2.61
phone-8-long 2.33 0.64 7.58 2.6 25.87 2.61 114.54 2.61
phone-8-long-repeat 1.67 0.64 7.7 2.6 25.45 2.61 128.3 2.61
phone-8-short 0.27 0.64 0.97 2.6 2.45 2.61 13.81 2.61
phone-9 X X X X - - - -
phone-9-long X X X X - - - -
phone-9-long-repeat X X X X - - - -
phone-9-short X X X X - - - -
phone-10 X X X X - - - -
phone-10-long X X X X - - - -
phone-10-long-repeat X X X X - - - -
phone-10-short X X - - - - - -
univ-1 X X - - - - - -
univ-1-long X X - - - - - -
univ-1-long-repeat X X - - - - - -
univ-1-short X X - - - - - -
univ-2 X X - - - - - -
univ-2-long X X - - - - - -
univ-2-long-repeat X X - - - - - -
univ-2-short X X - - - - - -
univ-3 X X - - - - - -
univ-3-long X X - - - - - -
univ-3-long-repeat X X - - - - - -
univ-3-short X X - - - - - -
univ-4 X X - - - - - -
univ-4-long X X - - - - - -
univ-4-long-repeat X X - - - - - -
univ-4-short X X - - - - - -
univ-5 X X - - - - - -
univ-5-long X X - - - - - -
univ-5-long-repeat X X - - - - - -
univ-5-short X X - - - - - -
univ-6 X X - - - - - -
univ-6-long X X - - - - - -
univ-6-long-repeat X X - - - - - -
univ-6-short X X - - - - - -

Figure 4-2: Runtimes and FTA sizes for SyGuS 2018 benchmarks.

An implementation of their technique also makes an additional optimization.

Their algorithm only constructs the FTA on a subset of input-output examples. Ini-

tially, this subset only contains a single example. Their algorithm builds the CFTA on

this subset and synthesizes the simplest program accepted by this CFTA. If this pro-

gram satisfies all examples in the dataset, the algorithm returns this program. If there

46

Benchmark name Programming-by-example technique Without optimization Our technique
bikes 1.422 4.98 4.72
bikes-long 1.099 5.8 6.04
bikes-long-repeat 1.114 6.48 6.03
bikes_small 1.083 4.9 3.98
dr-name 15.438 121.8 107.18
dr-name-long 10.645 285.8 300.9
dr-name-long-repeat 10.342 280.6 301.3
dr-name_small 15.355 120.3 101.5
firstname 1.822 3.96 4.024
firstname-long 1.974 38.03 39.08
firstname-long-repeat 2.014 44.84 42.4
firstname_small 1.98 4.135 3.93
initials 0.926 8.84 8.7
initials-long 0.954 99.73 86.44
initials-long-repeat 0.854 82.362 86.23
initials_small 1.024 9.024 8.92
lastname 12.128 28.7 27.29
lastname-long 12.227 103.4 112.04
lastname-long-repeat 11.389 103.5 113.36
lastname_small 11.556 30.54 28.3
name-combine 26.267 201.24 224.074
name-combine-long 24.421 - -
name-combine-long-repeat 63.194 - -
name-combine_short 28.125 196.21 207.86
name-combine-2 10.076 68.91 63.49
name-combine-2-long 10.144 594.13 591.6
name-combine-2-long-repeat 10.885 595.6 592
name-combine-2_short 11.126 66.723 57.26
name-combine-3 13.113 45.16 43.082
name-combine-3-long 13.857 217.66 193.42
name-combine-3-long-repeat 14.358 180.66 192.81
name-combine-3_short 13.873 49.83 42.26
name-combine-4 - - -
name-combine-4-long - - -
name-combine-4-long-repeat - - -
name-combine-4_short - - -
phone 0.211 1.014 0.87
phone-long 0.211 8.46 7.79
phone-long-repeat 0.207 6.64 7.76
phone_short 0.203 0.924 0.804
phone-1 0.205 0.967 0.84
phone-1-long 0.21 8.59 8.23
phone-1-long-repeat 0.206 7.89 8.42
phone-1_short 0.211 0.95 0.8
phone-2 0.203 0.954 0.83
phone-2-long 0.206 8.73 8.36
phone-2-long-repeat 0.203 8.7 9.83
phone-2_short 0.206 0.95 0.83
phone-3 - - -
phone-3-long - - -
phone-3-long-repeat - - -
phone-3_short - - -
phone-4 - - -
phone-4-long - - -
phone-4-long-repeat - - -
phone-4_short - - -
phone-5 0.323 0.124 0.11
phone-5-long 0.321 0.737 0.75
phone-5-long-repeat 0.308 0.696 0.77
phone-5_short 0.367 0.12 0.11
phone-6 0.315 3.097 2.67
phone-6-long 0.317 26.522 24.66
phone-6-long-repeat 0.303 22.97 24.69
phone-6_short 0.324 2.961 2.27
phone-7 0.321 2.889 2.87
phone-7-long 0.331 26.85 26.1
phone-7-long-repeat 0.337 27.08 26.15
phone-7_short 0.311 3.225 3.26
phone-8 0.327 2.93 2.65
phone-8-long 0.329 27 25.87
phone-8-long-repeat 0.325 27.524 25.45
phone-8_short 0.305 2.92 2.45

Figure 4-3: Runtimes for our noisy program synthesis technique vs CFTA based
programming by example technique over SyGuS 2018 benchmarks.

exists an example, on which the output of this program is not equal to the output

in the dataset, the algorithm adds this example to the subset. Then the algorithm

repeats this process until it synthesizes a program which satisfies all input-output

47

Benchmark name Programming-by-example technique Without optimization Our technique
phone-9 - - -
phone-9-long - - -
phone-9-long-repeat - - -
phone-9_short - - -
phone-10 - - -
phone-10-long - - -
phone-10-long-repeat - - -
phone-10_short - - -
reverse-name 29.211 206.53 217.19
reverse-name-long 25.78 - -
reverse-name-long-repeat 24.654 - -
reverse-name_short 25.418 202.85 228.24
univ_1 - - -
univ_1-long - - -
univ_1-long-repeat - - -
univ_1_short - - -
univ_2 - - -
univ_2-long - - -
univ_2-long-repeat - - -
univ_2_short - - -
univ_3 - - -
univ_3-long - - -
univ_3-long-repeat - - -
univ_3_short - - -
univ_4 - - -
univ_4-long - - -
univ_4-long-repeat - - -
univ_4_short - - -
univ_5 - - -
univ_5-long - - -
univ_5-long-repeat - - -
univ_5_short - - -
univ_6 - - -
univ_6-long - - -
univ_6-long-repeat - - -
univ_6_short - - -

Figure 4-4: Runtimes for our noisy program synthesis technique vs CFTA based
programming by example technique over SyGuS 2018 benchmarks.

examples in the dataset.

Figures 4-3 and 4-4 present the runtime (in sec) of CFTA based programming-

by-example technique presented in [42], their technique without the additional op-

timization, and our technique. Compared to our technique, their technique has a

median speedup of 8.5x. Without the additional optimization, the performance of

our technique and their technique is similar.

4.2 Noisy Data Sets, Character Deletion

I next present results for my implementation running on small (few input-output

examples) datasets with character deletions. I use a noise source that cyclically

deletes a single character from each output in the dataset in turn, starting with the

first character, proceeding through the output positions, then wrapping around to

the first character again. I apply this noise source to corrupt every output in the

dataset. To construct a noisy dataset with 𝑘 correct (uncorrupted) outputs, I do not

apply the noise source to the last 𝑘 outputs in the dataset.

48

I exclude all benchmarks that do not terminate within the time limit at height

bound 3. Compared to other bounds explored in our scalability experiments, my

technique with height bound 3 is able to synthesize the correct program for the max-

imum number of benchmarks within the given timeout (10 minutes for each bench-

mark). For each remaining benchmark I use my implementation and the generated

corrupted datasets to determine the minimum number of correct outputs in the cor-

rupted dataset required for the implementation to produce a correct program that

matches the original hidden clean dataset on all input-output examples. I consider

three loss functions: the 0/1 loss function and DL loss function and the following

1-Delete loss function, which is designed to work with noise sources that delete a

single character from the output stream:

Definition 10. 1-Delete Loss Function: The 1-Delete loss function ℒ1𝐷(𝑥𝑥𝑥,𝑦𝑦𝑦),

for each example, assigns loss 0 if the outputs from the synthesized program and the

dataset match exactly, 1 if a single deletion enables the output from the synthesized

program to match the output from the dataset, and ∞ otherwise:

ℒ1𝐷(⟨𝑧1, . . . 𝑧𝑛⟩, ⟨𝑦1, . . . 𝑦𝑛⟩) =
𝑛∑︁

𝑖=1
𝐿1𝐷(𝑧𝑖, 𝑦𝑖), where

𝐿1𝐷(𝑧, 𝑦) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 𝑧 = 𝑦

1 𝑎 · 𝑤 · 𝑏 = 𝑧 ∧ 𝑎 · 𝑏 = 𝑦 ∧ |𝑤| = 1

∞ otherwise

I use the lexicographic objective function 𝑈𝐿 with 𝑐 = Size(𝑝) as the complexity

measure and bounded scope height threshold 𝑑 = 4.

Figure 4-5 summarizes a subset of the results. The Data Set Size Column presents

the total number of input-output examples in the corrupted dataset. The next three

columns, 1-Delete, DL, and 0/1, present the minimum number of correct (uncor-

rupted) input-output examples required for the technique to synthesize a correct

program (that agrees with the original hidden clean dataset on all input-output ex-

amples) using the 1-Delete, DL, and 0/1 loss functions, respectively.

49

Benchmark Data set Number of required

size correct examples
1-Delete DL 0/1

bikes 6 0 0 3
dr-name 4 0 0 2
firstname 4 0 0 2
lastname 4 0 1 1
initials 4 0 2 2
reverse-name 6 0 0 2
name-combine 6 0 0 2
name-combine-2 4 0 0 2
name-combine-3 6 0 0 2
phone 6 0 2 3
phone-1 6 0 3 3
phone-2 6 0 2 3
phone-5 7 0 2 3
phone-6 7 0 1 3
phone-7 7 0 2 3
phone-8 7 0 0 1

Figure 4-5: Minimum number of correct examples required to synthesize a correct
program.

With the 1-Delete loss function, the minimum number of required correct input-

output examples is always 0 — the implementation synthesizes, for every benchmark

problem, a correct program that matches every input-output example in the original

clean dataset even when given a dataset in which every output is corrupted. This

result highlights how 1) discrete noise sources produce noisy outputs that leave a

significant amount of information from the original uncorrupted output available in

the corrupted output and 2) a loss function that matches the noise source can enable

the synthesis technique to exploit this information to produce correct programs even

in the face of substantial noise.

With the DL loss function, the implementation synthesizes a correct program for

8 of the 16 benchmarks when all outputs in the dataset are corrupted. For 7 of the

remaining 8 benchmarks the technique requires 2 correct input-output examples to

synthesize the correct program. The remaining benchmark requires 3 correct exam-

ples. The general pattern is that the technique tends to require correct examples

50

Benchmark Data set Number of required

size correct examples
1-Delete DL 0/1

bikes 6 0 0 3
bikes-long 24 0 0 9
bikes-long-repeat 58 0 0 10
bikes-short 6 0 0 3
dr-name 4 0 0 2
dr-name-long 50 0 0 6
dr-name-short 4 0 0 2
firstname 4 0 0 2
firstname-long 54 0 0 9
firstname-long-repeat 204 0 0 30
firstname-short 4 0 0 2
lastname 4 0 1 1
lastname-long 54 0 0 9
lastname-long-repeat 204 0 0 30
lastname-short 4 0 1 1
initials 4 0 2 2
initials-long 54 0 12 12
initials-short 4 0 2 2
reverse-name 6 0 0 2
reverse-name-short 6 0 0 2
name-combine 6 0 0 2
name-combine-2 4 0 0 2
name-combine-2-long 54 0 0 7
name-combine-2-short 4 0 0 2
name-combine-3 6 0 0 2
name-combine-3-long 50 0 0 6
name-combine-3-long-repeat 200 0 0 22
name-combine-3-short 6 0 0 2
phone 6 0 2 3
phone-long 100 0 29 29
phone-long-repeat 400 0 119 119
phone-short 6 0 2 3
phone-1 6 0 3 3
phone-1-long 100 0 28 28
phone-1-long-repeat 400 0 116 116
phone-1-short 6 0 3 3
phone-2 6 0 2 3
phone-2-long 100 0 27 28
phone-2-long-repeat 400 0 110 110
phone-2-short 6 0 2 3
phone-5 7 0 2 3
phone-5-long 100 0 10 24
phone-5-long-repeat 400 0 35 84
phone-5-short 7 0 2 3
phone-6 7 0 1 3
phone-6-long 100 0 11 27
phone-6-long-repeat 400 0 31 107
phone-6-short 7 0 1 3
phone-7 7 0 2 3
phone-7-long 100 0 7 25
phone-7-long-repeat 400 0 21 102
phone-7-short 7 0 2 3
phone-8 7 0 0 1
phone-8-long 100 0 0 3
phone-8-long-repeat 400 0 0 9
phone-8-short 7 0 0 1

Figure 4-6: Minimum number of correct examples required to synthesize a correct
program.

when the output strings are short. The synthesized incorrect programs typically use

less of the input string.

These results highlight how the DL loss function still extracts significant useful

information available in outputs corrupted with discrete noise sources. But in com-

parison with the 1-Delete loss function, the DL loss function is not as good a match

for the character deletion noise source. The result is that the synthesis technique,

when working with the DL loss function, works better with longer inputs, some-

51

times encounters incorrect programs that fit the corrupted data better, and therefore

sometimes requires correct inputs to synthesize the correct program.

The performance advantage of the 1-Delete loss function in this scenario can be

explained using a concept of an optimal loss function. The concept of an optimal

loss function formalizes this match between the loss function and the noise source. I

explore the concept of an optimal loss function in Chapter 5.

With the 0/1 loss function, the technique always requires at least one and usually

more correct inputs to synthesize the correct program. In contrast to the 1-Delete and

DL loss functions, the 0/1 loss function does not extract information from corrupted

outputs. To synthesize a correct program with the 0/1 loss function in this scenario,

the technique must effectively ignore the corrupted outputs to synthesize the program

working only with information from the correct outputs. It therefore always requires

at least one and usually more correct outputs before it can synthesize the correct

program.

I present the results for all SyGuS 2018 benchmarks (except benchmarks on which

our implementation timed out on) in Figure 4-6.

4.3 Noisy Data Sets, Character Replacements

I next present results for my implementation running on larger data sets with char-

acter replacements. The phone-*-long-repeat benchmarks within the SyGuS 2018

benchmarks contain transformations over phone numbers. The datasets for these

benchmarks contain 400 input-output examples, including repeated input-output ex-

amples.

For each of these phone-*-long-repeat benchmark problems on which my technique

terminates with bounded scope height threshold 4 (Section 4.1), I construct a noisy

dataset as follows. For each digit in each output string in the dataset, I flip a biased

coin. With probability 𝑏, I replace the digit with a uniformly chosen random digit (so

that each digit in the noisy output is not equal to the original digit in the uncorrupted

output with probability 9/10× 𝑏).

I then run my implementation on each benchmark problem with the noisy dataset

52

using the tradeoff objective function 𝑈𝜆(𝑙, 𝑟, 𝑐) = 𝑙 + 𝜆 × 𝑟 + 𝛾 × 𝑐 with complex-

ity measure 𝑐 = Size(𝑝), uniform regularizer, and the following 𝑛-Substitution loss

function:

Definition 11. 𝑛-Substitution Loss Function: The 𝑛-Substitution loss function

ℒ𝑛𝑆(𝑥𝑥𝑥,𝑦𝑦𝑦), for each example, counts the number of positions where the noisy output

does not agree with the output from the synthesized program. If the synthesized pro-

gram produces an output that is longer or shorter than the output in the noisy dataset,

the loss function is ∞:

ℒ𝑛𝑆(⟨𝑧1, . . . 𝑧𝑛⟩, ⟨𝑦1, . . . 𝑦𝑛⟩) =
𝑛∑︁

𝑖=1
𝐿𝑛𝑆(𝑧𝑖, 𝑦𝑖), where

𝐿𝑛𝑆(𝑧, 𝑦) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞ |𝑧| ≠ |𝑦|
|𝑧|∑︀

𝑖=1
1 if 𝑧[𝑖] ̸= 𝑦[𝑖] else 0 |𝑧| = |𝑦|

I run the implementation for all combinations of the bounded scope threshold

𝑏 ∈ {0.2, 0.4, 0.6} and 𝜆 ∈ {0.001, 0.1}. For every combination of 𝑏 and 𝜆, and for

every one of the phone-*-long-repeat benchmarks in the SyGuS 2018 benchmark set,

the implementation synthesizes a correct program that produces the same outputs as

in the original (hidden) clean dataset.

These results highlight, once again, the ability of my technique to work with loss

functions that match the characteristics of discrete noise sources to synthesize correct

programs even in the face of substantial noise.

4.4 Approximate Program Synthesis

For the benchmarks in Figure 4-7, a correct program does not exist within the DSL

at bounded scope threshold 2. Figure 4-7 presents results from my implementation

on the clean (noise-free) benchmark datasets with the DL loss function, Size(𝑝) com-

plexity measure, lexicographic objective function 𝑈𝐿, uniform regularizer ℛ𝑈 , and

bounded scope threshold 2. The first column presents the name of the benchmark.

The next four columns present the number of input-output examples in the bench-

mark dataset, the DL loss incurred by the synthesized program over the entire dataset,

53

the sum of the lengths of the output strings of the dataset (the DL loss for an empty

output would be this sum), and the size of the synthesized program.

Benchmark Data set DL Output Program
size loss size size

name-combine-4 5 10 49 16
phone-3 7 14 91 11
phone-4 6 6 66 17
phone-9 7 14 99 21
phone-10 7 14 120 21

Figure 4-7: Approximate program synthesis with DL loss function.

For the phone-* benchmarks, a correct program outputs the entire input telephone

number but changes the punctutation, for example by including an area code in

parentheses. The synthesized approximate programs correctly preserve the telephone

number but apply only some of the punctuation changes. The result is 2 = 14/7

characters incorrect per output for all but phone-4, which has 1 character per output

incorrect. Each output is between 13 = 91/7 and 17 = 120/7 characters long. For

name-combine-4, the synthesized approximate program correctly extracts the last

name, inserts a comma and a period, but does not extract the initial of the first

name. These results highlight the ability of my technique to approximate a correct

program when the correct program does not exist in the program search space.

Figures 4-8, 4-9, 4-10, and 4-11 present results from my implementation on the

clean (noise-free) benchmark datasets in SyGuS 2018. The first column presents

the name of the benchmark. The next column presents the number of input-output

examples in the given benchmark. The next column presents the sum of the lengths

of the output strings of the dataset. The next two columns present results for the

technique running with bounded scope height threshold 𝑑 = 1 and 2, or 3 and 4,

respectively. Each column has four subcolumns: the first presents the running time

on that benchmark problem (in seconds). The second presents the number of states

in the FTA (in thousands of states). The third presents the DL loss of the synthesized

program over the entire dataset (compare this DL loss with the sum of the output

lengths over the dataset). The fourth presents the size of the synthesized program.

54

Threshold 1 2
Benchmark name n out size time(sec) FTA size loss size time(sec) FTA size loss size
bikes 6 33 0.18 14.28 0 8 1.04 191.6 0 8
bikes-long 24 136 0.37 135.42 0 8 2.85 1695.02 0 8
bikes-long-repeat 58 325 0.68 135.46 0 8 5.81 1695.06 0 8
bikes-short 6 33 0.13 14.28 0 8 1.11 191.6 0 8
dr-name 4 36 0.49 63.76 4 11 8.66 1693.15 0 14
dr-name-long 50 515 1.24 356.55 50 11 22.5 9844.45 0 14
dr-name-long-repeat 150 1545 2.34 3565.15 150 11 59.33 98444.15 0 14
dr-name-short 4 36 0.55 63.76 4 11 8.53 1693.15 0 14
firstname 4 20 0.26 15.95 0 8 1.67 133.16 0 8
firstname-long 54 335 1.47 161.35 0 8 16.14 1333.45 0 8
firstname-long-repeat 204 1280 3.64 1613.2 0 8 47.74 13334.2 0 8
firstname-short 4 20 0.23 15.95 0 8 1.61 133.16 0 8
initials 4 16 0.23 15.97 8 6 1.64 168.58 4 12
initials-long 54 216 1.23 143.25 108 6 14.83 1669.35 54 12
initials-long-repeat 204 816 3.14 1432.2 408 6 48.23 16693.2 204 12
initials-short 4 16 0.22 15.97 8 6 1.61 168.58 4 12
lastname 4 30 0.42 38.48 0 10 4.45 591.56 0 10
lastname-long 54 356 1.48 186.05 0 10 18.5 2316.35 0 10
lastname-long-repeat 204 1334 3.69 1860.2 0 10 60.44 23163.2 0 10
lastname-short 4 30 0.44 38.48 0 10 4.25 591.56 0 10
name-combine 6 81 0.44 69.97 6 8 9.55 3263.99 0 21
name-combine-long 50 691 1.53 546.75 50 8 41.16 20330.85 0 21
name-combine-long-repeat 204 2818 8.85 9717.2 204 8 464.71 392615.2 0 21
name-combine-short 6 81 0.45 69.97 6 8 10.23 3263.99 0 21
name-combine-2 4 32 0.5 49.25 4 11 6.43 1124.6 4 11
name-combine-2-long 54 497 2.03 407.45 54 11 47.53 9703.35 54 11
name-combine-2-long-repeat 204 1892 5.35 4074.2 204 11 161.69 97033.2 204 11
name-combine-2-short 4 32 0.51 49.25 4 11 6.5 1124.6 4 11
name-combine-3 6 56 0.33 38.94 12 13 4.12 984.52 6 16
name-combine-3-long 50 476 1.2 288.15 100 13 18.06 6511.15 50 16
name-combine-3-long-repeat 200 1904 2.53 2881.2 400 13 59.13 65111.2 200 16
name-combine-3-short 6 56 0.34 38.94 12 13 3.98 984.52 6 16
name-combine-4 5 49 0.34 52.26 15 13 5.1 1679.88 10 16
name-combine-4-long 50 526 1.39 362.65 150 13 22.88 9825.05 100 16
name-combine-4-long-repeat 200 2104 3.15 3626.2 600 13 77.55 98250.2 400 16
name-combine-4-short 5 49 0.36 52.26 15 13 4.92 1679.88 10 16
phone 6 18 0.13 7.35 0 6 0.55 48.79 0 6
phone-long 100 300 0.71 734.1 0 6 4.06 4878.1 0 6
phone-long-repeat 400 1200 1.51 734.4 0 6 13.93 4878.4 0 6
phone-short 6 18 0.1 7.35 0 6 0.55 48.79 0 6
phone-1 6 18 0.13 7.35 0 6 0.57 48.79 0 6
phone-1-long 100 300 0.76 734.1 0 6 4.22 4878.1 0 6
phone-1-long-repeat 400 1200 1.52 734.4 0 6 14.18 4878.4 0 6
phone-1-short 6 18 0.1 7.35 0 6 0.55 48.79 0 6
phone-2 6 18 0.12 7.35 0 8 0.57 48.79 0 8
phone-2-long 100 300 0.69 734.1 0 8 4.09 4878.1 0 8
phone-2-long-repeat 400 1200 1.55 734.4 0 8 17.56 4878.4 0 8
phone-2-short 6 18 0.12 7.35 0 8 0.56 48.79 0 8
phone-3 7 91 0.39 42.06 14 11 5.13 1826.9 14 11
phone-3-long 100 1300 1.54 4205.1 200 11 51.3 182689.1 200 11
phone-3-long-repeat 400 5200 4.28 4205.4 800 11 182.03 182689.4 800 11
phone-3-short 7 91 0.35 42.06 14 11 5.03 1826.9 14 11
phone-4 6 66 0.26 39.66 12 8 4.11 1498.16 6 17
phone-4-long 100 1100 1.44 3965.1 200 8 43.97 149815.1 100 17
phone-4-long-repeat 400 4400 3.85 3965.4 800 8 152.39 149815.4 400 17
phone-4-short 6 66 0.29 39.66 12 8 4.17 1498.16 6 17
phone-5 7 15 0.15 5.57 0 8 0.64 5.57 0 8
phone-5-long 100 240 1.05 556.1 0 8 4.77 556.1 0 8
phone-5-long-repeat 400 960 2.58 556.4 0 8 14.38 556.4 0 8
phone-5-short 7 15 0.15 5.57 0 8 0.63 5.57 0 8
phone-6 7 21 0.25 12.85 0 10 1.39 72.62 0 10
phone-6-long 100 300 1.44 1284.1 0 10 14.09 7261.1 0 10
phone-6-long-repeat 400 1200 3.98 1284.4 0 10 42.03 7261.4 0 10
phone-6-short 7 21 0.3 12.85 0 10 1.39 72.62 0 10

Figure 4-8: Runtimes, FTA sizes, synthesized program’s loss, and synthesized pro-
gram’s size for SyGuS 2018 benchmarks under DL loss function.

An entry - indicates that the implementation did not terminate.

4.5 Discussion

Practical Applicabilty: The experimental results show that my technique is effec-

tive at solving string manipulation program synthesis problems with modestly sized

solutions like those present in the SyGuS 2018 benchmarks. More specifically, the

55

Threshold 1 2
Benchmark name n out size time(sec) FTA size loss size time(sec) FTA size loss size
phone-7 7 21 0.22 12.85 0 10 1.34 72.62 0 10
phone-7-long 100 300 1.5 1284.1 0 10 12.99 7261.1 0 10
phone-7-long-repeat 400 1200 4.25 1284.4 0 10 44.31 7261.4 0 10
phone-7-short 7 21 0.22 12.85 0 10 1.41 72.62 0 10
phone-8 7 21 0.22 12.85 0 10 1.33 72.62 0 10
phone-8-long 100 300 1.45 1284.1 0 10 14.08 7261.1 0 10
phone-8-long-repeat 400 1200 3.96 1284.4 0 10 46.61 7261.4 0 10
phone-8-short 7 21 0.22 12.85 0 10 1.4 72.62 0 10
phone-9 7 99 0.86 163.06 21 8 43.75 12299.47 14 21
phone-9-long 100 1440 5.19 16305.1 300 8 555.42 1229985.1 200 21
phone-9-long-repeat 400 5760 17.01 16305.4 1200 8 - - - -
phone-9-short 7 99 0.9 163.06 21 8 41.61 12299.47 14 21
phone-10 7 120 1.18 187.59 21 8 65.53 18600.06 14 21
phone-10-long 100 1740 6.82 18758.1 300 8 - - - -
phone-10-long-repeat 400 6960 21.71 18758.4 1200 8 - - - -
phone-10-short 7 120 0.98 187.59 21 8 65.15 18600.06 14 21
reverse-name 6 81 0.44 69.97 6 18 9.12 3263.99 0 21
reverse-name-long 50 691 1.45 546.75 50 18 43.63 20330.85 0 21
reverse-name-long-repeat 200 2764 4.07 5467.2 200 18 150.97 203308.2 0 21
reverse-name-short 6 81 0.55 69.97 6 18 10.1 3263.99 0 21
univ-1 6 258 147.5 11954.27 12 8 - - - -
univ-1-long 20 699 98.37 22386.12 40 8 - - - -
univ-1-long-repeat 30 1000 132.04 22386.13 60 8 - - - -
univ-1-short 6 258 170.89 11954.27 12 8 - - - -
univ-2 6 243 99.43 4954.21 17 18 - - - -
univ-2-long 20 744 115.13 27793.82 65 18 - - - -
univ-2-long-repeat 30 1075 145.75 27793.83 98 18 - - - -
univ-2-short 6 243 106.17 4954.21 17 18 - - - -
univ-3 6 122 22.53 1134.63 5 20 - - - -
univ-3-long 20 378 30.38 4930.22 25 20 - - - -
univ-3-long-repeat 30 570 37.74 4930.23 45 20 - - - -
univ-3-short 6 122 25.99 1134.63 5 20 - - - -
univ-4 8 150 22.75 842.34 18 20 - - - -
univ-4-long 20 366 27.1 4510.42 39 20 - - - -
univ-4-long-repeat 30 552 34.4 4510.43 63 20 - - - -
univ-4-short 8 150 25.79 842.34 18 20 - - - -
univ-5 8 150 25.14 1005.5 18 20 - - - -
univ-5-long 20 366 32.39 5708.62 39 20 - - - -
univ-5-long-repeat 30 552 41.96 5708.63 63 20 - - - -
univ-5-short 8 150 31.34 1005.5 18 20 - - - -
univ-6 8 150 38.49 1171.16 18 20 - - - -
univ-6-long 20 366 36.38 6896.62 39 20 - - - -
univ-6-long-repeat 30 552 53.14 6896.63 63 20 - - - -
univ-6-short 8 150 35.31 1171.16 18 20 - - - -

Figure 4-9: Runtimes, FTA sizes, synthesized program’s loss, and synthesized pro-
gram’s size for SyGuS 2018 benchmarks under DL loss function.

results highlight how the combination of structure from the DSL, a discrete noise

source that preserves some information even in corrupted outputs, and a good match

between the loss function and noise source can enable very effective synthesis for

data datasets with only a handful of input-output examples even in the presence of

substantial noise. Even with as generic a loss function as the 0/1 loss function, the

technique is effective at dealing with datasets in which a significant fraction of the

outputs are corrupted. I anticipate that these results will generalize to similar classes

of program synthesis problems with modestly sized solutions within a tractable and

focused class of computations.

I note that my current implementation does not scale to SyGuS 2018 benchmarks

with larger solutions. These benchmarks were designed to test the scalability of

current and future program synthesis systems. No currently extant program analysis

56

Threshold 3 4
Benchmark name n out size time(sec) FTA size loss size time(sec) FTA size loss size
bikes 6 33 7.0 1532.67 0 8 49.06 6655.88 0 8
bikes-long 24 136 25.45 13114.22 0 8 158.04 57398.12 0 8
bikes-long-repeat 58 325 55.19 13114.26 0 8 364.4 57398.16 0 8
bikes-short 6 33 7.34 1532.67 0 8 54.77 6655.88 0 8
dr-name 4 36 194.82 29685.59 0 14 - - - -
dr-name-long 50 515 - - - - - - - -
dr-name-long-repeat 150 1545 - - - - - - - -
dr-name-short 4 36 302.33 29685.59 0 14 - - - -
firstname 4 20 26.0 595.77 0 8 49.09 595.77 0 8
firstname-long 54 335 251.45 5959.55 0 8 547.8 5959.55 0 8
firstname-long-repeat 204 1280 - - - - - - - -
firstname-short 4 20 27.41 595.77 0 8 45.07 595.77 0 8
initials 4 16 31.26 1450.97 0 22 117.93 5913.66 0 22
initials-long 54 216 370.59 14493.25 0 22 - - - -
initials-long-repeat 204 816 - - - - - - - -
initials-short 4 16 19.0 1450.97 0 22 121.17 5913.66 0 22
lastname 4 30 59.1 5717.2 0 10 432.69 34502.07 0 10
lastname-long 54 356 249.64 19128.05 0 10 - - - -
lastname-long-repeat 204 1334 - - - - - - - -
lastname-short 4 30 57.87 5717.2 0 10 481.84 34502.07 0 10
name-combine 6 81 381.69 102428.84 0 21 - - - -
name-combine-long 50 691 - - - - - - - -
name-combine-long-repeat 204 2818 - - - - - - - -
name-combine-short 6 81 413.17 102428.84 0 21 - - - -
name-combine-2 4 32 113.3 17414.8 0 24 - - - -
name-combine-2-long 54 497 - - - - - - - -
name-combine-2-long-repeat 204 1892 - - - - - - - -
name-combine-2-short 4 32 111.78 17414.8 0 24 - - - -
name-combine-3 6 56 78.62 16834.93 0 22 - - - -
name-combine-3-long 50 476 325.26 110276.25 0 22 - - - -
name-combine-3-long-repeat 200 1904 - - - - - - - -
name-combine-3-short 6 56 74.39 16834.93 0 22 - - - -
name-combine-4 5 49 139.73 36808.22 5 19 - - - -
name-combine-4-long 50 526 533.41 201894.15 50 19 - - - -
name-combine-4-long-repeat 200 2104 - - - - - - - -
name-combine-4-short 5 49 139.69 36808.22 5 19 - - - -
phone 6 18 2.37 162.2 0 6 6.16 162.2 0 6
phone-long 100 300 26.93 16219.1 0 6 75.58 16219.1 0 6
phone-long-repeat 400 1200 85.42 16219.4 0 6 251.59 16219.4 0 6
phone-short 6 18 2.31 162.2 0 6 5.47 162.2 0 6
phone-1 6 18 2.37 162.2 0 6 5.86 162.2 0 6
phone-1-long 100 300 26.69 16219.1 0 6 76.31 16219.1 0 6
phone-1-long-repeat 400 1200 86.62 16219.4 0 6 260.76 16219.4 0 6
phone-1-short 6 18 2.49 162.2 0 6 6.3 162.2 0 6
phone-2 6 18 2.16 162.2 0 8 6.37 162.2 0 8
phone-2-long 100 300 26.24 16219.1 0 8 69.53 16219.1 0 8
phone-2-long-repeat 400 1200 86.94 16219.4 0 8 242.99 16219.4 0 8
phone-2-short 6 18 2.05 162.2 0 8 5.78 162.2 0 8
phone-3 7 91 202.67 59912.06 7 20 - - - -
phone-3-long 100 1300 - - - - - - - -
phone-3-long-repeat 400 5200 - - - - - - - -
phone-3-short 7 91 201.6 59912.06 7 20 - - - -
phone-4 6 66 126.55 42781.51 6 17 - - - -
phone-4-long 100 1100 - - - - - - - -
phone-4-long-repeat 400 4400 - - - - - - - -
phone-4-short 6 66 125.07 42781.51 6 17 - - - -
phone-5 7 15 0.67 5.57 0 8 0.65 5.57 0 8
phone-5-long 100 240 5.28 556.1 0 8 4.27 556.1 0 8
phone-5-long-repeat 400 960 16.45 556.4 0 8 14.09 556.4 0 8
phone-5-short 7 15 0.62 5.57 0 8 0.67 5.57 0 8
phone-6 7 21 7.53 315.42 0 10 22.65 315.42 0 10
phone-6-long 100 300 72.39 31541.1 0 10 313.96 31541.1 0 10
phone-6-long-repeat 400 1200 260.06 31541.4 0 10 - - - -
phone-6-short 7 21 7.63 315.42 0 10 24.87 315.42 0 10

Figure 4-10: Runtimes, FTA sizes, synthesized program’s loss, and synthesized pro-
gram’s size for SyGuS 2018 benchmarks under DL loss function.

system of which I am aware can solve these larger problems.

To the extent that the SyGuS 2018 bencharks accurately represent the kinds of

program synthesis problems that will be encountered in practice, my results provide

encouraging evidence that my technique can help program synthesis systems work

effectively with noisy datasets. Important future work in this area will more fully

57

Threshold 3 4
Benchmark name n out size time(sec) FTA size loss size time(sec) FTA size loss size
phone-7 7 21 6.87 315.42 0 10 24.32 315.42 0 10
phone-7-long 100 300 72.47 31541.1 0 10 304.19 31541.1 0 10
phone-7-long-repeat 400 1200 268.87 31541.4 0 10 - - - -
phone-7-short 7 21 7.2 315.42 0 10 22.27 315.42 0 10
phone-8 7 21 7.5 315.42 0 10 23.33 315.42 0 10
phone-8-long 100 300 82.64 31541.1 0 10 327.2 31541.1 0 10
phone-8-long-repeat 400 1200 266.52 31541.4 0 10 - - - -
phone-8-short 7 21 6.83 315.42 0 10 25.22 315.42 0 10
phone-9 7 99 - - - - - - - -
phone-9-long 100 1440 - - - - - - - -
phone-9-long-repeat 400 5760 - - - - - - - -
phone-9-short 7 99 - - - - - - - -
phone-10 7 120 - - - - - - - -
phone-10-long 100 1740 - - - - - - - -
phone-10-long-repeat 400 6960 - - - - - - - -
phone-10-short 7 120 - - - - - - - -
reverse-name 6 81 - - - - - - - -
reverse-name-long 50 691 - - - - - - - -
reverse-name-long-repeat 200 2764 - - - - - - - -
reverse-name-short 6 81 370.83 102428.84 0 21 - - - -
univ-1 6 258 - - - - - - - -
univ-1-long 20 699 - - - - - - - -
univ-1-long-repeat 30 1000 - - - - - - - -
univ-1-short 6 258 - - - - - - - -
univ-2 6 243 - - - - - - - -
univ-2-long 20 744 - - - - - - - -
univ-2-long-repeat 30 1075 - - - - - - - -
univ-2-short 6 243 - - - - - - - -
univ-3 6 122 - - - - - - - -
univ-3-long 20 378 - - - - - - - -
univ-3-long-repeat 30 570 - - - - - - - -
univ-3-short 6 122 - - - - - - - -
univ-4 8 150 - - - - - - - -
univ-4-long 20 366 - - - - - - - -
univ-4-long-repeat 30 552 - - - - - - - -
univ-4-short 8 150 - - - - - - - -
univ-5 8 150 - - - - - - - -
univ-5-long 20 366 - - - - - - - -
univ-5-long-repeat 30 552 - - - - - - - -
univ-5-short 8 150 - - - - - - - -
univ-6 8 150 - - - - - - - -
univ-6-long 20 366 - - - - - - - -
univ-6-long-repeat 30 552 - - - - - - - -
univ-6-short 8 150 - - - - - - - -

Figure 4-11: Runtimes, FTA sizes, synthesized program’s loss, and synthesized pro-
gram’s size for SyGuS 2018 benchmarks under DL loss function.

investigate interactions between the DSL, the noise source, the loss function, the

classes of synthesis problems that occur in practice, and the scalability of the synthesis

technique. A full evaluation of the immediate practical applicability of program

synthesis for noisy datasets, as well as a meaningful evaluation of program synthesis

more generally, awaits this future work.

Noise Sources With Different Characteristics: My experiments largely consider

discrete noise sources that preserve some information in corrupted outputs. The

results highlight how loss functions like the 1-Delete, DL, and 𝑛-Substitution loss

functions can enable my technique to extract and exploit this preserved information

to enhance the effectiveness of the synthesis. The question may arise how well may my

technique perform with noise sources that leave little or even no information intact

in corrupted outputs? Here the results from the 0/1 loss function, which does not

58

aspire to extract any information from corrupted inputs, may be relevant — if the

corrupted outputs considered together do not conform to a target computation in

the DSL, the technique will, in effect, ignore these corrupted outputs to synthesize

the program based on any remaining uncorrupted outputs. A final possibility is that

the noise source may systematically produce outputs characteristic of a valid but

incorrect computation. Here I would expect the algorithm to require a balance of

correct outputs before it would be able to synthesize the correct program.

59

60

Chapter 5

Optimal Loss Function and

Convergence Properties

I first define the concept of correctness for a synthesis algorithm. Given a noisy

dataset (𝑥𝑥𝑥,𝑦𝑦𝑦) generated by the hidden program 𝑝ℎ, a synthesis algorithm is correct, if

it synthesizes a program 𝑝, such that, both 𝑝 and 𝑝ℎ return the same outputs on inputs

𝑥𝑥𝑥. This is a standard correctness criteria used in noise-free programming-by-example

synthesis [42, 30].

Using this concept of correctness, I define the concept of optimal loss function.

Given a noisy dataset and prior information about a noise source (either as an exact

probability distribution which introduced noise or as a prior distribution over poten-

tial noise sources), the optimal loss function is the loss function that has the highest

probability of causing the synthesis algorithm to synthesize a correct program. Using

concepts from Bayesian inference, I provide closed form expressions for the optimal

loss function given perfect or imperfect information about the noise source and pro-

gram source.

Given a program 𝑝, a dataset size 𝑛, an input source 𝜌𝑖, and a noise source 𝜌𝑁 ,

a random dataset 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦) of size 𝑛 can be generated using the program 𝑝 by first

randomly sampling 𝑛 inputs 𝑥𝑥𝑥 from input source 𝜌𝑖, computing the correct outputs

𝑧𝑧𝑧 = 𝑝[𝑥𝑥𝑥], and then randomly sampling the corrupted outputs 𝑦𝑦𝑦 from distribution

𝜌𝑁(· | 𝑧𝑧𝑧). Using this concept of a random dataset, I define the concept of convergence

61

guarantees. Given a finite space of programs, a program source 𝜌𝑝, input source

𝜌𝑖, and a noise source 𝜌𝑁 , a synthesis algorithm parameterized by a loss function,

regularizer, and a complexity measure, guarantees convergence, if for all 0 ≤ 𝛿 < 1

and all hidden programs 𝑝ℎ, there exists a dataset size 𝑛, such that, given a random

dataset of size greater than 𝑛 generated by the hidden program 𝑝ℎ, the synthesis

algorithm will synthesize a program equivalent to 𝑝ℎ with probability greater than 𝛿.

A program 𝑝 is equivalent to program 𝑝ℎ if for all inputs 𝑝 and 𝑝ℎ produce the same

outputs. Increasing the dataset size can only improve the probability of synthesizing

a program equivalent to the hidden program, when using a synthesis algorithm which

guarantees convergence. I formalize conditions on the loss function, input source, and

the noise source, which allows the synthesis algorithm to guarantee convergence.

I then apply these concepts to a general class of noise sources and loss functions

for text processing program synthesis. These concepts make it possible to prove

optimality and convergence relationships that hold between these noise sources and

loss functions.

I analyze synthesis algorithms which use the lexicographic objective function

(Definition 8), i.e., given a loss function ℒ, regularizer ℛ, complexity measure 𝐶, and

a noisy dataset 𝒟 = (𝑥𝑥𝑥,𝑧𝑧𝑧), a synthesis algorithm synthesizes a program 𝑝*, where:

𝑧𝑧𝑧* = 𝑝*[𝑥𝑥𝑥] = arg min
𝑧𝑧𝑧∈𝑍|𝑥𝑥𝑥|

ℒ(𝑧𝑧𝑧,𝑦𝑦𝑦) +ℛ(𝑧𝑧𝑧,𝑥𝑥𝑥)

𝑝* = arg min
𝑝∈𝐺𝑥𝑥𝑥,𝑧𝑧𝑧*

𝐶(𝑝)

5.1 Optimal Loss Function

I first formalize the probability that a synthesized program 𝑝 is a correct program

(i.e., 𝑝[𝑥𝑥𝑥] = 𝑝ℎ[𝑥𝑥𝑥], where 𝑝ℎ is the hidden program) given a dataset 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦) and

prior information about the noise source and the program source. This allows us

to formalize the notion of an optimal loss function and an optimal regularizer. An

optimal loss function, in the presence of the optimal regularizer, has the highest prob-

ability of synthesizing a correct program, given a noisy dataset. Using this concept,

62

I formalize a framework to design optimal loss functions and optimal regularizers,

given prior information about the noise source and the program source.

5.1.1 Optimal Loss Function, Perfect Information

We first consider the case where we have the specific probability distribution 𝜌𝑁 that

characterizes the noise source. Given dataset 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦), let 𝑃𝑟[𝑝 | 𝑥𝑥𝑥,𝑦𝑦𝑦] be the

posterior probability that the program 𝑝 returns the same output (over inputs 𝑥𝑥𝑥) as

a hidden program which could have generated the dataset 𝒟. Formally:

𝑃𝑟[𝑝 | 𝑥𝑥𝑥,𝑦𝑦𝑦] = 1
𝜌(𝑦𝑦𝑦 | 𝑥𝑥𝑥)

∑︁
𝑝ℎ∈𝐺

1(𝑝[𝑥𝑥𝑥] = 𝑝ℎ[𝑥𝑥𝑥])𝜌𝑝(𝑝ℎ)𝜌𝑁(𝑦𝑦𝑦 | 𝑝ℎ[𝑥𝑥𝑥]) = 𝜌𝑝(𝐺𝑥𝑥𝑥,𝑝[𝑥𝑥𝑥])𝜌𝑁(𝑦𝑦𝑦 | 𝑝[𝑥𝑥𝑥])

where 𝐺𝑥𝑥𝑥,𝑝[𝑥𝑥𝑥] denotes the set of programs in the set 𝐺 which map inputs 𝑥𝑥𝑥 to outputs

𝑝[𝑥𝑥𝑥]. The function 1 : B→ 0, 1, maps true to 1 and false to 0. The optimal prediction

𝑝𝑖 maximizes the posterior probability 𝑃𝑟[𝑝 | 𝑥𝑥𝑥,𝑦𝑦𝑦]:

𝑝𝑖 ∈ arg max
𝑝∈𝐺

𝜌𝑝(𝐺𝑥𝑥𝑥,𝑝[𝑥𝑥𝑥])𝜌𝑁(𝑦𝑦𝑦 | 𝑝[𝑥𝑥𝑥]) = arg min
𝑝∈𝐺

(− log 𝜌𝑁(𝑦𝑦𝑦 | 𝑝[𝑥𝑥𝑥])) + (− log 𝜌𝑝(𝐺𝑥𝑥𝑥,𝑝[𝑥𝑥𝑥]))

Note that, all programs 𝑝 ∈ 𝐺𝑥𝑥𝑥,𝑝𝑖[𝑥𝑥𝑥] are valid optimal predictions.

The optimal predication 𝑝 minimizes a function 𝐹 of the following form:

𝐹 (𝑧𝑧𝑧,𝑥𝑥𝑥,𝑦𝑦𝑦,𝐺) = ℒ(𝑧𝑧𝑧,𝑦𝑦𝑦) +ℛ(𝑥𝑥𝑥,𝑧𝑧𝑧)

where 𝑧𝑧𝑧 = 𝑝[𝑥𝑥𝑥], for some loss function ℒ (Subsection 2.2.2), and for some regularizer

ℛ (Subsection 2.2.3).

The optimal prediction 𝑝𝑖 maximizes the posterior probability, therefore:

𝑝𝑖 ∈ arg min
𝑝∈𝐺

(− log 𝜌𝑝(𝐺𝑥𝑥𝑥,𝑝[𝑥𝑥𝑥])) + (− log 𝜌𝑁(𝑦𝑦𝑦 | 𝑝[𝑥𝑥𝑥]))

Therefore, given a set of programs 𝐺, dataset 𝒟, and no other information about the

hidden program, the hidden noise source, and the hidden program source, the syn-

thesis algorithm will always return the program which maximizes the posterior prob-

ability if the loss function ℒ(𝑧𝑧𝑧,𝑦𝑦𝑦) = (− log 𝜌𝑁(𝑦𝑦𝑦 | 𝑧𝑧𝑧)) and the regularizer ℛ(𝑥𝑥𝑥,𝑧𝑧𝑧) =

63

(− log 𝜌𝑝(𝐺𝑥𝑥𝑥,𝑧𝑧𝑧)).

Hence, the optimal loss function and the optimal regularizer, in the pres-

ence of perfect information, is the negative log of the probability of output 𝑧𝑧𝑧 being

corrupted to noisy output 𝑦𝑦𝑦 and the negative log of the prior probability a program

from set 𝐺𝑥𝑥𝑥,𝑧𝑧𝑧 is the hidden program.

Note that, even if we have perfect information about the program source and the

noise source, the noise source may make it impossible to synthesize a correct program

with probability 1, if it can, with positive probability, corrupt the outputs on two

positive probability programs to return the same noisy output.

Theorem 4. Let 𝐺 be a set of programs. Let 𝑥𝑥𝑥 be a vector of inputs (𝜌𝑖(𝑥𝑥𝑥) > 0).

Let 𝑝1, 𝑝2 ∈ 𝐺 be two programs, such that, 𝑝1[𝑥𝑥𝑥] ̸= 𝑝2[𝑥𝑥𝑥]. Let 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦) be a noisy

dataset, such that, 𝜌𝑁(𝑦𝑦𝑦 | 𝑝1[𝑥𝑥𝑥]) > 0 and 𝜌𝑁(𝑦𝑦𝑦 | 𝑝2[𝑥𝑥𝑥]) > 0, i.e., both outputs 𝑝1[𝑥𝑥𝑥] and

𝑝2[𝑥𝑥𝑥] can be corrupted by the noise source to generate the same noisy output 𝑦𝑦𝑦. Then

no algorithm can always synthesize a program which returns the hidden program’s

output on inputs 𝑥𝑥𝑥.

Proof. Both program 𝑝1 and 𝑝2 could have generated the dataset 𝒟. Without any

additional information about the hidden process, both 𝑝1 and 𝑝2 are valid candidates

to be the hidden program, when given dataset 𝒟. Therefore, only given dataset 𝒟,

no algorithm can always synthesize a program which returns the hidden program’s

output on the given inputs, if there exists even one positive probability program whose

outputs on the given inputs are not equal to the outputs of the hidden program and the

noise source can corrupt these outputs to the noisy outputs of the given dataset.

5.1.2 Optimal Loss Function, Imperfect Information

Now consider a scenario where we are presented with imperfect information about

the noise source and the program source, i.e., all we know is that the noise source

𝜌𝑁 corrupting the correct output was selected from a set of noise sources 𝒩 with

probability 𝜌𝒩 (𝜌𝑁) and the program source 𝜌𝑃 was selected from a set of noise sources

𝒫 with probability 𝜌𝒫(𝜌𝑃).

64

Given dataset 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦), I assume it was constructed by the following underlying

process:

• A program source 𝜌𝑝 is sampled from the set 𝒫 with probability 𝜌𝒫(𝜌𝑝) (prior

distribution over program source).

• A noise source 𝜌𝑁 is sampled from the set 𝒩 with probability 𝜌𝒩 (𝜌𝑁) (prior

distribution over noise source).

• A hidden program 𝑝ℎ is sampled from the set 𝐺 with probability 𝜌𝑝(𝑝ℎ).

• 𝑛 inputs 𝑥𝑥𝑥 = ⟨𝑥1, . . . 𝑥𝑛⟩ are sampled from probability distribution 𝜌𝑖 with proba-

bility 𝜌𝑖(𝑥𝑥𝑥 | 𝑛).

• The sampled noise source 𝜌𝑁 introduces noise by corrupting outputs 𝑝ℎ[𝑥𝑥𝑥] to 𝑦𝑦𝑦

with probability 𝜌𝑁(𝑦𝑦𝑦 | 𝑝ℎ[𝑥𝑥𝑥]).

The posterior probability of a program 𝑝 returning the hidden program’s output

is:

𝑃𝑟[𝑝 | 𝑥𝑥𝑥,𝑦𝑦𝑦] ∝
∑︁

𝜌𝑁 ∈𝒩

∑︁
𝜌𝑝∈𝒫

∑︁
𝑝ℎ∈𝐺

1(𝑝[𝑥𝑥𝑥] = 𝑝ℎ[𝑥𝑥𝑥])𝜌𝑝(𝑝ℎ)𝜌𝑁(𝑦𝑦𝑦 | 𝑝ℎ[𝑥𝑥𝑥])𝜌𝒩 (𝜌𝑁)𝜌𝒫(𝜌𝑝)

= 𝐸[𝜌𝑝(𝐺𝑥𝑥𝑥,𝑝[𝑥𝑥𝑥])]𝐸[𝜌𝑁(𝑦𝑦𝑦 | 𝑝[𝑥𝑥𝑥])]

The optimal prediction 𝑝𝑖 maximizes the posterior probability, therefore:

𝑝𝑖 ∈ arg min
𝑝∈𝐺

(− log𝐸[𝜌𝑝(𝐺𝑥𝑥𝑥,𝑝[𝑥𝑥𝑥])]) + (− log𝐸[𝜌𝑁(𝑦𝑦𝑦 | 𝑝[𝑥𝑥𝑥])])

Therefore, given a set of programs 𝐺, dataset 𝒟, prior probability distribution over

noise sources 𝜌𝒩 , prior probability distribution over program sources 𝜌𝒫 , and no other

information about the hidden program, the hidden noise source, and the hidden pro-

gram source, the synthesis algorithm will always return the program which maximizes

the posterior probability if the loss function ℒ(𝑧𝑧𝑧,𝑦𝑦𝑦) = (− log𝐸[𝜌𝑁(𝑦𝑦𝑦 | 𝑧𝑧𝑧)]) and the

regularizer ℛ(𝑥𝑥𝑥,𝑧𝑧𝑧) = (− log𝐸[𝜌𝑝(𝐺𝑥𝑥𝑥,𝑧𝑧𝑧)]).

65

Hence, the optimal loss function and the optimal regularizer, in presence of im-

perfect information, is the negative log of the expected probability of output 𝑧𝑧𝑧 being

corrupted to noisy output 𝑦𝑦𝑦 and the negative log of the expected prior probability a

program from set 𝐺𝑥𝑥𝑥,𝑧𝑧𝑧 is the hidden program.

5.2 Convergence

I next explore the conditions under which the synthesis algorithm will have conver-

gence guarantees, i.e., with high probability, the synthesis algorithm will synthesize

a program 𝑝, such that, 𝑝 and the hidden program 𝑝ℎ have the same outputs on all

inputs 𝑥, given a finite program space and a large enough dataset. If the program

space contains possibly infinite programs, the synthesis algorithm will have conver-

gence guarantees, i.e., with high probability, the synthesis algorithm will synthesize

a program 𝑝, such that, 𝑝 and the hidden program 𝑝ℎ have the same outputs on any

finite size input vector 𝑥𝑥𝑥* (𝑝[𝑥𝑥𝑥*] = 𝑝ℎ[𝑥𝑥𝑥*]), given a large enough random dataset.

Definition 12. ≈-closed A set 𝐴 ⊆ 𝐺 is ≈-closed if for all programs 𝑝 ∈ 𝐴, any

program equivalent to 𝑝 is also in 𝐴, i.e., ∀𝑝 ∈ 𝐴.∀𝑝′ ∈ 𝐺. 𝑝 ≈ 𝑝′ =⇒ 𝑝′ ∈ 𝐴.

Definition 13. separable A ≈-closed set 𝐴 ⊆ 𝐺 is separable if there exists a finite

set of inputs 𝑥𝑥𝑥, such that, for all programs 𝑝 ∈ 𝐴 and 𝑝′ ∈ 𝐺 − 𝐴, 𝑝[𝑥𝑥𝑥] ̸= 𝑝′[𝑥𝑥𝑥], i.e.,

there exists a finite set of inputs which allows us to infer that a program is within 𝐴

or within 𝐺− 𝐴.

Note that the following statement is true:

• If 𝐴 ⊆ 𝐺 is separable, then 𝐺− 𝐴 is separable.

• If 𝐺 is finite, then for all programs 𝑝 ∈ 𝐺, set 𝐺𝑝 is separable, i.e., the set of

programs equivalent to 𝑝 is separable.

• Given a vector of 𝑛 inputs 𝑥𝑥𝑥 and 𝑛 noise-free outputs 𝑧𝑧𝑧, the set 𝐺𝑥𝑥𝑥,𝑧𝑧𝑧 is separable.

I use the notation 𝒮 to denote a synthesis algorithm. Given a dataset 𝒟 and a set of

programs 𝐺, a synthesis algorithm returns a program 𝑝 ∈ 𝐺 (𝑝 = 𝒮(𝐺,𝒟)).

66

Given a set of programs 𝐺, an input source 𝜌𝑖, a program source 𝜌𝑝, a noise source 𝜌𝑁 ,

a synthesis algorithm 𝒮, a dataset size 𝑛 > 0, a positive probability hidden program

𝑝ℎ ∈ 𝐺 (i.e.,𝜌𝑝(𝑝ℎ) > 0), and a separable set 𝐴 ⊆ 𝐺 containing 𝑝ℎ (i.e.,𝑝ℎ ∈ 𝐴),

𝑃𝑟[𝑝𝑠 ∈ 𝐴 | 𝑝ℎ, 𝑛] is the probability that the synthesis algorithm synthesizes a program

in set 𝐴, given a random dataset (𝑥𝑥𝑥,𝑦𝑦𝑦) of size 𝑛, constructed with 𝑝ℎ being the hidden

program. Formally, 𝑃𝑟[𝑝𝑠 ∈ 𝐴 | 𝑝ℎ, 𝑛] is the probability that the following process

returns true:

• Sample 𝑛 inputs 𝑥𝑥𝑥 with probability 𝜌𝑖(𝑥𝑥𝑥 | 𝑛).

• Sample noisy outputs 𝑦𝑦𝑦 with probability 𝜌𝑁(𝑦𝑦𝑦 | 𝑝ℎ[𝑥𝑥𝑥]).

• Return true, if given the noisy dataset, 𝒮 synthesizes a program from set 𝐴, i.e.,

𝒮(𝐺, (𝑥𝑥𝑥,𝑦𝑦𝑦)) ∈ 𝐴.

𝑃𝑟[𝑝𝑠 ∈ 𝐴 | 𝑝ℎ, 𝑛] measures the probability that a program within the set 𝐴 (which

contains all equivalent programs to 𝑝ℎ and potentially other programs) is synthesized

by the algorithm 𝒮, given a random noisy dataset of size 𝑛 generated by the hidden

program 𝑝ℎ.

Definition 14. Convergence: Given a set of programs 𝐺, an input source 𝜌𝑖, a

program source 𝜌𝑝, a noise source 𝜌𝑁 , and a synthesis algorithm 𝒮, the synthesis

algorithm guaranties convergence if for all positive probability programs 𝑝ℎ ∈ 𝐺, for

all separable sets 𝐴 ⊆ 𝐺 containing 𝑝ℎ (i.e., 𝑝ℎ ∈ 𝐺), for all 𝛿 > 0, there exists a

natural number 𝑘, such that for all 𝑛 ≥ 𝑘:

𝑃𝑟[𝑝𝑠 ∈ 𝐴 | 𝑝ℎ, 𝑛] ≥ (1− 𝛿)

i.e., for all positive probability hidden programs, for all separable sets 𝐴 containing

𝑝ℎ, and for all 𝛿 > 0, we can find a minimum dataset size 𝑘, such that, the probability

that the algorithm will synthesize a program in 𝐴 on a random dataset of size ≥ 𝑘 is

≥ (1− 𝛿).

Given a set of programs 𝐺, an input source 𝜌𝑖, a program source 𝜌𝑝, a noise source

𝜌𝑁 , and a synthesis algorithm 𝒮, the following statements are true:

67

• For any input vector 𝑥𝑥𝑥* and a positive probability hidden program 𝑝ℎ ∈ 𝐺, the set

𝐺𝑥𝑥𝑥*,𝑝ℎ[𝑥𝑥𝑥*] is separable. The synthesis algorithm 𝒮 guarantees convergence, if and

only if, for all 𝛿 > 0, for all positive probability hidden programs 𝑝ℎ, for all input

vectors 𝑥𝑥𝑥*, there exists a minimum dataset size 𝑘, such that, for all 𝑛 ≥ 𝑘:

𝑃𝑟[𝑝𝑠 ∈ 𝐺𝑥𝑥𝑥*,𝑝ℎ[𝑥𝑥𝑥*] | 𝑝ℎ, 𝑛] ≥ (1− 𝛿)

i.e., the synthesis algorithm will synthesize a program 𝑝 which returns the hidden

program’s outputs on the input vector 𝑥𝑥𝑥* (i.e., 𝑝[𝑥𝑥𝑥*] = 𝑝ℎ[𝑥𝑥𝑥*]) with probability

≥ (1− 𝛿).

Theorem 5. For any input vector 𝑥𝑥𝑥* and a positive probability hidden program

𝑝ℎ ∈ 𝐺, the set 𝐺𝑥𝑥𝑥*,𝑝ℎ[𝑥𝑥𝑥*] is separable. The synthesis algorithm 𝒮 guarantees con-

vergence, if and only if, for all 𝛿 > 0, for all positive probability hidden programs

𝑝ℎ, for all input vectors 𝑥𝑥𝑥*, there exists a minimum dataset size 𝑘, such that, for

all 𝑛 ≥ 𝑘:

𝑃𝑟[𝑝𝑠 ∈ 𝐺𝑥𝑥𝑥*,𝑝ℎ[𝑥𝑥𝑥*] | 𝑝ℎ, 𝑛] ≥ (1− 𝛿)

i.e., the synthesis algorithm will synthesize a program 𝑝 which returns the hidden

program’s outputs on the input vector 𝑥𝑥𝑥* (i.e., 𝑝[𝑥𝑥𝑥*] = 𝑝ℎ[𝑥𝑥𝑥*]) with probability

≥ (1− 𝛿).

Proof. The 𝐺𝑥𝑥𝑥*,𝑝ℎ[𝑥𝑥𝑥*] is a separable set containing 𝑝ℎ. Therefore, by definition of

convergence, for all 𝛿 > 0, for all positive probability hidden programs 𝑝ℎ, for all

input vectors 𝑥𝑥𝑥*, there exists a minimum dataset size 𝑘, such that, for all 𝑛 ≥ 𝑘:

𝑃𝑟[𝑝𝑠 ∈ 𝐺𝑥𝑥𝑥*,𝑝ℎ[𝑥𝑥𝑥*] | 𝑝ℎ, 𝑛] ≥ (1− 𝛿)

Given any separable set 𝐴, there exists an input vector 𝑥𝑥𝑥𝐴, such that, ∀𝑝 ∈

𝐴, 𝑝′ ∈ 𝐺 − 𝐴.𝑝[𝑥𝑥𝑥𝐴] ̸= 𝑝′[𝑥𝑥𝑥𝐴]. If 𝐴 contains the hidden program program 𝑝ℎ,

68

then 𝐺𝑥𝑥𝑥𝐴,𝑝ℎ[𝑥𝑥𝑥𝐴] ⊆ 𝐴. Therefore:

𝑃𝑟[𝑝𝑠 ∈ 𝐴 | 𝑝ℎ, 𝑛] ≥ 𝑃𝑟[𝑝𝑠 ∈ 𝐺𝑥𝑥𝑥𝐴,𝑝ℎ[𝑥𝑥𝑥𝐴] | 𝑝ℎ, 𝑛]

Therefore, if for all 𝛿 > 0, for all positive probability hidden programs 𝑝ℎ, for all

input vectors 𝑥𝑥𝑥𝐴, there exists a minimum dataset size 𝑘, such that, for all 𝑛 ≥ 𝑘:

𝑃𝑟[𝑝𝑠 ∈ 𝐺𝑥𝑥𝑥𝐴,𝑝ℎ[𝑥𝑥𝑥𝐴] | 𝑝ℎ, 𝑛] ≥ (1− 𝛿)

then 𝒮 guarantees convergence.

• Given a positive probability hidden program 𝑝ℎ ∈ 𝐺. If 𝐺𝑝ℎ
is separable and 𝒮

guarantees convergence, then for all 𝛿 > 0, there exists a minimum dataset size 𝑘,

such that, for a random dataset of size ≥ 𝑘, the synthesis algorithm will synthesize

a program equivalent to the hidden program 𝑝ℎ with probability ≥ (1− 𝛿).

• If 𝐺 is finite, then for all programs 𝑝 ∈ 𝐺, 𝐺𝑝 is separable. The synthesis algorithm

𝒮 guarantees convergence, if and only if, for all 𝛿 > 0, for all positive probability

hidden programs 𝑝ℎ, there exists a minimum dataset size 𝑘, such that, for all 𝑛 ≥ 𝑘:

𝑃𝑟[𝑝𝑠 ∈ 𝐺𝑝ℎ
| 𝑝ℎ, 𝑛] ≥ (1− 𝛿)

i.e., the synthesis algorithm will synthesize a program 𝑝 equivalent to the hidden

program 𝑝ℎ with probability ≥ (1− 𝛿).

Theorem 6. If 𝐺 is finite, then for all programs 𝑝 ∈ 𝐺, 𝐺𝑝 is separable. The

synthesis algorithm 𝒮 guarantees convergence, if and only if, for all 𝛿 > 0, for

all positive probability hidden programs 𝑝ℎ, there exists a minimum dataset size 𝑘,

such that, for all 𝑛 ≥ 𝑘:

𝑃𝑟[𝑝𝑠 ∈ 𝐺𝑝ℎ
| 𝑝ℎ, 𝑛] ≥ (1− 𝛿)

i.e., the synthesis algorithm will synthesize a program 𝑝 equivalent to the hidden

69

program 𝑝ℎ with probability ≥ (1− 𝛿).

Proof. If 𝐺 is finite, then for all programs 𝑝 ∈ 𝐺, 𝐺𝑝 is a separable. Therefore, by

definition of convergence, for all 𝛿 > 0, for all positive probability hidden programs

𝑝ℎ, there exists a minimum dataset size 𝑘, such that, for all 𝑛 ≥ 𝑘:

𝑃𝑟[𝑝𝑠 ∈ 𝐺𝑝ℎ
| 𝑝ℎ, 𝑛] ≥ (1− 𝛿)

Given any separable set 𝐴, if 𝑝 ∈ 𝐴, then 𝐺𝑝 ⊆ 𝐴. Therefore:

𝑃𝑟[𝑝𝑠 ∈ 𝐴 | 𝑝ℎ, 𝑛] ≥ 𝑃𝑟[𝑝𝑠 ∈ 𝐺𝑝ℎ
| 𝑝ℎ, 𝑛]

Therefore, if for all 𝛿 > 0, for all positive probability hidden programs 𝑝ℎ, there

exists a minimum dataset size 𝑘, such that, for all 𝑛 ≥ 𝑘:

𝑃𝑟[𝑝𝑠 ∈ 𝐺𝑝ℎ
| 𝑝ℎ, 𝑛] ≥ (1− 𝛿)

then 𝒮 guarantees convergence.

Given a set of programs 𝐺 and a synthesis algorithm 𝒮, within this thesis, we as-

sume that there exists a loss function ℒ (Subsection 2.2.2), a regularizer ℛ (Sub-

section 2.2.3), and a complexity measure 𝐶 (Subsection 2.2.4), such that, given

any noisy datasets 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦), the synthesis algorithm 𝒮 synthesizes a program 𝑝𝑠

(𝒮(𝐺,𝒟) = 𝑝𝑠), if and only if,

𝐺𝑥𝑥𝑥,𝑝𝑠[𝑥𝑥𝑥] ⊆ arg min
𝑝∈𝐺

ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦) +ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥])

𝑝𝑠 ∈ arg min
𝑝∈𝐺𝑥𝑥𝑥,𝑝𝑠[𝑥𝑥𝑥]

𝐶(𝑝)

I use the notation (ℒ,ℛ, 𝐶) to denote a synthesis algorithm 𝒮 which falls within the

framework described above. The analysis, within this thesis, will introduce restrictions

on the noise source, loss function and the input source, with minimal restructions on

70

the program source, regularizer, and the complexity measure. Note that the complexity

measure 𝐶 here, introduces a total ordering on the set of programs 𝐺.

5.2.1 Differentiating Input Distributions

Even in the absence of noise, the input source may hinder a synthesis algorithm’s

ability to infer if the hidden program belongs to a separable set 𝐴 or not. For

example, consider two programs 𝑝1, 𝑝2 ∈ 𝐺, and a separable set 𝐴 ⊆ 𝐺, such that,

𝑝1 ∈ 𝐴 but 𝑝2 ∈ 𝐺 − 𝐴. Consider an input source which only generates vectors

𝑥𝑥𝑥, such that, 𝑝1 and 𝑝2 have the same outputs on input 𝑥𝑥𝑥 (i.e., 𝑝1[𝑥𝑥𝑥] = 𝑝2[𝑥𝑥𝑥]). For

such an input source, the synthesis algorithm, even in the absence of noise, cannot

differentiate between datasets produced assuming 𝑝1 is the underlying program and

from the datasets produced assuming 𝑝2 is the underlying program. Therefore, to

guarantee convergence, we need to constrain the input source.

Let 𝑑 be some distance metric which measures the distance between two noise-

free outputs 𝑧1, 𝑧2 ∈ 𝑍. I use the notation 𝑑(𝑧𝑧𝑧,𝑧𝑧𝑧′) to denote the sum of distance over

individual elements, i.e.,

𝑑(⟨𝑧1, . . . 𝑧𝑛⟩, ⟨𝑧′
1, . . . 𝑧

′
𝑛⟩) =

𝑛∑︁
𝑖=1

𝑑(𝑧𝑖, 𝑧
′
𝑖)

Definition 15. Differentiating Input Source: Given a set of programs 𝐺 and a

distance metric 𝑑 over elements from the output set 𝑍, an input source 𝜌𝑖 is differ-

entiating if, for all 𝛿 > 0, for all 𝜖 > 0, all programs 𝑝ℎ ∈ 𝐺, for all separable 𝐴 ⊆ 𝐺

containing 𝑝ℎ, there exists a minimum dataset size 𝑘, such that, for all 𝑛 ≥ 𝑘, the

following process returns true with probability greater than equal to (1− 𝛿):

• Sample 𝑥𝑥𝑥 of size 𝑛 from the distribution 𝜌𝑖(𝑥𝑥𝑥 | 𝑛).

• Return true if ∀𝑝 ∈ 𝐺− 𝐴. 𝑑(𝑝[𝑥𝑥𝑥], 𝑝ℎ[𝑥𝑥𝑥]) ≥ 𝜖.

Formally, given a set of programs 𝐺 and a distance metric 𝑑, an input source 𝜌𝑖 is

differentiating, if for all 𝛿 > 0, for all 𝜖 > 0, for all programs 𝑝ℎ, and all separable

sets 𝐴 ⊆ 𝐺 containing 𝑝ℎ, there exists a natural number 𝑘, such that for all natural

71

numbers 𝑛 ≥ 𝑘, the following statement is true:

∑︁
𝑥𝑥𝑥∈𝑋𝑛

1(∀𝑝 ∈ 𝐺− 𝐴. 𝑑(𝑝ℎ[𝑥𝑥𝑥], 𝑝[𝑥𝑥𝑥]) ≥ 𝜖)𝜌𝑖(𝑥𝑥𝑥 | 𝑛) ≥ (1− 𝛿)

5.2.2 Differentiating Noise Sources

Even if we are given an input source which allows us to differentiate between programs

in a separable set 𝐴 and other programs in 𝐺 in the absence of noise, the noise source

can make convergence impossible. For example, consider a noise source which replaces

all outputs with the same value. No information about the hidden program’s outputs

can be inferred from this value. A synthesis algorithm, in this case, cannot infer any

information about the hidden program from such a dataset.

Therefore, we have to place constraints over the noise source and the loss function

to guarantee convergence.

Definition 16. Differentiating Noise Source: Given a set of programs 𝐺, a dis-

tance metric 𝑑, and a loss function ℒ, a noise source 𝜌𝑁 is differentiating, if for

all 𝛿 > 0 and 𝛾 > 0, there exists a natural number 𝑘, and 𝜖 ∈ R+, such that for all

𝑛 ≥ 𝑘, for all vectors 𝑧𝑧𝑧ℎ of length 𝑛, the following is true:

∑︁
𝑦𝑦𝑦∈𝑌 𝑛

1
(︁
∀𝑧𝑧𝑧 ∈ 𝑍𝑛. ℒ(𝑧𝑧𝑧,𝑦𝑦𝑦)− ℒ(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) ≤ 𝛾 =⇒ 𝑑(𝑧𝑧𝑧,𝑧𝑧𝑧ℎ) < 𝜖

)︁
𝜌𝑁(𝑦𝑦𝑦 | 𝑧𝑧𝑧ℎ) ≥ (1− 𝛿)

If we are using the optimal loss function for the given noise source (Subsection 5.1.1),

the above condition reduces to:

∑︁
𝑦𝑦𝑦∈𝑌 𝑛

1

(︂
∀𝑧𝑧𝑧 ∈ 𝑍𝑛.

𝜌𝑁(𝑦𝑦𝑦 | 𝑧𝑧𝑧ℎ)
𝜌𝑁(𝑦𝑦𝑦 | 𝑧𝑧𝑧) ≤ 𝛾 =⇒ 𝑑(𝑧𝑧𝑧,𝑧𝑧𝑧ℎ) < 𝜖

)︁
𝜌𝑁(𝑦𝑦𝑦 | 𝑧𝑧𝑧ℎ) ≥ (1− 𝛿)

Convergence: Convergence is guaranteed in presence of a differentiating input

source and a differentiating noise source.

Theorem 7. Given a set of programs 𝐺, a program source 𝜌𝑝, a loss function ℒ, a

complexity measure 𝐶, a regularizer ℛ (such that, for all 𝑥𝑥𝑥 and 𝑧𝑧𝑧, 𝜌𝑝(𝐺𝑥𝑥𝑥,𝑧𝑧𝑧) > 0 =⇒

72

ℛ(𝑥𝑥𝑥,𝑧𝑧𝑧) < ∞), a differentiating input source 𝜌𝑖, and a differentiating noise

source 𝜌𝑁 , then the synthesis algorithm (ℒ,ℛ, 𝐶) will guarantee convergence.

Proof. Given a 𝛿 > 0, let 𝛿𝑖 > 0 and 𝛿𝑁 > 0 be two real numbers, such that,

𝛿 = 𝛿𝑖 + 𝛿𝑁 . Let 𝑝ℎ be a positive probability program in 𝐺, i.e., 𝜌𝑝(𝑝ℎ) > 0. Let

𝐴 ⊆ 𝐺 be a separable set containing 𝑝ℎ. Let 𝛾𝑜 = max𝑛∈N,𝑥𝑥𝑥∈𝑋𝑛ℛ(𝑥𝑥𝑥, 𝑝ℎ[𝑥𝑥𝑥]) Note that,

𝛾𝑜 <∞. Since 𝜌𝑁 is a differentiating noise source, there exists a dataset size 𝑘𝑁 , such

that, for all 𝑛 ≥ 𝑘𝑁 , for all vectors 𝑧𝑧𝑧ℎ of length 𝑛, the following is true:

∑︁
𝑦𝑦𝑦∈𝑌 𝑛

1
(︁
∀𝑧𝑧𝑧 ∈ 𝑍𝑛. ℒ(𝑧𝑧𝑧,𝑦𝑦𝑦)− ℒ(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) ≤ 𝛾𝑜 =⇒ 𝑑(𝑧𝑧𝑧,𝑧𝑧𝑧ℎ) < 𝜖𝑜

)︁
𝜌𝑁(𝑦𝑦𝑦 | 𝑧𝑧𝑧ℎ) ≥ (1− 𝛿𝑁)

Since 𝜌𝑖 is a differentiating input source, there exists a dataset size 𝑘𝑖, such that, for

all 𝑛 ≥ 𝑘𝑖,

∑︁
𝑥𝑥𝑥∈𝑋𝑛

1(∀𝑝 ∈ 𝐺− 𝐴. 𝑑(𝑝ℎ[𝑥𝑥𝑥], 𝑝[𝑥𝑥𝑥]) ≥ 𝜖𝑜)𝜌𝑖(𝑥𝑥𝑥 | 𝑛) ≥ (1− 𝛿𝑖)

Let 𝑛 ≥ max (𝑘𝑁 , 𝑘𝑖),

𝑃𝑟[𝑝𝑠 ∈ 𝐴 | 𝑝ℎ, 𝑛] ≥
∑︁

𝑥𝑥𝑥∈𝑋𝑛

∑︁
𝑦𝑦𝑦∈𝑌 𝑛

1(∃𝑝𝑠 ∈ 𝐴. 𝑝𝑠 ∈ arg min
𝑝∈𝐺𝑥𝑥𝑥,𝑝𝑠[𝑥𝑥𝑥]

𝐶(𝑝)

∧ 𝐺𝑥𝑥𝑥,𝑝𝑠[𝑥𝑥𝑥] ⊆ arg min
𝑝∈𝐺

ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦) +ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]))𝜌𝑁(𝑦𝑦𝑦 | 𝑝ℎ[𝑥𝑥𝑥])𝜌𝑖(𝑥𝑥𝑥 | 𝑛)

≥
∑︁

𝑥𝑥𝑥∈𝑋𝑛,𝑦𝑦𝑦∈𝑌 𝑛

1
(︁
∀𝑝 ∈ 𝐺− 𝐴.ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦) +ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]) > ℒ(𝑝ℎ[𝑥𝑥𝑥], 𝑦𝑦𝑦) +ℛ(𝑥𝑥𝑥, 𝑝ℎ[𝑥𝑥𝑥])

)︁
𝜌𝑖(𝑥𝑥𝑥 | 𝑛)𝜌𝑁(𝑦𝑦𝑦 | 𝑝ℎ[𝑥𝑥𝑥])

Note that 𝛾𝑜 ≥ ℛ(𝑥𝑥𝑥, 𝑝ℎ[𝑥𝑥𝑥])−ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]).

≥
∑︁

𝑥𝑥𝑥∈𝑋𝑛,𝑦𝑦𝑦∈𝑌 𝑛

1
(︁
∀𝑝 ∈ 𝐺− 𝐴.ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦)− ℒ(𝑝ℎ[𝑥𝑥𝑥], 𝑦𝑦𝑦) > 𝛾𝑜

)︁
𝜌𝑖(𝑥𝑥𝑥 | 𝑛)𝜌𝑁(𝑦𝑦𝑦 | 𝑝ℎ[𝑥𝑥𝑥])

≥
∑︁

𝑥𝑥𝑥∈𝑋𝑛,𝑦𝑦𝑦∈𝑌 𝑛

1
(︁
∀𝑝 ∈ 𝐺− 𝐴.ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦)− ℒ(𝑝ℎ[𝑥𝑥𝑥], 𝑦𝑦𝑦) > 𝛾𝑜

)︁
𝜌𝑁(𝑦𝑦𝑦 | 𝑝ℎ[𝑥𝑥𝑥])

1(∀𝑝 ∈ 𝐺− 𝐴.𝑑(𝑝ℎ[𝑥𝑥𝑥], 𝑝[𝑥𝑥𝑥]) ≥ 𝜖𝑜) 𝜌𝑖(𝑥𝑥𝑥 | 𝑛)

73

≥
∑︁

𝑥𝑥𝑥∈𝑋𝑛,𝑦𝑦𝑦∈𝑌 𝑛

1
(︁
∀𝑧𝑧𝑧 ∈ 𝑍𝑛.𝑑(𝑝ℎ[𝑥𝑥𝑥], 𝑧𝑧𝑧) ≥ 𝜖𝑜 =⇒ ℒ(𝑧𝑧𝑧,𝑦𝑦𝑦)− ℒ(𝑝ℎ[𝑥𝑥𝑥], 𝑦𝑦𝑦) > 𝛾𝑜

)︁
𝜌𝑁(𝑦𝑦𝑦 | 𝑝ℎ[𝑥𝑥𝑥])1(∀𝑝 ∈ 𝐺− 𝐴.𝑑(𝑝ℎ[𝑥𝑥𝑥], 𝑝[𝑥𝑥𝑥]) ≥ 𝜖𝑜) 𝜌𝑖(𝑥𝑥𝑥 | 𝑛)

≥ (1− 𝛿𝑁)
∑︁

𝑥𝑥𝑥∈𝑋𝑛

1(∀𝑝 ∈ 𝐺−𝐴. 𝑑(𝑝ℎ[𝑥𝑥𝑥], 𝑝[𝑥𝑥𝑥]) ≥ 𝜖)𝜌𝑖(𝑥𝑥𝑥 | 𝑛) ≥ (1− 𝛿𝑁)(1− 𝛿𝑖) ≥ (1− 𝛿)

Linear Combination of Loss Functions:

Given a set of programs 𝐺, a distance metric 𝑑, loss functions ℒ𝑎,ℒ𝑏, and a noise

source 𝜌𝑁 which is differentiating w.r.t. both ℒ𝑎, ℒ𝑏, then 𝜌𝑁 is differentiating

w.r.t. any linear combination of ℒ𝑎 and ℒ𝑏 with positive coefficients. Formally,

Theorem 8. Given a set of programs 𝐺, a distance metric 𝑑, loss functions ℒ𝑎, ℒ𝑏,

two real numbers 𝑎, 𝑏 ≥ 0, and a noise source 𝜌𝑁 . Let ℒ be a loss function, such that,

ℒ(𝑧𝑧𝑧,𝑦𝑦𝑦) = 𝑎ℒ𝑎(𝑧𝑧𝑧,𝑦𝑦𝑦) + 𝑏ℒ𝑏(𝑧𝑧𝑧,𝑦𝑦𝑦)

If for all 𝛿𝑎, 𝛿𝑏 > 0 and 𝛾𝑎, 𝛾𝑏 > 0, there exists natural numbers 𝑘𝑎, 𝑘𝑏, and 𝜖𝑎, 𝜖𝑏 ∈ R+,

such that, for all vector 𝑧𝑧𝑧𝑎 of length 𝑛𝑎 ≥ 𝑘𝑎, and vector 𝑧𝑧𝑧𝑏 of length 𝑛𝑏 ≥ 𝑘𝑏, the

following is true:

∑︁
𝑦𝑦𝑦∈𝑌 𝑛𝑎

1
(︁
∀𝑧𝑧𝑧 ∈ 𝑍𝑛𝑎 . ℒ𝑎(𝑧𝑧𝑧,𝑦𝑦𝑦)− ℒ𝑎(𝑧𝑧𝑧𝑎, 𝑦𝑦𝑦) ≤ 𝛾𝑎 =⇒ 𝑑(𝑧𝑧𝑧, 𝑧𝑧𝑧𝑎) < 𝜖𝑎

)︁
𝜌𝑁(𝑦𝑦𝑦 | 𝑧𝑧𝑧𝑎) ≥ (1− 𝛿)

∑︁
𝑦𝑦𝑦∈𝑌 𝑛𝑏

1
(︁
∀𝑧𝑧𝑧 ∈ 𝑍𝑛𝑏 . ℒ𝑏(𝑧𝑧𝑧,𝑦𝑦𝑦)− ℒ𝑏(𝑧𝑧𝑧𝑏, 𝑦𝑦𝑦) ≤ 𝛾𝑏 =⇒ 𝑑(𝑧𝑧𝑧, 𝑧𝑧𝑧𝑏) < 𝜖𝑏

)︁
𝜌𝑁(𝑦𝑦𝑦 | 𝑧𝑧𝑧𝑏) ≥ (1− 𝛿𝑏)

then for all 𝛿 > 0 and 𝛾 > 0, there exists a natural number 𝑘 and 𝜖 ∈ R+, such that,

for all vectors 𝑧𝑧𝑧ℎ of length 𝑛 ≥ 𝑘, the following is true:

∑︁
𝑦𝑦𝑦∈𝑌 𝑛

1
(︁
∀𝑧𝑧𝑧 ∈ 𝑍𝑛. ℒ(𝑧𝑧𝑧,𝑦𝑦𝑦)− ℒ(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) ≤ 𝛾 =⇒ 𝑑(𝑧𝑧𝑧, 𝑧𝑧𝑧ℎ) < 𝜖

)︁
𝜌𝑁(𝑦𝑦𝑦 | 𝑧𝑧𝑧ℎ) ≥ (1− 𝛿)

Proof. Given a 𝛿 > 0 and 𝛾 > 0, let 𝛾𝑎 and 𝛾𝑏 be two real numbers, such that,

𝛾 ≥ 𝑎𝛾𝑎 + 𝑏𝛾𝑏. Let 𝛿𝑎, 𝛿𝑏 be two real numbers, such that, 𝛿 < 𝛿𝑎 + 𝛿𝑏.

There exists natural numbers 𝑘𝑎, 𝑘𝑏 and real numbers 𝜖𝑎, 𝜖𝑏 > 0, such that, for all

74

vector 𝑧𝑧𝑧ℎ of length 𝑛 ≥ max(𝑘𝑎, 𝑘𝑏), the following is true:

∑︁
𝑦𝑦𝑦∈𝑌 𝑛

1
(︁
∀𝑧𝑧𝑧 ∈ 𝑍𝑛. ℒ𝑎(𝑧𝑧𝑧,𝑦𝑦𝑦)− ℒ𝑎(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) ≤ 𝛾𝑎 =⇒ 𝑑(𝑧𝑧𝑧,𝑧𝑧𝑧ℎ) < 𝜖𝑎

)︁
𝜌𝑁(𝑦𝑦𝑦 | 𝑧𝑧𝑧ℎ) ≥ (1− 𝛿𝑎)

∑︁
𝑦𝑦𝑦∈𝑌 𝑛

1
(︁
∀𝑧𝑧𝑧 ∈ 𝑍𝑛. ℒ𝑏(𝑧𝑧𝑧,𝑦𝑦𝑦)− ℒ𝑏(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) ≤ 𝛾𝑏 =⇒ 𝑑(𝑧𝑧𝑧, 𝑧𝑧𝑧ℎ) < 𝜖𝑏

)︁
𝜌𝑁(𝑦𝑦𝑦 | 𝑧𝑧𝑧ℎ) ≥ (1− 𝛿𝑏)

Let 𝜖 be a real number, such that, 𝜖 ≥ 𝜖𝑎, and 𝜖 ≥ 𝜖𝑏.

∑︁
𝑦𝑦𝑦∈𝑌 𝑛

1
(︁
∀𝑧𝑧𝑧 ∈ 𝑍𝑛. ℒ(𝑧𝑧𝑧,𝑦𝑦𝑦)− ℒ(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) ≤ 𝛾 =⇒ 𝑑(𝑧𝑧𝑧,𝑧𝑧𝑧ℎ) < 𝜖

)︁
𝜌𝑁(𝑦𝑦𝑦 | 𝑧𝑧𝑧ℎ) ≥

∑︁
𝑦𝑦𝑦∈𝑌 𝑛

1
(︁
∀𝑧𝑧𝑧 ∈ 𝑍𝑛. ℒ𝑎(𝑧𝑧𝑧,𝑦𝑦𝑦)− ℒ𝑎(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) ≤ 𝛾𝑎 =⇒ 𝑑(𝑧𝑧𝑧,𝑧𝑧𝑧ℎ) < 𝜖𝑎

)︁
1
(︁
∀𝑧𝑧𝑧 ∈ 𝑍𝑛. ℒ𝑏(𝑧𝑧𝑧,𝑦𝑦𝑦)− ℒ𝑏(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) ≤ 𝛾𝑏 =⇒ 𝑑(𝑧𝑧𝑧,𝑧𝑧𝑧ℎ) < 𝜖𝑏

)︁
𝜌𝑁(𝑦𝑦𝑦 | 𝑧𝑧𝑧ℎ) ≥

max
(︁1

2 ,
∑︁

𝑦𝑦𝑦∈𝑌 𝑛

1
(︁
∀𝑧𝑧𝑧 ∈ 𝑍𝑛. ℒ𝑎(𝑧𝑧𝑧,𝑦𝑦𝑦)− ℒ𝑎(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) ≤ 𝛾𝑎 =⇒ 𝑑(𝑧𝑧𝑧,𝑧𝑧𝑧ℎ) < 𝜖𝑎

)︁
𝜌𝑁(𝑦𝑦𝑦 | 𝑧𝑧𝑧ℎ)

+
∑︁

𝑦𝑦𝑦∈𝑌 𝑛

1
(︁
∀𝑧𝑧𝑧 ∈ 𝑍𝑛. ℒ𝑎(𝑧𝑧𝑧,𝑦𝑦𝑦)− ℒ𝑎(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) ≤ 𝛾𝑎 =⇒ 𝑑(𝑧𝑧𝑧,𝑧𝑧𝑧ℎ) < 𝜖𝑎

)︁
𝜌𝑁(𝑦𝑦𝑦 | 𝑧𝑧𝑧ℎ)− 1

)︁

≥ max(1
2 , (1− 𝛿𝑎 − 𝛿𝑏)) ≥ 1− 𝛿

5.3 Application of These Concepts to Text Manipulating

Noise Sources

Many program synthesis algorithms focus on text manipulation applications [20, 35].

Building on classical research on text errors [10], I formulate a general class of noise

sources and loss functions for text processing program synthesis applications and

prove optimality and convergence relationships that hold between these noise sources

and loss functions. These results can guide the choice of loss function given informa-

tion about a noise source.

Generalized Damerau-Levenshtein Noise Source:

The generalized Damerau-Levenshtein noise source (Figure 5-1), characterizes the

75

𝜌𝑁𝑔𝐷𝐿
(𝜖 | 𝜖) := 1

𝜌𝑁𝑔𝐷𝐿
(𝑐 · 𝑠 | 𝜖) := 𝑝insert × 𝜌insert(𝑐)× 𝜌𝑁𝑔𝐷𝐿

(𝑠 | 𝜖)
𝜌𝑁𝑔𝐷𝐿

(𝜖 | 𝑐 · 𝑠) := 𝑝delete × 𝜌𝑁𝑔𝐷𝐿
(𝜖 | 𝑠)

𝜌𝑁𝑔𝐷𝐿
(𝑐′

1 · 𝑐′
2 · 𝑠′ | 𝑐1 · 𝑐2 · 𝑠) := 𝑝donothing × 𝜌𝑁𝑔𝐷𝐿

(𝑐′
2 · 𝑠′ | 𝑐2 · 𝑠)× 1

(︁
𝑐′

1 = 𝑐′
2

)︁
+ 𝑝insert × 𝜌insert(𝑐′

1)× 𝜌𝑁𝑔𝐷𝐿
(𝑐′

2 · 𝑠′ | 𝑐1 · 𝑐2 · 𝑠)
+ 𝑝delete × 𝜌𝑁𝑔𝐷𝐿

(𝑐′
1 · 𝑐′

2 · 𝑠′ | 𝑐2 · 𝑠)
+ 𝑝substitute × 𝜌substitute(𝑐′

1 | 𝑐1)× 𝜌𝑁𝑔𝐷𝐿
(𝑐′

2 · 𝑠′ | 𝑐2 · 𝑠)
+ 𝑝transpose × 𝜌𝑁𝑔𝐷𝐿

(𝑠′ | 𝑠)× 1
(︁
𝑐′

1 = 𝑐2 and 𝑐′
2 = 𝑐1

)︁

Figure 5-1: Generalized Damerau-Levenshtein noise source

conditional probability 𝜌𝑁𝑔𝐷𝐿
(𝑠′ | 𝑠) of the noise source generating noisy string 𝑠′

given a noise-free string 𝑠. The noise source works with four kinds of noise: 1)

character insertions, 2) character deletions, 3) character substitutions, and 4) char-

acter transpositions. It is parameterized by the probabilities of applying each noise

source at each text character, specifically 𝑝insert, 𝑝delete, 𝑝substitute, 𝑝transpose ≥ 0, where

𝑝insert+𝑝delete+𝑝substitute+𝑝transpose < 1, and by 𝜌insert(𝑐) (the probability of inserting the

character 𝑐 given that an insertion will happen) and 𝜌substitute(𝑐′ | 𝑐) (the probability

of substituting the original character 𝑐 with 𝑐′ given that a substitution will happen).

I define 𝑝donothing = 1− (𝑝insert + 𝑝delete + 𝑝substitute + 𝑝transpose); note that 𝑝donothing > 0.

I extend the noise source 𝜌𝑁𝑔𝐷𝐿
to outputs 𝑧𝑧𝑧 and a noisy outputs 𝑦𝑦𝑦), 𝑧𝑧𝑧 = ⟨𝑧1, . . . , 𝑧𝑛⟩,

𝑦𝑦𝑦 = ⟨𝑦1, . . . , 𝑦𝑛⟩, by taking the product over corresponding output/noisy outputs:

𝜌𝑁𝑔𝐷𝐿
(𝑦𝑦𝑦 | 𝑧𝑧𝑧) = ∏︀

1≤𝑖≤𝑛 𝜌𝑁𝑔𝐷𝐿
(𝑦𝑖 | 𝑧𝑖).

Given 𝑠′, 𝑠, and the parameters, the conditional probablity 𝜌𝑁𝑔𝐷𝐿
can be readily

computed using a recursive computation as in Figure 5-1. Because of the parameteri-

zation, the noise source can be immediately specialized to model a range of situations,

including situations in which only one of the kinds of noise is relevant.

Generalized Damerau-Levenshtein Loss Function:

Generalized Damerau-Levenshtein loss function is defined as:

ℒ𝑔𝐷𝐿(𝑧𝑧𝑧,𝑦𝑦𝑦) = − log(𝜌𝑁𝑔𝐷𝐿
(𝑦𝑦𝑦 | 𝑧𝑧𝑧))

76

𝑑𝑎,𝑏(𝑖, 𝑗) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 𝑖 = 𝑗 = 0
𝑑𝑎,𝑏(𝑖− 1, 𝑗) + 1 𝑖 > 0 #Deletion
𝑑𝑎,𝑏(𝑖, 𝑗 − 1) + 1 𝑗 > 0 #Insertion
𝑑𝑎,𝑏(𝑖− 1, 𝑗 − 1) 𝑎𝑖 = 𝑏𝑗, 𝑖, 𝑗 > 0 #Do nothing
𝑑𝑎,𝑏(𝑖− 1, 𝑗 − 1) + 1 𝑎𝑖 ̸= 𝑏𝑗, 𝑖, 𝑗 > 0 #Substitution
𝑑𝑎,𝑏(𝑖− 2, 𝑗 − 2) + 1 𝑖, 𝑗 > 1, 𝑎𝑖 = 𝑏𝑗−1, 𝑎𝑖−1 = 𝑏𝑗 #Transposition

Figure 5-2: Damerau-Levenshtein distance metric

Note that this loss function is optimal for the generalized Damerau-Levenshtein noise

source.

Theorem 9. The generalized Damerau-Levenshtein loss function ℒ𝑔𝐷𝐿 is the optimal

loss function for the generalized Damerau-Levenshtein noise source 𝑁𝑔𝐷𝐿, given that

both ℒ𝑔𝐷𝐿 and 𝑁𝑔𝐷𝐿 are parameterized by the same parameters, insert distribution

𝜌insert, and substitute distribution 𝜌substitute.

Proof. Generalized Damerau-Levenshtein loss function is the optimal loss function

for the generalized Damerau-Levenshtein noise source because it is equal to the − log

of the probability measure (Section 5.1.1).

I next present a theorem that establishes when the combination of a generalized

Damerau-Levenshtein noise source and loss function is differentiating (and therefore

converges in the presence of a differentiating input source) despite potential param-

eter mismatches. In the absence of complete or even any specific information about

the parameters for the generalized Damerau-Levenshtein noise source, this theorem

makes it possible to choose parameters for the generalized Damerau-Levenshtein loss

function that nevertheless ensure convergence.

Definition 17. Damerau-Levenshtein Distance Metric:

𝑑𝐷𝐿(𝑧, 𝑦) = 𝑑𝑧,𝑦(|𝑧|, |𝑦|)

where 𝑑 is defined in Figure 5-2.

77

Theorem 10. Given Damerau-Levenshtein distance metric 𝑑𝐷𝐿 [10] (Definition 17)

and the generalized Damerau-Levenshtein loss function ℒ𝑔𝐷𝐿 (parameterized by 𝜌*
insert,

𝜌*
substitute, 𝑝*

insert, 𝑝*
delete, 𝑝*

substitute, 𝑝*
transpose, and 𝑝*

donothing), the generalized Damerau-

Levenshtein noise source 𝑁𝑔𝐷𝐿 (parameterized by 𝜌insert, 𝜌substitute, 𝑝insert, 𝑝delete, 𝑝substitute,

𝑝transpose, and 𝑝donothing) is differentiating, if

𝑝insert > 0 =⇒ 𝑝*
insert > 0

𝑝delete > 0 =⇒ 𝑝*
delete > 0

𝑝substitute > 0 =⇒ 𝑝*
substitute > 0

𝑝transpose > 0 =⇒ 𝑝*
transpose > 0

and for all characters 𝑐 and 𝑐′:

𝜌insert(𝑐) > 0 =⇒ 𝜌*
insert(𝑐) > 0

𝜌substitute(𝑐 | 𝑐′) > 0 =⇒ 𝜌*
substitute(𝑐 | 𝑐′) > 0

Proof. Consider two output vectors 𝑧𝑧𝑧 and 𝑧𝑧𝑧ℎ of equal size. If 𝑑𝐷𝐿(𝑧𝑧𝑧, 𝑧𝑧𝑧ℎ) ≥ 𝜖, then

it will take at least 𝜖 edits (i.e., 𝜖 specific insertions, deletions, transpositions, and

substitutions) to convert 𝑧𝑧𝑧 to 𝑧𝑧𝑧ℎ. Let 𝐸 be the set of these specific edits. Now consider

a new vector 𝑦𝑦𝑦 of size equal to 𝑧𝑧𝑧ℎ. Now assume ℒ𝑔𝐷𝐿(𝑧𝑧𝑧,𝑦𝑦𝑦) − ℒ𝑔𝐷𝐿(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) > 𝛾. Let

𝑝𝑚𝑎𝑥 and 𝑝𝑚𝑖𝑛, be the max and min of 𝑝𝑖𝑛𝑠𝑒𝑟𝑡, 𝑝𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒, 𝑝𝑑𝑒𝑙𝑒𝑡𝑒, 𝑝𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒, which are

greater than 0.

The distance between 𝑧𝑧𝑧 and 𝑧𝑧𝑧ℎ is greater than 𝜖. Let us assume 𝑦𝑦𝑦 contains 𝑚

edits, then ℒ𝑔𝐷𝐿(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) ≤ 𝑚× 𝑝𝑚𝑎𝑥. ℒ𝑔𝐷𝐿(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) ≥ (𝜖−𝑚)× 𝑝𝑚𝑖𝑛. Therefore,

(𝜖−𝑚)× 𝑝𝑚𝑖𝑛 −𝑚× 𝑝𝑚𝑎𝑥 > 𝛾 =⇒ ℒ𝑔𝐷𝐿(𝑧𝑧𝑧,𝑦𝑦𝑦)− ℒ𝑔𝐷𝐿(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) > 𝛾

Now if we consider all vectors 𝑧𝑧𝑧 of size equal to 𝑧𝑧𝑧ℎ, such that, 𝑑𝐷𝐿(𝑧𝑧𝑧,𝑧𝑧𝑧ℎ) ≥ 𝜖, then

∀𝑧𝑧𝑧 ∈ 𝑍𝑛.ℒ𝑔𝐷𝐿(𝑧𝑧𝑧,𝑦𝑦𝑦)−ℒ𝑔𝐷𝐿(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) > 𝛾, if and only if, 𝑦𝑦𝑦 contains less than 𝜖−𝑚 edits.

78

Note that, this can be any type of edits.

𝜌𝑁𝑔𝐷𝑆
(𝑦𝑦𝑦 with at most 𝜖−𝑚 edits | 𝑧𝑧𝑧ℎ) = 1− 𝜌𝑁𝑔𝐷𝑆

(𝑦𝑦𝑦 atleast 𝜖−𝑚 edits | 𝑧𝑧𝑧ℎ)

= 1− (1− 𝑝𝑑𝑜𝑛𝑜𝑡ℎ𝑖𝑛𝑔)(𝜖−𝑚)

Therefore, if 𝑝𝑑𝑜𝑛𝑜𝑡ℎ𝑖𝑛𝑔 > 0, for any 𝛿 > 0 and 𝛾, if we pick a 𝑘, 𝑚, and an 𝜖, such

that,

𝛿 > (1− 𝑝𝑑𝑜𝑛𝑜𝑡ℎ𝑖𝑛𝑔)(𝜖−𝑚)

(𝜖−𝑚)× 𝑝𝑚𝑖𝑛 −𝑚× 𝑝𝑚𝑎𝑥 > 𝛾

then

∑︁
𝑦𝑦𝑦∈𝑌 𝑛

1
(︁
∀𝑧𝑧𝑧 ∈ 𝑍𝑛.ℒ𝑔𝐷𝐿(𝑧𝑧𝑧,𝑦𝑦𝑦)− ℒ𝑔𝐷𝐿(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) ≤ 𝛾 =⇒ 𝑑𝐷𝐿(𝑧𝑧𝑧,𝑧𝑧𝑧ℎ) < 𝜖

)︁
𝜌𝑁𝑔𝐷𝐿

(𝑦𝑦𝑦 | 𝑧𝑧𝑧ℎ)

= 1− (1− 𝑝𝑑𝑜𝑛𝑜𝑡ℎ𝑖𝑛𝑔)(𝜖−𝑚) ≥ 1− 𝛿

Therefore, 𝜌𝑁𝑔𝐷𝐿
is differentiating.

Damerau-Levenshtein Loss Function: The Damerau-Levenshtein loss function

ℒ𝐷𝐿(𝑧𝑧𝑧,𝑥𝑥𝑥) uses the Damerau-Levenshtein distance metric (Definition 17), to measure

the distance between the output from the synthesized program and the corresponding

output in the noisy dataset:

ℒ𝐷𝐿(⟨𝑧1, . . . 𝑧𝑛⟩, ⟨𝑦1, . . . 𝑦𝑛⟩) =
𝑛∑︁

𝑖=1
𝐿𝑧𝑖,𝑦𝑖

(︁
|𝑧𝑖| , |𝑦𝑖|

)︁

where 𝐿𝑎,𝑏(𝑖, 𝑗) is the Damerau-Levenshtein distance metric [10], which counts the

number of single character deletions, insertions, substitutions, or transpositions re-

quired to convert one text string into another. Because more than 80% of all human

misspellings are reported to be captured by a single one of these four operations [10],

the Damerau-Levenshtein loss function may be appropriate for computations that

work with human-provided text input-output examples.

79

In addition to the previous result, I also show that the Damerau-Levenshtein loss

function, in combination with a generalized Damerau-Levenshtein noise source, is

differentiating (and will converge in the presence of a differentiating input source).

Therefore, in the presence of any generalized Damerau-Levenshtein style noise source,

using the Damerau-Levenshtein loss function will allow us to ensure convergence of

the synthesis algorithm.

Theorem 11. Given Damerau-Levenshtein distance metric 𝑑𝐷𝐿 and the Damerau-

Levenshtein loss function ℒ𝐷𝐿, the generalized Damerau-Levenshtein noise source

𝑁𝑔𝐷𝐿 is differentiating.

Proof. Consider two output vectors 𝑧𝑧𝑧 and 𝑧𝑧𝑧ℎ of equal size. If 𝑑𝐷𝐿(𝑧𝑧𝑧,𝑧𝑧𝑧ℎ) ≥ 𝜖, then

it will take at least 𝜖 edits (i.e., 𝜖 specific insertions, deletions, transpositions, and

substitutions) to convert 𝑧𝑧𝑧 to 𝑧𝑧𝑧ℎ. Let 𝐸 be the set of these specific edits. Now

consider a new vector 𝑦𝑦𝑦 of size equal to 𝑧𝑧𝑧ℎ. Now ℒ𝐷𝐿(𝑧𝑧𝑧,𝑦𝑦𝑦)− ℒ𝐷𝐿(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) > 𝛾, then 𝑦𝑦𝑦

has at most 𝜖− 𝛾 of these specific edits.

Now if we consider all vectors 𝑧𝑧𝑧 of size equal to 𝑧𝑧𝑧ℎ, such that, 𝑑𝐷𝐿(𝑧𝑧𝑧,𝑧𝑧𝑧ℎ) ≥ 𝜖, then

∀𝑧𝑧𝑧 ∈ 𝑍𝑛.ℒ𝐷𝐿(𝑧𝑧𝑧,𝑦𝑦𝑦) − ℒ𝐷𝐿(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) > 𝛾, if and only if, 𝑦𝑦𝑦 contains less than 𝜖 − 𝛾 edits.

Note that this can be any type of edits.

𝜌𝑁𝑔𝐷𝑆
(𝑦𝑦𝑦 with at most 𝜖− 𝛾 edits | 𝑧𝑧𝑧ℎ) = 1− 𝜌𝑁𝑔𝐷𝑆

(𝑦𝑦𝑦 atleast 𝜖− 𝛾 edits | 𝑧𝑧𝑧ℎ)

= 1− (1− 𝑝𝑑𝑜𝑛𝑜𝑡ℎ𝑖𝑛𝑔)(𝜖−𝛾)

Therefore, if 𝑝𝑑𝑜𝑛𝑜𝑡ℎ𝑖𝑛𝑔 > 0, for any 𝛿 > 0 and 𝛾, if we pick a 𝑘 and an 𝜖, such that,

𝛿 > (1− 𝑝𝑑𝑜𝑛𝑜𝑡ℎ𝑖𝑛𝑔)(𝜖−𝛾)

then

∑︁
𝑦𝑦𝑦∈𝑌 𝑛

1
(︁
∀𝑧𝑧𝑧 ∈ 𝑍𝑛.ℒ𝐷𝐿(𝑧𝑧𝑧,𝑦𝑦𝑦)− ℒ𝐷𝐿(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) ≤ 𝛾 =⇒ 𝑑𝐷𝐿(𝑧𝑧𝑧,𝑧𝑧𝑧ℎ) < 𝜖

)︁
𝜌𝑁𝑔𝐷𝐿

(𝑦𝑦𝑦 | 𝑧𝑧𝑧ℎ)

= 1− (1− 𝑝𝑑𝑜𝑛𝑜𝑡ℎ𝑖𝑛𝑔)(𝜖−𝛾) ≥ 1− 𝛿

80

Therefore, 𝜌𝑁𝑔𝐷𝐿
is differentiating.

Expected Generalized Damerau-Levenshtein Loss Function: I next explore

the case where a user has imperfect information about the parameters of the general-

ized Damerau-Levenshtein noise source. I start with a finite/infinite set 𝒩 of gener-

alized Damerau-Levenshein noise sources, each parameterized by potentially different

values. Let 𝜌𝒩 be the prior probability of a noise source within the set 𝒩 to be the

hidden noise source which corrupted the output strings.

Using the framework presented in Subsection 5.1.2, we can construct an optimal

loss function (expected generalized Damerau-Levenshtein loss function) ℒ𝑒𝑔𝐷𝐿, given

this imperfect information. Formally,

ℒ𝑒𝑔𝐷𝐿(𝑧𝑧𝑧,𝑦𝑦𝑦) = − log
(︁ ∫︁

𝑁𝑔𝐷𝐿∈𝒩
𝜌𝑁𝑔𝐷𝐿

(𝑧𝑧𝑧,𝑦𝑦𝑦)𝜌𝒩 (𝑁𝑔𝐷𝐿)
)︁

I present a theorem that establishes that the expected generalized Damerau-

Levenshtein loss function ℒ𝑒𝑔𝐷𝐿 is differentiating for all noise sources in set 𝒩 . There-

fore, even if we are given imperfect information about the parameters for the gener-

alized Damerau-Levenshtein noise source, we can construct an expected generalized

Damerau-Levenshtein loss function which is optimal and ensures convergence for any

parameters consistent with the given imperfect information.

Theorem 12. Given a set of Damerau-Levenshtein noise sources 𝒩 and a prior

probability distribution 𝜌𝒩 over 𝒩 , Damerau-Levenshtein distance metric 𝑑𝐷𝐿 and

the expected generalized Damerau-Levenshtein loss function ℒ𝑒𝑔𝐷𝐿 over 𝒩 , 𝜌𝒩 , then

all generalized Damerau-Levenshtein noise sources 𝑁𝑔𝐷𝐿 ∈ 𝒩 are differentiating.

Proof. Consider two output vectors 𝑧𝑧𝑧 and 𝑧𝑧𝑧ℎ of equal size. If 𝑑𝐷𝐿(𝑧𝑧𝑧,𝑧𝑧𝑧ℎ) ≥ 𝜖, then

it will take at least 𝜖 edits (i.e., 𝜖 specific insertions, deletions, transpositions, and

substitutions) to convert 𝑧𝑧𝑧 to 𝑧𝑧𝑧ℎ. Let 𝐸 be the set of these specific edits. Now consider

a new vector 𝑦𝑦𝑦 of size equal to 𝑧𝑧𝑧ℎ. Now assume ℒ𝑒𝑔𝐷𝐿(𝑧𝑧𝑧,𝑦𝑦𝑦) − ℒ𝑒𝑔𝐷𝐿(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) > 𝛾.

Let 𝑝𝑚𝑎𝑥 and 𝑝𝑚𝑖𝑛, be the max and min of 𝑝𝑖𝑛𝑠𝑒𝑟𝑡, 𝑝𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒, 𝑝𝑑𝑒𝑙𝑒𝑡𝑒, 𝑝𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒, for any

𝑁 ′
𝑔𝐷𝐿 ∈ 𝒩 , which are greater than 0.

81

The distance between 𝑧𝑧𝑧 and 𝑧𝑧𝑧ℎ is greater than 𝜖. Let us assume that 𝑦𝑦𝑦 contains

𝑚 edits, the ℒ𝑒𝑔𝐷𝐿(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) ≤ 𝑚× 𝑝𝑚𝑎𝑥. ℒ𝑒𝑔𝐷𝐿(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) ≥ (𝜖−𝑚)× 𝑝𝑚𝑖𝑛. Therefore,

(𝜖−𝑚)× 𝑝𝑚𝑖𝑛 −𝑚× 𝑝𝑚𝑎𝑥 > 𝛾 =⇒ ℒ𝑒𝑔𝐷𝐿(𝑧𝑧𝑧,𝑦𝑦𝑦)− ℒ𝑒𝑔𝐷𝐿(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) > 𝛾

Now if we consider all vectors 𝑧𝑧𝑧 of size equal to 𝑧𝑧𝑧ℎ, such that, 𝑑𝐷𝐿(𝑧𝑧𝑧,𝑧𝑧𝑧ℎ) ≥ 𝜖, then

∀𝑧𝑧𝑧 ∈ 𝑍𝑛.ℒ𝑒𝑔𝐷𝐿(𝑧𝑧𝑧,𝑦𝑦𝑦) − ℒ𝑒𝑔𝐷𝐿(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) > 𝛾, if and only if, 𝑦𝑦𝑦 contains less than 𝜖 − 𝑚

edits. Note that this can be any type of edits.

𝜌𝑁𝑔𝐷𝐿
(𝑦𝑦𝑦 with at most 𝜖−𝑚edits | 𝑧𝑧𝑧ℎ) = 1− 𝜌𝑁𝑔𝐷𝐿

(𝑦𝑦𝑦 atleast 𝜖−𝑚edits | 𝑧𝑧𝑧ℎ)

= 1− (1− 𝑝𝑑𝑜𝑛𝑜𝑡ℎ𝑖𝑛𝑔)(𝜖−𝑚)

Therefore, if 𝑝𝑑𝑜𝑛𝑜𝑡ℎ𝑖𝑛𝑔 > 0, for any 𝛿 > 0 and 𝛾, if we pick a 𝑘, 𝑚, and an 𝜖, such

that,

𝛿 > (1− 𝑝𝑑𝑜𝑛𝑜𝑡ℎ𝑖𝑛𝑔)(𝜖−𝑚)

(𝜖−𝑚)× 𝑝𝑚𝑖𝑛 −𝑚× 𝑝𝑚𝑎𝑥 > 𝛾

then

∑︁
𝑦𝑦𝑦∈𝑌 𝑛

1
(︁
∀𝑧𝑧𝑧 ∈ 𝑍𝑛.ℒ𝑒𝑔𝐷𝐿(𝑧𝑧𝑧,𝑦𝑦𝑦)− ℒ𝑒𝑔𝐷𝐿(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) ≤ 𝛾 =⇒ 𝑑𝐷𝐿(𝑧𝑧𝑧,𝑧𝑧𝑧ℎ) < 𝜖

)︁
𝜌𝑁𝑔𝐷𝐿

(𝑦𝑦𝑦 | 𝑧𝑧𝑧ℎ)

= 1− (1− 𝑝𝑑𝑜𝑛𝑜𝑡ℎ𝑖𝑛𝑔)(𝜖−𝑚) ≥ 1− 𝛿

Therefore, 𝜌𝑁𝑔𝐷𝐿
is differentiating.

5.3.1 Connecting Theory With Experiments

I next introduce and study noise sources and loss functions introduced in Chapter 2

and Chapter 4.

𝑛-Substitution Noise Source: The 𝑛-Substitution noise source 𝑁𝑛𝑆, given an

output vector ⟨𝑧1, . . . 𝑧𝑛⟩ corrupts each string 𝑧𝑖 independently. For each string

𝑧 = 𝑐1 · · · 𝑐𝑘, it replaces character 𝑐𝑖 with a random character not equal to 𝑐𝑖 with

82

probability 𝛿𝑛𝑆.

Note that this noise source is a special case of the generalized Damerau-Levenshtein

noise source.

𝑛-Substitution Loss Function: The 𝑛-Substitution loss function ℒ𝑛𝑆(𝑧𝑧𝑧,𝑦𝑦𝑦) uses

per-example loss function 𝐿𝑛𝑆 that captures a weighted sum of positions where the

noisy output string agrees and disagrees with the output from the synthesized pro-

gram. If the synthesized program produces an output that is longer or shorter than

the output in the noisy dataset, the loss function is ∞:

ℒ𝑛𝑆(⟨𝑧1, . . . 𝑧𝑛⟩, ⟨𝑦1, . . . 𝑦𝑛⟩) =
𝑛∑︁

𝑖=1
𝐿𝑛𝑆(𝑧𝑖, 𝑦𝑖), where

𝐿𝑛𝑆(𝑧, 𝑦) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞ |𝑧| ≠ |𝑦|
|𝑧|∑︀

𝑖=1
− log 𝛿𝑖 if 𝑧[𝑖] ̸= 𝑦[𝑖]

else − log(1− 𝛿𝑖) |𝑧| = |𝑦|

Note that this loss function is a linear transformation of the 𝑛-Substitution loss func-

tion proposed in Chapter 4.

The 𝑛-Substitution noise function combined with either 𝑛-Substitution loss func-

tion or Damerau-Levenshtein loss function is differentiating. Therefore, in the pres-

ence of a differentiating input source, a synthesis algorithm which uses either the

𝑛-Substitution loss function or the Damerau-Levenshtein loss function will converge

if used with the 𝑛-Substitution noise source. The 𝑛-Substitution loss function is also

the optimal loss function for 𝑛-Substitution noise source.

Theorem 13. 𝑛-Substitution loss function ℒ𝑛𝑆 is the optimal loss function for the 𝑛-

Substitution noise source 𝑁𝑛𝑆. Given length distance metric 𝑑𝑙 and the 𝑛-Substitution

loss function ℒ𝑛𝑆, the 𝑛-Substitution noise source 𝑁𝑛𝑆 is differentiating.

Proof.

− log 𝜌𝑁𝑛𝑆
(⟨𝑦1, . . . 𝑦𝑛⟩ | ⟨𝑧1, . . . 𝑧𝑛⟩) =

𝑛∑︁
𝑖=1
− log 𝜌𝑛𝑛𝑆

(𝑦𝑖 | 𝑧𝑖)

83

where:

− log 𝜌𝑛𝑛𝑆
(𝑠′

1 · . . . · 𝑠′
𝑘 | 𝑠1 · . . . · 𝑠𝑘) =

𝑛∑︁
𝑖=1

(−1(𝑠′
𝑖 = 𝑠𝑖) log(1− 𝛿𝑖)) + (−1(𝑠′

𝑖 ̸= 𝑠𝑖) log 𝛿𝑖)

Note that ℒ𝑛𝑆 = − log 𝜌𝑁𝑛𝑆
. Hence 𝑛-Substitution loss function ℒ𝑛𝑆 is the optimal

loss function for 𝑛-Substitution noise source.

if 𝑑𝑙(𝑧𝑧𝑧,𝑧𝑧𝑧ℎ) ≥ 1, then for all samples 𝑦𝑦𝑦, ℒ𝑛𝑆(𝑧𝑧𝑧,𝑦𝑦𝑦) = ∞. Therefore for all 𝛾 > 0,

𝛿 > 0,

∑︁
𝑦𝑦𝑦∈𝑌 𝑛

1(∀ 𝑧𝑧𝑧 ∈ 𝑍𝑛.𝑑𝑙(𝑧𝑧𝑧,𝑧𝑧𝑧ℎ) ≥ 1 =⇒ ℒ(𝑧𝑧𝑧,𝑦𝑦𝑦)−ℒ(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) =∞ > 𝛾)𝜌𝑁(𝑦𝑦𝑦 | 𝑧𝑧𝑧ℎ) = 1 ≥ (1−𝛿)

Theorem 14. Given Damerau-Levenshtein distance metric 𝑑𝐷𝐿 and the the 𝑛-Substitution

noise source 𝑁𝑛𝑆, Damerau-Levenshtein loss function ℒ𝐷𝐿 is differentiating.

Proof. 𝑛-Substitution noise source is an instance of a generalized Damerau-Levenshtein

noise source, with probability of delete, insert, and transpose set to 0. Since Damerau-

Levenshtein loss function is differentiating with respect to all generalized Damerau-

Levenshtein noise sources (Theorem 11), given Damerau-Levenshtein distance metric

𝑑𝐷𝐿 and the the 𝑛-Substitution noise source 𝑁𝑛𝑆, Damerau-Levenshtein loss function

ℒ𝐷𝐿 is differentiating.

1-Delete Noise Source: The 1-Delete noise source 𝑁1𝐷 given a string 𝑠 corrupts it

by deleting a random character with probability 𝛿1𝐷 < 1. Formally:

𝜌𝑁1𝐷
(𝑠 | 𝑠) = 1− 𝛿1𝐷

𝜌𝑁1𝐷
(𝑎 · 𝑏 |𝑎 · 𝑐 · 𝑏) = 1

len(𝑎 · 𝑐 · 𝑏)𝛿1𝐷

where 𝑎, 𝑏 are strings and 𝑐 is a character.

I extend this noise source to multiple outputs and corrupted outputs by taking a

84

product over the corresponding output and the corrupted output:

𝜌𝑁1𝐷
(⟨𝑦1, . . . 𝑦𝑛⟩ | ⟨𝑧1, . . . 𝑧𝑛⟩) =

𝑛∏︁
𝑖=1

𝜌𝑛1𝐷
(𝑦𝑖 | 𝑧𝑖)

1-Delete Loss Function: The 1-Delete loss function ℒ1𝐷(⟨𝑧1, . . . 𝑧𝑛⟩, ⟨𝑦1, . . . 𝑦𝑛⟩)

assigns loss − log(1 − 𝛿𝑖) if the output 𝑧𝑖 from the synthesized program and the

dataset 𝑦𝑖 match exactly, − log 𝛿𝑖 if a single deletion enables the output from the

synthesized program to match the output from the dataset, and ∞ otherwise (for

0 < 𝛿𝑖 < 1):

ℒ1𝐷(⟨𝑧1, . . . 𝑧𝑛⟩, ⟨𝑦1, . . . 𝑦𝑛⟩) =
𝑛∑︁

𝑖=1
𝐿1𝐷(𝑧𝑖, 𝑦𝑖), where

𝐿1𝐷(𝑧, 𝑦) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− log(1− 𝛿𝑖) 𝑧 = 𝑦

− log 𝛿𝑖 𝑎 · 𝑥 · 𝑏 = 𝑧 ∧ 𝑎 · 𝑏 = 𝑦 ∧ |𝑥| = 1

∞ otherwise

Note that this loss function is a linear transformation of the 1-Delete loss function

proposed in Chapter 4.

The 1-Delete noise function combined with either 1-Delete loss function or Damerau-

Levenshtein loss function is differentiating. Therefore, in presence of a differentiating

input source, a synthesis algorithm which uses either the 1-Delete loss function or

the Damerau-Levenshtein loss function will ensure convergence, if the outputs were

corrupted by 1-Delete noise source. 1-Delete loss function is also the optimal loss

function for 1-Delete noise source.

Theorem 15. 1-Delete loss function ℒ1𝐷 is the optimal loss function for the 1-Delete

noise source 𝑁1𝐷. Given DL-2 Distance Metric 𝑑𝐷𝐿2 and the 1-Delete loss function

ℒ1𝐷, the 1-Delete noise source 𝑁1𝐷 is differentiating.

Proof.

− log 𝜌𝑁1𝐷
(⟨𝑦1, . . . 𝑦𝑛⟩ | ⟨𝑧1, . . . 𝑧𝑛⟩) =

𝑛∑︁
𝑖=1
− log 𝜌𝑛1𝐷

(𝑦𝑖 | 𝑧𝑖)

85

where 𝜌𝑛1𝐷
(𝑧 | 𝑧) = (1−𝛿𝑖) and 𝜌𝑛1𝐷

(𝑦 | 𝑧) = 𝛿𝑖 if 𝑦 has exactly one character deleted

with respect to 𝑧.

Note that ℒ1𝐷 = − log 𝜌𝑁1𝐷
. Hence 1-Delete Loss Function ℒ1𝐷 is the optimal

loss function for 1-Delete Noise Source.

If 𝑑𝐷𝐿2(𝑧𝑧𝑧, 𝑧𝑧𝑧ℎ) ≥ 1 then ℒ1𝐷(𝑧𝑧𝑧,𝑦𝑦𝑦) =∞. Therefore for all 𝛾 > 0, 𝛿 > 0,

𝜌𝑁 [∀ 𝑧𝑧𝑧 ∈ 𝑍𝑛.𝑑𝐷𝐿2(𝑧𝑧𝑧,𝑧𝑧𝑧ℎ) ≥ 1 =⇒ ℒ(𝑧𝑧𝑧,𝑦𝑦𝑦)− ℒ(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) =∞ > 𝛾 | 𝑧𝑧𝑧ℎ] = 1 ≥ (1− 𝛿)

Theorem 16. Given DL-2 Distance Metric 𝑑𝐷𝐿2 and the Damerau-Levenshtein loss

function ℒ𝐷𝐿, the 1-Delete noise source 𝑁1𝐷 is differentiating.

Proof. If 𝑑𝐷𝐿2(𝑧𝑧𝑧,𝑧𝑧𝑧ℎ) ≥ 𝑚, then ℒ𝐷𝐿(𝑧𝑧𝑧,𝑦𝑦𝑦)− ℒ𝐷𝐿(𝑧𝑧𝑧,𝑦𝑦𝑦) ≥ 𝑚 . Therefore for all 𝛾 > 0,

𝛿 > 0,

𝜌𝑁 [∀ 𝑧𝑧𝑧 ∈ 𝑍𝑛.𝑑𝐷𝐿2(𝑧𝑧𝑧,𝑧𝑧𝑧ℎ) ≥ 𝛾 =⇒ ℒ(𝑧𝑧𝑧,𝑦𝑦𝑦)− ℒ(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) > 𝛾 | 𝑧𝑧𝑧ℎ] = 1 ≥ (1− 𝛿)

The choice of loss function affects whether the noise source is differentiating or

not. The noise source may reveal information identifying the hidden program with

high probability, but the loss function may fail to capture this information. For

example, consider that the 1-Delete noise source 𝑁1𝐷 with the 1-Delete loss function

ℒ1𝐷 (and DL-2 distance metric 𝑑𝐷𝐿2), is differentiating. Therefore the 1-Delete noise

source preserves enough information to enable successful synthesis (with the correct

loss function). But consider the 𝑛-Substitution loss function ℒ𝑛𝑆, which penalizes a

deletion with infinite loss. With this 𝑛-Substitution loss function, the 1-Delete noise

source 𝑁1𝐷 is not differentiating, which eliminates any convergence guarantee:

Theorem 17. Given 𝑛-Substitution loss function ℒ𝑛𝑆, 1-Delete noise source 𝑁1𝐷 is

not differentiating.

86

Noise source Optimal Differentiating loss function

loss function 1-Delete 𝑛-Substitution DL

1-Delete 1-Delete X × X
noise source loss function

Theorem 15 Theorem 15 Theorem 17 Theorem 16

𝑛-Substitution 𝑛-Substitution × X X
noise source loss function

Theorem 13 Theorem 18 Theorem 13 Theorem 14

Figure 5-3: Summary of the optimal loss functions and differentiating loss function
results.

Proof. If even a single deletion happens in 𝑦𝑦𝑦, then ℒ𝑛𝑆(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) = ∞. The probability

of no deletions is equal to (1 − 𝛿𝑖)𝑛 which decreases with 𝑛, therefore in this case

1-Delete Noise Source is non-differentiating.

Theorem 18. Given 1-Delete loss function ℒ1𝐷, 𝑛-Substitution noise source 𝑁𝑛𝑆 is

not differentiating.

Proof. If even a single substitution happens in 𝑦𝑦𝑦, then ℒ1𝐷(𝑧𝑧𝑧ℎ, 𝑦𝑦𝑦) = ∞. The proba-

bility of no substitutions is equal to (1 − 𝛿𝑛𝑆)𝑛 which decreases with 𝑛, therefore in

this case 𝑛-Substitution Noise Source is non-differentiating.

In Chapter 4, we empirically show that, for successful noisy synthesis, the 𝑛-

Substitution noise source requires all input-output examples to be correct (i.e., can-

not tolerate any noise) when the noise is introduced by the 1-Delete noise source.

Theorem 17 is consistent with these experimental results.

Figure 5-3 summarizes my theoretical results. The first column presents the name

of the noise source. The next column presents the optimal loss function for the

given noise source. The next three columns presents if the loss functions 1-Delete,

𝑛-Substitution, and Damerau-Levenstein is differentiating for the given noise source.

Connections to the Empirical Results: In Chapter 4, I empirically evaluated the

Damerau-Levenshtein and 1-Delete loss functions with the 1-Delete noise source.

87

Both the 1-Delete loss function and Damerau-Levenshtein loss function are able to

synthesize the correct program in presence of some, and in some cases a remarkable

amount of, noise. In comparison with the (suboptimal for 1-Delete noise source)

Damerau-Levenshtein loss function, our noisy synthesis algorithm tolerates datasets

with more noise when using the (optimal for 1-Delete noise source) 1-Delete loss

function. Even when all input-output examples were corrupted, the algorithm was

able to use the 1-Delete loss function to synthesize the correct program. Because 1-

Delete loss function is the optimal loss function in presence of 1-Delete noise source,

it has a higher probability of synthesizing the correct program than the suboptimal

in this context Damerau-Levenshtein loss function.

In Chapter 4, I also empirically evaluate the 𝑛-Substitution loss function in pres-

ence of the 𝑛-Substitution noise source. Consistent with my results, this technique

was able to synthesize the correct answer over datasets corrupted by 𝑛-Substitution

noise source.

5.4 Experimental Results

I used my noisy program syntheis algorithm (Chapter 3) to measure the convergence

for a large class of loss functions and noise sources using noisy versions of program

synthesis problems from the SyGus 2018 benchmark set [1]. Each problem in this

benchmark set is defined by a (noise free) data set of input/output examples defining

the synthesis problem. Each problem comes with a known ground-truth solution to

the synthesis problem. There are multiple versions of each problem, with the versions

differing in the size of the data set. All of my experiments use the long data set

provided with each problem (but, as described below, use random sampling from this

long data set to obtain smaller noisy synthesis problems). I only present results for

benchmarks on which the synthesis algorithm terminates within a timeout of 120

seconds for each synthesis task (Chapter 4).

Given a synthesis problem, including a data set of noise-free input/output exam-

ples, and parameters that specify a generalized Damerau-Levenshtein noise source, I

systematically generate noisy synthesis problems of varying sizes as follows. Using a

88

uniform probability distribution, I sample (with replacement) the specified number

of input/output examples and apply the specified generalized Damerau-Levenshtein

noise source to the sampled input/output examples to obtain a noisy data set. I then

apply my noisy program synthesis algorithm to solve the resulting noisy program

synthesis problem and compare the resulting synthesized program with the known

ground truth solution to the corresponding noise-free benchmark synthesis problem

to check if they are equivalent.

My experiments start with noisy program synthesis problems of size one (with

a single input/output example), then increase the size by one until termination as

defined below. For each problem size we obtain 100 noisy program synthesis problems

via the sampling and noise source application process described above. I then solve

each sampled noisy program synthesis problem. I continue generating and solving

noisy program synthesis problems of increasing size, terminating when 95 of the 100

problems synthesize a program equivalent to the original ground truth program. I

report this problem size.

Damerau-Levenshtein distance metric vs optimal loss function: Figure 5-4

presents results from one of these experiments for benchmarks phone-long, phone-1-

long, phone-2-long, phone-5-long, phone-6-long, phone-7-long, and phone-8-long. For

each problem I consider two loss functions, specifically the optimal loss function for the

noise source used to generate the data set and the traditional Damerau-Levenshtein

distance metric (which counts the minimum number of edits required to transform the

output from the synthesized program into the output from the noisy data set). The

first column of the figure presents the four parameters of the generalized Damerau-

Levenshtein noise source in the form 𝑝i, 𝑝d, 𝑝s, and 𝑝t. For each text character, the

noise source inserts a new character with probability 𝑝i (𝑝insert), deletes the character

with probability 𝑝d (𝑝delete), substitutes a new character for the current character with

probability 𝑝s (𝑝substitute), or swaps the position of the current character and the next

character with probability 𝑝t (𝑝transpose) (Section 5.3). The noise source uniformly

samples a character from set [𝑎− 𝑧0− 9] for insertions and substitutions. Note that

for some of the experimental parameters, the noise source corrupts each character

89

with probability 0.4. For each benchmark, the figure has two columns. The first

column (DL) presents the minimum problem size for which the Damerau-Levenshtein

distance metric synthesizes a program equivalent to the original ground truth program

for 95 of the 100 generated noisy program synthesis problems of that size. The second

column (O) presents the corresponding minimum problem size for the optimal loss

function for the noise source used to generate the noisy program synthesis problems.

I present results for two classes of problems - uniform problems, in which the edit

probabilities are the same for all four kinds of edits and point problems, in which all

edit probabilities are zero except for a single kind of edit. Most problems require only

(typically small) single digit problem sizes to meet the 95 out of 100 threshold for

both the Damerau-Levenshtein distance metric and the optimal loss function. Excep-

tions are uniform problems with large edit probabilities (both Damerau-Levenshtein

distance metric and optimal loss function) and point problems with the delete edit, in

which the 95 out of 100 threshold is significantly larger for the Damerau-Levenshtein

distance metric than for the optimal loss function – the Damerau-Levenshtein distance

metric assigns equal weight to deletions, insertions, substitutions, and transpositions.

Equally weighting all of these edits enables multiple different explanations for cor-

rupted outputs, which in turn can generate ambiguity in the correct program for

small data set sizes. I also note that for some problems the Damerau-Levenshtein

distance metric reaches 95 out of 100 for smaller data set sizes than the optimal loss

function, which we attribute to fluctuations caused by the randomized sampling that

generated the noisy program synthesis problem.

Together, these results highlight 1) the effectiveness of noisy program synthesis

as formulated in this paper, 2) the effectiveness of the Damerau-Levenshtein distance

metric for a large range of noisy text synthesis problems, and 3) the effectiveness of the

optimal loss function for specific targeted problems. These results also indicate that,

in general, in absence of information about the noise source, Damerau-Levenshtein

distance metric is an effective loss function for program synthesis over noisy strings.

Figure 5-5, 5-6, and 5-7 presents the corresponding results for bikes-long, initials-

long, and first-name long; the remaining benchmarks exceed the 120 seconds timeout

90

Noise source parameters Minimum problem size
phone phone-1 phone-2 phone-5 phone-6 phone-7 phone-8

𝑝i 𝑝d 𝑝s 𝑝t DL O DL O DL O DL O DL O DL O DL O
0.025 0.025 0.025 0.025 3 3 3 4 3 3 5 5 7 6 7 7 2 2
0.05 0.05 0.05 0.05 6 6 5 4 6 6 6 7 10 8 7 7 2 2

0.075 0.075 0.075 0.075 7 8 7 8 7 7 10 7 11 11 9 7 2 3
0.1 0.1 0.1 0.1 12 15 10 12 10 13 15 13 15 15 11 7 4 4

0.05 0.0 0.0 0.0 2 2 2 1 2 1 4 4 6 6 5 6 1 1
0.1 0.0 0.0 0.0 2 2 2 2 2 1 4 4 6 6 5 5 2 2

0.15 0.0 0.0 0.0 2 2 2 2 3 2 5 4 6 5 5 6 2 1
0.2 0.0 0.0 0.0 4 2 3 2 3 2 4 5 6 5 6 5 3 2
0.0 0.05 0.0 0.0 5 3 3 2 3 3 6 5 8 5 7 5 2 1
0.0 0.1 0.0 0.0 6 3 6 3 7 3 7 5 11 7 7 5 2 1
0.0 0.15 0.0 0.0 9 4 13 3 12 3 13 5 17 6 10 7 3 2
0.0 0.2 0.0 0.0 19 4 22 4 19 4 21 6 25 6 21 7 6 2
0.0 0.0 0.05 0.0 2 1 2 1 2 1 5 4 6 5 6 5 1 1
0.0 0.0 0.1 0.0 2 2 2 1 3 2 5 4 6 6 6 5 1 2
0.0 0.0 0.15 0.0 3 1 3 2 3 2 6 4 6 6 5 6 2 1
0.0 0.0 0.2 0.0 2 4 3 4 3 3 6 4 6 6 7 6 2 2
0.0 0.0 0.0 0.05 2 2 2 1 2 2 5 5 5 5 5 5 1 1
0.0 0.0 0.0 0.1 2 4 2 2 3 2 6 5 6 5 4 5 1 1
0.0 0.0 0.0 0.15 4 4 5 4 2 4 6 4 6 5 6 5 2 1
0.0 0.0 0.0 0.2 7 5 7 6 6 5 5 4 6 6 5 7 2 1

Figure 5-4: Minimum problem size for Damerau-Levenshtein distance metric vs op-
timal loss function.

limit. For these three experiments, I only experiment with even problem sizes. I

report the minimum even problem size for which the Damerau-Levenshtein distance

metric synthesizes a program equivalent to the original ground truth program for 90

of the 100 generated noisy program synthesis problems of that size. I also report this

metric for the optimal loss function.

Uniformly parameterized loss functions and noise sources: I next present the

minimum problem size for experiments in which both loss function and noise sources

are uniformly parameterized. Figure 5-8 presents results for these experiments for

phone-long, phone-1-long, phone-2-long, phone-5-long, phone-6-long, phone-7-long,

and phone-8-long synthesis problems. For each problem, I present results for four

loss functions and four noise sources. The first column of the figure presents the

value for the parameters of the generalized Damerau-Levenshtein noise source in the

form 𝑝i, 𝑝d, 𝑝s, and 𝑝t. In this case, 𝑝i = 𝑝d = 𝑝s = 𝑝t is equal to the parameter value.

For each loss function parameter value, the figure has four columns. These columns

present the minimum problem size for which the generalized Damerau-Levenshtein

loss function, uniformly parameterized by values 0.025, 0.05, 0.075, and 0.1 (i.e., 𝑝insert,

𝑝delete, 𝑝substitute, and 𝑝transpose are equal and set to either 0.025, 0.05, 0.075, or 0.1),

synthesizes a program equivalent to the original ground truth program for 95 of the

100 generated noisy program synthesis problems of that size. The minimum problem

91

Noise source parameters Minimum problem size
𝑝i 𝑝d 𝑝s 𝑝t Damerau-Levenshtein optimal loss function

0.025 0.025 0.025 0.025 6 6
0.05 0.05 0.05 0.05 8 8
0.075 0.075 0.075 0.075 12 10
0.1 0.1 0.1 0.1 16 22
0.05 0.0 0.0 0.0 4 6
0.1 0.0 0.0 0.0 4 4
0.15 0.0 0.0 0.0 4 6
0.2 0.0 0.0 0.0 6 4
0.0 0.05 0.0 0.0 4 6
0.0 0.1 0.0 0.0 10 6
0.0 0.15 0.0 0.0 12 6
0.0 0.2 0.0 0.0 22 6
0.0 0.0 0.05 0.0 4 4
0.0 0.0 0.1 0.0 4 4
0.0 0.0 0.15 0.0 6 6
0.0 0.0 0.2 0.0 6 4
0.0 0.0 0.0 0.05 4 6
0.0 0.0 0.0 0.1 4 6
0.0 0.0 0.0 0.15 6 6
0.0 0.0 0.0 0.2 6 6

Figure 5-5: Minimum problem size for Damerau-Levenshtein and optimal loss func-
tion for bikes-long SyGuS benchmark.

size, in this case, is largely dependent on the level noise in the dataset (parameter

of the noise source). Overall, the results indicate that the uniformly parameterized

generalized Damerau-Levenshtein loss function is largely robust against differences

between its parameters and the noise source’s parameters.

Point parameterized loss functions and noise sources: Figure 5-9 presents

the minimum problem size for experiments in which both the loss function and the

noise source are point parameterized, i.e., all except one of their parameters is 0.

The figure presents results for phone-long, phone-1-long, phone-2-long, phone-5-long,

phone-6-long, phone-7-long, and phone-8-long synthesis problems. The Noise source

parameter column presents the parameter value for the noise source. In these exper-

iments, based on which parameter is non-zero, the noise source will corrupt using

only either insertions, deletions, substitutions, or transpositions. I present results

92

Noise source parameters Dataset size
𝑝i 𝑝d 𝑝s 𝑝t Damerau-Levenshtein optimal loss function

0.025 0.025 0.025 0.025 4 4
0.05 0.05 0.05 0.05 6 6
0.075 0.075 0.075 0.075 10 8
0.1 0.1 0.1 0.1 14 20
0.05 0.0 0.0 0.0 4 4
0.1 0.0 0.0 0.0 4 4
0.15 0.0 0.0 0.0 4 4
0.2 0.0 0.0 0.0 4 4
0.0 0.05 0.0 0.0 4 4
0.0 0.1 0.0 0.0 8 4
0.0 0.15 0.0 0.0 12 4
0.0 0.2 0.0 0.0 36 4
0.0 0.0 0.05 0.0 4 4
0.0 0.0 0.1 0.0 4 4
0.0 0.0 0.15 0.0 4 4
0.0 0.0 0.2 0.0 6 4
0.0 0.0 0.0 0.05 4 4
0.0 0.0 0.0 0.1 4 6
0.0 0.0 0.0 0.15 8 6
0.0 0.0 0.0 0.2 8 6

Figure 5-6: Minimum problem size for Damerau-Levenshtein and optimal loss func-
tion for initials-long SyGuS benchmark.

93

Noise source parameters Minimum problem size
𝑝i 𝑝d 𝑝s 𝑝t Damerau-Levenshtein optimal loss function

0.025 0.025 0.025 0.025 2 4
0.05 0.05 0.05 0.05 4 4
0.075 0.075 0.075 0.075 6 8
0.1 0.1 0.1 0.1 8 14
0.05 0.0 0.0 0.0 2 2
0.1 0.0 0.0 0.0 2 2
0.15 0.0 0.0 0.0 2 2
0.2 0.0 0.0 0.0 4 2
0.0 0.05 0.0 0.0 4 2
0.0 0.1 0.0 0.0 4 2
0.0 0.15 0.0 0.0 10 2
0.0 0.2 0.0 0.0 14 4
0.0 0.0 0.05 0.0 2 2
0.0 0.0 0.1 0.0 2 2
0.0 0.0 0.15 0.0 2 2
0.0 0.0 0.2 0.0 2 2
0.0 0.0 0.0 0.05 2 2
0.0 0.0 0.0 0.1 2 4
0.0 0.0 0.0 0.15 2 4
0.0 0.0 0.0 0.2 2 4

Figure 5-7: Minimum problem size for Damerau-Levenshtein and optimal loss func-
tion for firstname-long SyGuS benchmark.

94

Noise Problem size
source Loss function parameter

parameter 0.025 0.05 0.075 0.1
0.025 4 4 3 4
0.05 6 5 6 5
0.075 7 8 8 8
0.1 11 14 13 15

(a) phone-long

Noise Problem size
source Loss function parameter

arameter 0.025 0.05 0.075 0.1
0.025 3 4 4 3
0.05 6 5 6 6
0.075 7 7 9 10
0.1 10 11 12 14

(b) phone-1-long
Noise Problem size
source Loss function parameter

parameter 0.025 0.05 0.075 0.1
0.025 3 4 3 4
0.05 5 4 6 6
0.075 7 8 7 8
0.1 10 11 15 14

(c) phone-2-long

Noise Problem size
source Loss function parameter

parameter 0.025 0.05 0.075 0.1
0.025 5 5 7 4
0.05 6 7 6 7
0.075 6 6 8 7
0.1 11 11 11 12

(d) phone-5-long
Noise Problem size
source Loss function parameter

parameter 0.025 0.05 0.075 0.1
0.025 7 7 5 6
0.05 10 9 7 8
0.075 10 10 11 10
0.1 15 15 13 17

(e) phone-6-long

Noise Problem size
source Loss function parameter

parameter 0.025 0.05 0.075 0.1
0.025 6 5 6 5
0.05 7 7 8 6
0.075 8 8 9 6
0.1 15 10 11 12

(f) phone-7-long
Noise Problem size
source Loss function parameter

parameter 0.025 0.05 0.075 0.1
0.025 2 2 2 2
0.05 2 2 3 3
0.075 2 3 3 3
0.01 4 3 4 4

(g) phone-8-long

Figure 5-8: Performance of uniformly parameterized generalized Damerau-
Levenshtein loss functions in presence of uniformly parameterized Damerau-
Levenshtein noise sources.

for each type of corruption. Columns under the Insertion header present results for

experiments in which both the noise source and the loss function have their insertion

parameter as the non-zero parameter. Similarly, columns under the Deletion, Substi-

95

tution, and Transposition headers present results for experiments in which both the

noise source and the loss function have their deletion, substitution, and the trans-

position parameters, respectively, as the non-zero parameters. Each header contains

four columns. These columns present the minimum problem size for loss functions

with their non-zero parameter set to 0.1, 0.2, 0.3, and 0.4, respectively.

Bench- Noise Minimum problem size
-mark source Insertion Deletion Substitution Transposition

param Loss function Loss function Loss function Loss function
0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

phone 0.1 2 2 2 2 4 3 3 3 2 1 1 2 3 2 3 2
0.2 2 2 2 2 5 4 4 4 3 3 3 3 3 6 4 6
0.3 2 2 2 4 4 5 6 6 5 5 6 4 11 6 6 7
0.4 3 3 3 6 7 6 7 7 6 7 9 8 9 10 13 11

phone-1 0.1 2 1 2 2 3 4 4 3 2 1 2 1 3 2 2 2
0.2 2 2 2 3 4 5 4 5 3 3 2 3 5 6 6 4
0.3 2 2 2 2 6 5 5 6 5 5 6 7 8 7 6 6
0.4 2 2 3 5 8 6 7 8 6 7 7 8 11 11 10 11

phone-2 0.1 2 1 2 2 3 3 3 3 2 2 2 2 3 3 2 2
0.2 2 2 2 2 4 4 5 4 3 4 5 3 6 6 7 5
0.3 2 2 2 4 5 5 6 7 5 5 6 7 7 6 6 8
0.4 2 2 2 5 7 7 8 6 7 7 8 7 11 9 11 9

phone-5 0.1 5 4 4 4 6 5 6 5 4 5 5 4 5 5 5 4
0.2 4 4 5 5 6 6 6 7 4 4 5 4 4 5 5 5
0.3 5 4 5 4 8 8 7 8 4 4 4 5 4 5 5 5
0.4 5 4 4 5 8 9 10 8 5 5 4 5 4 4 5 3

phone-6 0.1 5 5 5 6 7 6 6 7 5 5 5 6 5 5 5 6
0.2 5 4 5 5 7 7 7 7 6 5 6 4 5 5 5 6
0.3 5 5 4 6 9 8 8 10 5 5 6 6 5 5 5 4
0.4 5 6 5 6 12 11 10 11 6 7 7 7 5 6 6 6

phone-7 0.1 5 5 5 5 6 5 6 6 5 5 5 6 5 5 5 6
0.2 5 4 5 5 7 7 7 6 6 5 6 5 5 5 5 6
0.3 5 5 4 7 9 6 8 8 5 5 5 6 5 5 5 4
0.4 5 6 5 6 8 8 10 7 6 6 6 6 5 6 6 6

phone-8 0.1 1 1 1 1 2 2 2 2 1 1 1 2 1 1 1 1
0.2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
0.3 2 2 2 2 2 2 2 2 2 2 2 3 1 1 1 1
0.4 2 2 2 2 3 2 2 3 3 2 3 4 2 1 2 2

Figure 5-9: Performance of point parameterized generalized Damerau-Levenshtein
loss functions in presence of point parameterized generalized Damerau-Levenshtein
noise sources.

For point parameterized noise source corrupting strings using deletions, compared

to the Damerau-Levenstein distance metric (Figure 5-4), the point parameterized

generalized Damerau-Levenstein loss functions require significantly smaller problem

sizes to meet the 95 out of 100 threshold. Even non-optimal point parameterized

generalized loss function require significantly smaller problem sizes to meet the 95

out of 100 threshold.

Uniformly parameterized loss functions and point parameterized noise

sources: Figures 5-10, 5-11, 5-12, 5-13, 5-14, 5-15, and 5-16 presents experiments

with point parameterized noise source with uniformly parameterized loss functions

for the phone-long, phone-1-long, phone-2-long, phone-5-long, phone-6-long, phone-

96

Type Noise Dataset size
of source Loss function parameter

noise parameter 0.025 0.05 0.075 0.1
Insertions 0.05 3 3 2 2

0.1 4 3 3 3
0.15 4 4 4 4
0.2 6 6 7 6

Deletions 0.05 4 3 4 3
0.1 8 7 7 4
0.15 9 10 7 10
0.2 25 28 28 23

Substitutions 0.05 2 3 3 2
0.1 4 3 3 5
0.15 4 4 4 4
0.2 5 4 5 6

Transposition 0.05 2 2 3 2
0.1 3 3 5 4
0.15 4 5 4 5
0.2 6 6 6 9

Figure 5-10: Performance of uniformly parameterized generalized Damerau-
Levenshtein loss functions in presence of point parameterized generalized Damerau-
Levenshtein noise sources for phone-long synthesis problem.

97

Type Noise Minimum problem size
of source Loss function parameter

noise parameter 0.025 0.05 0.075 0.1
Insertions 0.05 3 3 3 3

0.1 4 4 3 4
0.15 5 4 5 4
0.2 6 7 7 7

Deletions 0.05 4 4 4 4
0.1 7 7 5 5
0.15 12 13 11 10
0.2 24 20 28 23

Substitutions 0.05 3 3 3 2
0.1 3 3 4 3
0.15 5 4 4 4
0.2 5 5 4 5

Transposition 0.05 3 2 3 3
0.1 4 4 4 3
0.15 5 5 5 6
0.2 6 8 8 9

Figure 5-11: Performance of uniformly parameterized generalized Damerau-
Levenshtein loss functions in presence of point parameterized generalized Damerau-
Levenshtein noise sources for phone-1-long synthesis problem.

98

Type Noise Minimum problem size
of source Loss function parameter

noise parameter 0.025 0.05 0.075 0.1
Insertions 0.05 3 2 3 2

0.1 3 4 3 3
0.15 5 5 5 5
0.2 6 5 6 6

Deletions 0.05 5 3 3 4
0.1 6 7 7 6
0.15 11 12 11 8
0.2 23 25 29 30

Substitutions 0.05 3 3 3 2
0.1 3 4 3 3
0.15 5 5 4 4
0.2 4 5 5 5

Transposition 0.05 3 3 2 3
0.1 3 5 3 2
0.15 4 5 7 5
0.2 8 6 8 7

Figure 5-12: Performance of uniformly parameterized generalized Damerau-
Levenshtein loss functions in presence of point parameterized generalized Damerau-
Levenshtein noise sources for phone-2-long synthesis problem.

7-long, and phone-8-long synthesis problems. The first column presents the type of

corruption the noise source will introduce. The next column presents the value of

the non-zero parameter for the noise source. The next four columns present the min-

imum problem size for uniformly parameterized loss functions with parameters set

to 0.025, 0.5, 0.075, and 0.1, respectively. Overall, the performance of the uniformly

parameterized loss function is similar to the Damerau-Levenshtein distance metric

(Figure 5-4).

I also ran experiments with uniformly parameterized noise sources and point pa-

rameterized loss functions. This combination is not differentiating and therefore ef-

fectively diables the ability of the synthesis algorithm to identify correct programs —

intuitively, point loss functions only extract information from strings corrupted with

the kind of edit they are designed to measure.

These experimental results work with text problems with inputs constructed by

randomly sampling input-output pairs from a set of benchmark input-output exam-

99

Type Noise Minimum problem size
of source Loss function parameter

noise parameter 0.025 0.05 0.075 0.1
Insertions 0.05 4 4 5 4

0.1 5 5 5 5
0.15 4 5 5 5
0.2 6 6 6 5

Deletions 0.05 7 5 5 5
0.1 8 6 9 7
0.15 12 12 10 10
0.2 12 15 20 18

Substitutions 0.05 6 5 4 4
0.1 4 4 5 4
0.15 5 5 5 4
0.2 5 6 5 5

Transposition 0.05 5 3 4 4
0.1 5 4 4 4
0.15 4 5 4 4
0.2 6 4 5 5

Figure 5-13: Performance of uniformly parameterized generalized Damerau-
Levenshtein loss functions in presence of point parameterized generalized Damerau-
Levenshtein noise sources for phone-5-long synthesis problem.

ples. For completeness, I next show that, if we have two nonequivalent programs and

an input-output example in the benchmark examples on which the nonequivalent

programs produce different outputs, then the input source constructed by randomly

sampling examples from the benchmark examples is differentiating.

Theorem 19. Let 𝐺 be a finite set of programs and let ℐ be a finite set of inputs.

Let 𝑑 be a distance metric. Let 𝜌𝐼 be a probability distribution over ℐ, such that, for

all 𝑥 ∈ ℐ, 𝜌𝐼(𝑥) > 0, i.e., each input in ℐ has a positive probability of being sampled.

Let 𝜌𝑖 be an input source, such that,

𝜌𝑖(⟨𝑥1, . . . 𝑥𝑛⟩ | 𝑛) =
𝑛∏︁

𝑗=1
𝜌𝐼(𝑥𝑗)

i.e., when sampling an input vector 𝑥𝑥𝑥 = ⟨𝑥1, . . . 𝑥𝑛⟩ from the input distribution 𝜌𝑖,

all inputs 𝑥1, . . . 𝑥𝑛 are i.i.d. and are sampled from a distribution 𝜌𝐼 . If for any two

non-equivalent programs 𝑝 and 𝑝′ in 𝐺 (𝑝, 𝑝′ ∈ 𝐺, 𝑝 ̸≈ 𝑝′) there exists an input 𝑥 ∈ ℐ,

100

Type Noise Minimum problem size
of source Loss function parameter

noise parameter 0.025 0.05 0.075 0.1
Insertions 0.05 6 5 5 4

0.1 6 6 6 6
0.15 7 6 6 5
0.2 6 5 6 6

Deletions 0.05 7 7 8 7
0.1 10 8 9 9
0.15 13 14 15 16
0.2 29 26 23 30

Substitutions 0.05 5 5 6 5
0.1 5 6 6 6
0.15 5 6 6 6
0.2 6 6 6 7

Transposition 0.05 5 5 5 6
0.1 5 5 5 5
0.15 5 6 6 5
0.2 6 6 6 6

Figure 5-14: Performance of uniformly parameterized generalized Damerau-
Levenshtein loss functions in presence of point parameterized generalized Damerau-
Levenshtein noise sources for phone-6-long synthesis problem.

such that, 𝑑(𝑝(𝑥), 𝑝′(𝑥)) > 0, then the input source 𝜌𝑆
𝐼 is differentiating.

Proof. Let 𝑝ℎ be a program in 𝐺, 𝛿 > 0 be a probability tolerance, and 𝜖 > 0 be a

distance value. Let 𝐺′ = 𝐺 − 𝐺𝑝ℎ
be the set of programs not equivalent to 𝑝ℎ. Let

|𝐺′| = 𝑚.

Let 𝑥𝑥𝑥𝑚 = ⟨𝑥1, . . . 𝑥𝑚⟩ be a set of inputs, such that, for all programs 𝑝 ∈ 𝐺′, there

exists at least one input 𝑥𝑗, such that, 𝑑(𝑝ℎ[𝑥𝑗], 𝑝[𝑥𝑗]) > 0. Let 𝜖𝑖 = min
𝑝∈𝐺′

𝑑(𝑝ℎ[𝑥𝑥𝑥𝑚], 𝑝[𝑥𝑥𝑥𝑚])

and 𝛿𝑖 = min
𝑗=1...𝑚

𝜌𝐼(𝑥𝑗). Let 𝑚0 and 𝑛0 be natural numbers such that 𝑚0 ≥ 𝜖
𝜖𝑖

, for

𝑛 ≥ 𝑚𝑛0,
𝑚0∑︁
𝑗=0

𝐶𝑛0
𝑗 𝛿𝑗

𝑖 (1− 𝛿𝑖)𝑛0−𝑗 ≤ 𝛿

𝑚

Let 𝑥𝑥𝑥 be an input of size 𝑛, which contains at least 𝑚𝑖, 𝑛𝑖,

∑︁
𝑥𝑥𝑥∈𝑋𝑛

1(∀𝑝 ∈ 𝐺′. 𝑑(𝑝ℎ[𝑥𝑥𝑥], 𝑝[𝑥𝑥𝑥]) > 𝜖)𝜌𝑖(𝑥𝑥𝑥 | 𝑛)

101

Type Noise Minimum problem size
of source Loss function parameter

noise parameter 0.025 0.05 0.075 0.1
Insertions 0.05 6 6 5 5

0.1 5 6 5 6
0.15 5 6 5 7
0.2 6 7 7 6

Deletions 0.05 6 7 7 6
0.1 6 8 8 8
0.15 11 10 12 13
0.2 15 17 20 23

Substitutions 0.05 5 5 6 5
0.1 6 6 5 5
0.15 6 6 6 5
0.2 6 6 6 5

Transposition 0.05 5 6 5 5
0.1 5 5 4 5
0.15 6 5 6 5
0.2 5 6 5 5

Figure 5-15: Performance of uniformly parameterized generalized Damerau-
Levenshtein loss functions in presence of point parameterized generalized Damerau-
Levenshtein noise sources for phone-7-long synthesis problem.

≥
∑︁

𝑥𝑥𝑥∈𝑋𝑛

1(∀𝑝 ∈ 𝐺′. 𝑑(𝑝ℎ[𝑥𝑥𝑥], 𝑝[𝑥𝑥𝑥]) > 𝑚𝑖𝜖𝑖)𝜌𝑖(𝑥𝑥𝑥 | 𝑛)

≥
∑︁

𝑥𝑥𝑥∈𝑋𝑛

1(each input 𝑥1, . . . 𝑥𝑚 occur at least 𝑚0 times in 𝑥𝑥𝑥)𝜌𝑖(𝑥𝑥𝑥 | 𝑛)

≥
∑︁

𝑥𝑥𝑥∈𝑋𝑛

1(each input 𝑥1, . . . 𝑥𝑚 occur at least 𝑚0 times in 𝑥𝑥𝑥)𝜌𝑖(𝑥𝑥𝑥 | 𝑛)

≥
∑︁

𝑥𝑥𝑥∈𝑋𝑛

1(input 𝑥𝑗, . . . 𝑥𝑚 occur at least 𝑚0 times in 𝑥𝑥𝑥)

≥ (1−
𝑚0∑︁
𝑗=0

𝐶𝑛0
𝑗 𝛿𝑗

𝑖 (1− 𝛿𝑖)𝑛0−𝑗)𝑚 ≥ (1− 𝛿

𝑚
)𝑚 ≥ 1− 𝛿

Therefore, 𝜌𝑖 is differentiating.

These experimental results work with finite sets of programs (generated by apply-

ing a finite bound to the SyGuS DSL). The following theorem applies in this case.

Theorem 20. Let 𝐺 be a finite set of string processing programs. Given a finite list

of inputs ℐ and Damerau-Levenshtein distance metric 𝑑𝐷𝐿, an input source, which

102

Type Noise Minimum problem size
of source Loss function parameter

noise parameter 0.025 0.05 0.075 0.1
Insertions 0.05 2 2 2 2

0.1 3 3 2 3
0.15 3 3 3 3
0.2 4 4 3 5

Deletions 0.05 2 2 2 2
0.1 2 3 2 3
0.15 3 3 4 3
0.2 3 3 4 5

Substitutions 0.05 1 1 1 1
0.1 1 2 2 1
0.15 2 2 2 2
0.2 2 2 2 2

Transposition 0.05 1 1 1 1
0.1 1 1 1 1
0.15 1 2 1 1
0.2 1 1 1 1

Figure 5-16: Performance of uniformly parameterized generalized Damerau-
Levenshtein loss functions in presence of point parameterized generalized Damerau-
Levenshtein noise sources for phone-8-long synthesis problem.

randomly samples inputs from ℐ with uniform probability, is differentiating if for any

two non-equivalent programs 𝑝, 𝑝′ ∈ 𝐺, there exists at least one input 𝑥 ∈ ℐ, such

that, output strings 𝑝(𝑥) and 𝑝′(𝑥) disagree on at least one character.

Proof. If 𝑝(𝑥) and 𝑝′(𝑥) disagree on at least one character then 𝑑𝐷𝐿(𝑝(𝑥), 𝑝′(𝑥)) > 0.

Rest follows from Theorem 19.

5.5 Discussion

My formulation of the noisy program synthesis problem enables us to precisely and

formally define the concepts of an optimal loss function and convergence. Building on

these concepts, I characterize a large range of potential noise sources, corresponding

optimal loss functions, and the conditions under which we can expect noisy program

synthesis algorithms to converge. These results provide insight into the empirical

results presented in Chapter 4 and can help guide future efforts in this area.

103

104

Chapter 6

Synthesis Using Abstraction

Refinement Based Optimization

I introduce a new synthesis algorithm based on abstraction refinement to solve noisy

program synthesis. This algorithm builds upon the concept of an abstract finite tree

automaton (AFTA).

An abstract finite tree automaton substitutes abstract values in place of concrete

values in an CFTA (Section 3). The AFTA promotes the construction of a coarser

partition of the program space (compared to CFTA) by grouping programs with

different concrete output values but the same abstract output values together into

the same partition. This allows me to compute a lower bound of the objective function

over all programs grouped together into the same abstract partition. By iterating over

all partitions and comparing the complexity of their simplest programs combined with

the lower bound of each partition’s objective function values, the synthesis algorithm

selects a candidate partition and a possible optimal program. I prove that the lower

bound objective function value of this candidate program is not greater than the

objective function value of any program in the program space. If the objective function

value of the candidate program is equal to the lower bound, the algorithm halts and

returns this program. I prove that this program minimizes the objective function.

If the objective function value of the candidate program is greater than the lower

bound, then there may exist another program which better fits the noisy dataset.

105

Since the candidate program’s objective function value is greater than the lower

bound, there exists at least one input-output example such that the candidate pro-

gram’s loss/regularizer weight on this counterexample is greater than the lower bound

loss/regularizer weight (over all programs in the candidate partition) on this coun-

terexample. I use this counterexample to refine the abstractions and further partition

the program space into smaller partitions. After the refinement process, I rebuild the

finite tree automaton. My algorithm refines the abstractions in a manner, such that,

the candidate program from the previous iteration is in a different partition in this

new automaton. The lower bound loss value of this new partition is greater than the

lower bound loss of candidate partition from the previous iteration. I prove that we

can repeat this process and it will eventually synthesize a candidate program which

minimizes the objective function.

6.1 Abstractions

I construct an abstract version of the CFTA by associating abstract values with

each symbol. I assume that the abstract values are represented as conjunctions of

predicates of the form 𝑓(𝑠) op 𝑐, where 𝑠 is a symbol in the given DSL, 𝑓 is a function,

op is an operator, and 𝑐 is a constant.

Universe of predicates: My algorithm is parameterized by a universe 𝒰 of predi-

cates. These are used by my algorithm to construct abstractions for values generated

by sub-expressions in the DSL. The universe 𝒰 is specified using a family of functions

ℱ , a set of operators 𝒪, and a set of constants 𝒞. All predicates in the universe 𝒰 , ex-

cept predicates true and false, are of the form 𝑓(𝑠) op 𝑐, where 𝑓 ∈ ℱ , op ∈ 𝒪, 𝑐 ∈ 𝒞,

and 𝑠 is a symbol in the DSL. I assume ℱ contains the identity function, 𝒪 contains

equality, and 𝒞 includes the all values that can be computed by any sub-expression

within the DSL 𝐺.

Notation: Given predicates 𝒫 ⊆ 𝒰 and an abstract value 𝜙, 𝛼𝒫(𝜙) denotes the

strongest conjunction of predicates in 𝒫 , such that, 𝜙 =⇒ 𝛼𝒫(𝜙). Given a vector of

abstract values 𝜙𝜙𝜙 = ⟨𝜙1, . . . 𝜙𝑛⟩, 𝛼𝒫(𝜙𝜙𝜙) denotes the vector ⟨𝛼𝒫(𝜙1), . . . 𝛼𝒫(𝜙𝑛)⟩. As

is standard in the abstract interpretation literature [9], we use the notation 𝛾(𝜙) to

106

denote the set of concrete values represented by the abstract value 𝜙.

Abstract semantics: In addition to the concrete semantics for each DSL con-

struct, I assume we are given the abstract semantics for each function in the form

of symbolic post-conditions over the universe of predicates 𝒰 . Given a production

𝑠→ 𝑓(𝑠1, . . . , 𝑠𝑛), J𝑓(𝜙1, . . . 𝜙𝑘)K# represents the abstract semantics of a function 𝑓 .

J𝑓(𝜙1, . . . , 𝜙𝑘)K# = 𝜙 if the function 𝑓 returns 𝜙 (for symbol 𝑠), given abstract values

𝜙1, . . . , 𝜙𝑘 for arguments 𝑠1, . . . , 𝑠𝑘. I assume these abstract semantics are sound,

i.e.,

J𝑓(𝜙1, . . . , 𝜙𝑘)K# = 𝜙 and 𝑣1 ∈ 𝛾(𝜙1), . . . 𝑣𝑘 ∈ 𝛾(𝜙𝑘) =⇒ J𝑓(𝑣1, . . . 𝑣𝑘)K ∈ 𝛾(𝜙)

However, I do not require the abstract semantics to be precise, i.e., formally,

J𝑓(𝜙1, . . . , 𝜙𝑘)K# = 𝜙, there may exist a 𝑣 ∈ 𝜙, s.t.,

∀ 𝑣1 ∈ 𝜙1, . . . 𝑣𝑘 ∈ 𝜙𝑘.J𝑓(𝑣1, . . . 𝑣𝑘)K ̸= 𝑣

There may exist a concrete value 𝑣 in the abstract output 𝜙, such that, no con-

crete input parameters 𝑣1, . . . 𝑣𝑘 in the abstract inputs 𝜙1, . . . 𝜙𝑘 exist, for which

𝑓(𝑣1, . . . 𝑣𝑘) = 𝑣.

I require the abstract semantics to be precise if all of the input parameters are

abstract values representing a single concrete value, i.e., they are abstract values of

the form 𝑠 = 𝑣. Formally:

J𝑓(𝑠1 = 𝑣1, . . . 𝑠𝑘 = 𝑣𝑘)K# = (𝑠 = J𝑓(𝑣1, . . . 𝑣𝑘)K)

Given a program 𝑝, predicates 𝒫 , and input 𝑥𝑗, J𝑝K𝒫𝑥𝑗 denotes the abstract value of

program 𝑝, if the intermediate computed values are only represented via predicates

in 𝒫 . Figure 6-1 presents the precise rules for computing J𝑝K𝒫𝑥𝑗. Given inputs

𝑥𝑥𝑥 = ⟨𝑥1, . . . 𝑥𝑛⟩, J𝑝K𝒫𝑥𝑥𝑥 denotes the vector 𝜙𝜙𝜙 = ⟨J𝑝K𝒫𝑥1, . . . J𝑝K𝒫𝑥𝑛⟩.

Abstract Loss Function and Regularizer: I assume we are given the abstract

semantics for the loss function and the regularizer. The abstract semantics of a loss

107

𝑡 ∈ 𝑇𝐶

J𝑡K𝒫𝑥𝑗 ⇒ 𝛼𝒫(𝑡 = J𝑡K𝑥𝑗)
(Constant)

J𝑥K𝒫𝑥𝑗 ⇒ 𝛼𝒫(𝑥 = 𝑥𝑗)
(Variable)

J𝑒1K𝒫𝑥𝑗 ⇒ 𝜙1 J𝑒2K𝒫𝑥𝑗 ⇒ 𝜙2 . . . J𝑒𝑘K𝒫𝑥𝑗 ⇒ 𝜙𝑘

J𝑓(𝑒1, 𝑒2, . . . 𝑒𝑘)K𝒫𝑥𝑗 ⇒ 𝛼𝒫(J𝑓(𝜙1, 𝜙2, . . . 𝜙𝑘)K#)
(Function)

Figure 6-1: Abstract execution semantics for program 𝑝.

function allows us to find the minimum possible loss value for a given abstract value.

Formally, given a loss function ℒ, noisy output 𝑦, and an abstract value 𝜙:

ℒ(𝜙, 𝑦) = min
𝑧∈𝛾(𝜙)

ℒ(𝑧, 𝑦)

Similarly, the abstract semantics of a regularizer allows us to find the minimum

possible value of the regularizer, given an abstract value. Formally, given a regularizer

ℛ, input 𝑥, and an abstract value 𝜙:

ℛ(𝑥, 𝜙) = min
𝑧∈𝛾(𝜙)

ℛ(𝑥, 𝑧)

I assume that loss function ℒ and regularizer ℛ satisfies the following constraints:

ℒ(⟨𝑧1, . . . 𝑧𝑛⟩, ⟨𝑦1, . . . 𝑦𝑛⟩) =
𝑛∑︁

𝑖=1
ℒ(𝑧𝑖, 𝑦𝑖)

ℛ(⟨𝑥1, . . . 𝑥𝑛⟩, ⟨𝑧1, . . . 𝑧𝑛⟩) =
𝑛∑︁

𝑖=1
ℛ(𝑥𝑖, 𝑧𝑖)

Objective Function: Given a noisy dataset 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦), loss function ℒ, regularizer

ℛ, and complexity measure 𝐶, we assume that the objective function 𝑈 satisfies the

following constraint:

∀𝛿 ≥ 0, ∃𝛿𝑜 ≥ 0, 𝛿𝑟 ≥ 0

𝑈(ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]), 𝐶(𝑝)) ≤ 𝛿 =⇒ ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦𝑐) ≤ 𝛿𝑜 and ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]) ≤ 𝛿𝑟

i.e., for any finite objective function value, both loss and regularizer weight are finite.

108

Abstract Objective Function: Given a predicates 𝒫 , noisy dataset 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦),

objective function 𝑈 , loss function ℒ, regularizer ℛ, complexity measure 𝐶, and a

program 𝑝, I use an abstract objective function or abstract objective function value to

denote the objective function value of a program 𝑝, if the abstract value J𝑝K𝒫𝑥𝑥𝑥 is used

as the noise-free output vector, i.e.,

𝑈(ℒ(J𝑝K𝒫𝑥𝑥𝑥,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, J𝑝K𝒫𝑥𝑥𝑥), 𝐶(𝑝))

𝜖-correctness: In Chapter 3, I maintained a very strict version of correctness, i.e.,

the goal of the synthesis algorithm was to synthesize a program 𝑝* which minimizes

the objective function. This leaves out any speedups which can be achieved to by

relaxing the requirement to synthesizing a program which is close to the optimal

program but may not be one of the optimal programs.

Definition 18. (𝜖-correctness) Given a noisy dataset 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦), a DSL 𝐺, an

objective function 𝑈 , a loss function ℒ, a regularizer ℛ, and a complexity measure

𝐶, a program 𝑝𝑟 ∈ 𝐺 is 𝜖-correct, if and only if,

𝑈(ℒ(𝑝𝑟[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝𝑟[𝑥𝑥𝑥]), 𝐶(𝑝𝑟))−min
𝑝∈𝐺

𝑈(ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]), 𝐶(𝑝)) ≤ 𝜖

A program 𝑝𝑟 ∈ 𝐺 is 𝜖-correct, if and only if, its objective function value is at

most 𝜖 greater than the minimum possible objective function value for any program

in 𝐺. Note that, for 𝜖 = 0, 𝑝𝑟 ∈ argmin𝑝∈𝐺𝑈(ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]), 𝐶(𝑝)). For my

experiments, 𝜖 is set to 0.

6.2 Abstract Finite Tree Automaton

An abstract finite tree automaton (AFTA) is a generalized version of a concrete finite

tree automaton. It replaces concrete values in a CFTA with abstract values. Using

abstract values allows us to represent multiple concrete value states with a single

abstract value state. This allows the synthesis algorithm to compress the size of the

automaton.

109

𝜙𝜙𝜙 = 𝛼𝒫
(︁
⟨𝑥 = 𝑥1, . . . 𝑥 = 𝑥𝑛⟩

)︁
𝑞𝜙𝜙𝜙

𝑥 ∈ 𝑄
(Var)

𝑞𝜙𝜙𝜙
𝑠0 ∈ 𝑄

𝑞𝜙𝜙𝜙
𝑠0 ∈ 𝑄𝑓

(Final)

𝑡 ∈ 𝑇𝐶 ,𝜙𝜙𝜙 = 𝛼𝒫
(︁
⟨𝑡 = J𝑡K, . . . 𝑡 = J𝑡K⟩

)︁
, |𝜙𝜙𝜙| = 𝑛

𝑞𝜙𝜙𝜙
𝑡 ∈ 𝑄

(Const)

𝑠→ 𝑓(𝑠1, . . . , 𝑠𝑘) ∈ 𝑃, 𝑞𝜙𝜙𝜙1
𝑠1 , . . . , 𝑞

𝜙𝜙𝜙𝑘
𝑠𝑘
∈ 𝑄,

𝜙𝑗 = 𝛼𝒫
(︁
J𝑓(𝜙𝜙𝜙1𝑗, . . . ,𝜙𝜙𝜙𝑘𝑗)K#

)︁
,𝜙𝜙𝜙 = ⟨𝜙1, . . . 𝜙𝑛⟩

𝑞𝜙𝜙𝜙
𝑠 ∈ 𝑄, 𝑓(𝑞𝜙𝜙𝜙1

𝑠1 , . . . , 𝑞
𝜙𝜙𝜙𝑘
𝑠𝑘

)→ 𝑞𝜙𝜙𝜙
𝑠 ∈ Δ

(Prod)

Figure 6-2: Rules for constructing FTA 𝒜 = (𝑄,𝐹,𝑄𝑓 ,Δ) with abstract values, for
inputs 𝑥𝑥𝑥 = ⟨𝑥1, . . . 𝑥𝑛⟩.

Given predicates 𝒫 , DSL 𝐺, and inputs 𝑥𝑥𝑥, Figure 6-2 presents the rules for con-

structing an AFTA (𝑄,𝑄𝑓 ,Δ). States in an AFTA are of the form 𝑞𝜙𝜙𝜙
𝑠 , where 𝑠 is a

symbol and 𝜙𝜙𝜙 is a vector of abstract values. If 𝑞𝜙𝜙𝜙
𝑠 ∈ 𝑄, then there exists an expression

𝑒, starting from symbol 𝑠, such that, J𝑒K𝒫𝑥𝑥𝑥 = 𝜙𝜙𝜙, i.e., there exists a subexpression in

𝐺 starting from symbol 𝑠, such that, the abstract value of that expression is 𝜙𝜙𝜙, given

inputs 𝑥𝑥𝑥. If there is a transition 𝑓(𝑞𝜙𝜙𝜙1
𝑠1 , . . . 𝑞

𝜙𝜙𝜙𝑘
𝑠𝑘

)→ 𝑞𝜙𝜙𝜙
𝑠 in the AFTA, then

∀𝑗 ∈ [1, |𝜙𝜙𝜙|].J𝑓(𝜙1𝑗, . . . 𝜙𝑘𝑗)K# =⇒ 𝜙𝑗

The Var Rule constructs a state 𝑞𝜙𝜙𝜙
𝑥 ∈ 𝑄 for the variable symbol 𝑥, where 𝜙𝜙𝜙 = 𝛼𝒫(⟨𝑥 =

𝑥1, . . . 𝑥 = 𝑥𝑛⟩). The Const Rule constructs a state 𝑞𝜙𝜙𝜙
𝑡 ∈ 𝑄 for each constant terminal

𝑡, where 𝜙𝜙𝜙 is a vector of size equal to 𝑥𝑥𝑥 with each entry as 𝛼𝒫(𝑡 = J𝑡K). The Final Rule

adds all states with symbol 𝑠0 are added to 𝑄𝑓 , where 𝑠0 is the start symbol. The

Prod Rule constructs a state 𝑞𝜙𝜙𝜙
𝑠 ∈ 𝑄, if there exists a production 𝑠→ 𝑓(𝑠1, . . . 𝑠𝑛) ∈ 𝑃

and there exists states 𝑞𝜙𝜙𝜙1
𝑠1 , . . . 𝑞

𝜙𝜙𝜙𝑘
𝑠𝑘
∈ 𝑄, where ∀𝑖 = [1, |𝜑𝜑𝜑|].𝑓(𝜙1𝑖, . . . 𝜙𝑘𝑖) =⇒ 𝜙𝑖. The

Prod Rule also adds a transition 𝑓(𝑞𝜙𝜙𝜙1
𝑠1 , . . . 𝑞

𝜙𝜙𝜙𝑘
𝑠𝑘

) → 𝑞𝜙𝜙𝜙
𝑠 in Δ, if it constructs a such a

state.

Theorem 21. (Structure of the Tree Automaton) Given a set of predicates 𝒫,

input vector 𝑥𝑥𝑥 = ⟨𝑥1, . . . 𝑥𝑛⟩, and DSL 𝐺, let 𝒜 = (𝑄,𝑄𝑓 ,Δ) be the AFTA returned by

the function ConstructAFTA(𝑥𝑥𝑥,𝐺,𝒫). Then for all symbols 𝑠 in 𝐺, for all expressions

110

𝑒 starting from symbol 𝑠 (and height less than bound 𝑏), there exists a state 𝑞𝜙𝜙𝜙
𝑠 ∈ 𝑄,

such that, 𝑒 is accepted by the automaton (𝑄, {𝑞𝜙𝜙𝜙
𝑠 },Δ), where 𝜙𝜙𝜙 = ⟨J𝑒K𝒫𝑥1, . . . J𝑒K𝒫𝑥𝑛⟩.

Proof. I prove this theorem by using induction over height of the expression 𝑒.

Base Case: Height of expression 𝑒 is 1. This implies the symbol is either 𝑥 or a

constant. According to Var and Const rules (Figure 6-2), there exists state 𝑞𝜙𝜙𝜙
𝑡 ∈

𝑄 (for terminal 𝑡), where 𝜙𝜙𝜙 = ⟨J𝑡K𝒫𝑥1, . . . J𝑡K𝒫𝑥𝑛⟩ and 𝑡 is accepted by automaton

(𝑄, {𝑞𝜙𝜙𝜙
𝑡 },Δ).

Inductive Hypothesis: For all symbols 𝑠 in 𝐺, for all expressions 𝑒 starting from symbol

𝑠 of height less than equal to 𝑛, there exists a state 𝑞𝜙𝜙𝜙
𝑠 ∈ 𝑄, such that, 𝑒 is accepted

by the automaton (𝑄, {𝑞𝜙𝜙𝜙
𝑠 },Δ), where 𝜙𝜙𝜙 = ⟨J𝑒K𝒫𝑥1, . . . J𝑒K𝒫𝑥𝑛⟩.

Induction Step: For any symbol 𝑠 in 𝐺, consider an expression 𝑒 = 𝑓(𝑒1, . . . 𝑒𝑘) of

height equal to 𝑛 + 1, created from production 𝑠 ← 𝑓(𝑠1, . . . 𝑠𝑘). Note the height of

expressions 𝑒1, . . . 𝑒𝑘 is less than equal to 𝑛, therefore using induction hypothesis, there

exists states 𝑞𝜙𝜙𝜙1
𝑠1 , . . . 𝑞

𝜙𝜙𝜙𝑘
𝑠𝑘
∈ 𝑄, such that, 𝑒𝑖 is accepted by automaton (𝑄, {𝑞𝜙𝜙𝜙𝑖

𝑠𝑖
},Δ),

where 𝜙𝜙𝜙𝑖 = ⟨J𝑒𝑖K𝒫𝑥1, . . . J𝑒𝑖K𝒫𝑥𝑛⟩.

Note based on abstract execution rules (Figure 6-1):

J𝑒K𝒫𝑥𝑖 = 𝛼𝒫(J𝑓(J𝑒1K𝒫𝑥𝑖, . . . J𝑒𝑘K𝒫𝑥𝑖)K#)

According to Prod rule (Figure 6-2), there exists a state 𝑞𝜙𝜙𝜙
𝑠 ∈ 𝑄, where

𝜙𝜙𝜙 = ⟨J𝑒K𝒫𝑥1, . . . J𝑒K𝒫𝑥𝑛⟩

and 𝑒 is accepted by (𝑄, {𝑞𝜙𝜙𝜙
𝑠 },Δ).

Therefore, by induction, for all symbols 𝑠 in 𝐺, for all expressions 𝑒 starting from

symbol 𝑠 (and height less than bound 𝑏), there exists a state 𝑞𝜙𝜙𝜙
𝑠 ∈ 𝑄, such that, 𝑒 is

accepted by the automaton (𝑄, {𝑞𝜙𝜙𝜙
𝑠 },Δ), where 𝜙𝜙𝜙 = ⟨J𝑒K𝒫𝑥1, . . . J𝑒K𝒫𝑥𝑛⟩.

Corollary 1. Given a set of predicates 𝒫, input vector 𝑥𝑥𝑥 = ⟨𝑥1, . . . 𝑥𝑛⟩, and DSL 𝐺,

let 𝒜 = (𝑄,𝑄𝑓 ,Δ) be the AFTA returned by the function ConstructAFTA(𝑥𝑥𝑥,𝐺,𝒫).

All programs 𝑝 (of height less than bound 𝑏) are accepted by 𝒜. For any accepting

111

state 𝑞𝜙𝜙𝜙
𝑠0 ∈ 𝑄𝑓 , a program 𝑝 is accepted by the automaton (𝑄, {𝑞𝜙𝜙𝜙

𝑠0},Δ), if and only

if, ∀𝑖 ∈ [1, 𝑛], 𝑝[𝑥𝑖] ∈ 𝛾(𝜙𝑖).

These theorems state that 1) all programs are accepted by some accepting state

in the AFTA 2) if a program is accepted by an accepting state then its abstract value

is equal to the abstract value attached to the accepting state.

6.3 Synthesis Algorithm

Figure 6-3 presents my synthesis algorithm. Given a noisy dataset 𝒟, a DSL 𝐺, a

tolerance level 𝜖 ≥ 0, initial predicates 𝒫 , a universe of possible predicates 𝒰 , objective

function 𝑈 , loss function ℒ, regularizer ℛ, and a complexity measure 𝐶, Synthesize

returns a program 𝑝* which satisfies the 𝜖-correctness condition (Definition 18). I

assume that true, false ∈ 𝒫 . All the procedures and sub-procedures are parameterized

by an objective function, a loss function, a regularizer, and a complexity measure.

I remove these parameters from the signature of Synthesize (and other methods) for

simplicity.

The synthesis algorithm consists of a refinement loop (line 2-7). The loop first

constructs an abstract finite tree automaton (line 3) with the current set of predicates

𝒫 using rules presented in Figure 6-2. The algorithm then uses the MinCost function to

generate a candidate program 𝑝 (line 4). Given predicates 𝒫 , this candidate program

minimizes the abstract objective function.

If the distance between the current program 𝑝 and the best possible program

in the DSL 𝐺, is less a tolerance level 𝜖 (Distance function, line 5), the algorithm

returns the candidate program 𝑝. Otherwise, the algorithm refines the AFTA to

either improve the estimation of the best possible program or synthesize a better

candidate program. To refine the AFTA, the algorithm first picks an input-output

example (𝑥, 𝑦) from dataset 𝒟, on which I can improve the candidate program 𝑝 (line

6). Given an input-output example (𝑥, 𝑦), the procedure OptimizeAndBackPropagate

constructs the constraints required to improve the AFTA and then returns the set of

predicates which will allow the algorithm to build a more refined AFTA.

I discuss each of these sub-procedures in detail next.

112

1: procedure Synthesize(𝒟, 𝐺, 𝜖,𝒫 ,𝒰)
input: noisy dataset 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦), DSL 𝐺, and tolerance 𝜖.
input: initial predicates 𝒫 , and universe of predicates 𝒰 .
output: A program 𝑝, such that, 𝑝 satisfies the 𝜖-correctness condition.

2: while true do
3: 𝒜 := ConstructAFTA(𝑥𝑥𝑥,𝐺, 𝑃);
4: 𝑝 := MinCost(𝒜,𝒟);
5: if Distance(𝑝,𝒟,𝒫) ≤ 𝜖 then return 𝑝;
6: 𝑥, 𝑦 := PickDimension(𝑝,𝒟,𝒫);
7: 𝒫 := 𝒫 ⋃︀OptimizeAndBackPropogate(𝑝, 𝑥, 𝑦,𝒫 ,𝒰);

Figure 6-3: Algorithm for noisy program synthesis using abstraction refinement based
optimization.

1: procedure MinCost(𝒜,𝒟)
input: AFTA 𝒜 = (𝑄,𝑄𝑓 ,Δ), noisy dataset 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦).
output: Program 𝑝* ∈ arg min𝑝∈𝐺 𝑈(ℒ(J𝑝K𝒫𝑥𝑥𝑥,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, J𝑝K𝒫𝑥𝑥𝑥), 𝐶(𝑝))

2: 𝑝* := null; 𝑢* :=∞;
3: for 𝑞𝜙𝜙𝜙

𝑠0 ∈ 𝑄𝑓 do
4: 𝑝, 𝑐 := LeastComplex(𝑞𝜙𝜙𝜙

𝑠0 ,𝒜, 𝐺)
5: 𝑢 := 𝑈(ℒ(𝜙𝜙𝜙,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥,𝜙𝜙𝜙), 𝐶(𝑝));
6: if 𝑢 ≤ 𝑢* then
7: 𝑝* := 𝑝; 𝑢* := 𝑢;
8: return 𝑝*;

Figure 6-4: Procedure for synthesizing the program which minimizes the abstract
objective function.

6.4 Minimum Cost Candidate

I present the implementation of procedure MinCost in Figure 6-4. Given an AFTA

(𝑄,𝑄𝑓 ,Δ), noisy dataset 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦), objective function 𝑈 , loss function ℒ, regularizer

ℛ, and complexity measure 𝐶, MinCost returns a program 𝑝*, which minimizes the

abstract objective function, i.e., for all programs 𝑝 ∈ 𝐺:

𝑈(ℒ(J𝑝*K𝒫𝑥𝑥𝑥,𝑦𝑦𝑦),ℛ(J𝑝*K𝒫𝑥𝑥𝑥,𝑥𝑥𝑥), 𝐶(𝑝*)) ≤ 𝑈(ℒ(J𝑝K𝒫𝑥𝑥𝑥,𝑦𝑦𝑦),ℛ(J𝑝K𝒫𝑥𝑥𝑥,𝑥𝑥𝑥), 𝐶(𝑝))

Note that, since for all programs 𝑝, ℒ(J𝑝K𝒫𝑥𝑥𝑥,𝑦𝑦𝑦) ≤ ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦) and ℛ(J𝑝K𝒫𝑥𝑥𝑥,𝑥𝑥𝑥) ≤

ℛ(𝑝[𝑥𝑥𝑥],𝑥𝑥𝑥), the following statement is true:

𝑈(ℒ(J𝑝K𝒫𝑥𝑥𝑥,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, J𝑝K𝒫𝑥𝑥𝑥), 𝐶(𝑝)) ≤ 𝑈(ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]), 𝐶(𝑝))

113

Hence, for programs 𝑝 ∈ 𝐺:

𝑈(ℒ(J𝑝*K𝒫𝑥𝑥𝑥,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, J𝑝*K𝑥𝑥𝑥), 𝐶(𝑝*)) ≤ 𝑈(ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]), 𝐶(𝑝))

The procedure iterates through all accepting states 𝑞𝜙𝜙𝜙
𝑠0 ∈ 𝑄𝑓 , to find the program

𝑝* which minimizes the abstract objective function. For a given accepting state 𝑞𝜙𝜙𝜙
𝑠0 ,

the procedure finds the least complex program 𝑝 (i.e., program which minimizes the

complexity measure) which is accepted by (𝑄, {𝑞𝜙𝜙𝜙
𝑠0},Δ) (line 4). Given an accepting

state of the form 𝑞𝜙𝜙𝜙
𝑠0 , a program 𝑝 ∈ 𝐺 is accepted by the automaton (𝑄, {𝑞𝜙𝜙𝜙

𝑠0},Δ),

if and only if, J𝑝K𝒫𝑥𝑥𝑥 = 𝜙𝜙𝜙. Given an accepting 𝑞𝜙𝜙𝜙
𝑠0 , 𝑝 (line 4) is the least complex

program which maps input vector 𝑥𝑥𝑥 to abstract outputs 𝜙𝜙𝜙, i.e.,

𝑝 ∈ argmin𝑝∈𝐺[𝑥𝑥𝑥→𝜙𝜙𝜙]𝐶(𝑝)

where 𝐺[𝑥𝑥𝑥→ 𝜙𝜙𝜙] = {𝑝 | 𝑝 ∈ 𝐺, J𝑝K𝒫𝑥𝑥𝑥 = 𝜙𝜙𝜙}.

Given state 𝑞𝜙𝜙𝜙
𝑠0 , the algorithm then computes the abstract objective function value

for 𝑝, (the least complex program) i.e., 𝑈(ℒ(𝜙𝜙𝜙,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥,𝜙𝜙𝜙), 𝐶(𝑝)). The algorithm

iterates through all states and returns the program which minimizes the abstract

objective function.

Theorem 22. Given predicates 𝒫, DSL 𝐺, dataset 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦), objective function 𝑈 ,

loss function ℒ, regularizerℛ, complexity measure 𝐶, and 𝒜 = ConstructAFTA(𝑥𝑥𝑥,𝐺,𝒫),

if 𝑝* = MinCost(𝒜,𝒟), then

𝑝* ∈ argmin𝑝∈𝐺𝑈(ℒ(J𝑝K𝒫𝑥𝑥𝑥,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, J𝑝K𝒫𝑥𝑥𝑥), 𝐶(𝑝))

i.e., 𝑝* minimizes the abstract objective function.

Proof. Let 𝒜 = (𝑄,𝑄𝑓 ,Δ). From Corollary 1, for each program 𝑝 ∈ 𝐺, there exists

a state 𝑞𝜙𝜙𝜙
𝑠0 ∈ 𝑄𝑓 , such that, J𝑝K𝒫𝑥𝑥𝑥 = 𝜙𝜙𝜙. Let 𝑃 [𝑞𝜙𝜙𝜙

𝑠0], 𝑐 = LeastComplex(𝑞𝜙𝜙𝜙
𝑠0 ,𝒜, 𝐺).

The algorithm finds an accepting state 𝑞𝜙𝜙𝜙*
𝑠0 ∈ 𝑄𝑓 , such that, for all accepting states

114

𝑞𝜙𝜙𝜙
𝑠0 ∈ 𝑄𝑓 ,

𝑈(ℒ(𝜙𝜙𝜙*, 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥,𝜙𝜙𝜙*), 𝐶(𝑃 [𝑞𝜙𝜙𝜙*

𝑠0])) ≤ 𝑈(ℒ(𝜙𝜙𝜙,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥,𝜙𝜙𝜙), 𝐶(𝑃 [𝑞𝜙𝜙𝜙
𝑠0]))

for all 𝑝 ∈ 𝐺,

𝑈(ℒ(𝜙𝜙𝜙*, 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥,𝜙𝜙𝜙*), 𝐶(𝑃 [𝑞𝜙𝜙𝜙*

𝑠0])) ≤ 𝑈(ℒ(J𝑝K𝒫𝑥𝑥𝑥,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, J𝑝K𝒫𝑥𝑥𝑥), 𝐶(𝑝))

Since 𝑝* = 𝑃 [𝑞𝜙𝜙𝜙*
𝑠0],

𝑝* ∈ argmin𝑝∈𝐺𝑈(ℒ(J𝑝K𝒫𝑥𝑥𝑥,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, J𝑝K𝒫𝑥𝑥𝑥), 𝐶(𝑝))

6.5 Termination Condition and Tolerance

Given a candidate program 𝑝*, predicates 𝒫 , noisy dataset 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦), objective func-

tion 𝑈 , loss function 𝐿, regularizer ℛ, and complexity measure 𝐶, the Distance func-

tion returns the difference between the concrete objective function value of program

𝑝* over noisy dataset 𝒟 and the abstract objective function value (given predicates

from 𝒫) over noisy dataset 𝒟. Formally:

Distance
(︁
𝑝, (𝑥𝑥𝑥,𝑦𝑦𝑦),𝒫

)︁
:=

𝑈(ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]), 𝐶(𝑝))− 𝑈(ℒ(J𝑝K𝒫𝑥𝑥𝑥,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, J𝑝K𝒫𝑥𝑥𝑥), 𝐶(𝑝))

The algorithm terminates if the distance is less than equal to the tolerance level 𝜖,

i.e.,

𝑈(ℒ(𝑝*[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝*[𝑥𝑥𝑥]), 𝐶(𝑝*))− 𝑈(ℒ(J𝑝*K𝒫𝑥𝑥𝑥,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, J𝑝*K𝒫𝑥𝑥𝑥), 𝐶(𝑝*)) ≤ 𝜖

Since, for all programs 𝑝 ∈ 𝐺:

𝑈(ℒ(J𝑝*K𝒫𝑥𝑥𝑥,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, J𝑝*K𝒫𝑥𝑥𝑥), 𝐶(𝑝*)) ≤ 𝑈(ℒ(J𝑝K𝒫𝑥𝑥𝑥,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, J𝑝K𝒫𝑥𝑥𝑥), 𝐶(𝑝))

115

𝑈(ℒ(J𝑝K𝒫𝑥𝑥𝑥,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, J𝑝K𝒫𝑥𝑥𝑥), 𝐶(𝑝)) ≤ 𝑈(ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]), 𝐶(𝑝))

the following statement is also true:

𝑈(ℒ(𝑝*[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝*[𝑥𝑥𝑥]), 𝐶(𝑝*))−min
𝑝∈𝐺

𝑈(ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]), 𝐶(𝑝)) ≤ 𝜖

Theorem 23. (Soundness) Given a dataset 𝒟, a DSL 𝐺, tolerance 𝜖 ≥ 0, universe

of predicates 𝒰 , initial predicates 𝒫, objective function 𝑈 , loss function ℒ, regularizer

ℛ, and the complexity measure 𝐶, if Algorithm 6-3 returns the program 𝑝*, then 𝑝*

satisfies the 𝜖-correctness condition (Definition 18).

Proof. Let us assume that the algorithm terminates on the 𝑖𝑡ℎ iteration. Let 𝒜𝑖 =

(𝑄,𝑄𝑓 ,Δ) be the AFTA when the algorithm terminates. Let 𝑝𝑖 be the program

returned by MinCost on the 𝑖𝑡ℎ iteration.

From Theorem 22, for all programs 𝑝 ∈ 𝐺,

𝑈(ℒ(J𝑝𝑖K𝒫𝑥𝑥𝑥,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, J𝑝𝑖K𝒫𝑥𝑥𝑥), 𝐶(𝑝𝑖)) ≤ 𝑈(ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]), 𝐶(𝑝))

When the algorithm terminates, the following condition is true:

Distance(𝑝𝑖,𝒟,𝒫) ≤ 𝜖

which implies:

𝑈(ℒ(𝑝𝑖[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝𝑖[𝑥𝑥𝑥]), 𝐶(𝑝𝑖))− 𝑈(ℒ(J𝑝𝑖K𝒫𝑥𝑥𝑥,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, J𝑝𝑖K𝒫𝑥𝑥𝑥), 𝐶(𝑝𝑖)) ≤ 𝜖

Therefore, for all programs 𝑝 ∈ 𝐺,

𝑈(ℒ(𝑝𝑟[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝𝑟[𝑥𝑥𝑥]), 𝐶(𝑝𝑟))− 𝑈(ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]), 𝐶(𝑝)) ≤ 𝜖

Hence, if the Algorithm 6-3 returns a program 𝑝𝑖, then 𝑝𝑖 satisfies the 𝜖-correctness

condition.

116

6.6 Abstraction Refinement Based Optimization

Given a dataset 𝒟 and predicates 𝒫 , the program 𝑝* (returned by MinCost) minimizes

the abstract objective function, i.e., for all programs 𝑝 ∈ 𝐺:

𝑈(ℒ(J𝑝*K𝒫𝑥𝑥𝑥,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, J𝑝*K𝒫𝑥𝑥𝑥), 𝐶(𝑝*)) ≤ 𝑈(ℒ(J𝑝K𝒫𝑥𝑥𝑥,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, J𝑝K𝒫𝑥𝑥𝑥), 𝐶(𝑝))

Since the algorithm did not terminate, Distance(𝑝*,𝒫 ,𝒟) > 𝜖.

Let us consider the case when 𝜖 = 0. Since Distance(𝑝*,𝒫 ,𝒟) > 0, the concrete

objective function value of program 𝑝*, over dataset 𝒟, is greater than the abstract

objective function value of 𝑝* over 𝒟. Formally,

𝑈(ℒ(J𝑝*K𝒫𝑥𝑥𝑥,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, J𝑝*K𝒫𝑥𝑥𝑥), 𝐶(𝑝*)) < 𝑈(ℒ(𝑝*[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝*[𝑥𝑥𝑥]), 𝐶(𝑝*))

At this point, even though, for all programs 𝑝 ∈ 𝐺, the following is true:

𝑈(ℒ(J𝑝*K𝒫𝑥𝑥𝑥,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, J𝑝*K𝒫𝑥𝑥𝑥), 𝐶(𝑝*)) < 𝑈(ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]), 𝐶(𝑝))

We cannot prove that 𝑝* is the optimal function, i.e.,

𝑈(ℒ(𝑝*[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝*[𝑥𝑥𝑥]), 𝐶(𝑝*)) < 𝑈(ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]), 𝐶(𝑝))

And therefore, just using predicates 𝒫 , we cannot prove that 𝑝* is the optimal pro-

gram. Similarly, if 𝜖 > 0, for all programs 𝑝 ∈ 𝐺, the following is true:

𝑈(ℒ(J𝑝*K𝒫𝑥𝑥𝑥,𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, J𝑝*K𝒫𝑥𝑥𝑥), 𝐶(𝑝*)) < 𝑈(ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]), 𝐶(𝑝))

But we cannot prove that the following statement is true:

𝑈(ℒ(𝑝*[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝*[𝑥𝑥𝑥]), 𝐶(𝑝*))−min
𝑝∈𝐺

𝑈(ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]), 𝐶(𝑝)) ≤ 𝜖

And therefore, just using predicates 𝒫 , we cannot prove that 𝑝𝑟 is 𝜖-correct. There-

fore, in order to find the optimal program and prove its optimality, we have to expand

117

the set of predicates 𝒫 .

To achieve this goal, the algorithm first selects an input-output example from the

noisy dataset 𝒟 on which the algorithm can improve the difference between the ab-

stract objective function value and the concrete objective function value of programs

using procedure PickDimension. Given an input-output example (𝑥, 𝑦) returned by

PickDimension, the idea here is to expand the set of predicates 𝒫 to 𝒫 ′, such that:

ℒ(J𝑝*K𝒫𝑥, 𝑦) < ℒ(J𝑝*K𝒫 ′
𝑥, 𝑦) ≤ ℒ(𝑝*[𝑥], 𝑦)

or

ℛ(𝑥, J𝑝*K𝒫𝑥) < ℛ(𝑥, J𝑝*K𝒫 ′
𝑥) ≤ ℒ(𝑥, 𝑝*[𝑥])

Then the algorithm rebuilds the abstract finite state automaton using these expanded

set of predicates. Note that, for any program 𝑝,

∀𝑥 ∈ 𝑥𝑥𝑥. J𝑝K𝒫𝑥 =⇒ J𝑝K𝒫 ′
𝑥 =⇒ (𝑠0 = 𝑝[𝑥])

but J𝑝K𝒫𝑥𝑥𝑥 may not be equal to J𝑝K𝒫 ′
𝑥𝑥𝑥. Therefore, the AFTA built on the expanded

set of predicates 𝒫 ′ may have more states compared to AFTA built on predicates

𝒫 . The refined predicates improves the estimation of the abstract loss function or

abstract regularizer for the candidate program (and potentially other programs).

The algorithm allows us to plug any implementation of the procedure PickDimension,

assuming it satisfies the following constraint:

⟨𝑥𝑖, 𝑦𝑖⟩ = PickDimension
(︁
𝑝, (𝑥𝑥𝑥,𝑦𝑦𝑦),𝒫 , 𝐿

)︁
=⇒

ℒ(𝑝[𝑥𝑖], 𝑦𝑖) > ℒ(J𝑝K𝒫𝑥𝑖, 𝑦𝑖) or ℛ(𝑥𝑖, 𝑝[𝑥𝑖]) > ℛ(𝑥𝑖, J𝑝K𝒫𝑥𝑖)

Since Distance(𝑝*,𝒟,𝒫) > 𝜖, there exists at least one 𝑖 ∈ [1, 𝑛], such that,

ℒ(𝑝*[𝑥𝑖], 𝑦𝑖) > ℒ(J𝑝*K𝒫𝑥𝑖, 𝑦𝑖) or ℛ(𝑥𝑖, 𝑝
*[𝑥𝑖]) > ℛ(𝑥𝑖, J𝑝*K𝒫𝑥𝑖)

If multiple input-output examples exist for which the above condition holds, an imple-

118

1: procedure OptimizeAndBackPropagate(𝑝, 𝑥𝑗, 𝑦𝑗,𝒫 ,𝒰)
input: Program 𝑝, input 𝑥𝑗, noisy output 𝑦𝑗, predicates 𝒫 , and universe of
predicates 𝒰 .
output: A set of predicates 𝒫𝑟.

2: 𝜙 := J𝑝K𝒫𝑥𝑗; 𝜑 := (𝑠0 = J𝑝K𝑥𝑗);
3: Φ :=

{︁
𝑞 ∈ 𝒰|𝜑 =⇒ 𝑞

}︁
;

4: Ψ := Φ;
5: for 𝑖 = 1 . . .𝑚 do ◁ Use a maximum of 𝑚 predictates.
6: Ψ := Ψ⋃︀{︁

𝜓 ∧ 𝑞 | 𝜓 ∈ Ψ, 𝑞 ∈ Φ
}︁
;

7: 𝜓* := 𝜑;
8: for 𝜓 ∈ Ψ do
9: if 𝜓* =⇒ 𝜓 then

10: if ℒ(𝜙, 𝑦𝑗)− ℒ(𝜙 ∧ 𝜓, 𝑦𝑗) ≥ 𝛿 or ℛ(𝑥𝑗, 𝜙)−ℛ(𝑥𝑗, 𝜙 ∧ 𝜓) ≥ 𝛿 then
11: 𝜓* := 𝜓;

◁ The abstract loss is increased by atleast 𝛿 > 0.
12: return ExtractPredicates(𝜓*)⋃︀BackPropagate(𝑝, 𝑥𝑗, 𝜙 ∧ 𝜓*,𝒫 ,𝒰);

Figure 6-5: Algorithm for extracting predicates 𝒫𝑟 to refine the abstract value of 𝑝,
such that, ℒ(J𝑝K𝒫𝑥𝑗, 𝑦𝑗) < ℒ(J𝑝K(𝒫

⋃︀
𝒫𝑟)𝑥𝑗, 𝑦𝑗) or ℛ(𝑥𝑗, J𝑝K𝒫𝑥𝑗) < ℛ(𝑥𝑗, J𝑝K(𝒫

⋃︀
𝒫𝑟)𝑥𝑗).

mentation of PickDimension can return any one of them and my synthesis algorithm

will use that example to optimize the automaton.

Given an example (𝑥, 𝑦), the algorithm uses the procedure OptimizeAndBackPropagate

to expand the set of predicates to 𝒫 ′, such that

ℒ(J𝑝*K𝒫𝑥, 𝑦) < ℒ(J𝑝*K𝒫 ′
𝑥, 𝑦) ≤ ℒ(𝑝*[𝑥], 𝑦)

or ℛ(𝑥, J𝑝*K𝒫𝑥) < ℛ(𝑥, J𝑝*K𝒫 ′
𝑥) ≤ ℛ(𝑥, 𝑝*[𝑥])

Figure 6-5 presents the OptimizeAndBackPropagate procedure. The procedure syn-

thesizes the strongest formula 𝜓*, such that, (𝑠0 = 𝑝*[𝑥]) =⇒ 𝜓* and:

ℒ(J𝑝*K𝒫𝑥, 𝑦) < ℒ((J𝑝*K𝒫𝑥) ∧ 𝜓*, 𝑦) and ℛ(𝑥, J𝑝*K𝒫𝑥) < ℛ(𝑥, (J𝑝*K𝒫𝑥) ∧ 𝜓*)

Note that since (𝑠0 = J𝑝*K𝑥) =⇒ 𝜓* (line 7):

ℒ((J𝑝*K𝒫𝑥) ∧ 𝜓*, 𝑦) ≤ ℒ(𝑝*[𝑥], 𝑦) or ℛ(𝑥, (J𝑝*K𝒫𝑥) ∧ 𝜓*) ≤ ℛ(𝑥, 𝑝*[𝑥])

119

1: procedure BackPropogate(𝑓(𝑒1, . . . 𝑒𝑛), 𝑥𝑗, 𝜓𝑝,𝒫 ,𝒰)
output: A set of predicates 𝑃𝑟, such that, J𝑓(𝑒1, . . . 𝑒𝑛)K(𝒫∪𝒫𝑟)𝑥𝑗 =⇒ 𝜓𝑝.

2: 𝜑𝜑𝜑 := ⟨J𝑒1K𝑥𝑗, . . . J𝑒𝑛K𝑥𝑗⟩; 𝜙𝜙𝜙 := ⟨J𝑒1K𝒫𝑥𝑗, . . . J𝑒𝑛K𝒫𝑥𝑗⟩;
3: ΦΦΦ := ⟨Φ1, . . .Φ𝑛⟩ where Φ𝑖 :=

{︁
𝑞 ∈ 𝒰|𝜑𝑖 =⇒ 𝑞

}︁
; ΨΨΨ := ΦΦΦ;

4: for 𝑖 = 1 . . .𝑚 do ◁ Use a maximum of 𝑚 predicates.
5: for 𝑗 = 1, . . . , 𝑛 do
6: Ψ𝑗 := Ψ𝑗

⋃︀{︁
𝜓 ∧ 𝑞 | 𝜓 ∈ Ψ𝑗, 𝑞 ∈ Φ𝑗

}︁
;

7: 𝜓*𝜓*𝜓* := 𝜑𝜑𝜑;
8: for all 𝜓𝜓𝜓 = ⟨𝜓1, . . . 𝜓𝑛⟩ | 𝜓𝑖 ∈ Ψ𝑖 do
9: if ∀𝑖 = 1, . . . 𝑛. 𝜓*

𝑖 =⇒ 𝜓𝑖 and J𝑓(𝜙1 ∧ 𝜓1, . . . 𝜙𝑛 ∧ 𝜓𝑛)K# =⇒ 𝜓𝑝 then
10: 𝜓*𝜓*𝜓* := 𝜓𝜓𝜓;
11: 𝒫𝑟 := ∅;
12: for 𝑖 = 1 . . . 𝑛 do
13: 𝒫𝑟 := 𝒫𝑟

⋃︀ExtractPredicates(𝜓*
𝑖);

14: if 𝑒𝑖 /∈ 𝑇 then 𝒫𝑟 := 𝒫𝑟
⋃︀BackPropogate(𝑒𝑖, 𝑥𝑗, 𝜙𝑖 ∧ 𝜓*

𝑖 ,𝒫 ,𝒰);
15: return 𝒫𝑟;

Figure 6-6: Algorithm to back propagate abstract value 𝜙 ∧ 𝜓* of expression 𝑒 =
𝑓(𝑒1, . . . 𝑒𝑘), such that, J𝑓(𝜙1 ∧ 𝜓*

1, . . . 𝜙𝑘 ∧ 𝜓*
𝑘)K# =⇒ 𝜓𝑝.

Theorem 24. Given expression 𝑒 = 𝑓(𝑒1, . . . 𝑒𝑛), input 𝑥, abstract value 𝜓𝑝 (assum-

ing (𝑠 = J𝑒K𝑥) =⇒ 𝜓𝑝), predicates 𝒫, and universe of predicates 𝒰 , if the procedure

BackPropagate(𝑒, 𝑥, 𝜓𝑝,𝒫 ,𝒰) returns predicate set 𝒫𝑟 then:

J𝑒K𝒫∪𝒫𝑟𝑥 =⇒ 𝜓𝑝

Proof. I prove this theorem using induction over height of expression 𝑒.

Base Case: Height of 𝑒 is 2. This means all sub-expressions 𝑒1, . . . 𝑒𝑘 are terminals.

Note that 𝒫𝑟 ⊆ ExtractPredicates(𝜓*
𝑖), for all 𝑖 ∈ [1, 𝑘].

J𝑒𝑖K𝒫∪𝒫𝑟 =⇒ 𝜙𝑖 ∧ 𝜓*
𝑖

and

J𝑓(𝜙1 ∧ 𝜓*
1, . . . 𝜙𝑘 ∧ 𝜓*

𝑘)K# =⇒ 𝜓𝑝

therefore

J𝑒K𝒫∪𝒫𝑟𝑥 =⇒ 𝜓𝑝

120

Induction Hypothesis: For all expressions 𝑒 of height less than equal to 𝑛, the following

is true:

J𝑒K𝒫∪𝒫𝑟𝑥 =⇒ 𝜓𝑝

Induction Step: Let 𝑒 = 𝑓(𝑒1, . . . 𝑒𝑘) be an expression of height equal to 𝑛 + 1. The

height of expressions 𝑒1, . . . 𝑒𝑘 is less than equal to 𝑛.

Note that 𝜙𝑖∧𝜓*
𝑖 =⇒ J𝑒𝑖K𝑥 (line-7 and line-9). And since BackPropagate(𝑒𝑖, 𝑥, 𝜙𝑖∧

𝜓*
𝑖 ,𝒫 ,𝒰) ⊆ 𝒫𝑟, using induction hypothesis:

J𝑒𝑖K𝒫∪𝒫𝑟𝑥 =⇒ 𝜙𝑖 ∧ 𝜓*
𝑖

and

J𝑓(𝜙1 ∧ 𝜓*
1, . . . 𝜙𝑘 ∧ 𝜓*

𝑘)K# =⇒ 𝜓𝑝

therefore

J𝑒K𝒫∪𝒫𝑟𝑥 =⇒ 𝜓𝑝

Theorem 25. Let 𝒫𝑟 = OptimizeAndBackPropagate(𝑝*, 𝑥, 𝑦,𝒫 ,𝒰). If

ℒ(J𝑝*K𝒫𝑥, 𝑦) < ℒ(J𝑝*K𝑥, 𝑦) or ℛ(𝑥, J𝑝*K𝒫𝑥) < ℛ(𝑥, J𝑝*K(𝒫∪𝒫𝑟)𝑥)

then

ℒ(J𝑝*K𝒫𝑥, 𝑦) < ℒ(J𝑝*K(𝒫∪𝒫𝑟)𝑥, 𝑦) or ℛ(𝑥, J𝑝*K𝒫𝑥) < ℛ(𝑥, J𝑝*K(𝒫∪𝒫𝑟)𝑥)

Proof. Let 𝜙 = J𝑒K𝒫𝑥 and 𝜓* be the abstract value from which predicates are ex-

tracted (line 10, Figure 6-5). If 𝜓* was assigned by the if condition (line 9), then

ℒ(J𝑝*K𝒫𝑥, 𝑦) < ℒ(𝜙 ∧ 𝜓*, 𝑦) or ℛ(𝑥, J𝑝*K𝒫𝑥) < ℛ(𝑥, 𝜙 ∧ 𝜓*)

However if 𝜓* was not assigned on line 9, then 𝜓* = (𝑠0 = 𝑝[𝑥]), and the following is

121

true:

ℒ(J𝑝*K𝒫𝑥, 𝑦) < ℒ(J𝑝*K𝑥, 𝑦) = ℒ(𝜙∧𝜓*, 𝑦) or ℛ(𝑥, J𝑝*K𝒫𝑥) < ℛ(𝑥, J𝑝*K𝑥) = ℛ(𝑥, 𝜙∧𝜓*)

From Theorem 24,

J𝑝*K𝒫∪𝒫𝑟𝑥 =⇒ 𝜙 ∧ 𝜓*

This implies ℒ(𝜙 ∧ 𝜓*, 𝑦) ≤ ℒ(J𝑝*K(𝒫∪𝒫𝑟)𝑥, 𝑦) or ℛ(𝑥, 𝜙 ∧ 𝜓*) ≤ ℛ(𝑥, J𝑝*K(𝒫∪𝒫𝑟)𝑥).

Therefore ℒ(J𝑝*K𝒫𝑥, 𝑦) < ℒ(J𝑝*K(𝒫∪𝒫𝑟)𝑥, 𝑦) or ℛ(𝑥, J𝑝*K𝒫𝑥) < ℛ(𝑥, J𝑝*K(𝒫∪𝒫𝑟)𝑥) .

Theorem 26. (Completeness) Given a dataset 𝒟, a DSL 𝐺, tolerance 𝜖 ≥ 0,

universe of predicates 𝒰 , initial predicates 𝒫, objective function 𝑈 , loss function ℒ,

and the complexity measure 𝐶, the Algorithm 6-3 will eventually return some program

𝑝𝑟.

Proof. Let 𝛿𝑢 = min𝑝∈𝐺 𝑈(ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]), 𝐶(𝑝)), i.e., 𝛿𝑢 is the concrete objec-

tive function value of the program which minimizes the objective function.

Let 𝐴𝑖 be the FTA constructed in the 𝑖𝑡ℎ iteration of Algorithm 6-3. Let 𝒫𝑖 be

the set of predicates, 𝑝𝑖 be the program returned by MinCost in the 𝑖𝑡ℎ iteration. Let

𝑥𝑖, 𝑦𝑖 be the example returned by PickDimension in the 𝑖𝑡ℎ iteration. Let 𝑢𝑖 be the

abstract objective function value of 𝑝𝑖 with predicates 𝒫𝑖. Note that, in each iteration

𝑢𝑖 ≤ 𝛿𝑢 (the abstract loss function is less than the minimum concrete loss function).

This implies, there exists 𝛿𝐼 and 𝛿𝑜, such that,

ℒ(J𝑝𝑖K𝒫𝑖𝑥𝑥𝑥,𝑥𝑥𝑥) ≤ 𝛿𝑜 and ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]) ≤ 𝛿𝑟

Using Theorem 25, if Distance(𝑝𝑖,𝑥𝑥𝑥
*
𝑖 ,𝒟,𝒫𝑖) > 𝜖, then for all 𝑘 > 𝑖:

min(ℒ𝑜([𝑝𝑖]𝑥𝑥𝑥𝑖, 𝑦𝑦𝑦𝑐),ℒ𝑜(J𝑝𝑖K𝒫𝑖𝑥𝑥𝑥𝑖, 𝑦𝑦𝑦𝑐) + 𝛿) ≤ ℒ𝑜(J𝑝𝑖K𝒫𝑘𝑥𝑥𝑥𝑖, 𝑦𝑦𝑦𝑐) ≤ ℒ𝑜([𝑝𝑖]𝑥𝑥𝑥𝑖, 𝑦𝑦𝑦𝑐)

min(ℛ(𝑥𝑥𝑥, 𝑝𝑖[𝑥𝑥𝑥]),ℛ(𝑥𝑥𝑥, J𝑝𝑖K𝒫𝑖𝑥𝑥𝑥) + 𝛿) ≤ ℛ(𝑥𝑥𝑥, J𝑝𝑖K𝒫𝑘𝑥𝑥𝑥) ≤ ℛ(𝑥𝑥𝑥, 𝑝𝑖[𝑥𝑥𝑥])

In each iteration, the algorithm picks a program 𝑝 ∈ 𝐺 and increases the abstract

loss value or the abstract regularizer value.

122

Also note that,

ℒ(J𝑝𝑖K𝒫𝑘𝑥𝑥𝑥,𝑦𝑦𝑦) ≤ 𝛿𝑜 + 𝛿

ℛ(𝑥𝑥𝑥, J𝑝𝑖K𝒫𝑘𝑥𝑥𝑥) ≤ 𝛿𝑟 + 𝛿

because if ℒ(J𝑝𝑖K𝒫𝑘𝑥𝑥𝑥,𝑦𝑦𝑦) > 𝛿𝑜 or ℛ(𝑥𝑥𝑥, J𝑝𝑖K𝒫𝑘𝑥𝑥𝑥) > 𝛿𝑟, then the abstract objective func-

tion value of 𝑝𝑖 is greater than 𝛿𝑢. In this case, MinCost will never return 𝑝𝑖. Therefore,

in worst case MinCost will return a program 𝑝 at most 𝛿𝑜

𝛿
+1+ 𝛿𝑟

𝛿
+1 times. The space

of programs is finite (due to the restriction of the size of the AFTA). The algorithm

will terminate in finite number of iterations.

Theorem 27. (Correctness) Given a dataset 𝒟, a DSL 𝐺, tolerance 𝜖 ≥ 0, universe

of predicates 𝒰 , initial predicates 𝒫, objective function 𝑈 , loss function 𝐿, and the

complexity measure 𝐶, the Algorithm 6-3 will return a program 𝑝𝑟 which satisfies the

𝜖-correctness condition (Definition 18).

Proof. From Theorem 26, Algorithm 6-3 will eventually terminate and return a pro-

gram 𝑝𝑟. From Theorem 23, the returned program 𝑝𝑟 will satisfy the 𝜖-correctness

condition.

6.7 Implementation

I have implemented my synthesis algorithm in a tool called Rose. Rose is written

in Java. The implementation is modular and allows a user to plug-in different DSLs,

abstract semantics, loss functions, objective functions, and complexity measures. To

support the experiments presented in Section 6.8, we instantiate the Rose implemen-

tation with the string-processing domain-specific language from [42].

Domain Specific Language and Abstractions: I use the string processing do-

main specific language from [42, 22] (Figure 6-7), which supports extracting substrings

(using the SubStr function) of the input string 𝑥 and concatenation of substrings (us-

ing the Concat function). The function SubStr function extracts a substring using a

start and an end position. A position can either be a constant index (ConstPos) or

the start or end of the 𝑘𝑡ℎ occurrence of the match token 𝜏 in the input string (Pos).

123

String expr 𝑒 := Str(𝑓) | Concat(𝑓, 𝑒);
Substring expr 𝑓 := ConstStr(𝑠) | SubStr(𝑥, 𝑝1, 𝑝2);

Position 𝑝 := Pos(𝑥, 𝜏, 𝑘, 𝑑) | ConstPos(𝑘);
Direction 𝑑 := Start | End;

Figure 6-7: DSL for string transformations where 𝜏 represents a token, 𝑘 is an integer,
and 𝑠 is a string constant.

Universe of Predicates: I construct a universe of predicates using predicates of

the form len(𝑠) = 𝑖, where 𝑠 is a symbol of a type of string and 𝑖 presents an integer.

I also include predicates of the form 𝑠[𝑖] = 𝑐 indicating the 𝑖𝑡ℎ character of string 𝑠 is

𝑐. Besides these predicates, I also include predicates of the form 𝑠 = 𝑐, where 𝑐 is a

value which a symbol 𝑠 can take. I also include both true and false. In summary, the

universe of predicates, I am using, is:

𝒰 =
{︁
len(𝑠) = 𝑖 | 𝑖 ∈ N

}︁
∪
{︁
𝑠[𝑖] = 𝑐 | 𝑖 ∈ N, 𝑐 ∈ Char

}︁
∪{︁

𝑠 = 𝑐 | 𝑐 ∈ Type(𝑠)
}︁
∪
{︁
true, false

}︁

Abstract Semantics: I define a generic transformer for conjunctions of predicates

as follows:

𝑓

(︃
(
⋀︁
𝑖1

𝑝𝑖1), . . . , (
⋀︁
𝑖𝑘

𝑝𝑖𝑘
)
)︃

:=
l

𝑖1

. . .
l

𝑖𝑘

𝑓(𝑝𝑖1 , . . . 𝑝𝑖𝑘
)

This allows us to just define an abstract semantics for every possible combination

of atomic predicates, instead of abstract semantics for all possible abstract values.

Figure 6-8 presents the abstract semantics for functions in string processing DSL for

all possible combinations of atomic predicates.

Initial Abstraction: The initial abstraction set 𝒫 includes predicates of form

len(𝑠) = 𝑖, where 𝑠 is a symbol of type string and 𝑖 is an integer. It also includes true

and false.

Abstractions and Loss Functions: I present the abstract version of the 0/∞ loss

function and 0/1 loss function below:

ℒ0/∞(𝜙, 𝑦) = 0 if 𝑦 ∈ 𝛾(𝜙),∞ otherwise and ℒ0/1(𝜙, 𝑦) = 0 if 𝑦 ∈ 𝛾(𝜙), 1 otherwise

124

J𝑓(𝑠1 = 𝑐1, . . . , 𝑠𝑘 = 𝑐𝑘)K# := (𝑠 = J𝑓(𝑐1, . . . 𝑐𝑘)K)
JConcat(len(𝑓) = 𝑖1, len(𝑒) = 𝑖2)K# := (len(𝑒) = (𝑖1 + 𝑖2))

JConcat(len(𝑓) = 𝑖1, 𝑒[𝑖2] = 𝑐)K# := (𝑒[𝑖1 + 𝑖2] = 𝑐)
JConcat(len(𝑓) = 𝑖, 𝑒 = 𝑐)K# := (len(𝑒) = (𝑖+ len(𝑐))

∧
len(𝑐)⋀︀
𝑗=1

𝑒[𝑖+ 𝑗 − 1] = 𝑐[𝑗 − 1]

JConcat(𝑓 [𝑖] = 𝑐, 𝑝)K# := (𝑒[𝑖] = 𝑐)
JConcat(𝑓 = 𝑐, len(𝑒) = 𝑖)K# := (len(𝑒) = (len(𝑐) + 𝑖))

∧
len(𝑐)⋀︀
𝑗=1

𝑒[𝑗 − 1] = 𝑐[𝑗 − 1]

JConcat(𝑓 = 𝑐1, 𝑒[𝑖] = 𝑐2)K# := (𝑒[len(𝑐1) + 𝑖] = 𝑐2)

∧
len(𝑐1)⋀︀

𝑗=1
𝑒[𝑗 − 1] = 𝑐1[𝑗 − 1]

JStr(𝑝)K# := 𝑝

Figure 6-8: Abstract semantics for string transformation DSL.

If 𝜙 ̸= false (𝐿𝐷𝐿(false, 𝑦) = ∞), the abstract version of the Damerau-Levenshtein

is ℒ𝐷𝐿(𝜙, 𝑦) = 𝑑𝑐,𝑦(|𝑐|, |𝑦|), where 𝑐 = ToStr(𝜙, 𝑦) and 𝑑 is defined in Figure 6-9.

Let 𝒫 = ExtractPredicates(𝜙). The procedure ToStr returns an array 𝑐, such that, if

len(𝑠) = 𝑖 ∈ 𝒫 then |𝑐| = 𝑖, otherwise it is the maximum of the length of string 𝑦 or

𝑖 such that 𝑠[𝑖] = 𝑐′ ∈ 𝒫 . For all 𝑠[𝑖] = 𝑐𝑖 ∈ 𝒫 , 𝑐[𝑖] = 𝑐𝑖, otherwise it is null.

The abstract version of the 1-Delete loss function:

𝐿1𝐷(𝜙, 𝑦) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 𝑦 ∈ 𝛾(𝜙)

1 𝑎 · 𝑏 = 𝑦 and (∃𝑐.𝑎 · 𝑐 · 𝑏 ∈ 𝛾(𝜙) and |𝑐| = 1)

∞ otherwise

The abstract version of the 𝑛-Substitution loss function is:

𝐿𝑛𝑆(𝜙, 𝑦) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 𝜙 = true

∞ 𝜙 = false

𝐿𝑛𝑆(𝑐, 𝑦) 𝜙 = (𝑠 = 𝑐)

∞ 𝑐𝜙 = ToStr(𝜙, 𝑦) and |𝑐𝜙| ≠ |𝑦|
|𝑦|∑︀

𝑗=1
1(𝑐[𝑗] ̸= null and 𝑐[𝑗] ̸= 𝑦[𝑖𝑗]) 𝑐 = ToStr(𝜙, 𝑦) and |𝑐| = |𝑦|

125

𝑑𝑐,𝑦(𝑖, 𝑗) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑗 𝑖 = 0
𝑖 𝑗 = 0
𝑑𝑐,𝑦(𝑖− 1, 𝑗 − 1) 𝑖, 𝑗 > 0

and (𝑐[𝑖− 1] = null or 𝑐[𝑖− 1] = 𝑦[𝑗 − 1])
1 + 𝑑𝑐,𝑦(𝑖− 1, 𝑗 − 1) 𝑖, 𝑗 > 0

and (𝑐[𝑖− 1] ̸= null and 𝑐[𝑖− 1] ̸= 𝑦[𝑗 − 1])
1 + 𝑑𝑐,𝑦(𝑖− 1, 𝑗) 𝑖 > 0
1 + 𝑑𝑐,𝑦(𝑖, 𝑗 − 1) 𝑗 > 0
𝑑𝑐,𝑦(𝑖, 𝑗 − 1) 𝑖 = |𝑦|

and 𝜙 may contain strings of multiple lengths.
1 + 𝑑𝑐,𝑦(𝑖− 2, 𝑗 − 2) 𝑖, 𝑗 > 1

and (𝑐[𝑖− 1] = null or 𝑐[𝑖− 1] = 𝑦[𝑖− 2])
and (𝑐[𝑖− 2] = null or 𝑐[𝑖− 2] = 𝑦[𝑖− 1])

Figure 6-9: Abstract semantics for the Damerau-Levenshtein loss function.

6.8 Experimental Results

I use the SyGuS 2018 benchmark suite [3] to evaluate Rose against my noisy program

synthesis technique presented in Chapter 4.

I run all experiments on a 3.00 GHz Intel(R) Xeon(R) CPU E5-2690 v2 machine

with 512GB memory running Linux 4.15.0. I set a timeout limit of 10 minutes for each

synthesis task. I compare Rose with my tree automaton based noisy program syn-

thesis system presented in Chapter 3, running with a bounded scope height threshold

of 4 for all experiments.

Noisy Data Sets

Figure 6-10 presents results for all SyGus 2018 benchmark problems which contain

less than ten input/output examples. I omit benchmarks for which both Rose and

tree automata based algorithm timeout (so the rows would contain all -). The first

column (Benchmark) presents the name of the SyGus 2018 benchmark. The second

column (Number of Input/Output Examples) presents the number of input/output

examples in the benchmark problem. The remaining columns present running times,

in milliseconds, for Rose and tree automata based algorithm running with different

126

Benchmark no. of examples
Rose CFTAℒ1𝐷 ℒ𝐷𝐿 ℒ0/1

bikes 6 160 175 164 19554
bikes-short 6 160 184 192 21210
dr-name 4 1307 - 1518 -
dr-name-short 4 1560 - 1328 -
firstname 4 256 3993 326 4258
firstname-short 4 334 3917 322 4220
initials 4 19120 19442 316201 36188
initials-short 4 18200 18189 325406 30920
lastname 4 198 195 190 175762
lastname-short 4 194 202 195 178825
name-combine-3 6 4871 4678 5205 547447
name-combine-3-short 6 5622 5515 5671 544044
phone 6 137 151 135 943
phone-short 6 138 135 138 963
phone-1 6 138 135 137 933
phone-1-short 6 149 138 138 942
phone-2 6 140 138 139 953
phone-2-short 6 141 106 136 943
phone-5 7 121 109 113 122
phone-5-short 7 114 89 117 127
phone-6 7 1165 1051 1130 3230
phone-6-short 7 1228 1228 1013 3327
phone-7 7 302 279 278 2793
phone-7-short 7 292 258 298 2762
phone-8 7 296 256 308 3464
phone-8-short 7 275 254 292 3223

Figure 6-10: Runtime performance of Rose and CFTA on benchmarks with deletion
based noise.

noise sources and loss functions. A - indicates that the corresponding run timed out

without synthesizing a program.

The noise source cyclically deletes a single character from outputs in the dataset,

starting with the first character, then wrapping around when reaching the last position

in the output. The noise source corrupts the first 2 input/output examples in the

set of input/output examples. For Rose, the figure presents results for each of the

ℒ0/1,ℒ𝐷𝐿, and ℒ1𝐷 loss functions. For my tree automaton based system, I report one

running time for each benchmark problem — for this system, the running time is the

same for all noise source/loss function combinations.

127

Benchmark No of Examples Rose CFTAℒ𝑛𝑆 ℒ𝐷𝐿

phone-long 100 0.71 1.12 32.79
phone-long-repeat 400 2.77 6.20 43.24
phone-1-long 100 0.73 1.15 16.58
phone-1-long-repeat 400 2.51 6.73 17.5
phone-2-long 100 0.63 1.19 16
phone-2-long-repeat 400 2.28 6.84 17.55
phone-5-long 100 0.58 0.79 4.2
phone-5-long-repeat 400 1.64 2.82 14.09
phone-6-long 100 1.14 1.83 103.3
phone-6-long-repeat 400 4.68 9.83 143.9
phone-7-long 100 1.34 1.98 108.1
phone-7-long-repeat 400 4.23 9.90 115.42
phone-8-long 100 1.28 1.89 114.54
phone-8-long-repeat 400 5 10.15 128.3

Figure 6-11: Rose and CFTA’s performance on dataset corrupted by substitution
based noise.

For the benchmarks on which both terminate, Rose runs up to 920 times faster

than my tree automata based system, with an average speedup of 99 times over tree

automata based system. These results highlight the substantial performance benefits

that Rose delivers.

Every synthesized program is guaranteed to minimize the objective function over

the given input/output examples. For a given noise source/loss function combination,

my prior system and Rose synthesize the same program (unless one or both of the

systems times out). These results highlight the ability of Rose to synthesize correct

programs even in the face of significant noise.

Figure 6-11 presents results for the SyGus 2018 phone-*-long and phone-*-long-

repeat benchmarks running with a noise source that cyclically and probabilistically

replaces a single digit in each output string with the next digit (wrapping back to

0 if the current digit is 9). I omit benchmarks on which both the techniques timed

out. The noise source iterates through each output string in the dataset in turn,

probabilistically replacing the next character position in each output string with an-

other character, wrapping around to the first character position when it reaches the

128

last character position in the output string. The noise source corrupts 95% of the

input-output examples in each dataset.

I report results for two loss functions, ℒ𝑛𝑆 (𝑛-substitution) and ℒ𝐷𝐿 (Damerau-

Levenshtien). The objective function is the lexicographic objective function. The

complexity measure is program size. There is a row in the figure for each phone-

-long-repeat and phone--long benchmark; each entry presents the running time

(in seconds) for the corresponding synthesis algorithm running on the corresponding

benchmark problem.

For the benchmarks on which both terminate, Rose runs up to 89 times faster

than my prior system, with a median speedup of 27 times over tree automata based

system. Once again, these results highlight the substantial performance benefits that

Rose delivers.

Every synthesized program is guaranteed to minimize the objective function over

the given input/output examples. All synthesized programs have zero loss over the

original (unseen during synthesis) noise-free input/output examples (i.e., all synthe-

sized programs generate the correct output for each given input). Once again, these

results highlight the ability of Rose to synthesize correct programs even in the face

of significant noise.

Noise-Free Data Sets I have also evaluated the performance of Rose and my prior

system by applying it to all problems in the SyGuS 2018 benchmark suite [3]. I also

compare the performance of Rose against with Blaze [42]. Blaze is a programming-by-

example synthesis algorithm which uses abstraction refinement to synthesize programs

over noise-free data.

For each problem I synthesize the optimal program over clean (noise-free) datasets.

I present these result for all SyGuS benchmarks in Figures 6-12 and 6-13.

For Rose , the figure presents results for 4 loss functions, zero-one loss function

ℒ0/1, Damerau-Levenshtein loss function ℒ𝐷𝐿, 1-Delete loss function ℒ1𝐷, and the

𝑛-Substitution loss function ℒ𝑛𝑆.

For the benchmarks on which both Rose and CFTA terminate, Rose runs up to

1891 times faster than my CFTA based system, with the average speedup of 179 times

129

Benchmark No of Examples Rose CFTA Blazeℒ𝑛𝑆 ℒ1𝐷 ℒ𝐷𝐿 𝐿0/1 Threshold 4
bikes 6 71 59 66 58 19554 59
bikes-long 24 293 315 491 253 58187 71
bikes-long-repeat 58 471 585 882 460 127214 67
bikes_small 6 57 59 75 57 21210 58
dr-name 4 891 877 1105 877 - 137
dr-name-long 50 8653 25349 39389 21044 - 267
dr-name-long-repeat 150 23199 82373 214435 61192 - 270
dr-name_small 4 851 791 1057 853 - 140
firstname 4 167 165 167 161 4258 79
firstname-long 54 585 693 1160 6403 37946 290
firstname-long-repeat 204 1886 2323 4635 2012 148101 319
firstname_small 4 165 165 191 163 4220 78
initials 4 20031 19120 19442 316201 36188 118
initials-long 54 102900 108414 133413 98685 378070 338
initials-long-repeat 204 402072 571876 - 428459 - 365
initials_small 4 17877 18221 18189 325406 30920 138
lastname 4 116 110 126 115 175762 90
lastname-long 54 315 304 526 299 565654 320
lastname-long-repeat 204 921 916 2342 894 - 303
lastname_small 4 116 115 128 118 178825 90
name-combine 6 - - - - - 130
name-combine-long 50 - - - - - 289
name-combine-long-repeat 204 - - - - - 398
name-combine_short 6 - - - - - 127
name-combine-2 4 - - - - - 228
name-combine-2-long 54 - - - - - 405
name-combine-2-long-repeat 204 - - - - - 431
name-combine-2_short 4 - - - - - 226
name-combine-3 6 4857 5237 8316 4776 547447 150
name-combine-3-long 50 6372 8080 20886 6082 - 280
name-combine-3-long-repeat 200 24988 41678 181297 22893 - 289
name-combine-3_short 6 4964 5041 8599 5049 544044 146
name-combine-4 5 - - - - - 269
name-combine-4-long 50 - - - - - 289
name-combine-4-long-repeat 200 - - - - - 398
name-combine-4_short 5 - - - - - 127
phone 6 99 96 143 100 943 60
phone-long 100 435 431 1260 431 8592 279
phone-long-repeat 400 1714 1772 4919 1772 28836 281
phone_short 6 98 97 149 97 963 62
phone-1 6 98 255 149 252 933 65
phone-1-long 100 439 3127 1110 2609 8173 295
phone-1-long-repeat 400 1737 15012 6855 7552 28547 284
phone-1_short 6 99 254 145 255 942 79
phone-2 6 98 98 145 94 953 64
phone-2-long 100 431 607 1162 435 6849 301
phone-2-long-repeat 400 1719 3060 5055 1952 29766 293
phone-2_short 6 96 97 148 99 943 66
phone-3 6 - - - - - 229
phone-3-long 100 - - - - - 430
phone-3-long-repeat 400 - - - - - 423
phone-3_short 6 - - - - - 224
phone-4 6 - - - - - 249
phone-4-long 100 - - - - - 441
phone-4-long-repeat 400 - - - - - 443
phone-4_short 6 - - - - - 247
phone-5 7 76 78 113 78 122 85
phone-5-long 100 367 375 831 368 683 371
phone-5-long-repeat 400 1096 1257 2840 1155 2179 380
phone-5_short 7 78 77 118 76 127 86
phone-6 7 192 194 271 190 3230 91
phone-6-long 100 892 1049 1868 922 27566 386
phone-6-long-repeat 400 2990 4412 9976 3128 100241 377
phone-6_short 7 195 189 292 192 3327 90
phone-7 7 184 221 329 216 2793 91
phone-7-long 100 904 1059 1887 894 27770 381
phone-7-long-repeat 400 2852 4619 7282 2845 89535 377
phone-7_short 7 188 214 269 185 2762 90
phone-8 7 220 189 310 185 3464 92
phone-8-long 100 923 1030 1999 954 22961 356
phone-8-long-repeat 400 2817 4709 10768 3336 88932 388
phone-8_short 7 221 192 312 183 3223 93

Figure 6-12: Runtime performance of Rose , my CFTA based system, and Blaze over
noise-free dataset.

over my CFTA based system. Rose is also able to synthesize the correct program for

8 more benchmarks compared to my tree automaton based system.

For the benchmark on which both Rose and Blaze terminate, Blaze runs, on an

130

Benchmark No of Examples Rose CFTA Blazeℒ𝑛𝑆 ℒ1𝐷 ℒ𝐷𝐿 𝐿0/1 Threshold 4
phone-9 7 - - - - - 1338
phone-9-long 100 - - - - - 1689
phone-9-long-repeat 400 - - - - - 1783
phone-9_short 7 - - - - - 1346
phone-10 7 - - - - - 2246
phone-10-long 100 - - - - - 2427
phone-10-long-repeat 400 - - - - - 2358
phone-10_short 7 - - - - - 2302
reverse-name 6 - - - - - 128
reverse-name-long 50 - - - - - 284
reverse-name-long-repeat 200 - - - - - 274
reverse-name_short 6 - - - - - 131
univ_1 6 - - - - - 1568
univ_1-long 20 - - - - - 2395
univ_1-long-repeat 30 - - - - - 1285
univ_1_short 6 - - - - - 1370
univ_2 6 - - - - - 558316
univ_2-long 20 - - - - - -
univ_2-long-repeat 30 - - - - - -
univ_2_short 6 - - - - - 522689
univ_3 6 - - - - - 4621
univ_3-long 20 - - - - - -
univ_3-long-repeat 30 - - - - - -
univ_3_short 6 - - - - - 4639
univ_4 8 - - - - - -
univ_4-long 20 - - - - - -
univ_4-long-repeat 30 - - - - - -
univ_4_short 8 - - - - - -
univ_5 8 - - - - - -
univ_5-long 20 - - - - - -
univ_5-long-repeat 30 - - - - - -
univ_5_short 8 - - - - - -
univ_6 8 - - - - - -
univ_6-long 20 - - - - - -
univ_6-long-repeat 30 - - - - - -
univ_6_short 8 - - - - - -

Figure 6-13: Runtime performance of Rose , my CFTA based system, and Blaze over
noise-free dataset.

average, 72 times faster compared to Rose, with the median speedup of 3 times over

Rose. Blaze is also able to synthesize 40 more benchmarks compared to Rose.

Both Rose and Blaze use the refinement steps to identify correct and incorrect

programs. For Blaze, indefying incorrect programs is very efficient. If a program

does not satisfy even a single input-output example, Blaze can prune that program

from the search space. This allows them to aggresively prune the search space of

programs. Because our technique works with noisy datasets, it can never tell if a

program has minimal objective function value without comparing the program to all

programs in our search space (unless the loss happens to be zero). My technique can

only prune a program, if and only if, it can prove that the this program’s objective

function value is greater than the minimal objective function value. The difference

in how aggressively these techniques prune the search space explain the difference in

performance between these techniques.

131

6.9 Discussion

I present a new technique to synthesize programs over noisy datasets. This technique

uses an abstraction refinement based optimization process to search for a program

which best-fits a given dataset, based on an objective function, a loss function, and a

complexity measure.

I have implemented my synthesis algorithm in the Rose noisy program synthesis

system. My experimental results show that, on two noisy benchmark program syn-

thesis problem sets drawn from the SyGus 2018 benchmarks, Rose delivers significant

speedups over my tree automaton based technique.

132

Chapter 7

Domain Specific Languages With

Infinite Sets of Constants

Using a small finite set of constants is a standard practice in enumeration based

program synthesis techniques [43, 42, 3]. I present a modification to our abstraction

refinement based algorithm which allows it to handle domain specific languages with

an infinite sets of constants. This chapter builds up on the notation and concepts

introduced in Chapter 6.

I first formalize domain specific languages with an infinite sets of constants. I do

this by associating each terminal symbol with a set of values that the terminal symbol

can be replaced with in a program. I formalize complexity measures over programs

accepted by these DSLs. Given a program, these complexity measures assign a weight

to a constant value based on the terminal it replaces. I then use these concepts to

modify the algorithm presented in Chapter 6 to work with these concepts.

The core modification is to partition the space of constants into abstract values.

These abstract values are then used to build an abstract finite tree automaton. This

AFTA takes the constant abstract values and partitions the program space based on

these abstract values. The algorithm then proceeds in a manner similar to my orig-

inal algorithm. The algorithm synthesizes a program which minimizes the abstract

objective function. If the difference between the concrete objective function value and

the abstract objective function value of this program is not greater than the tolerance

133

value, the algorithm returns this program. If the difference is greater than tolerance

value, the algorithm then finds a counter example and uses the abstraction refinement

based optimization technique to further refine the abstract finite tree automaton and

the partitions of space of constants.

My algorithm is guaranteed to terminate. For my experiments, this tolerance is

set to 0. In this case, when the algorithm terminates, it synthesizes the program

which minimizes the objective function.

7.1 Framework

I first modify our framework to work with domain specific languages with an infinite

set of constants and and complexity measures defined over such DSLs.

Domain Specific Languages:

Our framework starts with a domain specific language (DSL) 𝐺 = (𝑇,𝑁, 𝑃, 𝑠0), where

𝑇𝐶 ⊂ 𝑇 is the set of constant terminals in 𝐺. Each constant terminal 𝑡 ∈ 𝑇𝐶 is

associated with a set of (possibly infinite) values (denoted by 𝑉𝑡). I use the notation

𝑣𝑡 to denote values from the set 𝑉𝑡 (value 𝑣 of type 𝑡).

Complexity Measures:

Given a DSL 𝐺, for every constant terminal 𝑡 ∈ 𝑇𝐶 , I assume that we are given

a weight function 𝑤𝑡. For all 𝑣 /∈ 𝑉𝑡. 𝑤𝑡(𝑣) = ∞. My framework allows for com-

plexity measures which are computed recursively on a given program’s parse tree. I

incorporate weight functions within Cost style complexity measures as follow:

Cost(𝑥) = cost(𝑥)

Cost(𝑣𝑡) = cost(𝑡)× 𝑤𝑡(𝑣)

Cost(𝑓(𝑒1, 𝑒2, . . . 𝑒𝑘)) = cost(𝑓) +
𝑘∑︀

𝑖=1
Cost(𝑒𝑖)

where 𝑡 and 𝑓 are terminals and built-in functions in the DSL respectively, and 𝑣𝑡 is

a value from set 𝑉𝑡.

I assume, given an abstract value 𝜙, we can compute the constant value 𝑣 ∈ 𝛾(𝜙)

134

which minimizes the weight function 𝑤𝑡, i.e.,

𝑣* = arg min
𝑣∈𝛾(𝜙)

𝑤𝑡(𝑣)

Assumptions: Given a noisy dataset 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦), loss function ℒ, regularizer ℛ, and

complexity measure 𝐶, we assume that the objective function 𝑈 satisfies the following

constraint:

∀𝛿 ≥ 0, ∃𝛿𝑜 ≥ 0, 𝛿𝑟 ≥ 0, 𝛿𝑐 ≥ 0.𝑈(ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]), 𝐶(𝑝)) ≤ 𝛿

=⇒ ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦𝑐) ≤ 𝛿𝑜,ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]) ≤ 𝛿𝑟, and 𝐶(𝑝) ≤ 𝛿𝑐

i.e., if the objective function value is finite, then the loss, the regularizer weight, and

the complexity are all finite.

I assume if a predicate 𝜓 ∈ 𝒰 , then ¬𝜓 ∈ 𝒰 , i.e, if a predicate is present in the

universe of predicates, then its negation also exists within the universe of predicates.

7.2 Synthesis Algorithm
Figure 7-1 presents my modified abstraction refinement based synthesis algorithm.

The original synthesis algorithm uses predicates 𝒫 to construct an abstract value

containing concrete values for each constant. This algorithm instead uses predicates

𝒫 to partition the space of all constants. The function GenerateConstantMap, given

predicates 𝒫 , constructs a map 𝐶, which maps constant terminals 𝑡 ∈ 𝑇𝐶 in the DSL

𝐺 to a set of abstract values (line 3). All of these partitions are valid abstract values

for constructing the Abstract Finite Tree Automaton (line 4). Figure 7-2 presents the

modified rules to construct an AFTA. Note the Const rule change. Given a constant

terminal 𝑡 ∈ 𝑇𝐶 and the map 𝐶, for each abstract value in set 𝐶[𝑡], I construct a

state 𝑞𝜙
𝑡 in the AFTA. The AFTA generated by these rules will accept all programs

𝑝 accepted by the DSL 𝐺.

The algorithm then (similar to the original algorithm) selects a MinCost program

(using an updated LeastComplex function). If the distance between the abstract

objective function value and the concrete objective function value for the min cost

135

1: procedure Synthesize(𝒟, 𝐺, 𝜖,𝒫 ,𝒰)
input: noisy dataset 𝒟 = (𝑥𝑥𝑥,𝑦𝑦𝑦), DSL 𝐺, and tolerance 𝜖.
input: initial predicates 𝒫 , and universe of predicates 𝒰 .
output: A program 𝑝, such that, 𝑝 satisfies the 𝜖-correctness condition.

2: while true do
3: 𝐶 := GenerateConstantMap(𝐺,𝒫);
4: 𝒜 := ConstructAFTA(𝑥𝑥𝑥,𝐺,𝒫 , 𝐶);
5: 𝑝 := MinCost(𝒜,𝒟);
6: if Distance(𝑝,𝒟,𝒫) ≤ 𝜖 then return 𝑝;
7: 𝑥, 𝑦 := PickDimension(𝑝,𝒟,𝒫);
8: 𝒫 := 𝒫 ⋃︀OptimizeAndBackPropogate(𝑝, 𝑥, 𝑦,𝒫 ,𝒰);

Figure 7-1: Algorithm for noisy program synthesis using abstraction refinement based
optimization with abstractions for constants.

𝜙𝜙𝜙 = 𝛼𝒫
(︁
⟨𝑥 = 𝑥1, . . . 𝑥 = 𝑥𝑛⟩

)︁
𝑞𝜙𝜙𝜙

𝑥 ∈ 𝑄
(Var)

𝑞𝜙𝜙𝜙
𝑠0 ∈ 𝑄

𝑞𝜙𝜙𝜙
𝑠0 ∈ 𝑄𝑓

(Final)

𝑡 ∈ 𝑇𝐶 ,𝜙𝜙𝜙 = ⟨𝜙, . . . 𝜙⟩, |𝜙𝜙𝜙| = 𝑛, 𝜙 ∈ 𝐶[𝑡]
𝑞𝜙𝜙𝜙

𝑡 ∈ 𝑄
(Const)

𝑠→ 𝑓(𝑠1, . . . , 𝑠𝑘) ∈ 𝑃, 𝑞𝜙𝜙𝜙1
𝑠1 , . . . , 𝑞

𝜙𝜙𝜙𝑘
𝑠𝑘
∈ 𝑄,

𝜙𝑗 = 𝛼𝒫
(︁
J𝑓(𝜙𝜙𝜙1𝑗, . . . ,𝜙𝜙𝜙𝑘𝑗)K#

)︁
,𝜙𝜙𝜙 = ⟨𝜙1, . . . 𝜙𝑛⟩

𝑞𝜙𝜙𝜙
𝑠 ∈ 𝑄, 𝑓(𝑞𝜙𝜙𝜙1

𝑠1 , . . . , 𝑞
𝜙𝜙𝜙𝑘
𝑠𝑘

)→ 𝑞𝜙𝜙𝜙
𝑠 ∈ Δ

(Prod)

Figure 7-2: Rules for constructing FTA 𝒜 = (𝑄,𝐹,𝑄𝑓 ,Δ) with Abstract Values, for
inputs 𝑥𝑥𝑥 = ⟨𝑥1, . . . 𝑥𝑛⟩ and 𝐶, a map from terminals to a set of abstract values.

program is less than 𝜖, we are done. If not, the algorithm then (similar to the original

algorithm) uses abstraction refinement to increase the set of predicates. I use this

expanded set of predicates to refine the abstract values for the AFTA similar to my

original algorithm presented in Chapter 6. I also use these predicates to further

partition the space of all constants.

GenerateConstantMap: For each 𝑡, this function uses AddConstantAbstractions

(Figure 7-3) to partition the space of constants. Given predicates 𝒫 , the method uses

all predicates in 𝒫 to construct these partitions. For each partition 𝜙 (specified via

the abstract value 𝜙) and each predicate 𝜓 ∈ 𝒫 , either 𝜓 is true for all values in 𝛾(𝜙)

or false for all values in 𝛾(𝜙). The procedure recursively computes the following set

136

1: procedure AddConstantAbstractions(𝜙,𝒫)
2: if 𝒫 = ∅ then
3: return {𝜙};
4: 𝜓 ∈ 𝒫 ;
5: 𝑆𝑝 := AddConstantAbstractions(𝜙 ∧ 𝜓,𝒫 − {𝜓});
6: 𝑆𝑛 := AddConstantAbstractions(𝜙 ∧ ¬𝜓,𝒫 − {𝜓});
7: return 𝑆𝑝 ∪ 𝑆𝑛;
8: procedure GenerateConstantMap(𝐺,𝒫)

input: DSL 𝐺 and predicates 𝒫 .
output: Map 𝐶 from constants in 𝐺 to sets of abstract values.

9: for 𝑡 ∈ 𝑇𝐶 do
10: 𝐶[𝑡] := AddConstantAbstractions(true,𝒫);
11: 𝐶[𝑡] := 𝐶[𝑡] ∪ false;
12: return 𝐶;

Figure 7-3: Algorithm for generating map from constants to set of abstract values.

of partitions:

𝑆 =
{︁
𝜙1 ∧ . . . 𝜙𝑘 | 𝜙1 ∈ {𝜓1,¬𝜓1}, . . . 𝜙𝑘 ∈ {𝜓𝑘,¬𝜓𝑘},𝒫 = {𝜓1, . . . 𝜓𝑘}

}︁

Least Complex Program Algorithm: The least complex program algorithm

is similar to the algorithm presented in Chapter 3. The modified algorithm, given

state 𝑞⟨𝜙,...𝜙⟩
𝑡 generates an expression using the abstract value 𝑣* instead of generating

expression terminal 𝑡 (line 4-6). Here 𝑣* is the value that minimizes the weight

function 𝑤𝑡, given abstract value 𝜙.

On Proof of Correctness:

The proof of correctness for this algorithm is identical to the proof presented for my

original abstraction refinement based program synthesis algorithm (Chapter 6). The

changes in the DSL only effect the proofs for Theorem 21 and Theorem 26. I present

the modified proof below:

Theorem 28. (Constant Maps) Given a set of predicates 𝒫, DSL 𝐺, and constant

map 𝐶 := GenerateConstantMap(𝒫 , 𝐺), for all terminals 𝑡, and all possible values 𝑣𝑡,

there exists an abstract value 𝜙 ∈ 𝐶[𝑡], such that, 𝑣𝑡 ∈ 𝛾(𝜙).

Proof. Given a terminal 𝑡 and value 𝑣𝑡. Let 𝜙 ∈ 𝛼𝒫(𝑡 = 𝑣𝑡). 𝜙. Note that, 𝑣𝑡 ∈ 𝛾(𝜙).

137

1: procedure LeastComplex(𝑞𝜙𝜙𝜙
𝑠 ,𝒜, 𝐺)

input: State 𝑞𝜙𝜙𝜙
𝑠 , AFTA 𝒜 = (𝑄,𝑄𝑓 ,Δ), and DSL 𝐺.

input: Recursively defined complexity measure cost.
output: Least complex expression 𝑒* and it’s complexity 𝑐*.

2: if 𝑠 = 𝑥 then
3: return 𝑥, cost(𝑥)
4: if 𝑠 ∈ 𝑇𝐶 then
5: 𝑣* := arg min𝑣∈𝜙𝜙𝜙0

𝑤𝑠(𝑣)
6: return 𝑣*, cost(𝑠)× 𝑤𝑠(𝑣*)
7: 𝑐* :=∞
8: for 𝑓(𝑞𝜙𝜙𝜙1

𝑠1 , . . . , 𝑞
𝜙𝜙𝜙𝑘
𝑠𝑘

)→ 𝑞𝜙𝜙𝜙
𝑠 ∈ Δ do

9: for 𝑖 := 1 . . . 𝑘 do
10: 𝑒𝑖, 𝑐𝑖 := LeastComplex(𝑞𝜙𝜙𝜙𝑖

𝑠𝑖
,𝒜, 𝐺,ℳ)

11: 𝑒 := 𝑓(𝑒1, . . . 𝑒𝑘)
12: 𝑐 := cost(𝑓) +∑︀𝑛

𝑖=1 𝑐𝑖

13: if 𝑐 < 𝑐* then
14: 𝑒* := 𝑒
15: 𝑐* := 𝑐
16: return 𝑒*, 𝑐*

Figure 7-4: Algorithm for synthesizing a least complex program for automaton 𝒜,
DSL 𝐺, and state 𝑞𝜙𝜙𝜙

𝑠 .

By negation, 𝜙 must contain all predicates from 𝒫 .

Since the procedure GenerateConstantMap generates all possible abstract values

which contain all predicates in set 𝒫 , therefore, 𝜙 ∈ 𝐶[𝑡].

Hence, 𝑣𝑡 ∈ 𝛾(𝛼𝒫(𝑡 = 𝑣𝑡)) and 𝛼𝒫(𝑡 = 𝑣𝑡) ∈ 𝐶[𝑡].

Theorem 29. (Structure of the Tree Automaton) Given a set of predicates 𝒫,

input vector 𝑥𝑥𝑥 = ⟨𝑥1, . . . 𝑥𝑛⟩, and DSL 𝐺, let 𝒜 = (𝑄,𝑄𝑓 ,Δ) be the AFTA returned by

the function ConstructAFTA(𝑥𝑥𝑥,𝐺,𝒫). Then for all symbols 𝑠 in 𝐺, for all expressions

𝑒 starting from symbol 𝑠 (and height less than bound 𝑏), there exists a state 𝑞𝜙𝜙𝜙
𝑠 ∈ 𝑄,

such that, 𝑒 is accepted by the automaton (𝑄, {𝑞𝜙𝜙𝜙
𝑠 },Δ), where 𝜙𝜙𝜙 = ⟨J𝑒K𝒫𝑥1, . . . J𝑒K𝒫𝑥𝑛⟩.

Proof. I prove this theorem by using induction over the height of the expression 𝑒.

Base Case: Height of expression 𝑒 is 1. This implies the symbol is either 𝑥 or a

constant. According to Var rule (Figure 7-2), there exists a state 𝑞𝜙𝜙𝜙
𝑥 ∈ 𝑄 (for terminal

𝑥), where 𝜙𝜙𝜙 = ⟨J𝑥K𝒫𝑥1, . . . J𝑥K𝒫𝑥𝑛⟩ and 𝑥 is accepted by automaton (𝑄, {𝑞𝜙𝜙𝜙
𝑥},Δ).

138

According to Const rule (Figure 7-2), there exists some state 𝑞𝜙𝜙𝜙
𝑡 ∈ 𝑄 (for constant

terminal 𝑡), where 𝜙𝜙𝜙 = ⟨𝜙, . . . 𝜙⟩, for all 𝜙 ∈ 𝐶[𝑡]. Note that, using Theorem 28, for

all possible concrete values 𝑣𝑡 for terminal 𝑡, there exists an abstract value 𝜙 ∈ 𝐶[𝑡],

such that, 𝑣𝑡 ∈ 𝛾(𝜙). Therefore, for all possible expressions 𝑒 of the form 𝑣𝑡 (value

𝑣 of type 𝑣𝑡, there exists a state 𝑞⟨𝜙,...𝜙⟩
𝑡 ∈ 𝑄, where 𝑣𝑡 ∈ 𝛾(𝜙) and 𝑣𝑡 is accepted by

(𝑄, {𝑞𝜙𝜙𝜙
𝑥},Δ).

Induction argument: The induction argument is identical to the proof of DSLs

with finite constants (Theorem 21).

Theorem 30. (Completeness) Given a dataset 𝒟, a DSL 𝐺, tolerance 𝜖 ≥ 0,

universe of predicates 𝒰 , initial predicates 𝒫, objective function 𝑈 , loss function ℒ,

and the complexity measure 𝐶, the Algorithm 6-3 will eventually return some program

𝑝𝑟.

Proof. Let 𝛿𝑢 = min𝑝∈𝐺 𝑈(ℒ(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦),ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]), 𝐶(𝑝)), i.e., 𝛿𝑢 is the concrete objec-

tive function value of the program which minimizes the objective function.

Let 𝐴𝑖 be the FTA constructed in the 𝑖𝑡ℎ iteration of Algorithm 6-3. Let 𝒫𝑖 be

the set of predicates and 𝑝𝑖 be the program returned by MinCost in the 𝑖𝑡ℎ iteration.

Let 𝑥𝑖, 𝑦𝑖 be the example returned by PickDimension in the 𝑖𝑡ℎ iteration. Let 𝑢𝑖 be the

abstract objective function value of 𝑝𝑖 with predicates 𝒫𝑖. Note that, in each iteration

𝑢𝑖 ≤ 𝛿𝑢 (the abstract loss function is less than the minimum concrete loss function).

This implies, there exists 𝛿𝑜, 𝛿𝑟, and 𝛿𝑐, such that,

ℒ(J𝑝𝑖K𝒫𝑖𝑥𝑥𝑥,𝑥𝑥𝑥) ≤ 𝛿𝑜,ℛ(𝑥𝑥𝑥, 𝑝[𝑥𝑥𝑥]) ≤ 𝛿𝑟, and 𝐶(𝑝𝑖) ≤ 𝛿𝑐

Using Theorem 25, if Distance(𝑝𝑖,𝑥𝑥𝑥
*
𝑖 ,𝒟,𝒫𝑖) > 𝜖, then for all 𝑘 > 𝑖:

min(ℒ𝑜([𝑝𝑖]𝑥𝑥𝑥𝑖, 𝑦𝑦𝑦𝑐),ℒ𝑜(J𝑝𝑖K𝒫𝑖𝑥𝑥𝑥𝑖, 𝑦𝑦𝑦𝑐) + 𝛿) ≤ ℒ𝑜(J𝑝𝑖K𝒫𝑘𝑥𝑥𝑥𝑖, 𝑦𝑦𝑦𝑐) ≤ ℒ𝑜([𝑝𝑖]𝑥𝑥𝑥𝑖, 𝑦𝑦𝑦𝑐)

min(ℛ(𝑥𝑥𝑥, 𝑝𝑖[𝑥𝑥𝑥]),ℛ(𝑥𝑥𝑥, J𝑝𝑖K𝒫𝑖𝑥𝑥𝑥) + 𝛿) ≤ ℛ(𝑥𝑥𝑥, J𝑝𝑖K𝒫𝑘𝑥𝑥𝑥) ≤ ℛ(𝑥𝑥𝑥, 𝑝𝑖[𝑥𝑥𝑥])

In each iteration, the algorithm picks a program 𝑝 ∈ 𝐺 and increases the abstract

loss value or the abstract regularizer value.

139

Also note that,

ℒ(J𝑝𝑖K𝒫𝑘𝑥𝑥𝑥,𝑦𝑦𝑦) ≤ 𝛿𝑜 + 𝛿

and

ℛ(𝑥𝑥𝑥, J𝑝𝑖K𝒫𝑘𝑥𝑥𝑥) ≤ 𝛿𝑟 + 𝛿

because if ℒ(J𝑝𝑖K𝒫𝑘𝑥𝑥𝑥,𝑦𝑦𝑦) > 𝛿𝑜 or ℛ(𝑥𝑥𝑥, J𝑝𝑖K𝒫𝑘𝑥𝑥𝑥) > 𝛿𝑟, then the abstract objective func-

tion value of 𝑝𝑖 is greater than 𝛿𝑢. In this case, MinCost will never return 𝑝𝑖.

Therefore, in the worst case MinCost will return a program 𝑝, 𝛿𝑜

𝛿
+1+ 𝛿𝑟

𝛿
+1 times.

The space of programs with objective function value less than 𝛿𝑢 is finite (due

to the restriction of the size of the AFTA and there are only finite programs with

𝐶(𝑝) ≤ 𝛿𝑐). The algorithm will terminate in finite number of iterations.

7.3 Implementation
I have implemented my modified algorithm within the Rose synthesis tool. Rose is

parameterized over a large class of objective functions, loss functions, and complex-

ity measures. I benchmark Rose using the SyGuS 2018 benchmark suite [1]. Each

benchmark is associated with a finite number of string constants (between 0 to 2).

For my experiments, I allow the synthesis algorithm to use all possible strings, i.e.,

the synthesis algorithm can synthesize programs with arbitrary strings as constants.

Abstractions: I use the universe of predicates, initial abstractions, and abstract

loss function semantics presented in Chapter 6 (Section 6.7). I present an expanded

version of abstract semantics for my DSL in Figure 7-5.

7.4 Experimental Results
I use the SyGuS 2018 benchmark suite [1] to benchmark by technique. I use the size

complexity measure Size(𝑝) (Subsection 2.2.4) and uniform regularizer ℛ𝑈 (Defini-

tion 4) for these experiments. For these experiments, each constant string is given

weight 1, i.e., 𝑤𝑝(𝑠) = 1, for all string 𝑠 (𝑝 is a constant terminal in my DSL).

7.4.1 Scalability

I evaluate the scalability of my implementation by applying it to all problems in the

SyGuS 2018 benchmark suite [1]. For each problem, I use clean (noise-free) data set

140

J𝑓(𝑠1 = 𝑐1, . . . , 𝑠𝑘 = 𝑐𝑘)K# := (𝑠 = J𝑓(𝑐1, . . . 𝑐𝑘)K)
JConcat(len(𝑓) = 𝑖1, len(𝑒) = 𝑖2)K# := (len(𝑒) = 𝑖1 + 𝑖2)

JConcat(len(𝑓) = 𝑖1, 𝑒[𝑖2] = 𝑐)K# := (𝑒[𝑖1 + 𝑖2] = 𝑐)
JConcat(len(𝑓) = 𝑖, 𝑒 = 𝑐)K# := (len(𝑒) = (𝑖+ len(𝑐))

∧
len(𝑐)⋀︀
𝑗=1

𝑒[𝑖+ 𝑗 − 1] = 𝑐[𝑗 − 1]

JConcat(𝑓 [𝑖] = 𝑐, 𝑝)K# := (𝑒[𝑖] = 𝑐)
JConcat(𝑓 = 𝑐, len(𝑒) = 𝑖)K# := (len(𝑒) = (len(𝑐) + 𝑖))

∧
len(𝑐)⋀︀
𝑗=1

𝑒[𝑗 − 1] = 𝑐[𝑗 − 1]

JConcat(𝑓 = 𝑐1, 𝑒[𝑖] = 𝑐2)K# := (𝑒[len(𝑐1) + 𝑖] = 𝑐2)

∧
len(𝑐1)⋀︀

𝑗=1
𝑒[𝑗 − 1] = 𝑐1[𝑗 − 1]

JStr(𝑝)K# := 𝑝
JConstStr(𝑝)K# := 𝑝

Figure 7-5: Abstract semantics for string transformation DSL.

for the problem provided with the benchmark suite. While running these benchmarks,

I do not provide any constants (given in the SyGuS benchmark) to my algorithm.

All experiments are run on an 3.00 GHz Intel(R) Xeon(R) CPU E5-2690 v2 machine

with 512GB memory running Linux 4.15.0. With a timeout limit of 10 minutes and

bounded scope height threshold of 4, the implementation is able to solve 49 out of

the 108 SyGuS 2018 benchmark problems. For the remaining benchmark problems,

Rose times out.

Figure 7-6 presents my results for SyGuS 2018 benchmarks. There is a row for

each benchmark problem. The first column presents the name of the benchmark.

The next row presents the number of examples in that benchmark. The next four

rows present performance of the technique running on four different loss functions in

milliseconds. These loss functions are 𝑛-Substitution loss function ℒ𝑛𝑆, 1-Delete loss

function ℒ1𝐷, Damerau-Levenstein loss function ℒ𝐷𝐿, and 0/1 loss function ℒ0/1.

7.4.2 Noisy Data Sets, Character Deletions

I next present results for my implementation running on SyGuS benchmarks with

number of input-output examples less than 10 with character deletions. I omit bench-

marks on which my implementation fails to terminate. I use a noise source that cycli-

141

Benchmark Name Number of Examples ℒ𝑛𝑆 ℒ1𝐷 ℒ𝐷𝐿 ℒ0/1
bikes 6 156 161 234 160
bikes-long 24 288 301 438 301
bikes-long-repeat 58 544 646 1130 542
bikes_small 6 157 159 233 159
dr-name 4 147056 217658 233509 229024
dr-name-long 50 185278 214971 492378 196555
dr-name-long-repeat 150 552474 - - 596445
dr-name_small 4 146017 225172 230840 216359
firstname 4 209 206 213 212
firstname-long 54 925 1028 1839 1049
firstname-long-repeat 204 3713 3649 10727 3479
firstname_small 4 209 208 215 206
initials 4 - - - 276582
initials_small 4 - - - 271477
lastname 4 63 62 68 62
lastname-long 54 166 179 416 170
lastname-long-repeat 204 394 430 1532 390
lastname_small 4 62 87 68 63
name-combine-3 6 81069 79390 89956 84482
name-combine-3-long 50 399983 430599 - 397408
name-combine-3_short 6 80402 84738 85040 78127
phone 6 89 88 89 91
phone-long 100 415 498 717 420
phone-long-repeat 400 1239 3021 4952 1144
phone_short 6 86 90 89 135
phone-1 6 119 243 122 241
phone-1-long 100 444 502 713 410
phone-1-long-repeat 400 1220 2539 4961 1139
phone-1_short 6 119 242 122 138
phone-2 6 120 121 122 138
phone-2-long 100 660 863 1235 650
phone-2-long-repeat 400 2130 4123 8601 1903
phone-2_short 6 126 118 120 106
phone-5 7 124 128 128 109
phone-5-long 100 699 721 924 674
phone-5-long-repeat 400 2290 3083 5235 2308
phone-5_short 7 121 121 129 89
phone-6 7 900 893 934 1051
phone-6-long 100 8915 7946 12537 7220
phone-6-long-repeat 400 31729 42420 108900 31079
phone-6_short 7 876 878 945 1228
phone-7 7 1063 990 1122 279
phone-7-long 100 8186 8495 13965 8616
phone-7-long-repeat 400 35519 41088 120519 32427
phone-7_short 7 1057 892 1191 258
phone-8 7 1000 903 961 256
phone-8-long 100 6942 8109 12695 7214
phone-8-long-repeat 400 31711 40965 107993 32111
phone-8_short 7 882 907 978 254

Figure 7-6: Runtime performance of Rose over noise-free dataset.

cally deletes a single character from each output in the dataset in turn. I consider

three loss functions: the 0/1 loss function, Damerau-Levenstein loss function, and the

1-Delete loss function.

Figure 7-7 summarizes these results. There is a row for each benchmark problem.

The first column presents the name of the benchmark. The next row presents the

number of examples in that benchmark. The next three rows present the minimum

number of correct input-output examples are required for the synthesis technique

to synthesize the correct program, given different loss functions. These loss func-

tions are 1-Delete loss function ℒ1𝐷, Damerau-Levenstein loss function ℒ𝐷𝐿, and 0/1

loss function ℒ0/1. Note that these results are consistent with results presented in

Chapter 4.

142

Benchmark Number of examples Number of Required

Size Correct Examples
1-Delete DL 0/1

bikes 6 0 0 3
dr-name 4 0 0 2
firstname 4 0 0 2
lastname 4 0 1 1
name-combine-3 6 0 0 2
phone 6 0 2 3
phone-1 6 0 3 3
phone-2 6 0 2 3
phone-5 7 0 2 3
phone-6 7 0 1 3
phone-7 7 0 2 3
phone-8 7 0 0 1

Figure 7-7: Minimum number of correct examples required to synthesize a correct
program.

7.5 Discussion

I present a new technique to synthesize programs over noisy datasets, given a domain

specific languages with a large (possibly infinite) set of constants. I have implemented

my synthesis algorithm in the Rose. My experimental results show that our system

can search for optimal constants to synthesize the correct program, even when these

constants are not provided to my algorithm.

143

144

Chapter 8

Dealing With Noisy Inputs

I now generalize the noisy program synthesis algorithm to work with noisy datasets

that include noisy inputs in addition to noisy outputs. Noisy inputs create a novel

problem within the synthesis process. Since the synthesis algorithm does not have

access to noise-free inputs, the synthesis algorithm cannot compute the corresponding

noise-free outputs. The noise-free outputs are required for computing the loss of a

program over the noisy dataset. Due to the potential discrete nature of programs in

our program space, using the noisy inputs may not help in computing the output loss

(i.e., small changes in the input may lead to large differences in a discrete program’s

output). I solve this problem by not only synthesizing a best-fit program, but also

synthesizing the best-fit noise-free inputs. I introduce the additional concept of input

loss function, which measures the loss between the noisy inputs and the best-fit noise-

free inputs. The objective function is modified to incorporate the input loss function,

thus allowing me to frame the synthesis problem over datasets with noisy inputs and

noisy outputs as an optimization problem.

I then modify the algorithm presented in Chapter 6 to work with this new opti-

mization problem. The algorithm’s refinement loop starts by partitioning the space

of inputs into input partitions, represented using abstract values. These abstract

values are used as abstract input vector to build an abstract finite tree automaton.

Note that the abstract input vector may not be of the same length as the noisy input

vector. For each accepting state, the algorithm first computes the simplest program

145

accepted by the state. The output abstract values, attached with each state, are the

equal to the abstract output value returned by this program on the input partitions.

The algorithm then assigns each noisy input-output pair an input partition-abstract

output value pair, such that, this assignment makes it possible to minimize the ab-

stract objective function. The algorithm then iterates through all accepting states

and computes the program and noisy input and input partition assignment which

minimizes the abstract objective function. Using this assignment and the input loss

function, for each noisy input, the algorithm computes the corresponding noise-free

input. For a noisy input, the corresponding noise-free input is the input, within the

noisy input’s assigned input partition, which minimizes the input loss value between

the noise-free input and the noisy input.

The algorithm computes the concrete objective function value of the candidate

program and candidate noise-free inputs. If the difference between the concrete ob-

jective function value and the abstract objective function value of this program is not

greater than the tolerance value, the algorithm returns this program. If the difference

is greater than the tolerance value, the algorithm then finds a counter example. The

counter example, in this case, is a pair of a noise-free input and the corresponding

noisy output, such that, the output loss between the noise-free output (candidate pro-

gram’s output on the noise-free input) and the noisy output is greater than 0. The

algorithm then uses this counter example and abstract refinement based optimization

technique to further refine the abstract finite tree automaton and the partitions of

space of inputs.

My algorithm is guaranteed to terminate. For my experiments, this tolerance is

set to 0. In this case, when the algorithm terminates, it synthesizes the program

which minimizes the objective function.

8.1 Framework

I first modify the concept of a noisy dataset (introduced in Chapter 2) to include the

concept of noisy inputs.

Noisy Dataset:

146

A noisy dataset 𝒟 = (𝑥𝑥𝑥𝑐, 𝑦𝑦𝑦𝑐) is composed of a set of noisy inputs 𝑥𝑥𝑥𝑐 and corresponding

noisy outputs 𝑦𝑦𝑦𝑐. I assume the dataset 𝒟 = (𝑥𝑥𝑥𝑐, 𝑦𝑦𝑦𝑐) of size 𝑛 is constructed by the

following process:

• A hidden program 𝑝ℎ ∈ 𝐺 is randomly picked from the set of programs 𝐺

(defined using a domain specific language).

• 𝑛 hidden inputs 𝑥𝑥𝑥 are sampled from the input source.

• Hidden outputs 𝑧𝑧𝑧 = 𝑝ℎ[𝑥𝑥𝑥] are computed.

• A noise source 𝜌𝑁𝑖
corrupts the inputs 𝑥𝑥𝑥 to noisy inputs 𝑥𝑥𝑥𝑐 and a noise source

𝜌𝑁𝑜 corrupts outputs 𝑧𝑧𝑧 to noisy outputs 𝑦𝑦𝑦𝑐.

The synthesis algorithm is given the noisy inputs 𝑥𝑥𝑥𝑐 and noisy outputs 𝑦𝑦𝑦𝑐. The goal

of my synthesis algorithm is to synthesize a program which best-fits the noisy dataset

(𝑥𝑥𝑥𝑐, 𝑦𝑦𝑦𝑐).

Input Loss:

Given a noisy dataset 𝒟 = (𝑥𝑥𝑥𝑐, 𝑦𝑦𝑦𝑐) of size 𝑛, to synthesize the best-fit program, the

algorithm aims to synthesize the best-fit inputs to measure how well a program fits

the given dataset. I use an input loss function ℒ(𝑥𝑥𝑥,𝑥𝑥𝑥𝑐) to measure how incorrect our

predicted inputs 𝑥𝑥𝑥 ∈ 𝑋𝑛 is with respect to the given dataset. Here 𝑋 is the set of

all possible inputs. For 𝑥𝑥𝑥 /∈ 𝑋𝑛, I assume ℒ(𝑥𝑥𝑥,𝑥𝑥𝑥𝑐) =∞. I also assume the input loss

function ℒ satisfies the following property:

∀ 𝑛 ∈ N. ∀ 𝑥𝑥𝑥 ∈ 𝑋𝑛.∀𝛿 ≥ 0.
⃒⃒⃒{︁
𝑥𝑥𝑥 | 𝑥𝑥𝑥 ∈ 𝑋𝑛,ℒ(𝑥𝑥𝑥,𝑥𝑥𝑥𝑐) ≤ 𝛿

}︁⃒⃒⃒
<∞

i.e., if for all 𝑛 ∈ N, input vector 𝑥𝑥𝑥𝑐 ∈ 𝑋𝑛, 𝛿 ≥ 0, there exists only a finite number of

input vectors 𝑥𝑥𝑥 ∈ 𝑋𝑛 with loss less than equal to 𝛿.

I use the notation ℒ𝑜 to denote the output loss function and ℒ𝑖 to denote the input

loss function.

Objective Function:

Given a noisy dataset 𝒟 = (𝑥𝑥𝑥𝑐, 𝑦𝑦𝑦𝑐), an output loss function ℒ𝑜, an input loss function

147

ℒ𝑖, and a complexity measure 𝐶, we modify the objective function 𝑈 to integrate

the input loss. Given a program 𝑝 and noise-free inputs 𝑥𝑥𝑥, we use the notation

𝑈(ℒ𝑜(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦𝑐),ℒ𝑖(𝑥𝑥𝑥,𝑥𝑥𝑥𝑐), 𝐶(𝑝)) to denote the objective function value. Within this

framework, I assume a uniform regularizer. For simplicity, I have removed the

regularizer from the signature of the objective function.

I assume for any finite objective function value, both input loss and output loss is

finite, i.e., for all 𝛿, there exists a 𝛿𝐼 and 𝛿𝑜, such that,

𝑈(ℒ𝑜(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦𝑐),ℒ𝑖(𝑥𝑥𝑥,𝑥𝑥𝑥𝑐), 𝐶(𝑝)) ≤ 𝛿 =⇒ ℒ𝑜(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦𝑐) ≤ 𝛿𝑜 and ℒ𝑖(𝑥𝑥𝑥,𝑥𝑥𝑥𝑐) ≤ 𝛿𝐼

I assume both input and output loss function satisfy the following constraints:

ℒ𝑖(⟨𝑥′
1, . . . 𝑥

′
𝑛⟩, ⟨𝑥1, . . . 𝑥𝑛⟩) =

𝑛∑︁
𝑗=1
ℒ𝑖(𝑥′

𝑗, 𝑥𝑗)

ℒ𝑜(⟨𝑧1, . . . 𝑧𝑛⟩, ⟨𝑦1, . . . 𝑦𝑛⟩) =
𝑛∑︁

𝑖=1
ℒ𝑜(𝑧𝑖, 𝑦𝑖)

Optimization Problem:

Given a set of programs 𝐺, dataset 𝒟 = (𝑥𝑥𝑥𝑐, 𝑦𝑦𝑦𝑐) of size 𝑛, with both input and output

corruptions, space of inputs 𝑋, an output loss function ℒ𝑜, an input loss function ℒ𝑖,

a complexity measure 𝐶, an objective function 𝑈 , a program 𝑝* and inputs 𝑥𝑥𝑥* best-fit

the noisy dataset, if 𝑝* and 𝑥𝑥𝑥* minimizes the objective function, i.e.,

𝑝*,𝑥𝑥𝑥* ∈ arg min
𝑝∈𝐺,𝑥𝑥𝑥∈𝑋𝑛

𝑈(ℒ𝑜(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦𝑐),ℒ𝑖(𝑥𝑥𝑥,𝑥𝑥𝑥𝑐), 𝐶(𝑝))

𝜖-Correctness:

Similar to my 𝜖-correctness criterion (Definition 18), I relax the requirement to syn-

thesize a program which is close to the optimal program, i.e., its objective function

value is at most 𝜖 ≥ 0 greater than the minimum possible objective function value for

any program in 𝐺. Formally, 𝑝* is 𝜖-correct, if and only if,

min
𝑥𝑥𝑥∈𝑋𝑛

𝑈(ℒ𝑜(𝑝*[𝑥𝑥𝑥], 𝑦𝑦𝑦𝑐),ℒ𝑖(𝑥𝑥𝑥,𝑥𝑥𝑥𝑐), 𝐶(𝑝*))− min
𝑝∈𝐺,𝑥𝑥𝑥∈𝑋𝑛

𝑈(ℒ𝑜(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦𝑐),ℒ𝑖(𝑥𝑥𝑥,𝑥𝑥𝑥𝑐), 𝐶(𝑝)) ≤ 𝜖

148

𝑡 ∈ 𝑇𝐶

J𝑡K𝒫𝜑⇒ 𝛼𝒫(𝑡 = J𝑡K𝜑)
(Constant)

J𝑥K𝒫𝜑⇒ 𝜑
(Variable)

J𝑒1K𝒫𝜑⇒ 𝜙1 J𝑒2K𝒫𝜑⇒ 𝜙2 . . . J𝑒𝑘K𝒫𝜑⇒ 𝜙𝑘

J𝑓(𝑒1, 𝑒2, . . . 𝑒𝑘)K𝒫𝜑⇒ 𝛼𝒫(J𝑓(𝜙1, 𝜙2, . . . 𝜙𝑘)K#)
(Function)

Figure 8-1: Abstract execution semantics for program 𝑝.

Note that, when 𝜖 = 0, 𝑝* minimizes the objective function.

Input Partitions:

Given the space of all possible input values 𝑋, a vector of 𝑚 abstract values 𝜑𝜑𝜑 =

⟨𝜑1, . . . 𝜑𝑚⟩ are input partitions, if and only if,

𝑋 ⊆
𝑚⋃︁

𝑖=1
𝛾(𝜑𝑖)

i.e., the input space is a subset of the set of values represented by the combined vector

of abstract values.

Abstract Execution Semantics:

Given a program 𝑝, predicates 𝒫 , and partition 𝜑, J𝑝K𝒫𝜑 denotes the abstract value

of program 𝑝 on abstract input 𝜑, if the intermediate values are only represented via

predicates in 𝒫 . Figure 8-1 presents the rules for computing J𝑝K𝒫𝜑. Given a vector

of partitions 𝜑𝜑𝜑 = ⟨𝜑1, . . . 𝜑𝑚⟩, J𝑝K𝒫𝜑𝜑𝜑 denotes the vector 𝜙𝜙𝜙 = ⟨J𝑝K𝒫𝜑1, . . . J𝑝K𝒫𝜑𝑛⟩.

I assume if a predicate 𝜓 ∈ 𝒰 , then ¬𝜓 ∈ 𝒰 , i.e, if a predicate is present in the

universe of predicates, then its negation also exists within the universe of predicates.

Abstract Objective Function Value:

Given a dataset 𝒟 = (𝑥𝑥𝑥𝑐, 𝑦𝑦𝑦𝑐) of size 𝑛, program 𝑝, 𝑚 input partitions ⟨𝜑1, . . . 𝜑𝑚⟩,

predicates 𝒫 , objective function 𝑈 , output loss function ℒ𝑜, input loss function ℒ𝑖,

and complexity measure 𝐶, I define the abstract objective function as:

𝑢* = min
𝜑𝜑𝜑∈Φ

𝑈(ℒ𝑜(J𝑝K𝒫𝜑𝜑𝜑,𝑦𝑦𝑦𝑐),ℒ𝑖(𝜑𝜑𝜑,𝑥𝑥𝑥𝑐), 𝐶(𝑝))

where Φ =
{︁
⟨𝜑𝑖1 , . . . 𝜑𝑖𝑛⟩ | 𝑖1, . . . 𝑖𝑛 ∈ [1,𝑚]

}︁
. Φ is the set of all possible 𝑛 sized

149

permutations (with repetitions) of given input partitions.

Theorem 31. Given a dataset 𝒟 = (𝑥𝑥𝑥𝑐, 𝑦𝑦𝑦𝑐) of size 𝑛, program 𝑝, 𝑚 input partitions

⟨𝜑1, . . . 𝜑𝑚⟩, predicates 𝒫, objective function 𝑈 , output loss function ℒ𝑜, input loss

function ℒ𝑖, complexity measure 𝐶, and space of inputs 𝑋,

𝑢* = min
𝜑𝜑𝜑∈Φ

𝑈(ℒ𝑜(J𝑝K𝒫𝜑𝜑𝜑,𝑦𝑦𝑦𝑐),ℒ𝑖(𝜑𝜑𝜑,𝑥𝑥𝑥𝑐), 𝐶(𝑝))

where Φ =
{︁
⟨𝜑𝑖1 , . . . 𝜑𝑖𝑛⟩ | 𝑖1, . . . 𝑖𝑛 ∈ [1,𝑚]

}︁
, then

𝑢* ≤ min
𝑥𝑥𝑥∈𝑋𝑛

𝑈(ℒ𝑜(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦𝑐),ℒ𝑖(𝑥𝑥𝑥,𝑥𝑥𝑥𝑐), 𝐶(𝑝))

Proof.

𝑢* = min
𝜑𝜑𝜑∈Φ

𝑈(ℒ𝑜(J𝑝K𝒫𝜑𝜑𝜑,𝑦𝑦𝑦𝑐),ℒ𝑖(𝜑𝜑𝜑,𝑥𝑥𝑥𝑐), 𝐶(𝑝))

≤ min
⟨𝜑*

1,...𝜑*
𝑛⟩∈Φ

min
𝑥𝑖∈𝛾(𝜑*

𝑖),𝑖∈[1,𝑛]
𝑈(ℒ𝑜(J𝑝K𝒫⟨𝑥1, . . . 𝑥𝑛⟩, 𝑦𝑦𝑦𝑐),ℒ𝑖(⟨𝑥1, . . . 𝑥𝑛⟩,𝑥𝑥𝑥𝑐), 𝐶(𝑝))

≤ min
⟨𝜑*

1,...𝜑*
𝑛⟩∈Φ

min
𝑥𝑖∈𝛾(𝜑*

𝑖),𝑖∈[1,𝑛]
𝑈(ℒ𝑜(𝑝[⟨𝑥1, . . . 𝑥𝑛⟩], 𝑦𝑦𝑦𝑐),ℒ𝑖(⟨𝑥1, . . . 𝑥𝑛⟩,𝑥𝑥𝑥𝑐), 𝐶(𝑝))

From definition of Φ,

= min
𝜑*

𝑖 ∈⟨𝜑1,...𝜑𝑚⟩,𝑖∈[1,𝑛]
min

𝑥𝑖∈𝛾(𝜑*
𝑖),𝑖∈[1,𝑛]

𝑈(ℒ𝑜(𝑝[⟨𝑥1, . . . 𝑥𝑛⟩], 𝑦𝑦𝑦𝑐),ℒ𝑖(⟨𝑥1, . . . 𝑥𝑛⟩,𝑥𝑥𝑥𝑐), 𝐶(𝑝))

min𝐴∈𝒜 min𝑥∈𝐴 𝑓(𝑥) = min𝑥∈
⋃︀

𝐴∈𝒜 𝐴 𝑓(𝑥),

≤ min
𝑥𝑖∈
⋃︀𝑚

𝑗=1 𝛾(𝜑𝑗),𝑖∈[1,𝑛]
𝑈(ℒ𝑜(𝑝[⟨𝑥1, . . . 𝑥𝑛⟩], 𝑦𝑦𝑦𝑐),ℒ𝑖(⟨𝑥1, . . . 𝑥𝑛⟩,𝑥𝑥𝑥𝑐), 𝐶(𝑝))

Since 𝑋 ⊆ ⋃︀𝑚
𝑗=1 𝛾(𝜑𝑗) and input loss (and therefore objective function) is infinite for

𝑥 /∈ 𝑋,

= min
𝑥𝑖∈𝑋,𝑖∈[1,𝑛]

𝑈(ℒ𝑜(𝑝[⟨𝑥1, . . . 𝑥𝑛⟩], 𝑦𝑦𝑦𝑐),ℒ𝑖(⟨𝑥1, . . . 𝑥𝑛⟩,𝑥𝑥𝑥𝑐), 𝐶(𝑝))

= min
𝑥𝑥𝑥∈𝑋𝑛

𝑈(ℒ𝑜(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦𝑐),ℒ𝑖(𝑥𝑥𝑥,𝑥𝑥𝑥𝑐), 𝐶(𝑝))

Hence proved.

150

8.2 Synthesis Algorithm

Figure 8-2 presents my synthesis algorithm which synthesizes the program 𝑝* satis-

fying the 𝜖 correctness criterion. The Synthesize procedure takes a noisy dataset 𝒟,

a DSL 𝐺, a threshold 𝜖 ≥ 0, initial predicates 𝒫 , a universe of possible predicates 𝒰 ,

objective function 𝑈 , output loss function ℒ𝑜, input loss function ℒ𝑖, and complexity

measure 𝐶. I assume that true, false ∈ 𝒫 . All the procedures and sub-procedures

are parameterized by an objective function, an output loss function, an input loss

function, and a complexity measure. I remove these parameters from the signature

of Synthesize (and other methods) for simplicity.

The synthesis algorithm consists of a refinement loop (line 2-8). Given predicates

𝒫 , the algorithm first partitions the input space to construct a vector of abstract

values 𝜑𝜑𝜑. As the synthesis algorithm proceeds the synthesis algorithm will increase

the set of predicates 𝒫 and uses these predicates to further partition the space of

inputs.

The algorithm then constructs an abstract finite tree automaton (line 4) with the

current partitions 𝜑𝜑𝜑 and current set of predicates 𝒫 using rules presented in Figure 8-

4. The algorithm then uses the MinCost function to generate a candidate program 𝑝*

and candidate inputs 𝑥𝑥𝑥* (line 5). 𝑝* minimizes the abstract objective function and 𝑢*

is the abstract objective function value of program 𝑝*.

The algorithm then computes the distance between the concrete objective function

value of 𝑝* over inputs 𝑥𝑥𝑥* and the abstract objective function value 𝑢*. If this distance

is not greater than 𝜖, the algorithm terminates and returns 𝑝* (line 6).

Otherwise the algorithm augments the set of predicates to 𝒫 to refine the AFTA

and further partition the input space. To accomplish this, the algorithm first con-

structs an input-output example (𝑥, 𝑦) using the noisy dataset 𝒟 and input partitions

𝜑𝜑𝜑. Given a noisy input 𝑥* in the dataset and corresponding noisy output 𝑦, 𝑥 is a

candidate noise-free input corresponding to 𝑥*.

The algorithm then uses the procedure OptimizeAndBackPropagate to expand the

set of predicates (line 8). This procedure is identical to the OptimizeAndBackPropagate

procedure presented in Chapter 6 (Algorithm 6-5).

151

1: procedure Synthesize(𝒟, 𝐺, 𝜖,𝒫 ,𝒰)
input: noisy dataset 𝒟 = (𝑥𝑥𝑥𝑐, 𝑦𝑦𝑦𝑐), DSL 𝐺, and tolerance 𝜖.
input: initial predicates 𝒫 , and universe of predicates 𝒰 .
output: A program 𝑝*, such that, 𝑝* satisfies the 𝜖-correctness condition.

2: while true do
3: 𝜑𝜑𝜑 = PartitionSpace(𝒫);
4: 𝒜 := ConstructAFTA(𝜑𝜑𝜑,𝐺,𝒫);
5: 𝑝*,𝑥𝑥𝑥*, 𝑢* := MinCost(𝒜,𝜑𝜑𝜑,𝒟);
6: if Distance(𝑝*,𝑥𝑥𝑥*, 𝑢*,𝒟,𝒫) ≤ 𝜖 then return 𝑝*;
7: 𝑥, 𝑦 := PickDimension(𝑝*,𝑥𝑥𝑥*,𝒟,𝒫);
8: 𝒫 := 𝒫 ⋃︀OptimizeAndBackPropagate(𝑝*, 𝑥, 𝑦,𝒫 ,𝒰);

Figure 8-2: Algorithm for noisy program synthesis with input corruptions.

1: procedure DivideSpace(𝜙,𝒫)
2: if 𝒫 = ∅ then
3: return {𝜙};
4: 𝜓 ∈ 𝒫 ;
5: 𝑆𝑝 := DivideSpace(𝜙 ∧ 𝜓,𝒫 − {𝜓});
6: 𝑆𝑛 := DivideSpace(𝜙 ∧ ¬𝜓,𝒫 − {𝜓});
7: return 𝑆𝑝 ∪ 𝑆𝑛;
8: procedure PartitionSpace(𝒫)

input: Predicates 𝒫 .
output: Partitions the input space into subspaces based on predicates 𝒫 .

9: return DivideSpace(true,𝒫);

Figure 8-3: Algorithm for partitioning the space of inputs into subspaces based on
predicates 𝒫 .

I discuss each of these sub-procedures in detail next.

8.2.1 Creating Input Partitions

Figure 8-3 presents the procedure to partition the input space, given predicates 𝒫 .

The algorithm uses all predicates in 𝒫 to construct these partitions. For each partition

𝜑 and each predicate 𝜓 ∈ 𝒫 , either 𝜓 =⇒ 𝜑 or ¬𝜓 =⇒ 𝜑. The procedure recursively

computes the following set of partitions:

𝜑𝜑𝜑 =
{︁
𝜙1 ∧ . . . 𝜙𝑘 | 𝜙1 ∈ {𝜓1,¬𝜓1}, . . . 𝜙𝑘 ∈ {𝜓𝑘,¬𝜓𝑘},𝒫 = {𝜓1, . . . 𝜓𝑘}

}︁

Theorem 32. Given predicates 𝒫 and input space 𝑋, if ⟨𝜑1, . . . 𝜑𝑚⟩ := PartitionSpace(𝒫),

152

then

𝑋 ⊆
𝑚⋃︁

𝑖=1
𝛾(𝜑𝑖)

Proof. Consider the function DivideSpace, if 𝑆 = DivideSpace(𝜙,𝒫), then

𝛾(𝜙) =
⋃︁

𝜑∈𝑆

𝛾(𝜑)

Proof by induction over size of the set of predicates 𝒫 .

Base Case: If 𝒫 = ∅, then {𝜙} = DivideSpace(𝜙, ∅).

𝛾(𝜙) =
⋃︁

𝜑∈{𝜙}
𝛾(𝜑)

Induction Hypothesis: If 𝒫 contains 𝑛 predicates and 𝑆 = DivideSpace(𝜙,𝒫), then

𝛾(𝜙) =
⋃︁

𝜑∈𝑆

𝛾(𝜑)

Induction Case: Let 𝒫 contain 𝑛+ 1 predicates and 𝑆 = DivideSpace(𝜙,𝒫). Let 𝜓

be a predicate in 𝒫 . Let 𝑆𝑝 = DivideSpace(𝜙 ∧ 𝜓,𝒫 − {𝜓}), then

𝛾(𝜙 ∧ 𝜓) =
⋃︁

𝜑∈𝑆𝑝

𝛾(𝜑)

Let 𝑆𝑛 = DivideSpace(𝜙 ∧ ¬𝜓,𝒫 − {𝜓}), then

𝛾(𝜙 ∧ ¬𝜓) =
⋃︁

𝜑∈𝑆𝑛

𝛾(𝜑)

Since 𝑆 = 𝑆𝑝 ∪ 𝑆𝑛,

⋃︁
𝜑∈𝑆

𝛾(𝜑) =
(︁ ⋃︁

𝜑∈𝑆𝑝

𝛾(𝜑)
)︁
∪
(︁ ⋃︁

𝜑∈𝑆𝑛

𝛾(𝜑)
)︁

= 𝛾(𝜙 ∧ 𝜓) ∪ 𝛾(𝜙 ∧ ¬𝜓) = 𝛾(𝜙)

Therefore, using induction, 𝑆 = DivideSpace(𝜙,𝒫), then

𝛾(𝜙) =
⋃︁

𝜑∈𝑆

𝛾(𝜑)

153

Since 𝑋 ⊆ 𝛾(⊤), if ⟨𝜑1, . . . 𝜑𝑚⟩ = PartitionSpace(𝒫) = DivideSpace(⊤,𝒫),

𝑋 ⊆
𝑚⋃︁

𝑖=1
𝛾(𝜑𝑖)

Theorem 33. Given a set of predicates 𝒫, if ⟨𝜑1, . . . 𝜑𝑚⟩ := PartitionSpace(𝒫), then

for all 𝑖 = 1, . . .𝑚, ∀𝑥𝑖 ∈ 𝛾(𝜑𝑖).𝛼𝒫(𝑥 = 𝑥𝑖) ⇐⇒ 𝜑.

Proof. 𝛼𝒫 of 𝑥 = 𝑣 is the strongest predicate containing predicates 𝒫 , 𝜑𝑖 =⇒ 𝛼𝒫(𝑥 =

𝑥𝑖) =⇒ (𝑥 = 𝑥𝑖). But 𝜑 contains all predicates in 𝒫 , therefore 𝛼𝒫(𝑥 = 𝑥𝑖) cannot

be stronger than 𝜑𝑖, 𝛼𝒫(𝑥 = 𝑥𝑖) =⇒ 𝜑𝑖. Therefore, 𝛼𝒫(𝑥 = 𝑥𝑖) ⇐⇒ 𝜑𝑖.

Theorem 34. Given a set of predicates 𝒫, and program 𝑝, if ⟨𝜑1, . . . 𝜑𝑚⟩ := PartitionSpace(𝒫),

then for all 𝑖 = 1, . . .𝑚, ∀𝑥𝑖 ∈ 𝛾(𝜑𝑖).J𝑝K𝒫𝑥𝑖 = J𝑝K𝒫𝜑𝑖.

Proof. Let 𝑥𝑖 ∈ 𝛾(𝜑𝑖). Given a program 𝑝, J𝑝K𝒫𝑥𝑖 = J𝑝K𝒫𝜑𝑖.

Proof using induction over size of program 𝑝,

Base Case: Consider programs 𝑝 of size 1.

Case 1: 𝑝 is a constant 𝑡. From Const rule for computing J𝑡K𝒫𝑥𝑖 (Figure 6-1) and

J𝑡K𝒫𝜑𝑖 (Figure 8-1), J𝑡K𝒫𝑥𝑖 = J𝑡K𝒫𝜑𝑖.

Case 2: 𝑝 is a variable 𝑡. From Var rule for computing J𝑥K𝒫𝑥𝑖 (Figure 6-1) and J𝑥K𝒫𝜑𝑖

(Figure 8-1) and Theorem 33, J𝑥K𝒫𝑥𝑖 = J𝑥K𝒫𝜑𝑖.

Induction Hypothesis: Given a program 𝑝 of size less than 𝑛, J𝑝K𝒫𝑥𝑖 = J𝑝K𝒫𝜑𝑖.

Induction Step: Given a program 𝑝 of size 𝑛. 𝑝 = 𝑓(𝑒1, . . . 𝑒𝑘). Size of 𝑒1, . . . 𝑒𝑘 is less

than 𝑛, therefore, 𝑙 = 1, . . . 𝑘, J𝑒𝑙K𝒫𝑥𝑖 = J𝑒𝑙K𝒫𝜑𝑖. From Function rule for computing

J𝑓(𝑒1, . . . 𝑒𝑘)K𝒫𝑥𝑖 (Figure 6-1) and J𝑓(𝑒1, . . . 𝑒𝑘)K𝒫𝜑𝑖 (Figure 8-1), J𝑒K𝒫𝑥𝑖 = J𝑒K𝒫𝜑𝑖.

Hence proved.

8.2.2 Abstract Finite Tree Automata

Given predicates 𝒫 , DSL 𝐺, and input partitions 𝜑𝜑𝜑, Figure 8-4 presents the rules

for constructing an AFTA (𝑄,𝑄𝑓 ,Δ). The structure of the AFTA is similar to the

AFTA presented in my original abstraction refinement based synthesis algorithm

154

𝜙𝜙𝜙 = ⟨𝜓1, . . . 𝜓𝑚⟩
𝑞𝜙𝜙𝜙

𝑥 ∈ 𝑄
(Var)

𝑞𝜙𝜙𝜙
𝑠0 ∈ 𝑄

𝑞𝜙𝜙𝜙
𝑠0 ∈ 𝑄𝑓

(Final)

𝑡 ∈ 𝑇𝐶 ,𝜙𝜙𝜙 = 𝛼𝒫
(︁
⟨𝑡 = J𝑡K, . . . 𝑡 = J𝑡K⟩

)︁
, |𝜙𝜙𝜙| = 𝑚

𝑞𝜙𝜙𝜙
𝑡 ∈ 𝑄

(Const)

𝑠→ 𝑓(𝑠1, . . . , 𝑠𝑘) ∈ 𝑃, 𝑞𝜙𝜙𝜙1
𝑠1 , . . . , 𝑞

𝜙𝜙𝜙𝑘
𝑠𝑘
∈ 𝑄,

𝜙𝑗 = 𝛼𝒫
(︁
J𝑓(𝜙1𝑗, . . . , 𝜙𝑘𝑗)K#

)︁
,𝜙𝜙𝜙 = ⟨𝜙1, . . . 𝜙𝑚⟩

𝑞𝜙𝜙𝜙
𝑠 ∈ 𝑄, 𝑓(𝑞𝜙𝜙𝜙1

𝑠1 , . . . , 𝑞
𝜙𝜙𝜙𝑘
𝑠𝑘

)→ 𝑞𝜙𝜙𝜙
𝑠 ∈ Δ

(Prod)

Figure 8-4: Rules for constructing FTA 𝒜 = (𝑄,𝑄𝑓 ,Δ) with abstract values, given
abstract inputs 𝜓𝜓𝜓 = ⟨𝜓1, . . . 𝜓𝑚⟩.

(Chapter 6). I modify the Var rule to handle input partitions 𝜑𝜑𝜑. Instead of using

𝛼𝒫(𝑥𝑥𝑥𝑐) as the abstract value, where 𝑥𝑥𝑥𝑐 are the inputs in the noisy dataset, the mod-

ified method ConstructAFTA attaches the input partitions 𝜑𝜑𝜑 to the AFTA state 𝑞𝜑𝜑𝜑
𝑥 ,

associated with input symbol 𝑥.

8.2.3 Minimum Cost Candidate

I present the implementation of the procedure MinCost in Figure 8-5. Given AFTA

(𝑄,𝑄𝑓 ,Δ), dataset 𝒟 = (𝑥𝑥𝑥𝑐, 𝑦𝑦𝑦𝑐), input partitions 𝜑𝜑𝜑 = ⟨𝜑1, . . . 𝜑𝑚⟩, objective function

𝑈 , output loss function ℒ𝑜, input loss function ℒ𝑖, and complexity measure 𝐶, MinCost

returns a program 𝑝*, candidate input vector 𝑥𝑥𝑥*, and a minimum objective function

value 𝑢*. Formally,

𝑝*, ⟨𝜑*
1, . . . 𝜑

*
𝑛⟩ ∈ arg min

𝑝*∈𝐺,𝜑𝜑𝜑∈Φ
𝑈(ℒ𝑜(J𝑝K𝒫𝜑𝜑𝜑,𝑦𝑦𝑦𝑐),ℒ𝑖(𝜑𝜑𝜑,𝑥𝑥𝑥𝑐), 𝐶(𝑝))

𝑥𝑥𝑥* = ⟨𝑥*
1, . . . 𝑥

*
𝑛⟩, 𝑥*

𝑗 ∈ arg min
𝑥∈𝛾(𝜑*

𝑗)
ℒ𝑖(𝑥, 𝑥𝑗), 𝑗 ∈ [1, 𝑛]

where Φ =
{︁
⟨𝜑𝑖1 , . . . 𝜑𝑖𝑛⟩ | 𝑖1, . . . 𝑖𝑛 ∈ [1,𝑚]

}︁
, 𝑥𝑥𝑥𝑐 = ⟨𝑥1, . . . 𝑥𝑛⟩, and

𝑢* = 𝑈(ℒ𝑜(J𝑝*K𝒫𝜑𝜑𝜑*, 𝑦𝑦𝑦𝑐),ℒ𝑖(𝜑𝜑𝜑*,𝑥𝑥𝑥𝑐), 𝐶(𝑝*))

Theorem 35. Given predicates 𝒫, DSL 𝐺, dataset 𝒟 = (𝑥𝑥𝑥𝑐, 𝑦𝑦𝑦𝑐), objective function 𝑈 ,

155

1: procedure MinCost(𝒜,𝜑𝜑𝜑,𝒟)
input: abstract inputs 𝜑𝜑𝜑, AFTA 𝒜 = (𝑄,𝑄𝑓 ,Δ), and dataset 𝒟 = (𝑥𝑥𝑥𝑐, 𝑦𝑦𝑦𝑐).
output: A program 𝑝* and inputs 𝑥𝑥𝑥*, which minimizes the abstract objective
function.

2: 𝑝𝑟 = null; 𝑢𝑟 =∞; 𝑛 := |𝑥𝑥𝑥𝑐|; 𝑚 := |𝜑𝜑𝜑|; 𝑥𝑥𝑥𝑟 := null;
3: for 𝑞𝜙𝜙𝜙

𝑠0 ∈ 𝑄𝑓 do
4: 𝑝, 𝑐 := LeastComplex(𝑞𝜙𝜙𝜙

𝑠0 ,𝒜, 𝐺);
◁ Least complex program for a given accepting state.

5: Φ :=
{︁
(⟨𝜑𝑖1 , . . . 𝜑𝑖𝑛⟩, ⟨𝜙𝑖1 , . . . 𝜙𝑖𝑛⟩) | 𝑖1, . . . 𝑖𝑛 ∈ [1,𝑚]

}︁
;

6: (𝜑𝜑𝜑*,𝜙𝜙𝜙*) := arg min
(𝜑𝜑𝜑*,𝜙𝜙𝜙*)∈Φ

𝑈(ℒ𝑜(𝜙𝜙𝜙*, 𝑦𝑦𝑦𝑐),ℒ𝑖(𝜑𝜑𝜑*,𝑥𝑥𝑥𝑐), 𝐶(𝑝));

7: 𝑢 := 𝑈(ℒ𝑜(𝜙𝜙𝜙*, 𝑦𝑦𝑦𝑐),ℒ𝑖(𝜑𝜑𝜑*,𝑥𝑥𝑥𝑐), 𝐶(𝑝));
8: if 𝑢 ≤ 𝑢𝑟 then
9: 𝑝𝑟 = 𝑝; 𝑢𝑟 = 𝑢;

10: for 𝑗 := 1 . . . 𝑛 do
11: 𝑥𝑗 := arg min

𝑥∈𝛾(𝜑*
𝑗)
ℒ𝑖(𝑥, 𝑥𝑐 𝑗);

12: 𝑥𝑥𝑥𝑟 = ⟨𝑥1, . . . 𝑥𝑛⟩;
13: return 𝑝𝑟,𝑥𝑥𝑥𝑟, 𝑢𝑟;

Figure 8-5: Procedure for synthesizing the program and inputs which minimizes the
abstract objective function.

output loss function ℒ𝑜, input loss function ℒ𝑖, complexity measure 𝐶, input partitions

𝜑𝜑𝜑, and FTA 𝒜 = ConstructAFTA(𝜑𝜑𝜑,𝐺,𝒫), if 𝑝*,𝑥𝑥𝑥*, 𝑢* = MinCost(𝒜,𝜑𝜑𝜑,𝒟) then

𝑝*,𝜑𝜑𝜑* ∈ arg min
𝑝*∈𝐺,𝜑𝜑𝜑*∈Φ*

𝑈(ℒ𝑜(J𝑝K𝒫𝜑𝜑𝜑,𝑦𝑦𝑦𝑐),ℒ𝑖(𝜑𝜑𝜑,𝑥𝑥𝑥𝑐), 𝐶(𝑝))

where Φ* =
{︁
⟨𝜑𝑖1 , . . . 𝜑𝑖𝑛⟩ | 𝑖1, . . . 𝑖𝑛 ∈ [1,𝑚]

}︁
, 𝑛 = |𝑥𝑥𝑥𝑐|, 𝑚 = |𝜑𝜑𝜑|, and

𝑥𝑥𝑥* = ⟨𝑥*
1, . . . 𝑥

*
𝑛⟩, 𝑥*

𝑗 ∈ arg min
𝑥∈𝛾(𝜑*

𝑗)
ℒ𝑖(𝑥, 𝑥𝑐 𝑗), 𝑗 ∈ [1, 𝑛]

𝑢* = 𝑈(ℒ𝑜(J𝑝*K𝒫𝜑𝜑𝜑*, 𝑦𝑦𝑦𝑐),ℒ𝑖(𝜑𝜑𝜑*,𝑥𝑥𝑥𝑐), 𝐶(𝑝*)) = 𝑈(ℒ𝑜(J𝑝*K𝒫𝑥𝑥𝑥*, 𝑦𝑦𝑦𝑐),ℒ𝑖(𝑥𝑥𝑥*,𝑥𝑥𝑥𝑐), 𝐶(𝑝*))

Also, if

𝑈(ℒ𝑜(𝑝*[𝑥𝑥𝑥*], 𝑦𝑦𝑦𝑐),ℒ𝑖(𝑥𝑥𝑥*,𝑥𝑥𝑥𝑐), 𝐶(𝑝*))− 𝑈(ℒ𝑜(J𝑝*K𝒫𝑥𝑥𝑥*, 𝑦𝑦𝑦𝑐),ℒ𝑖(𝑥𝑥𝑥*,𝑥𝑥𝑥𝑐), 𝐶(𝑝*)) > 0

156

then

ℒ𝑜(𝑝*[𝑥𝑥𝑥*], 𝑦𝑦𝑦𝑐)− ℒ𝑜(J𝑝*K𝒫𝑥𝑥𝑥*, 𝑦𝑦𝑦𝑐) > 0

Proof. Given a state 𝑞𝜙𝜙𝜙
𝑠0 ∈ 𝑄𝑓 , from Theorem 2 and Theorem 33,

𝑝, 𝑐 = LeastComplex(𝑞𝜙𝜙𝜙,𝒜, 𝐺) ⇐⇒ 𝑝 ∈ arg min
𝑝∈𝐺[𝜑𝜑𝜑→𝜙𝜙𝜙]

𝐶(𝑝)

where 𝐺[𝜑𝜑𝜑→ 𝜙𝜙𝜙] = {𝑝 ∈ 𝐺 | J𝑝K𝒫𝜑𝜑𝜑 = 𝜙𝜙𝜙}. Note that,

𝜙𝜙𝜙* = J𝑝*K𝒫𝜑𝜑𝜑*

I can rewrite the (line 6) as

𝜑𝜑𝜑* = arg min
𝜑𝜑𝜑*∈Φ*

𝑈(ℒ𝑜(J𝑝K𝒫𝜑𝜑𝜑*, 𝑦𝑦𝑦𝑐),ℒ𝑖(𝜑𝜑𝜑*,𝑥𝑥𝑥𝑐), 𝐶(𝑝))

Therefore, 𝑢 (line 7) is the abstract objective function value of program 𝑝. Note that,

𝑝 = arg min
𝑝∈𝐺[𝜑𝜑𝜑→𝜙𝜙𝜙]

min
𝜑𝜑𝜑*∈Φ*

𝑈(ℒ𝑜(J𝑝K𝒫𝜑𝜑𝜑*, 𝑦𝑦𝑦𝑐),ℒ𝑖(𝜑𝜑𝜑*,𝑥𝑥𝑥𝑐), 𝐶(𝑝))

The algorithm iterates through all states in 𝑄𝑓 and maintains the program 𝑝𝑟 with

the minimum abstract objective function value. Therefore,

𝑞𝜙𝜙𝜙
𝑠0 , 𝑝𝑟 = arg min

𝑞𝜙𝜙𝜙
𝑠0 ∈𝑄𝑓 ,𝑝∈𝐺[𝜑𝜑𝜑→𝜙𝜙𝜙]

min
𝜑𝜑𝜑*∈Φ*

𝑈(ℒ𝑜(J𝑝K𝒫𝜑𝜑𝜑*, 𝑦𝑦𝑦𝑐),ℒ𝑖(𝜑𝜑𝜑*,𝑥𝑥𝑥𝑐), 𝐶(𝑝))

𝑝𝑟 = arg min
𝑝∈
⋃︀

𝑞
𝜙𝜙𝜙
𝑠0 ∈𝑄𝑓

𝐺[𝜑𝜑𝜑→𝜙𝜙𝜙]
min

𝜑𝜑𝜑*∈Φ*
𝑈(ℒ𝑜(J𝑝K𝒫𝜑𝜑𝜑*, 𝑦𝑦𝑦𝑐),ℒ𝑖(𝜑𝜑𝜑*,𝑥𝑥𝑥𝑐), 𝐶(𝑝))

From Theorem 21, ⋃︀𝑞𝜙𝜙𝜙
𝑠0 ∈𝑄𝑓

𝐺[𝜑𝜑𝜑→ 𝜙𝜙𝜙] = 𝐺. Therefore,

𝑝𝑟 = arg min
𝑝∈𝐺

min
𝜑𝜑𝜑*∈Φ*

𝑈(ℒ𝑜(J𝑝K𝒫𝜑𝜑𝜑*, 𝑦𝑦𝑦𝑐),ℒ𝑖(𝜑𝜑𝜑*,𝑥𝑥𝑥𝑐), 𝐶(𝑝))

i.e., 𝑝𝑟 minimizes the abstract objective function value.

𝜑*𝜑*𝜑* = arg min
𝜑𝜑𝜑*∈Φ*

min
𝑝∈𝐺

𝑈(ℒ𝑜(J𝑝K𝒫𝜑𝜑𝜑*, 𝑦𝑦𝑦𝑐),ℒ𝑖(𝜑𝜑𝜑*,𝑥𝑥𝑥𝑐), 𝐶(𝑝))

157

From line 12 and 13,

𝑥𝑥𝑥* = ⟨𝑥*
1, . . . 𝑥

*
𝑛⟩, 𝑥*

𝑗 ∈ arg min
𝑥∈𝛾(𝜑*

𝑗)
ℒ𝑖(𝑥, 𝑥𝑐 𝑖), 𝑗 ∈ [1, 𝑛]

Since 𝜙𝜙𝜙* = J𝑝*K𝒫𝜑*𝜑*𝜑*, from line 7 and line 9:

𝑢* = 𝑈(ℒ𝑜(J𝑝*K𝒫𝜑𝜑𝜑*, 𝑦𝑦𝑦𝑐),ℒ𝑖(𝜑𝜑𝜑*,𝑥𝑥𝑥𝑐), 𝐶(𝑝*))

From Theorem 33 and definition of 𝑥𝑥𝑥*,

𝑢* = 𝑈(ℒ𝑜(J𝑝*K𝒫𝑥𝑥𝑥*, 𝑦𝑦𝑦𝑐),ℒ𝑖(𝑥𝑥𝑥*,𝑥𝑥𝑥𝑐), 𝐶(𝑝*))

Therefore, if

𝑈(ℒ𝑜(𝑝*[𝑥𝑥𝑥*], 𝑦𝑦𝑦𝑐),ℒ𝑖(𝑥𝑥𝑥*,𝑥𝑥𝑥𝑐), 𝐶(𝑝*))− 𝑈(ℒ𝑜(J𝑝*K𝒫𝑥𝑥𝑥*, 𝑦𝑦𝑦𝑐),ℒ𝑖(𝑥𝑥𝑥*,𝑥𝑥𝑥𝑐), 𝐶(𝑝*)) > 0

then

ℒ𝑜(𝑝*[𝑥𝑥𝑥*], 𝑦𝑦𝑦𝑐)− ℒ𝑜(J𝑝*K𝒫𝑥𝑥𝑥*, 𝑦𝑦𝑦𝑐) > 0

8.2.4 Termination Condition and Tolerance

Given a candidate program 𝑝*, candidate noise-free inputs 𝑥𝑥𝑥*, predicates 𝒫 , dataset

𝒟 = (𝑥𝑥𝑥𝑐, 𝑦𝑦𝑦𝑐), objective function 𝑈 , output loss function ℒ𝑜, input loss function ℒ𝑖,

and complexity measure 𝐶, the Distance function returns the difference between the

concrete objective function value of 𝑝* and candidate noise-free inputs 𝑥𝑥𝑥* over noisy

dataset 𝒟 and the abstract objective function value over noisy dataset 𝒟. Formally:

Distance(𝑝*,𝑥𝑥𝑥*, 𝑢*, (𝑥𝑥𝑥𝑐, 𝑦𝑦𝑦𝑐),𝒫) := 𝑈(ℒ𝑜(𝑝*[𝑥𝑥𝑥*], 𝑦𝑦𝑦𝑐),ℒ𝑖(𝑥𝑥𝑥*,𝑥𝑥𝑥𝑐), 𝐶(𝑝))− 𝑢*

158

The algorithm terminates if the distance is less than or equal to the tolerance level 𝜖.

Since

𝑢* ≤ min
𝑝∈𝐺,𝑥𝑥𝑥∈𝑋𝑛

𝑈(ℒ𝑜(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦𝑐),ℒ𝑖(𝑥𝑥𝑥,𝑥𝑥𝑥𝑐), 𝐶(𝑝))

the algorithm will only terminate if the concrete objective function value of if program

𝑝* and noise-free inputs 𝑥𝑥𝑥* is not more than 𝜖 larger than the minimum concrete

function value for all programs in the DSL 𝐺 and noise-free inputs inputs in 𝑋𝑛.

Theorem 36. (Soundness) Given a dataset 𝒟, DSL 𝐺, tolerance 𝜖 ≥ 0, universe

of predicates 𝒰 , initial predicates 𝒫, objective function 𝑈 , output loss function ℒ𝑜,

input loss function ℒ𝑖, and the complexity measure 𝐶, if Algorithm 8-2 returns the

program 𝑝*, then

min
𝑥𝑥𝑥∈𝑋𝑛

𝑈(ℒ𝑜(𝑝*[𝑥𝑥𝑥], 𝑦𝑦𝑦𝑐),ℒ𝑖(𝑥𝑥𝑥,𝑥𝑥𝑥𝑐), 𝐶(𝑝*))− min
𝑝∈𝐺,𝑥𝑥𝑥∈𝑋𝑛

𝑈(ℒ𝑜(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦𝑐),ℒ𝑖(𝑥𝑥𝑥,𝑥𝑥𝑥𝑐), 𝐶(𝑝)) ≤ 𝜖

Proof. Let us assume that the algorithm terminates on the 𝑖𝑡ℎ iteration. Let 𝒫* and

𝑥𝑥𝑥* be the set of predicates and noise-free inputs when the algorithm terminates. Note

that the algorithm terminates when:

𝜖 ≥ 𝑈(ℒ𝑜(𝑝*[𝑥𝑥𝑥*], 𝑦𝑦𝑦𝑐),ℒ𝑖(𝑥𝑥𝑥*,𝑥𝑥𝑥𝑐), 𝐶(𝑝*))−𝑢* ≥ min
𝑥𝑥𝑥∈𝑋𝑛

𝑈(ℒ𝑜(𝑝*[𝑥𝑥𝑥], 𝑦𝑦𝑦𝑐),ℒ𝑖(𝑥𝑥𝑥,𝑥𝑥𝑥𝑐), 𝐶(𝑝*))−𝑢*

From Theorem 31 and Theorem 35,

min
𝑥𝑥𝑥∈𝑋𝑛

𝑈(ℒ𝑜(𝑝*[𝑥𝑥𝑥], 𝑦𝑦𝑦𝑐),ℒ𝑖(𝑥𝑥𝑥,𝑥𝑥𝑥𝑐), 𝐶(𝑝*))− min
𝑝∈𝐺,𝑥𝑥𝑥∈𝑋𝑛

𝑈(ℒ𝑜(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦𝑐),ℒ𝑖(𝑥𝑥𝑥,𝑥𝑥𝑥𝑐), 𝐶(𝑝)) ≤ 𝜖

Hence proved.

8.2.5 Abstraction Refinement Based Optimization

Given a dataset 𝒟, and predicates 𝒫 , the program 𝑝* and noise-free inputs 𝑥𝑥𝑥*

minimize the abstract objective function. If the algorithm did not terminate then

Distance(𝑝*,𝑥𝑥𝑥*, 𝑢*,𝒟,𝒫) > 𝜖. Just using predicates 𝒫 we cannot prove 𝑝* is 𝜖-correct.

Therefore, in order to find the optimal program, we need to expand the set of predi-

159

cates 𝒫 . Since Distance(𝑝*,𝑥𝑥𝑥*, 𝑢*,𝒟,𝒫) > 0, from Theorem 35:

ℒ𝑜(𝑝*[𝑥𝑥𝑥*], 𝑦𝑦𝑦𝑐)− ℒ𝑜(J𝑝*K𝒫𝑥𝑥𝑥*, 𝑦𝑦𝑦𝑐) > 0

The algorithm expands 𝒫 to 𝒫 ′ to reduce this difference between the abstract loss

function and the concrete loss function, i.e.,

ℒ𝑜(𝑝*[𝑥𝑥𝑥*], 𝑦𝑦𝑦𝑐)− ℒ𝑜(J𝑝*K𝒫𝑥𝑥𝑥*, 𝑦𝑦𝑦𝑐) > ℒ𝑜(𝑝*[𝑥𝑥𝑥*], 𝑦𝑦𝑦𝑐)− ℒ𝑜(J𝑝*K𝒫 ′
𝑥𝑥𝑥*, 𝑦𝑦𝑦𝑐) ≥ 0

Given 𝑥𝑥𝑥* = ⟨𝑥*
1, . . . 𝑥

*
𝑛⟩ and 𝑦𝑦𝑦𝑐 = ⟨𝑦1, . . . 𝑦𝑛⟩, the synthesis algorithm achieves this by

select an input-output example (𝑥*
𝑖 , 𝑦𝑖), such that,

ℒ𝑜(𝑝*[𝑥*
𝑖], 𝑦𝑖)− ℒ𝑜(J𝑝*K𝒫𝑥*

𝑖 , 𝑦𝑖) > 0

i.e., the concrete output loss of this example is greater than the objective output loss

over this example. The synthesis algorithm uses a pluggable procedure PickDimension

to select this example. The algorithm allows us to plug any implementation of the

procedure PickDimension, assuming it satisfies the following constraint:

(𝑥*
𝑖 , 𝑦𝑖) = PickDimension(𝑝*, ⟨𝑥*

1, . . . 𝑥
*
𝑛⟩, (⟨𝑥1, . . . 𝑥𝑛⟩, ⟨𝑦1, . . . 𝑦𝑛⟩),𝒫) =⇒

ℒ𝑜(𝑝*[𝑥*
𝑖], 𝑦𝑖)− ℒ𝑜(J𝑝*K𝒫𝑥*

𝑖 , 𝑦𝑖) > 0

Given this input-output example (𝑥*
𝑖 , 𝑦𝑖), OptimizeAndBackPropagate expands the set

of predicates 𝒫 to 𝒫 ′, such that:

ℒ𝑜(J𝑝*K𝒫𝑥*
𝑖 , 𝑦𝑖) < ℒ𝑜(J𝑝*K𝒫 ′

𝑥*
𝑖 , 𝑦𝑖) ≤ ℒ𝑜(𝑝[𝑥*

𝑖], 𝑦𝑖)

This expanded set of predicates allows us to improve our estimation of the abstract

output loss function for the candidate program (and potentially other programs).

The synthesis algorithm uses the OptimizeAndBackPropagate procedure presented

in Chapter 6 (Figure 6-5). The procedure synthesizes the strongest formula 𝜓*, such

160

that, (𝑠0 = 𝑝*[𝑥*
𝑖]) =⇒ 𝜓* and:

ℒ𝑜(J𝑝*K𝒫𝑥*
𝑖 , 𝑦𝑖) < ℒ𝑜((J𝑝*K𝒫𝑥*

𝑖) ∧ 𝜓*, 𝑦𝑖) ≤ ℒ𝑜(𝑝[𝑥*
𝑖], 𝑦𝑖)

Theorem 37. Given a dataset 𝒟 = (𝑥𝑥𝑥𝑐, 𝑦𝑦𝑦𝑐), a DSL 𝐺, tolerance 𝜖 ≥ 0, universe of

predicates 𝒰 , initial predicates 𝒫, objective function 𝑈 , output loss function ℒ𝑜, input

loss function ℒ𝑖, and the complexity measure 𝐶, Algorithm 8-2 will eventually return

some program 𝑝*.

Proof.

𝛿𝑢 = min
𝑝∈𝐺,𝑥𝑥𝑥∈𝑋𝑛

𝑈(ℒ𝑜(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦𝑐),ℒ𝑖(𝑥𝑥𝑥,𝑥𝑥𝑥𝑐), 𝐶(𝑝))

Let 𝐴𝑖 be the FTA constructed in the 𝑖𝑡ℎ iteration of Algorithm 8-2. Let 𝒫𝑖 be the

set of predicates, 𝑝𝑖,𝑥𝑥𝑥𝑖, and 𝑢𝑖 be the program, noise-free inputs, abstract objective

function value returned by MinCost in the 𝑖𝑡ℎ iteration. Let 𝑥*
𝑖 , 𝑦𝑖 be the noise-free

input and the noisy output returned by PickDimension in the 𝑖𝑡ℎ iteration. Note that,

in each iteration 𝑢𝑖 ≤ 𝛿𝑢 (the abstract loss function is less than the minimum concrete

loss function). This implies, there exists 𝛿𝐼 and 𝛿𝑜, such that,

ℒ𝑜(J𝑝𝑖K𝒫𝑖𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑐) ≤ 𝛿𝑜 and ℒ𝑖(𝑥𝑥𝑥𝑖,𝑥𝑥𝑥𝑐) ≤ 𝛿𝐼

There exists only a finite set of input 𝒳 , such that, ∀𝑥𝑥𝑥 /∈ 𝒳 .ℒ𝑖(𝑥𝑥𝑥,𝑥𝑥𝑥𝑐) > 𝛿𝐼 .

Using Theorem 25, if Distance(𝑝𝑖,𝑥𝑥𝑥
*
𝑖 ,𝒟,𝒫𝑖) > 𝜖, then for all 𝑘 > 𝑖:

min(ℒ𝑜(𝑝𝑖[𝑥𝑥𝑥𝑖], 𝑦𝑦𝑦𝑐),ℒ𝑜(J𝑝𝑖K𝒫𝑖𝑥𝑥𝑥𝑖, 𝑦𝑦𝑦𝑐) + 𝛿) ≤ ℒ𝑜(J𝑝𝑖K𝒫𝑘𝑥𝑥𝑥𝑖, 𝑦𝑦𝑦𝑐) ≤ ℒ𝑜(𝑝𝑖[𝑥𝑥𝑥𝑖], 𝑦𝑦𝑦𝑐)

In each iteration, the algorithm picks a program 𝑝 ∈ 𝐺, picks an input 𝑥𝑥𝑥 from a finite

set 𝒳 and increases the abstract loss value.

Also note that,

ℒ𝑜(J𝑝𝑖K𝒫𝑘𝑥𝑥𝑥𝑖, 𝑦𝑦𝑦𝑐) ≤ 𝛿𝑜 + 𝛿

because if ℒ𝑜(J𝑝𝑖K𝒫𝑘𝑥𝑥𝑥𝑖, 𝑦𝑦𝑦𝑐) > 𝛿𝑜, then the abstract objective function value of 𝑝𝑖 and

𝑥𝑥𝑥𝑖 is greater than 𝛿𝑢. In this case, MinCost will never return 𝑝𝑖 and 𝑥𝑥𝑥𝑖.

161

Therefore, in the worst case, MinCost will return any combination of a program 𝑝

and an input 𝑥𝑥𝑥 at most 𝛿𝑜

𝛿
+ 1 times.

The space of programs is finite (due to the restriction of the size of the AFTA)

and the space of potential inputs with input loss less than the bound 𝛿𝐼 is finite. Each

combination of a program and an input can only be candidates a finite number of

times. Therefore, the algorithm will terminate in finite number of iterations.

Theorem 38. Given a dataset 𝒟, tolerance 𝜖 ≥ 0, universe of predicates 𝒰 , initial

predicates 𝒫, objective function 𝑈 , output loss function ℒ𝑜, input loss function ℒ𝑖,

and the complexity measure 𝐶, the Algorithm 8-2 will return a program 𝑝*, such that,

min
𝑥𝑥𝑥∈𝑋𝑛

𝑈(ℒ𝑜(𝑝*[𝑥𝑥𝑥], 𝑦𝑦𝑦𝑐),ℒ𝑖(𝑥𝑥𝑥,𝑥𝑥𝑥𝑐), 𝐶(𝑝*))− min
𝑝∈𝐺,𝑥𝑥𝑥∈𝑋𝑛

𝑈(ℒ𝑜(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦𝑐),ℒ𝑖(𝑥𝑥𝑥,𝑥𝑥𝑥𝑐), 𝐶(𝑝)) ≤ 𝜖

Proof. From Theorem 37, Algorithm 8-2 will eventually terminate and return a pro-

gram 𝑝*. From Theorem 36, the returned program 𝑝* will satisfy the following con-

dition:

min
𝑥𝑥𝑥∈𝑋𝑛

𝑈(ℒ𝑜(𝑝*[𝑥𝑥𝑥], 𝑦𝑦𝑦𝑐),ℒ𝑖(𝑥𝑥𝑥,𝑥𝑥𝑥𝑐), 𝐶(𝑝*))− min
𝑝∈𝐺,𝑥𝑥𝑥∈𝑋𝑛

𝑈(ℒ𝑜(𝑝[𝑥𝑥𝑥], 𝑦𝑦𝑦𝑐),ℒ𝑖(𝑥𝑥𝑥,𝑥𝑥𝑥𝑐), 𝐶(𝑝)) ≤ 𝜖

8.3 Implementation

I have implemented my modified algorithm within the Rose synthesis tool. Rose is

parameterized over a large class of objective functions, loss functions, and complexity

measures. I benchmark Rose using the SyGuS 2018 benchmark suite [3].

Domain Specific Language and Abstractions: I use a modified version of the

string processing domain specific language from [42, 22] (Figure 8-6), which supports

extracting substrings (using the SubStr function) of the input string 𝑥.The function

SubStr function extracts a substring using a start and an end position. A position is

defined using a constant index (ConstPos).

162

String expr 𝑒 := Str(𝑓);
Substring expr 𝑓 := ConstStr(𝑠) | SubStr(𝑥, 𝑝1, 𝑝2);

Position 𝑝 := ConstPos(𝑘);

Figure 8-6: DSL for string transformations where 𝑘 is an integer and 𝑠 is a string
constant.

J𝑓(𝑠1 = 𝑐1, . . . , 𝑠𝑘 = 𝑐𝑘)K# := (𝑠 = J𝑓(𝑐1, . . . 𝑐𝑘)K)
JStr(𝑝)K# := 𝑝

JSubStr(𝑝, 𝑝1 = 𝑖2, 𝑝3 = 𝑖3)K# := (𝑙𝑒𝑛(𝑒) = 𝑖3 − 𝑖1 + 1)
JSubStr(𝑒[𝑖1] = 𝑐, 𝑝1 = 𝑖2, 𝑝3 = 𝑖3)K# := (𝑒[𝑖1 − 𝑖2] = 𝑐) if 𝑖2 ≤ 𝑖1 ≤ 𝑖3

Figure 8-7: Abstract semantics for string transformation DSL.

Abstractions: I use the universe of predicates, initial abstractions, and abstract

loss function semantics presented in Chapter 6 (Section 6.7). I present an expanded

version of abstract semantics for my DSL in Figure 8-7.

8.4 Experimental Results

I use the SyGuS 2018 benchmark suite [1] to benchmark my technique. My current

implementation doesn’t support pattern matching. I use the size complexity mea-

sure Size(𝑝) (Subsection 2.2.4) and uniform regularizer ℛ𝑈 (Definition 4) for these

experiments.

8.4.1 Scalability

I evaluate the scalability of my implementation by applying it to all problems in the

SyGuS 2018 benchmark suite [1], which do not require pattern matching. There are

a total of 12 such problems within the SyGuS benchmark suite.

For each problem, I use the clean (noise-free) dataset for the problem provided

with the benchmark suite. All experiments are run on an 3.00 GHz Intel(R) Xeon(R)

CPU E5-2690 v2 machine with 512GB memory running Linux 4.15.0. I use a timeout

limit of 10 minutes and bounded scope height threshold of 4.

I evaluated my implementation for these 12 benchmark problems on five different

loss functions, 0/∞ loss function ℒ0/∞, 0/1 loss function ℒ0/1, Damerau-Levenstein

loss function ℒ𝐷𝐿, 1-Delete loss function ℒ1𝐷, and 𝑛-Substitution loss function ℒ𝑛𝑆.

163

These benchmark problem contain 6-400 input-output examples. For each experi-

ment, I selected a benchmark problem, an input loss function out of these five loss

functions, and a output loss function out of these five loss functions. For each combi-

nation of the benchmark problem, input loss function, and output loss function, my

implementation synthesizes the correct program in less than 0.1 second.

8.4.2 Noisy Datasets, Character Replacements

I next present results for my implementation running on data sets with character re-

placements. I use the phone, phone-1, phone_short, and phone-1_short benchmarks

problems for this experiment. These benchmark problems contain 6 input-output

examples each.

For each benchmark, I introduce both input and output noise. I use a noise source

which cyclically substitutes a single character for each input and output in turn. For

output strings, the noise source starts by corrupting the first character for the output

string in the first input-output example, incrementing the position it corrupts by 1 for

the next input-output example, and then wrapping around to the first position again.

The noise source follows a same process for input strings but starts by corrupting

the second character for the first input string. To construct a noisy dataset with

𝑘 uncorrupted input-output examples, I first corrupt the entire dataset and then I

replace the first 𝑘 corrupted input-output examples with the original noise-free input-

output examples. For these experiments I use the same loss function as both the input

loss function and output loss function. I run this experiment for two loss functions,

𝑛-Substitution loss function and Damerau-Levenshtein loss function.

Figure 8-8 presents the results of this experiment. The first column represents

the number of uncorrupted input-output in the noisy dataset. The next columns

present the time it takes for my synthesis algorithm to terminate (in milliseconds) for

four benchmark problems. For each benchmark problem, I present the runtime for

two different loss functions, the 𝑛-Substitution loss function (𝑛S) and the Damerau-

Levenshtein loss function (DL).

For each combination, my technique is able to synthesize the correct program even

when all input-output examples were corrupted. Our results showcase that decreasing

164

Number of phone phone_short phone-1 phone-1_short
uncorrupted Examples 𝑛S DL 𝑛S DL 𝑛S DL 𝑛S DL

0 4365 52692 3269 47812 6161 76464 5859 75247
1 3168 16895 2078 13978 2733 47689 2800 49182
2 741 1626 621 1683 3287 34600 2576 33849
3 455 1888 235 460 797 5906 598 6314
4 216 808 271 244 319 900 167 800
5 55 112 21 171 131 242 68 119
6 39 25 21 16 3 4 2 3

Figure 8-8: Runtime for phone, phone_small, phone-1, and phone-1_small bench-
mark problems for character replacement based input and output noise.

the amount of noise in the dataset improves the performance of the synthesis algo-

rithm for both, the 𝑛-Substitution loss function and the Damerau-Levenshtein loss

function. The synthesis using the 𝑛-Substitution loss function is also, on an average,

6.5 times faster compared to Damerau-Levenshtein loss function.

165

166

Chapter 9

Related Work

Program synthesis has received much attention from programming languages com-

munity [26, 4, 13, 14, 29, 36, 48, 7, 2, 37, 39, 38, 41, 40]. I can identity two research

directions within the program synthesis literature that are related to this work. I also

discuss work within learning theory related to my work.

9.1 Programming-by-Example

I first discuss literature related to noise-free program synthesis over datasets. The

major difference between my work and these research directions is that these systems

require all input-output examples to be correct/noise-free.

Synthesis Systems Using Solvers: These systems use a solver (for example, a

SAT solver) to synthesize programs, given input output examples [24]. To the best

of my knowledge, there does not exist any solver based synthesis system, which can

synthesize programs over noisy data.

Enumerative Techniques: These techniques search the space of programs to find

a single program that is consistent with the given examples [16, 27]. Specifically, they

enumerate all programs in the given DSL and terminate when they find the correct

program. These techniques may apply different heuristics/techniques to prune the

search space/speed up this process [27].

VSA-based/Tree Automata-based Techniques: These techniques build com-

plex data structures representing all possible programs compatible with the given

167

examples [35, 30, 43]. My work modifies these techniques to handle noisy data and

to synthesize programs that minimize an objective function over noisy dataset.

Abstraction-Refinement based Synthesis Algorithms: There has been work

done on using abstraction refinement/refinement types to synthesize programs [43].

Given a noise-free dataset and a program, checking if a program is correct or incorrect

simply checks if the synthesized programs satisfy all input/output examples. To refine

an abstraction, these techniques construct a proof of incorrectness. Each abstraction

identifies a set of programs, some of which may be correct and others of which may be

incorrect. Refinement first identifies a program that does not satisfy one or more of

the input/output examples, then generates constraints that refine the abstraction to

eliminate this program. Iterative refinement eventually produces the final program.

Abstraction in my noisy program synthesis framework, in contrast, works with

an abstraction that approximates the loss function over a set of programs. The

refinement step selects a program within the abstraction space, computes its loss, then

uses this computed loss to refine the loss approximation to bring this approximation

closer to the actual loss. This refinement step, in expectation, reduces the inaccuracy

in the approximated loss function of the programs identified by the abstraction. In

contrast to previous approaches, which work with abstractions based on program

correctness and refinement steps that eliminate incorrect programs, my approach

works with abstractions that maintain a sound, conservative approximation of the

minimum loss function over the set of programs identified by the abstraction and

refinement steps that eliminate programs based on the loss of the programs.

One key difference is that refinement steps in previous techniques rely on the

ability to identify correct and incorrect programs. Because our technique works with

noisy datasets, it can never tell if a candidate program has minimal loss without

comparing the program to all other current candidate programs (unless the loss hap-

pens to be zero). It instead uses abstract minimum loss values to bound how far off

the optimal loss any candidate program may be. Instead of working with correct or

incorrect programs, my technique works by iteratively improving the accuracy of the

minimum loss function estimation captured by the abstraction.

168

My technique therefore combines abstract tree automata with an abstraction-

based optimization process. My approach, in contrast to previous approaches that use

abstract tree automata, enables us to synthesize programs that optimize an objective

function over a set of noisy input/output examples, including synthesizing correct

programs that may disagree with one, some, or even all of the provided input/output

examples.

[42] uses abstract tree automata and abstraction refinement for program synthesis.

Because their refinement strategy prunes any program that does not satisfy all of the

provided input/output examples, their algorithm requires the dataset to be noise-

free. This pruning is necessary as this allows their technique to effectively capture

constraints to prune large part of the search space.

Neural Program Synthesis/Machine-Learning Approaches: Researchers have

investigated techniques that use machine learning/deep neural networks to synthesize

programs [32, 11, 5]. The techniques primarily focus on synthesizing programs over

noise-free datasets. These techniques require a training phase and a differentable loss

function and provide no guarantees that the synthesized program will minimize the

objective function. My technique, in contrast, does not require a training phase, can

work with arbitrary loss functions including, for example, the Damerau-Levenshtien

loss function, and comes with a guarantee that the synthesized program will minimize

the objective function over the provided (noisy) input/output examples.

9.2 Techniques to Tolerate Data Corruptions

I next discuss program synthesis techniques that deal with data corruptions.

Data Set Sampling or Cleaning: There has been recent work which aspires to

clean the dataset or pick representative examples from the dataset for synthesis [20,

32, 31], for example by using machine learning or data cleaning to select productive

subsets of the dataset over which to perform exact synthesis. In contrast to these

techniques, my proposed techniques 1) provide deterministic guarantees (as opposed

to either probabilistic guarantees as in [32] or no guarantees at all as in [31, 20]),

2) do not require the use of oracles as in [32], 3) can operate successfully even on

169

datasets in which most or even all of the input-output examples are corrupted, and

4) do not require the explicit selection of a subset of the dataset to drive the synthesis

as in [20, 32].

Best-Effort Program Synthesis: In a work done concurrently with ours [28],

Peleg et al. present an enumeration based technique to synthesis programs from

input-output datasets containing some incorrect outputs. Their technique returns a

ranked list of partially valid programs, removing programs which are observationally

equivalent. Their technique uses a fixed fitness function to order these partial results.

My framework subsumes theirs. By using the following loss function ℒ, complexity

metric 𝐶, and objective function 𝑈(𝑙, 𝑐) = 𝑙+𝑐, program synthesized by my technique

will be the top result of their ranked list.

ℒ(𝑝,𝒟) = 3× ℒ0/1(𝑝,𝒟) + ℒ𝐷𝐿(𝑝,𝒟)

𝐶(𝑝) = 2× relevancy(𝑝) + size(𝑝)

Given some prior knowledge about the noise process, my techniques allows the user

to capture information even from corrupted input-output examples, specifically by

developing appropriate loss functions, complexity measures, and objective functions.

As showcased within my results section, a suitable loss function allows us to synthesize

the correct program even when all input-output examples are corrupted.

Since Peleg et al.’s work prioritizes programs which fit the largest set of input-

output examples, their technique will always return the wrong solution when all

input-output examples are corrupted. Even when all input-output examples are not

corrupted, their technique may synthesize a program which satisfies a large set of

corrupted input-output examples. The program which satisfies these corrupted input-

output examples may not be the correct hidden program (i.e., the program which

generated the original input-output examples, which was corrupted). My technique

on the other hand, given an appropriate loss function, can return the correct program,

even though it may satisfy a smaller set of input-output examples.

Peleg el al.’s technique provides no capability to tradeoff between accuracy and

170

complexity of the synthesized program. Using the tradeoff framework, our technique

also allows a user to tradeoff between a synthesizing a simpler solution by sacrificing

accuracy or synthesize a complex program which overfits the dataset. The tradeoff

framework is frequently used in machine learning to prevent overfitting of learned

models.

Bayesian Program Synthesis: There has been previous attempts to apply Bayesian

inference to synthesize programs in presence of noise [12] or synthesize probabilistic

programs [33, 44]. These papers present different techniques to synthesize programs,

when the noise source is known apriori. They do not discuss the correctness of their

technique in the absence of perfect information about the noise source, nor do they

discuss the conditions under which their algorithms will converge to the correct hidden

program with high probability.

My research uses Bayesian concepts to connect noisy program synthesis algo-

rithms, which use loss functions and complexity measures, to noise source, the input

source, and the program source. In contrast to these previous papers, I discuss condi-

tions under which the synthesis algorithm will converge to the correct program with

high probability. I also formalize the optimal parameters for these loss function based

noisy program synthesis algorithms using concepts from Bayesian Inference.

9.3 Connections to Learning Theory

Learning theory captures the formal aspects of learning models over noisy data [23,

6, 25]. My work takes concepts from learning theory and applies them to the specific

context of synthesizing programs over noisy data. To the best of my knowledge, the

special case of noisy program synthesis has never been explored in learning theory.

There has considerable work done on designing loss functions for training neural

networks [46, 18]. To the best of my knowledge, no such work exists on designing

loss functions for noisy program synthesis.

171

172

Chapter 10

Conclusion

Dealing with noisy data is a pervasive problem in modern computing environments.

Previous program synthesis systems target datasets in which all input-output exam-

ples are correct to synthesize programs that match all input-output examples in the

dataset.

I formalize the problem of program synthesis over datasets containing noise as an

optimization problem. I present synthesis algorithms which successfully synthesize

programs over noisy data. These algorithms synthesize programs in the presence

of output noise, input noise, and even over domain specific languages containing an

infinite set of constants.

The results highlight how these techniques, by exploiting information from a vari-

ety of sources — structure from the underlying DSL, information left intact by noise

sources — can deliver effective program synthesis even in the presence of substantial

noise.

I also formally define the concepts of an optimal loss function and convergence.

Building on these concepts, I characterize a large range of potential noise sources,

corresponding optimal loss functions, and the conditions under which we can expect

noisy program synthesis algorithms to converge. These results provide insight into

the empirical results.

Future Directions

I will now discuss some potential future research directions.

173

Application Domains: In this thesis I work with a DSL containing string trans-

forming programs. One future direction is extending this framework to other domains

containing noisy data. Potential examples include the domains of spreadsheets [43]

and matrix transformations [42]. These domains contain examples specified by a hu-

man user. These examples are amenable to human error. Our framework can be used

to make these techniques robust to human errors.

New Techniques: There are concepts used by other noise-free synthesis algorithms

which may be exploited to construct new noisy program synthesis algorithms. Neu-

ral Network based techniques [13] may be a good starting point as noisy program

synthesis algorithms can use neural networks to improve their search process.

Motivated by machine learning, a stochastic version of the abstraction refinement

based optimization, which works with subsets of the input-output examples, may

speed up the synthesis process. Stochastic abstraction refinement based optimization

may even reduce the size of the abstract finite tree automaton constructed by our

technique.

Theoretical Questions: Optimal loss functions and convergence for program syn-

thesis with noisy inputs is left unanswered and is a potential direction for future

work.

174

Bibliography

[1] Sygus 2018 string benchmark suite. https://github.com/SyGuS-Org/
benchmarks/tree/master/comp/2019/PBE_SLIA_Track/from_2018, 2018. Ac-
cessed: 2020-07-18.

[2] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund
Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina
Torlak, and Abhishek Udupa. Syntax-guided synthesis. In Formal Methods in
Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23,
2013, pages 1–8. IEEE, 2013.

[3] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund
Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama, Em-
ina Torlak, and Abhishek Udupa. Syntax-guided synthesis. In 2013 Formal
Methods in Computer-Aided Design, pages 1–8. IEEE, 2013.

[4] Rajeev Alur, Rishabh Singh, Dana Fisman, and Armando Solar-Lezama. Search-
based program synthesis. Commun. ACM, 61(12):84–93, 2018.

[5] Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin,
and Daniel Tarlow. Deepcoder: Learning to write programs. arXiv preprint
arXiv:1611.01989, 2016.

[6] Robert C Bolles. Learning theory. 1975.

[7] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Inferring SQL
queries using program synthesis. CoRR, abs/1208.2013, 2012.

[8] Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez,
Christof Löding, Sophie Tison, and Marc Tommasi. Tree automata techniques
and applications, 2008.

[9] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of fix-
points. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Prin-
ciples of programming languages, pages 238–252, 1977.

[10] Fred J. Damerau. A technique for computer detection and correction of spelling
errors. Commun. ACM, 7(3):171–176, March 1964.

175

[11] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-
rahman Mohamed, and Pushmeet Kohli. Robustfill: Neural program learning
under noisy i/o. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 990–998. JMLR. org, 2017.

[12] Kevin Ellis, Armando Solar-Lezama, and Josh Tenenbaum. Unsupervised learn-
ing by program synthesis. 2015.

[13] Kevin Ellis, Armando Solar-Lezama, and Josh Tenenbaum. Sampling for
bayesian program learning. In Daniel D. Lee, Masashi Sugiyama, Ulrike von
Luxburg, Isabelle Guyon, and Roman Garnett, editors, Advances in Neural In-
formation Processing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 1289–
1297, 2016.

[14] Kevin Ellis, Armando Solar-Lezama, and Joshua B. Tenenbaum. Unsupervised
learning by program synthesis. In Corinna Cortes, Neil D. Lawrence, Daniel D.
Lee, Masashi Sugiyama, and Roman Garnett, editors, Advances in Neural Infor-
mation Processing Systems 28: Annual Conference on Neural Information Pro-
cessing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages
973–981, 2015.

[15] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri.
Component-based synthesis of table consolidation and transformation tasks from
examples. In ACM SIGPLAN Notices, volume 52, pages 422–436. ACM, 2017.

[16] John K Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data structure
transformations from input-output examples. In ACM SIGPLAN Notices, vol-
ume 50, pages 229–239. ACM, 2015.

[17] Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and
Donald B Rubin. Bayesian data analysis. CRC press, 2013.

[18] Aritra Ghosh, Himanshu Kumar, and PS Sastry. Robust loss functions under
label noise for deep neural networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 31, 2017.

[19] Peter Grassberger, Rainer Hegger, Holger Kantz, Carsten Schaffrath, and
Thomas Schreiber. On noise reduction methods for chaotic data. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 3(2):127–141, 1993.

[20] Sumit Gulwani. Automating string processing in spreadsheets using input-output
examples. In ACM Sigplan Notices, volume 46, pages 317–330. ACM, 2011.

[21] Shivani Gupta and Atul Gupta. Dealing with noise problem in machine learning
data-sets: A systematic review. Procedia Computer Science, 161:466–474, 2019.

176

[22] Shivam Handa and Martin C Rinard. Inductive program synthesis over noisy
data. In Proceedings of the 28th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
pages 87–98, 2020.

[23] Knud Illeris. An overview of the history of learning theory. European Journal of
Education, 53(1):86–101, 2018.

[24] Shachar Itzhaky, Sumit Gulwani, Neil Immerman, and Mooly Sagiv. A simple
inductive synthesis methodology and its applications. In ACM Sigplan Notices,
volume 45, pages 36–46. ACM, 2010.

[25] Michael J Kearns, Umesh Virkumar Vazirani, and Umesh Vazirani. An intro-
duction to computational learning theory. MIT press, 1994.

[26] Madhav Khirwar. Wake-sleep bayesian program synthesis applications in bioin-
formatics. 2021.

[27] Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed program
synthesis. ACM SIGPLAN Notices, 50(6):619–630, 2015.

[28] Hila Peleg and Nadia Polikarpova. Perfect is the enemy of good: Best-effort pro-
gram synthesis. In 34th European Conference on Object-Oriented Programming
(ECOOP 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[29] Nadia Polikarpova and Armando Solar-Lezama. Program synthesis from poly-
morphic refinement types. CoRR, abs/1510.08419, 2015.

[30] Oleksandr Polozov and Sumit Gulwani. Flashmeta: a framework for inductive
program synthesis. In ACM SIGPLAN Notices, volume 50, pages 107–126. ACM,
2015.

[31] Yewen Pu, Zachery Miranda, Armando Solar-Lezama, and Leslie Pack Kael-
bling. Selecting representative examples for program synthesis. arXiv preprint
arXiv:1711.03243, 2017.

[32] Veselin Raychev, Pavol Bielik, Martin Vechev, and Andreas Krause. Learning
programs from noisy data. In ACM SIGPLAN Notices, volume 51, pages 761–
774. ACM, 2016.

[33] Feras A Saad, Marco F Cusumano-Towner, Ulrich Schaechtle, Martin C Rinard,
and Vikash K Mansinghka. Bayesian synthesis of probabilistic programs for
automatic data modeling. Proceedings of the ACM on Programming Languages,
3(POPL):1–32, 2019.

[34] Thomas Schreiber and Peter Grassberger. A simple noise-reduction method for
real data. Physics letters A, 160(5):411–418, 1991.

177

[35] Rishabh Singh and Sumit Gulwani. Transforming spreadsheet data types using
examples. In Acm Sigplan Notices, volume 51, pages 343–356. ACM, 2016.

[36] Armando Solar-Lezama. The sketching approach to program synthesis. In Zhen-
jiang Hu, editor, Programming Languages and Systems, 7th Asian Symposium,
APLAS 2009, Seoul, Korea, December 14-16, 2009. Proceedings, volume 5904 of
Lecture Notes in Computer Science, pages 4–13. Springer, 2009.

[37] Armando Solar-Lezama. Program sketching. Int. J. Softw. Tools Technol.
Transf., 15(5-6):475–495, 2013.

[38] Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rastislav Bodík, Vijay A.
Saraswat, and Sanjit A. Seshia. Sketching stencils. In Jeanne Ferrante and
Kathryn S. McKinley, editors, Proceedings of the ACM SIGPLAN 2007 Confer-
ence on Programming Language Design and Implementation, San Diego, Cali-
fornia, USA, June 10-13, 2007, pages 167–178. ACM, 2007.

[39] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodík. Sketch-
ing concurrent data structures. In Rajiv Gupta and Saman P. Amarasinghe,
editors, Proceedings of the ACM SIGPLAN 2008 Conference on Programming
Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008, pages
136–148. ACM, 2008.

[40] Armando Solar-Lezama, Rodric M. Rabbah, Rastislav Bodík, and Kemal
Ebcioglu. Programming by sketching for bit-streaming programs. In Vivek
Sarkar and Mary W. Hall, editors, Proceedings of the ACM SIGPLAN 2005
Conference on Programming Language Design and Implementation, Chicago, IL,
USA, June 12-15, 2005, pages 281–294. ACM, 2005.

[41] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia, and
Vijay A. Saraswat. Combinatorial sketching for finite programs. In John Paul
Shen and Margaret Martonosi, editors, Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2006, San Jose, CA, USA, October 21-25, 2006, pages 404–
415. ACM, 2006.

[42] Xinyu Wang, Isil Dillig, and Rishabh Singh. Program synthesis using abstraction
refinement. Proceedings of the ACM on Programming Languages, 2(POPL):63,
2017.

[43] Xinyu Wang, Isil Dillig, and Rishabh Singh. Synthesis of data completion scripts
using finite tree automata. Proceedings of the ACM on Programming Languages,
1(OOPSLA):62, 2017.

[44] Sam Witty, Alexander Lew, David Jensen, and Vikash Mansinghka.
Bayesian causal inference via probabilistic program synthesis. arXiv preprint
arXiv:1910.14124, 2019.

178

[45] Hui Xiong, Gaurav Pandey, Michael Steinbach, and Vipin Kumar. Enhancing
data analysis with noise removal. IEEE Transactions on Knowledge and Data
Engineering, 18(3):304–319, 2006.

[46] Yilun Xu, Peng Cao, Yuqing Kong, and Yizhou Wang. L_dmi: An information-
theoretic noise-robust loss function. arXiv preprint arXiv:1909.03388, 2019.

[47] Navid Yaghmazadeh, Christian Klinger, Isil Dillig, and Swarat Chaudhuri. Syn-
thesizing transformations on hierarchically structured data. In ACM SIGPLAN
Notices, volume 51, pages 508–521. ACM, 2016.

[48] Kuat Yessenov, Zhilei Xu, and Armando Solar-Lezama. Data-driven synthesis
for object-oriented frameworks. In Cristina Videira Lopes and Kathleen Fisher,
editors, Proceedings of the 26th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2011,
part of SPLASH 2011, Portland, OR, USA, October 22 - 27, 2011, pages 65–82.
ACM, 2011.

179

