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Abstract

The Coronavirus respiratory disease 2019 originating from the virus SARS-COV-2
led to a global pandemic, leading to more than 500 million confirmed global cases
and approximately 6 million deaths in more than 50 countries. Since the outbreak of
this pandemic, a number of modeling frameworks have been used to analyze various
aspects of the pandemic such as prediction of infected and recovered case counts,
hospitalizations, travel restrictions, reopening and non-pharmaceutical interventions.
These frameworks can be divided broadly into the following categories: (a) compart-
ment models which are interpretable but cannot capture complex effects and (b) agent
based models which can capture varying ranges of complexity; but are generally non
interpretable.

In this thesis, we introduce another category for epidemic modelling, which is
rooted in Scientific Machine Learning. Scientific Machine Learning (SciML) leverages
the interpretability of ODEs with the expressivity of neural networks. We thus aim
to retain the interpretability of compartment models along with the complexity of
agent based models using the SciML modeling paradigm. Using such a framework,
we tackle a wide variety of application based problems including:

• How quarantine control policies shaped the outbreak evolution in different coun-
tries around the world.

• Effect of early reopening in the Southern and West Central US states; and how
it led to an exponential explosion of infected cases in the USA during the period
of June-Aug 2020.

• Virtual Virus spread through Bluetooth tokens; and how it can be used to
obtain real time estimates of the pandemic.

Towards the end, we analyze the robustness of the proposed SciML methodology
and provide a general set of guidelines for training such models in other domains.
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Chapter 1

Introduction and thesis outline

Traditionally, epidemiological models are divided into 2 major categories. The first

category of models are standard compartmental models frequently used in the task of

epidemic modeling, such as SIR (Susceptible-Infected-Removed) and SEIR (Susceptible-

Exposed-Infected-Recovered) models [63, 82]. These models are typically governed by

a set of ordinary differential equations which makes them interpretable. Two major

assumptions of this class of models are (a) homogeneity of the population and (b) the

law of mass action, which states that the rate of change of compartment population

at the next time step is proportional to the compartment population at the current

time step [2]. These assumptions make these models weaker than the second category

of models: agent-based modeling which can simulate arbitrary magnitudes of hetero-

geneity and complexity (see [40] and references therein). Since agent-based models are

not governed by any scientific structure such as ODEs, their results are typically not

as transparent and not as interpretible when compared to compartment-based models.

In this thesis, we introduce a third category of models which are based on Sci-

entific Machine Learning (SciML). Apart from those demonstrated in the present

thesis, there have been very few studies aimed at applying SciML methods in the

field of epidemiology. In this thesis, we demonstrate novel, yet fundamental models

of epidemiology based on Scientific Machine Learning. These models are rooted in in-

terpretable ordinary differential equations, which are augmented with neural network
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modules. In the second chapter, we introduce the Quarantine SIR model (QSIR)

of epidemiology. This model starts with the traditional SIR (Susceptible-Infected-

Recovered) model of epidemiology and augments it with a neural network component

for the quarantine strength. We show that the QSIR model is not only more expres-

sive than the SIR model, it is also highly interpretable. We show that the QSIR model

can be used as a reliable diagnostic tool to estimate the real time quarantine strength

evolution in almost all countries of the world, which were affected by Covid-19.

Subsequently, we realized that the QSIR model can also be used to model state

reopening scenarios (by using quarantine strength as a proxy to the consequences

of reopening). This realization helped us tackle the question: How many Covid-19

infections would have been saved had the Southern and West-Central US states not

reopened early during June - Aug 2020? The answer to this question is discussed in

Chapter 3.

To further test the SciML modeling paradigm, we ventured into the field of "vir-

tual virus spread" in a collaboration with a team from University of Auckland and

Cornell University. The idea to solve the lag problem in reporting of Covid-19 cases:

usually it takes a week or two for an infection count to be part of the case load statistic,

after the infection occurs. The question was: "can we reduce this lag to zero?". We

eventually demonstrated on simulated data that virtual virus spread through Blue-

tooth tokens can be potentially be used to obtain real time estimates of the Covid-19

infection case count. This project was called the "Safe Blues Project". As will be seen

in Chapter 4, at the heart of the Safe Blues Project is a SciML framework: ordinary

differential equations augmented with neural network modules.

We soon discovered that SciML frameworks can be applied to a wide range of

epidemiological applications. However, 2 questions remained: (a) what is the general

procedure for training these models? , (b) how robust are these models? and (c)

can we perform uncertainty quantification through these models? In Chapter 5, we
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delve into the methodology for training SciML models. Although the set of guidelines

provided in this chapter are for specific examples, we hope that these guidelines serve

as an inspiration for researchers studying a broader set of applications. [131] showed

that Neural Ordinary Differential Equations (Neural ODEs) which are the heart of

SciML frameworks, consistently outperform non linear and classical linear methods.

Their experiments also showed that Neural ODEs are less sensitive to hyperparame-

ters. In this study, we found that, to obtain the same level of predictive performance,

linear models require a much larger set of parameters to train compared to the SciML

frameworks which use neural networks. Even then, we could not achieve the same

forecasting ability as we did with using neural networks.

In Chapter 6, we introduce a new framework for quantifying uncertainty associated

with SciML model predictions. This framework combines Neural Ordinary Differen-

tial Equations (Neural ODEs) [20] with efficient Bayesian inference frameworks like

the No-U-Turn MCMC sampler (NUTS) [67] which is an extension of the Hamilto-

nian Monte Carlo Algorithm, and Stochastic Gradient Markov Chain Monte Carlo

(SGMCMC) methods like Stochastic Gradient Hamiltonian Monte Carlo (SGHMC)

[21] and Stochastic Gradient Langevin Descent (SGLD) [164]. We call this framework

as Bayesian Neural Ordinary Differential Equations.

Finally, in Chapter 7 we conclude with the implications of this thesis, and scope

for further research.
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Chapter 2

The Quarantine SIR (QSIR) model of

epidemiology

2.1 Summary

This thesis begins with a new modelling framework, in which, we have developed a

globally applicable diagnostic Covid-19 model by augmenting the classical SIR epi-

demiological model with a neural network module. Our model does not rely upon

previous epidemics like SARS/MERS and all parameters are optimized via machine

learning algorithms employed on publicly available Covid-19 data. The model de-

composes the contributions to the infection timeseries to analyze and compare the

role of quarantine control policies employed in highly affected regions of Europe,

North America, South America and Asia in controlling the spread of the virus. For

all continents considered, our results show a generally strong correlation between

strengthening of the quarantine controls as learnt by the model and actions taken

by the regions’ respective governments. Additionally, we have hosted our quarantine

diagnosis results for the top 70 affected countries worldwide, on a public platform.
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2.2 Introduction

The Coronavirus respiratory disease 2019 originating from the virus “SARS-CoV-2"

[18, 17] led to a global pandemic, leading to 12,552,765 confirmed global cases in more

than 200 countries by July 12, 2020 [165]. As the disease began to spread beyond

its apparent origin in Wuhan, the responses of local and national governments varied

considerably. The evolution of infections has been similarly diverse, in some cases

appearing to be contained and in others reaching catastrophic proportions. In Hubei

province itself, starting at the end of January, more than 10 million residents were

quarantined by shutting down public transport systems, train and airport stations,

and imposing police controls on pedestrian traffic. Subsequently, similar policies were

applied nation-wide in China. By the end of March, the rate of infections was report-

edly receding [28].

By the end of February 2020, the virus began to spread in Europe, with Italy

employing extraordinary quarantine measures starting 11 March 2020. France enacted

strict quarantine measures beginning 17 March followed later by UK on 23 March;

whereas no measures were enforced in Sweden [44]. South Korea, Iran and Spain

experienced acute initial increases, but then adopted drastic generalized quarantine.

In the United States, the first infections were detected in Washington State as early

as 20th January 2020 [68] and now it is being reported that the virus had been

circulating undetected in New York City as early as mid-February [16]. Federal,

state and city government responses were comparatively delayed and variable, with

most states having stay at home orders [44] declared by the end of March. In South

America, Brazil, Chile and Peru are the highest affected countries as of 12 July and

they employed differing quarantine policies [139]. Brazil’s first case was reported in

the last week of February and the country went into a state of partial quarantine on

24 March. Chile declared a state of disaster for 90 days in the first week of March,

and the military was deployed to enforce quarantine measures. In Peru, a nationwide
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curfew was employed much later, on March 19.

Given the available Covid-19 data for the infected case count by country and

world-wide, it is seen that the infection growth curve also showed significantly di-

verse behaviour globally. In some countries, the infected case count peaked within

a month and showed a subsequent decline, while in certain other countries, it was

seen to increase for much longer before plateauing. In some of the highly affected

countries, the infected count has not yet reached a plateau and the daily active cases

continue to increase or remain stagnant as of 12 July 2020. The disparity of the

countries’ responses is compounded by commensurate disparity in their effectiveness

in controlling the severity of infectious spread. This, together with standard chal-

lenges in epidemiological modeling and certain unusual features of the disease itself

(such as the possibility of individuals to remain asymptomatic yet infectious for up

to two weeks) create severe difficulty in interpreting the policies or drawing lessons

for future outbreaks.

Here we focus on compartment based modelling, a widely used tool in epidemi-

ology . The earliest version of the compartment model was the SIR (Susceptible-

Infected-Recovered) model [82]. Two major assumptions of this class of models are

(a) homogeneity and (b) the law of mass action, which states that the rate of change

of compartment population at the next time step is proportional to the compart-

ment population at the current time step [2]; hence, compartmental models typically

results in a set of coupled ordinary differential equations (ODEs) governing the pop-

ulations. These simplifying assumptions make the compartment models weaker than

the other class of models called agent based models, which are used to simulate au-

tonomous agents and their interactions within a constrained environment (see [40]

and references therein for a detailed introduction). Although it is easier to incorpo-

rate heterogeneity in agent based models, the significant advantage of compartment

modelling is interpretibility. This is because physically meaningful information about

the system, such as the reproduction number [159] can be extracted directly from the

ODEs. Stochastic variations of compartment based models [76, 1, 30] and Bayesian
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approaches [39] have also been studied.

For analyzing different aspects of the Covid-19 outbreak, compartment based mod-

els which are based on the SEIR (Susceptible-Exposed-Infected-Recovered) framework

have been used widely [138, 93, 107, 102, 123, 162]. From such studies, it is seen that

although increasing the number of compartments results in more realistic behaviour,

the model then becomes less identifiable; i.e. it becomes progressively more difficult

to uniquely determine parameters from the data [143]. For example, while analyzing

the Covid-19 outbreak for Wuhan, China, it has been shown in a recent study [143]

that the large number of parameters in the SEIR models makes it less reliable than

the simpler SIR models.

To deal with the aforementioned disparity between government responses and

outcomes to the Covid-19 pandemic, several models studied the effect of quaran-

tine/lockdown measures on the evolution of the disease [143, 93, 162, 123, 147]. Ex-

isting models generally

• lack independent estimation: using parameters based on prior knowledge of

SARS/MERS coronavirus epidemiology and not derived independently from

the Covid-19 data or parameters like rate of detection, nature of government

response fixed prior to running the model; or

• lack global applicability: they are not implemented on a global scale; or

• lack interpretibility, as we defined it earlier.

In this chapter, we propose a globally scalable, interpretable compartment based

model with entirely independent parameter estimation through a novel approach:

augmenting a first principles-derived epidemiological model with a data-driven mod-

ule, implemented as a neural network. Prior approaches of functional quantification

through data involve probabilistic methods like variational inference [65, 163, 80, 66,

134, 84, 141, 135, 108, 64] and Variational Gaussian Processes [158], which do not in-

corporate knowledge of the ordinary differential equations governing the system under
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consideration. We leverage our model to quantify the quarantine strengths and ana-

lyze and compare the role of quarantine control policies employed to control the virus

effective reproduction number [71, 138, 154, 94, 167, 87, 38] in the European, North

American, South American and Asian continents. In the SEIR model[37, 145, 151],

the population is divided into the susceptible 𝑆, exposed 𝐸, infected 𝐼 and recovered

𝑅 groups, and their relative growths and competition are represented as a set of cou-

pled ordinary differential equations; whereas the simpler SIR model does not account

for the exposed population 𝐸. These models cannot capture the large-scale effects

of more granular interactions, such as the population’s response to social distancing

and quarantine policies. However, a major assumption of these models is that the

rate of transitions between population states is fixed. In our approach, we relax this

assumption by estimating the time-dependent quarantine effect on virus exposure as

a neural network informs the infected variable 𝐼 in the SIR model. This trained model

thus decomposes the effects and the neural network encodes information about the

quarantine strength function in the locale where the model is trained.

In general, neural networks with arbitrary activation functions are universal ap-

proximators [27, 69, 152]. Unbounded activation functions, in particular, such as the

rectified linear unit (ReLU) has been known to be effective in approximating non-

linear functions with a finite set of parameters [48, 50, 29]. Thus, a neural network

solution is attractive to approximate quarantine effects in combination with analytical

epidemiological models. The downside is that the presence of the neural network term

as a component of the ODEs results in limited interpretability. The recently emerg-

ing field of Scientific Machine Learning [8] exploits conservation principles within a

universal differential equation [129], SIR in our case, to mitigate overfitting and other

related machine learning risks.

In the present work, the neural network is trained from publicly available infec-

tion and population data for Covid-19 for a specific region under study; results for

which are provided in Section 3 followed by a discussion in Section 4. Details of the
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model estimation procedure and parameter inference are presented in Section 5 (the

Experimental Procedures section).

2.3 Results

2.3.1 Standard SIR model

The classic SIR epidemiological model is a standard tool for basic analysis concerning

the outbreak of epidemics. In this model, the entire population is divided into three

sub-populations: susceptible 𝑆; infected 𝐼; and recovered 𝑅. The sub-populations’

evolution is governed by the following system of three coupled nonlinear ordinary

differential equations

d𝑆(𝑡)
d𝑡

= −𝛽 𝑆(𝑡) 𝐼(𝑡)
𝑁

(2.1)

d𝐼(𝑡)
d𝑡
= 𝛽 𝑆(𝑡) 𝐼(𝑡)

𝑁
− 𝛾𝐼(𝑡) (2.2)

d𝑅(𝑡)
d𝑡

= 𝛾𝐼(𝑡). (2.3)

Here, 𝛽 and 𝛾 are the infection and recovery rates, respectively, and are assumed to

be constant in time. The total population 𝑁 = 𝑆(𝑡) + 𝐼(𝑡) +𝑅(𝑡) is seen to remain

constant as well; that is, births and deaths (unrelated to the disease) are neglected.

The recovered population is to be interpreted as those who can no longer infect

others; so it also includes individuals deceased due to the infection. The possibility

of recovered individuals to become reinfected is accounted for by SEIS models [105],

but we do not use this model here, as the negligibly few reinfection cases for Covid-19

have been recorded as of now [REFS]. The reproduction number 𝑅𝑡 in the SEIR and

SIR models is defined as

𝑅𝑡 =
𝛽

𝛾
. (2.4)
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Figure 2-1: [Illustration of the QSIR Model and neural network architecture] (a) Schematic
of the augmented QSIR model considered in the present study. (b) Schematic of the neural
network architecture used to learn the quarantine strength function 𝑄(𝑡). Here 𝑇 (𝑡) repre-
sents the quarantined infected population prescribed by the quarantine strength rate 𝑄(𝑡).

An important assumption of the SIR models is homogeneous mixing among the sub-

populations. Therefore, this model cannot account for social distancing or social

network effects. Additionally the model assumes uniform susceptibility and disease

progress for every individual; and that no spreading occurs through animals or other

non-human means. Alternatively, the SIR model may be interpreted as quantifying

the statistical expectations on the respective mean populations, while deviations from

the model’s assumptions contribute to statistical fluctuations around the mean.

2.3.2 Augmented QSIR model

To study the effect of quarantine control globally, we start with the SIR epidemio-

logical model. Figure 2-1a shows the schematic of the modified SIR model, the QSIR

model, which we consider. We augment the SIR model by introducing a time varying

quarantine strength rate term 𝑄(𝑡) and a quarantined population 𝑇 (𝑡), which is pre-

vented from having any further contact with the susceptible population. Thus, the
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term 𝐼(𝑡) denotes the infected population still having contact with the susceptibles,

as done in the standard SIR model; while the term 𝑇 (𝑡) denotes the infected popula-

tion who are effectively quarantined and isolated. Further we introduce an additional

recovery rate 𝛿 which quantifies the rate of recovery of the quarantined population.

Thus, we can write an expression for the quarantined infected population 𝑇 (𝑡) as

𝑑𝑇 (𝑡)
𝑑𝑡
= 𝑄(𝑡)𝐼(𝑡) − 𝛿𝑇 (𝑡) (2.5)

Based on the modified model, we define a Covid spread parameter in a similar way

to the reproduction number defined in the SIR model (2.4) as

𝐶𝑝(𝑡) =
𝛽

𝛾 + 𝛿 +𝑄(𝑡)
. (2.6)

𝐶𝑝 > 1 indicates that infections are being introduced into the population at a higher

rate than they are being removed, leading to rapid spread of the disease. On the

other hand, 𝐶𝑝 < 1 indicates that the Covid spread has been brought under control

in the region of consideration. Since 𝑄(𝑡) does not follow from first principles and

is highly dependent on local quarantine policies, we devised a neural network-based

approach to approximate it.

Recently, it has been shown that neural networks can be used as function approxi-

mators to recover unknown constitutive relationships in a system of coupled ordinary

differential equations [129, 128]. Following this principle, we represent 𝑄(𝑡) as a 𝑛

layer-deep neural network with weights 𝑊1,𝑊2 . . .𝑊𝑛, activation function 𝑟 and the

input vector 𝑈 = (𝑆(𝑡), 𝐼(𝑡),𝑅(𝑡)) as

𝑄(𝑡) = 𝑟 (𝑊𝑛𝑟 (𝑊𝑛−1 . . . 𝑟 (𝑊1𝑈))) ≡ NN(𝑊,𝑈) (2.7)

For the implementation, we choose a 𝑛 = 2-layer densely connected neural net-

work with 10 units in the hidden layer and the ReLU activation function. This choice
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was because we found sigmoidal activation functions to stagnate. The final model

is described by a total of 54 tunable parameters. The neural network architecture

schematic is shown in figure 2-1b. The governing coupled ordinary differential equa-

tions for the QSIR model are

d𝑆(𝑡)
d𝑡

= −𝛽 𝑆(𝑡) 𝐼(𝑡)
𝑁

(2.8)

d𝐼(𝑡)
d𝑡
= 𝛽 𝑆(𝑡) 𝐼(𝑡)

𝑁
− (𝛾 +𝑄(𝑡)) 𝐼(𝑡)

= 𝛽 𝑆(𝑡) 𝐼(𝑡)
𝑁

− (𝛾 +NN(𝑊,𝑈)) 𝐼(𝑡) (2.9)

d𝑅(𝑡)
d𝑡

= 𝛾𝐼(𝑡) + 𝛿𝑇 (𝑡) (2.10)

d𝑇 (𝑡)
d𝑡

= 𝑄(𝑡) 𝐼(𝑡) − 𝛿𝑇 (𝑡) = NN(𝑊,𝑈) 𝐼(𝑡) − 𝛿𝑇 (𝑡). (2.11)

More details about the model initialization and parameter estimation methods is given

in the Experimental Procedures section.In all cases considered below, we trained the

model using data starting from the dates when the 500th infection was recorded in

each region and up to June 1 2020.

2.3.3 Interpretation of 𝑄(𝑡)

𝑄(𝑡) denotes the rate at which infected persons are effectively quarantined and iso-

lated from the remaining population, and thus gives composite information about (a)

the effective testing rate of the infected population as the disease progressed and (b)

the intensity of the enforced quarantine as a function of time. To understand the na-

ture of evolution of 𝑄(𝑡), we look at the time point when 𝑄(𝑡) approximately shows

an inflection point or a sudden increase in 𝑄(𝑡). An inflection point in 𝑄(𝑡) indicates

the time when the rate of increase of 𝑄(𝑡) i.e 𝑑𝑄(𝑡)⇑𝑑𝑡 was at its peak while a sudden

increase corresponds to a sudden intensification of quarantine policies employed in

the region under consideration.
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Introduction of 𝑄(𝑡) in the SIR model has a similar effect as that of having a time

varying decreasing contact rate 𝛽(𝑡) within the population; which would simulate a

lockdown situation. As a result, although 𝑄(𝑡) denotes infected population quar-

antine, the way it is introduced in our augmented SIR model enables our model to

capture broad level population lockdown effects; without burdening regression with

additional parameters. We demonstrate this ability of our model in the results of the

subsequent sections.

Further, we define the quarantine efficiency, 𝑄eff as the increase in𝑄(𝑡) within a month

following the detection of the 500th infected case in the region under consideration.

Thus

𝑄eff = 𝑄(30) −𝑄(1) (2.12)

The magnitude of 𝑄eff shows how rapidly the infected individuals were prevented

from coming into contact with the susceptibles in the first month following the de-

tection of the 500th infected case; and is indicative of the quarantine responsiveness:

the testing and tracing protocols to identify and isolate infected individuals.

2.3.4 Europe

Figure 2-2 shows the comparison of the model-estimated infected and recovered case

counts with actual Covid-19 data for the highest affected European countries as of 1

June 2020, namely: Russia, UK, Spain and Italy, in that order. We find that irre-

spective of a small set of optimized parameters (note that the contact rate 𝛽 and the

recovery rate 𝛾 are fixed, and not functions of time), a reasonably good match is seen

in all four cases.

Figure 2-3 shows the evolution of the neural network learnt quarantine strength

function 𝑄(𝑡) for the considered European nations. Inflection points in 𝑄(𝑡) are seen
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Figure 2-2: [Europe: Infected and Recovered Covid-19 case count evolution] COVID-19
infected and recovered evolution compared with our neural network augmented model pre-
diction in the highest affected European countries as of June 1, 2020.
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Figure 2-3: [Europe: Quarantine strength evolution in response to Covid-19] Quarantine
strength 𝑄(𝑡) learned by the neural network in the highest affected European countries as
of June 1, 2020. The transition from the red to blue shaded region indicates the Covid
spread parameter of value 𝐶𝑝 < 1 leading to halting of the infection spread. The green
dashed line indicates the time when quarantine measures were implemented in the region
under consideration, which generally matches well with an inflection point seen in the 𝑄(𝑡)
plot denoted by the red dashed line. For regions in which a clear inflection or ramp up point
is not seen (Russia), the red dashed line is not shown.
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Figure 2-4: [Europe: Covid spread parameter evolution in response to Covid-19] Control
of COVID-19 quantified by the Covid spread parameter evolution in the highest affected
European countries as of June 1, 2020. The transition from the red to blue shaded region
indicates 𝐶𝑝 < 1 leading to halting of the infection spread.

for UK, Spain and Italy at 14, 10 and 16 days, respectively, post detection of the

500th case i.e on 23th March, 15th March and 14th March, respectively. This is in

good agreement with nationwide quarantine imposed on 25th March, 14th March and

9th March in UK, Spain and Italy, respectively [44, 79, 59].

Figure 2-16a shows the comparison of the contact rate 𝛽, quarantine efficiency

as defined in the beginning of this subsection and the recovery rate 𝛾. It should be

noted that the contact and recovery rates are assumed to be constant in our model,

in the duration spanning the detection of the 500th infected case and June 1st, 2020.

The average contact rate in Spain and Italy is seen to be higher than Russia and UK

over the considered duration of 2 − 3 months, possibly because Russia and UK were

affected relatively late by the virus, which gave sufficient time for the enforcement

strict social distancing protocols prior to widespread outbreak. For Spain and Italy,

the quarantine efficiency and also the recovery rate are generally higher than for

Russia and UK, possibly indicating more efficient testing, isolation and quarantine;

43



Figure 2-5: [Europe: Quarantine efficiency heatmap] (a) Quarantine efficiency, 𝑄eff defined
in (12) for the 23 highest affected European countries. Note that 𝑄eff is indicative of the
quarantine responsiveness: the testing and tracing protocols to identify and isolate infected
individuals. Map also shows the demarcation between countries with a high 𝑄eff shown by
a green dotted line and those with a low 𝑄eff shown by a red dotted line.

and hospital practices in Spain and Italy. This agrees well with the ineffectiveness

of testing, contact tracing and quarantine practices seen in UK [62]. Although the

social distancing strength also varied with time, we do not focus on that aspect in the

present study, and will be the subject of future studies. A higher quarantine efficiency

combined with a higher recovery rate led Spain and Italy to bring down the Covid

spread parameter (defined in (2.6)), 𝐶𝑝 from > 1 to < 1 in 16,25 days. respectively,

as compared to 32 days for UK and 42 days for Russia (figure 2-4).

Quarantine efficiency map for Europe

Figure 2-5 shows 𝑄eff for the 23 highest affected European countries. We can see that

𝑄eff in the western European regions is generally higher than eastern Europe. This

can be attributed to the strong quarantine response measures implemented in western

countries like Spain, Italy, Germany, France after the rise of infections seen first in

Italy and Spain [34]. Although countries like Switzerland and Turkey didn’t enforce
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a strict quarantine response as compared to their west European counterparts, they

were generally successful in halting the infection count before reaching catastrophic

proportions, due to strong testing and tracing protocols [113, 58]. Subsequently, these

countries also managed to identify potentially infected individuals and prevented them

from coming into contact with susceptibles, giving them a high 𝑄eff score as seen in

figure 2-5. In contrast, our study also manages to identify countries like Sweden which

had very limited quarantine measures [51]; with a low 𝑄eff score as seen in figure 2-

5. This strengthens the validity of our model in diagnosing information about the

effectiveness of quarantine and isolation protocols in different countries; which agree

well with the actual protocols seen in these countries.

2.3.5 USA

Figure 2-6 shows reasonably good match between the model-estimated infected and

recovered case counts with actual Covid-19 data for the highest affected North Ameri-

can states (including states from Mexico, the United States, and Canada) as of 1 June

2020, namely: New York, New Jersey, Illinois and California. 𝑄(𝑡) for New York and

New Jersey show a ramp up point immediately in the week following the detection of

the 500th case in these regions, i.e. on 19 March for New York and on 24 March for

New Jersey (figure 2-7). This matches well with the actual dates: 22 March in New

York and 21 March in New Jersey when stay at home orders and isolation measures

were enforced in these states. A relatively slower rise of 𝑄(𝑡) is seen for Illinois while

California showing a ramp up post a week after detection of the 500th case. Although

no significant difference is seen in the mean contact and recovery rates between the

different US states, the quarantine efficiency in New York and New Jersey is seen to be

significantly higher than that of Illinois and California (figure 2-16b), indicating the

effectiveness of the rapidly deployed quarantine interventions in New York and New

Jersey [98]. Owing to the high quarantine efficiency in New York and New Jersey,

these states were able to bring down the Covid spread parameter, 𝐶𝑝 to less than 1 in

19 days (figure 2-8). On the other hand, although Illinois and California reached close

to 𝐶𝑝 = 1 after the 30 day and 20 day mark respectively, 𝐶𝑝 still remained greater
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Figure 2-6: [USA: Infected and Recovered Covid-19 case count evolution] COVID-19 infected
and recovered evolution compared with our neural network augmented model prediction in
the highest affected USA states as of June 1, 2020.
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Figure 2-7: [USA: Quarantine strength evolution in response to Covid-19] Quarantine
strength 𝑄(𝑡) learned by the neural network in the highest affected USA states as of June
1, 2020. The transition from the red to blue shaded region indicates the Covid spread pa-
rameter of value 𝐶𝑝 < 1 leading to halting of the infection spread. The green dashed line
indicates the time when quarantine measures were implemented in the region under consid-
eration, which generally matches well with an inflection point (for New York, New Jersey
and Illinois) or a ramp up point (California) seen in the 𝑄(𝑡) plot denoted by the red dashed
line.
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Figure 2-8: [USA: Covid spread parameter evolution in response to Covid-19] Control of
COVID-19 quantified by the Covid spread parameter evolution in the highest affected USA
states as of June 1, 2020. The transition from the red to blue shaded region indicates 𝐶𝑝 < 1
leading to halting of the infection spread.

than 1 (figure 2-8), indicating that these states were still in the danger zone as of

June 1, 2020. An important caveat to this result is the reporting of the recovered data.

Comparing with Europe, the recovery rates seen in North America are signifi-

cantly lower (figures 16a,b). It should be noted that accurate reporting of recovery

rates is likely to play a major role in this apparent difference. In our study, the

recovered data include individuals who cannot further transmit infection; and thus

includes treated patients who are currently in a healthy state and also individuals

who died due to the virus. Since quantification of deaths can be done in a robust

manner, the death data is generally reported more accurately. However, there is no

clear definition for quantifying the number of people who transitioned from infected

to healthy. As a result, accurate and timely reporting of recovered data is seen to have

a significant variation between countries, under reporting of the recovered data being

a common practice. Since the effective reproduction number calculation depends on

the recovered case count, accurate data regarding the recovered count is vital to as-
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Figure 2-9: [USA: Quarantine efficiency heatmap and its comparison with ground truth
data] (a) Quarantine efficiency, 𝑄eff defined in (12) for 20 major USA states. Note that
𝑄𝑒𝑓𝑓 is indicative of the quarantine responsiveness: the testing and tracing protocols to
identify and isolate infected individuals. (b) Comparison between a report published in the
Wall Street Journal on May 21 [43] and the quarantine efficiency magnitude in our study.
A generally strong correlation is seen between the magnitude of quarantine efficiency in our
study and the level of restrictions actually imposed in different USA states.

sess whether the infection has been curtailed in a particular region or not. Thus, our

results strongly indicate the need for each country to follow a particular metric for

estimating the recovered count robustly, which is vital for data driven assessment of

the pandemic spread.

Quarantine efficiency map for the USA

Figure 2-9a shows the quarantine efficiency for 20 major US states spanning the whole

country. Figure 2-9b shows the comparison between a report published in the Wall
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Street Journal on May 21 highlighting USA states based on the quarantine measure

strength [43], and the quarantine efficiency magnitude in our study. The size of the

circles represent the magnitude of the quarantine efficiency. The blue color indicates

the states for which the quarantine efficiency was greater than the mean quarantine

efficiency across all US states, while those in red indicate the opposite. Our results

indicate that the north-eastern and western states were much more responsive in

implementing rapid quarantine measures in the month following early detection; as

compared to the southern and central states. This matches the on-ground situation

as indicated by a generally strong correlation is seen between the red circles in our

study (states with lower quarantine efficiency) and the yellow regions seen in in the

Wall Street Journal report [43] (states with reduced imposition of restrictions) and

between the blue circles in our study (states with higher quarantine efficiency) and

the blue regions seen in the Wall Street Journal report [43] (states with generally

higher level of restrictions). This strengthens the validity of our approach in which

the quarantine efficiency is recovered through a trained neural network rooted in

fundamental epidemiological equations.

2.3.6 Asia

Figure 2-10 shows reasonably good match between the model-estimated infected and

recovered case count with actual Covid-19 data for the highest affected Asian countries

as of 1 June 2020, namely: India, China and South Korea. 𝑄(𝑡) shows a rapid ramp

up in China and South Korea (figure 2-11) which agrees well with cusps in government

interventions which took place in the weeks leading to and after the end of January

[28] and February [112] for China and South Korea respectively. On the other hand,

a slow build up of 𝑄(𝑡) is seen for India, with no significant ramp up. This is reflected

in the quarantine efficiency comparison (figure 2-16c), which is much higher for China

and South Korea compared to India. South Korea shows a significantly lower contact

rate than its Asian counterparts, indicating strongly enforced and followed social

distancing protocols [156]. No significant difference in the recovery rate is observed

between the Asian countries. Owing to the high quarantine efficiency in China and a
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Figure 2-10: [Asia: Infected and Recovered Covid-19 case count evolution] COVID-19 in-
fected and recovered evolution compared with our neural network augmented model predic-
tion in the highest affected Asian countries as of June 1, 2020.
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Figure 2-11: [Asia: Quarantine strength evolution in response to Covid-19] Quarantine
strength 𝑄(𝑡) learnt by the neural network in the highest affected Asian countries as of
June 1, 2020. The transition from the red to blue shaded region indicates the Covid spread
parameter of value 𝐶𝑝 < 1 leading to halting of the infection spread. The green dashed
line indicates the time when quarantine measures were implemented in the region under
consideration, which generally matches well with a ramp up point seen in the 𝑄(𝑡) plot
denoted by the red dashed line. For regions in which a clear inflection or ramp up point is
not seen (India), the red dashed line is not shown.
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Figure 2-12: [Asia: Quarantine strength evolution in response to Covid-19] Quarantine
strength 𝑄(𝑡) learnt by the neural network in the highest affected Asian countries as of
June 1, 2020. The transition from the red to blue shaded region indicates the Covid spread
parameter of value 𝐶𝑝 < 1 leading to halting of the infection spread. The green dashed
line indicates the time when quarantine measures were implemented in the region under
consideration, which generally matches well with a ramp up point seen in the 𝑄(𝑡) plot
denoted by the red dashed line. For regions in which a clear inflection or ramp up point is
not seen (India), the red dashed line is not shown.
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Figure 2-13: [South America: Infected and Recovered Covid-19 case count evolution]
COVID-19 infected and recovered evolution compared with our neural network augmented
model prediction in the highest affected South American countries as of June 1, 2020.

high quarantine efficiency coupled with strongly enforced social distancing in South

Korea, these countries were able to bring down the Covid spread parameter 𝐶𝑝 from

> 1 to < 1 in 21 and 13 days respectively, while it took 33 days in India (figure 2-12).

2.3.7 South America

Figure 2-13 shows reasonably good match between the model-estimated infected and

recovered case count with actual Covid-19 data for the highest affected South Amer-

ican countries as of 1 June 2020, namely: Brazil, Chile and Peru. For Brazil, 𝑄(𝑡)

is seen to be approximately constant ≈ 0 initially with a ramp up around the 20 day

mark; after which 𝑄(𝑡) is seen to stagnate (figure 2-14a). The key difference between

the Covid progression in Brazil compared to other nations is that the infected and the
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Figure 2-14: [South America: Quarantine strength evolution in response to Covid-19] Quar-
antine strength 𝑄(𝑡) learnt by the neural network in the highest affected South American
countries as of June 1, 2020. The transition from the red to blue shaded region indicates the
Covid spread parameter of value 𝐶𝑝 < 1 leading to halting of the infection spread. The green
dotted line indicates the time when quarantine measures were implemented in the region
under consideration.
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Figure 2-15: [South America: Covid spread parameter evolution in response to Covid-19]
Control of COVID-19 quantified by the Covid spread parameter evolution in the highest
affected South American countries as of June 1, 2020. The transition from the red to blue
shaded region indicates 𝐶𝑝 < 1 leading to halting of the infection spread.
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Figure 2-16: [Covid-19 spread and subsequent response of majorly affected continents and
countries therein] Global comparison of infection, recovery rates and quarantine efficiency.
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recovered (recovered healthy + dead in our study) count is very close to one another

as the disease progressed (figure 2-13). Owing to this, as the disease progressed, the

new infected people introduced in the population were balanced by the infected peo-

ple removed from the population, either by being healthy or deceased. This higher

recovery rate combined with a generally low quarantine efficiency and contact rate

(figure 2-16d) manifests itself in the Covid spread parameter for Brazil to be < 1 for

almost the entire duration of the disease progression (figure 2-15a). For Chile, 𝑄(𝑡)

is almost constant for the entire duration considered (figure 2-14b). Thus, although

government regulations were imposed swiftly following the initial detection of the

virus, leading to a high initial magnitude of 𝑄(𝑡), the government imposition became

subsequently relaxed. This may be attributed to several political and social factors

outside the scope of the present study [144]. Even for Chile, the infected and recov-

ered count remain close to each other compared to other nations. A generally high

quarantine magnitude coupled with a moderate recovery rate (figure 2-16d) leads to

𝐶𝑝 being < 1 for the entire duration of disease progression (figure 2-15b). In Peru,

𝑄(𝑡) shows a very slow build up (figure 2-14c) with a very low magnitude. Also,

the recovered count is lower than the infected count compared to its South American

counterparts (figure 2-13c). A low quarantine efficiency coupled with a low recovery

rate (figure 2-16d) leads Peru to be in the danger zone (𝐶𝑝 > 1) for 48 days post

detection of the 500th case (figure 2-15c).

2.4 Discussion

Our model captures the infected and recovered counts for highly affected countries in

Europe, North America, Asia and South America reasonably well, and is thus globally

applicable. Along with capturing the evolution of infected and recovered data, the

novel machine learning aided epidemiological approach allows us to extract valuable

information regarding the quarantine policies, the evolution of Covid spread parame-

ter 𝐶𝑝, the mean contact rate (social distancing effectiveness), and the recovery rate.
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Thus, it becomes possible to compare across different countries, with the model serv-

ing as an important diagnostic tool.

Our results show a generally strong correlation between strengthening of the quar-

antine controls, i.e. increasing 𝑄(𝑡) as learnt by the neural network model; actions

taken by the regions’ respective governments; and decrease of the Covid spread pa-

rameter 𝐶𝑝 for all continents considered in the present study.

Based on the Covid-19 data collected (details in the Materials and Methods sec-

tion), we note that accurate and timely reporting of recovered data is seen to have

a significant variation between countries; with under reporting of the recovered data

being a common practice. In the North American countries, for example, the recov-

ered data are significantly lower than its European and Asian counterparts. Thus,

our results strongly indicate the need for each country to follow a particular metric

for estimating the recovered count robustly, which is vital for data driven assessment

of the pandemic spread.

The key highlights of our model are: (a) it is highly interpretable with few free

parameters rooted in an epidemiological model, (b) its reliance on only Covid-19

data and not on previous epidemics and (c) it is highly flexible and adaptable to

different compartmental modelling assumptions. In particular, our method can be

readily extended to more complex compartmental models including hospitalization

rates, testing rate and distinction between symptomatic and asymptomatic individu-

als. Thus, the methodology presented in the present study can be readily adapted to

any province, state or country globally; making it a potentially useful tool for policy

makers in event of future outbreaks or a relapse in the current one.

Finally, we have hosted our quarantine diagnosis results for the top 70 affected

countries worldwide on a public platform
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(https://covid19ml.org/ or https://rajdandekar.github.io/COVID-QuarantineStrength/),

which can be used for informed decision making by public health officials and re-

searchers alike. We believe that such a publicly available global tool will be of signif-

icant value for researchers who want to study the correlation between the quarantine

strength evolution in a particular region with a wide range of metrics spanning from

mortality rate to socio-economic landscape impact of Covid-19 in that region.

Currently, our model lacks forecasting abilities. In order to do robust forecasting

based on prior data available, the model needs to be further augmented through

coupling with real-time metrics parameterizing social distancing, e.g. the publicly

available Apple mobility data [4]. This could be the subject of future studies.

2.5 Experimental Procedures

Data and Code Availability

Data for the infected and recovered case count in all regions was obtained from the

Center for Systems Science and Engineering (CSSE) at Johns Hopkins University.

All code files are available at https://github.com/RajDandekar/MIT-Global-COVID-

Modelling-Project-1. All results are publicly hosted at https://covid19ml.org/ or

https://rajdandekar.github.io/COVID-QuarantineStrength/.

2.5.1 Augmented QSIR Model: Initial Conditions

The starting point 𝑡 = 0 for each simulation was the day at which 500 infected cases

were crossed, i.e. 𝐼0 ≈ 500. The number of susceptible individuals was assumed to

be equal to the population of the considered region. Also, in all simulations, the

number of recovered individuals was initialized from data at 𝑡 = 0 as defined above.

The quarantined population 𝑇 (𝑡) is initialized to a small number 𝑇 (𝑡 = 0) ≈ 10.
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2.5.2 Augmented QSIR Model: Parameter estimation

The time resolved data for the infected, 𝐼data and recovered, 𝑅data for each locale

considered is obtained from the Center for Systems Science and Engineering (CSSE)

at Johns Hopkins University. The neural network-augmented SIR ODE system was

trained by minimizing the mean square error loss function

𝐿NN(𝑊,𝛽, 𝛾, 𝛿) = ⋃︀⋃︀log(𝐼(𝑡) + 𝑇 (𝑡)) − log(𝐼data(𝑡))⋃︀⋃︀2 + ⋃︀⋃︀log(𝑅(𝑡)) − log(𝑅data(𝑡))⋃︀⋃︀2

(2.13)

that includes the neural network’s weights 𝑊 . For most of the regions under con-

sideration, 𝑊,𝛽, 𝛾, 𝛿 were optimized by minimizing the loss function given in (2.13).

Minimization was employed using local adjoint sensitivity analysis [15, 128] following

a similar procedure outlined in a recent study [129] with the ADAM optimizer [83]

with a learning rate of 0.01. The iterations required for convergence varied based on

the region considered and generally ranged from 40,000 − 100,000. For regions with

a low recovered count: all US states and UK, we employed a two stage optimization

procedure to find the optimal 𝑊,𝛽, 𝛾, 𝛿. In the first stage, (2.13) was minimized. For

the second stage, we fix the optimal 𝛾, 𝛿 found in the first stage to optimize for the

remaining parameters: 𝑊,𝛽 based on the loss function defined just on the infected

count as 𝐿(𝑊,𝛽) = ⋃︀⋃︀log(𝐼(𝑡) + 𝑇 (𝑡)) − log(𝐼data(𝑡))⋃︀⋃︀2. In the second stage, we don’t

include the recovered count 𝑅(𝑡) in the loss function, since 𝑅(𝑡) depends on 𝛾, 𝛿

which have already been optimized in the first stage. By placing more emphasis on

minimizing the infected count, such a two stage procedure leads to much more accu-

rate model estimates; when the recovered data count is low. The iterations required

for convergence in both stages varied based on the region considered and generally

ranged from 30,000 − 100,000.
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Figure 2-17: [Gaussian Process Residue Regression Model] Gaussian Process residue model
fitted to (a) the infected case count and (b) the recovered case count for Russia.
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Figure 2-18: [Parameter Inference to demonstrate robustness of QSIR model recovered pa-
rameters] Inferred parameters for 500 realizations of the Gaussian process residue model
superimposed on the best fit model prediction applied to Russia and shown for (a) the quar-
antine strength function 𝑄(𝑡), (b) the contact rate 𝛽 and the recovery rate 𝛾 + 𝛿. A total of
30 million iterations were performed on the MIT Supercloud cluster to generate parameter
histograms for one country.
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2.5.3 Parameter Inference: Gaussian Process residue model

In order to validate the robustness of the model and the uniqueness of the parameters

recovered by the model, we consider a Gaussian Process residue model for uncertainty

quantification. Gaussian Processes have emerged as a useful tool for regression, clas-

sification, clustering and uncertainty quantification [137, 166]. Gaussian Process re-

gression can be viewed as a Bayesian inference problem where we want to recover the

posterior for the regression function which best approximates the training data. The

novelty of such an approach stems from using a the prior probability distribution over

a function space rather than from a finite parametric system. Each realization of such

a function is a multivariate normal distribution, which allows for exact estimation of

the posterior distribution. The covariance underlying the function space distribution

is specified by the kernel function. The kernel function affects the shape and noise of

the resulting posterior distribution.

In the present study, we fit a Gaussian Process regression model between the error

resulting from the best fit model (described in Section 3.2 and optimized using the

method described in Section 5.2) and the data. For the prior over the function space,

we use a mean of zero and variance described by a Squared Exponential Kernel with

a lengthscale of 1 and a significantly high signal standard deviation of 𝑂(104) which

allows for noisy estimates of the posterior. Such a fitted model for the infected and

recovered case count for Russia is shown in figure 2-17. It should be noted the recov-

ered optimal posterior is not a deterministic function, but a distribution over function

spaces. Subsequently, we sample 500 error residues from this model and superimpose

them on the best fit predictions to simulate 500 samples of the infected and recovered

case count data. Finally, we apply our model described in Section 3.2 and optimized

using the method described in Section 5.2 for these samples.

Figure 2-18 shows inferred parameters for 500 realizations of the Gaussian process

residue model superimposed on the best fit model prediction applied to Russia and

shown for (a) the quarantine strength function 𝑄(𝑡), (b) the contact rate 𝛽 and (c)

the recovery rate 𝛾 + 𝛿. It can be seen that for all realizations, 𝑄(𝑡) is seen to follow
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a similar behaviour, which lies close to the best fit model prediction. In addition, the

inferred histograms for the contact rate 𝛽 and the recovery rate 𝛾 + 𝛿 show a peak

which is close to the best fit model prediction. This further validates the robustness of

the model and strengthens the uniqueness of the parameters recovered by the model.

Similar figures for all other countries are shown in the Supplementary Information.

A total of 30 million iterations were performed on the MIT Supercloud cluster to

generate parameter histograms for one country.

2.6 Supplementary Information

2.6.1 Gaussian Process Residue Model for all regions

Figures 3-10, 2-20 shows inferred parameters for 500 realizations of the Gaussian

process residue model superimposed on the best fit model prediction applied to Russia

and shown for the quarantine strength function 𝑄(𝑡), the contact rate 𝛽 and the

recovery rate 𝛾+𝛿 for highly affected regions of Europe, USA, Asia and South America

till 1 June 2020; considered in the present study.
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Figure 2-19: [Parameter Inference for Europe and USA] Inferred parameters for 500 realiza-
tions of the Gaussian process residue model superimposed on the best fit model prediction
and shown for the quarantine strength function 𝑄(𝑡) (left column), the contact rate 𝛽 (mid-
dle column) and the recovery rate 𝛾 + 𝛿 (right column) for highly affected regions of Europe
and USA till 1 June 2020; considered in the present study. A total of 30 million iterations
were performed on the MIT Supercloud cluster to generate parameter histograms for each
region.
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Figure 2-20: [Parameter Inference for Asia and South America] Inferred parameters for
500 realizations of the Gaussian process residue model superimposed on the best fit model
prediction and shown for the quarantine strength function 𝑄(𝑡) (left column), the contact
rate 𝛽 (middle column) and the recovery rate 𝛾+𝛿 (right column) for highly affected regions
of Asia and South America till 1 June 2020; considered in the present study. A total of
30 million iterations were performed on the MIT Supercloud cluster to generate parameter
histograms for each region.
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Chapter 3

Effects of delayed reopening in

Southern and West Central USA

3.1 Summary

In the wake of the rapid surge in the Covid-19 infected cases seen in Southern and

West-Central USA in the period of June-July 2020, there was an urgent need to

develop robust, data-driven models to quantify the effect which early reopening had

on the infected case count increase. In particular, it was imperative to address the

question: How many infected cases could have been prevented, had the worst affected

states not reopened early? In this chapter, we use the QSIR model developed in the

previous chapter, to show that the upsurge in the infected cases seen in these states

is strongly co-related with a drop in the quarantine/lockdown strength diagnosed by

our model. Further, our results demonstrate that in the event of a stricter lockdown

without early reopening, the number of active infected cases recorded on 14 July 2020

could have been reduced by more than 40% in all states considered, with the actual

number of infections reduced being more than 100,000 for the states of Florida and

Texas. As we continue our fight against Covid-19, our proposed model can be used as

a valuable asset to simulate the effect of several reopening strategies on the infected

count evolution; for any region under consideration.
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(a) Arizona (b) Florida (c) Louisiana

(d) Nevada (e) Oklahoma (f) South Car-
olina

(g) Tennessee (h) Texas (i) Utah
Figure 3-1: Active infected cases over time as of July 14, 2020, shown with a 7-day moving
average, for the Southern and West-Central states considered in the present study.

3.2 Background

Since the second week of June 2020, a second surge of Covid-19 was seen in the

United States [100], with rapidly increasing daily infected cases, hospitalization rates

and death rates [10, 86]. Initially driven by disastrous situations in the states of

Arizona, South Carolina, Texas, Florida and Georgia [100], the surge in cases was

also later seen in several other Southern and West-Central states [41]. This surge can

be seen in figure 3-1 which shows the active infected cases over time as of July 14,

2020 with a 7-day moving average for 9 states. States which reopened early show a

generally strong co-relation with the rise in the infected cases over the 3-month pe-

riod from late April to mid July 2020 [41]. For example, states which opened before

May 15 showed daily infected case increments of: Florida (1393 %), Arizona (858 %),

South Carolina (999 %), Alabama (547 %), Oklahoma (477 %), Tennessee (279 %),

Georgia (245 %), Mississippi (215 %), Nevada (697 %), Texas (680 %) and Utah (287

%); while states which reopened after May 29 showed values of: Michigan (16 %),

Pennsylvania (−26 %), New York (−52 %), New Jersey (−32 %) and Illinois (−54 %).

Thus, although early reopening seems to be co-related to the second surge of cases
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Table 3.1: Reopening details for different states considered in the present study
State Reopening date Reopening details
1. Arizona May 15 June 17: Mask regulations strengthened,

June 29: Partial reversal of reopening
2. Florida May 4 June 3: Phase 2 of reopening
3. Louisiana May 15 June 5: Phase 2 of reopening
4. Nevada May 9 May 26: Phase 2 of reopening
5. Oklahoma April 24 May 15: Phase 2 of reopening,

June 1: Phase 3 of reopening
6. South Carolina May 4 May 4: Stay at home order lifted,

further facilities reopened till May 18
7. Tennessee April 30 May 22: Phase 2 of reopening.
8. Texas May 1 May 18: Phase 2 of reopening,

June 3: Phase 3 of reopening
9. Utah May 1 May 1: Gradual reopening

seen in the USA, there is a need for robust, data-driven quantification of the effect

of early reopening on the growth of infected count data. More importantly, it is of

utmost importance to answer the question: How many infected cases could have been

prevented, had the worst affected states not reopened early?

In an effort to address this question, we have developed a machine learning-aided

epidemiological model (the QSIR model). The novelty of our model arises from the

fact that it allows us to decompose the contribution of quarantine/lockdown strength

evolution to the infected data timeseries for the region under consideration. This

enables us to simulate the effect of varying quarantine strength evolutions and hence

varying reopening strategies on the infected count data. We define reopening as

beginning when a state allows its stay-at-home order to expire, or, in the case of

states that never issued a stay-at-home order, when a state first starts allowing non-

essential businesses, such as dine-in restaurants and hair salons, to reopen [91, 35].

The reopening details for the states considered in the study are shown in table 3.1.

Considering nine US states which showed a significant surge in cases since the last

month, we demonstrate that our model shows a drop in the quarantine strength

evolution when these states were reopened. Furthermore, we show that maintaining

a strict lockdown without early reopening would have led to about 500,000 fewer
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(a)

(b)
Figure 3-2: (a) Schematic of the augmented QSIR model considered in the present study. (b)
Schematic of the neural network architecture used to learn the quarantine strength function
𝑄(𝑡).

infected cases in all these states combined.

3.3 Methods

3.3.1 QSIR Model

Standard SIR model

The SIR (Susceptible - Infected - Recovered) is governed by the following set of ODEs

𝑑𝑆

𝑑𝑡
= −𝛽 𝑆(𝑡) 𝐼(𝑡)

𝑁
(3.1)

𝑑𝐼

𝑑𝑡
= 𝛽 𝑆(𝑡) 𝐼(𝑡)

𝑁
− 𝛾𝐼(𝑡) (3.2)

𝑑𝑅

𝑑𝑡
= 𝛾𝐼(𝑡). (3.3)

where 𝛽, 𝛾 are the contact and recovery rates respectively. We use this framework

as our baseline model to be augmented with an neural network module. We do not
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consider the possibility of recovered individuals being reinfected [105]. We also do

not consider the waning of immunity associated with Covid-19 as discovered in recent

studies [22].

QSIR model: ODE formulation (same as Chapter 1, reader can skip)

The QSIR ODE model formulation is similar to the one studied previously [31], and

is briefly explained in this section. The equations governing the QSIR model are as

follows

𝑑𝑆

𝑑𝑡
= −𝛽 𝑆(𝑡) 𝐼(𝑡)

𝑁
(3.4)

𝑑𝐼

𝑑𝑡
= 𝛽 𝑆(𝑡) 𝐼(𝑡)

𝑁
− (𝛾 +𝑄(𝑡)) 𝐼(𝑡)

= 𝛽 𝑆(𝑡) 𝐼(𝑡)
𝑁

− (𝛾 +NN(𝑊,𝑈)) 𝐼(𝑡) (3.5)

𝑑𝑅

𝑑𝑡
= 𝛾𝐼(𝑡) + 𝛿𝑇 (𝑡) (3.6)

𝑑𝑇

𝑑𝑡
= 𝑄(𝑡) 𝐼(𝑡) − 𝛿𝑇 (𝑡) = NN(𝑊,𝑈) 𝐼(𝑡) − 𝛿𝑇 (𝑡). (3.7)

The SIR model is augmented by introducing a time varying quarantine strength

rate term 𝑄(𝑡) represented by a neural network [129] and a quarantined population

𝑇 (𝑡), which is prevented from having any further contact with the susceptible popu-

lation. Thus, the term 𝐼(𝑡) denotes the active infected population (Actively infected

= Cumulative infected - Recovered) still having contact with the susceptibles, as done

in the standard SIR model, while the term 𝑇 (𝑡) denotes the infected population who

are effectively quarantined and isolated.

Augmented QSIR Model: Initial Conditions

The starting point 𝑡 = 0 for each simulation was the day at which 500 infected cases

was crossed, i.e. 𝐼0 ≈ 500. The number of susceptible individuals was assumed to

be equal to the population of the considered region. Also, in all simulations, the

number of recovered individuals was initialized from data at 𝑡 = 0 as defined above.
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The quarantined population 𝑇 (𝑡) is initialized to a small number 𝑇 (𝑡 = 0) ≈ 10.

Augmented QSIR Model: Parameter estimation

The data for the infected, recovered case counts was obtained from the publicly

maintained repository by the Center for Systems Science and Engineering at Johns

Hopkins University. The loss function is defined as

𝐿NN(𝑊,𝛽, 𝛾, 𝛿) =

⋃︀⋃︀log(𝐼(𝑡) + 𝑇 (𝑡)) − log(𝐼data(𝑡))⋃︀⋃︀2

+ ⋃︀⋃︀log(𝑅(𝑡)) − log(𝑅data(𝑡))⋃︀⋃︀2

(3.8)

Parameter optimization for 𝑊,𝛽, 𝛾, 𝛿 was performed by minimizing the loss function

defined in Equation 3.8 using the approach employed in prior studies [31, 15, 128]

using an ADAM optimizer [83] with a learning rate of 0.01. For most of the states

under consideration, 𝑊,𝛽, 𝛾, 𝛿 were optimized by minimizing the loss function given in

(3.8). For states with a low recovered count: Arizona, Florida, Nevada and Texas, we

employed a two stage optimization procedure to find the optimal𝑊,𝛽, 𝛾, 𝛿. In the first

stage, (3.8) was minimized. For the second stage, we fix the optimal 𝛾, 𝛿 found in the

first stage to optimize for the remaining parameters: 𝑊,𝛽 based on the loss function

defined just on the infected count as 𝐿(𝑊,𝛽) = ⋃︀⋃︀log(𝐼(𝑡) + 𝑇 (𝑡)) − log(𝐼data(𝑡))⋃︀⋃︀2.

Such an approach was found to be optimal for analyzing low recovered count data in

previous studies [31].

In all states considered in the present study, we trained the model using data starting

from the dates when the 500th infection was recorded in each region and up to July 14,

2020. For each state considered, 𝑄(𝑡) denotes the rate at which infected persons are

effectively quarantined and isolated from the remaining population, and thus gives

composite information about (a) the effective testing rate of the infected population

as the disease progresses and (b) the intensity of the enforced quarantine as a function

of time.

This QSIR ODE framework applied on the infected and recovered data is used to
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estimate the quarantine strength function Q(t) in a particular state as shown in the

first and second columns of figure 3-3.

QSIR Model: SDE formulation (same as Chapter 1, reader can skip)

The ODE modelling framework described above is a deterministic approach to model

transfer of species (here: people) from one compartment to another through differ-

ent reaction channels. Such a deterministic approach ignores any random fluctuations

during species transfer from one compartment to the other. To include such stochastic

effects and thus get a measure of the model uncertainty, we note that the augmented

SIR framework derives from the chemical master equation which descibes the time

evolution of the probability of such a system of interacting species to be in a given

state at a given time (details in Supplementary Information). Although the chemical

master equation cannot be solved analytically, under certain conditions, it can be

distilled down to a stochastic differential equation (SDE) which captures the fluctua-

tions in species transfer as random walks. Such an SDE, also known as the Chemical

Langevin Equation, is thus based on the underlying ODE framework (macroscopic

picture) and also includes stochastic effects reminiscent of microscopic modelling. In

fact, in the Supplementary Information, we show that the microscopic simulation,

macroscopic ODE formulation and the Chemical Langevin Equation (which acts as

a bridge between the two) are all equivalent to each other.

The equivalent stochastic formulation or the Chemical Langevin equation for the

augmented SIR model is

73



𝑑𝑆 = −]︀𝛽 𝑆(𝑡) 𝐼(𝑡)
𝑁

{︀𝑑𝑡 −
}︂

]︀𝛽 𝑆(𝑡) 𝐼(𝑡)
𝑁

{︀𝑑𝑊1(𝑡) (3.9)

𝑑𝐼 = ]︀𝛽 𝑆(𝑡) 𝐼(𝑡)
𝑁

− 𝛾𝐼(𝑡) −𝑄(𝑡)𝐼(𝑡){︀𝑑𝑡

+
}︂

𝛽 𝑆(𝑡) 𝐼(𝑡)
𝑁

𝑑𝑊1(𝑡) −
⌈︂
𝛾𝐼(𝑡)𝑑𝑊2(𝑡) −

⌈︂
𝑄(𝑡)𝐼(𝑡)𝑑𝑊3(𝑡) (3.10)

𝑑𝑅 = (︀𝛾𝐼(𝑡) + 𝛿𝑇 (𝑡)⌋︀𝑑𝑡 +
⌈︂
𝛾𝐼(𝑡)𝑑𝑊2(𝑡) +

⌈︂
𝛿𝑇 (𝑡)𝑑𝑊4(𝑡) (3.11)

𝑑𝑇 = (︀𝑄(𝑡) 𝐼(𝑡) − 𝛿𝑇 (𝑡)⌋︀𝑑𝑡 +
⌈︂
𝑄(𝑡)𝐼(𝑡)𝑑𝑊3(𝑡) −

⌈︂
𝛿𝑇 (𝑡)𝑑𝑊4(𝑡) (3.12)

In (3.9), 𝑊𝑖(𝑡) ∼ 𝑁(0, 𝑡) is a normally distributed random variable with mean

zero and variance 𝑡 or 𝑑𝑊𝑖(𝑡) ∼ 𝑁(0, 𝑑𝑡). It should also be noted that each 𝑊𝑖(𝑡)

represents an independent Brownian motion. The simulations were performed using

the Catalyst.jl software in Julia using the LambaEM algorithm based on [130]. 1000

trajectories were simulated for each state.

This QSIR SDE framework along with the simulated quarantine functions for

no reopening is used to predict the new infected case count and hence estimate the

reduction in the number of infected cases under the simulated no-reopening quarantine

function. The results are shown as 5% and 95% quantiles in the third column of figure

3-3.

Mean Absolute Percentage Error

The Mean Absolute Percentage Error (MAPE) is defined as

MAPE =
100

𝑁
∗∑

(︀𝐼(𝑡) + 𝑇 (𝑡) +𝑅(𝑡)⌋︀ − (︀𝐼data(𝑡) +𝑅data(𝑡)⌋︀
(︀𝐼data(𝑡) +𝑅data(𝑡)⌋︀

(3.13)

where 𝑁 is the number of observations.
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3.4 Results

The first stage of our analysis is using our model [31], called the QSIR model to

diagnose the underlying quarantine strength evolution 𝑄(𝑡) in the regions under con-

sideration. By applying the QSIR model to more than 70 countries globally, we have

established the validity of 𝑄(𝑡) in accurately diagnosing the on-the-ground quarantine

situation in majorly affected European, South American and Asian countries [31]. A

slow growth of 𝑄(𝑡) without a significant increase indicates relaxed quarantine poli-

cies, a sharp transition point in 𝑄(𝑡) is indicative of a sudden ramp-up of quarantine

measures, and an inflection point corresponds to the time when the quarantine re-

sponse was the most rapid in the region under consideration. The results of our model

applied globally to all continents are hosted publicly at covid19ml.org.

In this study, to perform the quarantine diagnosis to analyze the implications of

delayed reopening, we applied the QSIR model to 9 US states which showed a signif-

icant surge in the infected case count in the last month: Arizona, Florida, Louisiana,

Nevada, Oklahoma, South Carolina, Tennessee, Texas and Utah. Figure 3-3 shows

representative results for Arizona, Nevada, South Carolina and Tennessee. The plots

for the remaining states are provided in the Supplementary Information. Figures 3-3

a, d, g, j show the comparison of the infected and recovered count estimated by our

model with the actual data. A reasonable agreement is seen for all states, with the

model being able to capture the rise in infections seen in the tail end of the time-

series. The QSIR model details are provided in the Methods section; Mean Absolute

Percentage Error (MAPE) values for the model along with the epochs required for

convergence for each state are provided in Supplementary Information.

Figures 3-3 b, e, h, k show the quarantine strength evolution 𝑄(𝑡) as learnt by the

neural network module, which shows a decline whose starting point corresponds well

to the time when these states began reopening, as seen from table 3.1 and the green
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dotted line in the figures 3-3 b, e, h, k. In some states, the decline in 𝑄(𝑡) starts later

than the reopening date; possibly corresponding to the Phase 2 or Phase 3 of reopen-

ing (table 3.1) or because of the time delay for population level changes to be seen

in the infected count evolution, after reopening. 𝑄(𝑡) trained by our model shows

a significant drop after early reopening in all Southern and West-Central states that

showed a surge in cases last month; whereas the North-Eastern states of New York,

New Jersey and Illinois, which reopened late and showed no surge in infections, did

not show a drop in 𝑄(𝑡) (Table 3.2 and figures in Supplementary Information). Thus,

the upsurge in the infected cases seen in these states is strongly co-related with a drop

in the quarantine/lockdown strength 𝑄(𝑡) diagnosed by our model. This is indicative

of two things: (a) the Southern and West-Central states reopened early, which led to a

relaxed imposition of quarantine/lockdown measures in these states and consequently

a surge in infections was seen, and (b) the North-Eastern states of New York, New

Jersey and Illinois reopened late, and even after reopening, a relatively low contact

rate was maintained amongst the population, leading to a relatively high magnitude of

the imposed quarantine strength, which prevented a surge of infections in these states.

After confirming that our model is able to accurately depict the co-relation be-

tween the surge in infections and early reopening in these states through the diagnosed

𝑄(𝑡), we proceed to the second stage of our analysis. In the second stage, we use the

diagnosed 𝑄(𝑡) to address the question: How many infected cases would have been

reduced, had the worst affected states not reopened early? To answer this question,

we simulate the "no-reopening" strategy by assuming that 𝑄(𝑡) is maintained at the

value it was before reopening, without decreasing. This simulated 𝑄(𝑡) is shown in

Figures 3-3 b, e, h, k. The flexibility of our model allows us to run our model with

this simulated 𝑄(𝑡) for all states considered. To quantify the aleatory uncertainty

resulting from random fluctuations in the model, we utilized the chemical Langevin

equation extension to the QSIR model whose definition and justification is described

in the Methods and Supplemental Information section. This allows us to estimate

bootstrapped confidence intervals resulting from 1000 simulations of such a stochastic

76



Table 3.2: Drop in quarantine strength function, 𝑄(𝑡) after reopening as discovered by
our trained model. 𝑄(𝑡) trained by our model shows a significant drop for all Southern
and West-Central states which showed a surge in cases from reopening; whereas the North-
Eastern states which showed no surge don’t see a drop in 𝑄(𝑡).
State Reopening date % increase in daily cases Maximum % decrease

since reopening in 𝑄(𝑡) after reopening
1. Arizona May 15 +858 +22
2. Florida May 4 +1393 +10
3. Louisiana May 15 +193 +30
4. Nevada May 9 +697 +25
5. Oklahoma April 24 +477 +29
6. South Carolina May 4 +999 +71
7. Tennessee April 30 +279 +44
8. Texas May 1 +680 +29
9. Utah May 1 +287 +39
10. New York May 29 −52 −45
11. New Jersey June 9 −32 −60
12. Illinois May 29 −54 −8

model, and thus quantify the effect of such a "no-reopening policy" on the epidemic

spread. The infected count evolution for the simulated 𝑄(𝑡) without reopening is

shown in Figures 3-3 c, f, i, l (5% and 95% quantiles are shown). We can see that, for

all these states, instead of seeing a spike in infections, we would have seen a plateau

in the infected case count evolution. The number and the percentage of infected cases

that would have been prevented by July 14 had these states not reopened are shown

in Table 3-3. It is evident that the number of infections could have been reduced by

more than 40% in all states considered, with the actual number of infections reduced

being more than 100,000 for the states of Florida and Texas. Even the less populated

states of Louisiana, South Carolina and Tennessee show mean infected case reduction

values of 44%,84% and 47% respectively, which correspond to 36,000,51,000, and

31,000 infected cases reduced.
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Figure 3-3: For the states of Arizona, Nevada, South Carolina and Tennessee, figure shows:
(a, d, g, j) Model recovery of infected and recovered case count as of 14 July, 2020. (b, e,
h, k) Quarantine strength function as discovered by our trained model (with reopening).
This is shown along with the quarantine strength function which we use to simulate strict
quarantine without reopening after stay-at-home order was imposed. (c, f, i, l) Estimated
infected count if strict quarantine and lockdown measures were followed without reopening
(5% and 95% quantiles are shown) as compared to the values corresponding to the actual
early reopening scenario.
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Table 3.3: Infected count reduction by 14 July, 2020, if states had not reopened early, as
estimated by our model.
State % decrease Mean Case reduction Mean case

(5% - 95% quantiles) % decrease case reduction
1. Arizona 35 − 62 49 44000 − 79000 63000
2. Florida 20 − 75 49 57000 − 218000 144000
3. Louisiana 37 − 50 44 31000 − 41000 36000
4. Nevada 32 − 68 51 10000 − 20000 15000
5. Oklahoma 46 − 69 58 10000 − 15000 13000
6. South Carolina 83 − 86 84 50000 − 52000 51000
7. Tennessee 41 − 53 47 27000 − 36000 31000
8. Texas 41 − 51 46 115000 − 143000 129000
9. Utah 35 − 47 41 11000 − 14000 12000

3.5 Conclusion

In this study, we have developed a novel methodology to quantify the effect of early

reopening on the infected case count surge seen during the period of June-July 2020.

We have proposed a machine learning model, called the QSIR model, rooted firmly

in fundamental epidemiology principles which has the following attributes: (a) it is

highly interpretable with few free parameters rooted in an epidemiological model, (b)

it relies on only Covid-19 data and not on previous epidemics and (c) it can decom-

pose the infected timeseries data to reveal the quarantine strength/policy variation,

𝑄(𝑡), in the region under consideration. To demonstrate the validity of our model

in capturing the actual quarantine policy evolution in a particular region, the model

has been applied to 70 countries globally. The quarantine strength behaviour learnt

from the model accurately mimics the on-the-ground situation in majorly affected

European, South American and Asian continents. The results for this global analysis

are hosted at covid19ml.org [31].

After confirming our belief in the model through a global analysis, we apply the

model to the Southern and West-Central US states which have shown a massive surge

in Covid-19 infected cases since June 2020. We demonstrate that the 𝑄(𝑡) extracted

by our model shows a significant drop in value for the Southern and West-Central

79



states which reopened early and showed a surge in infections. The time at which 𝑄(𝑡)

starts to decline generally agrees well with the reopening date for the states consid-

ered. Since the decline in 𝑄(𝑡) is strongly co-related to the surge of infections and also

the reopening date for states which reopened early, we can then simulate the effect of

"no-reopening" by maintaining the 𝑄(𝑡) at a constant level after reopening, instead

of declining. We show that maintaining a steady imposition of quarantine/lockdown

control would have played a massive role in bringing down the infected count by

more than 40% in all states considered, with the infections reduced reaching more

than 100,000 for the states of Florida and Texas.

We have proposed a novel machine learning methodology, rooted in fundamental

epidemiological models; which is able to recover the real time quarantine strength

evolution for any region under consideration. As the pandemic evolves and we con-

tinue our fight against Covid-19; and for future outbreaks, our globally applicable

methodology can be a valuable asset for researchers and policy makers to simulate

several reopening strategies, counterfactual scenarios and analyze their impact on the

infected count evolution. Our findings highlight that as we continue the fight against

Covid-19, it is imperative to reduce the contact between susceptible and infected in-

dividuals in public places by formulating robust safety guidelines. Such guidelines

implemented and maintained in the affected states would ensure a high level of quar-

antine strength associated with that state and can prevent a future surge or wave in

the Covid-19 infected count timeseries.

The results of our model should be taken in the context of its assumptions. Ideally,

one needs to consider the shifting US testing policies for the time period under consid-

eration. Since the testing efforts did not show a significant increase during and after

the reopening in the US states in the time period considered within the present study

[57, 142] and we did not want to burden our model with additional parameters to

fit; testing compartments have not been included in the present study. Additionally,

several studies in literature [111, 132, 89, 153] have attempted to incorporate underre-
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porting of infected/recovered cases in their modelling paradigm. Most of these studies

use previously known estimates of testing data, serology data or Infection-Fatality-

Rate(IFR). In these studies involving multiple parameters, a number of parameters

are assumed to fixed at the start of the simulation from prior studies. These param-

eters include and are not limited to: time between onset of infections and symptoms,

transmission duration, rate at which hospitalized patients recover [153], mean dura-

tion from symptom onset to recovery [111] or even the IFR ratio [111]. A second class

of studies uses antibody testing from collected serum samples to estimate the actual

number of infected cases [60].

As the pandemic unfolds and starts spreading, the first information available is

the number of infected, recovered and deaths (for example: the Johns Hopkins public

repository for Covid-19 tracking). Unless we have serum sample data information or

we can confidently rely on prior studies for assessment of certain parameters, accurate

information of the underreporting factor is difficult to obtain in real time. One of the

goals of the present modelling methodology is to assist researchers and policy makers

with quarantine diagnosis information in real time, with no reliance on parameters

derived from prior studies.

Finally, the model is based on the SIR framework, which assumes a constant,

age-independent contact and recovery rate between the infected and susceptible pop-

ulations. Additionally, we do not consider the spatial heterogeneity in the infected

count within a particular state and assume the governing dynamics to be only time-

dependent. Consideration of these second-order aspects would further refine the

model and would be the subject of future studies.
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3.6 Supplementary Information

Model-diagnosed quarantine strength for North-Eastern US states

Figure 3-4 shows the application of the model to the north-eastern states of New York,

New Jersey and Illinois along with the diagnosed quarantine strength function𝑄(𝑡) for

these states. These states do not show a decline in 𝑄(𝑡). This corresponds well to the

delayed reopening and generally stronger quarantine measures employed in the North-

Eastern US states. Since 𝑄(𝑡) does not decrease, these states did not show a surge in

infections starting June 2020, unlike their Southern and West-Central counterparts.

The difference in these results between the North-Eastern and Southern, West-Central

states indicates two things: (a) it strengthens the validity of our proposed model in

capturing the real-time reopening scenario in different states through the evolution of

the diagnosed 𝑄(𝑡), and, more importantly, (b) it further validates the role played by

early reopening in reducing 𝑄(𝑡) and subsequently leading to a surge of new infected

cases in the Southern and West-Central US states.

Impact of early reopening on the states of Louisiana, Florida,

Oklahoma, Texas and Utah

Figure 3-5, 3-6 implements a similar analysis to study the effect of early reopening for

the states of Louisiana, Nevada, Oklahoma, Texas and Utah, as done for the states of

Arizona, Nevada, South Carolina and Tennessee. Similar to the states considered in

the main text, we see that all of these states show a decline in 𝑄(𝑡) starting around

the time when these states were reopened. If these states were not reopened early,

a large number of infections would have been reduced as demonstrated in Table 1 of

the main text.
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Equivalence between the ODE model and the Chemical Langevin

SDE model

This analysis heavily borrows from the pioneering work done by Gillespie [46]. In

this section, we will establish that the deterministic ODE model and the stochastic

Chemical Langevin equation originate from a common expression: the chemical mas-

ter equation [99], and are closely linked to one another. Following is the notation we

will use, in accordance with [46] We consider 𝑁 compartments: 𝑆1, 𝑆2 . . . 𝑆𝑁 and 𝑅

reaction channels: 𝑅1,𝑅2 . . .𝑅𝑀 in a fixed volume Ω. In our case, we have 𝑁 = 4

(𝑆, 𝐼,𝑅,𝑇 ) compartments and 𝑅 = 4 reaction channels. We denote the dynamical

state of the system at any time 𝑡 as 𝑋(𝑡) = (𝑋1(𝑡),𝑋2(𝑡) . . .𝑋𝑁(𝑡)) where

• 𝑋𝑖(𝑡) : total number of 𝑆𝑖 molecules (in our case: individuals) in the system.

• Propensity function 𝑎𝑗(𝑥)𝑑𝑡 : probability that a reaction 𝑅𝑗 will occur some-

where in Ω in the next time interval [t, t+dt] for 𝑗 = 1,2 . . .𝑀 .

• State change vector 𝜈𝑗 whose 𝑖th component is defined by 𝜈𝑗,𝑖: change in the

number of 𝑆𝑖 molecules produced by one 𝑅𝑗 reaction for 𝑖 = 1,2 . . .𝑁 , 𝑗 =

1,2 . . .𝑀 . In our case 𝜈𝑗,𝑖 = ±1.

From the definition of 𝑎𝑗(𝑥)𝑑𝑡, we can write the probability of the system being in

state 𝑥 at time 𝑡 + 𝑑𝑡 (we take the sum of all mutually exclusive ways either through

one reaction or no reaction in [t, t+dt]):

𝑃 (𝑥, 𝑡 + 𝑑𝑡⋃︀𝑥0, 𝑡0) = 𝑃 (𝑥, 𝑡⋃︀𝑥0, 𝑡0) ⌊︀1 −
𝑀

∑
𝑗=1
𝑎𝑗(𝑥)𝑑𝑡}︀ +

𝑀

∑
𝑗=1

(︀𝑃 (𝑥 − 𝜈𝑗, 𝑡⋃︀𝑥0, 𝑡0)𝑎𝑗(𝑥 − 𝜈𝑗)𝑑𝑡⌋︀ ,

(3.14)

Taking the limit of (3.14) as dt -> 0 leads to the chemical master equation

B𝑃 (𝑥, 𝑡⋃︀𝑥0, 𝑡0)
B𝑡

=
𝑀

∑
𝑗=1

(︀𝑎𝑗(𝑥 − 𝜈𝑗)𝑃 (𝑥 − 𝜈𝑗, 𝑡⋃︀𝑥0, 𝑡0) − 𝑎𝑗(𝑥)𝑃 (𝑥, 𝑡⋃︀𝑥0, 𝑡0)⌋︀ (3.15)
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.

Macroscopic picture: Deterministic model relation to the chemical master

equation:

Multiplying the chemical master equation (3.15) by 𝑥𝑖 and summing over all 𝑥, we

obtain for the mean of 𝑋𝑖(𝑡)

𝑑∐︀𝑋𝑖(𝑡)̃︀
𝑑𝑡

=
𝑀

∑
𝑗=1
𝜈𝑗𝑖∐︀𝑎𝑗(𝑋(𝑡))̃︀ (𝑖 = 1,2 . . .𝑁) (3.16)

Thus, whenever fluctuations are not important, the species populations evolve deter-

ministically according to the following set of ordinary differential equations

𝑑𝑋𝑖(𝑡)
𝑑𝑡

=
𝑀

∑
𝑗=1
𝜈𝑗𝑖𝑎𝑗(𝑋(𝑡)) (𝑖 = 1,2 . . .𝑁) (3.17)

(3.17) is the basis for the classical SIR epidemiological equations, and we see how

they evolve from the chemical master equation (3.15).

𝑑𝑆

𝑑𝑡
= −𝛽 𝑆(𝑡) 𝐼(𝑡)

𝑁
(3.18)

𝑑𝐼

𝑑𝑡
= 𝛽 𝑆(𝑡) 𝐼(𝑡)

𝑁
− (𝛾 +𝑄(𝑡)) 𝐼(𝑡)

= 𝛽 𝑆(𝑡) 𝐼(𝑡)
𝑁

− (𝛾 +NN(𝑊,𝑈)) 𝐼(𝑡) (3.19)

𝑑𝑅

𝑑𝑡
= 𝛾𝐼(𝑡) + 𝛿𝑇 (𝑡) (3.20)

𝑑𝑇

𝑑𝑡
= 𝑄(𝑡) 𝐼(𝑡) − 𝛿𝑇 (𝑡) = NN(𝑊,𝑈) 𝐼(𝑡) − 𝛿𝑇 (𝑡). (3.21)

The ODE system used in the present study shown in (5-8), is of the form (3.17).
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Microscopic picture: Stochastic Simulation Algorithm and its relation to

the master equation:

Another consequence of the master equation (3.15) is the existence and form of the

next-reaction density function 𝑝(𝜏, 𝑗⋃︀𝑥, 𝑡), which is defined as

• 𝑝(𝜏, 𝑗⋃︀𝑥, 𝑡)𝑑𝜏 = probability that given 𝑋(𝑡) = 𝑥, the next reaction in Ω will

occur in [𝑡 + 𝜏, 𝑡 + 𝜏 + 𝑑𝜏 ], and will be an 𝑅𝑗 reaction

Since ∑𝑗 𝑎𝑗(𝑥)𝑑𝑡 is the probability that some reaction occurs in the time interval

𝑑𝑡, the probability that a time interval 𝜏 is spent without any reaction occuring is

given by the exponential distribution: Exp(∑𝑗 𝑎𝑗(𝑥)𝜏). Thus, we obtain for 𝑝(𝜏, 𝑗⋃︀𝑥, 𝑡)

𝑝(𝜏, 𝑗⋃︀𝑥, 𝑡) = 𝑎𝑗(𝑥)Exp(
𝑀

∑
𝑘=1

𝑎𝑘(𝑥)𝜏) (0 ≤ 𝜏 < ∞; 𝑗 = 1,2 . . .𝑀) (3.22)

(3.22) is the basis for the stochastic simulation algorithm in which Monte-Carlo

techniques are used to construct unbiased realizations of the process 𝑋(𝑡). A typ-

ical algorithm for stochastic simulation of this kind, is the Gillespie Algorithm [45]

which can be viewed as a discrete space continuous time Markov jump process, with

exponentially distributed jump times.

Chemical Langevin Equation: Bridging the gap between macroscopic and

microscopic models:

Let the state of the system 𝑋(𝑡) at the current time 𝑡 be 𝑥𝑡. Let 𝐾𝑗(𝑥𝑡, 𝜏) be the

number of 𝑅𝑗 reactions that occur in the time interval [t, t+dt]. Thus, the number

of 𝑆𝑖 molecules in the system at time 𝑡 + 𝜏 will be

𝑋𝑖(𝑡 + 𝜏) = 𝑥𝑡𝑖 +
𝑀

∑
𝑗=1
𝐾𝑗(𝑥𝑡, 𝜏)𝜈𝑗𝑖 (𝑖 = 1,2 . . .𝑁) (3.23)

[46] approximated 𝐾𝑗 by imposing the following conditions

• Condition 1: No propensity function change This condition requires 𝜏 to
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be small enough so that none of the propensity functions 𝑎𝑗(𝑥) change notice-

ably. The propensity functions then satisfy

𝑎𝑗(𝑋(𝑡′)) ≈ 𝑎𝑗(𝑥𝑡) ∀𝑡 ∈ (︀𝑡, 𝑡 + 𝜏⌋︀,∀𝑗 ∈ (︀1,𝑀⌋︀ (3.24)

Due to this condition, 𝐾𝑗(𝑥𝑡, 𝜏) will be a statistically independent Poisson ran-

dom variable 𝑃𝑗(𝑎𝑗(𝑥𝑡), 𝜏). Thus (3.23) simplifies to

𝑋𝑖(𝑡 + 𝜏) = 𝑥𝑡𝑖 +
𝑀

∑
𝑗=1
𝜈𝑗𝑖𝑃𝑗(𝑎𝑗(𝑥𝑡), 𝜏) (𝑖 = 1,2 . . .𝑁) (3.25)

• Condition 2: Large number of reaction occurrences: This condition

requires 𝜏 to be large enough so that the expected number of occurrences of

each reaction channel 𝑅𝑗 in [𝑡, 𝑡 + 𝜏 ] is much larger than 1. Thus

∐︀𝑃𝑗(𝑎𝑗(𝑥𝑡), 𝜏)̃︀ = 𝑎𝑗(𝑥𝑡)𝜏 ≫ 1, ∀𝑗 ∈ (︀1.𝑀⌋︀. (3.26)

This condition enables us to approximate each Poisson variable 𝑃𝑗(𝑎𝑗(𝑥𝑡), 𝜏) by

a normal random variable with the same mean and variance.

Thus, (3.25) further simplifies to

𝑋𝑖(𝑡 + 𝜏) = 𝑥𝑡𝑖 +
𝑀

∑
𝑗=1
𝜈𝑗𝑖𝑁𝑗(𝑎𝑗(𝑥𝑡)𝜏, 𝑎𝑗(𝑥𝑡)𝜏) (𝑖 = 1,2 . . .𝑁) (3.27)

where 𝑁(𝑚,𝜎2) denotes the normal random variable with mean 𝑚 and variance

𝜎2. Using 𝑁(𝑚,𝜎2) =𝑚 + 𝜎𝑁(0,1), denoting the time interval 𝜏 by 𝑑𝑡 and the

unit normal random variable 𝑁𝑗(0,1) as 𝑁𝑗(𝑡), we obtain

𝑋𝑖(𝑡+𝑑𝑡) =𝑋𝑖(𝑡)+
𝑀

∑
𝑗=1
𝜈𝑗𝑖𝑎𝑗(𝑋(𝑡))𝑑𝑡+

𝑀

∑
𝑗=1
𝜈𝑗𝑖𝑎

1⇑2
𝑗 (𝑋(𝑡))𝑁𝑗(𝑡)(𝑑𝑡)1⇑2 (𝑖 = 1,2 . . .𝑁)

(3.28)

(3.28) can be written as a stochastic differential equation as
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𝑑𝑋𝑖(𝑡)
𝑑𝑡

=
𝑀

∑
𝑗=1
𝜈𝑗𝑖𝑎𝑗(𝑋(𝑡)) +

𝑀

∑
𝑗=1
𝜈𝑗𝑖𝑎

1⇑2
𝑗 (𝑋(𝑡))Γ𝑗(𝑡) (3.29)

where Γ𝑗(𝑡) are temporally uncorrelated, statistically independent Gaussian

white noise processes.

(3.29) is the Langevin equation, and it derives from the master equation pro-

vided that Condition 1 and Condition 2 are satisfied.

The Langevin equation (3.29) form of the ODE system (5-8) leads to the stochastic

differential equation used in the current study

𝑑𝑆 = −]︀𝛽 𝑆(𝑡) 𝐼(𝑡)
𝑁

{︀𝑑𝑡 −
}︂

]︀𝛽 𝑆(𝑡) 𝐼(𝑡)
𝑁

{︀𝑑𝑊1(𝑡) (3.30)

𝑑𝐼 = ]︀𝛽 𝑆(𝑡) 𝐼(𝑡)
𝑁

− 𝛾𝐼(𝑡) −𝑄(𝑡)𝐼(𝑡){︀𝑑𝑡 +
}︂

𝛽 𝑆(𝑡) 𝐼(𝑡)
𝑁

𝑑𝑊1(𝑡) −
⌈︂
𝛾𝐼(𝑡)𝑑𝑊2(𝑡) −

⌈︂
𝑄(𝑡)𝐼(𝑡)𝑑𝑊3(𝑡)

(3.31)

𝑑𝑅 = (︀𝛾𝐼(𝑡) + 𝛿𝑇 (𝑡)⌋︀𝑑𝑡 +
⌈︂
𝛾𝐼(𝑡)𝑑𝑊2(𝑡) +

⌈︂
𝛿𝑇 (𝑡)𝑑𝑊4(𝑡) (3.32)

𝑑𝑇 = (︀𝑄(𝑡) 𝐼(𝑡) − 𝛿𝑇 (𝑡)⌋︀𝑑𝑡 +
⌈︂
𝑄(𝑡)𝐼(𝑡)𝑑𝑊3(𝑡) −

⌈︂
𝛿𝑇 (𝑡)𝑑𝑊4(𝑡) (3.33)

In (3.30), 𝑊𝑖(𝑡) ∼ 𝑁(0, 𝑡) is a normally distributed random variable with mean

zero and variance 𝑡 or 𝑑𝑊𝑖(𝑡) ∼ 𝑁(0, 𝑑𝑡). It should also be noted that each 𝑊𝑖(𝑡)

represents an independent Brownian motion.

Comparison of the macroscopic, microscopic and Langevin SDE model for

our study

Figure 3-7a shows that the microscopic Stochastic Simulation Gillespie Algorithm and

the ODE model presented in Equation (6-9) in the main text show a good agreement

with each other. Figure 3-7b shows the comparison of the Chemical Langevin SDE

model shown in (3.30) ran for 1000 trajectories and the ODE model; which also show

a good agreement. Thus, we have shown the equivalence between the microscopic,

macroscopic and the Chemical Langevin model for our study. This equivalence allows
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Figure 3-4: For the states of New York, New Jersey and Illinois, figure shows: (a, c, e)
Model recovery of infected and recovered case count trained until 14 July, 2020. (b, d, f)
Quarantine strength function as discovered by our trained model

us to add fluctuating components to the standard deterministic SIR model as shown

in (3.30) and quantify the uncertainty resulting from these fluctuations.

Model specifications for each state

Table 3.4 shows the Model Mean Absolute Percentage Error (MAPE), epochs needed

for convergence and number of parameters optimized for the different states consid-

ered.
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(d) Louisiana
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(g) Oklahoma
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Figure 3-5: For the states of Louisiana, Nevada and Oklahoma: (a, d, g) Model recovery
of infected and recovered case count as of 14 July, 2020. (b, e, h) Quarantine strength
function as discovered by our trained model (with reopening). This is shown along with the
quarantine strength function which we use to simulate strict quarantine without reopening
after stay-at-home order was imposed. (c, f, i) Estimated infected count if strict quarantine
and lockdown measures were followed without reopening as compared to the values corre-
sponding to the actual early reopening scenario.
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(a) Texas
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(d) Utah
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Figure 3-6: For the states of Texas and Utah: (a, d) Model recovery of infected and recovered
case count as of 14 July, 2020. (b, e) Quarantine strength function as discovered by our
trained model (with reopening). This is shown along with the quarantine strength function
which we use to simulate strict quarantine without reopening after stay-at-home order was
imposed. (c, f) Estimated infected count if strict quarantine and lockdown measures were
followed without reopening as compared to the values corresponding to the actual early
reopening scenario.
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(a) Arizona
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Figure 3-7: (a) Comparison of the microscopic Stochastic Simulation Gillespie Algorithm
and the ODE model presented in Equation (6-9) in the main text. (b) Comparison of
the Chemical Langevin SDE model shown in (3.30) ran for 1000 trajectories (5%𝑎𝑛𝑑95%
quantiles are shown) and the ODE model.
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Table 3.4: Mean Absolute Percentage Error (MAPE) values are shown along with the num-
ber of epochs required for and the number of parameters optimized, for all states considered.

State Model MAPE Epochs Parameters
optimized

1. Arizona 5.4% 105 54
2. Florida 18.7% 105 54
3. Louisiana 12% 125 54
4. Nevada 3.14% 185 54
5. Oklahoma 7.9% 125 54
6. South Carolina 11.7% 125 54
7. Tennessee 6.9% 125 54
8. Texas 10.4% 245 54
9. Utah 3.79% 125 54

Figure 3-8: [Gaussian Process Residue Regression Model] Gaussian Process residue model
fitted to the infected case count shown for Arizona.
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Parameter Inference: Gaussian Process Residue Model

In order to validate the robustness of the model and the uniqueness of the parameters

recovered by the model, we consider a Gaussian Process residue model for uncertainty

quantification. Gaussian Processes have emerged as a useful tool for regression, clas-

sification, clustering and uncertainty quantification [137, 166].

In the present study, we fit a Gaussian Process regression model between the error

resulting from the best fit model and the infected data. For the prior over the func-

tion space, we use a mean of zero and variance described by a Squared Exponential

Kernel with a lengthscale of 1 and a significantly high signal standard deviation of

𝑂(104) which allows for noisy estimates of the posterior. Such a fitted model for the

infected count for a region under consideration (Arizona), is shown below in figure

3-8. Subsequently, we sample 500 error residues from this model and superimpose

them on the best fit predictions to simulate 500 samples of the infected case count

data. Finally, we apply our model described on these 500 samples of data, and recover

the parameters 𝑄(𝑡), 𝛽, 𝛾, 𝛿 from each of them.

Figures 3-9, 3-10 shows the inferred parameters for 500 realizations of the Gaussian

process residue model superimposed on the best fit model prediction applied to all

states considered, and shown for (a) the quarantine strength function 𝑄(𝑡), (b) the

contact rate 𝛽 and (c) the recovery rate 𝛾 + 𝛿. It can be seen that for all realizations,

𝑄(𝑡) is seen to follow a similar behaviour, which lies close to the best fit model pre-

diction. In addition, the inferred histograms for the contact rate 𝛽 and the recovery

rate 𝛾 + 𝛿 show a peak which is close to the best fit model prediction. This further

validates the robustness of the model for other regions considered and strengthens the

uniqueness of the parameters recovered by the model. A total of 12 million iterations

(60000 iterations for each realization of the Gaussian process residue model × 500

realizations) were performed on the MIT Supercloud cluster to generate parameter

histograms for each state considered.
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Figure 3-9: [Parameter Inference for US states] Inferred parameters for 500 realizations of
the Gaussian process residue model superimposed on the best fit model prediction applied to
the region considered for demonstration, and shown for (a) the quarantine strength function
𝑄(𝑡), (b) the contact rate 𝛽 and the recovery rate 𝛾+𝛿. A total of 12 million iterations were
performed on the MIT Supercloud cluster to generate parameter histograms for one state.
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Figure 3-10: [Parameter Inference for US states] Inferred parameters for 500 realizations
of the Gaussian process residue model superimposed on the best fit model prediction and
shown for the quarantine strength function 𝑄(𝑡) (left column), the contact rate 𝛽 (middle
column) and the recovery rate 𝛾+𝛿 (right column) for the US states considered in the present
study. A total of 12 million iterations were performed on the MIT Supercloud cluster to
generate parameter histograms for each region.
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3.7 Effective reproduction number comparison across

states

(a) Arizona (b) Nevada (c) South Carolina

(d) Florida (e) Louisiana (f) Oklahoma

(g) Texas (h) Tennessee (i) Utah
Figure 3-11: The comparison of the effective reproduction number, as defined in Equation
3.34 with and without reopening, shown for all US states considered in the present study

We estimate an equivalent of the effective reproduction number 𝑅𝑒𝑓𝑓(𝑡) [110] for

all states, with and without reopening. In a prior study of the QSIR model [31],

the authors have defined a Covid spread parameter, 𝐶𝑝 equivalent to the effective

reproduction number to be the following

𝐶𝑝(𝑡) =
𝛽

𝑄(𝑡) + 𝛾 + 𝛿
(3.34)
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Region 𝐶𝑝 range 𝑅𝑒𝑓𝑓 range
(Our study) (Ref. [57])

Arizona 1.1 − 1.4 1.15 − 1.3
Florida 1 − 1.1 1.07 − 1.64
Nevada 1.05 − 1.5 1.19 − 1.5

Louisiana 0.7 − 1 0.88 − 1.62
Texas 0.6 − 0.7 1.08 − 1,3

Tennessee 0.5 − 0.65 0.97 − 1.07
Table 3.5: 𝐶𝑝 and 𝑅𝑒𝑓𝑓 value ranges from reopening till one month post that, for 6 states
considered in our study; lie close to each other.

We have used this definition of the Covid spread parameter 𝐶𝑝(𝑡), which is equiv-

alent to the effective reproduction number 𝑅𝑒𝑓𝑓(𝑡) in the context of the QSIR model.

Figure 3-11 shows the comparison of the Covid spread parameter, as defined in Equa-

tion 3.34 with and without reopening, shown for all US states considered in the present

study. For all the states, we can see that without reopening, a diminished effective

reproduction number is seen, indicating moving in the right direction of halting the

infection spread.

To further validate the Covid spread parameter variation and its relation to the

effective reproduction number, we compare the variation in 𝐶𝑝 to the 𝑅𝑒𝑓𝑓 obtained

through a prominent Covid-19 forecasting model used by the CDC, USA [57, 142].

For all of the 9 states which we considered, the time at which an upsurge is seen in 𝐶𝑝

due to early reopening corresponds very well to the exact time at which an upsurge is

seen in 𝑅𝑒𝑓𝑓 [57, 142]. In addition, the 𝐶𝑝 and 𝑅𝑒𝑓𝑓 value ranges from reopening till

one month post that; for the states of Arizona, Nevada, Louisiana, Florida, Texas and

Tennessee lie close to each other, as mentioned in Table 3.5. This further validates

the results of our study and the quantitative metrics derived therein.
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Chapter 4

The SafeBlues project (Virtual Virus

Spread)

4.1 Summary

After the first 3 chapters, we now show how scientific machine learning can be used

in a novel application: virtual virus spread through Bluetooth tokens. Following is

the general premise of the SafeBlues project:

How do fine modifications to social distancing measures really affect COVID-19

spread? A major problem for health authorities is that we do not know.

In an imaginary world, we might develop a harmless biological virus that spreads

just like COVID-19, but is traceable via a cheap and reliable diagnosis. By introducing

such an imaginary virus into the population and observing how it spreads, we would

have a way of learning about COVID-19 because the benign virus would respond

to population behaviour and social distancing measures in a similar manner. Such

a benign biological virus does not exist. Instead, we propose a safe and privacy-

preserving digital alternative.

Our solution is to mimic the benign virus by passing virtual tokens between elec-

tronic devices when they move into close proximity. As Bluetooth transmission is the

most likely method used for such inter-device communication, and as our suggested

97



“virtual viruses” do not harm individuals’ software or intrude on privacy, we call these

Safe Blues.

In contrast to many app-based methods that inform individuals or governments

about actual COVID-19 patients or hazards, Safe Blues does not provide information

about individuals’ locations or contacts. Hence the privacy concerns associated with

Safe Blues are much lower than other methods. However, from the point of view of

data collection, Safe Blues has two major advantages:

• Data about the spread of Safe Blues is uploaded to a central server in real time,

which can give authorities a more up-to-date picture in comparison to actual

COVID-19 data, which is only available retrospectively.

• Sampling of Safe Blues data is not biased by being applied only to people who

have shown symptoms or who have come into contact with known positive cases.

These features mean that there would be real statistical value in introducing Safe

Blues. In the medium term and end game of COVID-19, information from Safe

Blues could aid health authorities to make informed decisions with respect to social

distancing and other measures.

In this study we outline the general principles of Safe Blues and we illustrate how

Safe Blues data together with neural networks may be used to infer characteristics of

the progress of the COVID-19 pandemic in real time. Further information is on the

Safe Blues website: https://safeblues.org/

4.2 Introduction

As the Covid-19 pandemic was evolving, there was a dire need for timely information

about the spread of the COVID-19 virus. The idea of using contact-tracing mobile

device apps to help in this endeavour received a considerable amount of attention

[9, 5, 24, 36].

There are essentially two classes of information that are provided by such apps:
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• information about the actual people that an infected person has met, and

• data that can form a basis for statistical inference and control of the epidemic.

All the contact-tracing apps that we are aware of seem to have collection of the first

type of information as their primary purpose. This is not surprising. It is clearly of

paramount clinical importance to identify infected people, both for treatment pur-

poses and to prevent them from spreading COVID-19. However, as the epidemic

progresses and the conversation turns to the best way of relaxing government con-

trols, it is also very important for decision makers to understand how the epidemic

behaves in the whole population. At the moment data exists only about individuals

who have come to the attention of authorities because they have been infected or

there has been some reason to think that they are at a high risk of infection.

In this chapter, we propose a framework that is aimed exclusively at collecting

the second type of information mentioned above. Compared to other frameworks, it

has the advantages of

• providing population wide aggregated data in real time,

• tracking the way that the epidemic might be progressing in parts of the popu-

lation that do not come to the attention of authorities, and

• being less intrusive from a privacy point of view.

In general, the spread of a virus depends on both its biological properties and the

behavioural properties of the population. Biological properties of COVID-19 have

been studied since the start of the outbreak [169]. On the other hand, population

behaviour is changing rapidly due to unprecedented social distancing measures and

is hard to observe and to predict. As a consequence, achieving tight real-time esti-

mates of time-varying parameters such as 𝑅eff(𝑡), the expected number of individuals

infected by an infectious person is a difficult task [124].

In an imaginary world, we might develop a harmless biological virus that spreads

just like COVID-19, but is traceable via a cheap and reliable diagnosis. By spreading

such an imaginary virus throughout the population, the spread of COVID-19 could
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be easily estimated because the benign virus would respond to population behaviour

and social distancing measures in a similar manner. Such a benign biological virus

does not exist. Instead, we propose a safe and privacy-preserving digital alternative

that we call Safe Blues.

The Safe Blues method would use Bluetooth signals similarly to the suite of exist-

ing and emerging contact tracing frameworks Proximity [36], Blue Trace [9] and the

Privacy-Preserving Contact Tracing framework currently being developed by Apple

and Google [5]. However, in contrast to these frameworks, Safe Blues does not record

information about individuals and their interactions. Instead, it will help understand

population wide dynamics in a privacy-preserving manner.

The Safe Blues idea is that mobile devices mimic virus spread via the safe exchange

of Bluetooth signals. Then, aggregated counts are reported to a server without record-

ing private information. By periodically creating various strands of Safe Blues and

repeatedly spreading them through the (mobile device) population, our analysis of

the signals will help to obtain aggregate estimates of population contact. The result

will be a real-time estimate of the effect of any social distancing rules that are put

in place. Further, when retrospective information about COVID-19 case numbers

becomes available, it can be combined with Safe Blues data to train sophisticated

machine-learning procedures to estimate COVID-19 infection numbers in real-time.

As an example, in Figure4-1 we present an illustration of the path of one ficti-

tious epidemic where government interventions are taken to curb the spread of the

disease. The figure also presents the paths of recorded Safe Blues activity. Decision

makers only receive data on the real epidemic lagged by 15 days, but the Safe Blues

information is received in real time. The epidemic begins with a proportion of 1.25%

infectives, along with 50 different Safe Blues Strands that have been initialised with

similar proportions of infectives.

After an initially rapid spread of the epidemic, social distancing regulations are

quickly tightened, and after two weeks, they are fixed to prevent the vast majority of

social contact. As these rules go into effect, the proportion of infectives begins a slow

but steady decline. All the while, Safe Blues Strands are being simulated on mobile

100



0 25 50 75 100 115 130
0.000

0.025

0.050

0.075

0.100

Day

P
ro

po
rt

io
n 

In
fe

ct
ed

Infected
Projection with SafeBlues
Latest Infection Observations

0 25 50 75 100 115 130
0.000

0.025

0.050

0.075

0.100

Day

P
ro

po
rt

io
n 

In
fe

ct
ed

Infected
Previous Projection
Projection with SafeBlues
Latest Infection Observations

Figure 4-1: Safe Blues presents a near real-time estimate of the potential for virus spread:
During days 100–115, Safe Blues activity is observed to rise and thus helps predict a rise
in COVID-19 cases. (a) Projection during days 100 − 115 based on Safe Blues real time
information. (b) Assessing the quality of the projection 15 days later.

devices. As a consequence, the proportion of Safe Blues infections mirrors the decline

in real infectives, driven by a corresponding reduction in physical proximity between

Safe Blues-enabled devices.

After 100 days since the start, and months of a promising decline in case numbers,

the social distancing rules are mostly lifted. The first plot presents the view at 115

days: about two weeks past this change. At this point, only data up to day 100

is observed, while Safe Blues information is observed in real-time up until day 115.

These two pieces of information have also been used to compute a live estimate of

the epidemic, shown as a light blue curve in Figure 4-1a. This estimate shows that

the epidemic is again on the rise, and that the reversal of social distancing rules may

have been too early or too aggressive.

The second plot shows the situation 15 days later, after which the lagged dynamics

of the epidemic have again been observed. Once more, the projection shows a strong

uptick of infections. Compared to the projection computed earlier, one can see that

the Safe Blues system mimics the dynamics and interaction patterns of individuals

with high accuracy to yield valuable information on the real-time behaviour of the

epidemic. This reflects the reality that we are observing with the COVID-19 epidemic:

a long incubation period and mild symptoms at the start of infection mean that
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diagnoses are delayed by weeks and real-time information is almost non-existent. In

this way, the Safe Blues framework may provide unique, invaluable visibility into the

current state of the epidemic and a powerful tool for early detection of subsequent

waves or outbreaks.

In addition to such real-time early warning predictions, Safe Blues has the poten-

tial for more. At the moment, when a government adjusts social distancing directives,

it is not clear what the effect on population behaviour is and, even if adherence is

immediate, time will elapse before the effect of the measures on the spread of COVID-

19 becomes observable. In particular, this makes it difficult to set social distancing

measures in a way that balances objectives while keeping 𝑅eff(𝑡) sufficiently low such

that the epidemic does not take off again. This is an important consideration towards

the end game of COVID-19. The Safe Blues idea will produce a faster feedback loop

because indicators of social contact can be observed in a more timely fashion.

If Safe Blues is implemented in the early or middle stages of the COVID-19 pan-

demic, information obtained during that period will be beneficial for later decision

making, especially when dealing with efforts to eliminate second or third waves of

infections. The initial analysis of this study indicates that Safe Blues data may be

useful for future projections of the epidemic. For this, we rely on statistical ma-

chine learning methods, mixed with solid principles of epidemiological modelling. As

COVID-19 progresses, the estimates will become more and more precise. A conse-

quence is that within three to six months of deployment of Safe Blues, estimates of

𝑅eff(𝑡) for COVID-19 could be tighter than they currently are. Similarly, the effect

of various forms of social distancing government directives on 𝑅eff(𝑡) will be better

understood. As an end result, governments will have a better grasp of how to opti-

mally “flatten the curve” while keeping the economy as active as possible.

Structure of this study: In Section 4.3.1 we describe the motivation and under-

lying principles of Safe Blues. We also discuss the level of privacy that Safe Blues

offers (Section4.3.1) and the potential for integration with current contact tracing
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apps (Section4.3.1). In Section4.3.2 we illustrate the power of Safe Blues for esti-

mation, future projections of the epidemic, and control. For this we present two

methods that we call Deep Safe Blues and Dynamic Deep Safe Blues. We then con-

clude in Section4.4. Further information is also available on the Safe Blues website:

https://safeblues.org/.

This study also contains an extensive set of appendices. In Appendix4.5.1 we

overview the software and the protocols of communication needed for Safe Blues.

In Appendix4.5.2 we spell out some of the details of the machine learning methods

employed for estimation and projection. In Appendix4.5.3 we describe the three test

bed models that were used to evaluate the potential power of Safe Blues.

4.3 Results

4.3.1 Underlying principles

In the modelling of epidemics, the effective reproduction number 𝑅eff(𝑡) is the central

quantity that determines how the epidemic grows or diminishes. This quantity is

defined as the average number of individuals infected by each sick individual at time

𝑡. For COVID-19, early estimates indicate that, without significant control measures

being in place, 𝑅eff(𝑡) lies in the range of 2 − 4 [95]. However, 𝑅eff(𝑡) depends on a

combination of biological and behavioural factors. Some key biological factors include

the propensity of the pathogen to infiltrate human hosts, the duration of the disease,

and the susceptibility of different age groups. Some key behavioural factors include

personal hygiene practices, hand shaking practices and, importantly, the proportion

of time that individuals are in physical contact or close proximity. The biological

factors tend to be uncontrollable and, with the exception of weather effects, may

be assumed to remain constant as long as significant virus mutation does not occur.

However, the behavioural factors are controllable, at least to some extent. Indeed the

suites of social distancing measures imposed in over 150 countries during the first few

months of 2020 are attempts to control the behavioural component of 𝑅eff(𝑡) [73].
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Such social distancing measures, some of which are outlined in the impactful report

[38], have been introduced to slow down the spread of COVID-19. Nevertheless, at

this early stage, it is very difficult to quantify the effect that any particular social

distancing measure is having on 𝑅eff(𝑡) and the dynamics of the pandemic.

Such lack of quantifiability is problematic because all models attempting to aid

policy makers by projecting the course of the epidemic require an estimate of 𝑅eff(𝑡).

This is often obtained by modelling that attempts to quantify the level of human to

human interaction either at broad scales [124, 104, 109] or at finer scales [38, 19, 155].

A notable recent attempt to include such a quantification [77] used survey sampling of

the UK population to estimate that 𝑅eff(𝑡) shifted from around 2.6 prior to lockdown,

to around 0.62 after lockdown, which occurred in March 2020. While impressive,

such questionnaire-based surveys are difficult to execute and are not able to yield

real-time estimates of 𝑅eff(𝑡). Other attempts at measuring 𝑅eff(𝑡) [90] use up-to-

date counts data such as the now famous dashboard by the CSSE at Johns Hopkins

[33]. However, in such cases the problem is that reported “live data” about COVID-

19 is based only on confirmed tested cases and does not consider the large number

of asymptomatic cases or untested cases that must exist. Better estimates become

known only retrospectively, after the pandemic has progressed.

At this time (April-May 2020) a considerable number of countries still have a

significant amount of infection, and many have imposed a suite of social distancing

measures that together seem to be having the effect of reducing 𝑅eff(𝑡). However, it

is not clear which individual measures are driving this. In the second half of 2020 and

onwards, getting more precise estimates of effectiveness will be very important. Many

governments will grapple with the optimal way of lifting (and at times reinstating)

social distance measures as they attempt to balance economic revival with health

considerations. For this, having fine-tuned live estimates of 𝑅eff(𝑡) and related quan-

tities is of paramount importance. Safe Blues is designed to serve as a tool that can

help in this arena. If it is introduced at around May-July 2020, then after a training

and calibration period, by September 2020 and onwards the tool has the potential to

serve as an aid to policy makers when they are considering the adjustment of social
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Figure 4-2: An illustrative timeline of the epidemic in a particular region. Introduction of
Safe Blues at around May-July may imply that by September meaningful insights about the
epidemic can be obtained. This can help to inform social distancing policy in the second
half of 2020.

distancing directives. Figure4-2 presents a simple illustration of such a timeline.

How it Works

The key idea of Safe Blues is to obtain real-time estimates of gross population engage-

ment dynamics in a safe and privacy-preserving manner. In real time, Safe Blues data

can be processed to yield estimates of COVID-19 𝑅eff(𝑡) as well as other parameters

that can be used to inform future epidemiological models.

The system works by having personal mobile devices take part in an ongoing safe

real-time virus spread simulation where, by means of Bluetooth signals, the time that

individuals spend in close proximity is a key driving factor. This is done in a way that

does not compromise individual privacy, does not cause any risk to human health,

and does not introduce any risk to individual software or hardware. See Figure4-3

for a schematic illustration of the Safe Blues system.

A Safe Blue Strand is a virtual token that circulates and replicates between the
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mobile devices of individuals using dynamics designed to reflect the transmission of an

actual biological virus but without any threat to safety, software, or privacy. Similar

to a biological virus, the harmless Strand is counted as “active” for a finite duration

of time in each mobile device that is “infected”. During that time, if the mobile device

is in close proximity to another device, there is a chance for the Strand to “spread”

to the neighbouring device. Similarly, if the mobile device is in relative isolation, the

Strand is not likely to spread and the mobile device will eventually “recover”. Further,

as with actual biological viruses, Strands can have an incubation period during which

they are not infective.

By allowing multiple types of Strands, or multiple Strands, to “infect” the mobile

device population, the “epidemics” of the Strands respond to social mobility and

social distancing measures in a similar (but not identical) way to COVID-19 response.

However, in contrast to COVID-19, the number of devices “infected” by Strands can

be measured in real time.

The Safe Blues system will periodically “inject” such Strands into the mobile host

population and obtain real-time counts of the number of “infected” hosts for each

Strand. While the population dynamics of each Strand will not directly resemble the

dynamics of COVID-19, the underlying driving mechanism of close physical social

interaction will be shared by both the real biological virus and the harmless Strands.

Hence, we expect the course of Strand “epidemics” to be coupled with the course of

the COVID-19 epidemic, especially under varying social distance measures.

The mechanism of communication between devices is short-range Bluetooth. This

is similar to the communication protocol used by many emerging contact tracing

apps (see Section4.3.1 below). In such a setting, as individuals spend time in close

proximity, the propagation of these virtual Strands has a higher tendency to succeed

and spread. Conversely, as individuals maintain a higher level of social distancing,

the Safe Blues Strands are less likely to spread. Unlike systems that use contact

tracing apps, the Safe Blues system is oblivious to the actual health status of specific

individuals. For example, in Figure4-3, some individuals are infected by COVID-19

(red) while others are not (green). However Safe Blues is not aware of and does not
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Strand 1            Strand 2

Figure 4-3: Individuals of the population with Safe Blues enabled devices take part in
spreading Safe Blues Strands. Marked individuals support the Safe Blues system by carrying
devices with Safe Blues software. COVID-19 infected individuals are in red and others are in
green. The Safe Blues system operates independently of the COVID-19 status of individuals.
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Figure 4-4: A potential course of the epidemic (number infected) with associated Safe Blues
Strands. Social distancing measures modify the course of the epidemic and in the process
influence Safe Blues.

need this private information. Similarly, some individuals participate in Safe Blues

(as signified by a grey “mobile device”) and others do not. Clearly some level of

population participation is required, but Safe Blues does not require all individuals

to participate.

Figure4-4 illustrates the outcome from a simulation of the COVID-19 epidemic

in parallel to multiple Strand trajectories. Specific details about our simulation test

beds are given in Appendix4.5.3. The key point illustrated in Figure4-4 is that mul-

tiple Strands can co-exist in parallel to the COVID-19 epidemic and that they are

influenced by social interaction and social distancing in a similar way to COVID-19.

Further Details

Each Strand is uniquely identified by an integer 𝑠. The Strand has associated start

time 𝑡start at which the server seeds the Strand with the participating mobile devices.
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As this occurs, each device independently chooses whether to get “infected” by the

strand, with probability 𝑝0, or ignores the seeding otherwise. Thus devices generate

random outcomes that affect the (Safe Blues Strand) epidemic. Hence at 𝑡start, if

there are 𝑁𝐵 mobile devices with Safe Blues enabled, there will be approximately

𝑝0 ×𝑁𝐵 devices infected with the specific Strand.

As an individual together with their Safe Blues-enabled device physically nears

another individual with such a device, Bluetooth is used to transmit active Strands

from the infected individual to the other. This communication involves a short-

range distance measurement denoted by 𝐷. The duration of the physical proximity,

denoted by 𝜏 , is also estimated. Then the probability of infection is given by a

function 𝐼𝑠(𝐷,𝜏), specific to Strand 𝑠. Although no Strand will behave exactly like

COVID-19, statistical analysis will later reveal which choices of the function 𝐼𝑠(𝐷,𝜏)

yield better fits to COVID-19 data.

Once a device is infected by the Strand, it enters a random incubation period.

During that period the device “carries” the Strand but cannot infect other devices.

Once the incubation period is complete, the device becomes “infective” and starts

to infect other devices that are in close proximity. This occurs until the device has

“recovered”.

Appendix4.5.1 provides further details on the suggested system architecture from

a software engineering point of view.

On the Penetration Proportion and Strand Parameters: We use 𝑁 to denote

the number of individuals in a population. In determining the parameters of a Strand,

the penetration proportion 𝜂 = 𝑁𝐵⇑𝑁 plays a key role. Assume that at a given point

in time, COVID-19 has an estimated infection rate of 𝛽 and removal rate of 𝛾. We

can then set the infection rate and recovery rate of strand 𝑠 to roughly follow

𝛽𝑠 ≈
𝛽

𝜂
and 𝛾𝑠 ≈ 𝛾, (4.1)
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where the approximation is due to the lack of exact knowledge about 𝛾 and 𝛽, as well

as due to the desire for some heterogeneity between strands. That is, we wish for

the strands to have different attributes, yet they should roughly reflect the behaviour

of COVID-19. The choices of the parameters 𝛽𝑠 and 𝛾𝑠 can then be incorporated

into actual operational strand parameters such as 𝐼𝑠(⋅, ⋅) and the infection period

distribution, with details appearing in Table4.2. For the incubation period, we may

want to set the strand parameters to be lower than typical COVID-19 parameters,

for quicker response time in measurements.

The motivation for Equation(4.1) comes from basic epidemiological considerations

appearing in SIR models. As an example, consider the difference equations associated

with ModelI (see Appendix4.5.3). In this case, if one decreases the population size by

a factor of 𝜂−1, then achieving similar epidemic behaviour (on the smaller population)

can be achieved by setting 𝛽𝑠 and 𝛾𝑠 as in Equation(4.1).

As for the needed penetration level of Safe Blues, the larger a population is the

smaller the penetration proportion 𝜂 can be while still generating useful data. Nu-

merical experiments suggest that in a relatively small population of 𝑁 = 100,000

individuals an 𝜂 between 0.1 and 0.2 already gives high-quality data. We hypothesise

that with 𝑁 in the order of millions a penetration level 𝜂 between 0.05 and 0.1 may

be sufficient for a successful estimation using Safe Blues. It is important to note that

the required penetration level for Safe Blues is much lower than for contact-tracing

apps to be successful.

Privacy with Safe Blues

Implicit in the design of Safe Blues is an important privacy feature: no individual

interaction information or any other private information is shared between devices

or between a device and the database. The entire protocol runs without associating

long-term identifiers with users and no user can ever know the identity of any other

user. In fact, users need not share their location, name, number, identity, health

or infection status, movement patterns, or any other type of personal or identifying

information with the app. Similarly, the devices do not share anything else between
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each other than the Strands with which they are currently infected. A specifica-

tion of the information transmitted between Safe Blues devices and the server is in

Appendix4.5.1.

This is in contrast to contact-tracing apps that raise more serious concerns about

personal privacy, even when engineered using novel privacy-protecting methods. Fun-

damentally, this is because the goal of any contact-tracing app is to observe relation-

ships between individual people through their interactions, whereas the goal of Safe

Blues is to collect only aggregate simulated epidemic signals. Hence, Safe Blues

can be implemented in a way that preserves privacy to a greater extent than any

currently-proposed or implemented contact-tracing solution [9, 36, 11, 136]. Thus a

proper implementation of Safe Blues can provide stronger privacy guarantees than

apps attempting to mitigate COVID-19 through contact-tracing methods.

Nonetheless, there are some issues that need to be addressed. One is the case

of an adversary choosing a rare Strand and infecting a user with that Strand, then

tracking the spread of that particular Strand to attempt to track the user. In extreme

cases where only very few users are affected by a Strand, a third party may be able

to achieve some sort of de-identification. This, however, can be mostly subverted by

making sure that the seeding probability of each Strand is sufficiently large to make

Strands common. Note also that to transmit a rare Strand, the adversary would need

to be within several meters of the target for an extended period of time. The fact that

the seeding has to occur on each device makes sure that an impostor of the Database

cannot perform a similar attack.

In large deployments, governments and health authorities implementing Safe Blues

may wish to gain fine-tuned information regarding the geographic patterns and po-

tential spread of the virus. For this, they could add a local identifier in the app.

However, such an identifier should refer only to a general region such as a country,

state, or a major city. This is also approximately the same level of granularity at

which users can be trivially tracked through their internet address, and a myriad of

other well-established techniques.

Finally, there may be concern that each device must connect back to a central
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Database each day. This is a valid concern, but must be understood in the context

of modern apps, where most users already accept regular connection back to servers.

This is a widespread practice in almost every app, for various reasons including au-

tomatic updates and bug reporting. With any such connection there is some privacy

leakage through internet addresses and other identifiers of traffic patterns. However,

with Safe Blues, the Hosts do not share any long-term identifiers with the server,

and there is no way for a server to tag a user across multiple database pushes. This

makes it impossible to perform tracking or de-identification beyond that provided by,

for example, knowledge of any website that a user visits.

Potential for Integration with Existing and Emerging Apps

To the best of our knowledge, the Safe Blues system significantly differs from all

existing and emerging apps dealing with COVID-19. Contact-tracing apps are con-

cerned with individuals and interactions, whereas the Safe Blues system estimates

general population dynamics. Nevertheless, in terms of the software and hardware

infrastructure, there is room to embed the Safe Blue protocol within contact-tracing

apps in a simple manner. Alternatively, one may consider implementing a stand-alone

Safe Blues app, in which case “marketing” the app through a trusted organisation is

essential to gain a user base, similar to any other app of this kind.

At the time of writing, multiple countries and organisations have already im-

plemented contact-tracing apps using Bluetooth, with several additional countries

rapidly developing their own solutions [24, 36]. This includes the recently published

white paper associated with the Singaporean app TraceTogether [9]. Several of the

organisations developing these apps have also made the source code available.

We examined the source code of some of the apps and observed that implementing

the Safe Blues protocol within them would generally be a straightforward extension

to the existing work. In Table4.1 we list current contact-tracing apps that use Blue-

tooth where, if not stated otherwise, an app is available for both Android and iOS. At

the moment, many of these apps require running in the foreground. However, Apple

and Google are rapidly developing APIs (Application Program Interfaces) for con-
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Country App Name and reference Source Code Comments
Australia CovidSafe [7] Not released A clone of TraceTogether [53]
Czech Republic eRouska [116] [117]
Germany ITO [74] N/A Only on Android at this time
India Aarogyasetu App [106] N/A Also uses GPS
Israel Hamagen [119] [118] Also uses GPS
North Macedonia StopKorona! [120] N/A
Poland ProteGO! [115] [114] Not available at this time
Singapore TraceTogether [53] OpenTrace [52] BlueTrace specification [9]

Table 4.1: Current contact-tracing apps that use Bluetooth.

tact tracing [5]. These APIs will allow government-supported apps to use Bluetooth

communication in the background.

4.3.2 Using Safe Blues for Accurate COVID-19 Projections

While contact tracing apps can allow public health researchers to identify specific

individuals who might possibly be infected, the focus on the population of known

infected individuals leads to a heavily-biased sample. This does not aid in estimating

the overall spread of the infection. We now illustrate how our alternative approach

via Safe Blues is able to give sufficient information for estimating the real-time spread

of the disease and allows for estimating the potential effects of social distancing mea-

sures.

Our methodology relies on tools from machine learning, including Deep Neural

Networks [49]. We also rely on methods for fitting UODEs (Universal Ordinary

Differential Equations) [129]. While these are advanced mathematical and statistical

tools, using our methodology is simple from a user perspective.

The basic setup follows the paradigm presented in Figure4-1 where information of

COVID-19 is available up to a certain point, after which only Safe Blues information

is available, typically with a delay in the order of two weeks. This represents the fact

that COVID-19 information is not present in real time, in contrast to Safe Blues. The

relative magnitude of historic social distancing measures also is available as input for

projections (for example “full lock down”, “partial lock down”, etc.).
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Figure 4-5: Deep Safe Blues: Safe Blues detection of a second wave applied to data generated
from Models I, II, and III. The proportion of infected individuals is only known until the
vertical black lines. After that point, only Safe Blues information is available. Nevertheless,
Deep Safe Blues (trained up to the black line) is able to accurately predict a second wave
of COVID-19 attack.
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Our analysis aims to illustrate the predictive power that can be gained by utilising

Safe Blues information. For this we created three models that aim to mimic the true

spread of an epidemic while taking into account the interaction between individuals

via mobility or other means. A detailed description of the models is in Appendix4.5.3.

The purpose of these models is not to create a detailed representation of COVID-19

spread, but is rather to supply test beds for our projection methodology. Importantly,

the projection methods that we present here do not rely on the specific form of these

models. In fact, these specifics are not needed for understanding how Safe Blues

can be used for projection and estimation. All that is important is that each model

simulates a COVID-19 epidemic, subject to time-varying levels of social distancing,

and captures the Safe Blues dynamics, also affected by the same social distancing

measures. We label the models as Model I, Model II, and Model III, and use a single

simulation run for each model. The details of the parameters used for the simulation

runs are also in Appendix4.5.3.

Our goal is to develop methods for using Safe Blues information for a variety of

tasks. These include:

1. Early warning of a rise towards a “second wave”.

2. Understanding the effect of various social distancing regimes on 𝑅eff(𝑡).

3. Designing optimal control policies for fine tuning social distancing measures

towards the end game of COVID-19.

4. Projecting the course of the epidemic in the medium and long run.

5. Estimating the proportion of asymptomatic carriers of COVID-19.

6. Computing uncertainty bounds for projections.

7. Optimally choosing parameters and timing for newly created Safe Blues Strands.

We now demonstrate the potential power of Safe Blues for (1) and (2) above. (1) is

achieved using a neural network model that we call Deep Safe Blues. (2) is achieved

115



using a universally fitted ODE model that we call Dynamic Deep Safe Blues. We

overview the results of these predictive methods and leave analysis of methodology

dealing with (3)–(7) for future work.

Deep Safe Blues: Early Detection of a Second Wave

We created a deep neural network model that can be trained in real time based on

the ensemble of Safe Blues strands and historical COVID-19 information. We call

this Deep Safe Blues. It is able to accurately detect the start of a trend towards a

second peak in the number of infected individuals a significant time before such data

is available. Figure4-5 demonstrates the application of Deep Safe Blues for simulation

traces from Models I, II, and III. Importantly, the same neural network architecture

was used for all three simulation Models.

Our results demonstrate the strength of Safe Blues for early detection of a second

wave and showcase that the auxiliary information provided by Safe Blues Strands can

be valuable for detecting the start of a second peak. This can enable public health

officials to respond during the essential early period before infection estimates can be

updated.

A full specification of the fitting methodology is provided in Appendix4.5.2.

Dynamic Deep Safe Blues: Policy Projection

In addition to being a tool for estimating the current number of infected individuals

before such data is available, Safe Blues can also help estimate the potential effect

of policy decisions. For this we developed Dynamic Deep Safe Blues which is a

tool for projecting 𝑅eff as a function of future levels of social distancing. Figure4-6

demonstrates data-driven projections of 𝑅eff under various policy levels. Such results

can be used as input to decision makers for helping to determine the levels necessary

to contain the outbreak and ensure that exponential growth into a second peak does

not occur.

The implementation of Dynamic Deep Safe Blues is based on the training of a

UODE [129] using the extra information provided by the Safe Blues Strands. This
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Figure 4-6: Title: Demonstration of policy projection and refinement using Dynamic Deep
Safe Blues on Models I, II, and III. For each of these models, we predict the effect of the
social distancing strength on 𝑅eff(𝑡0) where 𝑡0 is the end of the training period (figures on
the right). We also demonstrate potential near future trajectories as a function of policy
decision (figures on the left).
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approach mixes neural networks into epidemiological models in order to directly learn

how policy decisions effect the spread of Safe Blues and the actual infection. Together,

this allows for utilising the hidden information obtained from the simulated strands to

quantify the effectiveness of social distancing approaches and determine the policies

required to prevent further disease outbreak.

4.4 Discussion

This study has presented a framework and method that can aid in estimation and

control in epidemics, specifically COVID-19. To the best of our knowledge this type

of framework is fundamentally different from existing solutions and other suggestions

that have appeared in the literature [122].

The machine learning principles and analysis that we used in this study appear

to be robust enough to yield immediate value from collected Safe Blues signals. We

have named these Deep Safe Blues and Dynamic Deep Safe Blues. Nevertheless,

there remain open questions requiring further investigation. These include designing

optimal control policies for fine tuning social distancing measures, projecting the

course of the epidemic in the medium and long run, estimating the proportion of

asymptomatic carriers of COVID-19, computing uncertainty bounds for projections,

and optimally choosing parameters and timing for newly created Safe Blues Strands.

We also mention a potential extra benefit of the Safe Blues idea. In a second or

third generation of apps, one may consider presenting individual users with an up to

date count of how many strands of Safe Blues their devices are infected with. One

may envision that this will enable users to get a feel for the level of social distancing

that they are practising and to stay socially responsible as advised by government.

We believe that Safe Blues can have significant impact in the end game of COVID-

19 as it may support governments in making optimal decisions with respect to ad-

justments of social distancing measures. Safe Blues can be easily implemented as

a layer within a current contact-tracing app, or alternatively be hosted by other
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COVID-19 related apps. Appendix4.5.1 provides an accessible description of what

such an implementation requires. Due to the critical nature of COVID-19, our team

at https://safeblues.org/ is willing and able to advise and help with such implemen-

tations and with the analysis of collected Safe Blues data.
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4.5 Experimental Procedures

4.5.1 Software and Protocol Overview

We now describe a simple and straightforward protocol for the Safe Blues system,

involving “Hosts”, “Strands”, a “Database”, and a “Controller” as its basic entities.

The Hosts are mobile devices carried by individuals that run Safe Blues enabled

software, such as an iOS or Android mobile phone. These Hosts attempt to infect

each other with Safe Blues Strands when in physical proximity, akin to how the

individuals themselves might infect each other with a real virus when in physical

proximity. The central Database exposes a restful API that accepts and aggregates

infection reports from Hosts and provides an endpoint to download an updated list of

all current Strands along with their parameters. Additionally, the Database tracks the

spread of each Strand through aggregate state counts, and allows interested parties to

download aggregate time-series data on the spread of Strands. Finally, the Controller

is a person charged with introducing new Strands into the system in response to

machine learning and forecasting needs.

Hosts do not themselves need to be uniquely identified, however an implementation

may wish to include a short-lived identifier that is regenerated regularly and can be

used in conjunction with information about the source of the infection reports to guard

against bad actors filling the database with false reports. The notion of a locale, such

as a country or state may be implemented for the purposes of more geographically

fine-grained detail on Safe Blues spread. We omit such details here and present only

a basic design assuming a single-locale deployment.

The main activities of the distributed system are implemented by hosts and de-

noted with upper-case letters, these include PULL-STRANDS and PUSH-INFECTION-REPORT

for interacting with the Database; SHARE-LIST, DISCOVER-NEIGHBORS-LIST and DISCOVER-NEIGHBORS-PROXIMITY

for interacting with other Hosts via Bluetooth. Finally, the activities UPDATE-AFTER-MEET-NEIGHBOUR

and PERIODIC-UPDATE update the Strand states within a Host. The activities are

listed in Table4.5 and explained in detail later. Since a Host may be turned off, may
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encounter connection issues, or its timely operation may be affected in many other

ways, we assume a “best effort” schedule for performing these actions. This means

that if a Host misses an activity, it ought to perform it as soon as it resumes operation.

Strands

Each Strand, uniquely identified by a strandID, is defined by an immutable list of

parameters presented in Table4.2. For each Host, a given Strand acts as a state

machine with four infection states: SUSCEPTIBLE, INCUBATING, INFECTED,

or REMOVED. When a new Strand is pulled from the Database as described later,

the Host is either seeded with the Strand with probability seedingProbability in

which case that Strand starts in state INFECTED, or the Host is not seeded, and

the Strand starts in state SUSCEPTIBLE. After this initial seeding, a Host may

“catch” the Strand from another Host with some probability at any time between

startTime and endTime given that the other Host is in close proximity and its state

for that Strand is INFECTED. This happens at each encounter with an infected

host according to a probability determined by the infectionProbabilityMap that

depends on the mean distance and total duration of that encounter. If the Host is to

catch the Strand, then that Host enters the INCUBATING state for a random length

of time, determined by incubationPeriodDistribution. Note that a Host that is

seeded with a Strand does not undertake this incubation period. Regardless of how a

Host transitioned into the INFECTED state, it stays in that state for a random time

determined by the infectiousPeriodDistribution. Finally, after being in state

INFECTED for this amount of time, the Host transitions into REMOVED state and

stops interacting with that Strand. The mechanics of these transitions are defined in

detail in later sections.

The Database

The Database exists to distribute the Strand parameters to Hosts and to track and

aggregate the spread of each Strand. The Host pulls an updated list of Strands from

the Database daily in an activity denoted PULL-STRANDS in order to discover newly
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Parameter Name Value Type
𝑠 strandID Unique identifier.
𝑡start startTime Date and time at which the Strand begins.
𝑡end endTime Date and time at which the Strand ends.
𝑝0 seedingProbability Seeding probability.
𝐼(𝐷,𝜏) infectionProbabilityMap Mapping infection probability as distance (cm)

and exposure (min).
𝐹𝐼 incubationPeriodDistribution The distribution of the incubation period in hours.
𝐹𝑅 infectiousPeriodDistribution The distribution of the infection period in hours.

Table 4.2: The parameters that define a single Strand.

Parameter Meaning
currentIncubatingStrands List of current Strands with state INCUBATING on the Host.
currentInfectedStrands List of current Strands with state INFECTED on the Host.
currentRemovedStrands List of current Strands with state REMOVED on the Host.

Table 4.3: The daily information pushed to the Database from each Host via the
PUSH-INFECTION-REPORT activity.

introduced Strands. We describe this and other Host activities in the next subsection.

The implementation should begin advertising an upcoming Strand at least one day

before its startTime, to guarantee full propagation of its parameters prior to the start

of its spread. Additionally, an implementation may wish to version Strand definitions

or distribute changes to Strand definitions to reduce traffic.

The Host pushes a report of its current state for each Strand (in one batch) to

the Database on a daily basis in an activity called PUSH-INFECTION-REPORT. In a

PUSH-INFECTION-REPORT message, the Host sends to the Database three lists con-

taining the set of Strands whose state is currently INCUBATING, INFECTED, and

REMOVED, respectively. An implementation may wish to randomly distribute these

pushes throughout the day to avoid burst traffic to its servers.

After collecting daily pushes from Hosts, the system aggregates the individual Host

states to create totalHostsSusceptible, totalHostsIncubating, totalHostsInfected,

and totalHostsRemoved for each strand. This update is done in a straightforward

manner based on the collected history of state information as described in Table4.3.

This server side aggregation uses a best effort discipline to deal with missing values
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Parameter Meaning
strandID The unique identifier of the Strand.
date The date.
totalHosts An estimate of the total number of participating Hosts.
totalHostsSusceptible The estimated number of Hosts in state SUSCEPTIBLE for

strandID on date.
totalHostsIncubating The number of Hosts in state INCUBATING for strandID on date.
totalHostsInfected The number of Hosts in state INFECTED for strandID on date.
totalHostsRemoved The number of Hosts in state REMOVED for strandID on date.

Table 4.4: Aggregate information publically available via the Database.

and other inconsistencies. A total estimate of the number of participating Hosts is

presented via totalHosts (this number varies over time based on Safe Blues usage).

This aggregate time series data is exposed for visualisation and data-analysis pur-

poses in an open manner where for each date and active strandID for that day, the

fields in Table4.4 are made available.

Hosts

The Safe Blues protocol runs on Hosts and communicates over Bluetooth, either in

a stand alone Safe Blues app, or possibly within other COVID-19 related apps that

already utilise Bluetooth communication (see Section4.3.1). The Bluetooth specifica-

tion defines many roles through its own state machine to facilitate communication,

of which the Advertiser and Scanner roles are of importance for this discussion. An

Advertiser continually broadcasts short advertising packets on pre-defined advertis-

ing frequencies, whereas a Scanner reads those packets being broadcast along with a

small set of metadata such as the Advertiser address and a Received Signal Strength

Indicator (RSSI). Most full featured Bluetooth devices can perform both roles simul-

taneously. The Bluetooth specification [125] further allows devices to pair with each

other and establish sessions. In this discussion, we assume a model of Bluetooth

using Advertisers and Scanners without any session creation, though it is partially

incomplete due to implementation constraints, and an actual implementation might

need to use slightly different interfaces, or simulate this model via Bluetooth sessions.
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Activity Meaning
PULL-STRANDS Update list of Strands from Database. See Table4.2.
PUSH-INFECTION-REPORT Report Host’s state for each Strand to the Database.

See Table4.3.
SHARE-LIST Advertise list of Strands in state INFECTED to Hosts in

proximity. See Table4.7.
DISCOVER-NEIGHBORS-LIST Receive and process a SHARE-LIST from another Host as a

result of Scanning.
DISCOVER-NEIGHBORS-PROXIMITY Estimate contactDuration and averageDistance of

neighbor Host during Scanning.
UPDATE-AFTER-MEET-NEIGHBOUR Update local Strand state after a Host leaves proximity.

See Table4.6.
PERIODIC-UPDATE Update local state information periodically (hourly).

See Table4.6.

Table 4.5: Activities carried out by Hosts.

Discussion of practical issues and one way of implementing this has been reported

earlier [9].

The list of activities carried out by a Host is described in Table4.5. The remainder

of this subsection outlines how these activities are carried out, together with the

associated data.

The local state information stored and updated by the Host is describe in Table4.6.

A tempID is used to distinguish one Host from another in a small spatio-temporal win-

dow, allowing Hosts to correlate several Advertising packets to one Host, which in turn

allows for computing the total duration of close contact. The tempID may be a ran-

dom Bluetooth address and ought to be changed regularly, such as on each hour. The

currentInfectedStrands is the list of Strands with state INFECTED for the Host.

Infection may occur via “seeding” or via communication with neighbouring Hosts.

For each such Strand there is an infection end time listed in strandInfectionEnd

and once infection has ended, the Strand moves to REMOVED state and is removed

from currentInfectedStrands and updated to currentRemovedStrands (see the

PERIODIC-UPDATE activity description below). The currentIncubatingStrands is

a list of Strands that the Host has acquired via interaction with neighbouring Hosts

and are still in the “incubation period”. These Strands have a corresponding end time
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Parameter Meaning
tempID A temporary unique identifier for the Host.
currentIncubatingStrands A list of the Strands which are in state INCUBATING for the

Host.
currentInfectedStrands A list of the Strands which are in state INFECTED for the Host.
currentRemovedStrands A list of the Strands which are in state REMOVED for the Host.
strandIncubationEnd A list of times for which each Strand in the INCUBATING state

will change to INFECTED state.
strandInfectionEnd A list of times for which each Strand in the INFECTED state

will change to REMOVED state.

Table 4.6: Local state information of a Host.

in the strandInfectionEnd list. The Host need not maintain a list of SUSCEP-

TIBLE Strands, as those are precisely the ones not in currentIncubatingStrands,

currentInfectedStrands, or currentRemovedStrands.

The PULL-STRANDS activity in the Host discovers new Strands in the Database.

When a new Strand is received from the Database, a “seeding” event occurs, whereby

for each Strand pulled for the first time, the Host randomly decides whether to become

infected by the strand or not based on the probability seedingProbability. If the

outcome is to become infected, then infection begins at startTime. Even if such

a seeding infection doesn’t take place, the parameter information about the Strand

should be retained because the Host may be infected by another Host later on.

When two or more Hosts are in physical proximity, each Host uses a “best effort”

method to execute SHARE-LIST, DISCOVER-NEIGHBORS-LIST and DISCOVER-NEIGHBORS-PROXIMITY.

The exact manner in which these activities are executed is implementation specific

and may depend on the host operating system, on the exact app in which the protocol

is implemented, and on hardware considerations. One possibility is for an implemen-

tation to encode the state of each Strand in a bit field, where each Strand has a fixed

position in the field specified as one of its parameters; this allows for a space-efficient

transfer of Strand states and an efficient way of checking which Strands need to be

updated.

The SHARE-LIST activity Advertises the information in Table4.7 from one Host to

another Host in physical proximity. On the receiving side, the DISCOVER-NEIGHBORS-LIST
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Parameter Meaning
tempID A temporary and unique identifier identifying the Host.
currentInfectedStrands A list of the Strands with which host is currently infected with.

Table 4.7: Information shared by a Host during physical proximity.

activity is executed when this information received through Scanning. One possibility

is for each Host to be always be Advertising their SHARE-LIST and simultaneously

Scanning incoming messages while in the background. The DISCOVER-NEIGHBORS-PROXIMITY

activity supplies the receiving Host with the best effort contactDuration and averageDistance

values. To aid in the distance estimation, the implementation may wish to include a

transmitter power or device model identifier in the Advertising message, which could

be combined with the RSSI or precomputed calibration data to get a highly accu-

rate estimate of distance. Best effort is also used to estimate when such a physical

interaction is complete. At that point the UPDATE-AFTER-MEET-NEIGHBOUR activity

is carried out.

The UPDATE-AFTER-MEET-NEIGHBOUR activity is responsible for potentially “in-

fecting” the receiving Host with each of the Strands that the sending Host is infected

with but which the receiving Host is susceptible to. For each such Strand, there is

an independent random outcome where infectionProbabilityMap is used with the

estimated contactDuration and averageDistance as inputs to determine the prob-

ability of infection. If the resulting outcome is that the receiving Host should become

infected then the state of the Strand in the Host is set to INCUBATING. This is

reflected by updating the currentIncubatingStrands to include the given strand.

Further, the strandIncubationEnd is appended with an entry for that specific Strand

with the value set to the current time plus a random variate randomly generated from

the incubationPeriodDistribution. In any case the endTime of the Strand needs

to be respected and once passed, all activity regarding the Strand expires, and the

Host may remove all information about the Strand once it has pushed its final state

to the Database.

The PERIODIC-UPDATE activity ought to run on an hourly basis on Hosts and is

126



designed to update the Strand state for each Strand as follows:

• INCUBATING → INFECTED : If the current time is larger than the strandIncubationEnd

time for a given Strand, the Strand state is changed from INCUBATING to

state INFECTED.

• INFECTED → REMOVED : If the current time is larger than the strandInfectionEnd

time for a given Strand, the Strand state is changed from INFECTED to state

REMOVED.

As such, this activity ensures that Strands progress through the “course of the

disease” on Hosts. If the Host is unable to perform a PERIODIC-UPDATE activity due

to any reason, it should perform this activity before any other activity, as to guarantee

that Hosts follow the prescribed state schedule.

4.5.2 Safe Blues Projection Methodology

This appendix describes the details used in Section4.3.2.

Deep Safe Blues

We used the same Neural Network (NN) architecture for all three models. Real-time

projections of estimated infected populations were generated by training a NN on

the 𝐵𝑡,𝑠, the ensemble of Safe Blues infection strands at time 𝑡, to predict 𝐼𝑡, the

number of infected individuals at time 𝑡. The neural network 𝐼𝑡 = NN(𝐵𝑡,𝑠) was

a feed-forward neural network with two hidden layers of size 64 and tanh as the

activation functions. Note that the size of the layers for ModelII were reduced to

prevent overfitting given the significantly reduced number of Safe Blues strands. For

ModelI, the data was trained on the time span 𝑡 ∈ (︀0,215⌋︀. For ModelII, the data

was trained on the time span 𝑡 ∈ (︀0,150⌋︀. For ModelIII, the data was trained on the

time span 𝑡 ∈ (︀0,100⌋︀. Each time the ADAM optimiser from Flux.jl [72] in Julia

[12] with adaptivity parameter 0.01 was used for 2,000 iterations with a loss function

being the sum squared error.
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Dynamic Deep Safe Blues

The universal ODE [129] trained a variant of the SIR model

𝑆′ = −𝐶𝛽(𝑝)𝛿𝑆𝐼,

𝐼 ′ = 𝐶𝛽(𝑝)𝛿𝑆𝐼 − 𝛾(𝑝)𝛿𝛾𝐼,

𝑅′ = 𝛾(𝑝)𝛿𝛾𝐼,

𝑆′ = −𝐶𝛽(𝑝)𝑆𝐼,

𝐼 ′ = 𝐶𝛽(𝑝)𝑆𝐼 − 𝛾(𝑝)𝐼,

𝑅̃′ = 𝛾(𝑝)𝐼.

Here 𝐶 = 0.00004 is a scaling constant, while 𝛽(𝑝) and 𝛾(𝑝) are policy-dependent

functions represented by neural networks. The parameters 𝛿 and 𝛿𝛾 are coupling con-

stants used to establish a relationship between the average of the Safe Blues strands

(the tilde variables) to the original infection. The neural networks had 2 hidden

layers of size 16 with tanh activation functions and a final abs to ensure that the out-

putted values were positive without imposing bounds on the parameters. The neural

networks and coupling constants were determined by minimising the Euclidian loss

between the true infected and 𝐼, and between the mean Safe Blues infected and 𝐼.

The parameters were optimised using DiffEqFlux.jl [128] with the Tsit5 adaptive

Runge-Kutta method from DifferentialEquations.jl [126]. The optimisation was

done in two passes, first with the ADAM optimiser from Flux.jl [72] with adaptivity

parameter 0.001.

The fitting validations for each of the models are shown in Figure4-7.

Additional Remarks About Estimation

In reality, the limited availability of COVID-19 information may not be as simplistic

as having a fixed delay. Nevertheless, in general the farther back we move in time,

the more knowledge we have about the state of COVID-19. In practice, Safe Blues

were not available at the start of the COVID-19 pandemic. See for example Figure4-2

for a possible time line that incorporates Safe Blues in the fight against COVID-19.

Nevertheless, for the purposes of the analysis in this section we assume availability of

Safe Blues from onset. Adaptations to more realistic scenarios are possible.
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Figure 4-7: Fitting validations for the UODE models. Shown are the fits of the UODE
models and their respective extrapolations.

The number of Safe Blues enabled users in our simulation runs was generally

much smaller than is expected in reality. As a consequence, the variability of the Safe

Blue infections was much higher than is expected in reality. This in turn reduces the

predictive power of Deep Safe Blues and Dynamic Deep Safe Blues. However, this

loss of predictive power is due to our limited simulation budget and can potentially

be improved upon in an actual Safe Blues implementation.

4.5.3 The Test Bed Models

Here we outline the three different models that we use to test the effectiveness of

deploying Safe Blues for projecting the spread of COVID-19. They are

ModelI: a discrete-time stochastic SIR model.

ModelII: a continuous-time stochastic SIR Model with migration.

ModelIII: a spatial movement model with location attraction.

Each of these models features a population comprising 𝑁 individuals. Some of

these individuals have Safe Blues-enabled devices, while others do not. At each point
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in time, the state of an individual registers whether they are susceptible, infected, or

removed with respect to the actual virus (COVID-19). If an individual has a Safe

Blues enabled-device, then the state also registers for every Safe Blues strand whether

they are susceptible, infected, or removed.

The three models differ in their complexity and how they capture individual prox-

imity. However, regardless of the model, individual proximity drives both the COVID-

19 spread and the Safe Blues spread in a coupled manner, because both COVID-19

and Safe Blues only spread when individuals are in close proximity. This roughly

approximates what one may expect to happen in a real scenario. Importantly, all

three models allow for time-varying parameters that enforce social distancing, which

in turn affects both COVID-19 spread and Safe Blues spread by changing how much

time individuals spend in close proximity of each other.

ModelI is a very simple and stylised model that serves as a sanity check. One of

its appealing features is that converges to the well-known SIR difference equations as

the population size 𝑁 becomes large, which makes this model well suited as a first

test bed. ModelII incorporates several social and spatial features that are ignored

in the first model. In particular, the second model has a spatial component (people

have to be in the same place at the same time for virus transmission to occur) as well

as a notion of social levels (people have a home where they meet a selected number

of other people, a work place where they may meet a larger number of people, et

cetera). ModelIII is a spatial model in which individuals move randomly in two-

dimensional space. Its distinguishing feature is that it has a notion of centrality:

although individuals move around randomly, they are biased towards visiting places

that are important for them, such as their home and the supermarket. This creates

a form of clustering that is not present in the first two models.
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Model I: A Simple Stochastic SIR Model with Invitations

The deterministic discrete-time SIR epidemic model is characterised by the difference

equations

∆𝑆𝑡+1 = −𝛽𝑆𝑡𝐼𝑡,

∆𝐼𝑡+1 = 𝛽𝑆𝑡𝐼𝑡 − 𝛾𝐼𝑡,

∆𝑅𝑡+1 = 𝛾𝐼𝑡,

(4.2)

where ∆𝑆𝑡+1 = 𝑆𝑡+1−𝑆𝑡, and similarly for ∆𝐼𝑡+1 and ∆𝑅𝑡+1. The parameter 𝛽 captures

the rate of infection, while the parameter 𝛾 captures the rate of removal. Given an

initial condition, the solution to these difference equations can be considered as the

limit of the following simple stochastic epidemic model in discrete time.

Consider a homogeneous population of size 𝑁 . At time 𝑡 there are 𝑆𝑡 susceptible,

𝐼𝑡 infected, and 𝑅𝑡 removed individuals. Each individual 𝑥 invites a fixed number 𝑐

of randomly chosen individuals to meet. If individual 𝑥 invites and meets individual

𝑦, then 𝑥 transmits the disease to 𝑦 with infection probability 𝑝 = 𝛽⇑𝑐 if 𝑥 has status

infected and 𝑦 has status susceptible. After all meetings have taken place, the indi-

viduals update their status for time 𝑡+1. A susceptible individual 𝑦 becomes infected

if the disease has been transmitted to 𝑦 during one of the meetings. An infected

individual 𝑥 gets removed with removal probability 𝛾. The fraction of susceptible,

infected, and removed individuals converges to the solution of the difference equations

(4.2) if the population size 𝑁 becomes large.

Including Safe Blues strands is straightforward. We simply seed the mobile devices

of a number of Safe Blues users with strands. Then the spread of the Safe Blues is

similar to the spreading of the actual virus. The coupling between the Safe Blues

and the actual virus arises because both Safe Blues and the actual virus can be only

transmitted during meetings between individuals. A schematic illustration of this

process is provided in Figure4-8.

To integrate social distancing in the original model, we consider the number of

invitations 𝑐 per individual as a random variable instead of a fixed number and make
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Figure 4-8: At every time point, each of the 𝑁 individuals selects a random number of
other individuals to invite and this implies physical proximity. In this case orange and green
individuals make invitations.

the mean number of invitations time-dependent. Specifically, at time 𝑡 individual

𝑥 invites 𝑐𝑡,𝑥 randomly chosen people to meet, where 𝑐𝑡,𝑥 is an independent random

variable having a (truncated) Poisson distribution with mean 𝑚𝑡. This means that

the total number of meetings at day 𝑡 is given by ∑𝑁
𝑥=1 𝑐𝑡,𝑥 ≈ 𝑁𝑚𝑡. In this case the

limit of the system is characterised by the difference equations (4.2) with 𝛽 replaced

by 𝛽𝑡 = 𝑝𝑚𝑡, where the infection parameter 𝑝 is given as a model parameter.

Parameters used for the simulation run: We used the following model param-

eters to generate the data sets for the projection and policy evaluation experiments.

Time consists of 366 days representing the year 2020. The population size 𝑁 = 104

and a fraction 0.2 of the population has a Safe Blues enabled device. The infection

probability of the biological virus is 𝑝 = 0.04, while the corresponding removal prob-

ability 𝛾 = 0.1. We introduce 50 different Safe Blues strands, with strand 𝑠 having

infection probability 𝑝𝑠 given as a point in the equidistant grid from 0.75(𝑝⇑0.2) to

1.25(𝑝⇑0.2). The removal probability 𝛾𝑠 for strand 𝑠 is set equal to 𝛾. The epidemics

for the true virus and the 50 Safe Blues strands start at day 1 with a fraction 0.01 of
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infected individuals in the relevant (sub)population, while the others are susceptible.

The number of invitations at day 𝑡 for individual 𝑥 follows a (truncated) Poisson dis-

tribution with mean parameter 𝑚𝑡. We use the following values for 𝑚𝑡 to incorporate

time-varying social distancing measures. The model was simulated using the Numpy

library [121] in Python3.

Time Range (in days) 𝑚𝑡

1–7 5
8–14 4
15–126 3
127–210 4
211–217 5
217–366 6

Table 4.8: The social distancing parameters for Model I.

Model II: A Stochastic SIR Model with Migration

For this model we consider a complete binary tree of depth 𝑘 as in Figure4-9 where

𝑘 = 3. Such a tree has 2𝑘 leaves and 𝑛 = 2𝑘+1 − 1 nodes (including the leaves). There

are 𝑁 = 2𝑘 individuals and each of them is associated with a unique leaf. Every

individual has a unique path between their leaf and the root, where the path consists

of 𝑘+1 nodes (including the leaf and the root). At any point of time, every individual

is located at one of the nodes on the path between its unique leaf and the root.

A consequence is that individuals may be isolated with certainty in their leaf, or

alternatively may be in the root or one of the other nodes of the tree where there is a

possibility for them to be in physical proximity with other individuals. Thus the tree

structure provides a spatial component (individuals are located at nodes) as well as a

social component (individuals can meet specific groups of individuals only in specific

parts of the tree).

We say that the root is at distance 𝑘 and the leaves are at distance 0. The move-

ment of individuals occurs in continuous time and is in unit steps, either increasing

distance by 1 or decreasing it by 1. Then for any distance 𝑖 = 0, . . . , 𝑘, there is possi-

bility to have up to 2𝑖 individuals in the node. Hence, the farther away (towards the
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Figure 4-9: All 𝑁 = 2𝑘 individuals traverse a binary tree between their private leaf and the
root. At any node infection follows a continuous-time stochastic SIR model between the
individuals present.

root) that an individual travels, the larger the probability of having other individuals

in physical proximity. This setup naturally yields a social distancing mechanism: we

may enforce the individuals spend (on average) more time close to their leaves.

Both individual mobility and the epidemic dynamics (including Safe Blues dy-

namics) are governed by continuous-time Markov Chains [30]. The mobility of each

individual along the leaf-root path follows a birth-death process on 𝑖 = 0, . . . , 𝑘, with

all of the 2𝑘 birth-death processes being independent. The birth rate is 𝜆 (constant

for each distance level) and the death rates are 𝜇𝑖 = 𝜇𝑖 (linearly increasing with the

proximity to the root). Social distancing is enforced by increasing 𝜇, which causes

individuals to spend more time near or at their leaf nodes.

Individuals’ health state is subject to change via the standard SIR dynamics at

each node in the tree. Specifically, if (at given node at a given time) there are ℓ

individuals of which ℓ𝑆 are susceptible, ℓ𝐼 are infected and ℓ𝑅 are removed (with

ℓ = ℓ𝑆 + ℓ𝐼 + ℓ𝑅), then the rate of infecting other individuals at that node is 𝛽𝐶ℓ𝑆ℓ𝐼

(with the subscript 𝐶 standing for COVID-19). Further, the rate of transitions from
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having ℓ𝐼 to ℓ𝐼 − 1 is 𝛾𝐶ℓ𝐼 . Upon infection (removal), a random susceptible (infected)

individual present at the node is selected for infection (removal).

In a similar manner to the COVID-19 dynamics, the individuals with Safe Blues

enabled devices are subject to SIR dynamics for Safe Blues strands. Each Safe Blues

strand is indexed by a unique integer 𝑠. The infection rate for strand 𝑠 is 𝛽𝑠 and

the corresponding removal rate is 𝛾𝑠. The dynamics are similar to the COVID-19

dynamics described above, except that at a given node only individuals with Safe

Blues enabled devices take part.

Parameters used for the simulation run: We used a standard Doob-Gillespie

simulation algorithm [85, Chapter 10] to simulate the (time-varying) continuous-time

Markov Chain of this model on the time range (︀0,366⌋︀. This was for the case of

𝑁 = 2,048 individuals (𝑘 = 11). The penetration proportion was 𝜂 = 0.5 and thus

𝑁𝐵 = 1,024.

The infection rate of COVID-19 was 𝛽𝐶 = 0.015 and the removal rate was 𝛾𝐶 = 0.1.

We simulated 10 Safe Blues Strands each with 𝛾𝑠 = 0.1 and 𝛽𝑠 = 𝑈𝑠𝛽𝐶⇑𝜂 where 𝑈𝑠

were pre generated i.i.d. uniform random variables on the range (︀0.5,1.5⌋︀. The initial

infection proportion of both COVID-19 and Safe Blues strands was at 0.03.

For mobility within the tree we used 𝜆 = 0.9 and 𝜇𝑡 was a time-varying rate as

specified in Table4.9.

Time Range 𝜇𝑡

[0,20) 0.9
[20,50) 1.5
[50,100) 1.1
[100,120) 2.1
[120,200) 0.9
[200,220) 2.2
[220,300) 0.8
[300,366] 1.4

Table 4.9: The social distancing parameters for Model II.
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Figure 4-10: A spatial model where each individual diffuses either around their base or
around a center.

Model III: A Spatial Agent Model with Centrality

This model is based on 𝑁 individuals moving on the Euclidian plane and it captures

both spatial and social aspects of the interactions between individuals. If two indi-

viduals are in close proximity and one of them is infected with COVID-19, it can

be transmitted to the other individual with a certain infection probability. The Safe

Blue strands are transmitted in a similar way.

For each individual there is a unique fixed base (home), located at a fixed point

on the plane. There are also commercial/social centers that attract individuals, also

located at fixed points on the plane. Individuals can visit these centers each day

independent of others. Individuals can have social interactions with neighbours near

their homes, or at the centers during their visit. The spatial movement of each

individual is captured using biased random walks.

The model evolves over time units of days, yet within each day there are finer

small discrete time units in which individuals make small steps on the plane, always

gravitating towards a fixed point which is either their base or a center. This gravi-

tation is modelled using a biased random walk which is described later. In addition
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to the small discrete time steps, individuals may also make quick (immediate) tran-

sitions swapping their gravitational point of attraction from base to a center and vise

versa. Whenever swapping occurs the new location around the destination (base or

center) is chosen as a random point near the destination. This models quick transport

(e.g. driving) between home and commercial/social centers. See Figure4-10 for an

illustration of the model.

The biased random walk that models the gravitation of individuals towards their

unique base or towards a center depending if they are currently marked as “being at

base”, or “being at a center” is executed by taking steps in a direction as follows. For

individual 𝑥, consider the angle, 𝜃𝑥, between the individual and the attraction point

(base or center). Then for some fixed parameter 𝜅, we generate a random angle on

(︀−𝜋,𝜋⌋︀, following the Von Mises distribution with density

𝑓(𝜃⋃︀𝜃𝑥) =
1

2𝜋𝐼0(𝜅)
𝑒𝜅(𝜃−𝜃𝑥),

where 𝐼0(𝜅) is the modified Bessel function of order 0. Then a step with an exponential

distribution having a small step size with time dependent mean 𝛿𝑡, is taken in the

direction specified by the random angle.

The switching of the gravitational center is done as follows. On each day 𝑡, an

individual spends time around (gravitating towards) the center during a time frame

of length 𝑤𝑡, which is selected uniformly and independently over the day. During the

remaining time of the day the individuals spend time around (gravitating towards)

their base. The choice of which center to move to is randomly selected proportionally

to the Euclidean distance between the person’s current location and the center’s

location. Hence people generally move to the center closest to their base, but not

always.

Social distancing is enforced by modifying 𝑤𝑡 and 𝛿𝑡 over time. When 𝑤𝑡 is low,

individuals spend more time near their base and are less likely to meet others, while

with 𝑤𝑡 large, individuals spend more time at centers and more social interaction is

likely to occur. Further when social distancing is reduced (or increased) 𝑤𝑡 we also
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reduce (or increase) 𝛿𝑡 for individuals currently at base. This implies that when social

distancing is enforced, individuals are closer to home and when social distancing is

relaxed, more interaction occurs.

In each time step during which an infected individual has another individual with

a proximity of less than 𝑟 distance units, the other individual may be infected with

probability 𝑝𝐶 for COVID-19 and probability 𝑝𝑠 for Safe Blues strand 𝑠. On each

day, the probability of removing an infected individual is 𝛾𝐶 for COVID-19 and 𝛾𝑠

for Safe Blues strand 𝑠 similarly to the previous models.

At the onset of the simulation, the base locations are selected randomly and are

fixed for the duration of the simulation. Further centers have fixed locations.

Parameters used for the simulation run: The simulation run that we created

for experimentation had 𝑁 = 5,000 individuals of which 𝑁𝐵 = 1,000 had Safe Blues

enabled devices (hence 𝜂 = 0.2). The locations of the bases were generated at onset

using a mixture of two bivariate normal distributions with means (25,0) and (0,0).

The respective covariance matrices were,

⎨⎝⎝⎝⎝⎝⎪

100 0

0 80

⎬⎠⎠⎠⎠⎠⎮
and

⎨⎝⎝⎝⎝⎝⎪

50 0

0 100

⎬⎠⎠⎠⎠⎠⎮
.

The mixture weighting between the distributions is at 0.3 and 0.7 respectively. There

were 2 centers located at (10,15) and (10,−15).

The simulation was run for 366 days where within each day there were 14 basic

time steps. The parameter of the Von Misses distribution was set at 𝜅 = 6. The

basic step size mean when not under social distancing was at 𝛿𝑡 = 2. The proximity

radius is 𝑟 = 0.0085. The COVID-19 infection probability was set at 𝑝𝐶 = 0.04 and the

recovery/removal probability was at 𝛾𝐶 = 0.1⇑14. At onset a proportion of 0.0125 of

the population was infected (uniformly initialized). Further, when individuals swap

between a center and their base, they are located with a uniform angle around the

destination and a distance that is exponentially distributed with mean 0.1.

For Safe Blues there were 50 strands denoted 𝑠 = 1, . . . ,50, all with the same
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Time Range (in days) lockdown strength 𝑙𝑡 𝑤𝑡 (in basic steps) 𝛿𝑡 (used for base users)
1 – 7 0.2 10 1.62
8 – 14 0.3 9 1.43
15 – 98 0.8 3 0.48
99 – 126 0.0 12 2.0
127 – 210 0.3 9 1.43
211 – 217 0.2 10 1.62
218 – 366 0.0 12 2.0

Table 4.10: The social distancing parameters for Model III as functions of the lockdown
strength, 𝑙𝑡, defined by 𝑤𝑡 = ⟨︀2𝑙𝑡 + 12(1 − 𝑙𝑡)⧹︀ and 𝛿𝑡 = 0.1𝑙𝑡 + 2(1 − 𝑙𝑡) (used only for base
users), where ⟨︀𝑥⧹︀ denotes the integer part of 𝑥.

parameters. The strands were released at onset (𝑡start = 0). The removal probability

was taken to be identical to COVID-19, and the infection probability was taken to

be 𝑝𝑠 = 𝑝𝐶⇑𝜂. This rule follows the general guideline in Equation(4.1).

The parameters affecting social distancing, 𝑤𝑡 and 𝛿𝑡 (used for base users), are

expressed as functions of lockdown strength 𝑙𝑡 that takes values in the interval (︀0,1⌋︀,

where 𝑙𝑡 = 0 indicates no lockdown and 𝑙𝑡 = 1 indicates highest possible lockdown.

The details are summarized in Table4.10 below. The model was simulated using the

Numpy library [121] in Python 3.
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Chapter 5

Training and robustness of SciML

models

After covering majorly application based studies in the previous 4 chapters, we return

to the basics in this chapter. We look at the methodology of training scientific ma-

chine learning models and how to make them robust. Although the set of guidelines

provided in this chapter are for specific examples, we hope that these guidelines serve

as an inspiration for researchers studying a broader set of applications.

5.1 Introduction

Scientific Machine Learning (SciML)methods lie at the intersection of machine learn-

ing and scientific computing [8]. Many SciML epidemiological models use a method-

ology of integrating neural networks in ODEs or PDEs; called Universal Differential

Equations (UDEs) [129]. This methodology has been shown to robustly perform es-

timation and forecasting tasks in a wide range of physical systems such as photonics

[101], cancer therapy [171], climate modeling [133], quantum control [149] and chem-

ical reaction systems [78]. There remain a number of unanswered questions when

developing an epidemiological UDE model such as: (a) Can UDEs be used to re-

place complex compartment models with simpler graphical assumptions? (b) How
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robust is the UDE training procedure to varying neural network initializations? (c)

Is symbolic recovery of missing epidemiological mechanisms possible through UDEs?

(d) How much data is required to train UDEs? and (e) Do UDEs offer a significant

advantage to fully non-mechanistic Neural Ordinary Differential Equations (Neural

ODEs)? [20].

In this chapter, we study a cadre of epidemic models to give empirical answers

to the above questions. The paper is structured as follows: In Section 5.2, we con-

sider data generated by a complex compartment model and demonstrate UDE model

prediction and symbolic recovery on this data. We also show the nuts and bolts of

hyperparameter optimization required to make a UDE methodology robust to the

neural network initialization. In Section 5.3, we introduce a framework called QSIR

(Quarantine-Susceptible-Infected-Recovered) which is a UDE framework described in

[31, 32]. Using the QSIR UDE, we demonstrate the a clear prediction performance

advantage of UDEs compared to Neural ODEs. In Section ??, we analyze data re-

quirements in training a QSIR framework before concluding in section 5.4.

5.2 UDEs with simple graphical assumptions

In general, neural networks with arbitrary nonlinear activation functions are univer-

sal approximators [69, 27, 152]. UDEs which stand for universal approximators in

differential equations, using approximators such as neural networks to augment scien-

tific modeling frameworks like ordinary differential equations and partial differential

equations (ODEs and PDEs). UDEs are shown to recover missing terms in governing

equations, accelerate model simulation and accurately forecasting beyond training

data; in wide range of physical and biological settings [129]. To train UDEs and

optimize the neural network weights, one needs to take derivatives of functions of

the ODE solution. For this, the adjoint equations are employed [20, 129] using the
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DifferentialEquations.jl solver suite ([126]) in the Julia programming language [12].

To demonstrate the robustness of the UDE modeling paradigm in epidemiolog-

ical frameworks, we consider data generated through the 5 compartment SIRHD

(Susceptible-Infected-Recovered-Hospitalized-Dead) epidemiological model shown in

equations 2.1 - 2.5.

d𝑆(𝑡)
d𝑡

= −𝛽 𝑆(𝑡) 𝐼(𝑡)
𝑁

(5.1)

d𝐼(𝑡)
d𝑡
= 𝛽 𝑆(𝑡) 𝐼(𝑡)

𝑁
− 𝛾𝐼𝐼(𝑡) − 𝜇𝐼𝐼(𝑡) − 𝜌𝐼(𝑡) (5.2)

d𝐻(𝑡)
d𝑡

= 𝜌𝐼(𝑡) − 𝛾𝐻𝐻(𝑡) − 𝜇𝐻𝐻(𝑡) (5.3)

d𝑅(𝑡)
d𝑡

= 𝛾𝐼𝐼(𝑡) + 𝛾𝐻𝐻(𝑡) (5.4)

d𝐷(𝑡)
d𝑡

= 𝜇𝐼𝐼(𝑡) + 𝜇𝐻𝐻(𝑡) (5.5)

We will replace each structural component of this ODE with a neural network

component. The resulting UDE model is shown in equations 2.6 - 2.10.

d𝑆(𝑡)
d𝑡

= −𝑁𝑁𝑆𝐼 (5.6)

d𝐼(𝑡)
d𝑡
= 𝑁𝑁𝑆𝐼 −𝑁𝑁𝐼𝑅 −𝑁𝑁𝐼𝐷 −𝑁𝑁𝐼𝐻 (5.7)

d𝑅(𝑡)
d𝑡

= 𝑁𝑁𝐼𝑅 +𝑁𝑁𝐻𝑅 (5.8)

d𝐻(𝑡)
d𝑡

= 𝑁𝑁𝐼𝐻 −𝑁𝑁𝐻𝑅 −𝑁𝑁𝐻𝐷 (5.9)

d𝐷(𝑡)
d𝑡

= 𝑁𝑁𝐼𝐷 +𝑁𝑁𝐻𝐷 (5.10)

This form of a UDE does not include prior known mechanistic knowledge, but

does include graphical assumptions in the architecture. For example, this declares
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(a)
Figure 5-1: Comparison of the data obtained by training the neural networks in Equations
(21-25) with the neural network architectures given by Table 3, with ground truth data.

that susceptible can only become infected, and death can only come from infected and

hospitalized. These graphical assumptions also enforce conservation of population in

the solution of the equations, as every negative term has a corresponding positive

term making the sum of fluxes always zero. The underlying question is, is this level

of prior knowledge sufficient to improve the training over standard knowledge-free

learning scenarios?

All neural networks are trained using the ADAM optimizer with a step size of

10−4 with the relu activation function. Each neural network has 1 hidden layer and

10 units in each layer. Figure 5-1 shows the comparison of the SIRHD data with

the optimized UDE model prediction. A good match is observed. Subsequently, we

used a sparse regression technique called Sequential Thresholded Ridge Regression

(STRRidge) algorithm [14] on each neural network output to reconstruct the missing

dynamical equations for each neural network. STRRidge algorithm has a tunable

sparsity parameter 𝜆 to control the sparsity of the obtained dominant terms. We

varied this parameter from 0.0001 to 0.1 for each neural network, and choose the

𝜆 with the the lowest positive AIC score (Akaike Information Criteria) [13, 161]

which strives to minimize the model error as well as its complexity. The recovered

equations are shown in table 5.1. We can see a reliable symbolic recovery for each

neural network.
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Actual STRRidge STRRidge Minimum
Equations Active terms Equations AICC

𝑁𝑁𝑆𝐼 0.85 S I 1: SI 0.82 S I 22
𝑁𝑁𝐼𝑅 0.1 I 1: I 0.097 I 32
𝑁𝑁𝐼𝐷 0.05 I 1: I 0.022 I 22
𝑁𝑁𝐼𝐻 0.025 I 1: I 0.049 I 28
𝑁𝑁𝐻𝑅 0.02 H 1: H 0.018 H 33
𝑁𝑁𝐻𝐷 0.002 H 1: H 0.002 H + 0.0005 45

Table 5.1: Recovered symbolic form of each of the neural networks using the Sequential
Thresholded Ridge Regression (STRRidge) algorithm applied to the UDE model on the
SIRHD data.

5.3 Retaining more structure in UDE modeling: the

QSIR framework

Next, we look at another UDE model called the QSIR (Quarantine-Susceptible-

Infected-Recovered) framework [31]. This model augments the standard SIR module

through addition of a neural network for a region-based nonlinear quarrentine model.

This makes the resultant model much more powerful and expressive than the standard

SIR framework. Following are the equations governing this model

d𝑆(𝑡)
d𝑡

= −𝛽 𝑆(𝑡) 𝐼(𝑡)
𝑁

(5.11)

d𝐼(𝑡)
d𝑡
= 𝛽 𝑆(𝑡) 𝐼(𝑡)

𝑁
− (𝛾 +𝑄(𝑡)) 𝐼(𝑡)

= 𝛽 𝑆(𝑡) 𝐼(𝑡)
𝑁

− (𝛾 +NN(𝑊,𝐼)) 𝐼(𝑡) (5.12)

d𝑅(𝑡)
d𝑡

= 𝛾𝐼(𝑡) + 𝛿𝑇 (𝑡) (5.13)

d𝑇 (𝑡)
d𝑡

= 𝑄(𝑡) 𝐼(𝑡) − 𝛿𝑇 (𝑡) = NN(𝑊,𝐼) 𝐼(𝑡) − 𝛿𝑇 (𝑡). (5.14)

In the QSIR model, the term 𝐼(𝑡) denotes the infected population still having

contact with the susceptibles, as done in the standard SIR model; while the term 𝑇 (𝑡)

denotes the infected population who are effectively quarantined and isolated. Further
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Figure 5-2: [Illustration of the QSIR Model and neural network architecture] (a) Schematic
of the augmented QSIR model considered in the present study. (b) Schematic of the neural
network architecture used to learn the quarantine strength function 𝑄(𝑡). Here 𝑇 (𝑡) repre-
sents the quarantined infected population prescribed by the quarantine strength rate 𝑄(𝑡).
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we introduce an additional recovery rate 𝛿 which quantifies the rate of recovery of

the quarantined population. Thus, we can write an expression for the quarantined

infected population 𝑇 (𝑡) as

𝑑𝑇 (𝑡)
𝑑𝑡
= 𝑄(𝑡)𝐼(𝑡) − 𝛿𝑇 (𝑡) (5.15)

We represent 𝑄(𝑡) as a 𝑛 layer-deep neural network with weights 𝑊1,𝑊2 . . .𝑊𝑛,

activation function 𝑟 and the input vector 𝑈 = (𝑆(𝑡), 𝐼(𝑡),𝑅(𝑡)) as

𝑄(𝑡) = 𝑟 (𝑊𝑛𝑟 (𝑊𝑛−1 . . . 𝑟 (𝑊1𝑈))) ≡ NN(𝑊,𝑈) (5.16)

For the actual implementation, we choose a 𝑛 = 2-layer densely connected neural

network with 10 units in the hidden layer and the ReLU activation function. This

choice was because we found sigmoidal activation functions to stagnate. The final

model is described by a total of 54 tunable parameters. The neural network architec-

ture schematic is shown in figure 5-2b. More details about the model initialization

and parameter estimation methods is given in [31].

We will subsequently train the QSIR model on the SIRHD data which is generated

from equations 2.1 - 2.5.

5.3.1 Retaining structure improves forecasting abilities

Figure 5-3 shows the prediction and forecasting capability of a plain Neural ODE

model [20], graphical UDE model (shown in equations 2.6 - 2.10 and the QSIR model

considered in this section). The underlying data for all three models is generated

by the 5 compartment SIRHD model given in equations 2.1 - 2.5. The QSIR model

retains much more physical structure than the plain Neural ODE and the graphical

UDE model which do not have information governing the underlying interactions. We

notice that due to encoding a greater physical structure, the QSIR model is able to

forecast well on the least amount of training data, compared to the other two models.
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(a) Neural ODE: train = 25 days (b) train = 40 days (c) train = 70 days

(d) Graphical UDE: train = 25
days

(e) train = 40 days (f) train = 70 days
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(g) QSIR UDE: train = 25 days
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(h) train = 40 days (i) train = 70 days
Figure 5-3: Figure shows the prediction and forecasting performance for (a, b, c): the neural
ODE model, (d, e, f): the graphical UDE model and (g, h, i): the QSIR UDE model. Data
for all models is generated by the 5 compartment model shown in equations 2.1 - 2.5.
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(a) Neural ODE (b) Graphical UDE (c) QSIR UDE
Figure 5-4: Figure shows the comparison of the data generated by the 5 compartment
SIRHD model in equations 2.1-2.5 with the model predictions for 100 random initializations
for (a) the Neural ODE model, (b) the Graphical UDE model and (c) the QSIR UDE model.
Number of iterations for each initialization = 15000.

Thus, using just a 4 compartment model (QSIR), augmentation with a neural net-

work module enables us to capture the data generated by the 5 compartment SIRHD

model and also make accurate forecasting predictions.

In Section 7.2 of the Appendix, we show that the QSIR model has reliable pre-

diction and forecasting capabilities even on a more complex 9 compartment model

data.

5.3.2 Robustness of the models

Figure 5-4 shows the comparison of the data generated by the 5 compartment SIRHD

model in equations 2.1-2.5 with the model predictions for 100 random initializations

for (a) the Neural ODE model, (b) the Graphical UDE model and (c) the QSIR

UDE model. The optimal hyperparameters for each model were obtained by a care-

ful hyperparameter optimization procedure, illustrated in the Appendix 7.1 for the

Graphical UDE framework. A similar optimization procedure was performed on the

Neural ODE model and the QSIR UDE model. We can see that when the parameters

of the models are optimized, all 100 trajectories of the models converge; implying the

robustness of the models to the random initializations of the neural network.
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5.3.3 Training with subsets of data

Figure 5-5 shows the effect of training subsets of data on the prediction and fore-

casting performance for (a, b, c): the neural ODE model, (d, e, f): the graphical

UDE model and (g, h, i): the QSIR UDE model. Data for all models is generated

by the 5 compartment SIRHD model shown in equations 2.1 - 2.5. We can see that

for the Neural ODE and the Graphical UDE model which impose minimal physical

structure, when the training data only consisted of the infected (I) compartment or

the recovered (R) compartment, the model prediction and forecasting is poor for the

remaining compartment. Since no physics is embedded, the remain compartment

values can be very unreasonable (very high or even negative). The QSIR model does

slightly better than the other models, when trained with limited information. Since

the QSIR models embeds a lot of physical structure, it prevents unreasonable values

for the compartment population and generally captures the trend of the compartment

on which it is not trained on (see figures 5-5 g, h).

We now take a deeper look at the QSIR model in terms of: (a) Training the

QSIR model with multiple subsets of observables and (b) parameter identifiability

and robustness.

5.4 Conclusion

In conclusion, the study demonstrates the application of Scientific Machine Learn-

ing (SciML) methods in the field of epidemiology. We show that SciML based UDE

models can be used as surrogates for complex compartment models in which one or

more of the compartments can be replaced by neural networks. Not only does this

increase the expressivity of the models, but symbolic regression techniques also make

these models interpretable. To obtain the optimal performance from a UDE model,

we demonstrate the importance of performed a detailed hyperparameter optimiza-

tion. The most important parameters in an UDE training procedure are found to be:

150



(a) Neural ODE: Train = I (b) Train = R (c) Train = I, R

(d) Graphical UDE: Train = I (e) Train = R (f) Train = I, R

(g) QSIR UDE: Train = I (h) Train = R (i) Train = I, R
Figure 5-5: Figure shows the effect of training subsets of data on the prediction and fore-
casting performance for (a, b, c): the neural ODE model, (d, e, f): the graphical UDE model
and (g, h, i): the QSIR UDE model. Data for all models is generated by the 5 compartment
model shown in equations 2.1 - 2.5.
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(a) Optimizer: step size, (b) ODE solver: stiff/non-stiff, relative tolerance, adjoint

method, (c) architecture: number of hidden layers, nodes and activation functions of

the neural networks.

UDE models in which one or more compartments are replaced by neural networks

can be used to capture missing model dynamics. One such model (the QSIR model)

has been demonstrated in the study to capture the effects of quarantine which are

otherwise missed by the simple SIR model. We subsequently show that the structure

embedded in UDE models makes them much more robust than Neural ODEs at reli-

able forecasting.

Encoding uncertainty quantification in Neural ODEs/UDEs modeling and esti-

mation can be done if Neural ODEs/UDEs are coupled with high fidelity Bayesian

estimation frameworks. This is explored in Chapter 6.

5.5 Appendix

5.5.1 Hyperparameter optimization and robustness analysis

of the UDE framework

The following details the hyperparameter optimization process for the graphical UDE.

We note that these results are not generalizable to all types of equations.

We tested the following activation functions for 100 random UDE initializations:

(a) tanh, (b) relu, (c) sigmoid and (d) leakyrelu. relu and tanh were the activa-

tion functions which led to more than 70% converging simulations of all initilizations

tested. The remaining activation functions were found to be unreliable, potentially

because of instabilities with the initial neural networks over a long integration time.

Dampening the coefficients or multiple shooting could be used to improve the robust-
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(a)
Figure 5-6: Timing performance by varying the ODE Solvers. A relative tolerance of 1𝑒 − 4
with the InterpolatingAdjoint method was used.

(a)
Figure 5-7: Timing performance by varying the relative tolerance. The adjoint method used
was InterpolatingAdjoint() with Tsit5() ODE solver.

ness in those cases, though here we simply chose to use the relu. We simulated an

ADAM optimizer with the following step size variations: (a) 1𝑒−2, (b) 1𝑒−3, (c) 1𝑒−4

and (d) 1𝑒 − 5. It was found that stepsizes of 1𝑒 − 2,1𝑒 − 3 lead to exploding gradient

issues which leads to losses of 𝑂(1𝑒11). The optimal training hyperparameter found

which gave fast performance was found to be 1𝑒 − 4.

Another factor which has a major influence on the UDE performance is the ODE

solver. We tested 3 non-stiff solvers: Tsit5, BS3 and Vern7 which are generally con-

sidered fast and accurate in differential equations literature [126]. All of these solvers

led to similar training accuracy, with Tsit5 and BS3 showing the most optimal timing
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(a)
Figure 5-8: Timing performance by varying the adjoint methods. A relative tolerance of
1𝑒 − 4 with Tsit5() ODE solver was used.

performance as seen in figure 5-6. We also compared performance of stiff solvers like

Rosenbrock23(). TRBDF2(). These solvers were an order of magnitude slower than

the non-stiff solvers, indicating the equation was non-stiff. In adaptive time stepping

methods, the solver relative tolerance controls the errors for the state variables and

hence governs the accuracy of the solution. We simulated the Tsit5 ODE solver with

the following relative tolerance variations: (a) 1𝑒 − 3, (b) 1𝑒 − 4, (c) 1𝑒 − 5 and (d)

1𝑒 − 6. The UDE solution accuracy was seen to be low for a relative tolerance value

of 1𝑒 − 3 but a good match similar to figure 5-1 was seen for the lower values. How-

ever, as seen in figure 5-7, the computational time increases linearly with the relative

tolerance. Thus, the value of relative tolerance which balances computational speed

with solution accuracy was found to be 1𝑒 − 4.

The choice of adjoint method plays a crucial role during backpropagation, when

calculating the derivative of an ODE solver with respect to a loss function. Meth-

ods vary in stability and memory usage, and depending on the problem to solve,

the adjoint method should be chosen accordingly. In this study, we implemented

InterpolatingAdjoint,ForwardDiffSensitivity, QuadratureAdjoint and ReverseDiffAd-

joint adjoint methods [129]; and tested the timing and training performance. Good

training accuracy was seen for all adjoint methods, with the minimum computational

time seen for the InterpolatingAdjoint method (figure 5-8. This make the Interpo-
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(a)
Figure 5-9: Comparison of the SIRHD data with optimized model prediction for 100 random
initializations. Number of iterations for each initialization = 15000.

(a)
Figure 5-10: Comparison of the SIRHD data with optimized model prediction for 100 random
initializations; shown for a much larger dataset.

latingAdjoint an ideal choice for our study. Note however that this result is not

generalizable and other models will have different behaviors.

For the optimized parameters described above, figure 5-9 shows the comparison

of the underlying data with the optimized model prediction for 100 random initial-

izations. We can see that most of the UDE trajectories show a good match with the

training data. About 85 of the 100 runs converge to a very low loss.

Subsequently, we tested these hyperparameters and how they control the UDE
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(c)
Figure 5-11: Figures show the comparison between the prediction and forecasting ability of
(a) a plain Neural ODE model, (b) the graphical UDE model shown in (8.11 - 8.20) and (c)
the QSIR model shown in (3.1-3.4); for data generated by the 9 compartment model.

training on a three times larger dataset than the one shown in figure 5-9. Again

we observed that these hyperparameters play a crucial role in the training process

and once they are optimized, a large number of converging trajectories are observed.

The converging trajectories are shown in figure 5-10. Compared to figure 5-9, a large

number of iterations (120000 compared to 15000) are needed for convergence.

Thus, in this section, we have detailed the hyperparameters which need to be

taken into consideration for optimizing an UDE training process. Based on the test

case under consideration, the optimal values of these hyperparameters maybe differ-

ent than those presented here; but its crucial to exhaustively consider all parameters

to effectively train a UDE model.

5.5.2 QSIR framework applied to a 9 compartment model

In order to test the robustness of the QSIR framework for prediction and forecasting,

we consider a 9 compartment model as follows
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d𝑆(𝑡)
d𝑡

= −𝜏𝑆𝐼 𝑆(𝑡) 𝐼(𝑡)
𝑁

(5.17)

d𝐼(𝑡)
d𝑡
= 𝜏𝑆𝐼 𝑆(𝑡) 𝐼(𝑡)

𝑁
− 𝜏𝐼𝑅𝐼(𝑡) − 𝜏𝐼𝐷𝐼(𝑡) − 𝜏𝐼𝐻𝐼(𝑡) − 𝜏𝐴𝐼(𝑡) − 𝜏𝐵𝐼(𝑡) − 𝜏𝐶𝐼(𝑡) − 𝜏𝐸𝐼(𝑡)

(5.18)

d𝑅(𝑡)
d𝑡

= 𝜏𝐼𝑅𝐼(𝑡) (5.19)

d𝐻(𝑡)
d𝑡

= 𝜏𝐼𝐻𝐼(𝑡) (5.20)

d𝐻(𝑡)
d𝑡

= 𝜏𝐼𝐷𝐼(𝑡) (5.21)

d𝐴(𝑡)
d𝑡

= 𝜏𝐴𝐼(𝑡) (5.22)

d𝐵(𝑡)
d𝑡

= 𝜏𝐵𝐼(𝑡) (5.23)

d𝐶(𝑡)
d𝑡

= 𝜏𝐶𝐼(𝑡) (5.24)

d𝐸(𝑡)
d𝑡

= 𝜏𝐸𝐼(𝑡) (5.25)

(5.26)

We generate data from the above model and the QSIR framework for prediction

and forecasting. Similar to the 5 compartment model, the graphical UDE form the 9

compartment model is
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d𝑆(𝑡)
d𝑡

= −𝑁𝑁𝑆𝐼 (5.27)

d𝐼(𝑡)
d𝑡
= 𝑁𝑁𝑆𝐼 −𝑁𝑁𝐼𝑅 −𝑁𝑁𝐼𝐷 −𝑁𝑁𝐼𝐻 −𝑁𝑁𝐼𝐴 −𝑁𝑁𝐼𝐵 −𝑁𝑁𝐼𝐶 −𝑁𝑁𝐼𝐸 (5.28)

d𝑅(𝑡)
d𝑡

= 𝑁𝑁𝐼𝑅 (5.29)

d𝐻(𝑡)
d𝑡

= 𝑁𝑁𝐼𝐻 (5.30)

d𝐻(𝑡)
d𝑡

= 𝑁𝑁𝐼𝐷 (5.31)

d𝐴(𝑡)
d𝑡

= 𝑁𝑁𝐼𝐴 (5.32)

d𝐵(𝑡)
d𝑡

= 𝑁𝑁𝐼𝐵 (5.33)

d𝐶(𝑡)
d𝑡

= 𝑁𝑁𝐼𝐶 (5.34)

d𝐸(𝑡)
d𝑡

= 𝑁𝑁𝐼𝐸 (5.35)

(5.36)

Figure 5-11 shows that even for data generated by a 9 compartment model, the

QSIR model shows reliable prediction and forecasting capabilities; compared to the

a plain Neural ODE [20] and the graphical UDE model (equations 8.11 - 8.20).

Figure 5-12 shows the data requirements for reliable forecasting comparison be-

tween a plain Neural ODE model, a graphical UDE model and a QSIR UDE model;

with data being generated by the 9 compartment model shown in equations 7.11 -

7.20. We notice that due to encoding a greater physical structure, the QSIR model

is able to forecast well on the least amount of training data, compared to the other

two models.

Figures 5-11 and 5-12 indicate the reliability of the QSIR UDE for efficient pre-

diction and forecasting on data generated by complex compartment models.
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(a) Neural ODE: train = 40 days (b) train = 60 days (c) train = 75 days

(d) Graphical UDE: train = 40
days

(e) train = 60 days (f) train = 75 days
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(g) QSIR UDE: train = 30 days
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(h) train = 34 days
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(i) train = 40 days
Figure 5-12: Figure shows the prediction and forecasting performance for (a, b, c): the
neural ODE model, (d, e, f): the graphical UDE model and (g, h, i): the QSIR UDE model.
Data for all models is generated by the 9 compartment model shown in equations 7.11 -
7.20.
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(a) Polynomial model QSIR
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(b) Neural network QSIR
Figure 5-13: Figure shows the prediction and forecasting performance of (a) Polynomial
model and (b) Neural network QSIR UDE

5.5.3 Comparison with polynomial models

What if polynomial models are used to represent the quarantined population in the

QSIR model? We consider a polynomial model with the same number of parameters

as a 2 layer neural network with 10 hidden units which we use in the QSIR framework.

Figure 5-13 shows that the forecasting performance for the polynomial model is much

poorer than the neural network based model. This is in accordance with [131], who

showed that Neural Ordinary Differential Equations (Neural ODEs) which are the

heart of SciML frameworks, consistently outperform non linear and classical linear

methods. Even by increasing the polynomial complexity to include higher order

terms, we could not get the forecasting performance achieved by a simple 2 layer

neural network with 10 hidden units. This indicates that performing optimization

procedures is easier for neural network based frameworks, as compared to polynomial

based frameworks, possibly due to non-smooth loss function landscapes encountered

while training the latter [146].
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Chapter 6

Error Quantification in SciML models

In the last study of this thesis, we look at uncertainty quantification in scientific

machine learning (SciML) models. We look at this through the lens of two popular

SciML frameworks: Neural ODEs [20] and Universal Differential Equations (UDEs)

[129].

6.1 Introduction

The underlying scientific laws describing the physical world around us are often pre-

scribed in terms of ordinary differential equations (ODEs). Recently, Neural Ordinary

Differential Equations [20] has emerged as a powerful framework for modeling physical

simulations without explicitly defining the ODEs governing the system, but learning

them via machine learning. By noticing that in the limit of infinite layers, a ResNet

module [61] behaves as a continuous time ODE, Neural ODEs allow the coupling of

neural networks as expressive function transformations, and powerful purpose built

ODE solvers. While [20] explored a number of applications of the Neural ODE frame-

work, their success in a Bayesian inference framework remains unexplored.

Simultaneously, there has been an emergence of efficient Bayesian inference meth-

ods suited for high-dimensional parameter systems, such as the No-U-Turn MCMC

sampler (NUTS) [67] which is an extension of the Hamiltonian Monte Carlo Algo-
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rithm, and Stochastic Gradient Markov Chain Monte Carlo (SGMCMC) methods like

Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) [21] and Stochastic Gradi-

ent Langevin Descent (SGLD) [164].

A number of works in literature explored the use of Bayesian methods to infer

parameters of systems defined by ODEs [96, 160, 47, 70] and others used Bayesian

methods to infer parameters of neural network models, e.g. [81, 97, 75]. Bayesian

neural networks in particular has been an active area of research for a while. The

readers are referred to the excellent recent tutorial by [81] for an overview of recent

advances in the field. However, this prompts the question: “Can Bayesian learning

frameworks be integrated with Neural ODE’s to robustly quantify the uncertainty in

the weights of a Neural ODE?”

In an effort to address this question, we demonstrate and compare the integration

of Neural ODEs with the following methods of Bayesian Inference: (a) The No-U-

Turn MCMC sampler (NUTS), (b) Stochastic Gradient Hamiltonian Monte Carlo

(SGHMC) and (c) Stochastic Langevin Gradient Descent (SGLD). We present suc-

cessful results on classical physical systems and on standard machine learning datasets

(using GPU acceleration); especially on the standard MNIST dataset, we achieve a

test ensemble accuracy of 98.5% on 10000 images. This is a performance competi-

tive with current state-of-the-art image classification methods, which meanwhile lack

our method’s ability to quantify the confidence in its predictions. Subsequently, we

premiere the integration of Bayesian Neural ODEs with variational inference, the

predictive power of which improves with the introduction of normalizing flow.

Finally, advancing from learning a physical system’s differential equations via

Bayesian Neural ODEs, we consider the problem of recovering missing terms from

a dynamical system using universal differential equations (UDEs) [129]. Using the

Preconditioned SGLD variation of SGLD, we demonstrate the predictive success of

Bayesian UDEs on (a) a predator-prey model and (b) the epidemiological model

of COVID-19 spread. Through this, we present a viable method for the proba-

bilistic quantification of epistemic uncertainties via a hybrid machine-learning and

mechanistic-model-based technique.
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Our approach differs from that of [3] who mainly looked at integration of Bayesian

methods with Neural SDE’s, and not Neural ODEs describing physical systems or

large scale deep learning datasets like the MNIST dataset, which we consider here.

In this study, we used the Julia differentiable programming stack [127] to compose

the Julia differential equation solvers [126] with the Turing probabilistic programming

language [42, 168]. The study was performed without modifications to the underlying

libraries due to the composability afforded by the differentiable programming stack.

6.2 Results

We illustrate the robustness of the Bayesian Neural ODE framework through the fol-

lowing case studies:

Case study 1: Spiral ODE

The Spiral ODE model is prescribed by the following system of equations:

𝑑𝑢1
𝑑𝑡
= −𝛼𝑢31 + 𝛽𝑢32 (6.1)

𝑑𝑢2
𝑑𝑡
= −𝛽𝑢31 − 𝛼𝑢32 (6.2)

Case study 2: Lotka-Volterra ODE

The Lotka-Volterra predator-prey model is prescribed by the following system of

equations:

𝑑𝑢1
𝑑𝑡
= −𝛼𝑢1 − 𝛽𝑢1𝑢2 (6.3)

𝑑𝑢2
𝑑𝑡
= −𝛿𝑢2 + 𝛾𝑢1𝑢2 (6.4)
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6.2.1 Bayesian Neural ODE: NUTS Sampler

The No-U-Turn-Sampler (NUTS) is an extension of the Hamiltonian Monte Carlo

(HMC) algorithm. Through a recursive algorithm, NUTS automatically determines

when the sampler should stop an iteration, and thus prevents the need to specify user

defined parameters, like the number of steps 𝐿. In addition, through a dual averaging

algorithm, NUTS adapts the step size 𝜖 throughout the sampling process.

We define the parameters of the 𝑑 dimensional Neural ODE by 𝜃. The action of the

Neural ODE on an input value 𝑢0 generates an output 𝑌 = NNODE𝜃(𝑢0). The input

data is denoted by 𝑌 . The loss function, 𝐿 is defined as

𝐿(𝜃) =
𝑑

∑
𝑖=1

⋃︀⋃︀𝑌𝑖 − 𝑌𝑖⋃︀⋃︀2 (6.5)

The model variables 𝜃 and the momentum variables 𝑟 are drawn from the joint

distribution

𝑝(𝜃, 𝑟) ∝ exp(︀ℒ(𝜃) − 1

2
𝑟.𝑟⌋︀ (6.6)

where ℒ is the logarithm of the joint density of 𝜃. In terms of a physical analogy,

if 𝜃 denotes a particle’s position, then ℒ can also be viewed as the negative of the

potential energy function and 1
2𝑟.𝑟 denotes the kinetic energy of the particle.

In the Bayesian Neural ODE framework, we define ℒ(𝜃) as

ℒ(𝜃) = −
𝑑

∑
𝑖=1

⋃︀⋃︀𝑌𝑖 − 𝑌𝑖⋃︀⋃︀2 − 𝜃.𝜃 (6.7)

The 𝜃.𝜃 term indicates the use of Gaussian priors. We adapt the step size of

the leapfrog integrator using Nesterov’s dual averaging algorithm [67] with 𝛿 as the

target acceptance rate. Finally, we define the number of warmup samples as 𝑛𝑤 and

the number of posterior samples collected as 𝑛𝑝.

We apply the Bayesian Neural ODE framework outlined above to case studies

1 and 2 given in Equations 1-4. For case study 1, we use 𝛼 = 0.1, 𝛽 = 2. In the

NUTS algorithm, we use 𝛿 = 0.45, 𝑛𝑤 = 1000, 𝑛𝑠 = 500. For case study 2, we use
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(a) (b)

(c) (d)
Figure 6-1: Comparison of the Bayesian Neural ODE: NUTS prediction and estimation
compared with data for (a,b) Case study 1 and (c,d) Case study 2.
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(a) (b)
Figure 6-2: For the Spiral ODE example (Equations 1-2), using the NUTS framework, figure
shows: (a) Trace plots and Density plots of the posterior and (b) auto-corelation plot for
the first 5 parameters.

𝛼 = 1.5, 𝛽 = 1, 𝛾 = 3, 𝛿 = 1; with 𝛿 = 0.45, 𝑛𝑤 = 500, 𝑛𝑠 = 1000. 2 layers with 50 units in

each layer and tanh activation function was used as the neural ODE architecture for

both examples.

From figure 6-1, we can see that the Bayesian Neural ODE: NUTS prediction and

forecasting for both case studies outlined in Equations 1-4 are consistent with the

ground truth data.

Figure 6-2a showing the posterior density and trace plots for the first 5 parameters

of the Spiral ODE example, shows that the samples are well mixed. The quick decay

seen in the auto-corelation plot shown in figure 6-2b also indicates a fast mixing

Markov chain. This is also confirmed by the effective sample size extracted for the

posterior chain of 500 samples, which shows values of 362,470,134,509,661 for the

first 5 parameters. Similar well mixed plots are seen for all parameters, but are not
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Table 6.1: Spiral ODE: Effect of NUTS acceptance ratio and Neural ODE architecture.
Number of warmup samples, 𝑛𝑤 = 500 and number of posterior samples, 𝑛𝑠 = 500 for all
cases shown. The minimum loss value obtain is similar in all cases shown.

𝛿 Units Layers Time (s)
0.45 5 2 480
0.45 10 2 900
0.45 50 2 2100
0.45 100 2 3900
0.45 10 3 3300
0.45 10 4 10200
0.65 50 2 3400
0.85 50 2 7900
0.95 50 2 8600

shown here for the sake of brevity.

Table 6.1 shows the effect of NUTS acceptance ratio and Neural ODE architecture

on the Bayesian Neural ODE performance for the Spiral ODE example. The minimum

loss value obtain is similar in all cases shown. Thus, we see that even the smallest

neural architecture with 2 layers and 5 units in each layer gives the optimal loss

performance, and with a considerably better timing performance. Among different

NUTS acceptance ratios (𝛿) tested, the best timing performance is given by the lowest

acceptance ratio, 𝛿 = 0.45.

6.2.2 Bayesian Neural ODE: SGHMC

The Stochastic Gradient Hamiltonian Monte Carlo Sampler (SGHMC) is a method

that combines HMC’s effective state space exploration with stochastic gradient meth-

ods’ computational efficiencies [21]. SGHMC injects friction to the "momentum"

auxiliary variables that parameterize the target distribution’s Hamiltonian dynamics.

The Hamiltonian function 𝐻(𝜃, 𝑟) = 𝑈(𝜃)+ 1
2𝑟

𝑇𝑀−1𝑟 measures the total "energy"

of a system with position variables 𝜃 and momentum variables 𝑟. The potential energy

function is given by 𝑈 = −∑𝑥∈𝒟 log 𝑝(𝑥⋃︀𝜃) − log 𝑝(𝜃); mass matrix 𝑀 and 𝑟 define the

kinetic energy term.

To sample from the posterior distribution 𝑝(𝜃⋃︀𝒟), HMC considers generating sam-

ples from the joint distribution 𝜋(𝜃, 𝑟) ∝ exp(𝐻(𝜃, 𝑟)), proposing samples according
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to the Hamiltonian dynamics:

𝑑𝜃 =𝑀−1𝑟𝑑𝑡 (6.8)

𝑑𝑟 = −∇𝑈(𝜃)𝑑𝑡 (6.9)

Here, SGHMC adds a "friction" term to the momentum update. In practice, we

consider ∇𝑈̃ , a noisy estimate of ∇𝑈 . Similarly, 𝐵̂ is defined as an estimate of

𝐵(𝜃) = 1
2𝜖𝑉 (𝜃), the diffusion matrix contributed by the covariance of the stochastic

gradient noise 𝑉 (𝜃). SGHMC additionally introduces a user-specified friction term

𝐶 ⪰ 𝐵̂. In total, by defining 𝑣 = 𝜖𝑀−1𝑟, 𝜂 = 𝜖2𝑀−1, 𝛼 = 𝜖𝑀−1𝐶, and 𝛽 = 𝜖𝑀−1𝐵̂ for

stepsize 𝜖, SGHMC iteratively updates the variables for sampling according to:

𝜃𝑡 ∶= 𝜃𝑡 +∆𝜃𝑡 (6.10)

𝑣𝑡 ∶= 𝑣𝑡 +∆𝑣𝑡 (6.11)

∆𝜃𝑡 ∶= 𝑣 (6.12)

∆𝑣𝑡 ∶= −𝜂∇𝑈̃(𝑥) − 𝛼𝑣 +𝒩(0,2(𝛼 − 𝛽)𝜂) (6.13)

Naturally, 𝜂 corresponds to the learning rate and 𝛼 the momentum decay.

We apply the Bayesian Neural ODE framework outlined above to case studies 1

and 2 given in Equations 1-4. For case study 1, we use 𝛼 = 1, 𝛽 = 1. In the SGHMC

algorithm, we use 𝜂 = 1.5−6 and 𝛼 = 0.07 and draw 2500 posterior samples. We define

a prior distribution centered at the MAP point with a standard deviation of 0.4. For

case study 2, we use 𝛼 = 1.5, 𝛽 = 1.0, 𝛾 = 3.0, and 𝛿 = 1.0; we draw 350 samples with

SGHMC using hyperparameters 𝜂 = 7.0−6 and 𝛼 = 0.07. We define a prior distribution

centered at the MAP point with a standard deviation of 1.0. For both case studies,

the neural ODE architecture consists of 2 layers with tanh activation function; there

are 50 units in each layer for case study 1, and 10 units for case study 2.

Figure 6-3 illustrates the consistency of Bayesian Neural ODE SGHMC’s predic-

tion and forecasting with ground truth data, for both case studies (Equations 1-4).
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(a) (b)

(c) (d)
Figure 6-3: Comparison of Bayesian Neural ODE SGHMC’s prediction and forecasting
against ground truth data for (a,b) case study 1 and (c,d) case study 2.

SGHMC on the MNIST dataset

(a)
Figure 6-4: Neural network architecture used for the image classification task on MNIST.
The Neural ODE contains two convolutional layers. The network has 208010 parameters
in total. This architecture was combined with the SGHMC method to lead to a Bayesian
Neural ODE object which can be used for image classification.

We now apply Bayesian Neural ODE with SGHMC to a image classification task

on the MNIST dataset. A ResNet [61] layer behaves as a continuous time ODE at the

limit of infinite layers. Given this natural analogy, we here implement ODE layers in

place of the residual layers used in classic image recognition architectures.

Specifically, we design three convolutional layers interspersed with Batch Normal-
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Table 6.2: Performance on MNIST using the Bayesian Neural ODE: SGHMC approach is
outlined in the present study. Here, 310 posterior samples for each image in a test set of
10,000 images is considered. The best fit test error represents the mean of the number of
erroneous predictions in all the posterior samples (310) for all images (10000).

Error Neural ODE? Best fit Reference
estimates? test error test error

RK-Net No Yes 0.47 % Chen (2018)
ODE-Net No Yes 0.42 % Chen (2018)

Bayesian Alex-Net Yes No 1 % Shridhar (2019)
Bayesian LeNet-5 Yes No 2 % Shridhar (2019)

Bayesian Neural ODE (ensemble) Yes Yes 0.78 % Our study

ization layers: the initial layer has a 3× 3 filter and the next two convolutional layers

each have a 4×4 filter (stride 2×2, padding 1×1, ReLU activations). A Neural ODE

layer with two convolutional layers with 3 × 3 filter (padding 0, ReLU activations) is

appended to act as a residual layer. Finally, we add an adapative average pooling

layer and a fully connected layer consisting of 10 neurons (one per class). The full

architecture is visualized in figure 6-4.

Given the Neural ODE architecture, we initialize SGHMC with decay schedule of

𝜖𝑡 = 𝜂.𝑡−𝛾 and parameters 𝛾 = 0.01, 𝜂 = 0.5 and 𝛼 = 0.1, execute for 2530 iterations,

and sample the last 310 parameter updates. We find that tempering—scaling the

standard deviation of the added noise in SGHMC by a constant [92]—significantly

reduces time for convergence. Our experiment uses 104 as the tempering constant.

SGHMC is more computationally expensive, requiring ten epochs through the training

dataset, than a simple MAP estimation; a trial MAP optimization with ADAM yields

a 98.7% test accuracy after a single-epoch run.

The test set consists of all 10,000 images in the MNIST dataset. Each cell in

the heatmap of figure 6-5 represents the percentage of correct predictions out of

310 posterior samples on a single image. 91.8% of these cells have more than 99%

confidence.

Table 6.2 shows the performance of our Bayesian approach on the MNIST data.

Out of the 310 posterior samples for each image in the test set of 10,000 images

considered, the best fit test error represents the mean of the number of erroneous

predictions in all samples for all images. In our study, we have obtained a test
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(a)
Figure 6-5: Bayesian Neural ODE with SGHMC is applied to the MNIST dataset. Each cell
in this figure represents the percentage of correct predictions out of 310 posterior samples
on a single image. Results for the entire test set of 10,000 images is visualized here as a
100 × 100 heatmap

ensemble accuracy of 99.22 %, which is performance competitive with current state-

of-the-art image classification methods.

From table 6.2, we note that previous architectures for MNIST analysis either have

a Neural ODE architecture without error estimates [20] or do not incorporate a Neural

ODE for error estimation [150]. Incorporated Neural ODEs in our approach, we not

only demonstrate a classification performance competitive with current state-of-the-

art image classification methods; but also quantify the confidence of our prediction.

6.2.3 Bayesian Neural ODE: SGLD

Stochastic Gradient Langevin Dynamics (SGLD) is an adaptation, designed to sample

from the posterior as the iterations increase, of the usual stochastic gradient descent

algorithm. In each iteration, we update our vector 𝜃 of parameters according to the

rule

𝜃𝑡 ∶= 𝜃𝑡 −∆𝜃𝑡 (6.14)

∆𝜃𝑡 ∶=
𝜖𝑡
2
(∇ log 𝑝(𝜃𝑡) +

1

𝑛

𝑛

∑
𝑖=1
∇ log 𝑝(𝒟𝑛⋃︀𝜃)) + 𝜂𝑡 (6.15)

𝜂𝑡 ∼ 𝒩(0, 𝜖𝑡) (6.16)
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(a) (b)
Figure 6-6: Comparison of the Bayesian Neural ODE: SGLD estimation and data for the
Lotka Volterra ODE case study shown as (a) time series plots and (b) contour plots.

where 𝒟𝑛 are the minibatches the training dataset 𝒟 has been split into. 𝑝(𝒟𝑛⋃︀𝜃)

is the likelihood, whose logarithm is equivalent to the loss function, and 𝑝(𝜃𝑡) is

any priors, also known as regularisation terms, imposed onto the parameters 𝜃. The

stepsizes 𝜖𝑡 must follow a decaying scheme which satisfies the conditions [164]:

∞
∑
𝑡=1
𝜖𝑡 = ∞

∞
∑
𝑡=1
𝜖2𝑡 < ∞ (6.17)

in this article we have chose a polynomial decaying scheme 𝜖𝑡 = 𝑎(𝑏 + 𝑡)−𝛾 with 𝑎, 𝑏,

and 𝛾 as tuneable hyperparameters.

The update scheme for 𝜃 is composed of two stages. In the first stage, where the

approximate gradient dominates, we approach the regions with higher mass proba-

bility. During the second phase, instead of allowing 𝜃 to converge to a single value,

it walks randomly with a predominantly Gaussian noise since the gradient is 𝒪(𝜖𝑡)

and the Gaussian noise is 𝒪(⌋︂𝜖𝑡). It is on this second stage where it is theoretically

guaranteed to converge to the posterior, and hence, we may use this stage to sample

parameters from the posterior.

We now apply SGLD on the Lotka Volterra system in Equations 3-4. The Lotka

Volterra system used in this case has the same parameters as the one used for NUTS.

Again, we apply SGLD with 45000 iterations and sampled the last 2000 updates.

The hyperparameters used were 𝑎 = 0.0025, 𝑏 = 0.05, 𝛾 = 0.35. The neural ODE
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(a) (b)
Figure 6-7: (a) Figure shows that for the NUTS sample initialized at the MAP point, the
sampler quickly jumps away from the MAP point and never returns back. (b) Figure shows
that for the SGLD sampler initialized at the MAP, all posteriors samplers are close to the
MAP point.

architecture was again 2 layers with 50 neurons and tanh activation. The algorithm

took approximately 679 seconds to run.

From figure 6-6 we notice a good fit on the training dataset. The Bayesian Neural

ODE trained using the SGLD approach has accurately captured the periodicity of the

system; and is seen to generalize for a much longer duration than the NUTS sampler.

Comparison between SGLD and NUTS

Through figures 6-1 and 6-6, we note that SGLD generally has a better mean pre-

diction accuracy than NUTS. This can be attributed to the non-convexity/multi-

modality of the likelihood function where the MAP point is likely to be in a region

with low probability mass, leading the NUTS sampler which uses non-stochastic gra-

dients to not "find" the region surrounding the MAP point in the time of the sampling.

The use of stochastic gradients in SGLD seems to have led to a sample much closer

to the MAP point and with a much lower mean prediction error. This difference be-

tween NUTS and SGLD is illustrated in figure 6-7, where the distance of the posterior

samples from the MAP point is shown. Figure 6-7a shows that for the NUTS sample

initialized at the MAP point, the sampler quickly jumps away from the MAP point

and never returns back. Figure 6-7b shows that for the SGLD sampler, all posteriors

samplers are much closer to the MAP point, than the NUTS sampler.
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Figure 6-8: Figure shows the comparison between the mean posterior prediction for the
trained Neural PDE with the true data, and also the resulting error for (a) Example 1:
Burgers’ equation and (b) Example 2: KdV equation

Application to Neural PDE’s

The SGLD methodology can be readily extended for uncertainty quantification analy-

sis of a Neural PDE. The input vector which varies in space at the initial time (𝑢(𝑥,0))

can be propagated through a neural network architecture NNODE with weights 𝑝,

and reformulated as a ODE according to

B𝑢(𝑥, 𝑡)
B𝑡

= NNODE(𝑢(𝑥,0), 𝑝) (6.18)

The solution of this ODE, 𝑢̂ will be an 𝑛 ×𝑚 vector where 𝑛 is the number of time

points discretization and 𝑚 is the number of space points discretization. Using an

L2 loss function based on the difference between 𝑢̂ and the true data 𝑢̄, the SGLD

methodology outlined in section 2.3 can be applied in a similar manner to provide

the posterior of the neural network parameters 𝑝, and thus enable uncertainty quan-

tification in the PDE solution.
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We illustrate the applicability of SGLD to PDEs using the examples below

Example 1: Burgers’ equation

The Burgers’ equation is a PDE which shows in wide range of fields including fluid

dynamics, gas dynamics and acoustics and is given by

d𝑢

d𝑡
= 0.01

𝜋

d2𝑢

d𝑥2
− 𝑢d𝑢

d𝑥
(6.19)

Example 2: Korteweg–De Vries (KdV) equation

The KdV equation is a PDE which shows up in the field of shallow water analysis

and is given by
d𝑢

d𝑡
= −d

3𝑢

d𝑥3
− 6𝑢d𝑢

d𝑥
(6.20)

To generate the true data for these examples, the 𝑥 × 𝑡 space was divided into an

𝑛 × 𝑛 grid with 𝑛 = 51 for both examples. The PDE discretization was performed

using the method of lines and then solved using an adapative ODE solver in Julia.

The input vector to the neural PDE architectures in both cases was of size

𝑛 × 1 = 51 × 1. We used 2 layers with 10 neurons in each layer and the relu acti-

vation function. Propagation of the input vector to this neural network led to an

output of size 𝑛 × 𝑛 = 51 × 51.

We ran the SGLD algorithm with 40000 iterations and sampled the last 600 up-

dates. The hyperparameters used were 𝑎 = 0.001, 𝑏 = 0.15, 𝛾 = 0.05 for both examples.

Since the SGLD method leads to sampling from the true parameter posterior,

we can compare the mean posterior prediction for the trained Neural PDE with the

true data and also the resulting error. Figures 6-8a, b shows this comparison and

a reasonable agreement is seen. Through this method, we also get estimates of the

error in the mean posterior prediction, and not just a deterministic prediction.
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The extension of the SGLD method to PDE’s further strengthens its validity as

a useful Bayesian Neural ODE/PDE method.

6.2.4 Bayesian Neural ODE: Variational Inference

(a)

(b)
Figure 6-9: For the Spiral ODE example (Equations 1-2), figure shows the retrodiction
plots for (a) Variational Inference framework used in the present study and (b) Variational
Inference integrated with Normalizing Flow. We can see that integration with normalizing
flows used shows marginal improvement over plain Variational Inference with mean field
approximation.

Since the last decade, there has been explosive interest in applying variational

inference (VI) to text analysis, generative image modeling, and physical/chemical

systems analysis [140]. VI, an optimization-based approach, generally approximates

the posterior much faster than traditional MCMC methods. Variational inference was

traditionally used for learning in graphical models (e.g. the sigmoid belief network)

[80, 148]. However, there have been significant expansions in the methodology and
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application domains of VI; examples include stochastic variational inference [66] on

large-scale data analysis and black-box variational inference’s [134] usage beyond

conditionally conjugate models. Through the use of normalizing flows [140], implicit

distributions [103, 157] and importance-weighted variational autoencoders [25], the

posterior-approximating variational inference family was made more expressive and

thus powerful.

Here, we aim to address whether variational inference methods can be integrated

into, and thus further expand, our Bayesian Neural ODEs framework. We use the

Turing.jl interface in Julia [42]. Initially, we define a multivariate normal distri-

bution as the posterior family approximating the true posterior with a mean-field

approximation. For maximizing the expected lower bound, we use ADVI (Automatic

Differentiation Variational Inference) [88], with 10 samples per step and 5000 as the

upper bound on the number of gradient steps. Figure 6-9a shows the poor forecasting

performance of the Bayesian Neural ODE: Variational Inference framework applied

to the Spiral ODE example, compared to HMC methods explored above (figures 6-1,

6-3).

Integration of Normalizing Flows

One possible reason for the poor forecasting performance of the VI + Neural ODE

framework could be due to the posterior family not being expressive enough. To

further explore the effects of a powerful posterior family, we look at normalizing

flows.

Through a chain of invertible mappings, normalizing flows transform an initially

simple posterior family distribution (such as the multivariate normal in the above

example) into an arbitrary complex distribution [140]. Considering an initial random

variable 𝑧 with a distribution prescribed by 𝑞(𝑧). A bijective mapping function 𝑓

with inverse 𝑔, when applied to 𝑧 results in a new variable 𝑧′ with distribution given

by

𝑞′(𝑧′) = 𝑞(𝑧)⋃︀det
B𝑔

B𝑧′
⋃︀ = 𝑞(𝑧)⋃︀det

B𝑓

B𝑧
⋃︀−1 (6.21)
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In their original work, [140] demonstrated two types of normalizing flows: planar

layer and radial layer. In this study, we have employed the planar layer. The planar

layer, parametrized by 𝑢,𝑤, 𝑏 is given by the invertible function

𝑓(𝑧) = 𝑧 + 𝑢ℎ(𝑤𝑇 𝑧 + 𝑏) (6.22)

where ℎ is a differentiable element-wise non-linearity. Thus, applying a sequence

of maps 𝑓𝑘 to an initial density leads to the transformed variable and corresponding

density as

𝑧𝑘 = 𝑓𝑘 ○ 𝑓𝑘−1 ○ . . . ○ 𝑓1(𝑧)

ln𝑞𝑘(𝑧𝑘) = ln𝑞0(𝑧) −
𝐾

∑
𝑘=1

ln⋃︀1 + 𝑢𝑇𝑘𝜓𝑘𝑧𝑘−1⋃︀
(6.23)

where 𝜓(𝑧) = ℎ′(𝑤𝑇 𝑧 + 𝑏)𝑤. Application of a planar flow to a standard Gaussian dis-

tribution leads to flexible expansions/contractions along hyperplanes and thus makes

the base distribution a lot more expressive.

In the present study, the base distribution was initialized as a multivariate normal

distribution with mean as a randomly initialized vector with length governed by the

number of parameters of the neural ODE. We transformed this base distribution using

a composition of 2 such planar layers described in Equation (6.22); with 𝑧 being the

parameters of the neural ODE.

Figure 6-9b shows that through the inclusion of normalizing flows, the estimation

performance of the Bayesian Neural ODE: Variational Inference object is marginally

better compared to figure 6-9a. For the Variational Inference experiment we used

During experiments with different configurations such as Neural Network size, time

span of solution and initial weights for the Neural Network used as well for the

Normalizing Flow layers had considerable effect on the training performance and

forecasting capability of the model. There are quite a lot of open questions that need

to be addressed to ensure suitability of Variational Inference with Neural ODEs and

will be part of future work.
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(a) (b)
Figure 6-10: Bayesian Neural UDE estimation is demonstrated for the Lotka Volterra exam-
ple with a missing term as shown in (6.24); using the PSGLD approach. (a) Comparison of
the recovered missing term and the actual term and (b) Sparsity plot using the STRRidge
algorithm. The highlighted box shows the optimal point which gives the sparsest solution
(1 term) with a low error. This plot is seen to be the same for 100 trajectories considered
in the sampling phase.

6.2.5 Bayesian Neural UDE: SGLD and PSGLD

In this section, we aim to demonstrate a viable method for the probabilistic quan-

tification of epistemic uncertainties via a hybrid machine-learning and mechanistic-

model-based technique.

More efficient training of deep neural networks is achieved by using a precondi-

tioned matrix 𝐺(𝜃) in the gradient update step of Equation 15 of the SGLD method

[92]. Combining this with an adaptive step size method like RMSprop leads to much

faster sampling than the standard SGLD approach, as outlined in the Preconditioned

SGLD with RMSprop algorithm by [92]. We demonstrate the use of this algorithm

in this section, where standard SGLD failed to converge to the true posterior.

Application to a predator-prey model

As outlined by [129], universal differential equations (UDE’s) can be used to recover

missing terms of governing equations describing dynamical systems. As an example,

we look at the Lotka Volterra system with a missing term denoted by 𝑀(𝑢1, 𝑢2) in

the first variable derivative as
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𝑑𝑢1
𝑑𝑡
= −𝛼𝑢1 −𝑀(𝑢1, 𝑢2) (6.24)

𝑑𝑢2
𝑑𝑡
= −𝛿𝑢2 + 𝛾𝑢1𝑢2 (6.25)

(6.26)

Table 6.3: Bayesian Neural UDE: Recovery of dominant terms for the Lotka Volterra ex-
ample, as the sparsity parameter 𝜆 is varied. Highlighted row shows the sparsity parameter
with the lowest positive AIC score.

𝜆 Number of Dominant terms Error Mean %
Active terms AIC score sampled

0.01 9 𝑢21, 𝑢
2
2, 𝑢1𝑢2 0.765 40.4 100

𝑢21𝑢
2
2, 𝑢

2
1𝑢2, 𝑢

2
2𝑢1

𝑢1𝑢2, const
0.1 9 𝑢21, 𝑢

2
2, 𝑢1𝑢2 0.764 35 100

𝑢21𝑢
2
2, 𝑢

2
1𝑢2, 𝑢

2
2𝑢1

𝑢1𝑢2, const
1 5 𝑢21, 𝑢

2
2, 𝑢2 0.764 21.6 100

𝑢21𝑢2, 𝑢1𝑢2
2 2 𝑢21𝑢2, 𝑢1𝑢2 0.634 7.2 100
3 1 𝑢1𝑢2 0.7 4.1 100
5 1 𝑢21𝑢2 2.49 -1 100

Using the PSGLD method outlined in [129], we trained 𝑀𝜃(𝑢1, 𝑢2) as a neural

network to optimize the weights 𝜃; and recover the missing term time series. We

sampled from the last 100 updates of the converged sampler. Figure 6-10a shows

that the recovered time series 𝑀𝜃(𝑢1, 𝑢2) from 100 trajectories matches very well

with the actual term 𝑀𝜃(𝑢1, 𝑢2) = 𝑢1𝑢2. These optimized parameter space for all 100

trajectories lies very close to each other, indicating that the PSGLD method indeed

converges and then subsequently samples closer to the true posterior.

Subsequently, we used a sparse regression technique called Sequential Thresholded

Ridge Regression (STRRidge) algorithm [14] on the neural network output to recon-

struct the missing dynamical equations for 100 trajectories of the sampled parameter

space. The STRRidge algorithm has a tunable sparsity parameter 𝜆 to control the

sparsity of the obtained dominant terms. Optimally, we would want the sparsest
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(a)
Figure 6-11: Bayesian Neural UDE estimation is demonstrated for the SEIR example with
a missing term as shown in (6.32); using the PSGLD approach. (a) Comparison of the
recovered missing term and the actual term shown for 100 trajectories considered in the
sampling phase.

solution with the least possible error.

Figure 6-10b shows the variation of the number of terms recovered by the STR-

Ridge algorithm with the sparsity parameter, 𝜆; which shows a decreasing trend as

expected. The colorbar indicates the error between the sparse recovered solution and

the neural network output 𝑀𝜃(𝑢1, 𝑢2). It can be seen that the highlighted box indi-

cates the optimal point which has the sparsest solution (1 term) with a very low error.

This point also corresponds to the lowest positive AIC score (Akaike Information Cri-

teria) [13, 161] which strives to minimize the model error as well as its complexity

(shown in Table 6.3). Along with showing the AIC score as function of the sparsity

parameter 𝜆, table 6.3 also shows the dominant terms as the sparsity parameter 𝜆 is

varied.

This optimal solution has the quadratic form ∼ 𝑢1𝑢2, for all 100 trajectories in-

dicating that Bayesian Neural UDE approach recovers the correct solution for all

sampled trajectories. Out of the 100 models sampled for the optimal sparsity pa-

rameter, the model with the lowest AIC score was found to be 𝑀(𝑢1, 𝑢2) = 0.96𝑢1𝑢2,

which is very close to the true solution 𝑀(𝑢1, 𝑢2) = 𝑢1𝑢2.

Application to an epidemiology model

As another example to test our approach, we consider a SEIR epidemiological model.

The SEIR is a compartment based model which models transfer of population between

four compartments: Susceptible, Exposed, Infected and Recovered using the following
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set of equations:

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼 (6.27)

𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 − 𝜎𝐸 (6.28)

𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − 𝛾𝐼 (6.29)

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 (6.30)

(6.31)

In Equation 6.27, we will try to infer the exposure term using Bayesian Neural

UDE: PSGLD approach. Thus, we will try to learn 𝑀(𝐸, 𝐼) = 𝜎𝐸 in the following

system of equations

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼 (6.32)

𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 −𝑀(𝐸, 𝐼) (6.33)

𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − 𝛾𝐼 (6.34)

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 (6.35)

(6.36)

Using the PSGLD method outlined in [129], we trained 𝑀𝜃(𝐸, 𝐼) as a neural network

to optimize the weights 𝜃; and recover the missing term time series. We sampled from

the last 100 updates of the converged sampler. Figure 6-11a shows that the recovered

time series 𝑀𝜃(𝐸, 𝐼) from 100 trajectories matches very well with the actual term

𝑀𝜃(𝐸, 𝐼) = 𝜎𝐸.

Subsequently, we applied the STRRidge algorithm to recover the symbolic equa-

tions for the missing terms, with the sparsity parameter 𝜆 ranging from 0.005 − 0.5.

The model for which the lowest AIC score was obtained, was found to contain just
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Figure 6-12: Bayesian Neural UDE estimation is demonstrated for the Fisher-KPP PDE
example with a missing term as shown in (6.38); using the PSGLD approach. Figures show
comparison between: (a) Training data and the mean of 500 recovered posterior solutions, (c)
True reaction term and the posterior recovered term, (d, e) Posterior recovered weights for
the convolutional filter and the canonical stencil [1,−2,1] for the one-dimensional Laplacian.
(b) The variation of the sparsity parameter 𝜆 in the STRRidge algorithm, with the obtained
AIC score

one dominant term (𝐸) and with the symbolic form 𝑀(𝐸, 𝐼) = 0.099𝐸 compared to

the ground truth data of 𝑀(𝐸, 𝐼) = 0.1𝐸, for all 100 trajectories sampled.

6.2.6 Application to PDE’s: Wave propagation

To illustrate the probabilistic system identification using Bayesian Neural UDEs, we

consider a spatio-temporal system governed by the one-dimensional Fisher-KPP PDE

B𝜌

B𝑡
= 𝑟𝜌(1 − 𝜌) +𝐷 B2𝜌

B𝑥2
, (6.37)
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Table 6.4: Bayesian Neural UDE: Recovery of the quadratic reaction term for the Fisher-
KPP equation. Results are shown for the sparsity parameter 𝜆 = 𝜆𝑐𝑟 = 0.5 for which the AIC
score begins to show a plateau (figure 6-12b). Results are shown for 1000 posterior samples

𝜆𝑐𝑟 Number of Dominant terms % of
Active terms samples

0.5 2 𝜌, 𝜌2 73
0.5 3 𝜌, 𝜌2, 𝜌3 27

with 𝑥 ∈ (︀0,1⌋︀, 𝑡 ∈ (︀0, 𝑇 ⌋︀, and periodic boundary condition 𝜌(0, 𝑡) = 𝜌(1, 𝑡). Here 𝜌

represents population density of a species, 𝑟 is the local growth rate and 𝐷 is the

diffusion coefficient. Such reaction-diffusion equations appear in diverse physical,

chemical and biological problems [56]. To learn the generated data, we define the

UPDE:

𝜌𝑡 = NN𝜃(𝜌) + 𝐷̂CNN(𝜌), (6.38)

where NN𝜃 is a neural network representing the local growth term. The derivative

operator is approximated as a convolutional neural network CNN, a learnable ar-

bitrary representation of a stencil while treating the coefficient 𝐷̂ as an unknown

parameter fit simultaneously with the neural network weights. We encode in the loss

function extra constraints to ensure the learned equation is physically realizable, i.e.

the derivative stencil must be conservative (the coefficients sum to zero).

We trained the neural network NN𝜃 and the convolutional neural network NN𝜃

using the PSGLD method outlined above. We sample from the last 1000 updates

of the converged posterior. Figure 6-12a shows that the mean of the posterior re-

covered solutions shows a good match with the training data. Figure 6-12c shows

the bayesian recovery of the reaction term, parameterized by NN𝜃, which shows a

quadratic form for all 1000 posterior samples with mean value lying close to the true

quadratic reaction term. Figure 6-12d, e shows the posterior recovered convolutional

filter (︀𝑤1,𝑤2,𝑤3⌋︀. From these two plots, we see that the posterior for these weights

lies very close to the canonical stencil [1,−2,1] for the one-dimensional Laplacian.

Subsequently, we applied the STRRidge algorithm to recover the symbolic equa-
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tions for the reaction term 𝑟𝜌(1 − 𝜌), with the sparsity parameter 𝜆 ranging from

𝑂(1𝑒−3)−𝑂(1). The variation of 𝜆 with the obtained AIC score is shown in figure 6-

12b. We see the critical 𝜆 for which the AIC score starts showing a plateau is marked

as 𝜆𝑐𝑟 = 0.5 and shown as a dotted line in figure 6-12b. We used the STRRidge

algorithm using this value of the sparsity parameter 𝜆 for 1000 recovered posterior

samples. In table 6.4, we see that 73% of these posterior samples show the dominant

symbolic terms to be 𝜌, 𝜌2, which matches the true quadratic reaction term form. For

the remaining 27%, the terms recovered are seen to be 𝜌, 𝜌2, 𝜌3.

6.2.7 Application to PDE’s: Climate models

As an example of directly accelerating existing scientific workflows, we focus on the

Boussinesq equations [26]. The Boussinesq equations are a system of 3+1-dimensional

partial differential equations acquired through simplifying assumptions on the incom-

pressible Navier-Stokes equations, represented by the system:

∇ ⋅ u = 0,
Bu

B𝑡
+ (u ⋅ ∇)u = −∇𝑝 + 𝜈∇2u + 𝑏𝑧,

B𝑇

B𝑡
+ u ⋅ ∇𝑇 = 𝜅∇2𝑇,

(6.39)

where u = (𝑢, 𝑣,𝑤) is the fluid velocity, 𝑝 is the kinematic pressure, 𝜈 is the kinematic

viscosity, 𝜅 is the thermal diffusivity, 𝑇 is the temperature, and 𝑏 is the fluid buoyancy.

We assume that density and temperature are related by a linear equation of state so

that the buoyancy 𝑏 is only a function 𝑏 = 𝛼𝑔𝑇 where 𝛼 is the thermal expansion

coefficient and 𝑔 is the acceleration due to gravity.

This system is commonly used in climate modeling, especially for modeling the

ocean [54, 26] in a multi-scale model that approximates these equations by averaging

out the horizontal dynamics 𝑇 (𝑧, 𝑡) =
s
𝑇 (𝑥, 𝑦, 𝑧, 𝑡)𝑑𝑥𝑑𝑦 in individual boxes. The re-

sulting approximation is a local advection-diffusion equation describing the evolution

of the horizontally-averaged temperature 𝑇 :
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Figure 6-13: Bayesian Neural UDE estimation using the PSGLD approach. is demonstrated
for the on Eddy Model parametrizations used in Climate models. Figures show comparison
between: (a) Training data and the mean of 500 recovered posterior solutions, (b) Temporal
slice of the training data and the recovered posterior and (c) Spatial slice of the training
data and the recovered posterior.
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B𝑇

B𝑡
+ B𝑤𝑇

B𝑧
= 𝜅B2𝑇

B𝑧2
. (6.40)

This one-dimensional approximating system is not closed since 𝑤𝑇 is unknown. Com-

mon practice closes the system by manually determining an approximating 𝑤𝑇 from

ad-hoc models, physical reasoning, and scaling laws. However, we can utilize a UDE-

automated approach to learn such an approximation from data. Let

𝑤𝑇 = 𝑈𝜃 (𝑃,𝑇 ,
B𝑇

B𝑧
) (6.41)

where 𝑃 are the physical parameters of the Boussinesq equation at different regimes

of the ocean, such as the amount of surface heating or the strength of the surface

winds [55]. We can accurately capture the non-locality of the convection in this term

by making the UDE a high-dimensional neural network.

Data was generated from the diffusion-advection equations using the missing func-

tion 𝑤𝑇 = cos(sin(𝑇 3)) + sin(cos(𝑇 2)). Similar to the above examples, we can train

this neural network for the 𝑤𝑇 term using the PSGLD approach and obtain bayesian

estimates of the recovered solution using the weight posteriors of this neural network.

Figure 6-13a shows that the mean of the posterior recovered solutions shows a

good match with the training data. Figure 6-13b, c shows the temporal and spatial

slices of the training data respectively, compared with the bayesian recovered solu-

tions for 500 samples. We can see that we can not only recover the correct spatial

and temporal variations in the temperature data but also capture the uncertainty

associated with the predictions.

Thus, the model discovery for both the predator-prey example and the epidemio-

logical model is robust to uncertainty. The Bayesian Neural UDE framework is thus

an added arsenal to the recently demonstrated methods on bayesian system identi-

fication [6, 170]. Future work will further identify the relationship between model
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uncertainties and probabilistic automated discovery.

6.3 Conclusion and Future Work

We have shown that Bayesian learning frameworks can be integrated with Neural

ODE’s to quantify the uncertainty in the weights of a Neural ODE, using three

sampling methods: NUTS, SGHMC and SGLD. Bayesian Neural ODEs with SGLD

sampling is seen to provide better prediction accuracy and less bias from the MAP

than NUTS sampling, possibly due to non-convexity/multi-modality of the likelihood

function where the MAP point is likely to be in a region with low probability mass.

However, a better understanding of why the two algorithms differ and how they com-

pare to other algorithms is needed.

In addition, using a novel architecture which integrates convolution layers and

Neural ODEs with the SGHMC framework; we demonstrate a test ensemble accuracy

of 99.22% which is comparable with the accuracy of state-of-the-art image classifica-

tion methods.

Subsequently, for the first time, we demonstrate the integration of Neural ODEs

with Variational Inference. We show that when variational inference is combined

with normalizing flows, it leads to a good prediction and estimation performance on

physical systems; thus leading to a potentially powerful Bayesian Neural ODE object.

Finally, considering the problem of recovering missing terms from a dynamical

system using universal differential equations (UDEs); we demonstrate the Bayesian

recovery of missing terms from dynamical systems for (a) a predator-prey model and

(b) an epidemiological model.

Currently, it is observed that Bayesian learning of Neural ODEs is computationally
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expensive for large datasets. Therefore, more work is needed to evaluate, understand

and improve the convergence of various approximate Bayesian inference and MCMC

algorithms in the context of Neural ODEs. Another research direction we plan to delve

into further is Bayesian Neural SDE’s and their applicability to physical systems and

large scale machine learning datasets.

6.4 Code Availability

All codes for SGHMC, Bayesian Neural UDE are publicly available at https://github.com/RajDandekar/MSML21_BayesianNODE

and codes for the Variational Inference Neural ODE object is available at https://github.com/mohamed82008/

BayesNeuralODE.jl
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Chapter 7

Concluding remarks

Machine learning (ML) has brought about a revolution in the fields of image process-

ing, robotics, self driving cars and security systems. Typically, these systems require

a large amount of data to train the ML models on. Along with the requirements for

large amounts of data, these models are typically non interpretable and physically

intractable. Scientific Machine Learning (SciML) methodology enables training mod-

els using less amounts of data. These models are also highly interpretable in nature.

They leverage the expressivity of neural networks with the interpretibilty of scien-

tific structures like Ordinary Differential Equations (ODEs) and Partial Differential

Equations (PDEs).

In this thesis, we have presented the application of these SciML frameworks to the

field of epidemiology. The SciML models which we have developed, build on the fun-

damental epidemiological models and augment them with neural network modules.

This augmentation not only makes these models expressive, but also highly inter-

pretable in nature. We demonstrate that such models can be used for a wide range

of applications including quarantine diagnosis, effect of early reopening in infection

count evolution, virtual virus spread through Bluetooth tokens. These models are

highly flexible in nature, enabling researchers and policy makers to adapt and extend

these models to different applications. The appeal of these new models have led to

collaborations with national labs, research universities and Silicon Valley startups
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who have used/ are using these models.

The development of this new methodology comes at a time when the world is

grappling with the devastating effects of the Covid-19 pandemic. Since the outbreak

of this pandemic, a number of modeling frameworks have been used to analyze various

aspects of the pandemic such as prediction of infected and recovered case counts [31],

hospitalizations [102], travel restrictions [23], reopening [32] and non-pharmaceutical

interventions [38]. We hope that our proposed methodology can be another tool for

researchers, policy makers and industries; as they learn new insights from this pan-

demic and as we all prepare for future waves of such a pandemic.

7.1 Future work

For the future work, there are several avenues which we wish to explore as follows:

• Design a graphical user interface (GUI) for the SciML models developed in this

thesis.

• Look at implementing delay differential equations (DDEs) in association with

the QSIR model to capture the delay seen in the diagnosis.

• Improve the Bayesian Neural ODE framework by introducing additional meth-

ods like Variational Inference (VI) with/ without normalizing flows.

• Extend the SciML modeling paradigm to Partial Differential Equations (PDEs)

to capture population migration between cities etc.

• More interpretability such as bifurcation plots, system transition to chaos etc

can be added as tools to the SciML modeling paradigm
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