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Abstract

Cells cooperate as groups to achieve functions at the tissue level, and specific struc-
tural characteristics emerge from the local organization of neighboring cells. Anal-
ogous to classical physics where transformations in the local structure give rises to
phases and phase transitions, the changes in local structures in multicellular assem-
blies can be essential for a variety of vital processes including morphogenesis, wound
healing, and cancer. In this work, we use the two invariants (volume 𝐽 and shear 𝛾) of
the deformation tensor of Delaunay triangles as a pair of quantities to define the local
microstates of multicellular living systems. In chapter 3, we develop configurational
fingerprints based on these local structures, volume 𝐽 and shear 𝛾, and extract two
parameters, namely the volumetric and shear order parameters, that are reflective
of the transitions of local order in the systems. Theoretically, these two parameters
form a complete and unique pair of signatures for the local structural order of a mul-
ticellular system. The evolution of these two order parameters offers a robust and
experimentally accessible way to map the phase transitions in expanding cell mono-
layers, and during embryogenesis and invasion of epithelial spheroids. In chapter 4,
We show by both simulations and experiments that the isotropic invariant 𝐽 follows
a 𝑘−Γ distribution, and the isochoric invariant 𝛾 follows an exponential distribution.
We further propose two temperature-like quantities for cell assemblies, in which sense
we show the periphery of an extravasating epithelial monolayer is ‘hotter’ than the
core.

Thesis Supervisor: Ming Guo
Title: Associate Professor of Mechanical Engineering
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Chapter 1

Introduction

Cells interact and cooperate at length scales far above individuals [52, 27]; these long-

ranged interactions help determine tissue-level material characteristics. The ability to

tune these material characteristics is important for many multicellular physiological

and pathological processes including embryogenesis [35, 6, 44], cancer invasion [22, 32],

and wound healing [13]. In these vital processes in living systems [4, 9, 42], cells bear

many of the hallmarks of a material phase transition [54]. In wound healing, for

example, cells near the wound edge appear to undergo a solid-to-fluid transition, be-

coming highly migratory, leading the wound closure [13]. Another example is tumor

metastasis: benign tumors can maintain a stable configuration for decades; in con-

trast, cancers might spread all over the body in a short time. In this sense, benign

tumors are as rigid as solids, while cancers are rather amorphous like fluids and cells

that escape the tumor mass behave more like a gas.

To quantitatively understand these behaviors of multicellular systems, efforts have

been made mainly based on quantifying cell motion such as effective diffusivity, align-

ing and swirling patterns, or morphological parameters such as shape index and aspect

ratio [9, 42, 55, 51, 57, 59, 49, 62, 3, 38, 60, 20, 17, 50, 40, 10, 58]; yet, what order

parameters are suitable to describe phase transitions in multicellular systems remain

elusive [36]. This is in contrast to classical condensed matter theory where material

rigidity is a direct consequence of local spatial order establishment among neighboring

particles, a concept has not previously been explored in living systems.
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In solid mechanics, classical constitutive material relations are defined in terms

of volumetric and shear deformations, which describe the change in structure among

neighboring material points [29]. Thus, defining volume and shear structures in mul-

ticellular systems may allow us to establish more general framework for multicellular

assemblies that are more directly related to classical mechanical characteristics. Here

we show that volumetric and shear structures can be defined for amorphous systems

and changes in these parameters are reflective of phase transitions in both particulate

and multicellular systems.
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Chapter 2

Materials and Methods

2.1 The Volume and Shear Structure

In thermal systems, the energy competition between isotropic (volumetric) and iso-

choric (shear) deformation identifies three distinct phases (i.e. gas, liquid, solid).

Gas can barely resist volumetric or shear deformation while solid resists both. In

between, liquid is often considered as resistant only to volumetric deformation. The-

oretically, the isotropic and isochoric invariants of deformation are a pair of mutually

independent and complete variables that can fully quantify the local deformation. In

2D, three noncollinear adjacent cells form a triangle. Assuming 𝑁 triangles can be

formed by linking adjacent cells, the 𝑛-th triangle (𝑛 = 1, 2, ..., 𝑁) in current config-

uration can be expressed as a matrix Tn =

⎛⎝𝑋𝑛1 −𝑋𝑛0 𝑋𝑛2 −𝑋𝑛0

𝑌𝑛1 − 𝑌𝑛0 𝑌𝑛2 − 𝑌𝑛0

⎞⎠ [Fig. 2-1A] ,

where 𝑋𝑛𝑚, 𝑌𝑛𝑚 (𝑚 = 0, 1, 2) are Cartesian coordinates of the 𝑚-th vertice of the

𝑛-th triangle. This segmentation method is known as Delaunay triangulation, and

has been previously used to measure strain for granular materials [7], and during

biological tissue development [21, 26].

Here, instead of measuring strains, we seek to quantify the degree of disorder

of the system at one point in time by comparing to an ideal reference frame. We

consider the reference triangle to be the most regular and special one, an equilateral

17



Figure 2-1: (A) An arbitrary triangle is compared to an equilateral referential tri-
angle. Delaunay triangulation of (B) a solid-like cell monolayer; (C) a fluid-like cell
monolayer in simulation. The nodes are centers of cells.

triangle with Tr =
√
𝐴

⎛⎝1 1
2

0
√
3
2

⎞⎠ (Fig. 2-1A), where
√
3
4
𝐴 is the average area of all

Delaunay triangles. The triangle matrix T has 4 elements but not all these elements

are independent state variables. The following arguments should be considered:

i) The microstates should not depend on the orientation of coordinate system.

ii) For an isotropic system, congruent triangles should be at the same microstate.

These two arguments are similar to the material frame indifference and isotropic

material symmetry typically considered in continuum mechanics, and can be achieved

by considering the invariants of the Cauchy-Green deformation tensor. The corre-

sponding deformation gradient is Fn = TnTr
−1. A pair of independent and complete

invariants are 𝐽 = 𝑑𝑒𝑡(F) and 𝛾 = 𝑡𝑟(FTF)
𝑑𝑒𝑡(F)

− 2, which reflect how much area each

triangle deviates from the average area and how much distortion each triangle has

compared to the equilateral ones, respectively. It can be proved that the two deforma-

tions are independent of orientation of the reference triangle (Lemma 1 in Appendix

A). Tiling up a surface with equilateral triangles results in hexagonal packing, which

is found to be the most frequent cell packing in simple epithelia [24]. Let 𝜆𝑖 (𝑖 = 1, 2)

be principal stretches. It can be proved that any deformation gradient F can be

factored as F = FvFs, where Fv is a volumetric deformation with equivalent amount

of stretch 𝑣 = (𝜆1𝜆2)
1/2, and Fs is a simple shear with equivalent amount of shear

𝑠 =
√︀

𝜆1/𝜆2 −
√︀

𝜆2/𝜆1; moreover, 𝐽 and 𝛾 represent the real volumetric and shear

deformations of each triangle by 𝐽 = 𝑣2 and 𝛾 = 𝑠2 (Lemma 2 in Appendix A).
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2.2 Cell Culture and Microscopy

Madin-Darby Canine Kidney (MDCK) Monolayer. MDCK cells were sta-

bly transfected with green fluorescent protein tagged with nuclear localization sig-

nal (GFP-NLS). Cells were cultured and imaged at 37 °C and 5% CO2 -in Dul-

becco’s modified Eagle’s medium supplemented with 10% fetal bovine serum, 1%

penicillin/streptomycin and 0.5mgmL−1 G418. Rat tail collagen I (3mgmL−1) was

diluted to 0.1mgmL−1 in phosphate buffered saline (PBS) and used to coat 12-well

tissue culture plates prior to seeding. 50,000 cells were added per well and allowed to

adhere for 24h prior to imaging. All images were recorded on a Leica SP5 confocal

microscope using 10× magnification and using the 488 nm line of an argon ion laser.

Cells were maintained in a stage top live cell incubation chamber for the duration of

imaging. Both phase (cell boundaries) and fluorescence (GFP, cell nuclei) channels

were recorded simultaneously every 3 minutes for 64 hours.

MCF-10A. MCF-10A cells were transfected with GFP-NLS. Cells were cultured fol-

lowing a previously established protocol [18]. Briefly, cells were cultured and imaged

at 37 °C and 5% CO2 -in Dulbecco’s modified Eagle’s medium/F-12 supplemented

with 5% horse serum, 20 ngmL−1 epidermal growth factor, 0.5 µgmL−1 hydrocorti-

sone, 100 ngmL−1 cholera toxin, 10 µgmL−1 insulin, and 1% penicillin and strepto-

mycin.

The Epithelial Mesenchymal Transition (EMT) Treatment and Microscopy

of MCF-10A Monolayer. The EMT group was cultured with the medium supple-

mented with 10 ngmL−1 TGF𝛽1 (PN:90900-1, BPS Bioscience, San Diego, CA, USA)

for 1 week prior to and throughout the measurement. Bovine collagen I (10mgmL−1)

was diluted to 0.1mgmL−1 in PBS and used to coat a 6-well tissue culture plate prior

to seeding. Each group was seeded in three wells. All images were recorded on a Leica

SP8 confocal microscope using 10× magnification and 488 nm excitation. 14 posi-

tions of each group were imaged starting from 12 hours after seeding and every 12

hours afterwards for 156 hours.

3D Cell Culture and Microscopy of MCF-10A Spheroids. MCF-10A cells

19



were grown in an interpenetrating gel containing 5mgmL−1 alginate and 4mgmL−1

Matrigel. All images were recorded on a Leica SP8 confocal microscope.

Immunofluorescent Staining. Normal MCF-10A cells (without GFP-NLS) are

seeded in the same 3D gel. The 3D gel with spheroids were fixed with 4% paraformalde-

hyde for 30 minutes, immersed in 0.2% Triton X-100 in PBS for 2 hours, and blocked

with 0.5% bovine serum albumin (BSA) in PBS for 5 hours at room temperature.

The sample was then incubated with primary antibodies for vimentin (1:300 diluted

in PBS, Santa Cruz Biotechnology, sc-6260) at 4 °C overnight, with the secondary an-

tibody (Alexa Fluor 488 goat anti-mouse IgG (H+L), 1:1000) at 4 °C overnight, and

stained with DAPI (ThermoFisher, D1306) for one hour. The sample was washed

with PBS for 6 hours between each step.

2.3 Simulation

Simulation of Binary Mixture. The particles interact with each other through

an one sided harmonic potential energy 𝑈𝑏(𝑑) = 1
2
(
𝑟𝑖+𝑟𝑗

𝑑
− 1)2𝑅(

𝑟𝑖+𝑟𝑗
𝑑

− 1), where

𝑅(𝑥) =

⎧⎨⎩1 𝑥 > 0

0 𝑥 ≤ 0
is a step function, 𝑟𝑖 and 𝑟𝑗 are radius of two interacting particles

respectively, and 𝑑 is the distance between the two particles. 256 particles of radius

𝑅 and 256 particles of radius 𝑟 are initially randomly distributed. A system energy

tolerance is set to be 10−8 to reach equilibrium. The simulation box is set to have unit

length. The simulations are done with self-made MATLAB codes. FIRE minimization

algorithm is used [11].

The stress tensor is given by [1] 𝜎 = 1
𝑉

∑︀
𝑖 ̸=𝑗 𝑥

𝑖𝑗 ⊗ 𝑓 𝑖𝑗, where 𝑥𝑖𝑗 = 𝑥𝑖 −𝑥𝑗 is the

difference of the position vectors of grain 𝑖 and grain 𝑗, 𝑉 = 1 is the volume of the

simulation box, “ ⊗ ” denotes a vector outer product, and the force vector is given

by 𝑓 𝑖𝑗 = −(|𝑥𝑖𝑗| − 𝑟𝑖 − 𝑟𝑗)
𝑥𝑖𝑗

|𝑥𝑖𝑗 |𝑅(
𝑟𝑖+𝑟𝑗
|𝑥𝑖𝑗 | − 1).

Simulation of Confluent Cell Monolayers. The self-propelled Voronoi (SPV)

simulation is performed following the methods in [10]. Briefly, SPV model has a

system energy of 𝑁 Voronoi cells composed of quadratic functions of the area and
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perimeter of cells, 𝐸 =
∑︀𝑁

𝑖=1 𝐾𝐴(𝐴𝑖 − 𝐴0)
2 + 𝐾𝑃 (𝑃𝑖 − 𝑃0)

2, where 𝐴𝑖 and 𝑃𝑖 are

area and perimeter of the 𝑖-th cell, 𝐴0 and 𝑃0 are their preferred area and perimeter,

𝐾𝐴 and 𝐾𝑃 are the area and perimeter moduli. Position 𝑟𝑖(𝑡) and polarity angle

𝜃𝑖(𝑡) of each individual cell at arbitrary time 𝑡 are governed by 𝜕𝑟𝑖
𝜕𝑡

= 𝜇𝐹𝑖 + 𝜈0𝑛𝑖 and
𝜕𝜃𝑖
𝜕𝑡

= 𝜂𝑖(𝑡), where 𝐹𝑖 = − 𝜕𝐸
𝜕𝑟𝑖

, 𝑛𝑖 = (𝑐𝑜𝑠𝜃𝑖 𝑠𝑖𝑛𝜃𝑖) is the polarity vector of the cell, 𝜂𝑖(𝑡)

is a white noise with zero mean and variance 2𝐷 that follows < 𝜂𝑖(𝑡)𝜂𝑗(𝑡
′) >= 2𝐷𝛿(𝑡−

𝑡′)𝛿𝑖𝑗, 𝜇 is the mobility, and 𝑣0 is a self-propelling coefficient. The demonstration in

Fig. 3-3A is simulated with 2500 Voronoi cells, and the parametric study in Fig. 3-3B

is performed with 400 Voronoi cells.

2.4 Cell Tracking

Cell tracking is performed with TrackMate in ImageJ [53].

2.5 Determine the Reference Area

Considering a hexagonal lattice with 𝑁 vertices, since most vertices are shared by

6 triangles and every triangle has 3 vertices, the reference area
√
3
4
𝐴 thus can be

estimated by 𝐴𝑡𝑜𝑡𝑎𝑙

2𝑁
, where 𝐴𝑡𝑜𝑡𝑎𝑙 is the total area of the field of view. A proper

reference area can be verified by confirming that < 𝑣𝑜𝑙 >∼ 1.

2.6 3D Version of 𝐽 and 𝛾

In 3D, four nonplanar adjacent cells form a tetrahedron. Assuming 𝑁 tetrahedrons

can be formed by linking adjacent cells, the 𝑛-th tetrahedron (𝑛 = 1, 2, ..., 𝑁) can be

expressed as a matrix Tn =

⎛⎜⎜⎜⎝
𝑋𝑛1 −𝑋𝑛0 𝑋𝑛2 −𝑋𝑛0 𝑋𝑛3 −𝑋𝑛0

𝑌𝑛1 − 𝑌𝑛0 𝑌𝑛2 − 𝑌𝑛0 𝑌𝑛3 − 𝑌𝑛0

𝑍𝑛1 − 𝑍𝑛0 𝑍𝑛2 − 𝑍𝑛0 𝑍𝑛3 − 𝑍𝑛0

⎞⎟⎟⎟⎠, where 𝑋𝑛𝑚, 𝑌𝑛𝑚

(𝑚 = 0, 1, 2, 3) are Cartesian coordinates of the 𝑚-th vertice of the 𝑛-th tetrahedron.

We assume the reference state to be equilateral tetrahedrons, which gives the unit
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reference state T0 =

⎛⎜⎜⎜⎝
1 1

2
1
2

0
√
3
2

√
3
6

0 0
√
6
3

⎞⎟⎟⎟⎠. The corresponding deformation gradient is

Fn = TnT
−1
0 . Similar to 2D, we have 𝑣3 = 𝑑𝑒𝑡(F), and 𝑠3 = 𝑡𝑟(FTF)

𝑑𝑒𝑡(F)2/3
− 3. We further

define 𝐽0 = 𝑣3, and 𝛾 = 𝑠3. The reference volume (𝐽0) can be estimated by the

median value of 𝐽0 of all tetrahedrons. Further, 𝐽 is defined by 𝐽 = 𝐽0
𝐽0

.

Moreover, rather than forming tetrahedrons in a way similar to forming Delaunay

triangles, we apply an averaging method described below to reduce noise. For each

cell, we define it together with 𝑝 most adjacent cells to be the neighboring subset on

that cell. Within this subset, we form all possible tetrahedrons, and use the median

values of 𝐽0 and 𝛾 as the representative values of the neighboring subset on that cell.

𝑝 is set to be 5 in the current study.

Particle positions of a 11×11×11 face-centered cubic crystal is generated for com-

parison in Fig. 3-8D.
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Chapter 3

The Volume and Shear Order

Figure 3-1: Schematics and configurational fingerprints. (A) Schematics: by com-
paring particle or cell positions with the reference state of equilateral triangles, the
𝑣𝑜𝑙−𝑠ℎ𝑒𝑎𝑟 configurational fingerprints can be calculated. (B) [ln(𝑣𝑜𝑙)]2 and ln(𝑠ℎ𝑒𝑎𝑟)
with respect to two eigenvalues of deformation gradient 𝜆1 and 𝜆2 are symmetric. (C)
Configurational fingerprints of fluid-like systems are scattered, while those of solid-
like systems are compacted.

The volume 𝑣𝑜𝑙
def
= 𝐽 and shear 𝑠ℎ𝑒𝑎𝑟

def
= 𝛾 quantifies the local structure in a

system: If we plot ln(𝑣𝑜𝑙) and ln(𝑠ℎ𝑒𝑎𝑟) of all triangles within a system, it generates

a unique configurational fingerprint (Fig. 3-1C). Two characteristics can be identified

from the configurational fingerprints, one is the horizontal width of the fingerprint
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that reflects the degree of density variation across the whole sample, and the other is

the mean vertical position of the fingerprint that reflects how regular these triangles

are. To quantify the density variation, we define the volumetric order parameter as

Φ𝑣𝑜𝑙 =< [ln(𝑣𝑜𝑙𝑛)]2 >; to quantify the average degree of amorphousness, we define

the shear order parameter as Φ𝑠ℎ𝑒𝑎𝑟 =< ln(𝑠ℎ𝑒𝑎𝑟𝑛)2 >, where <> is the ensemble

average of all triangles.

3.1 Binary Mixtures

Figure 3-2: Φ𝑣𝑜𝑙 and Φ𝑠ℎ𝑒𝑎𝑟 can identify jamming transition in binary mixtures with
harmonic potential. (A) Spatial distributions of 𝑣𝑜𝑙 and 𝑠ℎ𝑒𝑎𝑟 show that the system
maintains amorphous configuration after jamming; (B) Φ𝑣𝑜𝑙 and Φ𝑠ℎ𝑒𝑎𝑟 as functions
of density. Φ𝑣𝑜𝑙 converges to different nonzero values at different critical densities,
determined by radius ratio; Φ𝑠ℎ𝑒𝑎𝑟 suddenly drops at a density around 0.8, exactly
where a finite stress starts to show in these systems, indicating a jammed status.
Simulations are performed with a density increment of 0.001, varying from 0.100 to
0.840, and 10 different random initial particle positions. (C) Pressure as a function
of density. Upon jamming, pressure suddenly grows with increasing density. For
𝑅/𝑟 = 1.4, 2.0, 3.0, pressure starts to scale with density after density increases to
∼ 0.8 and stress is ∼ 10−11, so in this system, the classical definition yields 10−11 as
a threshold for pressure, above which the system is undergoing jamming transition,
until it is finally jammed. (D)-(E) For systems showing a finite pressure, Φ𝑣𝑜𝑙 is nearly
constant (D), and pressure scales with Φ𝑠ℎ𝑒𝑎𝑟 (E).

To examine these two order parameters in classical thermal systems, we study
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the jamming transition of amorphous materials in simulation of 2D binary mixtures

with harmonic repulsive potentials [39, 46]. We simulate three systems with different

binary size ratios and increase particle density to reach jamming. As we calculate the

volumetric and shear deformations, we find that both types of deformation remain

non-zero and highly heterogeneous even at very high densities (Fig. 3-2A). Examin-

ing the order parameters, we see at low particle densities a large Φ𝑣𝑜𝑙 that reflects

significant density fluctuations, indicating that the system is compressible, which is

a distinctive characteristic of gas. With increasing density, we find that Φ𝑣𝑜𝑙 eventu-

ally stabilizes at a finite value above zero even as particle density increases further

(Fig. 3-2B), which is reminiscent of a relatively incompressible amorphous condensed

phase. Further increasing density above the first transition point where Φ𝑣𝑜𝑙 stabi-

lizes, Φ𝑠ℎ𝑒𝑎𝑟 continuously decreases, indicating that the system becomes more ordered

in packing but maintains a constant density fluctuation, which are characteristics of

a liquid. With even higher density, a second transition point occurs with a sudden

decrease of Φ𝑠ℎ𝑒𝑎𝑟. This sudden change in packing order indicates that the system is

jammed and becomes solid-like. In addition, the diverging Φ𝑠ℎ𝑒𝑎𝑟 might be related to

the diverging viscosity at jamming [54, 41, 45, 31]. Moreover, jamming is classically

defined as systems showing a finite pressure. Interestingly, we find that while Φ𝑣𝑜𝑙

remains roughly unchanged (Fig. 3-2D), Φ𝑠ℎ𝑒𝑎𝑟 scales with pressure (Fig. 3-2E). This

result suggests that rigidity transition in this system is characterized by regulation in

packing disorder, Φ𝑠ℎ𝑒𝑎𝑟. Furthermore, this constitutive relationship between Φ𝑠ℎ𝑒𝑎𝑟

and pressure should allow the stress at particle interfaces to be calculated by the

measured deformations. If this approach was applied to cellular systems, it would be

reminiscent of previous work that has shown that relative values of cell-cell tensions

can be inferred from static images of confluent cell monolayer by assuming a foam-like

structure [56].
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3.2 Simulated Epithelia

To benchmark this framework in confluent living systems, as opposed to particulate

systems, we first investigate the jamming process of a SPV model system of confluent

cells at different preferred cell perimeter 𝑃0 and self-propelling velocity 𝑣0 (Fig. 3-3),

following the methods described previously [10]. Compared to the jammed state,

unjammed state has a highly heterogeneous spatial distribution of 𝑣𝑜𝑙 and 𝑠ℎ𝑒𝑎𝑟,

which is consistent with shape index (𝑆𝐼) (Fig. 3-3A). Using our new framework,

a sharp transition in Φ𝑠ℎ𝑒𝑎𝑟 is observed as the system evolves (Yellow boundary,

Φ𝑠ℎ𝑒𝑎𝑟 = −2, Fig. 3-3B), which is consistent with the phase boundary given by the

median value of shape index (𝑆𝐼) (Red boundary, 𝑆𝐼 = 3.813, Fig. 3-3B). Because

this simulated system is fully confluent with constant cell number, although Φ𝑣𝑜𝑙

slowly increases with increasing 𝑃0 or 𝑣0, no sharp transition is observed throughout

the simulation.

Figure 3-3: Φ𝑠ℎ𝑒𝑎𝑟 alone marks jamming transition in SPV model of confluent cell
monolayers, while any large change in Φ𝑣𝑜𝑙 is prohibited due to confluency. (A)
Spatial distribution of 𝑆𝐼, ln(𝑣𝑜𝑙), ln(𝑠ℎ𝑒𝑎𝑟) of a jammed (𝑃0 = 3.000, 𝑣0 = 0) and
an unjammed system (𝑃0 = 4.591, 𝑣0 = 0). (B) Phase diagram of Φ𝑣𝑜𝑙, Φ𝑠ℎ𝑒𝑎𝑟, 𝑆𝐼
as functions of 𝑃0 and 𝑣0. Red boundary: 𝑆𝐼 = 3.813, indicating where jamming
occurs in this system; yellow boundary: Φ𝑠ℎ𝑒𝑎𝑟 = −2. 𝑆𝐼 represents the median
value of shape index and SI represents shape index here, which is defined as 𝑆𝐼 =
𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟/

√
𝑎𝑟𝑒𝑎 of each cell. A regular hexagon has a shape index ∼ 3.72 while

a regular pentagon has a shape index ∼ 3.81, and it was previously shown that
a hexagon dominated tissue is solid-like, while fluidization is observed when 𝑆𝐼 ∼
3.81 [9].
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3.3 Ventral Furrow Formation

Figure 3-4: Two distinct scaling regimes of Φ𝑣𝑜𝑙 and Φ𝑠ℎ𝑒𝑎𝑟 as functions of time during
embryogenesis. (A) Fluorescent image of tissue configuration. The reference state is
set to be the initial frame. Data is taken from Supplementary Materials of Ref. [6].
The triangulation mesh is generated by connecting centroid position of cells. Scale
bar, 25 µm. (B)-(C) Low 𝑣𝑜𝑙 (B) and high 𝑠ℎ𝑒𝑎𝑟 (C) region gradually appear. (D)
Abrupt changes in the scaling law of both order parameters are observed at time
∼ 200 s.

We then analyze confluent multicellular systems from a 2D case with a clear macro-

scopic pattern, the ventral furrow formation during morphogenesis of Drosophila

germband epithelium (Fig. 3-4). The ventral furrow formation is known to be ac-

companied by elongation of individual cells in the central region, as can be measured

from cell aspect ratios [6]. Elongated individual cells however, do not necessarily lead

to changes in spatial order of cells as a collective. Here we report that this process

displays a clear pattern of changes in relative spatial relation among neighboring cells,

that the central region is not only shearing but also shrinking (Figs. 3-4B&C). More

interestingly, both power-law relationships of Φ𝑠ℎ𝑒𝑎𝑟 and Φ𝑣𝑜𝑙 as functions of time are

abruptly changed at ∼ 200 s, as the ventral furrow forms and cell number density

changes. The evolution in Φ𝑠ℎ𝑒𝑎𝑟 and Φ𝑣𝑜𝑙 includes two successive but distinct phases:

in the first phase, both Φ𝑠ℎ𝑒𝑎𝑟 and Φ𝑣𝑜𝑙 change slowly and the system behaves like

jammed, while in the second phase, both Φ𝑠ℎ𝑒𝑎𝑟 and Φ𝑣𝑜𝑙 change rapidly, indicating

that the system undergoes unjamming transition. It is worth noting, however, that

these changes could be due to other mechanisms instead of material phase transi-

tions. For example, a mechanical instability can potentially be responsible for this
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unjammed zone as well; creasing instability, which has been used to explain the for-

mation of sulci biological tissues [28], might happen when homogeneous solid film is

under in plane compression, where a huge amount of deformation energy is released

in one narrow but severely deformed zone. Nonetheless, the order parameters capture

the dramatic change in structural order that occurs during this process.

Figure 3-5: Influence of different reference configurations on the evolution of Φ𝑣𝑜𝑙

and Φ𝑠ℎ𝑒𝑎𝑟 during Drosophila embryogenesis. (A) Equilateral triangles; (B) a real
configuration near the transition point, ∼ 200 s; (C) a real configuration when the
system is the most disordered, 395 s. The volumetric and shear order parameters
quantify the system-specific distance from the current configuration to the reference
configuration, in terms of volumetric and shear deformations.

The volumetric and shear order parameters essentially quantify the system-specific

distances from the current state to the reference state; they increase as the system

configuration deviates from the reference state. In the current study, the reference

configurations are mostly assumed to be equilateral triangles. Consequently, the con-

figuration having the most congruent and equilateral triangles will have the smallest

value of both order parameters. In less-controlled situations, this equilateral shape

may still serve as a reasonable reference, while system configurations within a certain

distance to it might not be achievable due to factors such as intrinsic size varia-

tion within the population, asynchronous shrinking and swelling of cells, naturally

anisotropic tissue, or substrate curvature. In these situations, other reference con-

figurations may reveal more details. For instance, in the embryogenesis example

(Fig. 3-4), the reference state is taken as the initial frame where no global pattern is

distinguishable from the image, and this allows 𝑣𝑜𝑙 and 𝑠ℎ𝑒𝑎𝑟 to precisely reflect the

deformation compared to the initial frame. In some other situations, the reference
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state can be set at the critical transition point, and the order parameters would reflect

the system-specific distances from the transition point (Fig. 3-5). Although these al-

ternative references may provide other useful information, they require that a real

configuration of each sample be identified as the reference. This might bring extra

complications when applying to complex processes taking place on a comparably long

timescale. Furthermore, sample specific reference states make it especially challeng-

ing to compare across different samples. By contrast, using equilateral triangles as

reference is simple and general, especially when studying noisy data such as clinical

samples.

3.4 Maturation of Epithelia

Figure 3-6: Φ𝑣𝑜𝑙 and Φ𝑠ℎ𝑒𝑎𝑟 identify three scaling regimes against increasing density,
i.e. gas-like, liquid-like and solid-like states of epithelial cell monolayer. (A) Hetero-
geneity in both 𝑣𝑜𝑙 and 𝑠ℎ𝑒𝑎𝑟 decays with increasing cell density. Scale bar, 100µm.
(B) With increased cell density, both Φ𝑣𝑜𝑙 and Φ𝑠ℎ𝑒𝑎𝑟 first decrease following power law
relations, at which stage comparably large Φ𝑣𝑜𝑙 and Φ𝑠ℎ𝑒𝑎𝑟 suggest that the system is
reminiscent of a gas. The first critical transition point is indicated by the power-law
slope change in Φ𝑣𝑜𝑙, after which density fluctuations are constrained, while Φ𝑠ℎ𝑒𝑎𝑟

may still decrease following the same power law, indicating that the system is amor-
phous but incompressible, thus is reminiscent of a liquid; the second critical transition
point is then reached indicated by the power-law slope change in Φ𝑠ℎ𝑒𝑎𝑟, after which
packing disorder is regulated at a finite value, which is analogous to an amorphous
solid. (Inset) cell density increases with time.
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While confluent cellular systems widely exist, there are many multicellular sys-

tems that are non-confluent, which can also be critical in various physiological and

pathological processes; for example, in cancer metastasis, individual cells can escape

from the tumor mass. The transition from non-confluency to confluency might, al-

though not necessarily, lead to a transition in density fluctuation, which is a widely

used signature of liquid-gas transition in classical systems [48, 61]. Here we show that

in addition to the liquid-solid jamming transition in confluent systems detected by

Φ𝑠ℎ𝑒𝑎𝑟, Φ𝑣𝑜𝑙 further captures this transition of density fluctuation in living systems

and defines two distinct phases reminiscent of gas and liquid.

We apply this method to the process of sparsely distributed epithelial cells on 2D

forming a confluent monolayer. Previous studies have shown that fluid-solid phase

transitions exist in 2D monolayers, as quantified by individual cell dynamics [4], cell

shape index [9] and aspect ratio [6]. Yet, as sparsely migrating cells behave reminis-

cent of a gas phase, it has not been distinguished from liquid phase in 2D multicellular

systems, possibly due to the lack of proper order parameters that can consistently

describe multicellular systems below confluency. Here we show that this gap can be

filled by Φ𝑣𝑜𝑙; Φ𝑣𝑜𝑙 and Φ𝑠ℎ𝑒𝑎𝑟 together capture the full picture of the transformation

from gas, to liquid and finally to amorphous solid of a growing epithelial monolayer.

To do so, we culture MDCK cells on a 2D glass substrate coated with collagen I,

allowing them to divide and increase in density. Cells are initially seeded at a very

dispersed state, and they gradually reach confluency and approach jamming as density

increases (Fig. 3-6A top). We image this entire process every 3 min using confocal

microscopy. Cells are transfected with GFP-NLS that allows us to see individual

nuclei, which we use to calculate the volumetric and shear order parameters of the

system. Initially, comparably large Φ𝑣𝑜𝑙 and Φ𝑠ℎ𝑒𝑎𝑟 show significant density fluctua-

tions as well as random arrangement among cells, suggesting a gas-like state. Then

the volumetric and shear deformations are simultaneously and gradually restricted

following a power-law relation, until Φ𝑣𝑜𝑙 first reaches its inflection point (Fig. 3-6B).

This inflection point occurs when the monolayer reaches confluency, with a density

around 1500mm−2, at which density fluctuation is stabilized, indicating that the cells
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behave like a relatively incompressible but amorphous liquid. Beyond this point, Φ𝑣𝑜𝑙

becomes comparably stable, and Φ𝑠ℎ𝑒𝑎𝑟 continues to decrease, suggesting that further

decrease in the volumetric fluctuation is significantly hindered but packing disorder is

still reduced with increasing density, which is reminiscent of liquid to solid transition,

consistent with our simulation of confluent monolayers (Fig. 3-3). Interestingly, unlike

the behaviors of those binary mixtures that the stabilized Φ𝑣𝑜𝑙 is almost unchanged

above the first transition point (Fig. 3-2), a small decrease can still be observed in

the volume fluctuation Φ𝑣𝑜𝑙 of a cell monolayer (Fig. 3-6B), although changing at a

comparably slower rate compared to the gas state. This is similar to the jammed

phase of the embryo (Fig. 3-4), where the cells start to slowly deform. The rate of

changes in Φ𝑣𝑜𝑙 in the jammed state thus may reflect deformability of the monolayer.

The second inflection point is identified by Φ𝑠ℎ𝑒𝑎𝑟 which marks the endpoint of the

fluid phase, at a density ∼ 2600mm−2, after which both Φ𝑣𝑜𝑙 and Φ𝑠ℎ𝑒𝑎𝑟 do not further

decrease, indicating a jammed state; this critical density (∼ 2800mm−2) is consistent

with previous report in MDCK monolayer identified based on significantly reduced

cell speed and increased pack size [4].

Furthermore, results in the gas-liquid transition regime also reveal that these ad-

hesive epithelial cells develop spatial order long before they are connected into a

complete monolayer. Indeed, below confluency, rather than evenly distributed, cells

form packs with void regions among these packs, as can be seen from the microscopic

images (Fig. 3-6A top). This is analogous to nucleation of sparse adhesive particles

whose potential energy is dominating over kinetic energy (Figs. B-1A-C); with higher

density, these packs aggregate into larger ones (Figs. B-1D-F). Interestingly, while

cells in the packs are more elongated and polarized below confluency, their shapes

gradually become more isotropic with increasing density. Moreover, similar to the

binary mixture, the stabilized Φ𝑣𝑜𝑙 is nonzero, suggesting an intrinsic disorder in the

monolayer. Since the monolayer is already confluent at this stage, this is possibly

resulted from volume fluctuation of individual cells. Besides the natural difference

among individuals, this may be due to cell division, or asynchronous swelling and

shrinking during cell cycle. For different systems, perturbing the degree of this vol-
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ume heterogeneity may also influence the critical transition points. As a minimal

model, the binary systems of different binary ratio have different level of size fluctu-

ations, and systems with larger size fluctuations exhibit a shift of the first transition

point to lower density (Fig. 3-2B). The spatial distributions of local volumetric and

shear deformations show that the system gradually becomes more homogeneous as

the monolayer approaches jamming (Fig. 3-6A). Additionally, the evolution of the two

order parameters in the liquid-solid transition regime suggests that it is not restric-

tions on volumetric deformations but rather on shear deformations that drive this

liquid to solid transition. This is consistent with previous results predicting density

independent transitions in cell monolayers at critical cell shape parameters [6, 9]; the

reduced shear deformation indicates more isotropic shape of each cell, which corre-

sponds to reduced cell aspect ratio and shape index in confluent systems. To further

test this intuition, we performed measurements on cells that had undergone EMT

and found that restrictions in volumetric deformations still occur, suggesting a gas-

liquid transition can occur, whereas restrictions in shear deformation are ablated,

suggesting jamming does not occur (Fig. 3-7). Such a result is consistent with re-

cent findings that EMT and jamming/unjamming offer distinct pathways to collective

cellular motion [43].

3.5 Epithelial versus Mesenchymal Cell Monolayers

EMT is a process that has significant physiological and pathological relevance, oc-

curring in tissue repair, embryogenesis, and cancer invasion[33]. To further test the

applicability of our new order parameters, we use volumetric and shear order pa-

rameters to investigate changes in structural order associated with cells that have

undergone EMT. To do so, we follow an established protocol to induce EMT by

treating human mammary epithelial cells MCF-10A with 10 ngmL−1 𝑇𝐺𝐹𝛽1 for one

week [30]. We then culture both the control and 𝑇𝐺𝐹𝛽1 treated cells on 2D glass

substrates coated with 0.1mgmL−1 collagen I, at a low cell density ∼100mm−2 (Figs.

3-7A&B), and allow them to grow and reach confluency over time. Cells are trans-
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Figure 3-7: Amorphous transition in Φ𝑠ℎ𝑒𝑎𝑟 vanishes in MCF-10A monolayer after
induction of EMT. (A) Cell nuclei, triangle mesh, and distribution of 𝑣𝑜𝑙 and 𝑠ℎ𝑒𝑎𝑟
of both TGF𝛽1 treated and control group. Scale bar, 100µm. (B) Density as a
function of time. (C) Φ𝑣𝑜𝑙 and Φ𝑠ℎ𝑒𝑎𝑟 as functions of time. (D) Φ𝑣𝑜𝑙 and Φ𝑠ℎ𝑒𝑎𝑟 as
functions of cell density. Changes in the scaling behavior of both Φ𝑣𝑜𝑙 and Φ𝑠ℎ𝑒𝑎𝑟 are
evident in the control as density increases, while only a change in Φ𝑣𝑜𝑙 is observed
in the 𝑇𝐺𝐹𝛽1 treated monolayer as cell density increases. Transitions in scaling
behavior are annotated to mark changes in material phases. G: gas-like phase; L:
liquid-like phase; S: solid-like phase.

fected with GFP-NLS for visualizing their nuclei. These cells are imaged every 12

hours until cell density reaches a plateau (Fig. 3-7B); the observed cell density change

over time follows a typical S-shaped growth curve. At low density, mesenchymal-like

cells in the TGF𝛽1 treated group move rather individually and thus are more evenly

distributed, while the control group of epithelial cells are clearly clustered (Fig. 3-

7A, 12hr); indeed, we find that Φ𝑣𝑜𝑙 of the TGF𝛽1 treated group is smaller than

the control (Fig. 3-7C). As the monolayers develop, both Φ𝑣𝑜𝑙 and Φ𝑠ℎ𝑒𝑎𝑟 of the con-

trol group drastically decrease while those of the TGF𝛽1 treated cells more slowly

decrease (Fig. 3-7C). At the end of experiments, 156 hours after seeding, both Φ𝑣𝑜𝑙

and Φ𝑠ℎ𝑒𝑎𝑟 of the TGF𝛽1 treated cells remain larger than the control, indicating

larger density fluctuation and amorphousness, which can also be observed from the
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fluorescent images (Fig. 3-7A, 156 hr). Interestingly, while TGF𝛽1 treatment makes

MCF-10A cells more mesenchymal-like (Fig. B-2), it also slows down their division

(Fig. 3-7B) [14, 16]. As a result, we plot Φ𝑣𝑜𝑙 and Φ𝑠ℎ𝑒𝑎𝑟 against cell density: We

find that curves of the two groups do not collapse (Fig. 3-7D), indicating an intrinsic

difference in the dynamics of the two groups. Abrupt changes in power-law scaling of

Φ𝑣𝑜𝑙 are observed for both the TGF𝛽1 treated and control groups, suggesting a gas-

liquid transition in density fluctuation occurs in both groups. Interestingly, a change

in power-law scaling of Φ𝑠ℎ𝑒𝑎𝑟, an indicator of liquid-solid transition in amorphous-

ness, is only observed in the control and no transition in scaling is observed for the

TGF𝛽1 treated group. These results suggest that the TGF𝛽1 treated group only has

gas-like and liquid-like phases, while all the three phases are observed in the control.

3.6 Invasive versus Non-invasive Epithelial Clusters

While 2D cell monolayers such as epithelia widely exist in nature, cells are mostly

organized in a 3D space in tissues and organs. To examine if volumetric and shear

order parameters can also describe changes in material characteristics in 3D multicel-

lular systems, we investigate invasion process of epithelial spheroids in 3D. To do so,

we grow human mammary epithelial spheroids from MCF-10A cells in an interpene-

trating gel containing 5mgmL−1 alginate and 4mgmL−1 Matrigel. These cells form

a spheroid shape in the first several days after seeding (Fig. 3-8A top) and become

invasive and migrate into the surrounding matrix in about 7 to 10 days (Fig. 3-8A

bottom); this system has been previously used to model tumor invasion [15, 47, 37].

To visualize individual cell nuclei, we transfect these cells to express GFP-NLS. Us-

ing these nuclear positions, we calculate volumetric and shear order parameters in

3D. Interestingly, comparing to non-invasive spheroids (day 5), we find that invasive

spheroids (day 10) have no significant difference in Φ𝑠ℎ𝑒𝑎𝑟 but much larger Φ𝑣𝑜𝑙 (Fig. 3-

8D); both order parameters are far from the baseline values of a face-centered cubic

crystal. This indicates that while both invasive and non-invasive spheroids are highly

amorphous, there is no significant difference in the degree of amorphousness, but the
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Figure 3-8: Invasive epithelial spheroids have larger density variations but no sig-
nificant difference in amorphousness. (A) Typical cell trajectories. (B)-(C) Typical
spatial distribution of 𝑣𝑜𝑙 (B) and 𝑠ℎ𝑒𝑎𝑟 (C). Dash box: the protrusion has more
dynamic cells, larger shear deformation but similar volumetric deformation compared
to the core. Scale bar, 50 µm. (D) Φ𝑣𝑜𝑙 and Φ𝑠ℎ𝑒𝑎𝑟 of non-invasive (𝑛 = 17) and
invasive spheroids (𝑛 = 16). While volumetric order is significantly higher for inva-
sive spheroids, shear order for both invasive and non-invasive spheroids are similarly
large. Both order parameters deviate far from face-centered cubic crystalline struc-
ture. Student’s t-test is used to evaluate statistical difference. * * * : 𝑝 < 0.001; ns:
no significant difference. FCC: face-centered cubic crystal structure. (E) Fluorescent
imaging of vimentin intermediate filaments and nuclei. Scale bar, 50 µm.

invasive spheroids have a much larger density variation. If making an analogy with

classical thermal phases, where the solid-liquid transition is mainly due to changes

in amorphousness, and the liquid-gas transition is mainly due to changes in density

variation, the transition from non-invasive spheroids to invasive ones are not only

analogous to fluidization, but more specifically from liquid-like to gas-like. Further-

more, comparing to the core of the spheroid, we find that cells in the protrusion have

larger 𝑠ℎ𝑒𝑎𝑟 but not obviously different 𝑣𝑜𝑙 (Figs. 3-8B&C), suggesting that the inva-

sive protrusions are more distorted compared to the core. The branch having a larger

𝑠ℎ𝑒𝑎𝑟 is consistent with the spatial distribution of cell behaviors from the trajectories

where we find that cells move collectively toward the invasive protrusion (Fig. 3-8A,
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bottom). This suggests that cells need to deform and squeeze as a collective group to

invade into the surrounding matrix. This partially validates the previous hypothesis

that confinement of the matrix is a key resistance that migratory cells confront to

break away from the original cluster [32, 23], and the fact that leader cells in collec-

tive migration often have a more elongated mesenchymal shape [22]. Interestingly, as

we perform immunofluorescent imaging of vimentin, a type of intermediate filament

that is upregulated during EMT, we find that vimentin is indeed upregulated in the

invasive branches (Fig. 3-8E). Thus a possible explanation for invasive spheroids be-

coming more disordered is that loss of intercellular adhesion as a result of EMT may

lead to unjamming of a cellular collective [36]. To summarize, the spatial and tempo-

ral changes of volumetric and shear order suggest that invasive mammary epithelial

spheroids can tune their material properties to colonize new territories and remodel

their configuration.
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Chapter 4

Probability Distributions of Volume

and Shear

While spatial organization of cells is intrinsically a stochastic process that requires

a balance between entropy and some energy-like quantity, the thermodynamic mea-

sure of temperature and entropy is irrelevant, and a proper definition of entropy and

temperature is needed. To understand cell packing, one may seek to borrow ideas

from granular physics. In the famous Edwards volume ensemble theory, the volume

is considered as the energy-like quantity, which yields a granular temperature, com-

pactivity [19]. This concept is useful yet not complete, as volume-independent transi-

tion is also crucial in multicellular assemblies [9]; Edwards himself pointed out in his

original paper that other quantities may be needed to determine the states for other

types of external loading such as isochoric shearing [19], and others noted lately that

the volume ensemble fails to discriminate among many different microstates [12]. On

the other side of the theory, the angoricity tensor, a tensorial effective temperature,

was also proposed by considering force and moment balance on grains [8]. While the

angoricity tensor accounts for both isotropic and isochoric stresses, it is not trivial to

measure stresses experimentally in a living system, so a configurational entropy and

temperature from geometries are still in some sense preferable. However, it remains

elusive what are the state variables, or even how many state variables are needed to

quantify the microstates and configurational entropy of a living system. Here we seek
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to use the two invariants 𝐽 and 𝛾 to define the local microstates of multicellular living

systems.

4.1 Simulated Epithelia

We first examine the probability distribution of 𝛾 and 𝐽 in a simulated cell monolayer

by the SPV model [10]. Previous study has demonstrated by quantifying effective

diffusivity that systems with a target shape index 𝑝 below 3.81 is solid-like, while

above is fluid-like [10]. Interestingly, here we find that the probability of 𝛾 can

be well fitted to an exponential distribution 𝑝(𝛾) = 𝜆𝑒−𝜆𝛾, and the probability of

normalized area 𝐽* = 𝐽−𝐽𝑚𝑖𝑛

<𝐽>−𝐽𝑚𝑖𝑛
can be fitted to a 𝑘 − Γ distribution that 𝑝(𝐽*) =

𝑘𝑘𝐽*𝑘−1𝑒−𝑘𝐽*
/Γ(𝑘), regardless of the system being fluid-like or solid-like (Fig. 4-1).

Figure 4-1: In simulated cell monolayers, (A) 𝛾 follows exponential distribution (the
solid lines are exponential fit); (B) 𝐽 follows 𝑘 − Γ distribution (the solid lines are
𝑘 − Γ fit).

4.2 Maturation of Epithelia

We then move to real epithelia to examine such two probability distributions of 𝛾 and

𝐽 . MDCK cells with GFP-NLS are cultured on collagen coated glass substrate, with

fluorescent cell nuclei that allow us to locate individual cells and perform Delaunay
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Figure 4-2: (A) 𝛾 follows exponential distribution; (B) 𝐽 follows 𝑘 − Γ distribution
in MDCK epithelia. Solid lines are fitted curves. (C) Probability distribution of 𝛾
can be collapsed to a single master curve, confirming the exponential distribution
of 𝛾 at all different cell densities. (D) Average value of 𝐽 − 𝐽𝑚𝑖𝑛 as a function of
the variance of 𝐽 . The coefficient 𝑘 of the 𝑘 − Γ distribution can be calculated by
𝑘 = (< 𝐽−𝐽𝑚𝑖𝑛 >2)/𝜎𝐽

2. The two lines mark 𝑘 = 1 and 𝑘 = 6 respectively. The total
length of the observation is 164 hours. Color bar indicates a dimensionless pseudo
time.

triangulation. The cells are seeded sparsely but they divide to reach confluency

and eventually jamming at the end of the observation. Surprisingly, we find that

the exponential distribution of 𝑝(𝛾) and the 𝑘 − Γ distribution of 𝑝(𝐽*) hold for

the epithelia at all densities throughout the experiment (Fig. 4-2A&B). To further

validate the exponential distribution in 𝛾, we normalize 𝛾 and the probability density

to show that probability density of systems at all different densities can be collapsed

to the master curve (Fig. 4-2C). The 𝑘 − Γ distributions of 𝐽 are not always similar,

but possess a variety of shapes determined by the parameter 𝑘. It can be shown that

at the beginning of the experiment when the cells are comparably sparse, 𝑘 is close to
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1, while at the end of the experiment 𝑘 is close to 6 (Fig. 4-2D). Because 𝑘 indicates

the level of correlation of a unit with its neighbors [5], this result is intuitive that a

crowded system show spatial volume correlations while a sparse system has no such

correlation.

Figure 4-3: Evolution of the two effective temperatures (A) Θ𝐽 and (B) Θ𝛾 as func-
tions of cell number density 𝜌.

The 𝑘− Γ distribution in 𝐽* is expected within the Edwards framework, that the

volume ensembles should all fall into such distribution regardless of the segmentation

method [5], and the number 𝑘 indicates the volume of the chosen elements consists

of the volume of 𝑘 more fundamental elements. Moreover, defining an effective tem-

perature to be 𝜕𝑒𝑛𝑡𝑟𝑜𝑝𝑦
𝜕𝑒𝑛𝑒𝑟𝑔𝑦

yields <𝐽>−𝐽𝑚𝑖𝑛

𝑘
[5]. Here, by considering the dimensionless

area 𝐽* = 𝐽−𝐽𝑚𝑖𝑛

<𝐽>−𝐽𝑚𝑖𝑛
, we get the volume temperature Θ𝐽 = 𝑘−1. On the other hand,

there is currently no formal theory on the exponential distribution of 𝛾, however,

one may argue that besides the Edwards volume ensemble that the isotropic shape

𝐽 is an effective energy for a grain, the isochoric shape 𝛾 can be treated as another

independent effective energy, which makes 𝜆−1 reminiscent of a second temperature

Θ𝛾 = 𝜆−1. This is aligned with previous study where shape of Voronoi cells is pro-

posed to be an effective energy-like quantity in epithelia [6]. The evolution of such

two temperatures is shown in Fig. 4-3. It is worth noting that because the funda-

mental objects are triangles with two degrees of freedom in their shapes, this pair

of temperatures derived from the two independent invariants thus form a complete
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description of the variations in microstates.

4.3 Extravasation into Open Space

Figure 4-4: The periphery of an epithelia colony is ‘hotter’ compared to the jammed
core. (A) Fluorescent image of MCF-10A cells migrating from a confluent confined
space through a slit into an open space. The color of overlaid trajectories indicates
the average speed of the cell. The cells on the edge move faster. (B)-(C) Probability
density functions of 𝐽* and 𝛾. (D)-(E) Radial distribution of 𝑘 and 𝜆. (F)-(G) Spatial
distributions of volume and shear temperatures.

In the pioneer work by Angelini et al. [4] a famous analogy was drawn between

the tip of wound in an epithelia and local high temperature zone in molecular glass;

later on, a similar analogy is made suggesting that an invasive tumor has higher

effective temperature compared to noninvasive ones [34]. Such analogy is attractive

yet remains elusive because there was not a proper definition of temperature-like

quantities in multicellular systems. Here we seek to explore this conjecture with the

two proposed temperatures. We use a 2D microfluidic system to model extravasation:

A well with a slit with width ∼ 100µm is seeded with exceeding number of MCF-10A

cells (with GFP-NLS) to ensure confluency (Fig. 4-4A). Once culture media is added

to the outside, the cells start to extravasate through the slit. A half circular colony is

gradually established. We analyze the radial pattern by dividing the circular colony

into bins of radii. Remarkably, at all different radii ranges, the 𝑘 − Γ distribution

in 𝐽* and the exponential distribution in 𝛾 are observed (Fig. 4-4B&C). 𝑘 decays

with radius indicating a smaller volume correlation and a larger volume variation in
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the periphery (Fig. 4-4D), this is consistent with the radial profile of the variance in

the divergence of velocity field (FIG. B-3). 𝜆 decays with radius, indicating larger

probability of observing irregular triangles (Fig. 4-4E). The spatial distribution of

volume and shear temperatures shows larger variations in both size and shape in the

periphery, in which sense the periphery is indeed ‘hotter’ than the core (Fig. 4-4F&G).
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Chapter 5

Summary and Outlook

We quantify the local order in multicellular assemblies by volume and shear. In

chapter 3, we define two new order parameters, volumetric order Φ𝑣𝑜𝑙 and shear or-

der Φ𝑠ℎ𝑒𝑎𝑟 to quantify the structure among neighboring cells in multicellular living

systems. Φ𝑣𝑜𝑙 and Φ𝑠ℎ𝑒𝑎𝑟 form a complete description of structural order; Φ𝑣𝑜𝑙 de-

scribes the degree of density disorder which reflects factors such as non-confluency

(Figs. 3-2,3-6, and 3-8) and size/density heterogeneity (Figs. 3-2,3-4, and 3-6), while

Φ𝑠ℎ𝑒𝑎𝑟 characterizes packing disorder resulted from factors such as jamming transi-

tion (Figs. 3-2,3-3,3-4, and 3-6) and anisotropic cell shapes (Figs. 3-4,3-6, and 3-8).

We first show that Φ𝑣𝑜𝑙 and Φ𝑠ℎ𝑒𝑎𝑟 can describe phase transitions in particulate sys-

tems. Interestingly, once jamming is initiated, Φ𝑠ℎ𝑒𝑎𝑟 scales with internal pressure

(Fig. 3-2E), which suggests a potential noninvasive measurement of stress from only

static images. Then we demonstrate that Φ𝑠ℎ𝑒𝑎𝑟 alone is equivalent to shape index in

determining the jamming phase boundary in SPV simulations of confluent cell mono-

layer. Moreover, we identify two scaling regimes during Drosophila embryogenesis,

and show that previously observed elongation of individual cells is resulted from not

only changes in packing, but also changes in volume of the space among neighboring

cells (Fig. 3-4). We further show the importance of Φ𝑣𝑜𝑙 in studying those nonconflu-

ent living systems. Applying this framework to a growing epithelial monolayer reveals

a gas-like state of monolayers below confluency, a liquid-like state upon monolayer

maturation, and then a solid-like state when the monolayer is jammed (Fig. 3-6). In-
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terestingly, we also find that induction of EMT changes the power-law scaling in both

Φ𝑣𝑜𝑙 and Φ𝑠ℎ𝑒𝑎𝑟 as functions of cell density (Fig. 3-7). Finally, with this framework, we

find that invasive 3D human mammary epithelial spheroids have significantly larger

density variation Φ𝑣𝑜𝑙, but no significant difference in the degree of amorphousness

Φ𝑠ℎ𝑒𝑎𝑟 than their noninvasive counterparts; moreover, particularly high shear defor-

mations are observed in the invasive branches (Fig. 3-8). In chapter 4, we discuss

the probability distribution of volume and shear and show that the volume follows a

𝑘−Γ distribution while the shear follows an exponential distribution in SPV simula-

tions (Fig. 4-1), across a large range of cell number densities during the maturation of

MDCK epithelia (Fig. 4-2), and at different radial locations during the extravasation

of MCF-10A epithelia (Fig. 4-4). We further show that a pair of temperature-like

quantities can be extracted from the exponential tails of the probability distributions

(Fig. 4-3), in which sense the periphery of an extravasating epithelial colony is ’hotter’

than the core (Fig. 4-4).

An intriguing question in cell mechanobiology is how tissue level order emerges

within a group of cells. It is known that it starts from single cell scale, regulated

by genetics and cell signaling, and manifests at the tissue and organ scale setting

tissue morphology, rigidity, function, etc. However, a structural description between

the two length scales remains elusive; indeed, while local interaction of a cell with its

close neighbors plays a critical role in regulating material characteristics of tissues,

it has been difficult to characterize this interaction, particularly 𝑖𝑛 𝑠𝑖𝑡𝑢. Thus, the

framework introduced here may reveal important structural information that was not

previously accessible during processes such as wound healing and cancer metastasis.

Furthermore, this methodology could be used to monitor how structural characteris-

tics are influenced by mechanical or biochemical perturbations.

We expect that this method may provide a morphological assay for histopathol-

ogy evaluation. In traditional histopathology, individual cell morphology and tissue

structure are two main features typically being examined. Breast cancer grade, for

example, is determined based on nuclear pleomorphism, cell division, and gland or

tubule formation [25]. However, there is growing evidence from 𝑖𝑛 𝑣𝑖𝑡𝑟𝑜 experiments
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showing that intercellular interactions such as formation of gap junctions are also

important for invasion in epithelial derived model tumor spheroids [27]. The volume

and shear structures reveal clear geometrical information of the local structure among

neighboring cells that was missing in previous morphological assays; this method can

be readily incorporated into existing diagnostic pipelines and might serve as an addi-

tional marker for diagnosis. As this method is solely based on analyzing static images,

it can be readily applied to histopathological data with simple staining method visu-

alizing cell positions, such as biopsy samples with stained cell nuclei.

The framework we introduce here is general and unified, such that can be applied

to systems both on 2D and in 3D, and to both confluent and dispersed multicellular

systems. Based on cell locations, we can characterize material phases and identify

important changes in materials states that may contribute to important biological

processes of the tissue. Using this framework, we can resolve details in evolution of

material characteristics starting from extremely low density to full confluency and

eventually jammed states. The generality and robustness of this framework allows

different systems to be compared in a consistent way.
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Appendix A

Lemmas

Lemma 1: 𝑣𝑜𝑙 and 𝑠ℎ𝑒𝑎𝑟 are independent of the orientation of the reference triangle.

Proof : Consider an arbitrary rotation Q of the initial reference Tr, the new

triangle may be written as T*
r = QTr. The new deformation gradient is F*

n =

TnT
−1
r QT.The new volumetric deformation is

𝑣𝑜𝑙* = 𝑑𝑒𝑡(TnT
−1
r QT)

= 𝑑𝑒𝑡(TnT
−1
r )

= 𝑣𝑜𝑙

The trace of F*TF* is

𝑡𝑟(F*TF*) = 𝑡𝑟(F*F*T)

= 𝑡𝑟((TnT
−1
r QT)(TnT

−1
r QT)T)

= 𝑡𝑟(TnT
−1
r QTQT−T

r TT
n )

= 𝑡𝑟(TnT
−1
r T−T

r TT
n )

= 𝑡𝑟(FTF)

Thus the new shear deformation is 𝑠ℎ𝑒𝑎𝑟* = 𝑠ℎ𝑒𝑎𝑟.

The lemmas 2 and 3 are to prove that the 𝑣𝑜𝑙 and 𝑠ℎ𝑒𝑎𝑟 represent the real volumet-
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ric and shear deformations of each individual triangle compared with the referential

average equilateral triangle in Cartesian coordinate.

Lemma 2: An arbitrary 2D deformation gradient F can be factored into a pure

volumetric deformation and a simple shear deformation as F = FvFs, where Fv =

(𝜆1𝜆2)
1/2I, and Fs = (

√︁
𝜆1

𝜆2
−

√︁
𝜆2

𝜆1
)𝑒′

1 ⊗ 𝑒′
2 + I. 𝑒′

1, 𝑒′
2 are orthogonal basis and 𝜆1,

𝜆2 are the two eigenvalues of F.

Proof : An arbitrary deformation gradient F can be factored into two components

F = FvFs, where Fv = 𝑣I = (𝜆1𝜆2)
1/2I. Then Fs is an isochoric deformation

with two eigenvalues
√︁

𝜆1

𝜆2
and

√︁
𝜆2

𝜆1
. According to Lemma 3, Fs can be regarded

as a simple shear deformation in some basis, and the equivalent amount of shear is

𝑠 =
√︁

𝜆1

𝜆2
−

√︁
𝜆2

𝜆1
. Furthermore, from simple eigenvalue analysis, 𝑣2 = 𝑑𝑒𝑡(F), and

𝑠2 = 𝑡𝑟(FTF)
𝑑𝑒𝑡(F)

− 2.

Lemma 3: An arbitrary isochoric 2D deformation gradient F can be regarded as a

simple shear in some basis, with amount of shear 𝑠 = 𝜆 − 1
𝜆
,where 𝜆 and 1

𝜆
(𝜆 ≥ 1)

are eigenvalues of F.

Proof : An arbitrary deformation gradient F can be factored as F = QK, where

K is the deformation gradient that can be transformed to F after a rotation Q.

Alternatively, the polar decomposition of F is F = RU, where R is a rotation,

and U is diagonal. Thus FTF = (QK)TQK = (RU)TRU, which can be further

simplified as KTK = U2.The eigenvalue equation of two sides must be identical, and

both eigenvalues of two sides need to be equal, leading to two algebraic equations.

Assuming that K can be written as a simple shear in some basis K = 𝑠𝑒′
1 ⊗ 𝑒′

2 + I,

then for an isochoric deformation gradient F we have 𝑠2 +2 = 𝜆2 + 1
𝜆2 . So 𝑠 = 𝜆− 1

𝜆
.

This also proves that such K and Q exist.
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Appendix B

Supplementary Results

LJ(Lennard-Jones) potential between two particles at distance 𝑟 is given by 𝑈𝐿𝐽(𝑟) =

4𝜖[(𝑎
𝑟
)12 − (𝑎

𝑟
)6], such that it is controlled by only two dimensionless parameters, the

dimensionless temperature 𝑇 = 𝑘𝑏𝑇𝑟/𝜖, and the dimensionless density 𝜌 = 𝜌𝑟𝑎
2, where

𝑘𝑏 is the Boltzmann constant, 𝑇𝑟 is the absolute temperature, 𝜖 is the potential depth,

𝜌𝑟 is the number density of particles, 𝑎 is the separation distance when the bonding

energy potential is equal to zero. We perform the simulations with HOOMD-blue [2].

900 particles with unit radius are initially distributed on 30 by 30 square lattice and

area of each square is 1
𝜌
. The simulations are run for 2×105 steps to reach equilibrium.
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Figure B-1: Behavior of a sparse MDCK epithelial cell monolayer is analogous to
the nucleation in sparse LJ system whose potential energy is dominating over kinetic
energy, in terms of (A) particle/cell positions; (B) ln(𝑣𝑜𝑙) (C) ln(𝑠ℎ𝑒𝑎𝑟). With in-
creased particle density, the discrete packs start to aggregate (D). These packs are
dense (E), and well packed (F).
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Figure B-2: Brightfield images of (A) MCF-10A epithelia versus (B) MCF-10A ep-
ithelia after induction of EMT.
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Because higher variations in cell area is observed at the periphery of the extravasat-

ing epithelia, a natural quantity to check will be the variance of the divergence of

velocity field. The total area outside the slit is divided into 35 × 70 grids, and the

velocity 𝑉 = (𝑢, 𝑣)𝑇 is taken to be the average cell velocity within the grid, where 𝑢

is the velocity along the 𝑥 axis and 𝑣 is the velocity along the 𝑦 axis. The divergence

is calculated by ∇ · 𝑉 = 𝑑𝑢
𝑑𝑥

+ 𝑑𝑣
𝑑𝑦

. The divergence is then registered to bins of radii,

and the variance is calculated within each radius range.

Figure B-3: The variance of divergence of velocity field increases at the periphery of
epithelial colony.

52



Bibliography

[1] Michael P Allen and Dominic J Tildesley. Computer simulation of liquids. Oxford
university press, 2017.

[2] Joshua A Anderson, Jens Glaser, and Sharon C Glotzer. Hoomd-blue: A python
package for high-performance molecular dynamics and hard particle monte carlo
simulations. Computational Materials Science, 173:109363, 2020.

[3] Thomas E Angelini, Edouard Hannezo, Xavier Trepat, Jeffrey J Fredberg, and
David A Weitz. Cell migration driven by cooperative substrate deformation
patterns. Physical review letters, 104(16):168104, 2010.

[4] Thomas E Angelini, Edouard Hannezo, Xavier Trepat, Manuel Marquez, Jef-
frey J Fredberg, and David A Weitz. Glass-like dynamics of collective cell mi-
gration. Proceedings of the National Academy of Sciences, 108(12):4714–4719,
2011.

[5] Tomaso Aste and Tiziana Di Matteo. Emergence of gamma distributions in
granular materials and packing models. Physical Review E, 77(2):021309, 2008.

[6] Lior Atia, Dapeng Bi, Yasha Sharma, Jennifer A Mitchel, Bomi Gweon, Stephan
A Koehler, Stephen J DeCamp, Bo Lan, Jae Hun Kim, Rebecca Hirsch, et al.
Geometric constraints during epithelial jamming. Nature physics, 14(6):613–620,
2018.

[7] Katalin Bagi. Analysis of microstructural strain tensors for granular assemblies.
International Journal of Solids and Structures, 43(10):3166–3184, 2006.

[8] Dapeng Bi, Silke Henkes, Karen E Daniels, and Bulbul Chakraborty. The statis-
tical physics of athermal materials. Annu. Rev. Condens. Matter Phys, 6:63–83,
2015.

[9] Dapeng Bi, JH Lopez, Jennifer M Schwarz, and M Lisa Manning. A density-
independent rigidity transition in biological tissues. Nature Physics, 11(12):1074–
1079, 2015.

[10] Dapeng Bi, Xingbo Yang, M Cristina Marchetti, and M Lisa Manning. Motility-
driven glass and jamming transitions in biological tissues. Physical Review X,
6(2):021011, 2016.

53



[11] Erik Bitzek, Pekka Koskinen, Franz Gähler, Michael Moseler, and Peter Gumb-
sch. Structural relaxation made simple. Physical review letters, 97(17):170201,
2006.

[12] Raphael Blumenfeld, Shahar Amitai, Joe F Jordan, and Rebecca Hihinashvili.
Failure of the volume function in granular statistical mechanics and an alternative
formulation. Physical review letters, 116(14):148001, 2016.

[13] Agustí Brugués, Ester Anon, Vito Conte, Jim H Veldhuis, Mukund Gupta, Julien
Colombelli, José J Muñoz, G Wayne Brodland, Benoit Ladoux, and Xavier
Trepat. Forces driving epithelial wound healing. Nature physics, 10(9):683–690,
2014.

[14] Anita Buck, Malte Buchholz, Martin Wagner, Guido Adler, Thomas Gress, and
Volker Ellenrieder. The tumor suppressor klf11 mediates a novel mechanism in
transforming growth factor 𝛽–induced growth inhibition that is inactivated in
pancreatic cancer. Molecular cancer research, 4(11):861–872, 2006.

[15] Ovijit Chaudhuri, Sandeep T Koshy, Cristiana Branco da Cunha, Jae-Won Shin,
Catia S Verbeke, Kimberly H Allison, and David J Mooney. Extracellular matrix
stiffness and composition jointly regulate the induction of malignant phenotypes
in mammary epithelium. Nature materials, 13(10):970–978, 2014.

[16] Valentine Comaills, Lilian Kabeche, Robert Morris, Rémi Buisson, Min Yu,
Marissa Wells Madden, Joseph A LiCausi, Myriam Boukhali, Ken Tajima, Shi-
wei Pan, et al. Genomic instability is induced by persistent proliferation of cells
undergoing epithelial-to-mesenchymal transition. Cell reports, 17(10):2632–2647,
2016.

[17] Michael Czajkowski, Daniel M Sussman, M Cristina Marchetti, and M Lisa Man-
ning. Glassy dynamics in models of confluent tissue with mitosis and apoptosis.
Soft matter, 15(44):9133–9149, 2019.

[18] Jayanta Debnath, Senthil K Muthuswamy, and Joan S Brugge. Morphogenesis
and oncogenesis of mcf-10a mammary epithelial acini grown in three-dimensional
basement membrane cultures. Methods, 30(3):256–268, 2003.

[19] Sam F Edwards and RBS Oakeshott. Theory of powders. Physica A: Statistical
Mechanics and its Applications, 157(3):1080–1090, 1989.

[20] Gonca Erdemci-Tandogan, Madeline J Clark, Jeffrey D Amack, and M Lisa Man-
ning. Tissue flow induces cell shape changes during organogenesis. Biophysical
journal, 115(11):2259–2270, 2018.

[21] Raphaël Etournay, Marko Popović, Matthias Merkel, Amitabha Nandi, Corinna
Blasse, Benoît Aigouy, Holger Brandl, Gene Myers, Guillaume Salbreux, Frank
Jülicher, et al. Interplay of cell dynamics and epithelial tension during morpho-
genesis of the drosophila pupal wing. Elife, 4:e07090, 2015.

54



[22] Peter Friedl and Darren Gilmour. Collective cell migration in morphogenesis,
regeneration and cancer. Nature reviews Molecular cell biology, 10(7):445–457,
2009.

[23] Peter Friedl and Katarina Wolf. Plasticity of cell migration: a multiscale tuning
model. Journal of Cell Biology, 188(1):11–19, 2010.

[24] Matthew C Gibson, Ankit B Patel, Radhika Nagpal, and Norbert Perrimon.
The emergence of geometric order in proliferating metazoan epithelia. Nature,
442(7106):1038–1041, 2006.

[25] Armando E Giuliano, James L Connolly, Stephen B Edge, Elizabeth A Mitten-
dorf, Hope S Rugo, Lawrence J Solin, Donald L Weaver, David J Winchester,
and Gabriel N Hortobagyi. Breast cancer—major changes in the american joint
committee on cancer eighth edition cancer staging manual. CA: a cancer journal
for clinicians, 67(4):290–303, 2017.

[26] Boris Guirao, Stéphane U Rigaud, Floris Bosveld, Anaïs Bailles, Jesús López-
Gay, Shuji Ishihara, Kaoru Sugimura, François Graner, and Yohanns Bellaïche.
Unified quantitative characterization of epithelial tissue development. Elife,
4:e08519, 2015.

[27] Yu Long Han, Adrian F Pegoraro, Hui Li, Kaifu Li, Yuan Yuan, Guoqiang
Xu, Zichen Gu, Jiawei Sun, Yukun Hao, Satish Kumar Gupta, et al. Cell
swelling, softening and invasion in a three-dimensional breast cancer model. Na-
ture physics, 16(1):101–108, 2020.

[28] Evan Hohlfeld and Lakshminarayanan Mahadevan. Unfolding the sulcus. Phys-
ical review letters, 106(10):105702, 2011.

[29] A Gerhard Holzapfel. Nonlinear solid mechanics II. John Wiley & Sons, Inc.,
2000.

[30] Kamran Hosseini, Anna Taubenberger, Carsten Werner, and Elisabeth Fischer-
Friedrich. Emt-induced cell-mechanical changes enhance mitotic rounding
strength. Advanced Science, 7(19):2001276, 2020.

[31] Atsushi Ikeda, Ludovic Berthier, and Peter Sollich. Unified study of glass and
jamming rheology in soft particle systems. Physical review letters, 109(1):018301,
2012.

[32] Olga Ilina, Pavlo G Gritsenko, Simon Syga, Jürgen Lippoldt, Caterina AM
La Porta, Oleksandr Chepizhko, Steffen Grosser, Manon Vullings, Gert-Jan
Bakker, Jörn Starruß, et al. Cell–cell adhesion and 3d matrix confinement
determine jamming transitions in breast cancer invasion. Nature cell biology,
22(9):1103–1115, 2020.

[33] Raghu Kalluri, Robert A Weinberg, et al. The basics of epithelial-mesenchymal
transition. The Journal of clinical investigation, 119(6):1420–1428, 2009.

55



[34] Wenying Kang, Jacopo Ferruzzi, Catalina-Paula Spatarelu, Yu Long Han, Yasha
Sharma, Stephan A Koehler, Jennifer A Mitchel, Adil Khan, James P Butler,
Darren Roblyer, et al. A novel jamming phase diagram links tumor invasion to
non-equilibrium phase separation. Iscience, 24(11):103252, 2021.

[35] Philipp J Keller. Imaging morphogenesis: technological advances and biological
insights. Science, 340(6137):1234168, 2013.

[36] Caterina AM La Porta and Stefano Zapperi. Phase transitions in cell migration.
Nature Reviews Physics, 2(10):516–517, 2020.

[37] Kandice R Levental, Hongmei Yu, Laura Kass, Johnathon N Lakins, Mikala
Egeblad, Janine T Erler, Sheri FT Fong, Katalin Csiszar, Amato Giaccia, Wolf-
gang Weninger, et al. Matrix crosslinking forces tumor progression by enhancing
integrin signaling. Cell, 139(5):891–906, 2009.

[38] Shao-Zhen Lin, Yue Li, Jing Ji, Bo Li, and Xi-Qiao Feng. Collective dynamics
of coherent motile cells on curved surfaces. Soft Matter, 16(12):2941–2952, 2020.

[39] Andrea J Liu and Sidney R Nagel. The jamming transition and the marginally
jammed solid. Annu. Rev. Condens. Matter Phys, 1(1):347–369, 2010.

[40] Chiara Malinverno, Salvatore Corallino, Fabio Giavazzi, Martin Bergert, Qingsen
Li, Marco Leoni, Andrea Disanza, Emanuela Frittoli, Amanda Oldani, Emanuele
Martini, et al. Endocytic reawakening of motility in jammed epithelia. Nature
materials, 16(5):587–596, 2017.

[41] John C Mauro, Yuanzheng Yue, Adam J Ellison, Prabhat K Gupta, and Dou-
glas C Allan. Viscosity of glass-forming liquids. Proceedings of the National
Academy of Sciences, 106(47):19780–19784, 2009.

[42] Matthias Merkel and M Lisa Manning. A geometrically controlled rigidity tran-
sition in a model for confluent 3d tissues. New Journal of Physics, 20(2):022002,
2018.

[43] Jennifer A Mitchel, Amit Das, Michael J O’Sullivan, Ian T Stancil, Stephen J
DeCamp, Stephan Koehler, Oscar H Ocaña, James P Butler, Jeffrey J Fred-
berg, M Angela Nieto, et al. In primary airway epithelial cells, the unjamming
transition is distinct from the epithelial-to-mesenchymal transition. Nature com-
munications, 11(1):1–14, 2020.

[44] Alessandro Mongera, Payam Rowghanian, Hannah J Gustafson, Elijah Shelton,
David A Kealhofer, Emmet K Carn, Friedhelm Serwane, Adam A Lucio, James
Giammona, and Otger Campàs. A fluid-to-solid jamming transition underlies
vertebrate body axis elongation. Nature, 561(7723):401–405, 2018.

[45] Peter Olsson and Stephen Teitel. Critical scaling of shear viscosity at the jam-
ming transition. Physical review letters, 99(17):178001, 2007.

56



[46] Corey S O’hern, Leonardo E Silbert, Andrea J Liu, and Sidney R Nagel. Jamming
at zero temperature and zero applied stress: The epitome of disorder. Physical
Review E, 68(1):011306, 2003.

[47] Matthew J Paszek, Nastaran Zahir, Kandice R Johnson, Johnathon N Lakins,
Gabriela I Rozenberg, Amit Gefen, Cynthia A Reinhart-King, Susan S Margulies,
Micah Dembo, David Boettiger, et al. Tensional homeostasis and the malignant
phenotype. Cancer cell, 8(3):241–254, 2005.

[48] Marzia Rovere, Dieter W Heermann, and Kurt Binder. The gas-liquid transi-
tion of the two-dimensional lennard-jones fluid. Journal of Physics: Condensed
Matter, 2(33):7009, 1990.

[49] Monirosadat Sadati, Nader Taheri Qazvini, Ramaswamy Krishnan, Chan Young
Park, and Jeffrey J Fredberg. Collective migration and cell jamming. Differen-
tiation, 86(3):121–125, 2013.

[50] Preeti Sahu, Daniel M Sussman, Matthias Rübsam, Aaron F Mertz, Valerie Hors-
ley, Eric R Dufresne, Carien M Niessen, M Cristina Marchetti, M Lisa Manning,
and Jen M Schwarz. Small-scale demixing in confluent biological tissues. Soft
Matter, 16(13):3325–3337, 2020.

[51] Balint Szabo, GJ Szöllösi, B Gönci, Zs Jurányi, David Selmeczi, and Tamás
Vicsek. Phase transition in the collective migration of tissue cells: experiment
and model. Physical Review E, 74(6):061908, 2006.

[52] Dhananjay T Tambe, C Corey Hardin, Thomas E Angelini, Kavitha Rajendran,
Chan Young Park, Xavier Serra-Picamal, Enhua H Zhou, Muhammad H Zaman,
James P Butler, David A Weitz, et al. Collective cell guidance by cooperative
intercellular forces. Nature materials, 10(6):469–475, 2011.

[53] Jean-Yves Tinevez, Nick Perry, Johannes Schindelin, Genevieve M Hoopes, Gre-
gory D Reynolds, Emmanuel Laplantine, Sebastian Y Bednarek, Spencer L
Shorte, and Kevin W Eliceiri. Trackmate: An open and extensible platform
for single-particle tracking. Methods, 115:80–90, 2017.

[54] Veronique Trappe, V Prasad, Luca Cipelletti, PN Segre, and David A Weitz.
Jamming phase diagram for attractive particles. Nature, 411(6839):772–775,
2001.

[55] Xavier Trepat and Erik Sahai. Mesoscale physical principles of collective cell
organization. Nature Physics, 14(7):671–682, 2018.

[56] Ritvik Vasan, Mary M Maleckar, C David Williams, and Padmini Rangamani.
Dlite uses cell-cell interface movement to better infer cell-cell tensions. Biophys-
ical journal, 117(9):1714–1727, 2019.

57



[57] Tamás Vicsek, András Czirók, Eshel Ben-Jacob, Inon Cohen, and Ofer Shochet.
Novel type of phase transition in a system of self-driven particles. Physical review
letters, 75(6):1226, 1995.

[58] Dmitri Volfson, Scott Cookson, Jeff Hasty, and Lev S Tsimring. Biomechani-
cal ordering of dense cell populations. Proceedings of the National Academy of
Sciences, 105(40):15346–15351, 2008.

[59] Hui Wang, Sam Lacoche, Ling Huang, Bin Xue, and Senthil K Muthuswamy. Ro-
tational motion during three-dimensional morphogenesis of mammary epithelial
acini relates to laminin matrix assembly. Proceedings of the National Academy
of Sciences, 110(1):163–168, 2013.

[60] Xun Wang, Matthias Merkel, Leo B Sutter, Gonca Erdemci-Tandogan, M Lisa
Manning, and Karen E Kasza. Anisotropy links cell shapes to tissue flow dur-
ing convergent extension. Proceedings of the National Academy of Sciences,
117(24):13541–13551, 2020.

[61] Hiroshi Watanabe, Nobuyasu Ito, and Chin-Kun Hu. Phase diagram and univer-
sality of the lennard-jones gas-liquid system. The Journal of chemical physics,
136(20):204102, 2012.

[62] Taeseok Daniel Yang, Hyun Kim, Changhyeong Yoon, Seung-Kuk Baek, and
Kyoung J Lee. Collective pulsatile expansion and swirls in proliferating tumor
tissue. New Journal of Physics, 18(10):103032, 2016.

58


	Introduction
	Materials and Methods
	The Volume and Shear Structure
	Cell Culture and Microscopy
	Simulation
	Cell Tracking
	Determine the Reference Area
	3D Version of J and 

	The Volume and Shear Order
	Binary Mixtures
	Simulated Epithelia
	Ventral Furrow Formation
	Maturation of Epithelia
	Epithelial versus Mesenchymal Cell Monolayers
	Invasive versus Non-invasive Epithelial Clusters

	Probability Distributions of Volume and Shear
	Simulated Epithelia
	Maturation of Epithelia
	Extravasation into Open Space

	Summary and Outlook
	Lemmas
	Supplementary Results

