
Arty: Expressive timbre transfer using articulation
detection for guitar

by

Sebastian Franjou

B.S. Music and Electrical Engineering and Computer Science,
Massachusetts Institute of Technology (2021)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

September 5, 2022

Certified by. .
Eran Egozy

Professor of the Practice in Music Technology
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Arty: Expressive timbre transfer using articulation detection

for guitar

by

Sebastian Franjou

Submitted to the Department of Electrical Engineering and Computer Science
on September 5, 2022, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this work, we propose a novel approach to timbre transfer. Timbre transfer is the
transformation of an instrument’s timbre to match the timbre of another instrument
while preserving key musical information like pitch and loudness. Current attempts
tend to rely either on MIDI pitch and velocity information, or on Deep Learning
networks. The former approach requires discarding a lot of information and hence
suffers from a loss of expressivity, while the latter results in expressive but unstable
and difficult to tune systems.

Arty aims to address this problem by adding expression data to the collected
MIDI. By detecting instrument-specific playing techniques called articulations, and
transcribing these articulations as MIDI data, Arty attempts to provide an expressive
yet flexible alternative to the methods above for timbre transfer from guitar. The use
of MIDI allows for integration with other music performance systems and doesn’t
impose a particular sound synthesis method.

We created a new dataset, the Arty dataset, and used it in conjunction with
existing data to train a model to classify right-hand and left-hand guitar playing
techniques. We implemented a website as a user interface to allow users to easily con-
vert their guitar playing to MIDI. Arty achieved fairly high accuracy on the dataset,
but the user study showed that Arty’s real world accuracy is much lower, in part be-
cause real-world data is different from and more diverse than our dataset. The user
study did however reveal a strong interest for such a system from advanced virtual
instruments users.

Thesis Supervisor: Eran Egozy
Title: Professor of the Practice in Music Technology

3

4

Acknowledgments

To Amelia Paine, for being by my side the whole time I was writing this thesis.

To Anna Devillaire, for finding the worst possible time to visit: it made the last

week of writing before the deadline a little more stressful, but a lot more fun.

To the MIT Video Game Orchestra exec, for the late night hangs and group

lunches in storage; special thanks to Joey Gu for being a great friend for the four

years we’ve run this orchestra together.

To all the MIT music department, and in particular: Marcus Thompson, for

putting up with me despite me missing auditions, turning in programs late, injuring

myself, etc... Emily Pollock, for being the best academic advisor and teaching the

best seminar; Fred Harris, for your unparalleled and inspiring dedication to helping

all of your students thrive and for all the help you’ve given me over the years.

To my labmates Madi Wang and Matt Caren: we may have failed to acquire

a projector screen, couch and minifridge for lab before graduating, but we had fun

thinking about doing so together.

To Carlos Alvarado for always being the first tester for all my projects, and for

not complaining while I debug my code in front of him and make him stay for three

times longer than he signed up for.

To the Virtual Orchestration Facebook group for being so enthusiastic about Arty

and trying it out.

To Ryaan Ahmed: it was great to help teach Interactive Music Systems with a

fellow nylon strings plucker, and I both enjoyed and learned a lot from our conversa-

tions.

And of course, thanks to Eran Egozy for being an amazing mentor, great to work

with and to hang out with, and truly passionate about music tech. Thank you for

taking me as a TA and then as an MEng student, even while being on sabbatical!

5

6

Contents

1 Introduction 15

2 Literature Review 19

2.1 Guitar controlled synthesizers . 19

2.2 Playing technique classification . 19

2.2.1 Trained classifiers . 20

2.2.2 Hand-tuned algorithms . 20

2.2.3 Hybrid algorithms . 21

2.3 End-to-end timbre transfer . 21

3 Design 23

3.1 Preamble: Inputting expressive MIDI without Arty 23

3.1.1 Using Notation software . 24

3.1.2 Using a DAW . 25

3.2 Design goals . 26

3.3 System Overview . 27

4 User Interface 29

4.1 Front-end . 29

4.2 Back-end . 30

4.3 Sound synthesis with third party tools 31

5 Dataset 33

5.1 IDMT-SMT-GUITAR_V2 dataset 33

7

5.2 Arty dataset . 34

5.3 Dataset Augmentation . 34

6 Implementation 37

6.1 Transcription . 37

6.1.1 F0 estimation . 37

6.1.2 Note segmentation . 39

6.2 Feature Extraction . 39

6.2.1 Timbral features . 39

6.2.2 Pitch features . 40

6.2.3 Loudness . 41

6.3 Classification . 42

6.3.1 Model Architecture . 42

7 Evaluation 45

7.1 Transcription . 45

7.2 Classification . 46

7.2.1 Discussion . 46

7.3 User Study . 47

7.3.1 Task 1 . 50

7.3.2 Task 2 . 54

8 Conclusion 59

8.1 Future Work . 59

8.1.1 Classification accuracy . 59

8.1.2 User experience . 60

8.1.3 Compatibility . 61

A Arty Dataset description 63

A.1 Intention . 63

A.2 Annotations . 63

A.3 Dataset Statistics . 64

8

A.4 Content . 64

A.4.1 Audio files . 64

A.4.2 XML annotation files . 65

A.4.3 Other annotation files . 66

B User Testing Form 71

9

10

List of Figures

1-1 Examples of common articulations 16

3-1 Data flow between frontend and backend 24

3-2 Notation software . 25

3-3 MIDI editing options in the Logic Pro X DAW 26

3-4 Data flow between frontend and backend 28

4-1 Arty website . 30

4-2 Arty website with clip recorded . 30

4-3 Arty website error message on incorrect audio input 31

6-1 System implementation overview . 38

6-2 Pitch detection overview . 39

6-3 Transcription for SF Lick 1 pick.wav 40

6-4 Loudness to MIDI velocity curve . 41

6-5 Classification Pipeline . 44

7-1 Confusion matrices . 48

7-2 User virtual instrument experience 50

7-3 Tester guitar playing experience . 51

7-4 Task 1 sheet music . 52

A-1 Dataset pipeline . 70

11

12

List of Tables

5.1 Annotated playing techniques in the Arty and IDMT datasets 35

5.2 Occurrences of expression/excitation style pairs in the datasets 35

6.1 List of features . 43

7.1 Pitch detection scores . 46

7.2 Performance of excitation style models on full dataset 47

7.3 Performance of expression style models on full dataset 47

7.4 Performance on IDMT dataset compared to Kehling et al. [1]. 49

7.5 Arty cross-validation accuracy per playing technique. 49

7.6 Self reported DAW experience of Arty testers, on a scale from "never

used a DAW before" (1) to "I produce music in DAWs regularly" (5). 50

7.7 Transcription performance for task 1 53

7.8 Transcription performance per articulation in user study round 2, task 1. 53

7.9 Playing techniques detected on user study round 2, task 1 54

7.10 Playing technique detection performance for user study round 2, task 1 54

7.11 Pitch tracking user rating, on a scale from 1 to 5 (best) 57

7.12 User ratings of perceived classification accuracy per articulation . . . 58

A.1 List of excitation styles . 64

A.2 List of expression styles . 64

A.3 Playing technique occurrences . 65

A.4 Occurrences of expression/excitation style pairs 65

A.5 List of global parameters . 67

13

A.6 List of note event parameters . 68

A.7 Playing style to articulation encoding 69

14

Chapter 1

Introduction

Digital emulation of musical instruments is ubiquitous in modern music, but even as

synthesis technology improves, expressivity remains a challenge. Although playing

an instrument always involves controlling the pitch, loudness and duration of notes,

performers also control many other parameters that contribute significantly to the

music. These parameters are often called articulations, and although some are shared

across a wide variety of instruments, others are specific to certain instruments because

they refer to specific playing techniques. For example, a violinist might adjust the

direction of their bow, whereas a guitarist might might dampen strings with their

palm. Because of how numerous and specific they are, these parameters are usually

difficult to incorporate into audio synthesis.

Although articulations in the narrow sense only refer to the way notes start, end,

and are separated from each other [2], the term in its general sense also applies to

many other musical parameters, especially parameters that vary over the course of

a single note. In classical music, articulations often have a name and specific sym-

bol in music notation. Many deal with the duration and separation of notes, like

staccato or legato. Others deal with dynamics within the span of a single note, like

sforzando or swells. Articulations are a crucial part of a good musical performance,

and because each instrument uses specific techniques to execute them, they contribute

to the instrument’s specific sound. However, despite the musical importance of ar-

ticulations, synthesis systems often offer limited control over them, because of the

15

complexities and cost associated with making a synthesizer with these parameters,

and the complexity of programming1 them for the user.

Figure 1-1: Examples of common articulations

Most synthesizers are designed to be controlled from a piano-like MIDI keyboard,

using MIDI Note On and Note Off messages. Some models include two additional

continuous parameters: pitch bend and modulation values. However, this control pro-

tocol does not convey enough information to properly specify articulations or playing

techniques. Higher end synthesis systems use additional MIDI Control Change (CC)

messages2 or keyswitches3 to convey this information, but this additional layer of

complexity often prevents the direct translation of a keyboard performance into a

convincing equivalent on violin, clarinet, etc... This expressivity must be added after

the fact.

One way to remedy this problem is to forgo using a keyboard in favor of a more

expressive controller. Devices like the Electronic Wind Instrument (EWI)4 or the

Roli Seaboard5 use additional sensors to obtain more information from the performer,

which can then be mapped to additional synthesis parameters such as articulation.

However, even though these controllers sometimes emulate existing instruments, the

way they are played is quite different from the instruments they take inspirations

from. For example, the EWI uses a bite sensor, which doesn’t correspond to how

wind instruments are played, and the Roli Seaboard senses the height at which the

1In this context, MIDI programming means inputting MIDI information such as notes, control
change messages and articulation switches to achieve an expressive performance. It usually involves
editing MIDI in a Digital Audio Workstation and/or specialized hardware such as MIDI controllers
with a modulation wheel.

2MIDI Control Change messages are a special kind of MIDI messages that allow for the continuous
control of a parameter over time.

3Keyswitches are the use of specific MIDI pitches as toggle switches for parameter.
4https://www.akaipro.com/products/ewi-series
5https://roli.com/products/seaboard

16

key is pressed, unlike a regular piano keyboard. These differences are often necessary

to offer additional dimensions of control and expressivity, but they make controlling

these parameters a skill that must be learned and practiced, similarly to learning an

instrument.

Ideally, a performer would be able to play their primary instrument and use it as

a controller for the synthesis of other instruments. Expressivity requires proficiency,

and using any other controller would require becoming sufficiently proficient at it to be

able to convey all the desired articulations during the performance. Since musicians

are already proficient on their instrument, allowing them to use it as a the controller

for generating articulation data would be ideal, provided we can gather such data

from a performance.

One way to state this idea is as the task of changing the timbre of one instrument

into another. This task is known in the literature as timbre transfer ([3]).The current

state-of-the-art in timbre transfer uses deep learning to both analyze the original

audio of the instrument being played and generate the transformed timbre. Although

this approach is very powerful because it can potentially take into account all aspects

of the original audio, deep learning models are computationally expensive to train and

run, and they lack the widespread compatibility and ease of manipulation that MIDI

data offers. Most notably, the sound quality doesn’t match what current professional

synthesis software can achieve, and the system overall integrates poorly with a modern

music production workflow.

Arty is timbre transfer software that aims to offer the expressivity of deep-learning

based timbre transfer while retaining the compatibility and ease of MIDI editing.

While the larger goal is to allow timbre transfer from any instrument to any other, in

this thesis, we focus only on guitar as the input instrument. To achieve this goal, Arty

can detect pitch, loudness, and playing technique from guitar audio, and transcribe

them as MIDI Note On, Note Off, and Control Change messages. This MIDI can then

be used to drive a high-end third-party synthesis engine. The MIDI CC messages

triggers articulation changes in the synthesis engine, keeping the expressivity of the

original performance. Rather than synthesize new audio from scratch, Arty generates

17

a fully expressive MIDI input sequence for a third party synthesizer.

We detect playing techniques rather than articulations directly to allow for more

explicit control over the output, since classifying guitar articulations can be ambiguous

even for a human listener. For example, the difference between a regular short note

and a staccato is not always clearly defined, but it is common for software synthesizers

to have a separate staccato option. By detecting a playing technique, for example

palm mute, which is unambiguous to a human listener, we can increase the likelihood

that the generated midi corresponds to the player’s intention.

This approach has several benefits: it allows users to input complex articulations

at a much faster pace, while allowing them to keep using their synthesis engine of

choice. It also allows them to edit the MIDI data just like they would any other MIDI

data, using the tools they already know. Arty’s interface is simple, and assuming the

user is proficient at guitar, Arty can speed up the MIDI input workflow without the

user having to invest time learning a complex new tool. The musical complexity

all comes from the original guitar performance, and not from having to manipulate

Arty’s parameters, or manually input MIDI control changes for articulation switches.

In short, Arty allows users do timbre transfer simply by playing their instrument,

without sacrificing the ability to edit and fine-tune the result using the tools they are

familiar with.

18

Chapter 2

Literature Review

2.1 Guitar controlled synthesizers

Attempts to make a guitar sound like other instruments by using it as a controller

for synthesis date back to at least 1977 with Roland’s GR500, using CV/Gate as a

control scheme [4]. MIDI guitars, which allowed for use with third party synthesizers,

came soon after, with the Roland GR700 in 1985, and then the GK1 special MIDI

pickup in 1986 [5]. However all of these require special hardware instead of relying on

the acoustic sound produced by an instrument, and are limited to pitch and loudness

processing. Modern guitar synthesizers such as Electro Harmonix Organ 9 [5] are

capable of transcribing pitch bends and sometimes vibrato without relying on addi-

tional sensors, but don’t use a specific representation for specific playing techniques

(or, in the case of closed source code, might do so internally but don’t communicate

it via MIDI or another universal communication protocol).

2.2 Playing technique classification

The commercial products mentioned above focused on transcribing pitch in real-time,

often in integrated hardware devices, with little to no focus on detecting playing

techniques. However, there has been some academic research on playing technique

detection, often with the goal of automating transcription of recorded music into

19

sheet music. Some attempts use additional sensors to gather more information to

help detect the playing technique, as opposed to relying on audio only. Peiper et al

use sensors on a violin’s bow to complement audio data, and then train a decision

tree to select a playing technique for the currently played note [6].

2.2.1 Trained classifiers

Most attempts rely on the audio alone, often training a classifier on labelled data.

Generating enough audio data to train a complex model can be costly. In [7], the

authors’ solution is to mix real recorded audio with synthesized clips generated from

sample libraries. They use this approach to train a fully connected CNN to detect

playing techniques for various Chinese bowed instruments from a Mel-Spectrogram.

Another way to circumvent having to make and annotate a large dataset is to use

a less complex model, which requires less data to train. The trade-off with simpler

classification models is that more audio pre-processing must be done to provide it

with more meaningful input features. This is the approach taken in [8]. A large

number of timbral features are used, which are then simplified by the use of a sparse

coding technique (here LASSO), and fed into one Support Vector Machine per playing

technique.

2.2.2 Hand-tuned algorithms

A different approach is to forgo training a classifier entirely, and hand tune parameters

in a specifically designed detection algorithm. Although used by Ozaslan et al in [9],

this approach requires designing a new algorithm for each playing technique. As such,

they limited their approach to articulations happening at the attack of the note, and

only worked on nylon string guitar (as opposed to including steel string and electric

guitar).

20

2.2.3 Hybrid algorithms

A hybrid approach is taken in [10]. Similarly to [8], timbral features are used as inputs

to SVMs to determine playing techniques, but hand tuned algorithms eliminate im-

plausible candidates using pitch information. This approach is robust enough to yield

good results on guitar solos taken from commercial recordings, detecting hammer-on,

pull-off, slide, bend, and vibrato.

Similar approaches are taken in [11] and [1] for bass guitar and guitar respectively,

using Inertia Ratio Maximization using Feature Space Projection as a feature reduc-

tion algorithm. The authors made their dataset available1, although few algorithms

use the same dataset, making comparisons difficult. The make a distinction between

right-hand (fingerstyle, picked, palm-mute) and left-hand techniques (bend, vibrato,

slide, harmonics, dead note), and detects both independently.

A more recent attempt is [12], where extensive use of pitch information is made

to detect pitch-based articulations, and Convolutional Neural Networks are used on

an MFCC to detect articulations. The particular CNNs model used can only take in

fixed length inputs however, so the authors focus on classifying transitions between

notes (hammer-on , pull-off, slides) and pitch-based playing techniques (bends). This

approach is rather successful, but limited in the kind of techniques it detects.

2.3 End-to-end timbre transfer

More recent work on timbre transfer uses end-to-end deep learning models, as some

believe traditional DSP techniques will not achieve high accuracy for complex clas-

sification tasks [13]. Chen et al. [14] employ a Generative Adversarial Network

using the constant-Q transform of the input audio, taking an approach inspired by

works on neural image processing. Other approaches use Variational Auto Encoders

with a music-specific decoding architecture to achieve a more interpretable middle

representation, although this representation still offers far less control than regular

synthesizers do. Bitton et al [15] use a vector-quantized latent space and filtered

1https://www.idmt.fraunhofer.de/en/business_units/m2d/smt/guitar.html

21

https://www.idmt.fraunhofer.de/en/business_units/m2d/smt/guitar.html

noise as a synthesis engine in the decoding module. [16] uses a similar approach, but

uses the author’s DDSP library to use both a filtered noise source and an additive

synthesizer, passed through a reverb unit, as their synthesis engine.

22

Chapter 3

Design

This chapter introduces Arty’s intended use case, design goals, and a basic system

overview.

3.1 Preamble: Inputting expressive MIDI without

Arty

To understand Arty’s design goals, we must first understand how inputting expressive

MIDI is usually done. The goal is to use virtual instruments (VSTis) to produce an

expressive, usually realistic sounding emulation of orchestral instruments. A virtual

instrument is a software synthesizer plugin that reads MIDI information and gen-

erates the appropriate sound. A single virtual instrument usually emulates a single

instrument, so in order to create a complete piece of music, the output of several

virtual instruments must be combined together. All of this is done in a Digital Audio

Workstation (DAW): software that can route MIDI to virtual instrument plugins, and

mix together the resulting sounds sources (see Figure 3-1). Each sound source in a

DAW is called a track. A typical DAW session for a virtual orchestra would have one

virtual instrument per track, and each track would have its own MIDI information,

much like each player in an orchestra has their own assigned sheet music.

To create a piece of virtual orchestral music, it is hence necessary to generate the

23

Figure 3-1: Data flow between frontend and backend

MIDI information for each track/instrument. There are 2 main approaches: using

notation software, and recording directly into the DAW (see Figure 3-1).

3.1.1 Using Notation software

The first step in entering MIDI information is to record the basic pitch and rhythm

information. This can be done by writing music on a digital staff in software like

Finale1, Musescore2 or Dorico3 (3-2). Such software usually also allows for entering

some additional information: dynamics, articulations, etc... This can all be done

using a mouse and computer keyboard, although often MIDI piano keyboards and

sometimes specialized hardware such as a stream deck4 can be used to speed up the

process.

Once the score is completed, it can be exported as a MIDI file and used as the

input for a virtual instrument. In some notation software such as Dorico5, the notated

articulations and dynamics can be converted into MIDI information that will be

reflected in the virtual instrument’s playback, using MIDI CC messages, patch change

messages, etc...
1https://www.finalemusic.com/
2https://musescore.org/en
3https://www.steinberg.net/dorico/
4https://www.nycmusicservices.com/notation-express/
5https://steinberg.help/dorico_se/v4/en/dorico/topics/library/library_

expression_maps_c.html

24

https://www.finalemusic.com/
https://musescore.org/en
https://www.steinberg.net/dorico/
https://www.nycmusicservices.com/notation-express/
https://steinberg.help/dorico_se/v4/en/dorico/topics/library/library_expression_maps_c.html
https://steinberg.help/dorico_se/v4/en/dorico/topics/library/library_expression_maps_c.html

Figure 3-2: Notation software

3.1.2 Using a DAW

It is also possible to enter MIDI information directly into a DAW. Using a MIDI con-

troller (usually a keyboard), one can play notes in real time and have the DAW record

their pitch, rhythm, velocity, and any other information provided by the controller.

This method effectively transform a piano performance into another instrument, and

as such is very efficient for pianists. However, there are articulations that cannot be

played on a piano, such as swells or changing from pizzicato to arco on a violin. To

solve this problem, MIDI controllers often have additional continuous controls such

as a pitch bend and modulation wheel that can convey continuously changing values,

allowing for swells and other smooth variations in sound. Switches between playing

techniques (such as arco to pizzicato) are often achieved with keyswitches : playing a

key on the keyboard that won’t not produce any sound directly, but instead triggers

the technique switch in the virtual instrument. The keys chosen for keyswitches are

notes that are out of range for the emulated instrument, as not to interfer with the

musical performance. However, it can be difficult to control the melody, continuous

information with the wheels, and keyswitches all at the same time, so it is not uncom-

mon to first record the melody, and then overdub the extra expressive information in

25

(a) Piano roll (b) Musical notation editor

Figure 3-3: MIDI editing options in the Logic Pro X DAW

a separate recording round.

DAWs also usually offer a MIDI editor that can be used to edit the MIDI that was

recorded, for example to correct mistakes or to add in additional expressive informa-

tion such as MIDI CC messages. It often takes the form of a piano roll, although

it sometimes features a staff and functions as music notation software (see Figure

3-3). This MIDI editor can be used to write in the melody directly, which allows

for non-real-time MIDI input without using a separate notation software. However,

these editors do not usually have features that map notated articulation to MIDI, so

the keyswitches and MIDI CC messages must be added manually.

3.2 Design goals

Arty aims to offer an alternative way to input expressive MIDI, by turning guitar

audio into MIDI. In addition to transcribing pitch, rhythm, and loudness, it detects

playing techniques and uses them to change articulations in the virtual instrument

by triggering keyswitches. Arty is designed to be:

Intuitive

Using Arty should be as intuitive and immediate to guitarists as using a MIDI

keyboard is to pianist. There should be no special techniques to learn and no ad-

ditional practice required to use Arty. The process should be simple for someone

familiar with DAWs and virtual instrument. The experience should feel as much as

26

possible like playing the guitar normally, yet having it sound like another instrument

in the recording.

Integrated with pre-existing workflows

Using Arty should be compatible with the workflows described above. In partic-

ular, using Arty should not make editing MIDI or mixing more complicated than it

is with the above solutions. Expressive MIDI from Arty should be structurally in-

distinguishable from expressive MIDI inputted using another method, to ensure full

compatibility with existing tools.

Accessible

Arty shouldn’t require specialized software, and should as much as possible only

use hardware the typical Arty user would already own: a guitar and an audio interface.

As much as possible, it shouldn’t require a specific DAW or virtual instrument type

(by being limited only to Kontakt6 libraries for example).

3.3 System Overview

The user interacts with Arty via a web page. They can record audio directly into

the website, rename it, and listen to it before submitting it. Alternatively, they can

upload files from their computer. The audio needs to be from an electric guitar

plugged directly into an audio interface: a direct, dry guitar signal.

The audio is sent to the Arty server, which first transcribes the notes played,

extracting pitch, rhythm, and volume. It then analyses each note, and finds the

playing technique used by the right hand (called excitation style) and by the left

hand (expression style).

All this information is used to make a MIDI file that contains MIDI messages

corresponding to the notes played and MIDI messages that trigger keyswitches corre-

sponding to the playing techniques detected. Although Arty aims to be compatible

with any VSTi with minimal configuration, keyswitches are always targeted to a spe-

6Native Instruments Kontakt is a software sampler which is required by many virtual instruments,
and offers scripting tools for these virtual instruments. https://www.native-instruments.com/
en/products/komplete/samplers/kontakt-6/

27

https://www.native-instruments.com/en/products/komplete/samplers/kontakt-6/
https://www.native-instruments.com/en/products/komplete/samplers/kontakt-6/

Figure 3-4: Data flow between frontend and backend

cific virtual instrument. For the purpose of our user study, Arty currently maps to

the "Strings - Violin Solo 2 KS.sfz" from the Sonatina Symphonic Orchestra Virtual

Instrument7.

This MIDI file is sent back to the user and downloaded onto their machine. The

user then opens their DAW, makes a track with the corresponding virtual instrument,

and drags and drops the MIDI onto that track. From there, the rest of the process is

exactly as it would be if the MIDI was entered any other way.

7https://github.com/peastman/sso

28

https://github.com/peastman/sso

Chapter 4

User Interface

We implemented a web interface for the algorithm, hosted on Microsoft Azure.

4.1 Front-end

The front-end is written in HTML/javascript, with Bootstrap1 used for styling (see

Figure 4-1). Users can record audio straight into the website. A waveform display

provides visual feedback on the audio input. Once a clip is recorded, the user can

name it, listen to it, and choose whether to delete or convert it (see Figure 4-2).

Alternatively, users can upload .wav files directly to the website using the upload

box.

After receiving audio, Arty processes the audio, converts it to .wav if needed

(using the audioBufferToWav2 package) and then downloads the corresponding midi

file. If no notes are detected in the audio, the website displays an error message (see

4-3).

The user can then drag and drop the MIDI file into their DAW to use with a

VSTi.

1https://getbootstrap.com/
2https://www.npmjs.com/package/audiobuffer-to-wav

29

https://getbootstrap.com/
https://www.npmjs.com/package/audiobuffer-to-wav

Figure 4-1: Arty website

Figure 4-2: Arty website with clip recorded

4.2 Back-end

The back-end is a Flask Python server, hosted on Microsoft Azure. The API has

a single endpoint, /uploadFile/<filename>. Upon receiving a POST request with

a .wav file, it downloads the file on the server, processes it, and generates a MIDI

file at /static/generated_files/. The front-end then downloads the file from that

location.

30

Figure 4-3: Arty website error message on incorrect audio input

4.3 Sound synthesis with third party tools

Arty doesn’t directly provide a DAW and virtual instrument to play the generated

MIDI file, so third-party tools have to be used. This is by design, as third-party tools

are better sounding and easier to work with for experience musicians than what the

authors could build in the scope of this work.

We had to chose specific third-party tools for sound synthesis, since Arty generates

a MIDI file with articulation change information, and how to trigger these articulation

changes depends on the virtual instrument playing the MIDI file. We chose a free

and cross-platform virtual instrument to simplify user testing. The generated MIDI

files are designed to work with the "Strings - 1st Violins KS.sfz" soundfont

from Sonatina Symphonic Orchestra3, which uses keyswitches to trigger articulation

changes. This MIDI file should work with most VSTi samplers; we used Plogue

Sforzando4 since it is free and cross-platform.

3https://github.com/peastman/sso
4https://www.plogue.com/products/sforzando.html

31

https://github.com/peastman/sso
https://www.plogue.com/products/sforzando.html

32

Chapter 5

Dataset

We detect guitar playing techniques by training a classifier on annotated examples.

In order to train the classifier, and to evaluate Arty’s classification and transcription

accuracy, we use Kehling et al’s [1] IDMT-SMT-GUITAR_V2 second dataset, as well

as an additional dataset created by the author for this thesis: the Arty dataset.

5.1 IDMT-SMT-GUITAR_V2 dataset

The IDMT-SMT-GUITAR_V2 dataset is a set of annotated electric guitar record-

ings. The audio was recorded using a variety of guitars and pickups plugged directly

into an audio interface. The annotations are .xml files with the same name as the

corresponding audio file. An .xml file contains several note events, each note event

containing onset and offset times, pitch, as well as any expression and excitation

style information (see Table 5.1 and Appendix A.4 for details). The specification for

the dataset also includes a field for vibrato extent and speed. Some of the audio

recordings in the dataset are polyphonic, but for this work, we only focus on mono-

phonic detection. After removing the polyphonic examples from the dataset using

the annotation dataset, we found that the dataset was a bit unbalanced, with certain

combinations of excitation and excitation styles underepresented (see Table 5.2). We

therefore constructed a new dataset, the Arty dataset.

33

5.2 Arty dataset

The Arty dataset is also composed of direct-to-interface electric guitar recordings. Its

format follows the format of the IDMT-SMT_GUITAR_V2 dataset (a more extensive

description can be found in appendix A). The Arty dataset contains normal, slide

and vibrato expression styles, and all excitation styles. The Arty dataset focuses on

providing at least one example for those expression/excitation combinations for each

pitch, something which the IDMT-SMT-GUITAR_V2 dataset doesn’t guarantee (see

Table 5.2). To do so, examples of each excitation/expression style pair are recorded

on every fret below the 12th fret, on every string of the guitar1. This covers most

notes played on the guitar, and it also provides all the usual playing locations for

each pitch. Since a particular pitch can be played on various strings on a guitar,

with various tones, this should help the classifier be more robust in the face of timbre

differences for a given pitch.

5.3 Dataset Augmentation

The Arty dataset was all played with the same electric guitar. To introduce more

timbre variation and try to limit the model overfitting to one specific guitar, we

augmented the Arty dataset using Positive Grid Bias FX 2’s Guitar Match2 feature.

Guitar Match analyzes the timbre of a guitar and processes it to match the tone of

another guitar model, although it introduces a fair amount of noise in the process.

We augmented the Arty dataset by processing with the Custom ’57 Goldtop Reissue

and Vintage SHR Antique settings, to emulate the sounds of Gibson Lespaul and

Fender Stratocaster-style guitars respectively, two of the most popular guitar models.

The Arty dataset complements the IDMT-SMT-GUITAR_V2 dataset and is

meant to be used in tandem with it.

1There are no vibrato examples on open strings and no slides up to notes below the third fret
because such combinations aren’t playable.

2https://www.positivegrid.com/bias-fx-2-guitar-match

34

https://www.positivegrid.com/bias-fx-2-guitar-match

Style type Playing Technique Abbreviation

Excitation style Finger-style FS
Palm-muted PK
Picked MU

Expression style No expression style NO
Harmonic HA
Dead note DN
Slide (pitch) SL
Vibrato VI
Bend BE

Table 5.1: Annotated playing techniques in the Arty and IDMT datasets

PK FS MU

NO 395 101 282
BE 12 7 9
DN 219 9 9
HA 92 2 9
SL 21 0 12
VI 40 8 21

(a) IDMT-SMT-
GUITAR_V2

PK FS MU

NO 89 84 78
BE 0 0 0
DN 0 0 0
HA 0 0 0
SL 60 60 60
VI 72 72 0

(b) Arty dataset

PK FS MU

NO 484 185 360
BE 12 7 9
DN 219 9 9
HA 92 2 9
SL 81 60 72
VI 112 80 21

(c) Combined Datasets

Table 5.2: Occurrences of expression/excitation style pairs in the datasets

35

36

Chapter 6

Implementation

All signal processing and classification happens in the Python backend, using the

Essentia library [17]. The first step in the audio-to-expressive-MIDI conversion is

transcription: segmenting the audio into note events by estimating an onset, offset

and pitch for each event. Arty then extract features from each note, and uses them

as the input for a classifier. The classifier determines the excitation and expression

styles for each note. Finally, a MIDI file is generated which maps these note events,

expression and excitation styles to MIDI messages (see Figure 6-1).

6.1 Transcription

The first step in the articulation detection algorithm is to identify individual notes

and find their pitch.

6.1.1 F0 estimation

We first apply an equal loudness filter on the audio, then use essentia’s implementation

of the Yin algorithm1 ([18]), which computes an estimate of the fundamental frequency

as well as a confidence metric.

We then discard all f0 estimates that fall below a confidence threshold by setting

them to 0 (see Figure 6-3).
1https://essentia.upf.edu/reference/std_PitchYin.html

37

https://essentia.upf.edu/reference/std_PitchYin.html

Figure 6-1: System implementation overview

38

6.1.2 Note segmentation

For note segmentation, we use Essentia’s PitchContourSegmentation extractor2, which

implements the algorithm from McNab et al. ([19]). It uses the audio and the f0 es-

timates to generate discrete note events : objects with onset time, offset time, and

pitch. These note events match how notes are annotated in the dataset, and are

the level at which all further processing operates: the problem becomes finding the

articulation of a given note event given the corresponding segment of audio and pitch.

6.2 Feature Extraction

After segmenting the audio into note events, we extract a large number of features

for each note to be used as input for the classifier. For spectral features, we use a

collection of Essentia’s algorithms. We also implement additional features which we

believe will help with detecting specific articulations. We extract each feature on the

entire note’s audio, and also on only the first 1024 samples of each note3.

6.2.1 Timbral features

Similarly as in [8], we use a large number of timbral features that will then be fed into

a feature selection algorithm before being used for classification. We trained classifiers

using the features in Table 6.1, and compared excluding unproccessed array features,

such as the MFCC, in favor of derived features like those in Essentia’s Music Extractor
2https://essentia.upf.edu/reference/std_PitchContourSegmentation.html
3We compared extracting features from only the start of each note’s audio, from the entire note’s

audio, or both. We found using both the features the first 1024 samples and from the entire note’s
audio length yielded the best performance.

Figure 6-2: Pitch detection overview

39

https://essentia.upf.edu/reference/std_PitchContourSegmentation.html

Figure 6-3: Transcription for SF Lick 1 pick.wav

(see Table 6.1). We found the array features to improve accuracy and included them

in the final model.

6.2.2 Pitch features

Vibrato and slide are feature that can be detected from pitch alone. To improve

accuracy for those articulations, we added the following features.

Slide detection using f0 derivative

In order to detect sliding up to a note, we analyse the pitch trajectory at the start of

each note. We take the discrete derivative of the f0 trajectory at the start of the note

using numpy.gradient4, and use the maximum, minimum mean, and median values

of the derivative as features. A slide should have a high maximum value and mean,

whereas a static note would have a near zero derivative, and a vibrato would result in

a near-zero mean since the derivative would switch signs frequently, oscillating fairly

symmetrically around 0.

4https://numpy.org/doc/stable/reference/generated/numpy.gradient.html

40

https://numpy.org/doc/stable/reference/generated/numpy.gradient.html

Vibrato Detection

Vibrato is the slow and small modulation of the frequency of a note. We use the

thresholded f0 values as input for essentia’s Vibrato detection algorithm5 in order to

get vibrato extent and frequency (i.e. the width and speed of the frequency modu-

lation) per frame for each given note. For each note, we then extract the maximum,

median and mean values for both vectors, and use these values as features for the

classifiers. Since we are simply detecting the presence or absence of vibrato, we are

not concerned with the minimum value.

6.2.3 Loudness

We determine loudness in order to convey dynamics in the generated MIDI file. To

do so, we used Essentia’s Loudness algorithm6. We convert loudness to MIDI velocity

using the following formula: 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = (1− 𝑒−𝑙𝑜𝑢𝑑𝑛𝑒𝑠𝑠/2.5)*126+1 (see velocity curve

on Figure 6-4).

Figure 6-4: Loudness to MIDI velocity curve

5https://essentia.upf.edu/reference/std_Vibrato.html
6https://essentia.upf.edu/reference/streaming_Loudness.html

41

https://essentia.upf.edu/reference/std_Vibrato.html
https://essentia.upf.edu/reference/streaming_Loudness.html

6.3 Classification

The features we extracted in the previous phase are used as an input to two classifiers:

one for excitation style (fingerstyle, palm-mute, pick) and one for expression style

(normal, vibrato, slide, bend, dead-note, harmonic). They were both built using the

scikit-learn Python library[20].

6.3.1 Model Architecture

Both models follow a similar structure: Data Normalization -> Feature Elimination

-> Multiclass classification (6-5). After evaluating a number of different models, we

find that the same architecture worked best for both excitation and expression styles.

Data normalization

We first scale our features to zero mean and unit variance. We used scikit-learn’s

StandardScaler7 implementation with default parameters. This same scaling is also

applied during prediction.

Feature Elimination

For each classifier, we trained a random forest to determine the importance of each

feature, and kept all features with above average importance. This dropped the

number of features from 180 to 158 for both models. We used scikit-learn’s

SelectFromModel8 and RandomForestClassifier9 implementation with default set-

tings.

7https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
StandardScaler.html

8https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.
SelectFromModel.html

9https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html

42

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

Feature type Feature

Array features Bark Bands
MFCC
Linear Predictive Coefficients

Spectral descriptors High Frequency Content
Spectral Contrast
Harmonic Peaks
Harmonic Magnitudes
Inharmonicity

SFX descriptors Envelope max to total, min to total, temporal centroid to total
Pitch Salience

Music Extractor Loudness
Dynamic Complexity
Spectral RMS
Spectral Flux
Spectral Centroid
Spectral Moments
Spectral Rolloff
Spectral Decrease
Spectral Strongpeak
Spectral Energy
Zero Crossing Rate
Low, Low-mid, High-mid, High Frequency Spectral Energy
MFCC Crest
MFCC Flatness
MFCC Centroid
MFCC Moments
MFCC Spread
Bark Bands Crest
Bark Bands Flatness
Bark Bands Centroid
Bark Bands Moments
Bark Band Spread
Spectral Entropy
Spectral Complexity

Pitch Features Vibrato Extent Max, Median, Mean
Vibrato Frequency Max, Median, Mean
F0 Gradient Max, Min, Median, Mean

Table 6.1: List of features

43

Figure 6-5: Classification Pipeline

Classification

We use a Random Forest trained on the scaled and pruned features. Once again, we

use scikit-learn’s implementation10. After running a grid search, we settled on the

following parameters: max_features=’sqrt’, class_weight=’balanced’.

10https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

44

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

Chapter 7

Evaluation

7.1 Transcription

To evaluate the pitch detection and note segmentation algorithm, we use the SMT-

IDMT and the Arty datasets. The datasets contain the ground truth with regards

to note event pitch, onset time, and offset time. To compare the prediction with

the dataset, we match note events that have sufficiently close onsets, and record

the differences in onset time, offset time, and pitch. We also count false positives

(extraneous note events that were predicted but that don’t correspond to real notes)

and false negatives (notes played that weren’t transcribed into note events), and used

them to compute recall, precision, and F-score (Table 7.1).

With these criteria, we compare two of Essentia’s pitch estimators: Yin 1 and

Melodia 2, implementing algorithms from DeCheveigné and Kawahara ([18]) and Sa-

lomon and Gomez ([21]) respectively. Following the results in Table 7.1, we use Yin

with a confidence threshold of 0.95, which yields an F-score of 0.79 on our dataset.

1https://essentia.upf.edu/reference/std_PitchYin.html
2https://essentia.upf.edu/reference/std_PredominantPitchMelodia.html

45

https://essentia.upf.edu/reference/std_PitchYin.html
https://essentia.upf.edu/reference/std_PredominantPitchMelodia.html

Pitch algorithm Confidence Threshold Precision Recall F score

Yin None 0.38 0.94 0.54
0.95 0.66 0.99 0.79

Melodia None 0.60 0.95 0.73

Table 7.1: Pitch detection scores

7.2 Classification

Models are evaluated using 5-fold cross-validation on the IDMT and Arty datasets.

Several model architectures are compared (see Tables 7.2 and 7.3). For all the models

considered, the parameters for the most promising architectures were selected using

Grid searches. The best performing model, a random forest, has an overall accuracy

is 0.879 for excitation styles (see Table 7.2) and 0.873 for expression styles (see Table

7.3) on the Arty dataset. On the IDMT dataset, we improve on Kehling et al.’s ([1])

accuracy with scores of 0.93 and 0.89 for excitation and expression styles respectively

(see Table 7.4). Per-articulation performance on the Arty dataset can be seen in

Table 7.5 and on the confusion matrices (Figure 7-1)3.

7.2.1 Discussion

Tables 7.2 and 7.3 show that Random forests are the most effective classifiers for

this task, achieving highest accuracy and F-scores during cross validation on both

the IDMT and Arty datasets . When trained and evaluated on the IDMT dataset

alone, they performs better than Kehling et al. [1] (see Table 7.4). However, they also

achieve perfect accuracy on the training dataset while performing significantly worse

on the test dataset, suggesting over-fitting. After getting the preliminary results from

the first user study, we selected another model with a smaller discrepancy between

training and test scores to try to reduce over-fitting for the second user study. Using

Support Vector Machines seems to lead to less overfitting, and using Random Forest

3There are too few bends and dead-notes in the dataset to get meaningful accuracy figures, but
we keep them as a category to allow for comparison with Kelhing et al.

46

Feature Selection Algorithm Classifier Accuracy F-score Recall Precision

Mean SD Mean SD Mean SD Mean SD

Random Foresta SVC 0.832 0.011 0.842 0.010 0.855 0.011 0.839 0.012
None SVC 0.817 0.010 0.826 0.010 0.835 0.012 0.823 0.010
Recursive Feature Elimination on a Random Forest SVC 0.847 0.017 0.856 0.012 0.864 0.012 0.851 0.013
Sequential Feature Selector SVC 0.800 0.003 0.810 0.014 0.822 0.014 0.808 0.013
Random Forestb Random Forest 0.879 0.014 0.870 0.014 0.861 0.012 0.883 0.017
None Random Forest 0.848 0.018 0.849 0.018 0.838 0.175 0.869 0.016

Table 7.2: Performance of excitation style models on full dataset

aUsed for second round of user study
bUsed for first round of user study

Feature Selection Algorithm Classifier Accuracy F-score Recall Precision

Mean SD Mean SD Mean SD Mean SD

Random Foresta SVC 0.840 0.018 0.651 0.029 0.701 0.040 0.631 0.024
None SVC 0.866 0.021 0.674 0.032 0.629 0.029 0.794 0.081
Sequential Feature Selector SVC 0.843 0.032 0.650 0.053 0.609 0.055 0.763 0.0697
Random Forestb Random Forest 0.873 0.020 0.675 0.065 0.639 0.054 0.751 0.103
None Random Forest 0.871 0.020 0.666 0.045 0.631 0.052 0.727 0.041

Table 7.3: Performance of expression style models on full dataset

aUsed for second round of user study
bUsed for first round of user study

as a means of feature selection still proved to be a better strategy over alternatives

like Recursive Feature Elimination or Sequential Feature Selection.

In the excitation style confusion matrix (Figure 7-1), we can see that most of

the errors happen between fingerstyle and pick. Some degree of confusion is to be

expected between playing fingerstyle and with a pick, as differentiating them can be

a hard task for even a human listener. Even though on a given instrument, playing

fingerstyle will usually result in a "rounder" tone, with a less pronounced attack

and less high frequencies, the differences between different electric guitars make the

classification more difficult if notes are heard out of context.

7.3 User Study

We conducted two rounds of user studies: a first preliminary round with 2 user, and

a wider round with 9 users. We adjusted the model between rounds based on the

feedback from round 1, so the evaluation will mainly discuss data from round 2. We

47

(a) Excitation style

(b) Expression style

Figure 7-1: Confusion matrices

48

Model Excitation Expression

Arty 0.93 0.89
Kehling et al. 0.93 0.82

Table 7.4: Performance on IDMT dataset compared to Kehling et al. [1].

Pick Fingerstyle Palm-mute

Accuracy 0.920 0.746 0.916
(a) Excitation styles

Normal Harmonic Slide Vibrato

Accuracy 0.941 0.673 0.865 0.850

(b) Expression styles

Table 7.5: Arty cross-validation accuracy per playing technique.

recruited users with experience using virtual instruments and playing guitar, from the

"Virtual Orchestration" Facebook group4. They overwhelmingly were advanced DAW

and virtual instrument users (see Tables 7.6 and 7-2). They were also experienced

guitarists, playing for a median of 15 years, and a minimum of 4 (see Figure 7-3).

They used a variety of electric guitar models, with both single coil and humbucker

guitar pickups being represented. They reported playing a variety of musical genres,

most commonly rock (7 mentions) and jazz (5 mentions).

The user study was composed of two tasks: the first task provides us with out-of-

dataset samples to evaluate Arty, while the second task encourages users to use Arty

more freely.

4https://www.facebook.com/groups/1475801049334232

49

https://www.facebook.com/groups/1475801049334232

Users DAW experience 1 2 3 4 5 Mean SD

Response Count 0 0 1 1 9 4.75 0.62

Table 7.6: Self reported DAW experience of Arty testers, on a scale from "never used
a DAW before" (1) to "I produce music in DAWs regularly" (5).

Figure 7-2: User virtual instrument experience

7.3.1 Task 1

Task Description

The purpose of this task was to familiarize the users with Arty as well as collect

some out-of-dataset samples that we could evaluate the model on. The task consisted

of recording all the relevant techniques into Arty to assess whether Arty is accurate

on data that resembles the dataset. The users were asked to play each articulation

three times, on three different strings, following the sheet music in Figure 7-4. They

then had to upload both the audio file of their playing as well as the generated MIDI

file to a provided Dropbox5 link. We requested that they use the neck pickup of

5https://www.dropbox.com/

50

https://www.dropbox.com/

(a) Self-assessed guitar proficiency on a scale from 1 (beginner) to 5 (professional
level)

(b) Guitar playing experience in years

Figure 7-3: Tester guitar playing experience

51

Figure 7-4: Task 1 sheet music

their guitar, as the Arty dataset was recorded using the neck pickup, and imposing

a specific pickup does not impede on Arty’s design goals, as it does not significantly

change how guitar is played.

Results and discussion

Comparing the audio and MIDI files sent by users, we were able to evaluate Arty’s

performance for different users for the first task. Of the 11 users, one did not send

the correct audio, and one didn’t follow the sheet music perfectly and skipped a

palm-muted note. All other data is included in the following discussion.

Pitch tracking In the first round of user study, we observed a high rate of false

positives and false negatives (10 and 17 respectively, out of a total of 126 notes

played by the users total). Harmonics in particular were not being transcribed. We

adjusted the transcription algorithm’s parameters and threshold before round 2, which

improved the performance significantly (see Table 7.7). The following transcription

discussion will be restricted to round 2 results, using the adjusted algorithm.

The pitch algorithm performed well overall, but had particular trouble with wide

vibrato. Vibrato, especially wide vibrato, sometimes resulted in notes with neigh-

boring pitches being added, since the pitch approaches the semi-tone above. 17 such

52

User Study Round Precision Recall F score

Round 1 0.916 0.865 0.890
Round 2 0.931 0.990 0.960

Table 7.7: Transcription performance for task 1

Playing technique used when the error occurred

Transcription metric Vibrato Slide Harmonics Palm mute Other Total

False positive count 17 9 6 0 5 37
False negative count 0 0 3 2 0 5
True positive count 72 72 69 69 216 498

Table 7.8: Transcription performance per articulation in user study round 2, task 1.

false positives were found in round 2 (see Table 7.8), with 10 being from a single user

with a particularly wide vibrato. Incorporating feedback from vibrato detection to

tune the pitch detection algorithm and prevent extraneous notes from being added

could improve this behavior.

Similarly, sliding up sometimes led to additional MIDI notes preceding the target

pitch, a semitone lower (8 total in round 2). It also had trouble with harmonics.

Harmonics tend to be quieter than regular notes while still having a noisy attack due

to the pluck, which results in a more percussive sounds and lower pitch confidence.

If the pitch confidence drops low enough, the thresholding will prevent the note from

being recognized. This issue with harmonics depends on the player and is especially

pronounced for less experienced guitarists: all the harmonics that were not transcribed

were from the same user.

Playing technique detection Arty exhibits low performance on playing technique

detection in task 1, always predicting fingerstyle vibrato (59% of results, see Table

7.9), pick vibrato (24% of results), or palm mute (17% of results). It never detects

absence of vibrato, but even disregarding vibrato, accuracy is still low at 43% (see

Table 7.10). Performance differs greatly between users: some users saw most of their

notes translated as "sustain" (up to 62% of notes for one user), while another user

53

Fingerstyle Vibrato Pick Vibrato Palm Mute Total

Count 296 118 84 498
Proportion 59% 24% 17% 100%

Table 7.9: Playing techniques detected on user study round 2, task 1

Target articulation Marcato Sustain Marcato vibrato Sustain vibrato Tremolo Pizzicato Total

Predicted 53 26 0 0 0 54 133
Accuracy 0.74 0.36 0 0 0 0.75 0.26

Ignoring vibrato Predicted 109 53 N/A N/A 0 54 216
Accuracy 0.76 0.37 N/A N/A 0 0.75 0.43

Table 7.10: Playing technique detection performance for user study round 2, task 1

only had 1 note classified as such by Arty.

This suggests that differences between users are greater than differences between a

user using different playing techniques, with the exception of palm-mute. Pronounced

palm-mute (resulting in shorter notes) was consistently detected correctly, while notes

decaying more slowly due to a lighter palm mute were sometimes miss-classified.

Overall, Arty mostly failed to generalize from its training dataset to real data,

limiting itself to the most common categories, and classifying differences between

players and guitars rather than between playing techniques.

7.3.2 Task 2

Task Description

The purpose of task 2 was to let the users explore Arty and evaluate its playing tech-

nique detection in a less restrained setting. Users were instructed to record melodies

of their choice into Arty, using all the recognized playing technique. They were then

asked to play the generated MIDI file in a DAW of their choice, using and the "Strings

- Violin Solo 2 KS.sfz" soundfont6 in Plogue Sforzando7. They then evaluated Arty’s

accuracy and user experience. The exact instructions were:

6https://github.com/peastman/sso
7https://www.plogue.com/products/sforzando.html

54

https://github.com/peastman/sso
https://www.plogue.com/products/sforzando.html

Arty listens to your guitar audio, transcribes the notes and playing

techniques, and makes a MIDI file that will reflects them. When the

virtual violin plays that MIDI file, it will follow the notes and playing

techniques you used. The map between guitar and violin techniques

is as below:

• Right hand techniques:

– Palm-mute -> Pizzicato

– Fingerstyle -> Marcato

– Playing with pick -> Sustain

• Left hand techniques:

– Guitar harmonics -> Tremolo

– Slide up from below -> Tremolo

– Vibrato -> Vibrato (for sustain and marcato)

Notes:

– Playing palm mute will always result in pizzicato, regard-

less of left hand technique.

– Vibrato can apply to marcato and sustain articulations

(but not pizzicato)

– Tremolo is the same, regardless of playing fingerstyle or

with a pick

Results and discussion

Pitch tracking We asked the users to rate the pitch tracking and to identify specific

issues with it. The pitch tracking was rated rather highly (see Table 7.11), with only

one user reporting octave errors, and no other pitch errors being reported.

Three users reported timing errors, but we couldn’t reproduce two of them. One

55

noticed a delay between the audio and the generated MIDI, but we found no such delay

when looking at the audio and MIDI files collected in task 1. Another user reported

the overall tempo of the MIDI to be slower than the audio’s tempo, a behavior

which we could also not reproduce with the files they sent. We believe the reported

differences in tempo could be due to a non-standard tick-per-quarter setting in the

users’ DAWs, which would make the MIDI playback at a different rate than intended.

The last timing issue reported was about note cutoffs, particularly regarding palm

mute and sustained notes. Such cutoffs are hard to determine objectively because,

unlike a violin which can sustain notes at a constant volume until the bow stops

exciting the string, notes played on a guitar decay progressively into silence. Our

approach while authoring the Arty dataset was to set the cutoff where the note was

no longer audible to us. This is not a precisely defined point, and probably lead to

inconsistencies in the dataset. These in turn might explain this user’s issue.

Although this shouldn’t be too much of an issue when using Arty with a violin

VSTi, because palm mute maps to pizzicato (which similarly decays regardless of

MIDI note length) and other situations usually call for a clear cutoff, it could be an

issue if trying to use Arty to control MIDI plucked string instruments. Modifying

the dataset to have a consistent cutoff point, determined for example by a signal-to-

noise threshold, or a loudness ratio compared to the loudest point in the note, might

improve Arty’s cutoff behavior.

The most reported issue with the pitch tracking was about note segmentation,

with 3 users reporting notes not being transcribed and 4 users reporting extraneous

notes being added. This happened in particular with harmonics, palm mute, and

vibrato. Harmonics and vibrato are challenging for Arty for reasons described above,

and similarly to harmonics, palm mute results in a strong percussive attack and a

quieter sustained pitch.

In open comments, testers were overall satisfied with the pitch tracking, but noted

DAWs already offer accurate tools for pitch detection, such as ReaPitch in Cockos

Reaper8. These tools also often work in real-time, making them more convenient to

8https://www.reaper.fm/index.php

56

https://www.reaper.fm/index.php

Pitch tracking user rating 1 2 3 4 5 Mean SD

Response count 0 0 2 5 4 4.18 0.75

Table 7.11: Pitch tracking user rating, on a scale from 1 to 5 (best)

use if only pitch is concerned.

Articulation detection Confirming the results from the first task, articulation

detection was rated poorly by users, with only fingerstyle, pick, and palm mute being

reliably detected for a few users (see Table 7.12). When asked whether testers would

use Arty in their regular music making, this low accuracy was the main component

dissuading testers, being mentioned by 8 testers.

User Experience The second biggest deterrent to using Arty was DAW integra-

tion, with 6 mentions. Users found that leaving their DAW for a browser was disrup-

tive to their workflow, and would prefer an implementation as a VST plugin. Arty

was made as a web application to facilitate development and user studies, but a prod-

uct designed to be used by professionals would most likely need to be implemented

as a VST plugin to work offline and within a DAW.

Three users put real-time feedback or transcription as a requirement. Near real-

time pitch detection would be possible, although note segmentation would be more

difficult and likely less accurate. However, real-time playing technique detection would

be much more difficult. A classifier trained on only the start of the notes could give

reasonable feedback with a bit of lag, but true real-time is still out of reach for this

kind of architecture.

Overall, users were very enthusiastic towards using a hypothetically more accurate

and integrated version of Arty, with only one user reporting they wouldn’t use Arty

even if these issues were fixed. The other users found an improved Arty to be an

improvement on their current input methods: using piano keys or special buttons

on a hardware controller to trigger keyswitches (4 users), or inputting them with a

mouse and keyboard after entering the notes (3 users). 5 users reported having to

57

Articulation trigger reliability Pick Pick, vibrato Fingerstyle Fingerstyle, vibrato Palm Mute Harmonics Slide

I didn’t play that articulation 0 0 0 1 0 1 3
Never triggers 1 5 2 5 1 8 6
Sometimes Triggers 2 1 5 2 2 1 1
Rarely Triggers 3 5 1 2 1 1 1
Sometimes Triggers 2 1 5 2 2 1 1
Often triggers 3 0 2 1 5 0 0
Reliably Triggers 2 0 1 0 2 0 0

Table 7.12: User ratings of perceived classification accuracy per articulation

tweak the expressive data even if they start with live inputting notes with a keyboard.

A more accurate Arty would limit the need to do this second pass, while leaving the

possibility open. However, no user was interested in using Arty as is.

There were a few issues brought up about what playing techniques Arty should

detect. We chose the guitar paying technique to articulation mapping based on what

articulation were available in our dataset to train the model, and what articulations

we could find on a free virtual instrument that could be easily installed by testers.

We didn’t use bending as a possible articulation as it would have mapped to pitch

variations rather than articulation switches, but two users would have liked for bends

to be recognized. Two users also mentioned that they would have wanted tremolo

picking on guitar to be recognized.

Two users were dissatisfied with the guitar-playing-technique-to-violin-articulation

mapping, because they found it to be counter-intuitive and/or missing some com-

mon articulations such as Spiccato. Because of the limited articulations available in

free VSTis, we had to assign some counter-intuitive technique to articulation map-

pings such as guitar harmonics mapping to violin tremolo (because violin harmonics

were not an available articulation). This limitation would be overcome by offering

user-customizable mappings, or by targeting paid products with a wider range of

articulations.

One user also reported being unhappy with the guitar to MIDI velocity mapping.

MIDI controllers often offer several velocity curves to adjust for player preferences,

and this could be added as a user-controllable parameter to Arty.

58

Chapter 8

Conclusion

Arty is an attempt to combine the expressivity and spontaneity of end-to-end timbre

transfer with the compatibility and tweakability of MIDI, by transcribing guitar play-

ing techniques and using that information to pilot third party virtual instruments.

Building on previous work by Kehling et al. [1], we extended their dataset with the

new Arty dataset, and used it to train a model to classify excitation styles and ex-

pression styles. We implemented a website as a user interface to allow users to easily

convert their guitar playing to MIDI. Despite achieving fairly high accuracy on the

dataset, the user study showed that Arty’s high cross-validation score didn’t convert

to a high real-world accuracy. Potentials reasons for this shortcomings and next steps

are discussed below.

8.1 Future Work

8.1.1 Classification accuracy

Although fairly accurate on the IDMT and Arty datasets, Arty’s performance during

the user study shows the articulation detection needs to be greatly improved before

it is ready to be used in a musical context. Providing the model with more diverse

data from a variety of players and electric guitar models would increase the model’s

robustness, but would be difficult and time consuming to assemble and annotate.

59

We attempted this approach by creating the Arty dataset to complement the IDMT

dataset, but the amount of additional data needed is larger than we anticipated. This

is a problem that would most likely not be solved by training a different model on

existing data, since Arty’s current model can achieve relatively high accuracy on our

current data. This is a bottleneck for any approach based on a trained classifier.

Although there are several such attempts in the literature, there is no agreed-upon

set of playing techniques to detect, which makes combining datasets and comparing

results difficult.

An alternate approach that might be able to succeed without requiring too much

data would be to focus on a hand-tuned classifier, by "manually" setting thresholds

for a small number of hand picked features for example. Although this approach

limits the complexity of the classification model, and hence might make it more

difficult to achieve high accuracy on the dataset, it is easy to adjust, opening the

door to user calibration. We observed in the user study that timbral differences

between players and guitars were sometimes larger than differences between playing

techniques, especially playing fingerstyle vs using a pick. By adding a user calibration

stage resembling task 1 of the user study, a simpler model could be adjusted to account

for these differences between guitars and potentially exhibit better performance on

out-of-dataset samples.

8.1.2 User experience

According to user feedback, beyond accuracy, improving the user experience is largely

a matter of offering a DAW integrated version, and real-time feedback.

A DAW integrated version of Arty would most likely be a VST plugin that could

be inserted on any audio track, and could output the corresponding MIDI. Usual VST

plugins have to work in near real-time, with the possibility of having a small delay.

This wouldn’t work for Arty’s current non-real-time design, however using the ARA1

SDK, an Arty plugin could access the entire audio and process it without a real-time

constraint while still being cross-DAW compatible.
1https://github.com/Celemony/ARA_SDK

60

https://github.com/Celemony/ARA_SDK

Real-time playing technique classification would need to rely only on the start of

each note, and this would prove a more difficult task than being able to use the whole

note. For certain techniques where the attack of the note is significantly different

(palm mute, slide for example) this might be possible. However, it would make

certain playing techniques impossible to detect, such as vibrato.

A compromise could be to output the pitch in real time to give some real-time

feedback, and perhaps even the detected playing technique after the note is over.

Arty could then add the keyswitches and MIDI CC after the fact into a MIDI file

that would be dragged and dropped onto the track. Although not fully real-time,

this might give enough feedback to the user while remaining feasible with Arty’s

classification architecture.

8.1.3 Compatibility

Currently, because key-switches have to be tailored to a particular virtual instrument,

Arty only works with a single instrument. Expanding Arty’s compatibility would be a

fairly simple task, either by adding a lists of mappings for popular virtual instruments,

or better yet by enabling users to create their own mappings from playing technique

to keyswitches. Providing presets for popular instruments would help keep Arty

intuitive. Other parameters that could be given to the user are an adjustable guitar

loudness to MIDI velocity curve, as is often the case in hardware MIDI controllers.

61

62

Appendix A

Arty Dataset description

A.1 Intention

The Arty dataset is intended as a ground truth for the development of music infor-

mation retrieval algorithms. It consists of annotated audio recordings of the author

playing a variety of playing techniques on electric guitar. It was designed for the

following intended applications:

• monophonic pitch estimation

• onset/offset detection

• guitar playing technique detection

It follows the same format as dataset 2 from the IDMT-SMT-GUITAR dataset

[1], and is meant to be used in conjunctions with it.

A.2 Annotations

The following information is annotated for every note:

• pitch (midi number)

• onset time (in seconds)

63

Abbreviation Excitation Style

FS Finger-style
MU Palm-muted
PK Picked

Table A.1: List of excitation styles

Abbreviation Expression Style

DN Dead note
HA Harmonic
NO No expression style
SL Slide (pitch)
VI Vibrato

Table A.2: List of expression styles

• offset time (in seconds)

• plucking style

• expression style

Excitation and expression styles correspond to right hand and left hand playing

techniques respectively. A list of styles is presented in tables A.1 and A.2.

A.3 Dataset Statistics

A.4 Content

The Arty dataset consists of audio files and annotation files

A.4.1 Audio files

The audio files were recorded using an Ibanez JSM-10 electric guitar plugged directly

into an M-audio 2x2M or Behringer UM-2 audio interface. The neck pickup was used

64

Playing Technique SMT-IDMT-GUITAR-V2 dataset Arty dataset Combined dataset

Excitation Style
Pick 779 221 1000
Fingerstyle 127 216 343
Palm Mute 342 138 480

Expression Style

Normal 778 251 1029
Bend 28 0 28
Dead Note 237 0 237
Harmonic 103 0 103
Slide 33 180 213
Vibrato 69 144 213

Table A.3: Playing technique occurrences

PK FS MU

NO 395 101 282
BE 12 7 9
DN 219 9 9
HA 92 2 9
SL 21 0 12
VI 40 8 21

(a) IDMT-SMT-
GUITAR_V2

PK FS MU

NO 89 84 78
BE 0 0 0
DN 0 0 0
HA 0 0 0
SL 60 60 60
VI 72 72 0

(b) Arty dataset

PK FS MU

NO 484 185 360
BE 12 7 9
DN 219 9 9
HA 92 2 9
SL 81 60 72
VI 112 80 21

(c) Combined Datasets

Table A.4: Occurrences of expression/excitation style pairs

for all recordings. The audio was recorded into Logic Pro X at 44100Hz and exported

as wav files.

A.4.2 XML annotation files

The annotation files are .xml files similar to those used in the IDMT-SMT-Guitar

dataset 2. They have the following strucure:

1 <?xml version='1.0' encoding='UTF -8'?>

2 <instrumentRecording >

3 <globalParameter >

4 <audioFileName >SF Full Chromatic pick SL.wav</audioFileName >

5 <instrument >EGUI</instrument >

6 <instrumentModel >Ibanez JSM10 </instrumentModel >

7 <pickupSetting >Neck</pickupSetting >

8 <instrumentTuning >40 45 50 55 59 64</instrumentTuning >

65

9 <recordingDate >03/18/2022 </recordingDate >

10 <recordingArtist >Sebastian Franjou </recordingArtist >

11 <instrumentBodyMaterial >Maple </instrumentBodyMaterial >

12 <instrumentStringMaterial >Steel </instrumentStringMaterial >

13 <composer >Sebastian Franjou </composer >

14 </globalParameter >

15 <transcription >

16 <event >

17 <onsetSec >1.793015873 </onsetSec >

18 <pitch >43</pitch>

19 <offestSec >2.5396825400000003 </offestSec >

20 <excitationStyle >PK</excitationStyle >

21 <expressionStyle >SL</expressionStyle >

22 <fretNumber >NA</fretNumber >

23 <stringNumber >NA</stringNumber >

24 <modulationFrequency >NA</modulationFrequency >

25 <modulationFrequencyRange >NA</modulationFrequencyRange >

26 </event >

27 <event >

28 ...

Listing A.1: dataset XML format

The following tables describe each parameter and are taken from the IDMT-SMT-

Guitar dataset description:

A.4.3 Other annotation files

We also provide other annotation files that correspond to intermediate stages in the

creation of the dataset (see figure A-1). These could be useful if further annotation

is needed. These files can be used to recreate the final dataset using functions in

dataset.py.

66

Parameter Description Mandatory

audioFileName file name of corresponding audio file yes
Instrument instrument name, see table below yes
instrumentModel e.g. ”Fender Stratocaster” no
pickUpSetting pick-up combination used no
instrumentTuning tuning of all open strings given as MIDI pitch

values, e.g. 28,33,38,43 (4 string bass guitar)
no

audioFX audio effects used no
recordingDate date of recording no
recordingArtist person playing the instrument no
instrumentBodyMaterial instrument body material no
instrumentStringMaterial instrument string material no
Composer composer of recorded melody / music piece no
recordingSource source of recording no

Table A.5: List of global parameters

Dorico file

The sheet music for the notes played is stored in .dorico format, corresponding

to the music engraving software Steinberg Dorico 4. It is a single file with each

flow (Dorico’s equivalent to a musical movement) corresponding to a different audio

file. The rhythm information was not used and should be discarded. however the

expression and excitation styles are encoded as per table A.7 to ensure it would

be exported correctly to .musicxml. In addition, it contains information about the

string on which each note is played, which could be used to annotate string and fret

information for each note.

MusicXML files

This is a .musicxml export of the sheet music described above. It contains all the

information described above except for the string information. The name of the

articulations can be seen in table A.7.

Sonic Visualizer Annotated layer

Each .txt file corresponds to an audio file. Each line has three tab-separated num-

bers: the onset time in seconds, the region number and the offset time in seconds.

67

Parameter Description Mandatory

Pitch MIDI pitch value yes
onsetSec absolute note onset in seconds yes
offsetSec absolute note offset in seconds yes
fretNumber fret number where a note was played, starts with 0 for

notes played on the open string
no, only relevant
for guitar, bass
guitar

stringNumber string number where a note was played, starts with 1
for the lowest string

no, only relevant
for guitar, bass
guitar

excitationStyle style which is used to excite the note (commonly referred
to as plucking style for string instruments), see table
below

no

expressionStyle expression style which is used after note was excited, see
table below

no

loudness dynamic level expressed in ”classical notation” (p, f, mf,
...)

no

modulationFrequencyRange modulation frequency range in cent (e.g. quarter-tone
bending 50 (cent)) no modulationFrequency (average)
modulation frequency in Hz

no

(instrument) in case notes from multiple instruments are annotated
in one WAV file instrument must be set as note event
parameter, if it is not set value of global parameter (in-
strument) is used

no

Table A.6: List of note event parameters

These were hand annotated from the audio files in sonic visualizer1. In the case of

ringing notes, offset was determined to be when the note was no longer audible (even

if some trace of the waveform remained upon visual inspection).

JSON files

The sonic visualizer and .musicxml files are combined to get a format with playing

techniques, pitch and timing information. We call this the note event format. Inter-

nally, it is a python dictionary representing a single note with the following fields:

• onsetSec

• pitch

• offsetSec

• excitationStyle
1https://www.sonicvisualiser.org/

68

https://www.sonicvisualiser.org/

Playing Style Music notation

Pick Nothing
Fingerstyle Tenuto
Palm mute Staccato
Vibrato Unstress
Dead note X notehead
Slide (from below) Scoop
Harmonic Diamond Notehead

Table A.7: Playing style to articulation encoding

• expressionStyle

• vibratoExtent (optional)

• vibratoFreq (optional)

To each audio file corresponds a .json files which is a serialization of a list of note

events, corresponding to the notes in the audio files as annotated by the author.

69

Figure A-1: Dataset pipeline

70

Appendix B

User Testing Form

71

8/1/22, 10:23 PM Arty user testing form

https://docs.google.com/forms/d/e/1FAIpQLSeXThoQeP86VqPrmRVx4fTWzktONFjSSgnEAKWJ4sZ7oP-oBA/viewform 1/9

Setup and instructions
Thanks for helping me in evaluating Arty, my Master's thesis project!

Arty is a website that turns your guitar into a violin. Arty listens to electric guitar audio. It
detects not only the notes and rhythm, but also the playing techniques used. The violin
sound will match the notes and techniques played, thanks to the keyswitches in the MIDI
file. Arty only works with single notes (not chords), and requires a dry guitar signal
recorded straight into an audio interface.

After completing this evaluation form, you will (if you wish) receive a 10$ amazon gift card.
If you prefer to remain fully anonymous, just use a nickname of your choice made of 2
words and a number (such as guitarPlayer42)

Arty user testing form
Sign in to Google to save your progress. Learn more

* Required

8/1/22, 10:23 PM Arty user testing form

https://docs.google.com/forms/d/e/1FAIpQLSeXThoQeP86VqPrmRVx4fTWzktONFjSSgnEAKWJ4sZ7oP-oBA/viewform 2/9

Install instructions
STEP 0:

- download and install Plogue Sforzando from here:
https://www.plogue.com/downloads.html#sforzando

- download "sso-small.zip" from https://www.dropbox.com/s/1a4w1sj716fexi4/sso-
small.zip?dl=1 and decompress it (right click the file -> "Extract All" on windows, double
click the file on Mac)

- download google chrome (if you don't have it already), Arty does NOT work on any other
browser: https://www.google.com/chrome/

STEP 1:

- Visit arty at https://artymusic.azurewebsites.net/ using Chrome or Chromium

- Connect your guitar into your computer (using an audio interface)

- Make sure the system audio input is your music interface

 On Mac: System Preferences -> Sound -> Input -> select your audio interface

 On Windows: Settings -> System -> Sound -> Choose your input device
 Note: If done properly, the waveform display on the website should react to guitar playing
but not to a clap. You might need to tweak the gain on your interface, plug into the first input
of your interface, or refresh the page.

- Record a clip of yourself playing using the record button

- Click convert to download a MIDI version of your audio clip: the notes will match what you
played, and there will also be extra MIDI information corresponding to the playing
techniques you used

Alternatively, you can record yourself in your DAW of choice and upload the file to Arty
using the "Choose File" button.

Tasks

8/1/22, 10:23 PM Arty user testing form

https://docs.google.com/forms/d/e/1FAIpQLSeXThoQeP86VqPrmRVx4fTWzktONFjSSgnEAKWJ4sZ7oP-oBA/viewform 3/9

I uploaded the files under the names "[myName].mid" and "[myName].wav" to
https://www.dropbox.com/request/iezjutzG1kGxL75z8okS

Task 1: Record the following excerpt into arty, and convert it to MIDI. Use the neck
pickup of your guitar if possible. Then upload both the audio and generated midi
to this link, with your name (or chosen nickname) in the title:
https://www.dropbox.com/request/iezjutzG1kGxL75z8okS

*

8/1/22, 10:23 PM Arty user testing form

https://docs.google.com/forms/d/e/1FAIpQLSeXThoQeP86VqPrmRVx4fTWzktONFjSSgnEAKWJ4sZ7oP-oBA/viewform 4/9

Task 2
Arty listens to your guitar audio, transcribes the notes and playing techniques, and makes a
MIDI file that will reflects them. When the virtual violin plays that MIDI file, it will follow the
notes and playing techniques you used. The map between guitar and violin techniques is
as below:

Right hand techniques:

 - Palm-mute -> Pizzicato

 - Fingerstyle -> Marcato

 - Playing with pick -> Sustain

Left hand techniques:

 - Guitar harmonics -> Tremolo
 - Slide up from below -> Tremolo

 - Vibrato -> Vibrato (for sustain and marcato)

Notes:
- Playing palm mute will always result in pizzicato, regardless of left hand technique.
- Vibrato can apply to marcato and sustain articulations (but not pizzicato)
- Tremolo is the same, regardless of playing fingerstyle or with a pick

============

Instructions to setup the virtual violin:

Open your DAW of choice, make a MIDI track and set Plogue Sforzando as the virtual
instrument. In the decompressed sso-small folder, drag the "Strings - Violin Solo 2 KS.sfz"
file from the "Sonatina Symphony Orchestra" folder into Sforzando. It should look as below.

8/1/22, 10:23 PM Arty user testing form

https://docs.google.com/forms/d/e/1FAIpQLSeXThoQeP86VqPrmRVx4fTWzktONFjSSgnEAKWJ4sZ7oP-oBA/viewform 5/9

Plogue Sforzando with Violin patch loaded

8/1/22, 10:23 PM Arty user testing form

https://docs.google.com/forms/d/e/1FAIpQLSeXThoQeP86VqPrmRVx4fTWzktONFjSSgnEAKWJ4sZ7oP-oBA/viewform 6/9

Then, record melodies of your choice using various playing techniques into Arty.
Make sure to only use single notes, not chords! Drag and drop the generated MIDI
into the Sforzando track in your DAW. See if different playing techniques
accurately trigger the correct articulation according to the table below. (For
example, does palm mute trigger pizzicato correctly?). The current articulation is
displayed in the top left of the sforzando User Interface (see picture above)

*

Never
triggers

Rarely
Triggers

Sometimes
Triggers

Often
triggers

Reliably
Triggers

I didn't play
that

articulation

Playing with
a pick, no
vibrato ->
Sustain (non
vibrato)

Playing with
a pick,
vibrato ->
Sustain (with
vibrato)

Fingerstyle,
no vibrato ->
Marcato
(non vibrato)

Fingerstyle,
vibrato ->
Marcato
(with
vibrato)

Palm Mute -
> Pizzicato

Guitar
harmonics ->
Tremolo

Slide ->
Tremolo

Playing with
a pick, no
vibrato ->
Sustain (non
vibrato)

Playing with
a pick,
vibrato ->
Sustain (with
vibrato)

Fingerstyle,
no vibrato ->
Marcato
(non vibrato)

Fingerstyle,
vibrato ->
Marcato
(with
vibrato)

Palm Mute -
> Pizzicato

Guitar
harmonics ->
Tremolo

Slide ->
Tremolo

8/1/22, 10:23 PM Arty user testing form

https://docs.google.com/forms/d/e/1FAIpQLSeXThoQeP86VqPrmRVx4fTWzktONFjSSgnEAKWJ4sZ7oP-oBA/viewform 7/9

Feedback

Notes I played are not in the generated MIDI (missing notes)

The MIDI contains notes I didn't play (extraneous notes)

The notes are in the wrong octave

The pitch of the note is wrong (beyond octave errors)

The timing of the notes is wrong

Other:

Very inaccurate

1 2 3 4 5

Very accurate

I've never used a DAW before

1 2 3 4 5

I produce music in DAWs
regularly

Did you encounter the following issue with the transcribed MIDI file

How would you rate the pitch tracking *

Other comments about the pitch tracking:

Your answer

DAW/music production experience *

8/1/22, 10:23 PM Arty user testing form

https://docs.google.com/forms/d/e/1FAIpQLSeXThoQeP86VqPrmRVx4fTWzktONFjSSgnEAKWJ4sZ7oP-oBA/viewform 8/9

I had never used virtual instruments (VSTi) before (in which case, please email me at
sfranjou@mit.edu and I'll help you setup)

I have used VSTi but I never use keyswitches or MIDI CC automation

I have used keyswitches / MIDI CC / programmed articulation changes midi to make
VSTi more expressive

I often program articulation switches and MIDI CC for VSTi

I would use Arty as is

I would use Arty if it were more accurate

I would use Arty if it were integrated into my DAW

I would not use Arty

Other:

Never submit passwords through Google Forms.

Virtual instrument experience. *

Would you use Arty in your regular music making ?

If you would use Arty, what did you like about it? If you wouldn't use Arty, why not?

Your answer

Are there playing techniques you would have liked Arty to detect but it doesn't?

Your answer

Next Clear form

8/1/22, 10:23 PM Arty user testing form

https://docs.google.com/forms/d/e/1FAIpQLSeXThoQeP86VqPrmRVx4fTWzktONFjSSgnEAKWJ4sZ7oP-oBA/viewform 9/9

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

 Forms

Bibliography

[1] C. Kehling, J. Abeßer, C. Dittmar, and G. Schuller, “Automatic tablature
transcription of electric guitar recordings by estimation of score- and
instrument-related parameters,” in DAFx 2014 - Proceedings of the 17th
International Conference on Digital Audio Effects, 2014. [Online]. Available:
http://bandfuse.com/

[2] G. Chew, “Articulation and phrasing,” 2001. [Online]. Avail-
able: https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/
9781561592630.001.0001/omo-9781561592630-e-0000040952

[3] S. Huang, Q. Li, C. Anil, X. Bao, S. Oore, and R. B. Grosse, “Timbretron:
A wavenet(cyclegan(cqt(audio))) pipeline for musical timbre transfer,” 7th
International Conference on Learning Representations, ICLR 2019, 11 2018.
[Online]. Available: https://arxiv.org/abs/1811.09620v2

[4] “Roland gr-500,” Jun 2021. [Online]. Available: https://www.vintagesynth.com/
roland/gr500.php

[5] B. Stoner, “The history of guitar synths,” Jul 2021. [Online]. Available:
https://www.guitarworld.com/features/history-of-guitar-synths

[6] C. Peiper, D. Warden, and G. Garnett, “An Interface for Real-time Classification
of Articulations Produced by Violin Bowing,” in Proceedings of the International
Conference on New Interfaces for Musical Expression NIME, 2003, pp. 192–196.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1085760

[7] Z. Wang, J. Li, X. Chen, Z. Li, S. Zhang, B. Han, and D. Yang,
“Musical instrument playing technique detection based on fcn: Using chinese
bowed-stringed instrument as an example,” 10 2019. [Online]. Available:
http://arxiv.org/abs/1910.09021

[8] L. Su, L. F. Yu, and Y. H. Yang, “Sparse cepstral and phase codes for guitar
playing technique classification,” in Proceedings of the 15th International Society
for Music Information Retrieval Conference, ISMIR 2014, 2014, pp. 9–14.
[Online]. Available: http://mac.citi.sinica.edu.tw/

[9] T. H. Özaslan, E. Guaus, E. Palacios, J. L. Arcos, T. Ozaslan, E. Guaus,
E. Palacios, and J. L. Arcos, “Attack based articulation analysis of nylon

81

http://bandfuse.com/
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000040952
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000040952
https://arxiv.org/abs/1811.09620v2
https://www.vintagesynth.com/roland/gr500.php
https://www.vintagesynth.com/roland/gr500.php
https://www.guitarworld.com/features/history-of-guitar-synths
http://dl.acm.org/citation.cfm?id=1085760
http://arxiv.org/abs/1910.09021
http://mac.citi.sinica.edu.tw/

string guitar,” in Proc. of CMMR, 2010, pp. 285–298. [Online]. Available:
http://www2.iiia.csic.es/\simarcos/papers/3842.pdf

[10] Y. P. Chen, L. Su, and Y. H. Yang, “Electric guitar playing technique
detection in real-world recordings based on F0 sequence pattern recognition,”
in Proceedings of the 16th International Society for Music Information
Retrieval Conference, ISMIR 2015, 2015, pp. 708–714. [Online]. Available:
http://play.riffstation.com/

[11] J. Abeßer, H. Lukashevich, and G. Schuller, “Feature-based extraction of plucking
and expression styles of the electric bass guitar,” ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing - Proceedings, pp. 2290–
2293, 2010.

[12] T.-W. Su, Y.-P. Chen, L. Su, and Y.-H. Yang, “Tent: Technique-embedded
note tracking for real-world guitar solo recordings,” Transactions of the
International Society for Music Information Retrieval, vol. 2, pp. 15–28, 7
2019. [Online]. Available: http://transactions.ismir.net/articles/10.5334/tismir.
23/http://transactions.ismir.net/article/10.5334/tismir.23/

[13] E. J. Humphrey, J. P. Bello, and Y. Lecun, “Feature learning and deep
architectures: new directions for music informatics,” J Intell Inf Syst, vol. 41,
pp. 461–481, 2013. [Online]. Available: http://www.music-ir.org/mirex/.

[14] H. Chen and Y. Chen, “Mitt: Musical instrument timbre transfer based on
the multichannel attention-guided mechanism,” pp. 568–581, 8 2021. [Online].
Available: https://link.springer.com/10.1007/978-3-030-84522-3_47

[15] A. Bitton, P. Esling, and T. Harada, “Vector-Quantized Timbre Representation,”
jul 2020. [Online]. Available: https://arxiv.org/abs/2007.06349v1http://arxiv.
org/abs/2007.06349

[16] J. Engel, L. Hantrakul, C. Gu, and A. Roberts, “DDSP: Differentiable Digital
Signal Processing,” sep 2020. [Online]. Available: https://goo.gl/magenta/
ddsp-exampleshttp://arxiv.org/abs/2001.04643

[17] D. Bogdanov, N. Wack, E. Gómez, S. Gulati, P. Herrera, O. Mayor, G. Roma,
J. Salamon, J. Zapata, and X. Serra, “Essentia: An audio analysis library for mu-
sic information retrieval.” International Society for Music Information Retrieval,
2013, pp. 493–498.

[18] A. de Cheveigné and H. Kawahara, “Yin, a fundamental frequency
estimator for speech and music,” The Journal of the Acoustical Society
of America, vol. 111, pp. 1917–1930, 4 2002. [Online]. Available: http:
//asa.scitation.org/doi/10.1121/1.1458024

[19] R. McNab, L. A. Smith, and I. H. Witten, “Signal processing for melody tran-
scription,” 1 1996, pp. 301–307.

82

http://www2.iiia.csic.es/$\sim $arcos/papers/3842.pdf
http://play.riffstation.com/
http://transactions.ismir.net/articles/10.5334/tismir.23/ http://transactions.ismir.net/article/10.5334/tismir.23/
http://transactions.ismir.net/articles/10.5334/tismir.23/ http://transactions.ismir.net/article/10.5334/tismir.23/
http://www.music-ir.org/mirex/.
https://link.springer.com/10.1007/978-3-030-84522-3_47
https://arxiv.org/abs/2007.06349v1 http://arxiv.org/abs/2007.06349
https://arxiv.org/abs/2007.06349v1 http://arxiv.org/abs/2007.06349
https://goo.gl/magenta/ddsp-examples http://arxiv.org/abs/2001.04643
https://goo.gl/magenta/ddsp-examples http://arxiv.org/abs/2001.04643
http://asa.scitation.org/doi/10.1121/1.1458024
http://asa.scitation.org/doi/10.1121/1.1458024

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine learning in Python,” Journal of Machine Learning Research, vol. 12, pp.
2825–2830, 2011.

[21] J. Salamon and E. Gomez, “Melody extraction from polyphonic music signals
using pitch contour characteristics,” IEEE Transactions on Audio, Speech and
Language Processing, vol. 20, pp. 1759–1770, 2012.

83

	Introduction
	Literature Review
	Guitar controlled synthesizers
	Playing technique classification
	Trained classifiers
	Hand-tuned algorithms
	Hybrid algorithms

	End-to-end timbre transfer

	Design
	Preamble: Inputting expressive MIDI without Arty
	Using Notation software
	Using a DAW

	Design goals
	System Overview

	User Interface
	Front-end
	Back-end
	Sound synthesis with third party tools

	Dataset
	IDMT-SMT-GUITAR_V2 dataset
	Arty dataset
	Dataset Augmentation

	Implementation
	Transcription
	F0 estimation
	Note segmentation

	Feature Extraction
	Timbral features
	Pitch features
	Loudness

	Classification
	Model Architecture

	Evaluation
	Transcription
	Classification
	Discussion

	User Study
	Task 1
	Task 2

	Conclusion
	Future Work
	Classification accuracy
	User experience
	Compatibility

	Arty Dataset description
	Intention
	Annotations
	Dataset Statistics
	Content
	Audio files
	XML annotation files
	Other annotation files

	User Testing Form

