
Building an Open Source Platform for Forensic
Medical Documentation of Human Rights Violations

by

Felipe Monsalve

B.S., Computer Science and Engineering and Mathematical Economics
Massachusetts Institute of Technology, 2020

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 12, 2022

Certified by. .
Boris Katz

Principal Research Scientist
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Building an Open Source Platform for Forensic Medical

Documentation of Human Rights Violations

by

Felipe Monsalve

Submitted to the Department of Electrical Engineering and Computer Science
on August 12, 2022, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

MediCapt is a virtual platform for secure documentation of medical records, currently
deployed by Physicians for Human Rights (PHR) in Kenya and the Democratic Re-
public of the Congo to forensically and clinically document sexual violence. Its uses
in documenting of sexual violence have allowed for the collection of court-admissible
evidence for use in the prosecution of perpetrators, even in areas with limited access
to healthcare and low levels of literacy, where perpetrators might otherwise go free
due to a lack of registered physical evidence. We have rewritten an early version
of MediCapt with the guidance of PHR, with the aim of building the first widely
deployable, open-source, in-the-field health data collection platform that focuses on
forensic and clinical documentation of sexual violence, and other human rights vi-
olations, in remote areas. To this end, we developed a new automated server-side
infrastructure and frontend for MediCapt that scales automatically to any foresee-
able level of demand, is compliant with the latest security and privacy regulations
and best practices, and will require little to no maintenance in the coming years.
Locally, we designed a secure caching system for offline functionality that is easy to
integrate, modular and secure, which ensures proper functioning of the platform in
low connectivity environments where MediCapt will be deployed.

Thesis Supervisor: Boris Katz
Title: Principal Research Scientist

3

4

Acknowledgments

I would like to thank my advisor, Dr. Andrei Barbu, for his dedication to this project

and for his guidance throughout my graduate studies. Andrei, it was a pleasure

learning from you and helping you build what I’m sure will be a deeply impactful

project.

I would also like to thank Physicians for Human Rights for their work and guidance

in building this system, and for taking the technical work we did and testing and

deploying it where it’s most useful.

Finally, I would like to thank my parents, Pablo and Kyra, for your constant

support through this journey. Your company and encouragement, whether far or

close, made this possible.

5

6

Contents

1 Introduction 13

2 Previous Work 15

2.1 Existing Technology . 15

2.1.1 Mobile Health in the Developing World 16

2.1.2 Mobile Technology in Human Rights Work 19

2.1.3 Mobile Data Collection for Social Ventures 20

2.2 MediCapt Evolution . 23

2.2.1 DRC Standard Sexual Violence Form 24

2.2.2 Digitization of the Standard Form 24

2.2.3 Broadening Scope in Response to Feedback 25

3 MediCapt Design 27

3.1 Main Concepts . 28

3.1.1 Forms . 28

3.1.2 Records . 29

3.1.3 Locations . 30

3.1.4 Users . 30

3.2 Expected Functionality . 30

3.2.1 Form designer portal . 31

3.2.2 Healthcare provider portal . 32

3.2.3 Associate portal . 33

3.2.4 Manager portal . 33

7

3.2.5 Researcher portal . 34

3.3 Server-side Architecture . 35

3.3.1 Different gateways per user type 36

3.3.2 Separate storage for different data types 36

3.3.3 Distinct access points per data permission level 37

3.3.4 Decoupled metadata, data, and associated media 37

3.3.5 Presigned links for media downloads and uploads 38

3.4 Client-side Architecture . 39

4 Caching System 41

4.1 System Interface . 42

4.2 Cached Object Types . 43

4.2.1 Users & Locations . 43

4.2.2 Forms . 44

4.2.3 Records . 45

4.3 Caching System Architecture . 47

4.3.1 Storage Layer . 48

4.3.2 Cache Layer . 48

4.3.3 API Layer . 50

5 Contributions and Future Work 51

5.1 Future Work . 52

5.1.1 Researcher Portal . 52

5.1.2 User tests . 52

5.1.3 Security audit . 52

5.1.4 Improved localization . 53

5.1.5 Open sourcing . 53

8

List of Figures

2-1 Mobile penetration in developed and developing world 2007-2016 . . . 17

3-1 Server-side Infrastructure Diagram 35

3-2 Client application file structure . 39

4-1 Caching system interface usage diagram 42

4-2 Caching system architecture diagram 47

9

10

List of Tables

2.1 mHealth Programs by Application Area 18

3.1 MediCapt User Types . 31

4.1 Storage layer key value type mappings 49

11

12

Chapter 1

Introduction

Sexual violence is a major public health issue, with an estimated 35% of women

worldwide having experienced intimate partner sexual and/or physical violence, or

non-partner sexual violence at some point in their lives [27]. While a heinous hu-

man right violation, convictions rates for these crimes are painfully low, which not

only denies victims justice for their crimes, but also often discourages reporting of

crimes. This in turn results in less data on sexual violence, and therefore a poorer

understanding of the issue.

The situation is especially dire in conflict zones, where systematic rape is more

common, and simultaneously channels for reporting poorer. In Kenya and Democratic

Republic of the Congo (DRC), where Physicians for Human Rights–a US-based hu-

man rights NGO–runs the Program on Sexual Violence in Conflict Zones, sexual

violence is rampant [24]. In response, Physicians for Human Rights (PHR) created

MediCapt, a platform for in-the-field forensic medical documentation of sexual vio-

lence for deployment in Kenya and DRC. Over the past few years, however, scaling

and maintaining the aging platform with limited development resources, and given

evolving needs, has become a burden for PHR. Therefore, we set out to rewrite Med-

iCapt from the ground up, with the aim of developing an open-source system that

would be flexible, adaptable to different contexts, and incredibly future proof, requir-

ing minimal development and maintenance over the next decade.

We have developed MediCapt 3.0, the first open-source, distributed, in-the-field

13

health collection platform built to forensically document human rights violations,

which is scalable, ultra-maintainable, and compliant with the latest privacy and se-

curity regulations and best practices. We first redefined the key components and

requirements for the MediCapt design, laying out the requirements for a platform

for medical documentation that is geared towards reporting human rights violations,

based on previous work done by PHR on the field, and on new stakeholder feed-

back. We also identified key concepts and defined different user types by segmenting

key stakeholders and their responsibilities in the platform. Based on this prelimi-

nary work done along with PHR, we designed a system architecture to fullfil all of

the functionality requirements while being secure, scalable, and ultra-maintainable.

In the client-side, we developed a caching system for offline use to be deployed in

low connectivity environments, that is simple to integrate, modular, and secure, in

keeping with our mission for the system.

The remainder of this thesis is organized as follows. In Chapter 2, we will do

a review of previous work related to our project. We first review the use of mo-

bile technology on the fields of healthcare, human rights work, and data collection;

then we review the evolution of MediCapt under PHR, and the work they have done

to strengthen prosecution of human rights violations in conflict zones. Chapter 3

then discusses the design of MediCapt, from defining key components and required

functionality of the system, to laying out the server and client-side architecture, and

justifying the key design decisions in the context of the goals for the system. In Chap-

ter 4, we introduce the caching system used for offline functionality in certain parts

of the platform. We explain the motivations for designing it, the key requirements

for it, and its general system architecture. We summarize our contributions and lay

out the future work in Chapter 5.

14

Chapter 2

Previous Work

The review of previous work related to the development of an open source platform

for forensic medical documentation will focus on two main areas. In Section 2.1, we

will discuss previous tools or projects developed with similar purposes to MediCapt.

We will discuss previous work in the use of mobile devices in the areas of medicine

and human rights work, before focusing on mobile data collection tools that have

been used in these fields. Section 2.2 will then briefly summarize PHR’s motivation

in building MediCapt, as well as discuss work on earlier versions of the app, providing

some context onto how the vision for MediCapt evolved from a focused, single use-

case tool into an general open-source platform for forensic documentation of human

rights violations.

2.1 Existing Technology

The use of information technology for data collection in the medical or human rights

field is not new. For decades, the use of electronic health records has been proposed

as an alternative to paper health records [18, 34, 6], with proponents of e-health (the

use of information technology for medical purposes) arguing that these electronic

records present a whole host of benefits (from decreasing errors from handwriting

to easing physical storage and sharing of records [29]). Since then, electronic data

collection has drastically changed, with the spread of mobile devices and their high

15

levels of penetration in the developing world offering interesting opportunities in the

healthcare and human rights fields. The medical community, which had wide adoption

of eHealth tools in the developrd world, has seen the birth and subsequent growth of

mHealth (the use of mobile devices as a tool for medical purposes), specifically in the

developing world. Similarly, as the medical community has embraced mobile phones

in their mission to expand healthcare coverage, so has the human rights field done so

in the search of justice.

In this section, we explore the user of mobile technology in the healthcare and

human rights fields through past or ongoing projects, before surveying the state of

mobile technology for structured data collection in these fields through the tools

available. Section 2.1.1 will explore the promise, benefits and challenges with the

push towards use of mobile devices in the healthcare sector (mHealth), specifically in

developing economies. Section 2.1.2 will then discuss the use of mobile devices in the

human rights field, through a few examples of tools currently deployed on the field.

Section 2.1.3 will finalize by considering the state of mobile technology for structured

data collection, by comparing existing tools widely used for data collection in the

medical and human rights fields.

2.1.1 Mobile Health in the Developing World

mHealth, or mobile health, is a branch of eHealth which focuses on the use of mobile

devices in the field of healthcare. While it dates back over 30 years, unprecedented

mobile technology penetration in the developing world has seen it surface as an inter-

esting solution to bring healthcare to areas of the world that have traditionally been

underserved. Mobile devices’ low price-point, efficient power consumption, small size,

portability and and generally modest infrastructure needed to support them [33]

make them well positioned to tackle one of the hardest problems in global healthcare:

structural barriers to access [52]. The spread of mobile technology in developing

countries–by 2016 there were over 40 mobile users per 100 people in the developing

world (with the figure sharply rising year over year as seen in Figure 2-1) [36], and in

2014 it was estimated that over 80% of rural areas in the developing world had ac-

16

Figure 2-1: Mobile penetration in developed and developing world between 2007 and
2016, measured by the International Telecommunication Union [36]

cess to mobile networks [2]–has therefore resulted in many mHealth projects tackling

issues in healthcare over the last decade or two.

By 2009, a study by the United Nations Foundation and Vodafone Foundation al-

ready listed over 50 mHealth pilot programs in 26 different countries. These programs

were divided into six main areas, depending on their approach to improving health-

care: education and awareness, remote data collection, remote monitoring, resources

for health workers, disease outbreak tracking, and diagnostic and treatment support

(described more in detail in Table 2.1) [13]. That year, it was already estimated that

some of mHealth applications had reached over 10 million people in the developing

world [32]. Given the dramatic increase in mobile penetration in developing coun-

tries since then, we reasonably expect the number of people benefiting from mHealth

solutions to be much larger now.

Despite their promise, however, more recent studies into the state of mHealth

programs have shown that there is still a long way to go before mHealth reaches its

full potential. Different surveys of the mHealth landscape have found that there are

few evaluation frameworks for measuring results of mobile health technology [11], and

17

mHealth Area Description Examples

Education &
Awareness

Send important health information to
isolated populations, through SMS
campaigns or voice-based hotlines.

Text to Change,
Uganda; HIV Confi-
dant, South Africa

Remote Moni-
toring

Connect medical providers to patients
facilitating monitoring for conditions,
medication and appointments.

MedicMobile;
Colecta-PALM, Peru

Resources for
Health Workers

Trains health professionals and con-
nects them with sources of information
that help them do their job effectively.

HealthLine, Pakistan;
UHIN, Uganda

Disease Out-
break Tracking

Quickly capture and transmit data on
disease incidence to contain outbreaks.

FrontlineSMS;
GATHER, Uganda

Diagnostic &
Treatment Sup-
port

Provide diagnosis and treatment ad-
vice to health workers through access
to medical databases or medical staff.

M-DOK, Philippines;
Mobile Telemedicine
System, Indonesia

Remote Data
Collection

Facilitate accurate data gathering and
analysis among isolated communities
and in challenging environments.

Magpi; Epicollect5;
Nokia Data Gather-
ing, Brazil

Table 2.1: Sample of mHealth programs along with country where they were deployed
(unless they have been deployed more broadly) grouped by their different approach
to improving healthcare, as categorized by a 2009 report from the United Nations
Foundation and Vodafone Foundation Partnership [13].

there are legitimate questions about the quality of many of the mHealth services that

have been deployed [1]. In addition to these questions, surveys of mHealth literature

have found that while a lot of different pilots have been ongoing, the majority of them

only utilize basic phone functions such as text messaging, while very few use powerful

native SDKs that would give them access to cameras, sensors, or phone metadata

useful for health tools [20].

The main challenge to overcome for mHealth’s future, however, is likely the diffi-

culty successful pilots have seen to reach scale (an issue often referred to as Pilotitis)

[5]. Between 2008 and 2009, for example, a study on mHealth in Uganda found that

23 of the 36 mHealth initiatives tracked failed to advance from the pilot stage [52].

This issue, which plagues many of the mHealth pilots, has many causes, among which

lack of funds or engineering capacity, outdated tech-stacks, lack of key stakeholder

buy-in, and inconsistent evidence of success at the pilot stage are key [51]. While

18

frameworks for evaluating and scaling mHealth technologies have been developed,

and are well positioned to tackle pilotitis [11, 25, 42], the issue of scaling remains a

difficult one for mHealth projects.

2.1.2 Mobile Technology in Human Rights Work

Like the healthcare sector, human rights communities in developing countries have

embraced mobile technology as a tool in bringing about justice and helping them

in their job. While scant literature exists on the use of mobile technology among

human rights groups, leaders in the field appear to generally agree that there are

three different categories of tools being used currently on the field: those that help

activists communicate securely, and help provide them protection; those that aid

activist in collecting and securely storing information to expose violations; and those

that collect, analyse and preserve evidence that could be admissible in court [39, 41].

The first category–that of mobile technology helping activists communicate securely–

includes messaging platforms using secure messaging protocols (like the Signal proto-

col), such as WhatsApp, Secure Chat and Signal [16]. Arguably more interesting (and

certainly more targeted to the human rights community) Amnesty International’s

Panic Button app stands out as an example of an app that provides protection for

human rights activists, by connecting them–and sending location information–to com-

munity members as a distress signal when triggered, allowing for a quick response by

community members and giving them more information to act on [50].

The second category–the one used for aiding activist in collecting and securely

storing information meant to expose human rights violations–includes Bentech’s Mar-

tus, used by activists to securely collect and store human rights data, both on desktop

computers as well as Android devices. Martus, which allows the storage of structured

data through creation of templates and records on top of these templates, also sup-

ports attachments for supporting documents, while encrypting all of this data, and

backing it up to severs offsite [8]. It has been used by human rights defenders in over

50 countries, including Uganda and Guatemala, to document over 245,000 cases of

human rights violations [7].

19

The final category–used for to collect, analyze and preserve court-admissible evi-

dence of human rights abuses–includes eyeWitness to Atrocities’ eyeWitness system,

in addition to the Guardian Project and WITNESS’ InformaCam project. Both the

eyeWitness system as the InformaCam project help activists in capturing video docu-

mentation of human rights abuses that might serve as evidence in court. The eyeWit-

ness system, which is more focused, provides a video recording app for activists–which

collects metadata for verification–and deals with uploading and storing the videos and

metadata while maintaining a secure chain of custody, so they can be passed along to

the bodies best suited to act on the data. It works with over 40 partners globally and

has processed over 27,000 photos or videos [17, 19]. The more general InformaCam

project, on the other hand, focuses on developing a core services library for building

"verified mobile media" (media that is augmented by metadata from the device it was

recorded in and maintains a secure chain of custody over the media and metadata)

[46, 54, 55]. Based on the InformaCam platform, the Guardian Project developed

Android app CameraV for capturing media that is augmented by metadata, and

encrypted on the device [44, 45].

Unfortunately, like mHealth apps, mobile technology in human rights work has

struggled to reach scale, because of similar factors as mHealth. Among other things,

outdated tech stacks, along with lack of funding or development capacity to modernize

them, has proved a difficult challenge to overcome for human rights mobile technol-

ogy. From the examples discussed above, Amnesty International’s Panic Button and

Bentech’s Martus are no longer actively supported, after struggling to find funding

to continue with development efforts [9, 51]. While no official communication from

the Guardian Project or WITNESS could be found on the state of the InformaCam

project, no development activity since 2015 on InformaCore or 2017 on CameraV on

GitHub would suggest InformaCam is also not being actively supported.

2.1.3 Mobile Data Collection for Social Ventures

In 1989, a paper titled “Revolutionising health data capture: use of hand-held com-

puters” by K.C. Lun et al. appears to have been the first to propose health data

20

collection on mobile devices (which back then consisted of pocket organizer comput-

ers) [35]. Since then, mobile data collection for social ventures has come a long way.

In this space (and in particular in the healthcare and human rights fields) the spread

of mobile technology has made a large impact in replacing error prone and hard-to-

collect paper data, in favor of mobile applications that facilitate data collection and

aggregation. In particular, the last few decades have seen a crop of new open-source or

open access [53] platforms for structured data collection from mobile devices. While

the field of mobile data collection is very large, we will center our discussion on those

platforms which are commonly used by social ventures: focused, easy to use, open

platforms built for resource-constrained environments [40], as they represent the main

potential alternatives to MediCapt.

Given the above constraints, we will be discussing the state of mobile data collec-

tion for social ventures through five popular platforms in the healthcare and human

rights fields: Epicollect5, developed by the Centre for Genomic Pathogen Surveillance

from Oxford’s Big Data Institute [21]; Open Data Kit (ODK), developed by Nafundi

and the ODK community [4, 30]; KoBoToolbox, developed by the Harvard Humani-

tarian Initiative, the Brigham and Women’s Hospital, and the Kobo community [31];

SurveyCTO, developed by Dobility, Inc. [15]; and Magpi, developed by the company

by the same name: Magpi (previously DataDyne) [37]. The previously discussed

Martus [8], also a good example of a mobile data collection for mobile ventures, is no

longer actively supported so we will leave it out of our current discussion.

Tools such as FrontlineSMS [26] or EyeWitness [17] (also discussed previously),

which have on occasion been used for mobile data collection, are also excluded since

their main function–notably SMS messaging or media file (as opposed to structured

data) collection, respectively–is different from mobile collection of structured data and

additional effort is often required to have them accomplish this task [14]. Furthermore,

we will also leave out of our discussion broader electronic medical record systems and

patient monitoring platforms, such as OpenMRS [56] and MedicMobile [12], since

structured data collection, though supported, is a small subset of the functionality,

which makes these systems more complex and less directly comparable to MediCapt.

21

To understand the state of mobile data collection for social ventures, then, we will

compare approaches by the platforms specified to access and customizability of the

platform, deployment of the platform, and collecting structured data.

Access and Customizability

While all of the data collection platforms relevant for social ventures are, to some

extent, free to use (likely given the resource-constrained nature of social work),

their approaches to access and customizability are quite different. While ODK and

KoBoToolbox are open-source, allowing anyone to contribute and modify the code

to meet specific needs, the other platforms we’re discussing are not. In fact, while

Epicollect5 is free to use without limits, SurveyCTO and Magpi both have free tiers,

but charge at higher levels of usage, or for more advanced features.

Deployment

Approaches to deployment among mobile data collection platform vary somewhat,

though all platforms try to make it as easy as possible. Epicollect5, SurveyCTO

and Magpi, being closed-source, are hosted by the respective organization, so usage

doesn’t involve deploying the platforms. Instead, users create accounts on the hosted

platforms, and can begin using them (though SurveyCTO’s team seems to be willing

to allow self hosting in specific cases for paying customers [49]). In these cases costs

of hosting the platform are covered by paying users (except in the case of Epicollect5,

where the costs are covered by project backers). ODK and KoBoToolbox, meanwhile,

offer self hosting with detailed instructions as is typical in open source projects, though

both of them also have hosted offerings. In ODK’s case, hosting costs are covered by a

subscription for ODK Cloud (their hosted offering), while in KoBoToolbox’s case–like

with Epicollect5–costs are covered by project backers (though limits exist for those

that aren’t working for an organization providing humanitarian assistance).

22

Data Collection

Data collection among the different platforms share a lot of similarities. As they all

focus on gathering structured data, all of them offer a form designer, in which some

users can design form templates upon which records are based on (i.e. forms with

fields to be filled out by people collecting data), to make it easy to encode many

different forms and easily collect desired data. Focusing on the social venture sector,

all of the platforms offer an Android app for data collection (though only Epicollect5,

SurveyCTO and Magpi offer an iOS app), and support offline data collection, which

is synced to the server when connection is reestablished. These apps all display

forms created and available to a user, so they can be filled out to create a record.

Additionally, they all collect some metadata on when the record was created and by

whom, while only ODK, KoBoToolbox and SurveyCTO offer encryption from the

time the record is store on the device [49].

2.2 MediCapt Evolution

While there are a host of form-based mobile data collection platforms and plenty

of mobile technology projects for the healthcare or human rights fields–with signif-

icant development efforts behind them–the development of MediCapt responded to

the unique requirements of a platform that is meant to document forensic evidence

that can be admissible in court, with specific stakeholders in mind. Developed along-

side clinicians, lawyers, officials and civilians in DRC and Kenya [39], MediCapt has

evolved significantly since its inception. From a simple tool PHR intended to use

to increase successful sexual violence prosecution rates in DRC–through the digitiza-

tion of a single standardized medical intake form–to a general platform for forensic

documentation of human rights violations–building features that make it scalable and

future-proof while catering to very specific stakeholders–Medicapt (including its paper

form predecessor) has undergone a few iterations, quite different from one another.

This section will briefly discuss these iterations, from the development of the

Standard Sexual Violence form for DRC under PHR’s Program on Sexual Violence

23

in Conflict Zones (in Section 2.2.1), through the digitization of the form (in Section

2.2.2), to the broadening of its scope and change in vision for the app (in Section

2.2.3).

2.2.1 DRC Standard Sexual Violence Form

In 2011, Physicians for Human Rights (PHR) launched the Program on Sexual Vio-

lence in Conflict Zones with the goal of strengthening prosecution in sexual violence

cases, particularly in conflict zones [24]. Working primarily in Kenya and Demo-

cratic Republic of the Congo (DRC), as both countries have suffered from system-

atic conflict-related sexual violence, PHR identified that low conviction rates were

often tied to weak forensic evidence of sexual violence crimes, with incomplete or

poorly documented medical investigations [10, 47]. Through multi-sectoral training

in Congo, where PHR has convened over 400 health workers, law enforcement, and

legal professionals–who traditionally worked in silos–to improve data collection and

collaboration in sexual violence cases, PHR developed the DRC Standard Sexual

Violence Form, also known as the Medical Certificate [3].

Developed with the input of human rights scholars, health workers, law enforce-

ment, and legal professionals, to make sure that it adhered to international stan-

dards while conforming to Congolese rule of law, the Medical Certificate–precursor

to MediCapt–improved quality of evidence of sexual violence primarily by standard-

izing medical record collection [28]. Previous non-standard medical records, which

contained long swaths of text unlikely to be admitted in courts, were replaced by a

guided evaluation that collected forensic evidence, by asking short questions or giving

simple instructions to health professionals, such as checking a box or drawing on a

pictogram [41].

2.2.2 Digitization of the Standard Form

While the Standard Sexual Violence Form in DRC improved the quality of forensic

evidence collected by standardizing the medical intake form used for evaluations,

24

fundamental challenges remained in collecting high quality evidence and using it in

court. Challenges with the lack of photographic evidence to back up claims in the

form, with healthcare professionals skipping important parts of the form they felt

ill-equipped to fill out, and with securely storing and retrieving records, as well as

establishing a trusted chain of custody for them after they were completed seemed

like particularly harrowing problems [22]. In response to these challenges, in 2012

PHR decided to begin development on MediCapt, as a single-purpose app to digitize

the standard form, but additionally allowing media capture to complement the form,

guiding healthcare professionals through the form while validating its completeness,

and securely storing and transmitting the completed records to relevant authorities

while maintaining a verifiable trusted chain of custody.

By late 2013, after the requirements for the app had been decided, an initial

prototype was developed by digitizing the Standard Sexual Violence Form in Magpi

(a platform for structured mobile data collection described earlier in Section 2.1.3)

and using InformaCam (described in Section 2.1.2) for media capture to complement

records [23]. This prototype, MediCapt 1.0, would later be tested with Congolese

healthcare providers in early 2014.

2.2.3 Broadening Scope in Response to Feedback

In response to feedback received early 2014 on the MediCapt 1.0 prototype, which in-

cluded features deemed necessary for future versions (such as photo capture capability

inside the app, encryption of data, secure chain of custody, printing of records and

writable pictograms in forms), PHR worked with Main Street Computing–a devel-

opment company–to conduct a needs assessment after which it was determined that

no existing technology met the needs determined for MediCapt 2.0 [41]. Therefore,

PHR decided to build MediCapt from scratch. Using this opportunity to future-proof

MediCapt, and to better justify the development efforts that would go into building

MediCapt, the vision for MediCapt as a single-purpose platform tied to the DRC

Standard Sexual Violence Form was broadened into a data collection tool for gen-

eral human rights documentation, as well as other data collection efforts. To this

25

end, a robust form creation and management backbone had to be built into the app,

which allowed some users to encode different forms, and made MediCapt into a gen-

eral structured data collection platform similar to those discussed in Section 2.1.3

(though with domain-specific features that make it mainly geared to sexual violence

and other human right abuses reporting).

On top of the broadening scope, MediCapt 2.0 built in those features deemed

necessary by stakeholders into the app. Among other things, the new Android app

for healthcare providers included photo capture based on InformaCore (open source

technology behind InformaCam) and encryption on device, a web portal was built

for relevant authorities to access records with verified chain of custody information,

and significant development effort was expended into exporting records into PDF’s

for easy printing.

26

Chapter 3

MediCapt Design

While development efforts–dating back to 2014–to build MediCapt 2.0 were ambi-

tious in the expanded scope for the platform, significant challenges in maintaining

the platform have arisen. Due to aging infrastructure and lack of development efforts

over the last few years, eight years in, MediCapt 2.0 has faced considerable trouble

scaling. Additionally, given PHR’s limited development resources, maintenance has

become a significant burden. In response to these issues, we set out to build Medi-

Capt 3.0–rewriting MediCapt from scratch once again–with the objective of building

the first secure, scalable and ultra-maintainable open source platform for forensic

documentation of human rights violations, which is compliant with the latest privacy

and security regulations and best practices, and will require minimal development or

maintenance over the next decade.

To achieve this, we identified key concepts to build MediCapt around, and defined

the required functionality for a robust platform for forensic documentation of human

rigths violations, with the help of PHR and feedback from stakeholders. We were

then careful in designing a backend infrastructure that was simple and secure, but

limited the amount of custom code that we would need to maintain. Among other

things, security and privacy compliance also led us to build a platform where it was

exceedingly clear where data could be stored and how it could be accessed. For the

MediCapt frontent, which required a significant amount of custom code to maintain,

we focused maintainability efforts on reusing as much of the logic across separate

27

client-side side portals, and building all of them on a single tech stack.

This chapter will discuss the required functionality for MediCapt, as well as the

key design decisions we landed on in our efforts to make MediCapt 3.0 as future-

proof as possible. Section 3.1 discusses some main concepts MediCapt 3.0 was built

around, and which provide some context for the rest of the chapter. Section 3.2 then

explains the main functionality that MediCapt supports through the various portals

for different kinds of users with varying responsibilities in the platform. Section 3.3

and Section 3.4 close the chapter by discussing the key architectural decisions for the

server and client side of the platform, respectively.

3.1 Main Concepts

When designing MediCapt 3.0, we identified a few key concepts to build the system

around: forms, records, locations, and users. These concepts–most of which have

evolved through different versions of MediCapt, but which we redefine here–were cen-

tral to our design. We provide some context on them, before discussing the expected

functionality and architecture of our design.

3.1.1 Forms

While the first prototype of MediCapt (MediCapt v1.0), simply converted the Stan-

dard Sexual Violence form–developed by PHR to standardize forensic medical data

collection in DRC–into a digital format using Magpi [48], the scope in subsequent

versions of MediCapt has widened to accommodate many different forms. With our

aim of building a general open-source platform for documenting forensic evidence

of human rights violations, it became critical to easily accommodate different forms

built for varying legal frameworks, languages, and cultures.

Forms templates in MediCapt are therefore meant to encode standard medical

forms (either digitized physical forms, or forms built directly for the MediCapt plat-

form), and are built out of form components built into MediCapt, as well as supported

validation/ flow logic for more sophisticated medical forms. Forms creation is built

28

into the platform, so that specific types of users can create forms and make them

available to medical providers with no development effort. Form templates are then

stored and made available to relevant users through the platform.

3.1.2 Records

As a platform to collect forensic medical data, the secure creation, storage, and sharing

of records is the fundamental function of MediCapt. Records in MediCapt are always

created and stored when trained medical providers collect medical forensic evidence,

based on a form template. Once saved, records serve two main purposes on the

platform: to aid in prosecution of perpetrators by serving as court-admissible forensic

evidence, or to be de-identified and aggregated for analysis by researchers, who aim

to identify patterns in crimes and using available data to prevent mass-crimes.

Because forms contain very sensitive personally identifiable information (PII) and

protected health information (PHI), the treatment of records must be delicate. Only

relevant medical providers must have access to a record, other authorities must only

have access to records explicitly shared with them, and the records researchers have

access to must be carefully de-identified so they can’t be personally identifiable. While

MediCapt is not targetted for deployment in the US, we use HIPAA compliance

[38] as a benchmark to ensure we’re taking proper care of patient’s protected health

information, or personally identifiable health information.

Besides privacy, records also need to maintain strict chains of trust, so that they

remain court-admissible. To this end, all records are versioned, with modifications

to a record not overwriting the record on the server, but creating a new version.

More importantly, though, we built into MediCapt the ability to seal records, which

prevent further modifications to the record (new versions of the record being created).

Instead, all future amendments to a sealed record result on new records, which are

listed as an associated record to the original.

29

3.1.3 Locations

Location are a logical entity defined in Medicapt, which typically represent a specific

clinic or health center where records are collected. Given the sensitive nature of the

data MediCapt stores, forms and records are associated with a location, while users

have a list of locations they have access to. Naturally, users can only see data from

locations they have access to. Furthermore, not only do locations serve as a security

feature, preventing users from accessing data not relevant to their work, but they are

also critical as MediCapt expands beyond a few clinics, preventing users from being

flooded with irrelevant data.

3.1.4 Users

Users are direct participants that have a MediCapt account and a specific role in the

functioning of the platform. MediCapt was designed with 5 different user types in

mind, briefly described in Table 3.1, each with it’s own portal and responsibilities

within the system. Given that each user type has its own portal, with different

interfaces specific to each user type’s role, every user in the system belongs to exactly

one user type. The different user types, and especially the role they play in the

platform will be discussed more in depth in the upcoming Section 3.2.

3.2 Expected Functionality

The functionality that MediCapt must support is divided into the different types of

users in the platform, each with different responsibilities in the platform. Built with

the specific objective of recording forensic and medical data to aid in prevention and

prosecution of sexual violence and other human rights violations, MediCapt offers the

different participants in the platform different functionality. To this end, we built five

different portals, for the five different user types described in Table 3.1. Sections 3.2.1-

3.2.5 will discuss each user type in detail, by describing the functionality built into

each user portal.

30

User Type Description Permissions

Form designer
Collaborators in charge of designing
medical forms to be made available to
medical providers.

Read, write forms
(Specified locations)

Medical provider
Trained personnel that create medical
records during forensic evaluations and
share the records with relevant users.

Read forms; Read,
write, share records
(Specified locations)

Associate Relevant authorities that can view
medical records shared with them.

Accept, reject, view
records shared

Manager

Users in charge of managing locations
by giving or revoking users access to
a location or approving new forms for
said location.

Create users; Mod-
ify user permissions
and attributes; Ap-
prove created forms
(Specified locations)

Researcher

PHR researchers given access to sys-
tem and patient record data, for work
in identifying patters in human rights
violations and preventing mass-crime.

Read only access to
aggregate, anonimized
records and system
statistics.

Table 3.1: Different user types in mediCapt–each of which has different roles within
the platform, and therefore have access to different portals–listed along with a short
description of their role and permissions on the platform.

3.2.1 Form designer portal

As discussed in Chapter 2, a critical requirement for MediCapt is to support many

different medical forms for reporting of sexual violence and other human rights viola-

tions. For this purpose, we built a robust form creation and management interface into

MediCapt, accessible by form designer users. Form designers are therefore responsible

for encoding forms, such as the Standard Sexual Violence form, into MediCapt for

medical providers to fill out when performing a forensic medical evaluation. The form

designer portal provides form designers with an interface which allows them to build

forms with pre-built components which are rendered based on the the type of data

that needs to be collected in a form section. It also supports more sophisticated flow

logic, to modify latter parts of the form based on previous response, and validation

logic so forms can prevent invalid data from going into a record. Once form designers

build a form, they get to publish it to locations they have access, though the form

31

will have to be approved by a manager before it is accessible to medical providers.

Because form designing is done sparingly, and doesn’t need to happen on remote

locations, and given the relative complexity of designing a form compared to filling one

out, the portal for form designing is built exclusively for web, is meant to be accessed

from a personal computer, and assumes internet access during the whole workflow.

Because forms are currently written as structured text files (YAML), we also assume

a relative sophistication in the form designer users, to build more complicated forms,

understanding the custom flow/ validation logic that can be used in building forms

(though we do offer an interactive view that shows the resulting form real-time).

We believe, after close work and consultation with PHR, that these are reasonable

assumptions.

3.2.2 Healthcare provider portal

Healthcare providers are the trained medical professionals who collect forensic data,

following a form, to build records in MediCapt. Given the central role they play in

MediCapt’s success–their buy-in is critical since they collect all the medical data that

goes in the platform–their feedback has been central in shaping how the platform

looks today. For providers, we built a portal accessible from Android devices (as

a mobile application) and web browsers, which lets them browse forms and records

available in their locations, and create, modify or share records. Record creation and

modification is done through interaction with the form components specified by form

designers, filling out text fields, drawing on pictograms, or selecting an option from a

list, among others. Sharing is then also built into the platform, as long as the relevant

authorities have an associate account.

Given the varying degrees of sophistication in providers, and its deployment in

remote areas with spotty connections, the provider portal was built with simplicity

and reliance in mind, heavily focusing on making the record creation and modification

flows as simple as possible, and building in local caching (discussed in Capter 4) to

limit reliance on a working network. Many domain specific features were also built in

at the request of medical providers. For example, the printing feature, which generates

32

a printable PDF of virtual records, was added to the platform after providers deemed

it necessary to have a physical manifestation of data stored in MediCapt for storage

in facilities and as a receipt for patients [39].

3.2.3 Associate portal

Associates consist of other parties, aside from medical providers, that should have

access to specific, identifiable medical records through MediCapt. Examples include

police officers, lawyers, or judges, who should have access to full unredacted records

for an effective prosecution of the crime. Associates only have access to records

explicitly shared with them (as opposed to providers who have access to all records

in locations they have access to), and can accept or reject shared records, and browse

through records they have access to. Also in contrast to providers, their access to

records is read-only and time-limited. Because of the similar focus on specific records,

the associate portal is quite similar to the provider portal, though is generally more

limited. Additionally, after consultation with PHR, we have disabled access to the

associate portal through the mobile app, and have not built in the caching system for

offline use. Therefore, like the form designers, associates are expected to access their

portal through a web browser with an active internet connection.

3.2.4 Manager portal

Managers are critical to the functioning of the MediCapt, especially as it is deployed

more widely, since they are in charge of creating users, enabling or disabling them on

the platform, and giving them permission to certain locations (managers themselves

can only give permission to a location they have access to). We have built a portal

where managers will have access to one or a group of locations, and will authenticate

and then add accounts for form designer so they can create forms, for new medical

providers so they can begin creating records, or for associates so that records can

be shared with them. The portal also gives managers the ability to approve forms

in locations they have access to, and to review access logs to records, to make sure

33

record access isn’t being abused by providers or associates.

In addition to traditional managers, which use the portal as described above, a

tiny subset of manager users are designated as administrators. Administrators, who

access MediCapt through the same portal as traditional managers, have two main dif-

ferences in functionality to other managers. First, administrators aren’t associated to

particular locations; instead, they have access to all locations. Second, administrators

have the additional functionality of being able to reidenitfy anonimized records, as a

“breakglass” mechanism for cases in which reidentification is critical. Because of the

broad visibility that administrators have over the whole platform, the small number of

them needed (among other things) to create other manager users, are hardcoded into

MediCapt infrastructure, to prevent privilege escalation of a compromised manager

account by malicious actors.

3.2.5 Researcher portal

While the immediate challenge that MediCapt targets is gathering court-admissible

forensic medical data to improve conviction rates of sexual violence, the data gath-

ered in the platform presented us with another important opportunity for mass-crime

prevention. The research platform, which will be built in the near future, was there-

fore conceived as a tool for PHR researchers to access aggregate data from medical

reports, for identifying patters in reports, and be able to quickly respond to them.

Because records contain sensitive medical data and identifiable information, it is im-

portant that all data accessible from the researcher portal has been aggregated and

de-identified. The research portal will then present this aggregate data, as well as

system statistics, to provide researchers with a general understanding of the data for

prevention and response to mass crimes and identification of possible improvements

in data collection.

34

Figure 3-1: Server-side infrastructure diagram with services provisioned and the in-
teractions between them. The services are labeled with their purpose, and what
managed AWS services are used for different purposes.

3.3 Server-side Architecture

To build a highly scalable, future-proof application that would not need much main-

tenance into the future, we opted to deploy MediCapt on AWS. Making it highly

maintainable therefore meant building the app as a collection of microservices, tak-

ing advantage of AWS managed services that reduced logic we would need to main-

tain, and limiting necessary custom services to small, stateless functions as much

as possible. We did this while maintaining a focus on security and privacy compli-

ance, which pushed us to keep the the system design (and importantly data flows) as

clean and understandable as possible. The backend infrastructure diagram, seen in

35

Figure 4-2, outlines the key interactions between different services in the MediCapt

backend. Key design decisions illustrated, that support our goals for maintainability,

scalability and security, include different user pools and API gateways per user type,

separate storage for different data types, distinct access points per data permission

level, decoupled metadata, data, and associated files for form and record types, and

use of presigned URLs for associated file downloads and uploads. We will explain

these decisions more in depth, and justify why they were made in the context of our

maintainability, scalability and security goals for the platform.

3.3.1 Different gateways per user type

As discussed previously, Medicapt functionality is divided into different portals for

varying participants with differing roles in the platform. To prevent privilege esca-

lation attacks that might compromise the whole platform, different user types are

stored in separate Cognito pools, with identities for every role completely unrelated

to one another. Furthermore, we built separate API gateways for every role, with

separate endpoint handlers, each of which is authenticated against a specific pool so

that e.g., a compromised associate account can’t be used to call manager endpoints.

Each endpoint then uses custom logic to enforce role-specific restrictions to data, such

as location-based access for providers, or manually sharing of records for associates.

3.3.2 Separate storage for different data types

While separate endpoints for different user types are useful in preventing malicious

users from getting access to data through privilege escalation, we also aim to reduce

the surface for other kinds of attacks and prevent developers from inadvertently giving

users access to the wrong types of data–both of which would undermine our push for

security–by storing different data types separately (and giving services permissions

only to resources they need). Therefore, we store user information, record metadata,

and form metadata in different Dynamo tables, and different types of data in different

S3 buckets. Shared record information, which is accessed by additional roles compared

36

to general record metadata, is also stored separately, as are re-identification keys

(which require administrator access and are therefore not accessible through any of

the gateways). In fact, as an extra layer of security, different data types are often

stored in separate virtual private clouds, as seen in Figure 4-2. This separate storage

reduces the surface of attacks for these databases or buckets, since less endpoint

handlers will have permissions to access data from each individual store. For instance,

no endpoints from the form designer gateway have access to any record information.

3.3.3 Distinct access points per data permission level

When the same data can be accessed at different permission levels, we reduce the

possibility for accidental or malicious access of a higher permission level by building

different access points per permission level, which enforce these permissions. Health

record data, for example, is accessible at different permission levels, since as protected

health information it must be de-identified for users beyond the healthcare providers

(such as researchers). Instead of duplicating the data at the different permission

levels, which could be done using a trigger that runs when a new record is added–to

de-identify it and store the anonymized record on a separate S3 bucket–we make use of

an S3 access point with an attached lambda function that automatically de-identifies

the data (which serves essentially the same function, but anonymizes the data on

every request). Since the researcher endpoint handler doesn’t have permission to

access the records S3 bucket directly, but instead has to go through the access point

with the attached de-identification function, the access point serves the same function

as separating the storage of personally identifiable records from the de-identified ones

(with the added benefit that we can circumvent the anonymization in extreme cases,

by providing the function the record’s re-identification key).

3.3.4 Decoupled metadata, data, and associated media

Because of database limitations and scalability concerns, we cannot store whole forms

or records–which can become very large–in Dynamo. However, storing them in S3

37

buckets without a database would severely affect performance when filtering for spe-

cific forms or records by attributes other than their key. Instead, in designing Medi-

Capt, we decided to separate metadata and data, storing enough metadata for users

to be able to query or filter the records or forms in Dynamo, while storing the whole

form or record data as S3 objects.

Furthermore, instead of storing the whole form or record data (included associated

media) as a single S3 object, form and record data is decoupled from any associated

files. Both the form or record data and all of its associated files are stored as separate

objects in S3, with their hashes–prefixed by the form or record’s UUID– as S3 keys

(which prevents the same file across form or record versions from being stored twice).

In order to link a form or record metadata to its data and associated files, the data

and all of the files are listed, with their hash, in a main manifest file (also stored in

S3), which has a root pointer to the data object. This manifest’s hash, which is also

its S3 key (prefixed by the form or record UUID), is then stored within the metadata

in Dynamo.

3.3.5 Presigned links for media downloads and uploads

Given that forms and records are often uploaded from slower or unreliable networks,

and they might be quite heavy, with many associated media files, it was important

that sending or receiving forms or records wasn’t done in a single payload. Therefore,

we allow clients to upload and download forms in several requests (roughly one request

per file in the manifest). To limit the number of endpoints and custom code we needed

to maintain, and the compute resources we spend in downloads of uploads, we opted

for using presigned URLs for users to download or upload files from or to S3.

While the gateway handlers have access to all rows in databases they have permis-

sions for, access to S3 objects are handled more granularly. In MediCapt, by default,

the handlers have no access to any S3 objects. In the case of a download or upload

request, only once a custom handler logic verifies the user who made the request has

access to the resulting forms or records in Dynamo, is the handler given permission to

access S3 objects prefixed by the resulting forms or records unique identifiers (through

38

creation of an AWS IAM role created on the fly). Once the handlers have permissions

for these S3 objects, they can generate presigned S3 URLs with a short expiration

date, so the clients can upload or download files from the links. The metadata and

manifest (with the presigned links included), is then returned to the client.

3.4 Client-side Architecture

Figure 3-2: Client-side file structure for project with all portals built in. The provider
platform, which contains code which will be built for Android deployment lives among
all the other portals, and shares components, utilities and other files with them.

As stated previously, a key guiding principle in the development of MediCapt was

making it highly maintainable. On the client side, the maintainability effort focused

on building the portals for the different user types on a single codebase with the same

tech stack, and using well-supported libraries that worked across platforms to reduce

the amount of custom code written. This was made particularly challenging given the

heterogeneous platform requirements for the different portals (the provider portal, in

particular, needed to be built as an Android app for low connectivity environments,

while other portals needed to be built for web browsers and could assume reliable

internet).

39

We solved this issue by writing a single React Native application and leveraging

React Native for Web1, which allowed us to build the same codebase for both Android

and web. Nativebase2, the component library we used to speed up development,

recently added support for React Native for Web, which meant standard components

were standard across all portals, regardless of the platform each portal was built

for. In the rare scenario where separate code for web and native build targets was

necessary, we added platform checks in code, or used React Native’s ability to choose

between a .web and .native file depending on build target. This approach allowed

us to use a single codebase with plenty of reused code across protals, and kept the

total amount of code to maintain at a minimum.

To ensure that each user sees only the portal that is relevant to their role, users are

prompted to select what portal they wanted to sign in for and Cognito authenticates

the credentials they send in against the user pool they selected. The authenticated

user object returned to the client contains the user type, which the client then uses to

display the relevant portal. The authenticated token the client received, meanwhile,

belongs to a specific user pool, and therefore can only be used to make requests on

the gateway corresponding to the selected user type. Finally, using a platform check,

we made sure only enable logging in to portals that were built for the platform being

used (e.g. we only enable the provider portal on Android).

1https://necolas.github.io/react-native-web/
2https://nativebase.io

40

Chapter 4

Caching System

While most of the MediCapt platform was built as a web application, to be accessed

through a personal computer with internet connectivity, medical record collection

had the specific challenge of needing to be accessible in remote areas with poor con-

nectivity and access only to mobile phones or tablets. To tackle this challenge–of

making the healthcare provider portal usable in low connectivity areas–we developed

a caching system that enabled offline use for the parts of the platform that used it.

In keeping with the goals for the platform, we aimed to build a caching system that

is simple to integrate, modular, and secure.

We have developed an encrypted, multi-layered caching system that exposes an

API similar to that used for network requests, while utilizing the device’s local

storage–through the key-value store MMKV1–and data structures computed at app

startup to provide offline functionality and limit the network usage. While the caching

mechanism is currently only in use on MediCapt’s medical provider portal, it can be

expanded to other user portals, to make more efficient use of network bandwidth and

provide offline functionality across MediCapt.

This chapter will discuss the design of the caching system, along with the motiva-

tion for an interface modeled after the backend API, before discussing each individual

system layer, with their responsibilities and subtleties that arose in building them.

1https://github.com/Tencent/MMKV

41

4.1 System Interface

Figure 4-1: Interaction between a black-box caching module and the rest of the client.
We can see calls from the healthcare provider portal to the server were swapped for
calls to the caching module, which can itself calls the server, or resolves the request
locally from storage.

The caching system used in the MediCapt client’s provider portal serves two main

purposes: to store copies of relevant objects for offline reading, and to store modified

objects when offline, for forwarding to the server once a connection is established (an

architecture inspired by store and forward techniques from delay-tolerant networks

in telecommunications [43]). Because maintainability was a key consideration when

building MediCapt, we decided to build this caching mechanism into a module that

exposed an API similar to the module that made web requests, and transparently

dealt with caching objects. This way, the client code across all portals is kept relatively

uniform, with the provider-specific code swapping out the the server requests module

with the caching system module.

This almost one-to-one swap of server calls to caching system calls essentially

allows the caching system to intercept what would’ve been all calls to server. As seen

in Figure 4-1, the caching system has two alternatives: if it’s offline, or for some other

reason wants to resolve the call locally, it emulates the request locally by reading or

writing to local storage–where in the writing case it will result on dirty data on disk–

or it can forward the request to the server. Because it intercepts the server response

as well, when forwarding the request to server, the caching system uses the server

response to update the resources on local storage, keeping the values in storage as

42

current as possible.

4.2 Cached Object Types

MediCapt’s client side cache was built specifically for the provider portal, which had

the requirement of working well on low-connectivity environments. Because of this,

the cache was designed around the data types the provider gateway has access to, and

the types of operations it can perform on them. In particular, providers have read-

only access to users, locations and forms, and read-write access to records (as well as

record sharing). As discussed in the description of the caching system interface on

Section 4.1, when resolving a request locally, the caching module emulates the request

locally. In this section, we will discuss each data type individually, and explain how

we approach locally emulating the operations that the provider gateway can perform

on them.

4.2.1 Users & Locations

Form and record metadata contains references to user and location unique identifiers

(UUIDs) to keep track, among other things, of their creator or the locations they

should be available at. The provider gateway therefore includes a few endpoints that

have read-only access to user and location metadata, allowing the provider portal

to link a user or location’s UUID to their name or any other relevant information

contained in their metadata for the purpose of displaying it in the portal (in con-

nection to a form or record). While on the backend users are versioned, supporting

different user versions locally is unnecessary, since forms and records are linked to

unversioned users. Furthermore, there are no endpoint on the provider gateway for

users or locations that take a version as a parameter: when a provider gateway end-

point requests user or location metadata from sever, the most recent one is always

returned. Therefore, locally it suffices to have only the latest version of any user or

location seen.

To support emulating the read-only accesses to user or location metadata, there-

43

fore, any metadata object returned from a successful server request is placed in stor-

age, indexed only by its unique identifier (and not by version). Any future request

for that user or location metadata, where the network is unavailable, will find the

previously cached metadata object in storage. The request for the list of all users,

available on the provider platform, is emulated by iterating over all keys and filtering

for the ones whose values are user metadata objects (in practice, we will see in Sec-

tion 4.3 that this expensive operation will be done only on app startup or login, and

its result will be kept in memory).

4.2.2 Forms

Although the provider gateway only has read-access to forms, their more compli-

cated structure that includes metadata, data, and associated files (discussed in Sec-

tion 3.3.4)–compared to users and locations which only contain metadata–make form

storage on the caching system more complicated than that of users and locations. Ad-

ditionally, unlike users and locations, records are linked to specific versions of forms,

which make it important to store keep different versions cached locally. Therefore,

form metadata objects returned from successful server requests are stored locally, in-

dexed by the form UUID and the version. The form manifest, and form data plus

associated files once they are downloaded, are also cached locally, indexed just by

their hash. To avoid unnecessary downloads, after receiving–from a server request to

get a form–the form metadata along with the form’s manifest with download links

for its files (as described in Section 3.3.5), the caching system only downloads files

whose hashes are not already in storage.

To emulate read-only access to forms, when resolving a request for a form locally,

the caching system takes one of three approaches:

1. If a specific form version is requested, the request is successful if the form

metadata–indexed by the form UUID and version requested–is cached, as well

as the manifest file indexed by the hash specified in the form metadata, and any

files listed in the manifest indexed by their hashes (which are specified in the

44

manifest). A small difference in the interface for the caching system compared

to the server here is that instead of returning the manifest with download links,

it returns it with base64 encodings of the downloaded files.

2. If no specific form version is requested, the caching system iterates over all the

values in storage, filtering for those indexed with the specific form UUID. If

any value indexed by that form UUID exists, the one with the latest version

is chosen, and then operation succeeds as before: if the chosen metadata’s

manifest is in storage, as well as all of the files listed in the manifest. As before,

a manifest with base64 encodings for the files listed is returned, which is a slight

change from the server interface.

3. Finally, to emulate the request for a list of all the forms, the caching system

iterates over all the values in storage, and filters out for form metadata objects,

choosing the latest version for each unique form UUID. Like the server, it returns

a list of form metadata objects.

As before, we will see in Section 4.3 that the expensive operation of iterating over

all the values in storage–used for emulating a few forms operations–will be done only

once on app startup or login.

4.2.3 Records

Records share the more complicated structure, and a need to support accessing dif-

ferent versions locally, with forms while additionally needing to support emulating

record writes locally. Therefore, supporting emulating the operations that are per-

formed on records require some additional logic as compared to emulating operations

on forms. In particular, whenever records are modified locally, a different “dirty”

record metadata object is saved to storage. Dirty record metadata objects don’t

change the record version, or some of the other server-generated metadata, from their

“clean” counterpart. Therefore, instead of indexing “dirty” record metadata by record

UUID and version, like with “clean” records, they are indexed by the record UUID

and a modification timestamp.

45

When a network connection is reestablished, the caching system iterates through

all the values in storage, filtering for these “dirty” records, and attempts to upload

them. Successful uploads of “dirty” records return “clean” records which are saved to

storage, with an additional field (missing from records that didn’t come from a local

“dirty” record upload) that indicates the timestamp of the “dirty” record which was

uploaded. By iterating through all the “clean” records, therefore, we will be able to

determine the timestamp of the last uploaded “dirty” record (and the clean record

that corresponds to that upload).This timestamp of the last uploaded “dirty” record

will be very important for emulating read-only operations locally.

The handling of these read-only operations goes along the same lines as that of

forms. As with forms, to emulate read-only access to records, the caching system

takes one of three approaches.

1. If a specific form version is requested, the operation succeeds if a “clean” record

metadata indexed by the record UUID and version requested, plus chosen meta-

data’s manifest and all of the files listed in the manifest are in storage. Only

“clean” records are considered as only they are assigned record versions by the

server. As with forms, the caching system interface is slightly different from the

server interface, returning manifests with base64 encodings for the files, instead

of download links.

2. If no specific version is requested, the caching system will iterate over all values

in storage, filtering for versions of the record metadata object with the UUID

requested, to determine three things: the latest “clean” record (as determined

by versions), the latest “dirty” record (as determined by timestamps), and the

timestamp of the last uploaded “dirty” record (described above). It then returns

the latest “clean” record if there’s not “dirty” record or if the timestamp of the

last uploaded “dirty” record is the same as the timestamp for the latest “dirty”

record, or the latest “dirty” record otherwise. The request succeeds if a metadata

object, with its corresponding manifest and files are in storage, and returned

the metadata object along with the manifest with base64 encodings of the files.

46

3. If the list of all records is requested, a set of all of the record UUIDs in storage

is created, and for each of them, approach (2) is followed to decide whether

to return the latest “clean” or “dirty” version for the UUID. The request then

returns the metadata object selected for all of the record UUIDs in storage.

In the upcoming Section 4.3 on the architecture of the caching system, we will see

how these operations that need to scan through all the values in storage are made

more efficient through in-memory caching.

4.3 Caching System Architecture

Figure 4-2: Caching system architecture diagram, illustrating interactions between
the caching layers, and with other components of the platform. We can see how the
rest of the client interacts with the API layer, which also interacts with the server
API, while the storage layer interacts with the database directly.

To design a modular and secure caching system that exposed an API almost

equal to that of the provider backend API–emulating the requests locally when not

forwarding the request to the backend–but at the same time was efficient, robust,

and tolerant to failure (all while running on a simple lightweight key value store that

doesn’t support transactions) we built the caching system into a 3-layered system,

with each layer exposing a progressively more sophisticated API. This layered system

47

allowed us to build a modular and simple to understand, yet efficient system that

exposes a powerful API, out of very simple building blocks. We will explore each of

the layers more in detail, starting from the lower layer, which interacts directly with

the database, and moving up to the highest, which receives the client requests and

decides whether to forward them to the server, or resolve them locally.

4.3.1 Storage Layer

The storage layer is the lowest layer in the caching system, and is the layer that

interacts directly with storage (through the MMKV key-value store), and exposes

an interface that is better suited for the needs of the caching system. Because stor-

age is shared among users, it’s also the layer that filters objects in storage by user,

and because all objects put in storage are encrypted, also the layer that deals with

encrypting and decrypting objects. Finally, because MMKV only allows mappings

between strings, the storage layer is responsible of serializing and parsing keys and

objects in storage, and enforcing a key type to value type mapping.

The storage layer, therefore, exposes a set of keys and value types, and exposes

the functions contains(key), get(key), put(key, value) and getKeys(user), to

store these value types indexed by the key types. As stated before, the storage

layer enforces mappings between specific types of keys and values (as described in

Table 4.1).

4.3.2 Cache Layer

The cache layer, or the middle layer, computes and caches (in memory) derived state

to make certain computations more efficient, and maintains this derived state con-

sistent by updating it on every operation. This layer exposes a createCache(user)

method which should be called on login or app startup, and which creates a cache

object which maintains the following data structrues in memory: (1) a map between

form UUIDs and the latest version of the form in storage, (2) a map between record

UUIDs and the latest version of a clean record in storage, (3) a map between record

48

Data Type Storage Key Storage Value

Form { user, type: ‘form’, formUUID,
version }

{ formMetadata }

Clean Record { user, type: ‘clean-record’,
recordUUID, version }

{ recordMetadata,
uploadOf }

Dirty Record { user, type: ‘dirty-record’,
recordUUID, modifiedTime }

{ recordMetadata,
modifiedTime }

Location { user, type: ‘location’,
locationUUID }

{ locationMetadata }

Location { user, type: ‘user’, userUUID } { userMetadata }
File { user, type: ‘file’, hash} string

Table 4.1: Data types that the caching system storage layer API supports, along with
the shape of the key and corresponding value objects enforced by the storage layer.

UUIDs and the latest dirty record in storage, and (4) a map between the record

UUIDs and the latest uploaded dirty record in storage. These data structures, com-

puted on login or app startup along with the cache object, on a single pass of all the

objects in storage, have to be kept up to date whenever anything is added storage.

For instance, on every operation that adds a form to storage, we check if the form

being added has a later version than the previous latest version for that form. If it

does, we update the cache data structure to reflect the new latest form version in

storage.

We keep all these in memory instead of storage, and incur the cost of recalculating

them every time the app starts, to make the caching system more fault tolerant. Since

the whole system is built on top of a very lightweight key value store that doesn’t

support transactions, any operations should write into storage just once, or we run

the risk of ending up in an inconsistent state if there is a crash between two writes

belonging to the same operation. For simplicity and understandability of the system,

then, we limit the system to write the bare minimum to disk (i.e. the values described

in Table 4.1), and any derived storage is kept in memory and has to be recomputed

on app start.

Finally, the cache layer exposes mainly a simple get/put API for each data type,

but when getting forms or records, abstracts away the complexity of finding the latest

49

form or record if none is specified (made easy by its cache object) and in the case of

records deals with deciding whether to return a “clean” or “dirty” record, abstracting

that decision away from the API layer.

4.3.3 API Layer

The API layer, which is the highest level layer in the caching system, exposes a

simple API designed after the server requests API for any part of the app to use, and

is responsible of implementing the high level logic to emulate the server requests if

they need to be resolved locally (using the cache layer API as building blocks). Unlike

the lower layers, which are all synchronous, this layer functions asynchronously, since

it often makes network requests. To decide whether to resolve a request locally, it

generally attempts to forward the request to the server first, before defaulting to

local resolution (though to accommodate for parts of the app that might not need

fresh data, API layer functions take a flag to force the request to resolve locally).

The API layer also exposes a method that has to be called by the client on login or

app startup, that calls the createCache(user) function from the cache layer, and

additionally starts a background task that checks for dirty records in the cache for

upload to the server, and attempts to upload them if there is an internet connection.

50

Chapter 5

Contributions and Future Work

This thesis has discussed the development of the first open-source, in-the-field health

collection platform for use in the forensic documentation of human rights violations,

adding to the literature on the use of mobile technology in the fields of healthcare,

human rights work, and data collection. With MediCapt 3.0, we introduced a platform

that aims to avoid the common issue mobile technology platforms in healthcare and

human rights work have had moving beyond their pilot phase, by focusing on future-

proofing, while building on top of many years of iterative work with key stakeholders

by Physicians for Human Rights.

The discussions on building a platform that scales to any reasonable level of de-

mand and adapts to different contexts, that requires little to no maintenance or

development for a significant period of time, and that is compliant with the latest se-

curity and privacy regulations and best practices should be critical in any technology

platform that aims to expand beyond a small number of communities. Furthermore,

discussions on the definition of key concepts and expected functionality, and discus-

sions about the development of the MediCapt server and client-side architectures,

as well that of the client-side caching system, should serve as case studies on the

development of technical platforms in the field of social ventures.

51

5.1 Future Work

While a preliminary version of MediCapt 3.0 is in the hands of Physicians for Human

Rights, and it’s actively being tested, at its current stage it still has some ways to go

before critical features are finished, it gets open-sourced, and is fully deployed. This

section presents a roadmap for the next steps in the development of MediCapt, before

it’s ready for wide deployment.

5.1.1 Researcher Portal

An important first step in finishing the development of the MediCapt platform is

finalizing the design and development of the researcher portal, which requires sig-

nificant work. While the objective for the platform, its general system architecture

and some required infrastructure work are complete, much of its feature set is under-

defined. Because of its potential for prevention and fast response to mass crimes, its

development should be a priority.

5.1.2 User tests

While a lot of feedback from stakeholders on previous versions of MediCapt has gone

into the development of MediCapt 3.0, little user testing has been done directly on

this new platform, as PHR has just started testing it out. Once stakeholders are

more comfortable with the new tools, and some of the more critical issues are ironed

out, user testing will be critical for the completion of the platform. Feedback on

the usability, features and many other important factors will lead the next stage of

development.

5.1.3 Security audit

A key objective with MediCapt was making it compliant with the latest privacy and

security regulations and best practices, which give stakeholders confidence in how

we deal with patient data, and would aid in making the platform available different

52

jurisdictions. While security and privacy are at the core of the platform design, a

security audit in the future is critical to get feedback, validate our design, and ensure

the system is compliant.

5.1.4 Improved localization

While MediCapt was initially built to be deployed by PHR primarily in Kenya and

DRC, this new version is intended to adapt to different contexts, which includes

different regions and languages. Some infrastructure for localization (support for

different languages in particular) was built into MediCapt already, but there’s still

much to do in this area. A lot of work is needed, for example, to make MediCapt

usable in any language other than English.

5.1.5 Open sourcing

MediCapt 3.0 was always meant to be open sourced, to increase transparency (allow-

ing independent verification of the code) and collaboration (allowing other people to

build on top of it and spreading the work of maintaining it among a wider commu-

nity). Before open sourcing the project, however, there’s significant work to be done

on documentation, code-cleanup, and determining contributing guidelines.

53

54

Bibliography

[1] John; Akter, Shahriar; D’Ambra and Pradeep Ray. User perceived service quality
of mhealth services in developing countries. In ECIS 2010 Proceedings. 134, 2010.
https://aisel.aisnet.org/ecis2010/134.

[2] Arwa Fahad Albabtain, Dina Ahmad AlMulhim, Faisel Yunus, and Mowafa Said
Househ. The role of mobile health in the developing world: a review of current
knowledge and future trends. Cyber Journals: Multidisciplinary Journals in Sci-
ence and Technology [JSHI]. Journal of Selected Areas in Health Informatics42,
pages 10–15, 2014.

[3] Ted Alcorn. Responding to sexual violence in armed conflict. The lancet,
383(9934):2034–2037, 2014.

[4] Yaw Anokwa, Carl Hartung, Waylon Brunette, Gaetano Borriello, and Adam
Lerer. Open source data collection in the developing world. Computer, 42(10):97–
99, 2009.

[5] Skoll Foundation Archives. How do we cure mhealth
pilotitis? https://archive.skoll.org/debate/
how-do-we-cure-mhealth-pilotitis-critical-lessons-in-reaching-scale/.
Accessed August 5, 2022.

[6] Omar Ayaad, Aladeen Alloubani, Eyad Abu ALhajaa, Mohammad Farhan, Sami
Abuseif, Ahmad Al Hroub, and Laila Akhu-Zaheya. The role of electronic medical
records in improving the quality of health care services: Comparative study.
International Journal of Medical Informatics, 127:63–67, 2019.

[7] Inc. Beneficent Technology. Benetech and human rights. https://benetech.
org/story/benetech-human-rights/. Accessed August 5, 2022.

[8] Inc. Beneficent Technology. Martus documentation. https://www.martus.org/
resources/documentation.html. Accessed August 5, 2022.

[9] Inc. Beneficent Technology. Martus sunset. https://benetech.org/blog/
martus-sunsets-human-rights-data-collection/. Accessed August 5, 2022.

[10] W Brown and S Varanasi. Mobile technology to improve data collection after sex-
ual violence. The Lancet Global Health, 3:S19, 2015. Consortium of Universities
for Global Health, 6th annual conference.

55

[11] William Brown, Po-Yin Yen, Marlene Rojas, and Rebecca Schnall. Assessment
of the health it usability evaluation model (health-ituem) for evaluating mobile
health (mhealth) technology. Journal of Biomedical Informatics, 46(6):1080–
1087, 2013. Special Section: Social Media Environments.

[12] Vosloo Steven Castillo, Nathan M. Medic mobile: Case study by unesco-
pearson initiative for literacy. 2017. https://unesdoc.unesco.org/ark:
/48223/pf0000260597. Accessed August 5, 2022.

[13] Vital Wave Consulting. mhealth for development: The opportunity of mobile
technology for healthcare in the developing world. Washington Dc and Berkshire,
UK, 2009.

[14] Nagasushma Devarapalli and Silvia Figueira. Leveraging existing tools to help
social enterprises: A case study. Procedia Engineering, 107:90–99, 2015. Human-
itarian Technology: Science, Systems and Global Impact 2015, HumTech2015.

[15] Inc. Dobility. Surveycto. https://five.epicollect.net. Accessed August 5,
2022.

[16] Ksenia Ermoshina, Francesca Musiani, and Harry Halpin. End-to-end encrypted
messaging protocols: An overview. In International Conference on Internet Sci-
ence, pages 244–254. Springer, 2016.

[17] eyeWitness to Atrocities. eyewitness. https://www.eyewitness.global/
our-work. Accessed August 5, 2022.

[18] Gunther Eysenbach et al. What is e-health? Journal of medical Internet research,
3(2):e833, 2001.

[19] Eleanor Farrow. eyeWitness to Atrocities: Verifying Images with Metadata, pages
143–155. Springer International Publishing, Cham, 2018.

[20] Maddalena Fiordelli, Nicola Diviani, and Peter J Schulz. Mapping mhealth
research: A decade of evolution. J Med Internet Res, 15(5):e95, May 2013.

[21] Centre for Genomic Pathogen Surveillance. Epicollect5. https://five.
epicollect.net. Accessed August 5, 2022.

[22] Physicians for Human Rights. Medicapt. https://phr.org/issues/
sexual-violence/medicapt-innovation/. Accessed August 5, 2022.

[23] Physicians for Human Rights. Phr wins 2013 tech challenge for
atrocity prevention with mobile app. https://phr.org/news/
phr-wins-2013-tech-challenge-for-atrocity-prevention-with-mobile-app/.
Accessed August 5, 2022.

56

[24] Physicians for Human Rights. Program on sexual violence
in conflict zones. https://phr.org/issues/sexual-violence/
program-on-sexual-violence-in-conflict-zones/. Accessed August 5,
2022.

[25] Jennifer Franz-Vasdeki, Beth Anne Pratt, Martha Newsome, and Stefan Ger-
mann. Taking mhealth solutions to scale: enabling environments and successful
implementation. Journal of Mobile Technology in Medicine, 4(1):35–38, 2015.

[26] Frontline. Frontlinesms. https://www.frontlinesms.com. Accessed August 5,
2022.

[27] Claudia García-Moreno, Christina Pallitto, Karen Devries, Heidi Stöckl, Char-
lotte Watts, and Naeema Abrahams. Global and regional estimates of violence
against women: prevalence and health effects of intimate partner violence and
non-partner sexual violence. World Health Organization, 2013.

[28] Lindsey Green, Suzanne Kidenda, Roseline Muchai, and Brett D.
Nelson. Centering survivors in technology for addressing sexual
violence: The case of medicapt. https://www.svri.org/blog/
centering-survivors-technology-addressing-sexual-violence-case-medicapt.
Accessed August 5, 2022.

[29] Tracy D Gunter and Nicolas P Terry. The emergence of national electronic
health record architectures in the united states and australia: models, costs, and
questions. Journal of medical Internet research, 7(1):e383, 2005.

[30] Get ODK Inc. Okd: Collect data anywhere. https://five.epicollect.net.
Accessed August 5, 2022.

[31] Kobo Inc. Kobotoolbox. https://five.epicollect.net. Accessed August 5,
2022.

[32] Gautam Ivatury, Jesse Moore, and Alison Bloch. A doctor in your pocket: health
hotlines in developing countries. Innovations: Technology, Governance, Global-
ization, 4(1):119–153, 2009.

[33] Sharmin Jahan and M Mozammel Hoque Chowdhury. mhealth: a sustainable
healthcare model for developing world. American Journal of Modeling and Op-
timization, 2(3):73–76, 2014.

[34] Chris Kimble. Electronic health records: Cure-all or chronic condition? Global
Business and Organizational Excellence, 33(4):63–74, 2014.

[35] Donald E. Knuth. Mobile electronic health surveys and data collection: His-
tory and practical points to consider. In Vipan Nikore Juan Sebastian Osorio
Kenneth Paik Leo Anthony G. Celi, Hamish S. F. Fraser, editor, Global Health
Informatics: Principles of eHealth and mHealth to Improve Quality of Care,
chapter 29. MIT Press, 2017.

57

[36] Siddique Latif, Rajib Rana, Junaid Qadir, Anwaar Ali, Muhammad Ali Imran,
and Muhammad Shahzad Younis. Mobile health in the developing world: Review
of literature and lessons from a case study. IEEE Access, 5:11540–11556, 2017.

[37] Magpi. Mobile data collection guide. https://www.magpi.com/
what-is-mobile-data-collection. Accessed August 5, 2022.

[38] Erin Brisbay McMahon and Tracy Lee-Huber. Hippa privacy regulations: prac-
tical information for physicians. Pain physician, 4(3):280, 2001.

[39] Ranit Mishori, Michael Anastario, Karen Naimer, Sucharita Varanasi, Hope Fer-
dowsian, Dori Abel, and Kevin Chugh. mjustice: preliminary development of a
mobile app for medical-forensic documentation of sexual violence in low-resource
environments and conflict zones. Global Health: Science and Practice, 5(1):138–
151, 2017.

[40] Nareesa A Mohammed-Rajput, Dawn C Smith, Burke Mamlin, Paul Biondich,
Brad N Doebbeling, Open MRS Collaborative Investigators, et al. Openmrs, a
global medical records system collaborative: factors influencing successful im-
plementation. In AMIA annual symposium proceedings, volume 2011, page 960.
American Medical Informatics Association, 2011.

[41] Karen Naimer, Widney Brown, and Ranit Mishori. Medicapt in the democratic
republic of the congo: The design, development, and deployment of mobile tech-
nology to document forensic evidence of sexual violence. Genocide Studies and
Prevention: An International Journal, 11(1):25–35, 2017.

[42] World Health Organization et al. The MAPS toolkit: mHealth assessment and
planning for scale. World Health Organization, 2015.

[43] C. E. Palazzi, A. Bujari, S. Bonetta, G. Marfia, M. Roccetti, and A. Amoroso.
Mdtn: Mobile delay/disruption tolerant network. In 2011 Proceedings of 20th In-
ternational Conference on Computer Communications and Networks (ICCCN),
pages 1–6, 2011.

[44] Guardian Project. Camerav app and the informacam system. https:
//guardianproject.github.io/informacam-guide/en/InformacamGuide.
html. Accessed August 5, 2022.

[45] Guardian Project. Camerav: Secure verifiable photo video camera. https:
//guardianproject.info/archive/camerav/. Accessed August 5, 2022.

[46] Guardian Project. Informacam: Verified mobile media. https://
guardianproject.info/archive/informacam/. Accessed August 5, 2022.

[47] Aviva Rutkin. Collecting horror stories. New Scientist, 223(2977):16, 2014.

58

[48] Joel Selanikio et al. Episurveyor/magpi. https://lib.digitalsquare.io/
bitstream/handle/123456789/77558/episurveyormagpi.pdf. Accessed Au-
gust 5, 2022.

[49] Markus Steinberg, Sirko Schindler, and Friederike Klan. Software solutions for
form-based, mobile data collection – a comparative evaluation. In Holger Meyer,
Norbert Ritter, Andreas Thor, Daniela Nicklas, Andreas Heuer, and Meike Klet-
tke, editors, BTW 2019 – Workshopband, pages 135–144. Gesellschaft für Infor-
matik, Bonn, 2019.

[50] Amnesty International Panic Button Team. More than an app: the panic but-
ton, one year on. https://www.amnesty.org/en/latest/campaigns/2015/07/
panic-button-one-year-on/. Accessed August 5, 2022.

[51] Amnesty International Panic Button Team. Panic button: Why
we are retiring the app. https://www.theengineroom.org/
panic-button-retiring-the-app/. Accessed August 5, 2022.

[52] Mark Tomlinson, Mary Jane Rotheram-Borus, Leslie Swartz, and Alexander C
Tsai. Scaling up mhealth: where is the evidence? PLoS medicine, 10(2):e1001382,
2013.

[53] Neil Versel. Episurveyor creator selanikio shakes up international devel-
opment. MobiHealthNews. https://www.mobihealthnews.com/10645/
episurveyor-creator-selanikio-shakes-up-international-development.
Accessed August 5, 2022.

[54] WITNESS. Is this for real? how informacam improves verifica-
tion of mobile media files. https://blog.witness.org/2013/01/
how-informacam-improves-verification-of-mobile-media-files/. Ac-
cessed August 5, 2022.

[55] WITNESS. Video as evidence. https://vae.witness.org. Accessed August 5,
2022.

[56] Benjamin A Wolfe, Burke W Mamlin, Paul G Biondich, Hamish SF Fraser, Dar-
ius Jazayeri, Christian Allen, Justin Miranda, and William M Tierney. The
openmrs system: collaborating toward an open source emr for developing coun-
tries. In AMIA annual symposium proceedings, volume 2006, page 1146. Ameri-
can Medical Informatics Association, 2006.

59

