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Abstract
The electrical double layer exists at the phase boundaries of electrolyte solutions, where
counterions from solution preferentially accumulate to screen surface charges. Due to the
ubiquity of electrolytes, the electrical double layer plays a central role in many fields in
science and engineering, including colloid science, electrochemistry, biology, membrane
science, and tribology. Across these fields, mathematical models of the double layer have
been used to analyze and predict the behavior of electrochemical interfaces in contact with
electrolyte solutions. Even so, the standard continuum approaches and assumptions that
are applied usually fail to describe the microscopic arrangement and structuring of ions
and solvent in the electrical double layer, limiting their predictive power.

In this thesis, I develop mathematical models to predict the microscopic structure of
ionic solutions at charged interfaces, relevant for a wide set of problems including mem-
brane transport, electrochemical capacitors, ionic liquid electrolytes, bioseparations, elec-
trowetting, cement cohesion, and general colloidal stability. The continuum mathematical
models I derive for the electrical double layer capture electrostatic correlations in elec-
trolytes containing multivalent ions, the molecular-level layered structures in ionic liquids
and concentrated electrolytes, interfacial orientational ordering of common polar liquids
such as water, and the effects of electrolyte confinement in pores down to the nanoscale.
These effects are not captured in applications of standard continuum theories for dilute
electrolyte solutions, but are essential in accurately describing the equilibrium and nonequi-
librium properties of electrolytes at charged interfaces. The key feature of the theories ex-
plored in this thesis is the inclusion of microscopic physics using formulations of non-local
electrostatics, which encode additional microscopic length scales of discrete molecules,
ions, and cofinement geometry into the theory.

Thesis Supervisor: Martin Z. Bazant
Title: E. G. Roos (1944) Professor of Chemical Engineering
Professor of Mathematics
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3.37 and 3.38, while the ( ) lines plotted in (d-f) correspond to the

definitions in equations 3.39 and 3.40. . . . . . . . . . . . . . . . . . . . . 119

4-1 The simulation configuration in COMSOL (a) with the membrane, pore,

and electrolyte (b) for an isolated pore that does not feel its periodic neigh-

bors and (c) a periodic arrangement of pores on a square lattice. (d) A

cross-section of the system through the center of the cylindrical pore is

shown to describe the domains and equations applied in the simulations.

(e) A sample of continuum simulation results showing the progress from

non-interacting to interacting channels for small charge densities. For all

channels, the channel radius is 1 nm and the length is 100 nm. The mem-

brane dielectric constant is εm = 10ε0 and the electrolyte dielectric constant

is εw = 80ε0. The salt concentration is 1 mM. In order from left to right,

the spacing between the channel centers ℓ is 129 nm, 77 nm, 46 nm, 28 nm,

and 17 nm. Also in order, the amount of charge within the pore versus on

the channel walls, | Qin/Qout | is: 12%,13%, 17%, 26%, and 43%. As the

channels become closer together and more interacting, the system returns

closer to electroneutrality, which is evidenced by the higher φ values within

the pore. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
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4-2 The results for an isolated pore with overlapping and non-overlapping dou-

ble layers within the pore. (a) plot of the potential profile for overlapping

double layers at c0 = 1 mM (κDR ≈ 0.1) (a) versus less overlapping double

layers at c0 = 100 mM (κDR ≈ 1)(b). The same parameters are used as

in Fig. 4-1 (e), except the center to center distance between pores is 500

nm such that the periodic channels are not interacting. For (a) 12% of the

charge is contained within the pore, whereas for (b) 91% of the charge is

contained within the pore.(c) The charge within the pore versus on the pore

walls as a function of κDR for the same channel in parts (a) and (b). Elec-

troneutrality breakdown occurs in the region of strong double layer overlap

κDR → 0. For (c) the markers are the COMSOL simulations, whereas the

line is the application of the approximate formula in equation 4.10. (d-e)

The integrated ionic charge as a function of the lateral position for c0 = 1

mM and 100 mM. The charge is distributed over a wide area O(L) extend-

ing beyond the pore mouth when electroneutrality is broken (c0=1 mM),

but is more localized when electroneutrality is maintained (c0=100 mM) .

(e) Quantification of end effects for two different concentrations. The elec-

trostatic potential is plotted as a function of the z coordinate, evaluated at

the center axis of the channel. End effects are not significant for isolated

channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
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4-3 Extent of electroneutrality breakdown for channels of different center-to-

center separation distances on a lattice. (a) | Qin/Qout | versus κDR for

ℓ/L= 5, ℓ/L= 1, ℓ/L= 0.1. (c) |Qin/Qout | versus ℓ/L for c0 = 0.01,1,100

mM for ℓ/L = 0.02 to ℓ/L = 0.5. For both (a) and (c), the markers are the

COMSOL simulations, whereas the solid lines are the application of the

approximate formula in equation 4.10 and the dotted lines are the applica-

tion of the approximate formula in equation 4.14. (b) The integrated ionic

charge as a function of the lateral position for ℓ/L = 5 and 0.05, with c0 =

1 mM. The charge is distributed over a wide area when channels are iso-

lated, but is localized when the channels are closely spaced and strongly

interacting. (d) Quantification of end effects for two different lattice spac-

ings with c0 = 1 mM. The electrostatic potential is plotted as a function of

the z coordinate, evaluated at the center axis of the channel. End effects are

significant when the channels are interacting. . . . . . . . . . . . . . . . . 138

4-4 Role of dielectric mismatch on extent of electroneutrality breakdown. (a)Results

for isolated pore with same properties as in Fig. 4-1 (e), but with εm = ε0,

εm = 10ε0, and εm = 100ε0. (b) | Qin/Qout | versus κDR for varying εm. (b)

| Qin/Qout | versus ℓ/L with c0 = 1 mM for varying εm.For both (b) and

(c), the markers are the COMSOL simulations, whereas the solid lines are

the application of the approximate formula in equation 4.10 and the dotted

lines are the application of the approximate formula in equation 4.14. . . . 139

4-5 Role of aspect ratio on extent of electroneutrality breakdown. (a)Results for

isolated pore with same properties as in Fig. 4-1 (e), but with L = 10 nm,

L = 100 nm, and L = 1000 nm, also with c0 = 1 mM. (b) |Qin/Qout | versus

κDR for varying L, with ℓ/L = 5. (b) | Qin/Qout | versus ℓ/L with c0 = 1

mM for varying L. For both (b) and (c), the markers are the COMSOL

simulations, whereas the solid lines are the application of the approximate

formula in equation 4.10 and the dotted lines are the application of the

approximate formula in equation 4.14. . . . . . . . . . . . . . . . . . . . . 142
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4-6 Role of dimensionality of confinement by inspecting a slit pore geometry.

(a)Results for isolated pore with same properties as in Fig. 4-1 (e), but for a

slit pore. (b) |Qin/Qout | versus κDR for varying ℓ/L. (c) |Qin/Qout | versus

ℓ/L for varying c0. (d-e) The same as (b-c) but with L = 1000 nm. For (b),

(c), (d), and (e), the markers are the COMSOL simulations, whereas the

solid lines are the application of the approximate formula in equation 4.18

and the dotted lines are equation 4.14 with constants given by equations

4.20 and 4.21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4-7 Role of nonlinearity on extent of electroneutrality breakdown. (a)Results

for isolated pore with same properties as in Fig. 4-1 (e), but with qs → 0,

qs = 0.001 C/m2, and qs = 0.01 C/m2 with c0 = 1 mM. (b) | Qin/Qout |

versus κDR for varying qs. (b) | Qin/Qout | versus ℓ/L with c0 = 1 mM for

varying qs. For both (b) and (c), the markers are the COMSOL simula-

tions, whereas the solid line is the application of the approximate formula

in equation 4.10 and the dotted line is the application of the approximate

formula in equation 4.14. . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4-8 The dimensionless conductance (a) and cation transference number (b)

through a negatively charged nanochannel for varying channel separation

distances. The solid lines are the predictions using equation 4.10 and the

dotted lines are the predictions using equation 4.14. The dotted lines are

good predictors of the extent of electroneutrality breakdown at small ℓ/L,

but fail at large ℓ/L, e.g. the blue dotted lines. The plateau in conductance

at low concentration is only apparent when | Qin/Qout |= 1. As the ratio

ℓ/L decreases, the system moves closer to electroneutrality. When elec-

troneutrality is broken, the cation transference number does not saturate to

1 at low concentration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
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5-1 Schematic of various systems under consideration in the application of the

dipolar shell theory. (a) A pure polar fluid between two oppositely charged

surfaces of the same magnitude, obeying overall charge neutrality. (b) A

1:1 electrolyte in a polar solvent with ions of the same size as the dipolar

molecules, again with surfaces of equal but opposite charge. (c) A con-

fined pure polar fluid with varying extent of confinement between walls of

equal but opposite charge with varying extent of confinement. (d) A 1:1

electrolyte confined between two walls of equal but opposite charge with

varying extent of confinement. (e) A 1:1 electrolyte confined between two

walls of the same charge with varying extent of confinement. (f) Dipolar

molecule, cation, and anion symbols. . . . . . . . . . . . . . . . . . . . . . 156

5-2 Electrostatic screening by pure polar liquids between two surfaces of op-

posite charge shown for different values of the bulk dielectric constant,

comparing the weighted and nonweighted quantities. The curves are gen-

erated by solving Eq. 5.24 with ρ̄e = 0. Variables are plotted as functions

of the normal coordinate, x, zooming into the profiles emerging from the

left interface for b-c and e-f. The selected bulk dielectric permittivities,

correspond to values of p0 = 4.86 D for εr = 80, p0 = 2.38 D for εr = 20,

and p0 = 1.09 D for εr = 5, keeping all other parameters constant (T = 300

K, L = 5 nm, cw0 = 55 M, d = 0.285 nm, and qs = 0.01 C/m2). (a) Electro-

static potential, φ , (b) electric field, E = −φ ′, (c) polarization density, P,

(d) weighted electrostatic potential, φ̄ , (e) weighted electric field, Ē =−φ̄ ′,

and (f) and weighted polarization density, P̄. The local variables in a-c de-

scribe the “measured" local electrostatic response of the system, while the

weighted potential and weighted electric field in d-e determine the elec-

trochemical potential and orientation of dipoles. The weighted polariza-

tion vector in f corresponds to the polarization arising from the delocalized

bound charge on the dipolar shells. . . . . . . . . . . . . . . . . . . . . . 163
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5-3 Dielectric tensor, average orientation, and density of pure polar fluids be-

tween two surfaces of opposite charge, generated for model polar liquids

with different values of the bulk dielectric constant. The curves are gener-

ated by solving Eq. 5.24 with ρ̄e = 0. Variables are plotted as functions of

the normal coordinate, x, zooming into the profiles emerging from the left

interface. The results are plotted for three pure polar fluids, corresponding

to p0 = 4.86 D for εr = 80, p0 = 2.38 D for εr = 20, and p0 = 1.09 D

for εr = 5, keeping all other parameters constant (T = 300 K, L = 5 nm,

cw0 = 55 M, d = 0.285 nm, and qs = 0.01 C/m2). (a) Normal component

of the dielectric tensor, ε⊥, plotted in terms of its inverse. (b) Tangential

component of the dielectric tensor, ε∥. (c) Average orientation of dipolar

molecules, ⟨cos(θ)⟩. (d) Density profile of dipolar molecules, cw, normal-

ized by the bulk value. In (d), the density profiles are closely overlapping

each other, due to the low applied surface charge. . . . . . . . . . . . . . . 165

5-4 Dielectric tensor, average orientation, and density of pure polar fluids be-

tween two surfaces of opposite charge for varying surface charge density.

The curves are generated by solving Eq. 5.24 with ρ̄e = 0. Variables are

plotted as functions of the normal coordinate, x, zooming into the profiles

emerging from the left interface. The results are plotted for varying sur-

face charge density (qs = 0.01 C/m2, qs = 0.1 C/m2, and qs = 0.25 C/m2),

keeping all other parameters constant (T = 300 K, L = 5 nm, cw0 = 55

M, d = 0.285 nm, and p0 = 4.86 D). (a) Normal component of the dielec-

tric tensor, ε⊥, plotted in terms of its inverse. (b) Tangential component

of the dielectric tensor, ε∥. (c) Average orientation of dipolar molecules,

⟨cos(θ)⟩. (d) Density profile of dipolar molecules, cw, normalized by the

bulk value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
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5-5 Orientation of molecules in a pure polar fluid between two oppositely charged

surfaces as a function of the confinement distance between the surfaces.

The curves are generated by solving Eq. 5.24 with ρ̄e = 0. The results

are plotted for indicated separation distances between the two confining

charged surfaces, L, keeping all other parameters constant (T = 300 K,

cw0 = 55 M, d = 0.285 nm, p0 = 4.86 D, qs = 0.05 C/m2). . . . . . . . . . 170

5-6 Electrolyte screening behavior between two surfaces of opposite charge for

varying ionic concentration. The curves are generated by solving Eq. 5.24

with ρ̄e ̸= 0. The ionic concentration is varied between c0 = 0 M, c0 = 0.1

M, c0 = 0.5 M, and c0 = 2.5 M, keeping all other parameters constant

(T = 300 K, L = 5 nm, cw0 = 55 M, d = 0.285 nm, qs = 0.01 C/m2, and

p0 = 4.86 D). (a) Electrostatic potential, φ . (b) Local difference in ionic

concentration, porportional to the local charge density. (c) Normal compo-

nent of the dielectric tensor (effective–accounting only for the polarization

of solvent), ε⊥, plotted in terms of its inverse. (d) Tangential component

of the dielectric tensor, ε∥. (e) Normal component of the general dielectric

tensor, ε∗⊥ (accounting for the polarization of the solvent and ions). . . . . 171

5-7 Electrolyte screening behavior between two surfaces of opposite charge for

varying surface charge density. The curves are generated by solving Eq.

5.24 with ρ̄e ̸= 0. The surface charge density is varied between qs = 0.01

C/m2,qs = 0.1 C/m2, and qs = 0.25 C/m2, keeping all other parameters

constant (T = 300 K, L = 5 nm, cw0 = 55 M, d = 0.285 nm, c0 = 0.1 M,

and p0 = 4.86 D). The cation (red), anion (blue), and dipolar molecule

(black) profiles are plotted, normalized to their respective bulk values. . . . 173
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5-8 The disjoining pressure between two surfaces of varying separation dis-

tance plotted for different ionic concentrations and polarity of surface charges.

Individual curves correspond to the indicated surface charge density, held

constant for all separation distances. The ionic concentration, c0, and the

polarity of the surfaces are listed in the figure titles. The three lines in each

plot correspond to values of the surface charge density from qs = 0, 0.05,

and 0.30 C/m2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5-9 Effective capacitance at zero charge for an electrolyte as a function of

ionic concentration. All other parameters are kept constant (T = 300 K,

L = 5 nm, cw0 = 55 M, d = 0.285 nm, and p0 = 4.86 D). The total capac-

itance is calculated numerically from an isolated (non-overlapping) double

layer. The Debye capacitance is calculated as CD = εrε0/λD, and the effec-

tive Stern capacitance is calculated assuming a series capacitance model to

match the total capacitance from the dipolar shell theory. . . . . . . . . . . 178

5-10 Simulation schematic. (a) The polar liquids are confined between two sur-

faces with separation distance L and with forces given by FL. The sur-

faces are oppositely charged, and the polar liquid between them orients

in response to this polarization. (b) The three molecules studied here, with

dipole moment oriented upwards. The molecules are dichloromethane, ace-

tonitrile, and water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5-11 Liquid orientation comparison between simulation and theory for separa-

tions without solvation layering overlap. The simulation is shown with col-

ored markers and dashed colored lines. The theory predictions are shown

with black solid lines. The profiles of ⟨cos(θ)⟩ display decaying oscilla-

tions as a function of z until they reach a constant value in the center of the

gap. The two surfaces have equal but opposite charge of qs = ±0.1 C/m2,
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5-12 Confined liquid orientation comparison between simulation and theory for

separations with solvation layering overlap. The simulation is shown with

colored markers and dashed colored lines. The theory predictions are shown

with black solid lines. The profiles of ⟨cos(θ)⟩ include oscillatory struc-

tures that emanate from each surface and overlap when the surfaces are

confined. The two surfaces have equal but opposite charge of qs = ±0.1

C/m2, and the separation distance of the two surfaces, L, varies based on

the title of each subplot. . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5-13 Disjoining pressure predictions for polar liquids between two oppositely

charged surfaces as a function of surface separation distance. The colored

markers now correspond to the pressure calculated from the MD simula-

tions, while the black lines correspond to the theoretical prediction. . . . . 190
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Chapter 1

Introduction

The electrical double layer (EDL) spontaneously forms at a solid-liquid interface when ions

from an electrolyte solution adsorb to/ desorb from the interface, and, in turn, counterions

from the solution accumulate near the interface to neutralize the adsorbed/desorbed charge.

The spatial arrangement of the screening counterion charges results from a balance between

the electrostatic attraction, which pulls the counterions nearer to the surface, competing

against entropy, which pushes the system to do the opposite so as to eliminate concentration

gradients [8]. The EDL structure is illustrated in the schematic in Figure 1-1.

The electrical double layer is central to our understanding of various fields of sci-

ence and engineering where surface phenomena are at play, including electrochemistry,

colloid science, biology, tribology, membrane science, and microfluidics. For example,

in biology, the double layer is crucial for cellular function, such as directing selective

transport through biological ion channels [9] and mediating electrostatic interactions be-

tween charged biopolymers in physiological solutions [10]. The electrostatic interactions

within electrolyte solutions can be leveraged for important biopharmaceutical separations,

including advanced technologies such as ion-exchange chromatograpy for protein separa-

tions [11]. Widely applied desalination technologies such as electrodialysis operate via

ionic currents through highly charged membranes using accumulation/depletion of ions in

the overlapping electric double layers to achieve selectivity [12]. In electrochemical de-

vices, the electrical double layer determines the capacitance of the interface to store charge

at the solution-electrode interface [13], influencing the equilibrium and time-dependent re-
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Figure 1-1: The electrical double layer at a solid-liquid interface. When in contact with a liquid,
the solid surface acquires a surface charge (in this case a negative charge) due to acid/base equilibria
of surface groups or the adsorption/desorption of charged ions from the solution. Counterions from
solution are preferentially accumulated near the interface to neutralize the surface charge.

sponse of the device to applied potentials or electronic charges at the electrode interface.

Promising microfluidic platforms for biosensing leverage electrokinetic transport driven by

the response of charged fluid elements in the double layer via applied electric fields [8].

The ubiquity of the double layer in the fields of science and engineering, has spurred

intense research since the end of the nineteenth century, including foundational theoreti-

cal analyses performed by Helmholtz, Gouy, Chapman, Stern, Debye, Hückel, Derjaguin,

Landau, Verwey, Overbeek, Bikerman, and thousands of other researchers in various fields

[14–17]. These theoretical models have converged over time to describe experimental sig-

natures of the ionic structures near interfaces or in the bulk. To briefly summarize, the most

commonly applied model, aptly referred to as the Gouy-Chapman-Stern (GCS) model,

splits the double layer into two parts. First, the compact Stern layer spans from the ad-

sorbed charge plane (the inner Helmholtz plane) to the plane of the first screening counteri-

ons (the outer Helmholtz plane), encompassing surface-oriented water molecules. Second,

the diffuse part extends from the outer Helmholtz plane into the bulk, where ion concen-

trations vary smoothly from their accumulated/depleted concentrations near the interface

to their bulk concentration further from the interface. When two surfaces are separated
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by distances on the nanometer scale, the diffuse layer can overlap, leading to a screened

electrostatic interaction between the surfaces mediated by the EDLs between them.

Experimental probing of the double layer structure has been especially informed by in-

direct electrochemical methods such as differential capacitance measurements [18]. Elec-

trokinetic methods including electrophoretic mobility, streaming potential, or streaming

current measurements provide more evidence of the double layer properties, though inter-

pretation of these methods is very sensitive to assumptions of the no-slip plane and the com-

pact layer contributions to surface conduction [15, 19]. Development of the surface force

apparatus [20] and other surface sensitive techniques such as atomic force microscopy has

allowed for more direct probing of the double layer properties.

Modern computational advances have allowed for simulations of discrete ions and sol-

vent molecules near interfaces with varying levels of approximation, from classical Molec-

ular Dynamics to ab initio quantum calculations. While these simulations have limitations

in accessing large length and time scales, they can serve as a benchmark from which to

judge the predictive accuracy of a continuum theory. Compared to experiments, atomistic

simulations are especially useful as a “clean” reference system, since all inputs, i.e. force

field parameters, are known explicitly. Importantly, the simulations include the structural

correlations within the EDL since they explicitly represent discrete atoms or molecules. If

a continuum theory can capture or approximate the structural features in an equilibrium

molecular simulation, the coarse-grained continuum theory can often then be generalized

to problems that the computationally-expensive molecular simulations cannot access.

Over the years, experimental and theoretical analysis has led to a wide consensus on

the general principles guiding the formation, structure, and dynamics of the double layer.

Nevertheless, continued discoveries and rediscoveries of discrepancies between our stan-

dard theoretical understanding and the increasingly sophisticated experimental platforms

and/or molecular simulations has led to fresh and more detailed theoretical descriptions of

the double layer [17].

Depending on the application, the standard GCS model can capture the essential elec-

trochemical behavior of the interface, often despite the fact that the approximations applied

do not rigorously hold. On the other hand, the standard GCS model can miss important fea-
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tures of the screening at the interface. Furthermore, certain features from experiments or all

atom simulations cannot be captured by the GCS model, often in practically relevant appli-

cations. For example, in the analysis of surface force measurements, empirical free energy

contributions from hydration or solvation forces are often needed to fit experimental data,

though they are not derived self-consistently from the double layer structure [21]. Even

more surprisingly, measurements between like-charged surfaces show counter-intuitive sig-

natures of an electrostatic attraction in the presence of multivalent counterions [22, 23]. In

induced charge electrokinetics, the standard models double layers for electrokinetic flows

are insufficient to describe the magnitude and the sign of flows at high applied voltage [17].

Such observations have motivated evermore sophisticated theoretical descriptions that

incorporate some of the molecular nature of the electrolyte solution more directly into the

theory. Due to the prominence of the double layer in science and engineering, many theo-

retical modifications have been proposed over the last century to more accurately capture

experimental and/or discrete molecular simulation data. The accuracy of a model often

scales proportionally with its complexity, and so these advanced yet highly accurate theo-

ries can be difficult to implement or interpret, thus limiting their usability versus the stan-

dard GCS approach. Therefore, the most widely used theories are those with some physical

transparency and simple mathematical structure, such that they output clear scaling rela-

tions between the electrolyte/surface properties and measured variables, or allow for quick

numerical implementation and inexpensive computation of such measured variables.

In this same vein, in my thesis research, I have developed theoretical approaches that

address some shortcomings of standard continuum theories of the double layer, by includ-

ing some of the microscopic physics of ions and solvent molecules near the interface. In

doing so, I am able to improve the predictive power of the theoretical analysis to capture es-

sential ionic electrosorption, ionic transport, and colloidal interaction mechanisms. Either

by mathematical construction or mathematical approximation, I emphasize the key rela-

tionships between the microscopic length scales that arise within the EDL to the observed

electrochemical behavior.

To set the stage for the presentation of my thesis research, this chapter first reviews the

standard theories that are most commonly applied to EDL modeling, including the basic
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mathematical models and length scales that arise there. I then highlight the microscopic

physical phenomena at play in the EDL which can lead to structural differences compared

to standard approaches. While these listed effects are not exhaustive, they are essential

to achieving a quantitative understanding of electrochemical interfaces with meaningful

physical parameters. Finally, I summarize the main thrusts of my thesis research and the

organization of the thesis document.

1.1 Standard EDL Modeling Approaches

The most commonly applied model of the EDL is the Gouy-Chapman-Stern (GCS) model.

As mentioned above, the GCS model splits the double layer into two regions, a compact

Stern layer and a diffuse layer [16].

The Stern layer exists adjacent to the interface, between the inner Helmholtz plane

defined as the plane at which the adsorbed charge is located, and the outer Helmholtz

plane, defined as the distance of closest approach for ionic charges. The Stern layer itself

is assumed to have no ionic charge, but instead, to include surface water molecules with

no net charge. Therefore, within the model, the Stern layer is treated as a parallel plate

capacitor with constant capacitance, where the surface charge density of adsorbed charge,

qs, is related to the linear potential drop through the Stern layer, ∆φs, by:

qs =
εs∆φs

Ls
(1.1)

where εs is the relative permittivity of the Stern layer and Ls is the Stern layer thickness.

In the diffuse part of the double layer in the GCS theory, the mean-field electrostatic

interactions of the ions with the smeared potential determine their concentration profiles

emerging from the surface. The ions are treated with the Poisson-Boltzmann theory, where

the potential, φ , satisfies the Poisson equation:

−∇ · (εrε0∇φ) = ρe = ∑
i

zieci, (1.2)
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and the ions are Boltzmann distributed by the mean field electrostatic potential,

ci = ci0 exp
(
−zieφ

kBT

)
. (1.3)

In the above equations, εr is the relative permittivity of the solution, ε0 is the permittivity

of free space, ρe is the volumetric charge density, e is the elementary charge, kB is the

Boltzmann constant, and T is the absolute temperature. For each ionic species i, zi is the

valency, ci is the local concentration, and ci0 is the bulk concentration of species i that is in

equilibrium with the double layer. These assumptions are only valid if the ions are dilute

point charges without strong spatial correlations or other non-ideal interactions. Since

the “compactness" or spatial arrangement of the diffuse layer is potential-dependent, the

capacitance of the diffuse layer is also dependent on the potential drop across the layer.

The total capacitance of the double layer is determined by the combination of the Stern

layer and the diffuse layer capacitance in series.

Typically, the solvent is only included as a constant dielectric background. In the Stern

layer, experiments have pointed to a reduced effective permittivity due to dielectric satura-

tion of the dipoles near the interface. In the diffuse part, the dielectric constant is typically

assumed to be constant and equal to the bulk dielectric constant of the fluid.

While lateral patterning can be accommodated for in the theory, the surface charges

of density qs are taken to be smeared out and constant. With this assumption, the three

dimensional problem can be simplified to a one dimensional problem in which all variables

become uniquely a function of the normal coordinate from the interface.

The GCS model can be extended to cases where the EDLs overlap between two confin-

ing walls separated by a distance, L. In fact, the standard approach to determine colloidal

stability, the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory [14, 24, 25], is based on

a balance between electrostatic repulsion and dispersion attraction forces. The electrostatic

forces between like-charged particles are determined by the extent of double layer overlap,

which generates a repulsive osmotic pressure resisting the confinement. In these situations,

the confining surfaces are often assumed to have zero field, and therefore, the ionic charges

are assumed to perfectly balance the surface charge. A critical phenomenon that is often
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incorporated within implementations of the DLVO theory is charge regulation, where the

local concentration of species is influenced by the extent of confinement, which in turn

shifts the surface charge adsorption equilibrium [26].

Based on the above assumptions, the GCS theory predicts a monotonic decay of the

potential from an interface. First, in the Stern layer, there is a linear drop in potential

accounting for polarization of surface water molecules. Then, in the diffuse layer, the mag-

nitude of the potential gradually decreases, with concavity determined by the local ionic

charge density. Analysis of the GCS theory reveals three key length scales that characterize

the double layer structure. First, the Debye length, λD, defined as:

λD =

√
ε0εrkBT

∑i z2
i e2c0i

(1.4)

determines the decay of potential from the surface into the bulk. The Debye length follows

from linearization of the Poisson-Boltzmann equation, as first done by Debye and Hückel

in their pioneering study on ionic activity of bulk electrolytes [27]. The linearization is

most accurate at small electrostatic potentials, and so the length describes the decay of

ionic concentrations towards their bulk concentration in the far-field limit. As a commonly

referenced rule of thumb, the Debye length is about 1 nm in water for a concentration of

c0=0.1 M of a 1:1 ionic solution (comparable to physiological conditions) [14]. The Debye

length decreases as the concentration increases, and therefore can approach the size of an

individual molecule at a concentration of about 1 M or above.

The Debye length not only defines the spatial extent of the double layer, but is also

influential when it comes to the interactions between charged surfaces. In the GCS model

of the double layer, the overlap of double layers corresponds to an exponentially decaying

electrostatic force that decays over a characteristic Debye length. Therefore, the double

layer overlap when two collodial particles confine electrolytes between them is determined

by a comparison between the Debye length and the distance between the confining surfaces.

If the separation distance between surfaces is many times greater than the Debye length,

then the surfaces do not “feel" each other, since the ions screen the surface charge indepen-

dently. If the separation distance is on the order of the Debye length, then the double layers
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overlap, and the screening clouds of the two surfaces merge.

At higher surface charge density and thus higher potentials, the nonlinear behavior

of the ionic screening becomes important. Here, counterions with the largest valency, z,

accumulate preferentially. In this limit, the decay of the counterion charge density is given

by the Gouy-Chapman length, ℓGC, defined as:

ℓGC =
2εrε0kBT
| zeqs |

. (1.5)

At large potentials, the screening of the surface is dominated by the counterion density, and

the Gouy-Chapman length describes the distance at which a point countercharge ineracts

with the surface with energy kBT .

Finally, the compact Stern layer introduces another length scale to the GCS model based

on its thickness, Ls. In many cases it is useful to frame the Stern layer contribution to the

double layer charge storage (i.e. capacitance) in terms of an effective thickness, δ :

δ =
εr

εs
Ls. (1.6)

The Stern layer contribution to the charge storage is dominant when the δ ≫ λD and δ ≫

ℓGC, corresponding to high ionic concentration or high surface charge density.

Despite its simplicity, the GCS model and its close relatives are capable of rationalizing

many data sets in a variety of applications, including electrochemical measurements of

surface capacitance, transport measurements through nanopores, and colloidal stability.

The model has strong predictive power up to the parameters that must be determined by

fitting to experimental data. Nevertheless, the smoothly varying potential and ionic density

distributions predicted by the theory may not be accurate if we zoom into the interfacial

structure of the electrolyte. In the next section, I highlight the discrepancies between the

smeared potential in the GCS theory and the actual potential set by discrete and ordered

ions and solvent molecules near the interface or between interfaces.
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1.2 Microscopic Physics of Ions and Solvent

The standard dilute-solution theories of the electrical double layer, based on the Poisson-

Boltzmann theory embedded within the GCS model, cannot accurately describe the inter-

facial structure of electrolytes, even for many practically-relevant regimes. This fact is

immediately obvious when one compares the GCS solution to predictions of molecular

dynamic simulation results that include all the structural details of the electrolyte fluid.

What is missing from the theory? Evidently, the smooth charge distributions, the mean-

field potential, and the often applied constant dielectric response assumed in the GCS the-

ory are inadequate when one zooms into the scale of an individual ion or solvent molecule.

Microscopic length scales arise that break the most basic assumptions of the theory. Since

ions and solvent molecules are spatially correlated in a nonlocal fashion, in many cases, the

microscopic interfacial stucturing requires nonlocal electrostatic theoretical approaches.

For my thesis research, I have identified four main areas where improvements to ex-

isting theoretical approaches are critical. Specifically, I studied systems that exhibit: (A)

strong electrostatic correlations such as those in multivalent electrolytes, (B) highly con-

centrated electrolytes such as ionic liquids, (C) electrolytes under extreme confinement in

pores, and (D) interfacial ordering of the molecular solvent, as sketched in Figure 1-2. I

have focused on building models that can capture the unique phenomena that emerge in

these regimes, as outlined below.

(A) Strong Correlations: Multivalent Electrolytes

While standard continuum approaches assume mean-field electrostatics, the strong

electrostatic interactions between multivalent ions lead to significant electrostatic ion-ion

correlation effects. These correlation effects are responsible for surprising behavior in so-

lutions containing multivalent ions, including charge-inversion and electrostatic attraction

between surfaces of the same charge. The like-charge attraction phenomenon is responsi-

ble for the strong cohesive forces in cement, where calcium ions act as a "glue" between

cement calcium silicate hydrate particles. Further, the correlation-induced attraction has

also been linked to packaging of DNA and the interactions of like-charged biopolymers.

Microscopically, the multivalent ions form ordered structures, eventually arranging into

35



Figure 1-2: Sketches of the different microscopic physics investigated in this thesis. The topics
include (A) electrostatic correlations in multivalent electrolytes, where strong electrostatic inter-
actions lead to spatially correlated counterion positions and unique thermodynamic properties (B)
layering in concentrated electrolytes, where highly concentrated counterions crowd near the in-
terface at high surface charge density, or overscreening occurs with alternating layers of opposite
charge at low surface charge density (C) electrolytes in confinement, where the bounding walls can
affect the screening structure and (D) orientational ordering of polar solvent molecules, that form
ordered layers at an interface, leading to overscreening in the molecular bound charge density.
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a 2D crystal lattice at the contact plane, with a correlation hole size of Rhole.

Instead of being influenced by the mean-field potential that is assumed in the GCS

theory, the multivalent counterions more strongly “feel" the potential exerted on them by

the surface or by the two confining surfaces. The correlation effects can drastically affect

the thermodynamics of interfacial electrolytes and ultimately the screening structure.

(B) Highly Concentrated Electrolytes

Due to their wide electrochemical stability and low volatility, room temperature

ionic liquids and ultraconcentrated water in salt electrolytes could be effective as elec-

trolytes for next-generation batteries and supercapacitors. Concentrated electrolytes ex-

hibit charge layering at interfaces that differs significantly from the GCS prediction. In

the highly concentrated regime, the effective Debye length becomes smaller than the ion

size, d, and therefore loses its physical significance. In this limit, the phenomena of over-

screening (alternating layers of opposite charge) and crowding (dense layers of the same

charge) occur near charged interfaces. Such ordering has been shown to be at the ground

state of a spin-glass Hamiltonian for nearest neighbor charges [28], a system that is difficult

to capture accurately with continuum approaches. Extremely high concentrations result in

ion pairing and ionic aggregation that can influence the transport behavior and interfacial

structure [29].

(C) Electrolytes in Extreme Confinement and Electroneutrality Breakdown

Structuring of the electrolyte at interfaces becomes especially important as the elec-

trolyte is confined between two surfaces or in cylindrical pore, at a length scale Rconfinement.

Both electrolytes with strong electrostatic and steric correlations (including multivalent

and/or concentrated electrolytes) have unique properties in confinement, especially as the

confinement extent goes towards the molecular scale. These confinement effects deter-

mine the interactions between two charged surfaces, or the tangential transport through a

nanopore. Therefore, the confinement can be used as a tool for selective ion transport both

in biological or synthetic pores.

Typical models of ionic transport in confinement make the assumption of electroneutrality–
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that the number of ionic charges within a pore perfectly balances with the charge on the

pore walls. The assumption is generally quite accurate for many systems encountered in

engineering, but when the pore size is at the molecular scale, this assumption can fail [30].

In this regime, the electric field can escape from the pore through the pore walls, and change

the electrolyte screening structure within the pore. Particularly for pores confining an elec-

trolyte to one dimension, the effective screening length becomes exponentially long and

can reach macroscopic scales, signifying that the electroneutrality assumption is broken

within the pore domain.

(D) Polar Solvent Structuring

Virtually all electrolytes are composed of ions dissolved in polar liquid solvent. The

standard approximation in continuum modelling is to represent the solvent as a structureless

continuum with a fixed dielectric constant. However, near charged interfaces, the polar sol-

vent forms alternating layers in the bound charge density (overscreening). These structures

are determined by the interplay between the solvent dielectric constant, εr, and the solvent

molecular diameter, dw. Previous simulations have shown that the normal component of

the static dielectric tensor has singularities due to the alternating layers of charge [31]. The

interfacial dielectric tensor is also highly anisotropic, since the tangential component varies

less sharply than the normal component.

The structuring of the liquid can lead to hydration forces that are not captured in stan-

dard DLVO theories of colloidal interactions [32]. Instead, they are usually input empir-

ically as a separate interaction contribution. The orientational ordering for water extends

about 1 nm from an interface, comparable to the Debye length at 0.1 M concentration, and

can therefore be a significant contribution to the interactions between surfaces at physio-

logical ionic concentrations. Furthermore, the preferential surface orientation ordering of

water has been linked to the electrochemical behavior of interfaces.

It should be noted that these mechanisms are by no means exhaustive. In fact numerous

other phenomena are at play, including but not limited to: image charge effects, polariza-

tion effects, quadropolar and higher order effects, ion solvation, electronic effects, surface

roughness, and more. Nevertheless, the models reported in this thesis could be extended
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to include other important physical mechanisms for the arrangement of solvent and ions at

interfaces.

1.3 Thesis Organization

In this thesis, I outline the main progress I have made in including the microscopic physics

of the EDL into continuum models of the EDL. Certainly, a large body of literature exists

on each of these microscopic mechanisms of EDL interfaces, and I review these works in

each chapter as the models are introduced. Specific emphasis is placed on identifying the

main length scales that arise within the EDL when the microscopic physics is taken into

account.

In Chapter 2, with Prof. Martin Bazant, I investigate the role of electrostatic correla-

tions in multivalent electrolytes on the charge screening structure and colloidal interactions

at interfaces [33]. In order to study correlation effects, I built upon the Bazant-Storey-

Kornyshev (BSK) theory [34]. The BSK theory is a continuum representation of elec-

trostatic correlations using a nonlocal effective permittivity. It is especially popular due

to its simple mathematical form that is quite similar to more standard continuum theo-

ries. While the originally proposed theory explained some important qualitative features

of ionic screening in concentrated ionic liquids and multivalent electrolytes, the authors

only postulated the form of the boundary condition for the theory and the key correlation

length parameter. The quantitative predictions of the theory were especially sensitive to

the chosen correlation length and boundary condition. I derived the stress tensor for the

BSK theory. I used the stress tensor to describe a physical boundary condition for mechan-

ical equilibrium at a surface, and developed approximations for the correlation length via

comparisons to previously published simulations, where I found that the correlation length

scales most prominently with the correlation hole size:

Rhole =

(
1
6

)1/4(ze
qs

)1/2

. (1.7)

By comparison to simulations of primitive model electrolytes, I also propose a correlation
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length scaling relation that captures screening structures at higher concentrations.

I showed that the theory could reproduce ionic profiles for infinitely dilute multiva-

lent electrolytes at isolated charged surfaces or between two charged surfaces from weak,

intermediate, and strong coupling, where coupling is a measure of correlation effects. I

also applied the theory to multivalent ions around charged cylinders. Effectively, this work

closed some important unanswered questions for the BSK theory with physical justifica-

tions to improve the theory’s quantitative predictions. Working with Dr. Rahul Misra and

Prof. Daniel Blankschtein, we applied the theory to understand the strong attractive elec-

trostatic correlation forces in cement pastes [23].

In Chapter 3, working with Dr. Zachary Goodwin, Dr. Michael McEldrew, Prof. Alexei

Kornyshev, and Prof. Martin Bazant, I developed a model that captured the interfacial

layering in the concentrated limit of ionic liquids by representing the ions as charged-

shells [7]. The model predicted the fine, discrete layered features that were not given by the

BSK model for ionic liquids. We showed that the model could capture the main features

of ionic screening in the concentrated limit as well as the capacitance from low to high

electrode surface charge. We analytically derived a long wavelength screening length that

governs the decay of charge layers of molecular size for the concentrated limit:

λS =
d2

12λD
. (1.8)

that actually increases in magnitude with increasing ionic concentration. Along with the

charge screening, we found a length that governs the decay in oscillations of the total

number density of the liquid, λM, which depends on the fluid filling fraction, η :

λM =
d
√

(4−η)η√
5(1−η)2

. (1.9)

Further, working with Dr Karina Pivnic, Prof. Michael Urbakh, Prof. Martin Bazant, and

Prof. Alexei Kornyshev I have worked on using the model to determine the role of ionic

size asymmetry in the structural forces for confined ionic liquids [35].

In Chapter 4, I highlight the role of dimensionality of confinement on the screening
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structure for electrolytes in nanopores. My colleague in the Bazant research group, Dr.

Amir Levy, discovered the phenomenon of electroneutrality breakdown in 1D confine-

ment [30]. I contributed to our original study on electroneutrality breakdown for single

pores, where we showed that the effective screening length in 1D confinement diverges

exponentially with increasing concentration:

λS ∝ d exp

[(
λD

Rconfinement

)2
]
, (1.10)

such that the argument of the exponential function scales inversely with the ion concentra-

tion. When this exponentially long screening length exceeds the axial length of the pore,

the ionic charge within the pore does not balance the charge on the pore walls–signifying

that the electroneutrality within the pore is broken. The violation of electroneutrality within

the pore is counter to most models of ionic conduction for engineered membranes. How-

ever, in the literature describing transport through biological pores, the electroneutrality

constraint is rarely invoked. Instead, the transport of ions through ion channels is described

as ions traversing a free energy landscape specific to each ion. The electroneutrality break-

down phenomenon motivates such models in biological pores that confine the ions in one

dimension, since the transport is not beholden to the electroneutrality constraint in these

pores. Instead, the occupancy of the pore is determined by specific chemical interactions

of ions within the pore.

Then, I outline how closely-spaced, neighboring pores interact in the limit of elec-

troneutrality breakdown [36]. Since electroneutrality breakdown corresponds to electric

field escape from the pore, the electric fields between neighboring pores strongly inter-

act and determine the screening within each pore. The pore interactions, are a useful tool

to distinguish the electroneutrality breakdown phenomenon compared to other competing

phenomena for low concentration electrolytes.

In Chapter 5, working with Prof. Alexei Kornyshev and Prof. Martin Bazant, I describe

a model based on the non-local charge distribution in a polar solvent molecule and the

properties of the solvent, where I was able to capture the dielectric tensor singularities and

anisotropy of the interfacial solvent [35]. Collaborating with Prof. Alexei Kornyshev, I
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applied the model to calculations of hydration interactions and capacitance. Additionally,

I derived an analytical formula describing the decay of solvent ordering from an interface

that depends only on the bulk properties of the solvent:

λh = d

√
εr −1

6
(1.11)

Comparisons to the literature and MD simulations carried out by the Dr. Karina Pivnic with

input from Prof. Michael Urbakh suggest that the model can capture the charge ordering in

interfacial and confined polar liquids.

In order to make the thesis document more focused, I have primarily included the work

specifically describing the structuring of the EDL. In my thesis research, I have also stud-

ied various applications of EDL theories, including modeling: pH sensors [37], the thermal

signatures of double layer charging in neurons [38], the nonlinear transport of ions through

ultrathin membranes such as graphene membranes [39], the ionic associations in ultracon-

centrated electrolytes at interfaces [40], the thermodynamics of charge regulation reactions

using temperature-resolved nanopore transport, the electrokinetic transport of multicom-

ponent electrolytes through nanopores, and the ionic concentration and voltage dependent

wetting of hydrophobic nanopores [41].

The theoretical models I explore in this thesis illustrate the importance of mathematical

models of electrolytes that go beyond the standard assumptions of the GCS theory. In or-

der to qualitatively describe the structuring of electrolytes at charged interfaces and within

charged pores with mathematical models, one must employ nonlocal models of crowding

and electrostatics for ions and solvent,and consider the role of the interfaces on the screen-

ing structure in pores.
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Chapter 2

Electrostatic Correlations in Multivalent

Electrolytes

The following chapter is reproduced from published work describing a model of electro-

static correlations in multivalent electrolytes [33] with Prof. Martin Z. Bazant, and from

our collaborative paper [23] with Dr. Rahul Misra and Prof. Daniel Blankschtein building

a model to capture unique electrostatic correlation-derived surface forces in multivalent

electrolytes.

2.1 Overview

The standard model for diffuse charge phenomena in colloid science, electrokinetics and

biology is the Poisson-Boltzmann (PB) mean-field theory, which breaks down for multi-

valent ions and large surface charge densities due to electrostatic correlations [1]. In this

chapter, I formulate a predictive continuum theory of correlated electrolytes based on two

extensions of the Bazant-Storey-Kornyshev (BSK) framework: (i) a physical boundary

condition enforcing continuity of the Maxwell stress at a charged interface, which upholds

the Contact Theorem for dilute primitive-model electrolytes, and (ii) scaling relationships

for the correlation length, for a one-component plasma at a charged plane and around a

cylinder, as well as a dilute z:1 electrolyte screening a planar surface. In these cases, the

theory accurately reproduces Monte Carlo simulation results from weak to strong coupling,
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and extensions are possible for more complex models of electrolytes and ionic liquids.

Additionally, aqueous electrolyte solutions containing multivalent ions exhibit vari-

ous intriguing properties, including attractions between like-charged colloidal particles,

which result from strong electrostatic correlations. On the contrary, the classical Derjaguin-

Landau-Verwey-Overbeek (DLVO) theory of colloidal stability, based on the PB mean-field

theory, always predicts a repulsive electrostatic contribution to the disjoining pressure. In

this chapter, I include theoretical predictions of the BSK theory for surface forces, which

shows that the contribution to the disjoining pressure resulting from electrostatic correla-

tions is always attractive, and can readily dominate over entropic-induced repulsions for

solutions containing multivalent ions, leading to the phenomenon of like-charge attraction.

Ion-specific short-range hydration interactions, as well as surface charge regulation, are

shown to play an important role at smaller separation distances, but do not fundamentally

change these trends. The theory is able to predict the experimentally observed strong co-

hesive forces reported in cement pastes, which result from strong electrostatic correlations

involving the divalent calcium ion.

2.2 Continuum Theory of Electrostatic Correlations

2.2.1 Introduction

Electrostatic correlations can significantly affect the structure and thermodynamic proper-

ties of the electrical double layer [42, 43], resulting in qualitative differences from mean-

field Poisson-Boltzmann (PB) theory, such as like-charge attraction [22,23] or over-screening

of surface charge. Critical applications in biology, colloids, separations, or electrochem-

istry rely on or operate in the regime where correlation effects are active [42, 43].

Numerous models have been proposed to capture electrostatic correlations, typically

with a complicated mathematical structure. Outwaithe derived a modified Poisson Boltz-

mann models to account for the fluctuation potential of a single ion interacting with a

charged wall [44]. The hypernetted chain approximation and mean spherical approxima-

tion closure to the Ornstein-Zernike equation require solving integral equations involving
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the direct correlation functions of bulk charged spheres [45–48] for the equilibrium struc-

ture. Further work based on classical Density Functional Theory determines equilibrium

properties based on the minimization of an integro-differential free energy functional. Kier-

lik and Rosinberg implemented a model (termed the bulk fluid model [49]) which captures

correlations based on an perturbative expansion of density with direct correlation functions

as an input from the mean spherical approximation [50]. Voudkavinova et al. analyzed

the accuracy of two other related density functional theories (reference fluid density [51],

functionalized mean spherical approximation [52], and bulk fluid [50, 53]) in comparison

to Monte Carlo simulations, finding the reference fluid density approach to be most accu-

rate [49]. These theories implement the accurate Fundamental Measure Theory functional

developed by Rosenfeld to describe excluded volume effects [54, 55]. The additional elec-

trostatic interactions beyond mean field are included in the excess free energy separately,

without any modification to the mean-field electrostatic part of the free energy.

Figure 2-1: The scenarios considered in the ap-
plication of the BSK theory.

While these approaches often produce

accurate density profiles, they can be in-

volved to implement to a broad range of

applications, for different geometries or dy-

namic problems, especially compared to

the classical PB theory. To our knowl-

edge, they also have not yet been shown

to recover the correlated behavior of the

counterion-only limit for counterions of in-

finitesimal size. A simpler mathemati-

cal structure could help with the applica-

tion and interpretation of electrostatic cor-

relations to a wider class of problems in

physics, including electrokinetics, colloidal

interactions, and electrochemical transport/reactions.

Bazant, Storey and Kornyshev (BSK) proposed a continuum framework to account for

the nonlocal dielectric permittivity of ionic liquids resulting from ion-ion or electrostatic

45



correlations [34] with a simple mathematical structure, building on intermediate coupling

approximations of Santangelo [56] and Hatlo and Lue [57] for the one-component plasma.

The model captures correlations based on expansions in terms of electric field, rather than

ion density, in the free energy functional which leads to a higher-order Poisson equation.

In so doing, the electrostatic correlations are included self-consistently in the definition of

the electrostatic potential whose gradient determines the electrostatic force on an ion in

the diffuse layer. The BSK theory provides a simple framework to predict charge density

oscillations and over-screening phenomena in a variety of electrokinetic , electrochemi-

cal, biophysical, and colloidal phenomena in electrolytes and ionic liquids. The equations

require a similar level of complexity to solve compared to the PB theory, which allows

them to be applied to a broad group of applications. The theory was used to describe elec-

trosmotic [58] and electrophoretic mobility [59] reversals in multivalent and concentrated

electrolytes, as well as electroconvective instabilities in ionic liquids [60]. It was also ap-

plied to the dynamics [61–65] and electrosorption [66–69] at electrochemical interfaces

for ionic liquids and concentrated solvent-in-salt electrolytes, including storage [70] and

transport [71] in nanoporous media. Electrostatic correlations have a profound effect on

colloidal interactions [23, 72, 73], where they can induce like-charge attraction in multiva-

lent electrolytes, also predicted by the BSK theory. The activity and solvation energy of

electrolytes at high concentration was also studied including the electrostatic correlation

effect [74–78] as well as the extent of ion pairing in confinement [79]. Finally, the elec-

trostatic correlations given by the BSK theory were important in describing the conduction

through biological ion channels [9, 80–83]. Despite the numerous applications, fundamen-

tal questions remain about the proper boundary conditions and correlation length required

to complete the BSK theory.

Here, we show that the appropriate boundary constraint for the higher-order Poisson

equation is based on an interfacial stress balance. With corrected boundary conditions, the

BSK theory becomes exact in the strong and weak coupling limits for the one-component

plasma, and agrees with Monte Carlo (MC) simulations in intermediate coupling. We also

suggest scaling relationships for the correlation length without steric constraints in one-

component plasma and in multivalent electrolytes, for all the scenarios in Fig. 2-1. We
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show how the correlation length can have a simple physical interpretation based on the

correlation hole size of counterions at a charged surface. Although generalizations are pos-

sible, we restrict the analysis to a restricted primitive electrolyte with hard, spherical ions

of equal size in a constant permittivity, ε , medium and smeared out surface charge density,

qs, and neglect all concentrated-solution effects, so as to isolate electrostatic correlations.

2.2.2 Theory of electrostatic correlations

The BSK free energy functional is given by:

G =
∫

V
dr

{
g+ρφ − ε

2

[
(∇φ)2 + ℓ2

c
(
∇

2
φ
)2

+ . . .
]}

+
∮

S
drs qsφ .

(2.1)

Here, g = (H − T S)/V is the enthalpy and entropy density, ρ is the charge density, and

φ is the electrostatic potential. For simplicity, the free energy is truncated after the first

correlation contribution, although higher order terms can be considered [57]. While the

original authors performed a gradient expansion to arrive at Eq. 2.1 [34, 58], the mathe-

matical procedure is equivalent to modifying the interaction potential between ions from

Uαβ (r) = zαzβ ℓB | r |−1 to Uαβ (r) = zαzβ ℓB | r |−1 (1− e−|r|/ℓc) [56, 63]. The modified

interaction potential is solved in the mean-field limit. Thus the BSK theory is a phe-

nomenological correction to PB within the mean-field approximation, by subtracting out

interactions with smeared out charges within a correlation length ℓc, which should scale

as the size of the correlation hole. The modified Poisson equation results by finding the

extremal of the functional (δG
δφ

= 0):

ε(ℓ2
c∇

2 −1)∇2
φ = ρ. (2.2)

Eq. 2.2 is a statement of Maxwell’s equation, ∇ ·D = ρ where the displacement field is

D = ε̂E with a non-local permittivity operator ε̂ = ε(ℓ2
c∇2−1) applied on the electric field,

E = −∇φ , in a medium of constant permittivity, ε . PB theory is recovered when ℓc = 0.

Note that the definition of electrostatic potential itself has changed by adding the higher
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order correlation terms, without violating Maxwell’s equation. In other words, the potential

that determines the energy of an ion in the double layer must satisfy ∇ · (ε̂E) = ρ rather

than ∇ · (εE) = ρ . In this way, the electrostatic correlation contribution to the electrostatic

energy for an ion is included self consistently within the electrostatic framework, rather

than being added as additional corrections in the excess chemical potential. An advantage

of this approach is that the electrostatic force per unit charge of an ion is captured directly

with E, meaning that the diffuse electric potential φ here could be measured experimentally

at an electrode (if also accounting for the potential drop in the Stern layer).

The charge density at equilibrium, ρ = ∑i zieci, will be determined by the constraint

that the electrochemical potential for each ion is a constant at equilibrium. The electro-

chemical potential can be defined as the variation of the Gibbs free energy with respect to

concentration [84], µi =
δG
δci

, or

µi = µ
θ
i + kT ln(ci)+ zieφ +µ

ex
i (2.3)

where the first term is a reference value, the second term is the ideal entropy contribution,

the third term is the electrostatic potential contribution, and the fourth term is the excess

electrochemical potential.

The first open question in applying BSK theory is that of additional boundary condi-

tions, beyond Maxwell’s equation n̂ ·D= qs. Presumably, the boundary condition must take

care of the unaccounted short-range part of Uαβ . In the original BSK formulation and all

subsequent works, the boundary condition of n̂ ·∇3φ = 0 was applied, with the justification

that the correlation term should disappear at the interface at the distance of closest approach

of the ions [58,59,62–67,71,72,79,80,85,86]. The theory provided reasonable agreement

to simulation and experimental results for ionic liquids and multivalent electrolytes. How-

ever, the boundary conditions have not yet been proved or validated systematically.

The second open question is the choice of correlation length, which has been arbitrarily

set to the Bjerrum length for electrolytes [34,59], and the ion diameter for ionic liquids [34].

The theory is ultimately very sensitive to the choice of boundary conditions and correlation

length. Here, we analyze the boundary condition in terms of a stress balance at the interface
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and then validate ℓc by comparison to MC simulations.

Interfacial balance

Applying the Gibbs-Duhem equation at constant temperature to the electrolyte and screened

surface charges, following [17], and neglecting the external electrostatic work done on the

system, gives dP = ∑i cidµi. Taking the gradient in three-dimensional space and applying

the definition of the electrochemical potential:

−f = ∇P = kT ∑
i

∇ci +ρ∇φ +∑
i

ci∇µ
ex
i , (2.4)

where f is the total thermodynamic force. The first and third terms on the RHS of Eq. 2.4

correspond to the gradient of osmotic pressure, ∇Π. For an ideal solution, µex
i =0. The

gradient of the defined thermodynamic pressure is equivalent to the divergence of the total

stress tensor of the electrolyte system, f = ∇ ·τ. The total stress tensor is composed of an

osmotic pressure component, Π and a Maxwell stress tensor, τe, such that τ = −Π I+τe.

The component of interest in this analysis, τe, can be defined by:

∇ ·τe = ρE = ∇ · (ε̂E)E (2.5)

in a constant ε medium. Plugging in for the charge density using the BSK Eq. 2.2 and

performing integration by parts, one arrives at an expression for the Maxwell stress tensor

for a fluid with a non-local permittivity,

τe =εEE− 1
2

εE2 I+ εℓc
2
[(

E ·∇2E
)

I−E
(
∇

2E
)

−
(
∇

2E
)

E+
1
2
(∇ ·E)2 I

]
,

(2.6)

as derived in the Supporing Information. While the above equation was derived for constant

ε and ℓc, the expression is identical if these parameters vary. For varying ε or ℓc, the

Korteweg-Helmholtz force density must be included in the electrostatic stress [87],

∇ ·τe = ρE− 1
2

E2
∇ε +

1
2
(∇ ·E)2

∇(εℓc
2). (2.7)
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Within the distance of closest approach of the ions to the surface, correlations cannot

affect the value of the Maxwell stress at the surface, τe,surf, generated by the surface charge

density. The mechanical equilibrium problem therefore requires continuity in the electro-

static stress tensor evaluated in the solution and at the surface,

τe −τe,surf = 0. (2.8)

At a uniformly-charged, flat surface without a dielectric jump, the Maxwell stress tensor is

simply τe,surf = qs
2/(2ε)n̂n̂, while the Maxwell stress tensor in the electrolyte is given by

Eq. 2.6. Equating these two expressions, and substituting in n̂ ·D = qs we arrive at a final

boundary for a potential varying in one coordinate direction:

n̂ · ℓc∇
3
φ = ∇

2
φ

∣∣∣
S

(2.9)

applied at the distance of closest approach of the ion with the wall.

The method amounts to applying the Contact Theorem to the correlated electrolyte in

the absence of correlations, shown below for µex
i = 0 at a flat electrode with constant charge

density without a dielectric jump [88, 89]:

P =− q2
s

2ε
+ kT ∑

i
ci

∣∣∣
S
=−n̂ ·τe · n̂+ kT ∑

i
ci

∣∣∣
S
. (2.10)

The Contact Theorem is a statement of mechanical equilibrium, where the repulsive os-

motic pressure contribution is balanced by the electrostatic attraction from the Maxwell

stress. Without the constraint from Eq. 2.8, the BSK theory does not obey this simple rela-

tionship which should be valid even for dilute electrolytes in the primitive model [1,90,91].

The procedure of ensuring continuity in the Maxwell stress can be repeated for any higher

order ε̂ by equating the τe at successive orders of derivatives. The condition in Eq. 2.8

is also applicable to any extended electrolyte mean-field theory with arbitrary models of

concentrated solution activity and solvent polarizability, including interactions with a soft

wall. The approach may even be extended to media with non-local dielectric constant ε̂

driven by solvent polarization [92, 93].
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Correlation length scaling

Figure 2-2: Isolated charged plate. BSK theory
for one-component plasma compared to MC sim-
ulations from [1] with α = 0.50 for counterions
screening a charged isolated surface. The solid
lines are the predictions of the BSK theory with
the boundary condition of n̂ · ℓc∇3φ = ∇2φ

∣∣∣
S
, the

dashed-dotted lines are the predictions of the BSK
theory with the boundary condition of n̂ ·ℓc∇3φ =
0 and the markers are from the MC simulations.
Strong coupling limits are plotted as black dashed
lines. (a) The charge density is plotted as a func-
tion of distance from an isolated surface. (b) The
charge density difference relative to the solution
to the PB theory as a function of distance from an
isolated surface.

At a highly charged surfaces, the charge-

charge correlations are dominated by the

mutual repulsion of counterions at the in-

terface, as demonstrated in the schematic in

Fig. 2-1(a). The size of a correlation hole

of counterions forming a Wigner crystal is

characterized by a length scale Rhole:

Rhole =

(
1
6

)1/4(ze
qs

)1/2

, (2.11)

where z is the ion valency and e is an ele-

mentary charge. For this work, we assume

that the correlation length scales as the size

of a correlation hole, determined by the sur-

face charge denisty:

ℓc = αRhole (2.12)

with one parameter α , which is considered

to be a constant. We will demonstrate that

the fitted scaling with α = 0.50 works well

from the limit of zero reservoir concentra-

tion (one-component plasma) to more con-

centrated electrolytes.

At high concentration or at low sur-

face charge densities, this scaling argument

breaks down, and the other length scales might dominate in the correlation length. For

example, if the surface charge tends to zero, then the charge-charge correlations will be

dominated by the Bjerrum length and characteristic mean spacing between ions given by

51



the bulk concentration. At very large charge densities and for large ion sizes, where Rhole

becomes comparable to a, the ion diameter, the ion size can dominate in determining the

charge-charge correlations due to over-crowding effects. Also, if other length scales are

introduced, such as surface curvature, the correlation length between ions can also be af-

fected, as demonstrated with the one-component plasma around a thin charged cylinder.

In the Supporting Information of reference [33], the non-arbitrary scaling of the corre-

lation length is investigated by comparison to Grand Canonical Monte Carlo simulations

from ref. [3] for a z : 1 electrolyte (possessing cation of charge +ze and anion of charge

−e). Using the Buckingham-Π theorem, we know that the correlation length is related to

functions of dimensionless ratios of other length scales of the problem. At small or large

values of these dimensionless ratios, the functional dependence becomes a power law re-

lationship by expanding the individual functions, which we assume in this work. Here we

choose four length scales from which we can construct three dimensionless groups from:

the correlation length, ℓc, the Gouy-Chapman length, ℓGC, the Bjerrum length, z2ℓB, and

the Debye length λD, such that the power law relationship can be expressed as:

δc =
ℓc

λD
= α2

(
z2ℓB

ℓGC

)α3 (z2ℓB

λD

)α4

, (2.13)

where δc is the correlation length ℓc divided by the Debye length. The definitions and mean-

ings of the different length scales will be included in the Results and Discussion section as

they appear in the mathematical framework.

The correlation length scaling that arises from the fitting procedure to the MC data is

given by:

ℓc ∼ ℓB
1/4(qs/e)−1/8Cref

−1/6, (2.14)

with a fitted scale of:

δc = 0.35
(

z2ℓB

ℓGC

)−1/8(z2ℓB

λD

)2/3

. (2.15)

Note that the fitted exponents are expressed in terms of fractions to emphasize their rela-

tionship to the intrinsic length scales in the system.

A detailed investigation of how correlations are affected as a function of surface charge
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density, ion valency, concentration, ion size, and surface curvature could motivate a more

nuanced scaling of the correlation length, based on direct analysis of the charge-charge cor-

relation function, including variations in the correlation length as a function of the distance

from a charged surface. For example, the fitted correlation length relationship in Eq.2.15

does not return the correlation length for the counterion only system in the limit of zero

ion concentration. In this work, we isolate the electrostatic correlation effects for a dilute

electrolyte at highly charged surfaces. For the purposes of the analysis in the main text, we

will assume the correlation length to be ℓc = 0.50Rhole for all the scenarios investigated in

Fig. 2-1. For the results with the fitted correlation length scaling in 2.15, one can refer to

the Supporting Information of reference [33].

2.2.3 Results: One-component plasma

Considering a system of point-like counterions neutralizing a uniformly charged surface,

the importance of correlations is governed by a coupling constant,

Ξ = 2πz3ℓB
2qs/e, (2.16)

which is a measure of the correlation hole size, Rhole, compared to the characteristic ion

distance from the surface, the Gouy-Chapman length,

ℓGC = e(2πzℓBqs)
−1 (2.17)

such that Ξ ∼ Rhole
2/ℓGC

2. Note that the Bjerrum length, ℓB is defined as the distance at

which two unit charges experience an electrostatic energy equal to the thermal energy:

ℓB =
e2

4πεkBT
(2.18)

In the weak coupling limit (Ξ << 1), PB theory is valid. In the strong coupling limit

(Ξ >> 1), counterions interact with the electric potential created by the surface since ion-

surface interactions dominate [1, 43, 90, 94, 95].
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Figure 2-3: Confined geometry. BSK theory for
one-component plasma compared to MC simula-
tions of counterions between two like charged sur-
faces from [1] with α = 0.50. The solid lines are
the predictions of the BSK theory, and the mark-
ers are from the MC simulations. Strong coupling
limits are plotted as dashed lines. (a) The charge
density is plotted between two surfaces with sep-
aration d̃ = 2. (b) The pressure is calculated as
a function of separation distance between the two
plates. As the coupling increases, the pressures
between the like-charged surfaces become attrac-
tive (negative) rather than repulsive (positive).
The dimensionless pressure is P̃ = Pe2/(2πℓBq2

s ).

Now we consider applying the me-

chanical constraint, starting with the one-

component plasma of infinitesimally small

size with µex = 0. The one-component

plasma consists of a single mobile ionic

species which neutralizes the charge of a

smeared out surface charge density. We can

non-dimensionalize lengths with the Gouy-

Chapman length, the potential by the ther-

mal voltage for the counterion, φ0 = kT
ze ,

and the charge density by ρ0 = 2πℓBq2
s e−1.

Here, we assume that the correlation length

scales with the size of a correlation hole at

the surface, δc = ℓc/ℓGC = α0
√

Ξ Using ∼

to denote non-dimensionalized variables:

α0
2
Ξ∇̃

4
φ̃ − ∇̃

2
φ̃ = 2ρ̃ = 2e−φ̃ (2.19)

with boundary conditions of

n̂ · (α0
2
Ξ∇̃

3
φ̃ − ∇̃φ̃) =−2

n̂ ·α0
√

Ξ∇̃
3
φ̃ = ∇̃

2
φ̃

(2.20)

at x̃ = 0, where α0 = 1.36α is an order one

constant proportional to α . Therefore, the

importance of the higher order derivative is

governed by the coupling parameter, Ξ.

The solution to these equations is compared to the results of MC simulations in Fig.

2-2 for a one-component plasma screening a plane of charge. The BSK theory reproduces

the behavior of the one-component plasma from weak coupling, in intermediate coupling,

and matches the strong coupling limit with α = 0.50. Furthermore, the BSK theory with
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the boundary condition of n̂ ·∇3φ = 0, represented by the dashed-dotted lines in Fig. 2-2a,

does not accurately represent the data at intermediate or strong coupling.

We can also consider the one-component plasma between two charged surfaces of equal

charge density with the same sign, confining the counterions in a gap of dimensionless

distance d̃, as shown in Fig. 2-3a. In Fig. 2-3b, the pressure is plotted as a function

of separation distances between two charged surfaces with different coupling parameters,

using Eq. 2.8 and using the same value for α . The BSK theory again provides good

agreement with the results of the MC simulations at all the coupling parameters.

Figure 2-4: Cylindrical geometry. BSK theory
for one-component plasma compared to MC sim-
ulations from [2] using α = 0.50 for the counte-
rion density around a charged cylinder for ξ = 4.
The solid lines are the results of applying Eq. 2.19
and the markers are the MC simulation results
from [2]. The weak coupling, strong coupling,
and re-normalized strong coupling needle limits
are plotted [2].

Another critical question is the validity

of Eq. 2.8 at a curved interface. The sim-

plest model system to test the hypothesis

is the one-component plasma surrounding a

charged cylinder of radius ξ = Rcyl/ℓGC at

infinite dilution, corresponding to a cylin-

drical cell with outer radius Rout → ∞. As

shown in Fig. 2-4 and Supporting Infor-

mation Fig. S1 in reference [33], the BSK

equation reproduces the results of the weak

and strong coupling limits correctly, by ap-

plying the boundary condition in Eq. 2.20

at r̃ = ξ . However, similar to the strong

coupling expansion of [96], the theory does

not correctly describe the renormalization

of charge arising from Manning condensa-

tion in the needle limit, where a fraction f = 1− 1/ξ of the charge is “condensed" onto

cylinder [97]. The charge density must be multiplied by this fraction, f , in order to match

the strong coupling expansion taking into account the charge renormalization in the needle

limit [2, 98]. The smaller the radius of curvature, the more likely that the configuration

of correlated ions is influenced by curvature. In the “needle limit," where
√

Ξ/ξ >> 1,

ions are distributed in a nearly linear fashion along the cylindrical backbone with spacing
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scaling as ã ∼ Ξ/ξ , which may also be the relevant scaling for the correlation length in

this regime rather than
√

Ξ. Supporting Figs. S1 and S2 in reference [33] show the results

choosing δc = Ξ/ξ , but the counterion condensation transition is still not captured.

2.2.4 Results: Electrolytes

A more useful and relevant application of the BSK theory is to describe the distribution of

charges in electrolytes and ionic liquids, as was originally proposed. Here, we focus on the

dilute electrolyte limit, to isolate electrostatic correlations directly, without complications

from overcrowding.

If the BSK equation for a z:1 electrolyte with salt concentration Cref is non-dimensionalized

with the thermal voltage φ̃ = (eφ)/(kT ) and the Debye length

λD =

√
εkT

(z2 + z)e2Cref
, (2.21)

∇̃ = λD∇ and δc = ℓc/λD the BSK equation becomes:

δ
2
c ∇̃

4
φ̃ − ∇̃

2
φ̃ = ρ̃ =

ze−zφ̃ − zeφ̃

z2 + z
. (2.22)

The boundary conditions are similarly modified to:

n̂ · (δ 2
c ∇̃

3
φ̃ − ∇̃φ̃) = q̃s

n̂ ·δc
˜

∇
3
φ = ∇̃

2
φ̃ .

(2.23)

The agreement of the predicted charge density profiles from Eq. 2.22 with the GCMC data

is very good, as exhibited in Fig. 5 for a 0.1 M 2:1 electrolyte. In the Supporting Informa-

tion of reference [33], the results are expanded to a more complete set of comparisons with

simulations. It is seen with ℓc = 0.50Rhole or with ℓc determined by Eq. 2.15, that the BSK

theory can correct the PB charge density profiles, including an overscreening transition.

Larger errors from the BSK theory are incurred at large concentration, where the current

assumption of µex
i = 0 breaks down.
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Figure 2-5: Electrolyte at an isolated plate. BSK theory for an electrolyte solution compared to
MC simulations [3] of multivalent electrolytes with α = 0.50. (a) An example of the charge density
profile for a 2:1 electrolyte at 0.1 M concentration compared to the GCMC simulations and PB
theory. (b) The difference between the predictions of the BSK theory and the simulations from PB
theory predictions.

One implication of the boundary condition is that the differential capacitance for ℓc = 0

is equivalent to the case of ℓc ̸= 0 if µex
i = 0. Therefore, the differential capacitance for the

correlated, dilute electrolyte is given by the traditional Gouy-Chapman equation:

CD =
ε

λD
cosh

(
φ̃D

2

)
, (2.24)

in stark contrast to the original work in the limit of µex
i = 0 [34,58]. It would be interesting

to explore the implications of the boundary condition on electrokinetic reversals, electro-

chemical interfaces, biological channels, or colloidal phenomena [58, 59, 62–67, 71, 72, 79,

80,85]. For example, the DLVO theory of colloidal interactions can be modified to include

attractive correlation effects [23].

Further extensions of the theory

Charged Dielectric Interfaces: Note that the Maxwell stress condition (Eq. 2.6) has only

been stated without a dielectric jump. The stress condition may need further validation at

a dielectric interface. A more general statement of matching the Maxwell stress with and

without correlations might be given by a jump condition between the two media:

n̂ · [τe,1 −τe,2] = n̂ · [τe,1 −τe,2]ℓc=0. (2.25)
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For a uniformly-charged, flat interface without a dielectric jump, τe,2 = 0, so the RHS of

the above equation reduces to n̂ · [τe,1 −τe,2]ℓc=0 =
qs

2

2ε1
n̂ .

Concentrated Electrolytes and Ionic Liquids: The present analysis attempts to iso-

late the effect of ion correlations in a dilute electrolyte. Ion size effects, particularly for

a/λD > 1 will require further validation to properly account for correlations guided by

ion size combined with electrostatics, as I will show in the next chapter. A non-local

free energy functional might be necessary to capture the size correlations in concentrated

solutions [55, 99], in conjunction with electrostatic correlations. Short-range bulk corre-

lations [100] are not captured in this theory. Furthermore, if surface charges are discrete

rather than smeared out, the contact condition may change [101], although the boundary

condition derived here could be applied to such charge density distributions. For an ar-

bitrary mixture of ions with different valency, the effective correlation length will depend

upon correlations between each pair of species, although the correlations at high surface

charge density will still be dominated by the most highly charged counterion.

2.2.5 Conclusions

The phenomenological BSK theory describes non-local, discrete correlation effects with a

higher-order, local, continuum description of the free energy quite well. The remarkable

agreement of the theory with the one-component plasma and primitive model electrolyte

suggest that higher-order, continuum equations can properly account for correlation ef-

fects, as long as the appropriate constraints are imposed at boundaries. The formalism

used here could be extended to the ionic liquid limit, although ion pairing, short-range

non-electrostatic correlations, and “spin glass" ordering [28] might preclude a simple con-

tinuum description. Further modifications are needed to capture the long range screening

exhibited in ionic liquids and concentrated electrolytes [102], as well as density oscilla-

tions expected in overcrowded systems [55]. Even so, the BSK theory captures important

features of electrostatic correlations, including like-charge attraction and overscreening,

driven by electrostatic interactions of spatially correlated counterions. Furthermore, unlike

many previous approaches, all the electrostatic forces are contained self-consistently within
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the electrostatic potential, φ . Detailed analysis of experimental data is needed to determine

the competing effects of surface adsorption reactions modifying fixed surface charge [103]

or the overscreening/ like-charge attraction effects modeled by the BSK theory [23]. Now,

in the next section, we turn to the prediction of surface forces using the BSK theory with

the boundary conditions and correlation length scaling found in this section.

2.3 Surface Forces including Electrostatic Correlations

The accurate prediction of forces between charged surfaces in aqueous electrolytes is of

paramount importance in diverse scientific disciplines, ranging from colloidal science to

biophysics and polymer chemistry [104]. Surface forces ultimately determine whether col-

loidal particles, and macromolecules, such as DNA, proteins, and polymers, will aggregate

or will remain stable in dispersions [105–109]. Typically, two different types of forces op-

erate between charged surfaces in electrolyte solutions: short-range van der Waals forces,

which are predominantly attractive, and long-range electrostatic forces, which can be at-

tractive or repulsive depending on the sign and magnitude of the charge on the interacting

surfaces [110–112]. The most widely used model of colloidal stability is the classical

Derjaguin-Landau-Verwey-Overbeek (DLVO) theory [25, 113], in which the electrostatic

contribution to the disjoining pressure (force per unit area acting on the charged surfaces)

is described using the Poisson-Boltzmann (PB) mean-field theory, which assumes that the

ions residing in the electric double layer (EDL) at the charged surface feel a mean electro-

static potential from the smeared out (volume-averaged) charge density near the charged

surface. The PB model also assumes that the dielectric permittivity of the solvent is con-

stant and uniform, considers ions to be point-sized, and neglects any form of electrostatic

correlations. The prediction of the disjoining pressure by the DLVO theory utilizing the PB

model is in very good agreement [104, 114–127] with experimental data in the so called

weak-coupling limit, i.e., the limit corresponding to a low surface charge density, high

solvent dielectric permittivity, low valency of counterions (those ions containing charge

of sign opposite to that of the surface), or high temperature. As shown in the previous

section, in the case of multivalent electrolytes, electrostatic correlations become impor-
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tant due to the large valency of the counterions, and the PB model fails to describe the

disjoining pressure acting between charged surfaces even qualitatively [1, 128–131]. In

particular, mean-field PB theory always predicts a repulsive EDL pressure contribution for

like-charged surfaces, irrespective of the magnitude of the surface charge density, the ion

concentration, or the valency of the counterions. This is in stark contrast to the experimen-

tal results [5, 132–134] and Monte-Carlo simulations [1, 135–137] which have provided

ample evidence of the phenomenon of like-charge attraction mediated by multivalent ions.

This clear signature of electrostatic correlations is responsible for many important interfa-

cial phenomena, including cement cohesion [5, 138], biopolymer aggregation [139], and

colloidal coagulation [131, 140], and nevertheless, it still lacks a simple mathematical de-

scription.

Several theoretical approaches have been used in the past to explain like-charge attrac-

tion, including the theory by Perel and Shklovskii [141], the hypernetted-chain (HNC) inte-

gral equation theory, [135,142] and the dressed-ion theory [143,144]. Although these theo-

retical approaches have certainly improved our understanding of electrostatic correlations,

they lack the mathematical simplicity underlying the PB theory, which allows the disjoining

pressure to be directly related to various system parameters, including the salt concentra-

tion, the ion valency, the solvent dielectric permittivity, the surface charge density, and the

temperature. To this end, as explained in the previous section of this chapter, a simple and

general theory of electrostatic correlations based on a Landau Ginzburg-type continuum

framework was recently developed by Bazant, Storey, and Kornyshev (BSK) [34], and ini-

tially used to explain screening phenomena in solvent-free ionic liquids. Compared to the

PB mean-field theory, the BSK free energy functional adds an additional term containing

the second derivative of the electrostatic potential to account for electrostatic correlations:

F=
∫

V
dr

{
ρφ − ε

2

[
|∇φ |2 + l2

c
(
∇

2
φ
)2
]
+g(c+,c−)

}
+

∮
S

drqsφ

(2.26)
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where ρ = e(z+c+− z−c−) is the mean charge density, z± and c± are the valencies and

concentrations of the cations and the anions, respectively, in the electric double layer of

volume V , φ is the electrostatic potential, qs is the surface charge density, ε is the dielectric

permittivity of the solution, lc denotes the electrostatic correlation length, and g(c+,c−)

is the entropic component of the total free energy and corresponds to the entropy density

arising from the translational entropy of the ions. Note that − ε

2 |∇φ |2 and ρφ represent

the self energy of the electric field and the electrostatic potential energy of the ions in this

electric field, respectively. The potential gradient term, − ε

2 l2
c
(
∇2φ

)2, is used to model an

additional contribution to the self energy resulting from electrostatic correlations between

the ions. The terms excluding the entropic contribution, g, arise via a charging process in

which ions are added to a system in which they interact with the electrostatic potential, φ .

Although the higher order equation is still solved in the mean-field of spatially averaged

φ and ρ , the higher-order third term implies the nonlocal nature of the free energy due to

electrostatic correlations. One can interpret this term as a phenomenological correction to

the mean-field Poisson-Boltzmann framework that is solved for in the mean field. This

simple extension of the PB theory is a useful first approximation of electrostatic correlation

effects in ionic liquids [60, 62, 63, 66, 71] and in so-called “water-in-salt" electrolytes [67].

The BSK model has also been applied to electrolytic solutions [58] and shown to cap-

ture various ion correlation effects, including electrophoretic mobility reversals of col-

loidal particles in multivalent electrolytes [59], micelle formation [73],and ion conduction

through biological ion channels [81, 83, 145, 146]. The first challenge in applying the BSK

theory to different systems is to find a suitable approximation of the electrostatic correla-

tion length, lc. In the original paper, Bazant et al. [34] suggested using the Bjerrum length,

lb, for dilute electrolytes and the ionic diameter for the opposite limit of room temperature

ionic liquids (where it is typically much larger than the Debye length). In the general case

of a z:1 primitive-model electrolyte, where z is the valency of the counterion, the correla-

tion length parameter was recently found to scale as [147]:

lc ∼ lb1/4(| qs | /e)−1/8c0
−1/6 (2.27)
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where lb = e2

4πεkBT is the Bjerrum length [104], e is the unit of elementary charge and

c0 is the bulk salt concentration. Note that the Bjerrum length corresponds to the length

scale at which the electrostatic interactions between two monovalent ions in the solution is

comparable to the thermal energy, kBT , where kB is the Boltzmann constant and T is the

absolute temperature. Physically, the correlation length, lc, scales with the diameter of a

correlation hole in the electrolyte, beyond which the mean-field equations are sufficient to

describe the electrostatic interactions between ions, as reflected in the PB model. In this

chapter, we describe electrostatic correlations using the BSK model for electrolytes, and

study their influence on the disjoining pressure acting between charged surfaces.

The second challenge in applying the BSK model is the choice of an additional bound-

ary condition for the generalized Poisson equation, a fourth order ordinary differential

equation (ODE) in our one-dimensional geometries. The second order PB equation re-

quires only one condition on each bounding surface, whereas the BSK equation requires

two. Although mixed boundary conditions were first proposed [148], the standard choice,

advocated by BSK for ionic liquids, has been to set the third derivative of the potential to

zero, effectively cutting off electrostatic correlations at the distance of closest approach.

Here, we take advantage of the recent development of more consistent and general bound-

ary conditions, as derived in the previous section, which are obtained by equating the

normal Maxwell stress at the charged surface to its form in the absence of electrostatic

correlations given by the contact theorem [147].

We should stress here that the phenomenon of like-charge attraction can be modeled

using solely the higher order term in the BSK functional Eq. 2.26 (see the Results section

for details). However, for an accurate comparison of our theoretically predicted disjoin-

ing pressure with experimental data, we also incorporate some additional interactions, to

arrive at a more complete generalization of the DLVO theory. In particular, the PB model

assumes that ions are point-sized and are distributed throughout the electrolyte according

to the Boltzmann distribution. This results in an exponential growth of counterions near

the charged surface [148]. In practice, however, the region closest to the charged surface is

always hydrated by a condensed layer of water molecules. This layer is inaccessible to the

counterions, and is referred to as the Stern layer [25, 149].
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Recently, Bohinc et al. [150] formulated the Poisson-Helmholtz-Boltzmann model to

describe solvent-mediated, non-electrostatic interactions between ions based on a pair-wise

Yukawa potential. In this model, in addition to electrostatic interactions, the ions experi-

ence a hydration (h) interaction given by, Uh/kBT = e−κh(r−lh)/r, where Uh is the hydration

energy, r is the separation distance between the ions, κh is the inverse of the length scale

corresponding to the decay of ordered water layers around an ion, and lh is the length scale

at which Uh becomes comparable to the thermal energy, kBT . In this study, we follow the

approach of Bohinc et al. [4, 150] to incorporate an additional solvent-mediated hydration

interaction into the model in Eq. 2.26. Our approach serves two important purposes. First,

we can self-consistently model both the Stern and the Diffuse layer regions of the electric

double layer using a single theory. Second, we can study the effect of the Stern layer region

on the disjoining pressure acting between charged surfaces. Recall that in the Stern layer

region, counterions are repelled from the charged surface due to the short-range hydra-

tion interactions while coions, which carry charge of the same sign as that of the charged

surface, are repelled due to the unfavorable repulsive electrostatic interactions with the

charged surface. We later show that the short-range repulsive hydration forces reported by

Israelachvilli and Pashley [151], as well as by LeNeveu and Rand [152], emerge naturally

from the incorporation of hydration interactions into our model of the electric double layer.

After incorporating electrostatic correlations and hydration interactions into our EDL

model, we implement a final modification by describing the phenomenon of surface charge

regulation. This is the electrochemical mechanism by which surfaces in contact with aque-

ous electrolytes acquire charge from the dissociation of surface species, such as the silanol

groups that typically terminate glass or silica surfaces [153]. In this case, the degree of dis-

sociation depends strongly on the pH of the solution. To validate our theoretical predictions

on like-charge attraction, we make use of the experimental data of Plassard et al. [5] who

measured the disjoining pressure acting between calcium silicate hydrate (CSH) layers in

a calcium hydroxide electrolyte solution. We incorporate the mechanism of surface charge

regulation into our EDL model by assuming that the charge on the CSH layers results from

the dissociation of silanol groups (SiO−) at the CSH surface [5], which allows us to relate

the surface charge density on the CSH surface to the calcium hydroxide concentration in
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the solution.

The end result after incorporation of electrostatic correlations, hydration interactions,

and surface charge regulation - phenomena which are all currently neglected in the DLVO

theory, is a complete, self-consistent theory of the disjoining pressure for multivalent elec-

trolytes. Specifically, we demonstrate that our theory can be used to describe the phe-

nomenon of like-charge attraction, including predicting the disjoining pressure, in reason-

ably good agreement with the experimental data of Plassard et al. [5] for a broad range of

salt concentrations.

2.3.1 Model and Methods

We begin our analysis by considering two similarly-charged surfaces immersed in a z:1

electrolyte solution, where z denotes the valency of the counterion. For reference, we as-

sume that both surfaces are negatively charged, which implies that the cations are the posi-

tively charged counterions in this system. Because hydration interactions are short-ranged,

we simplify our analysis by assuming that the hydration interactions are only relevant for

the cations and negligible for the anions, which are anyways repelled due to the repulsive

electrostatic interactions with the negatively charged surface. Therefore, in our model, the

cations interact with the negatively charged surface through both electrostatic and hydra-

tion interactions, while the anions interact with the negatively charged surface only through

electrostatic interactions. Further, as shown in Fig. 2-6, the region closest to the negatively

charged surface is accessible only to the water molecules, with these water molecules serv-

ing as the source term for the boundary condition for the hydration potential (see below).

As discussed by Brown et al. [4], this is similar in spirit to the surface charge density at the

charged surface serving as the boundary condition for the electrostatic potential. The neg-

atively charged surfaces electrostatically attract cations from the bulk reservoir, resulting

in the formation of an EDL of ions in the region between the charged surfaces. As shown

in Fig. 2-6, the formation of the EDL results in the pressure felt by the charged surfaces,

referred to as the disjoining pressure, being significantly different than the osmotic pressure

in the bulk reservoir.
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Figure 2-6: Schematic of our model problem: a
multivalent z : 1 electrolyte is confined between
two surfaces with surface charge density, qs. The
disjoining pressure, Π, is defined as the difference
in the pressure (P) felt between the plates due to
the presence of the EDL and the pressure in the
bulk reservoir (P∞). As shown here, the Stern
layer which is the region closest to the charged
surface is accessible only to the water molecules
(depicted as ellipsoids), modeled using the hydra-
tion potential while the concentration profiles of
the cations (depicted as red spheres) and the an-
ions (depicted as blue spheres) in the EDL are in-
fluenced by electrostatic correlations, described in
our theory using the BSK model.

After incorporation of additional con-

tributions from hydration interactions into

Eq. 2.26, we arrive at the following gen-

eral functional for the total Helmholtz free

energy of the system,

F=
∫

V
dr

{
ρφ − ε

2

[
|∇φ |2 + l2

c
(
∇

2
φ
)2
]
+g(c+,c−)

}
+

∮
S

drqsφ

+
∫

V
dr

{[−κ2
h ψ2

h − (∇ψh)
2

8πlheκhlh

]
kBT +(c+− c0)ψhkBT

}
+

∮
S

drσhψh −
∫

V
dr(µ+c++µ−c−)

(2.28)

where ψh is the dimensionless hydration

potential, σh is the surface density of wa-

ter molecules at the charged surface which

mediate the interaction of cations with the

charged surface, and µ+ and µ− are the

chemical potentials of cations and anions,

respectively. The terms in the 1st and 2nd

rows in Eq. 2.28 are the same as those of

Eq. 2.26, and correspond to the free energy

of the system after incorporating electro-

static correlations into the PB model. Fur-

ther, the terms in the 3rd row and the 1st

term in the 4th row in Eq. 2.28 result from the incorporation of hydration effects into our

model. Finally, the last term in Eq. 2.28 couples the concentration of ions in the EDL con-

fined by the charged surfaces to that in the bulk reservoir. Although the terms in Eq. 2.28

resulting from electrostatic correlations and hydration interactions have been reported in

refs. [34] and [150], respectively, for completeness, a detailed derivation of the Helmholtz
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free energy expression in Eq. 2.28 is provided in the Supporting Information (SI) document

in reference [23].

We note here that the incorporation of hydration interactions automatically accounts

for the finite size of the ions. Therefore, there is no need to incorporate any additional

excluded-volume interactions in our model, and we can retain the original expression for

the entropy density, g(c+,c−), from the PB model given by:

g = kBT ∑
i=±

[
ci

(
ln
(

ci

c0i

)
−1

)]
(2.29)

where c0i(i =±) is the corresponding concentration of cations/anions in the bulk reservoir.

Next, we enforce the conditions of thermodynamic equilibrium in the system by setting

δF/δφ = 0 for the electrostatic potential and δF/δψh = 0 for the hydration potential in

Eq. 2.28, respectively. For the electrostatic potential, we obtain a fourth order Poisson

equation and a boundary condition, respectively, given by:

ε
(
l2
c ∇

2 −1
)

∇
2
φ = ρ = (zec+− ec−) (2.30)

n̂ · ε
(
l2
c ∇

2 −1
)

∇φ = qs (2.31)

Similarly, the governing equation for the dimensionless hydration potential, ψh, and the

corresponding boundary condition are given by:

∇
2
ψh −κ

2
h ψh =−4πlheκhlh

[
c+− c0

]
(2.32)

n̂ ·∇ψh =−4πlheκhlhσh (2.33)

We note here that Eq. 2.32 does not contain any term which depends on the concentration

of anions, c−, which is consistent with our assumption that the hydration potential acts only

between the cations. As discussed by Brown et al. [4], Eq. 2.33 results from assuming that
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each ordered water molecule near the negatively charged solid surface acts like a source

term for the hydration interaction of the cations with the charged surface. At thermody-

namic equilibrium, δF
δc±

= 0, which results in the following expressions for the chemical

potential of the counterions and the coions:

µ+

kBT
=

zeφ

kBT
+ψh + ln

(
c+
c+0

)
; (2.34)

µ−
kBT

=− eφ

kBT
+ ln

(
c−
c−0

)
(2.35)

where c+0 and c−0 are the bulk concentration of the counterions and the coions, respec-

tively. To satisfy the condition of electroneutrality in the bulk, c+0 = c0 and c−0 = zc0 (c0

is the concentration of the undissociated z:1 salt). Equating Eq. 2.35 at any point in the

EDL and in the bulk reservoir results in the following expressions for the dimensionless

counterion and the coion densities in the EDL: c̃+ = e−zφ̃+ψh, c̃− = eφ̃ , where, φ̃ = eφ

kBT ,

c̃+ = c
c0

and c̃− = c
zc0

. For a numerical evaluation of the electrostatic potential in the EDL,

it is convenient to convert Eq. 2.30 into a dimensionless form, given by,

(
δ

2
c ∇̃

2 −1
)

∇̃
2
φ̃ =

c̃+− c̃−
1+ z

, (2.36)

where x̃ = x/λD, λD is the Debye-Hückel screening length which for a z:1 electrolyte is

given by the expression: λD
2 = εkBT

z(z+1)c0e2 ,∇̃ = λD∇, and δc = lc/λD is the dimensionless

correlation length. The dimensionless correlation length for a z:1 electrolyte is given by

the following expression in ref. [147]:

δc = 0.35
(

z2lb
lGC

)−1/8(z2lb
λD

)2/3

(2.37)

In Eq. 2.37, the quantity, lGC, denotes the Gouy-Chapman length which is the length

scale at which the interaction of a counterion with a uniformly charged surface becomes

comparable to the thermal energy, kBT , and is given by:

lGC =
e

2πzlb | qs |
(2.38)
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Similar to the electrostatic potential, the dimensionless governing equation for the hydra-

tion potential is given by:

∇̃
2
ψh −κ

2
h λ

2
Dψh = 4πlheκhlhc0λ

2
D

[
1− c̃+

]
(2.39)

Note that the governing equation for the dimensionless electrostatic potential (Eq. 2.36)

is 4th order. Therefore, we need four boundary conditions to solve for the dimensionless

electrostatic potential. Assuming that the negatively charged surfaces are located at −d/2−

lh and d/2+ lh, respectively, where d is the separation distance between the two negatively

charged surfaces, corresponding to the region accessible to ions, and lh is the hydration

length parameter, Eq. 2.36 can be solved using the following four boundary conditions:

(i) φ̃
′
(

x̃ =− d̃
2 − l̃h

)
−δc

2
φ̃
′′′
(

x̃ =− d̃
2 − l̃h

)
=−qseλD

εkBT ,

(ii) φ̃
′
(

x̃ = d̃
2 + l̃h

)
−δc

2
φ̃
′′′
(

x̃ = d̃
2 + l̃h

)
= qseλD

εkBT ,

(iii) δcφ̃
′′′
(

x̃ =− d̃
2 − l̃h

)
= φ̃

′′
(

x̃ =− d̃
2 − l̃h

)
and

(iv) δcφ̃
′′′
(

x̃ = d̃
2 + l̃h

)
=−φ̃

′′
(

x̃ = d̃
2 + l̃h

)
.

Note that boundary conditions (i) and (ii) result from equating the electric displace-

ment field at the charged surface, which is similar to the approach used in previous studies

to derive the boundary conditions for the PB model. Further, the boundary conditions

(iii) and (iv) result from enforcing a force balance at contact, where ionic correlations

must vanish [147]. The boundary conditions to solve for the dimensionless hydration po-

tential using Eq. 2.39 are given by [4]: (i) ψ ′
h

(
x̃ =− d̃

2 − l̃h
)
= −4πlhλDeκhlhσh and (ii)

ψ ′
h

(
x̃ = d̃

2 + l̃h
)
= 4πlhλDeκhlhσh. Note that for a given d, the actual domain over which

the equations are being solved changes depending on whether the hydration potential is

included in the model. If hydration potential is included (i.e., lh ̸= 0), then the electrolyte

domain lies between x = −d/2− lh and x = d/2+ lh. If not (lh = 0), then the distance of

closest approach must be subtracted, such that the electrolyte domain consists of the region

between x = −d/2 and x = d/2. Such a distinction is important when the predicted dis-

joining pressure is compared using different models, as shown below in the Results section,

where the separation distance between the charged surfaces is denoted using, d, for all the

models considered.
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In reference [23], we present the full derivation of the disjoining pressure. After apply-

ing some mathematical identities and thermodynamic relations, we arrive at the pressure

expression for the full theory:

P(x) =− ε

2
φ
′2 − εlc2

2
φ
′′2 + εlc2

φ
′′′

φ
′+ c0ψhkBT

+
[

κ2
h ψ2

h −ψ ′2
h

8πlheκhlh

]
kBT −

{
g− ∑

i=±
ci

∂g
∂ci

} (2.40)

Using the expression for g from Eq. 2.29, and subtracting the pressure in the bulk reservoir

obtained by setting the electrostatic potential, the hydration potential, and all the higher-

order derivatives of the electrostatic and the hydration potentials to zero in Eq. 2.40, the

disjoining pressure, Π = P−P∞, is given by:

Π =−ε

2
φ
′2 − εlc2

2
φ
′′2 + εlc2

φ
′′′

φ
′+ kBT ∑

i=±

[
ci − ci0

]
+ kBT c0ψh + kBT

[
κ2

h ψ2
h −ψ ′2

h
8πlheκhlh

] (2.41)

Next, we analyze in more detail each of the terms contributing to the disjoining pressure

predicted in Eq. 2.41. Specifically, the 1st term arises from the self energy of the electro-

static field in the EDL, the 2nd and 3rd terms arise from electrostatic correlations, the 4th

term is a contribution due to the translational entropy of the ions, and the 5th and 6th terms

arise from the incorporation of hydration interactions into the EDL model. If hydration

interactions are neglected, i.e., ψh = 0 and ψ ′
h = 0, the 1st four terms in Eq. 2.41 yield the

expression of the disjoining pressure in the context of the BSK model, given by:

ΠBSK =−ε

2
φ
′2 − εlc2

2
φ
′′2 + εlc2

φ
′′′

φ
′+ kBT ∑

i=±

[
ci − ci0

]
(2.42)

Further, if electrostatic correlations are also neglected, i.e. if we set lc = 0 in Eq. 2.41,

we recover the exact expression of the disjoining pressure for the PB model given by (see
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refs. [25, 154]):

ΠPB =−ε

2
φ
′2 + kBT ∑

i=±

[
ci − ci0

]
(2.43)

The disjoining pressure in Eq. 2.41, is uniform throughout the region confined by the

two charged surfaces. However, one can obtain additional insights about the nature of

the terms contributing to the disjoining pressure by evaluating Eq. 2.41 at the mid-plane

between the two charged surfaces. For example, if the two surfaces carry charge of the

same sign and magnitude (similarly-charged), the 1st derivative of both the electrostatic

and the hydration potentials are zero at the mid-plane between the two charged surfaces

due to symmetry conditions. In this case, the predicted disjoining pressure is given by:

Π

∣∣∣
center

=− εlc2

2
φ
′′2
∣∣∣
center

+ kBT ∑
i=±

[
ci

∣∣∣
center

− ci0

]
+

kBT c0ψh

∣∣∣
center

+ kBT
κ2

h ψh
2
∣∣∣
center

8πlh
e−κhlh

(2.44)

Eq. 2.44 clearly shows that the contribution from the water-mediated hydration interac-

tions between the cations (last two terms in Eq. 2.44) to the disjoining pressure is always

repulsive. The 2nd term in Eq. 2.44, which is the entropic contribution to the disjoining

pressure, is also always repulsive. Note that the 2nd term in Eq. 2.44 corresponds to the

disjoining pressure according to the PB model. This is the reason why the PB model always

predicts a repulsive disjoining pressure between similarly-charged surfaces, irrespective of

the surface charge density, the salt concentration, and the valency of the counterions. In

contrast, the 1st term in Eq. 2.44, which arises from the electrostatic correlations described

by the BSK model, is always negative. Therefore, Eq. 2.44 predicts that there can be an

attractive EDL contribution to the disjoining pressure even between similarly-charged sur-

faces, as long as the attractive contribution due to electrostatic correlations dominates over

the contributions due to the repulsive entropic and hydration interactions.

In addition to electrostatic interactions, van der Waals interactions between the two pla-

nar surfaces can contribute to the disjoining pressure, although their range is significantly
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short-ranged. The van der Waals contribution to the disjoining pressure can simply be

added to Eq. 2.44, and is given by [5]:

PvdW =− Ah

6π(d +2lh)3 (2.45)

where Ah is the Hamaker constant and determines the magnitude of the van der Waals

interaction between the two planar surfaces. It is noteworthy that the attractive disjoin-

ing pressure associated with the van der Waals interactions can also result in like-charge

attraction, especially if the charged surface is neutralized by the multivalent counterions.

However, the magnitude of the attraction resulting from the van der Waals interactions is

highly system-specific. Indeed, the attractive contribution to the disjoining pressure re-

sulting from the van der Waals interactions will depend on several factors: (i) the nature

of the counterion neutralizing the charged surface, (ii) the thickness of the electric dou-

ble layer of counterions neutralizing the charged surface, and (iii) the magnitude of the

Hamaker constant of the interacting charged surfaces in air. All these effects can be cap-

tured in our model by defining an effective Hamaker constant to model the van der Waals

interaction between charged surfaces in the presence of a confined electrolyte. Note that

unless specifically stated, most of the results in this chapter will not include the contribu-

tion in Eq. 2.45, because our study is mainly focused on studying the EDL contribution

to the disjoining pressure. However, we will include the van der Waals contribution to the

disjoining pressure when comparing the theoretically-predicted disjoining pressure to the

experimentally-measured one.

Finally, we also include the contribution due to the phenomenon of surface charge reg-

ulation into our EDL model. Although there are several theoretical approaches to model

surface charge regulation [155, 156], we have adopted the formulation by Behrens and

Grier [153], which is useful to model surface charge regulation in cases where the sur-

face charge is related to the dissociation of silanol groups from the surface. Note that in

the case of CSH layers, the surface dissociation of silanol groups is primarily responsible

for the negative surface charge on the CSH layers, as reported in the study by Plassard et

al. [157]. To model the variation of the surface charge density of CSH layers as a function
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of the solution pH [157], we consider reactions of hydroxide ions with silica sites, using

the formulation of Behrens and Grier [153]. In basic solutions involving hydroxide ions,

the surface reaction proceeds as follows:

SiOH+OH− ⇌ SiO−+H2O (2.46)

The surface is composed of negative (dissociated) and neutral (undissociated) silica sites,

determined by the surface reaction equilibrium of the hydroxide ions interacting with the

CSH layer. A total site balance on the Si atoms result in the following equation:

Γ = ΓSiO− +ΓSiOH (2.47)

where Γ is the total surface concentration of Si atoms, ΓSiO− and ΓSiOH, are the surface

concentrations of the negative and the neutral silica sites, respectively. Note that the surface

charge density on the CSH layer can be expressed as the product of the number of negative

silica sites times their charge, i.e., qs =−eΓSiO− . Similar to the study by Behrens and Grier

[153], we assume that the distribution of the hydroxide ions near the CSH layer satisfies the

Boltzmann distribution given by, cOH−,s = cOH−,B exp(φ̃s), where φ̃s is the dimensionless

electrostatic potential at the CSH layer, and cOH−,B and cOH−,s are the concentrations of

hydroxide ions near the CSH layer and in the bulk, respectively. Further, based on the

surface chemical reaction in Eq. 2.46, the following relation is obtained:

1/Kb = 10pKb =
ΓSiO−

cOH−,sΓSiOH
(2.48)

where Kb is the base dissociation equilibrium constant, and pKb is the logarithmic dis-

sociation constant characteristic of the CSH-water interface. Because the Stern layer is

already modeled self-consistently through the incorporation of water-mediated hydration

interactions, the surface potential, φ̃s can be set equal to the potential at the surface lo-

cated at (x =±d/2± lh), without the need to account for the Stern capacitance, as done in

ref. [153]. Using the relation, qs = −eΓSiO− , in conjunction with Eqs. 2.47 and 2.48, the
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expression for the surface charge density at the CSH layer is given by:

qs =
−10−pKbeΓcOH−,B exp(φ̃s)

1+10−pKbcOH−,B exp(φ̃s)
(2.49)

Note that Γ and pKb are parameters characteristic of the CSH-water interface, and can be

obtained through fitting to experimental data. Because the correlation length is itself a

function of the surface charge density through its dependence on lGC (see Eqs. 2.37 and

2.38), δc must be obtained in an iterative manner. Specifically, the dimensionless electro-

static potential (see Eq. 2.36) is solved using an initial guess for qS, and subsequently, the

deduced value of φ̃s is used to adjust qS for subsequent iterations using Eq. 2.49. Finally,

the converged value of qS is used to obtain the dimensionless electrostatic potential (see

Eq. 2.36), and the disjoining pressure is obtained using Eq. 2.44 for various separation

distances between the two similarly-charged surfaces.

2.3.2 Results

Several key predictions of our theory are presented below. First, we consider the role of

electrostatic correlations on the disjoining pressure acting between two similarly-charged

surfaces, including studying the dependence on the valency of the counterions and coions,

the bulk salt concentration, and the surface charge density of the charged surfaces. Second,

we study the effect of incorporating hydration interactions and surface charge regulation

into our EDL model on the disjoining pressure. Finally, after including the contribution of

the van der Waals interactions to the disjoining pressure, we compare the predictions of the

disjoining pressure made using our complete model with the experimental data of Plassard

et al. [5].

Electrostatic Correlations Cause Like-Charge Attraction

To isolate and properly quantify the effect of electrostatic correlations on the disjoining

pressure, as described by the BSK theory, we initially neglect hydration interactions, sur-

face charge regulation, and van der Waals interactions in our EDL model. This is done

by setting ψh = 0 in Eq. 2.41 (thereby neglecting hydration interactions), assuming that
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qs is an independent parameter irrespective of the bulk salt concentration (thereby neglect-

ing surface charge regulation), and setting Ah=0 in Eq. 2.45 (thereby neglecting van der

Waals contributions to the disjoining pressure) . In Fig. 2-7 (a), we utilize Eq. 2.42 to

plot the disjoining pressure predicted using the BSK model as a function of the separation

distance between the two charged surfaces for the case of a 2:1 electrolyte solution. Note

that throughout the chapter, the water dielectric permittivity, ε , is expressed as ε = εrε0,

where ε0 is the permittivity of vacuum (8.85 · 10−12 F.m−1). In Fig. 2-7 (a), the disjoin-

ing pressures predicted using the BSK model (see Eq. 2.42) and the PB model (see Eq.

2.43) are compared. Note that the governing equation for the dimensionless electrostatic

potential in the PB model can be obtained simply by setting δc = 0 in Eq. 2.36, including

using boundary conditions (i) and (ii) in the set of four boundary conditions used to solve

Eq. 2.36 in the BSK model. As expected, the PB model always predicts a repulsive (pos-

itive) disjoining pressure irrespective of the separation distance between the two charged

surfaces. Furthermore, the repulsive disjoining pressure predicted by the PB model de-

creases monotonically with an increase in the separation distance between the two charged

surfaces. However, in stark contrast to the result predicted by the PB model, it is possible

to obtain an attractive (negative) disjoining pressure using the BSK model. For example, as

shown in Fig. 2-7 (a), the disjoining pressure curve predicted by the BSK model displays an

attractive well at a separation distance of ∼ 0.8 nm between the two charged surfaces. For

separation distances greater than 1 nm, where the disjoining pressure predicted by the BSK

model is negative and progressively goes to zero at larger separation distances, the attrac-

tive pressure resulting from electrostatic correlations dominates over the pressure arising

from the entropic repulsion.

To better understand the above-mentioned competition, in the inset of Fig. 2-7 (a), we

plot the contributions to the disjoining pressure due to each of the four terms appearing in

Eq. 2.42, all evaluated at the mid-plane between the two charged surfaces. Because we

are considering similarly-charged surfaces, the 1st derivative of the electrostatic potential

is always zero at the mid-plane between the two charged surfaces. Therefore, the 1st and

the 3rd terms in Eq. 2.42 do not contribute to the predicted disjoining pressure. Moreover,

as shown in the inset of Fig. 2-7 (a), the pressure resulting from electrostatic correlations
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(2nd term in Eq. 2.42) is always attractive (negative) while the entropic pressure (4th term

in Eq. 2.42) is always repulsive (positive). For separation distances much smaller than

1 nm, the counterions get compressed between the two charged surfaces, thereby greatly

enhancing the entropic contribution, and making the overall disjoining pressure repulsive

(positive). On the other hand, for separation distances larger than 1 nm, the disjoining

pressure contribution from electrostatic correlations always dominates over the repulsive

entropic contribution, which results in an overall attractive disjoining pressure as shown in

Fig. 2-7 (a). Interestingly, as Fig 2-7 (b) shows, at a separation distance of 1 nm between

the two charged surfaces, the mean charge density (ρ = zec+− ec−), and the dimension-

less electrostatic potential (φ̃ ) profiles obtained using the PB and the BSK models are very

similar. The similarity in the two profiles suggests that the form of the Helmholtz free en-

ergy, F , and a self-consistent expression of the disjoining pressure, Π, derived from F , are

essential in order to obtain a negative disjoining pressure in the context of the BSK model.

For example, even if one utilizes Eq. 2.36 to solve for the electrostatic potential using the

BSK model, use of Eq. 2.43 which corresponds to the disjoining pressure from the PB

model would still result in a repulsive disjoining pressure for all separation distances be-

tween the similarly-charged surfaces. Therefore, our study highlights the necessity to self-

consistently incorporate terms in the predicted disjoining pressure (see Eq. 2.42) arising

from electrostatic correlations to explain the phenomenon of like-charge attraction between

similarly-charged surfaces.

It is noteworthy that in previous work, the BSK model was shown to describe over-

screening, or charge-inversion, in the case of an EDL of solvent-free ionic liquids placed

near a charged electrode [34]. In this case, strong electrostatic correlations give rise to an

oscillatory profile for the mean charge density, ρ , where the 1st layer of ions in the EDL

overscreens the charge on the electrode, and subsequently, the net charge of the electrode

together with the 1st layer of ions is progressively neutralized by additional layers of ions.

In this study, we find that although both the phenomena of charge-inversion and like-charge

attraction can result from strong electrostatic correlations, there is no direct correlation be-

tween them. In other words, it is not necessary for the phenomenon of like-charge attraction

to occur concurrently with the phenomenon of charge-inversion.
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Figure 2-7: Disjoining pressures operating be-
tween two similarly-charged surfaces separated
by a 2:1 electrolyte solution predicted using the
BSK (Eq. 2.42) and the PB (Eq. 2.43) models, for
qs= -0.1 C/m2, c0=0.1 M, and εr = 80. (a) Vari-
ation of the disjoining pressure as a function of
the separation distance between the two charged
surfaces. The inset shows the contribution of the
different terms in Eq. 2.42 based on the BSK
model. (b) and (c) Comparison of the charge den-
sity and the dimensionless electrostatic potential
profiles, respectively, predicted by the BSK model
(Eq. 2.36) and the PB model (Eq. 2.36 with δc

set to zero) when the separation distance between
the two charged surfaces is 1 nm, and where x is
the spatial coordinate perpendicular to the plane
of the charged surface.

Next, we study how the counterion va-

lency affects the disjoining pressure. As the

counterion valency increases, the BSK the-

ory predicts a stronger attractive contribu-

tion to the disjoining pressure, as shown in

Fig. 2-8 (a). The qualitative shape of the

pressure profile also changes significantly

as the counterion valency increases from 1

to 3, with a deep attractive well developing

in the case of a 3:1 electrolyte. Moreover,

the position of the minimum in the dis-

joining pressure shifts towards the left with

an increase in the counterion valency, indi-

cating an enhancement in the length scale

over which an attractive disjoining pres-

sure is observed due to electrostatic cor-

relations. The predicted attraction is con-

sistent with experimental observations of

like-charge attraction and colloidal coagu-

lation in the presence of multivalent salt

ions [1, 128–131]. Physically, increasing

the counterion valency, z, enhances electro-

static correlations, which is captured in our

EDL model by a nonlinear dependence of

the dimensionless correlation length on the counterion valency (see Eq. 2.37). Increasing

the value of z increases the correlation length parameter, which in turn enhances the at-

tractive electrostatic correlation contribution to the disjoining pressure which scales as the

square of the correlation length (see 1st term in Eq. 2.44).

In addition to studying the variation of the predicted disjoining pressure with the coun-

terion valency, it is also interesting to explore the dependence of the predicted disjoining
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pressure on the coion valency, i.e., for a 1:z electrolyte solution. To this end, we utilize the

same parameter values used to generate Fig. 2-8 (a), except that we change the sign of the

surface charge density, qs, on the two surfaces. This, in turn, is equivalent to studying a 1:z

electrolyte solution instead of the z:1 electrolyte solution considered earlier. Further, note

that we also set z = 1 in Eqs. 2.37 and 2.38. In Fig. 2-8 (b), we show plots of the predicted

disjoining pressure for a 1:z electrolyte, where the sign of qs is positive. Interestingly, the

predicted disjoining pressure is not sensitive to the coion valency, where the plots of the

disjoining pressure predicted using different coion valencies, z = 1,2, and 3, are all very

similar to the predicted disjoining pressure plot for a 1:1 electrolyte solution. This indicates

that the phenomenon of like-charge attraction is more strongly controlled by the valency

of the counterion than by that of the coion. Our important finding that the coion valency

plays an insignificant role in controlling the surface forces between two charged surfaces

is well supported by the recent experimental data of Uzelac et al. [158]. These authors

measured surface forces between charged silica particles mediated by multivalent coions,

and reported that the valency of the counterions, and not the valency of the coions, controls

the surface forces operating between the charged silica particles that they considered.

Next, we explore the dependence of the predicted disjoining pressure on the surface

charge density and the salt concentration of the bulk reservoir. As shown in Fig. 2-9 (a), in-

creasing the surface charge density of the two charged surfaces for a 2:1 electrolyte solution

results in an enhancement of the attractive well for the disjoining pressure as the magni-

tude of qs is increased from -0.01 C/m2 to -0.2 C/m2. In the case of an electrolyte confined

between two charged surfaces, increasing the surface charge density of the two surfaces

results in an enhancement of the overlap of the EDLs produced by each surface, because

more counterions over an extended region are required to screen the increased charges on

the surfaces. This results in an increase in the curvature, or the second derivative, of the

electrostatic potential. As a result, the attractive electrostatic correlation contribution to the

predicted disjoining pressure (2nd term in Eq. 2.42), which scales as the square of the 2nd

derivative of the electrostatic potential, increases similarly. Consequently, increasing the

surface charge density in the context of the BSK model results in a pronounced enhance-

ment of the attractive well for the predicted disjoining pressure.
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Figure 2-9: Effect of the surface charge density and the salt concentration for a 2:1 electrolyte
solution on the predicted disjoining pressure as a function of the separation distance between the
two charged surfaces. (a) Predicted disjoining pressures for three surface charge densities, where the
following parameter values were use to generate the three plots shown: c0=0.1 M and εr = 80. (b)
Predicted disjoining pressures for three salt concentrations in the bulk reservoir, where the following
parameter values were used to generate the three plots shown: qs= -0.1 C/m2 and εr = 80.
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Figure 2-8: Effect of the ion valency on the
predicted disjoining pressure acting between two
similarly-charged surfaces as a function of the
separation distance between the two charged sur-
faces for z:1 and 1:z electrolytes (z = 1, 2, and
3) solutions using the BSK model (Eq. 2.42). To
generate the various plots, we used the following
parameter values: |qs|=0.1 C/m2, c0=0.1 M, and
εr = 80. (a) Predicted disjoining pressure of a
z:1 electrolyte solution, corresponding to a neg-
ative charge on the two surfaces, qs =−0.1 C/m2.
(b) Predicted disjoining pressure of a 1:z elec-
trolyte solution, corresponding to a positive sur-
face charge on the two surfaces, qs =+0.1 C/m2.

Our findings clearly show that the dis-

joining pressure predicted by the BSK

model strongly disagrees with that pre-

dicted by the DLVO theory which uses the

PB model to predict the EDL contribution

to the disjoining pressure acting between

two charged surfaces. Notably, increasing

the surface charge density in the PB model

enhances the overlap of the EDLs origi-

nating from the two similarly-charged sur-

faces, which in turn results in an increased

entropic repulsion, and consequently, in

an enhancement of the repulsive disjoining

pressure acting between the two similarly-

charged surfaces. While it is certainly true

that like in the PB model, the magnitude

of the repulsive entropic term (4th term in

Eq. 2.42) also increases with an increase

in the surface charge density in the BSK

model, the attractive electrostatic correla-

tion term completely dominates over the re-

pulsive entropic term, leading to a deepen-

ing of the attractive well for the predicted

disjoining pressure in the case of the BSK

model. Our result is in good agreement

with that obtained by Plassard et al. [5] who

experimentally measured the disjoining pressure operating between charged CSH layers in

a calcium hydroxide salt solution. Indeed, Plassard et al. [5] reported an enhancement

of the attractive well for the experimental disjoining pressure upon increasing the surface

charge density on the CSH layers. The fact that the DLVO theory fails to predict the ex-
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perimentally observed trend, even at a qualitative level, demonstrates the importance and

need for the availability of a theory such as the one presented here, capable of accurately

modeling electrostatic correlations.

As shown in Fig. 2-9 (b), the predicted disjoining pressure also depends strongly on

the salt concentration of the bulk reservoir. Indeed, as the salt concentration increases,

the depth of the attractive well increases, reflecting stronger electrostatic correlations. In

addition, the position of the disjoining pressure minimum shifts toward the left, reflecting

a decrease in the overlap of the EDLs originating from the two similarly-charged surfaces.

We have explored a wide parameter space for the dependence of the predicted disjoining

pressure on salt concentration and surface charge density, as shown in the two contour plots

in the SI document (see Fig. S1).

We note that like-charge attraction can also be obtained in the limit of a counterion-

only system (also referred to as the one-component plasma limit), [1] where the surface

charge is screened by a fixed number of counterions, with no coions present in the system.

In this context, the BSK theory with the appropriate correlation length scale and boundary

conditions, has been shown to exactly match the strong and weak coupling limits for the

counterion-only system. [147] Further, the BSK theory can also accurately reproduce the

intermediate coupling limit, including describing correlation-induced like-charge attraction

in the case of counterion-only systems. [147]

Another interesting question is whether the BSK theory can predict like-charge at-

traction in systems with monovalant counterions, as was shown recently in simulations

of charged nanoparticles [159]. In Fig. 2-10, we show the predicted disjoining pressure

curves for a 1:1 electrolyte solution with varying surface charge density and varying bulk

salt concentration. Fig 2-10 (a) clearly shows that, as the surface charge density increases

from -0.1 to -0.4 C/m2, the disjoining pressure between two similarly-charged surfaces

predicted by the BSK theory can become strongly attractive (negative), even in the case of

monovalent counterions.

Further, increasing the bulk salt concentration can result in the appearance of an at-

tractive well in the disjoining pressure predicted by the BSK theory, similar to the ones

predicted earlier in the case of a 2:1 electrolyte solution. However, very high bulk salt con-

80



Figure 2-10: The disjoining pressure for a 1:1 electrolyte solution predicted by the BSK theory
can be attractive depending on (a) the surface charge density, or (b) the salt concentration. For (a),
the bulk salt concentration is fixed at c0 = 0.1 M. For (b), the surface charge density is fixed at
qs =−0.3 C/m2.
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centrations or moderate to high surface charge densities, are needed to predict attractive

disjoining pressures in the case of a 1:1 electrolyte solution. Our BSK model predictions

for the disjoining pressure suggest that attractive interactions between two like-charged

surfaces do not result exclusively from the presence of multivalent counterions. However,

the presence of multivalent ions can significantly augment the attractive disjoining pressure

arising from electrostatic correlations, as shown earlier in Fig. 2-8 (a).

Contributions to the Disjoining Pressure from Hydration Interactions and Surface

Charge Regulation

Along with the contributions from electrostatic correlations, it is also interesting to ex-

plore the role of short-range water-mediated hydration interactions between the cations on

the predicted disjoining pressure. As expected, water-mediated hydration interactions pre-

vent two cations from approaching each other too closely, where the distance of closest

approach between any two interacting cations is controlled by the parameter, lh, which is

the effective hydration size of the cation. In Fig 2-11, we plot the predicted disjoining

pressure operating between two similarly-charged surfaces for a 2:1 electrolyte solution,

where we incorporated hydration interactions into both the PB model and the BSK model.

As discussed earlier, incorporation of hydration interactions allows us to model the Stern

layer self-consistently in both the BSK and the PB models. However, for an appropriate

comparison between the BSK model without hydration and the BSK model with hydration,

we need to shift the separation distance values obtained in the case of the BSK model with

hydration by −2lh to be consistent with the distance of closest approach in the two models.

Similarly, the separation distance values for the PB model with hydration is also shifted by

−2lh.

Fig. 2-11 (a) shows that incorporation of the hydration potential into both the PB and

the BSK models results in a strong repulsive (positive) contribution to the predicted dis-

joining pressure. In the case of the PB model, addition of the hydration potential makes the

predicted repulsive disjoining pressure even more repulsive. In the case of the BSK model,

addition of the hydration potential results in a disappearance of the attractive (negative)

well, with a very weak attractive (negative) disjoining pressure visible at ∼ 3 nm separa-
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tion distance between the two charged surfaces. Note that the plots shown in Fig. 2-11 (a)

were obtained using, qs = −0.1 C/m2, corresponding to low to moderate surface charge

densities typically encountered on the two charged surfaces. However, as shown later in

this section, surface charge densities reported in some experimental studies can exceed this

value. In such cases, we will be able to recover the attractive well in the disjoining pressure

predicted using the BSK model where hydration interactions are included. Note that we

selected qs =−0.1 C/m2 to carry out these calculations to demonstrate the key role of the

hydration interactions in modulating the predicted disjoining pressure, especially at low to

moderate surface charge densities on the the two charged surfaces. Moreover, if the EDL

is decomposed into Stern and Diffuse layer regions, with the Diffuse layer region modeled

using a EDL theory such as the PB model, it follows that the contribution of the Stern layer

to the predicted disjoining pressure cannot be modeled self-consistently. In this study, we

use the hydration potential to model the Stern layer and self-consistently incorporate the

repulsive contribution from the hydration potential to the predicted disjoining pressure (see

3rd and 4th terms in Eq. 2.44), which are currently neglected in the PB model. Further-

more, the predicted repulsive disjoining pressures resulting from the hydration potential

can also qualitatively explain the repulsive pressures reported in the experimental data of

Israelachvilli and Pashley [151] and of LeNeveu and Rand [152].

To further elucidate the role of the hydration interactions in modulating the predicted

disjoining pressure, in Fig. 2-11 (b) and (c), we compare the counterion profiles predicted

using the BSK model without hydration and the BSK model with hydration, when the two

charged surfaces are separated by a distance of 1 nm and 2 nm, respectively. Note that the

distances of minimum approach for the BSK model and BSK model with hydration are d

and d + 2ℓh, respectively. This is the reason why the counterion profiles in the context of

the BSK model with hydration extend beyond d in Fig. 2-11 (b) and (c). An analysis of

the counterion profiles in Fig. 2-11 (b) and (c), shows that in the case of the BSK model

without hydration, the predicted counterion concentrations near the two charged surfaces

(at x = ±0.5 nm and x = ±1 nm, where x is the spatial coordinate perpendicular to the

charged surfaces) are unbounded and several folds higher than those predicted in the case

of the BSK model with hydration. As discussed earlier, hydration interactions limit the
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Figure 2-11: (a) Variation of the disjoining pressure with the separation distance between two
similarly-charged surfaces for a 2:1 electrolyte solution, predicted by the BSK and the PB models
with inclusion/exclusion of the hydration potential. Note that the parameters used to generate these
results include: qs = −0.1 C/m2, c0 = 0.1 M, εr=80, σh = 5/nm2 (from ref. [4]), κ

−1
h = 0.3 nm

(from ref. [4]), and ℓh = 0.2 nm. The parameters for the hydration potential (σh, κ
−1
h and ℓh) can

be further fine-tuned to reproduce the experimental data. (b) Comparison of the counterion profiles
predicted using the BSK model without hydration and the BSK model with hydration, for d=1 nm,
as a function of x, where x is the spatial coordinate perpendicular to the plane of the charged surface.
(c) Same as (b), but for a separation distance of 2 nm between the two charged surfaces.
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counterion concentrations near the two charged surfaces to replicate a Stern layer region

which is devoid of counterions. Consequently, to neutralize the charge on the two surfaces,

the concentration of counterions at the mid-plane between the two charged surfaces (located

at d = 0 in Fig. 2-11 (b) and (c)) is higher in the BSK model with hydration than in the

BSK model without hydration. This results in an enhancement of the repulsive entropic

contribution to the predicted disjoining pressure (2nd term in Eq. 2.44) in the BSK model

with hydration, which together with the new repulsive terms arising from the incorporation

of the hydration interactions (3rd and 4th terms in Eq. 2.44), contribute significantly towards

making the overall predicted disjoining pressure repulsive, especially at smaller separation

distances. As Fig. 2-11 (b) and (c) show, increasing the separation distance between the two

charged surfaces from 1 to 2 nm, weakens the contribution from the hydration potential,

such that the counterion concentration near the midplane (at x= 0) between the two charged

surfaces, predicted using the BSK model with hydration (dotted blue curve), approaches

that predicted using the BSK model without hydration (solid blue curve).

Finally, to complete our analysis, we consider the effect of surface charge regulation

on the predicted disjoining pressure and the predicted surface charge density, where qs is

no longer an independent parameter, but instead depends on the bulk salt concentration.

As a representative example, we consider two similarly-charged CSH layers immersed in

a calcium hydroxide salt solution. We consider this system because, in the next section,

we will compare the disjoining pressure predicted by our theory for this system with the

experimental data of Plassard et al. [5]. As discussed in the Model and Methods section,

the value of qs in Eq. 2.49 depends on the bulk concentration of OH− ions as well as on the

dimensionless surface potential. As a result, qs needs to be obtained in an iterative manner,

such that Eqs. 2.36 and 2.32, together with the boundary conditions, and Eq. 2.49 are

simultaneously satisfied.

In Fig. 2-12 (a), we plot the disjoining pressure as a function of the surface separation

distance, d, predicted by first including hydration interactions into the PB and BSK mod-

els, and subsequently, by including surface charge regulation in the BSK and PB models.

The disjoining pressure versus the separation distance profiles were predicted for a bulk

salt concentration of 19.1 mM, a typical concentration for which the experimental data of
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Plassard et al. [5] is available. To predict the disjoining pressure when charge regulation

is neglected (e.g., BSK model and BSK model with hydration), we need to assign a value

to the surface charge density, qs, which serves as an independent parameter. To this end,

we choose qs =−0.63 C/m2, obtained by solving Eq. 2.49 using c0 = cOH−,B = 19.1 mM.

Fig. 2-12 (a) shows that choosing a value of qs which is much larger than the qs value

used to predict the results in Fig. 2-11 (a), we predict large attractive (negative) disjoining

pressures using the BSK model. Including hydration interactions in the BSK model results

in a large repulsive (positive) pressure contribution to the disjoining pressure. However, for

qs = −0.63 C/m2, the predicted attractive (negative) disjoining pressure contribution re-

sulting from electrostatic correlations dominates over the repulsive (positive) contributions

resulting from the entropy of the ions as well as from the hydration interactions (2nd, 3th

and 4th terms in Eq. 2.44). This results in an attractive (negative) well at ∼ 1 nm separation

distance between the two charged surfaces. For comparison, we also plotted the disjoining

pressure profiles predicted using the PB model. It is clear that if electrostatic correlations

are neglected, it will be impossible to predict an attractive (negative) well for the disjoining

pressure using the PB model.

Interestingly, after inclusion of the hydration interactions in the PB and the BSK mod-

els, further inclusion of charge regulation in the two models does not affect at all the pre-

dicted disjoining pressure profiles. This indicates that for both the BSK and the PB models,

the surface charge density is almost insensitive to the separation distance between the two

charged surfaces. Indeed, as shown in Fig. 2-12 (b), the surface charge density varies with

the separation distance between the two charged surfaces only at very small separation dis-

tances, and remains constant beyond a separation distance of 1 nm. In addition, there is not

much difference between the predictions made using the PB and the BSK models, indicat-

ing that the dependence of the surface charge density on the separation distance between

the two charged surfaces is insensitive to the modeling of electrostatic correlations. In fact,

the surface charge density shows a very strong dependence on the pH of the solution. Re-

call that the concentration of OH− ions present in the calcium hydroxide salt solution in the

bulk reservoir can be related to the pH of the solution using the relation, cOH−,B = 10pH−14.

Therefore, increasing the pH of the solution results in a larger dissociation of silanol groups
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at the CSH layer (see Eq. 2.46), which in turn results in an increase in the surface charge

density at the CSH layer. Once again, the striking similarity of the variation of qs with

the pH of the solution, obtained using the PB and BSK models indicates that the variation

of the surface charge density with the pH of the solution is insensitive to the modeling of

electrostatic correlations. Finally, we also note that the variation of qs with the solution

pH, as predicted in Fig. 2-12 (c), is in good qualitative agreement with that reported ex-

perimentally by Plassard et al. [5]. This finding is reassuring in terms of the values of the

surface charge regulation parameters, Γ and pKb, used to model the variation of qs with

the solution pH in Fig. 2-12 (c). For example, Plassard et al. have reported that increasing

the solution pH from 10 to 12.5 results in a monotonic enhancement in the surface charge

density, qs, at the CSH surface from -0.08 C/m2 to -0.69 C/m2. Similarly, in Fig. 2-12 (c),

for a similar variation of the solution pH, we predict a monotonic enhancement of qs from

-0.02 C/m2 to -0.58 C/m2, for both the BSK and the PB models.

Comparison of the Disjoining Pressures Predicted from our Complete Theory with

the Experimental Data

Plassard et al. [5] used atomic force microscopy to study the surface forces responsible

for the strong cohesive strength of cement pastes. These authors observed strong attrac-

tive (negative) disjoining pressures operating between the CSH layers in the presence of a

Ca(OH)2 electrolyte solution. They attributed the observed behavior to the strong electro-

static correlations between the divalent calcium ions. Plassard et al. noted that because the

DLVO theory neglects electrostatic correlations, the disjoining pressure predicted by the

DLVO theory is not consistent with their experimental findings even qualitatively. In Fig.

2-13, we compare the disjoining pressure versus the surface separation distance profiles

predicted by our complete theory (Eq. 2.44 plus Eq. 2.45) to those measured by Plassard

et al. (see Fig. 5 in ref. [5]) for five Ca(OH)2 salt concentrations. Plassard et al. measured

the forces operating between the two CSH layers, and we converted their experimental sur-

face force data into disjoining pressure data by dividing the reported surface forces by the

surface area of the CSH layers, estimated to be 64 nm2 in their study [5].

87



Figure 2-12: (a) Disjoining pressure versus the surface separation distance profiles predicted by the
BSK model without hydration, the BSK model with hydration, and the BSK model with hydration
and with charge regulation (CR) are compared with those predicted by the PB model without hydra-
tion, the PB model with hydration, and the PB model with hydration and with CR. The parameters
used to generate the results shown here are: c0 = 19.1 mM, εr = 80, κ

−1
h = 0.3 nm, σh = 5/nm2,

ℓh = 0.1 nm, Γ = 8×1018 m−2 and pKb = 4. Note that when CR is neglected, we used qs =−0.63
C/m2. (b) Surface charge density versus the surface separation distance profiles predicted using the
BSK model with hydration and CR (blue dotted line) and the PB model with hydration and CR
(black dotted line). Note that the parameters are the same as those used in (a), and that due to the
incorporation of CR, qs varies with the separation distance between the two charged surfaces. (c)
Surface charge density versus the solution pH profiles predicted using the BSK model with hydra-
tion and CR (blue dotted line) and the PB model with hydration and CR (black dotted line), for
a separation distance of 4 nm between the two equally, negatively charged surfaces. Further, the
parameters used to generate the plot are the same as those used in (b).
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Note that in the study by Plassard et al., one of the CSH layers was coated over an

atomic force microscopy (AFM) tip, while the other CSH layer was coated over a calcite

crystal. A key assumption made by Plassard et al. (also implemented here) is that the

interaction of the two CSH layers can be approximated as the interaction between two flat

surfaces. Note that to solve for the disjoining pressure, we used the following parameters:

lh = 0.1 nm, κ
−1
h = 0.3 nm, σh = 5/nm2, Γ = 1×1018 m−2, pKb = 4, and Ah = 14×10−20

J. The following parameters were used in our predictions: (i) the Hamaker constant, Ah,

used in this study is the same as that determined by Plassard et al. by measuring the surface

forces operating between two CSH layers in air, (ii) the values of the hydration parameters,

σh, and κ
−1
h , used here are identical to those reported by Brown et al. [4], (iii) the value

of the surface site density, Γ, is identical to that reported by Behrens et al. [153], (iv) the

pKb is the same as that used in Fig. 2-12 (c), where we showed that the combination of

the surface charge regulation parameters, Γ and pKb, is able to predict the variation of qs

with the solution pH in reasonably good agreement with the experimental data of Plassard

et al., and (v) the ℓh parameter is obtained by fitting to the experimental disjoining pressure

data. We note here that the choice of the parameters for the hydration potential, σh, κ
−1
h

and ℓh, used to predict the disjoining pressure curves reported in Fig. 2-13, is not unique.

While the values of σh and κ
−1
h are quite reasonable as noted in the study by Brown et

al. [4], the value of ℓh = 0.1 nm, used here is smaller than the hydration shell diameter of

0.48 nm reported for the Ca2+ ion (see the tabulated hydration shell radius in Table V of

ref. [160]). We note here that, in principle, one can choose a larger value of ℓh to be closer

to the corresponding experimental value of the hydration shell diameter and still obtain

similar disjoining pressure curves reported here by also concurrently changing the values

of σh and κ
−1
h . However, we found that following such an approach does not change any

of the overall trends of the disjoining pressure curves reported here.

As shown in Fig. 2-13, the disjoining pressures predicted by our complete theory are

in good qualitative agreement with the experimental data of Plassard et al. for the five

Ca(OH)2 concentrations considered. For a 0.2 mM Ca(OH)2 salt concentration, the pre-

dicted disjoining pressure is purely repulsive (positive) for all values of the surface sepa-

ration distance (see the solid pink line) which agrees very well with the corresponding ex-
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Figure 2-13: Comparison of the disjoining pressure versus the surface separation distance predicted
by our complete theory (Eqs. 2.44 and 2.45, solid lines) with the experimental data of Plassard et
al. [5] (circles) for the five Ca(OH)2 salt concentrations shown.

perimental data (see pink circles). However, as the Ca(OH)2 salt concentration increases,

the experimental disjoining pressures become increasingly attractive (negative; see the red,

green, black, and blue circles in Fig. 2-13), a trend which is captured reasonably well by our

theory (see the red, green, black, and blue solid lines in Fig. 2-13). Note that the Hamaker

constant for CSH reported by Plassard et al. is large when compared to the value for silica

(Ah = 2× 10−21J) reported in the literature. [161, 162] However, in the SI document we

show that, even if the Hamaker constant is reduced to Ah = 2×10−21J, our theory can still

capture the experimental trends with minor modification in the value of σh, as shown in

Fig. S2.

Finally, it is noteworthy that although our complete theory for the disjoining pressure

(Eqs. 2.44 and 2.45) contains several parameters: σh, κ
−1
h , ℓh, Γ and pKb, these parameters

are introduced in order to incorporate new physics into the EDL model, including hydration

interactions and surface charge regulation. However, most importantly, no fitting parameter

is introduced in our theory to model electrostatic correlations, because the dimensionless

correlation length is determined directly based on Eq. 2.37. As Fig. 2-13 clearly shows,

accurate modeling of electrostatic correlations is essential to predict the attractive elec-

trostatic contribution to disjoining pressures between similarly-charged surfaces. This is,

in fact, the main reason why the DLVO theory, which neglects electrostatic correlations,
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fails to model surface forces/disjoining pressures even qualitatively, especially in solutions

containing multivalent salt ions.

2.3.3 Conclusions

In our work on surface forces, we formulated a general theory of the disjoining pressure

operating between two charged surfaces in a multivalent electrolyte solution. We used the

BSK framework to model electrostatic correlations, and derived a closed-form expression

for the contribution resulting from electrostatic correlations to the disjoining pressure. In

stark contrast to the predictions of the PB mean-field theory, which always predicts a repul-

sive (positive) disjoining pressure operating between two similarly-charged surfaces, we

showed here that the attractive (negative) disjoining pressure resulting from electrostatic

correlations can dominate over an entropic repulsion, and thereby cause the overall dis-

joining pressure to be attractive (negative). Our theory predicts that both the magnitude

as well as the sign of the disjoining pressure are strong functions of the counterion va-

lency. Indeed, increasing the valency of the counterion significantly enhances the attractive

pressure resulting from electrostatic correlations, thereby promoting attractions between

similarly-charged surfaces in aqueous solutions containing divalent and trivalent counteri-

ons. On the other hand, we found that the dependence of the disjoining pressure on the

valency of the coion is insignificant. We also showed that the disjoining pressure in the

case of monovalent ions can still be attractive, provided that the charge densities on the two

charged surfaces are sufficiently high to induce significant electrostatic correlations.

Another important limitation of the DLVO theory of colloidal stability and the PB

model on which it is based, is that it predicts an enhancement of the repulsive disjoin-

ing pressure operating between two similarly-charged surfaces when the surface charge

densities of the two surfaces increase. This is in stark contrast with the available experi-

mental data [5], which conclusively show that the disjoining pressure operating between

two similarly-charged surfaces becomes attractive upon increasing the surface charge den-

sities of the two surfaces. Our new theory of the disjoining pressure can explain this exper-

imental finding based on the existence of electrostatic correlations, which are neglected in
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the DLVO theory.

In addition to modeling electrostatic correlations, we also included water-mediated hy-

dration interactions and surface charge regulation in our theory to allow a direct comparison

of the disjoining pressure predicted by our theory with the experimentally available disjoin-

ing pressure data. To this end, we showed that modeling the Stern layer self-consistently

through water-mediated hydration interactions results in a significant repulsive contribu-

tion to the disjoining pressure, although the attractive pressure resulting from electrostatic

correlations can still dominate over the repulsive pressures resulting from the entropy of

the ions as well as from the hydration interactions. Furthermore, incorporation of sur-

face charge regulation into our model enabled us to relate the surface charge density at the

charged surface directly to the salt concentration in the electrolyte solution. Finally, we

demonstrated that the disjoining pressure operating between calcium silicate hydrate layers

in a calcium hydroxide salt solution, predicted by our theory is in reasonable qualitative

agreement with the experimental data of Plassard et al. [5]. Therefore, we believe that the

complete theory of surface forces presented here shows promise in overcoming the known

limitations of the DLVO theory, especially for multivalent counterions.

In terms of future work, although the BSK model can describe electrostatic correla-

tion effects at an interface, currently, it does not capture Bjerrum pair formation which

can decrease the effective ion concentration in the bulk reservoir. [163] Further, the BSK

model does not capture long-range oscillations in the charge density at high electrolyte

concentrations. [164] This can be corrected by considering weighted concentrations in the

expression for the entropy of ions (i.e. the g(c+,c−) term in Eq. 2.28), as implemented in

various theoretical approaches, including the classical density functional theory. [164,165]

Finally, at separation distances of ∼ 1 nm between the two charged surfaces, in addition

to an attractive disjoining pressure resulting from electrostatic correlations, short-ranged

attractive van der Waals interactions as well as repulsive hydration interactions can play

important roles. A better estimation of the parameters used to model the van der Waals

interactions, the hydration interactions, as well as of the scaling proposed for the correlation

length, may be carried out through a systematic comparison of the disjoining pressure

predicted by our theory with that available experimentally, as well as that obtained using
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Monte Carlo and Molecular Dynamics simulations.

2.4 Summary of Findings

In this chapter, I demonstrated the role of electrostatic correlations in the screening struc-

ture of multivalent electrolytes. First, I presented physical arguments for the key boundary

condition and correlation length parameter in the BSK theory via comparison to MC sim-

ulations, testing the validity of the theory for the one-component plasma and electrolytes.

Then, within a general framework for mathematically predicting surface forces, I showed

the impact of electrostatic correlations on surface forces. We find that the contribution

of electrostatic correlations to the pressure leads to strong attraction in multivalent elec-

trolytes.

In the next chapter, I will return to the interfacial layered structures at high electrolyte

concentration, which are not directly captured by the BSK theory. Further, while we were

able to include the contributions of hydration forces to colloidal interactions, we were not

able to reproduce the specific structure of the confined solvent in the Stern layers. In Chap-

ter 5, I will present further developments of a theory that predicts the detailed structures of

solvent near charged interfaces.
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Chapter 3

Interfacial Layering in Concentrated

Electrolytes and Ionic Liquids

The following chapter is reproduced from our published paper on the interfacial layering

of concentrated electrolytes and ionic liquids [7] with Dr. Zachary Goodwin, Dr. Michael

McEldrew, Prof. Alexei Kornyshev, and Prof. Martin Bazant. I also reproduce our pub-

lished work on the impact of interfacial layering on surface forces [166] for confined size-

symmetric and size-asymmetric ionic liquids, in collaboration with Dr. Karina Pivnic, Dr.

Martin Bazant, Dr. Michael Urbakh, and Dr. Alexei Kornyshev.

3.1 Overview

Ions in ionic liquids and concentrated electrolytes reside in a crowded, strongly-interacting

environment, leading to the formation of discrete layers of charges at interfaces and spin-

glass structure in the bulk. In the first section of this chapter, we propose a simple theory

that accurately captures the coupling between steric and electrostatic forces in ionic liquids.

The theory predicts the formation of discrete layers of charge at charged interfaces. Further

from the interface, or at low charges, the model outputs slowly-decaying oscillations in

the charge density with a wavelength of a single ion diameter, as shown by analysis of the

gradient expansion. The gradient expansion suggests a new structure for partial differential

equations describing the electrostatic potential at charged interfaces. We find quantitative
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agreement between the theory and molecular simulations in the differential capacitance and

concentration profiles.

Generally, ionic liquids (ILs) are composed of size-asymmetric anions and cations.

The ordering of charge and density in ILs confined between charged interfaces underlies

numerous applications of IL electrolytes. In the second section of this chapter, we analyze

the screening behavior and the resulting structural forces of a representative IL confined

between two charge-varied plates. Using both molecular dynamics simulations and a con-

tinuum theory, we contrast the screening features of a more-realistic asymmetric system

and a less-realistic symmetric one. The ionic size asymmetry plays a non-trivial role in

charge screening, affecting both the ionic density profiles and the disjoining pressure dis-

tance dependence. Ionic systems with size asymmetry are stronger coupled systems, and

this manifests itself both in their response to the electrode polarization and spontaneous

structure formation at the interface. Analytical expressions for decay lengths of the disjoin-

ing pressure are obtained in agreement with the pressure profiles computed from molecular

dynamics simulations.

3.2 Charged Shell Model for Symmetric Ionic Liquids

3.2.1 Introduction

The spatial organization of ions in concentrated electrolytes leads to strong density and

charge oscillations in the electric double layer (EDL) at charged interfaces [17, 167, 168].

When the concentration is beyond the dilute limit of the established Poisson-Boltzmann

(PB) theory, one must account for correlation and packing effects, particularly as the De-

bye length approaches the size of a single ion [169]. Methods to correct the PB equa-

tions include the hypernetted-chain equation [47, 48, 170–173], mean-spherical approxi-

mation [174, 175], density functional theory [176–184], and dressed-ion theory [144, 185].

While many methods can accurately predict EDL profiles, they often lack the simplicity

and physical transparency of the PB theory which they seek to correct [169].

More recently, with the rediscovery of room temperature ionic liquids (RTILs) [186,
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187] and their applications to energy storage devices [167, 188], the task of understanding

the interfacial structure in concentrated electrolytes has surged [189]. Describing the EDL

of RTILs is particularly difficult because of the competition between strong steric and elec-

trostatic forces [167], as illustrated in Fig. 1, and the fact that the expected Debye screening

length is unphysically smaller than the diameter of an ion. In fact, the coupling of density

and charge has been described as the ground state for a spin-glass Hamiltonian for ionic

nearest neighbors (given their positions) [28], which is extremely difficult to describe with

continuum equations. The interplay between ion position and charge order gives rise to

the well known crossover from the overscreening regime (where decaying oscillations of

charge density occur) to the crowding regime (where dense layers of countercharge accu-

mulate at the interface before an overscreening tail) [190–193].

Perhaps one of the most popular descriptions of the overscreening versus crowding

problem [190,191] in RTILs is the Bazant-Storey-Kornyshev (BSK) theory [192]. There, a

higher order gradient term in electrostatic potential was proposed, in addition to the com-

monly used lattice-gas excluded-volume excess chemical potential [6, 194]. As discussed

Figure 3-1: (a) Illustration of a concentrated, crowded electrolyte forming structured double layers
at high surface charge density. The cations are red, the anions are blue, and the surface atoms are
shown in gray, with negative charge on the left surface and positive charge on the right surface. (b)
Corresponding concentration profile for a representative room temperature ionic liquid of equal-
sized hard spheres (c0 = 5 M, d = 0.5 nm, εr = 10, qs = 120 µC/cm2, T = 300 K).
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in the previous chapter, the BSK theory has been shown to accurately describe electrostatic

correlations for dilute electrolytes containing multivalent ions and counter-ion only sys-

tems [23, 195]. In the concentrated limit of RTILs, however, the BSK theory has some

notable limitations: The screening is always short-ranged; the period of the oscillation is

not necessarily the size of an ion; the number and extent of oscillations is significantly un-

derestimated; and the formation of discrete charged layers at the interface is not captured.

More recent work has suggested that the overscreening structure is a similar concept to the

finite-size [196] and orientation of ionic aggregates [197] near charged interfaces.

In this chapter, we propose a free energy functional to describe the coupling between

steric and electrostatic forces, and therefore, capture the “spin-glass" nature of charge-

mass correlations in RTILs. The theory predicts discrete layering, extended overscreening

with a longer screening length than the size of an ion with an oscillation period of one

ion diameter, and quantitative agreement with simulated differential capacitance. Our free

energy functional uses the weighted density approximation to describe the finite size of ions

in both their electrostatic and steric interactions. Without fitting parameters, the theory

has strong predictive capabilities, and it has a similar simplicity to the other modified-

Poisson-Boltzmann approaches. While we explore the equilibrium properties at interfaces,

the presented formulation could be extended to RTILs out of equilibrium, phase field crystal

models, or systems including a structured solvent.

3.2.2 Theory

We modify the electrostatic and hard sphere packing free energies by representing them in

terms of weighted densities of local concentrations, similar to weighted-density approxi-

mations including fundamental measure theory [54, 55, 198]. We rationalize these choices

by treating the ions as hard, conducting, charged spheres of finite size, with point potential:

Gi(r) =


zie

4πεr r ≥ R

φ0 r < R
(3.1)
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where φ0 is a constant within a given ion, ε is the permittivity surrounding the ion (as-

sumed constant in this work as an average effective background value), zie is the charge

of the ion, R is the radius of an ion, and r is the distance from the center of an ion. The

physical basis for the Ashcroft pseudopotential character [199] of the Green’s function is

that the electrostatic potential within a finite-sized ion is effectively overwhelmed by the

hard sphere potential within the ion. Therefore, the electrostatic potential is an undefined

constant within the sphere and can decay as a 1/r potential only beyond the ionic radius.

The linear integro-differential equation corresponding to this Green’s function is:

ε∇
2
φ =−ρ̄e(r) =−

∫
dr′ρe(r)ws(r− r′)

ws(r− r′) =
1

4πR2 δ
(
R− | r− r′ |

) (3.2)

which is the key modified mean-field Poisson equation in our work. Here φ is the electro-

static potential, ρe = ∑i zieci is the charge density of ionic centers, ci is the number density

of the centers of species i, ρ̄e is the weighted charge density (charge density calculated

for the smeared charge of an ion over its surface), and ws is the weighting function. Inte-

grating contributions of the smeared charges results in the “actual" charge density which

resides in the Poisson equation. While our weight function for the charge density resem-

bles the choice of charge form factor in Ref. [196] for ionic screening in the bulk, we

construct a mean-field equation that gives the ionic density at a flat interface at high charge

density. Similar models were previously constructed for ionic intramolecular charge distri-

butions [52, 200–206].

From the above modified Poisson equation, the electrostatic free energy density be-

comes:

F el[ρ̄e,φ ] =
∫

dr
{
− ε

2
(∇φ)2 + ρ̄eφ

}
. (3.3)

The chemical part of the free energy contains an ideal entropic contribution: F id[{ci(r)}] =

∑i kBT
∫

drci(r)
[

ln(Λ3ci(r))− 1
]
, where kBT is thermal energy and Λ is the thermal de

Broglie wavelength [55]. There is also an excess contribution from crowding of the finite-

sized ions. The Carnahan-Starling equation of state accurately describes the properties of

hard sphere liquids. Here, we adapt it and assume that the local excess free energy depends
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on volumetrically weighted densities, similar to fundamental measure theory [54, 55]:

F ex[c̄i(r)] =
kBT

v

∫
dr

[
1

1− p̄
−3p̄+

1
(1− p̄)2

]
(3.4)

where p̄ = ∑i vc̄i is the weighted volumetric filling fraction and v = 4πR3/3 the volume of

an ion. The weighted densities are defined by:

c̄i(r) =
∫

dr′ci(r)wv(r− r′)

wv(r− r′) =
1
v

Θ
(
R− | r− r′ |

) (3.5)

where the scalar valued weighting function has units of inverse volume, and the function

Θ represents a Heaviside step function. Therefore, the densities with which the mean field

electrostatic interaction or hard sphere interaction occurs are computed with a quantized

volume of one ion. Physically, the free energy is infinite as the volumetric-weighted filling

fraction goes to one 1. For the purposes of this study, the electrostatic weighting func-

tion will be homogenized on a surface of an ionic sphere, whereas the volumetric packing

fraction will be homogenized over a volume of an ionic sphere.

Minimizing the free energy functional, we arrive at a modified PB equation, Eq. (3.2),

where the distribution of ion (center) densities are determined by

ci = ci,0 exp(−ziβeφ̄ −β µ̄
ex
i +β µ

ex
i,bulk) (3.6)

with β as the inverse thermal energy, φ̄ = φ ∗ws and µ̄ex
i = µex

i ∗wv, (with ∗ denoting

convolution), and excess chemical potential defined as β µex
i = (8p̄−9 p̄2 +3p̄3)/(1− p̄)3

2.

1The weighted density is necessary to describe the formation of discrete layers of charge at high surface
charge density, which cannot be captured by local-density approximations.

2A continuum theory of this kind does not require distinguishing ‘free,’ ‘paired,’ or ‘clustered’ ions [29].
The ionic associations are reflected in oscillating charge density distributions.
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Figure 3-2: Layering of ions in a concentrated electrolyte or ionic liquid. (a) The overscreening
‘signature:’ the charge density of ions near a positively charged electrode scaled to the surface
charge density on the electrode. The inset shows the concentration profile for each ion at qs = 10
µC/cm2, with oscillations in both the sum of concentrations and in the difference in concentrations.
(b) The cumulative charge density as a function of the distance from the interface, with inset showing
the extent of screening in the first layer of charge, f1. Overscreening occurs when the net charge in
the first layer is larger than the charge on the electrode.
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3.2.3 Results and Discussion

We solve the above coupled integro-differential equations 3.2 and 3.6 at a flat electrode,

with surface charge density, qs, at x = 0. In this case, the standard boundary condition for

the potential is applied n̂ ·ε∇φ |s =−qs. The local ionic densities (of centers) ci and charge

density (of ionic centers) ρe are assumed to be zero within one radius from the surface,

from x = 0 to x = R, due to hard sphere exclusion. We solve for the area averaged density,

and we therefore reduce all equations to be dependent on one coordinate, x. Numerically,

we discretize the equations using a simple finite difference approach, similar to how the

standard PB equations could be solved. More details on the numerics are provided in the

Supplemental Material of [7].

Figure 3-3: Differential capacitance of the EDL as a func-
tion of the applied voltage, for the weighted density approx-
imation (WDA) in Eq. (3.2), simulations, and the local den-
sity approximation (LDA) formula [6], given in the Support-
ing MAterial of [7]. Inset: The charge density in the double
layer as a function of the applied voltage. The parameters
are identical to Fig. 3-2.

For further intuition, we an-

alyze a simple gradient expan-

sion of the weighting functions

that turns them into operators:

w j = 1+ ℓ j
2
∇2, where ℓ j is given

by ℓs = d/
√

24 for ws and ℓv =

d/
√

40 for wv, as derived in the

SM of [7]. The corresponding free

energy density is given by:

F el[ρ̄e,φ ] =
∫

dr
{
− ε

2
(∇φ)2

+ρeφ − ℓs
2
∇ρe ·∇φ

}
.

(3.7)

The leading order term in the expansion corresponds to a dipole density interacting with an

electric field, interpretable as ionic pairs of effective volumetric dipole moment ℓs
2
∇ρe, an

effective polarization vector formed by gradients in the local charge density ρe [197]. Note

that since the order of the differential equation increases, we need an additional boundary

condition. We assume this to be n ·∇ρe|s = 0 in order to satisfy electroneutrality in the
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differential equation, namely that:
∫

drρe(r) =−
∫

drsqs(rs).

Figure 3-4: Comparison of theory (a,c) and sim-
ulation (b,d) concentration profiles for two differ-
ent charge densities: qs = 10 µC/cm2 and qs =
120 µC/cm2. The electrolyte has the same pa-
rameters as in Figs. 3-2 and 3-3 .

The above gradient expansion does not

reproduce the profile at the initial contact of

the ionic liquid with the surface. In particu-

lar, the differential form cannot capture the

discontinuous contact point at x = R, and

so the solutions are shifted by one ionic ra-

dius. Even so, the gradient expansion is

valid farther from the surface and is use-

ful for deriving analytical approximations

for the theory. Furthermore, the differen-

tial form may be easier to apply to prob-

lems in diverse applications such as elec-

trokinetics [58], colloidal interactions [23],

or electrochemical storage [61,67] than the

full integro-differential theory [207]. As

an example, we will first analyze the gra-

dient expansion of the continuum theory in

terms of its limiting linear response behav-

ior, which asymptotically matches the be-

havior of the full integral equation far from

the interface. Further comparisons are in-

cluded in the SM of ref. [7].

In linear response, the equation for the

potential is:

λ
2
D∇

2
φ − (1+ ℓ2

s ∇
2)2

φ = 0. (3.8)

where λD is the Debye length.While the equation is fourth order, similar to the linearized

BSK equation, it has different decaying modes due to an additional second order term.

103



The eigenvalues of the above differential equation, denoted by the inverse decay length

κs = 1/λs, have the form:

κsλD =
1±

√
1−4(ℓs/λD)2

2(ℓs/λD)2 . (3.9)

Note that the form of Eq. (3.8) bears some resemblance to the Swift-Hohenberg equa-

tion [208], commonly used to describe pattern formation and other phase-field crystal mod-

els [209]; here electrostatics and finite size drive the pattern formation. When ℓs/λD > 1/2,

oscillations appear in the solution, and in the limit of ℓs/λD ≫ 1/2, the screening length

takes the form: κsλD = λ 2
D/ℓ

2
s ± iλD/ℓs. At high concentration, the ions will therefore

form charge density layers on the scale of the ionic size, with period of 1.28 d, similar to

the result from simulations. In strongly correlated regimes, the real part of the screening

length will scale as: ln [Re(λs/λD)] = 2ln(d/λD)+ const, increasing with concentration.

This result is qualitatively in agreement with surface force experiments [210,211], but they

find a scaling factor 3 rather than 2. They also measure monotonic decay, and not decaying

oscillations in the overscreening tail as predicted by the theory. Note that the mass density

oscillations also have a characteristic decay length, but it is decoupled from the electrostatic

potential at linear response for ions of the same size, as discussed in the SM of [7]. The

discrepancy in exponents may be due to the symmetric size of ions in the analysis here,

which limits the coupling.

Next, we compute the ion concentration and density profiles as a function of charge

density for some model parameters (c0 = 5 M, d = 0.5 nm, εr = 10, T = 300 K), shown in

Fig. 3-2. Note the parameters shown here are meant to be representative of RTILs, but the

simplifying assumptions of similarly-sized cations and anions prevent a direct comparison

with experimental results for asymmetric ionic liquids 3. We also present the cumulative

screening charge, defined as f (x) = −
∫ x

0 ρe(x′)dx′/qs. At low surface charge density, the

first layer of charge has about 57% more counter charge than the surface charge. Sub-

sequent layers of alternating charge are formed. At low surface charge density, the ion

3The symmetric size limits the possible parameter space due to maximal packing constraints, leading to a
high differential capacitance at zero charge for both the theory and the simulation relative to experiments on
real RTILs.
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concentrations themselves are affected by overall structuring of the fluid (c++ c−) due to

packing at the interface. At higher charge density, the inhibitive force of packing at the in-

terface decreases the extent of overscreening in the first layer, f1. Eventually, as the charge

density exceeds the total amount of charge that can be stored in a single layer of ions, a

secondary layer is formed. When this occurs, the extent of overscreening becomes deter-

mined by the renormalized charge on the interface. The chosen simulation parameters are

in the strongly oscillating regime ℓs/λD ≈ 2.1, meaning that the far range screening tail has

approximate wavelength of one ionic diameter and long decay length.

It is instructive to compare the predictions of the theory to MD simulations of a Lennard-

Jones electrolyte with the same parameters. The differential capacitance, C =| dqs/dφ0 | is

evaluated in Fig. 3-3 as a function of the potential at x = 0, φ0. Compared to simulations,

the weighted density theory captures the low capacitance at zero charge and the decay of

capacitance at large voltages. The theory presented here agrees much better with simula-

tions compared to the local density approximation formula [6, 212]; the improvements in

the crowding regime, at large voltages, are due to use of the weighted Carnahan-Starling

approximation rather than the simple local density approximation formula, both obeying,

however, the V−1/2 limiting law [6, 207]. In Fig. 3-4, the layering structure is compared

between theory and simulation for low and high charge densities. The theory is able to

qualitatively match the structuring in the simulations, with charge density oscillations and

eventually layers of the same charge at high charge density. Even so, the wavelength in

the charge density oscillations are off by about a factor of 1.3. Such a discrepancy could

be captured by changing the form of ws to extend beyond the size of the ionic radius, but

modifications to ws are not considered in this work 4.

3.2.4 Conclusions

The developed continuum theory captures the key points in the interplay between over-

screening and crowding in EDL of ionic liquids, including: 1) Decaying charge density

profiles near the electrode and the overscreening effect as a consequence of molecular lay-

ering, 2) The onset of crowding through the shift of the overscreening to a third, and then
4A different form of ws implies different physical assumptions for the Green’s function in equation 3.1

105



subsequently further layers, and 3) The emergence of the long range screening tail in ultra-

concentrated ionic systems.

In a separate study [213], our collaborators led by Dr. Hao-Kun Li and Prof. Arun Ma-

jumdar were able to directly observe the crowded structure of ions near charged interfaces.

Using the model of nonlocal crowding and similar simulations to those performed here, we

were able to reproduce the main features of the ionic arrangements near the charged sur-

face. The combination of experiment, simulation, and theory demonstrates the importance

of including the nonlocal crowding effect to accurately predict the interfacial structure of

the highly concentrated electrolyte at the surface.

3.3 Structural Forces in Ionic Liquids: Role of Ionic Size

Asymmetry

3.3.1 Introduction

Room-temperature ionic liquids (ILs) are molten salts composed of majorly asymmetrically

sized anions and cations. [214, 215] ILs have wide electrochemical stability windows, low

vapor pressure, and are thermally stable. [167, 216] Due to their exceptional properties,

they are used in energy storage applications including supercapacitors and batteries, [167]

as solvents for reactions and for catalysis, [215] and can also be employed as electrotunable

lubricants. [217, 218] In these applications, the ILs can be confined in charged nanopores

down to the nanometer scale, in which the extent of the nanopore confinement and its

polarity determine the interfacial IL structure and charge layering. [219–222]

In order to optimize the interfacial behavior of ILs for their many applications, re-

searchers need to accurately model ILs. This is done either through computationally ex-

pensive atomistic simulations or via sophisticated theoretical approaches, which go beyond

standard mean-field theories of dilute electrolytes. In such highly concentrated electrolytes

as ILs, the dilute solution theory is predestined to fail since ILs form structures determined

by dense packing of ions in the crowding [6,17,194,223–225] (layering of ions of the same

charge at highly charged electrodes) and overscreening [190,226] (alternating layers of op-
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posite charge at weakly charged electrodes) regimes. Most egregiously, the dilute solution

theoretical description does not take into account the ionic size. [15–17] In order to capture

these screening features, multiple continuum theories have been developed to include the

finite size of ions in their steric and electrostatic interactions, especially for concentrated

systems at high voltages. [7, 67, 181, 192, 227, 228] However, most theoretical models of

these systems have been developed, for ‘simplicity,’ for the case of ions of the same size.

This was natural to do as a start, although most ILs exhibit strong size asymmetry. In

theories, ion asymmetry has typically been studied within the mean field approach that ac-

counted for crowding, particularly in the explanation of the asymmetry of the double-layer

differential capacitance curves in such systems. [6, 167, 229–233] In molecular dynamics

(MD) simulations, ion asymmetry has been either specially introduced [226] or naturally

included with fully atomistic or coarse grained models of ions [167]. Certain classical

Density Functional Theories (DFT) have also been applied to asymmetric ILs, predicting

interfacial layering in line with MD simulations. [181,234] These studies of ILs draw from

the wide body of theoretical research on primitive model electrolytes either through classi-

cal DFT [52,182,235–237] or integral equation theories. [46,171,238–241] In fact, earlier

work from Greberg and Kjellander revealed the role of asymmetry in the contact behavior

and decay of bulk correlations in primitive model electrolytes. [242]

Surface Force Apparatus (SFA) and Atomic Force Microscopy (AFM) measurements

have emerged as the main experimental tools to investigate the nanoscale structure of in-

terfacial liquids, [243] including ILs. [219, 220, 244, 245] While in SFA experiments the

mica surfaces are spontaneously negatively charged, the AFM setup can incorporate a con-

ductive electrode, allowing for the independent control of charges on the surfaces. Both

SFA and AFM measurements have been performed in a variety of ILs, and in all cases

decaying oscillatory forces were observed, with an oscillation period of the order of an ion

pair diameter (usually dominated by the largest ion diameter), indicative of the underlying

alternating charge layering structure. [220, 221, 245, 246] At even longer ranges than the

oscillatory forces, SFA measurements found an additional monotonically decaying ‘tail’ of

the force, both in concentrated electrolytes and ILs. [210, 211, 246, 247]

Despite of these findings, however, simulations and theoretical descriptions of primi-
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tive model electrolytes have not succeeded to recover the existence of such a tail. [235]

Long-range electrostatic forces in the dilute limit can be described by analytical formu-

las derived from Debye-Huckel linearization, but such simple analytical equations are not

readily available for the oscillatory structural forces. While the above-mentioned theories

presented sophisticated analyses of the role of asymmetry on interfacial ionic behavior,

they still did not present simplified, explicit formulas for the oscillatory IL structure and

structural forces, nor did they directly validate the role of asymmetry on the structural

forces and screening structure by MD simulations of the concentrated IL limit in varying

extents of confinement. Instead of directly applying theoretically-derived formulas, the

experimental oscillatory forces are typically empirically fitted to an oscillatory decaying

function. Therefore, the physical and quantitative interpretation of oscillatory structural

forces in experiments could greatly benefit from analytical formulas derived within theo-

ries of concentrated, and generally asymmetric ILs.

In the present work, we go further into investigating the double layer structure of asym-

metric IL under confinement between equally-charged surfaces using both MD simulations

and an advanced continuum theory. The ion density profiles and disjoining pressure curves

that we calculate based on our original theory [7] show qualitative and quantitative agree-

ment with the results of simulations for a range of surface charge densities and surface

separations. By a comparison of a representative IL with asymmetric ions to an IL com-

posed of size-symmetric ions, we demonstrate that the size asymmetry strongly determines

the ionic layering structure between two flat charged interfaces. Even at zero charge of the

electrode there is an entropy-driven ‘preferential adsorption’ of smaller ions, which results

in spontaneous layering of positive and negative charges near the electrode. The order of

layering may, in fact, be changed by specific adsorption of any of these ions, which is not

included in our simple model, but which could easily be modeled by adding a specific term

in the interaction potential between the ions and the surface. In whatever direction that

effect could have shifted the result, it would act at the background of the noted effect.

Furthermore, the size asymmetry leads to a strong coupling of charge density and num-

ber density oscillations even far from the interface that is absent for the symmetric case.

Analytical approximations are shown to reproduce the simulated modes of decaying oscil-
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lations in the disjoining pressure at the nanometer scale. However, neither the simulations

nor the theory contain any evidence of an abnormally long decay length or long range ex-

ponential tails. Nevertheless, the main value of the theory lies in the analytical description

of the decaying modes of the structural forces and their dependence on surface charging in

terms of the IL physical properties. The numerical predictions of the full nonlinear theory

can be generated with relatively small computational cost compared to atomistic simula-

tions.

All-in-all, the presented theory demonstrates that the ion asymmetry in electrostatics

and steric interactions are essential in describing the double layer structure for ultraconcen-

trated, asymmetric ILs. These findings therefore signify an important step in the advance-

ment of our understanding of the screening behavior and the resulting structural forces of

ultraconcentrated, asymmetric ILs as well as of solvent-in-salt systems, under nanoconfine-

ments.

3.3.2 Simulations and Theory

An IL is approximated in both MD simulations and a continuum theory, first with asym-

metric anion and cation sizes, and then with an equal anion and cation size, as charged

Lennard-Jones (LJ) spheres. Such level of simplification has been chosen first of all to

investigate the effects not obscured by any chemical complexity of the ions, and secondly

because this would be most straightforward comparison between the simulations and the

theory that we use here. We highlight the properties and parameters of the MD simulations

and the continuum theory before applying them to model the IL and the resulting disjoin-

ing pressures. It should be noted that the coordinate system here is rotated compared to

the previous section in this chapter such that the normal coordinate is now the z-coordinate

instead of the x-coordinate, in order to be consistent with the orientation convention in the

simulations.

Simulation Details
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Within this minimal model, the ions are represented as a 1:1 mixture of oppositely and

singly charged LJ spheres, [226, 248, 249] as shown in Figure 3-5. The concentration of

both anions and cations in the simulation box is c0 = 4.586 M and the absolute temperature

is T = 600 K (as usual elevated temperature is taken when ‘experimenting’ with charged

LJ-spheres, because at room temperature dense plasma of such spheres freezes out). In

our model, we account for the electronic polarizability of the ions in an effective manner.

For this, we have set the background permittivity to be ε = 2ε0, [248, 249] where ε0 is the

permittivity of free space. The ions interact through LJ and coulombic potentials, where

the size asymmetry of the ions is controlled by adjusting their diameters through the LJ

parameter σi j for species i interacting with species j, or σi when i = j. The ion sizes

that we consider here for the asymmetric system are σ− = 0.7 nm and σ+ = 0.35 nm,

and the ion size for the symmetric system is σ− = σ+ = 0.58 nm, such that the filling

fraction is approximately equal in both systems, making ∑i σ3
i c0 unchanged. While we

choose spherical ions in our model for simplicity, we still include attractive dispersion

interactions. This is done to be able to capture a more realistic representation of the IL, as

these attractive dispersion interactions are active in real ILs. Therefore, in our simulations,

the cutoff distance of the LJ potential is set to be as long as 1.8 nm. Even so, as reaffirmed

in the theoretical predictions which do not incorporate dispersion interactions, the main

balance guiding the structural forces is the interplay between the ionic charge and ionic

finite size.

Two parallel plates in the x-y plane are immersed in a bulk of IL. We consider flat

surfaces comprised of LJ spheres in contact with the confined liquid, and a lattice parameter

of mica. [248] Performing constant charge simulations, the surface charge on each plate is

varied between qs = -0.12 C/m2 and qs = +0.12 C/m2. In the simulations, the image

charge interactions are not taken into account. Simulations of IL nanofilms (1-10 nm thick)

showed that the effect of electrode polarizability (image charges) on the vertical and lateral

structure of the confined liquids is insignificant at practically feasible applied voltages.

[250–252] Since they involve solving for the fields inside the confining surfaces, image

charge interactions can lead, in principle, to the depletion of ions in the nanogap for a

single layer of ions confined between two uncharged or slightly charged dielectric walls. In
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this case, the ions, instead of ‘seeing’ their counterions nearby, see their own weak images

in the side walls (the situation may be different for metallic surfaces [253]). However, for

larger separation distances between the surfaces, there is a weak dependence of the IL’s

structuring on the electrode polarizability which is explained by the screening of image

charge interactions by the first layer of ions. [254] Therefore, in our work, we choose

not to include image charge interactions, as we are particularly interested in isolating the

structural layering of the liquid, which occurs even without the complexity that is added

with the introduction of image charge interactions.

Figure 3-5: MD simulations. (a) Snapshot of the
asymmetric IL immersing two charged surfaces in
a fully periodic simulations box. The surfaces are
pushed together along the z-direction with a nor-
mal force FL to ultimately calculate the pressure
as a function of the separation distance, L. (b)
The ionic sizes, characterized by the LJ diameter,
σi, for the (left) asymmetric and (right) symmet-
ric systems.

In the simulations, for each fixed sur-

face charge the ionic density profiles be-

tween the surfaces are computed at fixed

separation distance, and the separation dis-

tance is varied to generate a pressure curve.

Expansion on the simulation details and the

used methods can be found further in the

Supporting Information (SI) of ref. [166].

3.3.3 Theoretical Derivation

The theory is based on an approximation

of the Helmholtz free energy of a system

of asymmetric, hard-sphere 1:1 electrolyte

with a constant background permittivity, ε ,

the primitive model. [3, 235, 255, 256] The

phenomenological basis for the theory is

that the electrostatic and hard sphere com-

ponents of the free energy of the system can be expressed in terms of locally homogenized

quantities of the ion densities, the weighted-density approximation (WDA). The distin-

guishing feature of this model, as opposed to other similar classical DFT approaches, [257]

is that the electrostatic contribution to the free energy is directly expressed in terms of
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weighted ionic densities. [7, 200, 204] The model is a generalization of the density func-

tional for ILs presented in Ref [7] that was reproduced the previous section of this chapter.

The core ingredients of the theory that allow us to capture the discrete layering in ILs

are (i) representing the ions as delocalized shells of charge in their electrostatics and (ii)

encoding the hard sphere packing of ions in their excess chemical potential. While these

effects introduce some mathematical complexity, they have straightforward physical in-

terpretations and do allow for some analytical progress, especially in the linear response

limit.

To start, the free energy of the system can be broken down into three contributions, an

ideal part F id, an excess part F ex, and an electrostatic part F el:

F = F id +F ex +F el (3.10)

The ideal contribution is related to the entropy of an ideal gas:

F id[{ci(r)}] = ∑
i

kBT
∫

drci(r)
[

ln(Λ3
i ci(r))−1

]
(3.11)

where kBT is thermal energy and Λi is the thermal de Broglie wavelength of ion i, and ci is

the number density of ion i. Here, we incorporate a phenomenological, simplified version

of Fundamental Measure Theory (FMT) [55] for the hard sphere contribution to the free

energy. The advantage of this approach is that more compact expressions can be derived

for the ionic excess chemical potential in terms of fewer weighting functions, aiding in the

process of deriving simplified analytical approximations to the theory.

The phenomenological excess free energy we define is given by:

F ex[c̄i(r)] =
kBT

v̂

∫
dr

[
1

1− p̄
−3p̄+

1
(1− p̄)2

]
, (3.12)
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where p̄ is the weighted volumetric filling fraction,

p̄ = ∑
i

viwv,i ∗ ci

wv,i(r− r′) =
1
vi

Θ
(
Ri− | r− r′ |

) (3.13)

where Ri is the effective hard-sphere radius of the ion, vi = 4πR3
i /3 is the volume of the

ion, ∗ denotes a convolution, wv,i is the volumetric weighting function, Θ represents the

Heaviside step function, and the filling-fraction weighted volume v̂ is given by:

v̂ =
∑i v2

i ci,0

∑i vici,0
=

∑i v2
i ci,0

η
. (3.14)

Here, ci,0 is the bulk concentration of species i and η is the bulk filling fraction, η =

∑i vici,0. By construction, the key criteria that the simplified form of the hard sphere excess

free energy satisfies are: (i) it retains the Carnahan-Starling equation of state [258] for

the limit of symmetric ions or where one ionic species becomes vanishingly small while

the other is of finite size, and (ii) it maintains the same singularities as the FMT functional.

Physically, the model captures the packing of all asymmetric species, and the filling fraction

of each species is homogenized over the volume of its effective spherical size.

The electrostatic part of the free energy in a medium with dielectric constant ε is ex-

pressed in terms of the electrostatic potential, φ , and the homogenized charge density,

ρ̄e [7]:

F el[ρ̄e,φ ] =
∫

dr
{
− ε

2
(∇φ)2 + ρ̄eφ

}
. (3.15)

This corresponds to the modified form of the Poisson equation, via minimization of the

functional with respect to the electrostatic potential potential, δF/δφ = 0:

ε∇
2
φ =−ρ̄e =−∑

i
zieci ∗ws,i

ws,i(r− r′) =
1

4πR2
i

δ
(
Ri− | r− r′ |

) (3.16)

where zi is the valency of ion i, e is the elementary charge, and δ () denotes the delta func-

tion of 1D argument, such that each ionic weighting function ws,i corresponds to homoge-
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nizing over the surface of the ionic spheres. The weighted ionic concentrations signify that

the ions act as shells of charge that interact with the local electrostatic potential.

Minimizing the free energy functional with respect to concentration, the ion densities

at equilibrium satisfy:

ci = ci,0 exp(−ziβews,i ∗φ −βwv,i ∗µ
ex
i +β µ

ex
i,b) (3.17)

with β as the inverse thermal energy and excess chemical potential, µex
i , defined as:

β µ
ex
i =

vi

v̂
8p̄−9p̄2 +3p̄3

(1− p̄)3 , (3.18)

taking on a value in the bulk, µex
i,b, of:

β µ
ex
i,b =

vi

v̂
8η −9η2 +3η3

(1−η)3 . (3.19)

We again note that vi = v̂ for the case where (i) the two ions have the same size or (ii)

when one ion is vanishingly small while the other has finite size. These limits give the

standard expression for the Carnahan-Starling equation of state. For asymmetric ILs in

which the ions both have significant packing effects, the formula effectively interpolates

between these two limits.

We solve the above coupled integro-differential equations 3.16 and 3.17 for the ionic

densities and electrostatic potential between two flat electrodes, with equal surface charge

density, qs. In this case, the standard boundary condition for the potential is applied n̂ ·

ε∇φ |s = −qs. In the theory, the surface is assumed to be perfectly flat and hard with

smeared charge density, so the space corresponding to the surface atoms is subtracted. In

the theory, the representative surfaces are defined at z =±L/2∓Rs, where L is the distance

between surface atom centers in the simulation and Rs is the surface atom radius. Therefore,

the theoretical ionic densities are zero for z < −L/2+Rs +Ri and z > L/2−Rs −Ri. We

solve for the area averaged density, and we therefore reduce all equations to be dependent

on one coordinate, z. [7] Numerically, we discretize the equations by finite difference.

To compare the simulations and theory results, we determine a consistent definition of
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the ion diameter in the theory, di, compared to the σi j values of the simulation. Since the LJ

interaction is not exactly the same as the hard sphere interaction assumed in the theory, the

ions in the simulation can overlap slightly with the surface and each other below a center

to center separation of σi. We assume that the effective ionic diameter in the theory is set

by a cutoff criterion, where the LJ potential is ULJ = 0.3kBT , corresponding to di ≈ 0.9σi.

The sensitivity of the results with respect to this criterion is discussed in the SI.

The pressure between the two equally charged surfaces as a function of separation dis-

tance is calculated as [259–262]:

P =−δ (Ω/A)
δL

(3.20)

at constant temperature and reference chemical potential (constant bulk ionic concentra-

tions), where A is the area of the surfaces, and Ω is the grand potential

Ω = F −∑
i

∫
dr
{

µi,bci

}
(3.21)

and µi,b is the bulk chemical potential. By definition, the pressure corresponds to the change

in the grand potential per differential change in the system volume, assuming fixed area of

the confining surfaces. The values of Ω/A for a range of separation distances are nu-

merically computed, and we then numerically differentiate this function to calculate the

disjoining pressure. The zero value for the disjoining pressures corresponds to the bulk

reference value as L → ∞, P∞ = 0.

3.3.4 Results and Discussion

Ionic charge and density profiles

We start by comparing in Figure 3-6 the ionic densities calculated from the simulations

(circles, ◦) and theory (lines, ) as the ionic layers are squeezed out (columns, panels

a-f) at varying surface charge/polarities (rows). Beyond simply plotting the density of

ionic centers, ci, the layering in the charge is plotted with the cumulative charge function
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Figure 3-6: Charge and ion density profiles in asymmetric ILs between the charged plates. Rows
correspond to the fixed surface charge densities of (a-b) qs = 0.12 C/m2, (c-d) qs = 0 C/m2, and
(e-f) qs = −0.12 C/m2. Columns correspond to the squeeze out of a central electroneutral layer
between two stable states where (a, c, e) L ≈ 2.2 nm and (b, d, f) L ≈ 1.5 nm. Cumulative charge
functions are plotted to the left or right of the corresponding concentration profile plot. Markers,
(◦): simulations; Lines, ( ): theory. Color coding: ( ) - anions, ( ) - cations.
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(accompanying plots to the left and right of panels a-f), Qcu(z), defined as:

Qcu(z) =
∫ z

−L/2
∑

i
zieci(z′)dz′. (3.22)

Analyzing Figure 3-6, the theory captures the main features of the charge ordering found in

the simulations, particularly when plotted in terms of Qcu(z). However, the theory does not

accurately predict the magnitude of the overscreening as the separation distance increases,

and underpredicts the decay into the bulk for the widest separations. Interestingly, the

theory is more in line with simulations when describing the charge ordering at small sepa-

rations between the plates, where the bulk correlations of the ions are the least influential.

At zero surface charge (panels c and d), both the theory and the simulations show that the

smaller ion, the cation in our study (displayed in red color, ), can access the surface more

easily. For negatively charged surfaces (panels e and f), the small cation concentration is

enhanced drastically near the surfaces, maintaining the same number of layers as in the

zero charge case. At positive surface charge (panels a and b), however, the cation is pushed

out of the region closest to the surfaces, resulting in fewer layers of ions in this limit. The

main discrepancies between the theory and simulations is the sharpness and magnitude

of the ionic density peaks, arising because the theory assumes hard-sphere interactions

while the simulations assume LJ interactions. Further, whereas the theory obeys elec-

troneutrality within the space between the two charged surfaces (Qcu(z = L/2) = −2qs),

the simulations exhibit some partial charge screening from the IL outside the gap, so that

Qcu(z = L/2) ̸=−2qs.

We can then contrast the screening with asymmetric ions to screening with symmetric

ions. In Figure 3-7, the ionic density profiles for the symmetric system are shown, for

increasing negative surface charge and two separation distances. Since a change in the

surface polarity gives identical profiles (up to the identity of the symmetric ions) only

negative surface charge values are shown. Again, overall, the theory captures ordering in

charge and density between the charged surfaces quite well, with close agreement for the

smallest separation distances. At zero surface charge (panels a and b), no local ionic charge

density occupies the gap, since neither ion preferentially accesses the surface. The ions
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then form overlapping layers, which turn into alternating ones when increasing the surface

charge (panels c-f). Overall, the overscreening structure remains similar as the surface

charge magnitude increases, since the surface charges tested are not large enough to enter

the crowding regime. Additional charge and density profiles with varying surface charges

and separation distances for both the asymmetric and symmetric systems are presented in

the SI.

Disjoining pressure profiles

Simulations and integro-differential theoretical results: Finally, the role of ionic asym-

metry on structural forces is demonstrated in Figure 3-8. Pressure profiles are plotted as

a function of the surface separation distance for the asymmetric (panels a-c) and sym-

metric (panels d-f) systems, where they are confined between negatively (panels a and d),

uncharged (panels b and e), and positively charged surfaces (panels c and f). Additional

Figure 3-7: Charge and ion density profiles in symmetric IL. Rows correspond to the fixed surface
charge of (a-b) qs = 0 C/m2, (c-d) qs = −0.06 C/m2, and (e-f) qs = −0.12 C/m2. Columns corre-
spond to the squeeze out of a central electroneutral layer between two stable states where (a, c, e)
L ≈ 2 nm and (b, d, f) L ≈ 1.4 nm. Cumulative charge functions are plotted to the left or right of
the corresponding concentration profile plot. Markers, (◦): simulations; Lines, ( ): theory. Color
coding: ( ) - anions, ( ) - cations.
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results with varying surface charge magnitudes are presented in the SI. Comparing the the-

ory to the simulations, overall, there is an agreement between the MD simulation pressure

profiles (black markers, ◦ in Figure 3-8) and the full integro-differential results from the

theory (the orange line represents the asymmetric system and the purple line rep-

resents the symmetric one). This agreement is most pronounced at the smallest separation

distances, where the pressure magnitudes are the most significant. The main discrepancy,

as similarly noted already for the ionic density profiles, is that the oscillations decay more

quickly for the theory than those that are observed in the simulations. While the pressure

profiles in Figure 3-8 appear to be similar for both systems, there are still significant dif-

ferences with respect to surface charge magnitude and sign. Referring specifically to the

simulated pressure profiles (black markers, ◦ in Figure 3-8), as expected, the amplitude of

the pressure oscillations increases as the surface charge magnitude increases for both the

asymmetric and the symmetric systems. However, for the asymmetric system, the pressure

oscillation amplitudes are larger for the positive surface charge polarity, due to the larger

Figure 3-8: Disjoining pressure profiles. (a-c) Asymmetric system and (d-f) symmetric system for
(a, d) negative, (b, e) uncharged, and (c, f) positive surfaces. The black markers (◦) are the MD
simulation data points. The solid lines are the full, nonlinear integro-differential theory, where ( )
corresponds to the asymmetric system and ( ) corresponds to the symmetric one. The other dashed
and dash-dot lines are applications of the approximation in equation 3.23, where the parameters
P0 and z0 are fit only to the first minimum. Here, the ( ) lines correspond to the analytical
expressions for κ in equations 3.37 and 3.38, while the ( ) lines plotted in (d-f) correspond to
the definitions in equations 3.39 and 3.40.
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anions accumulating between the positively charged surfaces. Meanwhile, as expected, the

pressure profiles for the symmetric system do not depend on the sign of the surface charge

density. In the asymmetric system, the period of oscillation is not affected by the electrode

polarity or magnitude. This is because at small potential drops across the double layer,

overscreening is always present, and the overscreening period and decay are determined

by the diameter of the larger ion. For the symmetric system, the period of the pressure

oscillations increases slightly at qs = ±0.12 C/m2, yet it still remains on the scale of an

individual ionic diameter. The theory in general also captures these features, particularly

the asymmetric pressure response of the asymmetric IL with changing surface polarity, as

well as the oscillation period, being on the order of the largest ionic diameter (orange line,

in Figure 3-8).

Linear response analysis

In order to gain further insight into the differences between the pressure profiles of the sym-

metric and asymmetric systems, we seek an approximate theoretical description in which

the pressure profiles are represented by an exponentially decaying oscillating form,

P = P0e−κ1(z−z0) cos(κ2(z− z0)) , (3.23)

where κ1 encodes the decay length of oscillations while κ2 encodes the period of oscilla-

tions. Approximating the theory at linear response, the values for κ1 and κ2 are determined

from the decay modes in charge density, which is proportional to c+− c−, and the total

number density c++ c−. While the equations presented thus far are generally nonlinear

integro-differential equations, in the limit of small, slowly varying perturbations in number

density or charge density in linear response, we can derive analytical formulas to approxi-

mate the oscillatory decay of the charge and number density as a function of the IL proper-

ties. Here, we present the detailed derivation and analysis of the approximations involved

for the theory at linear response.

Limit of small perturbations: Equation 3.17 for small perturbations in linear response
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can be approximated as:

ci ≈ ci0(1− zieβwsi ∗φ −βwvi ∗µ
ex
i +β µ

ex
i,bulk). (3.24)

The excess chemical potential can be linearized to give:

β µ
ex
i =

vi

v̂
(8p̄−9 p̄2 +3 p̄3)

(1− p̄)3 ≈ β µ
ex
i,bulk +

vi

v̂
2(4−η)

(1−η)4 (p̄−η) (3.25)

where we have linearized the weighted filling fraction p̄, with reference value given by

the bulk filling fraction, η . Therefore, if we assume linear perturbations of the bulk state,

where δ f = f − fb, we have the following coupled equations for the linearized Poisson

equation and the ionic concentrations:

δci ≈−zici0eβwsi ∗φ − vici0

v̂
2(4−η)

(1−η)4 wvi ∗∑
j

v jwv j ∗δc j (3.26)

ε∇
2
φ =−∑

i
ziewsi ∗δci (3.27)

In the proceeding equations, we will analyze the decaying modes for these differential

equations for the cases of (i) the symmetric IL system and (ii) the asymmetric IL system.

We briefly comment on (iii) systems with only a small degree of size asymmetry. In each

of these analyses, we will use the following differential approximation for the convolution

integrals, derived by truncating the Fourier transform of the convolution operations for

small perturbations, [7] giving:

wvi ∗δ f ≈
(
1+ ℓ2

vi∇
2)

δ f (3.28)

wsi ∗δ f ≈
(
1+ ℓ2

si∇
2)

δ f (3.29)

where ℓvi and ℓsi are determined by the ionic size:

ℓvi =
di√
40

(3.30)

ℓsi =
di√
24

(3.31)
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where the numerical values of
√

40 and
√

24 are given directly from the mathematical form

of the weighting functions.

The symmetric case: For the symmetric case, wsi = ws, wvi = wv, and vi = v̂. The

linear response for the symmetric system has been reported before, [7] but we again go

through the process in order to draw contrast with the asymmetric case. For a 1:1 IL, we

get the following:

δc+ ≈−c0eβws ∗φ − vc0
2(4−η)

(1−η)4 w2
v(δc++δc−) (3.32)

δc− ≈ c0eβws ∗φ − vc0
2(4−η)

(1−η)4 w2
v(δc++δc−) (3.33)

ε∇
2
φ =−ews ∗δc−−ws ∗δc+ (3.34)

If we sum the first two expressions and multiply by v, we get:

δ p = ∑
i

vδci ≈−2η(4−η)

(1−η)4 w2
vδ p (3.35)

where again, p = v∑i ci is the local filling fraction. Next, if we subtract the first two

expressions and substitute into the third equation, we get:

ε∇
2
φ = 2e2

βc0w2
s φ (3.36)

Here, we see that the two systems at linear response are decoupled for the symmetric

system. For the case where all functions become a function of z only, we can trial the

solution δ f = Aexp(−κz) to find the values for the decaying modes, κ . For the equa-

tion governing the filling fraction, δ p = Am exp(−κmz), (directly proportional to the total

number density) the decay has both a real and imaginary part, where
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κ1m = Re(κm) =

√
40
d

√√√√−1
2
+

1
2

√
1+

(1−η)4

2η(4−η)
(3.37)

κ2m = Im(κm) =±
√

40
d

√√√√1
2
+

1
2

√
1+

(1−η)4

2η(4−η)
(3.38)

Next, for the equation governing the electrostatic potential in the limit of high ionic

concentration, with trial solution δφ = Ac exp(−κcz), the decaying mode has different real

and imaginary components:

κ1c = Re(κc) =
12λD

d2 (3.39)

κ2c = Im(κc) =±12λD

d2

√
d2

6λ 2
D
−1, (3.40)

where λD is the Debye length.

Even in linear response, we see that the two decaying modes will compete with one

another in determining the overall disjoining pressure for the symmetric system. Both have

similar nanometric decay ranges in the concentrated limit of ILs. At high charge density,

the mode governing the decay of charge will dominate, κc. At low charge density, the decay

of charge is unimportant in the double layer structure, so the decay in the number density

(and packing fraction), κm will dominate.

The asymmetric case: For the asymmetric system, it is more difficult to make analyt-

ical progress in solving for the decaying modes. First and foremost, the decay in number

density (packing fraction) is coupled explicitly to the decay in charge density (potential).

This fact arises because of the differences in the excess chemical potential between the

different ions, which do not allow for the neat cancellations that were derived for the sym-

metric system.

Further, even in solving the general problem for the decaying modes in each ionic

species and the potential, analytical progress towards simple formulas is burdensome. For

that reason, we will perform analysis for the limit of perfect asymmetry d− ≫ (d+ ≈ 0)
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and high packing fraction, both reasonable approximations for the IL model explored in

this work. If these assumptions are the case, then the governing linear response equations

can be reframed as:

δc+ ≈−c0eβφ (3.41)

δc− ≈ c0eβws− ∗φ − v−c0
2(4−η)

(1−η)4 w2
v−δc− (3.42)

ε∇
2
φ =−eδc++ws− ∗ eδc− (3.43)

By substitution for φ and δc+ into the equation for the potential, we get a single character-

istic equation for the anion concentration decay:

[
1+

2η(4−η)

(1−η)4 w2
v−

]
∇

2
δc− =

κ2
D
2

[
1+w2

s−+
2η(4−η)

(1−η)4 w2
v−

]
δc− (3.44)

Now, we can simplify this linearized expression by taking limits of κD, in relation to

the characteristic length scale of the gradients in concentration, which is the ionic diameter

d− at high concentration. As a quick side note, the limit of d− → 0 gives the Debye-Huckel

linearized form:

∇
2
δc− = κ

2
Dδc−, (3.45)

so dilute electrolytes still have the Debye length as the characteristic decay length, as long

as the filling fraction η in the electrolyte is near zero. If κDd− ≪ 1 and η ̸= 0, then we get

the following leading order differential equation for δc−:

[
1+

2η(4−η)

(1−η)4 w2
v−

]
∇

2
δc− = 0 (3.46)

which is the same differential equation as for the filling fraction of the symmetric system,

δ p, in Equation 3.35, with an additional Laplacian operator. The more relevant limit to
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concentrated ILs is when κDd → ∞, which at leading order gives:

[
1+w2

s−+
2η(4−η)

(1−η)4 w2
v−

]
δc− = 0 (3.47)

For the purpose of simplicity, while still acknowledging the introduction of some error in

the approximation, we can assume roughly that ws− ≈ wv−. Next, at the filling fraction

in the given parameter space, it is safely assumed that the term involving η dominates

the differential equation at large filling fraction, such that the form of the equation can be

approximated as:

[
1+

2η(4−η)

(1−η)4 w2
v−

]
δc− = 0 (3.48)

These simplifying assumptions ensure that Equation 3.48 matches the Equations 3.35 and

3.46. In the limit of large filling fraction and perfect asymmetry, the longest decaying mode

governing the decay of the ionic concentration can be approximated by, κm, again with real

and imaginary components:

κ1m = Re(κm) =

√
40

d−

√√√√−1
2
+

1
2

√
1+

(1−η)4

2η(4−η)
(3.49)

κ2m = Im(κm) =±
√

40
d−

√√√√1
2
+

1
2

√
1+

(1−η)4

2η(4−η)
. (3.50)

Here, the asymmetric system has one main decaying mode, owing to the coupling of oscil-

lations in charge and number density.

Small degrees of asymmetry: One important question is whether there is a smooth

transition between the symmetric behavior and the asymmetric behavior depending on the

extent of asymmetry. The degree of coupling between the charge density and total num-

ber density can be determined via the linear response equations. As a starting point, we
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consider the sum of the linear equations for the cation and anion, δc++δc−:

δc++δc− ≈ c0eβ (−ws++ws−)∗φ − (v+wv++ v−wv−)c0

v̂
2(4−η)

(1−η)4 ∗∑
j

v jwv j ∗δc j

(3.51)

The coupling of the charge density decay with the number density decay is controlled by

the term containing φ . From this term, we observe that the system is decoupled when ws+≈

ws−, or in terms of the approximate differential operators, 1+ d2
+/24∇2 ≈ 1+ d2

−/24∇2.

From these relationships, we find that decoupling occurs when d+ ≈ d−, for symmetric ion

sizes. Approximately, the extent of asymmetry can be quantified using the difference in

differential operators, ws−−ws+, assuming gradients on the order of the smallest length

scale in the system, the smallest ion size (d+ in this case). Therefore, the system will

reproduce perfect asymmetric behavior when:

| d2
−−d2

+ |
d2
+

≫ 1 (3.52)

and will reproduce perfect symmetric behavior when:

| d2
−−d2

+ |
d2
+

≪ 1. (3.53)

Therefore, according to the linear response to small perturbations in the theory, systems

with only slight asymmetry will behave similar to the symmetric system if they satisfy

equation 3.53.

Summary of linear response results: In the linear response regime, we find that the

charge density oscillations in the symmetric system are independent of the number density

oscillations, as they are decoupled from each other. However, in the asymmetric system,

in linear response, consistent with our explanation for the results of the simulations and

the full integro-differential theory, we find that the period (as well as the decay length) of

oscillations in both charge and number density is determined by the diameter of the larger

ion, and so the two are coupled to each other.

For the asymmetric system, in the limit of large filling fraction and perfect asymmetry,
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the longest decay mode in charge and number density can be approximately described by

the definitions of κ1m and κ2m as derived above in equations 3.49 and 3.50. Therefore,

for the asymmetric system, this mode dominates the value of the disjoining pressure at all

surface charges. The decay of oscillations in this high packing fraction limit is independent

of the background permittivity and ionic charge.

For the symmetric system, as mentioned above, the ordering in charge and number

density are decoupled. For this case, the number density decays with modes described

by κ1m and κ2m in equations 3.37 and 3.38 since these formulas are generally applicable

for the decay in number density in a dense fluid at a hard wall. In contrast, the charge

density decays as given by the definitions for κ1c and κ2c in the highly concentrated limit

by equations 3.39 and 3.40. For the symmetric system at low surface charge, the decay

of charge is unimportant in the interfacial structure, so the decay in the number density

(and filling fraction), κm, will dominate in determining the pressure profile. Alternatively,

at high surface charge, the mode governing the decay of charge, κc, will dominate. One

could expect similar trends for ions that are only approximately symmetric in size, with

only a small degree of asymmetry. Therefore, as v− → v+, there is a transition between

the perfectly asymmetric and the perfectly symmetric behaviors, as analyzed in the linear

response behavior above.

We demonstrate our important findings for both the symmetric and asymmetric systems

in Figure 3-8, where the approximations corresponding to equation 3.23 with κm as given

in equations 3.37 and 3.38 and κc as given in equations 3.39 and 3.40 are plotted, manually

fitting the point of the first minimum of the simulation data with P0 and z0, but keeping all

other analytical formulas above. The decay decrement, κm, governed by the filling fraction

is plotted with the dashed-dot cyan lines ( ), while the decay decrement, κc, governed

by the decay in charge is plotted with the dashed magenta lines ( ).

For the asymmetric system (panels a-c), as mentioned above, κm dominates at all sur-

face charges. Therefore, in Figure 3-8, one can observe that the dashed-dot cyan lines ( )

fitted to the first minimum compare almost perfectly at all surface charges to the pressure

oscillations found in the simulations.

For the symmetric system, however, the decaying mode given by κm, plotted with the
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dashed-dot cyan lines ( ), only dominates at zero surface charge (panel e). In contrast,

since the decay in pressure oscillations at high electrode charges such as qs =±0.12 C/m2

is dominated by the decrement, κc, the plotted dashed magenta lines ( ) in Figure 3-8,

panels d and f, match better to the pressure oscillations found in the simulations at these

high surface charges (one can see how the dashed-dot cyan line for κm is in offset and does

not describe well the simulated pressure oscillations).

Seeing as how the approximated equations from linear response describe quite accu-

rately the simulated pressure profiles, we can now compare and validate quantitatively the

periodicities of the pressure oscillations displayed in Figure 3-8. In the simulations, the

period of the first oscillation (distance from first to second minimum) in the asymmetric

system for the surface charges of qs = -0.12, -0.06, 0, +0.06, and +0.12 C/m2 are 0.59,

0.62, 0.57, 0.60, and 0.61 nm, respectively. This compares well to the result from the

linearized formula for κm in equation 3.38, which predicts a period of 0.62 nm for the

asymmetric system. This value is essentially the effective largest ionic diameter di ≈ 0.9σi,

where σ− = 0.7 nm (our criterion that takes into account the overlap of ions in the sim-

ulations), showing numerically that the periodicity of oscillations in asymmetric systems

at all surface charges is determined by the diameter of the larger ion. For the symmetric

system, the simulated periods of the first oscillation for qs = 0, ±0.06, and ±0.12 C/m2

are 0.53, 0.58, and 0.66 nm, respectively. The periodicity values at low surface charges

are given by κm in equation 3.38, which predicts a period of 0.52 nm (again, di ≈ 0.9σi,

where σ± = 0.58 nm). At high surface charge densities, the periodicity values are given by

κc in equation 3.40, which predicts a period of 0.68 nm, numerically showing the increase

in periodicity with surface charge magnitude in this case.

We note that while in previous experimental measurements of surface forces in IL, the

oscillation period has been described in terms of the ion pair diameter, [220,221, 245, 246]

the oscillation period in the simulations and the theory presented here, at the high concen-

tration limit, more closely matches the diameter of the largest ion, in all cases, multiplied by

the scalar prefactor that is close to 1. Even for the case of the symmetric system at high sur-

face charge, where each period of oscillation corresponds to a layer of positive and a layer

of negative charge, the pressure oscillation period is still close to an individual ion diameter.
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The prefactor does not bring us to the sum of the two ion sizes; for the parameters in the

simulations, the oscillation period is roughly the ion size multiplied by a prefactor of 1.3.

These theoretical predictions, backed up by the simulated pressure profiles, highlight that

the periodicity of structural forces in ILs may not have a direct one-to-one correspondence

to the ionic size or the ion pair size. Nevertheless, the periodicity is still closely related

to and is proportional to the ionic size. In particular, for strongly asymmetric systems, the

larger ion diameter dominates the oscillation period.

3.3.5 Conclusions

All in all, the change in the oscillatory decay as a function of surface charge underlies a

major difference between charge screening in concentrated asymmetric systems compared

to concentrated symmetric ones. In asymmetric systems, the decay modes in charge and

number density are coupled to each other, and therefore give the same decay mode. For the

symmetric system, the two are decoupled. This essentially leads to differences in the mi-

croscopic ionic concentration profiles in nanoconfinement as a function of electrode charge

magnitude and polarity, and ultimately to an observable difference in the disjoining pres-

sure profile.

To summarize, the main novel scientific contribution of our work is our proposed con-

tinuum theory which describes well the density, charge distributions, and structural forces

of ILs in nanoscale confinements and the effect of surface polarization on these quantities.

Through application of our mathematical theory, we can relate the oscillation periodicity

and decay of the molecular structuring in nanoconfinement to the physical properties of

the IL, including the bulk ionic density, the ionic sizes, the temperature, and the back-

ground permittivity. While the MD simulations and theory profiles do not match perfectly,

both approaches predict layered structures that lead to structural forces at small separa-

tion distances. Both simulations and theory also recover the main features of screening

in asymmetric ILs, which are not present in symmetric ILs. Those include the variation

of force amplitudes depending on the surface charge polarity, the ‘preferential adsorption’

of smaller ions at zero electrode charge, and the coupling of charge and number density
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oscillations in systems of such high ionic concentration. Therefore, based on our findings,

we conclude that the ionic size asymmetry is an important ingredient in describing ILs at

the nanoscale.

3.4 Summary of Findings

In this chapter, I developed a thermodynamic model for ions as hard-sphere, charged shells,

that was applied to understand the interfacial structure of concentrated electrolytes. While

the theoretical predictions do not perfectly describe the MD simulation performed as a

benchmark, they are consistent with the main qualitative features of the simulations. The

theory predicts alternating layers of positive charge with period on the scale of an indi-

vidual ionic diameter, the overscreening phenomenon. At high charge density, the theory

describes layers of crowded ions of the same charge. A key output of the theory is the

decay lengths in charge and number density, derived by truncating a gradient expansion

of the full nonlocal theory. In these concentrated systems, as noted in previous studies for

primitive model electrolytes, the decay length increases with increasing concentrations.

For asymmetric-sized, concentrated electrolytes and ionic liquids, the oscillations in

number density and charge are highly coupled. In turn, the size-asymmetry influences the

structural forces for electrolytes confined down to the molecular scale, as reproduced both

in the theory and in MD simulations from our collaborators.

In the next chapter, I investigate the influence of confinement dimensionality on the

screening within the electrical double layer. In general, I show that compared to the 2D con-

finement scenarios explored in this chapter, that 1D confinement leads to a stronger propen-

sity towards electroneutrality breakdown. There, the interesting behavior will emerge in the

low concentration limit instead of the high concentration limit. In Chapter 5, I will return

to the delocalized shell model to study the orientational ordering of polar liquids at charged

interfaces.
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Chapter 4

Electroneutrality Breakdown in

Nanopores

The following chapter is reproduced from my original theoretical paper that describes the

properties of electroneutrality breakdown in nanopore arrays [36] with Dr. Amir Levy and

Prof. Martin Bazant, with strong inspiration from ref. [30] that originally proposed the

unique phenomenon of electroneutrality breakdown in 1D confinement.

4.1 Overview

The electrostatic screening of charge in one-dimensional confinement leads to long-range

breakdown in electroneutrality within a nanopore. Through a series of continuum simula-

tions, we demonstrate the principles of electroneutrality breakdown for electrolytes in one

dimensional confinement. We show how interacting pores in a membrane can counteract

the phenomenon of electroneutrality breakdown, eventually returning to electroneutrality.

Emphasis is placed on applying simplifying formulas to reduce the multidimensional par-

tial differential equations into a single ordinary differential equation for the electrostatic

potential. Dielectric mismatch between the electrolyte and membrane, pore aspect ratio,

and confinement dimensionality are studied independently, outlining the relevance of elec-

troneutrality breakdown in nanoporous membranes for selective ion transport and separa-

tions.
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4.2 Electroneutrality Breakdown in Nanopore Arrays

4.2.1 Introduction

The conduction of ions in nanochannels forms the basis of electrical signalling in biology

[263–268] and of promising technologies in desalination [269,270], ionic separations [271,

272], and nanofluidic transistors [273–275]. As ions become confined to nanopores, they

experience strong chemical and electrostatic interactions with the pore walls, leading to

membrane selectivity based on charge or chemical interactions. Nanoporous membranes

can even enter the regime where the double layers emanating from each charged surface

begin to overlap, leading to strong electrokinetic coupling of fluid flow, electric field, and

ionic fluxes [276–281]. Understanding the electrostatics of charges in confinement is

crucial to determining the flux, selectivity, and driving force relationship for engineering

applications [282, 283] and for understanding biological pore systems [51, 284–286].

The unique physics of ionic screening in one dimensional confinement leads to the

phenomenon of electroneutrality breakdown, where the number of counter-charges within

a pore does not perfectly counterbalance the number of fixed charges on the pore walls

[30]. One dimensional (1D) confinement refers to confinement onto a line, for example, in

a cylindrical nanopore connecting two reservoirs of fixed concentration. In essence, elec-

troneutrality breakdown signifies that a fraction of the electric field must escape through

the pore walls into the dielectric matrix constituting the membrane. The screening charge

does not exist locally within the pore, but rather is distributed over the membrane sur-

face in the reservoirs, outside of the membrane domain. Uniquely, in 1D confinement,

the loss of electroneutrality can extend to macroscopic scales (beyond length L = 10 µm),

since for strong confinement κDR → 0 the system only approaches electroneutrality as

log(L/R) → ∞, where L is the length of a pore, R is its radius, and κD is the inverse De-

bye length. The long-range breakdown of local electroneutrality in 1D confinement is

surprising, and many models of electrokinetic phenomena have assumed pore-wide elec-

troneutrality, even in the limit of strong double layer overlap [277, 278, 287].

Here, we perform continuum simulations of 1D nanopores using COMSOL Multi-

physics, to confirm the occurrence of electroneutrality breakdown. We show that the results
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for the screening charge within an isolated 1D pore can be captured quantitatively with an-

alytical formulas. Furthermore, we perform simulations of a periodic array of channels,

a multipore membrane, with varying spacing between the channels. There, we find how

the interactions of closely-spaced channels can lead to the return of electroneutrality in the

system. In the limit of strongly interacting channels, the variations in potential in the ax-

ial direction dominate the distribution of ionic charges within the membrane. Effectively,

when channels are too close to each other, the electric field lines cannot emanate through

the membrane domain.

The continuum simulation results show the ensemble interactions of the channels with

each other play a role in ionic conduction through nanochannels. In membrane applica-

tions, the interactions mean that the greatest ionic selectivity and per-channel-conductivity

can be achieved when channels are close together for the regime of strong double layer

overlap. Further, the results point to ensemble interactions between 1D-confined channels,

and the importance of electric field spilling into the dielectric matrix when channels are

isolated. The competition between channel interactions and electroneutrality breakdown

ultimately affects the conductance and selectivity behavior of arrays of nanochannels in the

low concentration limit.

4.2.2 Theoretical framework

Outline of equations

As explained in more detail in Appendix A of reference [36], the ionic flux and selectivity

out of equilibrium can be assumed to be related to the solution of the Poisson-Boltzmann

(PB) equation in equilibrium, assuming that both reservoirs on each side of the membrane

have the same concentration of electrolyte and fluid flow is neglected [276, 277]. As

emphasized in Fig. 4-1 , the simulation is composed of a square membrane domain, Ωm,

with side length ℓ, through which a cylindrical pore of radius R and length L connects two

reservoirs of fixed concentration. The reservoirs and pore constitute the electrolyte domain,

signified as Ωw, where w is chosen to signify water.

As exhibited in Fig. 4-1 (a-d), the system of equations being solved in the electrolyte
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Figure 4-1: The simulation configuration in COMSOL (a) with the membrane, pore, and electrolyte
(b) for an isolated pore that does not feel its periodic neighbors and (c) a periodic arrangement of
pores on a square lattice. (d) A cross-section of the system through the center of the cylindrical
pore is shown to describe the domains and equations applied in the simulations. (e) A sample of
continuum simulation results showing the progress from non-interacting to interacting channels for
small charge densities. For all channels, the channel radius is 1 nm and the length is 100 nm. The
membrane dielectric constant is εm = 10ε0 and the electrolyte dielectric constant is εw = 80ε0. The
salt concentration is 1 mM. In order from left to right, the spacing between the channel centers
ℓ is 129 nm, 77 nm, 46 nm, 28 nm, and 17 nm. Also in order, the amount of charge within the
pore versus on the channel walls, | Qin/Qout | is: 12%,13%, 17%, 26%, and 43%. As the channels
become closer together and more interacting, the system returns closer to electroneutrality, which is
evidenced by the higher φ values within the pore.
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domain Ωw is:

εw∇
2
φ =−ρe (4.1)

with dielectric constant εw, electrostatic potential φ , and charge density ρe where the ionic

concentrations are Boltzmann-distributed:

ρe = ∑
i

zieci,b exp
(
−zieφ

kBT

)
, (4.2)

where zi are the ion valencies, e is the elementary charge, ci,b is the bulk reservoir con-

centration for ion i, kB is the Boltzmann constant, and T is the absolute temperature. Here

we neglect any packing [17], correlation [34], or charge regulation [288] effects in our

model. We assume a 1:1 solution of salt with concentration c0 in units of number density,

such that the PB equation is reduced to:

εw∇
2
φ = 2ec0 sinh

(
eφ

kBT

)
(4.3)

In the membrane domain, we solve the Laplace equation:

εm∇
2
φ = 0 (4.4)

assuming that the membrane is a perfect dielectric material with dielectric constant εm.

At the membrane/electrolyte domain interface, Maxwell’s equation is enforced:

n̂ · [−εm∇φ + εw∇φ ]

∣∣∣∣∣
s

= qs (4.5)

where n̂ is the unit normal pointing from the electrolyte to the membrane domain and qs

is the surface charge density. To isolate the electrostatic potential variations due to fixed

charge on the channel walls, qs is assumed to be zero on the membrane/electrolyte reservoir

interfaces, but is nonzero at the pore walls.

At the lateral boundaries of each cell, symmetry conditions are applied; namely, the

electric field at the boundary is zero n̂ ·∇φ = 0. The boundary conditions are identical to
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assuming a periodic array of channels with regular spacing, consisting of unit cells identical

to the simulation box, as illustrated in Fig. 4-1 (c). At the top and bottom boundaries of the

simulation box, Dirichlet conditions are applied φ = 0. A useful check to ensure that the

simulation box is large enough is to ensure that all the integrated charges in the electrolyte

domain are equal and opposite to the integrated amount of fixed charges on the pore walls.

For this study, a reservoir height of 20 λD is sufficient to meet this criterion, where the

Debye length, λD is given by:

λD = κD
−1 =

√
εwkBT
2e2c0

(4.6)

Approximate formulas

While we compute the full results of the PB equation in 3D, we compare the results to

mathematical simplified formulas. As outlined in more detail in Appendices B and C, we

can reduce our partial differential equation system of the 3D PB and Laplace equations

into ordinary differential equations with appropriate boundary conditions. For small po-

tentials, we then linearize the equations and get simple analytical formulas for the number

of ionic charges within the membrane. In order to quantify the extent of electroneutrality

breakdown, we take the ratio for the integrated amount of charge within the pore and the

integrated amount of charge on the pore walls: | Qin/Qout |. In the limit of electroneutrality,

we get | Qin/Qout |→ 1, whereas in the limit of complete electroneutrality breakdown, we

get | Qin/Qout |→ 0.

No end effects: Ignoring end effects, the inner potential can be solved for in terms of

only the radial coordinate:

εw

r
d
dr

(
r

dφ

dr

)
= 2ec0 sinh

(
eφ

kBT

)
(4.7)

with boundary conditions given by:

dφ

dr
(r = R) =

qs

εw
− εm

εw

φ(r = R)
RML/R

,
dφ

dr

(
r =

ℓ

2

)
= 0 (4.8)
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Figure 4-2: The results for an isolated pore with overlapping and non-overlapping double layers
within the pore. (a) plot of the potential profile for overlapping double layers at c0 = 1 mM (κDR ≈
0.1) (a) versus less overlapping double layers at c0 = 100 mM (κDR ≈ 1)(b). The same parameters
are used as in Fig. 4-1 (e), except the center to center distance between pores is 500 nm such that
the periodic channels are not interacting. For (a) 12% of the charge is contained within the pore,
whereas for (b) 91% of the charge is contained within the pore.(c) The charge within the pore versus
on the pore walls as a function of κDR for the same channel in parts (a) and (b). Electroneutrality
breakdown occurs in the region of strong double layer overlap κDR → 0. For (c) the markers are the
COMSOL simulations, whereas the line is the application of the approximate formula in equation
4.10. (d-e) The integrated ionic charge as a function of the lateral position for c0 = 1 mM and
100 mM. The charge is distributed over a wide area O(L) extending beyond the pore mouth when
electroneutrality is broken (c0=1 mM), but is more localized when electroneutrality is maintained
(c0=100 mM) . (e) Quantification of end effects for two different concentrations. The electrostatic
potential is plotted as a function of the z coordinate, evaluated at the center axis of the channel. End
effects are not significant for isolated channels.
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Figure 4-3: Extent of electroneutrality breakdown for channels of different center-to-center sep-
aration distances on a lattice. (a) | Qin/Qout | versus κDR for ℓ/L = 5, ℓ/L = 1, ℓ/L = 0.1. (c)
| Qin/Qout | versus ℓ/L for c0 = 0.01,1,100 mM for ℓ/L = 0.02 to ℓ/L = 0.5. For both (a) and (c),
the markers are the COMSOL simulations, whereas the solid lines are the application of the approx-
imate formula in equation 4.10 and the dotted lines are the application of the approximate formula
in equation 4.14. (b) The integrated ionic charge as a function of the lateral position for ℓ/L = 5 and
0.05, with c0 = 1 mM. The charge is distributed over a wide area when channels are isolated, but is
localized when the channels are closely spaced and strongly interacting. (d) Quantification of end
effects for two different lattice spacings with c0 = 1 mM. The electrostatic potential is plotted as a
function of the z coordinate, evaluated at the center axis of the channel. End effects are significant
when the channels are interacting.
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where the constant ML/R is:

ML/R = log
(

2L
πR

)
− γ +

K1(
πℓ
2L)

I1(
πℓ
2L)

. (4.9)

with γ = 0.577 signifying the Euler-Mascheroni constant. Here, we assume circular shape

of a unit cell for analytical simplicity, and the derivation is presented in Appendix B of

ref. [36]. Linearizing the equations and solving, we find the folllowing relationship for the

amount of charge inside versus the amount of charge fixed on the pore walls:∣∣∣∣ Qin

Qout

∣∣∣∣= 1
1+ εm

εw
2

κD2R2ML/R

(4.10)

Figure 4-4: Role of dielectric mismatch on extent of electroneutrality breakdown. (a)Results for
isolated pore with same properties as in Fig. 4-1 (e), but with εm = ε0, εm = 10ε0, and εm = 100ε0.
(b) | Qin/Qout | versus κDR for varying εm. (b) | Qin/Qout | versus ℓ/L with c0 = 1 mM for varying
εm.For both (b) and (c), the markers are the COMSOL simulations, whereas the solid lines are the
application of the approximate formula in equation 4.10 and the dotted lines are the application of
the approximate formula in equation 4.14.

Looking at the form of the above equation, one recognizes that electroneutrality break-

down is promoted as κDR → 0. Furthermore, the effect has a weak dependence on the
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length of non-interacting nanopores, since the length appears logarithmically in ML/R.

However, the electrostatic interactions of the cylinders with each other can cause a re-

turn to electroneutrality as ℓ/L → 0. Furthermore, the amount of charge within the pore

is strongly controlled by the dielectric constant of the membrane (and not necessarily the

inner pore dielectric constant).

No radial variations: On the other hand, when channels become strongly interact-

ing (ℓ/L → 0), the potential variations happen principally in the axial direction along the

pore, governed by the dimensionless ratio λD/L. In order to capture the end effects of the

channel, which become important on the scale of the Debye length, we write down a ho-

mogenized equation for the potential in linear response, which neglects radial variations in

the potential by integrating over the lateral dimensions of a unit cell:

ε̄
d2φ

dz2 =−2qs

R
+2ec0 sinh

(
φe

kBT

)
(4.11)

ε̄ = εw − εm + εm

(
ℓ2

πR2

)
(4.12)

The linear response boundary conditions are given by:

dφ

dz
(z = 0,L) =±εw

ε̄

ℓ2

πR2
φ (z = 0,L)

λD
. (4.13)

Solving the set of equations, we get the following fraction of charge inside the pore.∣∣∣∣ Qin

Qout

∣∣∣∣= 1− (γ − p) tanh(1/γ)

1+ p tanh(1/γ)
(4.14)

with constants

γ = 2
√

ε̄

εw

λD

L
, p =

√
ε̄

εw

πR2

ℓ2 (4.15)

For strongly interacting channels, the electroneutrality condition is controlled by the

ratio of λD/L. As λD/L → 0, the system returns to overall electroneutrality within the

pore.

Following the theoretical argument, a comprehensive set of numerical simulations is

presented to validate the above formulas in their regime of validity, focusing on the linear
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regime with small but finite surface charge, qs → 0. The standard conditions chosen for the

simulations, unless otherwise stated, are a pore length of 100 nm, a pore radius of 1 nm,

a membrane permittivity of εm = 10ε0, an electrolyte permittivity of εw = 80ε0. Finally, a

comparison is also made to the nonlinear solution of the full 3D equations.

The results are presented with a number of dimensionless numbers, so a reader can

easily interpret the plots. First, the dimensionless number κDR indicates the extent of

double layer overlap within the channel. κDR → 0 indicates strong double layer overlap

while κDR → ∞ indicates thin double layers relative to the pore radius. ℓ/L is the ratio of

the center to center spacing between channels to the length of the channels. In plotting, the

potential is normalized by the charge per unit length of a cylinder:

φ̃ =
φεwR
2qsλ

2
D

(4.16)

One can roughly interpret these graphs as φ̃ ≈ 1 means local electroneutrality in a give

cross section of the pore, and φ̃ ≈ 0 as local electroneutrality within the pore. Further, the

depth-integrated charge density is plotted as a function of lateral position, to illustrate the

extent of screening charges at the membrane/reservoir interfaces:

ρ̄e(x,y) =
∫

ρe(x,y,z)dz
L

. (4.17)

4.2.3 Results and Discussion

First, Fig. 4-1 (e) summarizes the main trends seen in the simulations, where the potential is

plotted as a function of position around the pore, as the spacing between pores is modified.

When channels are isolated (ℓ= 129 nm), the potential within the channel is fairly constant.

The variations in the potential in the radial direction are dominant. For the parameters

chosen (κDR = 0.1, c0 = 1 mM), the amount of charge within the channel is only 12%

of the charge on the pore walls. However, as the size of a unit cell is reduced (ℓ = 17

nm) the variations in the potential become dominant in the axial direction, and edge effects

become more pronounced. Furthermore, the potential does not vary significantly in the

radial direction from the channel center axis. The close channel spacing also limits the
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amount of field that can escape out of the pore, meaning that more charges are present

within the channel, 43%.

Figure 4-5: Role of aspect ratio on extent of electroneutrality breakdown. (a)Results for isolated
pore with same properties as in Fig. 4-1 (e), but with L = 10 nm, L = 100 nm, and L = 1000 nm,
also with c0 = 1 mM. (b) | Qin/Qout | versus κDR for varying L, with ℓ/L = 5. (b) | Qin/Qout |
versus ℓ/L with c0 = 1 mM for varying L. For both (b) and (c), the markers are the COMSOL
simulations, whereas the solid lines are the application of the approximate formula in equation 4.10
and the dotted lines are the application of the approximate formula in equation 4.14.

The trends in the potential profiles as a function of the salt concentration are shown in

Fig. 4-2 . Fig. 4-2 (a) corresponds to κDR = 0.1 or c0=1 mM, and 2(b) corresponds to

κDR = 1 of c0 = 100 mM, illustrating that electroneutrality is restored as the concentration

is increased. The solid line in Fig. 4-2 (c) given by equation 4.10 coincides quite closely

with the results of the continuum simulations for the isolated channels. For these cases,

neglecting end effects is a reasonable approximation for determining the number of charges

within the pore, which is confirmed via the plot of the potential as a function of position

along the center axis of the pore in Fig. 4-2 (f). The ‘plumes’ of screening charge near

the pore mouth are not immediately visible in the plots of the electrostatic potential, since

the charges are far less concentrated outside of the pore. We can ascertain the extent of

the screening at the membrane interfaces by analyzing the depth-integrated charge density.

142



In Fig. 4-2 (d-e), the depth-integrated charge density, ρ̄e, is plotted as a function of the x

and y coordinate. When electroneutrality is broken within the pore, the screening charge

is distributed over the membrane surface over a distance that is on the order of the channel

length, L. However, if electroneutrality is maintained, the screening charge is localized

within the channel, and does not extend very far beyond the pore mouth.

Figure 4-6: Role of dimensionality of confinement by inspecting a slit pore geometry. (a)Results
for isolated pore with same properties as in Fig. 4-1 (e), but for a slit pore. (b) | Qin/Qout | versus
κDR for varying ℓ/L. (c) | Qin/Qout | versus ℓ/L for varying c0. (d-e) The same as (b-c) but with
L = 1000 nm. For (b), (c), (d), and (e), the markers are the COMSOL simulations, whereas the
solid lines are the application of the approximate formula in equation 4.18 and the dotted lines are
equation 4.14 with constants given by equations 4.20 and 4.21.

Next, we isolate the influence of channels interacting through the membrane domain,

via modifying the ratio ℓ/L in Fig. 4-3. As channels are closer together, ℓ/L → 0, the
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amount of charge within the channel is increased closer towards electroneutrality. We also

see a clear difference between the predictions neglecting end effects (equation 4.10) in

solid lines and the predictions neglecting radial variations (equation 4.14) in dotted lines.

As ℓ/L ≪ 1, the predictions of the model neglecting radial variations become superior.

However, when ℓ/L is 1 or greater, the predictions of the model that neglects end effects

are superior. Such a result is expected, given the illustrative example in Fig. 4-1(e), where

the importance of end effects are visible on the plot when channels are close together. For

further confirmation, the magnitude of the electric field is plotted as a function of position

for varying channel spacings in Fig. S2 in reference [36], exhibiting the importance of end

effects for closely spaced channels. In Fig. 4-3(d), the potential plotted as a function of

position on the center axis of the nanopore shows significant end effects for closely spaced

channels (ℓ/L=0.05). Also, the closely spaced channels localize the screening charge near

the pore mouth, as evidenced by the depth-averaged charge density in Fig. 4-3(b).

Figure 4-7: Role of nonlinearity on extent of electroneutrality breakdown. (a)Results for isolated
pore with same properties as in Fig. 4-1 (e), but with qs → 0, qs = 0.001 C/m2, and qs = 0.01 C/m2

with c0 = 1 mM. (b) | Qin/Qout | versus κDR for varying qs. (b) | Qin/Qout | versus ℓ/L with c0 = 1
mM for varying qs. For both (b) and (c), the markers are the COMSOL simulations, whereas the
solid line is the application of the approximate formula in equation 4.10 and the dotted line is the
application of the approximate formula in equation 4.14.

The interactions of channels has a profound impact on the selectivity of a multipore
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dielectric membrane. The ensemble interactions can lead to a return to electroneutrality in

strongly confined systems, leading to more charge selectivity and higher channel conduc-

tance. The extent of electrokinetic couplings are also maximized when the amount of ionic

charge within the pore is higher [277, 289]. Such a design principle could be used to pro-

mote higher electrokinetic conversion efficiencies in “blue energy” harvesting of salinity

gradients [290, 291].

Another important design parameter is the dielectric constant of the membrane matrix.

In Figure 4, we examine the influence of the membrane dielectric constant on the extent

of electroneutrality breakdown. As the membrane dielectric constant decreases, the system

moves closer towards electroneutrality in the pore. Again, the predictions from equations

4.10 and 4.14 seem to describe the data quite well within their respective realms of validity.

A critical question remains to understand the influence of the aspect ratio on the extent

of electroneutrality breakdown, the subject of Figure 5. Again observing equation 4.10,

for an isolated channel, the electroneutrality is enforced as log(L/R)→ ∞. Therefore, the

electroneutrality breakdown is only weakly affected by the length of the channel. As shown

in Figure 5(b), we see only small shifts in the extent of electroneutrality breakdown with

increasing channel length, L. Furthermore, the channels exhibit similar behavior with vary-

ing channel spacing, ℓ. Such results arise from the exponentially long screening length in

one dimensional confinement [30]. The weak dependence of the extent of electroneutrality

on the aspect ratio is a hallmark of electroneutrality breakdown in 1D channels.

As a point of comparison, it is instructive to perform the same analysis for two di-

mensional confinement, or slit pore geometry. Here, we perform analogous continuum

simulations to the 1D confinement case. In Figure 6, we have simulated a slit pore with

width 2R and length L, with channel center to channel center distances of ℓ. We compare

the simulation results to two analytical formulas, one where we have neglected end ef-

fects, and one where we have neglected normal variations in the potential to the pore walls

(again termed “neglecting ‘radial’ variations”), similar to the analysis for 1D confinement,

as outlined below.

The extent of electroneutrality breakdown in 2D confinement, ignoring edge effects,
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is: ∣∣∣∣ Qin

Qout

∣∣∣∣= 1
1+ εm

εw
1

κD2R2ML/R

(4.18)

with modified constant ML/R given by:

ML/R =
L

πR
coth

(
π

L
(ℓ/2−R)

)
(4.19)

Observing the form of the 2D ML/R in this scenario, it is apparent that electroneutrality is

enforced as L/R→∞. This means that electroneutrality will be much more strongly upheld

in 2D confinement compared to 1D confinement.

When ℓ/L becomes smaller, the potential variations in the axial direction of the 2D

slit pore become dominant, similar to 1D confinement. The extent of electroneutrality

breakdown neglecting ‘radial’ variations is given identically by equation 4.14, but with

constants

γ = 2
√

ε̄

εw

λD

L
, p =

(
ε̄

εw

4R2

ℓ2

)1/2

(4.20)

where

ε̄ = εw − εm + εm

(
ℓ

2R

)
. (4.21)

The progression towards electroneutrality breakdown for 2D confinement is similar to 1D

confinement when the channel spacing is close together.

In Fig. 4-6 (b-e), we see that the propensity towards electroneutrality is much stronger

in 2D confinement than in 1D confinement. We find that, similar to 1D confinement, elec-

troneutrality is promoted when channels are strongly interacting. We also find that the

extent of electroneutrality breakdown is extremely sensitive the to the length of the chan-

nel domain, especially as compared to 1D confinement, as emphasized by comparing Fig.

4-6 (d-e) to Fig. 4-6 (b-c). Note that the normalization of the potential in Fig. 4-6 (a) is

adjusted from the definition in equation 4.16 due to the difference in geometry.

So far, we have examined the linear regime with small but finite values of qs. Evidently,

the nonlinearity in the equations will affect the validity of our approximations in equations

4.10 and 4.14. In Fig. 4-7, we show that as the charge density is increased into the non-

linear regime, the system moves closer towards electroneutrality. The approximations we
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derived earlier are insufficient to describe the extent of electroneutrality breakdown in the

nonlinear limit. It is particularly difficult to derive analytical approximations in the nonlin-

ear limit, so we do not explore such approximations here. Even so, for isolated channels,

the electroneutrality breakdown emerges as a function of the ratio of the Gouy-Chapman

length to the pore radius in this limit [30].

Finally, we preview the possible manifestations of electroneutrality breakdown that

could be observed in experiments: single channel conductance and transference number,

using the simplified formulas in equation 4.10 and equation 4.14. We assume a KCl solu-

tion with fixed and equal mobilites, equal to the bulk value of D = D+ = D− = 2× 10−9

m2/s. For an uncharged pore, the fraction of current carried by each ion would be 50%.

However, in this case, we assume that the pore walls are negatively charged with a value of

qs =−0.001 C/m2. Therefore, we approximate the anion and cation concentrations within

the channel as:

c+ = c0 +
2 | qs |

eR
| Qin |
| Qout |

, c− = c0 (4.22)

We approximate the overall channel conductance as:

G =
2πDR2e2c0

kBT L
+

2πDRe | qs |
kBT L

| Qin |
| Qout |

(4.23)

which can be rendered dimensionless:

G̃ = G/

(
2πDR2e2cref

kBT L

)
=

c0

cref
+

| qs |
Recref

| Qin |
| Qout |

(4.24)

where cref is arbitrarily chosen to be 1 mM. The corresponding cation transference number,

or fraction of current carried by the cation, is:

t+ =

(
c0 +

2 | qs |
eR

| Qin |
| Qout |

)
/

(
2c0 +

2 | qs |
eR

| Qin |
| Qout |

)
. (4.25)

The dimensionless conductance and cation transference number are shown in Fig. 4-8 , for

a channel with the sample parameters: L = 100 nm, R = 1 nm, εm = 10ε0, εw = 80ε0, and

T = 300 K. The plateau in conductance does not occur when electroneutrality breakdown
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is present. The decrease in conductance at low concentration has been experimentally ob-

served in Refs. [287] and [292], but the effects were ascribed to surface reactions and elec-

trokinetic coupling, respectively. Here, the large resistance through the pore is expected at

low concentration due to electroneutrality breakdown, since fewer counterions are present

as charge carriers. As channels become closely spaced or strongly interacting, their be-

havior returns to the plateau behavior. The presence of electroneutrality breakdown does

not rule out the previous explanations for deviations from the conductance plateau at low

concentrations. However, the charge regulation reactions and electrokinetic effects might

be less sensitive to the interactions of the pores. In addition to electroneutrality break-

down, experiments might also include resistances incurred from microchannel domains

that connect to the nanopore. [293, 294] In terms of the transference number, electroneu-

trality breakdown at low concentrations leads to a cation transference number that does not

saturate at t+ = 1, again due to the reduction in screening counterions. Another practically

significant quantity is the capacitance of a conducting nanotube embedded in a membrane

dielectric medium, which is explored in the Supplemental Information. Electroneutrality

breakdown can be used to increase the effective capacitance per unit pore area at low ionic

concentrations. However, the capacitance per total membrane area and per total membrane

volume do not benefit from electroneutrality breakdown, since the dense channel spacing

reduces the effectiveness of electroneutrality breakdown.

Nanoconfined domains are most ubiquitous in biological membranes, where protein

channels selectively conduct specific ions. The selectivity filter in ion channels are at the

molecular scale, with a radii on the order of single angstroms [295]. In our model thus far,

the radius of the channel signifies the accessible area for the ion centers, which becomes

negligible in true molecular confinement, R → 0. Therefore, we expect electroneutrality

breakdown to be critical in describing the conduction of ions through protein channels. In

the absence of an electroneutrality constraint, molecular separation in the selectivity filter

would instead rely on specific chemical interactions or energy barriers to enter the pore

[296]. Closely spaced channels on the order of the membrane thickness ∼ 10 nm could

interact electrostatically with each other, leading to ensemble gating and ion conduction

events.
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Figure 4-8: The dimensionless conductance (a)
and cation transference number (b) through a neg-
atively charged nanochannel for varying channel
separation distances. The solid lines are the pre-
dictions using equation 4.10 and the dotted lines
are the predictions using equation 4.14. The dot-
ted lines are good predictors of the extent of elec-
troneutrality breakdown at small ℓ/L, but fail at
large ℓ/L, e.g. the blue dotted lines. The plateau
in conductance at low concentration is only ap-
parent when | Qin/Qout |= 1. As the ratio ℓ/L de-
creases, the system moves closer to electroneu-
trality. When electroneutrality is broken, the
cation transference number does not saturate to 1
at low concentration.

The electrokinetic coupling and elec-

trokinetic conversion from salinity gradi-

ents or pressure gradients are most effective

and efficient in the regime of strong double

layer overlap. Electroneutrality breakdown

can adversely impact the expected perfor-

mance of such a process. A large density

of channels is not only desired for higher

flux membranes, but to eliminate the possi-

bility of electroneutrality breakdown at low

concentration.

In unstructured charged nanoporous

media, such as porous rock or polymer

membranes, a large network of charged

pores are connected and interact strongly

with each other. Applications include de-

salination, ionic separations, and oil recov-

ery [297–302]. In an interconnected porous

medium consisting of closely spaced pores,

a similar homogenized model to equation

4.14 should be pursued [303]. If the

medium length scale is large relative to the

Debye length, then electroneutrality will be

maintained.

With our emphasis on the physics of

electroneutrality breakdown, we have neglected other chemical mechanisms, such as

charge regulation [288,304–306]. Charge regulation, or reactions to form or neutralize sur-

face charge, is certainly occurring at the pore walls– after all, the origin of surface charge is

a result of charge adsorption to the interface. Even if charge regulation is present, the effect

of electroneutrality breakdown should still be important. In order to delineate from a chem-
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ical mechanism, one convincing evidence of electric field escape from a channel would be

to observe differences in measureable quantities as a function of the spacing between chan-

nels. Only measurements that determine single channel conductance, transference number,

or capacitance, as a function of the density of channels in a membrane could distinguish

the electroneutrality breakdown mechanism from other competing chemical mechanisms.

Furthermore, in Single Digit Nanopores channels, we can expect energy barriers associ-

ated with ions’ dehydration to enter the channel. Energy barriers in the pore domain can

be easily added to the model explored here, by changing the effective chemical potential

for ions within the pore [30]. Non-ideal effects [17] such as packing effects [307, 308] or

electrostatic correlations [34, 58, 309],are also not considered in this work.

4.2.4 Conclusions

The electroneutrality breakdown phenomenon is studied with an extensive set of continuum

simulations. The results are shown to agree with simplifying analytical formulas within

their regime of validity. Furthermore, the practical influence of electroneutrality breakdown

on channel conductance and selectivity is discussed.

The experimental validation of screening in lower dimensions presents multiple com-

peting mechanisms which can obscure the presence of electroneutrality breakdown. Even

so, the set of simulation results presented here can guide researchers to isolate electroneu-

trality breakdown for multipore systems. One can expect wide variations of properties as a

function of channel number density per area when electric fields enter into the membrane

domain. As channels are placed closer together, they interact more strongly, changing the

transport properties.

4.3 Summary of Findings

In this chapter, I demonstrated the unique screening features of electrolytes in 1D con-

finement. The propensity towards electroneutrality breakdown is very strong in 1D, where

the scaling of the effective screening length . As channels are placed closer together, the

escaping electric fields begin to interact, shifting the system back towards electroneutral-

150



ity. The pore-pore interactions become significant when the lateral pore spacing becomes

comparable to the pore length. The electric fields extending from the pore walls through

the dielectric membrane imbue some nonlocality into the screening of the charge within a

channel.

In summary, we found that the dielectric properties and geometry of the confining sur-

faces are extremely important in determining the screening structure in 1D confinement. In

the next chapter, I will investigate the micrscopic ordering of polar solvent which can affect

the dielectric properties of the liquid near interfaces, especially for systems under extreme

confinement.
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Chapter 5

Interfacial Ordering in Polar Liquids

The following chapter is reproduced from my published paper with Prof. Alexei Kornyshev

and Prof. Martin Bazant on the orientational ordering of polar liquids at charged interfaces

[35]. I also present preliminary results comparing the theory to the orientational ordering

in simulations of various confined polar liquids done by Dr. Karina Pivnic.

5.1 Overview

The structure of polar liquids and electrolytic solutions, such as water and aqueous elec-

trolytes, at interfaces underlies numerous phenomena in physics, chemistry, biology, and

engineering. In this work, we develop a continuum dipolar shell theory that captures the

essential features of dielectric screening by polar liquids at charged interfaces, including

oscillations in charge and mass, starting from the molecular properties of the solvent. The

theory predicts an anisotropic dielectric tensor of interfacial polar liquids previously stud-

ied in molecular dynamics simulations. We explore the effect of the interfacial polar liquid

properties on the capacitance of the electrode/electrolyte interface and on hydration forces

between two plane-parallel polarized surfaces. In the linear response approximation, we

obtain simple formulas for the characteristic decay lengths of molecular and ionic profiles

at the interface.

The interactions between colloidal particles are mediated by nanoconfined polar liq-

uids. Therefore, the resulting hydration or solvation forces between the bounding particle
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surfaces are greatly sensitive to the orientational structuring of the polar liquids near the

surfaces. By using direct comparison to molecular dynamics simulations, we test the ap-

plicability of the dipolar shell theory for three different polar liquids. The three liquids

(dichloromethane, acetonitrile, and water) possess very different shapes, sizes, and bulk

dielectric constants. As we show, the agreement between the theoretically-predicted and

simulated orientational ordering in the diverse set of confined polar liquids demonstrates

the predictive power of our theory as well as some limitations.

5.2 Dipolar Shell Theory

5.2.1 Introduction

Polar liquids such as water are ubiquitous in all areas of science and engineering, including

biological media, [310, 311] electrochemical interfaces, [16] colloids, [14, 312] synthetic

membranes, [313, 314] and lubrication. [315, 316] At charged interfaces, the structure of

polar liquids governs the screening of charge by ions in the electrical double layer. [317]

The key and still not fully understood feature here is the interplay between the molecular

structure of the solvent and the correlations in ionic subsystems. Theoretical models of

interfacial polar liquids are therefore critical in the design and understanding of electrified

interfaces.

Typically, the dielectric properties of interfacial polar liquids are lumped into two main

regions of the electrical double layer: (i) the diffuse layer first described by Gouy and

Chapman [318, 319] in which diffuse ionic charges screen the surface charge and (ii) the

Stern layer composed exclusively of solvent molecules adjacent to the interface, [223] rep-

resented as layer of depressed dielectric constant and fixed thickness. [17] In the diffuse

layer, the solvent dielectric constant is usually chosen as its bulk value, and the ions are

treated as dilute point charges in the standard Poisson-Boltzmann form. While such a

general approach describes numerous electrochemical measurements, the Gouy-Chapman-

Stern (GCS) representation does not capture the microscopic details of the structuring of the

fluid near the surface, [93, 320–322] nor the electric-field dependent response of the polar
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solvent. [323,324] One clear shortcoming of the GCS model is its failure to describe oscil-

latory profiles seen in hydration force measurements [32] and x-ray synchrotron-radiation

assessed atomic distribution profiles. [325–327]

A plethora of modifications to the Poisson-Boltzmann theory have been proposed to in-

clude the correlated structure and crowding of ions at an interface, usually based on theories

of inhomogeneous hard sphere fluids. [17, 99, 328] Applications of such theories to elec-

trolytes usually ignore the solvent molecules by treating the fluid as a constant permittivity

medium, ε , with hard-sphere ions, the so-called primitive model. [3, 33, 235] While such

a model can describe the long-range behavior of dilute electrolytes, it does not capture the

short-wavelength structuring of the solvent that affects electrostatic interactions between

the ions at a nanometer scale.

In fact, simulations and indirect experimental evidence have demonstrated that the bulk

dielectric response of water is nonlocal at short distances. Thus, the studied wave-number

dependent static dielectric tensor of water has revealed singularities at short wavelengths,

giving rise to the phenomenon of overscreening and alternating bound charges of the polar

solvent in response to external perturbation. [329–332] At interfaces, molecular dynamics

simulations of interfacial water have shown similar overscreening signatures with singular-

ities in the normal component of the anisotropic static dielectric tensor. [31, 322, 333–336]

To incorporate the dipolar nature of the solvent, a mean-field dipolar Poisson-Boltzmann

equation has been developed [324] and extended further in Refs. [67, 337–339]. These

mean-field dipolar models have not yet captured the overscreening signatures of dipolar

molecules at interfaces. Theoretical analysis including the overscreening phenomenon by

polar liquids has mainly been limited to situations in which the nonlocal permittivity ten-

sor can be included as an input [340–342] or through effective Landau-Ginzburg mod-

els. [331, 332] These approaches, while generally accurate in comparison to simulations

and capable of capturing important features of hydration forces, are not derived from the

molecular properties of the solvent and require assumptions to match the bulk screening to

the interface.

On the other hand, sophisticated molecular theories including the reference interaction

site model (RISM) can accurately predict the spatially-correlated structures of polar liquids
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in the bulk and near interfaces. [343–352] Due to the complexity of the integral equations

involved in solving these theories, some of the analytical tractability and physical trans-

parency is lost in favor of model accuracy, compared to local dipolar theories. [324] The

integral equation theories are therefore difficult to incorporate directly with standard con-

tinuum dielectric theory approaches.

Clearly, a physically-transparent continuum model that incorporates the dipolar, molec-

ular nature of solvent molecules to capture the overscreening behavior at the interface

would be useful for understanding the interfacial properties of solvents, solvent mixtures,

and electrolytes of varying ionic composition, including at large applied voltages.

Figure 5-1: Schematic of various systems un-
der consideration in the application of the dipolar
shell theory. (a) A pure polar fluid between two
oppositely charged surfaces of the same magni-
tude, obeying overall charge neutrality. (b) A 1:1
electrolyte in a polar solvent with ions of the same
size as the dipolar molecules, again with surfaces
of equal but opposite charge. (c) A confined pure
polar fluid with varying extent of confinement be-
tween walls of equal but opposite charge with
varying extent of confinement. (d) A 1:1 elec-
trolyte confined between two walls of equal but
opposite charge with varying extent of confine-
ment. (e) A 1:1 electrolyte confined between two
walls of the same charge with varying extent of
confinement. (f) Dipolar molecule, cation, and
anion symbols.

Here, we derive a modified Langevin-

Poisson equation in which we include the

nonlocal dielectric response of a polar liq-

uid by employing a weighted-density func-

tional, treating dipolar molecules as shells

of charge. The model captures many of the

properties of interfacial liquids, including

the overscreening of surface charge by the

dipolar solvent charges. Singularities in the

normal component of the effective static di-

electric permittivity at an interface emerge

naturally from the theory. After analyzing

pure polar liquids, we then include into the

theory a finite ion concentration, thus un-

ravelling the fine double layer structure at

a charged interface. Further, we apply the

theory to describe the hydration forces be-

tweeen two charged surfaces. Finally, we

derive a formula for the hydration length,

λs, which depends only on the diameter of the solvent molecule, d, and the relative permit-

tivity of the liquid, εr, where λs = d
√
(εr −1)/6, governing the decay of the oscillations
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in charge ordering in the polar liquid from a surface. We will explain in the chapter the as-

sumptions required to obtain the formula of such extraordinary simplicity, but taken for esti-

mates, it seems to be consistent with existing molecular simulations [31,333,336,353,354].

In this work, we demonstrate the effects of bulk relative permittivity, surface charge

density magnitude from linear to nonlinear response, extent of confinement between two

surfaces, and ionic concentration on the interfacial properties of the polar liquid. As de-

picted in Fig. 5-1, the systems under consideration will include (a) a pure polar liquid

between oppositely charged surfaces (b) an electrolyte between two oppositely charged

surfaces (c) confined pure polar liquids between oppositely charged surfaces, and (d-e)

confined electrolytes between oppositely charged surfaces and identically charged surfaces,

respectively. From our theoretical analysis, we demonstrate the importance of the molecu-

lar properties of the polar liquid in hydration interactions and double layer capacitance of

charged interfaces.

5.2.2 Theory

The theoretical approach presented here originates from the model for ionic liquids of ref.

[7], to which we add dipolar molecules as hard spheres with dipolar shells of charge. The

model treats the equilibrium properties of a concentrated system of dipolar shells in a man-

ner similar to the Langevin-Poisson theories previously described for point dipoles. [324]

For simplicity, we limit our analysis to the case of equally sized ions and dipolar molecules

with radius, R. This system of ions and dipoles will be positioned between two flat surfaces.

We assume that the dipoles and ions in this nanoslit are in equilibrium with a reservoir with

fixed bulk concentrations of both ions and dipoles, within the grand canonical ensemble.

Density functional

The theoretical framework is based on a definition of the Helmholtz free energy functional

of the system, and could be classified as a classical Density Functional Theory approach.

The Helmholtz free energy, F can be split into three parts: an ideal part F id, an excess
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part accounting for excluded volume effects, F ex, and an electrostatic part, F el,

F = F id +F ex +F el. (5.1)

As a standard definition, the ideal part of the free energy density is given by:

F id[{ci(r)}] = ∑
i

kBT
∫

drci(r)
[

ln(Λ3
i ci(r))−1

]
, (5.2)

where kB is the Boltzmann constant, T is the absolute temperature, ci is the concentration

of species i, and Λi is the de Broglie wavelength for species i. The ideal part of the chemical

potential for species i, µ id
i , relative to some reference bulk solution denoted as b, is thus:

β µ
id
i = β

(
δF id

δci
− δF id

δci

∣∣∣
b

)
= ln

(
ci

ci0

)
, (5.3)

where ci0 is the concentration in the bulk and β is the inverse thermal energy, β−1 = kBT .

For the excess free energy density, we will assume that all species are approximately

spherical and equal in size. Here, we adopt a weighted-density approximation from ref. [7]

that was constructed to recover the Carnahan-Starling equation of state:

F ex[c̄i(r)] =
kBT

v

∫
dr

[
1

1− η̄
−3η̄ +

1
(1− η̄)2

]
. (5.4)

Here, v is the volume of a molecule, η = ∑i vci is the local filling fraction, and η0 = ∑i vci0

is the bulk filling fraction. The bar notation denotes a convolution with the volumetric

weighting function, η̄ = wv ∗η , where wv(r) = Θ(R− | r |)/v, is a Heaviside step func-

tion that only turns on within the volume of the sphere, with R defined as the radius

of the molecular sphere. The ∗ operator corresponds to a convolution integral, f ∗ g =∫
dr′ f (r′)g(r− r′). Therefore, the excluded volume interactions appear in a non-local fash-

ion in the chemical potential, describing the filling within a molecular-sized neighborhood
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of a point. The associated weighted excess chemical potential, µ̄ex
i ,is:

β µ̄
ex
i = β

(
δF ex

δci
− δF ex

δci

∣∣∣
b

)
= wv ∗

(
8η̄ −9η̄2 +3η̄3

(1− η̄)3 −
8η0 −9η2

0 +3η3
0

(1−η0)3

)
.

(5.5)

Derivation of electrostatic variables

The key development in the theory presented in this work is the electrostatic part of the free

energy. Here, we spread the ionic charge and bound charges on dipoles over their surface,

so that they act electrostatically as shells rather than points. The smeared shell charge

appears in the mean-field Poisson equation for both the ions and the polar liquid molecules.

The charged shell formulation here is directly based on the theory for concentrated ionic

liquids presented in ref. [7]. The approach is preceded by similar theoretical models for

electrolytes composed of ions with intramolecular charge distributions, [196, 200–204] as

well as charged shell representation of the mean-spherical approximation. [52, 205, 206]

The charged shell approximation is applicable not only to ions and dipoles with charge

form factors in the shape of a spherical shell, but also for hard sphere ions and dipoles with

point charges and point dipole moments at their centers in which the electrostatic potential

can only develop beyond the ionic radius or dipolar molecule radius. The electrostatic part

of the free energy, defined in terms of weighted densities, is therefore:

F el[φ , ρ̄e, P̄] =
∫

dr
{
− ε0

2
(∇φ)2 + ρ̄eφ + P̄ ·∇φ

}
, (5.6)

where φ is the electrostatic potential, ε0 is the permittivity of free space, ρ̄e = ws ∗ ρe is

the weighted charge density, and P̄ = ws ∗P is the weighted polarization vector, originating

from the weighted bound charge on the dipolar molecules, ρ̄b = ws ∗ ρb = ∇ · P̄. Here,

the convolution with the weighting function ws(r) = δ (R− | r |)/(4πR2) homogenizes the

charge and polarization over a spherical shell.

Using the definition of the polarization vector, P, as the concentration of dipoles, cw,

multiplied by their individual dipole moments, p, we can next define the weighted polar-
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ization vector, P̄:

P = cwp, P̄ = ws ∗ (cwp) , (5.7)

for which there will be a distribution of dipole orientations that we will ultimately need to

average over. The electrochemical potential of the dipole, µw can be found by taking the

variational derivative of the free energy with respect to the dipole concentration:

β µw = ln
(

cw

cw0

)
+βp ·∇φ̄ +β µ̄

ex
w . (5.8)

Here, φ̄ = ws ∗φ is the weighted electrostatic potential, and µ̄ex
w = wv ∗µex

w is the weighted

excess chemical potential. Mathematically, the weighted electrostatic potential and weighted

excess chemical potential emerge due to the minimization of the free energy with respect

to the concentration variables, which are present in the free energy in terms of convolu-

tions with weighting functions. Physically, these are a result of the delocalization of bound

charge over the dipolar molecule surface and the nonlocal packing effects, respectively.

This procedure embeds the finite size of dipolar molecules into the theory, which plays a

key role in capturing the effects of layering and decoupling the packing periodicity from the

longer range electrostatic correlations. Thus, although this approach should still be clas-

sified as a mean field theory, it makes an essential step towards accounting for molecular

structure of the liquid. The dipole concentration at a given position is thus:

cw = cw0 exp
(
−βp ·∇φ̄ −β µ̄

ex
w
)
. (5.9)

Therefore, the local dipole concentration depends on the angle, θ , between the dipole mo-

ment of the molecule and the weighted electric field, E = ws ∗E =−∇φ̄ , where

p ·∇φ̄ = p0 | ∇φ̄ | cosθ , (5.10)

assuming a constant effective dipole moment magnitude, p0. Averaging over the possible
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orientations of the molecule gives:

⟨cw⟩= cw0e−β µ̄ex
w

〈
e−β p0|∇φ̄ |cosθ

〉
(5.11)

for the dipole concentration and:

⟨P⟩= cw0 p0e−β µ̄ex
w

∇φ̄

| ∇φ̄ |

〈
cos(θ)e−β p0|∇φ̄ |cosθ

〉
(5.12)

for the polarization vector, where ⟨⟩ denotes the average over θ . Averaging over the dipole

orientations gives:

〈
e−β p0|∇φ̄ |cosθ

〉
=

1
2

∫
π

0
e−β p0|∇φ̄ |cosθ sinθdθ

=
sinh

(
β p0 | ∇φ̄ |

)
β p0 | ∇φ̄ |

(5.13)

and 〈
cos(θ)e−β p0|∇φ̄ |cosθ

〉
=

1
2

∫
π

0
e−β p0|∇φ̄ |cosθ cosθ sinθdθ

=−
sinh

(
β p0 | ∇φ̄ |

)
β p0 | ∇φ̄ |

L
(
β p0 | ∇φ̄ |

) (5.14)

where L (x) = coth(x)−1/x is the Langevin function. Therefore, the dipole concentration

can be written as:

⟨cw⟩= cw0e−β µ̄ex
w

sinh
(
β p0 | ∇φ̄ |

)
β p0 | ∇φ̄ |

, (5.15)

and the polarization density can be expressed as:

⟨P⟩=−p0⟨cw⟩
∇φ̄

| ∇φ̄ |
L

(
β p0 | ∇φ̄ |

)
. (5.16)

In turn, the weighted polarization vector is defined as:

⟨P̄⟩=−ws ∗
[

p0⟨cw⟩
∇φ̄

| ∇φ̄ |
L

(
β p0 | ∇φ̄ |

)]
. (5.17)

Moving forward, we drop the bracket notation, such that P refers to ⟨P⟩, P̄ refers to ⟨P̄⟩,
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and cw refers to ⟨cw⟩.

Along with the description of the polarization vector, we must also describe the ionic

charge when there is a non-zero electrolyte concentration. The ionic electrochemical po-

tential is defined as:

β µi = ln
(

ci

ci0

)
+ zieβ φ̄ +β µ̄

ex
i . (5.18)

Therefore, the distributions of the ions are given by:

ci = ci0 exp
(
−βeφ̄ −β µ̄

ex
i
)
. (5.19)

For a 1:1 solution of concentration c0, the electrolyte charge density is therefore:

ρe =−2ec0 sinh
(
βeφ̄

)
e−β µ̄ex

i , (5.20)

and the weighted electrolyte charge density is ρ̄e = ws ∗ρe.

The Poisson equation consistent with the free energy density in Eq. 5.6 is:

−ε0∇
2
φ =−∇ · P̄+ ρ̄e. (5.21)

as shown in Appendix A of ref. [35]. The source of the electric field is therefore the delo-

calized shells of charge of the ions and bound charge on dipolar molecules, mathematically

appearing as convolutions with the weighting function, ws. Specifically, the overall charge

density in the Poisson equation includes both the weighted bound charge density on the

dipolar molecules, ρ̄b =−∇ · P̄, and the weighted ionic charge, ρ̄e.

Reducing to one dimension

In the 1D geometry between two flat plates, the weighting function formulas must be mod-

ified [55] to integrate over the y and z dimensions, since all variables depend only on x.

Physically, the spherical shell of charge corresponding to ws becomes equivalent to a line

of charge with length 2R and uniform charge per length (the differential area of a sphere

per differential in the axial coordinate). The spherical Heaviside weighting function, wv,
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Figure 5-2: Electrostatic screening by pure polar liquids between two surfaces of opposite charge
shown for different values of the bulk dielectric constant, comparing the weighted and nonweighted
quantities. The curves are generated by solving Eq. 5.24 with ρ̄e = 0. Variables are plotted as
functions of the normal coordinate, x, zooming into the profiles emerging from the left interface
for b-c and e-f. The selected bulk dielectric permittivities, correspond to values of p0 = 4.86 D for
εr = 80, p0 = 2.38 D for εr = 20, and p0 = 1.09 D for εr = 5, keeping all other parameters constant
(T = 300 K, L = 5 nm, cw0 = 55 M, d = 0.285 nm, and qs = 0.01 C/m2). (a) Electrostatic potential,
φ , (b) electric field, E =−φ ′, (c) polarization density, P, (d) weighted electrostatic potential, φ̄ , (e)
weighted electric field, Ē =−φ̄ ′, and (f) and weighted polarization density, P̄. The local variables in
a-c describe the “measured" local electrostatic response of the system, while the weighted potential
and weighted electric field in d-e determine the electrochemical potential and orientation of dipoles.
The weighted polarization vector in f corresponds to the polarization arising from the delocalized
bound charge on the dipolar shells.
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becomes a quadratic function, corresponding to the differential volume of a sphere per

differential in the axial coordinate. Their modified forms are:

wv(x− x′) =
π
(
R2 − (x− x′)2)

v
Θ
(
R− | x− x′ |

)
(5.22)

ws(x− x′) =
1

2R
Θ
(
R− | x− x′ |

)
. (5.23)

In 1D, the integro-differential equation for the electrostatic potential is:

0 = ε0
d2φ

dx2 − dP̄
dx

+ ρ̄e (5.24)

where

P =−p0cw0e−β µ̄ex
w

sinh
(
β p0φ̄ ′)

β p0φ̄ ′ L
(
β p0φ̄

′) , (5.25)

and φ̄ ′ = dφ̄/dx denotes a derivative with respect to x. In this geometry, the average orien-

tation of the dipoles relative to the x-axis can be expressed as:

⟨cos(θ)⟩=−L
(
β p0φ̄

′) . (5.26)

We assume that the surface charge is uniformly distributed on bounding flat hard walls

at x = 0 and x = L. For simplicity, here, the surface charge density is assumed not to have

any finite size, so the boundary conditions reduce to:

(
−ε0φ

′)∣∣∣
x=0

= qs(
−ε0φ

′)∣∣∣
x=L

=±qs

(5.27)

where we have the surface charge density of magnitude qs on each side. Depending on the

scenario under investigation, the charge on each surface is either opposite in sign or the

same in sign, as sketched in Fig. 5-1. If the charge at x=L is negative, we choose “+" in the

second line of Eq. 5.27, and the opposite is true if the charge is positive. The local dipolar

and ionic concentrations are zero in the regions x < R and x > L−R owing to the hard

sphere repulsion with the flat bounding surfaces. To solve these equations, we discretized

them using finite difference formulas.
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Figure 5-3: Dielectric tensor, average orientation, and density of pure polar fluids between two
surfaces of opposite charge, generated for model polar liquids with different values of the bulk
dielectric constant. The curves are generated by solving Eq. 5.24 with ρ̄e = 0. Variables are
plotted as functions of the normal coordinate, x, zooming into the profiles emerging from the left
interface. The results are plotted for three pure polar fluids, corresponding to p0 = 4.86 D for
εr = 80, p0 = 2.38 D for εr = 20, and p0 = 1.09 D for εr = 5, keeping all other parameters constant
(T = 300 K, L = 5 nm, cw0 = 55 M, d = 0.285 nm, and qs = 0.01 C/m2). (a) Normal component of
the dielectric tensor, ε⊥, plotted in terms of its inverse. (b) Tangential component of the dielectric
tensor, ε∥. (c) Average orientation of dipolar molecules, ⟨cos(θ)⟩. (d) Density profile of dipolar
molecules, cw, normalized by the bulk value. In (d), the density profiles are closely overlapping
each other, due to the low applied surface charge.

Extracting the effective local dielectric tensor

1. Normal component

A fundamental calculation involves extracting the static dielectric profile from the

predicted polarization vector. Here, we choose a permittivity definition that is consis-

tent with the weighted Poisson equation. The self-consistent definition of the normal

permittivity is given by:

ε⊥ = 1− P̄
ε0φ ′ (5.28)

which represents the total displacement vector, D =−ε0φ ′+ P̄, divided by the elec-

tric field, both extracted directly from our model. Note that while the electrochemical

potential of the dipoles depends on the weighted electrostatic field, the displace-

ment vector includes a contribution from the local electric field (−φ ′) and also the

weighted polarization vector (P̄). The modified Poisson equation can be written in
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terms of the effective normal permittivity in the form:

d
dx

(
ε0ε⊥

dφ

dx

)
=−ρ̄e. (5.29)

Here, the effective normal permittivity includes only the polarization of the solvent,

and does not include the polarization from the ions. We will return to the nuances of

the definition of the normal permittivity in the analysis of concentrated electrolytes.

2. Tangential component

While we assume no tangential component of the field in the solution of our model,

we can also use the model to quantify the extent of tangential polarizability of the

interfacial polar liquid in response to macroscopic electric fields tangential to the

plane of the interface. If the tangential electric field is constant and weak relative to

the normal electric field, then we can extract it as a small, constant perturbation upon

the normal field. For example, we can assume a small perturbative component of the

electric field in the y direction, Ey, that satisfies | Ey |≪| Ex |. We can approximate the

magnitude of the gradient of the weighted electrostatic potential as: | ∇φ̄ |≈| Ēx |=|

φ̄ ′ |, where the prime notation still refers to derivatives in the x-direction, and Ēx is

the weighted electric field in the x-direction. If we apply such an assumption to the

y-component of Eq. 5.17, the displacement vector in the y-direction is therefore:

Dy = ε0Ey + P̄y ≈ ε0Ey +ws ∗
[

p0cw
Ēy

| Ēx |
L (β p0 | Ēx |)

]
≈ ε0Ey +ws ∗

[
p0cw

Ēy

φ̄ ′ L
(
β p0φ̄

′)] . (5.30)

Next, we divide the tangential (y) component of the displacement vector by the tan-

gential electric field (Ey). Since we assume the tangential electric field is constant

due to the system’s translational invariance in the yz−plane, it can be treated as a

constant for the differentiation or convolution operations, so that Ey ≈ Ēy. Through
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Figure 5-4: Dielectric tensor, average orientation, and density of pure polar fluids between two
surfaces of opposite charge for varying surface charge density. The curves are generated by solving
Eq. 5.24 with ρ̄e = 0. Variables are plotted as functions of the normal coordinate, x, zooming
into the profiles emerging from the left interface. The results are plotted for varying surface charge
density (qs = 0.01 C/m2, qs = 0.1 C/m2, and qs = 0.25 C/m2), keeping all other parameters constant
(T = 300 K, L = 5 nm, cw0 = 55 M, d = 0.285 nm, and p0 = 4.86 D). (a) Normal component of
the dielectric tensor, ε⊥, plotted in terms of its inverse. (b) Tangential component of the dielectric
tensor, ε∥. (c) Average orientation of dipolar molecules, ⟨cos(θ)⟩. (d) Density profile of dipolar
molecules, cw, normalized by the bulk value.

this process, the tangential permittivity, ε∥, can be defined as:

ε∥ ≈ 1−ws ∗
(

P
ε0φ̄ ′

)
. (5.31)

5.2.3 Results

The equations are solved between two surfaces with fixed charge densities of magnitude

qs and separation distance L. The baseline parameters correspond to the effective values

for water: dipolar molecule concentration cw0 = 55 M (corresponding to ≈33 molecules

per nm3), temperature T = 300 K, and a diameter of d = 0.285 nm. While εr is the bulk

dielectric constant far from the interface, the local static dielectric tensor can vary as a

function of position. In the bulk, the relative permittivity as given by the dipolar model for

small perturbations is given by: [324]

εr = 1+
βcw0 p2

0
3ε0

. (5.32)
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For a dipolar concentration of cw0 = 55 M at T = 300 K, the bulk dielectric constant of εr =

80 requires an effective dipole moment of p0 = 4.86 D. This effective value is significantly

larger than the actual dipole moment of water, 1.8 D. The effective dipole moment accounts

for correlations between the orientation of a single dipolar molecule and the orientation

of its nearest neighbors, as accounted for in more sophisticated bulk dielectric theories.

[337,355–357] Here, we lump these effects into the effective dipole moment in our model,

similar to previous dipolar Poisson-Boltzmann approaches. [67,324] The default separation

distance between the two charged surfaces is L = 5 nm, and the default surface charge

density magnitude is qs = 0.01 C/m2.

With the inclusion of the polar fluid, the parameter space for the system under investi-

gation is large. We therefore divide our results into five parts: (A) First, we present results

for pure polar fluids between two opposite surfaces. We formally investigate how the in-

terfacial electrostatic properties change with varying bulk dielectric constant, and also how

nonlinear saturation of the dipole orientation arises at high surface charge. We also show

the complicated layering of molecular orientation for dipolar fluids confined to the sub-

nanometer scale. (B) Second, the interfacial electrostatic properties are investigated with

a non-zero ionic concentration between oppositely charged surfaces. Here, the results are

presented for varying ionic concentrations and for varying surface charge magnitudes. (C)

Next, the theory is applied to understanding hydration interactions between two surfaces of

(i) opposite charge with and without ions present and (ii) the same charge with a non-zero

ionic concentration. (D) The double layer capacitance with ions present is then investi-

gated, ensuring non-overlapping double layers with large separation distances between the

surfaces. (E) Finally, the equations are linearized and cast into a differential form, which

gives analytical decay lengths describing the layering of charge and mass at the interface.

Pure polar fluids: Interfacial dielectric structure

The system of a pure polar fluid is rare in practice, but it is a useful reference system to

showcase the dipolar shell theory predictions. In order to maintain electroneutrality, the

bounding surfaces must have equal but opposite charge density, since the pure polar fluid

does not have any net charge. Within this system, we will highlight the influence of the
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fluid bulk permittivity, εr, the strength of the electric field in the system that is set by the

surface charge density on the boundaries, qs, and the confinement extent of the fluid given

by the surface separation distance, L.

To start, we investigate the effect of the effective dipole moment, p0, on the resulting

potential and electric field distribution. Since p0, of course, determines the bulk macro-

scopic dielectric constant, εr, we may say that we will trace the effect of the latter on the

local properties near the interface, although the variation εr is itself the result of variation

of p0. In order to study fluids of different bulk dielectric constants, we vary p0 to take on

the values p0 = 2.36 D for εr = 20 and p0 = 1.09 D for εr = 5, keeping all other variable

constant.

In Fig. 5-2, the electrostatic potential, electric field, and polarization density are plotted

along with their weighted counterparts for fluids of varying bulk permittivity, εr. For each

fluid, the electrostatic potential, φ , oscillates near the surface, within the first nanometer.

The potential difference across the nanoslit is greatest for the least polar fluid with εr = 5,

since dielectric screening is the weakest for this system. The oscillations in the potential

lead to sharp cusps and oscillations in the electric field, E, for all the fluids. The electric

field even reverses signs at some points, corresponding to reversal in the local electric field

direction, corresponding to overscreening of the surface charge. The oscillations and sign

reversals in the electric field are stronger for the more polar fluids with higher εr. The local

polarization density, P, has related signatures, where the local polarization density magni-

tude exceeds the imposed displacement field magnitude set by the surface charge density

on the bounding walls. For the weighted variables, φ̄ , Ē, and P̄, the weighting operation

smooths out the oscillations compared to the local variables, but does not eliminate them.

The weighted electrostatic potential, φ̄ , and weighted electric field, Ē, determine the lo-

cal electrostatic energy and orientation of the dipolar shells in the theory. The weighted po-

larization density, P̄, contributes to the overall displacement field, D = ε0E + P̄. Therefore,

the overscreening of the surface charge occurs when P̄ exceeds qs, where the cumulative

bound dipolar shell charge exceeds the surface charge density. All the fluids experience at

least one overscreening peak in the weighted polarization profile. However, the oscillations

decay more rapidly and the overscreening peaks are smaller for the lower bulk permittivity
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Figure 5-5: Orientation of molecules in a pure polar fluid between two oppositely charged surfaces
as a function of the confinement distance between the surfaces. The curves are generated by solving
Eq. 5.24 with ρ̄e = 0. The results are plotted for indicated separation distances between the two
confining charged surfaces, L, keeping all other parameters constant (T = 300 K, cw0 = 55 M,
d = 0.285 nm, p0 = 4.86 D, qs = 0.05 C/m2).

liquids. From these profiles, we can deduce that the overscreening phenomenon is essen-

tial to describing the structuring of polar liquids with large bulk dielectric constant, and is

microscopically sensitive to the effective dipole moment, p0.

Next, we can use the electrostatic variables to determine the components of the dielec-

tric tensor near the interface, as shown in Fig. 5-3, for fluids with different bulk dielectric

constants. Due to the weighted polarization density overscreening the surface charge den-

sity, the normal component of the dielectric tensor has singularities. The tangential com-

ponent, on the other hand, does not have the same overscreening structure since it is set by

a long range tangential electric field, and the tangential component of the dielectric func-
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Figure 5-6: Electrolyte screening behavior between two surfaces of opposite charge for varying
ionic concentration. The curves are generated by solving Eq. 5.24 with ρ̄e ̸= 0. The ionic con-
centration is varied between c0 = 0 M, c0 = 0.1 M, c0 = 0.5 M, and c0 = 2.5 M, keeping all other
parameters constant (T = 300 K, L = 5 nm, cw0 = 55 M, d = 0.285 nm, qs = 0.01 C/m2, and
p0 = 4.86 D). (a) Electrostatic potential, φ . (b) Local difference in ionic concentration, porportional
to the local charge density. (c) Normal component of the dielectric tensor (effective–accounting
only for the polarization of solvent), ε⊥, plotted in terms of its inverse. (d) Tangential component of
the dielectric tensor, ε∥. (e) Normal component of the general dielectric tensor, ε∗

⊥ (accounting for
the polarization of the solvent and ions).

tion varies closely with the local dipole concentration, cw. The orientation of the dipoles,

⟨cos(θ)⟩, is actually higher for the fluid that is the least polar. This fact appears because

the least polar fluid with εr = 5 corresponds to the weakest dielectric screening of the elec-

tric field. Even though large differences are observed in the dielectric profiles, at the low

charge density of qs = 0.01 C/m2, the dipole concentration is not very strongly affected

by electrostatics, as shown in Fig. 5-3(d). Instead, the dipole density is dominated by the

packing effects embedded in µ̄ex
i , which is independent of electrostatics at small potentials.

The large contact value for the density is also governed by the nonlocal packing effects,

similar to uncharged hard-sphere fluids. In turn, the excess chemical potential owing to

packing plays a minor role in the overscreening structure in the normal component of the

dielectric tensor. The overscreening signatures can therefore be attributed to the delocal-

ization of the bound charge on dipoles over the dipole molecule surface. The remarkable

anisotropic static dielectric tensor predicted by the dipolar shell theory here is similar to

the reported Molecular Dynamics simulations of the dielectric properties of interfacial wa-

ter. [31,322,336,353,354] The overscreening signatures also qualitatively match the results

from simulations and a phenomenological electrostatic theory of confined liquids. [358]

Further, we explore what happens when a pure polar fluid with bulk dielectric constant
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εr = 80 is subjected to a strong electric field at the boundaries, driving the system to non-

linear response with experimentally feasible surface charge densities. Fig. 5-4 includes

the normal dielectric permittivity, the tangential permittivity, the dipole orientation, and the

dipole density as a function of distance from the left surface for different values of surface

charge density. The overscreening structure and singularities in the normal dielectric con-

stant are more or less unchanged as the surface charge increases. However, at the largest

charge density, qs = 0.25 C/m2, the normal and tangential components of the permittivity

saturate to a lower value. Even though the strong electric field leads to dielectric saturation

and electrostriction (an increase in the local dipolar concentration near the interface), the

saturation of the orientation of the dipoles due to the strong field intensity leads to a lower

effective dielectric constant for the polar fluid in the nanoslit. Interestingly, the dipolar

concentration profile at high charge density forms layers with sharp cusp-like peaks near

the surface.

Finally, the behavior of the polar liquid model is studied as a function of the extent of

confinement, as shown in Fig. 5-5. Here, the distance between the two surfaces, L, is varied

between L = 0.36 nm to L = 1.08 nm. The layering in the orientation of dipole molecules

relative to the normal axis, ⟨cos(θ)⟩, is complicated by the coherency of the layers of charge

emanating from each surface. As the surface separation increases, the dipoles go from one

layer, to two layers, to four layers, back to three layers, then three layers with smaller

sublayers, then four layers. This means that single angstrom differences in separation can

lead to constructive or destructive interference from opposing layers of dipoles, forming

dipolar patterns with varying orientations, periodicity, and number of layers.

What changes in the presence of a strong electrolyte

Commonly, dissolved ions are present in polar fluids due to dissociation of electrolytes. In

this section, we examine the screening of charge at interfaces for a polar fluid with nonzero

ion concentration. Due to the nonzero ion concentration, the surface charges need not be

equal nor do they need to be opposite, since any net charge of the two surfaces will be

screened by ionic charges in the nanoslit. For the purposes of this section, however, to stay

in line with the pure polar fluid case, we maintain equal but opposite surface charge density
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Figure 5-7: Electrolyte screening behavior between two surfaces of opposite charge for varying
surface charge density. The curves are generated by solving Eq. 5.24 with ρ̄e ̸= 0. The surface
charge density is varied between qs = 0.01 C/m2,qs = 0.1 C/m2, and qs = 0.25 C/m2, keeping all
other parameters constant (T = 300 K, L = 5 nm, cw0 = 55 M, d = 0.285 nm, c0 = 0.1 M, and
p0 = 4.86 D). The cation (red), anion (blue), and dipolar molecule (black) profiles are plotted,
normalized to their respective bulk values.

on the bounding walls of the nanoslit.

In Fig. 5-6, we highlight the main electrostatic properties for a 1:1 electrolyte of vary-

ing ionic concentration, c0. Examining the potential, φ , in Fig. 5-6(a), the overscreening

oscillations seem to only weakly depend on the ionic concentration. The difference in the

local concentrations of anions and cations, c−− c+, includes oscillatory structures for all

concentrations, owing to the dielectric overscreening. Further, at the highest concentration,

the ions themselves also contribute to overscreening, where the local ionic charge density

oscillates between negative and positive values. While the ionic concentration has a weak

influence on the tangential dielectric permittivity, it strongly influences the normal com-

ponent of the effective solvent dielectric permittivity. The nonzero ionic concentrations

lead to longer range oscillations and more singularities in the normal component of the

dielectric permittivity of the solvent, ε⊥. For the highest concentration, the apparent nor-

mal dielectric permittivity appears to enter an exotic region 0 < ε⊥ < 1, which is of course

forbidden for the general dielectric constant ε∗⊥, [359] but not for the effective dielectric

constant, ε⊥. Note that ε⊥ is an effective quantity and the constraint of a forbidden band

between 0 and 1, [359] does not apply to it. The general dielectric function, ε∗⊥, includes

both the polarization of the dipoles and the polarization from ions. For our geometry, it is
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defined by:
d
dx

(
ε
∗
⊥

dφ

dx

)
= 0 (5.33)

and is forbidden from the region 0 < ε∗⊥ < 1 by the stability requirement. Here, we plot

both ε⊥ (Fig. 5-6(c)) that satisfies Eq. 5.29, and ε∗⊥ (Fig. 5-6(a)) that satisfies Eq. 5.33.

Therefore, the weighted ionic charge density acts as a source that allows for the effective

solvent normal dielectric tensor component ε⊥ to enter the region 0 < ε⊥ < 1 when ionic

overscreening occurs at high ionic concentration.

Next, the role of surface charge density on the accumulation of ions and dipolar molecules

is investigated. Fig. 5-7 shows the anion, cation, and dipolar molecule density rescaled to

their bulk values (c0 = 0.1 M for the ions and cw0 = 55 M for the dipoles) as the surface

charge density is varied from qs = 0.01 C/m2 to qs = 0.25 C/m2 . While the interfacial

dipole concentration is increased at large electric field magnitudes, the counterion concen-

tration increases much more rapidly with increasing surface charge density, relative to the

bulk concentration. This is quite natural as electrostriction in dense polar liquids in the

electric field of the electrical double layer is a much weaker effect than the compression of

the double layer with increased voltage drop across it. Therefore, large surface potentials

preferentially accumulate counterions instead of the dipolar molecules. But when the volt-

age drop is large, overcrowding of counterions can occur, where layers rich in counterions

of the same sign form near each of the two surfaces, pushing out the dipolar molecules fur-

ther from the surface. Clearly, this conclusion depends on the size of ions and of dipoles.

In the case studied here, they are of the same size. But had this been different, for example,

for a situation wheree the dipoles are much smaller than the ions, then the dipoles will be

drawn into the double layer to screen the repulsions between the counterions.

Hydration forces

The layering of charged dipolar molecules confined between two interfaces causes an os-

cillatory hydration interaction. The hydration interaction is critical in colloidal stability,

including describing forces experienced by charged biological proteins, lipid bilayers, or

DNA at the nanometer scale. Here, we show that the dipolar shell theory can capture the
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oscillatory hydration forces commonly observed in the measurements of the forces between

smooth surfaces separated by liquid films.

To calculate the disjoining pressure, we can use the following definition for the electro-

static free energy:

F el[φ ] =
∫

dr
{

ε0

2
(∇φ)2

}
. (5.34)

and the forms of F id and F ex in Eqs. 5.2 and 5.4 to compute the overall free energy as

a function of the separation distance between two surfaces. In the calculation, we assume

free exchange with a bulk reservoir at fixed concentration, the grand canonical ensemble.

The grand potential can be written as:

Ω = F −∑
i

∫
dr
{

µibci

}
(5.35)

where µib = δF/δci|b. The disjoining pressure can be calculated using the relation:

P =−d (Ω/A)
dL

(5.36)

at constant temperature and reference chemical potential, where A is the area of the sur-

faces. [259–262] Here, we numerically compute the integrals that define Ω/A at various

values of L, and numerically take the derivative to arrive at the pressure. Pressures are

reported relative to the bulk reference value as L → ∞, P∞.

In Fig. 5-8, the disjoining pressure is plotted for (a) a pure polar fluid between two

surfaces of opposite charge (b) a 0.1 M 1:1 electrolyte between two surfaces of opposite

charge, and (c) a 0.1 M 1:1 electrolyte between two surfaces of the same charge. First we

will discuss case (a) of the pure polar fluid. At zero surface charge density, the interac-

tions are dominated by the packing effects captured in µ̄ex
i . At larger charge density, such

as qs = 0.30 C/m2, the electrostatic contribution to the disjoining pressure dominates the

interaction. While the initial few layers of the profile are jagged, the pressure profile gives

way to regularly-shaped decaying oscillations at larger separation distances. For case (b),

adding in an electrolyte at low concentration (c0 = 0.1 M) relative to the dipole concen-

tration (cw0=55 M) does not significantly change the observed patterns in the short range
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Figure 5-8: The disjoining pressure between two surfaces of varying separation distance plotted for
different ionic concentrations and polarity of surface charges. Individual curves correspond to the
indicated surface charge density, held constant for all separation distances. The ionic concentration,
c0, and the polarity of the surfaces are listed in the figure titles. The three lines in each plot corre-
spond to values of the surface charge density from qs = 0, 0.05, and 0.30 C/m2.

hydration interaction at low or high surface charge density. However, if as shown in case

(c), the charge on the two surfaces is of the same sign, then the oscillation pattern is shifted

and the sharpness in the patterns is flipped. Even so, the general pattern for interactions

between surfaces of the same charge and of opposite charge are relatively similar in their

overall envelope and long-range decay. Such an angled pressure profile dependent on the

surface charge polarity, while not immediately discernible in SFA experiments in the lit-

erature, could be detected with a carefully designed experiment, if it is in fact present.

Furthermore, measurements with soft surfaces or surfaces that are rough might blur these

predicted features
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Model applied to double layer capacitance

In electrochemistry, one of the important measureable interfacial quantities is the double

layer capacitance. In traditional theoretical approaches, the capacitance is composed of a

constant Stern capacitance, Cs and a Gouy-Chapman diffuse layer capacitance CD in series.

The Stern capacitance is assumed to arise due to the layer of water hydrating the interface

with depressed dielectric constant and fixed thickness. The diffuse layer capacitance ac-

counts for the screening of the surface charge by the ionic charge distribution in the solution

near the interface. The total differential capacitance of an electrode, CT , is defined as:

CT =| dqs

dφs
|, (5.37)

where φs is the surface potential. The total differential capacitance is therefore related to

the Stern and Debye capacitance:

CT =
(
C−1

D +C−1
s

)−1
. (5.38)

At small potential drops across the double layer for dilute solutions, the diffuse layer ca-

pacitance is approximatley equal to the Debye capacitance:

CD =
εrε0

λD
(5.39)

where λD is the Debye length,

λD =

√
εrε0kBT

2e2c0
. (5.40)

In the dipolar shell theory, the equally-sized hard sphere assumption means that there is no

layer of water near the surface. In the model, the water layering and ionic screening occur

in a diffuse manner from the interface. Despite the overlap, the layering of water still leads

to an effective Stern capacitance. [320]

In Fig. 5-9, we calculate the variation in the total double layer capacitance, effective

Stern capacitance, and calculated Debye capacitance as the ionic concentration changes, all
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Figure 5-9: Effective capacitance at zero charge for an electrolyte as a function of ionic concentra-
tion. All other parameters are kept constant (T = 300 K, L = 5 nm, cw0 = 55 M, d = 0.285 nm, and
p0 = 4.86 D). The total capacitance is calculated numerically from an isolated (non-overlapping)
double layer. The Debye capacitance is calculated as CD = εrε0/λD, and the effective Stern capac-
itance is calculated assuming a series capacitance model to match the total capacitance from the
dipolar shell theory.

calculated near the point of zero charge for non-overlapping double layers. While the the-

ory does not contain a specific layer of water at an interface like the traditional Stern layer

concept, it returns a nearly-constant effective Stern capacitance around 60 µF/cm2. The

general predictions of semi-phenomenological nonlocal electrostatic theory in ref. [320]

is fully supported by this “molecular" level model. The details of the capacitance could

be affected strongly by the size asymmetry of real polar liquids and ions. In other words,

small water molecules would access the surface more easily than larger ions in the solu-

tion, in order to reduce the electrostatic repulsion between the counterions. Furthermore,

the induced polarization of the solvent and ions can strongly affect the capacitance. [360]

Linearized form of equations

The system of equations outlined above are, generally, nonlinear integro-differential equa-

tions. While they can be solved in a straightforward manner numerically, they do not admit

simple analytical solutions. Here, we show how the system of equations can be reduced to

linear differential forms, where the oscillatory decay can be described analytically. While

not valid for the first few layers of oscillations in charge and mass, the linearized forms of

the theory are decent approximations for the long-range behavior of the polar fluid.
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The linearized weighted Langevin-Poisson equation for the dipolar shell theory (com-

bining linearized forms of Eqs. 5.17, 5.20, and 5.21) is:

[
1+(εr −1)ŵ2

s
]

∇
2
φ = εrκ

2
Dŵ2

s φ (5.41)

where κD is the inverse Debye length and φ is written in its local form. For small per-

turbations, we can assume that the convolution with ws acts as a differential operator,

ŵs ≈ 1+ ℓ2
s ∇2, where ℓs = d/

√
24. [7] Theˆsymbol correpsonds to the differential form of

the weighting function. In 1D, if we assume φ = Aexp(κx), we get the following charac-

teristic equation for the decaying modes:

κ
2 +(1+κ

2ℓ2
s )

2 [(εr −1)κ2 − εrκ
2
D
]
= 0. (5.42)

If there is no electrolyte present, κD = 0, then the solution for κ has a real and imaginary

part as:

Re(κ) = 0, ± 1
ℓs

√
−1

2
+

1
2

√
εr

εr −1

Im(κ) = 0, ± 1
ℓs

√
1
2
+

1
2

√
εr

εr −1
.

(5.43)

In the limit of large (εr −1), we get:

Re(κ) = 0, ± 1
2ℓs

√
εr −1

Im(κ) = 0, ± 1
ℓs
.

(5.44)

This means that in the absence of ions, the effective hydration length governing decay

of the oscillations scales as:

λs = d
√
(εr −1)/6, (5.45)

and an oscillation wavelength of about one molecular diameter. For water, the effective

hydration length turns out to be ≈ 1 nm at room temperature. The hydration length de-
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scribes the decay of the alternating layers of bound charge emanating from a surface, and

the magnitude of this decaying mode is determined by the magnitude of polarization at the

surface.

Now, if we include salt, the expressions for the decaying modes become more com-

plicated. In the limit of small but non-zero ion concentrations, κD → 0 gives a longest

decaying mode of of κ = κD, where the effective decay length is the Debye length, λD. In

this limit, the hydration length can be thought to be independent of and additive to the long

range Debye screening, as is commonly assumed in experimental measurements of surface

forces. [340]

In the limit of large ionic concentrations and large (εr −1), another simplified formula

can be attained for the slowest decaying mode:

κ ≈ 1
2
√

εrκDℓ2
s
± i

ℓs
. (5.46)

This formula is valid when
√

εrκDℓs ≫ 1, meaning that the molecule size is much larger

than the Debye length in vacuum. The effective screening length becomes independent of

the relative permittivity,

λs ≈
2ℓ2

s
√

εr

λD
=

d2√εr

12λD
(5.47)

since the dependence of εr cancels out, and the oscillations are on the order of one molec-

ular diameter.

An additional source of oscillations is from the density variations owing to packing of

molecules at a flat interface. Taking each set of species, we can assume small perturbations:

cw ≈ cw0 (1−β µ̄
ex)

ci ≈ ci0
(
1− zieβ φ̄ −β µ̄

ex) . (5.48)

If we sum over all species assuming the same size of each molecule and thus identical

excess chemical potential, we get an expression for the local filling fraction:

η −η0 =−η0β µ̄
ex =−2η0(4−η0)

(η0 −1)4 ŵ2
v (η −η0) (5.49)
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where we have linearized the excess chemical potential. We can again assume small per-

turbations and treat wv as an operator, ŵv ≈ 1+ℓ2
v∇2, where ℓv = d/

√
40. The decay of the

density for a symmetric fluid is independent of the decay of the electrostatic potential, and

the characteristic equation, assuming η −η0 = Aexp(−κmx), is:

1+
2η0(4−η0)

(η0 −1)4 (1+ ℓ2
vκ

2
m)

2 = 0. (5.50)

Here, κm has real and imaginary parts:

Re(κm) =
1
ℓv

√√√√−1
2
+

1
2

√
1+

(1−η0)4

2η0(4−η0)

Im(κm) =
1
ℓv

√√√√1
2
+

1
2

√
1+

(1−η0)4

2η0(4−η0)
.

(5.51)

As η0 → 0, the oscillations decay rapidly over a small length scale λm = ℓv(8η0)
1/4. For

dense solutions, as η0 → 1, the real and imaginary parts of the solution go to:

Re(κm) =
(1−η0)

2
√

8ℓv
√

η0(4−η0)

Im(κm) =
1
ℓv
.

(5.52)

In other words, the decay of mass oscillations with wavelength of the molecular diameter

goes as:

λm ≈
√

1
5

d
√

η0(4−η0)

(1−η0)2 . (5.53)

For water at room temperature, the decay length for mass oscillations is λm ≈ 0.4 nm.

Therefore, the mass density oscillations decay more rapidly (over a shorter length scale)

than the oscillations in the potential. While the typical filling fraction for pure liquids is

around η0 ≈ 0.4, an increase in the filling fraction corresponds to longer range oscillations

in the liquid number density. The competition between mass and hydration length depends

on the filling fraction of the fluid and the relative dielectric constant of the fluid, as well as
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the magnitude of the surface charge density or surface potential. Even so, the oscillation

wavelength for electrostatics and density variations remains comparable to the molecular

or ionic diameter for each decay mode.

Thus, for highly charged surfaces, we expect to see oscillation patterns with the period

of oscillations of the liquid molecule size and decay envelope of the order of 1 nm deter-

mined by the hydration length in Eq. 5.45, whereas for low charged or uncharged surfaces,

the envelope will be much shorter based on Eq. 5.53. In experiments, people saw a vari-

ance of decay length of the force between neutral surfaces, [361] but this was explained

by lateral inhomogeneity of the generally electroneutral charge distribution along the sur-

face. [362] The oscillations themselves, get smeared by the smearing of the surfaces. Our

model suggests that the interplay of charge ordering and packing effects will influence the

observed decaying modes, as was demonstrated clearly by studying the hydration forces in

Fig. 5-8 with varying surface charge magnitudes.

5.2.4 Conclusions

The dipolar shell theory describes layering in charge and mass for an interfacial polar fluid.

In this work, we have demonstrated that the effective delocalized bound charge on the dipo-

lar molecules underlies the overscreening phenomenon, with alternating layers of bound

charge density on the dipoles.

The overscreening effect leads to significant anisotropy in the normal and tangential

components of the permittivity. The normal component has singularities owing to the over-

screening effect, while the tangential component scales more closely with the dipole con-

centration. The length scale governing the decay of oscillations from the interface is the

hydration length, λs = d
√
(εr −1)/6.

When ions are present, the ionic layering is influenced by the structuring of the polar

fluid, and the ions also begin to contribute to the overscreening effect when they reach a

sufficiently high concentration.

The theory could be extended further and applied to various other applications not men-

tioned in this work. Straightforward extensions of the theory could describe: (i) Varying

182



electrolyte composition with multivalent ions and mixtures of polar fluids, (ii) varying the

geometry of the pore domain to cylindrical or spherical pores or using the theory to describe

the double layer structure around cylindrical or spherical charged colloids, (iii) extending

the analysis to non-uniform ion and water sizes, (iv) demonstrating the charging dynamics

of the dipolar fluid orientation and layering, (v) showing the role of double layer and hydra-

tion oscillation overlap on the system capacitance, (vi) demonstrating the role of the dipolar

fluid organization on the effective ζ -potential for electrokinetic measurements, and (vii) in-

cluding the interfacial polar liquid structure in a formulation of interfacial electrochemical

reactions.

Although the theory does capture the charge structuring at the interface, it still falls

short of perfectly describing real polar liquids. For example, the theory does not reproduce

the single-ion-level hydration. A more sophisticated approach may be necessary to keep

track of the bound and free states of water that constitute the coordinated hydration shell of

individual ions. Furthermore, the theory only indirectly captures the correlations between

neighboring dipolar molecules, which requires an effective dipole moment that is larger

than the true value for highly polar fluids.

The dipolar shell structure assumed in the theory is significantly simpler than typical

charge distributions within polar molecules. For example, the higher-order multipole mo-

ments of water can strongly influence the interfacial polarization. [31,363,364] The model

assumes a hard sphere repulsion, but real polar fluids will have softer repulsive interactions,

as well as attractive dispersion interactions. Finally, we have neglected electronic degrees

of freedom, always present in polar fluids, which contribute to the dielectric constant of the

liquid independent of the fixed dipole orientations.

Despite the simplifications, the dipolar shell theory presents a powerful theoretical

framework to investigate the interfacial properties of polar liquids. The system of integro-

differential equations is readily soluble, especially in 1D geometries. The approximate,

differential-form of the theory gives analytical formulas for quick computations and exper-

imental comparisons.
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5.3 Comparison to Molecular Dynamics Simulations of Con-

fined Polar Liquids

5.3.1 Introduction

As discussed in detail in the previous section, the properties of interfacial polar liquids

determine the electrochemical behavior of interfaces in a variety of applications.

Currently, there is not a unified understanding of charge ordering in polar liquids, es-

pecially as compared to our understanding of charge screening in dilute electrolytes. In

dilute electrolytes, the charge at the interface generally decays over a well-known Debye

length, which depends on the electrolyte valency and concentration, and governs the decay

of interactions between charged surfaces in electrolyte solutions. For the solvent, typically,

we assume constant dielectric properties, but this assumption breaks down near interfaces

or in strong confinement. Numerous simulations [31, 322, 336, 353, 354, 358] and experi-

ments [317, 325–327] have shown that there is structuring and charge layering due to the

orientational ordering of polar liquids within ∼ 1 nm of an interface. Although these polar

liquid molecules possess no net charge, the local regions of positive and negative bound

charge on the molecule form layers of positive and negative charge at the interface as the

molecules are oriented by an applied electric field. This has strong implications for the the

dielectric properties and thus the behaivor of the fluid under confinement between charged

surfaces.

To capture such charge ordering in a continuum theoretical framework, one must re-

sort to nonlocal dielectric theories that approximate the spatial correlations in the polar-

ization of the solvent [192, 320, 331, 332, 340–342, 358]. The standard approach is to as-

sume a wave-vector-dependent dielectric constant, ε(k) or to construct a phenomenological

Landau-Ginzburg free energy functional with higher-order terms in the polarization density,

that returns the ε(k) of a specific mathematical structure. These higher-order, differential

theories rigorously capture the bulk dielectric properties especially for weak perturbations

that do not violate the linear response or translational invariance assumptions. However,

they necessitate the nonlocal polarization density as an input and require assumptions near
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surfaces, where additional boundary conditions must be assigned. Therefore, while the

ε(k) approaches are routinely applied to interfacial electrostatics problems where the qual-

itative features are in agreement with simulations, their predictive power is expected to be

limited near surfaces for a variety of liquids, especially at strong surface polarization.

In order to capture the orientational ordering with a molecular theory that is directly

integrated into the mean-field equations at the interface while maintaining some analytical

tractability, I proposed the dipolar shell theory in the previous section. The advantages

of the dipolar shell theory are (i) we require no additional boundary conditions other than

the intrinsic polarization of the surface (ii) it is derived directly from the (coarse-grained)

microscopic properties of the polar liquid, (iii) in principle it is valid even in nonlinear

response and (iv) the decaying modes in linear response can be easily approximated to give

simple, closed-form expressions that describe the decay in solvent orientations (dielectric

screening). Nevertheless, the charge and shape of the molecules in the dipolar shell theory

are severely coarse-grained compared to real liquids. One significant disadvantage of the

dipolar shell theory stems from the unphysical coarse-grained charge distribution. If one

attempts to calculate the bulk dielectric function, ε(k) within the theory, one arrives at

something that poorly describes real liqiuds. This discrepancy is because the ε(k) function

becomes very sensitive to the actual interior molecular charge correlations at large k.

Evidently, the dipolar shell theory connects the orientational ordering structure to the

properties of the liquid. [35] Principally, the properties that govern the charge ordering are

the effective polar liquid molecular diameter, d and the bulk dielectric constant, εr. At linear

response, we found that the nonlocal dielectric response gives decaying orientations of

polar liquids over a hydration length, λh with oscillations on the order of a single molecular

diameter. Since “hydration” refers to the solvation forces in water, the hydration length can

more generally be described as a “solvation” length for polar liquids other than water.

Motivated by the simple relation that describes the decay in oscillations, in this work,

we studied the orientational ordering of three polar liquids (dichloromethane, acetonitrile,

and water) using classical molecular dynamics simulations between two oppositely charged

surfaces at varying extents of confinement, performed by Dr. Karina Pivnic. Each liquid

possesses different molecular size and dielectric constant, allowing us to test the theoretical
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predictions for the liquid orientation.

The molecular simulations implemented in our study allow us to build a reference sys-

tem that exposes the predictive power and also the limitations of the theoretical predictions

of the dipolar shell theory compared to real molecular liquids. We can carefully control

the molecular properties by inputting different molecule-specific force field parameters in

the simulations and can set the boundary conditions of the confined fluids with charged

bounding walls. We can also use our capability to calculate the structural/ solvation forces

for the confined fluids to test the theoretical predictions for the molecular reference system.

We find that, for the three polar liquids, the dipolar shell theory can generally capture

the orientational ordering near the interface, which follows the approximated decay length

above. We also show that the orientational oscillations can overlap when the two confining

surfaces are separated by nanometric or subnanometric distances, which are again predicted

by the dipolar shell theory. Overall, the coarse-grained theory is not able to capture all

features of the simulations, but gives good qualitative predictions for the behavior, and

allows us to unify the orientational ordering under one theoretical framework that is based

on the molecular properties of the liquids. In fact, the theory works well in capturing the

structural features of the simulations of molecules of different shapes, partial charges, and

force-field parameters, even though the theory coarse grains the molecules into effective

hard spheres. Further, we show how the orientational ordering can impact the structural

forces between two oppositely charged surfaces. We find that for very asymmetric shape,

while the model can capture the ordering in orientation, it cannot capture the magnitude

of the density variations in asymmetrically-shaped confined liquids, and therefore misses

details of the structural forces at the closest separations.

5.3.2 Simulation Details

In Figure 5-10, we show the system being simulated. Here, polar liquids are simulated

using coarse-grained, classical molecular dynamics. The dichloromethane molecule is

simulated using OPLS-AA force field parameters, the acetonitrile is simulated using a

coarse-grained model reported in [365], and the water molecules are represented using
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the TIP3P model [366]. The bulk permittivity of each liquid is approximately εr ≈ 9 for

dichloromethane, εr ≈ 39 for acetonitrile, and εr ≈ 100 for TIP3P water. These liquids,

due to their different sizes and bulk dielectric constants, allow us to sample various values

of the effective hydration length.

Figure 5-10: Simulation schematic. (a) The polar liquids
are confined between two surfaces with separation distance
L and with forces given by FL. The surfaces are oppositely
charged, and the polar liquid between them orients in re-
sponse to this polarization. (b) The three molecules studied
here, with dipole moment oriented upwards. The molecules
are dichloromethane, acetonitrile, and water.

Details of the simulation tech-

niques are already reported else-

where [35]. The details of the sim-

ulation set up differ slightly in the

polar liquid, where the surfaces

are of opposite charge, but the

guiding principles are the same, so

we do not report the details in this

thesis.

For comparison to theory, we

directly apply the dipolar shell

theory described in the previous

section of this chapter. In order to

reproduce the density and the bulk

dielectric constants of the fluids,

the density is chosen as: cd = 15.7 M for dichloromethane, cd = 19.1 M for acetonitrile, and

cd = 55 M for water, and the effective dipole moments as p0 = 2.91 D for dichloromethane,

p0 = 5.7 D for acetonitrile, and p0 = 5.43 D for TIP3P water. The effective spherical sizes

of each molecule are an additional parameter, which for the purposes of this study, we

choose: d = 0.38 nm for dichloromethane, d = 0.424 nm for acetonitrile, and d = 0.285

nm for TIP3P water.

Again, it should be noted that the coordinate system here is rotated compared to the

previous section in this chapter such that the normal coordinate is now the z-coordinate

instead of the x-coordinate, in order to be consistent with the orientation convention in the

simulations.
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Figure 5-11: Liquid orientation comparison between simulation and theory for separations without
solvation layering overlap. The simulation is shown with colored markers and dashed colored lines.
The theory predictions are shown with black solid lines. The profiles of ⟨cos(θ)⟩ display decaying
oscillations as a function of z until they reach a constant value in the center of the gap. The two
surfaces have equal but opposite charge of qs =±0.1 C/m2, and the separation distances of the two
surfaces are around 5 nm for all the liquids.

5.3.3 Results

From a theoretical perspective, if we were to assume a constant dielectric constant, our sys-

tem would turn into an ideal parallel plate capacitor, the electric field would be a constant,

and the orientation of all dipoles would be constant between the two charged surfaces.

However, as we can clearly see in Figure 5-11, the simulation predictions for each liquid

returns oscillations in the orientations of the liquids near the interface. These orientational

oscillations correspond to the charge layering near the interface which is not captured in

standard dielectric theories. Nevertheless, the orientational ordering is closely captured by

the dipolar shell theory.

At these separation distances, the oscillations decay to a constant in the center of the

gap. Clearly, the oscillation decay closely mirrors the prediction of the solvation length for

each polar liquid from the dipolar shell theory. The least polar fluid, dichloromethane, has

a predicted decay length of λ ≈ 0.44 nm, while acetonitrile has a decay length of λ ≈ 1

nm and TIP3P water has a decay length of 1.2 nm. These decay length are qualitatively

similar to what is observed in the simulations. In the simulations, slight asymmetries occur,

presumably due to the the asymmetric size and/or charge distributions in the molecules.

Interestingly, the maximum in the orientation profiles occurs at the point of contact,

which is equivalently the maximum of the density profiles in the theory. For this same

system of a pure polar liquid between oppositely charged plates, a local dipolar theory
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would predict that the maximum in the liquid density would correspond to the opposite

prediction, to a minimumum in the orientation profile. Therefore, the delocalized dipolar

shell theory is essential in capturing these features even qualitatively.

As two surfaces are confined, the orientational ordering of the polar liquids emanating

surfaces can constructively or destructively interfere with each other. As shown in Figure 5-

12, the extent of confinement can strongly influence the orientational ordering of the polar

liquid. Again, the dipolar shell theory can capture the layered structures even at massive

confinement. This includes regions where the argument of the Langevin function is quite

large and nonlinear, nonlocal dielectric response of the liquid is activated. Clearly, there

are some discrepancies between the simulation and the theory. For dichloromehtane, the

oscillations are stronger in the simulation than they appear in the theory. On the other hand,

for water, the oscillations appear to be too strong. Even so, the theory consistently predicts

the main features observed in the simulations for the orientational ordering even for these

Figure 5-12: Confined liquid orientation comparison between simulation and theory for separations
with solvation layering overlap. The simulation is shown with colored markers and dashed colored
lines. The theory predictions are shown with black solid lines. The profiles of ⟨cos(θ)⟩ include
oscillatory structures that emanate from each surface and overlap when the surfaces are confined.
The two surfaces have equal but opposite charge of qs =±0.1 C/m2, and the separation distance of
the two surfaces, L, varies based on the title of each subplot.
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liquids under extreme confinement.

Figure 5-13: Disjoining pressure predictions for
polar liquids between two oppositely charged sur-
faces as a function of surface separation distance.
The colored markers now correspond to the pres-
sure calculated from the MD simulations, while
the black lines correspond to the theoretical pre-
diction.

Finally, in Figure 5-13, we present

a comparison of the predicted disjoining

pressure profiles between two oppositely

charged surfaces for varying surface sepa-

rations in the three liquids. We find that the

theory generally under-predicts the magni-

tude of the oscillatory structural forces at

small separations for the molecules with

more asymmetric shape: dichloromethane

and acetonitrile. This discrepancy appears

to occur despite the strong agreement in the

orientation profiles for both of these liq-

uids. On the other hand, the theoretical pre-

dictions of the surface forces for the TIP3P

water are reasonably closely matched to the

simulations, even for the smallest separa-

tion distances. We suspect that the discrep-

ancy between the disjoining pressures pre-

dictions of simulation and theory is mainly due to the theory’s inaccuracies in predicting

the density of solvent molecules of non-spherical shape.

While not comprehensively shown in these preliminary results, and as will be shown

more extensively in the completed study, the theory has some notable shortcomings com-

pared to the MD simulation. The most prominent deficiency of the dipolar shell theory is

the large discrepancies in the density profiles of the liquids compared to the simulations,

especially in strong confinement. Primarily, these density discrepancies occur due to the

fact that the dipolar shell theory represents the molecules of complicated shape and “soft”

interaction potentials as effective hard spheres. Clearly, this hard sphere assumption is re-

sponsible for the poor performance of the theory to reproduce the structural forces at close

separations for acetonitrile and dichloromethane.
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5.3.4 Conclusions

The preliminary results presented here validate the predictions of the dipolar shell theory

for pure polar liquids. We generally find that the orientation profiles in the simulations be-

have in a way that is consistent with the theory for liquids of different size and bulk dielec-

tric constant. Although the theory is able to capture the orientations, it appears as though the

theory cannot capture the structural forces for very asymmetrically sized molecules at the

smallest separation distances. A more involved theoretical approach would be necessary to

describe the orientation-dependent packing of the molecules when they have complicated

shapes.

5.4 Summary of Findings

In this chapter, I found that the structuring of polar liquids such as water has a non-arbitrary

influence on the electrostatic potenial profile near a charged interface. The bulk dielec-

tric constant and the ion size determines the decay of alternating bound charges from a

charged surface. The effective static dielectric tensor at the interface has surprising behav-

ior, including singularities in the normal component and a stark anisotropy in the tangential

component.

By comparison to MD simulations of three different polar liquids conducted by our

collaborator, Dr. Karina Pivnic, we validate the predictions of the dipolar shell theory for

a pure polar fluid confined between two oppositely charged surfaces. By testing molecules

of different size, shape, and dipole moment, we find the limitations of the theoretical pre-

dictions, and yet also can point to some predictive accuracy of the theory.

In order to make the model even more realistic, one would need to include the prefer-

ential orientation of the solvent molecules and the solvent size asymmetry with the ions.

The water structuring may have important consequences for electrokinetic transport and

electrochemical reactions, phenomena that we have not specifically studied in this thesis.
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Chapter 6

Conclusions

6.1 Thesis Summary

The electrical double layer exhibits rich behavior due to the underlying structures of ions

and solvent at charged surfaces. Due to their simplicity, the standard approaches for mod-

eling the EDL based on the GCS theory remain powerful tools to interpret the behavior of

electrochemical interfaces involving electrolyte solutions. However, in many notable and

practically-relevant situations, the GCS theory fails to capture the key physics, limiting its

predictive power.

In my thesis, I have presented work to include more microscopic physics of discrete ions

and solvent at isolated surfaces and in confinement between surfaces or in pores. In Chap-

ter 2, I investigated the role of electrostatic correlations in determing the thermodynamic

properties of electrolytes containing multivalent ions. To that end, I refined the BSK theory,

which represents the correlation effects in a higher order nonlocal permittivity. I found that

using the BSK theory with proper constraints and parameterization, we could describe the

unique properties of systems with strong electrostatic correlations, including like-charge at-

traction. In Chapter 3, I turned to modeling the structures of ultra-concentrated electrolytes

including ionic liquids. I found that a charged shell representation using a weighted-

density functional could reproduce the layered structrues at charged interfaces including

overscreening and crowding. For asymmetrically sized electrolytes, the oscillations of the

number density and the charge density become highly coupled, with resulting implications
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on the structural forces of ionic liquids between two charged surfaces. In Chapter 4, I in-

vestigated the role of confinement dimensionality on the electrolyte screening structures. I

found that 1D confinement led to macroscopic-scale effective screening lengths that pro-

mote electroneutrality breakdown. I showed that the electric field leakage from the pore

walls leads to pore-pore interactions that can influence the screening structures and push

the system back towards electroneutrality. Finally, in Chapter 5, I implement a dipolar shell

theory that captures the interfacial charge layering of polar liquids. The theory predicts an

anisotropic interfacial static dielectric tensor with singularities in the normal component,

corresponding to the overscreening or layering of charge. Each of these microscopic mech-

anisms could play a central role in determining colloidal interactions, transport properties,

or the electrochemical response of interfacial electrolytes.

6.2 Future Work

While the mathematical modeling of the electrical double layer has a long history, many

unanswered questions remain. For example, while the shortcomings of standard continuum

approaches are often recognized, the ramifications of these nonidealities in practical situa-

tions are poorly understood. The reexamination, reinvention, and application of mathemat-

ical models for interfacial phenomena in electrolytes can uncover new insights and reveal

knowledge gaps in the literature. The body of work presented in this thesis contributes to

our understanding of the electrical double layer, yet also opens up some interesting research

directions for the future.

The future work can take on a variety of forms: model development, model approxima-

tion, and model application. In model development, additional ingredients and analysis can

be incorporated into the mathematical framework describing the double layer structure and

dynamics. In any modified theory, it is preferable to start from a thermodynamic descrip-

tion of the free energy of the system in order to calculate self-consistent thermodynamic

quantities such as the disjoining pressure. For model approximation, the full theories are

reduced down to extract simple scaling relationships between system properties and mea-

surable outputs. While the approximations can reduce the predictive power of a given the-
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oretical approach, simple formulas are extremely valuable in interpreting and comparing

to experiments. In model application, the models incorporating the microscopic physics

of ionic structuring at charged interfaces can be applied to numerous problems in colloid

science, especially when experimental measurements cannot be captured by standard GCS

approaches or require unrealistic parameterization. For the purposes of this thesis, I will

focus on future opportunities for model development and briefly discuss the possibilities

for model approximation and application.

To capture electrostatic correlations in multivalent electrolytes in Chapter 2, I applied

the BSK theory. While the BSK theory was shown to work incredibly well for dilute

electrolytes near charged plates, questions remain about the application of the theory to

concentrated or crowded electrolytes. The scaling relationship for the correlation length

could change as a function of the local ionic concentrations or surface charge geometry,

and molecular layering can occur that is not explicitly accounted for in the theory. It may

be possible to incorporate the additional structuring by inlcuding higher order terms in the

BSK free energy or integrating the BSK theory into other nonlocal approaches including

the charged shell representation presented in Chapter 3.

The charged shell theories applied in Chapter 3 exhibited many of the same features

as simulated concentrated electrolytes and ionic liquids. Nevertheless, the theory routinely

underpredicts the extent of ordering at the interface, which might arise from additional

bulk correlations not accounted for in the mean-field theory. The double layer structure

in this limit may be sensitive to the ionic associations and ionic aggregation, especially

when a gelation transition occurs at high concentration. Additionally, future work could

incorporate more detailed descriptions of the electrolyte structures near interfaces, such as

including image charge interactions or building models that apply to molecules of arbitrary

shape and size.

In the analysis of electroneutrality breakdown in Chapter 4, we applied standard mean-

field formulations in different confinement dimensionalities, and showed that 1D confine-

ment led to unique screening behavior. In the dilute systems explored in this work, we

typically assumed that we could safely time-average and work with smoothed out concen-

tration variables. However, in many cases in nanopore systems, the occupancy of the pore
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for given species is low, meaning that stochastic fluctuations in the ionic density can be im-

portant in determining the transport characteristics, including the local fields, forces, and

flows through a channel. Furthermore, the analysis of electroneutrality breakdown neglects

electrostatic correlations and solvent structuring within the pores. The structural features of

the solvent in 1D confinement may yield a transition from overscreening/oscillations in the

normal direction to overscreening in the axial direction along the channel. Such a transition

may be connected to the electric field escape through the boundaries of the pore domain

that reduces the extent of dielectric screening within the pore.

In Chapter 5, the dipolar shell theory predicted the main features of solvent orien-

tations and the dielectric properties near charged surfaces. Clearly, the coarse-grained

model does not capture all the details of solvent packing near surfaces, especially when

solvent molecules are packed in an orientation-dependent manner in nanoconfined films.

The model could also be extended to systems with mixtures of polar liquids and ions of

different sizes, which will clearly influence and possibly enhance/disrupt the oscillatory

structures. The dipolar structure cannot capture the true charge distributions in liquids, and

more detailed charge form-factors or higher order moments of the charge distribution may

need to be considered. Furthermore, polar liquids often have preferred orientations near

surfaces , and this preferential orienation can lead to non-zero solvent charge layering even

when the surface charge is zero, an effect currently not captured by the model.

While many of these models explored in this thesis assume smeared out, smooth surface

charges, additional structure can emerge from patterning of the surface charges or surface

roughness. Therefore, models that try to incorporate the 3D structuring of the double layer

may be required.

Moreover, the models presented in this thesis are focused on the equilibrium structure of

the electrical double layer. In order to extend the thermodynamic models to nonequlibrium,

dynamic systems, additional assumptions must be made about the relationship between the

thermodynamic forces in the system and the ionic and solvent fluxes/flows, including the

coupling between transport of the different species.

As more complexity is built into the models, they become more difficult to analyze,

solve, and apply to problems. Therefore, additional attention must be paid to develop
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approximate, coarse-grained approaches that, while incorporating microscopic physics of

electrolytes, facilitate more straightforward applications.

In any new theory, the far-field decay lengths could be similarly derived using tech-

niques presented in this thesis in Chapters 3 and 5. Gradient expansions of nonlocal theo-

ries, while offering greater simplicity in deriving analytical solutions and numerical imple-

mentations, require additional boundary conditions which may be sought using techniques

presented in this Chapter 2.

In the end, even for models of extreme complexity, it is useful to extract simple charac-

teristic length scales that link physical properties of the system to the interfacial electrolyte

behavior. In doing so, we arrive at simple mathematical relationships that characterize the

complex, microscopic features of the electrical double layer.

Beyond model development and approximation, significant opportunities exist in incor-

porating the more sophisticated electrical double layer theories into multiscale models to

understand processes in electrochemistry, biophysics, and electrokinetics. For example, the

solvent structuring near interfaces could have a strong impact on electrochemical reactions,

especially when the double layers are driven out of equilibrium.

Although the electrical double layer exists at the nanometer scale, it has an enormous

impact on colloidal physics. Therefore, fresh modeling approaches will yield greater in-

sight and predictive power to describe colloidal systems.
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[230] Ekaterina Gongadze and Aleš Iglič. Asymmetric size of ions and orientational or-
dering of water dipoles in electric double layer model-an analytical mean-field ap-
proach. Electrochimica Acta, 178:541–545, 2015.

[231] A. C. Maggs and R. Podgornik. General theory of asymmetric steric interactions in
electrostatic double layers. Soft Mater, 12:1219–1229, 2016.
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tial variation of permittivity of an electrolyte solution in contact with a charged metal
surface: a mini review. Computer methods in biomechanics and biomedical engi-
neering, 16(5):463–480, 2013.

[358] Geoffrey Monet, Fernando Bresme, Alexei Kornyshev, and Hélène Berthoumieux.
The nonlocal dielectric response of water in nanoconfinement. arXiv preprint
arXiv:2102.09309, 2021.

[359] OV Dolgov, DA Kirzhnits, and EG Maksimov. On an admissible sign of the static
dielectric function of matter. Reviews of Modern Physics, 53(1):81, 1981.

[360] Marius M Hatlo, RHHG Van Roij, and Leo Lue. The electric double layer at high
surface potentials: The influence of excess ion polarizability. EPL (Europhysics
Letters), 97(2):28010, 2012.

[361] Sergey Leikin, V Adrian Parsegian, Donald C Rau, and R Peter Rand. Hydration
forces. Annual review of physical chemistry, 44(1):369–395, 1993.

[362] S Leikin and AA Kornyshev. Theory of hydration forces. nonlocal electrostatic
interaction of neutral surfaces. The Journal of chemical physics, 92(11):6890–6898,
1990.

[363] Ekaterina Gongadze, Aljaž Velikonja, Tomaž Slivnik, Veronika Kralj-Iglič, and Aleš
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