
Towards machine learning models robust to
adversarial examples and backdoor attacks

by

Aleksandar Makelov

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

August 26, 2022

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Aleksander Mądry

Cadence Design Systems Professor of Computing
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students



2



Towards machine learning models robust to adversarial examples

and backdoor attacks

by

Aleksandar Makelov

Submitted to the Department of Electrical Engineering and Computer Science
on August 26, 2022, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

In the past decade, machine learning spectacularly succeeded on many challenging
benchmarks. However, are our machine learning models ready to leave this lab
setting and be safely deployed in high-stakes real-world applications? In this thesis,
we take steps towards making this vision a reality by developing and applying
new frameworks for making modern machine learning systems more robust. In
particular, we make progress on two major modes of brittleness of such systems:
adversarial examples and backdoor data poisoning attacks.

Specifically, in the first part of the thesis, we build a methodology for defending
against adversarial examples that is the first one to provide non-trivial adversarial
robustness against an adaptive adversary.

In the second part, we develop a framework for backdoor data poisoning attacks,
and show how, under natural assumptions, our theoretical results motivate an
algorithm to flag and remove potentially poisoned examples that is empirically
successful. We conclude with a brief exploration of preliminary evidence that this
framework can also be applied to other data modalities, such as tabular data, and
other machine learning models, such as ensembles of decision trees.

Thesis Supervisor: Aleksander Mądry
Title: Cadence Design Systems Professor of Computing

3



4



Acknowledgments

This thesis would not have been possible without the support of many people,

among whom are family, friends and colleagues.

First, I want to thank my advisor, Aleksander, for supporting me through these

years – which included a healthy dose of exploration – no matter where my interests

took me. He played a major role in shaping my taste and judgment for what makes

a good research direction.

I want to also thank all my academic collaborators: Dimitris, Adrian, Ludwig,

Alaa, Kristian, Guillaume, Andrew, Hadi, Vivek, Calvin, Alex, Nicholas, Chenyang

and Kyriakos – I have learned from all of you and had fun working together. More

broadly, I am grateful to the extended Mądry Lab for serving as my academic

home while at MIT: Logan, Shibani, Brandon, Kai, Sam, Saachi, Eric, Jerry, Samanta,

Natalia, Kamila – and Debbie in particular for making everything easier.

I want to also thank Martin and Srini for serving on my thesis committee and

their advice throughout the process. I want to also thank Salil for first sparking my

interest in research in theoretical computer science back in college, and believing in

me.

There is much to the story of this PhD that cannot be found on these pages.

In this context, I want to first and foremost thank Petar for creating the escher

programming language and outlining such a brave vision for it. Its design has

greatly influenced the direction of my work, and the way I think about computation

and the world. Next, I want to thank Nicholas for engaging with, believing in, and

collaborating on the software project that ultimately came out of my fascination

with programming languages, and for helping popularize it. I want to also thank

all the people who have shared their feedback along the long (and ongoing) journey,

thus making the trip less lonely, in particular: Nicholas, Petar, Nina, Stefan, David,

Evan, Ben, Melody, Kostadin, Sam, Sandeep, Alex, Kristian, Brian and Arpon.

This part of my life would not have been the same without my friends. Here I

want to first and foremost thank my brother from another motherland Dylan for

5



playing music together, and in general just being there to hang out. I want to also

thank friends from high school and college, in particular Melody, Arpon and Stefan.

At MIT, I want to single out the CS Theory music night regulars - Ryan and Virginia

for hosting, and Dylan, Nicole, Jerry, Thomas, Rio, Prashant, and many others for

attending.

Finally, I am grateful to my family – my brother Martin, and my parents Rozalina

and Alexander – for being by my side over these years, and for all the years before.

Most of all, I want to thank Nina for her unwavering emotional support and

optimism through the difficult parts of these years – I hope you know how much it

meant to me.

6



Contents

Introduction 15

1 Defenses Against Adversarial Examples 25

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2 An Optimization View on Adversarial Robustness . . . . . . . . . . . 28

1.2.1 A Unified View on Attacks and Defenses . . . . . . . . . . . . 30

1.3 Towards Universally Robust Networks . . . . . . . . . . . . . . . . . 31

1.3.1 The Landscape of Adversarial Examples . . . . . . . . . . . . 32

1.3.2 First-Order Adversaries . . . . . . . . . . . . . . . . . . . . . . 35

1.3.3 Descent Directions for Adversarial Training . . . . . . . . . . 36

1.4 Network Capacity and Adversarial Robustness . . . . . . . . . . . . . 37

1.5 Experiments: Adversarially Robust Deep Learning Models . . . . . . 40

1.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.7 Statement and Application of Danskin’s Theorem . . . . . . . . . . . 47

1.8 Transferability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1.9 MNIST Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

1.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

1.11 Supplementary Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2 Defenses Against Backdoor Attacks 61

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.2 A Feature-Based Perspective on Backdoor Attacks . . . . . . . . . . . 63

2.3 Inspecting Data Using Datamodels . . . . . . . . . . . . . . . . . . . . 66

7



2.4 When Can We Detect Poisoned Samples? . . . . . . . . . . . . . . . . 67

2.4.1 Towards a Definition of Model Sensitivity . . . . . . . . . . . . 68

2.4.2 Approximating Sensitivity using Datamodels . . . . . . . . . 71

2.4.3 The Highest-Sensitivity Feature for an Example . . . . . . . . 72

2.5 Detecting Poisoned Samples Using Datamodels . . . . . . . . . . . . 73

2.5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.5.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.6 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.6.1 Poisoning Attacks . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.6.2 Efficiency of the Proposed Defense Mechanism . . . . . . . . . 77

2.6.3 Principal Components of the Datamodels Matrix . . . . . . . 78

2.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.7.1 Related Threat Models for Machine Learning . . . . . . . . . . 79

2.7.2 Overview of Backdoor Attacks and Defenses . . . . . . . . . . 80

2.7.3 Techniques for Influence Estimation . . . . . . . . . . . . . . . 81

2.8 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 82

2.9 Deferred proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.9.1 Proof of Lemma 1. . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.9.2 Proof of Lemma 2.4.2 . . . . . . . . . . . . . . . . . . . . . . . . 86

3 Beyond Image Classification and Neural Networks 89

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.1.1 The MIMIC-III Dataset and MIMIC-Extract . . . . . . . . . . . 90

3.1.2 Gradient-boosted Decision Trees . . . . . . . . . . . . . . . . . 90

3.1.3 Empirical Influence Estimation . . . . . . . . . . . . . . . . . . 91

3.2 Application: Decision Support . . . . . . . . . . . . . . . . . . . . . . 92

3.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.2.3 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8



3.3 Application: Detecting Backdoor Attacks . . . . . . . . . . . . . . . . 96

9



10



List of Figures

1 An adversarial example example . . . . . . . . . . . . . . . . . . . . . 16

1.1 Loss versus number of PGD steps for creating adversarial examples . 33

1.2 Concentration of loss values for local maxima found via PGD . . . . 34

1.3 Conceptual illustration of the role of classifier capacity for robustness 38

1.4 Robustness versus network capacity . . . . . . . . . . . . . . . . . . . 40

1.5 Loss of the empirical adversarial risk minimization problem during

training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.6 Robustness versus perturbation size for `2 and `∞ attackers . . . . . . 45

1.7 Restriction of the loss in the direction of white/black-box adversarial

examples on CIFAR10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.8 Transferability experiments for robust and non-robust networks . . . 54

1.9 Inspecting a robust MNIST model . . . . . . . . . . . . . . . . . . . . 56

1.10 Softmax layer examination of robust and non-robust networks . . . . 57

1.11 Loss function value over PGD iterations for robust and non-robust

networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1.12 Adversarial examples in the `2 norm for MNIST . . . . . . . . . . . . 59

2.1 Trigger or naturally occurring feature? . . . . . . . . . . . . . . . . . . 65

2.2 Leveraging features already present in the dataset as backdoors . . . 66

2.3 Total effect of feature versus number of examples of the feature in

training set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.4 Checking lemma 2.4.1 empirically . . . . . . . . . . . . . . . . . . . . 72

2.5 Illustration of backdoor attacks . . . . . . . . . . . . . . . . . . . . . . 76

11



2.6 Efficacy of backdoor removal from training set . . . . . . . . . . . . . 78

2.7 Visualizing images along PCA components of datamodels . . . . . . 79

2.8 Visualizing the space of the top two PCA components of datamodels 80

3.1 Decision support comparison between influences and baselines on

MIMIC-III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.2 t-SNE visualization of the space of empirical influence estimates for

a dataset with a backdoor . . . . . . . . . . . . . . . . . . . . . . . . . 97

12



List of Tables

1.1 MNIST robustness evaluation . . . . . . . . . . . . . . . . . . . . . . . 43

1.2 CIFAR10 robustness evaluation . . . . . . . . . . . . . . . . . . . . . . 44

1.3 CIFAR10 black-box FGSM transfer evaluation . . . . . . . . . . . . . . 52

1.4 CIFAR10 black-box PGD transfer evaluation . . . . . . . . . . . . . . 52

1.5 CIFAR10 extensive white-box attack evaluation . . . . . . . . . . . . . 53

2.1 Defense against backdoor attacks: evaluation . . . . . . . . . . . . . . 75

2.2 Defense against backdoor attacks: comparison with baselines . . . . 88

3.1 MIMIC-III statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

13



14



Introduction

Machine learning (henceforth ML), and deep learning in particular, have in recent

years made great strides on challenging artificial intelligence benchmarks, with

impressive results ranging widely from computer vision [KSH12] to playing games

[SHS+18] to natural language processing [BMR+20] to robotics [ABC+20] to self-

driving cars. These successes give us hope for a future in which pervasive ML

systems automate tedious menial and mental tasks, and even augment and improve

our health, intelligence and society.

However, are these impressive research results and demonstrations ready to

be turned into equally impressive and impactful applications in a messy, hetero-

geneous and at times adversarial world? While our state-of-the-art ML models

universally achieve great results across domains and modalities, they turn out to be

equally universally brittle to shifts – both benign and adversarial – in their training

data. This thesis is about developing principled ways to defend against particular

kinds of such brittleness. In the following sections, we give a roadmap to the thesis

and our main contributions.

Part I: Defending Against Adversarial Examples

Adversarial examples [SZS+14] are a striking phenomenon whereby deliberate,

humanly-imperceptible perturbations to an example can cause a state-of-the-art ML

model to misclassify the example (for an illustration, see Figure 1).

The existence of adversarial examples may seem quite exotic, but it is only

the beginning of their story. Adversarial examples possess many other intriguing

15



Figure 1: An adversarial example example

properties, most interestingly:

• Abundant: adversarial examples can be found in abundance in the vicinity of

almost all examples in the dataset [SZS+14].

• Transferable: adversarial examples crafted to fool one ML model often fool

other models trained for the same task – even when trained on different data

[SZS+14].

• Robust to real-world conditions: it is possible to manufacture real-world ob-

jects that function as adversarial examples from most camera angles [AEIK18]

• Easy to craft: adversarial examples can be generated using simple instantia-

tions of standard first-order optimization methods [GSS15].

Taken together, these empirical observations from the literature suggest that

adversarial examples present a potent and immediate practical threat to the real-

world deployment of ML models in potentially adversarial conditions. On a more

conceptual level, the phenomenon of adversarial examples suggests that ML models

and humans may use vastly different ways to represent the world. This raises

concerns about the alignment between humans and ML agents of the future: if our

machines see their environment so differently from us, how can we be sure that

there won’t be cases when they also behave differently from what we would expect?

One wonders if these problems are inevitable. Below, we give a brief overview

of the state of the field prior to our work, and then present a high-level outline of

our principled method to defend neural networks against adversarial examples.

16



Prior Work

Prior to our work, approaches for crafting and defending against adversarial exam-

ples followed a particular pattern: given an existing attack, a new defense would

be devised that is robust to this attack, yet some time later a new attack would be

crafted that breaks this particular defense.

For example, distillation [PMW+16] was proposed as a defense against ad-

versarial examples that effectively prevents simple first-order attacks [GSS15] by

smoothing the loss landscape. However, it was later shown that this defense,

while effective against these particular attacks, was still vulnerable to impercep-

tible perturbations crafted in other ways [CW17b]. This kind of back-and-forth

occurred multiple times throughout the literature (see e.g., [XEQ18], [AG17] and

then [HWC+17]; or [GMP+17] and then [CW17a]).

A common theme emerges: defenses eventually fail because they are tailored –

either explicitly or implicitly – towards preventing specific attacks. To end this cycle,

a more rigorous approach is needed: we need a formal notion of what constitutes

an imperceptible perturbation, and a method that prevents the existence of any such

perturbation that fools the model – not just the kinds of attacks we can think of

today! This is the starting point of our framework.

Our Framework: Adversarial Risk Minimization

As a first step towards the vision of a robustness guarantee against any attack,

we postulate a threat model that formally captures all possible perturbations to an

example x. Namely, we use some ‘small’ set ∆ so that the allowable attacks for

example x are the set {x + δ
∣∣δ ∈ ∆}. In practice, we often use small norm balls for

the `∞, `2, . . . norms.

Traditionally in ML classification, our goal is to find a classifier with parameters

θ that minimizes the risk of the classifier on the underlying data distribution:

min
θ

[
E(x,y)∼D [loss (x, y; θ)]

]
17



This paradigm has been conceptually and empirically successful. Importantly, if

we manage to find θ such that this risk is small, this guarantees (under reasonable

assumptions on the loss function) that we have solved the underlying classification

problem well. In practice, we do not have complete knowledge of the ‘true distribu-

tion’ D; instead, we use empirical risk minimization (ERM) over a finite dataset:

min
θ

[
1
n

n

∑
i=1

loss(xi, yi; θ)

]
.

Empirically, we observe that with neural networks solving the ERM problem often

suffices to find a solution with low risk. How may we reproduce this success in the

context of our problem – adversarially robust classification?

A natural way is to augment the risk minimization framework with an adversary.

Namely, we consider the adversarial risk minimization problem:

min
θ

[
E(x,y)∼D

[
max
δ∈∆

[loss (x + δ, y; θ)]

]]

Crucially, if we find θ so that this value is small, we have trained an adversarially

robust machine learning classifier. Mirroring the success of the ERM framework,

one would hope that solving the empirical version of this robust learning problem

would similarly result in robust classifiers that generalize robustly.

In Part I of this thesis, we motivate the steps outlined above, and provide

empirical and theoretical evidence that this optimization problem, while in principle

intractable, can indeed be well approximated in practical situations. We turn these

observations into a practical defense algorithm that has resulted in the first non-

trivial robustness against adversarial examples for neural networks that has stood

the test of time.

A Conceptual Outlook

As a parting note on the topic of adversarial examples, we briefly revisit the more

philosophical question alluded to above:

18



Why do adversarial examples exist in the first place?

As it turns out, subsequent research [IST+19] proposes the hypothesis that the

existence of adversarial examples is not a fluke, but rather a reflection of a more

fundamental phenomenon: neural networks learn to use non-robust features – for

example, the texture of an image – that can be changed by humanly imperceptible

perturbations, and that humans don’t seem to leverage as much in their thought

process.

This intriguing idea raises many questions about the kinds of features we want

our ML models to learn, and how to prevent them from learning potentially unsafe

features. This brings us to our next topic: backdoor attacks.

Part II: Defending Against Backdoor Attacks

Backdoor data poisoning attacks [GDGG17] are another kind of attack on ML

models. To mount a backdoor attack, an adversary modifies a small subset of the

training inputs in a systematic way by adding a ‘trigger’ pattern, and (optionally)

changing the labels of the affected examples. This intervention allows the adversary

to manipulate the resulting model’s predictions at test time by inserting the trigger

into test inputs.

Mirroring our discussion of adversarial examples, backdoor attacks have some

intriguing properties of their own:

• small sample size: an attacker can plant a backdoor by manipulating as

much as 1% of the dataset. With current models’ ever-growing appetite for

data, model trainers often collect data from many different sources. It is

enough for just one of these source to be corrupted for the entire model to be

compromised.

• difficult to detect: to the model trainer, everything will typically look right

with the model. Indeed, under a naive evaluation, the test performance on

clean data (i.e., data where the trigger is absent) will be as good as for a model

19



trained on clean data. Furthermore, data poisoning attacks exist that are

difficult to detect even with human inspection of the data.

Overall, backdoor attacks are a plausible practical threat to ML models. How

can we defend our models against this threat model? A natural approach for

defenses against backdoor attacks is to flag some fraction (e.g., 10%) of the dataset

as potentially containing a trigger, and training on the remainder of the dataset with

the hopes of arriving at a model where the backdoor is absent, or at least greatly

diminished in efficacy.

This is also the goal we aim for in our work. We first give an overview of prior

work in the area, which to some extent mirrors the development in the field of

adversarial examples. Then, we outline our framework for detecting backdoors in

training data. It centers on the idea of seeing the trigger as just another feature in

the data – albeit one to which the model is most sensitive to among other features

naturally occurring in the data.

Prior Work

Backdoor attacks and defenses are an active research area in machine learning. The

development of the field mirrors to some extent the back-and-forth between attacks

and defenses we discussed above in the context of adversarial examples.

For example, the first backdoor attacks used simple trigger patterns and misla-

beled the poisoned images [GDGG17]. However, due to the blatantly mislabeled

examples, it turned out that it is easy to detect this attack by manually inspecting

a small fraction of the dataset for triggers, and training a classifier based on these

labels to determine the poisoned examples in the rest of the dataset [TTM19].

This in turn motivated the stealthier clean-label backdoor attack [TTM19, SSP20]

which can be effective without mislabeling images. However, this attack can be

defended against using outlier detection in the latent space of trained neural net-

works [TLM18, CCB+18, HKSO21a].

However, if the attacker knows what kind of defense will be deployed, they can

20



craft adaptive attacks [S+20, QXMM22] to bypass the above defenses by making the

latent representations of the poisoned examples hard to separate from those of the

clean examples.

How can we end this cycle and develop defenses against backdoor attacks that

have conceptually sound guarantees?

Backdoor Triggers as Features

A perspective that emerges from the literature on backdoor attacks and defenses

is that the only necessary quality of backdoor triggers is not a specific visual or

latent marker, but rather the effect they have on model predictions. Moreover,

as we demonstrate in chapter 2, backdoor triggers can take forms conceptually

indistinguishable from features naturally occurring in the data.

This makes the detection of backdoor triggers a seemingly impossible problem,

for there would be nothing distinguishing them from all the other ‘ordinary’ features

in the data. To overcome this obstacle, we make the natural assumption that

backdoor triggers are features to which the model is particularly sensitive. After all,

the goal of the attacker is to introduce the smallest number of corrupted examples

with the largest effect on classification of other samples with the trigger.

Adopting this perspective, we develop a formal notion of learning algorithm

sensitivity to a feature in a training dataset D. Intuitively, the sensitivity of a learning

algorithm A to a feature f on example x is the expected change in the trained

model’s behavior on x when a number of examples of f are added to the algorithm’s

training set. Here the expectation is taken over random choices of subsets of D on

which A is trained (conditioned on having a certain number of examples of f ).

While at first glance this expectation is intractable, by leveraging a recently

discovered empirical phenomenon, it turns out that we can feasibly obtain approxi-

mations to the sensitivity quantity. Specifically, we use the datamodeling framework

[IPE+22], and we theoretically derive estimates of sensitivity to a feature within

this framework.

21



We then develop a theoretically motivated algorithm to detect backdoor ex-

amples and deploy it against a battery of attack scenarios. We show empirically

that our algorithm is on par with, and in many cases outperforms, state of the art

defenses.

Part III: Beyond Image Data and Neural Networks

Finally, we present some preliminary results on how the datamodeling framework

[IPE+22] can be applied to other data modalities (beyond images) and machine

learning models (beyond neural networks) by doing a study on a simple benchmark

task (in-ICU mortality) for the MIMIC-III tabular medical dataset [JPS+16] using

tree ensembles as the learning algorithm.

Specifically, we investigate the following questions. First, how brittle are predic-

tions on this dataset to the removal of examples from the training set? By leveraging

the approach from [IPE+22], we show that, despite the relatively fast saturation

of performance on this dataset with increasing training set size, for a given test

example x there often exist small (as few as 100 examples) worst-case subsets of

the training set whose removal causes misclassification of x. Second, can we use

the same methods to detect data poisoning attacks? For this quesiton, we show

that the space of datamodel vectors contains information that can be used to detect

poisoned examples in simple poisoning scenarios.

Outlook: Towards Robust Machine Learning

While in recent years we have made much progress towards the vision of reli-

able ML systems we can safely deploy and benefit from in the real world, many

challenges remain. Beyond threats like adversarial examples and data poisoning,

fundamental problems include spurious correlations, brittleness to distribution

shift, and difficulty in interpreting model predictions, to name only a few. What are

concrete takeaways from the work presented in this thesis that can help us identify

22



promising future directions for progress on these problems?

In the two main case studies presented in this thesis – adversarial examples

and data poisoning – having a principled conceptual framework of the phenomena

under study has proven to be a crucial ingredient in untangling the complexities of

the many different guises in which these phenomena manifest empirically. What

may be other similarly powerful conceptual frameworks for making sense of these

and other key phenomena in ML? How might we design experiments to identify

and separate the fundamental aspects of these problems from the accidental? These

are questions to keep in mind as we continue our exploration.

Thesis Organization

Chapter 1 describes our methodology for defending machine learning models

against adversarial examples. It is based on joint work with Aleksander Mądry,

Dimitris Tsipras, Ludwig Schmidt and Adrian Vladu.

Chapter 2 describes our approach for quantifying model sensitivity to features

in the data, and using this framework to detect backdoor data poisoning attacks. It

is based on joint work with Alaa Khaddaj, Guillaume Leclerc, Kristian Georgiev,

Andrew Ilyas, Hadi Salman and Aleksander Mądry.

Chapter 3 includes material on applications of the datamodeling framework

[IPE+22] to other data modalities and learning algorithms. This is based on joint

work with Aleksander Mądry.

23



24



Chapter 1

Defenses Against Adversarial

Examples

Recent work has demonstrated that deep neural networks are vulnerable to adver-

sarial examples—inputs that are almost indistinguishable from natural data and

yet classified incorrectly by the network. In fact, some findings have suggested that

the existence of adversarial attacks may be an inherent weakness of deep learning

models. To address this problem, we study the adversarial robustness of neural

networks through the lens of robust optimization. This approach provides us with

a broad and unifying view on much of the prior work on this topic. Its principled

nature also enables us to identify methods for both training and attacking neural

networks that are reliable and, in a certain sense, universal. In particular, they

specify a concrete security guarantee that would protect against any adversary.

These methods let us train networks with significantly improved resistance to a

wide range of adversarial attacks. They also suggest the notion of security against

a first-order adversary as a natural and broad security guarantee. We believe that

robustness against such well-defined classes of adversaries is an important stepping

stone towards fully resistant deep learning models.1

1Code and pre-trained models are available at https://github.com/MadryLab/mnist_
challenge and https://github.com/MadryLab/cifar10_challenge.

25

https://github.com/MadryLab/mnist_challenge
https://github.com/MadryLab/mnist_challenge
https://github.com/MadryLab/cifar10_challenge


1.1 Introduction

Breakthroughs in computer vision [KSH12, HZRS15b] and natural language pro-

cessing [CW08] are bringing trained classifiers into the center of security-critical

systems. Important examples include vision for autonomous cars, face recog-

nition, and malware detection. These developments make security aspects of

machine learning increasingly important. In particular, resistance to adversarially

chosen inputs is becoming a crucial design goal. While trained models tend to

be very effective in classifying inputs with benign noise, another line of work

[BCM+13, SZS+14, NYC15] shows that an adversary is often able to manipulate

the input so that the model produces an incorrect output.

This phenomenon has received particular attention in the context of deep neural

networks, and there is now a quickly growing body of work on this topic [GSS15,

FFF18, SGSR17, KGB17, PMG16, TPGDB17]. Computer vision presents a particu-

larly striking challenge: very small changes to the input image can fool state-of-the-

art neural networks with high confidence [SZS+14, MFF16]. This holds even when

the benign example was classified correctly, and the change is imperceptible to a

human. Apart from the security implications, this phenomenon also demonstrates

that our current models are not learning the underlying concepts in a robust manner.

All these findings raise a fundamental question:

How can we train deep neural networks that are robust to adversarial inputs?

There is now a sizable body of work proposing various attack and defense mecha-

nisms for the adversarial setting. Examples include defensive distillation [PMW+16,

CW17b], feature squeezing [XEQ18, HWC+17], and several other adversarial ex-

ample detection approaches [CW17a]. These works constitute important first steps

in exploring the realm of possibilities in this field. They, however, do not offer a

good understanding of the guarantees they provide. We can never be certain that a

given attack finds the “most adversarial” example in the context, or that a particular

defense mechanism prevents the existence of some well-defined class of adversarial

26



attacks. This makes it difficult to navigate the landscape of adversarial robustness

or to fully evaluate the possible security implications.

In this chapter, we study the adversarial robustness of neural networks through

the lens of robust optimization. We use a natural saddle point (min-max) formu-

lation to capture the notion of security against adversarial attacks in a principled

manner. This formulation allows us to be precise about the type of security guarantee

we would like to achieve, i.e., the broad class of attacks we want to be resistant

to (in contrast to defending only against specific known attacks). The formula-

tion also enables us to cast both attacks and defenses into a common theoretical

framework, naturally encapsulating most prior work on adversarial examples. In

particular, adversarial training directly corresponds to optimizing this saddle point

problem. Similarly, prior methods for attacking neural networks correspond to

specific algorithms for solving the underlying constrained optimization problem.

Equipped with this perspective, we make the following contributions.

1. We conduct a careful experimental study of the optimization landscape cor-

responding to this saddle point formulation. Despite the non-convexity and

non-concavity of its constituent parts, we find that the underlying optimiza-

tion problem is tractable after all. In particular, we provide strong evidence

that first-order methods can reliably solve this problem. We supplement these

insights with ideas from real analysis to further motivate projected gradient

descent (PGD) as a universal “first-order adversary”, i.e., the strongest attack

utilizing the local first order information about the network.

2. We explore the impact of network architecture on adversarial robustness and

find that model capacity plays an important role here. To reliably withstand

strong adversarial attacks, networks require a larger capacity than for correctly

classifying benign examples only. This shows that a robust decision boundary

of the saddle point problem can be significantly more complicated than a

decision boundary that simply separates the benign data points.

3. Building on the above insights, we train networks on MNIST [LeC98] and

27



CIFAR10 [Kri09] that are robust to a wide range of adversarial attacks. Our

approach is based on optimizing the aforementioned saddle point formulation

and uses PGD as a reliable first-order adversary. Our best MNIST model

achieves an accuracy of more than 89% against the strongest adversaries in

our test suite. In particular, our MNIST network is even robust against white

box attacks of an iterative adversary. Our CIFAR10 model achieves an accuracy

of 46% against the same adversary. Furthermore, in case of the weaker black

box/transfer attacks, our MNIST and CIFAR10 networks achieve the accuracy

of more than 95% and 64%, respectively. (More detailed overview can be

found in Tables 1.1 and1.2.) To the best of our knowledge, we have been the

first to achieve these levels of robustness on MNIST and CIFAR10 against

such a broad set of attacks, and they have not been broken in any meaningful

way as of today.

In order to further support this claim, we have invited the community to attempt

attacks against our MNIST and CIFAR10 networks in the form of a challenge. This

has let us evaluate their robustness more thoroughly. The complete code, along with

the description of the challenge, is available at https://github.com/MadryLab/

mnist_challenge and https://github.com/MadryLab/cifar10_challenge.

1.2 An Optimization View on Adversarial Robustness

Much of our discussion will revolve around an optimization view of adversarial

robustness. This perspective not only captures the phenomena we want to study

in a precise manner, but will also inform our investigations. To this end, let us

consider a standard classification task with an underlying data distribution D over

pairs of examples x ∈ Rd and corresponding labels y ∈ [k]. We also assume that we

are given a suitable loss function L(θ, x, y), for instance the cross-entropy loss for a

neural network. As usual, θ ∈ Rp is the set of model parameters. Our goal then is

to find model parameters θ that minimize the risk E(x,y)∼D[L(x, y, θ)].

28

https://github.com/MadryLab/mnist_challenge
https://github.com/MadryLab/mnist_challenge
https://github.com/MadryLab/cifar10_challenge


Empirical risk minimization (ERM) has been tremendously successful as a recipe

for finding classifiers with small population risk. Unfortunately, ERM often does not

yield models that are robust to adversarially crafted examples [BCM+13, SZS+14].

Formally, there are efficient algorithms (“adversaries”) that take an example x

belonging to class c1 as input and find examples xadv such that xadv is very close to

x but the model incorrectly classifies xadv as belonging to class c2 6= c1.

In order to reliably train models that are robust to adversarial attacks, it is neces-

sary to augment the ERM paradigm appropriately. Instead of resorting to methods

that directly focus on improving the robustness to specific attacks, our approach

is to first propose a concrete guarantee that an adversarially robust model should

satisfy. We then adapt our training methods towards achieving this guarantee.

The first step towards such a guarantee is to specify an attack model, i.e., a

precise definition of the attacks our models should be resistant to. For each data

point x, we introduce a set of allowed perturbations S ⊆ Rd that formalizes the

manipulative power of the adversary. In image classification, we choose S so that it

captures perceptual similarity between images. For instance, the `∞-ball around x

has recently been studied as a natural notion for adversarial perturbations [GSS15].

While we focus on robustness against `∞-bounded attacks in this chapter, we remark

that more comprehensive notions of perceptual similarity are an important direction

for future research.

Next, we modify the definition of population risk ED[L] by incorporating the

above adversary. Instead of feeding samples from the distribution D directly into

the loss L, we allow the adversary to perturb the input first. This gives rise to the

following saddle point problem, which is our central object of study:

min
θ

ρ(θ), where ρ(θ) = E(x,y)∼D

[
max
δ∈S

L(θ, x + δ, y)
]

. (1.2.1)

Formulations of this type (and their finite-sample counterparts) have a long history

in robust optimization, going back to Wald [Wal45]. It turns out that this formulation

is also particularly useful in our context.

29



First, this formulation gives us a unifying perspective that encompasses much

prior work on adversarial robustness. Our perspective stems from viewing the

saddle point problem as the composition of an inner maximization problem and an

outer minimization problem. Both of these problems have a natural interpretation in

our context. The inner maximization problem aims to find an adversarial version

of a given data point x that achieves a high loss. This is precisely the problem

of attacking a given neural network. On the other hand, the goal of the outer

minimization problem is to find model parameters so that the “adversarial loss”

given by the inner attack problem is minimized. This is precisely the problem of

training a robust classifier using adversarial training techniques.

Second, the saddle point problem specifies a clear goal that an ideal robust

classifier should achieve, as well as a quantitative measure of its robustness. In

particular, when the parameters θ yield a (nearly) vanishing risk, the corresponding

model is perfectly robust to attacks specified by our attack model.

This chapter investigates the structure of this saddle point problem in the context

of deep neural networks. These investigations then lead us to training techniques

that produce models with high resistance to a wide range of adversarial attacks.

Before turning to our contributions, we briefly review prior work on adversarial

examples and describe in more detail how it fits into the above formulation.

1.2.1 A Unified View on Attacks and Defenses

Prior work on adversarial examples has focused on two main questions:

1. How can we produce strong adversarial examples, i.e., adversarial exam-

ples that fool a model with high confidence while requiring only a small

perturbation?

2. How can we train a model so that there are no adversarial examples, or at

least so that an adversary cannot find them easily?

Our perspective on the saddle point problem (1.2.1) gives answers to both

these questions. On the attack side, prior work has proposed methods such as the

30



Fast Gradient Sign Method (FGSM) [GSS15] and multiple variations of it [KGB17].

FGSM is an attack for an `∞-bounded adversary and computes an adversarial

example as

x + ε sgn(∇xL(θ, x, y)).

One can interpret this attack as a simple one-step scheme for maximizing the

inner part of the saddle point formulation. A more powerful adversary is the multi-

step variant, which is essentially projected gradient descent (PGD) on the negative

loss function

xt+1 = Πx+S
(
xt + α sgn(∇xL(θ, x, y))

)
.

Other methods like FGSM with random perturbation have also been proposed

[TPGDB17]. Clearly, all of these approaches can be viewed as specific attempts to

solve the inner maximization problem in (1.2.1).

On the defense side, the training dataset is often augmented with adversarial

examples produced by FGSM. This approach also directly follows from (1.2.1)

when linearizing the inner maximization problem. To solve the simplified robust

optimization problem, we replace every training example with its FGSM-perturbed

counterpart. More sophisticated defense mechanisms such as training against

multiple adversaries can be seen as better, more exhaustive approximations of the

inner maximization problem.

1.3 Towards Universally Robust Networks

Past work on adversarial examples has usually focused on specific defensive mech-

anisms, or on attacks against such defenses. An important feature of formulation

(1.2.1) is that attaining small adversarial loss gives a guarantee that no allowed

attack will fool the network. By definition, no adversarial perturbations are possible

because the loss is small for all perturbations allowed by our attack model. Hence,

31



we now focus our attention on obtaining a good solution to (1.2.1).

Unfortunately, while the overall guarantee provided by the saddle point problem

is evidently useful, it is not clear whether we can actually find a good solution in

reasonable time. Solving the saddle point problem (1.2.1) involves tackling both a

non-convex outer minimization problem and a non-concave inner maximization

problem. One of our key contributions is demonstrating that, in practice, one

can solve the saddle point problem after all. In particular, we now discuss an

experimental exploration of the structure given by the non-concave inner problem.

We argue that the loss landscape corresponding to this problem has a surprisingly

tractable structure of local maxima. This structure also points towards projected

gradient descent as the “ultimate” first-order adversary. Sections 1.4 and 2.6 then

show that the resulting trained networks are indeed robust against a wide range of

attacks, provided the networks are sufficiently large.

1.3.1 The Landscape of Adversarial Examples

Recall that the inner problem corresponds to finding an adversarial example for

a given network and data point (subject to our attack model). As this problem

requires us to maximize a highly non-concave function, one would expect it to be

intractable. Indeed, this is the conclusion reached by prior work which then resorted

to linearizing the inner maximization problem [HXSS15, SYN18]. As pointed out

above, this linearization approach yields well-known methods such as FGSM. While

training against FGSM adversaries has shown some successes, recent work also

highlights important shortcomings of this one-step approach [TPGDB17]—slightly

more sophisticated adversaries can still find points of high loss.

To understand the inner problem in more detail, we investigate the landscape of

local maxima for multiple models on MNIST and CIFAR10. The main tool in our

experiments is projected gradient descent (PGD), since it is the standard method

for large-scale constrained optimization. In order to explore a large part of the loss

landscape, we re-start PGD from many points in the `∞ balls around data points

32



from the respective evaluation sets.

Surprisingly, our experiments show that the inner problem is tractable after all,

at least from the perspective of first-order methods. While there are many local

maxima spread widely apart within xi + S , they tend to have very well-concentrated

loss values. This echoes the folklore belief that training neural networks is possible

because the loss (as a function of model parameters) typically has many local

minima with very similar values.

Specifically, in our experiments we found the following phenomena:

• We observe that the loss achieved by the adversary increases in a fairly consistent

way and plateaus rapidly when performing projected `∞ gradient descent for

randomly chosen starting points inside x + S (see Figure 1.1).

0 25 50 75 100
Iterations

0

50

100

150

Lo
ss

 v
al

ue

0 25 50 75 100
Iterations

1
2
3
4
5

0 25 50 75 100
Iterations

0
20
40
60
80

0 25 50 75 100
Iterations

0.2

0.3

(a) MNIST (b) MNIST (c) CIFAR10 (d) CIFAR10
Standard training Adversarial training Natural training Adversarial training

Figure 1.1: Cross-entropy loss values while creating an adversarial example from
the MNIST and CIFAR10 evaluation datasets. The plots show how the loss evolves
during 20 runs of projected gradient descent (PGD). Each run starts at a uniformly
random point in the `∞-ball around the same natural example (additional plots
for different examples appear in Figure 1.11). The adversarial loss plateaus after
a small number of iterations. The optimization trajectories and final loss values
are also fairly clustered, especially on CIFAR10. Moreover, the final loss values
on adversarially trained networks are significantly smaller than on their standard
counterparts.

• Investigating the concentration of maxima further, we observe that over a large

number of random restarts, the loss of the final iterate follows a well-concentrated

distribution without extreme outliers (see Figure 1.2; we verified this concentra-

tion based on 105 restarts).

33



MNIST

0 40 80 120 160
Loss value

lo
g(

fre
qu

en
cy

)

0 40 80 120 160
Loss value

0 40 80 120 160
Loss value

0 40 80 120 160
Loss value

0 40 80 120 160
Loss value

CIFAR10

0 25 50 75 100
Loss value

lo
g(

fre
qu

en
cy

)

0 25 50 75 100
Loss value

0 25 50 75 100
Loss value

0 25 50 75 100
Loss value

0 25 50 75 100
Loss value

Figure 1.2: Values of the local maxima given by the cross-entropy loss for five
examples from the MNIST and CIFAR10 evaluation datasets. For each example, we
start projected gradient descent (PGD) from 105 uniformly random points in the `∞-
ball around the example and iterate PGD until the loss plateaus. The blue histogram
corresponds to the loss on a standard network, while the red histogram corresponds
to the adversarially trained counterpart. The loss is significantly smaller for the
adversarially trained networks, and the final loss values are very concentrated
without any outliers.

• To demonstrate that maxima are noticeably distinct, we also measured the `2

distance and angles between all pairs of them and observed that distances are

distributed close to the expected distance between two random points in the `∞

ball, and angles are close to 90◦. Along the line segment between local maxima,

the loss is convex, attaining its maximum at the endpoints and is reduced by a

constant factor in the middle. Nevertheless, for the entire segment, the loss is

considerably higher than that of a random point.

• Finally, we observe that the distribution of maxima suggests that the recently

developed subspace view of adversarial examples is not fully capturing the rich-

ness of attacks [TPGDB17]. In particular, we observe adversarial perturbations

with negative inner product with the gradient of the example, and deteriorat-

ing overall correlation with the gradient direction as the scale of perturbation

increases.

34



All of this evidence points towards PGD being a “universal” adversary among

first-order approaches, as we will see next.

1.3.2 First-Order Adversaries

Our experiments show that the local maxima found by PGD all have similar loss

values, both for normally trained networks and adversarially trained networks.

This concentration phenomenon suggests an intriguing view on the problem in

which robustness against the PGD adversary yields robustness against all first-order

adversaries, i.e., attacks that rely only on first-order information. As long as the

adversary only uses gradients of the loss function with respect to the input, we

conjecture that it will not find significantly better local maxima than PGD. We give

more experimental evidence for this hypothesis in Section 2.6: if we train a network

to be robust against PGD adversaries, it becomes robust against a wide range of

other attacks as well.

Of course, our exploration with PGD does not preclude the existence of some

isolated maxima with much larger function value. However, our experiments

suggest that such better local maxima are hard to find with first order methods: even

a large number of random restarts did not find function values with significantly

different loss values. Incorporating the computational power of the adversary

into the attack model should be reminiscent of the notion of polynomially bounded

adversary that is a cornerstone of modern cryptography. There, this classic attack

model allows the adversary to only solve problems that require at most polynomial

computation time. Here, we employ an optimization-based view on the power of

the adversary as it is more suitable in the context of machine learning. After

all, we have not yet developed a thorough understanding of the computational

complexity of many recent machine learning problems. However, the vast majority

of optimization problems in ML is solved with first-order methods, and variants

of SGD are the most effective way of training deep learning models in particular.

Hence we believe that the class of attacks relying on first-order information is, in

35



some sense, universal for the current practice of deep learning.

Put together, these two ideas chart the way towards machine learning models

with guaranteed robustness. If we train the network to be robust against PGD

adversaries, it will be robust against a wide range of attacks that encompasses all

current approaches.

In fact, this robustness guarantee would become even stronger in the context of

black-box attacks, i.e., attacks in which the adversary does not have a direct access to

the target network. Instead, the adversary only has less specific information such as

the (rough) model architecture and the training data set. One can view this attack

model as an example of “zero order” attacks, i.e., attacks in which the adversary has

no direct access to the classifier and is only able to evaluate it on chosen examples

without gradient feedback.

We discuss transferability in Section 1.8. We observe that increasing network

capacity and strengthening the adversary we train against (FGSM or PGD training,

rather than standard training) improves resistance against transfer attacks. Also, as

expected, the resistance of our best models to such attacks tends to be significantly

larger than to the (strongest) first order attacks.

1.3.3 Descent Directions for Adversarial Training

The preceding discussion suggests that the inner optimization problem can be

successfully solved by applying PGD. In order to train adversarially robust net-

works, we also need to solve the outer optimization problem of the saddle point

formulation (1.2.1), that is find model parameters that minimize the “adversarial

loss”, the value of the inner maximization problem.

In the context of training neural networks, the main method for minimizing the

loss function is Stochastic Gradient Descent (SGD). A natural way of computing the

gradient of the outer problem,∇θρ(θ), is computing the gradient of the loss function

at a maximizer of the inner problem. This corresponds to replacing the input points

by their corresponding adversarial perturbations and normally training the network

36



on the perturbed input. A priori, it is not clear that this is a valid descent direction

for the saddle point problem. However, for the case of continuously differentiable

functions, Danskin’s theorem—a classic theorem in optimization—states this is

indeed true and gradients at inner maximizers corresponds to descent directions

for the saddle point problem.

Despite the fact that the exact assumptions of Danskin’s theorem do not hold

for our problem (the function is not continuously differentiable due to ReLU and

max-pooling units, and we are only computing approximate maximizers of the

inner problem), our experiments suggest that we can still use these gradients to

optimize our problem. By applying SGD using the gradient of the loss at adversarial

examples we can consistently reduce the loss of the saddle point problem during

training, as can be seen in Figure 1.5. These observations suggest that we reliably

optimize the saddle point formulation (1.2.1) and thus train robust classifiers. We

formally state Danskin’s theorem and describe how it applies to our problem in

Section 1.7.

1.4 Network Capacity and Adversarial Robustness

Solving the problem from Equation (1.2.1) successfully is not sufficient to guarantee

robust and accurate classification. We need to also argue that the value of the

problem (i.e. the final loss we achieve against adversarial examples) is small, thus

providing guarantees for the performance of our classifier. In particular, achieving

a very small value corresponds to a perfect classifier, which is robust to adversarial

inputs.

For a fixed set S of possible perturbations, the value of the problem is entirely

dependent on the architecture of the classifier we are learning. Consequently, the

architectural capacity of the model becomes a major factor affecting its overall per-

formance. At a high level, classifying examples in a robust way requires a stronger

classifier, since the presence of adversarial examples changes the decision boundary

of the problem to a more complicated one (see Figure 1.3 for an illustration).

37



Figure 1.3: A conceptual illustration of standard vs. adversarial decision boundaries.
Left: A set of points that can be easily separated with a simple (in this case, linear)
decision boundary. Middle: The simple decision boundary does not separate the `∞-
balls (here, squares) around the data points. Hence there are adversarial examples
(the red stars) that will be misclassified. Right: Separating the `∞-balls requires a
significantly more complicated decision boundary. The resulting classifier is robust
to adversarial examples with bounded `∞-norm perturbations.

Our experiments verify that capacity is crucial for robustness, as well as for

the ability to successfully train against strong adversaries. For the MNIST dataset,

we consider a simple convolutional network and study how its behavior changes

against different adversaries as we keep doubling the size of network (i.e. double the

number of convolutional filters and the size of the fully connected layer). The initial

network has a convolutional layer with 2 filters, followed by another convolutional

layer with 4 filters, and a fully connected hidden layer with 64 units. Convolutional

layers are followed by 2 × 2 max-pooling layers and adversarial examples are

constructed with ε = 0.3. The results are in Figure 1.4.

For the CIFAR10 dataset, we used a ResNet model [HZRS16]. We performed

data augmentation using random crops and flips, as well as per image standariza-

tion. To increase the capacity, we modified the network incorporating wider layers

by a factor of 10. This results in a network with 5 residual units with (16, 160, 320,

640) filters each. This network can achieve an accuracy of 95.2% when trained with

natural examples. Adversarial examples were constructed with ε = 8. Results on

capacity experiments appear in Figure 1.4.

We observe the following phenomena:

38



Capacity alone helps. We observe that increasing the capacity of the network

when training using only natural examples (apart from increasing accuracy on these

examples) increases the robustness against one-step perturbations. This effect is

greater when considering adversarial examples with smaller ε.

FGSM adversaries don’t increase robustness (for large ε). When training the

network using adversarial examples generated with the FGSM, we observe that

the network overfits to these adversarial examples. This behavior is known as

label leaking [KGB17] and stems from the fact that the adversary produces a very

restricted set of adversarial examples that the network can overfit to. These net-

works have poor performance on natural examples and don’t exhibit any kind

of robustness against PGD adversaries. For the case of smaller ε the loss is ofter

linear enough in the `∞-ball around natural examples, that FGSM finds adversarial

examples close to those found by PGD thus being a reasonable adversary to train

against.

Weak models may fail to learn non-trivial classifiers. In the case of small capac-

ity networks, attempting to train against a strong adversary (PGD) prevents the

network from learning anything meaningful. The network converges to always

predicting a fixed class, even though it could converge to an accurate classifier

through standard training. The small capacity of the network forces the training

procedure to sacrifice performance on natural examples in order to provide any

kind of robustness against adversarial inputs.

The value of the saddle point problem decreases as we increase the capacity.

Fixing an adversary model, and training against it, the value of (1.2.1) drops as

capacity increases, indicating the the model can fit the adversarial examples increas-

ingly well.

More capacity and stronger adversaries decrease transferability. Either increas-

ing the capacity of the network, or using a stronger method for the inner optimiza-

39



tion problem reduces the effectiveness of transferred adversarial inputs. We validate

this experimentally by observing that the correlation between gradients from the

source and the transfer network, becomes less significant as capacity increases. We

describe our experiments in Section 1.8.

MNIST

1 2 4 8 16
0

20
40
60
80

100

Capacity scale

A
cc

ur
ac

y

1 2 4 8 16
0

20
40
60
80

100

Capacity scale
1 2 4 8 16

0
20
40
60
80

100

Capacity scale
1 2 4 8 16

0.01

0.1

1

Capacity scale

A
ve

ra
ge

lo
ss

Natural
FGSM
PGD

CIFAR10
Simple Wide

Natural 92.7% 95.2%
FGSM 27.5% 32.7%
PGD 0.8% 3.5%

Simple Wide
87.4% 90.3%
90.9% 95.1%
0.0% 0.0%

Simple Wide
79.4% 87.3%
51.7% 56.1%
43.7% 45.8%

Simple Wide
0.00357 0.00371
0.0115 0.00557

1.11 0.0218
(a) Standard training (b) FGSM training (c) PGD training (d) Training Loss

Figure 1.4: The effect of network capacity on the performance of the network. We
trained MNIST and CIFAR10 networks of varying capacity on: (a) natural examples,
(b) with FGSM-made adversarial examples, (c) with PGD-made adversarial exam-
ples. In the first three plots/tables of each dataset, we show how the standard and
adversarial accuracy changes with respect to capacity for each training regime. In
the final plot/table, we show the value of the cross-entropy loss on the adversarial
examples the networks were trained on. This corresponds to the value of our saddle
point formulation (1.2.1) for different sets of allowed perturbations.

1.5 Experiments: Adversarially Robust Deep Learning

Models

Following the understanding of the problem we developed in previous sections, we

can now apply our proposed approach to train robust classifiers. As our experiments

so far demonstrated, we need to focus on two key elements: a) train a sufficiently

high capacity network, b) use the strongest possible adversary.

For both MNIST and CIFAR10, the adversary of choice will be projected gradient

40



descent (PGD) starting from a random perturbation around the natural example.

This corresponds to our notion of a "complete" first-order adversary, an algorithm

that can efficiently maximize the loss of an example using only first order informa-

tion. Since we are training the model for multiple epochs, there is no benefit from

restarting PGD multiple times per batch—a new start will be chosen the next time

each example is encountered.

When training against that adversary, we observe a steady decrease in the train-

ing loss of adversarial examples, illustrated in Figure 1.5. This behavior indicates

that we are indeed successfully solving our original optimization problem during

training.

0k 25k 50k 75k 100k
Iterations

0.10

1.00

Lo
ss

 v
al

ue

0k 25k 50k 75k
Iterations

0.01

0.10

1.00
Lo

ss
 v

al
ue

(a) MNIST (b) CIFAR10

Figure 1.5: Cross-entropy loss on adversarial examples during training. The plots
show how the adversarial loss on training examples evolves during training the
MNIST and CIFAR10 networks against a PGD adversary. The sharp drops in the
CIFAR10 plot correspond to decreases in training step size. These plots illustrate
that we can consistently reduce the value of the inner problem of the saddle point
formulation (1.2.1), thus producing an increasingly robust classifier.

We evaluate the trained models against a range of adversaries. We illustrate

our results in Table 1.1 for MNIST and Table 1.2 for CIFAR10. The adversaries we

consider are:

• White-box attacks with PGD for a different number of of iterations and restarts,

denoted by source A.

• White-box attacks with PGD using the Carlini-Wagner (CW) loss function [CW17b]

(directly optimizing the difference between correct and incorrect logits). This

41



is denoted as CW, where the corresponding attack with a high confidence

parameter (κ = 50) is denoted as CW+.

• Black-box attacks from an independently trained copy of the network, denoted

A’.

• Black-box attacks from a version of the same network trained only on natural

examples, denoted Anat.

• Black-box attacks from a different convolution architecture, denoted B, de-

scribed in Tramer et al. 2017 [TPGDB17].

MNIST. We run 40 iterations of projected gradient descent as our adversary, with

a step size of 0.01 (we choose to take gradient steps in the `∞-norm, i.e. adding the

sign of the gradient, since this makes the choice of the step size simpler). We train

and evaluate against perturbations of size ε = 0.3. We use a network consisting of

two convolutional layers with 32 and 64 filters respectively, each followed by 2× 2

max-pooling, and a fully connected layer of size 1024. When trained with natural

examples, this network reaches 99.2% accuracy on the evaluation set. However,

when evaluating on examples perturbed with FGSM the accuracy drops to 6.4%.

The resulting adversarial accuracies are reported in Table 1.1. Given that the result-

ing MNIST model is very robust to `∞-bounded adversaries, we investigated the

learned parameters in order to understand how they affect adversarial robustness.

The results of the investigation are presented in 1.9. In particular, we found that the

first convolutional layer of the network is learning to threshold input pixels while

other weights tend to be sparser.

CIFAR10. For the CIFAR10 dataset, we use the two architectures described in 1.4

(the original ResNet and its 10× wider variant). We trained the network against a

PGD adversary with `∞ projected gradient descent again, this time using 7 steps of

size 2, and a total ε = 8. For our hardest adversary we chose 20 steps with the same

42



Method Steps Restarts Source Accuracy
Natural - - - 98.8%
FGSM - - A 95.6%
PGD 40 1 A 93.2%
PGD 100 1 A 91.8%
PGD 40 20 A 90.4%
PGD 100 20 A 89.3%
Targeted 40 1 A 92.7%
CW 40 1 A 94.0%
CW+ 40 1 A 93.9%
FGSM - - A’ 96.8%
PGD 40 1 A’ 96.0%
PGD 100 20 A’ 95.7%
CW 40 1 A’ 97.0%
CW+ 40 1 A’ 96.4%
FGSM - - B 95.4%
PGD 40 1 B 96.4%
CW+ - - B 95.7%

Table 1.1: MNIST: Performance of the adversarially trained network against different
adversaries for ε = 0.3. For each model of attack we show the most successful
attack with bold. The source networks used for the attack are: the network itself (A)
(white-box attack), an indepentenly initialized and trained copy of the network (A’),
architecture B from [TPGDB17] (B).

settings, since other hyperparameter choices didn’t offer a significant decrease in

accuracy. The results of our experiments appear in Table 1.2.

The adversarial robustness of our network is significant, given the power of

iterative adversaries, but still far from satisfactory. We believe that these results can

be improved by further pushing along these directions, and training networks of

larger capacity.

Resistance for different values of ε and `2-bounded attacks. In order to perform

a broader evaluation of the adversarial robustness of our models, we run two

additional experiments. On one hand, we investigate the resistance to `∞-bounded

attacks for different values of ε. On the other hand, we examine the resistance of

our model to attacks that are bounded in `2-norm as opposed to `∞-norm. In the

43



Method Steps Source Accuracy
Natural - - 87.3%
FGSM - A 56.1%
PGD 7 A 50.0%
PGD 20 A 45.8%
CW 30 A 46.8%
FGSM - A’ 67.0%
PGD 7 A’ 64.2%
CW 30 A’ 78.7%
FGSM - Anat 85.6%
PGD 7 Anat 86.0%

Table 1.2: CIFAR10: Performance of the adversarially trained network against
different adversaries for ε = 8. For each model of attack we show the most effective
attack in bold. The source networks considered for the attack are: the network itself
(A) (white-box attack), an independtly initialized and trained copy of the network
(A’), a copy of the network trained on natural examples (Anat).

case of `2-bounded PGD we take steps in the gradient direction (not the sign of it)

and normalize the steps to be of fixed norm to facilitate step size tuning. For all

PGD attacks, we use 100 steps and set the step size to be 2.5 · ε/100 to ensure that

we can reach the boundary of the ε-ball from any starting point within it (and still

allow for movement on the boundary). Note that the models were training against

`∞-bounded attacks with the original value of ε = 0.3, for MNIST, and ε = 8 for

CIFAR10. The results appear in Figure 1.6.

We observe that for smaller ε than the one used during training the models

achieve equal or higher accuracy, as expected. For MNIST, we notice a large drop in

robustness for slightly large ε values, potentially due to the fact that the threshold

operators learned are tuned to the exact value of ε used during training ( 1.9). In

contrast, the decay for the case of CIFAR10 is smoother.

For the case of `2-bounded attacks on MNIST, we observe that PGD is unable

to find adversarial examples even for quite large values of ε, e.g., ε = 4.5. To

put this value of ε into perspective, we provide a sample of corresponding adver-

sarial examples in Figure 1.12 of 1.11. We observe that these perturbations are

significant enough that they would change the ground-truth label of the images

44



0 0.1 0.2 0.3 0.4
0

20
40
60
80

100

ε

A
cc

ur
ac

y

0 1 2 3 4 5 6
0

20
40
60
80

100

ε

PGD adv. trained
DBA adv. trained

PGD standard
DBA standard

0 5 10 15 20 25 30
0

20

40

60

80

ε
0 20 40 60 80 100

0

20

40

60

80

ε

(a) MNIST, `∞-norm (b) MNIST, `2-norm (c) CIFAR10, `∞-norm (d) CIFAR10, `2-norm

Figure 1.6: Performance of our adversarially trained networks against PGD ad-
versaries of different strength. The MNIST and CIFAR10 networks were trained
against ε = 0.3 and ε = 8 PGD `∞ adversaries respectively (the training ε is denoted
with a red dashed lines in the `∞ plots). In the case of the MNIST adversarially
trained networks, we also evaluate the performance of the Decision Boundary At-
tack (DBA) [BRB17] with 2000 steps and PGD on standard and adversarially trained
models. We observe that for ε less or equal to the value used during training, the
performance is equal or better. For MNIST there is a sharp drop shortly after. More-
over, we observe that the performance of PGD on the MNIST `2-trained networks is
poor and significantly overestimates the robustness of the model. This is potentially
due to the threshold filters learned by the model masking the loss gradients (the
decision-based attack does not utilize gradients).

and it is thus unlikely that our models are actually that robust. Indeed, subse-

quent work [LCWC18, SRBB19] has found that PGD is in fact overestimating the

`2-robustness of this model. This behavior is potentially due to the fact that the

learned threshold filters ( 1.9) mask the gradient, preventing PGD from maximizing

the loss. Attacking the model with a decision-based attack [BRB17] which does not

rely on model gradients reveals that the model is significantly more brittle against

`2-bounded attacks. Nevertheless, the `∞-trained model is still more robust to `2

attacks compared to a standard model.

1.6 Related Work

Due to the large body of work on adversarial examples we focus only on the

most related papers here. Before we compare our contributions, we remark that

robust optimization has been studied outside deep learning for multiple decades

(see [BTEGN09] for an overview of this field). We also want to note that the study

45



of adversarial ML predates the widespread use of deep neural networks [DDSV04,

GR06] (see [BR18] for an overview of earlier work).

Adversarial training was introduced in [GSS15], however the adversary utilized

was quite weak—it relied on linearizing the loss around the data points. As a

result, while these models were robust against this particular adversary, they were

completely vulnerable to slightly more sophisticated adversaries utilizing iterative

attacks.

Recent work on adversarial training on ImageNet also observed that the model

capacity is important for adversarial training [KGB17]. In contrast to this paper, we

find that training against multi-step methods (PGD) does lead to resistance against

such adversaries.

In [HXSS15] and [SYN18] a version of the min-max optimization problem is also

considered for adversarial training. There are, however, three important differences

between the formerly mentioned result and the present chapter. Firstly, the authors

claim that the inner maximization problem can be difficult to solve, whereas we

explore the loss surface in more detail and find that randomly re-started projected

gradient descent often converges to solutions with comparable quality. This shows

that it is possible to obtain sufficiently good solutions to the inner maximization

problem, which offers good evidence that deep neural network can be immunized

against adversarial examples. Secondly, they consider only one-step adversaries,

while we work with multi-step methods. Additionally, while the experiments

in [SYN18] produce promising results, they are only evaluated against FGSM.

However, FGSM-only evaluations are not fully reliable. One evidence for that is

that [SYN18] reports 70% accuracy for ε = 0.7, but any adversary that is allowed

to perturb each pixel by more than 0.5 can construct a uniformly gray image, thus

fooling any classifier.

A more recent paper [TPGDB17] also explores the transferability phenomenon.

This exploration focuses mostly on the region around natural examples where the

loss is (close to) linear. When large perturbations are allowed, this region does

not give a complete picture of the adversarial landscape. This is confirmed by our

46



experiments, as well as pointed out by [TPGDB17].

1.7 Statement and Application of Danskin’s Theorem

Recall that our goal is to minimize the value of the saddle point problem

min
θ

ρ(θ), where ρ(θ) = E(x,y)∼D

[
max
δ∈S

L(θ, x + δ, y)
]

.

In practice, we don’t have access to the distribution D so both the gradients and

the value of ρ(θ) will be computed using sampled input points. Therefore we can

consider –without loss of generality– the case of a single random example x with

label y, in which case the problem becomes

min
θ

max
δ∈S

g(θ, δ), where g(θ, δ) = L(θ, x + δ, y) .

If we assume that the loss L is continuously differentiable in θ, we can compute

a descent direction for θ by utilizing the classical theorem of Danskin.

Theorem 1.7.1 (Danskin). Let S be nonempty compact topological space and g : Rn ×

S → R be such that g(·, δ) is differentiable for every δ ∈ S and ∇θg(θ, δ) is continuous

on Rn × S . Also, let δ∗(θ) = {δ ∈ arg maxδ∈S g(θ, δ)}.

Then the corresponding max-function

φ(θ) = max
δ∈S

g(θ, δ)

is locally Lipschitz continuous, directionally differentiable, and its directional derivatives

satisfy

φ′(θ, h) = sup
δ∈δ∗(θ)

h>∇θg(θ, δ) .

In particular, if for some θ ∈ Rn the set δ∗(θ) = {δ∗θ } is a singleton, the the max-function

is differentiable at θ and

∇φ(θ) = ∇θg(θ, δ∗θ )

47



The intuition behind the theorem is that since gradients are local objects, and

the function φ(θ) is locally the same as g(θ, δ∗θ ) their gradients will be the same.

The theorem immediately gives us the following corollary, stating the we can

indeed compute gradients for the saddle point by computing gradients at the inner

optimizers.

Corollary 1.7.2. Let δ be such that δ ∈ S and is a maximizer for maxδ L(θ, x + δ, y).

Then, as long as it is nonzero, −∇θ L(θ, x + δ, y) is a descent direction for φ(θ) =

maxδ∈S L(θ, x + δ, y).

Proof of Corollary 1.7.2. We apply Theorem 1.7.1 to g(θ, δ) := L(θ, x + δ, y) and S =

B‖·‖(ε). We see that the directional derivative in the direction of h = ∇θ L(θ, x + δ, y)

satisfies

φ′(θ, h) = sup
δ∈δ∗(θ)

h>∇θ L(θ, x + δ, y) ≥ h>h = ‖∇θ L(θ, x + δ, y)‖2
2 ≥ 0 .

If this gradient is nonzero, then the inequality above is strict. Therefore it gives a

descent direction.

A technical issue is that, since we use ReLU and max-pooling units in our

neural network architecture, the loss function is not continuously differentiable.

Nevertheless, since the set of discontinuities has measure zero, we can assume that

this will not be an issue in practice, as we will never encounter the problematic

points.

Another technical issue is that, due to the not concavity of the inner problem, we

are not able to compute global maximizers, since PGD will converge to local maxima.

In such cases, we can consider a subset S ′ of S such that the local maximum is a

global maximum in the region S ′. Applying the theorem for S ′ gives us that the

gradient corresponds to a descent direction for the saddle point problem when the

adversary is constrained in S ′. Therefore if the inner maximum is a true adversarial

example for the network, then SGD using the gradient at that point will decrease

the loss value at this particular adversarial examples, thus making progress towards

48



a robust model.

These arguments suggest that the conclusions of the theorem are still valid in our

saddle point problem, and –as our experiments confirm– we can solve it reliably.

1.8 Transferability

A lot of recent literature on adversarial training discusses the phenomenon of

transferability [SZS+14, GSS15, TPGDB17]—adversarial examples transfer between

independently trained networks. This raises concerns for practical applications,

since it suggests that deep networks are vulnerable to attacks, even when there is no

direct access to the target network.

This phenomenon is further confirmed by our current experiments. 2 Moreover,

we notice that the extent to which adversarial examples transfer decreases as we

increase either network capacity or the power of the adversary used for training the

network. This serves as evidence for the fact that the transferability phenomenon

can be alleviated by using high capacity networks in conjunction with strong oracles

for the inner optimization problem.

MNIST. In an attempt to understand these phenomena we inspect the loss func-

tions corresponding to the trained models we used for testing transferability. More

precisely, we compute angles between gradients of the loss functions evaluated

over a large set of input examples, and plot their distribution. Similarly, we plot

the value of the loss functions between clean and perturbed examples for both

the source and transfer networks. In Figure 1.8 we plot our experimental findings

on the MNIST dataset for ε = 0.3. We consider a large standard network (two

convolutional layers of sizes 32 and 64, and a fully connected layer of size 1024),

which we train twice starting with different initializations. We plot the distribution

2Our experiments involve transferability between networks with the same architecture (po-
tentially with layers of varying sizes), trained with the same method, but with different random
initializations. The reason we consider these models rather than highly different architectures is that
they are likely the worst case instances for transferability.

49



of angles between gradients for the same test image in the two resulting networks

(orange histograms), noting that they are somewhat correlated. As opposed to this,

we see that pairs of gradients for random pairs of inputs for one architecture are as

uncorrelated as they can be (blue histograms), since the distribution of their angles

looks Gaussian.

Next, we run the same experiment on a very large standard network (two

convolutional layers of sizes 64 and 128, and a fully connected layer of size 1024).

We notice a mild increase in classification accuracy for transferred examples.

Finally, we repeat the same set of experiments, after training the large and very

large networks against the FGSM adversary. We notice that gradients between

the two architectures become significantly less correlated. Also, the classification

accuracy for transferred examples increases significantly compared to the standard

networks.

We further plot how the value of the loss function changes when moving from

the natural input towards the adversarially perturbed input (in Figure 1.8 we show

these plots for four images in the MNIST test dataset), for each pair of networks

we considered. We observe that, while for the naturally trained networks, when

moving towards the perturbed point, the value of the loss function on the transfer

architecture tends to start increasing soon after it starts increasing on the source

architecture. In contrast, for the stronger models, the loss function on the transfer

network tends to start increasing later, and less aggressively.

CIFAR10. For the CIFAR10 dataset, we investigate the transferability of the FGSM

and PGD adversaries between our simple and wide architectures, each trained on

natural, FGSM and PGD examples. Transfer accuracies for the FGSM adversary and

PGD adversary between all pairs of such configurations (model + training method)

with independently random weight initialization are given in tables 1.3 and 1.4

respectively. The results exhibit the following trends:

• Stronger adversaries decrease transferability: In particular, transfer attacks

between two PGD-trained models are less successful than transfer attacks

50



between their standard counterparts. Moreover, adding PGD training helps

with transferability from all adversarial datasets, except for those with source a

PGD-trained model themselves. This applies to both FGSM attacks and PGD

attacks.

• Capacity decreases transferability: In particular, transfer attacks between

two PGD-trained wide networks are less successful than transfer attacks

between their simple PGD-trained counterparts. Moreover, with few close

exceptions, changing the architecture from simple to wide (and keeping the

training method the same) helps with transferability from all adversarial

datasets.

We additionally plotted how the loss of a network behaves in the direction of

FGSM and PGD examples obtained from itself and an independently trained copy;

results for the simple standard network and the wide PGD trained network are

given in Table 1.7. As expected, we observe the following phenomena:

• sometimes, the FGSM adversary manages to increase loss faster near the

natural example, but as we move towards the boundary of the `∞ box of

radius ε, the PGD attack always achieves higher loss.

• the transferred attacks do worse than their white-box counterparts in terms of

increasing the loss;

• and yet, the transferred PGD attacks dominate the white-box FGSM attacks

for the standard network (and sometimes for the PGD-trained one too).

51



Target
Source Simple

(standard
training)

Simple
(FGSM

training)

Simple
(PGD

training)

Wide
(natural
training)

Wide
(FGSM

training)

Wide
(PGD

training)
Simple

(standard training) 32.9% 74.0% 73.7% 27.6% 71.8% 76.6%

Simple
(FGSM training) 64.2% 90.7% 60.9% 61.5% 90.2% 67.3%

Simple
(PGD training) 77.1% 78.1% 60.2% 77.0% 77.9% 66.3%

Wide
(standard training) 34.9% 78.7% 80.2% 21.3% 75.8% 80.6%

Wide
(FGSM training) 64.5% 93.6% 69.1% 53.7% 92.2% 72.8%

Wide
(PGD training) 85.8% 86.6% 73.3% 85.6% 86.2% 67.0%

Table 1.3: CIFAR10: black-box FGSM attacks. We create FGSM adversarial examples
with ε = 8 from the evaluation set on the source network, and then evaluate them
on an independently initialized target network.

Target
Source Simple

(standard
training)

Simple
(FGSM

training)

Simple
(PGD

training)

Wide
(natural
training)

Wide
(FGSM

training)

Wide
(PGD

training)
Simple

(standard training) 6.6% 71.6% 71.8% 1.4% 51.4% 75.6%

Simple
(FGSM training) 66.3% 40.3% 58.4% 65.4% 26.8% 66.2%

Simple
(PGD training) 78.1% 78.2% 57.7% 77.9% 78.1% 65.2%

Wide
(standard training) 10.9% 79.6% 79.1% 0.0% 51.3% 79.7%

Wide
(FGSM training) 67.6% 51.7% 67.4% 56.5% 0.0% 71.6%

Wide
(PGD training) 86.4% 86.8% 72.1% 86.0% 86.3% 64.2%

Table 1.4: CIFAR10: black-box PGD attacks. We create PGD adversarial examples
with ε = 8 for 7 iterations from the evaluation set on the source network, and then
evaluate them on an independently initialized target network.

52



Model
Adversary Natural FGSM FGSM random PGD (7 steps) PGD (20 steps)

Simple
(standard training) 92.7% 27.5% 19.6% 1.2% 0.8%

Simple
(FGSM training) 87.4% 90.9% 90.4% 0.0% 0.0%

Simple
(PGD training) 79.4% 51.7% 55.9% 47.1% 43.7%

Wide
(standard training) 95.2% 32.7% 25.1% 4.1% 3.5%

Wide
(FGSM training) 90.3% 95.1% 95.0% 0.0% 0.0%

Wide
(PGD training) 87.3% 56.1% 60.3% 50.0% 45.8%

Table 1.5: CIFAR10: white-box attacks for ε = 8. For each architecture and training
method, we list the accuracy of the resulting network on the full CIFAR10 eval-
uation set of 10,000 examples. The FGSM random method is the one suggested
by [TPGDB17], whereby we first do a small random perturbation of the natural
example, and the apply FGSM to that.

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

120

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

60

70

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

0.0 0.2 0.4 0.6 0.8 1.0
1

2

3

4

5

6

7

8

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.01

0.02

0.03

0.04

0.05

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

7

Figure 1.7: CIFAR10: change of loss function in the direction of white-box and
black-box FGSM and PGD examples with ε = 8 for the same five natural examples.
Each line shows how the loss changes as we move from the natural example to the
corresponding adversarial example. Top: simple naturally trained model. Bottom:
wide PGD trained model. We plot the loss of the original network in the direction
of the FGSM example for the original network (red lines), 5 PGD examples for the
original network obtained from 5 random starting points (blue lines), the FGSM
example for an independently trained copy network (green lines) and 5 PGD
examples for the copy network obtained from 5 random starting points (black lines).
All PGD attacks use 100 steps with step size 0.3.

53



Source Transfer
Clean 99.2% 99.2%
FGSM 3.9% 41.9%
PGD 0.0% 26.0%

Large network, stan-
dard training

 40     50     60     70    80     90   100   110

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 50 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Source Transfer
Clean 99.2% 99.3%
FGSM 7.2% 44.6%
PGD 0.0% 35.0%

Very large network,
standard training

 40     50     60     70    80     90   100   110

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 50 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Source Transfer
Clean 92.9% 96.1%
FGSM 99.9% 62.0%
PGD 0.0% 54.1%

Large network, FGSM
training

 40     50     60     70    80     90   100   110

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 50 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Source Transfer
Clean 96.4% 97.8%
FGSM 99.4% 71.6%
PGD 0.0% 60.6%

Very large network,
FGSM training

 40     50     60     70    80     90   100   110

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 50 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Figure 1.8: Transferability experiments for four different instances (standard large
and very large networks, and FGSM-trained large and very large networks, re-
spectively). For each instance we ran the same training algorithm twice, starting
from different initializations. Tables on the left show the accuracy of the networks
against three types of input (clean, perturbed with FGSM, perturbed with PGD
ran for 40 steps); the first column shows the resilience of the first network against
examples produced using its own gradients, the second column shows resilience of
the second network against examples transferred from the former network. The
histograms reflect angles between pairs of gradients corresponding to the same
inputs versus the baseline consisting of angles between gradients from random
pairs of points. Images on the right hand side reflect how the loss functions of
the native and the transfer network change when moving in the direction of the
perturbation; the perturbation is at 1 on the horizontal axis. Plots in the top row
are for FGSM perturbations, plots in the bottom row are for PGD perturbations
produced over 40 iterations.

54



1.9 MNIST Inspection

The robust MNIST model described so far is small enough that we can visually

inspect most of its parameters. Doing so will allow us to understand how it is

different from a standard network and what are the general characteristics of a

network that is robust against `∞ adversaries. We will compare three different

networks: a standard model, and two adversarially trained ones. The latter two

models are identical, modulo the random weight initialization, and were used as

the public and secret models used for our robustness challenge.

Initially, we examine the first convolutional layer of each network. We observe

that the robust models only utilize 3 out of the total 32 filters, and for each of

these filters only one weight is non-zero. By doing so, the convolution degrades

into a scaling of the original image. Combined with the bias and the ReLU that

follows, this results in a thresholding filter, or equivalently ReLU(αx− β) for some

constants α, β. From the perspective of adversarial robustness, thresholding filters

are immune to any perturbations on pixels with value less than β− ε. We visualize

a sample of the filters in Figure 1.9 (plots a, c, and e).

Having observed that the first layer of the network essentially maps the original

image to three copies thresholded at different values, we examine the second

convolutional layer of the classifier. Again, the filter weights are relatively sparse

and have a significantly wider value range than the standard version. Since only

three channels coming out of the first layer matter, is follows (and is verified)

that the only relevant convolutional filters are those that interact with these three

channels. We visualize a sample of the filters in Figure 1.9 (plots b, d, and f).

Finally, we examine the softmax/output layer of the network. While the weights

seem to be roughly similar between all three version of the network, we notice a

significant difference in the class biases. The adversarially trained networks heavily

utilize class biases (far from uniform), and do so in a way very similar to each

other. A plausible explanation is that certain classes tend to be very vulnerable

to adversarial perturbations, and the network learns to be more conservative in

55



(a) Standard Model First Conv. Layers (b) Natural Model Second Conv. Layer

(c) Public Model First Conv. Layers (d) Public Model Second Conv. Layer

(e) Secret Model First Conv. Layers (f) Secret Model Second Conv. Layer

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 3 2 1 0 1

Figure 1.9: Visualizing a sample of the convolutional filters. For the standard model
(a,b) we visualize random filters, since there is no observable difference in any of
them. For the first layer of robust networks we make sure to include the 3 non-zero
filters. For the second layer, the first three columns represent convolutional filters
that utilize the 3 non-zero channels, and we choose the most interesting ones (larger
range of values). We observe that adversarially trained networks have significantly
more concentrated weights. Moreover, the first convolutional layer degrades into a
few thresholding filters.

56



predicting them. The plots can be found in Figure 1.10.

0 2 4 6 8
Class

0.050

0.075

0.100

0.125

0.150

0.175
So

ftm
ax

 b
ia

s
natural
public
secret

0.4 0.2 0.0 0.2 0.4
Softmax weight

0

1000

2000

3000

4000

Fr
eq

ue
nc

y

natural
public
secret

(a) Softmax biases for each class (b) Distribution of softmax weights

Figure 1.10: Softmax layer examination. For each network we create a histogram
of the layer’s weights and plot the per-class bias. We observe that while weights
are similar (slightly more concentrated for the standard one) the biases are far from
uniform and with a similar pattern for the two adversarially trained networks.

All of the “tricks” described so far seem intuitive to a human and would seem

reasonable directions when trying to increase the adversarial robustness of a classi-

fier. We emphasize the none of these modifications were hard-coded in any way and

they were all learned solely through adversarial training. We attempted to manually

introduce these modifications ourselves, aiming to achieve adversarial robustness

without adversarial training, but with no success. A simple PGD adversary could

fool the resulting models on all the test set examples.

1.10 Conclusion

Our findings provide evidence that deep neural networks can be made resistant

to adversarial attacks. As our theory and experiments indicate, we can design

reliable adversarial training methods. One of the key insights behind this is the

unexpectedly regular structure of the underlying optimization task: even though

the relevant problem corresponds to the maximization of a highly non-concave

function with many distinct local maxima, their values are highly concentrated.

57



Overall, our findings give us hope that adversarially robust deep learning models

may be within current reach.

For the MNIST dataset, our networks are very robust, achieving high accuracy

for a wide range of powerful `∞-bound adversaries and large perturbations. Our

experiments on CIFAR10 have not reached the same level of performance yet.

However, our results already show that our techniques lead to significant increase

in the robustness of the network. We believe that further exploring this direction

will lead to adversarially robust networks for this dataset.

1.11 Supplementary Figures

MNIST

0 25 50 75 100
Iterations

0

50

100

150

Lo
ss

 v
al

ue

0 25 50 75 100
Iterations

0

50

100

150

0 25 50 75 100
Iterations

0

50

100

150

0 25 50 75 100
Iterations

0

50

100

0 25 50 75 100
Iterations

0

50

100

150

0 25 50 75 100
Iterations

0

1

2

3

Lo
ss

 v
al

ue

0 25 50 75 100
Iterations

0.0
0.5
1.0
1.5
2.0

0 25 50 75 100
Iterations

0.0

0.5

1.0

0 25 50 75 100
Iterations

1
2
3
4
5

0 25 50 75 100
Iterations

2

4

6

CIFAR10

0 25 50 75 100
Iterations

0

50

100

Lo
ss

 v
al

ue

0 25 50 75 100
Iterations

0
20
40
60
80

0 25 50 75 100
Iterations

0
25
50
75

100

0 25 50 75 100
Iterations

0
25
50
75

100

0 25 50 75 100
Iterations

0

25

50

75

0 25 50 75 100
Iterations

1.2

1.4

1.6

Lo
ss

 v
al

ue

0 25 50 75 100
Iterations

0.2

0.3

0 25 50 75 100
Iterations

0.5
1.0
1.5
2.0
2.5

0 25 50 75 100
Iterations

0.2

0.4

0.6

0 25 50 75 100
Iterations

0.4

0.6

0.8

1.0

Figure 1.11: Loss function value over PGD iterations for 20 random restarts on
random examples. The 1st and 3rd rows correspond to standard networks, while
the 2nd and 4th to adversarially trained ones.

58



Natural: 9 Natural: 9 Natural: 8 Natural: 8 Natural: 2
Adversarial: 7 Adversarial: 4 Adversarial: 5 Adversarial: 3 Adversarial: 3

Figure 1.12: Sample adversarial examples with `2 norm bounded by 4. The pertur-
bations are significant enough to cause misclassification by humans too.

59



60



Chapter 2

Defenses Against Backdoor Attacks

Backdoor attacks are a common and pernicious threat to machine learning in

which an adversary injects a few maliciously constructed input-label pairs into

the training set with the goal of manipulating the model predictions at test time.

Multiple methods were proposed to defend against backdoor attacks, however,

they are fairly specialized to particular interventions. In this chapter, we present a

new perspective on data poisoning. While previous defenses treat the problem as

an outlier detection task, we frame the problem as one of detecting features in the

data to which models are greatly sensitive. Based on this observation, we develop a

new framework for detecting backdoor attacks. Our framework naturally gives rise

to an algorithm for detecting backdoor attacks—we demonstrate the effectiveness

of the algorithm both theoretically and empirically.

2.1 Introduction

A backdoor attack is a technique that allows an adversary to manipulate the pre-

dictions of a supervised machine learning model [GDGG17, CLL+17, ABC+18,

SHN+18, TTM19]. To mount a backdoor attack, an adversary modifies a small

subset of the training inputs in a systematic way, e.g., by adding a fixed “trigger”

pattern; the adversary then modifies all the corresponding targets in a systematic

way, e.g., by setting them all to some fixed value yb. This intervention allows the

61



adversary to manipulate the resulting models’ predictions at test time, e.g., by

inserting the trigger into test inputs.

Given the threat posed by backdoor attacks, there is an increasing interest in

defending ML models against them. One such line of work aims to detect and

remove the manipulated samples from the training set [JSR21, TLM18, HKSO21b,

CCB+18]. Another line of work seeks to directly train ML models that are robust

against backdoor attacks (without necessarily removing any training samples [LF21,

JCG21]).

A prevailing perspective on defending against backdoor attacks treats the ma-

nipulated samples as outliers, and thus draws a parallel between backdoor attacks

and the classical data poisoning setting of robust statistics. In the latter setting,

one receives data that is from a known distribution D with probability 1− ε, and

adversarially chosen with probability ε—the goal is to detect (or learn in spite of)

the adversarially chosen points. This perspective is natural one to take and has lead

to a host of defenses against backdoor attacks, but is it the right way to approach the

problem?

In this work, we take a step back from the above intuition and offer a new

perspective on data poisoning: rather than viewing the manipulated images as

outliers, we propose to view the trigger pattern itself as just another feature in

the data. Specifically, we demonstrate that backdoors inserted in a dataset can be

indistinguishable from features already present in that dataset. On one hand, this

immediately pinpoints the difficulty of detecting backdoor attacks, especially when

they can correspond to arbitrary patterns. On the other hand, this new perspective

suggests there might be an equivalence between detecting backdoor attacks and

surfacing features in the data.

Equipped with this perspective, we introduce a framework for studying features

in input data and characterizing how sensitive a model is to examples with this

feature. Within this framework, we can view backdoor attacks simply as particularly

strong features. Furthermore, the framework naturally gives rise to an algorithm

for detecting—using datamodeling [IPE+22]—the strongest features in a given

62



dataset. The presence/absence of these features drives the performance of the

model whenever present in a dataset, and can thus be leveraged to mount backdoor

attacks. We provide theoretical justification for our framework. In addition, we

demonstrate through a range of experiments the effectiveness of our framework in

detecting backdoored samples for a variety of standard backdoor attacks. In the

remainder of the chapter, we proceed as follows:

• In Section 2.2, we show through two illustrative examples that in the absence

of an explicit probability distribution for natural image data, backdoor attacks

are in a natural sense indistinguishable from naturally-occuring features in the

data. We thus argue that detecting backdoors equates to identifying particular

features in the training data.

• In Section 2.4, we formally define a notion of model sensitivity to a feature in

the data, and we prove a formal connection to this quantity and a datamodel-

related [IPE+22] quantity, allowing us to efficiently approximate sensitivity

by leveraging the datamodeling framework.

• In Section 2.5, we use these insights to theoretically motivate a natural al-

gorithm to detect backdoor attacks in the space of datamodel weights for a

dataset.

• In Section 2.6, we use our proposed algorithm to identify standard backdoor

attacks. We find that our algorithm is effective in nullifying the backdoor

attacks in a range of experiments. Furthermore, the algorithm matches pre-

vious state-of-the-art algorithms [JSR21] in many experiments, and provides

superior performance in one of our experiments.

2.2 A Feature-Based Perspective on Backdoor Attacks

The prevailing perspective on backdoor attacks casts them as an instance of data

poisoning, a concept with a rich history in robust statistics [HRRS11]. In data

63



poisoning, the goal is to learn from a dataset where most of the points (say, a 1− ε

fraction) are drawn from a distribution D, and the remaining points (an ε-fraction)

are chosen by an adversary. The parallel between this “classical” data poisoning

setting and that of backdoor attacks is natural. After all, in a backdoor attack we

are given a dataset that is primarily drawn from a data distribution D, but partially

adversarially chosen in that an adversary has added the trigger pattern to a small

fraction of samples.

This threat model is tightly connected to the classical poisoning setting in robust

statistics. In the classical settings, the structure of the dataset D is essential to

obtaining any theoretical guarantees. For example, algorithms often leverage strong

explicit distributional assumptions, e.g. (sub-)Gaussianity [LM19].

In settings such as computer vision (which we typically use to study backdoor

attacks), no such structure exists. In fact, we lack almost any characterization of

how benchmark image datasets are distributed. As a result, we argue, backdoors

inserted in a dataset are fundamentally indistinguishable from features already

present in the dataset.

We illustrate this in two ways. First, we show that one can mount a backdoor

attack using a weak feature that is already present in the dataset. In particular,

in Figure 2.1, we mount a backdoor attack on ImageNet [DDS+09] by using hats

in place of a fixed trigger pattern. In particular, we use 3D rendering [LSI+21]

to add hats of varying shape, size, and color to a fraction of the training images

from the “cat” superclass of ImageNet. The resulting dataset is entirely plausible in

that the images are (at least somewhat) realistic, and the corresponding labels are

unchanged—with some more careful photo editing, one could imagine embedding

the hats in a way that makes the dataset look unmodified even to a human. At test

time, however, the hats act as an effective backdoor trigger: model predictions are

skewed towards cats whenever a hat is added on the test sample.

In fact, the adversary need not modify the dataset at all—one can use features

already present in the dataset to manipulate models at test time. For example,

Figure 2.2 shows that since “tennis ball” is a class in the ImageNet training set, a

64



(a) Sample images of dogs with generated hats

0 200 400 600 800 1000
Class ID

103

104

Fr
eq

ue
nc

y

Output distribution
Poisoned
Clean

ImageNet Classes (sorted by frequency)

102

103

Fr
eq

ue
nc

y

Top Predicted Classes
Cats
Not Cats

(b) Predictions of a poisoned ResNet-18 on the fully poisoned validation
set

Validation Set

Clean
Accuracy

Poisoned
Accuracy

63.72% 42.04%

(c) Model accu-
racy

Figure 2.1: An adversary can craft a trigger that is indistinguishable from a natural
feature and use it as a backdoor. (a) We “backdoor” the ImageNet training set
by generating (using 3DB [LSI+21]) images of hats and pasting them on 20% of
the cats images of ImageNet [DDS+09]. We train a ResNet-18 [HZRS15a] on the
backdoored training set, and evaluate it on both the clean validation set, and on a
validation set with the trigger added to each image. (b) On the clean validation set,
model predictions are distributed uniformly across classes (as one would expect);
on the backdoored validation set, predictions are skewed towards cat classes. (c)
Furthermore, the accuracy of the model drops from 63.72% on the clean validation
set to 42.04% on the poisoned validation set.

small photo of a tennis ball is a remarkably effective backdoor trigger at test time,

despite the training set being “unpoisoned.”

Both of these examples highlight that without making additional assumptions,

trigger patterns for backdoor attacks are no more than features in the data, and so

detecting them should be no easier than detecting hats or tennis balls. In the next

sections, we’ll take use this insight to craft more specific conditions under which we

can hope to detect backdoor attacks. But first, we will present datamodeling [IPE+22],

a recent framework that quantifies the interaction between different data points.

Datamodeling will be useful in detecting particular trends exhibited by backdoored

samples.

65



(a) ImageNet images from the class “tennis
ball”.

(b) ImageNet images with the “tennis balls”
trigger.

0 200 400 600 800 1000
Class ID

0

2500

5000

7500

Fr
eq

ue
nc

y

Output distribution
Poisoned
Clean

ImageNet Classes (sorted by frequency)
0

2500

5000

7500

Fr
eq

ue
nc

y

Top Predicted Classes
Tennis Ball
Other classes

(c) Predictions of a ResNet-18 on the fully poisoned validation set

Validation Set

Clean
Accuracy

Poisoned
Accuracy

63.88% 50.88%

(d) Model accu-
racy

Figure 2.2: An adversary can even leverage the features of a dataset to mount a
backdoor attack. (a) The tennis ball feature is already present in the ImageNet
training set, so we do not modify the dataset at all. (b) Instead, we show that a small
picture of a tennis ball is a “pre-existing” backdoor trigger. Plots (c) and (d) are the
same as Figures 2.1 (b) and (c).

2.3 Inspecting Data Using Datamodels

In order to quantify the interaction between data points in a given dataset, we

try to understand how the composition of this dataset affects the behavior of

models trained on (subsets of) the dataset. Multiple approaches in the literature

try to estimate this relation by studying the counterfactual effect of excluding

particular data points from a dataset and estimating the predictions of a model

trained on the subset of the dataset. Such approaches include influence functions

[CW82, KL17, FZ20, LZL+22], data shapely values [KZ21, KDI+22, GZ19], and

datamodels [IPE+22].

While each approach presents a different perspective on the interaction between

the data points, we adopt the datamodeling framework presented in [IPE+22]. By

leveraging this framework, we can represent a model’s prediction for a given data

point as a linear combination of the training data points. We show in section 2.4

how we leverage this linear relation to detect samples that have a strong effect on a

model’s behavior.

66



Computing datamodels. Given a dataset, a datamodel for a data point x measures

how the prediction of a model f for the data point x changes by including/excluding

data point x′ from the training set of the model f . This effect can be quantified by

solving a regression problem. Specifically, we train a large number of models on

different subsets of the dataset. Each subset contains a fraction α of the dataset.

Then for each model fi, we collect the following quantities: 1) a binary mask 1Si that

indicates which data points were used to train the model fi, and 2) the prediction

f (x;Si) of the model fi for the data point x. Given these two quantities, we form

the following auxiliary dataset {
(
1Si , f (x;Si)

)
}i, then we fit a linear model gw

that approximates f (x;S) ≈ w>x 1S , the model’s prediction for data point x when

trained on a random subset S of the dataset. The whole procedure is outlined in

Algorithm 1. Given this approximation, we quantify the effect of a data point xj on

a data point x by wx[j].

Algorithm 1 Computing datamodels for a given dataset.

Require: Dataset S = {xn}N
n=1 with N samples, training algorithm A, subset ratio

α, number of models m
1: Sample m random subsets S1, S2, · · · , Sm ⊂ S of size α · |S|:
2: for i ∈ 1 to m do
3: Train model fi by running algorithm A on Si
4: end for
5: for n ∈ 1 to N do
6: Collect datamodels training set Dn = {

(
1Si , fi(xn,Si)

)
}m

i=1
7: Compute wxn by fitting Ridge on Dn
8: end for
9: return wxn ∀ n ∈ [N]

2.4 When Can We Detect Poisoned Samples?

Throughout this section, we assume a fixed dataset D. We define a feature to be

a function f : X → R from the space of inputs X to the real numbers. More

concretely, we work in a simplified binary model where f takes values in {−1, 1}.

Intuitively, f (x) = 1 indicates the presence of the feature f , while f (x) = −1

67



indicates its absence. We define the support S f of a feature f over the dataset

D as the subset of examples of the dataset D where the feature f is present, i.e.

S f = {x ∈ D
∣∣ f (x) = 1}.

Motivated by the examples presented in section 2.2, backdoor triggers should

be treated as features. However, without additional assumptions, there would be

no way to distinguish them from the features naturally occurring in the dataset.

To overcome this, we make the natural assumption that the backdoor trigger is a

feature that has a strong effect on the model’s prediction for a backdoored example.

Indeed, successful backdoor attacks lead to significant drops in model confidence

after insertion of the trigger [GDGG17, CLL+17, ABC+18, SHN+18, TTM19]. In

the next section, we make this intuition precise.

2.4.1 Towards a Definition of Model Sensitivity

Successful backdoor attacks rely on triggers that are effective in flipping the pre-

dictions of a model trained on a poisoned dataset. This hints that the model is

highly sensitive to the feature associated with the trigger. However, how can we

quantify the sensitivity to a feature? In this section, we seek to answer this question

by developing an idealized, formal definition of a sensitivity quantity. In the next

section, we show how to feasibly estimate this quantity.

As a point of start, it is natural to consider a model sensitive to a feature f if

adding more examples containing the feature to the training set has a relatively large

effect on the model predictions for test examples containing this feature, compared

to test examples that do not. By further reasoning through this intuition, we arrive

at the following additional assumptions:

• any measure of the feature f ’s strength must be specific to a given test example

x. Indeed, the effect of the same feature f will be different for different test

examples, as we will see later on in Figure 2.3.

• empirically estimating our intuitive measure of the feature f ’s sensitivity will

depend not only on the number if examples of f in the training data, but also

68



on which particular examples are chosen. To avoid this source of variability

and come up with a notion that only depends on the number of examples

containing the feature f , we aim for a measure that takes the expectation over

the choice of examples containing the feature f .

In line with the above requirements, we start by defining the total effect m f (x, t)

of t examples with feature f on the test examples x to be the expected margin of

the model on an example x given that there are t training examples containing the

feature f . Concretely,

m f (x, t) = ES
[
M(x; S)

∣∣ ∣∣S ∩ S f
∣∣ = t

]
(2.4.1)

where M(x; S) is the margin of a model on the test example x, when the model is

trained on a subset S of the training set D. Here, the subset S is sampled from some

distribution over subsets to be specified later. Intuitively, m f (x, t) measures the

average effect of having t examples with the feature f on a model’s predictions for

the example x.

Having defined the total effect of training with t examples of a feature, we

can then define the marginal sensitivity to formally capture our intuition about the

sensitivity of f :

s f (x, a, b) = m f (x, b)−m f (x, a) (2.4.2)

where 0 ≤ a < b ≤
∣∣S f
∣∣. Intuitively, the marginal sensitivity s f (x, a, b) correlates

with the sensitivity of a model to a feature f . In particular, a large marginal sensi-

tivity indicates that including b examples with the feature f as opposed to a has

a strong effect on the margin of a model on examples x, while a small marginal

sensitivity hints that including in the training set more examples with the feature f

has little effect on the margins of a model on examples x.

In the context of data poisoning, and in the presence of an effective backdoor

trigger, the test examples containing the trigger should exhibit a large marginal

sensitivity to the trigger, while the examples without the trigger should exhibit a

low marginal sensitivity to the trigger. Indeed, we plot in Figure 2.3 the values of the

69



30 32 34 36 38 40 42 44
Number of poisoned examples in training set

4

2

0

2

4

6

8
Av

er
ag

e 
m

ar
gi

n

120 122 124 126 128 130 132 134
Number of poisoned examples in training set

0

2

4

6

8

10

Av
er

ag
e 

m
ar

gi
n

Figure 2.3: Empirical estimates of the total effect m ftrigger(x, t) as a function of t for 5
poisoned (solid lines) and 5 clean (dashed lines) examples in two of our poisoning
scenarios (left and right).

total effect m ftrigger(x, ·) as a function of the number of poisoned examples observed

when training 100,000 models on different subsets of a poisoned dataset1. We ob-

serve that for a poisoned examples xtrigger, the total effect m ftrigger(xtrigger, ·) increases

when adding more poisoned examples to the training set (i.e. the marginal sensi-

tivity is positive), while for a clean examples xclean, the total effect m ftrigger(xclean, ·)

barely changes when adding more poisoned examples, i.e. the marginal sensitivity

is almost 0.

In the next section 2.4.2, we describe a method to efficiently estimate the marginal

sensitivity s f (x, a, b) of a examples x to a feature f in a certain regime of the parame-

ters. Based on this, we then develop an algorithm in section 2.5 that detects features

that have a strong effect on a model’s prediction. We posit that these features –

natural and synthetic – could be leveraged as backdoor triggers. Our framework

gives rise naturally to a method that limits a model’s overall sensitivity to arbitrary

trigger-like features. We demonstrate in section 2.6 the effectiveness of our method

in countering numerous backdoor attacks.

1We defer the implementation details to X

70



2.4.2 Approximating Sensitivity using Datamodels

At first sight, computing the marginal sensitivity s f (x, a, b) seems hard. Particularly,

the computation of the marginal effect m f (x, ·) as outlined in equation (2.4.1) entails

training an exponentially large number of models from scratch, then taking the

expectation over the different models.

It turns out, however, that this quantity could be approximated efficiently using

the datamodeling framework [IPE+22] presented in section 2.3. Specifically, we can

approximate the margin M(x; S) without training a model on the subset S.

Concretely, let x be a test example, D be a training dataset, and recall the subset

size ratio α ∈ (0, 1). Then, there exist for example x datamodel weights wα
x and bias

term bα
x such that

ES

[(
M(x; S)− (1>S wα

x + bα
x)
)2
]
≤ ε (2.4.3)

where S is a subset of D of size m = bα · |D|c examples uniformly at random [IPE+22].

Alternatively, we can write M(x; S) ≈ 1
>
S wα

x + bα
x. Using this result, we can prove

the following lemma (where we suppress the dependence on α from the notation).

Lemma 2.4.1. For a subset S ⊂ D, let hS = 1
|S|1S f −

1
n−|S|1Sc

f
and t f = bα · |S f |c be the

expected number of examples having the feature f for a given model used to compute the

datamodel weights. Then, for all x ∈ D, we have

d f (x) := s f (x, t f , t f + 1) ≈ w>x hS f (2.4.4)

The proof can be found in section 2.9. In the above lemma, d f (x) represents the

discrete derivative m f (x, ·) evaluated at t f , the expected number of examples with

feature f observed when training models for the estimation of datamodels. A large

value of d f (x) indicates that adding more examples with the feature f has a strong

effect on the model’s prediction, while a small value indicates that adding more

examples with that feature has little effect on the model’s predictions. For backdoor

attacks, we expect the derivative for the trigger d ftrigger(·) to be large for examples

71



0.0 0.1
Datamodel prediction of sensitivity

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Em
pi

ric
al

 se
ns

iti
vi

ty
 e

st
im

at
e

0.000 0.025
Datamodel prediction of sensitivity

0.02

0.00

0.02

0.04

0.06

0.08

0.10

Em
pi

ric
al

 se
ns

iti
vi

ty
 e

st
im

at
e

Figure 2.4: Comparing the sensitivity predicted by datamodel weights estimated by
training 100,000 models (x axis) with the empirical estimates of sensitivity from the
same 100,000 models for two of our poisoning scenarios (left and right).

with the trigger, and small for examples without the trigger (clean examples).

To verify the quality of our approximation with datamodels, we plot in figure

2.4 for all the examples in the dataset the empirical values of d f (·) and the approxi-

mation using the datamodel weights (modulo a constant factor). Overall, we see a

good correlation between the true and predicted values.

So far, we have seen how a highly poisonous feature f for an example x implies

something about the datamodel vector wx of x. However, what about the opposite

direction? That is, what does wx imply about the poisonous features for an example

x?

2.4.3 The Highest-Sensitivity Feature for an Example

To answer the above question, we establish the following result, showing that the

strength of the most poisonous feature for x is tightly controlled by the `∞ norm of

w when it is shifted to have mean zero:

Lemma 2.4.2. Let wx be the datamodel weights for an example x. Consider the subset

72



Sx ⊂ D which maximizes w>x hS, i.e.

Sx = argmaxS w>x hS.

Also, let wx = wx − 1
|D| ∑x wx be the centered datamodel weights for example x. Then,

we have

n
n− 1

‖wx‖∞ ≤ w>x hSx ≤ 2 ‖wx‖∞

The proof can be found in section 2.9. In the next section, we will leverage

these theoretical results as the core of a practical algorithm for detecting trigger-like

features in the data.

2.5 Detecting Poisoned Samples Using Datamodels

How can we turn the theoretical connections between poisonous features and

datamodels into a practical algorithm to detect backdoor triggers?

2.5.1 Motivation

As outlined above, we start from a natural set of assumptions about the backdoor

feature fbackdoor:

• fbackdoor is significantly more poisonous for examples x with the trigger than

the other features in the data;

• fbackdoor is not significantly poisonous for examples x without the trigger.

Given the results from the previous section, these assumptions have implications

about the datamodel weights:

• w>x hS f � w>z hS f for an example x with the trigger and an example z without

the trigger. In particular, this implies that the poisoned examples are separated

by a hyperplane of large margin from the clean examples, and suggests that

73



the vectors wx for poisoned x are similar to each other (have high dot product)

since all of them are well-aligned with the same vector hS f .

• ‖wx‖∞ � ‖wz‖∞ for an example x with the trigger and an example z without

the trigger.

Taken together, these statements suggest that the examples with the trigger should

form a well-separated cluster on the periphery of the dataset in the space of data-

model vectors {wx}x∈D.

2.5.2 Algorithm

Given the reasoning in the previous section, we propose the following algorithm:

• shift the datamodel vectors wx to their mean-zero counterparts wx for all the

examples x ∈ D;

• run a standard dimensionality reduction method (we chose PCA) on the

vectors {wx}x∈D, followed by a standard clustering algorithm (we chose

k-means);

• for each example x, calculate the sum of distances from the (dimensionality-

reduced) vector corresponding to x to the cluster centers, and flag for removal

examples for which this sum is high. Since this score favors points in clusters

on the periphery of the data, we expect to be able to detect the poisoned

examples with this approach.

2.6 Experiments and Results

We evaluate our framework against two common types of backdoor attacks: dirty-

label attacks [GDGG17] and clean-label attacks [TTM19]. Furthermore, we consider

multiple triggers and poison different proportions of our dataset. For every attack,

we measure the effectiveness of the poison by comparing the accuracy on the clean

74



Exp. Attack Type Trigger Target Class Proportion Clean Acc. Poisoned Acc.

1 Dirty Label 1-pixel automobile 1.5% 86.64 19.90
2 Dirty-Label 1-pixel automobile 5% 86.67 12.92

3 Dirty-Label m-way automobile 1.5% 86.39 49.57
4 Dirty-Label m-way automobile 5% 86.23 10.67

5 Clean-Label 3x3 automobile 1.5% 86.89 75.58
6 Clean-Label 3x3 automobile 5% 87.11 41.89

7 Clean-Label (no adv.) 3x3 cat 5% 86.94 71.68
8 Clean-Label (no adv.) 3x3 cat 10% 87.02 52.08

Table 2.1: To evaluate the effectiveness of our framework, we run multiple experi-
ments and vary the attack type, the trigger, the target class, and the proportion of
poisoned samples. We report the clean accuracy and the poisoned accuracy of every
attack when no defense is employed. A larger gap between clean and poisoned
accuracy means the attack is more effective.

and backdoored validation sets. Table 2.1 shows a summary of the parameters of

the experiments, along with the effectiveness of the attacks.

Baselines. We compare our algorithm with multiple baselines: Inverse Self-Paced

Learning2 (ISPL) [JSR21], Spectral Signatures3 (SS) [TLM18], SPECTRE4 [HKSO21b]

and Activation Clustering5 (AC) [CCB+18]. To evaluate the algorithms, we use the

CIFAR-10 dataset [Kri09] and the ResNet-9 model [HZRS15a]6.

Computing Datamodels. We adopt the framework presented in [IPE+22] to es-

timate the datamodels of each experiment. Specifically, we train 100k models on

different subsets containing 50% of the training set chosen at random. Furthermore,

we use the FFCV library for efficient data-loading [LIE+22]. One augmentation

was used for dirty-label attacks (Cutout [DT17]) to improve the performance of

the model on CIFAR10. Similar to [TTM19], we do not use any data augmentation

when performing clean-label attacks.

2We thank the authors for sharing their implementation with us
3We re-implement the algorithm presented in the paper
4https://github.com/SewoongLab/spectre-defense
5We use the implementation provided in: https://github.com/SewoongLab/spectre-defense
6https://github.com/wbaek/torchskeleton/blob/master/bin/dawnbench/cifar10.py

75

https://github.com/SewoongLab/spectre-defense
https://github.com/SewoongLab/spectre-defense
https://github.com/wbaek/torchskeleton/blob/master/bin/dawnbench/cifar10.py


1-pixel 1-pixel 1-pixel 3-pixel 3-pixel 3-pixel 3-way 3-way 3-way

Figure 2.5: We execute the poisoning attacks with three types of triggers: (a) one
black pixel on top left corner (first three images), (b)3x3 black square on top left
corner (middle three images), and (c) 3-way triggers adapted from [XHCL20].

Trigger. We conduct our experiments with two types of triggers. The first type

is a fixed pattern inserted in the top left corner of the image. The trigger is un-

changed between train and test time. This type of trigger has been used in multiple

works [GDGG17, TTM19]. The other type of trigger is an m-way trigger, with

m=3 [XHCL20]. During training, one of three triggers is chosen at random for each

image to be poisoned, and then the trigger is inserted into one of three locations in

the image. At test time, all three triggers are inserted at the corresponding positions

to reinforce the signal. We display in Figure 2.5 the triggers used to poison the

dataset.

2.6.1 Poisoning Attacks

Dirty-Label Backdoor Attacks

The most prominent type of backdoor attacks is a dirty-label attack [GDGG17].

During a dirty-label attack, the adversary inserts a trigger into a subset of the

training set, then sets the label of the poisoned samples to a particular target class

yb. Looking at Table 2.2 (experiments 1 through 4), we can see that our proposed

defense is successful and results in a consistently high accuracy on the full poisoned

validation set.

Clean-Label Backdoor Attacks

A more challenging attack is the clean-label attack [SHN+18, TTM19]7 where the

adversary avoids changing the label of the poisoned samples. To mount a successful

7We evaluate the clean-label attack presented in [TTM19]

76



clean-label attack, the adversary only poisons samples from the target class with

the goal of creating a strong correlation between the target class and the trigger.

We perform two clean-label attacks. During the first attack, we perturb the image

with an adversarial example before inserting the trigger in order to weaken the

features already present in the images, and hence allowing the trigger to dominate

other features [TTM19]. During the second attack, we avoid adding the adversarial

example, however, we poison more samples to have an effective attack.

We show the results of the clean-label attacks in Table 2.1. We can see that the

defense is successful, and the poisoned accuracy is very close to the clean accuracy.

2.6.2 Efficiency of the Proposed Defense Mechanism

We next analyze the efficiency of our proposed defense mechanism. Specifically,

our method returns a numerical score for each training sample, and the poisoned

samples exhibit a higher score than the clean samples. We assume that the portion

of poisoned samples is small, and flag as “suspicious” the top 10% samples with

the highest scores.

In Figure 2.6, we plot the actual proportion of removed poisoned samples when

removing the samples with the highest scores. As we can see, by removing 10%

of the samples with the highest score, we remove a large portion of the poisoned

samples in most of our experiments. Even though this is not the case for experiments

3 and 5, the attack is ineffective after removing 10% of the samples. We think this

could be happening since (1) these experiments contain fewer poisoned samples,

(2) and removing the strongest of the poisoned samples is enough to nullify the

attack. In all of the experiments, the remaining poisoned samples are not sufficient

to mount an effective backdoor attack, as can be seen in Table 2.2. Specifically,

after training a model on the curated dataset, which still contains some poisoned

samples, the accuracy of the model doesn’t drop after inserting the trigger into test

images.

77



0.0 0.2 0.4 0.6 0.8 1.00.1
Training Samples Removed

0.0

0.2

0.4

0.6

0.8

1.0

Po
iso

ne
d 

Sa
m

pl
es

 R
em

ov
ed

Exp. 1
Exp. 2
Exp. 5
Exp. 6
Exp. 3
Exp. 4
Exp. 7
Exp. 8
removed

Figure 2.6: We plot how the portion of poisoned samples removed changes when
removing different portions of the training set. For all our experiments, we assume a
small portion of the dataset is poisoned, and we remove the top 10% samples having
the highest score returned by our method. By removing 10% of the suspicious
samples, we effectively remove a large portion of the poisoned samples, and the
attacks become ineffective, as can be seen in Table 2.2.

2.6.3 Principal Components of the Datamodels Matrix

Our theoretical foundation from section 2.4 indicates that the norm of datamodels’

weights for poisoned samples is larger than for clean samples. As such, it is possible

to cluster the samples to separate poisoned samples from clean samples.

In this section, we inspect visually this property. Similar to [IPE+22], we com-

pute the top 100 principal components of our datamodels matrices, and visualize

the top and bottom images along these components. We can see in Figure 2.7 that

many of the top images along these components are poisoned.

In addition, for each of our experiments, we project the corresponding datamod-

els matrices using PCA to a two-dimensional space, and plot the distribution of

clean and poisoned samples in this space. We notice in Figure 2.8 that the clean

samples are heavily concentrated near the centroid of the data, while the poisoned

samples are further away. This suggests that the stronger features are further away

from the centroid than the weaker features.

78



Co
m

po
ne

nt
 1

automobile (+) automobile (+) automobile (+) automobile (+) automobile (+) airplane (-) frog (-) automobile (-) frog (-) truck (-)

Co
m

po
ne

nt
 2

automobile (+) automobile (+) automobile (+) automobile (+) automobile (+) automobile (-) automobile (-) automobile (-) automobile (-) automobile (-)

Co
m

po
ne

nt
 3

automobile (+) automobile (+) automobile (+) automobile (+) automobile (+) automobile (-) automobile (-) automobile (-) automobile (-) automobile (-)

Figure 2.7: We compute the datamodels corresponding to Exp. 4 (m-way trigger, c.f.
Table 2.1), and then compute the top 100 PCA components. For each component,
we show above the images that have the highest projection on the component. In
accordance with our theory, we observe that these images contain many poisoned
samples. Interestingly, the train-time m-way trigger–which could be one of three
options–is consistent across each direction of the PCA component. Specifically,
all the images along the positive direction of the first PCA component share the
top-right green trigger, while the ones corresponding to the second component
share the centered red trigger, etc.

2.7 Related Work

2.7.1 Related Threat Models for Machine Learning

This work focuses on backdoor data poisoning attacks; here we briefly contrast

them with other popular attacks on ML models. A closely related, but different,

threat model is that of targeted data poisoning attacks, where an adversary wants a

pre-defined test example to be misclassified and is only allowed to modify train-

ing examples. In this model, the attacker does not need access during inference

time [KL17, SHN+18]. In contrast, backdoor attacks can be applied to any image

at inference time by inserting the backdoor trigger. Another closely related threat

model is that of availability attacks [MGBD+17, LKY22]. Here the goal of the attacker

is to bring down the test performance as much as possible by perturbing a small

part of the training set. In contrast, backdoor attacks are designed to only affect

images once the attacker’s trigger is inserted.

79



2 0 2 4 6

1

0

1

2
Exp. 1

poisoned
clean

0.5 0.0 0.5 1.0 1.5

0.5

0.0

0.5

Exp. 2
poisoned
clean

0.5 0.0 0.5 1.0

0.2

0.0

0.2

0.4

0.6

Exp. 3
poisoned
clean

0 1 2 3

1

0

1

Exp. 4
poisoned
clean

1.0 0.5 0.0 0.5 1.0
0.50

0.25

0.00

0.25

0.50

0.75
Exp. 5

poisoned
clean

1.0 0.5 0.0 0.5 1.0

0

1

2

Exp. 6
poisoned
clean

1 0 1 2
1.0

0.5

0.0

0.5

1.0

1.5
Exp. 7

poisoned
clean

1.0 0.5 0.0 0.5 1.0
0.5

0.0

0.5

1.0

1.5

Exp. 8
poisoned
clean

Figure 2.8: For each of our experiments, we compute the corresponding datamodels,
and then project them to a 2D space using PCA. We plot this projection above, and
observe that the poisoned samples are separable from the clean samples in this 2D
space.

Adversarial examples are another well-studied threat model [SZS+14]. There, the

adversary seeks to make the model misclassify a given example by introducing

imperceptible changes to the images at inference time. Unlike in backdoor attacks,

the adversary does not have the power to corrupt training examples. As a result,

crafting adversarial examples is more complex than inserting backdoor triggers

at inference time, and often requires either white-box access to the model or a

significant number of model queries.

Finally, recent work has explored the inevitability of a certain kind of backdoor

attacks [GKVZ22]. However, in the setup of this work, the assumption is that the

training process is delegated to the adversary, and the client then has a limited

computational budget to verify that no backdoor exists. This threat model is much

more powerful for the adversary compared to the backdoor triggers considered in

the current work, and correspondingly the undetectability results do not carry over

to our setting.

2.7.2 Overview of Backdoor Attacks and Defenses

Developing backdoor attacks and defenses in the context of deep learning is an

increasingly active area of research. The reader is directed to [GTX+22, LJLX22]

80



for a survey of the field. Here, we briefly overview the most relevant attacks and

defenses. [GDGG17] mislabel images where the trigger is inserted in order to

make the attack realizable with a small budget of train example corruptions. This,

however, can be easily detected by training a backdoor classifier on a small sample

of human-annotated examples [TTM19].

This motivates clean-label attacks, which create an effective backdoor attack

without inserting easy to detect mislabeled images [TTM19, SSP20]. On the defense

side, a popular line of work applies outlier detection in the latent space of neural

networks [TLM18, CCB+18, HKSO21a]; another direction targets the fact that trig-

gers have small norm to detect them [WYS+19]. Both approaches have been shown

to be successful in dirty-label and clean-label settings. However, if the adversary

knows what defense is going to be deployed, they can create adaptive attacks that

bypass all the above defenses [S+20, QXMM22].

Closest to our work is that of [JSR21]. The authors consider a defense based on

the classifications the model makes, rather than properties of its latent space. This

avoids latent-space-based defenses’ vulnerability to adaptive attacks.

2.7.3 Techniques for Influence Estimation

Finally, a number of prior works explore the applicability of influence-based meth-

ods as defenses against different attacks in deep learning [KL17, FGL20]. To the

best of our knowledge, only one concurrent work discusses using such methods

for backdoor attacks [LZL+22]. While their methodology is similar to ours, they

only provide a proof of concept for detecting backdoors. In particular, the sparsity

parameters they use for the defense depend on the attack, which is not practical

since the attack is not known a priori to the defender.

81



2.8 Discussion and Conclusion

In this chapter, we proposed a new perspective of data poisoning. Essentially, we

argued that backdoor triggers are fundamentally indistinguishable from features to

which a model is highly sensitive, and consequently, detecting poisoned samples in

a dataset is equivalent to detecting such features. Given this new perspective, we

showed through two illustrative examples that one can leverage “natural” features

to mount a backdoor attack.

Since the predictions of ML models can be greatly influenced by such features,

an ML practitioner might want to remove the model’s strong dependence on these

strong features – regardless of whether they constitute a malicious backdoor attack

or not – while retaining high accuracy. To this end, we presented a new theoretical

framework to quantify model sensitivity to a feature. Furthermore, by leveraging

the datamodeling framework, we derived theoretically a new algorithm that flags

strong features in a given dataset. Through a wide range of backdoor poisoning

setups, we demonstrated that by removing≈ 10% of a given dataset, our framework

can lead to a model that is robust to variations of the strong features in a given

dataset, all while retaining high accuracy.

2.9 Deferred proofs

2.9.1 Proof of Lemma 1.

Throughout this section, we let p =
∣∣S f
∣∣ be the total number of examples with the

feature in the training set D, and we write wx = wα
x, bx = bα

x , hiding the dependence

on the fixed value of α for brevity. We assume throughout that the datamodel

weights generalize well: namely, we assume that for every example x ∈ D we have

ES

[(
M(x; S)− (1>S wx + bx)

)2
]
≤ ε

First, we will show that m f (x, t f + 1)−m f (x, t f ) can be well-approximated by

82



the corresponding datamodel quantities:

Lemma 2.9.1. Suppose α ≤ 1− c for some constant c, e.g. c = 1
10 . Then, for all large

enough values of n, m, p there exists a constant C > 0 such that for all x ∈ D we have

∣∣∣m f (x, t f + 1)−ES∼DS

[
wT

x1S
∣∣ ∣∣S f ∩ S

∣∣ = t f + 1
]∣∣∣ ≤ √Cε

√
n

and

∣∣∣m f (x, t f )−ES∼DS

[
wT

x1S
∣∣ ∣∣S f ∩ S

∣∣ = t f

]∣∣∣ ≤ √Cε
√

n

Proof. We have

Pr
S∼DS

[∣∣S f ∩ S
∣∣ = t f

]
=

( p
t f
)( n−p

m−t f
)

(n
m)

and

Pr
S

[∣∣S ∩ S f
∣∣ = t f + 1

]
=

( p
t f +1)(

n−p
m−t f−1)

(n
m)

=
p− t f

t f + 1
m− t f

n− p−m + t f + 1
Pr
S

[∣∣S ∩ S f
∣∣ = t f + 1

]
Our first goal is to show that both these probabilities are bounded from below by

something reasonably large. First we will show that the ratio of the two probabilities

is within a constant. We have (using that m = αn, t f = αp)

p− t f

t f + 1
m− t f

n− p−m + t f + 1
=

1− α

α + 1
p

α

1− α + 1
n−p

=
α

α + 1
p

1− α

1− α + 1
n−p

≥ α

α + α

1− α

2− α

≥ 1
2

c
1 + c

83



where we used that 1
p ≤

t f
p = α and α ≤ 1− c.

So we have

Pr
S

[∣∣S ∩ S f
∣∣ = t f + 1

]
=

( p
t f
)( n−p

m−t f
)

(n
m)

≥ c
2(1 + c)

Pr
S

[∣∣S ∩ S f
∣∣ = t f

]
Now we will estimate the latter probability. Using Stirling’s approximation, we

have

Pr
S

[∣∣S ∩ S f
∣∣ = t f

]
�

√ p
2πt f (p−t f )

pp

t
t f
f (p−t f )

p−t f

√
n−p

2π(m−t f )(n−p−m+t f )
(n−p)n−p

(m−t f )
m−t f (n−p−m+t f )

n−p−m+t f√
n

2πm(n−m)
nn

mm(n−m)n−m

=

√
n

p(n− p)
1

α(1− α)
≥ C√

n

for some constant C. Now from the triangle inequality, Jensen’s inequality and

Markov’s inequality we have

∣∣∣m f (x, t f )−ES∼DS

[
wT

x1S + bx
∣∣ ∣∣S ∩ S f

∣∣ = t f

]∣∣∣
=
∣∣∣ES∼DS

[
M(x; S)

∣∣ ∣∣S ∩ S f
∣∣ = t f

]
−ES∼DS

[
wT

x1S + bx
∣∣ ∣∣S ∩ S f

∣∣ = t f

]∣∣∣
≤ ES∼DS

[∣∣∣M(x; S)− (wT
x1S + bx)

∣∣∣ ∣∣ ∣∣S ∩ S f
∣∣ = t f

]
≤
√

ES∼DS

[
(M(x; S)− (wT

x1S + bx))
2 ∣∣ ∣∣S ∩ S f

∣∣ = t f

]
≤
√

C
√

nε

and similarly for the case with m f (x, t f + 1) (except with a somewhat worse con-

stant).

84



Lemma 2.9.2. We have for every x ∈ D that

ES∼DS

[
wT

x1S + bx
∣∣ ∣∣S ∩ S f

∣∣ = t f + 1
]
−ES∼DS

[
wT

x1S + bx
∣∣ ∣∣S ∩ S f

∣∣ = t f

]
= wT

x h f

where

h =
1
p
1S f −

1
n− p

1Sc
f

Proof. First observe that the bias bx will cancel from both expressions, so we can

ignore it. Note that we can write

ES∼DS

[
wT

x1S
∣∣ ∣∣S ∩ S f

∣∣ = t f

]
= ES∼DS

[
∑

z∈D
1z∈Swxz

∣∣ ∣∣S ∩ S f
∣∣ = t f

]
= ∑

z∈D
Pr

S∼DS

[
z ∈ S

∣∣ ∣∣S ∩ S f
∣∣ = t f

]
wxz

There are a total of

(
p
t f

)(
n− p
m− t f

)

sets satisfying
∣∣S ∩ S f

∣∣ = t f , and each is sampled with the same probability. Among

these, given z ∈ S f there are

(
p− 1
t f − 1

)(
n− p
m− t f

)

sets containing z, so for all z ∈ S f we have

Pr
[
z ∈ S

∣∣ ∣∣S ∩ S f
∣∣ = t f

]
=

( p−1
t f−1)(

n−p
m−t f

)

( p
t f
)( n−p

m−t f
)

=
t f

p

85



Similarly, we have for all z ∈ Sc
f that

Pr
[
z ∈ S

∣∣ ∣∣S ∩ S f
∣∣ = t f

]
=

( p
t f
)( n−p−1

m−t f−1)

( p
t f
)( n−p

m−t f
)

=
m− t f

n− p

So we end up with

ES∼DS

[
wT

x1S
∣∣ ∣∣S ∩ S f

∣∣ = t f

]
=

t
p

wT
x1S f +

m− t
n− p

wT
x1Sc

f

Analogously,

ES∼DS

[
wT

x1S
∣∣ ∣∣S ∩ S f

∣∣ = t f + 1
]

=
t + 1

p
wT

x1S f +
m− t− 1

n− p
wT

x1Sc
f

and the lemma follows when we subtract the two.

The proof of Lemma 1 follows by combining the results of Lemma 2.9.1 and

Lemma 2.9.2.

2.9.2 Proof of Lemma 2.4.2

We want to solve the problem

max
S

w>hS.

86



Note that hS ⊥ 1, so w>hS = w>hS, and the problem is equivalent to maxS w>hS.

We have

w>hS =
1
|S| ∑i∈S

wi −
1

n− |S| ∑i/∈S
wi

=
1
|S| ∑i∈S

wi +
1

n− |S| ∑i∈S
wi

=
n

|S| (n− |S|) ∑
i∈S

wi,

and analogously

w>hS = − n
|S| (n− |S|) ∑

i/∈S
wi,

where we used that ∑i wi = 0. From this expression it follows that for any maxi-

mizer S of w>hS, the elements of S must be the |S| largest entries of w.

To prove the lemma, observe that if wi = ‖w‖∞ for some i, we can take S = {i}

and see that

max
S

w>hS ≥
n

n− 1
‖w‖∞

and otherwise if wi = −‖w‖∞ for some i, we can take Sc = {i} and again

max
S

w>hS ≥
n

n− 1
‖w‖∞

For the other side of the inequality, we have

max
S

w>hS ≤
1
|S| ∑i∈S

wi −
1

n− |S| ∑i/∈S
wi ≤ ‖w‖∞ + ‖w‖∞ = 2 ‖w‖∞

87



Exp.
No Defense AC ISPL SPECTRE SS Ours

Clean Poisoned Clean Poisoned Clean Poisoned Clean Poisoned Clean Poisoned Clean Poisoned
1 86.64 19.90 86.76 19.68 86.13 86.15 86.71 20.17 85.52 30.99 86.51 86.49
2 86.67 12.92 85.41 12.93 85.88 85.82 - - 85.33 13.63 86.44 86.43
3 86.39 49.57 86.25 48.85 86.32 85.57 86.28 45.32 85.22 78.22 86.23 80.08
4 86.23 10.67 84.75 10.82 85.86 85.18 - - 84.85 13.33 85.62 84.60
5 86.89 75.58 86.73 82.83 86.04 85.89 86.82 80.65 85.67 85.41 86.48 80.08
6 87.11 41.89 86.85 51.05 86.18 86.11 86.97 51.18 85.68 85.60 86.73 86.47
7 87.02 71.68 86.90 73.28 86.50 82.31 86.72 76.97 85.70 82.70 86.69 86.32
8 86.94 52.08 86.81 56.78 86.04 71.27 86.63 52.27 85.87 71.93 86.51 86.46

Table 2.2: We compare our method against multiple baselines in a wide range of
experiments. We can see that we can achieve a consistently high accuracy on the
fully poisoned validation set when using our method for detecting and removing
poisoned samples. Refer to Table 2.1 for the full experiments parameters.

88



Chapter 3

Beyond Image Classification and

Neural Networks

In this chapter, we present preliminary results suggesting that the datamodeling

framework [IPE+22] may be broadly useful beyond the modality of images and

the use of neural networks as ML models. Specifically, we will describe the results

of a study on the MIMIC-III dataset of Electronic Health Record data [JPS+16]

that investigated the use of datamodeling for two applications: identifying small,

worst-case subsets of the training data whose removal causes misclassification of a

given test example x; and detecting (simple) data poisoning attacks.

3.1 Preliminaries

In this section, we give background on the dataset and the class of learning algo-

rithms used for this study. We also present a concept – empirical influence estimates –

that is closely related to datamodeling, and indeed equivalent to a certain regime of

datamodeling. We use this concept instead of datamodeling for this application,

since with gradient-boosted decision trees we have no access to a quantity analo-

gous to the margin of correct prediction in neural networks (we have prediction

probabilities instead).

89



3.1.1 The MIMIC-III Dataset and MIMIC-Extract

The MIMIC-III EHR (electronic health record) dataset [JPS+16] contains data as-

sociated with 53,423 distinct hospital admissions for adult patients admitted to

critical care units between 2001 and 2012 in the Beth Israel Deaconess Medical

Center in Boston, Massachusetts. It records many different kinds of data, including

approximately-hourly nurse-verified measurements of vital signs, diagnosis at ad-

mission, demographic details, interventions, lab measurements, and free-text notes.

The data is represented in a relational database with tens of tables and millions of

rows in total.

We use a particular projection of the MIMIC-III database called MIMIC-Extract

[WMC+20]. MIMIC-Extract is an open-source1 data extraction and processing

pipeline that transforms raw data into a table of post-processed time-series features

over a 24h period of a number of admissions to intensive care units, together with

labels for 4 clinically meaningful tasks, and demographics data of the patients. This

data format makes it directly usable in standard machine learning algorithms.

MIMIC-Extract provides a parametrized extraction pipeline, as well as a ready-

made preprocessed dataset corresponding to an execution of the pipeline with

default settings; we use the latter in our experiments. We further split the entire

dataset into a train and test partition using a 80%-20% split. Finally, of the four

benchmark binary classification tasks2, we choose in-ICU mortality. Some properties

of the dataset thus obtained are given in table 3.1. In particular, note that the task is

severely imbalanced.

3.1.2 Gradient-boosted Decision Trees

The model class we focus on in this study is gradient-boosted decision trees (GBDTs

from now on) [Fri01]. Conceptually, GBDTs are ensembles of decision trees trained

in sequence, where each next tree tries to fix the mistakes of the ensemble so

1https://github.com/MLforHealth/MIMIC_Extract
2These being in-ICU mortality, in-hospital mortality, LOS (length of stay) > 3 days prediction,

and LOS > 7 days prediction

90

https://github.com/MLforHealth/MIMIC_Extract


Property Value
Number of training examples 19,155
Number of test examples 4,789
Total features 7,488
Time-series features 104
Measurements per time-series feature 24
Fraction of examples in class 1/0 7% / 93%
Number of training examples in class
1/0

1,377 / 17,778

Number of test examples in class 1/0 340 / 4,449

Table 3.1: Some descriptive properties of the particular version of MIMIC-III we use

far by using gradient information of the loss function. Importantly to this work,

GBDTs are comparable to other tree ensembles (such as random forests), can be

trained efficiently on GPU, and provide probability estimates of their predictions. In

particular, GBDTs achieve AUROC scores on par with the best methods described

in the MIMIC-Extract paper [WMC+20] for the task we have chosen.

Applying the datamodeling framework to this problem required us to train

several million models on subsets of the data. The particular parameters of the

dataset motivate the choice of the catboost library ([DEG18], https://github.com/

catboost/catboost), which allows efficient GPU training for datasets with 1,000s

of examples and features.

3.1.3 Empirical Influence Estimation

Finally, we describe a concept closely related to datamodeling. A recent line of

work aims to use the empirical influence [HRRS11] of a training example xi on model

predictions on example xj:

Infl
[
xi → xj

]
:=P

(
model trained on S is correct on xj

)
−P

(
model trained on S\{xi} is correct on xj

)
where randomness is over the training algorithm. A specific approximation to this

quantity is developed by Feldman and Zhang [FZ20] with the purpose of estimating

91

https://github.com/catboost/catboost
https://github.com/catboost/catboost


Infl
[
xi → xj

]
for many pairs (xi, xj) at once while re-using trained models. Assum-

ing we have an empirical distribution DS over subsets S of some training dataset D,

their estimator takes the form

Înfl
[
xi → xj

]
=PS∼DS

(
model trained on S is correct on xj

∣∣xi ∈ S
)

−PS∼DS

(
model trained on S is correct on xj

∣∣xi /∈ S
)

As it turns out (see Lemma 1 in subsection 6.1. of [IPE+22]), the above estimator is

equivalent to a rescaled datamodel in the infinite-sample limit. This is the quantity

we use in our experiments in this chapter.

3.2 Application: Decision Support

In this section, we use empirical influence estimates to estimate data counterfactuals

on the MIMIC-III dataset, focusing on the decision support of model predictions:

what is the smallest amount of training points that, when removed from the

training set, lead to a misprediction on a test example x?

This question was also considered for image classification and neural networks

in [IPE+22].

3.2.1 Motivation

Any useful classification algorithm must be sensitive to some change in the data.

However, what if we find that the label (in this case in-ICU mortality prediction) of

some test example x can flip when we remove only as few as 10 examples from the

training set?

Such behavior can indeed arise in modern data analyses ([BGM21] exhibits

an econometric analysis where removing a single example changes the outcome),

and is concerning from the point of view of data privacy [DKM+06]. However,

it is particularly concerning in medical applications, where measurements can

92



be missing not-at-random [GNS+20]. If models indeed depend on small data

subpopulations to drive much of their prediction, there is a risk for some of these

subpopulations to be entirely missing, or severely underrepresented, in the training

data.

3.2.2 Methodology

To bring influence estimates to bear on this question, we compute a matrix W where

Wij = Înfl
[
xi → xj

]
where i ranges over the training set and j ranges over the test

set, from a set of 100,000 models each trained on a random subset of the training

dataset of relative size α ∈ (0, 1).

Then, given a test example xj for which we want to estimate the decision support,

we sort the training indices i in order of decreasing value of Wij, and remove

increasingly large prefixes of this order (doubling, starting from 10 examples to be

removed).

3.2.3 Baselines

In this subsection, we describe the baselines we compare influence estimates with

for this application, as well as the motivation for their choice. Each baseline provides

a different way to define a similarity metric between a given test example x and the

training examples. Data counterfactuals are then computed by removing training

examples in decreasing order of similarity.

Tree Ensemble Embedding

This baseline trains a GBDT with the same hyperparameters as the one we use

in our influence estimation – but on the entire dataset, and uses the probability

assigned to a given example x by each of the (one hundred) trees in the ensemble

as a model-aware feature representation ϕ(x) ∈ R100 of x. Similarity between x and a

training example xi is calculated by Euclidean distance in this space.

93



This baseline was chosen because it is a simple sanity check, efficiently com-

putable and intuitive, yet very different from the approach taken in this work. To

obtain the embeddings we use subroutines of the code from [BL20] (see 3.2.3 below).

Data Shapley

Data Shapley [GZ19] is a data valuation methodology based on the game-theoretic

concept of Shapley values [Sha51]. Below, we describe how the data Shapley

framework can be adapted to the setting of the current work.

Given a test example x, the goal is to assign a value φi ∈ R to training example

xi ∈ S that intuitively reflects the contribution of xi to fA (x; S′) as S′ ranges over

all subsets of S. The main observation of [GZ19] is that, if certain common-sense

properties are required from the values φi, these values are in fact forced to satisfy

φi = ∑
S′⊂S−{i}

fA(x, S′ ∪ {i})− fA(x, S′)
(n−1
|S′| )

up to a constant scaling factor. To estimate these intractable expressions, the authors

of [GZ19] rewrite it as an expectation

φi = Eπ∼Π

[
fA
(

x; Si
π ∪ {i}

)
− fA

(
Si

π

)]
where Π is the uniform distribution over all permutations of the training set, and Si

π

denotes the set of data points that appear before the example xi in the permutation π.

An approximation of φi can be obtained by sampling many random permutations

π and averaging the results.

We implemented our own version of the data Shapley algorithm from [GZ19].

Namely, we sample 300 random permutations of the dataset, and we truncate the

estimation process (as described in [GZ19]) at a prefix of size 2,000 examples. This

relatively early truncation is motivated by the observation that performance quickly

saturates on this dataset with increasing training set size.

This baseline was chosen because it is conceptually similar to the datamodeling

94



approach (as it compares the behavior of many models trained on different subsets

of the data), yet different enough in implementation to warrant a comparison.

T-REX

This baseline [BL20] is a representer-point explanation method [YKYR18] for ensembles

of decision trees. It trains a simpler surrogate model to predict the predictions of a

tree ensemble; the surrogate model is a linear method, and it is fit and validated

on embeddings derived from a trained tree ensemble to predict the probabilities

assigned by the ensemble. See [BL20] for more details.

In our implementation, we used the code accompanying the paper that de-

fines T-REX [BL20]. We use the kernel logistic regression (KLR) surrogate model,

and did a cross-validated hyperparameter search over the grid where C takes

values 10−5, 10−4, . . . , 105 and the tree kernel ranges over all the kernels imple-

mented for the catboost ensemble (’feature_path’, ’leaf_path’, ’leaf_output’,

’tree_output’). This resulted in C = 1.0 and tree_kernel=’tree_output’ as the

best settings, achieving TODO. See [BL20] for definitions of the hyperparameters.

This baseline was chosen because it builds a surrogate model with the explicit

goal of approximating the real model’s behavior. Furthermore, the surrogate model

(being linear) admits a ‘closed form’ data valuation solution. In this sense, T-REX

can be seen as a way to approximate datamodeling by replacing a non-linear class

of models with a linear one.

3.2.4 Results

The results from this study are shown in figure 3.1. As we can see, the empirical

influence estimates greatly outperform the baselines. In particular, with α = 0.5, we

see that for each of roughly 1
3 of the test set, there exist some ∼ 100 examples in the

training set whose removal causes misclassification on this particular test example.

95



0 200 400 600 800 1000 1200
Number of examples removed

0

500

1000

1500

2000

2500

3000

3500

4000

Nu
m

be
r o

f t
es

t e
xa

m
pl

es
 m

isc
la

ss
ifi

ed
method

tree embedding
10% empirical influences
Data Shapley
T-REX
50% empirical influences

Figure 3.1: Results of the decision support experiment on the in-ICU mortality
prediction task for the MIMIC-Extract variant of the MIMIC-III dataset. The x-axis
shows the number of examples we remove from the training set according to the
scores produced by the methods for a given test example x. The y-axis shows the
cumulative number of test examples x that are misclassified by the removal of
the given number (or fewer) training examples. Here we use influence estimates
for 100,000 trained models in two regimes: the orange line shows the results with
α = 0.1, and the purple line with α = 0.5. We see that α = 0.5 leads to better results.

3.3 Application: Detecting Backdoor Attacks

In analogy with the previous chapter 2, we can also ask whether this toolkit can

surface backdoors in the data. To this end, we provide preliminary evidence that

this is indeed possible. Specifically, we deploy a very naive backdoor attack on the

dataset – for 1% of the training dataset, we alter one of the 104 features in the data

by replacing all its values with 0.0. We note that constructing backdoor attacks that

are meaningful for medical data is a more complicated problem [JMSH21]; here we

are only presenting a simple proof-of-concept.

As evidence for the useful information contained in the empirical influence

estimates, we show in Figure 3.2 a certain two-dimensional visualization of the

influence estimates for the entire dataset. This figure indicates that the influence

estimates contain useful signal about which datapoints contain the backdoor. It

96



is an interesting question for future work whether a more extensive evaluation

(along the lines of 2, and using more realistic modes of data poisoning specific to

the medical setting) can leverage this signal to develop a detection algorithm.

60 40 20 0 20 40
x

60

40

20

0

20

40

60

y

Figure 3.2: We poison 1% of the MIMIC-III dataset, and generate empirical influence
estimates by training 100,000 models on random subsets of relative size 10% of the
training set. We then compute the matrix of their pairwise dot products (which
serves as a similarity score between training examples), and visualize this matrix
in two dimensions using t-SNE. The poisoned examples (orange) are largely well-
separated from the clean examples (blue).

97



98



Bibliography

[ABC+18] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph

Keshet. Turning your weakness into a strength: Watermarking deep

neural networks by backdooring. {USENIX} Security Symposium,

2018.

[ABC+20] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal

Jozefowicz, Bob McGrew, Jakub Pachocki, Arthur Petron, Matthias

Plappert, Glenn Powell, Alex Ray, et al. Learning dexterous in-hand

manipulation. The International Journal of Robotics Research, 39(1):3–20,

2020.

[AEIK18] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok.

Synthesizing robust adversarial examples. In International Conference

on Machine Learning (ICML), 2018.

[AG17] Mahdieh Abbasi and Christian Gagné. Robustness to adversar-

ial examples through an ensemble of specialists. arXiv preprint

arXiv:1702.06856, 2017.

[BCM+13] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim

Šrndić, Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion at-

tacks against machine learning at test time. In Joint European conference

on machine learning and knowledge discovery in databases (ECML-KDD),

2013.

99



[BGM21] Tamara Broderick, Ryan Giordano, and Rachael Meager. An automatic

finite-sample robustness metric: Can dropping a little data change

conclusions? In Arxiv preprint arXiv:2011.14999, 2021.

[BL20] Jonathan Brophy and Daniel Lowd. Trex: Tree-ensemble representer-

point explanations. arXiv preprint arXiv:2009.05530, 2020.

[BMR+20] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared

Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,

Girish Sastry, Amanda Askell, et al. Language models are few-shot

learners. arXiv preprint arXiv:2005.14165, 2020.

[BR18] Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise

of adversarial machine learning. 2018.

[BRB17] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based

adversarial attacks: Reliable attacks against black-box machine learn-

ing models. In International Conference on Learning Representations

(ICLR), 2017.

[BTEGN09] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust

optimization. Princeton University Press, 2009.

[CCB+18] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig,

Benjamin Edwards, Taesung Lee, Ian Molloy, and Biplav Srivastava.

Detecting backdoor attacks on deep neural networks by activation

clustering. arXiv preprint arXiv:1811.03728, 2018.

[CLL+17] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Tar-

geted backdoor attacks on deep learning systems using data poisoning.

arXiv preprint arXiv:1712.05526, 2017.

[CW82] R Dennis Cook and Sanford Weisberg. Residuals and influence in regres-

sion. New York: Chapman and Hall, 1982.

100



[CW08] Ronan Collobert and Jason Weston. A unified architecture for natural

language processing: Deep neural networks with multitask learning.

In International Conference on Machine Learning (ICML), pages 160–167,

2008.

[CW17a] Nicholas Carlini and David Wagner. Adversarial examples are not

easily detected: Bypassing ten detection methods. In Workshop on

Artificial Intelligence and Security (AISec), 2017.

[CW17b] Nicholas Carlini and David Wagner. Towards evaluating the robust-

ness of neural networks. In Symposium on Security and Privacy (SP),

2017.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

Imagenet: A large-scale hierarchical image database. In Computer

Vision and Pattern Recognition (CVPR), 2009.

[DDSV04] Nilesh Dalvi, Pedro Domingos, Sumit Sanghai, and Deepak Verma.

Adversarial classification. In International Conference on Knowledge

Discovery and Data Mining, 2004.

[DEG18] Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. Catboost:

gradient boosting with categorical features support. arXiv preprint

arXiv:1810.11363, 2018.

[DKM+06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya

Mironov, and Moni Naor. Our data, ourselves: Privacy via distributed

noise generation. In Annual International Conference on the Theory and

Applications of Cryptographic Techniques, 2006.

[DT17] Terrance DeVries and Graham W Taylor. Improved regularization

of convolutional neural networks with cutout. In arXiv preprint

arXiv:1708.04552, 2017.

101



[FFF18] Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Analysis of

classifiers’ robustness to adversarial perturbations. Machine Learning,

107(3):481–508, 2018.

[FGL20] Minghong Fang, Neil Zhenqiang Gong, and Jia Liu. Influence function

based data poisoning attacks to top-n recommender systems. In

Proceedings of The Web Conference 2020, pages 3019–3025, 2020.

[Fri01] Jerome H Friedman. Greedy function approximation: a gradient

boosting machine. Annals of statistics, pages 1189–1232, 2001.

[FZ20] Vitaly Feldman and Chiyuan Zhang. What neural networks memo-

rize and why: Discovering the long tail via influence estimation. In

Advances in Neural Information Processing Systems (NeurIPS), volume 33,

pages 2881–2891, 2020.

[GDGG17] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Iden-

tifying vulnerabilities in the machine learning model supply chain.

arXiv preprint arXiv:1708.06733, 2017.

[GKVZ22] Shafi Goldwasser, Michael P Kim, Vinod Vaikuntanathan, and Or Za-

mir. Planting undetectable backdoors in machine learning models.

arXiv preprint arXiv:2204.06974, 2022.

[GMP+17] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael

Backes, and Patrick McDaniel. On the (statistical) detection of ad-

versarial examples. arXiv preprint arXiv:1702.06280, 2017.

[GNS+20] Marzyeh Ghassemi, Tristan Naumann, Peter Schulam, Andrew L

Beam, Irene Y Chen, and Rajesh Ranganath. A review of challenges

and opportunities in machine learning for health. AMIA Summits on

Translational Science Proceedings, 2020:191, 2020.

102



[GR06] Amir Globerson and Sam Roweis. Nightmare at test time: robust

learning by feature deletion. In Proceedings of the 23rd international

conference on Machine learning, 2006.

[GSS15] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining

and harnessing adversarial examples. In International Conference on

Learning Representations (ICLR), 2015.

[GTX+22] Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi

Schwarzschild, Dawn Song, Aleksander Madry, Bo Li, and Tom Gold-

stein. Dataset security for machine learning: Data poisoning, backdoor

attacks, and defenses. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 2022.

[GZ19] Amirata Ghorbani and James Zou. Data shapley: Equitable valuation

of data for machine learning. In International Conference on Machine

Learning (ICML), 2019.

[HKSO21a] Jonathan Hayase, Weihao Kong, Raghav Somani, and Sewoong Oh.

Spectre: defending against backdoor attacks using robust statistics.

arXiv preprint arXiv:2104.11315, 2021.

[HKSO21b] Jonathan Hayase, Weihao Kong, Raghav Somani, and Sewoong Oh.

Spectre: Defending against backdoor attacks using robust statistics,

2021.

[HRRS11] Frank R Hampel, Elvezio M Ronchetti, Peter J Rousseeuw, and

Werner A Stahel. Robust statistics: the approach based on influence func-

tions, volume 196. John Wiley & Sons, 2011.

[HWC+17] Warren He, James Wei, Xinyun Chen, Nicholas Carlini, and Dawn

Song. Adversarial example defense: Ensembles of weak defenses are

not strong. In USENIX Workshop on Offensive Technologies (WOOT),

2017.

103



[HXSS15] Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba Szepesvari.

Learning with a strong adversary. arXiv preprint arXiv:1511.03034,

2015.

[HZRS15a] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep

residual learning for image recognition, 2015.

[HZRS15b] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving

deep into rectifiers: Surpassing human-level performance on imagenet

classification. In international conference on computer vision (ICCV), 2015.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep

residual learning for image recognition. In Conference on Computer

Vision and Pattern Recognition (CVPR), 2016.

[IPE+22] Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc,

and Aleksander Madry. Datamodels: Predicting predictions from

training data. In International Conference on Machine Learning (ICML),

2022.

[IST+19] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom,

Brandon Tran, and Aleksander Madry. Adversarial examples are

not bugs, they are features. In Neural Information Processing Systems

(NeurIPS), 2019.

[JCG21] Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. Intrinsic certified

robustness of bagging against data poisoning attacks. In AAAI, 2021.

[JMSH21] Byunggill Joe, Akshay Mehra, Insik Shin, and Jihun Hamm. Machine

learning with electronic health records is vulnerable to backdoor trig-

ger attacks. arXiv preprint arXiv:2106.07925, 2021.

[JPS+16] Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-Wei,

Mengling Feng, Mohammad Ghassemi, Benjamin Moody, Peter

104



Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii, a freely

accessible critical care database. Scientific data, 2016.

[JSR21] Charles Jin, Melinda Sun, and Martin Rinard. Provable guarantees

against data poisoning using self-expansion and compatibility. 2021.

[KDI+22] Bojan Karlaš, David Dao, Matteo Interlandi, Bo Li, Sebastian Schelter,

Wentao Wu, and Ce Zhang. Data debugging with shapley impor-

tance over end-to-end machine learning pipelines. arXiv preprint

arXiv:2204.11131, 2022.

[KGB17] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial

machine learning at scale. In International Conference on Learning Repre-

sentations (ICLR), 2017.

[KL17] Pang Wei Koh and Percy Liang. Understanding black-box predictions

via influence functions. In International Conference on Machine Learning,

2017.

[Kri09] Alex Krizhevsky. Learning multiple layers of features from tiny im-

ages. In Technical report, 2009.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet

classification with deep convolutional neural networks. In Advances

in Neural Information Processing Systems (NeurIPS), 2012.

[KZ21] Yongchan Kwon and James Zou. Beta shapley: a unified and noise-

reduced data valuation framework for machine learning. arXiv

preprint arXiv:2110.14049, 2021.

[LCWC18] Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin. Second-

order adversarial attack and certifiable robustness. arXiv preprint

arXiv:1809.03113, 2018.

105



[LeC98] Yann LeCun. The mnist database of handwritten digits. In Technical

report, 1998.

[LF21] Alexander Levine and Soheil Feizi. Deep partition aggregation: Prov-

able defenses against general poisoning attacks. In International Con-

ference on Learning Representations, 2021.

[LIE+22] Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park,

Hadi Salman, and Aleksander Madry. ffcv. https://github.com/

libffcv/ffcv/, 2022.

[LJLX22] Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor learning:

A survey. IEEE Transactions on Neural Networks and Learning Systems,

2022.

[LKY22] Yiwei Lu, Gautam Kamath, and Yaoliang Yu. Indiscriminate data

poisoning attacks on neural networks. arXiv preprint arXiv:2204.09092,

2022.

[LM19] Gábor Lugosi and Shahar Mendelson. Sub-gaussian estimators of the

mean of a random vector. The annals of statistics, 47(2):783–794, 2019.

[LSI+21] Guillaume Leclerc, Hadi Salman, Andrew Ilyas, Sai Vemprala, Logan

Engstrom, Vibhav Vineet, Kai Xiao, Pengchuan Zhang, Shibani San-

turkar, Greg Yang, et al. 3db: A framework for debugging computer

vision models. In arXiv preprint arXiv:2106.03805, 2021.

[LZL+22] Jinkun Lin, Anqi Zhang, Mathias Lecuyer, Jinyang Li, Aurojit Panda,

and Siddhartha Sen. Measuring the effect of training data on deep

learning predictions via randomized experiments. arXiv preprint

arXiv:2206.10013, 2022.

[MFF16] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal

Frossard. Deepfool: a simple and accurate method to fool deep neural

networks. In Computer Vision and Pattern Recognition (CVPR), 2016.

106

https://github.com/libffcv/ffcv/
https://github.com/libffcv/ffcv/


[MGBD+17] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Pau-

dice, Vasin Wongrassamee, Emil C Lupu, and Fabio Roli. Towards

poisoning of deep learning algorithms with back-gradient optimiza-

tion. In Proceedings of the 10th ACM workshop on artificial intelligence

and security, pages 27–38, 2017.

[MMS+18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris

Tsipras, and Adrian Vladu. Towards deep learning models resistant

to adversarial attacks. In International Conference on Learning Represen-

tations (ICLR), 2018.

[NYC15] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks

are easily fooled: High confidence predictions for unrecognizable

images. In Conference on computer vision and pattern recognition (CVPR),

2015.

[PMG16] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transfer-

ability in machine learning: from phenomena to black-box attacks

using adversarial samples. In ArXiv preprint arXiv:1605.07277, 2016.

[PMW+16] Nicolas Papernot, Patrick D. McDaniel, Xi Wu, Somesh Jha, and Anan-

thram Swami. Distillation as a defense to adversarial perturbations

against deep neural networks. In Symposium on Security and Privacy

(SP), 2016.

[QXMM22] Xiangyu Qi, Tinghao Xie, Saeed Mahloujifar, and Prateek Mittal. Cir-

cumventing backdoor defenses that are based on latent separability.

arXiv preprint arXiv:2205.13613, 2022.

[S+20] Reza Shokri et al. Bypassing backdoor detection algorithms in deep

learning. In 2020 IEEE European Symposium on Security and Privacy

(EuroS&P), pages 175–183. IEEE, 2020.

107



[SGSR17] Jure Sokolić, Raja Giryes, Guillermo Sapiro, and Miguel RD Rodrigues.

Robust large margin deep neural networks. In Transactions on Signal

Processing, 2017.

[Sha51] LS Shapley. Notes on the n-person game—ii: The value of an n-

person game, the rand corporation, the rand corporation. In Research

Memorandum, 1951.

[SHN+18] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu,

Christoph Studer, Tudor Dumitras, and Tom Goldstein. Poison frogs!

targeted clean-label poisoning attacks on neural networks. In Advances

in Neural Information Processing Systems (NeurIPS), 2018.

[SHS+18] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis

Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre,

Dharshan Kumaran, Thore Graepel, et al. A general reinforcement

learning algorithm that masters chess, shogi, and go through self-play.

Science, 362(6419):1140–1144, 2018.

[SRBB19] Lukas Schott, Jonas Rauber, Matthias Bethge, and Wieland Brendel. To-

wards the first adversarially robust neural network model on MNIST.

In International Conference on Learning Representations (ICLR), 2019.

[SSP20] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash.

Hidden trigger backdoor attacks. In Proceedings of the AAAI conference

on artificial intelligence, volume 34, pages 11957–11965, 2020.

[SYN18] Uri Shaham, Yutaro Yamada, and Sahand Negahban. Understanding

adversarial training: Increasing local stability of supervised models

through robust optimization. Neurocomputing, 307:195–204, 2018.

[SZS+14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-

mitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of

108



neural networks. In International Conference on Learning Representations

(ICLR), 2014.

[TLM18] Brandon Tran, Jerry Li, and Aleksander Mądry. Spectral signatures in

backdoor attacks. In Advances in Neural Information Processing Systems

(NeurIPS), 2018.

[TPGDB17] Florian Tramer, Nicolas Papernot, Ian Goodfellow, and Patrick Mc-

Daniel Dan Boneh. The space of transferable adversarial examples. In

ArXiv preprint arXiv:1704.03453, 2017.

[TTM19] Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-

consistent backdoor attacks. 2019.

[Wal45] Abraham Wald. Statistical decision functions which minimize the

maximum risk. In Annals of Mathematics, 1945.

[WMC+20] Shirly Wang, Matthew BA McDermott, Geeticka Chauhan, Marzyeh

Ghassemi, Michael C Hughes, and Tristan Naumann. Mimic-extract:

A data extraction, preprocessing, and representation pipeline for

mimic-iii. In Proceedings of the ACM conference on health, inference,

and learning, pages 222–235, 2020.

[WYS+19] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal

Viswanath, Haitao Zheng, and Ben Y Zhao. Neural cleanse: Identify-

ing and mitigating backdoor attacks in neural networks. In Proceedings

of 40th IEEE Symposium on Security and Privacy, 2019.

[XEQ18] Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detect-

ing adversarial examples in deep neural networks. In Network and

Distributed Systems Security Symposium (NDSS), 2018.

[XHCL20] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. Dba: Distributed

backdoor attacks against federated learning. In International Conference

on Learning Representations, 2020.

109



[YKYR18] Chih-Kuan Yeh, Joon Sik Kim, Ian E. H. Yen, and Pradeep Ravikumar.

Representer point selection for explaining deep neural networks. In

Neural Information Processing Systems (NeurIPS), 2018.

110


	Introduction
	Defenses Against Adversarial Examples
	Introduction
	An Optimization View on Adversarial Robustness
	A Unified View on Attacks and Defenses

	Towards Universally Robust Networks
	The Landscape of Adversarial Examples
	First-Order Adversaries
	Descent Directions for Adversarial Training

	Network Capacity and Adversarial Robustness
	Experiments: Adversarially Robust Deep Learning Models
	Related Work
	Statement and Application of Danskin's Theorem
	Transferability
	MNIST Inspection
	Conclusion
	Supplementary Figures

	Defenses Against Backdoor Attacks
	Introduction
	A Feature-Based Perspective on Backdoor Attacks
	Inspecting Data Using Datamodels
	When Can We Detect Poisoned Samples?
	Towards a Definition of Model Sensitivity
	Approximating Sensitivity using Datamodels
	The Highest-Sensitivity Feature for an Example

	Detecting Poisoned Samples Using Datamodels
	Motivation
	Algorithm

	Experiments and Results
	Poisoning Attacks
	Efficiency of the Proposed Defense Mechanism
	Principal Components of the Datamodels Matrix

	Related Work
	Related Threat Models for Machine Learning
	Overview of Backdoor Attacks and Defenses
	Techniques for Influence Estimation

	Discussion and Conclusion
	Deferred proofs
	Proof of Lemma 1.
	Proof of Lemma 2.4.2


	Beyond Image Classification and Neural Networks
	Preliminaries
	The MIMIC-III Dataset and MIMIC-Extract
	Gradient-boosted Decision Trees
	Empirical Influence Estimation

	Application: Decision Support
	Motivation
	Methodology
	Baselines
	Results

	Application: Detecting Backdoor Attacks


