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Abstract

DNA sequencing data continues to progress towards longer sequencing reads with increas-
ingly lower error rates. In order to efficiently process the ever-growing collections of sequenc-
ing data, there is a crucial need for more time- and memory-efficient algorithms and data
structures. In this thesis, we propose several ways to represent DNA sequences in order to
mitigate some of these challenges in practical biological tasks. Firstly, we expand upon an
existing 𝑘-mer (a substring of length 𝑘) -based approach, a universal hitting set (UHS), to
sample a subset of locations on a DNA sequence. We show that UHSs can be efficiently con-
structed using a randomized parallel algorithm, and propose ways in which UHSs can be used
in sketching and indexing sequences for downstream analysis. Secondly, we introduce the
concept of minimizer-space sequencing data analysis, where a set of minimizers, rather than
DNA nucleotides, are the atomic tokens of the alphabet. We propose that minimizer-space
representations can be seamlessly applied to the problem of genome assembly, the task of
reconstructing a genome from a collection of DNA sequences. By projecting sequences into
ordered lists of minimizers, we claim that we can achieve orders-of-magnitude improvement
in runtime and memory usage over existing methods without much loss of accuracy. We
expect these approaches to be essential for downstream bioinformatics applications, such as
read mapping, metagenomics, and pangenomics, as well as to provide ways to better store,
search, and compress large collections of sequencing data.

Thesis Supervisor: Bonnie A. Berger
Title: Simons Professor of Mathematics
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Chapter 1

Introduction

Efficient algorithms for sequence analysis have played a central role in the era of high-

throughput DNA sequencing. Many analyses such as read mapping (e.g. [66, 62]), genome

assembly (e.g. [56]), and taxonomic profiling (e.g., [43, 49]) have benefited from milestone

advances that effectively compress, or sketch, the data [40]; e.g. fast full-text search with the

Burrows-Wheeler transform (BWT) [8], space-efficient graph representations with succinct

de Bruijn graphs [11], and lightweight databases with MinHash sketches [51]. Large-scale

data re-analysis initiatives [20, 32] further incentivize the development of efficient algorithms,

as they aim to re-analyze petabases of existing public data.

However, there has traditionally been a tradeoff between algorithmic efficiency and loss

of information, at least during the initial sequence processing steps. Consider short-read

genome assembly: The non-trivial insight of chopping up reads into 𝑘-mers, thereby by-

passing the ordering of 𝑘-mers within each read, has unlocked fast and memory-efficient

approaches using de Bruijn graphs; yet the short 𝑘-mers—chosen for efficiency—lead to

fragmented assemblies [2]. In modern sequence similarity estimation and read mapping ap-

proaches [66] information loss is even more drastic as large genomic windows are sketched

down to comparatively tiny sets of minimizers—which index a sequence (window) by its lexi-

cographically smallest 𝑘-mer [51], and enable efficient but sometimes inaccurate comparisons

between gigabase-scale sets of sequences [26].
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In this thesis, we present two minimizer-based approaches through which we are able to

represent biological data using only a tunable fraction of the input sequences. In Chapter

2∗, we describe PASHA (Parallel Algorithm for Small Hitting Set Approximations), the first

randomized parallel algorithm to efficiently generate universal hitting sets, which are sets of

𝑘-length substrings that are guaranteed to share at least one 𝑘-length substring with every

possible sequence of length 𝐿. In Chapter 3†, we introduce minimizer-space de Bruijn graphs,

mdBG, which performs genome assembly in minimizer-space, using minimizers as building

blocks of the assembly graph. We show that using only a fraction of nucleotides in the input

sequences through minimizers allows us to lower running time and decrease memory usage

by 1 to 2 orders of magnitude compared to current assemblers. We show that we can also

tackle sequencing errors in minimizer space, and construct pangenome graphs in minimizer

space accurately and efficiently.

We hope that both of these approaches will mitigate challenges in storing, compressing,

and processing the ever-growing collections of sequencing data, and enable efficient and

accurate downstream analysis to answer biologically significant questions.

∗Chapter 2 of this thesis was previously published in [23].
†Chapter 3 of this thesis was previously published in [22].
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Chapter 2

Efficiently computing near-optimal

universal hitting sets

2.1 Background and preliminaries

Minimizer techniques were introduced to select 𝑘-mers from a sequence to allow efficient bin-

ning of sequences such that some information about the sequence’s identity is preserved [59].

Formally, given a sequence of length 𝐿 and an integer 𝑘, its minimizer is the lexicographi-

cally smallest 𝑘-mer in it. The method has two key advantages: selected 𝑘-mers are close;

and similar 𝑘-mers are selected from similar sequences. Minimizers were adopted for biolog-

ical sequence analysis to design more efficient algorithms, both in terms of memory usage

and runtime, by reducing the amount of information processed, while not losing much or

any information [47]. The minimizer method has been applied in a large number of set-

tings [18, 65, 28].

Orenstein and Pellow et al. [52, 53] generalized and improved upon the minimizer idea

by introducing the notion of a universal hitting set (UHS). For integers 𝑘 and 𝐿, set 𝑈𝑘,𝐿 is

called a universal hitting set of 𝑘-mers if every possible sequence of length 𝐿 contains at least

one 𝑘-mer from 𝑈𝑘,𝐿. Note that a UHS for any given 𝑘 and 𝐿 only needs to be computed

once. Their heuristic DOCKS finds a small UHS in two steps: (i) remove a minimum-size set
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of vertices from a complete de Bruijn graph of order 𝑘 to make it acyclic; and (ii) remove

additional vertices to eliminate all (𝐿 − 𝑘)-long paths. The removed vertices comprise the

UHS. The first step was solved optimally, while the second required a heuristic. The method

is limited by runtime to 𝑘 ≤ 13, and thus applicable to only a small subset of minimizer

scenarios. Recently, Marçais et al. [44] showed that there exists an algorithm to compute

a set of 𝑘-mers that covers every path of length 𝐿 in a de Bruijn graph of order 𝑘. This

algorithm gives an asymptotically optimal solution for a value of 𝑘 approaching 𝐿. Yet this

condition is rarely the case for real applications where 10 ≤ 𝑘 ≤ 30 and 100 ≤ 𝐿 ≤ 300.

The results of Marçais et al. show that for 𝑘 ≤ 30, the results are far from optimal for fixed

𝐿. A more recent method by DeBlasio et al. [17] can handle larger values of 𝑘, but with

𝐿 ≤ 21, which is impractical for real applications. Thus, it is still desirable to devise faster

algorithms to generate small UHSs.

In this chapter, we present PASHA (Parallel Algorithm for Small Hitting Set Approxima-

tions), the first randomized parallel algorithm to efficiently generate near-optimal UHSs. Our

novel algorithmic contributions are twofold. First, we improve upon the process of calculating

vertex hitting numbers, i.e. the number of (𝐿− 𝑘)-long paths they go through. Second, we

build upon a randomized parallel algorithm for Set Cover to substantially speedup removal

of 𝑘-mers for the UHS—the major time-limiting step—with a guaranteed approximation ra-

tio on the 𝑘-mer set size. PASHA performs substantially better than current algorithms at

finding a UHS in terms of runtime, with only a small increase in set size; it is consequently

applicable to much larger values of 𝑘.

2.1.1 Preliminary definitions

For 𝑘 ≥ 1 and finite alphabet Σ, directed graph 𝐵𝑘 = (𝑉,𝐸) is a de Bruijn graph of order

𝑘 if 𝑉 and 𝐸 represent 𝑘- and (𝑘 + 1)-long strings over Σ, respectively. An edge may exist

from vertex 𝑢 to vertex 𝑣 if the (𝑘 − 1)-suffix of 𝑢 is the (𝑘 − 1)-prefix of 𝑣. For any edge

(𝑢, 𝑣) ∈ 𝐸 with label ℒ, labels of vertices 𝑢 and 𝑣 are the prefix and suffix of length 𝑘 of ℒ,

respectively. If a de Bruijn graph contains all possible edges, it is complete, and the set of
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edges represents all possible (𝑘+1)-mers. An ℓ = (𝐿−𝑘)-long path in the graph, i.e. a path

of ℓ edges, represents an 𝐿-long sequence over Σ (for further details, see [2]).

For any 𝐿-long string 𝑠 over Σ, 𝑘-mers set 𝑀 hits 𝑠 if there exists a 𝑘-mer in 𝑀 that

is a contiguous substring in 𝑠. Consequently, universal hitting set (UHS) 𝑈𝑘,𝐿 is a set of

𝑘-mers that hits any 𝐿-long string over Σ. A trivial UHS is the set of all 𝑘-mers, but due to

its size (|Σ|𝑘), it does not reduce the computational expense for practical use. Note that a

UHS for any given 𝑘 and 𝐿 does not depend on a dataset, but rather needs to be computed

only once.

Although the problem of computing a universal hitting set has no known hardness results,

there are several NP-hard problems related to it. In particular, the problem of computing a

universal hitting set is highly similar, although not identical, to the (𝑘, 𝐿)-hitting set problem,

which is the problem of finding a minimum-size 𝑘-mer set that hits an input set of 𝐿-long

sequences. Orenstein and Pellow et al. [52, 53] proved that the (𝑘, 𝐿)-hitting set problem

is NP-hard, and consequently developed the near-optimal DOCKS heuristic. DOCKS relies on

the Set Cover problem, which is the problem of finding a minimum-size collection of subsets

𝑆1, ..., 𝑆𝑘 of finite set 𝑈 whose union is 𝑈 .

2.1.2 The DOCKS heuristic

DOCKS first removes from a complete de Bruijn graph of order 𝑘 a decycling set, turning the

graph into a directed acyclic graph (DAG). This set of vertices represent a set of 𝑘-mers

that hits all sequences of infinite length. A minimum-size decycling set can be found by

Mykkeltveit’s algorithm [48] in 𝑂(|Σ|𝑘) time. Even after all cycles, which represent sequences

of infinite length, are removed from the graph, there may still be paths representing sequences

of length 𝐿, which also need to be hit by the UHS. DOCKS removes an additional set of 𝑘-

mers that hits all remaining sequences of length 𝐿, so that no path representing an 𝐿-long

sequence, i.e. a path of length ℓ = 𝐿− 𝑘, remains in the graph.

However, finding a minimum-size set of vertices to cover all paths of length ℓ in a directed

acyclic graph (DAG) is NP-hard [54]. In order to find a small, but not necessarily minimum-
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size, set of vertices to cover all ℓ-long paths, Orenstein and Pellow et al. [52, 53] introduced

the notion of a hitting number, the number of ℓ-long paths containing vertex 𝑣, denoted by

𝑇 (𝑣, ℓ). DOCKS uses the hitting number to prioritize removal of vertices that are likely to cover

a large number of paths in the graph. This, in fact, is an application of the greedy method for

the Set Cover problem, thus guaranteeing an approximation ratio of 𝑂(1+log(max𝑣 𝑇 (𝑣, ℓ)))

on the removal of additional 𝑘-mers.

The hitting numbers for all vertices can be computed efficiently by dynamic programming:

For any vertex 𝑣 and 0 ≤ 𝑖 ≤ ℓ, DOCKS calculates the number of 𝑖-long paths starting at 𝑣,

𝐷(𝑣, 𝑖), and the number of 𝑖-long paths ending at 𝑣, 𝐹 (𝑣, 𝑖). Then, the hitting number is

directly computable by

𝑇 (𝑣, ℓ) =
ℓ∑︁

𝑖=0

𝐹 (𝑣, 𝑖) ·𝐷(𝑣, ℓ− 𝑖)

and the dynamic programming calculation in graph 𝐺 = (𝑉 ′, 𝐸 ′) is given by

∀𝑣 ∈ 𝑉 ′, 𝐷(𝑣, 0) = 𝐹 (𝑣, 0) = 1

𝐷(𝑣, 𝑖) =
∑︁

(𝑣,𝑢)∈𝐸′

𝐷(𝑢, 𝑖− 1)

𝐹 (𝑣, 𝑖) =
∑︁

(𝑢,𝑣)∈𝐸′

𝐹 (𝑢, 𝑖− 1) (2.1)

Overall, DOCKS performs two main steps: First, it finds and removes a minimum-size

decycling set, turning the graph into a DAG. Then, it iteratively removes vertex 𝑣 with

the largest hitting number 𝑇 (𝑣, ℓ) until there are no ℓ-long paths in the graph. DOCKS is

sequential: In each iteration, one vertex with the largest hitting number is removed and

added to the UHS output, and the hitting numbers are recalculated. Since the first phase

of DOCKS is solved optimally in polynomial time, the bottleneck of the heuristic lies in the

removal of the remaining set of 𝑘-mers to cover all paths of length ℓ = 𝐿 − 𝑘 in the graph,

which represent all remaining sequences of length 𝐿.

As an additional heuristic, Orenstein and Pellow et al. [52, 53] developed DOCKSany with

a similar structure as DOCKS, but instead of removing the vertex that hits the most (𝐿− 𝑘)-
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long paths, it removes a vertex that hits the most paths in each iteration. This reduces

the runtime by a factor of 𝐿, as calculating the hitting number 𝑇 (𝑣) for each vertex can

be done in linear time with respect to the size of the graph. DOCKSanyX extends DOCKSany

by removing 𝑋 vertices with the largest hitting numbers in each iteration. DOCKSany and

DOCKSanyX run faster compared to DOCKS, but the resulting hitting sets are larger.

2.2 Methods

2.2.1 Algorithm overview

Similar to DOCKS, PASHA is run in two phases: First, a minimum-size decycling set is found

and removed; then, an additional set of 𝑘-mers that hits remaining 𝐿-long sequences is

removed. The removal of the decycling set is identical to that of DOCKS; however, in PASHA

we introduce randomization and parallelization to efficiently remove the additional set of 𝑘-

mers. We present two novel contributions to efficiently parallelize and randomize the second

phase of DOCKS. The first contribution leads to a faster calculation of hitting numbers, thus

reducing the runtime of each iteration. The second contribution leads to selecting multiple

vertices for removal at each iteration, thus reducing the number of iterations to obtain

a graph with no (𝐿 − 𝑘)-long paths. Together, the two contributions provide orthogonal

improvements in runtime.

2.2.2 Improved hitting number calculation

We reduce memory usage through algorithmic and technical advances. Instead of storing

the number of 𝑖-long paths for 0 ≤ 𝑖 ≤ ℓ in both 𝐹 and 𝐷, we apply the following approach

(Algorithm 1): We compute 𝐷 for all 𝑣 ∈ 𝑉 and 0 ≤ 𝑖 ≤ ℓ. Then, while computing the

hitting number, we calculate 𝐹 for iteration 𝑖. For this aim, we define two arrays: 𝐹𝑐𝑢𝑟𝑟 and

𝐹𝑝𝑟𝑒𝑣, to store only two instances of 𝑖-long path counts for each vertex: The current and

previous iterations. Then, for some 𝑗, we compute 𝐹𝑐𝑢𝑟𝑟 based on 𝐹𝑝𝑟𝑒𝑣, set 𝐹𝑝𝑟𝑒𝑣 = 𝐹𝑐𝑢𝑟𝑟,

and add 𝐹𝑐𝑢𝑟𝑟(𝑣) ·𝐷(𝑣, ℓ− 𝑗) to the hitting number sum. Lastly, we increase 𝑗, and repeat
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the procedure, adding the computed hitting numbers iteratively. This approach allows the

reduction of matrix 𝐹 , since in each iteration we are storing only two arrays, 𝐹𝑐𝑢𝑟𝑟 and 𝐹𝑝𝑟𝑒𝑣,

instead of the original 𝐹 matrix consisting of ℓ+ 1 arrays. Therefore, we are able to reduce

memory usage by close to half, with no change in runtime.

To further reduce memory usage, we use float variable type (of size 4 bytes) instead

of double variable type (of size 8 bytes). The number of paths kept in 𝐹 and 𝐷 increase

exponentially with 𝑖, the length of the paths. To be able to use the 8 bit exponent field,

we initialize 𝐹 and 𝐷 to float minimum positive value. This does not disturb algorithm

correctness, as path counting is only scaled to some arbitrary unit value, which may be

2−149, the smallest positive value that can be represented by float. This is done in order

to account for the high numbers that path counts can reach. The remaining main memory

bottleneck is matrix 𝐷, whose size is 4 · 4𝑘 · (ℓ+ 1) bytes.

Lastly, we utilized the property of a complete de Bruijn graph of order 𝑘 being the line

graph of a de Bruijn graph of order 𝑘 − 1. While all 𝑘-mers are represented as the set of

vertices in the graph of order 𝑘, they are represented as edges in the graph of order 𝑘− 1. If

we remove edges of a de Bruijn graph of order 𝑘 − 1, instead of vertices in a graph of order

𝑘, we can reduce memory usage by another factor of |Σ|. In our implementation we compute

𝐷 and 𝐹 for all vertices of a graph of order 𝑘 − 1, and calculate hitting numbers for edges.

Thus, the bottleneck of the memory usage is reduced to 4 · 4𝑘−1 · (ℓ+ 1) bytes.

We parallelize the calculation of the hitting numbers to achieve a constant factor reduction

in runtime. The calculation of 𝑖-long paths through vertex 𝑣only depends on the previously

calculated matrices for the (𝑖−1)-long paths through all vertices adjacent to 𝑣 (Equation 2.1).

Therefore, for some 𝑖, we can compute 𝐷(𝑣, 𝑖) and 𝐹 (𝑣, 𝑖) for all vertices in 𝑉 ′ in parallel,

where 𝑉 ′ is the set of vertices left after the removal of the decycling set. In addition, we can

calculate the hitting number 𝑇 (𝑣, ℓ) for all vertices 𝑉 ′ in parallel (similar to computing 𝐷

and 𝐹 ), since the calculation does not depend on the hitting number of any other vertex (we

call this parallel variant PDOCKS for the purpose of comparison with PASHA). We note that

for DOCKSany and DOCKSanyX, the calculations of hitting numbers for each vertex cannot be
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Algorithm 1 Improved hitting numbers calculation. Input: 𝐺 = (𝑉,𝐸)

1: 𝐷 ← [|𝑉 |][ℓ+ 1], with [|𝑉 |][0] initialized to 1
2: 𝐹𝑐𝑢𝑟𝑟 ← [|𝑉 |]
3: 𝐹𝑝𝑟𝑒𝑣 ← [|𝑉 |] initialized to 1
4: 𝑇 ← [|𝑉 |] initialized to 0
5: for 1 ≤ 𝑖 ≤ ℓ do:
6: for 𝑣 ∈ 𝑉 do:
7: for (𝑣, 𝑢) ∈ 𝐸 do:
8: 𝐷[𝑣][𝑖] += 𝐷[𝑢][𝑖− 1]

9: for 1 ≤ 𝑖 ≤ ℓ+ 1 do:
10: for 𝑣 ∈ 𝑉 do:
11: 𝐹𝑐𝑢𝑟𝑟[𝑣] = 0
12: for (𝑢, 𝑣) ∈ 𝐸 do:
13: 𝐹𝑐𝑢𝑟𝑟[𝑣] += 𝐹𝑝𝑟𝑒𝑣[𝑢]

14: 𝑇 [𝑣] += 𝐹𝑝𝑟𝑒𝑣[𝑣] ·𝐷[𝑣][ℓ− 𝑖+ 1]

15: 𝐹𝑝𝑟𝑒𝑣 = 𝐹𝑐𝑢𝑟𝑟

16: return 𝑇

computed in parallel, since the number of paths starting and ending at each vertex both

depend on those of the previous vertex in topological order.

2.2.3 Parallel randomized 𝑘-mer selection

We now describe a randomized parallel 𝑘-mer selection procedure. Our goal is to find a

minimum-size set of vertices that covers all ℓ-long paths. We can represent the remaining

graph as an instance of the Set Cover problem. While the greedy algorithm for the second

phase of DOCKS is serial, we will show that we can devise a parallel algorithm, which is close

to the greedy algorithm in terms of performance guarantees, by picking a large set of vertices

that cover nearly as many paths as the vertices that the greedy algorithm picks one by one.

In PASHA, instead of removing the vertex with the maximum hitting number in each it-

eration, we consider a set of vertices for removal with hitting numbers within an interval,

and pick vertices in this set independently with constant probability. Considering vertices

within an interval allows us to efficiently introduce randomization while still emulating the

deterministic algorithm. Picking vertices independently in each iteration enables paralleliza-
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tion of the procedure. Our randomized parallel algorithm for the second phase of the UHS

problem adapts that of Berger et al. [3] for the original Set Cover problem.

The UHS selection procedure is as follows: The input includes graph 𝐺 = (𝑉,𝐸) and

randomization variables 0 < 𝜀 ≤ 1
4
, 0 < 𝛿 ≤ 1

ℓ
(Algorithm 2). Let function calcHit()

calculate the hitting numbers for all vertices, and return the maximum hitting number (line

2). We set 𝑡 = ⌈log1+𝜀 𝑇𝑚𝑎𝑥⌉ (line 3), and run a series of steps from 𝑡, iteratively decreasing 𝑡

by 1. In step 𝑡, we first calculate the hitting numbers of all vertices (line 5); then, we define

vertex set 𝑆 to contain vertices with a hitting number between (1 + 𝜀)𝑡−1 and (1 + 𝜀)𝑡 for

potential removal (lines 8-9).

Let 𝑃𝑆 be the sum of all hitting numbers of the vertices in 𝑆, i.e. 𝑃𝑆 =
∑︀

𝑣∈𝑆 𝑇 (𝑣, ℓ) (line

10). In each step, if the hitting number for vertex 𝑣 is more than a 𝛿3 fraction of 𝑃𝑆, i.e.

𝑇 (𝑣, ℓ) ≥ 𝛿3𝑃𝑆, we add 𝑣 to the picked vertex set 𝑉𝑡 (lines 11-13). For vertices with a hitting

number smaller than 𝛿3𝑃𝑆, we pairwise independently pick them with probability 𝛿
ℓ
. We test

the vertices in pairs to impose pairwise independence: If an unpicked vertex 𝑢 satisfies the

probability 𝛿
ℓ
, we choose another unpicked vertex 𝑣 and test the same probability 𝛿

ℓ
. If both

are satisfied, we add both vertices to the picked vertex set 𝑉𝑡; if not, neither of them are

added to the set (lines 14-16). This serves as a bound on the probability of picking a vertex.

If the sum of hitting numbers of the vertices in set 𝑉𝑡 is at least |𝑉𝑡|(1 + 𝜀)𝑡(1 − 4𝛿 − 2𝜀),

we add the vertices to the output set, remove them from the graph, and decrease 𝑡 by 1

(lines 17-20). The next iteration runs with decreased 𝑡. Otherwise, we rerun the selection

procedure without decreasing 𝑡.

2.2.4 Performance guarantees

At step 𝑡, we add the selected vertex set 𝑉𝑡 to the output set if
∑︀

𝑣∈𝑉𝑡
𝑇 (𝑣, ℓ) ≥ |𝑉𝑡|(1 +

𝜀)𝑡(1− 4𝛿 − 2𝜀). Otherwise, we rerun the selection procedure with the same value of 𝑡. We

show in Appendix A.1 that with high probability,
∑︀

𝑣∈𝑉𝑡
𝑇 (𝑣, ℓ) ≥ |𝑉𝑡|(1 + 𝜀)𝑡(1− 4𝛿 − 2𝜀).

We also show that PASHA produces a cover 𝛼(1 + log 𝑇𝑚𝑎𝑥) times the optimal size, where

𝛼 = 1/(1 − 4𝛿 − 2𝜀). In Appendix A.2, we give the asymptotic number of the selection
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Algorithm 2 The selection procedure. Input: 𝐺 = (𝑉,𝐸), 0 < 𝜀 ≤ 1
4
, 0 < 𝛿 ≤ 1

ℓ

1: R← {}
2: 𝑇𝑚𝑎𝑥 ← calcHit()
3: 𝑡← ⌈log1+𝜀 𝑇𝑚𝑎𝑥⌉
4: while 𝑡 > 0 do
5: if calcHit() == 0 then break
6: 𝑆 ← {}
7: 𝑉𝑡 ← {}
8: for 𝑣 ∈ 𝑉 do:
9: if (1 + 𝜀)𝑡−1 ≤ 𝑇 (𝑣, ℓ) ≤ (1 + 𝜀)𝑡 then 𝑆 ← 𝑆 ∪ {𝑣}

10: 𝑃𝑆 ←
∑︀

𝑣∈𝑆 𝑇 (𝑣, ℓ)
11: for 𝑣 ∈ 𝑆 do:
12: if 𝑇 (𝑣, ℓ) ≥ 𝛿3𝑃𝑆 then
13: 𝑉𝑡 ← 𝑉𝑡 ∪ {𝑣}
14: for 𝑢, 𝑣 ∈ 𝑆 do:
15: if 𝑢 /∈ 𝑉𝑡 and unirand(0,1) ≤ 𝛿

ℓ
and 𝑣 /∈ 𝑉𝑡 and unirand(0,1) ≤ 𝛿

ℓ
then

16: 𝑉𝑡 ← 𝑉𝑡 ∪ {𝑢, 𝑣}
17: if

∑︀
𝑣∈𝑉𝑡

𝑇 (𝑣, ℓ) ≥ |𝑉𝑡| · (1 + 𝜀)𝑡(1− 4𝛿 − 2𝜀) then
18: 𝑅← 𝑅 ∪ 𝑉𝑡

19: 𝐺 = 𝐺(𝑉 ∖ 𝑉𝑡, 𝐸)
20: 𝑡← 𝑡− 1

21: return 𝑅

steps and prove the average runtime complexity of the algorithm. Performance summaries

in terms of theoretical runtime and approximation ratio are in Table 2.1.

2.3 Results

We compared PASHA and PDOCKS to extant methods on several combinations of 𝑘 and 𝐿.

We ran DOCKS, DOCKSany, PDOCKS, and PASHA over 5 ≤ 𝑘 ≤ 10, DOCKSanyX, PDOCKS, and

PASHA for 𝑘 = 11 and 𝑋 = 10, and PASHA and DOCKSanyX for 𝑋 = 100, 1000 for 𝑘 = 12, 13

respectively, for 20 ≤ 𝐿 ≤ 200. We say that an algorithm is limited by runtime if for some

value of 𝑘 ≤ 13 and for 𝐿 = 100, its runtime exceeds 1 day (86400 seconds), in which case we

stopped the operation and excluded the method from the results for the corresponding value

of 𝑘. While running PASHA, we set 𝛿 = 1/ℓ, and 1− 4𝛿 − 2𝜀 = 1/2 to set an emulation ratio
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Table 2.1: Summary of theoretical results for the second phase of different al-
gorithms for generating a set of 𝑘-mers hitting all 𝐿-long sequences. PDOCKS is
DOCKS with the improved hitting number calculation, i.e. greedy removal of one vertex at
each iteration. 𝑝𝐷, 𝑝𝐷𝐴 denote the total number of picked vertices for DOCKS/PDOCKS and
DOCKSany, respectively. 𝑚 denotes the number of parallel threads used, 𝑇𝑚𝑎𝑥 the maximum
vertex hitting number, and 𝜀 and 𝛿 PASHA’s randomization parameters.

Algorithm DOCKS PDOCKS DOCKSany PASHA
Theoretical runtime 𝑂((1 + 𝑝𝐷)|Σ|𝑘+1 · 𝐿) 𝑂((1 + 𝑝𝐷)|Σ|𝑘+1 · 𝐿/𝑚) 𝑂((1 + 𝑝𝐷𝐴)|Σ|𝑘+1) 𝑂((𝐿2 · |Σ|𝑘+1 · log2(|Σ|𝑘))/(𝜀𝛿3𝑚))
Approximation ratio 1 + log 𝑇𝑚𝑎𝑥 1 + log 𝑇𝑚𝑎𝑥 N/A (1 + log 𝑇𝑚𝑎𝑥)/(1− 4𝛿 − 2𝜀)

𝛼 = 2 (see Section 2.2.4 and Appendix A.1). The methods were benchmarked on a 24-CPU

Intel Xeon Gold (2.10GHz) with 754GB of RAM. We ran all tests using all available cores

(𝑚 = 24 in Table 2.1).

2.3.1 Comparing runtimes and UHS sizes

We ran DOCKS, PDOCKS, DOCKSany, and PASHA for 𝑘 = 10 and 20 ≤ 𝐿 ≤ 200. As seen

in Figure 2-1A, DOCKS has a significantly higher runtime than the parallel variant PDOCKS,

while producing identical sets (Figure 2-1B). For small values of 𝐿, DOCKSany produces the

largest UHSs compared to other methods, and as 𝐿 increases, the differences in both runtime

and UHS size for all methods decrease, since there are fewer 𝑘-mers to add to the removed

decycling set to produce a UHS.

We ran PDOCKS, DOCKSanyX (with 𝑋 = 10), and PASHA for 𝑘 = 11 and 20 ≤ 𝐿 ≤ 200. As

seen in Figure 2-1C, for small values of 𝐿, both PDOCKS and DOCKSanyX have significantly

higher runtimes than PASHA; while for larger 𝐿, DOCKSanyX and PASHA are comparable in

their runtimes (with PASHA being negligibly slower). In Figure 2-1D, we observe that PDOCKS

computes the smallest sets for all values of 𝐿. Indeed, its guaranteed approximation ratio

is the smallest among all three benchmarked methods. While the set sizes for all methods

converge to the same value for larger 𝐿, DOCKSanyX produces the largest UHSs for small

values of 𝐿, in which case PASHA and PDOCKS are preferable.

PASHA’s runtime behaves differently than that of other methods. For all methods but

PASHA, runtime decreases as 𝐿 increases. Instead of gradually decreasing with 𝐿, PASHA’s
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runtime gradually decreases up to 𝐿 = 70, at which it starts to increase at a much slower

rate. This is explained by the asymptotic complexity of PASHA (Table 2.1). Since computing

a UHS for small 𝐿 requires a larger number of vertices to be removed, the decrease in runtime

with increasing 𝐿 up to 𝐿 = 70 is significant; however, due to PASHA’s asymptotic complexity

being quadratic with respect to 𝐿, we see a small increase from 𝐿 = 70 to 𝐿 = 200. All other

methods depend linearly on the number of removed vertices, which decreases as 𝐿 increases.

Despite the significant decrease in runtime in PDOCKS compared to DOCKS, pdocks was

still limited by runtime to 𝑘 ≤ 12. Therefore, we ran DOCKSanyX with 𝑋 = 100 and PASHA for

𝑘 = 12 and 20 ≤ 𝐿 ≤ 200. As seen in Figures 2-1E and 2-1F, both methods follow a similar

trend as in 𝑘 = 11, with DOCKSanyX being significantly slower and generating significantly

larger UHSs for small values of 𝐿. For larger values of 𝐿, DOCKSanyX is slightly faster, while

PASHA produces sets that are slightly smaller.

At 𝑘 = 13 we observed the superior performance of PASHA over DOCKSanyX with 𝑋 = 1000

in both runtime and set size for all values of 𝐿. We ran DOCKSanyX and PASHA for 𝑘 = 13

and 20 ≤ 𝐿 ≤ 200. As seen in Figures 2-1G and 2-1H, DOCKSanyX produces larger sets and

is significantly slower compared to PASHA for all values of 𝐿. This result demonstrates that

the slow increase in runtime for PASHA compared to other algorithms for 𝑘 < 13 does not

have a significant effect on runtime for larger values of 𝑘.

2.3.2 PASHA enables UHS for 𝑘 = 14, 15, 16

Since all existing algorithms and PDOCKS are limited by runtime to 𝑘 ≤ 13, we report the

first UHSs for 14 ≤ 𝑘 ≤ 16 and 𝐿 = 100 computed using PASHA, run on a 24-CPU Intel

Xeon Gold (2.10GHz) with 754GB of RAM using all 24 cores. Figure 2-2 shows runtimes

and sizes of the sets computed by PASHA.

2.3.3 Density comparisons for the different methods

In addition to runtimes and UHS sizes, we report values of another measure of UHS perfor-

mance known as density. The density of the minimizers scheme 𝑑(𝑀,𝑆, 𝑘) is the fraction of
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Figure 2-1: Comparison of runtimes and set sizes of different UHS generation
methods for 10 ≤ 𝑘 ≤ 13. Runtimes (left) and UHS sizes (divided by 104, right) are given
for values of 𝑘 = 10 (A, B), 11 (C, D), 12 (E, F), and 13 (G, H) and 20 ≤ 𝐿 ≤ 200 for the
different methods. Note that the 𝑦-axes for runtimes are in logarithmic scale.

selected 𝑘-mers’ positions over the number of 𝑘-mers in the sequence. Formally, the density

of scheme 𝑀 over sequence 𝑆 is defined as

𝑑(𝑀,𝑆, 𝑘) =
|𝑀(𝑆, 𝑘)|
|𝑆| − 𝑘 + 1

(2.2)
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Figure 2-2: Runtimes and set sizes of PASHA for 14 ≤ 𝑘 ≤ 16. Runtimes (A) are in
logarithmic scale, and UHS sizes (B) are divided by 106.

where 𝑀(𝑆, 𝑘) is the set of positions of the 𝑘-mers selected over sequence 𝑆.

We calculate densities for a UHS by selecting the lexicographically smallest 𝑘-mer that

is in the UHS within each window of 𝐿− 𝑘 + 1 consecutive 𝑘-mers, since at least one 𝑘-mer

is guaranteed to be in each such window. Marçais et al. [46] showed that using UHSs for 𝑘-

mer selection in this manner yields smaller densities than lexicographic or random minimizer

selection schemes. Therefore, we do not report comparisons between UHSs and minimizer

schemes, but rather comparisons among UHSs constructed by different methods.

Marçais et al. [46] also showed that the expected density of a minimizers scheme for

any 𝑘 and window size 𝐿 − 𝑘 + 1 is equal to the density of the minimizers scheme on a de

Bruijn sequence of order 𝐿. This allows for exact calculation of expected density for any

𝑘-mer selection procedure. However, for 14 ≤ 𝑘 ≤ 16 we calculated UHSs only for 𝐿 = 100,

and iterating over a de Bruijn sequence of order 100 is infeasible. Therefore, we computed

the approximate expected density on long random sequences, since the computed expected

density on these sequences converges to the expected density [46]. In addition, we computed

the density of different methods on the entire human reference genome (GRCh38).

We computed the density values of UHSs generated by PDOCKS, DOCKSany, and PASHA

over 10 random sequences of length 106, and the entire human reference genome (GRCh38),
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for 5 ≤ 𝑘 ≤ 16 and 𝐿 = 100, when a UHS was available for such (𝑘, 𝐿) combination.

As seen in Figure 2-3, the differences in both approximate expected density and density

computed on the human reference genome are negligible when comparing UHSs generated by

the different methods. For most values of 𝑘, DOCKS yields the smallest approximate expected

density and human genome density values, while DOCKSany generally yields lower human

genome density values, but higher expected density values than PASHA. For 𝑘 ≤ 6, the UHS

is only the decycling set; therefore, density values for these values of 𝑘 are identical for the

different methods.

Since there is no significant difference in the density of the UHSs generated by the different

methods, other criteria, such as runtime and set size, are relevant when evaluating the

performance of the methods: As 𝑘 increases, PASHA produces sets that are only slightly

smaller or larger in density, but significantly smaller in size and significantly faster than

extant methods.

Figure 2-3: Comparison of densities for different UHS generation methods. Mean
approximate expected density (A), and density on the human reference genome (B) for
different methods, for 5 ≤ 𝑘 ≤ 16 and 𝐿 = 100 are provided. Error bars represent one
standard deviation from the mean across 10 random sequences of length 106. Density is
defined by the fraction of selected 𝑘-mer positions over the number of 𝑘-mers in the sequence.
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2.4 Discussion and future work

We presented an efficient randomized parallel algorithm for generating a small set of 𝑘-mers

that hits every possible sequence of length 𝐿 and produces a set that is a small guaranteed

factor away from the optimal set size. Since the runtime of DOCKS variants and PASHA depend

exponentially on 𝑘, these greedy heuristics are eventually limited by runtime. However, using

these heuristics in conjunction with parallelization, we are newly able to compute UHSs for

values of 𝑘 and 𝐿 large enough for most biological applications.

The improvements in runtime for the hitting number calculation are due to parallelization

of the dynamic programming phase, which is the bottleneck in sequential DOCKS variants.

A minimum-size set that hits all infinite-length sequences is optimally and rapidly removed;

however, the remaining sequences of length 𝐿 are calculated and removed in time polynomial

in the output size. We show that a constant factor reduction is beneficial in mitigating this

bottleneck for practical use. In addition, we reduce the memory usage of this phase by

theoretical and technical advancements. Last, we build on a randomized parallel algorithm

for Set Cover to significantly speed up vertex selection. The randomized algorithm can be

derandomized, while preserving the same approximation ratio, since it requires only pairwise

independence of the random variables [3].

One main open problem still remains from this work. Although the randomized approx-

imation algorithm enables us to generate a UHS more efficiently, the hitting numbers still

need to be calculated at each iteration. The task of computing hitting numbers remains

as the bottleneck in computing a UHS. Is there a more efficient way of calculating hitting

numbers than the dynamic programming calculation done in DOCKS and PASHA?

As for long reads, which are becoming more popular for genome assembly tasks, a 𝑘-mer

set that hits all infinite long sequences, as computed optimally by Mykkeltveit’s algorithm

[48], is enough due to the length of these long read sequences. Still, due to the inaccuracies

and high cost of long read sequencing compared to short read sequencing, the latter is still

the prevailing method to produce sequencing data, and is expected to remain so for the near

future.
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We expect the efficient calculation of UHSs to lead to improvements in sequence analysis

and construction of space-efficient data structures. Unfortunately, previous methods were

limited to small values of 𝑘, thus allowing application to only a small subset of sequence

analysis tasks. As there is an inherent exponential dependency on 𝑘 in terms of both runtime

and memory, efficiency in calculating these sets is crucial. We expect that the UHSs newly-

enabled by PASHA for 𝑘 > 13 will be useful in improving various applications in genomics.
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Chapter 3

Minimizer-space de Bruijn graphs

3.1 Background and preliminaries

DNA sequencing data continues to improve from long reads of poor quality [1], used to assem-

ble the first human genomes and Illumina short reads with low error rates (≤ 1%) to longer

reads with low error rates. For instance, recent Pacific Biosciences (PacBio) instruments can

sequence 10 to 25 Kbp-long (HiFi) reads at ≤ 1% error rate [64]. The R10.3 pore of Oxford

Nanopore produces reads of hundreds of Kbps in length at a ∼ 5% error rate. A tantalizing

possibility is that DNA sequencing will eventually converge to long, nearly-perfect reads.

These new technologies require algorithms that are both efficient and accurate for important

sequence analysis tasks such as genome assembly [39].

In this chapter, we provide a highly-efficient genome assembly tool for state-of-the-art

and low-error long-read data. We introduce minimizer-space de Bruijn graphs, mdBG, which

instead of building an assembly over sequence bases — the standard approach that for clarity

we refer to as base-space — newly performs assembly in minimizer-space (Figure 3-1), and

later converts it back to base-space assemblies. Specifically, each read is initially converted

to an ordered sequence of its minimizers [59, 37].

The order of the minimizers is important, as our aim is to reconstruct the entire genome

as an ordered list. Our method differs from the with the classical MinHash technique,
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which converts sequences into unordered sets of minimizers to detect pairwise similarities

between them [7]. To aid in assembly of higher-error rate data, we also introduce a variant

of the partial order alignment (POA) algorithm, that operates in minimizer-space instead of

base-space, and effectively corrects only the bases corresponding to minimizers in the reads.

Sequencing errors that occur outside minimizers do not affect our representation. Those

within minimizers cause substitutions or indels in minimizer-space (Figure 3-2), which can

be identified and subsequently corrected in minimizer-space using POA (Figure 3-3).

Our key conceptual advance is that minimizers can themselves make up atomic tokens

of an extended alphabet, which enables efficient long-read assembly that, along with error

correction, leads to preserved accuracy. By performing assembly using a minimizer-space de

Bruijn graph, we drastically reduce the amount of data input to the assembler, preserving

accuracy, lowering running time, and decreasing memory usage by 1 to 2 orders of magnitude

compared to current assemblers. Setting adequate parameters for the order of the de Bruijn

graph and the density of our minimizer scheme allows us to overcome stochastic variations in

sequencing depth and read length, in a similar fashion to traditional base-space assembly. To

handle higher sequencing error rates, we correct for base errors by introducing the concept

of minimizer-space partial order alignment (POA).

With error-prone data, we study two regimes: real PacBio HiFi read data (< 1% error

rate) for D. melanogaster and Human, which turn out to require little adjustment for errors

due to the very low rate, and synthetic 1 to 10% error rate data, which correspond to

the range of error rates of Oxford Nanopore’s recent technology. We also demonstrate that

despite data reduction, running our rust-mdbg software on synthetic error-free and 4% error-

rate data results in near-perfect reconstruction of a genome, the latter entirely due to our

application of POA in minimizer-space.

To further demonstrate rust-mdbg’s capabilities, we use it to assemble two PacBio HiFi

metagenomes, achieving runtimes of minutes as opposed to days, and memory usage two

orders of magnitude lower than the current state-of-the-art hifiasm-meta, with compara-

ble assembly completeness yet lower contiguity. As a versatile use case of minimizer-space
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analysis, we construct, to the best of our knowledge, the largest pangenome graph to date

of 661K bacterial genomes, and perform minimizer-space queries of anti-microbial resistance

(AMR) genes within this graph, identifying nearly all those with high sequence similarity

to original bacterial genomes. Rapidly detecting AMR genes in a large collection of sam-

ples would facilitate real-time AMR surveillance [24], and mdBG provides a space-efficient

alternative to indexed 𝑘-mer search.

Remarkably, our approach is equivalent to examining a tunable fraction (e.g. only 1%)

of the input bases in the data, and should generalize to emerging sequencing technologies.

3.1.1 Comparison with related work

This work is at the confluence of three core ideas that were just recently proposed in three

different genome assemblers: Shasta [61], wtdbg2 [60] and Peregrine [15]. 1) Shasta trans-

forms ordered lists of reads into minimizers (Shasta used the term markers) to produce

an efficiently reduced representation of sequences that facilitates quick detection of over-

laps between reads. A similar idea was previously used for read mapping and assembly in

minimap/miniasm [35, 36] and edit distance calculation with Order Min Hash (OMH) [45].

2) The wtdbg2 idea extends the usual Σ = {A,C,T,G} alphabet, which forms the basis of

traditional genome de Bruijn graphs, to 256 bp windows: A ‘fuzzy’ de Bruijn graph is con-

structed by ‘zooming out’ of read sequences, and considering batches of 256 bps at a time. 3)

The Peregrine idea can be broken down into two parts: i) pairs of consecutive minimizers

can be indexed - and they are naturally less often repeated across a genome than isolated

minimizers, and ii) a hierarchy of minimizers can be constructed so that fewer minimizers

are selected than in classical methods, thus increasing the distance between minimizers.

In distantly-related independent work, a very recent pre-print [58] (MBG) demonstrates

a similar idea as Peregrine, performing assembly by finding pairs of consecutive minimizers

on reads. Although MBG does combine the concepts of minimizers and de Bruijn graphs, it is

fundamentally different from the work presented here. Nodes in the MBG are classical 𝑘-mers

over the DNA alphabet, whereas nodes in our representation are 𝑘-mers over an alphabet
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of minimizers. Two other related concepts to MBG are sparse de Bruijn graphs [65] and

A-Bruijn graphs [31, 38], in which the nodes are a subset of the original de Bruijn graph

nodes and the edge condition is relaxed so that overlaps may be shorter than (𝑘 − 1) when

pairs of nodes are seen consecutively in a read.

Conceptually, our advance is in tightly combining both de Bruijn graphs and minimizers,

introducing a non-trivial mix of previously-known ingredients. The concept of a de Bruijn

graph was not considered in either the Shasta or the Peregrine assemblers; whereas in

the wtdbg2 assembler, de Bruijn graphs were considered, but not minimizers. Moreover,

reducing the three aforementioned genome assemblers into a single idea for each of them, in

terms of how they achieve algorithmic efficiency, is a contribution in itself and simplifies our

presentation greatly. What we offer is essentially an ultra-fast variation of de Bruijn graphs,

for long reads.

3.1.2 Preliminary definitions

The variable 𝜎 is used as a placeholder for an unspecified alphabet (a non-empty set of

characters). We define ΣDNA = {A, C, T, G} as the alphabet containing the four DNA

bases. Given an integer ℓ > 0, Σℓ is the alphabet consisting of all possible strings on ΣDNA

of length ℓ. To avoid confusion, we stress that Σℓ is an unusual alphabet: Any ‘character’

of Σℓ is itself a string of length ℓ over the DNA alphabet.

Given an alphabet 𝜎, a string is a finite ordered list of characters from 𝜎. Note that

our strings will sometimes be on alphabets where each character cannot be represented by

a single alphanumeric symbol. Given a string 𝑥 over some alphabet 𝜎 and some integer

𝑛 > 0, the prefix (respectively the suffix ) of 𝑥 of length 𝑛 is the string formed by the first

(respectively the last) 𝑛 characters of 𝑥.

We now introduce the concept of a minimizer. In this paragraph, we consider strings over

the alphabet ΣDNA. We consider two types of minimizers: universe and window. Consider a

function 𝑓 that takes as input a string of length ℓ and outputs a numeric value within range

[0, 𝐻], where 𝐻 > 0. Usually, 𝑓 is a 4-bit encoding of DNA, or a random hash function (it
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does not matter whether the values of 𝑓 are integers or whether 𝐻 is an integer). Given

an integer ℓ > 1 and a coefficient 0 < 𝛿 < 1, a universe (ℓ, 𝛿)-minimizer is any string 𝑚 of

length ℓ such that 𝑓(𝑚) < 𝛿 ·𝐻. We define 𝑀ℓ,𝛿 to be the set of all universe (ℓ, 𝛿)-minimizers,

and we refer to 𝛿 as the density of 𝑀ℓ,𝛿.

This definition of a minimizer is in contrast with the classical one [59] which we recall

here, although we will not use it. Consider a string 𝑥 of any length, and a substring (window)

𝑦 of length 𝑤 of 𝑥. A window ℓ-minimizer of 𝑥 given window 𝑦 is a substring 𝑚 of length

ℓ of 𝑦 that has the smallest value 𝑓(𝑚) among all other such substrings in 𝑦. Observe

that universe minimizers are defined independently of a reference string, unlike window

minimizers. They have been recently independently termed mincode syncmers [19]. We also

performed experiments with an alternative concept to minimizers, Locally Consistent Parsing

(LCP) [16], which replaces universal minimizers with core substrings : substrings that can

be pre-computed for any given alphabet such that any sequence of length 𝑛 includes ∼ 𝑛/ℓ

substrings of length ℓ on average.

We recall the definition of de Bruijn graphs. Given an alphabet 𝜎 and an integer 𝑘 ≥ 2,

a de Bruijn graph of order 𝑘 is a directed graph where nodes are strings of length 𝑘 over 𝜎

(𝑘-mers), and two nodes 𝑥, 𝑦 are linked by an edge if the suffix of 𝑥 of length 𝑘 − 1 is equal

to the prefix of 𝑦 of length 𝑘 − 1. This definition corresponds to the node-centric de Bruijn

graph [12] generalized to any alphabet.

3.2 Methods

3.2.1 Classical and minimizer-space de Bruijn graphs

We say that an algorithm or a data structure operates in minimizer space when its operations

are done on strings over the Σℓ alphabet, with characters from 𝑀ℓ,𝛿. Conversely, it operates

in base-space when the strings are over the usual DNA alphabet ΣDNA.

We introduce the concept of (𝑘, ℓ, 𝛿)-min-mer, or just 𝑘-min-mer when clear from the

context, defined as an ordered list of 𝑘 minimizers from 𝑀ℓ,𝛿. We use this term to avoid
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confusion with 𝑘-mers over the DNA alphabet. Indeed, a 𝑘-min-mer can be seen as a 𝑘-mer

over the alphabet Σℓ, i.e. a 𝑘-mer in minimizer-space. For an integer 𝑘 > 2 and an integer

ℓ > 1, we define a minimizer-space de Bruijn graph (mdBG) of order 𝑘 as de Bruijn graph

of order 𝑘 over the Σℓ alphabet. As per the definition in the previous section, nodes are

𝑘-min-mers, and edges correspond of identical suffix-prefix overlaps of length 𝑘 − 1 between

𝑘-min-mers. Figure 3-1 shows an example.

ACTGAGTACCATGGAC
ACTGAGTAC

CTGAGTACCAT
GAGTACCATGGAC
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CTGA
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AGTA
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Figure 3-1: An efficient assembly method for state-of-the-art genome sequencing
(e.g. PacBio HiFi data). Illustration of our minimizer-space de Bruijn graph (mdBG,
bottom) compared to the original de Bruijn graph (top). Center horizontal section shows a
toy reference genome, along with a collection of sequencing reads. Top box shows 𝑘-mers
(𝑘 = 4) collected from the reads, which are the nodes of the classical de Bruijn graph. The
input size of 52 nucleotides (nt) is depicted in boldface. Bottom box shows the position of
minimizers in the reads for ℓ = 2, and any ℓ-mer starting with nucleotide ‘A’ is chosen as
a minimizer. 𝑘′-min-mers (𝑘′ = 3) are tuples of 𝑘′ minimizers as ordered in reads, which
constitute the nodes of the minimizer-space de Bruijn graph. The reduction in input size to
18 nucleotides (nt) is depicted in boldface.

We present our procedure for constructing mdBGs as follows. First, a set 𝑀 of minimizers

are pre-selected using the universe minimizer scheme from the previous section. Then, reads

are scanned sequentially, and positions of elements in 𝑀 are identified. A multiset 𝑉 of

𝑘-min-mers is created by inserting all tuples of 𝑘 successive elements in 𝑀ℓ,𝛿 found in the
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reads into a hash table. Each of those tuples is a 𝑘-min-mer, i.e., a node of the mdBG.

Edges of the mdBG are discovered through an index of all (𝑘 − 1)-min-mers present in the

𝑘-min-mers.

mdBGs can be simplified and compacted similarly to base-space de Bruijn graphs, using

similar rules for removing likely artefactual nodes (tips and bubbles), and performing path

compaction. They are also bidirected, though we present them as directed here for simplicity.

By itself the mdBG is insufficient to fully reconstruct a genome in base-space, as in the

best case it can only provide a sketch consisting of the ordered list of minimizers present

in each chromosome. To reconstruct a genome in base-space, we associate to each 𝑘-min-

mer the substring of a read corresponding to that 𝑘-min-mer. The substring likely contains

base-space sequencing errors, which we address at the end of this paragraph. To deal with

overlaps, we also keep track of the positions of the second and second-to-last minimizers in

each 𝑘-min-mer. After performing compaction, the base sequence of a compacted mdBG can

be reconstructed by concatenating the sequences associated to 𝑘-min-mers, making sure to

discard overlaps. Note that in the presence of sequencing errors, or when the same 𝑘-min-

mer corresponds to several locations in the genome, the resulting assembled sequence will be

imperfect (similar to the output of miniasm [35]) which can be fixed by additional base-level

polishing (not performed here).

3.2.2 How sequencing errors propagate to minimizer-space

In order to clarify the difference between base-space and minimizer-space in the presence of

sequencing errors, we newly derive an expression of the expected error rate in minimizer-

space (parameterized by 𝑘, ℓ, and 𝛿), using a Poisson process model of random site mutations

that was invoked by Mash [51]. Given the probability 𝑑 of a single base substitution, the

probability that no mutation will occur in a given ℓ-mer is 𝑒−ℓ𝑑 under a Poisson model.

To estimate the number of erroneous 𝑘-min-mers in a read, we define for a given read 𝑅,

the expected number 𝑛𝑅 of universe (ℓ, 𝛿)-minimizers in the read as 𝑛𝑅 = (|𝑅| − ℓ + 1) · 𝛿.

Since a 𝑘-min-mer is erroneous whenever at least one of 𝑘 universe (ℓ, 𝛿)-minimizers within
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the 𝑘-min-mer is erroneous, the probability that a given 𝑘-min-mer is erroneous is then

1 − 𝑒−ℓ𝑑𝑘. The number of 𝑘-min-mers obtained from the read is 𝑛𝑅 − 𝑘 + 1. Thus, the

expected number of erroneous 𝑘-min-mers in a read is

(𝑛𝑅 − 𝑘 + 1) · (1− 𝑒−ℓ𝑑𝑘)

For instance, for a base-space mutation rate of 𝑑 = 0.01, minimizer-space parameters

ℓ = 12, 𝑘 = 10, and 𝛿 = 0.01, and a read length of |𝑅| = 20000, 70% of the 𝑘-min-mers

in the read are erroneous. However, lowering the base-space mutation rate to 𝑑 = 0.001

and keeping other values of 𝑘 and ℓ identical renders only 10% of the 𝑘-min-mers erroneous

within a read.

TACCATGGAC
m4 m2m2

TACCATCGAC
m4 m2m2

TACCATAGAC

m4 m2m2 m3

Original sequence
No effect in 

minimizer-space
Minimizer-space insertion

TGCCATGGAC
m4 m2

Minimizer-space deletionSingle 
base-space 
substitution TACCAAGGAC

m1 m2m3m2

Minimizer-space 
substitution + insertion

Figure 3-2: Propagation of sequencing errors in base-space to minimizer-space.
Continuing the example in Figure 3-1, we consider a sequence along with its minimizers
(left of the box). Each panel inside the box depicts the effect of a different mutation on
the sequence. Top left panel: G→C (in purple) leads to no change in the minimizer-space
representation as the mutation did not change or create any minimizer. Bottom left: A→G
led to the disappearance of 𝑚2. Top right: C→A made the 𝑚3 minimizer appear. Bottom
right: T→A affected two minimizers: 𝑚4 was substituted for 𝑚1, and 𝑚3 was inserted.

To estimate the average ℓ-mer identity of a read, we provide an approximation of the

minimizer-space error rate given the base-space error rate. As seen above, an ℓ-mer that

was selected as a universe minimizer has probability 𝑒−ℓ𝑑 to be mutated. Mutations that

occur outside of universe minimizers may now still affect the minimizer-space representation

by turning a non-minimizer ℓ-mer into a universe minimizer (see Figure 3-2). Under the

simplifying assumption that this effect occurs independently at each position in a read, the

probability that an ℓ-mer turns into a universe minimizer is the probability of a mutation
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within that ℓ-mer times the probability 𝛿 that a random ℓ-mer is a universe minimizer, i.e.,

(1 − 𝑒−ℓ𝑑)𝛿. For a universe minimizer 𝑚, there are approximately 1/𝛿 neighboring ℓ-mers

that are candidates for turning into universe minimizers themselves due to a base error. We

will conceptually attach those ℓ-mers to 𝑚, and consider that an error in any of those ℓ-mers

leads to an insertion error next to 𝑚.

Combining the above terms leads to the following minimizer-space error rate approxima-

tion:

1− 𝑒−ℓ𝑑(1− (1− 𝑒−ℓ𝑑)𝛿)1/𝛿 (3.1)

For an error rate of 𝑑 = 5%, i.e. close to that of the Oxford Nanopore R10.3 chemistry,

ℓ = 12, and 𝛿 = 0.01, the minimizer-space error rate is 65.1%, dropping to 2.3% when

𝑑 = 0.1%. This analysis indicates that parameters ℓ, 𝑘, 𝛿 and the base error rate 𝑑 together

play an essential role in the performance of a mdBG-guided assembly.

3.2.3 Correcting sequencing errors in minimizer-space

Long-read sequencing technologies from Pacific Biosciences (PacBio) and Oxford Nanopore

(ONT) recently enabled the production of genome assemblies with high contiguity, albeit

with a relatively high error rate (≥ %5) in the reads, requiring either read error correc-

tion and/or assembly polishing, which are both resource-intensive steps [14, 41]. We will

demonstrate that our minimizer-space representation is applicable to error-free sequencing

reads and PacBio HiFi reads, which boast error rates lower than %1; however, in order to

work with long reads with a higher error rate such as PacBio CLR and ONT, we present a

resource-frugal error correction step that uses partial order alignment (POA) [33], a graph

representation of a multiple sequence alignment (MSA), in order to rapidly correct sequencing

errors that occur in the minimizer-space representation of reads. Stand-alone error correc-

tion modules such as racon [63] and Nanopolish [41] have also relied on POA for error

correction of long reads; however, these methods work in base-space, and as such, are still

resource-intensive. We present an error correction module that uses POA in minimizer-space
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that can correct errors in minimizer-space, requiring only the minimizer-space representation

of reads as input.

Figure 3-3: Overview of the minimizer-space partial order alignment (POA) proce-
dure with a toy dataset of 4 reads. 1) Error-prone reads and their ordered lists of minimizers
(ℓ = 2) are shown, with sequencing errors and the minimizers that are created as a result of
errors denoted in colors (insertion as red, deletion as orange, substitution in blue, no errors
in green). 2) Before minimizer-space error-correction, the ordered lists of minimizers are
bucketed using their 𝑛-tuples (𝑛 = 1). 3) For a query ordered list (the first read in the read
set in the figure), all ordered lists that share an 𝑛-tuple with the query are obtained, and
the final list of query neighbors are obtained by applying a heuristically determined distance
filter 𝑑𝑗 (Jaccard distance threshold of 𝜙 = 0.5). 4) A POA graph in minimizer-space is con-
structed by initializing the graph with the query, and aligning each ordered list that passed
the filter to the graph iteratively (weights of poorly-supported edges are shown in red). 5)
By taking a consensus path of the graph, the error in the query is corrected.

An overview of the minimizer-space POA procedure is shown in Figure 3-3. The input

for the procedure is the collection of ordered lists of minimizers obtained from all reads in the

dataset (one ordered list per read). As seen earlier, the ordered list of minimizers obtained

from a read containing sequencing errors will likely differ from that of an error-free read.

However, provided the dataset has enough coverage, the content of other ordered lists of

minimizers in the same genomic region can be used to correct errors in the query read in

minimizer-space. To this end, we first perform a bucketing procedure for all ordered lists of

minimizers using each of their 𝑛-tuples, where 𝑛 is a user-specified parameter.

After bucketing, in order to initiate the error-correction of a query we collect its neighbors :

other ordered lists likely corresponding to the same genomic region. We use a distance metric
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(Jaccard or Mash [51] distance) to pick sufficiently similar neighbors. Once we obtain the

final set of neighbors that will be used to error-correct the query, we run the partial order

alignment (POA) procedure as described in [33], with the modification that a node in the

POA graph is now a minimizer instead of an individual base, directed edges now represent

whether two minimizers are adjacent in any of the neighbors, and edge weights represent

the multiplicity of the edge in all of the neighbor ordered lists. After constructing the

minimizer-space POA by aligning all neighbors to the graph, we generate a consensus (the

best-supported traversal through the graph). Once the consensus is obtained in minimizer-

space, we replace the query ordered list of minimizers with the consensus, and repeat until

all reads are error-corrected. In order to recover the base-space sequence of the obtained

consensus after POA, we store the sequence spanned by each pair of nodes in the edges, and

generate the base-space consensus by concatenating the sequences stored in the edges of the

consensus.

POA bucketing and preprocessing

In Algorithm 3, all tuples of length 𝑛 of an ordered list of minimizers are computed using a

sliding window (lines 4-6), and the ordered list of minimizers itself is stored in the buckets

labeled by each 𝑛-tuple (line 7). We use bucketing as a proxy for set similarity, since each

pair of reads in the same bucket will have an 𝑛-tuple (the label of the bucket), and will be

more likely to come from the same genomic region.

Algorithm 3 Bucketing procedure for all ordered lists of minimizers
Input: Set of ordered list of minimizers 𝑆, bucket index length 𝑛
1: procedure BUCKET(𝑆, 𝑛)
2: 𝐵 ← {} ◁ Empty hash table of buckets
3: for 𝑠 ∈ 𝑆 do
4: for 𝑖 = 0 to 𝑖 = |𝑠| − 𝑛+ 1 do
5: 𝑡← 𝑠[𝑖 : 𝑖+ 𝑛] ◁ 𝑛-tuple of 𝑠 starting at position 𝑖
6: 𝐵[𝑡]← 𝐵[𝑡] ∪ 𝑠

7: return 𝐵

The overview of the collection of neighbors for error-correcting a query ordered list of
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minimizers is shown in Algorithm 4. We obtain all 𝑛-tuples of a query ordered list, and collect

the ordered lists in the previously populated buckets indexed by its 𝑛-tuples (lines 10-15).

These ordered lists are viable candidates for neighbors, since they share a tuple of length at

least 𝑛 with the query ordered list; however, since a query 𝑛-tuple may not uniquely identify

a genomic region, we apply a similarity filter to further eliminate candidates unrelated to the

query. Using either Jaccard or Mash distance [51] as a similarity metric, for a user-specified

threshold 𝜙, we filter out all candidates that have distance ≥ 𝜙 to the query ordered list to

obtain the final set of neighbors that will be used for error-correcting the query (lines 1-9).

Algorithm 4 Collection of neighbors for a given query ordered list
Input: A query ordered list of minimizers 𝑞 to be error-corrected, collection of buckets 𝐵,

bucket index length 𝑛, distance function 𝑑, distance threshold 𝜙
1: function FILTER(𝑞, 𝐶, 𝑑, 𝜙)
2: 𝐹 ← {} ◁ Empty set of candidates that pass the filter
3: for 𝑐 ∈ 𝐶 do
4: if 𝑑(𝑞, 𝑐) < 𝜙 then ◁ Apply distance threshold of 𝜙 to a candidate
5: 𝐹 ← 𝐹 ∪ 𝑐
6: return 𝐹
7: procedure COLLECT(𝑞, 𝐵, 𝑛, 𝑑, 𝜙)
8: 𝐶 ← {} ◁ Empty set of candidate neighbors
9: for 𝑖 = 0 to 𝑖 = |𝑞| − 𝑛+ 1 do

10: 𝑡← 𝑞[𝑖 : 𝑖+ 𝑛] ◁ 𝑛-tuple of 𝑞 starting at position 𝑖
11: 𝐶 ← 𝐶 ∪𝐵[𝑡]

12: 𝐹 ← FILTER(𝑞, 𝐶, 𝑑, 𝜙)
13: return 𝐹

POA graph construction and consensus generation

Algorithm 6 describes a canonical POA consensus generation procedure, similar to racon [63],

except that here consensus is performed in minimizer-space.

The minimizer-space POA error-correction procedure is shown in Algorithm 5. For each

neighbor of the query, we perform semi-global alignment between a neighbor ordered list

and the graph, where for two minimizers 𝑚𝑖 and 𝑚𝑗, a match is defined as 𝑚𝑖 = 𝑚𝑗, and

a mismatch is defined as 𝑚𝑖 ̸= 𝑚𝑗 (lines 17-19). After building the POA graph 𝐺 = (𝑉,𝐸)
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Algorithm 5 Minimizer-space POA graph construction and consensus generation
Input: A query ordered list of minimizers 𝑞 to be error-corrected, collection of query neigh-

bors 𝑁
1: procedure POA(𝑞,𝑁)
2: 𝐺 = (𝑉,𝐸)← initializeGraph(𝑞) ◁ As described in [33]
3: for 𝑛 ∈ 𝑁 do
4: 𝐺← semiGlobalAlign(𝐺, 𝑛) ◁ As described in [33]
5: 𝜆← {} ◁ Scoring table for nodes
6: 𝑃 ← {} ◁ Predecessor table for nodes
7: topologicalSort(𝐺) ◁ Topological sorting of nodes
8: for 𝑣 ∈ 𝑉 do
9: 𝑒 = (𝑢, 𝑣)← max(inEdges(𝑣))◁ Find the maximum-weighted incoming edge to 𝑣

10: 𝜆[𝑣]← 𝑤𝑒 + 𝜆[𝑢]
11: 𝑃 [𝑣]← 𝑢

12: 𝐶 ← CONSENSUS(𝑉, 𝜆, 𝑃 ) ◁ Described in the “Minimizer-space POA” Section
13: return 𝐶

by aligning all neighbors in minimizer space, we generate a consensus to obtain the best-

supported traversal through the graph. We first initialize a scoring 𝜆, and set 𝜆[𝑣] = 0 for all

𝑣 ∈ 𝑉 . Then, we perform a topological sort of the nodes in the graph, and iterate through

the sorted nodes. For each node 𝑣, we select the highest-weighted incoming edge 𝑒 = (𝑢, 𝑣)

with weight 𝑤𝑒, and set 𝜆[𝑣] = 𝑤𝑒 + 𝜆(𝑢). The node 𝑢 is then marked as a predecessor of 𝑣

(lines 21-28).

Minimizer-space POA evaluation set-up

We extracted chromosome 4 (∼ 1.2 Mbp) of the D. melanogaster reference genome, and

simulated reads using the command randomreads.sh pacbio=t of BBMap [9]. We generated

one dataset per error rate value from 0% to 10%, keeping other parameters identical (24 Kbp

mean read length and 70X coverage). Reads were then assembled using our implementation

with and without POA, using parameters ℓ = 10, 𝑘 = 7, and 𝛿 = 0.0008 experimentally

determined to yield a perfect assembly with error-free reads. We evaluated the average

read identity in minimizer-space using semi-global Smith-Waterman alignment between the

sequence of minimizers of a read and the sequence of minimizers of the reference, taking
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Algorithm 6 Consensus generation on POA graph
Input: The node set 𝑉 of the POA graph, scoring array 𝜆, predecessor array 𝑃
1: function CONSENSUS(𝑉, 𝜆, 𝑃 )
2: 𝐶 ← [] ◁ Consensus path to be obtained
3: 𝑣𝑚𝑎𝑥 ← ∅ ◁ Initialize the highest-scoring node
4: for 𝑣 ∈ 𝑉 do
5: if 𝜆[𝑣] > 𝜆[𝑣𝑚𝑎𝑥] then
6: 𝑣𝑚𝑎𝑥 ← 𝑣

7: 𝑣𝑐𝑢𝑟𝑟 ← 𝑣𝑚𝑎𝑥 ◁ Start traceback from highest-scoring node
8: while 𝑣𝑐𝑢𝑟𝑟 ̸= ∅ do
9: 𝐶 ← 𝐶 + [𝑣𝑐𝑢𝑟𝑟]

10: 𝑣𝑐𝑢𝑟𝑟 ← 𝑃 [𝑣𝑐𝑢𝑟𝑟] ◁ Move to predecessor of current node
11: return 𝐶

BLAST-like identity (number of minimizer matches divided by the number of alignment

columns). We also evaluated the length of the longest reconstructed contig in base-space as

a proxy for assembly quality.

3.3 Results

An overview of our pipeline, implemented in Rust (rust-mdbg), is shown in Figure 3-4.

We compared rust-mdbg to three recent assemblers optimized for low-error rate long reads:

Peregrine, HiCanu [50] and hifiasm [10] (see Appendix A.4 for versions and parameters).

Base-space 

Minimizer-space

Assembly using minimizer-space de Bruijn Graphs (mdBG)

Convert into
base-space

Simplify mdBGConstruct mdBG

Input reads Contigs

Convert into
minimizer-space

ACATGAAGATGACG
TGAAGATGACGATT

AGATGACGATTACC

AC  AT  AA  AT  AC

ACATGAAGATGACG

AC  AT  AA  AT  AC

 AT  AA  AT  AC  AT

 AA  AT  AC  AT  AC

AC  AT  AA  AT  AC

ACATGAAGATGACG
AC  AT  AA  AT  AC  AT  AC

ACATGAAGATGACGATTACC

Figure 3-4: Overview of the assembly pipeline using mdBG. The region of the figure
above (respectively below) the dotted line corresponds to analyses taking place in base-
space (respectively minimizer-space). The input reads are converted into minimizer-space to
construct a mdBG, which is then simplified and converted back into base-space to output
contigs.
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3.3.1 Ultra-fast, memory-efficient and highly-contiguous assembly

of real HiFi reads using rust-mdbg

D. mel 100x real HiFi reads D. mel 50x simulated perfect reads Human real HiFi reads
Tool Peregr. HiCanu hifiasm rust-mdbg Peregr. HiCanu hifiasm rust-mdbg Peregr. hifiasm rust-mdbg

Time 40m11s 7h43m 5h17m 1m9s 23m31s 8h12m 19h38m 21s 14h8m 58h41m 10m23s
Memory (GB) 12 GB 12 GB 21 GB 1.5 GB 16 GB 18 GB 51 GB <1 GB 188 GB 195 GB 10 GB
# contigs 682 928 538 93 63 45 48 34 8109 431 805
NGA50 (M) 5.2 10.1 4.8 6.0 6.3 19.4 21.5 15.4 18.2 22.0 14.0
Complete (%) 93.9% 96.6% 96.6% 90.8% 98.2% 98.1% 98.2% 96.2% 97.0% 94.2% 95.5%
# misasm. 10 5 0 0 3 5 0 1 312 7942 1073

Table 3.1: Assembly statistics of D. melanogaster real HiFi reads (left), simulated
perfect reads (center), and Human real HiFi reads (right), all evaluated using the
commonly-used QUAST program. All assemblies were homopolymer-compressed. Wall-
clock time is reported for 8 threads. NGA50 is a contiguity metric reported in Megabases
(Mbp) by QUAST as the longest contig alignment to the reference genome so that shorter contig
alignments collectively make up 50% of the genome length. The number of misassemblies
is reported by QUAST. NGA50 and Genome fraction (Complete%) should be maximized,
whereas all other metrics should be minimized. Only Peregrine, hifiasm and our method
rust-mdbg were evaluated on Human assemblies, since HiCanu requires around an order of
magnitude more running time.

We evaluated our software, rust-mdbg, on real PacBio HiFi reads from D. melanogaster,

at 100X coverage, and HiFi reads for human (HG002) at ∼ 50X coverage, both taken from

the HiCanu publication∗ [50].

Since our method does not resolve both haplotypes in diploid organisms, we compared

against the primary contigs of HiCanu and hifiasm. In our tests with D. melanogaster, the

reference genome consists of all nuclear chromosomes from the RefSeq accession GCA_000001215.4.

Assembly evaluations were performed using QUAST [25] v5.0.2, and run with parameters rec-

ommended in HiCanu’s article [50]. QUAST aligns contigs to a reference genome, allowing to

compute contiguity and completeness statistics that are corrected for misassemblies (NGA50

and Genome fraction metrics respectively in Table 3.1). Assemblies were all run using 8

threads on a Xeon 2.60 GHz CPU. For rust-mdbg assemblies, contigs shorter than 50 Kbp

were filtered out similarly to [50]. We did not report the running time of the base-space

conversion step and graph simplifications as they are under 15% of the running CPU time
∗https://obj.umiacs.umd.edu/marbl_publications/hicanu/index.html
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and run on a single thread, taking no more memory than the final assembly size, which is

also less memory than the mdBG.

Table 3.1 (leftmost) shows assembly statistics for D. melanogaster HiFi reads. Our soft-

ware rust-mdbg uses ∼ 33x less wall-clock time and 8x less RAM than all other assemblers.

In terms of assembly quality, all tools yielded high-quality results. HiCanu had 66% higher

NGA50 statistics than rust-mdbg, at the cost of making more misassemblies, 385x longer

runtime and 8x higher memory usage. rust-mdbg reported the lowest Genome fraction

statistics, likely due in part to an aggressive tip-clipping graph simplification strategy, also

removing true genomic sequences.

Table 3.1 (rightmost) shows assembly statistics for Human HiFi (HG002) reads. rust-mdbg

performed assembly 81x faster with 18x less memory usage than Peregrine, at the cost of a

22% lower contiguity and 1.5% lower completeness. Compared to hifiasm, rust-mdbg per-

formed 338x faster with 19x lower memory, resulting in a less contiguous assembly (NG50

of 16.1 Mbp vs 88.0 Mbp for hifiasm) and 1.3% higher completeness.

Remarkably, the initial unsimplified mdBG for the Human assembly only has around 12

million 𝑘-min-mers (seen at least twice in the reads, out of 40 million seen in total) and

24 million edges, which should be compared to the 2.2 Gbp length of the (homopolymer-

compressed) assembly and the 100 GB total length of input reads in uncompressed FASTA

format. This highlights that the mdBG allows very efficient storage and simplification oper-

ations over the initial assembly graph in minimizer-space.

3.3.2 Minimizer-space POA enables correction of reads with higher

sequencing error rates

We introduce minimizer-space partial order alignment (POA) to tackle sequencing errors. To

determine the efficacy of minimizer-space POA and the limits of minimizer-space de Bruijn

graph assembly with higher read error rates, we performed experiments on a smaller dataset.

In a nutshell, we simulated reads for a single Drosophila chromosome at various error rates,

and performed mdBG assembly with and without POA.
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Figure 3-5: Effect of our minimizer-space POA correction on mdBG assembly.
Reads from D. melanogaster chromosome 4 were simulated with base error rates ranging
from 0%, 1%, . . ., up to 10%. Assemblies were run with and without minimizer-space POA
correction. Left panel depicts the length of the longest contig for each assembly (uncorrected
in blue, minimizer-space POA-corrected in orange). Right panel depicts the average read
identity to the reference, computed in minimizer-space, for raw reads (observed in blue, and
predicted by Equation 3.1 in green), and reads corrected by POA in minimizer-space (in
orange).

Figure 3-5 (left) shows that the original implementation without POA is only able to

reconstruct the complete chromosome into a single contig up to error rates of 1%, after which

the chromosome is assembled into ≥ 2 contigs. With POA, an accurate reconstruction as a

single contig is obtained with error rates up to 4%. We further verified that, up to 3% error

rate, the reconstructed contig corresponds structurally exactly to the reference, apart from

the base errors in the reads. At 4% error rate, a single uncorrected indel in minimizer-space

introduces a ∼ 1 Kbp artificial insertion in the assembly.

Figure 3-5 (right) indicates that the minimizer-space identity of raw reads linearly de-

creases with increasing error rate. With POA, near-perfect correction can be achieved up to

∼ 4% error rate, with a sharp decrease at > 5% error rates but still with an improvement

in identity over uncorrected reads.

This highlights the importance of accurate POA correction: To put these results in

perspective, mdBGs appear to be suitable to HiFi-grade data (< 1% error rates) without

POA and our POA implementation is almost, but not quite yet, able to cope with the error

rate of ONT data (5%).
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With POA, the runtime of our implementation was around 45 seconds and 0.4 GB of

memory, compared to under 1 second and < 30 MB of memory without POA. Note that

we did not use an optimized POA implementation; thus, we anticipate that further engi-

neering efforts would significantly lower the runtime and possibly also improve the quality

of correction.

3.3.3 Pangenome mdBG of a collection of 661K bacterial genomes

allows efficient large-scale search of AMR genes

We applied mdBG to represent a recent collection of 661,405 assembled bacterial genomes [6].

To the best of our knowledge, this is the first de Bruijn graph construction of such a large

collection of bacterial genomes. Previously only approximate sketches were created for this

collection: a COBS index [5], allowing probabilistic membership queries of short 𝑘-mers

(𝑘 = 31) [6], and sequence signatures (MinHash) using sourmash [57] and pp-sketch [34],

none of which are graph representations.

The mdBG construction with parameters 𝑘 = 10, 𝑙 = 12, and 𝛿 = 0.001 took 3h50m

wall-clock running time using 8 threads, totaling 8 hours CPU time (largely IO-bound). The

memory consumption was 58 GB and the total disk usage was under 150 GB. Increasing 𝛿

to 0.01 yields a finer-resolution mdBG but increases the wall-clock running time to 13h30m,

the memory usage to 481 GB, and the disk usage to 200 GB.

To compare the performance of mdBG with existing state-of-the-art tools for building

de Bruijn graphs, we executed KMC3 [30] to count 63-mers and Cuttlefish [29] to construct

a de Bruijn graph from the counted 𝑘-mers. KMC3 took 22 wall-clock hours and 191 GB

memory using 8 threads, 2 TB of temporary disk usage, and 758 GB of output (56 billion

distinct 𝑘-mers). Cuttlefish [29] did not terminate within three weeks of execution time.

Hence, constructing the mdBG is at least two orders of magnitude more efficient in running

time, and one order of magnitude in disk usage and memory usage.

Figure 3-6 shows the largest 5 connected components of the 𝛿 = 0.001 bacterial pangenome

mdBG. As expected, several similar species are represented within each connected compo-
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nent. The entire graph consists of 16 million nodes and 45 million edges (5.3 GB compressed

GFA), i.e. too large to be rendered, yet much smaller than the original sequences (1.4 TB

lz4-compressed).

To illustrate a possible application of this pangenome graph, we performed queries for

the presence of AMR genes in the 𝛿 = 0.01 mdBG. We retrieved 1,502 targets from the

NCBI AMRFinderPlus ‘core’ database (the whole amr_targets.fa file as of May 2021) and

converted each gene into minimizer-space, using parameters 𝑘 = 10, 𝑙 = 12, 𝛿 = 0.01. Of

these, 1,279 genes were long enough to have at least one 𝑘-min-mer (on average 10 𝑘-min-mers

per gene). Querying those 𝑘-min-mers on the mdBG, we successfully retrieved on average

61.2% of the 𝑘-min-mers per gene; however, the retrieval distribution is bimodal: 53% of the

genes have ≥ 99% 𝑘-min-mers found, and 31% of the genes have ≤ 10% 𝑘-min-mers found.

Further investigation of the genes missing from the mdBG was done by aligning the 661k

genomes collection to the genes (in base-space) using minimap2 (7 hours running time over

8 cores). We found that a significant portion of genes (141, 11%) could not be aligned to the

collection. Also, 𝑘-min-mers of genes with aligned sequence divergence of 1% or more (267,

20%) did not match 𝑘-min-mers from the collection, and therefore had zero minimizer-space

query coverage. Finally, although we performed sequence queries on a text representation

of the pangenome graph, in principle the graph could be indexed in memory to enable

instantaneous queries at the expense of higher memory usage.

This experiment illustrates the ability of mdBG to construct pangenomes larger than

supported by any other method, and those pangenomes record biologically useful informa-

tion such as AMR genes. Long sequences such as genes (containing at least 1 𝑘-min-mer)

can be quickly searched using 𝑘-min-mers as a proxy. There is nevertheless a trade-off of

minimizer-space analysis that is akin to classical 𝑘-mer analysis: Graph construction and

queries are extremely efficient however they do not capture sequence similarity below a cer-

tain identity threshold (in this experiment, around 99%). Yet, the ability of the mdBG to

quickly enumerate which bacterial genomes possess any AMR gene with high similarity could

provide a significant boost to AMR studies.
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Figure 3-6: Pangenome mdBG of 661k bacterial genomes and retrieval of anti-
microbial resistance genes. Top panel: first five connected components of the pangenome
graph are displayed (using Gephi software). Each node is a 𝑘-min-mer, and edges are exact
overlaps of 𝑘−1 minimizers between 𝑘-min-mers. Middle panel: A collection of anti-microbial
resistance gene targets was converted into minimizer-space, then each 𝑘-min-mer is queried
in the 661k bacterial pangenome graph yielding a bimodal distribution of minimizer-space
gene retrieval. The histogram is annotated by the minimal sequence diverge of each gene
as aligned by minimap2 to the pangenome over 90% of its length. Bottom panel: runtime
and memory usage for each step. Note that the graph need only be constructed once in a
preprocessing step.

3.3.4 Efficient assembly of real HiFi metagenomes using mdBG

We performed assembly of two real HiFi metagenome datasets (mock communities Zymo

D6331 and ATCC MSA-1003, accessions SRX9569057 and SRX8173258). Rust-mdbg was

run with the same parameters as in the human genome assembly for the ATCC dataset, and

with slightly tuned parameters for the Zymo dataset (see Appendix A.4).

Table 3.2 shows the results of rust-mdbg assemblies in comparison to hifiasm-meta,

a metagenome-specific flavor of hifiasm. In a nutshell, rust-mdbg achieves roughly two
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orders of magnitude faster and more memory-efficient assemblies, while retaining similar

completeness of the assembled genomes. Although rust-mdbg metagenome assemblies are

consistently more fragmented than hifiasm-meta assemblies, the ability of rust-mdbg to

very quickly assemble a metagenome enables instant quality control and preliminary ex-

ploration of gene content of microbiomes at a fraction of the computing costs of current

tools.

Zymo D6331
Species Abundance hifiasm rust-mdbg

A. muciniphila 1.36% 100.000% 100.000%
B. fragilis 13.13% 99.994% 99.997%
B. adolescentis 1.34% 100.000% 99.730%
C. albican 1.61% 67.832% 39.821%
C. difficile 1.83% 99.996% 99.978%
C. perfringens 0.00% 0.005% 0.005%
E. faecalis 0.00% 0.006% 0.006%
E. coli B1109 8.44% 100.000% 97.918%
E. coli b2207 8.32% 100.000% 98.663%
E. coli B3008 8.25% 100.000% 99.558%
E. coli B766 7.83% 96.913% 96.270%
E. coli JM109 8.37% 100.000% 97.852%
F. prausnitzii 14.39% 100.000% 100.000%
F. nucleatum 3.78% 100.000% 99.960%
L. fermentum 0.86% 100.000% 100.000%
M. smithii 0.04% 99.840% 87.175%
P. corporis 5.37% 99.561% 99.561%
R. hominis 3.88% 100.000% 100.000%
S. cerevisiae 0.18% 69.522% 39.556%
S. enterica 0.02% 6.232% 4.619%
V. rogosae 11.02% 100.00% 100.000%

Running time 34h29m 55s
Memory usage 83 GB 0.9 GB

ATCC MSA-1003
Species Abundance hifiasm rust-mdbg

A. baumannii 0.18% 99.839% 99.955%
B. pacificus 1.80% 100.000% 99.998%
B. vulgatus 0.02% 81.846% 70.895%
B. adolescentis 0.02% 5.238% 0.644%
C. beijerinckii 1.80% 99.993% 99.993%
C. acnes 0.18% 100.000% 100.000%
D. radiodurans 0.02% 82.499% 53.659%
E. faecalis 0.02% 54.979% 21.048%
E. coli 18.0% 100.000% 100.000%
H. pylori 0.18% 100.000% 100.000%
L. gasseri 0.18% 97.779% 98.142%
N. meningitidis 0.18% 98.593% 99.030%
P. gingivalis 18.0% 91.740% 99.938%
P. aeruginosa 1.80% 99.706% 99.726%
R. sphaeroides 18.0% 99.748% 100.000%
S. odontolytica 0.02% 8.179% 1.046%
S. aureus 1.80% 100.000% 100.000%
S. epidermidis 18.0% 100.000% 100.000%
S. agalactiae 1.80% 99.496% 99.976%
S. mutans 18.0% 99.995% 100.000%

Running time 59h16m 3m51s
Memory usage 313 GB 1.3 GB

Table 3.2: Metagenome assembly statistics of the Zymo D6331 dataset (left) and
the ATCC MSA-1003 dataset (right) using hifiasm-meta and rust-mdbg. The
Abundance column shows the relative abundance of the species in the sample. The two
rightmost columns show the species completeness of the assemblies as reported by metaQUAST.
Table cells below 10% completeness are colored in red, below 98% in orange, and above in
green.
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3.4 Discussion and future work

Three areas we hope to tackle in our assembly implementation are: 1) its reliance on setting

adequate assembly parameters, 2) lack of base-level polishing, and 3) haplotype separation.

Regarding 1), we are experimenting with automatic selection of parameters ℓ, 𝑘 and 𝛿.

A heuristic formula is presented along with its implementation and results in the GitHub

repository of rust-mdbg; however, it leads to lower-quality results (e.g. 1 Mbp N50 for

the HG002 assembly versus 14 Mbp in Table 3.1). We also provide a preliminary multi-𝑘

assembly script inspired by IDBA [55]. While automatically setting mdBG parameters is

fundamentally a more complex task than just determining a single parameter (𝑘) in classical

de Bruijn graphs, we anticipate that similar techniques to KmerGenie [13] could be applicable,

where optimal values of (ℓ, 𝑘, 𝛿) would be found as a function of the 𝑘-min-mer abundance

histogram.

Regarding directions 2) and 3), polishing could be performed as an additional step,

by feeding the reads and the unpolished assembly to a base-space polishing tool such as

racon [63]. Haplotype separation might prove more difficult to incorporate in mdBGs:

Unlike HiFi assemblers which use overlap graphs with near-perfect overlaps, minimizer-space

de Bruijn graphs cannot differentiate between exact and inexact overlaps in bases that are

not captured by a minimizer. However, an immediate workaround is to perform haplotype

phasing on resulting contigs, using tools such as HapCut2 [21] or HapTree-X [4].

We anticipate that 𝑘-min-mers could become a drop-in replacement for ubiquitously-

adopted 𝑘-mers for the comparison and indexing of long, highly similar sequences, e.g. in

genome assembly, transcriptome assembly, and taxonomic profiling.
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Chapter 4

Conclusion

In Chapter 2, we presented a novel randomized parallel algorithm, PASHA, to compute a

small set of 𝑘-mers which together hit every sequence of length 𝐿. It is based on two

algorithmic innovations: (i) improved calculation of hitting numbers through paralleization

and memory reduction; and (ii) randomized parallel selection of additional 𝑘-mers to remove.

We demonstrated the scalability of PASHA to larger values of 𝑘 up to 16. Notably, the

universal hitting sets need to be computed only once, and can then be used in many sequence

analysis applications. We expect our algorithms to be an essential part of the sequence

analysis toolkit.

In Chapter 3, we presented a data structure which we call a minimizer-space de Bruijn

graph (mdBG), where, instead of single nucleotides as tokens of the de Bruijn graph, we use

short sequences of nucleotides known as minimizers, which allow for an even more compact

representation of the genome in what we call minimizer space. Minimizer-space de Bruijn

graphs store only a small fraction of the nucleotides from the input data while preserving the

overall graph structure, enabling them to be orders of magnitude more efficient than classical

de Bruijn graphs. By doing so, we can reconstruct whole genomes from accurate long-read

data in minutes – about a hundred times faster than state-of-the-art approaches – on a

personal computer, while using significantly less memory and achieving similar accuracy.

To enable assembly of reads with up to a 4% error rate (e.g. from emerging Oxford
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Nanopore data, which offers high sequencing throughput, low cost and ultra-long read

lengths), we newly correct for read errors by performing minimizer-space partial order align-

ment (POA), in which sequencing errors in a query read are corrected by aligning other reads

from the same genomic region to the query in minimizer space.

We also showed that we can build very large minimizer-space de Bruijn graphs that

can be queried for biologically useful questions by constructing a graphical pangenome of a

large and diverse collection of 661,405 bacterial genomes. This collection of several terabytes

has never before been represented as a pangenome graph (a graph that represents multiple

genomes simultaneously). Such a task is computationally nearly impossible using state-of-

the-art methods, which would take weeks and terabytes of RAM to complete. We showed

that our method completes the construction in roughly 3 hours with low memory usage, and

the connected components in the mdBG distinguish species, allowing us to quickly search

for antimicrobial resistance genes inside the entire pangenome.

Given the rise of next-generation sequencing technologies and faster and less expensive

genome assembly, we expect our advances to be essential to the convergence among next-

generation sequencing (NGS), cloud computing, and precision and personalized medicine,

and beneficial in creating the infrastructure necessary to formulate and test disease mecha-

nisms and develop new treatments at scale.
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Appendix A

Supplementary Information and Proofs

A.1 Emulating the greedy DOCKS algorithm

The greedy Set Cover algorithm was developed independently by Johnson and Lovász for

unweighted vertices [27, 42]. Lovász [42] proved:

Theorem A.1.1. The greedy algorithm for Set Cover outputs cover 𝑅 with |𝑅| ≤ (1 +

log 𝑇𝑚𝑎𝑥)|𝑂𝑃𝑇 |, where 𝑇𝑚𝑎𝑥 is the maximum cardinality set.

We adapt a definition for an algorithm emulating the greedy algorithm for the Set Cover

problem to the second phase of DOCKS [3]. We say that an algorithm for the second phase of

DOCKS 𝛼-emulates the greedy algorithm if it outputs a set of vertices serially, during which

it selects vertex set 𝐴 such that
|𝐴|
|𝑃𝐴|

≤ 𝛼

𝑇𝑚𝑎𝑥

,

where 𝑃𝐴 is the set of ℓ-long paths covered by 𝐴. Using this definition, we come up with a

near-optimal approximation by the following theorem:

Theorem A.1.2. An algorithm for the second phase of DOCKS that 𝛼-emulates the greedy

algorithm produces cover 𝑅 ⊆ 𝑉 with |𝑅| ≤ 𝛼(1+log 𝑇𝑚𝑎𝑥)|𝑂𝑃𝑇 |, where 𝑂𝑃𝑇 is the optimal

cover.
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Proof. We define the cost of covering path 𝑝 as 𝒞(𝑝) = |𝑆|
|𝑃𝑆 |

, where 𝑆 is the set of vertices

selected in the selection step in which 𝑝 was covered, and 𝑃𝑆 the set of ℓ-long paths covered

by 𝑆. Then,
∑︀

𝑝∈𝑃𝑆
𝒞(𝑝) = |𝑆|.

Let 𝑃ℓ be set of all ℓ-long paths in 𝐺. A fractional cover of graph 𝐺 = (𝑉,𝐸) is function

ℱ : 𝑉 → {0, 1} s.t. for all 𝑝 ∈ 𝑃ℓ,
∑︀

𝑣∈𝑝ℱ(𝑣) ≥ 1. The optimal cover ℱ𝑂𝑃𝑇 has minimum∑︀
𝑣∈𝑉 ℱ𝑂𝑃𝑇 (𝑣).

Let ℱ be such an optimal fractional cover. The size of the cover produced is

|𝑅| =
∑︁
𝑝∈𝑃ℓ

𝒞(𝑝) ≤
∑︁
𝑣∈𝑉

(︁
ℱ(𝑣)

∑︁
𝑝∈𝑃𝑣

𝒞(𝑝)
)︁

where 𝑃𝑣 is the set of all ℓ-long paths through vertex 𝑣.

Lemma A.1.3. There are at most 𝛼
𝑘

paths 𝑝 ∈ 𝑃𝑣 such that 𝒞(𝑝) ≥ 𝑘 for any 𝑣, 𝑘.

Proof. Assume the contrary: Before such path 𝑝 is covered, 𝑇 (𝑣, ℓ) > 𝛼
𝑘
. Thus,

|𝑆|
|𝑃𝑆|

≥ 𝑘 > 𝛼/𝑇 (𝑣, ℓ) ≥ 𝛼/𝑇𝑚𝑎𝑥,

contradicting the definition.

Suppose we rank the 𝑇 (𝑣, ℓ) paths 𝑝 ∈ 𝑃𝑣 by decreasing order of 𝒞(𝑝). From the above

remark, if the 𝑖th path has cost 𝑘, then 𝑖 ≤ 𝛼/𝑘. Then, we can write

∑︁
𝑝∈𝑃𝑣

𝒞(𝑝) ≤
𝑇 (𝑣,ℓ)∑︁
𝑖=1

𝛼/𝑖 ≤ 𝛼

𝑇 (𝑣,ℓ)∑︁
𝑖=1

1/𝑖 ≤ 𝛼(1 + log 𝑇 (𝑣, ℓ)) ≤ 𝛼(1 + log 𝑇𝑚𝑎𝑥)

Then, ∑︁
𝑝∈𝑃ℓ

𝒞(𝑝) ≤
∑︁
𝑣∈𝑉

ℱ(𝑣)𝛼(1 + log 𝑇𝑚𝑎𝑥)

and finally

|𝑅| ≤ 𝛼(1 + log 𝑇𝑚𝑎𝑥)|𝑂𝑃𝑇 |.
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In PASHA, we ensure that in step 𝑡, the sum of vertex hitting numbers of selected vertex

set 𝑉𝑡 is at least |𝑉𝑡|(1 + 𝜀)𝑡(1 − 4𝛿 − 2𝜀). We now show that this is satisfied with high

probability in each step.

Theorem A.1.4. With probability at least 1/2, the sum of vertex hitting numbers of selected

vertex set 𝑉𝑡 at step 𝑡 is at least |𝑉𝑡|(1 + 𝜀)𝑡(1− 4𝛿 − 2𝜀).

Proof. For any vertex 𝑣 in selected vertex set 𝑉𝑡 at step 𝑡, let 𝑋𝑣 be an indicator variable

for the random event that vertex 𝑣 is picked, and 𝑓(𝑋) =
∑︀

𝑣∈𝑉𝑡
𝑋𝑣.

Note that Var[𝑓(𝑋)] ≤ |𝑉𝑡| · 𝛿/ℓ, and |𝑉𝑡| ≥ ℓ/𝛿3, since we are given that no vertex covers

a 𝛿3 fraction of the ℓ-long paths covered by the vertices in 𝑉𝑡. By Chebyshev’s inequality,

for any 𝑘 ≥ 0,

Pr[|𝑓(𝑋)− E[𝑓(𝑋)]| ≥ 𝑘(|𝑉𝑡| · 𝛿/ℓ)] ≤
1

𝑘2

and with probability 3/4,

(𝑓(𝑋)− E[𝑓(𝑋)])2 ≤ 4|𝑉𝑡|2 ·
𝛿4

ℓ2

and

|𝑓(𝑋)− E[𝑓(𝑋)]| ≤ 2|𝑉𝑡| ·
𝛿2

ℓ
.

Let 𝑃𝑉𝑡 denote the set of ℓ-long paths covered by vertex set 𝑉𝑡. Then,

|𝑃𝑉𝑡 | ≥
∑︁
𝑢∈𝑉𝑡

𝑇 (𝑢, ℓ)𝑋𝑢 −
∑︁
𝑝∈𝑃𝑉𝑡

∑︁
𝑢,𝑣∈𝑝

𝑋𝑢𝑋𝑣

We know that
∑︀

𝑢∈𝑉𝑡
𝑇 (𝑢, ℓ)𝑋𝑢 ≥ |𝑉𝑡|(1 + 𝜀)𝑡−1, which is bounded below by ((𝛿 − 2𝛿2) ·

|𝑉𝑡|(1 + 𝜀)𝑡−1)/ℓ. Let 𝑔(𝑋) =
∑︀

𝑝∈𝑃𝑉𝑡

∑︀
𝑢,𝑣∈𝑝𝑋𝑢𝑋𝑣. Then,

E[𝑔(𝑋)] =
∑︁
𝑝∈𝑃𝑉𝑡

E[
∑︁
𝑢,𝑣∈𝑝

𝑋𝑢𝑋𝑣] =
∑︁
𝑝∈𝑃𝑉𝑡

(︂
𝑙

2

)︂
(𝛿/ℓ)2 =

∑︁
𝑝∈𝑃𝑉𝑡

(ℓ− 1) · 𝛿2

2ℓ
≤

∑︁
𝑝∈𝑃𝑉𝑡

𝛿2

2
.
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Hence, with probability at least 3/4,

𝑔(𝑋) ≤ 4E[𝑔(𝑋)] ≤ 2𝛿2 · |𝑉𝑡|(1 + 𝜀)𝑡

Both events hold with probability at least 1/2, and the sum of vertex hitting numbers is at

least

((𝛿 − 2𝛿2) · |𝑉𝑡|(1 + 𝜀)𝑡−1) · ℓ− 2𝛿2 · |𝑉𝑡|(1 + 𝜀)𝑡 ≥ |𝑉𝑡|(1 + 𝜀)𝑡−1(𝛿ℓ− 2𝛿2ℓ− 2𝛿2 − 2𝛿2𝜀)

≥ |𝑉𝑡|(1 + 𝜀)𝑡(𝛿ℓ− 2𝛿2ℓ− 2𝛿2 − 2𝛿2𝜀)/(1 + 𝜀)

≥ |𝑉𝑡|(1 + 𝜀)𝑡(1− 4𝛿 − 2𝜀).

A.2 PASHA runtime analysis

Here, we show the number of the selection steps and the average-time asymptotic complexity

of PASHA.

Lemma A.2.1. The number of selection steps is 𝑂(log |𝑉 | log |𝑃ℓ|/(𝜀𝛿3𝑚)).

Proof. The number of steps is 𝑂(log |𝑉 |/𝜀), and within each step, there are 𝑂(log |𝑃𝑆|/(𝛿3𝑚))

selection steps (where 𝑃𝑆 is the sum of vertex hitting numbers of the vertex set 𝑆 for that

step and 𝑚 the number of threads used), since we are guaranteed to remove a 𝛿3 fraction of

the paths during that step. Overall, there are 𝑂(log |𝑉 | log |𝑃ℓ|/(𝜀𝛿3𝑚)) selection steps.

Theorem A.2.2. For 𝜀 < 1, there is an approximation algorithm for the second phase of

DOCKS that runs in 𝑂((𝐿2 · |Σ|𝑘+1 · log2(|Σ|𝑘))/(𝜀𝛿3𝑚)) average time, where 𝑚 is the number

of threads used, and produces a cover of size at most (1 + 𝜀)(1 + log 𝑇𝑚𝑎𝑥) times the optimal

size.

Proof. Follows immediately from Theorem A.1.2 and Lemma A.2.1.
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A.3 gfatools command lines

The following (relatively aggressive) GFA assembly graph simplifications rounds were per-

formed for all mdBG assemblies, using https://github.com/lh3/gfatools/. Rounds are

of two types: -t x,y removes tips having at most 𝑥 segments and of maximal length 𝑦 bp,

and -b z removes bubbles of maximal radius 𝑧 bp. In addition, gfa_break_loops.py is a

custom script (available in the rust-mdbg GitHub repository) that removes self-loops in the

assembly graph, as well as an arbitrary edge in 𝑥↔ 𝑦 cycles.

gfatools asm -t 10,50000 -t 10,50000 -b 100000 -b 100000 -t 10,50000 \

-b 100000 -b 100000 -b 100000 -t 10,50000 -b 100000 \

-t 10,50000 -b 1000000 -t 10,150000 -b 1000000 -u > $base.tmp1.gfa

gfa_break_loops.py $base.tmp1.gfa > $base.tmp2.gfa

gfatools asm $base.tmp1.gfa -t 10,50000 -b 100000 -t 10,100000 \

-b 1000000 -t 10,150000 -b 1000000 -u > $base.tmp3.gfa

gfa_break_loops.py $base.tmp3.gfa > $base.tmp4.gfa

gfatools asm $base.tmp4.gfa -t 10,50000 -b 100000 -t 10,100000 \

-b 1000000 -t 10,200000 -b 1000000 -u > $base.msimpl.gfa

A.4 Genome assembly tools, versions and parameters

HiCanu (v2.1) was run with default parameters, hifiasm (commit 8cb131d) with parame-

ters -l0 -f0, and Peregrine (commit 008082a) with command line: 8 8 8 8 8 8 8 8 8

–with-consensus –shimmer-r 3 –best_n_ovlp 8. rust-mdbg was run with parameters

𝑘 = 35, ℓ = 12, and 𝛿 = 0.002 for D. melanogaster, and 𝑘 = 21, ℓ = 14, 𝛿 = 0.003 for HG002.

For metagenomes, rust-mdbg was run with parameters 𝑘 = 21, ℓ = 14, 𝛿 = 0.003 for

the ATCC MSA-1003 dataset (same parameters as the human dataset), and 𝑘 = 40, ℓ = 12,

𝛿 = 0.004 for the Zymo D6331 dataset. Hifiasm-meta (commit cda13b8) was run with

parameters -S –lowq-10 50 for ATCC MSA-1003 and default for Zymo.
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