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Abstract

This thesis explores business pathways to commercialize Device Realization Lab’s
technology that uses deep reinforcement learning for optical fiber manufacturing con-
trol systems. A viable business solution is proposed based on feedback from venture
capital investors. The solution comprises developing cloud-based software that can
generate digital twins for fiber manufacturing companies. These digital twins can
serve as anomaly detectors and suggest optimal input parameters that reduce pro-
duction variation and tolerance, improving quality and decreasing scrap rate. Efforts
to define a minimum viable product (MVP) for this business solution began with the
creation of a long short-term memory recurrent neural network (LSTM RNN) model
for a desktop fiber extrusion system that mimics the fiber extrusion process on the
manufacturing floor. Transfer learning on the LSTM RNN was then implemented to
explore the feasibility of reusing a well-developed machine learning (ML) model for a
fiber material (e.g. glass fiber) to construct an ML model for a separate fiber material
(e.g. nylon fiber) for which a relatively low amount of data is available. The study
found that applying transfer learning reduced the mean squared error of the new
fiber material model by over 40% compared to developing the model without transfer
learning. This thesis strives to reveal the innovative applications of the technology
that can benefit the fiber manufacturing field and defines an MVP that can be shared
with venture capital investors as a first step toward commercializing this technology.

Thesis Supervisor: Brian W. Anthony
Title: Principal Research Scientist
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Chapter 1

Introduction

The Device Realization Lab (DRL) at MIT develops novel control systems to improve

the optical fiber manufacturing process. These improved control systems implement

machine learning to reduce the tolerance of optical fibers to 125 microns ± 1 mi-

cron, allowing for simple assembly of the fiber and connector and eliminating several

preparation steps during fiber and connector assembly.

Figure 1-1: Image of optical fiber within cable [5]

The current manufacturing process has a tolerance greater ± 1 micron and thus

requires post-processing steps such as sanding to unite the fiber to the connector. By

removing this step, the manufacturer can save tens of millions of dollars on the cable

assembly.
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Figure 1-2: Image of cable with connectors [22]

Apart from the production of optical fibers, programmable logic controllers (PLCs)

are also critical in the manufacturing of other products including semiconductors,

automobiles, glass, paper, textile, cement, food and beverages, and pharmaceuticals.

This thesis will focus on exploring the use of improved machine learning based

(ML-based) control systems for the commercialization of synthetic fiber manufac-

turing. Synthetic fibers are man-made (commonly extruded) fibers manufactured

through chemical synthesis and include glass, polyester, carbon, and aramid fibers

(e.g. Kevlar, Vectran, and Nylon).

1.1 Motivation

Although the manufacturing industry is currently accustomed to PLCs, they are

time-consuming and labor-intensive. Results from isolated trial and error experi-

ments are used to generate simple, intuitive models that inform the selection of the

next tuning parameter. Because this process is repeated until the desired perfor-

mance is achieved, it can result in production downtime caused by multiple design

and debugging iterations. Better controllers are needed to change this status quo

of manufacturing processes. Firstly, next-generation controllers can reduce produc-

tion variation and tolerance, improving quality and decreasing scrap rate. Secondly,

they can also control for slight variations in material properties between raw material

batches to produce consistent quality products. Thirdly, next-generation controllers

are less affected by breaks in the production process (i.e. machine is shut down) and

14



are capable of quick recovery to optimal quality.

1.1.1 Past Work

A Data-Driven Approach to System Dynamics Modeling and Control Design by

George C. Chen explains the technology DRL has built to improve feedback con-

trol [2]. DRL has:

• Architected, implemented, and trained long short-term memory (LSTM) neural

networks to model the process and obtain the correlation between inputs and

outputs for the optical fiber extrusion manufacturing process

• Employed a system identification process using statistical analysis models

• Built a closed-loop simulation of the fiber extrusion system

Kim et al. showed how deep reinforcement learning algorithms can learn and con-

trol systems by applying the deep reinforcement learning framework on a compact

fiber drawing system as an example [14]. Kim’s ML-based control system “is trained

and tested on a real physical fiber drawing process with stochastic behavior and non-

linear delayed dynamics,... predictively regulates the diameter to track dynamically

varying reference trajectories,... [and] does not require prior analytical or numerical

models of the system” [14]. Model-free Tracking Control of an Optical Fiber Drawing

Process using Deep Reinforcement Learning by Sangwoon Kim further explains the

actor-critic approach that was developed for the ML-based control system [13].

The technology and approach can accelerate the labor-intensive and repetitive

tuning process needed to optimize controllers. Although some manufacturing compa-

nies now collect large quantities of controller and sensor data, this data is generally

not used to build improved control systems. Companies continue to rely on traditional

control strategies largely around PID controllers.
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1.1.2 Objective

This thesis explores three business pathways to commercialize the current technology

built by DRL and proposes a viable business solution based on feedback from venture

capital investors. An LSTM recurrent neural network (RNN) model was developed

for a desktop fiber extrusion system that mimics the fiber extrusion process on the

manufacturing floor. Transfer learning on the LSTM RNN was then implemented to

explore the feasibility of the proposed business solution and understand the limits of

transfer learning for this application. This thesis strives to define a lean minimum

viable product (MVP) and develop a prototype for this business solution that can

be shared with venture capital investors and be presented to prospective clients for

feedback.

1.2 Optical Fiber Manufacturing Process

Optical fiber cables provide long-distance telecommunications and transfer data at

high speeds using thin flexible glass fibers that carry light.

Optical fiber manufacturing consists of two main processes: the manufacturing of

the glass preform and the extrusion of the preform into a fiber. The cylindrical glass

preform is manufactured by using chemical vapor deposition and sintering of silicon.

The preform is then extruded into fiber and spooled in a large fiber drawing tower.

When the fiber is extruded, the preform goes through a feed mechanism. The

furnace heats the preform, which allows via gravity to form into a thin fiber. Using

helium gas, the fiber is cooled. The fiber is pulled and spooled through the drawing

pulley and winding drum. 1-3 shows the components of the optical fiber extrusion

process.

Sensors monitor parameters including furnace temperature and velocity and ten-

sion of the drawing pulley. The outputs such as the fiber diameter are also measured.

16



Figure 1-3: Manufacturing process of optical fiber extrusion [3]

1.3 Programmable Logic Controllers

1.3.1 Background

Programmable Logic Controllers are industrial computers that are designed to receive

inputs (sensor data) and control outputs (equipment such as motors). PLCs come in

a wide range of prices and are used in many systems such as robotics, manufacturing

machines, and assembly lines.
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Figure 1-4: Allen-Bradley CompactLogix 5480 PLC in the DRL

Engineers program PLCs using control systems that often include feedback loops

in which the system’s output is used as an input for the next operation.

1.3.2 Control Systems

A control system is defined as an assembly of subsystems and processes that produce

a desired output and performance for a given input [18]. As an example, control

systems can allow for large equipment such as an elevator to be moved with preci-

sion. 1-5 shows the input command and the measures of performance (steady state

response and steady-state error). The transient response, in this case, would affect

the passengers’ comfort and time when using the elevator.

Nise states that the four main reasons control systems are built are power amplifi-

cation, remote control, convenience of input form, and compensation for disturbances.

Proportional integral derivative (PID) controllers are often used to improve control

systems. Nicholas Minorsky developed the theory behind PID controllers for the

automatic steering of ships [18].
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Figure 1-5: Graph of elevator location vs. time with an input command of 4th floor
[18]

Figure 1-6: Breakdown of a PID control system [15]

PID controllers use error signals (via a feedback loop) and sum three mathematical

operations to produce a control signal that advances the system to the desired output

[15]. The proportional term multiplies the error by a constant or gain, Kp. The

integral term consists of a constant and the integral of the error with respect to time.

The derivative term consists of a constant and the derivative of the error with respect

to time.

Figure 1-7: Mathematical equation in continuous time used to represent a PID Con-
troller [15]

The proportional term, integral term, and derivative term are often used to reduce
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the rise time, steady-state error, and overshooting/fluctuation, respectively [15].

Figure 1-8: Graph labeling rise time, steady-state error and percent overshoot [9]

As an example, 1-9 shows a simplified block diagram of how a PLC and PID

control system would be used in optical fiber manufacturing. The process variable

(fiber diameter) can be graphed over time to get a graph similar to 1-8 and the

proportional, integral, and derivative terms can be tuned to minimize the rise time,

steady-state error, and overshooting.

Figure 1-9: Example Control System for Fiber Extrusion
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Chapter 2

Neural Networks and Transfer

Learning

This chapter outlines the relevant theory behind neural networks and transfer learn-

ing. However, the chapter is not intended to be a comprehensive explanation. For

a comprehensive explanation of machine learning, deep learning and long short-term

memory networks refer to Deep learning for anomaly detection in multivariate time

series data by Jan Paul Assendorp [1].

Artificial Neural Networks (ANNs) were first introduced in 1944 by Warren Mc-

Cullough and Walter Pits as an analogy or an approximation to the operation of neural

networks in the human brain [7]. Inspired by the human brain, which comprises bil-

lions of neurons, ANNs similarly consist of a network of interconnected neurons that

transmit information upon stimulation from adjacent neurons [4]. Originally, ANNs

have been Feed-Forward Neural Networks, in which the information is flowing in one

direction and the output of a given cycle or network depends mainly on the input of

the current cycle rather than previous inputs (no concept of input or output history).

2.1 LSTM Recurrent Neural Networks

Recurrent Neural Networks (RNNs) improve upon Feed-Forward Neural Networks by

incorporating internal memory and therefore a concept of history or state. RNNs
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Figure 2-1: Block diagram of a node in an Artificial Neural Network

utilize both the current input and the output from the previous inputs to make a

decision. After the output is generated, it is copied and then stored in the recurrent

network for use in future computations [17]. RNNs are suited for time series data in

which the sequence of data matters and the output of the current timestep depends

on the output of previous timesteps.

Figure 2-2: Block diagram of a node in a Recurrent Neural Network

However when the output depends on inputs at timesteps far before the current

timestep with irrelevant data in between, RNNs have trouble connecting the data and

detecting sequences. For these reasons, RNNs suffer from a phenomenon known as

the vanishing gradient problem and the long-term dependency problem.

As a result, LSTM RNNs were developed, where a state cell with a set of gates is

used to determine when the information stored in the memory gets to be used [16].

The forget gate is used to identify state information that can be forgotten as it is

deemed irrelevant. The input gate is used to identify new and relevant information

to be updated in the state cell. The output gate is used to determine the information

that should be outputed out of all the information that is currently stored in the
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Figure 2-3: Node in an LSTM Recurrent Neural Network at timestep t [1]

state cell. The forget, input, and output gates all range from 0 to 1. A value of 0

for the output gate signifies that no information is passed through while a value of

1 indicates that all the information is passed through. In 2-3, 𝑓 , 𝑖, and 𝑜 signify

the forget, input and output gate while 𝑐 signifies the memory state of the cell. The

input vector of the LSTM node is 𝑥 and the output vector of the LSTM node is ℎ.

Almost all recent applications and successes attributed to RNNs are based on

LSTMs. They have been extensively used in different tasks, including speech recog-

nition, acoustic modeling, trajectory prediction, and correlation analysis [24].

2.2 Transfer Learning

Transfer Learning is a machine learning method that utilizes the knowledge gained

from solving one task (i.e. source task) to solve an unrelated, yet similar task (i.e.

target task). Transfer Learning can be used when both the source task and target

task have the same input and a large amount of data is available to build the source

task model.

To accomplish transfer learning, the first n layers and the weights of the source

model are transferred to the target model and the target data is used to train and

develop the newly replaced layers. This method prevents the need to recreate all the

layers in the artificial neural network for the target model.
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Figure 2-4: A source model with large amounts of generic data can be used to create
a target model [21]

Figure 2-5: Example of the first n = 3 layers being transferred from source (BaseNet)
model with dataset size of 50,000 to target (TransferNet) model with dataset size of
500 [21]
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Chapter 3

Business Environment and Ecosystem

DRL members met with Duncan C. McCallum, an advisor and ex-venture capitalist,

to explore the commercialization of ML-based controllers. McCallum holds Bachelor’s

and Master’s degrees in Engineering from the Massachusetts Institute of Technology,

and a Masters in Business Administration degree from Harvard Business School. He

co-founded and served as the CEO of three companies and previously worked at

Bessemer Venture Partners and Flagship Ventures. He is also an experienced board

member, having served on 20 boards.

McCallum recommended creating sales decks and conducting customer interviews

to understand the market need. One main concern is whether large PLC manu-

facturers, such as Seimens and Rockwell, will cooperate with this change in status

quo. Another consideration is whether ML-based control systems can be easily im-

plemented within the existing PLCs on manufacturing floors. This is particularly a

concern because PLCs were not designed with ML-based control systems in mind. A

thorough assessment of the resources required to carry out this integration needs to

be conducted. McCallum also advised implementing a familiar revenue model, such

as fixed subscriptions. He stated that while it may be beneficial to form commercial

partnerships with large companies such as Siemens, it is important to remember to

not relinquish ownership prematurely.

Taking account of McCallum’s feedback, DRL determined three feasible business

pathways for ML-based controllers: commercializing a generic ML-based PLC in
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various industries, running a consultancy that develops ML-based control systems,

and manufacturing a specific product that uses proprietary ML-based PLCs as the

core technology.

These three business pathways were pitched to Manny Stockman, a venture cap-

italist at Osage University Partners (OUP). Stockman holds a Bachelor’s degree in

Mechanical Engineering and Materials Science Engineering from Duke University and

a Doctor of Philosophy in Mechanical and Aerospace Engineering from Princeton

University. He previously worked as a Staff Engineer at Lockheed Martin and is now

focused on deep technology and software spinouts at OUP. OUP usually signs one to

two deals per year with academic teams in the early stages of product development.

While their decision is based on three vectors– product, team, and market– Stockman

acknowledged that the process is holistic and that not all three vectors need to be

fully developed at the early stage.

3.1 Business Pathways

The following subsections detail three possible business pathways that can be imple-

mented to commercialize ML-based control systems.

3.1.1 Commercializing a Generic ML-based PLC

Under the generic ML-based PLC business pathway, the main goal is to commercialize

a generic ML-based PLC that replaces existing PID PLCs on manufacturing floors in

multiple industries. As shown by George C. Chen, considerable software engineering

is required to develop an ML model for a manufacturing system [2]. Due to the

uniqueness of each manufacturing process, software engineers will need to redevelop

ML models for each new manufacturing system. Unfortunately, the existing technol-

ogy does not allow for the straightforward replacement of PID PLCs with ML-based

PLCs. A first step towards understanding the feasibility of this business pathway is

to assess the resources required to accomplish this substitution.
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3.1.2 Running a Consultancy

Under the second business pathway, a consultancy sells engineering services that build

turnkey digital twins and ML-based control systems for PLCs allowing companies

to outsource the ML-based PLC integration efforts. A digital twin is a computer-

generated representation of a material object that is constructed using large amounts

of data (i.e. that gathered from various sensors) and can simulate various processes

to study outcomes based on differences in input parameters [8]. The services would

be sold for an hourly fee or a fixed fee per project. DRL collaborates with various

companies to improve their manufacturing processes. For example, through a col-

laboration with a coffee roasting company, DRL is formulating an ML-based control

system that controls inputs such as temperature and airflow to improve the aroma of

roasted coffee. DRL is also collaborating with a food packaging company’s package

forming process to produce aesthetically pleasing containers.

3.1.3 Manufacturing a Specific Product that uses Proprietary

ML-based PLCs as the Core Technology

The third business pathway entails mass-production of a certain good that utilizes pro-

prietary ML-based controllers. The importance of strategically choosing the product

that is continuously manufactured for this purpose cannot be overstated. If replacing

the PID PLC with an ML-based PLC remarkably improves product quality and re-

duces production costs, the product can be deemed appropriate for mass production.

The exit strategy would be to sell the business to a larger company with a greater

market share in the field.

3.2 Feedback from Venture Capital

For the generic ML-based PLC business pathway, Stockman cautioned against com-

plicated integrations and excessive combinations of possible solutions as a result of

adapting the generic ML model to vastly different manufacturing processes. Stock-
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man recommended that the first approach for this business pathway could be to create

software that builds digital twins of manufacturing systems for real-time manufactur-

ing monitoring. The software would create an ML model using an initial dataset

provided by the client company. As the company generates additional data to feed

into the ML model, the software can serve as an anomaly detector and suggest out-

liers. As the ML model gains access to more data over time, it becomes empowered

to suggest input parameters to improve the manufacturing process.

For the second business pathway, Stockman anticipated that consulting may func-

tion as a small business. However, he cautioned that the consultant’s salaries will

expend a substantial portion of the revenue. Stockman and McCallum warned that

consulting businesses are difficult to scale and venture capital investors generally ne-

glect to fund consultancies.

Out of the three business pathways, Stockman alluded that although the third

business pathway which entails manufacturing a specific product will be the most

arduous, it has the potential to make the most revenue. He recommended choosing

a high-value product whose value is derived from the manufacturing process. The

optimal product is one that is impossible to manufacture without the use of ML-

based PLCs.

3.3 Proposed Business Solution

The second business pathway takes the least amount of time and capital to launch but

has the lowest revenue potential. The third business pathway has the highest revenue

potential but also takes the most amount of time and capital to launch. The pathway

of developing software that auto-generates digital twins strikes a balance between the

time and capital necessary to launch while having adequate revenue potential.

Stockman’s proposition to develop software that auto-generates digital twins is an

arduous endeavor due to the considerable number of unrelated manufacturing pro-

cesses. One solution that alleviates this concern proposes to solely focus on building

digital twins for synthetic fiber manufacturing companies. Large amounts of fiber
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draw data, collected using the MIT fiber draw tower, would be used to create a digi-

tal twin using LSTM RNNs and physics-based models. This digital twin would serve

as a generic source model that understands low-level features. Fiber manufacturing

companies could then supplement the model with their own data. Transfer learn-

ing would be utilized to auto-generate and create a specific digital twin for the fiber

manufacturing company. The software will programmatically train and test data to

find optimal hyperparameters that minimizes error of the auto-generated ML model.

The model accuracy would improve over time with the addition of data. The digital

twin can be used for anomaly detection and suggesting optimal input parameters.

The proposed business solution would be cloud-based and sold as a monthly sub-

scription. Subscription cloud-based solutions are familiar to companies and venture

capital investors are enticed by recurring revenue models.
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Chapter 4

Experimental Setup

The potential to realize the proposed business solution using transfer learning is ex-

plored through a series of experiments. Data is collected on Fiber Extrusion Device

(FrED), a desktop fiber manufacturing system that simulates the fiber extrusion pro-

cess at a small scale. A large amount of data is collected with Material 1 to develop

a generic LSTM RNN source model. A smaller amount of data is collected with Ma-

terial 2 to develop a new LSTM RNN model. Then using fine-tuning and transfer

learning, two additional models for Material 2 (a third and fourth model) are devel-

oped using previously developed layers from the Material 1 model. The mean squared

error (MSE) is calculated between the predicted data and the test data for all models

and compared.

4.1 FrED - Fiber Extrusion Device

David Donghyun Kim has previously detailed how FrED was built [11]. The four

main systems of FrED are the extruder, laser micrometer, cooling system, and spool

system.

The device uses glue sticks as preform. The stepper gear feeds the preform into

the heating element which uses two 40W cartridge heaters. The preform becomes

malleable and forms into a thin fiber.

The fiber goes through a laser micrometer which measures the fiber diameter and
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Figure 4-1: Complete assembly of FrED [11]

Figure 4-2: Extruder sub-assembly of FrED [11]

Figure 4-3: Laser micrometer and cooling system sub-assembly of FrED [11]
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then into water that serves as a coolant.

The fiber is pulled and spooled through the spooling system. The DC motor

rotates the spool. A lead screw connected to a stepper motor allows the spool to

move side to side so the fibers can be collected on the entire spool.

Figure 4-4: Spooling system sub-assembly of FrED [11]

Using Teensy micro-controllers, Arduino, and Robot Operating System (ROS), the

motors and temperature of the heating element can be controlled. Data is recorded on

a computer interfaced with FrED. Each manufactured spool represents one dataset.

Figure 4-5: Image of FrED

33



4.2 Materials, Parameters, Data Collection

For Material 1, AdTech generic 0.28 inch diameter all-purpose glue sticks were used

as preform. The temperature of the heating element was set to 82°C.

For Material 2, Bettomshin EVA based 0.28 inch diameter glue sticks were used

as preform. The temperature of the heating element was set to 77°C.

Continuous data was collected with the inputs being extrusion stepper motor

frequency (ext_frq) and spindle motor speed (sdl_spd). The fiber diameter was

measured as the output using the laser micrometer. For each diameter measurement,

the timestep was logged.

For Material 1, data was collected at ext_frq of 8, 9, 10, 11, 12, 13, 14, 15, 16, and

17. At each extrusion motor frequency, the sdl_spd was run at 65, 70, 80, 90, 100,

110, 120, 130, 135, 140, 145 and 150. In addition, four spools of data were collected

at an ext_frq of 13 and sdl_spd of 100.

For Material 2, two spools of data were collected for training. The first spool was

set at ext_frq of 13 and the sdl_spd was varied at 65, 70, 80, 90, 100, 110, 120, 130,

140 and 150. The second spool was set at sdl_spd of 100 and the ext_frq was varied

at 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17.

Two additional spools were collected for testing. The first spool varied between

ext_frq of 8, 13, and 17 and sdl_spd of 65, 100, and 150. The second spool was set

at a constant ext_frq of 13 and sdl_spd of 100.

Data was formatted into csv files with columns of timestep, ext_frq, sdl_spd and

fiber diameter.
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Chapter 5

Developing LSTM RNN Model for

FrED

This chapter details the steps taken to develop an LSTM RNN source model for

Material 1 fiber data and is split into three sections: Data Visualization, Model

Creation, and Model Output.

5.1 Data Visualization

Material 1 data was visualized to detect patterns and correlation between parameters

and rule out unsuitable models. Data visualization also helped with determining the

shape of the input and the hyperparameters of the model.

Figure 5-1: Diameter vs. Extrusion Frequency for a constant Spindle Speed
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Figure 5-2: Diameter vs. Spindle Speed for a constant Extrusion Frequency

5-1 shows the effect of extrusion frequency on diameter. As extrusion frequency

increases, diameter increases. 5-2 shows the effect of spindle speed on diameter.

The inverse relationship between spindle speed and diameter can be modeled using

physics. Kim previous implemented a theoretical physics-based model that predicts

the fiber diameter of FrED [12]. The trend follows the theoretical conservation of

mass as shown in Eqn. 5.1 where 𝑣2 is the linear velocity of the fiber at the spool,

𝑣1 is the linear velocity of the fiber at the heating chamber exit (related to ext_frq),

𝐴1 is the cross-sectional area of the heating chamber exit (20.7𝑚𝑚2 for FrED), and

𝐴2 is the cross-sectional area of the fiber at the spool.

𝑣2 = 𝑣1 ·
𝐴1

𝐴2

(5.1)

Figure 5-3: Diameter vs. Time from timestep 1 to 500 for constant input parameters
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Figure 5-4: Diameter vs. Time from timestep 2450 to 2950 for constant input param-
eters

Table 5.1: Effect of Time on Diameter Measurement
Timestep Range Average Diameter (microns)

1 to 500 381.0
2450 to 2950 322.3

5-3 and 5-4 show the difference in diameter measurements at different timestep

ranges with the same parameters. As time increases the diameter decreases. Table

5.1 shows a 58.7 micron diameter difference between timestep 1 to 500 and timestep

2450 and 2950. The inverse relationship between time and diameter is the result of

the spool becoming larger over time, which in turn increases the linear velocity of the

fiber at the spool. The fiber gets pulled at a faster velocity despite the system being

set at a constant spindle speed (constant angular velocity). Eqn. 5.2 explains the role

the diameter of the spool has on 𝑣2 where 𝐷𝑠 is the diameter of the spool including the

wound up fiber and 𝜔𝑠 is the angular velocity of the spool in revolutions per second.

Eqn. 5.2 shows the proportional relationship between 𝐷𝑠 and 𝑣2. Combining Eqn.

5.1 and Eqn. 5.2 results in Eqn. 5.3 which calculates the cross-sectional area of the

fiber at the spool as the output. An increase in either 𝐷𝑠 or 𝜔𝑠 will lead to a decrease

in 𝐴2 and thus fiber diameter.

𝑣2 = 𝜋 ·𝐷𝑠 · 𝜔𝑠 (5.2)
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𝐴2 =
𝑣1 · 𝐴1

𝜋 ·𝐷𝑠 · 𝜔𝑠

(5.3)

Both 5-3 and 5-4 show outliers in the dataset. Due to errors caused by the laser

micrometer, data greater than 500 microns are due to mismeasurement. Lines 31-35

in A.1 shows data cleaning. In addition, outliers were manually removed through

visual inspection.

5.2 Model Creation

Google Colab was used to develop the model [6]. The complete list of libraries im-

ported are shown from Lines 6 to 15 in A.1 and include pandas, NumPy, TensorFlow,

and Keras libraries [20] [19] [23] [10].

An input size (INPUT_SIZE as shown in line 47 of A.1) of 2950 timesteps was

chosen as it represents data collected for one spool. Other input sizes such as 500

timesteps were tested. However, as shown in the data visualization, time plays a role

in fiber diameter and an input size of 2950 timesteps was chosen to allow the model

to detect long-term sequencing. Twelve datasets of 2950 were used for training and

three datasets of 2950 were used for testing thus leading to a 80/20 split between

training and testing data.

DRL previously tested four LSTM architecture designs for developing its ML

model on the optical fiber extrusion process: single layer LSTM, single layer biLSTM,

side-by-side LSTM, and deep LSTM [2].

DRL found that the deep LSTM architecture performed the best and thus a deep

LSTM network was chosen [2]. The deep LSTM network consists of three 128 node

LSTM layers, a fully connected layer of 100 nodes and a final regression layer as

shown in lines 79 to 86 of A.1.

Hyperparameters of the model include number of epochs and batch size for training

and are shown in lines 89-94 of A.1. Epoch hyperparameter values of 10, 15, 20, and

30 were tested. A batch size (batch_size as shown on line 93 of A.1) of four was

chosen for training. This is because twelve datasets are used for training and a batch
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Figure 5-5: From Left to Right: Single Layer LSTM, Single Layer biLSTM, Side-by-
side LSTM, Deep LSTM [2]

size of four will allow for training to be done three times per epoch.

(a) 10 Epochs (b) 15 Epochs

(c) 20 Epochs (d) 30 Epochs

Figure 5-6: Loss (y-axis) vs. Epoch (x-axis) for Various Epoch Hyperparameter
Values

5-6(a) shows a high final loss for 10 epochs. Thus, an epoch hyperparameter

value of 10 produces an undertrained model. The loss graph for 15, 20 and 30 epochs

shows a low final loss. 5-6 shows 15 epochs is the inflection point the minimum

loss occurs. Hence, an epoch hyperparameter of 15 was chosen. The final loss for 15

epochs ( 5-6(b)) was 0.0111.
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5.3 Model Output

(a) 1st Train Dataset (b) 2nd Train Dataset

(c) 3rd Train Dataset

Figure 5-7: Train vs. Predicted for Material 1

Table 5.2: Input Parameters for Respective Training Datasets
Train 1 Parameters Train 2 Parameters Train 3 Parameters

Timestep Sdl_spd Ext_frq Sdl_spd Ext_frq Sdl_spd Ext_frq
0 65 11 100 12 100 15

200 65 11 100 12 100 15
400 70 11 100 12 100 15
600 70 11 65 12 100 15
800 80 11 65 12 65 15
1000 100 11 110 12 65 15
1200 100 11 150 12 110 15
1400 110 11 120 12 150 15
1600 110 11 120 12 120 15
1800 120 11 70 12 120 15
2000 135 11 130 12 65 15
2200 140 11 130 12 70 15
2400 145 11 145 12 130 15
2600 150 13 135 12 130 15
2800 120 13 90 12 145 15
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(a) 1st Test Dataset (b) 2nd Test Dataset

(c) 3rd Test Dataset

Figure 5-8: Test vs. Predicted for Material 1

Table 5.3: Input Parameters for Respective Test Datasets
Test 1 Parameters Test 2 Parameters Test 3 Parameters

Timestep Sdl_spd Ext_frq Sdl_spd Ext_frq Sdl_spd Ext_frq
0 100 10 100 13 130 13

200 100 10 100 13 130 13
400 65 10 100 13 135 13
600 110 10 100 13 140 13
800 110 10 100 13 145 13
1000 150 10 100 13 145 13
1200 140 10 100 13 150 13
1400 90 10 100 13 150 13
1600 90 10 100 13 150 16
1800 145 10 100 13 65 16
2000 70 10 100 13 70 16
2200 134 10 100 13 90 16
2400 135 10 100 13 90 16
2600 80 10 100 13 110 16
2800 80 10 100 13 120 16
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5-7 shows the LSTM RNN model run on three of the twelve training datasets.

5.2 shows the input parameters that FrED was set to for the 2950 timesteps. 5-7(a),

5-7(b), and 5-7(c) show that the model is able to predict fluctuations in sdl_spd well

for training data but 5-7(a) shows the model could improve on predicting the effect

of ext_frq. In 5-7(a) when ext_frq increased from 11 to 13 between timestep 2400

and 2600, the model was not able to accurately predict a large increase in diameter.

5-8 shows the LSTM RNN model run on the three test datasets. 5.3 shows the

input parameters that FrED was set to for the 2950 timesteps. 5-8(a) shows that

the LSTM RNN model does not overfit the training data as it is able to accurately

predict fluctuations in sdl_spd for new test data. 5-8(b) shows that the model is

also able to predict the effect of the increasing angular velocity of the spool over time

for constant parameters. Both the test data and the model show a decreasing trend

over time for diameter. 5-8(c) shows that the model is able to predict ∆diameter

caused by a ∆ext_frq well but can improve on predicting the diameter with a given

ext_frq. The MSE between predicted and test data for the model was 0.00622. This

chapter shows that LSTM RNNs are able to sufficiently model the input and output

parameters of FrED and detect long-term patterns. The next chapter implements

transfer learning on the Material 1 model created in this chapter.
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Chapter 6

Applying Transfer Learning for

Different Material

This chapter details the steps taken to develop four LSTM RNN models that pre-

dict Material 2 data. Predicted Data 1 uses the Material 1 model developed in the

previous chapter and does not utilize the Material 2 training data. Predicted Data 2

was developed without the use of Material 1 model/training data and only with the

relatively small amount of Material 2 training data collected. Predicted Data 3 was

developed by fine-tuning the Material 1 model with Material 2 train data. Predicted

Data 4 was developed by transferring the first two LSTM layers of the Material 1

model and training the last 3 layers with Material 2 train data. Testing these four

LSTM RNN models gives insight on the best method to auto-generate an ML model

for a prospective fiber manufacturing company.

6.1 Predicted Data 1 (PD1): Testing Material 1 Model

on Material 2 Data

Material 2 data was tested using the Material 1 model to assess the difference between

material properties. It is hypothesized that the model will be accurate for materials

with similar properties to those of Material 1 and the model will lose accuracy for
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materials with dissimilar properties to those of Material 1. The parameters used for

both test datasets are shown in 7.2.

(a) 1st Test Dataset (b) 2nd Test Dataset

Figure 6-1: Test vs. PD1

The MSE between predicted and test data was 0.0440. 6-1(a) depicts a significant

difference in material properties as the predicted diameter by the model at timestep

750 is much higher than the diameter measurements of the Material 2 test data. At

most timesteps in 6-1(b), the predicted diameter is also larger than the Material

2 test data. This could be due to Material 2 producing a smaller diameter than

Material 1 on average for the same parameters. The diameter of Material 2 fiber

was on average 30.8 microns smaller than that of Material 1 fiber at an extrusion

frequency of 13 and spindle speed of 100.

6.2 Predicted Data 2 (PD2): Developing Model with

Material 2 Train Data

A new LSTM RNN model was developed for Material 2. Two training datasets on

Material 2 were used to develop a LSTM RNN model, which was then tested on

two Material 2 test datasets. The use of a small dataset in training the model is

representative of a situation in which a prospective client chooses to develop a model

on their own. The source code to develop the model is shown in A.2.

The model was run with hyperparameters of batch_size = 1 and epochs = 15. The

final loss was 0.0121. The MSE was 0.0292 between test and predicted. The similarly
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Figure 6-2: Loss (y-axis) vs. Epoch (x-axis) for PD2 Model

(a) 1st Test Dataset (b) 2nd Test Dataset

Figure 6-3: Test vs. PD2

low final loss of the PD2 model (0.0121 for PD2 and 0.0111 for Material 1 model)

shows the model’s ability to predict training data well. However, the relatively high

MSE of the PD2 model compared to the Material 1 model shows the PD2 model’s

inability to predict test data well. This shows that the PD2 model might be suffering

from overfitting as there is not enough training data given to the model to develop

an understanding of the true trend between parameters.

6.3 Predicted Data 3 (PD3): Fine-tuning Material

1 Model with Material 2 Train Data

Fine-tuning is a technique where all layers of a previously trained model are retrained

with new data at a low learning rate. Material 1 model was loaded and retrained with
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hyperparameters of batch_size = 1 and epochs = 15 as shown in A.3. The final loss

was 0.011 and the MSE between test and predicted was 0.0215.

Figure 6-4: Loss (y-axis) vs. Epoch (x-axis) for PD3 Model

(a) 1st Test Dataset (b) 2nd Test Dataset

Figure 6-5: Test vs. PD3

6.4 Predicted Data 4 (PD4): Developing Model us-

ing Transfer Learning

The optimal number of layers needed to be transferred was found to be the first two

LSTM layers. Transferring three of the LSTM layers resulted in a higher MSE value.

As shown in 6-6, the first two layers of the Material 1 model were transferred. A.4

shows the hyperparameters and the source code of the model. Through experimen-

tation of various hyperparameters, batch_size was set to 1, and number of epochs
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was set to 30. The final loss was 0.009 and the MSE between test and predicted was

0.0175.

Figure 6-6: LSTM RNN Layers Transferred

Figure 6-7: Loss (y-axis) vs. Epoch (x-axis) for PD4 Model

(a) 1st Test Dataset (b) 2nd Test Dataset

Figure 6-8: Test vs. PD4
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Chapter 7

Results

Table 7.1: A Comparison of MSE Values across Models
Model # of Input Test Data # of Test MSE Graph Label

Batches Batches
Material 1 12 Material 1 3 0.00622 –
Material 1 12 Material 2 2 0.044 PD 1
Material 2 2 Material 2 2 0.0292 PD 2
Fine-tuning 12 + 2 Material 2 2 0.0215 PD 3

Transfer Learning 12 + 2 Material 2 2 0.0175 PD 4

The MSE of PD1 (testing Material 1 model on Material 2 test data) was seven

times higher than that of testing Material 1 model on Material 1 test data. PD4 had

the lowest MSE value out of all models tested on Material 2 data. PD3, which im-

plemented fine-tuning, showed an MSE value that was 26.4% lower than that of PD2

which does not implement fine-tuning or transfer learning. PD4, which implemented

transfer learning, showed an MSE that was 40.4% lower than that of PD2.

For test data 1 as shown in 7-1(a), PD4 can more accurately predict fiber diameter

than PD1 at timestep 750 while also better predicting fiber diameter than PD2 at

timestep 1700. For test data 2 as shown in 7-1(b), PD4 is able to better predict fiber

diameter than both PD1 and PD2 as PD1 generally over-predicts fiber diameter and

PD2 generally under-predicts fiber diameter.
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(a) 1st Test Dataset

(b) 2nd Test Dataset

Figure 7-1: Test vs. PD1, PD2, PD3, PD4
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Table 7.2: Input Parameters for Material 2 Test Datasets
Test 1 Parameters Test 2 Parameters

Timestep Sdl_spd Ext_frq Sdl_spd Ext_frq
0 100 13 100 13

200 65 8 100 13
400 65 8 100 13
600 100 8 100 13
800 150 8 100 13
1000 150 13 100 13
1200 100 13 100 13
1400 65 13 100 13
1600 65 17 100 13
1800 65 17 100 13
2000 100 17 100 13
2200 150 17 100 13
2400 150 17 100 13
2600 100 13 100 13
2800 100 13 100 13
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Chapter 8

Conclusion

8.1 Recommendation

It can be inferred that Material 1 is considerably different than Material 2 based on the

Material 1 model’s failure to accurately predict the fiber diameter of Material 2. The

large decrease in MSE values when implementing transfer learning and fine-tuning

demonstrates the effectiveness of these techniques. Transfer learning performed sig-

nificantly better than fine-tuning and thus should be the preferred approach when

developing a commercial product for this technology. This study illustrates that a

prospective fiber manufacturing company would be able to improve the MSE of their

model by 40.4% using the product. Sales decks and the study should be pitched to

prospective clients to gauge their interest and understand the utility of the solution

to various companies. Such information will provide valuable insight into the optimal

pricing structure for the subscription model.

8.2 Future Work

DRL researcher, Shreya Dhar is currently working on improving FrED to make the

device easier to use and more functional. Dhar is working on a tension measuring

device installed between the cooling system and the spool. The device measures the

tension at each timestep that the fiber is spooled. This would enable an additional
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input for the LSTM RNN model and could significantly improve the model accuracy.

In addition, the improved FrED can manufacture larger spools, significantly increasing

the input data size from 2950 timesteps. This in turn would allow the LSTM RNN

model to detect long-term patterns and sequencing. DRL researcher, Russel Bradley

is implementing a digital microscope and computer vision to optically measure fiber

diameter on FrED. The digital microscope can also measure opacity of the fiber,

which can serve as a second output in addition to fiber diameter for the LSTM RNN

model. Additionally, more power needs to be transmitted to the heating element to

allow FrED to extrude materials with high melting points such as Nylon. DRL has

previously extruded Nylon on different devices but the heating element subassembly

and electronics need to be implemented on the current version of FrED that was used

for this thesis. Next, a spinneret system would need to be developed to imitate the

aramid manufacturing process more accurately.

Collecting more data with a greater variety of input parameters will help develop

a robust generic fiber draw ML-model that can be used with transfer learning to

solve specific problems. However, it should be noted that for larger datasets, an ef-

fective data cleaning algorithm will need to be developed to remove outliers. DRL

Researcher, Mohamed Othman is working on implementing ML-models on a conven-

tional PLC (Allen-Bradley CompactLogix 5480 PLC shown in 1-4) to control the

fiber diameter of FrED. Finally, this study and a pitch deck for the proposed business

solution need to be presented to venture capital investors for feedback and guidance

on the next steps to advance this technology.

The following outlines a provisional plan to launch this technology as a product:

1. Conduct further exploration on the theoretical physics and mechanics of the

fiber draw process.

2. Develop a robust source model on MIT’s full-scale fiber draw system that im-

plements physics-based modeling with LSTM RNNs.

3. Develop preliminary transfer learning infrastructure that auto-generates ML

models.
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I Create an algorithm that finds optimal hyperparameters through program-

matically training and testing data.

II Integrate software on cloud servers that allow customers to input fiber

draw data securely.

III Test software with few beta partners to verify the capability of transfer

learning in a real-life setting.

4. Market service to fiber manufacturing companies once the transfer learning

infrastructure is shown to work effectively.
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Appendix A

Source Code

1 from google.colab import drive

2 drive.mount(’/content/drive’)

3 import os

4 os.chdir("drive/My Drive/Data/CSVFiles") #import Data

5

6 import pandas as pd

7 import numpy as np

8 import lightgbm

9 from IPython.display import display

10 from sklearn.model_selection import train_test_split , GroupKFold ,

KFold

11 from sklearn.metrics import mean_absolute_error

12 from tensorflow import keras

13 import tensorflow as tf

14 from sklearn.preprocessing import MinMaxScaler

15 import matplotlib.pyplot as plt

16

17 one_header = [’ext13 -16 diam’,’extfrq9 -13 diam’, ’

mtr100allextfrq2diam ’, ’mtr100allextfrqdiam ’,’

mat1ext13mtr100temp82diam ’,’mat1ext13mtr100temp82diam2 ’, ’

mat1ext13mtr100temp82diam3 ’,’mat1ext13mtr100temp82diam4 ’]

18 two_header = [’ext11diam ’, ’extfrq10 -14 diam’, ’extfrq12diam ’, ’

extfrq13allmtrspddiam ’, ’extfrq15diam ’, ’extfrq17diam ’, ’

extfrq8diam ’]
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19

20 dataframes_list = []

21

22

23 for i in range(len(one_header)):

24 temp_df = pd.read_csv(f’{one_header[i]}. csv’, header =1)

25 dataframes_list.append(temp_df)

26

27 for i in range(len(two_header)):

28 temp_df = pd.read_csv(f’{two_header[i]}. csv’, header =2)

29 dataframes_list.append(temp_df)

30

31 def clean_df(df):

32 df = df.rename(columns=lambda x: x.strip ().lower())

33 df = df.drop(columns =["field.htr_pwm", "field.temp_ma", "field.

encv", "time", "%time", "field.temp_set","field.temp"], errors=’

ignore ’)

34 df = df.rename(columns = {’field.diam’:’diam’, ’Motor’:’motor ’, ’

ext_frq ’:’ext’})

35 df = df[(df[’motor’] > 0) & (df[’ext’] > 0) & (df[’diam’] > 0) &

(df[’diam’] <= 500)]

36

37 df.dropna ()

38 return df

39

40 dfs = list(map(clean_df , dataframes_list))

41 test = [dfs[9], dfs[5], dfs [3]]

42 dfs.pop (9)

43 dfs.pop (6)

44 dfs.pop (3)

45 train = dfs

46

47 INPUT_SIZE = 2950

48 train_data = []

49 test_data = []

50 for df in train:
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51 i = 0

52 while i + INPUT_SIZE < df.shape [0]:

53 train_data.append(df[i:i+INPUT_SIZE ])

54 i += INPUT_SIZE

55

56 for df in test:

57 i = 0

58 while i + INPUT_SIZE < df.shape [0]:

59 test_data.append(df[i:i+INPUT_SIZE ])

60 i += INPUT_SIZE

61

62 train_data = np.array(train_data)

63 print(train_data.shape )

64

65 test_data = np.array(test_data)

66 print(test_data.shape)

67

68 diam_min = np.min(train_data [:, :, 0])

69 diam_max = np.max(train_data [:, :, 0])

70 print(diam_min)

71 print(diam_max)

72

73 diam_range = diam_max - diam_min

74 train_data [:, :, 0] = (train_data [:,:,0] - diam_min)/diam_range

75 test_data[:, :, 0] = (test_data [:,:,0] - diam_min)/diam_range

76

77 train_data.shape

78

79 model = keras.models.Sequential ([

80 keras.layers.Input(shape =(2950 ,2)),

81 keras.layers.LSTM (128, return_sequences=True),

82 keras.layers.LSTM (128, return_sequences=True),

83 keras.layers.LSTM (128, return_sequences=True),

84 keras.layers.Dense (100, activation=’relu’),

85 keras.layers.Dense (1),

86 ])
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87 model.compile(optimizer="adam", loss="mse")

88

89 history = model.fit(

90 x=train_data [:,:,1:],

91 y=train_data [:,:,0],

92 epochs =15,

93 batch_size =4,

94 )

95

96 plt.plot(history.epoch , history.history[’loss’], label=’total loss’

)

97 plt.show()

98

99 pred = model.predict(test_data[:, :, 1:])

100

101 mse = ((pred.reshape(len(test_data) ,2950) - test_data[:, :, 0]) **2)

.mean(axis=None)

102 print(mse)

103

104 x = np.arange(stop =2950)

105 plt.plot(x, test_data[0, :, 0], color =’tab:blue’)

106 plt.plot(x, pred[0, :], color =’tab:orange ’)

107 plt.ylim([0, 1])

108 plt.show()

109 plt.savefig(’test_0.png’, dpi =1200)

110

111 for i in range (0 ,2950 ,200):

112 print(f’t={i} {test_data[0, i, 1:]}’)

113

114 x = np.arange(stop =2950)

115 plt.plot(x, test_data[1, :, 0], color =’tab:blue’)

116 plt.plot(x, pred[1, :], color =’tab:orange ’)

117 plt.ylim([0, 1])

118 f = plt.figure ()

119 f.set_figwidth (15)

120 f.set_figheight (15)
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121 plt.show()

122

123 for i in range (0 ,2950 ,200):

124 print(f’t={i} {test_data[1, i, 1:]}’)

125

126 x = np.arange(stop =2950)

127 plt.plot(x, test_data[2, :, 0], color =’tab:blue’)

128 plt.plot(x, pred[2, :], color =’tab:orange ’)

129 plt.ylim([0, 1])

130 f = plt.figure ()

131 f.set_figwidth (15)

132 f.set_figheight (15)

133 plt.show()

134

135 for i in range (0 ,2950 ,200):

136 print(f’t={i} {test_data[2, i, 1:]}’)

137

138 train_pred = model.predict(train_data [: ,: ,1:])

139 x = np.arange(stop =2950)

140 for i in range (10):

141 plt.plot(x, train_data[i, :, 0], color =’tab:blue’)

142 plt.plot(x, train_pred[i, :], color =’tab:orange ’)

143 plt.ylim([0, 1])

144 f = plt.figure ()

145 f.set_figwidth (15)

146 f.set_figheight (15)

147 plt.show()

Source Code A.1: Material 1 LSTM RNN Model

1

2 from google.colab import drive

3 drive.mount(’/content/drive’)

4

5 import os

6 os.chdir("drive/My Drive/Data/CSVFiles/Material2") #import Data

7
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8 import pandas as pd

9 import numpy as np

10 import lightgbm

11 from IPython.display import display

12 from sklearn.model_selection import train_test_split , GroupKFold ,

KFold

13 from sklearn.metrics import mean_absolute_error

14 from tensorflow import keras

15 import tensorflow as tf

16 from sklearn.preprocessing import MinMaxScaler

17 import matplotlib.pyplot as plt

18

19 one_header = [’mat2ext13allmtrspeeddiam ’,’

mat2ext8_13_17mtr65_100_150diam ’, ’mat2ext13mtr100temp77diam ’, ’

mat2mtr100allextfrqdiam ’]

20

21 dataframes_list = []

22

23

24 for i in range(len(one_header)):

25 temp_df = pd.read_csv(f’{one_header[i]}. csv’, header =1)

26 dataframes_list.append(temp_df)

27

28 def clean_df(df):

29 df = df.rename(columns=lambda x: x.strip ().lower())

30 df = df.drop(columns =["field.htr_pwm", "field.temp_ma", "field.

encv", "time", "%time", "field.temp_set","field.temp"], errors=’

ignore ’)

31 df = df.rename(columns = {’field.diam’:’diam’, ’Motor’:’motor ’, ’

ext_frq ’:’ext’})

32 df = df[(df[’motor’] > 0) & (df[’ext’] > 0) & (df[’diam’] > 0) &

(df[’diam’] <= 500)]

33

34 df.dropna ()

35 return df

36
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37 dfs = list(map(clean_df , dataframes_list))

38 test = [dfs[1], dfs [2]]

39 dfs.pop (2)

40 dfs.pop (1)

41 train = dfs

42

43 INPUT_SIZE = 2950

44 train_data = []

45 test_data = []

46 for df in train:

47 i = 0

48 while i + INPUT_SIZE < df.shape [0]:

49 train_data.append(df[i:i+INPUT_SIZE ])

50 i += INPUT_SIZE

51

52 for df in test:

53 i = 0

54 while i + INPUT_SIZE < df.shape [0]:

55 test_data.append(df[i:i+INPUT_SIZE ])

56 i += INPUT_SIZE

57

58 train_data = np.array(train_data)

59 print(train_data.shape )

60

61 test_data = np.array(test_data)

62 print(test_data.shape)

63

64 diam_min = np.min(train_data [:, :, 0])

65 diam_max = np.max(train_data [:, :, 0])

66

67 diam_range = diam_max - diam_min

68 train_data [:, :, 0] = (train_data [:,:,0] - diam_min)/diam_range

69 test_data[:, :, 0] = (test_data [:,:,0] - diam_min)/diam_range

70

71 model = keras.models.Sequential ([

72 keras.layers.Input(shape =(2950 ,2)),
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73 keras.layers.LSTM (128, return_sequences=True),

74 keras.layers.LSTM (128, return_sequences=True),

75 keras.layers.LSTM (128, return_sequences=True),

76 keras.layers.Dense (100, activation=’relu’),

77 keras.layers.Dense (1),

78 ])

79 model.compile(optimizer="adam", loss="mse")

80

81 history = model.fit(

82 x=train_data [:,:,1:],

83 y=train_data [:,:,0],

84 epochs =15,

85 batch_size =1,

86 )

87

88 plt.plot(history.epoch , history.history[’loss’], label=’total loss’

)

89 plt.show()

90

91 pred = model.predict(test_data[:, :, 1:])

92

93 mse = ((pred.reshape(len(test_data) ,2950) - test_data[:, :, 0]) **2)

.mean(axis=None)

94 print(mse)

95

96 x = np.arange(stop =2950)

97 plt.plot(x, test_data[0, :, 0], color =’tab:blue’, label="Test Data

")

98 plt.plot(x, pred[0, :], color =’tab:orange ’, label="Predicted Data"

)

99 plt.ylim([0, 1])

100 plt.xlabel("Timestep")

101 plt.ylabel("Normalized Diameter")

102 plt.legend ()

103 plt.show()

104
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105 for i in range (0 ,2950 ,200):

106 print(f’t={i} {test_data[0, i, 1:]}’)

107

108 x = np.arange(stop =2950)

109 plt.plot(x, test_data[1, :, 0], color =’tab:blue’, label="Test Data

")

110 plt.plot(x, pred[1, :], color =’tab:orange ’, label="Predicted Data"

)

111 plt.ylim([0, 1])

112 plt.xlabel("Timestep")

113 plt.ylabel("Normalized Diameter")

114 plt.legend ()

115 plt.show()

116 f = plt.figure ()

117 f.set_figwidth (15)

118 f.set_figheight (15)

119

120

121 for i in range (0 ,2950 ,200):

122 print(f’t={i} {test_data[1, i, 1:]}’)

Source Code A.2: Material 2 LSTM RNN Model

1

2 model = keras.models.load_model(’/content/drive/MyDrive/Models/

model1 ’)

3 history = model.fit(

4 x=train_data [:,:,1:],

5 y=train_data [:,:,0],

6 epochs =15,

7 batch_size =1,

8 )

Source Code A.3: Replaced Source Code for Fine Tuning LSTM RNN Model

1

2 model_m1m_tl_lstm = keras.models.load_model(’/content/drive/MyDrive

/Models/model1 ’)
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3 model_m1m_tl_lstm.get_layer(name="lstm").trainable = False

4 model_m1m_tl_lstm.get_layer(name="lstm_1").trainable = False

5 model_m1m_tl_lstm.get_layer(name="dense").trainable = True

6 model_m1m_tl_lstm.get_layer(name="dense_1").trainable = True

7 model_m1m_tl_lstm.get_layer(name="lstm_2").trainable = True

8 model_m1m_tl_lstm.summary(

9 show_trainable=True

10 )

11

12 history = model_m1m_tl_lstm.fit(

13 x=train_data [:,:,1:],

14 y=train_data [:,:,0],

15 epochs =30,

16 batch_size =1,

17 )

18

19 pred = model_m1m_tl_lstm.predict(test_data [:, :, 1:])

Source Code A.4: Replaced Source Code for Transfer Learning LSTM RNN Model
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Appendix B

Figures

(a) 1st Train Dataset (b) 2nd Train Dataset

Figure B-1: Train vs. Predicted Data 2 for Material 2
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(a) 1st Train Dataset (b) 2nd Train Dataset

Figure B-2: Train vs. Predicted Data 3 for Material 2

(a) 1st Train Dataset (b) 2nd Train Dataset

Figure B-3: Train vs. Predicted Data 4 for Material 2
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