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Abstract

This thesis explores business pathways to commercialize Device Realization Lab’s
technology that uses deep reinforcement learning for optical fiber manufacturing con-
trol systems. A viable business solution is proposed based on feedback from venture
capital investors. The solution comprises developing cloud-based software that can
generate digital twins for fiber manufacturing companies. These digital twins can
serve as anomaly detectors and suggest optimal input parameters that reduce pro-
duction variation and tolerance, improving quality and decreasing scrap rate. Efforts
to define a minimum viable product (MVP) for this business solution began with the
creation of a long short-term memory recurrent neural network (LSTM RNN) model
for a desktop fiber extrusion system that mimics the fiber extrusion process on the
manufacturing floor. Transfer learning on the LSTM RNN was then implemented to
explore the feasibility of reusing a well-developed machine learning (ML) model for a
fiber material (e.g. glass fiber) to construct an ML model for a separate fiber material
(e.g. nylon fiber) for which a relatively low amount of data is available. The study
found that applying transfer learning reduced the mean squared error of the new
fiber material model by over 40% compared to developing the model without transfer
learning. This thesis strives to reveal the innovative applications of the technology
that can benefit the fiber manufacturing field and defines an MVP that can be shared
with venture capital investors as a first step toward commercializing this technology.

Thesis Supervisor: Brian W. Anthony
Title: Principal Research Scientist
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Chapter 1

Introduction

The Device Realization Lab (DRL) at MIT develops novel control systems to improve

the optical fiber manufacturing process. These improved control systems implement

machine learning to reduce the tolerance of optical fibers to 125 microns ± 1 mi-

cron, allowing for simple assembly of the fiber and connector and eliminating several

preparation steps during fiber and connector assembly.

Figure 1-1: Image of optical fiber within cable [5]

The current manufacturing process has a tolerance greater ± 1 micron and thus

requires post-processing steps such as sanding to unite the fiber to the connector. By

removing this step, the manufacturer can save tens of millions of dollars on the cable

assembly.
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Figure 1-2: Image of cable with connectors [22]

Apart from the production of optical fibers, programmable logic controllers (PLCs)

are also critical in the manufacturing of other products including semiconductors,

automobiles, glass, paper, textile, cement, food and beverages, and pharmaceuticals.

This thesis will focus on exploring the use of improved machine learning based

(ML-based) control systems for the commercialization of synthetic fiber manufac-

turing. Synthetic fibers are man-made (commonly extruded) fibers manufactured

through chemical synthesis and include glass, polyester, carbon, and aramid fibers

(e.g. Kevlar, Vectran, and Nylon).

1.1 Motivation

Although the manufacturing industry is currently accustomed to PLCs, they are

time-consuming and labor-intensive. Results from isolated trial and error experi-

ments are used to generate simple, intuitive models that inform the selection of the

next tuning parameter. Because this process is repeated until the desired perfor-

mance is achieved, it can result in production downtime caused by multiple design

and debugging iterations. Better controllers are needed to change this status quo

of manufacturing processes. Firstly, next-generation controllers can reduce produc-

tion variation and tolerance, improving quality and decreasing scrap rate. Secondly,

they can also control for slight variations in material properties between raw material

batches to produce consistent quality products. Thirdly, next-generation controllers

are less affected by breaks in the production process (i.e. machine is shut down) and

14



are capable of quick recovery to optimal quality.

1.1.1 Past Work

A Data-Driven Approach to System Dynamics Modeling and Control Design by

George C. Chen explains the technology DRL has built to improve feedback con-

trol [2]. DRL has:

• Architected, implemented, and trained long short-term memory (LSTM) neural

networks to model the process and obtain the correlation between inputs and

outputs for the optical fiber extrusion manufacturing process

• Employed a system identification process using statistical analysis models

• Built a closed-loop simulation of the fiber extrusion system

Kim et al. showed how deep reinforcement learning algorithms can learn and con-

trol systems by applying the deep reinforcement learning framework on a compact

fiber drawing system as an example [14]. Kim’s ML-based control system “is trained

and tested on a real physical fiber drawing process with stochastic behavior and non-

linear delayed dynamics,... predictively regulates the diameter to track dynamically

varying reference trajectories,... [and] does not require prior analytical or numerical

models of the system” [14]. Model-free Tracking Control of an Optical Fiber Drawing

Process using Deep Reinforcement Learning by Sangwoon Kim further explains the

actor-critic approach that was developed for the ML-based control system [13].

The technology and approach can accelerate the labor-intensive and repetitive

tuning process needed to optimize controllers. Although some manufacturing compa-

nies now collect large quantities of controller and sensor data, this data is generally

not used to build improved control systems. Companies continue to rely on traditional

control strategies largely around PID controllers.
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1.1.2 Objective

This thesis explores three business pathways to commercialize the current technology

built by DRL and proposes a viable business solution based on feedback from venture

capital investors. An LSTM recurrent neural network (RNN) model was developed

for a desktop fiber extrusion system that mimics the fiber extrusion process on the

manufacturing floor. Transfer learning on the LSTM RNN was then implemented to

explore the feasibility of the proposed business solution and understand the limits of

transfer learning for this application. This thesis strives to define a lean minimum

viable product (MVP) and develop a prototype for this business solution that can

be shared with venture capital investors and be presented to prospective clients for

feedback.

1.2 Optical Fiber Manufacturing Process

Optical fiber cables provide long-distance telecommunications and transfer data at

high speeds using thin flexible glass fibers that carry light.

Optical fiber manufacturing consists of two main processes: the manufacturing of

the glass preform and the extrusion of the preform into a fiber. The cylindrical glass

preform is manufactured by using chemical vapor deposition and sintering of silicon.

The preform is then extruded into fiber and spooled in a large fiber drawing tower.

When the fiber is extruded, the preform goes through a feed mechanism. The

furnace heats the preform, which allows via gravity to form into a thin fiber. Using

helium gas, the fiber is cooled. The fiber is pulled and spooled through the drawing

pulley and winding drum. 1-3 shows the components of the optical fiber extrusion

process.

Sensors monitor parameters including furnace temperature and velocity and ten-

sion of the drawing pulley. The outputs such as the fiber diameter are also measured.
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Figure 1-3: Manufacturing process of optical fiber extrusion [3]

1.3 Programmable Logic Controllers

1.3.1 Background

Programmable Logic Controllers are industrial computers that are designed to receive

inputs (sensor data) and control outputs (equipment such as motors). PLCs come in

a wide range of prices and are used in many systems such as robotics, manufacturing

machines, and assembly lines.
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