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Abstract 

Modern engineered systems are immensely complex. Extensive sets of natural language 
requirements guide the development of such systems. As such, tools to assist system 
engineers in managing and extracting information from these requirements must also 
scale to match the complexity of these systems. However, the systems engineering 
community has lagged in adopting advanced natural language processing techniques. 
Pre-trained language models, such as BERT, represent state-of-the-art in the field. This 
thesis seeks to understand if these pre-trained language models can achieve higher model 
performance at a lower computational and manpower cost than earlier techniques. The 
results show that adapting these language models through task-adaptive pretraining 
leads to consistent improvements in model performance and greater model robustness. 
These results indicate the potential of applying such language models in the systems 
engineering domain. However, much work remains to improve model performance and 
expand possible applications. 
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Chapter 1 

1 Introduction 

1.1 Background and Motivations 

User needs for modern engineered products are increasingly sophisticated. The 
development of these complex products is in turn guided by large sets of system 
requirements and specifications. The accurate and comprehensive decoding of 
information from requirements ensures that the eventual product meets the specified 
requirements. However, while the sets of requirements have grown, the technologies and 
techniques used to decode information from them have remain largely stagnant. The use 
of engineers to perform this dull1 and tedious task is not scalable and represents a poor 
use of their expertise. This thesis investigates the use of state-of-the-art natural language 
processing (NLP) techniques to bring forth a high-performing and scalable approach 
towards managing requirements. This allows expensive engineering resource to be better 
invested into other high value-adding functions.   

In engineering, system requirements are conventionally specified and communicated 
using natural language. Natural language is governed by linguistic rules – rules which 
are culturally evolved and learned, rather than specified a priori (Spike, 2018). This means 
that natural language can be deeply subjective. For example, the ability to understand 
sarcasm is shaped by the receiver’s social and interpersonal factors (Kreuz & Caucci, 
2007). In contrast, machine (programming) languages have a pre-defined grammar and 
structure, allowing syntactic rules to be stated comprehensively. This means that a 
specific piece of code communicates the same functional meaning with all its users. This 
subjective nature of natural language creates challenges in decoding information from 
requirements.  

 
1 This is an intended reference to the 3D (Dull, Dirty and Dangerous) characteristics of tasks that are well 
suited for automation. 
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The field of NLP has long sought to advance the technological goal2 of processing natural 
language (Levesque, 2014). At the same time, engineers have sought out technologies to 
extract information encoded within requirements. The alignment of goals between the 
domains has led to the diffusion of NLP technologies into systems engineering (SE) over 
time – one reference from each of the three preceding decades illustrates this (Arellano et 
al., 2015; Kof, 2005; Ryan, 1993). 

The adoption of NLP technologies within system engineering is therefore influenced by 
both technological maturity and engineering needs. The recent survey of NLP 
applications in requirements engineering indicates that most of the work involves 
syntactic analysis such as detection of requirement statements from longer documents, 
categorical classification of requirements, and assessment of requirement quality (Ferrari 
et al., 2021). This is expected as the formulation of such syntactic problems is well 
understood, with developed technologies and tools to enable its application. In contrast, 
semantic applications, while present, are less prevalent. The reasons for this observation 
are less understood. The same survey also indicates that active academic research has not 
been widely applied within the industry. These findings shape the intended scope of this 
thesis. Therefore, this investigates the utility of various state-of-the-art language models 
that have been widely adopted in other industries within systems engineering and 
requirements engineering.  

1.2 Research Questions 

This thesis seeks to address the following research questions: 

• RQ1: Which off-the-shelf pre-trained language models are most suitable for application 
within the systems engineering domain? 

• RQ2: To what extent does task-adaptive pretraining of language models improve 
classification performance within the systems engineering domain?  

 
2 Technological goals are distinct from scientific goals. The former describes a goal of developing solutions 
that are sufficient for a defined problem, while scientific goals describe a purist pursuit of understanding 
what really is. In the context of NLP, scientific goals seek to describe how language is understood by 
humans, while technological goals seek to develop solutions to perform specific language related tasks. 
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1.3 Thesis Structure 

This thesis contains six sections – this section and five others. Sections 2 and 3 present a 
literature review of SE and NLP, with emphasis on the state of practice and the 
envisioned future state. Section 4 described empirical work performed to evaluate three 
language models (LM) and their adapted analogs to three requirements engineering tasks. 
Finally, Section 5 discusses the implications of the results and proposes future work. 
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Chapter 2 

2 Evolution of System Engineering 

This chapter is organized into four main sections: Section 2.1 provides a brief overview 
of Systems Engineering, Section 2.2 describes the movement from a traditional 
document-based systems engineering to model-based systems engineering, Section 2.3 
summarizes the future of systems engineering as articulated by INCOSE, and Section 2.4 
describes how the recent developments in Systems Engineering paves the way for greater 
adoption of artificial intelligence and natural language processing tools within the field. 

2.1 Systems Engineering 

Systems Engineering is an “interdisciplinary, iterative and sociotechnical” approach to 
maximize a system’s value to stakeholders throughout its lifecycle by managing 
“complexity and change” and “reducing risk associated with new systems or 
modifications to complex systems” (INCOSE, 2015). SE involves the performance of 14 
technical processes (Table 2-1) throughout its lifecycle to achieve the stated outcomes. 
Holistically, these technical processes enable the system engineer to bridge across 
engineering disciplines to develop a mutually agreeable set of system requirements and 
system solutions that fulfill prioritized stakeholder needs (INCOSE, 2015). 

Table 2-1: 14 System Engineering Technical Processes (INCOSE, 2015). 

Technical Process Purpose3 
Example of 
Process Artifacts4 

Business or 
mission analysis 
process 

“To define the business or mission problem or 
opportunity, characterize the solution space, and 
determine potential solution class(es) that could 
address a problem or take advantage of an 
opportunity.” 

• Problem or opportunity 
statement 

• Major stakeholder 
identification 

• Business requirements 

 
3 Cited verbatim from INCOSE Systems Engineering Handbook (INCOSE, 2015). 
4 Cited verbatim from INCOSE Systems Engineering Handbook (INCOSE, 2015). 
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Technical Process Purpose3 Example of 
Process Artifacts4 

Stakeholder 
needs and 
requirements 
definition process 

“To define the stakeholder requirements for a 
system that can provide the capabilities needed 
by users and other stakeholders in a defined 
environment.” 

• Stakeholder needs and 
requirements definition 
strategy 

• Stakeholder requirements 

System 
requirements 
definition process 

“To transform the stakeholder, user‐oriented 
view of desired capabilities into a technical view 
of a solution that meets the operational needs of 
the user.” 

• System function 
definition 

• System requirements 
• System functional 

interface identification 

Architecture 
definition process 

“To generate system architecture alternatives, to 
select one or more alternative(s) that frame 
stakeholder concerns and meet system 
requirements, and to express this in a set of 
consistent views.” 

• System architecture 
description 

• Preliminary interface 
definition 

Design definition 
process 

“To provide sufficient detailed data and 
information about the system and its elements to 
enable the implementation consistent with 
architectural entities as defined in models and 
views of the system architecture.” 

• System design 
description 

• System element 
descriptions 

System analysis 
process 

“To provide a rigorous basis of data and 
information for technical understanding to aid 
decision‐making across the life cycle.” 

• System analysis strategy 
• System analysis record 

Implementation 
process 

“To realize a specified system element.” 

• Implementation strategy 
• Implementation 

constraints 

Integration 
process 

“To synthesize a set of system elements into a 
realized system (product or service) that satisfies 
system requirements, architecture, and design.” 

• Integration enabling 
system requirements 

• Integration procedure 

Verification 
process 

“To provide objective evidence that a system or 
system element fulfils its specified requirements 
and characteristics.” 

• Verification strategy 
• Verification procedure 
• Verification record 

Transition 
process 

“To establish a capability for a system to provide 
services specified by stakeholder requirements in 
the operational environment.” 

• Transition strategy 
• Transition procedure 

Validation 
process 

“To provide objective evidence that the system, 
when in use, fulfills its business or mission 
objectives and stake-holder requirements, 
achieving its intended use in its intended 
operational environment.” 

• Validation strategy 
• Validation procedure 
• Validated requirements 
• Validation record 
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Technical Process Purpose3 Example of 
Process Artifacts4 

Operation process “To use the system to deliver its services.” 
• Operation strategy 
• Operation constraints 

Maintenance 
process 

“To sustain the capability of the system to provide 
a service.” 

• Maintenance strategy 
• Maintenance procedure 

Disposal process 

“To end the existence of a system element or 
system for a specified intended use, appropriately 
handle replaced or retired elements, and to 
properly attend to identified critical disposal 
needs.” 

• Disposal strategy 
• Disposal procedure 

 

The order in which these technical processes are performed depends on the way SE 
practices are organized. This is well illustrated by the SE “Vee” model (Figure 2-1). In this 
model, system maturity increases from left to right. Moving down the left arm of the 
“Vee”, the system definition processes (such as architecture definition and design 
definition) are performed in phases, first at the system level and subsequently at the sub-
system level. Moving up the right arm, integration, verification, and validation processes 
are then performed at each level of abstraction, starting at the sub-system level before 
completion at the system level.  

Figure 2-1: Systems Engineering "Vee" Model (INCOSE, 2015). 
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2.2 Movement towards Model-based Systems Engineering 

2.2.1 Traditional Document-based Systems Engineering 

The SE approach is iterative in nature and involves multiple stakeholders. This approach 
requires knowledge, decisions, and work products to be captured in various artifacts that 
serve as a single source of truth for all stakeholders. Traditionally, these artifacts exist as 
documents leading to a document-based systems engineering (DBSE) approach. The 
reliance on documents can also be attributed to legal acceptance standards (Logan et al., 
2012) or ease of understanding by non-expert stakeholders. 

However, the document-centric nature of DBSE does not imply an absence of models. 
Instead, much of the engineering work continues to revolve around models. This reliance 
on both documents and models demands the consistent translation of knowledge 
between the two to maintain an authoritative source of truth. There are several inherent 
weaknesses with this approach. First, the disparate use of models means that the 
underlying assumptions and semantics within those models are often inconsistent 
(Madni & Sievers, 2018). The resulting documents that are generated from these models 
inherit the same inconsistencies. Second, each of the 14 SE processes produces many 
artifacts (Table 2-1) that can continually evolve over time. Therefore, documents and 
models “have their own lifecycles and tend to drift apart over time” (Norheim et al., 2022). 
These weaknesses dilute the value proposition of the SE approach. 

2.2.2 Model-based Systems Engineering 

This introduction of model-based systems engineering (MBSE) is intended to tackle the 
above weaknesses. MBSE is formally defined as “the formalized application of modeling 
to support system requirements, design, analysis, verification, and validation activities 
beginning in the conceptual design phase and continuing throughout development and 
later life cycle phases.” (INCOSE, 2007)  MBSE involves the use of a set of connected 
models which collectively represent the “primary artifact of the SE process” (INCOSE, 
2015). Therefore, MBSE poses the system models as the authoritative source of truth, 
displacing documents from this role. It is posited that MBSE will foster and enhance 
communication effectiveness between stakeholders by creating a shared context and 
lexicon through the models (Madni & Sievers, 2018). 
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2.2.3 State of Practice of Model-based Systems Engineering 

A series of surveys (Cameron & Adsit, 2020; Cloutier, 2015, 2019; Huldt & Stenius, 2019; 
Kim et al., 2019; Madni & Sievers, 2018) indicate that MBSE adoption within industry is 
ongoing. However, the primary MBSE adopters continue to come from industries that 
have traditionally practiced SE; such industries include defense and aerospace (Cloutier, 
2019).  

Amongst adopters, MBSE is primarily practiced at the front-end in the areas of 
architecture modelling and requirements management, with lesser adoption on rear-end 
processes such as trade studies and verification planning (Cloutier, 2019). This can be 
attributed to several sociotechnical reasons. First, the MBSE tools required for front-end 
processes such as requirements management are domain-agnostic (Cloutier, 2019) and 
present a larger target market. This in turn drives development and tool maturity. In 
comparison, rear-end processes require more specialized tools which may not be 
available. Second, there is a common perception amongst practitioners that MBSE holds 
the most promise in systems conceptualization and architecting, and requirements 
management (Figure 2-2). Taken together, these factors create a positive reinforcing loop 
that facilitates adoption of MBSE at the front-end of SE. 

Figure 2-2: SE practitioner responses to “Where do we believe MBSE holds the most 
promise?” (Cloutier, 2019). 
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2.3 Future State of Systems Engineering 

The International Council on Systems Engineering (INCOSE) release vision papers 
periodically to “inspire and guide the strategic direction of systems engineering for the 
global systems community” (INCOSE, 2021). This series of vision papers outline several 
key ideas such as the overarching SE imperatives (Figure 2-3), key global trends that 
impact the practice of SE, and an evolving outlook of the SE practice in the future. While 
the SE imperatives are grouped into five main categories, they share two underlying 
themes: to enable the widespread adoption of SE at scale across domains and to improve 
the efficiency of SE processes by increasing knowledge reuse and integration with other 
digital tools. 

Figure 2-3: INCOSE Systems Engineering Imperatives (INCOSE, 2021). 

 

In terms of global trends, the recent Systems Engineering Vision 2035 paper highlighted the 
disruptive and transformative potential of the ongoing digital transformation (INCOSE, 
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2021). First, the digital transformation will bring about a movement to construct “robust 
digital representations of enterprise information, and semantically integrating 
information” throughout the organization (INCOSE, 2021). The SE community must 
adapt to the larger shift – the DBSE approach may become obsolete as it becomes 
incompatible with the way organizations of the future work. As such, tools to support 
MBSE must be developed to support this shift. Second, the proliferation of artificial 
intelligence (AI) applications will also accelerate, driven by the increase in computational 
power, data, and software (INCOSE, 2021). The infusion of AI into systems engineering 
tools and processes is an eventuality. 

2.4 Concrete Steps for Artificial Intelligence Applications in Systems 
Engineering 

This thesis aims to make a tangible step in applying state-of-the-art AI technology within 
SE in support of the SE imperatives. Specifically, this thesis will investigate the 
application of NLP technologies in requirements management. The application of NLP 
within requirements management is not novel. However, by the end of Chapter 3, it 
should become apparent that the gap between state-of-the-art AI/NLP and those in use 
within requirements management today is substantial. The bridging of this gap can 
facilitate the infusion of AI into SE. Considering that most of MBSE applications today 
reside in the front-end processes (such as requirements management) focusing on AI 
applications for such processes has the potential to deliver the most significant impact. 
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Chapter 3 

3 Natural Language Processing 

NLP sits at the intersection of linguistics and computer science, with technologies 
developed to decode information within natural language artifacts. NLP research is rich 
and diverse whose scope cannot be reproduced accurately or in whole. In the subsequent 
sections, emphasis is placed on discussing specific concepts that scaffold subsequent 
discussions on adoption strategies in Chapter 4. 

This chapter is organized into four main sections: Section 3.1 provides an overview of 
NLP by presenting relevant linguistics concepts (such as syntax and semantics) and 
providing examples of NLP problem formulations. Section 3.2 illustrates traditional 
symbolic NLP approaches that have been adopted within the SE domain. Section 3.3 
illustrates machine learning approaches that have become the cornerstone of modern-
day NLP. Lastly, Section 3.4 provides a discussion of how NLP techniques can be applied 
in other specialized domains such as biomedicine and legal.   

3.1 What is Natural Language Processing? 

3.1.1 Natural Language Concepts from Linguistics 

The field of linguistics comprises of many subfields that analyze natural language from 
different aspects and at different levels of abstraction. The two that are of relevance to 
this thesis are syntax and semantics. Syntax refers to “the study of formation and internal 
structure of sentences”. Semantics refers to “the study of the meaning of sentences” 
(Bender, 2013). 

The differences between these concepts can be illustrated with sentences [1] and [2]. The 
only difference lies in their last words. 

[1]: The animal didn’t cross the street because it was too tired. 

[2]: The animal didn’t cross the street because it was too wide. 

The syntactic structure is obtained from the analysis of the text’s syntax. As illustrated 
below, the syntactic structure is common between both sentences, with common phrase 
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structures comprising of common Noun Phrases (NP) and Verb Phrases (VP). The 
syntactic structure allows useful information to be extracted. For example, the entities 
referenced (e.g. the animal) and the predications about them (e.g. didn’t cross). 

 [1]: The animal [NP] didn’t cross [VP] the street [NP] because it [NP] was too tired [VP]. 

[2]: The animal [NP] didn’t cross [VP] the street [NP] because it [NP] was too wide [VP]. 

The semantic meaning is obtained from the analysis of the text’s semantics. It was 
illustrated earlier that the two sentences differed only by one word and shared the same 
syntactic structure. However, these sentences had very different meanings, with the first 
attributing the non-crossing to the animal’s fatigue, while the second attributed the non-
crossing to the width of the street. In essence, the replacement of the last word modified 
the meaning of the referent (“it”), giving the sentences a distinct meaning. Hence, 
semantic analysis is loosely described as understanding the text in context.  

[1]: The animal didn’t cross the street because it was too tired. 

[2]: The animal didn’t cross the street because it was too wide. 

This contextual understanding is also important in the understanding of homonyms and 
polysemes. Homonyms refer to words with different meanings. For example, “bank” can 
refer to both the bank of a river or the bank as a financial institution5. Polysemes refer to 
words with different yet related meanings. For example, in the phrase “Let’s get a drink”, 
the word “drink” could adopt different meanings depending on the context created by 
adjacent statements. Within engineering, similar phenomena is observed where technical 
terms such as “bandwidth” can have different meaning to control engineers and 
computer engineers (Madni & Sievers, 2018). 

3.1.2 Natural Language Processing Applications 

NLP has been applied to solve a wide range of tasks. In all applications, the natural 
language text is taken in as an input and transformed into the desired output. The natural 
language text input is fundamentally a sequence - it contains constituent components 
(such as words and punctuations), and these components are arranged in a meaningful 

 
5  A related example encountered during this thesis involves the phrase “1830 battery”. This can be 
understood as (1) 1830 [Quantifier] battery [Noun], or (2) 1830 battery [Noun]. In that context, the latter is 
the intended meaning as 1830 describes the model of the battery. 
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manner. However, the outputs take various forms. For checking of requirements quality, 
the output can be binary (acceptable or unacceptable) or continuous (on a scale of 1-5). 
For the generation of test cases from requirements documents, the output can be another 
natural language text (which is a sequence that is distinct from the original input). In this 
section, these applications will be organized into three broader classes: sequence 
classification, sequence labeling, and sequence-to-sequence. The concept behind each of 
these categories will be elaborated on. It should be noted that while these concepts are 
described without reference to specific techniques, it is implied that the more complex 
applications necessitate the use of more advanced ones. 

3.1.2.1 Sequence Classification 

Sequence classification seeks to transform the input sequence into a single output (Graves, 
2012). Single output can refer to a single categorical class within multi-class classification 
problems or a continuous output variable. This class of applications are the most 
restrictive of the three classes due to the nature of its outputs. As shown in Table 3-1, 
functional requirement/ non-functional requirement (FR/NFR) classification (Hey et al., 
2020), ambiguity detection in requirements (Ezzini et al., 2021), and quality assessment 
of requirements problems are all variants of sequence classification problems. 

Table 3-1: Examples of Sequence Classification Applications in Requirement 
Engineering. 

Use Case Input Sequence Single Output 

FR/NFR 
Classification 
(Hey et al., 2020) 

The system shall refresh the display every 60 
seconds. 

Functional/ 
Non-Functional 

The search results shall be returned no later than 30 
seconds after the user has entered the search criteria 

Functional/ 
Non-Functional 

Ambiguity in 
Requirements 

Service availability shall measure the outage of LEO 
satellites and terminals. 

Coordination Ambiguity6 
(Yes/No) 

 
6 Coordination Ambiguity (CA) describes ambiguity that arises from the use of a coordinating conjunction 
(i.e. “and” or “or”). In this example, the phrase “LEO satellites and terminals” creates ambiguity as it is 
unclear if the modifier “LEO” applies to element “terminals” (Ezzini et al., 2021). 
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Use Case Input Sequence Single Output 

(Ezzini et al., 
2021) 

The outage management platform shall provide 
administrators with the ability to categorize outages 
with discrete tags. 

Prepositional-phrase 
Attachment Ambiguity7 
(Yes/No) 

3.1.2.2 Sequence Labeling 

Sequence labeling seeks to label target segments within the input sequence based on a 
predefined labeling scheme (Graves, 2012). In NLP, target segments normally refer to 
words or a sequence of words8. 

Table 3-2: Examples of Sequence Labeling. 

Sentence My name is Shao and I live in Cambridge 

POS DET NOUN AUX PROPN CCONJ PRON VERB ADP PROPN 

NER O O O PER O O O O LOC 

 

In Table 3-2, the following sentence, “My name is Shao and I live in Cambridge” is used 
to illustrate sequence labeling in the context of part-of-speech (POS) tagging and named 
entity recognition (NER). In both sequence labeling tasks, the sentence is used as the input 
sequence, with every word representing a target segment. In POS tagging, the objective 
is to assign every target segment to one of the pre-defined POS categories: determiner 
[DET], noun [NOUN], auxiliary [AUX], proper noun [PROPN], coordinating conjunction 
[CCONJ], pronoun [PRON], verb [VERB], adposition [ADP], adjective [ADJ], etc. In NER, 
the objective is similar but with some nuance. Unlike POS tagging where the POS 
categories are universal, named entities are context and domain dependent. In this 
example, the objective is to identify target segments that can be identified as persons 
[PER], location [LOC], or organization [ORG]. In NER tagging schemes, there is an 
additional empty token [O] used to categorize target segments which do not fall into any 
of the target categories. It is useful to note that NER tagging schemes also include 
modifiers to the target categories to categorize target segments based on their positions 

 
7 Prepositional-phrase Attachment Ambiguity (PPA) describes ambiguity that arises from the use of a PP. 
In this example, the term “outages” is the PP. The two resulting interpretations are: (1) to “categorize” 
“outages with discrete tags” or (2) to “categorize outages with” “discrete tags” (Ezzini et al., 2021).  
8 These segments can also be composed of sub-word tokens. The ideas of “sub-word” and “tokens” will be 
discussed subsequently in Section 3.3.3. 
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within multi-word named entities. The two common modifiers are the Inside-Outside-
Beginning (IOB) and the Inside-Outside-Beginning-End-Single (IOBES) schemes. These 
schemes are illustrated with “Massachusetts Institute of Technology” in Table 3-3. 

Table 3-3: Illustration of IOB and IOBES schemes. 

Example Massachusetts Institute of Technology 

IOB B-ORG I-ORG I-ORG I-ORG 

IOBES B-ORG I-ORG I-ORG E-ORG 

 

These sequence labeling tasks have been applied within the SE domain. For example, a 
recent survey found POS tagging to be the most applied technique in RE research (Zhao 
et al., 2021). NER was also applied for the extraction of named entities to populate SysML 
requirement tables (Riesener et al., 2021).  

3.1.2.3 Sequence-to-Sequence 

Sequence-to-sequence is the final class of application. Such applications seek to transform 
an input sequence into a separate output sequence. In the context of NLP, both sequences 
are natural language text. Table 3-4 highlights a set of sequence-to-sequence applications 
such as machine translation, text summarization and question-answering. The 
complexity of sequence-to-sequence applications is self-evident from these examples. 
First, for the outputs to be appropriate and coherent a representation of semantic 
meaning is required. Second, the absence of constraints on the output sequence 
dimensions poses unique architectural challenges on the choice of models. Lastly, the 
output sequence can be related but not represented within the input sequence.  

Table 3-4: Illustration of Sequence-to-Sequence Applications. 

Use Cases Input Output 

Machine Translation “How are you?” “你好吗?” 
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Use Cases Input Output 

Text Summarization (L. 
Wang & Ling, 2016) 

“Joe Strummer: The Future Is Unwritten. The 
late punk rock legend Joe Strummer is 
rendered fully human in Julian Temple’s 
engrossing and all-encompassing portrait. The 
movie fascinates not so much because of 
Strummer but because of the way Temple 
organized and edited the film. One of the most 
compelling documentary portraits of a 
musician yet made.” 

“Fascinating and 
insightful, Joe Strummer: 
The Future Is Unwritten is 
a thoroughly engrossing 
documentary.” 

Question-Answering “What is the temperature today?” “60 degrees Fahrenheit”  

 

A survey of the literature did not identify any published research on sequence-to-
sequence applications within systems engineering. However, there is some literature on 
the use of requirements for test case generation to support the verification and validation 
process (Moitra et al., 2019; Sinha et al., 2015)9. This presents a potential use case for 
sequence-to-sequence applications in systems engineering. 

3.2 Symbolic Approaches to Natural Language Processing 

Symbolic approaches work by “carrying out a series of logic-like reasoning steps over 
language representations” (Garnelo & Shanahan, 2019). The “logic-like reasoning” 
requires the language to be represented in human-readable formats, and rules 
decomposed and specified as a set of defined steps. As a result, these approaches are 
easily interpretable. Interpretability is an important ility that can lead to an increase in 
model confidence – an important trait in sociotechnical systems. However, the reliance 
of these models on hand-crafted representations represents a key weakness. First, as 
Polanyi’s paradox suggests, “we know more than we can tell” - this implies that there is 
an inherent inability to translate the human understanding of knowledge fully into 
comprehensive rules, even if they exist. Second, this lack of a comprehensive set of rules 
means that input sequences that fulfil these rules will be correctly identified (high 

 
9 These studies were not classified as sequence-to-sequence applications as the test cases were generated 
from ontologies rather from requirements itself. As such, requirements only form part of the input sequence. 
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precision10). However, the sequences which do not fulfil these rules cannot be detected 
(low recall11). This creates an unknown unknown problem12.  

The remainder of this section will introduce two symbolic approaches: lexicon-based 
(Section 3.2.1) and rules-based (Section 3.2.2). 

3.2.1 Lexicon-based Approaches 

Lexicon-based approaches are based on the notion that individual words or word strings 
contain information that can be decoded from natural language (Guthrie et al., 1996; 
Wilks, 1993). In practice, lexicon-based approaches rely on machine readable dictionaries 
(MRD) of relevant lexicons to extract such information. The approach is premised on the 
intuition that much of our collective knowledge can be condensed and described by such 
libraries, making this a useful approach (Guthrie et al., 1996). When identifying systems 
or subsystems from requirement statements, the MRDs serve as look-up tables, assigning 
a Boolean (binary variable) to each word. When analyzing sentiment within a statement, 
the MRDs serve to assign a sentiment score (continuous variable) to relevant words. 

These MRDs vary in naming and form, with variation observed across and within 
domains. 

• Systems Engineering – MRDs are represented as ontologies within SE. A recent 
survey of known SE ontologies showed significant differences in the structure and 
properties captured within each ontology (Yang et al., 2019). In addition, the 
authors also found that the SE ontologies did not specify the methodology used in 
its generation, were described using natural language rather than represented 
using models13, provided insufficient detail for it to be reproduced formally, and 
resultantly has low possibility of reuse (Yang et al., 2019). 
 

 
10  Precision describes the proportion of positive identifications that are correct. This is expressed 
mathematically as [True Positive / (True Positive + False Positive)]. 
11 Recall describes the proportion of actual positive identifications are correctly identified. This is expressed 
mathematically as [True Positive / (True Positive + False Negatives)]. 
12 Unknown unknowns refer to things that we are neither aware of nor understand. 
13 The authors of the survey stated that of the 57 papers describing SE ontologies, only 2 authors made their 
ontologies available for open access. 
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• Generic – These MRDs, which are referred to as both ontologies and gazetteers, 
are not directly useful for SE. However, the characteristics of such MRDs contrast 
starkly with those developed within SE, providing useful lessons for the SE 
community. These MRDs (Hamilton et al., n.d.; Lehmann et al., 2012; Manning et 
al., 2014) are formally specified, openly accessible, with methodologies for its 
generation specified. One example comes from the DBpedia project which maps 
Wikipedia infoboxes into a single shared ontology consisting of 685 classes and 
2,795 properties (DBpedia, n.d.); a subset of this ontology is illustrated with Figure 
3-1. 
 

Figure 3-1: Ontology example from DBpedia (Lehmann et al., 2012). 

 

To complete the above comparisons, it is important to acknowledge that the analysis is 
incomplete. As stated by the authors of the survey, SE ontologies serve other purposes 
such as enabling communication across disciplines and between stakeholders (Yang et 
al., 2019). Hence, comparing SE ontologies against MRDs that are specifically designed 
for model deployment is not a fair one. However, as the SE domain shifts towards DE, it 
is perhaps important to develop ontologies with model reuse and compatibility in mind.  

3.2.2 Rule-based Approaches 

Rule-based approaches seek to match the natural language corpus against predefined 
rules or patterns. This method is heavily influenced by the field of linguistics. There is 
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broad consensus that natural language exhibits many recurring rule-like structures, and 
these structures allow the elicitation of information (Spike, 2018). It is also acknowledged 
that many peculiarities in natural language cannot be described in the same manner 
(Spike, 2018). Therefore, this approach seeks to develop a finite set of rules that are 
sufficient to facilitate the extraction of information from natural language corpus. The 
prevalence of such rule-based approaches is evidence of their utility. 

These rule-based patterns can be defined at the individual words level or based on a word 
sequence. At the word level, techniques such as regular expressions (RegEx) can be used 
to identify specific sentence compositions. For example, the combination use of “and” 
and “or” in proximity can lead to ambiguous association between subjects. This can be 
identified using the expression stated in Figure 3-2. 

Figure 3-2: Use of RegEx for Ambiguity Detection in in Requirements (Gleich et al., 
2010). 

 

At the input sequence level, the use of part-of-speech (POS) patterns have also been used. 
This is illustrated with the example stated in Figure 3-3; the last five words of this 
requirement contains a prepositional-phrase attachment ambiguity (PAA) as it allows for 
two possible interpretations. This form of ambiguity can be detected using various POS 
patterns stated in  Figure 3-4. Specifically, the last five words of the requirement fit the 
verb-noun-preposition-noun POS pattern. 
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Figure 3-3: Example of Ambiguity in Requirements due to Prepositional-phrase 
Attachment Ambiguity (Ezzini et al., 2021). 

 

Figure 3-4: Use of Pattern Matching (Rules) for Ambiguity Detection in Requirements 
(Ezzini et al., 2021). 

 

3.3 Machine Learning Approaches to Natural Language Processing 

Frederick Jelinek, an automatic speech recognition pioneer and natural language 
processing researcher, was famously quoted saying: “Whenever I fire a linguist our 
system performance improves.” Statistical and symbolic approaches fundamentally 
differ in the way they obtain their language representations. The former relies on hand-
crafted, pre-specified representations, while the latter relies on learnt statistical 
representations. As such, machine learning approaches are a formal subset of statistical 
approaches.  
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Machine learning (ML) approaches employ three core ideas. First, inputs and outputs are 
translated into a mathematical form which can take the form of scalars, vectors, or tensors. 
Second, an objective function is developed to describe what is mathematically desirable. 
Third, a learning algorithm is used to learn the relations between inputs and outputs, 
resulting in the optimization of the objective function. For NLP, the first step, therefore, 
requires natural language text to be represented in an explicit mathematical form, an 
approach that is not seen in the previous approaches. In Section 3.3.1, various forms of 
representations are outlined in increasing complexity and abstraction. 

3.3.1 Vectorized Representations of Natural Language  

The way natural language text is translated into a mathematical form determines the 
information that is retained in that representation. Information that is not captured within 
that representation by extension cannot be used by the learning algorithm. 

3.3.1.1 One-Hot Word Representations 

One-hot representations are used to indicate the presence or absence of a feature. For a 
given set of vocabulary {x1, x2, …, xn}, where n is the size of the vocabulary, each element 
(xi) can be represented in a sparse n x 1 vector, where only 1 element can be 1, with others 
0. This can be illustrated with the sentence: “The animal didn’t cross the street because it 
was too tired.”  

Table 3-5: Example of One-hot Vectors. 

Word One-hot Vector  Word One-hot Vector 
The [1 0 0 0 0 0 0 0 0 0 0 0]  The [1 0 0 0 0 0 0 0 0 0 0 0] 

animal [0 1 0 0 0 0 0 0 0 0 0 0]  animal [0 1 0 0 0 0 0 0 0 0 0 0] 
didn't [0 0 1 0 0 0 0 0 0 0 0 0]  didn't [0 0 1 0 0 0 0 0 0 0 0 0] 
cross [0 0 0 1 0 0 0 0 0 0 0 0]  cross [0 0 0 1 0 0 0 0 0 0 0 0] 
the [0 0 0 0 1 0 0 0 0 0 0 0]  the [0 0 0 0 1 0 0 0 0 0 0 0] 

street [0 0 0 0 0 1 0 0 0 0 0 0]  street [0 0 0 0 0 1 0 0 0 0 0 0] 
because [0 0 0 0 0 0 1 0 0 0 0 0]  because [0 0 0 0 0 0 1 0 0 0 0 0] 

it [0 0 0 0 0 0 0 1 0 0 0 0]  it [0 0 0 0 0 0 0 1 0 0 0 0] 
was [0 0 0 0 0 0 0 0 1 0 0 0]  was [0 0 0 0 0 0 0 0 1 0 0 0] 
too [0 0 0 0 0 0 0 0 0 1 0 0]  too [0 0 0 0 0 0 0 0 0 1 0 0] 

tired [0 0 0 0 0 0 0 0 0 0 1 0]  wide [0 0 0 0 0 0 0 0 0 0 0 1] 
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The most intuitive one-hot encoding uses single words as the minimum unit (as shown 
in Table 3-5); this is commonly referred to as a bag-of-words (BOW). In this example, the 
word “animal” is represented by the same vector in both sentences. This means that these 
vectors only capture the mere presence of these words, without any accompanying 
syntactic or semantic information. The notion that the “animal” was “tired” or the notion 
that the “animal didn’t cross the street” are both omitted. The following gibberish 
sentence, “The tired cross didn’t because too street it was the” will return the same 
representation as the original sentence because the constituent words remain the same. 
The other weakness of this representation is due to the dimensionality of the vocabulary. 
The natural language vocabulary is vast, but the frequency of words used in natural 
language is extremely long-tailed. For example, the use of pronouns (“I”, “he”, “she”, 
“they”), determiners (“this”, “the”, “my”), and auxiliaries (“may”, “can”, “be”) outstrip 
the usage of rare words (such as “rapscallions” or “zeugma”) by orders of magnitude. 
However, each of these words occupies a dimension regardless of their frequency of use. 
As such, as a practical approach, the size of the vocabulary is often capped, and rare 
words are encoded as a placeholder token (commonly denoted as a [UNK]). While this 
conclusion may appear to preclude its application within domains with a niche 
vocabulary, the computation efficiency of this representation allows vocabularies and 
vectors to be generated from scratch for a given body of text. 

This method is commonly extended in two ways to tackle each of the two main 
weaknesses. The first extension is called the n-gram; this method seeks to encode some 
sequence information by capturing the word sequences up to length n.  

Table 3-6: Illustration of a n-gram. 

1-word tokens 2-word tokens 

“Boston”, “is”, “in”, “New”, “England” “Boston is”, “is within”, “within New”, “New England” 

 

The intuition can be explained with the following sentence: “Boston is within New 
England” (Table 3-6). Using n = 2, the 2-gram (or commonly known as a bi-gram) encodes 
in additional information such as “New England”. In comparison, the bag-of-words 
method would have associated “Boston” with “England”, while the bi-gram allows the 
association to be made with “New England” across the Atlantic. However, this method 
aggravates the vocabulary size limitation due to the addition of n-length tokens. 
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The second extension involves character-level encoding. This directly tackles the 
vocabulary size limitation. For example, the word “Systems” will be encoded as {“s”, “y”, 
“s”, “t”, “e”, “m”, “s”}. As a result, the vocabulary size is directly capped at 70, 
comprising of the 26 letters in the English alphabet, 10 digits and 33 special characters. 
This allows any word to be represented with a finite sized vocabulary. However, this also 
breaks the information encoded in both the sentence and the words themselves. While 
this approach may appear to be counter-intuitive, there is empirical evidence of its 
effectiveness (Jozefowicz et al., 2016; Zhang & LeCun, 2015). 

3.3.1.2 Distributed Word Representations 

Distributed word representations are founded on the distributional hypothesis. In 
essence, the hypothesis states that “there is a correlation between distributional similarity 
and meaning similarity” (Sahlgren, 2008). In simpler terms, this means that linguistic 
elements which have similar behaviors have similar meanings. As such, semantic 
meaning can be inferred by virtue of their distributional behavior. In vector space, words 
with similar meanings can therefore be viewed as clusters. Two key representations will 
be outlined: GLoVe (Pennington et al., 2014) and Word2Vec (Mikolov et al., 2013). Unlike 
Section 3.3.1.1, these representations will not be elaborated in full. Within this thesis, the 
key ideas to be retained relate to its utility and implications rather than its mathematical 
workings. 

GLoVe and Word2Vec produce word vectors. Each word has a unique vector that is a 
dense representation of its meaning. This is a dense representation because the dimension 
of the word vectors greatly differs from one-hot encoded variants. For illustration, we 
can compare the vectors for the word “bank” (Table 3-7). Two observations are 
immediately apparent. First, the GLoVe vectors are much lower in dimension, with <1% 
of the elements. However, information is densely encoded within each of the 50 elements, 
as compared to the one-hot encoding, where information is only encoded by one element. 
This also illustrates a weakness - such dense representations are not interpretable.  

Table 3-7: Comparison of BOW and GLoVe Vectors for the word “bank”. 

Representation Dimension Word Vector 
Bag-of-words 
(30,000-word vocabulary) (30000, 1) [0, 0, …., 1, 0, 0, …, 0, 0], 

where only 1 element = 1 
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Representation Dimension Word Vector 

GLoVe14 
(50-dimension15) 

(50, 1) 

[0.66488, -0.11391, 0.67844, 0.17951, 0.6828, -0.47787, 
-0.30761, 0.17489, -0.70512, -0.55022, 0.1514, 0.10214, 
-0.45063, -0.33069, 0.056133, 1.2271, 0.55607, -0.68297, 
0.037364, 0.70266, 1.9093, -0.61483, -0.83329, -0.3023, 
-1.1118, -1.55, 0.2604, 0.22957, -1.0375, -0.31789, 3.5091, 
-0.25871, 1.0151, 0.65927, -0.18231, -0.75859, -0.30927, 
-0.91678, 1.0633, -0.66761, -0.37464, -0.29143, 0.65606, 
-0.44642, -0.075495, -1.0552, -0.60501, 0.73582, 1.0139, 
-0.27749] 

 

These dense representations are generated by learning relations between words from an 
extremely large corpus of text. For example, GLoVe was trained on several datasets 
consisting of 55 billion tokens. Word2Vec was trained on an internal Google data set of 
100 billion words. This allows the meaning of each word to be learned from a diverse set 
of uses contained within the text corpus. Hence, the robustness and utility of such 
representations are premised on the text corpus that it is trained on. As a result, these 
representations cannot be purposefully generated from scratch without a comparably 
sized text corpus for training. These models suffer several weaknesses. First, it aggregates 
the meaning of words into a single vector - for example, the meaning of “bank” is context-
dependent. However, it is represented as a single vector regardless of the intended use. 
Second, these models lack the ability to represent the meaning of niche domain-specific 
vocabulary. As every word is represented as a unique vector, there is a finite number of 
word vectors covering the most common textual elements, while niche expressions are 
represented by a generic out-of-vocabulary (OOV) token16. 

GLoVe stands for Global Vectors for Word Representation, and is trained to capture the 
corpus statistics directly. At a high level, it determines the co-occurrence probabilities 
that each pair of words will co-occur in a natural language text (Pennington et al., 2014). 
For example, consider three words: “ice”, “water” and “steam”. We could expect “ice” to 
be more strongly related and therefore more likely to co-occur with “water”. This relation 
will be weaker between “ice” and “steam”. As such, “ice” is more distributionally similar 
to “water” than to “steam”.  

 
14 A notebook showing the extraction of GLoVe and Word2Vec vectors is available here. 
15 GLoVe vectors are available in many dimensions n = 50, 100, 200, 300. 
16  There is an extension of Word2Vec developed by Facebook, FastText, which uses sub-word 
representations to handle OOV words. However, this will not be discussed in this chapter. 
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Figure 3-5: Visualization of GLoVe Vectors (Pennington et al., 2014). 

 

 

This notion of distributional and meaning similarity can be visually observed from the 
word vectors (Figure 3-5). Each of these diagrams was generated through dimensionality 
reduction to reduce the high-dimensional vector into 2-dimensions. From left to right, the 
resulting text vectors were shown to make associations between zip codes and their cities, 
capture comparatives, as well as distinguish man-woman references (Pennington et al., 
2014). 

Word2Vec consists of two models which are trained on different modes: continuous bag-
of-words (CBOW) and skip-gram. The mathematical workings are based on neural 
networks and significantly differ from GLoVe. However, the similarities and associations 
illustrated in Figure 3-5 have also been shown in Word2Vec.  

3.3.1.3 Contextualized Word Representations 

From Sections 3.3.1.1 and 3.3.1.2, we observed increasing amounts of information being 
encoded from natural language text into numerical representations. However, it should 
be noted that the earlier representations do not materially encode the sequential nature 
of natural language. The absence of sequential information also means that context 
cannot be accurately encoded. These shortfalls are addressed by this final class of 
contextualized word representations. In line with earlier elaborations, this will be 
described with less mathematical details but supported with more illustrations. 

There have been multiple deep learning-based models introduced in recent years. ELMo 
(Peters et al., 2018) was developed based on a bidirectional LSTM architecture, while 
BERT (Devlin et al., 2018) and GPT-2 (Radford et al., 2019) were developed based on the 
Transformers architecture (Vaswani et al., 2017). The key idea within the Transformers 
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architecture is the self-attention mechanism - the training process using this mechanism 
to learn the key relationships between different linguistic entities within the input 
sequence. This is best illustrated by re-visiting the example cited in Section 3.1.1 - it was 
shown that the semantic meaning of “it” differs between these two sentences.  

[1]: The animal didn’t cross the street because it was too tired. 

[2]: The animal didn’t cross the street because it was too wide. 

Figure 3-6: Contextual representation of "it". 

 

The ability to distinguish this was demonstrated by Google with Figure 3-6 (Uszkoreit, 
2017). When the encoder layers were analyzed, the following associations between the 
referent “it” and the linguistic entities (“animal” and “street”) were observed. However, 
it should be noted that this illustration does not imply that transformer architecture is 
interpretable. For example, analysis of other encoder layers within the model returns 
associations that are difficult to rationalize or reason with. A subsequent study confirmed 
representations from ELMo, BERT and GPT-2 were all highly contextual and is 
responsible for successive state-of-the-art performance in established NLP benchmark 
tasks (Ethayarajh, 2020)17. 

Another issue that plagues other forms of representations lies in the handling of OOV 
words. ELMo overcomes this with character-level embedding through the mechanism 
explained in Section 3.3.1.1. BERT and GPT-2 both implement sub-word tokenization 

 
17 Ongoing research shows that many of these models exhibit concerning attributes such as bias against 
gender or race. These issues are not called out explicitly as they have little relevance to the systems 
engineering use cases being considered. Reader(s) are encouraged to familiarize themselves with ongoing 
debates.  
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approaches, albeit with different but related algorithms. This allows OOV words to be 
decomposed into a series of sub-word tokens. 

3.3.2 Traditional Machine Learning Approaches 

In the introduction of Section 3.3, it was stated that ML models require a numerical 
representation of the input and output, an objective function, and a learning algorithm to 
optimize the objective function. Although the remaining two components are tightly 
coupled, the emphasis of the next two chapters is on the learning algorithm, with implicit 
discussion of the associated objective functions. 

In the constituent Sections of 3.3.1, there was emphasis on the ability of various 
representations to encode syntactic and semantic information. However, to ensure such 
information is retained, the architecture of the learning algorithm similarly allows the 
syntactic or semantic information to be preserved. 

As an example, classification and regression trees (CART) is a well-understood learning 
algorithm which employs a greedy heuristic to segment the training data into a tree-like 
structure. This method can be employed for classification (prediction of a categorical 
output) and/or regression (prediction of a continuous variable).  

Figure 3-7: Illustration of CART (Breiman et al., 2017). 

 

In the NLP context, the nature of the output appears to be a possible tool for sequence 
classification applications (recall Section 3.1.2). However, as CART only accepts scalar 
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inputs, all vectorized inputs must be flattened into individual scalar values. As a result, 
any information encoded in the vectorized form is not retained by the learning algorithm. 

The inability to handle sequential data is a universal weakness of traditional machine 
learning approaches as well as simple neural network architectures (such as dense 
feedforward networks). Hence, the applications of traditional machine learning 
techniques within natural language processing typically involve feature engineering or 
use of one-hot (or multi-hot) representations for textual inputs. 

Despite these limitations, traditional ML algorithms continue to be widely applied 
include naïve bayes (Song et al., 2009) and support vector machines (Joachims, 1998). 
Within the SE domain, traditional machine learning algorithms have also been applied 
for sequence classification applications (Binkhonain & Zhao, 2019).  

3.3.3 Deep Learning Approaches 

Earlier sections have reiterated the difficulty in learning representations of natural 
language. For instance, rule-based approaches rely heavily on hand-crafted features. 
However, the effectiveness of such approaches is hamstrung by nuances and 
idiosyncrasies that may not be stated plainly. 

Figure 3-8: Example of a Multilayer Neural Network (LeCun et al., 2015). 
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Deep learning overcomes this using a multi-layered neural network, comprising of input, 
hidden and output layers. These layers work in concert to learn representations that map 
inputs to outputs, as well as representations of the input itself (Bengio et al., 2015).  

The intuition behind how the multi-hidden layer architecture learns such representations 
is illustrated with a facial detection example in Figure 3-9. In this example, the first hidden 
layer (Layer 2) learns to detect a series of edges and simple shapes. The second layer 
(Layer 3) combines the edges and shapes to identify facial features (eyes, jaw, etc). The 
third hidden layer (Layer 4) then combines the facial features into parts of faces. This 
verbose explanation is intended to outline the ability of deep learning to learn 
representations by combining simpler ones. In other words, complex concepts such as 
natural language are learnt from simple concepts captured within input text sequences. 

However, the exact way natural language is encoded by the Transformer architecture is 
only understood in a broad manner (Rogers et al., 2020). For instance, it is known that the 
earliest layers contain information about linear word order, while middle layers contain 
information about syntactic information (such as subject-verb agreement), while the final 
layers are specific to the task that the LM is trained on (Rogers et al., 2020). There is also 
insufficient research on how semantic information is encoded (Rogers et al., 2020).  

Figure 3-9: Illustration of representation learning in a multi-layer network (Jones, 2014). 
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3.3.3.1 Neural Network Architectures 

Deep learning comprises of a wide range of neural network architectures designed for 
different applications and domains. In NLP, the preservation of sequence is clearly 
important. Without sequence, “cat sat on the mat” and “mat sat on the cat” are equivalent. 
In NLP, the common sequence architectures are recurrent neural networks (RNN), gated 
recurrent units (GRU), long short-term memory networks (LSTM), and Transformers. 
Another related architecture choice involves the choice of autoregressive (or 
unidirectional) or bidirectional networks. As a comparison, the three models detailed 
within Section 3.3.1.3 have different architectures - ELMo is based on a bidirectional-
LSTM, BERT is based on a bidirectional Transformer architecture, while GPT-2 is based 
on an autoregressive Transformer architecture. 

3.3.3.2 Learning from Scratch vs Transfer Learning 

The NLP applications (Section 3.1.2) require the mapping of an input text to an 
application-dependent output. In ML, this is typically achieved through supervised 
learning. The learning algorithm is provided with labeled input-output pairs to learn 
representations between inputs and outputs. While this training scheme is typical for 
conventional ML algorithms, this poses significant challenges for deep learning. 

The increasing performance of deep learning models has been attributed to three key 
factors: significant amounts of data, hardware improvements, and new algorithmic ideas. 
A large amount of training data allows deep learning models to be trained on 
representative datasets allowing the representations to be accurate and robust (Bengio et 
al., 2015). However, generating relevant labeled training data is hugely expensive as it 
requires human annotators (Aroyo & Welty, 2015). The increase in computational 
performance has enabled the use of large modern deep learning models - the large 
models allow representations to be learned more effectively. As a natural consequence, 
significant computational resources are required to achieve competitive model 
performance. Taken together, supervised learning from scratch is a challenging endeavor 
in most deep learning applications. 

This however can be mitigated by inductive transfer learning. Inductive transfer learning 
refers to the transfer of knowledge from one domain into a different one. In NLP, this 
means that representations that a deep learning model learns from a specific natural 
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language task can be transferred onto a different task. This transfer of knowledge 
significantly reduces the requirement for both training data and computational resources.  

Figure 3-10: Training Scheme Proposed in ULMFiT (Howard & Ruder, 2018). 

 

Universal Language Model Fine-tuning (ULMFit) (Howard & Ruder, 2018) outlined an 
approach (Figure 3-10) which facilitated the adoption of transfer learning within NLP. 
This comprises of three stages (summarized in Table 3-8): LM pretraining, LM fine-tuning 
and classifier fine-tuning. 

Table 3-8: Summary of Pretraining and Fine-tuning Stages. 

Stage 
Require 

Labeled Data  
Type of 

Training Data 
Size of 

Training Data 
Training 

Mechanism 
LM pretraining No General Massive Self-supervised 

LM fine-tuning (DAPT) No Domain-specific Large Self-supervised 

LM fine-tuning (TAPT) No Task-specific Small Self-supervised 

Classifier fine-tuning Yes Task-specific Small Supervised 

 

The LM pretraining is performed using general-domain data. This stage uses a massive 
text corpus18 using self-supervision to learn representations of natural language. Self-
supervision is a process where the model can learn representations without the need for 
any labeled data, alleviating the data annotation cost. However, due to the model size 
and the quantity of training data, this stage is the most computationally expensive. 

 
18 The ULMFiT model was trained on 28,295 Wikipedia articles and 103 million words from the Wikitext-
103 dataset. 
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Contextual word representations (ELMo, BERT and GPT-2) are examples of such pre-
trained models. 

The next step, LM fine-tuning, performs fine-tuning on LM using domain-specific text 
corpus. Within the literature, this stage is described using other terms such as mixed 
domain pretraining (Gu et al., 2021). Like the first stage, fine-tuning is performed with 
unlabeled data using self-supervision. This enables the LM to adapt the representations 
from a generic-domain one to a domain-specific one. This stage has been further divided 
by researchers into two complementary phases: domain-adaptive pretraining (DAPT) 
and task-adaptive pretraining (TAPT) (Gururangan et al., 2020). The difference between 
these phases lies in the domain-specific text corpus used; the former uses generic domain-
specific data while the latter uses task-specific data. In the requirements engineering 
context, DAPT can be performed using engineering journal papers, while TAPT should 
be performed using requirements datasets only.  

In the final stage, classifier fine-tuning, an additional classifier or regression head is 
added to the pre-trained model to enable the language model to be fine-tuned to the 
specific natural language task. The classifier or regression head consists of fully 
connected feed-forward neural networks.  

3.3.4 Foundation Models 

The ability to pre-train and fine-tune contextualized word representations to new 
application domains has shifted the landscape in NLP. The use of BERT is no longer novel 
and has become the new normal. Many performance enhancements achieved by variants 
of BERT (such as RoBERTa, BART, DistilBERT) which sought to address specific 
weaknesses of BERT (Rogers et al., 2020). 

However, ELMo, BERT, GPT-2 and their analogs have been overtaken by a different class 
of foundation models such as GPT-3 (Brown et al., 2020), GLaM (Du et al., 2021), and 
Gropher (Rae et al., 2022). The number of model parameters have grown by orders of 
magnitude, with associated increases in computational cost. The key benefit of these 
models was the ability to perform many NLP tasks with little (few-shot classification) to 
no fine-tuning (no-shot classification). These models have also displayed emergent 
behavior that was unexpected (Bommasani et al., 2021). For example, GPT-3 exhibited in-
context learning, where “the language model can be adapted to a downstream task 
simply by providing it with a prompt”. 
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This mention of foundation models is intended to illustrate the rate of development in 
NLP - Transformers architecture was introduced in 2017, followed by BERT in 2018, and 
foundation models in 2020. NLP research is a speeding train that should be leveraged on 
to advance adoption within SE.  

3.4 Domain-Specific Natural Language Processing 

The discussions preceding this section draws from NLP research in the generic domain, 
with a few asides to discuss the impact of domain-specific factors. However, as a 
technological goal, it is perhaps more important to understand what stands between 
transfer of generic domain NLP technologies into the systems engineering use case. This 
section seeks to draw on lessons from other domains. 

3.4.1 Domain-specific factors 

Generic-domain text has been the feedstock for NLP research due to the ease of 
accessibility and abundance. However, the generic-domain text (also referred to as Plain 
English) differs significantly from domain-specific text in the linguistic features they 
exhibit (Gray, 2013). In extreme cases, domain-specific uses, such as in the legal domain, 
have been classified as a sublanguage (Kittredge & Lehrberger, 1982). In this section, 
some of the salient factors and their associated implications are outlined. 

3.4.1.1 Syntax 

"In the event of any sale of such interest or transfer of such rights and upon the assumption, in 
writing, of the obligations of Landlord under this Lease by such assignee or transferee, Landlord 
herein named (and in case of any subsequent transfer, the then assignor) shall be automatically 
freed and relieved from and after the date of such transfer of all liability in respect of the 
performance of any of Landlord's covenants and agreements thereafter accruing, and such 
transferee shall thereafter be automatically bound by all of such covenants and agreements, subject, 
however, to the terms of this Lease; it being intended that Landlord's covenants and agreements 
shall be binding on Landlord, its successors and assigns, only during and in respect of their 
successive periods of such ownership." (Shaghaghian et al., 2020) 



46 
 

Legalese, the formal and technical legal language, is constructed to ensure that terms and 
grammatical constructions cannot be misinterpreted. Its syntax is highly complex, precise, 
and unique that non-legal professionals struggle to comprehend (Kittredge & Lehrberger, 
1982). The extract above is clearly different from what is considered generic-domain text 
- if this was not yet noticed, the entire passage is a single 129-word sentence. This syntax 
also means that semantic relations show very long-term dependencies (Tagarelli & Simeri, 
2021). In contrast, an example of a system requirement from the James Webb Telescope 
project shows highly regular syntactic structures. 

“The Observatory coordinate system axes are labeled J1, J2, and J3. This system is a right-handed, 
observatory body fixed system, with its origin located at the center of the LV-to-Observatory 
interface ring. The J1 and J2 axes are on the interface plane, with the J1 axis pointing in the 
direction of the OTE boresight. The J3 axis is perpendicular to the LV-to-Observatory interface 
plane, with its positive direction oriented towards the Observatory. Figure 3-3 illustrates this 
system.” (Bogenberger, 2007) 

The implication of a domain-specific syntax is rather fundamental as it makes the use of 
certain approaches (such as rule-based) less feasible. It could also imply that 
representations learnt from generic domain text may be less transferrable. However, at 
this point, the impact of syntax cannot be isolated and quantified. 

3.4.1.2 Vocabulary 

All domains use specialized vocabularies, even though the size and uniqueness of these 
vocabularies differs. The presence of these vocabularies alone does not pose significant 
issues - for instance, BOW (Section 3.3.1.1) allows a word representation to be generated 
efficiently for every term. However, in the era of deep learning and transfer learning, the 
contextualized word representations (Section 3.3.1.3) used in BERT and GPT-2 have a far 
more restricted vocabulary. These models represent rare, or OOV, words with 
combinations of sub-word tokens. This is illustrated in Figure 3-11 and Figure 3-12. 
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Figure 3-11: Comparison of Word Representations in across BERT variants (Gu et al., 
2021). 

 

A recent study in the biomedicine showed that many common biomedical terms did not 
feature in the BERT vocabulary and were recomposed with sub-word tokens (Gu et al., 
2021). For example, “hypertension” was recomposed of “hyper” and “tension”, while 
acetyltransferase was recomposed of seven sub-word tokens (“ace”, “ty”, “lt“, “ran”, 
“sf”, ”eras”, “e”). This meant that the contextual meaning of such rare words was 
similarly recomposed from a series of unrelated tokens. The impact of this was not only 
theoretical. 
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Figure 3-12: NER misclassification resulting from sub-word tokenization (Gu et al., 2021). 

 

This is illustrated in Figure 3-12 using a NER task. NER, as a sequence labeling problem, 
involves the assignment of a target label to every token. In this example, “epithelial” was 
the target entity to be classified. In the BioBERT model, a BERT model adapted for biology, 
the “epithelial” was divided into four sub-word tokens (“e”, “pit”, “hel”, “ial”). When 
framed as a sequence labeling problem, it required all four sub-word tokens to be 
correctly labeled to the target class for it to be correctly identified as an entity. In contrast, 
“epithelial” was included in the PubMedBERT19 vocabulary, allowing it to be processed 
as a single “token”. This provides empirical evidence that the underlying generic-domain 
vocabulary can negatively impact downstream applications. It is therefore reasonable to 
posit that a higher mismatch between the domain vocabulary and the LM vocabulary will 
lead to poorer model performance. 

It is useful to note that this vocabulary mismatch problem has been studied across 
multiple domains in relation to Word2Vec and GLoVe (Section 3.3.1.2). This resulted in 
numerous variants of domain-specific distributed word representations in engineering 
(Braun et al., 2021; Efstathiou et al., 2018), biomedicine (Y. Wang et al., 2018), and law 
(Chalkidis & Kampas, 2019; Dhanani et al., 2022).  

 
19 PubMedBERT is a custom BERT-based language model produced by the research. 
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There are two reported strategies to overcome this mismatch problem. First, the existing 
vocabulary of existing models can be extended with tokens of the new domain 
(Webersinke et al., 2021). Thereafter, the model can be fine-tuned in two steps to perform 
the intended task. However, the literature today only illustrates a proof-of-concept 
without sufficient analysis how the additional tokens should be chosen, and how the 
associated training scheme to balance between domain fine-tuning and catastrophic 
forgetting20. This presents difficulty in implementing this strategy. Second, a new LM can 
be pre-trained from scratch using a domain specific vocabulary and sub-word 
tokenization scheme. This approach is well understood but computationally expensive 
to execute. 

3.4.2 Lessons from Biomedicine 

Biomedicine is one of the leading domains for AI and NLP application, with the 
biomedical AI market sized at US$ 6.9 billion in 2021 and expected to grow by 10x to 
US$ 67.4 billion in 2027, at a CAGR21 of 46.2% (MarketAndMarkets, 2021). However, this 
was not case just over a decade ago. In 2011, researchers articulated six barriers that 
inhibited NLP (and by extension AI) application within the biomedical domain 
highlighted - lack of access to shared data, lack of annotated datasets for training and 
benchmarking, insufficient common conventions and standards for annotations, lack of 
reproducibility, lack of collaboration, and lack of user-centered development and 
scalability. Unlike domain-specific issues (Section 3.4.1) that could be solved with 
technical solutions, many of the barriers that were identified were social-technical in 
nature. Today, some of these barriers have eroded, while the progress on others is less 
verifiable (Table 3-9). 

 
20 Catastrophic forgetting describes the phenomenon where the fine-tuning changes the parameters of the 
LM so significantly that it forgets (overrides) the learnt language representations. 
21 Compounded Annual Growth Rate (CAGR) 
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Table 3-9: Reviewing Barriers for NLP Adoption. 

Barriers Verifiable Artefacts in 2022 Released 

Lack of access to 
shared data 

Breast Cancer Screening AI - Contention occurred between 
Google Health researchers and other medical researchers over 
access to anonymized datasets and reproducibility. The ensuing 
exchanges published on Nature indicated that these issues 
remain a work in progress (Haibe-Kains et al., 2020; McKinney, 
Karthikesalingam, et al., 2020; McKinney, Sieniek, et al., 2020). 

N.A 

Lack of 
reproducibility 

N.A 

Lack of annotated 
datasets for training 
and benchmarking 

BLURB - Biomedical NLP benchmark with 13 datasets in 6 tasks 
(Gu et al., 2021) 

2020 

Public repository of 400 manually curated and annotated 
biomedical and clinical datasets (Blagec et al., 2022) 

2021 

Insufficient common 
conventions and 
standards for 
annotations 

MetaMap - Standardized conventions for biomedical map 
pioneered by the National Library of Medicine (Aronson, 2001) 

2001 

Lack of collaboration Big Tech role in biomedicine AI research - Google Health. 
Amazon Comprehend Medical, Microsoft’s AI for Health is a 
clear indication of research expanding beyond academic 
research silos. 

N.A 

Lack of user-centered 
development and 
scalability 

Unable to assess N.A 

 

Returning from a detour into the history of biomedical AI applications, it is useful to 
assess the architectures that underpin state-of-the-art NLP models in biomedicine. From 
the discussions in Sections 3.3.3 and 3.3.4, it is unsurprising that LMs based on BERT and 
its derivatives sit at the top of the leaderboards (Gu et al., 2021; Minaee, 2021).  

3.4.3 Lessons from Legal 

In comparison to biomedicine, the market for legal AI is approximately 20x smaller - sized 
at US$ 0.32 billion in 2019 and expected to grow to US$ 1.24 billion in 2024, at a CAGR of 
31.3% (MarketsAndMarkets, 2019). As a second point of comparison, the 2019 research 
and development (R&D) budgets of Boeing and Airbus stand at US$ 3.2 billion and 
US$ 3.15 billion 22  respectively, approximately 10x of the entire legal AI industry. 
Therefore, applications of NLP within the legal domain provide a vignette of the 

 
22 EUR 2.816 billion at 2019 exchange rates (Average EUR/USD exchange rate of 1.1196) 
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possibilities even without sizeable investments. In other words, it illustrates the 
significant democratization of AI. 

A literature survey of NLP applications in the legal domain provides several observations. 
First, the volume of research surveyed appears to be generated by independent 
researchers; it was difficult to identify researchers or institutions of eminence. Second, 
there is rapid and widespread adoption of LM for legal NLP applications within the 
research community. For instance, in the Competition on Legal Information Extraction 
and Entailment (COLIEE) 2019, an annual legal NLP competition for researchers, all 
submissions gravitated towards BERT-based approaches or ensemble approaches 
(including BERT) after the introduction of BERT (Rabelo et al., 2020). The subsequent 
competitions in 2020 and 2021 showed similar trends (Rabelo et al., 2021, 2022). Third, by 
2022, various research groups have developed independently pre-trained and fine-tuned 
various BERT-based models to assess the best means to adopt LMs within the legal 
domain (Chalkidis et al., 2020; Ha Thanh & le Minh, 2021; Shaghaghian et al., 2020; Zheng 
et al., 2021). These observations indicate that state-of-the-art technologies from machine 
learning are rapidly transfused into NLP research within the legal domain. 

3.5 Accelerating NLP Adoption in Systems Engineering 

In a recent paper, a legal NLP researcher stated that “legal professionals often think about 
how to solve tasks from rule-based and symbol-based methods, while NLP researchers 
concentrate more on data-driven and embedding methods” (Zhong et al., 2020). However, 
I find this quote a more appropriate description of the state of NLP research in SE and 
RE. A 2021 mapping study indicates that the majority of RE research continues to rely on 
statistical and rule-based methods (Zhao, Ferrari, et al., 2021). In the same study, the 
authors stated that: “Our initial investigation suggests that most long tail NLP techniques 
are nascent 23 , so their application in NLP4RE 24 might be forthcoming. For example, 
various deep learning techniques such as Word Embedding, Doc2Vec, LSTM25, CNN, 

 
23 The emphasis placed on the word “nascent” was made by the paper’s authors. 
24 Natural Language Processing for (4) Requirements Engineering 
25 LSTMs were introduced in 1997 during the second AI winter (Hochreiter & Schmidhuber, 1997). The 
landmark paper on LSTMs that precipitated wide-spread applications was written in 2017 (Greff et al., 
2017). It was neither nascent nor novel in 2021. 
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and RNN26, are novel. Google’s vector representation of words (Word2Vec) was only 
developed in 2013” (Zhao, Ferrari, et al., 2021). Considering that applications of BERT-
based models have become commonplace by 2021 in other specialized domains, SE and 
RE appears to be a laggard in adopting state-of-the-art NLP tools. 

While the field is slow to progress, some RE researchers have performed empirical 
research using LMs - five papers employ LMs on sequence classification problems 
(Chatterjee et al., 2021a; Deshpande et al., 2021; Hey et al., 2020; Sainani et al., 2020; 
Varenov & Gabdrahmanov, 2021), one paper used a BERT-as-a-service platform for 
similarity detection between requirements (Abbas et al., 2022), and one paper using 
contextualized word embeddings from BERT as an input to detect coreferent entities in 
requirements (Y. Wang et al., 2022). The results from all seven papers concluded that LMs 
outperform other methods considered within their research. This validates the potential 
to expand LM adoption within the field. 

Going beyond the technical, the authors also identified other issues in the field, such as a 
very narrow focus on established NLP problems without consideration for potential 
alternatives, a lack of annotated datasets and benchmark datasets, studies being limited 
to the application of tools off-the-shelf, and low reproducibility of research as the tools 
were not available for open use (Zhao, Ferrari, et al., 2021). These findings show great 
similarity with those reported in Table 3-9. While these conclusions are easy to agree with, 
they are difficult to solve. At the same time, making progress in these areas does not 
necessarily translate into real impact. For example, researchers have noted that while 
benchmark datasets serve as a yardstick for technological progress in research, it is not a 
direct proxy for the downstream impact of such technologies (Blagec et al., 2022; Paullada 
et al., 2021). However, a complete absence of benchmarking practices is also non-ideal; 
researchers can be motivated to perform empirical research with new technologies such 
as LMs and claim state-of-the-art performance. In these scenarios, the inability to 
objectively compare between models prevents the field from separating the true signal 
from the noise, and identify models that are most worthy of further research. 

 
26 The inability to learn long-term dependencies by simple RNNs was shown in 1994, leading to limited 
usage within NLP research (Bengio et al., 1994). LSTMs were the proposed solutions to overcome this 
weakness exhibited by RNNs. Again, there is scant evidence that RNNs were nascent in 2021. 
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Considering the above, there is significant room for the SE and RE community to leverage 
on the democratization of NLP tools and explore the application of such tools in a more 
rapid manner.  
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Chapter 4 

4 Application of Pre-trained Language Models in Systems 
Engineering  

Language Models represent the frontier of NLP research today. Generic off-the-shelf 
variants perform well across most applications. Various adaptation techniques also allow 
these generic variants to be adapted for specific domains for improved model 
performance and robustness. With this understanding, this chapter investigates the use 
of these LMs in SE. 

This chapter is organized into four main sections: Section 4.1 states the proposed research 
questions and their intended value. Section 4.2 provides details of the experimental set-
up. Section 4.3 describes the experiments in detail. Lastly Section 4.4 provides a summary 
of the results. 

4.1 Research Questions 

The scope of experimental work is designed to answer the following research questions:  

• RQ1: Which off-the-shelf pre-trained language models are most suitable for application 
within the systems engineering domain? 

• RQ2: To what extent does task-adaptive pretraining of language models improve 
classification performance within the systems engineering domain?  

Many off-the-shelf pre-trained LMs have become available in the recent years, with the 
LMs differing in terms of model size, pretraining text corpus, construction of underlying 
vocabulary, and pretraining technique. These differences have led to differing model 
performance across domains and tasks. RQ1 seeks to assess a subset of these LMs in the 
systems engineering domain. 

A series of domain-adaptation research have also demonstrated that pretraining a LM 
from scratch with a domain-specific text corpus delivers the improved model 
performance (Beltagy et al., 2019; Gu et al., 2021). However, the time and resource 
limitations of this thesis prohibits the implementation of such an approach, leaving the 
author to focus on continual pretraining of off-the-shelf LMs, specifically TAPT. RQ2 
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seeks to assess the efficacy of performing TAPT on each of the off-the-shelf LMs in 
comparison to direct fine-tuning for classification. 

4.2 Experimental Set-up 

The experimental set-up is illustrated in Figure 4-1. The off-the-shelf pre-trained LM will 
be adapted for the systems engineering domain using TAPT. Thereafter, the off-the-shelf 
variant and the task-adapted variant will be fine-tuned on four tasks – two sequence 
classification tasks and two sequence labeling tasks. This experimental workflow will be 
replicated for each of the off-the-shelf pre-trained LMs. This experimental set-up will 
allow the efficacy of TAPT to be assessed across a range of tasks for each of the off-the-
shelf pre-trained LMs (RQ2). Concomitantly, comparisons across the off-the-shelf pre-
trained LMs can also be made (RQ1). 

The remainder of this section will provide the rationale for the choice of LMs (Section 
4.2.1), describe the model architectures for each the performance of TAPT and classifier 
fine-tuning (Section 4.2.2), and give an overview of the training corpora used in the 
experiment (Section 4.2.3). 

Figure 4-1: Overview of Experimental Set-up. 
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4.2.1 Off-the-shelf Language Models: BERTBASE, RoBERTaBASE & SciBERT 

Three off-the-shelf LMs are used in this experiment: BERTBASE (Devlin et al., 2018), 
RoBERTaBASE (Liu et al., 2019) and SciBERT (Beltagy et al., 2019). The choice of these three 
LMs is intended to allow a fair comparison between sufficiently distinct models. 

Model performance is impacted by model architecture, with larger deep learning models 
often outperforming smaller ones. Hence, the three models share the same underlying 
model architecture (based on BERTBASE) comprising of 12 transformer encoder layers, 
hidden size of 768, and 12 attention heads (see Figure 4-2)27. This allows a fair comparison 
across the three LMs. It should be noted that LARGE variants of BERT and RoBERTa also 
exist comprising of 24 transformer encoder layers, hidden size of 1024, 16 attention heads, 
and accepts up to sequences of up to 512 tokens. However, the use of LARGE variants 
incurs a significantly higher computational cost28 and would exclude SciBERT (which is 
only developed in the BASE variant).  

Figure 4-2: Illustration of BERTBASE, RoBERTaBASE & SciBERT Model Architecture 
(Alammar, n.d.). 

 

 
27 BERTBASE and SciBERT has 110 M parameters. RoBERTaBASE has 123 M parameters. This is due to a 
difference in vocab size. 
28 The number of BERTLARGE parameters (345M) is approximately three times of BERTBASE (110M). 
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Despite architecture similarities, there are several differences between the three LMs 
attributed to their respective pretraining text corpora (and by extension the corpora text 
domain), underlying vocabulary, and training methodology. There is an intrinsic 
relationship between the pretraining corpora and the vocabulary that is traced to the way 
words are deconstructed into sub-word tokens. For the pre-determined vocabulary size, 
each of the model constructs a token vocabulary that allows the complete representation 
of all words. Such tokenization procedures include the Wordpiece model (Wu et al., 2016) 
used in BERT, and Byte Pair Encoding (BPE) (Sennrich et al., 2016) used in RoBERTA and 
SciBERT. In general, the composition of the token vocabulary is determined in a greedy 
fashion which allows the most frequent words to be represented as full tokens. This has 
two implications. First, the larger the vocabulary size, fewer sub-word tokens are 
required. Second, when the underlying text corpus changes, the most frequent words 
change as well, affecting the composition of the token vocabulary.  

Table 4-1: Off-the-shelf Language Models. 

Model 
Pretraining 

Domain 
Pretraining 

Corpora 
Vocab size 
(# Tokens) 

BERTBASE  Generic 
BookCorpus & 

Wikipedia passages 30,522 

RoBERTaBASE Generic BookCorpus, CC-News, 
OpenWebText & Stories 

50,265 

SciBERT 
Biomedicine & 

Computer Science 
Full text of academic 

research papers 30,522 

 

The choice of these three LMs allows both factors to be represented. First, the expanded 
vocabulary size of RoBERTaBASE (50k) relative to BERTBASE and SciBERT (30k) would allow 
for a complete representation of a larger proportion of words. Second, the scientific 
language of the SciBERT pretraining corpus represents a domain shift in comparison to 
BERTBASE and RoBERTaBASE. This means that the manner that engineering domain corpus 
is tokenized differs across all three models. For the above reasons, these three LMs are 
included. 

The similarities and differences in tokenization across these models can be illustrated 
with the two following requirements: 

• Requirement 1: The PMD module shall be attached to a S/C on ground via a standardized 
interface IF-SC. (16 words) 
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• Requirement 2: Thermally induced seeing degradation caused by temperature differences 
shall be minimized by a suitable combination of natural ventilation, insulation, surface 
emissivity, daytime air conditioning, limiting daytime air leakage, and minimizing 
thermal inertia of the enclosure interior. The goal is to allow the interior to follow the night-
time ambient air temperature as closely as practical. (54 words) 

For Requirement 1, all three models were tokenized in the same manner (Figure 4-3). The 
16-word sentence was tokenized into 21 tokens, with the three abbreviated terms (“PMD”, 
“S/C”, and “IF-SC”) broken into sub-word tokens. Due to the heavy use of abbreviations 
in the engineering corpus, their tokenization is commonplace. 

Figure 4-3: Tokenization of Requirement 1. 

 

For Requirement 2, several differences in the tokenization of five words (“Thermally”, 
“insulation”, “emissivity”, “leakage”, and “inertia”) were observed. The remaining 49 
words were not broken into sub-word tokens. It can be observed that BERTBASE tokenized 
all five words into 13 sub-word tokens. RoBERTaBASE, which has a larger token vocabulary, 
retained three intact words. SciBERT, with a scientific token vocabulary, retained four 
intact words. 

Figure 4-4: Tokenization of Requirement 2. 

 



59 
 

4.2.2 Model Architectures for Masked Language Modelling, Sequence 
Classification & Sequence Labeling 

The generic architecture of the three LMs is illustrated in Figure 4-2. The following 
sections will describe how this generic architecture is applied to perform masked 
language modelling (MLM), sequence classification and sequence labeling. 

4.2.2.1 Masked Language Modelling 

MLM is a self-supervised training approach that is used for TAPT of LMs. The objective 
of MLM is to learn the language representation by predicting tokens that were 
intentionally masked from the input sequence. As the masked token is known, these 
tokens serve as the target output. This allows unlabeled text corpora to be used for self-
supervised training. 

MLM is performed by masking a proportion of tokens within each sequence; this involves 
the replacement of the token with a [MASK] token (see Figure 4-5); 15% of tokens are 
masked by convention (Wettig et al., 2022). The LM is then trained in a self-supervised 
manner with the masked sequences and the true tokens. The performance of the LM is 
evaluated by the commonly used perplexity (PPL) metric.  

Figure 4-5: Model Architecture for Task-adaptive Pretraining using Masked Language 
Modelling (Conneau & Lample, 2019). 

 

4.2.2.2 Sequence Classification and Sequence Labeling 

Sequence classification and sequence labeling are supervised training tasks. For both 
tasks, the input sequence of tokens that are passed into the model returns a sequence of 



60 
 

output vectors of an equivalent length. All sequence classification and labeling tasks are 
performed using the sequence of output vectors. For these three LMs, each output vector 
is of dimension (768, 1). In the LM architecture, an additional token, [CLS], is 
automatically appended at the start of the input sequence. The corresponding output 
vector is taken as a dense representation of the entire input sequence. 

In sequence classification, the objective is to accurately predict the class labels for each 
input sequence. This is done by passing the first vector of (768, 1), which is a dense 
representation of the entire sequence, into a dense output layer with a softmax activation 
function (see Figure 4-6). This dense output layer outputs probabilities (or logits) that 
correspond to every output class. The predicted class corresponds to the class with the 
highest probability. The LM is fine-tuned for sequence classification using pairs of input 
sequences and the corresponding class labels with a categorical cross-entropy loss 
function. The categorical cross-entropy loss function decreases when the difference 
between the predicted probability and actual class is minimized. 

In sequence labeling, the objective is to accurately predict the labels for every input token. 
Every vector in the output sequence, except the one used for sequence classification is 
passed into a dense layer with a softmax activation function (see Figure 4-6). As each of 
these vectors of dimension (768, 1) is a contextual representation of the corresponding 
input token, this allows a class to be predicted for every token. The LM is fine-tuned using 
input token sequences and a sequence of class labels, with both sequences of equal length. 
The training scheme seeks to minimize the categorical cross-entropy loss. 

Figure 4-6: Model Architectures for LM fine-tuning for Sequence Classification (right) 
and Sequence Labeling (left) (Devlin et al., 2018). 
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4.2.3 Training Corpora 

4.2.3.1 Unlabeled Corpora for Task-adaptive Pretraining 

The assembly of this training corpora is limited by three factors. First, while unlabeled 
text can generally be generated inexpensively through web-scraping or APIs, the 
document-based nature of systems engineering renders the approach largely infeasible. 
Second, access to enterprise requirement management tools (such as IBM DOORS) was 
also not possible, rendering large scale extraction from a structured database was 
similarly infeasible. Third, the performance of TAPT requires a task-specific text corpus. 
As such, parsing of requirement documents alone is not sufficient. A secondary step of 
extracting requirement statements from these documents is necessary. 

Table 4-2: Summary of Unlabeled Corpora Sources. 

S/N Data Source # Docs # Reqs # Words 

1 PROMISE 15 ~600 ~12k 

2 PURE 20 ~3k ~117k 

3 ECSS 1 ~27k ~765k 

4 Web-sourced 42 ~10k ~219k 

 Total 88 ~41k ~1.11M 

 

The training unlabeled training corpora of 1.1M words from 41k requirement statements 
was assembled from four sources (see Table 4-2). The PROMISE Software Engineering 
Repository (University of Ottawa, n.d.) is a widely used requirements dataset within the 
requirements engineering domain. The Public Requirements dataset (PURE) is a set of 79 
natural language open-source requirement documents (Ferrari et al., 2017). However, 
most of the requirements are not phrased in a manner consistent with system engineering 
standards and therefore excluded. The European Cooperation for Space Standardization 
(ECSS) requirements dataset was generated by the European Space Agency to “define a 
coherent and single set of standards for all European space activities” (Berquand & 
Riccardi, 2021). The final set of 42 requirement documents are scraped by the author from 
open sources (see Table 4-3), and represents one of the contributions of this thesis. These 
requirement documents mainly involve spacecrafts and telescopes, and are made 
available by the ESA, National Aeronautics and Space Administration (NASA), and other 
organizations. These requirements are also generated during different stages of the 
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systems engineering process – spanning across science requirements, mission 
requirements and system requirements. This is intended to allow the task-adapted model 
to be applied to tasks at various stages of the system engineering process. However, this 
hypothesis is unverified in this thesis and is left for future work. 

Table 4-3: Web-sourced Unlabeled Corpora. 

S/N Dataset System Type 

1 CCI+ Biomass system requirements (ESA, 2019a) Spacecraft 

2 CCI+ High Resolution Land Cover ECV system requirements (ESA, 2020) Spacecraft 

3 CCI+ Permafrost system requirements (ESA, 2021a) Spacecraft 

4 CCI+ Sea Ice system requirements (ESA, 2012c) Spacecraft 

5 CCI+ Sea Salinity system requirements (ESA, 2019b) Spacecraft 

6 CCI+ Sea Surface Temperature system requirements (ESA, 2012a) Spacecraft 

7 CCI+ Water Vapor Temperature system requirements (ESA, 2021b) Spacecraft 

8 Copernicus Sentinels 4 & 5 mission requirements traceability (ESA, 2017) Spacecraft 

9 Cross-scale TRS mission requirements (ESA, 2007) Spacecraft 

10 DUE GlobBiomass system requirements (ESA, 2015) Spacecraft 

11 EarthCARE Project system requirements (ESA, 2008) Spacecraft 

12 EChO mission requirements (ESA, 2013b) Spacecraft 

13 EChO science requirements (ESA, 2013a) Spacecraft 

14 Galileo Galilei mission requirements (ThalesAleniaSpace, 2009) Spacecraft 

15 Gateway system requirements (NASA, 2019) Spacecraft 

16 Giant Magellan Telescope observatory architecture (Walls, Sitarski, et al., 
2021) 

Telescope 

17 Giant Magellan Telescope observatory requirements (Walls, Bouchez, et 
al., 2021) 

Telescope 

18 Gravity Recovery & Climate Experiment science and mission 
requirements (University of Texas, 1998) 

Spacecraft 

19 Herschel Ground Segment interface requirements (ESA, 2006) Spacecraft 

20 Herschel-Planck operations interface requirements (ESA, 2003) Spacecraft 

21 Herschel-Planck system requirements specification (ESA, 2004) Spacecraft 

22 James Webb Space Telescope mission requirements (NASA, 2007) Spacecraft 

23 Joint Polar Satellite System Ground Segment data product specification 
(NOAA & NASA, 2019a) 

Spacecraft 

24 Joint Polar Satellite System Level I requirements (NOAA & NASA, 2019b) Spacecraft 

25 
Joint Polar Satellite System Level I requirements supplement (NOAA & 
NASA, 2019c) Spacecraft 
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S/N Dataset System Type 

26 
Joint Polar Satellite System processing requirements (US DOC et al., 
2018a) Spacecraft 

27 Joint Polar Satellite System science requirements (US DOC et al., 2018b) Spacecraft 

28 LOFT mission requirements (ESA, 2013c) Spacecraft 

29 MarcoPolo-R mission requirements (ESA, 2012b) Spacecraft 

30 MarcoPolo-R science requirements (ESA, 2011) Spacecraft 

31 Mobile Surveillance System technical requirements (UN, n.d.) Communication 

32 RITA core system requirements specification (RITA, 2011) Communication 

34 SKA Level 0 science requirements (SKA Organisation, 2015b) Spacecraft 

35 SKA Level I system requirements specification (SKA Organisation, 2015a) Spacecraft 

36 SPICA science requirements (ESA, 2009) Spacecraft 

37 STE-QUEST mission requirements (ESA, 2012d) Spacecraft 

38 TeSeR post-mission disposal subsystem requirement (Airbus DS GmbH, 
2016) 

Spacecraft 

39 Thirty Meter Telescope observatory architecture (TMT, 2021a) Telescope 

40 Thirty Meter Telescope operations requirements (TMT, 2021b) Telescope 

41 Thirty Meter Telescope science requirements (TMT, 2021c) Telescope 

42 WISE mission operations system requirements (NASA, 2005) Spacecraft 

4.2.3.2 Labeled Corpora for Supervised Classifier Fine-tuning 

Three different labeled datasets are used for the LM fine-tuning (Table 4-4). Annotations 
for the first two datasets were obtained from other research while the third dataset was 
produced as part of this thesis. To address the two research questions, it is ideal to 
evaluate each LM on diverse datasets covering a range of sequence classification and 
sequence labeling tasks. An extensive experiment will support a more rigorous 
examination of these LMs. However, due to time limitations, this thesis only uses three 
datasets.  

Table 4-4: Labeled Corpora for Experiments. 

S/N Dataset Task Annotation # Reqs 

1 
Combined requirements 

dataset – PROMISE, Leeds, 
Dronology, ReqView & WASP 

FR/NFR classification 
(Sequence classification) From source 956 

2 PROMISE dataset Subclass classification 
(Sequence classification) 

From source 625 
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S/N Dataset Task Annotation # Reqs 

3 
Hybrid entity recognition 

dataset 
Entity recognition 

(Sequence labeling) Author generated 923 

 

The combined requirements dataset (Table 4-4, S/N 1) is hybrid dataset created by 
combining five separate datasets used in a requirements classification research paper 
(Dalpiaz et al., 2019). The five datasets are: (1) PROMISE dataset consisting of student 
generated requirements, (2) Leeds dataset which details the requirements for Leeds 
University’s library online management system, (3) Dronology which contains 
requirements for a unmanned aerial system, (4) ReqView which details the requirement 
specifications for the ReqView system, and (5) WASP which details the requirements for 
the Web Architecture for Services platform (WASP). Every requirement in this dataset is 
labeled as a functional requirement (FR) or non-functional requirement (NFR).  

The PROMISE dataset (University of Ottawa, n.d.) (Table 4-4, S/N 2) is subset of the one 
mentioned previously and follows a different annotation scheme. The NFRs are labeled 
as one of the following four subclasses: O (operations), PE (performance), SE (security) 
and US (useability). The FRs are labeled as F (functional). 

The hybrid entity recognition dataset (Table 4-4, S/N 3) is generated as part of this thesis. 
It draws on 923 requirements from six different datasets (Table 4-3, S/N 11, 16, 21, 27, 35, 
39). Subjects within the requirements are assigned one of the following labels: ACT 
(action), ATTR (attribute), RELOP (relative operator), QUANT (quantity), ENT (entity), 
or O for words that do not fit into any of the above labels. This set of labels are developed 
by Ajisafe, F. and Norheim, J. to facilitate the extraction of structured data from 
requirements to facilitate SE modelling. In this experiment, multi-word subjects are 
annotated using the IOB2 scheme. Due to resource limitations, the annotation was 
performed by a single annotator using Labelbox (Labelbox, 2022). As such, the annotation 
process lacks the rigor demanded of typical NLP annotation tasks, and any reuse of this 
dataset must be done with caution. 

4.2.4 Comparison with Related Works 

The application of LMs within SE and RE is not novel. The experiments performed for 
this thesis serves as an extension of related work by other researchers (Table 4-5). 
However, the main differences between this thesis and earlier works are as follows. First, 
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it is the first study which seeks to assess the robustness of pre-trained LMs across both 
sequence classification and sequence labeling tasks, in the SE/ RE context. This approach 
is the de facto standard in NLP research that is not commonplace within the RE 
community. Second, this is also the first formal application of NER using LMs in the SE/ 
RE context within the literature.  

Table 4-5: Comparison with related applications of Language Models within Systems 
Engineering and Requirements Engineering. 

Related Research 
LMs 

assessed 

Pretraining Steps Fine-tuning Applications 
From 

Scratch 
DAPT TAPT Sequence 

Classification 
Sequence 
Labeling 

Reference 
BERT 

RoBERTa 
SciBERT 

x x √ √ √ 

Hey et al., 2020 BERT x x x √ x 

Chatterjee et al., 2021 BERT x x √ √ x 

Varenov & 
Gabdrahmanov, 2021 

BERT 
DistilBERT 

XLnet 
x x √ √ x 

Deshpande et al., 2021 BERT x x √ √ x 

Sainani et al., 2020 BERT x x √ √ x 

Berquand et al., 2021 
BERT 

RoBERTa 
SciBERT 

x √ x x √ 

4.3 Experiments 

All experiments were performed with the following frameworks (Table 4-6). The 
computing workload is run on a n1-standard-4 Google Cloud Vertex AI instance with a 
single NVIDIA Tesla P100 GPU. 

Table 4-6: Python Frameworks. 

Framework Version 

Python 3.7.10 

TensorFlow 2.8.2 

Transformers 4.19.2 

Datasets 2.2.2 
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Framework Version 

Tokenizers 0.12.1 

Seqeval 1.2.2 

4.3.1 Task-Adaptive Pretraining of Language Models 

This dataset is preprocessed into a training (95%, 37,797 requirements) and validation 
(5%, 1990 requirements) dataset for TAPT using MLM. The exact composition of this 
dataset can be accessed at https://hf.co/datasets/limsc/mlm-tapt-requirements. TAPT was 
performed on the three LM (BERTBASE, RoBERTaBASE & SciBERT) using the 
hyperparameters listed in Table 4-7, taking an average of four hours for each LM. The 
training process is monitored using the PPL metric of the validation dataset (Figure 4-7).  

Table 4-7: Hyperparameters for Task-adaptive Pretraining of BERTBASE, RoBERTaBASE & 
SciBERT using Masked Language Modelling. 

Hyperparameter Value 

Masking probability 0.15 

Chunk size (tokens) 128 

Initial learning rate 2E-5 

Weight decay 0.01 

# warm-up steps 1000 

Epochs 50 

Random seed 1 

 

https://hf.co/datasets/limsc/mlm-tapt-requirements
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Figure 4-7: Perplexity Scores for Task-adaptive Pretraining of BERTBASE, RoBERTaBASE & 
SciBERT. 

 

It can be observed from Figure 4-7 that the PPL of the validation dataset decays rapidly 
within the first 10 epochs, and the rate of decrease becomes more gradual in later epochs. 
While a low PPL score can lead to improved model performance, it can also lead to 
overfitting. As such, early stopping is performed to achieve a balance between the two. 
BERTBASE, RoBERTaBASE and SciBERT were trained for 29, 43 and 20 epochs respectively. 
The resulting post-TAPT LMs are hereon referred to as ReqBERT 
(https://hf.co/limsc/reqbert-tapt-epoch29), ReqRoBERTa (https://hf.co/limsc/reqroberta-
tapt-epoch43), and ReqSciBERT (https://hf.co/limsc/reqscibert-tapt-epoch20) respectively. 

4.3.2 Task 1: Classification of Functional and Non-functional Requirements 

The six LMs were evaluated using the combined requirements dataset (Table 4-4, S/N 1). 
This dataset is preprocessed into a training (70%, 669 requirements), validation (15%, 143 
requirements) and testing (15%, 144 requirements) datasets. The exact composition of this 
dataset can be accessed at https://hf.co/datasets/limsc/fr-nfr-classification. 

The fine-tuning methodology used for Task 1 is common to all four tasks. A set of 
hyperparameters (Table 4-8) are used to determine the best performing variant of each of 
the six models. Hyperparameters such as weight decay, number of warm-up steps and 

https://hf.co/limsc/reqbert-tapt-epoch29
https://hf.co/limsc/reqroberta-tapt-epoch43
https://hf.co/limsc/reqroberta-tapt-epoch43
https://hf.co/limsc/reqscibert-tapt-epoch20
https://hf.co/datasets/limsc/fr-nfr-classification
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number of epochs are kept constant, while a full grid search was performed for the initial 
learning rate and batch size. For a set of hyperparameter for each model, the fine-tuning 
was performed 15 times with using a set of random seeds. The choice of batch size and 
initial learning was informed by the original BERT paper (Devlin et al., 2018). While the 
total number of epochs is kept constant, model loss is evaluated at every evaluation 
allowing for early stopping. The conduct of 15 runs is informed by a separate study which 
noted the impact of random seeds on model fine-tuning performance (Dodge et al., 2020). 

Table 4-8: Hyperparameters for model selection for Task 1. 

Hyperparameter Value 

Initial learning rate {2E-5, 3E-5, 5E-5} 

Weight decay 0.01 

# warm-up steps 0 

Epochs 5 

Batch size {16, 32} 

Frozen BERT encoder layers Nil 

 

This model selection process is explained for BERTBASE using Figure 4-8. BERTBASE is fine-
tuned with the six combinations of hyperparameters listed in Table 4-8. For each 
combination of hyperparameters, the fine-tuning process performed 15 times, each with 
a randomly initialized set of model weights for the classification head. The model loss for 
the training and validation datasets are tracked at the end of every epoch to give the 
results in Figure 4-8. It can be observed that beyond 2 epochs, the training loss continually 
decreases, while the validation loss remains stable or increases. This indicates that 
overfitting has occurred. As such, models fine-tuned beyond 2 epochs are excluded from 
consideration. After which, the preferred hyperparameters are chosen based on the 
lowest average validation loss. In this instance, BERTBASE returns the best results with a 
batch size of 16 and initial learning rate of 2E-5 after 2 epochs. This process is performed 
for each of the six models to determine the preferred fine-tuning parameters that are 
reflected in Table 4-9. 
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Figure 4-8: Average loss (n = 15) for various BERTBASE fine-tuning hyperparameters for 
Task 1. 

 

Table 4-9: Selected fine-tuning hyperparameters for Task 1. 

LM Batch size Initial learning rate Epochs 

BERT 16 2E-5 2 

RoBERTa 32 3E-5 2 

SciBERT 32 3E-5 2 

ReqBERT 16 2E-5 2 

ReqRoBERTa 16 2E-5 2 

ReqSciBERT 32 5E-5 2 

 

The six LMs were fine-tuned using the preferred fine-tuning hyperparameters and 
evaluated on the holdout testing dataset. The average F1-scores are reported in Table 4-10. 
To compare the performance difference between the original and fine-tuned variants of 
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each LM, the Welch’s t-test29 is performed and reported as well. From the analysis, it is 
observed that SciBERT’s outperforms all other models in terms of F1-score both at the 
aggregate and categorical level (FR or NFR). Comparing BERTBASE to ReqBERT and 
RoBERTaBASE to ReqROBERTA, the results suggest that TAPT is beneficial to model 
performance. However, the improvement in F1-score varies, ranging from 0.3% to 1.8%. 
However, comparing SciBERT to ReqSciBERT, this trend is reversed with SciBERT 
producing superior performance both at the aggregate and categorical level. However, 
nearly all differences were not found to be statistically significant. 

Table 4-10: Average testing dataset F1-scores for BERTBASE, RoBERTaBASE, SciBERT, 
ReqBERT, ReqRoBERTa & ReqSciBERT for Task 1. Standard deviation in F1-scores are 
included in subscript. Impact of TAPT is included in parentheses and annotated with * 

if statistically significant. 

F1-score BERT RoBERTa SciBERT ReqBERT ReqRoBERTa ReqSciBERT 

FR 86.91.3 86.93.0 87.71.2 
87.40.8 

(+0.5) 
87.60.8 

(+0.7) 
87.10.7 

(-0.6) 

NFR 79.44.0 76.813.3 81.22.2 
79.71.8 

(+0.3) 
80.01.3 

(+3.2) 
78.81.2 

(-2.4)* 

Weighted Avg 83.82.4 82.67.3 85.01.6 
84.11.2 

(+0.3) 
84.41.0 

(+1.8) 
83.60.9 

(-1.4)* 

4.3.3 Task 2: Classification of Requirement Subclasses 

The six LMs were evaluated using the PROMISE dataset (Table 4-4, S/N 2). This dataset 
is preprocessed into a training (70%, 352 requirements), validation (15%, 76 requirements) 
and testing (15%, 76 requirements) datasets. The exact composition of this dataset can be 
accessed at https://hf.co/datasets/limsc/subclass-classification.  

The fine-tuning methodology and choice of hyperparameters (Table 4-11) is identical to 
Task 1. Following the fine-tuning methodology, the hyperparameters for each of the LMs 
were selected (Table 4-12).  

 

 
29 Welch’s t-test is an adaptation of the Student’s t-test that allows unequal sample sizes and sample 
variances. These assumptions of Student’s t-test are unlikely to hold in this analysis. 

https://hf.co/datasets/limsc/subclass-classification
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Table 4-11: Hyperparameters for model selection for Task 2. 

Hyperparameter Value 

Initial learning rate {2E-5, 3E-5, 5E-5} 

Weight decay 0.01 

# warm-up steps 0 

Epochs 5 

Batch size {16, 32} 

Frozen encoder layers Nil 

 

Table 4-12: Selected fine-tuning hyperparameters for Task 2. 

LM Batch size Initial learning rate Epochs 

BERT 16 5E-5 3 

RoBERTa 16 5E-5 4 

SciBERT 16 5E-5 3 

ReqBERT 16 5E-5 3 

ReqRoBERTa 16 5E-5 3 

ReqSciBERT 16 5E-5 3 

 

The six LMs were fine-tuned using the preferred fine-tuning hyperparameters and 
evaluated on the holdout testing dataset. The aggregated F1-score statistics and Welch t-
test results are reported in Table 4-13.  

Table 4-13: Average F1-scores for BERTBASE, RoBERTaBASE, SciBERT, ReqBERT, 
ReqRoBERTa & ReqSciBERT for Task 2. Standard deviation in F1-scores are included in 

subscript. Impact of TAPT is included in parentheses and annotated with * if 
statistically significant. 

F1-score BERT RoBERTa SciBERT ReqBERT ReqRoBERTa ReqSciBERT 

F 85.65.9 91.76.8 92.32.9 
91.01.6 

(+5.4)* 
95.11.3 

(+3.4) 
95.61.1 

(+3.3)* 

O 48.329.0 71.129.5 73.812.4 
79.17.3 

(+30.8)* 
84.47.2 

(+13.3) 
88.14.2 

(+14.3)* 

PE 47.939.1 75.726.7 95.75.7 
87.77.3 

(+39.8)* 
84.18.3 

(+8.4) 
92.84.8 

(-2.9) 

SE 62.727.2 80.023.3 81.31.0 
82.78.1 

(+20.0)* 
87.78.9 

(+7.7) 
89.56.2 

(+8.2)* 
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F1-score BERT RoBERTa SciBERT ReqBERT ReqRoBERTa ReqSciBERT 

US 54.025.8 79.123.8 81.110.5 
77.210.3 

(+23.2)* 
85.75.9 

(+6.6) 
89.75.1 

(+8.6)* 

Weighted Avg 70.013.8 83.915.1 86.65.0 
86.03.8 

(+16.0)* 
90.53.1 

(+6.6) 
92.71.8 

(+6.1)* 
 

It can be observed that all pre-trained LMs outperform their original variants by a 
significant margin, this suggests that TAPT is beneficial for model performance. The sole 
exception is the PE category, where SciBERT performs best.  However, beyond these 
summary statistics, the results from this task also allow conclusions to be drawn on the 
robustness of each of these LMs. 

As F1-score is computed as the harmonic mean of precision and recall, a low value in 
either can lead to lower F1-score. Precision and recall scores are in turn dependent on 
their shared numerator (# True Positive); the inability to accurately classify true labels 
has the most significant impact on the eventual F1-score. Taking BERT for example, the 
F1-score across 15 runs for the O category has an average of 48.3 with a standard 
deviation of 29.0. The low average and high standard deviation were due to three runs 
having a F1-score of 0. This also means that in three of the runs, BERT model failed to 
correctly predict any of the samples belonging to the O category. This observation was 
observed to impact both BERT and RoBERTa, while SciBERT and all three pre-trained 
variants were unaffected. The prevalence of this observation is summarized in Table 4-14. 
The occurrence of this observation for a specific LM would suggest a lack of robustness.   

Table 4-14: Number of runs for which a F1-score of 0 was observed. 

Category BERT RoBERTa SciBERT ReqBERT ReqRoBERTa ReqSciBERT 

F 0 0 0 0 0 0 

O 3 2 0 0 0 0 

PE 5 1 0 0 0 0 

SE 2 1 0 0 0 0 

US 2 1 0 0 0 0 

 

There are two possible inferences from Table 4-14. First, that differences between 
BERTBASE, RoBERTaBASE and SciBERT could be attributed to their underlying differences 
in training corpus and vocabulary size. Therefore, LMs constructed with larger 
vocabularies (in the case of RoBERTaBASE) or with a more relevant training corpus (in the 
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case of SciBERT) could perform more robustly when adapted for a different domain. 
Second, the pretraining of BERTBASE and RoBERTaBASE allowed its lack of robustness to be 
resolved. As such, TAPT is beneficial for domain adaptation. 

4.3.4 Task 3: Entity Extraction from Requirements 

The six LMs were evaluated using the hybrid entity recognition dataset dataset (Table 
4-4, S/N 3). This dataset is preprocessed into a training (70%, 646 requirements), 
validation (15%, 138 requirements) and testing (15%, 139 requirements) datasets. The 
exact composition of this dataset can be accessed at 
https://hf.co/datasets/limsc/requirements-entity-recognition. 

Table 4-15: Hyperparameters for model selection for Task 3. 

Hyperparameter Value 

Initial learning rate {2E-5, 3E-5, 5E-5} 

Weight decay 0.01 

# warm-up steps 0 

Epochs 5 

Batch size {8, 16} 

Frozen encoder layers Nil 

 

Table 4-16: Selected fine-tuning hyperparameters for Task 3. 

LM Batch size Initial learning rate Epochs 

BERT 8 3E-5 2 

RoBERTa 8 5E-5 2 

SciBERT 8 3E-5 2 

ReqBERT 8 3E-5 2 

ReqRoBERTa 8 5E-5 2 

ReqSciBERT 8 3E-5 2 

 

The six LMs were fine-tuned using the preferred fine-tuning hyperparameters and 
evaluated on the holdout testing dataset. The aggregated F1-score statistics and Welch t-
test results are reported in Table 4-17. In aggregate, it can be concluded that the pre-
trained variants perform better than their original variants, with statistically significant 

https://hf.co/datasets/limsc/requirements-entity-recognition
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improvements observed for ReqRoBERTa and ReqSciBERT. At the categorical level, 
RoBERTaBASE, ReqRoBERTa and ReqSciBERT performs best across different categories. 

Table 4-17: Average F1-scores for BERTBASE, RoBERTaBASE, SciBERT, ReqBERT, 
ReqRoBERTa & ReqSciBERT for Task 3. Standard deviation in F1-scores are included in 

subscript. Impact of TAPT is included in parentheses and annotated with * if 
statistically significant. 

F1-score BERT RoBERTa SciBERT ReqBERT ReqRoBERTa ReqSciBERT 

ACT 89.72.5 92.61.9 91.01.0 87.94.4 

(-1.8) 
93.22.2 

(+0.6) 
92.81.3 

(+1.8)* 

ATTR 85.91.7 90.31.3 88.41.3 84.61.5 

(-1.3)* 
89.31.6 

(-1.0) 
88.21.7 

(-0.2) 

RELOP 88.40.8 92.01.1 89.51.2 
89.80.9 

(+1.4)* 
91.90.1 

(-0.1)* 
90.00.7 

(+0.5) 

QUANT 86.40.8 89.00.9 89.21.4 
88.30.8 

(+1.9)* 
90.81.3 

(+1.8)* 
90.90.5 

(+1.7)* 

ENT 84.51.1 85.41.3 84.11.2 
84.01.6 

(-0.5)* 
86.71.4 

(+1.3) 
84.91.4 

(+0.8) 

Weighted Avg 87.00.7 90.00.5 88.50.1 
87.20.9 

(+0.2) 
90.50.5 

(+0.5)* 
89.50.7 

(+1.0)* 

4.4 Summary of Results 

With the results from Tasks 1, 2 and 3, it is timely to review the original research questions:  

• RQ1: Which off-the-shelf pre-trained language models are most suitable for application 
within the systems engineering domain? 

• RQ2: To what extend does task-adaptive pretraining of language models improve 
classification performance within the systems engineering domain?  

For RQ1, the results indicate that RoBERTaBASE and SciBERT consistently outperform 
BERTBASE at the aggregate and categorical level. Hence, for applications within the SE 
domain, the larger underlying vocabulary of RoBERTaBASE and the scientific training 
corpus of SciBERT are beneficial for model performance. 

For RQ2, the conclusions are more ambiguous. In general, TAPT is beneficial for model 
performance; except for SciBERT in Task 1, all LMs outperform their original variants 
after TAPT. However, the extent of improvement varies on the downstream application. 
For example, TAPT improves model performance of BERTBASE by 0.3% in Task 1, 16.0% 
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in Task 2, and 0.2% in Task 3. The improvement in model performance is not always 
observed. For instance, in Task 1, the performance of SciBERT decreases by 1.4% after 
TAPT. In Tasks 2 and 3, TAPT can also lead to lower model performance in some 
categories. 
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Chapter 5 

5 Discussion & Future Work 

5.1 Discussion of Results 

The future of SE demands greater reuse of knowledge and tools, and the highly 
specialized symbolic methods developed in yesteryears will become increasingly 
obsolete. The increased volume of natural language requirements of modern engineered 
systems also demands methods to be more scalable. The use of pre-trained LMs in 
Chapter 4 sought to validate its applicability towards a diverse range of sequence 
classification and sequence labeling tasks in a scalable manner. The remainder of this 
section will provide a discussion of the empirical results. 

From the empirical work, it was found that off-the-shelf pre-trained LMs produced 
competitive model performance with minimal computational cost. These LMs also do so 
consistently across different tasks without intervention. This illustrates the general 
robustness of LMs that were trained on extremely large text corpus of a generic domain. 
With TAPT, these pre-trained LMs produced improved model performance and 
exhibited greater robustness (RQ2). The TAPT process was inexpensive to perform as the 
unlabeled text corpus (~41k requirements, 1.1M words) was easy to assemble and the 
compute times (~4 hours per LM) was reasonably short. Taken together, the results 
indicate that pre-trained LMs can be quickly adapted for systems engineering 
applications. In aggregate, it was also observed that, with or without TAPT, RoBERTa 
and SciBERT consistently outperforms BERT (RQ1). This indicates that a larger 
vocabulary (in the case of RoBERTa) or a more relevant vocabulary (in the case of 
SciBERT) can be beneficial to model performance. Taken together, this means that 
domain adaptation of RoBERTa and SciBERT through TAPT should provide SE and RE 
researchers with a well-performing model with reasonable effort.  

However, it remains difficult to assess if the utility of LMs due to three reasons. First, the 
absence of benchmark datasets and openly available implementation of existing methods 
renders it impossible to compare the performance of these LMs against earlier reported 
approaches (see Table 3-9 for a detailed discussion). Second, this experiment adopts 
weighted average F1-score as the sole evaluation metric. This decision implies that 
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precision and recall are given equal weight. In the information extraction context, this 
assumption may not hold true. For instance, the failure to extract all required information 
may result in the construction of an incomplete system model, affecting its functionality 
and desired ilities. In this specific context, recall should be prioritized over precision. 
However, such decisions are ultimately context specific. Lastly, this thesis lacks a 
practitioner’s view of the minimum level of model performance required. When the 
model has a recall of 90%, this implies that 10% of all required information is not correctly 
extracted. The failure to extract this 10% of information is associated with various forms 
of risks such as safety or compliance risk. As such, without a defined performance 
threshold, it remains difficult to justify if these models perform sufficiently well for use 
in industry. 

5.2 Future Work 

Notwithstanding the limitations above, there remains much room for additional research. 
The scope of future work can be focused on improving model performance or expanding 
possible applications. These two lines of effort will allow LMs to be employed more 
effectively across a broader range of tasks. 

The methods to achieve improved model performance can be informed by the literature. 
These methods are described in increasing complexity or computational cost. 

First, the large variants of LMs (such as BERTLARGE and RoBERTaLARGE) can be used. The 
large variants of LMs contain more model parameters and have conventionally 
performed better than the variants used in this thesis. However, the computational cost 
of pretraining and fine-tuning such models is substantially higher. For future thesis work, 
such an approach may not be worthwhile for several reasons. First, while large variants 
are likely to return superior performance, the absence of a define performance threshold 
means that the results cannot be interpreted in a meaningful manner. Second, even with 
the democratization of cloud computing resources, the significant increase in 
computational cost is likely to produce performance gains that are disproportionately 
lower. 

Second, DAPT (Section 3.3.3.2) can be employed to adapt pre-trained LMs to a specific 
domain. Coupling DAPT with TAPT has been shown to return improved model 
performance (Gururangan et al., 2020). This thesis excluded the use of DAPT as it requires 
the assembly of an extremely large domain-specific text corpus. Furthermore, the 
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computational cost of performing DAPT is also significantly greater than TAPT. 
However, this could be feasibly done as a separate study. This would allow the cost 
benefit analysis of DAPT to be determined. 

Third, a vocabulary extension approach can be considered to expand the generic domain 
token vocabulary with an extension module containing domain-specific tokens (Tai et al., 
2020). As RoBERTa and SciBERT consistently outperforms BERT in the experiments, it 
can be postulated that the larger vocabulary of RoBERTa and context-specific vocabulary 
of SciBERT is beneficial for model performance. The expansion of the existing vocabulary 
with domain-specific tokens allows both elements to be incorporated. In the cited study, 
this approach was shown to return performance comparable to domain specific LMs with 
10% of the computational cost. As such, this approach should provide a computationally 
efficient way to achieve good model performance. 

In this thesis, only two sequence classification and one sequence labeling tasks were 
investigated. However, this represents a sliver of possible applications. For example, 
sequence generation applications were omitted from this thesis as bi-directional 
Transformers models are less suitable for autoregressive Transformers models (such as 
GPT-2). Possible use cases of sequence generation include the generation of V&V test 
cases from requirements, or rewriting of ambiguous and low-quality requirement 
statements. 

These two lines of effort seed greater use of LMs within the SE domain. 
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