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Abstract

We design near-optimal quantum query algorithms for two important text processing
problems: Longest Common Substring and Lexicographically Minimal String Rota-
tion. Specifically, we show that:

• Longest Common Substring can be solved by a quantum algorithm in ̃︀𝑂(𝑛2/3)

time, improving upon the ̃︀𝑂(𝑛5/6)-time algorithm by Le Gall and Seddighin
(2022). Moreover, given a length threshold 1 ≤ 𝑑 ≤ 𝑛, our algorithm decides in
𝑛2/3+𝑜(1)/𝑑1/6 time whether the longest common substring has length at least 𝑑,
almost matching the Ω(𝑛2/3/𝑑1/6) quantum query lower bound.

• Lexicographically Minimal String Rotation can be solved by a quantum algo-
rithm in 𝑛1/2+𝑜(1) time, improving upon the ̃︀𝑂(𝑛3/4)-time algorithm by Wang
and Ying (2020), and almost matching the Ω(

√
𝑛) quantum query lower bound.

Our algorithm for Lexicographically Minimal String Rotation is obtained by speed-
ing up a divide-and-conquer algorithm using nested Grover search and quantum
minimum finding. Combining this divide-and-conquer idea with the deterministic
sampling algorithm of Vishkin (1991) and Ramesh and Vinay (2003), we achieve a
quantum speed-up of the String Synchronizing Set technique introduced by Kempa
and Kociumaka (2019). Our algorithm for Longest Common Substring applies this
string synchronizing set in the quantum walk framework.

Thesis Supervisor: Virginia Vassilevska Williams
Title: Steven and Renee Finn Career Development Professor of
Electrical Engineering and Computer Science

Thesis Supervisor: R. Ryan Williams
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Background

The study of string processing algorithms is an important area of research in theoret-

ical computer science, with applications in numerous fields including bioinformatics,

data mining, plagiarism detection, etc. Many fundamental problems in this area have

been known to have linear-time algorithms since over 40 years ago. Examples in-

clude Exact String Matching [68, 62], Longest Common Substring [93, 48, 19], and

(Lexicographically) Minimal String Rotation [28, 86, 47]. These problems have also

been studied extensively in the context of data structures, parallel algorithms, and

low-space algorithms.

More recently, there has been growing interest in developing efficient quantum

algorithms for these basic string problems. Given quantum query access to the in-

put strings (defined in Section 2.3), it is sometimes possible to solve such problems

in sublinear query complexity and time complexity. The earliest such result was

given by Ramesh and Vinay [85], who combined Vishkin’s deterministic sampling

technique [91] with Grover search [55] to obtain a quantum algorithm for the Exact

String Matching problem with near-optimal ̃︀𝑂(√𝑛) time complexity1. More recently,

Le Gall and Seddighin [51] obtained sublinear-time quantum algorithms for various

string problems, among them an ̃︀𝑂(𝑛5/6)-time algorithm for Longest Common Sub-

1We use ̃︀𝑂(·), ̃︀Ω(·), ̃︀Θ(·) to hide poly log 𝑛 factors where 𝑛 denotes the input length.

9



string (LCS) and an ̃︀𝑂(√𝑛)-time algorithm for Longest Palindromic Substring (LPS).

In developing these algorithms, they applied the quantum Exact String Matching al-

gorithm [85] and Ambainis’ Element Distinctness algorithm [9] as subroutines, and

used periodicity arguments to reduce the number of candidate solutions to be checked.

Another recent work by Wang and Ying [92] showed that Minimal String Rotation

can be solved in ̃︀𝑂(𝑛3/4) quantum time. Their algorithm was also based on quantum

search primitives (including Grover search and quantum minimum finding [46]) and

techniques borrowed from parallel string algorithms [16, 91, 57]. Other string prob-

lems previously studied in the quantum setting include Edit Distance [29, 34] and

Regular Language Recognition [2, 10].

On the lower bound side, it has been shown that Longest Common Substring

requires ̃︀Ω(𝑛2/3) quantum query complexity (by a reduction [51] from the Element

Distinctness problem [3, 73, 8]), and that Exact String Matching, Minimal String

Rotation, and Longest Palindromic Substring all require Ω(
√
𝑛) quantum query com-

plexity (by reductions [51, 92] from the unstructured search problem [24]). Le Gall

and Seddighin [51] observed that although the classical algorithms for LCS and LPS

are almost the same (both based on suffix trees [93]), the latter problem (with time

complexity ̃︀Θ(
√
𝑛)) is strictly easier than the former (with an ̃︀Ω(𝑛2/3) lower bound)

in the quantum query model.

Despite these results, our knowledge about the quantum computational complex-

ities of basic string problems is far from complete. For the LCS problem and the

Minimal String Rotation problem mentioned above, there are 𝑛Ω(1) gaps between

current upper bounds and lower bounds. Better upper bounds are only known in

special cases: Le Gall and Seddighin [51] gave an ̃︀𝑂(𝑛2/3)-time algorithm for (1− 𝜀)-

approximating LCS in non-repetitive strings, matching the query lower bound in this

setting. Wang and Ying [92] gave an ̃︀𝑂(√𝑛)-time algorithm for Minimum String

Rotation in randomly generated strings, and showed a matching average-case query

lower bound. However, these algorithms do not immediately extend to the general

cases.
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1.2 Our Contribution

In this work, we develop new quantum query algorithms for Longest Common Sub-

string and Minimal String Rotation, closing the gaps left open in previous works

[51, 92]. Our algorithms are near-optimal and time-efficient: they have time com-

plexities that match the corresponding query complexity lower bounds up to 𝑛𝑜(1)

factors.

1.2.1 Longest Common Substring

In the Longest Common Substring (LCS) problem, we are given two strings 𝑆1, 𝑆2 ∈

Σ𝑛, and want to compute LCS(𝑆1, 𝑆2), defined as the maximum possible length 𝑑 of

their common substring 𝑆1[𝑖 . . 𝑖+ 𝑑− 1] = 𝑆2[𝑗 . . 𝑗 + 𝑑− 1].2 The previous quantum

algorithm by Le Gall and Seddighin [51] actually solves the decisional problem, LCS

with threshold 𝑑, which takes an extra parameter 1 ≤ 𝑑 ≤ 𝑛 and asks whether

LCS(𝑆1, 𝑆2) ≥ 𝑑 holds. Their algorithm for LCS with threshold 𝑑 has time complexitỹ︀𝑂(min{𝑛2/3 ·
√
𝑑, 𝑛/

√
𝑑}), which is ̃︀𝑂(𝑛5/6) in the worst case 𝑑 = 𝑛1/3.

We give a new algorithm for LCS with threshold 𝑑, which outperforms the previous

algorithm [51] for almost all 1≪ 𝑑≪ 𝑛.

Theorem 1.2.1 (LCS with threshold 𝑑, upper bound). Given 𝑆1, 𝑆2 ∈ Σ𝑛, there is

a quantum algorithm that decides whether 𝑆1, 𝑆2 have a common substring of length

𝑑 in ̃︀𝑂(𝑛2/3/𝑑1/6−𝑜(1)) quantum query complexity and time complexity.

A schematic comparison of previous bound [51] and our new bound is in Fig. 1-

1. In particular, we can compute LCS(𝑆1, 𝑆2) in ̃︀𝑂(𝑛2/3) quantum query and time

complexity, by binary search over the threshold length 𝑑.

We also observe a quantum query lower bound that matches the upper bound up

to 𝑑𝑜(1) factors. Hence, we obtain an almost complete understanding of LCS with

threshold 𝑑 in the quantum query model.

2We remark that in the literature the same acronym could also refer to the Longest Common
Subsequence problem. The difference is that a subsequence is not necessarily a contiguous part of
the string. In this paper, we only consider the Longest Common Substring problem.
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Figure 1-1: Quantum time complexity of LCS with threshold 𝑑

Theorem 1.2.2 (LCS with threshold 𝑑, lower bound). For |Σ| ≥ Ω(𝑛/𝑑), decid-

ing whether 𝑆1, 𝑆2 ∈ Σ𝑛 have a common substring of length 𝑑 requires Ω(𝑛2/3/𝑑1/6)

quantum queries.

The LCS with threshold 𝑑 problem is particularly interesting from a quantum

query complexity perspective, as its two extreme cases correspond to two fundamental

problems in this field: the 𝑑 = 1 case asks whether there exist 𝑖, 𝑗 such that 𝑆1[𝑖] =

𝑆2[𝑗], i.e., the (bipartite) Element distinctness problem, which has quantum query

complexity Θ(𝑛2/3) due to the celebrated results of Ambainis [9] and Aaronson and

Shi [3]. The 𝑑 = 𝑛 case asks to find 𝑖 such that 𝑆1[𝑖] ̸= 𝑆2[𝑖], which is equivalent to the

unstructured search problem, with well-known quantum query complexity Θ(𝑛1/2) [24]

achieved by Grover Search [55]. Theorem 1.2.1 and Theorem 1.2.2 indicate that the

complexity of LCS with threshold 𝑑 smoothly interpolates between the two extreme

cases 𝑑 = 1 and 𝑑 = 𝑛 (up to subpolynomial factors).
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1.2.2 Minimal String Rotation

In the (Lexicographically) Minimal String Rotation problem, we are given 𝑆 ∈ Σ𝑛, and

want to find a cyclic rotation of 𝑆 with minimal lexicographical order. Two closely

related problems are Minimal Suffix and Maximal Suffix. See Section 2.2 for formal

definitions. These three problems have Ω(
√
𝑛) quantum query lower bound, proved

by reduction from the unstructured search problem [92]. In this work, we obtain

near-optimal quantum algorithms for these problems. In particular, we improve the

previous ̃︀𝑂(𝑛3/4)-time algorithm by Wang and Ying [92] for Minimal String Rotation.

Theorem 1.2.3. Minimal String Rotation, Maximal Suffix, and Minimal Suffix can

be solved by a quantum algorithm with 𝑛1/2+𝑜(1) query complexity and time complexity.

1.2.3 Quantum String Synchronizing Sets

An important technical ingredient in our algorithm for LCS with threshold 𝑑 (Theo-

rem 1.2.1) is a quantum speed-up for constructing a String Synchronizing Set, a pow-

erful tool for string algorithms recently introduced by Kempa and Kociumaka [63].

Informally speaking, for a length parameter 𝜏 ≥ 1, a 𝜏 -synchronizing set A ⊆ [1 . . 𝑛]

of a string 𝑇 ∈ Σ𝑛 is a subset of synchronizing positions that are consistently sampled

depending on their length-Θ(𝜏) contexts in 𝑇 , such that every non-periodic length-

Θ(𝜏) region in 𝑇 is hit by at least one synchronizing position. A formal definition is

given below.

Definition 1.2.4 (String synchronizing set [63]). For a string 𝑇 [1 . . 𝑛] and a positive

integer 1 ≤ 𝜏 ≤ 𝑛/2, we say A ⊆ [1 . . 𝑛 − 2𝜏 + 1] is a 𝜏 -synchronizing set of 𝑇 if it

satisfies the following properties:

• Consistency: If 𝑇 [𝑖 . . 𝑖+ 2𝜏) = 𝑇 [𝑗 . . 𝑗 + 2𝜏), then 𝑖 ∈ A if and only if 𝑗 ∈ A.

• Density: For 𝑖 ∈ [1 . . 𝑛− 3𝜏 +2], A∩ [𝑖 . . 𝑖+ 𝜏) = ∅ if and only if per(𝑇 [𝑖 . . 𝑖+

3𝜏 − 2]) ≤ 𝜏/3.
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Kempa and Kociumaka [63] obtained a classical deterministic 𝑂(𝑛)-time algorithm

for constructing a 𝜏 -string synchronizing set of optimal size Θ(𝑛/𝜏), which was later

applied in classical LCS algorithms [40] using an anchoring idea (see Section 1.3.1).

However, in our sublinear-time quantum LCS application, we cannot afford the linear

time of the classical construction algorithm in [63]. To overcome this issue, we design a

quantum algorithm that provides efficient local access to elements in the synchronizing

set A. The property of our construction is formally summarized in the following

theorem.

Theorem 1.2.5 (Quantum string synchronizing set). Given string 𝑇 [1 . . 𝑛] and in-

teger 1 ≤ 𝜏 ≤ 𝑛/2, there is a randomized A ⊆ [1 . . 𝑛− 2𝜏 +1] generated from random

seed 𝜎 ∈ {0, 1}poly log(𝑛), with the following properties:

• Correctness: A is always a 𝜏 -synchronizing set of 𝑇 .

• Sparsity: For every 𝑖 ∈ [1 . . 𝑛− 3𝜏 + 2], E𝜎

[︀
|A ∩ [𝑖 . . 𝑖+ 𝜏)|

]︀
≤ 𝜏 𝑜(1).

• Efficient computability: With high probability over 𝜎, there is quantum al-

gorithm that, given 𝑖 ∈ [1 . . 𝑛 − 3𝜏 + 2], 𝜎, and quantum query access to

𝑇 [𝑖 . . 𝑖+ 3𝜏 − 2], reports all the elements in A ∩ [𝑖 . . 𝑖+ 𝜏) in

(cnt+ 1) · 𝜏
1
2
+𝑜(1) · poly log(𝑛)

quantum time, where cnt = |A ∩ [𝑖 . . 𝑖+ 𝜏)| is the output count.

Compared with the previous classical construction [63], the expected size |A| in

Theorem 1.2.5 is (𝑛/𝜏) · 𝜏 𝑜(1), worse than optimal by a 𝜏 𝑜(1) factor. However, we can

report each element in A in 𝜏 1/2+𝑜(1) ·poly log(𝑛) quantum time, while in the classical

construction each element takes 𝑂(𝜏) average time.

Theorem 1.2.5 plays a crucial role in our quantum LCS algorithm (Theorem 1.2.1).

Given numerous known applications of string synchronizing sets in classical string

algorithms [63, 6, 40, 64, 65, 66], we expect Theorem 1.2.5 to be a very useful tool in

designing quantum string algorithms.

14



1.2.4 Bibliographic Note

The results and proofs presented in this thesis are extracted from the following two

papers:

• Near-optimal Quantum Algorithms for String Problems joint with Shyan Akmal,

which appeared in SODA 2022 [5], and

• Quantum Speed-ups for String Synchronizing Sets, Longest Common Substring,

and 𝑘-mismatch Matching, an unpublished manuscript joint with Jakob Nogler [61].

Theorem 1.2.3 and a weaker version of Theorem 1.2.1 were proved in [5]. Theo-

rem 1.2.1, Theorem 1.2.2, and Theorem 1.2.5 were proved in [61].

1.3 Technical Overview

We give high-level overviews of our quantum algorithms for Longest Common Sub-

string, Minimal String Rotation, and String Synchronizing Sets.

1.3.1 Longest Common Substring

Le Gall and Seddighin [51, Section 3.1.1] observed a simple reduction from LCS with

threshold 𝑑 to the (bipartite version of) Element Distinctness problem, which asks

whether the two input lists 𝐴,𝐵 contain a pair of identical items 𝐴𝑖 = 𝐵𝑗: each item

in the lists is a length-𝑑 substring of 𝑆1 or 𝑆2 (specified by the starting position),

and the lexicographical order between two length-𝑑 substrings can be compared in

𝒯 = ̃︀𝑂(√𝑑) using binary search and Grover search (see Observation 2.5.1). Using

Ambainis’ [9] comparison-based algorithm in ̃︀𝑂(𝑛2/3 · 𝒯 ) time, LCS with threshold 𝑑

can be solved in ̃︀𝑂(𝑛2/3 ·
√
𝑑) time.

The anchoring technique. The inefficiency of the algorithm described above

comes from the fact that there are 𝑛 − 𝑑 + 1 = Ω(𝑛) positions to be considered

in each input string. This seems rather unnecessary for larger 𝑑, since intuitively

15



there is a lot of redundancy from the large overlap between these length-𝑑 substrings.

This is the idea behind the so-called anchoring technique, which has been widely

applied in designing classical algorithms for various versions of the LCS problem

[88, 38, 13, 14, 23, 39, 40].

In this technique, we carefully pick subsets C1,C2 ⊆ [𝑛] of anchors, such that

in a YES input instance there must exist an anchored common substring, i.e., a

common string with occurrences 𝑆1[𝑖1 . . 𝑖2+𝑑) = 𝑆2[𝑖2 . . 𝑖2+𝑑) and a shift 0 ≤ ℎ < 𝑑

such that 𝑖1 + ℎ ∈ C1 and 𝑖2 + ℎ ∈ C2. Then, the task reduces to the Two String

Families LCP problem [38], where we want to find a pair of anchors 𝑖′1 ∈ C1, 𝑖
′
2 ∈ C2

that can be extended in both directions to get a length-𝑑 common substring, or

equivalently, the longest common prefix of 𝑆1[𝑖
′
1 . .], 𝑆2[𝑖

′
2 . .] and the longest common

suffix of 𝑆1[. . 𝑖
′
1 − 1], 𝑆2[. . 𝑖

′
2 − 1] have total length at least 𝑑.

To get better running time, we would like to efficiently construct anchor sets C1,C2

with small size. As observed in [40], such anchor sets can be constructed from 𝜏 -string

synchronizing sets (Definition 1.2.4) introduced by Kempa and Kociumaka [63]: When

𝑑 > 3𝜏 , a length-𝑑 common substring 𝑆1[𝑖1 . . 𝑖1 + 𝑑 − 1] = 𝑆2[𝑖2 . . 𝑖2 + 𝑑 − 1] imply

that these two regions contain consistently sampled synchronizing positions, which

means that they have common length-𝑑 substrings anchored at some synchronizing

positions in this region (this argument ignores the highly-periodic case, which can

be dealt with otherwise). Kempa and Kociumaka’s construction leads to anchor sets

with optimal 𝑂(𝑛/𝑑) size, but we cannot afford to use their linear-time construction

algorithm in our sublinear-time quantum setting. Instead, we use the version of

string synchronizing sets with a quantum speed-up (Theorem 1.2.5), and construct

an anchor set of size 𝑛/𝑑1−𝑜(1), in which each element can be reported in ̃︀𝑂(𝑑1/2+𝑜(1))

quantum time (Theorem 3.1.2).

Anchoring via quantum walks. Now we explain how to use small and explicit

anchor sets to obtain better quantum LCS algorithms with time complexity ̃︀𝑂(𝑚2/3 ·

(
√
𝑑+𝒯 )) = ̃︀𝑂(𝑛2/3/𝑑1/6−𝑜(1)) (Theorem 3.1.4), where 𝑚 = 𝑛/𝑑1/2−𝑜(1) is the number

of anchors, and 𝒯 = ̃︀𝑂(𝑑1/2+𝑜(1)) is the time complexity of computing the 𝑖th anchor.
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Our algorithm uses the MNRS quantum walk framework [76] (see Section 2.6) on

Johnson graphs. Informally speaking, to apply this framework, we need to solve the

following dynamic problem: maintain a subset of 𝑟 anchors which undergoes insertions

and deletions (called update steps), and in each query (called a checking step) we need

to solve the Two String Families LCP problem on this subset, i.e., answer whether

the current subset contains a pair of anchors that can extend to a length-𝑑 common

substring. If each update step takes time 𝒰 , and each checking step takes time 𝒞, then

the MNRS quantum walk algorithm has overall running time ̃︀𝑂(𝑟 𝒰+ 𝑚
𝑟
(
√
𝑟 𝒰+𝒞)).

We will achieve 𝒰 = ̃︀𝑂(√𝑑 + 𝑇 ) and 𝒞 = ̃︀𝑂(√𝑟𝑑), and obtain the claimed time

complexity by setting 𝑟 = 𝑚2/3.

To solve this dynamic problem, we maintain the lexicographical ordering of the

length-𝑑 substrings specified by the current subset of anchors, as well as the corre-

sponding LCP array which contains the length of the longest common prefix between

every two lexicographically adjacent substrings. Note that the maintained informa-

tion uniquely defines the compact trie of these substrings. This information can be

updated easily after each insertion (or deletion) operation: we first compute the in-

serted anchor in 𝑇 time, and then use binary search with Grover search to find its

lexicographical rank and the LCP values with its neighbors, in ̃︀𝑂(√𝑑) quantum time.

The maintained information will be useful for the checking step. In fact, if we

only care about query complexity, then we are already done, since the maintained

information already uniquely determines the answer of the Two String Families LCP

problem, and no additional queries to the input strings are needed. The main chal-

lenge is to implement this checking step time-efficiently. Unfortunately, the classical

near-linear-time algorithm [38] for solving the Two String Families LCP problem is

too slow compared to our goal of 𝒞 = ̃︀𝑂(√𝑟𝑑), and it is not clear how to obtain a

quantum speedup over this classical algorithm. Hence, we should try to dynamically

maintain the solution using data structures, instead of solving it from scratch every

time. In fact, such a data structure with poly log(𝑛) time per operation was already

given by Charalampopoulos, Gawrychowski, and Pokorski [39], and was used to obtain

a classical data structure for maintaining Longest Common Substring under charac-
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ter substitutions. However, this data structure cannot be applied to the quantum

walk algorithm, since it violates two requirements that are crucial for the correctness

of quantum walk algorithms: (1) It should have worst-case time complexity (instead

of being amortized), and (2) it should be history-independent (see the discussion in

Section 3.3.1 for more details). Instead, we will design a different data structure that

satisfies these two requirements, and can solve the Two String Families LCP problem

on the maintained subset in ̃︀𝑂(√𝑟𝑑) quantum time. This time complexity is worse

than the poly log(𝑛) time achieved by the classical data structure of [39], but suffices

for our application.

A technical hurdle: limitations of 2D range query data structures. Our

solution for the Two String Families LCP problem is straightforward, but a key com-

ponent in the algorithm relies on dynamic 2-dimensional orthogonal range queries.

This is a well-studied problem in the data structure literature, and many poly log 𝑛-

time data structures are known (see [94, 80, 37] and the references therein). However,

for our results, the 2-dimensional (2D) range query data structure in question has to

satisfy not only the two requirements mentioned above, but also a third requirement

of being comparison-based. In particular, we are not allowed to treat the coordinates

of the 2D points as poly(𝑛)-bounded integers, because the coordinates actually cor-

respond to substrings of the input string, and should be compared by lexicographical

order. Unfortunately, no data structures satisfying all three requirements are known.

To bypass this difficulty, our novel idea is to use a sampling procedure that lets

us estimate the rank of a coordinate of the inserted 2D point among all the possible

coordinates, which effectively allows us to convert the non-integer coordinates into

integer coordinates. By a version of the Balls-and-Bins hashing argument, the in-

accuracy incurred by the sampling can be controlled for most of the vertices on the

Johnson graph which the quantum walk operates on. This then lets us apply 2D

range query data structures over integer coordinates (see Section 3.3.3 for the details

of this argument), which can be implemented with worst-case time complexity and

history-independence as required. Combining this method with the tools and ideas
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mentioned before lets us get a time-efficient implementation of the quantum walk

algorithm for computing the LCS.

1.3.2 Minimal String Rotation

In the Minimal String Rotation problem, we are given a string 𝑆 of length 𝑛 and are

tasked with finding the cyclic rotation of 𝑆 which is lexicographically the smallest.

We sketch the main ideas of our improved quantum algorithm for Minimal String

Rotation by comparing it to the previous best solution for this problem.

The simplest version of Wang and Ying’s algorithm [92, Theorem 5.2] works by

identifying a small prefix of the minimal rotation using Grover search, and then ap-

plying pattern matching with this small prefix to find the starting position of the

minimum rotation. More concretely, let 𝐵 be some size parameter. By quantum

minimum finding over all prefixes of length 𝐵 among the rotations of 𝑆, we can

find the length-𝐵 prefix 𝑃 of the minimal rotation in asymptotically
√
𝐵 ·
√
𝑛 time.

Next, split the string 𝑆 into Θ(𝑛/𝐵) blocks of size Θ(𝐵) each. Within each block,

we find the leftmost occurrence of 𝑃 via quantum Exact String Matching [85]. It

turns out that one of these positions is guaranteed to be a starting position of the

minimal rotation (this property is called an “exclusion rule” or “Ricochet Property”

in the literature). By minimum finding over these 𝑂(𝑛/𝐵) candidate starting posi-

tions (and comparisons of length-𝑛 strings via Grover search), we can find the true

minimum rotation in asymptotically
√︀
𝑛/𝐵 ·

√
𝑛 time. So overall the algorithm takes

asymptotically
√
𝐵𝑛+ (𝑛/

√
𝐵)

time, which is minimized at 𝐵 =
√
𝑛 and yields a runtime of ̃︀𝑂(𝑛3/4).

This algorithm is inefficient in its first step, where it uses quantum minimum find-

ing to obtain the minimum length-𝐵 prefix 𝑃 . The length-𝐵 prefixes we are searching

over all come from rotations of the same string 𝑆. Due to this common structure, we

should be able to find their minimum more efficiently than just using the generic algo-

rithm for minimum finding. At a high level, we improve this step by finding 𝑃 using
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recursion instead. Intuitively, this is possible because the Minimal Rotation problem

is already about finding the minimum “prefix” (just of length 𝑛) among rotations of 𝑆.

This then yields a recursive algorithm running in 𝑛1/2+𝑜(1) quantum time. This recur-

sion yields a tournament-tree-like structure, on which a classical divide-and-conquer

algorithm would find the “winner” (namely, the minimal rotation) in 𝑂(𝑛 log 𝑛) time,

while a quantum algorithm can achieve an almost-quadratic speed-up.

In the presentation of this algorithm in Chapter 4, we use a chain of reductions and

actually solve a more general problem to get this recursion to work. The argument

also relies on a new “exclusion rule,” adapted from previous work, to prove that

we only need to consider a constant number of candidate starting positions of the

minimum rotation within each small block of the input string.

1.3.3 Quantum String Synchronizing Sets

We outline our construction of 𝜏 -synchronizing sets with ̃︀𝑂(𝜏 1/2+𝑜(1)) quantum re-

porting time per element (Theorem 1.2.5). For simplicity, here we only consider the

non-periodic case, i.e., we assume that the input string 𝑇 [1 . . 𝑛] does not contain any

length-𝜏 substring with period at most 𝜏/3.

In this non-periodic case, our starting point is a simple randomized construction

of [63], which is much simpler than their deterministic construction (whose sequential

nature makes it more difficult to have a quantum speed-up). Their idea is to pick

local minimizers of a random hash function. More specifically, sample a random hash

value 𝜑(𝑆) for every 𝑆 ∈ Σ𝜏 , and denote Φ(𝑖) := 𝜑(𝑇 [𝑖 . . 𝑖 + 𝜏)). Then, include 𝑖

in the synchronizing set if and only if min𝑗∈[𝑖. .𝑖+𝜏 ] Φ(𝑗) is achieved at 𝑗 ∈ {𝑖, 𝑖 + 𝜏}.

It is straightforward to verify that, (1) whether 𝑖 ∈ A is completely determined by

𝑇 [𝑖 . . 𝑖 + 2𝜏) and the randomness, and (2) every length-𝜏 interval contains at least

one 𝑖 ∈ A. So A is indeed an 𝜏 -synchronizing set. Then, the non-periodic assumption

ensures that nearby length-𝜏 substrings of 𝑇 are distinct, so that the probability of

𝑖 ∈ A is 1/Ω(𝜏) for every 𝑖, which implies the sparsity of A in expectation.

To implement the above idea in the quantum setting, the first challenge is to

implement a hash function 𝜑 on length-𝜏 substrings that can be evaluated in at most
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̃︀𝑂(𝜏 1/2+𝑜(1)) quantum time. Naturally, the hash function should be random enough.

A minimal (but not sufficient) requirement seems to be that 𝜑 should at least be

able to distinguish two different strings 𝑥, 𝑦 ∈ Σ𝜏 by outputting different values

𝜑(𝑥) ̸= 𝜑(𝑦) with good probability. However, it is not clear how such hash family can

be implemented in only ̃︀𝑂(𝜏 1/2+𝑜(1)) quantum time. Many standard hash functions

that have this property, such as Karp-Rabin fingerprints, provably require at least

Ω(𝜏) query complexity.

To overcome this challenge, we observe that it is not necessary to use a hash family

with full distinguishing ability. In order for the randomized construction to work, we

only need that the hash values of two heavily overlapping length-𝜏 substrings to

behave like random. Fortunately, this weaker requirement can be satisfied using the

deterministic sampling method of Vishkin [91]. This technique was originally used

for parallel algorithms for exact string matching [91], and was later adapted into a

quantum algorithm for exact string matching in ̃︀𝑂(√𝑛) time by Ramesh and Vinay

[85], as well as some other types of exact string matching problem, e.g., [52, 42]. In

the context of string matching, the idea is to carefully sample 𝑂(log 𝑛) positions in

the pattern, so that a candidate match in the text that agrees on all the sampled

positions can be used to rule out other nearby candidate matches, and hence save

computation by reducing the number of candidate matches that have to undergo

a linear-time full check against the pattern. In our situation, we use the quantum

algorithm for deterministic sampling [85] in ̃︀𝑂(√𝜏) time, and use these carefully

sampled positions to build a hash function that is guaranteed to evaluate to different

values on two heavily overlapping strings. To the best of our knowledge, this is

the first application of deterministic sampling in a completely different context than

designing string matching algorithms.

Having designed a suitable hash function 𝜑, a straightforward attempt to report

a synchronizing position is to use the quantum minimum finding algorithm [46] on

a length-𝜏 interval [𝑗 . . 𝑗 + 𝜏) to find the 𝑖 ∈ [𝑗 . . 𝑗 + 𝜏) with minimal hash value

Φ(𝑖) = 𝜑(𝑇 [𝑖 . . 𝑖 + 𝜏)). This incurs 𝑂(
√
𝜏) evaluations of the hash function, each

taking ̃︀𝑂(√𝜏) quantum time, which would still be ̃︀𝑂(𝜏) in total, slower than our goal
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of ̃︀𝑂(𝜏 1/2+𝑜(1)).

To obtain better quantum query and time complexity, we borrow the recursion

idea from our Minimal String Rotation algorithm described earlier. We further modify

our construction of the hash function 𝜑, so that one can find the minimal hash value in

a length-𝜏 interval in a tournament tree-like fashion: The leaves are the 𝜏 candidates,

each internal node picks the minimum hash value among its children using quantum

minimum finding, and the root will be the minimum among all 𝜏 intervals. Here, the

crucial point is to make sure that comparing two nodes in a lower level (corresponding

to two closer candidates) can take less time. This makes sure that the total quantum

time complexity of finding the minimum hash value is still 𝜏 1/2+𝑜(1). Compared to the

recursive algorithm for Minimal String Rotation, the construction here requires more

technical details to deal with the case where a node in the tournament tree returns

multiple minimizers.

1.4 Related Work

Quantum algorithms on string problems. Wang and Ying [92] improved the

logarithmic factors of the quantum Exact String Matching algorithm by Ramesh and

Vinay [85] (and filled in several gaps in their original proof).

Another important string problem is computing the edit distance between two

strings (the minimum number of deletions, insertions, and substitutions needed to

turn one string into the other). The best known classical algorithm has 𝑂(𝑛2/ log2 𝑛)

time complexity [78], which is near-optimal under the Strong Exponential Time Hy-

pothesis [20]. It is open whether quantum algorithms can compute edit distance

in truly subquadratic time. For the approximate version of the edit distance prob-

lem, the breakthrough work of Boroujeni et al. [29] gave a truly subquadratic time

quantum algorithm for computing a constant factor approximation. The quantum

subroutines of this algorithm were subsequently replaced with classical randomized

algorithms in [36] to get a truly subquadratic classical algorithm that approximates

the edit distance to a constant factor.
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Le Gall and Seddighin [51] also considered the (1+ 𝜀)-approximate Ulam distance

problem (i.e., edit distance on non-repetitive strings), and showed a quantum algo-

rithm with near-optimal ̃︀𝑂(√𝑛) time complexity. Their algorithm was based on the

classical algorithm by Naumovitz, Saks, and Seshadhri [81].

Montarano [79] gave quantum algorithms for the 𝑑-dimensional pattern matching

problem with random inputs. Ambainis et al. [10] gave quantum algorithms for

deciding Dyck languages. There are also some results [12, 41] on string problems

with non-standard quantum queries to the input.

Quantum walks and time-efficient quantum algorithms. Quantum walks [89,

9, 76] are a useful method to obtain query-efficient quantum algorithms for many

important problems, such as Element Distinctness [9] and Triangle Finding [77, 60,

74]. Ambainis showed that the query-efficient algorithm for element distinctness [9]

can also be implemented in a time-efficient manner with only a poly log(𝑛) blowup,

by applying history-independent data structures in the quantum walk. Since then,

this “quantum walk plus data structure” strategy has been used in many quantum

algorithms to obtain improved time complexity. For example, Belovs, Childs, Jeffery,

Kothari, and Magniez [22] used nested quantum walk with Ambainis’ data structure

to obtain time-efficient algorithms for the 3-distinctness problem. Bernstein, Jeffery,

Lange, and Meurer [25] designed a simpler data structure called quantum radix tree

[59], and applied it in their quantum walk algorithms for the Subset Sum problem

on random input. Aaronson, Chia, Lin, Wang, and Zhang [1] gave a quantum walk

algorithm for the Closest-Pair problem in 𝑂(1)-dimensional space with near-optimal

time complexity ̃︀𝑂(𝑛2/3). The previous ̃︀𝑂(𝑛2/3)-time algorithm for approximating

LCS in non-repetitive strings [51] also applied quantum walks.

On the other hand, query-efficient quantum algorithms do not always have time-

efficient implementations. This motivated the study of quantum fine-grained complex-

ity. Aaronson et al. [1] formulated the QSETH conjecture, which is a quantum analog

of the classical Strong Exponential Time Hypothesis, and showed that Orthogonal

Vectors and Closest-Pair in poly log(𝑛)-dimensional space require 𝑛1−𝑜(1) quantum
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time under QSETH. In contrast, these two problems have simple quantum walk al-

gorithms with only 𝑂(𝑛2/3) query complexity. Buhrman, Patro, and Speelman [34]

formulated another version of QSETH, which implies a conditional Ω(𝑛1.5)-time lower

bound for quantum algorithms solving the edit distance problem. Recently, Buhrman,

Loff, Patro, and Speelman [33] proposed the quantum 3SUM hypothesis, and used it

to show that the quadratic quantum speedups obtained by Ambainis and Larka [11]

for many computational geometry problems are conditionally optimal. Notably, in

their fine-grained reductions, they employed a quantum walk with data structures to

bypass the linear-time preprocessing stage that a naive approach would require.

Classical string algorithms. We refer readers to several excellent textbooks [56,

44, 43] on string algorithms.

Weiner [93] introduced the suffix tree and gave a linear-time algorithm for comput-

ing the LCS of two strings over a constant-sized alphabet. For polynomially-bounded

integer alphabets, Farach’s construction of suffix trees [48] implies an linear-time al-

gorithm for LCS. Babenko and Starikovskaya [19] gave an algorithm for LCS based on

suffix arrays. Recently, Charalampopoulos, Kociumaka, Pissis, and Radoszewski [40]

gave faster word-RAM algorithms for LCS on compactly represented input strings

over a small alphabet. The LCS problem has also been studied in the settings of

time-space tradeoffs [88, 72, 23], approximate matching [19, 4, 50, 90, 87, 71, 38, 54],

and dynamic data structures [13, 14, 39].

Booth [28] and Shiloach [86] gave the first linear time algorithms for the Min-

imal String Rotation problem. Later, Duval [47] gave a constant-space linear-time

algorithm for computing the Lyndon factorization of a string, which can be used to

compute the minimal rotation, maximal suffix, and minimal suffix. Duval’s algorithm

can also compute the minimal suffix and maximal suffix for every prefix of the input

string. Apostolico and Crochemore [15] gave a linear-time algorithm for comput-

ing the minimal rotation of every prefix of the input string. Parallel algorithms for

Minimal String Rotation were given by Iliopoulos and Smyth [57]. There are data

structures [18, 17, 69] that, given a substring specified by its position and length in
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the input string, can efficiently answer its minimal suffix, maximal suffix, and minimal

rotation.

1.5 Organization

In Chapter 2 we introduce basic definitions and useful lemmas that will be used

throughout the paper. In Chapter 3, we present our algorithm for Longest Common

Substring. In Chapter 4, we present our algorithm for Minimal String Rotation and

several related problems. In Chapter 5 we present our construction of string synchro-

nizing sets with quantum speedup. Our LCS algorithm in Chapter 3 uses the main

theorems proved in Chapters 4 and 5 as black boxes. Finally, we mention several

open problems in Chapter 6.
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Chapter 2

Preliminaries

2.1 Notations and Basic Properties of Strings

We use ̃︀𝑂(·), ̃︀Ω(·), ̃︀Θ(·) to hide poly log(𝑛) factors, where 𝑛 is the input size. In

particular, ̃︀𝑂(1) means 𝑂(poly log 𝑛).

Define sets N = {0, 1, 2, 3, . . . } and N+ = {1, 2, 3, . . . }. For every positive integer

𝑛, let [𝑛] = {1, 2, . . . , 𝑛}. For integers 𝑖 ≤ 𝑗, let [𝑖 . . 𝑗] = {𝑖, 𝑖 + 1, . . . , 𝑗} denote

the set of integers in the closed interval [𝑖, 𝑗]. We define [𝑖 . . 𝑗), (𝑖 . . 𝑗], and (𝑖 . . 𝑗)

analogously.

We consider strings over a polynomially-bounded integer alphabet Σ = [1 . . 𝑛𝑂(1)].

A string 𝑆 ∈ Σ𝑛 is a sequence of characters 𝑆 = 𝑆[1]𝑆[2] · · ·𝑆[𝑛] from the alphabet

Σ (we use 1-based indexing). The concatenation of two strings 𝑆, 𝑇 ∈ Σ* is denoted

by 𝑆𝑇 . The reversed string of 𝑆 is denoted by 𝑆𝑅 = 𝑆[𝑛]𝑆[𝑛− 1] · · ·𝑆[1].

Given a string 𝑆 of length |𝑆| = 𝑛, a substring of 𝑆 is any string of the form

𝑆[𝑖 . . 𝑗] = 𝑆[𝑖]𝑆[𝑖 + 1] · · ·𝑆[𝑗] for some indices 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. We sometimes use

𝑆[𝑖 . . 𝑗) = 𝑆[𝑖]𝑆[𝑖+1] · · ·𝑆[𝑗−1] and 𝑆(𝑖 . . 𝑗] = 𝑆[𝑖+1] · · ·𝑆[𝑗−1]𝑆[𝑗] to denote sub-

strings. A substring 𝑆[1 . . 𝑗] is called a prefix of 𝑆, and a substring 𝑆[𝑖 . . 𝑛] is called a

suffix of 𝑆. For two strings 𝑆, 𝑇 , let lcp(𝑆, 𝑇 ) = max{𝑗 : 𝑗 ≤ min{|𝑆|, |𝑇 |}, 𝑆[1 . . 𝑗] =

𝑇 [1 . . 𝑗]} denote the length of their longest common prefix.

We say string 𝑆 is lexicographically smaller than string 𝑇 (denoted 𝑆 ≺ 𝑇 ) if

either 𝑆 is a proper prefix of 𝑇 (i.e., |𝑆| < |𝑇 | and 𝑆 = 𝑇 [1 . . |𝑆|]), or ℓ = lcp(𝑆, 𝑇 ) <
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min{|𝑆|, |𝑇 |} and 𝑆[ℓ+1] < 𝑇 [ℓ+1]. The notations ≻,⪯,⪰ are defined analogously.

The following easy-to-prove and well-known fact has been widely used in string data

structures and algorithms.

Lemma 2.1.1 (e.g. [67, Lemma 1]). Given strings 𝑆1 ⪯ 𝑆2 ⪯ · · · ⪯ 𝑆𝑚, we have

lcp(𝑆1, 𝑆𝑚) = min1≤𝑖<𝑚{lcp(𝑆𝑖, 𝑆𝑖+1)}.

For a positive integer 𝑝 ≤ |𝑆|, we say 𝑝 is a period of 𝑆 if 𝑆[𝑖] = 𝑆[𝑖+ 𝑝] holds for

all 1 ≤ 𝑖 ≤ |𝑆|−𝑝. We refer to the minimal period of 𝑆 as the period of 𝑆, and denote

it by per(𝑆). If per(𝑆) ≤ |𝑆|/2, we say that 𝑆 is periodic. A run in 𝑇 is a periodic

substring that cannot be extended (to the left nor to the right) without an increase

of its shortest period. We need the following well-known lemmas about periodicity in

strings.

Lemma 2.1.2 (Weak periodicity lemma, [49]). If a string 𝑆 has periods 𝑝 and 𝑞 such

that 𝑝+ 𝑞 ≤ |𝑆|, then gcd(𝑝, 𝑞) is also a period of 𝑆.

Lemma 2.1.3 (Structure of substring occurrences, e.g., [82, 70]). Let 𝑆, 𝑇 be two

strings with 2|𝑇 |/3 ≤ |𝑆| ≤ |𝑇 |, and let 𝑇 [𝑘1 . . 𝑘1 + |𝑆|) = 𝑇 [𝑘2 . . 𝑘2 + |𝑆|) = · · · =

𝑇 [𝑘𝑑 . . 𝑘𝑑 + |𝑆|) = 𝑆 be all the occurrences of 𝑆 in 𝑇 (where 𝑘𝑗 < 𝑘𝑗+1 for 1 ≤ 𝑗 <

𝑑). Then, 𝑘1, 𝑘2, . . . , 𝑘𝑑 form an arithmetic progression. Moreover, if 𝑑 ≥ 2, then

per(𝑆) = 𝑘2 − 𝑘1.

We say string 𝑆 is a (cyclic) rotation of string 𝑇 , if |𝑆| = |𝑇 | = 𝑛 and there exists

an index 1 ≤ 𝑖 ≤ 𝑛 such that 𝑆 = 𝑇 [𝑖 . . 𝑛]𝑇 [1 . . 𝑖 − 1]. For a periodic string 𝑆 with

shortest period per(𝑆) = 𝑝, the Lyndon root of 𝑆 is defined as the lexicographically

minimal rotation of 𝑆[1 . . 𝑝].

2.2 Problem Definitions

We give formal definitions of the string problems considered in this paper.
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Longest Common Substring (LCS)

Input: Two strings 𝑆1, 𝑆2

Task: Output the maximum length ℓ such that 𝑆1[𝑖1 . . 𝑖1 + ℓ) = 𝑆2[𝑖2 . . 𝑖2 + ℓ)

for some 𝑖1 ∈ [|𝑆1| − ℓ+ 1], 𝑖2 ∈ [|𝑆2| − ℓ+ 1].

The length ℓ of the longest common substring of 𝑆1, 𝑆2 is denoted as LCS(𝑆1, 𝑆2).

We only require the algorithm to output the length ℓ; the locations 𝑖1, 𝑖2 can be found

by a binary search. We also consider the following decisional problem.

LCS with Threshold 𝑑

Input: Two strings 𝑆1, 𝑆2 and a threshold parameter 𝑑 ≥ 1

Task: Decide whether LCS(𝑆1, 𝑆2) ≥ 𝑑.

The following three problems involve the lexicographical order of substrings.

(Lexicographically) Minimal String Rotation

Input: A string 𝑆

Task: Output a position 𝑖 ∈ [1 . . |𝑆|] such that 𝑆[𝑖 . . |𝑆|]𝑆[1 . . 𝑖 − 1] ⪯

𝑆[𝑗 . . |𝑆|]𝑆[1 . . 𝑗 − 1] holds for all 𝑗 ∈ [1 . . |𝑆|]. If there are multiple solutions,

output the smallest such 𝑖.

Maximal Suffix

Input: A string 𝑆

Task: Output the position 𝑖 ∈ [1 . . |𝑆|] such that 𝑆[𝑖 . . |𝑆|] ≻ 𝑆[𝑗 . . |𝑆|] holds for

all 𝑗 ∈ [|𝑆|] ∖ {𝑖}.

Minimal Suffix

Input: A string 𝑆

Task: Output the position 𝑖 ∈ [1 . . |𝑆|] such that 𝑆[𝑖 . . |𝑆|] ≺ 𝑆[𝑗 . . |𝑆|] holds for

all 𝑗 ∈ [|𝑆|] ∖ {𝑖}.

The following problem is the most basic problem in string algorithms.

Exact String Matching

Input: Two strings 𝑇, 𝑃 with |𝑇 | ≥ |𝑃 |

Task: Output the minimum position 𝑖 such that 𝑇 [𝑖 . . 𝑖+ |𝑃 |) = 𝑃 .
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2.3 Computational Model

We assume the input strings can be accessed in a quantum query model [7, 32], which

is standard in the literature of quantum algorithms. More precisely, letting 𝑆 be an

input string of length 𝑛, we have access to an oracle 𝑂𝑆 that, for any index 𝑖 ∈ [𝑛]

and any 𝑏 ∈ Σ, performs the unitary mapping 𝑂𝑆 : |𝑖, 𝑏⟩ ↦→ |𝑖, 𝑏 ⊕ 𝑆[𝑖]⟩, where ⊕

denotes the XOR operation on the binary encodings of characters. The oracles can

be queried in superposition, and each query has unit cost. Besides the input queries,

the algorithm can also apply intermediate unitary operators that are independent

of the input oracles. Finally, the query algorithm should return the correct answer

with success probability at least 2/3 (which can be boosted to high probability by a

majority vote over 𝑂(log 𝑛) repetitions).1 The query complexity of an algorithm is

the number of queries it makes to the input oracles.

In this paper, we are also interested in the time complexity of the quantum algo-

rithms, which counts not only the queries to the input oracles, but also the elementary

gates [21] for implementing the unitary operators that are independent of the input.

Similar to previous works (e.g., [9, 1, 51]), in order to implement the query algorithms

in a time-efficient manner, we also need the quantum random access gate, defined as

|𝑖, 𝑏, 𝑧1, . . . , 𝑧𝑚⟩ ↦→ |𝑖, 𝑧𝑖, 𝑧1, . . . , 𝑧𝑖−1, 𝑏, 𝑧𝑖+1, . . . , 𝑧𝑚⟩,

to access at unit cost the 𝑖th element from the quantum working memory |𝑧1, . . . , 𝑧𝑚⟩.

Assuming quantum random access, a classical time-𝒯 algorithm that uses random

access memory can be converted into a quantum subroutine in time 𝑂(𝒯 ), which can

be invoked by quantum search primitives such as Grover search.

In this thesis we do not seek to optimize the log-factors in the query complexity

or the time complexity of our algorithms.

1We say an algorithm succeeds with high probability (w.h.p), if the success probability can be
made at least 1− 1/𝑛𝑐 for any desired constant 𝑐 > 1.
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2.4 Basic Quantum Primitives

We use the following basic quantum algorithms.

Grover search (Amplitude amplification) [55, 31]. Let 𝑓 : [𝑛] → {0, 1} be a

function, where 𝑓(𝑖) for each 𝑖 ∈ [𝑛] can be evaluated in time 𝒯 . There is a quantum

algorithm that, with high probability, finds an 𝑥 ∈ 𝑓−1(1) or report that 𝑓−1(1) is

empty, in ̃︀𝑂(√𝑛 · 𝒯 ) time. Moreover, if it is guaranteed that either |𝑓−1(1)| ≥ 𝑀 or

|𝑓−1(1)| = 0 holds, then the algorithm runs in ̃︀𝑂(√︀𝑛/𝑀 · 𝒯 ) time.

Quantum minimum finding [46]. Let 𝑥1, . . . , 𝑥𝑛 be 𝑛 items with a total order,

where each pair of 𝑥𝑖 and 𝑥𝑗 can be compared in time 𝒯 . There is a quantum

algorithm that, with high probability, finds the minimum item among 𝑥1, . . . , 𝑥𝑛 iñ︀𝑂(√𝑛 · 𝒯 ) time.

2.5 Quantum Algorithms on Strings

We review some known quantum algorithms on strings. The following algorithm

follows from a simple binary search composed with Grover search.

Observation 2.5.1 (Finding longest common prefix). Given 𝑆, 𝑇 ∈ Σ𝑛, there is añ︀𝑂(√𝑛)-time quantum algorithm that computes lcp(𝑆, 𝑇 ), and decides whether 𝑆 ⪯ 𝑇 .

Proof. Note that we can use Grover search to decide whether two strings are identical

in ̃︀𝑂(√𝑛) time. Then we can compute lcp(𝑆, 𝑇 ) by a simple binary search over the

length of the prefix. After that we can easily compare their lexicographical order by

comparing the next position.

Ramesh and Vinay [85] combined Grover search with the deterministic sampling

technique of Vishkin [91], and obtained a near-optimal quantum algorithm for the

Exact String Matching problem.
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Theorem 2.5.2 ([85]). Given pattern 𝑃 ∈ Σ𝑚 and text 𝑇 ∈ Σ𝑛 with 𝑛 ≥ 𝑚, there

is an ̃︀𝑂(√𝑛)-time quantum algorithm that finds an occurrence of 𝑃 in 𝑇 (or reports

none exists).

Kociumaka, Radoszewski, Rytter, and Waleń [70] showed that computing per(𝑆)

can be reduced to 𝑂(log |𝑆|) instances of exact pattern matching and longest common

prefix involving substrings of 𝑆. Hence, we have the following corollary.

Corollary 2.5.3 (Finding period). Given 𝑆 ∈ Σ𝑛, there is a quantum algorithm iñ︀𝑂(√𝑛) time that computes per(𝑆).

2.6 Quantum Walks

We use the quantum walk framework [9, 89] developed by Magniez, Nayak, Roland,

and Santha [76], and apply it on Johnson graphs.

The Johnson graph 𝐽(𝑚, 𝑟) has
(︀
𝑚
𝑟

)︀
vertices, each being a subset of [𝑚] with

size 𝑟, where two vertices in the graph 𝐴,𝐵 ∈
(︀
[𝑚]
𝑟

)︀
are connected by an edge if

and only if |𝐴 ∩ 𝐵| = 𝑟 − 1, or equivalently there exist 𝑎 ∈ 𝐴, 𝑏 ∈ [𝑚] ∖ 𝐴 such

that 𝐵 = (𝐴 ∖ {𝑎}) ∪ {𝑏}. Depending on the application, we usually identify a

special subset of the vertices 𝑉marked ⊆
(︀
[𝑚]
𝑟

)︀
as being marked. The quantum walk

is analogous to a random walk on the Johnson graph attempting to find a marked

vertex, but provides quantum speed-up compared to the classical random walk. The

vertices in the Johnson graph are also called the states of the walk.

In the quantum walk algorithm, each vertex 𝐾 ∈
(︀
[𝑚]
𝑟

)︀
is associated with a data

structure𝐷(𝐾). The setup cost 𝒮 is the cost to set up the data structure𝐷(𝐾) for any

𝐾 ∈
(︀
[𝑚]
𝑟

)︀
, where the cost could be measured in query complexity or time complexity.

The checking cost 𝒞 is the cost to check whether 𝐾 is a marked vertex, given the

data structure 𝐷(𝐾). The update cost 𝒰 is the cost of updating the data structure

from 𝐷(𝐾) to 𝐷(𝐾 ′), where 𝐾 ′ = (𝐾 ∖ {𝑎}) ∪ {𝑏} is an adjacent vertex specified

by 𝑎 ∈ 𝐾, 𝑏 ∈ [𝑚] ∖𝐾. The MNRS quantum walk algorithm can be summarized as

follows.
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Theorem 2.6.1 (MNRS quantum walk [76]). Suppose |𝑉marked|/
(︀
𝑚
𝑟

)︀
≥ 𝜀 whenever

𝑉marked is non-empty. Then there is a quantum algorithm that with high probability

determines if 𝑉marked is empty or finds a marked vertex, with cost of order 𝒮+ 1√
𝜀
(
√
𝑟 ·

𝒰 + 𝒞).

Readers unfamiliar with the quantum walk approach are referred to [45, Section

8.3.2] for a quick application of this theorem to solve the Element Distinctness problem

using 𝑂(𝑛2/3) quantum queries. This algorithm can be implemented in ̃︀𝑂(𝑛2/3) time

by carefully designing the data structures to support time-efficient insertion, deletion,

and searching [9, Section 6.2]. We elaborate on the issue of time efficiency when we

apply quantum walks in our algorithm in Section 3.3.

2.7 Pseudorandomness

We use the following min-wise independent hash family.

Lemma 2.7.1 (Approximate min-wise independent hash family, follows from [58]).

Given integer parameters 𝑛 ≥ 1 and 𝑁 ≥ 𝑐 ·𝑛3 (for some constant 𝑐), there is a hash

family ℋ = {ℎ : [𝑁 ] → [𝑁2]}, where each ℎ ∈ ℋ is an injective function that can be

specified using 𝑂(log𝑁) bits, and can be evaluated at any point in poly log(𝑁) time.2

Moreover, ℋ satisfies approximate min-wise independence: for any 𝑥 ∈ [𝑁 ] and

subset 𝑋 ⊆ [𝑁 ] ∖ {𝑥} of size |𝑋| ≤ 𝑛,

Pr
ℎ∈ℋ

[︀
ℎ(𝑥) < min{ℎ(𝑥′) : 𝑥′ ∈ 𝑋}

]︀
∈ 1

|𝑋|+ 1
· (1± 0.1).

2The original definition in [58] used functions from [𝑁 ]→ [𝑁 ] and does not guarantee injectivity
with probability 1. Here we can guarantee injectivity by simply attaching the input string to the
output. Doing this will slightly simplify some of the presentation later.

33



34



Chapter 3

Longest Common Substring

In this chapter, we study the Longest Common Substring problem. Our upper bound

(Theorem 1.2.1) is proved in Sections 3.1 to 3.4, and a matching lower bound (The-

orem 1.2.2) is proved in Section 3.5. Our upper bound proof uses Theorem 1.2.3

(proved in Chapter 4) and Theorem 1.2.5 (proved in Chapter 5) as black boxes.

3.1 The Anchoring Technique

Consider the decision version of LCS with length threshold 𝑑 ≥ 1, where we want

to decide whether two input strings 𝑆1, 𝑆2 ∈ Σ* have a length-𝑑 common substring

𝑆1[𝑖1 . . 𝑖1 + 𝑑) = 𝑆2[𝑖2 . . 𝑖2 + 𝑑) for some 𝑖1 ∈ [|𝑆1| − 𝑑 + 1], 𝑖2 ∈ [|𝑆2| − 𝑑 + 1].

The algorithm for computing LCS(𝑆1, 𝑆2) then follows from a binary search over the

threshold 𝑑. We assume 𝑑 ≥ 100 to avoid corner cases in later analysis; for smaller 𝑑,

the problem can be solved in ̃︀𝑂(𝑛2/3𝑑1/2) = ̃︀𝑂(𝑛2/3) time by reducing to the (bipartite

version of) Element Distinctness problem [51, Section 3.1.1] and applying Ambainis’

algorithm [9].

To simplify the presentation, we concatenate the two input strings 𝑆1, 𝑆2 into

𝑇 := 𝑆1$𝑆2, where $ is a delimiter symbol that does not appear in the input strings,

and let 𝑛 = |𝑇 | = |𝑆1| + 1 + |𝑆2|. So 𝑆1[𝑖] = 𝑇 [𝑖] for all 𝑖 ∈ [1 . . |𝑆1|], and 𝑆2[𝑗] =

𝑇 [|𝑆1|+ 1 + 𝑗] for all 𝑗 ∈ [1 . . |𝑆2|].

Our algorithm for LCS is based on the anchoring technique, which previously ap-
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peared in classical LCS algorithms [88, 38, 13, 14, 23, 39, 40], as well as the quantum

algorithm for (1 − 𝜀)-approximate LCS by Le Gall and Seddighin [51]. In this tech-

nique, one constructs a set of anchors, and only focuses on finding anchored length-𝑑

common substrings, defined as follows.

Definition 3.1.1 (Anchored common substrings and anchor sets). For 𝑇 = 𝑆1$𝑆2

of length |𝑇 | = 𝑛 and subset C ⊆ [1 . . 𝑛], a common substring 𝑆1[𝑖1 . . 𝑖1 + 𝑑) =

𝑆2[𝑖2 . . 𝑖2 + 𝑑) is said to be anchored by C, if there exists a shift ℎ ∈ [0 . . 𝑑) such that

𝑖1 + ℎ, |𝑆1|+ 1 + 𝑖2 + ℎ ∈ C.

Given 𝑇 = 𝑆1$𝑆2 and threshold length 𝑑, we say C ⊆ [1 . . 𝑛] is an anchor set if

the following holds: if LCS(𝑆1, 𝑆2) ≥ 𝑑, then 𝑆1 and 𝑆2 must have a length-𝑑 common

substring anchored by C.

The anchor set C may depend on 𝑇 and 𝑑. We say C is 𝒯 (𝑛, 𝑑)-time constructible,

if there is a quantum algorithm that outputs 𝐶(𝑗) ∈ [𝑛] in 𝒯 (𝑛, 𝑑) time given any

index 1 ≤ 𝑗 ≤ 𝑚, and C = {𝐶(1), 𝐶(2), . . . , 𝐶(𝑚)}.1

The set [1 . . 𝑛] is a trivial anchor set, but there are constructions of much smaller

size. For example, several previous algorithms [35, 26, 53, 40, 51] used difference

covers [35, 75] to obtain an ̃︀𝑂(1)-time constructible anchor set of size 𝑚 = 𝑂(𝑛/
√
𝑑),

which is deterministic and oblivious to the content of the input strings 𝑆1, 𝑆2. The

following theorem (which will be proved in Section 3.4) achieves a smaller size by a

probabilistic non-oblivious construction that takes longer time to compute.

Theorem 3.1.2 (Anchor set construction). There is a 𝑑1/2+𝑜(1) · poly log(𝑛)-time

constructible anchor set C of size 𝑚 = 𝑂(𝑛/𝑑1−𝑜(1)). This set C depends on the input

strings 𝑆1, 𝑆2 and poly log 𝑛 random coins, and has at least 2/3 success probability.

Let C = {𝐶(1), . . . , 𝐶(𝑚)} ⊆ [𝑛] be an anchor set of size 𝑚. For every anchor

1The elements 𝐶(1), 𝐶(2), . . . , 𝐶(𝑚) are allowed to contain duplicates, and are not necessarily
sorted in any particular order.
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𝐶(𝑘) indexed by 𝑘 ∈ [𝑚], we associate it with a pair of strings (𝑃 (𝑘), 𝑄(𝑘)), where

𝑃 (𝑘) := 𝑇 [𝐶(𝑘) . . 𝐶(𝑘) + 𝑑),

𝑄(𝑘) :=
(︀
𝑇 (𝐶(𝑘)− 𝑑 . . 𝐶(𝑘)− 1]

)︀𝑅
are substrings (or reversed substrings) of 𝑇 obtained by extending from the anchor

𝐶(𝑘) to the right or reversely to the left. The length of 𝑃 (𝑘) is at most 𝑑, and

the length of 𝑄(𝑘) is at most 𝑑 − 1.2 We say the string pair (𝑃 (𝑘), 𝑄(𝑘)) is red if

𝐶(𝑘) ∈ [1 . . |𝑆1|], or blue if 𝐶(𝑘) ∈ [|𝑆1| + 1 . . 𝑛]. We also say 𝑘 ∈ [𝑚] is a red index

or a blue index, depending on the color of the string pair (𝑃 (𝑘), 𝑄(𝑘)). Then, from

the definition of anchor sets, we immediately have the following simple observation.

Proposition 3.1.3 (Witness pair). We have 𝐿𝐶𝑆(𝑆1, 𝑆2) ≥ 𝑑 if and only if there

exist a red string pair (𝑃 (𝑘), 𝑄(𝑘)) and a blue string pair (𝑃 (𝑘′), 𝑄(𝑘′)) where 𝑘, 𝑘′ ∈

[𝑚], such that lcp(𝑃 (𝑘), 𝑃 (𝑘′)) + lcp(𝑄(𝑘), 𝑄(𝑘′)) ≥ 𝑑. In such case, (𝑘, 𝑘′) is called

a witness pair.

Proof. Suppose 𝐿𝐶𝑆(𝑆1, 𝑆2) ≥ 𝑑. Then the property of the anchor set C implies

the existence of a shift ℎ ∈ [0 . . 𝑑) and a length-𝑑 common substring 𝑆1[𝑖 . . 𝑖 + 𝑑) =

𝑆2[𝑗 . . 𝑗 + 𝑑) such that 𝑖 + ℎ = 𝐶(𝑘), |𝑆1| + 1 + 𝑗 + ℎ = 𝐶(𝑘′) for some 𝑘, 𝑘′ ∈ [𝑚].

Then, we must have lcp(𝑃 (𝑘), 𝑃 (𝑘′)) ≥ 𝑑−ℎ and lcp(𝑄(𝑘), 𝑄(𝑘′)) ≥ ℎ, implying that

(𝑘, 𝑘′) is a witness pair.

Conversely, the existence of a witness pair immediately implies a common sub-

string of length at least 𝑑.

In Section 3.2 and Section 3.3, we describe a quantum walk algorithm for finding

a witness pair, and prove the following theorem.

Theorem 3.1.4. Given input strings 𝑆1, 𝑆2 and threshold 𝑑, suppose there is a 𝒯 -time

constructible anchor set of size 𝑚. Then, one can decide whether LCS(𝑆1, 𝑆2) ≥ 𝑑,

in ̃︀𝑂(𝑚2/3 · (
√
𝑑+ 𝒯 ))

2We use the convention 𝑇 [𝑥 . . 𝑦] := 𝑇 [max{1, 𝑥} . .min{𝑦, |𝑇 |}], which has shorter length when 𝑥
or 𝑦 is out of bound.
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quantum time.

Our main theorem immediately follows from Theorem 3.1.2 and Theorem 3.1.4.

Theorem 1.2.1 (LCS with threshold 𝑑, upper bound). Given 𝑆1, 𝑆2 ∈ Σ𝑛, there is

a quantum algorithm that decides whether 𝑆1, 𝑆2 have a common substring of length

𝑑 in ̃︀𝑂(𝑛2/3/𝑑1/6−𝑜(1)) quantum query complexity and time complexity.

Proof. The statement follows from combining Theorem 3.1.4 and Theorem 3.1.2 with

𝒯 = 𝑑1/2+𝑜(1) · poly log(𝑛) and 𝑚 = 𝑂(𝑛/𝑑1−𝑜(1)).

3.2 Anchoring via Quantum Walks

We shall prove Theorem 3.1.4 by giving a quantum walk algorithm to search for a

witness pair. In this section, we focus on the query complexity of this quantum walk

algorithm, and defer the time-efficient implementation to the next section.

Definition of the Johnson graph. Recall that C = {𝐶(1), . . . , 𝐶(𝑚)} is an anchor

set of size |𝐶| = 𝑚. We perform a quantum walk on the Johnson graph with vertex set(︀
[𝑚]
𝑟

)︀
, where 𝑟 is a parameter to be determined later. A vertex 𝐾 = {𝑘1, 𝑘2, . . . , 𝑘𝑟} ⊆

[𝑚] in the Johnson graph is called a marked vertex, if and only if {𝑘1, 𝑘2, . . . , 𝑘𝑟}

contains a witness pair (Proposition 3.1.3). If 𝑆1 and 𝑆2 have a common substring

of length 𝑑, then at least
(︀
𝑚−2
𝑟−2

)︀
/
(︀
𝑚
𝑟

)︀
= Ω(𝑟2/𝑚2) fraction of the vertices are marked.

Otherwise, there are no marked vertices.

Associated data. In the quantum walk algorithm, each state 𝐾 = {𝑘1, . . . , 𝑘𝑟} ⊆

[𝑚] is associated with the following data.

• The indices 𝑘1, . . . , 𝑘𝑟 themselves.

• The corresponding anchors 𝐶(𝑘1), . . . , 𝐶(𝑘𝑟) ∈ [𝑛].

• An array (𝑘𝑃1 , . . . , 𝑘
𝑃
𝑟 ), which is a permutation of 𝑘1, . . . , 𝑘𝑟, such that 𝑃 (𝑘𝑃𝑖 ) ⪯

𝑃 (𝑘𝑃𝑖+1) for all 1 ≤ 𝑖 < 𝑟.
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• The LCP array ℎ𝑃1 , . . . , ℎ𝑃𝑟−1, where ℎ𝑃𝑖 = lcp(𝑃 (𝑘𝑃𝑖 ), 𝑃 (𝑘
𝑃
𝑖+1))

• An array (𝑘𝑄1 , . . . , 𝑘
𝑄
𝑟 ), which is a permutation of 𝑘1, . . . , 𝑘𝑟, such that 𝑄(𝑘𝑄𝑖 ) ⪯

𝑄(𝑘𝑄𝑖+1) for all 1 ≤ 𝑖 < 𝑟.

• The LCP array ℎ𝑄1 , . . . , ℎ
𝑄
𝑟−1, where ℎ𝑄𝑖 = lcp(𝑄(𝑘𝑄𝑖 ), 𝑄(𝑘

𝑄
𝑖+1)).

Note that we stored the lexicographical orderings of the strings 𝑃 (𝑘1), . . . , 𝑃 (𝑘𝑟)

and 𝑄(𝑘1), . . . , 𝑄(𝑘𝑟) (for identical substrings, we break ties by comparing the indices

themselves), as well as the LCP arrays which include the length of the longest common

prefix of every pair of lexicographically adjacent substrings. By Lemma 2.1.1, these ar-

rays together uniquely determine the values of lcp
(︀
𝑃 (𝑘𝑖), 𝑃 (𝑘𝑗)

)︀
and lcp

(︀
𝑄(𝑘𝑖), 𝑄(𝑘𝑗)

)︀
,

for every pair of 𝑖, 𝑗 ∈ [𝑟].3

In the checking step of the quantum walk algorithm, we decide whether the state

is marked, by searching for a witness pair (Proposition 3.1.3) in {𝑘1, . . . , 𝑘𝑟}. Note

that the contents of the involved strings {𝑃 (𝑘𝑖)}𝑖∈[𝑟], {𝑄(𝑘𝑖)}𝑖∈[𝑟] are no longer needed

in order to solve this task, as long as we already know their lexicographical orderings

and the LCP arrays. This task is termed as the Two String Families LCP problem

in the literature [38], formalized as below.

Two String Families LCP

Input: 𝑟 red/blue pairs of strings (𝑃1, 𝑄1), (𝑃2, 𝑄2), . . . , (𝑃𝑟, 𝑄𝑟) of lengths

|𝑃𝑖|, |𝑄𝑖| ≤ 𝑑, which are represented by the lexicographical orderings of 𝑃1, . . . , 𝑃𝑟

and of 𝑄1, . . . , 𝑄𝑟, and their LCP arrays

Task: Decide if there exist a red pair (𝑃,𝑄) and a blue pair (𝑃 ′, 𝑄′), such that

lcp(𝑃, 𝑃 ′) + lcp(𝑄,𝑄′) ≥ 𝑑.

We will show how to solve this task time-efficiently in Section 3.3. For now,

we only consider the query complexity of the algorithm, and we have the following

simple observation, due to the fact that our associated information already uniquely

determines the LCP value of every pair.

3To better understand this fact, observe that they uniquely determine the compact tries of
𝑃 (𝑘1), . . . , 𝑃 (𝑘𝑟) and of 𝑄(𝑘1), . . . , 𝑄(𝑘𝑟), where the LCP of two strings equals the depth of the
lowest common ancestor of the corresponding nodes in the compact trie.
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Proposition 3.2.1 (Query complexity of checking step is zero). Using the associated

data defined above, we can determine whether {𝑘1, . . . , 𝑘𝑟} ⊆ [𝑚] is a marked state,

without making any additional queries to the input.

Now, we consider the cost of maintaining the associated data when the subset

{𝑘1, . . . , 𝑘𝑟} undergoes insertion and deletion during the quantum walk algorithm.

Proposition 3.2.2 (Update cost). Assume the anchor set C is 𝒯 -time constructible.

Then, each update step of the quantum walk algorithm has query complexity 𝒰 =̃︀𝑂(√𝑑+ 𝒯 ).
Proof. Let us consider how to update the associated data when a new index 𝑘 is

being inserted into the subset {𝑘1, . . . , 𝑘𝑟}. The deletion process is simply the reverse

operation of insertion.

The insertion procedure can be summarized by the pseudocode in Algorithm 1.

First, we compute and store 𝐶(𝑘) in time 𝒯 . Then we use a binary search to find

the correct place to insert 𝑘 into the lexicographical orderings (𝑘𝑃1 , . . . , 𝑘
𝑃
𝑟 ) (and

(𝑘𝑄1 , . . . , 𝑘
𝑄
𝑟 )). Since the involved substrings have length 𝑑, each lexicographical com-

parison required by this binary search can be implemented in ̃︀𝑂(√𝑑) time by Obser-

vation 2.5.1. After inserting 𝑘 into the list, we update the LCP array by computing

its LCP values ℎpre, ℎsuc with two neighboring substrings, and removing (by “uncom-

puting”) the LCP value ℎold between their neighbors which were adjacent at first, iñ︀𝑂(√𝑑) time (Observation 2.5.1).

Proposition 3.2.3 (Setup cost). The setup step of the quantum walk has query

complexity 𝒮 = ̃︀𝑂(𝑟 · (√𝑑+ 𝒯 )).
Proof. We can set up the initial state for the quantum walk by simply performing 𝑟

insertions successively using Proposition 3.2.2.

Remark 3.2.4. Observe that, in the insertion procedure in Algorithm 1, Lines 2 and

4-7 can be implemented also in time complexity ̃︀𝑂(√𝑑 + 𝒯 ). The time-consuming

steps in Algorithm 1 are those that actually modify the data. For example, in Lines
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Algorithm 1: The insertion procedure
1 Given an index 𝑘 ∈ [𝑚]
2 Compute 𝐶(𝑘)
3 Store the data (𝑘, 𝐶(𝑘))
4 Compute the rank 𝑖 of 𝑃 (𝑘) among 𝑃 (𝑘𝑃1 ), . . . , 𝑃 (𝑘𝑃𝑟 )
5 Compute ℎpre = lcp(𝑃 (𝑘𝑃𝑖−1), 𝑃 (𝑘))
6 Compute ℎsuc = lcp(𝑃 (𝑘𝑃𝑖 ), 𝑃 (𝑘))
7 Compute ℎold = lcp(𝑃 (𝑘𝑃𝑖−1), 𝑃 (𝑘

𝑃
𝑖 ))

8 Update (𝑘𝑃1 , . . . , 𝑘
𝑃
𝑟 )← (𝑘𝑃1 , . . . , 𝑘

𝑃
𝑖−1, 𝑘, 𝑘

𝑃
𝑖 , . . . , 𝑘

𝑃
𝑟 )

9 Update (ℎ𝑃1 , . . . , ℎ
𝑃
𝑟−1)← (ℎ𝑃1 , . . . , ℎ

𝑃
𝑖−2, ℎpre, ℎsuc, ℎ

𝑃
𝑖 , . . . , ℎ

𝑃
𝑟−1)

10 Update (𝑘𝑄1 , . . . , 𝑘
𝑄
𝑟 ) and (ℎ𝑄1 , . . . , ℎ

𝑄
𝑟−1) similarly as in Lines 4-9

8 and 9, the insertion causes some elements in the array to shift to the right, and

would take 𝑂(𝑟) time if implemented naively. Later in Section 3.3 we will describe

appropriate data structures to implement these steps time-efficiently.

Finally, by Theorem 2.6.1, the query complexity of our quantum walk algorithm

(omitting poly log(𝑛) factors) is

𝒮 +

√︂
𝑚2

𝑟2
· (𝒞 +

√
𝑟 · 𝒰) (3.1)

= 𝑟 · (
√
𝑑+ 𝒯 ) + 𝑚

𝑟
·
(︀
0 +
√
𝑟 · (
√
𝑑+ 𝒯 )

)︀
= 𝑚2/3 · (

√
𝑑+ 𝒯 ),

by choosing 𝑟 = 𝑚2/3.

3.3 Time-efficient Implementation

3.3.1 Overview

In this section, we show the quantum walk algorithm from Section 3.2 can be imple-

mented time-efficiently, and finish the proof of Theorem 3.1.4.

We have to measure the quantum walk costs 𝒮, 𝒞,𝒰 in terms of the time complexity

instead of query complexity. We will achieve setup time 𝒮 = ̃︀𝑂(𝑟(√𝑑+𝒯 )), checking

time 𝒞 = ̃︀𝑂(√𝑟𝑑), and update time 𝒰 = ̃︀𝑂(√𝑑+ 𝒯 ). Plugging into (3.1), the overall
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time complexity of the quantum walk remains ̃︀𝑂(𝑚2/3 · (
√
𝑑+ 𝒯 )).

As mentioned in Section 3.2, there are two parts in the described quantum walk

algorithm that are time-assuming:

• Maintaining the arrays of associated data under insertions and deletions (Re-

mark 3.2.4).

• Solving the Two String Families LCP problem in the checking step.

Now we give an overview of how we address these two problems.

Dynamic arrays under insertions and deletions. A natural solution to speed

up the insertions and deletions is to maintain the arrays of using appropriate data

structures, which support the required operations in ̃︀𝑂(1) time. This “quantum walk

plus data structures” framework was first used in Ambainis’ element distinctness

algorithm [9], and has been applied to many time-efficient quantum walk algorithms

(see the discussion in Section 1.4). However, as noticed by Ambainis [9, Section

6.2], such data structures have to satisfy the following requirements in order to be

applicable in quantum walk algorithms.

1. The data structure needs to be history-independent, that is, the representation

of the data structure in memory should only depend on the set of elements

stored (and the random coins used) by the data structure, not on the sequence

of operations leading to this set of elements.

2. The data structure should guarantee worst-case time complexity (with high

probability over the random coins) per operation.

The first requirement guarantees that each vertex of the Johnson graph corre-

sponds to a unique quantum state, which is necessary since having multiple possible

states would destroy the interference during the quantum walk algorithm. This re-

quirement rules out many types of self-balancing binary search trees4 such as AVL

Tree and Red-Black Tree.
4One exception is Treap.
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The second requirement rules out data structures with amortized or expected run-

ning time, which may take very long time in some of the operations. The reason is

that, during the quantum algorithm, each operation is actually applied to a superpo-

sition of many instances of the data structure, so we would like the time complexity

of an operation to have a fixed upper bound that is independent of the particular

instance being operated on.

Ambainis [9] designed a data structure satisfying both requirements based on hash

tables and skip lists, which maintains a sorted list of items, and supports insertions,

deletions, and searching in ̃︀𝑂(1) time with high probability. Buhrman, Loff, Patro,

and Speelman [33] modified this data structure to also support indexing queries, which

ask for the 𝑘th item in the current list (see Lemma 3.3.2 below). Using this data

structure to maintain the arrays in our quantum walk algorithm, we can implement

the update steps and the setup steps time-efficiently.

Dynamic Two String Families LCP. The checking step of our quantum walk

algorithm (Proposition 3.2.1) requires solving a Two String Families LCP instance

with 𝑟 string pairs of lengths bounded by 𝑑. We will not try to solve this prob-

lem from scratch for each instance, since it is not clear how to solve it significantly

faster than the ̃︀𝑂(𝑟)-time classical algorithm [38, Lemma 3] even using quantum al-

gorithms. Instead, we dynamically maintain the solution using some data structure,

which efficiently handles each update step during the quantum walk where we insert

one string pair (𝑃,𝑄) into (and remove one from) the current Two String Families

LCP instance. As mentioned in Section 1.3.1, the classical data structure for this

task given by Charalampopoulos, Gawrychowski, and Pokorski [39] is not applicable

here, since it violates both requirements mentioned above: it maintains a heavy-light

decomposition of the compact tries of the input strings, and rebuilds them from time

to time to ensure amortized poly log(𝑛) time complexity. It is not clear how to imple-

ment this strategy in a history-independent way and with worst-case time complexity

per operation.

Instead, we will design a different data structure that satisfies the history inde-
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pendence and worst-case update time requirements, and can solve the Two String

Families LCP problem on the maintained instance in ̃︀𝑂(√𝑟𝑑) quantum time. This

time complexity is much worse than the poly log(𝑛) time achieved by the classical data

structure of [39], but is sufficient for our purpose. As mentioned in Section 1.3.1, one

challenge is the lack of a comparison-based data structure for 2D range query that also

satisfies the two requirements above. We remark that there exist comparison-based

data structures with history-independence but only with expected time complexity

(e.g., [27]). There also exist folklore data structures for integer coordinates that have

history-independence and worst-case time complexity (e.g., Lemma 3.3.3). For the

easier problem of 1-dimensional range query, there exist folklore data structures (e.g.,

Lemma 3.3.2) that satisfy all three requirements. To get around this issue, we will

use a sampling procedure and a version of the Balls-and-Bins argument, which can ef-

fectively convert the involved non-integer coordinates into integer coordinates. Then,

we are able to apply 2D range query data structures over integer coordinates. Details

will be given in Section 3.3.3.

3.3.2 Basic Data Structures

In this section, we will review several existing constructions of classical history-

independent data structures.

Let 𝐷 be a classical data structure using ̃︀𝑂(1) many random coins r that maintains

a dynamically changing data set 𝑆. We say 𝐷 is history-independent if for each

possible 𝑆 and r, the data structure has a unique representation𝐷(𝑆, r) in the memory.

Furthermore, we say 𝐷 has worst-case update time 𝑂(𝒯 ) with high probability, if for

every possible 𝑆 and update operation 𝑆 → 𝑆 ′, with high probability over r, the

time complexity to update from 𝐷(𝑆, r) to 𝐷(𝑆 ′, r) is 𝑂(𝒯 ). Similarly we can define

worst-case query time with high probability.

Since our quantum walk algorithm is over the Johnson graph
(︀
[𝑚]
𝑟

)︀
, for consistency

we will use 𝑟 to denote the size of the data structure instances in the following

statements.
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Hash tables. We use hash tables to implement efficient lookup operations without

using too much memory.

Lemma 3.3.1 (Hash tables). There is a history-independent data structure of sizẽ︀𝑂(𝑟) that maintains a set of at most 𝑟 key-value pairs {(key1, value1), (key2, value2), . . . ,

(key𝑟, value𝑟)} where key𝑖’s are distinct integers from [𝑚], and supports the following

operations in worst-case ̃︀𝑂(1) time with high probability:

• Lookup: Given a key ∈ [𝑚], find the value corresponding to key (or report that

key is not present in the set).

• Insertion: Insert a key-value pair into the set.

• Deletion: Delete a key-value pair from the set.

Proof. (Sketch) The construction is similar to [9, Section 6.2]. The hash table has 𝑟

buckets, each with the capacity for storing 𝑂(log𝑚) many key-value pairs. A pair

(key, value) is stored in the ℎ(key)th bucket, and the pairs inside each bucket are sorted

in increasing order of keys. If some buckets overflow, we can collect all the leftover

pairs into a separate buffer of size 𝑟 and store them in sorted order. This ensures that

any set of 𝑟 key-value pairs has a unique representation in the memory. And, each

basic operation can be implemented in poly log(𝑚) time, unless there is an overflow.

Using an 𝑂(log𝑚)-wise independent hash function ℎ : [𝑚] → [𝑟], for any possible

𝑟-subset of keys, with high probability none of the buckets overflow.5

Dynamic arrays. We will need a dynamic array that supports indexing, insertion,

deletion, and some other operations.

The skip list [84] is a probabilistic data structure which is usually used as an alter-

native to balanced trees, and satisfies the history-independence property. Ambainis’

quantum Element Distinctness algorithm [9] used the skip list to maintain a sorted
5We remark that Ambainis only used a fixed hash function ℎ(𝑖) = ⌊𝑟 · 𝑖/𝑚⌋, which ensures the

buckets do not overflow with high probability over a random 𝑟-subset 𝐾 ⊆ [𝑚] of keys. Ambainis
showed that this property is already sufficient for the correctness of the quantum walk algorithm.
Here we choose to state a different version that achieves high success probability for every fixed
𝑟-subset of keys, merely for keeping consistency with later presentation.
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array, supporting insertions, deletions, and binary search. In order to apply the skip

list in the quantum walk, a crucial adaptation in Ambainis’ construction is to show

that the random choices made by the skip list can be simulated using 𝑂(log 𝑛)-wise

independent functions [9, Section 6.2], which only take poly log(𝑛) random coins to

sample. In the recent quantum fine-grained reduction result by Buhrman, Loff, Pa-

tro, and Speelman [33, Section 3.2], they used a more powerful version of skip lists

that supports efficient indexing. We will use this version of skip lists with some slight

extension.

Lemma 3.3.2 (Dynamic arrays). There is a history-independent data structure of

size ̃︀𝑂(𝑟) that maintains an array of items (key1, value1), (key2, value2), . . . , (key𝑟, value𝑟)

with distinct keys (note that neither the keys nor the values are necessarily sorted in

increasing order), and supports the following operations with worst-case ̃︀𝑂(1) time

complexity and high success probability:

• Indexing: Given an index 1 ≤ 𝑖 ≤ 𝑟, return the 𝑖th item (key𝑖, value𝑖)

• Insertion: Given an index 1 ≤ 𝑖 ≤ 𝑟 + 1 and a new item, insert it into the

array between the (𝑖 − 1)st item and the 𝑖th item (shifting later items to the

right).

• Deletion: Given an index 1 ≤ 𝑖 ≤ 𝑟, delete the 𝑖th item from the array (shifting

later items to the left).

• Location: Given a key, return its position 𝑖 in the array (i.e., key𝑖 = key).

• Range-minimum query: Given 1 ≤ 𝑎 ≤ 𝑏 ≤ 𝑟, return min𝑎≤𝑖≤𝑏{value𝑖}.

Proof. (Sketch) We will use (a slightly modified version of) the data structure de-

scribed in [33, Section 3.2], which extends the construction of [9, Section 6.2] to

support insertion, deletion, and indexing. Their construction is a (bidirectional) skip

list of the items, where a pointer (a “skip”) from an item (key, value) to another item

(key′, value′) is stored in a hash table as a key-value pair (key, key′). To support ef-

ficient indexing, for each pointer they also store the distance of this skip, which is
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used during an indexing query to keep track of the current position after following the

pointers (similar ideas were also used in, e.g., [83, Section 3.4]). After every insertion

or deletion, the affected distance values are updated recursively, by decomposing a

level-𝑖 skip into 𝑂(log 𝑛) many level-(𝑖− 1) skips.

A difference between their setting and ours is that they always keep the array

sorted in increasing order of value’s, and the position of an inserted item is decided

by its relative order among the values in the array, instead of by a given position

1 ≤ 𝑖 ≤ 𝑟 + 1. Nevertheless, it is straightforward to adapt their construction to our

setting, by using the distance values of the skips to keep track of the current position,

instead of by comparing the values of items.

Note that using the distance values we can also efficiently implement the Location

operation in a reversed way compared to Indexing, by following the pointers backwards

and moving up levels.

To implement the range-minimum query operations, we maintain the range min-

imum value of each skip in the skip list, in a similar way to maintaining the distance

values of the skips. They can also be updated recursively after each update. Then,

to answer a query, we can travel from the 𝑎th item to the 𝑏th by following the pointers

(this is slightly trickier if 𝑎 ̸= 1, where we may first move up levels and then move

down).

We also need a 2D range sum data structure for points with integer coordinates.

Lemma 3.3.3 (2D range sum). Let integer 𝑁 ≤ 𝑛𝑂(1). There is a history-independent

data structure of size ̃︀𝑂(𝑟) that maintains a multi-set of at most 𝑟 points {(𝑥1, 𝑦1), . . . ,

(𝑥𝑟, 𝑦𝑟)} with integer coordinates 𝑥𝑖 ∈ [𝑁 ], 𝑦𝑖 ∈ [𝑁 ], and supports the following oper-

ations with worst-case ̃︀𝑂(1) time complexity and high success probability:

• Insertion: Add a new point (𝑥, 𝑦) into the multiset (duplicates are allowed).

• Deletion: Delete the point (𝑥, 𝑦) from the multiset (if it appears more than

once, only delete one copy of them).
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• Range sum: Given 1 ≤ 𝑥1 ≤ 𝑥2 ≤ 𝑁, 1 ≤ 𝑦1 ≤ 𝑦2 ≤ 𝑁 , return the number of

points (𝑥, 𝑦) in the multiset that are in the rectangle [𝑥1 . . 𝑥2]× [𝑦1 . . 𝑦2].

Proof. (Sketch) Without loss of generality, assume 𝑁 is a power of two. We use a

simple folklore construction that resembles a 2D segment tree (sometimes called 2D

range tree or 2D radix tree). Define a class 𝒞 = 𝒞1 ∪ 𝒞2 ∪ · · · ∪ 𝒞log𝑁 of sub-segments

of the segment [1 . . 𝑁 ] as follows:

𝒞1 = {[1 . . 𝑁 ]},

𝒞2 = {[1 . . 𝑁/2], [𝑁/2 + 1 . . 𝑁 ]},

𝒞3 = {[1 . . 𝑁/4], [𝑁/4 + 1 . . 2𝑁/4], [2𝑁/4 + 1 . . 3𝑁/4], [3𝑁/4 + 1 . . 𝑁 ]},

. . .

𝒞log𝑁 = {[1 . . 1], [2 . . 2], . . . , [𝑁 . .𝑁 ]}.

Then it is not hard to see that every segment [𝑎 . . 𝑏] ⊆ [1 . . 𝑁 ] can be represented as

the disjoint union of at most 2 log𝑁 segments in 𝒞. Consequently, the query rectangle

[𝑥1 . . 𝑥2] × [𝑦1 . . 𝑦2] can always be represented as the disjoint union of 𝑂(log2𝑁)

rectangles of the form ℐ × 𝒥 where ℐ,𝒥 ∈ 𝒞.

Hence, for every ℐ,𝒥 ∈ 𝒞 with non-zero range sum 𝑠(ℐ × 𝒥 ), we store this

range sum into a hash table, indexed by the canonical encoding of (ℐ,𝒥 ). Then we

can efficiently answer all the range-sum queries by decomposing the rectangles and

summing up their stored range sums.

When a point (𝑥, 𝑦) is updated, we only need to update the range sums of log2𝑁

many rectangles that are affected, since each 𝑎 ∈ [1 . . 𝑁 ] is only included by log𝑁

intervals in 𝒞. We may also need to insert a new rectangle into the hash table, or

remove a rectangle once its range sum becomes zero.

Data structures in quantum walk. Ambainis [9] showed that a history inde-

pendent classical data structure 𝐷 with worst-case time complexity 𝒯 (with high

probability over the random coins r) can be applied to the quantum walk framework

by creating a uniform superposition over all possible r, i.e., the data structure storing
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data 𝑆 corresponds to the quantum state
∑︀

r|𝐷(𝑆, r)⟩|r⟩. During the quantum walk

algorithm, each data structure operation is aborted after running for 𝒯 time steps.

By doing this, some components in the quantum state may correspond to malfunc-

tioning data structures, but Ambainis showed that this will not significantly affect

the behavior of the quantum walk algorithm. We do not repeat the error analysis

here, but instead refer interested readers to the proof of [9, Lemma 5 and 6] (see also

[33, Lemma 1 and 2]).

3.3.3 Applying the Data Structures

Now we will use the data structures described in Section 3.3.2 to implement our

quantum walk algorithm from Section 3.2 time-efficiently.

Recall that C is the 𝒯 -quantum-time-constructible anchor set of size 𝑚 (Defini-

tion 3.1.1). The states of our quantum walk algorithms are 𝑟-subsets 𝐾 = {𝑘1, 𝑘2, . . . ,

𝑘𝑟} ⊆ [𝑚], where each index 𝑘 ∈ 𝐾 is associated with an anchor 𝐶(𝑘) ∈ [𝑛],

which specifies the color (red or blue) of 𝑘 and the pair (𝑃 (𝑘), 𝑄(𝑘)) of strings of

lengths at most 𝑑. We need to maintain the lexicographical orderings (𝑘𝑃1 , . . . , 𝑘
𝑃
𝑟 )

and LCP arrays (ℎ𝑃1 , . . . , ℎ
𝑃
𝑟−1), so that 𝑃 (𝑘𝑃1 ) ⪯ 𝑃 (𝑘𝑃2 ) ⪯ · · · ⪯ 𝑃 (𝑘𝑃𝑟 ) and ℎ𝑃𝑖 =

lcp(𝑃 (𝑘𝑃𝑖 ), 𝑃 (𝑘
𝑃
𝑖+1)), and similarly maintain (𝑘𝑄1 , . . . , 𝑘

𝑄
𝑟 ), (ℎ

𝑄
1 , . . . , ℎ

𝑄
𝑟−1) for the strings

{𝑄(𝑘)}𝑘∈𝐾 .

For 𝑘 ∈ 𝐾, we use pos𝑃 (𝑘) to denote the position 𝑖 such that 𝑘𝑃𝑖 = 𝑘, i.e., the

lexicographical rank of 𝑃 (𝑘) among all 𝑃 (𝑘1), . . . , 𝑃 (𝑘𝑟). Similarly, let pos𝑄(𝑘) denote

the position 𝑖 such that 𝑘𝑄𝑖 = 𝑘.

We can immediately see that all the steps in the update step (Algorithm 1) of

our quantum walk can be implemented time-efficiently. In particular, we use a hash

table (Lemma 3.3.1) to store the anchor 𝐶(𝑘) corresponding to each 𝑘 ∈ 𝐾, and

use Lemma 3.3.2 to maintain the lexicographical orderings and LCP arrays under

insertions and deletions. Each update operation on these data structures takes ̃︀𝑂(1)
time. Additionally, these data structures allow us to efficiently compute some useful

information, as summarized below.
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Proposition 3.3.4. Given indices 𝑘, 𝑘′ ∈ 𝐾, the following information can be com-

puted in ̃︀𝑂(1) time.

1. The anchor 𝐶(𝑘), the color of 𝑘, and the lengths |𝑃 (𝑘)|, |𝑄(𝑘)| ≤ 𝑑.

2. pos𝑃 (𝑘) and pos𝑄(𝑘).

3. lcp(𝑃 (𝑘), 𝑃 (𝑘′)) and lcp(𝑄(𝑘), 𝑄(𝑘′)).

Proof. For Item 1, rather than use 𝒯 time to compute 𝐶(𝑘) (Definition 3.1.1), we

instead look up the value of 𝐶(𝑘) from the hash table. Then, 𝐶(𝑘) ∈ [𝑛] determines

the color of 𝑘 and the string lengths.

For Item 2, we use the location operation of the dynamic array data structure

(Lemma 3.3.2).

For Item 3, we first compute 𝑖 = pos𝑃 (𝑘), 𝑖′ = pos𝑃 (𝑘′), and assume 𝑖 < 𝑖′ with-

out loss of generality. Then, by Lemma 2.1.1, we can compute lcp(𝑃 (𝑘), 𝑃 (𝑘′)) =

lcp(𝑃 (𝑘𝑃𝑖 ), 𝑃 (𝑘
𝑃
𝑖′ )) = min{ℎ𝑃𝑖 , ℎ𝑃𝑖+1, . . . , ℎ

𝑃
𝑖′−1} using a range-minimum query from

Lemma 3.3.2.

The remaining task is to efficiently implement the checking step, where we need

to solve the Two String Families LCP problem in ̃︀𝑂(√𝑟𝑑) time. The goal is to find

a red index 𝑘red ∈ 𝐾 and a blue index 𝑘blue ∈ 𝐾, such that lcp(𝑃 (𝑘red), 𝑃 (𝑘blue)) +

lcp(𝑄(𝑘red), 𝑄(𝑘blue)) ≥ 𝑑. Now we give an outline of the algorithm for solving this

task.

Algorithm 2: Solving the Two String Families LCP problem in the checking
step
1 Grover-Search over red indices 𝑘red ∈ 𝐾, and integers 𝑑′ ∈ [0 . . 𝑑]
2 Find ℓ𝑃 , 𝑟𝑃 such that lcp(𝑃 (𝑘𝑃𝑖 ), 𝑃 (𝑘

red)) ≥ 𝑑′ if and only if ℓ𝑃 ≤ 𝑖 ≤ 𝑟𝑃 .
3 Find ℓ𝑄, 𝑟𝑄 such that lcp(𝑄(𝑘𝑄𝑖 ), 𝑄(𝑘

red)) ≥ 𝑑− 𝑑′ if and only if
ℓ𝑄 ≤ 𝑖 ≤ 𝑟𝑄.

4 if exists a blue index 𝑘blue ∈ 𝐾 such that
pos𝑃 (𝑘blue) ∈ [ℓ𝑃 . . 𝑟𝑃 ], pos𝑄(𝑘blue) ∈ [ℓ𝑄 . . 𝑟𝑄] then return True

5 return False

In Algorithm 2, we use Grover search to find a red index 𝑘red ∈ 𝐾 and an integer

𝑑′ ∈ [0 . . 𝑑], such that there exists a blue index 𝑘blue ∈ 𝐾 with lcp(𝑃 (𝑘red), 𝑃 (𝑘blue)) ≥
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𝑑′ and lcp(𝑄(𝑘red), 𝑄(𝑘blue)) ≥ 𝑑−𝑑′. The number of Grover iterations is ̃︀𝑂(√︀|𝐾| · 𝑑) =̃︀𝑂(√𝑟𝑑), and we will implement each iteration in poly log(𝑛) time. By Lemma 2.1.1,

all the strings 𝑃 (𝑘) that satisfy lcp(𝑃 (𝑘), 𝑃 (𝑘red)) ≥ 𝑑′ form a contiguous segment in

the lexicographical ordering 𝑃 (𝑘𝑃1 ) ⪯ · · · ⪯ 𝑃 (𝑘𝑃𝑟 ). In Line 2, we find the left and

right boundaries ℓ𝑃 , 𝑟𝑃 of this segment, using a binary search with Proposition 3.3.4

(Item 3). Line 3 is similar to Line 2. Then, Line 4 checks the existence of such a blue

string pair. It is clear that this procedure correctly solves the Two String Families

LCP problem. The only remaining problem is how to implement Line 4 efficiently.

Note that Line 4 can be viewed as a 2D orthogonal range query, where each 2D

point is a blue string pair (𝑃 (𝑘), 𝑄(𝑘)), with coordinates being strings to be compared

in lexicographical order. We cannot simply replace the coordinates by their ranks

pos𝑃 (𝑘) and pos𝑄(𝑘) among the 𝑟 substrings in the current state, since their ranks

will change over time. It is also unrealistic to replace the coordinates by their ranks

among all the possible substrings {𝑃 (𝑘)}𝑘∈[𝑚], since 𝑚 could be much larger than the

desired overall time complexity 𝑛2/3. These issues seem to require our 2D range query

data structure to be comparison-based, which is also difficult to achieve as mentioned

before.

Instead, we will use a sampling technique, which effectively converts the non-

integer coordinates into integer coordinates. At the very beginning of the algo-

rithm (before running the quantum walk), we uniformly sample 𝑟 distinct indices

𝑥1, 𝑥2 . . . , 𝑥𝑟 ∈ [𝑚], and sort them so that 𝑃 (𝑥1) ⪯ 𝑃 (𝑥2) ⪯ · · · ⪯ 𝑃 (𝑥𝑟) (break-

ing ties by the indices), in ̃︀𝑂(𝑟(√𝑑 + 𝒯 )) total time (this complexity is absorbed

by the time complexity of the setup step 𝒮 = 𝑂(𝑟(
√
𝑑 + 𝒯 ))). Then, during the

quantum walk algorithm, when we insert an index 𝑘 ∈ [𝑚] into 𝐾, we assign it an

integer label 𝜌𝑃 (𝑘) defined as the unique 𝑖 ∈ [0 . . 𝑟] satisfying 𝑃 (𝑥𝑖) ⪯ 𝑠′ ≺ 𝑃 (𝑥𝑖+1),

which can be computed in ̃︀𝑂(√𝑑) time by a binary search on the sorted sequence

𝑃 (𝑥1) ⪯ · · · ⪯ 𝑃 (𝑥𝑟). We also sample 𝑦1, . . . , 𝑦𝑟 ∈ [𝑚] and sort them so that

𝑄(𝑦1) ⪯ 𝑄(𝑦2) ⪯ · · · ⪯ 𝑄(𝑦𝑟), and similarly define the integer labels 𝜌𝑄(𝑘). In-

tuitively, the (scaled) label 𝜌𝑃 (𝑘) · (𝑚/𝑟) estimates the rank of 𝑃 (𝑘) among all the

strings {𝑃 (𝑘′)}𝑘′∈[𝑚].
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The following lemma formalizes this intuition. It states that in a typical 𝑟-subset

𝐾 = {𝑘1, 𝑘2, . . . , 𝑘𝑟} ⊆ [𝑚], not too many indices can receive the same label.

Lemma 3.3.5. For any 𝑐 > 1, there is a 𝑐′ > 1, such that the following statement

holds:

For positive integers 𝑟 ≤ 𝑚, let 𝐴,𝐵 ⊆ [𝑚] be two independently uniformly random

𝑟-subsets. Let 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑟} where 𝑎1 < 𝑎2 < · · · < 𝑎𝑟, and denote

𝐴0 := [1 . . 𝑎1), 𝐴1 := [𝑎1 . . 𝑎2), . . . , 𝐴𝑟−1 := [𝑎𝑟−1 . . 𝑎𝑟), 𝐴𝑟 := [𝑎𝑟 . .𝑚].

Then,

Pr
𝐴,𝐵

[︀
|𝐴𝑖 ∩𝐵| ≥ 𝑐′ log𝑚 for some 0 ≤ 𝑖 ≤ 𝑟

]︀
≤ 1

𝑚𝑐
.

Proof. Let 𝑘 = 𝑐′ log𝑚 for some 𝑐′ > 1 to be determined later, and we can assume

𝑘 ≤ 𝑟. Observe that, |𝐴𝑖 ∩𝐵| ≥ 𝑘 holds for some 𝑖 only if there exist 𝑏, 𝑏′ ∈ [𝑚], such

that |[𝑏 . . 𝑏′] ∩𝐵| ≥ 𝑘 and [𝑏+ 1 . . 𝑏′] ∩ 𝐴 = ∅.

Let 𝑏, 𝑏′ ∈ [𝑚], 𝑏 ≤ 𝑏′. For 𝑏′ − 𝑏 ≥ (𝑐+ 2)(𝑚 ln𝑚)/𝑟, we have

Pr
𝐴
[[𝑏+ 1 . . 𝑏′] ∩ 𝐴 = ∅] =

(︀
𝑚−(𝑏′−𝑏)

𝑟

)︀(︀
𝑚
𝑟

)︀ ≤
(︂
1− 𝑏′ − 𝑏

𝑚

)︂𝑟

≤ 1/𝑚𝑐+2.

For 𝑏′ − 𝑏 < (𝑐+ 2)(𝑚 ln𝑚)/𝑟, we have

Pr
𝐵

[︀
|[𝑏 . . 𝑏′] ∩𝐵| ≥ 𝑘

]︀
≤

(︀
𝑏′−𝑏+1

𝑘

)︀
·
(︀
𝑚−𝑘
𝑟−𝑘

)︀(︀
𝑚
𝑟

)︀
=

(︂
𝑏′ − 𝑏+ 1

𝑘

)︂
·
(︀
𝑟
𝑘

)︀(︀
𝑚
𝑘

)︀
≤

(︂
𝑒(𝑏′ − 𝑏+ 1)

𝑘

)︂𝑘

·
(︁ 𝑟
𝑚

)︁𝑘

<

(︂
𝑒(𝑐+ 3) ln𝑚

𝑘

)︂𝑘

< 1/𝑚𝑐+3,

where we set 𝑘 = 𝑐′ log𝑚 = 3(𝑐+ 3) log𝑚.

The proof then follows from a union bound over all pairs of 𝑏, 𝑏′ ∈ [𝑚].
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Then, we can use the 2D point (𝜌𝑃 (𝑘), 𝜌𝑄(𝑘)) with integer coordinates to represent

the string pair (𝑃 (𝑘), 𝑄(𝑘)), and use the data structure from Lemma 3.3.3 to handle

the 2D range sum queries. To correctly handle the points near the boundary of a

query, we need to check them one by one, and Lemma 3.3.5 implies that in average

case this brute force step is not expensive.

The pseudocode in Algorithm 3 describes the additional steps to be performed

during each insertion step of the quantum walk (the deletion step is simply the re-

versed operation of the insertion step).

Algorithm 3: Extra steps in the insertion procedure (in addition to the
steps in Algorithm 1)
1 Given an index 𝑘 ∈ [𝑚]
2 Compute the integer labels 𝜌𝑃 (𝑘) and 𝜌𝑄(𝑘) using binary search, and store

them in hash table
3 if 𝑘 is blue then
4 Insert the 2D point (𝜌𝑃 (𝑘), 𝜌𝑄(𝑘)) into the 2D range sum data structure

The pseudocode in Algorithm 4 describes how to implement Line 4 in Algorithm 2

for solving the Two String Families LCP problem. Line 4 correctly handles all the

“internal” blue pairs (𝑃 (𝑘blue), 𝑄(𝑘blue)), which must satisfy pos𝑃 (𝑘blue) ∈ [ℓ𝑃 , 𝑟𝑃 ] and

pos𝑄(𝑘blue) ∈ [ℓ𝑄, 𝑟𝑄] by the definition of our integer labels 𝜌𝑃 (·), 𝜌𝑄(·) and Lines 2

and 3. In Line 5 we handle the remaining possible blue pairs, which must have

𝜌𝑃 (𝑘blue) ∈ {̃︀ℓ𝑃 , ̃︀𝑟𝑃} or 𝜌𝑄(𝑘blue) ∈ {̃︀ℓ𝑄, ̃︀𝑟𝑄}, and can be found by binary searches on

the lexicographical orderings (to be able to do this, we need to maintain the lexi-

cographical orderings of 𝑃 (𝑘1), . . . , 𝑃 (𝑘𝑟) and the sampled strings 𝑃 (𝑥1), . . . , 𝑃 (𝑥𝑟)

combined).

Note that in Line 7 of Algorithm 4 we abort if we have checked more than 4𝑐′ log𝑚

boundary points, so that Algorithm 4 has worst-case ̃︀𝑂(1) overall running time. But

this early stopping would also introduce (one-sided) error if there are too many bound-

ary points which we have no time to check. However, a straightforward application

of Lemma 3.3.5 implies that, with high success probability over the initial samples

𝑃 (𝑥1) ⪯ 𝑃 (𝑥2) ⪯ · · · ⪯ 𝑃 (𝑥𝑟) and 𝑄(𝑦1) ⪯ 𝑄(𝑦2) ⪯ · · · ⪯ 𝑄(𝑦𝑟), only 1/ poly(𝑚)
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Algorithm 4: Implementation of Line 4 in Algorithm 2
1 Given indices ℓ𝑃 , 𝑟𝑃 , ℓ𝑄, 𝑟𝑄.
2 Let ̃︀ℓ𝑃 := 𝜌𝑃 (𝑘𝑃ℓ𝑃 ), ̃︀𝑟𝑃 := 𝜌𝑃 (𝑘𝑃𝑟𝑃 ).
3 Let ̃︀ℓ𝑄 := 𝜌𝑄(𝑘𝑄

ℓ𝑄
), ̃︀𝑟𝑄 := 𝜌𝑄(𝑘𝑄

𝑟𝑄
).

4 if the 2D range sum of [̃︀ℓ𝑃 + 1 . . ̃︀𝑟𝑃 − 1]× [̃︀ℓ𝑄 + 1 . . ̃︀𝑟𝑄 − 1] is non-zero then
return True

5 for blue index 𝑘blue ∈ 𝐾 such that 𝜌𝑃 (𝑘blue) ∈ {̃︀ℓ𝑃 , ̃︀𝑟𝑃} or 𝜌𝑄(𝑘blue) ∈ {̃︀ℓ𝑄, ̃︀𝑟𝑄}
do

6 if pos𝑃 (𝑘blue) ∈ [ℓ𝑃 . . 𝑟𝑃 ], pos𝑄(𝑘blue) ∈ [ℓ𝑄 . . 𝑟𝑄] then return True
7 if already looped 4𝑐′ log𝑚 times then exit for loop

8 return False

fraction of the 𝑟-subsets 𝐾 = {𝑘1, . . . , 𝑘𝑟} ∈ [𝑚] in the Johnson graph can have

more than 𝑐′ log𝑚 strings receiving the same label. On these problematic states

𝐾 = {𝑘1, . . . , 𝑘𝑟} ∈ [𝑚] , the checking procedure may erroneously recognize 𝐾 as

unmarked, while other states are handled correctly by Algorithm 4 since there is no

early aborting. This decreases the fraction of marked states in the Johnson graph by

only a 1/ poly(𝑚) fraction, which does not affect the overall time complexity of our

quantum walk algorithm.

3.4 Anchor Sets from String Synchronizing Sets

In this section, we describe the anchor sets claimed in Theorem 3.1.2. The construc-

tion crucially relies on the quantum algorithm for string synchronizing sets (Defini-

tion 1.2.4) from Theorem 1.2.5, which will be proved in Chapter 5. It also uses the

Lexicographically Minimal String Rotation algorithm from Theorem 1.2.3 (which will

be proved in Chapter 4) for computing Lyndon Roots. The arguments to construct

anchor sets from string synchronizing sets mostly follow from the classical algorithm

by Charalampopoulos, Kociumaka, Pissis, and Radoszewski [40].

For threshold length 𝑑, we set parameter 𝜏 = ⌊𝑑/3⌋. Define a 𝜏 -run to be a run

of length at least 3𝜏 − 1 with period at most 1
3
𝜏 . Consider the following set B of

positions in 𝑇 = 𝑆1$𝑆2, where |𝑇 | = 𝑛.
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Definition 3.4.1 ([40]). Define B ⊆ [𝑛] as follows: for all 𝜏 -runs 𝑇 [𝑙 . . 𝑟], let 𝑃 be

the Lyndon root of 𝑇 [𝑙 . . 𝑟], and 𝑃 = 𝑇 [𝑖(𝑏) . . 𝑖(𝑏) + 𝑝) = 𝑇 [𝑖(𝑒) . . 𝑖(𝑒) + 𝑝) be the first

and last occurrences of 𝑃 in 𝑇 [𝑙 . . 𝑟]. Add 𝑖(𝑏), 𝑖(𝑏) + 𝑝, and 𝑖(𝑒) into B.

Then, [40] showed the following lemma.

Lemma 3.4.2 ([40, Lemma 15]). Let A be a 𝜏 -string synchronizing set of 𝑇 = 𝑆1$𝑆2.

Then, A ∪ B is an anchor set.

More specifically, let 𝑆1[𝑖1 . . 𝑖1+𝑑) = 𝑆2[𝑖2 . . 𝑖2+𝑑) be a length-𝑑 common substring

with minimized 𝑖1 + 𝑖2. Then, 𝑆1[𝑖1 . . 𝑖1 + 𝑑) = 𝑆2[𝑖2 . . 𝑖2 + 𝑑) is anchored by A ∪ B.

Now we are ready to describe the construction of our anchor set.

Definition 3.4.3 (Anchor set C). Let A be the 𝜏 -synchronizing set of 𝑇 determined

by random seed 𝜎 (Theorem 1.2.5). Let 𝑓(𝜏) = 𝜏 𝑜(1) be the expected sparsity upper

bound in Theorem 1.2.5.

Define J = {1, 1 + 𝜏, 1 + 2𝜏, . . . } ∩ [𝑛 − 3𝜏 + 2] of size |J| ≤ 𝑂(𝑛/𝜏). For every

𝑖 ∈ J, let C𝑖 ⊆ [1 . . 𝑛] be defined by the following procedure.

• Step 1: If |A∩[𝑖 . . 𝑖+𝜏)| ≤ 100𝑓(𝜏), then add all the elements from 𝐴∩[𝑖 . . 𝑖+𝜏)

into C𝑖. Otherwise, do not add any.

• Step 2: If 𝑖 ∈ Q (defined in (5.1)), then let 𝑝 := per(𝑇 [𝑖 . . 𝑖 + 𝜏)) ≤ 𝜏/3, and

extend this period to both directions (up to distance 𝜏):

𝑟 := max
{︀
𝑟 : 𝑟 ≤ min{𝑛, 𝑖+ 2𝜏} ∧ per(𝑇 [𝑖 . . 𝑟]) = 𝑝

}︀
,

𝑙 := min
{︀
𝑙 : 𝑙 ≥ min{1, 𝑖− 𝜏} ∧ per(𝑇 [𝑙 . . 𝑖+ 𝜏)) = 𝑝

}︀
.

Let 𝑃 be the Lyndon root of 𝑇 [𝑙 . . 𝑟]. Let 𝑃 = 𝑇 [𝑖(𝑏) . . 𝑖(𝑏)+𝑝) = 𝑇 [𝑖(𝑒) . . 𝑖(𝑒)+𝑝)

be the first and last occurrences of 𝑃 in 𝑇 [𝑙 . . 𝑟]. Add 𝑖(𝑏), 𝑖(𝑏) + 𝑝, and 𝑖(𝑒) into

C𝑖.

Finally, the anchor set C is defined as
⋃︀

𝑖∈J C𝑖.

Now we show that the anchor set C from Definition 3.4.3 satisfies the properties

required by Theorem 3.1.2.
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Proof of Theorem 3.1.2. Recall 𝑛 = |𝑇 | = |𝑆1| + 1 + |𝑆2| and 𝜏 = ⌊𝑑/3⌋. We first

observe that |C𝑖| ≤ 𝜏 𝑜(1) and C =
⋃︀

𝑖∈J C𝑖 has size |C| ≤ |J| · 𝜏 𝑜(1) ≤ 𝑛/𝜏 1−𝑜(1) by

definition. Then, observe that C𝑖 can be computed in 𝜏 1/2+𝑜(1) · poly log(𝑛) quantum

time given any 𝑖 ∈ J, due to the efficient computability of A (Theorem 1.2.5), and

fast quantum algorithms for computing period (Corollary 2.5.3) and minimal string

rotation (Theorem 1.2.3). Hence, C is 𝜏 1/2+𝑜(1) · poly log(𝑛)-time constructible.

It remains to explain why C is an anchor set with at least constant probability.

First we show that B ⊆ C. Let any 𝜏 -run 𝑇 [𝑙 . . 𝑟] be given, with 𝑃 = 𝑇 [𝑖(𝑏) . . 𝑖(𝑏)+

𝑝) = 𝑇 [𝑖(𝑒) . . 𝑖(𝑒) + 𝑝) being the first and last occurrences of its Lyndon root 𝑃 in

𝑇 [𝑙 . . 𝑟]. By definition of Q, we have [𝑙 . . 𝑟 − 𝜏 + 1] ⊆ Q. Let 𝑗1, 𝑗2 be the minimum

and maximum 𝑗 ∈ J ∩ [𝑙 . . 𝑟 − 𝜏 + 1] (which must be non-empty). Then, we must

have 𝑗1− 𝑙 ∈ [0 . . 𝜏) which then implies 𝑖(𝑏), 𝑖(𝑏)+ 𝑝 ∈ C𝑗1 in Step 2 of Definition 3.4.3.

Similarly, we can show 𝑖(𝑒) ∈ C𝑗2 . Hence, B ⊆ C.

Now, let 𝑆1[𝑖1 . . 𝑖1 + 𝑑) = 𝑆2[𝑖2 . . 𝑖2 + 𝑑) be a length-𝑑 common substring with

minimized 𝑖1+ 𝑖2. If 𝑆1[𝑖1 . . 𝑖1+𝑑) = 𝑆2[𝑖2 . . 𝑖2+𝑑) is already anchored by B, then we

are done. Otherwise, by Lemma 3.4.2 it is anchored by A∩B, for any 𝜏 -synchronizing

set A. We consider the synchronizing positions in A that may be used as the anchor

here, i.e., they are close to 𝑖1 or |𝑆1| + 1 + 𝑖2 up to 𝑂(𝜏) distance. By the sparsity

property (Theorem 1.2.5), the expectation (over seed 𝜎) of

|[𝑖1 − 𝜏 . . 𝑖1 + 𝑑+ 𝜏) ∩ A|+ |[|𝑆1|+ 1 + 𝑖2 − 𝜏 . . |𝑆1|+ 1 + 𝑖2 + 𝑑+ 𝜏) ∩ A|

is at most 10 · 𝑓(𝜏). By Markov’s inequality, with constant probability, this is at

most 100𝑓(𝜏), meaning that these anchors will all be included in C by the Step 1 of

Definition 3.4.3. Hence, C is an anchor set with at least constant probability.
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3.5 Quantum Query Lower Bound for LCS with Thresh-

old 𝑑

In this section, we observe a nearly matching lower bound for the LCS problem with

threshold 𝑑.

Theorem 1.2.2 (LCS with threshold 𝑑, lower bound). For |Σ| ≥ Ω(𝑛/𝑑), decid-

ing whether 𝑆1, 𝑆2 ∈ Σ𝑛 have a common substring of length 𝑑 requires Ω(𝑛2/3/𝑑1/6)

quantum queries.

Our proof is based on known results in quantum query complexity. Let

𝑃𝑑 := {𝑥1𝑥2 · · ·𝑥𝑑 ∈ (Σ ∪ {⋆})𝑑 : exactly one 𝑖 ∈ [𝑑] satisfies 𝑥𝑖 ̸= ⋆}.

Define a partial function PSEARCH𝑑 : 𝑃𝑑 → Σ by letting PSEARCH𝑑(𝑥1 · · ·𝑥𝑑) return

the only non-⋆ symbol 𝑥𝑖 (𝑖 ∈ [𝑑]). We will use the following composition theorem

with inner function being the PSEARCH problem [30].

Theorem 3.5.1 ([30]). Let 𝑓 : Σ𝑚 → 𝐴 be a function with quantum query complexity

𝑄(𝑓). Let ℎ be the composition of 𝑓 with PSEARCH𝑑, namely

ℎ(𝑥1,1, . . . , 𝑥1,𝑑; . . . ;𝑥𝑚,1, . . . , 𝑥𝑚,𝑑)

:= 𝑓(PSEARCH𝑑(𝑥1,1, . . . , 𝑥1,𝑑), . . . ,PSEARCH𝑑(𝑥𝑚,1, . . . , 𝑥𝑚,𝑑)).

Then, the quantum query complexity of ℎ satisfies 𝑄(ℎ) ≥ Ω(𝑄(𝑓) ·
√
𝑑).

We will reduce the composition of (bipartite) Element Distinctness with PSEARCH𝑑

to the LCS problem with threshold 𝑑.

Proof of Theorem 1.2.2. In the (bipartite) Element Distinctness problem, we are given

two length-𝑚 arrays 𝑎, 𝑏 ∈ Σ𝑚, and want to decide whether there exist 𝑖, 𝑗 ∈ [𝑚] such

that 𝑎𝑖 = 𝑏𝑗. When |Σ| ≥ Ω(𝑚), this problem requires Ω(𝑚2/3) quantum query

complexity [3, 8].
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Let 𝑚 = 𝑛/𝑑. Let 𝑎, 𝑏 ∈ (Σ ∪ {⋆})𝑚𝑑 be an instance of Bipartite Element Dis-

tinctness problem composed with the PSEARCH𝑑 problem. By Theorem 3.5.1, this

problem requires quantum query complexity Ω(𝑚2/3 ·
√
𝑑) = Ω(𝑛2/3/𝑑1/6).

Now we will create an LCS instance of two strings 𝑆, 𝑇 of length Θ(𝑛). Define

string 𝑆 as the concatenation

𝑆 := 𝐴1#1𝐴2#2 · · ·#𝑚−1𝐴𝑚,

where #𝑖 are distinct delimiter symbols, and block 𝐴𝑖 (𝑖 ∈ [𝑚]) is defined as

𝐴𝑖 = ⋆10𝑑𝑎𝑖,1𝑎𝑖,2 . . . 𝑎𝑖,𝑑 ⋆
10𝑑 .

Notice that, when 𝑎𝑖,1𝑎𝑖,2 . . . 𝑎𝑖,𝑑 is an input for the PSEARCH𝑑 problem, the unique

non-⋆ character inside block 𝐴𝑖 has at least 10𝑑 ⋆s next to it on both sides. The string

𝑇 is similarly defined based on 𝑏, using a different set of delimter symbols.

If there exits 𝑖, 𝑗 ∈ [𝑚] such that ̃︀𝑎𝑖 = ̃︀𝑏𝑗 ̸= ⋆, where ̃︀𝑎𝑖 = PSEARCH𝑑(𝑎𝑖,1, . . . , 𝑎𝑖,𝑑),

and ̃︀𝑏𝑗 = PSEARCH𝑑(𝑏𝑗,1, . . . , 𝑏𝑗,𝑑), then the LCS between 𝑆, 𝑇 is at least 1 + 20𝑑,

consisting of the matched non-⋆ symbol together with ⋆10𝑑 on its left and another ⋆10𝑑

on its right. On the other hand, any substring in 𝑆 (or 𝑇 ) of length at least 11𝑑 that

contains no delimters must contain a non-⋆ symbol, so a common substring between

𝑆 and 𝑇 of length at least 11𝑑 implies that 𝑎 and 𝑏 have a common non-⋆ symbol.

Hence, we can solve the instance by checking whether LCS(𝑆, 𝑇 ) ≥ 20𝑑 + 1 or

LCS(𝑆, 𝑇 ) ≤ 11𝑑− 1.

Observe that the proof easily extends to (2 − 𝜀)-approximation for any constant

𝜀 > 0. By a suitable binary encoding of Σ, one can extend the lower bound to the

case of binary strings with a 𝑂(log 𝑛)-factor loss, similar to [51].
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Chapter 4

Minimal String Rotation

In this chapter, we prove Theorem 1.2.3 by designing efficient quantum algorithms for

(Lexicographically) Minimal String Rotation, Minimal Suffix, and Maximal Suffix.

4.1 Minimal Length-ℓ Substrings

Rather than work with the Minimal String Rotation problem directly, we present an

algorithm for the following problem, which is more amenable to work with using our

divide-and-conquer approach.

Minimal Length-ℓ Substrings

Input: A string 𝑆[1 . . 𝑛] and an integer 𝑛/2 ≤ ℓ ≤ 𝑛

Task: Output all elements in argmin1≤𝑖≤𝑛−ℓ+1 𝑆[𝑖 . . 𝑖+𝑙) represented as an arith-

metic progression.

The elements in the output are guaranteed to be an arithmetic progression thanks

to Lemma 2.1.3.

We will prove the following theorem.

Theorem 4.1.1. Minimal Length-ℓ Substrings can be solved by a quantum algorithm

with 𝑛1/2+𝑜(1) query complexity and time complexity.

For convenience, we also introduce the following problem.
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Maximal String Rotation

Input: A string 𝑆

Task: Output a position 𝑖 ∈ [1 . . |𝑆|] such that 𝑆[𝑗 . . |𝑆|]𝑆[1 . . 𝑗 − 1] ⪯

𝑆[𝑖 . . |𝑆|]𝑠[1 . . 𝑖 − 1] holds for all 𝑗 ∈ [1 . . |𝑆|]. If there are multiple solutions,

output the smallest such 𝑖.

We now use a series of simple folklore reductions to show that the Minimal Length-

ℓ Substrings problem generalizes the Minimal String Rotation problem.

Proposition 4.1.2. 1. The Minimal String Rotation problem reduces to the Max-

imal String Rotation problem.

2. The Maximal String Rotation problem reduces to the Maximal Suffix problem.

3. The Maximal Suffix problem reduces to the Minimal Suffix problem.

4. The Minimal Suffix problem reduces to the Minimal Length-ℓ Substrings prob-

lem.

Proof. Item 1. Given 𝑆 ∈ Σ𝑛, where Σ is identified with the integer set [1 . . |Σ|], let

𝑇 = 𝜙(𝑆[1]) · · ·𝜙(𝑆[𝑛]), where 𝜙(𝑐) := |Σ|− 𝑐+1. Observe that the lexicographically

maximal rotation of 𝑇 corresponds to the lexicographically minimal rotation of 𝑆.

Item 2. Given an input string 𝑆 ∈ Σ𝑛 of the Maximal String Rotation problem,

let 𝑇 = 𝑆𝑆 be the string of length 2𝑛 formed by concatenating 𝑆 with itself. Suppose

𝑖 ∈ [1 . . 𝑛] is the smallest starting index of the maximal rotation of 𝑆. Then observe

that 𝑖 is the starting index of the maximal suffix of 𝑇 as well.

Item 3. Given an input string 𝑆 ∈ Σ𝑛 of the Maximal Suffix problem, let

$ = |Σ| + 1 denote a character lexicographically after all the characters in Σ, and

define 𝑇 = 𝜙(𝑆[1])𝜙(𝑆[2]) · · ·𝜙(𝑆[𝑛])$, where 𝜙(𝑐) := |Σ| − 𝑐 + 1. Suppose that

𝑆[𝑖 . . 𝑛] is the maximal suffix of 𝑆. Then observe that 𝑇 [𝑖 . . 𝑛 + 1] is the minimal

suffix of 𝑇 .

Item 4. Given an input string 𝑆 ∈ Σ𝑛 of the Minimal Suffix problem, define string

𝑇 = 𝑆 00 · · · 0⏟  ⏞  
𝑛−1 times

of length 2𝑛 − 1, where character 0 is smaller than every character

from the alphabet Σ of 𝑆. Suppose 𝑖 is the starting index of the minimal suffix
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of 𝑆. Then, 𝑖 is also the unique index returned by solving the Minimal Length-𝑛

Substrings problem on 𝑇 (note that 𝑛 is at least half the length of 𝑇 ), due to the

following simple fact: for 𝑖, 𝑗 ∈ [1 . . 𝑛], 𝑖 ̸= 𝑗, we have 𝑆[𝑖 . . 𝑛] ≺ 𝑆[𝑗 . . 𝑛] if and only

if 𝑆[𝑖 . . 𝑛] 00 · · · 0⏟  ⏞  
𝑖−1 times

≺ 𝑆[𝑗 . . 𝑛] 00 · · · 0⏟  ⏞  
𝑗−1 times

.

By chaining the above reductions together, we prove our main theorem as a corol-

lary of Theorem 4.1.1.

Proof of Theorem 1.2.3. By combining the reductions in Proposition 4.1.2, we see

that all the problems mentioned in the theorem statement reduce to the Minimal

Length-ℓ Substrings problem. These reductions are local : for an input string 𝑆 and

its image 𝑇 under any of these reductions, any query to a character of 𝑇 can be

simulated with 𝑂(1) queries to the characters of 𝑆. Thus, we can get a 𝑛1/2+𝑜(1) query

and time quantum algorithm for each of the listed problems by using the algorithm

of Theorem 4.1.1 and simulating the aforementioned reductions appropriately in the

query model.

Remark 4.1.3. We remark that, from the Ω(
√
𝑛) quantum query lower bound for

Minimal String Rotation [92], this chain of reductions also implies that Maximal

Suffix and Minimal Suffix require Ω(
√
𝑛) quantum query complexity.

It remains to prove Theorem 4.1.1. To solve the Minimal Length-ℓ Substrings

problem, it suffices to find any individual solution

𝑖 ∈ argmin
1≤𝑖≤𝑛−ℓ+1

𝑆[𝑖 . . 𝑖+ ℓ),

and then use the quantum Exact String Matching algorithm to find all the elements

(represented as an arithmetic progression) in ̃︀𝑂(√𝑛) time. Our approach will invoke

the following “exclusion rule,” which simplifies the previous approach used in [92]. We

remark that similar kinds of exclusion rules have been applied previously in parallel

algorithms for Exact String Matching [91] and Minimal String Rotation [57] (under

the name of “Ricochet Property” or “duel”), as well as the quantum algorithm by Wang
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and Ying [92, Lemma 5.1]. The advantage of our exclusion rule is that it naturally

yields a recursive approach for solving the Minimal Length-ℓ Substrings problem.

Lemma 4.1.4 (Exclusion rule). In the Minimal Length-ℓ Substrings problem with

input 𝑆[1 . . 𝑛] with 𝑛/2 ≤ ℓ ≤ 𝑛, let

𝐼 := argmin
1≤𝑖≤𝑛−ℓ+1

𝑆[𝑖 . . 𝑖+ ℓ)

denote the set of answers forming an arithmetic progression. For integers 𝑎 ≥ 1, 𝑘 ≥ 1

such that 𝑎+ 𝑘 ≤ 𝑛− ℓ+ 1, let 𝐽 denote the set of answers in the Minimal Length-𝑘

Substrings problem on the input string 𝑆[𝑎 . . 𝑎+2𝑘). Then if {min 𝐽,max 𝐽}∩ 𝐼 = ∅,

we must have 𝐽 ∩ 𝐼 = ∅.

Proof. First observe that

𝑎+ 2𝑘 − 1 ≤ 𝑛− ℓ+ 𝑘 ≤ 2(𝑛− ℓ) ≤ 𝑛,

so 𝑆[𝑎 . . 𝑎+2𝑘) is a length-2𝑘 substring of 𝑆. Since the statement is trivial for |𝐽 | ≤ 2,

we assume 𝐽 consists of 𝑗1 < 𝑗2 < · · · < 𝑗𝑚 where 𝑚 ≥ 3. Let 𝑝 = 𝑗2 − 𝑗1. Then

𝑝 = (𝑗𝑚 − 𝑗1)/(𝑚− 1) ≤ 𝑘/2. Then from

𝑆[𝑗1 . . 𝑗1 + 𝑘) = 𝑆[𝑗2 . . 𝑗2 + 𝑘) = · · · = 𝑆[𝑗𝑚 . . 𝑗𝑚 + 𝑘)

we know that 𝑝 must be a period of 𝑆[𝑗1 . . 𝑗𝑚 + 𝑘).1 We consider the first position

𝑟 where this period 𝑝 stops, that is, 𝑟 := min{𝑗𝑚 + 𝑘 ≤ 𝑟 ≤ 𝑛 : 𝑆[𝑟] ̸= 𝑆[𝑟 − 𝑝]}. If

such 𝑟 does not exist, let 𝑟 = 𝑛 + 1. With this setup, we now proceed to prove the

contrapositive of the original claim.

Suppose 𝑗𝑞 ∈ 𝐼 for some 1 ≤ 𝑞 ≤ 𝑚. We consider three cases.

• Case 1: 𝑟 ≥ 𝑗𝑚 + ℓ.

In this case, we must have 𝑆[𝑗1 . . 𝑗1+ ℓ) = 𝑆[𝑗2 . . 𝑗2+ ℓ) = · · · = 𝑆[𝑗𝑚 . . 𝑗𝑚+ ℓ).

Then, 𝑗𝑞 ∈ 𝐼 implies 𝑗1 ∈ 𝐼 and 𝑗2 ∈ 𝐼.
1In fact, 𝑝 is the minimum period of this substring.
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• Case 2: 𝑟 < 𝑗𝑚 + ℓ, and 𝑆[𝑟] < 𝑆[𝑟 − 𝑝].

For every 1 ≤ 𝑡 ≤ 𝑚 − 1, by the definition of 𝑟, we must have 𝑆[𝑗𝑡+1 . . 𝑟) =

𝑆[𝑗𝑡 . . 𝑟−𝑝). Then from 𝑆[𝑟] < 𝑆[𝑟−𝑝] we have 𝑆[𝑗𝑡 . . 𝑗𝑡+ℓ) ⪰ 𝑠[𝑗𝑡+1 . . 𝑗𝑡+1+ℓ).

Hence, 𝑗𝑞 ∈ 𝐼 implies 𝑗𝑞+1, 𝑗𝑞+1, . . . , 𝑗𝑚 ∈ 𝐼.

• Case 3: 𝑟 < 𝑗𝑚 + ℓ, and 𝑆[𝑟] > 𝑆[𝑟 − 𝑝].

By an argument similar to Case 2, we can show 𝑆[𝑗𝑡 . . 𝑗𝑡+ℓ) ⪯ 𝑆[𝑗𝑡+1 . . 𝑗𝑡+1+ℓ).

Then, 𝑗𝑞 ∈ 𝐼 implies 𝑗𝑞−1, 𝑗𝑞−2, . . . , 𝑗1 ∈ 𝐼.

Thus {𝑗1, 𝑗𝑚} ∩ 𝐼 ̸= ∅ in all of the cases, which proves the desired result.

4.2 Divide and Conquer Algorithm

To motivate our quantum algorithm, we first describe a classical algorithm for the

Minimal 𝑛/2-length Substring problem which runs in 𝑂(𝑛 log 𝑛) time (note that other

classical algorithms can solve the problem faster in 𝑂(𝑛) time). Our quantum algo-

rithm will use the same setup, but obtain a speed-up via Grover search. For the

purpose of this overview, we assume 𝑛 is a power of 2. The classical algorithm works

as follows:

Suppose we are given an input string 𝑆 of length 𝑛 and target substring size

ℓ = 𝑛/2. Set 𝑚 = ℓ/2 = 𝑛/4. Then the first half of the solution (i.e. the first 𝑚

characters of a minimum length ℓ-substring) are contained entirely in either the block

𝑆1 = 𝑆[1 . . 𝑛/2] or the block 𝑆2 = 𝑆[𝑛/4 . . 3𝑛/4).

With that in mind, we recursively solve the problem on the strings 𝑆1 and 𝑆2

with target size 𝑚 in both cases. Let 𝑢1 and 𝑣1 be the smallest and largest starting

positions returned by the recursive call to 𝑆1 respectively. Define 𝑢2 and 𝑣2 as the

analogous positions returned by the recursive call to 𝑆2. Then by Lemma 4.1.4, the

true starting position of the minimal ℓ-length substring of 𝑆 is in {𝑢1, 𝑢2, 𝑣1, 𝑣2}.

We identify the ℓ-length substrings starting at each of these positions, and find

their lexicographic minimum in 𝑂(𝑛) time via linear-time string comparison. This

lets us find at least one occurrence of the minimum substring of length ℓ. Then, to
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find all occurrences of this minimum substring, we use a linear time string matching

algorithm (such as the classic Knuth-Morris-Pratt algorithm [68]) to find the first

two occurrences of the minimum length ℓ substring in 𝑆. The difference between

the starting positions then lets us determine the common difference of the arithmetic

sequence of positions encoding all starting positions of the minimum substring.

If we let 𝒯 (𝑛) denote the runtime of this algorithm, the recursion above yields a

recurrence

𝒯 (𝑛) = 2𝒯 (𝑛/2) +𝑂(𝑛)

which solves to 𝒯 (𝑛) = 𝑂(𝑛 log 𝑛).

4.3 Quantum Speedup

Next, we show how to improve the runtime of this divide-and-conquer approach in

the quantum setting. The key change is to break the string into 𝑏 blocks, and apply

quantum minimum finding over these blocks which only takes ̃︀𝑂(√𝑏) recursive calls,

instead of 𝑏 recursive calls needed by the classical algorithm. We will set 𝑏 large

enough to get a quantum speedup.

Proof of Theorem 4.1.1. Let 𝑏 be some parameter to be set later. For convenience

assume that 𝑏 divides both ℓ and 𝑛 (this assumption does not affect the validity of our

arguments, and is only used to let us avoid working with floor and ceiling functions).

Set 𝑚 = ℓ/𝑏.

For each nonnegative integer 𝑘 ≤ ⌊𝑛/𝑚⌋ − 2 we define the substring

𝑆𝑘 = 𝑆(𝑘𝑚 . . (𝑘 + 2)𝑚].

Also set 𝑆⌊𝑛/𝑚⌋−1 = 𝑆(𝑛− 2𝑚. . 𝑛].

These 𝑆𝑘 blocks each have length 2𝑚, and together cover every substring of length

𝑚 in 𝑆. Let 𝑃 be the minimum length-ℓ substring in 𝑆. By construction, the first

𝑚 = ℓ/𝑏 characters of 𝑃 is contained entirely in one of the 𝑆𝑘 blocks.
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For each block 𝑆𝑘, let 𝑃𝑘 denote its minimum length-𝑚 substring and let 𝑢𝑘 and

𝑣𝑘 be the smallest and largest starting positions respectively of an occurrence of 𝑃𝑘

in 𝑆𝑘. The lexicographically smallest prefix 𝑃𝑘 will make up the first 𝑚 characters

of the minimum length-ℓ substring. Thus by Lemma 4.1.4, we know the minimum

length-ℓ substring of 𝑆 must start at position 𝑢𝑘 or 𝑣𝑘 for some index 𝑘.

We now use quantum minimum finding to find 𝑃 . We search over the Θ(𝑛/𝑚) =

Θ(𝑏) blocks above. To compare blocks 𝑆𝑖 and 𝑆𝑗, we recursively solve the Minimal

Length-𝑚 Substrings problem on 𝑆𝑖 and 𝑆𝑗 to find positions 𝑢𝑖, 𝑣𝑖 and 𝑢𝑗, 𝑣𝑗. Then we

look at the substrings of length ℓ starting at these four positions. By binary search and

Grover search (Observation 2.5.1), in ̃︀𝑂(√𝑛) time we can determine which of these

four substrings is lexicographically the smallest. If the smallest of these substrings

came from 𝑆𝑖 we say block 𝑆𝑖 is smaller than block 𝑆𝑗, and vice versa.

After running the minimum finding algorithm, we will have found 𝑃 . To return all

occurrences of 𝑃 , we can then use the quantum algorithm for Exact String Matching

to find the two leftmost occurrences and the rightmost occurrence of 𝑃 in 𝑆 in ̃︀𝑂(√𝑛)
time. Together they determine the positions of all copies of 𝑃 in 𝑆 as an arithmetic

sequence, which we can return to solve the original problem.

It remains to check the runtime of the algorithm. Let 𝑇 (𝑛) denote the runtime

of the algorithm with error probability at most 1/𝑛. Recall that our algorithm solves

Minimum Finding over Θ(𝑏) blocks, where each comparison involves a recursive call

on strings of size 2𝑚 = Θ(𝑛/𝑏) and a constant number of string comparisons of length

𝑛 (via Observation 2.5.1), and finally solves Exact String Matching for strings of size

Θ(𝑛). Hence we have the recurrence (assuming all logarithms are base 2)

𝒯 (𝑛) ≤ ̃︀𝑂(√𝑏) · (︁𝒯 (𝑛/𝑏) + ̃︀𝑂(√𝑛))︁+ ̃︀𝑂(√𝑛) = 𝑐(log 𝑏)𝑒
√
𝑏
(︀
𝒯 (𝑛/𝑏) +

√
𝑛
)︀

for some constants 𝑐, 𝑒 > 0, where the polylogarithmic factors are inherited from the

subroutines we use and the possibility of repeating our steps 𝑂(log 𝑛) times to drive
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down the error probability. Now set

𝑏 = 2𝑑(log𝑛)
2/3

for some constant 𝑑. We claim that for sufficiently large 𝑑, we recover a runtime of

𝒯 (𝑛) = 𝑛1/2 · 2𝑑(log𝑛)2/3 .

We prove this by induction. The result holds when 𝑛 is a small constant by taking

𝑑 large enough. Now, suppose we want to prove the result for some arbitrary 𝑛, and

that the claimed runtime bound holds on inputs of size less than 𝑛. Then using the

recurrence above and the inductive hypothesis we have

𝒯 (𝑛) ≤ 𝑐(log 𝑏)𝑒
√
𝑏
(︀
𝑇 (𝑛/𝑏) +

√
𝑛
)︀

≤ 𝑐(log 𝑏)𝑒
√
𝑛
(︁
2𝑑(log(𝑛/𝑏))

2/3

+
√
𝑏
)︁

≤ 2𝑐(log 𝑏)𝑒
√
𝑛 · 2𝑑(log(𝑛/𝑏))2/3 ,

where the last inequality follows from 𝑑(log(𝑛/𝑏))2/3 ≥ 𝑑(log(
√
𝑛))2/3 > 1

2
𝑑(log 𝑛)2/3 =

log(
√
𝑏) for large enough 𝑛. Equivalently, this means that

𝒯 (𝑛)
𝑛1/22𝑑(log𝑛)2/3

≤ 2𝑐 · 2𝑒(log log 𝑏)−𝑑((log𝑛)2/3−(log𝑛−log 𝑏)2/3). (4.1)

Using the mean value theorem, we can bound

(log 𝑛)2/3 − (log 𝑛− log 𝑏)2/3 ≥ (2/3)(log 𝑏)(log 𝑛)−1/3

= (2/3)𝑑(log 𝑛)1/3

≥ 𝜔(log log 𝑏),

where the last inequality follows from log log 𝑏 = log 𝑑 + (2/3) log log 𝑛. Thus, by

taking 𝑑 to be a large enough constant in terms of 𝑐 and 𝑒, we can force the right

hand side of (4.1) to be less than 1, which proves that

𝒯 (𝑛) ≤ 𝑛1/22𝑑(log𝑛)
2/3

.
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This completes the induction, and proves that we can solve the Minimum Length-ℓ

Substrings problem in the desired runtime as claimed.
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Chapter 5

String Synchronizing Sets

In this chapter, we prove Theorem 1.2.5 by designing an efficient quantum algorithm

for constructing a string synchronizing set [63] (Definition 1.2.4).

5.1 Review of Kempa and Kociumaka’s Construc-

tion

We first review the underlying framework of Kempa and Kociumaka’s construction

[63], which will be used in our construction as well. Define set

Q := {𝑖 ∈ [1 . . 𝑛− 𝜏 + 1] : per(𝑇 [𝑖 . . 𝑖+ 𝜏)) ≤ 𝜏/3}, (5.1)

which contains the starting positions of highly-periodic length-𝜏 substrings.

Let 𝜑 : Σ𝜏 → 𝑋 be a mapping from length-𝜏 strings to some totally ordered set 𝑋.

For index 𝑖 ∈ [1 . . 𝑛− 𝜏 +1] in the input string 𝑇 [1 . . 𝑛], we introduce the shorthand

Φ(𝑖) := 𝜑(𝑇 [𝑖 . . 𝑖+ 𝜏)). (5.2)

Then, define the synchronizing set as

A :=
{︀
𝑖 ∈ [1 . . 𝑛− 2𝜏 + 1] : min{Φ(𝑗) : 𝑗 ∈ [𝑖 . . 𝑖+ 𝜏 ] ∖Q} ∈ {Φ(𝑖),Φ(𝑖+ 𝜏)}

}︀
. (5.3)
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Then, Kempa and Kociumaka proved the following lemma.

Lemma 5.1.1 ([63, Lemma 8.2]). The set A defined in (5.3) is always a 𝜏 -synchronizing

set of 𝑇 .

It is straightforward to check that A satisfies the consistency property in Defi-

nition 1.2.4. To provide an intuition, we briefly restate their proof for the density

property in the simpler case where Q = ∅. Given 𝑖, pick 𝑘 ∈ [𝑖 . . 𝑖 + 2𝜏) with the

minimum Φ(𝑘). If 𝑘 < 𝑖 + 𝜏 , then Φ(𝑘) = min{Φ(𝑗) : 𝑗 ∈ [𝑘 . . 𝑘 + 𝜏 ]}, and hence

𝑘 ∈ A. Otherwise, Φ(𝑘) = min{Φ(𝑗) : 𝑗 ∈ [𝑘− 𝜏 . . 𝑘]}, and hence 𝑘− 𝜏 ∈ A. In either

case, A ∩ [𝑖 . . 𝑖+ 𝜏) ̸= ∅.

From now on, we assume 𝜏 ≥ 100. For 𝜏 < 100, simply setting A := [1 . . 𝑛− 2𝜏 +

1] ∖ Q already satisfies all the requirements in Theorem 1.2.5.

The following property on the structure of set Q will be needed later.

Lemma 5.1.2. Suppose interval [𝑙 . . 𝑟] ⊆ [1 . . 𝑛− 𝜏 + 1] has length 𝑟 − 𝑙 + 1 ≤ 𝜏/3.

Then, [𝑙 . . 𝑟] ∩ Q is either empty or an interval.

Proof. We only need to consider the case where |[𝑙 . . 𝑟]∩Q| ≥ 2, and let 𝑗 < 𝑘 be the

minimum and maximum element in [𝑙 . . 𝑟] ∩ Q, respectively. By definition of Q, we

have 𝑝 = per(𝑇 [𝑗 . . 𝑗 + 𝜏 − 1]) ≤ 𝜏/3 and 𝑞 = per(𝑇 [𝑘 . . 𝑘 + 𝜏 − 1]) ≤ 𝜏/3. Applying

weak periodicity lemma (Lemma 2.1.2) on the substring 𝑇 [𝑘 . . 𝑗 + 𝜏 − 1] of length

𝑗 + 𝜏 − 𝑘 ≥ 2𝜏/3, we know gcd(𝑝, 𝑞) is a period of 𝑇 [𝑘 . . 𝑗 + 𝜏 − 1]. So gcd(𝑝, 𝑞) is

also a period of 𝑇 [𝑗 . . 𝑘+ 𝜏 −1]. This implies [𝑗 . . 𝑘] ⊆ Q, and hence [𝑙 . . 𝑟]∩Q equals

the contiguous interval [𝑗 . . 𝑘].

In the following sections, our goal is to design a suitable (randomized) mapping

𝜑 that makes A sparse in expectation and allows an efficient quantum algorithm to

report elements in A. Our main tool for constructing 𝜑 is Vishkin’s Deterministic

Sampling, which we shall review in the following section.
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5.2 Review of Vishkin’s Deterministic Sampling

Vishkin’s Deterministic Sampling is a powerful technique originally designed for par-

allel pattern matching algorithms [91]. Ramesh and Vinay [85] adapted this technique

into a quantum algorithm for Exact Pattern Matching (Theorem 2.5.2).

The following version of deterministic sampling is taken from Wang and Ying’s

presentation [92] of Ramesh and Vinay’s quantum pattern matching algorithm. Com-

pared to the original classical version by Vishkin, the main differences are: (1) The

construction takes a random seed 𝜎 (but it is called deterministic sampling nonethe-

less), and (2) it explicitly deals with periodic patterns.

Lemma 5.2.1 (Quantum version of Vishkin’s deterministic sampling, [85, 92]). Let

round parameter 𝑤 = 𝑂(log 𝑛). Given 𝑆 ∈ Σ𝑛, every seed 𝜎 ∈ {0, 1}𝑤 determines a

deterministic sample DS𝜎(𝑆) consisting of an offset 𝛿 and a sequence of 𝑤 checkpoints

𝑖1, 𝑖2, . . . , 𝑖𝑤, with the following properties:

• DS𝜎(𝑆) = (𝛿; 𝑖1, 𝑖2, . . . , 𝑖𝑤) can be computed in ̃︀𝑂(√𝑛) quantum time given 𝑆

and 𝜎.

• The offset satisfies 𝛿 ∈ [0 . . ⌊𝑛/2⌋].

• The checkpoints satisfy 𝑖𝑗 − 𝛿 ∈ [1 . . 𝑛] for all 𝑗 ∈ [𝑤].

• Given 𝑆 ∈ Σ𝑛, the following holds with at least 1−𝑛/2𝑤 probability over uniform

random 𝜎 ∈ {0, 1}𝑤: for every offset 𝛿′ ∈ [0 . . ⌊𝑛/2⌋] with 𝛿′ − 𝛿 not being a

multiple of per(𝑆), DS𝜎(𝑆) contains a checkpoint 𝑖𝑗 such that 𝑖𝑗 − 𝛿′ ∈ [1 . . 𝑛]

and 𝑆[𝑖𝑗 − 𝛿′] ̸= 𝑆[𝑖𝑗 − 𝛿].

If the property above is satisfied, we say 𝜎 generates a successful deterministic

sample DS𝜎(𝑆) for 𝑆.

For completeness, here we include the proof of Lemma 5.2.1 given by [92].

Proof of Lemma 5.2.1 based on [92]. The algorithm is summarized in Algorithm 5.

It terminates in no more than 𝑤+1 = 𝑂(log 𝑛) rounds. To implement this algorithm,
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Algorithm 5: Constructing deterministic samples given 𝑆 ∈ Σ𝑛 and 𝜎 ∈
{0, 1}𝑤

1 begin
2 Initialize all offsets in [0 . . ⌊𝑛/2⌋] as alive;
3 Initialize empty checkpoint list 𝐶, and flag← false;
4 while true do
5 𝑝, 𝑞 ← minimum and maximum offsets alive, respectively ;
6 Find the minimum 𝑖 ∈ [1 + 𝑝 . . 𝑛+ 𝑞] such that 𝑆[𝑖− 𝑝] ̸= 𝑆[𝑖− 𝑞] ;
7 if such 𝑖 exists then
8 Append 𝑖 to list 𝐶, and return “failure” if length(𝐶) > 𝑤;

9 Let 𝑐𝑖 ←

{︃
𝑆[𝑖− 𝑝], if 𝜎[length(𝐶)] = 0,

𝑆[𝑖− 𝑞], if 𝜎[length(𝐶)] = 1;

10 Kill all offsets 𝛿′ with 𝑆[𝑖− 𝛿′] ̸= 𝑐𝑖 ;

11 else if 𝑝 = 𝑞 or flag = true then
12 return offset 𝛿 := 𝑝 with checkpoint list 𝐶

13 else
14 flag← true;
15 Kill offset 𝑞;

observe that: whether an offset is killed or not can be decided by checking against

all checkpoints currently in list 𝐶 (Line 10) (and additionally Line 15 if flag = true),

in poly log(𝑛) time. Hence, Line 5 can be implemented using quantum minimum

finding, in ̃︀𝑂(√𝑛) time. Line 6 can be implemented using Grover search with binary

search. Hence, the overall quantum time complexity is ̃︀𝑂(√𝑛).
Observe that, at Line 10, over the random coin 𝜎[length(𝐶)] ∈ {0, 1}, in expecta-

tion at least half of the offsets that are currently alive will be killed by the current

checkpoint. Hence, after finding 𝑤 checkpoints, the expected number of offsets that

are still alive is at most ⌊𝑛/2⌋/2𝑤. When there is only one offset alive, Line 11 suc-

cessfully terminates. So by Markov’s inequality, it reports “failure” with no more than

𝑛/2𝑤 probability.

It remains to show that the final property is satisfied if the algorithm successfully

terminates.

First, notice that whenever an offset 𝛿′ is killed by Line 10, it holds for the check-

point 𝑖 that 𝑆[𝑖 − 𝛿′] ̸= 𝑐𝑖, while 𝑆[𝑖 − 𝛿′′] = 𝑐𝑖 holds for all the offsets 𝛿′′ that
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are still alive, in particular for the offset 𝛿 that will be returned finally. Hence,

𝑆[𝑖− 𝛿′] ̸= 𝑆[𝑖− 𝛿] for this checkpoint 𝑖.

Next, observe that whenever an offset 𝛿′ is killed by Line 10, all other offsets

𝛿′ with per(𝑆) | (𝛿 − 𝛿′) are also killed at this point. So we only need to consider

congruence class of offsets modulo per(𝑆). Note that the if check at Line 7 fails if

and only if per(𝑆) | (𝑞 − 𝑝).

If Line 11 is reached with flag = false, then 𝑝 = 𝑞 = 𝛿, and all other offsets 𝛿′ ̸= 𝛿

must have been killed by Line 10, so the desired property is satisfied.

Now consider the case where flag is set true at some point. Denote the current

values of 𝑝, 𝑞 by 𝑝1, 𝑞1, which belong to the same congruence class. Then, consider

the next time where the if check at Line 7 fails, at which point the values of 𝑝, 𝑞 are

denoted 𝑝2, 𝑞2, which belong to the same congruence class. We know 𝑝1 ≤ 𝑝2 ≤ 𝑞2 <

𝑞1. Hence, the congruence classes of offsets in the interval [𝑝1 . . 𝑝2) have been killed

by Line 10, and the congruence classes of offsets in the interval [𝑞2 . . 𝑞1) have also

been killed by Line 10. This implies that 𝑝2 = 𝑞2 ∈ Zper(𝑆) is the only congruence

class that is alive. Hence, the desired property is satisfied.

In later applications of Lemma 5.2.1, we will fix a randomly chosen 𝜎 ∈ {0, 1}𝑤

with a suitable length 𝑤 = 𝑂(log 𝑛). By a union bound, we can assume that DS𝜎(𝑆)

is successful for all substrings 𝑆 of the input string 𝑇 .

5.3 Construction of Mapping 𝜑

To build the 𝜏 -synchronizing set, our construction of the mapping 𝜑 will be an 𝐿-level

procedure, from top to bottom with length parameters

𝜏 = 𝜏𝐿 > 𝜏𝐿−1 > · · · > 𝜏2 > 𝜏1 = 6.

These parameters will be chosen later (we will choose 𝐿 = Θ(
√
log 𝜏)). In the follow-

ing, we will apply Vishkin’s deterministic sampling (Lemma 5.2.1) to substrings of

the input string 𝑇 [1 . . 𝑛] of length 𝑚 ∈ {𝜏1, 𝜏2, . . . , 𝜏𝐿}.
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We first define a mapping 𝜋 by augmenting the deterministic sample with some

extra information.

Definition 5.3.1 (Mapping 𝜋). For 𝑆 ∈ Σ𝑚 with deterministic sample DS𝜎(𝑆) =

(𝛿; 𝑖1, 𝑖2, . . . , 𝑖𝑤), define tuple

𝜋𝜎(𝑆) := (per(𝑢); 𝛿; 𝑖1, . . . , 𝑖𝑤;𝑆[𝑖1 − 𝛿], . . . , 𝑆[𝑖𝑤 − 𝛿]).

Since 𝑤 = 𝑂(log 𝑛), the tuple 𝜋𝜎(𝑆) can be encoded using poly log(𝑛) bits. The

following key lemma says 𝜋 can distinguish two non-identical strings with large over-

lap.

Lemma 5.3.2. Let 1 ≤ 𝑑 ≤ ⌊𝑚/4⌋ and 𝑆 ∈ Σ𝑚+𝑑. Define two overlapping length-𝑚

substrings 𝑈 = 𝑆[1 . .𝑚], 𝑉 = 𝑆[𝑑 + 1 . . 𝑑 +𝑚]. Suppose seed 𝜎 generates successful

deterministic samples for both 𝑈 and 𝑉 .

Then, 𝜋𝜎(𝑈) = 𝜋𝜎(𝑉 ) if and only if 𝑈 = 𝑉 , in which case 𝑑 is a period of 𝑆.

Proof. The if part is immediate, and we shall prove the only if part.

Assuming 𝜋𝜎(𝑈) = 𝜋𝜎(𝑉 ), let per(𝑈) = per(𝑉 ) = 𝑝, DS𝜎(𝑈) = DS𝜎(𝑉 ) =

(𝛿; 𝑖1, 𝑖2, . . . , 𝑖𝑤) where 0 ≤ 𝛿 ≤ ⌊𝑚/2⌋ and 𝑖𝑗 − 𝛿 ∈ [1 . .𝑚], and we have 𝑈 [𝑖𝑗 − 𝛿] =

𝑉 [𝑖𝑗 − 𝛿] for all 𝑗 ∈ [𝑤]. We will first show 𝑑 must be a multiple of 𝑝.

Suppose for contradiction that 𝑑 is not a multiple of 𝑝. Since max{𝛿, ⌊𝑚/2⌋−𝛿} ≥

⌊𝑚/4⌋ ≥ 𝑑, at least one of the following two cases must happen:

• If 𝑑 ≤ 𝛿, then 0 ≤ 𝛿 − 𝑑 ≤ ⌊𝑚/2⌋, and the property of DS𝜎(𝑈) implies the

existence of a checkpoint 𝑖𝑗 with 𝑖𝑗 − (𝛿 − 𝑑) ∈ [1 . .𝑚] such that 𝑈 [𝑖𝑗 − 𝛿] ̸=

𝑈 [𝑖𝑗 − (𝛿 − 𝑑)], contradicting 𝑈 [𝑖𝑗 − 𝛿] = 𝑉 [𝑖𝑗 − 𝛿] = 𝑈 [𝑖𝑗 − 𝛿 + 𝑑].

• If 𝑑 ≤ ⌊𝑚/2⌋ − 𝛿, then 0 ≤ 𝛿 + 𝑑 ≤ ⌊𝑚/2⌋, and the property of DS𝜎(𝑉 )

implies the existence of a checkpoint 𝑖𝑗 with 𝑖𝑗 − (𝛿 + 𝑑) ∈ [1 . .𝑚] such that

𝑉 [𝑖𝑗 − 𝛿] ̸= 𝑉 [𝑖𝑗 − (𝛿 + 𝑑)], contradicting 𝑉 [𝑖𝑗 − 𝛿] = 𝑈 [𝑖𝑗 − 𝛿] = 𝑉 [𝑖𝑗 − 𝛿 − 𝑑].

Hence, 𝑑 must be a multiple of 𝑝, and hence 𝑝 ≤ 𝑑 ≤ ⌊𝑚/4⌋ < 𝑚 − 𝑑. Then, from

per(𝑆[1 . .𝑚]) = per(𝑆[𝑑+1 . . 𝑑+𝑚]) = 𝑝 < 𝑚−𝑑 we conclude per(𝑆[1 . . 𝑑+𝑚]) = 𝑝,

and 𝑈 = 𝑆[1 . .𝑚] = 𝑆[𝑑+ 1 . . 𝑑+𝑚] = 𝑉 .
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We define another auxiliary mapping 𝜌ℓ for each layer 2 ≤ ℓ ≤ 𝐿, which will be

useful for dealing with highly periodic substrings.

Definition 5.3.3 (Mapping 𝜌). For 2 ≤ ℓ ≤ 𝐿 and 𝑆 ∈ Σ𝜏ℓ , let

𝜌ℓ(𝑆) := max{𝑟 ∈ [1 . . 𝜏ℓ] : per(𝑆[1 . . 𝑟]) = per(𝑆[1 . . 𝜏ℓ−1])},

namely the furthest position that the period of the length-𝜏ℓ−1 prefix can extend to.

We use 𝑌0 to denote {0, 1}poly log(𝑛), which can hold the return value of 𝜋𝜎 (a tuple)

and the return value of 𝜌ℓ (an integer). From now on we regard 𝜋𝜎 and 𝜌ℓ as mappings

from strings to 𝑌0.

Now we define the mapping 𝜓 by concatenating the values returned by 𝜋 and 𝜌

in all layers.

Definition 5.3.4 (Mapping 𝜓). Define mapping 𝜓𝜎 : Σ
𝜏 → 𝑌 2𝐿−1

0 as follows: given

𝑆[1 . . 𝜏 ], let

𝜓𝜎(𝑆) := 𝑝1𝑟2𝑝2𝑟3𝑝3 . . . 𝑟𝐿𝑝𝐿,

where

𝑝ℓ = 𝜋𝜎(𝑆[1 . . 𝜏ℓ]), 1 ≤ ℓ ≤ 𝐿,

and

𝑟ℓ = 𝜌ℓ(𝑆[1 . . 𝜏ℓ]), 2 ≤ ℓ ≤ 𝐿.

Finally, we define a mapping 𝜑 : Σ𝜏 → 𝑌 2𝐿−1 by simply hashing each symbol in

𝜓(𝑆), where 𝑌 = [2poly log(𝑛)].

Definition 5.3.5 (Mapping 𝜑). Let seed 𝜎DS ∈ {0, 1}𝑤. Let another seed 𝜎𝐻 ∈

{0, 1}(2𝐿−1)·𝑂(log𝑛) independently sample 2𝐿− 1 min-wise independent hash functions

ℎ1, ℎ2, . . . , ℎ2𝐿−1 : 𝑌0 → 𝑌 from Lemma 2.7.1 with parameters 𝑛 and |𝑌0|.

Then, define mapping 𝜑𝜎DS,𝜎𝐻
: Σ𝜏 → 𝑌 2𝐿−1 as follows: given 𝑆 ∈ Σ𝜏 with

𝜓𝜎DS
(𝑆) = 𝑦1𝑦2 · · · 𝑦2𝐿−1,
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define

𝜑𝜎DS,𝜎𝐻
(𝑆) := ℎ1(𝑦1)ℎ2(𝑦2) · · ·ℎ2𝐿−1(𝑦2𝐿−1).

We sometimes omit the random seeds 𝜎, 𝜎DS, 𝜎𝐻 from the subscripts and simply

write 𝜓(𝑆), 𝜑(𝑆).

We treat 𝜑(𝑆) ∈ 𝑌 2𝐿−1 (and 𝜓(𝑆) ∈ 𝑌 2𝐿−1
0 ) as length-(2𝐿 − 1) strings over

alphabet 𝑌 (and 𝑌0). Elements in 𝑌 2𝐿−1 are compared by their lexicographical order.

For 1 ≤ 𝑗 ≤ 2𝐿 − 1, we also use 𝜑(𝑆)[1 . . 𝑗] ∈ 𝑌 𝑗 to denote the length-𝑗 pre-

fix of 𝜑(𝑆), and use 𝜑(𝑆)[𝑗] ∈ 𝑌 to denote the 𝑗-th symbol of 𝜑(𝑆). Notations

𝜓(𝑆)[1 . . 𝑗], 𝜓(𝑆)[𝑗] are defined similarly.

5.4 Analysis of Sparsity

In this section, we analyze the sparsity of the synchronizing set A defined using

mapping 𝜑 from Definition 5.3.5.

Recall that Q (defined in (5.1)) contains indices 𝑖 with per(𝑇 [𝑖 . . 𝑖 + 𝜏)) ≤ 𝜏/3,

and recall that Φ(𝑖) := 𝜑(𝑇 [𝑖 . . 𝑖+ 𝜏)). We additionally define Ψ(𝑖) := 𝜓(𝑇 [𝑖 . . 𝑖+ 𝜏)).

We have the following key lemma.

Lemma 5.4.1 (Expected count of minima). Suppose interval [𝑙 . . 𝑟] ⊆ [1 . . 𝑛− 𝜏 +1]

has length 𝑟 − 𝑙 + 1 ≤ 𝜏/4, and [𝑙 . . 𝑟] ∩ Q = ∅.

Then,

E
𝜎DS,𝜎𝐻

⃒⃒⃒{︁
𝑘 ∈ [𝑙 . . 𝑟] : Φ(𝑘) = min{Φ(𝑖) : 𝑖 ∈ [𝑙 . . 𝑘]}

}︁⃒⃒⃒
≤ (𝑂(log 𝜏))2𝐿−1,

and

E
𝜎DS,𝜎𝐻

⃒⃒⃒{︁
𝑘 ∈ [𝑙 . . 𝑟] : Φ(𝑘) = min{Φ(𝑖) : 𝑖 ∈ [𝑘 . . 𝑟]}

}︁⃒⃒⃒
≤ (𝑂(log 𝜏))2𝐿−1.

Proof. We assume that the seed 𝜎DS is successful for all substrings of 𝑇 . This happens

with high probability over random 𝜎DS ∈ {0, 1}𝑤 with length 𝑤 = 𝑂(log 𝑛).
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First, we show that for 𝑘1, 𝑘2 ∈ [𝑙 . . 𝑟], 𝑘1 ̸= 𝑘2 we must have Ψ(𝑘1) ̸= Ψ(𝑘2). Sup-

pose for contradiction that there are 𝑘1, 𝑘2 ∈ [𝑙 . . 𝑟], 𝑘1 < 𝑘2 such that 𝜓𝜎DS
(𝑇 [𝑘1 . . 𝑘1+

𝜏)) = 𝜓𝜎DS
(𝑇 [𝑘2 . . 𝑘2 + 𝜏)). Then, by definition of 𝜓 (Definition 5.3.4), we have

𝜋𝜎DS
(𝑇 [𝑘1 . . 𝑘1 + 𝜏)) = 𝜋𝜎DS

(𝑇 [𝑘2 . . 𝑘2 + 𝜏)). By Lemma 5.3.2, since 𝑘2− 𝑘1 ≤ 𝜏/4, we

must have 𝑇 [𝑘1 . . 𝑘1 + 𝜏) = 𝑇 [𝑘2 . . 𝑘2 + 𝜏), and (𝑘2− 𝑘1) is a period of 𝑇 [𝑘1 . . 𝑘1 + 𝜏).

This implies 𝑘1 ∈ Q, contradicting [𝑙 . . 𝑟] ∩ Q = ∅.

In the following, we will only prove the first expectation upper bound. The second

statement can be proved similarly.

Recall that Φ(𝑘) ∈ 𝑌 2𝐿−1 is obtained by applying injective min-wise independent

hash functions to Ψ(𝑘) ∈ 𝑌 2𝐿−1
0 , and they are compared in lexicographical order.

In order for Φ(𝑘) to be the lexicographically minimum among {Φ(𝑖)}𝑖∈[𝑙. .𝑘], its first

symbol Φ(𝑘)[1] needs to be the minimum among {Φ(𝑖)[1]}𝑖∈[𝑙. .𝑘], and then to break

ties we compare the second symbols, and so on. Since the 𝑗-th symbol Φ(𝑘)[𝑗] is

defined as the hash value ℎ𝑗(Ψ(𝑘)[𝑗]), the probability of Φ(𝑘)[𝑗] being minimum at

the 𝑗-th level is inversely proportional to the count of distinct Ψ(𝑖)[𝑗] values that are

being compared with.

Formally, for every 𝑘 ∈ [𝑙 . . 𝑟] and every 1 ≤ 𝑗 ≤ 2𝐿− 1, define the count

𝑐𝑗,𝑘 :=
⃒⃒
{Ψ(𝑘′)[𝑗] : 𝑘′ ∈ [𝑙 . . 𝑘],Ψ(𝑘′)[1 . . 𝑗 − 1] = Ψ(𝑘)[1 . . 𝑗 − 1]}

⃒⃒
.

Then, conditioned on Φ(𝑘)[1 . . 𝑗 − 1] = min{Φ(𝑘′)[1 . . 𝑗 − 1] : 𝑘′ ∈ [𝑙 . . 𝑘]}, we have

Φ(𝑘)[1 . . 𝑗] = min{Φ(𝑘′)[1 . . 𝑗] : 𝑘′ ∈ [𝑙 . . 𝑘]} if and only if Φ(𝑘)[𝑗] = ℎ𝑗(Ψ(𝑘)[𝑗])

becomes the minimum among the 𝑐𝑗,𝑘 candidates currently in a tie, which happens

with at most 1.1/𝑐𝑗,𝑘 probability by the min-wise independence of ℎ𝑗. Hence, the

probability that

Φ(𝑘) = min{Φ(𝑖) : 𝑖 ∈ [𝑙 . . 𝑘]}

happens is at most
(1 + 0.1)2𝐿−1

𝑐1,𝑘 · 𝑐2,𝑘 . . . 𝑐2𝐿−1,𝑘

. (5.4)

We will derive the desired expectation upper bound by summing (5.4) over all 𝑘 ∈
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[𝑙 . . 𝑟].

To do this, consider the following process of inserting strings Ψ(𝑙),Ψ(𝑙+1), . . . ,Ψ(𝑟) ∈

𝑌 2𝐿−1
0 one by one into a trie. Initially the trie only has a root node with node weight

1. Let Ψ(𝑘) ∈ 𝑌 2𝐿−1
0 be the current string to be inserted. Starting from the root

node, we iterate over 𝑗 = 1, 2, . . . , 2𝐿− 1, and each time move from the current node

𝑝 down to its child node 𝑐 labeled with symbol Ψ(𝑘)[𝑗] ∈ 𝑌0. If 𝑝 does not have such a

child 𝑐, then we have to first create a child node 𝑐 labeled with Ψ(𝑘)[𝑗], and assign 𝑐 a

real weight 1/ deg(𝑝), where deg(𝑝) denotes the number of children (including 𝑐) that

𝑝 currently has. Now, observe that the value 1/
(︀
𝑐1,𝑘𝑐2,𝑘 . . . 𝑐2𝐿−1,𝑘

)︀
is upper-bounded

by the product of node weights on the path from the root node to the leaf represent-

ing Ψ(𝑘). This is because 𝑐𝑗,𝑘 equals the number of children that the 𝑗-th node on

this path currently has, which is not smaller than the reciprocals of the weights of its

children (in particular, the (𝑗 + 1)-st node on this path).

Each node in the trie has at most 𝑟 − 𝑙 + 1 ≤ ⌊𝜏/4⌋ children, so the sum of the

weights of its children is at most 1+1/2+1/3+ · · ·+1/(⌊𝜏/4⌋) < log 𝜏 . Since the trie

has depth 2𝐿 − 1, a simple induction with distributive law of multiplication shows

that the sum of node weight products over all root-to-leaf paths in the trie is at most

(log 𝜏)2𝐿−1.

We previously showed that Ψ(𝑘) are distinct for all 𝑘 ∈ [𝑙 . . 𝑟], so each leaf in the

trie corresponds to only one 𝑘 ∈ [𝑙 . . 𝑟]. Hence, the sum of 1/
(︀
𝑐1,𝑘𝑐2,𝑘 . . . 𝑐2𝐿−1,𝑘

)︀
over

all 𝑘 ∈ [𝑙 . . 𝑟] is upper-bounded by (log 𝜏)2𝐿−1. Then, the proof follows from summing

over (5.4), which sums to at most (1.1)2𝐿−1 · (log 𝜏)2𝐿−1 ≤ (𝑂(log 𝜏))2𝐿−1.

Now we are ready to prove the sparsity of the synchronizing set A defined in (5.3).

Lemma 5.4.2 (Sparsity). For every 𝑖 ∈ [1 . . 𝑛− 3𝜏 + 2], we have

E
𝜎DS,𝜎𝐻

⃒⃒
A ∩ [𝑖 . . 𝑖+ 𝜏)

⃒⃒
≤ (𝑂(log 𝜏))2𝐿−1.
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Proof. Recall that for 𝑘 ∈ [𝑖 . . 𝑖+ 𝜏), we have 𝑘 ∈ A if and only if

min{Φ(𝑗) : 𝑗 ∈ [𝑘 . . 𝑘 + 𝜏 ] ∖ Q} ∈ {Φ(𝑘),Φ(𝑘 + 𝜏)}.

To bound the number of such 𝑘, we will separately bound and sum up the number of

𝑘 ∈ [𝑖 . . 𝑖+ 𝜏) such that

min{Φ(𝑗) : 𝑗 ∈ [𝑘 . . 𝑘 + 𝜏 ] ∖ Q} = Φ(𝑘), (5.5)

and the number of 𝑘′ ∈ [𝑖+ 𝜏 . . 𝑖+ 2𝜏) (where we replaced 𝑘 = 𝑘′ − 𝜏) such that

min{Φ(𝑗) : 𝑗 ∈ [𝑘′ − 𝜏 . . 𝑘′] ∖ Q} = Φ(𝑘′).

In the following, we will only bound the first case (the number of 𝑘 ∈ [𝑖 . . 𝑖 + 𝜏)

satisfying (5.5)). The second case is symmetric and can be bounded similarly.

First we have the following claim.

Claim 5.4.3. For all 𝑘 ∈ [𝑖 . . 𝑖+ 𝜏) satisfying (5.5), it holds that 𝑘 /∈ Q.

Proof of Claim 5.4.3. If 𝑘 ∈ Q, then there must exist 𝑗 /∈ Q such that Φ(𝑗) = Φ(𝑘),

which implies 𝜋𝜎DS
(𝑇 [𝑘 . . 𝑘+𝜏)) = 𝜋𝜎DS

(𝑇 [𝑗 . . 𝑗+𝜏)) by injectivity of the hash function

ℎ𝐿, and hence per(𝑇 [𝑘 . . 𝑘 + 𝜏)) = per(𝑇 [𝑗 . . 𝑗 + 𝜏)) > 𝜏/3, contradicting 𝑘 ∈ Q.

Hence, we only need to bound the number of 𝑘 ∈ [𝑖 . . 𝑖 + 𝜏) ∖ Q, which by

Lemma 5.1.2 can be decomposed as the disjoint union of 𝑂(1) many intervals, each

having length at most 𝜏/4. For each such interval [𝑙′ . . 𝑟′] (where 𝑟′ − 𝑙′ + 1 ≤ 𝜏/4

and [𝑙′ . . 𝑟′] ∩ Q = ∅), any 𝑘 ∈ [𝑙′ . . 𝑟′] satisfying (5.5) must also satisfy min{Φ(𝑗) :

𝑗 ∈ [𝑘 . . 𝑟′]} = Φ(𝑘). By Lemma 5.4.1, the expected number of such 𝑘 in [𝑙′ . . 𝑟′] is at

most (𝑂(log 𝜏))2𝐿−1. Summing over 𝑂(1) intervals [𝑙′ . . 𝑟′], the total expected number

of such 𝑘 is also at most (𝑂(log 𝜏))2𝐿−1.
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5.5 Algorithm for Reporting Synchronizing Positions

In this section we will give an efficient quantum algorithm for reporting the synchro-

nizing positions in A.

First, observe that the mappings 𝜋 (Definition 5.3.1) and 𝜌 (Definition 5.3.3) can

be computed efficiently.

Observation 5.5.1. For 𝑆 ∈ Σ𝑚 and seed 𝜎 ∈ {0, 1}𝑂(log𝑛), 𝜋𝜎(𝑆) can be computed

in ̃︀𝑂(√𝑚) quantum time.

For 2 ≤ ℓ ≤ 𝐿 and 𝑆 ∈ Σ𝜏ℓ, 𝜌ℓ(𝑆) can be computed in ̃︀𝑂(√𝜏ℓ) quantum time.

Hence, for all 1 ≤ ℓ ≤ 𝐿, 𝑆 ∈ Σ𝜏ℓ, Φ(𝑆)[1 . . 2ℓ − 1] can be computed in ̃︀𝑂(√𝜏ℓ)
quantum time.

Proof. The first statement immediately follows from Lemma 5.2.1 and Corollary 2.5.3.

The second statement follows from Corollary 2.5.3 and a simple binary search with

Grover search. The third statement follows by direct computing.

We will need to efficiently identify elements in Q. The following lemma will be

useful.

Lemma 5.5.2 (Finding a long cubic run). Given 𝑆 ∈ Σ𝑛 with length 𝑚 ≤ 𝑛 ≤ 4𝑚/3,

there is a quantum algorithm in ̃︀𝑂(√𝑛) time that finds (if exists) a maximal substring

𝑆[𝑖 . . 𝑗] that has length 𝑗−𝑖+1 ≥ 𝑚 and period per(𝑆[𝑖 . . 𝑗]) ≤ 𝑚/3, and such 𝑆[𝑖 . . 𝑗]

is unique if exists.

Proof. Since 𝑗 − 𝑖 + 1 ≥ 𝑚, 𝑆[𝑖 . . 𝑗] must contain 𝑅 := 𝑆[𝑛 − 𝑚 + 1 . .𝑚] as a

substring. Since |𝑅| = 2𝑚−𝑛 ≥ 2𝑚/3 ≥ 2·per(𝑆[𝑖 . . 𝑗]), we must have per(𝑆[𝑖 . . 𝑗]) =

per(𝑅). Hence, we can use Corollary 2.5.3 to compute 𝑝 = per(𝑅), and then uniquely

determine 𝑖, 𝑗 by extending the period to the left and to the right, namely,

𝑖 = min{𝑖 ∈ [1 . . 𝑛−𝑚+ 1] : 𝑆[𝑖′] = 𝑆[𝑖′ + 𝑝] for all 𝑖′ ∈ [𝑖 . . 𝑛−𝑚+ 1]},

𝑗 = max{𝑗 ∈ [𝑚. . 𝑛] : 𝑆[𝑗′] = 𝑆[𝑗′ − 𝑝] for all 𝑗′ ∈ [𝑚. . 𝑗]},

using binary search with Grover search.
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Lemma 5.5.3 (Finding elements in Q). Given 𝑖 ∈ [1 . . 𝑛− 3𝜏 +2], one can compute

[𝑖 . . 𝑖 + 2𝜏) ∩ Q, represented as disjoint union of 𝑂(1) intervals, in ̃︀𝑂(√𝜏) quantum

time.

Proof. By Lemma 5.1.2, the set [𝑖 . . 𝑖+2𝜏)∩Q can be decomposed into disjoint union

of 𝑂(1) many intervals. To find them, we separately consider overlapping blocks of

length ⌊4𝜏/3⌋ inside [𝑖 . . 𝑖 + 2𝜏), with every adjacent two blocks being at a distance

of ⌊𝜏/6⌋. There are 𝑂(1) many such blocks, and for every 𝑗 ∈ [𝑖 . . 𝑖 + 2𝜏) ∩ Q there

is some block that contains [𝑗 . . 𝑗 + 𝜏). Hence, we can apply Lemma 5.5.2 to each

block, and find all 𝑗’s (represented as an interval) such that 𝑇 [𝑗 . . 𝑗 + 𝜏) is contained

in this block and has period at most 𝜏/3.

The main technical component is an algorithm that efficiently finds the minimal

Φ(𝑘) over an interval, stated in the following lemma.

Lemma 5.5.4 (Finding range minimum Φ(𝑘)). Given [𝑙 . . 𝑟] ⊆ [1 . . 𝑛 − 𝜏 + 1] of

length 𝑟 − 𝑙 + 1 ≤ 𝜏/4, we can compute

arg min
𝑘∈[𝑙. .𝑟]

Φ(𝑘),

represented as an arithmetic progression, in

√
𝜏 · (𝑂(log 𝜏))𝐿 · poly log(𝑛) ·

𝐿−1∑︁
ℓ=1

√︀
𝜏ℓ+1/𝜏ℓ (5.6)

quantum time.

Before proving Lemma 5.5.4, we show that it can be used to report all the syn-

chronizing positions in a length-𝜏 interval, one at a time.

Lemma 5.5.5 (Efficient reporting). Given 𝑖 ∈ [1 . . 𝑛 − 3𝜏 + 2], the elements in

A∩ [𝑖 . . 𝑖+ 𝜏) can be reported in 𝑂((cnt+ 1) · 𝒯 ) time, where cnt = |A∩ [𝑖 . . 𝑖+ 𝜏)| is

the output count, and 𝒯 is the time bound (5.6) in Lemma 5.5.4.
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Proof. To report A ∩ [𝑖 . . 𝑖+ 𝜏), it suffices to report all 𝑘 ∈ [𝑖 . . 𝑖+ 𝜏) such that

min{Φ(𝑗) : 𝑗 ∈ [𝑘 . . 𝑘 + 𝜏 ] ∖ Q} = Φ(𝑘), (5.7)

and all 𝑘′ ∈ [𝑖+ 𝜏 . . 𝑖+ 2𝜏) (where we replaced 𝑘 = 𝑘′ − 𝜏) such that

min{Φ(𝑗) : 𝑗 ∈ [𝑘′ − 𝜏 . . 𝑘′] ∖ Q} = Φ(𝑘′).

We will only show the first part. The second part is symmetric and can be solved

similarly.

By Lemma 5.5.3, the set [𝑖 . . 𝑖+2𝜏) ∖Q can be decomposed into disjoint union of

𝑂(1) many intervals, which can be found in ̃︀𝑂(√𝜏) quantum time. Then, we can use

Lemma 5.5.4 to answer argmin{Φ(𝑗) : 𝑗 ∈ [𝑙 . . 𝑟] ∖Q} given any [𝑙 . . 𝑟] ⊆ [𝑖 . . 𝑖+ 2𝜏),

in 𝑂(𝒯 ) time.

By Claim 5.4.3 (note that (5.7) is identical to (5.5)), it holds for all 𝑘 ∈ [𝑖 . . 𝑖+ 𝜏)

satisfying (5.7) that 𝑘 /∈ Q. We will report all 𝑘 ∈ [𝑖 . . 𝑖 + 𝜏) ∖ Q satisfying (5.7) as

follows:

Algorithm 6: Reporting all 𝑘 ∈ [𝑖 . . 𝑖+ 𝜏) satisfying (5.7)
1 begin
2 Let 𝑙← 𝑖;
3 while 𝑙 < 𝑖+ 𝜏 do
4 Let 𝑘 be the minimum element in argmin{Φ(𝑗) : 𝑗 ∈ [𝑙 . . 𝑖+ 𝜏) ∖ Q};
5 if 𝑘 satisfies (5.7) then
6 report 𝑘;
7 𝑙← 𝑘 + 1;

8 else
9 break

It is clear that the running time of Algorithm 6 is 𝑂((cnt+1) ·𝒯 ), where cnt is the

number of reported elements. It suffices to show that Algorithm 6 does not miss any 𝑘

satisfying (5.7). We maintain the invariant that all not yet reported 𝑘 satisfying (5.7)

are at least 𝑙. Whenever we report 𝑘, it holds that Φ(𝑘′) > Φ(𝑘) for all 𝑘′ ∈ [𝑙 . . 𝑘),
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so none of such 𝑘′ can satisfy (5.7), and it is safe to skip them by letting 𝑙 ← 𝑘 + 1.

When the line of break is reached, we have 𝑘 ∈ argmin{Φ(𝑗) : 𝑗 ∈ [𝑙 . . 𝑖+𝜏)∖Q} but

𝑘 /∈ argmin{Φ(𝑗) : 𝑗 ∈ [𝑘 . . 𝑘 + 𝜏) ∖Q}, implying that there exists 𝑟 ∈ [𝑖+ 𝜏 . . 𝑘 + 𝜏)

such that Φ(𝑟) < Φ(𝑘′) for all 𝑘′ ∈ [𝑘 . . 𝑖 + 𝜏), so none of 𝑘′ ∈ [𝑘 . . 𝑖 + 𝜏) can satisfy

(5.7), and we can terminate the procedure.

Now it remains to describe the algorithm in Lemma 5.5.4 for finding the minimum

Φ(𝑘) in an interval. Our algorithm is recursive, stated as follows.

Lemma 5.5.6. For 1 ≤ ℓ ≤ 𝐿, there is a quantum algorithm running in 𝒯𝑗 time that,

given [𝑙 . . 𝑟] ⊆ [1 . . 𝑛− 𝜏ℓ + 1] of length 𝑟 − 𝑙 + 1 ≤ 𝜏ℓ/4, computes

arg min
𝑘∈[𝑙. .𝑟]

Φ(𝑘)[1 . . 2ℓ− 1]

represented as an arithmetic progression. The time complexities satisfy

𝒯ℓ ≤
√︀
𝜏ℓ/𝜏ℓ−1 ·

(︀
𝒯ℓ−1 ·𝑂(log 𝜏) +

√
𝜏ℓ · poly log(𝑛)

)︀
(5.8)

for ℓ > 1, and 𝒯1 = poly log(𝑛).

Proof. We first explain why the minimizers 𝑘 form an arithmetic progression. For any

𝑙 ≤ 𝑘1 < 𝑘2 ≤ 𝑟 with Φ(𝑘1)[1 . . 2ℓ− 1] = Φ(𝑘2)[1 . . 2ℓ− 1], we have 𝜋𝜎DS
(𝑇 [𝑘1 . . 𝑘1 +

𝜏ℓ)) = 𝜋𝜎DS
(𝑇 [𝑘2 . . 𝑘2 + 𝜏ℓ)), and from Lemma 5.3.2 we have 𝑇 [𝑘1 . . 𝑘1 + 𝜏ℓ) =

𝑇 [𝑘2 . . 𝑘2 + 𝜏ℓ) since 𝑘2 − 𝑘1 ≤ 𝜏ℓ/4. Hence, the minimizers 𝑘 in this length-𝜏ℓ/4

interval correspond to the starting positions of all occurrences of a certain length-𝜏ℓ

substring, which form an arithmetic progression by Lemma 2.1.3.

Due to lexicographical comparison rule, we know that any element in argmin𝑘∈[𝑙. .𝑟]

Φ(𝑘)[1 . . 2ℓ−1] must also be in argmin𝑘∈[𝑙. .𝑟] Φ(𝑘)[1 . . 2(ℓ−1)−1], so we can recursively

use the (ℓ− 1)-st level subroutine to find candidate minimizers. We first consider the

simpler case where each (ℓ − 1)-st level subroutine only returns a single minimizer.

Given the input interval [𝑙 . . 𝑟] of length 𝑟− 𝑙+1 ≤ 𝜏ℓ/4, we divide [𝑙 . . 𝑟] into blocks

each of length 𝜏ℓ−1/4, on which we recursively apply the (ℓ − 1)-st level subroutine

(boosted to 1 − 1/ poly(𝜏) success probability by 𝑂(log 𝜏) repetitions) to find the
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minimizer 𝑘′ in this block, and then use
√
𝜏ℓ·poly log(𝑛) time to compute Φ(𝑘′)[1 . . 2ℓ−

1]. Out of the 𝜏ℓ/𝜏ℓ−1 blocks, we apply quantum minimum finding to find the block

that has the minimum Φ(𝑘′)[1 . . 2ℓ− 1] (Observation 5.5.1). This quantum minimum

finding procedure incurs 𝑂(
√︀
𝜏ℓ/𝜏ℓ−1) comparisons, and results in the time bound

(5.8).

Now we consider the general case, where for a (ℓ − 1)-st level block [𝑙′ . . 𝑟′],

argmin𝑘∈[𝑙′. .𝑟′] Φ(𝑘)[1 . . 2(ℓ−1)−1] may contain multiple elements 𝑘1 < 𝑘2 < · · · < 𝑘𝑑

forming an arithmetic progression, where 𝑘𝑑 − 𝑘1 ≤ 𝜏ℓ−1/4. We already know from

Lemma 2.1.3 that 𝑇 [𝑘𝑗 . . 𝑘𝑗+𝜏ℓ−1) are identical for all 𝑗 ∈ [𝑑], and 𝑝 = 𝑘2−𝑘1 = · · · =

𝑘𝑑 − 𝑘𝑑−1 = per(𝑇 [𝑘1 . . 𝑘𝑑 + 𝜏ℓ−1)). To find the minimum Φ(𝑘)[1 . . 2ℓ− 1] among 𝑘 ∈

{𝑘1, . . . , 𝑘𝑑}, we will additionally compare Φ(𝑘)[2(ℓ− 1)] = ℎ2(ℓ−1)

(︀
𝜌ℓ(𝑇 [𝑘 . . 𝑘 + 𝜏ℓ))

)︀
to break ties.

Now, let 𝑟′ = max{𝑟′ : 𝑟′ ≤ 𝑘𝑑+𝜏ℓ, per(𝑇 [𝑘1 . . 𝑟
′)) = 𝑝}, namely the furthest point

this period can extend to (up to a distance of the current level interval length 𝜏ℓ).

Now we can easily obtain their 𝜌ℓ values,

𝜌ℓ(𝑇 [𝑘𝑗 . . 𝑘𝑗 + 𝜏ℓ)) = min{𝜏ℓ, 𝑟′ − 𝑘𝑗}.

Then, among strings 𝑇 [𝑘𝑗 . . 𝑘𝑗 + 𝜏ℓ−1), 𝑗 ∈ [𝑑], those with 𝜌ℓ value equal to 𝜏ℓ are all

identical to 𝑇 [𝑘1 . . 𝑘1 + 𝜏), and the remaining ones must have different 𝜌ℓ values that

are strictly smaller than 𝜏ℓ. Hence, we can simply use Grover search over 𝑗 ∈ [𝑑] iñ︀𝑂(√𝑑) ≤ ̃︀𝑂(√𝜏ℓ−1) time to find the minimum Φ(𝑘𝑗)[2(ℓ−1)] = ℎ2(ℓ−1)

(︀
𝜌ℓ(𝑇 [𝑘𝑗 . . 𝑘𝑗+

𝜏ℓ))
)︀
.

Proof of Lemma 5.5.4 using Lemma 5.5.6. Note that the algorithm in Lemma 5.5.6

with ℓ = 𝐿 solves the task required by Lemma 5.5.4. The quantum time complexity

𝒯𝐿 can be calculated by expanding (5.8) into

𝒯𝐿 ≤
√
𝜏𝐿

√︂
𝜏𝐿
𝜏𝐿−1

poly log(𝑛) +

√︂
𝜏𝐿
𝜏𝐿−1

𝒯𝐿−1 ·𝑂(log 𝜏)
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≤
√
𝜏𝐿

√︂
𝜏𝐿
𝜏𝐿−1

poly log(𝑛) +
√
𝜏𝐿

√︂
𝜏𝐿−1

𝜏𝐿−2

poly log(𝑛) ·𝑂(log 𝜏) +
√︂

𝜏𝐿
𝜏𝐿−2

𝒯𝐿−2(𝑂(log 𝜏))
2

≤ · · ·

≤
√
𝜏𝐿

𝐿−1∑︁
ℓ=1

√︂
𝜏ℓ+1

𝜏ℓ
poly log(𝑛) · (𝑂(log 𝜏))𝐿−ℓ−1

Finally, we prove the main theorem by setting the length parameters 𝜏1, . . . , 𝜏𝐿

appropriately.

Proof of Theorem 1.2.5. We set 𝐿 = Θ(
√
log 𝜏), and pick 6 ≤ 𝜏1 < 𝜏2 < · · · < 𝜏𝐿 = 𝜏

so that 𝜏ℓ+1/𝜏ℓ ≤ 𝑂(𝜏 1/𝐿) for all 1 ≤ ℓ < 𝐿. Then, by (5.6), the quantum time

complexity of the range minimum subroutine (Lemma 5.5.4) is at most

√
𝜏 · (𝑂(log 𝜏))𝐿 · poly log(𝑛) · 𝐿 ·𝑂(𝜏 1/2𝐿)

≤
√
𝜏 · poly log(𝑛) · (𝑂(log 𝜏))𝑂(

√
log 𝜏)

≤ 𝜏 1/2+𝑜(1) · poly log(𝑛).

Recall that with high probability 𝜎DS ∈ {0, 1}𝑂(log𝑛) succeeds for all substrings 𝑆 of 𝑇 .

The rest of the proof follows from Lemma 5.1.1, Lemma 5.4.2, and Lemma 5.5.5.
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Chapter 6

Conclusion

We conclude by mentioning several open questions related to our work.

• In our quantum string synchronizing set result (Theorem 1.2.5), can we im-

prove the extra 𝜏 𝑜(1) factors in the sparsity and the time complexity of to poly-

logarithmic?

• String synchronizing sets have had many applications in classical string algo-

rithms [63, 6, 40, 64, 65, 66]. Can our new result find more applications in

quantum string algorithms?

• Our ̃︀𝑂(𝑛2/3)-time algorithm for LCS assumes that the input characters are inte-

gers in [poly(𝑛)]. This assumption was crucially used in the string synchronizing

set algorithm (Chapter 5). However, the previous ̃︀𝑂(𝑛5/6)-time LCS algorithm

by Le Gall and Seddighin [51] can work with general ordered alphabet, where

the only allowed query is to compare two symbols 𝑆[𝑖], 𝑆[𝑗] in the input strings

(with three possible outcomes 𝑆[𝑖] > 𝑆[𝑗], 𝑆[𝑖] = 𝑆[𝑗], or 𝑆[𝑖] < 𝑆[𝑗]). Is ̃︀𝑂(𝑛2/3)

query complexity (or even time complexity) achievable in this more restricted

setting? Alternatively, can we show a better query lower bound?
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