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Abstract
While efficient and fast trajectory planners in static worlds have been extensively
proposed for UAVs (unmanned aerial vehicles), a 3D real-time planner for
environments with static obstacles, dynamic obstacles, and other planning agents still
remains an open problem. The dynamic nature of these environments demands high
replanning rates, making this problem especially hard on computationally limited
platforms. Existing state-of-the-art planners reduce the computational complexity at
the expense of more conservative results by relying on three main simplifications
or assumptions: First, the collision avoidance constraints are imposed using the
Bernstein and B-Spline polynomial bases, which do not tightly enclose a given interval
of a polynomial trajectory. Second, multiagent planners usually make centralized
and/or synchronized computation assumptions, which lead to poor scalability with
the number of agents or can degrade the overall performance. Finally, position and
yaw are decoupled when optimizing perception-aware trajectories, which produces
highly conservative results.

This thesis addresses the aforementioned limitations with the following
contributions: First, it presents the MINVO basis, a polynomial basis that generates
the simplex with minimum volume enclosing a polynomial curve, therefore reducing
the conservativeness in the obstacle avoidance constraints. Leveraging the MINVO
basis, this thesis then proposes a tractable way to avoid dynamic obstacles by
imposing linear separability constraints between the polyhedral enclosures of the
intervals of the trajectories. This is then extended to multiagent scenarios, and a
decentralized and asynchronous obstacle avoidance algorithm among many replanning
agents is presented. Real-time perception-aware planning is achieved by implicitly
imposing the underactuated dynamics of the UAV through the Hopf fibration while
jointly optimizing the full pose. Finally, a reduction of two orders of magnitude in
the computation time is obtained by learning a policy that imitates the optimization-
based planner. These proposed contributions are extensively evaluated in simulation,
showing up to 32 agents planning in real time, and in real-world experiments,
showcasing flights up to 5.8 m/s in unknown dynamic environments with only onboard
computation.
Thesis Supervisor: Jonathan P. How
Title: R. C. Maclaurin Professor of Aeronautics and Astronautics, MIT
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Chapter 1

Introduction

1.1 Overview

While the last decade has seen an increase in the number of successful trajectory

planners for unmanned aerial vehicles (UAVs) deployed in real-world scenarios, their

applicability is often limited by several factors. First, many of these trajectory

planners impose obstacle avoidance constraints by leveraging the Bézier and B-

Spline polynomial bases, which can generate over-conservative results when outer

approximating the volume occupied by a polynomial trajectory. Moreover, they

typically assume that the environment is static, even when many UAV applications

(delivery, aerial videography, emergency response, etc.) are highly dynamic due to the

presence of cars, people, and/or other UAVs. In multiagent scenarios, many state-of-

the-art planners rely on the assumptions of synchronization (all the agents plan at the

same time or sequentially) and/or centralization (the optimization problem is solved

jointly for the trajectories of all the agents). However, these assumptions can easily

lead to conservative behaviors and scalability issues, especially when the number of

agents is high. Finally, and when flying in unknown dynamic environments, another

common assumption is the omnidirectional coverage of the sensor(s) of the UAV, even

though most of the UAVs are equipped with sensors with a limited FOV. This thesis

aims to address these assumptions and limitations, which is critical to fully exploit

the potential of the UAVs and expand the range of their possible applications.
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1.2 Problem Statement

Overall, this thesis investigates the problem of trajectory planning for an

underactuated multirotor-UAV in an unknown environment with dynamic obstacles

and other agents. Out of the many possible topics to study within this broad problem,

this thesis focuses specifically on the following subproblems:

• Discretization of the trajectory to impose collision avoidance constraints can

generate unsafe results, and a fine discretization of the trajectory leads to a

very high computational burden. The convex hull property of the Bernstein or

B-Spline bases has been extensively exploited to address this issue, but these

bases provide undesirably conservative results. A polynomial basis that provides

tight simplex enclosures of each interval of the trajectory is therefore crucial

to achieve less conservative results, and still an open problem.

• Moreover, many of the state-of-the-art trajectory planners are either not

applicable to dynamic environments, or suffer from very high computation

times due to the extra time dimension. Naive solutions, like classifying as

occupied all the space a dynamic obstacle will use in the planning horizon, can

be extremely conservative and easily lead to unfeasible solutions. And point-

wise constraints between the trajectories of the agent and the obstacles easily

make the problem intractable. This leaves unanswered the question of how to

impose dynamic collision-avoidance constraints while ensuring onboard

real-time computational tractability.

• When other agents are present, the common assumptions of centralization (all

the trajectories of the agents are jointly optimized) and/or synchronization (all

the agents plan sequentially or at the same time) can generate conservative

results or lead to scalability issues when the number of agents is high. However,

ensuring safety in decentralized and asynchronous planners remains

challenging, since the UAV has access only to past committed trajectories of

the other agents, and the current committed trajectories keep changing during
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the optimization time.

• When a UAV is flying in an unknown dynamic environment, it needs to keep the

obstacles in the FOV of the camera to be able to predict their future trajectories

and therefore to successfully avoid them. Hence, the use of standard non-

perception-aware planners in this setting severely degrades the performance, as

the flown trajectories are obtained without any consideration of the visibility of

the obstacles. When this perception awareness (PA) is taken into account,

the extensively used translation-yaw decoupling in the planning problem can

generate highly conservative results, due to the fact that translation is optimized

independently from yaw. However, and because of the underactuated nature of

the UAV, the joint optimization of these two can lead to very high computation

times. A formulation that benefits from the joint optimization of translation

and yaw, and that guarantees real-time computational tractability is therefore

desirable.

• The inclusion of a PA term in the optimization and the underactuated dynamics

of the UAVs make translation and the full rotation coupled together. To

guarantee real-time computation, and at the expense of more conservative

results, it is common to simplify this problem by fixing some variables in

the optimization (such as the time allocation or the planes that separate the

trajectories) or by ignoring the multimodality of the problem. Therefore, the

open question is whether it is possible to achieve very fast computation

times without making these simplifications.

1.3 Literature Review

1.3.1 Polynomial Bases and Simplex Enclosures

Herron [61] attempted to find (for 𝑛 = 2 and 𝑛 = 3) the smallest 𝑛-simplex enclosing

an 𝑛th-degree polynomial curve. The approach of [61] imposed a specific structure on

the polynomials of the basis and then solved the associated nonconvex optimization
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problem over the roots of those polynomials. For this specific structure of the

polynomials, a global minimizer was found for 𝑛 = 2, and a local minimizer was

found for 𝑛 = 3. However, global optimality over all possible polynomials was not

proven, and only the cases 𝑛 = 2 and 𝑛 = 3 were studied. Similarly, in the results

of [81], Kuti et al. use the algorithm proposed in [86] to obtain a minimal 2-simplex

that encloses a specific 2nd-degree polynomial curve. However, this approach requires

running the algorithm for each different curve, no global optimality is shown, and

only one case with 𝑛 = 2 was analyzed. There are also works that have derived

bounds on the distance between the control polygon and the curve [70,103,122], while

others propose the SLEFE (subdividable linear efficient function enclosure) to enclose

spline curves via subdivision [98,100,114,129]. However, the SLEFE depends pseudo-

linearly on the coefficients of the polynomial curve (i.e., linearly except for a min/max

operation) [129], which is disadvantageous when the curve is a decision variable in

a time-critical optimization problem. This work focuses instead on enclosures that

depend linearly on the coefficients of the curve.

Other works have focused on the properties of the smallest 𝑛-simplex that encloses

a given generic convex body. For example, [52,69] derived some bounds for the volume

of this simplex, while Klee [75] showed that any locally optimal simplex (with respect

to its volume) that encloses a convex body must be a centroidal simplex. In other

words, the centroid of its facets must belong to the convex body. Applied to a curve 𝑃 ,

this means that the centroid of its facets must belong to conv (𝑃 ). Although this is

a necessary condition, it is not sufficient for local optimality.

When the convex body is a polyhedron (or equivalently the convex hull of a finite

set of points), [170] classifies the possible minimal circumscribing simplexes, and this

classification is later used by [185] to derive a 𝑂(𝑘4) algorithm that computes the

smallest simplex enclosing a finite set of 𝑘 points. This problem is also crucial for

the hyperspectral unmixing in remote sensing, to be able to find the proportions or

abundances of each macroscopic material (endmember) contained in a given image

pixel [60, 169], and many different iterative algorithms have been proposed towards

this end [65, 137, 171]. All these works focus on obtaining the enclosing simplex for
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a generic discrete set of points. Our work focuses instead on polynomial curves and,

by leveraging their structure, we can avoid the need to iterate and/or discretize the

curve.

The convex hull of curves has also been studied in the literature. For instance,

[36, 134, 146] studied the boundaries of these convex hulls, while [29] focused on the

patches of the convex hull of trajectories of polynomial dynamical systems. For a

moment curve
[︁
𝑡 𝑡2 · · · 𝑡𝑛

]︁𝑇
(where 𝑡 is in some interval [𝑎, 𝑏]), [113] found that the

number of points needed to represent every point in the convex hull of this curve is 𝑛+1
2 ,

giving therefore a tighter bound than the 𝑛+1 points found using the Carathéodory’s

Theorem [22, 151]. This particular curve and the volume of its convex hull were

also analyzed by [71] in the context of moment spaces and orthogonal polynomials.

Although many useful properties of the convex hull of a curve are shown in all these

previous works, none of them addresses the problem of finding the polynomial curve

with largest convex hull enclosed in a given simplex.

1.3.2 Dynamic Obstacle Avoidance and Multiagent

Environments

Many different UAV trajectory planners for static worlds have been proposed in the

literature [21,26,46,47,55,92,93,124,164,167,182–184]. However, trajectory planning

when there are static obstacles, dynamic obstacles, and other planning agents present

at the same time still remains challenging.

To be able to guarantee safety, the trajectory of the planning agent and the

ones of other obstacles/agents need to be encoded in the optimization (see Fig. 1-

1). A common representation of this trajectory in the optimization is via points

discretized along the trajectory [53, 87, 116, 130, 154, 186]. However, this does not

usually guarantee safety between two consecutive discretization points and alleviating

that problem by using a fine discretization of the trajectory can lead to a very

high computational burden. To reduce this computational burden, polyhedral outer

representations of each interval of the trajectory are extensively used in the literature,
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with the added benefit of ensuring safety at all times (i.e., not just at the discretization

points). A common way to obtain this polyhedral outer representation is via the

convex hull of the control points of the Bernstein basis (basis used by Bézier curves)

or the B-Spline basis [131,157,167,182]. However, these bases do not yield very tight

(i.e., with minimum volume) enclosures of the curve, leading to conservative results.

MADER (the trajectory planner presented in Chapter 3), addresses this

conservativeness at its source and leverages the MINVO basis (Ref. [162] and

Chapter 2 of this thesis) to obtain control points that generate the 𝑛-simplex (a

tetrahedron for 𝑛 = 3) with the minimum volume that completely contains each

interval of the curve. Numerical global optimality (in terms of minimum volume) of

this tetrahedron obtained by the MINVO basis is guaranteed both in position and

velocity space.

When other agents are present, the deconfliction problem between the

trajectories also needs to be solved. Most of the state-of-the-art approaches either

rely on centralized algorithms [10,80,178] and/or on imposing an ad hoc priority such

that an agent only avoids other agents with higher priority [28, 104, 117, 126, 136].

Some decentralized solutions have also been proposed [28, 88, 97], but they require

synchronization between the replans of different agents. The challenge then is how to

create a decentralized and asynchronous planner that solves the deconfliction problem

and guarantees safety and feasibility for all the agents.

MADER solves this deconfliction in a decentralized and asynchronous way by

including the trajectories other agents have committed to as constraints in the

optimization. After the optimization, a collision check-recheck scheme ensures that

the trajectory found is still feasible with respect to the trajectories other agents have

committed to while the optimization was happening.

To impose collision-free constraints in the presence of static obstacles, a

common approach is to first find convex decompositions of free space and then

force (in the optimization problem) the outer polyhedral representation of each

interval to be inside these convex decompositions [35, 89, 167]. However, this

approach can be conservative, especially in cluttered environments in which the
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Figure 1-1: Contributions of MADER.

convex decomposition algorithm may not find a tight representation of the free space.

In the presence of dynamic obstacles, these convex decompositions become harder,

and likely intractable, due to the extra time dimension.

To be able to impose collision-free constraints with respect to dynamic

obstacles/agents, MADER imposes the separation between the polyhedral

representations of each trajectory via planes. Moreover, MADER overcomes the

conservativeness of a convex decomposition (imposed ad hoc before the optimization)

by including a parameterization of these separating planes as decision variables in

the optimization problem. The solver can thus choose the optimal location of these

planes to determine collision avoidance. Including this plane parameterization reduces

23



Figure 1-2: UAV using PANTHER (Chapter 4) to plan perception-aware trajectories
in a dynamic unknown environment, with relative velocities of up to 6.3 m/s. All the
computation runs onboard, and the UAV does not have any prior knowledge of the
trajectories or specific shape/size of the dynamic obstacles.

conservativeness, but it comes at the expense of creating a nonconvex problem, for

which a good initial guess is imperative. For this initial guess, Chapter 3 of this thesis

presents a search-based algorithm that handles dynamic environments and obtains

both the control points of the trajectory and the planes that separate it from other

obstacles/agents.

1.3.3 Perception-Aware Planning for UAVs

When a UAV equipped with a limited FOV sensor is flying in an unknown

environment (e.g., Fig 1-2), it is crucial to plan both the position and orientation of the

UAV to maximize the detection and the tracking accuracy of the unknown obstacles

while at the same time doing obstacle avoidance. This perception-aware (PA)

component is especially important when flying in dynamic environments, because

a consistent detection of the moving obstacles is necessary to obtain a good estimate
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Table 1.1: Classification of the related work, together with a (nonexhaustive) list of
references.

Formulation Ref.
A.1 Not PA [26, 43,54,87,143,167,173]
A.2 PA with additional hardware [18, 25,38,121]

A.3 PA planning Decoupling [119,149,183]
Joint opt. [42, 127,175], PANTHER

Goal Ref.
B.1 Reduce state estimation uncertainty [5, 11, 32,42,50,83,119,128,132,142,148,149,175,181]
B.2 Record/chase a target [27, 67,68,85,127,128,159]
B.3 Avoidance of dynamic obstacles PANTHER

of their locations and prediction of their future trajectories.

Perception awareness for UAVs has been studied thoroughly in the literature, and,

as shown in Table 1.1, the related work could be classified according to the formulation

used and the goal itself. From the point of view of the formulation used, there are

approaches that are not PA A.1 , which typically plan the translation and then have

either a constant yaw or a yaw such that the FOV of the camera points in the direction

of travel (e.g., see [26,43,54,87,143,167,173]). For instance, [43] used potential fields

to avoid dynamic obstacles, but without taking into account perception awareness,

which can degrade the detection and prediction of the trajectories of the obstacles.

Other approaches are PA by including additional hardware A.2 : For example,

by gimbal-mounting the camera, some of its degrees of freedom can be controlled

independently of the rotation of the UAV [18, 25, 121]. Another option is to mount

omni-directional sensors [38]. However, these approaches usually require additional

hardware and mechanical complexity, which is typically undesirable on small UAVs.

PA planning A.3 has received increased attention over the last few years due to

its inherent ability to leverage the trajectory planned to maximize the PA objective.

The related works could be subclassified according to whether or not the translation

and yaw of the UAV are jointly optimized. On one hand, there are approaches

that decouple translation and yaw by optimizing them separately [119, 149, 183].

For instance, in [183], a yaw trajectory is obtained for a fixed translational path to

gain information about unknown static obstacles. For features or landmarks whose

locations are known a priori, [149] optimizes the time parametrization on a fixed
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spatial and yaw path to maximize their visibility. In [119], translation is optimized

first, and then yaw is optimized to guarantee the co-visibility of the features. While

this decoupling of translation and yaw has computational advantages, it can lead to

conservative results, since the translational trajectory (and consequently two degrees

of freedom of the rotation as well) is fixed in the yaw optimization. Other works

assume a downward-facing camera, and hence only translation (not yaw) is planned

to keep a specific target in the FOV of the camera [159].

Another approach taken is to jointly optimize translation and yaw, which enables

the planner to fully exploit both the position trajectory and the yaw angle [42,127,175].

This joint optimization leads to less conservative results than the approaches that

decouple translation and yaw, but it typically comes at the expense of much higher

computation times, especially when done in combination with dynamic obstacle

avoidance constraints. For example, [175] proposed an on-manifold trajectory

optimization approach that couples together translation with the full rotation, but

the computation times required (up to 30 s) are not real time. Ref. [42] successfully

presented a real-time MPC formulation that keeps the centroid of the VIO features

in the center of the image while minimizing its projected velocity. However, this

formulation does not include collision avoidance of static (or dynamic) obstacles,

which greatly simplifies the complexity of the optimization problem. In [127],

translation and yaw are optimized jointly, but only static obstacle avoidance is

performed. The technical gap then is how to jointly optimize the full pose of the UAV,

satisfy its underactuated dynamics, and guarantee safety in dynamic environments

while maintaining real-time computational tractability.

The underactuated dynamics of the UAV (caused by the total thrust of the UAV

being fixed in the body frame) makes this joint optimization especially hard, since a

given spatio-temporal path fixes two degrees of freedom of the rotation, leaving only

one extra degree of freedom in the rotation.1 A typical way to impose this constraint

is via the dynamic equations of the UAV. However, this comes at the expense of

having differential equations as constraints in the optimization.

1Usually referred to as yaw, heading, or simply 𝜓.
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An alternative is to leverage the differential flatness of the UAVs [115] and make

use of the map (a ∈ R3 ∖ [0 0 − 𝑔]𝑇 , 𝜓 ∈ 𝑆1) → R𝑤
𝑏 ∈ SO(3) that maps 𝜓 and the

acceleration a to the rotation of the body. However, and due to the hedgehog theorem

in 𝑆2 [12, 20], there is no single continuous function that defines this map for all

possible accelerations a. For the most common definitions of this map, the singularity

appears for each 𝜓 at two antipodal points in the unit sphere of possible normalized

relative accelerations, which means that there is at least one singularity with a great-

circle distance ≤ 90∘ with respect to the hovering condition. This closeness between

the hovering condition and the singularity can limit the set of possible accelerations

in aggressive flights, since an optimal solution that passes through or close to this

singularity can provoke numerical instabilities and/or lead to artificial large changes

in orientation. Recently, the Hopf map was leveraged in [174] to place the singularity

in the inverted (“upside-down”) configuration, which is independent of 𝜓 and has

the farthest possible angle away from the hovering condition. Although flying highly

aggressive trajectories is not the main goal of this work, we decide to use the Hopf map

(as opposed to the commonly-used maps presented in [41,115]) since it automatically

maximizes the distance to the singularity by simply changing the definition of the

map. In [174], however, the Hopf fibration was only used in the controller to track

predefined trajectories. It was also leveraged in [176] to find the set of charts for a

previously-optimized position trajectory, which are then used for the controller and

to obtain the 𝜓 trajectory. In Chapter 4 of this thesis, we propose instead to embed

the Hopf fibration in the joint (translation and yaw) coupled planning optimization

as a way to directly obtain trajectories in SE(3) that, by construction, satisfy the

underactuated dynamics of the UAV.

From the point of view of the goal of the perception awareness, most of the

related works focus on reducing the state estimation uncertainty B.1 , usually

by keeping specific features/landmarks in the FOV, and/or choosing high-textured

areas [5, 11, 32, 42, 50, 83, 119, 128, 132, 142, 148, 149, 175, 181]. These features are

typically static in the world frame. Some of these approaches also leverage the

Observability Gramian [50, 132, 142], especially when trying to ease the estimation
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of an unknown parameter of the dynamical system.

Further relevant work addresses the problem of having a UAV record or chase

a target B.2 [27, 67, 68, 85, 127, 128, 159]. For example, [159] focused on tracking a

moving target with a downward-facing camera, while [127] proposed a way to follow

a moving target while avoiding other static obstacles in the environment. Most of

these works focus therefore on chasing a static or dynamic target, not on avoiding it.

Our work differs from these two previous approaches because it proposes the use of

PA planning to enhance the avoidance of dynamic obstacles B.3 . Compared to B.1

or B.2 , PA planning to avoid unknown dynamic obstacles comes with many additional

challenges, such as the coupling of both the ego-motion and the motion of the obstacle

in the visibility cost and blur of the image, the inclusion of dynamic obstacle avoidance

constraints in the optimization, the need to predict the future trajectories of the

obstacles, and the consideration of the uncertainty of these predicted trajectories,

just to name a few.

1.3.4 Imitation Learning for Trajectory Planning

Trajectory planning for UAVs in unknown dynamic environments requires very fast

replanning times, which are usually achieved by simplifying the optimization problem

by fixing some variables (such as the time allocation or the planes that separate

the UAV from the obstacles) beforehand or by ignoring the multimodality of the

problem (Ref. [163] and Chapter 4). While these simplifications help reduce the

computation time, that is often achieved at the expense of more conservative planned

trajectories. This leaves open the question of whether or not it is possible to obtain

faster computation times while achieving less conservative trajectories.

Towards this end, Imitation Learning (IL) has recently gained interest due to its

ability to train a computationally-cheap neural network (the student) to approximate

the solution of a computationally-expensive algorithm (the expert). IL has been

successfully used to compress MPC policies [73, 125, 135, 155] and/or to learn path

planning policies [30,96,140]. Compared to other IL-based trajectory planning works,

which typically either assume static worlds or do not take into account perception
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Figure 1-3: Trajectories generated by the expert for four different goals . For each of
the cases, we plot all the distinct locally optimal solutions found by running a total
of 10 optimizations with different initial guesses. The number of these solutions is
denoted as 𝑛𝑒. Note how 𝑛𝑒 changes depending on the specific goal. The colormap
represents the velocity (red denotes a higher velocity).

awareness, Chapter 5 of this thesis proposes to use IL to obtain perception-aware

trajectories that perform obstacle avoidance in dynamic environments.

When performing obstacle avoidance, capturing the multimodality of the

trajectory planning problem is crucial to reduce the conservativeness. Indeed, for

a given scenario, there may be 𝑛𝑒 ≥ 1 locally-optimal expert trajectories that avoid

the obstacle(s) (e.g., see Fig. 1-3), where 𝑛𝑒 may change between different scenarios.

The use of a unimodal student that produces a single trajectory either introduces

an artificial bias towards a specific direction of the space, or averages together

the different expert trajectories, which can be catastrophic in obstacle avoidance

scenarios. The challenge is then how to design and train a neural network capable of

generating a multimodal trajectory prediction.

One possible approach is to use Mixture Density Networks to learn the parameters
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Figure 1-4: Comparison between the assignment matrix 𝐴 obtained by the WTAr,
RWTAr, WTAc, RWTAc, and LSA approaches. This matrix 𝐴 is then the one used
to weigh each (target, prediction) pair in the loss. In the figure, 𝜖 ≥ 0, 𝑛𝑠 = 3 and
obs𝑖 denotes the observation of the training sample 𝑖. In WTAr and RWTAr, each
row of 𝐴 sums up to 1, while in WTAc and RWTAc, each column of 𝐴 sums up
to 1. We propose instead to obtain 𝐴 as the solution of the linear sum assignment
(LSA) problem, which minimizes the total assignment cost, and guarantees that all
the target labels have one distinct prediction assigned to them (i.e., all the rows
sum up to 1, 𝑛𝑒 columns sum up to 1, and (𝑛𝑠 − 𝑛𝑒) columns sum up to 0). More
visualizations of the WTAr and RWTAr assignments are available at [105, Fig. 3]
and [45, Fig. 2].

of a Gaussian mixture model [16]. Mixture Density networks are however known to

suffer from numerical instability and mode collapse [105, 141]. Another option is

to capture the multimodality through the use of the Winner-Takes-All (WTAr or

WTAc) losses [45,58,105] (see Fig. 1-4). These approaches use an binary assignment

matrix 𝐴 that weighs the contribution of each (target, prediction) pair in the loss. In

WTAr [45,105], each target label is assigned to the closest prediction, while in WTAc,

each prediction is assigned to the closest target label. Other works propose instead

the use of the relaxed losses RWTAr [105,141] and RWTAc [96], where the constraint

of 𝐴 being a binary matrix is relaxed (see Fig. 1-4). These relaxed costs typically

address the mode collapse problem (which happens when all the predictions of the

network after training are close to the same target label), but due to the nonzero

weights between all the predictions and all the target labels, the predictions of these

relaxed costs may reach an equilibrium position that does not represent any of the
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Figure 1-5: Graphical representation of the contributions of this thesis.

target labels [123].

In contrast to these approaches, and inspired by the multi-object detection and

tracking algorithms [14,23,180], in Chapter 5 of this thesis we propose to use (in the

loss) the optimal assignment matrix 𝐴 found by solving the linear sum assignment

(LSA) problem, which minimizes the total assignment cost and guarantees that all

the target labels are assigned to a distinct prediction (see Fig. 1-4). This ensures that

a target label is not assigned to multiple predictions (reducing therefore the mode

collapse problem) and that each prediction is not assigned to multiple target labels

(being therefore less prone to equilibrium issues).

1.4 Thesis Contributions and Structure

This thesis aims to address the aforementioned gaps with the four contributions

shown in Fig. 1-5 and Table 1.2. These contributions are summarized in the following

subsections.
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Table 1.2: Contributions of this thesis.

Contribution Chapter Publication
1○ Non-conservative Simplex Enclosures 2 [162]
2○ Planning in Multiagent and Dynamic Environments 3 [160]
3○ Optimization-Based Perception-Aware Planning 4 [163]
4○ Learning-Based Perception-Aware Planning 5 [161]

1.4.1 Non-conservative Simplex Enclosures

The first contribution of this thesis is summarized as follows:

• Formulation of the optimization problem whose minimizer is the polynomial

basis that generates the smallest 𝑛-simplex that encloses any given 𝑛th-

degree polynomial curve. We show that this basis also obtains the 𝑛th-degree

polynomial curve with largest convex hull enclosed in any given 𝑛-simplex.

Another formulation that imposes a specific structure on the polynomials of

the basis is also presented.

• We derive high-quality feasible solutions for any 𝑛 ∈ N, obtaining simplexes

that, for 𝑛 = 3, are 2.36 and 254.9 times smaller than the ones obtained using

the Bernstein and B-Spline bases respectively. For 𝑛 = 7, these values increase

to 902.7 and 2.997 · 1021, respectively.

• Numerical global optimality (with respect to the volume) is proven for 𝑛 = 1, 2, 3

using Sum-Of-Squares (SOS) programming, branch and bound, and moment

relaxations. Numerical local optimality is proven for 𝑛 = 4, and feasibility is

guaranteed for 𝑛 ≥ 5.

• Extension to polynomial curves embedded in subspaces of higher dimensions,

and to some rational curves.

1.4.2 Planning in Multiagent and Dynamic Environments

The second contribution of this thesis is summarized as follows (see also Fig. 1-1):
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• Decentralized and asynchronous planning framework that solves the deconfliction

between the agents by imposing as constraints the trajectories other agents have

committed to, and then doing a collision check-recheck scheme to guarantee

safety with respect to trajectories other agents have committed to during the

optimization time.

• Collision-free constraints are imposed by using a novel polynomial basis in

trajectory planning: the MINVO basis. In position space, the MINVO basis

yields a volume 2.36 and 254.9 times smaller than the extensively-used Bernstein

and B-Spline bases, respectively.

• Formulation of the collision-free constraints with respect to other dynamic

obstacles/agents by including the planes that separate the outer polyhedral

representations of each interval of every pair of trajectories as decision variables.

• Extensive simulations and comparisons with state-of-the-art baselines in

cluttered environments. The results show up to a 33.9% reduction in the flight

time, a 88.8% reduction in the number of stops (compared to Bernstein/B-

Spline bases), shorter flight distances than centralized approaches, and shorter

total times on average than synchronous decentralized approaches.

1.4.3 Optimization-Based Perception-Aware Planning

The third contribution of this thesis is summarized as follows:

• Real-time PA planning formulation that jointly optimizes the translation and

the full rotation to maximize the visibility of unknown dynamic obstacles,

while simultaneously avoiding them. Compared to non-PA approaches and

PA decoupled approaches, our proposed coupled solution leads to a presence

of the obstacle in the FOV 7.9 and 1.5 times more frequent, respectively. The

success rates achieved are on average 2.98 times larger than other state-of-the-

art approaches when flying in multi-obstacle dynamic environments.
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• We show how the Hopf fibration can be embedded in the planning optimization

to jointly optimize translation and yaw while implicitly imposing the

underactuated dynamics that couples acceleration and orientation. This

avoids the need to explicitly impose the dynamics of the UAV as differential

constraints, while automatically guaranteeing the largest possible great-circle

distance between the hovering condition and the differential flatness singularity.

Dynamic obstacle avoidance constraints are imposed by leveraging the MINVO

basis to reduce conservativeness.

• Extensive set of hardware experiments in unknown dynamic environments, with

everything (navigation, perception, planning, and control) executed onboard the

UAV, and without any prior knowledge of the trajectories or specific shape/size

of the obstacles. The UAV achieves velocities of up to 5.8 m/s and relative

velocities (with respect to the obstacles) of up to 6.3 m/s. The replanning

times achieved onboard are ≈ 53 ms.

1.4.4 Learning-Based Perception-Aware Planning

The fourth contribution of this thesis is summarized as follows:

• Novel multimodal learning-based trajectory planning framework able to

generate collision-free trajectories that avoid a dynamic obstacle while

maximizing its presence in the FOV.

• Computation times two orders of magnitude faster than a multimodal

optimization-based planner, while achieving a similar total cost.

• Multimodal loss that achieves a mean squared error (MSE) of the predicted

trajectories with respect to the expert trajectories up to 18 times smaller than

the (Relaxed) Winner-Takes-All approaches.

• The proposed approach also presents a very good generalization to environments

where the obstacle is following a different trajectory than the one used in

training.
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1.5 Related Publications

Title Ref. Venue Code/Video

Real-time planning with multi-fidelity models for

agile flights in unknown environments
[165] ICRA’19 Code, Video

FASTER: Fast and Safe Trajectory Planner for

Flights in Unknown Environments1
[167] IROS’19 Code, Video

FASTER: Fast and Safe Trajectory Planner for

Navigation in Unknown Environments
[166] T-RO Code, Video

Trajectory planner for agile flights in unknown

environments
[168] Master’s thesis Code, Video

MINVO Basis: Finding Simplexes with Minimum

Volume Enclosing Polynomial Curves
[162] CAD Code, Video

MADER: Trajectory Planner in Multiagent and

Dynamic Environments2
[160] T-RO Code, Video

PANTHER: Perception-Aware Trajectory Planner

in Dynamic Environments
[163] IEEE Access Code, Video

Deep-PANTHER: Learning-Based

Perception-Aware Trajectory Planner in Dynamic

Environments

[161] RA-L (in review) Video

Autonomous Off-road Navigation over Extreme

Terrains with Perceptually-challenging Conditions3
[158] ISER’20 Video

LION: Lidar-Inertial Observability-Aware

Navigator for Vision-Denied Environments4
[156] ISER’20 Video

NeBula: Quest for Robotic Autonomy in

Challenging Environments; TEAM CoSTAR at the

DARPA Subterranean Challenge

[6] JFR Videos

Onboard Detection and Localization of Drones

Using Depth Maps
[24] IEEE Access Video

1 Finalist to the best paper award on Search and Rescue Robotics.
2 Invited for presentation at ICRA’22.
3 2nd place in the DARPA Subterranean Challenge (Tunnel competition).
4 1st place in the DARPA Subterranean Challenge (Urban competition).
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Chapter 2

MINVO Basis: Finding Simplexes

with Minimum Volume Enclosing

Polynomial Curves

2.1 Overview

This chapter studies the polynomial basis that generates the smallest 𝑛-simplex

enclosing a given 𝑛th-degree polynomial curve in R𝑛. Although the Bernstein and

B-Spline polynomial bases provide feasible solutions to this problem, the simplexes

obtained by these bases are not the smallest possible, which leads to overly

conservative results in many CAD (computer-aided design) applications. We first

prove that the polynomial basis that solves this problem (MINVO basis) also solves

for the 𝑛th-degree polynomial curve with largest convex hull enclosed in a given 𝑛-

simplex. Then, we present a formulation that is independent of the 𝑛-simplex or

𝑛th-degree polynomial curve given. By using Sum-Of-Squares (SOS) programming,

branch and bound, and moment relaxations, we obtain high-quality feasible solutions

for any 𝑛 ∈ N, and prove (numerical) global optimality for 𝑛 = 1, 2, 3 and (numerical)

local optimality for 𝑛 = 4. The results obtained for 𝑛 = 3 show that, for any given

3rd-degree polynomial curve in R3, the MINVO basis is able to obtain an enclosing

37



Table 2.1: Notation used in this chapter.

Symbol Meaning
𝑎, 𝑎, 𝐴 Scalar, column vector, matrix
|𝐴|, tr(𝐴) Determinant of 𝐴, trace of 𝐴

𝑡
[︁
𝑡𝑟 𝑡𝑟−1 · · · 1

]︁𝑇
(𝑟 given by the context)

�̂�
[︁
1 · · · 𝑡𝑟−1 𝑡𝑟

]︁𝑇
(𝑟 given by the context)

R[𝑡] Set of univariate polynomials in 𝑡 with coefficients in R
𝑝(𝑡) Column vector whose coordinates are polynomials in R[𝑡]
𝑃 Polynomial curve 𝑃 := {𝑝(𝑡) | 𝑡 ∈ [−1, 1]}
𝑃 Coefficient matrix of 𝑃 . 𝑝(𝑡) = 𝑃 𝑡

𝒫𝑛 Set of all possible 𝑛th-degree polynomial curves
conv(𝑃 ) Convex hull of 𝑃

𝑛 Maximum degree of the entries of 𝑝(𝑡)
𝑘 Number of rows of 𝑝(𝑡)
ℳ Subspace with the smallest dimension that contains 𝑃 . ℳ⊆ R𝑘

𝑚 Dimension of ℳ
𝑆 Simplex
𝒮𝑛 Set of all possible 𝑛-simplexes

𝑉
Matrix whose columns are the vertices of a simplex. This definition will
be generalized in Section 2.6.1

0, 1 Column vectors of zeros and ones
𝑎 ≥ 𝑏 Element-wise inequality

𝑠
Number of intervals the polynomial curve is subdivided into (𝑠 = 1
means no subdivision)

SLℎ
SLEFE of a polynomial curve using ℎ breakpoints in each interval of
subdivision

∝ Proportional to
𝜕 · Frontier of a set
⌊·⌋ Floor function

abs(·) Absolute value
·𝑎×𝑏 Size of a matrix (𝑎 rows × 𝑏 columns)
𝑒

[︁
0 0 · · · 0 1

]︁𝑇
(size given by the context)

𝐼𝑛 Identity matrix of size 𝑛× 𝑛
𝑀 :,𝑐:𝑑 Matrix formed by columns 𝑐, 𝑐+ 1, . . . , 𝑑 of 𝑀

S𝑎+
Positive semidefinite cone (set of all symmetric positive semidefinite
𝑎× 𝑎 matrices)

vol(·) Volume (Lebesgue measure)
𝜋 Hyperplane

dist(𝑎,𝜋) Distance between the point 𝑎 and the hyperplane 𝜋

odd(𝑎, 𝑏) 1 if both 𝑎 and 𝑏 are odd, 0 otherwise
NLO, NGO Numerical Local Optimality, Numerical Global Optimality
MV,Be,BS MINVO, Bernstein, and B-Spline

Color notation for the MV, Be, and BS bases respectively
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simplex whose volume is 2.36 and 254.9 times smaller than the ones obtained by the

Bernstein and B-Spline bases, respectively. When 𝑛 = 7, these ratios increase to

902.7 and 2.997 · 1021, respectively.

2.2 Preliminaries

2.2.1 Notation and Definitions

The notation used throughout this chapter is summarized in Table 2.1. Unless

otherwise noted, all the indexes start at 0. For instance, 𝑀 0,3 is the fourth element

of the first row of the matrix 𝑀 . Let us also introduce the two following common

definitions and their respective notations:

Polynomial curve 𝑃 of degree 𝑛 and dimension 𝑘:

𝑃 := {𝑝(𝑡) | 𝑡 ∈ [𝑎, 𝑏], 𝑎 ∈ R, 𝑏 ∈ R, 𝑏 > 𝑎}

where 𝑝(𝑡) :=
[︁
𝑝0(𝑡) · · · 𝑝𝑘−1(𝑡)

]︁𝑇
:= 𝑃 𝑡 ∈ R𝑘, 𝑝𝑖(𝑡) is a polynomial in R[𝑡], and

𝑛 ∈ N is the highest degree of all the 𝑝𝑖(𝑡). The 𝑘×(𝑛+1) matrix 𝑃 is the coefficient

matrix. Without loss of generality we will use the interval 𝑡 ∈ [−1, 1] (i.e., 𝑎 = −1

and 𝑏 = 1), and assume that the parametrization of 𝑝(𝑡) has minimal degree (i.e., no

other polynomial parametrization with lower degree produces the same spatial curve

𝑃 ). The subspace containing 𝑃 and that has the smallest dimension will be denoted

as ℳ ⊆ R𝑘, and its dimension will be 𝑚. We will work with the case 𝑛 = 𝑚 = 𝑘,

and refer to such curves simply as 𝑛th-degree polynomial curves. Note that we

will use the term polynomial curve to refer to a curve with only one segment, and

not to a curve with several polynomial segments. The set of all possible 𝑛th-degree

polynomial curves will be denoted as 𝒫𝑛. Section 2.6 will then extend the results to

curves with arbitrary 𝑛, 𝑚 and 𝑘.

39



𝑛-simplex: Convex hull of 𝑛 + 1 affinely independent points 𝑣0, . . . ,𝑣𝑛 ∈ R𝑛.

These points are the vertices of the simplex, and will be stacked in the matrix of

vertices 𝑉 :=
[︁
𝑣0 · · · 𝑣𝑛

]︁
. The letter 𝑆 will denote a particular simplex, while 𝒮𝑛

will denote the set of all possible 𝑛-simplexes. A simplex with 𝑉 =
[︁
0 𝐼𝑛

]︁
will be

called the standard 𝑛-simplex.

We will use the basis matrix of a segment of a non-clamped uniform B-Spline for

comparison [34,133,145], and refer to this basis simply as the B-Spline basis.

Moreover, throughout this chapter we will use the term numerical local optimality

(NLO) to classify a solution for which the first-order optimality measure and the

maximum constraint violation are smaller than a predefined small tolerance [4].

Similarly, we will use the term numerical global optimality (NGO) to classify a feasible

solution for which the difference between its objective value and a lower bound on

the global minimum (typically obtained via a relaxation of the problem) is less than

a specific small tolerance. All the tolerances and parameters of the numerical solvers

used are available in the code.

Finally, and for purposes of clarity, we will use the term MINVO basis to refer to

both the global minimizers of the problem (proved for 𝑛 = 1, 2, 3) and the proposed

locally-optimal/feasible solutions (obtained for 𝑛 ≥ 4).

2.2.2 Volume of the Convex Hull of a Polynomial Curve

At several points throughout the chapter, we will make use of the following theorem,

that we prove in Appendix 2.A:

Theorem 1: The volume of the convex hull of 𝑃 ∈ 𝒫𝑛 (𝑡 ∈ [−1, 1]), is given by:

vol (conv (𝑃 )) = abs (|𝑃 :,0:𝑛−1|)
𝑛! 2

𝑛(𝑛+1)
2

∏︁
0≤𝑖<𝑗≤𝑛

(︃
𝑗 − 𝑖
𝑗 + 𝑖

)︃

Proof : See Appendix 2.A. �

Note that, as the curve 𝑃 satisfies 𝑛 = 𝑚 = 𝑘 (see Section 2.2.1), the volume of

its convex hull is nonzero and therefore |𝑃 :,0:𝑛−1| ≠ 0.
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2.3 Problems Definition

The goal of this chapter is to find the smallest simplex 𝑆 ∈ 𝒮𝑛 enclosing a given

polynomial curve 𝑃 ∈ 𝒫𝑛, and to find the polynomial curve 𝑃 ∈ 𝒫𝑛 with largest

convex hull enclosed in a given simplex 𝑆 ∈ 𝒮𝑛.

2.3.1 Given 𝑃 ∈ 𝒫𝑛, find 𝑆 ∈ 𝒮𝑛

Problem 1: Given the polynomial curve 𝑃 ∈ 𝒫𝑛, find the simplex 𝑆 ∈ 𝒮𝑛 with

minimum volume that contains 𝑃 . In other words:

min
𝑆∈𝒮𝑛

vol(𝑆)

s.t. 𝑃 ⊂ 𝑆

For 𝑛 = 2, Problem 1 tries to find the triangle with the smallest area that contains

a planar 2nd-degree polynomial curve. For 𝑛 = 3, it tries to find the tetrahedron

with the smallest volume that contains a 3rd-degree polynomial curve in 3D. Similar

geometric interpretations apply for higher 𝑛.

Letting 𝑓1 denote the objective function of this problem, we have that 𝑓1 :=

vol(𝑆) ∝ abs
(︁⃒⃒⃒[︁

𝑉 𝑇 1
]︁⃒⃒⃒)︁

. Note that, as the volume of the convex hull of 𝑃 is nonzero

(see Section 2.2.2), then it is guaranteed that
⃒⃒⃒[︁

𝑉 𝑇 1
]︁⃒⃒⃒
̸= 0.

2.3.2 Given 𝑆 ∈ 𝒮𝑛, find 𝑃 ∈ 𝒫𝑛

Problem 2: Given a simplex 𝑆 ∈ 𝒮𝑛, find the polynomial curve 𝑃 ∈ 𝒫𝑛 contained

in 𝑆, whose convex hull has maximum volume:

min
𝑃∈𝒫𝑛

−vol(conv(𝑃 ))

s.t. 𝑃 ⊂ 𝑆

By the definition of a simplex (see Section 2.2.1), its vertices are affinely
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independent and therefore the matrix of vertices of the given simplex 𝑆 satisfies⃒⃒⃒[︁
𝑉 𝑇 1

]︁⃒⃒⃒
̸= 0.

Letting 𝑓2 denote the objective function of this problem, we have that 𝑓2 :=

−vol(conv(𝑃 )) ∝ −abs (|𝑃 :,0:𝑛−1|). Now note that the optimal solution for this

problem is guaranteed to satisfy |𝑃 :,0:𝑛−1| ̸= 0, which can be easily proven by noting

that we are maximizing the absolute value of |𝑃 :,0:𝑛−1|, and that there exists at

least one feasible solution (for example the Bézier curve whose control points are the

vertices of 𝑆) with |𝑃 :,0:𝑛−1| ≠ 0.

2.4 Equivalent Formulation

Let us now study the constraints and the objective functions of Problems 1 and 2.

2.4.1 Constraints of Problems 1 and 2

Both problems share the same constraint 𝑃 ⊂ 𝑆 (i.e., 𝑝(𝑡) ∈ 𝑆 ∀𝑡 ∈ [−1, 1]), which

is equivalent to 𝑝(𝑡) being a convex combination of the vertices 𝑣𝑖 of the simplex for

𝑡 ∈ [−1, 1]:

𝑃 ⊂ 𝑆 ≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑝(𝑡) = ∑︀𝑛
𝑖=0 𝜆𝑖(𝑡)𝑣𝑖∑︀𝑛

𝑖=0 𝜆𝑖(𝑡) = 1 ∀𝑡

𝜆𝑖(𝑡) ≥ 0 ∀𝑖 = 0, . . . , 𝑛 ∀𝑡 ∈ [−1, 1]

(2.1)

The variables 𝜆𝑖(𝑡) are usually called barycentric coordinates [13,40,62], and their

geometric interpretation is as follows. Let us first define 𝜋𝑖 as the hyperplane that

passes through the points {𝑣0,𝑣1, . . . ,𝑣𝑛}∖{𝑣𝑖}, and 𝑛𝑖 as its normal vector that

points towards the interior of the simplex. Choosing now 𝑞 ∈ {0, . . . , 𝑛}∖{𝑖}, and

using the fact that ∑︀𝑛
𝑗=0 𝜆𝑗(𝑡) = 1, we have that 𝑝(𝑡) = 𝑣𝑞 + ∑︀𝑛

𝑗=0 𝜆𝑗(𝑡) (𝑣𝑗 − 𝑣𝑞).

Therefore:

dist (𝑝(𝑡),𝜋𝑖) := (𝑝(𝑡)− 𝑣𝑞)𝑇 𝑛𝑖 =
𝑛∑︁
𝑗=0

𝜆𝑗(𝑡) (𝑣𝑗 − 𝑣𝑞)𝑇 𝑛𝑖 =
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Figure 2-1: Geometric interpretation of 𝜆𝑖(𝑡). Each 𝜆𝑖(𝑡) represents the
distance between the curve 𝑝(𝑡) and the hyperplane formed by the vertices
{𝑣0,𝑣1, . . . ,𝑣𝑛}∖{𝑣𝑖}, divided by the distance from the vertex 𝑣𝑖 to that hyperplane
(left). For the standard 3-simplex in 3D (i.e., 𝑉 =

[︁
0 𝐼3

]︁
), the curve in red has

𝑝(𝑡) =
[︁
𝜆1(𝑡) 𝜆2(𝑡) 𝜆3(𝑡)

]︁𝑇
(right).

= 𝜆𝑖(𝑡) (𝑣𝑖 − 𝑣𝑞)𝑇 𝑛𝑖 = 𝜆𝑖(𝑡) dist (𝑣𝑖,𝜋𝑖) ,

which implies that

𝜆𝑖(𝑡) = dist (𝑝(𝑡),𝜋𝑖)
dist (𝑣𝑖,𝜋𝑖)

. (2.2)

Hence, 𝜆𝑖(𝑡) represents the ratio between the distance from the point 𝑝(𝑡) of the

curve to the hyperplane 𝜋𝑖 and the distance from 𝑣𝑖 to that hyperplane 𝜋𝑖 (see

Fig. 2-1 for the case 𝑛 = 3).1 From Eq. 2.2 it is clear that each 𝜆𝑖(𝑡) is an 𝑛th-degree

polynomial, that we will write as 𝜆𝑖(𝑡) := 𝜆𝑇
𝑖 𝑡, where 𝜆𝑖 is its vector of coefficients.

Matching now the coefficients of 𝑝(𝑡) with the ones of ∑︀𝑛
𝑖=0 𝜆𝑖(𝑡)𝑣𝑖, the first constraint

1Note that multiplying numerator and denominator of Eq. 2.2 by the area of the facet that lies
on the plane 𝜋𝑖, each 𝜆𝑖(𝑡) can also be defined as a ratio of volumes, as in [40].
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of Eq. 2.1 can be rewritten as 𝑃 = 𝑉 𝐴, where

𝐴 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜆𝑇
0

𝜆𝑇
1
...

𝜆𝑇
𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[︂
𝜆0 𝜆1 · · · 𝜆𝑛

]︂𝑇
.

Note that 𝐴 is a (𝑛+1)× (𝑛+1) matrix whose 𝑖th row contains the coefficients of

the polynomial 𝜆𝑖(𝑡) in decreasing order. The second and third constraints of Eq. 2.1

can be rewritten as 𝐴𝑇1 = 𝑒 and 𝐴𝑡 ≥ 0 ∀𝑡 ∈ [−1, 1] respectively. We conclude

therefore that

𝑃 ⊂ 𝑆 ≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑃 = 𝑉 𝐴

𝐴𝑇1 = 𝑒

𝐴𝑡 ≥ 0 ∀𝑡 ∈ [−1, 1]

(2.3)

2.4.2 Objective Function of Problem 1

Using the constraints in Eq. 2.3, and noting that the matrix 𝐴 is invertible (as proven

in Appendix 2.B), we can write

𝑓1 ∝ abs
(︂⃒⃒⃒⃒[︂

𝑉 𝑇 1
]︂⃒⃒⃒⃒)︂

= abs
(︂⃒⃒⃒⃒

𝐴−𝑇
[︂

𝑃 𝑇 𝑒

]︂⃒⃒⃒⃒)︂
∝ abs

(︁⃒⃒⃒
𝐴−1

⃒⃒⃒)︁
= 1

abs (|𝐴|) ,

where we have used the fact that everything inside
[︂

𝑃 𝑇 𝑒

]︂
is given (i.e., not a decision

variable of the optimization problem), and the fact that |𝐴| = |𝐴𝑇 |. We can therefore

minimize −abs (|𝐴|). Note that now the objective function 𝑓1 is independent of the

given curve 𝑃 .
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2.4.3 Objective Function of Problem 2

Similar to the previous subsection, and noting that 𝑉 is given in Problem 2, we have

that

𝑓2 ∝ −abs (|𝑃 :,0:𝑛−1|) = −abs

⎛⎜⎝
⃒⃒⃒⃒
⃒⃒⃒
⎡⎢⎣ 𝑃

𝑒𝑇

⎤⎥⎦
⃒⃒⃒⃒
⃒⃒⃒
⎞⎟⎠ = −abs

⎛⎜⎝
⃒⃒⃒⃒
⃒⃒⃒
⎡⎢⎣ 𝑉

1𝑇

⎤⎥⎦𝐴

⃒⃒⃒⃒
⃒⃒⃒
⎞⎟⎠ ∝ −abs (|𝐴|) ,

and therefore the objective function 𝑓2 is now independent of the given simplex 𝑆.

2.4.4 Equivalent Formulation for Problems 1 and 2

Note that now the dependence on the given polynomial curve (for Problem 1) or

on the given simplex (for Problem 2) appears only in the constraint 𝑃 = 𝑉 𝐴. As

𝐴 is invertible (see Appendix 2.B), we can safely remove this constraint from the

optimization, leaving 𝐴 as the only decision variable, and then use 𝑃 = 𝑉 𝐴 to

obtain 𝑉 (for Problem 1) or 𝑃 (for Problem 2). We end up therefore with the

following optimization problem:2

Problem 3:

min
𝐴∈R(𝑛+1)×(𝑛+1)

−abs (|𝐴|)

s.t. 𝐴𝑇1 = 𝑒

𝐴𝑡 ≥ 0 ∀𝑡 ∈ [−1, 1]

Remark: As detailed above, Problem 3 does not depend on the specific given

𝑛th-degree polynomial curve (for Problem 1) or on the specific given 𝑛-simplex (for

Problem 2). Hence, its optimal solution 𝐴* for a specific 𝑛 can be applied to obtain

the optimal solution of Problem 1 for any given polynomial curve 𝑃 ∈ 𝒫𝑛 (by using

𝑉 * = 𝑃 (𝐴*)−1) and to obtain the optimal solution of Problem 2 for any given

simplex 𝑆 ∈ 𝒮𝑛 (by using 𝑃 * = 𝑉 𝐴*).
2Note that in the objective function of Problem 3 the abs(·) is not necessary, since any

permutation of the rows of 𝐴 will change the sign of |𝐴|. We keep it simply for consistency purposes,
since later in the solutions we will show a specific order of the rows of 𝐴 for which (for some 𝑛)
|𝐴| < 0, but that allows us to highlight the similarities and differences between this matrix and the
ones the Bernstein and B-Spline bases use.
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As the objective function of Problem 3 is the determinant of the nonsymmetric

matrix 𝐴, it is clearly a nonconvex problem. We can rewrite the constraint 𝐴𝑡 ≥

0 ∀𝑡 ∈ [−1, 1] of Problem 3 using Sum-Of-Squares programming [17]:

• If 𝑛 is odd, 𝜆𝑖(𝑡) ≥ 0 ∀𝑡 ∈ [−1, 1] if and only if

⎧⎪⎨⎪⎩
𝜆𝑖(𝑡) = �̂�

𝑇 ((𝑡+ 1)𝑊 𝑖 + (1− 𝑡)𝑉 𝑖) �̂�

𝑊 𝑖 ∈ S
𝑛+1

2
+ ,𝑉 𝑖 ∈ S

𝑛+1
2

+

• If 𝑛 is even, 𝜆𝑖(𝑡) ≥ 0 ∀𝑡 ∈ [−1, 1] if and only if

⎧⎪⎨⎪⎩
𝜆𝑖(𝑡) = �̂�

𝑇
𝑊 𝑖�̂� + �̂�

𝑇 (𝑡+ 1)(1− 𝑡)𝑉 𝑖�̂�

𝑊 𝑖 ∈ S
𝑛
2 +1
+ ,𝑉 𝑖 ∈ S

𝑛
2
+

Note that the if and only if condition applies because 𝜆𝑖(𝑡) is a univariate

polynomial [17]. The decisions variables would be the positive semidefinite matrices

𝑊 𝑖 and 𝑉 𝑖, 𝑖 = 0, . . . , 𝑛. Another option is to use the Markov–Lukács Theorem

([153, Theorem 1.21.1],[77, Theorem 2.2],[138]):

• If 𝑛 is odd, 𝜆𝑖(𝑡) ≥ 0 ∀𝑡 ∈ [−1, 1] if and only if

𝜆𝑖(𝑡) = (𝑡+ 1)𝑔2
𝑖 (𝑡) + (1− 𝑡)ℎ2

𝑖 (𝑡) .

• If 𝑛 is even, 𝜆𝑖(𝑡) ≥ 0 ∀𝑡 ∈ [−1, 1] if and only if

𝜆𝑖(𝑡) = 𝑔2
𝑖 (𝑡) + (𝑡+ 1)(1− 𝑡)ℎ2

𝑖 (𝑡) .

where 𝑔𝑖(𝑡) and ℎ𝑖(𝑡) are polynomials of degrees deg(𝑔𝑖(𝑡)) ≤ ⌊𝑛/2⌋ and deg(ℎ𝑖(𝑡)) ≤

⌊(𝑛− 1)/2⌋. The decision variables would be the coefficients of the polynomials 𝑔𝑖(𝑡)

and ℎ𝑖(𝑡), 𝑖 = 0, . . . , 𝑛. In Appendix 2.C we derive the Karush–Kuhn–Tucker (KKT)

conditions of Problem 3 using this theorem.

Regardless of the choice of the representation of the constraint 𝐴𝑡 ≥ 0 ∀𝑡 ∈

[−1, 1] (SOS or the Markov–Lukács Theorem), no generality has been lost so far.
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However, these formulations easily become intractable for large 𝑛 due to the high

number of decision variables. We can reduce the number of decision variables of

Problem 3 by imposing a structure in 𝜆𝑖(𝑡). As Problem 1 is trying to minimize the

volume of the simplex, we can impose that the facets of the 𝑛-simplex be tangent

to several internal points 𝑝(𝑡) of the curve (with 𝑡 ∈ (−1, 1)), and in contact with

the first and last points of the curve (𝑝(−1) and 𝑝(1)) [75,185]. Using the geometric

interpretation of the 𝜆𝑖(𝑡) given in Section 2.4.1, this means that each 𝜆𝑖(𝑡) should

have either real double roots in 𝑡 ∈ (−1, 1) (where the curve is tangent to a facet),

and/or roots at 𝑡 ∈ {−1, 1}. These conditions, together with an additional symmetry

condition between different 𝜆𝑖(𝑡), translate into the formulation shown in Problem 4,

in which the decisions variables are the roots of 𝜆𝑖(𝑡) and the coefficients 𝑏𝑖.

Problem 4:

min
𝐴∈R(𝑛+1)×(𝑛+1)

−abs (|𝐴|) subject to:

If 𝑛 is odd:

𝜆𝑖(𝑡) = −𝑏𝑖(𝑡− 1)∏︀𝑛−1
2

𝑗=1 (𝑡− 𝑡𝑖𝑗)2 𝑖 = 0, 2, . . . , 𝑛− 1

𝜆𝑖(𝑡) = 𝜆𝑛−𝑖(−𝑡) 𝑖 = 1, 3, . . . , 𝑛

𝑏𝑖 ≥ 0 𝑖 = 0, 2, . . . , 𝑛− 1

𝐴𝑇1 = 𝑒

If 𝑛 is even:

𝜆𝑖(𝑡) = −𝑏𝑖(𝑡+ 1)(𝑡− 1)∏︀𝑛−2
2

𝑗=1 (𝑡− 𝑡𝑖𝑗)2 𝑖 odd integer ∈ [0, 𝑛/2− 1]

𝜆𝑖(𝑡) = 𝑏𝑖
∏︀𝑛

2
𝑗=1(𝑡− 𝑡𝑖𝑗)2 𝑖 even integer ∈ [0, 𝑛/2− 1]

𝜆𝑖(𝑡) = 𝜆𝑛−𝑖(−𝑡) 𝑖 = 𝑛/2 + 1, . . . , 𝑛

𝑏𝑖 ≥ 0 𝑖 = 0, 1, . . . , 𝑛/2

𝐴𝑇1 = 𝑒

𝜆𝑖(𝑡) = −𝑏𝑖(𝑡+ 1)(𝑡− 1)∏︀𝑛−2
4

𝑗=1 (𝑡− 𝑡𝑖𝑗)2(𝑡+ 𝑡𝑖𝑗)2 𝑖 = 𝑛/2, 𝑖 odd

𝜆𝑖(𝑡) = 𝑏𝑖
∏︀𝑛

4
𝑗=1(𝑡− 𝑡𝑖𝑗)2(𝑡+ 𝑡𝑖𝑗)2 𝑖 = 𝑛/2, 𝑖 even
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Figure 2-2: Relationship between Problems 1, 2, 3, and 4: Problem 3 and 4 have the
same objective function, but the feasible set of Problem 4 is contained in the feasible
set of Problem 3, and therefore 𝑓 *

3 ≤ 𝑓 *
4 . Both Problem 3 and 4 generate a solution

𝐴, which can be applied to any polynomial curve 𝑃 ∈ 𝒫𝑛 to find the simplex 𝑆 ∈ 𝒮𝑛
in Problem 1, or to any simplex 𝑆 ∈ 𝒮𝑛 to find the polynomial curve 𝑃 ∈ 𝒫𝑛 in
Problem 2.

Letting 𝑓𝑖 denote the objective function of Problem 𝑖, the relationship between

Problems 1, 2, 3 and 4 is given in Fig. 2-2. First note that the constraints and structure

imposed on 𝜆𝑖(𝑡) in Problem 4 guarantee that they are nonnegative for 𝑡 ∈ [−1, 1] and

that they sum up to 1. Hence the feasible set of Problem 4 is contained in the feasible

set of Problem 3, and therefore, 𝑓 *
3 ≤ 𝑓 *

4 holds. The matrix 𝐴 found in Problem 3

or 4 can be used to find the vertices of the simplex in Problem 1 (by simply using

𝑉 = 𝑃 (𝐴)−1, where 𝑃 is the coefficient matrix of the polynomial curve given), or to

find the coefficient matrix of the polynomial curve in Problem 2 (by using 𝑃 = 𝑉 𝐴,

where 𝑉 contains the vertices of the given simplex).

2.5 Results

2.5.1 Results for 𝑛 = 1, 2, . . . , 7

Using the nonconvex solvers fmincon [4] and SNOPT [56, 57] (with the YALMIP

interface [90,91]), we were able to find NLO solutions for Problem 4 for 𝑛 = 1, 2, . . . , 7,

and the same NLO solutions were found in Problem 3 for 𝑛 = 1, 2, 3, 4. Problem 3

and 4 become intractable for 𝑛 ≥ 5 and 𝑛 ≥ 8 respectively. The optimal matrices 𝐴
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Table 2.2: Results for the MINVO basis. 𝐴MV, 𝐴Be and 𝐴BS denote the coefficient
matrix of the MINVO, Bernstein, and B-Spline bases respectively (𝑡 ∈ [−1, 1]). The
greater the absolute value of the determinant, the smaller the associated simplex (for
Problem 1) and the larger the convex hull of the curve (for Problem 2). The matrices
𝐴MV found are independent of the given polynomial curve (in Problem 1), or of
the given simplex (in Problem 2). NGO and NLO denote numerical Global/Local
Optimality.

𝑛 𝐴MV abs (|𝐴MV|) abs(|𝐴MV|)
abs(|𝐴Be|)

abs(|𝐴MV|)
abs(|𝐴BS|) Problem 3 Problem 4

1 1
2

[︂
−1 1
1 1

]︂
0.5 1.0 1.0 NGO NGO

2 1
8

[︃
3 −2

√
3 1

−6 0 6
3 2

√
3 1

]︃
0.3248 1.299 5.196 NGO NGO

3

⎡⎢⎣ −0.4302 0.4568 −0.02698 0.0004103
0.8349 −0.4568 −0.7921 0.4996

−0.8349 −0.4568 0.7921 0.4996
0.4302 0.4568 0.02698 0.0004103

⎤⎥⎦ 0.3319 2.360 254.9 NGO NGO

4

⎡⎢⎢⎣
0.5255 −0.5758 −0.09435 0.1381 0.03023
−1.108 0.8108 0.9602 −0.8108 0.1483
1.166 0 −1.732 0 0.643

−1.108 −0.8108 0.9602 0.8108 0.1483
0.5255 0.5758 −0.09435 −0.1381 0.03023

⎤⎥⎥⎦ 0.5678 6.057 1.675 · 105 NLO
(at least)

NLO
(at least)

5

⎡⎢⎢⎢⎢⎣
−0.7392 0.7769 0.3302 −0.3773 −0.0365 0.04589

1.503 −1.319 −1.366 1.333 −0.121 0.002895
−1.75 0.5424 2.777 −0.9557 −1.064 0.4512
1.75 0.5424 −2.777 −0.9557 1.064 0.4512

−1.503 −1.319 1.366 1.333 0.121 0.002895
0.7392 0.7769 −0.3302 −0.3773 0.0365 0.04589

⎤⎥⎥⎥⎥⎦ 1.6987 22.27 1.924 · 109 Feasible
(at least)

NLO
(at least)

6

⎡⎢⎢⎢⎢⎢⎢⎣

1.06 −1.134 −0.7357 0.8348 0.1053 −0.1368 0.01836
−2.227 2.055 2.281 −2.299 −0.08426 0.2433 0.0312

2.59 −1.408 −4.27 2.468 1.58 −1.081 0.152
−2.844 0 5.45 0 −3.203 0 0.5969

2.59 1.408 −4.27 −2.468 1.58 1.081 0.152
−2.227 −2.055 2.281 2.299 −0.08426 −0.2433 0.0312

1.06 1.134 −0.7357 −0.8348 0.1053 0.1368 0.01836

⎤⎥⎥⎥⎥⎥⎥⎦ 9.1027 117.8 4.750 · 1014 Feasible
(at least)

NLO
(at least)

7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.637 1.707 1.563 −1.682 −0.3586 0.4143 −0.006851 2.854 · 10−5

3.343 −3.285 −3.947 4.173 0.6343 −0.9385 −0.02111 0.05961
−4.053 2.722 6.935 −4.96 −2.706 2.269 −0.2129 0.00535
4.478 −1.144 −9.462 2.469 6.311 −1.745 −1.312 0.435

−4.478 −1.144 9.462 2.469 −6.311 −1.745 1.312 0.435
4.053 2.722 −6.935 −4.96 2.706 2.269 0.2129 0.00535

−3.343 −3.285 3.947 4.173 −0.6343 −0.9385 0.02111 0.05961
1.637 1.707 −1.563 −1.682 0.3586 0.4143 0.006851 2.854 · 10−5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
89.0191 902.7 2.997 · 1021 Feasible

(at least)
NLO

(at least)

found are shown in Table 2.2, and are denoted as 𝐴MV.3 Their determinants |𝐴MV|

are also compared with the one of the Bernstein and B-Spline matrices (denoted as

𝐴Be and 𝐴BS respectively). The corresponding plots of the MINVO basis functions

are shown in Fig. 2-3, together with the Bernstein, B-Spline and Lagrange bases for

comparison. All of these bases satisfy ∑︀𝑛
𝑖=0 𝜆𝑖(𝑡) = 1, and the MINVO, Bernstein,

and B-Spline bases also satisfy 𝜆𝑖(𝑡) ≥ 0 ∀𝑡 ∈ [−1, 1]. The roots of each of the

MINVO basis functions 𝜆𝑖(𝑡) for 𝑛 = 1, . . . , 7 are shown in Table 2.3 and plotted in

Fig. 2-9.

One natural question to ask is whether the basis found constitutes a global

minimizer for either Problem 3 or Problem 4. To answer this, first note that

3Note that any permutation in the rows of 𝐴MV will not change the objective value, since only
the sign of the determinant is affected. Despite this multiplicity of solutions, we will refer to any
matrix shown in Table 2.2 as, e.g., the optimal solution 𝐴MV, the feasible solution 𝐴MV, etc.
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Figure 2-3: Comparison between the MINVO, Bernstein, B-Spline, and Lagrange
bases for 𝑛 = 1, 2, . . . , 7. All these bases satisfy ∑︀𝑛

𝑖=0 𝜆𝑖(𝑡) = 1, and the MINVO,
Bernstein, and B-Spline bases also satisfy 𝜆𝑖(𝑡) ≥ 0 ∀𝑡 ∈ [−1, 1].
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Table 2.3: Roots of each 𝜆𝑖(𝑡) of the MINVO basis. 𝑟(𝜆𝑖(𝑡)) is the column vector
that contains the roots of 𝜆𝑖(𝑡). All the roots lying in (−1, 1) are double roots, while
the ones in {−1, 1} are single roots. Each 𝜆𝑖(𝑡) has 𝑛 real roots in total. These roots
are plotted in Fig. 2-9.

𝑛 Roots of 𝜆𝑖(𝑡), 𝑡 ∈ [−1, 1]
1

[︁
𝑟(𝜆0)𝑇
𝑟(𝜆1)𝑇

]︁
=
[︁

1.0
−1.0

]︁
2

[︃
𝑟(𝜆0)𝑇
𝑟(𝜆1)𝑇
𝑟(𝜆2)𝑇

]︃
=

⎡⎣ 1√
3

−1.0 1.0
− 1√

3

⎤⎦
3

⎡⎣ 𝑟(𝜆0)𝑇
𝑟(𝜆1)𝑇
𝑟(𝜆2)𝑇
𝑟(𝜆3)𝑇

⎤⎦ ≈

⎡⎣ 0.03088 1.0
−1.0 0.7735

−0.7735 1.0
−1.0 −0.03088

⎤⎦
4

⎡⎢⎢⎣
𝑟(𝜆0)𝑇
𝑟(𝜆1)𝑇
𝑟(𝜆2)𝑇
𝑟(𝜆3)𝑇
𝑟(𝜆4)𝑇

⎤⎥⎥⎦ ≈

⎡⎢⎢⎣
−0.2872 0.835

−1.0 0.3657 1.0
−0.8618 0.8618

−1.0 −0.3657 1.0
−0.835 0.2872

⎤⎥⎥⎦

5

⎡⎢⎢⎢⎣
𝑟(𝜆0)𝑇
𝑟(𝜆1)𝑇
𝑟(𝜆2)𝑇
𝑟(𝜆3)𝑇
𝑟(𝜆4)𝑇
𝑟(𝜆5)𝑇

⎤⎥⎥⎥⎦ ≈

⎡⎢⎢⎢⎣
−0.4866 0.5121 1.0

−1.0 0.04934 0.8895
−0.9057 0.5606 1.0

−1.0 −0.5606 0.9057
−0.8895 −0.04934 1.0

−1.0 −0.5121 0.4866

⎤⎥⎥⎥⎦

6

⎡⎢⎢⎢⎢⎢⎣
𝑟(𝜆0)𝑇
𝑟(𝜆1)𝑇
𝑟(𝜆2)𝑇
𝑟(𝜆3)𝑇
𝑟(𝜆4)𝑇
𝑟(𝜆5)𝑇
𝑟(𝜆6)𝑇

⎤⎥⎥⎥⎥⎥⎦ ≈

⎡⎢⎢⎢⎢⎢⎣
−0.6135 0.2348 0.9137

−1.0 −0.1835 0.6449 1.0
−0.9317 0.2822 0.9214

−1.0 −0.6768 0.6768 1.0
−0.9214 −0.2822 0.9317

−1.0 −0.6449 0.1835 1.0
−0.9137 −0.2348 0.6135

⎤⎥⎥⎥⎥⎥⎦

7

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑟(𝜆0)𝑇
𝑟(𝜆1)𝑇
𝑟(𝜆2)𝑇
𝑟(𝜆3)𝑇
𝑟(𝜆4)𝑇
𝑟(𝜆5)𝑇
𝑟(𝜆6)𝑇
𝑟(𝜆7)𝑇

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≈

⎡⎢⎢⎢⎢⎢⎢⎣

−0.7 0.008364 0.7132 1.0
−1.0 −0.3509 0.4068 0.9355

−0.9481 0.05239 0.7315 1.0
−1.0 −0.753 0.4399 0.9408

−0.9408 −0.4399 0.753 1.0
−1.0 −0.7315 −0.05239 0.9481

−0.9355 −0.4068 0.3509 1.0
−1.0 −0.7132 −0.008364 0.7

⎤⎥⎥⎥⎥⎥⎥⎦

both Problem 3 and Problem 4 are polynomial optimization problems. Therefore,

we can make use of Lasserre’s moment method [82], and increase the order of the

moment relaxation to find tighter lower bounds of the original nonconvex polynomial

optimization problem. Using this technique, we were able to obtain, for 𝑛 = 1, 2, 3 and

for Problem 4, the same objective value as the NLO solutions found before, proving

therefore numerical global optimality for these cases. For Problem 3, the moment

relaxation technique becomes intractable due to the high number of variables. Hence,

to prove numerical global optimality in Problem 3 we instead use the branch-and-
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Figure 2-4: For 𝑛 = 2, the MINVO basis has 𝐴MV =
[︁
𝜆0 𝜆1 𝜆2

]︁𝑇
, where 𝜆0,𝜆1,

and 𝜆2 are vectors that span the parallelepiped , and whose sum is
[︁
0 0 1

]︁𝑇
. Here,

𝜕𝑄 ( ) is the frontier of the cone 𝑄 formed by the coefficients of the polynomials that
are nonnegative for all 𝑡 ∈ [−1, 1]. Note how the globally-optimal vectors 𝜆0,𝜆1, and
𝜆2 belong to 𝜕𝑄.

bound algorithm, which proves global optimality by reducing to zero the gap between

the upper bounds found by a nonconvex solver and the lower bounds found using

convex relaxations [102]. This technique proved to be tractable for cases 𝑛 = 1, 2, 3

in Problem 3, and zero optimality gap was obtained.

All these results lead us to the following conclusions, which are also summarized

in Table 2.2:

• The matrices 𝐴MV found for 𝑛 = 1, 2, 3 are (numerical) global optima of both

Problem 3 and Problem 4.

• The matrix 𝐴MV found for 𝑛 = 4 is at least a (numerical) local optimum of

both Problem 3 and Problem 4.
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Figure 2-5: Solution obtained by the MINVO basis for 𝑛 = 3. Note how the centroids
of each of the facets ( , vertices of the yellow tetrahedron) belong to conv (𝑃 ), which
is a necessary condition for an extremal simplex [75]. Moreover, note that conv (𝑃 )
is tangent to the simplex along the blue lines. The red points denote the contact
points between the curve and the simplex, which happen at the roots of the MINVO
basis functions.

• The matrices 𝐴MV found for 𝑛 = 5, 6, 7 are at least (numerical) local optima

for Problem 4, and are at least feasible solutions for Problem 3.

The geometric interpretation of Problem 3 (for 𝑛 = 2) is shown in Fig. 2-4. The

rows of 𝐴 are vectors that lie in the cone of the polynomials that are nonnegative

in 𝑡 ∈ [−1, 1] (and whose frontier is shown in orange in the figure). As Problem 3 is

maximizing the volume of the parallelepiped spanned by these vectors, the optimal

minimizer is obtained in the frontier of the cone, while guaranteeing that the sum of

these vectors is [ 0 0 1 ]𝑇 .

In Fig. 2-5 we check that the centroids of each of the facets of the simplex belongs

to conv (𝑃 ), which is a necessary condition for that simplex to be minimal [75]. Note

also that conv (𝑃 ) is tangent to the simplex along four lines (in blue in the figure),

and that the contact points of the curve with the simplex happen at the roots of the
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(a) For any given curve 𝑃 ∈ 𝒫2, the MINVO
basis finds an enclosing 2-simplex that is 1.3
and 5.2 times smaller than the one found by
the Bernstein and B-Spline bases respectively.

(b) For any given 2-simplex, the MINVO basis
finds a curve 𝑃 ∈ 𝒫2 inscribed in the simplex,
and whose convex hull is 1.3 and 5.2 times
larger than the one found by the Bernstein and
B-Spline bases respectively.

Figure 2-6: Comparison between the MINVO, Bernstein, and B-Spline bases for
𝑛 = 2. The MINVO basis obtains numerically globally optimal results for 𝑛 = 1, 2, 3.

(a) For any given 3rd-degree polynomial
curve, the MINVO basis finds an enclosing 3-
simplex that is 2.36 and 254.9 times smaller
than the one found by the Bernstein and B-
Spline bases respectively.

(b) For any given 3-simplex, the MINVO basis
finds a 3rd-degree polynomial curve inscribed
in the simplex, and whose convex hull is 2.36
and 254.9 times larger than the one found by
the Bernstein and B-Spline bases respectively.

Figure 2-7: Comparison between the MINVO, Bernstein, and B-Spline bases for
𝑛 = 3. The MINVO basis obtains numerically globally optimal results for 𝑛 = 1, 2, 3.
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(a) Simplexes found by the MINVO basis
for four different given 3rd-degree polynomial
curves (Problem 1).

(b) Polynomial curves (and their convex hulls
in blue) obtained using the MINVO basis for
four different given 3-simplexes (Problem 2).

Figure 2-8: MINVO results for 𝑛 = 3, where numerical global optimality is
guaranteed.

MINVO basis functions.

When the polynomial curve is given (i.e., Problem 1), the ratio between the volume

of the simplex 𝑆𝛼 obtained by a basis 𝛼 and the volume of the simplex 𝑆𝛽 obtained

by a basis 𝛽 (𝛼, 𝛽 ∈ {MV,Be,BS}) is given by

vol (𝑆𝛼)
vol(𝑆𝛽) = abs(|𝐴𝛽|)

abs (|𝐴𝛼|)
.

Similarly, when the simplex is given (i.e., Problem 2), the ratio between the volume

of the convex hull of the polynomial curve 𝑃𝛼 found by a basis 𝛼 and the volume of

the convex hull of the polynomial curve 𝑃𝛽 found by a basis 𝛽 (𝛼, 𝛽 ∈ {MV,Be,BS})

is given by
vol (conv (𝑃𝛼))
vol(conv(𝑃𝛽)) = abs (|𝐴𝛼|)

abs(|𝐴𝛽|)
.

These ratios are shown in Table 2.2, and they mean the following for Problem 1

(Problem 2 respectively):

• For 𝑛 = 3, the MINVO basis finds a simplex that has a volume (a polynomial

curve whose convex hull has a volume) ≈ 2.36 and ≈ 254.9 times smaller (larger)

than the one the Bernstein and B-Spline bases find respectively.

• For 𝑛 = 7, the MINVO basis finds a simplex that has a volume (a polynomial
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Figure 2-9: Distribution of the roots of the MINVO basis functions for different 𝑛. The
results for 𝑛 ≤ 7 were obtained by solving the optimization problems (Section 2.5.1,
see also Table 2.3), while the results for 𝑛 ≥ 8 were obtained using the model proposed
in Section 2.5.2.

Figure 2-10: MINVO basis functions obtained for 𝑛 = 10, 16, 24, 30 using the model
proposed in Section 2.5.2.

curve whose convex hull has a volume) ≈ 902.7 and ≈ 2.997 · 1021 times smaller

(larger) than the one the Bernstein and B-Spline bases find respectively.

An analogous reasoning applies to the volume ratios of other 𝑛. These comparisons

are shown in Fig. 2-6 (for 𝑛 = 2), and in Fig. 2-7 (for 𝑛 = 3). More examples of

the MINVO bases applied to different polynomial curves and simplexes are shown in

Fig. 2-8.

2.5.2 Results for 𝑛 > 7

In Section 2.5.1, we obtained the results for 𝑛 = 1, . . . , 7 by using the optimization

problems. However, solving these problems becomes intractable when 𝑛 > 7. To

address this problem, we present a model that finds high-quality feasible solutions by

extrapolating for 𝑛 > 7 the pattern found for the roots of the MINVO basis (see the

cases 𝑛 = 1, . . . , 7 in Fig. 2-9). Specifically, and noting that the double roots for a
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Table 2.4: Comparison of the results obtained from the optimization (available only
for 𝑛 = 1, . . . , 7) with the results obtained using the model proposed in Section 2.5.2
(available for all 𝑛 ∈ N). The results obtained using the proposed model are also
compared with the Bernstein and B-Spline bases.

Degree n

1 2 3 4 5 6 7 8 10 14 18

Opt. abs (|𝐴MV|) 0.5 0.325 0.332 0.568 1.7 9.1 89.0 - - - -

P
ro

po
se

d
m

od
el

abs (|𝐴MV|) 0.5 0.325 0.332 0.567 1.69 9.08 88.2 1590.0 3.3e6 2.7e16 5.7e30

log10 abs
(︀ |𝐴MV|

|𝐴Be|

)︀ 0 0.114 0.373 0.782 1.35 2.07 2.95 4.0 6.57 13.6 23.2

log10 abs
(︀ |𝐴MV|

|𝐴BS|

)︀ 0 0.716 2.41 5.22 9.28 14.7 21.5 29.7 50.9 113.0 203.0

degree 𝑛 tend to be distributed in 𝑛 clusters, we found that the MINVO double roots

in the interval (−1, 1) for the degree 𝑛 can be approximated by

sin
⎛⎝𝑐0

(︁
𝑘 − 𝑠𝑗,𝑛−1

2

)︁
+ 𝑐1

(︁
𝑗 − 𝑛−1

2

)︁
𝑛+ 𝑐2

⎞⎠ , (2.4)

where 𝑠𝑗,𝑛 :=
⌊︁
𝑛+odd(𝑗,𝑛)

2

⌋︁
models the number of roots per cluster 𝑗 ∈ {0, . . . , (𝑛− 1)},

and 𝑘 ∈ {0, . . . , (𝑠𝑗,𝑛 − 1)} is the index of the root inside a specific cluster.4

Here, 𝑐0 ≈ 0.2735, 𝑐1 ≈ 3.0385, and 𝑐2 ≈ 0.4779 were found by optimizing the

associated nonlinear least-squares problem. This proposed model, with only three

parameters, is able to obtain a least-square residual of 5.02 · 10−3 with respect to

the MINVO roots lying in (−1, 1) found for 𝑛 = 2, . . . , 7. The distribution of roots

generated by this proposed model (𝑛 ≥ 8) is shown in Fig. 2-9. Each root can then

be assigned to a polynomial 𝑖 of the basis by simply following the same assignment

pattern found for 𝑛 = 1, ..., 7. Then, and by solving a linear system, the polynomials

can be scaled to enforce ∑︀𝑛
𝑖=0 𝜆𝑖(𝑡) = 1 ∀𝑡 (or equivalently, 𝐴𝑇1 = 𝑒). Note that this

proposed model, although not guaranteed to be optimal, is guaranteed to be feasible

by construction. Some examples of the MINVO basis functions are shown in Fig. 2-10.

4The intuition behind the design of Eq. 2.4 is as follows: The sin
(︁

·
𝑛+·

)︁
forces every root to be in

[−1, 1], and makes the centers of the clusters more densely distributed near the extremes 𝑡 ∈ {−1, 1},
and less around 𝑡 = 0. The numerator inside the sin(·) is a weighted sum of the index of the root
inside the cluster (centered around 𝑠𝑗,𝑛−1

2 ), and the index of the cluster (centered around 𝑛−1
2 ).

Finally, note that, by construction, this formula enforces symmetry with respect to 𝑡 = 0.
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The comparison of |𝐴MV| between the proposed model and the optimization results

of Section 2.5.1 is shown in Table 2.4. For 𝑛 = 1, . . . , 7, the relative error between

the objective value obtained using the optimization and the one obtained using the

proposed model is always < 9.2 · 10−3. The proposed model also produces much

smaller simplexes than the Bernstein and B-Spline bases.

2.6 MINVO Basis Applied to Other Curves

2.6.1 Polynomial Curves of Degree 𝑛, Dimension 𝑘, and

Embedded in a Subspace ℳ of Dimension 𝑚

So far we have studied the case of 𝑛 = 𝑚 = 𝑘 (i.e., a polynomial curve of degree 𝑛

and dimension 𝑘 = 𝑛 and for which 𝑛 is also the dimension ofℳ, see Section 2.2.1).

The most general case would be any 𝑘, 𝑛 and 𝑚, as shown in Table 2.5. In all these

cases, and using the (𝑛 + 1) × (𝑛 + 1) matrix 𝐴MV, we can still apply the equation

𝑉 𝑘×(𝑛+1) = 𝑃 𝑘×(𝑛+1)𝐴
−1
MV to obtain all the 𝑛 + 1 MINVO control points in R𝑘 of

the given curve (columns of the matrix 𝑉 ). The convex hull of the control points is

a polyhedron that is guaranteed to contain the curve because the curve is a convex

combination of the control points. Note also that, when 𝑛 = 𝑚, all the cases below

the diagonal of Table 2.5 have the same optimality properties (NGO/NLO/Feasible)

as the diagonal element that has the same 𝑛.

For 𝑘 = 3, Fig. 2-11 shows a cubic curve embedded in a two-dimensional subspace

(𝑚 = 2, 𝑛 = 3), a segment embedded in a one-dimensional subspace (𝑚 = 𝑛 = 1)

and a quadratic curve embedded in a two-dimensional subspace (𝑚 = 𝑛 = 2).

For 𝑘 = 𝑚 = 2, the comparison between the area of the convex hull of the MINVO

control points (AreaMV) and the area of the convex hull of the Bézier control points

(AreaBe) is shown in Fig. 2-12. Note that this ratio is constant for any polynomial

curve for the case 𝑛 = 2, but depends on the given curve for the cases 𝑛 > 2.

To generate the boxplots of Fig. 2-12, we used a total of 104 polynomial curves

passing through 𝑛 + 1 points randomly sampled from the square [−1, 1]2. Although
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Table 2.5: All the possible cases of polynomial curves of degree 𝑛, dimension 𝑘, and
embedded in a subspace ℳ of dimension 𝑚. Note that 𝑚 ≤ min(𝑘, 𝑛) always holds.

Degree 𝑛
1 2 3 4 ≥ 5

D
im

en
si

on
𝑘 1 NGO F F F F

2 NGO NGO F F F
3 NGO NGO NGO F F
4 NGO NGO NGO NLO F
≥ 5 NGO NGO NGO NLO F

In all the cases (and for any 𝑚): there are 𝑛+ 1 control points, and conv(control points) is a
polyhedron ⊂ℳ ⊆ R𝑘 that encloses the curve and that has at most 𝑛+ 1 vertices.
In and below the diagonal: When 𝑛 = 𝑚, the polyhedron is an 𝑛-simplex embedded in R𝑘
that is at least numerically globally optimal (NGO), numerically locally optimal (NLO), or
feasible (F).

Figure 2-11: The MINVO basis applied for different curves with 𝑘 = 3 and different
values of 𝑚 and 𝑛: A cubic curve embedded in a two-dimensional subspace (left),
a segment embedded in a one-dimensional subspace (middle) and a quadratic curve
embedded in a two-dimensional subspace (right).

it is not guaranteed that AreaMV < AreaBe for any polynomial with 𝑛 > 2, the

Monte Carlo analysis performed using these random polynomial curves shows that

AreaMV < AreaBe holds for the great majority of them, with improvements up to

≈ 200 times for the case 𝑛 = 7.

Similarly, the results for 𝑘 = 𝑚 = 3 are shown in Fig. 2-13, where we used a total

of 104 polynomial curves passing through 𝑛 + 1 points randomly sampled from the

cube [−1, 1]3. Again, it is not guaranteed that VolMV < VolBe for any polynomial

with 𝑛 > 3, but the Monte Carlo results obtained show that this is true in most of

these random polynomials. For the case 𝑛 = 7, the MINVO basis obtains convex

hulls up to ≈ 550 times smaller than the Bézier basis.
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Figure 2-12: Comparison of the convex hull of the MINVO and Bézier control points
for 𝑘 = 𝑚 = 2 and different 𝑛. Here 𝑟 denotes the ratio of the areas AreaBe

AreaMV
. The

boxplots (top) have been obtained from 104 polynomials passing through 𝑛+1 random
points in the square [−1, 1]2. The yellow dashed line highlights the value 𝑟 = AreaBe

AreaMV
=

1. Some of these random curves and the associated convex hulls are shown at the
bottom.
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Figure 2-13: Comparison of the convex hull of the MINVO and Bézier control points
for 𝑘 = 𝑚 = 3 and different 𝑛. Here 𝑟 denotes the ratio of the volumes VolBe

VolMV
. The

boxplots (top) have been obtained from 104 polynomial curves passing through 𝑛+ 1
random points in the cube [−1, 1]3 were used. The yellow dashed line highlights the
value 𝑟 = VolBe

VolMV
= 1. Some of these random curves and the associated convex hulls

are shown at the bottom.
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Figure 2-14: Comparison of the convex hull of the MINVO and Bézier control points
with respect to conv(𝑃 ) for the cases 𝑘 = 𝑚 = 2 (left) and 𝑘 = 𝑚 = 3 (right). For
each 𝑛, a total of 103 polynomial curves passing through 𝑛+ 1 random points in the
cube [−1, 1]𝑘 were used. The shaded area is the 1𝜎 interval, where 𝜎 is the standard
deviation. The yellow dashed line marks a ratio of 1. Note how the growth of the
ratio for the MINVO basis is approximately linear with 𝑛, while for the Bézier basis
it is approximately exponential.

Qualitatively, and for the comparisons shown above, the MINVO enclosures are

much smaller than the Bézier enclosures when used in “tangled” curves. In these

curves, the Bézier control points tend to be spread out and far from the curve, leading

therefore to large and conservative Bézier enclosures.

Finally, we compare in Fig. 2-14 how these polyhedral convex hulls, obtained

by either the MINVO or Bézier control points, approximate conv(𝑃 ), which is the

convex hull of the curve 𝑃 . Similar to the previous cases, here we used a total of

103 polynomial curves passing through 𝑛+ 1 points randomly sampled from the cube

[−1, 1]𝑘. The error in the MINVO outer polyhedral approximation is approximately

linear as 𝑛 increases, but it is exponential for the Bézier basis. For instance, when

𝑛 = 7 and 𝑘 = 3, the Bézier control points generate a polyhedral outer approximation

that is ≈ 1010 times larger than the volume of conv(𝑃 ), while the polyhedral outer

approximation obtained by the MINVO control points is only ≈ 3.9 times larger.
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2.6.2 Rational Curves

Via projections, the MINVO basis is also able to obtain the smallest simplex that

encloses some rational curves, which are curves whose coordinates are the quotients

of two polynomials. For instance, given the 𝑛-simplex obtained by the MINVO basis

for a given 𝑛th-degree polynomial curve 𝑃 , we can project every point 𝑝(𝑡) of the

curve via a perspective projection, using a vertex as the viewpoint, and the opposite

facet as the projection plane. Note that this perspective projection of the polynomial

curve will be a rational curve. If the 𝑛-simplex is the smallest one enclosing the

polynomial curve, then each facet is also the smallest (𝑛 − 1)-simplex that encloses

the projection. This can be easily proven by contradiction, since if the facet were

not a minimal (𝑛 − 1)-simplex for the projected curve, then the 𝑛-simplex would

not be minimal for the original 3D curve (see [144] for instance). Let us define[︁
𝑣0 . . . 𝑣𝑛

]︁
:=

[︁
0 𝐼𝑛

]︁
, and let 𝜋𝑖 denote the plane that passes though the vertices

{𝑣0,𝑣1, . . . ,𝑣𝑛}∖{𝑣𝑖}. Then, for a standard 𝑛-simplex, the perspective projection of

𝑝(𝑡) :=
[︁
𝜆1 · · · 𝜆𝑛

]︁𝑇
𝑡 onto the plane 𝜋𝑖, using 𝑣𝑖 as the viewpoint, is given by:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

1−𝜆𝑇0 𝑡

[︁
𝜆1 · · · 𝜆𝑛

]︁𝑇
𝑡 Projection onto 𝜋0

1
1−𝜆𝑇𝑖 𝑡

[︁
𝜆1 · · · 𝜆𝑖−1 0 𝜆𝑖+1 · · · 𝜆𝑛

]︁𝑇
𝑡 Projection onto 𝜋𝑖, 𝑖 > 0

This projection can also be applied successively from R𝑖 to R𝑗 (𝑖 > 𝑗 ≥ 1). Fig. 2-

15 shows the case R3 → R2 (for all the four possible projections), and some projections

of the cases R6 → R2, R10 → R2, R5 → R3, and R12 → R3.

2.7 Comparison with SLEFEs

In this section, we compare the enclosures for 𝑛th-degree 2D polynomial curves

obtained using these three techniques with and without subdivision:

• MINVO: The curve is divided into 𝑠 subintervals, and then the MINVO

enclosure for each of the subintervals is computed.

62



Figure 2-15: The MINVO basis also obtains simplexes that tightly enclose some
rational curves (curves whose coordinates are the quotient of two polynomials). On
the left, the standard simplex is the smallest 3-simplex containing the 3D curve in
red. This means that each facet 𝑖 (contained in the plane 𝜋𝑖) is also the smallest
2-simplex enclosing the projection of the curve onto that facet using the opposite
vertex 𝑣𝑖 as viewpoint. On the right, different successive projections to R2 and R3

are shown.

• Bézier: The curve is divided into 𝑠 subintervals, and then the Bézier enclosure

for each of the subintervals is computed.

• SLEFE: The curve is divided into 𝑠 subintervals, and the SLEFE (subdividable

linear efficient function enclosure [98,99,129]) is obtained using ℎ breakpoints5

per subinterval (i.e., ℎ− 1 linear segments per subinterval). A SLEFE obtained

with ℎ breakpoints per subinterval will be denoted as SLℎ.

Note that 𝑠 = 1 corresponds to the case where no subdivision is performed. When

𝑠 > 1, the subintervals of the curve are obtained by evenly splitting the time interval.

Moreover, SL2 (i.e., ℎ = 2) corresponds to a SLEFE with only one linear segment

(i.e., two breakpoints) per subinterval.

We compare the width, the union, and the convex hull (defined in Appendix 2.F)

for the different enclosures. The comparison of the width of the enclosures produced is
5As an example, if the time subinterval is [0.6, 1], then three uniformly-distributed breakpoints

would be {0.6, 0.8, 1}, and the SLEFE for that subinterval will consist of a convex enclosure for the
part of the curve in 𝑡 ∈ [0.6, 0.8], and another convex enclosure for the part of the curve in 𝑡 ∈ [0.8, 1].
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Figure 2-16: Comparison of the number of raw points produced by the MINVO
(MV) enclosure, Bézier (Be) enclosure, and SLEFE (SL) for 𝑛th-degree 2D polynomial
curves. Here, 𝑠 is the number of subintervals the curve is divided into and SLℎ
denotes the SLEFE computed using ℎ breakpoints per subinterval (i.e., ℎ − 1 linear
segments per subinterval). The MINVO enclosures have fewer raw points than all SLℎ
(ℎ ∈ [2, 8]) for 𝑛 ∈ [2, 6]. Compared to Bézier, the MINVO enclosure has 𝑠 − 1
additional raw points, but achieves areas that are up to 30 times smaller (see Fig. 2-
23).

available in Appendix 2.G. The comparison of the area and number of vertices of the

union and the convex hull is available in Appendix 2.H. In Appendix 2.I, we compare

MINVO and SLEFE in terms of runtime and simplicity of their implementation.

Several conclusions can be drawn regarding the comparison between MINVO,

Bézier, and SLEFE:

• Compared to SL2, MINVO achieves a smaller area for most of the 𝑛–𝑠

combinations tested, and sometimes using only half of the vertices needed by

SL2. Compared to SLℎ (ℎ ∈ [3, 8]), MINVO typically achieves a smaller area

for the cases where either 𝑠 is small or the degree 𝑛 is high, and it usually does

so using fewer number of vertices than SLℎ. On the other hand, SLℎ tends to

achieve a smaller area when either 𝑠 is large or the degree 𝑛 is small, but it

usually requires more vertices than MINVO. Hence, MINVO is advantageous

with respect to SLℎ in applications where having a small number of vertices

is crucial. For example, a smaller number of vertices can substantially reduce

the total computation time in algorithms that, after finding the enclosure, need

to iterate through all of the vertices found to impose a constraint or perform

a specific operation/check for each of them. If the number of vertices is not

important for the specific application, then SLℎ (ℎ ≥ 4) should be chosen, since
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it typically achieves a smaller area of the union and area of the convex hull.

• Compared to Bézier, MINVO also achieves a smaller union and hull area for

the cases where either 𝑠 is small or the degree 𝑛 is high, and, when 𝑛 ∈ [3, 7],

it does so using only up to 1.3 times the number of vertices of Bézier.

• In terms of the width of the enclosure (Appendix 2.G), SLEFE performs better

than MINVO. The use of SLEFE is hence desirable in the cases where the width

of the enclosure is more important for the specific application.

• For any of the techniques, operations like the union, the convex hull, or the outer

boundaries computation for SLEFE ([129]) are typically either not possible or

computationally expensive in the applications where the curve itself is a decision

variable of an optimization problem (as in, e.g., [48,147,160,163]). Instead, we

can use the raw points of the enclosure, which in 2D can be defined as the unique

control points of each subinterval (for MINVO and Bézier), and as the unique

vertices of each of the rectangles generated per breakpoint of each subinterval

(for SLℎ). The number of these raw points for a general 2D curve is 𝑛𝑠 + 𝑠

for MINVO, 𝑛𝑠 + 1 for Bézier, and 4ℎ𝑠 for SLℎ. The comparison of these raw

points is shown in Fig. 2-16. The MINVO enclosures have fewer raw points than

all SLℎ (ℎ ∈ [2, 8]) for 𝑛 ∈ [2, 6]. Compared to Bézier, the MINVO enclosure has

𝑠− 1 additional raw points, but achieves areas that are up to 30 times smaller

(see Fig. 2-23).

• As noted in [129], SLEFE depends pseudo-linearly on the coefficients of the

polynomial curve (i.e., linearly except for a min/max operation). In contrast,

the MINVO or Bézier enclosures depend linearly on the coefficients of the

polynomial curve. This makes the MINVO and Bézier enclosures more suitable

for time-critical optimization problems in which the coefficients of the curve are

decision variables.
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2.8 Final Remarks

2.8.1 Conversion between MINVO, Bernstein, and B-Spline

Given a curve 𝑃 ∈ 𝒫𝑛, the control points (i.e., the vertices of the 𝑛-simplex that

encloses that curve) using a basis 𝛼 can be obtained from the control points of a

different basis 𝛽 (𝛼, 𝛽 ∈ {MV,Be,BS}) using the formula

𝑉 𝛼 = 𝑃 𝐴−1
𝛼 = 𝑉 𝛽𝐴𝛽𝐴−1

𝛼 . (2.5)

For instance, to obtain the Bernstein control points from the MINVO control points

we can use 𝑉 Be = 𝑉 MV𝐴MV𝐴−1
Be . The matrices 𝐴MV are the ones shown in Table

2.2, while the matrices 𝐴Be and 𝐴BS are available in [133]. Note that all the matrices

need to be expressed in the same interval (𝑡 ∈ [−1, 1] in this work), and that the

inverses of these matrices can be easily precomputed offline.

2.8.2 Tighter Volumes for Problem 1 via Subdivision

As shown in Section 2.7, and at the expense of adding more vertices, tighter polyhedral

solutions for Problem 1 can be obtained by dividing the polynomial curve into several

subintervals and then computing the convex hull of the MINVO enclosure of each

subinterval. To subdivide the curve, one can do it first in Bézier form (leveraging

therefore the properties of De Casteljau’s algorithm), and then compute the MINVO

control points as linear functions of the Bézier control points of that subinterval using

Eq. 2.5. Alternatively, one can also tabulate (offline) the inverse of the matrices 𝐴MV,

expressed in the subinterval desired, and then simply compute the MINVO control

points of that subinterval as 𝑉 MV = 𝑃 𝐴−1
MV.

Several examples for 𝑛 = 3 are shown in Fig. 2-17, where the original curve 𝑃 ∈ 𝒫3

is split into 5 subintervals (i.e., 𝑠 = 5), and the resulting convex hull is a polyhedron

with 20 vertices that is 1.19 times smaller than the smallest 3-simplex that encloses

the whole curve (i.e., the simplex found by applying the MINVO basis to the whole

curve).
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Figure 2-17: Tighter polyhedral outer approximations for a curve 𝑃 ∈ 𝒫𝑛 can be
obtained by splitting the curve into several subintervals, calculating the MINVO 𝑛-
simplexes that enclose each one of these subintervals and then computing the convex
hull of all these simplexes. In all these cases shown, the original curve 𝑃 ∈ 𝒫3 is
splitted into 5 subintervals (i.e., 𝑠 = 5), and the resulting convex hull is a polyhedron
with 20 vertices that is 1.19 times smaller than the smallest 3-simplex that encloses
the whole curve (i.e., the simplex found by applying the MINVO basis to the whole
curve).

Depending on the specific application, one might also be interested in obtaining

a sequence of overlapping polyhedra whose union (a nonconvex set in general)

completely encloses the curve. This can be obtained by simply computing the MINVO

enclosure for every subinterval of the curve.

2.8.3 When Should each Basis Be Used?

The Bernstein (Bézier) and B-Spline bases have many useful properties that are not

shared by the MINVO basis. For example, a polynomial curve passes through the first

and last Bézier control points, the derivative of a Bézier curve can be easily computed

from the difference of the Bézier control points, and the B-Spline basis has built-in

smoothness in curves with several segments. Hence, it may be desirable to use the

Bézier or B-Spline control points to design and model the curve, and then convert

the control points of every interval to the MINVO control points (using the simple

linear transformation given in Section 2.8.1) to perform collision/intersection checks,

or to impose collision-avoidance constraints in an optimization problem [61,160,163].

This approach benefits from the properties of the Bernstein/B-Spline bases, while

also exploiting the enclosures obtained by the MINVO basis.
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Appendix 2.A Volume of the Convex Hull of a

Polynomial Curve

The volume of the convex hull of any 𝑛th-degree polynomial curve can be easily

obtained using the result from [71, Theorem 15.2]. In this work,6 it is shown that the

volume of the convex hull of a curve 𝑅 with 𝑟(𝑡) :=
[︂
𝑡+1

2

(︁
𝑡+1

2

)︁2
· · ·

(︁
𝑡+1

2

)︁𝑛 ]︂𝑇 is given

by

vol (conv (𝑅)) = ∏︀𝑛
𝑗=1 B(𝑗, 𝑗) = ∏︀𝑛

𝑗=1

(︁
((𝑗−1)!)2

(2𝑗−1)!

)︁
= 1

𝑛!
∏︀𝑛
𝑗=1

(︁
𝑗!(𝑗−1)!
(2𝑗−1)!

)︁
= 1

𝑛!
∏︀

0≤𝑖<𝑗≤𝑛

(︁
𝑗−𝑖
𝑗+𝑖

)︁
,

where B(𝑥, 𝑦) denotes the beta function. Let us now define �̃� as �̃� :=
[︁
𝑡𝑛 𝑡𝑛−1 · · · 𝑡

]︁𝑇
,

� as any number in R and write 𝑟(𝑡) as:

𝑟(𝑡) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1
2 �

0 0 · · · 1
22 � �

... ... . . . ... ... ...

0 1
2𝑛−1 · · · � � �

1
2𝑛 � · · · � � �

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

:=𝑅

𝑡 = 𝑅:,0:𝑛−1�̃� + 𝑅:,𝑛

Now, defining 𝑄 := 𝑃 :,0:𝑛−1𝑅
−1
:,0:𝑛−1, note that (𝑝(𝑡)− 𝑃 :,𝑛) = 𝑃 :,0:𝑛−1�̃� =

𝑄𝑅:,0:𝑛−1�̃� = 𝑄 (𝑟(𝑡)−𝑅:,𝑛) = 𝑄𝑟(𝑡) − 𝑄𝑅:,𝑛. As the translation part does not

affect the volume, we can write

vol (conv (𝑃 )) = vol (conv ({𝑝(𝑡)− 𝑃 :,𝑛 | 𝑡 ∈ [−1, 1]})) = vol (conv ({𝑄𝑟(𝑡) | 𝑡 ∈ [−1, 1]})) = ...

... = vol (𝑄conv (𝑅)) = abs
(︃
|𝑃 :,0:𝑛−1|
|𝑅:,0:𝑛−1|

)︃
vol (conv (𝑅)) ,

where we have used the notation 𝑄conv (𝑅) to denote the set {𝑄𝑥|𝑥 ∈ conv (𝑅)}.

As the determinant of 𝑅:,0:𝑛−1 is |𝑅:,0:𝑛−1| =
∏︀𝑛
𝑖=1

1
2𝑖 = 2

−𝑛(𝑛+1)
2 , we can conclude

6Note that [71] uses the convention 𝑡 ∈ [0, 1] (instead of 𝑡 ∈ [−1, 1]), and therefore it uses the
curve

[︀
𝑡 𝑡2 · · · 𝑡𝑛

]︀𝑇 . Note also that the convex hull of a moment curve is equal to a cyclic polytope
[7, 187] with infinitely many points evenly distributed along the curve.
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that:

vol (conv (𝑃 )) = abs (|𝑃 :,0:𝑛−1|)
𝑛! 2

𝑛(𝑛+1)
2

∏︁
0≤𝑖<𝑗≤𝑛

(︃
𝑗 − 𝑖
𝑗 + 𝑖

)︃
�

Appendix 2.B Invertibility of the Matrix 𝐴

From Eq. 2.3, we have that the (𝑛+ 1)× (𝑛+ 1) matrix 𝐴 satisfies

⎡⎢⎣ 𝑃

𝑒𝑇

⎤⎥⎦ =

⎡⎢⎣ 𝑉

1𝑇

⎤⎥⎦𝐴 .

As abs

⎛⎜⎝
⃒⃒⃒⃒
⃒⃒⃒ 𝑃

𝑒𝑇

⃒⃒⃒⃒
⃒⃒⃒
⎞⎟⎠ = abs (|𝑃 :,0:𝑛−1|) ̸= 0, and

⃒⃒⃒⃒
⃒⃒⃒ 𝑉
1𝑇

⃒⃒⃒⃒
⃒⃒⃒ =

⃒⃒⃒⃒
𝑉 𝑇 1

⃒⃒⃒⃒
̸= 0 (see Section 2.3),

we have that rank

⎛⎜⎝
⎡⎢⎣ 𝑃

𝑒𝑇

⎤⎥⎦
⎞⎟⎠ = rank

⎛⎜⎝
⎡⎢⎣ 𝑉

1𝑇

⎤⎥⎦
⎞⎟⎠ = 𝑛 + 1. Using now the fact that

rank (𝐵𝐶) ≤ min (rank (𝐵) , rank (𝐶)), we conclude that rank(𝐴) = 𝑛 + 1 (i.e., 𝐴

has full rank), and therefore 𝐴 is invertible. �

Appendix 2.C Karush–Kuhn–Tucker Conditions (for

odd 𝑛)

In this Appendix we derive the KKT conditions for this problem:

min
𝐴∈R(𝑛+1)×(𝑛+1)

− ln
(︁⃒⃒⃒

𝐴𝑇𝐴
⃒⃒⃒)︁

s.t. 𝐴𝑇1 = 𝑒

𝐴𝑡 ≥ 0 ∀𝑡 ∈ [−1, 1]

which is equivalent to Problem 3. For the sake of brevity, we present here the case

𝑛 odd (the case 𝑛 even can be easily obtained with small modifications). In the

following, 𝑉 *𝑊 will be the matrix resulting from the row-wise discrete convolution

(i.e., (𝑉 *𝑊 )𝑖,: = 𝑉 𝑖,: *𝑊 𝑖,:), and Top(𝑎, 𝑏) will denote the Toeplitz matrix whose
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first column is 𝑎 and whose first row is 𝑏𝑇 . Let us also define:

𝑅𝐺 := Top

⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣
1

1

0𝑛−1

⎤⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎣ 1

0𝑛−1

⎤⎥⎦
⎞⎟⎟⎟⎟⎟⎠ =

⎡⎢⎣𝐼𝑛

0𝑇𝑛

⎤⎥⎦+

⎡⎢⎣0𝑇𝑛
𝐼𝑛

⎤⎥⎦ 𝑅𝐻 := Top

⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣
−1

1

0𝑛−1

⎤⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎣ −1

0𝑛−1

⎤⎥⎦
⎞⎟⎟⎟⎟⎟⎠ =

⎡⎢⎣−𝐼𝑛

0𝑇𝑛

⎤⎥⎦+

⎡⎢⎣0𝑇𝑛
𝐼𝑛

⎤⎥⎦ 𝐿𝑞 :=

⎡⎢⎣ 0𝑇 0

𝐼𝑞−1 0

⎤⎥⎦
𝑞×𝑞

,

and the matrices 𝐺 ∈ R(𝑛+1)×𝑛+1
2 , 𝐻 ∈ R(𝑛+1)×𝑛+1

2 , and 𝜆 ∈ R(𝑛+1). We know that

(𝐴𝑡)𝑖 ≥ 0 ∀𝑡 ∈ [−1, 1] (a)⇐⇒ (𝐴𝑡)𝑖 = (𝑡+ 1)𝑔2
𝑖 (𝑡) + (1− 𝑡)ℎ2

𝑖 (𝑡)
(b)⇐⇒ . . .

. . .
(b)⇐⇒ 𝐴𝑖,: = (𝐺𝑖,: *𝐺𝑖,:) 𝑅𝑇

𝐺 + (𝐻 𝑖,: *𝐻 𝑖,:) 𝑅𝑇
𝐻 ⇐⇒ 𝐴 =

[︂
𝐺 *𝐺 𝐻 *𝐻

]︂ ⎡⎢⎣ 𝑅𝑇
𝐺

𝑅𝑇
𝐻

⎤⎥⎦ , (2.6)

where 𝑔𝑖(𝑡) and ℎ𝑖(𝑡) are polynomials of degree 𝑛−1
2 . Note that (a) is given by the

Markov–Lukács Theorem (see Section 2.4.4). In (b) we have simply used the discrete

convolution to multiply 𝑔𝑖(𝑡) by itself, and the Toeplitz matrix 𝑅𝐺 to multiply the

result by (𝑡 + 1) [133]. An analogous reasoning applies for the term with ℎ𝑖.7 Using

now 𝐺 and 𝐻 as the decision variables of the primal problem (where 𝐴 is given by

Eq. 2.6), the Lagrangian is

ℒ =− ln(|𝐴𝑇𝐴|) + 𝜆𝑇 (𝐴𝑇1− 𝑒) .

Differentiating the Lagrangian yields to

𝜕ℒ
𝜕𝐺𝑖𝑗

= tr

⎛⎜⎜⎜⎝− 𝜕ln
(︁⃒⃒⃒

𝐴𝑇𝐴
⃒⃒⃒)︁

𝜕𝐴⏟  ⏞  
=2𝐴+=2𝐴−1

𝑄𝐺𝑖𝑗

⎞⎟⎟⎟⎠+ tr
(︁
𝜆1𝑇𝑄𝐺𝑖𝑗

)︁
= tr

(︁(︁
−2𝐴−1 + 𝜆1𝑇

)︁
𝑄𝐺𝑖𝑗

)︁
,

7Alternatively, we can also write:

(𝐴𝑖,:)𝑇 = 𝑅𝐺Top
(︂[︂

𝐺𝑖,:
0 𝑛−1

2

]︂
,

[︂
𝐺𝑖,0
0 𝑛−1

2

]︂)︂
𝐺𝑖,: + 𝑅𝐻Top

(︂[︂
𝐻𝑖,:
0 𝑛−1

2

]︂
,

[︂
𝐻𝑖,0
0 𝑛−1

2

]︂)︂
𝐻𝑖,:
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where

𝑄𝐺𝑖𝑗
:= 𝜕𝐴

𝜕𝐺𝑖𝑗

= 2
(︁
𝐿(𝑛+1)

)︁𝑖−1

⎡⎢⎣
[︂
𝐺𝑖,: 0𝑇

]︂ (︁
𝐿𝑇
𝑛

)︁𝑗−1
𝑅𝑇

𝐺

0𝑛×(𝑛+1)

⎤⎥⎦
(𝑛+1)×(𝑛+1)

. (2.7)

Same expression applies for 𝑄𝐻𝑖𝑗
:= 𝜕𝐴

𝜕𝐻𝑖𝑗
, but using 𝐻 𝑖,: and 𝑅𝑇

𝐻 instead. The

KKT equations can therefore be written as follows:

KKT equations: Solve for 𝐺,𝐻 ,𝜆:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

tr
(︁(︁
−2𝐴−1 + 𝜆1𝑇

)︁
𝑄𝐺𝑖𝑗

)︁
= 0 ∀𝑖 ∈ {0, ..., 𝑛},∀𝑗 ∈ {0, ..., 𝑛− 1

2 }

tr
(︁(︁
−2𝐴−1 + 𝜆1𝑇

)︁
𝑄𝐻𝑖𝑗

)︁
= 0 ∀𝑖 ∈ {0, ..., 𝑛}, ∀𝑗 ∈ {0, ..., 𝑛− 1

2 }

𝐴𝑇1 = 𝑒

where 𝐴 is given by Eq. 2.6. and 𝑄𝐺𝑖𝑗
by Eq. 2.7. 𝑄𝐻𝑖𝑗

is also given by Eq. 2.7,

but using 𝐻 𝑖,: and 𝑅𝑇
𝐻 instead.

Appendix 2.D Plot of a Polynomial 𝑥(𝑡) ∈ R[𝑡] over

𝑡 ∈ [−1, 1]

This chapter has focused on polynomial curves as defined in Section 2.2.1. One

particular case of such curves corresponds to the plot of a polynomial 𝑥(𝑡) ∈ R[𝑡] over

𝑡 ∈ [−1, 1]. Indeed, that plot simply corresponds to a curve that has 𝑝(𝑡) = [ 𝑡 𝑥(𝑡) ]𝑇 .

Some examples of such curves and their associated convex hulls are shown in Fig. 2-

18. Here, we generate a polynomial 𝑥(𝑡) ∈ R[𝑡] passing through 𝑛+ 1 random points

in [−1, 1], and then plot the control points for the case 𝑘 = 1 (i.e., 𝑝(𝑡) = 𝑥(𝑡))

and the convex hull of the control points for the case 𝑘 = 2 (i.e., 𝑝(𝑡) = [ 𝑡 𝑥(𝑡) ]𝑇 ).

Note that for the cases with 𝑘 = 1, a smaller convex hull can be obtained by simply

reparametrizing the curve to a first-degree curve: 𝑝(𝑡) = 𝑥min + 𝑡+1
2 (𝑥max − 𝑥min)

(where 𝑥min := min
𝑡∈[−1,1]

𝑥(𝑡) and 𝑥max := max
𝑡∈[−1,1]

𝑥(𝑡)), and then using the matrices 𝐴MV

and 𝐴Be corresponding to 𝑛 = 1. This would give 𝑥min and 𝑥max as the control points

of the curve.
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Figure 2-18: Comparison of the convex hull of the MINVO and Bézier control points
for 𝑘 = 𝑚 ∈ {1, 2} and different 𝑛. Letting 𝑥(𝑡) denote a polynomial of degree 𝑛,
the column with 𝑘 = 1 shows the plot of the curve 𝑝(𝑡) = 𝑥(𝑡), and the blue circles
denote the control points. The column with 𝑘 = 2 shows the plot of the curve 𝑝(𝑡) =[︁
𝑡 𝑥(𝑡)

]︁𝑇
(which corresponds to the graph of the polynomial 𝑥(𝑡) over 𝑡 ∈ [−1, 1])

and the convex hull of the control points. In the last row, 𝑟 denotes the ratio of the
longitudes LongBe

LongMV
(for 𝑘 = 1) or the areas AreaBe

AreaMV
(for 𝑘 = 2) of the convex hulls of

the control points. The polynomials 𝑥(𝑡) pass through 𝑛 + 1 random points in the
interval [−1, 1].

Appendix 2.E Application of the MINVO Basis to

Surfaces

Similar to any other polynomial basis that is nonnegative and is a partition of unity

(i.e., the polynomials in the basis sum up to one), the MINVO basis can be applied

to generate polynomial surfaces of degree (𝑞, 𝑟) contained in the convex hull of its

(𝑞 + 1) · (𝑟 + 1) control points. Let us define 𝑢𝑞 :=
[︁
𝑢𝑞 𝑢𝑞−1 · · · 1

]︁𝑇
and let 𝐴MV,𝑞

denote the matrix 𝐴MV for 𝑛 = 𝑞. Analogous definitions apply for 𝑣, 𝑣𝑟, and 𝐴MV,𝑟.

Moreover, let 𝑉 MV,𝑗 ∈ R(𝑞+1)×(𝑟+1) contain the coordinate 𝑗 ∈ {𝑥, 𝑦, 𝑧} of the control

points. The parametric equation of the surface will then be given by:

s(𝑢, 𝑣) =

⎡⎢⎢⎢⎢⎢⎣
(𝐴MV,𝑞𝑢𝑞)𝑇 𝑉 MV,𝑥

(𝐴MV,𝑞𝑢𝑞)𝑇 𝑉 MV,𝑦

(𝐴MV,𝑞𝑢𝑞)𝑇 𝑉 MV,𝑧

⎤⎥⎥⎥⎥⎥⎦𝐴MV,𝑟𝑣𝑟
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Figure 2-19: MINVO basis applied to generate outer polyhedra that enclose three
bicubic patches of the teapot.

where s(𝑢, 𝑣) ∈ R3 and 𝑢, 𝑣 ∈ [−1, 1]. An example of the MINVO basis applied to

generate different bicubic surfaces (i.e., 𝑞 = 𝑟 = 3) is shown in Fig. 2-19. Note however

that, when applied to surfaces, the MINVO basis is not guaranteed to generate always

a smaller enclosing polyhedron than, for example, the Bézier basis.

Appendix 2.F Definitions of the Union, Convex

Hull, and Width of an Enclosure

(for 2D Curves)

Let us define 𝐼 := {0, 1, .., 𝑠 − 1} and 𝐽 := {0, 1, ..., ℎ − 2}, where 𝑠 denotes the

number of subdivisions used, and ℎ is the number of breakpoints per subinterval used

in SLEFE. Moreover, let ℰ denote an enclosure, conv(·) the convex hull of a set of

vertices, vert (·) the vertices of an enclosure, and lssbb (·) the length of the smallest

side of the smallest arbitrarily-oriented bounding box of an enclosure. The union,

convex hull, and width are then defined as follows:

Union Convex hull Width

MV/Be ⋃︀
𝑖∈𝐼
ℰ𝑖 conv

(︃⋃︀
𝑖∈𝐼

vert(ℰ𝑖)
)︃

max
(︃⋃︀
𝑖∈𝐼

lssbb(ℰ𝑖)
)︃

SL ⋃︀
𝑖∈𝐼,𝑗∈𝐽

ℰ𝑖𝑗 conv
(︃ ⋃︀
𝑖∈𝐼,𝑗∈𝐽

vert (ℰ𝑖𝑗)
)︃

max
(︃ ⋃︀
𝑖∈𝐼,𝑗∈𝐽

lssbb (ℰ𝑖𝑗)
)︃

Here, ℰ𝑖 (for MV and Be) is the enclosure of the subinterval 𝑖, while ℰ𝑖𝑗 (for SL) is

the enclosure of the segment 𝑗 of the subinterval 𝑖. Note that the area of the union is
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the sum of the individual areas minus the overlapping area, and it can be computed

numerically using [106]. The area of the convex hull is the area of the smallest convex

set that contains ⋃︀
𝑖∈𝐼

vert(ℰ𝑖) (for MV/Be) or ⋃︀
𝑖∈𝐼,𝑗∈𝐽

vert(ℰ𝑖𝑗) (for SL), and it can be

computed numerically using [107].

Appendix 2.G Comparison with SLEFEs and Bézier:

Width

In this section, we compare the MINVO enclosure, Bézier enclosure, and SLEFE in

terms of their widths. Given that the width is an important metric for some CAD

applications, for this comparison we use data from different real CAD models.

We first use one of the 2D trim curves of the model 10-23022015-110975 from

https://traceparts.com. This curve, shown in Fig. 2-20, is a B-Spline of degree

8, which can be split into 4 Bézier curves. For each of these curves, the comparison

between the widths of the enclosures is shown in Table 2.6.

Figure 2-20: 2D trim curve of the model 10-23022015-110975 from https://
traceparts.com. This curve can be split into four Bézier curves, shown in different
colors.

We then perform a similar analysis using six models taken from the ABC

dataset [76], which is an extensive dataset of CAD models. These models are shown

in Fig. 2-21. We obtain the MINVO enclosure, Bézier enclosure, and SLEFE of the

2D (approximate) preimages of ten 3D curves of these models. These 2D curves have

degrees ranging from 3 to 9. The results are shown in Fig. 2-22.

All these previous results (Table 2.6 and Fig. 2-22) allow us to conclude that

SLEFE performs much better than MINVO in terms of the width of the enclosure.

Hence, in applications where it is crucial to have a small width of the enclosure,

SLEFE should be preferred over MINVO.
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Table 2.6: Comparison between the width of the MINVO enclosure, Bézier enclosure,
and SLEFE for the curve shown in Fig. 2-20. SLℎ denotes the SLEFE computed
using ℎ breakpoints per subinterval (i.e., ℎ− 1 linear segments per subinterval). We
use 𝑠 = 1 for all the cases of this table.

Curve 1 Curve 2 Curve 3 Curve 4
WidthBe
WidthMV

1.05 0.94 0.92 0.96
WidthSL2
WidthMV

5.95 1.43 1.20 3.92
WidthSL3
WidthMV

2.20 0.67 1.24 1.62
WidthSL4
WidthMV

1.12 0.30 0.49 0.79
WidthSL5
WidthMV

0.58 0.19 0.30 0.47
WidthSL6
WidthMV

0.37 0.13 0.20 0.30
WidthSL7
WidthMV

0.22 0.087 0.14 0.20
WidthSL8
WidthMV

0.16 0.067 0.11 0.15
WidthSL9
WidthMV

0.13 0.054 0.085 0.12
WidthSL10
WidthMV

0.097 0.042 0.067 0.090

Figure 2-21: Models taken from the ABC dataset [76].
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Figure 2-22: Comparison between the width of the MINVO (MV) enclosure, Bézier
(Be) enclosure, and SLEFE (SL) for 𝑛th-degree 2D polynomial curves. Here, 𝑠 is the
number of subintervals the curve is divided into, SLℎ denotes the SLEFE computed
using ℎ breakpoints per subinterval (i.e., ℎ− 1 linear segments per subinterval), and
[·] denotes the mean operator. For every 𝑛-𝑠 combination, a total of 10 polynomial
curves obtained from the models shown in Fig. 2-21 were used. The red squares
denote the 𝑛-𝑠 combination for which MINVO achieves a smaller width.

Appendix 2.H Comparison with SLEFEs and Bézier:

Area and Number of Vertices

The 𝑛th-degree 2D polynomial curves used pass through 𝑛 + 1 points {𝑥0, . . . ,𝑥𝑛}

that satisfy the dynamical system 𝑥𝑘+1 = 𝑥𝑘 + rand() − 0.15 · 1, where rand() is a

random vector in [0, 1]2 and 𝑥0 = 0. Note that these curves are artificially generated,

and do not correspond to real CAD data. The results are shown in Fig. 2-23, and

some examples are available in Figs. 2-24 and 2-25.
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Figure 2-23: Comparison between the MINVO (MV) enclosure, Bézier (Be) enclosure,
and SLEFE (SL) for 𝑛th-degree 2D polynomial curves. Here, 𝑠 is the number of
subintervals the curve is divided into, SLℎ denotes the SLEFE computed using ℎ
breakpoints per subinterval (i.e., ℎ−1 linear segments per subinterval), and [·] denotes
the mean operator. For every 𝑛-𝑠 combination, a total of 100 polynomial curves
obtained as described in Appendix 2.H were used. The red squares denote the 𝑛-𝑠
combination for which MINVO achieves a smaller area (first two columns) or fewer
number of vertices (last two columns).
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(a) 𝑛 = 2

(b) 𝑛 = 3

(c) 𝑛 = 4

(d) 𝑛 = 5

Figure 2-24: Comparison between the MINVO (MV) enclosure, the Bézier (Be)
enclosure, and the SLEFE (SL) for 𝑛th-degree 2D polynomial curves obtained as
described in Appendix 2.H. SLℎ denotes the SLEFE computed using ℎ breakpoints
per subinterval (i.e., ℎ − 1 linear segments per subinterval), and 𝑠 is the number of
subdivisions used. In all these plots, ℎ = 𝑛+1 is used. The notation used is Ve = [𝑎, 𝑏]
(where 𝑎 is the number of vertices of the union and 𝑏 is the number of vertices of the
convex hull) and Ar = [𝑐, 𝑑] (where 𝑐 is the area of the union of the enclosures and 𝑑
is the area of the convex hull of the enclosures). The black points are the vertices of
the union. Note that this figure shows only some cases that have ℎ = 𝑛+ 1, but the
results in Fig. 2-23 include all the cases with different values of ℎ, 𝑛, and 𝑠.
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(a) 𝑛 = 6

(b) 𝑛 = 7

Figure 2-25: Comparison between the MINVO (MV) enclosure, the Bézier (Be)
enclosure, and the SLEFE (SL) for 𝑛th-degree 2D polynomial curves obtained as
described in Appendix 2.H. SLℎ denotes the SLEFE computed using ℎ breakpoints
per subinterval (i.e., ℎ − 1 linear segments per subinterval), and 𝑠 is the number of
subdivisions used. In all these plots, ℎ = 𝑛+1 is used. The notation used is Ve = [𝑎, 𝑏]
(where 𝑎 is the number of vertices of the union and 𝑏 is the number of vertices of the
convex hull) and Ar = [𝑐, 𝑑] (where 𝑐 is the area of the union of the enclosures and 𝑑
is the area of the convex hull of the enclosures). The black points are the vertices of
the union. Note that this figure shows only some cases that have ℎ = 𝑛+ 1, but the
results in Fig. 2-23 include all the cases with different values of ℎ, 𝑛, and 𝑠.
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Appendix 2.I Comparison between MINVO and

SLEFE in terms of Runtime and

Simplicity in the Implementation

In Section 2.7 the MINVO enclosure and the SLEFE are compared in terms of

enclosing area and number of vertices. The enclosing area is important in terms

of conservativeness of the enclosure with respect to the curve, while the number of

vertices can have a direct impact on the computation time (for example, in settings

where the curve is a decision variable in an optimization problem and there is one

constraint per vertex), and on the memory needed to store them.

There are also other applications where the runtime to obtain the enclosure

is important. In this section, we compare the runtimes needed to obtain the SLEFE

and the MINVO enclosure from a curve given in its Bézier form (i.e., 𝑉 Be is given):

• The MINVO enclosure is obtained by simply doing 𝑉 MV = 𝑉 Be𝐴Be𝐴
−1
MV

(Eq. 2.5), where the term 𝐴Be𝐴
−1
MV is tabulated offline using the matrices

available in Table 2.2 and [133] for each degree 𝑛. If the curve were given instead

in its monomial form (i.e., 𝑃 is given), then the computation of the MINVO

enclosure would also be a simple matrix multiplication: 𝑉 MV = 𝑃 𝐴−1
MV, where

𝐴−1
MV is tabulated offline.

• The SLEFE enclosure is obtained as detailed in [120, Section 3.3], using the

tabulated values given by the SubLiME package [179]. We optimize the speed

of the SLEFE implementation leveraging vector and matrix operations. Note

however that the SLEFE computation requires max(·) and min(·) operators,

and hence it cannot be obtained as a single matrix multiplication.

The timing results are shown in Table 2.7. On average, the MINVO enclosure

can be obtained 20.4 times faster than the SLEFE enclosure. These timing results

were obtained using Matlab® R2021b on an AlienWare Aurora r8 desktop running

Ubuntu 18.04 and equipped with an Intel® CoreTM i9-9900K CPU, 3.60GHz×16 and

62.6 GiB.
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Table 2.7: Computation times required to find the MINVO (MV) enclosure and the
SLEFE (SL) for 𝑛th-degree polynomial curves. SLℎ denotes the SLEFE computed
using ℎ breakpoints per subinterval (i.e., ℎ− 1 linear segments per subinterval), ct(·)
denotes the computation time, and [·] denotes the mean operator. For each cell in
this table, a total of 30 random polynomials passing through random points in [−1, 1]
were used. All these cases have 𝑠 = 1.

Degree n

2 3 4 5 6 7

R
at

io
s

of
co

m
p.

ti
m

es

[ct(SL2)]
[ct(MV)] 24.8 24.0 20.8 18.3 15.6 13.3
[ct(SL3)]
[ct(MV)] 24.4 22.8 20.9 18.3 15.6 14.4
[ct(SL4)]
[ct(MV)] 27.3 24.9 21.0 18.9 16.1 15.1
[ct(SL5)]
[ct(MV)] 26.4 23.3 20.8 18.6 16.9 15.6
[ct(SL6)]
[ct(MV)] 26.3 25.0 21.8 19.2 16.8 15.1
[ct(SL7)]
[ct(MV)] 26.2 24.2 22.3 19.0 17.5 15.6
[ct(SL8)]
[ct(MV)] 27.8 25.9 22.8 19.8 17.6 15.6

Finally, another aspect that one may consider is the simplicity of the

implementation. As detailed above, only a single matrix multiplication is required

to obtain the MINVO enclosure, which translates into a simple one line of code

in most of the modern programming languages. The SLEFE computation also has

a simple implementation, in this case involving sums, multiplications, max(·), and

min(·) operators. Code examples of how to use MINVO and SLEFE are available at

https://github.com/mit-acl/minvo (for both MINVO and SLEFE) and [179] (for

SLEFE).
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Chapter 3

MADER: Trajectory Planner in

Multiagent and Dynamic

Environments

3.1 Overview

This chapter presents MADER, a 3D decentralized and asynchronous trajectory

planner for UAVs that generates collision-free trajectories in environments with

static obstacles, dynamic obstacles, and other planning agents. Real-time collision

avoidance with other dynamic obstacles or agents is done by performing outer

polyhedral representations of every interval of the trajectories and then including the

plane that separates each pair of polyhedra as a decision variable in the optimization

problem. MADER uses our recently developed MINVO basis ([162]) to obtain outer

polyhedral representations with volumes 2.36 and 254.9 times, respectively, smaller

than the Bernstein or B-Spline bases used extensively in the planning literature. Our

decentralized and asynchronous algorithm guarantees safety with respect to other

agents by including their committed trajectories as constraints in the optimization

and then executing a collision check-recheck scheme. Finally, extensive simulations in

challenging cluttered environments show up to a 33.9% reduction in the flight time,
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and a 88.8% reduction in the number of stops compared to the Bernstein and B-Spline

bases, shorter flight distances than centralized approaches, and shorter total times on

average than synchronous decentralized approaches.

3.2 Definitions

This chapter will use the notation shown in Table 3.1, together with the following

two definitions:

• Agent: Element of the environment with the ability to exchange information

and take decisions accordingly (i.e., an agent can change its trajectory given

the information received from the environment).

• Obstacle: Element of the environment that moves on its own without

consideration of the trajectories of other elements in the environment. An

obstacle can be static or dynamic.

Note that here we are calling dynamic obstacles what some works in the literature

call noncooperative agents.

This work will also use clamped uniform B-Splines, which are B-Splines defined

by 𝑛+ 1 control points {𝑞0, . . . , 𝑞𝑛} and 𝑚+ 1 knots {𝑡0, 𝑡1, . . . , 𝑡𝑚} that satisfy:

𝑡0 = ... = 𝑡𝑝⏟  ⏞  
𝑝+1 knots

< 𝑡𝑝+1 < ... < 𝑡𝑚−𝑝−1⏟  ⏞  
Internal Knots

< 𝑡𝑚−𝑝 = ... = 𝑡𝑚⏟  ⏞  
𝑝+1 knots

and where the internal knots are equally spaced by Δ𝑡 (i.e., Δ𝑡 := 𝑡𝑘+1 − 𝑡𝑘 ∀𝑘 =

{𝑝, . . . ,𝑚 − 𝑝 − 1}). The relationship 𝑚 = 𝑛 + 𝑝 + 1 holds, and there are in total

𝑚 − 2𝑝 = 𝑛 − 𝑝 + 1 intervals. Each interval 𝑗 ∈ 𝐽 is defined in 𝑡 ∈ [𝑡𝑝+𝑗, 𝑡𝑝+𝑗+1].

In this work we will use 𝑝 = 3 (i.e., cubic B-Splines). Hence, each interval will be a

polynomial of degree 3, and it is guaranteed to lie within the convex hull of its 4 control

points {𝑞𝑗, 𝑞𝑗+1, 𝑞𝑗+2, 𝑞𝑗+3}. Moreover, clamped B-Splines are guaranteed to pass

through the first and last control points (𝑞0 and 𝑞𝑛). The velocity and acceleration of
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Table 3.1: Notation used in this chapter

Symbol Meaning
p,v, a, j Position, Velocity, Acceleration and Jerk, ∈ R3.

x State vector: x :=
[︁
p𝑇 v𝑇 a𝑇

]︁𝑇
∈ R9

𝑚 𝑚+ 1 is the number of knots of the B-Spline.
𝑛 𝑛+ 1 is the number of control points of the B-Spline.
𝑝 Degree of the polynomial of each interval of the B-Spline. In this work we will use 𝑝 = 3.
𝐽 Set that contains the indexes of all the intervals of a B-Spline 𝐽 := {0, 1, ...,𝑚− 2𝑝− 1}.
𝜉 𝜉 := Number of agents + Number of obstacles
𝑠 Index of the planning agent.
𝐼 Set that contains the indexes of all the obstacles/agents, except the agent 𝑠. 𝐼 := {0, 1, ..., 𝜉 − 1}∖𝑠.
𝐿 𝐿 = {0, 1, ..., 𝑛}.

𝑙
Index of the control point. 𝑙 ∈ 𝐿 for position, 𝑙 ∈ 𝐿∖{𝑛} for velocity and 𝑙 ∈ 𝐿∖{𝑛− 1, 𝑛} for
acceleration.

𝑖 Index of the obstacle/agent, 𝑖 ∈ 𝐼.
𝑗 Index of the interval, 𝑗 ∈ 𝐽 .
𝜌 Radius of the sphere that models the agents.

𝐵𝑖, 𝐵𝑠

𝐵𝑖 is the 3D axis-aligned bounding box (AABB) of the shape of the agent/obstacle 𝑖. For
simplicity, we assume that the obstacles do not rotate. Hence, 𝐵𝑖 does not change for a given
obstacle/agent 𝑖. The AABB of the planning agent is denoted as 𝐵𝑠.

𝜂𝑠
Each entry of 𝜂𝑠 is the length of each side of the AABB of the planning agent (agent whose index
is 𝑠). I.e., 𝜂𝑠 := 2

[︁
𝜌 𝜌 𝜌

]︁𝑇
∈ R3

𝒞𝑖𝑗
Set of vertexes of the polyhedron that completely encloses the trajectory of the obstacle/agent 𝑖
during the initial and final times of the interval 𝑗 of the agent 𝑠.

c Vertex of a polyhedron, ∈ R3.
𝑞,𝑣,𝑎 Position, velocity, and acceleration control points, ∈ R3.
𝑏 Notation for the basis used: MINVO (𝑏 = MV), Bernstein (𝑏 = Be), or B-Spline (𝑏 = BS).

𝒬𝑏𝑗

Set that contains the 4 position control points of the interval 𝑗 of the trajectory of the agent 𝑠
using the basis 𝑏. 𝒬MV

𝑗−1 ∩𝒬MV
𝑗 = ∅ in general. If 𝑏 = Be, the last control point of interval 𝑗 − 1 is

also the first control point of interval 𝑗. If 𝑏 = BS, the last 3 control points of interval 𝑗 − 1 are also
the first 3 control points of interval 𝑗. Analogous definition for the set 𝒱𝑏𝑗 , which contains the three
velocity control points.

𝑄𝑏
𝑗

Matrix whose columns contain the 4 position control points of the interval 𝑗 of the trajectory of the
agent 𝑠 using the basis 𝑏. Analogous definition for the matrix 𝑉 𝑏

𝑗, whose columns are the three
velocity control points.

𝑓BS→MV
𝑗 (·) Linear function (see Eq. 3.1) such that 𝒬MV

𝑗 = 𝑓BS→MV
𝑗 (𝒬BS

𝑗 )
ℎBS→MV
𝑗 (·) Linear function (see Eq. 3.1) such that 𝒱MV

𝑗 = ℎBS→MV
𝑗 (𝒬BS

𝑗 )
𝜋𝑖𝑗 (𝑛𝑖𝑗, 𝑑𝑖𝑗) Plane 𝑛𝑇

𝑖𝑗𝑥 + 𝑑𝑖𝑗 = 0 that separates 𝒞𝑖𝑗 from 𝒬𝑏𝑗.
1, abs (𝑎),
𝑎 ≤ 𝑏, ⊕,

conv(·)

Column vector of ones, element-wise absolute value, element-wise inequality, Minkowski sum, and
convex hull.

Unless otherwise noted, this colormap in the trajectories will represent the norm of the velocity
(blue 0 m/s and red 𝑣max).

Snapshot at 𝑡 = 𝑡1 (current time):

𝑔term ( ) is the terminal goal, and is the current position of the UAV.
is the trajectory the UAV is currently executing.
is the trajectory the UAV is currently optimizing, starts at

𝑡 = 𝑡in and finishes at 𝑡 = 𝑡f.
𝑑 ( ) is a point in , used as the initial position of .
𝒮 is a sphere of radius 𝑟 around 𝑑. will be contained in 𝒮.
𝑔 ( ) is the projection of 𝑔𝑡𝑒𝑟𝑚 onto the sphere 𝒮.

p𝑖(𝑡) Predicted trajectory of an obstacle 𝑖, and committed trajectory of agent 𝑖.

𝒯𝑗, 𝛾𝑗
𝒯𝑗 is a uniform discretization of [𝑡𝑝+𝑗, 𝑡𝑝+𝑗+1] (timespan of interval 𝑗 of the trajectory of agent 𝑠)
with step size 𝛾𝑗 and such that 𝑡𝑝+𝑗, 𝑡𝑝+𝑗+1 ∈ 𝒯𝑗.

p𝑖 (𝒯𝑗) {p𝑖(𝑡) | 𝑡 ∈ 𝒯𝑗}
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a B-Spline are B-Splines of degrees 𝑝− 1 and 𝑝− 2 respectively, whose control points

are given by ([182]):

𝑣𝑙 =
𝑝
(︁
𝑞𝑙+1 − 𝑞𝑙

)︁
𝑡𝑙+𝑝+1 − 𝑡𝑙+1

∀𝑙 ∈ 𝐿∖{𝑛}

𝑎𝑙 = (𝑝− 1) (𝑣𝑙+1 − 𝑣𝑙)
𝑡𝑙+𝑝+1 − 𝑡𝑙+2

∀𝑙 ∈ 𝐿∖{𝑛− 1, 𝑛}

Finally, and as shown in Table 3.1, to obtain 𝑔 we project the terminal goal 𝑔term

to a sphere 𝒮 centered on 𝑑. This is done only for simplicity, and other possible

way would be to choose 𝑔 as the intersection between 𝒮 and a piecewise linear path

that goes from 𝑑 to 𝑔term, and that avoids the static obstacles (and potentially the

dynamic obstacles or agents as well). If a voxel grid of the environment is available,

this piecewise linear path could be obtained by running a search-based algorithm, as

done in [167].

3.3 Assumptions

This chapter relies on the following four assumptions:

• Let preal
𝑖 (𝑡) denote the real future trajectory of an obstacle 𝑖, and p𝑖(𝑡) the one

obtained by a given tracking and prediction algorithm. The smallest dimensions

of the axis-aligned box 𝐷𝑖𝑗 for which

preal
𝑖 (𝑡) ∈ conv (𝐷𝑖𝑗 ⊕ p𝑖(𝒯𝑗)) ∀𝑡 ∈ [𝑡𝑝+𝑗, 𝑡𝑝+𝑗+1]

is satisfied will be denoted as 2
(︁
𝛼𝑖𝑗 + 𝛽𝑖𝑗

)︁
∈ R3. Here, 𝒯𝑗 is a uniform

discretization of [𝑡𝑝+𝑗, 𝑡𝑝+𝑗+1] with step size 𝛾𝑗 (see Table 3.1), 𝛼𝑖𝑗 represents

the error associated with the prediction and 𝛽𝑖𝑗 the one associated with the

discretization of the trajectory of the obstacle. The values 𝛼𝑖𝑗,𝛽𝑖𝑗 and 𝛾𝑗 are

assumed known. This assumption is needed to be able to obtain an outer

polyhedral approximation of the Minkowski sum of a bounding box and any

continuous trajectory of an obstacle (Section 3.4.3).
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• Similar to other works in the literature (see [88] for instance), we assume that

an agent can communicate without delay with other agents. Specifically, we

assume that the planning agent has access to the committed trajectory p𝑖(𝑡) of

agent 𝑖 when this condition holds:

∃𝑡 ∈ [𝑡in, 𝑡f] s.t. (p𝑖(𝑡)⊕𝐵𝑖) ∩ (𝒮 ⊕𝐵𝑠) ̸= ∅

This condition ensures that the agent 𝑠 knows the trajectories of the agents

whose committed trajectories, inflated with their AABBs, pass through the

sphere 𝒮 (inflated with 𝐵𝑠) during the interval [𝑡in, 𝑡f]. Note also that all

the agents have the same reference time, but trigger the planning iterations

asynchronously.

• Two agents do not commit to a new trajectory at the very same time. Note

that, as time is continuous, the probability of this assumption not being true is

essentially zero. Letting 𝑡4 denote the time when a UAV commits to a trajectory,

the reason behind this assumption is to guarantee that it is safe for a UAV to

commit to a trajectory at 𝑡 = 𝑡4 having checked all the committed trajectories

of other agents at 𝑡 < 𝑡4 (this will be explained in detail in Section 3.6).

• Finally, we assume for simplicity that the obstacles do not rotate (and hence 𝐵𝑖

is constant for an obstacle 𝑖). However, this is not a fundamental assumption

in MADER: To take into account the rotation of the objects, one could still use

MADER, but use for the inflation (Section 3.4) the largest AABB that contains

all the rotations of the obstacle during a specific interval 𝑗.

3.4 Polyhedral Representations

To avoid the computational burden of imposing infinitely-many constrains to separate

two trajectories, we need to compute a tight polyhedral outer representation of every

interval of the optimized trajectory (trajectory that agent 𝑠 is trying to obtain), the
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Table 3.2: Polyhedral representations of interval 𝑗 from the point of view of agent 𝑠.
Here, ℛMV

𝑖𝑗 denotes the set of MINVO control points of every interval of the trajectory
of agent 𝑖 that falls in [𝑡in + 𝑗Δ𝑡, 𝑡in + (𝑗 + 1)Δ𝑡] (timespan of the interval 𝑗 of the
trajectory of agent 𝑠).

Trajectory Inflation Polyhedral Repr.
Agent 𝑠 B-Spline No Inflation conv

(︁
𝒬MV
𝑗

)︁
Other agents 𝑖 ∈ 𝐼 B-Spline 𝐵′

𝑖 = 𝐵𝑖 inflated with 𝜂𝑠 conv
(︁
𝐵′
𝑖 ⊕ℛMV

𝑖𝑗

)︁
Obstacles 𝑖 ∈ 𝐼 Any 𝐵′

𝑖 = 𝐵𝑖 inflated with
𝜂𝑠 + 2

(︁
𝛽𝑖𝑗 + 𝛼𝑖𝑗

)︁ conv (𝐵′
𝑖 ⊕ 𝑝𝑖 (𝒯𝑗))

trajectory of the other agents and the trajectory of other obstacles (see also Table

3.2).

3.4.1 Polyhedral Representation of the Trajectory of the

Agent 𝑠

When using B-Splines, one common way to obtain an outer polyhedral representation

for each interval is to use the polyhedron defined by the control points of each

interval. As the functions in the B-Spline basis are positive and form a partition

of unity, this polyhedron is guaranteed to completely contain the interval. However,

this approximation is far from being tight, leading therefore to great conservativeness

both in the position and in the velocity space. To mitigate this, [157] used the

Bernstein basis for the constraints in the velocity space. Although this basis generates

a polyhedron smaller than the B-Spline basis, it is still conservative, as this basis does

not minimize the volume of this polyhedron. We instead use both in position and

velocity space our recently derived MINVO basis [162] that, by construction, is a

polynomial basis that attempts to obtain the simplex with minimum volume that

encloses a given polynomial curve. As shown in Fig. 3-1, this basis achieves a volume

that is 2.36 and 254.9 times smaller (in the position space) and 1.29 and 5.19 times

smaller (in the velocity space) than the Bernstein and B-Spline bases respectively.

For each interval 𝑗, the vertexes of the MINVO control points (𝑄MV
𝑗 and 𝑉 MV

𝑗 for

position and velocity respectively) and the B-Spline control points (𝑄BS
𝑗 , 𝑉 BS

𝑗 ) are
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related as follows:

𝑄MV
𝑗 = 𝑄BS

𝑗 𝐴BS
pos(𝑗)

(︁
𝐴MV

pos

)︁−1

𝑉 MV
𝑗 = 𝑉 BS

𝑗 𝐴BS
vel(𝑗)

(︁
𝐴MV

vel

)︁−1 (3.1)

where the matrices 𝐴 are known, and are available in our recent work [162] (for the

MINVO basis) and in [133] (for the Bernstein and B-Spline bases). For the B-Spline

bases, and because we are using clamped uniform splines, the matrices 𝐴BS
pos(𝑗) and

𝐴BS
vel(𝑗) depend on the interval 𝑗. Eq. 3.1, together with the fact that 𝑉 BS

𝑗 is a linear

combination of 𝑄BS
𝑗 , allow us to write

𝒬MV
𝑗 = 𝑓BS→MV

𝑗 (𝒬BS
𝑗 )

𝒱MV
𝑗 = ℎBS→MV

𝑗 (𝒬BS
𝑗 )

(3.2)

where 𝑓BS→MV
𝑗 (·) and ℎBS→MV

𝑗 (·) are known linear functions.

3.4.2 Polyhedral Representation of the Trajectory of Other

Agents

We first increase the sides of 𝐵𝑖 by 𝜂𝑠 to obtain the inflated box 𝐵′
𝑖. Now, note that

the trajectory of the agent 𝑖 ̸= 𝑠 is also a B-Spline, but its initial and final times

can be different from 𝑡in and 𝑡f (initial and final times of the trajectory that agent 𝑠

is optimizing). Therefore, to obtain the polyhedral representation of the trajectory

of the agent 𝑖 in the intervals [𝑡in, 𝑡in + Δ𝑡], [𝑡in + Δ𝑡, 𝑡in + 2Δ𝑡], . . . , [𝑡f − Δ𝑡, 𝑡f] we

first compute the MINVO control points of every interval of the trajectory of agent 𝑖

that falls in one of these intervals. The convex hull of the boxes 𝐵′
𝑖 placed in every

one of these control points will be the polyhedral representation of the interval 𝑗

of the trajectory of the agent 𝑖. We denote the vertexes of this outer polyhedral

representation as 𝒞𝑖𝑗.
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Figure 3-1: Comparison of the volumes, areas, and lengths obtained by the MINVO
basis (ours), Bernstein basis (used by the Bézier curves) and B-Spline basis for an
interval ( ) of a given uniform B-Spline ( ). In the acceleration space, the three
bases generate the same control points.

Figure 3-2: To impose collision-free constraints, MADER uses polyhedral
representations of each interval of the trajectories of other agents/obstacles. On
the left, a given scenario with dynamic obstacles and on the right the polyhedral
representations obtained (in red).
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3.4.3 Polyhedral Representation of the Trajectory of the

Obstacles

For each interval 𝑗 we first increase the sides of 𝐵𝑖 by 𝜂𝑠+2(𝛽𝑖𝑗+𝛼𝑖𝑗), and denote this

inflated box 𝐵′
𝑖. Here 𝛽𝑖𝑗 and 𝛼𝑖𝑗 are the values defined in Section 3.3. We then place

𝐵′
𝑖 in p𝑖(𝒯𝑗), where p𝑖(𝒯𝑗) denotes the set of positions of the obstacle 𝑖 at the times 𝒯𝑗

(see Table 3.1) and compute the convex hull of all the vertexes of these boxes. Given

the first assumption of Section 3.3, this guarantees that the convex hull obtained is

an outer approximation of all the 3D space occupied by the obstacle 𝑖 (inflated by

the size of the agent 𝑠) during the interval 𝑗. The static obstacles are treated in the

same way, with p𝑖(𝑡) = constant. An example of these polyhedral representations is

shown in Fig. 3-2.

3.5 Optimization and Initial Guess

3.5.1 Collision-free Constraints

Once the polyhedral approximations of the trajectories of the other obstacles/agents

have been obtained, we enforce the collision-free constraints between these polyhedra

and the ones of the optimized trajectory as follows: we introduce the planes 𝜋𝑖𝑗

(characterized by 𝑛𝑖𝑗 and 𝑑𝑖𝑗) that separate them as decision variables in the

optimization problem and force this way the separation between the vertexes in 𝒞𝑖𝑗
and the MINVO control points 𝒬MV

𝑗 (see Figs. 3-3 and 3-4):

𝑛𝑇
𝑖𝑗𝑐 + 𝑑𝑖𝑗 > 0 ∀𝑐 ∈ 𝒞𝑖𝑗, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽

𝑛𝑇
𝑖𝑗𝑞 + 𝑑𝑖𝑗 < 0 ∀𝑞 ∈ 𝒬MV

𝑗 , ∀𝑗 ∈ 𝐽
(3.3)

3.5.2 Other Constraints

The initial condition (position, velocity and acceleration) is imposed by x(𝑡in) = x𝑖𝑛.

Note that 𝑝in, 𝑣in and 𝑎in completely determine 𝑞0, 𝑞1 and 𝑞2, so these control points
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Figure 3-3: Example of a trajectory avoiding a dynamic obstacle. The obstacle has
a box-like shape and is moving following a trefoil knot trajectory. The trajectory of
the obstacle is divided into as many segments as the optimized trajectory has. An
outer polyhedral representation (whose edges are shown as black lines) is computed
for each of these segments, and each segment of the trajectory avoids these polyhedra.

are not included as decision variables.

For the final condition, we use a final stop condition imposing the constraints

v(𝑡f) = v𝑓 = 0 and a(𝑡f) = a𝑓 = 0. These conditions require 𝑞𝑛−2 = 𝑞𝑛−1 = 𝑞𝑛, so

the control points 𝑞𝑛−1 and 𝑞𝑛 can also be excluded from the set of decision variables.

The final position is included as a penalty cost
⃦⃦⃦
𝑞𝑛−2 − 𝑔

⃦⃦⃦2

2
in the objective function,

weighted with a parameter 𝜔 ≥ 0. Here 𝑔 is the goal (projection of the 𝑔term onto a

sphere 𝒮 of radius 𝑟 around 𝑑, see Table 3.1). Note that, as we are using clamped

uniform B-Splines with a final stop condition, 𝑞𝑛−2 coincides with the last position of

the B-Spline. The reason of adding this penalty cost for the final position, instead of

including 𝑞𝑛−2 = 𝑔 as a hard constraint, is that a hard constraint can easily lead to

infeasibility if the heuristics used for the total time (𝑡f− 𝑡in) underestimates the time

needed to reach 𝑔.

To force the trajectory generated to be inside the sphere 𝒮, we impose the

constraint

‖𝑞 − 𝑑‖2
2 ≤ 𝑟2 ∀𝑞 ∈ 𝒬MV

𝑗 , ∀𝑗 ∈ 𝐽 (3.4)

Moreover, we also add the constraints on the maximum velocity and acceleration:

abs (𝑣) ≤ 𝑣max ∀𝑣 ∈ 𝒱MV
𝑗 , ∀𝑗 ∈ 𝐽

abs (𝑎𝑙) ≤ 𝑎max ∀𝑙 ∈ 𝐿∖{𝑛− 1, 𝑛}
(3.5)
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Figure 3-4: Collision-free constraints between agent 2 and both the obstacle 0 and
agent 1. This figure is from the view of agent 2. 𝑡in and 𝑡f are the initial and final times
of the trajectory being optimized (dashed lines), and they are completely independent
of the initial and final optimization times of agent 1. 𝒬MV

0 are the control points of the
interval 0 of the optimized trajectory using the MINVO basis. 𝒞13 are the vertexes
of the convex hull of the vertexes of the control points of all the intervals of the
trajectory of agent 1 that fall in [𝑡f−Δ𝑡, 𝑡f]. Note that the trajectories and polyhedra
are in 3D, but they are represented in 2D for visualization purposes.

where we are using the MINVO velocity control points for the velocity constraint.

For the acceleration constraint, the B-Spline and MINVO control points are the same

(see Fig. 3-1). Note that the velocity and acceleration are constrained independently

on each one of the axes {𝑥, 𝑦, 𝑧}.

3.5.3 Control Effort

The evaluation of a cubic clamped uniform B-Spline in an interval 𝑗 ∈ 𝐽 can be done

as follows [133]:

p(𝑡) = 𝑄BS
𝑗 𝐴BS

pos(𝑗)

⎡⎢⎢⎢⎢⎢⎣
𝑢3
𝑗

𝑢2
𝑗

𝑢𝑗

1

⎤⎥⎥⎥⎥⎥⎦
⏟  ⏞  

:=𝑢𝑗

where 𝑢𝑗 := 𝑡−𝑡𝑝+𝑗
𝑡𝑝+𝑗+1−𝑡𝑝+𝑗

, 𝑡 ∈ [𝑡𝑝+𝑗, 𝑡𝑝+𝑗+1] and 𝐴BS
pos(𝑗) is a known matrix that depends

on each interval. Specifically, and with the knots chosen, we will have 𝐴BS
pos(0) ̸=

𝐴BS
pos(1) ̸= 𝐴BS

pos(2) = ... = 𝐴BS
pos(𝑚− 2𝑝− 3) ̸= 𝐴BS

pos(𝑚− 2𝑝− 2) ̸= 𝐴BS
pos(𝑚− 2𝑝− 1).
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Now, note that
𝑑𝑟p(𝑡)
𝑑𝑡𝑟

= 1
Δ𝑡𝑟𝑄BS

𝑗 𝐴BS
pos(𝑗)

𝑑𝑟𝑢𝑗

𝑑𝑢𝑗
𝑟

Therefore, as the jerk is constant in each interval (since 𝑝 = 3), the control effort is:

∫︁ 𝑡f

𝑡in
‖j(𝑡)‖2 𝑑𝑡 ∝

∑︁
𝑗∈𝐽

⃦⃦⃦⃦
⃦⃦⃦⃦𝑄BS

𝑗 𝐴BS
pos(𝑗)

⎡⎢⎢⎣
6
0
0
0

⎤⎥⎥⎦
⃦⃦⃦⃦
⃦⃦⃦⃦

2

2

(3.6)

3.5.4 Optimization Problem

Given the constraints and the objective function explained above, the optimization

problem solved is as follows:1

min
𝒬BS
𝑗 ,𝑛𝑖𝑗 ,𝑑𝑖𝑗

∑︁
𝑗∈𝐽

⃦⃦⃦⃦
⃦⃦⃦⃦𝑄BS

𝑗 𝐴BS
pos(𝑗)

⎡⎢⎢⎣
6
0
0
0

⎤⎥⎥⎦
⃦⃦⃦⃦
⃦⃦⃦⃦

2

2

+ 𝜔
⃦⃦⃦
𝑞𝑛−2 − 𝑔

⃦⃦⃦2

2

s.t.

x(𝑡in) = x𝑖𝑛

v(𝑡f) = v𝑓 = 0

a(𝑡f) = a𝑓 = 0

𝑛𝑇
𝑖𝑗𝑐 + 𝑑𝑖𝑗 > 0 ∀𝑐 ∈ 𝒞𝑖𝑗, ∀𝑖, 𝑗

𝑛𝑇
𝑖𝑗𝑞 + 𝑑𝑖𝑗 < 0 ∀𝑞 ∈ 𝒬MV

𝑗 := 𝑓BS→MV
𝑗 (𝒬BS

𝑗 ), ∀𝑖, 𝑗

‖𝑞 − 𝑑‖2
2 ≤ 𝑟2 ∀𝑞 ∈ 𝒬MV

𝑗 := 𝑓BS→MV
𝑗 (𝒬BS

𝑗 ), ∀𝑗

abs (𝑣) ≤ 𝑣max ∀𝑣 ∈ 𝒱MV
𝑗 := ℎBS→MV

𝑗 (𝒬BS
𝑗 ), ∀𝑗

abs (𝑎𝑙) ≤ 𝑎max ∀𝑙 ∈ 𝐿∖{𝑛− 1, 𝑛}

This problem is clearly nonconvex since we are minimizing over the control points

and the planes 𝜋𝑖𝑗 (characterized by 𝑛𝑖𝑗 and 𝑑𝑖𝑗). Note also that the decision

variables are the B-Spline control points 𝒬BS
𝑗 . In the constraints, the MINVO control

1In the optimization problem, ∀𝑖 and ∀𝑗 denote, respectively, ∀𝑖 ∈ 𝐼 and ∀𝑗 ∈ 𝐽 .
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Algorithm 1: Octopus Search
1 Function GetInitialGuess():
2 Compute 𝑞0, 𝑞1 and 𝑞2 from 𝑝in, 𝑣in and 𝑎in
3 Add 𝑞2 to 𝑄
4 while 𝑄 is not empty do
5 𝑞𝑙 ←First element of 𝑄
6 Remove first element of 𝑄
7 ℳ←Uniformly sample 𝑣𝑙 satisfying 𝑣𝑚𝑎𝑥 and 𝑎𝑚𝑎𝑥
8 if any of the conditions 1-6 is true then
9 continue

10 if ‖𝑞𝑙 − 𝑔‖2 < 𝜖′′ and 𝑙 = (𝑛− 2) then
11 𝑞𝑛−1 ← 𝑞𝑛−2
12 𝑞𝑛 ← 𝑞𝑛−2
13 return {𝑞0, 𝑞1, 𝑞2, . . . , 𝑞𝑛−2, 𝑞𝑛−1, 𝑞𝑛} ∪ 𝜋𝑖𝑗

14 for every 𝑣𝑙 in ℳ do
15 𝑞𝑙+1 ← 𝑞𝑙 + 𝑡𝑙+𝑝+1−𝑡𝑙+1

𝑝 𝑣𝑙

16 Store in 𝑞𝑙+1 a pointer to 𝑞𝑙
17 Add 𝑞𝑙+1 to 𝑄

18 return Closest Path found

points 𝒬MV
𝑗 and 𝒱MV

𝑗 are simply linear transformations of the decision variables (see

Eq. 3.2). We solve this problem using the augmented Lagrangian method [15, 31],

and with the globally-convergent method-of-moving-asymptotes (MMA) [152] as the

subsidiary optimization algorithm. The interface used for these algorithms is NLopt

[51]. The time allocated per trajectory is chosen before the optimization as (𝑡f−𝑡in) =
‖𝑔−𝑑‖2
𝑣𝑚𝑎𝑥

.

3.5.5 Initial Guess

To obtain an initial guess (which consists of both the control points {𝑞0, . . . , 𝑞𝑛}BS

and the planes 𝜋𝑖𝑗), we use the Octopus Search algorithm shown in Alg. 1. The

Octopus Search takes inspiration from A* [59], but it is designed to work with B-

Splines, handle dynamic obstacles/agents, and use the MINVO basis for the collision

check. Each control point will be a node in the search. All the open nodes are kept in

a priority queue 𝑄, in which the elements are ordered in increasing order of 𝑓 = 𝑔+𝜖ℎ,

where 𝑔 is the sum of the distances (between successive control points) from 𝑞0 to

the current node (cost-to-come), ℎ is the distance from the current node to the goal
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Figure 3-5: Example of the trajectories found by the Octopus Search in an
environment with a dynamic obstacle following a trefoil knot trajectory. The best
trajectory found is the thickest one in the figure.

(heuristics of the cost-to-go), and 𝜖 is the bias. Similar to A*, this ordering of the

priority queue makes nodes with lower 𝑓 be explored first.

The way the algorithm works is as follows: First, we compute the control points

𝑞0, 𝑞1, 𝑞2, which are determined from 𝑝in,𝑣in and 𝑎in. After adding 𝑞2 to the queue

𝑄 (line 3), we run the following loop until there are no elements in 𝑄: First we store

in 𝑞𝑙 the first element of 𝑄, and remove it from 𝑄 (lines 5-6). Then, we store in a set

ℳ velocity samples for 𝑣𝑙 that satisfy both 𝑣max and 𝑎max.2 After this, we discard

the current 𝑞𝑙 if any of these conditions are true (l.s. denotes linearly separable):

1. 𝒬MV
𝑙−3 is not l.s. from 𝒞𝑖,𝑙−3 for some 𝑖 ∈ 𝐼.

2. 𝑙 = (𝑛− 2) and 𝒬MV
𝑛−4 is not l.s. from 𝒞𝑖,𝑛−4 for some 𝑖 ∈ 𝐼.

2In these velocity samples, we use the B-Spline velocity control points, to avoid the dependence
with past velocity control points that appears when using the MINVO or Bernstein bases. But note
that this is only for the initial guess, in the optimization problem the MINVO velocity control points
are used.
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3. 𝑙 = (𝑛− 2) and 𝒬MV
𝑛−3 is not l.s. from 𝒞𝑖,𝑛−3 for some 𝑖 ∈ 𝐼.

4. ‖𝑞𝑙 − 𝑑‖2 > 𝑟.

5. ‖𝑞𝑙 − 𝑞𝑘‖∞ ≤ 𝜖′ for some 𝑞𝑘 already added to 𝑄.

6. Cardinality of ℳ is zero.

Condition 1 ensures that the convex hull of 𝒬MV
𝑙−3 does not collide with any interval

𝑙 − 3 of other obstacle/agent 𝑖 ∈ 𝐼. The linear separability is checked by solving the

following feasibility linear problem for the interval 𝑗 = 𝑙 − 3 of every obstacle/agent

𝑖 ∈ 𝐼:
𝑛𝑇
𝑖𝑗𝑐 + 𝑑𝑖𝑗 > 0 ∀𝑐 ∈ 𝒞𝑖𝑗

𝑛𝑇
𝑖𝑗𝑞 + 𝑑𝑖𝑗 < 0 ∀𝑞 ∈ 𝒬MV

𝑗

(3.7)

where the decision variables are the planes 𝜋𝑖𝑗 (defined by 𝑛𝑖𝑗 and 𝑑𝑖𝑗). We solve this

problem using GLPK [3]. Note that we also need to check the conditions 2 and 3 due

to the fact that 𝑞𝑛−2 = 𝑞𝑛−1 = 𝑞𝑛 and hence the choice of 𝑞𝑛−2 in the search forces

the choice of 𝑞𝑛−1 and 𝑞𝑛. In all these three previous conditions, the MINVO control

points are used.

As in the optimization problem we are forcing the trajectory to be inside the

sphere 𝒮, we also discard 𝑞𝑙 if condition 4 is not satisfied. Additionally, to keep

the search computationally tractable, we discard 𝑞𝑙 if it is very close to another 𝑞𝑘

already added to 𝑄 (condition 5): we create a voxel grid of voxel size 2𝜖′, and add

a new control point to 𝑄 only if no other point has been added before within the

same voxel. Finally, we also discard 𝑞𝑙 if there are not any feasible samples for 𝑣𝑙

(condition 6).

Then, we check if we have found all the control points and if 𝑞𝑛−2 is sufficiently

close to the goal 𝑔 (distance less than 𝜖′′). If this is the case, the control points 𝑞𝑛−1

and 𝑞𝑛 (which are the same as 𝑞𝑛−2 due to the final stop condition) are added to

the list of the corresponding control points, and are returned together with all the

separating planes 𝜋𝑖𝑗 ∀𝑖 ∈ 𝐼,∀𝑗 ∈ 𝐽 (lines 10-13). If the goal has not been reached

yet, we use the velocity samplesℳ to generate 𝑞𝑙+1 and add them to 𝑄 (lines 14-17).
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If the algorithm is not able to find a trajectory that reaches the goal, the one found

that is closest to the goal is returned (line 18).

Fig. 3-5 shows an example of the trajectories found by the Octopus Search

algorithm in an environment with a dynamic obstacle following a trefoil knot

trajectory.

3.5.6 Degree of the Splines

In this work, we focused on the case 𝑝 = 3 (i.e., cubic splines). However, MADER

could also be used with higher (or lower) order splines. For instance, one could use

splines of fourth-degree polynomials (i.e., 𝑝 = 4), minimize snap (instead of jerk),

and then use the corresponding MINVO polyhedron that encloses each fourth-degree

interval for the obstacle avoidance constraints [162]. The reason behind the choice of

cubic splines, instead of higher/lower order splines, is that cubic splines are a good

trade-off between dynamic feasibility of a UAV [115] and computational tractability.

3.6 Deconfliction

To guarantee that the agents plan trajectories asynchronously while not colliding

with other agents that are also constantly replanning, we use a deconfliction scheme

divided in these three periods (see Fig. 3-6):

• The Optimization period happens during 𝑡 ∈ (𝑡1, 𝑡2]. The optimization

problem will include the polyhedral outer representations of the trajectories

𝑝𝑖(𝑡), 𝑖 ∈ 𝐼 in the constraints. All the trajectories other agents commit to

during the Optimization period are stored.

• The Check happens during 𝑡 ∈ (𝑡2, 𝑡3]. The goal of this period is to check

whether the trajectory found in the optimization collides with the trajectories

other agents have committed to during the optimization. This collision check is

done by performing feasibility tests solving the Linear Program 3.7 ∀𝑗 for every

agent 𝑖 that has committed to a trajectory while the optimization was being
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Figure 3-6: Deconfliction between agents. Each agent includes the trajectories other
agents have committed to as constraints in the optimization. After the optimization,
a collision check-recheck scheme is performed to ensure feasibility with respect to
trajectories other agents have committed to while the optimization was happening.
In this example, agent B starts the optimization after agent A, but commits to a
trajectory before agent A. Hence, when agent A finishes the optimization it needs
to check whether the trajectory found collides or not with the trajectory agent B
committed to at 𝑡 = 𝑡𝐵,𝑞4 . If it collides, agent A will simply keep executing the
trajectory available at 𝑡 = 𝑡𝐴,ℎ1 . If it does not collide, agent A will do the Recheck
step to ensure no agent has committed to any trajectory during the Check period,
and if this Recheck step is satisfied, agent A will commit to the trajectory found.

performed (and whose new trajectory was not included in the constraints at

𝑡1). A boolean flag is set to true if any other agent commits to a new trajectory

during this Check period.

• The Recheck period aims at checking whether agent A has received any

trajectory during the Check period, by simply checking if the boolean flag is

true or false. As this is a single Boolean comparison in the code, it allows us

to assume that no trajectories have been published by other agents while this

recheck is done, avoiding therefore an infinite loop of rechecks.

With ℎ denoting the replanning iteration of an agent A, the time allocation for

each of these three periods described above is explained in Fig. 3-7: to choose the
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Figure 3-7: At 𝑡 = 𝑡𝐴,ℎ1 , agent A chooses the point 𝑑 ( ) along the current trajectory
that it is executing, with an offset 𝛿𝑡 from the current position . Then, it allocates
𝜅𝛿𝑡 seconds to obtain an initial guess. The closest trajectory found to 𝑔 is used as
the initial guess if the search has not finished by that time. Then, the nonconvex
optimization runs for 𝜇𝛿𝑡 seconds, choosing the best feasible solution found if no
local optimum has been found by then. 𝜅 and 𝜇 satisfy 𝜅 > 0, 𝜇 > 0, 𝜅+ 𝜇 < 1.

initial condition of the iteration ℎ, Agent A first chooses a point 𝑑 along the trajectory

found in the iteration ℎ− 1, with an offset of 𝛿𝑡 seconds from the current position .

Here, 𝛿𝑡 should be an estimate of how long iteration ℎ will take. To obtain this

estimate, and similar to our previous work [167], we use the time iteration ℎ− 1 took

multiplied by a factor 𝛼 ≥ 1: 𝛿𝑡 = 𝛼
(︁
𝑡𝐴,ℎ−1
4 − 𝑡𝐴,ℎ−1

1

)︁
. Agent A then should finish

the replanning iteration ℎ in less than 𝛿𝑡 seconds. To do this, we allocate a maximum

runtime of 𝜅𝛿𝑡 seconds to obtain an initial guess, and a maximum runtime of 𝜇𝛿𝑡

seconds for the nonconvex optimization. Here 𝜅 > 0, 𝜇 > 0 and 𝜅 + 𝜇 < 1, to give

time for the Check and Recheck. If the Octopus Search takes longer than 𝜅𝛿𝑡, the

trajectory found that is closest to the goal is used as the initial guess. Similarly, if

the nonconvex optimization takes longer than 𝜇𝛿𝑡, the best feasible solution found is

selected.

Fig. 3-6 shows an example scenario with only two agents A and B. Agent A

starts its ℎ-th replanning step at 𝑡𝐴,ℎ1 , and finishes the optimization at 𝑡𝐴,ℎ2 . Agent

B starts its 𝑞-th replanning step at 𝑡𝐵,𝑞1 . In the example shown, agent B starts the
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optimization later than agent A (𝑡𝐵,𝑞1 > 𝑡𝐴,ℎ1 ), but solves the optimization earlier than

agent A (𝑡𝐵,𝑞2 < 𝑡𝐴,ℎ2 ). As no other agent has obtained a trajectory while agent B was

optimizing, agent B does not have to check anything, and commits directly to the

trajectory found. However, when agent A finishes the optimization at 𝑡𝐴,ℎ2 > 𝑡𝐵,𝑞4 , it

needs to check if the trajectory found collides with the one agent B has committed

to. If they do not collide, agent A will perform the Recheck by ensuring that no

trajectory has been published while the Check was being performed.

An agent will keep executing the trajectory found in the previous iteration if any

of these four scenarios happens:

1. The trajectory obtained at the end of the optimization collides with any of the

trajectories received during the Optimization.

2. The agent has received any trajectory from other agents during the Check

period.

3. No feasible solution has been found in the Optimization.

4. The current iteration takes longer than 𝛿𝑡 seconds.

Under the third assumption explained in Section 3.3 (i.e., two agents do not

commit to their trajectory at the very same time), this deconfliction scheme explained

guarantees safety with respect to the other agents, which is proven as follows:

• If the planning agent commits to a new trajectory in the current replanning

iteration, this new trajectory is guaranteed to be collision-free because it

included all the trajectories of other agents as constraints, and it was checked

for collisions with respect to the trajectories other agents have committed to

during the planning agent’s optimization time.

• If the planning agent does not commit to a new trajectory in that iteration

(because one of the scenarios 1–4 occur), it will keep executing the trajectory

found in the previous iteration. This trajectory is still guaranteed to be collision-

free because it was collision-free when it was obtained and other agents have
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included it as a constraint in any new plans that have been made recently. If

the agent reaches the end of this trajectory (which has a final stop condition),

the agent will wait there until it obtains a new feasible solution. In the

meanwhile, all the other agents are including its position as a constraint for

theirs trajectories, guaranteeing therefore safety between the agents.

3.7 Results

We now test MADER in several single-agent and multiagent simulation environments.

The computers used for the simulations are an AlienWare Aurora r8 desktop (for the

C++ simulations of 3.7.2), a ROG Strix GL502VM laptop (for the Matlab simulations

of Section 3.7.2) and a general-purpose-N1 Google Cloud instance (for the simulations

of Sections 3.7.1 and 3.7.3).

3.7.1 Single-Agent Simulations

To highlight the benefits of the MINVO basis with respect to the Bernstein or B-Spline

bases, we first run the algorithm proposed in a corridor-like environment (73 m×4 m×

3 m) depicted in Fig. 3-8 that contains 100 randomly deployed dynamic obstacles of

sizes 0.8 m × 0.8 m × 0.8 m. All the obstacles follow a trajectory whose parametric

equations are those of a trefoil knot [110]. The radius of the sphere 𝒮 used is 𝑟 = 4.0

m, and the velocity and acceleration constraints for the UAV are 𝑣𝑚𝑎𝑥 = 5 · 1 m/s

and 𝑎𝑚𝑎𝑥 =
[︁

20 20 9.6
]︁𝑇

m/s2. The velocity profile for 𝑣𝑥 is shown in Fig. 3-9. For

the same given velocity constraint (𝑣max = 5 m/s), the mean velocity 𝑣𝑥 achieved by

the MINVO basis is 4.15 m/s, higher than the ones achieved by the Bernstein and

B-Spline basis (3.23 m/s and 2.79 m/s respectively).

We now compare the time it takes for the UAV to reach the goal using each basis

in the same corridor environment but varying the total number of obstacles (from

50 obstacles to 250 obstacles). Moreover, and as a stopping condition is not a safe

condition in a world with dynamic obstacles, we also report the number of times

the UAV had to stop. The results are shown in Table 3.3 and Fig. 3-10. In terms
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Figure 3-8: Corridor environment of size 73 m× 4 m× 3 m used for the single-agent
simulation. It contains 100 randomly deployed dynamic obstacles that follow a trefoil
knot trajectory. The corridor is along the 𝑥 direction.

Figure 3-9: Boxplots and normalized histograms of the velocity profile of 𝑣𝑥 in the
corridor environment shown in Fig. 3-8. The velocity constraint used was 𝑣𝑚𝑎𝑥 =
5 · 1 m/s. The histograms are for all the velocities obtained across ten different
simulations.
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Figure 3-10: Time to reach the goal and number of times the UAV had to stop for
different number of obstacles. 5 simulations were performed for each combination of
basis (MINVO, Bernstein and B-Spline) and number of obstacles. The shaded area
is the 1𝜎 interval, where 𝜎 is the standard deviation.

of number of stops, the use of the MINVO basis achieves reductions of 86.4% and

88.8% with respect to the Bernstein and B-Spline bases respectively. In terms of the

time to reach the goal, the MINVO basis achieves reductions of 22.3% and 33.9%

compared to the Bernstein and B-Spline bases respectively. The reason behind all

these improvements is the tighter outer polyhedral approximation of each interval of

the trajectory achieved by the MINVO basis in the velocity and position spaces.

3.7.2 Multiagent Simulations Without Obstacles

We now compare MADER with the following different state-of-the-art algorithms:
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Table 3.3: Comparison of the number of stops and time to reach the goal in a corridor-
like environment using different bases and with different number of obstacles.

50 obstacles 100 obstacles 150 obstacles 200 obstacles 250 obstacles
Basis Stops Time (s) Stops Time (s) Stops Time (s) Stops Time (s) Stops Time (s)

B-Spline 4.6± 2.50 19.61± 1.67 9.0± 2.40 26.17± 3.04 9.1± 2.31 26.97± 3.24 12.1± 2.77 32.69± 4.61 14.10± 4.09 39.81± 9.76
Bernstein 5.0± 2.0 19.07± 1.08 7.4± 2.36 22.59± 1.33 6.5± 1.72 23.23± 1.43 7.2± 2.49 24.65± 2.54 8.4± 2.80 27.94± 4.16

MINVO (ours) 1.1 ± 0.74 16.62 ± 0.61 1 ± 0.94 17.55 ± 0.98 2.7 ± 1.70 20.48± 2.26 4.2 ± 1.87 22.47 ± 2.19 8.1± 3.45 27.78 ± 3.83

• Sequential convex programming (SCP,3 [10]).

• Relative Bernstein Polynomial approach (RBP,3 [126]).

• Distributed model predictive control (DMPC,4 [97]).

• Decoupled incremental sequential convex programming (dec_iSCP,4 [28]).

• Search-based motion planing5 [88], both in its sequential version (decS_Search)

and in its non-sequential version (decNS_Search).

To classify these different algorithms, we use the following definitions:

• Decentralized: Each agent solves its own optimization problem.

• Replanning: The agents have the ability to plan several times as they fly

(instead of planning only once before starting to fly). The algorithms with

replanning are also classified according to whether they satisfy the real-time

constraint in the replanning: algorithms that satisfy this constraint are able to

replan in less than 𝛿𝑡 or at least have a trajectory they can keep executing in

case no solution has found by then (see Fig. 3-7). Algorithms that do not satisfy

this constraint allow replanning steps longer than 𝛿𝑡 (which is not feasible in

the real world), and simulations are performed by simply having a simulation

time that runs completely independent of the real time.

• Asynchronous: The planning is triggered independently by each agent without

considering the planning status of other agents. Examples of synchronous

algorithms include the ones that trigger the optimization of all the agents at
3https://github.com/qwerty35/swarm_simulator
4https://github.com/carlosluisg/multiagent_planning
5https://github.com/sikang/mpl_ros
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Figure 3-11: Time notation for the algorithms that have replanning.

the same time or that impose that one agent cannot plan until another agent

has finished.

• Discretization for inter-agent constraints: The collision-free constraints

between the agents are imposed only on a finite set of points of the trajectories.

The discretization step will be denoted as ℎ seconds.

In the test scenario, 8 agents are in a 8 × 8 m square, and they have to swap their

positions. The velocity and acceleration constraints used are 𝑣𝑚𝑎𝑥 = 1.7 · 1 m/s and

𝑎𝑚𝑎𝑥 = 6.2 · 1 m/s2, with a drone radius of 15 cm. Moreover, we define the safety

ratio as min𝑖,𝑖′ 𝑑
𝑖,𝑖′

𝑚𝑖𝑛/(𝜌𝑖 + 𝜌𝑖′) [126], where 𝑑𝑖,𝑖
′

𝑚𝑖𝑛 is the minimum distance over all the

pairs of agents 𝑖 and 𝑖′, and 𝜌𝑖, 𝜌𝑖′ denote their respective radii. Safety is ensured if

safety ratio > 1. For the RBP and DMPC algorithms, the downwash coefficient 𝑐 was

set to 𝑐 = 1 (so that the drone is modeled as a sphere as in all the other algorithms).

The results obtained, together with the classification of each algorithm, are shown

in Table 3.4. For the algorithms that replan as they fly, we show the following times

(see Fig. 3-11): 𝑡1𝑠𝑡start (earliest time a UAV starts flying), 𝑡last start (latest time a

UAV starts flying), 𝑡1𝑠𝑡end (earliest time a UAV reaches the goal) and the total time

𝑡total (time when all the UAVs have reached their goals). Note that the algorithm

decNS_Search is synchronous (link), and it does not satisfy the real-time constraints

in the replanning iterations (link). Several conclusions can be drawn from Table 3.4:

• Algorithms that use discretization to impose inter-agent constraints are in

general not safe due to the fact that the constraints may not be satisfied between

two consecutive discretization points. A smaller discretization step may solve

this, but at the expense of very high computation times.

• Compared to the centralized solution that generates safe trajectories (RBP),

MADER achieves a shorter overall flight distance. The total time of MADER
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Table 3.4: Comparison between MADER (ours), SCP ([10]), RBP ([126]), DMPC
([97]), dec_iSCP ([28]), decS_Search and decNS_Search ([88]) . For SCP and
MADER, the time and distance results are the mean of 5 runs, and the safety
ratio is the minimum across all the runs. The test environment consists of 8 agents
in a square that swap their positions without obstacles. For the algorithms that
have replanning, the values in the columns of computation and execution times are
𝑡1𝑠𝑡start | 𝑡last start | 𝑡1𝑠𝑡end (see Fig. 3-11). The superscript * means the available
implementation of the algorithm is in MATLAB (rest is in C++). Algorithms that
have replanning but do not satisfy the real-time constraints in the replanning are
denoted as Yes/No in the Replan? column of the table.

Method Decentr.? Replan? Async.? Without dis-
cretization?

Time (s) Total Flight
Distance (m)

Safety
Computation Execution Total Safe? Safety ratio

SCP, ℎSCP = 0.3 s 1.150 7.215 8.366 77.144 No 0.142
SCP, ℎSCP = 0.25 s 3.099 7.855 10.954 101.733 No 0.149
SCP, ℎSCP = 0.2 s 8.741 7.855 16.596 90.917 No 0.335
SCP, ℎSCP = 0.17 s

No No No No

37.375 9.775 47.150 77.346 No 0.685
RBP, batch_size=1 0.228 15.623 15.851 90.830 Yes 1.055
RBP, batch_size=2 0.236 15.623 15.859 91.789 Yes 1.075
RBP, batch_size=4 0.277 14.203 14.480 92.133 Yes 1.023

RBP, no batches

No No No Yes

0.461 14.203 14.664 93.721 Yes 1.057
DMPC*, ℎDMPC = 0.45 s 4.952 23.450 28.402 79.650 No 0.683
DMPC*, ℎDMPC = 0.36 s 4.350 20.710 25.060 97.220 No 0.914
DMPC*, ℎDMPC = 0.3 s 4.627 18.430 23.057 78.580 Yes 1.015
DMPC*, ℎDMPC = 0.25 s

Yes No No No

3.796 15.980 19.776 79.590 No 0.824
dec_iSCP*, ℎiSCP = 0.4 s 2.631 13.130 15.761 102.320 No 0.017
dec_iSCP*, ℎiSCP = 0.3 s 4.276 15.470 19.746 97.770 No 0.550
dec_iSCP*, ℎiSCP = 0.2 s 9.639 14.060 23.699 95.790 No 0.917
dec_iSCP*, ℎiSCP = 0.15 s

Yes No No No

14.138 14.060 28.198 102.030 No 0.906
decS_Search, 𝑢 = 2 m/s3 15.336 6.491 21.827 79.354 Yes 1.337
decS_Search, 𝑢 = 3 m/s3 7.772 6.993 14.764 80.419 Yes 1.768
decS_Search, 𝑢 = 4 m/s3 34.557 9.491 44.048 83.187 Yes 1.491
decS_Search, 𝑢 = 5 m/s3

Yes No No Yes

3.104 8.491 11.595 80.804 Yes 1.474
decNS_Search, 𝑢 = 2 m/s3

Yes

No

0.021 | 0.233 | 33.711 34.288 80.116 Yes 1.416
decNS_Search, 𝑢 = 3 m/s3 0.003 | 0.058 | 12.810 13.346 79.752 Yes 1.150
decNS_Search, 𝑢 = 4 m/s3 0.030 | 0.600 | 53.824 53.899 79.752 Yes 1.502
decNS_Search, 𝑢 = 5 m/s3

Yes No Yes

0.002 | 0.051 | 9.096 9.169 88.753 Yes 1.335
MADER (ours) Yes Yes Yes Yes 0.550 | 2.468 | 7.975 10.262 82.487 Yes 1.577

is also shorter than the one of RBP.

• Compared to decentralized algorithms (DMPC, dec_iSCP, decS_Search and

decNS_Search), MADER is the one with the shortest total time, except for the

case of decNS_Search with 𝑢 = 5 m/s3. However, for this case the flight distance

achieved by MADER is 6.3 m shorter. Moreover, MADER is asynchronous and

satisfies the real-time constraints in the replanning, while decNS_Search does

not.

• From all the algorithms shown in Table 3.4, MADER is the only algorithm

that is decentralized, has replanning, satisfies the real-time constraints in the

replanning and is asynchronous.

For MADER, and measured on the simulation environment used in this section,

each UAV performs on average 12 successful replans before reaching the goal. On
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(a) 4 agents. (b) 8 agents.

(c) 16 agents. (d) 32 agents.

Figure 3-12: Results for the circle environment, that contains 25 static obstacles
(pillars) and 25 dynamic obstacles (boxes).

average, the check step takes ≈ 2.87 ms, the recheck step takes ≈ 0.034 𝜇s, and the

total replanning time is ≈ 199.6 ms. Approximately half of this replanning time is

allocated to find the initial guess (i.e., 𝜅 = 0.5).

3.7.3 Multiagent Simulations with Static and Dynamic

Obstacles

We now test MADER in multiagent environments that have also static and dynamic

obstacles. For this set of experiments, we use 𝛼𝑗 = 𝛽𝑗 = 3 · 1 cm, 𝛾𝑗 = 0.1 s ∀𝑗,

𝑟 = 4.5 m (radius of the sphere 𝒮), and a drone radius of 5 cm. We test MADER in

the following two environments:

• Circle environment: the UAVs start in a circle formation and have to swap

their positions while flying in a world with 25 static obstacles of size 0.4 m ×

8 m× 0.4 m and 25 dynamic obstacles of size 0.6 m× 0.6 m× 0.6 m following
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(a) 4 agents. (b) 8 agents.

(c) 16 agents. (d) 32 agents.

Figure 3-13: Results for the sphere environment, that contains 18 static obstacles
(pillars) and 52 dynamic obstacles (boxes and horizontal poles).

a trefoil knot trajectory [110]. The radius of the circle the UAVs start from is

10 m.

• Sphere environment: the UAVs start in a sphere formation and have to

swap their positions while flying in a world with 18 static obstacles of size

0.4 m× 8 m× 0.4 m, 17 dynamic obstacles of size 0.4 m× 4 m× 0.4 m (moving

in 𝑧) and 35 dynamic obstacles of size 0.6 m× 0.6 m× 0.6 m following a trefoil

knot trajectory. The radius of the sphere the UAVs start from is 10 m.

The results can be seen in Table 3.5 and in Figs. 3-12 and 3-13. All the safety
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Table 3.5: Results for MADER in the circle and sphere environments.

Environment Num of Agents Time (s) Flight Distance
per agent (m)

Safety ratio
between agents

Number of stops
per agent𝑡1𝑠𝑡start 𝑡last start 𝑡1𝑠𝑡end Total

Circle

4 0.339 0.563 10.473 11.403 21.052 5.444 0.000
8 0.404 0.559 7.544 11.108 21.025 1.959 0.000
16 0.300 0.764 7.773 13.972 21.737 4.342 0.188
32 0.532 1.195 9.092 18.820 22.105 1.834 1.500

Sphere

4 0.452 0.584 10.291 11.124 20.827 4.242 0.000
8 0.425 0.618 9.204 12.561 21.684 1.903 0.125
16 0.363 0.845 8.909 13.175 21.284 1.905 0.125
32 0.357 1.725 9.170 18.275 22.284 1.155 1.000

ratios between the agents are > 1, and the flight distances achieved (per agent) are

approximately 21.5 m. With respect to the number of stops, none of the UAVs had

to stop in the circle environment with 4 and 8 agents and in the sphere environment

with 4 agents. For the circle environment with 16 and 32 agents, each UAV stops

(on average) 0.188 and 1.5 times respectively. For the sphere environment with 8, 16,

and 32 agents, each UAV stops (on average) 0.125, 0.125, and 1.0 times respectively.

Note also that only the two agents that have been the closest are the ones that

determine the actual value of the safety ratio, while the other agents do not contribute

to this value. This means that, while the safety ratio is likely to decrease with the

number of agents, a monotonic decrease of the safety ratio with respect to the number

of agents is not strictly required.
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Chapter 4

PANTHER: Perception-Aware

Trajectory Planner in Dynamic

Environments

4.1 Overview

This chapter presents PANTHER, a real-time perception-aware (PA) trajectory

planner for multirotor-UAVs in dynamic environments. PANTHER plans trajectories

that avoid dynamic obstacles while also keeping them in the sensor field of view (FOV)

and minimizing the blur to aid in object tracking. The rotation and translation of the

UAV are jointly optimized, which allows PANTHER to fully exploit the differential

flatness of multirotors to maximize the PA objective. Real-time performance is

achieved by implicitly imposing the underactuated dynamics of the UAV through

the Hopf fibration. PANTHER is able to keep the obstacles inside the FOV 7.9

and 1.5 times more than non-PA approaches and PA approaches that decouple

translation and yaw, respectively. The projected velocity (and hence the blur) is

reduced by 18% and 34%, respectively. This leads to average success rates three

times larger than state-of-the-art approaches in multi-obstacle avoidance scenarios.

The MINVO basis is used to impose low-conservative collision avoidance constraints
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Table 4.1: Notation used in this chapter.
Symbol Meaning

abs (𝑎), 𝑎 ≤ 𝑏 Element-wise absolute value, element-wise inequality.
‖·‖ Euclidean norm.
𝑐𝛼, 𝑠𝛼 cos(𝛼), sin(𝛼)
∘ Quaternion multiplication.
𝑔 𝑔 ≈ 9.81 m/s2

𝜎(·) Sigmoid function [111].
𝑒𝑧, 1 𝑒𝑧 :=

[︁
0 0 1

]︁𝑇
, 1 :=

[︁
1 1 1

]︁𝑇
FOV, AABB Field of view, axis-aligned bounding box.
SO(𝑛), SE(𝑛) Special orthogonal group, special Euclidean group.

𝑆𝑛 𝑛-sphere.
wrap𝜋−𝜋(·) Wrapping of an angle in [−𝜋, 𝜋)
𝑁(·) Normal distribution.

norminv(·) Inverse of the standard normal cumulative distribution function [108].
diag(·) Diagonal matrix.
𝒮𝑑𝑝,𝑚 Set of clamped uniform splines with dimension 𝑑, degree 𝑝, and 𝑚+ 1 knots.

𝑛 (𝑛p and 𝑛𝜓 ) 𝑛 := 𝑚− 𝑝− 1
𝑛+ 1 is the number of control points of the spline.

p,v, a, j Position, Velocity, Acceleration, and Jerk of the UAV, ∈ R3. All of them are of the body w.r.t. the world frame,
and expressed in the world frame.

𝜉 Relative acceleration, expressed in the world frame: 𝜉 :=
[︁

a𝑥 a𝑦 a𝑧 + 𝑔
]︁𝑇

. We will assume 𝜉 ̸= 0.
𝜓, �̇� Angle (and its derivative) such that 𝑞𝑤𝑏 = 𝑞𝜉 ∘

[︁
𝑐𝜓/2 0 0 𝑠𝜓/2

]︁𝑇
(see Section 4.2.4.1).

x State vector: x :=
[︁
p𝑇 v𝑇 a𝑇 𝜓 �̇�

]︁𝑇
∈ R11.

𝑝𝑎
Point expressed in the frame 𝑎. For the definitions of this table that include the sentence “expressed in the world
frame”, the notation of the frame is omitted.

�̃�, 𝑝 �̃� :=
[︁
𝑝𝑇 1

]︁𝑇
, 𝑝 := 𝑝

‖𝑝‖

𝑇 𝑎
𝑏 =

[︃
𝑅𝑎
𝑏 𝑡𝑎𝑏

0𝑇 1

]︃
Transformation matrix: �̃�𝑎 = 𝑇 𝑎

𝑏 �̃�
𝑏. Analogous definition for the quaternion 𝑞𝑎𝑏 .

rot(𝑞) Rotation matrix associated with the quaternion 𝑞.
𝐽 Set of indexes of all the intervals 𝐽 = {0, 1, ...,𝑚− 2𝑝− 1}.
𝑗 Index of the interval of the trajectory, 𝑗 ∈ 𝐽 .
𝐼 Set of indexes of the tracked obstacles.
𝑖 Index of the obstacle, 𝑖 ∈ 𝐼.
𝑖* Index of the obstacle used in the PA term of the cost function.

(p𝑖)𝑎 (𝑡) Mean of the predicted position of obstacle 𝑖, expressed in frame 𝑎
(p𝑖)𝑤 (𝑡), 𝜎𝑖(𝑡) The predicted trajectory of the obstacle 𝑖, in the world frame, is ∼ 𝑁

(︁
(p𝑖)𝑤 (𝑡), (diag (𝜎𝑖(𝑡)))2

)︁
.

𝑓 Focal length of the camera in meters.
𝜃 Opening angle of the cone that approximates the FOV.[︁

𝑞𝑤 𝑞𝑥 𝑞𝑦 𝑞𝑧
]︁𝑇 Components of a unit quaternion.

1𝑐 1 if 𝑐 is true, 0 otherwise.
inFOV (𝑇 𝑤

𝑐 , (p𝑖)
𝑤) 1(p𝑖)𝑤∈FOV ≈ 1((p𝑖)𝑐)𝑧/‖(p𝑖)𝑐‖≥𝑐𝜃/2 ≈ 𝜎

(︁
𝛾
(︁
−𝑐𝜃/2 + ((p𝑖)𝑐)𝑧 / ‖(p𝑖)

𝑐‖
)︁)︁

. 𝛾 is a positive parameter.
𝐿p, 𝐿𝜓 𝐿p := {0, 1, ..., 𝑛p}, 𝐿𝜓 := {0, 1, ..., 𝑛𝜓}.

𝑙
Index of the control point. 𝑙 ∈ 𝐿p for p(𝑡), 𝑙 ∈ 𝐿p∖{𝑛p} for v(𝑡), 𝑙 ∈ 𝐿p∖{𝑛p − 1, 𝑛p} for a(𝑡), 𝑙 ∈ 𝐿𝜓 for 𝜓 and
𝑙 ∈ 𝐿𝜓∖{𝑛𝜓} for �̇�

𝑞𝑙,𝑣𝑙,𝑎𝑙, 𝜓𝑙,Ψ𝑙 Position, velocity, and acceleration control points, (∈ R3), 𝜓 and �̇� control points (∈ R).

𝒬MV
𝑗

Set of position control points of the interval 𝑗 using the MINVO basis. Analogous definition for the velocity
control points 𝒱MV

𝑗 .
𝛿 ∈ [0, 1], percentile of the standard normal distribution (see next row).

𝒞MV
𝑖𝑗

Set of vertexes of the convex hull of the set obtained by inflating
(︁
𝒬MV
𝑗

)︁
obs i

with norminv(𝛿) · 𝜎𝑖 (𝑡end 𝑗), half of
the sides of the AABB of the obstacle 𝑖 and half of the sides of the AABB of the agent.

𝜋𝑖𝑗 (𝑛𝑖𝑗, 𝑑𝑖𝑗) Plane 𝑛𝑇
𝑖𝑗𝑥 + 𝑑𝑖𝑗 = 0 that separates

(︁
𝒬MV
𝑗

)︁
agent

from 𝒞MV
𝑖𝑗 .

ℎ(·), 𝑠𝑡(·) Hopf fibration, stereographic projection.
Snapshot at 𝑡 = 𝑡1 (current time):

𝑔term ( ) is the terminal goal, and is the current position of the UAV.
is the trajectory the UAV is currently executing.
is the trajectory the UAV is currently optimizing, 𝑡 ∈ [𝑡in, 𝑡f]

𝑑 ( ) is a point in , used as the initial position of
ℳ is a sphere of radius 𝑟 around 𝑑.
𝑔 ( ) is the projection of 𝑔term ( ) onto the sphere ℳ.
𝑑, 𝑔, and 𝑔term are expressed in the world frame.
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in position and velocity space. Finally, extensive hardware experiments in unknown

dynamic environments with all the computation running onboard are presented, with

velocities of up to 5.8 m/s, and with relative velocities (with respect to the obstacles)

of up to 6.3 m/s. The only sensors used are an IMU, a forward-facing depth camera,

and a downward-facing monocular camera.

This chapter uses the notation shown in Table 4.1.

4.2 PANTHER

PANTHER comprises four modules: Tracker and predictor, selector of the obstacle

in the PA term, planes and initial guess generator, and optimization (see Fig. 4-

1a). A summary of how all these modules work together is as follows: First the

incoming point clouds of the onboard depth sensor are clustered and tracked using

the Hungarian algorithm [78] to obtain the trajectory, as a probability distribution,

of each of the obstacles (Section 4.2.1). The obstacle 𝑖* that the UAV is most

likely to collide with is then selected to be included in the PA term of the cost

function (Section 4.2.2). Then, a kinodynamic search-based planner (Octopus Search

Algorithm [160]) is run to find a initial guess of the translational trajectory p(𝑡) that

avoids the probabilistic trajectories of the obstacles found before (Section 4.2.3.1).

This translational guess and the obstacle 𝑖* selected are then used to run a graph

search algorithm to find the 𝜓(𝑡) guess (Section 4.2.3.2). Finally, the p(𝑡) and 𝜓(𝑡)

guesses are used for the nonconvex optimization to obtain the optimized trajectory,

that is sent to the controller of the UAV (Section 4.2.4). In this framework, the

coupling between rotation and acceleration is imposed implicitly using the Hopf

fibration. All these modules are described in detail in the following subsections.

4.2.1 Tracking and Prediction

We create a k-d tree representation of the point clouds coming from the onboard depth

sensor, and perform Euclidean clustering to group the points that are more likely to

belong to the same obstacle (see Fig. 4-1a). For each cluster found, we compute the
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(a)

(b) (c)

(d)

Figure 4-1: (a) Different modules of PANTHER. (b) Predicted trajectories of the
obstacles and convex representation of each segment of the trajectory of the agent
and the obstacles. (c) World, body, and camera frames. (d) Hopf fibration and
its stereographic projection, partly inspired from [101]. Given a specific relative
acceleration 𝜉 (with 𝜉 ̸= −𝑒𝑧), the quaternion 𝑞𝑤𝑏 = 𝑞𝜉 ∘ 𝑞𝜓 is a fiber (specifically a
circle) in 𝑆3 parameterized by 𝜓. On the bottom right, the body frames for different
values of 𝜓𝑖 for each 𝜉𝑖 are shown.
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AABB (axis-aligned bounding box) centered on the centroid of that cluster.1 Then,

to assign each cluster to a specific track, we minimize the total assignment cost using

the Hungarian algorithm [78], where the cost is the pairwise distance between the

centroid of each cluster and the prediction of the tracks at the time the point cloud

was produced. If this distance is above a specific threshold (usually ≈ 1–2 m), we

create a new track for it. If a cluster is not assigned to any track (which can happen

if there are more clusters than tracks), then a new track is created for it. Finally,

given a sliding window history of all the observations associated with a track, we

fit a polynomial for each coordinate {𝑥, 𝑦, 𝑧}. To capture the stochasticity of the

prediction problem, the predicted position at time 𝑡 is then approximated by a 3D

Gaussian distribution (mean from the value of the fitted polynomial and a diagonal

covariance matrix obtained from the prediction intervals [64, Section 5.7]).

4.2.2 Selection of the Obstacle in the PA Term

When there are several predicted trajectories, and to maintain computational

tractability, the agent needs to choose which one of them to include in the PA term

of the cost function. It does so by choosing the most likely obstacle to collide with

in the future, using a simple heuristic of the probability of collision based on Boole’s

inequality [66]:

𝑖* = argmax
𝑖∈𝐼

𝑈−1∑︁
𝑢=0

𝑃 (‖(p𝑖)𝑤 (𝑡𝑢)− 𝜅 (𝑢)‖∞ ≤ 𝑅)

where 𝑈 is the number of samples taken, 𝑡𝑢 := 𝑡in + 𝑢
𝑈

(𝑡𝑓 − 𝑡in) and 𝜅(𝑢) := 𝑑 +
𝑢
𝑈

(𝑔term−𝑑) is a point in a straight line from 𝑑 to 𝑔term. Note that although only one

obstacle is included in the PA objective function, all the predictions of the tracked

obstacles are included in the collision avoidance constraints.

Additionally, and to address the trade-off between gathering information about the

obstacle, and gathering information about the direction of travel, the UAV will include

1Regardless of whether or not the obstacle is convex, this produces an outer convex
approximation of the visible part of the obstacle.
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the obstacle 𝑖* in the PA term if the angle between (𝑔term − 𝑑) and ((𝑝𝑖*)𝑤 (𝑡in)− 𝑑)

is smaller than a predefined angle 𝛼0 (typically ≈ 90∘). Otherwise the UAV will try

to align the FOV of the camera with the direction of travel.

4.2.3 Planes and Initial Guesses

4.2.3.1 Separability Planes and Initial Guess for Position

We use the Octopus Search Algorithm (OSA) [160], which is a search-based algorithm

that operates directly on the control points of the position spline. It ensures

collision-free constraints between the agent and the dynamic obstacles by finding the

planes that separate the inflated MINVO polyhedral representation of each interval

𝑗 of the trajectory of the obstacle 𝑖 (denoted as 𝒞MV
𝑖𝑗 ) and the MINVO polyhedral

representation of that interval 𝑗 of the trajectory of the agent, denoted as
(︁
𝒬MV
𝑗

)︁
agent

(see Fig. 4-1b). The outputs of this algorithm are both the position control points and

the planes 𝜋𝑖𝑗 (given by 𝑛𝑇
𝑖𝑗𝑥 + 𝑑𝑖𝑗 = 0) ∀𝑖, ∀𝑗. The position control points are then

used as initial guess in the optimization, while the planes 𝜋𝑖𝑗 are held fixed in the

optimization. The reader is referred to our previous work [160] for a more in-depth

explanation of the OSA.

4.2.3.2 Initial Guess for 𝜓

To obtain the initial guess for 𝜓, we uniformly sample the position guess spline

obtained through the OSA, and for each of these position samples, we uniformly

sample several values of 𝜓 ∈ [−𝜋, 𝜋). Each one of these p-𝜓 samples will be a node,

and all the nodes associated with the same position sample, but with different 𝜓, will

constitute a layer (see Fig. 4-1a). Then, we create a graph connecting with directed

edges all the nodes of one layer to the nodes of the next layer [183]. Each node has

therefore a time, position, acceleration, and yaw associated with it, and all the nodes

of the same layer have the same time, position, and acceleration. The cost of the edge
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between two nodes 𝑛1 and 𝑛2 of the graph is then given by

𝑐𝜓
(︁
wrap𝜋−𝜋 (𝜓𝑛2 − 𝜓𝑛1)

)︁2
+ 𝑐Ψmax · 1⃒⃒⃒⃒wrap𝜋−𝜋(𝜓𝑛2 −𝜓𝑛1 )

𝑡𝑛2 −𝑡𝑛1

⃒⃒⃒⃒
>Ψmax

+ 𝑐FOV (1− inFOV ((𝑇 𝑛2 (𝑡𝑛2))𝑤𝑐 , (𝑝𝑖* (𝑡𝑛2))𝑤))

Here, 𝑐𝜓, 𝑐Ψmax , and 𝑐FOV are nonnegative weights, while 𝜓𝑛𝑢 , 𝑡𝑛𝑢 , and (𝑇 𝑛𝑢 (𝑡𝑛𝑢))
𝑤
𝑐

are the angle 𝜓, the time, and the transformation matrix associated with node

𝑛𝑢. Note that the edge cost is guaranteed to be nonnegative at all times. The

transformation matrix can be directly obtained from the position, acceleration, and

yaw of the node. The first term in the cost penalizes the distance between two 𝜓

angles, the second term penalizes edges that do not satisfy the limit Ψmax, and the

last one rewards the visibility of the obstacle. The units of the weights above are such

that the corresponding term is dimensionless (see Section 4.3). To choose these weight

values, we first set 𝑐Ψmax to a large value to guarantee the Ψmax constraint. Then, 𝑐𝜓
and 𝑐FOV are selected as a trade-off between smoothness and inclusion of the obstacle

𝑖* in the FOV of the UAV. The root node of the graph corresponds to the state 𝑑 (see

last row of Table 4.1). We solve the search problem using Dijkstra’s algorithm [37],

with early termination when the search reaches a node of the last layer. Letting Λ

denote the indexes of the nodes of the path found, we shift the angles 𝜓𝑛𝜆 ∀𝜆 ∈ Λ

(by adding or subtracting 2𝜋𝑟, 𝑟 ∈ Z) such that the absolute difference between two

consecutive angles is ≤ 𝜋. Using 𝜓𝑛𝜆 to denote these shifted angles, a spline is fitted

to these angles by solving the following constrained least square problem:

min
𝜓(𝑡)∈𝒮1

2,𝑚

∑︁
𝜆∈Λ

⃦⃦⃦
𝜓 (𝑡𝑛𝜆)− 𝜓𝑛𝜆

⃦⃦⃦2

2

s.t. 𝜓(𝑡in) = 𝜓in, �̇�(𝑡in) = �̇�in, �̇�(𝑡f) = 0
(4.1)

Note that, as this problem is a quadratic program with linear equality constraints,

its solution can be easily found by simply solving the linear Karush-Kuhn-Tucker

(KKT) conditions associated with it [72,79].2 The control points of this fitted spline

are then used as the initial guess for 𝜓(𝑡) in the optimization.
2For a detailed explanation of the derivation of the resulting linear system of equations, see, e.g.,

[19, Example 5.1].
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Table 4.2: Some commonly-used definitions for the differential flatness map (a ∈
R3 ∖ [0 0 − 𝑔]𝑇 , 𝜓 ∈ 𝑆1) → R𝑤

𝑏 ∈ SO(3). The colormap represents the great-circle
distance to the closest singularity (yellow is closer), (·)𝑛 denotes the normalization of a
vector, and 𝜉 := ([a𝑥 a𝑦 a𝑧 + 𝑔]𝑇 )𝑛 is the normalized relative acceleration, expressed
in the world frame. See also [8,118,149,150,176] for more possible definitions, which
are usually rotations of the first two definitions of this table.

Definition 1 Definition 2 Definition 3 (Hopf fibration)

Map

𝑏1 = 𝑏2 × 𝑏3

𝑏2 =
(︂

𝑏3 ×
[︁
𝑐𝜓 𝑠𝜓 0

]︁𝑇)︂
𝑛

𝑏3 = 𝜉

𝑅𝑤
𝑏 =

[︁
𝑏1 𝑏2 𝑏3

]︁

𝑏1 =
(︂[︁
−𝑠𝜓 𝑐𝜓 0

]︁𝑇
× 𝑏3

)︂
𝑛

𝑏2 = 𝑏3 × 𝑏1

𝑏3 = 𝜉

𝑅𝑤
𝑏 =

[︁
𝑏1 𝑏2 𝑏3

]︁
𝑞𝑤𝑏 = 1√︁

2(1 + 𝜉𝑧)

⎡⎢⎢⎢⎢⎣
1 + 𝜉𝑧
−𝜉𝑦
𝜉𝑥
0

⎤⎥⎥⎥⎥⎦
⏟  ⏞  

:=𝑞𝜉

∘

⎡⎢⎢⎢⎣
𝑐𝜓/2

0
0
𝑠𝜓/2

⎤⎥⎥⎥⎦
⏟  ⏞  

:=𝑞𝜓

𝑅𝑤
𝑏 = rot (𝑞𝑤𝑏 )

Singularity

𝜉 ‖
[︁
𝑐𝜓 𝑠𝜓 0

]︁𝑇
. When 𝜓 = 0: 𝜉 ‖

[︁
−𝑠𝜓 𝑐𝜓 0

]︁𝑇
. When 𝜓 = 0: 𝜉 =

[︁
0 0 −1

]︁𝑇

Notes

• Singularity=𝑓(a, 𝜓)

• For a given 𝜓, singularity
appears for two 𝜉

• UAV is differentially flat,
with flat outputs {p, 𝜓} [115]

• Singularity=𝑓(a, 𝜓)

• For a given 𝜓, singularity
appears for two 𝜉

• UAV is differentially flat,
with flat outputs {p, 𝜓} [41]

• Singularity=𝑓(a)

• Singularity appears for one 𝜉

• UAV is differentially flat, with flat
outputs {p, 𝜓} [174]

4.2.4 Optimization

4.2.4.1 Coupling Rotation and Acceleration with the Hopf Fibration

In a standard multirotor-UAV, the perpendicularity of the total thrust with respect

to the plane spanned by 𝑏1 and 𝑏2 (see the coordinate frames shown in Fig. 4-1c)

makes the UAV underactuated by imposing the following constraint [174]:

rot (𝑞𝑤𝑏 ) 𝑒𝑧 = 𝜉 (4.2)

where 𝜉 is the normalized relative acceleration expressed in the world frame (see

Table 4.1). In a planning optimization problem where rotation and translation are

jointly optimized, Eq. 4.2 needs to be satisfied at all times. A very common way to

guarantee Eq. 4.2 is via direct imposition of the dynamic equations of the UAV as

explicit constraints. However, these differential equations in the optimization problem

typically lead to computationally-expensive problems, due to the fine sampling needed
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in the discretization methods (shooting or collocation).

The direct imposition of the dynamic equations can be avoided by leveraging

the differential flatness map (a ∈ R3 ∖ [0 0 − 𝑔]𝑇 , 𝜓 ∈ 𝑆1) → R𝑤
𝑏 ∈ SO(3), which

takes the acceleration a and 𝜓 and maps them to the rotation of the body frame.

Due to the hedgehog theorem3 in 𝑆2 [12, 20], this map is guaranteed to have at least

one singularity when tried to be defined with a single continuous function. Several

possible definitions of this differential flatness map are shown in Table 4.2, all of which

satisfy Eq. 4.2 by construction. In the first two definitions, one body axis is obtained

as the cross product of 𝑏3 ≡ 𝜉 with a vector lying in the 𝑥𝑦 world plane, and the

remaining body axis is such that the resulting body frame is right-handed. These

two definitions present a singularity whenever the normalized relative acceleration

𝜉 ∈ 𝑆2 is parallel to a vector defined by 𝜓 which lies in the 𝑥𝑦 world plane. This

means that, for a given 𝜓, the singularity appears for two 𝜉 that have a great-circle

distance of 90∘ with respect to the hovering condition. In aggressive flights, and due to

numerical instabilities and artificial large changes of orientations near the singularity,

this closeness between the hovering condition and the singularity can limit the set of

possible accelerations for the planner.

The third definition of Table 4.2 leverages the Hopf fibration ℎ(·), which can be

defined as a map 𝑆3 → 𝑆2 [101,174] that takes a unit quaternion 𝑞 and produces the

resulting rotation of the vector 𝑒𝑧 :=
[︁
0 0 1

]︁𝑇
(see Fig. 4-1d):

⎡⎢⎣ 0

ℎ (𝑞)

⎤⎥⎦ := 𝑞 ∘

⎡⎢⎣ 0

𝑒𝑧

⎤⎥⎦ ∘ 𝑞−1

Making use now of the inverse image of the Hopf fibration, we have that 𝑞𝑤𝑏 will be

a composition of two rotations:4 𝑞𝜉, that aligns 𝑏3 with 𝜉, followed by 𝑞𝜓, which is a

rotation around 𝜉 by an angle 𝜓. Given a specific 𝜉 (with 𝜉 ̸= −𝑒𝑧), the quaternion

𝑞𝑤𝑏 = 𝑞𝜉 ∘ 𝑞𝜓 will then be a fiber (specifically a circle) in 𝑆3 parametrized by 𝜓 [101].

The main advantage of the Hopf fibration over the previous two definitions is that

3Also known as the hairy ball theorem in the literature.
4Note that 𝑞𝜓, 𝑞𝜉, and 𝑞𝑤𝑏 are guaranteed to be unit quaternions by construction.

119



the singularity only occurs when the UAV is inverted (i.e., when 𝜉 = −𝑒𝑧), which is

the orientation that has the largest possible great-circle distance from the hovering

configuration, and hence much less likely to happen. Although the goal of this work is

not to plan highly aggressive trajectories, and hence any of the singularities shown in

Table 4.2 are unlikely to be reached, we use the Hopf map to automatically ensure the

maximum distance to the singularity. Note also that, with the Hopf fibration, a second

chart could be used to cover the inversion point 𝜉 = −𝑒𝑧, but the use of multiple

charts, while computationally cheap in the controller level [174] or in an intermediate

check step in a decoupled p–𝜓 optimization [176], would significantly increase the

computation time when embedded in the p–𝜓 joint planning optimization. This fact,

together with the improbability of an upside-down configuration as being PA optimal,

led us to the inclusion of only the first chart.

Our work differs from other works that have used the Hopf fibration for UAVs

[174,176,177] as follows: Ref. [174] uses the Hopf fibration only in a controller to track

predefined trajectories. In [176], the Hopf fibration is used in the planner to find the

charts in a step after the p optimization and before the 𝜓 optimization, and [177]

does not optimize 𝜓. We instead propose to embed the Hopf fibration map directly on

the p–𝜓 joint optimization, as a way to directly obtain trajectories in SE(3) that are

dynamically feasible by construction, and with the crucial advantage of not needing

to explicitly impose the dynamic equations as constraints in the optimization.

4.2.4.2 Cost Function

A PA term in the objective function should maximize the presence in the FOV of

the predicted position of the obstacle 𝑖* ∈ 𝐼. However, this alone is not enough

to guarantee good PA trajectories, since a fast moving projected obstacle in the

image plane may cause significant blur, which can lead to stereo matching failure

and consequently tracking failure. To take into account both the presence in the

FOV and the blur, we use inFOV(·)
𝜖1+𝜖2‖�̇�‖2 as the running reward, where �̇� is the projected

velocity in the image plane, and where 𝜖1 and 𝜖2 are nonnegative parameters such

that 𝜖1 + 𝜖2 > 0. Note how this reward is high if the predicted position of the obstacle
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is in the FOV with a small projected velocity, and it is approximately zero if the

predicted position of the obstacle is not in the FOV, regardless of the value of the

projected velocity. The position in the image plane of the projection of the obstacle

can be obtained using the pinhole camera model as 𝑠(𝑡) := 𝑓
[(p̃𝑖* (𝑡))𝑐]𝑧 [(p̃𝑖*(𝑡))𝑐]𝑥:𝑦

(where each component of 𝑠 is expressed in meters, not in pixels), and

(p̃𝑖*(𝑡))𝑐 := 𝑇 𝑐
𝑏𝑇

𝑏
𝑤(𝑡) (p̃𝑖*(𝑡))𝑤

𝑇 𝑏
𝑤(𝑡) :=

⎡⎢⎣ rot
(︁
𝑞𝜉(𝑡) ∘ 𝑞𝜓(𝑡)

)︁
p(𝑡)

0𝑇 1

⎤⎥⎦
−1

As detailed in Table 4.1, the discontinuity of the function inFOV(·) is addressed by

approximating it with a sigmoid function.

In addition to the PA term explained above, we also add two terms in the cost

function to maximize the smoothness in position (by minimizing jerk) and 𝜓 (by

minimizing 𝜓), and a terminal cost that penalizes the distance between p(𝑡𝑓 ) and 𝑔.

4.2.4.3 Collision Avoidance and Dynamic Limits Constraints

For the obstacle avoidance of dynamic obstacles, we first create a polyhedral outer

representation of both the trajectory of the agent and of the obstacle (see Fig. 4-

1b): For the agent, we make use of the MINVO basis [162] (a polynomial basis that

finds the simplex with minimum volume enclosing a polynomial curve) to obtain

the set of control points
(︁
𝒬MV
𝑗

)︁
agent

whose convex hull encloses each segment 𝑗

of the agent. Similarly, for each obstacle 𝑖, we first compute the MINVO control

points of the segment 𝑗 of the predicted mean (p𝑖)𝑤 (𝑡), and then we inflate it with

norminv(𝛿) · 𝜎𝑖 (𝑡end 𝑗), half of the sides the AABB (axis-aligned bounding box) of

the obstacle 𝑖 and half of the sides of the AABB of the agent. Here, 𝛿 ∈ [0, 1] is the

percentile of the standard normal distribution, and hence it encodes the desired level

of conservativeness in the inflation. The resulting polyhedron is denoted as 𝒞MV
𝑖𝑗 .

To ensure safety between the agent and the obstacle 𝑖, we then impose linear

separability constraints (via planes) between
(︁
𝒬MV
𝑗

)︁
agent

and 𝒞MV
𝑖𝑗 . The separating
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planes are found during the initial guess search for the position spline (see

Section 4.2.3.1), and are held fixed in the optimization. The MINVO basis is used

in a similar way to impose low-conservative constraints in the velocity space. In

the acceleration and jerk spaces, the MINVO control points are the same as the B-

Spline control points. These constraints on v, a, j, and �̇� serve as a conservative

approximation of the real actuator constraints of the motors of the UAV, while

allowing us to reduce the complexity of the optimization problem.

4.2.4.4 Optimization Problem

Including the initial state and the final hovering condition, the optimization problem

is:5

min
p(𝑡)∈𝒮3

3,𝑚,𝜓(𝑡)∈𝒮1
2,𝑚

𝛼j

∫︁ 𝑡𝑓

𝑡in
‖j‖2 𝑑𝑡+ 𝛼𝜓

∫︁ 𝑡𝑓

𝑡in

(︁
𝜓
)︁2
𝑑𝑡

− 𝛼FOV

∫︁ 𝑡𝑓

𝑡in

inFOV(𝑇 𝑤
𝑐 , (p𝑖*)𝑤)

𝜖1 + 𝜖2 ‖�̇�‖2 𝑑𝑡+ 𝛼𝑔 ‖p(𝑡𝑓 )− 𝑔‖2

s.t.

x(𝑡in) = xin, v(𝑡f) = 0, a(𝑡f) = 0, �̇�(𝑡f) = 0

𝑛𝑇
𝑖𝑗𝑞 + 𝑑𝑖𝑗 < 0 ∀𝑞 ∈

(︁
𝒬MV
𝑗

)︁
agent

, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽

abs (𝑣) ≤ 𝑣max ∀𝑣 ∈
(︁
𝒱MV
𝑗

)︁
agent

, ∀𝑗 ∈ 𝐽

abs (𝑎𝑙) ≤ 𝑎max ∀𝑙 ∈ 𝐿p∖{𝑛p − 1, 𝑛p}

abs (𝑗𝑙) ≤ 𝑗max ∀𝑙 ∈ 𝐿p∖{𝑛p − 2, 𝑛p − 1, 𝑛p}

abs (Ψ𝑙) ≤ Ψmax ∀𝑙 ∈ 𝐿𝜓∖{𝑛𝜓}

Here, x :=
[︂
p𝑇 v𝑇 a𝑇 𝜓 �̇�

]︂𝑇
, {𝛼j, 𝛼𝜓, 𝛼FOV, 𝛼𝑔} are nonnegative weights, and

the decision variables are the control points of the splines p(𝑡) and 𝜓(𝑡). The degrees

chosen for the splines p(𝑡) and 𝜓(𝑡) are, respectively, 3 and 2, which are a good trade-

off between computation time and dynamic feasibility for a UAV [115]. The units of

the weights are such that the corresponding term is dimensionless (see Section 4.3).

An empirical method to select these weight values is as follows: First set 𝛼𝑔 to a large

5Time dependence of the variables in the cost function has been omitted for simplicity.
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value to ensure that the final location is near 𝑔. Then, 𝛼FOV, together with 𝜖1 and

𝜖2, are tuned to obtain a good presence of the obstacle 𝑖* in the FOV. Finally, 𝛼j and

𝛼𝜓 are progressively increased to improve the smoothness of p(𝑡) and 𝜓(𝑡), without

significantly deteriorating the FOV cost.

To solve this nonconvex optimization problem, we utilize the Interior Point

Optimizer Ipopt [172]6 interfaced through CasADi [9] with MA27 and MA57 [63]

as the linear solvers of Ipopt. All these optimization tools were installed and run

onboard the UAV in the real-world experiments (Section 4.3.2). We approximate

the PA term of the cost function using the composite Simpson’s rule for numerical

integration [112].

4.3 Results and Discussion

4.3.1 Simulation Experiments

All the simulation experiments are run in an AlienWare Aurora r8 desktop running

Ubuntu 20.04 and equipped with an Intel® CoreTM i9-9900K CPU, 3.60GHz×16 and

62.6 GiB. Moreover, and to focus the comparisons on the properties of the trajectories

obtained by the planner, we assume, for all the algorithms benchmarked in simulation,

that the UAV can perfectly track the trajectories obtained by the planner.

4.3.1.1 Single Obstacle

We first test PANTHER in an environment with a box-shaped obstacle of size 0.2×

0.2 × 0.2 m3 that follows a trefoil-knot [110] trajectory. During 60 s, the UAV is

commanded to continuously fly between two different locations whose centroid is the

area where the obstacle is moving. The camera has an image size of 120 × 120 px2,

a limited FOV of 60∘ × 60∘, and runs at a rate of 60 Hz. The weights used for this

simulation are 𝑐Ψmax = 106, 𝑐FOV = 1, 𝑐𝜓 = 0 rad−2, 𝛼j = 10−6 s5/m2, 𝛼𝜓 = 0 s3/rad2,

6We classify an Ipopt solution as successful when Ipopt returns Solve_Succeeded (locally
optimal solution) or Solved_To_Acceptable_Level (solution satisfying the acceptable tolerance
level). For more details, see [1].
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Figure 4-2: (a) Projections of the obstacle onto the image plane in the single-obstacle
simulation experiments. The red square is the image plane, so any projection out of
this region is not in the FOV of the camera. (b) Percentage of the time the obstacle
was not in the FOV but in front of the camera ( ), not in the FOV and behind the
camera ( ), and in the FOV ( ). (c) Velocity of the projection of the centroid of the
obstacle onto the image plane. Higher projected velocities produce larger blur in the
image. (d) Number of frames for each continuous detection. (e) Corridor simulation
with five dynamic obstacles following random trefoil-knot trajectories [110]. The
green pyramid represents the FOV of the camera. (f, g) Results for the corridor
simulations with slow and fast obstacles, respectively. The algorithms considered are
no PA ( ), PA dec ( ), 𝜓 sweep ( ), Wang [173] ( ), and PANTHER ( ). In the left
plot of both subfigures, represents the number of infeasible stops of algorithm [173].
The other algorithms have zero infeasible stops.
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𝛼FOV = 20, 𝛼𝑔 = 70 m−2, 𝜖1 = 0.3, and 𝜖2 = 0.45 s2/m2. To focus this comparison on

the capabilities of the planner, we let the agent perfectly know the trajectory of the

obstacle in these simulations. We compare the following three approaches:

1. No PA: 𝜓 is held constant and only the smoothness in position and terminal

goal costs are optimized. Works that do not plan 𝜓 include, e.g., [26, 43,143].

2. PA with position and 𝜓 decoupled: Translation p is optimized first (as in

the method no PA) and then it is held fixed while 𝜓 is optimized with the PA

term. We will refer to this algorithm as PA dec. This decoupling is done in,

e.g., [119,149,183].

3. PANTHER (ours): Joint optimization of p and 𝜓.

As will be explained in Section 4.2.4.2, two important metrics that characterize

a good PA trajectory are the presence of the obstacle in the FOV and the norm of

the projected velocity, which quantifies the blur. The percentage of time the obstacle

was in the FOV of the camera is shown in Fig. 4-2b. PANTHER is able to keep

the obstacle inside the FOV 7.9 and 1.5 times more than the algorithms no PA and

PA dec, respectively. As PA dec decouples position and 𝜓 in the optimization, the

UAV lacks the ability to modify the spatial path (only 𝜓) to generate a better overall

trajectory.

To qualitatively show the area of the projection, we apply a Gaussian filter to

the histogram of the projection of the centroid of the obstacle onto each 10× 10 px2

cell of the image plane. The results are shown in Fig. 4-2a, where we can see that

PANTHER is able to keep the obstacle inside the FOV limits much better, and more

frequently, than methods no PA and PA dec.

The velocity of the projection of the centroid of the obstacle onto the image plane

is shown in Fig. 4-2c, which highlights that PANTHER is able to obtain a 18%

and 34% decrease in the mean of the norm of the projected velocity with respect to

no PA and PA dec, respectively, achieving, therefore, a much less blurred projection

of the obstacle than those two methods.
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Finally, and as a continuous detection of the dynamic obstacle is crucial to achieve

a good tracking and prediction, we show in Fig. 4-2d the boxplot of the number

of frames of each continuous detection for the different algorithms. A continuous

detection is defined as a set of consecutive frames for which the obstacle stayed in the

FOV of the camera. On average, PANTHER is able to achieve continuous detections

of 155 frames, while the mean number of frames per continuous detection for methods

no PA and PA dec are 39 and 46 frames, respectively.

4.3.1.2 Several Obstacles

We now test PANTHER in a simulation with several obstacles. The environment

consists of a corridor of length of 39 m along the 𝑥 direction with five dynamic

obstacles that move following random trefoil-knot trajectories [110], see Fig. 4-2e.

In all these simulations, the agent only has access to the size, current position, and

velocity of the obstacles that are inside the FOV of the camera. The FOV of the

camera is 70∘ × 70∘, and has a sensing range of 5 m. The dynamic limits are 𝑣max =

2.6 · 1 m/s, 𝑎max = 15.5 · 1 m/s2, 𝑗max = 50.0 · 1 m/s3, and Ψmax = 𝜋 rad/s.

The weights used for PANTHER in these simulations are 𝑐Ψmax = 106, 𝑐FOV = 1,

𝑐𝜓 = 0 rad−2, 𝛼j = 10−7 s5/m2, 𝛼𝜓 = 0 s3/rad2, 𝛼FOV = 40, 𝛼𝑔 = 25 m−2, 𝜖1 = 0.3,

and 𝜖2 = 10−5 s2/m2. The UAV is constrained to remain in 𝑦 ∈ [−4, 4] m and

𝑧 ∈ [−4, 4] m at all times.

For the benchmark, we use the algorithms explained before (no PA, PA dec, and

PANTHER), and the two additional algorithms:

• Algorithm [173], proposed by Wang et al. This approach is not perception

aware, but 𝜓 tries to make the FOV of the camera point to the direction of

travel. We will refer to this algorithm as Wang. Note also that this algorithm

does not have constraints on 𝑗max and that it has a different 𝜓 convention (it

uses definition 1 of Table 4.2).
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• 𝜓 sweep: 𝜓 follows a sinusoidal trajectory that varies in [−90∘, 90∘] as follows:

𝜓(𝑡) = 𝜋

2 sin
(︃

Ψmax

𝜋/2 𝑡

)︃

We test two scenarios with different maximum velocities of the obstacles. In

the slow scenario, the obstacles move with velocities up to 2.12 m/s, while in the

fast scenario, the obstacles move with velocities up to 4.07 m/s. In the results, we

compare the number of collisions, infeasible stops, success rate, flight time, and flight

distance. An infeasible stop happens when the drone passes instantly from a nonstop

condition (v ̸= 0 or a ̸= 0) to a stop condition (v = 0 and a = 0). A run is considered

successful if the UAV is able to reach the end of the corridor while not colliding with

any of the obstacles. To make these simulations closer to real-world applications,

where no prior information about the trajectories of the obstacles may be available,

a simple constant velocity model is used in the predictor. The obstacles themselves

are moving along trefoil-knot trajectories [110].

The results, for 30 different runs per algorithm, are shown in Figs. 4-2f and 4-2g

for the slow and fast environments, respectively. In the slow scenario, PANTHER is

able to succeed 87% of the runs, while the other algorithms have a success rate below

47%. None of the algorithms present infeasible stops except Wang, that has a mean of

0.2 infeasible stops per run (light purple in Fig. 4-2f). In the fast scenario, PANTHER

succeeds 70% of the runs, while all the other algorithms have a success rate below

27%. In terms of flight times and flight distances, most of the algorithms achieve very

similar results in both scenarios, with a total flight time of approximately 20 s, and

an approximate total flight distance of 41 m. The total flight distance for PANTHER

is approximately 3 m more than the rest of the algorithms. This is expected, because

PANTHER has the ability to modify the spatial path to maximize the visibility of

the obstacles. Even with this longer flight distance, the flight time of PANTHER is

very similar (and sometimes even shorter) than the rest of the algorithms.
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Figure 4-3: Computational analysis of different parts of the replanning step of
PANTHER as a function of the number of obstacles. From left to right, and top
to bottom: computation time of the generation of the convex hulls, number of linear
programs (LPs) run by the OSA, computation time of the OSA, computation time
of the nonconvex optimization, and total replanning time.

4.3.1.3 Computational Analysis of the Replanning Step as a Function of

the Number of Obstacles

We now compare the computational cost of different parts of the replanning step of

PANTHER. As the computational cost of each part highly depends on the specific

position of the obstacles relative to the UAV, we perform a Monte Carlo analysis by

randomly deploying obstacles (which follow trefoil-knot trajectories) in the spherical

shell [109] limited by two spheres of radii 2 m and 5 m. The starting location[︁
0 0 1

]︁𝑇
m and 𝑔term =

[︁
6 0 1

]︁𝑇
m are held fixed for every replanning iteration. The

number of obstacles tested are {4, 6, . . . , 18, 20}, and, for each number of obstacles,

we run 10 simulations of 5.0 s each. For these simulations, the UAV includes all the

deployed obstacles in the planning problem (i.e., the set 𝐼 contains the indexes of

all the obstacles deployed), and we let the UAV know the trajectory of the obstacles

perfectly. The weights used are the same as the ones used in Section 4.3.1.2. The

results are shown in Fig. 4-3, where can see that the computation time required for

the convex hull generation, the OSA, the optimization, and the total replanning time

change approximately linearly with the number of obstacles. Similarly, the number of
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linear programs run by the OSA also changes approximately linearly with the number

of obstacles. The average solve time of one of these linear programs is 0.09 ms.

To obtain the 𝜓 initial guess (Section 4.2.3.2), the average runtime of the Dijkstra’s

algorithm on the 𝜓 graph is 0.137 ms, and the average runtime to fit a spline to the

𝜓 samples (Eq. 4.1) is 0.048 ms.

These results above show the computational analysis for the different parts of the

replanning step of PANTHER (convex hull computation, generation of the p(𝑡) and

𝜓(𝑡) initial guesses, and nonconvex optimization). For the computational cost of the

tracker and predictor using real point clouds, see Section 4.3.2. The well-known results

regarding the complexity analysis of the Hungarian algorithm are given in [39,78].

4.3.2 Real-World Experiments

We run an extensive set of hardware experiments, where a UAV needs to go from

a starting point to a goal location while avoiding unknown dynamic obstacles. The

UAV used is equipped with a Qualcomm® SnapDragon Flight, an Intel® NUC i7DNK,

and an Intel® RealSense Depth camera D435i. The tracker, planner, and the camera

run on the Intel® NUC, while the control and state estimation run on the Qualcomm®

SnapDragon Flight. Note that the main onboard computer (Intel® NUC) has similar

computational power to the onboard hardware used in the recent literature (e.g., [26,

143, 173, 183]). For the controller, we run the approach presented in [95, 174] at

100 Hz to generate the desired orientation and angular rates from p(𝑡) and 𝜓(𝑡). The

commanded thrusts for the motors are then found from these attitude commands

using a geometric controller [84], which is run at IMU rate (500 Hz). For state

estimation, we use a visual inertial odometry (VIO) package [2] running at 30 Hz that

leverages an extended Kalman filter to fuse the IMU measurements of the SnapDragon

and the images of its downward-facing camera. To obtain a high-rate state estimate,

we then integrate forward the IMU (which runs at 500 Hz) between consecutive VIO

estimates.

The IMU of the RealSense camera is not used. All the computation of this UAV

is running onboard, and it does not have any prior knowledge of the trajectories
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(a)

(b)

Figure 4-4: (a) Composite images of all the nine experiments. For visualization
purposes, only the second half of Experiment 7 is shown. The table below every
image shows the number of obstacles, flight distance, maximum velocity, maximum
relative velocity (with respect to the obstacles), and flight time of each experiment.
The number of obstacles is one, two, and three for the experiments 1-2, 3, and 4-9
respectively. (b) Relative distances between the agent and each one of the obstacles.
Any relative distance above the dashed line guarantees safety.
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Figure 4-5: Snapshots of the onboard camera in experiments 3 (a), 6 (b), and 9 (c).
(d) Computation times for each part of a replanning step, measured on the onboard
Intel® NUC i7DNK. The tracker, predictor, and the depth camera were also running
on this computer at the same time these times were measured. The notation used
is: CHs (convex hull computation for the polyhedral outer representations), Gp
(generation of the planes and the guess for the position p(𝑡)), G𝜓 (generation of
the guess for 𝜓(𝑡)) and Opt (Optimization time).
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and specific shape/size of the obstacles. The weights used for these experiments are

𝑐Ψmax = 106, 𝑐FOV = 1, 𝑐𝜓 = 0 rad−2, 𝛼j = 0.05 s5/m2, 𝛼𝜓 = 0.1 s3/rad2, 𝛼FOV = 1,

𝛼𝑔 = 2 · 104 m−2, 𝜖1 = 0.1, and 𝜖2 = 1 s2/m2.

To generate the dynamic obstacles, we use three other UAVs with a Qualcomm®

SnapDragon Flight, and equip them with a box-shaped frame of ≈ 0.6×0.6×0.3 m3.

The obstacles are following trefoil-knot trajectories [110].

A total of 9 experiments were performed (see the video). The composite images of

the trajectories flown by the agent and by the obstacles, together with the number of

obstacles, distance flown, maximum velocity, maximum relative velocity with respect

to the obstacles, and total flight time of each one of the experiments are shown in

Fig. 4-4a. Experiments 1 and 2 were done with one obstacle, experiment 3 with two

obstacles, and experiments 4-9 with three obstacles. The maximum velocity achieved

by the agent, 5.77 m/s, happened in experiment 7. In that same experiment, the

maximum relative velocity (6.28 m/s) with respect to the obstacles is also achieved.

The relative distances between the UAV and the obstacles are shown in Fig. 4-4b.

Any relative distance above the dashed horizontal line guarantees safety between the

agent and the corresponding obstacle. For experiments 3, 6, and 9, different snapshots

of the onboard camera are shown in Figs. 4-5a, 4-5b, and 4-5c, respectively. Note

how the planned trajectories try to keep an obstacle in the FOV at all times to aid

in obstacle tracking and prediction.

The computation times are shown in Fig. 4-5d. All these computation times

were measured onboard, with the UAV flying, and with the depth camera node and

the tracker running on the same computer (Intel® NUC i7DNK). The mean total

replanning times are 48.70, 51.66, and 58.59 ms for the experiments with 1, 2, and 3

obstacles respectively. The point cloud of the camera is generated at 90 Hz, and the

tracker (clustering, assignment, and prediction) is able to process each point cloud

in ≈ 8.6 ms.
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Chapter 5

Deep-PANTHER: Learning-Based

Perception-Aware Trajectory

Planner in Dynamic Environments

5.1 Overview

This chapter presents Deep-PANTHER, a learning-based perception-aware trajectory

planner for UAVs in dynamic environments. Given the current state of the UAV, and

the predicted trajectory and size of the obstacle, Deep-PANTHER generates multiple

trajectories to avoid a dynamic obstacle while simultaneously maximizing its presence

in the field of view (FOV) of the onboard camera. To obtain a computationally

tractable real-time solution, imitation learning is leveraged to train a Deep-

PANTHER policy using demonstrations provided by a multimodal optimization-

based expert. Extensive simulations show replanning times that are two orders

of magnitude faster than the optimization-based expert, while achieving a similar

cost. By ensuring that each expert trajectory is assigned to one distinct student

trajectory in the loss function, Deep-PANTHER can also capture the multimodality

of the problem and achieve a mean squared error (MSE) loss with respect to the

expert that is up to 18 times smaller than state-of-the-art (Relaxed) Winner-Takes-All
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approaches. Deep-PANTHER is also shown to generalize well to obstacle trajectories

that differ from the ones used in training.

This chapter uses the notation shown in Table 5.1.

5.2 Deep-PANTHER

Deep-PANTHER is a multimodal trajectory planner able to generate a trajectory

that avoids a dynamic obstacle, while trying to keep it in the FOV. To achieve very

fast computation times, we leverage imitation learning, where Deep-PANTHER is

the student (a neural network) that is trained to imitate the position trajectories

generated by an optimization-based expert (Section 5.2.1). Both the student and the

expert have an observation as input and an action as output (Section 5.2.2). The

multimodality is captured through the design of the loss function (Section 5.2.3),

and the trajectories for the extra degree of freedom of the rotation (𝜓) can then

be obtained from the position trajectories (Section 5.2.4). The final trajectory

chosen for execution is obtained according to the cost and the constraint satisfaction

(Section 5.2.5).

5.2.1 Expert and Student

Chapter 4 (Ref. [163]) presented PANTHER, an optimization-based perception-aware

trajectory planner able to avoid dynamic obstacles while keeping them in the FOV.

However, and as discussed in Section 1.3.4, real-time computation was achieved at

the expense of conservative solutions. Hence, we design PANTHER* (the expert) by

reducing the conservativeness of PANTHER as follows:

• The planes that separate the trajectory of the UAV from the obstacles (Fig. 4-

1b) and the total time of the planned trajectory 𝑇 are included as decision

variables. To ensure that 𝑇 does not go beyond the prediction horizon, the

constraint 0 ≤ 𝑇 ≤ 𝑇pred is imposed for both the expert and the student. Here,

𝑇pred is the total time of the future predicted trajectory of the obstacle, and it
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Table 5.1: Notation used in this chapter.
Symbol Meaning
𝒮𝑑𝑝,𝑚 Set of clamped uniform splines with dimension 𝑑, degree 𝑝, and 𝑚+ 1 knots.
∘ Quaternion multiplication.
⊙ Element-wise product.

𝒰(𝑎, 𝑏) Uniform distribution in [𝑎, 𝑏].
(𝑎)𝑛, �̄� Vector 𝑎 normalized: (𝑎)𝑛 ≡ �̄� := 𝑎

‖𝑎‖ .

𝑝𝑎
Point expressed in the frame 𝑎. For the definitions of this table that include the sentence “expressed in the world frame”, the notation
of the frame is omitted.

𝑇 𝑎
𝑏 =

[︃
𝑅𝑎
𝑏 𝑡𝑎𝑏

0𝑇 1

]︃
Transformation matrix:

[︃
𝑝𝑎

1

]︃
= 𝑇 𝑎

𝑏

[︃
𝑝𝑏

1

]︃
. Analogous definition for the quaternion 𝑞𝑎𝑏 .

𝑒𝑥, 𝑒𝑧, 1 𝑒𝑥 :=
[︁
1 0 0

]︁𝑇
, 𝑒𝑧 :=

[︁
0 0 1

]︁𝑇
, 1 :=

[︁
1 1 . . . 1

]︁𝑇
.

FOV, MSE, LSA Field of view, mean squared error, linear sum assignment.
p Position of the body frame expressed in the world frame. I.e., p := 𝑡𝑤𝑏 .
a Acceleration of the body frame w.r.t. the world frame, and expressed in the world frame.

pobst Mean of the predicted position of obstacle, expressed in the world frame.
𝑔 𝑔 ≈ 9.81 m/s2.
𝜉 Relative acceleration, expressed in the world frame: 𝜉 :=

[︁
a𝑥 a𝑦 a𝑧 + 𝑔

]︁𝑇
. We will assume 𝜉 ̸= 0.[︁

𝑞𝑤 𝑞𝑥 𝑞𝑦 𝑞𝑧
]︁𝑇 Components of a unit quaternion.

𝜓 Angle such that 𝑞𝑤𝑏 = 1√
2(1+𝜉𝑧)

⎡⎢⎢⎢⎢⎣
1 + 𝜉𝑧
−𝜉𝑦
𝜉𝑥
0

⎤⎥⎥⎥⎥⎦ ∘
⎡⎢⎢⎢⎣
𝑐𝜓/2

0
0
𝑠𝜓/2

⎤⎥⎥⎥⎦ ([163,174]).

World
frame (𝑤), body

frame (𝑏) and
camera frame (𝑐)

𝑅𝑤
𝑏 :=

[︁
𝑏1 𝑏2 𝑏3

]︁
.

𝑏3 = (𝜉)𝑛 due to the perpendicularity of the total thrust with respect to the plane spanned by 𝑏1 and 𝑏2.
Frame 𝑓 Coordinate frame such that 𝑡𝑏𝑓 = 0, 𝑅𝑤

𝑓 𝑒𝑧 =
[︁

0 0 1
]︁𝑇

, and that has the same 𝜓 as the frame 𝑏.
v𝑓 , a𝑓 Velocity and Acceleration of the body w.r.t. the world frame, and expressed in the frame 𝑓 . ∈ R3.
𝜃 Opening angle of the cone that approximates the FOV.

𝑛 (𝑛p and 𝑛𝜓 ) 𝑛 := 𝑚− 𝑝− 1.
𝑛+ 1 is the number of control points of the spline.

𝐿p, 𝐿𝜓 𝐿p := {0, 1, ..., 𝑛p}, 𝐿𝜓 := {0, 1, ..., 𝑛𝜓}.
𝑙 Index of the control point. 𝑙 ∈ 𝐿p for p(𝑡), 𝑙 ∈ 𝐿𝜓 for 𝜓(𝑡).

𝑞𝑙, 𝜓𝑙 Position B-Spline control point (∈ R3), 𝜓 B-Spline control point (∈ R).

𝒬p, ̂︀𝒬p

𝒬p := {(𝑞𝑙)
𝑓}𝑙∈𝐿p . In other words, the position B-Spline control points of the planned trajectory for the UAV, expressed in frame 𝑓 .̂︀𝒬p := {(𝑞𝑙)
𝑓}𝑙∈{3,...,𝑛p−2}.

𝒬𝜓 {𝜓𝑙}𝑙∈𝐿𝜓 . In other words, the 𝜓 B-Spline control points (with respect to frame 𝑓) of the planned trajectory for the UAV.

𝒬p,obst
B-Spline control points of a spline fit to the future predicted trajectory of obstacle. The future predicted trajectory of the obstacle can
be obtained using a prediction module as in Section 4.2.1.

𝑠obst Length of each side of the axis-aligned bounding box of the obstacle. ∈ R3.
𝑇pred Prediction time for the future trajectory of the obstacle(s).

𝑛𝑠
Number of trajectories produced by the student. It is a user-chosen parameter, and it is fixed (i.e., does not change between
replanning steps).

𝑛runs, 𝑛sols, 𝑛𝑒
The optimization problem of the expert is run 𝑛runs times (with different initial guesses), producing 𝑛sols ≤ 𝑛runs distinct trajectories.
The trajectories produced by the expert are then the best 𝑛𝑒 = min(𝑛sols, 𝑛𝑠) trajectories obtained.

Snapshot at 𝑡 = 𝑡1 (current time):

𝑔term ( ) is the terminal goal, and is the current position of the UAV.
is the trajectory the UAV is currently executing.
is the trajectory the UAV is currently planning, 𝑡 ∈ [𝑡in, 𝑡f].

𝑑 ( ) is a point in , used as the initial position of .
ℳ is a sphere of radius 𝑟 around 𝑑.
𝑔 ( ) is the projection of 𝑔term ( ) onto the sphere ℳ.
𝑇 is the total time of the planned trajectory. I.e., 𝑇 := 𝑡f − 𝑡in.
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is a user-chosen parameter.

• The future predicted trajectory of the obstacle is a spline whose control points

are 𝒬p,obst.

• The optimization problem is run 𝑛runs times (with different initial guesses

obtained by running the OSA, see Section 3.5.5), and 𝑛sols ≤ 𝑛runs distinct

trajectories are obtained.

The student (Deep-PANTHER) consists of a fully connected feedforward neural

network with two hidden layers, 64 neurons per layer, and with the ReLU activation

function. The student produces a total of 𝑛𝑠 trajectories, where 𝑛𝑠 is a user-chosen

parameter. Note that the trajectories produced by the expert are then the best

𝑛𝑒 = min(𝑛sols, 𝑛𝑠) trajectories obtained in the optimization.

5.2.2 Observation and Action

We use the observation
(︁
v𝑓 , a𝑓 , 𝑔𝑓 ,𝒬p,obst, 𝑠obst

)︁
, where, as defined in Table 5.1, v𝑓 ,

a𝑓 , 𝑔𝑓 , and 𝒬p,obst are, respectively, the velocity of the UAV, the acceleration of the

UAV, the projection of the terminal goal 𝑔term, and the control points of a spline fit to

the future predicted trajectory of the obstacle. All of these quantities are expressed in

the frame 𝑓 . 𝑠obst ∈ R3 contains the length of each side of the axis-aligned bounding

box of the obstacle. In this work, we use a spline in 𝒮3
3,13 for the predicted trajectory

of the obstacle, leading to an observation size of 43.

The action is given by (𝒯𝑘)𝑘∈{0,...,𝛽−1}, where 𝛽 = 𝑛𝑠 for the student, and 𝛽 = 𝑛𝑒

for the expert, and where

𝒯𝑘 :=
(︁(︁ ̂︀𝒬p

)︁
𝑘
, 𝑇𝑘

)︁
.

As defined in Table 5.1, ̂︀𝒬p contains all the B-Spline control points of the planned

trajectory expressed in frame 𝑓 except the first three and the last two, while 𝑇 is the

total time of the planned trajectory. Note that the first three and the last two control

points need not to be included in the action because they are determined directly

from the total time 𝑇 and the initial and final conditions. We model the planned
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trajectories (for both the expert and the student) as splines in 𝒮3
3,12, leading to an

action size of 13𝛽. The relationship between 𝑛𝑠 and 𝑛𝑒 is explained in Section 5.2.1

and Table 5.1.

The key advantage of using ̂︀𝒬p instead of 𝒬p is that every trajectory generated by

the student will satisfy by construction the initial and final conditions for any given

observation. It also helps reduce the action size. Moreover, the advantage of using the

B-Spline position control points, instead of sampled future positions as in [96], is that

every trajectory generated by the student is smooth by construction (𝒞2-continuous

in our case), and it also avoids the need of a post-projection step into polynomial

space.

5.2.3 Loss: Capturing Multimodality

As discussed in Section 1.3.4 and Fig. 1-3, the number of trajectories found by the

expert changes depending on the specific observation. To train a neural network with

a fixed-size output (𝑛𝑠 trajectories) to predict the varying-size output of the expert

(𝑛𝑒 trajectories), we propose to use the approach shown in Fig. 5-1. The observation

is passed through the neural network of the student to generate 𝑛𝑠 trajectories, and

through the expert to produce 𝑛𝑒 trajectories. We then define 𝐷p as a matrix whose

element (𝑖, 𝑗) is the mean squared error (MSE) between the position control points of

the 𝑖-th trajectory of the expert and the position control points of the 𝑗-th trajectory

of the student. A similar definition applies to 𝐷𝑇 , but using the total time of the

trajectory instead of the control points.

Letting 𝐴 denote the assignment matrix (whose (𝑖, 𝑗) element is 1 if the 𝑖-th

trajectory of the expert has been assigned to the 𝑗-th trajectory of the student,

and 0 otherwise), we then find the optimal 𝐴 that minimizes the assignment

cost 1𝑇 (𝐴⊙𝐷p) 1, and that assigns a distinct student trajectory to every expert

trajectory. Here, ⊙ denotes the element-wise product and 1 is a column vector of

ones. This is an instance of the linear sum assignment (LSA) problem, and the

optimal 𝐴 can be obtained leveraging the Jonker-Volgenant algorithm [33] (a variant

of the Hungarian algorithm [78]). As we have that 𝑛𝑒 ≤ 𝑛𝑠, all the rows of 𝐴 sum up
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Figure 5-1: Multimodal training in Deep-PANTHER. The student outputs a fixed
number of trajectories, denoted as 𝑛𝑠. The expert (PANTHER*) produces 𝑛𝑒
trajectories, where 𝑛𝑒 ≤ 𝑛𝑠. Then, the cost matrix in position space (𝐷p) and in time
space (𝐷𝑇 ) are computed. Using 𝐷p, the linear sum assignment (LSA) problem is
solved to find the assignment matrix 𝐴, which is then used in the loss to penalize the
expert-student assigned pairs.

to 1, 𝑛𝑒 columns sum up to 1, and (𝑛𝑠 − 𝑛𝑒) columns sum up to 0. To penalize only

the MSE of the optimally-assigned student-expert pairs, the loss is then computed as

ℒ = 1𝑇 (𝛽p𝐴⊙𝐷p + 𝛽𝑇𝐴⊙𝐷𝑇 ) 1 ,

where 𝛽p and 𝛽𝑇 are user-chosen weights.

Our approach ensures that all the expert trajectories have exactly one distinct

student trajectory assigned to them, see Fig 1-4. Compared to WTAr, RWTAr,

WTAc, and RWTAc, our LSA loss prevents the same student trajectory from being

assigned to several expert trajectories (reducing therefore the equilibrium issues),

guarantees that all the trajectories of the expert are captured in every training step,

and also prevents the same expert trajectory from having several student trajectories

assigned to it (being therefore less prone the mode collapse problems).

5.2.4 Generation of 𝜓 Given the Position Trajectory

Each 𝒯𝑘, together with the initial and final conditions contained in the observation,

defines the position trajectory. Since 𝑏3 := 𝑅𝑤
𝑏 𝑒𝑧 = (𝜉)𝑛 (see Fig. 5-2 and Table 5.1),

this position trajectory determines part of the rotation, but leaves 𝜓 free. We now
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Figure 5-2: Optimal 𝜓 trajectory ( in the right plots) given the position trajectory
defined by

(︁
(𝒬p)𝑘 , 𝑇𝑘

)︁
. A spline is then fit to this 𝜓 trajectory found. The sphere

denotes the position of the obstacle pobst. For visualization purposes, we show here a
static obstacle, but this method is also applicable when the obstacle is dynamic.

derive1 a closed-form expression for 𝜓(𝑡) that maximizes the presence of the obstacle

in the FOV given the position trajectory. Let p := 𝑡𝑤𝑏 be the position of the UAV,

and let pobst denote the position of the obstacle (both expressed in the world frame).

Let us also define 𝑏1 := 𝑅𝑤
𝑏 𝑒𝑥. Using a cone with opening angle 𝜃 to model the

FOV, the obstacle is in the FOV if and only if cos(𝜃/2) ≤ 𝑏𝑇1 (pobst − p)𝑛. We can

therefore maximize the presence of the obstacle in the FOV by solving the following

optimization problem:

min
𝑏1

− 𝑏𝑇1 (pobst − p)𝑛

s.t. 𝑏𝑇1 𝜉 = 0

‖𝑏1‖2 = 1

where the two constraints guarantee that 𝑏1 is a unit vector perpendicular to

𝜉. Computing the Lagrangian and solving the Karush-Kuhn-Tucker (KKT)

conditions [72, 79] yields the optimal solution:2

𝑏1 =
(︃

(pobst − p)− (pobst − p)𝑇 𝜉

‖𝜉‖2 𝜉

)︃
𝑛

(5.1)

1For simplicity, here we focus on the case where 𝑅𝑏
𝑐 =

[︂
0 0 1

−1 0 0
0 −1 0

]︂
and 𝑡𝑏𝑐 = 0. A similar derivation

applies to more general cases. See also [44, Section II-D].
2Note that Eq. 5.1 presents a singularity when (pobst − p) is parallel to 𝜉. In that case, we can

choose any 𝑏1, since all of them are perpendicular to (pobst − p) and therefore achieve the same
(zero) cost in the objective function.
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Figure 5-3: Generation of p(𝑡) and 𝜓(𝑡) from the observation. The observation is
fed into the neural network, which produces (𝒯𝑘)𝑘∈{0,...,𝑛𝑠−1}. Then, for each 𝒯𝑘, the
initial and final conditions are imposed to generate the position trajectory, defined
by all the position control points (𝒬p)𝑘 and the total time 𝑇𝑘. Using the results
from Section 5.2.4, we then obtain (𝒬𝜓)𝑘. The trajectory

(︁
(𝒬p)𝑘, (𝒬𝜓)𝑘 , 𝑇𝑘

)︁
that is

collision-free and that has the smallest augmented cost is then chosen for execution.

Given that pobst, p, and 𝜉 are functions of time, Eq. 5.1 gives the evolution of 𝑏1 that

maximizes the presence of the obstacle in the FOV (see Fig. 5-2). 𝜓(𝑡) can then be

easily obtained from 𝑏1 and 𝑏3, and a spline is fit to it to obtain the control points 𝒬𝜓.

Note that, in PANTHER*, position and rotation are coupled together in the

optimization (as in Section 4.2.4.1). This coupling helps reduce the conservativeness

that arises when they are optimized separately [119, 149, 183]. Deep-PANTHER

(the student) learns to predict the position trajectory resulting from this coupled

optimization problem, and then the closed-form solution is leveraged to obtain 𝜓

from this position trajectory. In other words, Deep-PANTHER benefits from the

coupling (since it is learning one of the outputs of the coupled optimization problem),

while leveraging the closed-form solution for 𝜓.

5.2.5 Testing

In testing time the procedure is as follows (see Fig. 5-3): The observation is fed into

the neural network, which produces (𝒯𝑘)𝑘∈{0,...,𝑛𝑠−1} (i.e., the intermediate position

control points and the total times). Then, for each 𝒯𝑘, the initial and final conditions

are imposed to generate the position trajectory, defined by all the position control

points (𝒬p)𝑘 and the total time 𝑇𝑘. The optimal 𝜓 control points (𝒬𝜓)𝑘 are then

obtained as explained in Section 5.2.4. Then, and using the observation, each triple(︁
(𝒬p)𝑘, (𝒬𝜓)𝑘 , 𝑇𝑘

)︁
is ranked according to the cost and the constraint satisfaction.

The trajectory chosen for execution is then the one that is collision-free and achieves

the smallest augmented cost, which is defined as 𝑐obj +𝜆𝑐dyn lim, where 𝑐obj is the cost
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of the objective function (same one as the one used by PANTHER*), 𝑐dyn lim is a soft

cost that penalizes the velocity, acceleration, and jerk violations, and 𝜆 > 0. If none

of the trajectories generated by the student are collision-free, the UAV will continue

executing the trajectory it had in the previous replanning step (which is collision-free)

and will replan again.

5.3 Results and Discussion

To better compare the different aspects of the proposed framework, Section 5.3.1 first

focuses on a stopped UAV that needs to plan a trajectory from the start location

to the goal (without moving along that planned trajectory) while avoiding a static

obstacle. Then, Section 5.3.2 studies the more general case where a UAV is flying

and constantly replanning in a dynamic environment.

We use 𝑛𝑠 = 6, 𝑛runs = 10, 𝑇pred = 6 s, and 𝛽p = 𝛽𝑇 = 1.3 To train the neural

network we use the Adam optimizer [74] and a learning rate of 10−3. In all these

simulations, and for all the algorithms tested, 𝒬p,obst is obtained by simply fitting a

spline to the ground-truth future positions of the obstacle. In real-world applications,

this future predicted trajectory of the obstacle can be obtained from past observations

as explained in Section 4.2.1.

5.3.1 Static Obstacle

In this section, the task is to plan once from the starting location to the goal (i.e., the

UAV does not move along the planned trajectory and/or replan again). We collect

2K (observation, expert action) pairs,4 and use 75% of these pairs to train the student

3Note that 𝛽p and 𝛽𝑇 are adimensional because 𝐷p and 𝐷𝑇 are computed from normalized
actions in [−1, 1].

4In these collected expert demonstrations, the UAV starts stopped at
[︀

0 0 1
]︀𝑇 , pobst =

𝑓(𝑟obst, 𝜃obst, 1), and 𝑔term = 𝑓(𝑟𝑔term , 𝜃𝑔term , 𝑧𝑔term), where:⎧⎪⎪⎨⎪⎪⎩
𝑓(𝑟, 𝜃, 𝑧) :=

[︀
𝑟 cos (𝜃) 𝑟 sin (𝜃) 𝑧

]︀𝑇

𝑟obst ∼ 𝒰(1.5 m, 4.5 m)
𝜃obst ∼ 𝒰(− 𝜋

2 rad, 𝜋
2 rad)

𝑟𝑔term = 𝑟obst + 𝒰(1.0 m, 6.0 m)
𝜃𝑔term = 𝜃obst + 𝒰(−0.17 rad, 0.17 rad)
𝑧𝑔term ∼ 𝒰(−0.5 m, 2.5 m)

141



Figure 5-4: Testing scenario consisting of a static obstacle located at pobst =[︁
2.5 0 1

]︁𝑇
m and 64 different 𝑔term =

[︁
7 𝑎 1 + 𝑏

]︁𝑇
m ( in the figure), where 𝑎

and 𝑏 are evenly spaced in [−1.7, 1.7] m. The initial location (coordinate frame in the
figure) is

[︁
0 0 1

]︁𝑇
m.

offline (the rest of the pairs are used as the evaluation dataset in the MSE comparisons

of Section 5.3.1.2). Section 5.3.1.1 first compares the cost vs replanning time, and

then Section 5.3.1.2 analyzes how well the multimodality is captured.

5.3.1.1 Cost vs Replanning time

We compare the cost vs replanning time of these three different approaches:

PANTHER (Ref. [163]), PANTHER* (the expert, see Section 5.2.1) and Deep-

PANTHER (the student). The testing environment is shown in Fig. 5-4. For

PANTHER* and Deep-PANTHER (which generate a multimodal output), we use

in the comparisons the best (i.e., with smallest cost) collision-free trajectory found.

The results are shown in Fig. 5-5, which highlights that Deep-PANTHER obtains a

total cost similar to the one obtained by PANTHER*, but with a computation time

that is two orders of magnitude smaller. Compared to PANTHER, Deep-PANTHER

is able to obtain a lower cost, and with an improvement of one order of magnitude in

computation time. For each of the 64 simulations performed, the trajectory obtained

Note that the obstacle is static but randomly located.
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Figure 5-5: Comparison of the cost and replanning time. Deep-PANTHER is able to
obtain a similar cost to the one obtained by PANTHER*, but with a computation
time two order of magnitude smaller. Compared to PANTHER, Deep-PANTHER is
able to get a smaller cost, and one order of magnitude faster. Note the logarithmic
scale on the 𝑥 axis.

Figure 5-6: Comparison between the MSE loss of 𝜋LSA, 𝜋RWTAr-𝜖, and 𝜋RWTAc-𝜖. In
each of the boxplots, represents the mean. The dashed yellow line represents
an MSE ratio of 1. Compared to RWTAr, our approach achieves an average MSE
between 1.09 and 18.02 times smaller. Compared to RWTAc, our approach achieves
an average MSE between 2.35 and 2.68 times smaller. In the plots, 𝜅 is the index of
the ranking order based on the MSE loss with respect to the expert. If 𝑛𝑒 < 𝑛𝑠 = 6,
that demonstration is not taken into account for the boxplots with 𝜅 ≥ 𝑛𝑒.

Figure 5-7: Comparison of the collision-free trajectories produced by LSA (our
approach), RWTAr-𝜖, and RWTAc-𝜖. Each cell in each square represents a different
𝑔term (𝑖𝑦 and 𝑖𝑧 are defined in Fig. 5-4), where means that at least one collision-free
trajectory is obtained, while means that none of the trajectories are collision-free.
The blue square is the projection of the obstacle onto the 𝑦-𝑧 plane.
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by all the algorithms is collision-free.

5.3.1.2 Multimodality

Let 𝜋LSA denote the policy trained using the approach presented in Section 5.2.3.

As explained in Section 1.3.4, another possible approach is to use RWTAr [105,141],

where the assignment matrix 𝐴 has the value (1 − 𝜖) in the minimum elements of

each row of 𝐷p, and 𝜖
𝑛𝑠−1 elsewhere. Similarly, RWTAc [96] uses an assignment

matrix 𝐴 that has the value (1 − 𝜖) in the minimum elements of each column

of 𝐷p, and 𝜖
𝑛𝑒−1 elsewhere.5 A policy trained using these approaches for a given

𝜖 ≥ 0 will be denoted as 𝜋RWTAr-𝜖 and 𝜋RWTAc-𝜖. Note that WTAr ≡ RWTAr and

WTAc ≡ RWTAc when 𝜖 = 0. We first train 11 policies (𝜋LSA, 𝜋RWTAr-𝜖, and 𝜋RWTAc-𝜖

for 𝜖 ∈ {0, 0.05, 0.15, 0.25, 0.35}) using the same training set. For each of the policies,

we then evaluate these metrics:

• MSE with respect to the trajectories of the expert. For each of the

trained policies, we obtain the optimal assignment between the trajectories of

the expert and the student using the cost matrix 𝐷p [33]. The trajectories of the

student are then ranked according to the position MSE loss with respect to their

assigned expert trajectory, and the index of this ranking is denoted as 𝑟. For

instance, the case 𝜅 = 0 corresponds to the trajectory of the student that best

predicts an expert trajectory. The results are shown in Fig. 5-6, where values

above 1 represent cases where LSA (our approach) performs better. Compared

to RWTAr, our approach achieves an average MSE between 1.09 and 18.02

times smaller. Compared to RWTAc, our approach achieves an average MSE

between 2.35 and 2.68 times smaller.

• Number of collision-free trajectories obtained. Using the same testing

scenario as in Section 5.3.1.1 (Fig. 5-4), Fig. 5-7 shows the number of collision-

free trajectories produced by each algorithm. Our approach is able to produce

5Thus if 𝐷p =

[︂
3 1 5 8
4 3 2 7
6 5 6 3

]︂
, then RWTAr uses 𝐴 =

[︂
𝜖/3 1 − 𝜖 𝜖/3 𝜖/3
𝜖/3 𝜖/3 1 − 𝜖 𝜖/3
𝜖/3 𝜖/3 𝜖/3 1 − 𝜖

]︂
, while RWTAc uses 𝐴 =[︂

1 − 𝜖 1 − 𝜖 𝜖/2 𝜖/2
𝜖/2 𝜖/2 1 − 𝜖 𝜖/2
𝜖/2 𝜖/2 𝜖/2 1 − 𝜖

]︂
.

144



Figure 5-8: Snapshots of the trajectories produced by Deep-PANTHER in a dynamic
environment to go from a starting location to a goal , together with the depth
images of the onboard camera. The green pyramid represents the FOV of the camera,
and the colormap represents the velocity (red denotes a higher velocity). Note that
the UAV starts with a nonzero initial velocity, since it is replanning as it flies.

at least one collision-free trajectory for all the 𝑔term tested, while RWTAr-𝜖

(𝜖 ∈ {0.25, 0.35}) and RWTAc-𝜖 (𝜖 ∈ {0, 0.05, 0.15, 0.25, 0.35}) fail to generate

a collision-free trajectory for some of the goals, especially for the ones that are

directly behind the obstacle.

5.3.2 Replanning with Dynamic Obstacles

We train the student in an environment that consists of a dynamic obstacle flying

a trefoil-knot trajectory [110]. The position, phase, and scale of this trefoil-knot

trajectory, together with the terminal goal, are randomized. We use the Dataset

Aggregation algorithm (DAgger) [139] to collect the data and train the student.
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Figure 5-9: Trajectories used to train and test the student. The task for the UAV is
to fly back and forth between the two goals and .

DAgger is an iterative dataset collection and policy training method that helps reduce

covariate shift issues by querying actions of the expert while executing a partially

trained policy. The total number of (observation, expert action) pairs collected is

approximately 23K.

To test this trained policy, we deploy a dynamic obstacle following a trefoil-knot

trajectory with a random phase, and manually select random 𝑔term. This makes the

UAV replan from different initial positions, velocities, and accelerations, different

states of the obstacle, and different goals. Some snapshots of the resulting collision-

free trajectories generated by the student, together with the depth image of the

onboard camera, are shown in Fig. 5-8. As explained in Section 5.2.5, the collision-

free trajectory that has the smallest augmented cost is the one chosen for execution.

5.3.3 Generalization to Other Obstacle Trajectories

To evaluate how well the student in Section 5.3.2 (trained using trefoil-knot obstacle

trajectories) generalizes, we test it with different obstacle trajectories: static, square,

eight and epitrochoid (see Fig. 5-9). During 45 seconds, the UAV must fly back and

forth between two goals separated 10 m, with the trajectory of the obstacle lying

between these goals. The number of collision-free trajectories generated is shown

in Table 5.2. Despite being trained with a different obstacle trajectory, the policy

succeeded in generating at least one collision-free trajectory in all the approximately

740 replanning steps. In all the cases the UAV reached 8 goals during the total

simulation time.
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Table 5.2: Percentage of collision-free trajectories produced by the student for
different obstacle trajectories. The student was trained using only trefoil-knot
obstacle trajectories.

Trefoil Static Square Eight Epitrochoid

(𝑛𝑠)coll. free = 0 0% 0% 0% 0% 0%

(𝑛𝑠)coll. free ∈ {1, 2, 3} 6% 0% 7% 2% 2%
(𝑛𝑠)coll. free ∈ {4, 5, 6} 94% 100% 93% 98% 98%

5.4 Limitations

Our approach also presents some limitations. On the one hand, the trajectories

generated by the student guarantee by construction the smoothness, initial, and final

constraints. However, they are not guaranteed to satisfy the dynamic limits or the

safety constraints for any given observation. Although some approaches have been

proposed to guarantee by construction a linear inequality constraint 𝐴𝑥 ≤ 𝑏 (e.g., the

use of barycentric coordinates [49]), they require the use of the vertex enumeration

algorithm, which can be computationally expensive when 𝐴 and 𝑏 depend on the

observation. An additional challenge is how to do backpropagation through this

vertex enumeration algorithm. Other methods such as the time scaling (used to

satisfy the dynamic limits constraints [89,96]) are not directly applicable in dynamic

environments. Hence, a computationally-efficient method to enforce these constraints

is desirable.

On the other hand, when a spline is fit to the 𝜓 trajectory found by Eq. 5.1, the

constraints on �̇� are not taken into account. For very fast moving obstacles or fast

planned position trajectories, this approach may lead to violations of constraints on

the rate of 𝜓. At the expense of more computation time, another option is to solve a

convex optimization problem that fits a spline taking into account these constraints.

147



148



Chapter 6

Conclusions

6.1 Summary of Contributions

Chapter 2 derived and presented the MINVO basis. The key feature of this basis is

that it finds the smallest 𝑛-simplex that encloses a given 𝑛th-degree polynomial curve

(Problem 1), and also finds the 𝑛th-degree polynomial curve with largest convex hull

enclosed in a given 𝑛-simplex (Problem 2). For 𝑛 = 3, the ratios of the improvement

in the volume achieved by the MINVO basis with respect to the Bernstein and B-

Spline bases are 2.36 and 254.9 respectively. When 𝑛 = 7, these improvement ratios

increase to 902.7 and 2.997·1021 respectively. Numerical global optimality was proven

for 𝑛 = 1, 2, 3, numerical local optimality was proven for 𝑛 = 4, and high-quality

feasible solutions for all 𝑛 ≥ 5 were obtained. Finally, the MINVO basis was also

applied to polynomial curves with different 𝑛, 𝑘, and 𝑚 (achieving improvements

ratios of up to ≈ 550), and to some rational curves.

Chapter 3 presented MADER, a decentralized and asynchronous planner that

handles static obstacles, dynamic obstacles, and other agents. By using the MINVO

basis, MADER obtains outer polyhedral representations of the trajectories that are

much smaller than the volumes achieved using the Bernstein and B-Spline bases. To

ensure nonconservative, collision-free constraints with respect to other obstacles and

agents, MADER includes as decision variables the planes that separate each pair of

outer polyhedral representations. Safety with respect to other agents is guaranteed
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in a decentralized and asynchronous way by including their committed trajectories as

constraints in the optimization and then executing a collision check-recheck scheme.

Extensive simulations in dynamic multiagent environments have highlighted the

improvements of MADER with respect to other state-of-the-art algorithms in terms

of number of stops, computation/execution time, and flight distance.

Chapter 4 presented PANTHER, a perception-aware trajectory planner in

dynamic environments. PANTHER is able to couple together the translation and the

full rotation in the optimization, leading to perception-aware trajectories computed

in real time that maximize the presence of the obstacles in the FOV while minimizing

their projected velocity. Extensive hardware experiments in unknown dynamic

environments, with all the computation running onboard, and with relative velocities

of up to 6.3 m/s have shown its effectiveness.

Finally, Chapter 5 presented Deep-PANTHER, a learning-based perception-aware

trajectory planner in dynamic environments. Deep-PANTHER is able to achieve a

similar cost as the optimization-based expert, while having a computation time two

orders of magnitude faster. The multimodality of the problem is captured by the

design of a loss function that assigns a distinct student trajectory to each expert

trajectory. This leads to MSE losses with respect to the expert up to 18 times smaller

than the (Relaxed) Winner-Takes-All approaches. Deep-PANTHER also performs

well in environments where the obstacle follows a different trajectory than the one

used in training.

6.2 Future Work

The exciting results of Chapter 2 naturally lead to the following questions and

conjectures, that we leave as future work:

• Is the global optimum of Problem 4 the same as the global optimum of

Problem 3 (Section 2.4.4)? I.e., are we losing optimality by imposing the specific

structure on 𝜆𝑖(𝑡)? On a similar note, is it possible to obtain for any 𝑛 a bound

on the distance between the objective value obtained by the model proposed in
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Section 2.5.2, and the global minimum of Problem 3?

• Does there exist a recursive formula to obtain the solution of Problem 3 for a

specific 𝑛 = 𝑞 given the previous solutions for 𝑛 = 1, . . . , 𝑞 − 1? Would this

recursive formula allow to obtain the globally optimal solutions for all 𝑛 ∈ N of

Problem 3?

Moreover, the way polynomials are scaled (to impose 𝐴𝑇1 = 𝑒) in Section 2.5.2

can suffer from numerical instabilities when the degree is very high (𝑛 > 30). This is

expected, since the monomial basis used to compute 𝐴 is known to be numerically

unstable [17]. A more numerically-stable scaling, potentially avoiding the use of the

monomial basis, could therefore be beneficial for higher degrees.

Chapters 3 (MADER) and 4 (PANTHER) also point to some exciting directions

for future work. The first one is the relaxation of some of the assumptions of

Section 3.3, especially the assumption that there is no delay in the communication

between the agents. Moreover, it would also be interesting to include the perception-

aware component (PANTHER) into the multiagent planning framework (MADER).

This would allow the agents equipped with limited FOV sensors to detect other

agents and/or obstacles. Related to this, another potential future work is to study

how a team of UAVs can collaborate to keep track of all the dynamic obstacles in

the environment, sharing the local knowledge of the location of the obstacles while

performing obstacle avoidance.

Related to the previous point, another direction of future work is how to optimally

solve the trade-off between exploration and exploitation: when should the UAV

include a specific (already tracked) obstacle in the PA term of the optimization, in

order to predict its trajectory more accurately to be able to avoid it, and when should

the UAV turn around to explore unknown space? Too much focus on exploitation

may lead to collision with obstacles that were never detected, and too much focus on

exploration may lead to a very poor trajectory prediction, and hence to a collision as

well.

With respect to Chapter 5, future work includes the extension to multiple
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dynamic obstacles, and the inclusion of the camera images directly in the observation.

Moreover, we also plan to work on the limitations explained in Section 5.4 and study

how to take into account the multimodality of the predicted future trajectory of the

obstacle(s).

Finally, another interesting research direction of this thesis is how to incorporate

disturbances in the planning problem, while still guaranteeing that the tracking error

of the UAV remains bounded [94]. The incorporation of such disturbance information

is especially important when flying outdoors under windy conditions, since a large

deviation between the planned trajectory and the actual trajectory can provoke a

collision with the obstacles.
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