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Abstract

With the proliferation of clinical data and algorithms to improve clinical care, re-
searchers are increasingly concerned about the equity and fairness of the resulting
machine learning models. Because the observational data we collect can be noisy,
incomplete, and biased, seemingly straight-forward implementation of existing meth-
ods for clinical intervention or better understanding human knowledge can lead to
inaccurate and inequitable clinical algorithms. To begin to address these challenges,
we need new tools to tackle the bias that can arise when modeling data. In this work,
we present machine learning approaches for auditing, ameliorating, and preventing
bias in the machine learning for healthcare model development process. In particular,
we focus on case studies that can provide actionable insights.

In this thesis, we present several examples of machine learning approaches towards
equitable healthcare and recommend changes based on the results of the correspond-
ing experiments. Questions of equity and bias can be thought of in terms of the
different steps of the model development pipeline. We argue that these model de-
velopment steps can be made more equitable and unbiased when they 1) mitigate
algorithmic bias that may occur from biased data collection or model development,
and 2) address known existing systemic health disparities.

We present four case studies of machine learning approaches towards equitable
healthcare, and demonstrate these approaches on real clinical tasks. First, we decom-
pose the sources of discrimination and provide empirical estimation techniques. We
present results on applying these techniques in the task of intensive care unit mor-
tality prediction and salary prediction. Second, we consider the predictive analytics
of health insurance providers, namely predicting the likelihood of hospitalization and
the likelihood of high-risk pregnancy. We apply the same discrimination decompo-
sition techniques towards practical steps for mitigating algorithmic discrimination.
Third, we study the task of clustering interval-censored time-series data. We develop
a deep generative model, called SubLign, to learn the latent delayed entry alignment
value for each time-series as well as the heterogeneous progression patterns across the



population. We evaluate our model in the context of synthetically generated data.
Following, we study the task of disease subtyping for the improved understanding
of disease progression. We present results on clustering clinical patients including
heart failure and Parkinson’s disease. Finally, we study an example of using machine
learning on an understudied problem that affects underserved patients: early detec-
tion of intimate partner violence. We develop a model that predicts the likelihood of
eventual intimate partner violence self-reporting and radiology injury labeling from
radiology reports. We conclude with a discussion about how machine learning can
continue to address equity and bias in healthcare.

Thesis Supervisor: David Sontag
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Motivation and Related Work

Machine learning has an opportunity to fundamentally change healthcare. As of June
2021, the Food and Drug Administration (FDA) reports that 343 artificial intelligence
(AI) and machine learning (ML)-enabled medical devices are now approved [105],
with more surely to follow. The promise of ML for healthcare cannot be overesti-
mated, with researchers pursuing medical tasks including but not limited to: early
diagnosis [196], risk stratification [23], triage [149], treatment selection [154], clini-
cal trials [301], disease progression [I01], and enabling patient interaction with the
healthcare system. [297| Part of this advancement is predicated on the availability of
data through the expansion of health data including electronic health records (EHRs),
signal data, genomic data, and wearable app data. Computational advances in deep
learning have leveraged these large datasets and accelerated the process, with AT algo-
rithms outperforming humans in scoped tasks including melanoma classification [139],
lung computed tomography [15], and chest radiograph reading. [283]

As these models proliferate into parts of the medical system, there remain techno-
logical challenges in place. For example, electronic health records can be missing large
amounts of data [I122] as patients come in and out of the health system. Treatment
variation can differ across clinicians [I82], hospital systems [270], or patient insurance

types. [65] Complicating the matter is the fact that medical knowledge is not set in
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stone. In fact, 13% of medical practice papers are medical reversals. [248]|

When considering questions of equity and bias, the technical challenges deepen.
The healthcare system as it currently exists has known systemic health inequities in
areas including maternal mortality [73] and access to care. [I86] These disparities can
affect the data that is collected. Even large population health datasets like genome-
wide association studies have over 96% participants of European descent. [222] These
differences in data collection can have big effects, especially when the conditional data
distributions are different. In one example, heart attacks can manifest differently for
men and women [104], which may affect the care patients receive and how early people

enter the healthcare system. [85]

For my thesis, I study techniques to address bias that may occur due to the use
of algorithms in medical contexts. Although scientific fields may define concepts like
bias and equity in a variety of ways, we define bias and equity related to the impacts
on protected groups including race and gender. When we consider the machine learn-
ing development process from problem selection to post-deployment monitoring, it is
possible to target bias at different stages. One possibility is to examine algorithms
near- or post-deployment using a bias audit that assesses the comparative perfor-
mances across known patient subpopulations. Quantifiable algorithmic bias at this
stage would correspond to disparate impact on the different patient subpopulations.
Solutions to address algorithmic bias found through bias audits would directly cor-
respond to resource allocation to ameliorate this bias in deployed settings. Another
possibility is to build considerations for the system health disparities that feed into
the observational health data directly into the algorithm.

The remaining document is split up as follows.

In Chapter 3] I present a method for addressing post-deployment algorithmic bias
auditing, specifically decomposing sources of unfairness in supervised learning using a
bias-variance-noise decomposition. In Chapter |4, I show empirical results using these
techniques to audit predictive algorithms used by a large health insurer. Questions
of equity and bias can also be considered in the context of algorithm development. In

Chapter o], I present a method for correcting for known health disparities in access to
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care to correct confounding bias in disease phenotyping algorithms. This algorithm is
validated on real-world chronic condition data from lupus, heart failure, and Parkin-
son’s patients in Chapter[6] Lastly, in Chapter[7]I detail an example of using machine
learning to tackle patient populations and health conditions that may be previously

overlooked, namely the application of early detection of intimate partner violence.

1.2 Summary of Contributions

1.2.1 Chapter 2 Ethical Machine Learning for Healthcare

Originally published at Annual Reviews of Biomedical Data Science as
[57] The use of machine learning (ML) in healthcare raises numerous ethical con-
cerns, especially as models can amplify existing health inequities. Here, we outline
ethical considerations for equitable ML in the advancement of healthcare. Specif-
ically, we frame ethics of ML in healthcare through the lens of social justice. We
describe ongoing efforts and outline challenges in a proposed pipeline of ethical ML
in health, ranging from problem selection to postdeployment considerations. We close

by summarizing recommendations to address these challenges.

1.2.2 Chapter 3} Mitigating Biased Machine Learning Meth-

ods

Originally published at NeurIPS as [5I] Recent attempts to achieve fairness
in predictive models focus on the balance between fairness and accuracy. In sensitive
applications such as healthcare or criminal justice, this trade-off is often undesirable
as any increase in prediction error could have devastating consequences. In this work,
we argue that the fairness of predictions should be evaluated in context of the data,
and that unfairness induced by inadequate samples sizes or unmeasured predictive
variables should be addressed through data collection, rather than by constraining
the model. We decompose cost-based metrics of discrimination into bias, variance,

and noise, and propose actions aimed at estimating and reducing each term. Finally,
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we perform case-studies on prediction of income, mortality, and review ratings, con-
firming the value of this analysis. We find that data collection is often a means to

reduce discrimination without sacrificing accuracy.

1.2.3 Chapter [4: Auditing Algorithmic Bias in Predictive Al-

gorithms for Health Insurance

Partially published in Health Affairs as [118], partially original work Health
insurance providers use predictive algorithms for many uses, including case manage-
ment prioritization. Because of the large reach of these algorithms, it is essential
to rigorously audit and understand the impact. In partnership with Independence
Blue Cross (IBC), a health insurer based in Philadelphia, we examine two algorithms
that form subcomponents of case management processes: 1) Likelihood of Hospital-
ization (LOH), which predicts future acute and non-elective hospitalization in the
next six months, and 2) Baby Blueprints (BBP), which predicts high-risk pregnancy
for women of childbearing age. We present results examining these algorithms for
algorithmic bias. We open source our code as a package called omop-fairness for

general use on all OMOP-standard data.

1.2.4 Chapter [5 Clustering Interval-Censored Multivariate

Time-Series Data

Originally published at AAAI as [55] Unsupervised learning is often used to
uncover clusters in data. However, different kinds of noise may impede the discov-
ery of useful patterns from real-world time-series data. In this work, we focus on
mitigating the interference of interval censoring in the task of clustering for disease
phenotyping. We develop a deep generative model, called SubLign, that clusters
time-series while correcting for censorship time. We provide conditions under which
clusters and the amount of delayed entry may be identified from data under a noise-
less model. On synthetic data, we demonstrate accurate, stable, and interpretable

results that outperform several benchmarks.
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1.2.5 Chapter [} Chronic Disease Progression Subtyping

Published at AAAI as [55] We study how to find subtypes using longitudinal
data from patients with chronic conditions. When alignment information across time-
series dataset isn’t known, we use SubLign as outlined in Chapter 5] On a dataset
of Parkinson’s disease patients, we study how motor skills data reveals clinically
confirmed differences between Parkinson’s disease patients and control patients, while
correcting for interval censorship. On a dataset of heart failure patients, we recover
known subtypes of diastolic and systolic heart failure and confirm recent clinical
findings of differences of progression for obese patients and women, while correcting

for interval censorship.

1.2.6 Chapter[7} Early Detection of Intimate Partner Violence
Using Radiology Reports

Originally published at PSB2020 as [53] Intimate partner violence (IPV) is an
urgent, prevalent, and under-detected public health issue. We present machine learn-
ing models to assess patients for IPV and injury. We train the predictive algorithms on
radiology reports with 1) IPV labels based on entry to a violence prevention program
and 2) injury labels provided by emergency radiology fellowship-trained physicians.
Our dataset includes 34,642 radiology reports and 1479 patients of IPV victims and
control patients. Our best model predicts IPV a median of 3.08 years before violence
prevention program entry with a sensitivity of 64% and a specificity of 95%. We
conduct error analysis to determine for which patients our model has especially high

or low performance and discuss next steps for a deployed clinical risk model.
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Chapter 2

Ethical Machine Learning for
Healthcare

As machine learning algorithms are increasingly used for clinical care, the ethical con-
cerns proliferate in a variety of clinical applications. Excitement about human-level
performance [283] of machine learning for health is balanced against ethical concerns,
such as the potential for these tools to exacerbate existing health disparities. [34]
For instance, recent work has demonstrated that state-of-the-art clinical prediction
models underperform on women, ethnic and racial minorities, and those with public
insurance. [58] Even more worrisome, healthcare models designed to optimize refer-
rals to long-term case management programs for millions of patients have been found
to exclude Black patients with similar health conditions compared to white patients
from case management programs. [227]

I argue that we can leverage bioethics principles to inform the machine learning
process. In contrast to previous work designed to inform clinical care practices, these
ethical considerations span the entire model development pipeline from problem spec-
ification to post-deployment considerations. I focus primarily on differences between
groups induced by, or related to, the model development pipeline, drawing on both
the bioethics principle of justice and the established social justice centering of pub-
lic health ethics. Unjust differences in quality and outcomes of healthcare between

groups often reflect existing societal disparities for disadvantaged groups. This frame-
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work aligns with other bioethics principles such as beneficence and nonmaleficence;

however, the focus is primarily on groups of patients rather than on individuals.

2.1 Problem Selection

There are many factors that influence the selection of a research problem, from interest
to available funding. However, problem selection can also be a matter of justice if
the research questions that are proposed, and ultimately funded, focus on the health
needs of advantaged groups. Below we provide examples of how disparities in research
teams and funding priorities exacerbate existing socioeconomic, racial, and gender

injustices.

2.1.1 Global Health Injustice

The “10/90” gap refers to the fact that the vast majority of health research dollars
are spent on problems that affect a small fraction of the global population. [296), [244]
Diseases that are most common in lower-income countries receive far less funding
than diseases that are most common in high-income countries [298| (relative to the
number of individuals they affect). As an example, 26 poverty-related diseases account
for 14% of the global disease burden, but receive only 1.3% of global health-related
research and development expenditure. Nearly 60% of the burden of poverty-related
neglected diseases occurs in Western and Eastern sub-Saharan Africa as well as South
Asia. Malaria, tuberculosis, and HIV/AIDS all have shares of global health-related
research and development expenditure that are at least five times smaller than their
share of global disease burden. [298] This difference in rates of funding represents
an injustice because it further exacerbates the disadvantages faced by Global South
populations. While efforts like the “All Of Us” Project [229] and the 23andMe’s
Call for Collaboration [292] seck to collect more inclusive data, these efforts have
come under criticism for not reflecting global health concerns, particularly among

Indigenous groups. [287]
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2.1.2 Racial Injustice

Racial bias affects which health problems are prioritized and funded. For example,
sickle cell disease and cystic fibrosis are both genetic disorders of similar severity,
but sickle cell disease is more common in Black patients, while cystic fibrosis is more
common in white patients. In the United States (US), however, cystic fibrosis receives
3.4 times more funding per affected individual from the US National Institutes of
Health (NIH), the largest funder of US clinical research, and hundreds of times more
private funding. [94] The disparities in funding persist despite the 1972 Sickle Cell
Anemia Control Act, which recognizes that sickle cell has been neglected by the wider
research community. Further, screening for sickle cell disease is viewed by some as
unfair targeting [233], and Black patients with the disease who seek treatment are

often maligned as drug abusers. [257]

2.1.3 Gender Injustice

Women’s health conditions like endometriosis are poorly understood; as a conse-
quence, even basic statistics like the prevalence of endometriosis remain unknown,
with estimates ranging from 1% to 10% of the population. [48, [OT] Similarly, the
menstrual cycle is stigmatized and understudied [48], 243], producing a dearth of un-
derstanding that undermines the health of half the global population. Basic facts
about the menstrual cycle — including which menstrual experiences are normal and
which are predictive of pathology — remain unknown. [48] This lack of focus on the
menstrual cycle propagates into clinical practice and data collection despite evidence
that it affects many aspects of health and disease. [145] [12] Menstrual cycles are also
not often recorded in clinical records and global health data. [48] In fact, the NIH
did not have an RO1 grant, the NIH’s original and historically oldest grant mecha-
nism, relating to the influence of sex and gender on health and disease until 2019. [2]
Notably, recent work has moved to target such understudied problems via ambu-
latory women’s health-tracking mobile apps. These crowd-sourcing efforts stand to

accelerate women'’s health research by collecting data from cohorts that are orders of

45



magnitude larger than those used in previous studies. [4§]

2.1.4 Diversity of the Scientific Workforce

The diversity of the scientific workforce profoundly influences the problems studied,
and contributes to the biases in problem selection. [I68] Research shows that scientists
from underrepresented racial and gender groups tend to prioritize different research
topics. They produce more novel research, but their innovations are taken up at lower
rates. [147] Female scientists tend to study different scientific subfields, even within
the same larger field — for example, within sociology, they have been historically
better-represented on papers about sociology of the family or early childhood [303]
— and express different opinions about ethical dilemmas in computer science. [242]
Proposals from white researchers in the US are more likely to be funded by the NIH
than proposals from Black researchers [I50), [123], which in turns affects what topics
are given preference. For example, a higher fraction of NIH proposals from Black
scientists study community and population-level health. [I50] Overall, this evidence
suggests that diversifying the scientific workforce will lead to problem selection that

more equitably represents the interests and needs of the population as a whole.

2.2 Data Collection

The role of health data is ever-expanding, with new data sources routinely being
integrated into decision-making around health policy and design. This wealth of
high-quality data, coupled with advancements in ML models, has played a signif-
icant role in accelerating the use of computationally informed policy and practice
to strengthen health care and delivery platforms. Unfortunately, data can be bi-
ased in ways that have (or can lead to) disproportionate negative impacts on already
marginalized groups. First, data on group membership can be completely absent. For
instance, countries such as Canada and France do not record race and ethnicity in their
nationalized health databases [3] [I88|, making it impossible to study race-based dis-

parities and hypotheses around associations of social determinants of health. Second,
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data can be imbalanced. Recent work on acute kidney injury achieved state-of-the-art
prediction performance in a large dataset of 703,782 adult patients using 620,000 fea-
tures; however, they note that model performance was lower in female patients since
female patients comprised 6.38% of patients in the training data. [282] Other work has
indicated that this issue can not be simply addressed by “pre-training” a model in a
more balanced data setting prior to fine-tuning on an imbalanced dataset. [212] This
indicates that a model cannot be “initialized” with a balanced baseline representation
which ameliorates issues of imbalance in downstream tasks, and suggests we must
solve this problem at the root, be it with more balanced and comprehensive data,
specialty learning algorithms, or combinations therein. Finally, while some sampling
biases can be recognized and possibly corrected, others may be difficult to correct.
For example, work in medical imaging has demonstrated that models may overlook
unforeseen stratification of conditions, like rare manifestations of diseases, which can
result in harm in clinical settings. [226], 293]

In this section, we discuss common biases in data collection. We consider two
types of processes that result in a loss of data. First, processes that affect what kind
of information is collected, or heterogenous data loss, across varying input types.
For example, clinical trials with aggressive inclusion criteria or social media data
that reflects those with access to devices. Second, we examine processes that affect
whether an individual’s information is collected, or population-specific data losses,
where individuals are impacted by their population type, often across data input
categories. For example, undocumented immigrants may fear deportation if they

participate in health care systems.

2.2.1 Heterogeneous Data Losses

Some data loss is specific to the data type, due to assumptions about noise that may
have been present during the collection process. However, data noise and missingness
can cause unjust inequities that impact populations in different ways. We cover four
main data types: randomized controlled trials (RCTs), electronic health care records

(EHR), administrative health data, and social media data.
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Randomized Controlled Trials Randomized controlled trials are often run
specifically to gather “unbiased” evidence of treatment effects. However, RCTs have
notoriously aggressive exclusion (or inclusion) criteria [256], which create study co-
horts that are not representative of general patient populations. [70] In one study of
RCTs used to define asthma treatment, an estimated 94% of the adult asthmatic pop-
ulation would not have been eligible for the trials. [284] There is a growing method-
ological literature designing methods to generalize RCT treatment effects to other
populations. [272] However, current empirical evidence indicates that such general-
izations can be challenging given available data or may require strong assumptions in

practice.

Electronic Health Records Much recent work in ML also leverages large elec-
tronic health records data. EHR data are a complex reflection of patient health,
health care systems, and providers, where data missingness is a known, and mean-
ingful, problem. [302] As one salient example, a large study of laboratory tests to
model three-year survival found that health care process features had a stronger pre-
dictive value than the patient’s physiological feaures. [7] Further, not all treatments

investigated in RCTs can be easily approximated in EHR. [22]

Biases in EHR data may arise due to differences in patient populations, access to
care, or the availability of EHR systems. [99] As an example, the widely-used MIMIC-
ITIT EHR dataset includes most patients who receive care at the intensive care units in
Beth Israel Deaconess Medical Center (BIDMC), but this sample is obviously limited
by which individuals have access to care at BIDMC, which has a largely white patient
population. [5I] In the United States, uninsured Black and Hispanic or Latin(o/x)
patients, as well as Hispanic or Latin(o/x) Medicaid patients, are less likely to have
primary care providers with EHR systems, as compared to white patients with private
insurance. [I46] Other work has shown that gender discrimination in health care access
has not been systematically studied in India, primarily due to a lack of reliable data.
[166]

Administrative Health Records In addition to RCTs and EHR, health care

billing claims data, clinical registries, and linked health survey data are also common
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data sources in population health and health policy research [134], B05], with known
biases in which populations are followed, and who is able to participate. Translating
such research into practice is a crucial part of maintaining health care quality, and
limited participation of minority populations by sexual orientation and gender identity
[42], race and ethnicity [201], and language [177] can lead to health interventions
and policies that are not inclusive, and can create new injustices for these already
marginalized groups.

Social Media Data Data from social media platforms and search-based research
by nature consists only of individuals with internet access. [86] Even small choices
like limiting samples to those from desktop versus mobile platforms are a problem-
atic distinction in non-North American contexts. [4] Beyond concerns about access to
resources or geographic limitations, data collection and scraping pipelines for most so-
cial media cohorts do not yield a random sample of individuals. Further, the common
practice of limiting analysis to those satisfying a specified threshold of occurrence can
lead to skewed data. As an example, when processing the large volume of Twitter
data (7.6 billion tweets) researchers may first restrict to users who can be mapped to a
US county (1.78 billion), then to those Tweets that contain only English (1.64 billion

tweets), and finally remove users who made less than 30 posts (1.53 billion). [124]

2.2.2 Population-specific Data Losses

As with data types, the modern data deluge does not apply equally to all communi-
ties. Historically underserved groups are often underrepresented, misrepresented, or
entirely missing from health data that inform consequential health policy decisions.
When individuals from disadvantaged communities appear in observational datasets,
they are less likely to be accurately captured due to errors in data collection and sys-
temic discrimination. Larger genomics datasets often target European populations,
producing genetic risk scores which are more accurate in individuals of European an-
cestry than other ancestries. [208] We note four specific examples of populations that
are commonly impacted: low- and middle-income nationals, transgender and gender

non-conforming individuals, undocumented migrants, and pregnant women.
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Low- and Middle-Income Nationals Health data are infrequently collected
due to resource constraints, and even basic disease statistic data such as prevalence
of mortality rates can be challenging to find for low- and middle-income nations. [4]
When data are collected, it is not digitized, and often contains errors. In 2001, the
World Health Organization found that only 9 out of the 46 member states in Sub-
Saharan Africa could produce death statistics for a global assessment of the burden

of disease, with data coverage often less than 60% in these countries. [157]

Transgender and Gender Non-conforming Individuals The health care
needs and experiences of transgender and gender non-conforming individuals are not
well-documented in datasets [156] because documented sex, not gender identity, is
what is usually available. However, documented sex is often discordant with gender
identity for transgender and gender non-conforming individuals. Apart from health
documentation concerns, transgender people are often concerned about their basic
physical safety when reporting their identities. In the US, it was only in 2016, with
the release of the US Transgender Survey that there was a meaningfully sized dataset
— 28,000 respondents — to enable significant analysis and quantification of discrim-

ination and violence that transgender people face. [150]

Undocumented Immigrants Safety concerns are important in data collection
for undocumented migrants, where socio-political environments can lead to individ-
uals feeling unsafe during reporting opportunities. When immigration policies limit
access to public services for immigrants and their families, these restrictions lead to
spillover effects on clinical diagnoses. As one salient example, autism diagnoses for
Hispanic children in California fell following aggressive federal anti-immigrant policies

requiring citizenship verification at hospitals. [107]

Pregnant Women Despite pregnancy being neither rare nor an illness, the US
continues to experience rising maternal mortality and morbidity rates. In the US, the
maternal mortality rate has more than doubled from 9.8 per 100,000 live births in
2000 to 21.5 in 2014. [§] Importantly, disclosure protocols recommend suppression of
information in nationally available datasets when the number of cases or events in a

data “cell” is low, to reduce the likelihood of a breach of confidentiality. For example,
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the US Centers for Disease Control suppresses numbers for counties with fewer than
10 deaths for a given disease. [279] Although these data omissions occur because
of patient privacy, such censoring on the dependent variable introduces particularly
pernicious statistical bias and, as a result, much remains to be understood about what
community, health facility, patient, and provider-level factors drive high mortality

rates.

2.3 Outcome Definition

The next step in the model pipeline is to define the outcome of interest for a health
care task. Even seemingly straightforward tasks like defining whether a patient has
a disease can be skewed by how prevalent diseases are, or how they manifest in
some patient populations. For example, a model predicting if a patient will develop
heart failure will need labeled examples both of patients who have heart failure, and
patients without heart failure. Choosing these patients can rely on parts of the EHR
that may be skewed due to lack of access to care, or abnormalities in clinical care: e.g.,
economic incentives may alter diagnosis code logging [170], clinical protocol affects the
frequency and observation of abnormal tests [7], historical racial mistrust may delay
care and affect patient outcomes [32], and naive data collection can yield inconsistent
labels in chest X-rays. [226] Such biased labels, and the resulting models, may cause
clinical practitioners to allocate resources poorly.

We discuss social justice considerations in two examples of commonly modelled
health care outcomes: clinical diagnosis and health care costs. In each example, it is
essential that model developers choose a reliable proxy and account for noise in the
outcome labels as these choices can have a large impact on performance and equity

of the resulting model.

2.3.1 Clinical Diagnosis

Clinical diagnosis is a fundamental task for clinical prediction models, e.g., models

for computer-aided diagnosis from medical imaging. In clinical settings, researchers
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often select patient disease occurrence as the prediction label for models. However,
there are many options for the choice of a disease occurrence label. For example,
the outcome label for developing cardiovascular disease could be defined through
the occurrence of specific phrases in clinical notes. However, women can manifest
symptoms of acute coronary syndrome differently [46] and receive delayed care as a
result [38], which may then manifest in diagnosis labels derived from the clinical notes
being gender-skewed. Because differences in label noise results in disparities in model
impact, researchers have the responsibility to choose and improve disease labels, so
that these inequalities do not further exacerbate disparities in health.

Additionally, it is important to consider the health care system in which disease la-
bels are logged. For example, health care providers leverage diagnosis codes for billing
purposes, not clinical research. As a result, diagnosis codes can create ambiguities
because of overlap and hierarchy in codes. Moreover, facilities have incentives to
under-report [I70] and over-report [255] 117] outcomes, yielding differences in model
representations.

Recent advances in improving disease labels target statistical corrections based on
estimates of the label noise. For instance, a positive label may be reliable, but the
omission of a positive label could either indicate a negative label (i.e., no disease) or
merely a missed positive label. Methods to address the positive-unlabeled setting use
estimated noise rates [22I] or hand-curated labels that are strongly correlated with
positive labels, known also as “silver-standard” labels, from clinicians. [133] Clinical
analysis of sources of error in disease labels can also guide improvements [225] and

identify affected groups. [220]

2.3.2 Health Care Costs

Developers of clinical models may choose to predict health care costs, meaning the
ML model seeks to predict which patients will cost the health care provider more in
the future. Some model developers may use health care costs as a proxy for future
health needs to guide accurate targeting of interventions [227|, with the underlying

assumption that addressing patients with future health need will limit future costs.

52



Others may explicitly want to understand patients who will have high health care cost
to reduce the total cost of health care. [276] However, because socioeconomic factors
affect both access to health care and access to financial resources, these models may
yield predictions that exacerbate inequities.

For model developers seeking to optimize for health need, health care costs can
deviate from health need on an individual level because of patient socioeconomic
factors. For instance, in a model used to allocate care management program slots
to high-risk patients, the choice of future health care costs as a predictive outcome
led to racial disparities in patient allocation to the program. [227] Health care costs
can differ from health need on an institutional level due to underinsurance and un-
dertreatment within the patient population. [66] After defining health disparities as
all differences except those due to clinical need and preferences, researchers have
found racial disparities in mental health care. Specifically, white patients had higher
rates of initiation of treatment for mental health compared to Black and Hispanic or
Latin(o/x) patients. Because the analysis controls for health need, the disparities are
solely a result of differences in health care access and systemic discrimination. [67]

Addressing issues that arise from the use of health care costs depends on the
setting of the ML model. In cases where health need is of highest importance, a
natural solution is to choose another outcome definition besides health care costs,
e.g., the number of chronic diseases as a measure of health need. If a model developer
is most concerned with cost, it is possible to correct for health disparities in predicting
health care costs by building fairness considerations directly into the predictive model
objective function. [319] Building these types of algorithmic procedures is further

discussed in Section 2.4]

2.4 Algorithm Development

Algorithm development considers the construction of the underlying computation
for the ML model and presents a major vulnerability and opportunity for ethical

ML in health care. Just as data are not neutral, algorithms are not neutral. A
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disproportionate amount of power lies with research teams who, after determining
the research questions, make decisions about critical components of an algorithm
such as the loss function. [I30] 168] In the case of loss functions, common choices
like the L, absolute error loss and Ly squared error loss do not target the same
conditional functions of the outcome, instead minimizing the error in the median
and mean respectively. Using a surrogate loss (e.g., hinge loss for the error rate)
can provide computational efficiency, but it may not reflect the ethical criteria that
we truly care about. Recent work has shown that models trained with a surrogate
loss may exhibit “approximation errors” that disproportionately affect undersampled
groups in the training data. [200] Similarly, one might choose to optimize the worst-
case error across groups as opposed to the average overall error. Such choices may
seem purely technical, but reflect value statements about what should be optimized,
potentially leading to differences in performance among marginalized groups. [262]
In this section, we review several crucial factors in model development that po-
tentially impact ethical deployment capacity: understanding (and accounting for)

confounding, feature selection, tuning parameters, and defining “fairness” itself.

2.4.1 Understanding Confounding

Developing models that use sensitive attributes without a clear causal understanding
of their relationship to outcomes of interest can significantly affect model performance
and interpretation. This is relevant to algorithmic problems focused on prediction,
not just causal inference. Independent variables are defined as variables whose vari-
ation does not depend on that of another whereas dependent variables are variables
whose value may depend on that of another. “Confounding” features — i.e., those
features that influence both the independent variables and the dependent variable —
require careful attention. The vast majority of models learn patterns based on ob-
served correlations between training data, even when such correlations do not occur
in test data. For instance, recent work has demonstrated that classification models
designed to detect hair color learn gender-biased decision boundaries when trained

on confounded data, i.e., if women are primarily blond in training data, the model
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incorrectly associates gender with the hair label in test samples. [160]

As ML methods are increasingly used for clinical decision support, it is critical
to account for confounding features. In one canonical example, asthmatic patients
presenting with pneumonia are given aggressive interventions that ultimately improve
their chances of survival over non-asthmatic patients. [47] When the hospital protocol
assigned additional treatment to patients with asthma, those patients had improved
outcomes. Thus the treatment policy was a confounding factor that altered the data
in a seemingly straight-forward prediction task such that patients with asthma were
erroneously predicted by models to have lower risk of dying from pneumonia.

Simply controlling for confounding features by including them as features in clas-
sification or regression models may be insufficient to learn reliable models because
features can have a mediating or moderating effect (post-treatment effect on out-
comes of interest) and have to be incorporated differently into model design. [I41]

Modern ML and causal discovery techniques can identify sources of confounding
at scale [125], although validation of such methods can be challenging because of
the lack of interventional data. ML methods have also been proposed to estimate
causal effects from observational data. [294, [60] In practice, when potential hidden
confounding is suspected, either mediating features or proxies can be leveraged 214,
T47] or sensitivity analysis methods can be used to determine potential sources of
errors in effect estimates. [I08] Data-augmentation and sampling methods may also
be used to mitigate effects of model confounding. For example, augmenting X-ray
images with rotated and translated variants can help train a model that is not sensitive

to orientation of an image. [194]

2.4.2 Feature Selection

With large-scale digitization of EHR and other sources, sensitive attributes like race
and ethnicity may be increasingly available (although prone to misclassification and
missingness). However, blindly incorporating factors like race and gender in a pre-
dictive model may exacerbate inequities for a wide range of diagnostics and treat-

ments. [300] These resulting inequities can lead to unintended and permanent em-
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bedding of biases in algorithms used for clinical care. For example, vaginal birth
after cesarean (VBAC) scores are used to predict success of “trial of labor" of preg-
nant women with a prior cesarean section; however, these scores explicitly include
a race component as an input which reduces the chance of VBAC success for Black
and Hispanic women. Although researchers found that previous observational stud-
ies showed correlation between racial identity and success of trial of labor [129], the
underlying cause of this association is not well-understood. Such naive inclusion of
race information could exacerbate disparities in maternal mortality. This ambiguity
calls race-based ‘correction’ in scores like VBAC into question. [300]

Automation in feature selection does not eliminate the need for contextual un-
derstanding. For example, stepwise regression is commonly used and taught as a
technique for feature selection despite known limitations. [278] While specific meth-
ods have varying initialization (e.g., start with an empty set of features or full set
of features) and processing steps (e.g., deletion vs. addition of features), most rely
on p-values, R?, or other global fit metrics to select features. Weaknesses of stepwise
regressions include the misleading nature of p-values and the final set depending on
if and when features were considered. [I37] In ML, penalized regressions like lasso
regression are popular for automated feature selection, but the lasso trades potential
increases in estimation bias for reductions in variance by shrinking some feature co-
efficients to zero. Features selected by lasso may be co-linear with other features not
selected. [155] Over-interpretation of the selected features in any automated proce-
dures should therefore be avoided in practice given these pitfalls. Researchers should
also consider the humans-in-the-loop framework where incorporation of automated

procedures is blended with investigator knowledge. [179]

2.4.3 Tuning Parameters

There are many tuning parameters that may be set a priori or selected via cross-
validation. [I55] These range from the learning rate in a neural network to the min-
imum size of the terminal leaves in a random forest. In the latter example, default

settings in R for classification will allow trees to grow until there is just one observa-
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tion in a terminal leaf. This can lead to overfitting the model to the training data and
a loss of generalizability to the target population. Lack of generalizability is a central
concern for ethical ML given the previously discussed issues in data collection and
study inclusion. When data lack diversity and are not representative of the target
population where the model would be deployed, overfitting algorithms to this data
has the potential to disproportionately harm marginalized groups. [263] Using cross-
validation to select tuning parameters does not automatically solve these problems as

cross-validation still operates with respect to an a priori chosen optimization target.

2.4.4 Performance Metrics

There are many commonly used performance metrics for model evaluation such as area
under the receiver-operating characteristic (AUC), precision-recall curves (AUPRC),
and calibration. [I03] However, the appropriate metrics to optimize depend on in-
tended use case and relative value of true positives, false positives, true negatives,
and false negatives. Not only can AUC be misleading when considering other global
fit metrics (e.g., high AUC masking weak true positive rate), but it does not describe
the impact of the model across selected groups. Further, even “objective” metrics
and scores can be deeply flawed, and lead to over or under-treatment of minorities if
blindly applied. [299] Note that robust reporting of results should include an explicit
statement of other non-optimized metrics, including the original intended use case,

the training cohort and case, or level of model uncertainty.

2.4.5 Group Fairness Definition

The specific definition of fairness for a given application often impacts the choice of
a loss function, and therefore the underlying algorithm. Individual fairness imposes
classifier performance requirements that operate over pairs of individuals, e.g., similar
individuals should be treated similarly. [88] Group fairness operates over “protected
groups” (based on some sensitive attribute) by requiring that a classifier performance

metric be balanced across those groups. [89] [64] For instance, a model may be par-
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tially assessed by calculating the true positive rate separately among rural and urban
populations to ensure risk score similarity. Regressions subject to group fairness con-
straints or penalties optimizing toward joint global and group fit considerations have

also been developed. [40, BT5] B19]

Recent work has focused on identifying and mitigating violations of fairness defi-
nitions in health care settings. While most of these algorithms have emerged outside
the field of health care, researchers have designed penalized and constrained regres-
sions to improve the performance of health insurance plan payment. This payment
system impacts tens of millions of lives in the United States and is known to under-
compensate insurers for individuals with certain health conditions, including mental
health and substance use disorders, in part because billing codes do not accurately
capture diagnoses. [218] Undercompensation creates incentives for insurers to exclude
individuals with these health conditions from enrollment, limiting their access to care.
Regressions subject to group fairness constraints or penalties were successful in re-
moving nearly all undercompensation for a single group with negligible impacts on
global fit. [319] Subsequent work incorporating multiple groups into the loss func-
tion also saw improvements in undercompensation for the majority of groups not

included. [213]

2.5 Post-Deployment Consideration

Often the goal of model training is to ultimately deploy it in a clinical, epidemiological,
or policy service. However, deployed models can have lasting ethical impact beyond
the model performance measured in development. For example, in the inclusion of
race in the clinical risk scores described earlier that may lead to chronic over- or under-
treatment. [300] Here we outline considerations for robust deployment by highlighting
the need for careful performance reporting, auditing generalizability, documentation,

and regulation.
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2.5.1 Quantifying Impact

Unlike in other settings with high-stakes decisions, e.g., aviation, clinical staff per-
formance is not audited by an external body. [140] Instead, clinicians are often a
self-governing body, relying on clinicians themselves to determine when a colleague is
underperforming or in breach of ethical practice principles, e.g., through such tools
as surgical morbidity and mortality conferences. [220] Clinical staff can also strug-
gle to keep abreast of what current best practice recommendations are, as these can
change dramatically over time; one study found that more than 400 previously routine
practices were later contradicted in leading clinical journals. [142]

Hence, it is important to measure and address the downstream impact of models
though audits for bias and examination of clinical impact. [58] Regular “auditing”
post-deployment, i.e., detailed inspection of model performance on various groups
and outcomes, may reveal the impact of models on different populations [227] and
identify areas of potential concern. Some recent work has targeted causal models in
dynamic systems in order to reduce the severity of bias. [72] Others have targeted
bias reduction through model construction with explicit guarantees about balanced
performance [293], or specifying groups which must have equal performance. [224] Ad-
ditionally, there is the possibility that models may help to de-bias current clinical care

by reducing known biases against minorities [285] and disadvantaged majorities. [236]

2.5.2 Model Generalizability

As has been raised in previous sections, a crucial concern with model deployment is
generalization. Any shifts in data distributions can significantly impact model per-
formance when the settings for development and for deployment differ. For example,
chest X-ray diagnosis models can have high performance on test data drawn from the
same hospital but degrade rapidly on data from another hospital. [316] Other work
in gender bias on chest X-ray data has demonstrated both that small proportions
of female chest x-rays degrades diagnostic performance accuracy in female patients

[185], and that this is not simply addressed in all cases by adding in more female
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X-rays. [268] Even within a single hospital, models trained on data from an initial
EHR system data deteriorated significantly when tested on data from a new EHR
system. [223] Finally, data artifacts that induce strong priors in what patterns ML
models are sensitive to have the potential to perpetrate harms when used without
awareness. [28] For example, patients with dark skin can have morphological variation
and disease manifestations that are not easily detected under the defaults that are
set by predominantly white-skinned patients. [I81]

Several algorithms have recently been proposed to account for distribution shift
in data. [273] However, these algorithms have significant limitations as they typically
require assumptions about the nature or amount of distributional shift an algorithm
can accommodate. Some, like [273], may require a clear indication of which distri-
butions in a health care pipeline are expected to change, and develop models for
prediction accordingly. Many of these assumptions may be verifiable. If not, period-
ically monitoring for data shifts [77], and potentially retraining models when perfor-
mance deteriorates due to such shifts is an imperative deployment consideration with

significant ethical implications.

2.5.3 Model and Data Documentation

Clear documentation enables insight into the model development and data collection.
Good model documentation should include clinically specific features of model devel-
opment that can be assessed and recorded beforehand, such as logistics within the
clinical setting, potential unintended consequences, and trade-offs between bias and
performance. [264] In addition to raising ethical concerns in the pipeline, the process of
co-designing “checklists" with clinical practitioners formalizes ad-hoc procedures and
empowers individual advocates. [204] Standardized reporting of model performance—
such as the one-page summary “model cards” for model reporting [217]—can empower
clinical practitioners to understand model limitations and future model developers to
identify areas of improvement. Similarly, better documentation of the data support-
ing initial model training can help expose sources of discrimination in the collected

data. Modelers could use “datasheets” for datasets to detail the conditions of data
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collection. [115]

2.5.4 Regulation

In the United States, the Food and Drug Administration (FDA) has responsibility
for the regulation of health care ML models. As there does not exist comprehensive
guidance for health care model research and subsequent deployment, the opportunity
is ripe to create a comprehensive framework to audit and regulate models. Currently,
the FDA’s proposed ML-specific modifications to the software as a medical device
(SaMD) regulations draw a distinction between models that are trained and then
frozen prior to clinical deployment and models that continue to learn on observed
outcomes. Although models in the latter class can leverage larger, updated datasets,
they also face additional risk due to model drift and may need additional audits. [106]
Such frameworks should explicitly account for health disparities across the stages of
ML development in health, and ensure health equity audits as part of postmarket
evaluation. [98] We also note that there are many potential legal implications, e.g.,
in malpractice and liability suits, that will require new solutions. [274]

Researchers have proposed additional frameworks to guide clinical model develop-
ment, which could inspire future regulation. ML model regulation could draw from
existing regulatory frameworks: a randomized controlled trial for MLL models would
assess patient benefit compared to a control cohort of standard clinical practice [19§],
and a drug development pipeline for ML models would define a protocol for adverse
events and model recalls. [68] The clinical interventions accompanying the clinical
ML model should be analyzed to contextualize the use of the model in the clinical

setting. [232]
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Chapter 3

Mitigating Biased Machine Learning
Methods

3.1 Introduction

As machine learning algorithms increasingly affect decision making in society, many
have raised concerns about the fairness and biases of these algorithms, especially in
applications to healthcare or criminal justice, where human lives are at stake. [13], 21]
It is often hoped that the use of automatic decision support systems trained on obser-
vational data will remove human bias and improve accuracy. However, factors such
as data quality and model choice may encode unintentional discrimination, resulting
in systematic disparate impact.

We study fairness in prediction of outcomes such as recidivism, annual income,
or patient mortality. Fairness is evaluated with respect to protected groups of indi-
viduals defined by attributes such as gender or ethnicity. [258] Following previous
work, we measure discrimination in terms of differences in prediction cost across pro-
tected groups. [41], 88| 06] Correcting for issues of data provenance and historical
bias in labels is outside of the scope of this work. Much research has been devoted
to constraining models to satisfy cost-based fairness in prediction, as we expand on
below. The impact of data collection on discrimination has received comparatively

little attention.
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Fairness in prediction has been encouraged by adjusting models through regu-
larization [24] [164], constraints [163), [314], and representation learning. [317] These
attempts can be broadly categorized as model-based approaches to fairness. Others
have applied data preprocessing to reduce discrimination [132, 96} 43|, with empirical
examples. [I09] Inevitably, however, restricting the model class or perturbing training

data to improve fairness may harm predictive accuracy. [69]

A tradeoff of predictive accuracy for fairness is sometimes difficult to motivate
when predictions influence high-stakes decisions. In particular, post-hoc correction
methods based on randomizing predictions [136, 245] are unjustifiable for ethical
reasons in clinical tasks such as severity scoring. Moreover, as pointed out by [308],
post-hoc correction may lead to suboptimal predictive accuracy compared to other

equally fair classifiers.

Disparate predictive accuracy can often be explained by insufficient or skewed
sample sizes or inherent unpredictability of the outcome given the available set of
variables. With this in mind, we propose that fairness of predictive models should
be analyzed in terms of model bias, model variance, and outcome noise before they
are constrained to satisfy fairness criteria. This exposes and separates the adverse
impact of inadequate data collection and the choice of the model on fairness. The
cost of fairness need not always be one of predictive accuracy, but one of investment
in data collection and model development. In high-stakes applications, the benefits

often outweigh the costs.

In this work, we use the term “discrimination” to refer to specific kinds of differ-
ences in the predictive power of models when applied to different protected groups.
In some domains, such differences may not be considered discriminatory, and it is
critical that decisions made based on this information are sensitive to this fact. For
example, in prior work, researchers showed that causal inference may help uncover
which sources of differences in predictive accuracy introduce unfairness. [I83] In this
work, we assume that observed differences are considered discriminatory and discuss

various means of explaining and reducing them.
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3.1.1 Contributions

Our work was done in collaboration with Fredrik D. Johannson and David Sontag.
We give a procedure for analyzing discrimination in predictive models with respect
to cost-based definitions of group fairness, emphasizing the impact of data collection.
First, we propose the use of bias-variance-noise decompositions for separating sources
of discrimination. Second, we suggest procedures for estimating the value of collecting
additional training samples. Finally, we propose the use of clustering for identifying
subpopulations that are discriminated against to guide additional variable collection.
We use these tools to analyze the fairness of common learning algorithms in three
tasks: predicting income based on census data, predicting mortality of patients in
critical care, and predicting book review ratings from text. We find that the accuracy
in predictions of the mortality of cancer patients vary by as much as 20% between
protected groups. In addition, our experiments confirm that discrimination level is

sensitive to the quality of the training data.

3.1.2 Related Work

We study fairness in prediction of an outcome Y € ). Predictions are based on a set
of covariates X € X C R¥ and a protected attribute A € A. In mortality prediction,
X represents the medical history of a patient in critical care, A the self-reported
ethnicity, and Y mortality. A model is considered fair if its errors are distributed
similarly across protected groups, as measured by a cost function v. Predictions
learned from a training set d are denoted Yy := h(X, A) for some h : X x A — Y
from a class H. The protected attribute is assumed to be binary, A = {0, 1}, but our
results generalize to the non-binary case. A dataset d = {(x;, a;,y;)}", consists of n
samples distributed according to p(X, A,Y"). When clear from context, we drop the
subscript from Yy

A popular cost-based definition of fairness is the equalized odds criterion, which
states that a binary classifier Y is fair if its false negative rates (FNR) and false

positive rates (FPR) are equal across groups. [136] We define FPR and FNR with
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respect to protected group a € A by

FPR,(Y) =Ex[Y | Y =0,A = d,
FNR,(Y) =Ex[1-Y |Y =1,A=ad] .

A A

Exact equality, FPRy(Y) = FPR,(Y), is often hard to verify or enforce in practice.
Instead, we study the degree to which such constraints are violated. More generally,
we use differences in cost functions 7, between protected groups a € A to define the

level of discrimination T,
Fv(?) = ’Yo(i/) - 71(Y> : (3.1)

In this work we study cost functions v, € {FPR,, FNR,, ZO,} in binary classification
tasks, with ZO,(Y) := Ex[1[Y # Y] | A = d] the zero-one loss. In regression
problems, we use the group-specific mean-squared error MSE, := EX[(Y -Y)?|A=
a]. According to (3.1)), predictions Y satisfy equalized odds on d if TFPR(Y)) = 0 and
TFNR(y) = 0.

Calibration and impossibility A score-based classifier is calibrated if the predic-
tion score assigned to a unit equals the fraction of positive outcomes for all units
assigned similar scores. It is impossible for a classifier to be calibrated in every pro-
tected group and satisfy multiple cost-based fairness criteria at once, unless accuracy
is perfect or base rates of outcomes are equal across groups. [62] A relaxed version
of this result [I76] applies to the discrimination level I'. Inevitably, both constraint-
based methods and our approach are faced with a choice between which fairness

criteria to satisfy, and at what cost.
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3.2 Decomposing Discrimination

3.2.1 Sources of Discrimination

There are many potential sources of discrimination in predictive models. In particular,
the choice of hypothesis class H and learning objective has received a lot of atten-
tion. [41), B17, T00] However, data collection—the chosen set of predictive variables
X, the sampling distribution p(X, A,Y’), and the training set size n—is an equally
integral part of deploying fair machine learning systems in practice, and it should be
guided to promote fairness. Below, we tease apart sources of discrimination through
bias-variance-noise decompositions of cost-based fairness criteria. In general, we may
think of noise in the outcome as the effect of a set of unobserved variables U, poten-
tially interacting with X. Even the optimal achievable error for predictions based on
X may be reduced further by observing parts of U. In Figure [3-1] we illustrate three
common learning scenarios and study their fairness properties through bias, variance,
and noise.

To account for randomness in the sampling of training sets, we redefine discrimi-
nation level in terms of the expected cost 7,(Y) := Ep[y.(Yp)] over draws of a

random training set D.

Definition 1. The expected discrimination level f(f/) of a predictive model Y learned

from a random training set D, is

T(V) = [Ep [10(V0) = 1(V)] | = [Fa¥) = 7(¥)

T(Y) is not observed in practice when only a single training set d is available. If
n is small, it is recommended to estimate I' through re-sampling methods such as

bootstrapping. [90]

3.2.2 Bias-Variance-Noise Decompositions of Discrimination

An algorithm that learns models Yp from datasets D is given, and the covariates X

and size of the training data n are fixed. We assume that Yp is a deterministic function
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Figure 3-1: Scenarios illustrating how properties of the training set and model choice
affect perceived discrimination in a binary classification task, under the assumption
that outcomes and predictions are unaware, i.e. p(Y | X, A) = p(Y | X) and
p(Y | X,A) = p(Y | X). Through bias-variance-noise decompositions (see Sec-
tion , we can identify which of these dominate in their effect on fairness. We
propose procedures for addressing each component in Section [3.3.1, and use them
in experiments (see Section to mitigate discrimination in income prediction and
prediction of ICU mortality.

Up(z,a) given the training set D, e.g., a thresholded scoring function. Following
[83], we base our analysis on decompositions of loss functions L evaluated at points
(x,a). For decompositions of costs 7, € {ZO,FPR,FNR} we let this be the zero-
one loss, L(y,y") = 1[y # ¢'], and for 7, = MSE, the squared loss, L(y,y) =
(y —y')?. We define the main prediction j(z,a) = argmin,, Ep[L(Yp,vy) | X =
x, A = a| as the average prediction over draws of training sets for the squared loss,
and the majority vote for the zero-one loss. The (Bayes) optimal prediction y*(x,a) =

argmin, Ey[L(Y,y) | X = x,A = a] achieves the smallest expected error with

respect to the random outcome Y.

Definition 2 (Bias, variance and noise). Following [83], we define bias B, variance
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V' and noise N at a point (z,a) below.

B(Y,z,a) = L(y*(z,a),y(x,a)) N(z,a) =Ey[L(y*(z,a),Y) | X =z, A =d]

V(Y7 €, CL) = ED[L(?](:E7 a)a gD(:E7 a))] :
(3.2)

Here, y*, y and g, are all deterministic functions of (z, a), while Y is a random variable.

In words, the bias B is the loss incurred by the main prediction relative to the
optimal prediction. The variance V' is the average loss incurred by the predictions
learned from different datasets relative to the main prediction. The noise N is the
remaining loss independent of the learning algorithm, often known as the Bayes error.

We use these definitions to decompose I' under various definitions of ~,.

Theorem 1. With 7, the group-specific zero-one loss or class-conditional versions
(e.g., FNR, FPR), or the mean squared error, 5, and the discrimination level T' admit

decompositions of the form

where we leave out Y in the decomposition of T for brevity. With B,V defined as in
(3.2)), we have

A

B.(Y)=Ex[B(j,X,a) | A=a] and V) =Exple.(X)V(Yp,X,a)| A=d] .

For the zero-one loss, c,(x,a) = 1 if g(x,a) = y*(z,a), otherwise c,(r,a) = —1.

For the squared loss c,(x,a) = 1. The noise term for population losses is
N, :=Ex[c.(X,a)L(y*(X,a),Y) | A=a]
and for class-conditional losses w.r.t class y € {0,1},

Na(y) :==Ex[ca(X,a)L(y*(X,a),y) | A=a,Y =y .
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For the zero-one loss, and class-conditional variants, ¢,(x,a) = 2Ep[1[jp(z,a) =

y*(z,a)]] — 1 and for the squared loss, c,(x,a) = 1.

Proof sketch. Conditioning and exchanging order of expectation, the cases of mean
squared error and zero-one losses follow. [83] Class-conditional losses follow from a
case-by-case analysis of possible errors. See the supplementary material in Chap-

ter for a full proof. O

Theorem [I] points to distinct sources of perceived discrimination. Significant dif-
ferences in bias By — B; indicate that the chosen model class is not flexible enough
to fit both protected groups well (see Figure . This is typical of (misspecified)
linear models which approximate non-linear functions well only in small regions of the
input space. Regularization or post-hoc correction of models effectively increase the
bias of one of the groups, and should be considered only if there is reason to believe
that the original bias is already minimal.

Differences in variance, Vj — V1, could be caused by differences in sample sizes
ng, ny or group-conditional feature variance Var(X | A), combined with a high capac-
ity model. Targeted collection of training samples may help resolve this issue. Our
decomposition does not apply to post-hoc randomization methods [136] but we may
treat these in the same way as we do random training sets and interpret them as
increasing the variance V, of one group to improve fairness.

When noise is significantly different between protected groups, discrimination is
partially unrelated to model choice and training set size and may only be reduced by

measuring additional variables.

Proposition 1. If Ny # N1, no model can be 0-discriminatory in expectation without
access to additional information or increasing bias or variance w.r.t. to the Bayes

optimal classifier.

Proof. By definition, I =0 = (N, — Ng) = (Bo — B1) + (Vo — V). As the Bayes

optimal classifier has neither bias nor variance, the result follows immediately. O
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In line with Proposition (1, most methods for ensuring algorithmic fairness reduce
discrimination by trading off a difference in noise for one in bias or variance. However,
this trade-off is only motivated if the considered predictive model is close to Bayes
optimal and no additional predictive variables may be measured. Moreover, if noise
is homoskedastic in regression settings, post-hoc randomization is ill-advised, as the
difference in Bayes error Ny — N is zero, and discrimination is caused only by model

bias or variance (see the supplementary material for a proof).

Estimating bias, variance and noise Group-specific variance V, may be es-
timated through sample splitting or bootstrapping. [90] In contrast, the noise N,
and bias B, are difficult to estimate when X is high-dimensional or continuous. In
fact, no convergence results of noise estimates may be obtained without further as-
sumptions on the data distribution. [I4] Under some such assumptions, noise may be
approximately estimated using distance-based methods [79], nearest-neighbor meth-
ods [110] [71], or classifier ensembles. [289] When comparing the discrimination level
of two different models, noise terms cancel, as they are independent of the model. As

a result, differences in bias may be estimated even when the noise is not known (see

the supplementary material).

Testing for significant discrimination When sample sizes are small, perceived
discrimination may not be statistically significant. In the supplementary material,

we give statistical tests both for the discrimination level I'(Y) and the difference in

discrimination level between two models Y, 1
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3.3 Methods of Mitigating Algorithmic Discrimina-

tion

3.3.1 Reducing Discrimination through Data Collection

In light of the decomposition of Theorem [I], we explore avenues for reducing group
differences in bias, variance, and noise without sacrificing predictive accuracy. In
practice, predictive accuracy is often artificially limited when data is expensive or
impractical to collect. With an investment in training samples or measurement of

predictive variables, both accuracy and fairness may be improved.

3.3.2 Increasing Training Set Size

Standard regularization used to avoid overfitting is not guaranteed to improve or
preserve fairness. An alternative route is to collect more training samples and reduce
the impact of the bias-variance trade-off. When supplementary data is collected from
the same distribution as the existing set, covariate shift may be avoided. [249] This
is often achievable; labeled data may be expensive, such as when paying experts to
label observations, but given the means to acquire additional labels, they would be
drawn from the original distribution. To estimate the value of increasing sample size,
we predict the discrimination level T(Yp) as D increases in size.

The curve measuring generalization performance of predictive models as a function
of training set size n is called a Type II learning curve. |[82] We call ﬁa(f/,n) =
IE[%(YDR)], as a function of n, the learning curve with respect to protected group
a. We define the discrimination learning curve T(Y,n) == [7,(Y,n) — 7, (Y, n)| (see
Figure for an example). Empirically, learning curves behave asymptotically as
inwverse power-law curves for diverse algorithms such as deep neural networks, support
vector machines, and nearest-neighbor classifiers, even when model capacity is allowed

to grow with n. [143], 219] This observation is also supported by theoretical results. [11]

Assumption 1 (Learning curves). The population prediction loss 7(?, n), and group-

specific losses 70(}7, n),il(f/,n), for a fized learning algorithm Y, behave asymptoti-
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cally as inverse power-law curves with parameters (c, 5,6). That is, AM, My, My such

that forn > M,n, > M,,

~

FY,n)=anP+6 and Vae A:7,Y,n.) = an;% +6, (3.3)

Intercepts, 9, d, in represent the asymptotic bias E(?DOO) and the Bayes error
N, with the former vanishing for consistent estimators. Accurately estimating ¢ from
finite samples is often challenging as the first term tends to dominate the learning
curve for practical sample sizes.

In experiments, we find that the inverse power-laws model fit group conditional
(7.) and class-conditional (FPR, FNR) errors well, and use these to extrapolate

T(Y,n) based on estimates from subsampled data.

3.3.3 Measuring Additional Variables

When discrimination I is dominated by a difference in noise, No—N, fairness may not
be improved through model selection alone without sacrificing accuracy (see Proposi-
tion . Such a scenario is likely when available covariates are not equally predictive
of the outcome in both groups. We propose identification of clusters of individuals
in which discrimination is high as a means to guide further variable collection—if the
variance in outcomes within a cluster is not explained by the available feature set,
additional variables may be used to further distinguish its members.

Let a random variable C represent a (possibly stochastic) clustering such that C' =
¢ indicates membership in cluster ¢. Then let p,(c) denote the expected prediction
cost for units in cluster ¢ with protected attribute a. As an example, for the zero-one

loss we let

Pi0c) =Ex[IY #Y] | A=0a,C =,

and define p analogously for false positives or false negatives. Clusters ¢ for which
|po(c) — p1(c)| is large identify groups of individuals for which discrimination is worse

than average, and can guide targeted collection of additional variables or samples. In
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our experiments on income prediction, we consider particularly simple clusterings of
data defined by subjects with measurements above or below the average value of a
single feature z(c) with ¢ € {1,...,k}. In mortality prediction, we cluster patients
using topic modeling. As measuring additional variables is expensive, the utility of a

candidate set should be estimated before collecting a large sample. [178]

3.4 Experiments

We analyze the fairness properties of standard machine learning algorithms in three
tasks: prediction of income based on national census data, prediction of patient mor-
tality based on clinical notes, and prediction of book review ratings based on review
text. A synthetic experiment validating group-specific learning curves is left to Ap-
pendix [3.4.3] We disentangle sources of discrimination by assessing the level of dis-
crimination for the full data, estimating the value of increasing training set size by
fitting Type II learning curves, and using clustering to identify subgroups where dis-
crimination is high. In addition, we estimate the Bayes error through non-parametric
techniques.

In our experiments, we omit the sensitive attribute A from our classifiers to allow
for closer comparison to previous works, e.g., [I36, B14]. In preliminary results, we
found that fitting separate classifiers for each group increased the error rates of both
groups due to the resulting smaller sample size, as classifiers could not learn from
other groups. As our model objective is to maximize accuracy over all data points,

our analysis uses a single classifier trained on the entire population.

3.4.1 Income Prediction

Predictions of a person’s salary may be used to help determine an individual’s market
worth, but systematic underestimation of the salary of protected groups could harm
their competitiveness on the job market. The Adult dataset in the UCI Machine
Learning Repository [I91] contains 32,561 observations of yearly income (represented

as a binary outcome: over or under $50,000) and twelve categorical or continuous
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Figure 3-2: Noise level estimation in income prediction with the Adult dataset. Group
differences in false positive rates and false negative rates for a random forest classifier
decrease with increasing training set size.

Method Eiow E,,  group

Mahalanobis [205] - 0.29  men
- 0.13 women

Bhattacharyya [27] ~ 0.001 0.040 men
0.001 0.027 women

Nearest Neighbors [7T1] 0.10 0.19  men
0.04 0.07 women

Table 3.1: Discrimination level estimation in income prediction with the Adult
dataset. Estimation of Bayes error lower and upper bounds (Ej,, and E,,) for zero-
one loss of men and women. Intervals for men and women are non-overlapping for

Nearest Neighbors.

features including education, age, and marital status. Categorical attributes are
dichotomized, resulting in a total of 105 features.

We follow [245] and strive to ensure fairness across genders, which is excluded
as a feature from the predictive models. Using an 80/20 train-test split, we learn
a random forest predictor, which is well-calibrated for both groups ([35] scores of
0.13 and 0.06 for men and women). We find the difference in zero-one loss T%°(Y)
has a 95%-confidence intervall] .085 + .069 with decision thresholds at 0.5. At this
threshold, the false negative rates are 0.388 4+ 0.026 and 0.448 + 0.064 for men and
women respectively, and the false positive rates 0.111 4+ 0.011 and 0.033 + 0.008.

We focus on random forest classifiers, although we found similar results for logistic

!Details for computing statistically significant discrimination can be found in the supplementary
material.
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regression and decision trees.

We examine the effect of varying training set size n on discrimination. We fit
inverse power-law curves to estimates of FPR(Y,n) and FNR(Y', n) using repeated
sample splitting where at least 20% of the full data is held out for evaluating general-
ization error at every value of n. We tune hyperparameters for each training set size
for decision tree classifiers and logistic regression but tuned over the entire dataset
for random forest. We include full training details in the supplementary material.
Metrics are averaged over 50 trials. See Figure [3-2] for the results for random forests.
Both FPR and FNR decrease with additional training samples. The discrimination
level TFNR for false negatives decreases by a striking 40% when increasing the training
set size from 1000 to 10,000. This suggests that trading off accuracy for fairness at
small sample sizes may be ill-advised. Based on fitted power-law curves, we estimate
that for unlimited training data drawn from the same distribution, we would have
TFNR(Y) 2~ 0.04 and TFPR(Y') ~ 0.08.

In Figure , we compare estimated upper and lower bounds on noise (FEj,, and
E,,) for men and women using the Mahalanobis and Bhattacharyya distances [79],
and a k-nearest neighbor method [7I] with & = 5 and 5-fold cross validation. Men
have consistently higher noise estimates than women, which is consistent with the
differences in zero-one loss found using all models. For nearest neighbors estimates,
intervals for men and women are non-overlapping, which suggests that noise may

contribute substantially to discrimination.

To guide attempts at reducing discrimination further, we identify clusters of in-
dividuals for whom false negative predictions are made at different rates between
protected groups, with the method described in Section [3.3.3] We find that for indi-
viduals in executive or managerial occupations (12% of the sample), false negatives
are more than twice as frequent for women (0.412) as for men (0.157). For individuals
in all other occupations, the difference is significantly smaller, 0.543 for women and
0.461 for men, despite the fact that the disparity in outcome base rates in this cluster
is large (0.26 for men versus 0.09 for women). A possible reason is that in manage-

rial occupations the available variable set explains a larger portion of the variance
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Figure 3-3: Mortality prediction from clinical notes using logistic regression. Best
viewed in color.

in salary for men than for women. If so, further sub-categorization of managerial

occupations could help reduce discrimination in prediction.

3.4.2 Intensive Care Unit Mortality Prediction

Unstructured medical data such as clinical notes can reveal insights for questions like
mortality prediction; however, disparities in predictive accuracy may result in dis-
crimination of protected groups. Using the MIMIC-III dataset of all clinical notes
from 25,879 adult patients from Beth Israel Deaconess Medical Center [I58|, we pre-
dict hospital mortality of patients in critical care. Fairness is studied with respect
to five self-reported ethnic groups of the following proportions: Asian (2.2%), Black
(8.8%), Hispanic (3.4%), White (70.8%), and Other (14.8%). Notes were collected in
the first 48 hours of an intensive care unit (ICU) stay; discharge notes were excluded.
We only included patients that stayed in the ICU for more than 48 hours. We use
the tf-idf statistics of the 10,000 most frequent words as features. Training a model
on 50% of the data, selecting hyper-parameters on 25%, and testing on 25%, wefind
that logistic regression with L1-regularization achieves an AUC of 0.81. The logistic

regression is well-calibrated with Brier scores ranging from 0.06-0.11 across the five
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groups; we note better calibration is correlated with lower prediction error.

We report cost and discrimination level in terms of generalized zero-one loss. [245]
Using an ANOVA test [102] with p < 0.001, we reject the null hypothesis that loss
is the same among all five groups. To map the 95% confidence intervals, we perform
pairwise comparisons of means using Tukey’s range test [288] across 5-fold cross-
validation. As seen in Figure [3-3a] patients in the Other and Hispanic groups have
the highest and lowest generalized zero-one loss, respectively, with relatively few
overlapping intervals. Notably, the largest ethnic group (White) does not have the
best accuracy, whereas smaller ethnic groups tend towards extremes. While racial
groups differ in hospital mortality base rates (Table 1 in the Supplementary material),
Hispanic (10.3%) and Black (10.9%) patients have very different error rates despite
similar base rates.

To better understand the discrimination induced by our model, we explore the
effect of changing training set size. To this end, we repeatedly subsample and split
the data, holding out at least 20% of the full data for testing. In Figure [3-3b, weshow
loss averaged over 50 trials of training a logistic regression on increasingly larger
training sets; estimated inverse power-law curves show good fits. We see that some
pairwise differences in loss decrease with additional training data.

Next, we identify clusters for which the difference in prediction errors between
protected groups is large. We learn a topic model with & = 50 topics generated using
Latent Dirichlet Allocation [30] as implemented by the MALLET toolkit [211] with
1000 iterations. Topics are concatenated into an n x k matrix () where ¢;. designates
the proportion of topic ¢ € [k] in note ¢ € [n]. Following prior work on enrichment
of topics in clinical notes [200, [119], we estimate the probability of patient mortality
Y given a topic ¢ as p(Y|C' = ¢) := (O, vitic)/ (D1, ¢ic) where y; is the hospital
mortality of patient i. We compare relative error rates given protected group and topic
using binary predicted mortality g;, actual mortality y;, and group a; for patient ¢

with

N "1y i1 (a; = a')q;e
PV AY | A=d,C = o) = 2z M 7 9)1(a = )a
> i1 Lai = d')gic
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which follows using substitution and conditioning on A. These error rates were com-
puted using a logistic regression with L1 regularization using an 80/20 train-test split
over 50 trials.

While many topics have consistent error rates across groups, some topics (e.g.,
cardiac patients or cancer patients as shown in Figure have large differences
in error rates across groups. We include more detailed topic descriptions in the
supplementary material. Once we have identified a subpopulation with particularly
high error, for example cancer patients, we can consider collecting more features or
collecting more data from the same data distribution. We find that error rates differ
between 0.12 and 0.30 across protected groups of cancer patients, and between 0.05

and 0.20 for cardiac patients.

3.4.3 Book Review Ratings

o
=
Z 8 ® Sex=Male
g 1% 5
2 & 0.61 A Sex=Female
— '_O
2 &
Z &
—1 =
E 6 x 10 =3
E g
& 4 10-1 ®  Sex=Male &
2 A Sex=Female =
) 1 °
= 3x 10 ‘ ; ‘ ‘ ‘ ‘
- 102 10 025 050  0.75 1.00
Training set size, n (log scale) Training size ratio, np/n

(a) As training set size increases for (b) Holding number of reviews for male
random forest, MSE decreases but main- authors nj,s steady and varying number
tains difference between groups. Inter- of reviews for female authors ng, we can
cepts from fitted power-laws show no dif- achieve higher MSE for one group than
ference in noise. with the full dataset.

Figure 3-4: Goodreads dataset for book rating prediction. Adding training data
decreases overall mean squared error (MSE) for both groups while adding training
data to only one group has a much bigger impact on reducing I'. Increasing the
number of features reduces MSE but does not reduce T.

Sentiment and rating prediction from text reveal quantitative insights from un-

structured data; however deficiencies in algorithmic prediction may incorrectly repre-
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sent populations. We study prediction of book review ratings from review texts. [126]
Using a dataset of 13,244 reviews collected from Goodreads [126] with inferred author
sex scraped from Wikipedia, we seek to predict the review rating based on the review
text. We use as features the Tf-Idf statistics of the 5000 most frequent words. Our
protected attribute is gender of the author of the book, and the target attribute is the
rating (1-5) of the review. The data is heavily imbalanced, with 18% reviews about

female authors versus 82% reviews about male authors.

We observe statistically significant levels of discrimination with respect to mean
squared error (MSE) with linear regression, decision trees and random forests. Using
a random forest and training on 80% of the dataset and testing on 20%, we find
that our TMSE(Y) has 95%-confidence interval 0.136 + 0.048 with MSE,; = 0.224 for
reviews for male authors and MSEr = 0.358 for reviews for female authors using a
difference in means statistical test. Results were found after hyperparameter turning
for each training set size and taking an average over 50 trials. We observe similar

patterns with linear regression and decision trees.

To estimate the impact of additional training data, we evaluate the effect of vary-
ing training set size n on predictive performance and discrimination. Through re-
peated sample spitting, we train a random forest on increasing training set sizes,
reserving at least 20% of the dataset for testing. In Figure [3-4a] additional training
data lowers MSEr and MSE,,, fitting an inverse power-law. Based on the intercept
terms of the extrapolated power-laws (65, = 0.0011 for reviews with male authors and
§r = 0.0013 for reviews with female authors), we may expect that I' can be explained
more by differences in bias and variance than by noise since our estimated difference
in noise |dF — dp| = 0.

In order to further measure the effect of collecting more samples, we analyze a
one-sized increase in training data. Because of the initial skew of author genders in
the dataset, we vary the number of reviews for female authors, creating a shift in
populations in the training data. We fix the training set size of reviews for male
authors at ny; = 1939, which represents the size of the full data for female authors

Np, reserving 20% of the dataset as test data. We then vary the training data size for
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female authors np such that the ratio ng/ny, varies evenly between 0.1 to 1.0. Using
a linear regression in Figure , we see that as the ratio ng/ny increases, MSEp
decreases far below MSE,, and far below our best reported MSE of the random forest
on the full dataset. This suggests that shifting the data ratio and collecting more

data for the under-represented group can adapt our model to reduce discrimination.

3.5 Discussion

We identify that existing approaches for reducing discrimination induced by predic-
tion errors may be unethical or impractical to apply in settings where predictive
accuracy is critical, such as in healthcare or criminal justice. As an alternative, we
propose a procedure for analyzing the different sources contributing to discrimina-
tion. Decomposing well-known definitions of cost-based fairness criteria in terms of
differences in bias, variance, and noise, we suggest methods for reducing each term
through model choice or additional training data collection. Case studies on three
real-world datasets confirm that collection of additional samples is often sufficient to
improve fairness, and that existing post-hoc methods for reducing discrimination may
unnecessarily sacrifice predictive accuracy when other solutions are available.
Looking forward, we can see several avenues for future research. In this work, we
argue that identifying clusters or subpopulations with high predictive disparity would
allow for more targeted ways to reduce discrimination. We encourage future research
to dig deeper into the question of local or context-specific unfairness in general, and
into algorithms for addressing it. Additionally, extending our analysis to intersectional
fairness [39, [13§], e.g., looking at both gender and race or all subdivisions, would
provide more nuanced grappling with unfairness. Finally, additional data collection
to improve the model may cause unexpected delayed impacts [195] and negative
feedback loops [93] as a result of distributional shifts in the data. More broadly,
we believe that the study of fairness in non-stationary populations is an interesting

direction to pursue.
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Chapter 4

Auditing Algorithmic Bias in
Predictive Algorithms for Health

Insurance

4.1 Introduction

Health insurance companies wield tremendous impact over the health of millions of
people. Case management programs in particular seek to assign additional help to
policy members who will require additional medical care in the future. Leveraging
a constellation of programs and dedicated healthcare professionals, health insurance
companies seek to identify and recruit members who would benefit from these addi-
tional resources using predictive algorithms. Prior work has shown that these case
management risk scores may contain racial bias due to nuances in outcome label se-
lection. [227] Given the wealth of methodological work on algorithmic fairness and
the wide-reaching impact of case management programs, it is crucial to examine case

management algorithms for potential bias and potential mitigation steps.

In practice, auditing real-world case management algorithms has several technical
challenges. First, as with most real-world health data, insurance claims data can be

sparse and multivariate as members interact infrequently with the healthcare system
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but produce high-dimensional data when they do. Second, case management scores
can represent a composite of subscores, relying on many components including health
prediction algorithms as well as business prioritization metrics. Additionally, mem-
ber race is often not collected or included in the dataset. Researchers must then
rely on either probabilistic imputation using techniques like Bayesian Improved First
Name Surname Geocoding. [5] When individual-level information is not needed, re-
searchers may leverage geographic/census tract or zip code level information about
racial composition. Lastly, predicted scores are generally evaluated against a true
observed event; however, in case management algorithms, the outcome of interest can
sometimes be unclear. Specific targeted programs, including injury management or
reduction of adverse pregnancy outcomes, may have more defined outcomes. When

needed, noisy proxies are used instead, for example future observed health events.

4.1.1 Contributions

This work was done in collaboration with Stephanie Gervasi, Yuria Utsumi, Sol Ro-
driguez, Johnathan Kyle Armstrong, Aaron Smith-McLallen, David Sontag, Michael
Vennera, and Ravi Chawla.

In partnership with Independence Blue Cross (IBC), a health insurer based in
Philadelphia, we examine the case management algorithm, specifically two compo-
nents of said algorithm, used to prioritize outreach for case management enrollment.
We select two specialized algorithms that feed into the risk stratification engine of
the overall case management algorithm to examine: 1) likelihood of hospitalization
(LOH), which predicts future acute and non-elective hospitalization in the next six
months, and 2) a high-risk pregnancy (HRP), which predicts high-risk pregnancy for
women of childbearing age.

We select LOH and HRP because of the easily measured outcomes: future hospi-
talization in next six months and high-risk pregnancy, respectively. In each case, we
derive our own predictive models from the IBC claims data as an illustrative model.
Although IBC constructs their own algorithmic risk scores, we choose to develop sep-

arate predictive models in order to study how the entire model development process
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is affected. Because member race is not consistently measured, we use alignment with
electronic medical records to extract the patient-provided race group. Leveraging the
techniques developed in Chapter 3 and [51], we analyze the LOH and HRP cohorts

to examine any algorithmic bias and potential areas of further exploration.

4.1.2 Related Work

Likelihood of Hospitalization

According to Centers for Medicare & Medicaid Services (CMS), hospitalizations rep-
resented the largest component of national health care expenditures in 2017 and
2018. [1].While many acute inpatient events such as maternity and trauma admis-
sions are unavoidable, others are preventable through effective primary and specialty
care, disease management, availability of interventions at outpatient facilities, or all
of the above. In 2017 the Agency for Healthcare Research and Quality (AHRQ) es-
timated that 3.5 million preventable inpatient hospitalizations accounted for $33.7
billion in hospital costs. [165]

Machine learning models that predict the likelihood of an avoidable inpatient
hospitalization (known as likelihood of hospitalization models) can help target in-
terventions, prevent adverse health outcomes, and reduce individual and population
health care costs. [148], 291], [76]

However, observing an acute hospitalization event in the data is contingent on
access to and use of health care services, both of which are influenced by racial
and socioeconomic disparities. [I122] Disparities in access and use mean that some
subpopulations are underrepresented in the target population and in the data used to
predict the outcome of interest. Thus, the resulting model output may reflect those
systemic biases, and interventions or policy decisions based on the model outputs risk
reinforcing and exacerbating existing inequities.

Similar to disease onset models, one way to address the data disparities is through
inclusion of additional data sources that show patterns in primary or preventative care

that can prevent unplanned hospitalization. Electronic medical records (EMR) data
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can add granularity to clinical events, capturing diagnostic and other health infor-
mation that may not be recorded on claims. However, integrating EMR and claims
data can introduce additional bias [261] stemming from missing or incomplete records
for patients who experience barriers to consistent care. Importantly, missing clini-
cal codes can indicate lack of key diagnostics, procedures, or primary care support
along a patient’s health care journey that might have precluded the need for inpa-
tient hospitalization. Similar symptoms may be treated differently among providers,
leading to downstream effects on hospitalization. Social determinants of health data
can also improve the performance, and potentially interpretations of likelihood of

hospitalization prediction tasks.

High-Risk Pregnancy

Although the large majority of women experience a normal, uncomplicated preg-
nancy, approximately 15-20% of all pregnancies are considered to be at high-risk. [I89]
Here, we define a high-risk pregnancy as one where biomedical factors related to the
mother’s present or previous medical condition could put the mother’s or baby’s well
being at risk. Despite continued advancements in medical care, rates of maternal
mortality and morbidity and pre-term birth have been rising in the U.S. [203] In fact,
maternal and infant mortality rates in the U.S. are far higher than those in similarly
large and wealthy countries. [50]

At the same time, there exist systemic health disparities related to maternal and
infant mortality rates. Black and American Indian and Alaska Native Resources
women have pregnancy-related mortality rates that are over three and two times
higher, respectively, compared to the rate for White women (40.8 and 29.7 compared
to 12.7 per 100,000 live births). [238] This disparity persists even in California, where
maternal mortality rates are lower than the national average and have been on the
decline; yet, the rate is more than three times higher among Black women compared
to White women. [17]

Prior research using machine learning to predict pregnancy complications have

achieved relatively high performance (0.75-0.85 AUC) with pre-eclampsia and pre-
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maturity identified as most predictive features. Notably, however, it is still unclear
how to define “at risk" individuals because of the large range of short-term and long-

term complications that can arise. [26]

4.2 Data

4.2.1 Likelihood of Hospitalization

We extract the 6-month lookahead LOH outcomes for the months of August 2020,
October 2020, and January 2021. Because the LOH algorithm differs slightly based
on the type of insurance plan and the frequency of utilization, we focus only on the
members with government plans with greater than 4 prescription claims and greater
than 5 Medicare claims in the last 12 months. Based on this criteria, we create a
cohort of 64,410 members. Based on enrollment in Medicare programs, we are able
to extract the self-reported race for over 97% of the patients, as seen in Table [4.1],
using enrollment information in Medicare programs. These designations including 5
single race groups, with no option to include more than one race category. Smaller
sample size groups are not named explicitly and instead grouped into “Other”, e.g.,

Asian and Hispanic groups.

Our primary outcome is the confirmed hospitalization in the following 6 months
(e.g., August 2020 - February 2021). A beneficiary was confirmed as being hospitalized
based on an acute in-patient stay, excluding elective, maternity, and hospice inpatient

visits. The cohort has a hospitalization prevalence of 7.8%.

We extract medical data available in the claims data, including medical diagnoses,
prescriptions, procedures, and specialty visits. We bucket the features into time
intervals of 30 days, 180 days, 365 days, and ever appearing in the clinical history.
We include 12 non-temporal features spanning demographics, ages, and patient race

extracted for medical claims. The total feature set includes 73,774 features.
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4.2.2 High-Risk Pregnancy

We construct a pregnancy cohort in order for our high-risk pregnancy prediction task.
An algorithm predicting high-risk pregnancies could help identify members who would

benefit from the Baby Blueprints case management program.

Following existing protocol from [209], we infer the most recent pregnancy-related
outcome for the full set of IBC patients. The recorded outcomes span 17 years,
from July 2005 to February 2021. The median outcome date is May 2017. Pregnancy
episodes were included in the final cohort if the patient was female, between 12 and 55
years of age at the time of pregnancy-related outcome and had continuous enrollment
during the pregnancy episode. Based on these criteria, we create a cohort of 43,358
members. We extract race based on available electronic medical records from hospitals
in the IBC health system exchange, which contains race information for about half
of the current commercial members, as seen in Table .1} Smaller sample size groups
are not named explicitly and instead grouped into “Other”, e.g., Asian and Hispanic

groups.

Our prediction outcome is the confirmed live birth of an identified pregnancy,
meaning a live birth is coded as 1 and all other outcomes are coded as 0. A beneficiary
is confirmed as a healthy live birth based on the absence of pregnancy complications.
Based on the claims data, we identify several pregnancy outcomes including live
birth, stillbirth, ectopic pregnancy, spontaneous abortion, induced abortion, preterm
birth, hypertension pre-eclampsia, pre-eclampsia, and neo-natal intensive care unit
(NICU) stay. Once a pregnancy-related outcome is identified, we define the pregnancy
window. We search over the time window prior to the outcome to identify the first
indication of pregnancy, designated the pregnancy start date. After the start date
is defined, we search over the full pregnancy window to identify additional outcomes
from the claims data. For instance, if the pregnancy resulted in a live birth and also
a NICU stay, we replace the outcome with NICU instead of live birth. The healthy

live-birth prevalence is 31.5%.

We extract medical data available in the claims data, including medical conditions,
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Task Race Data Percentage
Likelihood of Hospitalization ~White 76.2%

Black 14.8%
Other 4.0%
Unknown 2.7%
High-Risk Pregnancy White 39.0%
Black 5.7%
Other 7.3%

Unknown 48.0%

Table 4.1: Percentage of patient data by race for Likelihood of Hospitalization and
High-Risk Pregnancy tasks.

prescriptions, procedures, and specialty visits. We include medical data from the full
history before the recorded pregnancy outcome. We bucket the features into time
intervals of 30 days, 180 days, 365 days, and in the clinical history. We include 12
non-temporal features spanning demographics, ages, and patient race extracted for

medical claims. The feature set totals 156,712 features.

4.3 Methods

We apply our analysis using methods outlined in Chapter [3] Below, we outline

experimental analysis.

4.3.1 Impact of Additional Training Data

To assess the impact of variance on the model, we vary the amount of training data
used. We partition the data into 70% training data, 15% validation data for hyper-
parameter tuning, and 15% test data. Each data partition is select using random
sampling. We vary percentage of the training data and plot the resulting impact on
the error, defined as either 1 - accuracy or 1 - positive predictive value (PPV).
Confidence intervals are computed for on a 95%-confidence interval assuming a
Gaussian distribution. The Bernoulli success-failure trials of of each independent data

sample can be modeled with a binomial distribution. The central limit theorem allows

89



for the approximation of the accuracy with a Gaussian distribution when the sample
size is sufficiently large. Similarly, the PPV confidence intervals can be computed

using the same Gaussian assumption. [311]

4.3.2 Bayes Error Estimation

We estimate the Bayes error using the Mahalanobis distance [205] and the Bhat-
tacharyya distance [27], and a k-nearest neighbor method [71] with k£ = 5 and 5-fold
cross validation. Because distance metrics can fail on high-dimensional data, we fea-
ture select using a highly regularized (C' = 0.001) L1-logistic regression. We select
a logistic regression due to the wide-spread and consistent performance in clinical
models. [25] The most predictive features are used for distance computation. This re-
sults in 57 features selected for the Likelihood of Hospitalization task and 83 features

selected for the High-Risk Pregnancy task.

4.3.3 Subpopulation Identification Using Topic Modeling

We follow the same clustering approach using topic modeling as outlined in [3.4.2]
Unlike traditional topic modeling, we create a “bag of events” [127] for each patient
including clinical diagnoses, medications, and medical procedures. For each patient, a
row of clinical events is encoded into a sparse matrix representation. The traditional
topic modeling “note” is now a patient, and each “word” now corresponds to one claim

code, e.g., diagnoses, medications, and lab tests.

Similar to prior work [251], we encode temporal patterns by concatenating several
matrices per patient, with each matrix corresponding to whether the clinical events
occurred within a given time window. We use four time windows: the previous 30
days, the previous 180 days, the previous 365 days, and whether the event happened

ever in the patient history.
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4.4 Results

4.4.1 Impact of Additional Training Data

For the Likelihood of Hospitalization task, the confidence intervals intersect for both
error defined by AUC and by accuracy in Figure [d-1] This suggests that there is not
great algorithmic bias at both large and small dataset sizes. In fact, adding more
data from the same distribution would likely not improve predictive performance.
For the High-Risk Pregnancy task, the confidence intervals clearly intersect for
error defined by AUC in Figure [4-2, However, AUC may not capture ranking nuances
for fairness analyses. [162] In the error defined by accuracy plots, the Black patients
have lower error on average with Unknown and Other race patients having higher
error. Unlike the Likelihood of Hospitalization cohort, High-Risk Pregnancy has a
large prevalence of Unknown patients, as seen in Table which may make prediction
on this cohort challenging. The consistently high error for the Unknown race patients
across all percentages of the total data could suggest that the noise and statistical

bias terms are affecting the differences in error.
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Percentage of Likelihood of Hospitalization Data Percentage of Likelihood of Hospitalization Data

(a) (b)

Figure 4-1: Logistic regression performance for Likelihood of Hospitalization, mea-
sured by a) 1 - accuracy and b) 1 - positive predictive value (PPV) versus the
percentage of total training data.

4.4.2 Bayes Error Estimation

We show the Bayes error estimates in Table [£.2] for both Likelihood of Hospitaliza-

tion and High-Risk Pregnancy. For LOH, all estimation techniques show a particu-
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Figure 4-2: Logistic regression performance for High-Risk Pregnancy, measured by
a) 1 - accuracy and b) 1 - positive predictive value (PPV) versus the percentage of
total training data

larly low amount of estimated Bayes error for the Other and Unknown race patients
with a slightly higher noise estimates for Black and White patients. Note that the
Bhattacharyya distance computation for the LOH task yielded singular matrix errors
during computation.

For HRP, the Bayes error estimates show consistently high error estimates for the
patients with Unknown race. This finding matches our understanding of how race
data is extracted for these patients. Patients without a known race value may also

lack rich claims data as well for the HRP prediction task.

4.4.3 Subpopulation Identification Using Topic Modeling

We extract representative claim codes for condition, procedure, specialty visit, and
drugs for each of the learned topics, e.g., in Table and Table 1.4} Because of the
windowed data method, the variable evaluation period may differ, emphasizing the
chronic nature of many of these conditions. We provide the full 50 topics for both
LOH and HRP in supplementary materials Chapter [B]

We observe a wide distribution of topic prevalence. In Figure the topics
prevalence weights are plotted by topic number. Using topic descriptions from the
supplementary materials, we find that hypertension (Topic 28) is one of the most
prevalent topics for LOH while prenatal care (Topic 15) is one of the most prevalent

topics for HRP.
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When evaluating the algorithmic performance across these topics, there is a high
range between highest error enrichment values and lowest error enrichment values
across patient races, as seen in Figure[d-4. However, we do not want to evaluate solely
on differences between patient races because topic prevalence weights may vary. Very
small topic weights would correspond to topics that appear very infrequently. We
are therefore interested in topics with high topic prevalence weight as well as large
differences in error enrichment values across races.

The renal and respiratory failure topic in the LOH task (Topic 35, described in
Table has the highest difference in error across races (0.071) and a relatively high
topic prevalence weight (0.061). Similarly, the fatigue topic in the HRP task (Topic
44, described in Table has a high difference in error across races (0.117) and a
high topic prevalence weight (0.046).

93



Dataset Noise Estimation  Lower Upper Subgroup

Likelihood of Hospitalization Mahalanobis - 0.137  White

- 0.145  Black

- 0.105  Other

— 0.110  Unknown
Likelihood of Hospitalization Bhattacharyya - - White

- - Black

- - Other

- - Unknown

Likelihood of Hospitalization Nearest Neighbors 0.044 0.083  White
0.046 0.088 Black
0.034 0.065  Other
0.032 0.063  Unknown

High-Risk Pregnancy Mahalanobis - 0.402  White

- 0.343  Black

- 0.416  Other

- 0.426  Unknown
High-Risk Pregnancy Bhattacharyya 0.093 0.291  White

0.032 0.176 Black
0.041 0.199 Other
0.233 0.422  Unknown

High-Risk Pregnancy Nearest Neighbors 0.229 0.353  White
0.166 0.277  Black
0.229 0.353  Other
0.255 0.380  Unknown

Table 4.2: Bayes error noise estimates, including lower and upper bounds, for Likeli-
hood of Hospitalization and High-Risk Pregnancy tasks. Mahalanobis distance Bayes
error estimates only contain an upper bound. Other entries with dash lines indicate
singular matrix errors from matrix inverse operations.
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Figure 4-3: Topic weights for a) Likelihood of Hospitalization task and b) High-
Risk Pregnancy task. Prevalent topics include Topic 28 (hypertension) for LOH
and Topic 15 for HRP (prenatal care). See supplementary materials Chapter [B| for
full descriptions of the learned topics with representative conditions, medications,
specialty visits, and procedures.

4.5 Discussion

We demonstrate techniques for decomposing discrimination on claims data from In-
dependence Blue Cross, specifically the two tasks of likelihood of hospitalization and
high-risk pregnancy. Analyzing the impact of bias, variance, and noise, we suggest
areas for future investigation towards equitable algorithms.

Looking forward, we can see several avenues for future research. In this work,
the presence or identification of racial identity relies on electronic health records,
which may be incomplete. Techniques to increase observation or inference of racial
information must ensure that individual identity is respected while also being available
for research purposes. Additionally, questions of intersectional fairness complicate
techniques that rely on a few clearly defined groups. [268] Finally, actionable insights
towards improving the health of individuals must also examine any differences in
impact. More broadly, the long-term impact in non-stationary populations is an

interesting direction to pursue.
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Figure 4-4: Range between maximum and minimum error topic values across race
groups for a) Likelihood of Hospitalization task and b) High-Risk Pregnancy task.

Topic Topic Diff.  between max White Black Other Unknown

Num. Prev. and min error Error Error Error Error
35 0.061 0.071 0.127 0.113 0.091 0.162
23 0.039 0.040 0.048 0.043 0.022 0.008
20 0.122 0.039 0.100 0.081 0.081 0.061
30 0.077 0.034 0.108 0.104 0.073 0.106
8 0.066 0.032 0.062 0.048 0.030 0.051
1 0.061 0.032 0.091 0.076 0.059 0.066
15 0.032 0.031 0.120 0.088 0.096 0.099
37 0.038 0.031 0.077 0.068 0.046 0.077
16 0.068 0.030 0.069 0.061 0.073 0.043
50 0.047 0.030 0.101 0.091 0.093 0.121
6 0.093 0.028 0.072 0.065 0.080 0.052
10 0.071 0.027 0.061 0.056 0.075 0.047
25 0.110 0.027 0.057 0.050 0.036 0.063
42 0.087 0.026 0.079 0.081 0.083 0.105
31 0.163 0.026 0.047 0.052 0.041 0.067

Table 4.5: Likelihood of Hospitalization task topic prevalence, difference between
maximum and minimum error values across races, and race-specific errors for top
15 topics sorted by difference between maximum and minimume error values across
races. Recall that the the dataset has 76.2% White patients, 14.8% Black patients,
4.0% Other patients, and 2.7% Unknown patients (see Table .
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Topic Topic Diff.  between max White Black Other Unknown

Num. Prev. and min error Error Error Error Error
6 0.001 0.275 0.086 0.233 0.216 0.361
37 0.019 0.151 0.199 0.188 0.230 0.339
40 0.002 0.149 0.112 0.098 0.092 0.241
44 0.046 0.117 0.139 0.186 0.249 0.256
12 0.014 0.117 0.150 0.178 0.266 0.173
50 0.030 0.110 0.096 0.160 0.185 0.205
8 0.010 0.102 0.141 0.183 0.167 0.243
39 0.053 0.099 0.111 0.175 0.183 0.209
4 0.065 0.095 0.145 0.188 0.216 0.241
24 0.016 0.092 0.131 0.184 0.179 0.224
49 0.038 0.092 0.143 0.171 0.232 0.235
48 0.093 0.087 0.200 0.227 0.249 0.287
42 0.053 0.086 0.171 0.193 0.236 0.258
9 0.035 0.086 0.090 0.114 0.152 0.176
3 0.085 0.083 0.207 0.207 0.253 0.291

Table 4.6: High-Risk Pregnancy task topic prevalence, difference between maximum
and minimum error values across races, and race-specific errors for top 15 topics sorted
by difference between maximum and minimume error values across races. Recall that
the the dataset has 39.0% White patients, 5.7% Black patients, 7.3% Other patients,
and 48.0% Unknown patients (see Table [£.1]).
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Chapter 5

Clustering Interval-Censored

Multivariate Time-Series Data

5.1 Introduction

Cluster analysis of time-series data is a task of interest across a variety of scientific
disciplines including biology [193], meteorology [44], and astrophysics. [252] Automat-
ing the discovery of latent patterns in real-world data can be challenging due to noise.
We focus on mitigating errata in pattern discovery from interval censoring. [216]
Interval censoring arises when time-series data are only observed within a known
interval. Both left-censorship, which occurs when a phenomenon is observed at some
time but it is unknown when it began, and right-censorship, which occurs an event re-
moves a time-series from observation after some point, can lead common techniques
for clustering to erroneous conclusions about the underlying patterns. To address
this, practitioners must often manually align data to a meaningful start time in order
to find non-trivial groups via unsupervised clustering—a process whose difficulty can
range from expensive and time-consuming in some problems to infeasible in others.
In this work, we develop a machine learning algorithm that clusters time-series data
while simultaneously correcting for interval censoring. In doing so, we automate the
time-consuming process of manual data alignment and use our method to reveal struc-

ture that would otherwise not be found by straightforward application of clustering
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analysis.

Blomarker  Patient A
Patient A|~ """~~~ """ ooToC X——_. X Diagnosis
- -Missing Dat: x Diagnosis
ghy
. - Subtype
Patient B XO . . Severity Patient C ° Obse}g)/ed
O Mmild Unobserved|
@ Moderate p
P S V4
Patient C VAN . O @ Severe —Pa_tient/B
_Time Since . Ti ince .
Disease Initiation D1s£1£§ 1Snllr%1c§10n
(a) (b)

Figure 5-1: (a) Patient data can be interval-censored, meaning longitudinal data can
be missing based on entry to the dataset, e.g., first diagnosis, and the data may lack
a common outcome against which to align. Patients may enter the dataset at any
stage of the disease. (b) Interval censoring can make clustering patient time-series
data challenging because data may be aligned incorrectly, e.g., first diagnosis. We
seek to understand disease heterogeneity by inferring subtypes after correcting for
misalignment.

For a simplified illustration of the problem in the context of disease phenotyp-
ing, see Figure (a) which depicts the common reality of observational health data
whereas Figure[5-1b) depicts the idealized latent substructure we would like to iden-
tify. Existing subtyping models applied to clinical data assume (potentially erro-
neously) that patients are aligned at entry into the dataset or study. The problem
with such an assumption is that the disparity between true disease stage and ob-
served observation time can result in unsupervised learning algorithms uncovering
the wrong, or perhaps less interesting, structure. For example, a naive clustering

algorithm might simply return clusters corresponding to the disease stage at entry

ﬁ Time-Series \

Latent Alignment
Structure z Time 0

Figure 5-2: Graphical model of SubLign
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into the study, which may simply recapitulate some of the biases mentioned earlier.

5.1.1 Contributions

To that end, this chapter makes the following contributions:

1. We introduce and formalize the problem of cluster recovery from interval-

censored time-series data.

2. We introduce a practical algorithm, SubLign, based on variational learning of

a deep generative model, which:

e Makes no assumption on the distribution of delayed entry alignment values

besides extrema.

e Operates on multivariate time-series with varying lengths and missing val-

ues, both characteristics often found in real-world datasets.

e [s unsupervised, meaning that neither subtype labels nor alignment values

are provided during training.

3. We prove an identifiability result showing that, in a noiseless setting, both
the degree of delayed entry from left-censorship and the subtype identity are

recoverable.

We show robust quantitative results on synthetic data where, over multiple runs, our

method outperforms baselines for subtyping and patient alignment.

5.1.2 Related Work

Learning alignment and clustering has been studied in fields across computer vision,
signal processing, and health. Approaches often make assumptions including few dis-
crete time steps [313, [153]; a single piecewise linear function [313] or Gaussian mixture
model [I53]; significantly more samples per object than number of objects [210] 112];
very small windows of potential misalignment [197, 193]; or known lag time. [I90]

Methods that directly measure similarity between time-series, e.g., dynamic time
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Algorithm 1 SubLign

1: Input: Observation times X € RY* biomarkers Y € RV*MxD

2: Output: 7, for each subtype and 5; for each patient

3: Step 1: Learning

4: repeat

5. Encode time-series: h; = RNN([X;,Y;]) Vi€ {1,..., N}

6:  Compute variational distribution ¢(Z;|X;,Y:) = N (u(hi; ¢2), 5(hi; ¢3))Vi €
{1,...,N}

7. for patient i =1 to N do

8: Run grid-search to find §; = arg maxy(s,) £(Y;]| X577, ¢,q(5;)) (Eq.
9: end for

10:  Update =, ¢ via stochastic gradient ascent on L(Y|X;~, ¢, 5)

11: until convergence

12: Step 2: Inference and Clustering

13: Infer Z = {z;|z; = u(h;; o)} for X;,Y;

14: Find K clusters using k-means on Z and compute cluster centers jiy

15: Infer parameters of subtype trajectories 7, = g(pux)

warping [74] or methods that aggregate multiple imputation methods [95] can also
be used for clustering time-series data. Our method aims to cluster interval-censored

multivariate time series without these constraints.

5.2 SubLign: Subtype & Align

There are two stages to SubLign. First, we learn a generative model of the observed
data which disentangles variation in the observed data due to delayed entry from
variation related to subtype identity. Second, we infer subtype representations and
(optionally) cluster the representations to obtain the explicit subtype identity for each
time-series. Figure (c) describes the graphical model, and Algorithm 1 depicts the

pseudocode for this procedure.

5.2.1 Generative Model

Consider the following setup. We observe N multivariate time-series (one for each

patient), each of length up to M: [(z11,y11),---, (@10 yi.m)]s - (N1, YN), - - -

(xnar, ynar)]- Yim € RP is a vector of observations for time-series i at time-stamp
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Tim € RT. We denote collections of observations as Y; = {y;1,...,y;a} and time-
stamps as X; = {x;1,..., ;) for patient .
Figure (c) depicts the graphical model corresponding to the latent-variable

generative model of continuous-time multivariate data:

Vi—{1,...,N}, Vm e {1,..., M},
Vd € Di,ma 5% ~ Cat(D)v Zp ™~ N(Oa]l)v O = g(ZZ,’}/),

Yimld] = f(5(@im + 6 0Od])), Yim ~ N (F;,nld], T) (5.1)

We drop indices denoting patient and dimension where unnecessary. D ,, de-
notes the set (and |D;,,| denotes the number) of observed biomarkers for patient i
at their m-th observation. To accommodate missing data, not all biomarkers are
required to be measured at every observation. Each delayed entry value 6; € R*
has a maximum alignment deviation value 0% over all time-series. We discretize the
closed interval [0,07] as D = [0,¢€,2¢,...,d"] with hyperparameter € and use a cate-
gorical distribution over D with uniform probabilities over each element as our prior
over ¢;. Function g : RY: — RP*(P+D has parameters v and maps from the latent
variable to © € RP*(P+1) 3 matrix of parameters for D polynomials, each of degree
P. f is a known link function that describes how observed values relate to observed
time-points.

Parameterization We discuss the specific parameterizations of Equation [5.1]
In the context of our motivating application of disease phenotyping, these functions

represent common characteristics in the progression of patient biomarkers.

Link function and polynomials: For f and P, we study the following choices: Sig-
moid: P =1and f(z) = m and Quadratic: P =2 and f(z) = x. The sigmoid
function can represent bounded and monotonically increasing clinical variables. The
quadratic function represents cases where disease severity, as measured by biomark-

ers, decreases (likely in response to therapy) and then increases (once therapy fails),

or vice versa. Other choices for P, f are permissible as long as they are differentiable
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with respect to the model parameters. We allow for the possibility that individual
biomarkers have different parameterizations.

Modeling polynomial parameters: We parameterize g(z;;y) using a two layer neural
network with ReLLU activation functions with parameters . To be concrete, if D =

1,P =2, and f is the sigmoid function, then the outputs of g are [By(z), 51(2)] and

Yy = 1+exp—(ﬁol<z>x+ﬁ1<z>>' Similarly, if D = 1, P = 1, and f is the quadratic function

then the outputs of g are [a(2),b(2),c(2)] and y = a(z)x? + b(2)z + c(2).

5.2.2 Inference
Step 1: Learning

We learn the parameters v of the model in Equation [5.1] via maximum likelihood
estimation. Since the model is a non-linear latent variable model, we maximize a
variational lower bound on the conditional likelihood of data given the time-stamps

corresponding to observations.

log [T T »Wimld]zim; ) =logp(Yi|Xi;7) (5.2)

m=1 deD; m
= Eq(zi|x..vi50) [log > p(Yil Xy, 65, Ziy y)p(0:)+
5.

k3

p(Zs)
q(Zi| X;,Yi; 9)

= Eqzi|x:,vi:0) [Eq(an [bgp(YilXi, iy Zi3Y)

+ log ] > L(Yi| X7, 6,4(6:))

p(0;) p(Z;)
+ log q((5i)] + log —q(Z,-\Xi,Y;;qb)] (5.3)

The first lower bound uses a variational distribution for Z parameterized via an infer-
ence network [I74, 254] with parameters ¢. The second lower bound is a variational
distribution over ¢. The function ¢(9;) parameterizes the space of one-hot distribu-
tions in D, i.e., a categorical distribution over discrete choices of §;.

Our learning algorithm alternates between two steps. We first maximize the lower
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bound using subgradient ascent. To do so, we solve: §; = arg maxy(s,) £(Y5] Xi; 7, 0, q(5;))-
For our choice of variational distribution, this maximization can be performed via a
grid search. We then derive gradients V, ,L(Y;|X;;7, ¢, 6;) to update the generative

model and inference network via stochastic gradient ascent.

Step 2: Obtaining Learned Subtypes

After learning the model, we may re-use the inference network to predict the latent
variable z; = p(h;; ¢2) for each patient in the training set. Combining z; across all
time-series gives us the set Z. When reasonable, we refer to p(h;; ¢2) as ;.

Although latent variable z; encodes latent structure from each time-series, we may
be interested in explicit subtypes for a given value of K. To obtain discrete subtypes,
we can run clustering algorithms on Z to obtain K cluster centers {1, ..., ik}
Because we use a Gaussian prior for our biomarker values, measuring distances in
the space of the latent variable can be done with the Euclidean norm, making the
k-means a reasonable choice of clustering algorithm.

We compute {71,...,7x} where 7, = g(ux) as the progression-patterns corre-
sponding to each of the discrete subtypes of the disease. For example, if f o k is
linear, then we obtain K different slopes and biases, each of which describes how the
time-series behaves in that subtype. In practice, K may be chosen based on domain
knowledge; alternatively, qualitative results can be assessed for each version of K,

e.g., by plotting the corresponding f functions.

5.2.3 Remarks

Role of the latent variable: The latent variable z plays an important role in quantifying
how each biomarker behaves. Each time-series’s latent variable is used to predict the
parameters of D polynomial functions and f ok maps from observation times onto the
observed biomarkers. Time-series whose representation space z are close hail from
the same subtype, and consequently manifest similar patterns in their biomarkers.

This variation in z results in variation in the parameters © and therefore in variation
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among the data as a function of the time-points.

Note this latent representation can be used for other settings beyond disease phe-
notyping, for example supervised prediction tasks. For example, when P =1 and f is
the identity (i.e., a linear function), some time-series might increase (positive slope)
versus others that decrease (negative slope). The latent representation z captures
subtypes by learning to predict the slope of the function that models variation among
time-series.

As an illustration, in Figure [p-Ij(b) in the blue phenotype, f is the sigmoid func-
tion. Depending on the latent space, we could imagine a one-dimensional z where
z < 0 represents the curve (and subtype) in blue and z > 0 to represent the curve
in red. The value of §; indicates the degree of delayed entry associated with each
time-series. The delayed entry from interval censoring is corrected by applying the
scalar 9; element-wise to X; and then transforming it by f.

Choice of link function: Our current choice of link function f is motivated to
mimic degenerative disorders wherein patient biomarkers gradually increase over time
(denoting worse outcomes). There is precedence in prior work to restrict function
forms that characterize how biomarkers behave to be monotonic. [241] However, we
emphasize that the model is not restricted to only sigmoid or quadratic functions
for the link function f used in the synthetic and clinical experiments. Our work
permits alternative choices of f—assuming the choice is smooth and differentiable
with respect to model parameters—and allows individual biomarkers to have different
parameterizations.

Scalability: The runtime of SubLign is impacted by the grid search over model
parameter 0;. The corresponding lines 7-9 in Algorithm 1 have complexity O(NSF)
where F' is the complexity associated with a single forward pass of the inference
network and the generative model, N is the number of examples, and S = §* /e is the
number of time steps. The model practitioners may therefore balance computational
resources with S. In our experiments, we found comparable performance for S as low

as 9.

Real-world clinical data: SubLign is motivated by, and designed to capture, vari-
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ation in clinical biomarkers while taking into account the challenges of clinical data.
Observational healthcare data are often irregularly spaced, and contains missingness.
The use of a continuous time model allows us to naturally handle the former issue
since we only maximize the likelihood of data corresponding to time-points where
they are observed. When a single biomarker is missing while others are observed, it
may be marginalized out (by ignoring the corresponding loss term).

Accommodating different kinds of censorship: Equation naturally character-
izes delayed entry arising from left-censorship. SubLign can also accommodate right-
censorship by reversing the sequence of time-series and applying Algorithm 1 (result-
ing in our ability to infer the degree of right censorship). When both left-censorship
and right-censorship are present, it corrects for left-censorship explicitly (using §)
while right-censorship is implicitly accounted for since we only maximize the likeli-

hood of data up to the point that we observe time-series.

5.3 Identifiability Under a Noiseless Model

While SubLign presents a viable, practical model for clustering and aligning censored
time-series data, it is worth reflecting upon whether we can ever identify subtype
and alignment from observational data. In what follows, we present theoretical con-
ditions that show that there exists conditions under which the problem we study is

identifiable.

5.3.1 Generative Process

We assume distinct time stamps for the M observations in X;. The generative process

we assume for Y;, conditional on X, is:

Vi={L....N}, s ~ Cat(K),
Vm € {1,...,M}, d € D; n,

Yimld) = f(K(@im + 030" [s:,d])) (5.4)
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where s; € {1,..., K} is the subtype for time-series i, D;,, denotes the set of all
observations at time-step m for time-series i where Vi, m, |D; | < D, and §; is the
delayed entry value. The link function f : R — R has no parameters whereas x : R —
R is an unknown polynomial function of degree P € Z*. We denote the parameters of
x, for each subtype and dimension (e.g., biomarker), as #7 € REXP*(P+1) We denote
0F[s;,d] as selecting the (s;, d)-th vector of size P + 1 from the tensor 6F. Similarly,
6 [s;] selects the s;-th matrix of size X x (P +1). We define 6, as the p-th coefficient
of any polynomial function parameter set 6.

By construction, we have that s; = sy <= 0F[s;] = sy, i.e., for two subtypes,
the values of each time-series are described either by y = f(k(z;607[s;])) or y =
F((: 07 [5:])).

We begin with a set of assumptions for identifiability.

Assumption 1. f is invertible, and x(z,0) = 0y + 25:1 0,27 describes a family of
polynomial functions in x with parameter # and degree P > 0. The parameters of

each subtype are unique.

Assumption 2. M > P+ 1, i.e., for each patient time-series, there exists at least

one of the D features where we observe at least P + 1 values.

Assumption 3. For each subtype s, there exists a time-series ¢ whose alignment

0; = 0, meaning no delayed entry.

Theorem 1. Under assumptions [1], [2, 3] for the model in Equation we can
identify the time-delays d;,...,0y. We can identify the polynomial coefficients 6%
up-to a permutation of its rows and columns and the identity of si,..., sy up-to a

permutation over K choices.

Proof sketch. Consider the case where we have a single biomarker for each patient.
The proof is constructive; first we transform the data using the inverse of f resulting
in a set of data drawn from polynomial equations. The polynomial coefficients may be
estimated from the observed data; we can then find the roots of these polynomials and

pick the smallest root. These roots exactly quantify the degree of delayed entry; i.e.,
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they tell us how much each polynomial has been shifted by. We can correct each time-
series for this shift, re-estimate polynomial coefficients from the shifted-polynomials
and cluster them to reveal the underlying subtype identity for each time-series (and

consequently each patient).

Algorithm 2 Procedure for the identification of model parameters

1: Input: Observation times X € RV*M biomarkers Y € R¥*M*D ' polynomial

degree P, invertible function f

Output: 6F, 6,,...,0n, S1,...,sy for each patient

Step 1: Transform the observed biomarkers; Q = f~}(Y)

Step 2: Obtain time-shifts using a single biomarker;

a) For each patient ¢, estimate the parameters 0'; of x(x;0!;) using a single

biomarker ((z;1,4i1),-- -, (Zin, gim) via polynomial regression,

6: b) Compute up to P roots of polynomial /4(:1:,95) for each patient i as R; =
{ry,...,rp} and set & = min Real(R;) where Real denotes the real part of (po-
tentially complex) roots.

7. ¢) Estimate #!; for polynomials in a canonical position using ((z;; —
& in)s - (i — &, qim) via polynomial regression,

8: d) Cluster §/; across patients via K-means clustering to yield cluster identities

S1y...,SN

9: e) Yk, mp =min{¢; |is.t. s; =k} and Vi, §; =& —ns,

10: Step 3: Estimate true polynomial coefficients using shifted observation
times;

11: for biomarker 7 =1 to J do ‘ A

122 For each patient, estimate the parameters 6] of x(z;67;) using ((r11 —

S, q11l7])s - - -» (1.0 — 0iy q1r[j]) via polynomial regression,
13: end for
14: Return 07 = [0']...107],{01,...,0n}, {51, ., 5N}

Proof. The proof is constructive; i.e., we give an algorithm for the identification of
the parameters of the model in Equation [5.4 The algorithm for identification is
presented in Algorithm [2] and proceeds in three steps.

Step 1: The first step transforms the observed biomarkers by applying the inverse
of function f, which exists by Assumption [I] This leaves us with data as:

T Wim) = 6(Tign + 6;;0%) Yie NNme M

i.e., for all bio-markers, across all patients, we have data arising from different poly-
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nomial functions.

Step 2: Without loss of generality, the second step uses the first biomarker to

identify the values of 9; for each patient.

a)

First, we estimate the polynomial coefficients for each patient separately; we

are guaranteed exact recovery of the coefficients by Assumption [2}

Next we find the roots for each polynomial. If they are complex, consider their
real part, and define & to be the smallest root of the polynomial. At least
one (real or complex) root is guaranteed to exist by the Fundamental Theorem
of Algebra for every non-constant polynomial (Assumption . Note that the
choice of using the smallest root is arbitrary; what matters is that a consistent

choice of root is selected for each patient’s polynomials.

The goal of this step to learn a new polynomial for each patient which is trans-

lated to ensure that the root selected in step b) lies at = = 0.

To do so, we first shift the observational time-steps by &;, and we re-estimate

the coefficients of each shifted polynomial.

We make use of the fact that if & is the smallest complex root of a polynomial
r(z) then the polynomial x(z + ;) has its smallest complex root at 0. We can
recover the parameters of this polynomial exactly by shifting our observations

and re-estimating the coefficients.

This operation recovers the coefficients of every patient’s polynomial in its
canonical position i.e., a translated polynomial whose smallest root (or its real

component) is at z = 0.

This step can be viewed as a de-biasing step which allows us to re-estimate
6 without while ignoring the effect that left-censorship has on parameter esti-

mates.

We cluster the coefficients estimated in step c¢). By construction, we know that
s; = sy <= 0; = 0; which guarantees that clustering recovers the true-

underlying subtype for each patient (up to a permutation over K choices).
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e) Finally we stratify patients by their subtype, and we define §; as the difference
between their smallest root and the smallest value of §; among all other patients

within that subtype.

By Assumption [3| we know that for each subtype, there exists a patient for
whom ¢§; = 0, this reference patient will also be the one whose polynomial has
the smallest root. We note here that without Assumption [3} we would still have

identification of 9; up to a constant.

Therefore, by shifting each patient’s smallest root by their reference patient’s

smallest root, we can recover the original time-shifts.

Step 3: Given the values of d1,...,0y from Step 2, we can now estimate the true
values of the polynomial coefficients exactly in the noiseless setting via polynomial

regression. 0

Remarks: Theorem [1] describes conditions under which delayed entry and the
polynomial parameters of cluster biomarker progression are identifiable. This encour-
aging result demonstrates scenarios where the parameters of the model in Equation
[b.4] can provably be identified.

On the assumptions for identification: It is possible to relax Assumption [3[to only
require the existence of a single time-series from each subtype; this modification only
allows identifiability of d1,...,dy up to a translation within each subtype. The above
result relies on the existence of at least one biomarker for which there are sufficiently
many observations — this is a reasonable assumption in the context of clinical data
since there is often a canonical biomarker tracked over time for each disease.

On the strategy for identification: We conjecture our analysis for identification
of subtype and alignment is of independent interest for identifying causal effects in
survival analysis where an important challenge is how to handle confounding that
jointly affects both survival time and censorship. Related work in this field [267,
61] has focused on restricting the class of models used to characterize the survival

function. Our work presents distinct parameteric assumptions towards this goal.
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5.4 Experiments

5.4.1 Datasets
Synthetic

We generate two classes of synthetic datasets from the sigmoid and quadratic pa-
rameterizations in the ‘SubLign: Subtype & Align’ section. For the sigmoid dataset,
we generate data from K = 2 subtypes and Vi, m,|D;,,| = 3 biomarker dimensions.
For the quadratic dataset, we generate data with K = 2 and Vi,m, |D;,,| = 1. See
appendix for the data generation process for the six quadratic datasets.

In both synthetic settings, we sample N = 1000 patients with M = 4 observa-

2 = 0.25, and max disease stage Tt = 10. For each patient, we

tions, variance o
sample subtype s ~ Bern(0.5). The true disease stage is drawn t,, ~ Unif(0,7") for
observation m € {1,..., M}. The biomarker values are drawn y,,, ~ N(\,, %) where
Am =2 keqn,...xy 1(8i = k) fe(t). For the sigmoid dataset, the first subtype generat-
ing function across three dimensions is fi(t) = [o(—4+1t),0(—1+1),0(—8 + 8t)] and
the second subtype generating function is fo(t) = [o(—1+t), o(—8+8t), o(—25+3.5¢)].
The observed disease time x,, is shifted such that the first patient observation is at

time 0. Therefore x,, = t,, — ¢ where ( = minjcg, . ayt; is the earliest true disease

time for the patient.

5.4.2 Hyperparameters and Baselines

We find optimal hyperparameters via grid search. For both synthetic and clinical
experiments, we search over hyperparameters including dimensions of the latent space
z (2, 5, 10), the number of hidden units in the RNN (50, 100, 200), the number of
hidden units in the multi-layer perceptron (50, 100, 200), the learning rate (0.001,
0.01, 0.1, 1.), regularization parameter (0., 0.1, 1.), and regularization type (L1, L2).
We select the hyperparameter configuration with the best validation loss, as measured
by Equation Our models are implemented in Python 3.7 using PyTorch [234]
and are learned via Adam [I73] on a single NVIDIA k80 GPU for 1000 epochs. We
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set alignment extrema d* = 10 based on the maximum of the synthetic dataset and
the maxima of the HF and PD datasets. We search over 50 time steps with ¢ = 0.1.
We initialize the clustering with k-means+-+ [16].

For all models, we run for 1000 epochs and use the model with the best training
loss over the 1000 epochs for evaluation. For the sigmoid dataset, the optimal hyper-
parameters are latent space of dimension 5, 100 hidden units in the RNN, 50 hidden
units in the multi-layer perceptron, learning rate of 0.01, and no regularization.

We compare to seven different baselines. Our greedy baseline, denoted as KMeans+Loss,
first clusters the observed values using k-means clustering. Then, using the inferred
labels s, we simultaneously learn 6, for each subtype and ¢; for each patient by min-
imizing:

N M D K
arg min ; ; ; ; 1s; = k|[yiga — f(@iga + 055 00)) (5.5)
using Broyden—Fletcher—Goldfarb—Shanno. This naive clustering based approach (in
the space of the original data) attempts to correct for shifts in time. We also compare

to:

1. SubNoLign: a modified SubLign with no alignment value. This model is com-
parable to [318], which learns a deep patient representation while controlling

for model architecture
2. SuStaln [313]: a subtype and stage inference algorithm for disease progression,
3. BayLong: a Bayesian model of longitudinal clinical data [153],
4. PAGA [307]: a state-of-the-art single-cell trajectory pseudo-time method,

5. Clustering with dynamic time warping (DTW) using kernel methods [74] and
soft-DTW [75],

6. SPARTan: A tensor factorization based approach for phenotyping from time-
series data [237]

We detail baseline implementations below.
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SuStaln

SuStaln [313] is a disease progression algorithm that recovers subtype and stage from
cross-sectional data. We transform our longitudinal data by dropping patient affili-
ation across visits. We transform the data by subtracting the mean for each feature
and dividing by the standard deviation for each feature. We assume the Z-scored val-
ues have a max of 5. We run for 1,000,000 epochs for the Markov Chain Monte Carlo
sampling and 1,000 epochs for optimization. We use an open source implementation

by the authors: https://github.com /ucl-pond /pySuStaln

Bayesian Approach

The Bayesian approach [I53] assumes longitudinal data, but there must be a small
number of measured time points. We assume that there are 10 observed time points
where observed data can begin as well as a window of 10 time points before the
observed window where a patient’s values can be aligned to. Because biomarker
values are scaled between 0 and 10, we assume that values change between time
points based on a Gaussian with ¢ = 2 and that subtype means for each time point
are drawn from a Gaussian with o = 5. We draw 4000 samples and use the maximum
a posteriori estimate to determine stage and subtype for test patients. Because we
could not find an open-source option, we implemented the algorithm ourselves based

on the description in the paper.

Dynamic Time Warping

Dynamic time warping (DTW) defines similarity between time series that can be
combined with clustering techniques. DTW methods include using soft-DTW [75]
and kernel |74] before using K-means with the chosen similarity metric. We use open

source implementations of DTW algorithms to generate our baseline comparisons:

https://pypi.org/project /dtw-python/

PAGA Partition-based graph abstraction, or PAGA, [307] assumes cross-sectional

data, so we create separate visits for each patient visit. For algorithm parameters,

116



we set resolution to 0.05, number of neighbors to 15, and connectivity cutoff of 0.05.
We use an open source implementation by the authors:

https://github.com/dynverse/ti_paga/blob/master/run.py

Tensor factorization Sparse tensor factorization has been used for disease phe-
notyping. The decomposition of large and sparse datasets using canonical polyadic
decomposition can create an interpretable output for phenotyping. We use the Matlab
open source implementation of SPARTan: https://github.com/kperros/SPARTan
We found these baseline results to yield poor clustering performance despite aggres-
sive hyperparameter tuning. We surmise this is because transforming our data from
continuous to discrete time resulted in a very large and extremely sparse matrix

factorizing which is a tricky optimization problem.

5.4.3 Evaluation

We evaluate models on 5 trials, each with a different randomized data split and ran-
dom seed. For each trial, we learn on a training set (60%), find the best performance
across all hyperparameters on the validation set (20%), and report the performance
metrics on the held-out test set (20%). The same data folds are used across all models

for each trial.

We report the performance on the test set over three metrics.

1. Adjusted Rand index (ARI) measures whether pairs of samples are correctly

assigned in the same or different subtypes. [152]

2. The Swaps metric reports the number of swaps needed to sort the predicted dis-
ease times into the true disease stages, expressed as percentage of total possible
swaps. For true sorted alignment values ai,...,ay for N patients, we define
the swaps metric S of proposed alignment values by, ...,by as the number of
swaps needed to sort the predicted disease times into the true disease stages,

expressed as percentage of total possible swaps.
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MODEL ARI 1 SWAPS | PEARSON T
SubLign 0.94 £ 0.02 0.09 £ 0.00 0.85 £ 0.04
SubNoLign 0.81 £ 0.21 - -
KMeans+Loss 0.67 £0.04 0.21 £0.03 0.49 = 0.01
SuStaln [313] 0.66 + 0.02  0.16 = 0.00  0.30 & 0.02
BayLong [153] 0.19 +£0.18 048 £ 0.00 0.01 & 0.02
PAGA [307] 0.32 £ 0.056 0.52 &£ 0.07 0.04 &£ 0.20
Soft-DTW [74] 0.06 + 0.01 - —
Kernel-DTW [81]  0.06 + 0.07 - -
SPARTan [237] 0.22 £ 0.18 - -

Table 5.1: Means and standard deviations over 5 trials for synthetic sigmoid dataset
with 1000 patients, 3 dimensions, and 4 observations per patient.

>ijicy L@ < bi,a; > bj)

5= N(N —1)/2

3. The Pearson correlation coefficient expresses correlation between the predicted

and true disease stage.

ARI measures the clustering performance while the Swaps metric and the Pearson
correlation coefficient quantify how well the learning algorithm infers the alignment

values.

5.4.4 Statistical Significance

We evaluate held-out performance over 5 trials. Each trial consists of randomized
60/20/20 training/validation/test data folds and a different random seed. In order
to compare models across 5 trials, we report the means and standard deviations from

the 5 trials.
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5.5 Results

5.5.1 Recovering Subtypes with Interval Censoring

SubLign is able to recover subtypes despite interval censoring, outperforming all base-
lines. For sigmoid synthetic data (Figure [5.1, ARI column), SubLign can recover
subtypes (mean ARI of 0.94) better than the KMeans+Loss baseline (0.67) which
assumes a greedy approach. Not correcting for alignment time decreases the quality

of inferred subtypes as can be seen in SubNoLign (0.81).

Some baselines appear to suffer because SubLign leverages the longitudinal nature
of patient data compared to the cross-sectional assumptions of PAGA and SuStaln.
Other baselines have strong priors, i.e., [I53], which may explain its poor performance.
Dynamic time warping methods appear to perform poorly for datasets with few ob-
servations or high missingness rates. Lastly, the tensor factorization method [237]
fails, likely because transforming data from continuous to discrete time results in a
very large and extremely sparse matrix factorization that is a tricky optimization

problem.

We include additional results in the appendix, including visualizations of the Sub-
Lign subtypes compared to baselines, model misspecification analysis, and experi-

ments varying the level of missingness.

5.5.2 Recovering Known Alignment Values

For the synthetic sigmoid data, SubLign outperforms baselines in inferring alignment
values (Figure |5.1[a), Swaps and Pearson columns). SubLign recovers alignment
values better according to the Swaps metric (mean value of 0.09) and the Pearson
metric (mean value of 0.85) compared to the next best baselines of KMeans+Loss and
SuStaln. Note that many baselines only recover subtypes and do not learn patient

alignment values.
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5.6 Discussion

We study the task of clustering interval-censored time-series data. We present our
method, SubLign, to learn latent representations of disease progression that cor-
rect for temporal misalignment in real-world observations and consider conditions
for identifiability of subtype and alignment values. Empirically, our method outper-
forms seven baselines, and analysis of subtypes reveals clinically plausible findings.
Better modeling of disease heterogeneity through alignment can help clinicians and
scientists to better understand and predict how chronic diseases with many subtypes
may progress. We hope that our model—in learning a continuous latent space to
model heterogeneity—may be applied to other domains where subtypes and tem-
poral alignment are entangled, for example gene expression analysis [20] or cancer
pathways. [309]

Our model introduces directions for future work. Practically, SubLign assumes
that 0 and z are marginally independent. Intuitively, this means that, across all
subtypes of a disease, the time at which the patient enters the study cohort is inde-
pendent of any other factor. There are certainly cases where this assumption may
easily be violated, and therefore it remains an important area for further improvement
e.g., [167].

One area of interest is how to incorporate conditioning d on features that are
predictive to its value (e.g., clinical history) or other complexities, such as differences
in treatment effect. [I8] Our results for theoretical and noiseless identification do not
naturally extend to the noisy setting since root finding without further assumptions
can be sensitive to noise in the coefficients of the polynomials. Alternative strategies
for identification that generalize our result are fertile ground for future work.

More broadly, this work contributes to developing clinical models that are ro-
bust to real-world factors [120], biases that might affect patient interactions with the

healthcare system [50], and the practicalities of clinical care. [240]
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Chapter 6

Chronic Disease Progression

Subtyping

6.1 Introductions

Interval censoring in healthcare data presents a significant challenge for disease phe-
notyping. Left-censorship in clinical datasets can occur when patients have delayed
entry, meaning data are unavailable before a diagnosis or first hospital visit. Factors
including geographic proximity to a hospital [49], financial access to care [215] or
mistrust of the healthcare system [33] can affect when a patient seeks medical help
and consequently the beginning of data availability with respect to the underlying
progression of their disease. Other datasets align patients by death time, but right-
censorship restricts sample size to patients who have died. Since many factors affect
mortality, other causes of death may confound results. For heart failure, a chronic
disease that progresses over many years with a large range of onset ages and survival
outcomes, interval censoring can confound attempts to analyse disease heterogeneity
using observational data.

Many diseases are biologically heterogeneous despite a common diagnosis—for ex-
ample autism [84], heart failure [269], diabetes [290], and Parkinson’s disease. [97] The
variation in biomarkers (e.g., glucose or creatinine) across patients can stem from dif-

ferent patient subtypes that manifest in distinct disease trajectories. Scientists seek to
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understand this disease heterogeneity by identifying groups of people whose biomark-
ers behave similarly. For example, cardiologists use a measurement called ejection
fraction as a heuristic to separate heart failure patients into two categories [231],
with at least one of the two subtypes believed to be heterogeneous. [269] Similarly,
neurologists studying Parkinson’s disease (PD) have raised similar phenotyping. [207]
To better understand patient heterogeneity, clinicians may turn to longitudinal, obser-
vational, and often irregularly-measured patient data for disease phenotype discovery.
Better and more accurate disease phenotyping can lead to improved understanding

of the disease, patient prognosis, and targeting of clinical trials.

6.1.1 Contributions

On two real-world observational clinical datasets—Parkinson’s disease and heart failure—
we discover disease subtypes. We correct for potential patient delays in entry to the
dataset using SubLign, an algorithm outlined in Chapter [5} For Parkinson’s disease,
we uncover subtypes between healthy controls and patients with Parkinson’s disease
which outperforms a suite of baselines and matches known clinical findings. For heart
failure, we demonstrate in a semi-synthetic setting that we are able to extract the de-
gree of patient delay in entry to a reliable degree. We also find heart failure subtypes

that align with recent clinical literature from the last five years.

6.1.2 Related Work

Clinicians and scientists learn disease subtypes to better understand heterogeneity in
disease progression in a process known as disease phenotyping. Existing approaches
often rely on the assumption that the observed measurements are aligned — and
therefore not censored. Researchers then apply clustering techniques like hierarchical
clustering of time series [84], affinity clustering [202], or matrix factorization. [290, 237]
Other models define disease subtypes as stages of disease progression. [9] For this
chapter, building on methods outlined in Chapter [5| we define disease subtypes as

distinct from disease stage and jointly learn both.
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6.2 Subtyping Parkinson’s Disease Patients

6.2.1 Data

We use publicly-available data from the Parkinson’s Progression Markers Initiative
(PPMI), an observational clinical study, totalling N; = 423 PD patients and N, = 196
healthy controls where N = N; + N.. We extract four biomarker measurements of
autonomic, motor, non-motor, and cognitive ability from N = 619 total participants
with M = 17 maximum observations per patient. Our baseline data include 25
features including demographic information and patient history used to validate sub-
types. For PD patients, the first recorded visit is within 2 years of the patient’s PD
diagnosis. Measurements are scaled between 0 and 1 with larger values corresponding
to more abnormal values. We use the sigmoid parameterization of the SubLign model

for both datasets because HF and PD are chronic and incurable diseases.

6.2.2 Experiments

For PD, we report the held-out clustering performance for healthy control patients
and patients with PD. We use disease status (PD patient or healthy control) as labels
and K = 2 subtypes.

Hyperparameter Selection

For the Parkinson’s disease dataset, we searched on a slightly smaller set of hyperpa-
rameters for SubLign and found optimal hyperparameters of 5 = 0.01, no regulariza-
tion, 10 latent dimensions, 10 hidden units for the multi-layer perceptron, 200 units

for the recurrent neural network, and learning rate of 0.1.

6.2.3 Results

Parkinson’s disease. Biomarkers used to track PD are self-reported, which can

be biased, subjective, and noisy. From these biomarkers, SubLign discovers subtypes
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that match known clinical findings on two cohorts: 619 combined PD and healthy
control patients, and 423 PD patients.

For PD and healthy control patients, we run SubLign with K = 2 to uncover
characteristics of the two known groups. SubLign subtype A clearly corresponds to
healthy controls whereas subtype B designates PD patients. Statistically significant
baseline features include all components of the University of Pennsylvania Smell Iden-
tification Test (UPSIT), which is a measure of smell dysfunction and highly linked
to PD [131], and having a full sibling or biological dad with PD, which aligns with
research suggesting PD may be hereditary. [175]

For PD patients only, we set K = 3 in SubLign to explore and discover poten-
tial disease heterogeneity. Statistically significant baseline features include race and
gender, which parallel recent clinical findings about heterogeneity in PD manifes-
tation [277, 87| and indicate new potential areas for future work. See appendix for
tables of statistically significant baseline features stratified by the discovered subtypes
for HF and PD.

SubLign recovers known subtypes in the PD dataset with statistically significantly
higher ARI over baselines (see Figure[6.1(b)). When ARI performance intervals over-
lap, we use a t-test on pairwise differences over trials to compute statistical signifi-

cance.

6.3 Subtyping Heart Failure Patients

6.3.1 Data

We use electronic health records from Beth Israel Deaconess Medical Center, a large
health system in the Boston, Massachusetts in the United States. We identify patients
who enter the emergency department with a diagnosis of HF and extract echocardio-
gram values—measurements from an ultrasound of the heart—from the full patient
history. We include echocardiogram features that are present in more than 60% of

echo studies. Our dataset includes N = 1534 patients and |D;,,| < 12;Vi, m features
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with M = 38 maximum observations per patient over a potential span of 10 years
in the dataset. We extract 27 baseline features including race, sex, and comorbidi-
ties (e.g., renal failure) to validate subtypes only and not for use in the model. The
dataset values are linearly scaled such that values are between 0 and 1 with larger

values denoting more abnormality.

6.3.2 Methods

Applying SubLign onto real-world clinical data has several technical challenges. First,
clinical data can be noisy, incomplete, or missing based on patient interactions with
the healthcare system. Additionally, patient trajectories may not be aligned. As
described in Section [5] patients may enter a dataset in different times due to factors
including geographic proximity to a hospital or medical mistrust. Lastly, the research
task is unsupervised, meaning evaluation against ground-truth labels for either clus-

ters or alignment values is not possible.

Statistical significance.

We evaluate held-out performance over 5 trials. Each trial consists of randomized
60/20/20 training/validation/test data folds and a different random seed. In order
to compare models across 5 trials, we report the means and standard deviations from

the 5 trials.

6.3.3 Experiments
Missing values

SubLign allows for missing biomarker dimensions and missing patient visits to ac-
commodate the sparsity of clinical data. For missing visits, we adapt the recognition
network to handle variable sequence lengths. We mask out missing observations so
they have no contribution to the learning stage, except for the recognition network

input. We linearly interpolate missing values for each patient only for recognition
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network input. For baselines that cannot handle missing data, we linearly interpolate

missing values for each patient.

Semi-Synthetic Experiment

Because real world data often lack ground truth labels for subtype or alignment, we
create two semi-synthetic experiments with clinical datasets. For HF, we evaluate
SubLign’s ability to infer relative disease stage by introducing additional censoring
into the test sets. Specifically, we train SubLign using 80% data (train and validation
data) as usual. We then modify the remaining data (20%) by removing the first year
of patient observations, creating distorted test set (X’,Y”), and by removing the last
year of patient observations, creating (X”,Y”). The same amounts of observations
are removed from each set to control for length of observations. We infer alignment
values using the trained SubLign model: ¢’ from (X', Y”) and ¢§” from (X”,Y"”). By
construction, ¢’ > ¢”. We report the percentage of patients for which SubLign is able

to recover this relationship.

Hyperparameter Selection

For the heart failure dataset, we searched on a slightly smaller set of hyperparameters
for SubLign and found optimal hyperparameters of § = 0.001, no regularization, 10
latent dimensions, 20 hidden units for the multi-layer perceptron, 50 units for the

recurrent neural network, and learning rate of 0.01.

Baselines

We compare to seven different baselines. Our greedy baseline, denoted as KMeans-+Loss,
first clusters the observed values using k-means clustering. Then, using the inferred
labels s, we simultaneously learn #,, for each subtype and d; for each patient by min-
imizing:

N M D K
arg m’lén Z Z Z Z s = k|[Yija — f(zija+ 0i;00)] (6.1)

i=1 j=1 d=1 k=1
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using Broyden—Fletcher—-Goldfarb—Shanno. This naive clustering based approach (in
the space of the original data) attempts to correct for shifts in time. We also compare

to:

1. SubNoLign: a modified SubLign with no alignment value. This model is com-
parable to [318], which learns a deep patient representation while controlling

for model architecture
2. SuStaln [313]: a subtype and stage inference algorithm for disease progression,
3. BayLong: a Bayesian model of longitudinal clinical data [I53],
4. PAGA [307]: a state-of-the-art single-cell trajectory pseudo-time method,

5. Clustering with dynamic time warping (DTW) using kernel methods [74] and
soft-DTW [75],

6. SPARTan: A tensor factorization based approach for phenotyping from time-
series data [237]

Evaluation

We evaluate models on 5 trials, each with a different randomized data split and ran-
dom seed. For each trial, we learn on a training set (60%), find the best performance
across all hyperparameters on the validation set (20%), and report the performance
metrics on the held-out test set (20%). The same data folds are used across all
models for each trial. We report the performance on the test set over three metrics:
ARI, Swaps metric, and the Pearson correlation coefficient. See Chapter [5] for more

information about baselines and evaluation techniques.

6.3.4 Results
Semi-Synthetic HF Experiment

Although the real-world clinical datasets do not contain true alignment values, we
use the previously described HF setup with an artificially censored test set. We find

that SubLign predicts known alignment relationships in an altered dataset. When
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MODEL ARI

SubLign 0.58 + 0.12
SubNoLign 0.42 £ 0.14
KMeans+Loss 0.05 = 0.04
SuStaln [313] 0.12 + 0.11
BayLong [153] 0.04 £+ 0.17
PAGA [307] 0.02 £ 0.02
Soft-DTW [74] 0.46 £ 0.43
Kernel-DTW [8T]  0.21 + 0.36
SPARTan [237]  0.15 % 0.10

Table 6.1: Means and standard deviations over 5 trials for 619 patients in the PPMI
dataset including 423 Parkinson’s disease patients and 196 healthy controls.

evaluated on the manipulated test data, SubLign recovers the constructed relationship
of ' > §” with a higher performance (71% =+ 2%) over five trials compared to K-
Means+Loss (57.8 & 4%) and SuStaln (53.8 £ 3%). See appendix for full results.

Clinical Insights from Correcting for Misalignment

We validate SubLign subtypes learned from the HF and PD datasets using known
clinical findings. In Figure [6-3], we show the statistically significant baseline features
from our SubLign results on heart failure patients. In Figure[6-1], we show the statisti-
cally significant baseline features for our SubLign results on both Parkinson’s disease
patients and healthy controls. In Figure [6-2] we show the baseline features found
when using SubLign on only Parkinson’s disease patients. Supplementary material
Chapter [C] includes a table of baseline features, which are not included as input to
SubLign, with statistically significant differences in subtypes: 7 features (out of 26)
for PD and 11 features (out of 27) for HF.

Heart failure. Cardiologists classify patients into two groups based on ejection
fraction: HF with reduced ejection fraction (systolic HF) and HF with preserved
ejection fraction (diastolic HF). However, in our HF dataset, over 30% of patients
correspond to neither group based on clinical diagnosis. When evaluating SubLign,

we set K = 3, one more than the number of known groups, to explore a new subtype
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and to potentially better understand heterogeneity in the existing ejection fraction
classifications. [269]

Without ground truth subtype labels, we observe that SubLign finds systolic HF
and diastolic HF as statistically significant baseline features. Of the three subtypes,
subtype C corresponds to systolic HF, and subtype A and B correspond to diastolic
HF, mirroring known clinical heterogeneity in diastolic HF. [269] Of the two diastolic
HF subtypes, subtype A has a higher proportion of women while subtype B has
a higher rate of obese patients, both subgroups with documented heterogeneity in
diastolic HF. [87, 275] In contrast, the subtypes found by the KMeans+Loss baseline
do not include known systolic HF and diastolic HF' as statistically significant features.

See appendix for full results.

FEATURE A (321) B (298)
Biological Dad With PD 0.02 0.06
Sibling With PD 0.01 0.05
UPSIT Part 1 7.55 5.49
UPSIT Part 2 7.64 5.69
UPSIT Part 3 6.98 5.23
UPSIT Part 4 7.53 5.62
UPSIT Total 29.73 22.05

Figure 6-1: Subtypes found by SubLign for 619 Parkinson’s disease patients and
healthy controls. Only statistically significant means between subtypes according to
an ANOVA test with p < 0.05 with a Benjamini-Hochberg correction are listed.

FEATURE A (156) B (112) B (155)
Male 0.51 0.68 0.79
White 0.98 0.95 0.92

UPSIT Part 1 6.01 2.07 5.43
UPSIT Part 2 6.65 5.30 5.52
UPSIT Part 3 5.92 4.79 4.90
UPSIT Part 4 6.28 5.20 5.42
UPSIT Total 24.87 20.36 21.26

Figure 6-2: Subtypes found by SubLign for 423 Parkinson’s disease patients only.
Only statistically significant means between subtypes according to an ANOVA test
with p < 0.05 with a Benjamini-Hochberg correction are listed.
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FEATURE A (321) B (298)
Biological Dad With PD 0.028 0.068

Sibling With PD 0.010 0.058
UPSIT Part 1 7.558 5.493
UPSIT Part 2 7.648 5.695
UPSIT Part 3 6.988 2.238
UPSIT Part 4 7.539 5.624
UPSIT Total 29.73 22.05

Table 6.2: Subtypes found by SubLign from Parkinson’s disease patients and healthy
controls using sparsely collected biomarkers. Only statistically significant means be-
tween subtypes according to an ANOVA test with p < 0.05 are listed.

FEATURE A (674) B (444) C (416)
Age 75.98 74.73 69.43
Female 0.71 0.23 0.43
Anemia 0.23 0.16 0.14
Atherosclerosis 0.28 0.34 0.40
Atrial Fibrillation 0.44 0.55 0.43
Chronic Kidney Disease 0.27 0.34 0.34
Diastolic Heart Failure 0.50 0.36 0.06
Obese 0.56 0.65 0.46
Old Myocardial Infarction 0.12 0.14 0.24
Pulmonary Heart Disease 0.29 0.22 0.19
Systolic HF 0.09 0.27 0.53

Figure 6-3: Subtypes found by SubLign from heart failure patients using echocardio-
gram biomarkers. Only statistically significant means between subtypes according to
an ANOVA test with p < 0.05 with a Benjamini-Hochberg correction are listed.

In comparison, we show the KMeans+Loss subtypes on the heart failure dataset

(Table [6.3).

6.4 Discussion

There are numerous potential next steps to determine clinically interesting subtypes.

A natural next step would be to apply our methods to bigger and more hetero-
geneous datasets. For this chapter, we used datasets containing no more than a few
thousand patients to study Parkinson’s disease and heart failure. Applying these

methods on a larger-scale would yield an opportunity to study chronic conditions
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FEATURE A (240) B (802) C (492)

Age 71.567 74.565 73.793
Hyperlipidemia 0.529 0.448 0.541
Chronic Kidney Disease 0.346 0.273 0.370
Esophageal Reflux 0.375 0.259 0.289
Pulmonary Heart Disease 0.367 0.204 0.256
Kidney Disease 0.254 0.200 0.278
Atherosclerosis 0.196 0.131 0.201
Anemia 0.217 0.163 0.213
Obese 0.688 0.500 0.608

Table 6.3: Heart Failure KMeans+Loss subtypes (patient counts in parentheses),
described by mean baseline features. Only statistically significant features are listed
and do not include systolic and diastolic HF, two known phenotypes of HF.

over a wider time-scale, with a larger set of features, and across a larger patient
population. These methods could have a significant impact on better understanding

much larger longitudinal health datasets, e.g., the All of Us Research Program. [229]

It is important to consider heterogeneity in treatment selection, which can com-
plicate the subtyping process. Different clinicians may choose more aggressive or
conservative approaches across their patients. Without explicit model, these differ-
ences may confound the inference process of learning the disease progression across
subtypes. One simplistic modification would be to consider each new treatment proto-
col as a new subtype because of the potential resulting changes in disease progression.
However, because small changes in treatment protocol can have large effects, the num-
ber of subtypes can grow quickly. More explicit modeling of treatment protocol may

greatly improve our subtyping methods.

Lastly, we can broaden the type of health data used in the subtyping process.
Currently SubLign uses continuous temporal data as input, usually assumed to be
observational longitudinal data. We could consider in addition either static demo-
graphic data which is taken at baseline observation or with binary temporal data like
diagnostic information which is measured throughout the disease progression. Tra-
ditionally, multimodal machine learning [19] allows for the fusion of different types

of data, for example concatenating encoded representations, towards the goal of im-
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proved predictive model performance. Adapting these techniques towards disease

subtyping could be promising ground for future work.
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Chapter 7

Early Detection of Intimate Partner

Violence Using Radiology Reports

7.1 Introduction

Intimate partner violence (IPV) is defined as physical, sexual, psychological, or eco-
nomic violence that occurs between former or current intimate partners. While men
can also be affected, IPV is a gendered phenomenon largely perpetrated against
women by male partners. [I1I] The Centers for Disease Control report that more
than 1 in 3 women, and 1 in 10 men in the U.S. will experience physical violence,
sexual violence, psychological violence, and/or stalking by an intimate partner dur-
ing their lifetime. [29] IPV victims have a greater risk of health problems including
higher rates of mental health illnesses, chronic pain, reproductive difficulties, and
generally poorer health.[45, 281, 02| According to the United Nations, half of the
women who are intentionally killed globally are killed by their intimate partners or
family members. [230] It is essential to detect IPV victims early to provide timely
intervention.

Healthcare providers have the opportunity to screen patients for IPV, but several
barriers at both patient and provider levels limit the effectiveness. IPV victims often
seek treatment within healthcare settings; [306] however, despite its high prevalence,

[PV is substantially underdiagnosed due to underreporting of violence by the victim
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to health care providers. Because IPV victims generally do not present with obvious
trauma, even in emergency departments, [78] they do not readily receive IPV-specific

resources.

Imaging studies provide an objective measurement of patient status, especially for
vulnerable individuals who are not forthcoming. [260] In a prior observational study,
researchers identified IPV-related injury patterns including soft-tissue and muscu-
loskeletal injuries from imaging studies of victims who visited the emergency de-
partment. They also found that [PV victims receive more radiology studies than a

comparable control cohort. [116]

7.1.1 Contributions

In this work, we present algorithms to predict IPV and injury from radiology reports.
We predict IPV from a dataset of 24,131 radiology reports from 262 IPV victims who
were referred to a violence prevention support program and 794 controls from the
same hospital who were age and sex-matched based on a subset of the IPV victims.
We demonstrate strong quantitative results with our best model achieves a mean area
under the received operator curve (AUC) of 0.852. With a sensitivity of 95% and a
specificity of 71%, we are able to predict IPV a median of 1.34 years in advance of
entry into the violence prevent support program. To better detect severe forms of
IPV, we predict injury from a dataset of radiology reports from only IPV victims
with labels from four emergency radiology fellowship-trained radiologists. Our best

model achieves a mean AUC of 0.887.

We analyze our models for validity and usability. Because IPV can manifest
differently across race, [192] gender, [280] age, [253] and marital status, [265] we
present error analysis comparing accuracy, sensitivity, and specificity across these
groups using demographic information extracted from the clinical record. As IPV
continues to affect vulnerable individuals—especially in times of great crisis [295,
128]—we demonstrate how automated predictive algorithms can be used to identify

patients at high risk of IPV and injury.
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7.1.2 Related Work

Intimate Partner Violence

Early detection in IPV is critical to facilitate early intervention in the cycle of abuse,
thereby preventing worsening health conditions, [45] 281 02] life threatening injuries,
and potentially homicides. [271] The main obstacle to early intervention is underre-
porting by the patient due to variety of factors including shame, economic depen-
dency, or lack of trust in healthcare providers. [144] Automated screening can help
physicians identify high risk individuals—potentially from radiology studies [I71],

substance abuse disorders [I80], or other clinical data—and intervene quickly.

Clinical Prediction

Machine learning methods can assess patients and other individuals for different levels
of risk to allocate resources and improve clinical workflows. [121} [120] The strength of
machine learning lies in its ability to learn latent patterns from observational data and
make robust predictions on new and previously unseen patients. Researchers have
shown promising results about the use of machine learning on chronic diseases like
diabetes [251], rare conditions like preterm infant illnesses, [266] and public health
concerns like child welfare. [63, 86] In particular, supervised learning models excel
in structured settings with large datasets and clearly defined labels, e.g., radiology

report text and whether the patient ultimate enters a violence prevention program.

Natural Language Processing

Natural language processing (NLP) techniques can extract information from unstruc-
tured text. [310] In healthcare settings, researchers have leveraged NLP on clinical
text such as nursing notes, discharge summaries, and radiology and pathology re-
ports for disease surveillance [169] 113], cohort creation [59, 6], prediction of adverse
events [247, [151], 259], and diagnosis. [239, 31|

A promising new area of natural language processing research is the use of con-

textual word embeddings. Whereas traditional approaches represent text as a non-
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sequential bag of words or a sequence of static word embeddings, more recent ap-
proaches construct unique representations for each word (or sub-word) depending
on its surrounding context. For instance, the abbreviation “MS" may refer to mi-
tral stenosis or multiple sclerosis depending on the surrounding context. BERT [80)],
RoBERTa [199], AIBERT [I84], and numerous other recent models are pretrained
on large amounts of text using language modelling objectives and then fine-tuned
on a smaller task-specific dataset. Among other examples, large open-source clin-
ical datasets [I59] have enabled researchers to release clinical contextual word em-
bedding models. Clinical BERT is a publicly available BERT model initialized from
BioBERT [187] and further trained on intensive care unit notes [10]

7.2 Data

We predict IPV using a dataset of IPV victims and age-matched control patients.
We predict injury using a dataset of only IPV victims, with labels from emergency

radiologists.

7.2.1 IPV Patient Selection

The study cohort consisted of victims who were referred to a large academic hospital’s
violence prevention support program between January 2013 and June 2018. For the
early detection of IPV through IPV prediction, we randomly selected 265 women
reporting physical abuse. We excluded all victims without any radiological studies
from both groups or whose radiology report lacked clinically meaningful information
after data cleaning. The final IPV dataset consists of 262 patients total.

For injury prediction, we examine a wider set of patients from two groups of
victims referred to a large academic hospital’s violence prevention support program
between January 2013 and June 2018. For the first group, we randomly selected
940 victims out of 2948 reporting any type of IPV-physical, psychosocial, or sexual.
The second group comprised of all 308 IPV victims (including 265 women) reporting

physical abuse. We excluded all victims without any radiological studies from both
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groups or whose radiology report lacked clinically meaningful information after data

cleaning. The final TPV dataset consists of 685 patients total.

7.2.2 Control Group Selection

We age-matched against 265 women with physical abuse and filtered for patients with
at least one radiology study that was not canceled. We selected the first 795 of the
resulting 1006 patients to build our control cohort. Note that the control cohort was

matched against the 265 female IPV victims and does not contain any men.

7.2.3 Injury Labels

The full set of radiological studies and reports of the injury prediction patient cohort
were analyzed for the presence of injury for each study. Any radiological findings
unrelated to potential physical injury such as pancreatitis, malignancy, subarachnoid
hemorrhage due to aneurysm rupture, etc. were not recorded as “injury". All images
were reviewed by four emergency radiology fellowship-trained radiologists who were
aware of history of I[PV but were blinded to the date of identification of IPV and
clinical notes. The readers had full access to the radiology reports. The radiologists
also recorded any injuries such as soft tissue swelling, rib fracture, etc. which might
be overlooked or not mentioned in the original radiology reports. Each report was
reviewed separately and labeled with an injury or not. Of the 15,639 radiology reports

reviewed, 2.57% of them were found to have an injury.

7.2.4 Data Cleaning

For each radiology report, we remove extraneous information to improve clarity for
the predictive models. We remove all header and footer information, punctuation,
and line breaks. We change the text to lowercase and create tokens from each word
through bag of words or clinicalBERT. [10] Radiology reports that lack meaningful
information after this cleaning are removed from the dataset. Patients who do not

have any radiology reports after this step are removed from the dataset completely.
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7.2.5 Demographic Data

We extract demographic data from IPV victims and controls including age, gender,
race, and marital status. To structure free-form responses for some fields, we con-
solidate each field into several categories. For age, we discretize the field into < 30,
30-50, 51-65, and 66+. The average age of patients in dataset is 43.8 +18.5, with IPV
victims average age at 40.9+13.3 and control population average age at 46.3+4.7. For
race, we consider white, Black, Hispanic, and “other" categories with patients allowed
to belong to more than one group. For marital status, we categorize single, mar-
ried, and other. Note that because our control population was sex and age-matched
against a cohort of female IPV victims, our control population contains no men. We
do not use demographic information for predictions and use only radiology reports.

For summary statistics about the dataset, see Table [7.1]
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7.3 Methods

7.3.1 Experiment Setup

We train our models on 60% of the patients, validate and select hyperparameters
based on 20% of the patients, and report test performance on 20% of the patients. To
avoid data leakage, we split our data based on patient rather than radiology study.
Once a patient is assigned to train, validation, or test dataset, we assign all radiology
reports and labels for that patient to the corresponding dataset. We perform analysis
on five trials with shuffled splits of the data. All models are compared against the

same five dataset splits.

7.3.2 Models

We compare two tasks and five models. We predict IPV and injury based on collected
labels. We consider data from extracted demographic data, radiology reports, and a
combination of the two. We use logistic regression, random forest, gradient boosted
trees, neural network with bag of words representation, and neural network with
clinical BERT [I0] representation.

For logistic regression, we search over hyperparameters of regularization constant
C' =0.001,0.01,0.1, 1.,2.,5.] and regularization type of L1 or L2. For random forest,
we search over maximum depth of trees of 10, 50, 100, 500, or no maximum depth.
For gradient boosted trees, we search over hyperparameters learning rate of 0.01,
0.1, 0.5, or 1 and maximum depth of 2, 3, and 4. We use the sklearn-learn Python
package [235] with otherwise default settings.

We train two neural network models using the AllenNLP library. [I14] Both models
contain an embedding layer followed by two feed forward layers with rectified linear
unit function and linear activations. The first model represents each note as a vector of
word frequencies (“Bag of Words") projected down to a lower dimensional vector while
the second model leverages clinical BERT’s contextual word embeddings to represent

each note.
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To facilitate more rapid training on CPUs, we freeze the clinical BERT embeddings
and only train the feed forward layers. The first model was trained for 40 epochs
with an early stopping period of 5 epochs, and the second model was trained for 10
epochs due to computational constraints. Gradient norms were rescaled to a max of
5.0, and training examples were batched by note length to minimize excess padding.
Hyperparameters were selected according to validation set performance, resulting in

a learning rate of 0.001, weight decay of 0.0001 and batch size of 32 for both models.

7.3.3 Evaluation
Prediction and Predictive Features

We report the predictive performance as the area under the receiver operator curve
(AUC) on the same train, validation, and test datasets for all models compared. We
compute AUC means and standard deviations for the test datasets of the five shuffled
splits of the data. We present predictive features by finding words with high feature
importance. Because many compared models are non-linear, it is difficult to use
interpretability methods to find predictive words. As logistic regression performance
is comparable to that of other other non-linear methods (see Table [7.2)), we present
linear coefficients of the logistic regression across five test sets of the shuffled splits of

the data.

Error Analysis

As clinical models are used in increasingly high stakes decisions, it is important
that machine learning reduce health disparities [54] rather than amplify existing bi-
ases. [250] We audit our best prediction model for IPV and injury by comparing
accuracies, sensitivity, and specificity for different subgroups, including age, race,
gender, and marital status. [58] 52 [135] We compute means and standard deviations
of accuracy, sensitivity, and specificity for each subgroup with overall model sensitiv-
ity set to 0.95. Predicted probabilities are computed for test datasets and compared
to the true labels for the five shuffled splits of the data.
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Report-Program Date Gap

One practical measure of IPV prediction is how much earlier can our model predict
IPV compared to the date of patient’s entry into a violence prevention program. For
each radiology report, we compare the radiology report date with the entry date into
the program. We call this difference in dates the report-program date gap. A radiology
report with a large report-program date gap is one that occurs long before program
entry whereas a low report-program date gap occurs shortly before program entry. A
model that can make predictions with a high maximum report-program date gap per
IPV victim would allow us to allocate resources and support to high risk individuals
more efficiently. For each IPV victim, we compute the largest report-program date
gap for which the model predicts IPV above a chosen threshold.

We select the prediction threshold to satisfy sensitivity constraints. A trivial way
to maximize the metric would be to predict IPV for every patient in the dataset, which
would yield redundant results. However, IPV prediction requires high sensitivity
(true positive rate) since the clinical healthcare system can accommodate many false
positives—e.g., offering a conversation with a social worker—whereas false negatives
can be more dire—e.g., not providing an [PV victim with additional resources for
help. Accordingly, we fix our sensitivity level to be at least 95% and compute the
corresponding model threshold. We report the median earliest report-program date

gap for all IPV victims for whom the model predicts correctly.

7.4 Results

7.4.1 IPV and Injury Prediction Performance and Predictive

Features
We are able to predict IPV (best mean AUC of 0.852, random forest classifier) and
injury (best mean AUC of 0.887, random forest classifier). For more results, see

Table [7.2] We find that words that are most predictive for IPV and injury match

clinical literature in IPV injury patterns from radiology reports. In Table [7.3] we
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Model IPV Injury

Logistic Regression 0.841 £+ 0.033 0.866 £+ 0.016
Random Forest 0.852 4+ 0.022 0.887 4+ 0.019
Gradient Boosted Trees 0.842 + 0.027  0.858 4+ 0.030
Neural Network (Bag of Words) 0.849 £ 0.026  0.879 £ 0.010

Neural Network (clinicalBERT [I0])  0.843 £ 0.022  0.852 £ 0.021

Table 7.2: Model AUC means and standard deviations over five data splits for IPV
and injury prediction using radiology reports. Bold rows indicate best performance
for task.
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Figure 7-1: Left: Earliest possible report-program date gap per patient. Right:
Scatterplot and marginal histograms of report-program date gap (z-axis) and [PV
prediction probability (y-axis) for all radiology reports of IPV victims for random
forest classifier. See Section for definition of report-program date gap.

show words with highest feature importance from logistic regression for both tasks.
Findings include soft-tissue abnormalities such as swelling and hematomas and mus-
culoskeletal injuries such as fractures. These findings reflect prior research on 1PV

injury patterns. [116]

7.4.2 FError Analysis

We find differences in performance in subgroups of age, gender, race in our error
analysis (see Table . We focus on sensitivity because in cases of IPV and injury,
it is much more important to detect all true positives. In particular, older patients
(51-65, 66-+) have lower sensitivity for both IPV and injury prediction. Other groups

have low sensitivity for either IPV or injury prediction, but not both. For example,
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Task  Predictive words

IPV ordering, final, trauma, hematoma, technique, swelling, cell,
fracture, type, fractures, lymphoma, electronically, male, pan-
creatitis, reason, gms, implants, unresponsive, assault, none,
cancer, pregnancy, mca

Injury hematoma, fracture, fractures, swelling, trauma, subchorionic,
foreign, ankle, third, hand, nondisplaced, fall, stab, phalanx,
finger, deformity, skullbase, fifth, wound, laceration, sob, digit,
measuring

Table 7.3: Predictive words for IPV and injury averaged across five trials based on
linear coefficients of logistic regression. Underline indicates words consistent with
clinical literature.

Black patients have lower sensitivity for injury prediction. White patients have low
sensitivity for IPV prediction. It appears that patients who are not single or married
(e.g., widowed, separated) have lower sensitivity for injury whereas married patients

have lower sensitivity for IPV prediction.

7.4.3 Report-Program Date Gap

We can detect IPV from radiology reports much earlier than a patient’s entry into
a violence prevention program. We compute the report-program date gap, or the
gap between radiology report date and entry date into the program. The dataset
contains radiology reports many years before program entry (see Figure , left),
and our best model for IPV prediction (see Table [7.2) with sensitivity threshold to
95% as explained in Section yields a median report-program date gap of 1.34
years. For a visual representation of report-program date gap compared to predicted
probabilities for IPV victims, see Figure (right).

Most radiology reports occur close to the program entry date (z-axis marginal
histogram), and the model predicts that nearly all the IPV victims in the dataset
are IPV victims (y-axis marginal histogram). The increasing trendline in the scatter
plot indicates that as the date of program entry nears, the model increases the IPV

predicted probability.
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7.5 Discussion

We present a range of findings on the use of prediction algorithms to address IPV in
the clinical setting through the analysis of radiology reports. Our results demonstrate
several main takeaways. First, we are able accurately predict IPV and injury with
AUCs of 0.852 and 0.887, respectively. Second, the linear coefficients of our models
confirm known clinical findings about injury patterns for IPV victims. Lastly, while
our algorithm demonstrates some bias in the form of differences in accuracy, sensi-
tivity, and specificity with respect to age, gender, race, and marital status, we are
able to predict a median report-program date gap of over 1.34 years with sensitivity
of 95% and specificity of 71%.

Our work leads naturally to many directions for future research. One limitation of
our current work is that we consider one radiology report at a time for IPV and injury
prediction and exclude clinical history. Because IPV victims seek greater medical care
from clinical settings like the emergency department, [306, (78] patient data including
previous visits, clinical notes, and diagnoses could yield more accurate predictions and
therefore earlier detection. [I71] Additionally, predictive algorithms can help identify
the best intervention for an I[PV victim. Currently screening programs for IPV vary in
execution and effect, [228] and once screened, IPV victims face many obstacles before
leaving an abusive relationship. [I72] Deeper understanding of targeted interventions
could provide a crucial contribution to patient advocacy.

Deployment of a predictive model for IPV and injury detection faces several prac-
tical challenges. As with many machine learning algorithms in clinical settings, ques-
tion of generalization across hospitals [120] and across subgroups [58| raise concerns
about robustness and fairness. Moreover, better understanding of physician reliance
on, distrust of, and confusion towards predictive models in clinical settings is an active
area of research. [280]

We have shown in our analysis that automated detection through machine learning
can predict IPV and injury from radiology reports. We look forward to future work

towards the deployment of an IPV early detection model in a clinical setting.
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Chapter 8

Conclusion

In this dissertation, we explored several approaches to using machine learning towards
equitable healthcare. As we noted in Chapter (1|, the data and technical challenges
of machine learning approaches towards equitable healthcare are immense. While
much work remains, we hope that such methods will contribute to improved decision
making for patient care for all in the future.

We covered work that spans many facets of the machine learning development
pipeline, from the post-deployment discrimination considerations described in Chap-
ter [3 to better scoping of an understudied and under-reported problem in Chapter [7]
In tackling these problems, our focus was on learning machine learning approaches
that generalize across applications and address the challenges of health data, includ-
ing missing, noisy, and potentially biased data. In general, our research methodology
centered around the identification of sources of bias and inequity that can then inform
actionable steps for model developments and clinicians.

We believe that the creation of machine learning methods to distill large amounts
of heterogeneous health data into equitable clinical support will advance scientific
understanding, improved clinical protocols, and improved human health.

Here are a few exciting opportunities for work in this vein to continue.

Overreliance on Group-Based Membership In this dissertation and in much

of the contemporary work, the natural starting point for fairness considerations relies
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on group memberships, e.g., self-reported patient race or gender or socioeconomic
status. However, there are two main problems with these approaches. First, the
overreliance on these group-based memberships mean that equity assessments can be
brittle when the group membership is unavailable. Although these group memberships
are inferred, e.g. through proxy variables like surnames, these approaches can have
severe challenges. [161] Second, on a more fundamental level, the medical community
has long struggled with the idea of how to use race in clinical settings. [240], 299]

Instead of focusing on large pre-specified groups, we could explore how to char-
acterize heterogeneity in algorithmic performance in a more fine-grained method. As
one example, individual fairness

It is essential to develop algorithms for the places of greatest need in the health-
care system. This thesis has focused on risk stratification or scientific discovery from
longitudinal observational datasets as a necessary first step. As a natural next step,
new work in this area should consider adaptive models to assist clinical decision mak-
ing for changing dynamics in healthcare systems. For example, how can we update
models based on changing patient populations? How can we ensure that underrep-
resented patient populations do not suffer from eroded model performance? How do
we modify algorithmically-recommended treatment protocols based on new clinical
domain expertise? Understanding areas of greatest statistical uncertainty in clinical
systems can direct the development of relevant computational techniques, for exam-
ple overcoming limited labeled datasets using weakly-supervised or self-supervised

methods.

Shifting Power Towards Patient Another area of great promise is the newly
available combined and multimodal health datasets. Each modality of health data
contains additional signal—for example, the density of electronic health records, the
consistency of health app data, and the depth of genomic data. Given a lack of repre-
sentation in one modality, underserved patient populations may benefit from a wider
range of data sources. Additionally, machine learning methods have proven strong

in learning latent representations from datasets with different underlying structures.
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Health data itself may have underlying structure; it may be cyclical (e.g., menstrual
data), nonlinear (e.g., medical interventions), or non-monotonic (e.g., relapsing and
remitting disorders). A multifaceted understanding of health across a patient’s entire

life can allow for more targeted interventions.

Practical Tools to Address Algorithmic Bias for Policy Makers A focus on
real-world applications grounds all technical work towards algorithmic equity. When
working on problems that affect humans in high-stakes settings, it is essential for
model practitioners to deepen collaborations with policy markers to craft new and
update outdated regulation. Beyond healthcare, fields including insurance, areas
including employment, criminal employment, and education require specialized ap-
proaches towards algorithmic bias. How should policy makers audit algorithms for
bias? How should legal precedents like disparate impact and disparate treatment
adapt to algorithmic decision making? What is a reasonable burden of algorithmic

equity on model developers? Clarity on these questions will have widespread impact.

149



150



Appendix A

Additional Information for Chapter

A.1 Testing for significant discrimination

In general, neither I" nor I' can be computed exactly, as the expectations v, =
E,[L(Y,Y) | A = a] and 7, for a € A are known only approximately through a
set of samples S = {(z;,a;,y;)}", ~ p™ drawn from the (possibly class-conditional)

population p. The Monte Carlo estimate,
S " ~
Y)=— Ly, 9:)1]a; = al ,
W) =—2% Ly i:)1la: = d

with m, = 327 1[a; = a], may be used to form an estimate T'S(Y) = |y (Y) =5 (Y)].
By the central limit theorem, for sufficiently large m, 45(Y) ~ N (iq, 02/mg) and
(S —45%) ~ N(po — p1,02/mg + 02/my). As a result, the significance of T'5(Y)
can be tested with a two-tailed z-test or using the test of [308]. If sample sizes are
small and the target binary, more appropriate tests are available [37]. In addition, we
will often want to compare the discrimination levels F()A/), F(}A// ) of predictors Y,V
resulting from different learning algorithms, models, or sets of observed variables.
The random variable |I5(Y) — I'S(Y”)| is not Normal distributed, but is an absolute
difference of folded-normal variables. However, for any a € {—1,1}, Z, := a5 (Y) —

YY) = (18 (Y")—~5(Y")) is Normal distributed. Further, by enumerating the signs of
(vS(Y)=~5 (V) and (745 (Y")—~3(Y”)), we can show that [[5—I'%'| = Minaef—1,1} | Zal-
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As a result, to reject the null hypothesis Hy : I' = I, we require that the observed

values of both Z_; and Z; are unlikely under H, at given significance.

A.2 Additional experimental details

A.2.1 Datasets

e Adult Income Dataset [I9I]. The dataset has 32,561 instances. The target
variable indicates whether or not income is larger than 50K dollars, and the
sensitive feature is Gender. Each data object is described by 14 attributes which
include 8 categorical and 6 numerical attributes. We quantize the categorical
attributes into binary features and keep the continuous attributes, which results
in 105 features for prediction. We note the label imbalance as 30% of male adults
have income over 50K whereas only 10% of female adults have income over 50K.
Additionally 24% of all adults have salary over 50K, and the dataset has 33%

women and 67% men.

e Goodreads reviews [126], only included in the supplemental materials. The
dataset was collected from Oct 12, 2017 to Oct 21, 2017 and has 13,244 reviews.
The target variable is the rating of the review, and the sensitive feature is the
gender of the author. Genders were gathered by querying Wikipedia and using
pronoun inference, and the dataset is a subset of the original Goodreads dataset
because it only includes reviews about the top 100 most popular authors. Each
datum consists of the review text, vectorized using Tf-Idf. The review scores
occurred with counts 578, 2606, 4544, 5516 for scores 1,3,4, and 5 respectively.
Books by women authors and men authors had average scores of 4.088 and 4.092

respectively.

e MIMIC-III dataset [I58]. The dataset includes 25,879 adult patients admit-
ted to the intensive care unit of the Beth Israel Deaconess Medical Center in
downtown Boston. Clinical notes from the first 48 hours are used to predict

hospital mortality after 48 hours. Of all adult patients, 13.8% patients died in
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the hospital. We are interested in the difference in performance between the
five self-reported ethnic groups and following data sizes and hospital mortality

rates.

Race # patients % total Hospital Mortality

Asian 583 2.3 14.2
Black 2,327 9.0 10.9
Hispanic 832 3.2 10.3
Other 3,761 14.5 18.4
White 18,377 71.0 13.4

Table A.1: Summary statistics of clinical notes dataset

A.2.2 Synthetic experiments

To illustrate the effect of training set size and model choice, and the validity of the
power-law learning curve assumption, we conduct a small synthetic experiment in
which p(A =1) = 0.3 and X ~ N (pa,0%) with pg =0,y = 1,00 = 1,01 = 2. The
outcome is a quadratic function with heteroskedastic noise, Y = 2X2% —2X +.1+€X?,
with € ~ N(0,1). We fit decision tree, random forest and ridge regressors of the
outcome Y to X using default parameters in the implementation in scikit-learn [235],
but limiting the decision tree to depth T" < 4. The size of the training set is varied
exponentially between 2° and 2'7 samples, and at each size, trees are fit 200 times. In
Figure , we show the resulting learning curves 7,(Y, n) and 7, (Y, n) as well as fits
of Pow3 curves to them. Shown in dotted lines are extrapolations of learning curves
from different sample sizes, illustrating the difficulty of estimating the intercepts d,

and the Bayes error with high accuracy.

A.2.3 Clinical notes

Here we include additional details about topic modeling. Topics were sampled using
Markov Chain Monte Carlo after 2,500 iterations. We present the topics with highest
and lowest variance in error rates among groups in Table [A.2] Error rates were com-

puted using a logistic regression with L1 regularization over 10,000 TF-IDF features
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Figure A-1: Inverse power-laws (Pow3) fit to generalization error as a function of
training set size on synthetic data. Dotted lines are extrapolations from sample sizes
indicated by black stars. This illustrates the difficulty of estimating the Bayes error
through extrapolation, here at Ng = 3-10~* and N; = 7- 1072 respectively.

using 80/20 training and testing data split over 50 trials. Based on the most rep-
resentative words for each topic, we can infer topic descriptions, for example cancer
patients for topic 48 and cardiac patients for topic 45.

We identified patients with notes corresponding to topic 48, corresponding to
cancer, as a subpopulation with large differences in errors between groups. By varying
the training size while saving 20% of the data for testing, we estimate that more data
would not be beneficial for decreasing error (see Figure . The mean over 50
trials is reported with hyperparameters chosen for each training size. Instead, we
recommend collecting more features (e.g. structured data from lab results, more
detailed patient history) as a way of improving error for this subpopulation.

Furthermore, we compute the 95% confidence intervals for false positive and false

negative rates for a logistic regression with L1 regularization in Figure and

Figure [A-2D]

A.3 Exploring model choice

If a difference in bias is the dominating source of discrimination between groups,
changing the class of models under consideration could have a large impact on dis-

crimination.Consider for example Figure 1lc in which the true outcome has higher
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Topic Top words Asian Black Hispanic Other White
no(t pain present
normal edema tube
31 history pulse absent 5.9 8.4 17.6 30.8 11.1
left respiratory
monitor
hospital lymphoma
continue s/p unit bmt
thrombocytopenia
line rash
bowel abdominal abd
abdomen surgery s/p
small pain
obstruction fluid ngt
artery carotid
aneurysm left
identifier numeric
vertebral internal clip
mass cancer
metastatic lung
48 tumor patient cell left  21.6 25.4 12.3 30.2 18.5
malignant breast
hospital

17 343 136 34.9 30.2 26.0

43 16.6 118 5.7 26.8 13.2

45 5.4 2.3 3.8 204 10.0

neo gtt pain resp
1 neuro wean clear plan 3.3 1.8 1.6 3.6 2.7
insulin good
assessment insulin
mg/dl plan pain
meq /] mmhg chest
cabg action
chest reason tube clip
left artery s/p
pneumothorax cabg
pulmonary
c/o pain clear denies
25 oriented sats plan 7.3 3.9 5.9 8.2 6.5
alert stable monitor
pacer pacemaker icd
47  s/p paced rhythm ccu 8.2 9.1 8.3 13.8 10.1
amiodarone cardiac

0.3 0.6 0.9 3.6 2.2

3.2 9.5 2.5 5.6 4.0

Table A.2: Top and bottom 5 topics (of 50) based on variance in error rates of groups.
Error rates by group and topic p(Y # Y|K, A) are reported in percentages.
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® Asian A
Asian]  [r——
Black A
Hispanic ——
Other = =
White =

0.55 0.60 0.65 0.70

False negative rate
(a) The false negative rates
for logistic regression with
L1 regularization do not dif-
fer across five ethnic groups,
shown by the overlapping
95%-confidence intervals in-
tervals, except for Asian pa-
tients.

Figure A-2:

Black +  Hispanic u

Asian
Black
Hispanic
Other

White

0.09 0.10 0.11 0.12 0.13
False positive rate

(b) The false positive rates
also does not differ much
across groups with many
overlapping intervals. Note
that Asian patients have
high false positive rate but
low false negative rates.

Other *  White

0.30 M
025
20| =/ °

= 0.15

0.10 "‘M——/

5000 10000 15000 20000
Training data size

Error enrichment

(¢) Adding training data
size on error enrichment for
cancer (topic 48) does not
necessarily reduce error for
all groups. This may suggest
we should focus on collecting
more features instead.

Additional clinical notes experiments highlight the differences in false

positive and false negative rates. We also examine the effect of training size on cancer
patients in the dataset.

complexity in regions where one protected group is more densely distributed than the
other. Increasing model capacity in such cases, or exploring other model classes of
similar capacity, may reduce as long as the bias-variance trade-off is beneficial. Bias
is not identifiable in general, as this requires estimation or bounding of noise com-
ponents N,, or an assumption that they are equal, Ny = N, or negligible, N, ~ 0.
However, as noise is in-dependent of model choice, a difference in bias of different
models is identifiable even if the noise is not known, provided that the variance is
estimated. With AB = By — By, and AV =V, — V4, and f/, 1% , two predictors for
comparison, we may test the hypothesis Hy : AB(Y)+AV(Y) = AB(Y') + AV (Y").

A.4 Regression with homoskedastic noise

By definition of N, we can state the following result.

Proposition 2. Homoskedastic noise, i.e. Yx € X,a € A: N(z,a) = N, does not

contribute to discrimination level T under the squared loss L(y,y') = (y — y')?.
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Proof. Under the squared loss, Va : N, = Ex[N(X,a)] = N, as ¢,(z,a) = 1. O

In contrast, for the zero-one loss and class-specific variants, the expected noise

terms N, do not cancel, as they depend on the factor ¢, (z, a).

A.5 Bias-variance decomposition. Proof of Theo-

rem [1.

Lemma A1 (Squared loss and zero-one loss). The following claim holds for both:
a) L(y,y') = [y # /] the zero-one loss with ¢1(z,a) = 2E[1[Yp(x,a) = §.(z,a)] — 1
and ca(x,a) = {1, if §*(z,a) = §"(x,a); —1 otherwise},

b) a) L(y,y') = (y — v')* the squared loss with ci(z,a) = co(x,a) = 1.

E[L(Y,Yp) | X =2, A =a] = ¢;(x,a)E[L(y,Y™") | z,d]

A

+ L(gjm(x,a),g)*(x,a)) +C?E[L(Qm(xva)7YD) | x,a] :

Proof. See [83]. O

Lemma A2 (Class-specific zero-one loss). With L(y,y') = [y # ¢/] the zero-one loss,
it holds with ¢1(x,a) = 2B[1[Yp(x,a) = §.(z,a)]] — 1 and co(x,a) = {1, if §*(x,a) =

9™ (x,a); —1 otherwise}

Vy € {0,1} : E[L(y,Yp) | X =z, A=d] =

Cl(xva)[’(%f/*) + L(Qm(l’, CL),Q*<I,CL)) + CQE[L(Qm(‘Tva%?D) | JJ,CL] .

N

Proof. We begin by showing that L(y, Vp(z,a)) = L(§*(z, a), Yp(z, a))+co(z, a) L(y, §* (z, a))
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with ¢o(z,a) = {+1, if §*(x,a) = Yp(z,a); —1, otherwise}.

(

0, if Yp(x,a) = 9*(x,a) =0

0, if Yp

(z,a) =y (z,

—1—co(x,a), if Yp(z,a) =0,9*(z,a) =
(z,a) = 1,9"(
(z,a)

1 —¢o(x,a), if Yp(x,a) = §*(x,a) =1

\

A~

As the above should be zero for all options, this implies that ¢g = 2 * 1[Yp(x,a) =
?)*(ZL‘, a)] -1

We now show that,
E[L(§"(x,a),Ya) | #,a] = L(§"(z,a),§" (x,a)) + ca(z, @)E[L(§"(x,),Y) | z,a] .
We have that if §™(z,a) # 9*(z,a),

E[L(g*(x7a)7YD) | x,a] :p(@*(l’,a) # }A/D | :L‘,a) =1 —p(g)*(m,a) = YD | x, CL)

=1 _p@m(% CL) = YD | JI,CL) =1- E[L(gm(xva’)vffl)) ‘ JJ,CL]
= L(§* (2, ), 5" (x,a)) = E[L(§" (z,a), YD) | z,d]
)

— L("(2,0), 5" (x, @) + cal, )E[L (™ (z,a), V) | 2.0

A similar calculation for the case where §™(z,a) = y*(x, a) yields the claim.

Finally, We have that

E[L<y7 YD)] = E[L(g)*(a:, a)v YD) + Co(xv G)L(y7 Q*(x, CL)) | Z, CL]
= E[L(§"(x,a), YD) | 2, a] + Elco(x, a) | x,a]L(y, 7" (z, a))
= L(J*(x,a), 1™ (x, ) + co(z, )E[L(§™(x,a), YD) | z, ]

+Elco(z,a) | z,a]L(y,§" (x, a))

which gives us our result. O
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Since datasets are drawn independently of the protected attribute A,

F.(Y) = Ep[Exy[L(Y, Yp) | D,A=d]| A=d
= Ex[Epy[L(Y,Yp) | X,A=a] | A=d]

—Ex[B(Y,X,a)+ (X, a)V(Y,X,a) + (X, a)N(X,a) | A=a]

and an analogous results hold for class-specific losses, Theorem 1 follows from lem-

mas [ATHA2

A.6 Difference between power law curves

Let f(z) = ax™® 4+ ¢ and g(x) = dz~° + h. Then d(z) = f(z) — g(x) has at most 2

local minima. We see this by re-writing d(x)
d(r) =ar 4 ¢ —da°

and so

which has a unique positive root

ba . 1
T = (%)H :

Since f(x) has a single critical point (for z > 0), f(x) can switch signs at most twice.

The curves f(z) =% + 1 and g(z) = 22 intersect twice on z € [0,00]. If b = e, d(z)
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has a single zero,

yields
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Appendix B

Additional Information for Chapter

B.1 Topic Model for Likelihood of Hospitalization

See Table to for the most representative conditions, procedures, specialty
visits, and drugs for the 50 topics produced in the Likelihood of Hospitalization topic

modeling.
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B.2 Topic Model for High-Risk Pregnancy

See Table to Table for the most representative conditions, procedures,
specialty visits, and drugs for the 50 topics produced in the High-Risk Pregnancy

topic modeling.
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Appendix C

Additional Information for Chapter

e In Section [C.1], we present the proof for conditions of identifiability and varia-

tional lower bound derivation.

e In Section we describe additional experiment setup details for the sigmoid,

quadratic, and clinical experiments.

e In Section we present additional experimental results on discovering sub-
types including visualization of subtypes, model misspecification, and missing-

ness methods.

— Visualizations of subtypes show that SubLign subtypes match the data

generating function closer than SubNoLign.

— Model misspecification results show that SubLign is robust to misspecifi-

cation from cubic spline data generation.

— Missingness method experiments show that SubLign outperforms baselines
for various missingness rates with comparable performance to some base-

lines for no missingness.
e In Section [C.4] we present quadratic experiment results.

— An additional six synthetic experiments show that SubLign outperforms

baselines.
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— In cases where alignment values are not identifiable (e.g., one subtype’s
data generating function is a flat line), SubLign cannot recover those align-

ment values.

C.1 Identifiability and Inference

C.1.1 Identifiability

Algorithm 3 Restated procedure from Algorithm [2| for the identification of model
parameters

1:

10:

11:
12:

13:
14:

Input: Observation times X € RV*M biomarkers Y € R¥*MxD  holynomial
degree P, invertible function f

Output: 0F, 6;,...,0n, s1,..., sy for each patient

Step 1: Transform the observed biomarkers; Q = f~1(Y)

Step 2: Obtain time-shifts using a single biomarker;

a) For each patient i, estimate the parameters 0'; of k(z;0';) using a single
biomarker ((z;1,4i1),-- -, (Zin, gim) via polynomial regression,

b) Compute up to P roots of polynomial m(x,éli) for each patient i as R; =
{r1,...,rp} and set § = min Real(R;) where Real denotes the real part of (po-
tentially complex) roots.

c) Estimate 6'; for polynomials in a canonical position using ((z;1 —
&isin)s - (i — &, @) via polynomial regression,

d) Cluster 67; across patients via K-means clustering to yield cluster identities
S1y...,SN
e) Yk, m = min{¢;|is.t. s; =k} and Vi, §; =& — n;,
Step 3: Estimate true polynomial coefficients using shifted observation
times;
for biomarker 7 =1 to J do R
For each patient, estimate the parameters 67 of r(z;69;) using ((x1, —
S, q114]), - s (1, — 6y 1. [Jj]) via polynomial regression,
end for
Return 6F = [01]...107],{61,..., 08}, {51, .., 5N}

We restate our assumptions.

Assumption 1. f is invertible, and x(x,0) = 0y + 2521 6,2P describes a family of

polynomial functions in x with parameter # and degree P > 0. The parameters of

each subtype are unique.
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Assumption 2. M > P + 1, i.e., for each object, across all the D features, we

observe at least P + 1 values.

Assumption 3. For each subtype sy, there exists an object i whose alignment ¢; = 0.

We provide the proof for Theorem [I] below:

Proof. The proof is constructive; i.e. we give an algorithm for the identification of the
parameters of the model in Equation|5.4] The algorithm for identification is presented
in Algorithm 2] and proceeds in three steps.

Step 1: The first step transforms the observed biomarkers by applying the inverse
of function f, which exists by Assumption [I} This leaves us with data as:

S Wim) = K(@ign + 6;;0%) Yie Nnme M

i.e. for all bio-markers, across all patients, we have data arising from different poly-
nomial functions.
Step 2: Without loss of generality, the second step uses the first biomarker to

identify the values of §; for each patient.

a) First, we estimate the polynomial coefficients for each patient separately; we

are guaranteed exact recovery of the coefficients by Assumption [2}

b) Next we find the roots for each polynomial. If they are complex, consider their
real part, and define & to be the smallest root of the polynomial. At least
one (real or complex) root is guaranteed to exist by the Fundamental Theorem
of Algebra for every non-constant polynomial (Assumption [1)). Note that the
choice of using the smallest root is arbitrary; what matters is that a consistent

choice of root is selected for each patient’s polynomials.

c) The goal of this step to learn a new polynomial for each patient which is trans-

lated to ensure that the root selected in step b) lies at x = 0.
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To do so, we first shift the observational time-steps by &;, and we re-estimate

the coefficients of each shifted polynomial.

We make use of the fact that if & is the smallest complex root of a polynomial
r(z) then the polynomial x(z + ;) has its smallest complex root at 0. We can
recover the parameters of this polynomial exactly by shifting our observations

and re-estimating the coefficients.

This operation recovers the coefficients of every patient’s polynomial in its
canonical position i.e. a translated polynomial whose the smallest root (or

its real component) is at x = 0.

This step can be viewed as a de-biasing step which allows us to re-estimate
6 without while ignoring the effect that left-censorship has on parameter esti-

mates.

d) We cluster the coefficients estimated in step c). By construction, we know that
s; = sy <= 0; = 0y which guarantees that clustering recovers the true-

underlying subtype for each patient (up to a permutation over K choices).

e) Finally we stratify patients by their subtype, and we define §; as the difference
between their smallest root and the smallest value of §; among all other patients

within that subtype.

By Assumption [3, we know that for each subtype, there exists a patient for
whom ¢§; = 0, this reference patient will also be the one whose polynomial has
the smallest root. We note here that without Assumption [3| we would still have

identification of ¢; up to a constant.

Therefore, by shifting each patient’s smallest root by their reference patient’s

smallest root, we can recover the original time-shifts.

Step 3: Given the values of d1,...,0y from Step 2, we can now estimate the true
values of the polynomial coefficients exactly in the noiseless setting via polynomial

regression. 0
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C.1.2 Variational Lower Bound

log p(Y[X;7)
= log/ p(Y,Z,0|X;~)dZ do
7,

p(Y, Z,6|X;7)
q(Z|X,Y;9)

p(Y,Z,6|X;7)
q(Z|X,Y;9)

p0)p(Y, Z| X, 6;7)
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C.2 Experiment Setup Details

C.2.1 Optimal hyperparameters for sigmoid and clinical base-

lines

For all models, we run for 1000 epochs and use the model with the best training loss
over the 1000 epochs for evaluation. For the sigmoid dataset, the optimal hyperpa-
rameters are latent space of dimension 5, 100 hidden units in the RNN, 50 hidden

units in the multi-layer perceptron, learning rate of 0.01, and no regularization.

C.2.2 Missing values

SubLign allows for missing biomarker dimensions and missing patient visits to ac-
commodate the sparsity of clinical data. For missing visits, we adapt the recognition
network to handle variable sequence lengths. We mask out missing observations so
they have no contribution to the learning stage, except for the recognition network in-
put. For the recognition network input, we linearly interpolate missing values for each

patient. For baselines that cannot handle missing data, we also linearly interpolate
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missing values for each patient.

C.2.3 Statistical significance

To estimate robustness of our models, we evaluate our held-out performance over 5
trials. Each trial consists of randomized 60/20/20 training/validation/test data folds
and a different random seed. In order to compare models across 5 trials, we report
the means and standard deviations from the 5 trials. When the reported performance
intervals overlap, we compute the statistical significance of the pairwise differences

using a t-test and a Benjamini-Hochberg correction of 0.05.

C.3 Additional Experiment Results

e In Section [C.3.1] we visualize the SubLign and SubNoLign subtypes for sigmoid
data.

e In Section [C.3.2] we present results on model misspecification.

e In Section [C.3.3] we present the empirical results with varying levels of miss-

ingness.

C.3.1 SubLign and SubNoLign subtype visualization

In Figure we show the visualization for SubLign subtypes compared to SubNo-
Lign for the first dimension of the sigmoid dataset. We find that the visualization of
the SubNoLign subtypes are not as close to the data generating function as the Sub-
Lign subtypes. All other parameters, data dimensions, and experimental conditions

are held constant.

C.3.2 Model Misspecification

Because our model implicitly assumes a functional form (e.g., sigmoid or quadratic),
we investigate learning under model misspecification. With synthetic datasets cre-

ated using splines on 5 randomly generated control points with the same noise rates,
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Biomarker

=+ True function
=== SubNoLign subtype
=== SubLign subtype

0 2 4 6 8 10
Disease stage

Figure C-1: One of three dimensions of learned SubLign and SubNoLign subtypes
from sigmoid synthetic data plotted on top of original data generating functions.

dimensions, and censoring as the original experiments, we create two settings: one
where the control points are monotonically increasing (using SubLign with a sigmoid
f function) and one with no restrictions (using SubLign with a quadratic f function).

We run SubLign and use a sigmoid f function the monotonically increasing control
points (labeled “Incr") and use quadratic f function for splines generated without
restrictions (labeled “Any").

In Table we present results on model misspecification over 2 settings and
5 trials of SubLign learning on data generated from splines with 5 control points
over 3 dimensions. We conclude that SubLign is robust against reasonable model

misspecification using piecewise polynomial data.

MODEL ARIT PEARSON 1T SWAPS |

SubLign-Incr 0.82 +0.17 0.83 4+ 0.08 0.14 £+ 0.04
SubNoLign-Incr 0.77 £ 0.10 - -
KMeans+Loss-Incr  0.58 £ 0.11 0.43 £ 0.09 0.21 &+ 0.06

SubLign-Any 0.46 £ 0.12 0.67 £ 0.39 0.22 + 0.14
SubNoLign-Any 0.29 £ 0.10 - -
KMeans+Loss-Any 0.22 + 0.07 0.23 £ 0.21 0.48 + 0.11

Table C.1: Model misspecification experiment means and standard deviations using
5 cubic splines datasets.

C.3.3 Missingness Experiments

Here we present experiments varying the amount of missingness in synthetic datasets.

Following the Parkinson’s disease dataset (PPMI) where 47-60% of the biomarkers
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are missing with a maximum of 17 observations for each patient, we modify our
synthetic sigmoid dataset and remove biomarkers uniformly randomly with different
missingness rates and M = 17.

Additionally we experiment with two missingness imputation methods for the
baseline models. In addition to the linear interpolation used in the results presented
in the main paper, we experiment with two other imputation methods: chained equa-
tions (MICE) [304] and a multi-directional recurrent neural network (MRNN) de-
signed for multivariate time-series [312].

We find that SubLign outperforms baselines across higher missingness rates al-
though with no missing observations, some baselines are comparable. In Table [C.2]
we show results with 50% of the data missing uniformly random. In Table [C.3] we
show results with 25% of the data missing uniformly random. In Table[C.4] we show
results with none of the data missing uniformly random.

Table C.2: Experiments on synthetic data with 50% of the data missing. Baselines
include SuStaln [313], BayLong [153], PAGA [307], SPARTan [237], clustering using

Soft-DTW [74], and clustering using Kernel-DTW [81]. Imputation methods include
MICE [304] and MRNN [312).

IMPUTATION METHOD MODEL ARI 1 SWAPS | PEARSON 1

- SubLign 0.813 + 0.024 0.299 + 0.019 0.613 £ 0.049

— SubNoLign 0.789 + 0.058 - -

MICE KMeans+Loss 0.780 + 0.046 0.327 £ 0.048 0.503 £ 0.018
SuStaln 0.459 + 0.010 0.243 £+ 0.004 0.160 £ 0.030
BayLong 0.028 + 0.003 0.480 + 0.002 0.009 + 0.003
PAGA 0.003 + 0.002 0.4944+ 0.028 0.034 + 0.001

- Soft-DTW 0.081 + 0.004 — -

— Kernel-DTW  0.013 £ 0.002 - —
SPARTan 0.081 + 0.013 - —

MRNN KMeans+Loss 0.783 4+ 0.071 0.321 £ 0.120 0.562 + 0.042
SuStaln 0.450 + 0.120 0.304 + 0.120 0.434 £+ 0.120
BayLong 0.028 £ 0.003 0.480 + 0.002 0.009 + 0.003
PAGA 0.004 + 0.001 0.4924 0.031  0.032 £ 0.003
Soft-DTW 0.094 + 0.005 - -
Kernel-DTW  0.000 + 0.003 - -
SPARTan 0.091 £ 0.005 - -
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Table C.3: Experiments on synthetic data with 25% of the data missing. Baselines
include SuStaln [313], BayLong [153], PAGA [307], SPARTan [237], clustering using
Soft-DTW [74], and clustering using Kernel-DTW [81]. Imputation methods include
MICE [304] and MRNN [312].

IMPUTATION METHOD MODEL ARI 1 SWAPS | PEARSON 1

- SubLign 0.811 + 0.406 0.309 + 0.028 0.554 + 0.070

- SubNoLign 0.743 = 0.040 — -

MICE KMeans+Loss 0.741 + 0.041 0.332 4+ 0.048 0.508 + 0.014
SuStaln 0.611 + 0.406 0.309 £ 0.028 0.554 £ 0.070
BayLong 0.111 £ 0.010 0.464 £+ 0.071 0.011 4+ 0.058
PAGA 0.010 + 0.003 0.433 £+ 0.007 0.048 + 0.030
Soft-DTW 0.151 £ 0.031 - -
Kernel-DTW  0.002 + 0.004 — -
SPARTan 0.168 + 0.008 - -

MRNN KMeans+Loss 0.653 + 0.029 0.308 £ 0.358 0.497 4+ 0.025
SuStaln 0.615 4+ 0.112 0.244 + 0.004 0.577 + 0.020
BayLong 0.108 + 0.016 0.461 £+ 0.005 0.010 £ 0.041
PAGA 0.011 + 0.002 0.413 £ 0.005 0.031 £ 0.002
Soft-DTW 0.103 £ 0.011 - -
Kernel-DTW  0.006 + 0.004 — -
SPARTan 0.171 £ 0.041 - -

C.4 Quadratic Data Results

We describe an additional set of experiments using the quadratic functional family.

These experiments were designed to better understand where SubLign is able to learn

clustering and alignment metrics well.

e In Section [C.4.1] we detail the dataset creation.

e In Section [C.4.2] we outline the optimal hyperparameters for the quadratic

experiments.

e In Section[C.4.3] we describe the empirical results for the quadratic experiments.

C.4.1 Setup

For the quadratic dataset, we generate data from 2 subtypes and 1 dimension with

generating functions. See Table for subtype generating functions. Similar to the

271



Table C.4: Experiments on synthetic data with 0% of the data missing.

MODEL ARI 1 SWAPS | PEARSON 1
SubLign 0.980 + 0.000 0.273 &£ 0.012 0.714 £ 0.022
SubNoLign 0.809 + 0.382 - —
KMeans+Loss 0.980 + 0.016 0.057 £+ 0.112 0.480 + 0.039
SuStaln [313] 0.765 = 0.012 0.144 + 0.004 0.477 £ 0.020
BayLong [153] 0.201 + 0.166 0.451 + 0.050 0.011 £ 0.021
PAGA [307] 0.251 + 0.031 0.481 & 0.003 0.015 £ 0.002
Soft-DTW [74] 0.974 + 0.015 - —
Kernel-DTW [81] 0.949 + 0.040 - -

SPARTan [237]  0.251 + 0.031 - —

sigmoid synthetic dataset, for each patient in the datasets, we draw subtype x ~
Bern(0.5). The true disease stage is drawn t,, ~ U(0,77) for observation m € [M].
The biomarker values are drawn y,, ~ N(pm, S) where fin, = 37y 5 1(5 = k) fi(tm).
The observed disease time x,, is shifted such that the first patient observation is at
time 0. Therefore x,, = t,, — 7 where 7 = minjey) t; and is the earliest true disease
time for the patient. We sample N = 1000 patients with M = 4 patient observations
times with noise S = 0.25 and upper time bound 7' = 10.

We construct our quadratic experiments such that we examine different model
classes (i.e. flat, linear, quadratic) as well as examine subtypes that are overlapping
or separable.

We include baseline results for the quadratic datasets. Note that SuStaln [313]
assumes monotonically increasing functions and is therefore omitted. We denote

degenerate solutions with dashes.

C.4.2 Optimal hyperparameters for quadratic datasets

For the synthetic quadratic dataset corresponding to Figure[C-2] we found the optimal
hyperparameters for SubLign as no regularization, 5 hidden dimensions for the multi-
layer perceptron, 200 latent dimensions, 200 units for the recurrent neural network,
and learning rate of 0.001.

For the synthetic quadratic dataset corresponding to Figure [C-3, we found the
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FIGURE DESCRIPTION SUBTYPE GENERATING
FuNcTIONS

C-2 Quadratic curve and flat  fi(¢) = 0.25¢% — 2.2t + 5,
line, separable

folt) =2

C-3 Quadratic curve and flat  f;(t) = 0.25¢t* — 2.2t + 5,
line, overlapping

C-4  Quadratic curve and fi(t) = 0.25t% — 2.2t + 5,
sloped line, separable

fo(t) = 0.4t

C-5 Quadratic curve and f(t) = 0.25¢t% — 2.2t + 5,
sloped line, overlapping

folt) =04t — 5

C-6 Quadratic curves in op- fi(t) = 0.25¢% — 2.2t + 3,
posite directions, separa-
ble

fo(t) = —0.25t2 +2.2 -5

C-7 Quadratic curves in op- fi(t) = 0.25t> — 2.2t + 7,
posite directions, over-

lapping

fa(t) = —0.25¢* +2.2 — 5

Table C.5: Quadratic dataset subtype generating functions and corresponding figure
numbers

optimal hyperparameters for SubLign as no regularization, 5 hidden dimensions for
the multi-layer perceptron, 200 latent dimensions, 200 units for the recurrent neural

network, and learning rate of 0.001.

For the synthetic quadratic dataset corresponding to Figure [C-4] we found the
optimal hyperparameters for SubLign as no regularization, 5 hidden dimensions for
the multi-layer perceptron, 200 latent dimensions, 200 units for the recurrent neural

network, and learning rate of 0.001.

For the synthetic quadratic dataset corresponding to Figure [C-5 we found the
optimal hyperparameters for SubLign as no regularization, 5 hidden dimensions for

the multi-layer perceptron, 200 latent dimensions, 200 units for the recurrent neural

273



network, and learning rate of 0.001.

For the synthetic quadratic dataset corresponding to Figure [C-6] we found the
optimal hyperparameters for SubLign as no regularization, 5 hidden dimensions for
the multi-layer perceptron, 200 latent dimensions, 200 units for the recurrent neural
network, and learning rate of 0.001.

For the synthetic quadratic dataset corresponding to Figure [C-6] the optimal
hyperparameters are latent space of dimension 10, 20 hidden units in the RNN, 50
hidden units in the multi-layer perceptron, learning rate of 0.01, and no regularization.

For the synthetic quadratic dataset corresponding to Figure [C-7], the optimal
hyperparameters are latent space of dimension 5, 100 hidden units in the RNN, 50

hidden units in the multi-layer perceptron, learning rate of 0.01, and no regularization.

C.4.3 Results

In Figures to [C-7, we present the quantitative results of 6 different quadratic
cases as well as a plot of example data and the data generating subtypes. In each,
we see that SubLign or SubNoLign outperforms the baselines.

When the subtypes are separable (i.e. Fig[C-3] [C-5] and [C-7]), SubLign handily
recovers the subtypes. When the subtypes are not separable (i.e. Fig , ,
and , SubLign still outperforms baselines.

We note that alignment metrics are especially challenging to recover when one
subtype is a flat or sloped line as in with Figure to [C-7] Because the alignment
metric is entirely unidentifiable, the swaps and Pearson metrics suffer. Note that for
the swaps metric, 0.5 corresponds to random guessing, so the lack of identifiability of
one of the subtypes would cause a swaps metric of 0.25. When the second subtype
has a changing slope, as in Figure [C-6] the alignment metrics are more recoverable.

When the model is degenerate and does not return the alignment values, we denote

this with an empty cell.
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Biomarker

6 8 10

True disease staae

MODEL ARI 1 SWAPS | PEARSON 1
SubLign 0.277 £ 0.040 0.277 £ 0.014 0.516 £ 0.007
SubNoLign 0.103 £ 0.002 - —
KMeans+Loss 0.213 + 0.009 0.498 + 0.022 0.016 + 0.051
SuStaln [313] 0.151 0.203 0.000
Bayesian [153] 0.000 £ 0.000 0.501 £+ 0.017 0.018 £ 0.125
PAGA [307] 0.027 £ 0.001 - -

Figure C-2: Synthetic results over 5 trials. Top: Data generating functions for two
subtypes (thick lines) and example aligned patients (dots and thin lines). Bottom:
SubLign outperforms baselines while KMeans+Loss recovers subtypes (ARI metric)
better than SubNoLign, but alignment metrics are difficult to recover because of the
horizontal subtype

0 2 4 6 8 10
True disease staae

MODEL ARI? SWAPS| PEARSON 1
SubLign 0.980 + 0.000 0.253 & 0.001  0.527 & 0.011
SubNoLign ~ 0.980 + 0.000 - -
KMeans+Loss 0.883 4+ 0.000 0.471 & 0.011  0.064 =+ 0.067
SuStaln [313]  0.228 & 0.039 0.182 =+ 0.010  0.000 = 0.000
Bayesian [I53] 0.198 + 0.189 0.446 & 0.052  0.157 + 0.286
PAGA [307]  0.227 + 0.035 - -

Figure C-3: Synthetic results over 5 trials. Top: Data generating functions for two
subtypes (thick lines) and example aligned patients (dots and thin lines). Bottom:
SubLign and SubNoLign have near-perfect clustering accuracy (ARI) while alignment
metrics (swaps, Pearson) are difficult recover because of the horizontal subtype.
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Biomarker

MODEL ARI 1 SWAPS | PEARSON 1
SubLign 0.122 + 0.006 0.272 £+ 0.001 0.621 4 0.020
SubNoLign 0.145 + 0.006 - -
KMeans+Loss 0.031 + 0.030 0.302 + 0.026 0.498 4+ 0.010
SuStaln [313]  0.138 £ 0.019 0.119 £ 0.006 0.000 £ 0.000
Bayesian [153] 0.001 £ 0.002 - -
PAGA [307] 0.009 £ 0.000 - -

Figure C-4: Synthetic results over 5 trials. Top: Data generating functions for two
subtypes (thick lines) and example aligned patients (dots and thin lines). Bottom:
SubLign outperforms baselines in clustering and alignment metrics although the task
is challenging.

0 2 4 6 8 10
True disease staae

MODEL ARI 1 SWAPS | PEARSON 1
SubLign 0.968 + 0.016 0.253 &= 0.015 0.604 £ 0.041
SubNoLign 0.968 + 0.016 - -
KMeans+Loss 0.964 4+ 0.008 0.486 £ 0.032 0.044 + 0.101
SuStaln [313]  0.220 £ 0.011 0.196 £ 0.008 0.000 £ 0.000
Bayesian [153] 0.221 £+ 0.214 0.448 £+ 0.070 0.165 + 0.193
PAGA [307]  0.205 + 0.012 - -

Figure C-5: Synthetic results over 5 trials. Top: Data generating functions for two
subtypes (thick lines) and example aligned patients (dots and thin lines). Bottom:
SubLign, SubNoLign, and KMeans+Loss perform well on clustering.
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5.0

2.5- .
; \ )
2 00- —

MODEL ARI 1 SWAPS | PEARSON 1
SubLign 0.729 + 0.049 0.153 £ 0.006 0.843 £ 0.016
SubNoLign 0.721 4+ 0.035 - -
KMeans+Loss 0.540 + 0.034 0.490 £ 0.020 0.043 4+ 0.057
SuStaln [313]  0.198 + 0.024 0.200 £ 0.008 0.000 + 0.000
Bayesian [153] 0.003 £+ 0.007 - -
PAGA [307] 0.059 + 0.006 - -

Figure C-6: Synthetic results over 5 trials. Top: Data generating functions for two
subtypes (thick lines) and example aligned patients (dots and thin lines). Bottom:
SubLign learns subtypes and recovers alignment better than baselines.

Biomarker

0 2 4 6 8 10
True disease staae

MODEL ARI 1 SWAPS | PEARSON 1
SubLign 1.000 4+ 0.000 0.134 4+ 0.012 0.907 £+ 0.009
SubNoLign 0.984 + 0.008 - -
KMeans+Loss 1.000 + 0.000 0.508 4+ 0.034 0.014 4+ 0.095
SuStaln [313]  0.148 £ 0.032 0.247 £ 0.016 0.000 £ 0.000
Bayesian [153] 0.261 £+ 0.349 0.409 £+ 0.052 0.303 £+ 0.119
PAGA [307] 0.233 £+ 0.017 - -

Figure C-7: Synthetic results over 5 trials. Top: Data generating functions for two
subtypes (thick lines) and example aligned patients (dots and thin lines). Bottom:
SubLign learns subtypes and alignment values.
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Appendix D

Additional Information for Chapter [6]

D.1 Data Privacy and Ethics

The heart failure dataset was collected from a large health system in the United States
and shared with us under a research data use agreement. The hospital obtained the
relevant consent from individuals to use their data, and the dataset is covered by
the hospital’s institutional review board (IRB). Since the dataset was de-identified
and provided with a data use agreement, our institution’s IRB ruled it as exempt.
The dataset use agreement was approved by the legal teams from both our academic
institution and the hospital.

The Parkinson’s Progression Markers Initiative (PPMI) provides open and full
access to the study data, which is intended for researchers to study the disease. The
PPMI dataset only includes patients who consent to including their data in the study,
and the patients are de-identified in the dataset.

For the Parkinson’s disease dataset, we searched on a slightly smaller set of hy-
perparameters for SubLign and found optimal hyperparameters of g = 0.01, no reg-
ularization, 10 latent dimensions, 10 hidden units for the multi-layer perceptron, 200
units for the recurrent neural network, and learning rate of 0.1.

For the heart failure dataset, we searched on a slightly smaller set of hyperparam-
eters for SubLign and found optimal hyperparameters of = 0.001, no regularization,

10 latent dimensions, 20 hidden units for the multi-layer perceptron, 50 units for the
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recurrent neural network, and learning rate of 0.01.

D.2 Clinical dataset biomarkers and baseline fea-
tures

For the heart failure dataset, we include the following biomarkers: Aorta - Ascending,
Aorta - Valve Level, Aortic Valve - Peak Velocity, Left Atrium - Four Chamber
Length, Left Atrium - Long Axis Dimension, Left Ventricle - Diastolic Dimension, Left
Ventricle - Ejection Fraction, Left Ventricle - Inferolateral Thickness, Left Ventricle
- Septal Wall Thickness, Mitral Valve - E Wave, Mitral Valve - E Wave Deceleration
Time, and Right Atrium - Four Chamber Length.

From the Parkinson’s Progression Markers Initiative (PPMI) dataset, we include
four main biomarkers: 1) MOCA, a cognitive assessment, 2) SCOPA-AUT, an au-
tonomic assessment, 3) NUPDRSI, an assessment of non-motor symptoms, and 4)
a maximum taken over NUPDRS3 and NUPDRS2 as an assessment of motor symp-
toms. We removed patients without extractable biomarker measurements.

The baseline features considered for heart failure are: age, anemia, atherosclero-
sis, atrial fibrillation, Black, body mass index, chronic kidney disease, diastolic heart
failure, esophageal reflux, female, hyperlipidemia, hypertension, hypothyroidism, kid-
ney disease, major depressive disorder, obesity old myocardial infarction, other race,
pulmonary heart disease, pneumonia, renal failure, type 2 diabetes, urinary tract
infection, and White.

The baseline features considered for Parkinson’s disease (PD) are: male, His-
panic/Latino, White, Asian, Black, American Indian, Pacific Islander, not specified
race, biological mom with PD, biological dad with PD, full sibling with PD, half
sibling with PD, maternal grandparent with PD, paternal grandparent with PD, ma-
ternal aunt/uncle with PD, paternal aunt/uncle with PD, kids with PD, years of
education, right handed, left handed, University of Pennsylvania Smell Identification
Test (UPSIT) part 1, UPSIT part 2, UPSIT part 3, UPSIT part 4, and UPSIT total.
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