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Abstract

Measuring and managing risk and uncertainty has been a ongoing challenge for aca-
demics and practitioners in finance and economics. At its core, the challenge requires
to understand both the randomness in the underlying process as well as the way hu-
mans respond to it when making decisions. This thesis focuses on these challenges
from three different perspectives.

First, from the point of view of healthcare finance, this thesis addresses key ques-
tions that occur during the drug development process and the drug deployment pro-
cess. We begin by developing a systematic, quantitative, transparent, and repro-
ducible framework that incorporates the patient’s risk and uncertainty preferences
into the regulatory and decision-making process, both theoretically and empirically,
to improve the design and regulation of clinical trials. Then, we consider both the
development and deployment of vaccines for emerging infectious diseases. Using the
COVID-19 pandemic as a case study, we develop a quantitative method to simu-
late and evaluate various vaccine allocation strategies when the supply of vaccines is
subject to stochastic shocks. We conclude this part of the thesis by proposing and an-
alyzing the viability of a portfolio approach aimed to improve the risk/return trade off
of investment when developing mRNA vaccine candidates for 11 emerging infectious
diseases. Vaccine development is not only challenging due to the high scientific risk
when developing a compound, but also due to the uncertainty in the occurrence of
epidemics, leading to a lack of financial incentives for pharmaceutical firms to invest
in vaccine research and development.

The second part of the thesis dives into the field of empirical asset pricing. If
multi-factor models are routinely used in by finance academics and practitioners to
understand and quantify the risk exposures of an asset, more than 150 factors have
been proposed in the asset pricing literature, constituting a “factor zoo”. This thesis
develops linear and nonlinear techniques to construct latent factors from a set of 150
well-known risk factors using different types of autoencoders. We then compare the
performance of these latent models to classical multi-factor models on various test
assets.
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The final part of the thesis explores an investor’s risk profile and behavioral biases
in the investment management landscape and aims to understand how different mar-
ket participants and different types of individuals compare along the dimensions of
risk aversion and investment style. To this end, we survey a large pool of individual
investors, financial advisors, and institutional investors over three years about their
investment decisions under various historical and hypothetical scenarios.

Thesis Supervisor: Andrew W. Lo
Title: Charles E. and Susan T. Harris Professor, Sloan School of Management
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Chapter 1

Introduction

In 1921, the economist Frank Knight, from the University of Chicago, published a
book Risk, Uncertainty, and Profit [143] based on his PhD dissertation in which he
makes the distinction between two types of randomness: risk and uncertainty. Ac-
cording to Knight’s taxonomy, risk represents the type of randomness which can be
quantified, that is the type of randomness that can be fully represented by a known
probability distribution. On the other hand, uncertainty represents the type of ran-
domness whose probability distribution is unknown, an “unquantifyable” uncertainty,
often referred to as the “unknown unknowns”.

This distinction motivated Lo and Mueller [159] to create a taxonomy of un-
certainty, distinguishing 5 levels of randomness. The first level represents complete

certainty i.e., a deterministic situation in which everything is known and predictable.
The second level represents risk without uncertainty, which is what Knight calls risk.
The third level of randomness is fully reducible uncertainty, which describes situa-
tions in which some probabilities are unknown but gathering enough data can help
us reduce the randomness to Level 2—for example through the use of statistical anal-
ysis, with the law of large numbers or the central limit theorem. The fourth level
is called partially reducible uncertainty: this level describes situations in which we
cannot fully determine the data generating process even with classical frequentist
statistics as there are uncertainties in the model itself. This level is what Knight calls
uncertainty. Although frequentist statistics is of little help here, Bayesian statistics
can provide a useful framework to navigate the realm of Level 4 uncertainty. Starting
at Level 5, we reach irreducible uncertainty, in which all attempts at understanding
are futile.

This distinction becomes very important when we try to understand human behav-
ior. While we dislike risk, we abhor uncertainty. More practically, if many investors
are willing to take on risks, most investors would shed away from uncertainty. Ells-
berg’s paradox [70], described in [156], can help illustrate this distinction in a very
practical context. Suppose that I present you with a well-mixed urn that contains
100 balls, 50 of which are red and 50 are black. You are asked to select a color (either
red or black), and, blindfolded, I will randomly draw a ball from the urn. If the color
of the ball selected matches the color you have chosen, you win $10, 000, otherwise
you earn nothing. How much are you willing to pay (at most) to play this game once?
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The expected value of this game is 0.5 · $10, 000 + 0.5 · $0 = $5, 000, suggesting that
a fair price to pay would be $5, 000 (for a risk-neutral participant). However, many
people would not go as high as $5, 000 to play this game and will prefer to bid slightly
lower: this is because the game is risky (and can be played only once), so participants
with a positive risk-aversion would require a risk premium (i.e., a discounted fee) to
play the game .

Now, let me present you with a second urn. This urn also contains 100 balls,
however I do not tell you how many balls out of the 100 are red and how many are
black. How much are you willing to pay (at most) to play this game once? Still
$5, 000? If this scenario is making you feel uncomfortable, do not be alarmed: you
are entering the realm of Level 4 uncertainty. While you knew that the odds were
50-50 in the first scenario, you are now facing unknown odds in the second scenario,
and playing this game only once will not allow you to estimate the unknown odds,
leading to partially reducible uncertainty. Mathematically, it can be shown that both
scenarios are equivalent and would give you an expected payoff of $5, 000. Yet, most
participants bid a much lower amount to play the second game: participants need
to face their own risk-aversion and also uncertainty-aversion in the second game,
lowering the bid further away from the risk-neutral $5, 000 bid.

Measuring and managing risk and uncertainty has been a ongoing challenge for
academics and practitioners in finance and economics as it merges human behav-
ior and decision-making with probabilistic and statistical reasoning to quantify and
understand the randomness in the underlying process. This thesis focuses on these
challenges from three different perspectives: first in healthcare finance—during the
drug development process and the drug deployment process, then in empirical asset
pricing, and finally in investment management. While these fields may seem very
different at first sight, they all rely at their core on the concepts of benefit, risk,
and uncertainty: BDA explicitly trades off benefit, risk, and uncertainty in its for-
mulation, empirical asset pricing aims to understand and quantify the nature of the
different risk factors stocks are exposed to, and investment management is inevitably
tied to an investor’s risk and uncertainty profile and behavioral biases.

1.1 Organization of the Thesis

The thesis is divided into three major sections which we describe below:

Part I: Managing risks & uncertainty in healthcare finance

The first part of this thesis is devoted to the field of healthcare finance and the drug
development process. We approach this section from two different angles.

Regulatory and decision-making process

The first direction focuses on the regulatory and decision-making process. In the
United States of America (U.S.), a treatment (e.g., a drug or a medical device) often
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needs to undergo three stages of clinical trials (commonly referred to as Phase I,
Phase II, and Phase III) and, if successful, is eventually submitted to the United
States Food and Drug Administration (FDA) for approval. A treatment becomes
available to patients if it is granted FDA approval.

While there are multiple factors taken into account by the FDA when deciding
whether or not to approve a treatment, the efficacy and safety of a treatment is
often at the forefront of the debate. Efficacy and safety are commonly tested using
traditional two-arms RCTs. The null hypothesis would consist in having an ineffective
(or unsafe) treatment, and in this case the treatment group would be equivalent or
worse-off than the control group. On the other hand, the alternative hypothesis would
consist in having an effective (or safe) treatment, and in this case the treatment group
would perform better than the control group. Traditionally, the FDA would reject the
null hypothesis at a 2.5% or 5% significance level. While this threshold is convenient
and has often been used for historical reasons, it is difficult to argue that the same
threshold should be used in all applications. In fact, the appropriate threshold to
use is, almost by definition, very closely linked to the amount of risk the stakeholders
are willing to undertake. In the context of clinical trials, this means that patients
may be willing, under some circumstances, to bear additional risks to gain access
to a certain treatment rather than miss-out on the potential benefits this treatment
can provide. Conversely, when alternative treatments are available, patients may be
much less risk-tolerant and require a lower significance level threshold to assess the
efficacy of the treatment under consideration.

In particular, BDA aims to incorporate patient preferences into the regulatory
and decision-making process by trading off the impact of a type-I error (the event of
incorrectly approving an ineffective and potentially harmful treatment) with a type-
II error (the event of incorrectly rejecting an effective treatment) in a systematic,
transparent, and reproducible way. This approach also helps improve the design of
clinical trials by optimally selecting the significance level and sample size of a trial
in order to reduce the duration of clinical trials and provide patients with a faster
access to the treatment if it is found to be effective and/or safe.

In collaboration with regulators, we apply the BDA methodology to medical de-
vices for patients with kidney failure [40] and Parkinson’s disease [45]. An application
to heart failure can be found in [44]. While the latter two estimate the optimal sig-
nificance level for efficacy endpoints, the former focuses exclusively on estimating the
optimal significance level for safety endpoints.

From a methodological perspective, we present a generalized version of the BDA
procedure in [38]. This work extends the BDA approach in three distinct ways.

1. First, we generalize the discrete setting of the traditional BDA approach—in
which the treatment effect of the treatment can only take two values (corre-
sponding to scenarios in which the treatment is effective/safe or ineffective/unsafe)—
by assuming a continuous prior distribution on the treatment effect.

2. Second, while the classical BDA carefully incorporates the risk preferences of the
patients into the design, it fails to include their view on potential uncertainties
in the treatment’s efficacy. The objective of the extended BDA is twofold: we
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use a mean-variance optimization framework to jointly minimize the expected
loss to patients (as in the classical BDA)—while accounting for the uncertainty
in the treatment’s efficacy—and the variance of this loss. The variance term is
important as it measures the sensitivity of the loss function to the uncertainty
in the treatment’s efficacy.

3. Third, we show how to obtain standard error estimates and confidence intervals
on the optimal significance level and sample size calculated by the BDA using
bootstrap estimators.

Through the extended BDA, we propose a unified framework which is consistent
with the usual assumptions of a RCT, and incorporates both the risk and uncer-
tainty preferences of patients obtained from a patient preference survey. As with the
traditional BDA, this method is systematic, transparent, and repeatable.

Vaccine development and deployment

The second direction focuses on the development and deployment of vaccines for
infectious diseases.

With more than 44.7 million infections in the U.S. and 219 million worldwide,
and a death toll over 721, 000 in the United States and 4.55 million worldwide, the
COVID-19 pandemic has profoundly altered the research agenda of the scientific com-
munity as a whole, launching an unprecedented race against the clock to develop a
cure or a vaccine for the disease. Mass vaccination has become the critical path-
way to alleviate the impact of the disease, as is apparent with the success of Israel’s
mass vaccination campaign. However, producing and distributing the vaccines has
become a new challenge for manufacturers. Despite promising results regarding the
ability to store the Pfizer-BioNTech vaccine in standard freezers over periods of two
weeks rather than the initial storage constraint at −80∘C, vaccine shortages and ap-
pointment cancellations have followed factory shutdowns, production mix-ups, delays
in shipment, and power outages. Optimizing the allocation of vaccines has become
crucial not only due to the limited supply of vaccines, but also due to the fact that
Pfizer-BioNTech and Moderna vaccines need to be administered twice for each indi-
vidual, over a recommended time interval of 3 or 4 weeks, respectively. Although
supply constraints are important in the United States, they are even more binding in
other regions such as Canada, Europe, Africa, Latin America, and India.

An important debate has arisen regarding the advantages of delaying the second
dose to provide more first doses to susceptible individuals. While doses were held back
under the Trump administration in order to guarantee a second dose to individuals
who have received their first dose, the Biden administration has pledged to reverse this
policy and release all available doses. Other countries, such as the United Kingdom
and Canada, have adopted the policy of delaying the second dose up to three months,
and Singapore is currently considering delaying the second dose up to 12 weeks.
However, as Texas, Washington State, and Michigan experienced in mid-February
2021, releasing too many doses for first-time users could lead to delays for individuals
eligible to receive their second dose (a "second-shot crunch").
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In [17], we forecast the effect of various vaccine allocation strategies on the cumu-
lative number of infections and deaths in the United States to quantify the impact
of prioritizing first doses versus second doses. In particular, we extend the DELPHI
model to account for vaccines, and use a simple model of shocks to the number of
vaccines supplied to account for distributional constraints. While our analysis focuses
on the United States, our recommendations can be generalized to other countries and
especially those where the supply of vaccines is heavily limited. The framework pro-
vided here can be reused in the event of a future pandemic to improve the allocation
of vaccines and reduce the number of infections and deaths.

From a vaccine development perspective, the human, social, and financial costs
of the COVID-19 pandemic helped raise awareness and urge researchers and politi-
cians to prepare for the next pandemic by proactively engaging in the Research &
Development (R&D) of novel vaccines against Emergent Infectious Diseases (EIDs).
A notable example of such an effort is the Coalition for Epidemic Preparedness In-
novations (CEPI), which has added 14 vaccine candidates targeting COVID-19 as of
January 11, 2022 to the portfolio of six other priority EIDs created in 2017.

Vaccine R&D has also undergone a revolution during the pandemic—exemplified
by mRNA vaccine technology—which has demonstrated robust safety, high efficacy,
and unprecedented speed of clinical development. This technology has the potential
to significantly reduce the cost and duration of vaccine R&D, enabling much more
rapid responses to future EIDs. It is also particularly suited to the portfolio-based
approach of CEPI, since different mRNA vaccine candidates may share the same
resources and facilities of preclinical animal studies, clinical testing, and post-approval
manufacturing and delivery. An important challenge to the portfolio-based model
of mRNA vaccine development is the lack of sufficient and sustainable funding to
support the vaccine development pipeline over the extended period (typically over
multiple years) from preclinical research to FDA approval, an issue known as the
"valley of death" in translational biomedical research. Governments, international
agencies, and non-governmental organizations have contributed significantly to create
a sizeable portfolio of vaccine candidates, but their efforts have nevertheless fallen
short. However, the private sector may provide the investment needed to finance
the vaccine R&D pipeline, provided that the vaccine portfolio can generate financial
returns for its investors.

In [13], we simulate a hypothetical vaccine megafund with a large portfolio of 120
mRNA vaccine candidates targeting a total of 11 diseases and ask whether the risk/re-
turn profile of the megafund is attractive to investors. To address the complexity of
simulating the vaccine development process, we calibrate the simulation parameters
with inputs from domain experts in mRNA technology and an extensive literature
review. We illustrate the key factors affecting the financial performance of the vaccine
megafund and discuss potential solutions to improve its financial returns to investors.
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Part II: Managing risks & uncertainty in empirical asset pric-

ing

The second part of this thesis is devoted to the field of empirical asset pricing [39].
Factor models are routinely used in the financial industry to identify and quantify
sources of systematic risk in order to manage the risk of a portfolio of securities or
hedge investment positions, or in valuation contexts to estimate the cost of capital
of an asset. The capital asset pricing model (CAPM) [200, 153] simply identifies
the systematic risk of a stock with its exposure to the market. However, the CAPM
fails to explain the cross-section of asset prices and multiple anomalies (sources of
systematic risk that are not captured by the CAPM) were documented [121]. More
complex factor models were developed such as the Fama-French 3, 4, and 5-factors
models (FF3, FF5, FF6) [73, 74, 75], the Carhart 4-factors model [31], or the 4 and
5 q-factors (q4, q5) by Hou, Xue, and Zhang [120, 119].

A large set of factors have been introduced in the literature to attempt to explain
the cross-section of asset prices, however no single model has convincingly been able
to capture most of the anomalies. Tools have been proposed to “tame the factor
zoo” and compress the 150+ factors proposed in the literature into a parsimonious
model. These techniques include the double selection least absolute shrinkage and
selection operator (LASSO) approach [85] as well as principal components analysis
(PCA) [151]. While the former consists of a model-selection approach, the latter aims
to extract a set of “fundamental” latent factors. Our approach is similar to [151] as we
aim to construct a set of latent factors that can explain away most of the anomalies
in the cross section of asset prices.

In this chapter, we use different types of AEs to compress a set of 150 known factors
(from 1973 to 2017) to obtain a parsimonious factor model that can explain the cross-
section of asset prices. We then test our model on the 150 known factors, as well as
the Fama-French Five-Factor Model (FF5) and the Hou-Xue-Zhang q-Factor Model
(q5) factor models. In addition, we test our models on a set of portfolios, including
the Fama-French anomaly portfolios and the Hou-Xue-Zhang anomaly portfolios.

Although these fundamental factors are usually difficult to interpret by design, we
incorporate economic intuition into the design of some of our AE architectures. In
particular, the 150 factors analyzed are not uncorrelated, and some groups of factors
can even be highly correlated, potentially leading to an over-representation effect
when compressing the 150 factors. To solve this issue, we introduce the CAE: this
model first clusters the 150 factors into 40 to 80 groups, and then each node in the
first hidden layer of the CAE is only connected to nodes belonging to a single factor
cluster. The nodes in this hidden layer are then compressed into a parsimonious
model.

Another contribution of our work is that we aim to capture nonlinear relationships
between returns and factors. While linear factor models are often a good benchmark,
latent factors obtained from machine-learning models tend to capture nonlinearities
that linear models would fail to express. To that end, we use nonlinear activation
functions and run polynomial regressions (of order 2 which only includes interaction
terms) of returns on the latent factors learnt to capture interactions among pairs of
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factors. Similarly, we capture asymmetric exposures to positive and negative factor
returns by splitting factors into a positive component and a negative component, and
then running a linear regression on this augmented set of factors.

Part III: Managing risks & uncertainty in investment man-

agement

The final part of this thesis is devoted to the field of investment management [160].
There are three major groups of participants in the investment management industry:
individual investors, financial advisors, and institutions. Each of these groups has its
own risk preferences and behavioral characteristics it uses in its investment decisions.
We study the behavior of these groups by using the results of three comprehensive
global surveys between 2015 and 2017, each of them covering over 7, 000 individuals,
over 2, 300 advisors, and over 660 institutional investors.

The breadth of our dataset sets it apart from earlier survey data in the literature.
To the best of our knowledge, these surveys are the first to present the same set of
questions to three distinct groups of market participants over three consecutive years.
This dataset covers over 17 countries in the Individual Investor surveys and over 14
countries in the Financial Advisor surveys every year. This global breadth provides
us with insight into investment behavior by country, and allows us to compare survey
results across countries. Finally, all our survey subjects have a significant stake in the
market: all the surveyed individual investors have a net worth above $200,000, while
the financial advisors and the institutional investors are employed in the financial
industry. As a result, their answers will generally be more realistic and have greater
relevance for modeling investor behavior than the results of surveying students in a
laboratory setting, as many other studies have done. Our main goal is to understand
how different market participants and different types of individuals compare along the
dimensions of risk aversion and asset allocation. To this end, we poll members of these
groups about their investment decisions under various historical and hypothetical
scenarios.

We obtain two sets of results.

1. The first set of results shows that investors tend to be significantly more risk-
averse and mostly extrapolative in their asset allocation, while institutions tend
to be significantly less risk-averse and mostly contrarian in their investment
decisions, with advisors falling in the middle of the risk aversion scale while
also following a contrarian asset allocation strategy.

2. The second set of results focuses on just individual investors—using a clustering
algorithm applied to survey responses, we are able to identify five distinct types
of investors: passive investors, extrapolators, risk avoiders, contrarians and op-

timistic investors. Extrapolators tend to decrease allocation in equities following
bad market performance, and tend to increase allocation following good returns,
extrapolating past trends. Passive investors leave their allocation unchanged in
either scenario. Risk avoiders significantly cut their allocation to equities when
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they see large moves in the S&P 500 in either direction. Contrarians tend to
increase allocation in equities following bad market performance, and tend to
decrease allocation following good returns. Optimistic investors tend to increase
their allocation in either scenario. While the largest cluster of individuals in our
dataset corresponds to passive investors, it also contains a significant number
of risk avoiders and extrapolators. Evidence for each of these types is found in
the literature, although most papers focus only on one type at a time.

In comparison, we find that most financial advisors and institutional investors are
contrarian in allocation strategy—that is, they would change equity allocation in the
direction opposite to recent returns on the S&P 500. This contrasts with the overall
behavior of individual investors, who on average are extrapolators. The differences
in the reactions across these three groups of market participants are significant and
very large. We note that a few earlier studies have viewed individuals as momentum
traders, and institutions as contrarians. However, these studies consider shorter-term
horizons than ours, and focus on trading behavior. Our survey asks about asset
allocation, a strategic and longer-term investment decision, rather than short-term
trading, which potentially could be affected by excessive speculation on the part
of individual traders, or by liquidity considerations of institutions. Recent papers
focusing on asset allocation of Dutch institutional investors actually concludes that
they tend to be contrarians.

Our results have another important implication, one that arises from the differ-
ences in response between financial advisors and individual investors. We find that
advisors generally advise their clients to change their allocation in the opposite di-
rection of the typical preference of the individual investor. It may be that advisors
recognize the excessive tendency of investors toward extrapolation, and try to miti-
gate this effect by giving "contrarian advice". Also, the proportion of advisors who
suggest a significant decrease in equity allocation when seeing large S&P 500 moves is
much smaller than the proportion of individual investors who would implement such
a change. As a result, advisors may also provide the significant benefit of ensuring
their investors stay invested in the markets despite periods of high volatility, and
hence earn higher returns in the long run. Overall, our findings suggest that financial
advisors are of direct benefit to most individual investors.

Finally, we compare risk aversion across the three groups, as well as within investor
demographic categories. Individual investors are significantly more risk-averse than
financial advisors, who are in turn more risk-averse than institutional investors. We
find that individual risk aversion increases with age, which is consistent with previous
literature linking risk aversion to age, wealth, and education.
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Chapter 2

An Introduction to Bayesian

Decision Analysis

The first part of this thesis focuses on applications of risk management to healthcare
finance. Chapters 2, 3, and 4 are devoted to the topic of Bayesian Decision Analysis
(BDA). We introduce the concept of BDA in Chapter 2 with an application to kidney
failure devices. Then, in Chapter 3 we briefly discuss an application to Parkinson’s
disease devices. Finally, we generalize the BDA approach in Chapter 4 by assuming
a continuous distribution for the treatment effect and accounting for the patient’s
uncertainty aversion through a mean-variance optimization formulation. The gen-
eralized BDA developed in Chapter 4 uses the Parkinson’s disease devices analyzed
in Chapter 3 as a case study to emphasize the differences with the classical BDA
approach used in Chapters 2 and 3.

2.1 Motivation

2.1.1 Randomized controlled trials

RCTs are widely used to assess the effectiveness and/or safety of a new drug or medical
device. Typically, a treatment is deemed to provide adequate statistical evidence of
effectiveness and/or safety if the clinical trial produces a statistical significance which
is lower than a certain pre-defined threshold. Following the seminal work of Sir Ronald
Fisher [87], it has been customary to use a fixed significance level threshold of 2.5%
for one-sided hypothesis tests and 5% for two-sided hypothesis tests.

Using the same threshold irrespective of the application, while convenient, is a
severe limitation. In fact, institutions such as the FDA do not rely solely on p-values
to assess the effectiveness of a new treatment and instead prefer to carefully consider
the potential benefits and risks of a treatment in a broader context. For example,
we would expect BDA to recommend a more conservative significance level for less
severe diseases for which there are existing approved treatments (i.e., lower than the
traditional 2.5% threshold), and a less conservative threshold (i.e., higher than 2.5%)
for more severe diseases with few or no treatment options. Making this tradeoff
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between benefit and risk is equivalent to balancing the expected loss to patients due
to incorrectly approving an unsafe device with the loss due to incorrectly rejecting a
safe device, commonly referred to as type I (𝛼) and type II (𝛽) errors, respectively.

The FDA has been very vocal about its goal to better incorporate patient pref-
erences into the regulatory and decision-making process. For example, the FDA has
published a series of guidance documents to highlight the importance of Patient Pref-
erences Information (PPI), suggest factors to consider when incorporating PPI into
benefit/risk tradeoff decisions, and outline settings for which it is appropriate to use
PPI in the regulatory and decision-making process [78, 80, 82]. However, the FDA
does not yet endorse any quantitative method to inform benefit/risk tradeoff decisions
in a systematic way.

2.1.2 Incorporating patient preferences into the regulatory

and decision-making process

While other techniques have been developed, such as the Expected Value of Infor-
mation (EVI) framework [182, 4], BDA has been proposed [126, 155, 47, 168, 43]
as a way to bring more transparency into the choice of the appropriate significance
level threshold. BDA was then successfully applied to weight-loss devices [46], heart-
failure devices [44], and Parkinson’s disease devices [45], in close collaboration with
regulators. In fact, BDA is a systematic, transparent, and repeatable process aimed
at incorporating patient preferences into the design of clinical trials to optimize the
tradeoff between type I and type II error rates and minimize the expected loss in util-
ity to patients for a specific treatment. Unlike the EVI methodology which relies on a
fully Bayesian formulation and focuses on posterior credible intervals and Bayes’ risk,
the BDA framework is closer to a traditional frequentist hypothesis testing approach,
preferred by researchers and regulators, and is mathematically related to the EVI as
shown in [45]. Under the BDA framework, optimal clinical trial designs are selected
by maximizing the expected gain in utility to patients, or equivalently by minimizing
the expected loss in utility to patients.

2.1.3 Application to kidney replacement therapy (KRT) de-

vices

In partnership with the Center for Devices and Radiological Health (CDRH) at the
FDA and the American Society of Nephrology, the Kidney Health Initiative (KHI)
has recently developed a survey [88] to elicit patient preference information regarding
potential novel renal replacement therapy (RRT) from a representative population of
patients suffering from end-stage kidney disease (ESKD). With over 700, 000 indi-
viduals affected, high death rates, and a reduced quality of life [202] and with the
support of patients advocacy leaders from the American Association of Kidney Pa-
tients [55], KHI has committed with the CDRH to collect patient-focused outcomes
which would help drive RRT innovations into directions that improve the patient’s
quality and length of life [124, 209]. The [88] survey measures how patients evalu-
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ate the potential benefits and risks of wearable dialysis devices and the differences
in patient risk preferences based on their current modality of dialysis treatment and
other characteristics. By quantifying the maximum level of risk patients are willing
to accept and the maximum amount of time they are willing to wait in exchange for
the benefits provided by a hypothetical wearable device, this survey can help inform
future clinical trial designs of dialysis devices.

2.1.4 Summary of contributions

In this study, we apply the BDA methodology to the PPI collected through the
[88] survey in order to determine the optimal significance level and sample size for
wearable dialysis device clinical trials using two safety endpoints for a hypothetical
dialysis device: the risk of serious bleeding and the risk of serious infection.

Overall, we find BDA-optimal type I error rates significantly lower than the clas-
sical 2.5% threshold used in practice with rates of 1.2% for the risk of serious bleeding
and less than 0.1% for the risk of serious infection. This suggests that patients are not
willing to bear either type of additional risk presented by the hypothetical device in
exchange for the probable benefits described in the survey instrument. Considering
patient subgroup populations individually, we find that the patients on peritoneal
dialysis tend to be more risk-tolerant and would be comfortable with a significance
level threshold of 3.8% and 1.3% for the risks of serious bleeding and serious infec-
tion respectively, which is respectively 1.5 times higher and 50% lower than the 2.5%
one-sided threshold conventionally used. Relative to other subgroups, these patients
perceive the potential benefits of the hypothetical device more strongly than the risks
it presents and require less statistical evidence to adopt the device as an alternative
to in-center dialysis. On the other side of the spectrum, home hemodialysis patients
tend to be more risk-averse and would require a significance level threshold of 0.3%
for the risk of serious bleeding and a threshold lower than 0.1% for the risk of serious
infection, which is almost 10 times lower than a typical 2.5% significance level. For
these patients, more statistical evidence is needed to justify transitioning from an
in-center dialysis to the hypothetical device.

The remainder of the chapter is structured as follows. We develop in Section 2.2
the patient-centered utility-based model for the hypothetical RRT device considered
and provide a BDA formulation to optimize the type-I and type-II error rate thresh-
olds. We apply the method to the RRT device in Section 2.3, present the optimal
clinical trial design for different patient subgroups under consideration, and discuss
the significance of these results as well as their limitations. We conclude in Section
2.4 and provide some additional sensitivity analyses in Appendix A to highlight the
robustness of the results to our assumptions.

2.2 The Bayesian Decision Analysis Methodology

In this section, we present the classical BDA approach and use it to determine the
optimal significance level and the optimal sample size for the RCT.
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2.2.1 Estimating type I and type I losses in utility

We define the net risk of the device (𝑁𝑒𝑡𝑅𝑖𝑠𝑘𝐷𝑒𝑣𝑖𝑐𝑒) as the hypothetical additional
device-associated risk incurred by the patient and the maximum acceptable risk
(𝑀𝐴𝑅𝐷𝑒𝑣𝑖𝑐𝑒) as the additional device-associated risk the patient is willing to bear
in exchange for the probable benefits of the device described in the survey instru-
ment. maximum acceptable risks (MARs) are estimated using the patient preference
survey through interval regression models [197].

The patient’s type I loss in utility i.e., the decrease in utility incurred by the
patient if an unsafe device is approved, is defined as

𝐿0 = 𝑁𝑒𝑡𝑅𝑖𝑠𝑘𝐷𝑒𝑣𝑖𝑐𝑒. (2.1)

Similarly, the patient’s type II loss in utility i.e., the decrease in utility incurred by
the patient if a safe device is not approved, is defined as

𝐿1 = 𝑀𝐴𝑅𝐷𝑒𝑣𝑖𝑐𝑒 − 𝑁𝑒𝑡𝑅𝑖𝑠𝑘𝐷𝑒𝑣𝑖𝑐𝑒. (2.2)

The assumed risks of the device are outlined in Table 2.1. Both the device and baseline
risks (and their respective standard errors) were calibrated by experts at KHI using
the best available current estimates [197]. The robustness of our results to changes
in these assumptions is discussed in Appendix A.

Type of Risk Device Risk Baseline Risk Device Net Risk Safety Margin (𝛿0)
Risk of Serious
Bleeding

8% (2%) 0.1% (1%) 7.9% (2.2%) 3%

Risk of Serious
Infection

25% (5%) 6% (2%) 19% (5.4%) 6%

Table 2.1: Assumptions made on the net risk of the device and the safety margin
used in the analysis. Standard errors are reported in the parentheses.

The estimated mean MARs of the patient preference survey were obtained from
[197] and are summarized in Table 2.2. It is interesting to note that all patient
subgroups (with the exception of Hispanic patients) have mean MARs for the risk of
serious bleeding that are above the net risk of the device, suggesting that, on average,
patients are willing to bear a higher level of risk of serious bleeding in exchange for
the probable benefits of the device described in the survey instrument. Conversely,
only peritoneal dialysis patients have a mean MAR for the risk of serious infection
that is above the net risk of the device, suggesting that only the peritoneal dialysis
patients are willing to bear the level of risk of serious infection, while the patients
in other dialysis treatments are not willing to accept the high level of risk of serious
infection.
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Table 2.2: Mean maximum acceptable risk, mean temporal discount rate, and mean
concern ratio estimated from the patient preference survey across patient subgroups.
Standard errors are reported in the parentheses.

Population Subgroups Risk of Serious Bleeding Risk of Serious Infection Concern
Ratio (𝛾)

𝑀𝐴𝑅 𝑟 𝑀𝐴𝑅 𝑟

Overall 11.08%
(0.54%)

90.9%
(9.9%)

15.04%
(1.02%)

57.5%
(5.3%)

0.52
(0.01)

Home Hemodialysis 8.99%
(0.74%)

57.5%
(11.8%)

14.31%
(1.60%)

48.1%
(9.9%)

0.53
(0.01)

In-Center Hemodialy-
sis

9.81%
(0.71%)

129.9%
(23.6%)

9.23%
(1.55%)

57.8%
(7.7%)

0.50
(0.01)

Peritoneal Dialysis 16.63%
(1.23%)

101.0%
(26.6%)

26.80%
(2.12%)

69.4%
(17.8%)

0.55
(0.01)

Age: Less than 40
years

9.38%
(1.04%)

39.5%
(8.6%)

16.50%
(2.56%)

43.9%
(7.3%)

0.52
(0.01)

Age: between 40 and
64 years old

10.90%
(0.70%)

116.3%
(107.1%)

15.05%
(1.39%)

59.9%
(19.8%)

0.53
(0.01)

Age: 65 years and
above

12.24%
(0.85%)

103.1%
(84.2%)

14.30%
(1.91%)

65.4%
(25.2%)

0.51
(0.01)

Male 9.80%
(0.66%)

97.1%
(26.2%)

15.24%
(1.44%)

59.2%
(11.8%)

0.52
(0.01)

Female 12.49%
(0.78%)

85.5%
(10.2%)

14.87%
(1.46%)

56.2%
(6.3%)

0.53
(0.01)

Time on Dialysis: less
than 1 year

10.92%
(1.31%)

128.2%
(52.6%)

15.14%
(2.21%)

68.5%
(15.0%)

0.57
(0.01)

Time on Dialysis: 1 to
4 years

10.75%
(0.64%)

84.7%
(34.1%)

15.16%
(1.37%)

54.9%
(0.15%)

0.52
(0.01)

Time on Dialysis:
more than 5 years

11.93%
(1.05%)

89.3%
(39.6%)

14.72%
(2.10%)

57.8%
(17.9%)

0.51
(0.01)

Hispanic 7.68%
(0.87%)

83.3%
(27.7%)

10.55%
(2.26%)

32.3%
(5.5%)

0.53
(0.01)

Non-Hispanic (Over-
all)

12.18%
(0.62%)

92.6%
(10.3%)

16.48%
(1.14%)

65.4%
(6.0%)

0.52
(0.01)

White Non-Hispanic 12.83%
(0.77%)

107.5%
(15.0%)

16.44%
(1.44%)

80.6%
(9.8%)

0.52
(0.01)

Black Non-Hispanic 10.26%
(0.91%)

65.4%
(14.4%)

15.61%
(1.89%)

47.2%
(7.5%)

0.52
(0.01)

Other Non-Hispanic 14.12%
(3.34%)

62.1%
(17.0%)

22.02%
(8.11%)

60.6%
(18.5%)

0.48
(0.04)

Two or More Races
Non Hispanic

19.94%
(6.03%)

625.0%
(746.3%)

23.32%
(10.63%)

17.3%
(1.4%)

0.55
(0.04)
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We assess the willingness to wait of the patients using a temporal discount rate r
estimated in [197]. This discount rate is obtained for the risk of serious bleeding and
the risk of serious infection separately and are reported in Table 2.2. We can note a
high impatience (i.e., low willingness to wait) for the hypothetical device across all
patient subgroups.

Given that the device presents two sources of risk, we define a concern ratio
parameter 𝛾 ∈ [0, 1] to aggregate both risk measures into a single risk measure:

𝑁𝑒𝑡𝑅𝑖𝑠𝑘𝐷𝑒𝑣𝑖𝑐𝑒 = 𝑁𝑒𝑡𝑅𝑖𝑠𝑘𝐵𝑙𝑒𝑒𝑑𝑖𝑛𝑔 · (1 − 𝛾) + 𝑁𝑒𝑡𝑅𝑖𝑠𝑘𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 · 𝛾, (2.3)

𝑀𝐴𝑅𝐷𝑒𝑣𝑖𝑐𝑒 = 𝑀𝐴𝑅𝐵𝑙𝑒𝑒𝑑𝑖𝑛𝑔 · (1 − 𝛾) + 𝑀𝐴𝑅𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 · 𝛾. (2.4)

By definition, 𝛾 = 0 if the patient is only concerned about the risk of serious bleeding
and 𝛾 = 1 if the patient is only concerned about the risk of serious infection. A
concern ratio 𝛾 = 0.5 reflects an equal concern between the risk of serious bleeding
and serious infection. The concern ratio is estimated from the survey data (using the
bleeding concern score and the infection concern score for each patient) as

𝛾 = Infection Concern Score
Bleeding Concern Score + Infection Concern Score , (2.5)

where each concern score was provided by the patient in the survey. Estimates of the
concern ratio are reported in Table 2.2 and show that, across patient subgroups, the
mean concern ratio is consistent with a value of 𝛾 = 0.5.

2.2.2 Patient-centered utility-based model

For the purpose of this analysis, we choose the null hypothesis to represent an unsafe
device. More precisely, we state that a device is unsafe if the risk of the device is
higher the patient’s MAR by more than a safety margin 𝛿0 (chosen to be 3% for the
risk of serious bleeding and 6% for the risk of serious infections, Table 2.1). In fact,
we have chosen the safety margin to be slightly larger than the standard errors on the
net risk of the device. Sensitivity analysis on the choice of safety margin is presented
in Appendix A. Mathematically, we define the null and alternative hypotheses as

𝐻0 (“Unsafe Device”) : 𝑁𝑒𝑡𝑅𝑖𝑠𝑘𝐷𝑒𝑣𝑖𝑐𝑒 − 𝑀𝐴𝑅𝐷𝑒𝑣𝑖𝑐𝑒 > 𝛿0, (2.6)

𝐻1 (“Safe Device”) : 𝑁𝑒𝑡𝑅𝑖𝑠𝑘𝐷𝑒𝑣𝑖𝑐𝑒 − 𝑀𝐴𝑅𝐷𝑒𝑣𝑖𝑐𝑒 ≤ 𝛿0. (2.7)

Not approving an unsafe device is assumed to lead to a zero loss in utility while
not approving a safe device decreases the patient’s utility by an amount 𝐿1. On the
other hand, approving an unsafe device decreases the patient’s utility by an amount
𝐷𝐹𝑡 · 𝐿0, where 𝐷𝐹𝑡 = 𝑒−𝑟𝑡 is the temporal discount factor measuring the patient’s
willingness to wait for a device with lower risks of bleeding or infection (based on the
patient’s temporal discount rate 𝑟 and the time 𝑡 until the device is approved), and
approving a safe device decreases the patient’s utility by an amount (1 − 𝐷𝐹𝑡) · 𝐿1.
The discount factor decreases from 1 to 0 as we increase the time 𝑡. In particular,
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𝐷𝐹𝑡 = 1 when the wait time is equal to zero, so approving an unsafe device would
decrease the patient’s utility by an amount 𝐿0 while approving a safe device would not
affect the patient’s utility. The potential losses in utility per patient of a fixed-sample
RCT are summarized in Table 2.3.

Hypotheses Not Approved Approved
𝐻0: Unsafe Device 0 𝐷𝐹𝑡 · 𝐿0

𝐻1: Safe Device 𝐿1 (1 − 𝐷𝐹𝑡) · 𝐿1

Table 2.3: Loss in value per patient associated with a balanced fixed-sample RCT.

Aggregating all four scenarios in Table 2.3, we obtain an expected loss in utility
to patients given by

E [Loss] = 𝑝0 · 𝛼 · 𝐷𝐹𝑡 · 𝐿0 + 𝑝1 · [𝛽 + (1 − 𝛽) · (1 − 𝐷𝐹𝑡)] · 𝐿1, (2.8)

where 𝑝0 (𝑝1) is the prior probability that the device is unsafe (respectively, safe). We
recall that 𝐿0 and 𝐿1 correspond to the patient’s loss in utility due to the approval
of an unsafe device (Equation 2.1) and the non-approval of a safe device (Equation
2.2), respectively, 𝛼 is the type I error rate (i.e., the probability of approving an
unsafe device), 𝛽 is the type II error rate (i.e., the probability of not approving a
safe device), and 𝐷𝐹𝑡 = 𝑒−𝑟𝑡 is the temporal discount factor reflecting the patient’s
willingness to wait for a device with lower risks of bleeding or infection (based on the
patient’s temporal discount rate 𝑟).

While 𝐿0, 𝐿1, and 𝐷𝐹𝑡 are estimated from the patient preference surveys, the
type I and type II error rates 𝛼 and 𝛽 are associated with the clinical trial endpoint,
and can be calculated as the conditional probability

𝛼 = P
(︀
Accept Device|Unsafe

)︀
= P

(︀
𝑇𝑛 ≤ 𝜆|Unsafe

)︀
, (2.9)

𝛽 = P
(︀
Reject Device|Safe

)︀
= P

(︀
𝑇𝑛 > 𝜆|Safe

)︀
, (2.10)

where 𝑇𝑛 is the sufficient statistic used in the RCT to assess the safety of the device
(see Section 2.2.3), and 𝜆 is the critical value which determines the rejection region
of the hypothesis test.

2.2.3 Patients-centered clinical trial design via Bayesian de-

cision analysis

For concreteness, we define the safety endpoints of the RCT for the hypothetical wear-
able device as the risks of serious bleeding and serious infection due to the device.
Therefore, during the RCT, we would measure the average risk of serious bleeding and
serious infection in the treatment arm 𝑅𝑖𝑠𝑘𝐷𝑒𝑣𝑖𝑐𝑒 and in the control arm 𝑅𝑖𝑠𝑘𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒.
We assume that the patient outcomes in the control and treatment arms are indepen-
dent and identically distributed independent and identically distributed (I.I.D) and
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follow a normal distribution:

𝑅𝑖𝑠𝑘𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ∼ 𝑁
(︁
𝜇𝑐, 𝜎2

𝑐

)︁
and 𝑅𝑖𝑠𝑘𝐷𝑒𝑣𝑖𝑐𝑒 ∼ 𝑁

(︁
𝜇𝑡, 𝜎2

𝑡

)︁
(2.11)

where 𝜇𝑐 (𝜇𝑡) denotes the mean of the risk endpoints observed in the control (treat-
ment) arm, and 𝜎𝑐 (𝜎𝑡) denotes the standard deviation of the risk endpoints observed
in the control (treatment) arm, respectively. We define the sufficient statistic of
interest as

𝑇𝑛 =
√︁

𝐼𝑛 ·
(︁
𝑅𝑖𝑠𝑘𝐷𝑒𝑣𝑖𝑐𝑒 − 𝑅𝑖𝑠𝑘𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝑀𝐴𝑅𝐷𝑒𝑣𝑖𝑐𝑒

)︁
(2.12)

where 𝐼𝑛 = 𝑛
𝜎2

𝑐 +𝜎2
𝑡

is a scaling factor and n is the number of patients per trial arm.
Under the null hypothesis, the statistic 𝑇𝑛 follows a standard t-distribution with

mean zero and 2(𝑛 − 1) degrees of freedom. This means that a device with a net
risk no less than the MAR will be considered unsafe. Conversely, under the alternate
hypothesis, the statistic 𝑇𝑛 is follows a non-central t-distribution with non-centrality
parameter −𝛿0 ·

√
𝐼𝑛, for a safety margin 𝛿0 > 0, and 2(𝑛 − 1) degrees of freedom.

In this model, the type I and type II error rates are calculated as follows

𝛼 = P
(︀
𝑇𝑛 ≤ 𝜆|𝜇 = 0

)︀
= 𝐹𝑡

(︀
𝜆|𝜇 = 0

)︀
, (2.13)

𝛽 = P
(︀
𝑇𝑛 > 𝜆|𝜇 = 0

)︀
= 1 − 𝐹𝑡

(︂
𝜆|𝜇 = −𝛿0 ·

√︁
𝐼𝑛

)︂
, (2.14)

where 𝐹𝑡(·) is the cumulative distribution function of a non-central t-distribution with
mean 𝜇 and 2(𝑛 − 1) degrees of freedom.

Following the BDA procedure, the optimal critical value 𝜆* and the optimal sample
size 𝑛* are obtained by jointly minimizing the expected loss in utility to patients
(Equation 2.8) over 𝜆 and 𝑛 (Equation 2.13 and Equation 2.14). We further constrain
the statistical power (1 − 𝛽) to be lower than 90% to reflect practical considerations
of the medical device industry (which include budget, time, personnel, and other
resource limitations).

2.3 Kidney replacement therapy devices from a

BDA perspective

2.3.1 BDA-optimal type I error rates and clinical trial sizes

The BDA-optimal type I error rates and clinical trial sample sizes are reported in
Table 2.4 for two safety endpoints: the risk of serious bleeding and the risk of serious
infection. The results are provided for the overall patient population (row 1 of Table
2.4) and for each patient subgroups (rows 2 to 18 of Table 2.4). A graphical repre-
sentation of the optimal type I error rates obtained is provided in Figure 2-1 for the
risk of serious bleeding endpoint, Figure 2-2 for the risk of serious infection endpoint,
and in Figure 2-3 for the aggregated safety endpoint.

Overall, we find a BDA-optimal type I error rate of 1.2% for the risk of bleeding
and one below 0.1% for the risk of serious infection. Both values are lower than the
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traditional 2.5% threshold, suggesting that patients are not willing to bear either type
of additional risk presented by the hypothetical device in exchange for the probable
benefits described in the survey instrument. Furthermore, we find a BDA-optimal
total sample size of 17 patients for the risk of serious bleeding and 102 patients for
the risk of serious infection. However, with a statistical power below 1% for the
risk of serious infection and a type I error rate below 0.1%, the sample size becomes
unimportant since such a device would need to demonstrate exceedingly high safety
effects in order to receive FDA approval.

The BDA-optimal thresholds and sample sizes are also calculated across patient
subgroups to reflect heterogeneity in patient preferences. We include the patient’s
mode of dialysis (home hemodialysis, in-center hemodialysis, and peritoneal dialysis),
age (below 40, between 40 and 64, and above 65), gender (male and female), time
on dialysis (less than 1 year, between 1 and 4 years, and more than 5 years), and
ethnicity (Hispanic, overall non-Hispanic, white non-Hispanic, black non-Hispanic,
other non-Hispanic, and 2 or more races and non-Hispanic).

Mode of Dialysis. The BDA-optimal type I error for the risk of serious bleeding
is 0.3% for home hemodialysis patients, 1.0% for in-center hemodialysis patients, and
3.8% for peritoneal dialysis patients, suggesting that only peritoneal dialysis patients
have a more risk-tolerant threshold than the traditional 2.5% significance level thresh-
old. The optimal sample sizes range from 12 patients for peritoneal dialysis patients
to 23 patients for home hemodialysis patients and we always achieve a statistical
power of 90%. The BDA-optimal type I error for the risk of serious infection is below
0.1% for home and in-center hemodialysis patients and is 1.3% for peritoneal dialysis
patients. Peritoneal dialysis patients are the most risk-tolerant group while home
hemodialysis patients are the most risk-averse. Optimal sample sizes range from 101
to 102 patients for home and in-center hemodialysis with a statistical power of less
than 1%, while we obtain an optimal sample size of 23 patients for peritoneal dialysis
patients and achieve a statistical power of 90%.

Age. We find that the BDA-optimal type I error for the risk of serious bleeding
increases with age: 0.2%, 1.5%, and 1.9% for patients with age below 40, between 40
and 64, and above 65 years old, respectively. However, these thresholds are still below
the traditional 2.5% significance level threshold. Conversely, the optimal sample sizes
decrease with age: 23, 16, and 15 patients for patients below 40, between 40 and
64, and above 65 years old, respectively, and we always achieve a statistical power
of 90%. The BDA-optimal type I error for the risk of serious infection is below 0.1%
across all age groups and the optimal sample size varies between 101 to 102 patients
across all age groups with a statistical power of less than 1%.

Gender. As is often the case, we find that the BDA-optimal type I error rate for
the risk of serious bleeding is higher for male (1.9%) than female (0.7%) patients, sug-
gesting that males tend to be less risk-averse than women. However, these thresholds
are still below the traditional 2.5% significance level threshold. The optimal sample
size is 15 and 19 patients for male and female patients, respectively, and we always
achieve a statistical power of 90%. The BDA-optimal type I error for the risk of
serious infection is less than 0.1% for both male and female patients and the optimal
sample size is 102 patients across genders with a statistical power below 1%.
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Time on Dialysis. The BDA-optimal type I error for the risk of serious bleeding
varies with the amount of time the patient has been on dialysis, taking values of
1.6%, 1.0%, and 1.5% for less than 1 year, 1 to 4 years, and more than 5 years on
dialysis, respectively. Once again, these thresholds are still below the traditional 2.5%
significance level threshold. Conversely, the optimal sample size does not change
significantly across different times on dialysis, ranging between 16 and 17 patients
required to achieve a 90% statistical power. The BDA-optimal type I error for the
risk of serious infection is below 0.1% across all groups and we obtain an optimal
sample size of 102 patients across all groups with statistical power below 1%.

Race and ethnicity. The BDA-optimal type I errors for the risk of serious
bleeding are 2.3%, 0.7%, 1.7%, and 28% for white non-Hispanic, black non-Hispanic,
other non-Hispanic, and multiracial non-Hispanic patients, respectively. Overall, this
BDA-optimal type-I error is 1.7% for non-Hispanic patients and is below 0.1% for
Hispanic patients. The optimal sample size ranges from 4 to 19 patients for all non-
Hispanic subgroups to achieve a statistical power of 90%. A 90% statistical power
cannot be achieved for Hispanic patients. For the risk of serious infection, we find
a BDA-optimal type I error below 0.1% for all subgroups except other non-Hispanic
patients (0.4%) and multiracial non-Hispanic patients (0.2%). We only achieve a
90% statistical power for non-Hispanic patients and multiracial non-Hispanic patients,
with an optimal sample size of 28 and 33 patients respectively.

Table 2.4: BDA-optimal type I error rate, total sample size, and statistical power of
the trial across patient population subgroups.

Population Subgroups Risk of Serious Bleeding Risk of Serious Infection
𝛼 Sample

Size
Power 𝛼 Sample

Size
Power

Overall 1.2% 17 90% < 0.1% 102 < 1%
Home Hemodialysis 0.3% 23 90% <0.1% 101 <1%
In-Center Hemodialysis 1.0% 17 90% <0.1% 102 <1%
Peritoneal Dialysis 3.8% 12 90% 1.3% 23 90%
Age: Less than 40
years

0.2% 23 90% <0.1% 101 <1%

Age: between 40 and
64 years old

1.5% 16 90% <0.1% 102 <1%

Age: 65 years and
above

1.9% 15 90% <0.1% 102 <1%

Male 1.9% 15 90% <0.1% 102 <1%
Female 0.7% 19 90% <0.1% 102 <1%
Time on Dialysis: less
than 1 year

1.6% 16 90% <0.1% 102 <1%

Time on Dialysis: 1 to
4 years

1.0% 17 90% <0.1% 102 <1%

Continued on next page
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Table 2.4 – Continued from previous page

Population Subgroups Risk of Serious Bleeding Risk of Serious Infection
𝛼 Sample

Size
Power 𝛼 Sample

Size
Power

Time on Dialysis: more
than 5 years

1.5% 16 90% <0.1% 102 <1%

Hispanic <0.1% 101 <1% <0.1% 102 <1%
Non-Hispanic (Overall) 1.7% 15 90% <0.1% 102 <1%
White Non-Hispanic 2.3% 14 90% <0.1% 102 <1%
Black Non-Hispanic 0.7% 19 90% <0.1% 101 <1%
Other Non-Hispanic 1.7% 15 90% 0.4% 28 90%
Two or More Races
Non Hispanic

28% 4 90% 0.2% 33 90%

Figure 2-1: BDA-Optimal Type I Error Rate for the Risk of Serious Bleed-

ing. The horizontal red line corresponds to the commonly used 2.5% significance
level. Bootstrap estimates of 95% confidence intervals are plotted in blue.

2.3.2 Sensitivity Analysis

The BDA estimation procedure performed depends both on the estimated survey
parameters and on our modeling assumptions. We perform a sensitivity analysis
on three key parameters of the model to test the robustness of the BDA outputs.
Additional considerations are provided in Appendix A.

First, the concern ratio has been defined as a simplifying tool to aggregate two risk
measures when estimating the patient’s loss in utility (Equation 2.3 and Equation
2.4). While this parameter is based on survey data, the linear aggregation performed
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Figure 2-2: BDA-Optimal Type I Error Rate for the Risk of Serious Infec-

tion. The horizontal red line corresponds to the commonly used 2.5% significance
level. Bootstrap estimates of 95% confidence intervals are plotted in blue.

Figure 2-3: BDA-Optimal Type I Error Rate for the Overall Safety End-

point. The horizontal red line corresponds to the commonly used 2.5% significance
level. Bootstrap estimates of 95% confidence intervals are plotted in blue.

in Equation 2.13 and Equation 2.14, albeit very simplistic and insightful, may not be
entirely realistic. In Figure 2-4 and Figure 2-5, we plot the BDA outputs obtained
for the entire patient population studied for the two safety endpoints considered
when varying the concern ratio from 0 to 1. We observe that increasing the concern
ratio from 0 to 1 reduces the optimal significance level threshold and increases the
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optimal trial sample size calculated by the BDA. The results described in Table 2.4
are recovered by considering the risk of serious bleeding or the risk of serious infection
as safety endpoint along with a concern ratio 𝛾 = 0 and 𝛾 = 1 respectively. We find
that the results are still consistently lower than the 2.5% significance level threshold
used in practice.

The concern ratio is also used to aggregate the two safety endpoints into an aggre-
gate safety endpoint (Equation 2.12). Sensitivity to the concern ratio is highlighted
in Figure 2-4 and Figure 2-5 when considering the aggregated safety endpoint. We
also find that the BDA optimal significance level decreases with the concern ratio
while the BDA optimal sample size increases with the concern ratio. The results de-
scribed in Figure 2-3 are consistent with an aggregated safety endpoint when setting
the concern ratio 𝛾 to the population’s average (𝛾 = 0.52).

Furthermore, we test the sensitivity of the BDA outputs to two key assumptions
of the model: the safety margin 𝛿0 and the variability in the baseline risk and in
the device risk. As shown in Figure A-1 and Figure A-2, reducing the safety margin
leads to a less conservative significance level threshold while increasing the safety
margin leads to a more conservative significance level threshold. The results are still
consistently lower than the usual 2.5% significance level threshold used in practice.
Finally, Figure A-3 and Figure A-4 show that reducing the variability in the risk
of serious bleeding and in the risk of serious infection in the control and treatment
groups leads to a more conservative significance level threshold while an increase in
the variability parameters leads to a less conservative significance level threshold.
Increasing the variability actually increases the significance level threshold above the
2.5% reference level when considering the risk of serious bleeding. The rest of the
results remain consistently lower than the 2.5% reference point.
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Figure 2-4: BDA-Optimal Type I Error Rate for Three Safety Endpoints.

The average concern ratio across patients is represented by a vertical black line, and
the shaded region represents the range of plus/minus one standard deviation around
the mean.

Figure 2-5: BDA-Optimal Clinical Trial Total Sample Size for Three Safety

Endpoints. The average concern ratio across patients is represented by a vertical
black line, and the shaded region represents the range of plus/minus one standard
deviation around the mean.
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2.3.3 Discussion of the results

In this study, we found that a 2.5% fixed significance level threshold would not be
an appropriate choice for evaluating the safety of a hypothetical kidney replacement
therapy (KRT) device as it will not maximize the patient’s utility. In fact, patients
often require a much lower significance level threshold, reflecting a lower willingness
to bear the risks of the device in exchange for its probable benefits and a stronger
concern regarding the approval of a potentially harmful device over the potential fear
of missing out on the device’s benefits. Although we observe some heterogeneity across
patient subgroups, only patients on peritoneal dialysis would be comfortable with a
significance level threshold above 2.5% when evaluating the risk of serious bleeding
endpoint. For the risk of serious infection, we found that all patient subgroups would
require a much lower significance level threshold than 2.5%, with patient on peritoneal
dialysis being the most permissive subgroup at a 1.3% threshold. These observations
remain valid as we perturb key assumptions of the model as shown in Section 2.3.2.

Another interesting observation can be made from this study regarding the tem-
poral preferences of the patients surveyed. As shown in Table 2.2, patients tend to
present very high temporal discount rates (𝑟), or equivalently very low willingness to
wait (1/𝑟). Most patients surveyed would not be willing to wait more than a year or
two to obtain a similar device with lower levels of risks. This is counter-intuitive as
patients seem to have a very low risk-tolerance and a high level of impatience. The
former would lead to less devices being approved, and therefore longer wait times un-
til a new device is approved, in contradiction with the latter. Such impatience is not
uncommon in behavioral economics. In fact, researchers have found that individuals
may, in certain situations, prefer small rewards now over larger rewards in the future,
violating the time-consistency of exponential discounting models. In these cases, hy-
perbolic discounting has been proposed as an alternative [150]. Under hyperbolic
discounting, the discount factor would no longer take the form 𝑒−𝑟𝑡 but rather 1

𝑟𝑡
,

making the individual more biased towards immediate rewards (even if these rewards
are small). For example, an individual with hyperbolic discounting temporal prefer-
ences would therefore prefer a riskier device now to a device that presents lower levels
of risks but would be available more than two years later.

Finally, this application of BDA to KRT devices highlights the objectivity of the
method: by maximizing the patient’s utility, BDA is able to correctly reflect the pa-
tient’s preferences into a quantifiable benefit-risk tradeoff and select an appropriate
significance level threshold to evaluate the safety and/or the efficacy of a potential
treatment. However, it is important to stress that the objectivity and usefulness of
recommendation from the BDA depends critically on the quality of the patient prefer-
ences survey used. Ideally, the design of the survey would be prepared in partnership
with both regulators and patient advocacy organizations and would contain survey
questions that are consistent with the clinical endpoints that would eventually be
used to assess the safety and/or efficacy of the hypothetical treatment in a clinical
trial.
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2.3.4 Limitations and sensitivity analysis

Our findings must be qualified in several respects. First, the survey instrument used
to assess patient preferences cannot fully describe and quantify the probable benefits
of the hypothetical KRT as there are no actual wearable KRT device on the market.
To ensure that patients had a basic understanding of some key probable benefits
of the device, a description of these benefits was included in the KHI survey along
with comprehension questions that verified whether the patient had understood the
outlined benefits. These questions were usually answered correctly, mitigating the
risk of uninformed responses from the patients. In fact, a lack of appreciation of the
device’s benefits can lead patients to make more conservative choices and reduce the
significance level threshold calculated by the BDA.

Second, unlike MARs which tend to be precisely estimated (Table 2.2), we observe
large standard errors when estimating temporal discount rate (Table 2.2). This can be
partially explained by the fact that patients were randomly asked to answer the time
tradeoff questions for either the risk of serious bleeding or the risk of serious infection,
lowering the number of responses from 577 (for MAR threshold regressions) to 212
and 183 (respectively for the risks of serious bleeding and serious infection). Another
explanation relies on a large inherent variability in each patient’s willingness to wait.
We mitigate this effect by estimating standard errors on the BDA outputs as shown in
Figure 2-1, Figure 2-2, and Figure 2-3 which reflect the uncertainty in the temporal
discount rate and in the MARs estimated through threshold regressions.

2.4 Conclusion

Critics of Bayesian Decision Analysis have often incorrectly viewed this approach
as a way to inflate significance level thresholds and lead researchers and regulators
to be more permissive in their decision process. While an increase in the type I
error rate threshold is often caused by the patient’s desire to get access to a novel
therapy, this application to kidney replacement therapy devices provides a concrete
example of patients requiring significance level thresholds far below the typical 2.5%
used in practice. Indeed, by design, BDA will lead to more permissive thresholds
when patients are willing to accept a higher level of therapeutic risks in exchange for
greater benefits but would lead to more conservative thresholds when the perceived
risks outweigh the potential benefits. When correctly applied, BDA incorporates the
patient’s preferences in a truthful, objective, transparent, and repeatable way, and
can provide useful recommendations to all stakeholders.
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Chapter 3

An Application of Bayesian

Decision Analysis to

Patient-Centered Randomized

Clinical Trials in Parkinson’s

Disease

Before generalizing the BDA approach in Chapter 4, we illustrate the classical BDA
using a second case study: while Chapter 2 applied BDA to the safety endpoint
of a hypothetical kidney replacement therapy device, we now turn our attention to
efficacy endpoints for a hypothetical deep brain stimulation (DBS) device for patients
suffering from Parkinson’s disease (Parkinson’s disease (PD)).

More concretely, we apply BDA to PD patient preference scores elicited from
survey data. BDA allows us to choose a sample size 𝑛 and significance level (𝛼)
that maximizes the overall expected value to patients of a balanced two-arm fixed-
sample RCT, where the expected value is computed under both null and alternative
hypotheses.

By explicitly incorporating patient preferences into clinical trial designs and the
regulatory decision-making process, BDA provides a quantitative and transparent
approach to combine clinical and statistical significance. For PD patients who have
never received DBS treatment, we find that a 5% significance threshold may not be
conservative enough to reflect their risk-aversion level. However, this study shows
that patients who previously received DBS treatment present a higher tolerance to
accept therapeutic risks in exchange for improved efficacy which is reflected in a higher
statistical threshold.

This study is part of a larger collaborative initiative to identify and measure the
factors that matter most to PD patients [166].

63



3.1 Introduction

In this chapter, we use quantitative patient preference data elicited from a preference
study of PD patients to design pivotal clinical trials with patient-centered p-value
thresholds and sample sizes [113]. Patient-centered design may be substantially dif-
ferent from the conventional approach, which may consider using a fixed one-sided
significance level of 5%. Based on the device and indication considerations, the FDA
typically uses a 2.5% one-sided significance level for studies presenting “conventional
uncertainty” and a 5% one-sided significance level under “moderate uncertainty” [79].
To err on the conservative side, we use the 5% one-sided level as our benchmark. For
patients who had previously received DBS treatment, the significance levels identified
by the BDA framework are similar to or larger than 5%, while for patients with who
had never received DBS, the significance levels are smaller than 5%. The optimal sig-
nificance levels obtained for patients with prior experience with DBS are in fact always
strictly larger than a 2.5% significance level benchmark. Moreover, in both these pop-
ulations, the patients with more severe cognitive and motor function symptoms were
willing to accept more uncertainty. This patient-centered design necessarily makes
several assumptions, and a sensitivity analysis of these results is provided in the Ap-
pendix B.1. The usefulness of these recommendations relies on the appropriateness
of these key assumptions and accurately calibrated model parameters.

3.2 Patient-centered clinical trial designs

We consider a quantitative framework that explicitly takes patient preferences into
account across multiple device attributes when determining the optimal sample size
and critical value of a balanced two-arm fixed-sample RCT. We first define a patient-
centered value model associated with given medical device attributes. Our patient
value model is based on preference data for a specific, hypothetical device [46]. This
framework is derived from previous oncology analyses [168, 126] and can be used in
areas where patient-preference data are available.

We assign prior probabilities to each possible combination of attributes and for-
mulate the expected value of the trial. The optimal trial size (2𝑛, where there are n
patients in each arm of the study) and the one-sided significance level (𝛼 or critical
value, 𝜆𝛼) are then jointly determined to maximize the expected value of the trial. For
expositional simplicity, we have assumed a balanced clinical trial, but the methodol-
ogy also applies more generally to cases where the clinical trial is unbalanced. Note
that maximizing the value of the trial means either providing access to a safe and
effective treatment to patients, or reaching the conclusion that the treatment has not
demonstrated a reasonable assurance of safety and effectiveness as soon as possible.
This is equivalent to minimizing the potential losses, which include the consequences
of incorrect decisions for all patients, and the time inefficiency of delaying access of a
potentially safe and effective treatment.
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3.2.1 Patient Value Model

A multidisciplinary team, including researchers from the Medical Device Innova-
tion Consortium (MDIC), the Michael J. Fox Foundation for Parkinson’s Research
(MJFF), and the US Food and Drug Administration (FDA), developed and adminis-
tered a survey to patients with PD to quantify the maximum level of risk that patients
would accept to achieve different potential benefits of a neurostimulation device [113].
The ultimate aim of this study was to explore the feasibility of using patient pref-
erence information to optimize clinical trial design for medical device treatments for
PD. This study began with qualitative research that incorporated input from patient
partners and regulatory end-users in attribute development [20]. Based on this in-
put from patients and regulators, a threshold technique survey was developed and
administered to quantify the benefit-risk tradeoffs that are acceptable to people with
PD and to assess their willingness to wait for a novel device that offers a greater
therapeutic benefit. The threshold technique was used to quantify patients’ risk tol-
erance for new or worsening depression or anxiety, brain bleed, or death in exchange
for improvements in “on-time”, motor symptoms, pain, cognition, and pill burden.
The survey also elicited patients’ maximum willingness to wait to receive treatment
benefit. Equation 3.1 shows the patient preference model estimated from the survey
data [20, 113].

Risk threshold = (𝛽1 + 𝛽2 · Agecat2 + 𝛽3 · Agecat3 + 𝛽4 · Agecat4) · Benefit
+ 𝛾1 · Non-ambulatory + 𝛾2 · Cognitive symptom + 𝛾3 · DBS
+ 𝛾4 · Dyskinesia + 𝛾5 · Motor symptom + Error

(3.1)

The Risk threshold estimates the additional risk, in the form of mortality, brain bleed,
and depression risk, the patient would be willing to accept above their baseline risk
before becoming indifferent to receiving a given benefit. The absolute level of benefit
is denoted Benefit, and can include improvements in “on time” (a common clinical
trial endpoint in Parkinson’s disease clinical trials), motor symptoms, cognition, and
pain level. Descriptions of indicator variables that specify the model for different
subgroups of patients are provided in Table 3.1. Finally, Error is a random error
term with mean 0.

Indicator Variable Description
Agecat2 Equals 1 if patients are between 61 and 66 years old
Agecat3 Equals 1 if patients are between 67 and 71 years old
Agecat4 Equals 1 if patients are 72 years old or older
Non-ambulatory Equals 1 if patients report problems with balance or walking
Cognitive symptom Equals 1 if patients report difficulty thinking clearly
DBS Equals 1 if patients report received DBS
Dyskinesia Equals 1 if patients experience dyskinesia as a side effect of their medication

Table 3.1: Definition of indicator variables in Equation 3.1.
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The patient preferences reflected in Equation 3.1 can be aggregated across ben-
efits and risks to compute an overall preference score for a specific treatment. For
example, the patient value lost from an increase in mortality risk resulting from a
more invasive surgery could be offset by any additional benefits. The benefits, such
as the value gained from increase in on-time can be mapped to an equivalent decrease
in mortality risk using Equation 3.1. Given both these changes, and holding other
attributes constant, the net change in value could then be calculated to determine
if the additional on-time would more than compensate for the increased mortality
risk according to the patient preference information, suggesting the new benefit-risk
profile is preferred. The relative loss of value per patient, 𝐿, of using a lower-scored
intervention over another, is then defined in terms of the net difference in value.

Throughout this analysis, the null hypothesis H=0 will represent an ineffective
but possibly harmful device and the alternative hypothesis 𝐻 = 1 will represent an
effective device. The value of a clinical trial for a superiority claim depends on the
outcome of the trial, yet it affects patients beyond the scope of the trial. We assume
there is no post-trial loss in value for a correct decision, i.e., rejecting (approving) a
device that is less (more) preferred relative to the control, except for the wait time
of the regulatory review process. We make a further distinction in the relative loss of
value per patient, 𝐿, defining 𝐿0 as the relative loss of value per patient from using
an ineffective device under the null hypothesis (𝐻 = 0), and 𝐿1 as the relative loss
in value per patient from missing out on the opportunity to use an effective device
under the alternative hypothesis (𝐻 = 1). The severity ratio, 𝐿1/𝐿0 , thus provides
a measure of their relative importance to a patient.

In addition, we can calculate the average loss in value per patient of a false approval
or rejection as 𝐷𝐹𝑡 · 𝐿0 and 𝐿1, respectively, where 𝐷𝐹𝑡 is a discount factor that
decreases from 1 to 0 to account for the wait time, 𝑡, caused by the regulatory approval
process. In other words, patients will place a lower value on an effective treatment if it
is not accessible immediately. Therefore, the average per patient loss in value caused
by the length of the regulatory approval process under the alternative hypothesis is
(1 − 𝐷𝐹𝑡) · 𝐿1.

Hypotheses �̂� = 0 (Not Approved) �̂� = 1 (Approved)
𝐻 = 0 0 𝐷𝐹𝑡 · 𝐿0

𝐻 = 1 𝐿1 (1 − 𝐷𝐹𝑡) · 𝐿1

Table 3.2: Loss in value per patient associated with a balanced fixed-sample RCT.

The potential losses in value per patient of a fixed-sample trial are shown in Table
3.2. Note that there is no loss in value (i.e., there is maximum value) in the hypo-
thetically optimal scenario where the correct approval decision is made immediately
and without running a trial. The number of patients affected in each subgroup can be
used to scale these values to estimate a collective loss of value. In this case study, we
assume that the patient populations affected by a Type 1 (false positive) or Type 2
(false negative) error are approximately equal, hence our focus on the per patient loss.
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Time horizon preferences, which measure the capacity of patients to tolerate waiting,
are obtained directly from patient survey responses. We assume time-consistent (i.e.,
exponential) discounting. If the annual discount rate is 𝑅, then the discount factor
is given by 𝐷𝐹𝑡 = 𝑒−𝑅·𝑡, where 𝑡 is length of the regulatory approval process. This
assumption ensures that patient preferences do not change over time in such a way
that they become inconsistent with one another. Equations 3.2 and 3.3 specify the
fitted discount rate model that estimates the indifference thresholds of the wait time
for present versus future benefits [113].

Wait time threshold = Discount rate · log(Benefit) + Error, (3.2)

Discount rate =[𝛿1 + 𝛿2 · Agecat2 + 𝛿3 · Agecat3 + 𝛿4 · Agecat4
+ 𝛿5 · Non-ambulatory + 𝛿6 · Cognitive symptom + 𝛿7 · DBS
+ 𝛿8 · Dyskinesia + 𝛿9 · Motor symptom]−1.

(3.3)

The duration of the regulatory approval process (𝑡) is determined by the size of the
study (2𝑛), the patient accrual rate for the study (𝜂), the time required to set up the
study (𝑠), the follow-up time for the final patient to complete the study (𝑓) and the
FDA review time (𝜏), such that 𝑡 = 𝑠 + 2𝑛/𝜂 + 𝑓 + 𝜏 . The estimates of the discount
rate calculated from this model range from 14.5% to 32.7% per year, increasing as
a function of both age and disease severity. This discount rate governs the trade-off
between the study accrual (and hence the trial duration) and the overall error rate
(both Type 1 and Type 2 error). The more data that are collected, the greater the
certainty in the regulatory decision, but also the longer patients may need to wait to
access the new treatment.

3.2.2 Bayesian Decision Analysis

A quantitative primary endpoint that tests for efficacy is assumed for the trial; how-
ever, the same BDA framework can be applied to evaluate safety concerns. In our
analysis, we assume the primary endpoint is based on motor function. We further
assume that subjects in the treatment arm receive the investigational device, and each
subject’s response is independent of all other responses. In the same way, patients
in the control arm are assumed to receive a standard of care treatment, including
adjuvant medication and non-pharmacological therapy (e.g., physical, occupational,
and speech therapies).

The response variables in the treatment arm, denoted by {𝑇1, . . . , 𝑇𝑛}, are assumed
to be independent and identically distributed, where 𝑇𝑖 ∼ 𝑁(𝜇𝑡, 𝜎2

𝑡 ). Similarly, the
control arm responses, represented by {𝑃1, . . . , 𝑃𝑛}, are assumed to be independent
and identically distributed as 𝑃𝑖 ∼ 𝑁(𝜇𝑝, 𝜎2

𝑝). As part of the model, we further
confine ourselves to superiority trials, where the device is likely to have either a
positive effect (𝜇𝑡 > 𝜇𝑝), or no effect (𝜇𝑡 ≤ 𝜇𝑝). In such cases, the treatment effect
of the device, 𝛿, is defined as the difference between the response means in the two
arms (i.e., 𝛿 := 𝜇𝑡 − 𝜇𝑝). In fixed-sample trial with n subjects in each arm, we collect
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observations from the treatment and control arms, and form the following 𝑡-statistic:

𝑇 = �̂�𝑡 − �̂�𝑝√︁
�̂�2

𝑡

𝑛
+ �̂�2

𝑝

𝑛

, (3.4)

where �̂� and �̂� represent the sample mean and standard deviation, respectively, and
𝑇 has a noncentral 𝑡-distribution with noncentrality parameter 𝛿 ·

√︁
𝑛

𝜎2
𝑡 +𝜎2

𝑝
. Under the

assumption that the two variances are equal, this distribution has 2(𝑛 − 1) degrees of
freedom. The 𝑡-statistic is then compared to the critical value, 𝜆𝛼. Finding that 𝑇 >
𝜆𝛼 supports the rejection of the null hypothesis (i.e., that the device has no effect).
The probability of failing to reject the null hypothesis, for a device that provides a
treatment effect 𝛿 with response variances 𝜎2

𝑡 and 𝜎2
𝑝, is therefore P (𝑇 ≤ 𝜆𝛼).

Assuming previously observed probabilities 𝑝0 and 𝑝1 (where 𝑝0 + 𝑝1 = 1) for the
cases where the investigational device is equally effective (𝐻 = 0) and more effective
(𝐻 = 1) to the control treatment, respectively, and letting 𝑉0 and 𝑉1 be the value
created in the hypothetically optimal scenarios where the correct approval decision
is made immediately and without running a trial, the expected value associated with
an RCT design with parameters (𝑛, 𝜆𝛼) is

E [Value; 𝑛, 𝜆𝛼] = 𝑝0 · (𝑉0 − E
[︀
Loss|𝐻 = 0

]︀
) + 𝑝1 · (𝑉1 − E

[︀
Loss|𝐻 = 1

]︀
), (3.5)

where
E
[︀
Loss|𝐻 = 0

]︀
= 𝛼 · 𝐷𝐹𝑡 · 𝐿0, (3.6)

and
E
[︀
Loss|𝐻 = 1

]︀
= 𝛽 · 𝐿1 + (1 − 𝛽) · (1 − 𝐷𝐹𝑡) · 𝐿1, (3.7)

𝛼 is the significance level, and (1 − 𝛽) is the power of the trial. The optimal sample
size (𝑛*) and critical value (𝜆*

𝛼) are jointly determined such that the expected value
of the trial is maximized subject to an upper bound chosen by the user for the power
level. This power constraint is intended to represent the typical practices in the
medical device industry, which reflect budget, time, personnel, and other resource
limitations. While a 90% power constraint is assumed throughout the analysis, we
consider relaxing this constraint in the sensitivity analysis provided in Appendix B.1
by imposing no power constraint (Table B.1) and an 80% power constraint (Table
B.2). Finally, in solving the constrained optimization problem, we observe that the
expected value of the trial is maximized when the expected loss,

E [Loss; 𝑛, 𝜆𝛼] = 𝑝0 · E
[︀
Loss|𝐻 = 0

]︀
+ 𝑝1 · E

[︀
Loss|𝐻 = 1

]︀
, (3.8)

is minimized.
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3.2.3 Bayesian Decision Analysis and Expected Value of In-

formation

In this section, we demonstrate how it is possible to embed our BDA approach as a
special case of the EVI. EVI involves maximizing the expected utility of collecting
incremental information and is a general framework for applying Bayesian analysis
to decision making. In particular, the EVI decision rule to approve a treatment if
the expected net benefit given the sample data is greater than zero maximizes the
expected net benefit (which is the objective function in our BDA framework). As such,
we can show that the BDA-optimal statistical significance threshold is equivalent to
the EVI decision rule to approve a treatment if the expected net benefit given the
sample data is greater than zero.

Our BDA framework aims to maximize the expected value associated with an
RCT design with a sample size 𝑛 and a critical value 𝜆𝑛,

max
𝑛,𝜆𝑛

E [Value; 𝑛, 𝜆𝑛] . (3.9)

This framework maximizes the value of the RCT by first finding the optimal critical
value 𝜆𝑛 as a function of the sample size 𝑛, and then finding the optimal sample size
𝑛. If we assume a probability distribution for the clinical profile 𝜃 of the treatment,
then we can express Equation 3.9 as follows,

max
𝑛,𝜆𝑛

E [Value; 𝑛, 𝜆𝑛] = max
𝑛,𝜆𝑛

∫︁
𝜃
𝑝𝜃 · E

[︀
Value|𝜃

]︀
𝑑𝜃. (3.10)

For example, if we assume that the treatment’s profile can only take two values i.e.,
𝜃 = 0 with probability 𝑝0 and 𝜃 = 1 with probability 𝑝1, then Equation 3.10 reduces
to the framework used in this chapter,

max
𝑛,𝜆𝑛

E [Value; 𝑛, 𝜆𝑛] = max
𝑛,𝜆𝑛

{︁
𝑝0 · E

[︀
Value|𝜃 = 0

]︀
+ 𝑝1 · E

[︀
Value|𝜃 = 1

]︀}︁
. (3.11)

The maximization described in 3.10 is more commonly performed by minimizing the
expected loss of the trial rather than by maximizing the expected value of the trial.
Both methods are equivalent as,

E [Value; 𝑛, 𝜆𝑛] = E [Value* − Loss; 𝑛, 𝜆𝑛] = E [Value*] − E [Loss; 𝑛, 𝜆𝑛] , (3.12)

where Value* is the value created in the hypothetically optimal scenarios where the
correct approval decision is made immediately and without running a trial. Since
E [Value*] is independent of 𝑛 and 𝜆𝑛, Equation 3.10 is equivalent to:

min
𝑛,𝜆𝑛

E [Loss; 𝑛, 𝜆𝑛] = min
𝑛,𝜆𝑛

∫︁
𝜃
𝑝𝜃 · E

[︀
Loss|𝜃

]︀
𝑑𝜃. (3.13)

Given an observation 𝑇𝑛 = 𝑡𝑛 of the trial’s summary statistic, Equation 3.13 can be
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reformulated as follows,

min
𝑛,𝜆𝑛

E [Loss; 𝑛, 𝜆𝑛] = min
𝑛,𝜆𝑛

∫︁
𝜃
𝑝𝜃 · E

[︀
Loss|𝜃

]︀
𝑑𝜃 (3.14)

= min
𝑛,𝜆𝑛

∫︁
𝜃
𝑝𝜃 ·

[︁
P
(︀
Approve|𝜃

)︀
· 𝐶𝜃,𝑎𝑝𝑝 + P

(︀
Reject|𝜃

)︀
· 𝐶𝜃,𝑟𝑒𝑗

]︁
𝑑𝜃 (3.15)

= min
𝑛,𝜆𝑛

∫︁
𝜃
𝑝𝜃 ·

[︁
P
(︀
Approve|𝜃

)︀
· 𝐶𝜃,𝑎𝑝𝑝 + (1 − P

(︀
Approve|𝜃

)︀
) · 𝐶𝜃,𝑟𝑒𝑗

]︁
𝑑𝜃(3.16)

= min
𝑛,𝜆𝑛

∫︁
𝜃

[︁
𝑝𝜃 · P

(︀
Approve|𝜃

)︀
· (𝐶𝜃,𝑎𝑝𝑝 − 𝐶𝜃,𝑟𝑒𝑗) + 𝑝𝜃 · 𝐶𝜃,𝑟𝑒𝑗

]︁
𝑑𝜃 (3.17)

= min
𝑛,𝜆𝑛

∫︁
𝜃

[︁
𝑝𝜃 · P

(︀
𝑇𝑛 > 𝜆𝑛|𝜃

)︀
· (𝐶𝜃,𝑎𝑝𝑝 − 𝐶𝜃,𝑟𝑒𝑗) + 𝑝𝜃 · 𝐶𝜃,𝑟𝑒𝑗

]︁
𝑑𝜃 (3.18)

= min
𝑛,𝜆𝑛

∫︁
𝜃

∫︁ ∞

𝜆𝑛

𝑝𝜃 · P
(︀
𝑇𝑛 = 𝑡𝑛|𝜃

)︀
· (𝐶𝜃,𝑎𝑝𝑝 − 𝐶𝜃,𝑟𝑒𝑗) 𝑑𝑡𝑛 𝑑𝜃 +

∫︁
𝜃
𝑝𝜃 · 𝐶𝜃,𝑟𝑒𝑗 𝑑𝜃(3.19)

= min
𝑛,𝜆𝑛

∫︁ ∞

𝜆𝑛

∫︁
𝜃
𝑝𝜃 · P

(︀
𝑇𝑛 = 𝑡𝑛|𝜃

)︀
· (𝐶𝜃,𝑎𝑝𝑝 − 𝐶𝜃,𝑟𝑒𝑗) 𝑑𝜃 𝑑𝑡𝑛 +

∫︁
𝜃
𝑝𝜃 · 𝐶𝜃,𝑟𝑒𝑗 𝑑𝜃.(3.20)

Equation 3.20 is minimized if the first derivative with respect to 𝜆𝑛 is equal to zero.
Applying Leibniz’s integral rule we find,

𝜕

𝜕𝜆𝑛

E [Loss; 𝑛, 𝜆𝑛] = 𝜕

𝜕𝜆𝑛

∫︁ ∞

𝜆𝑛

∫︁
𝜃
𝑝𝜃 · P

(︀
𝑇𝑛 = 𝑡𝑛|𝜃

)︀
· (𝐶𝜃,𝑎𝑝𝑝 − 𝐶𝜃,𝑟𝑒𝑗) 𝑑𝜃 𝑑𝑡𝑛(3.21)

= −
∫︁

𝜃
𝑝𝜃 · P

(︀
𝑇𝑛 = 𝜆𝑛|𝜃

)︀
· (𝐶𝜃,𝑎𝑝𝑝 − 𝐶𝜃,𝑟𝑒𝑗) 𝑑𝜃. (3.22)

Hence, the decision rule becomes:

−
∫︁

𝜃
𝑝𝜃 · P

(︀
𝑇𝑛 = 𝑡𝑛|𝜃

)︀
· (𝐶𝜃,𝑎𝑝𝑝 − 𝐶𝜃,𝑟𝑒𝑗) 𝑑𝜃

Approve
≷

Reject
0, (3.23)

which is equivalent to,

∫︁
𝜃
𝑝𝜃 · P

(︀
𝑇𝑛 = 𝑡𝑛|𝜃

)︀
· (𝐶𝜃,𝑎𝑝𝑝 − 𝐶𝜃,𝑟𝑒𝑗) 𝑑𝜃

Reject
≷

Approve
0. (3.24)

Using Baye’s rule again, we get:

∫︁
𝜃
(𝐶𝜃,𝑎𝑝𝑝 − 𝐶𝜃,𝑟𝑒𝑗) · P

(︀
𝜃|𝑇𝑛 = 𝑡𝑛

)︀
𝑑𝜃

Reject
≷

Approve
0. (3.25)

The term (𝐶𝜃,𝑎𝑝𝑝 − 𝐶𝜃,𝑟𝑒𝑗) can be interpreted as a net cost (i.e., loss of value) of
approving a therapy with clinical profile 𝜃. Therefore,

𝐶𝜃,𝑎𝑝𝑝 − 𝐶𝜃,𝑟𝑒𝑗 = −Net Benefit(𝜃). (3.26)
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Hence Equation 3.26 leads to the EVI decision rule,

∫︁
𝜃
Net Benefit(𝜃) · P

(︀
𝜃|𝑇𝑛 = 𝑡𝑛

)︀
𝑑𝜃

Approve
≷

Reject
0, (3.27)

which says to approve a treatment if the expected net benefit given the sample data
is greater than zero.

In this chapter, we consider a probability model with only two possible outcomes
to connect the BDA framework (and by extension, the EVI framework) to the fre-
quentist null and alternative hypothesis framework used in most clinical trials today.
Given the additional information needed to apply EVI—the utility function, the prob-
ability distributions of the state variables, etc.—we believe that our approach is the
closest alternative to the status quo and therefore a practical next step for allow-
ing regulators to incorporate patient preferences in their current decision framework.
The BDA framework described in this chapter bridges these two approaches enabling
the classical clinical trial endpoint analysis to reflect multidimensional benefit-risk
tradeoffs.

3.3 Deep brain stimulation case study

Using BDA and the estimated patient preference model, we formulated a patient-
centered fixed-sample RCTs for Parkinson’s devices. Table 3.3 summarizes the pa-
rameter values used in our analysis. These parameters have been calibrated based
on regulatory reviews of DBS devices and literature reviews of efficacy and safety
[11, 216, 140, 185]. In Appendix B.1, we use sensitivity analysis to investigate the
robustness of our analysis to perturbations in key parameter values assumed by our
model. To provide readers with greater transparency and intuition regarding our
Bayesian decision model, we provide the source code of our analysis in the Supple-
mentary Materials, allowing users to input their own parameter values of interest and
see the results. Table 3.4 reports the optimal RCTs for population subsets, including
patients who have previously received DBS, patients with problems walking, patients
with difficulty thinking clearly, patients with severe movement symptoms, and pa-
tients who experience dyskinesia as a side effect of their Parkinson’s medication.
These results are illustrated in Figure 3-1. In this analysis, preferences across age
cohorts have been weighted equally. (A sensitivity analysis is provided in Appendix
B.1 in which age cohort preferences are considered individually.)
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Table 3.3: Assumptions for the RCT design.

Parameter Description Value
Probability that the treatment is
effective (𝑝1)

The estimated a priori probability that the
treatment is effective (𝐻 = 1), which can be
estimated from historical success rates or set
to 50% when there is no prior information

50%

Motor symptom score mean differ-
ence (𝛿)

Average reduction in motor symptoms on a
rating scale from 0 to 10 under 𝐻 = 1

0.98 out of
10

Motor symptom score standard de-
viation (𝜎𝑡 and 𝜎𝑝)

Treatment response variability in both the
treatment and control arms

2 out of 10

On-time mean difference Average increase in on-time under 𝐻 = 1 4.5 hours
Reduction in pain mean difference Average reduction in pain symptoms on a

rating scale from 0 to 10 under 𝐻 = 1
0.83 out of
10

Cognitive symptom mean differ-
ence

Average improvement in cognitive symptoms
on a rating scale from 0 to 10 under 𝐻 = 1

0.53 out of
10

Depression risk Increased depression risk from receiving
treatment under 𝐻 = 1

3%

Brain-bleed risk Increased brain-bleed risk from receiving
treatment under 𝐻 = 1

1.6%

Mortality risk Increased mortality risk from receiving treat-
ment under 𝐻 = 1

0.8%

Patient accrual rate (𝜂) The rate at which patients enroll in the trial.
We assume a uniform accrual rate over time.

200 pa-
tients per
year

Start-up time before patient enroll-
ment (𝑠)

The time before the trial starts needed for
paperwork, etc.

6 months

Follow-up period after enrolling the
last patient (𝑓)

After the last patient is enrolled, patients are
followed up for this amount of time before
any data analysis is conducted.

1 year

FDA review time (𝜏) The time required for the FDA to review an
application and make an approval decision.

9 months

As can be seen, the optimal RCT designs vary substantially across patient sub-
groups. On the one hand, for patients who had previously received DBS, the sample
sizes range from 110 to 154 subjects, and the significance level falls between 4.0%
and 10.0%. Within this range, patients with more severe motor and cognitive symp-
toms prefer less conservative trial designs. This result reflects the willingness of these
relatively more risk-tolerant patients to bear additional uncertainty regarding the ef-
fectiveness of a device in order to reduce the chance of missing out on its potential
benefits. Moreover, the BDA framework also allows the design to grant faster access
to this risk-tolerant subgroup, as a result of smaller clinical trials.

On the other hand, for the average patient who has never received DBS, the ben-
efits of an implantable device do not significantly outweigh the risks, resulting in
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clinical trials with much larger sample sizes (150 to 294 subjects) and more conser-
vative significance levels (0.2% to 4.4%). For these patients, the additional risks of
depression, brain bleed, and mortality associated with an implantable device weigh
relatively heavier on their decision-making process. Here, more evidence of clinical
effectiveness is required to outweigh the potential consequences of a false approval.
It is important to note that [216] reported an improvement in on-time and motor
function at a statistical significance of 𝑝 < 0.001 for bilateral deep brain stimulation
when compared against the standard of care, so even our most stringent threshold
would not negate prior approvals.

Figure 3-1: Patient-centered sample sizes (2n) and significance levels for patient sub-
populations with increasing risk tolerance.
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Table 3.4: BDA-optimal RCTs for Parkinson’s devices for patient subpopulations with increasing risk tolerance. Indicator
variables are set to 1 when a characteristic is present.

Subpopulation RCT Design
No. DBS Non-

ambulatory
Cognitive
symptom

Motor
symptom

Dyskinesia Severity ra-
tio 𝐿1/𝐿0

Discount
rate 𝑅

Trial size
2𝑛

Significance
level 𝛼

Power
1 − 𝛽

1 0 0 0 0 0 0.06 17.2% 294 0.2% 90%
2 0 0 0 0 1 0.08 18.8% 274 0.3% 90%
3 0 0 0 1 0 0.28 15.9% 226 0.9% 90%
4 0 0 0 1 1 0.30 17.2% 218 1.0% 90%
5 0 1 0 0 0 0.40 19.6% 200 1.5% 90%
6 0 1 0 0 1 0.42 21.6% 192 1.8% 90%
7 0 0 1 0 0 0.46 17.7% 196 1.6% 90%
8 0 0 1 0 1 0.48 19.3% 190 1.9% 90%
9 0 1 0 1 0 0.62 18.0% 182 2.2% 90%
10 0 1 0 1 1 0.64 19.6% 174 2.6% 90%
11 0 0 1 1 0 0.68 16.3% 182 2.2% 90%
12 0 0 1 1 1 0.70 17.7% 178 2.4% 90%
13 0 1 1 0 0 0.80 20.2% 164 3.3% 90%
14 0 1 1 0 1 0.82 22.3% 158 3.7% 90%
15 0 1 1 1 0 1.02 18.4% 158 3.7% 90%
16 1 0 0 0 0 1.03 19.6% 154 4.0% 90%
17 0 1 1 1 1 1.04 20.2% 150 4.4% 90%
18 1 0 0 0 1 1.05 21.5% 146 4.8% 90%
19 1 0 0 1 0 1.25 17.9% 146 4.8% 90%
20 1 0 0 1 1 1.27 19.6% 144 5.0% 90%
21 1 1 0 0 0 1.37 22.7% 132 6.4% 90%
22 1 1 0 0 1 1.39 25.4% 126 7.2% 90%
Continued on next page
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Table 3.4 – Continued from previous page

Subpopulation RCT Design
No. DBS Non-

ambulatory
Cognitive
symptom

Motor
symptom

Dyskinesia Severity ra-
tio 𝐿1/𝐿0

Discount
rate 𝑅

Trial size
2𝑛

Significance
level 𝛼

Power
1 − 𝛽

23 1 0 1 0 0 1.43 20.1% 136 5.9% 90%
24 1 0 1 0 1 1.46 22.2% 128 6.9% 90%
25 1 1 0 1 0 1.59 20.5% 128 6.9% 90%
26 1 1 0 1 1 1.61 22.7% 124 7.5% 90%
27 1 0 1 1 0 1.65 18.4% 132 6.4% 90%
28 1 0 1 1 1 1.67 20.1% 128 6.9% 90%
29 1 1 1 0 0 1.77 23.5% 116 8.8% 90%
30 1 1 1 0 1 1.80 26.4% 110 10.0% 90%
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3.4 Discussion

In this chapter, we modify the traditional 5% significance level used in standard RCT
designs to better reflect patient preferences and their medical needs. We quantify
the loss of value to public health associated with false approvals and rejections, then
use BDA to determine the optimal significance level and sample size that minimize
this loss, and thereby, maximize this value. We apply this framework to a case
study on Parkinson’s disease using patient preferences obtained from survey data,
and demonstrate that a fixed statistical significance level of 5% does not necessarily
maximize overall value to patients.

For patients with severe symptoms and prior experience with DBS, value is lost
due to larger, lengthier clinical trials that are too conservative about the false ap-
proval rate. Here, a missed opportunity to approve a potentially beneficial yet more
risky treatment has a substantial negative impact on risk-tolerant patients. Con-
versely, for risk-averse patients, such as those with relatively mild symptoms, the
traditional significance level of 5% is more permissive than the calculated patient-
centered thresholds. In these cases, patients require clear demonstration of clinical
effectiveness to reduce the probability of a false approval and subsequent harm to
their health.

While we have made strong assumptions in this case study for illustrative pur-
poses, these assumptions can be readily relaxed or modified in future applications. For
example, when considering potential regulatory decisions for the broader population,
it is possible to aggregate the preferences of patient subgroups by prevalence, inci-
dence rates, and other epidemiological measures within this framework. In addition,
patient value models that incorporate diminishing marginal returns or present-biased
time preferences can also be incorporated into the BDA model. A more detailed dis-
cussion of these and other factors can be found in [46]. We believe that a nuanced
consideration of these issues will be instructive in the design of future clinical trials.

Finally, although this framework provides a systematic and quantitative method
of incorporating multifaceted tradeoffs, the usefulness of its recommendations relies
on the appropriateness of these assumptions on accurately calibrated model parame-
ters. For example, patient preference information can be representative of the broader
indicated population, and participant demographic and clinical characteristics across
cohorts can be compared to assess their similarity. To improve the validity of these
assumptions, advisory committees consisting of key stakeholder groups such as pa-
tients, caregivers, physicians, medtech and biopharma executives, regulators, and
policymakers may find it useful to formulate explicit models for the consequences
of certain clinical trial actions. These estimates could then be incorporated into the
FDA review of clinical trial designs as additional inputs to their qualitative and quan-
titative deliberations. The use of an objective, explicit and transparent method that
directly relates information about patient preferences to an acceptable level of uncer-
tainty associated with clinical evidence would provide the ecosystem with a tool to
appropriately size clinical investigations.

In addition to model validation, the ethics of such designs require consideration.
There is a growing body of research demonstrating that patients facing severe ill-
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ness tend to exhibit “unrealistic optimism” about the potential outcome of a trial,
irrespective of the information provided in any consent form [130]. In these circum-
stances, it is all the more critical for regulators to incorporate patient preferences
using a rational and systematic method into their decision-making process. Regula-
tory agencies and trial sponsors already take many of these behavioral considerations
into account. For example, shifting away from balanced clinical trials in which there
is an equal number of patients in the treatment arm and in the control arm–when
there is strong scientific conviction that a therapeutic candidate is likely to succeed to
allow more patients enrolled in the trial to benefit from the investigational treatment.
Our proposed framework is designed to provide regulators with another tool with
which to address behavioral differences associated with burden of disease—one that
provides greater transparency and reproducibility than discretionary deliberations
behind closed doors.

There is a broader question of whether or not consumers have the necessary exper-
tise to express their preferences over certain therapeutic choices and counterfactuals
that are part of the patient preference elicitation process. The FDA encourages de-
vice manufacturers to collect data on patient experience and perspectives, and will
incorporate this data, when available, into its decision-making process. Even with
the limitations in both consumer expertise and elicitation technology, some forms of
patient-preference information can be measured and reflected in regulatory decisions.
As with other types of decisions facing today’s consumers—financial, nutritional,
technological, and so on—medical decisions have grown in complexity, requiring con-
sumers to become better informed. Moreover, from an ethical perspective, it can be
argued that, irrespective of a consumer’s level of education, in matters concerning
their physical well-being—such as volunteering for a clinical trial—the consumer’s
preferences have to be taken into consideration. This underlies the very foundations
of informed consent as an ethical pre-requisite for human experimentation.

3.5 Conclusion

As shown in its benefit-risk guidance, the FDA currently considers a variety of fac-
tors beyond p-values when making its decisions [80, 78]. However, determining the
maximum acceptable level of uncertainty for clinical evidence remains an unresolved
question in regulatory science for all stakeholders. As such, the ability of the BDA
framework to weigh tradeoffs that reflect a multiplicity of perspectives systematically
and transparently, and from that, to calculate the optimal threshold for the signifi-
cance level, makes it a potentially valuable tool for facilitating the clinical trial design
process. The FDA encourages sponsors to discuss their novel clinical trial plans early
through the Q-Submission process [81].

In the case of Parkinson’s disease, our survey data suggests that a fixed statisti-
cal significance level of 5% does not necessarily maximize overall value to patients.
Patients who have never received DBS treatment tend to present a higher level of
risk-aversion which would be consistent with a lower statistical threshold, while pa-
tients who previously received DBS treatment present a higher risk-tolerance which
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would be consistent with a higher statistical threshold.
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Chapter 4

Extending the Bayesian Decision

Analysis Framework under Risk

and Uncertainty

BDA is a systematic, transparent, and repeatable process which can guide the regu-
latory decision-making process by incorporating the patient’s benefit/risk preferences
explicitly into the design of clinical trials.

In this chapter, we extend the methodology of BDA to reflect the patient’s risk
and uncertainty preferences when the hypothetical treatment’s outcome (i.e., effec-
tiveness or safety) is uncertain, as is usually the case when clinical trial are designed.
This is done by assigning a continuous prior distribution to the treatment’s outcome
and expressing the BDA objective as a mean-variance optimization problem which
accounts for the patient’s uncertainty-aversion. The objective of the extended BDA
setting is to produce an optimal significance level and sample size that minimizes the
expected loss of value to patients as well as the variance of this loss.

As a proof-of-concept, we apply the extended BDA framework to previous studies
and compare the outputs to those of the traditional BDA framework for a hypothetical
treatment’s efficacy endpoint. As expected, we find that the extended BDA setting
produces optimal significance levels that are more conservative when the severity of
the disease is lower and less conservative when the severity of the disease is higher,
suggesting that patients may be willing to try a treatment with higher level of un-
certainty around its efficacy when the disease is more severe and when there are no
alternatives available. Furthermore, we investigate the sensitivity of the models to the
uncertainty-aversion parameter and find the extended BDA setting (under a Gaussian
prior) to be robust to uncertainties in the treatment’s efficacy. Conversely, under a
Bernoulli prior the BDA outputs tend to be more conservative when the severity is low
and less conservative when the severity is high as we increase the uncertainty-aversion
parameter.
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4.1 Introduction

4.1.1 The challenge of incorporating patient preferences into

the design of RCTs

RCTs are regarded as the gold standard when it comes to estimating the efficacy
of a treatment. Following Sir Ronald Fisher’s highly influential work [87], it has
been customary to use a 5% significance level threshold when performing two-tailed
hypothesis tests, and a 2.5% significance level threshold for single-tailed hypothesis
tests. Although it is a convenient reference point, it is difficult to argue that the same
threshold should be used in all applications. In fact, the appropriate threshold to use
is, almost by definition, very closely linked to the amount of risk the stakeholders
are willing to undertake. In the context of clinical trials, this means that patients
may be willing, under some circumstances, to bear additional risks to gain access
to a certain treatment rather than miss-out on the potential benefits this treatment
can provide. Conversely, when alternative treatments are available, patients may be
much less risk-tolerant and require a lower significance level threshold to assess the
efficacy of the treatment under consideration.

In the U.S., there has been an increasing interest from the FDA to incorporate
patient preferences into the regulatory and decision-making process. For example, the
Alzheimer drug aducanumab (Aduhelm [Biogen]) has received an accelerated approval
on June 2021 despite disagreements on the statistical efficacy of the drug and the
meaningfulness of some clinical endpoints[84, 180]. Given the limited alternatives
available to patients suffering from Alzheimer’s disease, patient advocacy groups have
been actively pushing for an approval. However, this decision resulted in a controversy
that lead to the resignation of three FDA advisers [179].

4.1.2 Evidence from official FDA guidance documents

The example of aducanumab is interesting as it highlights both the growing impor-
tance of the patients’ perspective as well as a lack of a systematic, transparent, and
repeatable framework to incorporate PPI into the regulatory decision-making process.
Furthermore, the FDA has published in September 2021 a draft guidance [83] to ad-
dress how patient experience data can help the FDA with the benefit/risk assessment
of new drugs. Similar points are addressed for medical devices in the August 2016
and 2019 final documents [78] and [80].

To directly quote the FDA, “Patients are experts in the experience of their dis-
ease or condition, and they are the ultimate stakeholders in the outcomes of medical
treatment” [83] and “PPI may be best suited to inform regulatory decision-making
when: 1) significant risks of treatment or uncertainty about risks exist relative to
the expected benefits; 2) patients’ views about the most important benefits and risks
vary considerably within a population; and/or 3) when patients’ views as to the most
important benefits are expected to differ from those of healthcare professionals. If
available, PPI would be considered within the context of FDA’s assessment of the
drug’s efficacy and safety to the patient population, although it would not, for exam-
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ple, overcome significant safety issues or lack of therapeutic benefit” [83]. However,
no methodology has been officially endorsed yet by the FDA to incorporate patient
preferences into the design and regulatory assessment of clinical trials.

Understanding this benefit/risk is even more important when the efficacy evidence
is debatable and [129] highlights the lack of a systematic and transparent approach
to resolve such issues.

4.1.3 A brief review of BDA and EVI

A quantitative decision theory method has been proposed in [105, 199] under the
name of EVI to determine the optimal sample size required to satisfy a specified
significance level threshold and power when designing a clinical trial. More recent
surveys of the technique can be found in [3, 182, 4]. The technique has been refined
through the development of the Expected Value of Sample Information (EVSI) [218]
to determine the optimal significance level threshold and sample size by maximizing
the expected net benefit of the trial [215, 115]. However, these approaches rely on
the Bayes risk [108] and differ considerable from the classical frequentist hypothesis
testing framework, which is often preferred by researchers and regulators.

As a middle-ground between a frequentist and a Bayesian approach, the BDA
methodology has been proposed [155, 47, 126, 168, 43] and successfully applied to
practical settings in collaboration with regulators for weight-loss devices [46], heart
failure devices [44], and Parkison’s disease devices [45]. The objective of the BDA is
to determine the optimal trial design parameters of a hypothetical treatment by using
PPI to trade off the impact of a type I error (the event of incorrectly approving an
ineffective and potentially harmful treatment) with a type II error (the event of incor-
rectly rejecting an effective treatment) in a systematic, transparent, and reproducible
way. The optimal sample size of a trial is also important to estimate to reduce the
duration of clinical trials and provide patients with a faster access to the treatment if
it is found to be effective. As shown in Chapter 3, BDA and EVI are related although
they differ significantly in their formulation.

4.1.4 Advantages of the extended BDA framework

To design optimal trials, the classical BDA aims to maximize the expected benefit to
patients, or equivalently minimize the expected loss, of a clinical trial. The PPI is
carefully analyzed using Discrete Choice Experiments (DCEs) and incorporated into
the loss function. As an input, the classical BDA uses the expected efficacy of the
treatment under consideration, a quantity which is not known precisely at the time
the clinical trial is designed. The device is therefore assumed to either be effective
(with some probability 𝑝1) and the efficacy matches the expected efficacy value, or
ineffective (with probability 𝑝0 = 1 − 𝑝1) and the efficacy is zero.

We argue here that this dichotomy, although helpful as a simplifying assumption,
can be refined by assuming a continuous probability distribution for the efficacy of the
treatment rather than the aforementioned Bernoulli distribution. We show here that
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assuming a Normal distribution for the treatment’s efficacy is in fact completely con-
sistent with the fundamental assumptions of RCTs. Furthermore, by fully embracing
the uncertainty around the efficacy of the treatment, we can address simultaneously
the risk preferences as well as the uncertainty-aversion of the patients. Understanding
the patient’s preferences regarding an uncertain efficacy (or safety) endpoint is in fact
almost as important to understanding the patient’s benefit/risk preferences.

The methodology we develop in this chapter aims to address these limitations
by extending the BDA. While the classical BDA carefully incorporates the risk pref-
erences of the patients into the design, it fails to include their view on potential
uncertainties in the treatment’s efficacy, unlike the extended BDA framework we pro-
pose here. The objective of the extended BDA is twofold: we use a mean-variance
optimization framework to jointly minimize the expected loss to patients (as in the
classical BDA)—while accounting for the uncertainty in the treatment’s efficacy—and
the variance of this loss. The variance term is important as it measures the sensitiv-
ity of the loss function to the uncertainty in the treatment’s efficacy. Through the
extended BDA, we propose a unified framework which is consistent with the usual
assumptions of a RCT, and incorporates both the risk and uncertainty preferences of
patients obtained from a DCE. As with the traditional BDA, this method is system-
atic, transparent, and repeatable.

4.1.5 Revisiting the case study for Parkinson’s disease

As a proof-of-concept, we use a patient preference model estimated from a DCE for
Parkinson’s disease [113] to study a specific DBS medical device. A classical BDA
framework has been used in [45] and Chapter 3 to determine optimal trial designs.
Here, we apply instead the extended BDA methodology developed in this chapter and
compare the results obtained under each framework. We find that while the tradi-
tional BDA tends to produce more conservative trial designs than the extended BDA
framework, the latter is more robust to the uncertainty around the treatment’s effec-
tiveness as the patient’s uncertainty-aversion increases. Furthermore, the patient’s
uncertainty-aversion tends to produce more conservative designs when the severity
ratio of the disease is low, and less conservative designs when the severity ratio is
high, suggesting that patients may be willing to try a treatment with higher level of
uncertainty around its efficacy when the disease is more severe and when there are
no alternatives available.

The remainder of the chapter is structured as follows. We present the extended
BDA framework in Section 4.2, apply it to the Parkinson’s patient preference study in
Section 4.3, and discuss the advantages and limitations of this method in Section 4.4.
Appendix C.1 covers omitted proofs, a theoretical toy model, as well as a discussion of
in-trial costs and average statistical power. Finally, we include in Appendix C.2 fur-
ther results on the Parkinson’s patient preference study, as well as other applications
of the extended BDA framework.
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4.2 Extending the BDA framework under risk and

uncertainty: a tale of two exposures

4.2.1 A review of the traditional BDA framework

BDA aims to maximize the expected value associated with a RCT design with a
sample size 𝑛 and a critical value 𝜆𝑛 [126]: mathematically, the BDA objective is
formulated as

max
𝑛,𝜆𝑛

E [Value; 𝑛, 𝜆𝑛] . (4.1)

This means that BDA aims to maximize the value of the RCT by first finding the
optimal critical value 𝜆𝑛 as a function of the sample size 𝑛, and then finding the
optimal sample size 𝑛. In other words, BDA aims to solve

(𝑛*, 𝜆*
𝑛) = max

𝑛
max

𝜆𝑛

E [Value; 𝑛, 𝜆𝑛] . (4.2)

Throughout this chapter, we assume that the test statistics and critical values we
define are based on an efficacy endpoint. A similar analysis can be carried out for
a safety endpoint (see [40] for an example). If we assume that the efficacy 𝜃 of the
treatment can be either 0 (with probability 𝑝0) or 𝜃0 (with probability 𝑝1 = 1 − 𝑝0),
then we can express the BDA problem [126] as:

max
𝑛,𝜆𝑛

E [Value; 𝑛, 𝜆𝑛] = max
𝑛,𝜆𝑛

{︁
𝑝0 · E

[︀
Value|𝜃 = 0

]︀
+ 𝑝1 · E

[︀
Value|𝜃 = 𝜃0

]︀}︁
. (4.3)

We note that Equation 4.3 implicitly assumes that we are conditioning on the safety
parameter, hence holding it constant. The maximization in Equation 4.3 is more
commonly performed by minimizing the expected loss of the trial rather than by
maximizing the expected value of the trial [126]. Both methods are equivalent as

E [Value; 𝑛, 𝜆𝑛] = E [Value* − Loss; 𝑛, 𝜆𝑛] = E [Value*] − E [Loss; 𝑛, 𝜆𝑛] , (4.4)

where Value* is the value created in the hypothetically optimal scenario where the
correct approval decision is made immediately and without running a trial. Since
E [Value*] is independent of 𝑛 and 𝜆𝑛, Equation 4.3 is equivalent to:

min
𝑛,𝜆𝑛

E [Loss; 𝑛, 𝜆𝑛] = min
𝑛,𝜆𝑛

{︁
𝑝0 · E

[︀
Loss|𝜃 = 0

]︀
+ 𝑝1 · E

[︀
Loss|𝜃 = 𝜃0

]︀}︁
. (4.5)

4.2.2 Choosing a prior distribution for the treatment effect

More generally, we can assume that the efficacy 𝜃 of the treatment can take a con-
tinuum of values to better reflect the uncertainty in the efficacy of the hypothetical
treatment. We then express the BDA problem using an integral of the expected value
of the trial conditional on the efficacy 𝜃 of the treatment:

max
𝑛,𝜆𝑛

E [Value; 𝑛, 𝜆𝑛] = max
𝑛,𝜆𝑛

∫︁
𝜃
𝑝𝜃 · E

[︀
Value|𝜃

]︀
𝑑𝜃, (4.6)
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where 𝜃 is used as a shorthand to denote the hypothesis that the treatment has an
efficacy 𝜃. Equivalently, we can rewrite Equation 4.6 by minimizing the expected loss
of the trial rather than by maximizing the expected value of the trial:

min
𝑛,𝜆𝑛

E [Loss; 𝑛, 𝜆𝑛] = min
𝑛,𝜆𝑛

∫︁
𝜃
𝑝𝜃 · E

[︀
Loss|𝜃

]︀
𝑑𝜃. (4.7)

For example, if we assume that the treatment’s efficacy can only take two values
i.e., 𝜃 = 𝜃0 with probability 𝑝1 and 𝜃 = 0 with probability 𝑝0, then Equation 4.6
reduces to Equation 4.3.

As formally discussed in Section 4.2.4, it is natural to assume that the treatment
effect 𝜃 follows a normal distribution with mean 𝜇𝜃 and variance 𝜎2

𝜃

𝜃 ∼ 𝑁(𝜇𝜃, 𝜎2
𝜃). (4.8)

The expected efficacy of the treatment 𝜇𝜃 and its variance 𝜎2
𝜃 are specified in Equation

4.16 and are usually agreed upon by the researchers and regulators. For example, we
refer the reader to previous BDA applications [44, 40] in which these parameters have
been calibrated either by experts with domain-specific expertise based on multiple
years of first-hand knowledge and participation in regulatory review [46, 44, 40],
or based on regulatory reviews of targeted devices and literature reviews of efficacy
and safety [45]. A thorough sensitivity analysis is usually performed to verify the
robustness of the results to perturbations in these assumptions.

We use the prior in Equation 4.8 throughout the chapter, however we also consider
a Bernoulli prior distribution

𝜃 ∼ 𝜇𝜃 · Bernoulli(𝑝1), (4.9)

with 𝑝1 being the probability that the device is effective and 𝑝0 = 1−𝑝1 the probability
that the device is ineffective. This case reduces to the traditional BDA framework and
is a useful baseline to consider when discussing the results obtained under a Gaussian
prior (Equation 4.8). When no prior information is available, it is common to use the
uninformative prior 𝑝0 = 𝑝1 = 0.5, in line with the clinical equipoise assumption [89].
In fact, the Bernoulli prior can easily be generalized by assuming that 𝜃 is a mixture of
normal distributions, where 𝜃 ∼ 𝑁(0, 𝜎2

𝜃) with probability 𝑝0 and 𝜃 ∼ 𝑁(𝜇𝜃, 𝜎2
𝜃) with

probability 𝑝1 = 1 − 𝑝0. The probabilities 𝑝0 and 𝑝1 can be assumed to be 0.5 when
no prior information is available, however the expected treatment effect conditional
on the treatment being effective (i.e., 𝜇𝜃) and the variance 𝜎2

𝜃 can be agreed upon by
the researchers and regulators as discussed above.

4.2.3 Incorporating uncertainty aversion via mean-variance

optimization

Furthermore, the objective function of the BDA in Equation 4.1 (or equivalently
Equation 4.7) can be generalized. In fact, maximizing the expected value of the trial
(or minimizing the expected loss of the trial) highlights the benefit-risk tradeoff of
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the treatment as perceived by patients. Additionally, we can consider the uncertainty
around the benefit-risk tradeoff by accounting for the variance of the value (or loss)
of the trial. More concretely, we can solve for:

(𝑛*, 𝜆*
𝑛) = arg max

𝑛,𝜆𝑛

{︃
E [Value; 𝑛, 𝜆𝑛] − 1

2 · 𝑞 · Var (Value; 𝑛, 𝜆𝑛)
}︃

, (4.10)

or equivalently,

(𝑛*, 𝜆*
𝑛) = arg min

𝑛,𝜆𝑛

{︃
E [Loss; 𝑛, 𝜆𝑛] + 1

2 · 𝑞 · Var (Loss; 𝑛, 𝜆𝑛)
}︃

, (4.11)

where the parameter 𝑞 is interpreted as the patient’s uncertainty aversion. We impose
an upper bound constraint 𝑃max = 90% on the statistical power to represent practical
considerations of the industry, reflecting budget, time, and personnel constraints, as
well as other resource limitations, ensuring that

Power ≤ 𝑃max. (4.12)

The statistical power turns out to be more complex to define when we assume a con-
tinuous prior distribution on 𝜃 instead of a Bernoulli prior. We say that a treatment
is effective treatment if 𝜃 ≥ 𝜇𝜃 (as opposed to 𝜃 = 𝜇𝜃 under a Bernoulli prior) and
define the average power of the clinical trial by

Power := P
(︀
Approve Treatment|𝜃 ≥ 𝜇𝜃

)︀
. (4.13)

We therefore impose the following constraint in Equation 4.11:

Power ≤ 𝑃max. (4.14)

A detailed discussion of the average power is provided in Appendix C.1.4.
Intuitively, if the loss function is more sensitive to the uncertainty in the treatment

effect and to the patient’s benefit-risk preferences, we should expect a more conser-
vative type I error rate 𝛼 and a larger trial sample size 𝑛 to gain enough confidence
in the statistical procedure. The patient’s uncertainty-aversion parameter 𝑞 can be
estimated using DCEs in the same way as the patient’s discount rate 𝑟 is estimated
through time-tradeoff questions [45] and Chapter 3.

In fact, we will observe that, when the severity of the disease (as defined in [126]
by the ratio of losses 𝐿1/𝐿0) is “small” i.e., when the relative loss per patient is higher
for a type I error than for a type II error, the variance term tends to decrease as we
increase the critical value 𝜆, and hence the BDA would favor solutions with high
values of 𝜆 (i.e., small values of 𝛼), making the decision process more conservative.
This decrease is more pronounced under a Bernoulli prior than under a Gaussian prior
(which leads to more robust BDA outputs). Conversely, when the severity is “large”,
the variance term tends to increase with 𝜆, which induces the BDA to choose smaller
values of 𝜆 (i.e., larger values of 𝛼), making the decision process less conservative.
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In other words, the variance term tends to amplify the effect of the expected loss.
For example, a pancreatic cancer patient that has exhausted the standard of care
may be willing to accept a higher type I error rate (estimated by [126] to be 27.8%
under the traditional BDA framework) for a treatment despite the uncertainty around
its expected efficacy while a diabetes patient may require a lower type I error rate
(estimated by [126] to be 1.7% under the traditional BDA framework) as treatments
that can help enhance the quality of life of patients with diabetes already exist. In
the latter case, the cost of a type I error is much higher than that of a type II error
and makes the patient less willing to bear additional levels of uncertainty, while the
terminal nature of pancreatic cancer makes type II error much more costly than type
I errors. A formal discussion is available in Appendix C.1.2.

In other words, higher values of the uncertainty-aversion parameter 𝑞 in the mean-
variance framework allow the decision-maker to be more conservative when the sever-
ity of the disease is high, and less conservative (under a Bernoulli prior) or as conser-
vative (under a Gaussian prior) when the severity of the disease is low.

4.2.4 A toy model for the approval decision

The response variables observed in the RCT’s control arm are denoted by {𝑃 𝐶
𝑖 }𝑛

𝑖=1

and are assumed to be I.I.D and follow a normal distribution with mean 𝜇𝑐 and
variance 𝜎2

𝑐 . Similarly, the response variables observed in the RCT’s treatment arm
are denoted by {𝑃 𝑇

𝑖 }𝑛
𝑖=1 and are assumed to be I.I.D and follow a normal distribution

with mean 𝜇𝑡 and variance 𝜎2
𝑡 . The treatment effect is defined as the difference

between the treatment group’s response variable and the control group’s response
variable:

𝜃 = 𝑃 𝑇 − 𝑃 𝐶 ∼ 𝑁(𝜇𝜃, 𝜎2
𝜃), (4.15)

where
𝜇𝜃 = 𝜇𝑡 − 𝜇𝑐, and 𝜎2

𝜃 = 𝜎2
𝑐 + 𝜎2

𝑡 . (4.16)

Equation 4.15 justifies the assumption we made earlier regarding the choice of prior
distribution for the treatment effect (Equation 4.8). The parameters 𝜇𝑐, 𝜇𝑡, 𝜎𝑐, and 𝜎𝑡

are usually agreed upon by researchers and regulators as discussed in Section 4.2.2,
and this is enough to specify the prior distribution for 𝜃.

To estimate the expected treatment effect, we define the following sufficient statis-
tic:

𝑇𝑛 =
√

𝐼𝑛

𝑛

𝑛∑︁
𝑖=1

(𝑃 𝑇
𝑖 − 𝑃 𝐶

𝑖 ), (4.17)

where 𝐼𝑛 is defined as the information in the trial

𝐼𝑛 = 𝑛

𝜎2
𝑐 + 𝜎2

𝑡

= 𝑛

𝜎2
𝜃

. (4.18)

In [126], the sufficient statistic 𝑇𝑛 is assumed to follow a normal distribution (condi-
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tional on the treatment effect 𝜃):

(𝑇𝑛|𝜃) ∼ 𝑁
(︂

𝜃
√︁

𝐼𝑛, 1
)︂

. (4.19)

However, this assumption can be relaxed to a noncentral 𝑡-distribution with noncen-
trality parameter 𝜃 ·

√
𝐼𝑛 and 2 · (𝑛 − 1) degrees of freedom [46, 45].

Furthermore, the patient incurs a cost 𝑐𝜃,𝑎𝑝𝑝 when a treatment with efficacy 𝜃 is
approved and a cost 𝑐𝜃,𝑟𝑒𝑗 when a treatment with efficacy 𝜃 is not approved. We
assume that a treatment is approved only when the observed treatment effect 𝑇𝑛 is
above the threshold 𝜆𝑛 calculated by the BDA. We recognize that this is a simplify-
ing assumption and that, in practice, regulatory agencies take into account various
contextual factors other than statistical significance when deciding to approve a drug
(e.g., clinical significance, secondary endpoints, etc.).

4.2.5 Modeling the expected loss per patient

Given a treatment effect 𝜃 and an observation 𝑇𝑛 of the trial’s treatment effect, the
trial’s loss can be formulated as

𝐿(𝜃, 𝑇𝑛) = 1{Treatment Approved} · 𝑐𝜃,𝑎𝑝𝑝 + 1{Treatment Not Approved} · 𝑐𝜃,𝑎𝑝𝑝(4.20)
= 1{𝑇𝑛 > 𝜆𝑛|𝜃} · 𝑐𝜃,𝑎𝑝𝑝 +

(︀
1 − 1{𝑇𝑛 > 𝜆𝑛|𝜃}

)︀
· 𝑐𝜃,𝑟𝑒𝑗 (4.21)

= 1{𝑇𝑛 > 𝜆𝑛|𝜃} · (𝑐𝜃,𝑎𝑝𝑝 − 𝑐𝜃,𝑟𝑒𝑗) + 𝑐𝜃,𝑟𝑒𝑗. (4.22)

It is also possible to consider the “in-trial” loss 𝐿𝑖𝑛(𝜃) which represents the loss
incurred by patients enrolled in the clinical trial and only depends on the treatment
effect 𝜃 (the in-trial loss is independent of 𝑇𝑛 because the approval or non-approval
of the treatment has no impact on the patient’s loss during the clinical trial period).
In this case, the loss function considered becomes:

Loss = 𝐿(𝜃, 𝑇𝑛) + 𝜔 · 𝐿𝑖𝑛(𝜃), (4.23)

for some scaling factor 𝜔. In-trial costs are discussed in appendix (Section C.1.3) as
we do not include them in the main analysis of the chapter. In fact, in-trial costs
become very important to consider when the prevalence of the disease is small and
that the number of patients enrolled in the trial constitute a significant fraction of
the affected population. For example, this would be the case for a rare pediatric
disease[56].

The expected value and variance of the trial’s loss can be calculated as follows:

E
[︀
𝐿(𝜃, 𝑇𝑛)

]︀
=

∫︁
𝜃
𝑝𝜃 ·

(︁
P
(︀
𝑇𝑛 > 𝜆𝑛|𝜃

)︀
· (𝑐𝜃,𝑎𝑝𝑝 − 𝑐𝜃,𝑟𝑒𝑗) + 𝑐𝜃,𝑟𝑒𝑗

)︁
𝑑𝜃, (4.24)

Var
(︀
𝐿(𝜃, 𝑇𝑛)

)︀
=

∫︁
𝜃
𝑝𝜃 ·

(︁
P
(︀
𝑇𝑛 > 𝜆𝑛|𝜃

)︀
· (𝑐2

𝜃,𝑎𝑝𝑝 − 𝑐2
𝜃,𝑟𝑒𝑗) + 𝑐2

𝜃,𝑟𝑒𝑗

)︁
𝑑𝜃 (4.25)

−
(︂∫︁

𝜃
𝑝𝜃 ·

(︁
P
(︀
𝑇𝑛 > 𝜆𝑛|𝜃

)︀
· (𝑐𝜃,𝑎𝑝𝑝 − 𝑐𝜃,𝑟𝑒𝑗) + 𝑐𝜃,𝑟𝑒𝑗

)︁
𝑑𝜃
)︂2

.(4.26)
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The proof is given in Appendix C.1.1.

4.2.6 Estimating the patient’s loss

When a treatment with efficacy 𝜃 is approved, the patient incurs a cost 𝑐𝜃,𝑎𝑝𝑝. Con-
versely, the patient incurs a cost 𝑐𝜃,𝑟𝑒𝑗 when a treatment with efficacy 𝜃 is not ap-
proved.

The goal of this section is to construct the cost functions 𝑐𝜃,𝑎𝑝𝑝 and 𝑐𝜃,𝑟𝑒𝑗. One
key feature is that the cost functions must depend on the treatment effect 𝜃. Indeed,
researchers and regulators do not know in advance the exact treatment effect of the
hypothetical treatment. It is therefore crucial to vary the hypothetical effectiveness
of the treatment in the PPI surveys to query patient preferences over a wide range
of potential treatment effects 𝜃, as shown in [113]. Imposing a prior distribution on
𝜃 (Equation 4.8) allows us to appropriately reflect the likelihood of these different
scenarios.

We start by defining 𝐿0 as the relative loss of value per person from using an
ineffective treatment with treatment effect 𝜃 = 0. Similarly, we define 𝐿1(𝜃) as
the relative loss in value per person from missing out on the opportunity to use a
treatment with treatment effect 𝜃. Given a treatment effect 𝜃, the severity ratio
𝐿1(𝜃)/𝐿0 provides a measure of their relative importance.

When the treatment is ineffective (i.e., when 𝜃 ≤ 0), the average loss of value per
patient of a rejection is equal to

𝑐0,𝑟𝑒𝑗 = 0, (4.27)

while the average loss of value per patient of an approval is equal to

𝑐0,𝑎𝑝𝑝 = 𝐷𝐹𝑡(𝜃) · 𝐿0, (4.28)

where 𝐷𝐹𝑡(𝜃) is the patient’s discount factor which accounts for the wait time 𝑡
caused by the regulatory review process of a treatment with a treatment effect 𝜃.
The discount factor 𝐷𝐹𝑡(𝜃) decreases from 1 to 0 as the wait time increases. We
provide an explicit formula for 𝐷𝐹𝑡(𝜃) in Equation 4.39.

When the treatment is effective and has a treatment effect 𝜃 ≥ 𝜇𝜃, the average
loss of value per patient of a rejection is equal to

𝑐𝜃,𝑟𝑒𝑗 = 𝐿1(𝜃), (4.29)

while the average loss of value per patient of an approval is equal to

𝑐𝜃,𝑎𝑝𝑝 = 𝐷𝐹𝑡(𝜃) · 𝐿1(𝜃). (4.30)

When the treatment effect 𝜃 lies in the interval (0, 𝜇𝜃), we define the loss of value
per patient using the following linear interpolations: the average loss of value per
patient of a rejection is equal to

𝑐𝜃,𝑟𝑒𝑗 = 𝐿1(𝜃) · 𝜃

𝜇𝜃

, (4.31)
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while the average loss of value per patient of an approval is equal to

𝑐𝜃,𝑎𝑝𝑝 = 𝐿0 · 𝑒−𝑟𝑡 ·
(︃

1 − 𝜃

𝜇𝜃

)︃
+ 𝐿1(𝜃) ·

(︁
1 − 𝑒−𝑟𝑡

)︁
· 𝜃

𝜇𝜃

. (4.32)

The relative loss of value per person under each scenario is summarized in Table 4.1.

Efficacy 𝜃 Not Approved Approved
𝜃 ≤ 0 0 𝐷𝐹𝑡(𝜃) · 𝐿0

0 < 𝜃 < 𝜇𝜃 𝐿1(𝜃) · 𝜃
𝜇𝜃

𝐿0 · 𝑒−𝑟𝑡 ·
(︁
1 − 𝜃

𝜇𝜃

)︁
+ 𝐿1(𝜃) ·

(︁
1 − 𝑒−𝑟𝑡

)︁
· 𝜃

𝜇𝜃

𝜃 ≥ 𝜇𝜃 𝐿1(𝜃) 𝐷𝐹𝑡(𝜃) · 𝐿1(𝜃)

Table 4.1: Loss in value per patient associated with a balanced fixed-sample RCT as
a function of the treatment effect 𝜃.

Estimating the loss in value. The loss 𝐿0 can be viewed as the net risk of
using the treatment and can be agreed upon by the researchers and regulators (e.g.,
[45, 46, 44, 40]). The loss 𝐿1(𝜃) can be estimated using the patient survey results
from the DCE. In particular, 𝐿1(𝜃) can be viewed as the difference between the risk

threshold 𝑅(𝜃) of using a treatment with treatment effect 𝜃 and 𝐿0

𝐿1(𝜃) = 𝑅(𝜃) − 𝐿0. (4.33)

For example, as detailed in [45, 113] and Chapter 3, we can use a threshold technique
to estimate the following patient preference model:

𝑅(𝜃) = 𝛽 · 𝜃 + [Covariates] + 𝜀, (4.34)

where 𝑅(𝜃) can be viewed as the additional risk the patient would be willing to
accept before becoming indifferent to receiving a treatment with treatment effect 𝜃.
In general, the coefficient 𝛽 will be positive as individuals will tend to be willing
to take more risks as the treatment effect increases. It is often preferable to avoid
extrapolating 𝐿1(𝜃) beyond the range of 𝜃 available in the data and set 𝐿1(𝜃) =
𝐿1(𝜃max) for all 𝜃 ≥ 𝜃max, where 𝜃max is the highest value of 𝜃 available in the survey
data.

If no regression data is available to estimate 𝐿1(𝜃), as in [126, 168, 46], then we
can use a linear interpolation between 𝐿1(0) = 0 and 𝐿1(𝜇𝜃) = 𝐿𝜇𝜃

which is known.
In this case,

𝐿1(𝜃) = 𝐿𝜇𝜃
· 𝜃

𝜇𝜃

, (4.35)

89



and we define

𝑐𝜃,𝑟𝑒𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, 𝜃 ≤ 0,

𝐿1(𝜃) · 𝜃
𝜇𝜃

, 0 < 𝜃 < 𝜇𝜃,

𝐿𝜇𝜃
, 𝜃 ≥ 𝜇𝜃,

(4.36)

𝑐𝜃,𝑎𝑝𝑝 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐷𝐹𝑡(𝜃) · 𝐿0, 𝜃 ≤ 0,

𝐿0 · 𝑒−𝑟𝑡 ·
(︁
1 − 𝜃

𝜇𝜃

)︁
+ 𝐿1(𝜃) ·

(︁
1 − 𝑒−𝑟𝑡

)︁
· 𝜃

𝜇𝜃
, 0 < 𝜃 < 𝜇𝜃,

𝐷𝐹𝑡(𝜃) · 𝐿𝜇𝜃
, 𝜃 ≥ 𝜇𝜃.

(4.37)

The only difference here is that we do not extrapolate beyond 𝜇𝜃 and cap the costs
𝑐𝜃,𝑟𝑒𝑗 and 𝑐𝜃,𝑎𝑝𝑝 at 𝐿𝜇𝜃

and 𝐷𝐹𝑡(𝜃) · 𝐿𝜇𝜃
respectively.

Estimating the patient’s time horizon preferences. To account for the pa-
tient’s time horizon preferences, we define a discount factor 𝐷𝐹𝑡(𝜃) which decreases
from 1 to 0 as we increase the wait time 𝑡 caused by the regulatory process of a
treatment with treatment effect 𝜃. This reflects the fact that patients have a lower
preference for effective treatments that are not accessible immediately. As in [46, 45],
we define the wait time 𝑡 as

𝑡 = 𝑠 + 2𝑛

𝜂
+ 𝑓 + 𝜏, (4.38)

where 𝑠 is the time required to setup the study, 𝜂 is the patient accrual rate for the
study, 𝑓 is the follow-up time of the final patient to complete the study, and 𝜏 is
the FDA review time. Typical values [46, 45] are 𝑠 = 6 months (or 1 year in [168]),
𝜂 = 100 patients per year, 𝑓 = 12 months, and 𝜏 = 9 months.

In particular, following [46, 45], we want a discount factor of the form 𝐷𝐹𝑡(0) =
𝑒−𝑟𝑡 when the treatment is not effective and 𝐷𝐹𝑡(𝜇𝜃) = 1 − 𝑒−𝑟𝑡 when the treatment
has a treatment effect 𝜇𝜃 (where 𝑟 is the patient’s temporal discount rate). A simple
linear interpolation bounded between 0 and 1 produces the following definition:

𝐷𝐹𝑡(𝜃) = min

⎧⎨⎩max
⎡⎣𝑒−𝑟𝑡 ·

(︃
1 − 𝜃

𝜇𝜃

)︃
+
(︁
1 − 𝑒−𝑟𝑡

)︁
· 𝜃

𝜇𝜃

, 0
⎤⎦ , 1

⎫⎬⎭ . (4.39)

Note that the term 𝜃
𝜇𝜃

should also be restricted to the [0, 1] interval in Equation 4.39
through the transformation

𝜃

𝜇𝜃

↦→ min

⎧⎨⎩max
[︃

𝜃

𝜇𝜃

, 0
]︃

, 1

⎫⎬⎭ . (4.40)

The temporal discount rate 𝑟 can be estimated using the patient survey results
from the DCE. For example, as detailed in [45, 113] and Chapter 3, we can use a
threshold technique to estimate the following patient preference model:

Wait time threshold = 1
𝑟

· log(𝜇𝜃) + 𝜀, (4.41)
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where the Wait time threshold represents the additional time the patient would be
willing to wait before becoming indifferent to receiving a treatment with treatment
effect 𝜃 = 𝜇𝜃 in the future versus the control now.

4.2.7 Estimating standard errors for the BDA

When 𝐿1(𝜃) is estimated from a threshold regression of the form of Equation 4.34, we
obtain an estimate 𝛽 of the coefficient 𝛽 as well as standard errors 𝜎2

𝛽. Based on the
linear regression model, 𝛽 follows a normal distribution with mean 𝛽0 and variance
𝜎2

𝛽:
𝛽 ∼ 𝑁(𝛽0, 𝜎2

𝛽). (4.42)

We should highlight here that the variance term 𝜎2
𝛽 is a standard error that reflects the

precision with which the patient preference model (Equation 4.34) is being estimated.
Similarly, the discount rate 𝑟 is estimated from a threshold regression of of the form of
Equation 4.41: the estimate 𝑟 has standard errors 𝜎2

𝑟 and follows a normal distribution
with mean 𝑟0 and variance 𝜎2

𝑟 :
𝑟 ∼ 𝑁(𝑟0, 𝜎2

𝑟). (4.43)

Equations 4.42 and 4.43 allow us to use a bootstrap procedure to estimate a
probabilistic distribution for the optimal BDA parameters (𝑛*, 𝜆*

𝑛). When 𝐿1(𝜃) is
not estimated using a threshold regression (as in [126], see Appendix C.2.2 for a
detailed treatment), we directly use the known standard deviation estimate 𝜎𝐿1 of 𝐿1

to generate bootstrap samples distributes as

�̂�1 ∼ 𝑁(𝐿1, 𝜎2
𝐿1). (4.44)

Hence, we either generate 100 bootstrap samples for 𝛽 and 𝑟 or directly generate
100 bootstrap samples for �̂�1 and run the BDA optimization procedure (Equation
4.11) for each bootstrapped value 𝛽 and 𝑟. We then produce a distribution for the
optimal BDA parameters (𝑛*, 𝜆*

𝑛) and calculate the corresponding standard errors
on our estimates of the optimal sample size 𝑛* and the optimal critical value 𝜆*

𝑛 (or
equivalently 𝛼*).

4.3 Results

In this section, we apply the extended BDA approach under the mean-variance frame-
work to the DBS study conducted in [113]. A patient preference model has already
been analyzed in Chapter 3 using a classical BDA framework i.e., using a Bernoulli
prior and an uncertainty aversion coefficient 𝑞 = 0. Other applications of the mean-
variance BDA framework are described in Appendix C.2.

We use Table 3.3 to calibrate the parameters of the BDA. We assume that the
average motor symptoms score decreases by 0.98 units (on a scale from 0 to 10)
if the treatment is effective. The treatment response variability in the control and
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treatment arm is assumed to be of 2 units (on a scale from 0 to 10). We summarize
these assumptions in Table 4.2.

Parameter Control Group Treatment Group
Response Variable (out of 10) 𝜇𝑐 = 0.16 𝜇𝑡 = 1.14
Variability in the Response Variable (out of 10) 𝜎𝑐 = 2 𝜎𝑡 = 2
Average treatment effect (out of 10) 𝜇𝜃 = 0.98
Variability in the treatment effect (out of 10) 𝜎𝜃 = 2.83

Table 4.2: Assumptions used for the BDA application to the DBS study. These values
are based on Table 3.3.

Although our main analysis assumes a Gaussian prior distribution, we first perform
the mean-variance analysis under a Bernoulli prior to compare it to the classical
BDA framework used in Chapter 3. The Bernoulli prior assumes that there is a
50% probability that the treatment is effective while the Gaussian prior assumes the
treatment effect to follow a Normal distribution with mean 𝜇𝜃 = 0.98 and variance
𝜎𝜃 = 8.

Here, we estimate the optimal BDA type I error threshold 𝛼 and trial size 2𝑛
for various population subsets across different age cohorts (which we weight equally).
These patient subpopulations are sorted by their corresponding severity ratio to better
represent patients who have previously received DBS, patients with severe movement
symptoms, patients who present difficulty walking, thinking clearly, and/or experience
dyskinesia as a side-effect of their Parkinson’s medication.

To better understand the role played by the uncertainty-aversion parameter 𝑞, we
run simulations for different values of 𝑞 ranging from 0 to 2 in increments of 0.10. We
then compare the results with the intuition derived in Appendix C.1.2 for a simple
toy model.

We first assume a Bernoulli prior and present in Figure 4-1 and Figure 4-2 the
estimated optimal BDA type I error threshold 𝛼 and trial size 2𝑛 across the different
population subsets studied for different values of uncertainty-aversion parameter 𝑞.
We then repeat the procedure under a Gaussian prior and present the results in Figure
4-3 and Figure 4-4.
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Figure 4-1: BDA-Optimal significance level 𝛼 (in %) as a function of the severity ratio, under a Bernoulli prior.
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Figure 4-2: BDA-Optimal trial size (2𝑛) as a function of the severity ratio, under a Bernoulli prior.
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Figure 4-3: BDA-Optimal significance level 𝛼 (in %) as a function of the severity ratio, under a Gaussian prior.
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Figure 4-4: BDA-Optimal trial size (2𝑛) as a function of the severity ratio, under a Gaussian prior.
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The case of 𝑞 = 0 under a Bernoulli prior (Figure 4-1, Figure 4-2, and Table C.2)
corresponds to the traditional BDA framework used in Chapter 3 and constitutes
our baseline model. As suggested by the toy model described in Appendix C.1.2, the
optimal significance level 𝛼 decreases as we increase the uncertainty-aversion param-
eter 𝑞 when the severity ratio is roughly below 0.6, leading to a more conservative
decision. Similarly, the optimal trial size 2𝑛 increases with the uncertainty-aversion
parameter 𝑞 when the severity ratio is roughly below 0.6, which is also consistent
with a more conservative decision. In other words, when the severity ratio is smaller,
the uncertainty aversion parameter induces the BDA to design trials with a larger
sample size and a smaller significance threshold because more effectiveness evidence
is required to compensate for the uncertainty associated with an incorrect approval
of the treatment.

Conversely, when the severity ratio is above 0.8, the optimal significance level 𝛼 in-
creases while the optimal trial size 2𝑛 decreases as we increase the uncertainty-aversion
parameter 𝑞. Hence, when the severity ratio is higher, the uncertainty-aversion pa-
rameter induces the BDA to design trials with smaller sample sizes and a tolerance
for a larger significance threshold, leading to less conservative decisions. This reflects
a higher risk-tolerance from patients within these subgroups as the potential risk of
missing-out on the potential benefits of the treatment outweighs the potential risks
of an incorrect approval.

The same observations apply when we assume a Gaussian prior for higher values
of severity ratio (Figure 4-3, Figure 4-4, and Table C.2): higher uncertainty-aversion
coefficients lead to less conservative decisions when the severity ratio is larger. How-
ever, when the severity ratio is small (below 0.6), the optimal BDA outputs are much
less sensitive to the uncertainty aversion parameter under a Gaussian prior than under
a Bernoulli prior.

4.4 Discussion

Comparison of the Extended BDA Framework to the Classical BDA Frame-

work. The classical BDA framework assumes a Bernoulli prior with an uncertainty-
aversion parameter 𝑞 = 0 while the extended BDA framework allows the treatment
effect of the treatment to follow a Normal distribution. It is helpful to compare the
results under a Bernoulli prior and a Gaussian prior to better understand the im-
pact of modeling the inherent uncertainty in the treatment effect. Indeed, under a
Bernoulli prior, we assume the treatment effect to be either 0 or 𝜇𝜃 while we assume
a continuum of possibilities under the Gaussian prior as the treatment effect follows a
Normal distribution with mean 𝜇𝜃 and variance 𝜎2

𝜃 . The normality assumption is not
only more realistic (as the treatment effect of the treatment is never known for certain
in advance at the time the clinical trial is designed), but it is also entirely consistent
with the assumption that the response variables in the control and treatment arms
are I.I.D and normally distributed. Furthermore, the PPI conducted usually queries
patients about their risk tolerance relative to a hypothetical treatment by varying the
effectiveness and riskiness of the treatment. Hence, applying a continuous prior dis-
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tribution rather than a discrete prior distribution can better reflect the uncertainty in
the efficacy of the hypothetical treatment and assess the appropriate risk-preferences
of patients given this uncertainty.

Comparing Figure 4-1 to Figure 4-3, we immediately see that the BDA optimal
significance level 𝛼 tends to be higher under a Gaussian prior than under a Bernoulli
prior across patient subpopulations. However, when the severity ratio is above 1.25,
the optimal 𝛼 becomes much higher under a Bernoulli prior than under a Gaussian
prior when the uncertainty-aversion parameter 𝑞 increases. In fact, the outputs we
obtain under a Gaussian prior are much more robust to 𝑞 than the ones we obtain
under a Bernoulli prior when the severity is higher. On the other hand, Figure 4-2 and
Figure 4-4 show that the optimal trial size tends to be higher under a Bernoulli prior
across patient subpopulations and across choices of 𝑞. Hence, while a Bernoulli prior
tends to make more conservative decisions than a Gaussian prior when the severity
is below 1.25 or when the uncertainty-aversion parameter is below 0.5, a Gaussian
prior leads to more robust outputs. For example, when 𝑞 = 0 and 𝑠 = 0.06, an
optimal RCT design uses a significance level 𝛼 = 0.19% and a trial size 2𝑛 = 294
under a Bernoulli prior, but a significance level 𝛼 = 1.33% and trial size 2𝑛 = 54
under a Gaussian prior. Hence, the optimal RCT parameters are about 7 times more
conservative in the Bernoulli case. When 𝑞 = 0 and 𝑠 = 2.02, the optimal RCT
parameters are 𝛼 = 10.0% and 2𝑛 = 110 under a Bernoulli prior, but 𝛼 = 20.3% and
trial size 2𝑛 = 18 under a Gaussian prior, which makes the Bernoulli case about 2
times more conservative. In fact, the optimal RCT parameters obtained under the
Bernoulli and Gaussian priors differ more as we increase the severity ratio.

Furthermore, we observe that the BDA outputs tend to be less sensitive to the
uncertainty-aversion parameter under a Gaussian prior, especially when the severity
of the disease is high. The extended BDA framework is therefore much more robust
when we use the Gaussian prior. For example, when 𝑠 = 2.02, the BDA suggests
a significance level of 𝛼 = 10.0% when 𝑞 = 0 and 𝛼 = 59.5% when 𝑞 = 1 under a
Bernoulli prior, corresponding to a 5-fold increase, while the corresponding outputs
are 𝛼 = 20.3% when 𝑞 = 0 and 𝛼 = 23.2% when 𝑞 = 1 under a Gaussian prior,
corresponding to a 14% increase. Similarly, the optimal sample size decreases from
2𝑛 = 110 to 2𝑛 = 18 when 𝑞 = 0 and 𝑞 = 1 respectively under a Bernoulli prior,
corresponding to a decrease by an order of magnitude, while the optimal sample size
remains relatively stable from 2𝑛 = 18 to 2𝑛 = 16 when 𝑞 = 0 and 𝑞 = 1 respectively
under a Bernoulli prior. This low sensitivity to 𝑞 is a very desirable property as the
uncertainty-aversion parameter would be estimated from patient preferences surveys
(which may not be very precise to estimate 𝑞) and rather than assumed and be
constrained by limitations of the model.

Therefore, while the extended BDA frameworks is robust under a Gaussian prior,
we would only recommend using the mean-variance optimization with 𝑞 < 0.5 under
a Bernoulli prior given the high sensitivity of the BDA optimal trial designs to the
uncertainty-aversion parameter 𝑞 under a Bernoulli prior.
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Interpretation of the Uncertainty-Aversion Parameter. The other important
difference between the traditional BDA framework and the extended BDA framework
is the inclusion of the uncertainty-aversion parameter 𝑞. Indeed, while the traditional
BDA aims to minimize the expected loss of value to the patient of the RCT design,
the extended BDA aims to jointly minimize the expected loss of value and the vari-
ance of the loss. If the loss is more sensitive to the treatment effect 𝜃, the inclusion
of 𝑞 induces the BDA to select a stricter significance level 𝛼 and a larger sample
size 2𝑛 to gain more confidence in the treatment’s effectiveness. The mean-variance
optimization allows us to better reflect how the uncertainty around the hypothe-
sized benefit impacts the benefit/risk tradeoff and 𝑞 is interpreted as the patient’s
uncertainty-aversion parameter.

In other words, the extended BDA framework allows us to distinguish two types
of risks. The first is the inherent risk of the treatment, which is present in the
loss function 𝐿(𝜃, 𝑇𝑛) and was accounted for by the classical BDA. The second is
the risk due to the choice of sensitivity of the loss function to the uncertainty in
the hypothesized treatment effect. This second type of risk, estimated through the
variance term in Equation 4.11, is controlled by the parameter 𝑞. It is also possible
to interpret 𝑞 from the perspective of the regulator to provide more transparency
and objectiveness in the decision process. In this case, the BDA would only take
into consideration the risk-preferences of the patients in the loss function 𝐿(𝜃, 𝑇𝑛),
but would incorporate the regulator’s uncertainty-aversion regarding the statistical
procedure.

While the mean-variance objective is powerful and often used in the economics lit-
erature, a helpful extension of the work would be to account for potential behavioral
biases of the patient. For example, behavioral economics have highlighted asymme-
tries in the way individuals tend to prefer avoiding losses to acquiring equivalent gains.
This bias is called loss aversion and will be explored in Chapter 8 in the context of
asset-allocation decisions in investment management. Using an objective function
that better captures this asymmetry may lead to more conservative outcomes as type
I errors (considered as a direct loss) would dominate over type II errors (which can
be interpreted as missing out on a potential gain).

Limitations. The framework we have developed here must be qualified in several
respects. First, we have confined our attention to traditional two-arm, fixed-sample
RCTs for expositional simplicity. The extended BDA methodology can also be gen-
eralized to optimize key parameters in more complex trial designs with multiple arms
or adaptive features. Second, the outputs of of the BDA heavily rely on the quality
of the patient preference model developed, and hence on the DCE conducted. It is
therefore important to ensure that the surveyed patients are well informed and that
the survey avoids potential biases. Ideally, the DCE would be designed and conducted
in collaboration with regulators. Finally, we should note that regulators do not rely
solely on p-values to approve a treatment candidate. While p-values are an important
part of the process, regulators consider a variety of other factors when making their
decisions.

99



4.5 Conclusion

The first objective of this analysis is to address a common limitation of the traditional
BDA framework by considering a continuous prior distribution for the hypothetical
treatment’s effectiveness. Rather than assuming the treatment can either be ineffec-
tive or effective (with a specific hypothesized efficacy), we instead assume that the
treatment’s effectiveness can potentially take a wide range of values. We propose a
way to properly quantify the patient’s risk tolerance as a function of the effectiveness
of the treatment and then weight the patient’s benefit/risk tradeoff by the probability
distribution of the treatment’s effectiveness.

The second objective is to account for the patient’s aversion to the uncertainty
in the treatment’s effectiveness. We have modelled this by extending the traditional
BDA objective to account for the variance of the patient’s loss in value. This mean-
variance formulation allow us to introduce the patient’s uncertainty-aversion param-
eter, which can also be estimated through patient preferences surveys.

As a proof-of-concept, we replicated results from a patient preference study on
Parkinson’s Disease [113, 45] and compared the outputs obtained under the traditional
BDA setting to those obtained under the extended BDA setting (other BDA studies
[126, 168, 46] are discussed in Appendix C.2). Although the former tends to produce
results that are more conservative than the latter, the optimal significance levels
obtained are more robust to the uncertainty around the treatment’s efficacy. As
we increase the uncertainty-aversion parameter, the traditional and extended BDA
outputs tend to be more conservative for a low severity ratio but less conservative for a
higher severity ratio. Furthermore, we observed that the extended BDA outputs tend
to be less sensitive to the uncertainty-aversion parameter under a Gaussian prior as
compared to using a Bernoulli prior (which corresponds to the classical BDA setting
under a mean-variance objective function).

As patient preferences are gaining more importance within the regulatory decision
process, this new methodology can provide a robust, transparent, and systematic way
to incorporate the patient’s tolerance to risk and uncertainty into the design of clinical
trial.
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Chapter 5

Improving the Deployment of

COVID-19 Vaccines under

Stochastic Supply Shocks

We developed benefit-risk methods in Chapters 2, 3, and 4 that can help researchers
and regulators incorporate patient preferences into the regulatory and decision-making
process for specific medical devices for kidney failure and Parkinson’s disease as well
as for more generic treatments. In Chapters 5 and 6, we turn our attention to in-
forming policy-making under uncertainty in healthcare. In particular, we focus on
vaccines targeting EIDs, a very specific class of drugs that presents diverse sources
of risks, not only on the development side, but also on the manufacturing side, and
on the demand side. If the stochastic nature of the outbreak of EIDs introduce high
levels of uncertainty in the demand of vaccines, a feature that often scares away big
biopharmaceutical companies from developing them, it is imperative to react quickly
and efficiently once an outbreak occurs.

In Chapter 6, we focus on the development of a large portfolio of 120 mRNA
vaccine candidates in the preclinical stage targeting 11 EIDs. In this chapter, we
specifically consider two COVID-19 vaccines, which are administered in the form
of two doses three to four weeks apart, and simulate the effects of various vaccine
distribution policies on the cumulative number of infections and deaths in the United
States in the presence of shocks to the supply of vaccines. The cost-benefit framework
we develop here allows us to compare vaccine allocation strategies in order to reduce
the number of deaths and infections caused by the COVID-19 pandemic.

Our forecasts suggest that allocating more than 50% of available doses to individ-
uals who have not received their first dose can significantly increase the number of
lives saved and significantly reduce the number of COVID-19 infections. We find that
a 50% allocation saves on average 33% more lives, and prevents on average 32% more
infections relative to a policy that guarantees a second dose within the recommended
time frame to all individuals who have already received their first dose. In fact, in
the presence of supply shocks, we find that the former policy would save on average
8, 793 lives and prevents on average 607, 100 infections while the latter policy would
save on average 6, 609 lives and prevents on average 460, 743 infections.
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5.1 Introduction

With more than 44.7 million infections in the U.S. and 219 million worldwide, and a
death toll over 721,000 in the United States and 4.55 million worldwide, the COVID-
19 pandemic has profoundly altered the research agenda of the scientific community
as a whole, launching an unprecedented race against the clock to develop a cure or a
vaccine for the disease.

5.1.1 Existing epidemiological models for the COVID-19 pan-

demic

To better contain the disease, and to design more efficient policies in combating it,
the United States Centers for Disease Control and Prevention (CDC) has collected
and combined an ensemble of models to forecast the spread of the epidemic [191].
These models range from traditional SIR and SEIR-type models, to agent-based
models, mixture models, and machine-learning models. Some models, such as the
DELPHI [152] model, explicitly account for the effects of government intervention,
such as the implementation of social distancing policies. These models have quickly
been applied practically: for example, at the clinical level, the DELPHI model helped
to reallocate ventilators and alleviate shortages [24]; similarly, at the policy level, the
DELPHI was used to propose a more efficient allocation of vaccines [25, 23]. Epi-
demiological models have also been used to optimize the design of vaccine clinical
trials, and to quantify the potential advantages of using adaptive RCTs and Hu-
man Challenge Trials (HCTs) over traditional RCTs [21, 43]. Epidemiological models
and simulations have helped researchers and policymakers answer pressing questions,
such as how to prioritize the delivery of vaccine across demographics and medical
conditions [165], and where should vaccination clinics be located to maximize the
effectiveness of the vaccination campaign [25, 23].

5.1.2 Impact of delays and shortages in the supply chain of

COVID-19 Vaccines

With a rising number of infections and deaths, and the emergence of COVID-19 vari-
ants despite extended periods of lockdown, mass vaccination has become the critical
pathway to alleviate the impact of the disease, as is apparent with the success of
Israel’s mass vaccination campaign [57]. However, producing and distributing the
vaccines has become a new challenge for manufacturers. Despite promising results re-
garding the ability to store the Pfizer-BioNTech vaccine in standard freezers over peri-
ods of two weeks [118] rather than the initial storage constraint at −80∘C [37], vaccine
shortages and appointment cancellations [116] have followed factory shutdowns [147],
production mix-ups [149], delays in shipment [32], and power outages [27, 195]. Opti-
mizing the allocation of vaccines has become crucial not only due to the limited supply
of vaccines, but also due to the fact that Pfizer-BioNTech and Moderna vaccines need
to be administered twice for each individual, over a recommended time interval of
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3 or 4 weeks, respectively [35]. Although supply constraints are important in the
United States, they are even more binding in other regions such as Canada [32, 116],
Europe [147, 32, 194], Africa [58], Latin America [134], and India [16].

An important debate has also arisen regarding the advantages of delaying the
second dose to provide more first doses to susceptible individuals [193, 145, 122,
162, 207]. While doses were held back under the Trump administration in order to
guarantee a second dose to individuals who have received their first dose, the Biden
administration has pledged to reverse this policy and release all available doses [8].
Other countries, such as the United Kingdom and Canada, have already adopted the
policy of delaying the second dose up to three months [206, 172], and Singapore is
considering delaying the second dose up to 12 weeks as of May 2021 [114]. However, as
Texas, Washington State, and Michigan experienced in mid-February 2021, releasing
too many doses for first-time users could lead to delays for individuals eligible to
receive their second dose (a “second-shot crunch”) [211].

5.1.3 Should we allocate more COVID-19 vaccine doses to

non-vaccinated individuals?

Researchers, medical doctors, and clinicians have provided arguments for and against
delaying the second dose [135]. On the one hand, while allocating more first doses may
initially slow down the spread of the infections, and ultimately reduce the number
of deaths by allowing a bigger proportion of the population to have some immunity,
it is possible that protection will degrade over time, and delaying the second dose
may leave at-risk individuals inadequately protected. From a disease evolutionary
perspective, partial immunization could also contribute to the selection of vaccine-
resistant variants of SARS-CoV-2 [154]. This point is now even more relevant with
the spread of the Delta variant, the predominant variant in the U.S. as of September
2021, which is twice as contagious as the original strain of the virus, yet only modestly
decreases the effectiveness of the two mRNA vaccines considered [161]. On the other
hand, clinical trial results and data from the Israeli mass vaccination campaign on the
efficacy of the first dose tend to support the policy of delaying the second dose up to
three months, especially when the supply of vaccines is constrained [10, 123, 213, 184].

In this work, we forecast the effect of various vaccine allocation strategies on
the cumulative number of infections and deaths in the United States to quantify
the impact of prioritizing first doses versus second doses. In particular, we extend
the DELPHI model to account for vaccines, and use a simple model of shocks to
the number of vaccines supplied to account for distributional constraints. Similar
questions have recently been studied by other researchers. For example, [100, 212]
recommend a second dose deferral strategy in order to vaccinate more people faster
even if the single-dose efficacy decays over time. Likewise, [167], using the agent-
based epidemics model developed in [203], suggest a 9-week delay for the second dose,
although the results are mixed for the Pfizer-BioNTech vaccine when the efficacy of
the first dose decays over time. While our analysis focuses on the United States, our
recommendations can be generalized to other countries and especially those where
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the supply of vaccines is heavily limited. Furthermore, the framework provided here
can be reused in the event of a future pandemic to improve the allocation of vaccines
and reduce the number of infections and deaths.

The remainder of the chapter is structured as follows: we present the epidemi-
ological model used to forecast the COVID-19 outbreak from October 1st, 2020 to
August 1st, 2021 in Section 5.2, as well as the model used to account for supply
shocks; our forecasts are presented in Section 5.3, and the policies under investiga-
tion are compared and discussed in Section 5.4; we conclude in Section 5.5. Finally,
a more detailed description of our analysis is available in Supplementary Material.

5.2 Methodology

We begin by presenting the epidemiological model used to simulate the COVID-
19 pandemic, the assumptions made in our forecasts, as well as the model used to
simulate the supply of vaccine under random shocks.

5.2.1 Epidemiological Model

Many epidemiological models have been proposed to forecast the spread of COVID-
19 [191]. In particular, [152] proposes a novel SEIR-based model, called the DELPHI
model, that explicitly accounts for the effects of government intervention. As shown
in Fig 5-1, the DELPHI model categorizes individuals into eight classes: Susceptible
individuals who have not been infected (𝑆); Exposed individuals who have been
infected, and are currently within the incubation period (𝐸); Infected and contagious
individuals (𝐼), who are then categorized into the Detected Hospitalized (𝐷𝐻), the
Detected and home-Quarantined (𝐷𝑄), and the Undetected and self-quarantined (𝑈)
classes; Recovered individuals (𝑅); and individuals Deceased from the COVID-19 (𝐷).

As we consider two hypothetical vaccines in this study (loosely modelled after the
Moderna vaccine and the Pfizer-BioNTech vaccine), we augment the DELPHI model
by including five vaccination categories for each vaccine brand 𝑋 used: individuals
receiving their first dose who respond to the first dose (𝑉 𝑟

𝑋,1 for immediate “response”),
individuals receiving their first dose who do not respond to the first dose but will
respond to the second dose (𝑉 𝑑𝑟

𝑋,1 for “delayed response”), and individuals receiving
their first dose who will neither respond to the first dose nor to the second dose
(𝑉 𝑛𝑟

𝑋,1 for “no response”); individuals who receive their second dose and respond to
the vaccine (𝑉 𝑟

𝑋,2); and individuals who receive their second dose and do not respond
to the vaccine (𝑉 𝑛𝑟

𝑋,2).
We assume that the exposed individuals (𝐸) are not yet contagious, and that re-

covered individuals (𝑅) and vaccinated individuals from the 𝑉 𝑟
𝑋,2 group have perma-

nent immunity to COVID-19. We further assume that the infection rate of individuals
depends on a government response function (see Appendix D.1.1) which models the
effects of government intervention. The dynamics of the augmented DELPHI model
are available in Appendix D.1.1.
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Figure 5-1: Flowchart of the original DELPHI model (in green) [152] and the ad-
ditional vaccination states (in blue) for two hypothetical vaccines. For illustrative
purposes, Vaccine A is loosely modelled after the Moderna vaccine, and Vaccine B
after the Pfizer-BioNTech vaccine.

5.2.2 Data and Assumptions

The first step of the analysis consists in fitting the original DELPHI model to historical
data using the dataset developed by [152]. After estimating the parameters of the
original DELPHI model for each state of the U.S., we recalibrate these parameters
to allow us to simulate a discretized version of the DELPHI model using a time step
of 1 day. We then ensure that the discretized model yields the same output as the
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original continuous-time model (see Appendix D.1.2 for more details). This step is
crucial, as it considerably improves the speed of the simulation and allows us to run
Monte Carlo analyses. For consistency of the results, all simulations are based on the
set of discretized parameters.

Brand A Brand B Perturbations
1st dose Efficacyb 80.20% 52% ±20%
2nd dose Efficacyb 95.60% 92% +4%, −20%
Time Until 2nd dosec 21 days 28, 35, 49, & 63 days
Time to Develop Permanent Immunitya 14 days 21 days
Vaccination Start Dated December 15th, 2020
a [192]
b [96]
c The FDA recommends 21 days for the Pfizer-BioNTech vaccine and 28 days for the Moderna

vaccine. As shown in Appendix D.2.1, this difference will have no impact on the analysis.
d [36]

Table 5.1: Vaccination parameters used in the augmented DELPHI model for two
hypothetical vaccines. For illustrative purposes, Vaccine A is loosely modelled after
the Moderna vaccine, and Vaccine B after the Pfizer-BioNTech vaccine.

The parameters used in the augmented DELPHI model are presented in Table 5.1.
We assume a uniform daily infection rate among individuals in each vaccination state.
Individuals who respond to the first dose (the “immediate response” group 𝑉 𝑟

𝑋,1) re-
main completely susceptible to an infection in the first 14 days of their first vacci-
nation, but become permanently immune to the disease 14 days following their first
dose. Similarly, individuals in the “delayed response” group i.e., the 𝑉 𝑑𝑟

𝑋,1 group, re-
main completely susceptible to an infection 35 days after receiving their first dose (i.e.,
21 days to receive their second dose after their first dose, followed by 14 days to develop
permanent immunity), but develop permanent immunity immediately afterwards. In-
dividuals who neither respond to the first nor second dose i.e., the 𝑉 𝑛𝑟

𝑋,1 group, remain
permanently susceptible to an infection. Although the FDA recommends a time in-
terval between vaccine doses of 21 days for the Pfizer-BioNTech vaccine and 28 days
for the Moderna vaccine, this difference has no impact on the analysis, as shown in
Appendix D.2.1. Finally, we assume that the immune response to a vaccine does not
decay over time.

5.2.3 Modeling the Supply of Vaccines

To explore the effect of shocks to the supply of vaccines on the vaccination policy
adopted, we decompose the vaccine rollout into two phases: during the ramp-up phase,
the number of new vaccine doses supplied increases at a linear rate, until it reaches
a terminal value of 1.5 million new doses per day (President Biden’s target [205]);
This terminal value is reached on the 90𝑡ℎ day, when we enter the steady-state phase

in which the supply rate of new doses becomes constant. The assumed terminal
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value is on the conservative side, as the 7-day moving average of the number of doses
administered daily (as reported to the CDC) increased from 1.5 million doses per day
in February 2021 to 3 million in April 2021 [36, 217, 198] (a terminal rate of 3 million
doses per day is explored in Appendix D.2.3). The black curve in Fig 5-2 represents
the daily number of new vaccine doses supplied by one vaccine company. As shown
in the plot, the number of doses supplied by this company increases linearly, until
it reaches a value of 0.75 million doses (one half of 1.5 million , as we consider two
vaccines in this study).

Figure 5-2: Example of the daily number of vaccines supplied by one company with
and without supply shocks between December 15th, 2020 and August 1st, 2021.

To model supply shocks, we assume that shock occurrences follow a Poisson pro-
cess with a rate of 1 shock per 30 days. Using a Poisson process is appropriate here
as we assume that shocks that occur over disjoint time intervals are independent, and
that the process is memoryless. Once a shock occurs, the supply of this particular
vaccine drops to zero over a length of time drawn from a uniform distribution between
0 and 14 days. The supply then picks up at the previous positive level and continues
to increase linearly. Furthermore, we assume that shocks lasting 7 days or more have
a 50% probability of boosting the terminal supply rate by 5%. The blue curve in
Fig 5-2 provides an example of a supply curve with such shocks. Supply shocks can
simply represent delays in production or delivery of vaccines (which would tend to
last a few days), but they can also model a factory shutdown aimed at improving
the production of vaccines (which would tend to last longer and may increase the
terminal supply rate).

Finally, each state receives a fraction of the number of available doses in propor-
tion to its population size. We then run Monte Carlo simulations to investigate the
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robustness of the vaccination policy to supply shocks. The number of cumulative
deaths and cumulative infections are aggregated at the country level, and are used to
compare vaccination policies.

5.3 Results

In this section, we explore the performance of various vaccination policies, and evalu-
ate them based on the number of cumulative deaths and cumulative infections aggre-
gated at the country level. This helps us understand whether we should store vaccine
doses in order to guarantee a second dose to individuals who received a first dose, or
if it is more efficient to allocate as many first doses as possible.

Storing doses ensures that individuals who received a first dose will be able to
obtain their second dose according to the recommended vaccination schedule (here,
21 days) even if supply shocks occur. However, this strategy reduces the number of
individuals that can be vaccinated each day, and may lead to a higher cumulative
number of deaths and infections. We further assume that 1% of unused doses are lost
each day in order to model spoilage or wastage due to unforeseen circumstances.

5.3.1 Vaccination Policies

The policies we investigate are described below.

Baseline Policy As a baseline policy, we consider the case of not vaccinating the
population. This case is expected to present the highest number of cumulative infec-
tions and deaths.

Policy of Interest The vaccination policy of interest consists in allocating a fixed
fraction of available doses to first-time users, and allocating the remaining doses to
individuals who have already received their first dose and are eligible to receive their
second dose. Furthermore, unused doses are reallocated to individuals eligible to get
a vaccine. For example, under a policy of interest allocating 75% of doses to first-time
users, 75% of the doses available today would be administered to individuals who have
not received their first dose and 25% of doses will be administered to individuals who
have received their first dose at least 21 days ago; if doses are unused because we
have more second doses available today than eligible individuals for a second dose,
we reallocate these unused doses to first-time users; if doses are unused because we
have more first doses available today than individuals eligible for their first dose,
these unused doses are reallocated to individuals eligible for a second dose today.
In comparison, we also consider a scenario under which we do not allow for doses
reallocation.

The policy of interest is then compared to the following alternatives.
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Alternative Policy I: Strong Priority Scenario Doses are allocated by pri-
oritizing all individuals who have received a first dose and will eventually need to
receive the second dose in the future. This means that all individuals who receive
their first dose are guaranteed to receive their second dose within the recommended
time frame. Under the strong priority scenario, a second dose will immediately be
placed in storage each time an individual receives their first dose, and this dose will
be administered to this individual 21 days later.

Alternative Policy II: Weak Priority Scenario In contrast to the strong prior-
ity scenario, this policy consists of allocating doses in priority to individuals scheduled
to receive their second dose on that specific day. In the weak priority scenario, doses
available today are first administered to individuals eligible to receive their second
dose; after clearing the second dose queue, the remaining doses are allocated to first-
time users.

In all the vaccination policies described above, second doses are always allocated
in a First-In-First-Out (FIFO) fashion: this gives higher priority to individuals eli-
gible for a second dose who have not been able to receive their second dose yet over
individuals who only became eligible for a second dose today.

A final point: it can be useful to view the weak priority scenario as a special case
of the policy of interest in which we reallocate unused doses. In fact, under a policy
of interest that allocates 0% of doses towards first-time users, individuals eligible to
receive their second dose today will be given priority; then unused doses would be
reallocated towards first-time users.

5.3.2 Policy Evaluation

To compare the four policies described in Section 5.3.1, we simulate the evolution of
the epidemics in the absence and in the presence of random supply shocks. In par-
ticular, we run 1,000 simulations to obtain a distribution for the cumulative number
of infections and the cumulative number of deaths between October 1st, 2020 and
August 1st, 2021 under random supply shocks. After comparing the outputs obtained
with various number of Monte Carlo simulations, we selected the number of Monte
Carlo simulations to be large enough to reflect the uncertainty in the output while
being parsimonious enough to retain a practical simulation runtime. The DELPHI
parameters used in all our forecasts were estimated on February 7th, 2021.

We plot in Fig 5-3 the cumulative number of infections and the cumulative number
of deaths under the policy of interest in the absence of supply shocks (green dots)
and in the presence of supply shocks (blue dots) as we increase the allocation of doses
towards first-time users. The numbers on the y-axis are negative as we display the
number of infections and the number of deaths under the policy of interest relative to
the baseline policy. In particular, we observe that allocating 50% of available doses
to first-time users saves 11, 632 lives on average if there are no supply shocks, and
saves an average of 8, 793 lives (95%CI: [6, 477; 10, 803]) under random supply shocks
relative to a no-vaccination policy. Allocating 50% of doses to first-time uses also
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Figure 5-3: Simulation of the DELPHI model under supply shocks. We calculate the
cumulative number of deaths and infections between October 1st, 2020 and
August 1st, 2021 relative to a no vaccination baseline when a constant fraction of
available doses are allocated to first-time users. Results under supply shocks are av-
eraged over 1,000 Monte Carlo simulations. We use the February 7th, 2021 DELPHI
model parameters.

prevents 801, 451 infections under no supply shocks and 607, 100 infections (95%CI:
[450, 024; 743, 198]) under supply shocks.

As we increase the fraction of doses allocated to first-time users, our forecasts
predict a decrease in the cumulative number of infections and deaths. In fact, if we
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Figure 5-4: Simulation of the DELPHI model under supply shocks when we do not

reallocate excess doses to individuals eligible to get a vaccine. We calculate the
cumulative number of deaths and infections between October 1st, 2020 and August
1st, 2021 relative to a no vaccination baseline when a constant fraction of available
doses are allocated to first-time users. Results under supply shocks are averaged
over 1,000 Monte Carlo simulations. We use the February 7th, 2021 DELPHI model
parameters.

allocate all available doses to first-time users, the policy of interest would save 13, 859
lives in the absence of supply shocks, and save on average 10, 497 lives (95%CI:
[7, 634; 12, 943]) under supply shocks. This policy would also prevent 944, 717 in-
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fections in the absence of supply shocks, and prevent on average 716, 579 infections
(95%CI: [527, 296; 880, 397]) under supply shocks. The estimates are reported in Ta-
ble 5.2 and Table 5.3.

In contrast, the alternative policies considered do not allocate a fixed fraction
of available doses to first-time users. Instead, under the strong priority policy (Ta-
ble 5.4), a second dose is kept in storage as soon as an individual receives his or her
first dose. This strategy is able to save only 8, 876 lives under no supply shocks, and
on average 6, 609 lives (95%CI: [4, 790; 8, 213]) under supply shocks, while it prevents
616, 315 infections in the absence of supply shocks and on average 460, 743 infections
(95%CI: [337, 131; 569, 924]) under supply shocks.

The weak priority policy (Table 5.5) relaxes this restriction and distributes the
available doses each day in priority to individuals who already received their first
dose and are eligible to receive their second dose on that day. Under this strategy,
our forecasts predict that 11, 631 lives would be saved under no supply shocks, and
on average 8, 759 lives (95%CI: [6, 434; 10, 786]) would be saved under supply shocks.
This strategy would also prevent 801, 387 infections in the absence of supply shocks
and on average 604, 926 infections (95%CI: [447, 624; 741, 807]) under supply shocks.

It is important to highlight here that under the policy of interest, the cumulative
number of infections and deaths remains constant as we vary the fraction of doses
allocated to first-time users from 0% to about 50%. This effect is due to the reallo-
cation of unused doses modelled by our simulation. More concretely, if we allocate
no doses to first-time users (i.e., we only give doses to individuals who have already
received their first dose) and do not reallocate unused doses, then nobody would ever
receive their first dose and hence nobody will ever be eligible to receive a second dose.
Reallocating unused doses overcomes this issue. Furthermore, reallocating unused
doses under a 0% first dose allocation policy exactly matches the outcome of the
weak priority scenario (the orange and yellow lines in Fig 5-3), in which we always
give priority to individuals who already received their first dose and are now eligible
to receive their second dose.

When unused doses are not reallocated, we obtain the forecasts displayed in Fig 5-
4. Allocating no doses to first-time users is identical to the no-vaccination policy, while
increasing the dose allocation to first-time users beyond 30% produces similar results
to Fig 5-3.

5.4 Discussion

5.4.1 Policy Comparison

As expected, vaccinating the population significantly reduces the number of infections
and deaths under all the policies considered. However, the forecasts presented in
Section 5.3.2 allow us to immediately rule out the efficiency of the first alternative
policy (i.e., the strong priority scenario) relative to the other vaccination policies
presented. In fact, both the policy of interest and the weak priority scenario are
significantly better than the strong priority scenario in the presence and absence of
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Dose 1 No Shocks Shock Average Shock SD Shock s.e. 5th-perc. 95th-perc.
0 -801,387 -604,926 90,931 2,875 -741,807 -447,624
5 -801,387 -605,019 90,908 2,875 -741,879 -447,886
10 -801,387 -605,122 90,883 2,874 -741,998 -448,173
15 -801,387 -605,238 90,854 2,873 -742,126 -448,502
20 -801,387 -605,370 90,822 2,872 -742,261 -448,861
25 -801,387 -605,522 90,788 2,871 -742,416 -448,995
30 -801,387 -605,703 90,750 2,870 -742,592 -449,121
35 -801,387 -605,924 90,706 2,868 -742,722 -449,259
40 -801,387 -606,205 90,648 2,867 -742,795 -449,441
45 -801,387 -606,576 90,575 2,864 -742,879 -449,673
50 -801,451 -607,100 90,494 2,862 -743,198 -450,024
55 -802,656 -608,261 90,495 2,862 -744,474 -451,435
60 -808,134 -612,442 90,999 2,878 -749,287 -454,678
65 -822,703 -622,631 93,180 2,947 -762,924 -461,109
70 -839,272 -634,693 95,480 3,019 -779,156 -470,017
75 -856,478 -647,566 97,751 3,091 -795,018 -478,389
80 -873,507 -660,804 99,898 3,159 -810,243 -488,860
85 -890,732 -674,248 102,115 3,229 -825,871 -499,160
90 -908,812 -688,298 104,511 3,305 -843,509 -506,485
95 -927,952 -703,192 107,090 3,386 -862,812 -514,555
100 -944,717 -716,579 109,442 3,461 -880,397 -527,296

Table 5.2: Simulation of the DELPHI model under supply shocks as we vary the
fraction of doses allocated to first-time users. We calculate the number of infections

relative to a no-vaccination baseline when a constant fraction of available doses are
allocated to first-time users. Results under supply shocks are averaged over 1,000
Monte Carlo simulations. We use the 2021/02/07 DELPHI model parameters.

random supply shocks. This is also expected, as more individuals are able to receive
their first dose under the policy of interest and the weak priority scenario and start
to develop an immune response early. The magnitude of the improvement is even
more striking: under supply shocks, the policy of interest allocating 50% of available
doses to first-time users is expected to save on average 33% more lives and prevents
on average 32% more infections than the strong priority scenario. Nevertheless, the
strong priority scenario is still important to analyze, as individuals getting a vaccine
in the U.S. usually obtain an appointment for their second dose as soon as they receive
their first dose, and patients requiring a second dose are given priority [34].

In the absence of supply shocks, the weak priority scenario is dominated by the
policy of interest when more than 60% of available doses are allocated to first-time
users. In particular, if we compare the weak priority scenario to a policy of interest
allocating 85% of available doses to first-time users, our forecasts predict an increase
in the number of lives saved and of the number of infected averted of 11.7% and 11.1%
respectively. This result also holds in the presence of supply shocks: we forecast
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Dose 1 No Shocks Shock Average Shock SD Shock s.e. 5pct 95pct
0 -11,631 -8,759 1,349 43 -10,786 -6,434
5 -11,631 -8,760 1,349 43 -10,789 -6,435
10 -11,631 -8,762 1,349 43 -10,789 -6,435
15 -11,631 -8,764 1,348 43 -10,790 -6,437
20 -11,631 -8,766 1,348 43 -10,793 -6,438
25 -11,631 -8,768 1,347 43 -10,795 -6,438
30 -11,631 -8,771 1,347 43 -10,798 -6,441
35 -11,631 -8,774 1,346 43 -10,799 -6,441
40 -11,631 -8,779 1,345 43 -10,797 -6,453
45 -11,631 -8,785 1,344 42 -10,798 -6,463
50 -11,632 -8,793 1,342 42 -10,803 -6,477
55 -11,648 -8,810 1,342 42 -10,817 -6,484
60 -11,730 -8,870 1,350 43 -10,895 -6,517
65 -11,946 -9,024 1,383 44 -11,098 -6,628
70 -12,198 -9,205 1,418 45 -11,334 -6,756
75 -12,454 -9,400 1,453 46 -11,585 -6,878
80 -12,723 -9,605 1,488 47 -11,831 -7,027
85 -12,996 -9,819 1,524 48 -12,087 -7,192
90 -13,286 -10,045 1,562 49 -12,370 -7,337
95 -13,593 -10,285 1,603 51 -12,675 -7,473
100 -13,859 -10,497 1,640 52 -12,943 -7,634

Table 5.3: Simulation of the DELPHI model under supply shocks as we vary the
fraction of doses allocated to first-time users. We calculate the number of deaths

relative to a no-vaccination baseline when a constant fraction of available doses are
allocated to first-time users. Results under supply shocks are averaged over 1,000
Monte Carlo simulations. We use the 2021/02/07 DELPHI model parameters.

an increase of 12.1% in the number of lives saved and an increase of 11.5% in the
number of infections averted. These differences are statistically significant as a Welch
t-test yields t-statistics of 16.4 and 16, respectively, for the number of lives saved and
infections averted. This is also expected, as the weak priority scenario can be viewed
as a special case of the policy of interest, where less than 50% of available doses are
allocated to first-time users, with unused doses being reallocated. As a consequence,
the number of lives saved and infections averted will always be higher under the policy
of interest.

In summary, our forecasts suggest that allocating more than 50% of available doses
towards first-time users, even at the cost of delaying the distribution of second doses,
would be a better policy than guaranteeing a second dose within the recommended
time frame to every individual receiving their first dose. The simulations also show
that these results are robust to supply shocks. Although our analysis focuses on
the United States, the forecasts and their interpretation can be generalized to any
country. Prioritizing first doses would be even more relevant to countries where the
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Setting Cumulative
Deaths

Cumulative
Infections

Deaths over
Baseline

Cases over
Baseline

No Vaccination 610,626 30,877,115 0 0
No Shocks 601,750 30,260,800 -8,876 -616,315
Shock Average 604,017 30,416,372 -6,609 -460,743
Shock SD 1,054 71,403 1,054 71,403
Shock s.e. 33 2,258 33 2,258
t-Statistic − − -198 -204
5pct 602,413 30,307,191 -8,213 -569,924
95pct 605,836 30,539,984 -4,790 -337,131

Table 5.4: Simulation of the DELPHI model under supply shocks as we vary the
fraction of doses allocated to first-time users. We calculate the number of infections
and deaths relative to a no-vaccination baseline under a strong priority scenario.
Results under supply shocks are averaged over 1,000 Monte Carlo simulations. We
use the 2021/02/07 DELPHI model parameters.

Setting Cumulative
Deaths

Cumulative
Infections

Deaths over
Baseline

Cases over
Baseline

No Vaccination 610,626 30,877,115 0 0
No Shocks 598,995 30,075,728 -11,631 -801,387
Shock Average 601,867 30,272,189 -8,759 -604,926
Shock SD 1,349 90,931 1,349 90,931
Shock s.e. 43 2,875 43 2,875
t-Statistic − − -205 -210
5pct 599,840 30,135,308 -10,786 -741,807
95pct 604,192 30,429,491 -6,434 -447,624

Table 5.5: Simulation of the DELPHI model under supply shocks as we vary the
fraction of doses allocated to first-time users. We calculate the number of infections
and deaths relative to a no-vaccination baseline under a weak priority scenario.
Results under supply shocks are averaged over 1,000 Monte Carlo simulations. We
use the 2021/02/07 DELPHI model parameters.

vaccine supply is severely limited (as shown in Appendix D.2.3).

5.4.2 Limitations and Sensitivity Analysis

Our forecasts are all based on an augmented version of the DELPHI epidemic model [152]
that accounts for vaccinations. We should note that the model fails to account
for demographics to assign different contact rates, hospitalization rates, and mor-
tality rates across different age groups. Furthermore, some simplifying assump-
tions are used: for example, recovered individuals are assumed to have permanent
immunity. However, among the top 10 models used by the CDC, DELPHI of-
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ten displays the best performance with a low mean absolute percentage error (see
https://www.covidanalytics.io/projections).

A critical limitation of our model is that we assume no decay in the efficacy of the
vaccine over time if an individual has received their first dose, but are still waiting for
their second dose. At this point, this decay in efficacy remains an open question [210].
Although our simulations begin on October 1st, 2020 and end on August 1st, 2021,
vaccinations start on December 15th, 2020. If we consider a policy of interest that
allocates 100% of available doses to first-time users, it would mean that individuals
receiving their first dose at the end of December 2020 would not receive their second
dose by August 1st, 2021. If the efficacy of the first dose decays over time, our forecast
would be overly optimistic. However, knowing this decay rate would help determine
the optimal fraction of doses that need to be allocated to first-time users under the
policy of interest to balance the advantages of delaying the second dose against the
efficiency loss due to the delay.

In hindsight, although the decay in efficacy is still difficult to quantify as of July
2022, most countries (including the U.S.) recommend a booster dose four to six
months following the second dose. A useful extension of the current framework could
be to consider all vaccinated individuals as susceptible six months after receiving their
second dose. This modification would lead to a conservative result as it assumes a
complete and instantaneous decay in efficacy at the six month mark, but can help
select a policy that is robust to strong decays in efficacy.

Finally, we find that our results remain significant as we perturb some key assumed
parameters. We show in Appendix D.2 the forecasts obtained as we increase the
time interval between the first and second dose (from 4 weeks to 9 weeks), as we
increase or decrease the efficacy of each vaccine dose, as we increase the time needed to
develop permanent immunity, and as we increase the supply of vaccines. In particular,
we observe that the curves obtained in Appendix D.2 tend to shift upwards as we
increase the time interval between the doses, increase the time needed to develop
permanent immunity, decrease the supply of vaccines, or decrease the efficacy of each
vaccine dose, implying an overall reduction in the number of lives saved and infections
averted. In addition, the curves become flatter, implying a lower sensitivity to the
chosen fraction of available doses allocated to first-time users, especially as we increase
the time needed to develop permanent immunity, decrease the supply of vaccines, or
decrease the efficacy of the first dose.

5.5 Conclusion

We have developed a systematic framework to compare the efficiency of various vac-
cination policies. In particular, we extend the DELPHI model [152] to account for
vaccination states, and explore the impact of prioritizing vaccines to first-time users
instead of guaranteeing a second dose within the recommended time frame to indi-
viduals who have already received their first dose.

Our forecasts suggest that allocating more than 50% of available doses to first-time
users significantly increases the number of lives saved and significantly reduces the
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number of COVID-19 infections. It is important to highlight here that our forecasts
are not recommending individuals to skip the second dose, a trend that has already
raised some concerns as the efficacy of a single dose of mRNA vaccine over a long
period of time remains unclear [148, 26, 201]. Instead, we suggest delaying the second
dose to allow more individuals to receive the first dose in order to reduce the spread
of the disease faster.
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Chapter 6

Accelerating Vaccine Innovation

for Emerging Infectious Diseases

The COVID-19 pandemic has raised awareness about the global imperative to develop
and stockpile vaccines against future outbreaks of emerging infectious diseases. Prior
to the pandemic, vaccine development for emerging infectious diseases was stagnant,
largely due to the lack of financial incentives for pharmaceutical firms to invest in
vaccine R&D. This R&D requires significant capital investment, most notably in
conducting clinical trials, but vaccines generate much less profit for pharmaceutical
firms compared to other therapeutics in disease areas such as oncology.

The portfolio approach of financing drug development has been proposed as a
financial innovation to improve the risk/return tradeoff of investment in drug devel-
opment projects through the use of diversification and securitization. By investing
in a sizable and well-diversified portfolio of novel drug candidates, and issuing eq-
uity and securitized debt based on this portfolio, the financial performance of such a
biomedical “megafund” can attract a wider group of private-sector investors.

To analyze the viability of the portfolio approach in expediting vaccine develop-
ment against emerging infectious diseases, we simulate the financial performance of
a hypothetical vaccine megafund consisting of 120 mRNA vaccine candidates in the
preclinical stage, which target 11 emerging infectious diseases, including a hypothet-
ical “disease X” that may be responsible for the next pandemic. We calibrate the
simulation parameters with input from domain experts in mRNA technology and
an extensive literature review, and find that this vaccine portfolio will generate an
average annualized return on investment of −6.0% per annum and a negative net
present value of −$9.5 billion, despite the scientific advantages of mRNA technology
and the financial benefits of diversification. We also show that clinical trial costs
account for 94% of the total investment, while vaccine manufacturing costs account
for only 6%. The most important factor of the megafund’s financial performance is
the price per vaccine dose, while other factors, such as the increased probability of
success due to mRNA technology, the size of the megafund portfolio, and the possi-
bility of conducting human challenge trials do not significantly improve its financial
performance.

Our analysis indicates that continued collaboration between government agencies
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and the private sector will be necessary if the goal is to create a sustainable business
model and robust vaccine ecosystem for addressing future pandemics.

6.1 Introduction

The extraordinary human, social, and economic losses caused by the COVID-19 pan-
demic has heightened the global imperative to prepare for the next pandemic by
proactively developing novel vaccines against EIDs. EIDs are a broad class of infec-
tious agents that have either recently appeared for the first time, or whose incidence
has rapidly increased in terms of size of the affected population or geographic area
[223, 176]. A closely related threat is the reemergence of new variants of a previously
identified EID, which may have become more transmissive or pathogenic through
genetic mutation or shifting environmental conditions [170].

Given the dynamic and stochastic nature of EID outbreaks, the most effective
strategy to prevent a future pandemic is to develop and stockpile vaccines before an
outbreak occurs [131]. A notable example of proactive vaccine development is the
CEPI, which has a portfolio of 32 vaccine candidates, as of April 14, 2022 target-
ing COVID-19 and six other priority EIDs [50]. Currently, the CEPI portfolio is
diversified across 13 different therapeutic mechanisms (e.g., nucleic acid, recombi-
nant protein, etc.) and five different stages of clinical development, from preclinical
research to Emergency Use Listing by the World Health Organization (WHO). A sim-
ilar example of proactive response was the International Coordinating Group (ICG)
on Vaccine Provision’s stockpiling of 2 million doses of yellow fever vaccines during a
global shortage in 2000 [171]. In 2019, members of ICG renewed its pledge to main-
tain a stockpile of 6 million yellow fever vaccine doses [222]. Stockpiling vaccines well
before an epidemic outbreak enables local governments and public health agencies to
quickly address the sharp increase in vaccine demand following the outbreak, and
facilitates more efficient vaccine allocation [132].

These considerations—and the remarkable effectiveness of mRNA vaccine tech-
nology against COVID-19—naturally lead to the question of the financial feasibility
of a portfolio of mRNA vaccine candidates diversified across target EIDs, including
both local EIDs and pathogens that may cause the next global pandemic. We address
this question in this chapter by evaluating the financial performance of a hypothet-
ical portfolio of 120 mRNA vaccine candidates targeting 11 EIDs, and determining
whether the risk/return profile of such a portfolio might be attractive to private-
sector investors. We do this by performing Monte Carlo simulations of the outcomes
of hypothetical vaccine development programs that conform to a pre-specified set of
parameters, and then examining the statistical distribution of these outcomes. We
calibrate the parameters of these simulations using input from domain experts in
mRNA technology and an extensive literature review.

We find that this vaccine portfolio yields an average annualized return on invest-
ment of −6.0% per annum, and a negative net present value of −$9.5 billion, despite
the scientific advantages of mRNA technology and the financial benefits of diversifi-
cation. We also show that the clinical trial costs of this vaccine portfolio account for
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94% of the total investment, while vaccine manufacturing costs account for only 6%.
The most important factor of the portfolio’s financial performance is the price per
vaccine dose, while other factors, such as the increased probability of success due to
mRNA technology, the size of the portfolio, and the possibility of conducting human
challenge trials—in which healthy subjects are vaccinated and then deliberately in-
fected with the virus to test vaccine efficacy—do not significantly improve its financial
performance.

If the goal is to create a sustainable business model for addressing EIDs effectively,
our results suggest that a likely pre-requisite will be continued collaboration between
the public and private sector.

6.2 Brief Overview of Vaccine Development

6.2.1 The Past: A Decline in Vaccine R&D Prior to the

COVID-19 Pandemic

Before the COVID-19 pandemic, pharmaceutical firms had pivoted away from vaccine
R&D for EIDs, especially for small-scale but highly lethal agents such as the Ebola
and Marburg viruses [137]. Several important factors were involved in this exodus,
including high R&D costs [97], a low probability of success (PoS) in developing a
vaccine candidate from preclinical studies to regulatory approval (estimated to be
between 6% and 25% by [61, 187, 186, 214], the low list prices of vaccines [33], the
uncertainty in vaccine demand and revenues [95, 183], and the lack of sustainable
funding from public and private sectors in the absence of an imminent epidemic
outbreak. Pharmaceutical firms have a greater financial incentive to develop and
manufacture vaccines for common seasonal epidemics such as influenza compared to
EIDs, since there is much less uncertainty in the estimated demand of these vaccines
[69].

To illustrate the financial disincentives of vaccine R&D for EIDs more concretely,
consider the following simplified model. Assume that the cost of developing a single
vaccine candidate, from preclinical studies to regulatory approval or emergency use
authorization (EUA), is $200 million, the probability of receiving regulatory approval
is 25%, and the target EID occurs with probability 10% in any given year. If an
outbreak does occur, we assume 10 million doses are manufactured, with a list price
$20 per dose. Under these assumptions, the total expected revenues over the next 20
years (which is the duration of a vaccine patent):

25% · $20 · 10 million · 10% · 20 = $100 million (6.1)

is only half of the R&D costs, despite rather optimistic assumptions about these
costs and the EUA compared to more realistic estimates found in the literature
[187, 186, 214]. This simple example also shows that the financial returns of vac-
cine R&D can be increased if the EUA can be improved due to scientific innovation
(e.g., mRNA technology) or financial innovation (e.g., a portfolio approach to parallel
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vaccine development), or a combination of both.

6.2.2 The Present: A Revolution in mRNA Vaccines

Vaccine R&D has gone through a scientific revolution during the pandemic, exem-
plified by mRNA technology, which has demonstrated robust levels of safety, high
efficacy, and unprecedented speed in clinical vaccine development [41]. Once the ge-
netic sequence of a pathogen is known, mRNA vaccine candidates can be designed
more quickly than traditional vaccines. In addition, since mRNA vaccines do not
require the production of inactivated or attenuated pathogens, they can be manu-
factured at large scale at higher efficiency, lower cost, and with more robust safety
guarantees [181]. This technology has the potential to significantly reduce both the
cost and the duration of vaccine R&D, enabling a much more rapid response to future
EIDs. It is also particularly suited for the development of multiple mRNA vaccines in
parallel, as in the portfolio approach taken by CEPI , since different mRNA vaccines
may be able to share the same resources and facilities for preclinical studies, clinical
testing, and post-approval manufacturing and delivery [208].

As an illustration of the success of mRNA vaccine development, consider the
mRNA-1273 vaccine developed by Moderna for COVID-19, which was designed in 2
days, tested on the first human volunteer in 63 days, and received an EUA from the
FDA in a little over 11 months after the genetic sequence of the original viral strain
was first released [174, 109]. The R&D period of mRNA vaccines is significantly
shorter than the usual 5 to 10 years for traditional vaccine development that were
required before the COVID-19 pandemic.

We should note that the stunning successes of mRNA vaccine R&D against the
COVID-19 virus was a result not only of technological advances, but also due to
the close partnership between the public and private sectors in developing a mature
mRNA technology well over a decade before the pandemic [67], as well as a prod-
uct of the unprecedented collaboration between the government, regulatory agencies,
scientists and clinicians around the world, and the pharmaceutical industry to expe-
dite vaccine development in the midst of the COVID-19 outbreak. As we illustrate in
subsequent sections, the continued collaboration and funding support from the public
sector is critical to ensuring that vaccine R&D for EIDs can be financially sustainable.

6.2.3 The Future: Parallel R&D for mRNA Vaccines

mRNA technology brings a novel perspective to vaccine R&D in the portfolio ap-
proach used by CEPI by lowering the R&D and manufacturing costs through sharing
resources on a common R&D platform, which improves the EUA of vaccine devel-
opment by the “multiple-shots-on-goal” parallel strategy of discovery. However, a
serious challenge to vaccine R&D remains in the lack of sufficient and sustainable
funding to support the vaccine R&D pipeline over an extended period, typically mul-
tiple years from preclinical research to the regulatory approval of a vaccine, an issue
known as the “valley of death” in translational medicine [29].
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Governments, international agencies, and non-governmental organizations such as
the Gates Foundation, Wellcome Trust, and CEPI have made significant contribu-
tions to the development of a portfolio of vaccine candidates, but these efforts are
not sufficient due to the scale of the challenge (see Section 2 of [214] for a detailed
discussion). The private sector does have sufficient resources to bridge this funding
gap but will do so only if the portfolio can generate sufficiently attractive financial
returns for its investors.

To illustrate the benefits and challenges of applying the portfolio approach to
vaccine R&D, we return to our earlier back-of-the-envelope calculation. Suppose
we invest in a portfolio of 10 mRNA vaccines candidates targeting local epidemics.
The total cost increases to 10 · $200 million = $2 bilion, while the probability that
at least one vaccine candidate receives regulatory approval (assuming statistically
independent outcomes) increases substantially to 1 − (1 − 25%)10 = 94.4%. The
expected revenues over the next two decades becomes:

94.4% · $20 · 10 million · 10% · 20 = $378 million, (6.2)

a financial loss of $1.6 billion. However, if the vaccine targets an EID which causes
a global pandemic with an annual probability 1%, and 1 billion vaccine doses are
produced if a pandemic occurs, the expected revenues of the vaccine portfolio increases
to:

94.4% · $20 · 1 billion · 1% · 20 = $3.8 billion (6.3)

a profit of $1.8 billion, while the expected revenues of investing in one vaccine is only:

25% · $20 · 1 billion · 1% · 20 = $1.0 billion (6.4)

which implies a deficit of $1 billion.
These numbers highlight both the advantages and the bottlenecks to applying

a portfolio approach to funding vaccine R&D. First, the parallel discovery strategy
improves the EUA of vaccine R&D. Even if vaccine development outcomes are cor-
related to each other, the probability of having an approved vaccine in a portfolio is
still higher than the EUA of investing in a single vaccine program (assuming that the
pairwise correlations are not equal to 1). An increased EUA can make vaccine R&D
profitable for those EIDs capable of causing global pandemics. However, it is insuffi-
cient to generate financial value for vaccines against local EIDs, since the revenues of
local vaccine sales is limited. In addition, since the mRNA vaccines share the same
therapeutic mechanism, it is reasonable to assume that there will be no significant
difference in efficacy between different approved mRNA vaccines for the same EID
(as in the case of COVID-19). As a result, there will be considerable cannibalization
of demand for vaccines targeting the same EID, since the demand for vaccines will
not increase with the number of approved vaccines. Finally, the stochastic nature of
EID outbreaks induces large variance in the revenues of vaccine sales. For vaccine
R&D aimed at preventing a global pandemic, even though the expected financial
return is positive, there is still a significant probability in our illustrative model of
(1−1%)20 = 81.8% that a global pandemic will not occur in the next 20 years, leading
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to a financial loss of $2 billion.

6.3 Portfolio Approach to Financing Drug Devel-

opment

6.3.1 Challenges of the Drug Development Process

To develop a novel therapeutic candidate from laboratory discovery to regulatory
approval, a drug developer needs to conduct multiple clinical trials to test the safety
and efficacy of the therapeutic candidate on the target patient population. These
clinical trials are conducted in sequence through four stages (preclinical, phase 1,
phase 2, and phase 3)1. Trials in a more advanced phase typically require a larger
patient enrollment and a longer time to complete, and are correspondingly more
expensive. If the phase 3 clinical trial shows clear safety and efficacy, the drug
developer files a New Drug Application (NDA) to the FDA for regulatory approval.
If the FDA approves the NDA, the drug developer may manufacture the drug and
collect revenues from drug sales. Sometimes, the FDA may require an additional
phase 4 clinical trial after regulatory approval, in order to test the long-term benefits
and side effects of the drug on a large patient population.

Despite the tremendous breakthroughs in biomedicine over the past decades, new
drug development has become slower, more expensive, and less likely to succeed,
causing a significant funding gap for early-stage drug development programs. The
lack of sufficient funding for translational biomedical R&D is due to several institu-
tional features of drug development, including a low EUA, a long investment horizon,
high clinical trial costs, and a high cost of capital, especially for small biotechnology
companies which do not have marketed drugs that generate revenues and must rely
on external financing to sustain its R&D pipeline2. The declining efficiency of trans-
lating scientific discoveries in research laboratories into novel products has also been
observed in other industries in the US [12].

1Phase 1 trials typical involve 10 to 50 patients, with the only goal of establishing the safety and
the maximum tolerable dose of a given drug candidate. If no significant side effects are encountered
in Phase 1, a Phase 2 trial is initiated in which 50 to 500 patients who suffer from the targeted
disease are carefully selected to test the drug candidate’s efficacy. If significant benefits are detected
in that trial, a much larger Phase 3 trial involving thousands of patients is launched to test the
drug candidate’s efficacy in a broader and less carefully curated sample of patients, and if significant
benefits are detected in Phase 3 with no serious side effects, the drug is approved for general use.
Because vaccines are administered much more widely than other drugs, and given to healthy subjects
rather than only those with a given disease, the regulatory hurdle for determining safety and efficacy
is considerably higher—a typical Phase 3 trial for a vaccine involves 30,000 subjects (as in the case
of the COVID-19 vaccines), hence the outsized costs of Phase 3 trials. See Chapter 8 from [156] for
further details.

2See [158] for a systematic review of financing issues in the biopharma industry.
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6.3.2 Advantages of Financing Vaccine R&D via the “Vac-

cine Megafund”

To address the challenge of funding translational medicine, [86] proposed a novel
financing vehicle, the biomedical “megafund”, which invests in a sizable portfolio of
drug candidates diversified across different clinical stages and therapeutic areas. Us-
ing financial engineering techniques such as securitization, the authors show that the
risk/return profile of the megafund is attractive to a wide group of investors. Origi-
nally proposed to finance oncology drug development, the megafund model was sub-
sequently applied to other disease areas, including orphan diseases [72], Alzheimer’s
disease [157], pediatric cancer [69], ovarian cancer [42], glioblastoma [204], and vac-
cines against EIDs [214]. It is currently being applied by the National Brain Tumor
Society (NBTS) to finance novel drug candidates to treat glioblastoma [173].

The key idea behind the megafund is to reduce the financial risks of its assets
and improve its expected returns by raising capital to acquire a portfolio of vaccine
candidates, issuing equity and securitized debt with different risk/return profiles that
appeal to a wide range of private-sector investors. The vaccine candidates are used as
collateral, and the revenues generated by future vaccine sales are used to service its
debt and interest payments. The residual equity is then distributed among its equity
holders. If the future cash flows are insufficient to service the debt, the megafund
declares bankruptcy and the collateral is transferred to its bondholders. The main
advantage of portfolio diversification is that by increasing the EUA of having at least
one approved drug candidate, the megafund is able to lower the financial risks and
attract large amounts of capital from the bond market, whose size is much larger than
the venture capital, public equity, or private equity market [125]. In 2020, a total of
$12.2 trillion worth of fixed income securities were issued in the US, compared to $390
billion of equity. In the same year, the total private placement was $330.1 billion in
the US, of which $314.4 billion was in the form of debt and $15.8 billion in the form
of equity [125].

6.3.3 Evaluating the Financial Performance of the Vaccine

Megafund

In the vaccine megafund simulation analysis of [214], the financial performance of
a vaccine-focused portfolio is extremely unattractive to for-profit investors, with an
expected annualized return of −61% and a standard deviation (SD) of 4%. Multiple
factors lead to this negative financial return, including a low EUA of vaccine trials,
high clinical trial costs, and limited revenues from vaccine sales. Based on these find-
ings, the authors propose several strategies to finance the vaccine megafund, including
higher vaccine prices, public sector funding, and a novel subscription model in which
subscribers would pay annual fees for priority access to the vaccines in case of future
outbreaks.

In this chapter, we extend the work of [214] in several important ways. First, [214]
simulated vaccine trial outcomes stochastically, but used a single fixed expected value
to estimate the annual profit for approved vaccines. We implement a more realistic
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simulation framework in which the entire value chain of vaccine development, man-
ufacturing, and sales is simulated under the stochastic occurrence of EID outbreaks.
The uncertainty in future EID outbreaks increases the variance of megafund cash
flows, which directly impacts its risk/return profile. In addition, we use improved
EUA estimates of mRNA vaccines to adjust the cash flows of the megafund, and
calibrate the cost structure of mRNA vaccine manufacturing with input from domain
experts and an extensive literature review. Finally, while [214] mainly focused on
the annualized return of the vaccine megafund, we systematically investigate a wide
spectrum of metrics to gauge its financial and social impact, such as the net present
value and the number of EID outbreaks prevented. We also provide a detailed break-
down of the cost structure for the vaccine megafund to identify the main drivers of
its financial performance.

The risk/reward profile of the vaccine megafund hinges on the scientific and busi-
ness expertise of fund managers to select promising drug candidates and diversify the
portfolio [204]. For a real-world vaccine portfolio such as CEPI ’s, active portfolio
management is critical, given budget constraints, to select a limited number of vaccine
candidates. [98] apply multi-criteria decision analysis to select promising vaccine can-
didates for the CEPI portfolio in the context of multiple trade-offs and heterogeneous
stakeholder preferences. In a subsequent study [99], the authors apply portfolio deci-
sion analysis to optimize the investment of CEPI in 16 vaccine technology platforms.
[7] analyzed the optimal investment strategy of vaccine manufacturing capacity for
countries with different socioeconomic characteristics.

While we fully recognize the importance of active portfolio management in im-
proving the financial performance of a vaccine megafund, we do not impose exogenous
budget constraints or perform any portfolio optimization in our simulation analysis
since our goal is to understand the relationships between the investment and revenues
of the vaccine megafund and its endogenous factors such as the improvement in the
EUA of mRNA vaccine development, the cost structure of mRNA vaccine manufac-
turing, the size of the megafund portfolio, and the possibility of conducting human
challenge trials to expedite vaccine clinical trials.

6.4 Simulation Methods

6.4.1 Vaccine Megafund Portfolio

We simulate the financial performance of a large portfolio of mRNA vaccine candi-
dates using an adaptation of [214]’s portfolio structure and probability of outbreak
𝑃𝑎 of each EID, as shown in Table 6.1. We also include 10 vaccine candidates which
target “disease X”, the unknown pathogen which may cause the next pandemic, in
accordance with the updated CEPI portfolio [50]. We assume that disease X has a
low annual probability of outbreak 𝑃𝑎 = 1%, and the number of infected cases will
be 400 million, close to that of COVID-19.

126



Targeted EID Number of Vaccine
Candidates (𝑁𝑣𝑎𝑐)

Annual Probability of
Outbreak (𝑃𝑎, in %)

Average Number
of Infections (𝑛𝐼)

Disease X 10 1.0 400,000,000
Chikungunya 16 10.8 523,600
Zika Virus 18 4.3 500,062
Lassa Fever 7 100.0 300,000
Rift Valley Fever 3 10.5 79,414
SARS-CoV-1 2 7.1 8,098
West Nile Virus 23 10.0 500
MERS-CoV 8 40.0 436
Crimean-Congo
Haemorrhagic Fever

7 12.5 320

Nipah Virus 20 15.8 136
Marburg Virus 6 12.0 75

Table 6.1: Portfolio for simulated mRNA vaccine megafund [50, 214].

6.4.2 Vaccine Clinical Trials

We use the simulation framework in [204] to model the correlated outcomes of vac-
cine clinical trials. The assumed values of the simulation parameters of a vaccine
clinical trial are summarized in Table 6.2. The simulated trial outcomes depend on
two critical sets of parameters. First, the EUA to reach each stage in the clinical
development process is estimated using historical industry average values [186, 214].
In addition, since the mRNA vaccine for COVID-19 is known to induce humoral im-
mune protection by producing neutralizing antibodies [128], we assume that mRNA
vaccines will have a higher EUA for the six EIDs in the portfolio whose correlates of
protection are also neutralizing antibodies (Chikungunya virus, SARS-CoV-1, Mar-
burg virus, Rift Valley Fever, Nipah virus, and Zika virus). To reflect the increased
EUA due to mRNA technology for these diseases, we multiply the historical EUA by
a technology factor 𝛼𝑡𝑒𝑐ℎ. We set 𝛼𝑡𝑒𝑐ℎ to 1.2 in the baseline model, which reflects a
20% increase in the EUA over the industry average. We do not increase the EUA for
the other five diseases with cellular or unknown immune responses, including disease
X. We vary 𝛼𝑡𝑒𝑐ℎ in the sensitivity analysis to gauge the effect of increased EUA on
financial performance.

In addition, the correlations between vaccine trial outcomes play a major role in
the simulation outcomes. If two vaccine trial outcomes are highly correlated, e.g.,
due to the same target pathogen or therapeutic mechanism, they are more likely to
simultaneously succeed or fail, which leads to lower diversification benefits from the
portfolio, greater variance in the cash flows of the megafund, and thus greater overall
financial risk. Using the input of domain experts in mRNA technology, we construct
a biologically motivated metric to estimate these correlations.

Specifically, we propose a novel distance metric 𝑑𝑖𝑗 between pathogens 𝑖 and 𝑗,
defined as the average of similarity scores based on four biological factors: taxonomy,
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Parameter PRE to P1 P1 to P2 P2 to P3 P3 to EUA Source
Probability of Success
(EUA, in %)

60.0 83.6 65.8 80.9 [214, 186,
220]

Duration (months) of
Standard clinical trial

18.0 24.0 18.0 14.0 [214, 22]

Development cost ($M)
of Standard clinical trial

26.0 14.0 28.0 150.0 [97]

Duration (months) of
Human challenge trial

— — — 8.0 [22]

Development cost ($M)
of Human challenge trial

— — — 12.5 [22]

Abbreviations — PRE: preclinical phase, P1: Phase 1, P2: Phase 2, P3: Phase 3, EUA : Emergency
Use Authorization.
Note — We assume that a vaccine receives EUA once it successfully completes phase 3 clinical trial.
Furthermore, we assume human challenge trials are only applicable to phase 3.

Table 6.2: Simulation parameters for vaccine clinical trials.

qualitative features (e.g., type of disease vector, strand direction, nucleic acid topol-
ogy), quantitative features (e.g., number of strands, total genome size), and the edit
distance of protein sequences. Simply put, the more similar two pathogens are to
each other, the more correlated we assume their trial outcomes will be. This value
of 𝑑𝑖𝑗 is normalized between 0 and 1, with 𝑑𝑖𝑗 closer to 0 if pathogens 𝑖 and 𝑗 are
more biologically similar, and 𝑑𝑖𝑗 = 0 if they are identical. Given the values of 𝑑𝑖𝑗,
a natural way to define the correlation 𝜌𝑖𝑗 between the outcomes of vaccine trials
targeting pathogens 𝑖 and 𝑗 is 𝜌𝑖𝑗 = 1 − 𝑑𝑖𝑗, i.e., the vaccine trial outcomes have a
higher correlation if their target EIDs are more biologically similar, and vice versa.

Figure 6-1 shows the heatmap of 𝜌𝑖𝑗 between each pair of pathogens, excluding
disease X (which we assume to be independent of the other pathogens, to reflect its
a priori unknown biological properties). The correlation matrix 𝜌𝑖𝑗 defined this way
is positive definite (PD) in our calibration, although it is not guaranteed to be PD in
general and may need to be transformed into a PD matrix by an appropriate method
[189]3. Since this metric does not specify the correlation between two vaccine trials
targeting the same pathogen, we assume this correlation to be 0.8, which is higher
than the maximum correlation of 0.64 across different pathogens (Figure 6-1). To
gauge the impact of correlation on the financial performance, we vary the assumed
values of correlation in the sensitivity analysis.

3Positive definiteness is a mathematical property that guarantees the positivity of the variance of
a weighted average of random variables. Given that the risk (as measured by variance) of a portfolio
is never negative, it is important to impose this property on any correlation matrix otherwise,
nonsensical numerical results like negative risk may occur.
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Figure 6-1: Estimated correlations between vaccine candidates. We assume that
vaccine candidates for disease X are uncorrelated with vaccines for the other diseases
and that vaccine candidates targeting the same disease have a 0.8 correlation.

6.4.3 Human Challenge Trials

Given the demonstrated safety and efficacy of mRNA vaccines for COVID-19, it is
conceivable that HCTs may be ethically justified for mRNA vaccine candidates in our
portfolio. The HCT is an efficient yet highly controversial clinical trial design, in which
healthy participants with no previous exposure to a disease are deliberately infected
with the live pathogen in a controlled clinical environment (e.g., an isolated ward
in a hospital). The controlled setting of a HCT allows much more precise and rapid
testing of the safety and efficacy of vaccines with a smaller number of trial participants
than standard vaccine trials. As a result, an HCT may significantly reduce the cost
and duration of clinical trials and lead to expedited regulatory approval of effective
vaccines. In a simulation analysis, [22] showed that conducting an HCT for COVID-
19 vaccines may significantly reduce the number of infected and deceased patients in
the US compared to other clinical trial designs, provided that the vaccine is effective
and the HCT is initiated in a timely manner.

Although conducting an HCT is in principle more efficient in time and cost than
traditional vaccine trials, in practice it still faces multiple challenges. First and fore-
most, the ethical justification of deliberatively injecting healthy participants with a
live EID agent is highly controversial, due to the absence of well-established ethical
guidelines to specify the conditions under which an HCT may be deemed ethical. In
addition, HCTs require more time and resources during their initial preparation stage
(e.g., identifying and manufacturing low-risk virus strains, identifying low-risk popu-
lations, and establishing an acceptable HCT protocol with regulators). As a result,
the first HCTs for COVID-19 were initiated after the mRNA vaccine candidates had
already received EUA from the FDA in US and Europe [30, 190].

Although we recognize the ethical and practical challenges of HCTs, we model an
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idealized scenario when an HCT is authorized for mRNA vaccine R&D and may be
conducted in an ethical and timely manner. We use the binary variable 𝐻𝐶𝑇𝑖 to
denote whether an HCT is authorized by the FDA during an outbreak of disease i
(i.e., 𝐻𝐶𝑇𝑖 = 1 with probability 𝑝𝐻𝐶𝑇 if the HCT is authorized by the FDA, and
𝐻𝐶𝑇𝑖 = 0 with probability 1 − 𝑝𝐻𝐶𝑇 if otherwise). If 𝐻𝐶𝑇𝑖 = 1, we use the reduced
cost and duration of HCT (rows 4 and 5 of Table 6.2) instead of the corresponding
values of standard trials. We assume 𝑝𝐻𝐶𝑇 = 0 in the baseline model (i.e., no HCT
is conducted) and gauge the effect of 𝑝𝐻𝐶𝑇 in the sensitivity analysis.

6.4.4 Vaccine Manufacturing and Supply Chain

The cost structures of mRNA vaccine manufacturing and its supply chain are key
to simulating the cash flows of the megafund. Since mRNA vaccine manufacturers
do not disclose this information, we use publicly available estimates in the literature
[141, 142] to calibrate these cost structures. The line-item budget of mRNA vaccine
manufacturing is summarized in Table 6.3. The main factor driving the manufactur-
ing costs is the amount of mRNA raw material needed to produce the target number
of vaccines. We assume that each production line consists of a bioreactor with a
30-liter working volume and mRNA titer 5g/L [142]. We also assume that each vac-
cine dose contains 65𝜇g of mRNA, the average of the Pfizer/BioNTech and Moderna
vaccines for COVID-19.

Category Item Unit Cost (USD) Quantity

Fixed
costs

Production line 58 million 1 bioreactor of 30L working
volume

Raw materials 456.6 million per (year ·
production line) 29,162 grams of mRNA per

production line per yearConsumables 150 million per (year ·
production line)

Variable
costs

Labor 20 per hour 113,186 labor hours per
production line per yearQuality control 10 per hour

Fill-and-finish 0.27 per dose 10-dose vials
Lab, utility, waste
management, etc.

< 1% total cost Not modeled here

Table 6.3: Cost structure of mRNA vaccine production. [141, 142]

Using the estimates in Table 6.3, the variable cost of producing each mRNA
vaccine dose is $1.60. We assume that each local EID outbreak requires 10 million
vaccine doses. It takes 8.1 days to produce the mRNA needed with one production
line, and an additional 4 to 5 weeks to perform quality control for each batch produced.
The total manufacturing cost is $16 million if one uses the existing production line,
and $75 million if one builds a new production line. Similarly, we assume that a
disease X pandemic requires 1 billion vaccine doses. It takes 81.4 days to produce the
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mRNA needed with 10 production lines. The total cost is $1.6 billion with existing
production lines, and $2.2 billion with new ones. Furthermore, we assume that the
variable cost of delivering each vaccine dose in the supply chain is $1.00 (of the same
order of magnitude as the manufacturing cost). We make a conservative assumption
about the supply chain cost due to the lack of publicly available estimates in the
literature. Our simulation results show that the supply chain costs constitute only
2% of total costs (Figure 6-4), so the financial performance is not sensitive to the
detailed structure of supply chain costs, as long as it does not exceed $1.00 per dose
by an order of magnitude.

To estimate the revenues generated by vaccine sales, we use the list prices of
mRNA vaccines for COVID-19. As of October 26, 2021, the Pfizer/BioNTech vaccine
is priced at $24.00 per dose in the US, and the Moderna vaccine at $15.00 per dose
[133]. We assume that the price per vaccine dose is $20.00. This is likely to be an
underestimate, since it is below the prices of all adult vaccines listed in the vaccine
price list of Centers for Disease Control and Prevention except for influenza vaccines
[33]. To gauge the impact of the list price of vaccines, we vary the price in the
sensitivity analysis.

6.4.5 Simulating Correlated Clinical Trial Outcomes

The key to simulating the financial performance of the vaccine megafund is to simulate
the correlated binary outcomes of vaccine clinical trials. As in the previous biomedical
megafund simulations (e.g., [204]), we use the technique proposed by [71] to simulate
correlated Bernoulli variables. Vaccine clinical trials have five development phases
(preclinical, phase 1, phase 2, phase 3, and emergency use authorization, or EUA ),
and need to go through four phase transitions before receiving the EUA . Let the
Bernoulli variable 𝐵𝑖𝑗 ∈ {0, 1} denote whether vaccine candidate i has entered the
development phase j, with 𝑗 ∈ {0, 1, 2, 3, 4}. Initially all vaccines are in preclinical
stage, i.e., we set 𝐵𝑖0 = 1. If the vaccine trial advances from phase 𝑗 − 1 to 𝑗 where
𝑗 ∈ {1, 2, 3}, we set 𝐵𝑖𝑗 = 1. If the vaccine receives EUA from the FDA, we set
𝐵𝑖4 = 1.

To simulate the correlated phase transitions of clinical trials from phase 𝑗 to 𝑗 +1,
we first draw a vector of multivariate standard normal variables 𝜀𝑗 = [𝜀1𝑗, ..., 𝜀𝑛𝑗]
with independent components 𝜀𝑖𝑗, where the length 𝑛 is the number of vaccines in the
portfolio. Next, we compute 𝑧𝑗 = Σ1/2𝜀𝑗 where Σ1/2 is the Cholesky decomposition of
the correlation matrix 𝜎 (Figure 6-1). The resulting vector 𝑧𝑗 follows a multivariate
normal distribution with zero mean and covariance matrix equal to Σ. Given the
probability of success 𝑝𝑗 for phase transition from 𝑗 to 𝑗 + 1 (Table 6.2), we simulate
the binary clinical trial outcome as:

𝐵𝑖,𝑗+1 =

⎧⎨⎩1, if 𝑧𝑖𝑗 > 𝛼𝑗,

0, if 𝑧𝑖𝑗 ≤ 𝛼𝑗,
(6.5)

where 𝑧𝑖𝑗 is the 𝑖th component of 𝑧𝑗, 𝛼𝑗 = Φ−1(1 − 𝑝𝑗), and Φ−1 is the inverse
cumulative distribution function of the standard normal variable. The clinical trial
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outcomes 𝐵𝑖𝑗 generated this way are positively correlated in each phase transition
and used in the financial calculations. In each Monte Carlo simulation, if we observe
𝐵𝑖𝑗 = 0, the clinical trial for vaccine 𝑖 terminates in phase 𝑗 and all subsequent 𝐵𝑖𝑘

(with 𝑘 > 𝑗) are set to 0. If we observe 𝐵𝑖𝑗 = 1, the megafund incurs the clinical trial
cost for phase 𝑗. If an epidemic outbreak occurs and there is at least one vaccine 𝑖
with 𝐵𝑖4 = 1 (i.e., it has received EUA ), we manufacture the vaccine and collect the
revenue from vaccine sales.

6.4.6 Overview of the Simulation Framework

At the initial time 𝑡 = 0, all vaccine candidates enter the preclinical stage. For
simplicity, we assume that the development costs of each phase are incurred at the
start of the phase. In each subsequent year from 𝑡 = 1 to 𝑡 = 𝑇 , we simulate
whether any EID outbreaks (including the disease X pandemic) occur in year 𝑡. In
the absence of any outbreaks, we develop each vaccine candidate (except the ones
for “disease X”) from the preclinical stage to the completion of phase 2, assuming
the cost and timeline of a standard clinical trial (rows 2 and 3 of Table 6.2). We do
not initiate a large-scale phase 3 clinical trial unless an outbreak has occurred, since
there will not be enough infected subjects with which to test vaccine efficacy until
then. From a financial perspective, this also reduces the significant late-stage clinical
trial costs compared to the simulation analysis of [214].

If an EID outbreak occurs in year 𝑡, we assume that one of the four scenarios
below will occur (Figure 6-2):

1. At least one vaccine candidate targeting the disease has successfully completed
a phase 3 trial during a previous outbreak of the same disease and received
approval or an EUA from the FDA. We manufacture the vaccines, supply them
to the point of distribution, and collect the revenues from the vaccine sales.

2. At least one vaccine candidate targeting the disease has successfully completed
a phase 2 trial. We initiate the phase 3 clinical trial. If the phase 3 trial is
successful, the vaccine receives an EUA from the FDA. We manufacture and
supply the vaccines, and collect the revenues from the vaccine sales.

3. At least one vaccine candidate for the epidemic is in the preclinical or phase
1 stage. We initiate an accelerated phase 1/2 trial, which costs $28 million
(the same as a standard phase 2 trial) and completes in 3 months, followed by
a standard phase 3 trial, which completes in 14 months. If the phase 3 trial
is successful, the vaccine receives an EUA. We manufacture and supply the
vaccines, and collect the revenues.

4. No vaccine candidates for the disease have previously completed a phase 3 trial
or remain in the R&D pipeline. In this case, no cash flows are generated, since
all vaccine candidates have failed in the clinical trial process.

132



Figure 6-2: Overview of the simulation framework in the event of an epidemic out-
break.

6.5 Results

There are four key observations and insights from the results of the simulation anal-
ysis:

– Despite the improved EUA of mRNA vaccines, the vaccine megafund does not
generate financial value for the investors, and is not a financially self-sustainable
business model for the pharmaceutical industry.

– From the perspective of public policy, the vaccine megafund will require $9.5
billion funding from the public sector at its initiation to generate positive finan-
cial value for investors (given an average revenue of $7.5 billion from vaccine
sales and an average cost of $17.7 billion from the clinical trial development and
vaccine manufacturing).

– The main bottlenecks of the financial performance are the limited and uncertain
revenues generated by the vaccine sales and the significant costs of clinical trials,
which account for 94% of the total investments in the megafund.

– The vaccine megafund generates significant social benefits by preventing, on
average, 31 epidemic outbreaks out of 45 over the next two decades. In addition,
there is a 66% probability that the next “disease X pandemic” will be prevented
by vaccines developed from the megafund portfolio.

The performance of the baseline portfolio is summarized in Table 6.4. We find that
this portfolio has a negative expected annualized return 𝐸[𝑅𝑎] = −6.0% (standard
deviation 𝑆𝐷[𝑅𝑎] = 6.7%) and a negative expected net present value (𝑁𝑃𝑉 ) of −$9.5

133



billion (standard error SE $13 million). The vaccine megafund does not generate
positive financial value for its investors, since the revenues generated by the vaccine
sales ($7.5 billion on average) is insufficient to recover the investment in clinical trial
development and vaccine manufacturing ($17.7 billion on average). However, the
financial value to private-sector investors does not capture the benefits generated by
the megafund to society. On average, 45 infectious disease outbreaks will occur in the
simulation period, 31 of which will be prevented or contained by vaccines developed
from the portfolio. In addition, there is a 66% probability that vaccines in the portfolio
will prevent the next “disease X pandemic”, should one occur. Using even the most
conservative “quality adjusted life year” estimate (e.g., [175]), the lives saved and
socioeconomic losses avoided by the vaccines far exceed the negative financial value
of the megafund.

Metric Mean Standard
Error

Standard
Deviation

Median 25% Qt. 75% Qt.

Annualized Return (𝑅𝑎) −6.0% 0.021% 6.7% −5.7% −7.4% −4.4%
Net Present Value (NPV,
USD, billion)

−9.5 0.013 4.1 −9.9 −12.1 −7.4

Investment (USD, billion) 17.7 0.017 5.3 17.8 14.0 21.4
Revenues (USD, billion) 7.5 0.024 7.7 5.8 3.4 7.0
Profit (USD, billion) −10.0 0.023 7.4 −11.5 −14.9 −7.5
Number of Prevented Epi-
demics (𝑁𝑒𝑝)

31 0.04 13 34 19 42

Note — NPV is computed with an annual discount rate 𝑟 = 10%. The standard deviation of preclinical
trial cost is zero since the megafund invests in the preclinical trials of all 120 vaccine candidates at the
initial time 0.

Table 6.4: Performance of the baseline portfolio computed with 100K Monte Carlo
simulations.

The distribution of key performance metrics of the megafund is displayed in the
histograms of Figure 6-3. We find that, although 𝑅𝑎 and 𝑁𝑃𝑉 are negative in most
simulations, there is a 9.8% probability that 𝑅𝑎 > 0, and a 3.1% probability that
𝑁𝑃𝑉 > 0. In addition, the distribution of megafund investments is smooth with a
single peak (i.e., this is a unimodal distribution), while the distribution of revenues
has two peaks (i.e., a bimodal distribution): although revenues are mostly likely to
fall below $10 billion, there is a sizeable probability that revenues exceed $20 billion.
The latter corresponds to the rare scenarios when a disease X pandemic occurs, gen-
erating revenues of $20 billion from vaccine sales. This bimodality of revenues leads
to significant variance in the annualized return and NPV of the megafund.

To gain additional insight into the major costs that reduce the financial perfor-
mance of the megafund, we present a breakdown of megafund investment in Figure
6-4, and find that the costs of clinical trials constitute 94% of the total cost, with
phase 3 trials alone accounting for 59%. The net cost of vaccine manufacturing and
its supply chain constitute only 6% of the total cost, and the higher efficiency of
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mRNA vaccine manufacturing is not sufficient to generate financial profits for the in-
vestors. Our finding is consistent with the “valley of death” in financing translational
medicine [29], in which the main bottleneck is the risk associated with the uncertainty
of revenues at the early stages of drug discovery versus the enormous cost of clinical
trials. Even with more efficient vaccine manufacturing technologies and supply chain
designs, the significant cost of clinical trials still prevents the vaccine megafund from
generating positive financial value to its investors.

Figure 6-3: Histograms of key performance metrics of vaccine megafund. (A) An-
nualized return. (B) Net present value (NPV). (C) Number of epidemics prevented.
(D) Total investment. (E) Total revenue. (F) Net profit.

Figure 6-4: Breakdown of cost structure of the vaccine megafund. Clinical trial costs
constitute 94% of all costs, while manufacturing costs constitute only 6%.
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6.6 Sensitivity Analysis

The simulated financial performance of the vaccine megafund hinges on the assumed
values of key simulation parameters calibrated using inputs from mRNA domain
experts and estimates from the literature. We perform a sensitivity analysis to test
the robustness of the simulation results against the assumed parameter values. The
results discussed below are summarized in Table 6.5.

6.6.1 Vaccine Price

The price per vaccine dose 𝜋 is the key driver of the financial performance. In the
baseline model, we assume 𝜋 = $20.00, where both the annualized return and 𝑁𝑃𝑉
are negative. Increasing 𝜋 to $69.00 (row 2 of Table 6.5) achieves the breakeven
point for the annualized return. Increasing 𝜋 further to $78.00 (row 3 of Table 6.5)
achieves the breakeven point for NPV. Assuming 𝜋 = $100.00 (row 4 of Table 6.5),
the megafund generates a small but positive expected annualized return of 1.9%, with
a volatility of 7.2% and an expected NPV of $3.6 billion (SE $55 million). Such a
high list price of $100.00 per vaccine dose is not unusual in the US. As of April 14,
2022, thirteen common adult vaccines have list prices above $100.00 in the US [33].
However, these may be impossible to afford in low-to-middle income countries, and
may even increase vaccine hesitancy among the affected population.

6.6.2 Improved Probability of Success of mRNA Vaccines

To test whether the increased EUA of mRNA vaccines leads to improved financial
performance, we multiply the EUA of vaccine trials for six diseases by the technology
factor 𝛼𝑡𝑒𝑐ℎ to reflect the higher efficacy of mRNA vaccines for diseases with humoral
immune protection. In the baseline model, we set 𝛼𝑡𝑒𝑐ℎ = 1.2 (i.e., a 20% increase in
EUA). Surprisingly, increasing 𝛼𝑡𝑒𝑐ℎ from 1.0 to 1.3 (rows 5 to 7 of Table 6.5) achieves
a mixed effect: the expected annualized return increased from −6.7% to −5.8%, while
the expected NPV decreased from −$8.1 to −$9.9 billion. As we increase 𝛼𝑡𝑒𝑐ℎ from
1.0 to 1.3, the average number of approved vaccine candidates increases from 28 to
49, and the expected investment also increases from $15.2 to $18.4 billion. However,
the reason for the mixed effect is that the expected revenue undergoes a much smaller
increase, from $7.1 to $7.6 billion, since on average only 3 additional EID outbreaks
are prevented by the approved vaccines (due to the stochastic occurrence of EID
outbreaks). The smaller ratio of revenue to investment causes the annualized return
to be less negative and increase, while the larger increase in investment causes the
NPV to be more negative and decrease. We conclude that the higher EUA of mRNA
technology alone does not generate positive financial value for the megafund unless
we also reduce the clinical trial costs or raise the price of the vaccine.
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6.6.3 Correlations between Clinical Trial Outcomes

The correlation between vaccine trial outcomes measures the tendency for multiple
vaccine trials to simultaneously succeed or fail due to a common target disease or
mechanism of action. In the baseline model, we estimate the correlation via the novel
virus distance metric 𝑑𝑖𝑗. However, we cannot simply rescale 𝑑𝑖𝑗 in the sensitivity
analysis, since the resulting correlation matrix is not guaranteed to remain positive
definite. Instead, we gauge the impact of correlation by assuming an equi-correlated
correlation matrix in which 𝜌𝑖𝑗 = 𝜌 is the same for all diseases, and vary the value
of 𝜌 from 0 (independent) to 80% (highly correlated), as shown in rows 8 to 12 in
Table 6.5. As expected, we observe that higher values of 𝜌 lead to worse financial
performance, as the expected annualized return decreases from −3.5% to −11.7% and
the expected NPV decreases from −$8.3 to −$9.5 billion. In addition, the volatility
of the annualized return dramatically increases from 2.5% to 23.6%. This shows the
importance of diversity in the megafund portfolio to generate positive financial value.

6.6.4 Human Challenge Trials

If deemed ethical, an HCT may be able to significantly reduce the cost and dura-
tion of the clinical development of vaccine candidates by testing a smaller group of
participants than traditional vaccine trials. We investigate the effect of HCTs on the
megafund performance by assigning the probability 𝑝𝐻𝐶𝑇 that HCT is allowed for
each EID. The baseline portfolio does not utilize HCT, i.e., 𝑝𝐻𝐶𝑇 = 0. Increasing
𝑝𝐻𝐶𝑇 from 0 to 30% (rows 13 to 14 of Table 6.5) reduces the expected investment and
increases both the annualized return and NPV, although both remain negative. We
find that utilizing HCT alone is also insufficient to generate positive financial value
for the investors.

6.6.5 Megafund Portfolio Size

The parallel vaccine development strategy increases the probability that at least one
vaccine candidate will be approved, but it also increases the investment in clinical
trials. To investigate the effect of portfolio size, we multiply the number of vaccine
candidates for each infectious disease by a factor 𝛾. The baseline portfolio corresponds
to 𝛾 = 1. Increasing the portfolio size by 50% (𝛾 = 1.5, row 16 of Table 6.5) leads to
worse financial performance, since the expected investment increases from $17.7 to
$25.7 billion, while the expected revenue only increases by a much smaller amount,
from $7.5 to $7.9 billion, as the natural occurrence of EID outbreaks remains the same.
Decreasing the portfolio size by 50% (𝛾 = 0.5, row 15 of Table 6.5) increases both
expected return and NPV, though both remain negative. In addition, the average
number of epidemics prevented decreases from 31 to 27, which reflects a higher loss
to society not captured by our financial analysis.
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Portfolio 𝐸[𝑅𝑎] 𝑆𝐷[𝑅𝑎] 𝐸[𝑁𝑃𝑉 ] 𝑆𝐷[𝑁𝑃𝑉 ] 𝐸[𝐼𝑛𝑣] 𝑆𝐷[𝐼𝑛𝑣] 𝐸[𝑅𝑒𝑣] 𝑆𝐷[𝑅𝑒𝑣] 𝐸[𝑁𝑒𝑝] 𝑆𝐷[𝑁𝑒𝑝]
Baseline −6.0% 6.7% −9.5 4.1 17.7 5.3 7.5 7.7 31 13
𝜋 = $69/dose 0.0% 7.1% −1.4 11.9 17.7 5.3 25.8 26.7 31 13
𝜋 = $78/dose 0.7% 7.1% 0.0 13.5 17.7 5.3 29.2 30.2 31 13
𝜋 = $100/dose 1.9% 7.2% 3.6 17.4 17.7 5.3 37.4 38.7 31 13
𝛼𝑡𝑒𝑐ℎ = 1.0 −6.7% 11.9% −8.1 4.1 15.2 5.3 7.1 7.8 28 14
𝛼𝑡𝑒𝑐ℎ = 1.1 −6.2% 9.1% −8.8 4.1 16.4 5.4 7.3 7.8 29 14
𝛼𝑡𝑒𝑐ℎ = 1.3 −5.8% 4.8% −9.9 4.1 18.4 5.1 7.6 7.7 31 13
𝜌 = 0% −3.5% 2.5% −8.3 3.7 18.1 2.5 10.7 8.9 43 7
𝜌 = 20% −3.8% 2.7% −8.5 4.0 18.0 3.9 10.2 8.7 41 9
𝜌 = 40% −4.2% 4.2% −8.7 4.3 17.9 5.0 9.6 8.6 38 11
𝜌 = 60% −5.9% 11.1% −9.0 4.6 17.8 6.0 8.7 8.3 35 14
𝜌 = 80% −11.7% 23.6% −9.5 4.8 17.7 7.1 7.5 7.9 31 17
𝑝𝐻𝐶𝑇 = 10% −5.7% 6.7% −8.8 4.1 16.7 5.1 7.5 7.7 31 13
𝑝𝐻𝐶𝑇 = 30% −5.1% 6.7% −7.6 3.9 14.7 4.6 7.5 7.7 31 13
𝛾 = 0.5 −4.1% 8.9% −3.7 3.0 9.3 2.9 6.5 7.3 27 14
𝛾 = 1.5 −7.3% 5.7% −15.3 5.4 25.7 7.6 7.9 7.9 32 13

Note — 𝑅𝑎 denotes annualized return (p.a.); 𝑁𝑃𝑉 denotes net present value, 𝐼𝑛𝑣 denotes net investment, Rev denotes net
revenue, in billion USD; 𝑁𝑒𝑝 denotes the number of EID outbreaks contained by vaccines from the portfolio; 𝜋 denotes the price
per vaccine dose in USD; 𝛼𝑡𝑒𝑐ℎ denotes the technology factor; 𝑝𝐻𝐶𝑇 denotes the probability of HCT; 𝜌 denotes the pairwise
correlation between vaccine trial outcomes; 𝛾 denotes portfolio size factor. 𝑁𝑃𝑉 is computed with an annual discount rate
𝑟 = 10%.

Table 6.5: Sensitivity analysis of key simulation parameters computed with 100K
Monte Carlo simulations.

6.7 Discussion

Our analysis illustrates three major challenges to the portfolio approach of financing
mRNA vaccines for EIDs. First, the portfolio approach reduces the supply side risk
of vaccine R&D by increasing the probability of having at least one effective vaccine
against an EID. However, it does not mitigate the demand side risk in the revenues
generated by vaccine sales since vaccine demand is mainly determined by the natural
occurrence of EID outbreaks. The stochastic nature of outbreaks limits the revenues
generated by the approved vaccines, unless we increase the list price to $78.00 per
dose. But with such a high list price, local governments and populations may not be
able to afford the vaccines, which further reduces their demand and revenues. In ad-
dition, since mRNA vaccines share the same therapeutic mechanism, it is reasonable
to expect that there will be no differentiated efficacy of different vaccines against the
same disease. As a result, there will be significant market cannibalization between
approved vaccines since the total revenues of vaccine sales will not increase if there is
more than one approved vaccine. Finally, the significant costs of clinical trials consti-
tute 94% of megafund investment and severely limit its financial performance. One
potential solution is to use more cost-effective clinical trial designs such as adaptive
trials (Berry 2011) and platform trials [221], which simultaneously test multiple vac-
cine candidates using a shared control arm. These innovative trial designs have been
shown to significantly reduce clinical trial costs and expedite the R&D process for
glioblastoma therapeutic candidates [204]. In addition, they do not elicit the ethical
controversies of human challenge trials.

We also note that the primary goal of the vaccine megafund is to prevent future
EID outbreaks and minimize the overall burden of disease. In light of this goal, our
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simulation assumes that we invest in clinical trials for all vaccine candidates simulta-
neously without optimizing for financial performance using sophisticated investment
strategies [99] or financial engineering techniques such as dynamic leverage [169].
For example, if three vaccine candidates for the same infectious disease successfully
complete their phase 2 trials, we may instead first conduct phase 3 trials for two
vaccine candidates, initiating the phase 3 trial for the third vaccine only if the first
two have failed. This will reduce the costs of late-stage clinical trial development and
improve its financial value. However, the increased financial value must be weighed
against potential delays in FDA approvals of life-saving vaccines. A robust and multi-
criteria optimization framework is needed to ensure that their value to society is not
compromised by optimizing financial returns for the investors.

6.8 Conclusion

Despite an increased probability of success due to mRNA vaccine technology, diver-
sification across a large number of vaccine candidates, and the potential benefits of
conducting human challenge trials, the vaccine megafund model does not generate
positive financial value for private-sector investors. The three bottlenecks of its fi-
nancial performance are the limited revenues of vaccine sales, the cannibalization of
approved vaccines for the same infectious disease, and the significant costs of late-
stage clinical trials. Nonetheless, the vaccine megafund does generate tremendous
social value by preventing future epidemic outbreaks; if endowed with public sector
funding of $10 billion, it may also generate positive financial value for investors.

Our analysis indicates that continued collaboration between government agencies
and the private sector will be necessary if the goal is to create a sustainable business
model and robust vaccine ecosystem for addressing future pandemics. Strategies such
as stockpiling vaccines for the most dangerous EIDs, putting in place advance mar-
ket commitments or subscription fees to purchase/reserve mass quantities of vaccines
in case of outbreaks, creating government-sponsored manufacturing and distribution
facilities that can supplement private-sector resources, and providing limited gov-
ernment guarantees to investors funding vaccine programs for a pre-specified list of
priority diseases may all play a role in helping us reduce the impact of, or even prevent,
future pandemics.
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Part II

Managing Risks & Uncertainty in

Empirical Asset Pricing
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Chapter 7

Chimeras in the Factor Zoo:

Constructing Latent Asset Pricing

Factors via Autoencoders

The first part of this thesis applied risk management tools to the field of healthcare
finance to inform policy and decision-making under uncertainty. The remainder of
the thesis is devoted to key issues in empirical asset pricing (Part 2, Chapter 7) and
investment management (Part 3, Chapter 8) involving risk and uncertainty manage-
ment.

Empirical asset pricing aims to understand and quantify the nature of the different
risk factors stocks are exposed to. For example, we estimate the risk exposure of a
stock to a well-chosen set of risk factors using statistical inference techniques on the
parameters of a linear (or nonlinear) factor model for the stock’s returns. In this case,
uncertainty would be associated with a time-varying nature of the factor model’s
parameters, including regime changes, non-stationarity, and potential black swans
(e.g., a pandemic, economy-wide shocks, the introduction of disruptive technologies,
a sudden flight to liquidity, etc.).

7.1 Introduction

Factor models are routinely used in the financial industry to identify and quantify
sources of systematic risk in order to manage the risk of a portfolio of securities or
hedge investment positions, or in valuation contexts to estimate the cost of capital of
an asset. From an academic perspective, the empirical asset pricing literature reflects
an unending quest for factors that could explain the cross section and time-series of
expected returns [52, 112]. The importance of factors, whether traded or non-traded,
is justified theoretically in the arbitrage pricing theory (APT) framework developed
by Stephen Ross in 1976 [196, 54] by linking return factor structures with risk premia.
In other words, according to APT, the cross section of expected returns should be
explained by systematic factors who carry a nonzero risk premium.

The CAPM[200, 153] is the simplest and most popular single-factor model used in
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both academia and industry. Developed in 1964, the CAPM identifies the systematic
risk of a stock with its exposure to the market. However, the CAPM fails to explain
a large portion of the cross-section of stock returns and multiple anomalies were
documented over the past 50 years [121]. More complex factor models were developed
based on stock characteristics such as the Fama-French 3, 4, and 5-factors models
(FF3, FF5, FF6) [73, 74, 75], the Carhart 4-factors model [31], or the 4 and 5 q-
factors (q4, q5) by Hou, Xue, and Zhang [120, 119]. For example, the Fama-French
Three-Factor Model (FF3) model, developed in 1993, includes two additional sources
of systematic risk: the value premium and the size premium.

A large set of factors has been introduced in the literature to attempt to explain
the cross-section of asset prices, however no single model has convincingly been able
to capture most of the anomalies [52, 112, 121]. Tools have been proposed to “tame
the factor zoo” by testing the validity of the 300+ factors proposed in the literature
and develop powerful parsimonious models (see [9, 139] for a more comprehensive
review). We can group these techniques into two broad categories: a model-selection
approach and a latent factor approach.

The first approach constructs a factor model by carefully selecting a subset out of
the existing factors in the literature. For example, [85] use a double-selection LASSO
method to evaluate the incremental contribution of a new factor to an existing factor
model. A bootstrap-based method has also been used by [111] as a step-wise model
selection method to select new factors. Similarly, [91] seek for factors with incremental
explanatory power using the adaptive group LASSO. From a Bayesian perspective,
[15] evaluates the contribution of a traded factor to an existing model by calculating
Bayes factors and posterior model probabilities. [28] extend this idea to traded and
non-traded factors and apply it to quadrillions candidate factor models.

The second approach aims to extract a set of latent factors by compressing the
information contained in a large cross section of stock returns, portfolio returns, or
factor returns. In contrast with the previous scenario in which factors are selected
from the set of anomaly factors, the latent factors are now obtained by combining the
anomaly factors in a linear or nonlinear way. Latent factors are no longer members of
the factor zoo, but “chimeras” of anomaly factors. For example, PCA methods have
been attempted by relating principal components of the covariance matrix of returns
with risk premia [146, 188, 94, 93]. More recently, [151] extends the PCA framework
to a risk premia PCA framework by choosing factors that explain most of the corre-
lation and also minimize the pricing error (since, according to APT, average returns
should be explained by the risk premia and factor risks estimated and no residual
risk should be left). Time-varying techniques have been proposed by [138] and [77] to
estimate conditional factor models using instrumented PCA and local PCA respec-
tively. Similarly, [106] and [48] use deep neural networks to forecast asset returns.
In particular, [48] learn time-varying factor models directly from stock returns using
generative adversarial networks (GANs). Finally, [107] extend the instrumented PCA
approach from [138] to nonlinear conditional factor models using AEs.

Our approach falls within the second category as we aim to construct a set of latent
factors. In contrast with [151] and [107], we obtain parsimonious factor models by
directly compressing the information contained in 150 factors described in [85] (from
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1976 to 2017) using different types of AEs. We then test our model on the 150 known
factors and compare its performance to benchmark factor models such as FF5 and q5.
In addition, we test our models on a set of portfolios, including Fama-French anomaly
portfolios [90] and Hou-Xue-Zhang anomaly portfolios [225]. Although latent factors
are usually difficult to interpret by design, we incorporate economic intuition into
the design of some of our AE architectures. In particular, among the 150 factors
from [85] we use as inputs, we observe groups of factors that are correlated and can
potentially lead to an over-representation bias during the compression phase relative
to other factors that capture unique features of the cross-section and only appear. To
solve this issue, we introduce a CAE that first clusters the 150 factors into smaller
groups and then compresses the clusters into a small number of latent factors. This
approach allows us to train deeper AEs more efficiently than the usual deep AEs
with fully connected layers. Similar to [151], we also impose an APT condition in
the loss function to reduce the pricing error. While linear AEs and PCA are similar
in various respects, the latent factors obtained through PCA are uncorrelated while
AEs usually do not generate uncorrelated latent factors. We address this issue by
training the AE in a recursive way, learning one latent factor at the time, each time
removing the factor exposure from the input. An advantage of using AEs over PCA
is that we can construct latent factors that depend on the input factors in a nonlinear
way. While linear factor models are often a good benchmark, latent factors obtained
from machine-learning models tend to capture nonlinearities that linear models would
fail to reflect. We show here that using tanh activation functions can help improve
the performance of the model. In fact, we find that latent factors obtained using
nonlinear AEs perform better than linear latent factors in polynomial regressions of
order 2.

The remainder of the chapter is structured as follows: we describe the approach
proposed in this work in Section 7.2; we carry out an empirical analysis for different
AE factor models, present the results in Section 7.3, and discuss their relevance in
Section 7.4; we conclude in Section 7.5. Additional sensitivity analysis and robustness
checks are available in Appendix E.

7.2 Methodology

In this section, we discuss latent factor models, develop the different type of au-
toencoders used to learn a latent structure from a large set of anomaly factors, and
describe metrics to evaluate the performance of the AE models.

7.2.1 Latent factor models

Given a set of 𝑁 anomaly factors and a set of 𝐾 latent factors observed over 𝑇 time
periods, we denote by 𝑟𝑡,𝑖 the excess return of anomaly factor 𝑖 at time 𝑡 and by 𝑓𝑘

𝑡

the excess return of latent factor 𝑘 at time 𝑡. In line with the APT framework, we
assume that the anomaly factor returns approximately follow a linear factor model
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of the form

𝑟𝑖,𝑡 ≈
𝐾∑︁

𝑘=1

𝛽𝑘
𝑖 𝑓𝑘

𝑡 + 𝜀𝑖,𝑡, with 𝑖 ∈ {1, . . . , 𝑁} and 𝑡 ∈ {1, . . . , 𝑇}, (7.1)

where 𝛽𝑘
𝑖 represent the loading of anomaly factor 𝑖 on latent factor 𝑘 and 𝜀𝑖,𝑡 is an

idiosyncratic error term. The errors are assumed to be homoskedastic with variance
𝜎2

𝜀 and uncorrelated from the latent factor returns: E
[︁
𝑓𝑘,𝑡𝜀𝑖,𝑡

]︁
= 0 for all 𝑘, 𝑖, 𝑡. In

vector form, this becomes
𝑟𝑡 ≈ 𝛽𝑓𝑡 + 𝜀𝑡, (7.2)

where 𝑟𝑡 ∈ R𝑁 , 𝛽 ∈ R𝑁×𝐾 , 𝑓𝑡 ∈ R𝐾 , and 𝜀𝑡 ∈ R𝑁 .

In this chapter, we construct a parsimonious set of 𝐾 latent factors with returns
𝑓𝑡 that can explain the returns of the anomaly factors, and estimate the associated
factor loadings 𝛽. More formally, since the anomaly factors are traded factors (i.e.,
𝑓𝑡 are interpreted as excess returns), we know from APT that E [𝜀𝑡] should be equal
to zero and

E [𝑟𝑡] = 𝛽 · E [𝑓𝑡] . (7.3)

The factor loadings 𝛽 are interpreted as risk premia.

Following [151], the latent factors should minimize both the unexplained time-
series variation in the anomaly factors as well as the pricing error relative to the
APT model (Equation 7.3). More formally, if we denote by 𝑟𝑡 the estimated anomaly
factor returns (Equation 7.2) and by 𝑟𝑡 the observed anomaly factor returns, the
unexplained variation is given by

Unexplained Variation = 1
𝑇

·
𝑇∑︁

𝑡=1

⎡⎣ 1
𝑁

𝑁∑︁
𝑖=1

(𝜀𝑖,𝑡)2

⎤⎦ , (7.4)

= 1
𝑇

·
𝑇∑︁

𝑡=1

⎡⎣ 1
𝑁

𝑁∑︁
𝑖=1

(𝑟𝑖,𝑡 − 𝑟𝑖,𝑡)2

⎤⎦ , (7.5)

= 1
𝑇 · 𝑁

·
𝑇∑︁

𝑡=1

𝑁∑︁
𝑖=1

(𝑟𝑖,𝑡 − 𝛽𝑖𝑓𝑡)2, (7.6)

where 𝛽𝑖 ∈ R1×𝐾 , and the pricing error is given by

Pricing Error = 1
𝑁

𝑁∑︁
𝑖=1

⎡⎣ 1
𝑇

·
𝑇∑︁

𝑡=1

𝜀𝑖,𝑡

⎤⎦2

, (7.7)

= 1
𝑁

𝑁∑︁
𝑖=1

⎡⎣ 1
𝑇

·
𝑇∑︁

𝑡=1

𝑟𝑖,𝑡 − 1
𝑇

·
𝑇∑︁

𝑡=1

𝑟𝑖,𝑡

⎤⎦2

, (7.8)

= 1
𝑁

𝑁∑︁
𝑖=1

⎡⎣ 1
𝑇

·
𝑇∑︁

𝑡=1

𝑟𝑖,𝑡 − 1
𝑇

·
𝑇∑︁

𝑡=1

𝛽𝑖𝑓𝑡

⎤⎦2

. (7.9)
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Using the notation from [151], this joint minimization can be expressed as

(𝛽*, 𝑓 *) = argmin
𝛽,𝑓

1
𝑇

·
𝑇∑︁

𝑡=1

⎡⎣ 1
𝑁

𝑁∑︁
𝑖=1

(𝑟𝑖,𝑡 − 𝑟𝑖,𝑡)2

⎤⎦
+(1 + 𝛾) · 1

𝑁

𝑁∑︁
𝑖=1

⎡⎣ 1
𝑇

·
𝑇∑︁

𝑡=1

𝑟𝑖,𝑡 − 1
𝑇

·
𝑇∑︁

𝑡=1

𝑟𝑖,𝑡

⎤⎦2

(7.10)

= argmin
𝛽,𝑓

1
𝑇 · 𝑁

·
𝑇∑︁

𝑡=1

𝑁∑︁
𝑖=1

(𝑟𝑖,𝑡 − 𝛽𝑖𝑓𝑡)2

+(1 + 𝛾) · 1
𝑁

𝑁∑︁
𝑖=1

⎡⎣ 1
𝑇

·
𝑇∑︁

𝑡=1

𝑟𝑖,𝑡 − 1
𝑇

·
𝑇∑︁

𝑡=1

𝛽𝑖𝑓𝑡

⎤⎦2

, (7.11)

where the parameter 𝛾 controls the importance we want to attribute to the pricing
error term relative to the unexplained variation. As a special case, 𝛾 = −1 corre-
sponds to the usual PCA objective [151]. Intuitively, the unexplained variation term
aims to improve the explainability power of the factor model in the time-series di-
mensions (i.e., improving the 𝑅2) and obtain a better model of returns. Conversely,
the pricing error term tries to improve the explainability power of the factor model in
the cross-section (i.e., reducing the number of significant alphas) and obtain a better
model of average returns. The parameter 𝛾 is then viewed as a trade-off between
these two objectives. The APT loss can be written more compactly as

1
𝑇 · 𝑁

Σ𝑡,𝑖(𝑟𝑡,𝑖 − 𝑟𝑡,𝑖)2 + (1 + 𝛾) 1
𝑁

Σ𝑖(𝑟𝑖 − ^̄𝑟𝑖)2, (7.12)

where
𝑟𝑖 = 1

𝑇
·

𝑇∑︁
𝑡=1

𝑟𝑖,𝑡 and ^̄𝑟𝑖 = 1
𝑇

·
𝑇∑︁

𝑡=1

𝑟𝑖,𝑡. (7.13)

The factor structure described in Equation 7.11 corresponds to the risk premium
PCA objective developed in [151]. The factor structure we use here differs from
[151] as we relax the linearity assumption when learning latent factors. In fact, we
compress the information present in the anomaly factors using an autoencoder neural
network. An autoencoder is composed of an input layer, at least one hidden layers,
and a reconstruction layer (see Figure 7-1). Throughout the chapter, we set the input
layer and the reconstruction layer to have 𝑁 neurons and be interpreted as anomaly
factor returns. Figure 7-1 describes a shallow autoencoder, which is the simplest
type of autoencoder: this network contains only one hidden layer (ignoring the input
layer and the reconstruction layer) with 𝐾 neurons which corresponds to the latent
factors learnt by the model. Since the number of neurons 𝐾 in the hidden layer is
small compared to the number of neurons 𝑁 in the input/reconstruction layers, the
network compresses the information contained in the anomaly factor returns into a
set of 𝐾 latent factors. More formally, the latent factors are obtained from the input
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Figure 7-1: Architecture of a shallow autoencoder (AE). We represent here a shallow
autoencoder with one hidden layer between the input and reconstruction layers. The
hidden layer corresponds to the learnt latent factors while the input/reconstruction
layers correspond to the anomaly factors.

data by learning a weight matrix 𝑊 0 ∈ R𝐾×𝑁 and a bias vector 𝑏0 ∈ R𝐾 such that

𝑓𝑡 = 𝑔
(︁
𝑏0 + 𝑊 0 · 𝑟𝑡

)︁
. (7.14)

The activation function 𝑔(·) can be chosen to be linear or nonlinear. The latter would
allow the latent factors to depend on interactions of the input data in a nonlinear
fashion. Common examples of nonlinear activation functions include the sigmoid
function 𝜎(𝑥) = 1

1+𝑒−𝑥 , the hyperbolic tangent function tanh(𝑥), and the rectified lin-
ear unit (ReLU) function ReLU(𝑥) = max(0, 𝑥). Although we mainly consider linear
and tanh(·) activation functions throughout the chapter, we explore the sensitivity of
the autoencoder to different different choices of activation functions in Appendix E.5.
The anomaly factor returns are then recovered from the latent factors as latent factors
get decoded into the reconstruction layer through the learnt matrix 𝑊 1 ∈ R𝑁×𝐾 and
the bias vector 𝑏1 ∈ R𝑁 using

𝑟𝑡 = 𝑔
(︁
𝑏1 + 𝑊 1 · 𝑓𝑡

)︁
. (7.15)

The parameters 𝑏0, 𝑏1, 𝑊 0, and 𝑊 1 are obtained by minimizing the APT loss function

min
𝑏0,𝑏1,𝑊 0,𝑊 1

1
𝑇

·
𝑇∑︁

𝑡=1

⎡⎣ 1
𝑁

𝑁∑︁
𝑖=1

(𝑟𝑖,𝑡 − 𝑟𝑖,𝑡)2

⎤⎦+ (1 + 𝛾) · 1
𝑁

𝑁∑︁
𝑖=1

⎡⎣ 1
𝑇

·
𝑇∑︁

𝑡=1

𝑟𝑖,𝑡 − 1
𝑇

·
𝑇∑︁

𝑡=1

𝑟𝑖,𝑡

⎤⎦2

,

(7.16)
where

𝑟𝑡 = 𝑔
(︁
𝑏1 + 𝑊 1 · 𝑓𝑡

)︁
, (7.17)
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= 𝑔
(︂

𝑏1 + 𝑊 1 · 𝑔
(︁
𝑏0 + 𝑊 0 · 𝑟𝑡

)︁)︂
. (7.18)

The shallow AE can be easily generalized to a DAE by increasing the number of layers
between the input/reconstruction layers and the layer of latent factors, as shown in
Figure 7-2. Hidden layers are obtained from the input layer by recursively applying
the transformation given in Equation 7.14 (with weight matrices and bias vectors of
appropriate dimensions).

Figure 7-2: Architecture of the deep autoencoder (DAE). We represent here a deep
autoencoder as there are now additional hidden layers (the light pink nodes) between
the input/reconstruction layers and the layer of latent factors (in grey).

Autoencoders can be viewed as a generalization of PCA. In fact, [107] show that a
shallow linear AE is equivalent to PCA up to a rotation matrix when the AE objective
is to minimize the unexplained variation (see Proposition 1 of [107]). In our case, the
shallow linear AE is related to the risk premia PCA from [151] given the APT loss
function used. One key difference between AEs and PCA is that the latent factors
learnt by an AE are not uncorrelated. We address this issue in the next section by
using a recursive AE.

7.2.2 Autoencoder models

We now describe the different autoencoder architecture used to construct latent factor
models. All autoencoder networks in this chapter are designed and trained using
Tensorflow [1]. As described earlier, we instill economic intuition to the models by
always using the APT loss function (Equation 7.12 and Equation 7.16) when training
an autoencoder. This allows us to minimize the unexplained variation while penalizing
the pricing error relative to APT. We use cross-validation to select the parameter 𝛾
using the metrics described in Section 7.2.3 (see Appendix E.3) and set 𝛾 = 10 in
all autoencoder models. In fact, as shown in Appendix E.3, the autoencoder models
are robust to variations in the choice of 𝛾, with the better choices lying between
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𝛾 = 5 and 𝛾 = 15. A value 𝛾 = 10 is not an unreasonable choice and this value
has been used successfully in [151]. The idea here is that we want to focus mainly on
the pricing error while ensuring that the unexplained variation would be small. It is
not advisable to ignore the unexplained variation penalty term as we want to capture
some time-series variability. In fact, ignoring completely the unexplained variation
term could lead to erroneous inferences: we could construct a factor model that prices
all assets correctly simply by including a constant factor in the model. This constant
factor would play the role of the constant term in the regression and capture all the
alpha rather than being interpreted as a beta.

Throughout the chapter, we will consider both linear activation functions as our
baseline and hyperbolic tangent functions to learn nonlinear dependencies. ReLU and
sigmoid activation functions are discussed in Appendix E.5.

Shallow autoencoders The baseline model we consider consists of a shallow au-
toencoder (Figure 7-1) with linear activation functions and an APT loss function.
This consists of an AE with a single hidden layer of 𝐾 neurons: the layer of latent
factors we are learning. The input and reconstruction layers are composed of 𝑁 = 150
neurons each, with each neuron representing the returns of an anomaly factor. This
linear AE is related to the risk premia PCA approach as shown in Proposition 1 (proof
in Appendix E.1). We then extend this AE by consider a shallow AE with nonlinear
activation functions.

Proposition 1. Denote by 𝑅 and �̂� the matrices in R𝑁×𝑇 with entries equal to 𝑟𝑖,𝑡

and 𝑟𝑖,𝑡 respectively. Then Equation 7.16 can be written more compactly as:

min
𝑏0,𝑏1,𝑊 0,𝑊 1

1
𝑁 · 𝑇

· ‖𝑅 − �̂�‖2
𝐹 +(1 + 𝛾) · 1

𝑁 · 𝑇 2
‖(𝑅 − �̂�) · 𝜄‖2

𝐹 , (7.19)

where 𝜄 ∈ R𝑇 ×1 is a vector of ones, ‖·‖𝐹 is the Frobenius norm of a matrix, and

�̂� = 𝑔
(︂

𝑏1 · 𝜄′ + 𝑊 1 · 𝑔
(︁
𝑏0 · 𝜄′ + 𝑊 0 · 𝑅

)︁)︂
. (7.20)

Equivalently, Equation 7.19 can be written in terms of the matrix trace operator as:

min
𝑏0,𝑏1,𝑊 0,𝑊 1

1
𝑁 · 𝑇

·trace
(︁
(𝑅 − �̂�)′(𝑅 − �̂�)

)︁
+(1+𝛾)· 1

𝑁 · 𝑇 2
trace

(︁
𝜄′ · (𝑅 − �̂�)′(𝑅 − �̂�) · 𝜄

)︁
.

(7.21)
Under a linear activation function 𝑔(𝑥) = 𝑥, the factors obtained through Equation

7.19 as 𝐹 = 𝑔
(︁
𝑏0 · 𝜄′ + 𝑊 0 · 𝑅

)︁
are equivalent, up to a rotation, to those obtained by

applying PCA to
1

𝑁 · 𝑇
· 𝑅 ·

(︃
𝐼𝑇 + 1 + 𝛾

𝑇
𝜄𝜄′
)︃

· 𝑅′, (7.22)

where 𝐼𝑇 ∈ R𝑇 ×𝑇 is the 𝑇 × 𝑇 identity matrix.

In other words, a shallow linear autoencoder with APT loss is equivalent to the risk
premia PCA proposed by [151].
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We incorporate two additional modifications to all the autoencoders used in the chap-
ter to learn latent factors more efficiently. First, the input returns from anomaly
factors are standardized but not demeaned. We observe that dividing input returns
by their standard deviation makes the network much more robust, especially when
we consider nonlinear interaction functions or deeper autoencoders, while demean-
ing input returns leads to less efficient training. Second, we set all bias terms in
the network (e.g., 𝑏0 and 𝑏1) to zero. This allows latent factors to better capture
the anomalous part of the input returns instead of viewing it as an unpriced inter-
cept term. Zero-bias autoencoders also have regularization advantages when using an
appropriate shrinkage function [144].

Deep autoencoders (DAEs) As described in Figure 7-2, a DAE is a shallow au-
toencoder but with additional hidden layers between the input/reconstruction layers
and the layer of latent factors. In general, DAEs are harder to train than shallow
AEs as there are more network weights to learn, especially when the amount of data
is limited. For this reason, we only consider a DAE with 3 hidden layers (Figure 7-2):
the middle layer (the grey neurons in Figure 7-2) corresponds to the latent factors
learnt by the network and the two other hidden layers (the light pink neurons in
Figure 7-2) comprise of 20 neurons each. Although other DAE architectures can be
explored such as asymmetric DAEs (with hidden layers of different sizes), we did not
find it to improve the performance of the network. To reduce the number of weights
in the network and improve its trainability, we refine the DAE into a CAE.

Clustered autoencoders (CAEs) Figure 7-3 CAEs can be viewed as a special
case of DAE. Instead of using dense connections between the first two and the last
two layers of the network, we instead cluster the input nodes into groups and only
connect nodes within a group to the neurons of the first hidden layer (Figure 7-3).
The same architecture holds for the reconstruction layer. More precisely, we cluster
the 150 anomaly factors from the input layer into 60 groups, connect inputs to their
corresponding 60 nodes in the first hidden layer, and compress them into 𝐾 latent
factors using a dense layer. When a group contains 5 or more anomaly factors, we
connect densely it to 2 nodes in the first hidden layer.
CAEs are an improvement over DAEs for two main reasons. First, we reduce the
number of parameters the model needs to learn, serving as a powerful regularization
tool. Second, we instill economic intuition into the model by grouping similar anomaly
factors together and extracting their common component. In fact, having groups of
anomaly factors that are correlated can lead to ineffective feature extraction as the
latent factors will tend to capture only the components of anomaly factors that are
over-represented in the data, at the expense of other anomaly factors that capture
unique but important components of the cross section of asset returns. Hence, by
design, the CAE will tend to mitigate this over-representation bias.
The other degree of freedom in the CAE is the number of clusters we want to use to
group anomaly factors together. To this end, we use k-means clustering and analyze
the inertia and silhouette score of the clusters (see Figure E-6 in Appendix E.4).
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We find that the optimal number of cluster to use falls between 60 to 80 clusters.
Throughout the chapter, we fix the number of clusters to 60 to reduce the size of the
first and third hidden layers. Out of 60 clusters, 34 represent single anomaly factors,
10 represent two anomaly factors and 5 represent three anomaly factors (see Table
E.2 in Appendix E.4). On the other side of the spectrum, one cluster represents 13
anomaly factors, one cluster represents 12 anomaly factors, and two clusters represents
11 anomaly factors. A description of the clusters obtained are reported in Table E.3
(Appendix E.4) and sensitivity of the model to the number of clusters is discussed in
Appendix E.4.

Figure 7-3: Architecture of the clustered autoencoder (CAE).

Recursive autoencoders As discussed above, one main difference between latent
factors obtained through PCA and AEs is that PCA latent factors will be uncor-
related. We address this issue by proposing recursive AEs which aim to reduce
correlations among latent factors by learning one latent factor at a time and im-
mediately removing the exposure of anomaly factors to this latent factor. We find
that recursive autoencoders tend to perform better than regular AEs. This can be
attributed to different reasons. For example, using uncorrelated latent factors can
improve the efficiency when estimating factor loadings, not only by avoiding cases
of multicollinearity, but also by leading to more efficient standard error estimations.
Furthermore, learning one factor at a time reduces the complexity of the AE, pro-
viding a regularization advantage. It is also desirable to use a recursive AE if we
want to obtain latent factors that are sorted by their importance. With a recursive
AE, we know that the first factor will be the dominant one, the second factor will be
important but slightly less than the first one, etc. This ordering related the recursive
AE latent factors to PCA latent factors which are always sorted in decreasing level
of importance. This property can become helpful if we perturb the inputs to the
network, for example during a bootstrap procedure.
In this chapter, we consider recursive versions of the shallow AE, the DAE, and
the CAE. We call the latter a recursive clustered autoencoder (RCAE). A potential
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drawback of using recursive AEs occurs when we use nonlinear activation functions.
While the latent factors learnt in the linear case would be equivalent (up to a rotation)
for a recursive and non-recursive autoencoder, they become very different for networks
with nonlinear activation functions.

Split autoencoders (SAEs) Finally, the last variation on the autoencoder we ex-
plore is a split autoencoder (SAE). The SAE can be based on shallow AEs, DAEs,
and CAEs under general activation functions without affecting the network architec-
ture. The only difference resides in the input and reconstruction layers: instead of
having 𝑁 nodes per layer, we use 2𝑁 nodes in each layer. The duplication happens
as follows: for each anomaly factor return, if the return is positive at time 𝑡, then the
first neuron of the pair will take the value of the return while the second will be set
to zero; conversely, we set the first neuron to zero and the second return to the value
of the return if the anomaly factor return is negative at time 𝑡. This type of network
is designed to learn asymmetric factor loadings: the latent factors can now depend
on positive and negative anomaly factor returns in different ways.

7.2.3 Performance evaluation

The factor models obtained are then tested through time series regressions. There are
two ways of testing asset pricing models. The first involves comparing the adjusted
𝑅2 of different models. The 𝑅2 metric quantifies how well the proposed factor model
is able to explain returns (instead of average returns). In other words, 𝑅2 is about
capturing time series effects. Although we provide 𝑅2 metrics in the results, this
consideration is secondary. Our objective is to explain the cross section of the returns,
which means that we are interested in a model of average returns [51]. In this case, we
test a factor model using a time series regression with the test returns as dependent
variables and latent factors as explanatory variables. If latent factors are obtained in
a nonlinear way, we can no longer assume that we have traded factors and need to use
a cross-sectional regression. The asset pricing model would be valid if the intercepts
obtained are jointly equal to zero. Although a Gibbons-Ross-Shanken (GRS) test [92]
or a Fama-Macbeth approach [76] can be used, we estimate robust standard errors
and relevant test statistics using generalized method of moments (GMM) estimators
[51, 139]. It is also helpful to estimate the intercept’s t-statistic obtained for each test
return to understand how many assets can and cannot be explained by the proposed
factor model. Assets with an intercept t-statistic above 1.96 are considered to be
unexplained by the proposed factor model.

In addition to linear time series regressions, we perform polynomial time series
regressions of degree 2 and split time series regressions. In a polynomial regression,
we include all interaction terms between covariates but do not include quadratic
terms of covariates. Split regressions consist in splitting covariates into their positive
component and their negative component. In other words, instead of using 𝑥𝑡 as a
regressor, we would use both 𝑥+

𝑡 = max(𝑥𝑡, 0) and 𝑥−
𝑡 = min(𝑥𝑡, 0). These nonlinear

regressions are used to detect whether a nonlinear structure is needed to explain the
cross section of returns.
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7.3 Empirical analysis

In this section, we apply the methodology described in Section 7.2 to anomaly fac-
tors between 1976 and 2017 and test the latent factor models on classical anomaly
portfolios.

7.3.1 Data description

Latent factor models are constructed using the 150 publicly available anomaly factors
replicated by [85]. The data consists of monthly returns for each factor from July
1976 to December 2017, as described in Table E.1 in Appendix E.2. Each of the 150
factors contains 498 time-series return values over time with no missing values. As a
preprocessing step, we normalize anomaly factor returns by their variance.

The latent factor models are then tested on various anomaly portfolios between
July 1976 and December 2017. We first use 75 Fama-French portfolios, obtained from
Kenneth French’s online data library [90]. This dataset includes 25 double-sorted
portfolios formed on size and book-to-market, 25 double-sorted portfolios formed on
size and operating profitability, and 25 double-sorted portfolios formed on size and
investment. Furthermore, we use 374 Hou-Xue-Zhang anomaly portfolios obtained
from the q-data library [225]. This dataset covers 187 anomalies across 6 categories:
momentum (41), value-versus-growth (32), investment (29), profitability (45), intan-
gibles (30), and frictions (10). We obtain 187 × 2 = 374 portfolios from the lowest
and highest decile for each anomaly.

Finally, we test our latent factor models on mutual fund and hedge fund returns.
We consider 8, 866 mutual fund portfolios from the Center for Research in Security
Prices (CRSP) Mutual Funds database through Wharton Research Data Services
(WRDS) and from the Lipper databse through the Refinitiv workspace. These funds
are filtered in the following way: funds must have at least $100 million in net asset
value and must have at least 12 active months between 1976 and 2017. These mutual
funds cover the following 6 asset classes: equity (4, 480), bond (2, 242), mixed assets
(1, 132), money market (604), alternatives (356), and commodity (47). Hedge fund
returns are obtained from the Morningstar Center for International Securities and
Derivatives Markets (CISDM) Database and cover 6, 619 active and defunct funds.
Similarly to mutual funds, hedge funds must have at least $10 million in net asset
value and must have at least 12 active months between 1976 and 2017.

7.3.2 Empirical results

We now test the latent factors constructed in Section 7.2 on three test assets: the
set of 150 anomaly factors (which we trained our models on), the 75 Fama-French
anomaly portfolios (FF), the 374 Hou-Xue-Zhang anomaly portfolios (HXZ), and the
8, 866 mutual fund returns (MF). The 6, 619 hedge fund returns (HF) will be analyzed
in the forthcoming paper. We find that the latent factors tend to perform better than
the classical CAPM, FF5, and q5 factor models. In fact, we report in Table 7.1 the
fraction of test assets that are explained by each factor model: we consider an asset
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to be explained by a factor model if the regression’s intercept is associated with a
t-statistic below 1.96 (corresponding to a type I error rate of 2.5%). Standard errors
are estimated using heteroskedasticity robust continuously updated GMM estimators
with Bartlett kernel1. The regressions are performed initially only with the latent
factors, however we find that the market factor is not always captured by the latent
factor models (see Table 7.3). For this reason, we also include the regression results
when the market factor is added to the latent factors. We find that, in a few cases,
including a market factor improves the performance of the latent factor models. While
these results correspond to linear regressions, we also explore the performance of latent
factor models when we allow interaction terms in the regression (this is a polynomial
regression of order 2 with interaction terms but without second order terms). The
results are displayed in Table E.4 in Appendix E.6.

Table 7.1: Fraction of explained excess returns (in %). Brackets indicate the fraction
obtained if we include a market factor.

Model Factors FF HXZ MF
CAPM 50 65 48 70
FF5 63 80 57 67
q5 83 87 80 69
Linear 6 83 (81) 4 (48) 6 (82) 68 (68)
RLinear 5 69 (67) 72 (96) 61 (77) 68 (68)
RLinear 6 87 (85) 5 (72) 8 (83) 71 (71)
R-Linear 9 93 (90) 32 (87) 53 (80) 72 (72)
CAE 7 83 (82) 9 (64) 16 (73) 67 (67)
CAE 8 81 (82) 4 (53) 11 (77) 67 (67)
RCAE 5 69 (65) 69 (95) 65 (77) 68 (68)
RCAE 7 84 (85) 5 (63) 11 (84) 70 (70)
Deep 5 71 (69) 7 (65) 13 (72) 66 (66)
Deep 8 81 (79) 5 (72) 7 (80) 68 (68)
Tanh-Tanh 6 82 (81) 80 (99) 58 (83) 72 (72)
R-Tanh-Tanh 5 95 (95) 17 (56) 20 (82) 72 (72)
R-Tanh-Tanh 8 95 (95) 5 (76) 10 (84) 71 (71)
CAE 6 Tanh-Tanh 75 (77) 97 (81) 94 (76) 66 (66)
RCAE 4 Tanh-Tanh 75 (75) 73 (99) 57 (76) 68 (68)
Deep 5 Tanh-Tanh 79 (77) 20 (99) 28 (73) 68 (68)
Tanh 6 81 (81) 61 (99) 52 (83) 71 (71)
R-Tanh 4 83 (82) 97 (99) 85 (78) 70 (70)
CAE 6 Tanh 78 (78) 27 (39) 52 (72) 66 (66)
RCAE 5 Tanh 72 (72) 45 (97) 48 (78) 69 (69)

Continued on next page

1GMM estimators are obtained from the linearmodels Python library https://bashtage.github.

io/linearmodels/.
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Table 7.1 – continued from previous page

Model Factors FF HXZ
Model Factors FF HXZ MF
Deep 6 Tanh 71 (70) 7 (93) 19 (71) 68 (68)
ReLU 4 87 (77) 17 (97) 7 (87) 88 (88)
ReLU 9 79 (75) 60 (93) 37 (85) 83 (83)
R-ReLU 6 67 (64) 19 (95) 20 (79) 82 (82)
CAE 6 ReLU 76 (70) 92 (41) 90 (77) 84 (84)
RCAE 4 ReLU 61 (55) 16 (83) 36 (43) 69 (69)
Deep 5 ReLU 54 (60) 7 (48) 45 (67) 80 (80)
Sigmoid 4 44 (43) 95 (76) 82 (62) 65 (65)
R-Sigmoid 5 65 (65) 27 (76) 46 (77) 73 (73)
CAE 5 Sigmoid 51 (49) 41 (60) 12 (70) 83 (83)
RCAE 5 Sigmoid 21 (25) 0 (51) 1 (27) 57 (57)
Deep 5 Sigmoid 43 (45) 59 (56) 67 (46) 75 (75)

Furthermore, The average adjusted 𝑅2 are evaluated for each set of test assets, as
reported in Table 7.2. In terms of adjusted 𝑅2, we find that FF5 and q5 factor models
tend to perform better than the latent factors we constructed. However, including
a market factor in the latent factor model improves significantly the performance of
the models. Analogous results for polynomial regressions are presented in Table E.5
of Appendix E.6.

Table 7.2: Regression adjusted R-squared (in %). Brackets indicate the fraction
obtained if we include a market factor.

Model Factors FF HXZ MF
CAPM 18 75 76 52
FF5 54 93 83 57
q5 46 90 83 57
Linear 6 65 (68) 62 (86) 59 (86) 17 (58)
RLinear 5 63 (66) 59 (85) 57 (85) 16 (58)
RLinear 6 65 (68) 61 (86) 59 (86) 17 (58)
R-Linear 9 70 (72) 64 (89) 63 (87) 22 (60)
CAE 7 67 (70) 62 (88) 60 (86) 19 (59)
CAE 8 68 (71) 62 (88) 61 (86) 20 (59)
RCAE 5 63 (66) 58 (85) 57 (85) 16 (58)
RCAE 7 67 (70) 62 (88) 61 (86) 20 (59)
Deep 5 64 (66) 61 (86) 59 (86) 16 (58)

Continued on next page
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Table 7.2 – continued from previous page

Model Factors FF HXZ MF
Deep 8 69 (71) 63 (89) 62 (87) 21 (59)
Tanh-Tanh 6 45 (48) 48 (81) 49 (82) 13 (56)
R-Tanh-Tanh 5 50 (52) 57 (83) 54 (83) 11 (56)
R-Tanh-Tanh 8 56 (59) 59 (85) 57 (84) 17 (58)
CAE 6 Tanh-Tanh 58 (61) 56 (85) 55 (84) 15 (57)
RCAE 4 Tanh-Tanh 52 (55) 53 (83) 53 (83) 11 (56)
Deep 5 Tanh-Tanh 57 (60) 55 (85) 53 (84) 14 (57)
Tanh 6 46 (49) 49 (81) 49 (82) 13 (57)
R-Tanh 4 50 (52) 52 (82) 52 (83) 10 (55)
CAE 6 Tanh 62 (65) 58 (87) 57 (85) 17 (58)
RCAE 5 Tanh 60 (63) 57 (85) 56 (85) 15 (58)
Deep 6 Tanh 62 (65) 58 (86) 56 (86) 17 (58)
ReLU 4 52 (56) 39 (82) 43 (82) 9 (55)
ReLU 9 64 (66) 61 (86) 59 (86) 17 (58)
R-ReLU 6 55 (59) 45 (84) 48 (84) 12 (56)
CAE 6 ReLU 54 (58) 37 (82) 41 (83) 12 (56)
RCAE 4 ReLU 46 (53) 25 (81) 28 (82) 10 (55)
Deep 5 ReLU 55 (59) 46 (83) 47 (84) 14 (57)
Sigmoid 4 38 (42) 42 (80) 44 (81) 10 (56)
R-Sigmoid 5 39 (43) 39 (80) 41 (81) 8 (55)
CAE 5 Sigmoid 45 (49) 40 (80) 45 (82) 10 (55)
RCAE 5 Sigmoid 37 (42) 32 (77) 38 (80) 10 (56)
Deep 5 Sigmoid 48 (52) 42 (80) 47 (82) 11 (56)

We now compare the latent factor models directly to the three baseline factor
models. In Table 7.3, we show how many factors from the CAPM, the FF5, and
the q5 factor models can be explained by each latent factor model. This is done
by regressing the each baseline factor on a latent factor models and testing whether
the intercept is significantly different from zero. We also add a (*) to the number
displayed when one of the factors that cannot be explained by a latent factor model
is the market factor. Table 7.3 clearly shows that many latent factor models do
not capture the market factor, which explains why adding the market factor to these
models can significantly improve their performance. Analogous results for polynomial
regressions are presented in Table E.6 of Appendix E.6.
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Table 7.3: Number of unexplained CAPM, FF5, and q5 factors. (*) indicates that
one of the unexplained factors is the market factor.

Model CAPM FF5 q5
Linear 6 1* 2* 3*
RLinear 5 0 1 2
RLinear 6 1* 1* 3*
R-Linear 9 0 0 1
CAE 7 1* 2* 3*
CAE 8 1* 2* 3*
RCAE 5 0 0 2
RCAE 7 1* 1* 3*
Deep 5 1* 2* 3*
Deep 8 1* 2* 3*
Tanh-Tanh 6 0 0 1
R-Tanh-Tanh 5 1* 1* 2*
R-Tanh-Tanh 8 1* 1* 3*
CAE 6 Tanh-Tanh 0 0 1
RCAE 4 Tanh-Tanh 0 0 1
Deep 5 Tanh-Tanh 1* 2* 2*
Tanh 6 0 0 1
R-Tanh 4 0 0 1
CAE 6 Tanh 0 1 3
RCAE 5 Tanh 1* 1* 2*
Deep 6 Tanh 1* 2* 3*
ReLU 4 1* 1* 3*
ReLU 9 1* 1* 2*
R-ReLU 6 1* 2* 3*
CAE 6 ReLU 0 4 2
RCAE 4 ReLU 1* 2* 4*
Deep 5 ReLU 1* 3* 4*
Sigmoid 4 0 2 3
R-Sigmoid 5 1* 3* 2*
CAE 5 Sigmoid 1* 4* 4*
RCAE 5 Sigmoid 1* 5* 5*
Deep 5 Sigmoid 0 2 4

Conversely, we explore in Table 7.4 whether the CAPM, the FF5, and the q5
factor models can explain each latent factor constructed. We find that, while the
CAPM and the FF5 models fail to explain most of the latent factor models, the
q5 model can explain many latent factors obtained under linear activation functions
but fails to explain most latent factors obtained under nonlinear activation functions.
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Analogous results for polynomial regressions are presented in Table E.7 of Appendix
E.6.

Table 7.4: Number of factors unexplained by CAPM, FF5, and q5.

Model CAPM FF5 q5
CAPM — 1 0
FF5 3 — 0
q5 4 2 —
Linear 6 3 4 1
RLinear 5 2 3 2
RLinear 6 3 3 2
R-Linear 9 3 5 3
CAE 7 3 3 1
CAE 8 3 4 1
RCAE 5 3 3 2
RCAE 7 5 4 4
Deep 5 3 2 0
Deep 8 3 3 1
Tanh-Tanh 6 5 5 4
R-Tanh-Tanh 5 3 4 2
R-Tanh-Tanh 8 4 4 2
CAE 6 Tanh-Tanh 4 5 2
RCAE 4 Tanh-Tanh 3 3 2
Deep 5 Tanh-Tanh 3 2 2
Tanh 6 5 5 4
R-Tanh 4 3 4 2
CAE 6 Tanh 2 3 2
RCAE 5 Tanh 2 2 2
Deep 6 Tanh 5 4 2
ReLU 4 4 4 4
ReLU 9 9 9 9
R-ReLU 6 6 6 6
CAE 6 ReLU 5 5 5
RCAE 4 ReLU 2 3 3
Deep 5 ReLU 4 5 5
Sigmoid 4 4 4 4
R-Sigmoid 5 5 5 5
CAE 5 Sigmoid 5 5 5
RCAE 5 Sigmoid 5 5 5
Deep 5 Sigmoid 5 5 5
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7.4 Discussion

As discussed in Section 7.2, latent factor models can be constructed in several ways.
The empirical analysis conducted in Section 7.3 allows us to make a few interesting
observations when comparing different categories of latent factor models.

First, among linear latent factor models, we find that the recursive autoencoders
tend to outperform non-recursive autoencoders, suggesting that the recursive proce-
dure has beneficial regularization effects for linear networks. This is no longer the
case when we consider nonlinear activation functions. Second, clustered autoencoders
tend to outperform deep autoencoders and generalize better, as expected since CAEs
are less complex than DAEs and incorporate economic intuition in the clustering step.

Third, linear, hyperbolic tangent, and ReLU activation functions tend to perform
better than sigmoid activation functions. This can be explained by the fact that
sigmoid activation functions constrain the output to the [0, 1] interval while the similar
tanh function is symmetric around zero and has a range of [−1, 1]. Hence, returns
that are close to zero will remain close to zero under tanh (as well as linear and ReLU)
activation functions, but will be closer to 0.5 under the sigmoid.

Overall, we find that the latent factor models tend to perform better than the
benchmark CAPM, FF5, and q5 factor models. Based on Table 7.3, we observe
that latent factors can explain most of the FF5 factors except for the market factor.
However, latent factor models with nonlinear activation functions are often needed
to explain q5 factors. Conversely, based on Table 7.4, FF5 factors fail to explain
latent factors while q5 factors can mainly explain latent factors with linear activation
functions.

The additional analyses presented in Appendix E.5 show that the above obser-
vations are robust to the choice of the number of latent factors and that, although
the performance tends to improve as we increase the number of factors in the model,
linear and hyperbolic tangent activation functions outperform the other models and
tend to be robust to the size of the factor model. Latent factor models with linear
activation functions tend to present the highest values of 𝑅2, suggesting that the fac-
tors are able to better capture the time series variation in the returns. The models
are also robust to the choice of 𝛾 in the APT loss function as shown in Appendix E.3.

We also consider nonlinear regression models through the polynomial regressions
presented in Appendix E.6. Nonlinear stochastic discount factor models are equiv-
alent to nonlinear factor models, as shown by [66] (Theorem 1). In fact, [66] argue
that linear factor models assume a gaussian distribution in the returns while non-
linear factor models are important to consider when the distribution of returns is
non-gaussian. Comparing Table 7.1 to Table E.4 (Appendix E.6), interaction terms
do not significantly improve the fraction of explained excess returns for latent factors
constructed from linear networks. However, we find interaction terms helpful when
considering factors derived using nonlinear activation functions. This can also be
seen by comparing the middle row to the top row of the plots displayed in Appendix
E.5. We also observe that interaction terms allow nonlinear latent factors to explain
better the benchmark factor models (Table E.6).
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7.5 Conclusion

Unsupervised learning is a powerful tool for dimensionality reduction. While PCA
is helpful to project high-dimensional data on a low-dimensional subspace, AEs are
also able to account for nonlinear interactions in the data. We have proposed a
methodology to apply autoencoders directly to a large set of anomaly factor returns
to construct latent factor models that capture most of the information in the factor
zoo. In addition, we incorporate economic intuition by using a modified loss function
inspired by [151] and by clustering the input factors when using deep autoencoders.
We have also found recursive autoencoders to be helpful for obtaining uncorrelated
factors, but also for regularization purposes. As a proof-of-concept, we have applied
this methodology to the set of anomaly factors used in [85].

This framework can also be extended with a focus on interpretability [64, 65]. For
example, similarly to PCA outputs, latent factors derived from recursive autoencoders
are ranked by their relative importance (by design). This stability in the output of
the recursive autoencoder can allow for confidence interval estimation through a block
bootstrap approach [111].
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Part III

Managing Risks & Uncertainty in

Investment Management
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Chapter 8

Measuring Risk Preferences and

Asset-Allocation Decisions

In the final portion of this thesis, we turn our attention to the space of investment
management from a risk management perspective. More specifically, we return to a
topic explored in Chapters 2, 3, and 4: estimating the risk and uncertainty-preferences
of individuals. Instead of looking at patients, the individuals we consider here are
regular investors, financial advisors, and institutional investors. The goal of the
procedure is to understand the risk preferences and asset-allocation decision of each
class of investor under various hypothetical scenarios.

In particular, we use a global survey of individual investors, financial advisors, and
institutional investors between 2015 and 2017 to elicit their asset allocation behavior
and risk preferences. We find drastically different behavior among these three groups
of market participants. Most institutional investors exhibit highly contrarian reac-
tions to past returns in their equity allocations. Financial advisors are also mostly
contrarian; a few of them demonstrate passive behavior. Individual investors are,
on average, extrapolative. To investigate further, we use a clustering algorithm to
partition individuals into five distinct types: passive investors, risk avoiders, extrap-
olators, contrarians, and optimistic investors. Across demographic categories, older
investors tend to be more passive and more risk-averse.

8.1 Background

There are three major groups of participants in the investment management industry:
individual investors, financial advisors, and institutions. Each of these groups has its
own risk preferences and behavioral characteristics it uses in its investment decisions.
We study the behavior of these groups by using the results of three comprehensive
global surveys between 2015 and 20171, each of them covering over 7,000 individuals,
over 2,300 advisors, and over 660 institutional investors.

1The survey participants were randomly sampled each year. Some participants may be surveyed
multiple times across the three years.
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The breadth of our dataset sets it apart from earlier survey data in the literature.
To the best of our knowledge, these surveys are the first to present the same set
of questions to three distinct groups of market participants over three consecutive
years. This dataset covers over 17 countries in the Individual Investor surveys and
over 14 countries in the Financial Advisor surveys every year. This global breadth
provides us with insight into investment behavior by country, and allows us to compare
survey results across countries. Finally, all our survey subjects have a significant
stake in the market: all the surveyed individual investors have a net worth above
$200,000, while the financial advisors and the institutional investors are employed in
the financial industry. As a result, their answers will generally be more realistic and
have greater relevance for modeling investor behavior than the results of surveying
students in a laboratory setting, as many other studies have done. Our main goal
is to understand how different market participants and different types of individuals
compare along the dimensions of risk aversion and asset allocation. To this end, we
poll members of these groups about their investment decisions under various historical
and hypothetical scenarios. We obtain two sets of results. The first set of results shows
that investors tend to be significantly more risk-averse and mostly extrapolative in
their asset allocation, while institutions tend to be significantly less risk-averse and
mostly contrarian in their investment decisions, with advisors falling in the middle
of the risk aversion scale while also following a contrarian asset allocation strategy.
The second set of results focuses on just individual investors—using a clustering
algorithm applied to survey responses, we are able to identify five distinct types of
investors: passive investors, extrapolators, risk avoiders, contrarians and optimistic

investors. Extrapolators tend to decrease allocation in equities following bad market
performance, and tend to increase allocation following good returns, extrapolating
past trends. Passive investors leave their allocation unchanged in either scenario.
Risk avoiders significantly cut their allocation to equities when they see large moves
in the S&P 500 in either direction. Contrarians tend to increase allocation in equities
following bad market performance, and tend to decrease allocation following good
returns. Optimistic investors tend to increase their allocation in either scenario.

While the largest cluster of individuals in our dataset corresponds to passive in-
vestors, it also contains a significant number of risk avoiders and extrapolators. Ev-
idence for each of these types is found in the literature, although most papers focus
only on one type at a time. [5] and [59] document that a large proportion of investors
make no changes to allocations within their retirement portfolios over spans of several
years. They note that this phenomenon may be linked to inertia, a widely recognized
behavioral bias. Some major papers documenting extrapolation include [62], [101]
using survey data, as well as [19] and [49] which look at historical 401(k) account
allocations. Finally, [18] investigate individual trading records and derive a V-shaped
probability distribution of selling a stock as a function of profit. This in part may be
driven by the cluster of risk avoiders identified from our survey.

In comparison, we find that most financial advisors and institutional investors are
contrarian in allocation strategy—that is, they would change equity allocation in the
direction opposite to recent returns on the S&P 500. This contrasts with the overall
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behavior of individual investors, who on average are extrapolators.2 The differences
in the reactions across these three groups of market participants are significant and
very large. We note that a few earlier studies have viewed individuals as momentum
traders, and institutions as contrarians.3 However, these studies consider shorter-
term horizons than ours, and focus on trading behavior. Our survey asks about asset
allocation, a strategic and longer-term investment decision, rather than short-term
trading, which potentially could be affected by excessive speculation on the part of
individual traders, or by liquidity considerations of institutions. A recent paper by
[63] does focus on asset allocation of Dutch institutional investors, and concludes that
they tend to be contrarians.

Our results have another important implication, one that arises from the differ-
ences in response between financial advisors and individual investors. We find that
advisors generally advise their clients to change their allocation in the opposite di-
rection of the typical preference of the individual investor. It may be that advisors
recognize the excessive tendency of investors toward extrapolation, and try to miti-
gate this effect by giving “contrarian advice". Also, the proportion of advisors who
suggest a significant decrease in equity allocation when seeing large S&P 500 moves
is much smaller than the proportion of individual investors who would implement
such a change. As a result, advisors may also provide the significant benefit of en-
suring their investors stay invested in the markets despite periods of high volatility,
and hence earn higher returns in the long run.4 Overall, our findings suggest that
financial advisors are of direct benefit to most individual investors.

Finally, we compare risk aversion across the three groups, as well as within investor
demographic categories. Individual investors are significantly more risk-averse than
financial advisors, who are in turn more risk-averse than institutional investors. We
find that individual risk aversion increases with age, which is consistent with previous
literature linking risk aversion to age, wealth, and education; see [164], [178], and [110].

In Section 8.2 we outline the survey methodology and the estimation of risk aver-
sion. We compare survey responses across individuals, advisors, and institutions in
Section 8.3. We focus on individual investors in more detail in Section 8.4 and we
conclude in Section 8.5.

8.2 Methodology

We use data from three separate but closely related surveys: the Natixis Global
Survey of Individual Investors (from 2015 to 2017), the Natixis Global Survey of
Financial Advisors (from 2015 to 2016), and the Natixis Global Survey of Institutional
Investors (from 2015 to 2017). Each survey involved two sets of questions. The first

2While a large number of individual investors are passive or risk avoiders, both of these groups
have symmetric reactions to large moves in the S&P 500: they either do nothing, or they significantly
decrease equity allocation.

3See, for example, [102], Jackson (2003) [127], and Kaniel, Saar, and Titman (2008) [136].
4[219] find that investors using a financial advisor are 1.5 times more likely to stick to long-term

investment decisions.
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set originated with Natixis Asset Management for their own research purposes. The
second set was created by us, in coordination with Natixis, for studying the behavioral
aspects of investor decision-making.

8.2.1 Survey Questions

We asked three similar questions in each survey for Individual Investors, Financial
Advisors and Institutional Investors between 2015 and 2017. Furthermore, we have
asked one additional question specifically to Individual Investors which differed each
year. The first involved preferences among potential gambles, and was used to elicit
the risk aversion coefficient among respondents. The second and third asked how
respondents would change their investment allocation as a result of large negative or
positive moves in the S&P 500. Possible responses were “significantly decrease equity
allocation", “slightly decrease equity allocation", “do nothing", “slightly increase eq-
uity allocation", and “significantly increase equity allocation". In the case of financial
advisors, we asked them how they would advise their clients to act in such situations.
The additional question specifically targeted Individual Investors varied every year:
in 2015, investors were asked if and when they decreased their allocation during the
2007–2009 Financial Crisis; in 2016, investors were asked how they modified their
allocation based on the market volatility in January 2016; in 2017, investors were
asked how they adjusted their allocation immediately after the U.S. presidential elec-
tion on November 8, 2016. The exact formulation of the questions is included in the
Appendix.

Natixis Asset Management commissioned CoreData Research to conduct each sur-
vey via an online questionnaire. The Individual Investor Survey was first carried out
in March 2015 and involved 7,000 individuals from 17 countries. Each investor needed
to have a minimum net worth of $200,000 (or Purchasing Power Parity equivalent)
to participate. The survey was carried out again in February–March 2016 with 7,100
individuals across 19 countries, and in February–March 2017 with 8,300 individuals
across 22 countries. The Financial Advisor Survey was first conducted in June–July
2015 and involved 2,400 advisors from 16 countries. Since some advisors opted to
not complete the behavioral part of the survey, we had a total of 2,342 advisor ob-
servations. The survey was conducted again in July 2016 with 2,550 advisors across
15 countries. The Institutional Investor Survey was first carried out in October 2015
and involved 660 respondents from 29 countries. All respondents had to be decision
makers working in the institutional investment industry, such as Chief Investment
Officers, pension fund managers, and investment portfolio managers. The survey
was carried out again in October–November 2016 with 700 respondents across 29
countries, and in September–October 2017 with 700 respondents across 31 countries.

Table 8.1 provides summary statistics across the three groups on age, gender, and
net worth/assets. In the Appendix we also include a breakdown of respondents by
country in the individual and advisor surveys, as well as the list of institution types
covered in the institutional survey.

It is important to keep in mind that the surveys give us information about what
investors think they would do under various market scenarios. Thus the results pertain
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Year Survey Group # Subjects Summary

2015

Individual
Investors 7000

Age Gender Net Worth

Generation X: 32% Male: 59% Mass Market: 21%
Generation Y: 37% Female: 41% Mass Affluent: 24%
Baby Boomers: 28% Emergning HNW: 25%
Pre-Baby Boomers: 3% High Net Worth: 30%

Financial
Advisors 2342

Advisor Characteristics

Average age: 46 years
Male: 79%; Female: 21%
Average personal book of business: $28.3 million

Institutional
Investors 660

Organization Assets

Less than $2 billion: 18%
$2 billion – $5 billion: 25%
More than $5 billion: 57%

2016

Individual
Investors 7100

Age Gender Net Worth

Generation X: 35% Male: 61% Mass Market: 22%
Generation Y: 33% Female: 39% Mass Affluent: 29%
Baby Boomers: 28% Emergning HNW: 24%
Pre-Baby Boomers: 4% High Net Worth: 26%

Financial
Advisors 2550

Advisor Characteristics

Average age: 47 years
Male: 84%; Female: 16%
Average personal book of business: $29.5 million

Institutional
Investors 700

Organization Assets

Less than $5 billion: 45%
More than $5 billion: 55%

2017

Individual
Investors 8300

Age Gender Net Worth

Generation X: 29% Male: 56% Mass Market: 27%
Generation Y: 34% Female: 44% Mass Affluent: 26%
Baby Boomers: 31% Emergning HNW: 24%
Pre-Baby Boomers: 5% High Net Worth: 23%

Institutional
Investors 700

Organization Assets

Less than $5 billion: 44%
More than $5 billion: 56%

Table 8.1: Summary statistics for the three survey groups on age, gender, and net worth/as-
sets. Different groups were presented with different demographic questions, and the sum-
mary statistics are not directly comparable across groups. Gender and age were not asked
for institutional investors.
The definitions of generations of investors and their net worth classifications are in the
Appendix. HNW stands for High Net Worth. Organization Assets means the size of assets
for which the respondent’s organization is responsible.

to investors’ conditional expected changes to their portfolios; to obtain actual changes,
we would need to use historical data on portfolio allocations or on investor trades.
However, we obtain highly significant differences across various investor groups, so
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that even in the presence of potential noise in self-reporting how investors anticipate
their future decisions, we may still draw reliable conclusions from these comparisons.

8.2.2 Estimating Risk Aversion

We estimate the risk aversion of survey respondents using the popular technique
introduced by [117], and later modified by [60]. The idea by Holt and Laury is to
present subjects with pairs of gambles and ask which gamble they would choose within
each pair. Dave et al. extend this idea by presenting a list of six different gambles and
asking subjects to pick one. Table 8.2 lists the six gambles used in the Natixis surveys,
with gamble 1 being the safest and gamble 6 being the riskiest. Note that these are
the same gambles as in the Dave et al. study, except they are of greater magnitude,
given that our subjects are professional investors or industry professionals, who tend
to care about relatively large bets when investing.

The choice of one gamble among six gambles is converted to a choice of one gamble
in each of five different pairs of gambles: gamble 1 vs. gamble 2, gamble 2 vs. gamble
3, . . ., gamble 5 vs. gamble 6. The conversion is done as follows. If a person chose a
particular gamble 𝑘 among the six gambles, then he would choose gamble 𝑖 + 1 over
gamble 𝑖 as long as 𝑖 + 1 ≤ 𝑘, and would choose gamble 𝑖 over gamble 𝑖 + 1 as long as
𝑖 ≥ 𝑘. This is valid because gambles 1, 2, . . . , 6 are increasing in risk, in that order.

Gamble
Outcome 1 Outcome 2

Mean
Standard

Probability Payoff Probability Payoff Deviation

Gamble 1 50% $28,000 50% $28,000 $28,000 $0
Gamble 2 50% $36,000 50% $24,000 $30,000 $6,000
Gamble 3 50% $44,000 50% $20,000 $32,000 $12,000
Gamble 4 50% $52,000 50% $16,000 $34,000 $18,000
Gamble 5 50% $60,000 50% $12,000 $36,000 $24,000
Gamble 6 50% $70,000 50% $2,000 $36,000 $34,000

Table 8.2: List of six gambles presented to survey participants. The subjects were asked
to choose which one of the gambles they would prefer. Each gamble involves two outcomes,
each of which has a 50% probability of occurring. The first gamble can be viewed as a
“sure" outcome.

We assume that respondents have constant relative risk aversion (CRRA) utility.
The risk aversion coefficient 𝑟 will be used as a proxy for risk aversion among different
groups throughout the chapter. When considering a particular gamble 𝑖, a subject
first evaluates their expected utility:

𝐸(𝑈𝑖) = 𝑝𝑖,1𝑈(𝑥𝑖,1) + 𝑝𝑖,2𝑈(𝑥𝑖,2) ; 𝑈(𝑥) = 𝑥1−𝑟 − 1
1 − 𝑟

(8.1)

where 𝑥𝑖,1, 𝑥𝑖,2 are the two possible payoffs for the gamble, and 𝑝𝑖,1, 𝑝𝑖,2 are their asso-
ciated probabilities of occurring. Then, for each pair of gambles 𝑖, 𝑗, after calculating
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expected utility, the subject picks gamble 𝑖 with probability:

P (Choose gamble 𝑖) = [𝐸(𝑈𝑖)]1/𝜇

[𝐸(𝑈𝑖)]1/𝜇 + [𝐸(𝑈𝑗)]1/𝜇
(8.2)

where 𝜇 is a noise parameter, since a subject may actually pick gamble 𝑗 even if
gamble 𝑖 has higher expected utility. Values close to 0 signify little deviation from
expected utility theory.

Using Equations 8.1 and 8.2, and survey responses, we calculate the likelihood
function for parameters 𝜇, 𝑟. We then estimate the parameters using the maximum
likelihood method, and use the Hessian to estimate standard errors. A more detailed
description of the estimation of the risk aversion coefficient is given in the appendix.
The risk aversion estimates are compared across the three groups of subjects as well
as across individual investor demographic categories.

8.3 Investors, Advisors, and Institutions

In this section, we present our comparison of allocation decisions and risk aversion
across investors, advisors, and institutions. The results are striking. Investors appear
to be mostly extrapolative in their changes in equity allocation, while advisors and
institutions are predominantly contrarian. The proportion of “passive" respondents
is much higher for individuals and financial advisors than for institutional investors.
Finally, investors are more risk-averse than advisors, who are in turn more risk-averse
than institutions.

8.3.1 Asset Allocation Decisions

All individual and institutional investors were asked two questions pertaining to in-
vestment decisions. The first asked how they would change their allocation to equities
if the S&P 500 declined by 10–20% during the next six months, and other assets per-
formed as expected. The second asked the same question in a scenario where the S&P
increased by 10–20%. Financial advisors were asked two similar questions about how
they would advise their clients to change equity allocation. There were five possi-
ble responses: “large decrease", “slight decrease", “do nothing", “slight increase", and
“large increase".

Figures 8-1 and 8-2 plot the distributions of responses for the two questions. To
generate these plots, we have aggregated the responses between 2015 and 2017. We
present year by year results in Figures F-1 and F-2 of the appendix, along with plots
displaying only the responses collected from investors, advisors and institutions in the
United States. In the scenario of an S&P 500 fall, 44% of individuals would decrease
equity allocation5, in comparison to just 17% for advisors and 17% for institutions.
At the same time, 67% of institutions and 52% of advisors would increase equity

5The proportion of respondents decreasing their equity allocation is calculated by counting all
respondents who answered with “large decrease" or “slight decrease" to the survey question.
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allocation, a much higher proportion than the corresponding 17% for individuals. For
a rise in the S&P 500, the results are basically reversed. For individuals, 30% would
decrease allocation and 32% would increase it, whereas the corresponding numbers
are 50% and 13% for advisors, and 68% and 9% for institutions. Thus, on average,
individual investors would change their allocation in the same direction as a recent
S&P 500 move, while financial advisors and institutional investors would change
allocation in the opposite direction.

These results do not seem to depend heavily on the country in which the respon-
dent is based, as we get very similar numbers for respondents from the the United
States and globally, as displayed in Figures F-1 and F-2 of the appendix. We get
the following results in the case of the United States. For an S&P 500 fall, 31% of
the individuals, 11% of the advisors and 9% of the institutions would decrease their
equity allocation, while 26% of the individuals, 66% of the advisors and 79% of the
institutions would increase their equity allocation. For a rise in the S&P 500, 23% of
the individuals, 59% of the advisors and 82% of the institutions would decrease their
equity allocation, while 34% of the individuals, 9% of the advisors and 6% of the
institutions would increase their equity allocation. We observe that, on average, the
individuals surveyed in the United States tend to be extrapolators while the financial
advisors and institutional investors tend to be contrarians.

We obtain more insight into these differences by looking at the response distribu-
tions in more detail. One aspect that stands out is the “extreme contrarian" responses
of institutional investors. 27% would significantly increase allocation following a fall
in the S&P 500, whereas 22% would significantly decrease allocation following a
rise in the S&P 500. This is much higher than the corresponding 3% and 17% for
individuals, or the 13% and 11% for advisors. While advisors also give contrarian
responses, their predominant response is to change allocation only slightly: 39% of
advisors would favor a slight increase after a fall in the S&P 500, and 39% of advi-
sors would favor a slight decrease after a rise in the S&P 500—much higher than the
comparable rates among individual investors. Finally, we notice that while investors
on average extrapolate, there is a significant fraction in both scenarios that prefers to
significantly decrease equity allocation: 20% for an S&P 500 fall and 17% for an S&P
500 rise. We will later show, using clustering techniques on the individual investor
dataset, that these numbers are mainly driven by the “risk avoider" class of investors
(Figure F-4 of the appendix).

As a robustness check, we also compare the responses across individuals and advi-
sors in 2015 and in 2016 for each country included in both the Individual Investor and
the Financial Advisor Surveys of each year. We also include a comparison between
the responses across individuals and institutional investors in 2016 and in 2017 for
each country included in both the Individual Investor and the Financial Advisor Sur-
veys of each year.6 The results are shown in Figures 8-3 and 8-4. We again see that
there is a much larger proportion of individual investors who would decrease their
equity allocation after seeing an S&P 500 fall than there is of advisors; at the same

6We do not include institutional investors in the 2015 comparison because the sample sizes at
the country level are small in the Institutional Investor Survey.
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Figure 8-1: Reactions to a decrease in the S&P 500 across three groups between 2015
and 2017 (2015 and 2016 for advisors). For each group and each possible answer, we show
error bars corresponding to one standard error calculated assuming each respondent chooses
either that particular answer, or any other answer.

Figure 8-2: Reactions to an increase in the S&P 500 across three groups between 2015
and 2017 (2015 and 2016 for advisors).
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Figure 8-3: Reactions to a decrease in the S&P 500 across individual investors and financial
advisors, and across individual investors and institutional investors, split up by country. We
only plot the results for countries that appear for both investor types each year. Error bars
correspond to one standard error. Standard errors are large for some countries due to small
sample size.

170



Figure 8-4: Reactions to an increase in the S&P 500 across individual investors and
financial advisors, and across individual investors and institutional investors, split up by
country. We only plot the results for countries that appear for both investor types each
year. Error bars correspond to one standard error. Standard errors are large for some
countries due to small sample size.
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time, many more advisors would increase their allocation in this scenario compared
to individuals. The differences are significant for each country at the 1% level, except
for Canada in 2016 for a decrease in equity allocation.In the scenario of an S&P 500
rise, the results are reversed; this time, advisors are the ones who are more likely
to decrease equity allocation. It is important to note that the differences between
advisors and individual investors who decrease equity allocation are now smaller (al-
though still significant at the 1% level for most countries). This again is caused by
“risk avoider” investors who significantly decrease equity allocation following a rise
in the S&P 500.

By comparing the responses from the Individual Investors and the Institutional
Investors, we observe a similar behavioral difference. In 2016, for a decrease in the
S&P 500, a much larger proportion of individual investors would decrease their eq-
uity allocation (with the exception of Australia) while a much larger proportion of
institutional investors would increase their equity allocation (with the exception of
Taiwan). These differences are significant for most countries at the 1% level. For an
increase in the S&P 500, we observe the opposite reaction. While a larger portion of
institutional investors decrease their equity allocation, a larger portion of individual
investors actually increase their equity allocation (except for the Netherlands and
Hong Kong). These differences are significant for most countries at the 1% level.
Similarly, in 2017, for a decrease in the S&P 500, a much larger proportion of indi-
vidual investors would decrease their equity allocation (with the exception of Taiwan)
while a much larger proportion of institutional investors would increase their equity
allocation (with the exception of Korea and Taiwan). These differences are significant
for most countries at the 1% level. In the case of an increase in the S&P 500, we ob-
serve the opposite reaction. While a larger portion of institutional investors decrease
their equity allocation (with the exception of Korea), a larger portion of individual
investors actually increase their equity allocation (with the exception of Taiwan and
Korea). These differences are significant for most countries at the 1% level.

The fifth type of response in these two scenarios is the “do nothing" response.
Its levels for individual investors and financial advisors are similar in both scenarios,
and relatively large: 39% and 31% in case of an S&P 500 fall, and 38% and 37%
in case of an S&P 500 rise. In contrast, only 17% of institutional investors would
do nothing following a decrease in the S&P 500; this number is 23% following an
increase in the S&P 500. The more passive responses for individuals and advisors
may be explained by the fact that many have long-term investment objectives that do
not require significant changes to their asset mix. As a result, they would generally
not be affected by large fluctuations in asset prices. In contrast, institutional investors
often have shorter investment horizons, and their performance may be evaluated at
shorter frequencies. Because of this, they may need to react to changes in the relative
prices of different asset classes more often.

The observed differences in active response between groups have several potential
explanations. The apparent tendency of a large number of individual investors toward
extrapolative allocation may be an inherent aspect of their behavior. Our survey is
insufficient to understand why this behavior comes about. However, we note that
pervasive evidence for similar behavior has been documented in other studies; see
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[101] for a comprehensive survey. Financial advisors may recognize that some of their
individual investor clients excessively extrapolate, and instead advise them to apply
a contrarian allocation strategy, as observed in the survey. Also, should the S&P 500
decline significantly, an advisor may view that circumstance as a good entry point for
a client with a long investment horizon.

The contrarian behavior of financial advisors may also be explained by long-term
investment objectives, which are typically planned to maintain a target asset mix
over several years. For example, if equities move significantly relative to bonds over
the short term, then client allocation will experience a large deviation from its target
mix, and advisors may propose a contrarian reallocation to return it to the target.

The target-mix story may also explain the extreme contrarian response of institu-
tions, especially if their performance is evaluated relative to a benchmark. However,
because a large proportion of institutional respondents would significantly decrease or
significantly increase allocation, there are probably more factors at play. It is possible
that some institutional investors are employing value strategies or are engaged in dis-
tressed investing, which results in contrarian trading when asset class prices deviate
from their earlier relationship. Another possibility may be that some investors (e.g.
pension plans) have a target return in mind. If recent performance is very good, they
may cut portfolio risk by moving out of equities in order to have a safer portfolio for
the rest of the year, while likely still hitting their target.

Overall, because individual investors tend to have extrapolative reactions, while
institutional investors usually have contrarian ones, we conclude that institutions
generally take the other side of individual investor trades in broad asset allocations.
Note that [101] propose firms may be also involved in accommodating individual
investor demand through equity issuance.

8.3.2 Risk Aversion

We next compare risk aversion across the three survey groups. Figure 8-5 shows the
distribution of preferences for the six gambles across respondents between 2015 and
2017. Recall that gamble 1 is the safest, and gamble 6 is the riskiest. We see that
40% of the individuals choose gamble 1, which is much higher than 29% for advisors,
which in turn is higher than 12% for institutions; the differences are significant at
the 1% level. At the other end of the spectrum, a significantly higher proportion of
institutions choose gambles 5 and 6 in comparison to individuals and advisors. These
observations strongly suggest that individual investors are the most risk-averse of the
three groups, while institutional investors are the least risk-averse. Note that we are
able to make this conclusion from the distribution of responses alone, without making
assumptions about the utility functions of respondents.

To investigate further, we add the assumption that all subjects have CRRA pref-
erences, and carry out the estimation procedure for the risk aversion coefficient as
discussed in the methodology. The results are shown in Figure 8-6. In 2015, individ-
ual investors have the highest risk aversion coefficient at 1.14, followed by financial
advisors at 0.85 and institutional investors at 0.39. In 2016, the numbers are 1.07,
0.78, and 0.34, respectively, for individual investors, financial advisors and institu-
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tional investors. In 2017, the numbers are 1.07, and 0.33, respectively, for individual
investors and institutional investors. If we consider the three years dataset as a whole,
we get a risk aversion coefficient at 1.07 for individual investors, followed by financial
advisors at 0.78 and institutional investors at 0.36. The respective noise parameters
𝜇 are 0.08, 0.07 and 0.04. If we consider only the respondents from the United States,
we get a risk aversion coefficient at 1.08 for individual investors, followed by financial
advisors at 0.73 and institutional investors at 0.29, and noise parameters 𝜇 at 0.07,
0.06 and 0.03 respectively. The pairwise differences in coefficient estimates are very
large, and are again significant at the 1% level each year, and when considering the
three years as a whole. Our results are consistent with the general intuition that
individuals are generally the most risk-averse group of market participants, while in-
stitutional investors are the least risk-averse one. Likewise, it is plausible for financial
advisors to fall in the middle of the spectrum, given the fact that, while they do work
in the investment management industry, they generally do not directly manage money
for their clients and so do not take outright bets in the markets, whereas institutions
do.

We have presented evidence that individual investors are, on average, extrapola-
tors, while financial advisors and institutional investors are contrarians. Contrarian
behavior is particularly strong for institutions. Furthermore, institutions would usu-
ally reallocate portfolios more actively in response to large S&P 500 moves, while
a significant proportion of individuals and advisors would do nothing in those situ-
ations. Individuals are by far more risk-averse than financial advisors, and advisors
are much more risk-averse than institutional investors.

8.4 Individual Investor Decisions

We have seen that a large proportion of individual investors tend to extrapolate
market performance when making their equity allocation decisions. However, we
have also observed that a few of them tend to consistently decrease equity allocation.
This suggests that we cannot label all investors as extrapolators, and it makes sense to
study the individual dataset in more detail. We start by looking at the dependence of
investor risk aversion and preference for active investing on the demographic factors of
age, gender, and net worth. The strongest results are observed for age, older investors
tending to be more risk-averse and also more passive. We then run a clustering
algorithm to partition investors into five groups: passive investors, extrapolators, risk
avoiders, optimistic investors and contrarians. We also compare the demographic
breakdowns of the different investor types.

8.4.1 Asset Allocation

We used three questions from the survey to elicit the degree of investor passivity.
The first two questions of the 2015-2017 surveys asked about their allocation under
different S&P 500 moves, as discussed in the last section. In 2015, the third question
asked when during the Financial Crisis of 2007-2009 investors decreased their equity
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Figure 8-5: Distributions of gamble preferences across three groups between 2015 and
2017 (2016 for advisors). For each group and each possible answer, we show error bars
corresponding to one standard error calculated assuming each respondent chooses either
that particular gamble, or any other gamble.

Figure 8-6: Estimated Risk Aversion coefficients across the three groups between 2015 and
2017, and averaged over 2015-2017. Financial advisors have not been surveyed in 2017.
Error bars correspond to one standard error.

175



allocation. Possible answers ranged from “the second half of 2007" to “the second
half of 2009". We also included an “I did nothing" response for investors who did
not significantly decrease their allocation. In 2016, individual investors were asked
how they have modified their equity allocation in response to the market volatility
in January 2016. In 2017, they were asked how they modified their equity allocation
in response to the U.S. presidential on November 8th, 2016. Possible answers for
both questions ranged from “I decreased significantly my stock or shares allocation”
to “I increased significantly my stock or shares allocation”, and included a “I did
nothing” response. The first chart in Figure 8-7 compares the proportions of investors
choosing the passive response for the first two questions, while the second chart in
Figure 8-7 compares the proportions of investors choosing the passive response for
the third question. We consider these responses across the different demographic
categories. The classification we use for age and net worth is detailed in Table F.7 of
the Appendix.

Within each demographic category, the percent of respondents who choose to do
nothing for the S&P scenarios is similar in 2016 and 2017, but sometimes differs
slightly in 2015. We can also note that, in most cases, the percentage responding
passively to the Financial Crisis, the January Volatility and the Presidential Election
are slightly higher than the same responses to the hypothetical moves in the S&P 500.
By looking at pairwise differences across age categories, for each year, we observe
that older investors are more likely to be passive. However, we observe in 2016 and
2017 that Generation X investors (34 to 49 years old) are slightly less passive than
Generation Y investors (18 to 33 years old). In most of the other cases, younger
investors are more passive than older investors at a 1% confidence level. Comparing
the different ends of the spectrum in the lower chart of Figure 8-7, between 2015
and 2017, we observe that 79%, 62% and 79% of pre-Baby Boomers responded that
they have behaved in a passive way, while this number is just 29% for Generation Y
investors in 2015, and 46% and 56% for Generation X investors between 2016 and
2017. The greater observed percentage of older investors being more passive may be a
result of their inherent behavior; this is consistent with other empirical evidence, for
example, by [68] and [104]. Another potential explanation is that younger investors
generally tend to have a higher allocation of equities in their portfolios, and therefore
would react more to a large change in equity prices. The differences across gender
and net worth categories are not large, and almost in all cases not significant at the
5% level (except for the 2016 results, for which the pairwise differences across gender
are actually significant at the 1% level).

8.4.2 Risk Aversion

Figure 8-8 compares the estimated risk aversion coefficient across demographic cate-
gories. First, we observe that risk aversion increases with age, as documented earlier
in [178]. In 2015, the pairwise differences across generations are significant at the
1% level (except for pre-Baby Boomers in 2015; standard errors for this cohort are
large, in part, due to the small sample of 207 respondents). In 2016 and 2017, ex-
cept for pre-Baby Boomers, these differences are significant at the 5% level (except
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Figure 8-7: Percent of passive respondents for each scenario across different individual
investor demographic categories between 2015 and 2017. The definitions of investor demo-
graphic categories are in Table F.7 of the Appendix. HNW stands for High Net Worth.
Error bars correspond to one standard error, assuming the respondent chose either the
“passive" response or any other response.
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Figure 8-8: Estimated Risk Aversion coefficients across individual investor demographic
categories between 2015 and 2017. Error bars correspond to one standard error.

when comparing Generation X with Baby Boomers). Furthermore, women appear
to be slightly more risk-averse than men; these differences are significant at the 1%
level. Studies such as [53] suggest that risk aversion decreases with net worth. In our
surveys, we can only confirm this claim at the 5% level in 2015 (except for the High
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Figure 8-9: Estimated risk aversion coefficients for individual investors across countries
between 2015 and 2017. As some countries have only been surveyed one or twice, the
missing data has been left blank on the chart. Error bars correspond to one standard error.

Net Worth category). In 2016 and 2017, the pairwise differences across net worth
categories are not significant at the 5% level.

We also include a comparison of individual risk aversion across countries in Figure
8-9; Figure F-3 of the Appendix presents a year by year comparison of individual risk
aversion across countries. Standard errors are large for a few countries due to the
small sample size, and large differences between countries are generally not seen.
However, in 2017, and to some extent in 2016, pairwise differences are significant
at the 5% level and even at the 1% level. The first outlier is Hong Kong in 2015
and 2016, where investors are significantly less risk-averse than in almost every other
country considered (the differences are significant at the 5% level in 2015, and at
the 1% level in 2016). In 2017, China is significantly less risk-averse than all other
countries (except for Columbia and Peru), at the 5% level.

8.4.3 Cluster Analysis

We now perform clustering on the individual dataset of 22,400 investors pooled across
all three years of the study. We use the responses to the two S&P 500 asset allocation
questions described earlier. The verbal responses are transformed into numbers as
shown in Table 8.3; the numbers range from −2 to 2 for the two questions on reactions
to S&P 500 moves. We then run a 𝑘-means clustering algorithm assuming six clusters.
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We choose six clusters since this partition gives the most distinct and cleanest clusters
in comparison to using two to five clusters. For robustness we ran the algorithm for
different values of the random seed, and performed hierarchical clustering on the
dataset; the results were generally consistent in all cases. 7

Question Response Coding

Reaction to
S&P 500 Fall

Change in Equity Allocation:
−2 - Significant Decrease
−1 - Slight Decrease

0 - I Did Nothing
1 - Slight Increase
2 - Significant Increase

Reaction to
S&P 500 Rise

Change in Equity Allocation:
Same as for Reaction to S&P 500 Fall

Reaction to
Financial Crisis

Timing of Decrease in Equity Allocation:
1 - Second Half of 2007
2 - First Half of 2008
3 - Second Half of 2008
4 - First Half of 2009
5 - Second Half of 2009
6 - No Significant Decrease

Reaction to the
January 2016 Volatility

Change in Equity Allocation:
Same as for Reaction to S&P 500 Fall

Reaction to the 2017
Presidential Election

Change in Equity Allocation:
Same as for Reaction to S&P 500 Fall

Table 8.3: Coding of investor responses for the clustering algorithm. The exact formulation
of the questions and possible responses is in Sections F.1 and F.2 of the appendix.

Table 8.4 shows the results of the clustering procedure. Clusters 1 and 6 are
composed of extrapolators who tend to change equity allocation in the same direction
as a recent S&P 500 move. In cluster 1, extrapolators react more to a rise in the
S&P 500, with average responses of −0.7 for an S&P 500 fall and 1.1 for an S&P
500 rise. In cluster 6, extrapolators react more to a fall in the S&P 500, with
average responses of −2.0 for an S&P 500 fall and 0.8 for an S&P 500 rise. Cluster
2 consists predominantly of passive investors, since the average responses are “close"
to the response corresponding to not changing equity allocation in each of the two
S&P 500 scenarios: −0.1 for an S&P 500 fall and −0.1 for an S&P 500 rise. Cluster
3 contains mostly optimistic investors. They increase their allocation in both S&P
500 scenarios: average responses are 1.2 for an S&P 500 fall and 1.0 for an S&P

7We have also performed separate clustering analysis on each year from 2015 to 2017 and have
included in the analysis the additional asset allocation question from each year. The verbal responses
were also transformed into numbers as shown in Table 8.3; the numbers range from 1 to 6 for the
reaction to the Financial Crisis (2015 survey), from −2 to 2 for the reaction to the January Volatility
(2016 survey), and from −2 to 2 for the reaction to the U.S. Presidential Election (2017 survey).
These results are presented in Section F.6 of the appendix.
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500 rise. Cluster 4 is composed of contrarians who tend to change equity allocation
in the opposite direction as a recent S&P 500 move: average responses are 0.7 for
an S&P 500 fall and −1.7 for an S&P 500 rise. Finally, cluster 5 contains mostly
risk avoiders who significantly cut allocation following large moves in the S&P 500:
average responses are −1.5 for an S&P 500 fall and −1.6 for an S&P 500 rise.

To further validate our clustering approach, we look at the distributions of re-
sponses within each cluster, shown in Figure F-4 of the appendix. It is evident that
the distributions for the risk avoider and both extrapolator clusters are tightly clus-
tered around the corresponding means for the reactions to S&P 500 moves. The
same is true for the passive, contrarian and optimistic clusters. We conclude that the
clustering into six groups is indeed successful, and the descriptions of the clusters are
appropriate.

It is important to note the relative sizes of the clusters from Table 8.4. Passive
investors are the largest cluster and make up 35% of the whole sample. Extrapolators
consist of 27% of all investors, and risk avoiders are at 19%. The rest is composed
of optimistic investors (19%) and contrarians (8%). After running the clustering al-
gorithm several times, we have obtained consistent results. Because passive investors
and risk avoiders have symmetric responses to the two different questions about S&P
500 moves, the group of individual investors, taken as a whole, appears to exhibit
the extrapolative behavior that we discussed when comparing this group to financial
advisors and institutions.

To further motivate the significance of our clustering analysis, we have simulated
completely random reactions (i.e., we took reactions to S&P 500 movements to be
uniformly distributed over the set {−2, −1, 0, 1, 2}), and have assigned labels to the
clusters obtained. If a cluster’s mean reaction to an S&P 500 decline or increase was
smaller than 0.5, we assigned the “Passive Investor” label to the cluster. The four
other quadrants of the 2-dimensional response space were equally divided between
Extrapolators, Risk-Avoiders, Optimistic and Contrarian Investors. The clusters ob-
tained artificially (by running 10,000 simulations out of 50,000 responses) are dras-
tically different from the clusters obtained from the survey data. In the former, we
obtain, on average, a small fraction of Passive Investors, and the rest of the popu-
lation is equally divided between Extrapolators, Contrarian Investors, Risk-Avoiders
and Optimistic Investors. In the latter, we observe a dominance of Passive Investors,
as well as a large number of Extrapolators and Risk-Avoiders. The proportion of
Optimistic and Contrarian Investors is smaller.

In Table 8.4 we look at demographic patterns across different clusters. We as-
sume that the clusters are independent collections of investors and compare their
demographic averages; tests for statistical significance are given in Table F.11 of the
appendix. There are no significant differences in gender. Passive investors are the
oldest and risk avoiders as well as Optimistic investors are the youngest among the six
clusters (statistically significant at the 0.1% level, except for the pairwise comparison
between risk-avoiders and optimistic investors). Unsurprisingly, passive investors are
also the ones that are most likely to be retired (significant at the 0.1% level). This is
consistent with the results from Figure 8-7, which compared the degree of activity be-
tween generations. Here we have a more detailed breakdown, showing that the more
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Clustering Analysis of Individual Investors (2015-2017)

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

% Respondents 14% 35% 11% 8% 19% 13%
Allocation Decisions

Reaction to S&P 500 Fall −0.7 −0.1 1.2 0.7 −1.5 −2.0
Reaction to S&P 500 Rise 1.1 −0.1 1.0 −1.7 −1.6 0.8
Behavior Extrapolators+ Passive Optimistic Contrarian Risk Avoiders Extrapolators−

Demographics

Gender (% of Female) 42% 44% 40% 34%*** 43% 39%
Age 1.16 1.33*** 1.00 1.09 0.97 1.10
Net Worth 1.53 1.51 1.64* 1.54 1.51 1.56
Advised 65% 54%*** 71%* 63% 62% 67%
Retired 8% 12%*** 5% 6% 5% 6%
From U.S. 8% 12% 18%*** 8% 8% 7%
Gamble Preference 2.41 2.12*** 2.80*** 2.58 2.54 2.53
Risk Aversion Coefficient 1.07 1.20*** 0.82*** 0.96 0.95 1.00

Table 8.4: Clustering of allocation decision responses from the 2015-2017 Individual In-
vestor Surveys. For each cluster, we present the percent of respondents and the mean
response based on the response coding in Table 8.3.
We also list the mean values of demographic categories across clusters. For Age, Generation

Y = 0, Generation X = 1, Baby Boomers = 2, Pre-Baby Boomers = 3. For Net Worth,
Mass Market = 0, Mass Affluent = 1, Emerging HNW = 2, High Net Worth = 3. The defi-
nitions of demographic categories are in Table F.7 in the Appendix. Advised is an indicator
for if an investor uses a financial advisor. Retired is an indicator for if an investor is retired.
From U.S. is an indicator for if an investor is from the United States. Gamble Preference

corresponds to the one of six gambles from Table 8.2 chosen by the investor; Responses
range from 1 to 6. Risk Aversion Coefficient is the estimated risk aversion coefficient based
on the responses in each cluster.
For each category, we color in green the cell corresponding to the cluster with the high-
est mean value. We test for how significant the difference is between the highest mean and
second-highest mean across the clusters; the result of the test is reported in terms of number
of stars in the cell. * means significance at the 5% level, *** means significance at the 0.1%
level; no stars means no significance at the 5% level. We color in red the cell corresponding
to the cluster with the lowest mean value, and perform the same test comparing the lowest
mean and second-lowest mean across the clusters.

active group, made up of younger investors, tends to exhibit risk avoidance behavior
following large S&P 500 changes.

There are no significant differences in net worth across the clusters—except that
the “optimistic" group has the highest average net worth (significant at the 5% level).
An interesting distinction arises when we look at the proportion of investors in dif-
ferent clusters who use a financial advisor. We also observe that passive investors
are much less likely to use an advisor (significant at the 1% level), while optimistic
investors are much more likely to use an advisor (significant at the 5% level). Ex-
trapolators are also more likely to use an advisor compared to passive investors,
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contrarians and risk avoiders (significant at the 1% level). This makes intuitive sense,
given that a financial advisor would likely try to discourage a risk avoider from signif-
icantly decreasing equity allocation in response to all large changes, as well as likely
encouraging some fraction of passive investors into more active allocation. Interest-
ingly enough, the optimistic and extrapolator clusters are the most likely to use a
financial advisor—even though, as mentioned earlier, advisors usually provide con-
trarian advice to these individuals. We do not have sufficient evidence to explain this
finding. However, it may be that advisors often deal with clients who extrapolate,
and consequently advise an “opposite" allocation strategy to mitigate the bias of these
investors.

Another dimension on which we compare investors is the degree of satisfaction
with their 2014 and 2015 investment returns, as shown in Tables F.8 and F.9 of
the appendix. Not surprisingly, in the 2015 Survey, risk avoiders were much less
satisfied in comparison to optimistic investors (significant at the 0.1% level). This
is likely explained by their risk avoidance: they saw large positive returns on their
investments, and thus decreased their equity allocation—and missed out on very good
market returns over the full year, the S&P 500 returning 13.5% in 2014. We note
that financial advisors would be particularly beneficial to risk avoiders, since they
would encourage investors to stay invested in the market despite large swings, and
in this way earn higher returns over longer time horizons. In the 2016 Survey, Risk
Avoiders have been more satisfied with their 2015 returns. The S&P 500 returned 1%
in 2015, which could explain the satisfaction of investors with conservative strategies.

Finally, we compare risk aversion across the clusters. Passive investors are the
most risk-averse cluster and optimistic investors are the most risk-seeking cluster
(both are significant at the 0.1% level when comparing directly the gamble preferences
as well as risk aversion coefficients). This is most likely due to its composition of
predominantly older investors, who are more risk-averse than younger cohorts, as
seen earlier. Ironically, risk avoiders do not appear to be one of the most risk-averse
cluster: the differences are not significant compared to the contrarians group, but
are significant at the 0.1% level compared to the optimistic group. We observe that
the risk-avoiders group has the lowest average age, and predominantly consists of
millennials. Although these younger investors may not recall the golden returns of
the 1990s, they may still be psychologically affected by the 2008 financial crisis.
This can cause large movements in the S&P 500 to trigger fear, and incentivize these
investors to decrease their equity allocation. However, the risk aversion coefficient is
calculated based on a win-win scenario by presenting six risky winning gambles to
the participants. This suggests that our group of “risk avoiders" are actually more
sensitive to loss-aversion than the other clusters, while being ready to take riskier
win-win gambles than passive investors or extrapolators. On the other hand, passive
investors, consisting of the eldest investors, do not react to any movement in the S&P
500 and are not interested in the riskier winning gambles. The latter is responsible
for their higher risk-aversion coefficient. The idea that an individual’s experience can
affect his investment preferences has been investigated in [163]. It is also interesting
to note that the least risk-averse cluster corresponds to the group of “optimistic"
investors. These investors are willing and are able to take riskier asset allocation
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decisions and riskier gambles. It is not a surprise to observe that this cluster has the
highest net worth average. Optimistic investors also correspond to the group with
the highest proportion of respondents from the United States. This could suggest
that investors from the Unites States have a different and more optimistic perception
of the S&P 500 than investors from the rest of the world.

We briefly comment on clustering results for the financial advisor and institutional
investor responses. Because the sample sizes for these groups are much smaller than
for the individual investor sample, we cannot perform the in-depth analysis that we
do for individuals. However, we can still look at the largest cluster in each group.
In particular, we use the responses from the two questions about hypothetical S&P
500 moves to form three clusters (data exploration found three–or four in the case
of 2016 Financial Advisors–to be the most useful number). Tables F.15 to F.19
in the Appendix outline the relative sizes of the clusters and the average responses
within each cluster. We see that the largest cluster in each sample clearly corresponds
to a contrarian reaction; it makes up 47% of the sample for advisors and 68% for
institutions in 2015, as well as 34% and 61% respectively for advisors and institutions
in 2016. In 2017, 71% of the institutional investors appear to be contrarian. This
further confirms our findings from the previous section that advisors and institutions
are predominantly contrarian.

8.5 Conclusion

Using a comprehensive global survey over three consecutive years, we have identified
differences in the investment behavior and risk tolerance preferences of individual
investors, financial advisors, and institutional investors. Advisors and institutions
exhibit contrarian strategies in their behavior whereby they tend to change equity
allocation in the opposite direction of recent returns on the S&P 500. This reaction
is particularly strong for institutional respondents, 67% of whom would increase eq-
uity allocation following a fall in the S&P 500, and 68% would decrease allocation
following a rise. This behavior is not as pronounced among financial advisors, because
a large proportion of advisors tend to act passively and not change allocation at all.

By asking for preferences among six hypothetical gambles we are able to estimate
the risk aversion coefficient for each of the three groups. Consistent with general
intuition, individual investors are by far the most risk-averse, whereas institutional
investors are the least risk-averse. We also compare risk aversion across different
individual demographic categories, and find that risk aversion increases with age.

We observe significant heterogeneity among individual investors in terms of their
allocation decisions. Using a clustering algorithm we classify investors into five dis-
tinct types. The first corresponds to passive investors and makes up about 35% of
the sample. The next three types are extrapolators (27% of the sample), risk avoiders

(19% of the sample), and optimistic investors (11% of the sample). Finally we also
observe a few contrarians, which constitute about 8% of all respondents.

Risk avoiders tend to significantly decrease equity allocation following large changes
in the S&P 500 (both positive and negative), while extrapolators shift allocation in
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the same direction as those changes. Passive investors are, on average, older and
more risk-averse than the other types, while risk avoiders tend to consist of younger
investors.

Our results using this novel survey dataset have important implications for future
research. First, this data gives us new insight into the allocation decisions of market
participants over medium-term time horizons. While there have been been extensive
studies of short-term trading by individual and institutional investors (e.g. by [103]
and [102]), few have looked at the broader decisions of asset allocation. The fact that
institutions and advisors are largely contrarian in their allocation strategies, while
investors are on average slightly extrapolative, may be important in understanding
the process of strategic asset allocation and the trading between these different market
participants on the asset class level.

Our other important insight comes from our breakdown of individual investors
into clusters of different behavioral types. Our “risk avoider" type has seldom been
documented in the literature, and it may prove to be a useful component of future
economic models. Recent papers already incorporate extrapolators (e.g. [14]) into
their models, as well as fundamental investors, which correspond to our institutional
investors. It would be interesting to see the equilibrium dynamics of all five different
individual investor types play out, as well as the dynamics of potentially contrarian
institutions taking the other side of trades made by extrapolators.

Finally, it is of significant benefit to study the behavior of financial advisors, and
in particular, why so many of them advocate contrarian strategies to their clients. It
also appears that individuals who use a financial advisor are more likely to exhibit
extrapolative behavior. Do they ignore financial advice, or are advisors trying to
“balance out" their extrapolation with contrarian suggestions? Further surveys and
studies of historical financial advice and associated client action are needed to answer
these questions.
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Part IV

Concluding Remarks
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Chapter 9

Concluding Remarks

In this thesis, we approached the topic of risk management from three different per-
spectives: first in healthcare finance—during the drug development process and the
drug deployment process, then in empirical asset pricing, and finally in investment
management.

Although healthcare finance, empirical asset pricing, and investment management
may appear as very different fields at first sight, they all rely at their core on the con-
cepts of benefit, risk, and uncertainty. If BDA explicitly trades off benefit, risk,
and uncertainty in its formulation, empirical asset pricing aims to understand and
quantify the nature of the different risk factors stocks are exposed to, and invest-
ment management is inevitably tied to an investor’s risk and uncertainty profile and
behavioral biases.

9.1 Summary of contributions

In Chapters 2, 3, and 4, we focused on the regulatory and decision-making process by
trading off type I and type II error rates to design optimal clinical trials that incorpo-
rate the patient’s risk and uncertainty preferences. Chapter 2 presented the classical
Bayesian framework with an application to safety endpoints of kidney replacement
therapy devices and Chapter 3 presented an application to effectiveness endpoints
of Parkinson’s disease devices. In the former, we found that, except for patients on
peritoneal dialysis, most patient groups presented a low risk tolerance with respect
to the kidney replacement therapy device for the risk of serious bleeding and the
risk of serious infection, as well as a low willingness to wait. This is reflected in the
conservative 1.2% type I error rate threshold found for the risk of serious bleeding
and a threshold below 0.1% for the risk of serious infection, which are both below the
2.5% threshold conventionally used. In the case of devices for Parkinson’s disease, we
found that a 5% threshold may not be conservative enough for patients with no prior
experience with deep brain stimulation treatments but too conservative for patients
who have previously received deep brain stimulation treatments.

Chapter 4 extended the Bayesian formulation by allowing the treatment effect to
have a continuous prior distribution and by incorporating the patient’s uncertainty
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aversion into a mean-variance objective. We used the Parkinson’s device analysis
from Chapter 3 as a case study to understand the differences between the traditional
BDA and extended BDA formulations. As expected, we found that the extended
BDA setting produces optimal significance level thresholds that are more conservative
when the severity of the disease is lower and less conservative when the severity of
the disease is higher, suggesting that patients may be willing to try a treatment with
higher level of uncertainty around its efficacy when the disease is more severe and
when there are no alternatives available. Furthermore, we found the extended BDA
framework to be robust, under a Gaussian prior, to the patient’s uncertainty-aversion
parameter and to uncertainties in the treatment’s efficacy.

We then turned our attention to the development and deployment of vaccines for
emerging infectious diseases. Chapter 5 developed a systematic method to evaluate
and simulate vaccine allocation strategies under supply shocks, with an application to
the COVID-19 pandemic. We found that, under some mild assumptions, allocating
more than 50% of available doses to individuals who have not received their first
dose can significantly increase the number of lives saved and significantly reduce the
number of COVID-19 infections. More precisely, a 50% allocation saves on average
33% more lives, and prevents on average 32% more infections relative to a policy that
guarantees a second dose to all first-dose recipients.

Chapter 6 focuses on the development of a large portfolio of mRNA vaccine can-
didates targeting the 11 EIDs selected by CEPI. We found that this vaccine portfolio
yields an average annualized return on investment of −6.0% per annum, and a neg-
ative net present value of −$9.5 billion, despite the scientific advantages of mRNA
technology and the financial benefits of diversification. However, 94% of the total
investment is used to fund the clinical trial for the vaccine candidates, while vaccine
manufacturing costs account for only 6%. We found that the price per vaccine dose
had a first order impact on the portfolio’s financial performance, while other factors
such as the increased probability of success due to mRNA technology, the size of the
portfolio, and the possibility of conducting human challenge trials do not significantly
improve its financial performance.

Moving away from healthcare finance, we considered an important problem in the
empirical asset pricing literature: shrinking the set of risk factors proposed in the
literature. In Chapter 7, we proposed linear and nonlinear techniques to construct
latent factors from a set of 150 well-known risk factors from the asset pricing liter-
ature and compared the performance of these latent models to classical multi-factor
models used routinely by finance academics and practitioners. We found that, by
incorporating economic intuition into the loss function and architecture of the au-
toencoder, our methodology was able to capture most of the information contained
in the 150 anomaly risk factors and performed better than the Fama-French 5-factors
and Hou-Xue-Zhang 5-factors as a model of returns and average returns. We have
also found recursive autoencoders to be powerful, not only for obtaining uncorrelated
factors, but also as regularization tool that can produce factor models that are more
robust to changes in the autoencoder’s architecture and hyperparameters.

Finally, we explored investor risk profiles and behavioral biases in the investment
management landscape by surveying a large pool of over 7, 000 individual investors,
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2, 300 financial advisors, and 660 institutional investors, in 2015, 2016, and 2017,
about their investment decisions under various historical and hypothetical scenarios.
The goal was to understand how different market participants and different types of
individuals compare along the dimensions of risk aversion and investment style. We
found that investors tend to be significantly more risk-averse and mostly extrapolative
in their asset allocation, while institutions tend to be significantly less risk-averse and
mostly contrarian in their investment decisions, with advisors falling in the middle of
the risk aversion scale while also following a contrarian asset allocation strategy. Fo-
cusing solely on individual investors, we also identified five distinct types of investors:
passive investors, extrapolators, risk avoiders, contrarians and optimistic investors.
Although we found most of the surveyed individuals to be passive investors, a signif-
icant portion of investors are risk avoiders or extrapolators.
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Part V

Appendices
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Appendix A

Chapter 2 Supplementary Material

A.1 BDA-optimal type I error rates and clinical

trial sample sizes across patient subgroups
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Figure A-1: BDA-Optimal Type I Error Rate Across Dialysis Modality Sub-

groups for the Risk of Serious Bleeding (top) and the Risk of Serious Infec-

tion (bottom) Endpoints. The average concern ratio across patients is represented
by a vertical black line, and the shaded region represents plus/minus one standard
deviation around the mean.
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Figure A-2: BDA-Optimal Type I Error Rate Across Age Subgroups for the

Risk of Serious Bleeding (top) and the Risk of Serious Infection (bottom)

Endpoints. The average concern ratio across patients is represented by a verti-
cal black line, and the shaded region represents plus/minus one standard deviation
around the mean.
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Figure A-3: BDA-Optimal Type I Error Rate Across Gender Subgroups

for the Risk of Serious Bleeding (top) and the Risk of Serious Infection

(bottom) Endpoints. The average concern ratio across patients is represented
by a vertical black line, and the shaded region represents plus/minus one standard
deviation around the mean.
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Figure A-4: BDA-Optimal Type I Error Rate Across Time on Dialysis Sub-

groups for the Risk of Serious Bleeding (top) and the Risk of Serious

Infection (bottom) Endpoints. The average concern ratio across patients is rep-
resented by a vertical black line, and the shaded region represents plus/minus one
standard deviation around the mean.
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Figure A-5: BDA-Optimal Type I Error Rate Across Ethnicity Subgroups

for the Risk of Serious Bleeding (top) and the Risk of Serious Infection

(bottom) Endpoints. The average concern ratio across patients is represented
by a vertical black line, and the shaded region represents plus/minus one standard
deviation around the mean.
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Figure A-6: BDA-Optimal Total Sample Size Across Dialysis Modality Sub-

groups for the Risk of Serious Bleeding (top) and the Risk of Serious Infec-

tion (bottom) Endpoints. The average concern ratio across patients is represented
by a vertical black line, and the shaded region represents plus/minus one standard
deviation around the mean.
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Figure A-7: BDA-Optimal Total Sample Size Across Age Subgroups for the

Risk of Serious Bleeding (top) and the Risk of Serious Infection (bottom)

Endpoints. The average concern ratio across patients is represented by a verti-
cal black line, and the shaded region represents plus/minus one standard deviation
around the mean.
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Figure A-8: BDA-Optimal Total Sample Size Across Gender Subgroups

for the Risk of Serious Bleeding (top) and the Risk of Serious Infection

(bottom) Endpoints. The average concern ratio across patients is represented
by a vertical black line, and the shaded region represents plus/minus one standard
deviation around the mean.
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Figure A-9: BDA-Optimal Total Sample Size Across Time on Dialysis Sub-

groups for the Risk of Serious Bleeding (top) and the Risk of Serious

Infection (bottom) Endpoints. The average concern ratio across patients is rep-
resented by a vertical black line, and the shaded region represents plus/minus one
standard deviation around the mean.
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Figure A-10: BDA-Optimal Total Sample Size Across Ethnicity Subgroups

for the Risk of Serious Bleeding (top) and the Risk of Serious Infection

(bottom) Endpoints. The average concern ratio across patients is represented
by a vertical black line, and the shaded region represents plus/minus one standard
deviation around the mean.
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A.2 Sensitivity Analysis: Safety margin

The baseline safety margin 𝛿0 is assumed to be 3% and 6% for the risk of serious
bleeding and the risk of serious infection respectively. We consider here the impact
of using a low safety margin by reducing 𝛿0 by 50% and a high safety margin by
increasing 𝛿0 by 50%.

Figure A-11: BDA-Optimal Type I Error Rate (Top) and Clinical Trial Total

Sample Size (Bottom) for Three Safety Endpoints at a Low Safety Margin.

The average concern ratio across patients is represented by a vertical black line, and
the shaded region represents the range of plus/minus one standard deviation around
the mean.
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Figure A-12: BDA-Optimal Type I Error Rate (Top) and Clinical Trial Total

Sample Size (Bottom) for Three Safety Endpoints at a High Safety Margin.

The average concern ratio across patients is represented by a vertical black line, and
the shaded region represents the range of plus/minus one standard deviation around
the mean.
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A.3 Sensitivity Analysis: Variability in the base-

line and device risks

The baseline variability in the risk of serious bleeding and the risk of serious infection
is assumed to be 1% and 2% respectively in the control group and 2% and 5% respec-
tively in the treatment group. We consider here the impact of using a low variability
by reducing 𝛿0 by 50% and a high variability by increasing 𝛿0 by 50%.

Figure A-13: BDA-Optimal Type I Error Rate (Top) and Clinical Trial Total

Sample Size (Bottom) for Three Safety Endpoints for a Low Variability.

The average concern ratio across patients is represented by a vertical black line, and
the shaded region represents the range of plus/minus one standard deviation around
the mean.
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Figure A-14: BDA-Optimal Type I Error Rate (Top) and Clinical Trial Total

Sample Size (Bottom) for Three Safety Endpoints for a High Variability.

The average concern ratio across patients is represented by a vertical black line, and
the shaded region represents the range of plus/minus one standard deviation around
the mean.
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Appendix B

Chapter 3 Supplementary Material

B.1 Sensitivity Analysis

In this section, we investigate the robustness of our results to the parameter assump-
tions in our model. We update the optimal balanced two-arm fixed-sample RCT
for each of the subgroups in our study as we vary the power constraint (Powermax)
and the age of the patient subpopulation (Agecat). The optimal significance level
and sample size associated with the perturbed parameters are given in Tables B.1
through B.6.

In Tables B.1 and B.2, we find that both the sample size and significance level
decrease (increase) as the power constraint decreases (increases). By increasing the
probability of a false rejection, the optimization is able to decrease both the trial
length and the probability of a false approval. Furthermore, as the age increases in
Tables B.3 through B.6, the delay caused by the trial length becomes more harmful
as the discount rate increases. Here, the optimization attempts to further reduce the
sample size of the trial at the expense of larger false approval rates.

Finally, in addition to providing recommendations for specific patient-centered
RCT designs, this sensitivity analysis highlights the need for carefully considered
assumptions and accurately calibrated preference models when implementing these
methods.

207



Table B.1: BDA-optimal RCTs for Parkinson’s devices with no power constraint. Indicator variables are set to 1 when a
characteristic is present.

Subpopulation RCT Design
No. DBS Non-

ambulatory
Cognitive
symptom

Motor
symptom

Dyskinesia Severity ra-
tio 𝐿1/𝐿0

Discount
rate 𝑅

Trial size
2𝑛

Significance
level 𝛼

Power
1 − 𝛽

1 0 0 0 0 0 0.06 17.2% 332 0.2% 94.3%
2 0 0 0 0 1 0.08 18.8% 308 0.3% 94.0%
3 0 0 0 1 0 0.28 15.9% 270 1.0% 95.4%
4 0 0 0 1 1 0.30 17.2% 258 1.2% 95.1%
5 0 1 0 0 0 0.40 19.6% 232 1.8% 94.6%
6 0 1 0 0 1 0.42 21.6% 220 2.0% 94.2%
7 0 0 1 0 0 0.46 17.7% 234 1.9% 95.2%
8 0 0 1 0 1 0.48 19.3% 224 2.1% 94.8%
9 0 1 0 1 0 0.62 18.0% 218 2.7% 95.3%
10 0 1 0 1 1 0.64 19.6% 208 2.9% 94.9%
11 0 0 1 1 0 0.68 16.3% 224 2.7% 95.8%
12 0 0 1 1 1 0.70 17.7% 214 2.9% 95.4%
13 0 1 1 0 0 0.80 20.2% 196 3.8% 95.1%
14 0 1 1 0 1 0.82 22.3% 184 4.4% 94.6%
15 0 1 1 1 0 1.02 18.4% 190 4.7% 95.5%
16 1 0 0 0 0 1.03 19.6% 186 4.9% 95.4%
17 0 1 1 1 1 1.04 20.2% 182 5.1% 95.2%
18 1 0 0 0 1 1.05 21.5% 174 5.6% 94.9%
19 1 0 0 1 0 1.25 17.9% 184 5.6% 95.8%
20 1 0 0 1 1 1.27 19.6% 174 6.3% 95.5%
21 1 1 0 0 0 1.37 22.7% 158 7.6% 95.0%
22 1 1 0 0 1 1.39 25.4% 148 8.5% 94.5%
Continued on next page
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Table B.1 – Continued from previous page

Subpopulation RCT Design
No. DBS Non-

ambulatory
Cognitive
symptom

Motor
symptom

Dyskinesia Severity ra-
tio 𝐿1/𝐿0

Discount
rate 𝑅

Trial size
2𝑛

Significance
level 𝛼

Power
1 − 𝛽

23 1 0 1 0 0 1.43 20.1% 166 7.3% 95.5%
24 1 0 1 0 1 1.46 22.2% 156 8.2% 95.2%
25 1 1 0 1 0 1.59 20.5% 160 8.2% 95.5%
26 1 1 0 1 1 1.61 22.7% 150 9.1% 95.2%
27 1 0 1 1 0 1.65 18.4% 166 7.9% 95.9%
28 1 0 1 1 1 1.67 20.1% 158 8.5% 95.6%
29 1 1 1 0 0 1.77 23.5% 142 10.5% 95.2%
30 1 1 1 0 1 1.80 26.4% 132 11.6% 94.7%
31 1 1 1 1 0 1.99 21.1% 144 10.9% 95.6%
32 1 1 1 1 1 2.02 23.5% 136 12.0% 95.3%

Table B.2: BDA-optimal RCTs for Parkinson’s devices with 80% power constraint. Indicator variables are set to 1 when a
characteristic is present.

Subpopulation RCT Design
No. DBS Non-

ambulatory
Cognitive
symptom

Motor
symptom

Dyskinesia Severity ra-
tio 𝐿1/𝐿0

Discount
rate 𝑅

Trial size
2𝑛

Significance
level 𝛼

Power
1 − 𝛽

1 0 0 0 0 0 0.06 17.2% 248 0.1% 80%
2 0 0 0 0 1 0.08 18.8% 228 0.2% 80%
3 0 0 0 1 0 0.28 15.9% 188 0.6% 80%
4 0 0 0 1 1 0.30 17.2% 188 0.6% 80%
5 0 1 0 0 0 0.40 19.6% 158 1.3% 80%
6 0 1 0 0 1 0.42 21.6% 156 1.4% 80%
Continued on next page
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Table B.2 – Continued from previous page

Subpopulation RCT Design
No. DBS Non-

ambulatory
Cognitive
symptom

Motor
symptom

Dyskinesia Severity ra-
tio 𝐿1/𝐿0

Discount
rate 𝑅

Trial size
2𝑛

Significance
level 𝛼

Power
1 − 𝛽

7 0 0 1 0 0 0.46 17.7% 158 1.3% 80%
8 0 0 1 0 1 0.48 19.3% 156 1.4% 80%
9 0 1 0 1 0 0.62 18.0% 142 2.0% 80%
10 0 1 0 1 1 0.64 19.6% 142 2.0% 80%
11 0 0 1 1 0 0.68 16.3% 142 2.0% 80%
12 0 0 1 1 1 0.70 17.7% 142 2.0% 80%
13 0 1 1 0 0 0.80 20.2% 138 2.2% 80%
14 0 1 1 0 1 0.82 22.3% 134 2.4% 80%
15 0 1 1 1 0 1.02 18.4% 116 3.7% 80%
16 1 0 0 0 0 1.03 19.6% 116 3.7% 80%
17 0 1 1 1 1 1.04 20.2% 116 3.7% 80%
18 1 0 0 0 1 1.05 21.5% 116 3.7% 80%
19 1 0 0 1 0 1.25 17.9% 116 3.7% 80%
20 1 0 0 1 1 1.27 19.6% 116 3.7% 80%
21 1 1 0 0 0 1.37 22.7% 104 5.0% 80%
22 1 1 0 0 1 1.39 25.4% 104 5.0% 80%
23 1 0 1 0 0 1.43 20.1% 104 5.0% 80%
24 1 0 1 0 1 1.46 22.2% 104 5.0% 80%
25 1 1 0 1 0 1.59 20.5% 104 5.0% 80%
26 1 1 0 1 1 1.61 22.7% 104 5.0% 80%
27 1 0 1 1 0 1.65 18.4% 104 5.0% 80%
28 1 0 1 1 1 1.67 20.1% 104 5.0% 80%
29 1 1 1 0 0 1.77 23.5% 88 7.4% 80%
30 1 1 1 0 1 1.80 26.4% 88 7.4% 80%
Continued on next page
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Table B.2 – Continued from previous page

Subpopulation RCT Design
No. DBS Non-

ambulatory
Cognitive
symptom

Motor
symptom

Dyskinesia Severity ra-
tio 𝐿1/𝐿0

Discount
rate 𝑅

Trial size
2𝑛

Significance
level 𝛼

Power
1 − 𝛽

31 1 1 1 1 0 1.99 21.1% 88 7.4% 80%
32 1 1 1 1 1 2.02 23.5% 88 7.4% 80%

Table B.3: BDA-optimal RCTs for Parkinson’s devices for patients less than 61 years old. Indicator variables are set to 1 when
a characteristic is present.

Subpopulation RCT Design
No. DBS Non-

ambulatory
Cognitive
symptom

Motor
symptom

Dyskinesia Severity ra-
tio 𝐿1/𝐿0

Discount
rate 𝑅

Trial size
2𝑛

Significance
level 𝛼

Power
1 − 𝛽

1 0 0 0 0 0 -0.06 15.6% — — —
2 0 0 0 0 1 -0.03 16.8% — — —
3 0 0 0 1 0 0.20 14.5% 242 0.6% 90%
4 0 0 0 1 1 0.23 15.6% 238 0.7% 90%
5 0 1 0 0 0 0.35 17.5% 210 1.2% 90%
6 0 1 0 0 1 0.38 19.1% 204 1.4% 90%
7 0 0 1 0 0 0.43 15.9% 204 1.4% 90%
8 0 0 1 0 1 0.45 17.2% 196 1.6% 90%
9 0 1 0 1 0 0.62 16.2% 188 1.9% 90%
10 0 1 0 1 1 0.65 17.5% 176 2.5% 90%
11 0 0 1 1 0 0.69 14.8% 188 1.9% 90%
12 0 0 1 1 1 0.72 15.9% 176 2.5% 90%
13 0 1 1 0 0 0.84 18.0% 164 3.2% 90%
14 0 1 1 0 1 0.87 19.6% 160 3.5% 90%
Continued on next page
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Table B.3 – Continued from previous page

Subpopulation RCT Design
No. DBS Non-

ambulatory
Cognitive
symptom

Motor
symptom

Dyskinesia Severity ra-
tio 𝐿1/𝐿0

Discount
rate 𝑅

Trial size
2𝑛

Significance
level 𝛼

Power
1 − 𝛽

15 0 1 1 1 0 1.10 16.6% 156 3.9% 90%
16 1 0 0 0 0 1.12 17.5% 154 4.0% 90%
17 0 1 1 1 1 1.13 18.0% 154 4.0% 90%
18 1 0 0 0 1 1.15 19.0% 146 4.8% 90%
19 1 0 0 1 0 1.39 16.2% 146 4.8% 90%
20 1 0 0 1 1 1.41 17.5% 144 5.0% 90%
21 1 1 0 0 0 1.53 20.0% 134 6.1% 90%
22 1 1 0 0 1 1.56 22.0% 124 7.5% 90%
23 1 0 1 0 0 1.61 17.9% 138 5.6% 90%
24 1 0 1 0 1 1.64 19.6% 124 7.5% 90%
25 1 1 0 1 0 1.80 18.2% 124 7.5% 90%
26 1 1 0 1 1 1.83 20.0% 124 7.5% 90%
27 1 0 1 1 0 1.87 16.5% 136 5.8% 90%
28 1 0 1 1 1 1.90 17.9% 124 7.5% 90%
29 1 1 1 0 0 2.02 20.5% 116 8.8% 90%
30 1 1 1 0 1 2.05 22.7% 110 10.0% 90%
31 1 1 1 1 0 2.29 18.7% 116 8.8% 90%
32 1 1 1 1 1 2.31 20.5% 110 10.0% 90%
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Table B.4: BDA-optimal RCTs for Parkinson’s devices for patients between 61 and 66 years old. Indicator variables are set to
1 when a characteristic is present.

Subpopulation RCT Design
No. DBS Non-

ambulatory
Cognitive
symptom

Motor
symptom

Dyskinesia Severity ra-
tio 𝐿1/𝐿0

Discount
rate 𝑅

Trial size
2𝑛

Significance
level 𝛼

Power
1 − 𝛽

1 0 0 0 0 0 0.04 16.1% 314 0.1% 90%
2 0 0 0 0 1 0.06 17.4% 294 0.2% 90%
3 0 0 0 1 0 0.24 14.9% 238 0.7% 90%
4 0 0 0 1 1 0.26 16.1% 228 0.8% 90%
5 0 1 0 0 0 0.35 18.1% 210 1.2% 90%
6 0 1 0 0 1 0.37 19.8% 204 1.4% 90%
7 0 0 1 0 0 0.40 16.4% 204 1.4% 90%
8 0 0 1 0 1 0.43 17.8% 196 1.6% 90%
9 0 1 0 1 0 0.55 16.7% 188 1.9% 90%
10 0 1 0 1 1 0.57 18.1% 188 1.9% 90%
11 0 0 1 1 0 0.60 15.3% 188 1.9% 90%
12 0 0 1 1 1 0.62 16.4% 188 1.9% 90%
13 0 1 1 0 0 0.71 18.6% 176 2.5% 90%
14 0 1 1 0 1 0.74 20.4% 164 3.2% 90%
15 0 1 1 1 0 0.91 17.1% 162 3.4% 90%
16 1 0 0 0 0 0.93 18.1% 160 3.5% 90%
17 0 1 1 1 1 0.93 18.6% 158 3.7% 90%
18 1 0 0 0 1 0.95 19.8% 156 3.9% 90%
19 1 0 0 1 0 1.13 16.7% 154 4.0% 90%
20 1 0 0 1 1 1.15 18.1% 154 4.0% 90%
21 1 1 0 0 0 1.24 20.7% 142 5.2% 90%
22 1 1 0 0 1 1.26 23.0% 138 5.6% 90%
Continued on next page
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Subpopulation RCT Design
No. DBS Non-

ambulatory
Cognitive
symptom

Motor
symptom

Dyskinesia Severity ra-
tio 𝐿1/𝐿0

Discount
rate 𝑅

Trial size
2𝑛

Significance
level 𝛼

Power
1 − 𝛽

23 1 0 1 0 0 1.29 18.6% 146 4.8% 90%
24 1 0 1 0 1 1.31 20.3% 140 5.4% 90%
25 1 1 0 1 0 1.43 18.9% 140 5.4% 90%
26 1 1 0 1 1 1.46 20.7% 136 5.8% 90%
27 1 0 1 1 0 1.49 17.1% 142 5.2% 90%
28 1 0 1 1 1 1.51 18.6% 138 5.6% 90%
29 1 1 1 0 0 1.60 21.4% 124 7.5% 90%
30 1 1 1 0 1 1.62 23.8% 124 7.5% 90%
31 1 1 1 1 0 1.80 19.4% 124 7.5% 90%
32 1 1 1 1 1 1.82 21.4% 116 8.8% 90%

Table B.5: BDA-optimal RCTs for Parkinson’s devices for patients between 67 and 71 years old. Indicator variables are set to
1 when a characteristic is present.

Subpopulation RCT Design
No. DBS Non-

ambulatory
Cognitive
symptom

Motor
symptom

Dyskinesia Severity ra-
tio 𝐿1/𝐿0

Discount
rate 𝑅

Trial size
2𝑛

Significance
level 𝛼

Power
1 − 𝛽

1 0 0 0 0 0 0.16 18.1% 242 0.6% 90%
2 0 0 0 0 1 0.18 19.8% 238 0.7% 90%
3 0 0 0 1 0 0.37 16.7% 210 1.2% 90%
4 0 0 0 1 1 0.39 18.1% 204 1.4% 90%
5 0 1 0 0 0 0.49 20.8% 188 1.9% 90%
6 0 1 0 0 1 0.51 23.1% 176 2.5% 90%
Continued on next page
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Subpopulation RCT Design
No. DBS Non-

ambulatory
Cognitive
symptom

Motor
symptom

Dyskinesia Severity ra-
tio 𝐿1/𝐿0

Discount
rate 𝑅

Trial size
2𝑛

Significance
level 𝛼

Power
1 − 𝛽

7 0 0 1 0 0 0.55 18.6% 188 1.9% 90%
8 0 0 1 0 1 0.57 20.4% 176 2.5% 90%
9 0 1 0 1 0 0.70 19.0% 176 2.5% 90%
10 0 1 0 1 1 0.72 20.8% 164 3.2% 90%
11 0 0 1 1 0 0.76 17.1% 176 2.5% 90%
12 0 0 1 1 1 0.78 18.6% 166 3.1% 90%
13 0 1 1 0 0 0.88 21.5% 156 3.9% 90%
14 0 1 1 0 1 0.90 23.9% 154 4.0% 90%
15 0 1 1 1 0 1.09 19.5% 154 4.0% 90%
16 1 0 0 0 0 1.10 20.7% 146 4.8% 90%
17 0 1 1 1 1 1.11 21.5% 146 4.8% 90%
18 1 0 0 0 1 1.13 23.0% 142 5.2% 90%
19 1 0 0 1 0 1.32 18.9% 144 5.0% 90%
20 1 0 0 1 1 1.34 20.7% 138 5.6% 90%
21 1 1 0 0 0 1.43 24.3% 124 7.5% 90%
22 1 1 0 0 1 1.46 27.5% 116 8.8% 90%
23 1 0 1 0 0 1.49 21.4% 134 6.1% 90%
24 1 0 1 0 1 1.51 23.8% 124 7.5% 90%
25 1 1 0 1 0 1.65 21.8% 124 7.5% 90%
26 1 1 0 1 1 1.67 24.3% 116 8.8% 90%
27 1 0 1 1 0 1.70 19.4% 124 7.5% 90%
28 1 0 1 1 1 1.73 21.4% 124 7.5% 90%
29 1 1 1 0 0 1.82 25.2% 110 10.0% 90%
30 1 1 1 0 1 1.84 28.6% 104 11.3% 90%
Continued on next page
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Subpopulation RCT Design
No. DBS Non-

ambulatory
Cognitive
symptom

Motor
symptom

Dyskinesia Severity ra-
tio 𝐿1/𝐿0

Discount
rate 𝑅

Trial size
2𝑛

Significance
level 𝛼

Power
1 − 𝛽

31 1 1 1 1 0 2.03 22.5% 110 10.0% 90%
32 1 1 1 1 1 2.06 25.2% 104 11.3% 90%

Table B.6: BDA-optimal RCTs for Parkinson’s devices for patients 72 years old or older. Indicator variables are set to 1 when
a characteristic is present.

Subpopulation RCT Design
No. DBS Non-

ambulatory
Cognitive
symptom

Motor
symptom

Dyskinesia Severity ra-
tio 𝐿1/𝐿0

Discount
rate 𝑅

Trial size
2𝑛

Significance
level 𝛼

Power
1 − 𝛽

1 0 0 0 0 0 0.01 19.7% 368 0.0% 90%
2 0 0 0 0 1 0.03 21.7% 314 0.1% 90%
3 0 0 0 1 0 0.21 18.1% 228 0.8% 90%
4 0 0 0 1 1 0.23 19.7% 222 0.9% 90%
5 0 1 0 0 0 0.32 22.9% 204 1.4% 90%
6 0 1 0 0 1 0.34 25.7% 196 1.6% 90%
7 0 0 1 0 0 0.37 20.3% 196 1.6% 90%
8 0 0 1 0 1 0.40 22.4% 196 1.6% 90%
9 0 1 0 1 0 0.52 20.7% 188 1.9% 90%
10 0 1 0 1 1 0.54 22.9% 176 2.5% 90%
11 0 0 1 1 0 0.57 18.5% 188 1.9% 90%
12 0 0 1 1 1 0.59 20.3% 176 2.5% 90%
13 0 1 1 0 0 0.68 23.7% 162 3.4% 90%
14 0 1 1 0 1 0.71 26.7% 156 3.9% 90%
Continued on next page
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Table B.6 – Continued from previous page

Subpopulation RCT Design
No. DBS Non-

ambulatory
Cognitive
symptom

Motor
symptom

Dyskinesia Severity ra-
tio 𝐿1/𝐿0

Discount
rate 𝑅

Trial size
2𝑛

Significance
level 𝛼

Power
1 − 𝛽

15 0 1 1 1 0 0.88 21.3% 156 3.9% 90%
16 1 0 0 0 0 0.90 22.8% 154 4.0% 90%
17 0 1 1 1 1 0.90 23.7% 154 4.0% 90%
18 1 0 0 0 1 0.92 25.6% 146 4.8% 90%
19 1 0 0 1 0 1.10 20.6% 146 4.8% 90%
20 1 0 0 1 1 1.12 22.8% 142 5.2% 90%
21 1 1 0 0 0 1.21 27.2% 124 7.5% 90%
22 1 1 0 0 1 1.23 31.3% 124 7.5% 90%
23 1 0 1 0 0 1.26 23.6% 136 5.8% 90%
24 1 0 1 0 1 1.28 26.5% 124 7.5% 90%
25 1 1 0 1 0 1.40 24.2% 124 7.5% 90%
26 1 1 0 1 1 1.43 27.2% 124 7.5% 90%
27 1 0 1 1 0 1.46 21.2% 134 6.1% 90%
28 1 0 1 1 1 1.48 23.6% 124 7.5% 90%
29 1 1 1 0 0 1.57 28.3% 116 8.8% 90%
30 1 1 1 0 1 1.59 32.7% 104 11.3% 90%
31 1 1 1 1 0 1.77 25.0% 116 8.8% 90%
32 1 1 1 1 1 1.79 28.3% 110 10.0% 90%
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Appendix C

Chapter 4 Supplementary Material

C.1 Methodology Details and Proofs

C.1.1 Mean Variance Framework: Proof

In Section 4.2.5, we claimed that the expected value and variance of the trial’s loss
can be calculated as follows:

E
[︀
𝐿(𝜃, 𝑇𝑛)

]︀
=

∫︁
𝜃
𝑝𝜃 ·

(︁
P
(︀
𝑇𝑛 > 𝜆𝑛|𝜃

)︀
· (𝑐𝜃,𝑎𝑝𝑝 − 𝑐𝜃,𝑟𝑒𝑗) + 𝑐𝜃,𝑟𝑒𝑗

)︁
𝑑𝜃, (C.1)

Var
(︀
𝐿(𝜃, 𝑇𝑛)

)︀
=

∫︁
𝜃
𝑝𝜃 ·

(︁
P
(︀
𝑇𝑛 > 𝜆𝑛|𝜃

)︀
· (𝑐2

𝜃,𝑎𝑝𝑝 − 𝑐2
𝜃,𝑟𝑒𝑗) + 𝑐2

𝜃,𝑟𝑒𝑗

)︁
𝑑𝜃 (C.2)

−
(︂∫︁

𝜃
𝑝𝜃 ·

(︁
P
(︀
𝑇𝑛 > 𝜆𝑛|𝜃

)︀
· (𝑐𝜃,𝑎𝑝𝑝 − 𝑐𝜃,𝑟𝑒𝑗) + 𝑐𝜃,𝑟𝑒𝑗

)︁
𝑑𝜃
)︂2

.(C.3)

The proof is given below.

Proof. First, we calculate the expected value of the loss.

E
[︀
𝐿(𝜃, 𝑇𝑛)

]︀
= E

[︁
1{𝑇𝑛 > 𝜆𝑛|𝜃} · (𝑐𝜃,𝑎𝑝𝑝 − 𝑐𝜃,𝑟𝑒𝑗) + 𝑐𝜃,𝑟𝑒𝑗

]︁
(C.4)

= E𝜃

[︂
E
[︁
1{𝑇𝑛 > 𝜆𝑛|𝜃} · (𝑐𝜃,𝑎𝑝𝑝 − 𝑐𝜃,𝑟𝑒𝑗) + 𝑐𝜃,𝑟𝑒𝑗|𝜃

]︁]︂
(C.5)

= E𝜃

[︁
E
[︀
1{𝑇𝑛 > 𝜆𝑛|𝜃}|𝜃

]︀
· (𝑐𝜃,𝑎𝑝𝑝 − 𝑐𝜃,𝑟𝑒𝑗) + 𝑐𝜃,𝑟𝑒𝑗

]︁
(C.6)

= E𝜃

[︁
P
(︀
𝑇𝑛 > 𝜆𝑛|𝜃

)︀
· (𝑐𝜃,𝑎𝑝𝑝 − 𝑐𝜃,𝑟𝑒𝑗) + 𝑐𝜃,𝑟𝑒𝑗

]︁
(C.7)

=
∫︁

𝜃
𝑝𝜃 ·

(︁
P
(︀
𝑇𝑛 > 𝜆𝑛|𝜃

)︀
· (𝑐𝜃,𝑎𝑝𝑝 − 𝑐𝜃,𝑟𝑒𝑗) + 𝑐𝜃,𝑟𝑒𝑗

)︁
𝑑𝜃. (C.8)

To calculate the variance, we use the fact that

Var
(︀
𝐿(𝜃, 𝑇𝑛)

)︀
= E

[︁
𝐿(𝜃, 𝑇𝑛)2

]︁
− E

[︀
𝐿(𝜃, 𝑇𝑛)

]︀2 . (C.9)

Indeed,

E
[︁
𝐿(𝜃, 𝑇𝑛)2

]︁
= E

[︂(︁
1{𝑇𝑛 > 𝜆𝑛|𝜃} · (𝑐𝜃,𝑎𝑝𝑝 − 𝑐𝜃,𝑟𝑒𝑗) + 𝑐𝜃,𝑟𝑒𝑗

)︁2
]︂

(C.10)
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= E
[︁
1{𝑇𝑛 > 𝜆𝑛|𝜃} · (𝑐𝜃,𝑎𝑝𝑝 − 𝑐𝜃,𝑟𝑒𝑗)2 + 𝑐2

𝜃,𝑟𝑒𝑗 + 2 · 1{𝑇𝑛 > 𝜆𝑛|𝜃} · 𝑐𝜃,𝑟𝑒𝑗 · (𝑐𝜃,𝑎𝑝𝑝 − 𝑐𝜃,𝑟𝑒𝑗)
]︁

(C.11)

= E
[︁
1{𝑇𝑛 > 𝜆𝑛|𝜃} · (𝑐𝜃,𝑎𝑝𝑝 − 𝑐𝜃,𝑟𝑒𝑗) · (𝑐𝜃,𝑎𝑝𝑝 − 𝑐𝜃,𝑟𝑒𝑗) + 2 · 𝑐𝜃,𝑟𝑒𝑗) + 𝑐2

𝜃,𝑟𝑒𝑗

]︁
(C.12)

= E
[︁
1{𝑇𝑛 > 𝜆𝑛|𝜃} · (𝑐2

𝜃,𝑎𝑝𝑝 − 𝑐2
𝜃,𝑟𝑒𝑗) + 𝑐2

𝜃,𝑟𝑒𝑗

]︁
(C.13)

= E𝜃

[︂
E
[︁
1{𝑇𝑛 > 𝜆𝑛|𝜃} · (𝑐2

𝜃,𝑎𝑝𝑝 − 𝑐2
𝜃,𝑟𝑒𝑗) + 𝑐2

𝜃,𝑟𝑒𝑗|𝜃
]︁]︂

(C.14)

= E𝜃

[︁
E
[︀
1{𝑇𝑛 > 𝜆𝑛|𝜃}|𝜃

]︀
· (𝑐2

𝜃,𝑎𝑝𝑝 − 𝑐2
𝜃,𝑟𝑒𝑗) + 𝑐2

𝜃,𝑟𝑒𝑗

]︁
(C.15)

= E𝜃

[︁
P
(︀
𝑇𝑛 > 𝜆𝑛|𝜃

)︀
· (𝑐2

𝜃,𝑎𝑝𝑝 − 𝑐2
𝜃,𝑟𝑒𝑗) + 𝑐2

𝜃,𝑟𝑒𝑗

]︁
(C.16)

=
∫︁

𝜃
𝑝𝜃 ·

(︁
P
(︀
𝑇𝑛 > 𝜆𝑛|𝜃

)︀
· (𝑐2

𝜃,𝑎𝑝𝑝 − 𝑐2
𝜃,𝑟𝑒𝑗) + 𝑐2

𝜃,𝑟𝑒𝑗

)︁
𝑑𝜃. (C.17)

C.1.2 Mean Variance Framework: Toy Example

In this section, we consider a toy model to gain more intuition about the mean-
variance framework. We assume throughout this section a Bernoulli prior and a
discount rate 𝑟 = 0. This means that the loss function can be written as

𝐿(𝜃, 𝑇𝑛) = 1{𝑇𝑛 > 𝜆𝑛|𝜃} · 𝑐𝜃,𝑎𝑝𝑝 +
(︀
1 − 1{𝑇𝑛 > 𝜆𝑛|𝜃}

)︀
· 𝑐𝜃,𝑟𝑒𝑗, (C.18)

where

𝜃 =

⎧⎨⎩0, with probability 0.5,

𝜇𝜃, with probability 0.5.
(C.19)

The per-patient costs simply become 𝐿0 if we incorrectly approve an ineffective treat-
ment (and 0 if we correctly reject an ineffective treatment), and 𝐿1 if we incorrectly
reject an effective treatment (and 0 if we correctly approve an effective treatment),
as summarized in Table C.1.

Efficacy 𝜃 Not Approved Approved
𝜃 = 0 0 𝐿0

𝜃 = 𝜇𝜃 𝐿1 0

Table C.1: Loss in value per patient associated with a balanced fixed-sample RCT as
a function of the treatment effect 𝜃, assuming a Bernoulli prior and a discount rate
𝑟 = 0.

If we denote by 𝛼 and 𝛽 the type I and type II errors respectively, then we know
that

𝛼 = P
(︀
𝑇𝑛 > 𝜆𝑛|𝜃 = 0

)︀
, (C.20)

𝛽 = P
(︀
𝑇𝑛 ≤ 𝜆𝑛|𝜃 = 1

)︀
. (C.21)
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Hence, the expected loss can be written as

E [Loss; 𝑛, 𝜆𝑛] = 1
2 · P

(︀
𝑇𝑛 > 𝜆𝑛|𝜃 = 0

)︀
· 𝐿0 + 1

2 · P
(︀
𝑇𝑛 ≤ 𝜆𝑛|𝜃 = 1

)︀
· 𝐿1,(C.22)

= 1
2 · 𝛼 · 𝐿0 + 1

2 · 𝛽 · 𝐿1. (C.23)

Similarly, the expected squared loss is

E
[︁
Loss2; 𝑛, 𝜆𝑛

]︁
= 1

2 · 𝛼 · 𝐿2
0 + 1

2 · 𝛽 · 𝐿2
1, (C.24)

and so the variance of the loss is

Var (Loss; 𝑛, 𝜆𝑛) = E
[︁
Loss2; 𝑛, 𝜆𝑛

]︁
− E [Loss; 𝑛, 𝜆𝑛] , (C.25)

= 1
2 · 𝛼 · 𝐿2

0 + 1
2 · 𝛽 · 𝐿2

1 −
(︃

1
4 · 𝛼2 · 𝐿2

0 + 1
4 · 𝛽2 · 𝐿2

1 + 1
2 · 𝛼 · 𝛽 · 𝐿0 · 𝐿1

)︃
.(C.26)

If we denote the severity ratio 𝑠 := 𝐿1/𝐿0, then

E [Loss; 𝑛, 𝜆𝑛] = 𝐿0

2 · [𝛼 + 𝛽 · 𝑠] , (C.27)

Var (Loss; 𝑛, 𝜆𝑛) = 𝐿2
0

2 ·
[︃
𝛼 + 𝛽 · 𝑠2 − 1

2 · 𝛼2 − 1
2 · 𝛽2 · 𝑠2 − 𝛼 · 𝛽 · 𝑠

]︃
(C.28)

= 𝐿2
0

2 ·

⎡⎣𝛼 ·
(︂

1 − 𝛼

2

)︂
+ 𝛽 ·

(︃
1 − 𝛽

2

)︃
· 𝑠2 − 𝛼 · 𝛽 · 𝑠

⎤⎦ . (C.29)

Intuitively, if we view the expectation term as a function of 𝑠 and the variance
term as a function of 𝑠, then the former corresponds to an upwards sloping line
(assuming 𝐿0 and 𝑠 are both positive) and the latter corresponds to a parabola which
opens upwards. If the two curves intersect at some values 𝑠− and 𝑠+, then the mean-
variance framework will mostly minimize the variance term for values of 𝑠 below 𝑠−
and above 𝑠+, and mostly minimize the expectation term when 𝑠 is between 𝑠− and
𝑠+. However, if the curves do not intersect, the mean-variance framework will mostly
try to minimize the variance term. Indeed, the two curves would intersect if and only
if

𝛼 + 𝛽 · 𝑠 = 𝐿0 ·

⎡⎣𝛼 ·
(︂

1 − 𝛼

2

)︂
+ 𝛽 ·

(︃
1 − 𝛽

2

)︃
· 𝑠2 − 𝛼 · 𝛽 · 𝑠

⎤⎦ (C.30)

⇐⇒ 0 =
[︃
𝐿0 ·

(︂
1 − 𝛼

2

)︂
− 1

]︃
· 𝛼 − [1 + 𝐿0 · 𝛼] · 𝛽 · 𝑠 + 𝐿0 · 𝛽 ·

(︃
1 − 𝛽

2

)︃
· 𝑠2.(C.31)

This equation has two real roots if and only if the discriminant is positive:

Δ2 := [1 + 𝐿0 · 𝛼]2 · 𝛽2 − 4 · 𝐿0 · 𝛼 · 𝛽 ·
(︃

1 − 𝛽

2

)︃
·
[︃
𝐿0 ·

(︂
1 − 𝛼

2

)︂
− 1

]︃
,(C.32)
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= [1 + 𝐿0 · 𝛼]2 · 𝛽2 − 𝐿0 · 𝛼 · 𝛽 · (2 − 𝛽) ·
[︀
𝐿0 · (2 − 𝛼) − 2

]︀
, (C.33)

= 𝛽2 ·
[︃
(1 + 𝐿0 · 𝛼)2 − 𝐿0 · 𝛼

𝛽
· (2 − 𝛽) ·

[︀
𝐿0 · (2 − 𝛼) − 2

]︀]︃
. (C.34)

Variance. We now turn our attention to the variance term only in order to gain
more intuition about it as a function of 𝜆 for different values of 𝑠. For simplicity of
notation, we denote 𝑉 (𝜆) := Var (Loss; 𝑛, 𝜆𝑛), 𝛼𝜆 := 𝑑𝛼

𝑑𝜆
and 𝛽𝜆 := 𝑑𝛽

𝑑𝜆
. Then,

𝑑

𝑑𝜆
𝑉 (𝜆) = 𝜕𝑉

𝜕𝛼
𝛼𝜆 + 𝜕𝑉

𝜕𝛽
𝛽𝜆, (C.35)

= 𝛼𝜆 · 𝐿2
0

2 · [1 − 𝛼 − 𝛽 · 𝑠] + 𝛽𝜆 · 𝐿2
0

2 ·
[︁
(1 − 𝛽) · 𝑠2 − 𝛼 · 𝑠

]︁
, (C.36)

= 𝐿2
0

2 ·
[︂
𝛼𝜆 · [1 − 𝛼 − 𝛽 · 𝑠] + 𝛽𝜆 ·

[︁
(1 − 𝛽) · 𝑠2 − 𝛼 · 𝑠

]︁]︂
, (C.37)

= 𝐿2
0

2 ·
[︁
𝛼𝜆 · (1 − 𝛼) − (𝛼𝜆 · 𝛽 + 𝛽𝜆 · 𝛼) · 𝑠 + 𝛽𝜆 · (1 − 𝛽) · 𝑠2

]︁
.(C.38)

By definition of 𝛼 and 𝛽 (Equations C.20 and C.21) Therefore, both 𝛼(𝜆) and
𝛽(𝜆) are positive, however 𝛼(𝜆) is decreasing while 𝛽(𝜆) is increasing. Hence, 𝛼𝜆 < 0
while 𝛽𝜆 > 0, and so

𝑑

𝑑𝜆
𝑉 (𝜆) = 𝐿2

0

2 ·

⎡⎢⎢⎢⎣𝛼𝜆 · (1 − 𝛼)⏟  ⏞  
<0

−

⎛⎜⎜⎝𝛼𝜆 · 𝛽⏟  ⏞  
<0

+ 𝛽𝜆 · 𝛼⏟  ⏞  
>0

⎞⎟⎟⎠ · 𝑠 + 𝛽𝜆 · (1 − 𝛽)⏟  ⏞  
>0

·𝑠2

⎤⎥⎥⎥⎦ . (C.39)

Then when 𝑠 << 1,

𝑑

𝑑𝜆
𝑉 (𝜆) ∼ 𝐿2

0

2 · 𝛼𝜆 · (1 − 𝛼) ≤ 0, (C.40)

and when 𝑠 >> 1,
𝑑

𝑑𝜆
𝑉 (𝜆) ∼ 𝐿2

0

2 · 𝛽𝜆 · (1 − 𝛽) · 𝑠2 ≥ 0. (C.41)

Hence, this shows that for a small severity ratio, the variance term will tend to
decrease with 𝜆, and so the BDA will tend to select large values of 𝜆 (i.e., small
values of 𝛼 which corresponds to a more conservative decision). Conversely, for a
large severity ratio, the variance term will tend to increase with 𝜆, and so the BDA
will tend to select small values of 𝜆 (i.e., large values of 𝛼 which corresponds to a less
conservative decision).

Regarding the intermediate case, it can be shown that the term 𝛼𝜆 · 𝛽 + 𝛽𝜆 · 𝛼 is
positive when 𝜆 < �̄�𝑛 and negative when 𝜆 > �̄�𝑛, where �̄�𝑛 is defined as the root of
the equation

𝛼𝜆 · 𝛽 + 𝛽𝜆 · 𝛼 = 0. (C.42)
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Therefore,

𝑑

𝑑𝜆
𝑉 (𝜆) = 𝐿2

0

2 ·

⎡⎢⎢⎣𝛼𝜆 · (1 − 𝛼)⏟  ⏞  
<0

− (𝛼𝜆 · 𝛽 + 𝛽𝜆 · 𝛼)⏟  ⏞  
>0 then <0

·𝑠 + 𝛽𝜆 · (1 − 𝛽)⏟  ⏞  
>0

·𝑠2

⎤⎥⎥⎦ . (C.43)

When 𝑠 ∼ 1, we conclude that 𝑉 (𝜆) is decreasing and then increasing. In this case,
the BDA will tend to select an intermediate value of 𝜆.

Expectation. We now turn our attention to the expectation term only in order to
gain more intuition about it as a function of 𝜆 for different values of 𝑠. For simplicity
of notation, we denote 𝐸(𝜆) := E [Loss; 𝑛, 𝜆𝑛], 𝛼𝜆 := 𝑑𝛼

𝑑𝜆
and 𝛽𝜆 := 𝑑𝛽

𝑑𝜆
. Then,

𝑑

𝑑𝜆
𝐸(𝜆) = 𝜕𝐸

𝜕𝛼
𝛼𝜆 + 𝜕𝐸

𝜕𝛽
𝛽𝜆, (C.44)

= 𝐿0

2 ·

⎡⎢⎢⎣ 𝛼𝜆⏟ ⏞ 
<0

+ 𝛽𝜆 · 𝑠⏟  ⏞  
>0

⎤⎥⎥⎦ . (C.45)

Hence, for a small severity ratio, the expectation term will tend to decrease with 𝜆,
and so the BDA will tend to select large values of 𝜆 (i.e., small values of 𝛼 which
corresponds to a more conservative decision). Conversely, for a large severity ratio,
the expectation term will tend to increase with 𝜆, and so the BDA will tend to select
small values of 𝜆 (i.e., large values of 𝛼 which corresponds to a less conservative
decision).

Mean-Variance. Putting everything together through the mean-variance frame-
work, the BDA aims to minimize

𝐸(𝜆) + 1
2 · 𝑞 · 𝑉 (𝜆). (C.46)

As we have seen previously, for a small severity ratio, both 𝐸(𝜆) and 𝑉 (𝜆) tend to
decrease with 𝜆. However, for a large severity ratio, both 𝐸(𝜆) and 𝑉 (𝜆) tend to
increase with 𝜆. Therefore, as we increase 𝑞, the BDA will tend to put much more
weight on the variance term and select larger values of 𝜆 (i.e., smaller values of 𝛼,
leading to a more conservative decision) when 𝑠 is small and smaller values of 𝜆 (i.e.,
larger values of 𝛼, leading to a less conservative decision) when 𝑠 is large.

This phase transition is verified in Section 4.3 under a Bernoulli prior: as we
increase 𝑞, the BDA tends to lead to more conservative decisions when the severity
ratio is small, and to less conservative decisions when the severity ratio is high. In
this case, the phase transition occurs roughly when 𝑠 is between 0.6 and 0.8.
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C.1.3 In-Trial Costs

We expressed the trial’s loss (given a treatment effect 𝜃 and an observation 𝑇𝑛 of the
trial’s treatment effect) in Section 4.2.5 as:

𝐿(𝜃, 𝑇𝑛) = 1{Treatment Approved} · 𝑐𝜃,𝑎𝑝𝑝 + 1{Treatment Not Approved} · 𝑐𝜃,𝑎𝑝𝑝(C.47)
= 1{𝑇𝑛 > 𝜆𝑛|𝜃} · 𝑐𝜃,𝑎𝑝𝑝 +

(︀
1 − 1{𝑇𝑛 > 𝜆𝑛|𝜃}

)︀
· 𝑐𝜃,𝑟𝑒𝑗 (C.48)

= 1{𝑇𝑛 > 𝜆𝑛|𝜃} · (𝑐𝜃,𝑎𝑝𝑝 − 𝑐𝜃,𝑟𝑒𝑗) + 𝑐𝜃,𝑟𝑒𝑗. (C.49)

The loss function can be generalized to account for the loss incurred by patients
enrolled in the clinical trial [126]. Indeed, the loss function can be expressed as the
sum of the “post-trial” loss 𝐿(𝜃, 𝑇𝑛) and the “in-trial” loss 𝐿𝑖𝑛(𝜃). It is important
to note here that the in-trial loss is independent of 𝑇𝑛 because the approval or non-
approval of the treatment has no impact on the patient’s loss during the clinical trial
period.

The post-trial loss 𝐿(𝜃, 𝑇𝑛) models the loss per person incurred by all patients
affected by the disease while the in-trial loss models the loss per person incurred only
by the patients enrolled in the clinical trial. Defining 𝑁 as the prevalence of the
disease and 𝑛 as the number of patients enrolled in each arm of the trial, we can
express the total loss function as:

Loss = 𝐿(𝜃, 𝑇𝑛) + 𝑛

𝑁
· 𝐿𝑖𝑛(𝜃). (C.50)

The BDA’s optimization problem now becomes

(𝑛*, 𝜆*
𝑛) = arg min

𝑛,𝜆𝑛

{︃
E [Loss; 𝑛, 𝜆𝑛] + 1

2 · 𝑞 · Var (Loss; 𝑛, 𝜆𝑛)
}︃

, (C.51)

where

E [Loss; 𝑛, 𝜆𝑛] = E
[︀
𝐿(𝜃, 𝑇𝑛)

]︀
+ 𝑛

𝑁
· E

[︁
𝐿𝑖𝑛(𝜃)

]︁
, (C.52)

Var (Loss; 𝑛, 𝜆𝑛) = Var
(︀
𝐿(𝜃, 𝑇𝑛)

)︀
+
(︂

𝑛

𝑁

)︂2

· Var
(︁
𝐿𝑖𝑛(𝜃)

)︁
(C.53)

+2 · 𝑛

𝑁
· Cov

(︁
𝐿(𝜃, 𝑇𝑛), 𝐿𝑖𝑛(𝜃)

)︁
. (C.54)

The expressions for E
[︀
𝐿(𝜃, 𝑇𝑛)

]︀
and Var

(︀
𝐿(𝜃, 𝑇𝑛)

)︀
are given in Section 4.2.5. The

expressions for E
[︁
𝐿𝑖𝑛(𝜃)

]︁
, Var

(︁
𝐿𝑖𝑛(𝜃)

)︁
, and Cov

(︁
𝐿(𝜃, 𝑇𝑛), 𝐿𝑖𝑛(𝜃)

)︁
are given by:

E
[︁
𝐿𝑖𝑛(𝜃)

]︁
=

∫︁
𝜃
𝑝𝜃 · 𝐿𝑖𝑛(𝜃) 𝑑𝜃, (C.55)

Var
(︁
𝐿𝑖𝑛(𝜃)

)︁
=

∫︁
𝜃
𝑝𝜃 · 𝐿𝑖𝑛(𝜃) 𝑑𝜃 −

(︂∫︁
𝜃
𝑝𝜃 · 𝐿𝑖𝑛(𝜃) 𝑑𝜃

)︂2

, (C.56)

Cov
(︁
𝐿(𝜃, 𝑇𝑛), 𝐿𝑖𝑛(𝜃)

)︁
=

∫︁
𝜃
𝑝𝜃 ·

(︁
P
(︀
𝑇𝑛 > 𝜆𝑛|𝜃

)︀
· (𝑐𝜃,𝑎𝑝𝑝 − 𝑐𝜃,𝑟𝑒𝑗) + 𝑐𝜃,𝑟𝑒𝑗

)︁
· 𝐿𝑖𝑛(𝜃) 𝑑𝜃 (C.57)
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−
∫︁

𝜃

∫︁
𝜃′

𝑝𝜃 · 𝑝𝜃′ ·
(︁
P
(︀
𝑇𝑛 > 𝜆𝑛|𝜃

)︀
· (𝑐𝜃,𝑎𝑝𝑝 − 𝑐𝜃,𝑟𝑒𝑗) + 𝑐𝜃,𝑟𝑒𝑗

)︁
· 𝐿𝑖𝑛(𝜃′) 𝑑𝜃′ 𝑑𝜃.(C.58)

The proof is given below.

Proof. The expected value and variance of the in-trial loss are straightforward to
calculate as 𝐿𝑖𝑛(𝜃) is only a function of 𝜃. To calculate the covariance term, we use
the fact that

Cov
(︁
𝐿(𝜃, 𝑇𝑛), 𝐿𝑖𝑛(𝜃)

)︁
= E

[︁
𝐿(𝜃, 𝑇𝑛) · 𝐿𝑖𝑛(𝜃)

]︁
− E

[︀
𝐿(𝜃, 𝑇𝑛)

]︀
· E

[︁
𝐿𝑖𝑛(𝜃)

]︁
. (C.59)

We know from Section 4.2.5 that

E
[︀
𝐿(𝜃, 𝑇𝑛)

]︀
=
∫︁

𝜃
𝑝𝜃 ·

(︁
P
(︀
𝑇𝑛 > 𝜆𝑛|𝜃

)︀
· (𝑐𝜃,𝑎𝑝𝑝 − 𝑐𝜃,𝑟𝑒𝑗) + 𝑐𝜃,𝑟𝑒𝑗

)︁
𝑑𝜃, (C.60)

therefore the only term we need to calculate is:

E
[︁
𝐿(𝜃, 𝑇𝑛) · 𝐿𝑖𝑛(𝜃)

]︁
= E

[︂(︁
1{𝑇𝑛 > 𝜆𝑛|𝜃} · (𝑐𝜃,𝑎𝑝𝑝 − 𝑐𝜃,𝑟𝑒𝑗) + 𝑐𝜃,𝑟𝑒𝑗

)︁
· 𝐿𝑖𝑛(𝜃)

]︂
(C.61)

= E𝜃

[︂
E
[︁
1{𝑇𝑛 > 𝜆𝑛|𝜃} · (𝑐𝜃,𝑎𝑝𝑝 − 𝑐𝜃,𝑟𝑒𝑗) · 𝐿𝑖𝑛(𝜃) + 𝑐𝜃,𝑟𝑒𝑗 · 𝐿𝑖𝑛(𝜃)|𝜃

]︁]︂
(C.62)

= E𝜃

[︁
E
[︀
1{𝑇𝑛 > 𝜆𝑛|𝜃}

]︀
· (𝑐𝜃,𝑎𝑝𝑝 − 𝑐𝜃,𝑟𝑒𝑗) · 𝐿𝑖𝑛(𝜃) + 𝑐𝜃,𝑟𝑒𝑗 · 𝐿𝑖𝑛(𝜃)

]︁
(C.63)

= E𝜃

[︁
P
(︀
𝑇𝑛 > 𝜆𝑛|𝜃

)︀
· (𝑐𝜃,𝑎𝑝𝑝 − 𝑐𝜃,𝑟𝑒𝑗) · 𝐿𝑖𝑛(𝜃) + 𝑐𝜃,𝑟𝑒𝑗 · 𝐿𝑖𝑛(𝜃)

]︁
(C.64)

=
∫︁

𝜃
𝑝𝜃 ·

(︁
P
(︀
𝑇𝑛 > 𝜆𝑛|𝜃

)︀
· (𝑐𝜃,𝑎𝑝𝑝 − 𝑐𝜃,𝑟𝑒𝑗) + 𝑐𝜃,𝑟𝑒𝑗

)︁
· 𝐿𝑖𝑛(𝜃) 𝑑𝜃. (C.65)

For example, in [126], the in-trial cost is defined at the 𝜃 = 0 and at 𝜃 = 𝜇𝜃 as:

𝐿𝑖𝑛(0) = 𝐿0, (C.66)
𝐿𝑖𝑛(𝜇𝜃) = 𝛾 · 𝑁 · 𝐿1, (C.67)

for some appropriately defined costs 𝐿0 and 𝐿1 (denoted respectively 𝑁 · 𝑐1 and 𝑁 · 𝑐2

in [126]), and the incremental cost 𝛾 incurred per extra patient added to each arm.
Using a linear interpolation yields

𝐿𝑖𝑛(𝜃) = 𝐿0 ·
(︃

1 − 𝜃

𝜇𝜃

)︃
+ (𝛾 · 𝑁 · 𝐿1) · 𝜃

𝜇𝜃

. (C.68)

C.1.4 Average Type I and Type II Error Rates

The type I error rate 𝛼 is defined as the probability of approving an ineffective (and
possibly harmful) treatment. Conversely, the type II error rate 𝛽 is defined as the
probability of not approving an effective treatment. Mathematically, these rates are
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defined as:

𝛼 = P
(︀
𝑇𝑛 > 𝜆𝑛|𝜃 = 0

)︀
and 𝛽 = P

(︀
𝑇𝑛 ≤ 𝜆𝑛|𝜃 = 𝜇𝜃

)︀
. (C.69)

The statistical power is then given by.

Power = 1 − 𝛽. (C.70)

If we instead view 𝛼 and 𝛽 as functions of 𝜃,

𝛼(𝜃) = P
(︀
𝑇𝑛 > 𝜆𝑛|𝜃

)︀
and 𝛽(𝜃) = P

(︀
𝑇𝑛 ≤ 𝜆𝑛|𝜃

)︀
, (C.71)

then 𝛼(𝜃) ≤ 𝛼(0) := 𝛼 for all 𝜃 ≤ 0, and 𝛽(𝜃) ≤ 𝛽(𝜇𝜃) := 𝛽 for all 𝜃 ≥ 𝜇𝜃.
We can also define average type I and type II error rates as the expected value of

𝛼 and 𝛽 conditional on the treatment being ineffective (𝜃 ≤ 0) or effective (𝜃 ≥ 𝜇𝜃)
respectively:

�̄� = 1
P (𝜃 ≤ 0) ·

∫︁ 0

−∞
𝑝𝜃 · 𝛼(𝜃) · 𝑑𝜃 = 1∫︀ 0

−∞ 𝑝𝜃 · 𝑑𝜃
·
∫︁ 0

−∞
𝑝𝜃 · P

(︀
𝑇𝑛 > 𝜆𝑛|𝜃

)︀
· 𝑑𝜃,(C.72)

𝛽 = 1
P (𝜃 ≥ 𝜇𝜃)

·
∫︁ ∞

𝜇𝜃

𝑝𝜃 · 𝛽(𝜃) · 𝑑𝜃 = 2 ·
∫︁ ∞

𝜇𝜃

𝑝𝜃 · P
(︀
𝑇𝑛 ≤ 𝜆𝑛|𝜃

)︀
· 𝑑𝜃, (C.73)

where we used the fact that 𝜃 is normally distributed with mean 𝜇𝜃, so P (𝜃 ≥ 𝜇𝜃) =
0.5. The average power is therefore defined as

Power = 1 − 𝛽 = 1 − 2 ·
∫︁ ∞

𝜇𝜃

𝑝𝜃 · P
(︀
𝑇𝑛 ≤ 𝜆𝑛|𝜃

)︀
· 𝑑𝜃. (C.74)

We can use the definition of the average power to constrain the BDA minimization

(𝑛*, 𝜆*
𝑛) = arg min

𝑛,𝜆𝑛

{︃
E [Loss; 𝑛, 𝜆𝑛] + 1

2 · 𝑞 · Var (Loss; 𝑛, 𝜆𝑛)
}︃

, (C.75)

by imposing an upper bound 𝑃max on the average power: Power ≤ 𝑃max. Typically,
𝑃max would be set to 80% or 90% to represent practical considerations of the in-
dustry, reflecting budget, time, and personnel constraints, as well as other resource
limitations. Mathematically, the average power constraint can be rewritten as:∫︁ ∞

𝜇𝜃

𝑝𝜃 · P
(︀
𝑇𝑛 ≤ 𝜆𝑛|𝜃

)︀
· 𝑑𝜃 ≥ 1

2 · (1 − 𝑃max). (C.76)

Since �̄� and 𝛽 will be lower than 𝛼 and 𝛽 respectively, the average power Power will
be higher than the power estimated at 𝜃 = 𝜇𝜃.
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C.2 Additional Results

C.2.1 Results for the Parkinson’s Disease Study

Outputs as a function of uncertainty-aversion

Standard errors. The following plots show the sensitivity of the BDA output’s
standard errors.

Figure C-1: BDA-Optimal significance level 𝛼 (in %) as a function of the uncertainty-
aversion parameter 𝑞, under a Bernoulli prior. Standard errors are calculated based
on 100 bootstrap samples.

Figure C-2: BDA-Optimal trial size (2𝑛) as a function of the uncertainty-aversion
parameter 𝑞, under a Bernoulli prior. Standard errors are calculated based on 100
bootstrap samples.
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Figure C-3: BDA-Optimal significance level 𝛼 (in %) as a function of the uncertainty-
aversion parameter 𝑞, under a Gaussian prior. Standard errors are calculated based
on 100 bootstrap samples.

Figure C-4: BDA-Optimal trial size (2𝑛) as a function of the uncertainty-aversion
parameter 𝑞, under a Gaussian prior. Standard errors are calculated based on 100
bootstrap samples.
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Confidence intervals. The following plots show the sensitivity of the BDA out-
put’s 95%-confidence intervals.

Figure C-5: BDA-Optimal significance level 𝛼 (in %) as a function of the uncertainty-
aversion parameter 𝑞, under a Bernoulli prior. The 95%-confidence intervals are
calculated based on 100 bootstrap samples.

Figure C-6: BDA-Optimal trial size (2𝑛) as a function of the uncertainty-aversion
parameter 𝑞, under a Bernoulli prior. The 95%-confidence intervals are calculated
based on 100 bootstrap samples.

229



Figure C-7: BDA-Optimal significance level 𝛼 (in %) as a function of the uncertainty-
aversion parameter 𝑞, under a Gaussian prior. The 95%-confidence intervals are
calculated based on 100 bootstrap samples.

Figure C-8: BDA-Optimal trial size (2𝑛) as a function of the uncertainty-aversion
parameter 𝑞, under a Gaussian prior. The 95%-confidence intervals are calculated
based on 100 bootstrap samples.
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Outputs as a function of severity

Standard errors. The following plots show the sensitivity of the BDA output’s
standard errors.

Figure C-9: BDA-Optimal significance level 𝛼 (in %) as a function of the severity
ratio, under a Bernoulli prior. Standard errors are calculated based on 100 bootstrap
samples.

Figure C-10: BDA-Optimal trial size (2𝑛) as a function of the severity ratio, under a
Bernoulli prior. Standard errors are calculated based on 100 bootstrap samples.
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Figure C-11: BDA-Optimal significance level 𝛼 (in %) as a function of the severity
ratio, under a Gaussian prior. Standard errors are calculated based on 100 bootstrap
samples.

Figure C-12: BDA-Optimal trial size (2𝑛) as a function of the severity ratio, under a
Gaussian prior. Standard errors are calculated based on 100 bootstrap samples.
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Confidence intervals. The following plots show the sensitivity of the BDA out-
put’s 95%-confidence intervals.

Figure C-13: BDA-Optimal significance level 𝛼 (in %) as a function of the severity
ratio, under a Bernoulli prior. The 95%-confidence intervals are calculated based on
100 bootstrap samples.

Figure C-14: BDA-Optimal trial size (2𝑛) as a function of the severity ratio, under a
Bernoulli prior. The 95%-confidence intervals are calculated based on 100 bootstrap
samples.
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Figure C-15: BDA-Optimal significance level 𝛼 (in %) as a function of the severity
ratio, under a Gaussian prior. The 95%-confidence intervals are calculated based on
100 bootstrap samples.

Figure C-16: BDA-Optimal trial size (2𝑛) as a function of the severity ratio, under a
Gaussian prior. The 95%-confidence intervals are calculated based on 100 bootstrap
samples.
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Numerical Results

Table C.2: BDA-Optimal significance levels and trial sizes across different subpopulations for different values of uncertainty-
aversion 𝑞 and under different prior distributions. For conciseness, we only show the results for q=0.0, 0.5, 1.0, 1.5, and 2.0. We
use 100 bootstrap samples to obtain the distribution of the BDA outputs. For comparison, we present in the “NoBS” columns
the non-bootstrapped BDA outputs when using the original input values from [113, 45].

Population q Prior 𝛼 (in %) Trial Size (2n) Average Power
𝐿1/𝐿0 Group NoBS Mean se 5% 95% NoBS Mean se 5% 95% (in %)

0.06 00000 0.0 Bernoulli 0.19 0.19 0.01 0.00 0.40 294 272 8 88 357 79.20
0.06 00000 0.5 Bernoulli 0.15 0.15 0.01 0.00 0.32 304 298 7 144 382 79.20
0.06 00000 1.0 Bernoulli 0.13 0.13 0.01 0.00 0.27 312 316 8 177 436 79.20
0.06 00000 1.5 Bernoulli 0.11 0.11 0.01 0.00 0.24 320 294 10 34 396 79.20
0.06 00000 2.0 Bernoulli 0.10 0.10 0.01 0.00 0.21 324 297 9 78 387 79.20
0.06 00000 0.0 Normal 1.33 1.38 0.07 0.24 2.62 54 54 0 52 54 86.10
0.06 00000 0.5 Normal 1.37 1.43 0.07 0.23 2.62 52 52 0 50 52 85.75
0.06 00000 1.0 Normal 1.32 1.42 0.08 0.25 2.94 52 52 0 50 52 85.55
0.06 00000 1.5 Normal 1.38 1.46 0.08 0.24 2.93 50 50 0 50 50 85.24
0.06 00000 2.0 Normal 1.35 1.43 0.08 0.23 2.89 50 50 0 50 50 85.14
0.08 00010 0.0 Bernoulli 0.28 0.28 0.01 0.00 0.51 276 254 7 62 312 81.00
0.08 00010 0.5 Bernoulli 0.24 0.23 0.01 0.00 0.40 284 279 7 136 328 81.00
0.08 00010 1.0 Bernoulli 0.20 0.19 0.01 0.00 0.35 292 305 9 264 449 81.00
0.08 00010 1.5 Bernoulli 0.17 0.17 0.01 0.00 0.31 298 309 8 270 427 81.00
0.08 00010 2.0 Bernoulli 0.15 0.15 0.01 0.00 0.27 304 285 8 34 344 81.00
0.08 00010 0.0 Normal 1.73 1.75 0.08 0.42 2.94 52 52 0 50 52 86.85
0.08 00010 0.5 Normal 1.79 1.83 0.08 0.40 3.30 50 50 0 48 50 86.52
0.08 00010 1.0 Normal 1.87 1.90 0.09 0.39 3.30 48 49 0 48 50 86.20
0.08 00010 1.5 Normal 1.81 1.89 0.09 0.41 3.70 48 48 0 46 48 86.05

Continued on next page
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Table C.2 – continued from previous page

Population q Prior 𝛼 (in %) Trial Size (2n) Average Power
𝐿1/𝐿0 Group NoBS Mean se 5% 95% NoBS Mean se 5% 95% (in %)

0.08 00010 2.0 Normal 1.77 1.88 0.09 0.40 3.70 48 48 0 46 48 85.92
0.28 00001 0.0 Bernoulli 0.86 0.87 0.01 0.69 0.98 226 226 1 220 236 90.00
0.28 00001 0.5 Bernoulli 0.72 0.73 0.01 0.58 0.82 234 234 1 228 244 90.00
0.28 00001 1.0 Bernoulli 0.63 0.64 0.01 0.51 0.72 240 240 1 234 250 90.00
0.28 00001 1.5 Bernoulli 0.58 0.57 0.01 0.46 0.66 244 245 1 238 254 90.00
0.28 00001 2.0 Bernoulli 0.53 0.52 0.01 0.42 0.60 248 249 1 242 258 90.00
0.28 00001 0.0 Normal 3.30 3.21 0.06 2.09 4.16 48 49 0 44 56 89.99
0.28 00001 0.5 Normal 3.30 3.10 0.06 1.86 4.16 48 50 0 44 58 89.99
0.28 00001 1.0 Normal 2.94 3.03 0.07 1.86 4.16 50 50 0 44 58 89.99
0.28 00001 1.5 Normal 2.94 2.97 0.07 1.66 4.16 50 50 1 44 60 89.99
0.28 00001 2.0 Normal 2.94 2.90 0.07 1.66 3.70 50 51 1 46 60 89.99
0.30 00011 0.0 Bernoulli 1.02 1.01 0.01 0.86 1.11 218 219 0 214 226 90.00
0.30 00011 0.5 Bernoulli 0.90 0.87 0.01 0.75 0.98 224 225 0 220 232 90.00
0.30 00011 1.0 Bernoulli 0.79 0.78 0.01 0.66 0.86 230 231 0 226 238 90.00
0.30 00011 1.5 Bernoulli 0.72 0.71 0.01 0.60 0.79 234 235 0 230 242 90.00
0.30 00011 2.0 Bernoulli 0.66 0.66 0.01 0.55 0.72 238 238 0 234 246 90.00
0.30 00011 0.0 Normal 3.70 3.71 0.06 2.62 4.68 46 46 0 42 52 90.00
0.30 00011 0.5 Normal 3.70 3.66 0.07 2.34 4.68 46 47 0 42 54 90.00
0.30 00011 1.0 Normal 3.70 3.61 0.07 2.34 4.68 46 47 0 42 54 90.00
0.30 00011 1.5 Normal 3.70 3.59 0.07 2.34 4.68 46 47 0 42 54 89.99
0.30 00011 2.0 Normal 3.70 3.58 0.08 2.09 4.68 46 47 0 42 56 89.99
0.40 10000 0.0 Bernoulli 1.58 1.56 0.00 1.51 1.58 198 199 0 198 200 90.00
0.40 10000 0.5 Bernoulli 1.44 1.43 0.00 1.38 1.44 202 202 0 202 204 90.00
0.40 10000 1.0 Bernoulli 1.32 1.32 0.00 1.32 1.32 206 206 0 206 206 90.00
0.40 10000 1.5 Bernoulli 1.27 1.27 0.00 1.27 1.27 208 208 0 208 208 90.00
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0.40 10000 2.0 Bernoulli 1.21 1.21 0.00 1.21 1.21 210 210 0 210 210 90.00
0.40 10000 0.0 Normal 5.26 5.24 0.06 4.16 5.92 40 40 0 38 44 90.00
0.40 10000 0.5 Normal 5.26 5.41 0.07 4.16 5.92 40 40 0 38 44 90.00
0.40 10000 1.0 Normal 5.92 5.56 0.08 4.16 6.66 38 39 0 36 44 90.00
0.40 10000 1.5 Normal 5.92 5.61 0.08 4.16 6.66 38 39 0 36 44 90.00
0.40 10000 2.0 Normal 5.92 5.68 0.08 4.16 6.66 38 39 0 36 44 90.00
0.42 10010 0.0 Bernoulli 1.79 1.79 0.00 1.79 1.79 192 192 0 192 192 90.00
0.42 10010 0.5 Bernoulli 1.72 1.73 0.00 1.72 1.79 194 194 0 192 194 90.00
0.42 10010 1.0 Bernoulli 1.64 1.66 0.00 1.58 1.72 196 196 0 194 198 90.00
0.42 10010 1.5 Bernoulli 1.64 1.62 0.01 1.58 1.72 196 197 0 194 198 90.00
0.42 10010 2.0 Bernoulli 1.58 1.59 0.01 1.51 1.72 198 198 0 194 200 90.00
0.42 10010 0.0 Normal 5.92 6.02 0.05 5.26 6.66 38 38 0 36 40 90.00
0.42 10010 0.5 Normal 6.66 6.41 0.07 5.26 7.51 36 37 0 34 40 90.00
0.42 10010 1.0 Normal 6.66 6.67 0.07 5.26 7.51 36 36 0 34 40 90.00
0.42 10010 1.5 Normal 6.66 6.93 0.07 5.26 7.51 36 35 0 34 40 90.00
0.42 10010 2.0 Normal 7.51 7.12 0.08 5.92 8.47 34 35 0 32 38 90.00
0.46 01000 0.0 Bernoulli 1.64 1.62 0.00 1.58 1.64 196 197 0 196 198 90.00
0.46 01000 0.5 Bernoulli 1.51 1.50 0.00 1.44 1.51 200 200 0 200 202 90.00
0.46 01000 1.0 Bernoulli 1.38 1.38 0.00 1.38 1.38 204 204 0 204 204 90.00
0.46 01000 1.5 Bernoulli 1.32 1.32 0.00 1.32 1.32 206 206 0 206 206 90.00
0.46 01000 2.0 Bernoulli 1.27 1.27 0.00 1.21 1.27 208 208 0 208 210 90.00
0.46 01000 0.0 Normal 5.26 5.35 0.05 4.16 5.92 40 40 0 38 44 90.00
0.46 01000 0.5 Normal 5.26 5.33 0.06 4.16 5.92 40 40 0 38 44 90.00
0.46 01000 1.0 Normal 5.26 5.34 0.06 4.16 5.92 40 40 0 38 44 90.00
0.46 01000 1.5 Normal 5.26 5.36 0.07 4.16 5.92 40 40 0 38 44 90.00
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0.46 01000 2.0 Normal 5.26 5.35 0.07 4.16 5.92 40 40 0 38 44 90.00
0.48 01010 0.0 Bernoulli 1.87 1.87 0.00 1.87 1.87 190 190 0 190 190 90.00
0.48 01010 0.5 Bernoulli 1.72 1.75 0.00 1.72 1.79 194 193 0 192 194 90.00
0.48 01010 1.0 Bernoulli 1.64 1.68 0.01 1.64 1.79 196 195 0 192 196 90.00
0.48 01010 1.5 Bernoulli 1.64 1.63 0.00 1.58 1.72 196 196 0 194 198 90.00
0.48 01010 2.0 Bernoulli 1.58 1.59 0.01 1.51 1.72 198 198 0 194 200 90.00
0.48 01010 0.0 Normal 5.92 6.07 0.05 5.26 6.66 38 38 0 36 40 90.00
0.48 01010 0.5 Normal 6.66 6.24 0.06 5.26 6.66 36 37 0 36 40 90.00
0.48 01010 1.0 Normal 6.66 6.39 0.07 5.26 7.51 36 37 0 34 40 90.00
0.48 01010 1.5 Normal 6.66 6.49 0.07 5.26 7.51 36 37 0 34 40 90.00
0.48 01010 2.0 Normal 6.66 6.55 0.07 5.26 7.51 36 36 0 34 40 90.00
0.62 10001 0.0 Bernoulli 2.22 2.24 0.00 2.22 2.32 182 182 0 180 182 90.00
0.62 10001 0.5 Bernoulli 2.22 2.18 0.01 2.04 2.32 182 183 0 180 186 90.00
0.62 10001 1.0 Bernoulli 2.13 2.15 0.01 2.04 2.32 184 184 0 180 186 90.00
0.62 10001 1.5 Bernoulli 2.13 2.11 0.01 1.95 2.32 184 184 0 180 188 90.00
0.62 10001 2.0 Bernoulli 2.04 2.09 0.01 1.87 2.32 186 185 0 180 190 90.00
0.62 10001 0.0 Normal 7.51 7.17 0.05 6.66 7.51 34 35 0 34 36 90.00
0.62 10001 0.5 Normal 7.51 7.29 0.04 6.66 7.51 34 35 0 34 36 90.00
0.62 10001 1.0 Normal 7.51 7.45 0.05 6.66 8.47 34 34 0 32 36 90.00
0.62 10001 1.5 Normal 7.51 7.55 0.06 6.66 8.47 34 34 0 32 36 90.00
0.62 10001 2.0 Normal 7.51 7.63 0.06 6.66 8.47 34 34 0 32 36 90.00
0.64 10011 0.0 Bernoulli 2.52 2.54 0.01 2.42 2.75 176 176 0 172 178 90.00
0.64 10011 0.5 Bernoulli 2.52 2.58 0.01 2.42 2.87 176 175 0 170 178 90.00
0.64 10011 1.0 Bernoulli 2.63 2.60 0.02 2.32 2.99 174 175 0 168 180 90.00
0.64 10011 1.5 Bernoulli 2.63 2.62 0.02 2.32 2.99 174 174 0 168 180 90.00
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0.64 10011 2.0 Bernoulli 2.63 2.64 0.03 2.32 3.12 174 174 0 166 180 90.00
0.64 10011 0.0 Normal 7.51 7.94 0.05 7.51 8.47 34 33 0 32 34 90.00
0.64 10011 0.5 Normal 8.47 8.35 0.03 7.51 8.47 32 32 0 32 34 90.00
0.64 10011 1.0 Normal 8.47 8.65 0.06 7.51 9.56 32 32 0 30 34 90.00
0.64 10011 1.5 Normal 9.56 9.14 0.06 8.47 9.56 30 31 0 30 32 90.00
0.64 10011 2.0 Normal 9.56 9.36 0.05 8.47 9.56 30 30 0 30 32 90.00
0.68 01001 0.0 Bernoulli 2.22 2.24 0.00 2.22 2.32 182 182 0 180 182 90.00
0.68 01001 0.5 Bernoulli 2.13 2.17 0.01 2.04 2.32 184 183 0 180 186 90.00
0.68 01001 1.0 Bernoulli 2.13 2.12 0.01 1.95 2.32 184 184 0 180 188 90.00
0.68 01001 1.5 Bernoulli 2.04 2.07 0.01 1.95 2.22 186 185 0 182 188 90.00
0.68 01001 2.0 Bernoulli 2.04 2.04 0.01 1.87 2.22 186 186 0 182 190 90.00
0.68 01001 0.0 Normal 7.51 7.27 0.04 6.66 7.51 34 35 0 34 36 90.00
0.68 01001 0.5 Normal 7.51 7.26 0.04 6.66 7.51 34 35 0 34 36 90.00
0.68 01001 1.0 Normal 7.51 7.27 0.04 6.66 7.51 34 35 0 34 36 90.00
0.68 01001 1.5 Normal 7.51 7.28 0.04 6.66 7.51 34 35 0 34 36 90.00
0.68 01001 2.0 Normal 7.51 7.28 0.04 6.66 7.51 34 35 0 34 36 90.00
0.70 01011 0.0 Bernoulli 2.52 2.51 0.01 2.42 2.63 176 176 0 174 178 90.00
0.70 01011 0.5 Bernoulli 2.52 2.52 0.01 2.32 2.75 176 176 0 172 180 90.00
0.70 01011 1.0 Bernoulli 2.52 2.52 0.02 2.32 2.75 176 176 0 172 180 90.00
0.70 01011 1.5 Bernoulli 2.52 2.51 0.02 2.32 2.87 176 176 0 170 180 90.00
0.70 01011 2.0 Bernoulli 2.52 2.51 0.02 2.22 2.87 176 176 0 170 182 90.00
0.70 01011 0.0 Normal 7.51 8.01 0.05 7.51 8.47 34 33 0 32 34 90.00
0.70 01011 0.5 Normal 8.47 8.26 0.04 7.51 8.47 32 32 0 32 34 90.00
0.70 01011 1.0 Normal 8.47 8.35 0.03 7.51 8.47 32 32 0 32 34 90.00
0.70 01011 1.5 Normal 8.47 8.46 0.05 7.51 9.56 32 32 0 30 34 90.00
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0.70 01011 2.0 Normal 8.47 8.62 0.06 7.51 9.56 32 32 0 30 34 90.00
0.80 11000 0.0 Bernoulli 3.26 3.29 0.02 2.99 3.70 164 164 0 158 168 90.00
0.80 11000 0.5 Bernoulli 3.55 3.61 0.03 3.25 4.20 160 159 0 152 164 90.00
0.80 11000 1.0 Bernoulli 3.86 3.85 0.04 3.26 4.56 156 156 1 148 164 90.00
0.80 11000 1.5 Bernoulli 4.02 4.08 0.05 3.40 4.96 154 154 1 144 162 90.00
0.80 11000 2.0 Bernoulli 4.20 4.25 0.07 3.55 5.39 152 152 1 140 160 90.00
0.80 11000 0.0 Normal 9.56 9.55 0.01 9.56 9.56 30 30 0 30 30 90.00
0.80 11000 0.5 Normal 10.81 10.80 0.01 10.81 10.81 28 28 0 28 28 90.00
0.80 11000 1.0 Normal 12.23 12.09 0.04 10.81 12.23 26 26 0 26 28 90.00
0.80 11000 1.5 Normal 12.23 12.23 0.00 12.23 12.23 26 26 0 26 26 90.00
0.80 11000 2.0 Normal 13.85 12.93 0.08 12.23 13.85 24 25 0 24 26 90.00
0.82 11010 0.0 Bernoulli 3.70 3.76 0.03 3.40 4.20 158 157 0 152 162 90.00
0.82 11010 0.5 Bernoulli 4.20 4.31 0.05 3.70 5.17 152 151 0 142 158 90.00
0.82 11010 1.0 Bernoulli 4.76 4.81 0.07 4.02 6.11 146 146 1 134 154 90.00
0.82 11010 1.5 Bernoulli 5.17 5.27 0.10 4.20 6.91 142 142 1 128 152 90.00
0.82 11010 2.0 Bernoulli 5.39 5.69 0.12 4.37 7.82 140 138 1 122 150 90.00
0.82 11010 0.0 Normal 10.81 10.81 0.00 10.81 10.81 28 28 0 28 28 90.00
0.82 11010 0.5 Normal 12.23 12.23 0.00 12.23 12.23 26 26 0 26 26 90.00
0.82 11010 1.0 Normal 13.85 13.85 0.00 13.85 13.85 24 24 0 24 24 90.00
0.82 11010 1.5 Normal 15.71 15.08 0.09 13.85 15.71 22 23 0 22 24 90.00
0.82 11010 2.0 Normal 15.71 15.95 0.07 15.71 17.85 22 22 0 20 22 90.00
1.02 11001 0.0 Bernoulli 3.86 3.87 0.02 3.55 4.37 156 156 0 150 160 90.00
1.02 11001 0.5 Bernoulli 4.37 4.44 0.04 3.86 5.17 150 149 0 142 156 90.00
1.02 11001 1.0 Bernoulli 4.76 4.92 0.06 4.20 6.11 146 145 1 134 152 90.00
1.02 11001 1.5 Bernoulli 5.17 5.38 0.08 4.37 6.91 142 141 1 128 150 90.00
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1.02 11001 2.0 Bernoulli 5.62 5.76 0.10 4.56 7.51 138 137 1 124 148 90.00
1.02 11001 0.0 Normal 12.23 11.90 0.06 10.81 12.23 26 26 0 26 28 90.00
1.02 11001 0.5 Normal 12.23 12.23 0.00 12.23 12.23 26 26 0 26 26 90.00
1.02 11001 1.0 Normal 13.85 13.85 0.00 13.85 13.85 24 24 0 24 24 90.00
1.02 11001 1.5 Normal 15.71 15.49 0.06 13.85 15.71 22 22 0 22 24 90.00
1.02 11001 2.0 Normal 15.71 15.97 0.07 15.71 17.85 22 22 0 20 22 90.00
1.03 00100 0.0 Bernoulli 4.20 4.16 0.03 3.70 4.76 152 152 0 146 158 90.00
1.03 00100 0.5 Bernoulli 4.96 4.93 0.05 4.20 5.86 144 145 0 136 152 90.00
1.03 00100 1.0 Bernoulli 5.62 5.63 0.08 4.56 7.20 138 138 1 126 148 90.00
1.03 00100 1.5 Bernoulli 6.11 6.27 0.11 4.96 8.15 134 133 1 120 144 90.00
1.03 00100 2.0 Bernoulli 6.63 6.88 0.14 5.17 9.21 130 129 1 114 142 90.00
1.03 00100 0.0 Normal 12.23 12.23 0.00 12.23 12.23 26 26 0 26 26 90.00
1.03 00100 0.5 Normal 13.85 13.85 0.00 13.85 13.85 24 24 0 24 24 90.00
1.03 00100 1.0 Normal 15.71 15.69 0.02 15.71 15.71 22 22 0 22 22 90.00
1.03 00100 1.5 Normal 17.85 16.89 0.11 15.71 17.85 20 21 0 20 22 90.00
1.03 00100 2.0 Normal 17.85 18.12 0.08 17.85 20.32 20 20 0 18 20 90.00
1.04 11011 0.0 Bernoulli 4.37 4.34 0.03 3.86 4.96 150 151 0 144 156 90.00
1.04 11011 0.5 Bernoulli 5.17 5.23 0.06 4.37 6.36 142 142 1 132 150 90.00
1.04 11011 1.0 Bernoulli 5.86 6.09 0.09 4.96 7.82 136 135 1 122 144 90.00
1.04 11011 1.5 Bernoulli 6.63 6.86 0.13 5.39 9.21 130 129 1 114 140 90.00
1.04 11011 2.0 Bernoulli 7.20 7.62 0.17 5.62 10.83 126 124 1 106 138 90.00
1.04 11011 0.0 Normal 12.23 12.23 0.00 12.23 12.23 26 26 0 26 26 90.00
1.04 11011 0.5 Normal 13.85 13.89 0.03 13.85 13.85 24 24 0 24 24 90.00
1.04 11011 1.0 Normal 15.71 15.95 0.07 15.71 17.85 22 22 0 20 22 90.00
1.04 11011 1.5 Normal 17.85 17.94 0.09 15.71 20.32 20 20 0 18 22 90.00
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1.04 11011 2.0 Normal 20.32 19.48 0.12 17.85 20.32 18 19 0 18 20 90.00
1.05 00110 0.0 Bernoulli 4.56 4.69 0.04 4.20 5.39 148 147 0 140 152 90.00
1.05 00110 0.5 Bernoulli 5.86 5.88 0.08 4.96 7.20 136 136 1 126 144 90.00
1.05 00110 1.0 Bernoulli 6.91 7.06 0.13 5.62 9.21 128 128 1 114 138 90.00
1.05 00110 1.5 Bernoulli 7.82 8.23 0.19 6.11 11.75 122 121 1 102 134 90.00
1.05 00110 2.0 Bernoulli 8.84 9.45 0.29 6.63 14.35 116 114 1 92 130 90.00
1.05 00110 0.0 Normal 13.85 13.61 0.06 12.23 13.85 24 24 0 24 26 90.00
1.05 00110 0.5 Normal 15.71 15.73 0.02 15.71 15.71 22 22 0 22 22 90.00
1.05 00110 1.0 Normal 17.85 17.87 0.08 15.71 20.32 20 20 0 18 22 90.00
1.05 00110 1.5 Normal 20.32 19.90 0.09 17.85 20.32 18 18 0 18 20 90.00
1.05 00110 2.0 Normal 20.32 20.32 0.00 20.32 20.32 18 18 0 18 18 90.00
1.25 00101 0.0 Bernoulli 4.56 4.65 0.03 4.20 5.17 148 147 0 142 152 90.00
1.25 00101 0.5 Bernoulli 5.62 5.76 0.06 4.96 6.91 138 137 0 128 144 90.00
1.25 00101 1.0 Bernoulli 6.63 6.77 0.10 5.62 8.49 130 129 1 118 138 90.00
1.25 00101 1.5 Bernoulli 7.51 7.80 0.14 6.11 10.40 124 123 1 108 134 90.00
1.25 00101 2.0 Bernoulli 8.49 9.23 0.45 6.63 12.26 118 116 1 100 130 89.94
1.25 00101 0.0 Normal 13.85 13.85 0.00 13.85 13.85 24 24 0 24 24 90.00
1.25 00101 0.5 Normal 15.71 15.73 0.02 15.71 15.71 22 22 0 22 22 90.00
1.25 00101 1.0 Normal 17.85 18.10 0.07 17.85 20.32 20 20 0 18 20 90.00
1.25 00101 1.5 Normal 20.32 20.10 0.07 17.85 20.32 18 18 0 18 20 90.00
1.25 00101 2.0 Normal 20.32 20.32 0.00 20.32 20.32 18 18 0 18 18 90.00
1.27 00111 0.0 Bernoulli 5.17 5.18 0.04 4.56 5.86 142 142 0 136 148 90.00
1.27 00111 0.5 Bernoulli 6.63 6.77 0.09 5.62 8.49 130 129 1 118 138 90.00
1.27 00111 1.0 Bernoulli 8.15 8.41 0.15 6.63 11.28 120 119 1 104 130 90.00
1.27 00111 1.5 Bernoulli 9.59 10.14 0.24 7.51 14.35 112 110 1 92 124 90.00
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1.27 00111 2.0 Bernoulli 11.28 12.35 0.57 8.49 18.21 104 102 1 80 118 90.00
1.27 00111 0.0 Normal 13.85 14.04 0.06 13.85 15.71 24 24 0 22 24 90.00
1.27 00111 0.5 Normal 17.85 17.87 0.02 17.85 17.85 20 20 0 20 20 90.00
1.27 00111 1.0 Normal 20.32 20.30 0.02 20.32 20.32 18 18 0 18 18 90.00
1.27 00111 1.5 Normal 20.32 20.32 0.00 20.32 20.32 18 18 0 18 18 90.00
1.27 00111 2.0 Normal 20.32 20.55 0.08 20.32 23.18 18 18 0 16 18 90.00
1.37 10100 0.0 Bernoulli 6.36 6.52 0.07 5.62 7.82 132 131 0 122 138 90.00
1.37 10100 0.5 Bernoulli 9.59 9.73 0.18 7.51 12.73 112 112 1 98 124 90.00
1.37 10100 1.0 Bernoulli 13.25 13.84 0.41 9.59 20.49 96 95 1 74 112 90.00
1.37 10100 1.5 Bernoulli 17.51 20.48 0.95 12.23 38.15 82 78 2 42 100 89.94
1.37 10100 2.0 Bernoulli 61.86 40.29 2.14 14.94 61.86 16 47 3 16 90 90.00
1.37 10100 0.0 Normal 15.71 16.63 0.11 15.71 17.85 22 21 0 20 22 90.00
1.37 10100 0.5 Normal 20.32 20.32 0.00 20.32 20.32 18 18 0 18 18 90.00
1.37 10100 1.0 Normal 20.32 20.49 0.07 20.32 23.18 18 18 0 16 18 90.00
1.37 10100 1.5 Normal 23.18 22.49 0.12 20.32 23.18 16 16 0 16 18 90.00
1.37 10100 2.0 Normal 23.18 23.18 0.00 23.18 23.18 16 16 0 16 16 90.00
1.39 10110 0.0 Bernoulli 7.20 7.43 0.09 6.36 9.21 126 125 1 114 132 90.00
1.39 10110 0.5 Bernoulli 11.75 12.15 0.28 9.21 16.83 102 101 1 84 114 90.00
1.39 10110 1.0 Bernoulli 17.51 19.36 0.72 12.23 32.58 82 79 2 50 100 90.00
1.39 10110 1.5 Bernoulli 27.95 34.25 1.64 16.18 61.86 58 52 2 16 86 89.94
1.39 10110 2.0 Bernoulli 61.86 59.03 1.04 22.16 61.86 16 20 1 16 70 90.00
1.39 10110 0.0 Normal 17.85 17.90 0.03 17.85 17.85 20 20 0 20 20 90.00
1.39 10110 0.5 Normal 20.32 20.35 0.03 20.32 20.32 18 18 0 18 18 90.00
1.39 10110 1.0 Normal 23.18 21.75 0.14 20.32 23.18 16 17 0 16 18 90.00
1.39 10110 1.5 Normal 23.18 23.18 0.00 23.18 23.18 16 16 0 16 16 90.00
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1.39 10110 2.0 Normal 23.18 23.18 0.00 23.18 23.18 16 16 0 16 16 90.00
1.43 01100 0.0 Bernoulli 5.86 6.02 0.05 5.39 6.91 136 135 0 128 140 90.00
1.43 01100 0.5 Bernoulli 8.49 8.56 0.13 6.91 10.83 118 118 1 106 128 90.00
1.43 01100 1.0 Bernoulli 10.83 11.48 0.26 8.49 16.18 106 104 1 86 118 90.00
1.43 01100 1.5 Bernoulli 14.35 15.32 0.60 10.40 23.95 92 91 1 66 108 90.00
1.43 01100 2.0 Bernoulli 18.21 25.56 1.79 12.23 61.86 80 71 3 16 100 90.00
1.43 01100 0.0 Normal 15.71 15.88 0.06 15.71 17.85 22 22 0 20 22 90.00
1.43 01100 0.5 Normal 20.32 20.32 0.00 20.32 20.32 18 18 0 18 18 90.00
1.43 01100 1.0 Normal 20.32 20.35 0.03 20.32 20.32 18 18 0 18 18 90.00
1.43 01100 1.5 Normal 20.32 21.09 0.13 20.32 23.18 18 17 0 16 18 90.00
1.43 01100 2.0 Normal 23.18 22.84 0.09 20.32 23.18 16 16 0 16 18 90.00
1.46 01110 0.0 Bernoulli 6.63 6.78 0.07 5.86 8.15 130 129 0 120 136 90.00
1.46 01110 0.5 Bernoulli 9.99 10.37 0.19 8.15 13.79 110 109 1 94 120 90.00
1.46 01110 1.0 Bernoulli 14.35 15.21 0.49 10.40 23.04 92 91 1 68 108 90.00
1.46 01110 1.5 Bernoulli 20.49 24.29 1.35 13.25 61.86 74 70 2 16 96 90.00
1.46 01110 2.0 Bernoulli 61.86 52.39 1.79 16.83 61.86 16 30 3 16 84 90.00
1.46 01110 0.0 Normal 17.85 17.87 0.02 17.85 17.85 20 20 0 20 20 90.00
1.46 01110 0.5 Normal 20.32 20.32 0.00 20.32 20.32 18 18 0 18 18 90.00
1.46 01110 1.0 Normal 20.32 20.66 0.09 20.32 23.18 18 18 0 16 18 90.00
1.46 01110 1.5 Normal 23.18 22.92 0.08 20.32 23.18 16 16 0 16 18 90.00
1.46 01110 2.0 Normal 23.18 23.18 0.00 23.18 23.18 16 16 0 16 16 90.00
1.59 10101 0.0 Bernoulli 6.91 6.85 0.07 6.10 8.15 128 129 0 120 134 90.00
1.59 10101 0.5 Bernoulli 10.40 10.57 0.18 8.49 13.79 108 108 1 94 118 90.00
1.59 10101 1.0 Bernoulli 14.94 16.30 0.66 10.83 23.95 90 88 2 66 106 89.87
1.59 10101 1.5 Bernoulli 21.31 25.40 1.37 14.35 61.86 72 68 2 16 92 90.00
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1.59 10101 2.0 Bernoulli 61.86 56.68 1.41 18.21 61.86 16 24 2 16 80 90.00
1.59 10101 0.0 Normal 17.85 17.87 0.02 17.85 17.85 20 20 0 20 20 90.00
1.59 10101 0.5 Normal 20.32 20.32 0.00 20.32 20.32 18 18 0 18 18 90.00
1.59 10101 1.0 Normal 20.32 21.09 0.13 20.32 23.18 18 17 0 16 18 90.00
1.59 10101 1.5 Normal 23.18 23.18 0.00 23.18 23.18 16 16 0 16 16 90.00
1.59 10101 2.0 Normal 23.18 23.18 0.00 23.18 23.18 16 16 0 16 16 90.00
1.61 10111 0.0 Bernoulli 7.51 7.72 0.09 6.63 9.21 124 123 1 114 130 90.00
1.61 10111 0.5 Bernoulli 12.73 12.96 0.27 9.99 17.54 98 98 1 82 110 90.00
1.61 10111 1.0 Bernoulli 19.70 21.70 0.80 13.79 36.58 76 73 2 44 94 89.94
1.61 10111 1.5 Bernoulli 36.51 42.73 1.78 18.94 61.86 44 41 2 16 78 90.00
1.61 10111 2.0 Bernoulli 61.86 61.86 0.00 61.86 61.86 16 16 0 16 16 90.00
1.61 10111 0.0 Normal 20.32 19.06 0.12 17.85 20.32 18 19 0 18 20 90.00
1.61 10111 0.5 Normal 20.32 20.35 0.03 20.32 20.32 18 18 0 18 18 90.00
1.61 10111 1.0 Normal 23.18 22.78 0.10 20.32 23.18 16 16 0 16 18 90.00
1.61 10111 1.5 Normal 23.18 23.18 0.00 23.18 23.18 16 16 0 16 16 90.00
1.61 10111 2.0 Normal 23.18 23.18 0.00 23.18 23.18 16 16 0 16 16 90.00
1.65 01101 0.0 Bernoulli 6.36 6.37 0.05 5.62 7.20 132 132 0 126 138 90.00
1.65 01101 0.5 Bernoulli 9.21 9.34 0.14 7.51 11.75 114 114 1 102 124 90.00
1.65 01101 1.0 Bernoulli 12.73 12.98 0.28 9.59 18.21 98 98 1 80 112 90.00
1.65 01101 1.5 Bernoulli 16.83 18.17 0.65 12.23 29.05 84 82 1 56 100 90.00
1.65 01101 2.0 Bernoulli 61.86 47.11 2.11 14.94 61.86 16 38 3 16 90 90.00
1.65 01101 0.0 Normal 17.85 17.85 0.00 17.85 17.85 20 20 0 20 20 90.00
1.65 01101 0.5 Normal 20.32 20.32 0.00 20.32 20.32 18 18 0 18 18 90.00
1.65 01101 1.0 Normal 20.32 20.58 0.08 20.32 23.18 18 18 0 16 18 90.00
1.65 01101 1.5 Normal 23.18 22.84 0.09 20.32 23.18 16 16 0 16 18 90.00
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Table C.2 – continued from previous page

Population q Prior 𝛼 (in %) Trial Size (2n) Average Power
𝐿1/𝐿0 Group NoBS Mean se 5% 95% NoBS Mean se 5% 95% (in %)

1.65 01101 2.0 Normal 23.18 23.18 0.00 23.18 23.18 16 16 0 16 16 90.00
1.67 01111 0.0 Bernoulli 6.91 7.09 0.07 6.11 8.49 128 127 0 118 134 90.00
1.67 01111 0.5 Bernoulli 10.83 11.18 0.19 8.84 14.94 106 105 1 90 116 90.00
1.67 01111 1.0 Bernoulli 16.18 17.61 0.71 11.75 25.93 86 84 2 62 102 89.87
1.67 01111 1.5 Bernoulli 23.95 29.53 1.54 15.55 61.86 66 60 2 16 88 90.00
1.67 01111 2.0 Bernoulli 61.86 61.86 0.00 61.86 61.86 16 16 0 16 16 90.00
1.67 01111 0.0 Normal 17.85 18.15 0.08 17.85 20.32 20 20 0 18 20 90.00
1.67 01111 0.5 Normal 20.32 20.32 0.00 20.32 20.32 18 18 0 18 18 90.00
1.67 01111 1.0 Normal 23.18 21.92 0.14 20.32 23.18 16 17 0 16 18 90.00
1.67 01111 1.5 Normal 23.18 23.18 0.00 23.18 23.18 16 16 0 16 16 90.00
1.67 01111 2.0 Normal 23.18 23.18 0.00 23.18 23.18 16 16 0 16 16 90.00
1.77 11100 0.0 Bernoulli 8.49 8.79 0.11 7.51 10.83 118 117 1 106 124 90.00
1.77 11100 0.5 Bernoulli 15.55 16.48 0.41 12.23 23.95 88 86 1 66 100 90.00
1.77 11100 1.0 Bernoulli 29.05 32.41 1.26 18.90 61.86 56 53 2 16 78 90.00
1.77 11100 1.5 Bernoulli 61.86 60.90 0.55 61.86 61.86 16 17 1 16 16 90.00
1.77 11100 2.0 Bernoulli 61.86 61.86 0.00 61.86 61.86 16 16 0 16 16 90.00
1.77 11100 0.0 Normal 20.32 20.32 0.00 20.32 20.32 18 18 0 18 18 90.00
1.77 11100 0.5 Normal 20.32 20.75 0.10 20.32 23.18 18 18 0 16 18 90.00
1.77 11100 1.0 Normal 23.18 23.18 0.00 23.18 23.18 16 16 0 16 16 90.00
1.77 11100 1.5 Normal 23.18 23.18 0.00 23.18 23.18 16 16 0 16 16 90.00
1.77 11100 2.0 Normal 23.18 23.18 0.00 23.18 23.18 16 16 0 16 16 90.00
1.80 11110 0.0 Bernoulli 9.99 10.07 0.14 8.15 12.73 110 110 1 98 120 90.00
1.80 11110 0.5 Bernoulli 19.70 21.28 0.64 14.35 32.58 76 74 1 50 92 90.00
1.80 11110 1.0 Bernoulli 49.33 47.51 1.34 24.90 61.86 28 32 2 16 64 90.00
1.80 11110 1.5 Bernoulli 61.86 61.86 0.00 61.86 61.86 16 16 0 16 16 90.00
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Table C.2 – continued from previous page

Population q Prior 𝛼 (in %) Trial Size (2n) Average Power
𝐿1/𝐿0 Group NoBS Mean se 5% 95% NoBS Mean se 5% 95% (in %)

1.80 11110 2.0 Bernoulli 61.86 61.86 0.00 61.86 61.86 16 16 0 16 16 90.00
1.80 11110 0.0 Normal 20.32 20.32 0.00 20.32 20.32 18 18 0 18 18 90.00
1.80 11110 0.5 Normal 23.18 22.41 0.13 20.32 23.18 16 17 0 16 18 90.00
1.80 11110 1.0 Normal 23.18 23.18 0.00 23.18 23.18 16 16 0 16 16 90.00
1.80 11110 1.5 Normal 23.18 23.18 0.00 23.18 23.18 16 16 0 16 16 90.00
1.80 11110 2.0 Normal 23.18 23.18 0.00 23.18 23.18 16 16 0 16 16 90.00
1.99 11101 0.0 Bernoulli 8.84 8.94 0.10 7.51 10.83 116 116 1 106 124 90.00
1.99 11101 0.5 Bernoulli 16.18 18.06 0.67 12.73 24.95 86 82 2 64 98 89.81
1.99 11101 1.0 Bernoulli 31.36 35.06 1.26 20.49 61.86 52 49 2 16 74 90.00
1.99 11101 1.5 Bernoulli 61.86 61.86 0.00 61.86 61.86 16 16 0 16 16 90.00
1.99 11101 2.0 Bernoulli 61.86 61.86 0.00 61.86 61.86 16 16 0 16 16 90.00
1.99 11101 0.0 Normal 20.32 20.32 0.00 20.32 20.32 18 18 0 18 18 90.00
1.99 11101 0.5 Normal 23.18 21.66 0.14 20.32 23.18 16 17 0 16 18 90.00
1.99 11101 1.0 Normal 23.18 23.18 0.00 23.18 23.18 16 16 0 16 16 90.00
1.99 11101 1.5 Normal 23.18 23.18 0.00 23.18 23.18 16 16 0 16 16 90.00
1.99 11101 2.0 Normal 23.18 23.18 0.00 23.18 23.18 16 16 0 16 16 90.00
2.02 11111 0.0 Bernoulli 9.99 10.09 0.13 8.49 12.23 110 110 1 100 118 90.00
2.02 11111 0.5 Bernoulli 20.49 21.89 0.67 14.94 32.58 74 72 1 50 90 89.94
2.02 11111 1.0 Bernoulli 59.54 50.61 1.27 27.95 61.86 18 29 2 16 58 90.00
2.02 11111 1.5 Bernoulli 61.86 61.86 0.00 61.86 61.86 16 16 0 16 16 90.00
2.02 11111 2.0 Bernoulli 61.86 61.86 0.00 61.86 61.86 16 16 0 16 16 90.00
2.02 11111 0.0 Normal 20.32 20.32 0.00 20.32 20.32 18 18 0 18 18 90.00
2.02 11111 0.5 Normal 23.18 22.98 0.07 20.32 23.18 16 16 0 16 18 90.00
2.02 11111 1.0 Normal 23.18 23.18 0.00 23.18 23.18 16 16 0 16 16 90.00
2.02 11111 1.5 Normal 23.18 23.18 0.00 23.18 23.18 16 16 0 16 16 90.00
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Population q Prior 𝛼 (in %) Trial Size (2n) Average Power
𝐿1/𝐿0 Group NoBS Mean se 5% 95% NoBS Mean se 5% 95% (in %)

2.02 11111 2.0 Normal 23.18 23.18 0.00 23.18 23.18 16 16 0 16 16 90.00
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C.2.2 Application to Isakov et al. (2019)

In this section, we apply the extended BDA framework to [126] and compare the
results under a Bernoulli prior and a Gaussian prior In [126], the formulation also
accounts for in-trial costs, which we discuss in detail in Appendix C.1.3.

Background

The post-trial loss (given a treatment effect 𝜃 and an observation 𝑇𝑛 of the trial’s
treatment effect) is defined as

𝐿(𝜃, 𝑇𝑛) = 1{𝑇𝑛 > 𝜆𝑛|𝜃} · (𝑐𝜃,𝑎𝑝𝑝 − 𝑐𝜃,𝑟𝑒𝑗) + 𝑐𝜃,𝑟𝑒𝑗, (C.77)

and models the loss per person incurred by all patients affected by the disease.
The in-trial loss 𝐿𝑖𝑛(𝜃) models the loss per person incurred only by the patients

enrolled in the clinical trial and is independent of 𝑇𝑛 because the approval or non-
approval of the treatment has no impact on the patient’s loss during the clinical trial
period.

Defining 𝑁 as the prevalence of the disease and 𝑛 as the number of patients
enrolled in each arm of the trial, the total loss function becomes

Loss = 𝐿(𝜃, 𝑇𝑛) + 𝑛

𝑁
· 𝐿𝑖𝑛(𝜃). (C.78)

In the setting described in [126], the cost of rejecting and approving a treatment with
efficacy 𝜃 are given respectively by⎧⎪⎪⎨⎪⎪⎩

𝑐𝜃,𝑟𝑒𝑗 = 𝐿1 · max
(︂

0, min
(︁
1, 𝜃

𝜇𝜃

)︁)︂
,

𝑐𝜃,𝑎𝑝𝑝 = 𝐿0 · max
(︂

0, min
(︁
1, 1 − 𝜃

𝜇𝜃

)︁)︂
,

(C.79)

where the costs 𝐿0 and 𝐿1 are denoted respectively 𝑁 · 𝑐1 and 𝑁 · 𝑐2 in [126], and the
treatment effect 𝜇𝜃 is denoted 𝛿0 = 2−3 · 𝜎𝛿. Equation C.79 immediately follows from
Equations 4.36, 4.37 and 4.39 by setting 𝑟 = 0.

Notice that, in [126], the costs are assumed to be⎧⎨⎩𝐿0 = 𝑁 · 𝑠1,

𝐿1 = 𝑁 · min
(︁
1, 𝜇𝜃

𝜎𝜃

)︁
· 𝑠2,

(C.80)

where 𝑠1 = 0.07 is the current cost of adverse effects of medical treatment per patient
(obtained from [177]), and 𝑠2 is the severity of the disease, defined as a function of
the years lived with disability 𝑌 𝐿𝐷 attributed to the disease considered, the number
of deaths 𝐷, and the age-standardized prevalence rate �̃� of the disease:

𝑠2 = 𝐷 + 𝑌 𝐿𝐷

𝐷 + �̃�
. (C.81)
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To be able to compare different diseases together, we follow the methodology used
in [126, 6] and use age-standardized rates per 100, 000 individuals for 𝐷, 𝑌 𝐿𝐷, and
�̃� . Estimates of 𝐷, 𝑌 𝐿𝐷, and �̃� are obtained from the web appendix of [177], in
particular Table 1 for �̃� , Table 3 for 𝐷, and Table 5 for 𝑌 𝐿𝐷.

The in-trial costs at 𝜃 = 0 and 𝜃 = 𝜇𝜃 are given by

𝐿𝑖𝑛(0) = 𝐿0, (C.82)
𝐿𝑖𝑛(𝜇𝜃) = 𝛾 · 𝑁 · 𝐿1, (C.83)

for some constant 𝛾 = 4 · 10−3 · 𝜇𝜃

𝜎𝜃
which represents the incremental cost incurred per

extra patient added to each arm. Using a linear interpolation yields

𝐿𝑖𝑛(𝜃) = 𝐿0 · max
⎛⎝0, min

(︃
1, 1 − 𝜃

𝜇𝜃

)︃⎞⎠+ (𝛾 · 𝑁 · 𝐿1) · max
⎛⎝0, min

(︃
1,

𝜃

𝜇𝜃

)︃⎞⎠ .

(C.84)

Standard Error Estimation

As the trial losses are not estimated from a DCE, we do not have the usual regres-
sion formulation with estimates of the standard deviation of the 𝐿1. Notice that 𝐿1

depends on 𝑠2, and we can estimate the standard deviation of 𝐷, 𝑌 𝐿𝐷, and �̃� by
using the 95%-confidence intervals provided in the appendix in [177]. For simplicity,
we approximate the standard deviation of 𝐷 using its mean �̂�, its 5𝑡ℎ-percentile value
𝐷5 and its 95𝑡ℎ-percentile value 𝐷95 as:

𝜎𝐷 ≈ 1
1.96 · 𝐷95 − 𝐷5

2 . (C.85)

Standard deviations of 𝑌 𝐿𝐷 and �̃� are calculated similarly.
We then use the delta method to calculate the distribution of 𝑠2. We define

�̂� =

⎡⎢⎢⎢⎣
�̂�
^𝑌 𝐿𝐷
^̃𝑁

⎤⎥⎥⎥⎦ , and 𝐵0 =

⎡⎢⎢⎣ 𝐷0

𝑌 𝐿𝐷0

𝑁0

⎤⎥⎥⎦ , (C.86)

and the function
𝑠(𝐵) = 𝐷 + 𝑌 𝐿𝐷

𝐷 + �̃�
. (C.87)

Then assuming that √
𝑘 ·
[︁
�̂� − 𝐵0

]︁
𝐷−→ 𝑁(0, Σ), (C.88)

and assuming a diagonal covariance matrix

Σ =

⎡⎢⎢⎣𝜎2
𝐷 0 0
0 𝜎2

𝑌 𝐿𝐷 0
0 0 𝜎2

�̃�

⎤⎥⎥⎦ , (C.89)
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we obtain √
𝑘 ·
[︁
𝑠(�̂�) − 𝑠(𝐵0)

]︁
𝐷−→ 𝑁

(︁
0, ∇𝑠(𝐵0)𝑇 · Σ · ∇𝑠(𝐵0)

)︁
. (C.90)

The gradient term is equal to

∇𝑠(𝐵0) = 1
(𝐷0 + �̃�0)2

·

⎡⎢⎢⎣ �̃�0 − 𝑌 𝐿𝐷0

𝐷0 + �̃�0

−(𝐷0 + 𝑌 𝐿𝐷0)

⎤⎥⎥⎦ , (C.91)

therefore the asymptotic variance simplifies to

𝜎2
𝑠2 = 1

(𝐷0 + �̃�0)4
·
[︁
𝜎2

𝐷 · (�̃�0 − 𝑌 𝐿𝐷0)2 + 𝜎2
𝑌 𝐿𝐷 · (𝐷0 + �̃�0)2 + 𝜎2

�̃� · (𝐷0 + 𝑌 𝐿𝐷0)2
]︁

.

(C.92)
Hence, we assume here that

𝑠2 ∼ 𝑁
(︁
𝑠2, 𝜎2

𝑠2

)︁
, (C.93)

and generate 100 bootstrap samples of 𝑠2. This allows us to run the BDA optimization
procedure (Equation 4.11) for each bootstrapped value 𝑠2 and obtain a distribution for
the optimal BDA parameters (𝑛*, 𝜆*

𝑛). We then calculate the corresponding standard
errors on our estimates of the optimal sample size 𝑛* and the optimal critical value
𝜆*

𝑛 (or equivalently 𝛼*).

Results

Standard errors. The following plots show the sensitivity of the BDA output’s
standard errors.

Figure C-17: BDA-Optimal significance level 𝛼 (in %) as a function of the severity
ratio, under a Bernoulli prior. Standard errors are calculated based on 100 bootstrap
samples.
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Figure C-18: BDA-Optimal trial size (2𝑛) as a function of the severity ratio, under a
Bernoulli prior. Standard errors are calculated based on 100 bootstrap samples.

Figure C-19: BDA-Optimal significance level 𝛼 (in %) as a function of the severity
ratio, under a Gaussian prior. Standard errors are calculated based on 100 bootstrap
samples.
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Figure C-20: BDA-Optimal trial size (2𝑛) as a function of the severity ratio, under
a Gaussian prior. Standard errors are calculated based on 100 bootstrap samples.
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Confidence intervals. The following plots show the sensitivity of the BDA out-
put’s 95%-confidence intervals.

Figure C-21: BDA-Optimal significance level 𝛼 (in %) as a function of the severity
ratio, under a Bernoulli prior. The 95%-confidence intervals are calculated based on
100 bootstrap samples.

Figure C-22: BDA-Optimal trial size (2𝑛) as a function of the severity ratio, under a
Bernoulli prior. The 95%-confidence intervals are calculated based on 100 bootstrap
samples.
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Figure C-23: BDA-Optimal significance level 𝛼 (in %) as a function of the severity
ratio, under a Gaussian prior. The 95%-confidence intervals are calculated based on
100 bootstrap samples.

Figure C-24: BDA-Optimal trial size (2𝑛) as a function of the severity ratio, under a
Gaussian prior. The 95%-confidence intervals are calculated based on 100 bootstrap
samples.
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Appendix D

Chapter 5 Supplementary Material

D.1 Dynamics of the Augmented DELPHI Model

We review in D.1.1 the additions made to the DELPHI model introduced in [152] to
include vaccination states. We then describe in D.1.2 our discretization technique to
maintain the performance of the model while greatly reducing the running time of
the simulation.

D.1.1 Dynamics of the DELPHI Model

The Original DELPHI Model

The DELPHI model (represented by the green nodes in Fig D-1) is composed of
the following components [152]: the susceptible (not yet infected) population (𝑆);
exposed individuals that have been infected, are not contagious, and are within the
incubation period (𝐸); infected individuals that are currently contagious (𝐼); infected
individuals that self-quarantine at home but were not tested (𝑈𝐷 and 𝑈𝑅), where 𝑈𝑅
corresponds to the individuals that recover, while 𝑈𝐷 corresponds to individuals that
perish; infected individuals that were detected and hospitalized (𝐷𝐻𝑅 and 𝐷𝐻𝐷),
where 𝐷𝐻𝑅 corresponds to the individuals that recover, while 𝐷𝐻𝐷 corresponds to
individuals that perish; infected individuals that were detected and quarantined at
home (𝐷𝑄𝑅 and 𝐷𝑄𝐷), where 𝐷𝑄𝑅 corresponds to the individuals that recover,
while 𝐷𝑄𝐷 corresponds to individuals that perish; individuals that recover from
the disease and have permanent immunity (𝑅); and individuals that perish from the
disease (𝐷).

The following helpful definitions can also be found in [152]: total number of hospi-
talized cases (𝑇𝐻); total number of detected deaths (𝐷𝐷); total number of detected
cases (𝐷𝑇 ).

The dynamics of the original DELPHI model are outlined in Eq (D.1) to Eq (D.14)
[152]:

d
d𝑡

𝑆(𝑡) = −𝛼 · 𝛾(𝑡) · 𝑆(𝑡) · 𝐼(𝑡) (D.1)
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d
d𝑡

𝐸(𝑡) = 𝛼 · 𝛾(𝑡) · 𝑆(𝑡) · 𝐼(𝑡) − 𝑟𝑖 · 𝐸(𝑡) (D.2)
d
d𝑡

𝐼(𝑡) = 𝑟𝑖 · 𝐸(𝑡) − 𝑟𝑑 · 𝐼(𝑡) (D.3)
d
d𝑡

𝑈𝑅(𝑡) = 𝑟𝑑 · (1 − 𝑝𝑑𝑡ℎ(𝑡)) · (1 − 𝑝𝑑) · 𝐼(𝑡) − 𝑟𝑟𝑖 · 𝑈𝑅(𝑡) (D.4)
d
d𝑡

𝐷𝐻𝑅(𝑡) = 𝑟𝑑 · (1 − 𝑝𝑑𝑡ℎ(𝑡)) · 𝑝𝑑 · 𝑝ℎ · 𝐼(𝑡) − 𝑟𝑟ℎ · 𝐷𝐻𝑅(𝑡) (D.5)
d
d𝑡

𝐷𝑄𝑅(𝑡) = 𝑟𝑑 · (1 − 𝑝𝑑𝑡ℎ(𝑡)) · 𝑝𝑑 · (1 − 𝑝ℎ) · 𝐼(𝑡) − 𝑟𝑟𝑖 · 𝐷𝑄𝑅(𝑡) (D.6)
d
d𝑡

𝑈𝐷(𝑡) = 𝑟𝑑 · 𝑝𝑑𝑡ℎ(𝑡) · (1 − 𝑝𝑑) · 𝐼(𝑡) − 𝑟𝑑𝑡ℎ · 𝑈𝐷(𝑡) (D.7)
d
d𝑡

𝐷𝐻𝐷(𝑡) = 𝑟𝑑 · 𝑝𝑑𝑡ℎ(𝑡) · 𝑝𝑑 · 𝑝ℎ · 𝐼(𝑡) − 𝑟𝑑𝑡ℎ · 𝐷𝐻𝐷(𝑡) (D.8)
d
d𝑡

𝐷𝑄𝐷(𝑡) = 𝑟𝑑 · 𝑝𝑑𝑡ℎ(𝑡) · 𝑝𝑑 · (1 − 𝑝ℎ) · 𝐼(𝑡) − 𝑟𝑑𝑡ℎ · 𝐷𝑄𝐷(𝑡) (D.9)
d
d𝑡

𝑇𝐻(𝑡) = 𝑟𝑑 · 𝑝𝑑 · 𝑝ℎ · 𝐼(𝑡) (D.10)
d
d𝑡

𝐷𝐷(𝑡) = 𝑟𝑑𝑡ℎ · (𝐷𝐻𝐷(𝑡) + 𝐷𝑄𝐷(𝑡)) (D.11)
d
d𝑡

𝐷𝑇 (𝑡) = 𝑟𝑑 · 𝑝𝑑 · 𝐼(𝑡) (D.12)
d
d𝑡

𝑅(𝑡) = 𝑟𝑟𝑖 · (𝑈𝑅(𝑡) + 𝐷𝑄𝑅(𝑡)) + 𝑟𝑟ℎ · 𝐷𝐻𝑅(𝑡) (D.13)
d
d𝑡

𝐷(𝑡) = 𝑟𝑑𝑡ℎ · (𝑈𝐷(𝑡) + 𝐷𝑄𝐷(𝑡) + 𝐷𝐻𝐷(𝑡)) (D.14)

Model Calibration To calibrate the DELPHI model, we need to estimate the
following quantities [152]:

– 𝛼: Infection rate, assumed to be constant across all countries.

– 𝛾(𝑡): Government response, modelled as

𝛾(𝑡) = 2
𝜋

· arctan
(︃

−𝑏 · (𝑡 − 𝑎)
20

)︃
+ 1 + 𝑗0 · exp

(︃
−(𝑡 − 𝑡𝑗𝑢𝑚𝑝)2

2 · 𝜎2

)︃
, (D.15)

where 𝑎 controls the time at which the measure starts; 𝑏 controls the strength
of the measure; 𝑗0 controls the magnitude of the jump; 𝑡𝑗𝑢𝑚𝑝 is the median day
when the jump occurs; and 𝜎 is the rate at which the resurgence in the cases
occurred.

– 𝑟𝑖: Rate of infection leaving the incubation phase. Assumption: 𝑟𝑖 = log 2
𝑇𝑖

, where
𝑇𝑖 = 5 days (the median time to leave incubation).

– 𝑟𝑑: Rate of detection. Assumption: 𝑟𝑑 = log 2
𝑇𝑑

, where 𝑇𝑑 = 2 days (the median
time to detection).
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– 𝑟𝑟𝑖: Rate of recovery not under hospitalization. Assumption: 𝑟𝑟𝑖 = log 2
𝑇𝑟𝑖

, where
𝑇𝑟𝑖 = 10 days (the median time to recovery not under hospitalization).

– 𝑟𝑟ℎ: Rate of recovery under hospitalization. Assumption: 𝑟𝑟ℎ = log 2
𝑇𝑟ℎ

, where
𝑇𝑟ℎ = 15 days (the median time to recovery under hospitalization).

– 𝑟𝑑𝑡ℎ: Rate of death. Assumption: 𝑟𝑑𝑡ℎ = log 2
𝑇𝑑𝑡ℎ

, where 𝑇𝑑𝑡ℎ is the time till death
for dying patients.

– 𝑝𝑑𝑡ℎ(𝑡): Mortality percentage over time, modelled as the following declining
function (reflecting an improved ability to detect milder cases and increased
standards of care for COVID-19 patients)

𝑝𝑑𝑡ℎ(𝑡) = (𝑝𝑑𝑡ℎ0 − 𝑝𝑑𝑡ℎ) ·

⎡⎣ 2
𝜋

· arctan
(︃

− 𝑡

20 · 𝑟𝑑𝑑𝑒𝑐

)︃
+ 1

⎤⎦+ 𝑝𝑑𝑡ℎ, (D.16)

where 𝑝𝑑𝑡ℎ0 is the initial mortality percentage; 𝑝𝑑𝑡ℎ is a lower bound on mortality
percentage assuming perfect detection and perfect treatment; 𝑟𝑑𝑑𝑒𝑐 is the rate
of decay of mortality percentage.

– 𝑝𝑑: Percentage of detected infection cases. Assumption: 𝑝𝑑 = 0.2 is constant.

– 𝑝ℎ: Percentage of hospitalized detected infection cases. Assumption: 𝑝ℎ = 0.03
is constant.

Parameters to Fit The only parameters we need to fit to historical data are:

1. 𝛼

2. 𝑟𝑑𝑡ℎ = log 2
𝑇𝑑𝑡ℎ

3. 𝑝𝑑𝑡ℎ0

4. 𝑟𝑑𝑑𝑒𝑐

5. 𝑎

6. 𝑏

7. 𝑗0

8. 𝑡𝑗𝑢𝑚𝑝

9. 𝜎

10. 𝑘1

11. 𝑘2

where 𝑘1 and 𝑘2 are “internal” parameters used for initial conditions.

Inclusion of Vaccination States

In addition to the DELPHI model (represented by green nodes in Fig D-1), we add
the following components to account for vaccination states:

– 𝑋 ∈ {𝐴, 𝐵}: Brand of the vaccine distributed.

– 𝑉𝑋,1: Individuals receiving the first dose for vaccine 𝑋.
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– 𝑉 𝑟
𝑋,1 (immediate response): Individuals who respond to the first dose of vaccine

𝑋. We assume they have permanent immunity to the disease after a period of
𝑇𝑋,𝐼 days after receiving the first dose.

– 𝑉 𝑑𝑟
𝑋,1 (delayed response): Individuals who do not respond to the first dose of

vaccine 𝑋 but who respond to the second dose of vaccine 𝑋. We assume
they have permanent immunity to the disease after a period of 𝑇𝑋,𝐼 days after
receiving the second dose.

– 𝑉 𝑛𝑟
𝑋,1 (no response): Individuals who do not respond to the first and second doses

of vaccine 𝑋.

We also need the following helpful definitions:

– 𝑉𝑋,𝑎(𝑡): Number of vaccines 𝑋 available at time 𝑡.

– 𝜀𝑋,𝑖: Effectiveness of 𝑖𝑡ℎ dose of vaccine 𝑋 [96].

– Pfizer-BioNTech: 52%efficacy after a single dose, 92%efficacy after two
doses.

– Moderna: 80.20%efficacy after a single dose, 95.60%efficacy after two
doses.

– 𝑉 𝑆(𝑡): Susceptible vaccinated individuals. We assume:

𝑉 𝑆(𝑡) =
∑︁

𝑋∈{𝐴,𝐵}
𝑉 𝑟

𝑋,1(𝑡) + 𝑉 𝑑𝑟
𝑋,1(𝑡) + 𝑉 𝑛𝑟

𝑋,1(𝑡) + 𝑉 𝑛𝑟
𝑋,2(𝑡). (D.17)

– 𝑉 𝑟
𝑋,2: Individuals who respond to the first and/or second doses of vaccine 𝑋, and

who were not infected in the first 𝑇𝑋,𝐼 days following their successful vaccination
date.

– 𝑉 𝑛𝑟
𝑋,2: Individuals who have still not responded to the second dose of vaccine 𝑋

after 𝑇𝑋,𝐼 days following their second vaccination date.

– 𝑉𝑋,1𝑟→2𝑟: individuals that were in the 𝑉 𝑟
𝑋,1 state and become 𝑉 𝑟

𝑋,2 when they
receive their second dose.

– 𝑉𝑋,1𝑑𝑟→2𝑟: individuals that were in the 𝑉 𝑑𝑟
𝑋,1 state and become 𝑉 𝑟

𝑋,2 when they
receive their second dose.

– 𝑉𝑋,1𝑛𝑟→2𝑛𝑟: individuals that were in the 𝑉 𝑛𝑟
𝑋,1 state and become 𝑉 𝑛𝑟

𝑋,2 when they
receive their second dose.
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Assumptions In addition, we make the following assumptions:

1. The immune response to a vaccine does not decay over time.

2. All vaccinated individuals receive two doses.

3. Individuals in the 𝑉 𝑟
𝑋,1 group are still susceptible to an infection in the first 𝑇𝑋,𝐼

days of their first vaccination. Starting on day 𝑇𝑋,𝐼 + 1, they have permanent
immunity to the disease and join the 𝑉 𝑟

𝑋,2 group.

4. Individuals in the 𝑉 𝑑𝑟
𝑋,1 group are still susceptible to an infection until day 𝑇𝑋,𝐼

following their second vaccination. Starting on day 𝑇𝑋,𝐼 + 1 since they receive
the second dose, they have permanent immunity to the disease.

5. Individuals in the 𝑉 𝑛𝑟
𝑋,2 group will never respond positively to the vaccine, and

remain susceptible to an infection.

6. We assume 𝑇𝑋,𝐼 = 14 days [192].

7. We assume a uniform daily infection rate among individuals in each vaccination
state.

Dynamics of the DELPHI Model with Vaccination States

We augment the dynamics of the DELPHI model with vaccination states, the blue
terms appearing in Eq (D.18) to Eq (D.36):

d
d𝑡

𝑆(𝑡) = −𝛼 · 𝛾(𝑡) · 𝑆(𝑡) · 𝐼(𝑡) −
∑︁

𝑋∈{𝐴,𝐵}
𝑉𝑋,1(𝑡) (D.18)

d
d𝑡

𝐸(𝑡) = 𝛼 · 𝛾(𝑡) · (𝑆(𝑡) +𝑉 𝑆(𝑡)) · 𝐼(𝑡) − 𝑟𝑖 · 𝐸(𝑡) (D.19)
d
d𝑡

𝑉 𝑟
𝑋,1(𝑡) = 𝜀𝑋,1 · 𝑉𝑋,1(𝑡) − 𝛼 · 𝛾(𝑡) · 𝑉 𝑟

𝑋,1 · 𝐼(𝑡) − 𝑉𝑋,1𝑟→2𝑟 (D.20)
d
d𝑡

𝑉 𝑑𝑟
𝑋,1(𝑡) = (𝜀𝑋,2 − 𝜀𝑋,1) · 𝑉𝑋,1(𝑡) − 𝛼 · 𝛾(𝑡) · 𝑉 𝑑𝑟

𝑋,1 · 𝐼(𝑡) − 𝑉𝑋,1𝑑𝑟→2𝑟 (D.21)
d
d𝑡

𝑉 𝑛𝑟
𝑋,1(𝑡) = (1 − 𝜀𝑋,2) · 𝑉𝑋,1(𝑡) − 𝛼 · 𝛾(𝑡) · 𝑉 𝑛𝑟

𝑋,1 · 𝐼(𝑡) − 𝑉𝑋,1𝑛𝑟→2𝑛𝑟 (D.22)
d
d𝑡

𝑉 𝑟
𝑋,2(𝑡) = 𝑉𝑋,1𝑟→2𝑟 + 𝑉𝑋,1𝑛𝑟→2𝑟 (D.23)

d
d𝑡

𝑉 𝑛𝑟
𝑋,2(𝑡) = 𝑉𝑋,1𝑛𝑟→2𝑛𝑟 − 𝛼 · 𝛾(𝑡) · 𝑉 𝑛𝑟

𝑋,2 · 𝐼(𝑡) (D.24)
d
d𝑡

𝐼(𝑡) = 𝑟𝑖 · 𝐸(𝑡) − 𝑟𝑑 · 𝐼(𝑡) (D.25)
d
d𝑡

𝑈𝑅(𝑡) = 𝑟𝑑 · (1 − 𝑝𝑑𝑡ℎ(𝑡)) · (1 − 𝑝𝑑) · 𝐼(𝑡) − 𝑟𝑟𝑖 · 𝑈𝑅(𝑡) (D.26)
d
d𝑡

𝐷𝐻𝑅(𝑡) = 𝑟𝑑 · (1 − 𝑝𝑑𝑡ℎ(𝑡)) · 𝑝𝑑 · 𝑝ℎ · 𝐼(𝑡) − 𝑟𝑟ℎ · 𝐷𝐻𝑅(𝑡) (D.27)
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d
d𝑡

𝐷𝑄𝑅(𝑡) = 𝑟𝑑 · (1 − 𝑝𝑑𝑡ℎ(𝑡)) · 𝑝𝑑 · (1 − 𝑝ℎ) · 𝐼(𝑡) − 𝑟𝑟𝑖 · 𝐷𝑄𝑅(𝑡) (D.28)
d
d𝑡

𝑈𝐷(𝑡) = 𝑟𝑑 · 𝑝𝑑𝑡ℎ(𝑡) · (1 − 𝑝𝑑) · 𝐼(𝑡) − 𝑟𝑑𝑡ℎ · 𝑈𝐷(𝑡) (D.29)
d
d𝑡

𝐷𝐻𝐷(𝑡) = 𝑟𝑑 · 𝑝𝑑𝑡ℎ(𝑡) · 𝑝𝑑 · 𝑝ℎ · 𝐼(𝑡) − 𝑟𝑑𝑡ℎ · 𝐷𝐻𝐷(𝑡) (D.30)
d
d𝑡

𝐷𝑄𝐷(𝑡) = 𝑟𝑑 · 𝑝𝑑𝑡ℎ(𝑡) · 𝑝𝑑 · (1 − 𝑝ℎ) · 𝐼(𝑡) − 𝑟𝑑𝑡ℎ · 𝐷𝑄𝐷(𝑡) (D.31)
d
d𝑡

𝑇𝐻(𝑡) = 𝑟𝑑 · 𝑝𝑑 · 𝑝ℎ · 𝐼(𝑡) (D.32)
d
d𝑡

𝐷𝐷(𝑡) = 𝑟𝑑𝑡ℎ · (𝐷𝐻𝐷(𝑡) + 𝐷𝑄𝐷(𝑡)) (D.33)
d
d𝑡

𝐷𝑇 (𝑡) = 𝑟𝑑 · 𝑝𝑑 · 𝐼(𝑡) (D.34)
d
d𝑡

𝑅(𝑡) = 𝑟𝑟𝑖 · (𝑈𝑅(𝑡) + 𝐷𝑄𝑅(𝑡)) + 𝑟𝑟ℎ · 𝐷𝐻𝑅(𝑡) (D.35)
d
d𝑡

𝐷(𝑡) = 𝑟𝑑𝑡ℎ · (𝑈𝐷(𝑡) + 𝐷𝑄𝐷(𝑡) + 𝐷𝐻𝐷(𝑡)) (D.36)
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Figure D-1: Flowchart of the original DELPHI model (in green) [152] and the ad-
ditional vaccination states (in blue). For illustrative purposes, brand A denotes the
Moderna vaccine and brand B denotes the Pfizer-BioNTech vaccine.
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D.1.2 Discretization of the DELPHI Model

We simulate the DELPHI model using a time step of 0.01 days. Although these
simulations provide a very accurate solution to the DELPHI’s system of ODEs, it is
not a very practical approach. In fact, running a single simulation for the United
States takes a few minutes, which is not an ideal setting for Monte Carlo simulation.
To resolve this issue, we recalibrate our parameters and ensure that a discretized
version of the DELPHI that uses these parameters and a time step of 1 day will
yield the same output as the original non-discretized model. We plot in Fig D-2 a
comparison of DELPHI outputs using continuous time steps and discrete time steps
of 1 day. These outputs make us confident that using a discretized DELPHI will not
affect our results.

We have observed that the parameters 𝛾(𝑡), 𝑝ℎ, 𝑝𝑑, and 𝑝𝑑𝑡ℎ can be left unchanged;
however, it was crucial to re-estimate the parameters 𝛼, 𝑟𝑖, 𝑟𝑑, 𝑟𝑟𝑖, 𝑟𝑟ℎ, and 𝑟𝑑𝑡ℎ. This
can be done by noticing that the DELPHI equations yield the following properties:

�̃� = − 1
𝛾(𝑡) · 𝑆(𝑡 + 1) − 𝑆(𝑡)

𝑆(𝑡) · 𝐼(𝑡) (D.37)

𝑟𝑖 = − [𝑆(𝑡 + 1) + 𝐸(𝑡 + 1)] − [𝑆(𝑡) + 𝐸(𝑡)]
𝐸(𝑡) (D.38)

𝑟𝑑 = − [𝑆(𝑡 + 1) + 𝐸(𝑡 + 1) + 𝐼(𝑡 + 1)] − [𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡)]
𝐼(𝑡) (D.39)

˜𝑟𝑑𝑡ℎ = 𝐷(𝑡 + 1) − 𝐷(𝑡)
𝑈𝐷(𝑡) + 𝐷𝑄𝐷(𝑡) + 𝐷𝐻𝐷(𝑡) = 𝐷𝐷(𝑡 + 1) − 𝐷𝐷(𝑡)

𝐷𝑄𝐷(𝑡) + 𝐷𝐻𝐷(𝑡) (D.40)

Furthermore, we notice that the discretized versions of 𝑟𝑖 and 𝑟𝑑 are related to their
non-discretized versions through the same proportionality coefficient. We use this
proportionality coefficient to estimate the discretized version of 𝑟𝑟ℎ and 𝑟𝑟𝑖 from their
non-discretized values. In other words,

𝑟𝑟𝑖 = 𝑟𝑑

𝑟𝑑

· 𝑟𝑟𝑖 = 𝑟𝑖

𝑟𝑖

· 𝑟𝑟𝑖 (D.41)

𝑟𝑟ℎ = 𝑟𝑑

𝑟𝑑

· 𝑟𝑟ℎ = 𝑟𝑖

𝑟𝑖

· 𝑟𝑟ℎ (D.42)

To verify that 𝑝ℎ, 𝑝𝑑, and 𝑝𝑑𝑡ℎ are not affected by discretization, we estimate them
using:

𝑝ℎ = 𝑇𝐻(𝑡 + 1) − 𝑇𝐻(𝑡)
𝐷𝑇 (𝑡 + 1) − 𝐷𝑇 (𝑡) (D.43)

(D.44)

𝑝𝑑 = − 𝐷𝑇 (𝑡 + 1) − 𝐷𝑇 (𝑡)
[𝑆(𝑡 + 1) + 𝐸(𝑡 + 1) + 𝐼(𝑡 + 1)] − [𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡)] (D.45)

(D.46)
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˜𝑝𝑑𝑡ℎ = −

[𝑈𝐷(𝑡 + 1) + 𝐷𝐻𝐷(𝑡 + 1) + 𝐷𝑄𝐷(𝑡 + 1) + 𝐷(𝑡 + 1)]
− [𝑈𝐷(𝑡) + 𝐷𝐻𝐷(𝑡) + 𝐷𝑄𝐷(𝑡) + 𝐷(𝑡)]

[𝑆(𝑡 + 1) + 𝐸(𝑡 + 1) + 𝐼(𝑡 + 1)] − [𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡)] (D.47)
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(a) Number of detected cases. (b) Cumulative number of detected cases.

(c) Number of hospitalized cases. (d) Cumulative number of hospitalized cases.

(e) Cumulative number of deaths.

Figure D-2: Comparison of the output for a non-discretized and a discretized (with
a time step of 1 day) simulation of the DELPHI. We use the 2021/02/07 DELPHI
model parameters.
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D.2 Sensitivity Analysis

In this section, we explore the sensitivity of our results to key parameters of the model.
In D.2.1, we delay the second dose by changing the recommended time frame between
two doses from 21 days (3 weeks), to 4 weeks, 5 weeks, 7 weeks, and 9 weeks. In
D.2.2, we increase the time to reach permanent immunity after responding positively
to a vaccine from 14 days to 21 days. In D.2.3, we modify the terminal supply rate of
vaccines from 1.5 million doses per day to 3.0 million doses per day and 0.75 million
doses per day. In D.2.4, we increase the efficacy of the first dose of the vaccine by
20% and also decrease the efficacy of the first dose of the vaccine by 20%. In D.2.5,
we increase the efficacy of the second dose of the vaccine by 4% and also decrease the
efficacy of the first dose of the vaccine by 20%. In D.2.6, we increase the frequency
of supply shocks to 1 per 15 days and also decrease the frequency of supply shocks to
1 per 45 days.
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D.2.1 Impact of Delaying the Second Dose

(a) Base Case: 21 days.

(b) Delay: 28 days. (c) Delay: 35 days.

(d) Delay: 49 days. (e) Delay: 63 days.

Figure D-3: Simulation of the DELPHI model under supply shocks. We calculate
the cumulative number of infections between October 1st, 2020 and August 1st,
2021 relative to a no-vaccination baseline when a constant fraction of available doses
are allocated to first-time users. Results under supply shocks are averaged over 1,000
Monte Carlo simulations. We use the February 7th, 2021 DELPHI model parameters.
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(a) Base Case: 21 days.

(b) Delay: 28 days. (c) Delay: 35 days.

(d) Delay: 49 days. (e) Delay: 63 days.

Figure D-4: Simulation of the DELPHI model under supply shocks. We calculate
the cumulative number of deaths between October 1st, 2020 and August 1st,
2021 relative to a no-vaccination baseline when a constant fraction of available doses
are allocated to first-time users. Results under supply shocks are averaged over 1,000
Monte Carlo simulations. We use the February 7th, 2021 DELPHI model parameters.
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D.2.2 Impact of Delaying the Immunity Response

(a) Base Case: 14 days.

(b) Immunity: 21 days.

Figure D-5: Simulation of the DELPHI model under supply shocks. We calculate
the cumulative number of infections between October 1st, 2020 and August 1st,
2021 relative to a no-vaccination baseline when a constant fraction of available doses
are allocated to first-time users. Results under supply shocks are averaged over 1,000
Monte Carlo simulations. We use the February 7th, 2021 DELPHI model parameters.
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(a) Base Case: 14 days.

(b) Immunity: 21 days.

Figure D-6: Simulation of the DELPHI model under supply shocks. We calculate
the cumulative number of deaths between October 1st, 2020 and August 1st,
2021 relative to a no-vaccination baseline when a constant fraction of available doses
are allocated to first-time users. Results under supply shocks are averaged over 1,000
Monte Carlo simulations. We use the February 7th, 2021 DELPHI model parameters.
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D.2.3 Impact of the Vaccine’s Terminal Supply Rate

(a) Base Case: 1.5 million per day.

(b) Supply: 0.75 million doses per day. (c) Supply: 3.0 million doses per day.

Figure D-7: Simulation of the DELPHI model under supply shocks. We calculate
the cumulative number of infections between October 1st, 2020 and August 1st,
2021 relative to a no-vaccination baseline when a constant fraction of available doses
are allocated to first-time users. Results under supply shocks are averaged over 1,000
Monte Carlo simulations. We use the February 7th, 2021 DELPHI model parameters.
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(a) Base Case: 1.5 million per day.

(b) Supply: 0.75 million doses per day. (c) Supply: 3.0 million doses per day.

Figure D-8: Simulation of the DELPHI model under supply shocks. We calculate
the cumulative number of deaths between October 1st, 2020 and August 1st,
2021 relative to a no-vaccination baseline when a constant fraction of available doses
are allocated to first-time users. Results under supply shocks are averaged over 1,000
Monte Carlo simulations. We use the February 7th, 2021 DELPHI model parameters.
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D.2.4 Impact of the First Dose Efficacy

(a) Base Case: 52% (Pfizer), 80.20% (Moderna).

(b) Efficacy: -20%. (c) Efficacy: +20%.

Figure D-9: Simulation of the DELPHI model under supply shocks. We calculate
the cumulative number of infections between October 1st, 2020 and August 1st,
2021 relative to a no-vaccination baseline when a constant fraction of available doses
are allocated to first-time users. Results under supply shocks are averaged over 1,000
Monte Carlo simulations. We use the February 7th, 2021 DELPHI model parameters.
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(a) Base Case: 52% (Pfizer), 80.20% (Moderna).

(b) Efficacy: -20%. (c) Efficacy: +20%.

Figure D-10: Simulation of the DELPHI model under supply shocks. We calculate
the cumulative number of deaths between October 1st, 2020 and August 1st,
2021 relative to a no-vaccination baseline when a constant fraction of available doses
are allocated to first-time users. Results under supply shocks are averaged over 1,000
Monte Carlo simulations. We use the February 7th, 2021 DELPHI model parameters.
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D.2.5 Impact of the Second Dose Efficacy

(a) Base Case: 92% (Pfizer), 95.60% (Moderna).

(b) Efficacy: -20%. (c) Efficacy: +4%.

Figure D-11: Simulation of the DELPHI model under supply shocks. We calculate
the cumulative number of infections between October 1st, 2020 and August 1st,
2021 relative to a no-vaccination baseline when a constant fraction of available doses
are allocated to first-time users. Results under supply shocks are averaged over 1,000
Monte Carlo simulations. We use the February 7th, 2021 DELPHI model parameters.
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(a) Base Case: 92% (Pfizer), 95.60% (Moderna).

(b) Efficacy: -20%. (c) Efficacy: +4%.

Figure D-12: Simulation of the DELPHI model under supply shocks. We calculate
the cumulative number of deaths between October 1st, 2020 and August 1st,
2021 relative to a no-vaccination baseline when a constant fraction of available doses
are allocated to first-time users. Results under supply shocks are averaged over 1,000
Monte Carlo simulations. We use the February 7th, 2021 DELPHI model parameters.
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D.2.6 Impact of the Frequency of Supply Shocks

(a) Base Case: 1/30 day−1.

(b) Shock Frequency: 1/15 day−1. (c) Shock Frequency: 1/45 day−1.

Figure D-13: Simulation of the DELPHI model under supply shocks. We calculate
the cumulative number of infections between October 1st, 2020 and August 1st,
2021 relative to a no-vaccination baseline when a constant fraction of available doses
are allocated to first-time users. Results under supply shocks are averaged over 1,000
Monte Carlo simulations. We use the February 7th, 2021 DELPHI model parameters.
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(a) Base Case: 1/30 day−1.

(b) Shock Frequency: 1/15 day−1. (c) Shock Frequency: 1/45 day−1.

Figure D-14: Simulation of the DELPHI model under supply shocks. We calculate
the cumulative number of deaths between October 1st, 2020 and August 1st,
2021 relative to a no-vaccination baseline when a constant fraction of available doses
are allocated to first-time users. Results under supply shocks are averaged over 1,000
Monte Carlo simulations. We use the February 7th, 2021 DELPHI model parameters.
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Appendix E

Chapter 7 Supplementary Material

We provide mathematical proofs to propositions stated in the paper in Section E.1
of the Appendix. Section E.2 describes all the anomaly factors used in the empir-
ical analysis. We include additional sensitivity analyses of the empirical results in
Sections E.3, E.4, and E.5. Section E.3 explores the sensitivity of the latent factor
models to the choice of 𝛾 in the APT loss function (Equation 7.16) using 5-fold cross-
validation. We describe in Section E.4 the 60 clusters chosen for the CAE and the
RCAE used in the empirical analysis. Section E.5 highlights the sensitivity of the
latent factor models to the choice of activation function. Finally, Section E.6 shows
the performance of the latent factor models when using a polynomial regression of
order 2 (which only contains linear and interaction terms, no second order terms).

E.1 Mathematical proofs

In this section, we provide a mathematical proof of the fact that the shallow linear
autoencoder with an APT loss is equivalent to the risk premia PCA introduced by
[151] up to a rotation matrix.

Proof of Proposition 1. We provide a proof under the general setting when the bias
parameters 𝑏0 and 𝑏1 are not fixed to zero. In this case, the equivalence holds when
the input returns 𝑅 are demeaned. Under the additional assumption that the bias
terms 𝑏0 and 𝑏1 are set to zero, we do not need to demean the input returns 𝑅.

The APT loss (Equation 7.16) contains two terms. We consider each term sepa-
rately:

Term 1 =
𝑁∑︁

𝑖=1

(𝑟𝑖,𝑡 − 𝑟𝑖,𝑡)2, (E.1)

= ‖𝑅 − �̂�‖2
𝐹 , (E.2)

= trace
(︁
(𝑅 − �̂�)′(𝑅 − �̂�)

)︁
, (E.3)
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by definition of the Frobenius norm. The second term is obtained as:

Term 2 =
𝑁∑︁

𝑖=1

⎡⎣ 𝑇∑︁
𝑡=1

(𝑟𝑖,𝑡 − 𝑟𝑖,𝑡)
⎤⎦2

, (E.4)

=
𝑁∑︁

𝑖=1

[︁
𝑒′

𝑖 · (𝑅 − �̂�) · 𝜄
]︁2

, (E.5)

=
𝑁∑︁

𝑖=1

𝜄′ · (𝑅 − �̂�)′ · 𝑒𝑖 · 𝑒′
𝑖 · (𝑅 − �̂�) · 𝜄, (E.6)

= 𝜄′ · (𝑅 − �̂�)′ ·

⎡⎣ 𝑁∑︁
𝑖=1

𝑒𝑖 · 𝑒′
𝑖

⎤⎦ · (𝑅 − �̂�) · 𝜄, (E.7)

= 𝜄′ · (𝑅 − �̂�)′ · 𝐼𝑇 · (𝑅 − �̂�) · 𝜄, (E.8)
= 𝜄′⏟ ⏞ 

1×𝑇

· (𝑅 − �̂�)′⏟  ⏞  
𝑇 ×𝑁

· (𝑅 − �̂�)⏟  ⏞  
𝑁×𝑇

· 𝜄⏟ ⏞ 
𝑇 ×1

, (E.9)

= trace
(︁
𝜄′ · (𝑅 − �̂�)′(𝑅 − �̂�) · 𝜄

)︁
, (E.10)

= ‖(𝑅 − �̂�) · 𝜄‖2
𝐹 , (E.11)

where 𝑒𝑖 is the 𝑖𝑡ℎ standard basis vector in R𝑇 ×1, 𝐼𝑇 ∈ R𝑇 ×𝑇 is the 𝑇 × 𝑇 identity
matrix, and we used in the penultimate step the fact that the trace of a 1 × 1 matrix
is equal to the value of the unique entry of the matrix. Hence, the objective of a
shallow autoencoder is to solve the following minimization problem

min
𝑏0,𝑏1,𝑊 0,𝑊 1

1
𝑁 · 𝑇

· ‖𝑅 − �̂�‖2
𝐹 +(1 + 𝛾) · 1

𝑁 · 𝑇 2
‖(𝑅 − �̂�) · 𝜄‖2

𝐹 , (E.12)

where, under a linear activation function,

�̂� = 𝑏1 · 𝜄′ + 𝑊 1 · 𝑏0 · 𝜄′ + 𝑊 1 · 𝑊 0 · 𝑅. (E.13)

Recall from matrix calculus1 that the derivative of the Frobenius norm of a matrix
is given by

𝜕

𝜕𝑋
‖𝑋‖2

𝐹 = 2𝑋. (E.14)

Taking the partial derivative of each term with respect to 𝑏1 yields:

𝜕

𝜕𝑏1
‖𝑅 − �̂�‖2

𝐹 = 𝜕

𝜕(𝑅 − �̂�)
‖𝑅 − �̂�‖2

𝐹 · 𝜕

𝜕𝑏1

[︁
𝑅 − 𝑏1 · 𝜄′ − 𝑊 1 · 𝑏0 · 𝜄′ − 𝑊 1 · 𝑊 0 · 𝑅

]︁
,(E.15)

= − 𝜕

𝜕(𝑅 − �̂�)
‖𝑅 − �̂�‖2

𝐹 · 𝜕

𝜕𝑏1

[︁
𝑏1 · 𝜄′

]︁
, (E.16)

= −2 · (𝑅 − �̂�) · 𝜄, (E.17)

1For example, see: https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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and

𝜕

𝜕𝑏1
‖(𝑅 − �̂�) · 𝜄‖2

𝐹 = (E.18)
𝜕

𝜕(𝑅 − �̂�) · 𝜄
‖(𝑅 − �̂�) · 𝜄‖2

𝐹 · 𝜕

𝜕𝑏1

[︁
𝑅 − 𝑏1 · 𝜄′ − 𝑊 1 · 𝑏0 · 𝜄′ − 𝑊 1 · 𝑊 0 · 𝑅

]︁
𝜄,(E.19)

= − 𝜕

𝜕(𝑅 − �̂�) · 𝜄
‖(𝑅 − �̂�) · 𝜄‖2

𝐹 · 𝜕

𝜕𝑏1

[︁
𝑏1 · 𝜄′ · 𝜄

]︁
,(E.20)

= −2 · (𝑅 − �̂�) · 𝜄 · 𝑇. (E.21)

Hence, we need to set:

0 = 𝜕

𝜕𝑏1
𝐿𝑜𝑠𝑠, (E.22)

= −2
𝑁 · 𝑇

· (𝑅 − �̂�) · 𝜄 − 2(1 + 𝛾) · 𝑇

𝑁 · 𝑇 2
· (𝑅 − �̂�) · 𝜄, (E.23)

= −2
𝑁 · 𝑇

· (2 + 𝛾) · (𝑅 − �̂�) · 𝜄, (E.24)

implying that

0 = (𝑅 − �̂�)𝜄, (E.25)
=

(︁
𝑅 − 𝑏1 · 𝜄′ − 𝑊 1 · 𝑏0 · 𝜄′ − 𝑊 1 · 𝑊 0 · 𝑅

)︁
𝜄, (E.26)

= 𝑅 · 𝜄 − 𝑇 · 𝑏1 − 𝑇 · 𝑊 1 · 𝑏0 − 𝑊 1 · 𝑊 0 · 𝑅 · 𝜄, (E.27)

therefore
𝑏1 = 1

𝑇
·
(︁
𝑅 · 𝜄 − 𝑊 1 · 𝑊 0 · 𝑅 · 𝜄

)︁
− 𝑊 1 · 𝑏0. (E.28)

Substituting 𝑏1 into the (𝑅 − �̂�) expression yields:

𝑅 − �̂� = 𝑅 − 𝑏1 · 𝜄′ − 𝑊 1 · 𝑏0 · 𝜄′ − 𝑊 1 · 𝑊 0 · 𝑅, (E.29)

= 𝑅 − 1
𝑇

(︁
𝑅𝜄𝜄′ − 𝑊 1 · 𝑊 0 · 𝑅𝜄𝜄′ − 𝑇 · 𝑊 1 · 𝑏0𝜄′

)︁
− 𝑊 1 · 𝑏0 · 𝜄′ − 𝑊 1 · 𝑊 0 · 𝑅,(E.30)

= (𝑅 − 1
𝑇

𝑅𝜄𝜄′) − (𝑊 1 · 𝑊 0 · 𝑅 − 1
𝑇

𝑊 1 · 𝑊 0 · 𝑅𝜄𝜄′), (E.31)

= (𝑅 − 1
𝑇

𝑅𝜄𝜄′) − 𝑊 1 · 𝑊 0 · (𝑅 − 1
𝑇

𝑅𝜄𝜄′). (E.32)

Hence, the optimal choice of 𝑏1 demeans the returns 𝑅. However, instead of demeaning
the returns, we can force the bias parameters 𝑏0 and 𝑏1 to zero, leading to the same
expression:

𝑅 − �̂� = 𝑅 − 𝑏1 · 𝜄′ − 𝑊 1 · 𝑏0 · 𝜄′ − 𝑊 1 · 𝑊 0 · 𝑅, (E.33)
= 𝑅 − 𝑊 1 · 𝑊 0 · 𝑅. (E.34)

In the remainder of the proof, we will assume that 𝑏0 = 0 and 𝑏1 = 0 without loss of
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generality to avoid demeaning input returns.

Taking the partial derivative of each term of the APT loss with respect to 𝑊 0

yields:

𝜕

𝜕𝑊 0
‖𝑅 − �̂�‖2

𝐹 = 𝜕

𝜕(𝑅 − �̂�)
‖𝑅 − �̂�‖2

𝐹 · 𝜕

𝜕𝑊 0

[︁
𝑅 − 𝑏1 · 𝜄′ − 𝑊 1 · 𝑏0 · 𝜄′ − 𝑊 1 · 𝑊 0 · 𝑅

]︁
,(E.35)

= − 𝜕

𝜕(𝑅 − �̂�)
‖𝑅 − �̂�‖2

𝐹 · 𝜕

𝜕𝑊 0

[︁
𝑊 1 · 𝑊 0 · 𝑅

]︁
, (E.36)

= −2 · (𝑊 1)′ · (𝑅 − �̂�) · 𝑅′, (E.37)

and

𝜕

𝜕𝑊 0
‖(𝑅 − �̂�) · 𝜄‖2

𝐹 = (E.38)
𝜕

𝜕(𝑅 − �̂�) · 𝜄
‖(𝑅 − �̂�) · 𝜄‖2

𝐹 · 𝜕

𝜕𝑊 0

[︁
𝑅 − 𝑏1 · 𝜄′ − 𝑊 1 · 𝑏0 · 𝜄′ − 𝑊 1 · 𝑊 0 · 𝑅

]︁
𝜄, (E.39)

= − 𝜕

𝜕(𝑅 − �̂�) · 𝜄
‖(𝑅 − �̂�) · 𝜄‖2

𝐹 · 𝜕

𝜕𝑊 0

[︁
−𝑊 1 · 𝑊 0 · 𝑅 · 𝜄

]︁
,(E.40)

= −2 · (𝑊 1)′ · (𝑅 − �̂�) · 𝜄𝜄′ · 𝑅′. (E.41)

Hence, we need to set:

0 = 𝜕

𝜕𝑊 0
𝐿𝑜𝑠𝑠, (E.42)

= −2
𝑁 · 𝑇

· (𝑊 1)′ · (𝑅 − �̂�) · 𝑅′ − 2(1 + 𝛾) · 1
𝑁 · 𝑇 2

· (𝑊 1)′ · (𝑅 − �̂�) · 𝜄𝜄′ · 𝑅′,(E.43)

= −2
𝑁 · 𝑇

· (𝑊 1)′ · (𝑅 − �̂�) · (𝑅′ + 1 + 𝛾

𝑇
· 𝜄𝜄′ · 𝑅′), (E.44)

= −2
𝑁 · 𝑇

· (𝑊 1)′ · (𝑅 − 𝑊 1 · 𝑊 0 · 𝑅) · (𝑅′ + 1 + 𝛾

𝑇
· 𝜄𝜄′ · 𝑅′), (E.45)

= −2
𝑁 · 𝑇

·
[︁
(𝑊 1)′ · 𝑅 − (𝑊 1)′ · 𝑊 1 · 𝑊 0 · 𝑅

]︁
· (𝑅′ + 1 + 𝛾

𝑇
· 𝜄𝜄′ · 𝑅′), (E.46)

implying that

0 = (𝑊 1)′ · 𝑅 · (𝑅′ + 1 + 𝛾

𝑇
· 𝜄𝜄′ · 𝑅′) − (𝑊 1)′ · 𝑊 1 · 𝑊 0 · 𝑅 · (𝑅′ + 1 + 𝛾

𝑇
· 𝜄𝜄′ · 𝑅′),(E.47)

= (𝑊 1)′ · 𝑊 1 ·
[︂[︁

(𝑊 1)′ · 𝑊 1
]︁−1

(𝑊 1)′ − 𝑊 0

]︂
· (𝑅𝑅′ + 1 + 𝛾

𝑇
· 𝑅 · 𝜄𝜄′ · 𝑅′). (E.48)

Assuming [(𝑊 1)′ · 𝑊 1] and
(︁
𝑅𝑅′ + 1+𝛾

𝑇
· 𝑅 · 𝜄𝜄′ · 𝑅′

)︁
are full rank, we obtain

𝑊 0 =
[︁
(𝑊 1)′ · 𝑊 1

]︁−1
(𝑊 1)′. (E.49)
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Substituting 𝑊 0 into the (𝑅 − �̂�) expression yields:

𝑅 − �̂� = 𝑅 −
[︁
(𝑊 1)′ · 𝑊 1

]︁−1
(𝑊 1)′ · 𝑅, (E.50)

= 𝑀𝑊 1 · 𝑅, (E.51)

where 𝑀𝑊 1 = 1 −
[︁
(𝑊 1)′ · 𝑊 1

]︁−1
(𝑊 1)′ is the projection matrix that annihilates the

subspace spanned by 𝑊 .
Hence, the objective of a shallow autoencoder is to solve the following minimization

problem:

min
𝑊 1

1
𝑁 · 𝑇

· ‖𝑀𝑊 1 · 𝑅‖2
𝐹 +(1 + 𝛾) · 1

𝑁 · 𝑇 2
‖𝑀𝑊 1 · 𝑅 · 𝜄‖2

𝐹 , (E.52)

= min
𝑊 1

1
𝑁 · 𝑇

· trace
(︁
𝑀𝑊 1 · 𝑅𝑅′ · 𝑀 ′

𝑊 1

)︁
+ (1 + 𝛾) · 1

𝑁 · 𝑇 2
trace

(︁
𝑀𝑊 1 · 𝑅 · 𝜄𝜄′ · 𝑅′ · 𝑀 ′

𝑊 1

)︁
,(E.53)

= min
𝑊 1

1
𝑁 · 𝑇

· trace
(︃

𝑀𝑊 1 · 𝑅𝑅′ · 𝑀 ′
𝑊 1 + 1 + 𝛾

𝑇
· 𝑀𝑊 1 · 𝑅 · 𝜄𝜄′ · 𝑅′ · 𝑀 ′

𝑊 1

)︃
, (E.54)

= min
𝑊 1

1
𝑁 · 𝑇

· trace
⎛⎝𝑀𝑊 1 · 𝑅 ·

[︃
𝐼𝑇 + 1 + 𝛾

𝑇
· 𝜄𝜄′

]︃
· 𝑅′ · 𝑀 ′

𝑊 1

⎞⎠ . (E.55)

Therefore 𝑊 1 consists of the first 𝐾 eigenvectors of 1
𝑁 ·𝑇 · 𝑅 ·

(︁
𝐼𝑇 + 1+𝛾

𝑇
𝜄𝜄′
)︁

· 𝑅′, which
is equivalent to the solution to the risk premia PCA proposed by [151].
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E.2 Factor description

Table E.1: This table describes the anomaly factors used in Section 7.3. All factors are taken from [85]. The monthly returns
range from July 1976 to December 2017.

Factor Description Factor Description
absacc Absolute accruals lfe Labor Force Efficiency

acc Working capital accruals lgr Growth in long-term debt
adm Advertising Expense-to-market LIQ_PS Liquidity

aeavol Abnormal earnings announcement volume LTR Long-Term Reversal
age years since first Compustat coverage maxret Maximum daily return
ala Book Asset Liquidity MktRf Excess Market Return
ato Asset turnover mom36m 36-month momentum

BAB Betting Against Beta mom6m 6-month momentum
baspread Bid-ask spread moms12m Seasonality

beta Market Beta ms Financial statements score
bm_ia Industry-adjusted book to market mve_ia Industry-adjusted size
cash Cash holdings ndf Net debt finance

cashdebt Cash flow to debt ndp Net debt-to-price
cashpr Cash productivity nef Net equity finance

cdi Composite Debt Issuance nincr Number of earnings increases
cei Composite Equity Issuance noa Net Operating Assets
cfp Cash flow to price ratio nop Net payout yield

cfp_ia Industry-adjusted cash flow to price ratio nxf Net external finance
chatoia Industry-adjusted change in asset turnover ob_a Order backlog
chcsho Change in shares outstanding ol Operating Leverage

chempia Industry-adjusted change in employees op Payout yield
chinv Change in inventory orgcap Organizational Capital

Continued on next page
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Table E.1 – continued from previous page

Factor Description Factor Description
chmom Change in 6-month momentum os Ohlson’s O-score
chpmia Industry-adjusted change in profit margin pchcapx Investment Growth

chtx Change in tax expense pchcapx_ia Industry adjusted % change in capital expendit...
cinvest Corporate investment pchcapx3 Three-year Investment Growth

cinvest_a Abnormal Corporate Investment pchcurrat % change in current ratio
CMA Conservative Minus Aggressive pchdepr % change in depreciation

convind Convertible debt indicator pchgm_pchsale % change in gross margin - % change in sales
cp Cash flow-to-price pchquick % change in quick ratio
cto Capital turnover pchsale_pchinvt % change in sales - % change in inventory

currat Current ratio pchsale_pchrect % change in sales - % change in A/R
dcoa Change in Current Operating Assets pchsale_pchxsga % change in sales - % change in SG&A
dcol Change in Current Operating Liabilities pchsaleinv % change sales-to-inventory
depr Depreciation / PP&E pctacc Percent accruals
dfin Change in Net Financial Assets pm Profit margin
dfnl Change in Financial Liabilities poa Percent Operating Accruals
divi Dividend initiation pps Share price
divo Dividend omission pricedelay Price delay
dnca Change in Non-current Operating Assets ps Financial statements score
dncl Change in Non-current Operating Liabilities QMJ Quality Minus Junk
dnco Change in Net Non-current Operating Assets quick Quick ratio
dnoa Changes in Net Operating Assets rd R&D increase
dolvol Dollar trading volume rdm R&D Expense-to-market
dpia Changes in PPE and Inventory-to-assets rds R&D-to-sales
dsti Change in Short- term Investments realestate_hxz Industry-adjusted Real Estate Ratio
dwc Changes in Net Non-cash Working Capital retvol Return volatility
dy Dividend to price RMW Robust Minus Weak

Continued on next page
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Table E.1 – continued from previous page

Factor Description Factor Description
ear Earnings announcement return rna Return on net operating assets
ebp Enterprise book-to-price roaq Return on assets
egr Growth in common shareholder equity roavol Earnings volatility

egr_hxz Change in Book Equity roic Return on invested capital
em Enterprise multiple rs Revenue Surprises
ep Earnings to price rsup Revenue surprise
etr Effective Tax Rate salecash Sales to cash
gad Growth in advertising expense saleinv Sales to inventory
gma Gross profitability salerec Sales to receivables

grcapx Growth in capital expenditures sgr Sales growth
grltnoa Growth in long term net operating assets sin Sin stocks

grltnoa_hxz Changes in Long-term Net Operating Assets SMB Small Minus Big
herf Industry Concentration sp Sales to price
hire Employee growth rate std_dolvol Volatility of liquidity (dollar trading volume)

HML High Minus Low std_turn Volatility of liquidity (share turnover)
HML_Devil HML Devil stdacc Accrual volatility

HXZ_IA HXZ Investment stdcf Cash flow volatility
HXZ_ROE HXZ Profitability STR 1-month momentum

idiovol Idiosyncratic return volatility sue Unexpected quarterly earnings
ill Illiquidity ta Total accruals

indmom Industry momentum tang Debt capacity/firm tangibility
Intermediary Intermediary Risk Factor tb Tax income to book income

invest Capital expenditures and inventory turn Share turnover
IPO New equity issue UMD Momentum
ivg Inventory Growth ww Whited-Wu Index
kz Kaplan-Zingales Index zerotrade Zero trading days

Continued on next page
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Table E.1 – continued from previous page

Factor Description Factor Description
lev Leverage zs Altman’s Z-score
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E.3 Sensitivity of the APT loss

Figure E-1: Performance of latent factor models for a shallow AE with linear ac-

tivation functions on the 150 anomaly factors as we increase the gamma parameter
in the APT loss from -1 to 20. The top panel shows the average R-squared obtained
across the 150 regressions and the bottom panel shows the average percentage of
anomaly factors that are explained by the latent factor model, using 5-fold cross-
validation. Standard errors are displayed for each model considered.
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Figure E-2: Performance of latent factor models for a shallow AE with tanh-

tanh activation functions on the 150 anomaly factors as we increase the gamma
parameter in the APT loss from -1 to 20. The top panel shows the average R-
squared obtained across the 150 regressions and the bottom panel shows the average
percentage of anomaly factors that are explained by the latent factor model, using
5-fold cross-validation. Standard errors are displayed for each model considered.
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Figure E-3: Performance of latent factor models for a shallow AE with tanh-

linear activation functions on the 150 anomaly factors as we increase the gamma
parameter in the APT loss from -1 to 20. The top panel shows the average R-
squared obtained across the 150 regressions and the bottom panel shows the average
percentage of anomaly factors that are explained by the latent factor model, using
5-fold cross-validation. Standard errors are displayed for each model considered.
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Figure E-4: Performance of latent factor models for a shallow AE with sigmoid-

linear activation functions on the 150 anomaly factors as we increase the gamma
parameter in the APT loss from -1 to 20. The top panel shows the average R-
squared obtained across the 150 regressions and the bottom panel shows the average
percentage of anomaly factors that are explained by the latent factor model, using
5-fold cross-validation. Standard errors are displayed for each model considered.
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Figure E-5: Performance of latent factor models for a shallow AE with ReLU-

linear activation functions on the 150 anomaly factors as we increase the gamma
parameter in the APT loss from -1 to 20. The top panel shows the average R-
squared obtained across the 150 regressions and the bottom panel shows the average
percentage of anomaly factors that are explained by the latent factor model, using
5-fold cross-validation. Standard errors are displayed for each model considered.
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E.4 Sensitivity to the number of clusters

Figure E-6: Selecting the number of clusters to group anomaly factors. We plot
the inertia (top panel) and the silhouette score (bottom panel) as a function of the
number of clusters chosen.

Figure E-7: Histogram of the cluster sizes obtained for 𝑘 = 60 clusters.

Table E.2: Distribution of cluster sizes when grouping anomaly factors into 𝑘 = 60
clusters.

Cluster Size Cluster Assignment
1 34

Continued on next page
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Table E.2 – continued from previous page

Cluster Size Cluster Assignment
2 10
3 5
4 2
5 4
6 1
11 2
12 1
13 1

Table E.3: Clusters obtained when grouping anomaly factors into 𝑘 = 60 clusters.
The anomaly factors are described in Table E.1.

Anomaly factor Cluster Size Cluster Anomaly factor Cluster Size Cluster
op 13 13 pps 4 10
chcsho 13 13 cto 4 8
ato 13 13 cashdebt 4 10
roavol 13 13 em 4 10
age 13 13 chinv 4 8
rna 13 13 dwc 4 8
convind 13 13 STR 3 18
nxf 13 13 pchcapx 3 38
nop 13 13 moms12m 3 11
nef 13 13 UMD 3 11
ww 13 13 mom6m 3 11
ep 13 13 rs 3 7
salerec 13 13 pchcapx3 3 38
beta 12 4 cei 3 18
IPO 12 4 grcapx 3 38
maxret 12 4 mom36m 3 18
turn 12 4 orgcap 3 14
std_turn 12 4 rsup 3 7
SMB 12 4 chtx 3 7
baspread 12 4 ala 3 14
retvol 12 4 gma 3 14
dy 12 4 currat 2 2
zerotrade 12 4 pctacc 2 29
absacc 12 4 dfnl 2 19
idiovol 12 4 dolvol 2 56

Continued on next page
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Table E.3 – continued from previous page

Anomaly factor Cluster Size Cluster Anomaly factor Cluster Size Cluster
cp 11 6 BAB 2 56
HML_Devil 11 6 ndf 2 19
cashpr 11 6 pchsaleinv 2 5
depr 11 1 aeavol 2 2
cfp 11 6 herf 2 17
quick 11 1 poa 2 29
salecash 11 1 pchsale_pchinvt 2 5
cash 11 1 dsti 2 17
rds 11 1 cinvest_a 2 27
rdm 11 1 pchdepr 2 27
bm_ia 11 6 ta 2 15
zs 11 6 Intermediary 2 25
lev 11 6 MktRf 2 25
HML 11 6 pchcurrat 2 24
adm 11 1 dfin 2 15
sp 11 6 pchquick 2 24
tang 11 1 sue 1 47
rd 11 1 cdi 1 48
ebp 11 6 chempia 1 49
nincr 11 1 ol 1 50
ndp 11 1 realestate_hxz 1 57
kz 11 6 acc 1 51
stdacc 6 58 sin 1 52
HXZ_ROE 6 58 ear 1 53
tb 6 58 divi 1 54
RMW 6 58 pricedelay 1 55
ps 6 58 cfp_ia 1 45
stdcf 6 58 saleinv 1 46
sgr 5 30 chpmia 1 28
hire 5 30 pchgm_pchsale 1 44
lgr 5 30 dnoa 1 32
dnco 5 30 ill 1 12
ms 5 0 pchsale_pchrect 1 16
dcol 5 30 ob_a 1 20
pm 5 0 etr 1 21
QMJ 5 0 indmom 1 22
HXZ_IA 5 3 lfe 1 23
egr_hxz 5 3 chmom 1 26
egr 5 3 divo 1 31
dcoa 5 3 pchcapx_ia 1 33
roic 5 0 std_dolvol 1 43

Continued on next page
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Table E.3 – continued from previous page

Anomaly factor Cluster Size Cluster Anomaly factor Cluster Size Cluster
invest 5 9 chatoia 1 34
grltnoa 5 9 dncl 1 35
dpia 5 9 cinvest 1 36
grltnoa_hxz 5 9 mve_ia 1 37
dnca 5 9 LIQ_PS 1 39
CMA 5 3 noa 1 40
os 5 0 pchsale_pchxsga 1 41
ivg 4 8 LTR 1 42
roaq 4 10 gad 1 59

E.5 Sensitivity to the activation functions

Performance of latent factor models for a various autoencoder networks with linear,
tanh, sigmoid, and ReLU activation functions on the 150 anomaly factors as we
increase the number of latent factors in the model from 2 to 15. In each figure, the
right column shows the average adjusted 𝑅2 obtain across the 150 regressions, and
the left and middle columns show the average percentage of anomaly factors that
are explained by the latent factor model (at a t-statistic threshold of 1.96 and 5
respectively). The top row corresponds to ordinary least squares (OLS) regression
results, the middle row to polynomial regression results, and the bottom row to split
regressions.
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Figure E-8: Performance of shallow AE latent factor models with linear, tanh, sigmoid, and ReLU activation functions.
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Figure E-9: Performance of recursive shallow AE models with linear, tanh, sigmoid, and ReLU activation functions.
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Figure E-10: Performance of deep AE latent factor models with linear, tanh, sigmoid, and ReLU activation functions.
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Figure E-11: Performance of CAE latent factor models with linear, tanh, sigmoid, and ReLU activation functions.
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Figure E-12: Performance of RCAE latent factor models with linear, tanh, sigmoid, and ReLU activation functions.
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Figure E-13: Performance of split AE latent factor models with linear, tanh, sigmoid, and ReLU activation functions.
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E.6 Polynomial regressions

We display here the performance of the latent factor models when using a polynomial
regression of order 2 (which only contains linear and interaction terms, no second
order terms). Tables E.4, E.5, E.6, and E.7 are related to Tables 7.1, 7.2, 7.3, and
7.4 in the main text.

Table E.4: Fraction of explained excess returns (in %). Brackets indicate the fraction
obtained if we include a market factor.

Model Factors FF HXZ
CAPM 50 65 48
FF5 63 80 57
q5 83 87 80
Linear 6 74 (75) 1 (65) 5 (84)
RLinear 5 75 (73) 88 (95) 69 (84)
RLinear 6 75 (71) 27 (81) 36 (80)
R-Linear 9 71 (74) 76 (96) 59 (82)
CAE 7 75 (77) 4 (88) 12 (78)
CAE 8 71 (70) 4 (87) 11 (80)
RCAE 5 73 (70) 99 (95) 87 (80)
RCAE 7 77 (79) 5 (81) 18 (81)
Deep 5 70 (65) 5 (81) 11 (76)
Deep 8 75 (75) 3 (95) 7 (73)
Tanh-Tanh 6 85 (84) 100 (99) 92 (90)
R-Tanh-Tanh 5 71 (82) 25 (79) 24 (83)
R-Tanh-Tanh 8 85 (87) 15 (95) 12 (89)
CAE 6 Tanh-Tanh 77 (77) 100 (91) 96 (82)
RCAE 4 Tanh-Tanh 70 (71) 80 (89) 63 (69)
Deep 5 Tanh-Tanh 76 (75) 21 (88) 28 (70)
Tanh 6 85 (85) 100 (99) 91 (88)
R-Tanh 4 67 (71) 97 (88) 83 (75)
CAE 6 Tanh 69 (70) 28 (49) 44 (81)
RCAE 5 Tanh 76 (71) 87 (97) 74 (84)
Deep 6 Tanh 69 (66) 5 (93) 4 (75)
ReLU 4 88 (84) 21 (44) 44 (79)
ReLU 9 82 (81) 88 (96) 85 (89)
R-ReLU 6 76 (73) 4 (59) 22 (78)
CAE 6 ReLU 75 (73) 100 (85) 97 (74)
RCAE 4 ReLU 72 (63) 16 (76) 34 (51)
Deep 5 ReLU 55 (55) 4 (41) 40 (71)
Sigmoid 4 81 (79) 100 (97) 100 (92)
R-Sigmoid 5 93 (93) 100 (77) 100 (97)

Continued on next page
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Table E.4 – continued from previous page

Model Factors FF HXZ
CAE 5 Sigmoid 81 (84) 71 (92) 32 (89)
RCAE 5 Sigmoid 60 (64) 32 (85) 7 (66)
Deep 5 Sigmoid 77 (75) 100 (100) 90 (82)

Table E.5: Regression adjusted R-squared (in %). Brackets indicate the fraction
obtained if we include a market factor.

Model Factors FF HXZ
CAPM 18 75 76
FF5 54 93 83
q5 46 90 83
Linear 6 67 (69) 63 (87) 61 (87)
RLinear 5 65 (67) 60 (86) 59 (86)
RLinear 6 67 (69) 63 (87) 61 (87)
R-Linear 9 72 (75) 66 (89) 66 (88)
CAE 7 69 (71) 63 (89) 62 (87)
CAE 8 71 (73) 65 (89) 64 (88)
RCAE 5 65 (67) 59 (86) 58 (86)
RCAE 7 69 (71) 64 (89) 63 (87)
Deep 5 65 (68) 62 (86) 60 (86)
Deep 8 71 (73) 66 (89) 65 (88)
Tanh-Tanh 6 46 (49) 50 (81) 51 (82)
R-Tanh-Tanh 5 51 (53) 58 (83) 56 (83)
R-Tanh-Tanh 8 58 (61) 61 (86) 59 (85)
CAE 6 Tanh-Tanh 59 (62) 57 (85) 56 (85)
RCAE 4 Tanh-Tanh 53 (56) 54 (83) 54 (84)
Deep 5 Tanh-Tanh 58 (61) 56 (85) 54 (85)
Tanh 6 46 (49) 50 (81) 51 (83)
R-Tanh 4 50 (53) 53 (83) 53 (83)
CAE 6 Tanh 64 (66) 59 (87) 58 (86)
RCAE 5 Tanh 62 (65) 57 (85) 57 (86)
Deep 6 Tanh 64 (67) 60 (87) 58 (86)
ReLU 4 53 (57) 44 (83) 48 (83)
ReLU 9 68 (70) 65 (88) 63 (88)
R-ReLU 6 59 (62) 52 (85) 54 (85)
CAE 6 ReLU 58 (62) 42 (84) 47 (85)
RCAE 4 ReLU 48 (54) 28 (82) 32 (82)
Deep 5 ReLU 58 (62) 48 (84) 51 (85)

Continued on next page
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Table E.5 – continued from previous page

Model Factors FF HXZ
Sigmoid 4 39 (43) 42 (80) 44 (81)
R-Sigmoid 5 39 (43) 40 (80) 41 (81)
CAE 5 Sigmoid 47 (51) 41 (80) 46 (82)
RCAE 5 Sigmoid 38 (43) 33 (78) 39 (80)
Deep 5 Sigmoid 50 (54) 43 (81) 49 (82)

Table E.6: Number of unexplained CAPM, FF5, and q5 factors. (*) indicates that
one of the unexplained factors is the market factor.

Model CAPM FF5 q5
Linear 6 1* 1* 3*
RLinear 5 0 0 2
RLinear 6 1* 1* 3*
R-Linear 9 0 0 2
CAE 7 1* 1* 3*
CAE 8 1* 1* 3*
RCAE 5 0 0 2
RCAE 7 1* 1* 3*
Deep 5 1* 1* 3*
Deep 8 1* 1* 3*
Tanh-Tanh 6 0 0 1
R-Tanh-Tanh 5 1* 3* 2*
R-Tanh-Tanh 8 1* 2* 2*
CAE 6 Tanh-Tanh 0 0 1
RCAE 4 Tanh-Tanh 0 2 2
Deep 5 Tanh-Tanh 1* 2* 2*
Tanh 6 0 0 1
R-Tanh 4 0 2 1
CAE 6 Tanh 0 1 3
RCAE 5 Tanh 0 0 1
Deep 6 Tanh 1* 2* 3*
ReLU 4 1* 2* 4*
ReLU 9 0 0 0
R-ReLU 6 1* 1* 2*
CAE 6 ReLU 0 1 0
RCAE 4 ReLU 1* 2* 4*
Deep 5 ReLU 1* 3* 3*
Sigmoid 4 0 0 0

Continued on next page
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Table E.6 – continued from previous page

Model CAPM FF5 q5
R-Sigmoid 5 0 1 1
CAE 5 Sigmoid 1* 1* 1*
RCAE 5 Sigmoid 1* 3* 3*
Deep 5 Sigmoid 0 1 2

Table E.7: Number of factors unexplained by CAPM, FF5, and q5.

Model CAPM FF5 q5
CAPM — 1 0
FF5 3 — 0
q5 4 2 —
Linear 6 10 11 10
RLinear 5 5 4 4
RLinear 6 9 10 9
R-Linear 9 19 22 18
CAE 7 15 15 12
CAE 8 18 20 18
RCAE 5 8 8 9
RCAE 7 12 12 16
Deep 5 9 5 3
Deep 8 15 14 13
Tanh-Tanh 6 17 18 17
R-Tanh-Tanh 5 11 12 10
R-Tanh-Tanh 8 27 27 26
CAE 6 Tanh-Tanh 11 9 7
RCAE 4 Tanh-Tanh 8 8 7
Deep 5 Tanh-Tanh 5 4 4
Tanh 6 17 17 17
R-Tanh 4 8 9 6
CAE 6 Tanh 11 13 13
RCAE 5 Tanh 4 4 5
Deep 6 Tanh 9 8 8
ReLU 4 9 10 10
ReLU 9 43 43 41
R-ReLU 6 19 20 19
CAE 6 ReLU 10 10 10
RCAE 4 ReLU 4 5 5
Deep 5 ReLU 6 7 7

Continued on next page
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Table E.7 – continued from previous page

Model CAPM FF5 q5
Sigmoid 4 10 10 10
R-Sigmoid 5 15 15 15
CAE 5 Sigmoid 15 15 15
RCAE 5 Sigmoid 15 15 15
Deep 5 Sigmoid 15 15 15
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Appendix F

Chapter 8 Supplementary Material

In this appendix, we include the specific survey questions used for individual and
institutional investors (Section F.1), and for financial advisors (Section F.2), and
summarize the characteristics of the survey participants (Section F.3). In Section
F.4, we provide a more detailed treatment of the risk-aversion coefficient calculation.
Finally, in Section F.5, we show the year-by-year results for the asset allocation ques-
tions, and in Section F.6 we provide year-by-year results for the clustering analysis
as well as a statistical significance analysis of the parameters reported.

F.1 Individual Investor and Institutional Survey

Questions

The behavioral questions 1 to 3 presented in the Individual Investor and the Institu-
tional Surveys were exactly the same. Question 4 was modified every year and was
only asked to Individual Investors between 2015 and 2017.

1. Of the following six gambles, which would you prefer the most?
a. Win $28,000 with probability 100%
b. Win $36,000 with probability 50%; win $24,000 with probability 50%
c. Win $44,000 with probability 50%; win $20,000 with probability 50%
d. Win $52,000 with probability 50%; win $16,000 with probability 50%
e. Win $60,000 with probability 50%; win $12,000 with probability 50%
f. Win $70,000 with probability 50%; win $2,000 with probability 50%

2. How would you change your asset allocation if the S&P 500 declined between
10% and 20% during the next six months and other asset classes performed as
you expected?

a. I would do nothing
b. I would decrease my stock or shares allocation slightly
c. I would decrease my stock or shares allocation significantly
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d. I would increase my stock or shares allocation slightly
e. I would increase my stock or shares allocation significantly

3. How would you change your asset allocation if the S&P 500 increased between
10% and 20% during the next six months and other asset classes performed as
you expected?

a. I would do nothing
b. I would decrease my stock or shares allocation slightly
c. I would decrease my stock or shares allocation significantly
d. I would increase my stock or shares allocation slightly
e. I would increase my stock or shares allocation significantly

4. (2015) Around what time during the Financial Crisis of 2007–2009 did you signifi-
cantly decrease your allocation to stocks in your investment portfolio?

a. Second half of 2007
b. First half of 2008
c. Second half of 2008
d. First half of 2009
e. Second half of 2009
f. I did not significantly decrease my allocation to stocks during the Financial

Crisis

4. (2016) In response to the recent market volatility in January of 2016, how did you
change your equity allocation?

a. I did nothing
b. I decreased my stock or shares allocation slightly
c. I decreased my stock or shares allocation significantly
d. I increased my stock or shares allocation slightly
e. I increased my stock or shares allocation significantly

4. (2017) In terms of investing, what did you do just after the U.S. presidential election
on Nov. 8?

a. I did nothing
b. I decreased my stock or shares allocation slightly
c. I decreased my stock or shares allocation significantly
d. I increased my stock or shares allocation slightly
e. I increased my stock or shares allocation significantly
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F.2 Financial Advisor Survey Questions

The behavioral questions presented in the 2015 and 2016 Financial Advisor Surveys
were essentially the same as the questions for individual investors. For questions
pertaining to asset allocation, advisors were asked about how they would advise
clients to change their allocations rather than how advisors would alter allocation in
their personal investment portfolios.

1. Of the following six gambles, which would you prefer the most?
a. Win $28,000 with probability 100%
b. Win $36,000 with probability 50%; win $24,000 with probability 50%
c. Win $44,000 with probability 50%; win $20,000 with probability 50%
d. Win $52,000 with probability 50%; win $16,000 with probability 50%
e. Win $60,000 with probability 50%; win $12,000 with probability 50%
f. Win $70,000 with probability 50%; win $2,000 with probability 50%

2. How would you advise your clients to change their asset allocation if the S&P
500 declined between -10% and -20% during the next six months and other
asset classes performed as expected?

a. I would advise clients to do nothing
b. I would advise clients to decrease equity allocation slightly
c. I would advise clients to decrease equity allocation significantly
d. I would advise clients to increase equity allocation slightly
e. I would advise clients to increase equity allocation significantly

3. How would you advise your clients to change their asset allocation if the S&P
500 increased between -10% and -20% during the next six months and other
asset classes performed as expected?

a. I would advise clients to do nothing
b. I would advise clients to decrease equity allocation slightly
c. I would advise clients to decrease equity allocation significantly
d. I would advise clients to increase equity allocation slightly
e. I would advise clients to increase equity allocation significantly
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F.3 Survey Respondents Characteristics

We provide more details on the subjects included in the surveys. Tables F.1–F.2 show
the country breakdown of respondents for the Individual Investor Surveys between
2015 and 2017, while Tables F.4–F.5 do this for the Financial Advisor Surveys be-
tween 2015 and 2016. In Table F.6 we list the types of institutions included in the
Institutional Investor surveys between 2015 and 2017. Finally, Table F.7 presents the
definitions of the individual investor demographic categories.

Country # Respondents Country # Respondents

Argentina 200 Japan 350
Australia 250 Mexico 350
Canada 250 Singapore 500
Chile 200 Spain 500
Colombia 200 Switzerland 350
France 500 UAE/Qatar/Kuwait 350
Germany 500 United Kingdom 750
Hong Kong 500 United States 750
Italy 500

Table F.1: Number of respondents, by country, in the 2015 Individual Investor Survey.

Country # Respondents Country # Respondents

Australia 300 Netherlands 250
Canada 300 Singapore 400
Chile 250 Spain 400
Colombia/Peru 300 Sweden 250
France 400 Switzerland 350
Germany 400 Taiwan 250
Hong Kong 500 UAE/Qatar/Kuwait 300
Italy 400 United Kingdom 750
Japan 350 United States 750
Mexico 300

Table F.2: Number of respondents, by country, in the 2016 Individual Investor Survey.
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Country # Respondents Country # Respondents

Argentina/Uruguay 300 Korea 300
Australia 400 Mexico 300
Canada 300 Netherlands 300
Chile 300 Singapore 400
China 300 Spain 400
Colombia/Peru 300 Sweden 300
France 400 Switzerland 400
Germany 400 Taiwan 300
Hong Kong 400 UAE/Qatar/Kuwait 300
Italy 400 United Kingdom 750
Japan 300 United States 750

Table F.3: Number of respondents, by country, in the 2017 Individual Investor Survey.

Country # Respondents Country # Respondents

Canada 150 Singapore 146
Chile 137 Spain 150
France 150 Switzerland 150
Germany 150 UAE/Qatar/Kuwait 144
Hong Kong 144 United Kingdom 300
Italy 150 Uruguay 140
Panama 131 United States 300

Table F.4: Number of respondents, by country, in the 2015 Financial Advisor Survey.

Country # Respondents Country # Respondents

Canada 150 Singapore 150
Chile 150 Spain 150
Columbia 150 Switzerland 150
France 150 UAE/Qatar/Kuwait 150
Germany 150 United Kingdom 300
Hong Kong 150 Uruguay 150
Italy 150 United States 300
Panama 150

Table F.5: Number of respondents, by country, in the 2016 Financial Advisor Survey.

315



Institution Type 2015 2016 2017

Central Bank 11
Corporate Pension Plan 196 172 142
Insurance Company 100 112 107
Non-Profit (Endowment/Foundation) 131 146 100
Public/Government Pension Plan 140 133 116
Sovereign Wealth Fund 69 45 35
Other Institution 13 92
Professional Buyer 200* 178
Total 660 700 700

Table F.6: Breakdown of the number of respondents by institution type, in the three
Institutional Investor Surveys. * means that the number is already included in the rest of

the Institution types.

Demographic Definition

Generation Y 18–33 years old
Generation X 34–49 years old
Baby Boomers 50–68 years old

Pre-Baby Boomers 69 years old and above
Mass Market NW: $200,000 - $300,000
Mass Affluent NW: $300,000 - $500,000

Emerging HNW NW: $500,000 - $1,000,000
High Net Worth NW: $1,000,000 and above

Table F.7: Descriptions of the different demographic categories used in the Individual
Investor Survey. The abbreviation NW means Net Worth, while HNW means High Net

Worth.
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F.4 Risk Aversion Calculation

We present here the calculation of the risk aversion coefficient in more detail. We
assumed that respondents have constant relative risk aversion (CRRA) utility, and
we want to estimate a group of respondent’s risk aversion coefficient 𝑟 and noise
parameter 𝜇. The expected utility of a subject considering a particular gamble 𝑖 is
given by:

𝐸(𝑈𝑖) = 𝑝𝑖,1𝑈(𝑥𝑖,1) + 𝑝𝑖,2𝑈(𝑥𝑖,2) ; 𝑈(𝑥) = 𝑥1−𝑟 − 1
1 − 𝑟

(F.1)

where 𝑥𝑖,1, 𝑥𝑖,2 are the two possible payoffs for the gamble, and 𝑝𝑖,1, 𝑝𝑖,2 are their
associated probabilities of occurring. In our case, 𝑝𝑖,1 = 𝑝𝑖,2 = 1/2, and the expected
utility of a subject considering gamble 𝑖 becomes:

𝐸(𝑈𝑖) =
𝑥1−𝑟

𝑖,1 + 𝑥1−𝑟
𝑖,2 − 2

2(1 − 𝑟) (F.2)

If 𝑟 = 0, we assume 𝑈(𝑥) = log(𝑥) and 𝐸(𝑈𝑖) = 1
2
[log(𝑥𝑖,1) + log(𝑥𝑖,2)]. After

calculating the expected utility, for each pair of gambles 𝑖, 𝑗, the subject picks gamble
𝑖 with probability:

P (Choose gamble 𝑖) = [𝐸(𝑈𝑖)]1/𝜇

[𝐸(𝑈𝑖)]1/𝜇 + [𝐸(𝑈𝑗)]1/𝜇
=: 𝑝𝑖,𝑗 (F.3)

where 𝜇 is a noise parameter, since a subject may actually pick gamble 𝑗 even if
gamble 𝑖 has higher expected utility. If we denote by 𝜂𝑖 the percentage of respondents
who preferred gamble 𝑖 over gamble 𝑖 + 1, then the likelihood function for the param-
eters 𝜇, 𝑟 is proportional to ∏︀5

𝑖=1 𝑝𝜂𝑖
𝑖,𝑖+1𝑝

1−𝜂𝑖
𝑖+1,1. Thus we are interested in maximizing

the log-likelihood function ∑︀5
𝑖=1 𝜂𝑖 log(𝑝𝑖,𝑖+1) + (1 − 𝜂𝑖) log(𝑝𝑖+1,𝑖) over 𝑟 and 𝜇. For

computational purposes, we also require 𝑟 and 𝜇 to satisfy the following constraints:⎧⎨⎩−20 ≤ 𝑟 ≤ 20,

0.001 ≤ 𝜇 ≤ 20.
(F.4)

We now evaluate the inverse 𝐻−1 of the Hessian matrix. The standard error on 𝑟 is
estimated by

√︁
𝐻−1

1,1 and the standard error on 𝜇 is estimated by
√︁

𝐻−1
2,2 .

F.5 S&P 500 Reactions and Risk Aversion

We expand here on the figures presented in the survey. In Figures F-1 and F-2,
we present the reaction of individual investors, financial advisors and institutional
investors to a 10%-20% decrease or increase in the S&P 500. We first display these
results year by year, and then combine the three-years data for each group into a
single plot. For reference, we provide the same plots for investors and advisors based
only in the United States. In Figure F-3, we present an estimate of the risk aversion
coefficient for individual investors across countries year-by-year between 2015 and
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2017.
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Figure F-1: Reactions to a decrease in the S&P 500 across three groups globally and in the
U.S., in 2015, 2016 and 2017, and considering the three years as a single dataset. Financial
Advisors were not surveyed in 2017. For each group and each possible answer, we show
error bars corresponding to one standard error calculated assuming each respondent chooses
either that particular answer, or any other answer.
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Figure F-2: Reactions to a increase in the S&P 500 across three groups globally and in the
U.S., in 2015, 2016 and 2017, and considering the three years as a single dataset. Financial
Advisors were not surveyed in 2017. For each group and each possible answer, we show
error bars corresponding to one standard error calculated assuming each respondent chooses
either that particular answer, or any other answer.
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Figure F-3: Estimated risk aversion coefficients for individual investors across countries
between 2015 and 2017. The risk aversion coefficients are sorted in increasing order. Error
bars correspond to one standard error.
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F.6 Individual Investor Clustering

We expand here on the results presented in the survey. In Tables F.8 to F.10, we
summarize the results for the 2015, 2016 and 2017 Individual Investors clustering
analysis. We combine the 2015–2017 results and plot the responses of each clusters
in Figure F-4. We follow up on the latter plot by displaying the results of the 2015,
2016 and 2017 clusters separately in Figures F-5 to F-9. Tables F.11 to F.14 show the
statistical significance when comparing the mean of demographic categories across
all clusters of the combined 2015–2017 clustering analysis, as well as the 2015, 2016
and 2017 clustering analyses separately. Finally, Tables F.15 to F.16, and Tables F.17
to F.19 show the clustering results obtained in each year for Financial Advisors and
Institutional advisors respectively.

Figure F-4: Distributions of responses for the six clusters created from the 2015-2017 In-
dividual Investor Surveys viewed as one dataset. Error bars correspond to one standard
error. In the top left plot, we report the estimated risk-aversion coefficient calculated for
each cluster. In the top right figure, we provide the gamble preferences of the individual
investors across all groups (which was used to estimate the risk-aversion coefficients). Fi-
nally, the two lower figures show the distribution of responses for the six groups to the S&P
500 asset allocation questions.
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Clustering Analysis of Individual Investors (2015)

Cluster 1 Cluster 2 Cluster 3 Cluster 4

% Respondents 51% 16% 14% 19%
Allocation Decisions

Reaction to Crisis 5.9 2.7 2.5 2.6
Reaction to S&P 500 Fall −0.3 −1.4 −1.5 0.7
Reaction to S&P 500 Rise 0 −1.6 1 0.2
Behavior Passive Risk Avoiders Extrapolators Optimistic

Demographics

Gender (% of Female) 41% 42% 41% 41%
Age 1.13*** 0.69*** 0.86 0.8
Net Worth 1.64 1.62 1.63 1.72*
Advised 56% 57% 67%* 63%
Satisfied with 2014 Ret. 59% 44%*** 55% 61%
Retired 9%*** 2% 2% 3%
Gamble Preference 2.19*** 2.64 2.47 2.62
Risk Aversion Coefficient 1.24*** 0.98 1.08 1.01

Table F.8: Clustering of allocation decision responses from the 2015 Individual Investor
Survey. For each cluster, we present the percent of respondents and the mean response
based on the response coding in Table 8.3.
We also list the mean values of demographic categories across clusters. For Age, Generation

Y = 0, Generation X = 1, Baby Boomers = 2, Pre-Baby Boomers = 3. For Net Worth, Mass

Market = 0, Mass Affluent = 1, Emerging HNW = 2, High Net Worth = 3. The definitions
of demographic categories are in Table F.7 in the Appendix. Advised is an indicator for if
an investor uses a financial advisor. Satisfied with 2014 Ret. is an indicator for if an investor
was satisfied with their 2014 investment returns. Retired is an indicator for if an investor is
retired. Gamble Preference corresponds to the one of six gambles from Table 8.2 chosen by
the investor; Responses range from 1 to 6. Risk Aversion Coefficient is the estimated risk
aversion coefficient based on the responses in each cluster.
For each category, we color in green the cell corresponding to the cluster with the highest
mean value. We test for how significant the difference is between the highest mean and
second-highest mean across the clusters; the result of the test is reported in terms of number
of stars in the cell. * means significance at the 5% level, *** means significance at the 0.1%
level; no stars means no significance at the 5% level. We color in red the cell corresponding
to the cluster with the lowest mean value, and perform the same test comparing the lowest
mean and second-lowest mean across the clusters.
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Clustering Analysis of Individual Investors (2016)

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

% Respondents 11% 22% 8% 21% 37%
Allocation Decisions

Reaction to January 2016 −1.6 −0.3 0.9 −0.7 0.2
Reaction to S&P 500 Fall 0.3 −1.7 1.1 −1.2 0.1
Reaction to S&P 500 Rise 0.3 0.7 1.1 −1.5 −0.2
Behavior Semi-Passive Extrapolators Optimistic Risk Avoiders Passive

Demographics

Gender (% of Female) 35% 37% 37% 42% 41%
Age 43.68 44.09 43.35 42.75 46.58***
Net Worth 1.46 1.59 1.48 1.51 1.56
Advised 71% 64% 71% 69% 53%***
Satisfied with 2015 Ret. 54% 53% 60%* 56% 53%
Retired 6% 8% 6% 6% 12%***
Gamble Preference 2.48 2.49 2.81*** 2.53 2.19***
Risk Aversion Coefficient 1.00 1.04 0.84*** 0.96 1.18***

Table F.9: Clustering of allocation decision responses from the 2016 Individual Investor
Surveys. For each cluster, we present the percent of respondents and the mean response
based on the response coding in Table 8.3. We label as Semi-Passive investors, those who
are passive with respect to the S&P movements, but active with respect to the January
Volatility.
We also list the mean values of demographic categories across clusters. For Net Worth, Mass

Market = 0, Mass Affluent = 1, Emerging HNW = 2, High Net Worth = 3. The definitions
of demographic categories are in Table F.7 in the Appendix. Advised is an indicator for if
an investor uses a financial advisor. Satisfied with 2015 Ret. is an indicator for if an investor
was satisfied with their 2015 investment returns. Retired is an indicator for if an investor is
retired. Gamble Preference corresponds to the one of six gambles from Table 8.2 chosen by
the investor; Responses range from 1 to 6. Risk Aversion Coefficient is the estimated risk
aversion coefficient based on the responses in each cluster.
For each category, we color in green the cell corresponding to the cluster with the highest
mean value. We test for how significant the difference is between the highest mean and
second-highest mean across the clusters; the result of the test is reported in terms of number
of stars in the cell. * means significance at the 5% level, *** means significance at the 0.1%
level; no stars means no significance at the 5% level. We color in red the cell corresponding
to the cluster with the lowest mean value, and perform the same test comparing the lowest
mean and second-lowest mean across the clusters.
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Clustering Analysis of Individual Investors (2017)

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

% Respondents 12% 16% 36% 8% 9% 20%
Allocation Decisions

Reaction to U.S. Election −0.2 −0.3 0.0 0.1 −1.5 0.2
Reaction to S&P 500 Fall 0.5 −1.5 0.1 1.3 −1.2 −1.4
Reaction to S&P 500 Rise −1.5 −1.7 0.1 1.3 0.6 0.7
Behavior Contrarian Risk Avoiders Passive Optimistic Extrapolators (A) Extrapolators (P)

Demographics

Gender (% of Female) 39%* 44% 45% 43% 46% 44%
Age 45.57 44.58 49.58*** 41.65*** 44.51 46.51
Net Worth 1.48 1.41 1.37 1.51 1.60 1.45
Advised 64% 63% 55%*** 75% 78% 66%
Retired 9% 6% 14%*** 4% 5% 9%
From U.S. 5%*** 6% 12% 18%*** 7% 6%
Gamble Preference 2.52 2.50 2.18*** 2.95*** 2.61 2.43
Risk Aversion Coefficient 0.99 0.99 1.19* 0.73*** 0.93 1.06

Table F.10: Clustering of allocation decision responses from the 2017 Individual Investor
Survey. For each cluster, we present the percent of respondents and the mean response based
on the response coding in Table 8.3. We label as Extrapolators (A) investors, those who are
active with respect to the 2016 U.S. Presidential Election, and we label as Extrapolators
(P) investors, those who are passive with respect to the 2016 U.S. Presidential Election.
We also list the mean values of demographic categories across clusters. For Net Worth, Mass

Market = 0, Mass Affluent = 1, Emerging HNW = 2, High Net Worth = 3. The definitions
of demographic categories are in Table F.7 in the Appendix. Advised is an indicator for
if an investor uses a financial advisor. Retired is an indicator for if an investor is retired.
From U.S. is an indicator for if an investor is from the United States. Gamble Preference

corresponds to the one of six gambles from Table 8.2 chosen by the investor; Responses
range from 1 to 6. Risk Aversion Coefficient is the estimated risk aversion coefficient based
on the responses in each cluster.
For each category, we color in green the cell corresponding to the cluster with the highest
mean value. We test for how significant the difference is between the highest mean and
second-highest mean across the clusters; the result of the test is reported in terms of number
of stars in the cell. * means significance at the 5% level, *** means significance at the 0.1%
level; no stars means no significance at the 5% level. We color in red the cell corresponding
to the cluster with the lowest mean value, and perform the same test comparing the lowest
mean and second-lowest mean across the clusters.
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Figure F-5: Distributions of responses for the four clusters created from the 2015 Individual
Investor Survey. Error bars correspond to one standard error.
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Figure F-6: Distributions of responses for the five clusters created from the 2016 Individual
Investor Survey. Error bars correspond to one standard error.
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Figure F-7: Distributions of responses for the six clusters created from the 2017 Individual
Investor Survey. Error bars correspond to one standard error.
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Figure F-8: Estimated risk aversion coefficients for individual investors between 2015 and
2017 across clusters. Error bars correspond to one standard error.
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Figure F-9: Distributions of gamble preferences for individual investors between 2015 and
2017 across clusters. Error bars correspond to one standard error.
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Table F.11: Hypothesis tests for statistical significance when comparing means of demo-
graphic categories across the six clusters from the 2015-2017 Individual Investor Surveys.
We assume that each cluster corresponds to an independent collection of investors. For ev-
ery demographic, we calculate the mean response within each cluster. The resulting means
are shown in Table 8.4.
For every two means, we test for statistical significance using Welch’s 𝑡-test—with the ex-
ception of the risk aversion coefficient, where we employ a 𝑧-test using the risk aversion
coefficients and associated standard errors from the estimation. Each cell contains the 𝑝-
value associated with testing if the column cluster mean minus the row cluster mean is
greater than zero. A cell is colored green if the mean in the row cluster is significantly less
than the mean in the column cluster, at the 10% significance level. A cell is colored red if
the mean in the row cluster is significantly greater than the mean in the column cluster, at
the 10% significance level.
Extrap. is the Extrapolators cluster. Extrap.+ and Extrap.- correspond respectively to the
clusters of Extrapolators who react more to a rise or a decline in the S&P 500. Risk Av.

denotes the Risk Avoiders cluster; Opt. denotes the Optimistic cluster; Contr. denotes the
Contrarians cluster;
Risk Aversion is short for the risk aversion coefficient. US corresponds to the percentage
of U.S. investors in the considered cluster.
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Table F.12: Hypothesis tests for statistical significance when comparing means of demo-
graphic categories across the four clusters from the Individual Investor Survey. We assume
that each cluster corresponds to an independent collection of investors. For every demo-
graphic, we calculate the mean response within each cluster. The resulting means are shown
in Table F.8.
For every two means, we test for statistical significance using Welch’s 𝑡-test—with the ex-
ception of the risk aversion coefficient, where we employ a 𝑧-test using the risk aversion
coefficients and associated standard errors from the estimation. Each cell contains the 𝑝-
value associated with testing if the column cluster mean minus the row cluster mean is
greater than zero. A cell is colored green if the mean in the row cluster is significantly less
than the mean in the column cluster, at the 10% significance level. A cell is colored red if
the mean in the row cluster is significantly greater than the mean in the column cluster, at
the 10% significance level.
Extrap. is the Extrapolators cluster. Risk Av. denotes the Risk Avoiders cluster; Opt. de-
notes the Optimistic cluster;
Risk Aversion is short for the risk aversion coefficient. Satisfied 2014 is an indicator for if
an investor was satisfied with their 2014 investment returns.
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Table F.13: Hypothesis tests for statistical significance when comparing means of demo-
graphic categories across the four clusters from the Individual Investor Survey. We assume
that each cluster corresponds to an independent collection of investors. For every demo-
graphic, we calculate the mean response within each cluster. The resulting means are shown
in Table F.9.
For every two means, we test for statistical significance using Welch’s 𝑡-test—with the ex-
ception of the risk aversion coefficient, where we employ a 𝑧-test using the risk aversion
coefficients and associated standard errors from the estimation. Each cell contains the 𝑝-
value associated with testing if the column cluster mean minus the row cluster mean is
greater than zero. A cell is colored green if the mean in the row cluster is significantly less
than the mean in the column cluster, at the 10% significance level. A cell is colored red if
the mean in the row cluster is significantly greater than the mean in the column cluster, at
the 10% significance level.
Extrap. is the Extrapolators cluster. Semi-Pass. corresponds to the cluster of individuals
who are passive with respect to the S&P 500 movements, but are active with respect to the
January Volatility. Risk Av. denotes the Risk Avoiders cluster; Opt. denotes the Optimistic

cluster;
Risk Aversion is short for the risk aversion coefficient. Satisfied 2015 is an indicator for if
an investor was satisfied with their 2015 investment returns.
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Table F.14: Hypothesis tests for statistical significance when comparing means of demo-
graphic categories across the four clusters from the Individual Investor Survey. We assume
that each cluster corresponds to an independent collection of investors. For every demo-
graphic, we calculate the mean response within each cluster. The resulting means are shown
in Table F.10.
For every two means, we test for statistical significance using Welch’s 𝑡-test—with the ex-
ception of the risk aversion coefficient, where we employ a 𝑧-test using the risk aversion
coefficients and associated standard errors from the estimation. Each cell contains the 𝑝-
value associated with testing if the column cluster mean minus the row cluster mean is
greater than zero. A cell is colored green if the mean in the row cluster is significantly less
than the mean in the column cluster, at the 10% significance level. A cell is colored red if
the mean in the row cluster is significantly greater than the mean in the column cluster, at
the 10% significance level.
Contr. denotes the Contrarians cluster; Risk Av. denotes the Risk Avoiders cluster; Opt.

denotes the Optimistic cluster; Extrap. is the Extrapolators cluster. Extrap A and Extrap

P correspond respectively to the clusters of Extrapolators who are active or passive with
respect to the 2016 U.S. Presidential Election.
Risk Aversion is short for the risk aversion coefficient. US corresponds to the percentage
of U.S. investors in the considered cluster.
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Clustering of Financial Advisors (2015)

Cluster 1 Cluster 2 Cluster 3

% Respondents 47% 37% 16%
Allocation Decisions

Behavior Contrarian Passive Extrapolators
Reaction to S&P 500 Fall 1.1 0.4 -1.4
Reaction to S&P 500 Rise -1.1 0.2 0.3

Table F.15: Clustering of allocation decision responses from the 2015 Financial Advisor
Survey. For each cluster, we present the percent of respondents and mean response based
on the response coding in Table 8.3.

Clustering of Financial Advisors (2016)

Cluster 1 Cluster 2 Cluster 3 Cluster 4

% Respondents 36% 34% 8% 22%
Allocation Decisions

Behavior Passive Contrarian Optimistic Risk Avoiders
Reaction to S&P 500 Fall 0.1 1.3 1.1 -0.8
Reaction to S&P 500 Rise 0.2 -1.1 1.3 -1.1

Table F.16: Clustering of allocation decision responses from the 2016 Financial Advisor
Survey. For each cluster, we present the percent of respondents and mean response based
on the response coding in Table 8.3.

Clustering of Institutional Investors (2015)

Cluster 1 Cluster 2 Cluster 3

% Respondents 68% 22% 10%
Allocation Decisions

Behavior Contrarian Passive/Extrapolator Risk Avoiders
Reaction to S&P 500 Fall 1.5 -0.6 -1.4
Reaction to S&P 500 Rise -1.1 0.7 -1.7

Table F.17: Clustering of allocation decision responses from the 2015 Institutional Investor
Survey.

Clustering of Institutional Investors (2016)

Cluster 1 Cluster 2 Cluster 3

% Respondents 61% 34% 4%
Allocation Decisions

Behavior Contrarian Passive/Risk Avoiders Optimistic
Reaction to S&P 500 Fall 1.3 -0.6 1.2
Reaction to S&P 500 Rise -1.2 -0.3 1.2

Table F.18: Clustering of allocation decision responses from the 2016 Institutional Investor
Survey.
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Clustering of Institutional Investors (2017)

Cluster 1 Cluster 2 Cluster 3

% Respondents 9% 20% 71%
Allocation Decisions

Behavior Risk Avoiders Passive/Extrapolator Contrarian
Reaction to S&P 500 Fall -1.6 -0.3 1.2
Reaction to S&P 500 Rise -1.1 0.4 -1.1

Table F.19: Clustering of allocation decision responses from the 2017 Institutional Investor
Survey.
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