
A Dual Perspective on Computational Complexity

by

Brynmor Chapman

B.A., University of Oxford (2013)
M.S., Stanford University (2016)
M.A., University of Oxford (2017)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 26, 2022

Certified by. .
R. Ryan Williams

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

A Dual Perspective on Computational Complexity

by

Brynmor Chapman

Submitted to the Department of Electrical Engineering and Computer Science
on August 26, 2022, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

One central aim of theoretical computer science is to understand the limits of compu-
tation. On the one hand, algorithms give upper bounds on the resources required for
a computation. They are intuitive, well-studied, and well-understood. On the other
hand, proofs of hardness, or lower bounds as they are often called, seem to be elusive
and relatively poorly understood. Perhaps the most famous conjectured lower bound
is P ̸= NP, which informally states that there are problems whose solutions can be
efficiently verified but not efficiently computed. P ̸= NP is so widely believed that the
world economy relies critically on its truth. Indeed, complexity theorists generally
believe the much stronger Exponential Time Hypothesis (ETH). However, despite
decades of work, these conjectures remain open, as do much weaker conjectures such
as P ̸= PSPACE.

The aforementioned discrepancy between what is known and what is believed is
fairly representative of the state of the art in complexity theory, which invites the
question: is it inherent? Are lower bounds somehow inherently harder to prove than
upper bounds? There is a specific, provable sense in which the answer is yes. There
are indeed proof barriers, which show that broad classes of proofs have no hope of
proving many of the commonly studied lower bounds. These barriers have led to
a fair amount of pessimism in complexity theory. The aim of this thesis is to study
lower bounds from an algorithmic perspective, in order to use well-studied algorithmic
techniques to advance complexity theory. It covers three facets of this perspective. It
presents a way to bypass the Natural Proofs Barrier of Razborov and Rudich, discusses
dualities between upper and lower bounds, and disproves longstanding conjectured
lower bounds.

Thesis Supervisor: R. Ryan Williams
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgements

I would like to thank my family, friends, and coworkers who directly and indirectly

made this work possible. I’d especially like to thank:

Ryan Williams, my advisor, for being such a brilliant mentor and friend over the

years, for your wisdom, kindness, quite frankly legendary patience, and tolerance

of (complicity in?) all of my shenanigans. You not only shared in the good times

and made MIT (and even Stanford) so much more inviting, but you also helped me

through the bad times and didn’t give up on me even when you had every right to.

The Chap-people, including my parents, Michael and Carolyn, my brothers, Owen,

Evan, and Dewi, and our new little “sister”, Aiko, for your constant love and support,

for making me who I am now, for all of the sacrifices (willing and otherwise) that

you’ve made along the way, and for trying to make sure I eat properly. Aiko, keep

taking good care of Dewi, and Dewi, try not to let Aiko onto rooftops.

The rest of my family, including Helen Chapman, Louise, Frances, and Edward

Norris, Hisako, Shiro, Debbie, and Shota Ogushi, Haru and Scott Nakasone, and

Peter Kohama, for always making time for each other and me, for tolerating the

ensuing chaos, and for encouraging me on this journey.

Alex “Quadling” Lombardi for your constant companionship since I arrived at MIT,

for feeding me, for all the time spent chattering about crypto, complexity, and quan-

tum, for all the time wasted on Pokémon, cards, crosswords, Zelda, League of Legends,

anime, just getting lost, and plenty of other things besides, and for all the time some-

how both spent productively and wasted when I napped through you chattering to

someone else.

Jess “Kitty” Xu for joining, redirecting, dialing up, and chronicling the above

shenaningans, for adding head pats, cuddles, and meaps to the mix, for feeding me

(perhaps less intentionally then Quadling does - sorry about that...), for taking me

under your wing at Sciarappa, and for teaching me what a good relationship can be

like.

Luke “Grandpa” Schaeffer for quantum and Euro-theory discussions, crosswords,

5

cards, and somehow always knowing the right thing to say even though it would

usually be totally wrong coming from anyone else.

Eric Lu and Jiwon “Yuna-unnie”1 Joung for your invaluable contributions to the

Sciarappa degeneracy, for your green thumb and baking expertise, and for trying to

teach me a little bit about systems.

Vy “Aya” Nguyen, Yota “Nezumi” Kato, and Kevin Chen for help with my minor

and for the cards and other games, especially at the beginning of the pandemic. Vy,

thank you also for welcoming me into the Pokémon community, for a sympathetic

ear, a shoulder to cry on, and a place to crash when they were needed, and for all of

the desserts.

Virginia and GP Williams for Music Night with Ryan, joint group research lunches,

holiday parties, and random discussions about graphs, including a particularly inter-

esting homework problem that we ended up giving to our own students.

Samanta, Natalia, Kamila, and Olek Ma̧dry for bringing so much joy and laughter

to the Theory Group and Music Night, and for sharing Warszawa with me.

Andrea Leang and Yichen Gao for reminding me of the joys of teaching after the

struggles with the pandemic and Zoom University, and for supporting my quest to

stay at MIT. Andrea, thank you also for being so gentle and understanding regarding

my rather peculiar difficulty involving masks, and for encouraging me to take up my

sword once more.

Dylan McKay for your insights about teaching, for being a keystone of Music Night

and Theory Tea, and for rolling with everything Ryan and I threw your way.

Carolyn Kim for support, company, and a nice work environment, particularly while

putting together [31] during my last months at Stanford.

Karlanna Lewis for company and a place to stay during SoCal conferences. Nuri,

thank you also for tolerating me, even in the new apartment.

In memoriam Eric Chapman, Jean Chapman, and Hisashi Ogushi, my grandparents

who are unable to see this completed work. You are dearly loved and dearly missed.

1Yes, I know.

6

Contents

1 Introduction 11

1.1 Motivation . 11

1.2 The Circuit Model . 13

1.3 Natural Proofs . 15

1.4 Testing Circuits for Functionality Using Data 17

1.5 Black-Box Hypotheses . 18

1.6 Gotsman-Linial Conjecture . 20

1.7 Counting Circuits for Symmetric Functions 21

1.8 Sources . 23

2 Preliminaries 25

2.1 Background . 25

2.2 Circuit Complexity . 25

2.3 The Circuit-Input Game . 30

3 A Potential Circumvention of Natural Proofs 35

3.1 Natural Proofs . 35

3.2 Natural Properties from Circuit Lower Bounds for SAT 37

3.3 Natural Properties from Circuit Lower Bounds for Checkable Functions 40

3.4 New Lower Bounds? . 43

4 Circuit Lower Bounds as Data Design Problems 45

7

4.1 Data Complexity . 45

4.2 Duality with Circuit Complexity . 47

4.3 Open Questions . 50

5 Black-Box Hypotheses 51

5.1 A Complexity Theoretic View of Obfuscation 51

5.2 Overview . 53

5.2.1 Black-Box Hypotheses For Restricted Analysts, From Lower

Bounds . 53

5.2.2 A Generalization . 55

5.2.3 Equivalences With Lower Bounds? 56

5.2.4 Organization . 58

5.3 Background . 58

5.3.1 Rice’s Theorem . 59

5.3.2 The Black Box Hypothesis . 59

5.3.3 Obfuscation in Cryptography 61

5.3.4 Automated Formal Verification 62

5.4 Generalized Black-Box Hypotheses 63

5.4.1 Encoding Circuits . 64

5.5 Circuit Lower Bounds Imply Black-Box Hypotheses 65

5.5.1 Generalization . 68

5.5.2 Examples . 71

5.6 Lower Bounds from Black-Box Hypotheses 76

5.6.1 A Notion of BBH-Completeness 79

5.6.2 Nondeterministic Boxes . 80

5.7 Conclusion . 82

5.7.1 What Other Lower Bounds Are Implied by Black-Box Hypothe-

ses? . 82

8

5.7.2 Randomized Lower Bounds and Their Black-Box Hypotheses . 83

5.7.3 Black-Box Hypotheses From More Lower Bounds? 83

6 The Gotsman-Linial Conjecture is False 85

6.1 Polynomial Threshold Functions . 85

6.1.1 Result . 87

6.1.2 Intuition . 89

6.2 Preliminaries . 90

6.2.1 Background . 90

6.2.2 Progress . 91

6.3 Resolution of Gotsman-Linial Conjecture 91

6.3.1 A Simple Counterexample . 93

6.3.2 Extension to Odd 𝑛 . 94

6.3.3 The General Case . 96

6.4 Conclusion . 100

6.5 Search with Linear Programming . 101

6.5.1 (𝑛, 𝑑) = (5, 2) . 101

6.5.2 (𝑛, 𝑑) = (6, 2) . 102

6.5.3 (𝑛, 𝑑) = (6, 3) . 102

7 Smaller Counting Circuits for Symmetric Functions 103

7.1 Counting Circuits . 103

7.1.1 Intuition . 108

7.2 Preliminaries . 110

7.3 CC0 Circuits for Symmetric Functions 113

7.3.1 Size-Depth Tradeoff with CC0 118

7.4 Size-Depth Tradeoff With ACC0 . 120

7.5 Sym ∘ And Hypothesis . 127

9

7.6 Conclusion . 128

10

Chapter 1

Introduction

1.1 Motivation

One of the central aims of theoretical computer science is to understand the power of

computation, in terms of one or more of a number of different resources, e.g.,

• number of operations required,

• time required by some number of parties operating in parallel,

• amount of communication between two or more cooperating parties,

• memory use,

• number of random bits used,

• number of quantum bits used,

• error tolerance,

• number of passes over a large input,

• or size/depth of a Boolean circuit that performs the desired computation.

Algorithms, or upper bounds as they are often called, state that computation is

“easy” in some way. Upper bounds are ubiquitous in computer science and indeed in

11

daily life. Uses include the obvious personal computer, as well as perhaps less obvious

uses such as a watch, key, credit card, or automobile. They are relatively well-studied

and understood. People seem to have an intuitive understanding for algorithms, as

evinced by small children, who naturally use algorithms for tasks such as sorting,

arithmetic, and various puzzles. Indeed, in some cases, they may intuit or even

rediscover asymptotically optimal algorithms like Sir Tony Hoare’s QuickSort [63].

In contrast to upper bounds, hardness results, or lower bounds, state that computa-

tion is “hard” in some way. Perhaps the most famous lower bound (and indeed perhaps

the most famous open problem in computer science) is P versus NP. Informally, are

all problems with easily verifiable solutions also easy to solve? This problem was first

stated precisely circa 1971 by Stephen Cook [41] and Leonid Levin [70], although it

had been studied earlier in various forms [79, 73]. Cook and Levin pioneered the study

of NP-completeness, which describes problems that are no easier than any NP prob-

lem, in the sense that an efficient solution to any NP-complete problem yields efficient

solutions to all NP problems. The canonical example of an NP-complete problem is

the Boolean Satisfiability Problem, or SAT. This is the problem of deciding whether

a Boolean formula has any satisfying assignment. It is generally believed that there

are problems (e.g., SAT) that are difficult to solve but have easily verifiable solutions.

The conjectured lower bound is stated as follows:

Conjecture 1.1.1 (P ̸= NP) SAT cannot be solved in time polynomial in its input

length, i.e., in time 𝑛𝑂(1).

Complexity theorists are collectively so confident in this conjecture that the world

economy relies essentially on its truth. If it were to be disproven, then all secure

communication, including all electronic commerce and banking, would be compro-

mised. In fact, much stronger lower bounds are also widely believed. One example of

such a conjectured lower bound is the Exponential Time Hypothesis, or ETH. ETH

deals with a restricted variant of SAT called 3-SAT, in which each clause of the input

formula may have at most three literals. Although ostensibly easier than SAT, 3-SAT

is also known to be NP-complete.

12

Conjecture 1.1.2 (ETH) 3-SAT cannot be solved in time subexponential in the

number of variables, i.e., in time 2𝑜(𝑛).

On the other hand, despite mathematicians and computer scientists working on P

versus NP in some form for over sixty years, even much weaker lower bounds remain

elusive. Where SAT is the problem of determining the validity of a quantified Boolean

formula with only existential quantifiers, the Quantified Boolean Formula Problem

(QBF) is the problem of determining the validity of such a formula when both exis-

tential and universal quantifiers are allowed. Ostensibly, QBF is much harder than

SAT, and yet the following is still an open problem:

Conjecture 1.1.3 QBF cannot be solved in time linear in its input length, i.e., in

time 𝑂(𝑛).

The above discrepancy between what is known and what is believed is fairly repre-

sentative of the state of the art in complexity theory. Optimal or near-optimal upper

bounds are often proven before matching lower bounds, and where there is a large

gap between known upper and lower bounds, the upper bounds are often believed to

be much closer to optimal. Are lower bounds inherently harder to prove than upper

bounds? While some may argue the affirmative, the aim of this thesis is to study

lower bounds from an algorithmic perspective, in order to use well-studied algorithmic

techniques to advance complexity theory. Chapters 3-7 present three facets of this

perspective. Chapter 3 shows how to circumvent one of the proof barriers that have

led to pessimism in complexity theory. Chapters 4 and 5 discuss dualities between

upper and lower bounds. Chapters 6 and 7 refute longstanding conjectured lower

bounds.

1.2 The Circuit Model

This thesis focuses on the circuit model of computation. In contrast to an algorithm

in the classical model, which handles every possible input, a circuit can be viewed as

an algorithm that only takes inputs of one particular length. An “algorithm” in the

13

circuit model then consists of an infinite family of circuits, one for each possible input

length. Note that this model is more powerful than the classical model. Even families

of trivial circuits can compute undecidable functions, which cannot be computed

classically. Circuit complexity is a promising avenue to resolving some of the open

problems in complexity theory. To prove P ̸= NP, it would suffice to prove that NP is

not contained in the circuit class P/poly, which consists of functions computable by

polynomial size circuit families. For more detail on the circuit model of computation

and circuit classes including P/poly, see Chapter 2.

Chapters 3 and 4 consider the following zero-sum game studied in prior work

(e.g., [74, 45]). Fix a Boolean function 𝑓 . A circuit player chooses from a set of

Boolean circuits, while an input player chooses from a set of inputs. The circuit

player wins if the chosen circuit computes 𝑓 on the chosen input; otherwise, the input

player wins.

The circuit-input game was first explicitly studied by Lipton and Young [74], in

the context of providing complexity-theoretic applications of strategies for general

zero-sum games (see also [106]). Among other results, they (and independently,

Newman [81] and Althöfer [7]) proved that approximate and succinct strategies exist

for any zero-sum game in the sense for an 𝑚×𝑛 matrix 𝑀 , there exists a strategy for

the row player with support size 𝑂(log 𝑛), and a strategy for the column player with

support size 𝑂(log𝑚), which together additively approximate the optimal strategy

of the game. This result was used to prove the existence of so-called anti-checkers :

for any function 𝑓 : {0, 1}𝑛 → {0, 1} with circuit complexity at least 𝑠, there exists a

set 𝑆 of 𝑂(𝑠) 𝑛-bit inputs on which all circuits of size at most 𝑠/𝑛 fail to compute 𝑓

correctly on a 1/2− 𝜀 fraction of inputs in 𝑆.

Chapter 2 concludes with a proof of a general extension of these classical results,

along with a proof that this extension cannot be improved in a certain technical way.

This extension is then used in Chapters 3 and 4 to present two new applications of

these classical results to the field of circuit complexity.

14

1.3 Natural Proofs

Chapter 3 gives an alternative view into the Natural Proofs Barrier of Alexander

Razborov and Steven Rudich [91] and in particular suggests a new pathway around

it. Natural proofs have three properties.

• They are constructive: they contain an efficient algorithm 𝐴 from a complexity

class Γ for testing Boolean functions given as truth tables,

• they are large: algorithm 𝐴 accepts a large fraction (at least 1/2𝑂(𝑛)) of all 𝑛-bit

Boolean functions, and

• They are useful : algorithm 𝐴 rejects all functions which are truth tables of

circuits from a circuit class 𝒞, for infinitely many input lengths.

Such an algorithm 𝐴 is called a Γ-natural property useful against 𝒞, and Razborov-

Rudich showed any P/poly-natural property useful against P/poly would preclude

the existence of the cryptographic primitive known as a pseudorandom function. A

pseudorandom function is a function that is easy to compute, but whose output

looks like random noise. Pseudorandom functions are essential in cryptography and

believed to exist. Hence a natural proof should not be capable of proving P/poly lower

bounds, or statements like NP ̸⊂ P/poly. This ruled out many potential methods for

proving circuit lower bounds.

A minor (and in hindsight, obvious) modification to the “useful” condition of nat-

ural proofs not only makes the barrier disappear, but it makes circuit lower bounds

equivalent to the existence of such modified natural properties. This minor modifi-

cation is perhaps best illustrated by considering NP vs P/poly and the SAT problem

(although any self-reducible NP-complete problem would suffice). It begins with the

well-known observation that any polynomial-size circuit 𝐶 can be assumed, without

loss of generality, never to err when it reports satisfiability. That is, given a circuit 𝐶

that potentially solves SAT, 𝐶 can be augmented to generate a satisfying assignment:

create a larger circuit 𝐶 ′ that contains copies of 𝐶, such that when 𝐶 reports “SAT”

on a formula, 𝐶 ′ repeatedly plugs in values for variables of the formula and queries 𝐶

15

on the reduced formulas to check if satisfiability still holds. Either 𝐶 will eventually

be in error (in which case 𝐶 ′ reports “UNSAT”) or 𝐶 will produce a SAT assignment,

in which case 𝐶 ′ reports “SAT” without error.

Let 𝐶 be a Boolean circuit on 𝑛 inputs. Define 𝐶 to be a SAT solver if for all

𝑛-bit formulas 𝜙, 𝐶(𝜙) = 1 implies that 𝜙 is satisfiable. (Such circuits are called

“SAT solvers” because one could use these circuits to print satisfying assignments

to formulas, when the circuits report “SAT.”) The class of functions computable by

polynomial-size SAT solvers is an expressive class, including special cases such as

2-SAT, Horn-SAT, etc. By the previous paragraph, to prove NP ̸⊂ P/poly it suffices

to prove that no polynomial-size family of SAT solvers can compute SAT. That is,

a lower bound proof only needs to be useful against small SAT solvers. But how

might one prove this? By using combinatorial or probabilistic methods, one might

expect to find an efficient test for Boolean functions, such that random functions (and

SAT) pass, but SAT solver circuits do not pass. This looks very much like a natural

proof, except instead of rejecting all polynomial-size circuits, the test will only try

to reject the polynomial-size SAT solvers. It turns out that such tests must exist, if

NP ̸⊂ P/poly.

Theorem 1.3.1 (Informal, cf. Theorem 3.2.1) NP ̸⊂ P/poly if and only if there

is a natural property that is useful against polynomial-size SAT solvers and accepts

SAT.

Compare with the main theorem of Razborov-Rudich: if there are P/poly-natural

properties useful against P/poly, then there are no secure pseudorandom functions.

The above theorem suggests that, to circumvent “naturalness” and prove circuit lower

bounds for SAT, it would be prudent to try to look for proof methods which fail

on arbitrary polynomial-size circuits, but succeed on circuits that try to print full

satisfying assignments. This point also gives intuition for why Theorem 3.2.1 holds

without hurting cryptography: the truth tables of SAT solvers do not look at all like

random functions, so a natural property useful against SAT solvers is in no danger of

16

distinguishing pseudorandom function candidates from truly random functions.1

Equivalences similar to Theorem 3.2.1 hold for other circuit lower bound problems.

In general, for any function 𝑓 that permits a zero-error or one-sided error corrector

in a complexity class 𝒞, there is an equivalence between proving 𝑓 ̸∈ 𝒞 and exhibiting

natural properties useful against “error-corrected 𝑓 -solving circuits.” Chapter 3 also

shows how a version of the statement holds for 𝑓 with (randomized) polynomial-time

program checkers [24].

1.4 Testing Circuits for Functionality Using Data

Chapter 4 applies succinct strategies for zero-sum games to set up a framework that

is “dual” to the usual computational view of circuits computing functions on inputs,

treating inputs as the “programs” and circuits as the “input data”. This general-

izes Lipton-Young’s anti-checkers, showing how the general problem of circuit lower

bounds can be seen in a constructive light: as designing small data sets that can be

used to conclusively test whether a given circuit computes a particular function. It

also yields a complexity-theoretic perspective on the practical problem of software

testing (see [89, 101]).

Consider a language 𝐿, called the primal language. The primal complexity measure

is then the standard measure of the circuit complexity of 𝐿, i.e. the smallest number

of gates required by a circuit that computes membership in 𝐿. (Note that this is a

function of the number of input bits.)

The dual problem, Test-𝐿, is then the set of circuits that are consistent with

𝐿, in the sense that they compute 𝐿 correctly on all inputs of the relevant length.

Test-𝐿 can be computed with a test suite of inputs by checking to see that a given

circuit computes 𝐿 correctly on all inputs in the test suite. Say that such a test suite

computes Test-𝐿 correctly if every circuit that is not consistent with 𝐿 errs on at

least one input in the test suite. The dual complexity measure, or data complexity,

1As was succinctly noted, one might interpret this result as saying, “pseudorandom functions
have no hope of computing SAT, so why should we care about them?”

17

is then the smallest number of inputs required by a test suite to compute Test-𝐿.

Note that the data complexity is a function of the size of the circuit being tested, as

this measures the “length of the input” to the problem Test-𝐿. Every language 𝐿

can be computed by trivial circuits of size exponential in the input length. However,

the theory of circuits becomes interesting when only small circuits are considered.

Similarly, there are also always trivial test suites of size exponential in the size of

the circuits being tested that can conclusively determine whether a circuit correctly

computes 𝐿. It would suffice to try all possible inputs of size up to the size of the

circuit being tested. However, a natural goal is to design smaller test suites that still

compute Test-𝐿 correctly.

The main theorem of Chapter 4 uses the circuit-input game in a crucial way to

prove a strong correspondence between the primal and dual complexity measures of

𝐿, one consequence of which is the following:

Theorem 1.4.1 (Informal, cf. Corollary 4.2.3) NP ̸⊂ P/poly if and only if SAT

has subexponential data complexity.

The circuit lower bound NP ̸⊂ P/poly can then be thought of algorithmically, as

the problem of designing efficient test suites.

1.5 Black-Box Hypotheses

Chapter 5 studies obfuscation from a different direction compared to most existing

literature on the subject. It proposes generalized forms of the “Black-Box Hypothesis”

considered in Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang [14]

and relates them to lower bound questions.

In the pioneering work of Barak et al. [14] on obfuscation, the authors also proposed

a compelling conjecture about black-box obfuscation that they called a “Scaled-Down

Rice’s Theorem” [14, Conjecture 5.1]; the conjecture has recently been renamed the

Black Box Hypothesis (BBH) [93, 65]. Informally, the Black-Box Hypothesis posits

that, when code is represented as a small Boolean circuit, and a code analyst is

18

represented as an efficient algorithm, the only possible analysis tasks are ones that

could have been performed using only the input-output behavior of the code (and not

the code itself).

The original Black-Box Hypothesis is still a major open problem, but other natural

variants of the hypothesis may be more tractable to resolve unconditionally. Chapter 5

considers variants of the Black-Box Hypothesis in a more general complexity-theoretic

setting, where the complexity of the analyst, the complexity of the code being ana-

lyzed, and the function to be obfuscated (the “box”) are taken carefully into account.

For example, of particular interest are the cases where the “analyst function” is taken

from a “low” complexity class 𝒜 (smaller than P), and the box is also from a “low”

complexity class 𝒞.

Hypothesis 1.5.1 (𝒞-Black-Box Hypothesis for 𝒜) [Informal, cf. Hypothesis

5.4.1] The only analysis tasks that can be performed by analysts from 𝒜 on circuits

from 𝒞 are ones that could have been performed using only black-box oracle access to

the analyzed circuit.

In prior work, the class of analysts 𝒜 was always set to be BPP, and the class

of circuits 𝒞 was generally set to be unrestricted circuits of fan-in two. In that full

form, proving the BBH would also prove NP ̸⊆ BPP, and hence also P ̸= NP, so that

is presently out of reach! (The BBH could also end up being false, of course.) By

considering a range of natural possible choices for the weak analysts 𝒜 and the circuit

sets 𝒞, it may be possible to delineate precisely how weak the analysts from 𝒜 need

to be, in order for 𝒞-circuits to provably behave like black boxes, and to relate the

corresponding Black-Box Hypotheses to other core problems within complexity.

Chapter 5 demonstrates several interesting relationships between circuit lower bounds

and Black-Box Hypotheses in the generalized setting. First, it uses known circuit

lower bounds to prove that certain instances of the Black-Box Hypothesis are true.

In fact, it presents a generic connection between lower bounds and Black-Box Hy-

potheses. It also presents some converse results, showing that Black-Box Hypotheses

imply certain circuit lower bounds. Finally, in some settings, it can be shown that

19

certain problems are “complete” for a Black-Box Hypothesis, in the sense that prov-

ing the Black-Box Hypothesis is equivalent to proving a lower bound against the

aforementioned problem.

1.6 Gotsman-Linial Conjecture

Chapter 6 studies a different complexity measure of Boolean functions. A Boolean

function is an 𝑛-variate, degree-𝑑 Polynomial Threshold Function, or (𝑛, 𝑑)-PTF, if it

can be expressed as the sign of a (real) polynomial of degree at most 𝑑 evaluated on

the 𝑛-dimensional Boolean hypercube. This definition alone is not terribly exciting

without restrictions on 𝑑, as every Boolean function on 𝑛 variables can be written as

the sign of (and in fact can be written exactly as) a multilinear polynomial of degree

𝑛. Of particular interest is the case where 𝑑 is small.

In an influential paper, Craig Gotsman and Nathan Linial [53] applied Fourier

analytic techniques to the study of PTFs. They were mainly interested in connecting

different measures of the complexity of Boolean functions, and of low-degree PTFs

in particular. One such measure was the Average Sensitivity of a Boolean function,

which is a normalized measure of how often changing a single input bit changes the

output value of the function.

Among other things, Gotsman and Linial proved a tight upper bound on the average

sensitivity of linear threshold functions, or (𝑛, 1)-PTFs, achieved by the Majority

function on 𝑛 variables. They conjectured that this bound generalizes to higher degree

PTFs, in that the (𝑛, 𝑑)-PTF of maximal average sensitivity is the obvious symmetric

candidate, which alternates signs nearest where half of the inputs are ones.

Conjecture 1.6.1 (Gotsman-Linial, informal, cf. Conjecture 6.1.1) For every

𝑛 and 𝑑, at least one (𝑛, 𝑑)-PTF of maximal average sensitivity is symmetric.

This conjecture was listed as a prominent open problem in [83] and [44]. If true, it

would have many applications in complexity and learning (see for example [60, 52,

67, 69, 38]). Gotsman and Linial proved their conjecture for the case where 𝑑 = 1,

20

and it is also known to be true in the case where 𝑑 = 0. However, it was left open

whether the conjecture holds for any 𝑑 ≥ 2.

Chapter 6 resolves the Gotsman-Linial Conjecture for all pairs (𝑛, 𝑑) except the

case when 𝑛 > 7 is even and 𝑑 = 2. The main results are the following:

Theorem 1.6.1 (Informal, cf. Theorem 6.1.1) For all pairs (𝑛, 𝑑) of natural num-

bers satisfying one of the following criteria, there exists an (𝑛, 𝑑)-PTF witnessing a

counterexample to the Gotsman-Linial Conjecture:

• 𝑛 ≥ 5 is odd, and 𝑑 = 2.

• 𝑛 ≥ 7, and 3 ≤ 𝑑 ≤ 𝑛− 3.

Theorem 1.6.2 (Informal, cf. Theorem 6.1.2) For all pairs (𝑛, 𝑑) of natural num-

bers satisfying one of the following criteria, a symmetric function has the greatest

average sensitivity among (𝑛, 𝑑)-PTFs:

• 𝑑 ≤ 1.

• 𝑑 ≥ 𝑛− 2.

• 𝑛 = 6.

The results (and the remaining open cases) are summarized in Figure 1-1.

1.7 Counting Circuits for Symmetric Functions

Chapter 7 studies constant-depth circuits in which every (unbounded fan-in) gate

(called a MOD𝑚 gate) determines whether the sum of its inputs is divisible by a

small constant integer 𝑚. Although the model looks rather peculiar, constant-depth

circuits with constant moduli gates (a.k.a. CC0 circuits, a.k.a. pure-ACC circuits [105])

have been a longstanding and fundamental roadblock in the way of improved circuit

complexity lower bounds. Since their identification over 30 years ago [15, 19], scant

progress has been made on lower bounds against CC0, and its close cousin ACC0 which

21

𝑑
0 1 2 3 4 5 6 7 8 · · ·

𝑛

1 ✓ ✓
. . .

2 ✓ ✓ ✓
. . .

3 ✓ ✓ ✓ ✓
. . .

4 ✓ ✓ ✓ ✓ ✓
. . .

5 ✓ ✓ × ✓ ✓ ✓
. . .

6 ✓ ✓ ✓ ✓ ✓ ✓ ✓
. . .

7 ✓ ✓ × × × ✓ ✓ ✓
. . .

8 ✓ ✓ ? × × × ✓ ✓ ✓
. . .

9 ✓ ✓ × × × × × ✓ ✓
. . .

10 ✓ ✓ ? × × × × × ✓
. . .

11 ✓ ✓ × × × × × × × . . .

12 ✓ ✓ ? × × × × × × . . .
...

...
...

...
...

...
...

...
...

... . . .

Figure 1-1: Results are summarized in the above table. A cyan tick mark indicates
a case in which the conjecture holds (for all (𝑛, 𝑑)-PTFs 𝑓 , AS[𝑓] ≤ AS[𝑓 *

𝑛,𝑑]). A
red cross indicates a refutation (there exists an (𝑛, 𝑑)-PTF 𝑓 such that AS[𝑓] ∈
(1 + Ω(𝑛−1𝑒−𝑑2/𝑛))AS[𝑓 *

𝑛,𝑑]). A black question mark indicates an open case. Note:
the cases (𝑛, 𝑑) = (6, 2) and (𝑛, 𝑑) = (6, 3) were verified with the help of a computer
search and a linear program solver (see Appendix 6.5).

includes AND and OR in the gate basis. Some exceptions include work focusing on

special cases of the problem (e.g., [16, 55, 35, 36]), uniform lower bounds [3], and work

proving strong lower bounds but only for functions whose complexity is in QuasiNP

or higher (e.g., [103, 39, 78, 37]). If there has ever been a “circuit complexity winter”,

CC0 circuits are at least partly to blame.

Besides simple ignorance, could there be deeper reasons why CC0 circuits have been

so difficult for showing limitations? Chapter 7 explores the possibility that CC0 cir-

cuits may be powerful, focusing on the natural class of symmetric Boolean functions

whose output depends only on the number of ones in the input. It has been con-

jectured for many years that the AND function does not have polynomial-size CC0

22

circuits ([17, 100, 99])2. It is well-known that AC0 circuits, which consist of AND,

OR, and NOT gates and have constant depth, require exponential size to compute

arbitrary symmetric functions [61]. In recent work, Oliveira, Santhanam, and Srini-

vasan [85] have shown that Parity gates (a.k.a. MOD2 gates) can help compute

symmetric functions more efficiently than what AND, OR, NOT can accomplish in

constant depth, although it should be noted that these upper bounds are still expo-

nential. This prompts the question: what about other moduli? Chapter 7 shows that

low-depth MOD𝑚 circuits with arbitrary but fixed modulus 𝑚 can actually compute

arbitrary symmetric Boolean functions (such as Majority) much more efficiently

than low-depth circuits with AND, OR, and MOD𝑞 gates, when 𝑞 is a prime power.

Theorem 1.7.1 (Informal, cf. Theorem 7.1.1) Every symmetric function can be

computed with depth-3 CC0 circuits of subexponential size.

That is, without any AND/OR gates, it is possible to obtain CC0 circuits with a

substantially smaller number of gates than the longstanding lower bounds for AC0[𝑞]

circuits computing symmetric functions (mentioned in the previous paragraph), for

prime power 𝑞. Chapter 7 also includes generalizations of the above upper bound,

giving size-depth tradeoffs and extensions to ACC0. It concludes with a discussion of a

natural conjecture under which these upper bounds cannot be improved substantially.

1.8 Sources

This work was previously published in the following sources:

1. The circuit-input game, natural proofs, and testing circuits with data

Chapman & Williams, ITCS 2015 [32]

2. The Gotsman-Linial Conjecture is false

Chapman, SODA 2018 [31]
2Hansen and Koucký [58] give an interesting counterpoint, showing that probabilistic CC0 circuits

can compute AND efficiently. Thus the AND ∈ CC0 problem is equivalent to a derandomization
question.

23

3. Black-box hypotheses and lower bounds

Chapman & Williams, MFCS 2021 [33]

4. Smaller ACC0 circuits for symmetric functions

Chapman & Williams, ITCS 2022 [34]

24

Chapter 2

Preliminaries

2.1 Background

This thesis assumes familiarity with computational complexity and the circuit model

of computation in particular. Knowledge of the first thirteen chapters of Arora and

Barak [10] should suffice. (For the reader unfamiliar with circuit complexity, the fol-

lowing section gives a brief overview of the required concepts.) Beyond this and where

explicitly excepted, each chapter will be self-contained. Notation and definitions will

be introduced or recalled as necessary. Sometimes, as is common in complexity the-

ory, the distinction will be blurred between a complexity class 𝒞 as a set of decision

problems and the set of algorithms that solve these problems.

2.2 Circuit Complexity

This section recalls the basics of circuit complexity. The knowledgeable reader may

skip to Section 2.3 without consequence.

This thesis uses a model of computation called a Boolean circuit, which differs

slightly from the classical Turing Machine. In the classical model, a Turing Machine

must handle all possible inputs of all possible lengths. In contrast, a Boolean circuit

only takes inputs of one particular length. It has a natural interpretation as an ab-

25

straction of e.g. a CPU, which might only take 64-bit inputs. Besides being a natural

model of computation, Boolean circuits are also mathematically simpler than Tur-

ing Machines. Hence since the 1980s, mathematicians and complexity theorists have

considered proving lower bounds against Boolean circuits as a promising approach

towards resolving classical complexity questions like P vs. NP.

In the following, let ℬ be a set, or basis, of Boolean functions.1 When the basis is

obvious or irrelevant, it is often omitted.

Definition 2.2.1 (Circuit) A Boolean circuit 𝐶 over basis ℬ on 𝑛 inputs 𝑥1, . . . , 𝑥𝑛

is a directed acyclic graph in which the vertices are called gates and the edges are called

wires. Exactly 𝑛 gates, called input gates, have in-degree 0 and are labeled 𝑥1, . . . , 𝑥𝑛.

All other gates are labeled with a function from ℬ. If a gate 𝑔 is labeled with a 𝑘-ary

function, then it must have exactly 𝑘 (ordered) input wires. The output gate has

out-degree 0.

A Boolean circuit is said to compute a Boolean function in a fairly natural way.

Definition 2.2.2 The function computed by 𝐶, denoted 𝐶(x), is the 𝑛-ary function

defined as follows. Let 𝐺 be the set of gates in 𝐶. Let 𝜑 : 𝐺 × {0, 1}𝑛 → {0, 1} be

defined inductively according to the topological order of 𝐺 by:

• If the gate 𝑔 is an input gate with label 𝑥𝑖, then 𝜑(𝑔,x) = 𝑥𝑖.

• If 𝑔 is labeled with the function 𝑓 and has input wires from gates 𝑔1, . . . , 𝑔𝑘, then

𝜑(𝑔,x) = 𝑓(𝜑(𝑔1,x), . . . , 𝜑(𝑔𝑘,x)).

Define 𝐶(x) = 𝜑(𝑔*,x), where 𝑔* is the output gate of 𝐶.

Note that a circuit only computes a Boolean function on 𝑛 bits, not a function on

all binary strings. An “algorithm” in the circuit model is called a circuit family.

Definition 2.2.3 (Circuit Family) A circuit family is a sequence {𝐶𝑖}𝑖∈N of Boolean

circuits, where 𝐶𝑖 has 𝑖 inputs.
1Commonly studied bases include {And2,Or2,Not}, 𝐵2 (the set of all binary Boolean func-

tions), and 𝑈2 (𝐵2 without Parity or its complement).

26

Definition 2.2.4 The function computed by {𝐶𝑖} is the function 𝐶 : {0, 1}* →

{0, 1} that extends the restrictions 𝐶𝑖 : {0, 1}𝑖 → {0, 1} computed by all of the 𝐶𝑖.

Definition 2.2.5 The language accepted by {𝐶𝑖} is the set of binary strings given

by 𝐿({𝐶𝑖}) := {𝑠 | 𝐶(𝑠) = 1}.

The circuit model of computation gives rise to a natural complexity measure of

Boolean functions, which roughly corresponds to time complexity in the classical

model.

Definition 2.2.6 The size of a circuit 𝐶, denoted |𝐶|, is the number of gates in 𝐶.

Definition 2.2.7 The size of a circuit family {𝐶𝑖} is the function 𝑠 : N → N given

by 𝑠(𝑛) = |𝐶𝑛|.

Definition 2.2.8 (Size(𝑠)) Let 𝑠 : N → N. The complexity class Size(𝑠) is the set

of all functions computable by circuit families of size dominated pointwise by 𝑠.

And conversely:

Definition 2.2.9 (Circuit Complexity) The circuit complexity of a function 𝑓 :

{0, 1}* → {0, 1} is the size of the smallest circuit family computing 𝑓 .

In circuit complexity, the analogue of P is the complexity class P/poly, the set of

all functions of polynomial circuit complexity.

Definition 2.2.10 (P/poly) P/poly :=
⋃︁
𝑐∈N

Size(𝑛 ↦→ 𝑛𝑐 + 𝑐).

The notation in the above definition is rather clumsy, so as is standard in complexity

theory, the remainder of this thesis uses the following shorthand.

Notation 2.2.1 For a function 𝑓 : N → N, Size(𝑓(𝑛)) is taken to mean Size(𝑓).

Notation 2.2.2 For a set 𝑆 of functions, Size(𝑆) is taken to mean
⋃︁
𝑓∈𝑆

Size(𝑓).

27

Example 2.2.1 P/poly =
⋃︁
𝑐∈N

Size(𝑛𝑐 + 𝑐) = Size(𝑛𝑂(1)).

One of the central questions of circuit complexity is whether P/poly contains all

of NP. It is widely believed that NP ̸⊂ P/poly. This is a stronger statement than

P ̸= NP, since P ⊂ P/poly. To see this, observe that any polynomial time algorithm

can be converted uniformly, or algorithmically, into a polynomial size circuit family

that simulates it. However, P/poly also allows for non-uniform computation by circuit

families that cannot be generated by any classical algorithm. For instance, P/poly

contains every unary language, as each circuit in a family accepting such a language

accepts at most one input. This includes unary encodings of undecidable languages

such as the Halting Problem.

A second interpretation of P/poly and Boolean circuits in general is as classical

algorithms that take advice. An advice string is a second auxiliary input that may

change with the length of the primary input, but must remain constant for all primary

inputs of the same length. A circuit family can be simulated by a classical algorithm

for the Circuit Evaluation Problem Ckt-Eval, with the description of the correct

circuit given as advice. Conversely, a classical algorithm that takes advice can be

converted into a circuit family in which the advice strings are hard-coded. More

general non-uniform complexity classes can be defined as follows:

Definition 2.2.11 Let 𝒞 be a (uniform) complexity class, and let 𝑓 : N → N. The

complexity class 𝒞/𝑓 is the set of functions computable by algorithms in 𝒞 when given

advice strings of length 𝑓(𝑛) for inputs of length 𝑛.

The concept of advice is useful for decoupling circuit complexity from the amount

of non-uniformity (as a resource) required by a computation, particularly when the

advice strings are small (sublinear in the length of the primary input). For example,

P/poly contains all unary languages, as mentioned above, but so does the smaller

complexity class P/1.

Another natural complexity measure arising from Boolean circuits roughly corre-

sponds to the time complexity of parallelized computation.

28

Definition 2.2.12 (Circuit Depth) The depth of a circuit 𝐶 is the number of

wires on a longest (directed) path from an input gate to the output gate.

Of particular importance to this thesis are constant depth circuits over several dif-

ferent bases. In all of the following, gates may have unbounded fan-in. By convention,

Not gates are always allowed and are “free”, contributing to neither the size nor the

depth of circuits.

Definition 2.2.13 (Mod Gate) For an integer 𝑚, a Mod𝑚 gate outputs 1 when

the sum of its input bits is an integer multiple of 𝑚.

Definition 2.2.14 (Maj Gate) A Maj gate outputs 1 when a (non-strict) major-

ity of its input bits are 1.

Definition 2.2.15 (Alternating Circuits) For an integer 𝑖, AC𝑖 is the set of func-

tions computable with circuits of 𝑂(log𝑖(𝑛)) depth and polynomial size over the basis

{And,Or}.

Definition 2.2.16 (Counting Circuits) For integers 𝑖,𝑚, CC𝑖[𝑚] is the set of func-

tions computable with circuits of 𝑂(log𝑖(𝑛)) depth and polynomial size over the basis

{Mod𝑚}.

Definition 2.2.17 For an integer 𝑖, CC𝑖 :=
⋃︁
𝑚∈N

CC𝑖[𝑚].

Definition 2.2.18 For integers 𝑖,𝑚, AC𝑖[𝑚] is the set of functions computable with

circuits of 𝑂(log𝑖(𝑛)) depth and polynomial size over the basis {And,Or,Mod𝑚}.

Definition 2.2.19 (Alternating Circuits with Counting) For an integer 𝑖, ACC𝑖 :=⋃︁
𝑚∈N

AC𝑖[𝑚].

Definition 2.2.20 (Threshold Circuits) For an integer 𝑖, TC𝑖 is the set of func-

tions computable with circuits of 𝑂(log𝑖(𝑛)) depth and polynomial size over the basis

{Maj}.

29

More specifically:

Notation 2.2.3 For a constant 𝑑, AC0
𝑑 (resp. AC0

𝑑[𝑚], ACC0
𝑑, CC

0
𝑑, TC

0
𝑑) denotes the

set of functions computable with 𝐴𝐶0 (resp. AC0[𝑚], ACC0, CC0, TC0) circuit families

of depth 𝑑.

When the structure of a circuit is important, function composition notation will be

used.

Example 2.2.2 Maj ∘ And ∘ Or denotes TC0
3 circuits in which all paths from an

input gate to the output gate have length 3, the output gate is a Maj gate, the layer of

gates nearest the inputs are all Or gates, and the middle layer of gates are all And

gates.

This will occasionally be extended to replace gate layers with circuit classes in the

obvious way.

Example 2.2.3 Maj ∘ AC0 denotes TC0 circuits in which the output gate is a Maj

gate, and no other gate is a Maj gate.

Several chapters require explicit representations of Boolean functions. Unless oth-

erwise specified, a Boolean function will be represented by its truth table, defined

below.

Definition 2.2.21 (Truth Table) The truth table of a Boolean function 𝑓 : {0, 1}𝑛 →

{0, 1} is the 2𝑛 bit string that enumerates the outputs of 𝑓 on all 𝑛-bit inputs in lexi-

cographical order.

2.3 The Circuit-Input Game

The remainder of this chapter and the next two consider a zero-sum two-player game

called the Circuit-Input Game, studied by Lipton, Young, Newman, and Althöfer [81,

7, 74]. Following are the relevant concepts and theorems of Lipton and Young [74].

30

Definition 2.3.1 (Zero-Sum Game) A (finite) zero-sum game between two play-

ers, here called a row player and a column player, is represented as a real 𝑚 × 𝑛

matrix 𝑀 . If the row player plays strategy 𝑖 and the column player plays strategy

𝑗, then the row player receives payoff 𝑀(𝑖, 𝑗), and the column player receives payoff

−𝑀(𝑖, 𝑗).

Definition 2.3.2 (𝑘-Uniform Distribution) Let 𝑆 be any set, and let 𝑘 ∈ N. A 𝑘-

uniform distribution on 𝑆 is a probability distribution obtained by choosing uniformly

from a multiset of 𝑘 elements from 𝑆.

Definition 2.3.3 (Circuit-Input Game) Let 𝒞 be a set of 𝑛 circuits, let ℐ be a

set of 𝑚 inputs, and let 𝑀 be an 𝑚 × 𝑛 matrix with entries in [0, 1]. (Intuitively,

𝑀 (𝐶, 𝑥) represents some cost of the computation of 𝐶 (𝑥).) The circuit-input game

w.r.t. 𝑀 is the two-player zero-sum game given by the matrix 𝑀 .

For a function 𝑓 : {0, 1}⋆ → {0, 1}, the central game of interest is the circuit-input

game for 𝑓 on size-𝑠 circuits and 𝑛 inputs, which is the circuit-input game w.r.t. the

following matrix 𝑀 . 𝑀 has 2𝑛 rows (for all strings 𝑥 in {0, 1}𝑛) and 2𝑂(𝑠 log 𝑠) columns

(for all circuits 𝐶 of size 𝑠), and

𝑀 (𝐶, 𝑥) :=

⎧⎪⎨⎪⎩0 if 𝐶(𝑥) = 𝑓(𝑥)

1 otherwise

Let 𝒞, ℐ, and 𝑀 be as above. Assume without loss of generality that ∃𝐶0, 𝑥0 such

that 𝑀 (𝐶0, 𝑥0) = 0 and ∃𝐶1, 𝑥1 such that 𝑀 (𝐶1, 𝑥1) = 1. We shall use the following

two theorems saying that approximately optimal strategies with small support exist

for every game 𝑀 :

Theorem 2.3.1 ([81, 7, 74]) Let 𝜖 > 0, let 𝑘 >
ln |ℐ|
2𝜖2

, and let ℓ >
ln |𝒞|
2𝜖2

.

1. There exists a 𝑘-uniform distribution 𝑝 on 𝒞 such that for every 𝑥 ∈ ℐ, the

expectation E
𝐶∼𝑝

[𝑀𝐶,𝑥] < 𝒱 (𝑀)+𝜖, where 𝒱 (𝑀) denotes the value of the circuit-

input game w.r.t. 𝑀 .

31

2. There exists an ℓ-uniform distribution 𝑝 on ℐ such that for every 𝐶 ∈ 𝒞, the

expectation E
𝑥∼𝑝

[𝑀𝐶,𝑥] > 𝒱 (𝑀)−𝜖, where 𝒱 (𝑀) denotes the value of the circuit-

input game w.r.t. 𝑀 .

This theorem can be proved using a random sampling argument and standard large

deviation (Chernoff-Hoeffding) bounds. From Theorem 2.3.1, we may derive the

following general consequence which does not appear in prior work:

Theorem 2.3.2 Let 𝒞𝑛 be a set of 2𝑡 circuits where each circuit has 𝑛 inputs, let

ℐ𝑛 ⊆ {0, 1}𝑛, and let 𝑓 : {0, 1}𝑛 → {0, 1}. Let 𝜖 : N → Q ∩ (0, 1], and let 𝑝, 𝑞 : N →

[0, 1] with 𝑝+ 𝑞 ≤ 1− 𝜖. For every 𝑛 ∈ N, one of the following must hold:

1. There exists an 𝑂(𝑛/𝜀(𝑛)2)-size multiset 𝑋𝑛 ⊆ 𝒞𝑛 such that for every 𝑦 ∈ ℐ𝑛,

𝐶(𝑦) = 𝑓(𝑦) for more than a 𝑝 (𝑛) fraction of the circuits 𝐶 ∈ 𝑋𝑛.

2. There exists an 𝑂(𝑡/𝜀(𝑛)2)-size multiset 𝑌𝑛 ⊆ ℐ𝑛 such that for every 𝐶 ∈ 𝒞𝑛,

𝐶(𝑦) ̸= 𝑓(𝑦) for more than a 𝑞 (𝑛) fraction of the inputs 𝑦 ∈ 𝑌𝑛.

Proof. Let𝑀 be the circuit-input game for a function 𝑓 . Let 𝜀, 𝑝, 𝑞, and 𝑛 be as in

the statement of the theorem. Set a parameter 𝛿 := 𝜀 (𝑛) /2, set 𝑘 :=
ln |ℐ𝑛|
𝛿2

=
𝑂(𝑛)

𝛿2
,

and set ℓ :=
ln |𝒞𝑛|
𝛿2

=
𝑂(𝑡)

𝛿2
. Then by Theorem 2.3.1, there exists a 𝑘-uniform

distribution 𝑋𝑛 on 𝒞𝑛 such that for all 𝑦 ∈ ℐ𝑛,

E
𝐶∼𝑋𝑛

[𝑀 [𝐶, 𝑦]] < 𝒱 (𝑀) + 𝛿, (2.1)

and there exists an ℓ-uniform distribution 𝑌𝑛 on ℐ𝑛 such that for every 𝐶 ∈ 𝒞𝑛,

E
𝑦∼𝑌𝑛

[𝑀 [𝐶, 𝑦]] > 𝒱 (𝑀)− 𝛿. (2.2)

Assume that there exists 𝑦* ∈ ℐ𝑛 such that 𝐶 (𝑦*) ̸= 𝑓 (𝑦*) for at least a 1 − 𝑝 (𝑛)

fraction of the circuits 𝐶 ∈ 𝑋𝑛. Since 𝑀 is a Boolean matrix, we have for every

32

𝐶* ∈ 𝒞𝑛 that

𝑞 (𝑛) ≤ 1− 𝑝 (𝑛)− 𝜀 (𝑛)

≤ Pr
𝐶∼𝑋𝑛

[𝐶 (𝑦*) ̸= 𝑓 (𝑦*)]− 𝜀 (𝑛) (by choice of 𝑦*)

< 𝒱 (𝑀)− 𝛿 (by choice of 𝛿 and (2.1))

< Pr
𝑦∼𝑌𝑛

[𝐶* (𝑦) ̸= 𝑓 (𝑦)] . (by (2.2))

This completes the proof. □

That is, we can trade off between the “measure of success” 𝑝 of the succinct strategy

for the circuit player, and the measure of success 𝑞 of the succinct strategy for the row

player. This tradeoff can be exploited for complexity-theoretic purposes as follows:

if item 1 does not hold (because of circuit lower bounds for computing 𝑓 with 𝒞

circuits) then there are small multisets “witnessing” this inability to compute. Lipton

and Young observed this consequence for the special case of 𝑝 = 1/2 and 𝑞 = 1/2− 𝜀,

calling such sets anti-checkers. In our main results, we shall adjust 𝑝 and 𝑞 to different

values, as needed. (For example, in our results concerning natural properties, we use

the case of 𝑝 = 0 and 𝑞 = 1− 𝜀.)

The problem of approximately solving a zero-sum game has been studied in opera-

tions research as well; for example, Grigoriadis and Khachiyan [54] show how to find

an approximately optimal strategy with randomness in time sublinear in the size of

the game matrix.

Bshouty et al. [29] studied the circuit-input game in the context of learning theory,

focusing on the complexity of finding succinct strategies in the game. They proved

(for example) that if NP ⊂ P/poly then one can uniformly construct circuits solving

SAT in ZPPNP – this gave a new collapse of the polynomial-hierarchy under the

assumption that NP ⊂ P/poly. Dually, if NP ̸⊂ P/poly, then their results also show

that one can uniformly construct multisets of satisfiable formulas that “fool” all small

circuits, in ZPPNP: Fortnow, Pavan, and Sengupta applied this consequence to the

“two queries” problem in structural complexity [46]. Subsequently, Fortnow et al. [45]

proved that the problem of finding approximate succinct strategies in an implicitly

33

represented game (such as the circuit-input game) is promise-S2-complete. Other

works on succinct games include [30, 95].

When circuit lower bounds are true, succinct strategy results like Theorem 2.3.2 tell

us that there are small distributions of inputs that “fool” all small circuits. Another

class of related results have focused on a different flavor of hardness result: given the

code of an efficient algorithm (randomized or otherwise) that’s supposed to solve SAT,

one can construct even smaller distributions that fool the given algorithm [56, 12, 25].

It is natural to ask whether Theorem 2.3.2 can be improved, so that 𝑝 + 𝑞 = 1.

We now show that this is not possible, at least not in full generality. In particular,

while Theorem 2.3.2 holds for all 𝑝 + 𝑞 ≤ 1 − 𝜀, where 𝜀 > 0, it does not hold for

𝑝 = 𝑞 = 1/2 and all matrices 𝑀 :

Theorem 2.3.3 Theorem 2.3.2 does not hold with 𝑝 = 𝑞 = 1/2.

Proof. Let 𝑓 : {0, 1}* → {0, 1} be a Boolean function without circuits of size

𝑐 · 𝑛𝑠, for a sufficiently large constant 𝑐 ≥ 1. Suppose Theorem 2.3.2 holds with

𝑝 = 𝑞 = 1/2 and the circuit-input game for 𝑓 on size-𝑠 circuits and 𝑛 inputs. Then

at least one of the following holds.

1. There is an 𝑂(𝑛)-size multiset 𝒞𝑛 of size-𝑠 circuits where Pr
𝐶∈𝒞𝑛

[𝐶 (𝑥) ̸= 𝑓 (𝑥)] <

1/2 holds for all 𝑥 ∈ {0, 1}𝑛.

2. There exists an 𝑂(𝑠 log 𝑠)-size multiset 𝒳𝑛 of 𝑛-bit inputs such that for every

circuit 𝐶 of size 𝑠, Pr
𝑥∈𝒳𝑛

[𝐶 (𝑥) ̸= 𝑓 (𝑥)] ≥ 1/2.

In the first case, 𝑓 can be implemented with a (strict) MAJORITY circuit on 𝒞𝑛,

giving a circuit of size 𝑂 (𝑛𝑠), contradicting our choice of 𝑓 .

The second case also leads to a contradiction. For any 𝒳𝑛, we may take a circuit

𝐶 of size 𝑂(𝑛) that has a single input 𝑥 in 𝒳𝑛 hardwired along with the value 𝑓(𝑥).

The circuit 𝐶 outputs 𝑓(𝑥) on input 𝑥, and otherwise it outputs the bit 𝑏 maximizing

the quantity Pr
𝑥′∈𝒳𝑛∖{𝑥}

[𝑓(𝑥′) = 𝑏]. It follows that Pr [𝐶(𝑥) ̸= 𝑓(𝑥)] < 1
2
. □

34

Chapter 3

A Potential Circumvention of Natural

Proofs

3.1 Natural Proofs

In this chapter, we apply Theorem 2.3.2 to circumvent the proof barrier of Razborov

and Rudich [91]. First, we present the necessary background and definitions. In the

following, let Γ and 𝒞 be complexity classes.

Definition 3.1.1 (Property of Boolean Functions) A property of Boolean func-

tions is a set of truth tables.

For the purposes of this chapter, there are several kinds of properties that we care

about in particular.

Definition 3.1.2 (Constructivity) A property 𝑃 of Boolean functions is Γ-constructive

if 𝑃 ∈ Γ.

The constructivity condition simply states that 𝑃 can be computed efficiently, in

the sense that there is some efficient (as defined by Γ) algorithm 𝐴 that, given the

truth table of a Boolean function 𝑓 , determines whether 𝑓 ∈ 𝑃 .

35

Definition 3.1.3 (Largeness) A property 𝑃 of Boolean functions is large if for

every 𝑛 ∈ N,
⃒⃒
𝑃 ∩ {0, 1}2𝑛

⃒⃒
∈ 22

𝑛−𝑂(𝑛).

Note that for a natural number 𝑛, there are 2𝑛 𝑛-bit strings, so there are 22
𝑛

Boolean functions on 𝑛 bits. Largeness states that 𝑃 contains a 2−𝑂(𝑛) fraction of

these functions. Each is represented as a 2𝑛-bit truth table, so 2−𝑂(𝑛) actually means

inverse polynomial in the length of the truth tables in question. In other words,

the largeness condition essentially states that a property contains a non-negligible

fraction of all Boolean functions.

Definition 3.1.4 (Usefulness) A property 𝑃 of Boolean functions is useful against

𝒞 if for infinitely many 𝑛 ∈ N, 𝑃 ∩ 𝒞 ∩ {0, 1}2𝑛 = ∅.

The usefulness condition states that (infinitely often) 𝑃 contains no functions from

(i.e. computable in) 𝒞. Note that the complexity class 𝒞 in the usefulness condition

constrains the complexity of the functions satisfying the property 𝑃 . In contrast, Γ

from the constructivity condition constrains the complexity of 𝑃 itself.

Definition 3.1.5 (Natural Property) A Γ-natural property useful against 𝒞 is a

property 𝑃 that is Γ-constructive, large, and useful against 𝒞.

Suppose a function 𝑓 satisfies a Γ-natural property useful against 𝒞. Because of the

usefulness condition, this constitutes a proof that 𝑓 ̸∈ 𝒞, hence the term natural proof.

However, Razborov and Rudich observed that because of the constructivity and large-

ness conditions, this also gives a Γ algorithm that can distinguish any pseudorandom

generator candidate computable in 𝒞 from a truly random string with non-negligible

probability, which essentially means that all cryptography implemented in 𝒞 is inse-

cure against Γ. Since it is widely believed that there are pseudorandom generators

implementable in P/poly and secure against P, this means that there should not

be any P-natural properties useful against P/poly. In particular, no such natural

property should be able to separate NP from P/poly.

36

3.2 Natural Properties from Circuit Lower Bounds

for SAT

If we consider only self-checking circuits, the above proof barrier falls apart. In this

chapter, we prove that natural properties useful against self-checking circuits are

equivalent to circuit lower bounds in some important settings. To see this, consider

NP vs P/poly and the SAT problem. Take any circuit 𝐶 (which purportedly solves

SAT). We convert 𝐶 into a new circuit 𝐶 ′ which never errs when it reports satisfia-

bility. 𝐶 ′ contains several copies of 𝐶, and when 𝐶 reports satisfiability, 𝐶 ′ checks

it by trying to generate a satisfying assignment. 𝐶 ′ iteratively plugs in values for a

variable of the supposedly satisfiable formula and queries 𝐶 on the reduced formulas

to see which (if any) is still satisfiable. One of two things can occur. In one case,

𝐶 will eventually contradict itself by saying that a formula is satisfiable, but both of

the reduced formulas are unsatisfiable (or by saying that the formula FALSE is sat-

isfiable). In this case, 𝐶 ′ aborts and reports “UNSAT”. Otherwise, 𝐶 ′ will eventually

exhaust all of the variables of the original formula, at which point it has generated

a satisfying assignment and can report “SAT” without error. Hence we may assume

without loss of generality that a circuit never errs when it reports satisfiability.

Let SAT𝑛 denote the restriction of SAT to formulas encoded in 𝑛 bits.

Definition 3.2.1 (SAT Solver) A Boolean circuit 𝐶 on 𝑛 inputs is a SAT solver

if its truth table is pointwise dominated by SAT𝑛.

That is, for all 𝑛-bit formulas 𝜙, 𝐶(𝜙) = 1 implies that 𝜙 is satisfiable. (Such

circuits are called “SAT solvers” because one could use these circuits to print satisfying

assignments to formulas, when the circuits report “SAT.”) The class of functions

computable by polynomial-size SAT solvers is an expressive class, including special

cases such as 2-SAT, Horn-SAT, etc. By the previous paragraph, to prove NP ̸⊂

P/poly it suffices to prove that no polynomial-size family of SAT solvers can compute

SAT. That is, a natural proof need only be useful against small SAT solvers, rather

than all small circuits. It turns out that such natural proofs must exist, assuming

37

NP ̸⊂ P/poly.

Theorem 3.2.1 (recall Theorem 1.3.1) NP ̸⊂ P/poly if and only if there is an

AC0/𝑛𝑜(1)-natural property1 that is useful against polynomial-size SAT solvers and

accepts SAT𝑛 for all 𝑛.

Proof. One direction of the equivalence is trivial: if there is any logical property

that is false on the truth tables of all polynomial-size SAT𝑛 solvers for infinitely many

𝑛, yet the property is true of SAT𝑛 for all 𝑛, then no polynomial-size SAT solving

circuit can compute SAT𝑛 almost everywhere. Therefore NP ̸⊂ P/poly.

Now we proceed with the other direction. Assume NP ̸⊂ P/poly. Let 𝑠 be a

polynomial in 𝑛. For every 𝑛 ∈ N, let 𝒞𝑛 denote the set of 𝑛-input circuits of size 𝑠 (𝑛)

which are SAT solvers (i.e., they never err on unsatisfiable formulas). Set ℐ𝑛 := SAT𝑛,

i.e., the set of satisfiable formulas encoded in 𝑛 bits. Consider the circuit-input game

𝑀 for SAT, over the set of circuits 𝒞𝑛 and set of inputs ℐ𝑛.

Applying Theorem 2.3.2 to this game 𝑀 (taking 𝑝 (𝑛) = 0 and 𝑞 (𝑛) = 1− 𝜀 (𝑛) for

some inverse polynomial 𝜀(𝑛)), either:

1. there is an poly(𝑠, 𝑛)-size set 𝑋 ⊆ 𝒞𝑛 such that for every 𝑥 ∈ ℐ, at least one

𝐶 ∈ 𝑋 computes SAT (𝑥), or

2. there is a poly(𝑠, 𝑛)-size set 𝑌 ⊆ ℐ𝑛 such that every circuit 𝐶 ∈ 𝒞𝑛 computes

SAT correctly on at most an 𝜖 (𝑛) fraction of inputs in 𝑌 .

In the first case, we may construct a polynomial-size circuit for SAT𝑛 by simply taking

the Or of the circuits in 𝑋: since the circuits never err on unsatisfiable formulas,

this will compute SAT𝑛. Our assumption NP ̸⊂ P/poly is therefore contradicted if

the first case holds for almost every 𝑛.

Suppose the second case holds for infinitely many 𝑛. Then we can construct an

algorithm 𝐴 which takes as input the 2𝑛-bit truth table of a function 𝑓 : {0, 1}𝑛 →
1Recall Definitions 2.2.15 and 2.2.11. The complexity class AC0/𝑛𝑜(1) is the set of problems that

can be solved with uniformly generated circuit families that consist of And and Or gates, have
constant depth and polynomial size, and take advice strings of length 𝑛𝑜(1).

38

{0, 1} and is armed with 𝑌 as advice. Algorithm 𝐴 accepts 𝑓 if 𝑓 outputs 1 on at

least a 2𝜀 (𝑛) fraction of the inputs in 𝑌 , and rejects 𝑓 if 𝑓 outputs 1 on at most an

𝜀 (𝑛) fraction of the inputs in 𝑌 . This 𝐴 is implementable in polynomial-size AC0 (in

fact, depth-3 And ∘Or ∘And circuits), by classical results on distinguishing strings

with many 1’s from strings with many 0’s [2, 102]. Furthermore, 𝐴 trivially accepts

SAT𝑛 for every 𝑛, because SAT𝑛(𝑦) = 1 for every input 𝑦 ∈ 𝑌 .

Notice that, while 𝐴 rejects the truth tables of SAT solving circuits of 𝑠 (𝑛) size, 𝐴

will accept a randomly chosen Boolean function with probability 1−𝑜(1). Notice that

the advice needed is 𝑠 (𝑛) ≤ 𝑂(𝑛𝑘), which is polylogarithmic in the input length, 2𝑛.

Therefore, 𝐴 is an AC0/𝑛𝑜(1)-natural property that is useful against SAT solving cir-

cuits of 𝑠 (𝑛) size. Such an 𝐴 can be constructed for every polynomial 𝑠(𝑛), assuming

NP ̸⊂ P/poly. □

It is worth noting that the above theorem holds not only for SAT solvers, but for

any circuit which computes a NP-complete problem with one-sided error, regardless

of whether the problem in question exhibits self-reducibility. We consider SAT specif-

ically because self-reducibility allows us to construct a SAT solver from an arbitrary

circuit with only polynomial overhead.

As it turns out, the natural property in Theorem 3.2.1 can be made uniform. How-

ever, the proof is not particularly illustrative.

Theorem 3.2.2 (cf. Theorems 1.3.1, 3.2.1) NP ̸⊂ P/poly if and only if there is a

uniform AC0-natural property that is useful against polynomial-size SAT solvers and

accepts SAT𝑛 for all 𝑛.

Proof. Again, one direction is trivial. For the other direction, suppose NP ̸⊂

P/poly. Consider the algorithm 𝐴 that accepts a function 𝑓 if and only if 𝑓 is not

strictly dominated by SAT𝑛.

We check the three conditions of a natural property:

• Constructivity: SAT𝑛 can be computed uniformly with a circuit of size polyno-

mial in the input length 2𝑛, by exhaustively checking all possible assignments

39

(at most 2𝑛) on all (2𝑛) possible 𝑛-bit formulas. Each check is a CNF evalua-

tion, which can be computed in uniform AC0. The checks can be combined into

a truth table for SAT𝑛 using a layer of 2𝑛 Or gates. The resulting truth table

can be compared to the input truth table using a 2-DNF. Hence 𝐴 is uniform

AC0-constructive.

• Largeness: There is at least one unsatisfiable formula 𝜙. 𝐴 accepts all functions

that accept 𝜙, i.e. at least half of all Boolean functions.

• Usefulness: 𝐴 accepts SAT𝑛 itself but no other functions computable by SAT

solvers (of any size). SAT𝑛 cannot be computed by a polynomial-size SAT solver

by assumption, so 𝐴 is useful against polynomial-size SAT solvers.

□

3.3 Natural Properties from Circuit Lower Bounds

for Checkable Functions

It is easy to extend Theorem 3.2.1 to general functions 𝑓 with deterministic one-

sided checkers: functions 𝑓 that allow polynomial-size circuits with oracle gates for

𝑓 which never err when they output 0 (or never err when they output 1). Now

we consider languages which have (randomized) polynomial time program checkers,

such as EXP-complete languages [13, 24], Permanent [72], etc. Such randomized

program checkers can be adapted to give polynomial size circuit families which act

as program checkers that deterministically check all functions computable by small

circuits. These deterministic program checkers can then be used to prove (as above

with SAT) equivalences between circuit lower bounds and the existence of natural

properties. Here we use the following definition of a program checker.

Definition 3.3.1 (Program Checker) Let 𝐿 ∈ {0, 1}*. A randomized (polyno-

mial time) program checker for 𝐿 is a randomized (polynomial time) algorithm with

40

oracle access to an arbitrary function 𝑓 , which when given an 𝑛-bit input 𝑥 and ran-

domness 𝑟 will accept with probability greater than 2/3 (over the choice of 𝑟) if 𝐿 = 𝑓

and will reject with probability greater than 2/3 if 𝐿 (𝑥) ̸= 𝑓 (𝑥).

In order for a randomized program checker to be adapted to produce a deterministic

circuit family, we require that the language 𝐿 be paddable, so that a circuit computing

𝐿 on inputs of length 𝑛 can also compute 𝐿 on inputs of length less than 𝑛. Hence for

the rest of the section, we consider only functions which are paddable in the following

sense.

Definition 3.3.2 (Paddability) A language 𝐿 is paddable if there exists a language

𝐿′ such that 𝐿 =
{︀
𝑥01𝑘 : 𝑥 ∈ 𝐿′, 𝑘 ∈ N

}︀
.

Note that any language 𝐿′ can be converted into a paddable language 𝐿 as above,

while preserving both asymptotic circuit complexity (up to a polynomial factor) and

the existence of program checkers.

Theorem 3.3.1 Let 𝑝 and 𝑡 be polynomials, and let 𝐿 be a paddable language with

a randomized 𝑡 (𝑛) − 𝑛 time program checker. Then there exists a polynomial size

circuit family which deterministically checks all functions on 𝑛 inputs computable by

circuits of size at most 𝑝 (𝑡 (𝑛)).

Proof. Let 𝑝 and 𝑡 be polynomials in 𝑛. Let 𝐿 be any paddable language with a

randomized 𝑡 (𝑛)−𝑛 time program checker, i.e. there exists a randomized 𝑡 (𝑛)−𝑛 time

algorithm 𝐴 such that for every input 𝑥 ∈ {0, 1}𝑛 and every 𝑓 : {0, 1}𝑡(𝑛) → {0, 1},

𝐴𝑓 (𝑥) = 1 with probability more than 2/3 if 𝑓 is the 𝑡 (𝑛)th slice of 𝐿, and 𝐴𝑓 (𝑥) = 0

with probability more than 2/3 if 𝑓
(︀
𝑥1𝑡(𝑛)−𝑛

)︀
̸= 𝐿 (𝑥).

We may amplify this success probability to 1− 2−𝑞(𝑛) (for some polynomial 𝑞 (𝑛) >

2𝑝 (𝑡 (𝑛)) log 𝑝 (𝑡 (𝑛))+𝑛), by creating another checker 𝐴′ which runs 𝐴 independently

18𝑞 (𝑛) times and returns the Maj of the 18𝑞 (𝑛) results; appealing to a Chernoff

bound yields the higher success probability.

41

We may simulate 𝐴′ with a polynomial size family {𝐵𝑛} of oracle circuits which take

as input the string 𝑥 ∈ {0, 1}𝑛 and a string of randomness 𝑟 ∈ {0, 1}𝑛
𝑘

, and which

use oracle gates to compute the function 𝑓 . Since there are at most 22𝑝(𝑡(𝑛)) log 𝑝(𝑡(𝑛))

circuits of size 𝑝 (𝑡 (𝑛)) and 2𝑛 𝑛-bit input strings, we have (using a union bound)

with non-zero probability (over the choice of 𝑟 ∈ {0, 1}𝑛
𝑘

), for every 𝑥 ∈ {0, 1}𝑛 and

every 𝑓 computable by a circuit of size 𝑝 (𝑡 (𝑛)),

• 𝑓(𝑧) = 𝐿(𝑧) for all 𝑧 ∈ {0, 1}𝑡(𝑛) =⇒ 𝐵𝑓
𝑛 (𝑥, 𝑟) = 1 and

• 𝑓 (𝑥) ̸= 𝐿 (𝑥) =⇒ 𝐵𝑓
𝑛 (𝑥, 𝑟) = 0.

Hence there is some choice of randomness 𝑟* ∈ {0, 1}𝑛
𝑘

for which 𝐵𝑛 (−, 𝑟*) is a de-

terministic program checker (where the randomness 𝑟* is hard coded into the circuit).

□

Fix a polynomial 𝑝 and a circuit family 𝐴𝑛 which deterministically checks circuits

of size at most 𝑝 (𝑛). Now for any circuit {𝐶} with 𝑡 (𝑛) inputs and of size 𝑝 (𝑡 (𝑛)),

we may augment 𝐶 with 𝐴𝑡(𝑛) to create a self-checking circuit 𝐶 ′ on 𝑛 inputs with

polynomial overhead. We may treat 𝐶 ′ as a ternary circuit which outputs 0 (resp. 1)

if 𝐴𝑡(𝑛) outputs 1 and 𝐶 outputs 0 (resp. 1), and which outputs ⊥ if 𝐴𝑡(𝑛) outputs 0.

We may treat ⊥ as 0 or 1, in which case 𝐶 ′ gives a circuit with one-sided error (in

either direction). Call all such 𝐶 ′ the self-checked circuits for 𝐿.

Theorem 3.3.2 Let 𝐿 be a paddable language with a randomized polynomial time

program checker. If 𝐿 ̸∈ P/poly, then for every polynomial 𝑠, there exists a natural

property computable in AC0/𝑛𝑜(1) useful against size-𝑠(𝑛) self-checked circuits for 𝐿.

Proof. In the case where ⊥ = 0 above, we may take 𝒞𝑛 to be the set of 𝑠 (𝑛)

size circuits, ℐ𝑛 := {0, 1}𝑛 ∩ 𝐿, and 𝑀 (𝐶, 𝑦) := 1 − 𝐶 (𝑦). From Theorem 2.3.2

(taking 𝑝 (𝑛) = 0 and 𝑞 (𝑛) = 1 − 𝜖 (𝑛) for some inverse polynomial 𝜖), either there

is a polynomial size set 𝑋 ⊆ 𝒞𝑛 such that for every 𝑦 ∈ ℐ, at least one 𝐶 ∈ 𝑋

computes 𝐿 (𝑦), or there is a polynomial size set 𝑌 ⊆ ℐ𝑛 such that every circuit

𝐶 ∈ 𝒞𝑛 computes 𝐿 correctly on at most an 𝜖 (𝑛) fraction of inputs in 𝑌 . If the

42

former case holds for almost every 𝑛, then we may construct a polynomial size circuit

family for 𝐿 by taking the Or of the circuits in 𝑋. Otherwise, the latter case holds

infinitely often, giving an efficiently computable (AC0/𝑛𝑜(1)) natural property useful

against functions with one-sided error which are computable with 𝑠 (𝑛) size circuits.

Note that the choice to treat ⊥ as 0 is arbitrary. We may instead treat ⊥ as 1, in

which case Theorem 2.3.2 either gives a polynomial size set of circuits whose And

computes 𝐿, or an AC0/𝑛𝑜(1)-computable natural property useful against functions

with 𝑝 (𝑛) size circuits and which are (bitwise) at least 𝐿. □

3.4 New Lower Bounds?

These results raise questions regarding the circumvention of natural proofs that seem

worthwhile to explore further. For instance, can new circuit lower bounds be proved,

based on the guidance of Theorem 3.2.1? Again, this theorem tells us that we should

expect there to be combinatorial properties useful against polynomial-size SAT solving

circuits, or in general, circuits which never err when they print solutions to their input

instances. To be more concrete, let CLIQUE𝑛/2

𝑛2 : {0, 1}𝑛2 → {0, 1}𝑛 be the function

which treats its input as an 𝑛 × 𝑛 adjacency matrix 𝐴, and outputs a bit vector

specifying a clique of size at least 𝑛/2 in 𝐴, when one exists (otherwise, it outputs

the all-zeros vector). Can one prove that computing CLIQUE𝑛/2

𝑛2 requires circuits of

size at least 4𝑛2 over the basis 𝐵2?

43

44

Chapter 4

Circuit Lower Bounds as Data Design

Problems

4.1 Data Complexity

In this chapter, we use succinct strategies for zero-sum games to set up a framework

that is “dual” to the usual computational view of circuits computing functions on

inputs, treating inputs as the “programs” and circuits as the “input data”.

Consider a language 𝐿, called the primal language. The primal complexity measure

is the standard measure of the circuit complexity of 𝐿, as a function of the number

of input bits.

We now define the primal language:

Definition 4.1.1 (Slice of a Boolean Function) The 𝑛th slice of 𝐿 is 𝐿𝑛 := 𝐿 ∩

{0, 1}𝑛.

Definition 4.1.2 (Dual Language) The dual language Test-𝐿 is the set of de-

scriptions of circuits that are consistent with 𝐿, in the sense that they compute a slice

of 𝐿.

However, Test-𝐿 is not computed in the usual sense, with a circuit. Instead, we

input strings as a model of computation. Test-𝐿 can be computed with a test suite

45

of inputs by checking to see that a given circuit computes 𝐿 correctly on all inputs in

the test suite. Say that such a test suite computes Test-𝐿 correctly if every circuit

that does not compute a slice of 𝐿 errs on at least one input in the test suite.

We can now define a dual complexity measure.

Definition 4.1.3 (Data Complexity) The data complexity of 𝐿 is the smallest

number of inputs required by a test suite to compute Test-𝐿, as a function of the size

of the circuit being tested.

Note that the data complexity is a function of the size of the circuit being tested,

and not the size of the input that this circuit takes. This is because the circuit itself

is the input to the problem Test-𝐿. Every language 𝐿 can be computed by trivial

circuits of exponential size. However, the theory of circuits becomes interesting when

only small circuits are considered. Similarly, there are also always trivial test suites of

exponential size that can conclusively determine whether a circuit correctly computes

𝐿. It would suffice to try all possible inputs of size up to the size of the circuit being

tested. However, a natural goal is to design smaller test suites that still compute

Test-𝐿 correctly.

Our ideas for using data to test circuits for a function are vaguely related to the

notion of teaching dimension of a class of concepts, from learning theory (see Goldman

and Kearns [50] and Shinohara and Miyano [96]). The teaching dimension is defined

with respect to a collection of functions, and it bounds the total number of labeled

examples needed to identify each concept in the collection (to distinguish it from

the other concepts). However, this notion is information-theoretic: there are no

computational bounds placed on what is distinguishing one function from another.

In our setting, we have a collection of programs and a specific function 𝑓 of interest,

and wish to know how many labeled examples we need to distinguish “bad” programs

which do not compute 𝑓 from “good” ones which do.

Mulmuley’s GCT program [77] has also considered “sets of counterexamples” similar

to our test suites, calling them “obstructions.”

46

4.2 Duality with Circuit Complexity

The remainder of this chapter proves that the above definitions do indeed present a

reasonable duality. For simplicity, we prove the main duality theorem (Theorem 4.2.1)

only for the class of circuits over the basis𝐵2 of all two-bit Boolean functions, although

analogous statements will hold for any complete basis with minor modifications.

The data complexity of testing size-𝑠 circuits is always at most 2𝑂(𝑠) for any language

𝐿: one can simply include all possible input/output pairs on inputs of length up to 𝑠.

We are interested to know: for what languages 𝐿 can the data complexity be much

smaller? We prove an equivalence between upper bounds on the data complexity of

𝐿 and lower bounds on the circuit complexity of 𝐿:

Theorem 4.2.1 Let 𝐿 ⊆ {0, 1}⋆, and let 𝑆(𝑛) ≥ 2𝑛 for all 𝑛.

1. If 𝐿 ∈ Size(𝑆(𝑛)), then the data complexity of 𝐿 is at least 2Ω(𝑆−1(𝑠)) almost

everywhere.

2. If 𝐿 is not in Size(𝑛·𝑆(𝑛)), then the data complexity of 𝐿 is at most 𝑂(2𝑆−1(𝑠)+

𝑆−1(𝑠) · 𝑠2 log 𝑠) infinitely often.

Since for a uniformly random language 𝐿𝑛 ⊆ {0, 1}𝑛, 𝐿𝑛 ̸∈ Size(2𝑛/𝑛2) with high

probability, we have the following corollary:

Corollary 4.2.1 If 𝐿 ⊆ {0, 1}* is uniformly random, then almost certainly the data

complexity of 𝐿 is at most 𝑂(𝑠2 log2 𝑠) infinitely often.

We also note that since the circuit complexities of a language 𝐿 over any complete

bases differ by at most a constant factor (and as noted previously, all results presented

hold for an arbitrary complete gate basis with minor modifications to the proofs), the

data complexities of 𝐿 over any complete bases differ by at most a constant factor.

To get some intuition towards a proof of Theorem 4.2.1, notice that if we replace

“data complexity” with “time complexity” in the above, one direction of the equiv-

alence is easy to establish. Namely, for languages 𝐿 computable within exponential

47

time, when the circuit complexity of 𝐿 is large, the time complexity of Test-𝐿 will

be provably low, as follows.

Suppose 𝑆(𝑛) is a lower bound on the circuit complexity of computing 𝐿 on 𝑛-bit

inputs. To efficiently test a given circuit 𝐶 of size 𝑠 with 𝑛 inputs, we can immediately

reject if 𝑠 < 𝑆(𝑛), otherwise we may try all 2𝑛 < 2𝑆
−1(𝑠) inputs to 𝐶 and check whether

the truth table obtained for 𝐶 matches 𝐿𝑛 on 𝑛-bit inputs. For 𝐿 computable within

2𝑂(𝑛) time, this algorithm takes 2𝑂(𝑆−1(𝑠)) time; larger 𝑆(𝑛) entails a faster running

time. (For example, if some 𝐿 in 2𝑂(𝑛) time requires 2𝜀𝑛 size 𝒞-circuits, then testing 𝒞

for 𝑓 is in poly(𝑠) time.) However, this particular connection is not terribly useful: we

are basically saying that strong circuit lower bounds happen to make testing circuits

for 𝐿 trivial, because most circuits can be immediately rejected. Moreover we do not

know if low time complexity for testing circuits for 𝐿 will imply analogous circuit

lower bounds for 𝐿, in general.

The equivalence between circuit complexity and data complexity is far less obvious.

We use the following consequence of results on the circuit-input game (Theorem 2.3.2):

when circuits are too small to compute a function, there are small data sets that will

efficiently refute these small circuits.

Proof of Theorem 4.2.1. (Part 1.) Suppose for all 𝑛, there is a circuit 𝐶 of size

𝑆(𝑛) which computes 𝐿𝑛 on all inputs of length 𝑛. For each 𝑛, we claim that every

test set 𝑇𝑠 for 𝐿 on circuits of size 𝑆 ′(𝑛) = 𝑆(𝑛) + 𝑛 satisfies |𝑇𝑠′| ≥ 2𝑛. Observe

that for every circuit 𝐶 of size 𝑆(𝑛) with 𝑛 inputs and for all 𝑥 of length 𝑛, there is a

circuit 𝐶𝑥 of size at most 𝑆 ′(𝑛) = 𝑆(𝑛) + 𝑛 which agrees with 𝐶 on all inputs except

𝑥, where 𝐶𝑥 and 𝐶 disagree. In particular, 𝐶𝑥 can use a tree of 𝑛 − 1 gates that

outputs 1 if and only if the input equals 𝑥, and take the XOR of this tree’s output

with the circuit 𝐶.

So given an 𝑛-input circuit 𝐶 computing 𝐿 with size at most 𝑆 ′(𝑛), in order to

distinguish 𝐶 from all of the 𝐶𝑥, 𝑥 must be included in 𝑇𝑠′ . That is, all 𝑥 of length

𝑛 = Ω(𝑆−1(𝑠)) must be in 𝑇𝑠′ .

(Part 2.) Suppose the circuit complexity of 𝐿 is greater than 𝑛 · 𝑆(𝑛) on inputs of

48

length 𝑛. Then there cannot be a collection 𝒟 of 𝑂(𝑛/𝜀2) size-𝑆(𝑛) circuits such that

for all 𝑥 ∈ {0, 1}𝑛, 𝐶(𝑥) = 𝐿(𝑥) for more than a 1/2 fraction of 𝐶 in 𝒟: otherwise,

taking the Maj of the outputs of circuits in 𝒟 would yield a circuit for 𝐿 of complexity

at most 𝑛 · 𝑆(𝑛). Therefore, item 1 of Theorem 2.3.2 does not hold with 𝑝 = 1/2,

and hence item 2 must hold for 𝑞 ≤ 1/2 − 𝜀 for every sufficiently small 𝜀. Setting 𝜀

appropriately, this implies for all input lengths 𝑚 ranging from 𝑛 to 𝑛 ·𝑆(𝑛), there is a

set 𝑋𝑚,𝑠 of 𝑚-bit strings 𝑥 with cardinality 𝑂(𝑆(𝑛) log𝑆(𝑛)), such that every circuit

of size 𝑆(𝑛) taking 𝑚 bits of input fails to compute 𝐿 correctly on at least 1/10 of

the 𝑥 in the set 𝑋𝑚,𝑠. By adding all strings in 𝑋𝑚,𝑠 to the set 𝑋𝑠, we can refute

any circuit with more than 𝑛 inputs and size 𝑆(𝑛), with a set of 𝑂(𝑛𝑆(𝑛)2 log𝑆(𝑛))

strings.

For input lengths 𝑚 that are below 𝑛, there may be a size 𝑆(𝑛) circuit for 𝐿 that

works on all 𝑚-bit strings. To cover this case, we simply include all bit strings

of length up to 𝑛 − 1 in the set 𝑋𝑠 as well – then, every circuit of size 𝑠 and at

most 𝑛 inputs can also be checked. In total, we have a test set 𝑋𝑠 of cardinality

𝑂(2𝑛 +𝑛𝑆(𝑛)2 log𝑆(𝑛)). For size 𝑠 circuits, we set 𝑠 := 𝑆(𝑛), i.e., 𝑛 = 𝑆−1(𝑠), so the

cardinality is 𝑂(2𝑆−1(𝑠) + 𝑆−1(𝑠) · 𝑠2 log 𝑠) as a function of the circuit size 𝑠. □

In the above theorems, the small cardinality test suites 𝑋𝑠 have the following struc-

ture: for input sizes which are “too long” to support size-𝑠 circuits for 𝐿, we have small

sets of counterexamples from the circuit-input game, but as the input sizes decrease,

we reach a threshold where it’s possible to compute 𝐿 within size 𝑠, and must start

including all possible inputs.

When we consider polynomial-size circuits in general, we simply obtain an equiva-

lence:

Corollary 4.2.2 A language 𝐿 is in P/poly if and only if for some 𝜀 > 0, the data

complexity of 𝐿 is greater than 2𝑠
𝜀 for almost every 𝑠.

Proof. If 𝐿 ∈ P/poly, then it is in Size(𝑛𝑘) for some constant 𝑘. By Part 1 of

Theorem 4.2.1, the data complexity of 𝐿 is at least 2Ω(𝑠1/𝑘). On the other hand, if

𝐿 ̸∈ P/poly, then it is not in Size(𝑛𝑘+1) for every 𝑘. By Part 2 of Theorem 4.2.1, the

49

data complexity of 𝐿 is then at most 𝑂(𝑠𝑘 log 𝑠+ 2𝑠
1/𝑘

) for all 𝑘. □

Corollary 4.2.3 (recall Theorem 1.4.1) NP ̸⊂ P/poly (resp. NP ̸⊂ i.o.P/poly) if

and only if for every 𝜀 > 0 and for infinitely many 𝑠 (resp. for every 𝜀 > 0 and for

every 𝑠), the data complexity of SAT is at most 𝑂
(︀
2𝑠

𝜀)︀.
4.3 Open Questions

We conclude the chapter with two open questions of particular interest to the authors.

1. Can the equivalence of Theorem 4.2.1 be tightened further? Currently there is

a gap between the two implications in the equivalence, amounting to a multi-

plicative factor of 𝑛. Could this gap be necessary?

2. How does the complexity of 𝐿 relate to the complexity of Test − 𝐿? Here

we mean “complexity” in the usual, most generic sense: if 𝐿 is known to be

computable in some particular complexity class, what can we say about the

complexity class(es) that support testing for 𝐿?

50

Chapter 5

Black-Box Hypotheses

5.1 A Complexity Theoretic View of Obfuscation

What kind of code “behaves” like a black box to any code analyst? In particular,

what programs are so difficult to analyze that every potential analyst can discern

essentially no information from the code, other than its input-output behavior? Such

questions are of great importance in cryptography and formal verification: what sort

of code is difficult to verify without considerable resources? What kind of code can

be obfuscated? What properties of functions can be automatically tested?

A priori, the answers to such questions depend on three factors:

1. The complexity of the code: what instructions are allowed in the code, the com-

putational complexity (e.g. time/space/size/depth complexity) of the algorithm

implemented by the code, and so on.

2. The complexity of the analyst: what sorts of operations the analyst can perform,

and how much resources it has (time/space/size/depth) to analyze the code.

3. The actual function being computed by the code. If the function itself is trivial

or extremely complicated, this could affect how “black box” it can possibly look.

In the pioneering work of Barak et al. [14] on obfuscation, the authors proposed a

compelling conjecture about black-box obfuscation that they called a “Scaled-Down

51

Rice’s Theorem” [14, Conjecture 5.1]; the conjecture has recently been renamed the

Black Box Hypothesis (BBH) [93, 65]. Informally, the Black-Box Hypothesis posits

that, when code is represented as a small Boolean circuit, and a code analyst is

represented as an efficient algorithm, the only possible analysis tasks are ones that

could have been performed using only the input-output behavior of the code (and not

the code itself).

The original Black-Box Hypothesis is still a major open problem, but other natural

variants of the hypothesis may be more tractable to resolve unconditionally. Here we

consider variants of the Black-Box Hypothesis in a more general complexity-theoretic

setting, where the complexity of the analyst, the complexity of the code being ana-

lyzed, and the function to be obfuscated (the “box”) are taken carefully into account.

For example, of particular interest are the cases where the “analyst function” is taken

from a “low” complexity class 𝒜 (smaller than P), and the box is also from a “low”

complexity class 𝒞.

More formally, we study abstract forms of the Black-Box Hypothesis (sometimes

abbreviated as BBH in the following). Let 𝒞 be a set of circuits and let 𝒜 be a

complexity class that permits oracles in its definition. We say that a property 𝑃 :

𝒞 → {0, 1} of 𝒞 is semantic if 𝑃 (𝐶) = 𝑃 (𝐶 ′) for all pairs of circuits 𝐶 and 𝐶 ′ in 𝒞

which compute the same function.

Hypothesis 5.1.1 (𝒞-Black-Box Hypothesis for 𝒜) [Informal Statement, cf. Hy-

pothesis 5.4.1] Let 𝑃 : 𝒞 → {0, 1} be any semantic property computable by some an-

alyst 𝐴′ ∈ 𝒜. Then there is a black-box analyst 𝐴 ∈ 𝒜 such that for every 𝑠 and

every circuit 𝐶 ∈ 𝒞 of size 𝑠 on 𝑛 inputs, 𝐴𝐶(1𝑛0𝑠−𝑛) = 𝑃 (𝐶).

In prior work, the class of analysts 𝒜 was always set to be BPP, and the class

of circuits 𝒞 was generally set to be unrestricted circuits of fan-in two. In that full

form, proving the BBH would also prove NP ̸⊆ BPP, so that is presently out of reach!

(The BBH could also end up being false, of course.) By considering a range of natural

possible choices for the weak analysts 𝒜 and the circuit sets 𝒞, we can try to delineate

precisely how weak the analysts from 𝒜 need to be, in order for 𝒞-circuits to provably

52

behave like black boxes, and to relate the corresponding Black-Box Hypotheses to

other core problems within complexity.

5.2 Overview

We demonstrate several interesting relationships between circuit lower bounds and

Black-Box Hypotheses in the generalized setting. First, we prove that certain in-

stances of the Black-Box Hypothesis are true, from known circuit lower bounds. In

fact we give a generic connection from lower bounds to Black-Box Hypotheses. We

also give some converse results, showing that Black-Box Hypotheses imply certain

circuit lower bounds. Finally, in some settings, we can show that certain problems

are “complete” for a Black-Box Hypothesis, in the sense that proving the Black-Box

Hypothesis is equivalent to proving a lower bound against the aforementioned prob-

lem.

5.2.1 Black-Box Hypotheses For Restricted Analysts, From

Lower Bounds

In Section 5.5, we explore situations in which known lower bounds imply Black-Box

Hypotheses. We first consider Hypothesis 5.4.1 where the classes of analysts 𝒜 are

restricted, and the set of potential “boxes” 𝒞 consists of unrestricted circuits. We

show that one can prove a 𝒞-Black-Box Hypothesis for 𝒜, when the given set of

boxes 𝒞 is sufficiently powerful and the set of analysts 𝒜 is limited. We find this

to be counterintuitive. It could have been the case that, when the set of boxes 𝒞 is

powerful, an analyst with access to the code of such a powerful box might be able to

learn something interesting about it, and gain more power than if it only had black-

box access. However, it turns out that when the boxes are sufficiently powerful, no

analyst can learn any semantic property.

We find that, under very general conditions, circuit lower bounds against 𝒜 (as an

algorithmic class) imply the Black-Box Hypothesis for 𝒜 (as an analyst class).

53

Theorem 5.2.1 [Informal Statement, cf. Theorem 5.5.1] Let 𝒜 be a circuit class

(of analysts), and let 𝑓 be a Boolean function computable with (general) circuits of

size at most 𝑡(𝑛). Suppose 𝑓 ̸∈ 𝒜, and suppose 𝒜 is closed under projections from

𝑛 variables onto 𝑂(𝑡(𝑛) log 𝑡(𝑛)) variables. Then the (general) Black-Box Hypothesis

for 𝒜 is true.

The full formal version of the theorem appears in Section 5.5 as Theorem 5.5.1.

Intuitively, we apply a “input-switching” trick which reduces the task of computing

𝑓 on an input y to the task of deciding any non-trivial semantic property 𝑃 on a

circuit 𝐷y.1 In particular, given an analyst 𝐴 computing 𝑃 , we show how to map

every Boolean string y (a potential input for 𝑓) into a circuit 𝐷y whose input-output

behavior (and in particular, whether𝐷y satisfies the property 𝑃) depends on the value

𝑓(y). At a high level, 𝐷y takes an input x, evaluates 𝑓(y), and then (depending on

𝑓(y)) evaluates and outputs either 𝐶1(x) or 𝐶2(x), where 𝐶1 and 𝐶2 are fixed circuits

(independent of y), exactly one of which satisfies the property 𝑃 . In essence, we are

“switching” the input y with a circuit 𝐷y which can evaluate 𝑓 , and for which we can

determine 𝑃 . Then, we can run 𝐴 on 𝐷y without ever evaluating 𝑓 directly, and use

its answer to determine 𝑓(y).

The conditions we impose on 𝒜 are quite general, so Theorem 5.5.1 has several

direct corollaries. For example, recall from Definition 2.2.15 that AC0 is the class of

unbounded fan-in circuits of constant depth over And, Or, and Not.

Corollary 5.2.1 The BBH for (polynomial-size) AC0 analysts is true. Moreover, the

BBH for 2𝑛
𝑜(1)-size AC0 is true.

In particular, Theorem 5.5.1 implies that for every subexponential-size AC0 circuit

family {𝐴𝑛} that is given the code of an arbitrary (general) circuit 𝐶 as input, if {𝐴𝑛}

computes a semantic property (i.e., its output depends only on the function computed

1At this level of generality, the idea is similar in spirit to one of the proofs of Rice’s Theorem [92]
which shows that any non-trivial semantic property of Turing machines is undecidable, by way of
a reduction from the Halting Problem. However, Rice’s proof techniques do not translate to finite
circuits, so we prove Theorem 5.5.1 differently.

54

by 𝐶, not the code of 𝐶) then {𝐴𝑛} must compute a trivial property (all-zeroes or

all-ones). Similarly:

Recall from Definition 2.2.20 and Notation 2.2.3 that TC0
2 is the class of unbounded

fan-in circuits of depth-two over Majority, And, Or, and Not.

Corollary 5.2.2 The BBH for (polynomial-size) TC0
2 is true. Moreover, the BBH

for 2𝑛
1−𝜀-size TC0

2 analysts is true for every 𝜀 > 0.

5.2.2 A Generalization

Next, we turn to an even more general setting of Black-Box Hypotheses, where both

the class 𝒜 of “analysts” and the set 𝒞 of “boxes” can vary. Here we find that, roughly

speaking, if 𝒜 and 𝒞 jointly satisfy some natural closure properties, and there are

functions computable by boxes in 𝒞 but not by analysts in 𝒜, then the 𝒞-Black-Box

Hypothesis for 𝒜 still holds.

Theorem 5.2.2 [Informal Statement, cf. Theorem 5.5.2 and Theorem 5.5.3] Let 𝒜

be a circuit (analyst) class, let 𝒞 be a set of circuits, and let 𝑓 ̸∈ 𝒜 be a Boolean

function. Suppose there is an analyst in 𝒜 which, given input y, generates a circuit

𝐷y ∈ 𝒞 whose input-output behavior depends on the value of 𝑓(y). Then the 𝒞-Black-

Box Hypothesis for 𝒜 is true.

We prove two formal versions of this theorem in Section 5.5.1, as Theorem 5.5.2

and Theorem 5.5.3. These theorems are general enough that 𝒞 does not have to be a

class of circuits per se: other non-uniform computational models, such as branching

programs or span programs, would also work. The intuition and proof techniques

are similar to those used in Theorem 5.5.1, but given the extra conditions on 𝒜, we

can tailor the input-switching reduction from Theorem 5.5.1 to the set 𝒞 in order to

produce stronger results. For example:

Recall from Definition 2.2.18 that AC0[𝑝] is the class of unbounded fan-in circuits

of constant depth over And, Or, Mod𝑝, and Not.

55

Corollary 5.2.3 For all primes 𝑝, the AC0[𝑝]-Black-Box Hypothesis for (poly-size)

AC0 holds.

Theorem 5.5.3 implies that for every AC0 circuit family {𝐴𝑛} that tries to analyze

the code of a given AC0[𝑝] circuit 𝐶, if {𝐴𝑛} computes a semantic property of 𝐶, then

that property must be trivial. More generally, we can conclude the following.

Theorem 5.2.3 For all depths 𝑑 ≥ 2 and all distinct primes 𝑝 ̸= 𝑞, the AC0
𝑑[𝑝]-Black-

Box Hypothesis for 2𝑠
𝑜(1)-size AC0[𝑞] analysts is true.

That is, even if in the above, {𝐴𝑛} can have subexponential size, use Mod𝑞 gates,

and fail on input circuits 𝐶 with depth greater than a fixed constant 𝑑, {𝐴𝑛} must

still compute a trivial property. Similarly:

Theorem 5.2.4 For all depths 𝑑 ≥ 2, the AC0
𝑑-Black-Box Hypothesis for 2𝑠

𝑜(1)-size

AC0
𝑑−1 analysts is true.

5.2.3 Equivalences With Lower Bounds?

So far, our results show how lower bound statements of the form 𝒞 ̸⊂ 𝒜 can sometimes

be applied to prove the corresponding 𝒞-Black-Box Hypothesis for 𝒜 analysts. A

natural next question is, could Black-Box Hypotheses (for various pairs of boxes and

analysts) be equivalent to proving lower bounds? As a first step, in Section 5.6

we prove conditional lower bounds against some analyst classes 𝒜, assuming some

𝒞-Black-Box Hypothesis for 𝒜.

Theorem 5.2.5 [Informal Statement, cf. Theorem 5.6.1] Suppose every analyst in 𝒜

has subexponential-size circuits, and let 𝒞 be a “reasonable” set of circuits (left unde-

fined here). If the 𝒞-Black-Box Hypothesis for 𝒜 is true, then the circuit satisfiability

problem for 𝒞-circuits is not in 𝒜.

Roughly speaking, we observe that if the 𝒞-circuit Evaluation problem (𝒞-Eval)

is not in 𝒜, then the 𝒞-Black-Box Hypothesis for 𝒜 is true, and if the 𝒞-circuit

56

Satisfiability problem (𝒞-Sat) is in 𝒜, then the 𝒞-Black-Box Hypothesis for 𝒜 is

false. However, 𝒞-Sat is generally harder than 𝒞-Eval.

To better understand how lower bounds connect to Black-Box Hypotheses, we pro-

pose a notion of BBH-completeness for computational problems. Very roughly, we

want a 𝒞-BBH-complete problem Π to have the property that Π ∈ 𝒞, and for a gen-

eral analyst class 𝒜, if Π /∈ 𝒜 then the 𝒞-BBH for 𝒜 is true. We show that for

nondeterministic circuit classes 𝒞, both 𝒞-Sat and 𝒞-Eval are 𝒞-BBH-complete.

Theorem 5.2.6 [Informal Statement, cf. Theorem 5.6.2] Suppose every analyst in

𝒜 has subexponential-size circuits, and let 𝒞 be a nondeterministic circuit class with

“natural” closure properties. Then 𝒞-Eval and 𝒞-Sat are both 𝒞-BBH-complete for

𝒜.

Theorem 5.6.2 shows that lower bounds for the satisfiability problem are equivalent

in some sense to proving that nondeterministic circuits behave like black boxes. Im-

pagliazzo, Kabanets, Kolokolova, McKenzie, and Romani [65] considered the question

of whether one can show the Black-Box Hypothesis is equivalent to NP ̸⊂ P/poly,

with some partial results. A consequence of Theorem 5.6.2 is that NP ̸⊂ P/poly is

equivalent to the Black-Box Hypothesis when polynomial-size circuits are the analysts

and nondeterministic circuits are the boxes. In this light, it would be very interesting

if one could show the Black-Box Hypothesis is actually equivalent to NP ̸⊂ P/poly: it

would show that two rather different-looking forms of the Black-Box Hypothesis are

in fact equivalent.

Finally, we note that the aforementioned work of Impagliazzo et al. on BBH [65, 93]

yields another kind of equivalence between a different variant of black-box hypothesis

and a circuit lower bound.

Theorem 5.2.7 (Follows from [65]) [informal, cf. Theorem 5.6.3] The following

are equivalent:

1. The Circuit Satisfiability problem, Ckt-Sat, is not in P/poly.

57

2. Any symmetric property 𝑃 that can be decided in P/poly with white-box access

to the input circuit can also be decided in P/poly with black-box access to the

input circuit.

We view this interpretation of their result as further promising evidence towards

more general connections between black-box hypotheses and circuit lower bounds.

5.2.4 Organization

Section 5.3 covers significant prior work related to black-box hypotheses. Section 5.4

carefully discusses how to generalize the Black-Box Hypothesis for various sets of

“analysts” and sets of “boxes”. Section 5.5 proves our main theorems, showing how

circuit lower bounds imply Black-Box Hypotheses in a very generic way. Section 5.6

considers how we might prove equivalences between Black-Box Hypotheses and lower

bounds. Section 5.7 concludes.

5.3 Background

We study generic versions of the circuit evaluation and satisfiability problems. In the

following, let 𝒞 be a set of circuits.

Definition 5.3.1 (𝒞-Eval) In the 𝒞-Eval Problem 𝒞-Eval, we receive a circuit 𝐶 ∈

𝒞 and a string 𝑥 as input, and we must output 1 if and only if 𝐶 accepts 𝑥.

Definition 5.3.2 (𝒞-Sat) In the 𝒞-Sat Problem 𝒞-Sat, we receive a circuit 𝐶 ∈ 𝒞

as input, and we must output 1 if and only if 𝐶 does not implement the constant zero

function.

Definition 5.3.3 (Ckt-Eval) The Circuit Evaluation Problem Ckt-Eval is 𝒞-Eval

with 𝒞 taken to be the set of all Boolean circuits.

Definition 5.3.4 (Ckt-Eval) The Circuit Satisfiability Problem Ckt-Sat is 𝒞-Sat

with 𝒞 taken to be the set of all Boolean circuits.

58

Historically, researchers interested in so-called “black-box hypotheses” were looking

for what they called a “scaled-down” Rice’s Theorem. In the following paragraphs,

we provide a brief overview of this research.

5.3.1 Rice’s Theorem

We briefly recall the statement and implications of Rice’s Theorem. Let ℳ be the

set of Turing Machines.

Definition 5.3.5 (Semanticity) A property 𝑃 : ℳ → {0, 1} of Turing Machines

is semantic if 𝑃 (𝑀) depends only on the language accepted by 𝑀 .

That is, for any TMs 𝑀1 and 𝑀2 that accept the same set of strings, 𝑃 (𝑀1) = 𝑃 (𝑀2).

Definition 5.3.6 (Non-triviality) A property 𝑃 is non-trivial if there are 𝑀1,𝑀2 ∈

ℳ such that 𝑃 (𝑀1) ̸= 𝑃 (𝑀2).

In his 1951 doctoral thesis, Henry Rice proved the following sweeping result:

Theorem 5.3.1 ([92]) Every non-trivial semantic property of Turing Machines is

undecidable.

Rice’s powerful theorem states that any interesting property that we might want to

test of a given program is undecidable, assuming the property being tested depends

only on the function computed by the program. That is, any property that could in

principle be tested using only black-box access to the program, is undecidable given

a description the program. Rice’s theorem generalizes (and can be proved from)

the undecidability of the TM-Sat problem of determining whether a given Turing

Machine accepts any string at all.

5.3.2 The Black Box Hypothesis

In their pioneering obfuscation work, Barak et al. [14] consider the question: can

Rice’s Theorem be scaled down in a way that would be useful to complexity theory?

59

Specifically, let us assume we are not interested in all Turing Machines, but rather in

the set of efficient algorithms; for example, those represented by Boolean circuits. One

can still define properties that are non-trivial and semantic when restricted to the set

of Boolean circuits. In this setting, all such properties 𝑃 are decidable, because the

language of a circuit is simply its 2𝑛-bit truth table, which can be computed in finite

time. However, one might want to know something about the computational com-

plexity of such properties. In this setting, the circuit satisfiability problem Ckt-Sat

is an analogue of TM-Sat. Although Ckt-Sat is decidable, it is NP-hard, so one

might hope to be able to replace undecidability in Rice’s Theorem with NP-hardness.

In earlier work, Borchert and Stephan [27] note that using circuits instead of Tur-

ing Machines and NP-hardness instead of undecidability is not enough to prove an

analogue of Rice’s Theorem. For every string 𝑥, the property {𝑀 ∈ ℳ : 𝑀(𝑥) = 1}

is undecidable by Rice’s Theorem, but the circuit analogue is decidable in polynomial

time: it is simply the circuit evaluation problem! Borchert and Stephan’s response to

this issue is to look at function properties depending on more complex measures, such

as the number of Sat assignments of a given circuit (in other words, the property is

a symmetric Boolean function in the truth table of the circuit). They show that any

non-trivial “counting” property of circuits is UP-hard; the UP-hardness was improved

in [62].

Barak et al. [14] gave a different response to the above issue. They observe the

property {𝐶 : 𝐶(𝑥) = 1} for circuits 𝐶 is still “trivial” in some sense: it can be

efficiently determined given only black-box oracle access to the input circuit. This

observation led Barak et al. to formulate the following conjecture. For two circuits

𝐶 and 𝐶 ′ on 𝑛-bit inputs, we write 𝐶 ≡ 𝐶 ′ when 𝐶 and 𝐶 ′ compute the same 𝑛-bit

function.

Conjecture 5.3.1 (Black Box Hypothesis [14]) Suppose 𝐿 ⊆ {0, 1}* satisfies the

property that for all 𝐶 and 𝐶 ′ such that 𝐶 ≡ 𝐶 ′, we have 𝐶 ∈ 𝐿 ⇐⇒ 𝐶 ′ ∈ 𝐿. If

𝐿 ∈ BPP, then there is a probabilistic polynomial time algorithm 𝑆 that decides 𝐿

60

given only oracle access to 𝐶 and 0𝑛1|𝐶|−𝑛 as input, i.e.,

𝐶 ∈ 𝐿 =⇒ Pr
[︀
𝑆𝐶

(︀
0𝑛1|𝐶|−𝑛

)︀
= 1

]︀
>

2

3

𝐶 ̸∈ 𝐿 =⇒ Pr
[︀
𝑆𝐶

(︀
0𝑛1|𝐶|−𝑛

)︀
= 1

]︀
<

1

3

That is, the BBH claims that every “white box” semantic property of circuits that

is decidable in randomized polynomial time can also be decided in randomized poly-

nomial time with “black box” access to the circuit. If the conjecture were true, then

a strong form of P ̸= NP would follow: P = NP implies that circuit satisfiability is

solvable in polynomial-time when we have “white-box” access to the input circuit, but

the Sat problem requires Ω(2𝑛) time to solve with only black-box oracle access to

the input circuit.

Impagliazzo et al. [65] proved interesting results towards understanding BBH. They

show a partial converse of the observation from the previous paragraph: if the BBH

is false for certain kinds of properties, then the circuit satisfiability problem has sub-

exponential size circuits. Since we know that BBH implies P ̸= NP, this suggests that

it may be difficult to resolve BBH regardless of its truth or falsity. Romani’s master

thesis [93] gives an excellent overview of the BBH and this work.

5.3.3 Obfuscation in Cryptography

In recent years, the theory of program obfuscation has exploded into a huge subject

area within cryptography, starting with the influential paper of Barak et al. [14] which

crystallized several key definitions and proved key impossibility results for obfuscation.

Two major concepts they proposed are virtual black-box obfuscation (VBB for short)

and indistinguishability obfuscation (iO for short), which we now describe briefly.

A VBB obfuscator 𝒪 would take any efficient program/circuit 𝐶 of size 𝑠, and

output the code of an “obfuscated” 𝒪(𝐶) such that, for every probabilistic polynomial

time (PPT) adversary 𝐴, there is another PPT adversary 𝐴′, such that the probability

𝐴 outputs 1 on the input 𝒪(𝐶) is very close to the probability that 𝐴′ outputs 1 on

61

(1𝑛, 1𝑠) when given 𝐶 as an oracle. That is, whatever computation 𝐴 is doing on the

code of 𝒪(𝐶), 𝐴′ can simulate that knowing only the size of 𝐶, its number of inputs,

and with input-output access to 𝐶. Barak et al. showed that there are tasks for

which VBB obfuscation is impossible assuming one-way functions exist. The notion

of iO asks for a weaker guarantee: for all PPT 𝐴, and all pairs of size-𝑠 circuits

𝐶1, 𝐶2 such that 𝐶1 ≡ 𝐶2, the probability 𝐴 outputs 1 on 𝐶1 is very close to the

probability 𝐴 outputs 1 on 𝐶2. In contrast to VBB, iO is possible under plausible

hardness conjectures (e.g., [48, 49, 23]), and it turns out to be very powerful, capable

of implementing deniable encryption, public-key encryption from one-way functions,

multiparty key exchange, and more (e.g., [94, 26]).

All of the above work on building obfuscation requires hardness assumptions that

are unproven (and are typically much stronger than P ̸= NP), and study how we

might efficiently transform arbitrary code into obfuscated code, relative to some class

of adversarial analysts.

We briefly note the connection between VBB and the BBH. One can think of a

VBB obfuscator as an efficient mapping from general circuits to “obfuscated class of

circuits”, a restricted subclass of circuits, such that the BBH holds when the analyzable

code 𝒞 must come from this restricted subclass. Namely, the VBB property says that,

for any efficient analyst that takes circuits from this class as input, there is an efficient

black-box analyst that can carry out essentially the same analyses. That is, when

VBB is possible, there is a “promise” class of circuits (the image of the obfuscator)

for which a black-box hypothesis is true. Accordingly, Barak et al. [14] showed that

a “promise” version of the BBH is false, assuming one-way functions exist.

5.3.4 Automated Formal Verification

Additionally, settings in which the Black-Box Hypothesis is false are of great inter-

est in automated formal verification. One central question is the following: what

properties of a program’s input-output behavior can be more efficiently tested by

analyzing the program’s code, than by treating it as a black box and simply running

62

it on selected inputs? Many properties of interest depend on the program’s behav-

ior on all possible inputs, which may be infeasible (or even impossible) to determine

exhaustively. One may instead want to analyze the code of the program in order to

determine whether or not it satisfies the given property. This may still be impossible,

as many properties of interest are Turing-complete when considered over the space

of all possible programs. However, by restricting the class of programs being tested,

some such verification problems can become feasible, cf. [87, 88, 6]. In fact, in any

setting where the class of programs being analyzed is restricted such that the black

box hypothesis is false, there must exist properties that can be tested by analyzing

the program but not by treating it as a black box.

5.4 Generalized Black-Box Hypotheses

We study the Black-Box Hypothesis (Conjecture 5.3.1) in a more general setting.

Specifically, instead of considering 𝐿 ∈ BPP and a randomized uniform algorithm 𝑆

from Conjecture 5.3.1, we study the family of hypotheses that arise when 𝐿 and 𝑆

come from various (possibly non-uniform) circuit classes, which may be weaker or

stronger than probabilistic poly-time.

Let us first set up some notation.

Notation 5.4.1 (Circuit Description) For a circuit 𝐶, let ⟨𝐶⟩ denote the binary

description of 𝐶.

Note that if 𝐶 has size 𝑠, then ⟨𝐶⟩ is a binary string of length 𝑂(𝑠 log 𝑠), which we

call the description length of 𝐶.

Let 𝒞 be a set of circuits.

Definition 5.4.1 (Circuit Property) A property of circuits in 𝒞 is a function 𝑃 :

𝒞 → {0, 1}.

Definition 5.4.2 (Semanticity) A property 𝑃 of circuits in 𝒞 is semantic if and

only if for any two circuits 𝐶1, 𝐶2 ∈ 𝒞 computing the same function (that is, ∀x, 𝐶1(x) =

63

𝐶2(x)), 𝑃 (𝐶1) = 𝑃 (𝐶2).

Recall that a circuit family is an infinite sequence of circuits, one for each possible

input length; circuit families compute functions of the form 𝑓 : {0, 1}⋆ → {0, 1} in

the natural way.

Definition 5.4.3 A circuit family {𝐴𝑠} computes 𝑃 if for every circuit 𝐶 ∈ 𝒞 with

description length 𝑠, 𝐴𝑠(⟨𝐶⟩) = 𝑃 (𝐶).

For the remainder of this chapter, we will define a circuit class 𝒜 to be a set of

circuit families (rather than a set of functions); our analyst classes 𝒜 will have this

form. By convention, an oracle circuit 𝐶 may have oracle gates of arbitrary fan-in,

but we will think of 𝐶 as taking an oracle 𝑂 with a fixed number of inputs. If 𝐶

contains oracle gates with a different number of inputs than the given oracle 𝑂, then

we define such oracle gates to output the constant 0 (regardless of 𝑂).

We formulate a generalization of the Black Box Hypothesis, which we call the 𝒞-

Black Box Hypothesis for 𝒜 (𝒞-BBH for 𝒜), in the following way.

Hypothesis 5.4.1 (Generalized Black Box Hypothesis: 𝒞-BBH for 𝒜) Let 𝑃

be a semantic property of circuits in 𝒞. Let {𝐴′
𝑠} ∈ 𝒜 be a circuit family that com-

putes 𝑃 . Then there exists a circuit family {𝐴𝑠} ∈ 𝒜𝒞 such that 𝐴𝐶
𝑠 (1

𝑛0𝑠−𝑛) = 1 iff

𝑃 (𝐶) = 1.

That is, the 𝒞-BBH for 𝒜 hypothesizes that every semantic property of 𝒞-circuits

that can be decided by 𝒜-analysts with “white box” access to the 𝒞-circuit, can also

be decided by 𝒜-analysts with only black-box access to the circuit. When 𝒞 is the

set of all Boolean circuits, we refer to the 𝒞-BBH for 𝒜 simply as the “BBH for 𝒜”.

Note that if we replace 𝒜 in the above with BPP, we recover Conjecture 5.3.1.

5.4.1 Encoding Circuits

Unfortunately, if we allow the class of analysts 𝒜 to be an arbitrary circuit class,

we can encounter some strange (and counterintuitive) consequences. For instance,

64

suppose 𝒜 is AC0, the circuit families over And, Or, and Not with constant-depth,

polynomial size, and unbounded fan-in. We can construct an oracle circuit family

{𝐴𝑠} such that 𝐴𝐶
𝑠 (1

𝑛0𝑠−𝑛) = Parity(𝑛), the parity of the number of inputs of 𝐶

(𝐴𝐶
𝑠 ignores 𝐶, and just computes the parity of strings of the form 1⋆0⋆). Depending

on how the description ⟨𝐶⟩ is represented, this behavior may not be computable

by any white-box AC0 circuit family {𝐴′
𝑠}, since Parity is not in AC0 [2, 47]! We

would like to avoid this sort of behavior, because as in Conjecture 5.3.1, the oracle

circuit family 𝐴 is supposed to capture some notion of triviality. In order for the

“BBH for 𝒜” to be meaningful, it should be that the white-box circuit family 𝐴′ is

at least as powerful as the black-box family 𝐴. To this end, we shall require the

binary descriptions of circuits to contain all the information given freely to the oracle

family. Specifically, we assume that the description of a circuit 𝐶 with 𝑛 input wires

is prefixed by 1𝑛0, and that the first 𝑛 wires in ⟨𝐶⟩ are the input wires.

5.5 Circuit Lower Bounds Imply Black-Box Hypothe-

ses

What can we prove about the BBH for general pairs of circuit sets and analysts 𝒞, 𝒜?

First, we can show there are interesting pairs for which the 𝒞-BBH for 𝒜 is true in a

strong way: every semantic property is in fact trivial. The following theorem shows

that, whenever lower bounds hold against a circuit class 𝒜 satisfying some simple

conditions, the (general) BBH for 𝒜 is true. First, we recall a definition.

Definition 5.5.1 (Projection) A projection from 𝑛 variables onto 𝑚 variables is

a function 𝜋 : {0, 1}𝑛 → {0, 1}𝑚 such that for every 𝑗, there exists 𝑖 such that the 𝑗th

coordinate of 𝜋(x) depends only on the 𝑖th coordinate of x.

Observe that a projection is a kind of very weak reduction which can be computed

not only very efficiently but also very locally. By requiring closure under such a weak

class of reductions, we aim to keep 𝒜 as general as possible.

65

Theorem 5.5.1 Let 𝒜 be a circuit class, 𝑓 : {0, 1}⋆ → {0, 1} be a decision problem,

and 𝑠 : N → N be a monotone function with the properties:

1. 𝑓 is computable by a size-𝑠(𝑛) circuit family, but 𝑓 is not computable by any

family in 𝒜.

2. Either {Or𝑛 ∘And2} ⊆ 𝐶 ∈ 𝒜 for some family 𝐶, or {And𝑛 ∘Or2} ⊆ 𝐶 ∈ 𝒜

for some family 𝐶. That is, either 𝒜 contains a family that either computes

the read-once 𝑛-clause 2-DNFs on 2𝑛 variables, or it contains a family that

computes the 𝑛-clause 2-CNFs on 2𝑛 variables.

3. 𝒜 is closed under composition with projections from 𝑛 variables onto 𝑂(𝑠(𝑛) log 𝑠(𝑛))

variables.

Then for every property 𝑃 over the set of all circuits, if 𝑃 is semantic and com-

putable in 𝒜, then for all 𝑛, 𝑃 restricted to circuits on 𝑛-bit inputs is also trivial. In

particular, the (general) BBH for 𝒜 is true.

Proof. Let 𝒜 and 𝑓 satisfy the above properties, and let {𝐹𝑛} be a size-𝑠(𝑛) circuit

family computing 𝑓 . Let 𝑃 be a semantic property computable in 𝒜.

First, we will prove that 𝑃 is trivial. The idea is that, if 𝑃 is not trivial, we can use

a circuit family for 𝑃 to construct a circuit in 𝒜 for computing 𝑓 , a contradiction to

the assumed lower bound on 𝑓 (assumption 1).

Let 𝑘 ∈ N. 𝑃 is semantic, so assume WLOG that for every 𝑘-input circuit 𝐾0

computing the constant 0 function, 𝑃 (𝐾0) = 0. Assume for sake of contradiction

that there is a 𝑘-input 𝐶𝑘 such that 𝑃 (𝐶𝑘) = 1. Let 𝑛 ∈ N be our desired input

length; we want to build a circuit computing 𝑓 on 𝑛-bit inputs. For an 𝑛-bit vector y,

define the following circuit 𝐷y with 𝑘 input wires x, with y hard-coded as 𝑛 constant

wires:

𝐷y(x) := 𝐶𝑘(x) ∧ 𝐹𝑛(y).

The circuit 𝐷y computes some Boolean function on 𝑘 input bits. For a fixed 𝐶𝑘,

define the function 𝜌𝐶𝑘
that maps the 𝑛-bit input y to the description ⟨𝐷y⟩ of 𝐷y

66

as defined above. Observe that for all x and y, 𝐷y(x) = 𝐶𝑘(x) if 𝑓(y) = 1, and

otherwise 𝐷y(x) = 0. Because 𝑃 is semantic, 𝑃 (𝐷y) = 𝑃 (𝐶𝑘) = 1 if 𝑓(y) = 1, and

𝑃 (𝐷y) = 0 otherwise. In other words, we have 𝑃 (𝐷y) = 𝑓(y) for all y.

Note the size of 𝐷y is 𝑡(𝑘) + ||𝐶𝑘|| + 1, where ||𝐶𝑘|| denotes the size of 𝐶𝑘 (which

is independent of 𝑛), so 𝐷y has description length 𝑂(𝑠(𝑛) log 𝑠(𝑛)). For a fixed 𝐶𝑘,

𝜌𝐶𝑘
(y) = ⟨𝐷y⟩ depends only the 𝑛-bit vector y. In particular, within the description

⟨𝐷y⟩, the descriptions ⟨𝐶𝑘⟩ and ⟨𝐹𝑛⟩ are both independent of y, so the only bits in

⟨𝐷y⟩ that vary with y are those describing the hard-coded constant y itself. Hence

each bit in ⟨𝐷y⟩ depends on at most one bit of y. That is, 𝜌𝐶𝑘
is a projection from

𝑛 variables onto 𝑂(𝑠(𝑛) log 𝑠(𝑛)) variables.

Since 𝒜 is closed under such projections (assumption 3), and 𝑃 is computable in

𝒜 by assumption, the circuit

𝐷y

𝜌𝐶𝑘

y

𝑃

is also computable in 𝒜. However, 𝑃 (𝐷y) = 𝑓(y), which is not computable in 𝒜,

a contradiction. It follows that for all 𝐶𝑘 on 𝑘 inputs, 𝑃 (𝐶𝑘) = 0, so 𝑃 (on circuits

containing 𝑘 inputs) is trivial.

We now turn to proving that there exists an oracle circuit family {𝐴𝑠} in 𝒜 such

that for any circuit 𝐶 of size 𝑠 on 𝑛 inputs, 𝐴𝐶
𝑠 (1

𝑛0𝑠−𝑛) = 𝑃 (𝐶). In fact we prove

the stronger claim that there exists a circuit family {𝐴𝑠} in 𝒜 (with no oracle gates)

such that for any circuit 𝐶 of size 𝑠 on 𝑛 inputs, 𝐴𝑠(1
𝑛0𝑠−𝑛) = 𝑃 (𝐶). To this end,

let 𝑋 = {𝑛 ∈ N : ∃𝐶 on 𝑛 inputs with 𝑃 (𝐶) = 1}. First, suppose that 𝒜 contains a

family that can compute {Or𝑛 ∘And2}. For 𝑠 ∈ N, let 𝐴𝑠 be the circuit of the form

⋁︁
𝑖∈𝑋∩[𝑠]

(𝑥𝑖 ∧ ¬𝑥𝑖+1) .

67

By assumptions 2 and 3 (closure under projections from 𝑛 to 2𝑛 variables), such

circuits are in 𝒜. If instead 𝒜 contains {And𝑛 ∘Or2}, we let 𝐴𝑠 be the circuit of the

form ⋀︁
𝑖∈[𝑠]∖𝑋

(¬𝑥𝑖 ∨ 𝑥𝑖+1) .

Now 𝐴𝑠(1
𝑛0𝑠−𝑛) = 1 iff 𝑛 ∈ 𝑋 (using no oracle gates). Since 𝑃 is trivial, for all

circuits 𝐶 on 𝑛 inputs, 𝐴𝑠(1
𝑛0𝑠−𝑛) = 1 iff 𝑃 (𝐶) = 1, as desired. □

The above proof can be thought of as an “input-switching” trick. We start with

the fact that 𝑃 is non-trivial on some 𝑘-bit input circuits. We use the description

of a 𝑘-input circuit witnessing non-triviality, along with the description of a circuit

computing 𝑓 on 𝑛-bit inputs, to construct the description of a larger circuit 𝐷y

with 𝑛 “free variables” y. By feeding 𝑛-bit y into that description, and feeding that

description into 𝑃 , we obtain the description of an 𝒜-circuit computing 𝑓 .

Theorem 5.5.1 has many immediate corollaries. For example:

Reminder of Corollary 5.2.1 The BBH for (polynomial-size) AC0 is true. More-

over, the BBH for 2𝑛
𝑜(1)-size AC0 is true.

Proof. Take 𝒜 to be AC0 and 𝑓 to be the Parity function in Theorem 5.5.1,

using the fact that Parity does not have subexponential-size AC0 circuits [61]. □

Reminder of Corollary 5.2.2 The BBH for (polynomial-size) TC0
2 is true. More-

over, the BBH for 2𝑛
1−𝜀-size TC0

2 is true for every 𝜀 > 0.

Proof. Take 𝒜 to be TC0
2 and 𝑓 to be the InnerProduct function (mod 2) in

Theorem 5.5.1, using the fact that InnerProduct requires 2Ω(𝑛)-size TC0
2 circuits [9].

□

5.5.1 Generalization

The proof of Theorem 5.5.1 critically relies on the fact that the circuit 𝐷y can be

arbitrarily large and complex in comparison to its input. If we restrict 𝒞 to contain

68

only “simple” circuits and allow 𝐴′
𝑠 to behave arbitrarily on circuits not in 𝒞, then

we would need to be more careful to ensure that 𝐷y is still in 𝒞. By extending the

input-switching trick from Theorem 5.5.1, we can restrict the circuit set 𝒞 in some

interesting ways and still prove the corresponding Black-Box Hypotheses.

Definition 5.5.2 (Input-Switching Function) Let 𝒞 be a set of circuits, and let

𝑓 and 𝑔 be Boolean functions. We say that a function 𝐼 : 𝒞 × {0, 1}* → {0, 1}* is an

input-switching function for 𝒞 and 𝑓 iff for some bit 𝑏, for every circuit 𝐶 ∈ 𝒞 and

every Boolean string y, 𝐼(𝐶,y) is the description ⟨𝐷y⟩ of a circuit 𝐷y with the same

number of inputs as 𝐶 such that 𝐷y(x) = 𝐶(x) when 𝑓(y) = 𝑏 and 𝐷y(x) = 𝑔(x)

otherwise.

Theorem 5.5.2 Let 𝒜 be a circuit class, 𝑓 : {0, 1}* → {0, 1} be a decision problem,

and 𝒞 be a set of circuits with the properties:

1. 𝒜 computes neither 𝑓 nor ¬𝑓 .

2. 𝒜 is closed under composition with an input-switching function 𝐼 for 𝒞 and 𝑓 ,

in the sense that for every function 𝑔 computable by a circuit family in 𝒜 and

for every 𝐶 ∈ 𝒞, the function y ↦→ 𝑔(𝐼(𝐶,y)) is also computable by a circuit

family in 𝒜.

Then for every property 𝑃 over 𝒞, if 𝑃 is semantic and computable in 𝒜, then for all

input lengths 𝑛, 𝑃 restricted to circuits on 𝑛-bit inputs is also trivial. Furthermore,

if 𝒜 also contains {Or𝑛 ∘And2} (or {And𝑛 ∘Or2}), then the 𝒞-BBH for 𝒜 is true.

Proof. Let 𝒜 and 𝑓 satisfy the above properties, and let 𝐼 be the input-switching

function for 𝒞 and 𝑓 . Let 𝑃 be a semantic property computable in 𝒜.

First, we will prove that 𝑃 is trivial. The idea is that, if 𝑃 is not trivial, we can use

a circuit family for 𝑃 to construct a circuit in 𝒜 for computing 𝑓 , a contradiction to

the assumed lower bound on 𝑓 .

Let 𝑘 ∈ N. Assume WLOG that for every circuit 𝐺 computing 𝑔 on 𝑘 inputs,

𝑃 (𝐺) = 0. Assume for sake of contradiction that there is a 𝑘-input 𝐶𝑘 such that

69

𝑃 (𝐶𝑘) = 1. For an 𝑛-bit input y, consider the circuit 𝐷y = 𝐼(𝐶𝑘, 𝑦). Note that 𝐷y

computes some Boolean function on 𝑘 input bits. From the definition of 𝐼, 𝐷y(x) =

𝐶𝑘(x) if 𝑓(y) = 𝑏, and otherwise 𝐷y(x) = 𝐺(x). Because 𝑃 is semantic, 𝑃 (𝐷y) =

𝑃 (𝐶𝑘) = 1 if 𝑓(y) = 𝑏, and 𝑃 (𝐷y) = 𝑃 (𝐺) = 0 otherwise. In other words, we have

𝑃 (𝐷y) = 𝑏⊗ 𝑓(y) for all y.

Since 𝒜 is closed under composition with 𝐼(𝐶𝐾 ,−), and 𝑃 is computable in 𝒜 by

assumption, the circuit

𝐷y

𝐼(𝐶𝑘,−)

y

𝑃

is also computable in 𝒜. However, 𝑃 (𝐷y) = 𝑓(y) or ¬𝑓(y), which are not com-

putable in 𝒜, a contradiction. It follows that for all 𝐶𝑘 on 𝑘 inputs, 𝑃 (𝐶𝑘) = 0, so 𝑃

(on circuits containing 𝑘 inputs) is trivial.

As in Theorem 5.5.1, there exists a circuit family {𝐴𝑠} in 𝒜 (with no oracle gates)

such that for any circuit 𝐶 of size 𝑠 on 𝑛 inputs, 𝐴𝑠(1
𝑛0𝑠−𝑛) = 𝑃 (𝐶). □

The preconditions for Theorem 5.5.2 are somewhat too restrictive to be applied

easily in many cases, so we strengthen it further. To this end, we first define a

relation ∼𝑛 on sets of circuits.

Definition 5.5.3 For sets 𝒞1 and 𝒞2 of circuits, say that 𝒞1 ∼𝑛 𝒞2 iff there exist

𝑛-input circuits 𝐶1 ∈ 𝒞1 and 𝐶2 ∈ 𝒞2 such that 𝐶1 ≡ 𝐶2 (that is, 𝐶1 and 𝐶2 compute

precisely the same Boolean function).

The relation ∼𝑛 enables us to more easily reason about semantic properties across

several sets of differently structured circuits.

Theorem 5.5.3 Let 𝒜 be a circuit class, 𝑓 : {0, 1}* → {0, 1} be a decision problem,

𝒞 =
⋃︁
𝑖∈N

𝒞𝑖 be a set of circuits, and 𝐼 : 𝒞 × {0, 1}* → {0, 1}* a function with the

properties:

70

1. 𝒜 computes neither 𝑓 nor ¬𝑓 .

2. 𝒜 is closed under composition with 𝐼.

3. For all 𝑖, the restriction of 𝐼 to 𝒞𝑖 × {0, 1}* is an input-switching function for

𝒞𝑖 and 𝑓 .

4. For every input size 𝑛 ∈ N, the transitive closure of ∼𝑛 on {𝒞𝑖} is the universal

relation on {𝒞𝑖}.

Then for every property 𝑃 over 𝒞, if 𝑃 is semantic and computable in 𝒜, then for all

input lengths 𝑛, 𝑃 restricted to circuits on 𝑛-bit inputs is also trivial. Furthermore,

if 𝒜 also contains {Or𝑛 ∘And2} (or {And𝑛 ∘Or2}), then the 𝒞-BBH for 𝒜 is true.

Proof. Let 𝑃 be a property over 𝒞. Applying Theorem 5.5.2 to 𝒜, 𝑓 , and to each

𝒞𝑖, for all 𝑛 and all 𝑖, the restrictions of 𝑃 to circuits in each 𝒞𝑖 with 𝑛-bit inputs is

trivial. Since 𝑃 is semantic, if 𝑖 ∼𝑛 𝑗, then the restriction of 𝑃 to circuits in 𝒞𝑖 ∪ 𝒞𝑗
with 𝑛-bit inputs is also trivial. Finally since the transitive closure of ∼𝑛 is universal,

by induction we have that for every 𝑛, the restriction of 𝑃 to circuits in 𝒞 with 𝑛-bit

inputs is trivial. □

5.5.2 Examples

We now define some input-switching functions. First, let 𝑓 be any function com-

putable by a circuit family {𝐹𝑛}, and let 𝐷𝐶,y be the circuit defined as follows, where

x are the input wires and y are hard-coded as 𝑛 constant wires:

𝐷𝐶,y(x) := 𝐶(x) ∧ 𝐹𝑛(y).

If 𝐹𝑛 has size 𝑠(𝑛), then the map y ↦→ ⟨𝐷𝐶,y⟩ (where ⟨𝐷𝐶,y⟩ is the description of

𝐷𝐶,y) is both an input-switching function and a projection from 𝑛 variables onto the

𝑂(𝑠(𝑛) log 𝑠(𝑛)) variables describing 𝐷𝐶,y, so we recover Theorem 5.5.1.

Recall that AC0
𝑑[𝑝] denotes circuit families of depth 𝑑 with unbounded fan-in And,

Or, and Mod𝑝 gates.

71

Reminder of Corollary 5.2.3 For all primes 𝑝, the AC0[𝑝]-Black-Box Hypothesis

for (polynomial-size) AC0 is true. Moreover, the AC0[𝑝]-Black-Box Hypothesis for

2𝑠
𝑜(1)-size AC0 is true.

Proof. Follows from Theorem 5.5.2. We make use of the fact that the Mod𝑝

function is computable in linear size AC0[𝑝] but requires exponential size in AC0, and

that in AC0 we can mask a given AC0[𝑝] circuit with a given Mod𝑝 function.

Let 𝒜 be 2𝑠
𝑜(1)-size AC0, 𝑓 = Mod𝑝, and 𝒞 = AC0[𝑝]. We now define a circuit 𝐷𝐶,y

with the same number of inputs as 𝐶 as

𝐷𝐶,y(x) := 𝐶(x) ∧ Mod𝑝(y).

Then for all x and y, 𝐷𝐶,y(x) = 𝐶(x) if Mod𝑝(y) = 1, and 𝐷𝐶,y(x) = 0 other-

wise. Now the map (𝐶,y) ↦→ ⟨𝐷𝐶,y⟩ is an input-switching function for 𝒞 and Mod𝑝.

Furthermore, we can think of the map y ↦→ ⟨𝐷𝐶,y⟩ as a projection from 𝑛 variables

y onto Θ(𝑛 log 𝑛) variables describing 𝐷𝐶,y, so 𝒜 is closed under composition with

𝐼. Now from Theorem 5.5.2, every semantic property 𝑃 over 𝒞 computable in 𝒜 is

trivial, so the 𝒞-BBH for 𝒜 is true. □

If we invoke Theorem 5.5.3 instead of Theorem 5.5.2, we can get an even stronger

result.

Theorem 5.5.4 For all depths 𝑑 ≥ 2 and distinct primes 𝑝 ̸= 𝑞, the AC0
𝑑[𝑝]-BBH for

2𝑠
𝑜(1)-size AC0[𝑞] is true.

Proof. Follows from Theorem 5.5.3. We make use of the fact that the Mod𝑝

function is computable in linear size AC0
𝑑[𝑝] but requires exponential size in AC0[𝑞] [90,

98], and that in AC0 we can mask a given AC0
𝑑[𝑝] circuit with a given Mod𝑝 function,

without increasing its depth.

Let 𝑑 ≥ 2, 𝒜 be 2𝑠
𝑜(1)-size AC0[𝑞], 𝑓 = Mod𝑝, 𝒞 = AC0

𝑑[𝑝], 𝒞1 = Or ∘ AC0
𝑑−1[𝑝],

𝒞2 = And ∘ AC0
𝑑−1[𝑝], and 𝒞3 = Mod𝑝 ∘ AC0

𝑑−1[𝑝]. (Note that 𝒞 = 𝒞1 ∪ 𝒞2 ∪ 𝒞3.) We

now define a function 𝐼 : 𝒞 × {0, 1}* → {0, 1}*, so that 𝐼(𝐶,y) = ⟨𝐷y⟩, where 𝐷y

72

has the same number of inputs as 𝐶. We condition on whether the input circuit 𝐶

comes from 𝒞1, 𝒞2, or 𝒞3.

(Case 1) If 𝐶 ∈ 𝒞1, then it has the form ∨𝑚 ∘𝐶 ′, where 𝐶 ′ is a depth-(𝑑− 1) circuit

with 𝑛 inputs and 𝑚 outputs, and ∨𝑚 is an Or of fan-in 𝑚. For a 𝑘-bit vector y, we

construct 𝐷y as follows:

∨𝑚+1

𝐶 ′ Mod𝑝

x y

Then for all x and y, 𝐷y(x) = 𝐶(x) if Mod𝑝(y) = 0, and 𝐷y(x) = 1 otherwise.

Hence the restriction of 𝐼 to 𝒞1 × {0, 1}* is an input-switching function for 𝒞1 and 𝑓 .

(Case 2) If 𝐶 ∈ 𝒞2, we construct 𝐷y similarly to case (1). Assuming 𝐶 = ∧𝑚 ∘ 𝐶 ′

for the same sort of 𝐶 ′, we can construct 𝐷y as follows:

∧𝑚+1

𝐶 ′ Mod𝑝

x y

Then for all x and y, 𝐷y(x) = 𝐶(x) if Mod𝑝(y) = 1, and 𝐷y(x) = 0 otherwise.

Hence the restriction of 𝐼 to 𝒞2 × {0, 1}* is an input-switching function for 𝒞2 and 𝑓 .

(Case 3) If 𝐶 ∈ 𝒞3, then 𝐶 is a Mod𝑝 gate of fan-in 𝑚, composed with some depth-

(𝑑 − 1) circuit 𝐶 ′ having 𝑛 inputs and 𝑚 outputs. We define a ⊗𝑚×𝑘 gate to take

𝑚+ 𝑘 inputs 𝑥1, . . . , 𝑥𝑚, 𝑦1, . . . , 𝑦𝑘, and output 𝑥𝑖 · 𝑦𝑗 for all 𝑖, 𝑗, and define a circuit

𝐷′
y(x) as follows:

73

Mod𝑝

⊗𝑚×𝑘

𝐶 ′ y

x

Note that for 𝐶 of depth 𝑑, 𝐷′
y has depth 𝑑 + 1. However, when treating y as a

constant, each 𝐶 ′(x)𝑖 ∧ 𝑦𝑗 simplifies to a single wire (either 𝐶 ′(x)𝑖 if 𝑦𝑗 = 1, or the

constant 0 if 𝑦𝑗 = 0). Performing these simplifications and removing the layer of

And gates, we get a circuit 𝐷y of depth 𝑑. (Note that each bit in ⟨𝐷y⟩ still only

depends on at most one bit of y.) Now for all x and y, 𝐷y(x) = Mod𝑝 (𝐶
′(x)⊗ y) =

Mod𝑝 (𝐶
′(x))×Mod𝑝(y) = 𝐶(x)×Mod𝑝(y). That is, 𝐷y(x) = 𝐶(x) if Mod𝑝(y) =

1, and 𝐷y(x) = 0 otherwise. Hence the restriction of 𝐼 to 𝒞3 × {0, 1}* is an input-

switching function for 𝒞3 and 𝑓 .

Next, we observe that in every case, each bit in ⟨𝐷y⟩ depends on only one bit of

y, so 𝒜 is closed under composition with 𝐼 (a projection). Finally, there are circuits

𝐶1, 𝐶2, 𝐶3, which have an Or, And, and Mod𝑝 output gate (respectively), yet

𝐶1 ≡ 𝐶2 ≡ 𝐶3 (e.g. they can ignore their input and ouput the constant 0). Hence ∼𝑘

as defined in Theorem 5.5.3 is the universal relation. Now from Theorem 5.5.3, every

semantic property 𝑃 over 𝒞 computable in 𝒜 is trivial, so the 𝒞-BBH for 𝒜 is true.

□

The proof of Theorem 5.5.4 relies on the fact that small AC0[𝑞] circuits cannot

evaluate some function that can be evaluated with small AC0[𝑝] circuits (namely a

single Mod𝑝 gate). We can prove a similar result using the depth-𝑑 Sipser function,

which is easy for AC0 circuits of depth 𝑑 but hard for depth 𝑑− 1 [97, 61].

Definition 5.5.4 (Sipser Function) The Sipser function 𝑓𝑑,𝑛 : {0, 1}
√

𝑛
log𝑛×{0, 1}𝑛𝑑−2×

{0, 1}
√

1
2
𝑑𝑛 log𝑛 → {0, 1} is defined as follows:

74

If 𝑑 is odd, then 𝑓𝑑,𝑛(x) =

√
𝑛

log𝑛⋀︁
𝑖1=1

𝑛⋁︁
𝑖2=1

𝑛⋀︁
𝑖3=1

· · ·

√
1
2
𝑑𝑛 log𝑛⋀︁
𝑖𝑑=1

𝑥𝑖1,...,𝑖𝑑.

If 𝑑 is even, then 𝑓𝑑,𝑛(x) =

√
𝑛

log𝑛⋀︁
𝑖1=1

𝑛⋁︁
𝑖2=1

𝑛⋀︁
𝑖3=1

· · ·

√
1
2
𝑑𝑛 log𝑛⋁︁
𝑖𝑑=1

𝑥𝑖1,...,𝑖𝑑.

Theorem 5.5.5 For all depths 𝑑 ≥ 2, the AC0
𝑑-BBH for 2𝑠

𝑜(1)-size AC0
𝑑−1 is true.

Proof. We proceed as in Theorem 5.5.4. Let 𝑑 ≥ 2, 𝑓 be the depth-𝑑 Sipser

function, 𝒜 be 2𝑠
𝑜(1)-size AC0

𝑑−1, 𝒞 = AC0
𝑑, 𝒞1 = And ∘ AC0

𝑑−1, and 𝒞2 = Or ∘ AC0
𝑑−1.

(Note that 𝒞 = 𝒞1 ∪ 𝒞2.) We now define a function 𝐼 : 𝒞 × {0, 1}* → {0, 1}*, so that

𝐼(𝐶,y) = ⟨𝐷y⟩, where 𝐷y has the same number of inputs as 𝐶. We condition on

whether the input circuit 𝐶 comes from 𝒞1 or 𝒞2.

(Case 1) If 𝐶 ∈ 𝒞1, then it has the form ∧𝑚 ∘𝐶 ′, where 𝐶 ′ is a depth-(𝑑− 1) circuit

with 𝑛 inputs and 𝑚 outputs, and ∧𝑚 is an And of fan-in 𝑚. Let 𝑘 ∈ N, and take

𝑛′ = (2𝑘/𝑑)1/(𝑑−1), so that 𝑓𝑑,𝑛′ has 𝑘 inputs. For a 𝑘-bit vector y, we construct 𝐷′
y

as follows:

∧𝑚+1

𝐶 ′ 𝐹 𝑑,𝑛′

x y

Here, 𝐹 𝑑,𝑛′ denotes the obvious depth-𝑑 circuit computing the Sipser function 𝑓𝑑,𝑛′ .

Now by collapsing the output And gate of 𝐹 𝑑,𝑛′ into the ∧𝑚+1, we obtain a depth-𝑑

circuit 𝐷y on 𝑛 inputs such that 𝐷y(x) = 𝐶(x) if 𝑓𝑑,𝑛′
(y) = 1, and 𝐷y(x) = 0

otherwise. Hence the restriction of 𝐼 to 𝒞1×{0, 1}* is an input-switching function for

𝒞1 and 𝑓 .

(Case 2) If 𝐶 ∈ 𝒞2, then it has the form ∨𝑚 ∘ 𝐶 ′. In this case, we construct the

circuit 𝐷′
y as follows:

75

∨𝑚+1

𝐶 ′ 𝐹 ′𝑑,𝑛′

x y

Here 𝐹 ′𝑑,𝑛′ denotes the circuit obtained by replacing all And gates in 𝐹 𝑑,𝑛′ with Or

gates and vice-versa, and negating all of the input wires. By collapsing the output

Or gate of 𝐹 ′𝑑,𝑛′ into the ∨𝑚+1, we obtain a depth-𝑑 circuit 𝐷y on 𝑛 inputs such that

𝐷y(x) = 𝐶(x) if 𝑓𝑑,𝑛′
(y) = 1, and 𝐷y(x) = 1 otherwise. Hence the restriction of 𝐼

to 𝒞2 × {0, 1}* is an input-switching function for 𝒞2 and 𝑓 .

As before, we observe that each bit in ⟨𝐷y⟩ depends on at most one bit of y,

and that there are circuits 𝐶1 and 𝐶2 which have an And and Or output gate

(respectively) and compute the constant 0 function. Applying Theorem 5.5.3, every

semantic property 𝑃 over 𝒞 computable in 𝒜 is trivial, so the 𝒞-BBH for 𝒜 is true.

□

5.6 Lower Bounds from Black-Box Hypotheses

In Section 5.5, we showed that many circuit lower bounds of the form 𝒞 ′ ̸⊆ 𝒜 can

be used to prove a corresponding 𝒞-Black-Box Hypothesis for 𝒜 (for a set of boxes

𝒞 that suitably captures the complexity class 𝒞 ′). Now we consider the converse

question: can Black-Box Hypotheses also be used to prove circuit lower bounds? For

certain sets 𝒞 of boxes and classes 𝒜 of analysts, it turns out that the 𝒞-Black-Box

Hypothesis for 𝒜 does in fact imply lower bounds against 𝒜.

For a function 𝑠 : N → N, let Circuit(𝑠(𝑛)) denote the set of (general) Boolean

circuits on 𝑛 inputs of size at most 𝑠(𝑛), for every 𝑛. (Note this is different from

Size(𝑠(𝑛)), which is the class of languages computed by circuit families of size at

most 𝑠(𝑛).) As a starting point, the following simple proposition was essentially

noted by Barak et al. [14].

76

Proposition 5.6.1 If NP ⊂ P/poly, then for every polynomial 𝑝, the Circuit(𝑝(𝑛))-

BBH for P/poly is false.

Proof. Take 𝑃 to be the Ckt-Sat property (that is, 𝑃 (𝐶) = 0 iff the circuit

𝐶 encodes the all-zeroes function). By assumption, 𝑃 ∈ P/poly, but even with

randomness, Ω(2𝑛) oracle queries are needed to determine whether a size-𝑝(𝑛) circuit

on 𝑛 inputs is the all-zeroes function. For every polynomial 𝑞, the polynomial 𝑞 ∘ 𝑝 is

𝑜(2𝑛), so there is no size-𝑞(𝑠) circuit family making Ω(2𝑛) oracle queries on size-𝑝(𝑛)

circuits. □

In fact, Proposition 5.6.1 can be strengthened by replacing Ckt-Sat with the

property 𝑃 (𝐶) = 1 iff 𝐶 has a satisfying assignment that sets the first 𝑘 inputs to 0

(for some appropriately large 𝑘).

Proposition 5.6.2 If NP ⊂ Size(2𝑛
𝑜(1)

), then for every polynomial 𝑝, the Circuit(𝑝(𝑛))-

BBH for P/poly is false.

Propositions 5.6.1 and 5.6.2 are arguably not particularly useful, since very few

researchers believe the hypotheses of these propositions. However, they still do illus-

trate an interesting observation, and we may be able to generalize them in a useful

manner. Recall that 𝒞-Sat is the satisfiability problem for circuits from the set 𝒞.

One might hope to prove the following generalization of Proposition 5.6.1, for every

circuit set 𝒞 and every analyst class 𝒜:

Hypothesis 5.6.1 (The Satisfiability Black-Box Hypothesis) If 𝒞-Sat ∈ 𝒜,

then the 𝒞-BBH for 𝒜 is false.

In this fully generic form, there are some simple counterexamples to Hypothe-

sis 5.6.1. For instance, if 𝒜 contains all Boolean functions, then (for every set 𝒞)

𝒞-Sat ∈ 𝒜. However, the 𝒞-BBH for 𝒜 is true, because 𝒜 can decide any semantic

property with only black-box access to the circuit being analyzed. Hence we require

additional restrictions on 𝒞 and 𝒜 to make the hypothesis interesting. In particular,

we would like 𝒜 to contain only functions of subexponential circuit complexity, and

77

for a sufficiently simple function 𝑓 , we would like 𝒞 circuits to be able to compute 𝑓

efficiently.

Recall that a Boolean function 𝑓 : {0, 1}* → {0, 1} is a point function if there is

an a ∈ {0, 1}* such that for all x, 𝑓(x) = 1 ⇐⇒ x = a. The following notion of

“reasonability” for circuit sets will be useful in multiple contexts.

Definition 5.6.1 (Reasonability) A set 𝒞 of circuits is reasonable if there is a

polynomial 𝑝 such that for all point functions 𝑓 , there is a circuit family {𝐶𝑛} ⊂ 𝒞 of

size at most 𝑝(𝑛) computing 𝑓 .

We can show that if 𝒞 is reasonable and 𝒜 has subexponential-size circuits, then

Hypothesis 5.6.1 is true. The following can be viewed as a kind of converse of Theo-

rem 5.5.1.

Theorem 5.6.1 If 𝒞 is reasonable, 𝒜 ⊆ Size(2𝑛
𝑜(1)

), and 𝒞-Sat ∈ 𝒜, then the 𝒞-

BBH for 𝒜 is false.

Proof. Assume 𝒞 is reasonable, 𝒜 has subexponential-size circuits, and 𝒞-Sat ∈ 𝒜.

As in Proposition 5.6.1, we take 𝑃 to be the satisfiability property. By assumption,

𝑃 ∈ 𝒜. Even with randomness, Ω(2𝑛) oracle queries are required to determine

whether a circuit of size 𝑝(𝑛) on 𝑛 inputs computes the constant 0 function. However,

an 𝒜 circuit can make at most 2𝑛𝑜(1) queries to its oracle when given an input of size

𝑝(𝑛). Per the reasonableness of 𝒞, there are both satisfiable and unsatisfiable 𝒞-

circuits of size 𝑝(𝑛), so 𝒜, with only black-box access to a 𝒞-circuit, cannot compute

𝑃 . □

The preconditions for Theorem 5.6.1 are very general; most complexity classes of

interest only deal with functions of subexponential complexity and can compute point

functions efficiently. However, this weak condition is sufficient to remove the simple

counterexamples.

78

5.6.1 A Notion of BBH-Completeness

For very general circuit sets 𝒞 and classes 𝒜 of analysts, we have shown (roughly) in

Section 5.5 that

𝒞 ̸⊂ 𝒜 =⇒ 𝒞-BBH for 𝒜,

and in the previous paragraphs that for “reasonable” 𝒜 and 𝒞,

𝒞-BBH for 𝒜 =⇒ 𝒞-Sat ̸∈ 𝒜.

For many pairs of classes 𝒞 and 𝒜, we have

𝒞-Eval ̸∈ 𝒜 ⇐⇒ 𝒞 ̸⊂ 𝒜.

So the results of Section 5.5 imply, at least for many natural pairs 𝒞,𝒜, that 𝒞-Eval

lower bounds imply BBHs. However, 𝒞-Sat is generally a harder problem than

𝒞-Eval, so there remains a gap between the lower bounds that provably imply a

Black-Box Hypothesis, and those lower bounds provably implied by a Black-Box Hy-

pothesis.

A natural question is then, which of these implications can be strengthened? Is

there a single problem on 𝒞 circuits, such that proving a lower bound

for it is equivalent to proving a 𝒞-Black-Box Hypothesis? In particular, is

proving either 𝒞-Eval ̸∈ 𝒜 or 𝒞-Sat ̸∈ 𝒜 equivalent to proving the 𝒞-BBH for 𝒜?

Similar to other completeness notions in complexity theory, we propose a concept of

BBH-completeness to study equivalences between circuit lower bounds and Black-Box

Hypotheses.2

Definition 5.6.2 (BBH-completeness) Let 𝒞 be a set of circuits and 𝒜 a complex-

ity class. A Boolean function 𝑓 is complete for the 𝒞-BBH for 𝒜 (or 𝒞-BBH-complete
2It must be said that the authors are not entirely comfortable with the following definition of

BBH-completeness. Ideally, the following would be a consequence of 𝑓 being BBH-complete, and
the actual definition would involve a notion of reducibility. However, in order to give a completeness
concept that fits all possible classes 𝒜 and 𝒞 at a high level of generality, it does not seem possible
to use reductions: a sound reducibility notion would inevitably have to depend on 𝒜 (in particular,
its allowed “sizes” and its closure properties) directly.

79

for 𝒜) iff

𝒞-BBH for 𝒜 ⇐⇒ 𝑓 ̸∈ 𝒜.

When 𝒜 is either implicitly understood or general, we say that 𝑓 is 𝒞-BBH-complete.

Are there natural pairs (𝒞,𝒜) for which either 𝒞-Eval or 𝒞-Sat is 𝒞-BBH-complete

for 𝒜?

5.6.2 Nondeterministic Boxes

For the case of sets 𝒞 of nondeterministic circuits, the answer is yes. To state our

theorem, we require one new concept. Recall that a nondeterministic circuit 𝐶 has

a sequence of “normal” inputs x as well as a sequence of “auxiliary” nondeterministic

inputs y, and we say that 𝐶 accepts x if there is a setting of y such that 𝐶(x,y) = 1.

Definition 5.6.3 (Nondeterminization) For a given circuit 𝐶, a nondeterminiza-

tion of 𝐶 is a circuit 𝐶 ′ in which normal inputs to 𝐶 have been converted into auxil-

iary nondeterministic inputs. A set 𝒞 of circuits is closed under nondeterminization

if 𝐶 ∈ 𝒞 implies that every nondeterminization of 𝐶 is also in 𝒞.

Theorem 5.6.2 Let 𝒞 be a reasonable set of circuits closed under nondeterminiza-

tion. Assume 𝒜 has circuits of size 2𝑛
𝑜(1) and that 𝒜 is closed under composition

with an input-switching function for 𝒞 and 𝒞-Eval. Then 𝒞-Eval and 𝒞-Sat are

𝒞-BBH-complete for 𝒜.

Proof. We wish to prove that the following are equivalent:

1. 𝒞-BBH for 𝒜

2. 𝒞-Sat ̸∈ 𝒜

3. 𝒞-Eval ̸∈ 𝒜

(1) =⇒ (2) Follows from Theorem 5.6.1.

80

(2) =⇒ (3) We reduce 𝒞-Sat to 𝒞-Eval by observing that changing the inputs

of a nondeterministic circuit into auxiliary nondeterministic inputs preserves satis-

fiability. Hence, given a nondeterministic circuit 𝐶, we can convert all of its input

bits into additional nondeterministic auxiliary inputs to obtain a circuit 𝐶 ′, and then

determine whether 𝐶 ′ is still satisfiable. However, 𝐶 ′ has no remaining free inputs,

so determining satisfiability of 𝐶 ′ is simply the problem of evaluating 𝐶 ′ (with no

inputs).

(3) =⇒ (1) Follows from Theorem 5.5.2. □

Interpreting Impagliazzo et al. as an Equivalence. Recently, Impagliazzo

et al. [65] proved that if the BBH is false for certain kinds of function properties,

then the circuit satisfiability problem has sub-exponential size circuits. In particular,

they show that Ckt-Sat has 2𝑛𝑜(1)-size circuits if a property 𝑃 is highly sensitive on

a function 𝑓 that has sub-exponential size circuits.

Impagliazzo et al. indicate that in some sense Ckt-Sat is BBH-complete, at least

for large analyst classes 𝒜. Specifically, if we consider only symmetric semantic

properties, i.e., properties that depend only on the number of ones in the truth table

of the input circuit, we can define the following conjecture:

Hypothesis 5.6.2 (Symmetric-BBH) Let 𝑃 be a semantic and symmetric prop-

erty of circuits. Let {𝐴′
𝑠} be a polynomial size circuit family. Assume that for every

circuit 𝐶 of size 𝑠 on 𝑛 inputs, 𝐴′
𝑠(𝐶) = 1 iff 𝑃 (𝐶) = 1. Then there exists a polyno-

mial size oracle circuit family {𝐴𝑠} such that 𝐴𝐶
𝑠 (1

𝑛0𝑠−𝑛) = 1 iff 𝑃 (𝐶) = 1.

Now [65] implies:

Theorem 5.6.3 (Follows from [65]) The following are equivalent:

1. Ckt-Sat is not in P/poly.

2. The Symmetric-BBH is true.

81

Proof. The forward direction is Corollary 4.3 in [65]. For the converse direction,

observe that Ckt-Sat is a symmetric property that requires exponentially many

black-box oracle queries (and in particular, cannot be solved in P/poly with only

black-box access to the input circuit). Hence if the Symmetric-BBH is true, then

Ckt-Sat also cannot be solved in P/poly with white-box access to the input circuit,

i.e., Ckt-Sat ̸∈ P/poly. □

5.7 Conclusion

In this chapter, we introduced generalized Black-Box Hypotheses, which parameterize

both the type of “box” being analyzed, and the type of “analyst” examining such boxes.

We showed that generalized Black-Box Hypotheses can follow generically from circuit

lower bounds, and we showed how lower bounds for the circuit satisfiability problem

are essentially equivalent to Black-Box Hypotheses where the “boxes” correspond to

nondeterministic circuits. We conclude with some additional interesting directions to

consider.

5.7.1 What Other Lower Bounds Are Implied by Black-Box

Hypotheses?

In Section 5.6 we noted a simple example of a lower bound implying a BBH: the

𝒞-BBH for 𝒜 implies 𝒞-Sat ̸∈ 𝒜. However, this lower bound is rather weak-looking:

𝒞-Sat is NP-complete for many very simple 𝒞. Are there circuit-analysis problems

which are likely not to be NP-complete, which would still be implied by a Black-Box

Hypothesis? We find this to be a very interesting question, and we currently do not

have good candidates for such a problem.

82

5.7.2 Randomized Lower Bounds and Their Black-Box Hy-

potheses

We have shown that (deterministic) worst-case lower bounds can lead to results about

analyzing circuits as boxes. What results can be derived from average-case or ran-

domized lower bounds? We have obtained some preliminary results in this direction.

For instance, if our analyst class 𝒜 consists of randomized algorithms rather than

deterministic ones, we can still prove connections between lower bounds against 𝒜

and BBHs for 𝒜, along the lines of Section 5.5. There are likely other connections

like this to be found within the vast landscape of complexity theory.

5.7.3 Black-Box Hypotheses From More Lower Bounds?

While we have shown that various Black-Box Hypotheses do follow from certain lower

bounds in a generic way, some lower bounds don’t seem to imply a Black-Box Hy-

pothesis. For example, a circuit-size hierarchy is well-known: for nice functions 𝑠,

there are functions computable with size-𝑠(𝑛) circuits that do not have circuits of size

less than 𝑠(𝑛)− 5𝑛 (cf. [66]). This suggests the possibility that, for analysts 𝒜 imple-

mented by circuits of size less than 𝑠(𝑛)−5𝑛, and boxes 𝒞 which are circuits of size at

least 𝑠(𝑛), the 𝒞-Black-Box Hypothesis for 𝒜 is true. However, our current methods

are unable to prove such a sharp result. Are there other intermediate lower bounds

(weaker than against e.g. 𝒞-Eval) that would still imply Black-Box Hypotheses?

83

84

Chapter 6

The Gotsman-Linial Conjecture is

False

6.1 Polynomial Threshold Functions

In this chapter, we study a different complexity measure on Boolean functions. For

the sake of simplicity, this chapter uses the set {−1, 1}𝑛 to represent the Boolean

hypercube, rather than the set {0, 1}𝑛. All of the results carry over to the {0, 1}

setting with a simple change of basis.

Definition 6.1.1 (Polynomial Threshold Function) A function 𝑓 : {−1, 1}𝑛 →

{−1, 1} is a Polynomial Threshold Function of degree 𝑑 if it can be expressed as the

sign of a polynomial 𝑝 ∈ R[𝑥1, . . . , 𝑥𝑛] of degree at most 𝑑 evaluated on the Boolean

hypercube.

Notation 6.1.1 (PTF) For brevity, we will use the term (𝑛, 𝑑)-PTF (or simply

PTF, when 𝑛 and 𝑑 are either implicit or irrelevant) to refer to a polynomial threshold

function of degree 𝑑 on 𝑛 variables.

Definition 6.1.2 (Realizing Weights) The coefficients of 𝑝 are the realizing weights

of 𝑓 .

85

Note that the realizing weights of a PTF are not unique, as any sufficiently small

perturbation of 𝑝 will not affect its sign on the discrete set {−1, 1}𝑛. The concept

of a PTF alone is not terribly exciting without restrictions on 𝑑, as every boolean

function on 𝑛 variables can be written as the sign of (and in fact can be written

exactly as) a multilinear polynomial of degree 𝑛. We are interested particularly in

the case where 𝑑 is small.

In an influential paper, Craig Gotsman and Nathan Linial [53] applied Fourier

analytic techniques to the study of PTFs. They were mainly interested in connecting

different measures of the complexity of boolean functions, and of low-degree PTFs

in particular. One such measure was the Average Sensitivity of a boolean function,

defined in Fourier analytic terms. For simplicity, in this work we use the following

(equivalent) combinatorial definition:

Definition 6.1.3 (Dichromatic Count) For a function 𝑓 : {−1, 1}𝑛 → {−1, 1},

we define its dichromatic Count D[𝑓] to be the number of (unordered) pairs of Ham-

ming neighbors {𝑥, 𝑦} such that 𝑓(𝑥) ̸= 𝑓(𝑦).

We say that such a pair of Hamming neighbors is a dichromatic edge of 𝑓 .

Definition 6.1.4 (Average Sensitivity) The Average Sensitivity of a boolean func-

tion 𝑓 is AS[𝑓] := 21−𝑛D[𝑓].

Among other things, Gotsman and Linial proved a tight upper bound on the av-

erage sensitivity of (𝑛, 1)-PTFs, achieved by the Maj function on 𝑛 variables. They

conjectured that this bound generalizes to higher degree PTFs, in that the (𝑛, 𝑑)-PTF

of maximal average sensitivity is the obvious symmetric candidate, which alternates

signs on the 𝑑+ 1 values of
∑︁
𝑖∈[𝑛]

𝑥𝑖 closest to 0.

Conjecture 6.1.1 (Gotsman-Linial) Let 𝑝*𝑛,𝑑 be the monic univariate polynomial

of degree 𝑑 with (non-repeated) roots at the 𝑑 integers closest to 0 of opposite parity

from 𝑛. Let 𝑓 *(𝑥1, . . . , 𝑥𝑛) = sgn

⎛⎝𝑝*𝑛,𝑑
⎛⎝∑︁

𝑖∈[𝑛]

𝑥𝑖

⎞⎠⎞⎠. Then for every (𝑛, 𝑑)-PTF 𝑓 ,

AS[𝑓] ≤ AS[𝑓 *
𝑛,𝑑].

86

This conjecture was listed as a prominent open problem in [83] and [44]. If true, it

would have many applications in complexity and learning (see for example [60, 52, 67,

69, 38]), although most of the applications would already be implied by an asymptotic

version of the conjecture, stated below. Gotsman and Linial proved their conjecture

for the case where 𝑑 = 1, and it is also known to be true in the case where 𝑑 = 0.

However, it was left open whether the conjecture holds for any 𝑑 ≥ 2. Two weaker

versions of this conjecture have since been formulated and studied.

Conjecture 6.1.2 (Gotsman-Linial - Asymptotic) Let 𝑓 : {−1, 1}𝑛 → {−1, 1}

be an (𝑛, 𝑑)-PTF. Then the average sensitivity AS[𝑓] ∈ 𝑂(𝑑
√
𝑛).

Conjecture 6.1.3 (Gotsman-Linial - Weak) Let 𝑓 : {−1, 1}𝑛 → {−1, 1} be an

(𝑛, 𝑑)-PTF. Then the average sensitivity AS[𝑓] ∈ 𝑂(
√
𝑛 log𝑔(𝑑) 𝑛) for some function

𝑔 depending only on 𝑑.

Conjecture 6.1.3 was resolved by Daniel Kane [68].

6.1.1 Result

In this chapter, we resolve the Gotsman-Linial Conjecture (Conjecture 6.1.1) for all

pairs (𝑛, 𝑑) except the case when 𝑛 > 7 is even and 𝑑 = 2. The main result of this

chapter is the following.

Theorem 6.1.1 For all pairs of natural numbers (𝑛, 𝑑) satisfying one of the following

criteria, there exists an (𝑛, 𝑑)-PTF 𝑓𝑛,𝑑 witnessing a counterexample to the Gotsman-

Linial Conjecture (Conjecture 6.1.1):

• 𝑛 ≥ 5 is odd, and 𝑑 = 2.

• 𝑛 ≥ 7, and 3 ≤ 𝑑 ≤ 𝑛− 3.

Moreover, AS[𝑓𝑛,𝑑] ∈ (1 + Ω(𝑛−1𝑒−𝑑2/𝑛))AS[𝑓 *
𝑛,𝑑].

In addition, the conjecture holds in many of the remaining cases.

Theorem 6.1.2 For all pairs of natural numbers (𝑛, 𝑑) satisfying one of the following

criteria, 𝑓 *
𝑛,𝑑 has the greatest average sensitivity among (𝑛, 𝑑)-PTFs.

87

• 𝑑 ≤ 1.

• 𝑑 ≥ 𝑛− 2.

• 𝑛 = 6.

Our results (and the remaining open cases) are summarized in Figure 6-1. Although

we refute the Gotsman-Linial Conjecture for most cases that are of interest for appli-

cations, the asymptotic conjecture (Conjecture 6.1.2), which would suffice for most

known applications, remains open.

𝑑
0 1 2 3 4 5 6 7 8 · · ·

𝑛

1 ✓ ✓
. . .

2 ✓ ✓ ✓
. . .

3 ✓ ✓ ✓ ✓
. . .

4 ✓ ✓ ✓ ✓ ✓
. . .

5 ✓ ✓ × ✓ ✓ ✓
. . .

6 ✓ ✓ ✓ ✓ ✓ ✓ ✓
. . .

7 ✓ ✓ × × × ✓ ✓ ✓
. . .

8 ✓ ✓ ? × × × ✓ ✓ ✓
. . .

9 ✓ ✓ × × × × × ✓ ✓
. . .

10 ✓ ✓ ? × × × × × ✓
. . .

11 ✓ ✓ × × × × × × × . . .

12 ✓ ✓ ? × × × × × × . . .
...

...
...

...
...

...
...

...
...

... . . .

2𝑘 ✓ ✓ ? × × × × × × . . .

2𝑘 + 1 ✓ ✓ × × × × × × × . . .
...

...
...

...
...

...
...

...
...

... . . .

Figure 6-1: Results are summarized in the above table. A cyan tick mark indicates
a case in which the conjecture holds (for all (𝑛, 𝑑)-PTFs 𝑓 , AS[𝑓] ≤ AS[𝑓 *

𝑛,𝑑]). A
red cross indicates a refutation (there exists an (𝑛, 𝑑)-PTF 𝑓 such that AS[𝑓] ∈
(1 + Ω(𝑛−1𝑒−𝑑2/𝑛))AS[𝑓 *

𝑛,𝑑]). A black question mark indicates an open case. Note:
the cases (𝑛, 𝑑) = (6, 2) and (𝑛, 𝑑) = (6, 3) were verified with the help of a computer
search and a linear program solver (see Section 6.5).

The remainder of this chapter is structured as follows. We first present some high

88

level intuition relating to the Gotsman-Linial Conjecture. Section 6.2 contains back-

ground information. Section 6.3 contains constructions of the refutations indicated

in Figure 6-1. Section 6.4 concludes and presents a revised conjecture. Section 6.5

contains details on how a computer search aided the proofs.

6.1.2 Intuition

We start with some very high level intuition as to why the Gotsman-Linial Conjecture

might be (approximately) true. The conjecture holds in the case of symmetric PTFs

(boolean functions which can be expressed as the sign of a univariate polynomial in

the sum of the input bits). This follows from the Fundamental Theorem of Algebra

and a simple counting argument. In the more general case, we might expect that a

degree-𝑑 PTF can be expressed (at least approximately) in terms of 𝑑 unate functions.

This generalizes the observation that every linear threshold function is unate. For

a sufficiently close approximation, this would prove the Asymptotic Gotsman-Linial

Conjecture. Intuition may also be drawn from Kane’s proof of Conjecture 6.1.3. If

inputs are chosen from a Gaussian distribution instead of a Bernoulli distribution,

a polynomial 𝑝 is expected to be too large in magnitude for a small change in its

input to change its sign. Under certain conditions, a similar result can be extended

to polynomial threshold functions on the Boolean hypercube.

As for why the Gotsman-Linial Conjecture is not (exactly) true, we observe that the

PTF of conjectured maximal average sensitivity is the product of 𝑑 linear threshold

functions, with parallel separating hyperplanes between two of the middle 𝑑+1 layers

(sets of vertices of equal Hamming weight) in the hypercube. For some 𝑑, one might

expect to be able to find a PTF of greater average sensitivity approximated by turning

one of these separating hyperplanes “sideways”, i.e. replacing a hyperplane that cuts

the fewest edges with a hyperplane orthogonal to the rest. Intuitively, this would

require that 𝑑 be sufficiently large that some of the hyperplanes cut many more

edges than others, but also sufficiently small that not too many edges are cut by two

hyperplanes. As it turns out, this intuition can be formalized for many 𝑛 and 𝑑,

89

refuting the Gotsman-Linial Conjecture.

6.2 Preliminaries

6.2.1 Background

Low-degree PTFs, in particular degree-1 PTFs with integral and polynomially bounded

realizing weights, are of interest in the study of complexity classes such as TC and of

neural networks.

Definition 6.2.1 (Polynomial Threshold Circuit) A circuit (with unbounded fan-

in) is a degree-𝑑 polynomial threshold circuit if each of its constituent gates computes

a degree-𝑑 PTF of its inputs.

Definition 6.2.2 (Linear Threshold Circuit) A linear threshold circuit (resp. lin-

ear threshold function) is a degree-1 polynomial threshold circuit (resp. PTF).

Recall alternating (AC) and threshold (TC) circuits from Section 2.2.

Example 6.2.1 Since And, Or, Maj, and Not are all linear threshold functions,

AC and TC circuits are linear threshold circuits.

Despite much research, the power of polynomial threshold circuits is poorly under-

stood. For instance, it is currently an open question, and a rather embarrassing one at

that, whether NE (the class of functions computable in nondeterministic 2𝑂(𝑛) time)

is contained in TC0
3 (the class of functions computable with depth-three, polynomial

size TC circuits). Recent work by Daniel Kane and Ryan Williams [69] gave a partial

answer to this question. They studied the sensitivity of PTFs to random restrictions,

proving (among other things) that NE (and in fact, P-uniform TC0) does not have

depth-3 TC circuits of 𝑛1.499 gates or 𝑛2.499 wires.

90

6.2.2 Progress

Conjecture 6.1.1 is trivially true in the cases 𝑑 = 0 and 𝑑 = 𝑛 (the only (𝑛, 0)-PTFs

are the constant functions, and 𝑓 *
𝑛,𝑛 is the parity function, which has the maximum

possible average sensitivity). Gotsman and Linial originally noted that Conjecture

6.1.1 had already been proven in the case where 𝑑 = 1 by Patrick O’Neil in 1971 [86].

Theorem 6.2.1 (O’Neil) The maximal number 𝑘 of edges of 𝐻 := {−1, 1}𝑛 which

may be cut by a hyperplane 𝑃 is given by 𝑘 =
⌈︁𝑛
2

⌉︁(︂ 𝑛

⌊𝑛/2⌋

)︂
.

Very little additional progress was made towards resolving the above conjectures

until recently. The first non-trivial bounds on the average sensitivity of PTFs of

arbitrary degree were found independently by two groups [60, 43] and published jointly

[42]. Daniel Kane in 2012 obtained the first bound which was truly sublinear in 𝑛 [67],

and in 2013, he proved the weak version of the Gotsman-Linial Conjecture (Conjecture

6.1.3) [68].

6.3 Resolution of Gotsman-Linial Conjecture

For readability, we start by introducing some notation.

Definition 6.3.1 Let 𝑓, 𝑔 : {−1, 1}𝑛 → {−1, 1}. We say 𝑓 ∼ 𝑔, iff there exist 𝜎 ∈ 𝑆𝑛

and 𝛼 ∈ {−1, 1}𝑛 such that the function 𝑥 ↦→ 𝑓 (𝑥1, . . . , 𝑥𝑛) 𝑔 (𝛼1𝑥1𝜎, . . . , 𝛼𝑛𝑥𝑛𝜎) is a

constant.

Note that ∼ defines an equivalence relation on boolean functions. Two functions are

equivalent iff one can be turned into the other through a combination of permuting

the inputs and negating the inputs/output.

Definition 6.3.2 (Hypersensitivity) An (𝑛, 𝑑)-Hypersensitive Function, or (𝑛, 𝑑)-

HSF is an (𝑛, 𝑑)-PTF 𝑓 such that D[𝑓] > D[𝑓 *
𝑛,𝑑].

More generally, we say that a PTF 𝑓 is an HSF if 𝑛 and 𝑑 are either implicit or

irrelevant. We may now restate the original Gotsman-Linial Conjecture (Conjecture

6.1.1) as follows:

91

Conjecture 6.3.1 For all 𝑛, 𝑑 ∈ N, (𝑛, 𝑑)-HSFs do not exist.

We first prove some simple cases of Conjecture 6.3.1. The following corollary of

O’Neil’s theorem (Theorem 6.2.1) uses our notation.

Corollary 6.3.1 For every 𝑛 ∈ N, (𝑛, 1)-HSFs do not exist.

Proof. Every (𝑛, 1)-PTF 𝑓 is defined by a separating hyperplane 𝑃 which cuts all

of the dichromatic edges of 𝑓 . From O’Neil, D[𝑓] ≤
⌈︁𝑛
2

⌉︁(︂ 𝑛⌊︀
𝑛
2

⌋︀)︂ = D[𝑓 *
𝑛,1], so 𝑓 is

not an HSF. □

The case 𝑑 = 𝑛−1 is a simple consequence of a result first proven in 1968 by Marvin

Minsky and Seymour Papert [76] and since re-proven several times. We present here

a variation on the proof by Aspnes et al. [11].

Theorem 6.3.1 (Minsky-Papert) Any PTF which computes parity on 𝑛 variables

must have degree at least 𝑛.

Proof. Let 𝑝 ∈ R[𝑥1, . . . , 𝑥𝑛] be a multilinear polynomial of degree 𝑛 − 1 which is

never zero on {−1, 1}𝑛. The set of monomials of degree at most 𝑛 is an orthogonal ba-

sis for the vector space of degree-𝑛 multilinear polynomials on the boolean hypercube.

Hence 𝑝 is orthogonal to the parity function 𝜑𝑛, i.e. ⟨𝑝, 𝜑𝑛⟩ =
∑︁

𝑥∈{−1,1}𝑛
𝑝(𝑥)𝜑𝑛(𝑥) = 0.

By assumption, every term in the sum on the RHS is non-zero, so at least one of

them is negative, i.e. sgn ∘ 𝑝 ̸= 𝜑𝑛. □

Corollary 6.3.2 For every 𝑛 ∈ N, (𝑛, 𝑛− 1)-HSFs do not exist.

Proof. Let 𝑓 be an (𝑛, 𝑛 − 1)-PTF. Then 𝑓 ̸= 𝜑𝑛, and 𝑓 ̸= −𝜑𝑛. Let 𝑋 = {𝑥 :

𝑓(𝑥) = 𝜑𝑛(𝑥)} and 𝑌 = {𝑦 : 𝑓(𝑦) ̸= 𝜑𝑛(𝑦)}. Take 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 . There are 𝑛

edge-disjoint paths between 𝑥 and 𝑦 in the boolean hypercube, and each must contain

at least one edge crossing the cut between 𝑋 and 𝑌 (i.e. a monochromatic edge).

Hence D[𝑓] ≤ 𝑛(2𝑛−1 − 1) = D[𝑓 *
𝑛,𝑛−1], so 𝑓 is not an HSF. □

Lemma 6.3.1 Let 𝑛, 𝑑 ∈ N, and let 𝑔 have maximal D[𝑔] over all (𝑛 − 1, 𝑑)-PTFs.

Then for every (𝑛, 𝑑)-PTF 𝑓 , D[𝑓] ≤ 2𝑛

𝑛− 1
D[𝑔].

92

Proof. Let 𝑛, 𝑑 ∈ N, and let 𝑔 be an (𝑛−1, 𝑑)-PTF with D[𝑔] maximal. Let 𝑓 be an

(𝑛, 𝑑)-PTF. Any restriction 𝑓 ′ of 𝑓 to a function on 𝑛− 1 variables is also a degree-𝑑

PTF, so D[𝑓 ′] ≤ D[𝑔]. There are 2𝑛 such restrictions 𝑓 ′, and each dichromatic edge

of 𝑓 appears in exactly 𝑛− 1 of them. Hence (𝑛− 1)D[𝑓] ≤ 2𝑛D[𝑔], from which the

desired result follows immediately. □

Lemma 6.3.2 Let 𝑛, 𝑑 ∈ N with 𝑑 < 𝑛. If 𝑛 and 𝑑 have the same parity, and

(𝑛− 1, 𝑑)-HSFs do not exist, then (𝑛, 𝑑)-HSFs do not exist.

Proof. Assume that no (𝑛− 1, 𝑑)-PTF is an HSF. If 𝑛 and 𝑑 have the same parity,

then every restriction of 𝑓 *
𝑛,𝑑 is equivalent (with respect to ∼) to 𝑓 *

𝑛−1,𝑑. There are 2𝑛

such restrictions, and each dichromatic edge of 𝑓 *
𝑛,𝑑 appears in exactly 𝑛− 1 of them,

so D[𝑓 *
𝑛,𝑑] =

2𝑛
𝑛−1

D[𝑓 *
𝑛−1,𝑑]. Hence by Lemma 6.3.1, (𝑛, 𝑑)-HSFs do not exist. □

Corollary 6.3.3 For every 𝑛 ∈ N, (𝑛, 𝑛− 2)-HSFs do not exist.

Proof. This follows from Corollary 6.3.2 and Lemma 6.3.2. □

Corollary 6.3.4 Let 𝑛, 𝑑 ∈ N. If 𝑑 ≤ 𝑛 ≤ 5 and (𝑛, 𝑑) ̸= (5, 2), then (𝑛, 𝑑)-HSFs do

not exist.

Proof. This follows from Corollaries 6.3.1, 6.3.2 and 6.3.3, and the fact that (𝑛, 𝑑)-

HSFs trivially do not exist when 𝑑 ∈ {0, 𝑛}. □

6.3.1 A Simple Counterexample

In the statement of Corollary 6.3.4, the caveat (𝑛, 𝑑) ̸= (5, 2) cannot be removed.

Lemma 6.3.3 There exists a unique (5, 2)-HSF 𝑓5,2, modulo ∼.

Proof. In the case where 𝑛 = 5 and 𝑑 = 2, 𝑝*5,2(𝑥) = 𝑥(𝑥−2), and D[𝑓 *
5,2] = 50. Let

𝑞 ∈ R[𝑥, 𝑦] be defined by 𝑞(𝑥, 𝑦) := 3𝑦2 − 𝑥2 + 2𝑥𝑦 + 𝑦 − 𝑥− 3, let 𝑞′ ∈ R[𝑥1, . . . , 𝑥5]

such that 𝑞′(𝑥1, . . . , 𝑥5) := 𝑞(𝑥1 + 𝑥2, 𝑥3 + 𝑥4 + 𝑥5), and let 𝑓5,2 := sgn ∘ 𝑞′. Since 𝑞

93

is quadratic, 𝑓5,2 is a (5, 2)-PTF. It is not difficult to verify that D[𝑓5,2] = 51 > 50 =

D[𝑓 *
5,2], so 𝑓5,2 is a (5, 2)-HSF. For uniqueness, we performed an exhaustive search

using linear programming. For details, see Section 6.5.1. □

The existence of a (5, 2)-HSF precludes the use of Lemma 6.3.2 to prove that (6, 2)-

HSFs do not exist. However, the uniqueness of 𝑓5,2, along with the fact that it only

has one additional dichromatic edge, allows for a proof using Lemma 6.3.1.

Lemma 6.3.4 For every 𝑑, (6, 𝑑)-HSFs do not exist.

Proof. The cases 𝑑 ∈ {0, 1, 4, 5, 6} have already been covered. For 𝑑 = 3, see

Section 6.5.3. The case 𝑑 = 2 remains. Assume for the sake of contradiction that 𝑓

is a (6, 2)-HSF. The dichromatic count of every boolean function on an even number

of variables is an even integer. Since for every (5, 2)-PTF 𝑔, D[𝑔] ≤ 51, Lemma 6.3.1

implies that 120 < D[𝑓] ≤ 122.4, and hence that D[𝑓] = 122. There are 12 restrictions

of 𝑓 to a function 𝑔 on 5 variables, all of which satisfy D[𝑔] ≤ 51. Every dichromatic

edge in 𝑓 appears in exactly five such 𝑔, so the expectation over a uniformly random

restriction 𝑔 of D[𝑔] is
5

12
· 122 > 50.5. Since D[𝑔] is always an integer, D[𝑔] = 51

with probability strictly greater than 1/2. In particular, there exists 𝑖 such that

𝑓 |𝑥𝑖=−1 ∼ 𝑓 |𝑥𝑖=1 ∼ 𝑓5,2 (*). However, it is easily verified (see Section 6.5.2) that no

function 𝑓 satisfying both (*) and D[𝑓] = 122 is a (6, 2)-PTF. This contradicts the

initial choice of 𝑓 . Hence no (6, 2)-HSFs exist. □

This also completes the proof of Theorem 6.1.2. □

6.3.2 Extension to Odd 𝑛

We may extend 𝑓5,2 to an (𝑛, 2)-HSF for any odd 𝑛 ≥ 5.

Theorem 6.3.2 For every odd 𝑛 ∈ N with 𝑛 ≥ 5, there exists an (𝑛, 2)-HSF 𝑓𝑛,2

with

D[𝑓𝑛,2] ∈
(︀
1 + Ω

(︀
𝑛−1

)︀)︀
D[𝑓 *

𝑛,2].

Intuitively, 𝑓𝑛,2 behaves exactly as 𝑓5,2, with the additional variables contributing to

the second argument of 𝑞.

94

Proof. Let 𝑛 ≥ 5 be an odd integer. Let 𝐴 := {−2, 0, 2} and 𝐵 := 2Z + 1. Let

𝐻 be the 𝑛-dimensional boolean hypercube, and let 𝐺 be the graph with vertex set

𝐴× 𝐵 and an edge between 𝑢 and 𝑣 exactly when ‖𝑢− 𝑣‖1 = 2. Let 𝜑 : 𝐻 → 𝐺 be

the graph homomorphism defined by 𝜑(𝑥1, . . . , 𝑥𝑛) := (𝑥1 + 𝑥2, 𝑥3 + . . .+ 𝑥𝑛). Let

𝑞(𝑥, 𝑦) := 3𝑦2 − 𝑥2 +2𝑥𝑦+ 𝑦− 𝑥− 3 as above, let 𝑓 := sgn ∘ 𝑞, and take 𝑓𝑛,2 := 𝑓 ∘𝜑.

Note that because 𝜑 is a graph homomorphism, we may compute D[𝑓𝑛,2] by counting

the dichromatic edges 𝑒 induced by 𝑓 on 𝐺, weighted by 𝜑−1(𝑒). To this end, we

observe that an edge 𝑒 between (2𝑖−2, 2𝑗+2−𝑛) and (2𝑖−2, 2𝑗−𝑛) has a preimage

under 𝜑 of cardinality

|𝜑−1(𝑒)| =
(︂
2

𝑖

)︂(︂
𝑛− 2

𝑗

)︂
(𝑛− 2− 𝑗) .

Similarly, for an edge 𝑒 between (2𝑖− 2, 2𝑗 + 2− 𝑛) and (2𝑖, 2𝑗 + 2− 𝑛),

|𝜑−1(𝑒)| =
(︂
2

𝑖

)︂(︂
𝑛− 2

𝑗

)︂
(2− 𝑖) .

We observe that 𝑞 is positive on𝐴×𝐵 except at the four points {(−2, 1), (0,−1), (2,−1), (2, 1)}.

Hence 𝑓 gives nine dichromatic edges, as indicated by the black lines in Figure 6.3.2.

𝑗

2− 𝑛 · · · −3 −1 +1 +3 · · · 𝑛− 2

−2 + · · · + + − + · · · +

𝑖 0 + · · · + − + + · · · +

+2 + · · · + − − + · · · +

Figure 6-2: Illustration of (𝑛, 2)-HSF

95

Summing the above expressions over these nine edges, we have

D[𝑓𝑛,2] =

(︂
𝑛− 2
𝑛−1
2

)︂(︂(︂
2

0

)︂
𝑛+

(︂
2

1

)︂
(𝑛− 1) +

(︂
2

2

)︂
(𝑛− 1)

)︂
=

(︂
𝑛− 2
𝑛−1
2

)︂
(4𝑛− 3)

=

(︂
𝑛− 2
𝑛−1
2

)︂
(𝑛− 3 + 3𝑛)

=

(︂
𝑛− 2
𝑛+1
2

)︂
(𝑛+ 1) +

(︂
𝑛− 2
𝑛−1
2

)︂
3𝑛

=

(︂(︂
𝑛− 1
𝑛+1
2

)︂
+

(︂
𝑛− 1
𝑛−1
2

)︂)︂
𝑛+

(︂
𝑛− 2
𝑛+1
2

)︂
=

(︂
𝑛

𝑛+1
2

)︂
𝑛+

(︂
𝑛− 2
𝑛+1
2

)︂
∈
(︀
1 + Θ(𝑛−1)

)︀
D[𝑓 *

𝑛,2].

Hence 𝑓𝑛,2 is an (𝑛, 2)-HSF, as desired. □

6.3.3 The General Case

Using a similar construction, we now prove the existence of HSFs of arbitrary degree.

Theorem 6.3.3 For every 𝑛, 𝑑 ∈ N with 𝑛 ≥ 7 and 3 ≤ 𝑑 ≤ 𝑛 − 3, there exists an

(𝑛, 𝑑)-HSF 𝑓𝑛,𝑑 with D[𝑓𝑛,𝑑] ∈
(︁
1 + Ω

(︁
𝑛−1𝑒−𝑑2/𝑛

)︁)︁
D[𝑓 *

𝑛,𝑑].

We first consider the case where 𝑛 and 𝑑 have the same parity. The case where 𝑛 and

𝑑 have opposite parity is similar but handled later.

Theorem 6.3.4 For every 𝑛, 𝑑 ∈ N with 3 ≤ 𝑑 ≤ 𝑛− 4 and 𝑛− 𝑑 even, there exists

an (𝑛, 𝑑)-HSF 𝑓𝑛,𝑑 with D[𝑓𝑛,𝑑] ∈
(︁
1 + Ω

(︁
𝑛−1𝑒−𝑑2/𝑛

)︁)︁
D[𝑓 *

𝑛,𝑑].

Proof. Let 𝑛, 𝑑 be integers of the same parity with 3 ≤ 𝑑 ≤ 𝑛 − 4. Let 𝐴 :=

{−3,−1, 1, 3} and let 𝐵 := 2Z+𝑑+1. Let𝐻 be the 𝑛-dimensional boolean hypercube,

and let 𝐺 be the graph with vertex set 𝐴× 𝐵 and an edge between 𝑢 and 𝑣 exactly

when ‖𝑢 − 𝑣‖1 = 2. Let 𝜑 be the graph homomorphism defined by 𝜑(𝑥1, . . . 𝑥𝑛) :=

96

(𝑥1 + 𝑥2 + 𝑥3, 𝑥4 + . . .+ 𝑥𝑛). We now define four polynomials 𝑝1, 𝑝2, 𝑝3, 𝑝4 on 𝐴× 𝐵

as follows:

𝑝1(𝑥, 𝑦) := (𝑦 − 1 + 𝑑)(𝑦 + 1− 𝑑)

𝑝2(𝑥, 𝑦) := 1− 2 (𝑥(𝑑− 1) + 𝑦)2

𝑝3(𝑥, 𝑦) := (𝑦 − 3 + 𝑑)(𝑦 − 5 + 𝑑) · · · (𝑦 + 5− 𝑑)(𝑦 + 3− 𝑑)

𝑝4(𝑥, 𝑦) := 𝑥(𝑥+ 2)(𝑥− 2)(𝑦 − 4 + 𝑑)(𝑦 − 6 + 𝑑) · · · (𝑦 + 6− 𝑑)(𝑦 + 4− 𝑑)

Since 𝑝1 ∈ Ω(𝑝2), there exists 𝜀′ > 0 such that for every 𝑣 ∈ 𝐺 with 𝑝1(𝑣) ̸= 0,

|𝑝1(𝑣)| > |2𝜀′𝑝2(𝑣)|. Similarly, 𝑝3 ∈ Ω(𝑝4), so there exists 𝜀 ∈ (0, 𝜀′] such that for every

𝑣 ∈ 𝐺 with 𝑝3(𝑣) ̸= 0, |𝑝3(𝑣)| > |𝜀𝑝4(𝑣)|. For instance, we may take 𝜀 = 𝜀′ = (4𝑑)−𝑑.

Take 𝑝 := (𝑝1 + 𝜀𝑝2) · 𝑝3 − 𝜀2𝑝4, take 𝑔 := sgn ∘ 𝑝, and take 𝑓𝑛,𝑑 := 𝑔 ∘ 𝜑. Since 𝑝1

and 𝑝2 have degree 2, 𝑝3 has degree 𝑑 − 2, and 𝑝4 has degree 𝑑, 𝑓𝑛,𝑑 is a polynomial

threshold function of degree 𝑑. Towards computing D[𝑓𝑛,𝑑], we first consider the

relevant behaviors of 𝑝1, 𝑝2, 𝑝3, 𝑝4 separately. All four are integer-valued (evaluations

of) polynomials on the domain 𝐴×𝐵. Both 𝑝2 and 𝑝4 are always odd, so in particular,

are non-zero everywhere. Firstly, 𝑝3 is positive when 𝑦 > 𝑑−3, is zero when |𝑦| ≤ 𝑑−3,

and has the same sign as (−1)𝑑 when 𝑦 < 3−𝑑. Clearly, 𝑝1 is positive when |𝑦| > 𝑑−1

and zero when |𝑦| = 𝑑−1. By choice of 𝜀, 𝑝1+ 𝜀𝑝2 is never in the interval (−𝜀, 𝜀) and

always has the same sign as 𝑝1 when 𝑝1 is non-zero. Similarly, 𝑝 is always non-zero

and always has the same sign as (𝑝1 + 𝜀𝑝2) · 𝑝3 when 𝑝3 is non-zero. Hence we may

rewrite 𝑔 as the following piecewise function:

𝑔(𝑥, 𝑦) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)𝑑 𝑦 < 1− 𝑑

sgn((−1)𝑑𝑝2(𝑥, 𝑦)) 𝑦 = 1− 𝑑

sgn(𝑝4(𝑥, 𝑦)) |𝑦| < 𝑑− 1

sgn(𝑝2(𝑥, 𝑦)) 𝑦 = 𝑑− 1

1 𝑦 > 𝑑− 1

Since 𝑝2 is positive only at the two points (−1, 𝑑− 1) and (1, 1− 𝑑) when |𝑦| = 𝑑− 1,

the above piecewise representation shows that when |𝑦| ≤ 𝑑− 1, 𝑔(𝑥, 𝑦) computes the

97

parity function except at the two points (3, 𝑑−1) and (−3, 1−𝑑) (illustrated in Figures

6-3 and 6-4). We now define 𝑔′ : 𝐴× 𝐵 → {−1, 1} by 𝑔′(𝜑𝑛,3(𝑥)) := −𝑓 *
𝑛,𝑑(𝑥). Note

𝑦
· · · −1− 𝑑 1− 𝑑 3− 𝑑 · · · 𝑑− 3 𝑑− 1 𝑑+ 1 · · ·

𝑥

−3 · · · + − − · · · + − + · · ·
−1 · · · + − + · · · − + + · · ·
+1 · · · + + − · · · + − + · · ·
+3 · · · + − + · · · − − + · · ·

Figure 6-3: Illustration of 𝑔 in the case where 𝑛 and 𝑑 are both even

𝑦
· · · −1− 𝑑 1− 𝑑 3− 𝑑 · · · 𝑑− 3 𝑑− 1 𝑑+ 1 · · ·

𝑥

−3 · · · − + + · · · + − + · · ·
−1 · · · − + − · · · − + + · · ·
+1 · · · − − + · · · + − + · · ·
+3 · · · − + − · · · − − + · · ·

Figure 6-4: Illustration of 𝑔 in the case where 𝑛 and 𝑑 are both odd

that because 𝑓 *
𝑛,𝑑 is symmetric, this gives a well-defined function 𝑔′. It is easily verified

that for all (𝑥, 𝑦) ∈ 𝐴×𝐵 such that |𝑦| ≤ 𝑑− 1 and at the two points (3,−1− 𝑑) and

(−3, 𝑑+1), 𝑔′(𝑥, 𝑦) = 𝑔(𝑥, 𝑦), and that for all other (𝑥, 𝑦) ∈ 𝐴×𝐵, 𝑔′(𝑥, 𝑦) = −𝑔(𝑥, 𝑦).

Hence there are ten edges {𝑢, 𝑣} in 𝐺 for which 𝑔(𝑢)𝑔(𝑣) ̸= 𝑔′(𝑢)𝑔′(𝑣). This allows us

98

to compute D[𝑓𝑛,𝑑] as follows:

D[𝑓𝑛,𝑑] = D[𝑓 *
𝑛,𝑑]

+ (𝑛+ 𝑑− 2)

(︂
𝑛− 3
𝑛−𝑑−4

2

)︂
+ 3(𝑛+ 𝑑− 2)

(︂
𝑛− 3
𝑛−𝑑−4

2

)︂
− 3(𝑛+ 𝑑− 2)

(︂
𝑛− 3
𝑛−𝑑−4

2

)︂
− 6

(︂
𝑛− 3
𝑛−𝑑−4

2

)︂
− (𝑛− 𝑑− 4)

(︂
𝑛− 3
𝑛−𝑑−4

2

)︂
= D[𝑓 *

𝑛,𝑑] + (2𝑑− 4)

(︂
𝑛− 3
𝑛−𝑑−4

2

)︂

∈

⎛⎜⎜⎜⎝1 + Ω

⎛⎜⎜⎜⎝
(︂
𝑛

𝑛−𝑑
2

)︂
𝑛

(︂
𝑛
𝑛
2

)︂
⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠D[𝑓 *

𝑛,𝑑]

⊆
(︁
1 + Ω

(︁
𝑛−1𝑒−𝑑2/𝑛

)︁)︁
D[𝑓 *

𝑛,𝑑]. (Stirling’s Inequality)

Hence 𝑓𝑛,𝑑 is an (𝑛, 𝑑)-HSF, as desired. □

Theorem 6.3.5 For every 𝑛, 𝑑 ∈ N with 𝑛 ≥ 7, 3 ≤ 𝑑 ≤ 𝑛− 3 and 𝑛− 𝑑 odd, there

exists an (𝑛, 𝑑)-HSF 𝑓𝑛,𝑑 with D[𝑓𝑛,𝑑] ∈
(︁
1 + Ω

(︁
𝑛−1𝑒−𝑑2/𝑛

)︁)︁
D[𝑓 *

𝑛,𝑑].

Proof. The proof proceeds similarly to the previous case. We define 𝐴, 𝐵, 𝐻, 𝐺,

𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝, 𝑔, and 𝑔′ as above, and we define 𝜓(𝑥1, . . . , 𝑥𝑛) := 𝑥1 + 𝑥2 + 𝑥3, 1 +

𝑥4 + . . . + 𝑥𝑛). We now define 𝑓𝑛,𝑑 := 𝑔 ∘ 𝜓 analogously to above. The computation

99

of D[𝑓𝑛,𝑑] now proceeds as follows:

D[𝑓𝑛,𝑑] = D[𝑓 *
𝑛,𝑑]

+
𝑛+ 𝑑− 3

2

(︂
𝑛− 3
𝑛−𝑑−3

2

)︂
+ 3

𝑛+ 𝑑− 3

2

(︂
𝑛− 3
𝑛−𝑑−3

2

)︂
− 3

𝑛+ 𝑑− 3

2

(︂
𝑛− 3
𝑛−𝑑−3

2

)︂
− 3

(︂
𝑛− 3
𝑛−𝑑−3

2

)︂
− 𝑛− 𝑑− 3

2

(︂
𝑛− 3
𝑛−𝑑−3

2

)︂
+
𝑛+ 𝑑− 1

2

(︂
𝑛− 3
𝑛−𝑑−5

2

)︂
+ 3

𝑛+ 𝑑− 1

2

(︂
𝑛− 3
𝑛−𝑑−5

2

)︂
− 3

𝑛+ 𝑑− 1

2

(︂
𝑛− 3
𝑛−𝑑−5

2

)︂
− 3

(︂
𝑛− 3
𝑛−𝑑−5

2

)︂
− 𝑛− 𝑑− 5

2

(︂
𝑛− 3
𝑛−𝑑−5

2

)︂
= D[𝑓 *

𝑛,𝑑] + (𝑑− 3)

(︂
𝑛− 3
𝑛−𝑑−3

2

)︂
+ (𝑑− 1)

(︂
𝑛− 3
𝑛−𝑑−5

2

)︂

∈

⎛⎜⎜⎜⎝1 + Ω

⎛⎜⎜⎜⎝
(︂
𝑛

𝑛−𝑑
2

)︂
𝑛

(︂
𝑛
𝑛
2

)︂
⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠D[𝑓 *

𝑛,𝑑]

⊆
(︁
1 + Ω

(︁
𝑛−1𝑒−𝑑2/𝑛

)︁)︁
D[𝑓 *

𝑛,𝑑]. (Stirling’s Inequality)

Hence 𝑓𝑛,𝑑 is an (𝑛, 𝑑)-HSF, as desired. □

This also completes the proofs of Theorems 6.3.3 and 6.1.1. □

6.4 Conclusion

For almost all 𝑑 and almost all 𝑛, we refute the Gotsman-Linial Conjecture (Conjec-

ture 6.1.1) with a multiplicative separation of 1 + Θ𝑑 (𝑛
−1). This separation is too

weak to refute most known applications of the conjecture. We would need to improve

1+Θ𝑑 (𝑛
−1) to 𝜔(1) to refute the Asymptotic Gotsman-Linial Conjecture (Conjecture

6.1.2), on which the applications depend. Although for every (𝑛, 𝑑)-HSF 𝑓 given in

this chapter, D[𝑓] > D[𝑓 *
𝑛,𝑑], it should be noted that the RHS is still an upper bound

in a limiting sense. This, along with the intuition presented in Section 6.1.2, invites

the following revised conjecture.

Conjecture 6.4.1 (Gotsman-Linial - Limit) Let 𝑓 : {−1, 1}𝑛 → {−1, 1} be an

100

(𝑛, 𝑑)-PTF. Then the average sensitivity AS[𝑓] ≤ 𝑑AS[𝑓 *
𝑛,1].

Conjecture 6.4.1 would resolve the remaining cases of Conjectures 6.3.1 and 6.1.1,

i.e.

Conjecture 6.4.2 For every even 𝑛, (𝑛, 2)-HSFs do not exist.

Furthermore, our revised conjecture would imply the Asymptotic Gotsman-Linial

Conjecture (Conjecture 6.1.2) and its consequent applications.

6.5 Search with Linear Programming

Here we describe how a computer search resolved the cases of 𝑛 = 6 and 𝑑 = 2, 3 of the

Gotsman-Linial Conjecture. First, we note that the problem of determining whether

a boolean function 𝑓 : {−1, 1}𝑛 → {−1, 1} is an (𝑛, 𝑑)-PTF is equivalent to deter-

mining whether a particular linear program has any feasible solution. Unfortunately,

leveraging this fact to compute the maximal average sensitivity of an (𝑛, 𝑑)-PTF with

a naïve exhaustive search takes doubly exponential time so is intractable for large 𝑛

(i.e. 𝑛 > 4). However, by using Lemma 6.3.1, we can conduct a more efficient search.

We maintain a partial function 𝑓 and conduct a DFS in which we define 𝑓 successively

on inputs in increasing order of Hamming weight. This allows us to keep bounds on

D[𝑓] by counting the edges that are already constrained to be monochromatic or

dichromatic. When D[𝑓] becomes too low or too high, we can prune the search and

backtrack before fully defining 𝑓 , allowing (tolerably) efficient searches up to 𝑛 = 6.

6.5.1 (𝑛, 𝑑) = (5, 2)

In the case (𝑛, 𝑑) = (5, 2), Lemma 6.3.1 implies that for every (5, 2)-HSF 𝑓 , we have

50 < D[𝑓] ≤ 60. Because a random boolean function on 5 variables has far fewer

than 50 dichromatic edges with high probability, most search branches are pruned

early. The modified search confirmed that every (5, 2)-HSF 𝑓 with 50 < D[𝑓] ≤ 60

satisfies 𝑓 ∼ 𝑓5,2, and hence that 𝑓5,2 is the unique (5, 2)-HSF.

101

6.5.2 (𝑛, 𝑑) = (6, 2)

The proof of Lemma 6.3.4 relies on the claim that for every (6, 2)-PTF 𝑓 and for

every variable 𝑥𝑖, either 𝑓 |𝑥𝑖=−1 ̸∼ 𝑓5,2, 𝑓 |𝑥𝑖=1 ̸∼ 𝑓5,2, or D[𝑓] ̸= 122. By symmetry,

we may remove the dependence on 𝑖, and we may turn one of the equivalences into

an equality. The above is equivalent to the claim that for every (6, 2)-PTF 𝑓 , either

𝑓 |𝑥1=−1 ̸∼ 𝑓5,2, 𝑓 |𝑥1=1 ̸= 𝑓5,2, or D[𝑓] ̸= 122. Because a restriction of a (6, 2)-PTF is a

(5, 2)-PTF and must therefore have no more than 51 dichromatic edges, it suffices to

show that for every function 𝑓 : {−1, 1}6 → {−1, 1} such that 𝑓 |𝑥1=−1 ∼ 𝑓 |𝑥1=1 = 𝑓5,2

and D[𝑓] = 122, there exist 𝑖 and 𝑏 such that D[𝑓 |𝑥𝑖=𝑏] > 51. There are fewer than

1000 functions 𝑓 satisfying both 𝑓 |𝑥1=−1 ∼ 𝑓 |𝑥1=1 = 𝑓5,2 and D[𝑓] = 122 (and these

are easily enumerated), and each has only 10 relevant restrictions to five variables, so

the last claim is easily verified with a quick computer search.

6.5.3 (𝑛, 𝑑) = (6, 3)

In the case (𝑛, 𝑑) = (6, 3), Lemma 6.3.1 implies that for every (6, 3)-HSF 𝑓 , we have

150 < D[𝑓] ≤ 168. Because a random boolean function on 6 variables has far fewer

than 150 dichromatic edges with overwhelming probability, most search branches

are pruned early. The modified search confirmed that no (6, 3)-PTF 𝑓 satisfying

150 < D[𝑓] ≤ 168 is an HSF, and hence that no (6, 3)-HSFs exist.

102

Chapter 7

Smaller Counting Circuits for

Symmetric Functions

7.1 Counting Circuits

This chapter studies the complexity class CC0 and related classes. Recall from Defi-

nition 2.2.17 that CC0 consists of constant-depth circuits in which every (unbounded

fan-in) gate (called a Mod𝑚 gate) determines whether the sum of its inputs is divisible

by a small constant integer 𝑚. Although the model looks rather peculiar, CC0 circuits

(a.k.a. pure-ACC circuits [105]) have been a longstanding and fundamental roadblock

in the way of improved circuit complexity lower bounds. Since their identification over

30 years ago [15, 19], scant progress has been made on lower bounds against CC0 cir-

cuits, and their close cousin ACC0 which includes And and Or in the gate basis. Some

exceptions include work focusing on special cases of the problem (e.g., [16, 55, 35, 36]),

uniform lower bounds [3], and work proving strong lower bounds but only for func-

tions whose complexity is in QuasiNP or higher (e.g., [103, 39, 78, 37]). If there has

ever been a “circuit complexity winter”, CC0 circuits are at least partly to blame.

Besides our own ignorance, could there be deeper reasons why CC0 circuits have

been so difficult for showing limitations? Here we explore the possibility that CC0

circuits may be powerful, focusing on the natural class of symmetric Boolean functions

103

whose output depends only on the number of ones in the input. Although it has been

conjectured for many years that the And function does not have polynomial-size CC0

circuits ([17, 100, 99])1 our results show that low-depth Mod𝑚 circuits with arbitrary

but fixed modulus 𝑚 can actually compute arbitrary symmetric Boolean functions

(such as Maj) much more efficiently than low-depth circuits with And, Or, and

Mod𝑞 gates, when 𝑞 is a prime power.

It is well-known that AC0 circuits, which consist of And, Or, Not gates and have

constant-depth, require exp(Ω(𝑛1/(𝑑−1))) size to compute arbitrary symmetric func-

tions in depth 𝑑 [61]. In recent work, Oliveira, Santhanam, and Srinivasan [85] have

shown that Parity gates (a.k.a. Mod2 or ⊕ gates) can help compute symmetric func-

tions more efficiently than what And, Or, Not can accomplish in constant depth.

In particular, they show that AC0[2] circuits (with And, Or, and Parity) of depth

4 can compute Maj in exp(Θ(𝑛1/4)) size, depth 𝑑 ≥ 5 can compute symmetric func-

tions in size exp(̃︀𝑂(𝑛 2
3(𝑑−4))), and they show a size lower bound of exp(Ω(𝑛1/(2𝑑−4)))

for the Maj function, improving [90, 98].

Smaller Mod𝑚 Circuits. Could even smaller circuits for symmetric functions be

achieved using Mod𝑚 gates, for other composite 𝑚? It turns out that this is possible.

In fact, even in depth three, any symmetric function can computed with a Mod𝑚

circuit of size 2𝑛
𝜀 for any desired 𝜀 > 0.

Theorem 7.1.1 For every 𝜀 > 0, there is a modulus 𝑚 ≤ (1/𝜀)2/𝜀 such that every

symmetric function on 𝑛 bits can be computed by depth-3 Mod𝑚 circuits of exp(𝑂(𝑛𝜀))

size. In fact, the circuits have the form Mod𝑝1 ∘Mod𝑝2···𝑝𝑟 ∘Mod𝑝1, where 𝑝1, . . . , 𝑝𝑟

are distinct primes.2

That is, without any And/Or gates, we can obtain CC0 circuits with a substan-

tially smaller number of gates than the longstanding lower bounds for AC0[𝑞] circuits
1Hansen and Koucký [58] give an interesting counterpoint, showing that probabilistic CC0 circuits

can compute And efficiently. Thus the And ∈ CC0 problem is equivalent to a derandomization
question.

2The 𝐺 ∘𝐻 ∘ 𝐼 notation means that the output gate has type 𝐺, on the middle layer there are
gates only of type 𝐻, and on the bottom layer (nearest the inputs) there are only gates of type 𝐼.

104

computing symmetric functions (mentioned two paragraphs ago), for prime power 𝑞.

It has been known for decades [18] that depth-2 Mod𝑝∘Mod𝑚 circuits (and CC0[𝑝]∘

Mod𝑚 circuits) require 2Ω(𝑛) size to compute the And function, where 𝑝 is a prime

and 𝑚 is an arbitrary composite, and that only certain restricted symmetric functions

could be computed in subexponential-size and depth-2 [55]. Theorem 7.1.1 shows that

one additional layer of Mod𝑝 gates makes such circuits much more powerful.

It is well-known that for distinct primes 𝑝, 𝑞, every symmetric function on 𝑛 bits

has a Mod𝑝𝑞 circuit of size exp(𝑂(𝑛𝜀)) and depth 𝑂(1/𝜀).3 Our result shows the

depth can always be made 3, at the cost of increasing the modulus to a large enough

constant. Hansen [57], building on Bhatnagar, Gopalan, and Lipton [22], shows that

for 𝑚 which is the product of 𝑟 primes, and sufficiently small ℓ (smaller than each

of the prime factors of 𝑚), the Modℓ function can be represented by a polynomial

over Z𝑚 of degree 𝑂(𝑛1/𝑟). As a corollary of Hansen’s work, Gopalan observed [51]

that for every 𝜀 > 0 there is an 𝑚 such that the Mod2 function has depth-3 Mod𝑚

circuits of size 2𝑛
𝜀 . This naturally suggests the question of whether every symmetric

function admits such a circuit, which is answered by our Theorem 7.1.1.

As we allow larger depths, we can obtain Mod𝑚 circuits with an interesting size-

depth tradeoff.

Theorem 7.1.2 Let 𝑑 ≥ 3 be an integer, and let 𝑚 be a product of 𝑟 ≥ 2 distinct

primes. Then every symmetric function on 𝑛 bits can be computed by depth-𝑑 Mod𝑚

circuits of size exp(�̃�(𝑛1/(𝑟+𝑑−3))).

To contrast, recall that the lower bounds for AC0 are exp(Ω(𝑛1/(𝑑−1))) size for depth

𝑑 [61], and the lower bounds for AC0[𝑝𝑘] (with And, Or, and Mod𝑝𝑘 gates) are

exp(Ω(𝑛1/(2𝑑))) [90, 98] for prime power 𝑝𝑘 (where the constant factor depends on

𝑝𝑘). Thus for constant moduli 𝑚 with enough prime factors, one can beat both lower

bounds with Mod𝑚 gates.

3The authors don’t know the origin of this construction. It follows from the fact that every
function on 𝑘 bits has a depth-2 Mod𝑝𝑞 circuit of size 2𝑂(𝑘), and that symmetric functions can be
easily “decomposed” into smaller functions (as in [4]).

105

For large enough depth 𝑑, we can achieve even smaller circuits with a size bound of

the form exp(𝑛𝑂(1)/(𝑟·𝑑)), multiplying 𝑟 and 𝑑 in the denominator, instead of adding

them.

Theorem 7.1.3 There is a universal constant 𝑐 ≥ 1 such that, for all sufficiently

large depths 𝑑, and all composite 𝑚 with 𝑟 prime factors, every symmetric function

can be computed by a Mod𝑚 gate circuit of depth 𝑑 and size exp(𝑂(𝑛𝑐/((𝑑−𝑐)(𝑟−1)))).

We remark that the constant 𝑐 in the above construction is not terribly small. (Our

𝑐 is at least 6; this matters if one cares about very small 𝑑 and 𝑟.) In concurrent (very

recently released) work, [64] give a circuit construction with a similar tradeoff (but

better constants) for the special case of the And function, building on the polynomials

of [16].

Even Smaller Circuits in ACC0. Allowing And and Or gates in our circuit,

the size of our circuit constructions can be even further improved.

Definition 7.1.1 Say that a product 𝑚 of primes 𝑞1, . . . , 𝑞𝑟 is good if every prime

factor of 𝜑(𝑚) divides 𝑚, where 𝜑 is Euler’s totient function.

We note that the primorial 𝑚 = 𝑝𝑟#, the product of the first 𝑟 primes, is good.4

Theorem 7.1.4 Let 𝑚 be a good product of 𝑟 primes. For every symmetric function

𝑓 on 𝑛 inputs and every depth 𝑑 ≥ 4 congruent to 1 modulo 3, there exists an AC0[𝑚]

circuit of depth 𝑑 and size exp(�̃�(𝑛3/((𝑟+3)(𝑑−1)−3))) computing 𝑓 .

In the proof of Theorem 7.1.4, we make use of several tools from the recent AC0[2]

circuits of [85] (circuits for elementary symmetric polynomials and circuits for the coin

problem), along with known results on computing elementary symmetric polynomials

modulo a prime.

Applying standard tricks (seen in [59, 104, 85]), Theorem 7.1.4 extends to linear

threshold functions.
4Indeed, for all 𝑖 = 1, . . . , 𝑟, the prime factors of 𝑞𝑖−1 are contained in {𝑞1, . . . , 𝑞𝑖−1}, all of which

divide 𝑚 = 𝑝𝑟#.

106

Corollary 7.1.1 Let 𝑚 be a good product of 𝑟 primes. For every linear threshold

function 𝑓 on 𝑛 inputs and every depth 𝑑 ≥ 4 congruent to 1 modulo 3, there exists

an AC0[𝑚] circuit of depth 𝑑+ 2 and size exp(�̃�(𝑛3/((𝑟+3)(𝑑−1)−3))) computing 𝑓 .

The corollary follows directly from the fact that every linear threshold function

can be written as an Or of poly(𝑛) Ands of poly(𝑛) symmetric functions on 𝑛-bit

inputs [59]. In general, Theorem 7.1.4 implies that TC0 circuits (composed of Maj

and Not gates) with small fan-in also have a nontrivial simulation.

Corollary 7.1.2 Every TC0 circuit of depth 𝑒 in which every gate has fan-in at most

𝑠 has an equivalent Mod𝑚 circuit of depth 𝑑·𝑒 and size at most exp(�̃�(𝑠3/((𝑟+3)(𝑑−1)−3))),

where 𝑚 is a good product of 𝑟 primes.

The corollary follows from direct substitution of each Maj gate with depth-𝑑 circuits

from our Theorem 7.1.4. Note that such depth-𝑒 TC0 circuits (where every gate has

fan-in at most 𝑠) have at most 𝑂(𝑠𝑒−1) gates: a depth-1 circuit has 𝑂(1) gates, a

depth-2 circuit has 𝑂(𝑠) gates, and so on. (We do not count inputs as gates.)

Can’t you do any better? Theorem 7.1.4 shows that for certain 𝑚 which are

products of 𝑟 primes, one can compute arbitrary symmetric functions in depth 𝑑

and size exp(𝑛
𝑐
𝑟𝑑) where 𝑐 > 0 is a constant. We give evidence that it may be

difficult to improve asymptotically on the dependence of 𝑟 and 𝑑 in the exponent of

𝑛, based on a natural hypothesis regarding TC0 circuits, which are constant-depth

circuits composed of Maj and Not gates. (Of course it is difficult to prove anything

unconditional here, because as far as we know, polynomial-size depth-3 Mod6 circuits

could compute every EXP function. Thus we settle for conditional hardness.)

Recall that a Sym∘And circuit is a depth-2 circuit where the output is a symmetric

function and the bottom layer computes Ands of input variables and negations. The

hypothesis is that subexponential-size Sym∘And circuits cannot compute TC0 circuits

in which each gate has linear fan-in.

107

Hypothesis 7.1.1 (Sym ∘And Hypothesis) There are constants 𝑐, 𝑘 > 1 such

that for sufficiently large 𝑛, there is a function 𝑓 : {0, 1}𝑛 → {0, 1} computable by

TC0 circuits of depth 𝑐 with at most �̃�(𝑛) gates where each gate has fan-in �̃�(𝑛), such

that 𝑓 does not have an exp(𝑂(𝑛1/𝑘)) size Sym ∘ And circuit.

A well-known result in circuit complexity is that every ACC0 circuit of size 𝑠 can

be simulated by a Sym ∘And circuit of size 𝑠poly(log 𝑠) [21, 39]. Therefore, the Sym ∘

And Hypothesis is a strengthening of the longstanding hypothesis that TC0 ̸⊂ ACC0:

the Sym ∘ And Hypothesis implies exponential lower bounds for simulating TC0

circuits with ACC0 circuits. Indeed, the hypothesis implies that our ACC0 circuits

for symmetric functions are nearly size-optimal in their dependence on depth and

modulus.

Theorem 7.1.5 (Near-Optimality Modulo a Conjecture) Assuming the Sym∘

And Hypothesis, there is a fixed 𝛼 > 0 such that for every 𝑚 and 𝑑, every depth-

𝑑 ACC0[𝑚] circuit computing the Maj function on 𝑛 inputs requires size at least

exp(𝑛
𝛼
𝑟𝑑) for sufficiently large 𝑛, where 𝑟 is the number of distinct prime factors of

𝑚.

The proof of Theorem 7.1.5 is in Section 7.5. Therefore, we view size bounds of the

form exp(𝑛1/Θ(𝑟𝑑)) (as seen in our results) as a natural barrier to better upper bounds

on Mod𝑚 circuits: any function with significantly smaller Mod𝑚 circuit complexity

(as a function of 𝑛, 𝑟, and 𝑑) would also yield a highly non-trivial Sym ∘And circuit

simulation of TC0. In order to achieve significantly smaller circuits as a function of

𝑛, 𝑑, and 𝑟, one has to at least refute the hypothesis. Of course, even assuming

Hypothesis 7.1.1, our circuits can probably be improved by constant factors in the

exponents.

7.1.1 Intuition

Our circuit constructions use several tricks from the literature in new ways. Here, we

give a short high-level exposition of subexponential-size depth-3 circuits for computing

108

symmetric functions that use only Mod𝑚 gates for composite 𝑚 (Theorem 7.1.1).

For simplicity, we will focus on computing EMaj (“exact majority”) functions, which

output 1 on a vector (𝑥1, . . . , 𝑥𝑛) if and only if

∑︁
𝑖

𝑥𝑖 = 𝑇

for some target 𝑇 ∈ {0, 1}.

Our first idea is to split the set of input variables into many parts; this is taken

from the folklore depth-3 AC0 circuits for symmetric functions of size 2�̃�(
√
𝑛) (although

we will beat that size bound considerably). Letting 𝛿 ∈ (0, 1) be a parameter, we

partition the inputs 𝑥1, . . . , 𝑥𝑛 into 𝑡 := ⌈𝑛𝛿⌉ groups𝐺1, . . . , 𝐺𝑡 of𝑂(𝑛1−𝛿) inputs each.

Our circuit will try all possible 𝑇1, . . . , 𝑇𝑡 ∈ {0, 1, . . . , 𝑛/𝑡} such that
∑︁
𝑗

𝑇𝑗 = 𝑇 ,

outputting 1 if the circuit finds 𝑇𝑗’s such that for all 𝑗 = 1, . . . , 𝑡, the sum of all

variables in group 𝐺𝑗 equals 𝑇𝑗. In a depth-3 AC0 circuit, we can set 𝛿 = 1/2 and

obtain a circuit of 2�̃�(
√
𝑛) size: in particular, we take an Or over all 2�̃�(

√
𝑛) choices

(𝑇1, . . . , 𝑇𝑡), take an And over all groups 𝑗 = 1, . . . , 𝑡, then determine whether the

sum of variables in 𝐺𝑗 equals 𝑇𝑗 using a CNF of size 2𝑂(
√
𝑛). Thus we have a circuit

of type

Or ∘ And ∘ Or

which computes the EMaj function in size 2�̃�(
√
𝑛).

Using Mod𝑚 gates where𝑚 has many distinct prime factors, we can do much better.

Applying Lucas’ Theorem (Theorem 7.2.1) in a new way, we construct a polynomial

𝑃𝑇𝑗
of degree 𝑂(𝑛(1−𝛿)/𝑟) that can determine whether the sum of variables in group

𝐺𝑗 equals 𝑇𝑗, where 𝑟 is the number of distinct prime factors of 𝑚. Theorem 7.3.2

demonstrates this claim in the case of 𝑟 = 2. (We also need another technical con-

dition on 𝑚 for this to work, but we ignore that issue here.) This polynomial can

be directly simulated by a depth-2 circuit of Mod𝑝𝑚 gates (where 𝑝 is a new prime

that does not divide 𝑚) and exp(�̃�(𝑛(1−𝛿)/𝑟)) size, which can determine whether or

not the sum of variables in group 𝐺𝑗 equals the target 𝑇𝑗.

109

Substituting this depth-2 circuit into the depth-3 AC0 circuit described above (for

each group 𝑗), we would have a circuit of the form:

Or of exp(�̃�(𝑛𝛿)) Ands of �̃�(𝑛𝛿) Mod𝑝𝑚 of exp(�̃�(𝑛(1−𝛿)/𝑟)) Mod𝑝𝑚.

Then, setting 𝛿 so that 𝛿 = (1 − 𝛿)/𝑟, we obtain 𝛿 = 1/(𝑟 + 1) and a circuit of

exp(�̃�(𝑛1/(𝑟+1))) size. To reduce the depth down to three and use only Mod𝑝𝑚 gates,

we observe that at most one of the wires into the Or can be true, and we apply

another known translation (Proposition 7.2.2) to convert the And of �̃�(𝑛𝛿) Mod𝑝𝑚

gates into a linear sum modulo 𝑝𝑚 of exp(�̃�(𝑛𝛿)) Mod𝑝𝑚 gates, collapsing the Or ∘

And ∘ Mod𝑝𝑚 ∘ Mod𝑝𝑚 circuit into a depth-3 circuit of only Mod𝑝𝑚 gates and

exp(�̃�(𝑛1/(𝑟+1))) size. Setting𝑚 so that 𝑟 is arbitrarily large, we obtain Theorem 7.1.1.

To obtain our stronger and more general results (Theorems 7.1.2, 7.1.3, and 7.1.4),

we rely on even more tools and tricks, most of which are recorded in the next section.

(Throughout the chapter, we try to state clearly which ideas are due to prior work,

and which are new.)

7.2 Preliminaries

Notation 7.2.1 For a binary vector x, we use |x|1 to denote the ℓ1-norm, i.e., the

number of ones in x.

Besides AC0, ACC0, CC0, and TC0, we also use the following additional notation for

various circuit types, all of which is standard:

Definition 7.2.1 (Sym) A circuit of type Sym is a symmetric Boolean function.

Definition 7.2.2 (EMaj) An EMaj function outputs 1 on an input (𝑥1, . . . , 𝑥𝑛) ∈

{0, 1} if and only if
∑︁
𝑖

𝑥𝑖 = 𝑇 for a fixed target 𝑇 .

It is not hard to see that, by substituting 0/1 constants appropriately, such a function

can always be implemented by a gate of 𝑂(𝑛) inputs which outputs 1 if and only if

110

∑︁
𝑖

𝑥𝑖 = 𝑛/2. This is why such gates are called “exact majority” (EMaj).

We also make the standard assumption that all gates are allowed to include 0/1

constants in their inputs.

The following basic fact is useful to keep in mind; we will apply it frequently.

Proposition 7.2.1 For all positive 𝑚,𝑛 ∈ Z, any Mod𝑚 gate of fan-in 𝑡 can be

simulated by a Mod𝑚𝑛 of fan-in 𝑛𝑡.

Proof. For any positive integer 𝑡,𝑚 | 𝑡 if and only if 𝑛𝑚 | 𝑛𝑡. So Mod𝑚(𝑥1, . . . , 𝑥𝑡) =

Mod𝑚𝑛(𝑛 · 𝑥1, . . . , 𝑛 · 𝑥𝑡). □

We make use of several known results. First, we note that And circuits of small

fan-in have efficient depth-2 Mod𝑚 circuits. A version was first used in [17] in the

context of Mod circuits, and more recently a strengthening was used to reduce the

size-depth tradeoff for simulating ACC0 circuits with Sym ∘And circuits [39]. (Chen

and Papakonstantinou [39] call this “linearization”.)

Proposition 7.2.2 ([17, 39]) Let 𝑎, 𝑏 ≥ 2 be fixed integers with 𝑔𝑐𝑑(𝑎, 𝑏) = 1. Every

And of 𝑘 Mod𝑏 gates can be represented by an Mod𝑎 ∘Mod𝑏 circuit of 𝑂(𝑏𝑘) gates.

Furthermore, on all 𝑘-bit inputs, the sum of the inputs to the output gate of the circuit

is always 0 (mod 𝑎) or 1 (mod 𝑎).

Our next tool is an old number-theoretic theorem on elementary symmetric polyno-

mials modulo 𝑝, masterfully applied by Beigel, Barrington, and Rudich [16] in their

non-trivial degree polynomials for the Or functions over composite moduli.

Theorem 7.2.1 (Lucas’ Theorem [75]) For all primes 𝑝 and natural numbers 𝑛,

(︂
𝑛

𝑝𝑖

)︂
mod 𝑝

is the 𝑖-th digit in the 𝑝-ary representation of 𝑛.

Lucas’ theorem has the following direct consequence for polynomial representations

of Boolean functions.

111

Lemma 7.2.1 ([16]) Let 𝑝 be a prime, let 𝑛 be a natural number, and let 𝑒𝑖(x)

denote the 𝑖-th elementary symmetric polynomial on 𝑛 variables. For a binary vector

x, let ∑︁
𝑦𝑖 · 𝑝𝑖 = |x|1

be the 𝑝-ary expansion of |x|1. Then for every 𝑖, 𝑒𝑝𝑖(x) ≡ 𝑦𝑖mod𝑝.

In order to apply the elementary symmetric polynomials, our construction also

involves arithmetic circuits over prime fields. These circuits will be translated into

Boolean circuits with Mod𝑚 gates. Such circuits were also used by [85] in their

improved AC0[2] circuits for Maj.

Lemma 7.2.2 ([40, 85]) Let 𝑝 be a prime, let 𝑛, 𝑖 ∈ N, and let 𝑑 ≥ 2 be even.

There is an arithmetic circuit over F𝑝 of depth 𝑑 and size 𝑛𝑂(𝑖2/𝑑) computing the 𝑖-th

elementary symmetric polynomial (over F𝑝) on 𝑛 inputs, where the output gate is a

× gate.

We also use AC0 circuits for the coin problem. These were also used by [85] in their

improved AC0[2] circuits for symmetric functions.

In the following, we let 𝑖, 𝑗 ∈ {0, 1, . . . , 𝑛}, and let 𝐷𝑖,𝑗 be any partial function

satisfying the properties:

𝐷𝑖,𝑗(x) = 1 if |x|1 = 𝑖, and

𝐷𝑖,𝑗(x) = 0 if |x|1 = 𝑗.

Lemma 7.2.3 ([84, 8, 85]) Let 𝑑 ≥ 2 and 𝑛 be natural numbers, and let 𝑖 ̸= 𝑗.

Then there is an AC0 circuit of depth 𝑑 and size exp(𝑂(𝑑 (𝑛/|𝑖− 𝑗|)1/(𝑑−1))) computing

𝐷𝑖,𝑗 on 𝑛 inputs, where the output gate is an And.

Intuitively, Lemma 7.2.3 will be useful when |𝑖− 𝑗| is “large”.

112

7.3 CC0 Circuits for Symmetric Functions

We begin by giving efficient depth-3 CC0 circuits for symmetric functions.

Reminder of Theorem 7.1.1 For every 𝜀 > 0, there is a modulus 𝑚 ≤ (1/𝜀)2/𝜀

such that every symmetric function on 𝑛 bits can be computed by depth-3 Mod𝑚

circuits of exp(𝑂(𝑛𝜀)) size. In fact, the circuits have the form Mod𝑝1 ∘ Mod𝑝2···𝑝𝑟 ∘

Mod𝑝1, where 𝑝1, . . . , 𝑝𝑟 are distinct primes.

After that, we will generalize the result to a size-depth tradeoff in the next subsec-

tion. That tradeoff will be further improved in Section 7.4 when we allow the use of

And and Or gates.

As a warm-up, we first consider the special case where 𝜀 > 1/3 and 𝑚 = 30.

Theorem 7.3.1 Every symmetric Boolean function on 𝑛 variables has a depth-3 cir-

cuit of the form Mod5 ∘Mod6 ∘Mod5, of size exp(𝑂(𝑛1/3 log 𝑛)). Furthermore, the

output gate is a linear sum which always evaluates to either 0 or 1 modulo 5.

Note that the upper bound of Theorem 7.3.1 already beats the well-known lower

bounds for depth-3 AC0 [61]. The remainder of this section is devoted to the proof.

A key component is a low-degree multivariate polynomial over Z6 that vanishes on

a Boolean vector if and only if the sum of the ones in the vector equals a particular

value.

Theorem 7.3.2 For every 𝑛 ∈ N and every 𝑇 ∈ {0, 1, . . . , 𝑛}, there is a polynomial

𝑃𝑇 (𝑥1, . . . , 𝑥𝑛) of degree at most 3
√
𝑛 such that for all 𝑎 ∈ {0, 1}𝑛, 𝑃𝑇 (𝑎) = 0 mod 6

if and only if
∑︁
𝑖

𝑎𝑖 = 𝑇 .

Proof. We want a polynomial 𝑝 on 𝑛 variables such that for all 𝑦1, . . . , 𝑦𝑛 ∈ {0, 1}

and 𝑇 ∈ {0, 1, . . . , 𝑛},

𝑝(𝑦1, . . . , 𝑦𝑛) ≡ 0 mod 6 ⇐⇒
∑︁
𝑖

𝑦𝑖 = 𝑇.

113

For the elementary symmetric polynomial 𝑒𝐽(𝑦1, . . . , 𝑦𝑛) of degree 𝐽 , and for all

𝑎1, . . . , 𝑎𝑛 ∈ {0, 1},

𝑒𝐽(𝑎1, . . . , 𝑎𝑛) =

(︂
(
∑︀

𝑖 𝑎𝑖)

𝐽

)︂
.

Thus by Lucas’ Theorem (Theorem 7.2.1), 𝑒𝑝𝑖(𝑎1, . . . , 𝑎𝑛) mod 𝑝 equals the 𝑖-th digit

in the 𝑝-ary representation of
∑︁
𝑖

𝑎𝑖.

Let 𝑠 and 𝑡 be integers so that 2
√
𝑛 ≥ 2𝑠 >

√
𝑛 and 3

√
𝑛 ≥ 3𝑡 >

√
𝑛.

Suppose when we write 𝑇 ∈ {0, 1, . . . , 𝑛} in binary notation, the 𝑠 low order bits

are 𝑏𝑠−1, . . . , 𝑏0. Furthermore, when we write 𝑇 in ternary notation, the 𝑡 low order

trits are 𝑐𝑡−1, . . . , 𝑐0.

Define the polynomials

𝑝2(𝑦1, . . . , 𝑦𝑛) := 1−
𝑠−1∏︁
𝑗=0

(1− (𝑏𝑗 − 𝑒2𝑗(𝑦))) mod 2

and

𝑝3(𝑦1, . . . , 𝑦𝑛) := 1−
𝑡−1∏︁
𝑗=0

(1− (𝑐𝑗 − 𝑒3𝑗(𝑦))
2) mod 3.

Note the degrees of 𝑝2 and 𝑝3 are 𝑂(
√
𝑛). In particular, deg(𝑝2) =

𝑠−1∑︁
𝑗=0

2𝑗 = 2𝑠 − 1

and deg(𝑝3) =
𝑡−1∑︁
𝑗=0

(2 · 3𝑗) = 2(3𝑡 − 1)/2 = 3𝑡 − 1.

We observe a few properties of the polynomials 𝑝2 and 𝑝3:

Proposition 7.3.1 For all 𝑎 ∈ {0, 1}𝑛, 𝑝2(𝑎) ≡ 0 mod 2 if and only if the binary

representation of
∑︁
𝑖

𝑎𝑖 equals 𝑏𝑠−1 · · · 𝑏0 in the last 𝑠 bits. Analogously, 𝑝3(𝑎) ∈

{0, 1} mod 3, and 𝑝3(𝑎) ≡ 0 mod 3 if and only if the ternary representation of
∑︁
𝑖

𝑎𝑖

equals 𝑐𝑡−1 · · · 𝑐0 in the last 𝑡 trits.

Proof. We prove the proposition for 𝑝3; the case of 𝑝2 is analogous. Let 𝑎 ∈

{0, 1}𝑛. Each difference (𝑐𝑗 − 𝑒3𝑗(𝑎))
2 is either 0 or 1 modulo 3, and it is 0 if and only

if 𝑐𝑗 = 𝑒3𝑗(𝑎). Thus the product
𝑡−1∏︁
𝑗=0

(1−(𝑐𝑗−𝑒3𝑗(𝑎))2) equals 1 if and only if 𝑐𝑗 = 𝑒3𝑗(𝑎)

114

for all 𝑗 = 0, . . . , 𝑡− 1, hence 𝑝3(𝑎) ≡ 0 mod 3 if and only if 𝑐𝑗 ≡ 𝑒3𝑗(𝑎) mod 3 for all

𝑗 = 0, . . . , 𝑡−1. Recalling that (𝑒3𝑗(𝑎) mod 3) equals the 𝑗-th trit of
∑︁
𝑖

𝑎𝑖, the result

follows. □

We note that in general, working modulo a prime 𝑞, we may construct a polynomial

with degree (𝑞𝑡 − 1) of the form

𝑝𝑞(𝑦1, . . . , 𝑦𝑛) = 1−
𝑡−1∏︁
𝑗=0

(1− (𝑐𝑗 − 𝑒𝑞𝑗(𝑦))
𝑞−1). (7.1)

By the above proposition, it follows that for all 𝑎 ∈ {0, 1}𝑛,

𝑝2(𝑎) ≡ 0 mod 2 ⇐⇒
∑︁
𝑖

𝑎𝑖 ≡ 𝑇 mod 2𝑠

and

𝑝3(𝑦) ≡ 0 mod 3 ⇐⇒
∑︁
𝑖

𝑎𝑖 ≡ 𝑇 mod 3𝑡.

Since
∑︁
𝑖

𝑎𝑖 and 𝑇 are both in {0, . . . , 𝑛} and 2𝑠 ·3𝑡 > 𝑛, by the Chinese Remainder

Theorem we have

∑︁
𝑖

𝑎𝑖 = 𝑇 ⇐⇒ (
∑︁
𝑖

𝑎𝑖 ≡ 𝑇 mod 2𝑠) ∧ (
∑︁
𝑖

𝑎𝑖 ≡ 𝑇 mod 3𝑡)

⇐⇒ (𝑝2(𝑦) ≡ 0 mod 2) ∧ (𝑝3(𝑦) ≡ 0 mod 3)

⇐⇒ 3𝑝2(𝑦) + 2𝑝3(𝑦) ≡ 0 mod 6.

Thus 3𝑝2(𝑦) + 2𝑝3(𝑦) is a polynomial of degree 𝑂(
√
𝑛) which equals 0 mod 6 if and

only if
∑︁
𝑖

𝑦𝑖 = 𝑇 . This completes the proof of Theorem 7.3.2. □

We now proceed with the proof of Theorem 7.3.1.

Proof. Let 𝑓 be a symmetric function and let 𝑔 : {0, 1, . . . , 𝑛} → {0, 1} be its

companion function. That is, for every x, 𝑓(x) = 𝑔(|x|1).

The output gate will be a Mod5 gate that

• (a) sums over possible choices of 𝑇 ∈ {0, 1, . . . , 𝑛} such that 𝑔(𝑇) = 1 and

115

• (b) sums over all ways to partition 𝑇 into a sum of 𝑡 = ⌈𝑛1/3⌉ parts 𝑇1, . . . , 𝑇𝑡 ∈

{0, 1, . . . , 𝑇}.

There are 2𝑂(𝑛1/3 log𝑛) choices over (a) and (b). We associate each part 𝑇𝑖 with a

disjoint set 𝑆𝑖 of at most ⌈𝑛2/3⌉ variables from the input. For each of the choices from

(a) and (b), we wish to verify that, for all 𝑖 = 1, . . . , 𝑡, the sum of all variables in 𝑆𝑖

equals 𝑇𝑖. Note that there is at most one choice from (a) and from (b) that could

possibly be consistent with the given input, so we can use a modulo-5 sum, which we

denote by ΣMod5 (not just a Mod5 gate) to sum over these choices. This modulo-5

sum will always be either 0 or 1 modulo 5.

By our construction of EMaj polynomials, each sum over the set 𝑆𝑖 of 𝑛2/3 variables

can be checked with a Mod6 gate of 2𝑂(𝑛1/3) fan-in, where each input to the Mod6

gate is the output of an And of fan-in 𝑂(𝑛1/3). Putting these Mod6 ∘ And circuits

below each wire of the ΣMod5, at this point, we have a ΣMod5 of 2𝑂(𝑛1/3 log𝑛) Ands

of fan-in 𝑂(𝑛1/3) of Mod6 of fan-in 2𝑂(𝑛1/3) of Ands of fan-in 𝑂(𝑛1/3).

To eliminate the And gates, we apply Proposition 7.2.2, yielding that an And of

𝑓 Mod𝑞 gates can be represented by a ΣMod𝑝 of 𝑂(𝑞𝑓) Mod𝑞 gates, as long as

gcd(𝑝, 𝑞) = 1. In particular, for the “middle” Ands we set 𝑝 = 5 and 𝑞 = 6, and

for the “bottom” Ands we set 𝑝 = 6 and 𝑞 = 5. We obtain a ΣMod5 of 2𝑂(𝑛1/3 log𝑛)

Mod6 of fan-in 2𝑂(𝑛1/3) of Mod5 of fan-in 𝑂(𝑛1/3). □

The above construction has several interesting corollaries; here is one.

Corollary 7.3.1 Every circuit of the form Mod5 ∘ Sym of size 2𝑂(𝑛1/3 log𝑛) can be

simulated by a depth-3 Mod5 ∘ Mod6 ∘ Mod5 circuit of size 2𝑂(𝑛1/3 log𝑛).

Proof. We simply replace each Sym gate (which takes 𝑛 inputs) in the Mod5∘Sym

circuit with a modulo-5 sum of Mod6 ∘ Mod5 as in the previous theorem. □

We are now ready to generalize to Theorem 7.1.1.

Reminder of Theorem 7.1.1 For every 𝜀 > 0, there is a modulus 𝑚 ≤ (1/𝜀)2/𝜀

such that every symmetric function on 𝑛 bits can be computed by depth-3 Mod𝑚

116

circuits of exp(𝑂(𝑛𝜀)) size. In fact, the circuits have the form Mod𝑝1 ∘ Mod𝑝2···𝑝𝑟 ∘

Mod𝑝1, where 𝑝1, . . . , 𝑝𝑟 are distinct primes.

Proof. Let 𝜀 > 0, and let 𝑓 be a symmetric function. Take 𝑘 := ⌊1 + 1/𝜀⌋, let 𝑚

be the product of the first 𝑘 primes, and let 𝑚′ = 𝑚/2.

We use a similar construction as in Theorem 7.3.1 to get a Mod2 ∘Mod𝑚′ ∘Mod2

circuit for 𝑓 .

The differences are that we partition the target 𝑇 ∈ {0, 1, . . . , 𝑛} into a sum of ⌊𝑛1/𝑘⌋

parts where each part is over 𝑣 := 𝑛1−1/𝑘 variables, and by using 𝑘− 1 primes instead

of two, we can obtain a polynomial for EMaj on 𝑣 variables of degree 𝑂(𝑣1/(𝑘−1)) ≤

𝑂(𝑛1/𝑘) in an analogous way.

More precisely, let 𝑇 ′ ∈ {0, 1, . . . , 𝑣} be a target value. For the first 𝑘 − 1 odd

primes 𝑞1, . . . , 𝑞𝑘−1, we take 𝑘 − 1 polynomials 𝑝𝑞1(𝑥), . . . , 𝑝𝑞𝑘−1
(𝑥) as defined in (7.1)

such that each 𝑝𝑞𝑖(𝑥) has degree (𝑞𝑖)
𝑡𝑖 − 1, where the 𝑡𝑖 are chosen such that for all

𝑖 ∈ [𝑘],

• (𝑞𝑖)
𝑡𝑖 = Θ(𝑣1/(𝑘−1)),

• 𝑇 ′ ≤ 𝑣 <
∏︁
𝑖

(𝑞𝑖)
𝑡𝑖 , and

• for all 𝑎 ∈ {0, 1}𝑣 we have

𝑝𝑞𝑖(𝑎) = 0 mod 𝑞𝑖 ⇐⇒
∑︁
𝑖

𝑎𝑖 ≡ 𝑇 ′ mod (𝑞𝑖)
𝑡𝑖 .

By the Chinese Remainder Theorem, and similar reasoning as in Theorem 7.3.1,

there are fixed coefficients 𝑀𝑖 ∈ [𝑚′] such that

𝑘−1∑︁
𝑖=1

𝑀𝑖 · 𝑝𝑞𝑖(𝑎) ≡ 0 mod 𝑚′ ⇐⇒
𝑘−1⋀︁
𝑖=1

[𝑝𝑞𝑖(𝑎) ≡ 0 mod 𝑞𝑖] ⇐⇒
∑︁
𝑖

𝑎𝑖 = 𝑇 ′.

Thus we have a polynomial of degree 𝑂(𝑣1/(𝑘−1)) that vanishes modulo 𝑚′ precisely

when the sum of 𝑣 variables equals the target 𝑇 ′. Naturally we might write this

polynomial as a Mod𝑚′ ∘And circuit of exp(�̃�(𝑣1/(𝑘−1))) size; by replacing each And

117

with a modulo-𝑚′ sum of Mod2 gates (Proposition 7.2.2), we can express it as a

Mod𝑚′ ∘ Mod2 circuit. Our final circuit has the form Mod2 ∘ Mod𝑚′ ∘ Mod2 and

size exp(�̃�(𝑛1/𝑘)) ≤ exp(𝑂(𝑛𝜀)). □

7.3.1 Size-Depth Tradeoff with CC0

Allowing depth 𝑑 circuits for 𝑑 > 3, the size of the above construction can be improved

as a function of the number of distinct primes 𝑟 in the modulus. Here we only

briefly describe the construction, as the size bound will be improved significantly (as

a function of 𝑑 and 𝑟) in the following section.

Reminder of Theorem 7.1.2 Let 𝑑 ≥ 3 be an integer, and let 𝑚 be a product of

𝑟 ≥ 2 distinct primes. Then every symmetric function on 𝑛 bits can be computed by

depth-𝑑 Mod𝑚 circuits of size exp(�̃�(𝑛1/(𝑟+𝑑−3))).

Proof. Let 𝑝 and 𝑞 be the smallest prime factors of 𝑚. We prove by induction

on 𝑑 that there are circuits of size exp(𝑂(𝑛1/(𝑟+𝑑−3) log 𝑛)), and we prove additionally

that the output gate is a Mod𝑝 gate when 𝑑 is odd and a Mod𝑞 gate when 𝑑 is even.

For 𝑑 = 3, we use the construction of Theorem 7.1.1 to obtain a Mod𝑝 ∘Mod𝑚/𝑝 ∘

Mod𝑝 circuit of depth 3 and size exp(𝑂(𝑛1/𝑟 log 𝑛)).

For the inductive step, we proceed similarly to the proof of Theorem 7.1.1, except

that we use a Mod𝑝 or Mod𝑞 gate as the output gate (depending on the parity of 𝑑).

We partition the target 𝑇 into a sum of 𝑡 = ⌈𝑛1/(𝑟+𝑑−3)⌉ parts, where each part con-

tains at most ⌈𝑛(𝑟+𝑑−4)/(𝑟+𝑑−3)⌉ variables, and our circuit sums over all exp(𝑂(𝑡 log 𝑛))

choices for the number of true variables in each part. Since EMaj is a symmetric

function, we can inductively compute each EMaj on ⌈𝑛(𝑟+𝑑−4)/(𝑟+𝑑−3)⌉ variables with

a circuit of depth 𝑑 − 1, as guaranteed by the inductive hypothesis. These circuits

have size

exp(𝑂((𝑛(𝑟+𝑑−4)/(𝑟+𝑑−3))1/(𝑟+𝑑−4) log 𝑛)) ≤ exp(𝑂(𝑛1/(𝑟+𝑑−3) log 𝑛)),

and their output gates have fan-in exp(𝑂(𝑛1/(𝑟+𝑑−3) log 𝑛)). WLOG assume 𝑑 is odd.

118

Then the depth-(𝑑− 1) circuits for EMaj described above have the form

Mod𝑞 ∘ · · · ∘ Mod𝑝 ∘ Mod𝑚/𝑝 ∘ Mod𝑝,

and our entire circuit has the form

Mod𝑝 ∘ And ∘ Mod𝑞 ∘ · · · ∘ Mod𝑝 ∘ Mod𝑚/𝑝 ∘ Mod𝑝,

where the Ands have fan-in 𝑡. As before, each And ∘ Mod𝑞 can be replaced by a

ΣMod𝑝 ∘ Mod𝑞 gates using Proposition 7.2.2, which only increases the circuit size

by a factor of 2𝑂(𝑡).

Our final circuit has depth 𝑑 and size exp(𝑂(𝑛1/(𝑟+𝑑−3) log 𝑛)). □

A Better Dependence on Depth and Modulus. We can give a CC0 circuit

construction with a better asymptotic tradeoff (in the double-exponent). We will

keep the description of this construction brief and to the point, as its size will be

further improved (replaced by better constants) in the next section, using Or and

And gates.

Reminder of Theorem 7.1.3 There is a universal constant 𝑐 ≥ 1 such that, for

all sufficiently large depths 𝑑, and 𝑚 which is the product of the first 𝑟 prime factors,

every symmetric function can be computed by a Mod𝑚 gate circuit of depth 𝑑 and

size exp(𝑂(𝑛𝑐/((𝑑−𝑐)(𝑟−1)))).

Proof. First, we recall that every symmetric function 𝑓 on 𝑛 variables can be

expressed as a Maj of 𝑂(𝑛) Maj gates over the 𝑛 variables (see for example [20] for

a reference). Thus it suffices to give a circuit for Maj.

Allender and Koucky [4, Theorem 3.8] give a downward self-reduction for the Maj

function: they prove that there is a universal constant 𝑎 ≥ 1 such that for every

𝑘 ≥ 1, the Maj function on 𝑛 bits can be computed by a TC0 circuit of depth at

most 𝑎𝑘 where each Maj gate has fan-in at most 𝑂(𝑛1/𝑘). Applying these circuits to

119

the depth-2 TC0 circuits described in the previous paragraph, we obtain an analogous

circuit of depth 2𝑎𝑘 for any given symmetric function 𝑓 .

Replace each Maj gate of fan-in at most 𝑂(𝑛1/𝑘) with a depth-3 Mod𝑚 circuit of

size at most

exp(�̃�(𝑛1/(𝑘(𝑟−1)))),

as provided by Theorem 7.1.2. (Note that each Not gate can always be replaced by

a single Mod𝑚 gate, if we do not want to allow Not gates in our CC0 circuit.) This

results in a circuit of depth 6𝑎𝑘 and size

exp(�̃�(𝑛1/(𝑘(𝑟−1)))) ≤ exp(�̃�(𝑛1/(𝑘(𝑟−1)))).

Thus for depths 𝑑 = 6𝑎𝑘 where 𝑘 is a positive integer, the size bound is at most

exp(𝑛6𝑎/(𝑑(𝑟−1))). For depths 𝑑 that are not divisible by 6𝑎, we can simply use

the construction for 𝑑′ = 6𝑎𝑘 where 𝑑′ < 𝑑 < 6𝑎(𝑘 + 1), which has size at most

exp(𝑛6𝑎/(𝑑′(𝑟−1))) < exp(𝑛6𝑎/((𝑑−6𝑎)(𝑟−1))). □

The above construction is not useful for 𝑑 < 6 and small 𝑟, which are of interest.

In the next section, we will show that much better constants are obtainable in the

ACC0 setting.

7.4 Size-Depth Tradeoff With ACC0

We now turn to showing how adding And and Or gates can help improve the circuits

even further. We begin with a result using the concrete modulus 42.

Theorem 7.4.1 For every symmetric function 𝑓 on 𝑛 inputs and every depth 𝑑 with

𝑑 ≡ 2 mod 6, there is an AC0[42] circuit of depth 𝑑 and size exp(�̃�(𝑛
6

13(𝑑−2))) comput-

ing 𝑓 .

Observe that, for sufficiently large 𝑑, the circuit size of Theorem 7.4.1 already

drops below Smolensky’s AC0[𝑝𝑘] depth-𝑑 lower bound of exp(Ω(𝑛1/(2𝑑))) size [98] for

computing Mod𝑞 when 𝑔𝑐𝑑(𝑝, 𝑞) = 1.

120

We build on the results of Oliveira et al. [85] for computing symmetric functions in

AC0[2]. At a high level, we note that every symmetric function can be written as an

Or of And of (partial) functions of the form 𝐷𝑖,𝑗, where

𝐷𝑖,𝑗(x) = 1 if |x|1 = 𝑖, and

𝐷𝑖,𝑗(x) = 0 if |x|1 = 𝑗,

recalling that |x|1 is the number of 1’s in x. Note that 𝐷𝑖,𝑗 could have arbitrary

behavior on any other Boolean inputs.

When |𝑖 − 𝑗| is large, the function 𝐷𝑖,𝑗 can be simulated by the standard Coin

Problem, for which there are known AC0 circuits (see Section 7.2). When |𝑖 − 𝑗| is

small, we give a new construction of AC0[42] circuits for 𝐷𝑖,𝑗.

We will utilize arithmetic circuits for elementary symmetric polynomials. To that

end, the following lemma shows how to generically translate low-depth arithmetic

circuits over F𝑝 into AC0[𝑝(𝑝 − 1)] circuits, in a way that only increases the circuit

depth by a 3/2 multiplicative factor. (Getting some constant factor increase is not

too difficult; Agrawal, Allender, and Datta [1] first showed a correspondence between

ACC0 and arithmetic circuits over finite fields. Their representation of field elements

in Boolean circuits does not preserve depth as well as ours, however.)

Lemma 7.4.1 Let 𝑝 be prime, and let 𝐶 be an arithmetic circuit over F𝑝 of size 𝑠

and depth 2𝑑 (with alternating layers of + and × gates, with + at the output) on 𝑛

inputs, such that for every x ∈ {0, 1}𝑛, 𝐶(x) ∈ {0, 1}. Then 𝐶 is equivalent to an

AC0[𝑝(𝑝− 1)] circuit 𝐶 ′ of size 𝑂(𝑠 · 𝑝) and depth 3𝑑.

Proof. We represent an element 𝑥 of F𝑝 in unary, by 𝑝 indicator bits

𝑏0(𝑥), 𝑏1(𝑥), . . . , 𝑏𝑝−1(𝑥),

where 𝑏0(𝑥) = 0 iff 𝑥 = 0, and for 𝑖 ̸= 0, we let 𝑏𝑖(𝑥) = 1 iff 𝑥 = 𝑖. (We treat the 0-th

indicator bit as a special case to make later constructions easier.) We now obtain 𝐶 ′

121

by replacing each gate in 𝐶 with a small AC0[𝑝(𝑝− 1)] gadget circuit.

For each addition gate of 𝐶 computing

𝑥 =
𝑘∑︁

𝑗=1

𝑥𝑗,

we replace that gate with 𝑝 parallel Mod𝑝 gates, so that

𝑏𝑖(𝑥) = 1 ⇐⇒ (𝑝− 𝑖) +
𝑘∑︁

𝑗=1

𝑝−1∑︁
𝑖′=1

𝑖′ · 𝑏𝑖′(𝑥𝑗) ≡ 0 mod 𝑝.

(As a special case, we output the negation of the right hand side in the case of 𝑏0(𝑥).)

To see why this works, we observe that the inner sum computes 𝑥𝑗, and so the outer

sum computes 𝑥. Now 𝑥+ (𝑝− 𝑖) ≡ 0 mod 𝑝 precisely when 𝑥 = 𝑖.

Take 𝑔 to be a generator of the multiplicative group F*
𝑝 of F𝑝, and let log𝑔(𝑛) denote

the discrete logarithm base 𝑔 in F𝑝 (i.e., 𝑔log𝑔(𝑛) = 𝑛 mod 𝑝). For each multiplication

gate of 𝐶 computing

𝑥 =
𝑘∏︁

𝑗=1

𝑥𝑗,

we replace that gate with an And gate placed in parallel with 𝑝− 1 And ∘ Mod𝑝−1

circuits, implementing the conditions

𝑏0(𝑥) =
𝑘⋀︁

𝑗=1

𝑏0(𝑥𝑗),

and for 𝑖 ̸= 0,

𝑏𝑖(𝑥) = 𝐺𝑖 ∧
𝑘⋀︁

𝑗=1

𝑏0(𝑥𝑗).

where 𝐺𝑖 is a Mod𝑝−1 gate such that

𝐺𝑖 = 1 ⇐⇒ (𝑝− log𝑔(𝑖)) +
𝑘∑︁

𝑗=1

𝑝−1∑︁
𝑖′=2

𝑏𝑖′(𝑥𝑗) · log𝑔(𝑖′) ≡ 0 mod 𝑝− 1.

To see why this works, we observe that the inner sum computes the discrete logarithm

122

of 𝑥𝑗 (for the same reason that the inner sum in the addition case computes 𝑥𝑗). Since

𝑥 =
∏︀
𝑥𝑗, we have (for non-zero 𝑥) log𝑔 𝑥 =

∑︀
log𝑔 𝑥𝑗, so the outer sum computes

the discrete logarithm of 𝑥. Now (log𝑔 𝑥) + (𝑝− log𝑔 𝑖) ≡ 0 mod 𝑝− 1 precisely when

𝑥 = 𝑖.

Finally, we take the output wire of 𝐶 ′ to be the negation of the 𝑏0 wire from the

output gate of 𝐶. □

We note that as a special case, an arithmetic circuit over F2 can be viewed directly

as an AC0[2] circuit (with the same size and depth), since an element of F2 is simply

a bit, addition in F2 is Mod2, and multiplication is And. Additionally, when 𝑝 − 1

is not square-free, we can improve the modulus in the circuit above.

Lemma 7.4.2 Let 𝑝 be prime, and let 𝐶 be an arithmetic circuit over F𝑝 of size 𝑠

and depth 2𝑑 (with alternating layers of + and × gates, with + at the output) on 𝑛

inputs, such that for every x ∈ {0, 1}𝑛, 𝐶(x) ∈ {0, 1}. Then 𝐶 is equivalent to an

AC0[𝑝𝑚] circuit of size 𝑂((𝑠𝑝)𝑝−1) and depth 3𝑑, where 𝑚 is the product of the distinct

prime factors of 𝑝− 1.

Proof. We start with the circuit 𝐶 ′ given by Lemma 7.4.1. We now use The-

orem 7.2.1 (Lucas) and the Chinese Remainder Theorem to simulate each Mod𝑝−1

gate of fan-in 𝑓 using an And ∘ Mod𝑚 ∘ And, as follows. We observe that

𝑓∑︁
𝑖=1

𝑦𝑖 ≡ 0 mod 𝑝− 1 ⇐⇒
⋀︁
𝑞

⋀︁
𝑘

[︃∑︁
𝑆

∏︁
𝑖∈𝑆

𝑦𝑖 ≡ 0 mod 𝑞

]︃
, (7.2)

where the outermost And ranges over all primes 𝑞 dividing 𝑝 − 1, the inner And

ranges over all 𝑘 ≥ 0 such that 𝑞𝑘 (strictly) divides 𝑝− 1, and the summation ranges

over all subsets 𝑆 ⊆ [𝑓] of size 𝑞𝑘.

In particular, letting 𝑝− 1 = 𝑞𝑘11 · · · 𝑞𝑘𝑡𝑡 ,
∑︁
𝑖

𝑦𝑖 is divisible by 𝑝− 1 if and only if it

is divisible by 𝑞𝑘𝑖𝑖 for all 𝑖, by the Chinese Remainder Theorem. Theorem 7.2.1 says

we can check that
∑︁
𝑖

𝑦𝑖 is divisible by 𝑞𝑘𝑖𝑖 , by checking that
(︂∑︀

𝑖 𝑦𝑖

𝑞𝑗𝑖

)︂
is divisible by

𝑞, for all 𝑗 = 0, . . . , 𝑘𝑖 − 1. Equation (7.2) is checking precisely these conditions.

123

For each 𝑞, 𝑘, the condition in square brackets is a homogeneous polynomial of

degree at most 𝑝−1, and the degree of the polynomial is different for each choice of 𝑞

and 𝑘. Therefore the total number of monomials over all such polynomials is at most

𝑝−1∑︁
𝑖=1

(︂
𝑓

𝑖

)︂
≤ 𝑓𝑝−1.

Each monomial can be thought of an And gate in the natural way. The two outer

Ands (over 𝑞 and 𝑘) can be collapsed into a single And of fan-in at most log(𝑝− 1).

Recall that 𝐶 ′ from Lemma 7.4.1 is of the form

(And ∘ Mod𝑝−1 ∘ Mod𝑝)
𝑑.

Therefore the bottom layer of And gates (the monomials above) have Mod𝑝 gates

as inputs. Applying 7.2.2, each of these Ands can be replaced by a sum (mod 𝑚) of

fan-in 𝑂(𝑝𝑝−1) which is Boolean-valued. These sums can be absorbed into the layer

of Mod𝑚 gates. Since the Mod𝑝−1 gates in 𝐶 ′ can only be inputs to And gates, the

top layer of And gates in our circuit for (7.2) can be absorbed into the And gates

for which they are inputs. Our final circuit has the form

(And ∘ Mod𝑚 ∘ Mod𝑝)
𝑑.

Note the above construction increases the size to at most 𝑂((𝑠𝑝)𝑝−1). □

Putting these results together, we obtain the following:

Theorem 7.4.2 Let 𝑑 be a multiple of 6, let 𝑛 be a natural number, and let 𝛼 ∈ (0, 1].

Set

𝑠 :=

⌈︂
3𝛼 log2 𝑛

7

⌉︂
, 𝑡 :=

⌈︂
2𝛼 log3 𝑛

7

⌉︂
, 𝑢 :=

⌈︂
2𝛼 log7 𝑛

7

⌉︂
,

and 𝑚 := 2𝑠3𝑡7𝑢. Then there is an AC0[42] circuit of depth 𝑑 + 1 and size 2�̃�(𝑛6𝛼/7𝑑)

computing the Mod𝑚 function on 𝑛 inputs, where the output gate is an And gate.

Proof. Applying Lemma 7.2.2, we construct:

124

• arithmetic circuits 𝐶1, 𝐶2, . . . , 𝐶2𝑠 over F2 of depth 𝑑, where 𝐶𝑖 computes the

𝑖-th elementary symmetric polynomial modulo 2,

• arithmetic circuits 𝐷1, 𝐷3, . . . , 𝐷3𝑡 over F3 of depth 2𝑑/3, where 𝐷𝑖 computes

the 𝑖-th elementary symmetric polynomial modulo 3, and

• arithmetic circuits 𝐸1, 𝐸7, . . . , 𝐸7𝑢 over F7 of depth 2𝑑/3, where 𝐸𝑖 computes

the 𝑖-th elementary symmetric polynomial modulo 7,

all of which have size 𝑛𝑂(𝑛6𝛼/7𝑑), given our parameters.

We convert each of the𝐷𝑖 and 𝐸𝑖 into AC0[42] circuits𝐷′
𝑖 and 𝐸 ′

𝑖 using Lemma 7.4.1,

and as previously observed, the 𝐶𝑖 are already AC0[2] circuits.

Finally, from Lemma 7.2.1 and the Chinese Remainder Theorem, all of the 𝐶𝑖(x),

𝐷′
𝑖(x), and 𝐸 ′

𝑖(x) output 1 if and only if |x|1 ≡ 0 mod 𝑚. Our final circuit for Mod𝑚

is obtained by taking the And of all of these circuits. □

We are now ready to prove Theorem 7.4.1.

Proof. Let 𝑑 ≡ 2 mod 6, let 𝑓 be a symmetric function on 𝑛 inputs, and let 𝑔 be

its companion function; that is, for every x, 𝑓(x) = 𝑔(|x|1). We begin with the same

opening move as Oliveira, Santhanam, and Srinivasan [85], observing that

𝑓(x) =
⋁︁

𝑖∈𝑔−1(1)

⋀︁
𝑗 ̸=𝑖

𝐷𝑖,𝑗,

where 𝐷𝑖,𝑗(x) = 1 if |x|1 = 𝑖 and 𝐷𝑖,𝑗(x) = 0 if |x|1 = 𝑗 (and has otherwise arbitrary

behavior). Thus it suffices to construct circuits 𝐶𝑖,𝑗 computing functions consistent

with 𝐷𝑖,𝑗.

When |𝑖− 𝑗| ≥ 𝑛7/13, Lemma 7.2.3 gives an AC0 circuit 𝐶𝑖,𝑗 of depth 𝑑− 1 and size

exp(�̃�(𝑛6/(13(𝑑−2)))) computing 𝐷𝑖,𝑗.

When |𝑖− 𝑗| ≤ 𝑛7/13, we observe that a circuit for Mod𝑚 suffices, with 𝑚 > 𝑛7/13.

We take 𝛼 = 7/13 in Theorem 7.4.2. Then we have a circuit 𝐶 ′
𝑖,𝑗 of depth 𝑑−1 and size

exp(�̃�(𝑛6/(13(𝑑−2)))) computing the Mod𝑚 function on 2𝑛 inputs, where 𝑚 > 𝑛7/13.

125

We now take 𝐶𝑖,𝑗(x) = 𝐶 ′
𝑖,𝑗(x1

𝑚−𝑖0𝑛−𝑚+𝑖). Finally, we set

𝐶 =
⋁︁

𝑖∈𝑔−1(1)

⋀︁
𝑗 ̸=𝑖

𝐶𝑖,𝑗.

We can collapse the output And gates of all of the 𝐶𝑖,𝑗 into the second layer And

gates, so 𝐶 has depth 𝑑 and size exp(�̃�(𝑛6/(13(𝑑−2)))), as desired. □

More generally, for certain 𝑚 which are the product of 𝑟 primes, we can improve

the results of Theorem 7.4.1. Recall from the introducion that we defined a product

𝑚 of primes 𝑞1, . . . , 𝑞𝑟 to be good if every prime factor of 𝜑(𝑚) divides 𝑚, and we

noted that the primorial 𝑚 = 𝑝𝑟#, the product of the first 𝑟 primes, is good.

Reminder of Theorem 7.1.4 Let 𝑚 be a good product of 𝑟 primes. For every sym-

metric function 𝑓 on 𝑛 inputs and every depth 𝑑 ≥ 4 congruent to 1 modulo 3, there

exists an AC0[𝑚] circuit of depth 𝑑 and size exp(�̃�(𝑛3/((𝑟+3)(𝑑−1)−3))) computing 𝑓 .

Proof. Let

𝑚 =
𝑟∏︁

𝑎=1

𝑝𝑎

be a good product of 𝑟 primes. For each 𝑎 ∈ [𝑟], let 𝑠𝑎 =
⌈︀
𝛼 log𝑝𝑎 𝑛

⌉︀
for some 𝛼

to be defined later. By Lemma 7.2.2, there are arithmetic circuits 𝐶𝑎,𝑏 over F𝑝𝑎 of

depth (2/3)(𝑑 − 1) and size 𝑛𝑂(𝑛3𝛼/(𝑑−1)) computing the 𝑝𝑏𝑎-th elementary symmetric

polynomial in 2𝑛 inputs over F𝑝𝑎 . By Lemma 7.4.2, we can convert these into AC0[𝑚]

circuits 𝐶 ′
𝑎,𝑏 of depth 𝑑 − 1 and size 2�̃�(𝑛3𝛼/(𝑑−1)). When |𝑖 − 𝑗| ≤ 𝑛𝛼𝑟, 𝑖 ̸≡ 𝑗 mod 𝑝𝑠𝑎𝑎

for at least one 𝑎 by the Chinese Remainder Theorem, so we can construct a circuit

𝐸𝑖,𝑗 computing 𝐷𝑖,𝑗 by taking

𝐸𝑖,𝑗(x) = ¬𝐶 ′
𝑎,𝑏(x, 0

𝑝𝑠𝑎𝑎 −𝑗1𝑛+𝑗−𝑝𝑠𝑎𝑎)

for some pair (𝑎, 𝑏). When |𝑖 − 𝑗| ≥ 𝑛𝛼𝑟, we use Lemma 7.2.3 to get a circuit 𝐸𝑖,𝑗

of depth 𝑑 − 1 and size exp
(︁
�̃�
(︀
𝑛(1−𝛼𝑟)/(𝑑−2)

)︀)︁
computing 𝐷𝑖,𝑗. All of the 𝐸𝑖,𝑗 have

And gates as output gates, so we take 𝛼 =
𝑑− 1

(𝑟 + 3)(𝑑− 1)− 3
to balance the sizes of

the two circuit constructions and complete the proof as per Theorem 7.4.1. □

126

It is worth noting that when 2 | 𝑚, we can improve this construction slightly. When

2 | 𝑚 (and 6 | 𝑑−1), the (𝑟+3)(𝑑−1)−3 in the denominator of the double exponent

instead becomes
(︂
𝑟 +

7

2

)︂
(𝑑− 1)− 3.

7.5 Sym ∘ And Hypothesis

Let us recall the Sym∘And Hypothesis and its consequence stated in the introduction.

Reminder of Hypothesis 7.1.1 There are constants 𝑐, 𝑘 > 1 such that for suffi-

ciently large 𝑛, there is a function 𝑓 : {0, 1}𝑛 → {0, 1} computable by TC0 circuits of

depth 𝑐 with at most �̃�(𝑛) gates where each gate has fan-in �̃�(𝑛), such that 𝑓 does

not have an exp(𝑂(𝑛1/𝑘)) size Sym ∘ And circuit.

Reminder of Theorem 7.1.5 Assuming the Sym∘And Hypothesis (Hypothesis 7.1.1),

there is a fixed 𝛼 > 0 such that for every 𝑚 and 𝑑, every depth-𝑑 ACC0[𝑚] circuit com-

puting the Maj function on 𝑛 inputs requires size at least exp
(︀
𝑛

𝛼
𝑟𝑑

)︀
for sufficiently

large 𝑛, where 𝑟 is the number of distinct prime factors of 𝑚.

We prove the contrapositive. We start with the negation of the theorem’s conclu-

sion:

Suppose for every 𝛼 > 0, there is some modulus 𝑚 which is a product of

𝑟 primes, along with some depth 𝑑, such that Maj can be computed by a

depth-𝑑 ACC0[𝑚] circuit of size exp
(︀
𝑂
(︀
𝑛

𝛼
𝑟𝑑

)︀)︀
.

Assuming the above, we will refute the Sym∘And Hypothesis: we will show for all

𝑐, 𝑘 > 1 and every function 𝑓 computable by the appropriate depth-𝑐 TC0 circuits, 𝑓

has an exp
(︀
𝑂
(︀
𝑛1/𝑘

)︀)︀
size Sym ∘ And circuit.

Let 𝑐, 𝑘 > 1 be arbitrary. Let 𝐶 be a TC0 circuit 𝐶 with depth 𝑐 and �̃�(𝑛) gates

each of fan-in at most �̃�(𝑛). Suppose we substitute each Maj gate of 𝐶 with a copy

of the assumed ACC0[𝑚] circuit. We obtain a ACC0[𝑚] circuit 𝐶 ′ of depth at most

𝑐 · 𝑑 and of size exp(�̃�(𝑛
𝛼
𝑟𝑑)) such that 𝐶 ′ is equivalent to 𝐶.

127

Chen and Papakonstantinou [39] prove that for every depth-𝑑′ size-𝑠 circuit 𝐷 over

And, Or, and Mod𝑚 gates, where 𝑚 is the product of 𝑟 distinct primes, 𝐷 is

equivalent to a Sym ∘ And circuit 𝐷′ of size at most

𝑆 ′(𝑠,𝑚, 𝑟, 𝑑′) = 2(𝑚 log 𝑠)10𝑟𝑑
′

.

Applying their reduction to our 𝐶 ′, we obtain a Sym ∘ And circuit 𝐶 ′′ of size

exp(�̃�(𝑛10𝛼𝑐)) that is equivalent to our original circuit 𝐶. For all 𝛼 < 1/(10𝑐𝑘), we

obtain a Sym ∘ And circuit equivalent to 𝐶 with size exp(𝑂(𝑛1/𝑘)).

7.6 Conclusion

We believe our work demonstrates that CC0 circuits are not as weak as conventional

wisdom anticipates, even at depth three. We hope that researchers seriously consider

(possibly refuting) the Sym ∘ And hypothesis, as it stands in the way of obtaining

significantly smaller CC0 and ACC0 circuits for symmetric functions.

A natural next step would be to explore how much further our constructions can be

pushed beyond symmetric functions. Our Theorem 7.1.5 already demonstrates that

TC0 circuits with linearly many gates and linear fan-in can be non-trivially simulated

with CC0 circuits in subexponential size. Another question is whether NC1 circuits or

Boolean formulas can be simulated similarly. For another example, it is well-known

that time 𝑡 and space 𝑠 computations can be simulated with depth-3 AC0 circuits

of size 2𝑂(
√
𝑡·𝑠); this follows from efficient simulations in the polynomial hierarchy of

space-bounded computation [80]. Could the size of this construction be improved,

using Mod𝑚 gates? If such an improved circuit could be constructed in a uniform

way, it would likely imply new time-space lower bounds for decision problems in PP

or the counting hierarchy [5]. However, even a non-uniform construction would be

very interesting.

128

Bibliography

[1] Manindra Agrawal, Eric Allender, and Samir Datta. On TC0, AC0, and arith-
metic circuits. J. Comput. Syst. Sci., 60(2):395–421, 2000.

[2] Miklós Ajtai. Σ1
1-formulae on finite structures. Annals of pure and applied logic,

24(1):1–48, 1983.

[3] Eric Allender and Vivek Gore. A uniform circuit lower bound for the permanent.
SIAM J. Comput., 23(5):1026–1049, 1994.

[4] Eric Allender and Michal Koucký. Amplifying lower bounds by means of self-
reducibility. JACM, 57(3), 2010.

[5] Eric Allender, Michal Koucký, Detlef Ronneburger, Sambuddha Roy, and
V. Vinay. Time-space tradeoffs in the counting hierarchy. In Proceedings of
the 16th Annual IEEE Conference on Computational Complexity, Chicago, Illi-
nois, USA, June 18-21, 2001, pages 295–302. IEEE Computer Society, 2001.

[6] Shaull Almagor, Brynmor Chapman, Mehran Hosseini, Joël Ouaknine, and
James Worrell. Effective divergence analysis for linear recurrence sequences.
In Proceedings of the 29th International Conference on Concurrency Theory
(CONCUR 2018), LIPIcs 118. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2018.

[7] Ingo Althöfer. On sparse approximations to randomized strategies and convex
combinations. Linear Algebra and its Applications, 199:339–355, 1994.

[8] Kazuyuki Amano. Bounds on the size of small depth circuits for approximat-
ing majority. In Automata, Languages and Programming, 36th International
Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part
I, volume 5555 of Lecture Notes in Computer Science, pages 59–70. Springer,
2009.

[9] Kazuyuki Amano. On the size of depth-two threshold circuits for the inner prod-
uct mod 2 function. In Alberto Leporati, Carlos Martín-Vide, Dana Shapira,
and Claudio Zandron, editors, Language and Automata Theory and Applica-
tions, pages 235–247, Cham, 2020. Springer International Publishing.

129

[10] Sanjeev Arora and Boaz Barak. Computational complexity: A modern approach.
Cambridge University Press, Cambridge, 2009.

[11] James Aspnes, Richard Beigel, Merrick Furst, and Steven Rudich. The expres-
sive power of voting polynomials. Combinatorica, 14(2):135–148, 1994.

[12] Albert Atserias. Distinguishing sat from polynomial-size circuits, through black-
box queries. In 21st Annual IEEE Conference on Computational Complexity
(CCC’06), pages 8–pp. IEEE, 2006.

[13] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential
time has two-prover interactive protocols. Computational complexity, 1(1):3–40,
1991.

[14] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai,
Salil Vadhan, and Ke Yang. On the (im) possibility of obfuscating programs.
In Annual international cryptology conference, pages 1–18. Springer, 2001.

[15] David A. Mix Barrington. Bounded-width polynomial-size branching programs
recognize exactly those languages in NC1. J. Comput. Syst. Sci., 38(1):150–164,
1989. See also STOC’86.

[16] David A. Mix Barrington, Richard Beigel, and Steven Rudich. Representing
Boolean functions as polynomials modulo composite numbers. Comput. Com-
plexity, 4:367–382, 1994.

[17] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On unifor-
mity within 𝑁𝐶1. Journal of Computer and System Sciences, 41, 1990.

[18] David A. Mix Barrington, Howard Straubing, and Denis Thérien. Non-uniform
automata over groups. Inf. Comput., 89(2):109–132, 1990.

[19] David A. Mix Barrington and Denis Thérien. Finite monoids and the fine
structure of NC1. J. ACM, 35(4):941–952, 1988. See also STOC’87.

[20] Paul Beame, Erik Brisson, and Richard E. Ladner. The complexity of computing
symmetric functions using threshold circuits. Theor. Comput. Sci., 100(1):253–
265, 1992.

[21] Richard Beigel and Jun Tarui. On ACC. Computational Complexity, pages
350–366, 1994.

[22] Nayantara Bhatnagar, Parikshit Gopalan, and Richard J. Lipton. Symmetric
polynomials over zm and simultaneous communication protocols. J. Comput.
Syst. Sci., 72(2):252–285, 2006.

[23] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. Journal of the ACM (JACM), 65(6):39, 2018.

130

[24] Manuel Blum and Sampath Kannan. Designing programs that check their work.
Journal of the ACM (JACM), 42(1):269–291, 1995.

[25] Andrej Bogdanov, Kunal Talwar, and Andrew Wan. Hard instances for satisfi-
ability and quasi-one-way functions. In ICS, pages 290–300, 2010.

[26] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor trac-
ing, and more from indistinguishability obfuscation. Algorithmica, 79(4):1233–
1285, 2017.

[27] Bernd Borchert and Frank Stephan. Looking for an analogue of rice’s theorem
in circuit complexity theory. In Kurt Gödel Colloquium on Computational Logic
and Proof Theory, pages 114–127. Springer, 1997.

[28] Jean Bourgain. Walsh subspaces of 𝐿𝑝-product spaces. Séminaire d’Analyse
fonctionnelle (dit" Maurey-Schwartz"), pages 1–14, 1979.

[29] Nader H Bshouty, Richard Cleve, Ricard Gavalda, Sampath Kannan, and
Christino Tamon. Oracles and queries that are sufficient for exact learning.
Journal of Computer and System Sciences, 52(3):421–433, 1996.

[30] Venkatesan Chakaravarthy and Sambuddha Roy. Finding irrefutable certificates
for 𝑆𝑝

2 via arthur and merlin. In STACS 2008, pages 157–168. IBFI Schloss
Dagstuhl, 2008.

[31] Brynmor Chapman. The gotsman-linial conjecture is false. In Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
692–699. SIAM, 2018.

[32] Brynmor Chapman and R. Ryan Williams. The circuit-input game, natural
proofs, and testing circuits with data. In Proceedings of the 2015 Conference
on Innovations in Theoretical Computer Science, pages 263–270, 2015.

[33] Brynmor Chapman and R. Ryan Williams. Black-box hypotheses and lower
bounds. In 46th International Symposium on Mathematical Foundations of
Computer Science (MFCS 2021). Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, 2021.

[34] Brynmor Chapman and R. Ryan Williams. Smaller acc0 circuits for symmetric
functions. In 13th Innovations in Theoretical Computer Science Conference
(ITCS 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[35] Arkadev Chattopadhyay, Navin Goyal, Pavel Pudlák, and Denis Thérien. Lower
bounds for circuits with MODm gates. In 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2006), 21-24 October 2006, Berkeley,
California, USA, Proceedings, pages 709–718. IEEE Computer Society, 2006.

131

[36] Arkadev Chattopadhyay and Avi Wigderson. Linear systems over composite
moduli. In 50th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2009, pages 43–52. IEEE Computer Society, 2009.

[37] Lijie Chen, Xin Lyu, and R. Ryan Williams. Almost-everywhere circuit lower
bounds from non-trivial derandomization. In 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November
16-19, 2020, pages 1–12. IEEE, 2020.

[38] Ruiwen Chen, Rahul Santhanam, and Srikanth Srinivasan. Average-case lower
bounds and satisfiability algorithms for small threshold circuits. In Proceedings
of the 31st Conference on Computational Complexity, pages 1–35, 2016.

[39] Shiteng Chen and Periklis A. Papakonstantinou. Depth reduction for compos-
ites. SIAM J. Comput., 48(2):668–686, 2019.

[40] Xi Chen, Igor Carboni Oliveira, Rocco A. Servedio, and Li-Yang Tan. Near-
optimal small-depth lower bounds for small distance connectivity. In Proceedings
of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016, pages 612–625. ACM, 2016.

[41] Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings
of the third annual ACM symposium on Theory of computing, pages 151–158,
1971.

[42] Ilias Diakonikolas, Prahladh Harsha, Adam Klivans, Raghu Meka, Prasad
Raghavendra, Rocco A Servedio, and Li-Yang Tan. Bounding the average sen-
sitivity and noise sensitivity of polynomial threshold functions. In Proceedings
of the forty-second ACM symposium on Theory of computing, pages 533–542,
2010.

[43] Ilias Diakonikolas, Prasad Raghavendra, Rocco A Servedio, and Li-Yang Tan.
Average sensitivity and noise sensitivity of polynomial threshold functions.
SIAM Journal on Computing, 43(1):231–253, 2014.

[44] Yuval Filmus, Hamed Hatami, Steven Heilman, Elchanan Mossel, Ryan
O’Donnell, Sushant Sachdeva, Andrew Wan, and Karl Wimmer. Real anal-
ysis in computer science: A collection of open problems. Preprint available at
https://simons. berkeley. edu/sites/default/files/openprobsmerged. pdf, 2014.

[45] Lance Fortnow, Russell Impagliazzo, Valentine Kabanets, and Christopher
Umans. On the complexity of succinct zero-sum games. Computational Com-
plexity, 17(3):353–376, 2008.

[46] Lance Fortnow, Aduri Pavan, and Samik Sengupta. Proving sat does not have
small circuits with an application to the two queries problem. Journal of Com-
puter and System Sciences, 74(3):358–363, 2008.

132

[47] Merrick Furst, James Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13–27, April
1984. See also FOCS’81.

[48] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and
Brent Waters. Candidate indistinguishability obfuscation and functional en-
cryption for all circuits. SIAM Journal on Computing, 45(3):882–929, 2016.

[49] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and
Brent Waters. Hiding secrets in software: A cryptographic approach to program
obfuscation. Communications of the ACM, 59(5):113–120, 2016.

[50] Sally A Goldman and Michael J Kearns. On the complexity of teaching. Journal
of Computer and System Sciences, 50(1):20–31, 1995.

[51] Parikshit Gopalan. Computing with polynomials over composites. PhD thesis,
Georgia Institute of Technology, 2006.

[52] Parikshit Gopalan and Rocco A. Servedio. Learning and lower bounds for ac0
with threshold gates. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 588–601. Springer, 2010.

[53] Craig Gotsman and Nathan Linial. Spectral properties of threshold functions.
Combinatorica, 14(1):35–50, 1994.

[54] Michael D Grigoriadis and Leonid G Khachiyan. A sublinear-time random-
ized approximation algorithm for matrix games. Operations Research Letters,
18(2):53–58, 1995.

[55] Vince Grolmusz and Gábor Tardos. Lower bounds for (MODp-MODm) circuits.
SIAM J. Comput., 29(4):1209–1222, 2000.

[56] Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. If np languages are hard
on the worst-case, then it is easy to find their hard instances. Computational
Complexity, 16(4):412–441, 2007.

[57] Kristoffer Arnsfelt Hansen. On modular counting with polynomials. In 21st
Annual IEEE Conference on Computational Complexity (CCC 2006), pages
202–212. IEEE Computer Society, 2006.

[58] Kristoffer Arnsfelt Hansen and Michal Koucký. A new characterization of ACC0
and probabilistic CC0. Comput. Complex., 19(2):211–234, 2010.

[59] Kristoffer Arnsfelt Hansen and Vladimir V. Podolskii. Exact threshold circuits.
In CCC, pages 270–279, 2010.

[60] Prahladh Harsha, Adam Klivans, and Raghu Meka. Bounding the sensitivity
of polynomial threshold functions. arXiv preprint arXiv:0909.5175, 2009.

133

[61] Johan Håstad. Almost optimal lower bounds for small depth circuits. In STOC,
pages 6–20, 1986.

[62] Lane A. Hemaspaandra and Mayur Thakur. Lower bounds and the hardness of
counting properties. Theoretical computer science, 326(1-3):1–28, 2004.

[63] C. Antony R. Hoare. Quicksort. The computer journal, 5(1):10–16, 1962.

[64] Paweł M Idziak, Piotr Kawałek, and Jacek Krzaczkowski. Complexity of mod-
ular circuits. arXiv preprint arXiv:2106.02947, 2021.

[65] Russell Impagliazzo, Valentine Kabanets, Antonina Kolokolova, Pierre McKen-
zie, and Shadab Romani. Does looking inside a circuit help? In 42nd Interna-
tional Symposium on Mathematical Foundations of Computer Science (MFCS
2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[66] Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, vol-
ume 27 of Algorithms and combinatorics. Springer, 2012.

[67] Daniel M. Kane. A structure theorem for poorly anticoncentrated gaussian
chaoses and applications to the study of polynomial threshold functions. In 2012
IEEE 53rd Annual Symposium on Foundations of Computer Science, pages 91–
100. IEEE, 2012.

[68] Daniel M. Kane. The correct exponent for the gotsman-linial conjecture. In
2013 IEEE Conference on Computational Complexity, pages 56–64. IEEE, 2013.

[69] Daniel M. Kane and R. Ryan Williams. Super-linear gate and super-quadratic
wire lower bounds for depth-two and depth-three threshold circuits. In Pro-
ceedings of the forty-eighth annual ACM symposium on Theory of Computing,
pages 633–643, 2016.

[70] Leonid Anatolevich Levin. Universal sequential search problems. Problemy
peredachi informatsii, 9(3):115–116, 1973.

[71] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits,
fourier transform, and learnability. Journal of the ACM (JACM), 40(3):607–
620, 1993.

[72] Richard Lipton. New directions in testing. Distributed computing and cryptog-
raphy, 2:191–202, 1991.

[73] Richard J Lipton. The P=NP question and Gödel’s lost letter. Springer, 2010.

[74] Richard J Lipton and Neal E Young. Simple strategies for large zero-sum
games with applications to complexity theory. In Proceedings of the twenty-
sixth annual ACM symposium on Theory of computing, pages 734–740, 1994.

134

[75] Edouard Lucas. Sur les congruences des nombres eulériens et des coefficients
différentiels des fonctions trigonométriques suivant un module premier. Bulletin
de la Société Mathématique de France, 6:49–54, 1878.

[76] Marvin Minsky and Seymour Papert. An introduction to computational geom-
etry. Cambridge tiass., HIT, 479:480, 1969.

[77] Ketan D Mulmuley. On p vs. np and geometric complexity theory: Dedicated
to sri ramakrishna. Journal of the ACM (JACM), 58(2):1–26, 2011.

[78] Cody D. Murray and R. Ryan Williams. Circuit lower bounds for nondetermin-
istic quasi-polytime from a new easy witness lemma. SIAM J. Comput., 49(5),
2020.

[79] John Nash. Letter to the united states national security agency.(january 1955).
Available at NSA web site https://www.nsa.gov/news-features/declassified-
documents/nash-letters/assets/files/nash_letters1.pdf, 1955.

[80] V. Nepomnjascii. Rudimentary predicates and Turing calculations. Soviet Math-
ematics - Doklady, 11(6):1462–1465, 1970.

[81] Ilan Newman. Private vs. common random bits in communication complexity.
Information processing letters, 39(2):67–71, 1991.

[82] Ryan O’Donnell. Open problems in analysis of boolean functions. arXiv preprint
arXiv:1204.6447, 2012.

[83] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press,
2014.

[84] Ryan O’Donnell and Karl Wimmer. Approximation by DNF: examples and
counterexamples. In Automata, Languages and Programming, 34th Inter-
national Colloquium, ICALP 2007, Wroclaw, Poland, July 9-13, 2007, Pro-
ceedings, volume 4596 of Lecture Notes in Computer Science, pages 195–206.
Springer, 2007.

[85] Igor Carboni Oliveira, Rahul Santhanam, and Srikanth Srinivasan. Parity helps
to compute majority. In 34th Computational Complexity Conference, CCC
2019, July 18-20, 2019, New Brunswick, NJ, USA, volume 137 of LIPIcs, pages
23:1–23:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[86] Patrick E. O’neil. Hyperplane cuts of an n-cube. Discrete Mathematics,
1(2):193–195, 1971.

[87] Joël Ouaknine and James Worrell. Decision problems for linear recurrence
sequences. In Proceedings of the 6th International Workshop on Reachability
Problems (RP 2012), LNCS 7550. Springer, 2012.

135

[88] Joël Ouaknine and James Worrell. Ultimate positivity is decidable for simple
linear recurrence sequences. In Proceedings of 41st International Colloquium on
Automata, Languages, and Programming (ICALP 2014), LNCS 8573. Springer,
2014.

[89] Ron Patton. Software Testing, 2nd Editon. Sams Publishing, Indianapolis,
2005.

[90] Alexander Razborov. Lower bounds on the size of bounded-depth networks over
the complete basis with logical addition. Mathematical Notes of the Academy
of Sciences of the USSR, 41(4):333–338, 1987.

[91] Alexander A Razborov and Steven Rudich. Natural proofs. Journal of Computer
and System Sciences, 55(1):24–35, 1997.

[92] Henry Gordon Rice. Classes of recursively enumerable sets and their decision
problems. Transactions of the American Mathematical Society, 74(2):358–366,
1953.

[93] Shadab Romani. Succinct representations of Boolean functions and the Circuit-
SAT problem. PhD thesis, Memorial University of Newfoundland, 2016.

[94] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In STOC, pages 475–484. ACM, 2014.

[95] Grant R Schoenebeck and Salil Vadhan. The computational complexity of nash
equilibria in concisely represented games. ACM Transactions on Computation
Theory (TOCT), 4(2):1–50, 2012.

[96] Ayumi Shinohara and Satoru Miyano. Teachability in computational learning.
New Generation Computing, 8(4):337–347, 1991.

[97] Michael Sipser. Borel sets and circuit complexity. In STOC, pages 61–69, 1983.

[98] Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean
circuit complexity. In STOC, pages 77–82, 1987.

[99] Howard Straubing and Denis Thérien. A note on MODp - MODm circuits.
Theory Comput. Syst., 39(5):699–706, 2006.

[100] Denis Thérien. Circuits constructed with MODq gates cannot compute AND
in sublinear size. Comput. Complex., 4:383–388, 1994.

[101] Mark Utting and Bruno Legeard. Practical model-based testing: a tools ap-
proach. Elsevier, 2010.

[102] Emanuele Viola. Randomness buys depth for approximate counting. computa-
tional complexity, 23(3):479–508, 2014.

136

[103] R. Ryan Williams. Nonuniform ACC circuit lower bounds. JACM, 61(1):2,
2014. See also CCC’11.

[104] R. Ryan Williams. New algorithms and lower bounds for circuits with lin-
ear threshold gates. Theory Comput., 14(1):1–25, 2018. Preliminary version in
STOC’14.

[105] Andrew Chi-Chih Yao. On ACC and threshold circuits. In FOCS, pages 619–
627, 1990.

[106] Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure
of complexity. In 18th Annual Symposium on Foundations of Computer Science
(sfcs 1977), pages 222–227. IEEE Computer Society, 1977.

137

