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Abstract

This thesis studies the impact of information and design of services for online plat-
forms in three settings: traffic routing, network games, and competition between
streaming platforms. In the first part of this thesis, Chapters 2 and 3, we study
game play in routing and network games, where it is reasonable to assume agents do
not originally know their payoff functions. Specifically, in Chapter 2 we examine the
outcome of the learning dynamics in traffic routing where the latency functions are
unknown. We show that the combination of selfish routing and learning dynamics
converges to the full-information Wardrop equilibrium, this supports the study of the
Wardrop equilibrium even in settings where information must be learned over time.
In Chapter 3 we use analogous learning dynamics in a different setting, network games
where the agents’ personal utility functions are not known. This may arise in games
of local public goods provision or firm competition. We show that the combination
of best response and learning dynamics converges to the Nash equilibrium.

In the second part of the thesis, Chapter 4, we study the problem of sharing in-
formation in traffic routing. We investigate whether a routing platform, for example
Google Maps or Waze, should share full information, no information, or partial in-
formation. We characterize the optimal information strategy in a two-stage setting,
where the platform is also learning of the road conditions from the users. We then
extend the intuition to an infinite stage setting and find an information scheme that
achieves a lower cost than full information.

In the final chapter of the thesis, we study bundling and pricing strategies in
streaming platforms, for example Netflix or Hulu. We investigate why there are so
many streaming platforms that are succeeding in the market. We first study the
setting where a market leader creates a new product and has a monopoly on the
market. We show in this case it is optimal in some cases for the platform to bundle
their goods. Once another firm enters the market though we show that unbundling
becomes the unique optimal strategy.

Thesis Supervisor: Asuman Ozdaglar
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Every day people, users, all over the world interact with online platforms, e.g. Face-

book, Google Maps, Netflix. Both the users and the platforms have separate aims

of these interactions. For example, Google Maps may aim to manipulate traffic in

order to minimize overall congestion, whereas individual drivers care only about their

own travel times. In these settings users are interacting and learning both about each

other’s strategies and uncertain changing environments. Driven by applications in

traffic routing, network aggregative games, and streaming services, this thesis inves-

tigates the effects of information and incentives on users of these platforms and the

platforms themselves. In particular, the four main chapters are outlined as follows.

Learning Dynamics in Routing Games First, we consider a subclass of congestion

games, traffic routing. Most of the works in the literature assume that the when agents

make decisions they have perfect knowledge of their latency functions and of the other

agents’ strategies. This is however rarely the case and, in practice, agents need to learn

such game primitives from (possibly noisy) observations that they gather over days

of routing through the network. Thus, we study the problem of parametric learning,

where agents know each latency function of the network up to some parameter and

aim at learning these parameters via repeated iterations of routing.

We consider a variant of the repeated nonatomic network routing game where each

agent controls a negligible amount of flow and routes herself selfishly. In our setting

the network has affine stochastic edge latency functions whose slope is unknown
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at the start. We consider a simple process of learning where agents share common

observations of travel times, estimate the unknown edge slope parameters via ordinary

least squares and, at every step, dispatch their flow on the network according to the

Wardrop equilibrium computed with their most recent estimates. We prove that

under these learning dynamics and under minimal assumptions on the users, the flow

in the network converges almost surely to the full information Wardrop equilibrium.

Moreover, the slope parameters of all the edges used in the full information Wardrop

equilibrium are learned almost surely.

Learning Dynamics in Network Games Second, we consider another subclass

of congestion games, network aggregative games. Again, most of the literature in

this area assumes the players have perfect knowledge of their utility functions and of

other agents’ strategies. Since this is not necessarily the case, we consider a repeated

setting, where agents must learn over repeated play of the game.

Specifically, we consider a repeated network aggregative game where agents are

unsure about a parameter that weights their neighbors’ actions in their utility func-

tion. We consider simple learning dynamics where agents iteratively play their best

response, given previous information, and update their estimate of the network weight

parameter according to ordinary least squares. We derive a sufficient condition de-

pendent on the network and on the agents’ utility function to guarantee that, under

these dynamics, the agents’ strategies converge almost surely to the full information

Nash equilibrium. We illustrate our theoretical results on a local public good game

where agents are uncertain about the level of substitutability of their goods.

Optimal Dynamic Information Provision in Traffic Routing In the previ-

ous chapters we consider when information is shared fully between agents. We now

investigate what happens when a central planner can strategically share the infor-

mation. For example, can Google Maps or Waze help mitigate traffic through using

information in the form of route recommendations.

We consider a setting where the central planner aims at minimizing traffic con-

gestion by providing individualized route recommendations to its users. Importantly,

we assume that the planner itself is not informed about the state of the traffic net-

16



work but needs to learn through users’ experimentation, and users follow the received

recommendation only if this is in their best interest given their past experiences. We

focus on a two-road dynamic routing game where the state of one of the roads (the

r̈isky road") is stochastic and may change over time.

Within this framework, we characterize the optimal incentive compatible recom-

mendation system, first in a two-stage game and then in an infinite-horizon setting.

Our analysis uncovers two main insights. First, under the optimal recommendation

scheme the central planner does not provide full information about the state of the

road to all agents. Thus, information design proves effective as a control tool for

traffic regulation. Second, since agents are strategic and long lived, in contrast to

classic exploration-exploitation settings the central planner needs to limit the num-

ber of agents participating in the exploitation phase to generate enough incentives

for experimentation. This aspect becomes particularly relevant in the infinite horizon

setting where agents can learn not only from received recommendations but also from

observations of previous traffic flows.

(Sub)Optimality of Bundling in Streaming Platforms Finally, we turn to

studying bundling in streaming platforms. In recent years, the competition among

streaming platforms such as Netflix, HBO Max, and Hulu is on the rise as even

more streaming platforms are being started. We aim in this chapter to study when

platforms should bundle separate types of goods.

We model the competition among streaming platforms as a two-dimensional Hotelling

model. Each axis is some type of content, potentially original content for each plat-

form or comedies on each platform. Each user has a preference over the platforms

and the two types of content. Each platform can choose whether to bundle these

two types of content, by giving both for one fee, or provide them separately, each

with a fee. We first study the monopoly case and show that in some settings it is

more profitable for the monopoly platform to bundle the goods. We then study the

duopoly setting, where another firm has entered the market, and show that now in

all cases it is now an equilibrium for the platforms to unbundle the goods and sell

them separately.

17
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Chapter 2

Learning Dynamics in Routing Games

Traffic congestion is a major problem for billions of commuters around the world.

Research in this area has focused on developing traffic equilibrium models in order

to predict how flows get allocated in traffic networks and hence analyze performance

with different traffic management policies. While most of the literature assumes that,

in making their routing decisions, users have all the relevant information (in particular

travel times or delays), in practice a major problem of drivers is to estimate the delays

they are going to incur on different routes in the network. This problem of estimation

is especially true for drivers that must continue to route themselves again and again

in the same road network, which is usually the case for daily commuters.

In this chapter, we consider a model in which a large number of risk-neutral users

are unsure about the edge latency (delay) functions and aim at learning them by

using common observation of past travel experiences. Specifically, we assume that

the users sequentially: i) send their traffic demand over the network, ii) observe the

corresponding (stochastic) travel time and iii) use these observations to update their

estimates of the edge latency functions. Given the most recent estimates, we assume

that at every step of the learning dynamics the users direct their traffic demand

according to a new slightly modified version of the well-known Wardrop equilibrium

(see Wardrop [73]; Beckmann, McGuire, and Winsten [12]) based on mean estimates

of the latency functions. The justification for this notion comes from two assumptions.

The first is that, as mentioned above, users are risk-neutral and thus care only about
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the mean of the stochastic travel times or delays they will be facing. The second is

that the traffic adjustment takes place faster than information updates thus leading

to a Wardrop adjustment at each step of the information update of the users [27].

Given the past observations, we model the estimation problem in point iii) without

specifying tight priors about others knowledge or behavior and instead assume that

users perform a simple least-squares type estimation.

We prove that this completely decentralized stochastic process with our notion of

Wardrop equilibrium leads to convergence of the flow to the full information Wardrop

equilibrium. Moreover, the estimates of the latency functions for all edges that are

used in the full information Wardrop equilibrium converge to the true parameters. To

this end, we build on previous results by Taylor [72] to relate the error terms of the pa-

rameter estimates to a martingale and we consequently prove almost sure convergence

of the errors. We then use Wardrop equilibrium sensitivity results from Dafermos et

al. [29] to prove that, because we have convergence of the errors, the flow under the

estimated parameters converges to the full information Wardrop equilibrium.

Our work is related to the recent papers on stochastic Wardrop equilibrium, which

assumes that the latency functions are stochastic (Chancelier et al. [21]; Cominetti

[26]; Nikolova and Stier-Moses [64]). This literature focuses on developing a static

description of traffic equilibrium in this stochastic environment with risk-averse users

and provides characterization results. Our work is also related to the literature on

learning dynamics in routing games. This literature studies a variety of dynamics for

routing games including fictitious play (Monderer and Shapley [62]; Marden, Arslan,

and Shamma [57]), adaptive sampling and replicator dynamics (Fischer [34] [33]),

regret-minimizing or no-regret algorithms (Kalai and Vempala [46]; Blum et al. [16];

Krichene et al. [50]). These algorithms assume that users make adaptive routing

decisions in order to minimize regret over time by observing latency values at various

congestion levels, but do not assume any stochasticity related to the latency functions.

Our work instead assumes that latency functions are stochastic and that there is

an additive error term that accounts for the variability due to incidents or other

exogenous factors (weather, time-of-day etc.). We claim this more realistically models
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commuters day to day experience.

The rest of the chapter is organized as follows. In Section 2.1 we present the

model and the learning dynamics we utilize. In Section 2.2 we discuss preliminary

results that lead to our main result in Section 2.3 where we prove convergence to

the full information Wardrop equilibrium in networks with affine stochastic latency

functions through ordinary least squares updating of the parameters. In Section 2.4

we illustrate our theoretical results on a Wheatstone network and finally Section 2.5

concludes the chapter.

Notation: Given a set of indices ℰ , [𝑥𝑒]𝑒∈ℰ denotes the column vector with com-

ponents 𝑥𝑒.

2.1 The model

2.1.1 The full information routing game

The network

We consider a directed graph (i.e. road network) with a finite vertex set 𝒱 and a finite

edge set ℰ , where each edge (i.e. road) 𝑒 ∈ ℰ connects two vertices (i.e. locations)

𝑢, 𝑣 ∈ 𝒱 . We denote such a road network by 𝒩 (𝒱 , ℰ) or 𝒩 for brevity. In a network

𝒩 , a path 𝑟 (i.e. route) is an alternating sequence of vertices and edges that begins

and ends with vertices (𝑣0, 𝑒1, 𝑣1, . . . , 𝑒𝑛, 𝑣𝑛) such that all vertices are distinct and

each edge in the sequence is such that 𝑒𝑗 = (𝑣𝑗−1, 𝑣𝑗) ∈ ℰ . We denote by ℛ the set

of all paths and we use the notation 𝑒 ∈ 𝑟 to state that edge 𝑒 belongs to the path

𝑟. We denote by𝒲 the set of origin-destination pairs considered in the road network

and by ℛ𝑤 the set of paths connecting a certain origin-destination pair 𝑤 ∈ 𝒲 , that

is, the set of paths with 𝑣0 equals to the origin and 𝑣𝑛 equals to the destination in 𝑤.

Feasibility

We assume that for each origin-destination pair 𝑤 ∈ 𝒲 there is a traffic demand

𝑑𝑤 ≥ 0 that needs to be allocated using the routes in ℛ𝑤. We use the symbol 𝑥𝑟 to
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denote the total flow assigned to route 𝑟. A travel assignment {𝑥𝑟}𝑟∈ℛ is feasible if

𝑥𝑟 ≥ 0 for all 𝑟 ∈ ℛ and
∑︀

𝑟∈ℛ𝑤
𝑥𝑟 = 𝑑𝑤 for all 𝑤 ∈ 𝒲 , that is, if the traffic demand

is satisfied. We denote the associated total flow on edge 𝑒 by 𝑥𝑒 :=
∑︀

𝑟∈ℛ|𝑒∈𝑟 𝑥𝑟 and

the total edge flow vector by 𝑥 := [𝑥𝑒]𝑒∈ℰ .

Travel time

We assume that the travel time on each edge 𝑒 ∈ ℰ depends on the congestion level

𝑥𝑒 according to the following stochastic latency function.

Assumption 1 (Stochastic latency function). For each edge 𝑒 ∈ ℰ and congestion

level 𝑥𝑒 the experienced travel time of the users is stochastic and is given by

𝑦𝑒(𝑥𝑒) := 𝑙𝑒(𝑥𝑒) + 𝜖𝑒

where 𝑙𝑒(𝑥𝑒) is a deterministic, continuous, non-decreasing positive function of 𝑥𝑒 and

𝜖𝑒 is a zero mean random variable with variance 𝜎2
𝑒 .

Note that since 𝜖𝑒 is a zero mean random variable, the deterministic function 𝑙𝑒(𝑥𝑒)

coincides with the expected travel time on edge 𝑒 when the congestion level is 𝑥𝑒. For

this reason we call 𝑙𝑒(𝑥𝑒) the expected latency function. The stochastic term 𝜖𝑒, on the

other hand, models an additive error term that accounts for the variability in travel

time due to incidents or other exogenous factors (weather, time-of-day etc.).

Often, latency functions in traffic networks are modeled through polynomial func-

tions [28]. In this study we focus for simplicity on affine latency functions.

Assumption 2 (Affine expected latency functions). For each edge 𝑒 ∈ ℰ we consider

affine expected latency functions 𝑙𝑒(𝑥𝑒) := 𝑎𝑒𝑥𝑒+𝑏𝑒 where 𝑏𝑒 ≥ 0 is the free flow travel

time and the congestion term is modeled as 𝑎𝑒𝑥𝑒 where 𝑥𝑒 is the flow on edge 𝑒 and

𝑎𝑒 > 0 is the congestion coefficient.

We denote the set of expected latency functions for all edges by ℒ := {𝑙𝑒|𝑒 ∈

ℰ} and we use 𝒢(𝒩 ,ℒ) to denote a routing game with network 𝒩 and expected
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latency functions ℒ. Throughout the chapter we refer to the game 𝒢(𝒩 ,ℒ) as the

full information routing game.

Wardrop equilibrium

Given a routing game 𝒢(𝒩 ,ℒ), we assume that the traffic demand gets allocated

across different routes according to the following slightly modified definition of Wardrop

equilibrium.

Definition 1 (Wardrop equilibrium). A Wardrop equilibrium of a game 𝒢(𝒩 ,ℒ) is a

feasible flow allocation {𝑥𝑟}𝑟∈ℛ such that for any origin-destination pair 𝑤 ∈ 𝒲 and

any route 𝑟 ∈ ℛ𝑤 with 𝑥𝑟 > 0 we have that for all 𝑟 ∈ ℛ𝑤

E[𝑦𝑟(𝑥)] ≤ E[𝑦𝑟(𝑥)]

where the latency of a route 𝑟 under the total edge flow vector 𝑥 is defined as the sum

of the latencies of the edges on that route, that is,

𝑦𝑟(𝑥) :=
∑︁
𝑒∈𝑟

𝑦𝑒(𝑥𝑒).

In other words, the Wardrop equilibrium detailed in Definition 1 corresponds to

a traffic assignment where any route with positive flow has equal or lower expected

travel time than any other possible route connecting the same origin-destination pair

under the flow 𝑥. Definition 1 is a slightly modified version of the standard definition

of Wardrop equilibrium which is formulated for routing games with deterministic la-

tency functions. We note however that, since E[𝑦𝑒(𝑥𝑒)] = 𝑙𝑒(𝑥𝑒), Definition 1 coincides

with the standard definition of Wardrop equilibrium for a routing game with deter-

ministic latency functions equal to the expected latency functions 𝑙𝑒(𝑥𝑒).1 Because

of this equivalence, it is immediate to show that, under Assumption 2, the Wardrop

equilibrium in Definition 1 is unique.

1It is well known that this notion coincides with the Nash equilibrium of a routing game with
infinitesimal (nonatomic) users (see [38]).
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Lemma 1 (Uniqueness [60]). Under Assumptions 1 and 2 the Wardrop equilibrium

exists and is unique.

2.1.2 Partial information, flow allocation and learning dynam-

ics

Contrary to most of the literature on routing games, we assume that the users do not

completely know the latency functions. Specifically, we assume that users know the

free flow travel time 𝑏𝑒 for each edge 𝑒 ∈ ℰ , but do not know the congestion coefficient

𝑎𝑒. Our motivation is that while 𝑏𝑒 depends on fixed parameters, (such as the road

length, the speed limit, etc.) the coefficient 𝑎𝑒 that models the effect of congestion

is usually difficult to characterize a priori. In our model, the users estimate such

parameters {𝑎𝑒}𝑒∈ℰ by using past observations of travel time.

Specifically, we assume that at the initial step 𝑘 = 1 the flow gets allocated

according to an initial feasible edge flow vector 𝑥1, such that 𝑥1
𝑒 > 0 for all 𝑒 ∈ ℰ .

Based on the observation of the travel time in each edge, the users build a first

estimate �̂�1𝑒 of the congestion coefficient for each edge 𝑒. Note that since all users

have the same observations they all produce the same estimates.

For each step 𝑘 > 1 all users, based on the estimates �̂�𝑘−1
𝑒 obtained with the

previous 𝑘 − 1 observations,

1. allocate their flow according to a Wardrop equilibrium of the partial information

game 𝒢(𝒩 ,ℒ𝑘−1), where

ℒ𝑘−1 := {�̂�𝑘−1
𝑒 (𝑥𝑒) := �̂�𝑘−1

𝑒 𝑥𝑒 + 𝑏𝑒 | 𝑒 ∈ ℰ}

is the set of estimated expected latency functions;

2. for each edge 𝑒 with positive flow 𝑥𝑘
𝑒 > 0, observe a realization of the travel

time for that edge at the current flow level, i.e. they observe

𝑦𝑘𝑒 := 𝑙𝑒(𝑥
𝑘
𝑒) + 𝜖𝑘𝑒 , (2.1)
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where 𝜖𝑘𝑒 is a realization of 𝜖𝑒;

3. use the information on the experienced travel time at step 𝑘 to update the

congestion coefficient estimates to �̂�𝑘𝑒 .

There are two assumptions that justify the allocation of the flow in point 1). First,

users are risk neutral and therefore care about the expected travel time. Second,

the traffic flow allocation takes place faster than information updates, leading to a

Wardrop equilibrium at each step [27]. Regarding the observation of travel time in

point 2) we make the following assumption of independence between different steps

Assumption 3. For each edge 𝑒 ∈ ℰ and step 𝑘 ∈ N, 𝜖𝑘𝑒 are i.i.d. realizations of 𝜖𝑒.

In the next subsection we describe in more detail the update that each user per-

forms in point 3). The resulting learning dynamics is then summarized in Table

2.1.

2.1.3 Parameter Estimation

We assume users perform ordinary least squares estimation to update the parameters

given the information collected up to step 𝑘. This rule avoids the need to specify tight

priors and compute posteriors on unknown parameters and lead to simple calculations

for the users. In particular, given 𝑘 observations of travel times

{𝑦𝑖𝑒 = 𝑎𝑒𝑥
𝑖
𝑒 + 𝑏𝑒 + 𝜖𝑖𝑒}𝑘𝑖=1 (2.2)
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where {𝑥𝑖
𝑒}𝑘𝑖=1, 𝑏𝑒 are known and {𝜖𝑖𝑒}𝑘𝑖=1 are i.i.d samples of the random variable 𝜖𝑒,

the least squares estimate of 𝑎𝑒 at step 𝑘 is given by

�̂�LS
𝑒 ({𝑥𝑖

𝑒, 𝑦
𝑖
𝑒}𝑘𝑖=1) := arg min

𝑎𝑒∈R

𝑘∑︁
𝑖=1

(𝑦𝑖𝑒 − 𝑎𝑒𝑥
𝑖
𝑒 − 𝑏𝑒)

2

= arg min
𝑎𝑒∈R

𝑘∑︁
𝑖=1

(𝑎𝑒𝑥
𝑖
𝑒)

2 − 2𝑎𝑒𝑥
𝑖
𝑒(𝑦

𝑖
𝑒 − 𝑏𝑒)

= arg min
𝑎𝑒∈R

𝑎2𝑒

𝑘∑︁
𝑖=1

(𝑥𝑖
𝑒)

2− 2𝑎𝑒

𝑘∑︁
𝑖=1

𝑥𝑖
𝑒(𝑦

𝑖
𝑒 − 𝑏𝑒)

=
1∑︀𝑘

𝑖=1(𝑥
𝑖
𝑒)

2

𝑘∑︁
𝑖=1

𝑥𝑖
𝑒(𝑦

𝑖
𝑒 − 𝑏𝑒).

(2.3)

Remark 1. Ordinary least squares is used as an estimator because in many cases it is

consistent, which means that the least squares estimate converges in probability to the

actual parameter. One of the assumptions that guarantees this consistency property

is that the samples 𝑥𝑖
𝑒 are drawn in an i.i.d. fashion. In our case 𝑥𝑘

𝑒 is dependent on

the estimates vector �̂�𝑘−1 used to compute the Wardrop equilibrium at step 𝑘, which

itself depends on (𝑥𝑖, 𝑦𝑖) for all 𝑖 < 𝑘. Thus, the samples {𝑥𝑖
𝑒}∞𝑖=1 are not i.i.d. and

no immediate convergence result for the least squares estimator is available.

Our goal in this chapter is to show that by using the least squares estimate in

(2.3) the learning dynamics specified in Table 2.1 converges almost surely to the full

information Wardrop equilibrium.
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Table 2.1: The learning dynamics
Initialize: For each edge 𝑒 ∈ ℰ send the initial feasible flow �̂�1

𝑒 ∈ R>0, measure 𝑦1𝑒

and set �̂�1𝑒 = �̂�LS
𝑒 ({𝑥1

𝑒, 𝑦
1
𝑒}). Set 𝑘 = 2.

Iterate until convergence:

1) Compute the Wardrop equilibrium⌊︁
𝑥𝑘 = Wardrop equilibrium of the game 𝒢(𝒩 ,ℒ𝑘−1) (2.4a)

2) Measurements⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

for each 𝑒 ∈ ℰ

if 𝑥𝑘𝑒 > 0 measure

𝑦𝑘𝑒 = 𝑙𝑒(𝑥
𝑘
𝑒) + 𝜖𝑘𝑒

else set

𝑦𝑘𝑒 = 𝑏𝑒

end

(2.4b)

3) Update the congestion coefficient estimates⎢⎢⎢⎢⎢⎢⎣
for each 𝑒 ∈ ℰ

�̂�𝑘𝑒 = �̂�LS
𝑒 ({𝑥𝑖𝑒, 𝑦𝑖𝑒}𝑘𝑖=1)

end

(2.4c)

𝑘 ← 𝑘 + 1

Note that in step 2) if 𝑥𝑘
𝑒 = 0 the value of 𝑦𝑘𝑒 is actually irrelevant and in any case

leads to �̂�𝑘𝑒 = �̂�𝑘−1
𝑒 in step 3).

2.2 Preliminary results

In this section, we derive some preliminary results needed in Section 2.3 to prove

convergence of the learning dynamics in Table 2.1. Note that the formula for the

ordinary least squares estimator derived in (2.3) can be equivalently rewritten, by
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plugging in the values for 𝑦𝑖𝑒, as

�̂�𝑘𝑒 =
1∑︀𝑘

𝑖=1(𝑥
𝑖
𝑒)

2

𝑘∑︁
𝑖=1

𝑥𝑖
𝑒(𝑦

𝑖
𝑒 − 𝑏𝑒)

=
1∑︀𝑘

𝑖=1(𝑥
𝑖
𝑒)

2

𝑘∑︁
𝑖=1

𝑥𝑖
𝑒(𝑎𝑒𝑥

𝑖
𝑒 + 𝜖𝑖𝑒)

=
1∑︀𝑘

𝑖=1(𝑥
𝑖
𝑒)

2

𝑘∑︁
𝑖=1

𝑎𝑒(𝑥
𝑖
𝑒)

2 + 𝜖𝑖𝑒𝑥
𝑖
𝑒

= 𝑎𝑒 +

∑︀𝑘
𝑖=1 𝜖

𝑖
𝑒𝑥

𝑖
𝑒∑︀𝑘

𝑖=1(𝑥
𝑖
𝑒)

2
.

Hence the error in the estimate of the congestion coefficient at step 𝑘 is

err𝑘𝑒 := �̂�𝑘𝑒 − 𝑎𝑒 =

∑︀𝑘
𝑖=1 𝜖

𝑖
𝑒𝑥

𝑖
𝑒∑︀𝑘

𝑖=1(𝑥
𝑖
𝑒)

2
. (2.5)

Our main preliminary result is to construct an auxiliary martingale 𝑠𝑘𝑒 , related to

the error term in (2.5), and show its almost sure convergence.

Definition 2 (Martingale pg. 474 in [69]). A sequence of random variables 𝑠𝑘 is a

martingale if for all 𝑘 ≥ 1,

1. E[𝑠𝑘|𝑠𝑘−1, ..., 𝑠1] = 𝑠𝑘−1 and

2. E[|𝑠𝑘|] <∞.

Lemma 2. For each edge 𝑒 ∈ ℰ, let {𝑥𝑖
𝑒}∞𝑖=1 be as defined in Table 2.1. Then under

Assumptions 1 and 3 for all 𝑖 ∈ N, 𝜖𝑖𝑒 is independent of {𝑥𝑖
𝑒, 𝑥

𝑖−1
𝑒 , ..., 𝑥1

𝑒, 𝜖
𝑖−1
𝑒 , ..., 𝜖1𝑒}

and the stochastic process

𝑠𝑘𝑒 =
𝑘∑︁

𝑖=1

𝑥𝑖
𝑒𝜖

𝑖
𝑒∑︀𝑖

𝑗=1(𝑥
𝑗
𝑒)2

(2.6)

is a martingale and converges almost surely to a finite value as 𝑘 →∞.

Proof. We first show that 𝜖𝑖𝑒 is independent of {𝑥𝑖
𝑒, 𝑥

𝑖−1
𝑒 , ..., 𝑥1

𝑒, 𝜖
𝑖−1
𝑒 , ..., 𝜖1𝑒} for all 𝑖. By

Assumption 3 𝜖𝑖𝑒 is independent of 𝜖1𝑒, ..., 𝜖𝑖−1
𝑒 . Moreover, by the learning dynamics in

Table 2.1, 𝑥𝑖
𝑒 depends only on the estimates �̂�𝑖−1 and these estimates depend only of

the noise up to step 𝑖− 1. Thus, 𝜖𝑖𝑒 is independent of 𝑥𝑗
𝑒 for all 𝑗 < 𝑖.
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To prove the second statement we use a similar argument as in [72, Lemma 3].

Specifically, we first show that 𝑠𝑘𝑒 is a martingale. Then we argue that we can use

martingale convergence theorem and we have that the result follows [69, Chapter 7,

Section 4].

i) To prove that E[𝑠𝑘𝑒 |𝑠𝑘−1
𝑒 , ..., 𝑠1𝑒] = 𝑠𝑘−1

𝑒 note that for all 𝑘 ∈ N

E[𝑠𝑘𝑒 |𝑠𝑘−1
𝑒 , ..., 𝑠1𝑒] = E

[︃
𝑘∑︁

𝑖=1

𝑥𝑖
𝑒𝜖

𝑖
𝑒∑︀𝑖

𝑗=1(𝑥
𝑗
𝑒)2

⃒⃒⃒
𝑠𝑘−1
𝑒 , ..., 𝑠1𝑒

]︃

= E

[︃
𝑥𝑘
𝑒𝜖

𝑘
𝑒∑︀𝑘

𝑗=1(𝑥
𝑗
𝑒)2

⃒⃒⃒
𝑠𝑘−1
𝑒 , ..., 𝑠1𝑒

]︃
+ E

[︃
𝑘−1∑︁
𝑖=1

𝑥𝑖
𝑒𝜖

𝑖
𝑒∑︀𝑖

𝑗=1(𝑥
𝑗
𝑒)2

⃒⃒⃒
𝑠𝑘−1
𝑒 , ..., 𝑠1𝑒

]︃

= E
[︀
𝜖𝑘𝑒
]︀
E

[︃
𝑥𝑘
𝑒∑︀𝑘

𝑗=1(𝑥
𝑗
𝑒)2

⃒⃒⃒
𝑠𝑘−1
𝑒 , ..., 𝑠1𝑒

]︃
+ 𝑠𝑘−1

𝑒

= 0 + 𝑠𝑘−1
𝑒 = 𝑠𝑘−1

𝑒 .

ii) We now show that E
[︀
|𝑠𝑘𝑒 |
]︀

is bounded. To this end, note that

E
[︀
|𝑠𝑘𝑒 |
]︀
= E

[︁√︀
(𝑠𝑘𝑒)

2
]︁
≤
√︀
E [(𝑠𝑘𝑒)

2],

where we used Jensen’s inequality [69, pg. 192]. So it suffices to show that E[(𝑠𝑘𝑒)2]

is bounded. Note that

E
[︀
(𝑠𝑘𝑒)

2
]︀
= E

⎡⎣(︃ 𝑘∑︁
𝑖=1

𝑥𝑖
𝑒𝜖

𝑖
𝑒∑︀𝑖

𝑗=1(𝑥
𝑗
𝑒)2

)︃2
⎤⎦

= E

⎡⎣ 𝑘∑︁
𝑖=1

(︃
𝑥𝑖
𝑒𝜖

𝑖
𝑒∑︀𝑖

𝑗=1(𝑥
𝑗
𝑒)2

)︃2
⎤⎦

= 𝜎2
𝑒E

⎡⎣ 𝑘∑︁
𝑖=1

(︃
𝑥𝑖
𝑒∑︀𝑖

𝑗=1(𝑥
𝑗
𝑒)2

)︃2
⎤⎦ ≤ 𝜎2

𝑒

2

(𝑥1
𝑒)

2
,

(2.7)

where the second equality comes from the fact that for any 𝑖, 𝜖𝑖𝑒 is independent from

𝑥𝑖
𝑒, 𝜖𝑗𝑒, and 𝑥𝑗

𝑒 for all 𝑗 < 𝑖. Thus, for any 𝑖 ̸= 𝑗, by assuming without loss of generality
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that 𝑗 < 𝑖, it holds that

E

[︃
𝑥𝑖
𝑒𝜖

𝑖
𝑒∑︀𝑖

𝑚=1(𝑥
𝑚
𝑒 )

2

𝑥𝑗
𝑒𝜖

𝑗
𝑒∑︀𝑗

𝑚=1(𝑥
𝑚
𝑒 )

2

]︃
= E

[︀
𝜖𝑖𝑒
]︀
E

[︃
𝑥𝑖
𝑒∑︀𝑖

𝑚=1(𝑥
𝑚
𝑒 )

2

𝑥𝑗
𝑒𝜖

𝑗
𝑒∑︀𝑗

𝑚=1(𝑥
𝑚
𝑒 )

2

]︃
= 0.

The last inequality in (2.7) comes from [72, Lemma 1]. Note that 𝑥1
𝑒 > 0 is a

deterministic quantity, as detailed in Table 2.1. Thus, it holds that

E
[︀
|𝑠𝑘𝑒 |
]︀
≤

√︃
𝜎2
𝑒

2

(𝑥1
𝑒)

2
<∞. (2.8)

Now, to utilize martingale convergence theorem we need that sup𝑘 E[|𝑠𝑘𝑒 |] < ∞.

This fact follows from (2.8), as we have that for every value of 𝑘 E[|𝑠𝑘𝑒 |]is less than

the deterministic value
√︁
𝜎2
𝑒

2
(𝑥1

𝑒)
2 . Therefore, we can apply the martingale convergence

theorem [69, Chapter 7, Section 4] and we obtain that {𝑠𝑘𝑒}∞𝑘=1 converges almost surely

to a finite value.

We now state two lemmas that hold for deterministic sequences and will be useful

in examining the behavior of the deterministic sample paths associated to specific

realizations of the noise.

Lemma 3 (Kronecker’s lemma pg. 390 in [69]). If {ℎ𝑘}∞𝑘=1 and {𝑔𝑘}∞𝑘=1 are two

real-valued sequences for which {𝑔𝑘}∞𝑘=1 is non-negative and non-decreasing to infinity

then the existence of a finite-valued 𝑠 such that

lim
𝑘→∞

𝑠𝑘 := lim
𝑘→∞

𝑘∑︁
𝑖=1

ℎ𝑖

𝑔𝑖
= 𝑠

implies that

lim
𝑘→∞

1

𝑔𝑘

𝑘∑︁
𝑖=1

ℎ𝑖 = 0.

The next result is similar to the above one, except that it assumes convergence of

𝑔𝑘 to a finite value instead of an infinite value. Consequently, one gets convergence

to a finite value instead of zero.
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Lemma 4 (Lemma 2(ii) in [72]). If {ℎ𝑘}∞𝑘=1 and {𝑔𝑘}∞𝑘=1 are two real-valued sequences

for which {𝑔𝑘}∞𝑘=1 is non-negative, non-decreasing, and converges to a value 𝑀 <∞

then the existence of a finite-valued 𝑠 such that

lim
𝑘→∞

𝑠𝑘 := lim
𝑘→∞

𝑘∑︁
𝑖=1

ℎ𝑖

𝑔𝑖
= 𝑠

implies that

lim
𝑘→∞

1

𝑔𝑘

𝑘∑︁
𝑖=1

ℎ𝑖

exists and is finite.

Proof. This proof is similar to [72, Lemma 2(ii)] with the extended conclusion that

the limit is finite. Let 𝑠0 = 0 and 𝑠𝑘 =
∑︀𝑘

𝑖=1
ℎ𝑖

𝑔𝑖
for all 𝑘 ∈ N. Thus, we have

ℎ𝑘 = 𝑔𝑘(𝑠𝑘 − 𝑠𝑘−1) and

1

𝑔𝑘

𝑘∑︁
𝑖=1

ℎ𝑖 =
1

𝑔𝑘

𝑘∑︁
𝑖=1

𝑔𝑖(𝑠𝑖 − 𝑠𝑖−1) = 𝑠𝑘 −
1

𝑔𝑘

𝑘−1∑︁
𝑖=1

(𝑔𝑖+1 − 𝑔𝑖)𝑠𝑖.

Now, by assumption 𝑠𝑘 → 𝑠 where 𝑠 is finite. The result is thus proven if we show

that also the second term 1
𝑔𝑘

∑︀𝑘−1
𝑖=1 (𝑔𝑖+1 − 𝑔𝑖)𝑠𝑖 converges to a finite value. Set an

arbitrary value 𝛿 > 0 and choose 𝑘0 such that |𝑠𝑘 − 𝑠| < 𝛿 for all 𝑘 > 𝑘0. Now, we

have

1

𝑔𝑘

𝑘−1∑︁
𝑖=1

(𝑔𝑖+1 − 𝑔𝑖)𝑠𝑖 =
1

𝑔𝑘
(𝑔𝑘 − 𝑔1)𝑠+

1

𝑔𝑘

𝑘−1∑︁
𝑖=1

(𝑔𝑖+1 − 𝑔𝑖)(𝑠𝑖 − 𝑠)

=
1

𝑔𝑘
(𝑔𝑘 − 𝑔1)𝑠+

1

𝑔𝑘

𝑘0−1∑︁
𝑖=1

(𝑔𝑖+1 − 𝑔𝑖)(𝑠𝑖 − 𝑠) +
1

𝑔𝑘

𝑘−1∑︁
𝑖=𝑘0

(𝑔𝑖+1 − 𝑔𝑖)(𝑠𝑖 − 𝑠).

Taking the limit as 𝑘 →∞, we have that the first term converges to 1
𝑀
(𝑀 − 𝑔1)𝑠 and

the second term converges to 1
𝑀

∑︀𝑘0−1
𝑖=1 (𝑔𝑖+1− 𝑔𝑖)(𝑠𝑖− 𝑠), which are both finite. Now,
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the absolute value of the third term is⃒⃒⃒⃒
⃒ 1𝑔𝑘

𝑘−1∑︁
𝑖=𝑘0

(𝑔𝑖+1 − 𝑔𝑖)(𝑠𝑖 − 𝑠)

⃒⃒⃒⃒
⃒ ≤ 1

𝑔𝑘

𝑘−1∑︁
𝑖=𝑘0

(𝑔𝑖+1 − 𝑔𝑖)|𝑠𝑖 − 𝑠|

≤ 1

𝑔𝑘

𝑘−1∑︁
𝑖=𝑘0

(𝑔𝑖+1 − 𝑔𝑖)𝛿

=
1

𝑔𝑘
(𝑔𝑘 − 𝑔𝑘0)𝛿 < 𝛿,

where we used that {𝑔𝑘}∞𝑘=1 is non-negative and non-decreasing. Overall, we have

proven that the limit exists and is finite.

Finally, in proving our main result we use Theorem 3.1 from Dafermos and Nagur-

ney on sensitivity analysis of the Wardrop equilibrium under a change of (expected)

latency functions [29]. This result is rewritten for our scenario and proven below.

Lemma 5 (Theorem 3.1 in [29]). Suppose that Assumption 2 holds. Let 𝑥𝑘 be a

Wardrop equilibrium of the partial information game 𝒢(𝒩 ,ℒ𝑘) and �̄� be the full in-

formation Wardrop equilibrium, that is, the Wardrop equilibrium of the game 𝒢(𝒩 ,ℒ).

Also, let 𝑙𝑒(𝑥𝑒; 𝑎𝑒) := 𝑎𝑒𝑥𝑒+ 𝑏𝑒, where we made explicit the dependence of the expected

latency function on the congestion coefficient. Then

‖𝑥𝑘 − �̄�‖2 ≤ 1

𝛼2

ℰ∑︁
𝑒=1

(𝑙𝑒(𝑥
𝑘
𝑒 ; 𝑎𝑒)− 𝑙𝑒(𝑥

𝑘
𝑒 ; �̂�

𝑘
𝑒))

2

where 𝛼 := min{𝑎𝑒}𝑒∈ℰ > 0.

Proof. Dafermos and Nagurney prove the result for general latency functions. We

apply their result to changes in latency functions from 𝑎𝑒𝑥𝑒 + 𝑏𝑒 to �̂�𝑘𝑒𝑥𝑒 + 𝑏𝑒. To this

end, we briefly recall that the (unique) Wardrop equilibrium of the game 𝒢(𝒩 ,ℒ) can

be equivalently characterized as the (unique) solution to the variational inequality

(VI) VI(𝐹 ,𝒳 ), where the operator 𝐹 : R|ℰ| → R|ℰ| is defined as

𝐹 (𝑥) := [𝑎𝑒𝑥𝑒 + 𝑏𝑒]𝑒∈ℰ
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and 𝒳 is the feasible set for the total edge flow vector 𝑥. For a definition of variational

inequality and a proof of the equivalence mentioned above we refer to [29]. Similarly,

let 𝐹 𝑘(·) be the operator of the VI associated with the coefficients �̂�𝑘𝑒 , that is 𝐹 𝑘(𝑥) :=

[�̂�𝑘𝑒𝑥𝑒+𝑏𝑒]𝑒∈ℰ . Since �̄� solves the VI in 𝐹 (·) and 𝑥𝑘 solves the VI in 𝐹 𝑘(·) by definition

𝐹 (�̄�)⊤(𝑥𝑘 − �̄�) ≥ 0

𝐹 𝑘(𝑥𝑘)⊤(�̄�− 𝑥𝑘) ≥ 0.

Subtracting the second inequality from the first one yields

[𝐹 (�̄�)− 𝐹 𝑘(𝑥𝑘)]⊤(𝑥𝑘 − �̄�) ≥ 0,

[𝐹 (�̄�)− 𝐹 (𝑥𝑘) + 𝐹 (𝑥𝑘)− 𝐹 𝑘(𝑥𝑘)]⊤(𝑥𝑘 − �̄�) ≥ 0,

[𝐹 (�̄�)− 𝐹 (𝑥𝑘)]⊤(𝑥𝑘 − �̄�) + [𝐹 (𝑥𝑘)− 𝐹 𝑘(𝑥𝑘)]⊤(𝑥𝑘 − �̄�) ≥ 0,

[𝐹 (𝑥𝑘)− 𝐹 𝑘(𝑥𝑘)]⊤(𝑥𝑘 − �̄�) ≥ [𝐹 (�̄�)− 𝐹 (𝑥𝑘)]⊤(�̄�− 𝑥𝑘).

Plugging in the definition of 𝐹 (·) we get

[𝐹 (�̄�)− 𝐹 (𝑥𝑘)]⊤(�̄�− 𝑥𝑘) =
∑︁
𝑒∈ℰ

𝑎𝑒(�̄�𝑒 − 𝑥𝑘
𝑒)

2

≥ 𝛼‖�̄�− 𝑥𝑘‖2

and by Cauchy-Schwartz

[𝐹 (𝑥𝑘)− 𝐹 𝑘(𝑥𝑘)]⊤(𝑥𝑘 − �̄�) ≤ |[𝐹 (𝑥𝑘)− 𝐹 𝑘(𝑥𝑘)]⊤(𝑥𝑘 − �̄�)|

≤ ‖𝐹 (𝑥𝑘)− 𝐹 𝑘(𝑥𝑘)‖‖𝑥𝑘 − �̄�‖.

The last three inequalities give us

‖𝐹 (𝑥𝑘)− 𝐹 𝑘(𝑥𝑘)‖‖𝑥𝑘 − �̄�‖ ≥ 𝛼‖�̄�− 𝑥𝑘‖2
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and thus
1

𝛼
‖𝐹 (𝑥𝑘)− 𝐹 𝑘(𝑥𝑘)‖ ≥ ‖�̄�− 𝑥𝑘‖

which concludes the proof.

2.3 Convergence to the full information Wardrop equi-

librium

In this section we combine the previously stated lemmas to show our main result,

which is that the learning dynamics in Table 2.1 converges to the full information

Wardrop equilibrium almost surely. Additionally, we show that all the congestion

coefficients corresponding to edges that are used in the full information Wardrop

equilibrium are learned almost surely. To this end, let us denote by 𝜖 a specific noise

realization of {𝜖𝑘𝑒}𝑒∈ℰ,𝑘≥0 and by 𝑠𝑘𝑒(𝜖), 𝑥
𝑘
𝑒(𝜖), err𝑘𝑒(𝜖) the corresponding deterministic

realizations of the martingale 𝑠𝑘𝑒 , the total edge flow 𝑥𝑘
𝑒 , and the error term err𝑘𝑒 at

step 𝑘, respectively. Lemma 2 guarantees that the set of noise realizations

Σ := {𝜖 | lim
𝑘→∞

𝑠𝑘𝑒(𝜖) exists and is finite for all 𝑒 ∈ ℰ} (2.9)

has probability one. To prove our main result, we consider each noise realization 𝜖 ∈ Σ

separately and we partition the edges into two sets, 𝑆∞(𝜖) and 𝑆finite(𝜖), according

to a specific property of the sample paths 𝑥𝑘
𝑒(𝜖). For any edge in 𝑆∞(𝜖) we show the

error term err𝑘𝑒(𝜖) on the estimator goes to 0 and for any edge in 𝑆finite(𝜖) we show

that err𝑘𝑒(𝜖) is bounded. We use these two facts to show that the flow 𝑥𝑘(𝜖) converges

to the full information Wardrop equilibrium under the considered noise realization

𝜖 ∈ Σ. Since the set of noise realizations Σ has probability one we thus have that

the learning dynamics in Table 2.1 converge almost surely to the full information

Wardrop equilibrium.

We start by studying the behaviour of the error term err𝑘𝑒(𝜖) in (2.5) for a fixed

noise realization 𝜖 ∈ Σ.
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Lemma 6. Suppose that Assumptions 1, 2, and 3 hold. Under any realization of the

error 𝜖 the edges can be split into two sets

1. 𝑆∞(𝜖) =
{︀
𝑒 ∈ ℰ |

∑︀∞
𝑘=1(𝑥

𝑘
𝑒(𝜖))

2 =∞
}︀

2. 𝑆finite(𝜖) =
{︀
𝑒 ∈ ℰ |

∑︀∞
𝑘=1(𝑥

𝑘
𝑒(𝜖))

2 <∞
}︀
.

If 𝜖 ∈ Σ then

1. For any edge 𝑒 ∈ 𝑆∞(𝜖) the error term in the ordinary least squares estimate

err𝑘𝑒(𝜖) =
∑︀𝑘

𝑖=1 𝜖
𝑖
𝑒𝑥

𝑖
𝑒(𝜖)∑︀𝑘

𝑖=1(𝑥
𝑖
𝑒(𝜖))

2
→ 0

as 𝑘 →∞.

2. For any edge 𝑒 ∈ 𝑆finite(𝜖) the error term in the ordinary least squares estimate

err𝑘𝑒(𝜖) =
∑︀𝑘

𝑖=1 𝜖
𝑖
𝑒𝑥

𝑖
𝑒(𝜖)∑︀𝑘

𝑖=1(𝑥
𝑖
𝑒(𝜖))

2

is bounded.

Proof. Construct the two deterministic sequences ℎ𝑘 = 𝑥𝑘
𝑒(𝜖)𝜖

𝑘
𝑒 , 𝑔𝑘 =

∑︀𝑘
𝑖=1(𝑥

𝑖
𝑒(𝜖))

2 so

that {𝑔𝑘}∞𝑘=1 is non-negative and non-decreasing and 𝑠𝑘𝑒(𝜖) =
∑︀𝑘

𝑖=1
ℎ𝑖

𝑔𝑖
. Note that if

𝜖 ∈ Σ then by definition lim𝑘→∞ 𝑠𝑘𝑒(𝜖) = lim𝑘→∞
∑︀𝑘

𝑖=1
ℎ𝑖

𝑔𝑖
exists and is finite.

1. By definition of 𝑆∞(𝜖), 𝑔𝑘 → ∞. Thus, we can apply Kronecker’s lemma

(Lemma 3) and we have

1

𝑔𝑘

𝑘∑︁
𝑖=1

ℎ𝑖 =
1∑︀𝑘

𝑖=1(𝑥
𝑖
𝑒(𝜖))

2

𝑘∑︁
𝑖=1

𝑥𝑖
𝑒(𝜖)𝜖

𝑖
𝑒 = err𝑘𝑒(𝜖)→ 0.

2. By definition of 𝑆finite(𝜖) the sequence 𝑔𝑘 converges to a finite value. Thus, we

can apply Lemma 4 and we obtain that
∑︀𝑘

𝑖=1 𝜖
𝑖
𝑒𝑥

𝑖
𝑒(𝜖)∑︀𝑘

𝑖=1(𝑥
𝑖
𝑒(𝜖))

2
→ 𝑝𝑒(𝜖) for some finite 𝑝𝑒(𝜖).

Thus, for any 𝛿 > 0 there exists a 𝑘 > 0 such that for any 𝑘 > 𝑘 we have⃒⃒⃒⃒
⃒
∑︀𝑘

𝑖=1 𝜖
𝑖
𝑒𝑥

𝑖
𝑒(𝜖)∑︀𝑘

𝑖=1(𝑥
𝑖
𝑒(𝜖))

2
− 𝑝𝑒(𝜖)

⃒⃒⃒⃒
⃒ < 𝛿
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and the error err𝑘𝑒(𝜖) is bounded.

Theorem 1. Suppose that Assumptions 1, 2, and 3 hold. Then the learning dynamics

in Table 2.1 converge almost surely to the unique Wardrop equilibrium �̄� of the full

information game 𝒢(𝒩 ,ℒ), that is,

𝑥𝑘 → �̄�, almost surely.

Proof. Let us consider an arbitrary, fixed realization of the error 𝜖 ∈ Σ as defined in

(2.9). Now from Lemma 6 we have that

1. if 𝑒 ∈ 𝑆∞(𝜖) then �̂�𝑘𝑒(𝜖)→ 𝑎𝑒;

2. if 𝑒 ∈ 𝑆finite(𝜖) then 𝑥𝑘
𝑒(𝜖) → 0 and there exists 𝑘 > 0, 𝑀𝑒(𝜖) > 0 such that

|𝑎𝑘𝑒(𝜖)− 𝑎𝑒| < 𝑀𝑒(𝜖) for all 𝑘 > 𝑘.

These two statements conclude the proof because then by Lemmas 5 and 6 we obtain

that for any 𝑘 > 𝑘

‖𝑥𝑘(𝜖)− �̄�‖2 ≤ 1

𝛼2

∑︁
𝑒∈ℰ

(𝑙𝑒(𝑥
𝑘
𝑒(𝜖); 𝑎𝑒)− 𝑙𝑒(𝑥

𝑘
𝑒(𝜖); �̂�

𝑘
𝑒(𝜖)))

2

=
1

𝛼2

∑︁
𝑒∈ℰ

(𝑥𝑘
𝑒(𝜖))

2(𝑎𝑒 − �̂�𝑘𝑒(𝜖))
2

=
1

𝛼2

∑︁
𝑒∈ℰ

(𝑥𝑘
𝑒(𝜖))

2(err𝑘𝑒(𝜖))
2

=
1

𝛼2

∑︁
𝑒∈𝑆∞(𝜖)

(𝑥𝑘
𝑒(𝜖))

2(err𝑘𝑒(𝜖))
2 +

1

𝛼2

∑︁
𝑒∈𝑆finite(𝜖)

(𝑥𝑘
𝑒(𝜖))

2(err𝑘𝑒(𝜖))
2

≤ 1

𝛼2

∑︁
𝑒∈𝑆∞(𝜖)

𝑑2(err𝑘𝑒(𝜖))
2 +

1

𝛼2

∑︁
𝑒∈𝑆finite(𝜖)

(𝑥𝑘
𝑒(𝜖))

2(𝑀𝑒(𝜖))
2 → 0,

where we used that 𝑥𝑘
𝑒(𝜖) ≤ 𝑑 for all 𝑒 ∈ ℰ and 𝑘 ∈ N, where 𝑑 =

∑︀
𝑤∈𝒲 𝑑𝑤 is the

total travel demand and the fact that, in the limit as 𝑘 → ∞, the first term in the

last step goes to 0 since err𝑘𝑒(𝜖)→ 0 for all 𝑒 ∈ 𝑆∞(𝜖) and the second term goes to 0
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since (𝑥𝑘
𝑒(𝜖))

2 → 0 for any 𝑒 ∈ 𝑆finite(𝜖). Hence for any realization 𝜖 ∈ Σ, 𝑥𝑘(𝜖) → �̄�.

Since, by Lemma 2, Σ has probability one, 𝑥𝑘 → �̄� a.s.

Corollary 1. Suppose that Assumptions 1, 2, and 3 hold. For any edge 𝑒 such that

�̄�𝑒 > 0, where �̄� is the full information Wardrop equilibrium, �̂�𝑘𝑒 → 𝑎𝑒 a.s.

Proof. By Theorem 1, 𝑥𝑘(𝜖) → �̄� for all 𝜖 ∈ Σ. Consequently, for any edge 𝑒 ∈ ℰ

such that �̄�𝑒 > 0 and for any 𝜖 ∈ Σ we have that 𝑥𝑘
𝑒(𝜖) → �̄�𝑒 > 0. Consequently, it

must be that 𝑒 ∈ 𝑆∞(𝜖). By Lemma 6, we then have that err𝑘𝑒(𝜖) → 0. Since Σ has

probability one, we have proven that for any edge 𝑒 ∈ ℰ such that �̄�𝑒 > 0 it holds

err𝑘𝑒 → 0 a.s.

2.4 Simulation

To illustrate our theoretical results we consider a routing game over the five road

Wheatstone network illustrated in Figure 2-1-A). For simplicity, we assume that 𝑑 = 1

unit of traffic needs to be routed from vertex 1 to vertex 4 and that the expected

latency for each edge is 𝑙𝑒(𝑥𝑒) = 𝑥𝑒. With these settings, the Wardrop equilibrium of

the full information game is �̄� = [0.5, 0.5, 0.5, 0.5, 0]⊤, that is, 0.5 flow is sent in all

edges except for edge 5 which is not used.

Figure 2-1-B) shows the evolution of 𝑥𝑘
𝑒 for each edge 𝑒 ∈ ℰ = {1, 2, 3, 4, 5} as a

function of the step 𝑘 ∈ [1, 200] according to the learning dynamics illustrated in Table

2.1 (for one realization of the noise). The partial information Wardrop equilibrium

𝑥𝑘 at each step 𝑘 was computed by using the projection algorithm [31, Algorithm

12.1.1] applied to the VI(𝐹 𝑘,𝒳 ) (see the proof of Lemma 5). Note that 𝑥𝑘 → �̄�.

Figure 2-1-C) shows the evolution of the estimates �̂�𝑘𝑒 as a function of the step

𝑘 ∈ [1, 200]. Note that the estimates of the congestion coefficients of edges 1-4

converge to the true value 𝑎𝑒 = 1. On the other hand, �̂�𝑘5 does not converge to 𝑎5 = 1.

This is consistent with Corollary 1 since edge 5 is not used in the full information

Wardrop equilibrium.
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Figure 2-1: A) Wheatstone network with one unit of travel demand from node 1 to
node 4, the full information Wardrop equilibrium is �̄� = [0.5, 0.5, 0.5, 0.5, 0]⊤. B) Plot
of one realization of 𝑥𝑘

𝑒 as a function of the step 𝑘 ∈ [1, 200]. C) Plot of one realization
of the estimates �̂�𝑘𝑒 as a function of the step 𝑘 ∈ [1, 200].
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2.5 Conclusion

In this chapter, we examine the learning dynamics in a nonatomic routing game

on a network with affine stochastic edge latency functions with unknown congestion

coefficients. We show that by using an ordinary least squares estimator to update

the coefficient estimates the learning dynamics converges, in an almost sure sense, to

the Wardrop equilibrium of the full information game and that the coefficients of the

edges used in such an equilibrium are learned.

We view our work as a first step since we here assumed that all users have access

to the same information. A natural but challenging extension is to assume that each

user applies a similar least-squares type estimation to a user-specific information set,

thus leading to a situation of heterogeneous information and routing decisions across

users.
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Chapter 3

Learning Dynamics in Network

Games

In many strategic environments, agents’ interactions are heterogeneous and an agent

is directly affected by the decisions of its neighbors in a network of interactions. Ex-

amples range from firm competition [20, 4], adoption of innovation [11] and local

public good provision [18, 6] to telecommunications [7] or network security [2]. Equi-

librium behavior and dynamics in these settings have been extensively investigated

under the fundamental assumption that each agent has perfect information about its

utility function, see e.g. [42, 19].

In this chapter we aim at extending these results to cases where agents are uncer-

tain about the weight with which their neighbors’ actions are affecting their utility

function and aim at learning this network weight parameter over repetitions of the

game. We give two motivating examples of local public goods and advertising cam-

paigns (see Examples 1 and 2).

We consider a scenario where the same set of risk-neutral agents take part in se-

quential repetitions of the same game and learn over time. We study simple learning

dynamics whereby at each game repetition every agent: i) selects his strategy to max-

imize his expected utility given his current estimate of his network weight parameter,

ii) observes the actions played by his neighbors and a corresponding realization of

his stochastic utility, iii) uses such observations to update his network weight pa-
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rameter estimate. The main challenge is that the parameter estimation process is

intrinsically coupled with the strategy update process. In fact, on the one hand, the

chosen strategy determines the instantaneous payoff and thus the data used in the

estimation procedure; on the other hand, the next strategy is computed by using the

most current estimate.

Nonetheless, we show that if agents use a simple least squares procedure, then the

strategies converge almost surely to the Nash equilibrium of the full information game

(i.e. the Nash equilibrium that is obtained when each agent knows its network weight

parameter), which under our assumptions is unique. We also prove that agents whose

neighbors have a nonzero aggregate strategy in this equilibrium almost surely learn

their network weight parameter. We start by deriving a sufficient condition in terms of

the network and of the utility function to guarantee that the best response dynamics

(under full information) converge to a unique Nash equilibrium. For the case of partial

information, we build on our previous results in [59] to relate the error term of the

estimate to a martingale and we prove almost sure convergence of the error. We then

use sensitivity results of the best response mapping to prove that, because we have

convergence of the errors, the learning dynamics under the estimated parameters

asymptotically converge towards the full information best response dynamics and

therefore to the full information Nash equilibrium.

Literature review

In contrast to Bayesian games, where agents have incomplete information about pay-

offs and form beliefs about their and other agents’ utility functions and strategies, see

e.g. [42, chapter 5.2], here, we focus on parametric learning dynamics using a simple

least squares estimator.

Similar parametric learning dynamics were considered in the context of routing

games in our previous work [59]. With respect to that work, we here consider a

network game (where the network enters in the utility function instead of the con-

straint set) and we assume that at each repetition agents play a best response, given

their current parameter estimate, instead of allocating flow according to a Wardrop
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equilibrium. Moreover, we consider generic concave utility functions.

Learning for generic games with misspecified parameters has been recently ad-

dressed in [44]. While in the first part of that work agents update strategies through

a gradient method, in the second part the authors consider learning via best response

dynamics, similarly to our work, but focus on Cournot games. Instead, we consider

network games where agents’ payoffs are affected by a subset of the population (i.e.

the neighbors). “Demand function” learning in Cournot games is also discussed in [43]

and [14], where gradient methods are used to learn a linear demand function where

the intercept or the slope is unknown. We remark that [44, 43, 14] assume other

agents’ strategies are not observed, but the cost functions and strategy sets are com-

mon knowledge. We instead assume agents observe the aggregate of their neighbors’

strategies, which in network games is a local quantity, but we do not require agents

to be aware of the payoff functions or local settings of their neighbors. Moreover, we

assume that agents update their strategies according to a best response and assume

that the update of the estimates is done through ordinary least squares.

Notation: ‖𝑥‖ is the 2-norm of 𝑥. 𝜌(𝐴) is the spectral radius of the matrix 𝐴.

diag(𝑎𝑖) is a diagonal matrix with entry 𝑎𝑖 in position (𝑖, 𝑖) for each 𝑖.

3.1 Motivating examples

We start by considering two motivating examples.

Example 1 (Local public good). Consider a game where 𝑁 agents need to decide on

their level of contribution to a public good (e.g. how much effort to devote to team

work) and the payoff received by each player 𝑖 for contribution 𝑥𝑖 ≥ 0 is stochastic

and given by

𝑣𝑖(𝑥𝑖, 𝑥−𝑖, 𝜖𝑖) = 𝑓

(︃
𝑥𝑖 + 𝑎𝑖

∑︁
𝑗 ̸=𝑖

𝑃𝑖𝑗𝑥
𝑗 + 𝜖𝑖

)︃
− 𝑘𝑖𝑥𝑖,

where 𝑥−𝑖 = {𝑥𝑗}𝑗 ̸=𝑖, 𝑓 is a strictly increasing, concave function representing the

benefit agent 𝑖 obtains from the local public good, 𝑃𝑖𝑗 = 1 if agent 𝑗 contributes to

the local good of agent 𝑖 and 0 otherwise, 𝑘𝑖 is agent 𝑖’s marginal cost and the noise
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𝜖𝑖 models stochasticity in the payoff realization [20]. The network weight parameter

𝑎𝑖 > 0 is the substitutability of the local good: when 𝑎𝑖 = 1 contributions of other

agents are equivalent to contributions from agent 𝑖. Agents do not know 𝑎𝑖 and need

to learn it from stochastic payoff observations. We denote the weighted contribution

to the public good as perceived by agent 𝑖 by 𝑦𝑖(𝑥−𝑖, 𝜖𝑖) = 𝑎𝑖
∑︀

𝑗 ̸=𝑖 𝑃𝑖𝑗𝑥
𝑗 + 𝜖𝑖, so that

the utility function can be rewritten in aggregate form as 𝑣𝑖(𝑥𝑖, 𝑦𝑖(𝑥−𝑖, 𝜖𝑖)).

Example 2 (Competition in advertisement). Consider 𝑁 firms, where each firm 𝑖

decides a level 𝑥𝑖 ≥ 0 of investment in advertising and earns a stochastic payoff

𝑣𝑖(𝑥𝑖, 𝑥−𝑖, 𝜖𝑖) = 𝑓

(︃
𝑏𝑖 + 𝑎𝑖

∑︁
𝑗 ̸=𝑖

𝑃𝑖𝑗𝑥
𝑗 + 𝜖𝑖

)︃
𝑥𝑖 − 𝑘𝑖(𝑥𝑖)2,

where the cost for the advertising effort is 𝑘𝑖(𝑥𝑖)2 and the marginal benefit is a function

of other firms’ advertising effort. Specifically, if firm 𝑖 is the only one advertising its

product the return per unit of advertisement is 𝑓(𝑏𝑖+𝜖𝑖). However, if competing firms

advertise the unit return may increase or decrease depending on whether the other

firms sell goods that are complements or substitutes for firm 𝑖’s good. This is captured

in 𝑃𝑖𝑗; we assume 𝑃𝑖𝑗 = −1 if 𝑖 and 𝑗 sell competing products, 𝑃𝑖𝑗 = 1 if 𝑖 and 𝑗

sell complementary products, and 𝑃𝑖𝑗 = 0 if there is no interaction between the two

firms’ products. The level of interference of advertisements is modeled by the network

weight parameter 𝑎𝑖, which may be unknown to the firm. We denote the competition

on advertisement as perceived by agent 𝑖 by 𝑦𝑖(𝑥−𝑖, 𝜖𝑖) = 𝑎𝑖
∑︀

𝑗 ̸=𝑖 𝑃𝑖𝑗𝑥
𝑗 + 𝜖𝑖. Again the

utility function is of the aggregate form 𝑣𝑖(𝑥𝑖, 𝑦𝑖(𝑥−𝑖, 𝜖𝑖)).

The examples above are cases of stochastic network games, which have been stud-

ied under the assumption that agents know their expected utility functions. This is

not always true. In this chapter, we study how agents learn such unknown weight

parameters (𝑎𝑖 in our examples) from repeated play. Specifically, we consider a set

of agents that repeat the same game (e.g. employees interacting over sequential job

assignments or firms interacting in different ad campaigns). Each time the agents

observe the aggregate effort of the other players as well as a realization of their payoff
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and use these observations to learn their 𝑎𝑖.

3.2 The model

Consider a repeated game with 𝑁 agents that interact over a network with adjacency

matrix 𝑃 ∈ {−1, 0, 1}𝑁×𝑁 ; 𝑃𝑖𝑗 = 1 if agent 𝑗 positively influences agent 𝑖, 𝑃𝑖𝑗 = −1

if agent 𝑗 negatively influences agent 𝑖 and 𝑃𝑖𝑗 = 0 if agent 𝑗 does not affect agent 𝑖.

We assume 𝑃𝑖𝑖 = 0. Each risk neutral player 𝑖 ∈ N[1, 𝑁 ] aims to select a strategy 𝑥𝑖

from its feasible set 𝒳 𝑖 ⊆ R to maximize the expected utility function

E𝜖𝑖 [𝑣
𝑖(𝑥𝑖, 𝑦𝑖(𝑥−𝑖, 𝜖𝑖))] (3.1)

which depends on its own strategy 𝑥𝑖 and on other agents’ strategies via a possibly

agent-dependent function 𝑦𝑖. In this work we assume 𝑦𝑖 is a linear function of the

neighbors strategies according to the coefficients of the network and the network

weight parameter 𝑎𝑖, that is,

𝑦𝑖(𝑥−𝑖, 𝜖𝑖) := 𝑎𝑖
𝑁∑︁
𝑗=1

𝑃𝑖𝑗𝑥
𝑗 + 𝜖𝑖. (3.2)

We define the aggregate of the strategies of the neighbors of agent 𝑖 as 𝑧𝑖(𝑥−𝑖) :=
∑︀𝑁

𝑗=1 𝑃𝑖𝑗𝑥
𝑗

and the expected weighted aggregate as perceived by agent 𝑖 as 𝑝𝑖(𝑥−𝑖) := 𝑎𝑖𝑧𝑖(𝑥−𝑖).

We can thus write the expected utility function as

E𝜖𝑖 [𝑣
𝑖(𝑥𝑖, 𝑦𝑖(𝑥−𝑖, 𝜖𝑖))] = E𝜖𝑖 [𝑣

𝑖(𝑥𝑖, 𝑝𝑖(𝑥−𝑖) + 𝜖𝑖)]

=: 𝑢𝑖(𝑥𝑖, 𝑝𝑖(𝑥−𝑖))
(3.3)

We make the following regularity assumptions.

Assumption 4 (Strategy sets). The strategy sets 𝒳 𝑖 are convex and compact.

Assumption 5 (Utility functions). For every agent 𝑖, the expected utility function

𝑢𝑖(𝑥𝑖, 𝑝𝑖) is continuously differentiable and strongly concave in 𝑥𝑖 uniformly in 𝑝𝑖 with
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parameter −𝛼, 𝛼 > 0. Moreover, the gradient ∇𝑥𝑖𝑢𝑖(𝑥𝑖, 𝑝𝑖) is Lipschitz continuous in

𝑝𝑖 uniformly in 𝑥𝑖 with parameter 𝐿 > 0. The parameters 𝑎𝑖 are such that

max
𝑖

(|𝑎𝑖|)𝐿
𝛼
𝜌(𝑃 ) < 1. (3.4)

3.2.1 Nash equilibrium and best response dynamics

The best response of an agent 𝑖 to the weighted neighbors aggregate 𝑝𝑖 is given by

𝐵𝑖(𝑝𝑖) := arg max
𝑥𝑖∈𝒳 𝑖

E[𝑣𝑖(𝑥𝑖, 𝑝𝑖 + 𝜖𝑖)] = arg max
𝑥𝑖∈𝒳 𝑖

𝑢𝑖(𝑥𝑖, 𝑝𝑖). (3.5)

Under Assumption 5 the max in (3.5) is unique. A set of strategies where each player

plays a best response to the other agents’ strategies is a Nash equilibrium.

Definition 3 (Nash equilibrium). A set of strategies {�̄�𝑖 ∈ 𝒳 𝑖}𝑁𝑖=1 is a Nash equilib-

rium if for all agents 𝑖 ∈ {1, 2, ..., 𝑁} and for all 𝑥𝑖 ∈ 𝒳 𝑖,

𝑢𝑖(�̄�𝑖, 𝑝𝑖(�̄�−𝑖)) ≥ 𝑢𝑖(𝑥𝑖, 𝑝𝑖(�̄�−𝑖)).

Equivalently, a set of strategies is a Nash equilibrium if and only if it is a fixed point

of the best response mapping

𝐵(𝑥) := [𝐵𝑖(𝑝𝑖(𝑥−𝑖))]𝑁𝑖=1, (3.6)

where 𝑥 := [𝑥𝑖]𝑁𝑖=1 ∈ R𝑁 .

The following proposition shows in the games we consider such a best response

mapping is a contraction. This implies existence and uniqueness of the Nash equilib-

rium and that the best response dynamics converge to the Nash equilibrium.

Proposition 1. Under Assumptions 4 and 5, 𝐵 : R𝑁 → R𝑁 defined in (3.6) is a

contraction with constant 𝛾 := max𝑖(|𝑎𝑖|)𝐿𝛼𝜌(𝑃 ). Consequently, the Nash equilibrium

exists and is unique and the best response dynamics converge to it. That is, for any

�̄�0 ∈ R𝑁 the sequence �̄�𝑘+1 = 𝐵(�̄�𝑘) converges to the unique Nash equilibrium �̄�.
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The proof of Proposition 1 is an immediate generalization of [20] to games that

are not linear quadratic. We include the proof in the appendix for completeness.

3.3 Learning model

In the previous section we assumed each agent 𝑖 knows his network weight parame-

ter 𝑎𝑖 and the update consisted of responding to other agents’ strategies. We next

investigate what happens if each agent 𝑖 does not know his parameter 𝑎𝑖 and needs

to learn it while playing.

Assumption 6 (Observation model). At each round 𝑘 each agent 𝑖 observes the

aggregate strategies played by its neighbors, that is 𝑧𝑖𝑘 :=
∑︀

𝑗 𝑃𝑖𝑗𝑥
𝑗
𝑘 and a realization

of its stochastic payoff, that is 𝑣𝑖𝑘 = 𝑣𝑖(𝑥𝑖
𝑘, 𝑦

𝑖
𝑘) where 𝑦𝑖𝑘 := 𝑦𝑖(𝑥−𝑖

𝑘 , 𝜖𝑖𝑘) = 𝑎𝑖𝑧𝑖𝑘 + 𝜖𝑖𝑘.

The terms 𝜖𝑖𝑘 are independent and identically distributed realizations of the random

variable 𝜖𝑖. We assume that E[𝜖𝑖] = 0 and 𝑣𝑎𝑟(𝜖𝑖) is finite.

Assumption 7. Each agent 𝑖 knows the function 𝑣𝑖 and for each value of 𝑥𝑖 the

function 𝑦𝑖 ↦→ 𝑣𝑖(𝑥𝑖, 𝑦𝑖) is invertible.

Remark 2. Assumption 7 allows each agent to recover the noisy value 𝑦𝑖 as defined

in (3.2). This assumption holds in both our examples if 𝑓 is strictly monotone, e.g.

in Example 1 if utility is increasing in total effort by others.

Assume that each agent 𝑖 has initial estimates 𝑧𝑖0 and �̂�𝑖0. At each iteration 𝑘 each

agent

1. computes his strategy 𝑥𝑖
𝑘 through best response to his neighbors’ previous ag-

gregate 𝑧𝑖𝑘−1 and his current parameter estimate �̂�𝑖𝑘−1, that is,

𝑥𝑖
𝑘 = arg max

𝑥𝑖∈𝒳 𝑖
𝑢𝑖(𝑥𝑖, �̂�𝑖𝑘−1𝑧

𝑖
𝑘−1);
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2. observes neighbors’ aggregate 𝑧𝑖𝑘 and stochastic payoff

𝑣𝑖𝑘 = 𝑣𝑖(𝑥𝑖
𝑘, 𝑎

𝑖𝑧𝑖𝑘 + 𝜖𝑖𝑘);

3. uses the observations of 𝑧𝑖𝑘 and 𝑣𝑖𝑘 to update his parameter estimate through

ordinary least squares.

These dynamics are summarized in Table 3.1.

Table 3.1: The learning dynamics

Initialize: Each agent 𝑖 has an initial state 𝑧𝑖0 and initial estimate �̂�𝑖0. Set 𝑘 = 1.
Iterate until convergence; each agent:

1) Calculates the best response

𝑥𝑖𝑘 = arg max
𝑥𝑖∈𝒳 𝑖

𝑢𝑖(𝑥𝑖, �̂�𝑖𝑘−1𝑧
𝑖
𝑘−1) (3.7a)

2) Observes

𝑧𝑖𝑘 =
∑︁
𝑗

𝑃𝑖𝑗𝑥
𝑗
𝑘 and 𝑣𝑖𝑘 = 𝑣𝑖(𝑥𝑖𝑘, 𝑎

𝑖𝑧𝑖𝑘 + 𝜖𝑖𝑘) (3.7b)

3) Updates the parameter estimate

�̂�𝑖𝑘 =
1∑︀𝑘

𝑡=1(𝑧
𝑖
𝑡)

2

𝑘∑︁
𝑡=1

𝑧𝑖𝑡𝑦
𝑖
𝑡 where 𝑦𝑖𝑘 = 𝑎𝑖𝑧𝑖𝑘 + 𝜖𝑖𝑘 (3.7c)

𝑘 ← 𝑘 + 1

We assume that agents use ordinary least squares regression to estimate 𝑎𝑖. In

particular, given 𝑘 observations {𝑣𝑖𝑡}𝑘𝑡=1, by Assumption 7 agent 𝑖 can recover 𝑘 ob-

servations of the form

{𝑦𝑖𝑡 = 𝑎𝑖𝑧𝑖𝑡 + 𝜖𝑖𝑡}𝑘𝑡=1 (3.8)

where {𝑧𝑖𝑡}𝑘𝑡=1 are known and 𝜖𝑖𝑡 are i.i.d. samples. The least squares estimate of 𝑎𝑖
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at step 𝑘 is then

�̂�LS({𝑧𝑖𝑡, 𝑦𝑖𝑡}𝑘𝑡=1) := argmin
𝑎𝑖∈R

𝑘∑︁
𝑡=1

(𝑦𝑖𝑡 − 𝑎𝑖𝑧𝑖𝑡)
2

=
1∑︀𝑘

𝑡=1(𝑧
𝑖
𝑡)

2

𝑘∑︁
𝑡=1

𝑧𝑖𝑡𝑦
𝑖
𝑡. (3.9)

Note the {𝑧𝑖𝑡}∞𝑡=1 are not i.i.d. as 𝑧𝑖𝑘 depends on �̂�𝑘−1 which depends on all {𝑧𝑡}𝑘−1
𝑡=1 .

Standard consistency results of least squares cannot be applied. However the following

holds.

Proposition 2. Under Assumptions 6 and 7, there exists a set of noise realizations

Σ that has probability one and is such that for any 𝜖 ∈ Σ if we partition the agents

into the two sets

𝑆∞(𝜖) := {𝑖 ∈ Z[1, 𝑁 ] |
∞∑︁
𝑡=1

(𝑧𝑖𝑡(𝜖))
2 =∞} (3.10)

𝑆finite(𝜖) := {𝑖 ∈ Z[1, 𝑁 ] |
∞∑︁
𝑡=1

(𝑧𝑖𝑡(𝜖))
2 <∞} (3.11)

then it holds that

1. if 𝑖 ∈ 𝑆∞(𝜖) then lim𝑘→∞ |�̂�𝑖𝑘(𝜖)− 𝑎𝑖| = 0;

2. if 𝑖 ∈ 𝑆finite(𝜖) then there exists 𝑀 𝑖(𝜖) > 0 such that |�̂�𝑖𝑘(𝜖)− 𝑎𝑖| ≤𝑀 𝑖(𝜖) for all

𝑘.

The proof of this proposition is similar to that of Lemma 6 in [59] and is reported in

the Appendix for completeness. The above proposition states that for almost all noise

realizations agents can be partitioned into two groups based on the sum of neighbors’

aggregate strategies: those that diverge and those that are square summable over the

infinite horizon. Agents in the first group learn 𝑎𝑖 and agents in the second group

have an estimate of 𝑎𝑖 with a finite bounded error.
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3.4 Convergence

Using Propositions 1 and 2 we show that the learning dynamics summarized in Table

3.1 converge almost surely to the unique Nash equilibrium of the full information

game.

Theorem 2. Under Assumptions 4, 5, 6, and 7, the strategy vector 𝑥𝑘 corresponding

to the dynamics in Table 3.1 converges to the full information Nash equilibrium �̄�

almost surely.

Proof. To prove this statement we prove convergence for any noise realization in Σ,

as defined in Proposition 2. Fix 𝜖 ∈ Σ and let 𝑥𝑘(𝜖) be the corresponding learning

dynamics, as detailed in Table 3.1. Moreover, let �̄�𝑘 be the best response dynamics

that one obtains under full information starting from the same initial condition. Let

𝐴 = diag(𝑎𝑖), 𝐴𝑘(𝜖) = diag(𝑎𝑖𝑘(𝜖)) and 𝐿𝐵 = 𝐿
𝛼
. Then

‖𝑥𝑘(𝜖)− �̄�𝑘‖ =

⎯⎸⎸⎷ 𝑁∑︁
𝑖=1

(︀
𝐵𝑖(�̂�𝑖𝑘−1(𝜖)𝑧

𝑖
𝑘−1(𝜖))−𝐵𝑖(𝑎𝑖𝑧𝑖𝑘−1)

)︀2
≤ 𝐿𝐵

⎯⎸⎸⎷ 𝑁∑︁
𝑖=1

(︀
�̂�𝑖𝑘−1(𝜖)𝑧

𝑖
𝑘−1(𝜖)− 𝑎𝑖𝑧𝑖𝑘−1

)︀2
= 𝐿𝐵‖𝐴𝑘−1(𝜖)𝑧𝑘−1(𝜖)− 𝐴𝑧𝑘−1‖

≤ 𝐿𝐵‖𝐴𝑘−1(𝜖)𝑧𝑘−1(𝜖)− 𝐴𝑧𝑘−1(𝜖)‖+ 𝐿𝐵‖𝐴𝑧𝑘−1(𝜖)− 𝐴𝑧𝑘−1‖

≤ 𝐿𝐵‖𝐴𝑘−1(𝜖)𝑧𝑘−1(𝜖)− 𝐴𝑧𝑘−1(𝜖)‖+ 𝐿𝐵‖𝐴‖‖𝑧𝑘−1(𝜖)− 𝑧𝑘−1‖

≤ 𝐿𝐵‖𝐴𝑘−1(𝜖)𝑧𝑘−1(𝜖)− 𝐴𝑧𝑘−1(𝜖)‖+ 𝐿𝐵‖𝐴‖‖𝑃‖‖𝑥𝑘−1(𝜖)− �̄�𝑘−1‖

(3.12)

where we used that 𝐵𝑖 is Lipschitz continuous (shown in proof of Proposition 1) for

the first inequality. Note that

𝑤𝑘 := 𝐿𝐵‖𝐴𝑘(𝜖)𝑧𝑘(𝜖)− 𝐴𝑧𝑘(𝜖)‖

= 𝐿𝐵

⎯⎸⎸⎷ 𝑁∑︁
𝑖=1

(�̂�𝑖𝑘(𝜖)− 𝑎𝑖)2(𝑧𝑖𝑘(𝜖))
2 → 0 (3.13)
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by Proposition 2. In fact, if 𝑖 ∈ 𝑆∞(𝜖) then |�̂�𝑖𝑘(𝜖)− 𝑎𝑖| → 0 and (𝑧𝑖𝑘(𝜖))
2 is bounded

(as 𝒳 𝑖 is compact). On the other hand, if 𝑖 ∈ 𝑆finite(𝜖) then |�̂�𝑖𝑘(𝜖) − 𝑎𝑖| is bounded

but (𝑧𝑖𝑘(𝜖))
2 → 0.

By letting 𝜉𝑘 := ‖𝑥𝑘(𝜖)− �̄�𝑘‖ the system in (3.12) can be written

𝜉𝑘 ≤ 𝛾𝜉𝑘−1 + 𝑤𝑘−1

where 𝛾 := 𝐿𝐵‖𝐴‖‖𝑃‖ and 0 < 𝛾 < 1 by assumption. Note that 𝜉𝑘 and 𝑤𝑘 are

non-negative by definition. Consequently, all the assumptions of Lemma 11 (in the

Appendix) are satisfied and we conclude that 𝜉𝑘 = ‖𝑥𝑘(𝜖)− �̄�𝑘‖ → 0.

Overall we have proven that for any noise realization 𝜖 ∈ Σ, ‖𝑥𝑘(𝜖) − �̄�𝑘‖ → 0.

From Proposition 1 we have that ‖�̄�𝑘 − �̄�‖ → 0, therefore

‖𝑥𝑘(𝜖)− �̄�‖ ≤ ‖𝑥𝑘(𝜖)− �̄�𝑘‖+ ‖�̄�𝑘 − �̄�‖ → 0.

Since Σ has measure one, ‖𝑥𝑘 − �̄�‖ → 0 almost surely.

A corollary of the above theorem is that any agent who has a non-zero aggregate

of his neighbors strategies in the full information Nash equilibrium learns 𝑎𝑖 almost

surely.

Corollary 2. Under Assumptions 4, 5, 6, and 7, any agent 𝑖 for which 𝑧𝑖(�̄�) ̸= 0

(where �̄� is the full information Nash equilibrium) learns the parameter 𝑎𝑖 almost

surely.

Proof. For any 𝜖 ∈ Σ we have that 𝑥𝑘(𝜖) → �̄� and thus 𝑧𝑖𝑘(𝜖) → 𝑧𝑖. Consequently, if

𝑧𝑖 ̸= 0 it must be
∑︀

𝑘 𝑧
𝑖
𝑘(𝜖)

2 →∞ and 𝑖 ∈ 𝑆∞(𝜖) as defined in (3.10). The conclusion

follows by Proposition 2.
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3.5 Simulations

To illustrate our results we simulate a game in the setting of Example 1 with

𝑓(ℓ) = log(ℓ+ 𝑏) (3.14)

for a positive constant 𝑏 > 0. We first derive a sufficient condition to guarantee that

Assumption 5 is met.

Lemma 7. Consider a game with the structure given in Example 1 and suppose that

𝑓 is as in (3.14), 𝑎𝑖 > 0 for all 𝑖, 𝜖𝑖 ∼ 𝑈(−�̄�, �̄�) for some finite �̄� ∈ (0, 𝑏), 𝒳 𝑖 = [0, 1]

and 𝑃 ∈ {0, 1}𝑁×𝑁 with 𝑃𝑖𝑖 = 0. If {𝑎𝑖}𝑁𝑖=1 and 𝑏 are such that

max
𝑖

(| 𝑎𝑖 |)
(1 + max(| 𝑎𝑖 |)𝑁 + 𝑏)2 + 1

3
�̄�2

𝑏2
𝜌(𝑃 ) < 1, (3.15)

then Assumption 5 is met.

Proof. In this setting

𝑢𝑖(𝑥𝑖, 𝑝𝑖) = E𝜖𝑖 [log(𝑥
𝑖 + 𝑝𝑖 + 𝜖𝑖 + 𝑏)− 𝑘𝑖𝑥𝑖].

By Leibniz’s rule

∇𝑥𝑖𝑢𝑖(𝑥𝑖, 𝑝𝑖) = ∇𝑥𝑖(E𝜖𝑖 [log(𝑥
𝑖 + 𝑝𝑖 + 𝜖𝑖 + 𝑏)]− 𝑘𝑖𝑥𝑖)

= E𝜖𝑖 [∇𝑥𝑖 log(𝑥𝑖 + 𝑝𝑖 + 𝜖𝑖 + 𝑏)]− 𝑘𝑖

= E𝜖𝑖

[︂
1

𝑥𝑖 + 𝑝𝑖 + 𝜖𝑖 + 𝑏

]︂
− 𝑘𝑖.
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1. 𝑢𝑖(𝑥𝑖, 𝑝𝑖) is strongly concave in 𝑥𝑖:

∇𝑥𝑖𝑥𝑖𝑢𝑖(𝑥𝑖, 𝑝𝑖) = ∇𝑥𝑖E𝜖𝑖

[︂
1

𝑥𝑖 + 𝑝𝑖 + 𝜖𝑖 + 𝑏

]︂
= E𝜖𝑖

[︂
− 1

(𝑥𝑖 + 𝑝𝑖 + 𝜖𝑖 + 𝑏)2

]︂
≤ − 1

E𝜖𝑖 [(𝑥𝑖 + 𝑝𝑖 + 𝜖𝑖 + 𝑏)2]

= − 1

(𝑥𝑖 + 𝑝𝑖 + 𝑏)2 + var(𝜖𝑖)
< 0,

the second equality follows from Leibniz’s rule and the inequality follows from

Jensen’s inequality since −1
𝑠

is concave in 𝑠. To obtain the uniform concavity

constant −𝛼 note for each agent 𝑖

1

(𝑥𝑖 + 𝑝𝑖 + 𝑏)2 + var(𝜖𝑖)
≥ 1

(1 + max (| 𝑎𝑖 |)𝑁 + 𝑏)2 + 1
3
�̄�2

=: 𝛼 (3.16)

The last inequality holds as the maximum degree is 𝑁 .

2. ∇𝑥𝑖𝑢𝑖(𝑥𝑖𝑝𝑖) is Lipschitz in 𝑝𝑖: Taking the derivative with respect to 𝑝𝑖

∇𝑝𝑖E𝜖𝑖

[︂
1

𝑥𝑖 + 𝑝𝑖 + 𝜖𝑖 + 𝑏

]︂
= E𝜖𝑖

[︂
−1

(𝑥𝑖 + 𝑝𝑖 + 𝜖𝑖 + 𝑏)2

]︂
.

For any random variable 𝜉,

|E[𝜉]| ≤ E[|𝜉|] ≤ max
supp(𝜉)

|𝜉|.

Hence, |∇𝑥𝑖,𝑝𝑖𝑢
𝑖(𝑥𝑖, 𝑝𝑖)| ≤ max 1

(𝑥𝑖+𝑝𝑖+𝜖𝑖+𝑏)2
= 1

(𝑏−�̄�)2
= 𝐿.

Plugging the values for 𝐿 and the lower bound on 𝛼 in to (3.4) we recover the sufficient

condition given in (3.15).

In our simulations we set 𝑁 = 5, 𝑎𝑖 =
[︀

3
20
, 1
5
, 1
5
, 1
4
, 1
20

]︀
and 𝑏 = 1, so that (3.15)

holds. It is immediate that Assumptions 1, 3 and 4 hold as well (in particular the

function 𝑣𝑖(𝑥𝑖, 𝑦𝑖) = log(𝑥𝑖 + 𝑦𝑖 + 𝑏)− 𝑘𝑖𝑥𝑖 is invertible in 𝑦𝑖). In Figure 3-1 we show
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Figure 3-1: A) The network: 𝑃𝑖𝑗 = 𝑃𝑗𝑖 ∈ {0, 1} and a link between agents 𝑖 and 𝑗 is
present if and only if 𝑃𝑖𝑗 = 𝑃𝑗𝑖 = 1. B) One realization of the estimates �̂�𝑖𝑘 over steps
𝑘 ∈ [1, 1000].

a symmetric network and the learning dynamics starting from �̂�𝑖0 = 𝑧𝑖0 = 0 for each

agent 𝑖 for one noise realization.

3.6 Conclusion

We examined simple learning dynamics in a repeated network aggregative game where

each agent learns an unknown network weight parameter from observations of its

stochastic payoff and neighbors’ actions. We showed that ordinary least squares esti-

mates coupled with best response dynamics converge to the unique Nash equilibrium,

under appropriate assumptions on the network and the utility functions. The exten-

sion of our results to multi-dimensional strategies is immediate. In the future, we

plan to study settings where agents do not observe other agents’ actions or have more

than one unknown parameter.
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Chapter 4

Optimal Dynamic Information

Provision in Traffic Routing

As discussed in Chapter 2, traffic congestion is a major issue for billions of commuters

all around the world. Although in Chapter 2 we saw that if the latency functions

are fixed and unknown the Wardrop equilibrium will be reached. Instead, in this

chapter we consider a setting where the road conditions are unpredictably changing

due to accidents, traffic jams, construction, and weather. In such a setting, users

rely not only on their past experiences, but also on information provided by a central

planner (for example through a realtime routing system) to make optimal routing

decision. The fundamental question that we investigate is whether differentiated

provision of information from the central planner (CP) can be used as an effective

tool to coordinate the traffic demand and reduce overall traffic congestion. This is

a new approach to easing congestion, whereas in the past strategies such as road

tolling ([24], [25], [3], [35]) and reward-based incentive mechanisms ([32], [8]) have

been focused on. Thus, in this chapter, we investigate this alternative approach to

traffic regulation which leverages GPS-based navigation systems and aims to change

user behavior by providing different information about road states.

We consider a repeated routing game, where the CP at each round provides per-

sonalized and private road recommendations to the drivers with the goal of minimizing

overall travel time. We assume drivers are each interested in minimizing their indi-

55



vidual travel times. Therefore drivers will follow the recommendation from the CP

only if it is in their best interest given their current belief on the state of the road.

In technical terms, agents’ self interest constrains the feasible set of the CP to rec-

ommendations that are incentive compatible (IC), see [36] or the survey on incentive

design [67].

Crucially, we assume that the CP himself does not know the state of the road

and needs to learn from users’ observations of road conditions. This introduces an

exploration-exploitation trade-off, as the CP needs to send some drivers to roads with

unknown conditions to obtain up-to-date information.

We investigate these issues by developing a repeated two-road dynamic routing

game with a finite number of (atomic) forward-looking agents (drivers). We assume

that one road, the safe road, has a travel time that depends on the flow, that is, the

number of agents on the road, via a known affine function. The second road, the risky

road, has a travel time that is a linear function of the flow with an unknown stochastic

congestion coefficient, 𝜃. We assume each agent aims to minimize his total discounted

travel time, while the CP aims to minimize the sum of all discounted travel times.

When there is experimentation, meaning that some agent is using the risky road, the

CP learns the state of the road at that time, and then makes recommendations to all

agents using this information in the next round. Agents themselves learn the state

of the risky road if they take it; otherwise they rely on the recommendations sent by

the CP and their observations of the flows to form beliefs.

We first fully characterize the optimal IC recommendation system in a two-stage

setting where the state of the risky road 𝜃 is low (𝐿) or high (𝐻), and remains

constant over time. This state 𝜃 is unknown to both the CP and all the agents at

the beginning of the first stage. We consider three cases: i) full information where

all drivers are informed of the state of the risky road before the second round, ii)

no information where only drivers that take the risky road in the first round know

the state at the second round, and iii) partial information, where the CP will give

personalized recommendations to agents that did not take the risky road before the

second round. Under full information we show that, since all agents learn the state
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of the risky road, under favorable road conditions significant congestion is induced at

the second stage thus reducing incentives of agents to experiment in the first round.

Private information may, for certain values of priors on 𝜃, perform better than full

information since the experimenter will experience very low congestion in the second

round (thus reaping the entire reward of experimentation), but still leads to high

average travel times as most users will be uninformed and thus restricted to the safe

road. As first main results, we show that the optimal recommendation system is a

compromise between these two scenario. The CP provides information to some of

the uninformed agents if the risky road is low but not all, as a way to minimize

average travel time while maintaining incentives for exploration. We characterize

the optimal number of recommendations as solution to a quadratically constrained

quadratic program.

We then extend our model to an infinite-horizon setting. In this case we assume

the state of the risky road changes according to an underlying Markov chain, where

𝜃𝑡 ∈ {𝐿,𝐻} at each time 𝑡. This framework could model construction projects that

persist over time or roads that are unfavorable in persistent weather conditions. We

show that our general insights from the two-stage model generalize to this more

complex setting. A new challenge in this case is however that the CP must account

for the information that users receive from observations of other agents’ past actions.

For example, an agent on safe that sees many agents switching to risky can infer

that that risky road was low at the previous round and will therefore likely be low

again if the transition probability from 𝐿 to 𝐻 is sufficiently small. The CP must

consider the agents’ ability to infer information with one step delay and mitigate

the possible deviations agents may take to improve their cost. We characterize an

IC recommendation scheme that leads to better social cost than full information

and we study optimality of such scheme under different assumptions. Under the

derived scheme the CP always sends at least one agent to the risky road to have

up-to-date information of the state of the world. If this agent, the experimenter,

observes 𝜃 change to 𝐿, then in the next round the CP sends the myopic optimal

flow, the flow that minimizes overall travel time for that round. If after this first
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round the road remains favorable, then the CP potentially increases the number of

agents sent to the risky road in the next round to maintain incentive compatibility

among all agents. If the CP did not do this, then agents on the safe road would

be incentivized to switch roads after observing the higher flow on the risky road.

Overall, we again find that the CP must balance the amount of information it shares

with agents to account for both decreasing the total travel time and maintaining

incentive compatibility. The major challenge in analyzing this model comes from

both the CP and the agents being forward looking and learning; but with different

and opposing objectives. The CP wants to minimize overall travel time, whereas the

agents are concerned only with their own travel times. We show that such dichotomy

can be solved by carefully including the IC constraints in the derivation of the optimal

recommendation schemes. Our findings show that differentiated information provision

through personalized routing recommendations can be effectively used as a control

tool to minimize traffic congestion.

4.0.1 Related Literature

Classic approaches to congestion control include tools such as charging tolls [24], co-

ordinating of traffic lights [65], or provision of subsidies to drivers for taking certain

routes [32]. More recently, the idea of using information as an additional/alternative

control lever was suggested in [1] and [54]. Therein the authors introduced the con-

cept of informational Braess’ paradox, formalizing the idea that providing certain

subsets of drivers with more information can actually harm such drivers. These pa-

pers considered a static setting, where agents have a fixed set of information and the

state of the roads is constant. In this chapter we take a step further and investigate

how one can exploit this phenomenon for dynamic traffic control under varying road

conditions.

We note that a related question has been investigated by using tools of Bayesian

persuasion, see [47] and [13], for static traffic problems in [30, 71, 55, 75]. The closest

works to ours are [71], [51], and [76]. [71] consider a two-stage, two-road routing

problem. Therein however the CP has perfect information about the state of the
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risky road and does not need to rely on agents experimentation. As a consequence,

[71] focus on the case of non-atomic agents, while we consider atomic (a finite number

of) agents, which implies that agents take into account the information they generate

for their own and others’ future use. In addition, observations of traffic flow in [71]

are fully revealing, while in our setting there is a one step delay due to the fact that

the CP’s suggestions are based on previous observations and not on the current state

of the risky road (which is unknown to the CP). As already noted, we also extend our

analysis beyond two stages by looking at an infinite horizon model where the state

of the road changes in time. [51] consider a repeated game, again in a non-atomic

setting where the CP does learn from agents’ actions, but agents themselves are not

learning – agents at each time step only use the public message that is sent by the CP

to make a myopic routing decision. [76] also consider a repeated non-atomic routing

game where the CP has perfect information; agents themselves are not learning, but

use an aggregated rating of the CP at each point in time. This trust rating, based on

the CP’s past honesty, is used by the agents to decide whether or not to follow the

given recommendation. [56] study exploration in general repeated Bayesian games,

which include routing games, where the CP is attempting to steer agents to certain

actions to learn, but the agents themselves play the game only once and are not

forward looking or learning, as we instead study here. Lastly, [52] and [70] study the

dynamic setting where the game is repeated and the platform learns from agents, but

with public information sharing and where the agents themselves do not learn. The

key novelty in our work with respect to all the references above is that we consider

a dynamic problem with private information where: i) both the agents and the CP

are forward looking, ii) agents influence others payoff functions, iii) the parameters

change over time, requiring constant experimentation and iv) the CP depends on

agents to gain information through experimentation.

On a more general note, our results contribute to a growing literature on social

learning. For example, [22], [23], [66], and [49] study how a recommender system or

platform may incentivize users to learn collaboratively about a product, [68] study

how correlated preferences between agents may effect learning, [45] study a matching
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problem between heterogeneous jobs and workers, with an aim to learn worker types,

[41] study learning in repeated auctions, and [15] study product adoption. A survey

of the literature at the interface of learning, experimentation, and information design

can be found in [39]. The main feature distinguishing the routing problem addressed

in our work and the applications considered in the works above is again congestion

effects, which fundamentally modify the results since agents do not only affect others

in their learning process but also in payoffs.

Finally, our work has connections with the classic exploration-exploitation trade

off setting studied using the multi-armed bandit (MAB) problem, see e.g. [37]. A

large literature has been devoted to extend the MAB model to different settings. The

most closely related to ours are [17] and [48], where multiple experimenters can learn

from one another. These papers show that because of free riding by agents there will

be less experimentation than in the standard MAB model. Our setting is different

because of three features: first, congestion creates dependent payoffs across agents;

second, we focus on the IC experimentation scheme for a central planner; and third,

information in our setting is neither public (as in [17] and [48]) nor fully private.

The rest of the chapter is organized as follows. In Section 4.1, we introduce

the routing model. In Section 4.2 we consider a two-stage setting, compare three

information schemes and explain how to characterize the optimal recommendation

scheme. Finally, in Section 4.3 we detail the infinite time horizon setting and study

the optimal, IC recommendation scheme. All proofs are given in the Appendix.

4.1 Model

We consider a dynamic mechanism design problem in which a central planner (CP)

aims to minimize total travel time in a repeated routing game with 𝑁 (atomic) agents

on two roads. Agents decide their own routing to minimize their own travel time,

and the CP can try to influence their choices by providing information.
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Congestion model

We consider a network with two roads. One of the roads, the safe road, has a

congestion-dependent but non-stochastic affine cost 𝑆0 + 𝑆1(𝑁 − 𝑥𝑅) where 𝑆0 > 0,

𝑆1 ≥ 0 and 𝑥𝑅 is the number of agents on the risky road. The other road, the

risky road, has a linear cost 𝜃𝑡𝑥𝑅 where 𝜃𝑡 ∈ {𝐿,𝐻} (where 𝐿,𝐻 are scalars with

𝐿,𝐻 > 0) is an unknown congestion parameter that changes over time according to

an underlying Markov chain with switching probabilities 𝛾𝐿 := P(𝜃𝑡 = 𝐻|𝜃𝑡−1 = 𝐿)

and 𝛾𝐻 := P(𝜃𝑡 = 𝐿|𝜃𝑡−1 = 𝐻). (Our analysis can be easily generalized to a risky road

with affine cost 𝜃𝑡𝑥𝑅+𝑅0 for known 𝑅0 ≥ 0. We omit this for simplicity of exposition.

The parameter 𝜃𝑡 = 𝐿 represents cases where the congestion parameter is “low” which

means the risky road is favorable, alternatively 𝜃𝑡 = 𝐻 means the parameter is “high”

and the safe road is preferable.

Assumption 8 (Frequency of switching).

0 ≤ 𝛾𝐿, 𝛾𝐻 ≤
1

2
.

Assumption 8 imposes an upper limit on the probability that the road condition

changes. Intuitively this condition suggests that it might be worthwhile for an agent

to experiment, since the road is likely to remain in the same condition for more than

one stage.

Agent actions and stage cost function

At each time 𝑡, each agent 𝑖 chooses an action 𝛼𝑖
𝑡 ∈ {𝑆,𝑅} corresponding to either

taking the safe (𝛼𝑖
𝑡 = 𝑆) or the risky road (𝛼𝑖

𝑡 = 𝑅). An agent’s realized stage cost is

then given by the travel time he experiences at stage 𝑡

𝑔(𝛼𝑖
𝑡, 𝛼

−𝑖
𝑡 , 𝜃𝑡) =

⎧⎪⎨⎪⎩𝑆0 + 𝑆1(𝑁 − 𝑥𝑅
𝑡 (𝛼𝑡)) if 𝛼𝑖

𝑡 = 𝑆,

𝜃𝑡𝑥
𝑅
𝑡 (𝛼𝑡) if 𝛼𝑖

𝑡 = 𝑅,

where 𝑥𝑅
𝑡 (𝛼𝑡) :=

∑︀𝑁
𝑖=1 1{𝛼𝑖

𝑡 = 𝑅} is the total flow on the risky road at time 𝑡.
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Information structure

We assume that if an agent experiments by using the risky road at time 𝑡, he observes

the true value of 𝜃𝑡 and this is also directly observed by the CP (because he communi-

cates it truthfully to the CP or because of direct observation of his experience by the

CP via GPS). Consequently the CP knows 𝜃𝑡 if and only if at least one agent takes the

risky road at time 𝑡. Before 𝑡 = 0, the CP commits to a signaling scheme to dissemi-

nate information to agents that are on the safe road and are thus uninformed. From

here on we restrict our attention to recommendation schemes, which are a specific

type of signaling scheme where the signal sent to each agent is a recommendation to

take either the safe (𝑟𝑆) or the risky road (𝑟𝑅) and we refer to such a recommendation

scheme as 𝜋 (a formal definition of recommendation schemes for the two stage model

is given in Definition 5 and for the infinite horizon model is given in Definition 6).

Cost function

Drivers are homogeneous and risk-neutral. Each minimizes his expected sum of travel

times over 𝑇 repetitions of the game discounted in time by a factor 𝛿 ∈ [0, 1). Let

ℎ𝑖
𝑡−1 be agent 𝑖’s history after round 𝑡−1 and before time 𝑡 (based on his observations

and on the signals sent by the CP). This includes the past actions of the agent, the

flows the agent experienced, the recommendations the agent received, and the state

of the risky road for those times the agent took it. An agent’s strategy 𝜉𝑖𝑡(ℎ
𝑖
𝑡−1) maps

any history to an action {𝑆,𝑅}. The agent’s expected cost from time 𝑡 to time 𝑇 is

given by

𝑢𝑖
𝑡(ℎ

𝑖
𝑡−1) = E

[︃
𝑇∑︁

𝑘=𝑡

𝛿𝑘−𝑡𝑔(𝜉𝑖𝑘(ℎ
𝑖
𝑘−1), 𝜉

−𝑖
𝑘 (ℎ−𝑖

𝑘−1), 𝜃𝑘)

]︃
.

We focus on pure strategies; hence the expectation here is on the state of the risky

road 𝜃 and on the information received from the CP.

Each agent chooses 𝜉𝑖𝑡(·) to minimize his total expected cost given the strategies of

others and the recommendation scheme the CP uses. Note that the agent’s strategy

is chosen after the CP has committed to a recommendation scheme.

The CP’s objective is to select a recommendation scheme 𝜋 to minimize the ex-
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pected total discounted travel times of agents over 𝑇 stages. Let 𝜉𝑖|𝜋𝑡 be the strategy

agent 𝑖 uses in equilibrium under the recommendation scheme 𝜋.

Definition 4. A recommendation scheme 𝜋 is incentive compatible if 𝜉
𝑖|𝜋
𝑡 = 𝑅 for

any agent 𝑖 that receives a recommendation 𝑟𝑅 for stage 𝑡 and 𝜉
𝑖|𝜋
𝑡 = 𝑆 for any agent

𝑖 that receives a recommendation 𝑟𝑆 for stage 𝑡.

Let Π be the class of incentive compatible recommendation schemes and 𝑔(𝑥𝑅, 𝜃)

be the total cost of a stage when there are 𝑥𝑅 agents on the risky road and the road

condition is 𝜃, i.e.

𝑔(𝑥𝑅, 𝜃) = 𝜃(𝑥𝑅)2 + (𝑆0 + 𝑆1(𝑁 − 𝑥𝑅))(𝑁 − 𝑥𝑅).

If no agent is using the risky road, we define 𝑔(0) = (𝑆0+𝑆1𝑁)𝑁 as the cost does not

depend on 𝜃. Before the game begins the CP and all agents share a common prior

on the state of the risky road which we denote by 𝛽 = P(𝜃0 = 𝐿). The CP wants to

choose a scheme 𝜋 ∈ Π to minimize

𝑉 𝜋
𝑇 (𝛽) := E

[︃
𝑇∑︁

𝑘=1

𝛿𝑘𝑔(𝑥𝑅
𝑘 , 𝜃𝑘) | P[𝜃0 = 𝐿] = 𝛽

]︃
, where 𝑥𝑅

𝑘 =
𝑁∑︁
𝑖=1

1{𝜉𝑖|𝜋𝑘 (ℎ𝑖
𝑘−1) = 𝑅}.

(4.1)

4.2 The two-stage model

We start by considering a two-stage model (𝑇 = 2) and, for simplicity, we assume

that the road condition does not change between the two stages, that is 𝜃0 = 𝜃1 =

𝜃2 =: 𝜃 (i.e. 𝛾𝐻 = 𝛾𝐿 = 0). We also assume no discounting (𝛿 = 1) to simplify the

derived bounds. Define the expected value of 𝜃 at the beginning of the first stage as

𝜇𝛽 := E[𝜃] = 𝛽𝐿+ (1− 𝛽)𝐻. In this context the objective of the CP is to minimize

𝑉 𝜋
2 (𝛽) := E

[︀
𝑔(𝑥𝑅

1 , 𝜃) + 𝑔(𝑥𝑅
2 , 𝜃) | P(𝜃 = 𝐿) = 𝛽

]︀
.

We adopt the following assumption.
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Assumption 9 (Two stage model). The parameters are such that

1. 𝐿 < 𝑆0 + 𝑆1,

2. 𝑆0 + 𝑆1𝑁 < 𝜇𝛽.

Assumption 9.1 states that if the congestion parameter is 𝐿, the risky road is

preferable (i.e. the cost of one agent on risky if 𝜃 = 𝐿 is less than the cost of one

agent on safe). Assumption 9.2 states that the expected cost of experimentation

for one agent 𝜇𝛽 is greater than a fully congested safe road. Note that agents may

nonetheless select the risky road in the first round since, if 𝜃 = 𝐿, they can exploit this

information in the second round. We let 𝑥𝑒𝑞
𝐿 be the myopic equilibrium flow on risky

if all agents know that 𝜃 = 𝐿. (That is 𝑥𝑒𝑞
𝐿 ≈min

{︁
𝑆0+𝑆1𝑁
𝐿+𝑆1

, 𝑁
}︁
. The approximation

comes from the fact that 𝑥𝑒𝑞
𝐿 must be an integer as we work with an atomic model

(finite number of agents).)

4.2.1 Full and private information

We start with two extreme and simple informational scenarios:

• Full information - if any agent takes the risky road in round one, then all agents

learn 𝜃 before round two.

• Private information - any agent that takes the risky road in round one knows

the value of 𝜃 before round two, but any agent that chose to play safe in the

first round has no new information before the beginning of round two.

We first show that in any pure strategy Nash equilibrium, at most one agent

experiments in the first round. We then use this result to characterize the equilib-

rium under both full and private information. While the result that only one agent

experiments under full information is very general, the fact that only one agent ex-

periments under private information is a consequence of some of the special features

of this example. In particular, in a two-period model, there is only a limited time

during which an experimenter can exploit his information. Since we assume a linear
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cost function, an additional experimenter increases the travel time sufficiently such

that it is not worthwhile for two agents to experiment. This result does not apply,

for example, in our infinite-horizon model, studied in the next section. Nevertheless,

we will see that, in that setting too, in the incentive compatible optimal mechanism,

the CP will induce only one agent to experiment. Note uniqueness here refers to the

total number of agents in each road.

Lemma 8. Under Assumption 9 and any information scheme, in any pure strategy

Nash equilibrium at most one agent experiments in the first round.

Theorem 3. Under Assumption 9 the unique pure strategy Nash equilibrium is as

follows:

• Full information:

– all agents play safe in both rounds, if

𝛽 <
𝐻 − (𝑆0 + 𝑆1𝑁)

𝐻 − 𝐿+ (𝑆0 + 𝑆1𝑁)− 𝑔(𝑥𝑒𝑞
𝐿 ,𝐿)

𝑁

=: 𝛽𝑓

– otherwise, one agent experiments in the first round, and 𝑥𝑒𝑞
𝐿 agents use the

risky road in the second round if 𝜃 = 𝐿, and all play safe if 𝜃 = 𝐻.

The expected cost under equilibrium is

𝑉 𝑓𝑢𝑙𝑙
2 (𝛽) :=

⎧⎪⎨⎪⎩2𝑔(0) if 𝛽 < 𝛽𝑓

𝑔(1, 𝜇𝛽) + 𝛽𝑔(𝑥𝑒𝑞
𝐿 , 𝐿) + (1− 𝛽)𝑔(0) if 𝛽𝑓 ≤ 𝛽.

• Private information:

– all agents play safe in both rounds if

𝛽 <
𝐻 − (𝑆0 + 𝑆1𝑁)

𝐻 + (𝑆0 + 𝑆1𝑁)− 2𝐿
=: 𝛽𝑝 ≤ 𝛽𝑓

65



– otherwise, one agent experiments in the first round and uses the risky road

if 𝜃 = 𝐿 and the safe road if 𝜃 = 𝐻 in the second round. All other agents

play safe in both rounds.

The expected cost under equilibrium is

𝑉 𝑝𝑟𝑖𝑣𝑎𝑡𝑒
2 (𝛽) :=

⎧⎪⎨⎪⎩2𝑔(0) if 𝛽 < 𝛽𝑝

𝑔(1, 𝜇𝛽) + 𝛽𝑔(1, 𝐿) + (1− 𝛽)𝑔(0) if 𝛽𝑝 ≤ 𝛽.

Corollary 3. If the prior belief 𝛽 is such that

𝛽𝑝 ≤ 𝛽 < 𝛽𝑓 , (4.2)

then in the pure strategy equilibrium there is experimentation under private informa-

tion, but not under full information. Consequently private information has a lower

expected cost (𝑉 private
2 (𝛽) < 𝑉 full

2 (𝛽)).

According to the above corollary, there may exist a range of priors where it is

better for the CP to provide no information rather than full information. Intuitively,

this happens because providing the information that 𝜃 = 𝐿 to all the agents induces

congestion in the second round, thus reducing the value of information. This decreases

the incentive of an agent to experiment in the first round. In other words, full

information allows more agents to free-ride off one agent’s experimentation, reducing

the payoff of the experimenter due to congestion effects. The next example illustrates

the costs as a function of the prior belief.

Example 3. Suppose 𝑁 = 40, 𝑆0 = 10, 𝑆1 = 1, 𝐿 = 0.9, and 𝐻 = 150. The

comparison of the equilibrium cost for all beliefs satisfying Assumption 9 is shown in

Figure 4-1. For 𝛽 ∈ [0.50, 0.57], there is experimentation under private information,

but no experimentation under full information.

The fact that full information, where the conditions of the risky road are commu-

nicated to all agents, is not socially optimal motivates the rest of our analysis. We
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will show that some amount of information sharing by the CP is preferable to private

information and characterize the optimal recommendation scheme.

4.2.2 Unconstrained social optimum

Define 𝑥𝑆𝑂
𝐿 , 𝑥𝑆𝑂

𝐻 as the social optimum integer myopic flows on the risky road when

it is known that 𝜃 = 𝐿 or 𝜃 = 𝐻 respectively, that is,

𝑥𝑆𝑂
𝐿 := argmin

𝑥∈{0,1,...,𝑁}
𝑔(𝑥, 𝐿), 𝑥𝑆𝑂

𝐻 := argmin
𝑥∈{0,1,...,𝑁}

𝑔(𝑥,𝐻).

Theorem 4. Under Assumption 9 the social optimum is given by

• All agents playing safe in both rounds, if

𝛽 ≤ 𝐻 + 𝑔(𝑥𝑆𝑂
𝐻 , 𝐻)− (𝑆0(𝑁 + 1)− 𝑆1((2 +𝑁)𝑁 − 1))

𝐻 − 𝐿+ 𝑔(𝑥𝑆𝑂
𝐻 , 𝐻)− 𝑔(𝑥𝑆𝑂

𝐿 , 𝐿)
:= 𝛽SO ≤ 𝛽𝑝

• One agent experimenting in the first round and 𝑥𝑆𝑂
𝐿 (𝑥𝑆𝑂

𝐻 ) agents taking the

risky road in the second round if 𝜃 = 𝐿 (𝜃 = 𝐻), otherwise.

The expected cost under the social optimum is then

𝑉 *
2 :=

⎧⎪⎨⎪⎩2𝑔(0) if 𝛽 < 𝛽SO,

𝑔(1, 𝜇𝛽) + 𝛽𝑔(𝑥𝑆𝑂
𝐿 , 𝐿) + (1− 𝛽)𝑔(𝑥𝑆𝑂

𝐻 , 𝐻) if 𝛽 ≥ 𝛽SO.

Remark 3. Two remarks are in order. First, note that while when 𝜃 = 𝐻 it is

never myopically a best response for an agent to take the risky road, the previous

lemma shows that the CP may still want to send some agents to the risky road in

the second round (if 𝑥𝑆𝑂
𝐻 ≥ 1) to reduce congestion on safe for all other agents.

Second, note that at least for any belief 𝛽 ∈ [𝛽SO, 𝛽𝑝) the social optimum scheme is

not incentive compatible. In fact, since 𝛽 < 𝛽𝑝 it is not incentive compatible for an

agent to experiment in the first round (under private information the experimenter

has the highest possible gain from experimentation hence if experimentation doesn’t
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Figure 4-1: Example 3. We distinguish four cases based on the prior 𝛽: A) no ex-
perimentation, B) experimentation under social optimum, C) experimentation under
private and optimal information, D) experimentation under all schemes.

happen under private information it cannot happen under any information scheme).

Nonetheless, for 𝛽 > 𝛽𝑆𝑂 the CP would like to experiment by sending one agent to

the risky road (because knowing the state of the road is collectively beneficial). In

Example 3, 𝛽SO = 0.05 is significantly lower than 𝛽𝑝 = 0.50 suggesting that the social

optimum may not be incentive compatible for a large range of beliefs.

4.2.3 Partial information

The CP can alleviate the problems of full and private information and achieve a cost

that is closer to social optimum by providing recommendations in a coordinated way.

The objective here is to find a balance between

• providing information to a large enough number of agents in the second stage,

so that the total cost is low when 𝜃 = 𝐿;

• providing information to a small enough number of agents in the second stage

to avoid a high level of congestion on the risky road when 𝜃 = 𝐿 to encourage

experimentation in the first round.

We refine the CP’s recommendation scheme for the two stage model as follows.

Definition 5 (Two stage recommendation scheme). In the two stage model, a de-

terministic recommendation scheme is a pair of mappings (𝜋1, 𝜋2) where 𝜋𝑡 : {𝛽} →

{0, 1, ..., 𝑁} maps the CP’s belief on the state of the risky road at time 𝑡 to the number
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𝜋𝑡(𝛽) of uninformed agents to whom the CP sends a recommendation of risky before

time 𝑡. (We assume that the 𝜋𝑡(𝛽) agents to which 𝑟𝑅 is sent are chosen uniformly

at random from the set of uninformed agents.) With a slight abuse of notation we let

𝜋𝑡(𝐿) := 𝜋𝑡(1) and 𝜋𝑡(𝐻) := 𝜋𝑡(0).

Note that this definition restricts attention to recommendation systems that are

anonymous, in the sense that the recommendations for all agents with the same beliefs

(i.e. agents that took the safe road) are drawn from the same distribution. (This could

also be replicated with a recommendation system that is fully anonymous, meaning

that all agents receive recommendations from the same distribution, but those with

beliefs determined from their experience of the risky road (the experimenters) will

not follow these recommendations.) Nevertheless, the recommendation system is

potentially “interim asymmetric” — meaning that some of these agents may receive

different recommendations. (An alternative is to impose additionally that the scheme

is interim symmetric, but mixed. In this case, all agents would receive the same

stochastic recommendation. Because we have a finite number of agents, this would

induce additional noise in traffic flows, hence we do not focus on this case.)

Because of Lemma 8, in any incentive compatible scheme it must be 𝜋1(𝛽) ≤ 1. We

already argued in Remark 3 that in any incentive compatible scheme there cannot be

experimentation if 𝛽 < 𝛽𝑝, hence in this range it must be 𝜋1(𝛽) = 𝜋2(𝛽) = 0. If instead

𝛽 ≥ 𝛽𝑝, we show that the optimal incentive compatible scheme selects 𝜋1(𝛽) = 1 and

values of 𝜋2(𝐿), 𝜋2(𝐻) obtained by solving the following quadratic integer program

with quadratic constraints (corresponding to the incentive compatibility constraints).

Theorem 5. If 𝛽 ≥ 𝛽𝑝 the optimal incentive compatible recommendation scheme is
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a solution to the following minimization problem

min
𝜋2(𝐿),𝜋2(𝐻)

𝑔(1, 𝜇𝛽) + 𝛽𝑔(𝑥
𝑅|𝐿
2 , 𝐿) + (1− 𝛽)𝑔(𝑥

𝑅|𝐻
2 , 𝐻) (4.3a)

s.t. E𝜃[𝑆0 + 𝑆1(𝑁 − 𝑥
𝑅|𝜃
2 ) | rec. safe]⏟  ⏞  

follow rec. of safe

≤ E𝜃[𝜃(𝑥
𝑅|𝜃
2 + 1) | rec. safe]⏟  ⏞  
deviate to risky

, (4.3b)

E𝜃[𝜃𝑥
𝑅|𝜃
2 | rec. risky]⏟  ⏞  

follow rec. of risky

≤ E𝜃[𝑆0 + 𝑆1(𝑁 − 𝑥
𝑅|𝜃
2 + 1) | rec. risky]⏟  ⏞  

deviate to safe

, (4.3c)

E[𝜃]⏟ ⏞ 
exp.’s cost
in round 1

+ 𝛽(𝐿𝑥
𝑅|𝐿
2 ) + (1− 𝛽)(𝑆0 + 𝑆1(𝑁 − 𝑥

𝑅|𝐻
2 ))⏟  ⏞  

experimenter’s cost
in round 2

≤ 2(𝑆0 + 𝑆1𝑁)⏟  ⏞  
all playing safe
in both rounds

(4.3d)

𝑥
𝑅|𝐿
2 = 𝜋2(𝐿) + 1, 𝑥

𝑅|𝐻
2 = 𝜋2(𝐻)

𝜋2(𝐿), 𝜋2(𝐻) ∈ {0, 1, ..., 𝑁}

Equations (4.3b), (4.3c) and (4.3d) are given in implicit form for readability, the

explicit form is provided within the proof.

Note, that 𝜋2(𝐿) = 𝜋2(𝐻) = 0 is a feasible solution when 𝛽 ≥ 𝛽𝑝 (and corresponds

to private information). Moreover, if 𝛽 > 𝛽𝑓 , 𝜋2(𝐿) = 𝑥𝑒𝑞
𝐿 − 1, 𝜋2(𝐻) = 0 is a

feasible solution and has the same social cost as full information. Hence private and

full information have always at least weakly higher cost than the optimal incentive

compatible scheme. We show in Example 3 that the optimal incentive compatible

scheme can be strictly better than private and full information (see region C in Figure

4-1).

4.3 The infinite-horizon model

We now extend our analysis to an infinite-horizon setting. For simplicity, we restrict

our attention to the case when the safe road has a fixed cost 𝑆0 (i.e. we set 𝑆1 = 0),

so that the cost under full information is simply 𝑆0/(1 − 𝛿). (If 𝑆1 > 0 a similar

argument can be followed to derive an incentive compatible recommendation scheme.

Proving optimality of such a scheme is more complicated, however. The main tech-
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nical difficulty in that scenario is computing the optimal punishment for deviations.

We show below that, in the case where 𝑆1 =0, the optimal punishment is providing

full information.) Finally, note that even though the travel time on the safe road

does not depend on congestion levels, we still assume that if an agent takes safe at

time 𝑡, he observes 𝑥𝑆
𝑡 . We first characterize the social optimum scheme and give an

example to illustrate why it may not be incentive compatible. We then introduce an

incentive compatible recommendation system, prove it achieves better cost than full

information and derive conditions for optimality.

4.3.1 Unconstrained social optimum

We first derive the “unconstrained” social optimal, meaning that we ignore the incen-

tive compatibility constraints of the agents.

Suppose that the CP has a belief, 𝛽𝑡−1 ∈ [0, 1] about the probability that state

of the road at time 𝑡 − 1 was 𝐿 (we use the convention 𝛽𝑡−1 = 0 if 𝐻 was observed

and 𝛽𝑡−1 = 1 if 𝐿 was observed). If the CP had complete control of the agents the

myopically optimal flow to send at time 𝑡 under a generic belief 𝛽𝑡−1 = 𝛽 would be

𝑥𝑆𝑂
𝛽 := argmin

𝑥∈{0,...,𝑁}
E𝜃𝑡 [𝑔(𝑥, 𝜃𝑡) | 𝛽𝑡−1 = 𝛽] . (4.4)

Note that the myopic flow does not depend on 𝑡 given the properties of Markov

processes. With a slight abuse of notation we set 𝑥𝑆𝑂
𝐿 := 𝑥𝑆𝑂

1 and 𝑥𝑆𝑂
𝐻 := 𝑥𝑆𝑂

0 .

In the following, we focus on cases where the cost of experimentation is high

from a myopic standpoint. Specifically, we consider cases in which 𝑥𝑆𝑂
𝐻 = 0, so that

myopically the CP has no incentive to send agents to the risky road after observing H

in the last period. Our interest is determining conditions under which experimentation

happens when the CP is forward looking.

Assumption 10 (Cost of experimentation). Define the expected value of the conges-
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tion parameter 𝜃𝑡, following an observation of 𝜃𝑡−1 as

𝜇𝐿 := E[𝜃𝑡|𝜃𝑡−1 = 𝐿] = (1− 𝛾𝐿)𝐿+ 𝛾𝐿𝐻,

𝜇𝐻 := E[𝜃𝑡|𝜃𝑡−1 = 𝐻] = 𝛾𝐻𝐿+ (1− 𝛾𝐻)𝐻.

We assume that 𝑆0 > 3𝐿 and

𝜇𝐿 ∈ [𝐿, (1/3)𝑆0)

𝜇𝐻 ∈
[︂
𝑆0, 𝑆0 + 𝛿𝛾𝐻

(︂
𝑆0

3
− 𝜇𝐿

)︂]︂
.

Intuitively, Assumption 10 imposes that the expected congestion parameter 𝜇𝐿 fol-

lowing an observation of 𝐿 is small enough such that the CP would myopically send

two or more agents after observing 𝐿 (that is, 𝑥𝑆𝑂
𝐿 ≥ 2). If this were not the case,

then the CP would send the same flow after 𝐿 and 𝐻 making the problem uninter-

esting. The assumption also imposes that 𝜇𝐻 ≥ 𝑆0, which implies that the CP would

myopically send no agent after seeing 𝐻, thus making experimentation beneficial only

because of forward-looking incentives—there would be no experimentation with my-

opic agents. Finally, the upper bound on 𝜇𝐻 ensures that the forward-looking CP

always find experimentation after seeing 𝐻 beneficial (rather than sending all agents

to safe for one or more rounds).

Proposition 3 (Social optimum). Under Assumptions 8 and 10, 𝑥𝑆𝑂
𝐻 = 0 and 𝑥𝑆𝑂

𝐿 ≥

2. Let us define the social optimum recommendation scheme as a function 𝜋𝑆𝑂 that

maps the belief 𝛽 that the CP has about the state of the road at time 𝑡 − 1 to the

number of agents to send to the risky road at time 𝑡 to minimize total discounted

travel time, that is,

𝜋𝑆𝑂(𝛽) := argmin
𝑥∈{0,...,𝑁}

E

[︃
𝑔(𝑥, 𝜃𝑡) +

∑︁
𝑘≥1

𝛿𝑘𝑔
(︀
𝜋𝑆𝑂(𝛽𝑡−1+𝑘), 𝜃𝑡+𝑘

)︀
| P[𝜃𝑡−1 = 𝐿] = 𝛽

]︃
.

(4.5)

Then 𝜋𝑆𝑂(𝛽) = max{1, 𝑥𝑆𝑂
𝛽 }, with 𝑥𝑆𝑂

𝛽 as defined in (4.4).

Under the social optimum recommendation scheme derived above the CP sends
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one agent (the experimenter) if the state of the risky road was 𝐻 at the previous step

(to explore) and 𝑥𝑆𝑂
𝐿 ≥ 2 if it was 𝐿 (to exploit). Hence, under 𝜋𝑆𝑂 the CP always

knows the state of the risky road. The next example, however, shows that this scheme

is not necessarily incentive compatible. In particular, when agents make their own

routing decisions, the CP may not be able to send 𝑥𝑆𝑂
𝐿 agents when the state is 𝐿.

Example 4. Take the extreme case where 𝛾𝐿 = 0. Then 𝑥𝑆𝑂
𝐿 ≈ 𝑆0

2𝐿
and 𝑥𝑒𝑞

𝐿 ≈ 𝑆0

𝐿
.

(Again, the approximation comes from the integer constraint of our atomic model.)

Suppose that at time 𝑡 − 1 the risky road state changes from 𝐻 to 𝐿. Since 𝛾𝐿 = 0

this will be the state of the risky road from that point forward. According to 𝜋𝑆𝑂, at

time 𝑡, the CP sends 𝑥𝑆𝑂
𝐿 drivers to risky to exploit the low state. After time 𝑡, under

𝜋𝑆𝑂, agents that were on risky at time 𝑡 should remain on risky forever and agents

that were on safe at time 𝑡 should remain on safe forever.

However, consider an agent on safe at time 𝑡. After observing the flow 𝑥𝑆𝑂
𝐿 at

time 𝑡, this agent can infer that 𝜃 has changed to 𝐿. Hence at time 𝑡 + 1 he knows

that

- if he remains on safe, as prescribed by 𝜋𝑆𝑂, he will experience a cost of 𝑆0 for

all future times;

- if he switches to risky, he will experience a cost of ≈ 𝐿(𝑆0

2𝐿
+1) = 𝑆0

2
+𝐿 for all

future times;

Under Assumption 10, 𝐿 < 𝑆0

3
< 𝑆0

2
. Hence following 𝜋𝑆𝑂 is not incentive com-

patible for the agent.

In the next sections, our objective is to derive incentive compatible recommenda-

tion schemes that achieve lower cost than providing full information.

4.3.2 Partial information: Incentive compatibility

Example 4 shows that the social optimum scheme 𝜋𝑆𝑂 may not be incentive compat-

ible because it does not take into account the fact that agents that are on the safe
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road can infer the state 𝜃𝑡−2 from the flow observed at time 𝑡 − 1. For this reason,

from here on we consider recommendation schemes where the CP conditions his rec-

ommendations not only on 𝜃𝑡−1 but also on 𝜃𝑡−2. In principle, the CP could even

condition on further past values of the state 𝜃. Though we are not able to rule out

formally that conditioning on (𝜃𝑡−2, 𝜃𝑡−1) is optimal without loss of generality, in what

follows we simplify the analysis of incentive compatible recommendation schemes by

assuming that the CP will condition only on (𝜃𝑡−2, 𝜃𝑡−1) and thus the relevant state

can be summarized by equilibrium path beliefs (𝛽𝑡−2, 𝛽𝑡−1). Based on Proposition 3,

we also restrict attention to schemes which do involve experimentation for all sample

paths (meaning that the CP always prefers to send one agent on the risky road).

Definition 6 (Infinite horizon recommendation scheme). A recommendation scheme

is defined as a map 𝜋 : [0, 1] × [0, 1] → {1, 2, ..., 𝑁} which maps the belief of the

CP on the state of the risky road at time 𝑡 − 2 and 𝑡 − 1 (i.e. 𝛽𝑡−2, 𝛽𝑡−1) to the

number of agents to whom the CP sends a recommendation to take the risky road,

𝑟𝑅. If 𝜃𝑡−1 = 𝐿, we assume that all agents that were on the risky road at time

𝑡− 1 receive a recommendation to remain on the risky road at time 𝑡; the remaining

recommendations (i.e. 𝜋(·, 𝐿) − 𝑥𝑅
𝑡−1) are sent to a random subset of the agents on

safe. If instead 𝜃𝑡−1 = 𝐻 then recommendations are sent to a random subset of

all the agents. In both cases agents that do not receive a recommendation of risky

receive a recommendation of safe, 𝑟𝑆. Finally, if any agent deviates, the CP provides

full information to all agents from then on. (Intuitively, full information is the worst

incentive compatible punishment, for deviation, that the CP can impose. In fact under

full information, the expected cost per round of each agent is 𝑆0. No punishment can

lead to higher cost and be incentive compatible because agents can always switch to

play safe and achieve a cost of 𝑆0.) We denote the set of all recommendation schemes

of this form as Π̂.

We want to stress that the assumption of restricted history applies only to the

CP, not to agents. Consequently, we are in no way restricting the optimal behavior

of the agents, who can condition their actions on all of their past information.
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Any scheme 𝜋 ∈ Π̂ can be parametrized as follows

𝜋(𝛽𝑡−2, 𝛽𝑡−1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑎 𝑖𝑓 [𝛽𝑡−2, 𝛽𝑡−1] = [𝐿,𝐻]

𝑏 𝑖𝑓 [𝛽𝑡−2, 𝛽𝑡−1] = [𝐻,𝐻]

𝑐 𝑖𝑓 [𝛽𝑡−2, 𝛽𝑡−1] = [𝐻,𝐿]

𝑑 𝑖𝑓 [𝛽𝑡−2, 𝛽𝑡−1] = [𝐿,𝐿].

Note that one should also specify the values of 𝜋(𝛽𝑡−2, 𝛽𝑡−1) for values of 𝛽1, 𝛽2 ∈ (0, 1)

but in the schemes we consider this is not relevant in view of the fact that the CP

always sends at least one agent to experiment and thus knows the state of the risky

road in the previous period. For simplicity we denote a generic scheme 𝜋 of this

form as 𝜋𝑎,𝑏,𝑐,𝑑 and the associated social cost as 𝑉𝑎,𝑏,𝑐,𝑑 (we consider costs starting

from 𝜃0 = 𝐻 since this choice induces the lowest possible belief and is thus the most

difficult scenario for experimentation).

Example 4 showed that 𝜋𝑆𝑂 may not be incentive compatible because if agents

on the safe road see the flow 𝑁 − 𝑥𝑆𝑂
𝐿 they can infer that the road switched to 𝐿

at time 𝑡 − 2 and may have an incentive to deviate. This intuition motivates us to

focus in particular on a subclass of Π̂ consisting of schemes obtained by the following

modification of the social optimum policy (see also Table 4.1). If 𝜃𝑡−1 = 𝐻 the

CP sends one agent (to experiment) exactly as in the social optimum (i.e. we set

𝑎 = 𝑏 = 1). If instead 𝜃𝑡−1 = 𝐿 then the CP sends two possibly different flows 𝑐 and

𝑑 depending on whether the road has just switched to 𝐿 or whether it was 𝐿 also in

the previous period (in which case the agents on safe can infer the road changed at

time 𝑡− 2 from the flow observed at 𝑡− 1).

Definition 7. Consider a scheme 𝜋𝑎,𝑏,𝑐,𝑑 ∈ Π̂ with 𝑎 = 𝑏 = 1 and 1 < 𝑐 ≤ 𝑑 and

denote this for simplicity as 𝜋𝑐,𝑑.

Since 𝑐 > 1, under any scheme 𝜋𝑐,𝑑, agents can learn the state of the risky road

at 𝑡− 2 by observing the flow at 𝑡− 1. Exploiting this fact, we show that agents can

summarize their history ℎ𝑡−1 with a smaller state 𝑧𝑖𝑡, as detailed next.
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Lemma 9. Under 𝜋𝑐,𝑑 and given that other agents follow their recommendations,

an agent can evaluate if a recommendation is incentive compatible using only the

information 𝑧𝑖𝑡 := [𝑥𝑡−1, 𝛽
𝑖
𝑡−1, 𝑟

𝑖
𝑡−1] where

• 𝑥𝑡−1 ∈ 𝑋 := {0, 1, ..., 𝑁} is the flow observed on the risky road at the previous

time (even if an agent is on safe he can infer 𝑥𝑡−1 as 𝑁 minus the flow on safe,

hence this is common information);

• 𝛽𝑖
𝑡−1 ∈ ℬ := {𝐿,𝐻,𝑈} encodes the information that agent 𝑖 has about the state

of the road at 𝑡− 1. If the agent was on the risky road at 𝑡− 1, then he knows

the true realization (𝐿 or 𝐻), while if he was on the safe road we denote the fact

that he does not know the state with the symbol 𝑈 (Unobserved); (We simply

use the symbol 𝑈 instead of specifying the belief with a number in (0, 1).)

• 𝑟𝑖𝑡−1 ∈ Λ := {𝑟𝑆, 𝑟𝑅} is the recommendation an agent receives between round

𝑡− 1 and 𝑡.

Specifically, let ℎ𝑖
𝑡−1 be the entire history of the agent up to and including time

𝑡− 1. For any 𝛼𝑖
𝑡 ∈ {𝑆,𝑅} it holds

E

[︃
𝑔(𝛼𝑖

𝑡, 𝜋
−𝑖,𝑡
𝑐,𝑑 , 𝜃𝑡) +

∞∑︁
𝑘=𝑡+1

𝛿𝑘−𝑡𝑔(𝜋𝑖,𝑘
𝑐,𝑑, 𝜋

−𝑖,𝑘
𝑐,𝑑 , 𝜃𝑘) | ℎ𝑖

𝑡−1

]︃

= E

[︃
𝑔(𝛼𝑖

𝑡, 𝜋
−𝑖,𝑡
𝑐,𝑑 , 𝜃𝑡) +

∞∑︁
𝑘=𝑡+1

𝛿𝑘−𝑡𝑔(𝜋𝑖,𝑘
𝑐,𝑑, 𝜋

−𝑖,𝑘
𝑐,𝑑 , 𝜃𝑘) | 𝑧𝑖𝑡

]︃

where 𝜋𝑖,𝑘
𝑐,𝑑 is the recommendation sent at time 𝑘 > 𝑡 by the CP if agent 𝑖 takes action

𝛼𝑖
𝑡 at time 𝑡 and follows the recommendations from there on, while 𝜋−𝑖,𝑘

𝑐,𝑑 denotes the

recommendations sent to all other agents.

Intuitively, the flow 𝑥𝑡−1 is a summary of all that happened up to 𝜃𝑡−2 (this

is common information) and the combination of 𝛽𝑖
𝑡−1 and 𝑟𝑖𝑡−1 adds personalized

information about an agent’s knowledge of 𝜃𝑡−1 before time 𝑡. Note that if road

congestion were unobserved (𝑈), under 𝜋𝑐,𝑑 the combination of 𝑥𝑡−1 and 𝑟𝑖𝑡−1 would
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be enough to provide a unique belief on the state of the risky road. That is any agents

with the same state 𝑧𝑗𝑡 = 𝑧𝑖𝑡 have the same belief on the state of the risky road.

Our first main result is to derive sufficient conditions on 𝑐, 𝑑 so that 𝜋𝑐,𝑑 is incentive

compatible.

Proposition 4 (Symmetric equilibrium). Suppose that Assumptions 8 and 10 hold.

Additionally, assume that 𝑐, 𝑑 are such that

1. 𝑥𝑆𝑂
𝐿 ≤ 𝑐 ≤ 𝑑 ≤ 𝑥𝑒𝑞

𝐿

2. 𝑔(𝑐, 𝜇𝐿) ≤ 𝑔(2, 𝜇𝐿)

3. the pair (𝑐, 𝑑) is such that agents that are on safe and receive a recommendation

of 𝑟𝑆 after observing flow 𝑑 on risky will follow the recommendation, that is,

𝑢([𝑑, 𝑈, 𝑟𝑆])⏟  ⏞  
cost of following

≤ 𝑝𝑑,𝑆𝜇𝐿(𝑑+ 1) + (1− 𝑝𝑑,𝑆)2𝜇𝐻⏟  ⏞  
expected stage cost of deviating

to risky

+
𝛿

1− 𝛿
𝑆0⏟  ⏞  

continuation cost
of deviating

(4.6)

where 𝑝𝑑,𝑆 = P(𝜃𝑡−1 = 𝐿 | 𝑧𝑖𝑡 = [𝑑, 𝑈, 𝑟𝑆]). The constraint (4.6) is written

implicitly for readability and an explicit formula is provided in (B.20) in the

Appendix.

Then, the recommendation scheme 𝜋𝑐,𝑑 induces the symmetric equilibrium

𝜉𝑖𝜋𝑐,𝑑
(𝑧𝑖𝑡) = 𝜉𝑖𝜋𝑐,𝑑

([𝑥𝑡−1, 𝛽
𝑖
𝑡−1, 𝑟

𝑖
𝑡−1]) =

⎧⎪⎨⎪⎩𝑅 if 𝑟𝑖𝑡−1 = 𝑟𝑅,

𝑆 otherwise,
(4.7)

and is thus incentive compatible.

The intuition behind the conditions derived in the Proposition 4 are given next:

1. after the road switches to 𝐿 for the first time the CP sends at least the social

optimum number of agents and he possibly increases the flow after that, but no

more than the myopic equilibrium flow;

77



. . . 𝐿𝐻|𝐻 . . .𝐻𝐿 . . . 𝐿𝐻⏟  ⏞  
𝑝𝑒𝑟𝑖𝑜𝑑

|𝐻 . . .𝐻𝐿 . . . 𝐿𝐻⏟  ⏞  
𝑝𝑒𝑟𝑖𝑜𝑑

|𝐻 . . .𝐻𝐿 . . . 𝐿𝐻⏟  ⏞  
𝑝𝑒𝑟𝑖𝑜𝑑

|𝐻 . . .𝐻𝐿 . . . 𝐿𝐻⏟  ⏞  
𝑝𝑒𝑟𝑖𝑜𝑑

|𝐻 . . .

State of the risky road H H . . . H L L L . . . L H
𝜋𝑆𝑂 (Social optimum) - 1 . . . 1 1 𝑥𝑆𝑂

𝐿 𝑥𝑆𝑂
𝐿 . . . 𝑥𝑆𝑂

𝐿 𝑥𝑆𝑂
𝐿

𝜋𝑐,𝑑 (Proposition 4) - 1 . . . 1 1 𝑐 𝑑 . . . 𝑑 𝑑

Table 4.1: Comparison between the flows on the risky road under schemes 𝜋SO and
𝜋𝑐,𝑑 for one period.

2. the flow sent by the CP on the risky road after the road switches to 𝐿 for the

first time leads to a no worse stage cost than sending just two agents;

3. 𝑑 is large enough so that agents that are on safe and infer 𝜃𝑡−2 = 𝐿 follow

the recommendation to remain on safe (thus addressing the issue identified in

Example 4).

The proof of Proposition 4 is presented in the Appendix. Here we provide some

intuition. The first fundamental observation that we make is that, since the experi-

menter after 𝜃𝑡−1 = 𝐻 is chosen at random among all the agents, each agent has the

same continuation cost (which we term 𝑣) after he observes the risky road switching

from 𝐿 to 𝐻. Because of this we can divide the infinite horizon into periods (by

defining the beginning of a new period as the time immediately after the risky road

switches from 𝐿 to 𝐻) and study incentive compatibility only until the end of the

current period. The division in periods and the number of agents taking the risky

road under the schemes 𝜋𝑆𝑂 and 𝜋𝑐,𝑑 for each period are illustrated in Table 4.1.

To prove incentive compatibility of 𝜋𝑐,𝑑 we then need to show that no agent can

improve his cost by a unilateral deviation. To this end, we divide the agents into four

types:

1. Agents that took the risky road at time 𝑡− 1 and saw 𝐿: under 𝜋𝑐,𝑑 these agents

receive a recommendation of risky. Since the probability that the road changes

from 𝐿 to 𝐻 in one step is 𝛾𝐿 ≤ 1
2
, one should expect that following such a rec-

ommendation is incentive compatible. In particular, we show that the stage cost
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obtained by following the recommendation is less than 𝑆0 (as proven in Lemma

15 in the Appendix), hence any deviation will increase both current cost and

also continuation cost (because it leads to lower information than using the

risky road and is thus not profitable).

2. Agents that took the risky road at time 𝑡− 1 and saw 𝐻: there are two cases,

either the agent receives a recommendation to take the safe road (which is

intuitively incentive compatible since the probability that the road changes from

𝐻 to 𝐿 in one step is 𝛾𝐻 ≤ 1
2
) or the agent receives a recommendation to

take the risky road. The only case when the latter happens is if the agent is

selected to be the next experimenter. In this case we show that, even though

experimentation is costly in terms of current payoffs, the continuation cost is

lower from experimenting than from deviating (recall that after any deviation

the CP provides full information in all future periods). This makes being the

experimenter incentive compatible.

3. Agents that took the safe road at time 𝑡− 1 and received a recommendation

to remain on the safe road: as noted in Example 4 from observing 𝑥𝑡−1 = 𝑐 > 1

or 𝑥𝑡−1 = 𝑑 > 1 these agents can infer 𝜃𝑡−2 = 𝐿. Condition (4.6) guarantees it

is incentive compatible for an agent that observed 𝑥𝑡−1 = 𝑑 to follow a recom-

mendation of using the safe road. We show that this condition implies incentive

compatibility also for the case 𝑥𝑡−1 = 𝑐. The only remaining possibility is when

𝑥𝑡−1 = 1, in this case the agent can infer 𝜃𝑡−2 = 𝐻 and incentive compatibility

is immediate.

4. Agents that took the safe road at time 𝑡− 1 and received a recommendation to

take the risky road: incentive compatibility in this case follows with the same

argument as in cases 1 and 2. Indeed, the agent has either been chosen to bene-

fit from using the risky road when the state is 𝐿 (which is incentive compatible

by the discussion for case 1) or he has been chosen as an experimenter (which

is incentive compatible by the discussion for case 2).
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4.3.3 Partial information: Optimality

Motivated by Example 4, we consider a specific scheme among those that are incentive

compatible according to Proposition 4. Specifically, for the period immediately after

the road switched from 𝐻 to 𝐿 we assume that the CP sends the flow 𝑐 = 𝑥𝑆𝑂
𝐿

exactly as in the social optimum (intuitively this is possible, because agents on safe

are unaware that the road condition changed). For all subsequent periods the CP

sends the minimum number of agents to maintain incentive compatibility (i.e. to

satisfy (4.6) for 𝑐 = 𝑥𝑆𝑂
𝐿 ). We denote this flow by 𝑥𝐿𝐿.

Definition 8. We define the scheme 𝜋* ∈ Π̂ as follows

𝜋*(𝛽𝑡−2, 𝛽𝑡−1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if 𝛽𝑡−1 = 𝐻,

𝑥𝑆𝑂
𝐿 if 𝛽𝑡−2 = 𝐻, 𝛽𝑡−1 = 𝐿,

𝑥𝐿𝐿 if 𝛽𝑡−2 = 𝐿, 𝛽𝑡−1 = 𝐿,

(4.8)

where 𝑥𝐿𝐿 := max{𝑥𝑆𝑂
𝐿 , �̄�𝐿𝐿} with �̄�𝐿𝐿 being the smallest integer such that 𝑑 = �̄�𝐿𝐿

satisfies (4.6) for 𝑐 = 𝑥𝑆𝑂
𝐿 . In other words, 𝜋* = 𝜋(𝑥𝑆𝑂

𝐿 ,𝑥𝐿𝐿)
.

Corollary 4. Suppose that Assumptions 8 and 10 hold. The scheme 𝜋* ∈ Π̂ is

incentive compatible and achieves strictly lower social cost than full information.

This corollary follows immediately from Proposition 4 upon noting that the pair

𝑐 = 𝑥𝑆𝑂
𝐿 and 𝑑 = 𝑥𝐿𝐿 satisfy the assumptions of that proposition (we prove in Lemma

19 in the Appendix that �̄�𝐿𝐿 ≤ 𝑥𝑒𝑞
𝐿 ). The fact that the social cost is strictly less than

full information is proven in point 1 of Lemma 16 (in the Appendix).

We next derive sufficient conditions for the scheme 𝜋* to be not only incentive

compatible, but also optimal. We consider two different regimes depending on the

discount factor 𝛿 used by the agents to weight future travel times.

Large 𝛿

We show that as 𝛿 → 1, 𝑥𝐿𝐿 → 𝑥𝑆𝑂
𝐿 . In other words, the cost under 𝜋* converges to

the cost of the social optimum as 𝛿 → 1. Define the social cost starting from belief
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𝛽 = 𝐻 under the social optimum and 𝜋* as 𝑉 𝑆𝑂
𝐻 and 𝑉 𝜋*

𝐻 , respectively.

Proposition 5. Suppose that Assumptions 8 and 10 hold and assume 𝛾𝐻 , 𝛾𝐿 > 0.

Then the cost under 𝜋* approaches the social optimum as 𝛿 → 1. Formally,

lim
𝛿→1

𝑉 𝜋*
𝐻

𝑉 𝑆𝑂
𝐻

= 1.

This full optimality result obtains because for large 𝛿 the policy 𝜋(𝑐,𝑑) = 𝜋(𝑥𝑆𝑂
𝐿 ,𝑥𝑆𝑂

𝐿 )

satisfies (4.6) hence 𝜋* coincides with 𝜋𝑆𝑂. This result is to be expected. In fact

given any time 𝑡 let 𝑡𝐻 be the first time the road switches to 𝜃 = 𝐻 after 𝑡 (this event

happens in finite time since 𝛾𝐿 > 0). Then under any policy 𝜋(𝑐,𝑑), the cost of any

agent is
𝑡𝐻∑︁

𝜏=𝑡+1

𝛿𝜏−𝑡cost𝜏 + 𝛿𝜏−𝑡𝐻
𝑉

𝜋(𝑐,𝑑)

𝐻

𝑁
.

For 𝛿 → 1 the first term is negligible; hence any scheme for which 𝑉 𝜋
𝐻 < 𝑆0𝑁/(1− 𝛿)

(i.e. the cost under full information) is incentive compatible. Clearly the social

optimum meets this condition and hence it must be incentive compatible.

Small 𝛿

Before stating our main result we show that for 𝛿 small, for any scheme 𝜋 ∈ Π̂ to be

incentive compatible it must be 𝑎 = 𝑏 = 1 (thus justifying our interest in the class of

schemes given in Definition 7).

Lemma 10. Suppose that 𝛿 ≤ 1
2

and that Assumptions 8 and 10 hold. Then if a

scheme 𝜋 ∈ Π̂ is incentive compatible it must be 𝑎 = 𝑏 = 1.

The intuition for this result is straightforward. Since, after seeing 𝐻, the CP

selects the next experimenter randomly, in any scheme 𝜋 there is a positive probability

that the selected experimenter knows that the risky road was 𝐻 in the previous period.

If either 𝑎 or 𝑏 are greater than one, then the expected cost of the experimenter

would be greater than 2𝜇𝐻 (which is the expected stage cost). On the other hand,

if the experimenter deviates, the CP provides full information and can guarantee an
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expected cost of 𝑆0

1−𝛿
from then on. Under Assumption 10, and if 𝛿 ≤ 1

2
,

𝑆0

1− 𝛿
≤ 2𝑆0 ≤ 2𝜇𝐻 .

Hence having more than one experimenter cannot be incentive compatible. (We note

that instead if 𝛿 > 1
2
, a scheme with 𝑎 or 𝑏 greater than one, might be incentive

compatible. Although, sending more than one agent to experiment always gives a

higher stage cost for the CP, it is unclear under higher 𝛿 whether it may benefit the

CP to send a higher flow after 𝐻 to drive down 𝑑 either through raising the cost of

deviation in this setting or through obfuscation of information by making the flow

the same after 𝐻 and 𝐿. Overall, when 𝛿 > 1
2

we are unable to rule out that a scheme

sending more than one agent to experiment could be incentive compatible and give a

lower overall cost.) Having fixed 𝑎, 𝑏 we now turn to the optimal choice of 𝑐, 𝑑.

Proposition 6. Suppose that Assumptions 8 and 10 hold and 𝑁 ≥ 5. Then

1. for 𝛿 sufficiently small, 𝜋* achieves the minimum social cost among all the

incentive compatible schemes belonging to Π̂;

2. for 𝛿 ≤ 1
2
, the scheme that minimizes the social cost among all the incentive

compatible schemes belonging to Π̂ is either 𝜋* or �̃�* := 𝜋𝑥𝑆𝑂
𝐿 +1,𝑥𝐿𝐿−1.

To understand the previous result recall that the social optimum choice would be

𝑐 = 𝑑 = 𝑥𝑆𝑂
𝐿 . Unfortunately, in most cases this choice is not incentive compatible

because of constraint (4.6) (guaranteeing that agents that are on safe follow a recom-

mendation of safe). Our first step in the proof of Proposition 6 is to show that the

incentive compatibility constraint (4.6) can be rewritten as 𝑓(𝑐) ≤ 𝑔(𝑑) where 𝑓(𝑐)

is convex in 𝑐 and is minimized at a value between 𝑥𝑆𝑂
𝐿 and 𝑥𝑆𝑂

𝐿 + 1. By the integer

nature of our problem, this immediately implies that at optimality 𝑐 should take one

of this two values (for having a larger value of 𝑐 would make the constraint (4.6)

harder to satisfy (leading to 𝑑 ≥ 𝑥𝐿𝐿) and would thus lead to a scheme with higher

social cost than 𝜋*; recall that 𝑐 = 𝑥𝑆𝑂
𝐿 would be the optimal choice to minimize the

social cost).
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If the minimizer is 𝑐 = 𝑥𝑆𝑂
𝐿 , then by definition it must be 𝑑 ≥ 𝑥𝐿𝐿. If, instead,

𝑐 = 𝑥𝑆𝑂
𝐿 +1 is the minimizer then there exist parameters under which 𝑑 = 𝑥𝐿𝐿−1 can

be incentive compatible (but we show that no smaller values of 𝑑 could be).(In fact,

in some cases increasing the value of 𝑐 leads to a smaller continuation cost for agents

that follow the recommendation of safe (since they have higher probability to be sent

to the risky road when the road changes to 𝐿 in the next period). When that happens

�̃�* is incentive compatible by Proposition 4.) The pair 𝑐 = 𝑥𝑆𝑂
𝐿 + 1 and 𝑑 = 𝑥𝐿𝐿 − 1,

defining �̃�*, may give a lower social cost than 𝜋* for certain parameter values (because

there are more future rounds with flow 𝑑 in expectation than rounds with 𝑐, hence

increasing 𝑐 slightly to decrease 𝑑 may be beneficial). (While �̃�* has a higher cost that

𝜋* immediately after the road switches to 𝐿 (since 𝑔(𝑥𝑆𝑂
𝐿 +1, 𝜇𝐿) > 𝑔(𝑥𝑆𝑂

𝐿 , 𝜇𝐿)), it has

lower stage cost for all the subsequent times (since 𝑔(𝑥𝐿𝐿 − 1, 𝜇𝐿) < 𝑔(𝑥𝐿𝐿, 𝜇𝐿)). For

sufficiently large values of 𝛿 this may reduce the overall cost.) The second statement

of Proposition 6 follows immediately from these observations. The first statement

follows from the observation that, for 𝛿 small enough, the scheme 𝜋* must have

smaller social cost than �̃�* (since it leads to smaller cost for the stage immediately

after the state of the road switches to 𝐿, and for 𝛿 small enough, this dominates the

potential future gain of using 𝑑 = 𝑥𝐿𝐿 − 1 instead of 𝑑 = 𝑥𝐿𝐿).

4.4 Conclusion

New GPS technologies and traffic recommendation systems critically depend on real-

time information about road conditions and delays on a large number of routes. This

information mainly comes from the experiences of drivers. Consequently, enough

drivers have to be induced to experiment with different roads (even if this involves

worse expected travel times for them). This situation creates a classic experimentation-

exploitation trade-off, but critically one in which the party interested in acquiring

new information cannot directly choose to experiment but has to convince selfish, au-

tonomous agents to do it. This is the problem we investigate in the current chapter.

There is by now a large literature on experimentation in economics and operations
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research. The main focus is on the optimal amount of experimentation by trying new

or less well-known options in order to acquire information at the expense of foregoing

current high payoffs. The game theoretic experimentation literature, investigating sit-

uations where there are multiple agents who can generate information for themselves

and others, studies issues of collective learning, free-riding and underexperimentation.

Missing from the previous literature is the main focus of our chapter: a setting in

which exploitation of relevant information creates payoff dependence (for example,

via congestion in the context of our routing model) and the central entity or planner

has the incentives for experimentation, but has to confront the incentive compatibility

of the agents, especially in view of the aforementioned payoff dependence.

We develop a simple model to study these issues, and characterize optimal rec-

ommendation systems first in a two-stage setting and then in an infinite-horizon

environment. Key aspects of our model are congestion externalities on roads (in-

troducing payoff dependence); a finite number of agents (so that agents take into

account their impact on information as well as congestion); forward-looking behavior

by agents (so that they can be incentivized by future rewards); and a central plan-

ner who can observe results from experimentation and can make recommendations

but has to respect incentive compatibility (introducing the feature that this is not a

direct model of experimentation). We simplify our analysis by assuming that there

are only two roads and one of them is “safe”, meaning that the travel time is known,

non-stochastic, and does not depend on the state of nature. This contrasts with the

other, “risky” road, where travel times depend on the state of nature (on which the

central planner is acquiring information).

We first show that full information, whereby the central planner shares all the

information he acquires with all agents, is generally not optimal. The reason is

instructive about the forces in our model: full information will make all agents exploit

information about favorable conditions on the risky road, and this will in turn cause

congestion on this risky road, reducing the rewards the experimenter would need to

reap in order to encourage his experimentation. As a result, full information may

lead to insufficient or no experimentation, which is socially costly.
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We then proceed to characterizing optimal incentive compatible recommendation

schemes. These typically do not induce full information, but still share some of the

information obtained from the experimentation of few experimenters (in our model

only one experimenter is sufficient because there is no uncertainty about the state

conditional on experimentation).

In the case of infinite-horizon, the underlying state of the risky road changes

according to a Markov chain. An additional issue in this case is that the incentive

compatibility of non-informed agents has to be ensured as well, since they may decide

to disregard the recommendation of the central planner and choose the risky road

when they think travel times are lower there. This makes the characterization of the

optimal recommendation scheme more challenging. We propose a relatively simple

incentive compatible dynamic scheme and then establish its optimality when the

discount factor is small (in particular less than 1/2) and large enough (limiting to 1).

This chapter highlights the importance of understanding how modern routing

technologies (and perhaps more generally) need to induce sufficient experimentation

and how they can balance the benefits from exploiting new information and ensuring

incentive compatibility of experimentation as well as incentive compatibility of all

non-experimenters. Investigating how these issues can be navigated in more general

settings (for example, with a more realistic road network and richer dynamic and

stochastic elements or in models of payoff dependence resulting from other consider-

ations) is an important area for future work.
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Chapter 5

(Sub)Optimality of Bundling in

Streaming Platforms

5.1 Introduction

Since Netflix introduced a video on demand service in 2007, many other competing

streaming platforms have been established. Each offers its own set of movies and

television options to users usually as a bundle, for some fixed monthly subscription fee.

In this chapter, we aim to understand when bundling is the most profit maximizing

strategy for a platform and when instead platforms should begin to unbundle their

goods.

In this chapter, we introduce and study a model for the interaction between users

and multiple streaming platforms that provide digital content. We use this to model

streaming services such as Netflix and Hulu. In our model, the platforms compete in

two types of products, we take for example comedies and original content. We view

these products as being on a spectrum and each platform sitting on either end of this

spectrum. For example the original content is different on the two platforms and each

consumer has some a preferred mix of the two contents. For the comedies, we can view

this again as each platform having some set of comedies and users having a preference

over the mix of the two platforms. We model this setting as a 2D Hotelling problem,

wherein each platform must decide whether to bundle the two products together and
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sell them for a single price or separate the two and sell them for individual prices.

The users then must decide which products they would like to purchase. Note each

user has a preference for the mix of the products from the two platforms which is

modeled as their position on the spectrum.

We first study what happens when there is only one platform in the market. This

market leader enters the market with a new product and is able to capture some,

but not all, of the market. Our first result establishes that in this monopoly setting

there exist conditions such that the platform obtains a higher profit from bundling

the goods than from selling them separately. This is the case as consumers can only

buy the goods from one platform and they may have a strong preference for one good

and a weak preference for another, so are willing to purchase the bundle. We then

move to the setting where another platform enters the market. Our second result

establishes that in our model in the duopoly setting, it is always optimal for both

platforms to sell the goods separately, or “unbundle" as we use to refer to this action.

We claim this is in line with what is happening in practice as though one entity may

own multiple streaming services, for example Disney has a majority share of Hulu

they are not combining or bundling these services together. This also supports the

fact that we see more and more of these platforms arising and no merging of the

platforms is occurring. We even continue to see more specialized streaming services

starting, for example Crunchyroll which is for anime and there is a different streaming

service for each individual sport, e.g. NBA League Pass, NHL.TV, WWE Network.

This is in line with the different axis representing different genres or types of content

and unbundling being optimal.

5.1.1 Related Literature

This chapter relates to the works on pricing for bundled services. Many of the works

study settings where a single user wants to purchase either one or multiple products.

These works include [5], [58], [9], and [61], where the authors characterize when

there are two products and a single seller under what conditions bundling is more

profitable than unbundling. The above works all focus on a single seller, whereas
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we study bundling in the monopoly and in the competitive setting. One paper that

also studies competition in bundling is [10], where they consider bundling of a large

number of information goods and show how bundling may be profitable for the seller.

In [10] they are considering bundling a large number of small information goods, where

the customers’ realized values are unknown. Here instead, we consider bundling of

two types of products, where each type is already a bundle in itself. The platforms

also know the values of the users and thus have no uncertainty in demand. Another,

more recent work [53], studies platforms that are connecting sellers and buyers and

how the platform should price and bundle the goods in competition.

Our work also relates to the standard Hotelling model which was introduced in

[40] to study competition among two entities in one dimension. We here extend the

competition to two dimensions which we model as categories or genres, for example

comedies and action films. Another work that considers a two-dimensional Hotelling

model is [74]. Their work only considers two platforms selling single goods, but where

they differ in one direction of taste and one direction of quality, where higher quality

is always preferred by the users. We instead consider two directions of taste for two

goods that can be sold together or separately.

Our work is different from these papers as we compare the optimal strategy under

a single seller to the duopoly case. The users in our setting not only have a value

of the products that they gain from buying, but they have preferences over which

platform they purchase from. This models potentially different tastes in mixtures of

content that is generated by these online platforms.

The rest of the paper is organized as follows. Section 5.2 presents the model. Sec-

tion 5.3 studies the pricing and bundling decisions of a single platform in the market.

Section 5.4 studies pricing and bundling when two platforms are now competing for

customers. Section 5.5 concludes and the Appendix contains the omitted proofs.
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5.2 Model

We consider two competing media service provider platforms, for example Netflix

and Hulu that offer a selection of television shows and movies to subscribers for one

subscription fee. Users have heterogeneous preferences over the movie types and the

two platforms.

We use a 2D Hotelling model, where each dimension is a type of product, for

example action movies or comedies. One of the platforms sits at location (0, 0); the

other sits at location (1, 1). We model the users as a unit of demand that is distributed

over the unit square. The (𝑥, 𝑦) position of the user in the unit square determines

their tastes for each of the 𝑥 and 𝑦 goods. If a user purchases a good, she pays not

only the price that the platform sets, but also a transport cost based on the distance

from the platform’s position. These transport costs represent heterogeneity in users’

valuations for the two goods. The transport costs are 𝑡𝑥 and 𝑡𝑦. Note the fixed value

of the 𝑥 good is denoted 𝑉𝑥 and similarly the value of the 𝑦 good for is denoted 𝑉𝑦.

We assume agents do not multihome, so each agent wants only one 𝑥 good and one

𝑦 good.

Platform 𝑖’s decision involves first choosing whether to offer the two goods as a

bundle and charge one price 𝑝𝑖 or sell the two goods separately at a price 𝑝𝑥𝑖 for the

𝑥 good and 𝑝𝑦𝑖 for the 𝑦 good.

Customer’s decision involves choosing which goods (if any) to buy from which

platforms. The customer makes this decision based on her taste which is represented

by her location, (𝑥, 𝑦), and the platforms’ decisions.

5.3 Monopoly

We start with only one firm in the market; we choose Platform 0 without loss of

generality. This firm is the market leader and enters the market earlier then the

other. An agent either buys from Platform 0 or does not buy. Platform 0 still must

decide whether to bundle the products and offer a single price 𝑝0 or unbundle the
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products and offer product 𝑥 at 𝑝𝑥0 and product 𝑦 at 𝑝𝑦0.

Throughout Section 5.3 we adopt the following assumption on the transport costs.

Assumption 11. 𝑡𝑥 ∈
[︀
𝑉𝑥

2
, 𝑉𝑥

)︀
, 𝑡𝑦 ∈

[︁
𝑉𝑦

2
, 𝑉𝑦

)︁
.

This assumption guarantees that neither the 𝑥 nor the 𝑦 market is entirely covered

by Platform 0. This means there are some customers that choose not to purchase.

5.3.1 Platform’s Problem

If the platform bundles the goods it sets one price 𝑝0. If it does not bundle it sets a

price for the 𝑥 good, 𝑝𝑥0 , and a price for the 𝑦 good, 𝑝𝑦0. The goal of the platform is

to maximize total revenue.

5.3.2 Customer’s Problem

Each user must decide whether to purchase or not. If Platform 0 bundles the goods,

then the utility of an agent at position (𝑥, 𝑦) who subscribes to Platform 0 is given

by

𝑢0(𝑥, 𝑦) = 𝑉𝑥 + 𝑉𝑦 − 𝑡𝑥|𝑥− 0| − 𝑡𝑦|𝑦 − 0| − 𝑝0 (5.1)

= 𝑉𝑥 + 𝑉𝑦 − 𝑡𝑥𝑥− 𝑡𝑦𝑦 − 𝑝0.

If the agent does not subscribe, she gets utility 0.

If the Platform 0 does not bundle and sells the 𝑥 and 𝑦 goods separately, then the

utility for a single product 𝑗 ∈ {𝑥, 𝑦} from Platform 0 is

𝑢𝑗
0(𝑥, 𝑦) = 𝑉𝑗 − 𝑡𝑗𝑗 − 𝑝0𝑗 . (5.2)

When the goods are sold separately each agent can buy both goods, one good, or no

goods at all.
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5.3.3 When is Bundling Optimal?

In the following proposition we characterize a sufficient setting where the monopoly

platform chooses to bundle the goods.

Proposition 7. Suppose Assumption 11 holds, there exists 𝛼 > 0, 𝛽 > 0 such that

when |𝑉𝑥 − 𝑉𝑦| ≤ 𝛼 and |𝑡𝑥 − 𝑡𝑦| ≤ 𝛽, bundling is more profitable than unbundling.

Proposition 7 shows that when the values of the goods are close to one another

and the transport costs are close to one another then bundling is more profitable than

unbundling. If one of the value parameters dominates it becomes better to unbundle

the goods as the platform can extract more profit from separating the goods and

charging higher prices for each good individually, as many people want the good with

the dominating parameter value, but may have little to no value for the other good.

Similarly, if one of the transport costs dominates, then the platform can extract more

by price discriminating and not forcing customers to buy both goods which may not

be optimal if the transport cost for one of the goods is too high.

To illustrate this point, we show in Figure 5-1 the ratio of profit from bundling

to unbundling in many cases. Specifically, we take 𝑉𝑥 = 1 and 𝑡𝑥 = 1 and show how

this ratio changes with different values of 𝑉𝑦 and 𝑡𝑦. As shown in Proposition 7, we

see that when 𝑉𝑦 and 𝑡𝑦 are also close to 1 the profit from bundling is greater than

the profit from unbundling, but as we move away from this bundling becomes much

more profitable. Note in the figure we plot cases when Assumption 11 does not hold

and we see how in these cases again unbundling is more profitable.

5.4 Duopoly

In the previous section we considered what happened when only one platform was in

the market, Platform 0. Now, assume that Platform 1 has entered the market. How

does having two platforms change the optimal bundling and pricing strategies of the

platforms?

In the monopoly case we wanted an uncovered market, but we now want the
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Figure 5-1: 𝑉 0
𝑥 = 1, 𝑡𝑥 = 1. Possible 𝑉 0

𝑦 values are on the 𝑦-axis and possible 𝑡𝑦 values
are on the 𝑥-axis. The color represents the ratio of profit from bundling to profit from
unbundling.

market to be covered by the two platforms. Thus, we adopt the following assumption

to guarantee that no agent abstains from purchasing.

Assumption 12. 𝑉𝑥 ≥ 3
2
𝑡𝑥, 𝑉𝑦 ≥ 3

2
𝑡𝑦.

If Assumption 12 does not hold then there is not necessarily competition between

the two platforms. Basically, each platform is a monopoly on its own side of the

market. We are only interested in when there exist customers that get positive value

from either platform. Otherwise, we are back in the monopoly setting.

Again, platforms must first decide whether or not to bundle. Then they must

decide on their prices. Note that if one platform decides to bundle the other de

facto bundles as the agents that don’t buy from the bundled platform must buy both

products from the unbundled platform, as under Assumption 12 the market is covered

and all agents buy both goods, and thus pay a fixed fee which is the sum of the prices

of the two separate items. So we just consider the two cases: i) both platforms bundle,

ii) both platforms do not bundle.

In the next Proposition we show that it is the equilibrium for both platforms to

sell the goods separately. This is in contrast to Proposition 7 where we saw that in

the monopoly setting where there exist cases when bundling the goods was superior

for Platform 0.
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Proposition 8. Suppose Assumption 12 holds, then unbundling is more profitable

than bundling.

The proof of Proposition 8 is straightforward and actually shows that when the

platforms bundle they only extract the profit in a single direction of the competition,

whereas when the platforms unbundle they are able to extract the profit from both

directions of competition. This leads to higher profits under unbundling.

In the monopoly case it was better to bundle the goods in some cases, as it allowed

the platform to get more customers while sacrificing the ability to price discriminate

for the two goods. Here instead as there is competition, the price discrimination

becomes more important and allows the platforms to compete on two axes instead

of a single one. This allows them to split consumers that buy one good from each

platform and charge more overall for these customers.

5.5 Conclusion

We introduced a model to study bundling and pricing decisions in online platforms.

We start by showing that when there is only one platform offering two separate

products, where agents have different payoffs from these products based on their

taste, there exist cases where it is optimal for the single platform to bundle the

goods. We then move to the competition setting, where now the two platforms offer

both goods, but where preferences over the platforms depends again on a users taste.

We see in this setting that unbundling is the unique optimal.

This model supports the fact that many specialized streaming services are arising

and that we do not see companies that own multiple streaming services merging these

into one product.
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Appendix A

Proofs of Learning Dynamics in

Network Games

A) Proof of Proposition 1. Under Assumptions 4 and 5, the mapping 𝐵𝑖(𝑝𝑖) as de-

fined in (3.5) is Lipschitz continuous with constant 𝐿
𝛼
. In fact, an agent’s best response

can be characterized as the solution of the variational inequality VI(𝒳 𝑖, 𝐹 (· ; 𝑝𝑖))

where 𝐹 (𝑥𝑖; 𝑝𝑖) := −∇𝑥𝑖𝑢𝑖(𝑥𝑖, 𝑝𝑖) and by Assumption 5 is strongly monotone with

constant 𝛼 uniformly in 𝑝𝑖. Take any two values 𝑝𝑖𝐴, 𝑝
𝑖
𝐵 it follows by [63, Theorem

1.14] that

| 𝐵𝑖(𝑝𝑖𝐴)−𝐵𝑖(𝑝𝑖𝐵) |

≤ 1

𝛼
| 𝐹 (𝐵𝑖(𝑝𝑖𝐴); 𝑝

𝑖
𝐴)− 𝐹 (𝐵𝑖(𝑝𝑖𝐴); 𝑝

𝑖
𝐵) |

≤ 𝐿

𝛼
| 𝑝𝑖𝐴 − 𝑝𝑖𝐵 | .
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Now, take any two vectors 𝑥𝐴 and 𝑥𝐵 then

‖𝐵(𝑥𝐴)−𝐵(𝑥𝐵)‖2 =
𝑁∑︁
𝑖=1

(︀
𝐵𝑖(𝑝𝑖(𝑥−𝑖

𝐴 ))−𝐵𝑖(𝑝𝑖(𝑥−𝑖
𝐵 ))

)︀2
≤
(︂
𝐿

𝛼

)︂2 𝑁∑︁
𝑖=1

(︀
𝑝𝑖(𝑥−𝑖

𝐴 )− 𝑝𝑖(𝑥−𝑖
𝐵 )
)︀2

≤
(︂
𝐿

𝛼

)︂2 𝑁∑︁
𝑖=1

(︀
𝑎𝑖(𝑧𝑖(𝑥−𝑖

𝐴 )− 𝑧𝑖(𝑥−𝑖
𝐵 ))

)︀2
≤
(︂
𝐿

𝛼
max

𝑖
(|𝑎𝑖|)

)︂2

‖𝑃 (𝑥𝐴 − 𝑥𝐵)‖2

≤
(︂
𝐿

𝛼
max

𝑖
(|𝑎𝑖|)𝜌(𝑃 )

)︂2

‖𝑥𝐴 − 𝑥𝐵‖2

= 𝛾2‖𝑥𝐴 − 𝑥𝐵‖2,

where we used Lipschitz continuity for the first inequality. Since 𝛾 < 1 by assumption,

𝐵 is a contraction. Since 𝒳 is closed and convex by Banach fixed point theorem the

Nash equilibrium exists, is unique, and the best response dynamics �̄�𝑘+1 = 𝐵(�̄�𝑘)

converge to it [31, Theorem 2.1.21].

B) Auxiliary results

Lemma 11. Consider two non-negative sequences {𝜉𝑘 ≥ 0}∞𝑘=1, {𝑤𝑘 ≥ 0}∞𝑘=1 satisfy-

ing the system

𝜉𝑘+1 ≤ 𝛾𝜉𝑘 + 𝑤𝑘,

for some 0 < 𝛾 < 1. Then 𝑤𝑘 → 0 implies 𝜉𝑘 → 0.

Proof. Let us define the auxiliary sequence

𝑠𝐿𝑘 := sup {𝑤𝑘, 𝑤𝑘+1, . . . } .

Note that 𝑠𝐿𝑘 ≥ 0 for all 𝑘 and, since 𝑤𝑘 → 0, lim𝑘→∞ 𝑠𝐿𝑘 = 0. Fix a step 𝑘. Since
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𝛾 > 0, for any 𝑝 > 0 the state in 𝑘 + 𝑝 can be written as

𝜉𝑘+𝑝 ≤ 𝛾𝑝𝜉𝑘 +

𝑘+𝑝−1∑︁
𝑖=𝑘

𝛾𝑘+𝑝−𝑖−1𝑤𝑖 ≤ 𝛾𝑝𝜉𝑘 + 𝑠𝐿𝑘

𝑝−1∑︁
𝑖=0

𝛾𝑖

= 𝛾𝑝𝜉𝑘 + 𝑠𝐿𝑘
1− 𝛾𝑝

1− 𝛾

≤ 𝛾𝑝

(︂
𝛾𝑘𝜉0+𝑠𝐿0

1− 𝛾𝑘

1− 𝛾

)︂
+ 𝑠𝐿𝑘

1− 𝛾𝑝

1− 𝛾

≤ 𝛾𝑘𝜉0 + 𝛾𝑝𝐾1+ 𝑠𝐿𝑘𝐾2

where 𝐾2 := 1/(1 − 𝛾) and 𝐾1 := 𝐾2𝑠
𝐿
0 . Now 𝜉𝑘 → 0 as 𝑘 → ∞ by using the

definition of the limit, that is, by proving that for all 𝜖 > 0, there exists an ℎ̄ > 0

such that 𝜉ℎ̄+ℎ ≤ 𝜖, for all ℎ ≥ 0. For any fixed 𝜖 > 0 we can choose a 𝑘 > 0 such

that 𝛾𝑘𝜉0 <
𝜖
3

and 𝑠𝐿
𝑘
𝐾2 <

𝜖
3

and a 𝑝 > 0 such that 𝛾𝑝𝐾1 <
𝜖
3
. Let ℎ̄ = 𝑘 + 𝑝, then

𝜉ℎ̄+ℎ = 𝜉𝑘+𝑝+ℎ ≤ 𝛾𝑘𝜉0 + 𝛾𝑝+ℎ𝐾1 + 𝑠𝐿𝑘𝐾2

≤ 𝛾𝑘𝜉0 + 𝛾𝑝𝐾1 + 𝑠𝐿𝑘𝐾2

≤ 𝜖

3
+

𝜖

3
+

𝜖

3
= 𝜖 ∀ℎ ≥ 0.

C) Proof of Proposition 2. This proof is similar to the proof of Lemma 6 in [59].

We reference the reader to [59] for a more detailed exposition.

Note that the estimator in (3.9) can be rewritten by plugging in the value for 𝑦𝑖𝑘

as

�̂�𝑖𝑘 = 𝑎𝑖 +

∑︀𝑘
𝑡=1 𝜖

𝑖
𝑡𝑧

𝑖
𝑡∑︀𝑘

𝑡=1(𝑧
𝑖
𝑡)

2
.

The error of the parameter estimate of 𝑎𝑖 at step 𝑘 is therefore

err𝑖𝑘 := �̂�𝑖𝑘 − 𝑎𝑖 =

∑︀𝑘
𝑡=1 𝜖

𝑖
𝑡𝑧

𝑖
𝑡∑︀𝑘

𝑡=1(𝑧
𝑖
𝑡)

2
=:

1

𝑔𝑘

𝑘∑︁
𝑡=1

ℎ𝑡,

where ℎ𝑘 = 𝜖𝑖𝑘𝑧
𝑖
𝑘 and 𝑔𝑘 =

∑︀𝑘
𝑡=1(𝑧

𝑖
𝑡)

2. By [59, Lemma 2] the stochastic process

𝑠𝑖𝑘 =
∑︀𝑘

𝑡=1
ℎ𝑡

𝑔𝑡
is a martingale. Consequently, by the martingale convergence theorem
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[69, Chapter 7, Section 4] there exists a set Σ of measure one such that for any

noise realization 𝜖 ∈ Σ the deterministic sequence 𝑠𝑖𝑘(𝜖) converges to a finite value

as 𝑘 → ∞. Consider a fixed noise realization 𝜖 ∈ Σ and note that {𝑔𝑘(𝜖)}∞𝑘=1 is

non-negative and non-decreasing. Depending on the asymptotic behavior of 𝑔𝑘(𝜖) we

can distinguish two cases:

1. if 𝑔𝑘(𝜖)→∞ (i.e. 𝑖 ∈ 𝑆∞(𝜖)) then by Kronecker’s lemma (stated e.g. as Lemma

3 in [59])

err𝑖𝑘(𝜖) =
1

𝑔𝑘(𝜖)

𝑘∑︁
𝑡=1

ℎ𝑡(𝜖)→ 0.

2. if 𝑔𝑘(𝜖) converges to a finite value (i.e. 𝑖 ∈ 𝑆finite(𝜖)) then we can apply Lemma

4 in [59] and

err𝑖𝑘(𝜖) =
1

𝑔𝑘(𝜖)

𝑘∑︁
𝑡=1

ℎ𝑡(𝜖)→ �̃� 𝑖(𝜖)

for some finite �̃� 𝑖(𝜖). Thus, for any 𝛿 > 0 there exists a 𝑘 > 0 such that for

any 𝑘 > 𝑘,
⃒⃒⃒
err𝑖𝑘(𝜖)− �̃� 𝑖(𝜖)

⃒⃒⃒
< 𝛿 and thus err𝑖𝑘(𝜖) is bounded. Thus there exists

a finite value 𝑀 𝑖(𝜖) such that |�̂�𝑖𝑘(𝜖)− 𝑎𝑖| ≤𝑀 𝑖(𝜖) for all 𝑘.
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Appendix B

Proofs of Optimal Dynamic

Information Provision in Traffic

Routing

B.1 Proofs of Section 3: Two stage example

Proof. of Lemma 8 Suppose that 𝑘 ≥ 2 agents experiment. Then the cost of any of

these agents is

[expected cost of risky] = 𝑘𝜇𝛽 + 𝜂𝑅 ≥ 𝑘𝜇𝛽 ≥ 2𝜇𝛽 > 2(𝑆0 + 𝑆1𝑁),

where we denoted by 𝜂𝑅 the expected cost in the second round, which is for sure

non-negative and we used Assumption 9. If instead the agent switches to safe he will

have an expected cost of

[expected cost of safe] = 𝑆0 + 𝑆1(𝑁 − 𝑘 + 1) + 𝜂𝑆 ≤ 𝑆0 + 𝑆1(𝑁 − 1) + 𝑆0 + 𝑆1𝑁,

where we denoted by 𝜂𝑆 the expected cost in the second round, which is at most

𝑆0+𝑆1𝑁 as the agent can always play safe in the second round and in the worst case

every other agent is also playing safe. Since 𝑆0+𝑆1(𝑁−1)+𝑆0+𝑆1𝑁 < 2(𝑆0+𝑆1𝑁),
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it follows that the cost of experimenting is greater than the overall cost of taking safe.

Thus, it is never a pure strategy equilibrium for more than one person to experiment

– under any information scheme.

Proof. of Theorem 3 Recall we are considering pure strategy equilibria. Using

Lemma 8 we can characterize when it is an agent’s best response to experiment

under the two different information schemes.

Full information: If no agent experiments the cost for each agent is 2(𝑆0 +

𝑆1𝑁). If any agent experiments all agents learn 𝜃 before round two and there are two

possibilities.

1) If 𝜃 = 𝐻, everyone takes the safe road in the second round as 𝑆0 + 𝑆1𝑁 < 𝐻.

2) If 𝜃 = 𝐿, the agents play a pure strategy Nash equilibrium and split the flow

across the two roads, i.e. 𝑥eq
𝐿 take risky. The expected cost of equilibrium in

the second round when 𝜃 = 𝐿 is therefore 𝑔(𝑥eq
𝐿 , 𝐿)/𝑁 = (𝑥eq

𝐿 /𝑁)(𝐿𝑥eq
𝐿 ) + (𝑁 −

𝑥eq
𝐿 )/𝑁(𝑆0 + 𝑆1(𝑁 − 𝑥eq

𝐿 )).

All agents playing safe is an equilibrium if and only if the cost of switching to

experimenting is worse than 2(𝑆0 + 𝑆1𝑁). The expected cost of one agent switching

is

𝜇𝛽 + 𝛽𝑔(𝑥eq
𝐿 , 𝐿)/𝑁 + (1− 𝛽)(𝑆0 + 𝑆1𝑁)

where the first term is the cost of experimenting in the first round, the second term

is the cost in the second round if 𝜃 = 𝐿 weighted by P(𝜃 = 𝐿), and similarly the last

term is the cost if 𝜃 = 𝐻 weighted by P(𝜃 = 𝐻).

Overall, if

2(𝑆0 + 𝑆1𝑁) < 𝜇𝛽 + 𝛽𝑔(𝑥eq
𝐿 , 𝐿)/𝑁 + (1− 𝛽)(𝑆0 + 𝑆1𝑁), (B.1)

no one experiments. Otherwise, one agent experimenting in the first round is the

unique pure strategy Nash equilibrium (recall by Lemma 8 that it is never incentive

compatible for more than one agent to experiment). The total cost of the first round
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under this equilibrium is 𝑔(1, 𝜇𝛽) and if 𝜃 = 𝐻 the total cost of the second round is

𝑔(0), while if 𝜃 = 𝐿 the total cost of the second round is 𝑔(𝑥eq
𝐿 , 𝐿). The thresholds 𝛽𝑓

can be obtained by imposing equality in (B.1) and solving for 𝛽.

Private information: No experimentation is an equilibrium if and only if it is

not individually optimal for an agent to play risky. Similarly to the previous case,

this occurs when the expected cost of switching to playing risky is worse than all

agents playing safe, that is, when

2(𝑆0 + 𝑆1𝑁) < 𝜇𝛽 + 𝛽𝐿+ (1− 𝛽)(𝑆0 + 𝑆1𝑁), (B.2)

where we used the fact that, under private information, it is a best response for all

the agents that were on safe at time 1 to remain on safe at time 2, while for the

experimenter it is a best response to take risky at time 2 if he observed 𝐿 at time 1

and safe otherwise.

If the above does not hold, then there is an incentive to deviate from all playing

safe and there exists an asymmetric pure strategy Nash equilibrium, where one agent

experiments in the first round. By Lemma 8, this is the unique pure strategy Nash

equilibrium. The expected cost of the first round is 𝑔(1, 𝜇𝛽) and the expected cost

of the second round is 𝛽𝑔(1, 𝐿) + (1− 𝛽)𝑔(0). The thresholds 𝛽𝑝 can be obtained by

imposing equality in (B.2) and solving for 𝛽.

Finally, note that 𝛽𝑝 ≤ 𝛽𝑓 if and only if 𝑔(𝑥eq
𝐿 ,𝐿)

𝑁
≥ 𝐿. Note that by Assumption

9 𝐿 < 𝑆0 + 𝑆1, thus 𝑥eq
𝐿 ≥ 1. If 𝑥eq

𝐿 = 𝑁 then 𝑔(𝑥eq
𝐿 , 𝐿) = 𝐿𝑁2 and the inequality

holds. Instead, if 1 ≤ 𝑥eq
𝐿 ≤ 𝑁 − 1 then

𝑔(𝑥eq
𝐿 , 𝐿) = 𝐿(𝑥eq

𝐿 )2 + (𝑆0 + 𝑆1(𝑁 − 𝑥eq
𝐿 ))(𝑁 − 𝑥eq

𝐿 )

= 𝐿(𝑥eq
𝐿 )2 + 𝑆0(𝑁 − 𝑥eq

𝐿 ) + 𝑆1(𝑁 − 𝑥eq
𝐿 )(𝑁 − 𝑥eq

𝐿 )

≥ 𝐿𝑥eq
𝐿 + (𝑆0 + 𝑆1)(𝑁 − 𝑥eq

𝐿 )

> 𝐿𝑥𝑒𝑞
𝐿 + 𝐿(𝑁 − 𝑥eq

𝐿 )

≥ 𝐿𝑁
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where the first inequality follows 𝑥eq
𝐿 , 𝑁 − 𝑥eq

𝐿 ≥ 1, while the second follows from

𝐿 < 𝑆0 + 𝑆1.

Proof. of Corollary 3 In this interval of beliefs:

• under full information there is no experimentation and the cost is 2𝑔(0).

• under private information there is experimentation. The experimenter has a

total cost for the two rounds that is less than 2(𝑆0 + 𝑆1𝑁), otherwise he would

switch to safe. All the other agents have cost 2(𝑆0+𝑆1(𝑁 − 1)) < 2(𝑆0+𝑆1𝑁).

Therefore the total cost is strictly less than 2𝑁(𝑆0 + 𝑆1𝑁) = 2𝑔(0).

Proof. of Theorem 4 The social optimum is the minimum total cost for the two

rounds. If all agents use the safe road in both rounds then the total cost is 2𝑔(0). If

the CP sends at least one agent on the risky road in the first round the CP learns

𝜃 and can make a decision on how many agents to send on the risky road in the

second round based on the value of 𝜃. Denote these flows by 𝑥
𝑅|𝐿
2 and 𝑥

𝑅|𝐻
2 . Thus, if

the CP experiments with 𝑥𝑅
1 > 0 agents in the first round, he is facing the following

optimization problem

min
𝑥𝑅
1 ,𝑥

𝑅|𝐿
2 ,𝑥

𝑅|𝐻
2

𝑔(𝑥𝑅
1 , 𝜇𝛽) + 𝛽𝑔(𝑥

𝑅|𝐿
2 , 𝐿) + (1− 𝛽)𝑔(𝑥

𝑅|𝐻
2 , 𝐻)

s.t. 1 ≤ 𝑥𝑅
1 ≤ 𝑁

0 ≤ 𝑥
𝑅|𝐿
2 ≤ 𝑁

0 ≤ 𝑥
𝑅|𝐻
2 ≤ 𝑁

𝑥𝑅
1 , 𝑥

𝑅|𝐿
2 , 𝑥

𝑅|𝐻
2 ∈ Z≥0.

This minimization can be separated into three optimization problems, one for each

of the flows 𝑥𝑅
1 , 𝑥

𝑅|𝐿
2 , 𝑥

𝑅|𝐻
2 .
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• For the first round 𝑥𝑅
1 can be obtained by solving

min
𝑥𝑅
1

𝜇𝛽(𝑥
𝑅
1 )

2 + (𝑆0 + 𝑆1(𝑁 − 𝑥𝑅
1 ))(𝑁 − 𝑥𝑅

1 )

s.t. 1 ≤ 𝑥𝑅
1 ≤ 𝑁

𝑥𝑅
1 ∈ Z≥0.

Since 𝑆0 + 𝑆1𝑁 < 𝜇𝛽, the cost is strictly increasing for 𝑥𝑅
1 ≥ 1 and thus the

optimal solution is 𝑥𝑅
1 = 1.

• For the second round, the two values 𝑥
𝑅|𝐿
2 and 𝑥

𝑅|𝐻
2 can be found separately

and are just the values that minimize 𝑔(𝑥, 𝐿) and 𝑔(𝑥,𝐻) respectively, which

are 𝑥SO
𝐿 and 𝑥SO

𝐻 by definition.

The minimum of all agents playing safe and the objective of the above minimiza-

tion problem gives the social optimum cost and the threshold 𝛽SO is the belief under

which the CP is indifferent between experimentation and all agents playing safe. Note

that 𝛽𝑆𝑂 < 𝛽𝑝 because if experimentation is an equilibrium under private information

it implies it is optimal for the CP to experiment. Specifically if experimentation is

an equilibrium under private information then 𝛽 is such that

2(𝑆0 + 𝑆1𝑁) ≥ 𝜇𝛽 + 𝛽𝐿+ (1− 𝛽)(𝑆0 + 𝑆1𝑁).

This implies

2(𝑆0 + 𝑆1𝑁) + 2(𝑆0 + 𝑆1𝑁)(𝑁 − 1)

≥ 𝜇𝛽 + (𝑆0 + 𝑆1𝑁)(𝑁 − 1) + 𝛽(𝐿+ (𝑆0 + 𝑆1𝑁)(𝑁 − 1))

+ (1− 𝛽)((𝑆0 + 𝑆1𝑁)𝑁)

≥ 𝜇𝛽 + (𝑆0 + 𝑆1(𝑁 − 1))(𝑁 − 1) + 𝛽𝑔(𝑥SO
𝐿 , 𝐿) + (1− 𝛽)𝑔(𝑥SO

𝐻 , 𝐻)

⇐⇒ 2(𝑆0 + 𝑆1𝑁)𝑁 ≥ 𝜇𝛽 + (𝑆0 + 𝑆1(𝑁 − 1))(𝑁 − 1) + 𝛽𝑔(𝑥SO
𝐿 , 𝐿) + (1− 𝛽)𝑔(𝑥SO

𝐻 , 𝐻)

which is the condition for experimentation to be optimal for the CP.
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Proof. of Theorem 5

Recall by Lemma 8 that in any equilibrium there is at most one experimenter in

the first round. Hence we can distinguish two cases:

1. No experimentation: if no agent experiments the social cost is 2𝑔(0);

2. One experimenter: For a recommendation scheme 𝜋 to be incentive compat-

ible, it must be that 𝜋(𝐿), 𝜋(𝐻) are such that an agent follows the recommen-

dation he is given. We study incentive compatibility starting from the second

round. In this case there are three type of agents:

• Type 1 (experimenter in round 2): The experimenter knows the value

of 𝜃 since he observed it in the first round. We next show that without

loss of optimality we can restrict our attention to recommendation schemes

where it is a best response for the experimenter to take risky in the second

round if 𝜃 = 𝐿 and safe if 𝜃 = 𝐻.

– 𝜃 = 𝐻: The experimenter’s cost on safe is 𝑆0 + 𝑆1(𝑁 − 𝜋(𝐻)), the

cost on risky is 𝐻(𝜋(𝐻) + 1). The conclusion follows since,

𝑆0 + 𝑆1(𝑁 − 𝜋(𝐻)) ≤ 𝑆0 + 𝑆1𝑁 < 𝐻 ≤ 𝐻(𝜋(𝐻) + 1),

where we used the fact that 𝐻 > 𝑆0 + 𝑆1𝑁 by assumption.

– 𝜃 = 𝐿: Let 𝑥
𝑅|𝐿
2 be the equilibrium flow on the risky road in the

second round (this a priori may or may not include the experimenter).

For incentive compatibility it must be 𝑥
𝑅|𝐿
2 ≤ 𝑥eq

𝐿 . In fact if that was

not the case, consider an agent that was on safe in the first round and

receives a recommendation of risky. This agent doesn’t know 𝜃, but he

knows that in both cases (𝜃 = 𝐿 or 𝜃 = 𝐻) switching to safe would give

a better cost. Hence a scheme that leads to 𝑥
𝑅|𝐿
2 > 𝑥eq

𝐿 is not incentive

compatible. We then distinguish two cases for the experimenter:

∗ if the experimenter belongs to the flow 𝑥
𝑅|𝐿
2 then deviating to safe

is not convenient because 𝑥
𝑅|𝐿
2 ≤ 𝑥eq

𝐿 ;
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∗ if the experimenter is on safe, then either 𝑥
𝑅|𝐿
2 < 𝑥eq

𝐿 in which

cases it is convenient for the experimenter to deviate to risky or

𝑥
𝑅|𝐿
2 = 𝑥eq

𝐿 .

Overall the only case when it might be convenient for the experimenter

to take safe after observing 𝜃 = 𝐿 is for recommendation schemes such

that 𝑥𝑅|𝐿
2 = 𝑥eq

𝐿 . Note that the social cost of such a scheme is the same

as full information. We are going to show at the end of this proof that

the optimal solution of (4.3) is weakly less than full information.

Overall, the previous discussion shows that we can assume 𝑥𝑅|𝐿
2 = 𝜋(𝐿)+1

and 𝑥
𝑅|𝐻
2 = 𝜋(𝐻) without loss of optimality. For simplicity we denote these

flows by 𝑥𝐿 and 𝑥𝐻 in the rest of this proof.

• Type 2 (recommended safe): An agent of this type took safe in the

first round and received a recommendation to take safe, signal 𝑟𝑆, before

the second round. His expected cost of following the recommendation is

𝑆0 + 𝑆1(P(𝜃 = 𝐿 | 𝑟𝑆)(𝑁 − 𝑥𝐿) + P(𝜃 = 𝐻 | 𝑟𝑆)(𝑁 − 𝑥𝐻)),

as the flow he will experience depends on how many agents are being sent

to risky. Deviating gives an expected cost of

P(𝜃 = 𝐿 | 𝑟𝑆)𝐿(𝑥𝐿 + 1) + P(𝜃 = 𝐻 | 𝑟𝑆)𝐻(𝑥𝐻 + 1).

By Bayes rule

P(𝜃 = 𝐿 | 𝑟𝑆) =
𝛽P(𝑟𝑆 | 𝜃 = 𝐿)

𝛽P(𝑟𝑆 | 𝜃 = 𝐿) + (1− 𝛽)P(𝑟𝑆 | 𝜃 = 𝐻)

=
𝛽𝑁−𝑥𝐿

𝑁−1

𝛽𝑁−𝑥𝐿

𝑁−1
+ (1− 𝛽)𝑁−𝑥𝐻−1

𝑁−1

=
𝛽(𝑁 − 𝑥𝐿)

𝛽(𝑁 − 𝑥𝐿) + (1− 𝛽)(𝑁 − 𝑥𝐻 − 1)

P(𝜃 = 𝐻 | 𝑟𝑆) = 1− P(𝜃 = 𝐿 | 𝑟𝑆).
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Thus, the full constraint is

𝑆0 + 𝑆1

(︂
𝛽(𝑁 − 𝑥𝐿)

2

𝛽(𝑁 − 𝑥𝐿) + (1− 𝛽)(𝑁 − 𝑥𝐻 − 1)
+

(1− 𝛽)(𝑁 − 𝑥𝐻)(𝑁 − 𝑥𝐻 − 1)

𝛽(𝑁 − 𝑥𝐿) + (1− 𝛽)(𝑁 − 𝑥𝐻 − 1)

)︂
(B.3)

≤ 𝛽(𝑁 − 𝑥𝐿)𝐿(𝑥𝐿 + 1)

𝛽(𝑁 − 𝑥𝐿) + (1− 𝛽)(𝑁 − 𝑥𝐻 − 1)
+

(1− 𝛽)(𝑁 − 𝑥𝐻 − 1)𝐻(𝑥𝐻 + 1)

𝛽(𝑁 − 𝑥𝐿) + (1− 𝛽)(𝑁 − 𝑥𝐻 − 1)
.

• Type 3 (recommended risky) An agent of this type took safe in the

first round and received a recommendation to take risky, signal 𝑟𝑅, before

the second round. His expected cost of following the recommendation is

P(𝜃 = 𝐿 | 𝑟𝑅)𝐿𝑥𝐿 + P(𝜃 = 𝐻 | 𝑟𝑅)𝐻𝑥𝐻

and deviating gives an expected cost of

𝑆0 + 𝑆1(P(𝜃 = 𝐿 | 𝑟𝑅)(𝑁 − 𝑥𝐿 + 1) + P(𝜃 = 𝐻 | 𝑟𝑅)(𝑁 − 𝑥𝐻 + 1)).

By Bayes rule

P(𝜃 = 𝐿 | 𝑟𝑅) =
𝛽P(𝑟𝑅 | 𝜃 = 𝐿)

𝛽P(𝑟𝑅 | 𝜃 = 𝐿) + (1− 𝛽)P(𝑟𝑅 | 𝜃 = 𝐻)

=
𝛽 𝑥𝐿−1

𝑁−1

𝛽 𝑥𝐿−1
𝑁−1

+ (1− 𝛽) 𝑥𝐻

𝑁−1

=
𝛽(𝑥𝐿 − 1)

𝛽(𝑥𝐿 − 1) + (1− 𝛽)𝑥𝐻

P(𝜃 = 𝐻 | 𝑟𝑅) = 1− P(𝜃 = 𝐿 | 𝑟𝑅).

Thus, the full constraint is

𝛽(𝑥𝐿 − 1)

𝛽(𝑥𝐿 − 1) + (1− 𝛽)𝑥𝐻

𝐿𝑥𝐿 +
(1− 𝛽)𝑥𝐻

𝛽(𝑥𝐿 − 1) + (1− 𝛽)𝑥𝐻

𝐻𝑥𝐻 (B.4)

≤ 𝑆0 + 𝑆1

(︂
𝛽(𝑥𝐿 − 1)

𝛽(𝑥𝐿 − 1) + (1− 𝛽)𝑥𝐻

(𝑁 − 𝑥𝐿 + 1) (B.5)

+
(1− 𝛽)𝑥𝐻

𝛽(𝑥𝐿 − 1) + (1− 𝛽)𝑥𝐻

(𝑁 − 𝑥𝐻 + 1)

)︂
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The constraints above are for the second round, we next consider the first

round. We already know by Lemma 8 that it is not convenient for any agent on

safe to join the experimenter. Hence we only need to ensure that it is incentive

compatible for the experimenter to experiment in the first round. Equivalently,

we need to show that experimenting gives a weakly lower cost than all agents

playing safe for two rounds (2(𝑆0 + 𝑆1𝑁)), which leads to the constraint

𝛽𝐿+ (1− 𝛽)𝐻 + 𝛽𝐿𝑥𝐿 + (1− 𝛽)(𝑆0 + 𝑆1(𝑁 − 𝑥𝐻)) ≤ 2(𝑆0 + 𝑆1𝑁). (B.6)

The CP then solves the constrained optimization problem given in (4.3), where

the objective function is the total travel time summed over the two periods

and the IC constraints (4.3b), (4.3c) and (4.3d) can be explicitly rewritten as

detailed in (B.3), (B.4), and (B.6) respectively.

Finally it is easy to show that the choices 𝜋2(𝐿) = 𝜋2(𝐻) = 0 and, for 𝛽 ≥ 𝛽𝑓 ,

𝜋2(𝐿) = 𝑥eq
𝐿 − 1, 𝜋2(𝐻) = 0 are feasible (i.e. satisfy (B.3), (B.4), and (B.6))

and lead to the same social cost as private and full information respectively,

thus proving that partial information is weakly better than private and full

information.

B.2 Proofs of Section 4: Infinite horizon

B.2.1 Proof of Proposition 3

We start by showing that under the given assumptions 𝑥SO
𝐻 = 0 and 𝑥SO

𝐿 ≥ 2.

• 𝑥SO
𝐻 = 0 : Note that

E𝜃𝑡 [𝑔(𝑥, 𝜃𝑡) | 𝛽𝑡−1 = 0] = 𝜇𝐻𝑥
2 + 𝑆0(𝑁 − 𝑥) = 𝑔(𝑥, 𝜇𝐻).
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We next show that under the given assumptions 𝑔(0, 𝜇𝐻) ≤ 𝑔(1, 𝜇𝐻). Together

with the fact that 𝑔(𝑥, 𝜇𝐻) is strongly convex in 𝑥, this proves the desired

statement. Note that

𝑔(0, 𝜇𝐻) ≤ 𝑔(1, 𝜇𝐻)⇔ 𝑆0𝑁 ≤ 𝜇𝐻 + 𝑆0(𝑁 − 1)⇔ 𝑆0 ≤ 𝜇𝐻 ,

and the latter inequality holds by Assumption 10.

• 𝑥SO
𝐿 ≥ 2 : 𝑥SO

𝐿 is the minimizer of 𝑔(𝑥, 𝜇𝐿), which is strongly convex in 𝑥. For

the minimizer to be ≥ 2, the cost at 𝑥 = 2 must be strictly less than at 𝑥 = 1,

that is,

𝑔(2, 𝜇𝐿) = 4𝜇𝐿 + 𝑆0(𝑁 − 2) < 𝜇𝐿 + 𝑆0(𝑁 − 1) = 𝑔(1, 𝜇𝐿)

rearranging gives

𝜇𝐿 <
1

3
𝑆0,

which holds by Assumption 10.

Since the CP has full control, (4.5) is an optimal control problem and we can apply

the one-step deviation principle to prove optimality. To this end, we distinguish two

cases

• Consider any 𝛽 such that 𝑥SO
𝛽 ≥ 1:

Sending a number of agents different from 𝑥SO
𝛽 doesn’t lead to a profitable

deviation. In fact, the stage cost would be higher (since 𝑥SO
𝛽 is the minimizer of

𝑔(𝑥, 𝜇𝛽)) and the continuation cost would be the same (as no more information

can be gained by sending more agents to the risky road).

• Consider any 𝛽 such that 𝑥SO
𝛽 = 0:

In this case sending 𝜋SO(𝛽) = 1 agent is not myopically optimal and the stage

cost could be reduced by sending no agent. Nonetheless, we show that be-

cause sending one agent provides information about the state of the risky road,
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𝜋SO(𝛽) = 1 is the best strategy if the CP is forward looking. There are two

possible deviations:

1. The CP sends more than one agent: similarly to the previous case the stage

cost increases and the continuation cost stays the same. Hence this devi-

ation is not profitable.

2. The CP does not send any agents: to analyze this case, let 𝛽′ be the belief

that 𝜃𝑡+1 = 𝐿 when an agent has belief 𝛽 that 𝜃𝑡 = 𝐿 (i.e. 𝛽′ = 𝛽(1−𝛾𝐿)+

(1 − 𝛽)𝛾𝐻). We start by noting that 𝑥SO
𝛽 = 0 ⇒ 𝑥SO

𝛽′ ≤ 1 ⇒ 𝜋SO(𝛽′) = 1

(see Lemma 12 below). The cost that the CP encounters by sending one

agent at time 𝑡 is

𝑉 (𝛽) =𝜇𝛽 + 𝑆0(𝑁 − 1)⏟  ⏞  
stage cost time t

+ 𝛿
(︀
𝛽′(𝜇𝐿(𝑥

SO
𝐿 )2 + 𝑆0(𝑁 − 𝑥SO

𝐿 )) + (1− 𝛽′)(𝜇𝐻 + 𝑆0(𝑁 − 1))
)︀⏟  ⏞  

stage cost time t+1

+𝛿2 . . .

while if he deviates and sends no agent at time 𝑡 the cost is

𝑉 (𝛽) = 𝑆0𝑁⏟ ⏞ 
stage cost time t

+𝛿 (𝜇𝛽′𝜋SO(𝛽′)2 + 𝑆0(𝑁 − 𝜋SO(𝛽′)))⏟  ⏞  
stage cost time t+1

+𝛿2 . . .

= 𝑆0𝑁⏟ ⏞ 
stage cost time t

+𝛿 (𝛽′(𝜇𝐿 + 𝑆0(𝑁 − 1)) + (1− 𝛽′)(𝜇𝐻 + 𝑆0(𝑁 − 1)))⏟  ⏞  
stage cost time t+1

+𝛿2 . . .

where we used 𝜇𝛽′ = 𝛽′𝜇𝐿+(1−𝛽′)𝜇𝐻 and 𝜋SO(𝛽′) = 1. Note that we did

not report the stage costs from time 𝑡+2 on as they are equal under both

schemes. Overall, 𝜋SO(𝛽) = 1 is optimal if 𝑉 (𝛽) ≤ 𝑉 (𝛽) or equivalently,

𝜇𝛽 + 𝑆0(𝑁 − 1) + 𝛿𝛽′(𝜇𝐿(𝑥
SO
𝐿 )2 + 𝑆0(𝑁 − 𝑥SO

𝐿 )) ≤ 𝑆0𝑁 + 𝛿𝛽′(𝜇𝐿 + 𝑆0(𝑁 − 1))

⇔ 𝜇𝛽 ≤ 𝑆0 + 𝛿𝛽′[𝑔(1, 𝜇𝐿)− 𝑔(𝑥SO
𝐿 , 𝜇𝐿)]. (B.7)

Note that 𝑔(1, 𝜇𝐿) − 𝑔(𝑥SO
𝐿 , 𝜇𝐿) ≥ 0 since 𝑥SO

𝐿 = argmin𝑥 𝑔(𝑐, 𝜇𝐿). More-

over when 𝛽 increases 𝜇𝛽 decreases. Hence it suffices to prove that (B.7)
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holds for the smallest possible value of 𝛽 which is 0.

We note that 𝑔(1, 𝜇𝐿)− 𝑔(𝑥SO
𝐿 , 𝜇𝐿) ≥ 𝑆0 − 3𝜇𝐿 since

𝑔(1, 𝜇𝐿)− 𝑔(𝑥SO
𝐿 , 𝜇𝐿) ≥ 𝑔(1, 𝜇𝐿)− 𝑔(2, 𝜇𝐿)

= 𝜇𝐿 + 𝑆0(𝑁 − 1)− 4𝜇𝐿 − 𝑆0(𝑁 − 2) = 𝑆0 − 3𝜇𝐿.

Note that 𝑆0− 3𝜇𝐿 ≥ 𝑆0

3
− 𝜇𝐿 ≥ 0 by Assumption 10 and thus a sufficient

condition for (B.7) to hold when 𝛽 = 0 (and 𝛽′ = 𝛾𝐻) is

𝜇𝐻 ≤ 𝑆0 + 𝛿𝛾𝐻

[︂
𝑆0

3
− 𝜇𝐿

]︂
,

which holds by Assumption 10.

Lemma 12. 𝑥SO
𝛽 = 0⇒ 𝑥SO

𝛽′ ≤ 1.

Proof. A sufficient condition for 𝑥SO
𝛽′ ≤ 1 is

𝑔(1, 𝜇𝛽′) = 𝜇𝛽′ + 𝑆0(𝑁 − 1) < 4𝜇𝛽′ + 𝑆0(𝑁 − 2) = 𝑔(2, 𝜇𝛽′)⇔ 𝜇𝛽′ >
𝑆0

3
.

We next show that 𝜇𝛽′ >
𝜇𝛽

3
. The conclusion then follows since 𝑥SO

𝛽 = 0 implies

𝑔(0, 𝜇𝛽) = 𝑆0𝑁 < 𝜇𝛽 + 𝑆0(𝑁 − 1) = 𝑔(1, 𝜇𝛽)⇔ 𝜇𝛽 > 𝑆0.

To show 3𝜇𝛽′ > 𝜇𝛽 recall that 𝜇𝛽′ = 𝛽𝜇𝐿 + (1 − 𝛽)𝜇𝐻 ≥ 𝛽𝐿 + (1 − 𝛽)𝜇𝐻 and

𝜇𝐻 = (1− 𝛾𝐻)𝐻 + 𝛾𝐻𝐿 ≥ 1
2
𝐻. Hence

3𝜇𝛽′ ≥ 3𝛽𝐿+ 3(1− 𝛽)𝜇𝐻 ≥
3

2
𝛽𝐿+

3

2
𝛽𝐿+

3

2
(1− 𝛽)𝐻 ≥ 3

2
𝜇𝛽 > 𝜇𝛽.
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B.2.2 Preliminary statements in support of the proof of Propo-

sition 4

To prove our main Proposition 4 we start with some additional statements. We first

prove that the agent’s state can be simplified as detailed in Lemma 9 in the main text.

Proof of Lemma 9: If all agents are following the scheme 𝜋𝑐,𝑑 then the flow on the

risky road at time 𝑡−1 is distinct depending on whether 𝜃𝑡−2 = 𝐻 or 𝜃𝑡−2 = 𝐿. Thus,

either an agent was on the risky road at time 𝑡−1 and observed 𝜃𝑡−1 or the agent was

on safe and can infer 𝑥𝑡−1 and (from that) 𝜃𝑡−2. By the Markov property of 𝜃 and

the stationarity of the recommendation policy no information before 𝜃𝑡−2 is useful to

the agents. Thus, the state 𝑧𝑖𝑡 is a sufficient summary for any agent to determine his

expected ongoing cost, as well as the information that other agents have. If agents do

not follow the scheme, then all agents receive full information and this state is still

sufficient as every agent and the CP will have symmetric information. ■

From here on we consider the values of 𝑐, 𝑑 fixed (satisfying the assumptions of

Proposition 4) and we denote by 𝑢*(𝑧𝑖𝑡) the expected cost under 𝜋𝑐,𝑑 of an agent

whose state is 𝑧𝑖𝑡. We note that the expected cost for any agent that knows that the

risky road was high at the previous step (𝜃𝑡−1 = 𝐻) and before receiving a recom-

mendation for time 𝑡 is the same, no matter his state. Intuitively, this is true because

according to the recommendation scheme 𝜋𝑐,𝑑 if 𝜃𝑡−1 = 𝐻 then at the next step the CP

sends the recommendation 𝑟𝑅 to one and only one agent (the experimenter) selected

at random among all the agents independent of previous actions or knowledge.

Lemma 13. The expected cost

𝑣 := E𝜋𝑐,𝑑
[𝑢*([𝑥𝑡−1, 𝜃

𝑖
𝑡−1, 𝑟

𝑖
𝑡−1]) | 𝑥𝑡−1 = 𝑥, 𝜃𝑖𝑡−1 = 𝐻]

is the same for all 𝑥 ≥ 1.

Proof. Whenever 𝜃𝑡−1 = 𝐻 is observed, a new experimenter is chosen among all
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Table B.1: Expected stage costs if agents follow the recommendation scheme given
in Proposition 4

State of the risky road H H . . . L L L . . . H
Number of agents on risky - 1 . . . 1 𝑐 𝑑 . . . 𝑑

Expected stage cost on risky - 𝜇𝐻 . . . 𝜇𝐻 𝜇𝐿𝑐 𝜇𝐿𝑑 . . . 𝜇𝐿𝑑

Expected stage cost on safe - 𝑆0 . . . 𝑆0 𝑆0 𝑆0 . . . 𝑆0

agents. Thus every agent, no matter which road he was on, has an identical likelihood

of being chosen as the experimenter at time 𝑡. Note that 𝑣 conditions on the knowledge

that 𝜃𝑡−1 = 𝐻, hence there is no need for distinguishing states where agents do

not know the state of the road. In other words, the expectation is only over the

recommendation scheme 𝜋𝑐,𝑑 and thus

𝑣 =
1

𝑁
𝑢*([𝑥𝑡−1, 𝐻, 𝑟𝑅])⏟  ⏞  

ongoing cost as the experimenter

+
𝑁 − 1

𝑁
𝑢*([𝑥𝑡−1, 𝐻, 𝑟𝑆])⏟  ⏞  
ongoing cost on safe

=
1

𝑁
𝑢*([1, 𝐻, 𝑟𝑅]) +

𝑁 − 1

𝑁
𝑢*([1, 𝐻, 𝑟𝑆]).

In the second line we substitute the observed flow with 1 since it is unimportant (i.e.

these costs are the same for any 𝑥𝑡−1 ≥ 1); given the state 𝜃𝑡−1 = 𝐻, the flow in the

previous round will not effect the ongoing cost: as at time 𝑡 one agent will be on risky

and 𝑁 − 1 will be on safe.

Lemma 13 simplifies our analysis because it implies that we can partition the

infinite horizon into consecutive periods by defining the beginning of a new period as

the time immediately after the risky road switches from 𝐿 to 𝐻, see Table 4.1 in the

main text. Conditioned on the agents knowing that a new period has begun, their

ongoing cost from that point on is the same (i.e. 𝑣) independent of their history. This

observation simplifies the analysis of incentive compatibility and optimality. Table

4.1 in the main text illustrates the flow in the risky road under the social optimum

and the scheme described in Proposition 4 within one period. Table B.1 illustrates

the expected stage cost for agents taking the risky road or the safe road under the

scheme described in Proposition 4.
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We start our analysis by deriving closed form expressions and relations for the

cost 𝑢*(𝑧) of different states 𝑧 reached under 𝜋𝑐,𝑑.

Lemma 14 (Closed form expression of auxiliary cost).

1. 𝑢*([𝑐, 𝐿, 𝑟𝑅]) = 𝑢*([𝑑, 𝐿, 𝑟𝑅]) =
1

1−𝛿(1−𝛾𝐿)
(𝜇𝐿𝑑+ 𝛿𝛾𝐿𝑣)

2. 𝑢*([𝑐, 𝐿, 𝑟𝑆]) = 𝑢*([𝑑, 𝐿, 𝑟𝑆]) =
1

1−𝛿(1−𝛾𝐿)
(𝑆0 + 𝛿𝛾𝐿𝑣)

Proof. 1. The first equality follows from the fact that the flow on the risky road

after 𝜃 = 𝐿 and the flow 𝑐 or 𝑑 is 𝑑. The second equality follows from

𝑢*([𝑑, 𝐿, 𝑟𝑅]) = 𝜇𝐿𝑑+ 𝛿((1− 𝛾𝐿)𝑢
*([𝑑, 𝐿, 𝑟𝑅]) + 𝛾𝐿𝑣) (see (B.10)).

2. The first equality follows similarly to the above point and the second follows

from 𝑢*([𝑑, 𝐿, 𝑟𝑆]) = 𝑆0 + 𝛿((1− 𝛾𝐿)𝑢
*([𝑑, 𝐿, 𝑟𝑆]) + 𝛾𝐿𝑣) (see (B.10)).

Lemma 15. 𝜇𝐿𝑐 ≤ 𝜇𝐿𝑑 ≤ 𝑆0 and 𝑐 ≥ 𝑆0

2𝜇𝐿
− 1

2
.

Proof. The first chain of inequalities follows immediately from the assumption 𝑐 ≤

𝑑 ≤ 𝑥eq
𝐿 and 𝜇𝐿𝑥

eq
𝐿 ≤ 𝑆0 by the equilibrium condition. Finally, since 𝑥SO

𝐿 is either the

closest integer that to 𝑆0

2𝜇𝐿
, one gets 𝑐 ≥ 𝑥SO

𝐿 ≥ 𝑆0

2𝜇𝐿
− 1

2
.

Remark 4. According to Definition 6, if any agent deviates the punishment is full

information. Specifically, we assume that the CP sends a recommendation of risky

to each agent with probability 𝑆0

𝑁𝜇𝛽
, so that the expected cost on risky is exactly equal

to the fixed cost 𝑆0 of the safe road. The continuation cost after any deviation is

therefore

𝑢*
𝑑𝑒𝑣 = 𝑆0 + 𝛿𝑆0 + 𝛿2𝑆0 + . . . =

1

1− 𝛿
𝑆0,

Independent of the belief 𝛽.

Lemma 16. The following statements hold:

1. 𝑣 < 1
1−𝛿

𝑆0

2. 𝑢*([𝑑, 𝐿, 𝑟𝑅]) ≤ 1
1−𝛿

𝑆0
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3. 𝑢*(1, 𝐿) :=
(︀

𝑐−1
𝑁−1

𝑢*([1, 𝐿, 𝑟𝑅]) +
𝑁−𝑐
𝑁−1

𝑢*([1, 𝐿, 𝑟𝑆])
)︀
≤ 𝑢*([𝑑, 𝐿, 𝑟𝑆]) ≤ 1

1−𝛿
𝑆0

4. 𝑢*(𝑐, 𝐿) :=
(︀

𝑑−𝑐
𝑁−𝑐

𝑢*([𝑐, 𝐿, 𝑟𝑅]) +
𝑁−𝑑
𝑁−𝑐

𝑢*([𝑐, 𝐿, 𝑟𝑆])
)︀
≤ 𝑢*([𝑑, 𝐿, 𝑟𝑆]) ≤ 1

1−𝛿
𝑆0

Proof. 1.

𝑣 =
1

𝑁
𝜇𝐻 +

𝑁 − 1

𝑁
𝑆0 + 𝛿

(︂
𝛾𝐻

(︂
𝑐

𝑁
𝜇𝐿𝑐+

𝑁 − 𝑐

𝑁
𝑆0

+𝛿

(︂
𝛾𝐿𝑣 + (1− 𝛾𝐿)

(︂
𝑑

𝑁
𝑢*([𝑑, 𝐿, 𝑟𝑅]) +

𝑁 − 𝑑

𝑁
𝑢*([𝑑, 𝐿, 𝑟𝑆])

)︂)︂)︂
+ (1− 𝛾𝐻)𝑣

)︂

where 𝑢*([𝑑, 𝐿, 𝑟𝑅]) and 𝑢*([𝑑, 𝐿, 𝑟𝑆]) are as defined in Lemma 14. To simplify

exposition recall that

𝑔(1, 𝜇𝐻) := 𝜇𝐻 + (𝑁 − 1)𝑆0

𝑔(𝑐, 𝜇𝐿) := 𝜇𝐿𝑐
2 + (𝑁 − 𝑐)𝑆0

𝑔(𝑑, 𝜇𝐿) := 𝜇𝐿𝑑
2 + (𝑁 − 𝑑)𝑆0

then 𝑣 can be written as

𝑣 =
1− 𝛿(1− 𝛾𝐿)

𝑁(1− 𝛿)(1− 𝛿(1− 𝛾𝐻 − 𝛾𝐿))

(︂
𝑔(1, 𝜇𝐻) + 𝛿𝛾𝐻

(︂
𝑔(𝑐, 𝜇𝐿) +

𝛿(1− 𝛾𝐿)

1− 𝛿(1− 𝛾𝐿)
𝑔(𝑑, 𝜇𝐿)

)︂)︂
(B.8)

To show the inequality holds we first multiply both sides by (1− 𝛿)𝑁

1− 𝛿(1− 𝛾𝐿)

1− 𝛿(1− 𝛾𝐿 − 𝛾𝐻)

(︂
𝑔(1, 𝜇𝐻) + 𝛿𝛾𝐻

(︂
𝑔(𝑐, 𝜇𝐿) +

𝛿(1− 𝛾𝐿)

1− 𝛿(1− 𝛾𝐿)
𝑔(𝑑, 𝜇𝐿)

)︂)︂
< 𝑆0𝑁

⇐⇒ (1− 𝛿(1− 𝛾𝐿))(𝑔(1, 𝜇𝐻) + 𝛿𝛾𝐻𝑔(𝑐, 𝜇𝐿)) + 𝛿2𝛾𝐻(1− 𝛾𝐿)𝑔(𝑑, 𝜇𝐿)

< (1− 𝛿(1− 𝛾𝐿 − 𝛾𝐻))𝑆0𝑁

⇐⇒ (1− 𝛿(1− 𝛾𝐿))(𝜇𝐻 + 𝑆0(𝑁 − 1) + 𝛿𝛾𝐻𝑔(𝑐, 𝜇𝐿)) + 𝛿2𝛾𝐻(1− 𝛾𝐿)𝑔(𝑑, 𝜇𝐿)

< (1− 𝛿(1− 𝛾𝐿))𝑆0𝑁 + 𝛿𝛾𝐻𝑆0𝑁 − 𝛿2𝛾𝐻(1− 𝛾𝐿)𝑆0𝑁 + 𝛿2𝛾𝐻(1− 𝛾𝐿)𝑆0𝑁

⇐⇒ (1− 𝛿(1− 𝛾𝐿))(𝜇𝐻 + 𝛿𝛾𝐻𝑔(𝑐, 𝜇𝐿)) + 𝛿2𝛾𝐻(1− 𝛾𝐿)𝑔(𝑑, 𝜇𝐿)

< (1− 𝛿(1− 𝛾𝐿))(𝑆0 + 𝛿𝛾𝐻𝑆0𝑁) + 𝛿2𝛾𝐻(1− 𝛾𝐿)𝑆0𝑁.
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By Lemma 15, 𝑔(𝑑, 𝜇𝐿) ≤ 𝑆0𝑁 , so it is sufficient to show

𝜇𝐻 + 𝛿𝛾𝐻𝑔(𝑐, 𝜇𝐿) < 𝑆0 + 𝛿𝛾𝐻𝑆0𝑁 ⇐⇒ 𝜇𝐻 < 𝑆0 + 𝛿𝛾𝐻(𝑆0𝑁 − 𝑔(𝑐, 𝜇𝐿)).

Note that, by assumption, 𝑔(𝑐, 𝜇𝐿) ≤ 𝑔(2, 𝜇𝐿) < 𝑔(1, 𝜇𝐿) hence

𝑆0𝑁 − 𝑔(𝑐, 𝜇𝐿) > 𝑆0𝑁 − (𝑆0(𝑁 − 1) + 𝜇𝐿) = 𝑆0 − 𝜇𝐿 >
𝑆0

3
− 𝜇𝐿.

Thus, it is sufficient if

𝜇𝐻 ≤ 𝑆0 + 𝛿𝛾𝐻

(︂
𝑆0

3
− 𝜇𝐿

)︂

which holds by Assumption 10.

2. The cost 𝑢*([𝑑, 𝐿, 𝑟𝑅]) is defined in Lemma 14. Then

𝑢*([𝑑, 𝐿, 𝑟𝑅]) =
1

1− 𝛿(1− 𝛾𝐿)
(𝜇𝐿𝑑+ 𝛿𝛾𝐿𝑣) ≤

1

1− 𝛿
𝑆0

⇐⇒ (1− 𝛿)(𝜇𝐿𝑑+ 𝛿𝛾𝐿𝑣) ≤ (1− 𝛿(1− 𝛾𝐿))𝑆0

⇐⇒ (1− 𝛿)𝜇𝐿𝑑+ (1− 𝛿)𝛿𝛾𝐿𝑣 ≤ (1− 𝛿)𝑆0 + 𝛿𝛾𝐿𝑆0

and the result holds by part 1 of this lemma and by Lemma 15.

3. Expanding the cost 𝑢*(1, 𝐿)

𝑢*(1, 𝐿) =
𝑐− 1

𝑁 − 1
𝜇𝐿𝑐+

𝑁 − 𝑐

𝑁 − 1
𝑆0

+ 𝛿

(︂
(1− 𝛾𝐿)

(︂
𝑑− 1

𝑁 − 1
𝑢*([𝑑, 𝐿, 𝑟𝑅]) +

𝑁 − 𝑑

𝑁 − 1
𝑢*([𝑑, 𝐿, 𝑟𝑆])

)︂
+ 𝛾𝐿𝑣

)︂
.

Note that 𝑢*([𝑑, 𝐿, 𝑟𝑆]) = 𝑆0 + 𝛿(1 − 𝛾𝐿)𝑢
*([𝑑, 𝐿, 𝑟𝑆]) + 𝛿𝛾𝐿𝑣. Then 𝑢*(1, 𝐿) ≤

𝑢*([𝑑, 𝐿, 𝑟𝑆]) holds if

𝑐− 1

𝑁 − 1
𝜇𝐿𝑐+

𝑁 − 𝑐

𝑁 − 1
𝑆0 +

𝛿(1− 𝛾𝐿)

1− 𝛿(1− 𝛾𝐿)

(︂
𝑑− 1

𝑁 − 1
𝜇𝐿𝑑+

𝑁 − 𝑑

𝑁 − 1
𝑆0

)︂
≤ 𝑆0 +

𝛿(1− 𝛾𝐿)

1− 𝛿(1− 𝛾𝐿)
𝑆0
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which is true by Lemma 15.

For the second inequality, we need

1

1− 𝛿(1− 𝛾𝐿)
(𝑆0 + 𝛿𝛾𝐿𝑣) ≤

1

1− 𝛿
𝑆0 (B.9)

⇐⇒ (1− 𝛿)(𝑆0 + 𝛿𝛾𝐿𝑣) ≤ (1− 𝛿 + 𝛿𝛾𝐿)𝑆0

and the result follows from the first point of the lemma.

4. By using Lemma 14, we can expand 𝑢*(𝑐, 𝐿) as

𝑢*(𝑐, 𝐿) =
𝑑− 𝑐

𝑁 − 𝑐

(︂
1

1− 𝛿(1− 𝛾𝐿)
(𝜇𝐿𝑑+ 𝛿𝛾𝐿𝑣)

)︂
+

𝑁 − 𝑑

𝑁 − 𝑐

(︂
1

1− 𝛿(1− 𝛾𝐿)
(𝑆0 + 𝛿𝛾𝐿𝑣)

)︂
=

1

1− 𝛿(1− 𝛾𝐿)

(︂
𝑑− 𝑐

𝑁 − 𝑐
𝜇𝐿𝑑+

𝑁 − 𝑑

𝑁 − 𝑐
𝑆0 + 𝛿𝛾𝐿𝑣

)︂
,

It follows by Lemma 15, that

𝑢*(𝑐, 𝐿) ≤ 1

1− 𝛿(1− 𝛾𝐿)
(𝑆0 + 𝛿𝛾𝐿𝑣) = 𝑢*([𝑑, 𝐿, 𝑟𝑆])

and the result follows from part 3 of this lemma.

B.2.3 Proof of Proposition 4

As in the two stage case, we break the agents into types based on individual’s

information. We detail the possible states agents reach under 𝜋𝑐,𝑑 and show that

𝜉𝜋𝑐,𝑑
is an equilibrium by showing that at each state any deviation would lead to

a higher expected cost. Each equilibrium constraint in this setting is dynamic (i.e.

consists of both stage and continuation cost).

Type 1 (𝛽𝑖
𝑡−1 = 𝐿, 𝑟𝑖𝑡−1 = 𝑟𝑅)

Agents of this type took the risky road at time 𝑡 − 1 and observed L. Under 𝜋𝑐,𝑑

these agents receive a recommendation to remain on risky, so 𝑟𝑖𝑡−1 = 𝑟𝑅 for all cases
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below. We further distinguish different states based on the observed flow on risky at

time 𝑡− 1. We present our results in decreasing order of number of other agents that

took risky at 𝑡 − 1. We show that in each case an agent that observes 𝐿 follows the

recommendation and stays on risky.

• [xt−1,𝛽
i
t−1, r

i
t−1] = [d,L, rR]: this agent is part of what we call the “incentive

compatible” flow, which is the flow 𝑑. If everybody follows the recommendation

then 𝑥𝑡 = 𝑑. Agent 𝑖’s expected costs under 𝜋𝑐,𝑑 (if he follows or if he deviates)

are therefore

- Following:

𝑢*([𝑑, 𝐿, 𝑟𝑅]) = 𝜇𝐿𝑑⏟ ⏞ 
stage cost

for 𝑡

+𝛿
(︀
(1− 𝛾𝐿)𝑢

*([𝑑, 𝐿, 𝑟𝑅])⏟  ⏞  
ongoing cost

if 𝜃𝑡 = 𝐿

+𝛾𝐿 E𝜋𝑐,𝑑
[𝑢*([𝑑,𝐻, 𝑟𝑖])]⏟  ⏞  

ongoing cost if 𝜃𝑡 = 𝐻

)︀
,

= 𝜇𝐿𝑑+ 𝛿 ((1− 𝛾𝐿) 𝑢
*([𝑑, 𝐿, 𝑟𝑅]) + 𝛾𝐿𝑣) , (B.10)

- Deviating to safe:

𝑆0⏟ ⏞ 
stage cost for 𝑡

+ 𝛿𝑢*
𝑑𝑒𝑣⏟  ⏞  

ongoing cost

= 𝑆0 +
𝛿

1− 𝛿
𝑆0 (B.11)

Thus, taking the risky road is an equilibrium if

𝜇𝐿𝑑+ 𝛿 ((1− 𝛾𝐿) 𝑢
*([𝑑, 𝐿, 𝑟𝑅]) + 𝛾𝐿𝑣) ≤ 𝑆0 +

𝛿

1− 𝛿
𝑆0. (B.12)

The inequality holds by Lemmas 15, 16-1, and 16-2.

• [xt−1,𝛽
i
t−1, r

i
t−1] = [c,L, rR] this agent is part of the “exploiters" (agents that

are sent to the risky road the first period after the experimenter saw L). If

everybody follows the recommendation the flow on risky will be 𝑥𝑡 = 𝑑.

By Lemma 14, the costs are the same as in state [𝑑, 𝐿, 𝑟𝑅] (as given in (B.10)

and (B.11)). The equilibrium constraint is therefore identical to (B.12) and is

satisfied.
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• [xt−1,𝛽
i
t−1, r

i
t−1] = [1,L, rR] this agent is the current experimenter and just saw

the road change to “low". If everybody follows the recommendation the next

flow on risky would be 𝑥𝑡 = 𝑐. His expected costs are

- Following:

𝑢*([1, 𝐿, 𝑟𝑅]) = 𝜇𝐿𝑐+ 𝛿((1− 𝛾𝐿)𝑢
*([𝑐, 𝐿, 𝑟𝑅]) + 𝛾𝐿𝑣). (B.13)

- Deviating to safe:

𝑆0 + 𝛿𝑢*
dev = 𝑆0 +

𝛿

1− 𝛿
𝑆0

The agent follows the recommendation if

𝜇𝐿𝑐+ 𝛿((1− 𝛾𝐿)𝑢
*([𝑐, 𝐿, 𝑟𝑅]) + 𝛾𝐿𝑣) ≤ 𝑆0 +

𝛿

1− 𝛿
𝑆0.

This inequality holds by Lemmas 14, 15, 16-1, and 16-2.

Type 2 (𝛽𝑖
𝑡−1 = 𝐻)

These agents took risky and saw 𝐻, this means a new experimenter will be chosen.

They each will receive a recommendation of either 𝑟𝑅 or 𝑟𝑆. Since the state is 𝐻 the

flow on risky in the next round is 𝑥𝑡 = 1 no matter the previous flow and we can

divide the states by recommendations

• 𝑟𝑖𝑡−1 = 𝑟𝑆. He is not the experimenter.

- Following the recommendation and taking safe

𝑢*([−, 𝐻, 𝑟𝑆]) = 𝑆0 + 𝛿(𝛾𝐻𝑢
*(1, 𝐿) + (1− 𝛾𝐻)𝑣) (B.14)
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- Deviating

2𝜇𝐻 +
𝛿

1− 𝛿
𝑆0

Thus, the incentive constraint holds by Lemma 16-1, 16-3, and Assumption 10.

• 𝑟𝑖𝑡−1 = 𝑟𝑅. This agent has been selected to be the experimenter. Recall that if

the agent deviates then full information is provided from then on and the cost

is 𝑆0 at every round (see Remark 4). The agent’s expected costs are

- Following the recommendation and taking risky

𝑢*([𝑥𝑡−1, 𝐻, 𝑟𝑅]) = 𝜇𝐻 + 𝛿(𝛾𝐻𝑢
*([1, 𝐿, 𝑟𝑅]) + (1− 𝛾𝐻)𝑣) (B.15)

- Deviating

𝑆0 +
𝛿

1− 𝛿
𝑆0

The incentive constraint can be written

𝜇𝐻 + 𝛿(𝛾𝐻𝑢
*([1, 𝐿, 𝑟𝑅]) + (1− 𝛾𝐻)𝑣) ≤ 𝑆0 + 𝛾𝐻

𝛿

1− 𝛿
𝑆0 + (1− 𝛾𝐻)

𝛿

1− 𝛿
𝑆0

and by Lemma 16-1 it suffices to show

𝜇𝐻 + 𝛿𝛾𝐻𝑢
*([1, 𝐿, 𝑟𝑅]) ≤ 𝑆0 + 𝛾𝐻

𝛿

1− 𝛿
𝑆0.

Note that

𝑢*([1, 𝐿, 𝑟𝑅]) = 𝜇𝐿𝑐+ 𝛿((1− 𝛾𝐿)𝑢
*([𝑐, 𝐿, 𝑟𝑅]) + 𝛾𝐿𝑣) ≤ 𝜇𝐿𝑐+

𝛿

1− 𝛿
𝑆0

where the upper bound follows from Lemma 14-1, 16-1 and 16-2. Thus, it is
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sufficient if

𝜇𝐻 ≤ 𝑆0 + 𝛿𝛾𝐻(𝑆0 − 𝜇𝐿𝑐)

≤ 𝑆0 + 𝛿𝛾𝐻

(︂
𝑆0 − 𝜇𝐿

(︂
𝑆0

2𝜇𝐿

− 1

2

)︂)︂
= 𝑆0 + 𝛿𝛾𝐻

1

2
(𝑆0 + 𝜇𝐿)

where the second inequality follows by Lemma 15. The result holds by Assumption 10.

Type 3 (𝛽𝑖
𝑡−1 = 𝑈, 𝑟𝑖𝑡−1 = 𝑟𝑆)

These agents took safe at time 𝑡 − 1 and received a recommendation to remain on

safe, 𝑟𝑆. Note that since these agents took safe at time 𝑡 − 1 they do not know

𝜃𝑡−1. Receiving a recommendation of safe either means that 𝜃𝑡−1 = 𝐿 (and the agent

continues to be part of the flow on the safe road) or that 𝜃𝑡−1 = 𝐻 (a new cycle

has begun but the agent is not the new experimenter). For simplicity we denote the

probability of the first event by 𝑝𝑥,𝑆 = P(𝜃𝑡−1 = 𝐿 | 𝑥𝑡−1 = 𝑥, 𝑟𝑖𝑡−1 = 𝑟𝑆). Note that

this probability depends on the flow 𝑥 observed at 𝑡−1. The following lemma relates

these probabilities for the cases 𝑥𝑡−1 = 𝑑 and 𝑥𝑡−1 = 𝑐.

Lemma 17. The following statements hold

1. 𝑝𝑑,𝑆 = 1−𝛾𝐿
1−𝛾𝐿+𝛾𝐿

𝑁−1
𝑁

2. 𝑝𝑐,𝑆 =
(1−𝛾𝐿)

𝑁−𝑑
𝑁−𝑐

(1−𝛾𝐿)
𝑁−𝑑
𝑁−𝑐

+𝛾𝐿
𝑁−1
𝑁

3. 𝑝1,𝑆 =
𝛾𝐻

𝑁−𝑐
𝑁−1

(1−𝛾𝐻)𝑁−1
𝑁

+𝛾𝐻
𝑁−𝑐
𝑁−1

4. 𝑝𝑐,𝑆 ≤ 𝑝𝑑,𝑆

Proof. 1. Note that the agent can infer 𝜃𝑡−2 = 𝐿 from the flow being 𝑑 on the risky
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road at time 𝑡− 1. Therefore, by Bayes rule

𝑝𝑑,𝑆 := P(𝜃𝑡−1 = 𝐿 | [𝑑, 𝑈, 𝑟𝑆]) (B.16)

=
(1− 𝛾𝐿)P(𝑟𝑆 | 𝜃𝑡−1 = 𝐿, 𝑥𝑡−1 = 𝑑)

(1− 𝛾𝐿)P(𝑟𝑆 | 𝜃𝑡−1 = 𝐿, 𝑥𝑡−1 = 𝑑) + 𝛾𝐿P(𝑟𝑆 | 𝜃𝑡−1 = 𝐻, 𝑥𝑡−1 = 𝑑)

=
1− 𝛾𝐿

1− 𝛾𝐿 + 𝛾𝐿
𝑁−1
𝑁

. (B.17)

2. Note that the agent can infer 𝜃𝑡−2 = 𝐿 from the flow being 𝑐 on the risky road

at time 𝑡− 1. By Bayes rule

𝑝𝑐,𝑆 := P(𝜃𝑡−1 = 𝐿 | [𝑐, 𝑈, 𝑟𝑆]) (B.18)

=
(1− 𝛾𝐿)P(𝑟𝑆 | 𝜃𝑡−1 = 𝐿, 𝑥𝑡−1 = 𝑐)

(1− 𝛾𝐿)P(𝑟𝑆 | 𝜃𝑡−1 = 𝐿, 𝑥𝑡−1 = 𝑐) + 𝛾𝐿P(𝑟𝑆 | 𝜃𝑡−1 = 𝐻, 𝑥𝑡−1 = 𝑐)

=
(1− 𝛾𝐿)

𝑁−𝑑
𝑁−𝑐

(1− 𝛾𝐿)
𝑁−𝑑
𝑁−𝑐

+ 𝛾𝐿
𝑁−1
𝑁

.

3. Note that the agent can infer 𝜃𝑡−2 = 𝐻 from the flow being 1 on the risky road

at time 𝑡− 1. By Bayes rule

𝑝1,𝑆 := P(𝜃𝑡−1 = 𝐿 | [1, 𝑈, 𝑟𝑆])

=
𝛾𝐻P(𝑟𝑆 | 𝜃𝑡−1 = 𝐿, 𝑥𝑡−1 = 1)

(1− 𝛾𝐻)P(𝑟𝑆 | 𝜃𝑡−1 = 𝐻, 𝑥𝑡−1 = 1) + 𝛾𝐻P(𝑟𝑆 | 𝜃𝑡−1 = 𝐿, 𝑥𝑡−1 = 1)

=
𝛾𝐻

𝑁−𝑐
𝑁−1

𝛾𝐻
𝑁−𝑐
𝑁−1

+ (1− 𝛾𝐻)
𝑁−1
𝑁

.

4. For positive 𝛼, 𝛽, 𝜂
𝛼

𝛼 + 𝛽
≥ 𝜂

𝜂 + 𝛽
⇐⇒ 𝛼 ≥ 𝜂.

Let 𝛼 := 1 − 𝛾𝐿, 𝛽 := 𝛾𝐿
𝑁−1
𝑁

, and 𝜂 := (1 − 𝛾𝐿)
𝑁−𝑑
𝑁−𝑐

. Then 𝑝𝑑,𝑆 = 𝛼
𝛼+𝛽

and

𝑝𝑐,𝑆 = 𝜂
𝜂+𝛽

. The fact that 𝑑 ≥ 𝑐 implies 𝛼 ≥ 𝜂 and therefore 𝑝𝑑,𝑆 ≥ 𝑝𝑐,𝑆.

The possible states for agents of Type 2 are

• [xt−1,𝛽
i
t−1, r

i
t−1] = [d,U, rS]: these agents were on safe at time 𝑡− 1, observed
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flow 𝑑 and received a recommendation to remain on safe. Their expected costs

are

- Following the recommendation and taking safe

𝑢*([𝑑, 𝑈, 𝑟𝑆]) = 𝑝𝑑,𝑆 𝑢
*([𝑑, 𝐿, 𝑟𝑆])⏟  ⏞  
cost if 𝜃𝑡−1=𝐿

+(1− 𝑝𝑑,𝑆)𝑢
*([−, 𝐻, 𝑟𝑆])⏟  ⏞  
cost if 𝜃𝑡−1=𝐻

.

- Deviating to risky

𝑝𝑑,𝑆𝜇𝐿(𝑑+ 1) + (1− 𝑝𝑑,𝑆)2𝜇𝐻 +
𝛿

1− 𝛿
𝑆0

This inequality holds by assumption (4.6).

• [xt−1,𝛽
i
t−1, r

i
t−1] = [c,U, rS]: The agent’s expected costs are

- Following the recommendation and taking safe

𝑢*([𝑐, 𝑈, 𝑟𝑆]) = 𝑝𝑐,𝑆 𝑢
*([𝑑, 𝐿, 𝑟𝑆])⏟  ⏞  

𝐹1

+(1− 𝑝𝑐,𝑆)𝑢
*([−, 𝐻, 𝑟𝑆])⏟  ⏞  

𝐹2

.

- Deviating

𝑝𝑐,𝑆

(︂
𝜇𝐿(𝑑+ 1) +

𝛿

1− 𝛿
𝑆0

)︂
⏟  ⏞  

𝐷1

+(1− 𝑝𝑐,𝑆)

(︂
2𝜇𝐻 +

𝛿

1− 𝛿
𝑆0

)︂
⏟  ⏞  

𝐷2

By inspection, this case is similar to the previous case ([𝑑, 𝑈, 𝑟𝑆]). The only

difference is the beliefs (𝑝𝑑,𝑆 for the previous case, and 𝑝𝑐,𝑆 for this case). The

incentive compatibility constraint (4.6) for the previous case can be written

compactly as

𝑝𝑑,𝑆𝐹1 + (1− 𝑝𝑑,𝑆)𝐹2 ≤ 𝑝𝑑,𝑆𝐷1 + (1− 𝑝𝑑,𝑆)𝐷2
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or equivalently

𝑝𝑑,𝑆(𝐹1 −𝐷1) + (1− 𝑝𝑑,𝑆)(𝐹2 −𝐷2) ≤ 0.

We next show that (𝐹2 −𝐷2) ≤ (𝐹1 −𝐷1). Since, by Lemma 17 𝑝𝑐,𝑆 ≤ 𝑝𝑑,𝑆, by

properties of convex combinations, this suffices to show that

𝑝𝑐,𝑆(𝐹1 −𝐷1) + (1− 𝑝𝑐,𝑆)(𝐹2 −𝐷2) ≤ 𝑝𝑑,𝑆(𝐹1 −𝐷1) + (1− 𝑝𝑑,𝑆)(𝐹2 −𝐷2) ≤ 0,

as desired. To show (𝐹2 −𝐷2) ≤ (𝐹1 −𝐷1) we equivalently show (𝐹2 +𝐷1) ≤

(𝐹1 +𝐷2). Note

𝐹2 = 𝑢*([−, 𝐻, 𝑟𝑆]) = 𝑆0 + 𝛿 (𝛾𝐻𝑢
*(1, 𝐿) + (1− 𝛾𝐻)𝑣)

𝐹1 = 𝑢*([𝑑, 𝐿, 𝑟𝑆]) = 𝑆0 + 𝛿((1− 𝛾𝐿)𝑢
*([𝑑, 𝐿, 𝑟𝑆]) + 𝛾𝐿𝑣).

Hence (𝐹2 +𝐷1) ≤ (𝐹1 +𝐷2) can be rewritten as

𝑆0 + 𝛿((1− 𝛾𝐻)𝑣 + 𝛾𝐻𝑢
*(1, 𝐿)) + 𝜇𝐿(𝑑+ 1) +

𝛿

1− 𝛿
𝑆0

≤ 𝑆0 + 𝛿(𝛾𝐿𝑣 + (1− 𝛾𝐿)𝑢
*([𝑑, 𝐿, 𝑟𝑆])) + 2𝜇𝐻 +

𝛿

1− 𝛿
𝑆0

⇐⇒ 𝛿(1− 𝛾𝐿 − 𝛾𝐻)𝑣 + 𝜇𝐿(𝑑+ 1) ≤ 𝛿((1− 𝛾𝐿)𝑢
*([𝑑, 𝐿, 𝑟𝑆])− 𝛾𝐻𝑢

*(1, 𝐿)) + 2𝜇𝐻 .

By Lemma 15 and by Assumption 10, 𝜇𝐿𝑑 + 𝜇𝐿 ≤ 𝑆0 + 𝑆0 ≤ 2𝜇𝐻 and it is

sufficient to show

(1− 𝛾𝐿 − 𝛾𝐻)𝑣 ≤ (1− 𝛾𝐿)𝑢
*([𝑑, 𝐿, 𝑟𝑆])− 𝛾𝐻𝑢

*(1, 𝐿).

The right hand side can be lower bounded using Lemma 16-3 by

(1− 𝛾𝐿 − 𝛾𝐻)𝑢
*([𝑑, 𝐿, 𝑟𝑆])
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and incentive compatibility holds if

𝑣 ≤ 𝑢*([𝑑, 𝐿, 𝑟𝑆])

⇐⇒ 𝑣 ≤ 1

1− 𝛿(1− 𝛾𝐿)
(𝑆0 + 𝛿𝛾𝐿𝑣)

⇐⇒ (1− 𝛿)𝑣 ≤ 𝑆0

which holds by Lemma 16-1.

• [xt−1,𝛽
i
t−1, r

i
t−1] = [1,U, rS] These agents were on safe at time 𝑡 − 1 and ob-

served 𝑥𝑡−1 = 1, thus they infer that 𝜃𝑡−2 = 𝐻. The agent’s expected costs

are

- Following the recommendation of safe

𝑢*([1, 𝑈, 𝑟𝑆]) = 𝑝1,𝑆𝑢
*([1, 𝐿, 𝑟𝑆]) + (1− 𝑝1,𝑆)𝑢

*([−, 𝐻, 𝑟𝑆]).

- Deviating

𝑝1,𝑆 (𝜇𝐿(𝑐+ 1)) + (1− 𝑝1,𝑆)2𝜇𝐻 +
𝛿

1− 𝛿
𝑆0.

The incentive compatibility constraint can thus be written as

𝑝1,𝑆 (𝑆0 + 𝛿((1− 𝛾𝐿)𝑢
*(𝑐, 𝐿) + 𝛾𝐿𝑣)) + (1− 𝑝1,𝑆)(𝑆0 + 𝛿(𝛾𝐻𝑢

*(1, 𝐿) + (1− 𝛾𝐻)𝑣))

≤ 𝑝1,𝑆 (𝜇𝐿(𝑐+ 1)) + (1− 𝑝1,𝑆) (2𝜇𝐻) +
𝛿

1− 𝛿
𝑆0.

where 𝑢*(𝑐, 𝐿) and 𝑢*(1, 𝐿) are as defined in Lemma 16. It follows from Lemma

16-1, 16-3, and 16-4 that

𝛿 (𝑝1,𝑆((1− 𝛾𝐿)𝑢
*(𝑐, 𝐿) + 𝛾𝐿𝑣) + (1− 𝑝1,𝑆)(𝛾𝐻𝑢

*(1, 𝐿) + (1− 𝛾𝐻)𝑣)) ≤
𝛿

1− 𝛿
𝑆0.

The result is then proven by the following lemma.
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Lemma 18. 𝑆0 ≤ 𝑝1,𝑆(𝜇𝐿(𝑐+ 1)) + (1− 𝑝1,𝑆)(2𝜇𝐻).

Proof. Plugging in the expression of 𝑝1,𝑆 derived in Lemma 17 and rearranging

(︂
(1− 𝛾𝐻)

𝑁 − 1

𝑁
+ 𝛾𝐻

𝑁 − 𝑐

𝑁 − 1

)︂
𝑆0 ≤ 𝛾𝐻

𝑁 − 𝑐

𝑁 − 1
(𝜇𝐿(𝑐+ 1)) + (1− 𝛾𝐻)

𝑁 − 1

𝑁
2𝜇𝐻 .

Since 𝑐+ 1 ≥ 𝑆0

2𝜇𝐿
(by Lemma 15) the inequality above holds if

(︂
(1− 𝛾𝐻)

𝑁 − 1

𝑁
+ 𝛾𝐻

𝑁 − 𝑐

𝑁 − 1

)︂
𝑆0 ≤ 𝛾𝐻

𝑁 − 𝑐

𝑁 − 1

𝑆0

2
+ (1− 𝛾𝐻)

𝑁 − 1

𝑁
2𝜇𝐻

⇐⇒
(︂
(1− 𝛾𝐻)

𝑁 − 1

𝑁

)︂
𝑆0 + 𝛾𝐻

𝑁 − 𝑐

𝑁 − 1

𝑆0

2
≤ (1− 𝛾𝐻)

𝑁 − 1

𝑁
2𝜇𝐻 .

By Assumption 10 𝑆0 ≤ 𝜇𝐻 , so the result holds if

𝛾𝐻
𝑁 − 𝑐

𝑁 − 1

1

2
≤ (1− 𝛾𝐻)

𝑁 − 1

𝑁
.

The last inequality holds since, for all 𝑁 ≥ 2,

𝛾𝐻
𝑁 − 𝑐

𝑁 − 1

1

2
<

𝛾𝐻
2
≤ (1− 𝛾𝐻)

2
≤ (1− 𝛾𝐻)

𝑁 − 1

𝑁
,

where we used 𝑐 > 1 and 𝛾𝐻 ≤ (1− 𝛾𝐻) (since 𝛾𝐻 ≤ 1
2
).

Type 4 (𝛽𝑖
𝑡 = 𝑈, 𝑟𝑖𝑡 = 𝑟𝑅)

These agents took safe at time 𝑡 − 1 and received a recommendation to take risky,

𝑟𝑅. We show that each of these cases is comparable to one that has already been

detailed. Thus, following the recommendation is optimal. The possible states of an

agent of type 4 are:

• [xt−1,𝛽
i
t−1, r

i
t−1] = [d,U, rR]: receiving a recommendation of risky means the

agent is an experimenter. This is equivalent to the case [−, 𝐻, 𝑟𝑅] as this agent

can infer that 𝜃𝑡−1 = 𝐻 since, under 𝜋𝑐,𝑑, the CP does not send a 𝑟𝑅 if the flow
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is 𝑑 and 𝜃 = 𝐿. Specifically, by Bayes rule

P(𝜃𝑡−1 = 𝐿 | [𝑑, 𝑈, 𝑟𝑅])

=
(1− 𝛾𝐿)P(𝑟𝑅 | 𝜃𝑡−1 = 𝐿, 𝑥𝑡−1 = 𝑑)

(1− 𝛾𝐿)P(𝑟𝑅 | 𝜃𝑡−1 = 𝐿, 𝑥𝑡−1 = 𝑑) + 𝛾𝐿P(𝑟𝑅 | 𝜃𝑡−1 = 𝐻, 𝑥𝑡−1 = 𝑑)
= 0.

Since it is a best response to take risky when the state is [−, 𝐻, 𝑟𝑅], it is also a

best response to take risky when the state is [𝑑, 𝑈, 𝑟𝑅].

• [xt−1,𝛽
i
t−1, r

i
t−1] = [c,U, rR]: receiving a recommendation of risky could mean

an agent is part of 𝑑 (if 𝜃𝑡−1 = 𝐿) or is the new experimenter (if 𝜃𝑡−1 = 𝐻).

Denote by 𝑝𝑐,𝑅 agent’s i belief that 𝜃𝑡−1 = 𝐿. His expected cost of following the

recommendation is therefore

𝑢*([𝑐, 𝑈, 𝑟𝑅]) = 𝑝𝑐,𝑅𝑢
*([𝑑, 𝐿, 𝑟𝑅]) + (1− 𝑝𝑐,𝑅)𝑢

*([1, 𝐻, 𝑟𝑅]).

The cost of deviating is the convex combination of deviating under the two

possible states to safe. In both of these cases the best response is to take risky

(see the states [𝑑, 𝐿, 𝑟𝑅] and [1, 𝐻, 𝑟𝑅] discussed earlier). Thus, it is a best

response for the agent in this state to take risky.

• [xt−1,𝛽
i
t−1, r

i
t−1] = [1,U, rR]: receiving a recommendation of risky means that

the agent is either a part of the exploiter flow 𝑐 (if 𝜃𝑡−1 = 𝐿) or has been selected

to be the next experimenter (if 𝜃𝑡−1 = 𝐻). Denote by 𝑝1,𝑅 agent’s i belief that

𝜃𝑡−1 = 𝐿. His expected cost of following the recommendation and taking risky

can then be written as

𝑢*([1, 𝑈, 𝑟𝑅]) = 𝑝1,𝑅𝑢
*([1, 𝐿, 𝑟𝑅]) + (1− 𝑝1,𝑅)𝑢

*([1, 𝐻, 𝑟𝑅]).

Similarly, the cost of deviating is a convex combination of deviating to safe from

state [1, 𝐿, 𝑟𝑅] and deviating to safe from state [1, 𝐻, 𝑟𝑅]. In both of these cases

the best response is to take risky. Thus, it is a best response for the agent in

this state to take risky.
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Type 5 (off the equilibrium path)

Off the equilibrium path the CP provides full information, that is, sends recommen-

dations of risky to each agent with probability 𝑆0

𝜇𝛽𝑁
. Note that in the full information

regime every agent has the same belief 𝛽 on the state of the risky road (equal to

the belief of the CP). Moreover the continuation cost for every agent is the same, no

matter his action. Since following the received recommendation is myopically optimal

no agent has an incentive to deviate. At each point every agent’s total expected cost

is 1/(1− 𝛿)𝑆0.

B.2.4 Proof of Corollary 4

The corollary follows from the following lemma.

Lemma 19. Let �̄�𝐿𝐿 be the smallest integer 𝑑 that satisfies (4.6) when 𝑐 = 𝑥SO
𝐿 , then

�̄�𝐿𝐿 ≤ 𝑥eq
𝐿 . (B.19)

Proof. Note that

𝑢*([𝑑, 𝑈, 𝑟𝑆]) = 𝑝𝑑,𝑆
𝑆0 + 𝛿𝛾𝐿𝑣

1− 𝛿(1− 𝛾𝐿)
+ (1− 𝑝𝑑,𝑆) (𝑆0 + 𝛿 (𝛾𝐻𝑢

*(1, 𝐿) + (1− 𝛾𝐻)𝑣))

= 𝑝𝑑,𝑆

(︂
𝑆0 +

𝛿(𝑆0(1− 𝛾𝐿) + 𝛾𝐿𝑣)

1− 𝛿(1− 𝛾𝐿)

)︂
+ (1− 𝑝𝑑,𝑆) (𝑆0 + 𝛿 (𝛾𝐻𝑢

*(1, 𝐿) + (1− 𝛾𝐻)𝑣)) .

Hence by Lemma 16

𝑢*([𝑑, 𝑈, 𝑟𝑆]) ≤ 𝑝𝑑,𝑆

(︂
𝑆0 +

𝛿𝑆0

1− 𝛿

)︂
+ (1− 𝑝𝑑,𝑆)

(︂
𝑆0 +

𝛿𝑆0

1− 𝛿

)︂
= 𝑆0 +

𝛿𝑆0

1− 𝛿
.

A sufficient condition for (4.6) to hold is therefore,

𝑆0 < 𝑝𝑑,𝑆𝜇𝐿(𝑑+ 1) + (1− 𝑝𝑑,𝑆)2𝜇𝐻 .

We next show that 𝑑 = 𝑥eq
𝐿 satisfies this condition and thus (4.6). To this end, recall
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that 𝜇𝐿(𝑥
eq
𝐿 + 1) > 𝑆0 and 𝜇𝐻 ≥ 𝑆0 hence

𝑝𝑑,𝑆𝜇𝐿(𝑑+ 1) + (1− 𝑝𝑑,𝑆)2𝜇𝐻 > 𝑝𝑑,𝑆𝑆0 + (1− 𝑝𝑑,𝑆)𝑆0 = 𝑆0,

as desired.

B.2.5 Proof of Proposition 5

The proposition follows from the following lemma.

Lemma 20. As 𝛿 → 1, 𝑥𝐿𝐿 → 𝑥SO
𝐿 .

Proof. Recall 𝑥𝐿𝐿 is the smallest integer 𝑑 (weakly greater than 𝑥SO
𝐿 ) that satisfies

(4.6) for 𝑐 = 𝑥SO
𝐿 . Specifically, plugging in values from Lemma 14, taking the safe

road (i.e. following the recommendation) is the best response if

𝑢*([𝑑, 𝑈, 𝑟𝑆]) = 𝑝𝑑,𝑆
𝑆0 + 𝛿𝛾𝐿𝑣

1− 𝛿(1− 𝛾𝐿)
+ (1− 𝑝𝑑,𝑆) (𝑆0 + 𝛿 (𝛾𝐻𝑢

*(1, 𝐿) + (1− 𝛾𝐻)𝑣))

≤ 𝑝𝑑,𝑆𝜇𝐿(𝑑+ 1) + (1− 𝑝𝑑,𝑆)2𝜇𝐻 +
𝛿

1− 𝛿
𝑆0. (B.20)

We let 𝑐 = 𝑑 = 𝑥SO
𝐿 in (B.20) and show as 𝛿 → 1 the constraint holds. By Lemma

16.3 and Lemma 14 it holds

𝑢*(1, 𝐿) =
𝑥SO
𝐿 − 1

𝑁 − 1

(︂
1

1− 𝛿(1− 𝛾𝐿)
(𝜇𝐿𝑥

SO
𝐿 + 𝛿𝛾𝐿𝑣)

)︂
+

𝑁 − 𝑥SO
𝐿

𝑁 − 1

(︂
1

1− 𝛿(1− 𝛾𝐿)
(𝑆0 + 𝛿𝛾𝐿𝑣)

)︂
=

1

1− 𝛿(1− 𝛾𝐿)

(︂
𝑥SO
𝐿 − 1

𝑁 − 1
𝜇𝐿𝑥

SO
𝐿 +

𝑁 − 𝑥SO
𝐿

𝑁 − 1
𝑆0

)︂
+ 𝑣

(︂
𝛿𝛾𝐿

1− 𝛿(1− 𝛾𝐿)

)︂
.
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Hence (B.20) becomes

𝑝𝑑,𝑆

(︂
1

1− 𝛿(1− 𝛾𝐿)
𝑆0

)︂
+ (1− 𝑝𝑑,𝑆)

(︂
𝑆0 +

𝛿𝛾𝐻
1− 𝛿(1− 𝛾𝐿)

(︂
𝑥SO
𝐿 − 1

𝑁 − 1
𝜇𝐿𝑥

SO
𝐿 +

𝑁 − 𝑥SO
𝐿

𝑁 − 1
𝑆0

)︂)︂
⏟  ⏞  

𝑇1

+ 𝑣

(︂
𝑝𝑑,𝑆

𝛿𝛾𝐿
1− 𝛿(1− 𝛾𝐿)

+ (1− 𝑝𝑑,𝑆)

(︂
𝛿2𝛾𝐻𝛾𝐿

1− 𝛿(1− 𝛾𝐿)
+ 𝛿(1− 𝛾𝐻)

)︂)︂
⏟  ⏞  

𝑇2

≤ 𝑝𝑑,𝑆
(︀
𝜇𝐿(𝑥

SO
𝐿 + 1)

)︀
+ (1− 𝑝𝑑,𝑆) (2𝜇𝐻)⏟  ⏞  

𝑇3

+
𝛿

1− 𝛿
𝑆0⏟  ⏞  

𝑇4

.

(B.21)

It follows from (B.8) with 𝑔(𝑐, 𝜇𝐿) = 𝑔(𝑑, 𝜇𝐿) = 𝑔(𝑥SO
𝐿 , 𝜇𝐿) that

𝑣 =
1

(1− 𝛿)

1− 𝛿(1− 𝛾𝐿)

𝑁(1− 𝛿(1− 𝛾𝐻 − 𝛾𝐿)

(︂
𝜇𝐻 + (𝑁 − 1)𝑆0 +

𝛿𝛾𝐻
1− 𝛿(1− 𝛾𝐿)

(︀
𝜇𝐿(𝑥

SO
𝐿 )2 + (𝑁 − 𝑥SO

𝐿 )𝑆0

)︀)︂
⏟  ⏞  

𝑇5

.

Substituting in (B.21) and multiplying both sides by (1− 𝛿) yields

𝑇1(1− 𝛿) + 𝑇5𝑇2 ≤ 𝑇3(1− 𝛿) + 𝛿𝑆0.

Since 𝑇1 and 𝑇3 are finite and lim𝛿→1 𝑇2 = 1, when 𝛿 → 1 a sufficient condition for

(B.21) to hold is

lim
𝛿→1

𝑇5 :=
𝛾𝐿

(𝛾𝐻 + 𝛾𝐿)𝑁

(︂
𝜇𝐻 + (𝑁 − 1)𝑆0 +

𝛾𝐻
𝛾𝐿

(︀
𝜇𝐿(𝑥

SO
𝐿 )2 + (𝑁 − 𝑥SO

𝐿 )𝑆0

)︀)︂
< 𝑆0

⇐⇒ 𝛾𝐿𝜇𝐻 + 𝛾𝐿𝑆0(𝑁 − 1) + 𝛾𝐻(𝜇𝐿(𝑥
SO
𝐿 )2 + 𝑆0(𝑁 − 𝑥SO

𝐿 )) < (𝛾𝐻 + 𝛾𝐿)𝑆0𝑁

⇐⇒ 𝜇𝐻 < 𝑆0 +
𝛾𝐻
𝛾𝐿

(−𝜇𝐿(𝑥
SO
𝐿 )2 + 𝑆0𝑥

SO
𝐿 )

= 𝑆0 +
𝛾𝐻
𝛾𝐿

𝑥SO
𝐿 (𝑆0 − 𝜇𝐿𝑥

SO
𝐿 ).

The inequality holds by Assumption 10 if

𝛾𝐻
𝛾𝐿

𝑥SO
𝐿 (𝑆0 − 𝜇𝐿𝑥

SO
𝐿 ) > 𝛾𝐻

(︂
𝑆0

3
− 𝜇𝐿

)︂
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this follows from 1/𝛾𝐿 > 1 and

𝑥SO
𝐿 (𝑆0 − 𝜇𝐿𝑥

SO
𝐿 ) ≥ 𝑥SO

𝐿

(︂
𝑆0 −

𝑆0

2
− 𝜇𝐿

2

)︂
=

𝑥SO
𝐿

2
(𝑆0 − 𝜇𝐿) ≥ 𝑆0 − 𝜇𝐿 ≥

𝑆0

3
− 𝜇𝐿

where the first inequality follows from 𝑥SO
𝐿 ≤ 𝑆0

2𝜇𝐿
+ 1

2
(can be proven similarly as in

Lemma 14) and the second inequality follows from 𝑥SO
𝐿 ≥ 2.

B.2.6 Proof of Proposition 6

We have 𝜋* = 𝜋1,1,𝑥SO
𝐿 ,𝑥𝐿𝐿

and 𝑉 * = 𝑉1,1,𝑥SO
𝐿 ,𝑥𝐿𝐿

. We denote an arbitrary optimal

incentive compatible scheme (OICS) in Π̂ as �̄� := 𝜋�̄�,�̄�,𝑐,𝑑 with social cost 𝑉 . We

proceed in steps.

1. Proof of Lemma 10: Any OICS �̄� must satisfy �̄�, �̄� ≤ 1

For any recommendation in Π̂ the experimenters, i.e. the agents chosen to take

risky at time 𝑡 when 𝜃𝑡−1 = 𝐻 are selected at random from all agents. Thus,

with positive probability the agent or agents chosen as part of 𝑎 or 𝑏 know

that 𝜃𝑡−1 = 𝐻. We next show that if 𝑎 or 𝑏 is greater than one, then it is not

incentive compatible for an agent to follow this recommendation when 𝛿 ≤ 1/2.

Specifically, following gives cost of at least

2𝜇𝐻 + 𝛿((1− 𝛾𝐻)𝑣𝐿 + 𝛾𝐻𝑣𝐻)

where 𝑣𝐿 and 𝑣𝐻 are some positive continuation costs. Deviating to safe has

cost
1

1− 𝛿
𝑆0 ≤ 2𝑆0 for 𝛿 ≤ 1/2.

Since 𝜇𝐻 ≥ 𝑆0 and the continuation costs 𝑣𝐿 and 𝑣𝐻 are positive it is not

incentive compatible for the agent to follow and take risky when 𝑎, 𝑏 ≥ 2. Thus,

for incentive compatibility to hold at most one agent can be sent to risky.

2. Any OICS satisfies 𝑐 = 𝑥SO
𝐿 or 𝑐 = 𝑥SO

𝐿 + 1. In this proof we assume

𝑥𝐿𝐿 > 𝑥SO
𝐿 (if not 𝜋* coincides with the social optimum and is thus already an
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OICS) hence 𝑥𝐿𝐿 is the minimum integer satisfying (B.20) for 𝑐 = 𝑥SO
𝐿 . The

incentive compatibility constraint (B.20) can be equivalently rewritten as

𝑝𝑑,𝑆𝑢
*([𝑑, 𝐿, 𝑟𝑆]) + (1− 𝑝𝑑,𝑆)

(︂
𝑆0 + 𝛿

(︂
(1− 𝛾𝐻)𝑣 + 𝛾𝐻

(︂
𝑐− 1

𝑁 − 1
𝜇𝐿𝑐+

𝑁 − 𝑐

𝑁 − 1
𝑆0

+𝛿

(︂
𝛾𝐿𝑣 + (1− 𝛾𝐿)

(︂
𝑑− 1

𝑁 − 1
𝑢*([𝑑, 𝐿, 𝑟𝑅]) +

𝑁 − 𝑑

𝑁 − 1
𝑢*([𝑑, 𝐿, 𝑟𝑆])

)︂)︂)︂)︂)︂
≤ 𝑝𝑑,𝑆𝜇𝐿(𝑑+ 1) + (1− 𝑝𝑑,𝑆)2𝜇𝐻 +

𝛿

1− 𝛿
𝑆0.

(B.22)

Recall from Lemma 17 that

𝑝𝑑,𝑆 =
1− 𝛾𝐿

1− 𝛾𝐿 + 𝛾𝐿
𝑁−1
𝑁

(B.23)

does not depend on 𝑑, hence within this proof to avoid confusion we denote

this by 𝑝𝑆. By substituting the expressions of 𝑢*([𝑑, 𝐿, 𝑟𝑆]) and 𝑢*([𝑑, 𝐿, 𝑟𝑅])

computed in Lemma 14 and the expression of 𝑣 given in (B.8) the LHS of the

IC constraint (B.22) can be rewritten as

𝑝𝑆𝑢
*([𝑑, 𝐿, 𝑟𝑆]) + (1− 𝑝𝑆)

(︂
𝑆0 + 𝛿

(︂
(1− 𝛾𝐻)𝑣 + 𝛾𝐻

(︂
𝑐− 1

𝑁 − 1
𝜇𝐿𝑐+

𝑁 − 𝑐

𝑁 − 1
𝑆0

+𝛿

(︂
𝛾𝐿𝑣 +

(1− 𝛾𝐿)

1− 𝛿(1− 𝛾𝐿)

(︂
𝑑− 1

𝑁 − 1
𝜇𝐿𝑑+

𝑁 − 𝑑

𝑁 − 1
𝑆0 + 𝛿𝛾𝐿𝑣

)︂)︂)︂)︂)︂
= 𝑝𝑆

1

1− 𝛿(1− 𝛾𝐿)
(𝑆0 + 𝛿𝛾𝐿𝑣) + (1− 𝑝𝑆)

(︂
𝑆0 + 𝛿

(︂
(1− 𝛾𝐻)𝑣 + 𝛾𝐻

(︂
𝑐− 1

𝑁 − 1
𝜇𝐿𝑐

+
𝑁 − 𝑐

𝑁 − 1
𝑆0 +

𝛿

1− 𝛿(1− 𝛾𝐿)

(︂
𝛾𝐿𝑣 + (1− 𝛾𝐿)

(︂
𝑑− 1

𝑁 − 1
𝜇𝐿𝑑+

𝑁 − 𝑑

𝑁 − 1
𝑆0

)︂)︂)︂)︂)︂
=

𝑝𝑆𝑆0

1− 𝛿(1− 𝛾𝐿)
+ (1− 𝑝𝑆)

(︂
𝑆0 + 𝛿𝛾𝐻

(︂
𝑐− 1

𝑁 − 1
𝜇𝐿𝑐+

𝑁 − 𝑐

𝑁 − 1
𝑆0

+
𝛿(1− 𝛾𝐿)

1− 𝛿(1− 𝛾𝐿)

(︂
𝑑− 1

𝑁 − 1
𝜇𝐿𝑑+

𝑁 − 𝑑

𝑁 − 1
𝑆0

)︂)︂)︂

+ 𝑣

⎛⎜⎜⎝𝑝𝑆
𝛿𝛾𝐿

1− 𝛿(1− 𝛾𝐿)
+ (1− 𝑝𝑆)𝛿

(︂
(1− 𝛾𝐻) + 𝛾𝐻

𝛿𝛾𝐿
1− 𝛿(1− 𝛾𝐿)

)︂
⏟  ⏞  

𝜏

⎞⎟⎟⎠
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=
𝑝𝑆𝑆0

1− 𝛿(1− 𝛾𝐿)
+ (1− 𝑝𝑆)

(︂
𝑆0 + 𝛿𝛾𝐻

(︂
𝑐− 1

𝑁 − 1
𝜇𝐿𝑐+

𝑁 − 𝑐

𝑁 − 1
𝑆0+

𝛿(1− 𝛾𝐿)

1− 𝛿(1− 𝛾𝐿)

(︂
𝑑− 1

𝑁 − 1
𝜇𝐿𝑑+

𝑁 − 𝑑

𝑁 − 1
𝑆0

)︂)︂)︂
+

𝜏𝜏

𝑁

[︂
𝑔(1, 𝜇𝐻) + 𝛿𝛾𝐻𝑔(𝑐, 𝜇𝐿) + 𝛿2

(1− 𝛾𝐿)

1− 𝛿(1− 𝛾𝐿)
𝛾𝐻𝑔(𝑑, 𝜇𝐿)

]︂
,

for

𝜏 :=
1− 𝛿(1− 𝛾𝐿)

(1− 𝛿)(1− 𝛿(1− 𝛾𝐻 − 𝛾𝐿))

𝜏 :=𝑝𝑆
𝛿𝛾𝐿

1− 𝛿(1− 𝛾𝐿)
+ (1− 𝑝𝑆)𝛿

(︂
(1− 𝛾𝐻) + 𝛾𝐻

𝛿𝛾𝐿
1− 𝛿(1− 𝛾𝐿)

)︂ (B.24)

independent of 𝑎, 𝑏, 𝑐, 𝑑. Note that this is separable in 𝑐 and 𝑑. Specifically, by

bringing all the terms depending on c on the LHS and all the terms depending

on 𝑑 on the RHS, we can rewrite the IC constraint (B.22) as 𝑓(𝑐) ≤ 𝑔(𝑑) with

𝑓(𝑐) :=
𝛿(1− 𝑝𝑆)𝛾𝐻

𝑁 − 1
((𝑐− 1)𝜇𝐿𝑐+ (𝑁 − 𝑐)𝑆0)⏟  ⏞  

=:𝑓1(𝑐)

+
𝜏𝜏

𝑁
𝛿𝛾𝐻 𝑔(𝑐, 𝜇𝐿)⏟  ⏞  

=:𝑓2(𝑐)

+𝑘

𝑔(𝑑) := 𝑝𝑆𝜇𝐿(𝑑+ 1)− 𝛿(1− 𝑝𝑆)𝛾𝐻
𝛿(1− 𝛾𝐿)

1− 𝛿(1− 𝛾𝐿)

(︂
𝑑− 1

𝑁 − 1
𝜇𝐿𝑑+

𝑁 − 𝑑

𝑁 − 1
𝑆0

)︂
− 𝜏𝜏

𝑁
𝛿2

(1− 𝛾𝐿)

1− 𝛿(1− 𝛾𝐿)
𝛾𝐻𝑔(𝑑, 𝜇𝐿)

𝑘 :=
𝑝𝑆𝑆0

1− 𝛿(1− 𝛾𝐿)
+ (1− 𝑝𝑆)𝑆0 +

𝜏𝜏

𝑁
𝑔(1, 𝜇𝐻)− (1− 𝑝𝑆)2𝜇𝐻 −

𝛿

1− 𝛿
𝑆0.

(B.25)

Note that 𝑘 is a constant independent of 𝑐 and 𝑑. The functions 𝑓1(𝑐) and 𝑓2(𝑐)

are quadratic, convex and, disregarding the integer constraint, are minimized

when 𝑐 = 𝜇𝐿+𝑆0

2𝜇𝐿
= 𝑆0

2𝜇𝐿
+ 1

2
and when 𝑐 = 𝑆0

2𝜇𝐿
, respectively. This means that, dis-

regarding the integer constraint, 𝑓(𝑐) is minimized for some 𝑐* ∈
[︁

𝑆0

2𝜇𝐿
, 𝑆0

2𝜇𝐿
+ 1

2

]︁
.

Let 𝑐* be the integer minimizer of 𝑓(𝑐) (i.e. the integer closest to 𝑐*). Recall

that 𝑥SO
𝐿 is the integer minimizer of 𝑔(𝑐, 𝜇𝐿) (i.e. the integer closest to 𝑆0

2𝜇𝐿
).

There are two possible cases:

(a) if there exists an integer 𝑐 in the interval
[︁

𝑆0

2𝜇𝐿
, 𝑆0

2𝜇𝐿
+ 1

2

]︁
then 𝑐* = 𝑐 = 𝑥SO

𝐿 .

In fact, |𝑐− 𝑆0

2𝜇𝐿
| ≤ 1

2
⇒ 𝑐 = 𝑥SO

𝐿 and |𝑐− 𝑐*| ≤ 1
2
⇒ 𝑐 = 𝑐*;
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(b) if there is no integer in the interval
[︁

𝑆0

2𝜇𝐿
, 𝑆0

2𝜇𝐿
+ 1

2

]︁
then either 𝑐* = 𝑥SO

𝐿 or

𝑐* = 𝑥SO
𝐿 + 1.

In fact, let 𝑐− be the largest integer smaller than 𝑆0

2𝜇𝐿
and 𝑐+ be the smallest

integer larger than 𝑆0

2𝜇𝐿
+ 1

2
(i.e. 𝑐− + 1). Since there is no integer in[︁

𝑆0

2𝜇𝐿
, 𝑆0

2𝜇𝐿
+ 1

2

]︁
it must be |𝑐− − 𝑆0

2𝜇𝐿
| ≤ 1

2
⇒ 𝑐− = 𝑥SO

𝐿 . On the other hand

𝑐* is equal to either 𝑐− or 𝑐+ depending on whether 𝑐* is smaller or larger

than 𝑐−+𝑐+

2
.

Thus, 𝑓(𝑐) is minimized at 𝑐* = 𝑥SO
𝐿 or 𝑐* = 𝑥SO

𝐿 +1 and for any 𝑐 ̸= {𝑥SO
𝐿 , 𝑥SO

𝐿 +

1}, we get 𝑓(𝑐) ≥ 𝑓(𝑥SO
𝐿 ).

We now prove that if (𝑐, 𝑑) satisfies (B.20) with 𝑐 ̸= {𝑥SO
𝐿 , 𝑥SO

𝐿 +1} then 𝑑 ≥ 𝑥𝐿𝐿.

In fact it must be 𝑔(𝑑) ≥ 𝑓(𝑐) ≥ 𝑓(𝑥SO
𝐿 ). Since 𝑥𝐿𝐿 is the minimum integer

satisfying 𝑔(𝑑) ≥ 𝑓(𝑥SO
𝐿 ) it must be 𝑑 ≥ 𝑥𝐿𝐿.

Hence any IC scheme with 𝑐 ̸= {𝑥SO
𝐿 , 𝑥SO

𝐿 + 1} has higher cost then 𝜋* (since

𝑐 ≥ 𝑥SO
𝐿 and 𝑑 ≥ 𝑥𝐿𝐿) and cannot be optimal. (Recall that by (B.8) the cost

is 𝜏
[︁
𝑔(1, 𝜇𝐻) + 𝛿𝛾𝐻𝑔(𝑐, 𝜇𝐿) + 𝛿2 (1−𝛾𝐿)

1−𝛿(1−𝛾𝐿)
𝛾𝐻𝑔(𝑑, 𝜇𝐿)

]︁
and 𝑔(𝑐, 𝜇𝐿)/𝑔(𝑑, 𝜇𝐿) are

minimized for 𝑐 = 𝑥SO
𝐿 /𝑑 = 𝑥SO

𝐿 and strictly increasing functions for larger

values of 𝑐/𝑑.)

3. Any OICS satisfies 𝑑 ≥ 𝑥𝐿𝐿 − 1

From the previous point we know, that in any OICS it must be 𝑐 ∈ {𝑥SO
𝐿 , 𝑥SO

𝐿 +

1}.

• If 𝑐 = 𝑥SO
𝐿 then by definition 𝑥𝐿𝐿 is the minimum value of 𝑑 to maintain

incentive compatibility.

• If instead 𝑐 = 𝑥SO
𝐿 + 1 we show that to maintain incentive compatibility it

must be 𝑑 ≥ 𝑥𝐿𝐿 − 1. In fact suppose by contradiction that 𝑓(𝑥SO
𝐿 + 1) ≤

𝑔(𝑥𝐿𝐿 − 2), then we show that under our assumptions 𝑓(𝑥SO
𝐿 ) ≤ 𝑔(𝑥𝐿𝐿 −

1), which is absurd since 𝑥𝐿𝐿 is the minimum integer satisfying the IC
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constraint. To this end it suffices to show

𝑓(𝑥SO
𝐿 )− 𝑓(𝑥SO

𝐿 + 1) ≤ 𝑔(𝑥𝐿𝐿 − 1)− 𝑔(𝑥𝐿𝐿 − 2).

Note that

𝑓(𝑥SO
𝐿 )− 𝑓(𝑥SO

𝐿 + 1) ≤ 𝑔(𝑥𝐿𝐿 − 1)− 𝑔(𝑥𝐿𝐿 − 2)

⇐⇒ 𝛿(1− 𝑝𝑆)𝛾𝐻
𝑁 − 1

(︂
𝑆0 − 2𝑥SO

𝐿 𝜇𝐿 +
𝛿(1− 𝛾𝐿)

1− 𝛿(1− 𝛾𝐿)
(𝑆0 − 2(𝑥𝐿𝐿 − 2)𝜇𝐿)

)︂
+

𝜏𝜏

𝑁
𝛿𝛾𝐻

(︂
𝑆0 − (2𝑥SO

𝐿 + 1)𝜇𝐿 +
𝛿(1− 𝛾𝐿)

1− 𝛿(1− 𝛾𝐿)
(𝑆0 − (2(𝑥𝐿𝐿 − 2) + 1)𝜇𝐿)

)︂
≤ 𝑝𝑆𝜇𝐿.

(B.26)

Now, by 𝑥𝐿𝐿 ≥ 𝑥SO
𝐿 + 1 (Recall that if 𝑥𝐿𝐿 = 𝑥SO

𝐿 then 𝜋* is equivalent to

the social optimum and it is therefore the OICS.) and 𝑥SO
𝐿 ≥ 𝑆0

2𝜇𝐿
− 1

2
(see

Lemma 15) the following two inequalities hold

𝑆0 − (2(𝑥𝐿𝐿 − 2) + 1)𝜇𝐿 ≤ 𝑆0 − 2(𝑥𝐿𝐿 − 2)𝜇𝐿 ≤ 𝑆0 − 2𝜇𝐿(𝑥
SO
𝐿 − 1)

≤ 𝑆0 − 𝑆0 + 𝜇𝐿 + 2𝜇𝐿 = 3𝜇𝐿

𝑆0 − (2𝑥SO
𝐿 + 1)𝜇𝐿 ≤ 𝑆0 − 2𝜇𝐿𝑥

SO
𝐿 ≤ 𝜇𝐿

and by 𝛿 ≤ 1/2
𝛿(1− 𝛾𝐿)

1− 𝛿(1− 𝛾𝐿)
≤ 1.

Thus, the left hand side of (B.26) can be upper bounded by

4𝜇𝐿

(︂
𝛿(1− 𝑝𝑆)𝛾𝐻

𝑁 − 1
+

𝜏𝜏

𝑁
𝛿𝛾𝐻

)︂
.
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So it is sufficient if

4

(︂
𝛿(1− 𝑝𝑆)𝛾𝐻

𝑁 − 1
+

𝜏𝜏

𝑁
𝛿𝛾𝐻

)︂
≤ 𝑝𝑆

⇐⇒ 4𝛿𝛾𝐻

(︂
(1− 𝑝𝑆) +

𝑁 − 1

𝑁
𝜏𝜏

)︂
≤ (𝑁 − 1)𝑝𝑆

(B.24)⇐⇒ 4𝛿𝛾𝐻

(︂
(1− 𝑝𝑆) +

𝑁 − 1

𝑁
𝜏

(︂
𝑝𝑆

𝛿𝛾𝐿
1− 𝛿(1− 𝛾𝐿)

+

(1− 𝑝𝑆)𝛿

(︂
(1− 𝛾𝐻) + 𝛾𝐻

𝛿𝛾𝐿
1− 𝛿(1− 𝛾𝐿)

)︂)︂)︂
≤ (𝑁 − 1)𝑝𝑆

(B.23)⇐⇒ 4𝛿𝛾𝐻

(︂
𝛾𝐿

𝑁 − 1

𝑁
+

𝑁 − 1

𝑁
𝜏

(︂
𝛿𝛾𝐿(1− 𝛾𝐿)

1− 𝛿(1− 𝛾𝐿)

+𝛾𝐿
𝑁 − 1

𝑁
𝛿

(︂
(1− 𝛾𝐻) + 𝛾𝐻

𝛿𝛾𝐿
1− 𝛿(1− 𝛾𝐿)

)︂)︂)︂
≤ (𝑁 − 1)(1− 𝛾𝐿)

⇐⇒ 4𝛿𝛾𝐻

⎛⎜⎜⎝𝛾𝐿 + 𝜏

(︂
𝛿𝛾𝐿(1− 𝛾𝐿)

1− 𝛿(1− 𝛾𝐿)
+ 𝛾𝐿

𝑁 − 1

𝑁
𝛿

(︂
(1− 𝛾𝐻) + 𝛾𝐻

𝛿𝛾𝐿
1− 𝛿(1− 𝛾𝐿)

)︂)︂
⏟  ⏞  

𝜏

⎞⎟⎟⎠
≤ (1− 𝛾𝐿)𝑁

⇐⇒ 4𝛿𝛾𝐻 (𝛾𝐿 + 𝜏𝜏) ≤ (1− 𝛾𝐿)𝑁. (B.27)

where the second equivalence comes from plugging in 𝜏 and the third from

plugging in 𝑝𝑆 and multiplying by
(︀
1− 𝛾𝐿 + 𝛾𝐿

𝑁−1
𝑁

)︀
.

Now, we show 𝜏 ≤ 2. By (B.24)

𝜏 =
1− 𝛿(1− 𝛾𝐿)

(1− 𝛿)(1− 𝛿(1− 𝛾𝐻 − 𝛾𝐿))
=

1− 𝛿(1− 𝛾𝐿)

(1− 𝛿(1− 𝛾𝐻))(1− 𝛿(1− 𝛾𝐿))− 𝛿2𝛾𝐻𝛾𝐿
≤ 2

⇐⇒ 1− 𝛿(1− 𝛾𝐿) ≤ 2((1− 𝛿(1− 𝛾𝐻))(1− 𝛿(1− 𝛾𝐿))− 𝛿2𝛾𝐻𝛾𝐿)

⇐⇒ 1 ≤ 2

(︂
(1− 𝛿(1− 𝛾𝐻))−

𝛿2𝛾𝐻𝛾𝐿
1− 𝛿(1− 𝛾𝐿)

)︂
⇐⇒ 1 ≤ 2

(︂
1− 𝛿 + 𝛿𝛾𝐻

(︂
1− 𝛿𝛾𝐿

1− 𝛿(1− 𝛾𝐿)

)︂)︂
.

By 𝛿𝛾𝐿
1−𝛿(1−𝛾𝐿)

≤ 1 the right hand side can be lower bounded by 2(1 − 𝛿).
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Then by 𝛿 ≤ 1/2 the inequality holds. Now we bound 𝜏 by 1

𝛿𝛾𝐿(1− 𝛾𝐿)

1− 𝛿(1− 𝛾𝐿)
+ 𝛾𝐿

𝑁 − 1

𝑁
𝛿

(︂
(1− 𝛾𝐻) + 𝛾𝐻

𝛿𝛾𝐿
1− 𝛿(1− 𝛾𝐿)

)︂
=

𝛿𝛾𝐿(1− 𝛾𝐿) + 𝛿𝛾𝐿
𝑁−1
𝑁

((1− 𝛾𝐻)(1− 𝛿(1− 𝛾𝐿)) + 𝛿𝛾𝐻𝛾𝐿)

1− 𝛿(1− 𝛾𝐿)

≤ 𝛿(1− 𝛾𝐿) + 𝛿𝛾𝐿
1− 𝛿(1− 𝛾𝐿)

=
𝛿

1− 𝛿(1− 𝛾𝐿)
≤ 1.

Plugging in the bounds for 𝜏 and 𝜏 in (B.27) leads to the sufficient condition

4𝛿𝛾𝐻(𝛾𝐿 + 2) ≤ (1− 𝛾𝐿)𝑁.

Then by 𝛿 ≤ 1/2, 𝛾𝐻 ≤ 1/2, 𝛾𝐿 ≤ 1/2 it is sufficient if 𝑁 ≥ 5, which is

true by assumption.

We are now ready to prove the two main statements:

Proof of statement 2: Overall, we know that 𝜋* is incentive compatible and

achieves minimum cost among the IC schemes with 𝑐 = 𝑥SO
𝐿 . From the points above,

we know that the only other possibility is 𝑐 = 𝑥SO
𝐿 + 1 in which case 𝑑 ≥ 𝑥𝐿𝐿 − 1.

Any choice of 𝑑 ≥ 𝑥𝐿𝐿 leads to higher cost than 𝑉 * hence the only possibility left is

�̃�*. If �̃�* is IC and has cost 𝑉 * lower than 𝑉 * then that is the OICS otherwise 𝜋* is.

Whether that happens or not depends on the chosen parameters.

Proof of statement 1: We next show that for 𝛿 → 0, 𝑉 * > 𝑉 *. To this end,

recall the expression for 𝑣 in (B.8) and 𝜏 in (B.24). Then

𝑉 * := 𝜏

[︂
𝑔(1, 𝜇𝐻) + 𝛿𝛾𝐻𝑔(𝑥

SO
𝐿 , 𝜇𝐿) + 𝛿2

(1− 𝛾𝐿)

1− 𝛿(1− 𝛾𝐿)
𝛾𝐻𝑔(𝑥𝐿𝐿, 𝜇𝐿)

]︂
,

𝑉 * := 𝜏

[︂
𝑔(1, 𝜇𝐻) + 𝛿𝛾𝐻𝑔(𝑥

SO
𝐿 + 1, 𝜇𝐿) + 𝛿2

(1− 𝛾𝐿)

1− 𝛿(1− 𝛾𝐿)
𝛾𝐻𝑔(𝑥𝐿𝐿 − 1, 𝜇𝐿)

]︂
,

For 𝛿 → 0 the terms in 𝛿2 are negligible and the conclusion follows by 𝑔(𝑥SO
𝐿 , 𝜇𝐿) <

𝑔(𝑥SO
𝐿 + 1, 𝜇𝐿).

136



B.3 Monopoly

If Platform 0 does not bundle the products and sells them separately then the profit

is given by

𝜋𝑈𝐵
0 :=

1

4𝑡𝑥
𝑉 2
𝑥 +

1

4𝑡𝑦
𝑉 2
𝑦 .

If instead, the platform chooses to bundle, there is a more complicated optimization

problem

If a platform sets the price 𝑝0 then any agent (𝑥, 𝑦) such that

𝑉𝑥 + 𝑉𝑦 − 𝑡𝑥𝑥− 𝑡𝑦𝑦 − 𝑝0 ≥ 0 (B.28)

will buy the bundle. This gives us any agent on the line

𝑦(𝑥) =
1

𝑡𝑦
(𝑉𝑥 + 𝑉𝑦 − 𝑡𝑥𝑥− 𝑝0) (B.29)

is indifferent between purchasing and not purchasing. Thus, anyone below this line

will purchase and anyone above this line will not purchase. Now, there are several

cases of demand based on where the two values 𝑦(0) and 𝑦(1) fall. Specifically, the

demand could be any of the four forms shown in Figure B-1.

For ease we define �̄� and �̂� as follows:

�̄� : 𝑦(�̄�) = 0; �̄� =
𝑉𝑥 + 𝑉𝑦 − 𝑝0

𝑡𝑥
(B.30)

�̂� : 𝑦(�̂�) = 1; �̂� =
𝑉𝑥 + 𝑉𝑦 − 𝑡𝑦 − 𝑝0

𝑡𝑥
. (B.31)

In Case 1 we have the maximization problem

𝜋𝐵2
1 := max

𝑝0,𝑦(0)∈[0,1],𝑦(1)∈[0,1]
𝑝0
1

2
(𝑦(0) + 𝑦(1)) (B.32)

= max
𝑝0,𝑦(0)∈[0,1],𝑦(1)∈[0,1]

𝑝0
1

2
(2𝑉 0

𝑥 + 2𝑉 0
𝑦 − 𝑡𝑥 − 2𝑝0). (B.33)
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Figure B-1: The four possible cases of demand in the monopoly setting.

Note, the interior optimal 𝑝 is 𝑝 = 1
4
(2(𝑉 0

𝑥 + 𝑉 0
𝑦 )− 𝑡𝑥) and the constraints hold if the

parameters are such that

𝑦(0) =
1

4𝑡𝑦
(2(𝑉𝑥 + 𝑉𝑦) + 𝑡𝑥) ∈ [0, 1] (B.34)

𝑦(1) =
1

2𝑡𝑦
(𝑉𝑥 + 𝑉𝑦) ∈ [0, 1] (B.35)

The revenue is then given by

𝜋𝐵1
0 =

1

16𝑡𝑦
(2(𝑉𝑥 + 𝑉𝑦)− 𝑡𝑥)

2. (B.36)

In Case 2 we have the maximization problem

𝜋𝐵2
0 := max

𝑝0,𝑦(0)∈[0,1],𝑦(1)≤0
𝑝0
1

2
𝑦(0)�̄� (B.37)

= max
𝑝0,𝑦(0)∈[0,1],𝑦(1)≤0

𝑝0
1

2𝑡𝑥𝑡𝑦
(𝑉𝑥 + 𝑉𝑦 − 𝑝)2. (B.38)
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The optimal revenue in this case is given by

𝜋𝐵2
0 =

𝑡𝑥(𝑉𝑥 + 𝑉𝑦 − 𝑡𝑥)

2𝑡𝑦
(B.39)

In Case 3 we have the maximization problem

𝜋𝐵3
0 := max

𝑝0,𝑦(0)≥1,𝑦(1)≤0
𝑝0
1

2
(�̄�+ �̂�) (B.40)

= 𝑝0
1

2𝑡𝑥
(2𝑉𝑥 + 2𝑉𝑦 − 𝑡𝑦 − 2𝑝0). (B.41)

In Case 4 we then have the maximization problem

𝜋𝐵4
0 := max

𝑝0,𝑦(0)≥1,𝑦(1)∈[0,1]
𝑝0

(︂
1− 1

2
(1− �̂�)(1− 𝑦(1))

)︂
(B.42)

= max
𝑝0,𝑦(0)≥1,𝑦(1)∈[0,1]

𝑝0

(︂
1− 1

2𝑡𝑥𝑡𝑦
(𝑡𝑥 + 𝑡𝑦 − 𝑉𝑥 − 𝑉𝑦 + 𝑝0)

2

)︂
. (B.43)

Thus, the overall optimization problem for Platform 0 in the monopoly setting is

𝜋𝐵
0 := max{𝜋𝐵1

0 , 𝜋𝐵2
0 , 𝜋𝐵3

0 , 𝜋𝐵4
0 }. (B.44)

Proof of Proposition 7. If 𝑉𝑥

2𝑡𝑥
≤ 1 and 𝑉𝑦

2𝑡𝑦
≤ 1, which holds under Assumption 11

then the profit for unbundling is given by

𝜋𝑈𝐵
0 =

1

4𝑡𝑥
𝑉 2
𝑥 +

1

4𝑡𝑦
𝑉 2
𝑦 (B.45)

For Case 1 of bundling we get the profit for the platform is

𝜋𝐵
0 =

1

16𝑡𝑦
(2(𝑉𝑥 + 𝑉𝑦)− 𝑡𝑥)

2. (B.46)
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Note that the two constraints that must hold to be in Case 1 are that

𝑦(0) =
1

4𝑡𝑦
(𝑡𝑥 + 2(𝑉𝑥 + 𝑉𝑦)) ∈ [0, 1] (B.47)

𝑦(1) =
1

2𝑡𝑦
(𝑉𝑥 + 𝑉𝑦) ∈ [0, 1] (B.48)

which both hold if 𝑡𝑦 ≤ 𝑉𝑥+𝑉𝑦

2
.

If, instead 𝑡𝑦 >
𝑉𝑥+𝑉𝑦

2
, we can consider Case 2 and a similar argument follows.

If in Case 1, to have 𝜋𝑈𝐵
0 > 𝜋𝐵

0 it must be the case that

1

4𝑡𝑥
𝑉 2
𝑥 +

1

4𝑡𝑦
𝑉 2
𝑦 <

1

16𝑡𝑦
(2(𝑉𝑥 + 𝑉𝑦)− 𝑡𝑥)

2 (B.49)

which is equivalent to

0 < 4

(︂
1− 𝑡𝑦

𝑡𝑥

)︂
(𝑉𝑥)

2 + 8𝑉𝑥𝑉𝑦 − 4𝑡𝑥(𝑉𝑥 + 𝑉𝑦) + 𝑡2𝑥. (B.50)

The right hand side can be lower bounded using 𝑡𝑥 ∈
[︁
𝑉 0
𝑥

2
, 𝑉 0

𝑥

]︁

4

(︂
1− 𝑡𝑦

𝑡𝑥

)︂
(𝑉𝑥)

2 + 8𝑉𝑥𝑉𝑦 − 4𝑉𝑥(𝑉𝑥 + 𝑉𝑦) +
(𝑉𝑥)

2

2
(B.51)

which simplifies to

4

(︂
1− 𝑡𝑦

𝑡𝑥

)︂
(𝑉𝑥)

2 + 4𝑉𝑥(𝑉𝑦 − 𝑉𝑥) +
(𝑉𝑥)

2

2
(B.52)

There exist positive 𝛼 and 𝛽 such that this is positive.

B.4 Duopoly

Note in the unbundling case this just becomes two separate standard Hotelling prob-

lems.
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• Unbundling profit:

𝜋𝑈𝐵
0 =

1

2
𝑡𝑥 +

1

2
𝑡𝑦

𝜋𝑈𝐵
1 =

1

2
𝑡𝑥 +

1

2
𝑡𝑦

• Bundling profit:

𝜋𝐵
0 =

1

2
𝑡𝑦

𝜋𝐵
1 =

1

2
𝑡𝑦

Proof of Proposition 8. We have 𝜋𝑈𝐵
0 > 𝜋𝐵

0 always holds, as 𝑡𝑥 > 0.
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