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Abstract
Data for modern medical imaging modeling is constrained by their high physical den-
sity, complex structure, insufficient annotation, heterogeneity across sites, long-tailed
distribution of findings/conditions/diseases, and sparsely presented information. In
this dissertation, to utilize the constrained data effectively, we employ various com-
putationally driven and clinically driven techniques, including cross-modal learning,
deep reinforcement learning, transfer learning, federated learning, surrogate endpoint
modeling, and clinical knowledge infusion. The techniques are demonstrated in a vari-
ety of applications, such as risk stratification for pancreatic cancer patients, COVID-
19 severity risk assessment, cross-modal X-ray image and report retrieval, X-ray find-
ing report generation from an image, orthopantomogram finding summarization and
real-world federated learning benchmarking.

In disease risk stratification applications, we develop an end-to-end body compo-
sition assessment system that quantifies fat and muscle amounts from 3-dimensional
imaging studies with a two-step approach. The resulting body composition ratios for
various tissues are then used to stratify risks in pancreatic cancer or COVID-19 pa-
tients. In the pancreatic cancer cohort, muscle loss is shown to be a good indicator of
mortality risk; and in COVID-19 patients, visceral fat is more correlated with severity
than body mass index is, despite the latter being the current go-to indicator.

Following clinical applications related to body composition analysis, we take ad-
vantage of large-scale chest X-ray/report datasets to investigate how the association
of the textual modality and the imaging modality can assist modeling. We explore the
task of retrieval across radiographs and medical reports by learning a joint embedding
space, and find that the retrieval performance can benefit from even a small amount
of supervision. On the task of medical report generation, we attempt to describe
clinical findings in a chest X-ray as radiologists do. While past works only consider
language fluency but not clinical efficacy, we include both in our modeling process.
The resulting models turn out to be, unsurprisingly, better at describing diseases and
findings, which we identify to be a key trait for an AI system that aims to augment
clinicians in their workflows.
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We then look at finding summarization from orthopantomogram, or, panoramic
dental X-ray. The goal of the summarization is to localize teeth in the permanent
dentition and tag them with labels of the six potential findings. To combine the
modeling process with existing dental knowledge, we propose a new form of annotation
that is quick to provide – a set of 32 binary labels indicating the existence of each tooth.
This annotation is used in a novel objective function for the system to optimize and
is shown to improve finding summarization accuracy despite its simplicity compared
to the pixel-wise supervision typically used in this task.

Finally, we turn to inspect federated learning, which is a learning paradigm for
medical institutions to collaboratively learn an AI model without exposing private
patient data. As a precursor to medical imaging, we gather two large natural visual
classification datasets on real-world scales, aiming to describe the impact of data
heterogeneity on the performance of existing federated learning algorithms. Our
results show that extreme data heterogeneity can greatly impact algorithms in their
ability to classify visual patterns in federated learning setups, and the two novel
solutions we bring to the table can somewhat alleviate the performance drop. We
believe the conclusions can be extendable to medical imaging problems.

To conclude the dissertation, we provide remarks on other important aspects
that researchers in medical AI must consider before landing their applications in
clinics, as well as some exciting yet under-explored research tracks in medical imaging.
While the objective of this dissertation is to provide an extensive coverage of various
methods that more effectively model medical imaging tasks when the available data
are constrained, our explorations are not exhaustive. We hope the several research
topics showcased in this dissertation inspire further research and can fuel explorations
down the line, ultimately benefiting humanity on a civilization scale.

Thesis Supervisor: Peter Szolovits
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Modeling in Medical Imaging

Medical imaging constitutes a significant amount of the overall collected medical

data in healthcare, and the majority of them are underutilized for research purposes

as of 2019 (Landi, 2016; Healthcare, 2019). These medical images are manifestations

of physical properties such as electromagnetic waves, magnetic resonance, nuclear

radioactivity, visible light, and sound waves in the form of images, typically two-

dimensional, three-dimensional, or spacial-temporal. Some commonly used imaging

modalities in the clinics are X-ray radiography, computational tomography (CT),

magnetic resonance imaging (MRI), positron emission tomography (PET), diffusion

tensor imaging (DTI), and ultrasound imaging. These various imaging techniques

have been providing unique evidence in clinical intervention in the form of disease

finding discovery, treatment response confirmation, and surgical planning prior to or

during invasive procedures.

The process of medical image interpretation often starts with clinicians ordering

an imaging acquisition for the aforementioned clinical reasons. Radiologists, who

specialize in medical image reading, then describe findings and then interpret them

in the form of a radiology report. This report addresses the questions posted in the

original imaging requisition. A final diagnosis is then given by the clinician based

on the report and other observations and data from the electronic health record
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(EHR) including clinical exam, history, and diagnostic test results. Treatment plans

are designed in response to the diagnosis results and may change any time as the

diagnosis changes.

This operating procedure, however, is often done under pressing time constraints.

As a result, the interpretations are limited by inter-observer discrepancy and fatigue-

induced error (Brady, 2017; Goddard et al., 2001; Siewert et al., 2008; Briggs et al.,

2008; Quekel et al., 1999), with the majority of them being missed diagnosis (42%) (Kim

and Mansfield, 2014). Other major categorization of radiological reading errors in-

clude failure to identify abnormality beyond the first one (22%) and faulty reasoning

(9%). These factors, together with slow turnaround and inability to numerically

quantify disease severity, hinder the scalable development of traditional radiology.

We welcomed a series of surprising breakthroughs in artificial intelligence (AI)

technology starting in the year 2012 with the ImageNet Large Scale Visual Recog-

nition Challenge 2012 (ILSVRC 2012) (Deng et al., 2009; Russakovsky et al., 2015;

Krizhevsky et al., 2012). Since then, deep learning-based modeling has taken over the

field of machine learning, and in turn, inspired rapid development of computational

radiology (Börgers and Natterer, 1999). Now with the availability of AI modeling,

we unlock the potential to perform large-scale automatic analysis of medical images

with AI. The computational aspect of AI makes it inherently objective, consistent,

fatigue-free, and available 24/7, which are the most desired improvements of tradi-

tional radiology.

Over the course of a decade, researchers have found multiple medical imaging

applications suitable for AI modeling (Hosny et al., 2018; Suganyadevi et al., 2022;

Zhou et al., 2021; Sonka et al., 2000; Prince and Links, 2006; Bankman, 2008; Zhou

et al., 2019), including the ones described in the following sections.

1.1.1 Computer Aided Detection (CADe) and Diagnosis (CADx)

CADe (Chan et al., 2020) focuses on the localization characteristics of objects of inter-

est, while CADx classifies the localized objects into discrete types. Commonly seen

CADe and CADx applications include lesion localization (Yan et al., 2018; Drukker
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et al., 2002; Ardila et al., 2019), cancer diagnosis (Han et al., 2017; Becker et al.,

2018; Cheng et al., 2016; Wang et al., 2017a), tumor classification (Ge et al., 2020),

and medical implant localization (Hsu and Wang, 2021; Lee et al., 2021a).

1.1.2 Quantification and Staging

In imaging-guided quantification and staging, researchers are looking for a more gran-

ular and continuous judgment of findings and diseases compared to simple classifica-

tions. Examples include biometric measurement derivation (Guo et al., 2019; Javaid

et al., 2018; Moradi et al., 2019; Winkel et al., 2020; Li and Xia, 2020), risk assess-

ment (Goehler et al., 2021; Hsu et al., 2021), and longitudinal monitoring (Hsu, 2020;

Goehler et al., 2020)

1.1.3 Decision Support and Treatment Planning

Medical imaging is a critical component of radiation therapy planning (Javaid et al.,

2019; Nguyen et al., 2019; Fan et al., 2019; Zhang et al., 2021a; Shen et al., 2019, 2020;

Barkousaraie et al., 2019), pre-surgical visualization of anatomy (Tan et al., 2012; Fan

et al., 2013), and chronic disease treatment planning (Watts et al., 2020; Nougaret

et al., 2013).

In other cases, modeling of medical images can also support decision-making by

enhancing the quality of images (Han, 2017; Kazemifar et al., 2019; Shen et al., 2018),

or by providing alternative materials such as machine-interpreted radiology reports

for clinicians (Liu et al., 2019; Boag et al., 2020; McDermott et al., 2020).

1.2 Challenges in Constrained Medical Imaging

Despite the powerful and promising technological advances brought by AI, specifically

deep learning methods, the field of modern medical imaging is faced with some inher-

ent challenges regarding the nature of medical imaging data, namely that (a) medical

imaging data are dense in pixel (or voxel) counts, coming in all types of modalities,
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and (b) the processing of the data is typically a series of expert-crafted pipelines that

is complex and non-standardized.

For example, CT, which was hailed as one of the greatest inventions in radiol-

ogy (Kalender, 2005), welcomed the first scanner to acquire more than 64 slices per

rotation in the year of 2005 (Goldman, 2008), while scanners today typically acquire

around 1,000 slices per imaging study. Not only did the quantity of raw medical

imaging data increase dramatically with time, but the velocity had to at least keep

up to retain a similar image acquisition time, if not shorter, for patient comfort and

clinical workflow consistency. It is not hard to imagine that with the rising volume

of medical imaging data, the downstream imaging analyses and statistical modeling

tasks have become increasingly demanding in terms of resources and would require

extensive domain knowledge to establish processing pipelines.

AI has been widely recognized for being data-hungry, and having an abundant

data repository is without a doubt a prerequisite for AI modeling. Yet, different from

natural images where annotators of data can be general mechanical turks (Paolacci

et al., 2010), annotation of medical images is extremely costly (e.g., expensive finan-

cially, time-consuming, and hard to find experts). To make matters worse, annotation

of a single study can require the collaboration of clinicians of different expertise (e.g.,

a radiologist summarizing the imaging study while the referring physician concludes

the diagnosis), making the associated labels sparse across the data repository (Marlin

et al., 2011; Mohan et al., 2013).

As medical imaging modeling scales with AI development, we now enter an era

where inter-institution collaboration on modeling is possible. There are several major

challenges to overcome, particularly that (a) acquisition protocols and instruments

vary from site to site (Soin et al., 2022), and that (b) the underlying disease and demo-

graphic distributions can be substantially different (Abbasi-Sureshjani et al., 2020).

Owing to these reasons, medical image datasets are isolated, creating a systematic

roadblock for scalable medical imaging modeling.

Last but not least, even if we are in the era of computational radiography, due

to the nature of medical data, we are still faced with similar issues to those used to
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apppear in traditional radiography. To be specific, (a) the underlying disease exhibits

a long-tailed distribution (Roy et al., 2022), and (b) the raw imaging data is inherently

information-sparse (e.g., a lung nodule is typically not more than 0.01% of a chest

CT in volume).

To summarize, data for modern medical imaging modeling is constrained by the

aforementioned factors:

1. Medical images are dense in physical dimensions.

2. Processing of medical imaging data requires precise expertise and is complex.

3. Labels for medical images are sparse across studies.

4. Cross-site datasets are non-standardized and heterogeneous.

5. Disease ground truths are long-tailed.

6. Information is sparse in the imaging data.

Each of these factors is a complicated research problem on its own, and following

the identification of problems, we highlight some of the promising methodological

advances in the field of medical imaging, and how I propose to approach the solutions

systemically in the dissertation.

1.2.1 Contributions & Organization

This dissertation focuses on medical imaging problems. Specifically, I will take on

several topics at the forefront of the field. Automatic disease quantification with

derived biometric measurements from 3D imaging brings benefits into the domain

due to its consistency, resilience to fatigue, and potential to be deployed as ambient

intelligence (Ramos et al., 2008). Descriptive textual summary modeling from ra-

diographic images is as well a heated and challenging topic as this aids clinicians in

their daily routine, reducing the time needed to process their routine work in a more

human-centric manner. Finally, dental imaging is a lesser-known area of research that
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has emerged recently; I have assembled a dataset for segmentation and detection pur-

poses, and ultimately derive useful information for dentists in their clinical workflow

and patient education.

The proposed contribution is not solely constrained to the medical imaging com-

munity. From a methodological perspective, I will touch on several topics. Transfer

learning, frequently presented as domain adaptation, has always been an obstacle

for researchers to overcome as data distribution differences are everywhere. Prior to

medical data, I have exposure to other aspects of domain adaptation including imbal-

anced class-distribution (Hsu et al., 2015) and heterogeneous data (Chen et al., 2016,

2019c), which are long-standing research topics in need of better solutions. Unsuper-

vised learning, reinforcement learning, and cross-modal learning will also be explored

in the thesis. Finally, federated learning, being an emergent technique extremely

suitable for collaboration of medical data modeling under current regulation restric-

tions, will receive a close-up examination from a large-scale real-world perspective to

ultimately benefit the overall computer vision domain including natural and medical

imaging.

Below is a breakdown of my contributions in developing modeling methodologies

to tackle the problem of constrained data in medical imaging systematically, and how

they are organized in different chapters in the dissertation:

Chapter 3 Body composition assessment has been shown to be capture cardio-

metabolic risks better than anthropometric measurements such as body mass index,

and yet manual body composition measurement is resource-intensive and AI-based

measurements require sufficient learning data. We demonstrate how an efficient and

performant automatic system can be built, and how the resulting body composition

evaluation can be used to assess mortality in pancreatic cancer (Hsu et al., 2021).

Chapter 4 In early phases of COVID-19 outbreak, researcher have started to look

for quantifiers for COVID-19 severity. While body mass index was initially shown

to be a decent indicator, we demonstrate that via automatic evalution of body com-
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position, the visceral fat quantity is able to correlate with COVID-19 severity bet-

ter (Goehler et al., 2021).

Chapter 5 Representation learning across medical images and texts has a great

impact on downstream tasks. One specific technique of representation learning is

embedding learning which projects data into a common embedding space, and such

an embedding space benefits the medical machine learning community by enabling

cross-domain retrieval, conditional generation of medical reports, and other appli-

cations that utilizes joint embeddings. We investigate how we can map the visual

modality and textual modality into the same embedding space with a selection of

algorithms, with and without pairing information provided as supervision. We find

it surprising to retain decent performance on the task of cross-modal retrieval even

with no supervision at all. (Hsu et al., 2018)

Chapter 6 Automatic generation of radiology reports aims at describing a radio-

graph similarly to radiologists, and has the potential to accelerate clinical routine

and improve patient care. A number of past works have tackled the problem, and

yet only with language fluency in mind rather than also considering clinical efficacy.

We explore how, by including clinical metrics into the generation of medical reports

with reinforcement learning, we can produce a system capable of summarizing chest

X-rays not only performant when evaluating with natural language perspectives but

also clinical perspectives. (Liu et al., 2019)

Chapter 7 Orthopantomogram is an essential first-line tool in dentistry due to its

ease of acquisition. Dentists can acquire abundant information from these images, and

thus they are perfect for automatic systems to provide assistance to reduce missed

diagnoses and improve patient communication. Data collection for learning a system,

however, is typically hard due to lengthy annotation time for dense pixel-wise maps.

We explore an alternate annotation where only binary labels are required to improve

learning, and show the efficacy of such an annotation type. (Hsu and Wang, 2021)
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Chapter 8 To enrich data quantity for machine learning while retaining privacy,

researchers have developed federated learning where only learning signals are prop-

agated rather than raw data. This is a perfect learning paradigm for medical data

owing to legal boundaries around medical institutions, and yet how well federated

learning algorithms perform under heterogeneous data distribution is not extensively

studied. We resort to large-scale natural imaging data in this chapter, and benchmark

existing federated learning algorithms under various heterogeneity settings. Finally

we propose some improvements to existing algorithms which we show to boost learn-

ing performance. These improvements have the potential to also improve learning on

medical images in the federated learning scenario. (Hsu et al., 2019, 2020)

1.2.2 Publications

Below is a list of publications relevant to this dissertation:

1. Hsu, T.-M. H., Schawkat, K., Berkowitz, S. J., Wei, J. L., Makoyeva, A.,

Legare, K., DeCicco, C., Paez, S. N., Wu, J. S., Szolovits, P., et al. (2021).

Artificial intelligence to assess body composition on routine abdominal ct scans

and predict mortality in pancreatic cancera recipe for your local application.

European Journal of Radiology, 142:109834.

2. Goehler, A., Hsu, T.-M. H., Seiglie, J. A., Siedner, M. J., Lo, J., Triant, V.,

Hsu, J., Foulkes, A., Bassett, I., Khorasani, R., et al. (2021). Visceral adiposity

and severe COVID-19 disease: application of an artificial intelligence algorithm

to improve clinical risk prediction. In Open forum infectious diseases, volume

8, page ofab275. Oxford University Press US.

3. Hsu, T.-M. H., Weng, W.-H., Boag, W., McDermott, M., and Szolovits, P.

(2018). Unsupervised multimodal representation learning across medical images

and reports. arXiv preprint arXiv:1811.08615.

4. Liu, G.1, Hsu, T.-M. H.1, McDermott, M., Boag, W., Weng, W.-H., Szolovits,
1 equal contribution.
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P., and Ghassemi, M. (2019). Clinically accurate chest X-ray report generation.

In Machine Learning for Healthcare Conference, pages 249–269. PMLR.

5. Hsu, T.-M. H. and Wang, Y.-C. C. (2021). DeepOPG: Improving orthopantomo-

gram finding summarization with weak supervision. In International Confer-

ence on Medical Image Computing and Computer-Assisted Intervention, pages

366–376. Springer.

6. Hsu, T.-M. H., Qi, H., and Brown, M. (2019). Measuring the effects of non-

identical data distribution for federated visual classification. arXiv preprint

arXiv:1909.06335.

7. Hsu, T.-M. H., Qi, H., and Brown, M. (2020). Federated visual classification

with real-world data distribution. In European Conference on Computer Vision,

pages 76–92. Springer.

8. Hsu, T.-M. H. (2020). Automatic longitudinal assessment of tumor responses.

Masters dissertation, Massachusetts Institute of Technology.
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of my Ph.D. program in reverse chronological order:
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machine learning. Diagnostics, 12(8):1968.
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F. (2022). Methods and apparatus for radio frequency sensing in diverse envi-

ronments. US Patent 11,308,291.
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versarial contrastive pre-training for protein sequences. arXiv preprint arXiv:2102.00466.
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Chapter 2

Related Works

Researchers in the field of medical imaging, over the years, have developed several

lines of unique techniques designed to tackle the constrained data problem.

From a clinical perspective, to facilitate the AI learning scenario with constrained

data, researchers have explored (a) surrogate modeling endpoints and (b) clinical

knowledge-infused modeling.

From a computational perspective, due to parallel advances in the field of natural

image modeling, medical imaging received tremendous benefits from (a) neural net-

work architectural improvements, (b) annotation-efficient approaches, (c) federated

learning, and (d) interpretability and uncertainty quantification methods.

Below are examples of the most relevant techniques introduced above to my pro-

posed endeavor in the dissertation.

2.1 Clinical Motivations

2.1.1 Surrogate Modeling Endpoints for Data Re-utilization

In recent years, the deep learning community has put enormous emphasis on end-

to-end learning (Bojarski et al., 2016; Dieleman and Schrauwen, 2014), highlighting

its ability to incorporate data pre-processing, feature extraction, prediction modeling,

and output post-processing in a single black-box neural network for the maximum
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possible optimization of prediction efficacy.

While there are similar pushes in the medical domain (Pati et al., 2021; Wu et al.,

2018; Oh et al., 2021), we often lose out on various characteristics that clinicians would

like to observe about AI models: interpretability and uncertainty quantifiability. On

top of this undesired loss of traits, the collection of these specific annotations for

end-to-end modeling is typically prohibitively difficult.

Researchers have then identified intermediate biometric measurements as a conse-

quence of (a) not necessarily having direct patient outcome data, (b) having to wait

for months, if not years, for the related outcome to be observed, or (c) the outcome

being dependent on numerous factors that the imaging input cannot explain well

from a medical knowledge perspective. The machine learning modeling process can

associate the incoming imaging data and the biometric intermediates, while existing

literature would then provide statistical linkage between the intermediates and the

desired clinical outcomes. One of the most used surrogate intermediate endpoints is

quantification values, with segmentation modeling being an easy path towards quan-

tification. These segmentation models lead to many volumetric measurements that

are inherently hard to directly predict from images (i.e., model directly outputting a

numeric value based on an input image), and predictive modeling for segmentation

outputs have, in the recent years, grown enormously in terms of performance.

As an example, the biometric measurement body composition measures the amount

of muscle and fat tissue areas at the axial image slice at the L3 vertebra. Bridge

et al. (2018), Hashimoto et al. (2019), Weston et al. (2019), Burns et al. (2020),

and Park et al. (2020) were the first works to develop deep learning systems upon

individually locally annotated muscle/fat segmentation mask datasets to derive body

composition measurements. Graffy et al. (2019) investigated muscle mass loss and

density attenuation with the aforementioned mask annotations, albeit at a different

clinical site. Pickhardt et al. (2021) further used the abdominal fat area from the L3

vertebra axial slice as the surrogate endpoint for metabolic syndrome and was above

80% in both sensitivity and specificity.

In the exploration for liver diseases, Ahn et al. (2020) annotated organ masks
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in CT studies to automatically predict liver and spleen volumes, and liver-to-spleen

ratio (Huang et al., 2014) for evaluation against liver disease occurrences. Haas et al.

(2020) quantified liver fat (proton density fat fraction) before stratifying them into

fatty/non-fatty liver patient cohorts for downstream genomics analyses.

2.1.2 Clinical Knowledge-Infused Modeling for Data Efficiency

Adapting modeling methods from natural imaging to medical imaging has been a

mainstream pathway to improving modeling efficacy.

Wu et al. (2013) and Cheng et al. (2018) were the first to adopt neural networks for

medical image registration on MRI/CT studies. Yang et al. (2015) detected landmarks

in MRI studies with deep learning, and this primitive imaging task evolved into what is

known today as object detection in medical images (De Vos et al., 2016). Brosch et al.

(2013), Suk and Shen (2013), and Plis et al. (2014) investigated the first deep learning

applications of classification on MRI for Alzheimer’s disease. Ciresan et al. (2012)

brought segmentation to microscopy imagery and Stollenga et al. (2015) brought

segmentation to 3D medical imaging.

These early works emphasized the similarity between medical and natural image

modeling but had yet to apply clinical knowledge to the modeling process. Clinical

knowledge originates from many sources, such as the physics of imaging acquisition,

anatomy science, and the statistics of the population. Infusing this knowledge into

the modeling process would allow the model to better utilize available data, mak-

ing the data efficiency much higher. Taking chest X-ray disease classification as a

demonstration, Li et al. (2019c), Li et al. (2020a), and Gozes and Greenspan (2018)

modeled bone structure in chest X-rays and suppressed it before forwarding the im-

ages into lung disease classification models. Classification accuracy was shown to

improve consistently with the same amount of data.

A more relevant task to this dissertation is radiology report generation, where mod-

els transform X-ray radiographs into summarizing textual reports describing findings

in the images, similar to how a radiologist writes medical reports. The natural imaging

counterpart is image captioning emerging from the Microsoft COCO challenge (Lin
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et al., 2014a). Models compete for the most readable, accurate, and linguistically cor-

rect captions for a natural image, and several most successful works include Show and

Tell (Vinyals et al., 2015), Show, Attend, and Tell (Xu et al., 2015), and Self-Critical

Sequence Training (Rennie et al., 2017). These works have progressively added recur-

rent neural network (RNN), attention mechanism, and reinforcement learning (RL)

on top of the underlying convolutional neural network (CNN) feature extractor. Med-

ical imaging researchers then transplanted the aforementioned techniques for medical

report generation (Zhang et al., 2018a; Wang et al., 2018; Li et al., 2018), which

showed initial seeming success: they produced fluent medical reports that appear to

be written by medical professionals but failed to accurately describe correct disease

findings (Boag et al., 2020).

To make these modeling methods useful in the medical domain, it is crucial for

these modeling efforts to not only focus on the widely studied language fluency but

also clinical efficacy. In this work, I aim to explore and advocate strategies to model

radiology report generation that integrates medical prior knowledge into the model in

order to (a) make the best use of the limited data, and to (b) enable clinical relevance

for this line of research.

2.2 Computational Motivations

2.2.1 Annotation Reduction Approaches for Data Hunger

Relief

To tackle the challenge with sparse labels and heterogeneous data in medical imaging,

there is a wide array of methods developed to actively take advantage of representa-

tions learned across different data domains and clinical tasks. Several widely studied

methods are (a) semi-supervised and unsupervised learning, (b) reinforcement learn-

ing, (c) cross-modal learning, and (d) transfer learning.

Semi-supervised learning operates by exploring both the relationships between the

input image and the output annotations and the relationships among the input data
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itself. The earliest instances in medical imaging are semi-supervised segmentation

of cardiac MRI (Bai et al., 2017), retinal fundus images (Sedai et al., 2017), and

biomedical imaging data (Gu et al., 2017). Unsupervised learning removes the reliance

on any explicit annotation for modeling and hence is applicable to specific tasks such

as medical image registration (Qin et al., 2019) and contrastive model pre-training (Hu

et al., 2020).

Reinforcement learning (RL) focuses on indirectly learning models with typically

non-differentiable objectives and sparser annotations. As an example, in a larger

context of AI modeling, to teach a modeling agent to play Atari video games (Mnih

et al., 2013), oftentimes the only supervision signal available is the total in-game

score, which is typically a sum of several minor objectives weighted differently. As

much as we desire to optimize the scores, in a non-differentiable environment we are

unable to simply obtain a gradient of the reward with respect to the input as a way

to indicate how we should finetune the model parameters. RL approaches this issue

by allowing the agent to perform sampled or carefully chosen actions, each leading

to distinct rewards, and by learning what actions lead to more optimal rewards, the

modeling agent progressively becomes better even if supervision is sparse.

This reinforcement learning paradigm is effective in associating a large quantity of

data with a smaller amount of annotations via systematically noisy modeling, which

benefits segmentation greatly as conventionally segmentation annotations are labor-

intensive. Yang et al. (2019) and Qin et al. (2020) used RL to optimize the aug-

mentation pipeline and the segmentation models simultaneously. Liao et al. (2020)

interestingly involved human experts in the loop to indicate whether segmentation is

satisfactory in 3D MRI images.

Cross-modal learning introduces extra data modalities to the task at hand to

improve model generalization by exploiting the distribution similarity between the

domains. Medical textual reports have been commonly used to assist medical image

analysis owing to their frequent co-occurrence with images. Weng et al. (2019) com-

bined slide-level pathology images and case-level pathology reports by concatenating

their features for multi-objective classification. Li et al. (2018) also merged both
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chest X-ray image embedding and finding report textual embedding to jointly classify

into thoracic disease types. Chauhan et al. (2020) leverages free-text reports in chest

radiograph studies to predict pulmonary edema severity score more accurately than

using the radiographs alone.

Transfer learning puts an emphasis on applying the knowledge learned from a

source data domain to a target data domain, the distribution of which can be different

from the source domain. One can learn a model from a publicly available large

dataset and apply necessary fine-tuning to achieve satisfactory results on a local

dataset (Raghu et al., 2019b). Med3D (Chen et al., 2019b) combined multiple datasets

from organ to lesion segmentation to derive a generic pre-trained model suitable for all

medical segmentation tasks. Liu et al. (2018) learned 2D feature encoding networks

before transferring them to anisotropic 3D features.

The machine learning methods mentioned in this section have greatly reduced the

annotations needed in terms of their quantity or types by intelligently utilizing the

raw imaging data, conveniently coexisting data of other modalities, and expensive

annotations.

2.2.2 Federated Learning for Data Collaboration

Federated learning (FL) is not a new concept: the idea of establishing a multi-client

system with locally available data but learning with a collaborative algorithm has

been proposed as early as the 1990’s (Soueina et al., 1998). The essential idea of FL

is that multiple participating agents, or clients, can contribute to a central model

without revealing their local data for data privacy arguments, as opposed to the

conventional centralized learning, where all data is collected to a central data-center

for learning. This learning paradigm is especially suitable for the collaboration of

multi-center medical imaging modeling, as medical data access is subject to research

ethics approval and various data use agreements that unavoidably impose frictions

for medical machine learning.

Prior to deep learning, there are research works that built ad-hoc FL strategies

for multivariate models (Meeker et al., 2015), Cox regression (Lu et al., 2015), and
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logistic regression (Li et al., 2016b) in medical machine learning. In the year 2017,

McMahan et al. (2017) reintroduced FL under a deep learning context by synthesizing

benchmarking datasets and proposing an algorithm for efficient model learning. The

natural imaging community quickly picked up this learning paradigm to tackle FL

for non-independent and identically distributed (non-IID) data where the clients hold

very dissimilar local data and bring challenging learning scenarios for existing FL

algorithms (Zhao et al., 2018; Sattler et al., 2019).

There are early adopters of FL in medical imaging as well. Sheller et al. (2018)

was the first to extend FL into medical image segmentation and reported comparable

performance for the resulting model against centralized learning. Li et al. (2019b)

explored privacy-preserving variants of FL algorithms with the same brain tumor

segmentation dataset.

While natural imaging researchers made thrusts in synthesizing new challenging

learning scenarios including imbalanced class distribution (Wang et al., 2021a; Yang

et al., 2021) and uneven client sizes (Chou et al., 2021), medical imaging researchers

are expanding the horizon of FL-enabled medical tasks including brain tumor seg-

mentation (Sheller et al., 2020), COVID classification (Feki et al., 2021; Zhang et al.,

2021b; Dou et al., 2021; Abdul Salam et al., 2021), and cancer diagnosis (Lee et al.,

2021b).

Despite all these efforts and advances, there is a critical missing research area for

FL in medical imaging – in all the research works presented above, the researchers

are not blind to the global data distribution. They retain the capability to train,

verify, and compare the models in a centralized setting to the ones obtained with FL.

Obviously, this approach is sensible in a research sandbox environment to fully assess

the underlying data and algorithms, and yet in a real-world medical FL application,

we do not have the ability to peek at the centralized model, let alone determine

whether we have a satisfactory FL model at the end of learning compared to the

inaccessible centralized learning performance. It is essential to offer insights for real-

world applications to suggest, prospectively, how much data should be collected for

each of the participating parties, and how different they are allowed to be, to learn a
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reasonably effective model in a federated manner.
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Chapter 3

Transfer Learning for Cancer

Mortality Assessment on

Restricted Institutional Data

The body mass index (BMI) has been frequently used to define disease-related

conditions such as obesity (WHO, 2000). While BMI is easy to obtain in the clinics

for obesity characterization and tracking at a population level, it is often evidenced

to capture lower association with cardiometabolic risk than muscle mass (Neeland

et al., 2018). Visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and

lean muscle, on the other hand, are considered to have a direct linkage to cardio-

vascular disease, oncologic diseases (Neeland et al., 2019), and sarcopenia-induced

mortality (Sayer et al., 2008).

These body composition measurements are prohibitively complex in nature to ob-

tain from three-dimensional computed tomography (CT) images for clinicians, as all

imaging slices require full pixel-wise annotations. While there are prior studies to es-

timate body composition measurements with convolutional neural networks (CNNs)

This chapter is adapted from the published article “Artificial Intelligence to Assess Body Com-
position on Routine Abdominal CT Scans and Predict Mortality in Pancreatic Cancer – A Recipe
for Your Local Application” (Hsu et al., 2021) to which I have contributed as the first author.
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producing intermediate segmentation outputs, and approximating composition mea-

surements with single-slice results (Bridge et al., 2018; Burns et al., 2020; Hashimoto

et al., 2019; Weston et al., 2019; Park et al., 2020), the studies were still using CT

datasets with scan counts on the order of hundreds. In a more realistic research setup

in smaller local medical imaging registries where there are only tens of CT scans and

annotations available, having a publicly available dataset to bootstrap the training

process first, then performing transfer learning to local data would be an appealing

approach.

We use the liver tumor segmentation (LiTS) challenge dataset and a local pan-

creatic cancer registry dataset to verify the efficacy of models that predicted body

composition from CT studies, trained and tested under various scenarios. We com-

pare the Dice score of the segmentation and utilize the predicted fat/muscle mea-

surements to characterize mortality rates using the Kaplan-Meier curve stratified by

presence/absence of sarcopenia and high/low VAT measurements.

3.1 Overview

Body composition is associated with mortality; however its routine assessment is too

time-consuming. To demonstrate the value of artificial intelligence (AI) to extract

body composition measures from routine studies, we aim to develop a fully automated

AI approach to measure fat and muscles masses, to validate its clinical discriminatory

value, and to provide the code, training data and workflow solutions to facilitate its

integration into local practice.

We develop a neural network that quantify the tissue components at the L3 ver-

tebral body level using data from the LiTS Challenge and a pancreatic cancer cohort.

We classify sarcopenia using accepted skeletal muscle index cut-offs and visceral fat

based its median value. We use Kaplan Meier curves and Cox regression analysis to

assess the association between these measures and mortality.

Applying the algorithm trained on LiTS data to the local cohort yields good

agreement (>0.8 intraclass correlation, ICC); when trained on both datasets, it has
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excellent agreement (>0.9 ICC). The pancreatic cancer cohort has 136 patients (mean

age: 67± 11 years; 54% women); 15% have sarcopenia; mean visceral fat is 142 cm2.

Concurrent with prior research, we find a significant association between sarcopenia

and mortality (mean survival of 15± 12 vs. 22± 12 (p < 0.05), adjusted HR of 1.58

(95% CI: 1.03 − 3.33)) but no association between visceral fat and mortality. The

detector analysis takes 1± 0.5 s.

AI body composition analysis can provide meaningful imaging biomarkers from

routine exams demonstrating AI’s ability to further enhance the clinical value of

radiology reports.

3.2 Background

A rapidly growing literature on body composition has shown that anthropometric

measurements, such as body mass index (BMI), are insufficient biomarkers to capture

both cardiometabolic risk and muscle mass (Neeland et al., 2018). The measurement

of body composition by imaging modalities such as computed tomography allows for

a more precise quantitative assessment of these measures and provides insight into

important clinical implications of visceral adipose tissue (VAT) and lean muscle mass.

VAT, which is associated with proinflammatory activity, is considered an important

risk factor for diabetes, cardiovascular disease, and several oncologic diseases (Neeland

et al., 2019), whereas loss of lean muscle mass, as seen in sarcopenia, is associated

with higher morbidity, disability, and mortality (Sayer et al., 2008) and is increasingly

recognized as an important marker of poor prognosis in several neoplasms (Faron et al.,

2020; Kamarajah et al., 2019; Lee and Giovannucci, 2018; Ojima et al., 2019).

Good approximation of these measures from a single axial slice CT or MRI slice

at the level of the L3 vertebral body has been extensively validated (Schweitzer et al.,

2015, 2016). While these imaging biomarkers can be readily obtained from any abdom-

inal CT scans, it is too time-consuming to assess quantitatively in routine practice.

With the rapid development of convolutional neural networks (CNN) for image

segmentation, several studies have presented mostly semiautomatic approaches to de-
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riving body composition measures (Bridge et al., 2018; Burns et al., 2020; Hashimoto

et al., 2019; Weston et al., 2019; Park et al., 2020). However, for such a workflow to

be fully automated, the algorithm must first identify a slice at the cranial aspect of

the L3 and then segment the different tissue compartments at this level. Only one

prior study (Bridge et al., 2018) included automation of both stages while others have

manually selected the appropriate slice (Burns et al., 2020; Hashimoto et al., 2019;

Weston et al., 2019; Park et al., 2020).

Given this, the first objective of this study is to develop a fully automated approach

to body composition assessment for immediate use in the radiology community. Our

second objective is to test the generalizability and clinical discriminatory value of our

algorithm in a second independent dataset of patients with pancreatic cancer and

specifically to assess how sarcopenia and visceral fat, both as quantified by the detec-

tor, predict mortality in this cohort. Finally, our third objective is to describe how

we are able to integrate such a detector into our routine clinical workflow. By making

development data and code available, other data scientists will have the opportunity

to expand upon our work.

3.3 Materials and Methods

3.3.1 Data

We use two datasets to train and test the system.

Liver Tumor Segmentation Challenge (LiTS) Dataset

These are publicly available CT exams of the abdomen/pelvis or torso with contrast

of 201 patients with colorectal cancer from multiple institutions (Bilic et al., 2019).

No aggregated patient characteristics are available. Data resolution ranged from 0.6

to 1.0 mm in-plane and 0.5 to 6.0 mm in the z-direction.
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Local Pancreatic Cancer Registry Dataset

In this IRB-approved, HIPAA-compliant registry, we collect information on all pa-

tients with a newly diagnosed pancreatic cancer who presented to the multidisci-

plinary pancreatic clinic since 2014. Survival data are updated in quarterly intervals.

The registry captures baseline demographics, including gender and age at diagnosis

as well as the initial tumor stage. A sub cohort of this registry that was enrolled

between January 2016 and December 2017, for a total of 136 patients, is used for

this analysis. We use the initial staging CT abdomen/pelvis of the treatment naïve

patients. Data resolution ranges from 0.6 to 1.0 mm in-plane and 2.0 to 5.0 mm in

the z-direction.

3.3.2 Body Composition Measurement

For annotation, we randomly choose 40 CT volumes from the LiTS dataset and 40

from the local pancreatic registry. In both datasets, two board-certified radiologists

(AM and KL) manually identify the target slice (uppermost level of the L3 vertebral

body) and segment the tissue compartments (muscle, subcutaneous fat and visceral

fat) at that level using ITK-snap (Yushkevich et al., 2006). Subsequently, they review

each other’s work and resolve discrepancies by consensus.

3.3.3 Algorithm

Figure 3-1 depicts the overall workflow of the algorithm that consists of two stages.

During stage one, the axial slice that contains (or is closest to) the cranial endplate

of the L3 vertebral body is identified and extracted from the full CT volume. During

stage two, the different body composition types (muscle, subcutaneous fat and visceral

fat) are automatically annotated and quantified. Prior to training, the images are

windowed to values between −150 and 250 HU, prior to on-the-fly augmentation

during which random brightness, random contrast adjustments (up to ±30%) and

random rotations (up to ±20◦) are added. During test time, only windowing is

applied.

51



Figure 3-1: Overview of 2-stage, end-to-end algorithm.

Stage One: Localization of the L3 Level

Beginning with the entire CT volume, the algorithm first identifies the cranial end-

plate of the L3 vertebral body, formulated as a binary classification problem. Each

axial slice in the volume is treated as an individual instance and labeled positive if

cranial to the L3 slice and negative otherwise.

We develop a ResNet-18 model (He et al., 2016) to classify each slice. Passing the

CT volume serially into the model allows us to obtain the probability of each slice’s

location being cranial to the L3 slice. This curve closely approximates a sigmoid

function p (z) = σ ((z − z0) /t), where σ is the sigmoid function, z0 is the z-coordinate

of the L3 slice, t is a fitted parameter, and z is the z-coordinate of the slice of interest.

We adopt the Hough algorithm (Ballard, 1981) to transform the probabilities into

likelihood values in the parameter space (z0, t) in which a more likely set of parameters

possessed a higher weight.

Due to potential noise in the probability array, we choose the most likely k pa-

rameter sets from the Hough algorithm, proposing k corresponding axial slices per
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Figure 3-2: Overview of experimental set-up.

volume for the next stage of the pipeline.

Stage Two: Segmentation of Individual Body Composition Components

We develop a 2D CNN based on the U-Net (Ronneberger et al., 2015b) architecture to

segment the axial slice into the different compartments. The network consists of five

down-sampling steps using ResNet-18 He et al. (2016) and five upsampling steps. It

is optimized on cross-entropy, weighted inversely proportional to the class prevalence

across the training set.

3.3.4 Analysis

Model Performance and Generalizability

Experiment Setup The experimental set-up consists of 3 steps that are illustrated

in Figure 3-2. We first use the publicly available LiTS dataset to train our model
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(“Experiment 1”). This will allow us make not only the model publicly available but

also the training data. We randomly annotate 40 LiTS studies and randomly split

them into 28 data to train and validate the model and 12 data to test the model. For

Experiment 2, we annotate 40 datasets from the pancreatic registry and randomly

split them in the same manner as the LiTS data. Subsequently, during the first

part of experiment (“Experiment 2a”), we use the model developed on LiTS data

(Experiment 1 ) and test it on the 12 test data from the pancreatic cohort. This will

allow the reader to see how well the model generalizes to different datasets. During the

second part of the experiment (“Experiment 2b”), we combine the training/validation

datasets (for a total of 56) to train a new model (same architecture, just new weights)

and then test it on the 12 pancreatic cancer test data. This will allow the reader

to see the improved model accuracy if the available LiTS training data are enriched

with local data. In the last step we use the model developed in Experiment 2b to

predict the body composition measures for baseline CT scans for all 136 patients

in the pancreatic cancer registry. We use these measures in the subsequent clinical

analyses.

Evaluation The predictions are compared against the expert-labeled ground truth.

To evaluate Stage One, we calculate the minimum localization error in the z direction

across all the output slices. The mean error was then plotted against the number of

proposed target slices.

To evaluate Stage Two, we compare the segmentation in terms of Dice score.

For prediction region X and truth region Y , the Dice score is calculated as 2 ×

|X ∩ Y| / (|X |+ |Y|).

Finally to evaluate the complete system, the algorithm identifies the most con-

fident L3 slice location within the CT volume, and segments the respective tissue

compartments in that slice. We compare the quantified areas of each tissue against

the ground truth in terms of absolute error, absolute percentage error, and intraclass

correlation coefficient (ICC) (Bartko, 1966). In this comprehensive evaluation step,

these measures are preferred over Dice scores as the latter may consistently under/or
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overestimate the true value, resulting in systematic error.

Clinical Discriminatory Value

We use the values estimated by the detector trained in Experiment 2.

Muscle Mass We estimate the L3 skeletal muscle index (SMI) by dividing the

cross-sectional skeletal muscle area (cm2) by the square of the height (m2). The cut-

off values for sarcopenia are defined as 43.75 cm2/m2 for men and 38.5 cm2/m2 for

women (Prado et al., 2009).

Visceral Fat We estimate the L3 visceral fat area (cm2) and then divide the cohort

into two groups based on the median value for visceral fat, labeled as low (below the

median) and high (above the median) visceral fat.

Statistical Analyses We compare proportions with a chi-squared test, age with

a t-test and the other continuous variables with a Mann-Whitney-U test. Muscle

mass and visceral fat are correlated to patient’s survival status with survival analysis

stratified by presence of sarcopenia and compared using a log rank test. Cox regression

analysis is used to control for confounding variables including age and tumor stage

at diagnosis, gender and BMI.

3.4 Results

3.4.1 Model Performance and Generalizability

Stage One Evaluation

Stage One of the algorithm identifies the L3 vertebral body slice from the CT volume,

hence the evaluation considers the location error; i.e., deviation of the selected slice in

the z-axis with regard to the upper edge of the L3 vertebral body. In Experiment 1a

(trained on LiTS data and tested LiTS data), the absolute location error was 13.7 mm

(95% CI: 0.0 – 28.7) when only a single proposed slice is considered. The minimum
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Figure 3-3: Performance of the slice localization. The minimum localization error
among all identified slices is plotted against the number of nominated slices.

location error decreased with an increasing number of proposed slices as shown in

Figure 3-3, and is 4.1 mm (95% CI: 1.2 – 7.0) when five slices are nominated. The

same model yielded consistently higher errors when tested on the local pancreatic

cancer registry data ranging from 38.7 mm (95% CI: 22.7 – 54.8) for a single slice

to 18.7 mm (95% CI: 12.6 – 24.8) when 5 slices are proposed (Experiment 1b). In

Experiment 2, when the model is trained on data combining LiTS and local pancreatic

cancer registry data the errors decreased from 14.1 mm (95% CI: 9.9 – 18.3) to 12.2

mm (95% CI: 9.0 – 15.5) with increasing slice proposals.

Stage Two Evaluation

In Experiment 1, Dice scores for muscle, subcutaneous fat, and visceral fat are 0.92

(95% CI: 0.91 – 0.93), 0.93 (95% CI: 0.90 – 0.95), and 0.89 (95% CI: 0.86 – 0.92) for

when a model developed on LiTS data is tested on LiTS data, and 0.83 (95% CI: 0.80

– 0.86), 0.90 (95% CI: 0.88 – 0.93), and 0.76 (95% CI: 0.70 – 0.81) when the same

model is tested on data from the local pancreatic cancer registry. In Experiment 2,
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these are 0.85 (95% CI: 0.83 – 0.88), 0.92 (95% CI: 0.91 – 0.93), and 0.80 (95% CI:

0.77 – 0.83).

Full System Evaluation

Table 3.1 reports the evaluation of the complete (end-to-end) system which is most

relevant to the clinical implications of the algorithm. For each of three experiments,

we report the three body composition compartments; we report absolute and relative

errors in area segmentation as well as the intraclass coefficient. Overall, the algo-

rithm that is only trained in the LiTS data (Experiment 1 ) performs worse on the

pancreatic test dataset than when tested in the LiTS test dataset. However, when the

algorithm is trained on data from both datasets (Experiment 2 ), its performance on

the pancreatic test dataset was similar to the performance on the LiTS test dataset

(Table 3.1). Note that the data augmentation in Experiment 2 increases not only

the data diversity, but also the effective training set size. Both aspects benefit the

performance for the resulting model.

3.4.2 Muscle Mass and Visceral Fat – Their Clinical Discrim-

inatory Value

The pancreatic cancer cohort includes 136 patients with a mean age of 67± 11 years,

54% (73/136) women, 13% (17/136) with stage I, 31% (42/136) stage II, 18% (25/136)

and 38% (52/136) stage IV disease. 15% (21/136) of the patients have sarcopenia at

their baseline scan and there is no statistically significant difference in demographics

and baseline staging parameters between the two groups as shown in Table 3.2. The

median value for visceral fat is 142 cm2. There was a higher proportion of women in

the low visceral fat group (38% versus 15%, p < 0.01) but baseline staging parameters

are not statistically different between the two groups (Table 3.2).

Mean follow-up is 21 ± 12 months, and 65% (89/136) of patients expired during

the follow up. The mean survival in the non-sarcopenia group is 22.2 ± 12.0 versus

14.6±11.7 months in the sarcopenia group (p < 0.01, Figure 3-4a). At the same time,

57



Ta
bl

e
3.

1:
Pe

rfo
rm

an
ce

of
th

e
ov

er
al

l
sy

st
em

in
qu

an
tif

yi
ng

th
e

3
di

ffe
re

nt
tis

su
e

co
m

po
ne

nt
s

(c
om

pa
re

d
to

th
e

m
an

ua
lly

an
no

ta
te

d
gr

ou
nd

tr
ut

h)
.

95
%

C
Il

ab
el

ed
in

br
ac

ke
ts

.

T
is

su
e

A
re

a
M

us
cl

e
Su

bc
ut

an
eo

us
Fa

t
V

is
ce

ra
l

Fa
t

E
xp

er
im

en
t

1a
(a

lg
or

it
hm

tr
ai

ne
d

on
Li

T
S

da
ta

,
te

st
ed

on
Li

T
S

da
ta

)
M

ea
n

A
bs

ol
ut

e
Er

ro
r

(c
m

2
)

10
.8

6
(5

.2
0

–
16

.5
1)

14
.9

1
(3

.8
3

–
25

.9
9)

17
.8

4
(5

.0
7

–
30

.6
2)

M
ea

n
A

bs
ol

ut
e

Pe
rc

en
ta

ge
Er

ro
r

(%
)

6.
66

(3
.3

6
–

9.
96

)
10

.2
2

(3
.0

9
–

17
.3

5)
11

.0
6

(3
.0

7
–

19
.0

4)
In

tr
ac

la
ss

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

(I
C

C
)

0.
83

5
(0

.4
3

–
0.

95
)

0.
97

2
(0

.9
0

–
0.

99
)

0.
95

5
(0

.8
5

–
0.

99
)

E
xp

er
im

en
t

1b
(a

lg
or

it
hm

tr
ai

ne
d

on
Li

T
S

da
ta

,
te

st
ed

on
pa

nc
re

at
ic

da
ta

)
M

ea
n

A
bs

ol
ut

e
Er

ro
r

(c
m

2
)

21
.1

0
(1

0.
36

–
31

.8
3)

22
.2

9
(9

.7
9

–
34

.8
0)

36
.9

5
(2

2.
86

–
51

.0
5)

M
ea

n
A

bs
ol

ut
e

Pe
rc

en
ta

ge
Er

ro
r

(%
)

20
.8

5
(8

.0
5

–
33

.6
6)

10
.4

6
(6

.3
1

–
14

.6
0)

34
.8

9
(1

3.
02

–
56

.7
7)

In
tr

ac
la

ss
C

or
re

la
tio

n
C

oe
ffi

ci
en

t
(I

C
C

)
0.

87
3

(0
.6

2
–

0.
96

)
0.

92
3

(0
.7

7
–

0.
97

)
0.

84
1

(0
.5

3
–

0.
95

)

E
xp

er
im

en
t

2
(a

lg
or

it
hm

tr
ai

ne
d

on
Li

T
S

an
d

pa
nc

re
at

ic
da

ta
,

te
st

ed
on

pa
nc

re
at

ic
da

ta
)

M
ea

n
A

bs
ol

ut
e

Er
ro

r
(c
m

2
)

16
.6

5
(5

.4
2

–
27

.8
8)

20
.1

8
(7

.9
8

–
32

.3
9)

27
.1

0
(1

5.
26

–
38

.9
4)

M
ea

n
A

bs
ol

ut
e

Pe
rc

en
ta

ge
Er

ro
r

(%
)

16
.6

4
(3

.1
3

–
30

.1
5)

9.
39

(5
.5

4
–

13
.2

4)
19

.6
7

(1
0.

96
–

28
.3

9)
In

tr
ac

la
ss

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

(I
C

C
)

0.
91

6
(0

.7
5

–
0.

97
)

0.
97

0
(0

.9
1

–
0.

99
)

0.
94

0
(0

.8
2

–
0.

98
)

58



Ta
bl

e
3.

2:
B

as
el

in
e

ch
ar

ac
te

ris
tic

s
of

pa
nc

re
as

co
ho

rt
st

ra
tifi

ed
by

sa
rc

op
en

ia
st

at
us

.

N
o

Sa
rc

op
en

ia
N

=
1
1
5

Sa
rc

op
en

ia
N

=
2
1

p
Lo

w
V

is
ce

ra
l

Fa
t

N
=

6
8

H
ig

h
V

is
ce

ra
l

Fa
t

N
=

6
8

p

A
ge

in
ye

ar
s

(m
ea

n
±

SD
)

67
.4
±
11
.7

67
.0
±

8.
0

0.
91

65
.6
±

14
.4

69
.1
±

9.
4

0.
06

W
om

en
,N

(%
)

61
(4

4)
12

(9
)

0.
72

48
(3

5)
25

(1
8)

<
0.

00
1

T
-s

ta
ge

,N
(%

)
0.

12
0.

77
T

1
14

(1
0)

3
(2

)
9

(7
)

8
(6

)
T

2
40

(2
9)

2
(1

)
19

(1
4)

23
(1

7)
T

3
19

(1
4)

6
(4

)
12

(9
)

13
(1

0)
T

4
42

(3
1)

10
(7

)
29

(2
1)

23
(1

7)

SM
I(

cm
2

m
us

cl
e

m
as

s/
m

2
he

ig
ht

)
(m

ea
n
±

SD
)

53
.0
±
11
.1

32
.6
±

11
.8

<
0.

00
1

46
.4
±

11
.1

53
.3
±

14
.7

<
0.

01

V
isc

er
al

fa
t

(c
m

2
)

(m
ea

n
±

SD
)

16
5
±
11
1

12
7
±

76
0.

10
81
±

3
24
1
±

96
<

0.
00

1

B
M

I(
kg

/m
2
)

(m
ea

n
±

SD
)

27
.8
±

5.
2

22
.4
±

3.
8

<
0.

00
1

24
.2
±

4.
3

29
.7
±

4.
9

<
0.

00
1

Su
rv

iv
al

(m
on

th
s)

(m
ea

n
±

SD
)

22
.2
±
12
.0

14
.6
±

11
.7

<
0.

01
20
.8
±

13
.0

21
.2
±

11
.5

0.
40

59



Figure 3-4: Kaplan Meier curve stratified by presence/absence of sarcopenia and low
versus high visceral fat as derived by the AI algorithm.

there is no statistically significant difference in survival times between the high and

low visceral fat groups (Figure 3-4b).

In a multivariate Cox regression analysis, sarcopenia is associated with a signifi-

cantly increased risk of mortality of 1.85 (95% CI: 1.02 – 3.33) after controlling for
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Table 3.3: Cox regression model, death

Overall Sarcopenia
Model HR

(95% CI)

Visceral fat
Model HR

(95% CI)

Sarcopenia vs Non-sarcopenia 1.85 (1.02 – 3.33) –
Visceral fat, high vs low – 0.93 (0.54 – 1.60)
Age (years) 1.04 (1.01 – 1.06) 1.01 (1.02 – 1.07)
Female versus male 0.98 (0.64 – 1.51) 0.92 (0.59 – 1.44)
BMI 1.01 (0.96 – 1.06) 1.00 (0.95 – 1.05)

T1 Reference Reference
T2 vs T1 2.31 (0.87 – 6.09) 2.30 (0.87 – 6.07)
T3 vs T1 2.02 (0.72 – 5.62) 2.04 (0.73 – 5.68)
T4 vs T1 4.09 (1.60 – 10.5) 4.43 (1.74 – 11.3)

the patient’s age, gender, BMI, and baseline disease stage (Table 3.3). High versus

low visceral fat is not associated with an increased hazard for mortality.

3.4.3 Clinical Implementation

The output of the system consists of a slightly simplified version of Figure 3-1 in which

the Hough transformation display is absent and only the most likely slice location

(instead of all 5) is displayed on the sagittal image. The average time for the entire

system takes 0.5 – 1.0 second on a single CPU, depending on the number of slices

in the CT volume. We set up a server within the our institution that hosts the

detector. Axial images of all abdominal CTs performed at our institution are routed

to this server immediately upon completion of the exam. The detector performs

inference on all studies and stores the results. Any interpreting radiologist can access

the analysis via a URL link from the workstation if s/he feels that providing this

information is of clinical value.
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3.5 Discussion

In this study, we develop a fully automatic system to derive body composition from

CT exams of the abdomen/pelvis. We then demonstrate the ability of the algorithm

to risk-stratify patients with newly diagnosed pancreatic cancer with regard to their

mortality risk based on their imaging findings even when adjusted for other clinical

and demographic risk factors. From experimental studies (with manual segmentation)

the association between different body composition measures and poor outcomes has

been established in many oncologic diseases (Kamarajah et al., 2019; Lee and Giovan-

nucci, 2018). Specifically, a recent clinical study in patients with pancreatic cancer

demonstrated the association between sarcopenia (measured manually) and poor clin-

ical outcomes but did not find such an association for visceral fat (Babic et al., 2019).

This is consistent with our findings.

The novelty of this work is that the same task could be accomplished using an

end-to-end AI detector and performed within less than 2 seconds. By integrating the

algorithm into the routine workflow of imaging data from the scanner to PACS, we

are able to provide this information on all routine abdominal/pelvic CT scan. This in-

formation can be directly ascertained from the PACS workstation by the interpreting

radiologist and can be incorporated into the report if clinically appropriate. We are

planning on monitoring the number of reports that include body composition mea-

sures stratified by providers and clinical referrers to better understand a variation in

adaption and possible reasons for it.

We make the code and development data publicly available with the goal to enable

broad integration of these imaging biomarker into routine clinical workflow, allow-

ing for endeavors such as sarcopenia screening (Graffy et al., 2019) or opportunistic

metabolic syndrome screening (Pickhardt et al., 2020). We also describe the workflow

for how such a detector can be easily integrated into the local clinical workflow that

is PACS vendor agnostic and only requires a standard server in the local datacenter

to host the detector in a self-contained, virtualized container that is easy to install

and update. This is something that is available in nearly every medical center and
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thus suggests that the reach of such AI-based detectors could be broad and have an

important impact on the clinical value of radiology reporting.

Applying the algorithm that is trained on the public LiTS data to pancreatic

cancer registry data yields a good agreement (>0.8 intraclass correlation (ICC)). This

first experiment simulates an off the shelf use in practice; i.e., any investigator who

is interested in this work can just use the pre-trained algorithm and apply it to local

data. When the training dataset is expanded to also include the training data from

the local pancreatic cancer dataset, the performance returned an excellent agreement

(>0.9 ICC) (Experiment 2 ). The latter underscores the feasibility to easily adapt the

algorithm to local practice.

When compare to the only other complete end-to-end body composition detec-

tor (Bridge et al., 2018), the excellent ICC across the different body composition

compartments is similar when tested against the test portion of the development

dataset. When tested against local data, the model by Bridge et al. (2018) performs

better than our non-refined model, likely due to our significantly smaller training

dataset (506 versus 28). After enriching the primary training data to include 28 stud-

ies from the local pancreatic registry and retraining the model (Experiment 2 ), our

algorithm performs equally well. These comparisons are based on the publication by

Bridge et al. (2018) that did not release their development data or code.

Our work has several limitations. While verification at different stages of the mod-

els show promising performance in the development dataset, there is a generalization

gap across datasets when tested on local pancreatic cancer data. Enriching the train-

ing data with local data mostly overcomes this issue. Note that in order to perform

a better designed experiment, one would slowly augment the LiTS training dataset

with a gradually growing number of data points: from the initial 28 LiTS studies to

the final 56 (LiTS + local) studies. Over the continuous data augmentation curve,

we can judge the efficacy of the added data better than in our current experiments.

Furthermore, we restrict the analysis to a single slice using a 2D U-net architec-

ture even though volumetric assessment encompassing the entire torso may be more

accurate and technically feasible either with a 3D model architecture (Çiçek et al.,
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2016) or by stitching 2D slices (Weston et al., 2019). Yet, this is a broadly accepted

proxy that can be further assessed in future studies. Finally, while all image labels

are performed by two radiologists and disagreement is solved by consensus, we do not

document the disagreement systematically. However, given that the anatomy is quite

obvious, we can comment qualitatively that there is not a systematic disagreement

between radiologists but rather small tracing inconsistencies.

3.6 Summary

In this chapter we develop a well-performing end-to-end body composition detector

and demonstrate its clinical discriminatory value for sarcopenia in an exemplary co-

hort of patients with pancreatic cancer. In the mean time we show that by augmenting

the publicly available data with insitutional-local data, the performance of the system

can be improved reasonably.

By making training data and code available and outlining one possible way to

integrate this detector into clinical workflow that is agnostic to the vendor and does

not require resources beyond those available in nearly every academic medical center,

we believe this work can be easily integrated into local practice. One of the immediate

benefits of AI to improve patient care is to routinely provide these types of imaging

biomarkers that are readily available from our information rich data but currently not

fully appreciated due the time-consuming nature of obtaining these data manually.

Following the development of the body composition detector in this chapter, we

will continue to demonstrate use cases that expands the usefulness of body composi-

tion measurements to COVID-19 patient cohort in the next chapter.
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Chapter 4

Surrogate Endpoint from Limited

Imaging Data for COVID-19

Severity Prediction

In the early phases of the COVID-19 outbreak, researchers have associated obesity

with the risk of severe clinical outcomes, primarily using body mass index (BMI) as

the indicator (Gao et al., 2020; Palaiodimos et al., 2020; Cai et al., 2020). While

BMI is a convenient metric to measure, its link to metabolic health in patients is

heterogeneous, thus making BMI an underperforming single-dimensional indicator of

COVID risks. Visceral fat, or visceral adipose tissue (VAT), on the other hand, has

gained increased evidence (Battisti et al., 2020; Kuk et al., 2006) that it provides a

better explanation of COVID-19 severity.

Aside from the clinical effectiveness of VAT, due to the availability of (a) routinely

acquired computed tomography (CT) images, (b) advances in artificial intelligence

(AI) algorithms, and (c) visceral fat segmentation annotations with a high inter-rater

agreement, we are able to utilize the visceral fat segmentation as a surrogate endpoint,

This chapter is adapted from the published article “Visceral Adiposity and Severe COVID-
19 Disease: Application of an Artificial Intelligence Algorithm to Improve Clinical Risk Predic-
tion” (Goehler et al., 2021) to which I have contributed as the second author.
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and approximate VAT measurements with pixel count from the segmentation outputs.

4.1 Overview

Obesity has been linked to severe clinical outcomes among people who are hospitalized

with coronavirus disease 2019 (COVID-19). We test the hypothesis that VAT is

associated with severe outcomes in patients hospitalized with COVID-19, independent

of BMI. We analyze data from the Massachusetts General Hospital (MGH) COVID-

19 Data Registry, which includes patients admitted with polymerase chain reaction –

confirmed severe acute respiratory syndrome coronavirus 2 infection from March 11

to May 4, 2020. We use a validated, fully automated AI algorithm to quantify VAT

from CT scans during or before the hospital admission. VAT quantification takes an

average of 2 ± 0.5 seconds per patient. We dichotomize VAT as high and low at a

threshold of ≥100 cm2 and used Kaplan-Meier curves and Cox proportional hazards

regression to assess the relationship between VAT and death or intubation over 28

days, adjusting for age, sex, race, BMI, and diabetes status.

A total of 378 participants have CT imaging in the dataset. Kaplan-Meier curves

show that participants with high VAT had a greater risk of the outcome compared

with those with low VAT (p < 0.005), especially in those with BMI <30 kg/m2

(p < 0.005). In multivariable models, the adjusted hazard ratio (aHR) for high vs low

VAT is unchanged (aHR is 1.97 with 95% CI: 1.24 – 3.09), whereas BMI is no longer

significant (aHR for obese versus normal BMI is 1.14 with 95% CI: 0.71 – 1.82). High

VAT is associated with a greater risk of severe disease or death in COVID-19 and

can offer more precise information to risk-stratify individuals beyond BMI. AI offers

a promising approach to routinely ascertain VAT and improve clinical risk prediction

in COVID-19.
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4.2 Background

People with obesity who become infected with the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) have a greater risk of severe clinical outcomes (Gao

et al., 2020; Palaiodimos et al., 2020; Cai et al., 2020). In the United States, over 160

million Americans are overweight or obese and over 500,000 individuals have died of

COVID-19 since the start of the pandemic. However, clinical outcomes due to this

infection are not uniformly worse among those who have obesity, and the mechanisms

that link body habitus and clinical outcomes in people with COVID-19 remain poorly

understood.

While body mass index is a convenient measure to obtain in clinical practice, it is

widely recognized as a remarkably heterogeneous parameter for assessing metabolic

health (Neeland et al., 2019). As such, people with similar BMI measurements have

shown meaningfully different levels of health risk, in part due to the fact that BMI

is not a reliable measure of total body or central abdominal fat mass and does not

well capture wide variation in VAT distribution between individuals (Neeland et al.,

2019). There is a growing body of evidence that VAT may be an important conduit

for the health risk associated with obesity. Macrophages have been shown to infiltrate

the hypertrophied adipocytes that are characteristic of excess VAT; this is believed

to result in increased inflammatory cytokines including both tumor necrosis factor –

α and interleukin-6 in this tissue (Neeland et al., 2019). Given this, VAT has been

proposed as a factor that may help to elucidate the relationship between body weight

and COVID19 disease severity (Battisti et al., 2020; Kuk et al., 2006). While VAT

measurement is usually manually assessed by a radiologist and thus time-consuming

to perform, AI algorithms offer a novel approach to measuring VAT quickly and

accurately in patients who have recently had CT imaging performed, regardless of

indication (Choy et al., 2018). Moreover, segmentation of the tissue compartments

from a single cross-sectional slice at 1 lumbar vertebra can well approximate VAT

and subcutaneous adipose tissue (SAT), both of which can be ascertained in seconds

using AI algorithms (Schweitzer et al., 2015; Hsu et al., 2021).
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In this chapter, we test the hypotheses that VAT is associated with severe out-

comes in patients who are hospitalized with COVID-19 and is a stronger predictor

of such outcomes than BMI in adjusted models including both indicators. We assess

VAT using a fully automated end-to-end AI algorithm that provides this measure

from the CT scans of patients who were hospitalized at MGH with COVID-19 dis-

ease during the first surge of the 2020 pandemic. We then use the VAT measure and

survival analysis to test hypotheses linking high VAT and poor clinical outcomes over

28 days from hospitalization for COVID-19.

4.3 Methods

4.3.1 Data Source

This study use data from the MGH COVID-19 Data Registry (Bassett et al., 2020;

Seiglie et al., 2020). The registry includes all patients who presented to care, defined

as the first contact with the health care system for evaluation of COVID-19 symptoms,

and were subsequently hospitalized at MGH between March 11 and May 4, 2020. All

participants in the registry had PCR-confirmed SARSCoV-2 infection. The data in

the registry are collected in 2 ways. First, a manual chart review is performed to assess

key aspects of the patient’s medical history and details of the hospitalization including

the main outcomes of interest at 28 days after presentation to care (Seiglie et al.,

2020). This manual chart review also identifies comorbidities of interest in this study

including history of coronary artery disease or myocardial infarction (CAD or MI),

history of congestive heart failure (CHF), history of diabetes, history of renal disease,

and history of chronic obstructive pulmonary disease (COPD). This chart review is

undertaken by physicians, research nurses, and a team of research assistants trained in

a standard operating procedure for data extraction. In addition, height, weight, and

BMI, as well as key laboratory values that are measured and recorded during the index

hospitalization, are obtained electronically through the Enterprise Data Warehouse

(EDW), a repository that is derived from the Epic electronic medical records system.
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There are no missing height or weight values in this sample. Imaging data of CT

exams performed during or before the hospitalization for any indication that were

used to ascertain the VAT measures are also obtained from hospital picture archive

and communication system (PACS). This research is approved by the Massachusetts

General Brigham Institutional Review Board protocol 2020P000829.

BMI is calculated as the weight in kilograms divided by the square of height in

meters. BMI categories were defined using standard thresholds of <18.5 kg/m2 for

underweight, 18.5 – 24.9 kg/m2 for normal weight, 25.0 – 29.9 kg/m2 for overweight,

and≥30.0 kg/m2 for obese. Diabetes is defined by meeting at least one of the following

criteria:

1. medical history of diabetes is documented in the medical record and manually

retrieved on chart review,

2. HbA1c ≥ 6.5% during the index hospitalization, or

3. random blood glucose ≥200 mg/dL at admission to the hospital and supportive

history by chart review.

For those cases in which only the third diagnostic criterion is met, a detailed

chart review was performed by two board-certified endocrinologists; this procedure

has been described in detail previously. Of note, registry participants with active

malignancy are excluded from this study. Demographic and clinical characteristics

are defined as previously described (Bassett et al., 2020; Seiglie et al., 2020).

4.3.2 Ascertaining VAT and SAT Using an AI-Based Body

Composition Detector

Body composition measures such as VAT can be ascertained from a single axial CT or

magnetic resonance imaging (MRI) slice (Schweitzer et al., 2015). We use a previously

validated, fully automated AI algorithm to quantify VAT from CT scans (Hsu et al.,

2021). In brief, this application is written in Tensorflow 1.13 (Abadi et al., 2016) and

uses an end-to-end 2-stage artificial neural network that first localizes a single axial
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slice at the L1 vertebral body level and then quantifies VAT in that specific slice in

cm2. We choose the L1 vertebral body as it is routinely included in both CT scans

of the chest and CT exams of the abdomen/pelvis and has an excellent correlation

with overall VAT in prior studies (0.986) (Schweitzer et al., 2015, 2016). Moreover,

the validation of the AI algorithm itself shows excellent agreement with manual mea-

surement by a radiologist. We use this AI algorithm to measure VAT in all patients

with either a CT scan of the chest or a CT scan of the abdomen/pelvis that had been

performed during the index hospitalization within a median (interquartile range) of

17 (4 – 25) months before the index hospitalization date. If both exam types are

available, we choose the one that was temporally closest to the index hospitalization.

4.3.3 Exposures, Outcomes, and Statistical Analysis

Our primary exposure of interest is cross-sectional VAT area, which we dichotomize

as high and low at a threshold of 100 cm2 based on prior literature demonstrating

a meaningful increased risk of metabolic derangements above this threshold (Nicklas

et al., 2003; Pickhardt et al., 2012; Yang et al., 2020). The primary outcome of interest

in the study is need for intubation or death within 28 days after presentation to care.

We first compare the demographic and health characteristics of those patients in the

registry who had a relevant clinical imaging study to those for whom no applicable

imaging study was conducted during the period of interest to assess for selection bias.

Next, we compare differences in the demographic and clinical characteristics of the

analytic sample among those with high versus low visceral fat. Then, we depicte

differences in time to death or intubation over 28 days among those with high vs

low visceral fat using Kaplan-Meier curves and log-rank testing. We perform this

analysis first in the full sample and then stratify for those who were in the normal

or overweight BMI category and separately for those who were in the obese BMI

category. We conduct a score test for proportional hazards assumptions. Then, we

fit adjusted Cox proportional hazards models to estimate the hazard of 28-day death

or intubation including VAT, adjusted for age, sex, race, and diabetes diagnosis in

the models. We provide these models with and without adjustment for BMI. We also
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provide a separate model with adjustment for BMI but without VAT included. A p

value <0.05 in the BMI-adjusted test of the association of visceral fat with COVID-19

outcomes indicates statistical significance. We also examine these same relationships

in registry participants with and without imaging and separately conduct a stratified

analysis among those who had imaging performed before vs during the hospitalization.

Finally, we also provide an analysis in which VAT was categorized in quintiles and

display the adjusted hazard ratio of VAT over a range of alternative thresholds with

respect to the outcome of interest, as a further empirical assessment of the chosen

threshold. Confidence intervals for the latter analysis were obtained via bootstrapping

(1000×).

4.4 Results

The MGH COVID-19 Data Registry includes 866 individuals, among whom 410

(47.3%) have an abdominal or chest CT imaging study available during or before

the hospitalization. Among these, 32 (7.8%) are excluded due to the presence of

active malignancy, leaving a final sample of 378 registry participants for this analysis.

A total of 268 of 378 (70.9%) people have a CT of the abdomen and pelvis, while

110 (29.1%) people have a CT scan of the chest available. 198 studies (52%) are

performed during the hospitalization, and 180 studies (48%) are performed before

the hospitalization. The total time to execute the analysis of an individual CT scan

using the algorithm is 2 ± 0.5 seconds on a standard CPU desktop computer within

the hospital system.

There are several differences in demographic and health characteristics of those

participants for whom imaging data is available compared with those participants

who do not have imaging data. Individuals with available imaging are older, more

likely to be male, and have a higher number of comorbidities, including diabetes and a

history of CAD or MI, but the distribution of BMI and other demographic and health

characteristics do not differ between these groups (Table 4.1). Participants who have

a VAT ≥100 cm2 have higher rates of diabetes and a higher C-reactive protein (CRP)
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Figure 4-1: Visceral fat distribution, overall and by BMI category. ****p < 0.0001.

on admission compared with those with a VAT <100 cm2. (Table 4.2)

There are no significant differences in the rates of other key comorbidities, in-

cluding CAD or MI and COPD, stratified by this VAT threshold. We find that the

distribution of VAT differs significantly between those with a normal or overweight

BMI compared with those with obesity (p < 0.0001) (Figure 4-1). Specifically, the

median VAT is greater among those in the BMI group with obesity compared with

those in the normal or overweight BMI group (Figure 4-1). Exemplary VAT on body

composition imaging by BMI status and gender is shown in Figure 4-3. In Figure 4-4,

we also display the differences in the relationship between BMI and VAT by sex (Bre-

della, 2017).

There are 114 (38%) intubations and 54 (18%) deaths among 249 people by 28

days in the high-VAT group, compared with 15 (19%) intubations and 7 (9%) deaths

among 129 people by 28 days in the low-VAT group. Kaplan-Meier curves from the

total study sample show statistically significant differences in the risk of death or

intubation over 28 days by VAT group (Figure 4-2). Those with high VAT have a

greater risk of death or intubation over 28 days compared with those with low VAT

(p < 0.001). When stratifying the analysis into 2 groups defined by BMI (normal or
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Female Male

Normal/ overweight
Visceral fat: >190 cm2

Normal/ overweight
Visceral fat: <  100 cm2

Obese
Visceral fat: <  100 cm2

Obese
Visceral fat: 250–260 cm2

Figure 4-3: Exemplary visceral fat body compositions by BMI status and gender.

Figure 4-4: Scatterplot of VAT by BMI, stratified by sex.

overweight compared with obese), this same relationship is preserved among those

who are normal or overweight (p < 0.005). The differences are similar in magnitude
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Table 4.3: Multivariate Adjusted Hazard Ratio for Death or Intubation Within 28
Days From Hospitalization.

aHR (95% CI) VAT Only BMI + VAT BMI Only

VAT ≥ 100 cm2 2.00 (1.32 – 3.02) 1.97 (1.24 – 3.09) –
Age in years 1.00 (0.99 – 1.01) 1.00 (0.99 – 1.01) 1.00 (0.99 – 1.01)
Male 1.21 (0.85 – 1.72) 1.22 (0.85 – 1.76) 1.51 (1.07 – 2.13)
Diabetes 1.27 (0.93 – 1.74) 1.20 (0.87 – 1.66) 1.21 (0.88 – 1.67)

Body Mass Index (BMI)
Normal – Reference Reference
Overweight – 0.76 (0.47 – 1.21) 0.95 (0.61 – 1.49)
Obese – 1.14 (0.71 – 1.82) 1.57 (1.02 – 2.40)

Race or Ethnicity
White Reference Reference Reference
Hispanic 1.05 (0.67 – 1.63) 1.07 (0.69 – 1.68) 1.09 (0.70 – 1.70)
Black 1.88 (1.08 – 3.27) 1.95 (1.11 – 3.40) 1.67 (0.97 – 2.90)
Other 1.05 (0.71 – 1.54) 1.03 (0.70 – 1.52) 1.01 (0.68 – 1.49)

Abbreviations: aHR, adjusted hazard ratio; BMI, body mass index; VAT, visceral
adipose tissue.

but do not reach statistical significance in the group with obesity (p = 0.08). In

Cox proportional hazards regression analyses, individuals with high VAT have an

adjusted hazard ratio of 2.00 (95% CI, 1.32 – 3.02) of death or intubation at 28 days

when adjusting for age, sex, race, and diabetes. Following additional adjustment for

BMI, the adjusted hazard ratio for high VAT is unchanged at 1.97 (95% CI, 1.24

– 3.09) (Table 4.3). In a model with BMI but without VAT, the adjusted hazard

ratio for obese vs normal BMI category is 1.57 (95% CI, 1.02 – 2.40); once VAT is

included in the model, this declines to an adjusted hazard ratio of 1.14 (95% CI, 0.71 –

1.82). More analyses reveal no clear dose – response effect in the relationship between

quintile of VAT and death or intubation within 30 days (Figure 4-5). Furthermore, a

consideration of alternative dichotomous thresholds empirically reinforces the choice

to use 100 cm2, as depicted in Figure 4-6.
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Figure 4-6: Adjusted hazard ratio for outcome of death or intubation within 30 days,
overall and by BMI group (adjusted for age, gender, and diabetes status).
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4.5 Discussion

We find that patients hospitalized with COVID-19 who have high VAT (≥100 cm2)

as ascertained by an AI algorithm from chest or abdominal CT scans have twice

the risk of dying or being intubated within 28 days of admission than those with

low VAT. This risk persists after adjusting models for BMI, suggesting that VAT

may have a stronger and more precise relationship with severe COVID-19. This

finding reflects the hypothesized biological significance of VAT as a more precise

measure of differences in adipose tissue distribution and the health risk associated

with obesity than BMI. These data support the possible use of VAT to risk-stratify

hospitalized individuals with COVID-19 for severe clinical outcomes. Moreover, the

AI algorithm used could be used by clinical teams to ascertain this measure quickly

and automatically from imaging studies performed for other indications.

These findings are important for several reasons. First, there is an ample body of

literature regarding risk prediction for severe COVID-19 outcomes that has not regu-

larly included VAT as a consideration, though it may offer a more precise approxima-

tion of the metabolic risk associated with obesity when compared with BMI (Seiglie

et al., 2020; Longmore et al., 2021). This study provides evidence that measurement

of VAT in hospitalized patients could be used to improve COVID-19 risk prediction.

Second, as has been suggested previously, VAT may serve as a distinct driver of poor

outcomes in COVID-19. The underlying mechanism to explain this relationship is

not clear but may include the angiotensin-converting enzyme 2 (ACE-2) receptor as

a possible link. This receptor facilitates cellular entry of SARS-CoV-2 and has been

shown to have high expression in VAT (Zhang et al., 2018b; Al-Benna, 2020). Addi-

tionally, as detailed, VAT is metabolically active and secretes a variety of adipokines

and pro-inflammatory cytokines that are hypothesized to play a role in severe COVID-

19 (Neeland et al., 2019). As such, VAT may serve as a pro-inflammatory reservoir

that could contribute to increased severity of COVID-19 among individuals with high

VAT (Petersen et al., 2020).

One fundamental innovation of this study is the AI algorithm that is applied to
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ascertain VAT in a fully automated fashion and with a precise and well-validated

two-dimensional measure of this value. This is particularly unique, as many studies

use a one-dimensional VAT thickness that is measured manually by a radiologist

and lacks validation in the body composition literature. This AI algorithm has been

applied and validated in several independent data sets and can facilitate opportunistic

collection of both VAT and SAT from routine clinical imaging studies. Given that

many hospitalized patients with severe COVID-19 have a CT scan of the chest or

abdomen performed as part of their clinical workup, it would be possible to adapt

this technology and automate collection of this measure using this publicly available

algorithm. If performed in this way, the role of VAT in driving outcomes could be

better understood and used to enhance prediction of risk for severe outcomes in real

time.

This finding is largely consistent with three smaller studies from China and Eu-

rope that have suggested that adipose tissue distribution may be associated with

outcomes in COVID-19 disease. The first study to explore this relationship consisted

of a single-center cohort of 143 patients with confirmed COVID-19 who were hospital-

ized in Wuhan, China, between January and March 2020. These individuals all had

abdominal CT scans from which radiologists manually measured VAT and several

other measures of adipose tissue distribution (Yang et al., 2020). The rate of critical

illness was almost double in people with higher VAT in this context, and in multi-

variate logistic regression models high VAT was associated with two times the odds

of their severe disease end point. However, the sample represented a very small and

select fraction of the total patients hospitalized with COVID-19 at this institution

during this period, and their models did not adjust for BMI. These findings were

reinforced by a second study of 144 patients who were consecutively admitted to the

emergency department (ED) of a public hospital in Bufalini, Cesena, Italy, between

February and April of 2020. All of these patients were found to have PCR-confirmed

SARS-CoV-2 infection (Battisti et al., 2020). Upper abdominal VAT was assessed

on sagittal images from chest CTs in all study participants. The primary outcome

of interest in this study was admission to the intensive care unit (ICU). Those who
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Table 4.4: Cox proportional hazards model for death or intubation, stratified for
individuals with and without imaging.

aHR (95% CI) Patients with Imaging Patients without Imaging

Age in years 1.00 (0.99 – 1.01) 1.04 (1.03 – 1.06)
Male 1.51 (1.07 – 2.13) 0.94 (0.63 – 1.41)
Diabetes 1.21 (0.88 – 1.67) 1.56 (1.04 – 2.35)

Body Mass Index (BMI)
Normal Reference Reference
Overweight 0.95 (0.61 – 1.49) 1.77 (0.95 – 3.31)
Obese 1.57 (1.02 – 2.40) 2.19 (1.19 – 4.04)

Race or Ethnicity
White Reference Reference
Hispanic 1.09 (0.70 – 1.70) 1.05 (0.57 – 1.92)
Black 1.67 (0.97 – 2.90) 0.47 (0.14 – 1.54)
Other 1.01 (0.68 – 1.49) 1.65 (1.00 – 2.73)

were admitted to the ICU had a 30% higher VAT (p < 0.001) and a 30% lower SAT

(p = 0.011), independent of age and sex. The latter findings were confirmed in similar

studies in Rome, Italy, and a cohort of 30 patients in Berlin, Germany (Petersen et al.,

2020; Watanabe et al., 2020).

Our study in this chapter has several important limitations. First, the study

utilizes opportunistic imaging studies from people hospitalized with COVID-19 to

estimate adipose distribution, and thus these parameters are only available in a subset

of those hospitalized with COVID-19 during the study period. This design introduces

important questions about how the inclusion of imaging may introduce additional

selection bias in the sample of interest in this study. As described, those individuals

who have a CT scan available during or within 2 years before their hospitalization

for COVID-19 are older, more likely to be male, and have a higher prevalence of

several important comorbidities, namely diabetes, though the distributions of BMI

are similar in the two groups. As an additional analysis, we explore the relationship

between BMI and diabetes among those with and without imaging. In these stratified

Cox proportional hazards models (Table 4.4), we find that the relationships between
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Table 4.5: Cox proportional hazards models for death or intubation within 30 days,
overall and stratified by imaging during or prior to admission.

aHR (95% CI) Overall
(N = 378)

Imaging
During

Admission
(N = 198)

Imaging
Prior to

Admission
(N = 180)

VAT ≥ 100 cm2 1.97 (1.24 – 3.09) 1.60 (1.00 – 2.56) 3.38 (1.44 – 7.91)
Age in years 1.00 (0.99 – 1.01) 1.00 (0.98 – 1.01) 1.01 (0.99 – 1.03)
Male 1.22 (0.85 – 1.76) 1.22 (0.81 – 1.89) 1.17 (0.63 – 2.19)
Diabetes 1.20 (0.87 – 1.66) 1.47 (1.00 – 2.16) 1.17 (0.68 – 2.01)

Race or Ethnicity
White Reference Reference Reference
Hispanic 1.07 (0.69 – 1.68) 1.09 (0.63 – 1.88) 0.90 (0.40 – 2.03)
Black 1.95 (1.11 – 3.40) 2.53 (1.28 – 4.97) 1.26 (0.47 – 3.38)
Other 1.03 (0.70 – 1.52) 1.11 (0.67 – 1.82) 0.87 (0.45 – 1.68)

diabetes and obese BMI and the outcome of interest are slightly attenuated in those

with imaging compared with those for whom imaging is not available, but overall

these relationships do not differ substantially. Given the lack of imaging in one group,

differences in the relationship between VAT and the outcomes cannot be explored in

this secondary analysis. This selection of higher-risk patients into the study likely

limits power to detect differences in outcomes according to comorbidities known to

associate with COVID risk, including those we previously identify. Second, the timing

of imaging collection is a second source of heterogeneity that could also introduce

selection effects.

In an additional analysis in Table 4.5 stratified by those with an imaging study

and corresponding VAT measurement acquired during the index hospitalization and

separately, those without a study and corresponding measurement that precede the

hospitalization, we find that in both groups VAT is associated with severe disease,

though the magnitude of the effect is greater among those who have the imaging study

performed before admission. This difference in magnitude may indicate potential

unmeasured confounding, for instance, related to the health condition that prompts

the imaging study preceding the index hospitalization, but the relationship between
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VAT and the outcomes is preserved in both groups and the small sample in each of

the two groups after stratification makes it difficult to determine with certainty the

importance of this potential limitation. Future research with larger cohorts should

further interrogate these differences.

Beyond the potential limitations associated with selection bias, as detailed above,

it is important to also state that these data are derived from a single center and thus

may not be widely generalizable to other populations of individuals with COVID-19.

Moreover, while we standardize data collection as much as possible through training

of those performing chart review, the assignment of comorbid diagnoses other than

diabetes and high BMI may have been subject to some variability across chart review-

ers. Finally, the utility of this parameter is inherently dependent on the availability

of a recent imaging study from which VAT may be measured and thus may be less

widely used in people who do not routinely undergo imaging at presentation with

COVID-19, for instance, younger people.

4.6 Summary

In this chapter, we successfully develop an automated AI system that ingests a CT

imaging study from a patient, and predicts VAT quantity in numeric values as a sur-

rogate endpoint for COVID-19 severity/mortality. The primary supporting reason-

ings are that (a) the segmentation modeling methods are comprehensively studied,

(b) body composition data and annotations are readily available due to its extensive

use cases, and that (c) there have been existing evidence linking metabolic descriptors

to disease severity.

Following the observations, we present robust evidence that VAT can be used to

stratify patients hospitalized with COVID-19 regarding their risk of severe disease

or death and may be more precise and closely linked to poor outcomes than BMI.

We have done this in the largest cohort and first US-based study of this relationship

to date. We utilize an AI algorithm for ascertainment of adipose tissue distribution

that automates collection of these data from routine clinical imaging studies. This
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approach is promising because it is potentially scalable for use in real-world clinical

settings and could improve prediction of poor outcomes among people who require

hospitalization for COVID-19.
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Chapter 5

Cross-Modal Representation

Learning under Sparse Supervision

Cross-modal representation learning focuses on tackling data of two or more modal-

ities, often also of very different dimensionalities, and attempts to unify them in an

embedding space where associations among modalities can be reconstructed. There

have been works (Chung et al., 2018, 2019) that aligned speech data with textual data

via embedding spaces alignment, and in our case, we focus on the alignment of med-

ical imaging data and their associated textual medical report. We hypothesize that

there are distribution similarities between the modalities we are able to learn without

explicitly providing the pairing information between the images and the reports.

5.1 Overview

Joint embeddings between medical imaging modalities and associated radiology re-

ports have the potential to offer significant benefits to the clinical community, ranging

from cross-domain retrieval to conditional generation of reports to the broader goals

of multimodal representation learning. In this chapter, we establish baseline joint em-

This chapter is adapted from the published article “Unsupervised Multimodal Representation
Learning across Medical Images and Reports” (Hsu et al., 2018) to which I have contributed as the
first author.
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bedding results measured via both local and global retrieval methods on the Medical

Information Mart for Intensive Care – Chest X-ray (MIMIC-CXR) dataset (John-

son et al., 2019) dataset consisting of both chest X-ray images and the associated

radiology reports.

By removing the pairing information and learning the alignment of image and

text embeddings unsupervisedly, we are able to verify whether, with limited infor-

mation, representation learning could still be meaningful using adversarial domain

adpatation (Tzeng et al., 2017) and Procrustes refinement (Conneau et al., 2017).

We evaluate the representation learning methods using retrieval-based metrics

that count instances with the same International Classification of Diseases, Ninth

Edition (ICD-9) codes as positive, denoting their similar indication of diseases. We

also continuously add back pairing supervision to observe how the metrics are af-

fected by the added information, and show that for document retrieval tasks with the

learned representations, only a limited amount of supervision is needed to yield re-

sults comparable to those of fully-supervised methods. The objectives are to explore

the effectiveness of cross-modal information on representation learning.

5.2 Introduction

Medical imaging is one of the most compelling domains for the immediate application

of artificial intelligence tools. Recent years have seen not only tremendous academic

advancements (Esteva et al., 2017; Gulshan et al., 2016; Rajpurkar et al., 2017) but

additionally a breadth of applied tools (Marr, 2017; Walter, 2018; Lagasse, 2018;

EnvoyAI, 2017).

There has been some emerging attention on joint processing of medical images

and radiological free-text reports. Wang et al. (2018) used the public NIH Chest X-

ray 14 dataset (Wang et al., 2017b) linked with the non-public associated reports to

both improve disease classification performance and for automatic report generation.

Gale et al. (2018) attempted to generate radiology reports while Shin et al. (2016)

generated disease/location/severity annotations. Liu (2018) generated notes, includ-
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ing radiology reports for the Medical Information Mart for Intensive Care (MIMIC)

dataset using non-image modalities such as demographics, previous notes, labs, and

medications. These works used annotations from either machines (Wang et al., 2017b)

or humans. However, with a huge influx of imaging data beyond human capacity, par-

allel records from both imaging and text are not always readily available. We thus

would like to bring up the question of whether we can take advantage of unannotated

but massive imaging datasets and learn from the underlying distribution of these

images.

One natural area that remains unexplored is representation learning across images

and reports. The idea of representation learning in a joint embedding space can be

realized in multiple ways. Some (Pan et al., 2011; Chen et al., 2016) explored statis-

tical and metrical relevance across domains, and some (Ganin et al., 2016) realized

it as an adversarially determined domain-agnostic latent space. Shen et al. (2017)

and Mor et al. (2018) both used a the latent space for style transfer, in language

sentiment and music style, respectively. Reed et al. (2016a) learned joint spaces of

images and their captions, which Reed et al. (2016b) later used for caption-driven

image generation. Conneau et al. (2017) and Grave et al. (2018) also used similar

ideas to perform both supervised and unsupervised word-to-word translation tasks.

(Chung et al., 2018) further aligned cross-modal embeddings through semantics in

speech and text for spoken word classification and translation tasks.

A recent dataset, MIMIC-Chest X-ray (MIMIC-CXR) (Johnson et al., 2019), car-

ries paired records of X-ray images and radiology reports, and the imaging modality

has been explored by Rubin et al. (2018) and Quigley et al. (2022). In this study, we

explore both the text and image modalities with joint embedding spaces under a spec-

trum of supervised and unsupervised methods. In particular, we make the following

contributions:

1. We establish baseline results and evaluation methods for jointly embedding

radiological images and reports via retrieval and distance metrics.

2. We profile the impact of supervision level on the quality of representation learn-
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ing in joint embedding spaces.

3. We characterize the influence of using different sections from the report on

representation learning.

5.3 Methodology

5.3.1 Data

All experiments in this study used the MIMIC-CXR dataset1 (Johnson et al., 2019).

MIMIC-CXR is the largest radiology dataset to date and consists of 473,057 chest

X-ray images and 206,563 reports from 63,478 patients. Among these images, 240,780

are of anteroposterior (AP), 101,379 are of posteroanterior (PA), and 116,023 are of

lateral (LL) views, and we focus on in AP images this work. Further, we eliminate

all duplicated radiograph images with adjusted brightness or contrast (commonly

produced for clinical needs), leaving a total of 95,242/87,353 images/reports, which

we subdivide into a train set of 75,147/69,171 and a test set of 19,825/18,182 im-

ages/reports, with no overlap of patients between the two. Radiological reports are

parsed into sections and we use either the impression or the findings sections.

For evaluation, we aggregate a list of unique International Classification of Dis-

eases (ICD-9) codes from all patient admissions and ask a clinician to pick out a

subset of codes that are related to thoracic diseases. Records with ICD-9 codes in the

subset are then extracted, including 3,549 images from 380 patients. This population

serves as a disease-related evaluation for retrieval algorithms. Note that this disease

information is never provided during training in any setting.

5.3.2 Methods

Our overall experimental flow follows Figure 5-1. Notes are featurized via (1) term

frequency-inverse document frequency (TF-IDF) over bi-grams, (2) pre-trained GloVe
1This work used an alpha version of MIMIC-CXR instead of the publicly released version. The

main differences are the train/validation/test splitting, pre-processing, and artifact removals so that
the publicly released version is more sanitized.
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Figure 5-1: The overall experimental pipeline. EA: embedding alignment; Adv: ad-
versarial training.

word embeddings (Pennington et al., 2014) averaged across the selected section of the

report, (3) sentence embeddings, or (4) paragraph embeddings. In (3) and (4), we first

perform sentence/paragraph splitting, and then fine-tune a deep averaging network

(DAN) encoder (Bird and Loper, 2004; Cer et al., 2018; Iyyer et al., 2015) with the

corpus. Embeddings are finally averaged across sentences/paragraphs. The DAN

encoder is pretrained on a variety of data sources and tasks and fine-tuned on the

context of report sections.

Images are resized to 256×256, then featurized to the last bottleneck layer of

a pretrained DenseNet-121 model (Rajpurkar et al., 2017). Principle component

analysis (PCA) is applied onto the 1024-dimension raw image features to obtain

64-dimension features (96.9% variance explained). Text features are projected into

the 64-dimension image feature space. We use several methods regarding different

objectives.

Embedding Alignment (“EA”)

Here, we find a linear transformation between two sets of matched points X ∈ RdX×n

and Y ∈ RdY ×n by minimizing LEA (X,Y) =
∥∥W⊤X−Y

∥∥2
F

.
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Adversarial Domain Adaption (“Adv”)

Adversarial training pits a discriminator, D, implemented as a 2-layer (hidden size

256) neural network using scaled exponential linear units (SELUs) (Klambauer et al.,

2017), against a projection matrix W, as the generator. D is trained to classify points

in the joint space according to source modality, and W is trained adversarially to fool

D. Alternatively, D minimizes

LD
Adv (X,Y) = E(x,y)∼p(X,Y)

[
− logD

(
W⊤x

)
− log (1−D (y))

]
(5.1)

when W minimizes

LW
Adv (X,Y) = E(x,y)∼p(X,Y)

[
− log

(
1−D

(
W⊤x

))]
. (5.2)

Procrustes Refinement (“Adv + Proc”)

On top of adversarial training, we also use an unsupervised Procrustes induced refine-

ment as in Conneau et al. (2017).

Semi-Supervised

We also assess how much supervision is necessary to ensure strong performance on

these modalities by randomly subsampling our data into supervised and unsupervised

samples. We then combine the embedding alignment objective and adversarial train-

ing objective functions as L = LEA (X,Y) + λLAdv (X,Y) and train simultaneously

as we vary the fraction trained. Preliminary experiments suggests λ = 0.1.

Orthogonal Regularization

Smith et al. (2017), Conneau et al. (2017), and Xing et al. (2015) all showed that

imposing orthonormality on linear projections leads to better performance and sta-

bility in training. However, Brock et al. (2018) suggested orthogonality (i.e., not

constraining the norms) can perform better as a regularization. Thus on top of the

objectives, we add Rortho = β
∥∥W⊤W ⊙

(
ee⊤ − I

)∥∥2
F

, where ⊙ denotes element-wise
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product and e denotes a column vector of all ones. The addition of the regularization

term aims at suppressing correlation for off-diagonal terms. Scanning through a range

shows β = 0.01 yields good performance.

5.3.3 Evaluation

We evaluate via cross domain retrieval in the test set Q: querying in the joint em-

bedding space for closest neighboring images using a report, T → I, or vice-versa,

I → T. For direct pairings, we compute the cosine similarity, and mean reciprocal

rank MRR = 1
|Q|
∑

q∈Q
1

rankq
where rankq is the rank of the first true pair for q (e.g.,

the first paired image or text corresponding to the query q) in the retrieval list. For

thoracic disease induced pairings, we first define the relevance relpq ∈ [0, 1] between

two entries p and q as the intersection-over-union of their respective set of ICD-9

codes. Then we calculate the normalized discounted cumulative gain (Järvelin and

Kekäläinen, 2002) nDCG@k = 1
|Q|
∑

q∈Q
1

IDCGq

∑k
p=1

2relpq−1
log2(p+1)

, where IDCGq denotes the

ideal DCG, or discounted cumulative gain value, for q using a perfect retrieval algo-

rithm. All experiments are repeated with random initial seeds for at least 5 times.

Means and 95% confidence intervals are reported in the following section.

5.4 Results

Retrieval with/without Supervision

Table 5.1 compares four types of text features and supervised/unsupervised methods.

We find that unsupervised methods can achieve comparable results on disease-related

retrieval tasks on a large scale (nDCG@100) without the need for labeling the chest

X-ray images. Experiments show uni-, bi-, and tri-grams yield very similar results

and we only include bi-gram in the table. Additionally, we find that the high-level

sentence and paragraph embeddings approach underperform the bi-gram text repre-

sentation. Although having generalizability (Cer et al., 2018), sentence and paragraph

embeddings learned from the supervised multi-task pre-trained model may not be able
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to represent the domain-specific radiological reports well due to the lack of medical

domain tasks in the pre-training process. Unsupervised procrustes refinement is oc-

casionally, but not universally helpful. Note that MRR is comparatively small since

reports are in general highly similar for radiographs with the same disease types.

The Impact of Supervision Fraction

We define the supervision fraction as the fraction of pairing information provided in

the training set. Note the ICD-9 codes are not provided for training even in the

fully supervised setting. Figure 5-2 shows our evaluation metrics for models trained

using bi-gram text features and the semi-supervised learning objective for various

supervision fractions. A minimal supervision as low as 0.1% provided can drastically

improve the alignment quality, especially in terms of cosine similarity and nDCG.

More annotations further improve the performance measures, but one would almost

require exponentially many data points in exchange for a linear increase. That implies

the possibility of concatenating a well-annotated dataset and a large but unannotated

dataset for a substantial performance boost.

Using Different Sections of the Report

We investigate the effectiveness of using different sections for the embedding alignment

task. All models in Figure 5-3 run with a supervision fraction of 1%. The models

trained on the findings section outperform the models trained on the impression

section using cosine similarity and MRR. This makes sense from a clinical perspective

since the radiologists usually only describe image patterns in the findings section and

thus they would be aligned well. On the other hand, they make radiological-clinical

integrated interpretations in the impression section, which means that the both the

image-uncorrelated clinical history and findings were mentioned in the impression

section. Since nDCG is calculated using ICD-9 codes, which carry disease-related

information, it naturally aligns with the purpose of writing an impression section.

This may explain why the models trained on impression section worked better for

nDCG.

95



0 10−3 10−2 10−1 100

Supervision Fraction

0.2

0.4

0.6

S
im

ila
ri

ty

0 10−3 10−2 10−1 100

Supervision Fraction

0

5

10

M
R

R
(×

10
−

3
)

T→I I→T

0 10−3 10−2 10−1 100

Supervision Fraction

0.10

0.15

0.20

0.25

n
D

C
G

@
k

(T
→

I)

k=1 k=100

0 10−3 10−2 10−1 100

Supervision Fraction

0.10

0.15

0.20

0.25

n
D

C
G

@
k

(I
→

T
)

k=1 k=100

Figure 5-2: Performance measures of retrieval tasks at k retrieved items as a function
of the supervision fraction. Higher is better. Note the x-axis is in log scale. Unsu-
pervised is on the left, increasingly supervised to the right. Dashed lines indicate the
performance by chance. Vertical bars indicate the 95% confidence interval, and some
are too narrow to be visible.
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5.5 Summary

MIMIC-CXR is the largest publicly available imaging dataset consisting of both medi-

cal images and paired radiological reports to date, promising myriad applications that

can make use of both modalities together. We establish baseline results using super-
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vised and unsupervised joint embedding methods along with local (direct pairs) and

global (ICD-9 code groupings) retrieval evaluation metrics. Results show a possibility

of incorporating more unsupervised data into training for minimal-effort performance

increase. A further study of joint embeddings between these modalities may enable

significant applications, such as text/image generation or the incorporation of other

electronic medical records (EMR) modalities.

In this chapter, we have demonstrated how imaging data are used in a retrieval

context against textual data. Under the extreme conditions where supervision is

totally removed, it is surprising that the retrieval performance is significantly better

than the chance baseline, thus providing very promising hint that extra data modality

can benefit medical imaging in a constrained setup.

We will continue to explore, in the next chapter, the relationship between medical

reports and chest X-ray with the task of medical report generation using the MIMIC-

CXR dataset presented in this chapter.
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Chapter 6

Knowledge-Infused Learning for

Medical Report Generation from

Radiograph

The infusion of clinical knowledge into machine learning models has been under-

emphasized in the early era of deep learning-based medical imaging. Early works (Wu

et al., 2013; Cheng et al., 2018; Yang et al., 2015; De Vos et al., 2016; Brosch et al.,

2013; Suk and Shen, 2013; Plis et al., 2014; Ciresan et al., 2012; Stollenga et al., 2015)

emphasized bringing the then-popular deep learning into the field of medical imaging

and yet did not leverage existing knowledge about the inherent medical structures. As

we gradually push the frontier of medical imaging, researchers have since recognized

the need for larger datasets than before, and yet gathering more data would either be

time or financially consuming. Hence we hereby explored infusing clinical knowledge

into the construction of medical machine learning models, in order to increase the

effective amount of data for learning.

This chapter is adapted from the published article “Clinically Accurate Chest X-Ray Report
Generation” (Liu et al., 2019) to which I have contributed as the first author.
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6.1 Overview

The automatic generation of radiology reports given medical radiographs may have

significant potential to operationally improve clinical patient care. A number of prior

works have focused on this problem, employing advanced methods from computer

vision and natural language generation to produce readable reports. However, these

works often fail to account for the particular nuances of the radiology domain, and,

in particular, the critical importance of clinical accuracy in the resulting generated

reports. In this chapter, we present a domain-aware automatic chest X-ray radiology

report generation system which first predicts what topics will be discussed in the

report, then conditionally generates sentences corresponding to these topics. The re-

sulting system is fine-tuned using reinforcement learning, considering both readability

and clinical accuracy, as assessed by the proposed Clinically Coherent Reward (CCR).

We verify this system on two datasets, Open-I (Demner-Fushman et al., 2015) and

MIMIC-CXR (Johnson et al., 2019), and demonstrate that our model offers marked

improvements on both language generation metrics and CheXpert (Irvin et al., 2019)

assessed accuracy over a variety of competitive baselines.

6.2 Background

A critical task in radiology practice is the generation of a free-text description, or

report, based on a clinical radiograph (e.g., a chest X-ray). Providing automated sup-

port for this task has the potential to ease clinical workflows and improve both the

quality and standardization of care. However, this process poses significant technical

challenges. Many traditional image captioning approaches are designed to produce

far shorter and less complex pieces of text than radiology reports. Further, these

approaches do not capitalize on the highly templated nature of radiology reports. Ad-

ditionally, generic natural language generation (NLG) methods prioritize descriptive

accuracy only as a byproduct of readability, whereas providing an accurate clinical

description of the radiograph is the first priority of the report. Prior works in this
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domain have partially addressed these issues, but significant gaps remain towards

producing high-quality reports with maximal clinical efficacy.

In this chapter, we take steps to address these gaps through our novel automatic

chest X-ray radiology report generation system. Our model hierarchically generates

a sequence of unconstrained topics, using each topic to generate a sentence for the

final generated report. In this way, we capitalize on the often-templated nature of

radiology reports while simultaneously offering the system sufficient freedom to gener-

ate diverse, free-form reports. The system is finally tuned via reinforcement learning

to optimize readability (via the Consensus-based Image Description Evaluation, or

CIDEr (Vedantam et al., 2015), score) as well as clinical accuracy (via the concor-

dance of CheXpert (Irvin et al., 2019) disease state labels between the ground truth

and generated reports). We test this system on the MIMIC-CXR (Johnson et al.,

2019) dataset, which is the largest paired image-report dataset presently available,

and demonstrate that our model offers improvements on both NLG evaluation met-

rics (BLEU (Papineni et al., 2002), CIDEr (Vedantam et al., 2015), and ROGUE (Lin,

2004)) and clinical efficacy metrics (CheXpert concordance) over several compelling

baseline models, including a re-implementation of TieNet (Wang et al., 2018), simpler

neural baselines, and a retrieval-based baseline.

Clinical Relevance

This chapter focuses on generating a clinically useful radiology report from a chest

X-ray image. This task has been explored multiple times, but directly transplanting

natural language generation techniques onto this task only guarantees the reports

to look real rather than to predict right. A more immediate focus for the report

generation task is thus to produce accurate disease profiles to power downstream

tasks such as diagnosis and care providing. Our goal is then minding the language

fluency while also increasing the clinical efficacy of the generated reports.
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Technical Significance

We employ a hierarchical convolutional-recurrent neural network as the backbone for

our proposed method. Reinforcement learning (RL) on a combined objective of both

language fluency metrics and the proposed Clinically Coherent Reward (CCR) ensures

we obtain a quality model on more correctly describing disease states. Our method

aims to numerically align the disease labels of our generated report, as produced

by a natural language labeler, with the labels from the ground truth reports. The

reward function, though non-differentiable, can be optimized through policy gradient

learning as promised by RL.

6.3 Related Works

6.3.1 Radiology

333d0a1e-6b85647a-54e61853-403c774d-528aadc7

Findings: 
There is no focal consolidation, effusion or 
pneumothorax. The cardiomediastinal
silhouette is normal. There has been interval 
resolution of pulmonary vascular congestion 
since DATE.
Impression: 
No pneumonia or pulmonary vascular 
congestion. Telephone notification to dr. 
NAME at TIME on DATE per request

Figure 6-1: A chest X-ray and its associated report written by a radiologist.

Radiology Practice

Diagnostic radiology is the medical field of creating and evaluating radiological im-

ages (radiographs) of patients for diagnostics. Radiologists are trained to simultane-

ously identify various radiological findings (e.g., diseases), according to the details

of the radiograph and the patient’s clinical history, then summarize these findings

and their overall impression in reports for clinical communication (Kahn Jr et al.,

2009; Schwartz et al., 2011). A report typically consists of sections such as history,
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examination reason, findings, and impressions. As shown in Figure 6-1, the findings

section contains a sequence of positive, negative, or uncertain mentions of either dis-

ease observations or instruments including their detailed location and severity. The

impression section, by contrast, summarizes diagnoses considering all report sections

above and previous studies on the patient. In a good report (as characterized by an

experienced radiologist), the impression section puts the findings into context and

attempts to address questions raised in the image requisition, and in contrast, bad

reports tend to regurgitate findings. Correctly identifying all abnormalities is a chal-

lenging task due to high variation and atypical cases (Rubin, 2015). Moreover, there

is information overload inherent to some imaging modalities, such as X-ray scans.

This presents a strong intervention surface for machine learning techniques to help

radiologists correctly identify the critical findings from a radiograph. The canonical

way to communicate such findings in current practice would be through the free-text

report, which could either be used as a draft report for the radiologists to extend or

be presented to the physician requesting a radiological study directly (Schwartz et al.,

2011).

AI on Radiology Data

In recent years, several chest radiograph datasets, totalling almost a million X-ray

images, have been made publicly available. A summary of these datasets is available

in Table 6.1. Learning effective computational models through leveraging the informa-

tion in medical images and free-text reports is an emerging field. Such a combination

of image and textual data help further improve the model performance in both image

annotation and automatic report generation (Litjens et al., 2017).

Schlegl et al. (2015) first proposed a weakly supervised learning approach to utilize

semantic descriptions in reports as labels for better classifying the tissue patterns in

optical coherence tomography (OCT) imaging. In the field of radiology, Shin et al.

(2016) proposed a convolutional and recurrent network framework that jointly trained

from image and text to annotate disease, anatomy, and severity in the chest X-ray

images. Similarly, Moradi et al. (2018) jointly processed image and text signals to
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produce regions of interest over chest X-ray images. Rubin et al. (2018) trained a

convolutional network to predict common thoracic diseases given chest X-ray images.

Shin et al. (2015), Wang et al. (2016), and Wang et al. (2017b) mined radiological

reports to create disease and symptom concepts as labels. They first used Latent

Dirichlet Allocation (LDA) to identify the topics for clustering, then applied the

disease detection tools such as DNorm (Disease Name Normalization) (Leaman et al.,

2013), MetaMap (Aronson, 2001), and several other Natural Language Processing

(NLP) tools for downstream chest X-ray classification using a convolutional neural

network. They also released the label set along with the image data.

Later on, Wang et al. (2018) used the same chest X-ray dataset to further improve

the performance of disease classification and report generation from an image. For

report generation, Jing et al. (2017) built a multi-task learning framework, which

includes a co-attention mechanism module, and a hierarchical long short term memory

(LSTM) module, for radiological image annotation and report paragraph generation.

Li et al. (2018) proposed a reinforcement learning-based Hybrid Retrieval-Generation

Reinforced Agent (HRGR-Agent) to learn a report generator that can decide whether

to retrieve a template or generate a new sentence. Alternatively, Gale et al. (2018)

generated interpretable hip fracture X-ray reports by identifying image features and

filling text templates.

Finally, Hsu et al. (2018) trained the radiological image and report joint represen-

tation through unsupervised alignment of cross-modal embedding spaces for informa-

tion retrieval.

6.3.2 Language Generation

Language generation (LG) is a staple of NLP research. LG comes up in the context

of neural machine translation, summarization, question answering, image captioning,

and more. In all these tasks, the challenges of generating discrete sequences that

are realistic, meaningful, and linguistically correct must be met, and the field has

devised a number of methods to surmount them. For many years, this was done

through n-gram-based (Huang et al., 1993) or retrieval-based (Gupta and Lehal, 2010)
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approaches.

Within the last few years, many have explored the very impressive results of deep

learning for text generation. Graves (2013) outlined best practices for Recurrent Neu-

ral Network, or , RNN-based sequence generation. The following year, Sutskever et al.

(2014) introduced the sequence-to-sequence paradigm for machine translation and be-

yond. However, Wiseman et al. (2017) demonstrated that while RNN-generated texts

are often fluent, they have typically failed to reach human-level quality.

Reinforcement learning recently also come into play due to its capability to op-

timize for indirect target rewards, even if the targets themselves are often non-

differentiable. Li et al. (2016a) used a crafted combination of human heuristics as the

reward while Bahdanau et al. (2016) incorporated language fluency metrics. They

were among the first to apply such techniques to neural language generation, but to

date, training with log-likelihood maximization (Xie, 2017) has been the main work-

ing horse. Alternatively, Rajeswar et al. (2017) and Fedus et al. (2018) have tried

using Generative Adversarial Networks (GANs) for text generation. However, Caccia

et al. (2018) observed problems with training GANs and show that to date, they are

unable to beat canonical sequence decoder methods.

Image Captioning

We will also highlight some specific areas of exploration in image captioning, a spe-

cific kind of language generation which is conditioned on an image input. The canon-

ical example of this task is realized in the Microsoft Common Objects in Context

(COCO) (Lin et al., 2014b) dataset, which presents a series of images, each anno-

tated with five human-written captions describing the image. The task, then, is to

use the image as input to generate a readable, accurate, and linguistically correct

caption.

This task has received significant attention with the success of Show and Tell (Vinyals

et al., 2015) and its followup Show, Attend, and Tell (Xu et al., 2015). Due to the

nature of the COCO competition, other works quickly emerged showing strong re-

sults: Yao et al. (2017) used boosting methods, Lu et al. (2017) employed adaptive
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attention, and Rennie et al. (2017) introduced reinforcement learning as a method

for fine-tuning generated text. Devlin et al. (2015) performed surprisingly well using

a K-nearest neighbor method. They observed that since most of the true captions

were simple, one-sentence scene descriptions, there was significant redundancy in the

dataset.

6.3.3 Radiology Report Generation

Multiple recent works have explored the task of radiology report generation. Zhang

et al. (2018a) used a combination of extractive and abstractive techniques to summa-

rize a radiology report’s findings to generate an impression section. Due to limited

text training data, Han et al. (2018) relied on weak supervision for a Recurrent-GAN

and template-based framework for MRI report generation. Gale et al. (2018) used an

RNN to generate template-generated text descriptions of pelvic X-rays.

More comparable to this work, Wang et al. (2018) used a CNN-RNN architecture

with attention to generate reports that describe chest X-rays based on sequence de-

coder losses on the generated report. Li et al. (2018) generated chest X-ray reports

using reinforcement learning to tune a hierarchical decoder that chooses (for each sen-

tence) whether to use an existing template or to generate a new sentence, optimizing

the language fluency metrics.

6.4 Methods

In this work we opt to focus on generating the findings section as it is the most

direct annotation from the radiological images. First, we introduce the hierarchical

generation strategy with a CNN-RNN-RNN architecture, and later we propose novel

improvements that render the generated reports more clinically aligned with the true

reports. Full implementation details, including layer sizes, training details, etc., are

presented in Section 6.4.4.
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6.4.1 Hierarchical Generation via CNN-RNN-RNN

As illustrated in Figure 6-2, we aim to generate a report as a sequence of sentences

Z = (z1, . . . , zM), where M is the number of sentences in a report. Each sentence

consists of a sequence of words zi = (zi1, . . . , ziNi
) with words from a vocabulary

zij ∈ V, where Ni is the number of words in sentence i.

The image is fed through the image encoder CNN to obtain a visual feature

map. The feature map is then taken by the sentence decoder RNN to recurrently

generate vectors that represent the topic for each sentence. With the visual feature

map and the topic vector, a word decoder RNN tries to generate a sequence of words

and attention maps of the visual features. This hierarchical approach is in line with

Krause et al. (2017) where they generate descriptive paragraphs for an image.

Image Encoder CNN

The input image I is passed through a CNN head to obtain the last layer before

global pooling, and the feature is then projected to an embedding of dimensionality d,

which is identical to the word embedding dimension. The resulting map V = {vk}Kk=1

of spatial image features will be descriptive features for different spatial locations of

an image. A mean visual feature is obtained by averaging all local visual features

v̄ = 1
K

∑
k vk.

Sentence Decoder RNN

Given the mean visual feature v̄, we adopt Long-Short Term Memory (LSTM) and

model the hidden state as

hi,mi = LSTM(v̄;hi−1,mi−1) , (6.1)

where hi−1 and mi−1 are the hidden state vector and the memory vector for the

previous sentence (i− 1) respectively. From the hidden state hi, we further generate

two components, namely the topic vector τi and the stop signal ui for the sentence,
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as

τi = ReLU
(
W⊤

τ hi + bτ

)
(6.2)

ui = σ
(
w⊤

u hi + bu
)
,

where W’s and b’s are trainable parameters, and σ is the sigmoid function. The stop

signal acts as as the end-of-sentence token. When u > 0.5, it indicates the sentence

decoder RNN should stop generating the next sentence.

Word Decoder RNN

After we decode the sentence topics, we can start to decode the words given the topic

vector τi. For simplicity, we drop the subscript i as this process applies to all sentences.

We adopted the visual sentinel (Lu et al., 2017) that modulates the feature map V

with a sentinel vector. The hidden states and outputs are again modeled with LSTM,

generating the posterior probability pj over the vocabulary with (1) the mean visual

feature v̄, (2) the topic vector τ , and (3) the embedding of the previously generated

word ej−1 = Ezj−1
, where E ∈ Rd×|V| is the trainable word embedding matrix. At

training time, the next word is sampled from the probability zj ∼ p (z | ·) = (pj)z, or

the z-th element of pj.

We calculate the sentinel vector sj, the attention over the K regions of the images

and the sentinel gate α̂j, the mixture context vector ĉj, and the probability pj over

the vocabulary as

hj, sj,mj = LSTM([v̄, τ , ej−1] ;hj−1,mj−1) (6.3)

αj = w⊤
α tanh

([
W⊤

vαV,W⊤
sαsj

]
+
(
W⊤

hαhj

)
1
⊤)

α̂j = softmax (αj)

ĉj = [V, sj] α̂j

pj = softmax
(
W⊤

p (ĉj + hj)
)
,

where hj−1 and mj−1 again are the hidden state vector and the memory vector for
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the previous step, W’s are weights to be learned. [·, ·] denotes matrix concatenation,

and 1 denotes a vector of all one’s.

This formulation enables the model to look at different parts on the image while

having the option of looking away at a sentinel vector. Note that this hierarchical

encoder-decoder CNN-RNN-RNN architecture is fully differentiable.

6.4.2 Reinforcement Learning for Readability

As Rennie et al. (2017) showed, the automatic NLG metric CIDEr (Vedantam et al.,

2015) is superior to other metrics such as BLEU (Papineni et al., 2002), and ROUGE

(Lin, 2004). We consider the case of self-critical sequence training (SCST) (Rennie

et al., 2017) which utilizes REINFORCE (Williams, 1992) algorithm, and minimizes

the negative expected reward as a function of the network parameters θ, as

LNLG (θ) = −E(u,Z)∼pθ(·,·) [rNLG (Z,Z∗)− rNLG (Zg,Z∗)] , (6.4)

where pθ is the distribution over output spaces, rNLG is a metric evaluation function

acting as a reward function that takes a sampled report Z and a ground truth report

Z∗. The baseline in SCST has been replaced with the reward obtained with testing

time greedily decoded report Zg.

Note that REINFORCE is effectively a policy gradient method in the reinforce

learning (RL) space, where the states are the probabilities predicted by the networks,

and actions are the multinomial sampling.

6.4.3 Novel Reward for Clinically Accurate Reinforcement

Learning

One major downside with the approach outlined so far, unfortunately, is that in the

clinical context, aiming for a good automatic metric such as CIDEr is not enough to

correctly characterize the disease states. Negative judgments on diseases are critical

components of the reports, by which radiologist indicates that the patient might not
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have those diseases that were of concern and among the reasons for the examination.

Li et al. (2018) indicated that a good portion of chest X-ray reports are heavily

templated in patterns such as no pneumothorax or pleural effusion; the lungs are clear ;

or no focal consolidation, pneumothorax or large pleural effusion. These patterns also

suggest that most patients are disease-free, hence the signal of positive mentions of

the disease will be sparse.

Simply optimizing the automatic LG metrics may misguide the model to mention

only the disease names as opposed to correctly positively/negatively describe the

disease states. For example, if the ground truth report reads no pleural effusion, the

models would prefer the text mild pleural effusion over unrelated text or even an

empty string, which means intelligent optimization systems could game these metrics

at the expense of clinical accuracy.

We hence propose using a Clinically Coherent Reward (CCR), which utilizes a
rule-based disease mention annotator, CheXpert (Irvin et al., 2019), to optimize our
generated report for clinical efficacy directly. CheXpert performs classification on
12 types of thoracic diseases or X-ray related diagnoses. The mentions for support
devices are also labeled. For each label type t, there are four possible outcomes
for the labeling: (1) positive, (2) negative, (3) uncertain, or (4) absent mention; or,
lt (Z) ∈ {p, n, u, a}. This outcome can be used to model the positive/negative disease
state st ∈ {+,−} as st ∼ ps|l (·|lt (Z)), the value of which will be discussed further
later. CCR is then defined, dropping the subscripts for distribution for convenience,
as

rCCR (Z,Z∗) =
∑
t

rCCR,t (Z,Z
∗) ≡

∑
t

∑
s∈{+,−}

p (s|lt (Z)) · p (s|lt (Z∗)) , (6.5)

aiming to maximize the correlation of distribution over disease states between the

generated text Z and the ground truth text Z∗. Unfortunately, as the true diagnostic

state s of novel reports is unknown, we need to make several assumptions regarding the

performance of the rule based labeler, allowing us to infer the necessary conditional

probabilities p (s|l).

To motivate these assumptions, first note that these diseases are universally rare,
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or, p (+) ≪ p (−). Presuming the rule based labeler has any discriminative power,

we can thus conclude that if the labeler assigns a negative or an absent label (l− is

one of {n, a}), p (+|l−) < p (+) ≪ p (−) < p (−|l−) . For sufficiently rare conditions,

a reasonable assumption and simplification is to therefore take p (+|l−) ≈ 0 and

p (−|l−) ≈ 1. We further assume that the rule based labeler has a very high precision,

and thus p (+|p) ≈ 1. However, given an uncertain mention u, the desired output

probabilities are difficult to assess. As such, we define a reward-specific hyperparam-

eter βu ≡ p (+|u), which in this work we take to be 0.5. All of these assumptions

could be easily adjusted, but they perform well for us here.

We also wish to use a baseline for the reward rCCR. Instead of using a single

exponential moving average (EMA) over the total reward, we apply EMA separately

to each term as

LCCR (θ) = −E(u,Z)∼pθ(u,Z)

[∑
t

rCCR,t (Z,Z
∗)− r̄CCR,t

]
, (6.6)

where r̄CCR,t is an EMA over rCCR,t updated as r̄CCR,t ← γr̄CCR,t+(1− γ) rCCR,t (Z,Z
∗).

We wish to pursue both semantic alignment and clinical coherence with the ground

truth report, and thus we combine the above rewards for reinforcement learning on

our neural network in a weighted fashion. Specifically, L (θ) = LNLG (θ) + λLCCR (θ),

where λ controls the relative importance.

Hence the derivative of the combined loss with respect to θ is thus

∇θL (θ) = −E(u,Z)∼pθ(u,Z)

[
[rNLG (Z,Z∗) + λrCCR (Z,Z∗)]∇θ

∑
i

(
log ui +

∑
j

log (pij)zij

)]
,

(6.7)

where pij is the probability over vocabulary. We can approximate the above gradient

with Monte-Carlo samples from pθ and average gradients across training examples in

the batch.
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6.4.4 Implementation Details

We briefly describe the details of our implementation in this section.

Encoder

The image encoder CNN takes an input image of size 256 × 256 × 3. The last layer

before global pooling in a DenseNet-121 are extracted, which has a dimension of

8×8×1024, and thus K = 64 and dϕ = 1024. Densenet-121 (Iandola et al., 2014) has

been shown to be state-of-the-art in the context of classification for clinical images.

The image features are then projected to d = 256 dimensions with a dropout of

p = 0.5.

Since typically in the X-ray image acquisition we are provided with the view

position indicating the posture of the patient related to the machine, we conveniently

pass this into the model as well. Indicated by a one-hot vector, the view position

embedding is concatenated with the image embedding to form an input to the later

decoders.

Decoder

As previously mentioned, the input image embedding to the LSTM has a dimension of

256, and it is the same for word embeddings and hidden layer sizes. The word embed-

ding matrix is pretrained with Gensim (Rehurek and Sojka, 2010) in an unsupervised

manner.

Training Details

We implement our model on PyTorch (Paszke et al., 2017) and train on 4 GeForce

GTX TITAN X GPUs. All models are first trained with cross-entropy loss with the

Adam (Kingma and Ba, 2014) optimizer using an initial learning rate of 10−3 and

a batch size of 64 for 64 epochs. Other than the weights stated above, the models

are initialized randomly. Learning rates are annealed by 0.5 every 16 epochs and

we increase the probability of feeding back a sample from the posterior p by 0.05
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every 16 epochs. After this bootstrapping stage, we start training with REINFORCE

for another 64 epochs. The initial learning rate for the second stage is 10−5 and is

annealed on the same schedule.

Indicated by Rennie et al. (2017), we adopt CIDEr-D (Vedantam et al., 2015)

metric as the reward module used in rNLG. For the baseline for CCR, we choose a

exponential moving average (EMA) momentum γ = 0.95. A weighting factor λ = 10

has been chosen to balance the scales of the rewards for our full model.

6.4.5 TieNet Re-implementation

Since the implementation for TieNet (Wang et al., 2018) is not released, we re-

implement it with the descriptions provided by the original authors. The re-implementation

details are described in this section.

Overview

TieNet stands for Text-Image Embedding Network. It consists of three main compo-

nents: image encoder, sentence decoder with Attention Network, and Joint Learning

Network. It computes a global attention encoded text embedding using hidden states

from a sentence decoder and saliency weighted global average pooling using attention

maps from the attention network. The two global representations are combined as an

input to the joint learning network. Finally, it outputs the multi-label classification

of thoracic diseases. The end products are automatic report generation for medical

images and classification of thoracic diseases.

Encoder

An image of size 256× 256× 3 is taken by the image encoder CNN as an input. The

last two layers of ResNet-101 (He et al., 2016) are removed since we are not classifying

the image. The final encoding produced has a size of 14×14×2048. We also fine-tune

convolutional blocks conv2 through conv4 of our image encoder during training time.
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Decoder

We also include the view position information by concatenating the view position

embedding with the image embedding to form input. The view position embedding

is indicated by a one-hot vector. At each decoding step, the encoded image and the

previous hidden state with a dropout of p = 0.5 is used to generate weights for each

pixel in the attention network. The previously generated word and the output from

the attention network are fed to the LSTM decoder to generate the next word.

Joint Learning Network

TieNet proposed an additional component to automatically classify and report tho-

racic diseases. The joint learning network takes hidden states and attention maps

from the decoder and computes global representations for report and images, then

combines the result as the input to a fully connected layer to output disease labels.

In the original paper, r indicates the number of attention heads, which we set as

r = 5; s is the hidden size for attention generation, which we set as s = 2000. One key

difference from the original work is that we are classifying the joint embeddings into

CheXpert (Irvin et al., 2019) annotated labels, and hence we have the class count

M = 14. The disease classification cross-entropy loss LC and the teacher-forcing

report generation loss LR are combined as Loverall = αLC + (1 − α)LR, in which

Loverall is the loss for which the network optimizes. However, the value α was not

disclosed in the original work and we use α = 0.85.

Training

We implement TieNet on PyTorch (Paszke et al., 2017) and train on 4 GeForce

GTX TITAN X GPUs. The decoder is trained with cross-entropy loss with the

Adam (Kingma and Ba, 2014) optimizer using an initial learning rate of 10−3 and a

mini-batch size of 32 for 64 epochs. Learning rate for the decoder is decayed by a

factor of 0.2 if there is no improvement of BLEU (Papineni et al., 2002) score on the

development set in 8 consecutive epochs. The joint learning network is trained with

116



sigmoid binary cross-entropy loss with the Adam (Kingma and Ba, 2014) optimizer

using a constant learning rate of 10−3.

Result

Since we are not able to access the original implementation of TieNet and we addi-

tionally inject view position information to the model, we might have small variations

in result between the original paper and our re-implementation. We only compare

the report generation part of TieNet to our model.

6.5 Experiments

6.5.1 Datasets

In this work, we use two chest X-ray/report datasets: MIMIC-CXR (Johnson et al.,

2019) and Open-I (Demner-Fushman et al., 2015).

MIMIC-CXR is the largest radiology dataset to date and consists of 473, 057

chest X-ray images and 206, 563 reports from 63, 478 patients1. Among these images,

240, 780 are of anteroposterior (AP), 101, 379 are of posteroanterior (PA), and 116, 023

are of lateral (LL) views.

Furthermore, we eliminate duplicated radiograph images with adjusted brightness

level or contrast as they are commonly produced for clinical needs, after which we are

left with 327, 281 images and 141, 783 reports. The radiological reports are parsed into

sections, among which we extract the findings section. We then apply tokenization

and keep tokens with at least 5 occurrences in the corpus, resulting in 5, 571 tokens

in total.

Open-I is a public radiography dataset collected by Indiana University with 7, 471

chest X-ray images and 3, 955 reports. The reports are in extended markup language

(XML) format and include pre-parsed sections. We then exclude the entries without

the findings section and are left with 6, 471 images and 3, 336 reports. Tokenization
1This work used an alpha version of MIMIC-CXR instead of the publicly released version where

the images are more standardized and the split into official train/test sets.

117



is done similarly, but due to the relatively small size of the corpus, we keep tokens

with 3 or more occurrences, ending up with 948 tokens.

Both datasets are partitioned by patients into a train/validation/test ratio of

7/1/2 so that there is no patient overlap between sets. Words that are excluded were

replaced by an unknown token, and the word embeddings are pretrained separately

for each dataset.

6.5.2 Evaluation Metrics

To compare with other models including prior state-of-the-art and baselines, we adopt

several different metrics that focus on different aspects ranging from a natural lan-

guage perspective to clinical adequacy.

Automatic LG metrics such as Consensus-Based Image Description Evaluation

(CIDEr-D) (Vedantam et al., 2015), Recall-Oriented Understudy for Gisting Evalua-

tion (ROUGE-L) (Lin, 2004), and Bilingual Evaluation Understudy Score (BLEU) (Pa-

pineni et al., 2002) measure the statistical relation between two text sequences. One

concern with such statistical measures is that with a limited scope from the n-grams

(n up to 4) we are unable to capture disease states, as negations are common in the

medical corpus and oftentimes the negation cue words and disease words can be far

apart in a sentence. As such, we also include medical abnormality detection as a met-

ric. Specifically, we compare the CheXpert (Irvin et al., 2019) labeled annotations

between the generated report and the ground truth report on 14 different categories

related to thoracic diseases and support devices2. We evaluate the accuracy, precision,

and recall for all models.

6.5.3 Models

We compare our methods with state-of-the-art image captioning and medical report

generation models as well as some simple baseline models: (a) 1-NN, in which we
2We decide not to include NegBio (Peng et al., 2018), a previous state-of-the-art disease labeling

system, due to its significant performance gap with CheXpert as reported Irvin et al. (2019) and
Johnson et al. (2019)
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query in the image embedding space for the closest neighbor in the train set using

a test image. The corresponding report of the neighbor is used as the output for

this test image; (b) Show and Tell (S&T) (Vinyals et al., 2015); (c) Show, Attend,

and Tell (SA&T) (Xu et al., 2015); and (d) TieNet (Wang et al., 2018). To allow

comparable results in all models, we slightly modify previous models to also accept

the view position embedding which encodes AP/PA/LL as a one-hot vector to utilize

the extra information available at image acquisition. This includes Show and Tell,

Show, Attend, and Tell, and our re-implementation of TieNet, which is detailed in

Section 6.4.5 because the authors did not release their code.

We observed our model to sometimes repeat the findings multiple times. We

apply post-hoc processing where we remove exact duplicate sentences in the generated

reports. This proves to improve the readability but interestingly slightly degrades

NLG metrics.

Additionally, we perform several ablation studies to inspect the contribution of

various components of our model. In particular, we assess

1. Ours (NLG): Use rNLG only for reinforced learning, as often is the case with

the prior state-of-the-art.

2. Ours (CCR): Use rCCR only and do not care about aligning the natural language

metrics.

3. Ours (full): Consider both rewards as formulated in Section 6.4.3.

In order to provide some context to the metric scores, we also train an unsuper-

vised RNN language model which generates free text without conditioning on input

radiograph images, which we denote as Noise-RNN. All recurrent models, including

prior works and our models, use beam search with a beam size of 4.
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6.6 Results

6.6.1 Quantitative Results

Natural Language Metrics

In Table 6.2 we show the automatic evaluation scores for baseline models, prior works,

and variants of our models on the aforementioned test sets. Ours (NLG), that solely

optimizes CIDEr score, achieves superior performance in terms of natural language

metrics, but its clinical meaningfulness is not significantly above the major class in

which we predict all patients to be disease-free. This phenomenon is common among

all other models that do not consider the clinical alignment between the ground truth

and the generated reports. On the other hand, in our full model, if we consider both

natural language and clinical coherence, we can achieve the highest clinical disease

annotation accuracy while still retaining decently high NLG metrics.

We also conducted the ablation study with the model variant Ours (CCR), where

we use reinforcement learning on only the clinical accuracy. It is clear that we are

unable to achieve higher clinical coherence, though readability might be sacrificed.

We thus conclude that a combination of both NLG metrics and a clinically sensible

objective is crucial in training a useful model in clinical practice.

One thing to note is that although Noise-RNN is not dependent on the image, its

NLG metrics, especially ROUGE, are not far off from models learned with supervision.

We also note that MIMIC-CXR is better for training such an encoder-decoder model

not just for its larger volume of data, but also due to its higher proportion of positive

disease annotations at 16.7% while Open-I only has 5.4%. This discrepancy leads to

a 156 times difference in the number of images from diseased patients.

Clinical Efficacy Metrics

In Table 6.3 we can compare the labels annotated by CheXpert calculated over all test

set generated reports. Note that the labeling process generates a discrete binary label

as opposed to predicting continuous probabilities, and as such we are unable to obtain
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discriminative metrics such as the Area Under the Receiver Operator Characteristic

(AUROC) or the Area Under the Precision-Recall Curve (AUPRC). Precision-wise,

Ours (CCR) achieves the highest overall scores including macro-average and micro-

average. The runner-up is Ours (full) model, which additionally considers language

fluency. Note that the macro- metrics can be quite noisy as the per-class metric can

be dependent on just a few examples. Many entries in the table are zeros, as they

never yield positive predictions and we regard them as zeros to penalize such behavior.

Regarding the recall metric, we are able to see a substantial drop in Ours (CCR) and

Ours (full) as a result of optimizing for accuracy. Accuracy is closely associated with

precision but overpursuing it might lead to harm in terms of recall. It is worthwhile to

notice that the nearest neighbor 1-NN has the highest recall, and this is no surprise

since as shown before (Strobelt et al., 2019), generated sequences tend to follow the

statistics and favor common words too much. Rare combinations of tokens in the

corpus can be easily neglected, resulting in predictions of mostly major classes.

6.6.2 Qualitative Results

Evaluation of Generated Reports

Table 6.4 demonstrates the qualitative results of our full model. In general, our

models are able to generate descriptions that align with the logical flow of reports

written by radiologists, which start from general information (such as views, previous

comparison), positive, then negative findings, with the order of lung, heart, pleura,

and others. TieNet also generates report descriptions with such logical flow but in

slightly different orders. For the negative findings cases, both our model and TieNet

do well on generating reasonable descriptions without significant errors. Regarding

the cases with positive findings, TieNet and our full model both cannot identify all

radiological findings. Our full model is able to identify the major finding in each

demonstrated case. For example, cardiomegaly in the first case, pleural effusion, and

atelectasis in the second case.

A formerly practicing radiologist reviewed a larger subset of our generated reports
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ap upright and lateral views of the chest. there is 
moderate cardiomegaly. there is no pleural effusion
or pneumothorax. there is no acute osseous 
abnormalities.

as compared to the previous radiograph, there is no 
relevant change. tracheostomy tube is in place. 
there is a layering pleural effusions. NAME 
bilateral pleural effusion and compressive atelectasis
at the right base. there is no pneumothorax.

(a) (b)

Figure 6-3: Visualization of the generated report and image attention maps.
Different words are underlined with its corresponding attention map shown in the same
color. Best viewed in color.

manually. They drew several conclusions. First, our full model tends to generate sen-

tences related to pleural effusion, atelectasis, and cardiomegaly correctly—which is

aligned with the clinical finding scores in Table 6.3. TieNet instead misses some posi-

tive findings in such cases. Second, there are significant issues in all generated reports,

regardless of the source model, which include the description of supportive lines and

tubes, as well as lung lesions. For example, TieNet is prone to generate nasogastric

tube mentions while our model tends to mention tracheostomy or endotracheal tube,

and yet both models have difficulty identifying some specific lines such as chest tube

or PICC (peripherally inserted central catheter) line. Similarly, both systems do not

generate the sentence with positive lung parenchymal findings correctly.

From this (small) sample, we are unable to draw a conclusion whether our model or

TieNet truly outperforms the other since both present with significant issues and each

has strengths the other lacks. Critically, neither of them can describe the majority

of the findings in the chest radiograph well, especially for positive cases, even if the

quantitative metrics demonstrate the reasonable performance of the models. This

illustrates that significant progress is still needed in this domain, perhaps building on

the directions we explore here before these techniques could be deployed in a clinical

environment.
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Learning Meaningful Attention Maps

Attention maps have been a useful tool in visualizing what a neural network is attend-

ing to, as demonstrated by Rajpurkar et al. (2017). Figure 6-3 shows the intermediate

attention maps for each word when it is being generated. As we can observe, the model

is able to roughly capture the location of the indicated disease or parts, but we also

find, interestingly, that the attention map tends to be the complement of the actual

region of interest when the disease keywords follow a negation cue word. This might

indicate that the model is actively looking at the rest of the image to ensure it does

not miss any possible symptoms exhibited before asserting disease-free states. This

behavior has not been widely discussed before, partially because attention maps for

negations are not the primary focus of typical image captioning tasks, and most at-

tention mechanisms employed in a clinical context were on classification tasks where

they also do not specifically focus on negations.

6.7 Limitations & Future Work

Our work has several notable limitations and opportunities for future work. First and

foremost, the post-processing step required to remove repeated sentences is an ugly

necessity, and we endeavor to remove it in future iterations of this work. Promising

techniques exist in NLG for the inclusion of greater diversity, which warrant further

investigation here.

Secondly, our model operates using images in isolation, without consideration of

whether these images are part of a series of ordered radiographs for a single patient,

which might be summarized together. Using all available information, potentially

including comorbidities, clinical impressions documented in notes, lab values, medi-

cation history, vital signs, and etc., has the potential to improve the quality of the

generated reports, and should definitely be investigated further.

Lastly, we note that though our model yields very strong performance for CheX-

pert precision, its recall is much worse. Recall versus precision is favored to different

degrees in differing clinical contexts. For example, for screening purpose, recall (sen-
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sitivity) is an ideal metric since the healthy cases usually won’t give positive findings.

However, precision (positive predictive value, PPV) is much more critical for validat-

ing the clinical impression, which is common in an ICU (intensive care unit) setting

where patients receive a radiological study on the basis of strong clinical suspicion.

We believe that our system’s poor recall is a direct result of the setup of our RL

models and the CCR reward, which optimizes for accuracy and inherently boosts pre-

cision. It is the choice of optimization objectives that lead to the results. Depending

on the actual clinical applications, we may, in turn, optimize Recall at Fixed Precision

(R@P) or Fβ score via methods described by Eban et al. (2016).

6.8 Reflections on Trends in the Field

In the course of this work, we also encounter several other larger points which are

present not only in our study but also in many related studies in this domain and

warrant further thought by the community.

6.8.1 System Generalizability

CheXpert used in our models is rule-based, which is harder to generalize to other

datasets and to identify the implicit features inside the language patterns. CheXpert

is also specialized to English and would require considerable work to re-code its rules

for other natural languages. A more universal approach for subsequent research may

use a learning-based approach for labeling to improve generalizability and extend to

corpora in different languages; for example, PadChest in Spanish.

6.8.2 Be Careful What You Wish For

NLG metrics are known to be only limited substitutes for a true assessment of read-

ability (Kilickaya et al., 2016; Liu et al., 2016). For radiology reports more specifically,

this problem is even more profound, as prior works often use readability as a proxy

for clinical efficacy. Additionally, we note that these NLG evaluation metrics are eas-
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ily susceptible to gaming. In our results, our post-processing step of removing exact

duplicates actually worsens our CIDEr score, which is the opposite of what should

be desired for an NLG evaluation metric. Even if our proposed clinical coherence

aims at resolving the unwanted misalignment between NLG and real practice, we are

not able to obviously judge whether our system is better despite its performance on

paper. This fact is especially troubling given the increasing trend of using reinforce-

ment learning (RL) to directly optimize objectives, as has been done in prior work (Li

et al., 2018) and as we do here. Though RL can offer marked improvements in these

automatic metrics, which are currently the best the field can do, how well it trans-

lates to the real clinical efficacy is unclear. The careful design of improved evaluation

metrics, specifically for radiology report generation, should be a prime focus for the

field going forward.

6.9 Summary

In this chapter, we develop a chest X-Ray radiology report generation system which

hierarchically generates topics from images, then words from topics. This structure

gives the model the ability to use largely templated sentences (through the generation

of similar topic vectors) while preserving its freedom to generate diverse text. The

final system is also optimized with reinforcement learning for both readability (via

CIDEr) and clinical correctness (via the novel Clinically Coherent Reward). Our

system outperforms a variety of compelling baseline methods across readability and

clinical efficacy metrics on both MIMIC-CXR and Open-I datasets.

It is not hard to observe that, by adding clinical heuristics to our system when

constructing medical imaging solutions, we are able to achieve a much better model

when evaluated from a clinical perspective. This insight is not surprising but is of-

ten overlooked in the process of modeling, as most AI solutions originate from the

field of natural image/language processing where metrics and objectives are crafted

for human perception of the natural world. Medical machine learning, on the other

hand, holds the ultimate goal of teaching machines about the modern medicine under-
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standing accumulated over the past decades, and is not aligned with simple everyday

perception. Hence, it is very recommended that, during the modeling process, that

AI scientists proactively collaborate with clinicians to allow a better integration of

medical insights.
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Chapter 7

Reinforcement Learning for Weakly

Supervised Dental Imaging Data

The use of deep reinforcement learning (RL) concentrates on the cases where

learning is done with deep learning models on top of non-differentiable targets. Con-

ventionally, in deep learning, the targets to optimize for neural networks are designed

to be differentiable to enable direct computation of gradients with back-propagation

techniques. In some cases, however, the desired optimization targets are not easily

computed, or the annotation provided by the dataset is not directly usable in the

learning scenario in question.

In a medical imaging context, a limited number of prior works (Yang et al., 2019;

Qin et al., 2020; Liao et al., 2020) has explored using RL in their learning pipelines. If

there are alternative annotations, in the form of non-differentiable objectives, provided

in a medical imaging dataset, the machine learning algorithm might be able to leverage

the extra annotation to learn a better model, possibly using RL.

This chapter is adapted from the published article “DeepOPG: Improving Orthopantomogram
Finding Summarization with Weak Supervision” (Hsu and Wang, 2021) to which I have contributed
as the first author.
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7.1 Overview

Clinical finding summaries from an orthopantomogram (OPG), or a dental panoramic

radiograph, have significant potential to improve patient communication and speed

up clinical judgments. While orthopantomogram is a first-line tool for dental exam-

inations, no existing work has explored the summarization of findings from it. A

finding summary has to find teeth in the imaging study and label the teeth with

several types of past treatments. To tackle the problem, we develop DeepOPG that

breaks the summarization process into functional segmentation and tooth localiza-

tion, the latter of which is further refined by a novel dental coherence module. We

also leverage weak supervision labels to improve detection results in a reinforcement

learning scenario. Experiments show high efficacy of DeepOPG on finding summa-

rization, achieving an overall AUC of 88.2% in detecting six types of findings. The

proposed dental coherence and weak supervision are shown to improve DeepOPG by

adding 5.9% and 0.4% to AP@IoU = 0.5.

7.2 Background

An orthopantomogram (OPG), or a dental panoramic radiograph, is a half-circle X-

ray scanning of the oral region that compresses the complicated 3D structures to a

2D representation as shown in Figure 7-1. OPG has many advantages including short

acquisition time and convenience of examination. Moreover, its capability to deliver

rich information about the oral and maxillofacial regions makes it a first-line dental

screening tool (Perschbacher, 2012). With that said, it is this structural complexity

that unavoidably limits the interpretation of OPG to only dental experts (Henzler

et al., 2018). Even for these dental experts, interpretation of findings can suffer

from insufficient inter-rater agreement (Kweon et al., 2018) and low time efficiency

in clinical practices (Plessas et al., 2019; Rozylo-Kalinowska, 2018). As such, an

automatic system to provide finding summaries on the fly can be beneficial in terms

of both patient communication and clinical assistance. The systematically collected
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summaries can further provide an invaluable source for subsequent dental research

and statistical analysis, which the current clinical workflow cannot offer.

There have been attempts to provide information about teeth in radiographs with

convolutional neural networks (CNNs). In Ronneberger et al. (2015a), they offer

pixel-wise segmentation maps that label seven different parts of teeth. Miki et al.

(2017) classifies teeth images into eight categories but requires that the bounding

boxes be manually annotated first. Koch et al. (2019) identifies silhouettes for natural

teeth in OPG with semantic segmentation but treats all teeth as a single connected

region. Silva et al. (2018) and Jader et al. (2018) use a novel OPG dataset and object

detection to treat teeth as individual instances for object detection, yet they both do

not number the teeth. Tuzoff et al. (2019) addresses both detection and numbering,

but fails to include dental implants. Kim et al. (2020) provides detection of teeth,

implant, and crowns but does not associate them with findings. Moreover, the vast

majority of past research relies on annotations on dense attribute maps which is

resource-intensive, and the use of weaker (and faster to collect) supervision has not

been explored.

In this work, we aim to provide a summary of findings in an OPG image, including

all teeth found in the image, their FDI (Fédération Dentaire Internationale) notations,

and all the clinical findings on each. We propose DeepOPG, which breaks the find-

ing summarization process into two sub-tasks: functional segmentation and tooth

localization, the latter of which is further refined at inference-time by maximizing

the novel Dental Coherence Reward (DCR). DCR can also be used by reinforcement

learning (RL) for training-time optimization, leveraging the missing teeth annotation

that are quick for dentists to label as weak supervision. We curate a set of annota-

tions on OPG including semantic segmentation, instance segmentation, and finding

summaries for 298 studies on a dataset in the public domain. Our experiments show

that DeepOPG achieves an overall AUC of 88.2% on finding detection, which is 1.6%

higher than without weak supervision. The tooth/implant localization yields an aver-

age precision at zero intersection-over-union (AP@IoU = 0) of 98.6%, which is 5.6%

higher than without injecting dental domain knowledge and 0.9% higher than without
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feeding in segmentation maps. The numbers demonstrate the effectiveness of each

component of DeepOPG. To our knowledge, this is the first work to explore the sum-

marization of findings in OPG images and to use weak supervision to improve finding

summarization.

7.3 Methods

Our ultimate goal for the DeepOPG system is to generate a finding summary entailing

six different types of findings on each tooth in an OPG. The resulting findings are

formulated as binary attribute labels on the teeth found in the OPG. We decompose

the problem into two main tasks: localizing the objects of interest (in this case,

teeth and implants) and determining the visual features that result in the findings.

Illustrated in Figure 7-1, there are three modules in DeepOPG, and they operate at

original resolutions of the images. This is essential since some findings (e.g., fillings

found in the root canal) are visually tiny, and any down-sampling would result in

a loss of information. We combine the results from both tasks of localization and

function determination to output predictive values for each of the finding types on

individual teeth.

7.3.1 Model Architecture

First of all, the functional segmentation module as shown in Figure 7-1a consumes a

radiographic image as the input and generates a map that shows the dental function-

ality of each pixel. The functional segmentation map and the original image is then

concatenated to go into the tooth localization module in Figure 7-1b that picks out

the individual dental object of interest including teeth and implants. The resulting

detection outcomes are further refined by the dental coherence module where clinical

heuristics are applied to ensure coherence with dental knowledge.
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Functional Segmentation via Semantic Segmentation

Given the input gray-scale image I ∈ RH×W×1, where H and W are the height and

width of the image, we employ a network with an U-Net-like (Ronneberger et al.,

2015a) structure to predict S ∈ RH×W×Cseg , a per-class probability for each pixel

that determines its functional class c ∈ {1, 2, . . . , Cseg}, where Cseg is the number of

classes. In our experiments, Cseg = 7 and includes the following classes for finding

summarization: (1) background, (2) normal (non-impacted) teeth, (3) impaction,

(4) crown & bridge, (5) restoration, (6) root filling material, and (7) implant. Note

that as these classes are mutually exclusive, a ground truth segmentation map Sgt ∈

RH×W×Cseg is one-hot encoded and the activation function of network output is thus

softmax. Specifically, we choose ResNet-50 (He et al., 2016) to be the encoder and

ResNet-18 with transposed convolutions to be the decoder.

Tooth localization via Object Detection

The tooth localization module takes the concatenated image [I, S] ∈ RH×W×(1+Cseg)

and produces N detections, each including a class probability vector pn ∈ RCdet , a re-

gion of interest (ROI) bn ∈ R4, and the class-wise masks Mn ∈ RH×W×Cdet , where Cdet

is the number of classes in detection. Concretely, we adopt Mask-RCNN (He et al.,

2017) that proposes a pool of candidate ROIs with a region proposal network (RPN)

before using a small sub-network to derive the aforementioned detection properties.

As we are interested in not only natural teeth but also dental implants, in total

there are Cdet = 34 classes representing the background, 32 different teeth in perma-

nent dentition, and the implant. Hereafter the natural teeth are annotated using the

FDI World Dental Federation notation as shown in Figure 7-4a.

Inference-Time Dental Coherence Decoding

One major downside of directly using off-the-shelf detection algorithms is that they

mostly consider the detection efficacy of individual objects rather than the conglomer-

ate of several objects. As a result, in pilot experiments, we often observe the detection
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module to output several objects of interest with the same FDI tooth number, which

is highly unlikely in practice. Equally frequently, there are cases where an image

patch can be detected as multiple different classes at the same time, with largely

overlapping masks. Even with existing techniques such as non-maximum suppression

(NMS) that filters out overlapping objects with lower confidence scores, we are only

able to partially resolve the latter problem.

To this end, we propose to look at this problem from an optimization perspective

and decode an assignment E of teeth number to the detected objects by maximizing

the Dental Coherence Reward (DCR) defined as

rDCR (E;P,M) ≡
∑
n,c

pnc · enc −
∑

n,c,m,d

qncmd · enc · emd, (7.1)

subject to
∑

n enc ≤ 1 ∀c ∈ {1, 2, . . . , C} , and enc ∈ {0, 1} ∀c ∈ {1, 2, . . . , C} ∀n ∈

{1, 2, . . . , N} , where pnc = (pn)c is the probability of object n belonging to class c,

qncmd =
(Mn)c∩(Mm)d
(Mn)c∪(Mm)d

is the intersection-over-union (IoU) between masks (Mn)c (the

class-c mask of object n) and (Mm)d, and enc is an indicator whether we assign

tooth c to object n. Note that an object n can be suppressed (i.e., discarded) if∑
c enc = 0. This formulation happens to be the Generalized Quadratic Assignment

Problem (GQAP) (Lee and Ma, 2004) which is extensively studied in optimization

theory and has solvers widely available. Implants are not modified in this module,

and hence C = Cdet − 1 with implants excluded for optimization.

The idea to maximize DCR closely resembles how our dental experts parse an

OPG, where they explain they would (1) identify all minimally overlapping objects

and mentally assign each a number, followed by (2) ensuring that across a single

image, no teeth share the same FDI number (obviously, multiple dental implants can

still present simultaneously). While it is certainly possible in the clinics to observe

the extremely rare cases where two natural teeth overlap on the OPG, oftentimes

highly overlapping masks simply indicate that a tooth is independently recognized by

two RPN proposals.
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Explainable OPG Finding Summary

We assemble the information from the semantic segmentation and the detection out-

puts to derive the finding summary. For each of the teeth or implants, we use its mask

M to select the corresponding regions in the segmentation map S and calculate the

percentage of pixel counts for each functional class c in that area as fc =
∑

i∈M
1[Si=c]
|M | ,

where 1 [·] is the indicator function. The percentage area fc is then used as the predic-

tive value for finding type c on that tooth. Doing so not only allows us to provide an

explainable finding output that dentists can easily interpret, but we also can adjust

the threshold on fc based on our sensitivity/specificity requirements.

7.3.2 Improved Tooth Localization with Weakly Supervised

Reinforcement Learning

The annotation for tooth localization usually requires that the dental experts carefully

outline the silhouettes of each tooth and provide an FDI number for it. This type

of annotation is labor-intensive and is usually not available at most data registries.

What is more likely to be available is a description of whether a tooth is missing or

not in a text report (i.e., egtc ≡
∑

n enc = 1 if the tooth c is present and 0 otherwise).

We hereby are interested to find if weak supervision in the form of tooth missingness

is helpful to train the tooth localization module in a reinforcement learning (RL)

scenario.

We utilize the REINFORCE (Williams, 1992) algorithm where as long as a prob-

ability and a reward are defined for output, the network can learn to maximize the

reward function. The algorithm is effectively a policy gradient method in the RL

space, where the states are the probabilities predicted by the networks, and actions

are the multinomial/binomial sampling. At training time, instead of decoding the

GQAP problem, we sample a one-hot vector ên = [ên1, ên2, . . . , ênC ] ∼ pn from the

class distribution pn for each object n independently. As the random samples might

violate the constraint that each FDI number cannot be taken by multiple teeth (i.e.,

egtc =
∑

n enc > 1), we penalize this situation by setting the reward for extra teeth to
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be negative

p̂nc =

+pnc if tooth c is present and pnc is the largest probability for it

−λpnc otherwise (for extra teeth),
(7.2)

and calculate rDCR

(
Ê; P̂,M

)
on the samples.

Effectively, if we expand the augmented DCR with the sampled teeth,

rDCR

(
Ê; P̂,M

)
=
∑
n,c

p̂nc · ênc −
∑

n,c,m,d

qncmd · ênc · êmd (7.3)

=
∑
n,c

pnc · ênc −
∑

n,c,m,d

qncmd · ênc · êmd

+ λ
∑
c

(
egtc

(
max

c
pncênc

)
−
∑
n

pncênc

)

= rDCR

(
Ê;P,M

)
+ λ

∑
c

(
egtc

(
max

c
pncênc

)
−
∑
n

pncênc

)
,

which can be derived from the vanilla DCR, rDCR

(
Ê; P̂,M

)
.

The loss as given by REINFORCE is thus

∇θLDCR = −EÊ∼pθ(·)

[
rDCR

(
Ê; P̂,M

)
∇θ

∑
n,c

ênc log pnc

]
, (7.4)

where pθ (·) is the distribution characterized by the network. We can approximate

the above gradient with Monte-Carlo samples and average gradients across training

examples in the batch. Different from the aforementioned inference-time decoding,

we can explicitly optimize the network for DCR with reinforcement learning here.

To learn DeepOPG, we employ a multi-stage learning procedure since the RPN

in Mask-RCNN is non-differentiable. First, we train the functional segmentation

module, optimizing the segmentation cross-entropy loss Lseg. Following this, the tooth

localization module learns using the inference-time predicted segmentation maps and

minimizes a loss Ldet as detailed in He et al. (2017). Finally, we fine-tune the tooth

localization module with DCR weak supervision, minimizing the joint loss L = Ldet+
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LDCR, freezing all network layers except for the last.

7.3.3 Training Details

We briefly describe the details of our implementation in this section.

All code implementations are in Tensorflow, run on four NVidia GTX 1080 Ti

GPUs. All model training incorporates augmentations including random brightness,

contrast, affine transformation, elastic transformation, and Gaussian blurring.

Functional Segmentation Module

The U-Net model is trained with cross-entropy loss on the Adam (Kingma and Ba,

2014) optimizer. The learning rate is 10−5, the weight decay is 10−4, and the batch

size is 4. Models are train for 12,000 steps.

Tooth Localization Module

The Mask-RCNN (He et al., 2017) is trained similarly to the original work with the

SGD (stochastic gradient descent) optimizer. The model is first trained with densely

annotated masks only. The learning rate is set to 10−3, the weight decay is 10−4, and

the batch size is 1. Models are trained until 100,000 steps.

In the fine-tuning reinforcement learning step with DCR, we reduce the learning

rate to 10−5 and only train the last network layer. No weight decay is applied, and the

models are trained for another 150,000 steps. From each image, we draw 64 samples

(Ê) from each set of detection output and use the average reward across 64 samples

as the baseline reward.

7.4 Experiments

In this section, we provide validation of individual modules as well as DeepOPG as

a whole. First of all, we present a dataset with novel annotations on segmentation,

detection, and finding summary. We then offer an overview of the finding summa-

rization efficacy for each of the finding types. Following this, we provide an ablation
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study on the tooth localization module including our proposed DCR decoding and

reinforcement learning. Finally, we compare our DeepOPG with existing works under

comparable settings.

7.4.1 Dataset

In this work, we use the UFBA-UESC (Universidade Federal da Bahia – Universidade

Estadual de Santa Cruz) Dental Images Deep dataset (Silva et al., 2018) where there

are 1,500 OPG images in total, 267 out of which are annotated for tooth localization

(implant annotations are not provided in the original data). The OPG images can

be split into four major categories: (1) studies with all permanent dentition present

and no implants, (2) studies with missing teeth and no implants, (3) studies with

implants, and (4) studies with mixed dentition (where primary and permanent teeth

both present). We exclude all studies with mixed dentition and supernumerary teeth

as they are outside the scope of this work.

To enrich the dataset for learning DeepOPG, we ask 3 board-certified dentists

to provide additional annotations including (1) functional segmentation maps on 68

studies, (2) tooth/implant localization maps on 39 studies, (3) tooth/implant miss-

ingness summary (weak supervision, in the form of 32 binary labels per study) on 144

studies, and (4) finding summary (in the form of 32 × 6 binary labels per study) on

47 studies.

To avoid overfitting the data, no study is annotated for two or more annotation

types. It is important to note that segmentation/localization maps take, on aver-

age, 30 minutes to annotate per study, while the teeth missingness information only

takes 30 seconds each. In each stage of DeepOPG learning, data is split into 70/30

training/test randomly, and the finding summary is exclusively used as test data.

141



Table 7.1: AUC Comparisons. We compare the AUCROC for six OPG finding
types for two settings of DeepOPG. See Section 7.4.4 for method descriptions.

Method
AUCROC (%)

Missing
Teeth

Impacted
Teeth

w/Crown
& Bridge

w/Resto-
ration

Root
Filled

Implants Macro
Avg.

DeepOPG (full) 90.6 96.9 86.5 89.3 88.2 77.6 88.2
w/o RL 87.6 96.5 88.2 86.4 82.9 78.1 86.6
Area Threshold
@ max F1

24.2% 34.5% 25.9% 2.70% 0.33% − −

7.4.2 Overall Evaluation of DeepOPG for Findings Summa-

rization

As mentioned before, DeepOPG combines the functional segmentation map and the

tooth localization results by calculating the percentage area of each functional class

for each tooth. Using the percentage area as the predictive value for the binary finding

labels, we are able to evaluate the overall performance of DeepOPG by calculating

the receiver operating characteristic (ROC) curve where we plot the true positive rate

TPR = TP
TP+FN

against the true negative rate TNR = TN
TN+FP

. Note that for a finding

prediction to be TP, it not only has to have enough pixels of that finding in the tooth,

but the tooth number itself has to be correctly detected.

The ROC curves for the six types of findings are shown in detail in Figure 7-2. We

can calculate the area under curve (AUC) for each of the findings as summarized in

Table 7.1. In the table, we also compare a setting where the RL with DCR is disabled.

It is clear that the weak supervisions with RL can improve the finding summarization.

Of the six findings, impacted teeth with an AUC of 96.9% is the easiest task, possibly

because it is a large object and that is often found at fixed locations such as the

wisdom teeth. We also show, on the last row, the threshold on the percentage area

at the operating point with the largest F1 = 2×TP
2×TP+FN+FP

. It is interesting to see that

root-filled teeth only require 0.33% of the area to be finding-positive while impacted

teeth require 34.5% of the tooth to be labeled impacted.

To highlight the usefulness of weak supervision, the “w/o RL” model (86.6% AUC)

trains with 273 per-pixel annotations which take 136 expert hours to prepare. The
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Figure 7-3: Evaluation of the Functional Segmentation Module. The IoU
between the predicted segmentation and the ground truth segmentation are shown
per class. Standard deviation is also labeled.

“DeepOPG (full)” model adds 100 weak supervision annotations which only take an

additional 0.8 expert hours, but a gain of 1.6% overall AUC. This demonstrates weak

supervision is effective in boosting AUC while requiring substantially less expert effort

(<1% extra time) than per-pixel annotations.

7.4.3 Functional Segmentation

The macro-averaged intersection-over-union (IoU) is evaluated in Figure 7-3 for the

seven classes in the functional segmentation module. It is interesting to see the

labels with the least positive samples (root filling and restoration) to have the lowest

metrics. In terms of performance stability, normal teeth segmentation retains the

lowest standard deviation in IoU, as teeth are commonly presented in all studies.

As a side note, IoU, by mathematical definition, is always smaller than the Dice

coefficient.
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Table 7.2: Comparisons of Detection Metrics. We show detection metrics for
various settings of DeepOPG. We report the metric values and their standard errors.
APx denotes AP@IoU = x. See Section 7.4.4 for method descriptions.

Method
Per-Object Per-Image

AP0.0 (%) AP0.5 (%) DA (%) FA (%) IoU (%)

DeepOPG (full) 98.60.1 97.60.3 98.70.4 97.50.6 80.51.5

w/o RL 98.40.1 97.20.4 98.70.4 97.50.6 80.11.5
w/o RL and
dental coherence

93.00.1 91.30.4 93.70.9 87.41.2 79.71.6

w/o segmentation 97.70.1 96.20.3 97.90.5 95.70.8 80.21.5

7.4.4 Tooth Localization with Dental Coherence

To verify the efficacy of the proposed modifications to the off-the-shelf object detection

networks, we perform several ablation studies to inspect the contribution of these

modifications. In particular, we assess

1. DeepOPG (full): We enable all model features, including feeding segmenta-

tion maps as the input for the tooth localization, using dental coherence module

at inference, and training the model with reinforcement learning.

2. w/o RL: All model features, except training with RL.

3. w/o RL and dental coherence: We remove both the dental coherence mod-

ule and the reinforcement learning components.

4. w/o segmentation: Segmentation maps are not fed into the tooth localization

module in this case.

Metrics

The performance of different models are compared using various metrics, including

the commonly used average precision (AP) defined in PASCAL Visual Object Classes

(PASCAL VOC) (Everingham et al., 2010) for detection tasks, the detection accuracy

DA ≡ TP+FN
TP+FN+FP

and identification accuracy FA ≡ TP
TP+FN+FP

(Cui et al., 2019). On

a per-image level, we evaluate the intersection over union as IoU ≡
∑

n Mn∩Mgt
n∑

n Mn∪Mgt
n

.
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In Table 7.2, we observe consistent gains in performance across all metrics when we

incorporate different proposed features. Most notably, the dental coherence module

constitutes most of the gains, providing +5.6% in AP@IoU = 0.0 and +5.0% in

DA. Using segmentation maps also provides +0.9% gain in AP@IoU = 0.0 since

segmentation maps carry more global information by nature. The weak supervision,

while seemingly providing less compelling improvements, is, in fact, remarkable as

annotating the teeth missingness summary is faster than annotating the localization

maps by orders of magnitudes.

Figure 7-4 showcases localization results on a test image with three different config-

urations. This study contains a maloccluded tooth, on which all three configurations

predict incorrectly. It is also worth noting that by removing the segmentation in-

put, the localization depends totally on the input OPG and can be over-sensitive, as

indicated by red arrows in Figure 7-4f.

7.4.5 Comparing Existing Works

Comparison of model performances across works suffers from not only dataset differ-

ences but also clinical task differences. While we are unable to obtain proprietary

datasets from previous works for evaluation, we can set up DeepOPG to similar set-

tings to allow fairer comparisons. For example, in Table 7.3, Wirtz et al. (2018) and

Jader et al. (2018) tackled teeth-only segmentation, and hence we ignore error result-

ing from classes other than the teeth and the background in our segmentation module

for a fair comparison. Tuzoff et al. (2019) and Kim et al. (2020) addressed detection

of natural teeth and implants, and thus we compare only detection results. Across

all tasks except for precision in tooth segmentation, we are able to show superior

performance.

Finally, for the missing teeth finding summary, Kim et al. (2020) reached a sen-

sitivity of 75.5% and a precision of 84.5% at a specificity of 80.4%. Under the same

specificity, we have a sensitivity of 94.3% and a precision of 96.4%.
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7.5 Summary

In this chapter, we provide an initial study, showing the possibilities to summarize

findings for individual teeth from an orthopantomogram. By dividing the summa-

rization process into two tasks: semantic segmentation and object detection, we can

leverage weaker but faster-to-collect annotations to improve the detection model with

reinforcement learning. The experiments demonstrate the efficacy of each module in

the DeepOPG system.

In a scenario where conventional annotations are not sufficient, we have shown

there may be alternate ways to leverage exotic annotation types. This trait is unique

to medical imaging as the perception of disease progression or findings are inherently

different from natural visual perception. Moreover, conventional annotations, while

suitable and economical to obtain in natural imaging problems, might be infeasible

in medical imaging settings. We hope to point the way for future works in this line

and encourage both dental imaging research and the use of creative and effective

annotations in constrained imaging data.
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Chapter 8

Federated Learning for

Heterogeneous Visual

Classification

While all previous chapters discuss learning with limited data within a local data

registry or leveraging external public data for better learning, federated learning

(FL) (McMahan et al., 2017) is an emerging paradigm for multiple medical institutions

to collaboratively learn models better than separately learned models. Essentially, the

learning process consists of (a) participating clients receiving the latest model from

the server, (b) the clients training the model with locally available data, (c) the clients

sending the model gradients back to a server without revealing their data, and finally

(d) the server aggregating the gradients to update the model. FL is naturally suitable

for medical data due to their inherently private nature, and some works (Sheller et al.,

2018; Li et al., 2019b; Sheller et al., 2020; Feki et al., 2021; Zhang et al., 2021b; Dou

et al., 2021; Abdul Salam et al., 2021; Lee et al., 2021b) have already explored FL in

a medical imaging setting.

This chapter is adapted from the published articles “Measuring the Effects of Non-Identical Data
Distribution for Federated Visual Classification” (Hsu et al., 2019) and “Federated Visual Classifica-
tion with Real-World Data Distribution” (Hsu et al., 2020) to both of which I have contributed as
the first author.
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While FL appears to be a great instrument when single institutions hold limited

data, it remains a question of how various levels of data heterogeneity affect the

training process. To fully understand the impact of data heterogeneity, we started

with natural image classification as a proxy and curated one smaller (Krizhevsky et al.,

2009) and two large-scale real-world datasets (Van Horn et al., 2018; Weyand et al.,

2020b) specifically for FL. We benchmarked classic FL algorithms under a spectrum

of data heterogeneity, and proposed improvements to resolve commonly observed FL

challenges. The comparisons are made over a range of parameter grids to offer an

in-depth insight, focusing on not only the final classification accuracy but also the

convergence speed.

It is imperative that we derive sufficient insight from real-world datasets before

proceeding to apply FL to many other medical applications, as more often than not,

we are blind to the global distribution of the overall data from all federated parties.

8.1 Overview

Federated learning enables visual models to be trained on-device, bringing advantages

for user privacy (data need never leave the device), but challenges in terms of data

diversity and quality. Whilst typical models in the datacenter are trained using

data that are independent and identically distributed (IID) with distributed learning,

data at source are typically far from IID. Furthermore, differing quantities of data are

typically available at each device (imbalance). In this study, we characterize the effect

these real-world data distributions have on distributed learning, using as a benchmark

the standard Federated Averaging (FedAvg) algorithm. To do so, we introduce two

new large-scale datasets for species and landmark classification, with realistic per-user

data splits that simulate real-world edge learning scenarios. We also develop two new

algorithms (FedVC, FedIR) that intelligently resample and reweight over the client

pool, bringing large improvements in accuracy and stability in training. The datasets

are made available online.
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8.2 Background

Federated learning (FL) is a privacy-preserving framework, introduced both with con-

ventional learning algorithms (Li et al., 2016b; Lu et al., 2015; Meeker et al., 2015;

Ohno-Machado et al., 2014) and deep learning McMahan et al. (2017), for training

models from decentralized user data residing on devices at the edge. Models are

trained iteratively across many federated rounds. For each round, every participating

device (“client”), receives an initial model from a central server, performs stochastic

gradient descent (SGD) on its local training data and sends back the gradients. The

server then aggregates all gradients from the participating clients and updates the

starting model. FL preserves user privacy in that the raw data used for training

models never leave the devices throughout the process. In addition, differential pri-

vacy (McMahan et al., 2018) can be applied for a theoretically bounded guarantee

that no information about individuals can be derived from the aggregated values on

the central server.

Federated learning is an active area of research with a number of open questions (Li

et al., 2019a; Kairouz et al., 2019) remaining to be answered. A particular challenge

is the distribution of data at user devices. Whilst in centralized training, data can

be assumed to be independent and identically distributed (IID), this assumption

is unlikely to hold in federated settings. Decentralized training data on end-user

devices will vary due to user-specific habits, preferences, geographic locations, etc.

Furthermore, in contrast to the streamed batches from a central data store in the

data center, devices participating in an FL round will have differing amounts of data

available for training.

In this work, we study the effect these heterogeneous client data distributions

have on learning visual models in a federated setting, and propose novel techniques

for more effective and efficient federated learning. We focus in particular on two types

of distribution shift: Non-Identical Class Distribution, meaning that the distribution

of visual classes at each device is different, and Imbalanced Client Sizes, meaning that

the number of data available for training at each device varies. Our key contributions
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are:

• We analyze the effect of learning with per-user data in real-world datasets, in

addition to carefully controlled setups with parametric (Dirichlet) and natural

(geographic) distributions.

• We propose two new algorithms to mitigate per-client distribution shift and

imbalance, substantially improving classification accuracy and stability.

• We provide new large-scale datasets with per-user data for two classification

problems (natural world and landmark recognition) to the community.

This study is the first to our knowledge that attempts to train large-scale visual

classification models for real-world problems in a federated setting. We expect that

more is to be done to achieve robust performance in this and related settings, and

are making our datasets available to the community to enable future research in this

area.

8.3 Related Work

8.3.1 Synthetic Client Data

Several authors have explored the FedAvg algorithm on synthetic non-identical client

data partitions generated from image classification datasets. McMahan et al. (2017)

synthesize pathological non-identical user splits from the MNIST (Modified National

Institute of Standards and Technology) dataset, sorting training examples by class

labels and partitioning into shards such that each client is assigned 2 shards. They

demonstrate that FedAvg on non-identical clients still converges to 99% accuracy,

though taking more rounds than identically distributed clients. In a similar sort-and-

partition manner, Zhao et al. (2018) and Sattler et al. (2019) use extreme partitions

of the CIFAR-10 dataset to form a population consisting of 10 clients in total. In

contrast to these pathological data splits, Yurochkin et al. (2019) and Hsu et al. (2019)

synthesize more diverse non-identical datasets with Dirichlet priors.
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8.3.2 Realistic Datasets

Other authors look at more realistic data distributions at the client. For example,

Caldas et al. (2018) use the Extended MNIST dataset (Cohen et al., 2017) split over

the writers of the digits and the CelebA dataset (Liu et al., 2015) split by the celebrity

on the picture. The Shakespeare and Stack Overflow datasets (Google, 2019b) contain

natural per-user splits of textual data using roles and online user ids, respectively. Luo

et al. (2019) propose a dataset containing 900 images from 26 street-level cameras,

which they use to train object detectors. These datasets are however limited in size,

and are not representative of data captured on user devices in a federated learning

context. Our work aims to address these limitations (see Section 8.5).

Variance reduction methods have been used in the federated learning literature

to correct for the distribution shift caused by heterogeneous client data. Sahu et al.

(2018) introduce a proximal term to client objectives for bounded variance. Karim-

ireddy et al. (2019) propose to use control variates for correcting client gradient update

drift in different communication rounds. Importance sampling is a classic technique

for variance reduction in Monte Carlo methods (Kahn and Marshall, 1953; Hester-

berg, 1995) and has been used widely in domain adaption literature for countering

covariate and target shift (Saerens et al., 2002; Zhang et al., 2013; Ngiam et al., 2018).

In this work, we adopt a similar idea of importance reweighting in a novel federated

setting resulting in augmented client objectives. Different from the classic setting

where samples are drawn from one proposal distribution which has the same support

as the target, heterogeneous federated clients form multiple proposal distributions,

each of which has partially common support with the target.

8.4 Federated Visual Classification Problems

Many problems in visual classification involve data that vary around the globe (Do-

ersch et al., 2015; Hays and Efros, 2008). This means that the distribution of data

visible to a given user device will vary, sometimes substantially. For example, user

observations in the citizen scientist app iNaturalist will depend on the underlying
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Figure 8-1: iNaturalist Species Distribution. Visualized here are the distributions
of Douglas-Fir and Red Maple in the continental US within iNaturalist. In a federated
learning context, visual categories vary with location, and users in different locations
will have very different training data distributions.

species distribution in that region (see Figure 8-1). Many other factors could poten-

tially influence the data present on a device, including the interests of the user, their

photography habits, etc. For this study we choose two problems with an underly-

ing geographic variation to illustrate the general problem of non-identical user data,

Natural Species Classification and Landmark Recognition.

8.4.1 Natural Species Classification

We create a dataset and classification problem based on the iNaturalist 2017 Chal-

lenge (Van Horn et al., 2018), where images are contributed by a community of citizen

scientists around the globe. Domain experts take pictures of natural species and pro-

vide annotations during field trips. Fine-grained visual classifiers could potentially

be trained in a federated fashion with this community of citizen scientists without

transferring images.

8.4.2 Landmark Recognition

We study the problem of visual landmark recognition based on the 2019 Landmark

Recognition Challenge (Weyand et al., 2020a), where the images are taken and up-

loaded by Wikipedia contributors. It resembles a scenario where smartphone users

take photos of natural and architectural landmarks (e.g., famous buildings, monu-

ments, mountains, and etc.) while traveling. Landmark recognition models could

potentially be trained via federated learning without uploading or storing private
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user photos at a centralized party.

Both datasets have data partitioning per user, enabling us to study a realistic

federated learning scenario where labeled images were provided by the user and learn-

ing proceeds on-device. For experimentation in lab, we use a simulation engine for

federated learning algorithms, similar to TensorFlow Federated (Google, 2019a).

8.5 Datasets

In the following section, we describe in detail the datasets we develop and analyze

key distributional statistics as a function of user and geo-location. We have made

these datasets available to the community1.

8.5.1 iNaturalist-User-120k and iNaturalist-Geo Splits

iNaturalist-2017 (Van Horn et al., 2018) is a large scale fine-grained visual classifi-

cation dataset comprised of images of natural species taken by citizen scientists. It

has 579,184 training examples and 95,986 test examples covering over 5,000 classes.

Images in this dataset are each associated with a fine-grained species label, a longitude-

latitude coordinate where the picture was originally taken, and authorship informa-

tion.

The iNaturalist-2017 training set has a very long-tailed distribution over classes

as shown in Figure 8-2a, while the test set is relatively uniform over classes. While

studying learning robustly with differing training and test distributions is a topic for

research (Van Horn and Perona, 2017) in itself, in our federated learning benchmark,

we create class-balanced training and test sets with uniform distributions. This al-

lows us to focus on distribution variations and imbalance at the client level, without

correcting for overall domain shift between training and test sets.

To equalize the number of examples across classes, we first sort all class labels

by their count and truncate tail classes with less than 100 training examples. This
1https://github.com/google-research/google-research/tree/master/federated_

vision_datasets
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is then followed by subsampling per-class until all remaining classes each have 100

examples. This results in a balanced training set consisting of 1,203 classes and

120,300 examples. We use this class-balanced iNaturalist subset for the remainder of

the study.

The iNaturalist-2017 dataset includes user ids, which we use to partition the

balanced training set into a population of 9,275 clients. We refer to this partitioning

as iNaturalist-User-120k. This contributor partitioning resembles a realistic scenario

where images are collected per-user.

In addition, to study the federated learning algorithms with client populations of

varying levels of deviation from the global distribution, we also generate a wide range

of populations by partitioning the dataset at varying levels of granularity according

to the geographic locations.

To utilize the geo-location tags, we leverage the S2 grid system, which defines a

hierarchical partitioning of the planet surface. We perform an adaptive partitioning

similar to (Weyand et al., 2016). Specifically, every S2 cell is recursively subdivided

into four finer-level cells until no single cell contains more than Nmax examples. Cells

ending up with less than Nmin examples are discarded. With this scheme, we are able

to control the granularity of the resulting S2 cells such that a smaller Nmax results in

a larger client count. We use Nmax ∈ {30k, 3k, 1k, 100}, Nmin = 0.01Nmax and refer

to the resulting data partitionings as iNaturalist-Geo-{30k, 3k, 1k, 100}, respectively.

Rank statistics of our geo- and per-user data splits are shown in Figures 8-2b and 8-2c.

8.5.2 Landmarks-User-160k

Google Landmarks Dataset V2 (GLD-v2) (Weyand et al., 2020a) is a large scale image

dataset for landmark recognition and retrieval, consisting of 5 million images with

each attributed to one of over 280,000 authors. The full dataset is noisy: images

with the same label could depict landmark exteriors, historical artifacts, paintings or

sculptures inside a building. For benchmarking federated learning algorithms on a

well-defined image classification problem, we use the cleaned subset (GLD-v2-clean),

which is a half the size of the full dataset. In this set, images are discarded if their
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computed local geometric features cannot be matched to at least two other images

with the same label (Ozaki and Yokoo, 2019).

For creating a dataset for federated learning with natural user identities, we par-

tition the GLD-v2-clean subset according to the authorship attribute. In addition,

we mitigate the long tail while maintaining realism by requiring every landmark to

have at least 30 images and be visited by at least 10 users, meanwhile requiring every

user to have contributed at least 30 images that depict 5 or more landmarks. The

resulting dataset has 164,172 images of 2,028 landmarks from 1,262 users, which we

refer to as the train split of Landmarks-User-160k.

Following the dataset curation in Weyand et al. (2020a), the test split is created

from the leftover images in GLD-v2-clean whose authors do not overlap with those

in the train split. The test split contains 19,526 images and is well-balanced among

classes. 1,835 of the landmarks have exactly 10 test images, and there is a short tail

for the rest of the landmarks due to insufficient samples (Figure 8-3).

8.5.3 CIFAR-10/100

Synthetic Clients with Dirichlet Prior

To generate non-identical client datasets from CIFAR-10 and CIFAR-100 (Krizhevsky

et al., 2009) datasets, we partition each into 100 clients, with 500 training examples

each. We assume every client k has their data independently drawn from the original

dataset according to a multinomial distribution qk (·) of C classes (qk (y) ≥ 0 and∑
y qk (y) = 1).

To synthesize a population of non-identical clients, we draw a multinomial qk ∼

Dir (αp) from a Dirichlet distribution, where p describes a prior class distribution over

C classes, and α > 0 is a parameter controlling the concentration, or identicalness

among all clients. α can be used to control the overall homogeneity: α→∞ generates

clients that are all identical to the prior p, while α → 0 generates clients that tend

to hold very sparse labels. After drawing the class distributions qk, for every client

k, we sample training examples from CIFAR-10/100 for each class according to qk
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without replacement. This is to ensure there are no overlapping examples between

any two clients.

Note that by drawing examples without replacement, towards the end of the

assignment process, some subset S of classes can be exhausted earlier than other

classes, ending up with a shorter list of available classes from which the client synthesis

procedure can continue drawing samples. When this happens, we eliminate S and

enforce the remaining clients to only sample from classes {1, 2, . . . , C} \ S with a

multinomial distribution

q̃k (y) =

0, y ∈ S

qk (y) /
(
1−

∑
s∈S qk (s)

)
, y /∈ S.

(8.1)

For CIFAR-10, we use α ∈ {100, 10, 1, 0.5, 0.2, 0.1, 0.05, 0}; for CIFAR-100 we

use α ∈ {1000, 100, 10, 5, 2, 1, 0.5, 0}. Figure 8-4 illustrates populations drawn

from the Dirichlet distribution with different concentration parameters. Summary

statistics showing the class count over the client population in both datasets is given

in Figure 8-5.

8.6 Methods

The datasets described above contain significant distribution variations among clients,

which presents considerable challenges for efficient federated learning (Li et al., 2019a;

Kairouz et al., 2019). In the following, we describe our baseline approach of Federated

Averaging algorithm (FedAvg) (Section 8.6.1) and two new algorithms intended to

specifically address the non-identical class distributions and imbalanced client sizes

present in the data (Sections 8.6.2 and 8.6.3 respectively).

8.6.1 Federated Averaging and Server Momentum

A standard algorithm (McMahan et al., 2017) for FL, and the baseline approach used

in this work, is Federated Averaging (FedAvg). See Algorithm 1. For every federated
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Algorithm 1: A high-level overview of federated learning algorithms: Fe-
dAvg, FedAvgM, FedIR, and FedVC. Note that they share a similar stucture
except otherwise annotated.

Server training loop: ;
Initialize θ0 ;
for each round t = 0, 1, . . . do

Subset of K clients ← SelectClients(K) ;
for each client k = 1, 2, . . . , K do in parallel

∆θk
t ← ClientUpdate(k, θt) ;

end
ḡt ← AggregateClient({∆θk

t }Kk=1) ;
θt+1 ← θt − γḡt ; ▷ θt+1 ← θt − γvt, where vt ← βvt−1 + ḡt

end
SelectClients(K):

return K clients sampled uniformly ; ▷ with probability ∝ ni for
client i

ClientUpdate(k, θt):
θ ← θt ;
for each local mini-batch b over E epochs do ▷ over S steps

θ ← θ − η∇L(b;θ) ; ▷ ∇L̃(b;θ) in Eq.8.4
end
return ∆θ ← θt − θ to server

AggregateClient({∆θk
t }Kk=1):

return
∑K

k=1
nk

n
∆θk

t , where n =
∑K

k=1 nk ; ▷ 1
K

∑K
k=1 ∆θk

t

round, K clients (the report goal) are randomly selected with uniform probability from

a pool of active clients. Selected clients, indexed by k, download the same starting

model θt from a central server and perform local SGD optimization, minimizing

an empirical loss L(b) over local mini-batches b with learning rate η, for E epochs

before sending the accumulated model update ∆θk
t back to the server. The server

then averages the updates from the reporting clients ḡt =
∑K

k=1
nk

n
∆θk

t with weights

proportional to the sizes of clients’ local data and finishes the federated round by

applying aggregated updates to the starting model θt+1 ← θt − γḡt, where γ is the

server learning rate. Given this framework, alternative optimizers can be applied.

FedAvgM (Hsu et al., 2019) has been shown to improve robustness to non-identically

distributed client data. It uses a momentum optimizer on the server with the update

rule θt+1 ← θt − γvt, where vt ← βvt−1 + ḡt is the exponentially weighted moving
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average of the model updates with powers of β.

8.6.2 Importance Reweighted Client Objectives

Now we address the non-identical class distribution shift in federated clients. Impor-

tance reweighting is commonly used for learning from datasets distributed differently

from a target distribution. Given that the distribution variation among clients is an

inherent characteristic of FL, we propose the following scheme.

Consider a target distribution p(x, y) of images x and class labels y on which a

model is supposed to perform well (e.g., a validation dataset known to the central

server), and a predefined loss function ℓ(x, y). The objective of learning is to minimize

the expected loss Ep[ℓ(x, y)] with respect to the target distribution p. SGD in the

centralized setting achieves this by minimizing an empirical loss on mini-batches of

IID training examples from the same distribution, which are absent in the federated

setting. Instead, training examples on a federated client k are sampled from a client-

specific distribution qk(x, y). This implies that the empirical loss being optimized on

every client is a biased estimator of the loss with respect to the target distribution,

since Eqk [ℓ(x, y)] ̸= Ep[ℓ(x, y)].

We propose an importance reweighting scheme, denoted FedIR, that applies im-

portance weights wk(x, y) to every client’s local objective as ℓ̃(x, y) = ℓ(x, y)wk(x, y),

where wk(x, y) =
p(x,y)
qk(x,y)

. With the importance weights in place, an unbiased estimator

of loss with respect to the target distribution can be obtained using training examples

from the client distribution

Ep [ℓ(x, y)] =
∑
x,y

ℓ(x, y)p(x, y)

qk(x, y)
qk(x, y) = Eqk

[
ℓ(x, y)

p(x, y)

qk(x, y)

]
. (8.2)

Assuming that all clients share the same conditional distribution of images given

a class label as the target, i.e., p(x|y) ≈ qk(x|y) ∀k, the importance weights can be

computed on every client directly from the class probability ratio

wk(x, y) =
p(x, y)

qk(x, y)
=

p(y)p(x|y)
qk(y)qk(x|y)

≈ p(y)

qk(y)
. (8.3)
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Note that this computation does not sabotage the privacy-preserving property of

federated learning. The denominator qk(y) is private information available locally

at and never leaves client k, whereas the numerator p(y) does not contain private

information about clients and can be transmitted from the central server with minimal

communication cost: C scalars in total for C classes.

Since scaling the loss also changes the effective learning rate in the SGD opti-

mization, in practice, we use self-normalized weights when computing loss over a

mini-batch b as

L̃(b) =

∑
(x,y)∈b ℓ(x, y)wk(x, y)∑

(x,y)∈b wk(x, y)
. (8.4)

This corresponds to the self-normalized importance sampling in the statistics litera-

ture (Hesterberg, 1995). FedIR does not change server optimization loops and can be

applied together with other methods, such as FedAvgM. See Algorithm 1.

8.6.3 Splitting Imbalanced Clients with Virtual Clients

The number of training examples in users’ devices vary in the real world. Imbalanced

clients can cause challenges for both optimization and engineering practice. Previous

empirical studies (McMahan et al., 2017; Hsu et al., 2019) suggest that the number

of local epochs E at every client has crucial effects on the convergence of FedAvg. A

larger E implies more optimization steps towards local objectives being taken, which

leads to slow convergence or divergence due to increased variance. Imbalanced clients

suffer from this optimization challenge even when E is small. Specifically, a client with

a large number of training examples takes significantly more local optimization steps

than another with fewer training examples. This difference in steps is proportional

to the difference in the number of training examples. In addition, a client with an

overly large training dataset will take a long time to compute updates, creating a

bottleneck in the federated learning round. Such clients would be abandoned by a FL

production system in practice, if failing to report back to the central server within a

certain time window (Bonawitz et al., 2019).

We hence propose a new Virtual Client (FedVC) scheme to overcome both issues.
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The idea is to conceptually split large clients into multiple smaller ones, and repeat

small clients multiple times such that all virtual clients are of similar sizes. To realize

this, we fix the number of training examples used for a federated learning round to

be NVC for every client, resulting in exactly S = NVC/B optimization steps taken at

every client given a mini-batch size B. Concretely, consider a client k with a local

dataset Dk with size nk = |Dk|. A random subset consisting of NVC examples is

uniformly resampled from Dk for every round the client is selected. This resampling

is conducted without replacement when nk ≥ NVC; with replacement otherwise. In

addition, to avoid underutilizing training examples from large clients, the probability

that any client is selected for a round is set to be proportional to the client size nk,

in contrast to uniform as in FedAvg. Key changes are outlined in Algorithm 1. It is

clear that FedVC is equivalent to FedAvg when all clients are of the same size.

8.6.4 Implementation Details

We use MobileNetV2 (Sandler et al., 2018) pre-trained on ImageNet (Deng et al., 2009)

for both iNaturalist and Landmarks experiments; for the latter, a 64-dimensional

bottleneck layer between the 1280-dimensional features and the softmax classifier. We

replaced BatchNorm with GroupNorm (Wu and He, 2018) due to its superior stability

for FL tasks (Hsieh et al., 2019). During training, the image is randomly cropped

then resized to a target input size of 299×299 (iNaturalist) or 224×224 (Landmarks)

with scale and aspect ratio augmentation similar to Szegedy et al. (2015). A weight

decay of 4× 10−5 is applied. For CIFAR-10/100 experiments, we use a CNN similar

to LeNet-5 (LeCun et al., 1998) which has two 5×5, 64-channel convolution layers,

each precedes a 2×2 max-pooling layer, followed by two fully-connected layers with

384 and 192 channels respectively and finally a softmax linear classifier. This model

is not the state-of-the-art on the CIFAR datasets, but is sufficient to show the relative

performance for our investigation. Weight decay is set to 4× 10−4. Unless otherwise

stated, we use a learning rate of 0.01 and momentum of 0.9 in FedAvgM, kept constant

without decay for simplicity. The client batch size is 32 in Landmarks and 64 for

others.
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Table 8.1: Training Dataset Statistics. Note that while CIFAR-10/100 and iNat-
uralist datasets each have different partitionings with different levels of identicalness,
the underlying data pool is unchanged and thus sharing the same centralized learning
baselines.

Dataset
Clients Classes Examples

Centralized
AccuracyCount Size

Imbalance
Count Count

Synthetic
CIFAR-10 100 7 10 50,000 86.16%
CIFAR-100 100 7 100 50,000 55.21%
iNaturalist Geo Splits 11 to 3606 3 1,203 120,300 57.90%

Real-World
iNaturalist-User-120k 9,275 3 1,203 120,300 57.90%
Landmarks-User-160k 1,262 3 2,028 164,172 67.05%

8.7 Experiments

We now present an empirical study using the datasets and methods of Sections 8.5

and 8.6. We start by analyzing the classification performance as a function of non-

identical data distribution (Section 8.7.1), using the CIFAR10/100 datasets. Next

we show how Importance Reweighting can improve performance in the more non-

identical cases (Section 8.7.2). With real user data, where clients are also imbalanced,

we show how this can be mitigated with Federated Virtual Clients in Section 8.6.3.

Finally we present a set of benchmark results with the per-user splits of iNaturalist

and Landmark datasets (Section 8.7.4). A summary of the datasets used is provided

in Table 8.1. Implementation details are deferred to Section 8.6.4.

Metrics

When using the same dataset, the performance of a model trained with federated

learning algorithms is inherently upper bounded by that of a model trained in the cen-

tralized fashion. We evaluate the relative accuracy, defined as Accfederated/Acccentralized,

and compare this metric under different types of budgets. The centralized training

baseline uses the same configurations and hyperparameters for a fair comparison.
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Figure 8-7: Comparing Base Methods with and without FedIR. Accuracy
shown at 2.5k communication rounds. Centralized learning accuracy marked with
dashed lines.

8.7.1 Classification Accuracy vs Distribution Non-Identicalness

Our experiments use CIFAR10/100 datasets to characterize classification accuracy

with a continuous range of distribution non-identicalness. We follow the protocol

described by Hsu et al. (2019) such that the class distribution of every client is

sampled from a Dirichlet distribution with varying concentration parameter α.

We measure distribution non-identicalness using an average Earthmover’s Dis-

tance (EMD) metric. Specifically, we take the discrete class distribution qi for every

client, and define the population’s class distribution as p =
∑

i
ni

n
qi, where n =

∑
i ni

counts training samples from all clients. The non-identicalness of a dataset is then

computed as the weighted average of distances between clients and the population:∑
i
ni

n
Dist (qi,p). Dist (·, ·) is a distance metric between two distributions, for which

we, in particular, use EMD (q,p) ≡ ∥q − p∥1, bounded between [0, 2].

Figures 8-6a and 8-6b show the trend in classification accuracy as a function of

distribution non-identicalness (average EMD difference). We are able to approach

centralized learning accuracy with data on the identical end. A substantial drop

around an EMD of 1.7 to 2.0 is observed in both datasets. Applying momentum

on the server, FedAvgM significantly improves the convergence under heterogeneity

conditions for all datasets. Using more clients per round (larger report goal K) is

also beneficial for training but has diminishing returns.
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8.7.2 Importance Reweighting

Importance Reweighting is proposed for addressing the per-client distribution shift.

We evaluate FedIR with both FedAvg and FedAvgM on both two datasets with natural

user splits: iNaturalist-User-120k and Landmarks-User-160k.

For Landmarks, we experiment with two different training schemes: (a) fine-tuning

the entire network (all layers) end to end, (b) only training the last two layers while

freezing the network backbone. We set the local epochs to E = 5 and experiment

with report goals K = {10, 50, 100}, respectively.

The result in Figure 8-7 shows a consistent improvement on the Landmarks-User-

160k dataset over the FedAvg baseline. While FedAvgM gives the most significant

improvements in all runs, FedIR further improves the convergence speed and accuracy,

especially when the report goal is small (Figure 8-9).

Landmarks-User-160k (EMD = 1.94) has more skewed data distribution than

iNaturalist-User-120k (EMD = 1.83) and benefits more from FedIR.

8.7.3 Federated Virtual Clients

We apply the Virtual Clients scheme (FedVC) to both FedAvg and FedAvgM and

evaluate its efficacy using iNaturalist user and geo-location datasets, each of which

contains significantly imbalanced clients. In the experiments, 10 clients are selected

for every federated round. We use a mini-batch size B = 64 and set the virtual client

size NVC = 256.

Figure 8-8 demonstrates the efficiency and accuracy improvements gained via

FedVC when clients are imbalanced. The convergence of vanilla FedAvg suffers when

clients perform excessive local optimization steps. In iNaturalist-Geo-3k, for example,

clients can take up to 46 (i.e., 3000/64) local steps before reporting to the server. To

show that FedVC utilizes data efficiently, we report accuracy at fixed batch budgets in

addition to fixed round budgets. Batch budget is calculated by summing the number

of local batches taken for the largest client per round. As shown in Table 8.2, FedVC

consistently yields superior accuracy on both FedAvg and FedAvgM. Learning curves
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Table 8.3: iNaturalist-User-120k accuracy. Numbers reported at fixed communi-
cation rounds. K denotes the report goal per round.

Method FedVC FedIR K
Accuracy@Rounds(%)

1k 2.5k 5k

FedAvg 3 7 10 31.3 39.7 43.9
FedAvg 3 7 100 36.9 46.5 51.4
FedAvg 3 3 10 30.1 41.3 47.5
FedAvg 3 3 100 35.5 44.8 49.8
FedAvgM 3 7 10 37.9 43.7 49.1
FedAvgM 3 7 100 53.0 56.1 57.2
FedAvgM 3 3 10 38.4 42.1 47.0
FedAvgM 3 3 100 51.3 54.3 56.2

Centralized 57.9

in Figure 8-8 show that FedVC also decreases the learning volatility and stabilizes

learning.

iNaturalist per-user and geo-location datasets reflect varying degrees of non-iden-

ticalness. Figure 8-8c, though noisier, exhibits a similar trend compared to Figure 8-6.

The performance degrades as the degree of non-identicalness, characterized by EMD,

increases.

8.7.4 Federated Visual Classification Benchmarks

Having shown that our proposed modifications to FedAvg indeed lead to a speedup in

learning on both iNaturalist and Landmarks, we wish to also provide some benchmark

results on natural user partitioning with reasonable operating points. We hope that

these datasets can be used for understanding real-world federated visual classification,

and act as benchmarks for future improvements.

iNaturalist-User-120k

The iNaturalist-User-120k data has 9,275 clients and 120k examples, containing 1,203

species classes. We use report goals K = {10, 100} and FedVC samples NVC = 256

examples per client. A summary of the benchmark results is shown in Table 8.3.
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Figure 8-9: Landmarks-User-160k Learning Curves. Only the last two layers of
the network are fine-tuned. FedIR is also shown due to its ability to address skewed
training distribution as presented in this dataset.

Notice that FedAvgM with FedVC and a large report goal of K = 100 has a 57.2%

accuracy, almost reaching the same level as in centralized learning (57.9%). With

that said, there is still plenty of room to improve performance with small reporting

clients and round budgets. Being able to learn fast with a limited pool of clients is

one of the critical research areas for practical visual FL.

Landmarks-User-160k

The Landmarks-User-160k dataset comprises 164,172 images for 2,028 landmarks,

divided among 1,262 clients. We follow the setup in Section 8.7.2 where we experiment

with either training the whole model or fine-tuning the last two layers. Report goal

K = {10, 50, 100} are used.

Similarly, FedAvgM with the K = 100 is able to achieve 65.9% accuracy at 5k

communication rounds, which is just 1.2% off from centralized learning. Interestingly,

when we train only the last two layers with FL, the accuracy is as well not far off

from centralized learning (39.8% compared to 40.3%)

8.7.5 Hyperparameter Sensitivity

To study how sensitive the hyperparameter tuning process is to different degrees of

non-identicalness in FL settings, we perform experiments on CIFAR-10/100 datasets

with a grid of hyperparameters. All CIFAR experiments in this study are tuned over
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the the same grid. Following Shallue et al. (2018), we define the effective learning

rate for FedAvgM as ηeff = η/ (1− β). For all values of Dirichlet concentration α,

we sweep over learning rate ηeff ∈ {10−3, 10−2.5, . . . , 100} and momentum 1 − β ∈

{10−2.5, 10−2, . . . , 100}.

In Figure 8-10 we show the effect of using different ηeff on the relative accuracy with

each grid point showing the best result over all (β, η) combinations that give the same

ηeff . We train for 10k/20k communication rounds with CIFAR-10/100 respectively.

Within each individual contour plot, it can be seen that the accuracy consistently

drops with increased non-identicalness, and the set of hyperparameters yielding high

performance becomes smaller. In general, we find an effective learning rate ηeff = 10−2

works well in many situations.

Across different report goals K, a larger K enables good performance over a

wider range of ηeff . This result is unsurprising, since with more clients reporting in,

the server observes more data and hence obtains gradients with less variance. The

number of local epochs does not affect the choice of hyperparameters much in our

experiments (see last two rows of Figure 8-10). Interestingly, while CIFAR-10 and

CIFAR-100 have different numbers of classes and centralized learning accuracy, they

exhibit very similar characteristics in terms of relative accuracy (the overall shape of

plots in Figure 8-10 is similar).

8.7.6 The Effect of Pretraining

Pretraining large visual models (e.g., using ImageNet) is very common in centralized

training. It is likely to be even more beneficial in federated settings, where extra

computation rounds could be prohibitively time consuming. In some cases, however,

it may be necessary or desirable to train from scratch. In this section, we investigate

the feasibility of training large federated visual classification models without pretrain-

ing. Note that across this study, the smaller CIFAR10/100 experiments are trained

from scratch, but the larger iNaturalist and Landmarks experiments use an ImageNet

pretrained MobileNetV2..

We perform experiments using iNaturalist-Geo-3k with a combination of settings
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Figure 8-11: Learning Curves from ImageNet Pretraining and from Scratch.
On the left vertical axis is the relative accuracy while on the right is the absolute
accuracy. Two plots are rescaled to have the full span of 100% relative accuracy.

including the FL algorithm (FedAvg/FedAvgM) and report goal K. Since training

from random initialization and from pretrained weights converge to different final

test accuracy, we use relative accuracy for evaluating FL algorithms’ progress relative

to the corresponding centralized learning upper bounds.

From Figure 8-11, we see that FL with pretraining requires orders of magnitude

fewer communication rounds for convergence and yields higher final relative accuracy

than training from scratch. Table 8.5 further shows the rounds needed to reach

10%, 50%, and 90% relative accuracy. We see that FedAvgM is able to accelerate

convergence significantly, with a report goal K = 100 it takes 94% (977 → 60) fewer

rounds than FedAvg to reach 10% relative accuracy when starting from pretrained

model weights. We also see that FedAvgM has a much steeper learning curve, reaching

90% relative accuracy in 6.9× the rounds needed to reach 10% (compared to 20× for

FedAvg).

Whilst our results suggest that it is possible to train large federated visual clas-

sification models from scratch, doing so efficiently and effectively remains an open

challenge with room for improvement.

8.7.7 Experiment Run Time

The federated learning experiments are carried out by simulation with a cluster of

NVIDIA Tesla P100 GPUs in parallel. The experiment run time, while highly variable

depending on the experimental setup (model complexity, dataset, local steps E, and
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reporting clients per round K), is roughly 0.5 to 2.0 seconds per communication round

per reporting client. This amounts to about 9 GPU-days for a run of Landmarks-User-

160k experiment for 5000 rounds with K = 100.

8.8 Summary

We have shown that large-scale visual classifiers can be trained using a privacy-

preserving, federated approach, and highlighted the challenges that per-user data

distributions pose for learning. We provide two new datasets and benchmarks, pro-

viding a platform for other explorations in this space. We expect others to improve on

our results, particularly when the number of participating clients and round budget

is small. There remain many challenges for Federated Learning that are beyond the

scope of this study: real world data may include domain shift, label noise, poor data

quality and duplication. Model size, bandwidth and unreliable client connections

also pose challenges in practice. We hope our work inspires further exploration in

this area.

It is also worthwhile to note, in this chapter, we push the boundary of our un-

derstanding of large-scale visual learning under federated learning settings, which is

never extensively explored before in either natural imaging of medical imaging. Stud-

ies like this are absolutely necessary since, in real-life applications, there is no way

of peeking data from the respective institutions so much like we do in this study as

to be able to measure centralized learning accuracy or relative accuracy. The most

statistics we hold permissions to gather from participating parties are likely their

label distribution or metadata distributions, and hence establishing a connection be-

tween the statistical descriptions of the distributions and the expected performance

are beneficial to future federated learning application deployments.
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Chapter 9

Conclusions

Throughout the dissertation, we systematically explore methodologies to deal with

medical imaging problems when the data is constrained (i.e., limited in type, quantity,

quality, or else).

Concretely, medical images (a) are dense in physical dimensions, while (b) having

sparse and concentrated information; (c) require specialized expertise to process them;

(d) exhibit a long-tailed distribution in disease findings; (e) experience variances due

to acquisition protocol and instruments; and (f) are heterogeneous from site to site

for demographic and other factors. To combat these challenges, we inspect from both

the clinical aspect as well as the computational aspect.

We introduce the concept of annotation reduction, where we are able to reduce the

effective time and resources for data collection for medical imaging and retain similar

modeling effectiveness. These methods include (a) semi-supervised and unsupervised

learning, (b) reinforcement learning, (c) cross-modal learning, and (d) transfer learn-

ing; but note this is not an exhaustive list, and these are simply the ones we cover

in the dissertation. Medical institutions can as well collaboratively learn AI models

together while preserving privacy through federated learning paradigms.

It would be a shame if we only approach the constrained data problem from an

algorithmic aspect, as there is existing knowledge about medicine and clinical practice

that we can leverage. Hence we explore surrogate endpoint modeling which, although

not directly predicting diagnostic endpoints, performs decently in predicting inter-
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mediate variables that have been shown to correlate well with the target diagnostic

endpoints in question. Aside from this two-step approach, we can also directly infuse

the knowledge about diseases and findings directly into the modeling process. For

example, our hearts are on the left side of the body; and we have 32 teeth in our

permanent dentition.

9.1 Chapter Review

In Chapter 3, we look at the problem of automatic body composition evaluation, how

transfer learning benefits the adaptation of models to institutional-local data, and how

the resulting muscle quantity evaluation correlates with patient risks in pancreatic

cancer better than the body mass index (BMI).

In Chapter 4, we further extend the scope of the body composition to using the

resulting visceral fat evaluation as a surrogate endpoint to better predict severity for

COVID-19 patients better than BMI.

In Chapter 5, we explore cross-modal representation learning between chest X-

rays and their textual reports. Many algorithms are applied to associate image em-

beddings and text embeddings, and even when no supervision is provided between the

two modalities, there is still effective distribution alignment, which can be evidenced

through cross-modal retrieval.

In Chapter 6, the same X-ray dataset is reused for medical report generation from

medical images. By minding the clinical efficacy of the output medical report, we are

able to achieve much better clinical descriptive power while retaining similar language

fluency.

In Chapter 7, we try to summarize, from dental panoramic images, relevant clinical

findings about the teeth. We also experiment with a new label modality that allows

teeth-wise binary labeling to augment the training process which typically only uses

pixel-wise dense annotations. We are able to improve finding accuracy efficiently by

supplying these binary labels that are efficient to label for clinicians.

In Chapter 8, we benchmark federated learning under heterogeneous data with
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natural images as a precursor for medical imaging, and find relative accuracy and

earth-mover distance to be excellent descriptors for the impact of heterogeneity on

federated learning algorithms across multiple datasets.

9.2 Areas to Be Explored Before Landing AI

Though we have covered a wide range of modeling solutions in medical imaging, there

are aspects that cannot be ignored before they are adopted for applications.

Specifically, in learning practical AI models with real-world data, we need to

consider missingness in the training data. Little and Rubin (2019) classified missing

data into three categories according to the driving mechanism: (a) missing completely

at random (MCAR), where missingness occurs with a fixed probability; (b) missing

at random (MAR), where missingness is conditional randomly on observed variables;

and (c) missing not at random (MNAR), where missingness is conditional randomly

on the missing variables themselves. For imaging data, the missingness can occur

on the per-study level, or on a per-pixel/voxel level. To tackle MCAR and MAR,

one can choose to drop or impute the data (Mulugeta et al., 2017), and for MNAR,

there is not yet a well-studied solution due to its inherent statistical complexity, by

definition.

Unsurprisingly, the source of missingness can as well be biases originating from the

acquisition protocols, resource access differences, and even societal differences (Rose,

2018; Rajkomar et al., 2018). The research findings suggest that comparing modeling

outcomes across demographic groups is imperative, not only for fairness reasons (Chen

et al., 2019a) but also as a sanity check for model generalizability (Subbaswamy and

Saria, 2018; Subbaswamy et al., 2019).

Finally, all of the AI systems we work on in this dissertation are targeted to

be deployed as an augmenting tool for clinicians, and it would be ignorant if we

neglect their perception and usage of such tools – interpretability and uncertainty

(or confidence) being the most pressing needs. Interpretability allows researchers to

dissect the internal workings of the algorithms, with the hope of improving modeling
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performance; it also allows clinicians to reason why the model predictions are as

such quantifiably. There is already a wide range of interpretability tools for medical

imaging are gradient-weighted class activation mapping (Grad-CAM) (Selvaraju et al.,

2017), guided backpropagation (Springenberg et al., 2014), and regression concept

vectors (Graziani et al., 2019).

Uncertainty quantification focuses on describing how confident the model is about

the prediction results, as a statistically uncorrelated measure to the predictions them-

selves. The AI models without uncertainty quantification can be confidently incorrect,

and yet by estimating uncertainty, they can defer the decision to human experts when

the certainly level is low enough regardless of the raw prediction levels. There are al-

ready plenty of works along this direction (Xia et al., 2020; Hiasa et al., 2019; Karimi

et al., 2019; Jungo and Reyes, 2019; Joskowicz et al., 2018; Ghesu et al., 2019; Raghu

et al., 2019a) in medical imaging and hence should be incorporated for consideration

in any medical applications.

9.3 Novel Research Directions

Aside from the existing research fields to circumvent issues in medical imaging, we also

want to bring up several interesting directions that have been barely systematically

studied, at least to the best of our knowledge.

Pre-Training Deep Neural Networks Pre-training models with the ImageNet (Deng

et al., 2009) competition dataset have been a conventional method to bootstrap any

convolutional neural networks (CNN). While it makes perfect sense for natural imag-

ing tasks, as the ImageNet data capture everyday objects and concepts quite exten-

sively, it is inexplicably odd to also adopt this model to bootstrap medical imaging

tasks. For example, a chest radiograph looks nothing like objects in real life. There

is a limited number of studies that attempted to pre-train medical-generic (Alzubaidi

et al., 2021) or 3-dimensional models (Chen et al., 2019b), and built a platform to

collect medical imaging models (Li et al., 2017; Gibson et al., 2018).
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We believe there are shared visual patterns in medical images, just like the case

for natural images shown in past research (Garg et al., 2019). The visual patterns

can be extracted by more recent techniques such as contrastive learning (Jiang et al.,

2020; Wang et al., 2021b) in an unsupervised manner, from which medical imaging

could benefit greatly.

Metric Learning Clinicians’ judgments are not always on an absolute scale, and

more often than not they are on a relative scale. Concretely, when given two cases,

they are better at describing the relative severity of the diseases, rather than giving

the two cases severity levels as defined in handbooks (Hammon et al., 2014). As a

result, collecting absolute disease staging annotation is time-consuming for clinicians,

and even after doing so, the annotations have low inter-rater agreements due to the

inherent nature of severity being on a spectrum.

Hence, researchers have introduced metric learning from outside the medical imag-

ing community, and focus on using distance descriptions in learning models. In the

context of medical imaging, that translates to using relative disease severity anno-

tations to construct a continuous severity grading model (Li et al., 2020b; Akbar

et al., 2022). Siamese neural networks (Koch et al., 2015) are often utilized in metric

learning works due to their formulation that applies the same network on multiple

inputs.

Differential Learning AI models are meant to augment clinicians and not replace

them (Ghassemi et al., 2020). While medical AI has spent time on how to obtain more

accurate models, we often neglect the fact that these models are meant to be used

in a time-pressing environment for clinician decision support. Take dental imaging

as an example: while dentists can take a single glimpse to understand how many

dental implants are in the patients’ oral region, periapical lesions are harder targets

to identify and might require the dentists to read for a few extra minutes to spot. If

the AI models are configured in a way that they do not output apparent findings to

clinicians, but only the differential findings that are less obvious, the signal-to-noise
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ratio for such a system can be maximized for practicing clinicians. To the best of

our knowledge, there are no existing studies that attempt to address the differential

prediction setting specifically, or benchmark how the differential operating points

should be tuned to optimize AI’s ability to augment individual human clinicians.

9.4 Conclusions

AI is data-hungry. Data is thus an extremely important aspect of computer vision,

and it is even more so for medical imaging owing to data privacy issues and resource-

intensive interpretations. While many challenges may be present, it also implies

that many unique opportunities exist for us to improve the current landscape of

healthcare. We hope the several research topics showcased in this dissertation inspire

further research and are able to fuel explorations down the line, ultimately benefiting

humanity on a civilization scale.
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