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Abstract

Multi-agent intelligence in autonomous systems has been fascinating roboti-
cists for decades. The recent advances in machine learning has created un-
precedented opportunities for achieving ultimate multi-agent intelligence and
full autonomy in a data-driven way. However, a fundamental bottleneck of ma-
chine learning-based methods is their safety and reliability in controlling the
autonomous system at large scale, due to the lack of formal safety guarantee.
In addressing these challenges, we develop: (1) An machine learning-based
large-scale multi-agent control framework with safety certificates, which si-
multaneously enjoys the versatility of machine learning and the assurance of
safety. (2) A multi-agent trajectory tracking framework with convergence and
safety guarantees. (3) A general method to learn safe controllers for black-box
systems with unknown dynamics. Comprehensive experiments have shown
that the proposed methods have notable performance in terms of safety rate,
task completion rate, computational efficiency and large-scale scalability.

Thesis Supervisor: Jonathan P. How
R. C. Maclaurin Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Multi-agent control plays an important role in robotics. How to endow robots

with human-level collective intelligence has been fascinating to roboticists for

decades. While a multi-agent system should satisfy numerous properties, the

safety is always of crucial importance. For example, we cannot tolerate fre-

quent car crashes in an autonomous driving vehicle network. Neither can we

imagine operating a fragile drone delivery system in real cities. As the number

of agents increases, the multi-agent system becomes more and more complex,

and ultimately, it could be extremely difficult, if not impossible, to predict

failure or guarantee system safety. We argue that the safety of a multi-agent

system can have a tremendous influence on its practicality and ability to make

real-world impact. In this chapter, we provide an overview of the fundamental

problems that we focus on, summarize our contribution and outline the whole

thesis.
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1.1 Large-scale Safe Multi-agent Control

Machine learning has created unprecedented opportunities for achieving full

autonomy. Comparing to classical handcrafted controller design, machine

learning-based methods are more widely applicable and versatile. For exam-

ple, in order to control humanoid robots, classical methods [86] solve non-linear

model predictive control (MPC) problems that are computationally expensive

and easily trapped in numerical issues. Also, they require nearly complete

knowledge of the dynamics of the system, which is unfortunately not always

available. By contrast, reinforcement learning, as a branch of machine learn-

ing, shows remarkable results [50] and is applicable to a wide range of non-

linear control problems, especially for problems that are difficult to model

in an analytical way. Nevertheless, machine learning-based methods in au-

tonomous systems can and do fail due to the lack of formal guarantees and

limited generalization capability, which poses significant challenges for devel-

oping safety-critical autonomous systems, especially large-scale multi-agent

systems, that are provably dependable. One of the emphasizes of this thesis

is to develop reliable machine learning control methods that simultaneously

possess the versatility of machine learning and the capability to provide safety

guarantees.

Safety involves numerous aspects in multi-agent control. The most impor-

tant safety requirement is that the agents should not collide with each other

or with obstacles. In a single-agent system, the agent only needs to avoid

obstacles, and there already exists a wide range of motion planning methods

to deal with the single-agent case. Nevertheless, in a multi-agent system, the

collision-avoidance is complicated by the interactions among the agents. The

dimension of state space in the multi-agent system grows linearly with the

12



number of agents, but the volume and the number of possible states grows

exponentially, which makes the analysis challenging. In addition to collision

avoidance, the other safety requirements include speed and rotation limits,

avoiding dangerous areas and so forth. The whole system is safe if and only if

all agents are safe.

Recently, there has been increasing research interest in bridging model-

based control and data-driven ML to address complex dynamical control prob-

lems [19, 12, 85, 20, 87, 79, 30], with the expectation of using such a combined

approach to tackle the scalability issues and build large-scale multi-agent safe

autonomous systems. We follow this line of works and study the problem of

using ML to find robust, safe, and verifiable feedback control for large-scale

multi-agent dynamical systems, which are known to be extremely challeng-

ing due to the lack of scalable and provably correct approaches. While many

learning-based approaches for control systems, such as reinforcement learning

(RL), have focused on how to train control strategies for complex and even un-

known dynamical systems [51, 78, 77, 37], these methods do not normally come

with formal guarantees on safety and robustness of the closed-loop systems.

On the other side, although there is a rich literature on multi-agent trajectory

planning and control with deterministic safety guarantees [13, 31, 57, 80], these

centralized methods suffer from complexity issues, and very limited progress

has been made on finding solutions that can be used on a very large number

of agents.

1.1.1 Jointly Learning Controllers and Safety Certificates

Control certificates [12, 42, 20] can serve as proofs for the satisfaction of the

desired properties of a system, under certain control policies. For example,

Control Contraction Metrics (CCM) [54, 60] ensure the existence of feedback

13



controllers so that the controlled systems can be proved to converge to desired

behaviors, and Control Barrier Functions (CBF) [6, 5, 10, 17, 19, 18] can

supervise the synthesis of controllers such that the closed-loop (multi-agent)

systems are guaranteed to always stay in certain invariant sets that encode

safety requirements. We will exploit the combinatorial use of such control

certificates to guide the synthesis of safe and robust controllers and provide

strong theoretical guarantees.

One of the biggest challenges in using the above control theoretical ap-

proaches is the construction of certificates. It is extremely difficult to craft

CCM and CBF by hand for complex nonlinear and nonholonomic systems.

Other optimization-based approaches such as sum-of-squares (SoS) [82, 81, 6]

cannot scale to large-dimension and large-scale systems. Therefore, there are

very few existing methods that scale to systems with hundreds or thousands of

agents. Recent advancements in neural networks (NN) stem a growing interest

in learning-based control certificates [76, 83, 42, 9, 88, 73, 94, 12].

Our principle of building safe machine learning-based control method is to

jointly learn the controller and its safety certificate. The parameterized con-

troller and safety certificate are jointly optimized to satisfy a set of conditions.

When such a controller is found, it is naturally endowed with safety guarantee

provided by the jointly learned certificate.

1.1.2 Scaling Up to Large-scale Multi-agent Systems

Due to the curse of dimensionality, it is extremely difficult and computation-

ally expensive for a centralized control strategy to scale up to an environment

with an arbitrarily large number of agents. Instead, a decentralized controller

design will be a fundamental throughout this thesis. In decentralized control,

each agent has its own controller, and it is not necessary to have a centralized

14



controller handling all the agents simultaneously. Each agent takes its local

observation as input and computes its own control command. Such a decen-

tralized structure allows the computational cost to grow linearly, rather than

exponentially, as the number of agents increases. A key challenge in decen-

tralized control is how to ensure the global safety when each agent acts based

on its local observation, and we will show how to achieve the global safety cer-

tificate by means of decentralized local safety certificates. We aim to achieve

an improved balance of scalability and safety using data-driven approaches

to learn decentralized control policies that are certified by the jointly learned

control certificates and can theoretically be used on any number of agents.

1.1.3 Safe and Convergent Trajectory Tracking

The ability of trajectory tracking and goal reaching is crucial for multi-agent

robotic systems to complete certain tasks. Convergence to the reference tra-

jectories may cause conflicts among agents, particularly when the reference

trajectories collide. It is common that a trajectory tracking algorithm cannot

guarantee safety or resolve conflicts in multi-agent interaction. Similarly, the

control algorithms that ensures multi-agent safety normally cannot guarantee

the actual trajectory can converge to the reference trajectory. In this thesis,

we will present a framework that jointly guarantees safety and the convergence

to the reference trajectories.

1.1.4 Extension to Black-box Dynamics

Many dynamical systems in the real-world are black-box and lack accurate

models. The most popular model-free approach to handle such black-box

systems is safe reinforcement learning, which enforce safety and performance

15



by maximizing the expectation of the cumulative reward and constraining the

expectation of the cost to be less or equal to a given threshold. The biggest

disadvantage of safe RL methods is the lack of systematic or theoretically

grounded way of designing cost function and reward functions, which heavily

rely on empirical trials and errors. The lack of explainable safety guarantees

and low sampling efficiency also make safe RL methods difficult to exhibit

satisfactory performance.

The model-based control methods with safety guarantees are not directly

applicable to model-free scenarios where the accurate model dynamics are not

available. In addressing the challenge, we will present a novel framework that

jointly learn the safety certificates and controllers for black-box systems.

1.2 Summary of Contributions

Safety and scalability are of fundamental importance in multi-agent controller

synthesis. Machine learning brings new possibility to achieve the generality

and versatility that are beyond the reach of classical control methods, but

the safety and robustness issues must be addressed before being applied to

real world. The objective of the thesis is to develop a large-scale multi-agent

control method that jointly enjoys the capability of machine learning and the

guarantees of safety certificates. The contributions of this thesis are three-fold:

1. Development of the joint-learning framework of multi-agent controllers

and their safety certificates. The learned controllers are fully decen-

tralized and is applicable to massive systems with an arbitrarily large

number of agents. In addition, we also provide the theoretical analysis

that proves the high probability guarantees to achieve global safety.
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2. Development of the large-scale multi-agent trajectory tracking approach

that jointly guarantees convergence to the reference trajectories and the

safety of the multi-agent system.

3. Development of the black-box system control method that possesses the

safety certificates similar to white-box systems. This greatly improves

the practicality of the proposed joint-learning work, as the accurate

model dynamics of many real-world systems are difficult to obtain.

1.3 Structure of Thesis

In Chapter 2, we introduce the mathematical and control-theoretical prelimi-

naries. In Chapter 3, we develop the joint-learning framework for multi-agent

controllers and their safety certificates. In Chapter 4, we develop the trajec-

tory tracking method with convergence and safety guarantees. In Chapter 5,

we make a non-trivial extension from white-box to black-box systems with un-

known dynamics, and develop the machine learning-based safe control method.

Finally, in Chapter 6, we conclude with a brief summary.
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Chapter 2

Preliminaries

2.1 Mathematical Notations

A multi-agent system is defined as ℳ = ⟨𝒜1,𝒜2, · · · ,𝒜𝑁⟩, where each agent

𝒜𝑖 = ⟨𝒳𝑖,𝒪𝑖,𝒰𝑖, f𝑖,𝜋𝑖⟩. 𝒳𝑖 ∈ R𝑛 is the state space (e.g., position, velocity and

orientation space). 𝒪𝑖 is the observation space, which contains the state of

surrounding agents and other obstacles. 𝒰𝑖 ∈ R𝑚 is the control input space.

Define the state-observation space as 𝒮𝑖 = 𝒳𝑖 × 𝒪𝑖. The dynamics function

f𝑖 : 𝒳𝑖 × 𝒰𝑖 ↦→ 𝒳𝑖 specifies the evolution of state as:

ẋ𝑖 = f𝑖(x𝑖,u𝑖), (2.1)

where u𝑖 is the control input. The controller 𝜋𝑖 : 𝒮𝑖 ↦→ 𝒰𝑖 gives the control

input u𝑖 based on the current state and observation:

u𝑖 = 𝜋𝑖(x𝑖,o𝑖). (2.2)
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We denote the indices from 1 to 𝑁 : {1, · · · , 𝑁} as J𝑁K. For a symmetric

matrix 𝐴 ∈ R𝑛×𝑛, the notation 𝐴 ≻ 0 (𝐴 ≺ 0) means 𝐴 is positive (negative)

definite. 𝐴 ⪰ 0 (𝐴 ⪯ 0) means 𝐴 is positive (negative) semi-definite. Also,

𝐴 ≻ 𝐵 means 𝐴 − 𝐵 ≻ 0. For 𝐴 ∈ R𝑛×𝑛, we denote 𝐴 + 𝐴𝑇 by 𝐴
⋀︀

. For

a matrix-valued function 𝑀(𝑥) : R𝑛 ↦→ R𝑛×𝑛, its element-wise Lie derivative

along a vector v ∈ R𝑛 is 𝜕v𝑀 :=
∑︀

𝑖 𝑣
𝑖 𝜕𝑀
𝜕𝑥𝑖 , where 𝑥𝑖 and 𝑣𝑖 denote the 𝑖-th

elements of the vectors. We denote the cross product of 𝒳𝑖, 𝑖 ∈ J𝑁K as 𝑁
⊗
𝑖=1

𝒳𝑖,

and use 𝑝 ↓ 𝑞 to denote the projection from vector 𝑝 to the vector space of 𝑞.

2.2 Safety for Multi-agent Systems

The safety of an individual agent can be determined by checking its state-

observation pair (x𝑖,o𝑖). We always assume that we are given a safety metric

𝑑 : 𝒮𝑖 ↦→ R, such that:

𝑟(x𝑖,u𝑖) ≥ 0 ⇐⇒ 𝒜𝑖 is safe. (2.3)

And the global safety of the multi-agent system is achieved if and only if all

agents are safe:

𝑑(x𝑖,u𝑖) ≥ 0,∀𝑖 = 1, 2, · · · , 𝑁 ⇐⇒ ℳ is safe. (2.4)

For an individual agent, its state-observation space 𝒮𝑖 can be further specified

into 𝒮𝑖,𝑠,𝒮𝑖,𝑑 and 𝒮𝑖,0. 𝒮𝑖,𝑠 = {(x𝑖,o𝑖) | 𝑑(x𝑖,o𝑖) ≥ 0} is the safe set. 𝒮𝑖,𝑑 =

{(x𝑖,o𝑖) | 𝑑(x𝑖,o𝑖) < 0} is the dangerous set. 𝒮𝑖,0 is the set of all possible

initial conditions. It is assumed that all initial conditions are safe, namely,

𝒮𝑖,0 ⊂ 𝒮𝑖,𝑠.
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Chapter 3

Joint-learning of Controllers and

Safety Certificates

3.1 Introduction

We study the multi-agent safe control problem, where agents should avoid col-

lisions to static obstacles and collisions with each other while reaching their

goals. Our core idea is to learn the multi-agent control policy jointly with

learning the control barrier functions (CBFs) as safety certificates. We pro-

pose a new joint-learning framework that can be implemented in a decentralized

fashion, which can adapt to an arbitrarily large number of agents. Building

upon this framework, we further improve the scalability by incorporating neu-

ral network architectures that are invariant to the quantity and permutation

of neighboring agents. In addition, we propose a new spontaneous policy re-

finement method to further enforce the certificate condition during testing.

Experimental results are indeed promising. We study both 2D and 3D

safe multi-agent control problems, each with several distinct environments

and complex nonholonomic dynamics. Our joint-learning framework performs
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exceptionally well: our control policies trained on scenarios with 8 agents can

be used on up to 1024 agents while maintaining low collision rates, which

has notably pushed the boundary of learning-based safe multi-agent control.

Speaking of which, 1024 is not the limit of our approach, but rather due to the

limited computational capability of our laptop used for the experiments. We

also compare our approach with both leading learning-based methods [53, 55,

106] and traditional planning methods [27, 56]. Our approach outperforms all

the other approaches in terms of both completing the tasks and maintaining

safety.

3.2 Related Work

Learning-Based Safe Control via CBF. Barrier certificates [65] and CBF

[99] is a well-known effective tool for guaranteeing the safety of nonlinear

dynamic systems. However, the existing methods for constructing CBFs either

rely on specific problem structures [16] or do not scale well [63]. Recently,

there has been an increasing interest in learning-based and data-driven safe

control via CBFs, which primarily consist of two categories: learning CBFs

from data [9, 42, 76, 83], and CBF-based approach for controlling unknown

systems [19, 88, 97, 98]. Our work is more pertinent to the former and is

complementary to the latter, which usually assumes that the CBF is provided.

None of these learning-enabled approaches, however, has addressed the multi-

agent setting.

Multi-Agent Safety Certificates and Collision Avoidance. Restricted

to holonomic systems, guaranteeing safety in multi-agent systems has been ap-

proached by limiting the velocities of the agents [4, 95]. Later, [10, 97] have

proposed the framework of multi-agent CBF to generate collision-free con-
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trollers, with either perfectly known system dynamics [10], or with worst-case

uncertainty bounds [97]. Recently, [17] has proposed a decentralized controller

synthesized approach under this CBF framework, which is scalable to an ar-

bitrary number of agents. However, in [17] the CBF controller relies on online

integration of the dynamics under the backup strategy, which can be compu-

tationally challenging for complex systems. Due to space limit, we omit other

non-learning multi-agent control methods, but acknowledge their importance.

Safe Multi-Agent (Reinforcement) Learning (MARL). Safety con-

cerns have drawn increasing attention in MARL, especially with the appli-

cations to safety-critical multi-agent systems [67, 79, 106]. Under the CBF

framework, [18] considered the setting with unknown system dynamics, and

proposed to design robust multi-agent CBFs based on the learned dynamics.

This mirrors the second category mentioned above in single-agent learning-

based safe control, which is perpendicular to our focus. RL approaches have

also been applied for multi-agent collision avoidance [15, 26, 55, 105]. Nonethe-

less, no formal guarantees of safety were established in these works. One

exception is [106], which proposed a multi-agent model predictive shielding

algorithm that provably guarantees safety for any policy learned from MARL,

which differs from our multi-agent CBF-based approach. More importantly,

none of these MARL-based approaches scale to a massive number of, e.g.,

thousands of agents, as our approach does. The most scalable MARL plat-

form, to the best of our knowledge, is [107], which may handle a comparable

scale of agents as ours, but with discrete state-action spaces. This is in con-

trast to our continuous-space models that can model practical control systems

such as robots and drones.

23



3.3 Decentralized Control Barrier Functions

CBF [6] is a powerful tool to guarantee system safety by means of forward

invariance. In the multi-agent case, the CBF of an agent 𝑖 is a function ℎ𝑖 :

𝒳𝑖 ×𝒪𝑖 ↦→ R, satisfying three properties:

ℎ𝑖(x𝑖,o𝑖) ≥ 0, ∀(x𝑖,o𝑖) ∈ 𝒮𝑖,0

ℎ𝑖(x𝑖,o𝑖) < 0, ∀(x𝑖,o𝑖) ∈ 𝒮𝑖,𝑑

ℎ̇𝑖(x𝑖,o𝑖) + 𝛼(ℎ𝑖(x𝑖,o𝑖)) ≥ 0, ∀(x𝑖,o𝑖) ∈ 𝒮𝑖,𝑝,

(3.1)

where ℎ̇𝑖 can be written as:

ℎ̇𝑖(x𝑖,o𝑖) = ∇xℎ𝑖 · ẋ𝑖 +∇oℎ𝑖 · ȯ𝑖 = ∇xℎ𝑖 · f𝑖(x𝑖,u𝑖) +∇oℎ𝑖 · ȯ𝑖, (3.2)

and the set 𝒮𝑖,𝑝 is defined as:

𝒮𝑖,𝑝 = {(x𝑖,o𝑖) | ℎ𝑖(x𝑖,o𝑖) ≥ 0} , (3.3)

and the function 𝛼 : R ↦→ R is a class-𝒦 function that is strictly increasing

and satisfies 𝛼(0) = 0. Note that the third condition depends on the control

input 𝜋𝑖. We refer to the three conditions in Equation (3.1) as decentralized

CBF conditions. When the conditions are satisfied, the global safety can then

be guaranteed as in Proposition 1:

Proposition 1 (Multi-Agent Safety with Decentralized CBF)

Given the multi-agent control policy u𝑖 = 𝜋𝑖(x𝑖,o𝑖) and decentralized CBF

ℎ𝑖(x𝑖,o𝑖) satisfying the conditions in (3.1), if the initial condition of the multi-
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agent system satisfies:

(x𝑖(𝑡),o𝑖(𝑡)) ∈ 𝒮𝑖,𝑝, 1 ≤ 𝑖 ≤ 𝑁, 𝑡 = 0 (3.4)

then we have:

(x𝑖(𝑡),o𝑖(𝑡)) ∈ 𝒮𝑖,𝑝, 1 ≤ 𝑖 ≤ 𝑁, ∀𝑡 > 0. (3.5)

Namely, if initially the agents are in 𝒮𝑖,𝑝, they will never leave 𝒮𝑖,𝑝, which is

a forward invariant set. Since 𝒮𝑖,𝑝 ∩ 𝒮𝑖,𝑑 = ∅, the agents will never enter the

dangerous set 𝒮𝑖,𝑑. Thus, the multi-agent system is safe.

Proof. Let us assume that (x𝑖,o𝑖) is on the boundary of 𝒮𝑖,𝑝 and is trying

to leave 𝒮𝑖,𝑝. Since ℎ𝑖(x𝑖,o𝑖) = 0, based on the third condition in (3.1) and

𝛼(0) = 0, we have:

ℎ̇𝑖(x𝑖,o𝑖) + 𝛼(ℎ𝑖(x𝑖,o𝑖)) = ℎ̇𝑖(x𝑖,o𝑖) ≥ 0, (3.6)

which means ℎ𝑖(x𝑖,o𝑖) is non-decreasing on the boundary of 𝒮𝑖,𝑝. Thus, we

have ℎ𝑖(x𝑖,o𝑖) ≥ 0 forever, and (x𝑖,o𝑖) will never leave 𝒮𝑖,𝑝.

3.4 Scalable Learning of Decentralized CBF

Based on the theory in Section 3.3, if we can jointly find the controller 𝜋𝑖

and CBF ℎ𝑖 satisfying the conditions (3.1), then the multi-agent system is

guaranteed to be safe. It is extremely challenging to handcraft 𝜋𝑖 and ℎ𝑖.

When the model dynamics are non-linear, handcrafting 𝜋𝑖 or ℎ𝑖 could become

nearly impossible. Even if we are lucky enough to successfully handcraft a ℎ𝑖

for a complex system, we will have to repeat the process once the system is
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changed. Therefore, we use machine learning techniques to automatically find

𝜋𝑖 and ℎ𝑖, which is shown to be a general and easy-to-use method for a large

variety of linear and non-linear systems.

Following the theory in Section 3.3, we consider the practical learning of

safe multi-agent control with neural barrier certificates, i.e., using neural net-

works for u𝑖 and 𝜋𝑖. We will present the formulation of loss functions in

Section 3.4.1. Section 3.4.2 presents the neural network architecture of ℎ𝑖 and

𝜋𝑖, which are invariant to the quantity and permutation of neighboring agents.

Section 3.4.3 demonstrates a spontaneous policy refinement method that en-

ables the control policy to satisfy the decentralized CBF conditions as possible

as it could during testing.

3.4.1 Loss Functions for the Joint-learning Framework

The main idea is to jointly learn the control policies and control barrier func-

tions in multi-agent systems. During training, the CBFs regulate the control

policies to satisfy the decentralized CBF conditions (3.1) so that the learned

policies are safe. All agents are put into a single environment to generate

state-observation samples, which forms datasets 𝒟𝑖 = {(x𝑖,o𝑖)1, (x𝑖,o𝑖)2, · · · },

1 ≤ 𝑖 ≤ 𝑁 . The samples in the dataset are used to evaluate and minimize the

loss empirical loss function ℒ𝑐 = Σ𝑖ℒ𝑐
𝑖 , where ℒ𝑐

𝑖 is the loss function for agent

𝑖 formulated as:

ℒ𝑐
𝑖(𝜃𝑖,𝜔𝑖) = ℒ𝑐

𝑖,0(𝜃𝑖) + ℒ𝑐
𝑖,𝑑(𝜃𝑖) + ℒ𝑐

𝑖,𝑝(𝜃𝑖,𝜔𝑖) (3.7)
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The three terms are:

ℒ𝑐
𝑖,0(𝜃𝑖) =

1

|𝒮𝑖,0 ∩ 𝒟𝑖|
∑︁

(x𝑖,o𝑖)∈𝒮𝑖,0∩𝒟𝑖

max
(︀
0, 𝛾 − ℎ𝜃𝑖

𝑖 (x𝑖,o𝑖)
)︀

ℒ𝑐
𝑖,𝑑(𝜃𝑖) =

1

|𝒮𝑖,𝑑 ∩ 𝒟𝑖|
∑︁

(x𝑖,o𝑖)∈𝒮𝑖,𝑑∩𝒟𝑖

max
(︀
0, 𝛾 + ℎ𝜃𝑖

𝑖 (x𝑖,o𝑖)
)︀

ℒ𝑐
𝑖,𝑝(𝜃𝑖,𝜔𝑖) =

1

|𝒮𝑖,𝑝 ∩ 𝒟𝑖|
∑︁

(x𝑖,o𝑖)∈𝒮𝑖,𝑝∩𝒟𝑖

max
(︁
0, 𝛾 − ℎ̇𝜃𝑖

𝑖 − 𝛼(ℎ𝜃𝑖
𝑖 )

)︁
,

(3.8)

where the time derivative ℎ̇𝜃𝑖
𝑖 in ℒ𝑐

𝑖,𝑝(𝜃𝑖,𝜔𝑖) is written as:

ℎ̇𝜃𝑖
𝑖 = ∇xℎ

𝜃𝑖
𝑖 · f𝑖 (x𝑖,𝜋

𝜔𝑖
𝑖 (x𝑖,o𝑖)) +∇oℎ

𝜃𝑖
𝑖 · ȯ𝑖 (3.9)

The 𝛾 is a positive margin, which is 𝛾 = 10−2 in implementation. 𝜃𝑖 and 𝜔𝑖

are neural network parameters. On the right side of Equation (3.7), the three

items enforce the three CBF conditions respectively. Directly computing the

third term could be challenging since we need to evaluate ȯ𝑖, which is the time

derivative of the observation. Instead, we approximate ℎ̇(x𝑖,o𝑖) numerically:

ℎ̇(x𝑖,o𝑖) =
1

∆𝑡

(︁
ℎ(x𝑖(𝑡+∆𝑡),o𝑖(𝑡+∆𝑡))− ℎ(x𝑖(𝑡),o𝑖(𝑡))

)︁
(3.10)

For the class-𝒦 function 𝛼(·), we simply choose a linear function 𝛼(ℎ) = 𝜆ℎ.

Note that ℒ𝑐 mainly considers safety instead of goal reaching. To train a safe

control policy 𝜋𝑖(x𝑖,o𝑖) that can drive the agent to the goal state, we also

minimize the distance between u𝑖 and u𝑔
𝑖 , where u𝑔

𝑖 is the reference control

input computed by classical controller 𝜋𝑔
𝑖 (e.g., LQR and PID controllers) to

reach the goal. The goal reaching loss ℒ𝑔 = Σ𝑖ℒ𝑔
𝑖 , where ℒ𝑔

𝑖 is formulated as:

ℒ𝑔
𝑖 (𝜔𝑖) =

1

|𝒮𝑖 ∩ 𝒟𝑖|
∑︁

(x𝑖,o𝑖)∈𝒮𝑖∩𝒟𝑖

||𝜋𝜔𝑖
𝑖 (x𝑖,o𝑖)− 𝜋𝑔

𝑖 (x𝑖)||2 (3.11)

27



The final loss function ℒ = ℒ𝑐 + 𝜂ℒ𝑔, where 𝜂 is a balance weight that is set

to 0.1 in our experiments.

Implementation Details In training, all agents are put into the random

environment, which is not necessarily the same as the testing environment, to

collect state-observation pairs (x𝑖,o𝑖) under their current policies with prob-

ability 0.95 and random policies with probability 0.05. The collected (x𝑖,o𝑖)

are stored in dataset and in every step of policy update, 128 (x𝑖,o𝑖) are ran-

domly sampled from the temporary dataset to calculate the total loss ℒ. We

minimize ℒ by applying stochastic gradient descent with learning rate 10−3

and weight decay 10−6 to 𝜃𝑖 and 𝜔𝑖, which are the parameters of the CBF and

control policies. Note that the gradients are computed by back-propagation

rather than policy gradients because ℒ is differentiable w.r.t. 𝜃𝑖 and 𝜔𝑖.

Iterative Data Collection and Training. It is important to note that we

did not use a fixed set of state-observation pairs to train the decentralized

CBF and controllers. Instead, we adopted an on-policy training strategy,

where the training data are collected by running the current system. The

collected state-observation pairs are stored in a temporary dataset that is used

to calculate the loss terms and update the decentralized CBF and controllers

via gradient descent. Then the updated controllers are used to run the system

and re-generate new state-observation pairs as training data. The iterative

data collection and training is performed until the loss converges. Such a

training process is crucial for generalizing to testing scenarios.
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3.4.2 Quantity-Permutation Invariant Observation En-

coder

Recall that in Chapter 2, we define 𝒪𝑖 as the observation space that contains

the states of neighboring agents and other obstacles. This means the obser-

vation o𝑖 has dynamic dimension and permutation, since the quantity and

permutation of neighboring agents and obstacles can change with time. In or-

der to scale to an arbitrary number of agents, there are two pivotal principles

of designing the neural network architectures of ℎ𝑖(x𝑖,o𝑖) and 𝜋𝑖(x𝑖,o𝑖). First,

the architecture should be able to dynamically adapt to the changing quantity

of observed agents that affects the dimension of o𝑖. Second, the architecture

should be invariant to the permutation of observed agents, which should not

affect the output of ℎ𝑖 or 𝜋𝑖. All these challenges arise from encoding the local

observation o𝑖. Inspired by PointNet [66], we leverage the max pooling layer

to build the quantity-permutation invariant observation encoder.

Let us start with a simple example with input observation o𝑖(𝑡) ∈ R𝑛×𝑁𝑖(𝑡),

where 𝑛 is the dimension of state and 𝑁𝑖(𝑡) is the set of the neighboring

agents at time 𝑡. 𝑛 is fixed, while 𝑁𝑖(𝑡) can change from time to time. The

permutation of the columns of o𝑖 is also dynamic. Denote the weight matrix

as 𝑊 ∈ R𝑝×𝑛 and the element-wise ReLU activation function as 𝜎(·). Define

the row-wise max pooling operation as RowMax(·), which takes a matrix as

input and outputs the maximum value of each row. Consider the following

mapping 𝜌 : R𝑛×𝑁𝑖(𝑡) ↦→ R𝑝 formulated as

𝜌(o𝑖) = RowMax(𝜎(𝑊o𝑖)), (3.12)

where 𝜌 maps a matrix o𝑖 whose column has dynamic dimension and per-

mutation to a fixed length feature vector 𝜌(o𝑖) ∈ R𝑝. The dimension of 𝜌(o𝑖)
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Figure 3-1: Neural network architecture of the control policy. The blue part
indicates the quantity-permutation invariant observation encoder, which maps
o𝑖(𝑡) ∈ R𝑛×𝑁𝑖(𝑡) with time-varying dimension to a fixed length vector. The
network takes the state x𝑖 and local observation o𝑖 as input to compute a
control action u𝑖. The neural network of the decentralized CBF ℎ𝑖 has a
similar architecture, except that the output is a scalar.

remains the same even if the number of columns of o𝑖(𝑡), which is 𝑁𝑖(𝑡), change

over time. The network architecture of the control policy is shown in Figure 3-

1, which uses the RowMax(·) operation. The network of the control barrier

function is similar, except that the output is a scalar instead of a vector.

3.4.3 Spontaneous Online Policy Refinement

We propose a spontaneous online policy refinement approach that produces

even safer control policies in testing than the neural network has actually

learned during training. When the model dynamics or environment settings

are too complex and exceed the capability of the control policy, the decen-

tralized CBF conditions can be violated at some points along the trajectories.

Thanks to the control barrier function jointly learned with the control policy,

we are able to refine the control input u𝑖 online by minimizing the violation

of the decentralized CBF conditions. That is, the learned CBF can serve as

a guidance on generating updated u𝑖 in unseen scenarios to guarantee safety.

This is also a standard technique used in (non-learning) CBF control where

the CBF ℎ𝑖 is usually computed first using optimization methods like Sum-of-
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Squares, then the control inputs u𝑖 are computed online using ℎ𝑖 by solving

quadratic programming problems [101, 7]. In the experiments, we also study

the effects of such an online policy refinement step.

Given the state x𝑖, local observation o𝑖, and action u𝑖 computed by the

control policy, consider the scenario where the third CBF condition is violated,

which means ∇xℎ𝑖 · f𝑖(x𝑖,u𝑖)+∇oℎ𝑖 · ȯ𝑖+𝛼(ℎ𝑖) < 0 when ℎ𝑖 ≥ 0. Let e𝑖 ∈ R𝑚

be an increment of the action u𝑖. Define 𝜑(e𝑖) : R𝑚 ↦→ R as

𝜑(e𝑖) = max
(︁
0,−∇xℎ𝑖 · f𝑖(x𝑖,u𝑖 + e𝑖)−∇oℎ𝑖 · ȯ𝑖 − 𝛼(ℎ𝑖)

)︁
+ 𝜇||e𝑖||22. (3.13)

If the first term on the right side of Equation (3.13) is 0, then the third CBF

condition is satisfied. We can enforce the satisfaction in every timestep of

testing (after u𝑖 is given by the neural network controller) by finding a e𝑖

that minimizes 𝜑(e𝑖). 𝜇 is a regularization factor that punishes large e𝑖. We

set 𝜇 = 1 in implementation and observed that in our experiment, a fixed

𝜇 is sufficient to make sure the ||u𝑖 + e𝑖||2 do not exceed the constraint on

control input bound. When evaluating on new scenarios and the constraints

is violated, one can dynamically increase 𝜇 to strengthen the penalty. For

every timestep during testing, we initialize e𝑖 to zero and check the value

of 𝜑(e𝑖). 𝜑(e𝑖) > 0 indicates that the control policy is not good enough to

satisfy the decentralized CBF conditions. Then we iteratively refine e𝑖 by

e𝑖 = e𝑖 −∇e𝜑(e𝑖) until 𝜑(e𝑖)− 𝜇||e𝑖||22 = 0 or the maximum allowed iteration

is exceeded. The final control input is u𝑖 = u𝑖 + e𝑖. Such a refinement can

flexibly refine the control input to satisfy the decentralized CBF conditions as

much as possible.
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(c) Nested Rings (b) Predator-Prey (a) Navigation 

Figure 3-2: Illustrations of the 2D environments used in the experiments. The
Navigation and Predator-Prey environments are adopted from the multi-agent
particle environment [55]. The Nested-Rings environment is adopted from [75].

3.5 Experiments

Baseline Approaches. The baseline approaches we compare with include:

MAMPS [106], PIC [53] and MADDPG [55]. For the drone tasks, we also

compare with model-based planning method S2M2 [13]. A brief description

of each method is as follows. MAMPS leverages the model dynamics to it-

eratively switch to safe control policies when the learned policies are unsafe.

PIC proposes the permutation-invariant critic to enhance the performance of

multi-agent RL. We incorporate the safety reward to its reward function and

denote this safe version of PIC as PIC-Safe. The safety reward is -1 when the

agent enters the dangerous set. MADDPG is a pioneering work on multi-agent

RL, and MADDPG-Safe is obtained by adding the safety reward to the reward

function that is similar to PIC-Safe. S2M2 is a state-of-the-art model-based

multi-agent safe motion planner. When directly planning all agents fails, S2M2

evenly divides the agent group to smaller partitions for replanning until paths

that are collision-free for each partition are found. The agents then follow the

generated paths using PID or LQR controllers.

For each task, the environment model is the same for all the methods. The
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exact model dynamics are visible to model-based methods including MAMPS,

S2M2 and our methods, and invisible to the model-free MADDPG and PIC.

Since the model-free methods do not have access to model dynamics but in-

stead the simulators, they are more data-demanding. The number of state-

observation pairs to train MADDPG and PIC is 103 times more than that of

model-based learning methods to make sure they converge to their best per-

formance. When training the RL-based methods, the control action computed

by LQR for goal-reaching is also fed to the agent as one of the inputs to the

actor network. So the RL agents can learn to use LQR as a reference for

goal-reaching.

Evaluation Criteria. Since the primal focus of this chapter is the safety

of multi-agent systems, we use the safety rate as a criteria when evaluating

the methods. The safety rate is calculated as 1
𝑁
Σ𝑁

𝑖=1E𝑡∈𝑇 [I((𝑠𝑖(𝑡), 𝑜𝑖(𝑡)) ∈ 𝒳𝑠)]

where I(·) is the indicator function that is 1 when its argument is true or 0

otherwise. The observation 𝑜𝑖 contains the states of other agents within the

observation radius, which is 10 times the safe distance. The safe distance is

set to be the diagonal length of the bounding box of the agent. In addition

to the safety rate, we also calculate the average reward that considers how

good the task is accomplished. The agent is given a +10 reward if it reaches

the goal and a -1 reward if it enters the dangerous set. Note that the agent

might enter the dangerous set for many times before reaching the goal. The

upper-bound of the total reward for an agent is +10, which is attained when

the agent successfully reaches the goal and always stays in the safe set.
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Figure 3-3: Safety rate and reward in the 2D tasks. Results are taken after
each method converged and are averaged over 10 independent trials.

3.5.1 Experiments on Ground Robots

We consider three tasks illustrated in Figure 3-2. In the Navigation task, each

agent starts from a random location and aims to reach a random goal. In the

Predator-Prey task, the preys aim to gather the food while avoid being caught

by the predators chasing the preys. We only consider the safety of preys but

not predators. In the Nested-Rings task, the agents aim to follow the reference

trajectories while avoid collision. In order for the RL-based agents to follow

the rings trajectory, we also give the agents a negative reward proportional to

the distance to the nearest point on the rings. When adding more agents to

an environment, we will also enlarge the area of the environment to ensure the

overall density of agents remains similar.

Figure 3-3 demonstrates that when the number of agents grows (e.g., 32

agents), our approach can still maintain a high safety rate and average reward,

while other methods have much worse performance. However, our method still

cannot guarantee that the agents are 100% safe. The failure is mainly because

we cannot make sure the decentralized CBF conditions are satisfied for every
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Figure 3-4: Environments and results of 3D tasks. In Maze and Tunnel, the
initial and target locations of each drone are randomly chosen. The drones
start from the initial locations and aim to reach the targets without collision.
The results are taken after each method converged and are averaged over 10
independent trials.

state-observation pair in testing, even if they are satisfied on all training sam-

ples due to the generalization error. We also show the generalization capability

of our method with up to 1024 in the appendix and also visualization results

in the supplementary materials.

3.5.2 Experiments on Drones

We experiment with 3D drones whose dynamics are even more complex. Fig-

ure 3-4 and 3-5 demonstrate the environments and the results of each approach.

Similar to the results of ground robots, when there are numerous agents (e.g.,

32 agents), our method can still maintain a high reward and safety rate, while

other methods have worse performance. Figure 3-6 shows the generalization

capability of our method across different environments and number of agents.

For each experiment, we train 8 agents during training, but test with up to
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Figure 3-5: Illustration of the Maze environment with 1024 drones.

1024 agents. The extra agents are added by copying the neural network param-

eters of the trained 8 agents. Results show that our method has remarkable

generalization capability to diverse scenarios. Another related work [17] can

also handle the safe multi-drone control problem via CBF, but their CBF is

handcrafted and based on quadratic programming to solve the 𝑢𝑖. Their paper

only reported the results on two agents, and for 32 agents it would take more

than 70 hours for a single run of evaluation (7000 steps and 36 seconds per

step). By contrast, our method only takes ∼ 200s for a single run of evaluation

with 32 agents, showing a significant advantage in computational efficiency.

3.6 Summary

We have presented a novel approach of learning safe multi-agent control via

jointly learning the decentralized control barrier functions as safety certificates.

36



Figure 3-6: Generalization capability of our method in the 3D tasks. Our
method can be trained with 8 agents in one environment and generalize to
1024 agents in another environment in testing.

We provide the theoretical generalization bound, as well as the effective tech-

niques to realize the learning framework in practice. Experiments show that

our method significantly outperforms previous methods by being able to scale

to an arbitrary number of agents, and demonstrates remarkable generalization

capabilities to unseen and complex multi-agent environments.
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Chapter 4

Convergent Trajectory Tracking

with Contraction Metrics

4.1 Introduction

Both safety and goal-reaching are crucial in multi-agent control design. While

the previous chapter mainly considers safety, we will incorporate goal-reaching

in this chapter. In terms of goal-reaching, the control contraction metric

(CCM) [60] is an established certificate to guarantee tracking arbitrary refer-

ence trajectories with guaranteed bound on tracking error, where the reference

trajectories lead to the desired goals. We combine the CBF and CCM in a

unified framework, which can produce safe and robust controllers for multi-

agent dynamical systems to perform reach-avoid tasks and can scale to a very

large number of agents.

Our framework consists of three major components: a single-agent planner,

a tracking controller certified by a learned CCM, and a learned decentralized

CBF. First, the single-agent planner plans for each agent a reference trajec-

tory connecting it to its next destination. Then, the controllers learned with

39



(a) Auto cargo transportation for port containers

(b) Drone delivery in a city

(c) Drone fleet control in an obstacle-rich tunnel

Figure 4-1: Three simulation environments considered in this chapter.
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CCM can guarantee that each agent can track the planned reference to reach

its destination under disturbances, and the control input is further refined by

the learned decentralized CBF to make sure that the agents will not collide

with each other and other obstacles. We prove that such a certified controller

can guarantee safety and goal-reaching for multi-agent reach-avoid tasks (The-

orem 1).

We propose a novel learning framework that jointly learns multi-agent con-

trol policies and control certificates (i.e., CCM and CBF) from data, which can

be implemented in a decentralized fashion and hence scalable to an arbitrary

number of agents. We present the loss functions for the joint-learning frame-

work, as well as the neural network architecture that enables the agents to

handle complex multi-agent environments when the local topology constantly

changes. The decentralized CBF can be seen as a contract among agents and

allows agents to learn a mutual agreement with each other on how to avoid

collisions. Once such a controller is achieved through the joint-learning frame-

work, it can be applied to an arbitrary number of agents in scenarios that are

different from the training scenarios, which resolves the fundamental scalabil-

ity issue in multi-agent control. We also present several techniques that make

the learning framework more effective and scalable for practical nonlinear and

nonholonomic multi-agent systems.

We conduct experiments in the simulation environments illustrated in Fig-

ure 4-1, which include three multi-agent control problems with complex non-

holonomic dynamics: 1) controlling multiple forklifts to transport cargo for

port containers, 2) controlling multiple drones to deliver packages in a city,

and 3) controlling a drone fleet to fly through an obstacle-rich tunnel. The

agents are required to reach a sequence of goal locations and avoid collision

with each other. Comparing to state-of-the-art multi-agent planning [13] and
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safe reinforcement learning [106, 53, 55] methods, the experimental results of

our method are truly promising. Our approach can handle more than 1000

agents under limited computational resources and can avoid 96%-100% col-

lision among agents compared to the baseline. It is worth noting that when

the number of agents exponentially increases, our approach exhibits almost

no performance drop, while the performance of the compared methods drops

drastically. For example, in the cargo transportation task, as the number of

agents increases from 4 to 256, the avoided collision using method [13] drops

from 100% to 22%. On the contrary, using our method, the number only

decreases from 100% to 99.7%. Although maintaining a high safety rate, our

method is not conservative and only takes the agents 3%-17% more travel time

than the baseline method to reach the goal. Furthermore, our method demon-

strates promising generalization capability. Trained with 8 agents, the learned

controller and CBF can generalize to testing scenarios with 1024 agents, even

in a different environment. 1024 is not the limit of our approach and even

more agents can be handled given sufficient computational resource, since the

computation for each agent is parallel and fully decentralized.

Some parts of this chapter have been demonstrated in [85] and [69]. In [85]

we presented the jointly learning framework for a tracking controller and a

CCM, and in [69] we presented the jointly learning framework for a safe con-

troller and a decentralized CBF. However, those controllers were developed

separately and only used for simple tracking or collision-avoidance purposes

under relatively simple experimental settings. In this chapter, we study the

composition of these two control certificates to finish complex reach-avoid tasks

where each agent has a (possibly infinite) sequence of goals to visit, and they

need to avoid collisions with each other at run time. We develop completely

new experiments and simulation environments that better capture the practi-
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cal use of our framework. Last but not least, we provide a more comprehensive

literature review on controller synthesis for trajectory tracking and multi-agent

safety.

The rest of the chapter is organized as follows. In Section 4.3, we will define

the multi-agent reach-avoid problem that we study, and introduce the basics

of CCM and multi-agent decentralized CBF. In Section 4.4, we will provide an

overview of the proposed framework, explain how the CCM and decentralized

CBF are combined in the multi-agent setting, and give a theoretical analysis

of our method. In Section 4.5, we will elaborate on the joint-learning of the

controllers with their CCM and CBF certificates. We will derive the loss

functions used in training, and present a novel neural network architecture

that handles time-varying quantity and permutation of neighboring agents. In

Section 4.6, we will conduct comprehensive experiments in the three simulation

environments illustrated in Figure 4-1.

4.2 Related Work

Controller Synthesis with Bounded Tracking Error. The idea of syn-

thesizing a controller and bounding the tracking error meanwhile through pre-

computation has gained increasing popularity. Control Lyapunov functions

can be used for this purpose [70]. Extensions to richer temporal specifications

in the presence of noise has also been proposed [41]. Learning-based CLF has

also been studied in some recent works [20, 44, 73]. However, in order to use

CLF for synthesizing controller to track reference trajectories, the original dy-

namics have to be converted into error dynamics depending on the reference

trajectory, which limits the diversity of available reference trajectories. Sim-

ilarly, funnel library methods have been studied in [58, 59], where tracking
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controllers for a fixed set of reference trajectories and the corresponding track-

ing error are computed offline. Tube Model Predicative Control [47, 62, 29]

is another class of related techniques, where a tracking controller is computed

such that the actual trajectory remains in a tube centered at the planned MPC

nominal trajectory in the presence of bounded disturbances. As for non-linear

systems, linearization and Lipschitz-continuity-based reachability analysis are

used [46, 103, 61], but this is too conservative for motion planning in limited

free space.

Control Contraction Metrics for Trajectory Tracking. Contraction

analysis [54] is another series of methods for analyzing the incremental stabil-

ity of systems. Recently, it has been extended to controlled systems in [60] and

thus enabled tracking control synthesis for arbitrary reference trajectories with

guaranteed bound on tracking error. The most challenging part of contrac-

tion analysis is the search for a valid contraction metric which entails solving

Linear Matrix Inequalities (LMIs). In [8], the authors proposed to solve this

feasibility problem with Sum-of-Squares (SoS) programming. In [81], the au-

thors extended the SoS-based method to controlled systems, i.e., search for a

control contraction metric (CCM) instead of an ordinary one, and proposed

a more general method for synthesizing control given a valid CCM. However,

in order to apply SoS-based methods, the dynamics of the system have to be

represented by polynomials or can be approximated by polynomials. Further-

more, the method proposed in [81] relies on an assumption on the structure

which encodes the controllability of the system.
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4.3 Preliminaries and Problem Statement

We first formalize the multi-agent safe-control problem, then introduce control

contraction metrics and decentralized control barrier functions as certificates

for contraction and safety respectively.

4.3.1 Multi-agent Safe Control for Reach-avoid Problems

We assume each agent follows the control-affine dynamics:

ẋ𝑖(𝑡) = f𝑖(x𝑖(𝑡)) +𝐵𝑖(x𝑖(𝑡))u𝑖(𝑡) + d𝑖(𝑡), (4.1)

where f𝑖 : 𝒳𝑖 → R𝑛 and 𝐵𝑖 : 𝒳𝑖 → R𝑛×𝑚 are locally Lipschitz continuous, and

d𝑖(𝑡) is the disturbance belonging to a compact disturbance set 𝒟𝑖 ⊆ R𝑛. The

dynamics in 4.1 is slightly different from Chapter 2.1 as we add the disturbance

and assume the system is control-affine.

Definition 1 (Multi-agent Reach-avoid Problem)

Consider a multi-agent system modeled as in Chapter 2.1, where each agent

can obtain a local observation of its surroundings o𝑖(𝑡) at any time. The multi-

agent reach-avoid problem is to find the control input u𝑖 for each agent 𝑖 such

that (i) Each agent 𝑖 can sequentially visit the goal states {p1
𝑖 ,p

2
𝑖 , · · · }. That

is, there exist 0 < 𝑡1 < 𝑡2 < · · · such that

‖x𝑖(𝑡𝑗)− p𝑗
𝑖‖2 ≤ 𝜂, 𝑗 = 1, 2, · · · ; (4.2)

and (ii) The distance from agent 𝑖 to its nearest obstacle or other agent is

greater than a safety threshold:

𝑟(x𝑖(𝑡),o𝑖(𝑡)) ≥ 𝜅, ∀𝑡 > 0, (4.3)
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and each agent 𝑖 also satisfy 𝑔𝑖(x𝑖(𝑡)) ≥ 0, ∀𝑡 > 0, where 𝜂, 𝜅 are positive con-

stants and 𝑔𝑖 : 𝒳𝑖 → R is a function that defines additional safety constraints.

The above definition for multi-agent reach-avoid problem can describe

many practical robotics applications, including all three use cases in Figure 4-

1. The problem of finding the sequential goals {p1
𝑖 ,p

2
𝑖 , · · · } for each agent 𝑖

can be solved using path planners and is out of the scope of this chapter.

A straightforward solution to the multi-agent reach-avoid problem is to

use the multi-agent trajectory planning algorithms [13, 31, 57, 80], which out-

put collision-free trajectories connecting agents to the goal locations. However,

there are two facts that make these algorithms impractical for large-scale multi-

agent safe control in our settings. First, those centralized planning methods

cannot handle a large and potentially changing number of agents with com-

plex model dynamics due to their high computational complexity. Second,

the disturbances could cause tracking errors between the actual trajectories

and the planned ones, therefore in practice even perfectly planned trajectories

could lead to collisions. Therefore, we choose to combine simple single-agent

planning with decentralized safe control to mitigate the scalability issue while

keeping agents safe. The single-agent planner only needs to plan a reference

path connecting each agent to their goals while avoiding some static obstacles,

and any off-the-shelf single-agent planner can be used to do so. Our primary

focus is to design controllers that allow each agent to track its own reference

trajectory and avoid collisions with each other at run time. These controllers

will be found through control theoretical approaches based on contraction

metrics and barrier functions.
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4.3.2 Control Contraction Metrics

Contraction theory [54] analyzes the incremental stability of a system by con-

sidering the evolution of the distance between any pairs of trajectories. Let us

first consider a time-invariant autonomous system of the form ẋ𝑖 = f𝑖(x𝑖(𝑡)).

For a trajectory x𝑖(𝑡) of the system, assume that x𝑖(𝑡) + 𝛿x𝑖
(𝑡) is also a valid

trajectory, where 𝛿x𝑖
is an infinitesimal displacement. Then, the evolution of

𝛿x𝑖
is dictated by a linear time varying (LTV) system: �̇�x𝑖

= 𝜕f𝑖
𝜕x𝑖

(x𝑖)𝛿x𝑖
, which

is called the linearization of the original system along the trajectory x𝑖(𝑡).

Thus, the dynamics of the squared distance 𝛿⊺x𝑖
𝛿x𝑖

is given by 𝑑
𝑑𝑡
(𝛿⊺x𝑖

𝛿x𝑖
) =

2𝛿⊺x𝑖

𝜕f𝑖
𝜕x𝑖

𝛿x𝑖
= 𝛿⊺x𝑖

𝜕f𝑖
𝜕x𝑖

⋀︀

𝛿x𝑖
. Recall that 𝜕f𝑖

𝜕x𝑖

⋀︀

= 𝜕f𝑖
𝜕x𝑖

+ 𝜕f𝑖
𝜕x𝑖

⊺. If 𝜕f𝑖
𝜕x𝑖

⋀︀

is uniformly nega-

tive definite, i.e., there exists a constant 𝜆 > 0 such that for all x𝑖, 𝜕f𝑖
𝜕x𝑖

⋀︀

⪯ −𝜆I,

then 𝛿⊺x𝑖
𝛿x𝑖

converges to zero exponentially at rate 𝜆. Hence, all trajectories

of this system will converge to a common trajectory [54]. Such a system is

referred to be contracting.

The above analysis can be generalized by introducing a contraction metric

𝑀𝑖 : R𝑛 ↦→ R𝑛×𝑛, which is a smooth function and satisfies 𝑀𝑖(x𝑖) ≻ 0 for all x𝑖.

Then, 𝛿⊺x𝑖
𝑀𝑖(x𝑖)𝛿x𝑖

can be interpreted as a Riemannian squared length. Since

𝑀𝑖(x𝑖) ≻ 0 for all x𝑖, if 𝛿⊺x𝑖
𝑀𝑖(x𝑖)𝛿x𝑖

converges to 0 exponentially, then 𝛿⊺x𝑖
𝛿x𝑖

also converges to 0 exponentially, and the system is contracting. The converse

is also true. As shown in [54], if a system is contracting, then there exists a

contraction metric 𝑀𝑖(x𝑖) and a constant 𝜆 > 0 such that 𝑑
𝑑𝑡
(𝛿⊺x𝑖

𝑀𝑖(x𝑖)𝛿x𝑖
) <

−𝜆𝛿⊺x𝑖
𝑀𝑖(x𝑖)𝛿x𝑖

for all x𝑖 and 𝛿x𝑖
.

Contraction theory can be further extended to control-affine systems. Con-

sider the unperturbed version of Equation (4.1) (i.e., with d𝑖 ≡ 0). The dy-

namics of 𝛿x𝑖
is then given by �̇�x𝑖

= 𝐴𝑖(x𝑖,u𝑖)𝛿x𝑖
+𝐵𝑖(x𝑖)𝛿u𝑖

, where 𝐴𝑖(x𝑖,u𝑖) :=

𝜕f𝑖
𝜕x𝑖

+
∑︀𝑚

𝑗=1 u
𝑗
𝑖
𝜕b𝑗

𝑖

𝜕x𝑖
, b𝑗

𝑖 is the 𝑗-th column of 𝐵𝑖, u𝑗
𝑖 is the 𝑗-th element of u𝑖, and

𝛿u𝑖
is an infinitesimal difference of u𝑖. We then consider the reference track-
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ing problem. A trajectory x*
𝑖 : R≥0 ↦→ 𝒳𝑖 is called a reference if there exists

u*
𝑖 : R≥0 ↦→ 𝒰𝑖 such that x*

𝑖 and u*
𝑖 solve the differential equation in (4.1) with

d𝑖 ≡ 0. We aim to find a tracking controller that is certified to be able to

track any reference x*
𝑖 (𝑡) with the corresponding input u*

𝑖 (𝑡). A fundamental

theorem in the CCM theory states that if there exists a metric 𝑀𝑖(x𝑖) such

that the following conditions hold for all x𝑖 ∈ 𝒳𝑖 and some 𝜆 > 0,

𝐵⊺
𝑖⊥

(︂
−𝜕f𝑖𝑊𝑖(x𝑖) +

𝜕f𝑖(x𝑖)
𝜕x𝑖

𝑊𝑖(x𝑖)

⋀︀

+ 2𝜆𝑊𝑖(x𝑖)

)︂
𝐵𝑖⊥ ⪯ 0, (4.4)

𝐵⊺
𝑖⊥

(︂
𝜕𝑏𝑖𝑊𝑖(x𝑖)− 𝜕𝑏𝑗𝑖 (x𝑖)

𝜕x𝑖
𝑊𝑖(x𝑖)

⋀︀)︂
𝐵𝑖⊥ = 0, 𝑗 = 1, . . . ,𝑚, (4.5)

where 𝐵𝑖⊥(x𝑖) is an annihilator matrix of 𝐵𝑖(x𝑖) satisfying 𝐵⊺
𝑖⊥𝐵𝑖 = 0, and

𝑊𝑖(x𝑖) = 𝑀𝑖(x𝑖)
−1 is the dual metric, then there exists a tracking controller

u𝑖(x𝑖,x
*
𝑖 ,u

*
𝑖 ) such that the closed-loop system controlled by u𝑖(x𝑖,x

*
𝑖 ,u

*
𝑖 ) is

contracting with rate 𝜆 under metric 𝑀𝑖(x𝑖) [60]. This also means x𝑖(𝑡) con-

verges to x*
𝑖 (𝑡) exponentially fast. If we can find such a controller for each

agent, then we can ensure that each agent converges to its own desired nomi-

nal trajectory x*
𝑖 (𝑡). However, note that the above conditions (4.4) and (4.5)

are controller-independent, i.e., u𝑖 does not appear in the conditions. Although

these conditions imply the existence of such a controller, computation of it is

still hard and computationally expensive as shown in [81]. Thus, we proposed

to learn such a controller directly. To this end, controller-dependent condi-

tions are needed. Plugging the controller into the system in Equation (4.1)

with d𝑖 ≡ 0, the dynamics of the generalized squared length of the virtual

displacement 𝛿x𝑖
under metric 𝑀𝑖(x𝑖) = 𝑊𝑖(x𝑖)

−1 is given by

𝑑

𝑑𝑡
(𝛿⊺x𝑖

𝑀𝑖(x𝑖)𝛿x𝑖
) = 𝛿⊺x𝑖

(�̇�𝑖 +𝑀𝑖(𝐴𝑖 +𝐵𝑖𝐾𝑖)
⋀︀

)𝛿x𝑖
, (4.6)
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where 𝐾𝑖 =
𝜕u𝑖

𝜕x𝑖
, and �̇�𝑖 =

∑︀𝑛
𝑗=1

𝜕𝑀𝑖

𝜕u𝑗
𝑖

u̇𝑗
𝑖 . Here, x𝑗

𝑖 denotes the 𝑗𝑡ℎ element of

the state vector of agent 𝑖. Now, we propose the following condition: there

exists 𝜆 > 0 such that for all x𝑖 ∈ 𝒳𝑖, x*
𝑖 ∈ 𝒳𝑖 and u*

𝑖 ∈ 𝒰𝑖 ,

�̇�𝑖 +𝑀𝑖(𝐴𝑖 +𝐵𝑖𝐾𝑖)
⋀︀

+ 2𝜆𝑀𝑖 ⪯ 0. (4.7)

Now assume that the above condition is satisfied. Then, given an arbitrary

reference x*
𝑖 (𝑡), the closed-loop system is contracting. Thus, starting from any

initial state, the trajectory converges to a “common" trajectory. Furthermore,

assume that the controller satisfies that if x𝑖 = x*
𝑖 , then u𝑖(x𝑖,x

*
𝑖 ,u

*
𝑖 ) = u*

𝑖 .

Then the reference x*
𝑖 (𝑡) itself is a valid trajectory of the closed-loop sys-

tem, and thus the “common" trajectory is indeed x*
𝑖 (𝑡). In other words, all

the trajectories converge to the reference. This is formalized in the following

proposition.

Proposition 2

If condition (4.7) holds and two positive scalars 𝑚 ≥ 𝑚 > 0 satisfy 𝑚I ⪯

𝑀𝑖(x𝑖) ⪯ 𝑚I for all x𝑖, and in (4.1) the disturbance is bounded as ‖d𝑖(𝑡)‖2 ≤ 𝜖

for all 𝑡, then for an arbitrary reference x*
𝑖 : R≥0 ↦→ 𝒮𝑖 and an arbitrary initial

condition x𝑖(0), the difference between the reference and the actual trajectory

is bounded as:

‖x𝑖(𝑡) − x*
𝑖 (𝑡)‖2 ≤

√︂
𝑚

𝑚
𝑒−𝜆𝑡‖x𝑖(0) − x*

𝑖 (0)‖2 +
√︂

𝑚

𝑚
· 𝜖
𝜆
(1 − 𝑒−𝜆𝑡). (4.8)

Proof. Since ∀x𝑖, 𝑀𝑖(x𝑖) ≻ 0, there exists Θ𝑖(x𝑖) such that 𝑀𝑖(x𝑖) = Θ𝑖(x𝑖)
⊺Θ𝑖(x𝑖)

for all x𝑖. Now, let us consider the smallest path integral between x𝑖(𝑡) and

x*
𝑖 (𝑡) w.r.t. metric 𝑀𝑖(x𝑖) and denote it by 𝑅(𝑡) =

∫︀ x*
𝑖 (𝑡)

x𝑖(𝑡)

√︀
𝛿⊺x𝑖𝑀𝑖(x𝑖)𝛿x𝑖

=∫︀ x*
𝑖 (𝑡)

x𝑖(𝑡)
‖Θ𝑖(x𝑖)𝛿x𝑖

‖2. Then differentiating 𝑅(𝑡) w.r.t. 𝑡 yields �̇� ≤ −𝜆𝑅 +
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Vehicle plant model 

ሶ𝑠𝑖 = 𝑓𝑖 𝑠𝑖 + 𝐵 𝑠𝑖 𝑢𝑖

Environment and next goal
Static obstacles 

and goal

Reference 

trajectory 𝑢𝑖,CCM

Neighboring agents

Local observation
𝑢𝑖 = 𝑢𝑖,CCM + ∆𝑢𝑖

Reference 

Planner
Controller 𝑢𝑖,𝐶𝐶𝑀

Decentralized CBF ℎ𝑖

CCM 𝑀𝑖

Decentralized CBF ℎ𝑖

Controller 𝑢𝑖,𝐶𝐶𝑀

Controller 𝑢𝑖,𝐶𝐵𝐹

Training 

samples

Training 

samples

Loss ℒ𝑀

Loss ℒ𝐵

(a) Overview of our multi-agent control framework (b) Joint-learning of the controllers and certificates

Figure 4-2: Method overview. (a) The proposed multi-agent control frame-
work consists of three components: the reference planner (blue) that gives
each agent 𝑖 its reference trajectory (not necessarily collision-free), the track-
ing controller u𝑖,𝐶𝐶𝑀 (orange) certified by CCM and the decentralized CBF
(red), which computes the final control input ∆u𝑖 for each agent 𝑖 such that
the whole multi-agent system is collision-free and each agent can track its
reference trajectory with a bounded error. The control is decentralized and
we only show the pipeline for agent 𝑖. (b) The controllers and corresponding
certificates are represented by neural networks and are jointly learned during
training.

‖Θ𝑖d𝑖‖2 ≤ −𝜆𝑅+ 𝜖
√
𝑚. (see [54], pp. 11 (vii)) By comparison lemma, 𝑅(𝑡) is

bounded as 𝑅(𝑡) ≤ 𝑅(0)𝑒−𝜆𝑡+ 𝜖
𝜆

√
𝑚(1− 𝑒−𝜆𝑡). Since Θ𝑖 is uniformly bounded

as Θ𝑖(𝑥) ⪰
√
𝑚I, we have 𝑅(𝑡) ≥ √𝑚‖x𝑖(𝑡)− x*

𝑖 (𝑡)‖2, which follows from the

fact that the smallest path integral w.r.t. a constant metric is the path integral

along the straight line. Similarly we have that 𝑅(0) ≤
√
𝑚‖x𝑖(0) − x*

𝑖 (0)‖2.

Combining these inequalities yields the proposition.

4.4 Proposed Control Framework

In this section, we present the entire learning-based control framework and

the theoretical guarantees it can provide, assuming we have a certified tracking

controller and a decentralized CBF. In Section 4.5 we will introduce techniques

on learning those controllers and certificates from data. An overview of our

method is provided in Figure 4-2. Since the controllers are decentralized and

each agent executes its own controller individually, we only demonstrate the
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control pipeline for a single agent 𝑖. The pipeline structure is the same for all

the agents, even if their dynamics are different.

There are three components in our framework: the single-agent reference

planner, the controller certified by CCM for tracking the reference trajectory,

and the decentralized CBF to refine the tracking controller and ensure safety

of the multi-agent system. As the first component, the reference trajectory

planner takes the static obstacles and the goal as input and outputs the refer-

ence trajectory for each individual agent. At this stage, we do not require the

reference trajectories to avoid collision with other agents, and the planners are

decentralized for each agent. Therefore, any single-agent trajectory planning

algorithms can be used as a reference planner. In our implementation, we use

the FACTEST tool [27], which can output piecewise feasible reference trajec-

tories in a very short time (usually within seconds), but other methods such

as RRT [48] are also applicable. The single-agent planners are not our focus

in this chapter and therefore we omit the detailed discussion. The key feature

of the first component is that we do not require a multi-agent trajectory plan-

ner that considers the collision avoidance among agents. As we discussed in

Section 4.3.1, multi-agent planners suffer from high computational complexity

and are extremely difficult to scale up to a large number of agents.

As the second component, we propose a learning-based tracking controller

u𝑖,𝐶𝐶𝑀 such that the closed-loop system has a corresponding contraction met-

ric 𝑀𝑖 which guarantees that each agent can track any feasible reference tra-

jectory with an exponential convergence rate. Existing control algorithms

based on CCM [81, 82, 94] usually first synthesize the CCM, and then com-

pute the control input separately by computing geodesics of the CCM. How-

ever, geodesics cannot be computed exactly, and approximation algorithms are

very time consuming. Moreover, those methods also rely on some assumptions
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about the structure of the dynamics. In Section 4.5, we will present a learning-

based method that can jointly synthesize the CCM and the tracking controller

for a general class of control-affine systems. Such a neural controller can be

evaluated in real time and still enjoys the strong convergence guarantees.

As the third component, we propose to adjust the tracking controller

u𝑖,𝐶𝐶𝑀 so it can avoid collisions in the multi-agent system and satisfy other

safety requirements. This can be achieved using the decentralized CBF ℎ𝑖

as introduced in (3.1). The final control policy u𝑖 should always make sure

the closed-loop system satisfy the CBF conditions. Previous works using de-

centralized CBF typically need to handcraft the CBF [16, 17], which can be

extremely difficult for general nonlinear and nonholonomic dynamics. In Sec-

tion 4.5 we present a learning-based method to directly learn the decentralized

CBF in a data-driven way. Note in this case, while ℎ𝑖 is obtained jointly with

a learned safe controller u𝑖,𝐶𝐵𝐹 , we do not use u𝑖,𝐶𝐵𝐹 in testing but rather to

ensure that the set of controllers that satisfy the CBF conditions is not empty.

Since the CBF learning framework is independent from the CCM learning

framework, the jointly learned neural u𝑖,𝐶𝐵𝐹 may not be able to tracking the

reference trajectory. Therefore, we only need ℎ𝑖 to compute the final control

input u𝑖, which ensures that collision among agents can be avoided at run

time, and each agent is able to track its reference trajectory with a bounded

error. Note that our control framework is decentralized, which means each

agent has its own controller. In order to scale up to a large number of agents,

we cannot synthesis a centralized controller that simultaneously computes the

control input for all agents. The input and output space of a centralized con-

troller will grow exponentially with the number of agents and can eventually

make the problem intractable.

The combination of the second and third components is critical to keeping
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the multi-agent system safe and enabling each agent to reach its goal by track-

ing its reference trajectory. Since the reference trajectories of different agents

may collide, the decentralized CBFs will take effect and enable the agents to

avoid each other by slightly deviating from the reference trajectories. We will

prove that using our composed CCM and CBF framework, the agents’ devi-

ations from the reference trajectory are bounded under some assumptions on

the bounds of the controllers and certificates. In the following, we first present

how the second and third components are combined mathematically. Given

the tracking controller u𝑖,𝐶𝐶𝑀 satisfying (4.7) and the decentralized CBF ℎ𝑖

satisfying (3.1), we seek to compute a ∆u𝑖 such that u𝑖,𝐶𝐶𝑀 +∆u𝑖 ∈ 𝒰𝑖 sat-

isfies the third condition in (3.1). For an agent model in (4.1), we assume

that ∇x𝑖
ℎ𝑖 · d𝑖 is bounded as ‖∇x𝑖

ℎ𝑖 · d𝑖‖2 ≤ 𝜖ℎ. We consider the following

optimization problem for finding ∆u𝑖:

min
Δu𝑖

‖𝐵𝑖∆u𝑖‖22

s.t. ∇x𝑖
ℎ𝑖 · (f𝑖(x𝑖) +𝐵𝑖(x𝑖)(u𝑖,𝐶𝐶𝑀 +∆u𝑖)) +

∇o𝑖
ℎ𝑖 · ȯ𝑖(𝑡) + 𝛼 (ℎ𝑖) ≥ 𝜖ℎ, ∀(x𝑖,o𝑖) ∈ 𝒮𝑖,ℎ

(4.9)

where 𝒮𝑖,ℎ := {(x𝑖,o𝑖) | ℎ𝑖(x𝑖,o𝑖) ≥ 0}. The desired ∆u𝑖 can be found online

by solving (4.9) using Quadratic Programming (QP). Theorem 1 shows that if

‖𝐵𝑖∆u𝑖‖2 is bounded, then the current trajectory of agent 𝑖 will exponentially

converge to its reference trajectory with a bounded tracking error, and the

multi-agent system is safe under the control input u𝑖 = u𝑖,𝐶𝐶𝑀 +∆u𝑖.

Theorem 1

For each agent 𝑖 in the multi-agent system, given u𝑖,𝐶𝐶𝑀 ,𝑀𝑖 satisfying (4.7),

ℎ𝑖 satisfying (3.1), ∆u𝑖 the solution to (4.9), 𝑚 ≥ 𝑚 > 0 satisfying 𝑚I ⪯

𝑀𝑖(x𝑖) ⪯ 𝑚I for all x𝑖, ‖𝐵𝑖(x𝑖(𝑡))∆u𝑖(𝑡)‖2 ≤ 𝜖𝑢 and ‖d𝑖(𝑡)‖2 ≤ 𝜖𝑑 hold for all
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𝑡 > 0. Then under the control input u𝑖,𝐶𝐶𝑀 + ∆u𝑖, the distance between the

current trajectory x𝑖(𝑡) and the reference trajectory x*
𝑖 (𝑡) is bounded as:

‖x𝑖(𝑡)− x*
𝑖 (𝑡)‖2 ≤

√︂
𝑚

𝑚
𝑒−𝜆𝑡‖x𝑖(0)− x*

𝑖 (0)‖2

+

√︂
𝑚

𝑚
· 𝜖𝑢 + 𝜖𝑑

𝜆
(1− 𝑒−𝜆𝑡). (4.10)

Also, if for ∀𝑖 ∈ J𝑁K, (x𝑖(0),o𝑖(0)) ∈ {(x𝑖,o𝑖) | ℎ𝑖(x𝑖,o𝑖) ≥ 0}, then:

𝑟(x𝑖(𝑡),o𝑖(𝑡)) ≥ 𝜅, 𝑔𝑖(x𝑖(𝑡)) ≥ 0, ∀𝑖 = J𝑁K, 𝑡 > 0, (4.11)

which means the minimum distance from an agent to its neighbouring agents

and obstacles is greater than the safety threshold 𝜅, and the additional safety

constraints specified by 𝑔𝑖(x𝑖) are satisfied. Thus the multi-agent system is

safe.

Proof. The model dynamics under the adjusted control input u𝑖,𝐶𝐶𝑀 + ∆u𝑖

is �̇�𝑖 = f𝑖(x𝑖) + 𝐵𝑖(x𝑖)u𝑖,𝐶𝐶𝑀 + (𝐵𝑖(x𝑖)∆u𝑖 + d𝑖(𝑡)). Note that ‖𝐵𝑖(x𝑖)∆u𝑖 +

d𝑖(𝑡)‖2 ≤ ‖𝐵𝑖(x𝑖)∆u𝑖‖2 + ‖d𝑖(𝑡)‖2 = 𝜖𝑢 + 𝜖𝑑. Based on the result of Proposi-

tion 2 and replacing 𝜖 with 𝜖𝑢 + 𝜖𝑑, we can derive the inequality (4.10). Since

∆u𝑖 satisfies the inequality constraint in (4.9), we have ∇x𝑖
ℎ𝑖 · ẋ𝑖+∇o𝑖

ℎ𝑖 · ȯ𝑖+

𝛼 (ℎ𝑖) = ∇x𝑖
ℎ𝑖 · (f𝑖(x𝑖) +𝐵𝑖(x𝑖)(u𝑖,𝐶𝐶𝑀 +∆u𝑖) + d𝑖(𝑡)) +∇o𝑖

ℎ𝑖 · ȯ𝑖 + 𝛼 (ℎ𝑖) ≥

∇x𝑖
ℎ𝑖 · (f𝑖(x𝑖) +𝐵𝑖(x𝑖)(u𝑖,𝐶𝐶𝑀 +∆u𝑖))− ‖∇x𝑖

ℎ𝑖 · d𝑖‖2 +∇o𝑖
ℎ𝑖 · ȯ𝑖 + 𝛼 (ℎ𝑖) ≥

∇x𝑖
ℎ𝑖 · (f𝑖(x𝑖) + 𝐵𝑖(x𝑖)(u𝑖,𝐶𝐶𝑀 + ∆u𝑖)) − 𝜖ℎ + ∇o𝑖

ℎ𝑖 · ȯ𝑖 + 𝛼 (ℎ𝑖) ≥ 0. Thus

the decentralized CBF conditions in (3.1) are satisfied. By Proposition 1,

the multi-agent system is safe. If the initial condition (x𝑖(0),o𝑖(0)) ∈ 𝒮𝑖,0 =

{(x𝑖,o𝑖) | ℎ𝑖(x𝑖,o𝑖) ≥ 0}, (x𝑖,o𝑖) will never enter the dangerous set 𝒮𝑖,𝑑, which

is equivalent to (4.11).

54



Note that 𝑡 = 0 in Theorem 1 does not necessarily mean the initial time

of the whole simulation. It can be seen as any time point of the simulation

and Theorem 1 guarantees the safety and goal-reaching (with bounded error)

starting from that time point.

4.5 Learning Large-scale Multi-agent Certified

Control with Neural CCM and CBF

One of the main contributions of this work is a co-learning framework that

jointly synthesizes the CCM 𝑀𝑖, the tracking controller u𝑖,𝐶𝐶𝑀 , the decentral-

ized CBF ℎ𝑖, and the safe controller u𝑖,𝐶𝐵𝐹 . In this section, we will elaborate

on the formulation of the learning problem and the loss functions used for the

training. We will also present a novel neural network architecture that can

encode the local observation with time-varying dimension and permutation,

which is crucial for our method to handle the complex multi-agent environ-

ment where neighboring topology constantly change.

4.5.1 Co-learning the CCM and Tracking Controller

Both the CCM and tracking controller are represented by neural networks,

and the same type of agents share the same network parameters. Denote

the reference state trajectory and control input of agent 𝑖 as x*
𝑖 (𝑡) and u*

𝑖 (𝑡).

The tracking controller u𝑖,𝐶𝐶𝑀(x𝑖,x
*
𝑖 ,u

*
𝑖 ;𝜃

u
𝑖 ) is modeled using a neural net-

work with parameters 𝜃u
𝑖 , and the dual metric 𝑊𝑖(x𝑖;𝜃

𝑤
𝑖 ) is also a neural

network with parameters 𝜃𝑤
𝑖 . By design, the controller satisfies that x𝑖 =

x*
𝑖 ⇒ u𝑖,𝐶𝐶𝑀(x𝑖,x

*
𝑖 ,u

*
𝑖 ;𝜃

u
𝑖 ) = u*

𝑖 , and 𝑊𝑖(x𝑖;𝜃
𝑤
𝑖 ) is a symmetric matrix sat-

isfying 𝑊𝑖(x𝑖;𝜃
𝑤
𝑖 ) ⪰ 𝑤I for all x𝑖 and all 𝜃𝑤

𝑖 , where 𝑤 is a hyper-parameter.
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Denote the left side of (4.7) as 𝐺𝑖(x𝑖,x
*
𝑖 ,u

*
𝑖 ;𝜃

𝑤
𝑖 ,𝜃

u
𝑖 ). Then the objective of

jointly learning the CCM and the tracking controller can be formally stated

as:
For all 𝑖, find 𝜃𝑤

𝑖 and 𝜃u
𝑖

s.t. 𝐺𝑖(x𝑖,x
*
𝑖 ,u

*
𝑖 ;𝜃

𝑤
𝑖 ,𝜃

u
𝑖 ) ⪯ 0, ∀x𝑖,x

*
𝑖 and u*

𝑖

(4.12)

Based on the objective (4.12), we are able to design loss functions to opti-

mize the neural network parameters 𝜃𝑤
𝑖 and 𝜃u

𝑖 . Let 𝒱𝑖 denote the uniform

distribution on 𝒮𝑖 × 𝒮𝑖 × 𝒰𝑖. The contraction loss is defined as

ℒ𝑢(𝜃
𝑤
𝑖 ,𝜃

u
𝑖 ) = E

(x𝑖,x*
𝑖 ,u

*
𝑖 )∼𝒱𝑖

𝐿𝑃𝐷(−𝐺𝑖(x𝑖,x
*
𝑖 ,u

*
𝑖 ;𝜃

𝑤
𝑖 ,𝜃

u
𝑖 )), (4.13)

where 𝐿𝑃𝐷(·) ≥ 0 is for penalizing non-positive definiteness and satisfies that

𝐿𝑃𝐷(𝐴) = 0 iff 𝐴 ⪰ 0. In practice, 𝐿𝑃𝐷 is implemented as follows. Given a

matrix 𝐴 ∈ R𝑛×𝑛, we randomly sample 𝐾 points {𝑝𝑖 ∈ R𝑛 | ||𝑝𝑖||2 = 1}𝐾𝑖=1.

Then, the loss value is calculated as 𝐿𝑃𝐷(𝐴) =
1
𝐾

∑︀𝐾
𝑖=1min{0,−𝑝⊺𝑖𝐴𝑝𝑖}. Ob-

viously, ℒ𝑢(𝜃
𝑤
𝑖 ,𝜃

u
𝑖 ) = 0 implies that 𝑢(x𝑖,x

*
𝑖 ,u

*
𝑖 ;𝜃

u
𝑖 ) and 𝑊𝑖(x𝑖;𝜃

𝑤
𝑖 ) satisfy

inequality (4.7) exactly. Theoretically, the loss term ℒ𝑢 suffices to learn the

CCM and the tracking controller. However, in practice, minimizing ℒ𝑢 alone

leads to a very slow convergence in the training process. Therefore, we intro-

duce a few auxiliary loss terms as follows.

First, inspired by the CCM theory, we add two auxiliary loss terms for the

dual metric. As shown in Section 4.3, conditions (4.4) and (4.5) are sufficient

for a metric to be a valid CCM. Intuitively, imposing these constraints on

the dual metric 𝑊𝑖(x𝑖;𝜃
𝑤
𝑖 ) provides more guidance for finding a valid metric.

Denoting the left side of (4.4) and (4.5) by 𝐶1(x𝑖;𝜃
𝑤
𝑖 ) and {𝐶𝑗

2(x𝑖;𝜃
𝑤
𝑖 )}𝑚𝑗=1,
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the following loss functions are used

ℒ𝑤1(𝜃
𝑤
𝑖 ) = E

(x𝑖,x*
𝑖 ,u

*
𝑖 )∼𝒱𝑖

𝐿𝑃𝐷(−𝐶1(x𝑖;𝜃
𝑤
𝑖 )), (4.14)

ℒ𝑤2(𝜃
𝑤
𝑖 ) =

𝑚∑︁
𝑗=1

E
(x𝑖,x*

𝑖 ,u
*
𝑖 )∼𝒱𝑖

‖𝐶𝑗
2(x𝑖;𝜃

𝑤
𝑖 )‖𝐹 , (4.15)

where ‖ · ‖𝐹 is the Frobenius norm.

Furthermore, as shown in Proposition 2, the overshoot of the tracking

error is affected by the condition number of the metric. Since the smallest

eigenvalue of the dual metric is lower bounded by 𝑤 by design, penalizing the

condition number is equivalent to penalizing the largest eigenvalue, and thus

the following loss function is used

ℒ𝑐(𝜃
𝑤
𝑖 ) = E

(x𝑖,x*
𝑖 ,u

*
𝑖 )∼𝒱𝑖

𝐿𝑃𝐷(𝑤I−𝑊𝑖(x𝑖;𝜃
𝑤
𝑖 )), (4.16)

where 𝑤 is a hyper-parameter.

In training, the following loss function is minimized to find a CCM and the

corresponding controller:

ℒ𝑀(𝜃u
𝑖 ,𝜃

𝑤
𝑖 ) = ℒ𝑢(𝜃

𝑤
𝑖 ,𝜃

u
𝑖 ) + ℒ𝑐(𝜃

𝑤
𝑖 ) + ℒ𝑤1(𝜃

𝑤
𝑖 ) + ℒ𝑤2(𝜃

𝑤
𝑖 ).

Note that for each type of agents, only one CCM with the corresponding

tracking controller needs to be trained.
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4.5.2 Co-learning the Decentralized CBF and Safe Con-

troller

In order to learn ℎ𝑖, we can jointly learn a safe controller u𝑖,𝐶𝐵𝐹 such that the

decentralized CBF conditions in (3.1) are satisfied. Although u𝑖,𝐶𝐵𝐹 is not

directly used by our control pipeline in Figure 4-2 (a), it is still required in

training because the third inequality in (3.1) depends on both the CBF and

the controller. Both u𝑖,𝐶𝐵𝐹 and ℎ𝑖 are represented as neural networks with

parameters 𝜃𝜋
𝑖 and 𝜃ℎ

𝑖 respectively. Let 𝑇 ⊂ R+ be the time interval and

𝜏𝑖 = {x𝑖(𝑡),o𝑖(𝑡)}𝑡∈𝑇 be a trajectory of state and observation of agent 𝑖. Let

𝒯𝑖 be the set of all possible trajectories of agent 𝑖. Define the function 𝑦𝑖 as:

𝑦𝑖(𝜏𝑖,𝜃
ℎ
𝑖 ,𝜃

𝜋
𝑖 ) :=

min
{︁

inf
𝒮𝑖,0∩𝜏𝑖

ℎ𝑖(x𝑖,o𝑖;𝜃
ℎ
𝑖 ), inf

𝒮𝑖,𝑑∩𝜏𝑖
−ℎ𝑖(x𝑖,o𝑖;𝜃

ℎ
𝑖 ),

inf
𝒮𝑖,ℎ∩𝜏𝑖

(∇x𝑖
ℎ𝑖 · (f𝑖(x𝑖) +𝐵𝑖(x𝑖)u𝑖,𝐶𝐵𝐹 (x𝑖,o𝑖;𝜃

𝜋
𝑖 ))+

∇o𝑖
ℎ𝑖 · ȯ𝑖 + 𝛼(ℎ𝑖(x𝑖,o𝑖;𝜃

ℎ
𝑖 ))− 𝜖ℎ)

}︁
. (4.17)

The set 𝒮𝑖,ℎ := {(x𝑖,o𝑖) | ℎ𝑖(x𝑖,o𝑖) ≥ 0}. Note that the third term on the

RHS of (4.17) depends on both the control policy and the CBF. It is clear

that if we can find the 𝜃ℎ
𝑖 and 𝜃𝜋

𝑖 such that 𝑦𝑖(𝜏𝑖,𝜃
ℎ
𝑖 ,𝜃

𝜋
𝑖 ) > 0 for ∀𝜏𝑖 ∈ 𝒯𝑖 and

∀𝑖, the conditions in (3.1) are satisfied. Therefore, the objective of learning

multi-agent decentralized CBF is formulated as:

For all 𝑖, find 𝜃ℎ
𝑖 and 𝜃𝜋

𝑖

s.t. 𝑦𝑖(𝜏𝑖,𝜃
ℎ
𝑖 ,𝜃

𝜋
𝑖 ) > 0, ∀𝜏𝑖 ∈ 𝒯𝑖.

(4.18)

The decentralized CBF is required to satisfy three conditions specified in
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(4.18), corresponding to the three terms in (4.17). The first condition states

that for (x𝑖,o𝑖) in the initial set 𝒮𝑖,0, the CBF ℎ𝑖 is non-negative, from which

we derive the loss function:

ℒℎ1(𝜃
ℎ
𝑖 ) = E

(x𝑖,o𝑖)∈𝒮𝑖,0

max
(︀
0,−ℎ𝑖(x𝑖,o𝑖;𝜃

ℎ
𝑖 )
)︀
. (4.19)

The second condition requires that for (x𝑖,o𝑖) in the dangerous set 𝒮𝑖,𝑑, ℎ𝑖 is

negative, which gives rise to the loss function:

ℒℎ2(𝜃
ℎ
𝑖 ) = E

(x𝑖,o𝑖)∈𝒮𝑖,𝑑

max
(︀
0, ℎ𝑖(x𝑖,o𝑖;𝜃

ℎ
𝑖 )
)︀
. (4.20)

The third condition depends on both the controller and the control barrier

function, requiring that ℎ̇𝑖 + 𝛼(ℎ𝑖) ≥ 0 for (x𝑖,o𝑖) ∈ 𝒮𝑖,ℎ, from which we can

derive the loss function:

ℒℎ3(𝜃
ℎ
𝑖 ,𝜃

𝜋
𝑖 ) = E

(x𝑖,o𝑖)∈𝒮𝑖,ℎ

max
(︀
0, 𝜖ℎ −∇x𝑖

ℎ𝑖 · (f𝑖(x𝑖)+

𝐵𝑖(x𝑖)u𝑖,𝐶𝐵𝐹 (x𝑖,o𝑖;𝜃
𝜋
𝑖 ))−∇o𝑖

ℎ𝑖 · ȯ𝑖 − 𝛼(ℎ𝑖(x𝑖,o𝑖;𝜃
ℎ
𝑖 ))

)︀
.

For the class-𝒦 function 𝛼(·), we simply choose a linear function 𝛼(ℎ) = 𝜆ℎ.

Directly computing ℒℎ3 is difficult because we need to evaluate �̇�𝑖, which

is the time derivative of the observation. We approximate ∇x𝑖
ℎ𝑖 · (f𝑖(x𝑖) +

𝐵𝑖(x𝑖)u𝑖,𝐶𝐵𝐹 (x𝑖,o𝑖;𝜃
𝜋
𝑖 )) +∇o𝑖

ℎ𝑖 · ȯ𝑖 by

1

∆𝑡
(ℎ𝑖(x𝑖(𝑡+∆𝑡),o𝑖(𝑡+∆𝑡);𝜃ℎ

𝑖 )− ℎ𝑖(x𝑖(𝑡),o𝑖(𝑡);𝜃
ℎ
𝑖 )).

Note that ℒℎ1,ℒℎ2 and ℒℎ3 mainly consider safety instead of goal reaching.

To train a safe control policy u𝑖,𝐶𝐵𝐹 (x𝑖,o𝑖;𝜃
𝜋
𝑖 ) that can drive the agent to the

goal state, we also minimize the distance between u𝑖,𝐶𝐵𝐹 and u𝑖,𝐶𝐶𝑀 . The goal
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reaching loss ℒ𝑔(𝜃
𝜋
𝑖 ) =

∑︀
(x𝑖,o𝑖)∈𝒮 ||u𝑖,𝐶𝐵𝐹 (x𝑖,o𝑖;𝜃

𝜋
𝑖 )−u𝑖,𝐶𝐶𝑀 ||2. The final loss

function is formulated as:

ℒ𝐵(𝜃
ℎ
𝑖 ,𝜃

𝜋
𝑖 ) = ℒℎ1(𝜃

ℎ
𝑖 ) + ℒℎ2(𝜃

ℎ
𝑖 ) + ℒℎ3(𝜃

ℎ
𝑖 ,𝜃

𝜋
𝑖 ) + ℒ𝑔(𝜃

𝜋
𝑖 ).

It is important to note that we did not use a fixed set of state-observation

pairs to train the decentralized CBF and controllers. Instead, we adopted an

on-policy training strategy, where the training data are collected by running

the system with the current control policy. The collected state-observation

pairs are stored in temporary dataset that is used to calculate the loss terms

and update the decentralized CBF and controllers via gradient descent. Then

the updated controllers are used to run the system and re-generate new state-

observation pairs as training data. The iterative data collection and training

is performed until the loss converges.

If the agents are homogeneous, for every agent 𝑖, their ℎ𝑖(x𝑖,o𝑖;𝜃
ℎ
𝑖 ) share

the same neural network parameters 𝜃ℎ
𝑖 . The same is true for u𝑖,𝐶𝐵𝐹 (x𝑖,o𝑖;𝜃

𝜋
𝑖 ).

When the neural network parameters are found, adding new agents to the

environment is straightforward. We only need to copy the u𝑖,𝐶𝐶𝑀 and ℎ𝑖 to

the new agents. If the agents are heterogeneous, the neural network parameters

for agents of the same type are shared.

4.6 Experiments

In this section, we will conduct comprehensive experiments on three simulation

environments illustrated in Figure 4-1 with multi-agent reach-avoid tasks. We

will evaluate the scalability to a large number of agents, the performance in

terms of collision-avoidance and goal-reaching, as well as the time spent by
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all agents to reach all their goals. A simple illustrative visualization of the

decentralized CBF will be given to help interpret what the neural network has

learned.

4.6.1 Task Environment Description

Auto cargo transportation for port containers In our first case study,

we consider the simulated port automation task illustrated in Figure 4-1 (a),

where multiple autonomous forklifts are controlled to move between port con-

tainers to transport cargo. We require each forklift to sequentially visit 4 goal

locations and avoid collision with other forklifts and containers. The contain-

ers are of size 10𝑚 × 5𝑚 × 5𝑚 and are evenly placed 5𝑚 apart. The goal

locations are randomly selected from the freespace of the seaport. We use the

nonholonomic vehicle model described in Section 2 of [74]. The safety thresh-

old 𝜅 = 1𝑚, the safe set 𝒮𝑖,𝑠 = {(x𝑖,o𝑖) | (𝑟(x𝑖,o𝑖) ≥ 1)∧(𝑔𝑖(x𝑖) ≥ 0)} and the

dangerous set 𝒮𝑑 = {(x𝑖,o𝑖) | (𝑟(x𝑖,o𝑖) < 1) ∨ (𝑔𝑖(x𝑖) < 0)}. 𝑔𝑖(x𝑖) encodes

the maximum allowed velocity 5𝑚/𝑠 of the forklifts as an additional safety

constraint.

Drone deliveries in the city In our second case study, we consider the task

of package delivery in a simulated city using drones, as shown in Figure 4-1 (b).

Each drone is required to sequentially visit 4 goals to pick or place packages

and avoid collision with other drones and static obstacles. The initial locations

and goals are selected randomly from the freespace of the environment. We

use the quadcopter model from Section VII of [38]. The safety threshold is set

to be 𝜅 = 1.6𝑚. The safe set 𝒮𝑖,𝑠 = {(x𝑖,o𝑖) | (𝑟(x𝑖,o𝑖) ≥ 1.6) ∧ (𝑔𝑖(x𝑖) ≥ 0)}

and the dangerous set 𝒮𝑑 = {(x𝑖,o𝑖) | (𝑟(x𝑖,o𝑖) < 1.6) ∨ (𝑔𝑖(x𝑖) < 0)}. The

maximum allowed velocity of the drones is set to be 20𝑚/𝑠 and is encoded by
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(a) Results of the autonomous cargo transportation task

(b) Results of the drone delivery task

(c) Results of the drone fleet control in the obstacle-rich tunnel

Figure 4-3: Results of the three case studies. (a) Autonomous cargo trans-
portation for port containers. (b) Drone delivery in the city. (c) Drone fleet in
an obstacle-rich tunnel. From left to right: collision reduction, average reward
and relative time consumption. The results are averaged over 10 independent
trials. The maximum number of agents for S2M2, MAMPS, PIC-Safe and
MADDPG-Safe are limited by their memory and computational cost.
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(a) Top view of the forklifts and container (b) Visualization of the CBF heatmap

Figure 4-4: Visualization of the CBF heatmap. Given the scenario in (a), the
heatmap in (b) shows the value of CBF ℎ𝑖 of a new agent at each location
as if the agent were assigned to be in the scene. Negative values indicate the
dangerous set 𝒮𝑖,𝑑.

𝑔𝑖(x𝑖).

Drone fleet control in an obstacle-rich tunnel The third case study

is to control multiple drones to fly through an obstacle-rich tunnel environ-

ment without colliding with other drones or static obstacles, as is illustrated

in Figure 4-1 (c). The obstacles are randomly placed in the last section of the

tunnel. Starting from the left entrance, the drones are required to fly through

the tunnel and exit from the right. We use the quadcopter model from Sec-

tion VII of [38]. Similar to the drone delivery task, the safety threshold is set

to be 𝜅 = 1.6𝑚. The safe set 𝒮𝑖,𝑠 = {(x𝑖,o𝑖) | (𝑟(x𝑖,o𝑖) ≥ 1.6) ∧ (𝑔𝑖(x𝑖) ≥ 0)}

and the dangerous set 𝒮𝑑 = {(x𝑖,o𝑖) | (𝑟(x𝑖,o𝑖) < 1.6) ∨ (𝑔𝑖(x𝑖) < 0)}. 𝑔𝑖(x𝑖)

encodes the maximum allowed velocity 10𝑚/𝑠.

4.6.2 Baseline Approaches

The baseline approaches we compare with include: MAMPS [106], PIC [53],

MADDPG [55] and S2M2 [13]. A brief description of each method is as follows.

MAMPS leverages the model dynamics to iteratively switch to safe control

policies when the learned policies are unsafe. PIC proposes the permutation-
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invariant critic to enhance the performance of multi-agent RL. We incorporate

the safety reward to its reward function and denote this safe version of PIC

as PIC-Safe. The safety reward is -1 when the agent enters the dangerous

set. MADDPG is a pioneering work on multi-agent RL, and MADDPG-Safe

is obtained by adding the safety reward to the reward function that is similar

to PIC-Safe. S2M2 is a state-of-the-art model-based multi-agent safe mo-

tion planner combining FACTEST [27] and priority-based search [56]. As

S2M2 is incomplete, when directly planning all agents fails, S2M2 evenly di-

vides the agent group to smaller partitions for replanning until paths that

are collision-free within each partition are found. The agents then follow the

generated paths using LQR controllers. Notice that in the partition case,

collision-avoidance is not guaranteed across partitions.

4.6.3 Evaluation Criteria

Since the primal focus of this chapter is the safety of multi-agent systems, we

use collision reduction as a criteria when evaluating the methods. We first

define the collision rate 𝛽 of the multi-agent system as:

𝛽 =
1

𝑁

𝑁∑︁
𝑖=1

E𝑡∈𝑇 [I((x𝑖(𝑡),o𝑖(𝑡)) ∈ 𝒮𝑖,𝑑)] , (4.21)

where I(·) is the indicator function that is 1 when its argument is true or 0

otherwise. The observation o𝑖 contains the states of other agents within the

observation (or sensing) radius, which is 10 times the safe distance. The safe

distance is set to be the diagonal length of the bounding box of the agent. 𝛽

measures the average frequency of entering the dangerous set 𝒮𝑑. Note that

𝛽 not only counts the collisions but also the time of violations of other safe

requirements encoded in 𝑔𝑖(·), such as speed limits. However, in practice we
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notice that collisions are the dominant unsafe behaviors, so we call the unsafe

behaviors rate the “collision rate".

Given method 𝑃 and a baseline method 𝑄, the relative collision reduction

of method 𝑃 w.r.t. method 𝑄 is calculated as:

𝛾𝑃𝑄 =
𝛽𝑄 − 𝛽𝑃

𝛽𝑄

∈ (−∞, 1]. (4.22)

If 𝛾𝑃𝑄 = 1, then 𝛽𝑃 = 0, which means method 𝑃 can avoid all the collision.

If 𝛾𝑃𝑄 = 0, then method 𝑃 does not have any improvement over the baseline

method 𝑄. 𝛾𝑃𝑄 can even be negative, which means method 𝑃 exhibits a higher

collision rate than method 𝑄. In all experiments, the baseline method 𝑄 is

set to be the LQR controller for each agent that directly tracks the reference

trajectories, which do not consider collision-avoidance among agents.

In addition to the collision reduction, we also calculate the average re-

ward that evaluates how good the task is accomplished in terms of goal reach-

ing and safety. The agent is given a +10 reward if it reaches a goal and a -1

reward if it enters the dangerous set. Note that the agent might enter the dan-

gerous set for many times before reaching the goal. If an agent has multiple

goals to reach, the reward will be divided by the number of goals when we

calculate the average reward. The reward is further averaged over all agents.

The upper bound of the reward is 10, which can be obtained when the agent

successfully reach its goals without any collision.

In order to evaluate the efficiency of different control methods, we measure

the average time for all agents to reach the goals and define the relative

time consumption metric. For a method 𝑃 and baseline method 𝑄, denote

their time consumption as 𝑡𝑃 and 𝑡𝑄. Then the relative time consumption

of 𝑃 w.r.t. 𝑄 is 𝑡𝑃/𝑡𝑄. We use the same baseline method 𝑄 as we compute
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the collision reduction. This measures how much delay was cause for agents to

avoid collisions, comparing to each of them driving their goals without avoiding

each other.

4.6.4 Implementation

The proposed framework is implemented using Python [96] and Tensorflow [1]

on a computer with Intel Core-i7 processors and 8GB memory. In training,

the tracking controller u𝑖,𝐶𝐶𝑀 and CCM 𝑀𝑖 are learned for the forklift and

drone models respectively using uniform random samples from the state and

input space. The decentralized CBF ℎ𝑖 is trained with 8 homogeneous agents,

and the training data is collected online as described in Section 4.5.2. To

examine the generalization capability of our method, the ℎ𝑖 for drones are

trained in a simple maze environment in [69] and has not seen the city or tunnel

environments that it will be tested on. In testing, each agent is equipped with a

copy of the learned CBF ℎ𝑖 and the tracking controller u𝑖,𝐶𝐶𝑀 , then computes

u𝑖 in a decentralized fashion. For MAMPS, PIC-Safe and MADDPG-Safe, the

environment and the number of agents are the same in training and testing.

S2M2 is not learning-based and is directly used in testing without training.

In testing, we start from 4 agents and gradually increase to 1024 agents.

The maximum number of agents for MAMPS, PIC-Safe and MADDPG-Safe is

limited to 128 because their memory and computational requirements cannot

be satisfied when training with 256 agents. The S2M2 method can simulta-

neously handle at most 8 agents in our scenario, so we partition the agents

into small groups with size 8 and apply S2M2 to each group. Although S2M2

can avoid collision for agents in the same group, the collision among agents in

different groups cannot be avoided. We will see that the performance of S2M2

drops drastically when there are more than 8 agents.
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The exact model dynamics are visible to model-based methods including

MAMPS, S2M2, and our methods, and invisible to the model-free MADDPG-

Safe and PIC-Safe. Since the model-free methods do not have access to model

dynamics but instead the simulators, they are more data-demanding. The

number of state-observation pairs to train MADDPG-Safe and PIC-Safe is

103 times more than that of model-based learning methods to make sure that

they converge to their best performance. Moreover, in training the RL-based

methods MADDPG-Safe and PIC-Safe, the control action computed by LQR

is also fed to the agent as one of the inputs to the actor-network. So the RL

agents can also learn to use LQR as a reference controller for goal-reaching.

4.6.5 Experimental Results

The collision reduction, average reward and relative time consumption for the

three case studies are shown in Figure 4-3. It is shown that our method is

able to handle a very large number of agents and maintain a 0.96-1.0 collision

reduction compared to the baseline, which means more than 96% collision

among agents can be avoided. As the number of agents increases exponentially,

there is only a slight performance drop for our method, while the compared

methods exhibit drastic performance decline. Take the cargo transportation

task as an example. When the number of agents grows from 4 to 256, the

collision reduction of S2M2 decreases from 1.0 to 0.22, while using our method

the number only decreases from 1.0 to 0.997. Similarly, in the drone delivery

task with 128 agents, the collision reduction is 0.97 for our method and 0.12

for MADDPG-Safe, which demonstrates that our method can bring notable

improvement in safety, even with a large number of agents. While being safe,

our method is not conservative and does not sacrifice much in terms of time

efficiency. Based on the relative time consumption in Figure 4-3, our goal-
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reaching time only increases 3%-17% compared to the baseline, depending on

the number of agents and the type of task. In comparison, MAMPS is more

conservative and requires 10%-43% more time than the baseline, because it

tries to stop the agents if they are predicted to collide.

The results in Figure 4-3 also demonstrate the generalization capability

of our method to unseen scenarios. As we mentioned in Section 4.6.4, the

tracking controller and CCM are trained with uniform random samples drawn

from the state and input space without seeing the testing environment. Also,

the decentralized CBF is trained with 8 agents but tested in different envi-

ronments with much more agents. Our method is able to generalize to these

unseen scenarios with notable performance. Although we tested with at most

1024 agents in our experiments, 1024 is not the limit of our approach. Given

sufficient computational resource, more agents can be handled because the pro-

posed control framework is decentralized and the computation for each agent

is parallel. Adding more agents will not delay the computation of the control

input.

A visualization of the learned CBF is shown in Figure 4-4 (b), given the

scenario in Figure 4-4 (a) with 1 container and 5 agents. The heatmap is

obtained by assigning a new agent to the scene and recording the output value

of its CBF at each location. The velocities of all the agents are set to 0. It is

shown that the CBF is negative in the vicinity of existing agents and obstacles,

which means these locations are dangerous and can cause collision. At safe

locations, the CBF is non-negative.
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4.7 Summary

In this chapter, we presented a learning-based safe control framework for large-

scale multi-agent reach-avoid control problems. We introduced a data-driven

approach to jointly synthesize multi-agent decentralized control policy and

their certificates for safety (using control barrier functions) and goal-reaching

(using control contraction metrics). The whole framework is fully decentral-

ized and can be used to control an arbitrarily large number of agents. We

used three case studies to show that our method can generalize to scenarios

with more than one thousand agents, and can be applied to an arbitrarily

large number agents given sufficient computational resource and freespace in

the environments. Comparing with state-of-the-art multi-agent control ap-

proaches, our method demonstrates notable improvement in terms of safety

and goal-reaching performance.

The learned controllers and certificates are not perfect, and collision among

agents can still occur occasionally. This is because minimizing the empirical

loss functions on training samples cannot guarantee that the CCM and decen-

tralized CBF conditions are fully satisfied over the entire space and on all the

testing samples. To further validate the controller and certificates, we can use

neural network analysis tools, such as reachability analysis [93, 100, 25, 40] and

model checking of neural networks [65, 35, 104, 12, 2] to find counter-examples

and improve the training process. This is be left as our future work.

69



70



Chapter 5

Learning Safe Control for

Black-box Dynamical Systems

5.1 Introduction

Control certificates based on barrier functions have been a powerful tool to

generate probably safe control policies for dynamical systems. However, exist-

ing methods based on barrier certificates are normally for white-box systems

with differentiable dynamics, which makes them inapplicable to many prac-

tical applications where the system is a black-box and cannot be accurately

modeled. On the other side, model-free reinforcement learning (RL) methods

for black-box systems suffer from lack of safety guarantees and low sampling

efficiency.

In this chapter, instead of stressing about the trade-off between the strong

guarantees from control certificates and the practicability of model-free meth-

ods, we propose SABLAS to achieve both. SABLAS is a general-purpose

approach to learning safe control for black-box dynamical systems. SABLAS

enjoys the guarantees provided by the safety certificate from CBF theory with-
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(a) CityEnv

(b) ValleyEnv

(c) Comparison with existing methods

Figure 5-1: (a) and (b) are two task environments we consider. In both
CityEnv and ValleyEnv, the controller should control the ego vehicle to avoid
collision with NPC vehicles. There are 1024 NPC drones in the city and 32
NPC ships in the valley. Each vehicle is assigned a random initial and goal
location. (c) shows the average result for the two tasks, where the errorbars
represent two times the standard deviation. SABLAS exhibits significant im-
provement in relative safety rate and task completion rate.

out requiring for an accurate model for the dynamics. Instead, SABLAS only

needs a nominal dynamics function that can be obtained through regressions

over simulation data. There is no need to model the error between the nominal

dynamics and the real dynamics since SABLAS essentially re-design the loss

function in a novel way to back-propagate gradient to the controller even when

the black-box dynamical system is non-differentiable. The resulting CBF (and
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the corresponding safety certificate) holds directly on the original black-box

system if the training process converges. The proposed algorithm is easy-to-

implement and follows almost the same procedure of learning CBF for white-

box systems with minimal modification. SABLAS fundamentally solves the

problem that control certificates cannot be learned directly on black-box sys-

tems, and opens up the next chapter use of CBF theory on synthesizing safe

controllers for black-box dynamical systems.

Experimental results demonstrate the superior advantages of SABLAS over

leading learning-based safe control methods for black-box systems including

CPO [3], PPO-Safe [78] and TRPO-Safe [77, 89]. We evaluate SABLAS on

two challenging tasks in simulation: drone control in a city and ship control

in a valley (as shown in Figure 5-1). The dynamics of the drone and ship

are assumed unknown. In both tasks, the controlled agent should avoid col-

lision with uncontrolled agents and other obstacles, and reach its goal before

the testing episode ends. We also examine the generalization capability of

SABLAS on testing scenarios that are not seen in training. Figure 5-1 shows

that SABLAS can reach a near 1.0 relative safety rate and task completion

rate while using only 1/10 of the training data compared to existing safe RL

methods, demonstrating a significant improvement. We also study the effect

of model error (between the nominal model and actual dynamics) on the per-

formance of the learned policy. It is shown that SABLAS is tolerant to large

model errors while keeping a high safety rate. A detailed description of the

results is presented in the experiment section. Video results can be found at

supplementary materials.

To summarize the strength of SABLAS:

1. SABLAS can jointly find a safety certificate (i.e. CBF) and the corre-

sponding control policy on black-box dynamics;
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2. Unlike RL-based methods that need tedious trial-and-error on design-

ing the rewards, SABLAS provides a systematic way of learning certi-

fied control policy, without parameters (other than the standard hyper-

parameters in NN training) that need fine-tuning.

3. Empirical results that SABLAS can achieve a nearly perfect performance

in terms of guaranteeing safety and goal-reaching, using much less sam-

ples than state-of-the-art safe RL methods.

5.2 Relate Work

There is a rich literature on controlling black-box systems and safe RL. Due

to the space limit, we only discuss a few directly related and commonly used

techniques on black-box system control. We will also skip the literature review

for the large body of works on model-based safe control and trajectory planning

as the research problems we are solving are very different.

Controller Synthesis for Black-box Systems. Proportional–integral–

derivative (PID) controller is widely used in controlling black-box systems.

The advantage of PID controller is that it does not rely on a model of the

system and only requires the measurement of the state. A drawback of PID

controller is that it does not guarantee safety or stability, and the system may

overshoot or oscillate about the control setpoint. If the underlying black-box

system is linear time-invariant, existing work [14] has presented a polynomial-

time control algorithm without relying on any knowledge of the environment.

For non-linear black-box systems, the dynamics model can be approximated

using system identification and controlled using model-based approaches [32],

and PID can be used to handle the error part. The concept of practical
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relative degree [49] is also proposed to enhance the control performance on

systems with heavy uncertainties. Recent advance in reinforcement learn-

ing [36, 52, 78, 77] also gives us insight into treating the system as a pure

black-box and estimating the gradient for the black-box functions in order

to optimize the control variables. However, in safety-critical systems, these

black-box control methods still lack formal safety guarantee or certificate.

Simulation-guided controller synthesis methods can also generate control

certificates for black-box systems, and sometimes those certificates can indi-

cate how policies should be constructed [43, 90, 71]. However, most of these

techniques use polynomial templates for the certificates, which limits their use

on high-dimensional and complex systems. Another line of work studies the

use of [23, 24] data-driven reachability analysis, jointly with receding-horizon

control to constructed optimal control policies. These methods rely on side

information about the black-box systems (e.g. lipschitz constants of the dy-

namics, monotonicity of the states, decoupling in the states’ dynamics) to do

the reachability, which is not needed in our method.

Safe Reinforcement Learning. Safe RL [3, 68, 84, 89, 102] extends RL by

adding constraints on the expectation of certain cost functions, which encode

safety requirements or resource limits. CPO [3] derived a policy improvement

step that increases the reward while satisfying the safety constraint. DCRL [68]

imposes constraint on state density functions rather than cost value functions,

and shows that density constraint has better expressiveness over cost value

function-based constraints. RCPO [89] weights the cost using Lagrangian mul-

tipliers and add it to the reward. FISAR [84] uses a meta-optimizer to achieve

forward invariance in the safe set. A disadvantage of safe RL is that it does

not provide safety guarantee, or their safety guarantee cannot be realized in
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practice. The problem of sampling efficiency and sparsity of cost also increase

the difficulty to synthesize safe controller through RL.

Safety Certificate and Control Barrier Functions. Mathematical cer-

tificates can serve as proofs that the desired property of the system is satisfied

under the corresponding planning [91, 92] and control components. Such cer-

tificate is able to guide the controller synthesis for dynamical systems in order

to ensure safety. For example, Control Lyapunov Function [22, 34, 39] ensures

the existence of a controller so that the system converges to desired behavior.

Control Barrier Function [5, 6, 10, 17, 18, 19, 21, 69] ensures the existence of

a controller that keep the system inside a safe invariant set. However, the ex-

isting controller synthesis with safety certificate heavily relies on a white-box

model of the system dynamics. For black-box systems or system with large

model uncertainty, these methods are not applicable. While recent work [11]

proposes to learn the model uncertainty effect on the CBF conditions, it still

assumes that a handcrafted CBF is given, which is not always available for

complex non-linear dynamical systems. Our approach represents a substantial

improvement over the existing CBF-based safe controller synthesis strategy.

The proposed SABLAS framework simultaneously enjoys the safety certificate

from the CBF theory and the effectiveness on black-box dynamical systems.

5.3 Learning CBF on black-box systems

In this section, we first elaborate on why it is difficult to learn the safe con-

troller and its CBF for black-box dynamical systems. Then we will propose

an important and easy-to-implement re-formulation of the optimization objec-

tive, which makes learning safe controller in black-box systems as easy as in
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white-box systems.

For clarity, we drop the subscript 𝑖 and provide the analysis for a single

agent. As the controllers and CBFs are fully decentralized, the analysis can

be easily copied and extended to all agents.

5.3.1 Challenges in Black-box Dynamical Systems

Among the three terms of the CBF loss function 3.7, the third term is the only

one that is differentiable w.r.t. the controller u. We denote this term by ℒ𝑝:

ℒ𝑝 =
1

|𝒮𝑝 ∩ 𝒟|
∑︁

(x,o)∈𝒮𝑝∩𝒟

max
(︁
0, 𝛾 − ℎ̇(x,o)− 𝛼

(︀
ℎ(x,o)

)︀)︁
. (5.1)

Since ℒ𝑝 is differentiable w.r.t. control input u, when we are minimizing ℒ𝑝

by gradient descent, the gradient will back-propagate to the parameters of

the controller 𝜋. This is how the controller is trained in white-box dynamical

systems. Nevertheless, the main challenge of training safe controller with its

CBF for black-box dynamical systems is that the gradient can no longer be

back-propagated to 𝜋 when f is unknown. Therefore, a safe controller cannot

be trained by minimizing the loss functions in (3.7).

Given state samples (x(𝑡),o(𝑡)) and (x(𝑡+∆𝑡),o(𝑡+∆𝑡)) from the black-

box system where ∆𝑡 is a sufficiently small time interval, we can approximate

ℎ̇ and compute ℒ𝑝 as:

ℎ̇1(x,o) =
1

∆𝑡
ℎ(x(𝑡+∆𝑡),o(𝑡+∆𝑡))− ℎ(x(𝑡),o(𝑡))

ℒ𝑝1 =
1

|𝒮𝑝 ∩ 𝒟|
∑︁

(x,o)∈𝒮𝑝∩𝒟

max
(︁
0,−ℎ̇1(x,o)− 𝛼(ℎ(x,o))

)︁
.

(5.2)

ℒ𝑝1 does give the exact value of ℒ𝑝, but its backward gradient flow to the

controller is cut off by the black-box system that is non-differentiable. (5.2)
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can only be used to train CBF ℎ but not the safe controller 𝜋. Even worse,

the ℎ obtained by minimizing (5.2) does not guarantee that a corresponding

safe controller 𝜋 exists. If we have a differential expression of dynamics f and

replace ℎ(x(𝑡+∆𝑡),o(𝑡+∆𝑡)) with:

ℎ
(︀
x(𝑡) + f

(︀
x(𝑡),u(𝑡)

)︀
∆𝑡, o(𝑡) + ȯ∆𝑡

)︀
, (5.3)

then the gradient flow can successfully reach u and update the controller pa-

rameter. However, this is not immediately possible because f is unknown by

the black-box assumption.

A possible way to back-propagate gradient to 𝜋 is to use a differentiable

nominal model f𝑛𝑜𝑚. There are many methods to obtain f𝑛𝑜𝑚, such as fitting a

neural network using sampled data from the real black-box system. We do not

require f𝑛𝑜𝑚 to perfectly match the real dynamics f , because there will always

exist an error between them. With f𝑛𝑜𝑚, we can approximate ℒ𝑝 as:

ℎ̇2(x,o) =
1

∆𝑡

(︁
ℎ
(︀
x(𝑡) + f𝑛𝑜𝑚

(︀
x(𝑡),u(𝑡)

)︀
∆𝑡, o(𝑡) + ȯ∆𝑡

)︀
− ℎ(x(𝑡),o(𝑡))

)︁
ℒ𝑝2 =

1

|𝒮𝑝 ∩ 𝒟|
∑︁

(x,o)∈𝒮𝑝∩𝒟

max
(︁
0,−ℎ̇2(x,o)− 𝛼(ℎ(x,o))

)︁
,

(5.4)

which is differentiable w.r.t. 𝜋 because both ℎ and f𝑛𝑜𝑚 are differentiable. The

gradient of ℒ𝑝2 can be back-propagated to the controller to update its param-

eters. However, whatever way we get f𝑛𝑜𝑚, there still exists an error between

the real dynamics f and f𝑛𝑜𝑚, which means ℎ̇2 is not a good approximation of

ℎ̇ and ℒ𝑝2 is not the true value of ℒ𝑝. Using ℒ𝑝2, it is not guaranteed that the

third CBF condition will be satisfied.
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Black-box system

Nominal model 𝐟𝐟𝑛𝑛𝑛𝑛𝑛𝑛

Controller 𝛑𝛑 Control input 𝐮𝐮

𝐱𝐱(𝑡𝑡 + ∆𝑡𝑡)

𝐱𝐱 𝑡𝑡 + 𝐟𝐟𝑛𝑛𝑛𝑛𝑛𝑛(𝐱𝐱,𝐮𝐮)∆𝑡𝑡

�𝐱𝐱(𝑡𝑡 + ∆𝑡𝑡)

(𝐱𝐱 𝑡𝑡 ,𝐨𝐨 𝑡𝑡 )

ℎ̇3

ℒ𝑝𝑝3
Forward pass
Back-propagation

Figure 5-2: Computational graph of ℒ𝑝3. The blue lines show how the gradient
from ℒ𝑝3 is back-propagated to the controller 𝜋 despite that the black-box
system itself is non-differentiable.

5.3.2 Rewire the Gradient Flow

We present a novel re-formulation of ℒ𝑝 that makes learning safe controller with

CBF for black-box dynamical systems as easy as for white-box systems. Our

formulation possesses two features: it enables the gradient to back-propagate

to the controller in training, and offers an error-free approximation of ℎ̇.

Given state-observation samples (x(𝑡),o(𝑡)) and (x(𝑡+∆𝑡),o(𝑡+∆𝑡)) from

the trajectories of the real black-box dynamical system, where ∆𝑡 is a suffi-

ciently small time interval, we define x𝑛𝑜𝑚(𝑡+∆𝑡) as :

x𝑛𝑜𝑚(𝑡+∆𝑡) = x(𝑡) + f𝑛𝑜𝑚(x(𝑡),𝜋(x(𝑡),o(𝑡))∆𝑡,

then construct x̄(𝑡+∆𝑡) as:

x̄(𝑡+∆𝑡) = x𝑛𝑜𝑚(𝑡+∆𝑡) + 𝑔(x(𝑡+∆𝑡)− x𝑛𝑜𝑚(𝑡+∆𝑡)),

where 𝑔(𝑥) = 𝑥 is an identity function but without gradient. We need to

pretend that 𝑔(𝑥) is a constant and in back-propagation, the gradient on 𝑔(𝑥)

cannot propagate to its argument 𝑥. In PyTorch [64], there is an off-the-shelf

implementation of 𝑔(𝑥) as 𝑔(𝑥) = 𝑥.detach(), which cuts off the gradient from
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𝑔 to 𝑥 in back-propagation. Then we approximate ℒ𝑝 using:

ℎ̇3(x,o) =
1

∆𝑡
ℎ(x̄(𝑡+∆𝑡),o(𝑡+∆𝑡))− ℎ(x(𝑡),o(𝑡))

ℒ𝑝3 =
1

|𝒮𝑝 ∩ 𝒟|
∑︁

(x,o)∈𝒮𝑝∩𝒟

max
(︁
0,−ℎ̇3(x,o)− 𝛼(ℎ(x,o))

)︁
.

(5.5)

Theorem 2

∇𝜔ℒ𝑝3 exists and limΔ𝑡→0 ℒ𝑝3 = ℒ𝑝. Namely, ℒ𝑝3 is differentiable w.r.t. the

controller parameter, and ℒ𝑝3 is an error-free approximation of ℒ𝑝 as ∆𝑡→ 0.

Proof. Since f𝑛𝑜𝑚 is differentiable, x𝑛𝑜𝑚 and x̄(𝑡+∆𝑡) are differentiable w.r.t.

𝜋, ℎ̇3 and ℒ𝑝3 are also differentiable w.r.t. 𝜋 and its parameter 𝜔. Thus,

∇𝜔ℒ𝑝3 exists. Furthermore, since x̄(𝑡 + ∆𝑡) = x(𝑡 + ∆𝑡), ℎ̇3 is an error-free

approximation of the real ℎ̇ when ∆𝑡 → 0. Thus ℒ𝑝3 is also an error-free

approximation of ℒ𝑝 when ∆𝑡→ 0.

Note that Theorem 2 reveals the reason why the proposed SABLAS method

can jointly learn the CBF and the safe controller for black-box dynamical sys-

tem. First, since ∇𝜔ℒ𝑝3 exists, the gradient from ℒ𝑝3 can be back-propagated

to the controller parameters to learn a safe controller. On the contrary, ℎ̇1

is not differentiable w.r.t. 𝜋 so ℒ𝑝1 cannot be used to train the controller.

Second, since ℒ𝑝3 is a good approximation of ℒ𝑝, minimizing ℒ𝑝3 contributes

to the minimization of ℒ𝑝 and the satisfaction of the third CBF condition.

On the contrary, ℎ̇2 is an inaccurate approximation of ℎ̇ as we elaborated in

Section 5.3.1. The construction of ℒ𝑝3 incorporates the advantages of ℒ𝑝1 and

ℒ𝑝2, and avoids the disadvantages of ℒ𝑝1 and ℒ𝑝2 at the same time. The com-

putational graph of ℒ𝑝3 is illustrated in Figure 5-2, which shows the forward

pass and the backward gradient propagation from ℒ𝑝3 to controller 𝜋.

Algorithm 1 summarizes the learning process of the safe controller and
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Algorithm 1 Learning Safe Controller with CBF for Black-box Systems
1: Input: The set of initial condition 𝒮0, the dangerous set 𝒮𝑑, controller

𝜋 and CBF ℎ with randomly initialized parameters 𝜃 and 𝜔, nominal
dynamics f𝑛𝑜𝑚, loss function ℒ(𝜃,𝜔), the number of episodes 𝐾 in data
collection, the number of training iterations 𝑁 .

2: for 𝑖 = 1, 2, · · · , 𝑁 do
3: Initialize dataset 𝒟 ← ∅
4: for 𝑗 = 1, 2, · · · , 𝐾 do
5: (x(0),o(0))← Sample(𝒮0)
6: 𝒟𝑗 ← Run(𝜋,x(0),o(0)), 𝒟 ← 𝒟 ∪𝒟𝑗

7: end for
8: 𝜃,𝜔 ← Update(𝜃,𝜔,𝒟,ℒ)
9: end for

10: return CBF parameter 𝜔 and controller parameter 𝜃

the corresponding safety certificate (CBF) for black-box dynamical systems.

The Run function runs the black-box system using the controller 𝜋 under

initial condition x(0), and returns the trajectory data. The Update function

updates parameters 𝜃,𝜔 by minimizing ℒ(𝜃,𝜔) = ℒ𝑐(𝜃,𝜔) + 𝜂ℒ𝑔(𝜔) using

the state samples in 𝒟 via gradient descent. The definition of ℒ𝑐(𝜃,𝜔) follows

Equation (3.7), with ℒ𝑝 replaced by ℒ𝑝3 in Equation (5.5). ℒ𝑔(𝜔) is the goal-

reaching loss following Equation (3.11).

Remark 1. One may argue that the gradient received by 𝜋 via minimizing

ℒ𝑝3 is not exactly the gradient it should receive if we had a perfect differen-

tiable model of the black-box system. Despite this, minimizing ℒ𝑝3 directly

contributes to the satisfaction of the third CBF condition. A safe controller

and its CBF can be found to keep the system within the safe set.

Remark 2. Although the current formulation of ℒ𝑝3 leads to promising

performance in simulation as we will show in experiments, ℒ𝑝3 requires fur-

ther consideration in hardware experiments. Directly using the future state
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x(𝑡 + ∆𝑡) to calculate the time derivative of ℎ or x is not always desirable

because noise will possibly dominate the numerical differentiation. When the

noise dominates the time derivative of x or ℎ, the training will have conver-

gence issues. But a moderate noise is actually beneficial to training, because

our optimization objective makes the CBF conditions hold even under noise

disturbance, which increases the robustness of the trained CBF and controller.

On physical robots where noise dominates the numerical differentiation, one

can incorporate filtering techniques to mitigate the noise.

5.4 Experiments

The primary objective of our experiment is to examine the effectiveness of the

proposed method in terms of safety and goal-reaching when controlling black-

box dynamical systems. We will conduct comprehensive experiments on two

simulation environments illustrated in Figure 5-1 (a) and (b), and compare

with state-of-the-art learning-based control methods for black-box systems.

5.4.1 Task Environment Description

Drone control in a city (CityEnv) In our first case study, we consider

the package delivery task in a city using drones, as is illustrated in Figure 5-

1 (a). There is one controlled drone and 1024 non-player character (NPC)

drones that are not controlled by our controller. In each simulation episode,

each drone is assigned a sequence of randomly selected goals to visit. The

aim of our controller is to make sure the controlled drone reach its goals

while avoiding collision with NPC drones at any time. A reference trajec-

tory x𝑟𝑒𝑓 (𝑡), 𝑡 ∈ [0, 𝑇 ] will be given, which sequentially connects the goals and

avoid collision with buildings. The reference trajectory can be generated by
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any off-the-shelf single-agent path planning algorithm. We use FACTEST [28]

in our implementation, and other options such as RRT [48] are also suitable.

The reference path planner does not need to consider the dynamic obstacles,

such as the moving NPCs in our experiment. A nominal controller 𝜋𝑛𝑜𝑟𝑚 will

also be given, which outputs control commands that drive the drone to fol-

low the reference trajectory. However, 𝜋𝑛𝑜𝑟𝑚 is purely for goal-reaching and

does not consider safety. The CityEnv has two modes: with static NPCs

and moving NPCs. If the NPCs are static, they will constantly stay at their

initial locations. If the NPCs are moving, they will follow pre-planned trajec-

tories to sequentially visit their goals. The drone model is with state space

[𝑥, 𝑦, 𝑧, 𝑣𝑥, 𝑣𝑦, 𝑣𝑧, 𝜃𝑥, 𝜃𝑦], where 𝜃𝑥 and 𝜃𝑦 are row and pitch angles. The control

inputs are the angular acceleration of 𝜃𝑥, 𝜃𝑦 and the vertical thrust. The un-

derlying model dynamics is from [69] and assumed unknown to the controller

and CBF in our experiment.

Ship control in a valley (ValleyEnv) In our second case study, we con-

sider task of controlling a ship in valley illustrated in Figure 5-1 (b). There

are one controlled ship and 32 NPC ships. The number of NPCs in ValleyEnv

is less than CityEnv because ships are large in size and inertia, and hard to

maneuver in dense traffic. Also, different from the 3D CityEnv, ValleyEnv is

in 2D, which means the agents have fewer degrees of freedom to avoid colli-

sion. The initial location and goal location of each ship is randomly initialized

at the beginning of each episode. The aim of our controller is to ensure the

controlled ship reach its goal and avoid collision with NPC ships. Similar to

CityEnv, a reference trajectory and nominal controller will be provided. There

are also two modes in ValleyEnv, including the static and moving NPC mode,

as is in CityEnv. The ship model is with state space [𝑥, 𝑦, 𝜃, 𝑢, 𝑣, 𝜔], where 𝜃
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is the heading angle, 𝑢, 𝑣 are speed in the ship body coordinates, and 𝜔 is the

angular velocity of the heading angle. The ship model is from Section 4.2 of

[33] and is unknown to the controller and CBF.

Evaluation Criteria. Three evaluation criteria are considered. Relative

safety rate measures the improvement of safety comparing to a nominal con-

troller that only targets at goal-reaching but not safety. To formally define

the relative safety rate, we first consider the absolute safety rate 𝛼:

𝛼 =
1

𝑇

∫︁ 𝑇

0

I((x(𝑡),o(𝑡)) ̸∈ 𝒮𝑑) 𝑑𝑡, (5.6)

which measures the proportion of time that the system stays outside the dan-

gerous set. Given two control policies 𝜋1 and 𝜋2 with absolute safety rate 𝛼1

and 𝛼2, the relative safety rate of 𝜋1 w.r.t. 𝜋2 is defined as:

𝛽12 =
𝛼1 − 𝛼2

1− 𝛼2

∈ (−∞, 1]. (5.7)

If 𝛽12 = 0, then control policy 𝜋1 does not have any improvement over 𝜋2

in terms of safety. If 𝛽12 = 1, then 𝜋1 completely guarantees safety of the

system in 𝑡 ∈ [0, 𝑇 ]. In our experiment, 𝜋1 is the controller to be evaluated,

and 𝜋2 is the nominal controller 𝜋𝑛𝑜𝑟𝑚 that only accounts for goal-reaching

without considering safety. Task completion rate is defined as the success

rate of reaching the goal state before timeout. Tracking error is the average

deviation of the system’s state trajectory comparing to a pre-planned reference

trajectory x𝑟𝑒𝑓 (𝑡), 𝑡 ∈ [0, 𝑇 ] as:

𝛾 =
1

𝑇

∫︁ 𝑇

0

||x(𝑡)− x𝑟𝑒𝑓 (𝑡)||22 𝑑𝑡 (5.8)
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Note that we do not assume x𝑟𝑒𝑓 always stay outside the dangerous set.

Baseline Approaches. In terms of safe control for black-box systems, the

most recent state-of-the-art approaches are safe reinforcement learning (safe

RL) algorithms. We choose three safe RL algorithms for comparison: CPO [3]

is a general-purpose policy optimization algorithm for black-box systems that

maximizes the expected reward while satisfying the safety constraints. PPO-

Safe is a combination of PPO [78] and RCPO [89]. It uses PPO to maximize

the expected cumulative reward while leveraging the Lagrangian multiplier

update rule in RCPO to enforce the safety constraint. TRPO-Safe is a com-

bination of TRPO [77] and RCPO [89]. The expected reward is maximized via

TRPO and the safety constraints are imposed using the Lagrangian multiplier

in RCPO.

Implementation and Training. Both the controller 𝜋 and CBF ℎ are

multi-layer perceptrons (MLP) with architecture adopted from Section 4.2

of [69]. 𝜋 and ℎ not only take the state of the controlled agent as input,

but also the states of 8 nearest NPCs that the controlled agent can observe.

In Algorithm 1, we choose 𝐾 = 1, 𝑁 = 2000. The total number of state

samples collected during training is 106. In Update of the algorithm, we

use the Adam [45] optimizer with learning rate 10−4 and batch size 1024.

The gradient descent runs for 100 iterations in Update. The nominal model

dynamics are fitted from trajectory data in simulation. We used 104 state

samples to fit a linear approximation of the drone dynamics, and 105 samples

to fit a non-linear 3-layer MLP as the ship dynamics.

In training the safe RL methods, the reward in every step is the negative

distance between the system’s current state and the goal state, and the cost is
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Figure 5-3: Quantitative results of relative safety rate, task completion rate
and tracking error. The center points are mean and error bars represent stan-
dard deviations. Results are collected over 50 random runs on each method.
The first row is for drone control in CityEnv and the second row is for ship
control in ValleyEnv. Our method reaches a high task completion rate and
relative rate at the same time, while keeping a low tracking error.

1 if the system is within the dangerous set 𝒮𝑑 and 0 otherwise. The threshold

for expected cost is set to 0, which means we wish the system never enter the

dangerous set (never reach a state with a positive cost). During training, the

agent runs the system for 107 timesteps in total and performs 2000 policy up-

dates. In each policy update, 100 iterations of gradient descent are performed.

The implementation of the safe RL methods is based on [72].

All the methods are trained with static NPCs and tested on both static

and moving NPCs. We believe this can make the testing more challenging

and examine the generalization capability of the tested methods in different

scenarios. All the agents are assigned random initial and goal locations in

every simulation episode, which prevents the learned controller from overfitting

a single configuration.
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(a) (b)

Figure 5-4: (a) Comparison of sampling efficiency. With only 1/10 samples,
SABLAS achieves a nearly perfect relative safety rate. (b) Influence of model
error on safety performance. SABLAS-ℒ𝑝2 uses Equation 5.4 instead of the
proposed Equation 5.5 as loss function. SABLAS is tolerant to large error
between nominal and real models while keeping a high safety rate.

5.4.2 Experimental Results

Safety and goal-reaching performance Results are shown in Figure 5-3.

Among the compared methods, our method is the only one that can reach a

high task completion rate and relative safety rate at the same time. For other

methods such as TRPO-Safe, when the controlled drone or ship is about to

hit the NPCs, the learned controller tend to brake and decelerate. Thus, the

agent is less likely to reach its goal when a simulation episode ends. The task

completion rate and safety rate are opposite to each other for CPO, PPO-Safe

and TRPO-Safe. On the contrary, the controller obtained by our method can

maneuver smoothly among NPCs without severe deceleration. This enables

the controlled agent to reach the goal location on time. Our method can also

keep a relatively low tracking error, which means the difference between actual

trajectories and reference trajectories is small.

87



Generalization capability to unseen scenarios As is stated in Imple-

mentation and Training, the NPCs are static in training and can be either

static or moving in testing. Figure 5-3 also demonstrates that our method

has promising generalization capability across different training and testing

scenarios.

Sampling efficiency In Figure 5-4 (a), we show the safety performance

under different sizes of the training set. The results are averaged over the

drone and ship control tasks. SABLAS only needs around 1/10 of the samples

required by the compared methods to achieve a nearly perfect relative safety

rate. Note that SABLAS requires an extra 104 to 105 samples to fit the nominal

dynamics, but this does not change the fact that the total number of samples

needed by SABLAS is much fewer than the baselines.

Effect of model error We investigate the influence of the model error ||ẋ−

ẋ𝑛𝑜𝑚|| between the real dynamics and the nominal dynamics on the safety

performance. We change the modeling error of the drone model and test the

learning controller on CityEnv with static NPCs. We also perform an ablation

study where we use ℒ𝑝2 in Equation 5.4 instead of ℒ𝑝3 in Equation 5.5 as loss

function. The red curve in Figure 5-4 (b) show that SABLAS is tolerant to

large model errors while exhibiting a promising safety rate. In our previous

experiments, the model error 𝑒 = E[||ẋ − ẋ𝑛𝑜𝑚||]/E[||ẋ||] is always less than

0.2. We did not encounter any difficulty fitting a nominal model with empirical

error 𝑒 ≤ 0.2. The orange curve in Figure 5-4 (b) shows that if we use ℒ𝑝2 in

Equation 5.4, the trained controller will have a worse performance in terms of

safety rate. This is because ℒ𝑝2 only uses the nominal dynamics to calculate

the loss, without leveraging the real black-box dynamics.

88



Limitation The main limitation of the proposed approach is that it can-

not guarantee the satisfaction of the CBF conditions in the entire state space.

Even if we minimize the loss functions to 0 during training, the CBF condi-

tions may still be occasionally violated during testing. After all, the training

samples are finite and cannot cover the continuous state space. If the test-

ing distribution and training distribution are the same, one can leverage the

Rademacher complexity to give an error bound that the CBF conditions are

violated, as is in Appendix B of [69]. But if the testing distribution is different

from training, it is still unclear to derive the generalization error of the CBF

conditions. To train CBF and controller that provably satisfy the CBF con-

ditions, one can also use verification tools to find the counterexamples in the

state space that violates the CBF conditions and add those counterexamples

to the training set [22, 12]. The process is finished when no more counterex-

ample can be found. However, the time complexity of the verification makes

it not applicable for large and expressive neural networks. Also, the error be-

tween the nominal and real dynamics will have a negative impact on the safety

performance. These limitations are left for future work.

5.5 Summary

We presented SABLAS, a general-purpose safe controller learning approach

for black-box systems, which is supported by the theoretical guarantees from

control barrier function theory, and at the same time is strengthened using

a novel learning structure so it can directly learn the policies and barrier

certificates for black-box dynamical systems. Simulation results show that

SABLAS indeed provides a systematic way of learning safe control policies

with a great improvement over safe RL methods. For future works, we plan

to study SABLAS on multi-agent systems, especially with adversarial players.
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Chapter 6

Summary of Thesis

Multi-agent control is a necessity in achieving full robot autonomy and accom-

plishing complex tasks that are beyond the capability of each individual. This

thesis presents three original approaches to the key problems in multi-agent

control. First, for multi-agent reach-avoid problems, we proposed a decentral-

ized control barrier function-based framework, which simultaneously enjoys

the expressiveness of machine learning and the safety guarantee of classical

control theory. Second, for the multi-agent trajectory problems, we propose

to combine neural contraction metrics with control barrier functions, which

jointly guarantees tracking convergence and safety. Third, to handle black-

box dynamical systems, we proposed a machine learning-based control frame-

work that guarantees safety even when the system dynamics are unknown.

Extensive experiments have shown the superior performance of the proposed

methods against previous state-of-the-arts, and the potential to be applied in

real-world settings.
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