Mondrian: A Two-Dimensional Graphical
Specification and Design Programming
Environment

by

Kenneth Lahn Fer:

Submitted to the Department of
Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degrees of
Bachelor of Science in Computer Science and Engineering
and
Master of Science in Computer Science and Engineering
at the
Massachusetts Institute of Technology
May 1988
© Kenneth L. Fern, 1988. All rights rescrved
The author hereby grants to MIT permission to reproduce and

to distribute copies of this thesis document in whole or in part.

Signature of Author —— ey o -~

Department of Electrical Lngmemmgr and Computer Science
6 May 1988

Certified by

William 1. Weihl

Assistant Professor of Ilectrical Engineering
Thesis Supervisor

Certified by e - gl gy
4 ~ / Dr. Gerald Fisher, Jr.

IBM Resgar}h Division,5T. J. Watson Rescarch Division
- \(’(::'[pnny Supervisor

Accepted by___-

Arthur . Smith
Chairman, Departmental Committee on Graduate Students
MASSACHUSETTS INSTIVUTE

OF TECKNOLOGY

JUL 26 1988

LIBRARIES

ACMY/7NE 14

Mondrian: A Two-Dimensional Graphical Specification and
Design Programming Environment

by
Kenneth L. Fern

Submitted to the Department of
Electrical Engineering and Computer Science
on May 6, 1988 in Partial Fulfillment of the Requirements
for the Degrees of

Bachelor of Science in Computer Science and Engineering
and

Master of Science in Computer Science and Engineering
ABSTRACT

Mondrian is a prototype environment for viewing and editing a specification and de-
sign language in a simple, geometric fashion using lines and boxes to create its pictures.
Specifically, Mondrian addresses the issues of data modeling, formal specifications, and
structure in a programming language. Other programming environments, such as Pecan,
PegaSys, and Gandalf, do not address all of these issues, and none of these environments
addresses the data modeling issue. Mondrian uses SEDL (Software Engineering Design
Language) as its model for a specification and design language, while it uses RPDE
(Refinement-based Product Development Environment) as its development environment.

Thesis Supervisor: Prof. William E. Weihl

Title: Assistant Professor of Electrical Engineering

Contents

1 Introduction

1.1 Whatis Mondrian?
1.2 Differences From Other Environments
1.3 Introductionto SEDL,
1.3.1 Behavior Modeling
1.3.2 DataModeling
1.4 Problem Statement L oL
1.5 Why Call it Mondrian? oL
2 SEDL
2.1 Data Modeling
2.1.1 What is Data Modeling?
2.1.2 Smaellset - An Abstract Type Example
2.1.3 Relationships L
2.1.4 Duplication,
2.1.5 Other Aspects of Data Modeling
2.2 Behavior Modeling and Refineinents
2.2.1 What is Behavior Modeling?

2.2.2 SimpleProc - A Behavior Model Example

3 What Mondrian Has to Offer

© W om g - o o «;

10
10
10
11
11
14
14
15
15
15

17

3.1 Notation and Terminology

3.1.1 Overall Structure
3.1.2 The User Interface - Pictures
3.2 The Display of Objects
321 TheBasicBox
3.2.2 DescriptionFields
33 Commands,
3.4 Mondrian’s Representation of an Abstract Type
3.4.1 Perspectives
3.4.2 Perspectivesare Global, ...,
3.4.3 Viewing and Modifying Perspectives at the Same Time
3.5 Behavior Refinement in Mondrian
3.5.1 The Specification
3.5.2 The Stepwise Refinement Process
3.5.3 Viewing Specifications and Refinements.

RPDE’s Role in Mondrian

Problems with Perspectives
5.1 Global Perspectives Cause Problems
5.2 Get Rid of Perspectives?

Other Issues

Conciusions and Directions

7.1 Test Results
7.2 Directions for Future Work
Acknowledgements

28
28
32
32
33
37

38

40
40
41

42

44

44

46

Chapter 1

Introduction

With today’s computer systems getting larger, more powerful, and more complex, there
exists a need for larger, more powerful, and more complex software systems. This evolu-
tion has caused major ramifications in the software development process.

Programming in a text editor has become increasingly more difficult, ecpecially when
one is trying to manipulate a large program that is broken down into different modules.
Another major concern from industry is that there is an increasing need to write prograins
with an eye towards the future; that is, using good design principles and specifications so
that one can maintain the software better in the future. These ideas have led researchers
towards the development of graphics, programming environments, and specification and

design languages to help the programmer do his job better.

1.1 What is Mondrian?

Mondrian is a prototype environment for viewing and editing a specification and design
language in a simple, geometric fashion using lines and boxes. Mondrian uses SEDL

(Software Engineering Design Language) as its specification and design language, and

RPDE! as its base for a graphical environment. SEDL was chosen for its formal use of
data modeling (ucing an abstract model form of the data), its formal use of specifications,
and its availability. RPDE was chosen for its support of the stepwise refinement process
and for its availability.

More specifically, Mondrian presents a graphical relationship between a specification
and its refinement (on both a procedural and statement level), while also presenting a
method for viewing both the external (user’s) and internal (implementor’s) view of a data
model. This method exploits the underlying database that both RPDE and Mondrian
use by storing a data model as one object that is presented using two perspectives.

Deveioping SEDL programs in the traditional textual way has two main problems:

1. SEDL’s textual format necessitatees many redundancies.

2. SEDL’s methodology forms natural relationships between different parts of its
structure, such as a specification and its refinement or the external view and the
internal view of a data model. In SEDL’s textual format, these relationships are

not always clear.

Mondrian’s graphical capabilities will present these natural relationships in a manner that
simplifies developing, editing, and viewing of structured programs that use specifications.

Mondrian also eliminates redundant information via its use of the underlying database.

1.2 Differences From Other Environments

Other environments such as Pecan [4] and PegaSys [3] use pictures to help describe the
structure of a program. However, they do not take into account specifications or data
modeling issues, and they implement a node and arc paradigm to display their programs
(i.e., objects are the nodes in a directed graph structure). The Cornell Program Synthe-

sizer [6] makes use of comment templates as a way to write psuedo-specifications, but

'RPDE is an open-ended acronym, variously standing for: Refinement-based Product Development
Environraent; Research Program Design Editor; and Re-use Paradigm Development Environment.

5

it does not distinguish between comments and specifications and does not use graph-
ics. Mondrian, however, accounts for both specifications and comments, and also uses
a nested box paradigm to display a program’s hierarchy. That is, each displayed object
is associated with a rectangular region of the display, and any child of that object is

assigned a rectangular space within its parent.

1.3 Introduction to SEDL

SEDL is a specification and design language being developed at IBM Research Division,
T.J. Watson Research Center [5]. It combines the software development process (spec-
ification, design, and implementation) into one language. SEDL is executable and also
provides the programmer the potential to record and maintain the development process of
a software product in an integrated and cohesive presentation. Underlying the language
is a design methodology based on the use of abstract specification (i.e., what is to be
done) and a process of refinement for incrementally adding program design details (i.e.,
how it should be accomplished). When applied repeatedly, this process of refinement

forms a hierarchy of intermediate abstractions being recorded.

1.3.1 Behavior Modeling

A behavior specification is used to record the specification of an operation. This speci-
fication may be an initial design specification associated with a program unit such as a
function or procedure (i.e., a specification that states the functionality of the entire func-
tion or procedure). It may also be a terminal design specification that is to serve as the
basis for implementation (i.e., a specification for a statement, list of statements, or the
body of a loop), or any step in between. This process of refining behavior specifications

from an initial phase to a terminal phase is commonly known as stepwise refinement.

Each refinement step should reflect a definite design decision about how a particular

specified behavior is to be implemented.

1.3.2 Data Modeling

Another aspect of SEDL is its use of data modeling as a way to represent abstract data
types. An abstract type specifies a logical collection of data together with the operations
on that data. An abstract type is presented in two parts: the specification and the body.
The specification states the expected external properties and behavior of the abstract
type; the body states its internal implementation. Associated with each specification

is a model, and with each body is a representation. The model specifies the external

view (i.e. the user’s view) of the data type in a high-level, abstract manner, and the
representation specifies the internal view (i.e. the implementer’s view) of the data in a
lower-level fashion. For instance, suppose one were to create an abstract type, called
Smallset, for a set of elements with a size limit. Furthermore, the target language to be
used does not have a built-in Set type. One still could use a Set type as the model for
Smallset (e.g. Set(Max) of Elements). Howe ser, the corresponding representation would
have to use types available to the programmer, such as Records, Arrays, and Integers (e.g.
a Record with one field being an Array of Elements and the other field being a Counter of

type Integer).

1.4 Problem Statement

Along with integrating SEDL with RPDE, Mondrian will also address the following issues:
e How should Mondrian graphically represent the hierarchy of design?

e How should Mondrian display and manipulate specifications along with their re-

spective refinements?

e How should Mondrian represent both the external view and the internal view for

an abstract data model?

The major issues Mondrian will focus on are:

1. The preservation and enhancement in a graphical format of a structured design

methodology that uses stepwise refinement.

2. The ability to view both the external view and the internal view of a data model

via one simple command.

The basis of my project is to build Mondrian. Mondrian is an integration of SEDL
and RPDE. In RPDE terminology, I will be creating an SEDL world-view. A world-view
is a collection of object types suitable for representing a programming language, in this
case SEDL. An object type includes the definition of the object, its methods, and its
display options. The user then has a comprehensive way of dealing with the information
repository he is developing [1]. In creating an SEDL world-view, I will be designing the
graphical representation of the SEDL language constructs called pictures. I will be adding
functionality to existing methods in order to manipulate the display of various statement
pictures and data model pictures, their relationships to their specifications, and their
overall presentation. I will concentrate on the graphical representation and relationship
between an abstract data model and its representation, and between a specification and

its refinement.

1.5 Why Call it Mondrian?

Pierre Mondrian was a 20th Century artist who based his paintings upon simple geometric
principles — in particular, the line and the rectangle. Mondrian’s view of nature, like that
of his contemporary Cubist artists, was that the essence of nature is the simple geometry
that éomposes every living and non-living object. Mondrian captured his ideas using lines
and boxes. My project, Mondrian, like Pierre Mondrian, attempts to view a complex
structure (in this case, a specification and design language) in a simple, two-dimensional,

graphical format.

Chapter 2

SEDL

SEDL implements two kinds of modeling:
1. Data Modeling
2. Behavior Modeling

In this section, we will discuss both kinds of modeling, their importance to the SEDL
methodology of abstraction and stepwise refinement, and the various relationships that

exist within each type of modeling and between the two.

2.1 Data Modeling

SEDL uses data modeling to represent the concept of data specification and design.
This concept allows the designer to separate concerns about the use of data from those
involving the representation of data. When focusing on the use of data, there is a need

to specify completely the type of the data and the operations allowed on the data.

2.1.1 What is Data Modeling?

The concept of data modeling, using an abstract model form of the data, allows the

designer to specify fully both the interface and the behavior of the operations specified

9

for a data object or type. Abstract types such as sets, maps, and lists are often chosen
as abstract models of data. Such models reveal the essential structure of the data type
and are free from implementation bias. The operations of the abstract model types are
used to specity the behavior of the operations in terms of the data being modelled. To
operate on the data correctly, the user needs no further knowledge than is given by the
model and the specifications of operation behavior. The actual representation chosen for
the data is completely hidden and may even be changed so long as the properties of the

model are preserved.

2.1.2 Smallset - An Abstract Type Example

We will be referring to the abstract type Smallset as a typical data modeling example.
Smallset appears in [5] and consists of integer sets whose cardinality does not exceed
a given maximum size. See Figure 2-1 and Figure 2-2 for the definition of Smallset’s
specification and implementation, respectively.

In particular, notice that an abstract type! is declared in two parts:

1. The specification. part containing the model iype declarations, subprograms, and

behavior specifications for the operations of the type.

2. The body part containing the representation of the abstract type and the imple-

mentation of its operations.

2.1.3 Relationships

Abstraction is the main concept behind data modeling. The model corresponds to the
external (or user’s) view, and the representation corresponds to the internal (or imple-

mentor’s) view. The model also permits the designer to select a data representation

!Throughout this paper, an abstract type will be used as a typical representative of a data modeling
object. Other choices that SEDL provides include a package, an abstract object, and an abstract type
family.

10

— Assume Max_size is a non-negative integer constant
abstract type Smallset is

model
type Smallset is Set of Integer;
constraint
for all S in Smallset : Card(S) <= Max Size;
initial
Empty;
end model;

function Query(I: in integer; S: in Smallset) return Boolean
<*Iin S*>;

end Smallset;

Figure 2-1: Smallset Specification

during a sparate phase of development. For instance, the Smallset model is a Set of Inte-
ger. The Set type is a high level constrnct that SEDL has provided for the user so that
Smallset can be thought of in an abstract manner. On the other hand, the implementor
may not have the use of a Set in his library, so Smallset must be defined in terms of lower
level constructs that are available, such as the Array and the Record. This link between
the model and the representation is very important; SEDL’s textual format, however,
does not exploit this relationship. As a matter of fact, the physical separation between
the model and the representation helps to hide the relationship.

Another important relationship exists between the behavior specification of an op-
eration that appears in both the model and in the representation of an abstract data
type. (Behavior specifications are a special kind of statement enclosed by the delimeters
<* and *> and are discussed in Section 2.2). Notice how the specification of Query in
Figure 2-1 is in terms of a Set, whereas the specification of Query in Figure 2-2 is in terms

of an Array and Natural index. The relationship between a model and its representation

11

abstract type body Smallset is

representation
type Elem_Vector is Array(1..Max_Size) of Integer;
type Smallset is
Record
Size: Natural range 0..Max_Size := 0;
V: Elem_Vector;
end record;
constraint
for all S in Smallset and J,K in 1..S.Size :
J /=K ==>S.V(J) /= S.V(K);
mapping of S in Smallset’representation to Smallset’model
<* S.V(I) : Iin 1..S.Size *>;
end representation;

function Query(I: in integer; S: in Smallset) return Boolean
<* exists J in 1..8.Size : S.V(J) =1 *>

is Separate;

end Smallset;

Figure 2-2: Smallset Implementation

12

is formally defined by the mapping function, which appears in the representation. This

function maps the representation type onto the model type, thus defining how to produce
a model value from a representation value. Again, this relationship between the model
specification and the representation specification is lost in its textual format. Mondrian

solves this problem.

2.1.4 Duplication

In very much the same way that the code for an Ada? package is physically divided into its
specification part and its body part, so is the SEDL abstract type. This stipulation causes
the programmer to repeat identical information in both the model and the representation,
such as the name of the abstract type, and the name and parameter lists of the abstract
type's operations. Furthermore, the model and the representation are two physically
distinct pieces of code, which may cause consistency problems. Mondrian solves this

problem as well.

2.1.5 Other Aspects of Data Modeling

In addition to the abstract type model definition and other associated definitions, the
model section also contains a constraint, which is a condition that must always hold on
the objects, and an initialization, which specifies the initial value for the objects of this
type. The abstract type body also contains a constraint and initialization, but in terms

of the representation and not the model.

2Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

13

procedure SimpleProc(x : in Boolean; y : out Character) is
<* x -> y:= Any(‘B’, ‘C’) *>;

Figure 2-3: Behavior Specification for SimpleProc

2.2 Behavior Modeling and Refinements

2.2.1 What is Behavior Modeling?

Each computer language has its own set of operations, usually procedures and functions.
In SEDL, these operations are specified by behavior specifications. Behavior modeling is
the act of writing a specification for an operation and its subsequent refinements. The
behavior specification for an operation describes the underlying mathematical behavior.
Tt specifies what the operation is, rather than how it is to be computed. In other words,
it hides design details such as the algorithm used to accomplish the specified behavior

and its implementation.

2.2.2 SimpleProc - A Behavior Model Example

A behavior specification in SEDL is a special form of statement enclosed by the delimiters
<* and *>. When specifying an operation, one follows the procedure heading with an
appropriate behavior specification followed by a semi-colon. The semi-colon indicates
that the procedure has yet to be refined into lower level behavior specifications or actual
code. In our example, Figure 2-3, SimpleProc takes a boolean argument, x, and a variable
of Character type, y, as input and nondeterministically assigns y to the character ‘A’ or
‘B" if x is TRUE. If x is FALSE, the procedure is undefined.

When one refines the procedure, the semi-colon is replaced by the keyword is, and then
the appropriate refinement is chosen (e.g. a loop, or an if-then-else clause). See Figure 2-
4. If the refinement is written as an external procedure, the keyphrase is separate is

used. Also notice how the Then statement is refined into another behavior specification,

14

procedure SimpleProc(x : in Boolean; y : out Character) is
<*x->y:= Any(‘B’, ‘C’) *> is

Begin
If x Then
<*y:= Any(‘B’, ‘C’) *>;
Else
y = ‘2%
End If;

End SimpleProc;

Figure 2-4: Behavior Specification and Refinement of SimpleProc.

whereas the Else statement is refined directly into ode.> The entire stepwise refinement
procedure enforces a specification-refinement relationship. This relationship, however, is

lost somewhat in the syntax and overall textual representation.

3The specitication of SimpleProc defines an action only if x is TRUE. If x is FALSE, the action is
undefined. The implernentor of this procedure decided to simply assign y to the character ‘Z’ in this
case.

15

Chapter 3

What Mondrian Has to Offer

The basic idea behind Mondrian is that each SEDL object used for data modeling is one
object composed of two perspectives. In the data model example to be presented, Smallset
(Figure 3-3 and Figure 3-4), the object is the abstract type, and the two perspectives are

the model view and the representation view (or rep view for short). In this paper, two

possible ways in which Mondrian can handle behavior modeling are discussed that:
1. enforce the SEDL methodology of stepwise refinement, and
2. graphically display a specification along with its refinement.

Before presenting the data model example, however, we must present some basic termi-

nology for dealing with Mondrian.

3.1 Notation and Terminology

In order to describe the graphical constructs and abilities that Mondrian offers, we must
first establish a basic dictionary of terms and commands that Mondrian uses. This

information provides us with a foundation from which Mondrian builds its properties.

16

3.1.1 Overall Structure

There are two distinct levels to Mondrian - the user interface, which is all that the user
of Mondrian has access to in order to construct his program; and the source code for
Mondrian, which is an extension of the RPDE source code. Furthermore, this source
code is broken into two parts - the object type definitions, which is where I define all
the pictures available in the user interface; and the methods, which determine exactly
how the object type definitions are to be displayed and manipulated. The object type
definitions are written in an assembler-like language!, whereas the methods are written

in Pascal.

3.1.2 The User Interface - Pictures

The diagrams that the user sees on the screen are called pictures. Some of the most
common pictures in Mondrian are the procedure and the function. These pictures are
themselves composed of pictures (such as the name picture, the parameter list picture,
the definition list picture, and the statement list picture (the body of the procedure)),
resulting in a hierarchy of pictures. The major pictures that are unique to Mondrian

include:
e abstract type
e abstract object
e abstract type family
e package

e model

!The underlying structure of an object type is a record. The assembler-like code assigns values to
some of the fields in this record. It is the methods that manipulate and display the record. For instance,
the box methods determine that the bux object type is presented as boxes and not, for ,xample, as a
node of a tree.

17

e representation
e specification
e exception handler

As previously stated, each of these pictures is defined as an object type definition.

The most common object types are:
e boxes
e aggregates (lists)
® names

Due to‘ time restrictions, I was constrained to use these existing object types in new ways
in order to create my pictures. I also used and modified existing methods, as well as
created some of my own methods, to display my pictures.

Associated with each object type (and therefore each picture) is a set of commands.
These commands can be typed in on the command line (the bottom line of the screen) or

chosen from a pop-up menu. Commands act on the current picture, which is determined

by which picture the cursor is on. If a command is given that does not act upon the
current picture, then the parent of the current picture is checked, and so on. This action

is possible because of the hierarchical nature of pictures.

3.2 The Display of Objects

The 'key behind the Mondrian graphic presentation is the RPDE output composition
facility. Interfacing functions called methods govern the display of individual objects.
These methods further interact with general algorithms to provide a coherent viewing
model. This view is composed of a number of windows, each one of which is an indepen-
dent view of the information in the repository. Associated with each window is a focus

set, the item or items that are of main interest to the user. The item that is initially

18

chosen from the repository by the user is defined to be the root. The RPDE display
algorithm determines the correct geographic layout of a set of objects in which all the
points of focus are displayed along with as ml;ch other nearby material as will fit in the
window.

Unlike most editors that use scrolling to view material that doesn’t fit, on the screen,
RPDE uses ellision. With ellision, material that can’t be displayed on the screen is
replaced by “...”. In order to see the material at an ellided spot, one simply has to move
the cursor there and give the command to focus out. Likewise, if one has focused in
and wants to see the surrounding material, he simply has to give the command to focus
in. This format allows the user to see the entire structure of a program as opposed to a

linear set of text.

3.2.1 The Basic Box

Presented here is an example of an object type and its corresponding picture - the box.
The box picture as provided in the RPDE library is shown in Figure 3-1. We will be
referring to each rectangular subsection of the box in the course of this paper, so we
have labelled each subsection with a specific name. The subsection in the top left-hand
corner will be referred to as TopLeft, the top right-hand corner will be referred to as
TopRight, and the bands directly underneath the TopLeft and TopRight sections will
be referred to as Band1 through Band9, from top to bottom.?

Associated with each band is a command name. By issuing this commaﬁd, the ap-
pearance of the corresponding band is toggled. That is, if the band is currently showing,
the band is “turned off”, otherwise, it is “turned on”. When toggled off, the band still
retains all information - it is just hidden from view. When defining a box object type,
the programmer has the option of giving the user this toggle capability for each band of
the box object.

2At the current time, RPDE allows only 9 Bands in this type of a box.

19

TopLeft | TopRight

Band1l

Band9

Figure 3-1: Structure of a Basic Box

3.2.2 Description Fields

Associated witiu many RPDE pictures is a description field. This area is a place to put
informal text (e.g., comments). If the picture is a box object type, the description field
is placed in a band of the box; thus, a band must be reserved for informal text for most

boxes. Mondrian will make use of this RPDE feature as well.

3.3 Commahds

Commands available to the Mondrian user manipulate either the Mondrian environment
or a Mondrian picture, or do both. Mondrian uses existing RPDE commands, modi-
fied RPDE commands, and new commands to form its complement of commands. The

following is a list of the major Mondrian commands:

20

close - RPDE command. Closes the window containing the cursor and removes it

from contention for display space.

distribute <command> - RPDE command. Applies the given command to all of

the immediate subpictures of the current picture.

mark - RPDE command. Marks the object for use as an implicit argument to other
commands. Marked objects are displayed specially on the screen. If an object is
already marked, the mark command may be applied to a second object that is
another element of the same aggregate as the first. In this case, the marked objects

include all of the objects between the first and second mark inclusive.

modview - Mondrian command. Creates a separate window with the current picture

being displayed in its model perspective.
move - RPDE command. Moves a marked region to the cursor position.

newfile <picture name> - RPDE command. Creates the specified picture on the

screen.
overlay - RPDE command. Copies a marked picture to the cursor position.

perspective <#> - RPDE command. Sets the perspective variable to <#> in the

current window.

repview - Mondrian command. Creates a separate window with the current picture

being displayed in its representation perspective.

showmod - Mondrian command. Sets the perspective so that pictures will appear

in their model view.

showrep - Mondrian command. Sets the perspective so that pictures will appear in

thier representation view.

unmark - RPDE command. Unmarks an object.

21

e view - RPDE command. Resets the current window’s root to the picture pointed

by the cursor and builds a new display in the window.

e window - Modified RPDE command. Opens a window for editing information. The
window is opened in the same perspective for the picture at which the cursor is

placed.

Another set of commands coerce existing pictures into new pictures, such as changing
a simple statement into a conditional or loop statement or changing a statement into a

spec-refine pair.

e conditional, loop, etc. - Modified RPDE commands. Replace the existing statement

picture with a conditional or loop picture.

e refine - Modified RPDE command. Creates a spec-refine pair, with the current

statement picture becoming the specification.

e speclanguage - Mondrian command. Changes the current statement picture into a

specification picture (not implemented).

Finally, there are commands that simply toggle picture bands. These commands exist
for each band in every box picture. They also exist for a refinement and its specification

in a spec-refine pair.
e description - RPDE command. Toggles the description band of a picture.
e refinement - Modified RPDE command. Toggles the refinement band of a picture.

e spec - Modified RPDE command. Toggles the specification band of a picture.

3.4 Mondrian’s Representation of an Abstract Type

Now that we have established a basic vocabulary and understanding of Mondrian’s struc-
ture, we can discuss how Mondrian incorporates the ideas of data modeling and behavior

modeling into its environment.

<abstract type name> | <constraint parameters>

<global declarations>

<model information>

<representation information>

<operations and local declarations>

<exception handler>

Figure 3-2: The Entire Abstract Type Picture Skeleton - Both Views Showing

Figure 3-2 is a representation of an abstract type skeleton as viewed in Mondrian. As
the picture suggests, the consequence of having the abstract type picture be one object
type is that the specification and the body are no longer two totally separate pieces of
code. Mondrian stores both the specification and the refinement as part of one abstract
type object. If the programmer is editing the model, he has immediate access to the
representation, and vice versa. However, Figure 3-2 is not in either the model view or
the rep view - it is a representation of what the abstract type picture would look like if
both views were showing at the same time, in the same window, with all bands toggled
on.

The way one uses Mondrian is to look at one view per window. For instance, Figure 3-
3 shows the model view of the abstract type Smallset previously defined. Notice the
differences between Figure 3-3 and Figure 3-4: Figure 3-3 is the model view and does

not contain the representation picture (Band3). The function Query is also in its model

23

abstract tupe Smallset

MODEL .

mnode i fft of

ﬁﬁ %D:'ia S in Swmallset ! ﬁarSES) = Max_Size
mpty

OPERAT I ONS

Query M-F“‘“@?ﬁ:‘i‘“
ﬁ S : mallset

a L]

i o |

Figure 3-3: Model View of Smallset

view, showing only its name, parameter list, and its specification in terms of the model.
All other information is suppressed and can never be seen® because it does not have any
relevance in the model view.

Figure 3-4 shows the rep view of Smallset. In this view, the representation picture
can be seen, but the model picture cannot. Notice that Query is now defined in terms of
the representation. Also notice the bottom three bands of Query. These bands will be
used to refine Query into code.

Another important aspect of Mondrian is its lack of duplication. For example, in the
SEDL code for Smallset, the name “Smallset” and the name and parameter list of the

function, Query, are duplicated in both the model and the body. So if the programmer

3This is not absolutely true. The RPDE protocol insists that a pictire be shown as long as the
cursor is on that picture. Therefore, if one were to give the command repview while the cursor was on
the model picture (Band2), then the model picture initially would appear in the newly created repview
window. This effect is very temporary, however, since one simply has to refresh the screen to make the
model picture go away.

24

abhstract tupe hady Smallset

of integer

»)
Eﬁ;i Elon_Uoogorngizninnag <1§i;:x_§izo)
_ u : Elem_Uector
gonstraint for all S in $mallset and J, K in 1..S5.Size
7= K ==> $.UCJ) /="s.uck)
MAPPING znugziﬂﬂ: € S.UI> ¢! I in 1..5.Size)
OPERAT IONS ()
hOCALS(l)

A ¥ L

Query i ¢

in H

in : mallset
[s

X1S5¢ts in cad.21Z@ . = |

s s
q
K » Behavior atement »
6]

Figure 3-4: Rep View of Smallset

25

changes one, he has to remember to go and change the other.

This problem js solved in Mondrian. Notice that in Figure 3-2 there is only one
band reserved for the name (TopLeft), and only one band reserved for the operations
(Band4). However, this information appears in both the model view and the rep view
(Figure 3-3 and Figure 3-4). Furthermore, since this information is actually the same
object appearing in two different views, if any common information is changed in one

view, the change will be propagated in the other view.*

3.4.1 Perspectives

A perspective is an RPDE variable that is global to all pictures (and therefore object
types) in a window. This variable is set via the RPDE command perspective. A particular
perspective setting has no effect on a picture if that picture’s object type definition does
not declare any perspective masks. Perspective masks are defined along with the object
type. These perspective masks are used to control which parts of an object type can
be shown. In particular, perspective masks can control which bands of an abstract type
picture can be shown when in the model view or when in the rep view. The user controls
which perspective is active at any given time via the two Mondrian commands showrep
and showmod. These commands are only “sugar” for manipulating the RPDE perspective
command.

For instance, the model view perspective mask allows for the TopLeft, TopRight,
Bandl, Band2, and Band4 bands to be viewed. The rep view perspective mask, on
the other hand, allows for the TopLeft, TopRight, Bandl, Band3, Band4, and Band5
bands to be shown (TopRight and Band5 are toggled off because they do not contain any
relevant information in our Smallset exarmple, Figure 3-4). In our example, the TopLeft
band, which contains the name, “Smallset”, appears in both views because the name of
the abstract type is common information between the two views. Therefore, changing the

name in one view automatically changes the name in the other view. In this fashion, the

If both views are showing, one must refresh the screen first.

26

programmer can never enter an inconsistent state where common information beiween
views is different. On the other hand, information concerning the representation is of no
consequence to a user viewing the model; therefore, the representation picture (Band3)

of the abstract type picture is not defined in the model perspective.

3.4.2 Perspectives are Global

Because perspectives are global, each picture contained within another picture will also
appear in the current perspective setting. Therefore, when the model perspective is set,
each picture in each band of the model view will also appear in its model view. Likewise,
when the representation perspective is set, each picture in each band of the rep view
will also appear in its rep view. Therefore, even though the operations picture (Band4)
appears in both the model view and the rep view of Smallset, this picture has a different
display in each view. Unlike the TopLeft band for which the picture is the same in both
views, Band4 contains an operations picture which, in turn, has its own model views and

rep views. Specifications of operations were discussed in Section 2.2.

3.4.3 Viewing and Modifying Perspectives at the Same Time

As previously mentioned, abstract types are designed to be examined in either the model
view or the rep view. There is a specified way in which to view both the model view and
the rep view at the same time.

To see two views simultaneously, Mondrian creates a new window, places the current
picture in the new window, and sets the specified perspective. All of this can be performed
by one command, which actually is the composition of four RPDE windowing, viewing,
~and perspective commands. For instance, the Mondrian command repview creates a
second window that contains the current picture in its rep view. (See Figure 3-5). In both
windows the programmer still has the capability to focus in and out, as well as to modify
any information. Again, if any information that is modified is common information, the

change is reflected in the other view.

27

abstract tupe Smallset
MODEL

mode " of
Eﬂiﬁﬁ g,oi-:aﬁ"‘s in Smallsot IOEBISR., (_ Mar_Size
mpty

OPERAT I ONS

Query
set

I'mes v

abhstract tupe haduy Smallsce

REP() .
tupe (1..Max_Size) of integer

_Ilon_UQogorngéznggngg &1
ize " naﬁu:al
] : Elem_Uecctor

ganstraint for all $ in Smallset and J, K in L..S.Size
J /= K ==> S.UCJd) 7="s.ucCk).
MAPPING FUMNCTIOMN: <€ S.UCI)> ! I in Ll..S5.Size)
OPERATIONS (»)
LOCALS ()
qn

Query mmm_gmnnin_@%tﬁm
tﬁ E na set

L)]

x1sts in cdd.31Z@ . . = 1
a a
€4
K+ Hehawvio atement #
®

Figure 3-5: Properly Seeing Two Views of Smallset at the Same Time.

28

Query f.un.c_u.nn_fgt.ums.

n .

in s : mallset
] []

X1sts in 1..5.51ze : . = 1

.“'
b ||
K+ Behavior atemen kel
®

Figure 3-6: Properly Seeing Two Views of Query at the Same Time.

Unlike the textual representation, Mondrain offers a way to maintain a relationship
between corresponding pictures in the model and rep views at various levels of granularity.
For instance, if the current picture is an operation such as the function Query, then issuing
the repview command will result in a picture like Figure 3-6. Furthermore, if the current
picture is the behavior specification of the operation, then issuing the repview command
will result in a picture like Figure 3-7. |

By making the programmer explicitly create a new window in order to view a second
perspective, the idea of modularity and abstraction between the two views is reinforced.
Perspectives also ensure that it is not possible to see any model view information while
in the rep view, and vice versa. There are problems with perspectives, however. These

problems are addressed in detail in Section 5.

29

T T

I exists J 1n 1..38.31ze : . =
a

Figure 3-7: Properly Seeing Two Views of a Behavior Specification at the Same Time.

30

procedure SimpleProc(x : in Boolean; y : out Character) is
<* x >y := Any('B’, ’C’) *>;

Figure 3-8: Behavior Specification for SimpleProc

SimpleProc |procedure

Figure 3-9: SimpleProc as Seen Using Mondrian

3.5 Behavior Refinement in Mondrian

3.5.1 The Specification

In its textual format, a SEDL behavior specification is indicated by the surrounding
delimeters <* and *>. This representation is the same for both the specification of an
operation and the specification of a statement. See Figure 3-8, which is our old friend
SimpleProc.

Mondrian does not need the special symbols <* and *> to signify its specifications.
Figure 3-9 is SimpleProc as seen in Mondrian.

First, notice the extra thick box that encloses the behavior specification in Bandl.
Statement pictures appearing in such a box indicate that the statement is the behavior

specification for the operation. In this example, the behavior specification is a form of

31

conditional called a partition. The partition picture is represented as a two-column table.
Conditions are listed in the left column, while the corresponding actions (or statements)
are placed in the right column on the same row. If a condition is not specified, its action
is considered undefined.

Second, notice the representation for the body of SimpleProc (Band3). This repre-
sentation is a conditional picture. Like the partition picture, the conditional picture is
represented as a two-column table with the conditions listed in the left column, and the
corresponding actions (or statements) placed in the right column on the same row.

Also notice the difference between the first condition (the Then) clause and the second
condition (the Else clause). The Else clause is a simple statement and appears as such.
How=ver, the Then clause is actually a refined statement specification.

Mondrian represents a statement specification and its refinement using reverse video

and the refinement arrow, t#. The specification (y := Any({'B’, ‘C'})) is put in reverse
video, and the refinement arrow points to the specification’s refinement (y := ‘Z'), thus

creating a spec-refine pair. Besides being a very recognizable symbol, this refinement

arrow also indents the refinement of its specification. This indentation also makes it easy

for the user to distinguish quickly between the specification and its refinement.

3.5.2 The Stepwise Refinement Process

In the stepwise refinement process, each refinement step should reflect a definite design
decision as to how a specified behavior is to be implemented. The reasoning behind
specific design decisions, such as, “An arfay was chosen over a linked list because ...”
should be documented in the comment band of the appropriate picture. Two different

methodologies that enforce the stepwise refinement process have been implemented in

Mondrian and will be discussed.

Version 1 - The Strict Approach

In the Strict Approach, there are two kinds of statements — one for specifications, and
one for code. In order to encourage users to write specifications, Mondrian prompts the

user with a specification statement by default:
< * Behavior Specification *>

The user simply has to write his specification over the prompt, the input is automatically
put into reverse video, and the user is done. For instance, the specification “there exists

an a such that a := 5” appears as:
Existsa: a:= 5§

If the user wants to convert to a different kind of specification®, he gives the appropriate
command. When dealing with specifications, one can only convert to another specifica-
tion or give the refine command.

When the user is ready to refine his specification, he gives the command refine at the

current picture, and a spec-refine pair is created:

Existsa: a:=5

L» < * Behavior Specification *>

The refinement is again a specification statement prompt, and the process can be re-
peated. At this point, however, the user may want the refinement to be actual code. The
user must first issue the command ProgramStmt to convert the specification statement

into a program statement:
Existsa: a:=5
Ly statement
A program statement is any kind of statement, such as a loop or a conditional. If the

refinement is a simple statement, such as a := 5, then the user types his statement over

the prompt:

S5SEDL allows for four different kinds of specifications: simple, partitions, multiple, or text.

33

Existsa: a:=5

lpa:=35

If the refinement is to be a more complicated structure, such as a loop or conditional, then
the user issues the command loop or conditional, and the simple statement is transformed
into a loop or conditional picture. Once a statement has been transformed into a program
statement, the refine command is no longer available because the user has reached the
end of the stepwise refinement process.

The advantage to this version is that the approach is very methodical and strict. One
either writes a specification statement, or explicitly converts it to a program statement.
There is no confusion between specifications and code. The price, however, is in terms
of object type definitions and inconvenience. First, two object types must be defined for
statement pictures — one for a specification, and one for code. Second, it is common to
have a simple statement with no specification in the lower level refinement. In such a
case, it would be an inconvenience for the user first to convert the behavior statement into
a program statement, and then to write the statement. This inconvenience is handled in

the next approach, but other problems arise.

Version 2 - The Compromise Approach

The Compromise Approa‘ch eliminates the duplicate definition problem by allowing the
user to input simple code statements without first converting to a program statement.
However, the distinction between specification statements and code statements is not as
clear. This approach assumes that each statement is a specification that needs to be
refined. Therefore, when the prompt statement is on the screen, Mondrian expects a

specification to be entered:
statement

However, if the user wants to write a simple program statement such as a := 5, then he

can do so without first converting to a program statement:

34

a:=3>J

One can do this because Mondrian assumes that any simple statement without a refine-
ment is code. This method, then, removes the inconvenience of issuing the ProgramStmt
command as in the Strict Approach.

However, if the statement is a specification (e.g., Exist a: a := 5), then one issues the
command refine to create a spec-refine pair. Now the programmer is left with another

statement prompt as the refinement:

Existsa: a:=5

Lo statement

This statement is another behavior statement. If another refinement is needed, then the
process is repeated.

At this point, however, the programmer also has the option of changing the behavior
specification into a program statement. As before, if the refinement is a simple statement

the programmer simply types it (e.g a := 5) over the statement prompt:

Existsa: a:= 5

lpa:=5

If the refinement is a more complicated structure, such as a conditional or a loop, then
the programmer issues the command conditional or loop, and the simple statement is
converted into a conditional or loop picture.

There is one special case during the refinement process that must be handled carefully.
Suppose one wants to write a simple behavior specification with no refinement. As stated
previously, one would just write the specification over the statement prompt. However,
if left in this condition, Mondrian will assume that the statement just written is a code
statement, and not a behavior specification statement. In this instance, known as the
base case, the programmer must somehow indicate that his behavior specification is not

the base case refinement.

35

One can indicate this difference in one of two ways. First, the programmer can
explicitly give the refine command, with no intention of filling in the refinement at the

present time:

Existsa: a:=5

Ly statement

As stated in Section 3.2.1, the user can simply toggle the refinement band off if he
doesn’t want to look at the empty refinement. Alternatively, the programmer could
give the command speclanguage, which would explicitly tell Mondrian that the current

statement is to be viewed as a specification.

3.5.3 Viewing Specifications and Refinements

As previously stated in Section 2, underlying the SEDL methodology is the idea of
abstraction. To visually enhance this methodology, Mondrian allows the user to toggle the
refinement band off if he is not interested in a specification’s implementation. Mondrian
also allows the user to toggle the specification band of if the user is strictly interested in
viewing a refinement and not the specification itself.

Furthermore, one can use the RPDE command distribute along with the band toggle
commands spec or refine in order to distribute the band toggle command throughout the

current picture and its subpictures.

36

Chapter 4

RPDE’s Role in Mondrian

RPDE is a programming and design development environment whose heart is an editor
that displays the programmer’s material (code, documentation, comments, and other in-
formation) in a two-dimensional, graphic form [1]. RPDE views the creation of a program
as the presentation and modification of a comprehensive data repository containing all
the design and implementation information.

RPDE currently adheres to a development by refinement methodology. That is, the
user is encouraged to begin with a natural language description (e.g., a comment) and
refine it into an implementation. The natural language statement is automatically placed
in the description field of the implementation picture (i.e., statement, conditional, loop,
etc.), thus becoming a comment for the refinement.

The features of RPDE fit well with the SEDL methodology. Both methodologies
are based on the ideas of abstraction and stepwise refinement. SEDL is a precise and
formal design language, and RPDE presents information in a structured manner. By
combining the two, one should be able to develop a programming environment for a
design and specification language that is able to maintain, control, and present all of the
information in a useful and coherent fashion. Thus the idea for Mondrian began.

The overall structure of Mondrian is inherited from RPDE. Due to time constraints, I

concentrated mostly on object types that were defined as some sort of box, thus resulting

37

in a nested box paradigm. I also was able to become very familiar with methods and
options associated with boxes. However, due to the variety of display flags associated
with a box object type, the box picture is not necessarily displayed as a box. This allows
for a greater diversity in the appearance of box object types, which makes the overall
appearance more diversified and more appealing.

The use of lines and arrows to show relationships between ob jects was also explored.
There are two cases to consider — a graph structure and a tree structure. The use
of lines and arrows to show a graph structure idea met a quick death because of the

spaghetti argument. This argument states that even with a small number of intercon-

nected objects, the connecting lines soon turn into “spaghetti”, making the picture un-
readable and the design hierarchy unclear. The nested box approach, with the sharing
of common subobjects, allows for a coherent and visually well defined picture.

On the other hand, if the structure of a program is a tree, one does not run into this
spaghetti problem. Using lines and arrows to show relationships at a modular level and
even a procedural level can be very informative. For instance, a common use of lines and
arrows is to show the flow of data. However, using this paradigm to show the structure
of low level objects, such as a loop or conditional, can confuse the user more than help
him. The structure of these objects is more presentable in a box format.

Although Mondrian does not find the node and arc paradigm useful for showing
relationships between objects, the line and arrow play an important role in showing
the relationship between a specification and its refinement. This refinement arrow is
acceptable because there is no fear of the spaghetti problem. First, the refinement arrow
1s very small; and second, the arrow always points to the object directly beneath it. Thus,
these arrows aid the viewer rather than hinder him. Furthermore, if Mondrian did use a

node and arc paradigm, the importance of the refinement arrow would be obscured.

38

Chapter 5

Problems with Perspectives

When dealing with a data model whose operations are strictly procedures or functions,
the model views and the rep views of both the abstract type and the procedure can be
shown consistently. However, problems arise when one tries to declare a data model
(e.g. an abstract type) in the body of another data model. Due to time restrictions, the

following solutions a-e discussed but were not implemented.

5.1 Global Perspectives Cause Problems

Although global perspectives work well with data models and procedural operations, a
problem arises when one wants to declare another data model, say an abstract type called
Inner, in the body (or rep view) of another data model, say an abstract type called Outer.
Inner can only be seen in the rep view of Outer since its declaration is private to Outer’s
body. However, because perspectives are global, Inner will also be seen in its rep view,
even though what we want to see is Inner’s model view.

There is no simple solution to this problem. One solution would be to keep Mondrian
as is, but make the user create a new window that contained Inner. This can be done
easily with the RPDE command view. The user would then be responsible for issuing the

Mondrian command modview in the newly created window, thereby making Inner appear

39

in its model form.

The aforementioned solution is not an ideal solution because it is based on my im-
plementation of Mondrian. Ideally, Mondrian should handle this situation consistently
and internally. One such solution is to make perspectives local to each picture. In this
manner, each picture would initially appear with both views showing, waiting for the
user to indicate which perspective he wants for that picture.

Another solution would rely on a smart display algorithm that could distinguish
between Quter and Inner. Basically, the current picture would be considered "Outer”.
Outer could be seen and manipulated in both views, but Inner could only be seen and
manipulated in its model view. To see the rep view of Inner, one simply has to make it

the current picture.

5.2 Get Rid of Perspectives?

Another possible solution would be to get rid of perspectives altogether. The user would
have to specify for each picture which bands he wants to see. Such an act could easily

be tailored to a single keystroke. This solution is called the virtual perspective solution

because even though it appears as if the object is being shown in a certain perspective, a
band associated with the other perspective can be toggled on at any time. The drawback
to this solution is that the protection offered by a global perspective is no longer available.
Using global perspectives, one can toggle individual rep view bands while in the rep view,
and likewise when in the model view. However, using the virtual perspective solution,
one is able to toggle on a rep view band while in the model view. One could restrict the
user from viewing inappropriate bands by allowing the user only two commands - one
to toggle all the model view bans while suppressing the repview bands, and vice versa.

However, the freedom to toggle individual bands would be lost.

40

Chapter 6

Other Issues

any external operation to be used. An example of a generic value can be seep in our
original example of Smallset in Figure 2-1. In thjs figure, the opening comment states
“Assume Max_size js a non-negative integer constant”. One cap formalize Max_size as
part of the code by making it a generic value. When one creates the abstract type

Smallset, he must instantiate the declaration with a value for Max_size.

handles both of these cases in the same way. If the yser Wants to add one of these
features to the operation he is currently viewing, he simply has to give the generie

command. This command forms a box “template” around the current operation picture,

appearing before the textual code makes the scope much clearer.

42

Chapter 7

Conclusions and Directions

7.1 Test Results

I have demonstrated Mondrian to a select group of individuals, most of whom are involved
in the RPDE project. The general reaction was very positive. Most people liked the way
that Mondrian manipulated the model view and the rep view of an abstract type. The
idea of the spec-refine pair was not unfamiliar to this group because RPDE has a similar
capability, so their reaction to this aspect of Mondrian was one of acceptance.

However, I also demonstrated Mondrian to a couple of individuals not involved with
the RPDE project, but who are involved with Ada or SEDL. Their reactions were even
stronger where the manipulation of the two views was concerned. And the spec-refine
pair concept also was favorably accepted, although not to the same degree as the two

views.

7.2 Directions for Future Work

- The most important issue to be dealt with is the perspective issue. Some consistent way
must be devised to handle the declaration of a data model in the body of another data

model. Some possibilities were discussed in Section 5.

43

A follow-on project that in itself could be a thesis is to develop display algorithms
specifically for SEDL. This “smart” algorithml would know about SEDL’s structure and
would prettyprint Mondrian in a manner that would exploit design structure to its fullest.
Currently, Mondrian uses the RPDE algorithm, which fits as much nearby material
on the screen as possible. This algorithm is based on the work done by Mikelson [2],
which explains various ways to prettyprint a graphical environment using ellipses. This
algorithm can be fine-tuned to account for all of SEDL’s pictures.

Although Mondrian was not developed to be a syntax-directed editor, Mondrian could
be modified in such a way as to become one. Such a project would involve creating many
more object types, templates, and methods in order to handle a large language such
as SEDL. Currently, Mondrian allows for the entry of illegal constructs. It does not
have a template for every kind of SEDY, construct. Because Mondrian is not strictly a
syntax-directed editor and because it is still a prototype, Mondrian assumes some prior
knowledge of SEDL for its proper use.

Concerning externally declared operations, an implementation could be developed
such that an external reference to a procedure (e.g., with Procl;) is actually a pointer to
that object, and not just a named reference. Such an implementation would benefit the
user because he would have direct access to that procedure wherever its name appeared.
This implementation is possible because RPDE handles all its objects, which include
procedures, as entries in its database; therefore, one can have multiple pointers accessing

the same object.

44

Chapter 8

A cknowledgements

There are many people that [want to thank, for without them, Mondrian never would
have been built and this thesis never would have been written. First, I want to thank
Bill Harrison and the RPDE group at IBM Research for their help in teaching me about
the RPDE system. Specifically, Harold Ossher and Brian Weston were invaluable in an-
swering question after question and helping form the early versions of this draft. Second,
I want to thank Dr. Gerry Fisher and the SEDL group at IBM Research for supporting
my efforts as well. Third, I want to thank Bill Weihl for being my MIT advisor and for
all his help in polishing both my thesis proposal and my actual thesis.

Most importantly, [want to thank my mother and father. Without their never-ending

support and love in all my activities, I would not be where I am today.

45

Bibliography

(1]

(2

(4

[6]

William H. Harrison. RPDE(3) - an environment framework for integrating tool frag-

ments. Technical report, IBM Thomas J. Watson Research Center, 1987.

Martin Mikelsons. Prettyprinting in an interactive programming environment. In
Proceedings of the ACM SIGSOFT/SIGOA Symposium on Text Manipulation, pages
108-116. June 1931.

Mark Moriconi and Dwight F. Hare. Pegasys: A system for graphical explanation of
program designs. In Proceedings of the ACM SIGPLAN 85 Symposium on Language

[ssues in Programming Environments, pages 30-+1, 1985.

§.P. Reiss. Graphical program development with Pecan program development sys-
tems. In Proceedings of the ACM SIGSOFT/SIGPLAN Symposium on Practical
Software Development Environments, pages 30-41, 1934.

Ann E. Kelley Sobel and Gerry Fisher. A specification and design language. Technical

Report 12718(57227). IBM Thomas J. Watson Research Center. April 1937.

Tim Teitelbaum and Thomas Reps. The Cornell program synthesizer: .\ syntax-
directed programming environment. In Communications of the AC'M. pages H63-573,

September 1931.

46

