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Abstract

Non-heuristic multimodal trajectory optimization is widely considered an intractable
holy grail for real-time robotic systems, with the existing state-of-the-art standing at a
heuristic hierarchical approach that stacks upstream search-based or sampling-based
behavior planning on top of downstream local numerical trajectory optimization. In
this thesis, we present (i) the S* algorithm, a novel geometric trajectory optimiza-
tion method for autonomous ground vehicles in dynamic environments that uses apex
interpolating Spiro splines to optimize orders of magnitude fewer variables than nu-
merical optimization, and (ii) an anytime best-first multimodal variant of S* using a
parallel optimistic branch-and-bound on homology classes. We demonstrate a prelim-
inary implementation of this algorithm integrated into MIT Driverless’s autonomous
racing stack on a full-size Roborace Devbot 2.0 racecar navigating mixed-reality ob-
stacle courses at up to 100 mph.
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Chapter 1

Introduction

1.1 Why?

The holy grail of non-heuristic multimodal trajectory optimization belies one of the

central struggles of robotic decision making in nonconvex environments — the com-

putational tradeoff between global optimality and local optimality. The core building

blocks of motion planning each excel at just one of these two objectives — search-

based and sampling-based methods excel at high-level decision making, while local

trajectory optimization excels at producing smooth, optimal trajectories. Today, any

real-time robotic system hoping to achieve multiscale decision making uses a heuris-

tic hierarchical approach, where an upstream behavior planner proposes a convex

corridor, and a downstream numerical optimizer computes a smooth trajectory (see

Chapter 2 for more).

This heuristic, however, is not infallible, and nowhere is this more clear than in

the domain of autonomous racing, where inaccurate estimates can make the difference

between a successful overtake and a failed overtake. In particular, while the S* algo-

rithm is fairly extensible to other domains, it was directly inspired by MIT Driverless’s

participation in two recent international competitions in the autonomous racing space

characterized by their record-breaking speeds and dynamic environments, namely the

Indy Autonomous Challenge (IAC) and Roborace.

The Indy Autonomous Challenge is the world’s first head-to-head autonomous
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racecar competition. Each of its nine teams purchase a full-size Dallara AV-21 racecar

retrofitted with sensors and controls to enable automation. We then must get our

car racing fully autonomously on iconic Indy tracks, both in single-agent and double-

agent scenarios, at speeds of up to 173 mph. In particular, everything from perception

to state estimation to planning to controls is left up to the teams. So far, IAC has

raced on banked oval tracks at the Indianapolis Motor Speedway and the Las Vegas

Motor Speedway.

Roborace is the world’s first mixed-reality autonomous racecar competition. In

its Season Beta, each of its six teams must automate a full-size Roborace Devbot

2.0 electric racecar to navigate the Roborace Metaverse, a mixed-reality racing for-

mat reminiscent of Mario Kart where we race solo on iconic tracks while avoiding

dynamically-perceived virtual obstacles and hitting dynamically-perceived virtual tar-

gets. So far, Roborace Season Beta has featured flat but more complex tracks than

IAC, including the Anglesey National Circuit, the Thruxton Circuit, the Bedford Au-

todrome, and the Las Vegas Motor Speedway’s Outside Road Course. The challenge

lies almost entirely in motion planning and controls — virtual obstacles and targets

are directly perceived through a V2X framework, and robust state estimation is less

important than in IAC because the tracks are not surrounded by walls and every

obstacle is virtual, enabling us to easily restart an attempt if GPS fails and we exit

the track. However, the flipside is that motion planning for Roborace is insanely

challenging. Traditional hierarchical methods struggle to consistently make the right

decision in complex multimodal scenarios like this; even to a professional, it may not

be obvious whether it is worth the reward to diverge from the racing line for targets,

or which path is optimal in a dense obstacle course. However, the whimsical chal-

lenge of the Metaverse format belies a more universal motivation for non-heuristic

multimodal trajectory optimization — the importance of designing robotic systems

with robustness and certifiability at the forefront.

The S* algorithm is our holistic answer to the challenge of tractable non-heuristic

multimodal trajectory optimization for autonomous ground vehicles in dynamic en-

vironments. In truth, it may be overkill for Roborace, and it is definitely overkill for

12



the Indy Autonomous Challenge. After all, except in highly complex scenarios, it

suffices to optimize each of the most promising convex corridors in parallel. Between

these two competitions, only the Roborace Metaverse presents a scenario complex

enough to warrant non-heuristic multimodal optimization; but even then, why invest

in a novel unconventional approach that takes years to develop when the tried-and-

true method of hierarchical planning can achieve a good enough solution with enough

tuning?

While it’d be funny to respond with "because we can", the truth is that robustness

and certifiability have never been more important in robotics. The autonomous vehi-

cle industry has long surpassed the goal of "good enough"; and yet, until it achieves

"virtually perfect", or ideally, "provably perfect", it may never earn the trust it needs

to overcome regulatory hurdles. The problem is, on-board computation also needs to

be lightweight and fast. Hierarchical methods excel at this, hence why most imple-

mentations will split forecasting from planning, just as they split behavior planning

from motion planning, despite major advances in game theory in recent years. While

extending S* to joint motion forecasting and planning is out of the scope of this thesis,

S* was conceived and pursued in part because of an ambition to one day consolidate

forecasting and planning into a single universal, certifiable, and tractable algorithm.

1.2 How?

At its core, the S* algorithm was born from the intuition of a racing enthusiast. What

if we could achieve tractable computation by simplifying the problem of racing line

optimization to the problem of apex finding? In Chapter 3, we set up the problem,

and in Chapter 4, we use this intuition to develop a geometric method of anytime

local path optimization in static environments using apex interpolating Spiro splines.

In Chapter 5, we extend S* to trajectory optimization by decoupling path opti-

mization and speed optimization. Only through our use of Spiro splines in Chapter

4 are we assured that this decoupled formulation is a good approximation for true

trajectory optimization.

13



In Chapter 6, we extend S* to dynamic environments, which presents a major

challenge to the geometric formulation of S* given that the concept of apexes is

traditionally applied to static environments. It also motivates us to generalize speed

optimization to account for the yield maneuver, i.e. when we slow down for an

obstacle instead of nudging to either side.

Finally, in Chapter 7, we develop a best-first multimodal variant of S* using

a parallel optimistic branch-and-bound on homology classes. This application of

multimodal optimization is particularly synergistic for our geometric formulation in

contrast to a numerical formulation, as we will see.

In Chapter 8, we demonstrate a preliminary implementation of S* integrated into

MIT Driverless’s autonomous racing stack on the Roborace Devbot 2.0 racecar nav-

igating a static but dynamically-perceived obstacle course at up to 100 mph. We

also show preliminary results of a more recent implementation of S* planning a sin-

gle trajectory through randomly generated simple dynamic scenarios. While we still

have a lot more results to collect, particularly results that feature the most recent

implementation of S* navigating dynamic obstacle courses, we hope these limited re-

sults highlight the potential of S*. But there is still a lot to do, as we will discuss in

Chapter 9.

1.3 Outline

The remainder of the thesis is split into the following chapters:

• Chapter 2 focuses on related work.

• Chapter 3 formally describes the planning problem.

• Chapter 4 solves a limited version of the problem described in Chapter 3, namely

local path optimization in static environments, using a novel geometric approach

based on apex interpolating Spiro splines.

• Chapter 5 extends this solution to trajectory optimization by describing a de-

coupled speed optimization algorithm and incorporating it into S*.

14



• Chapter 6 extends this solution to dynamic environments by generalizing the

geometric concepts in Chapter 4 to spacetime, and extending the speed opti-

mization concepts in Chapter 5 to enable the yield maneuver.

• Chapter 7 extends this solution to multimodal optimization using a parallel

best-first branch-and-bound on homology classes.

• Chapter 8 presents results from preliminary implementations of S*, most notably

from a race in which MIT Driverless’s autonomous racing stack navigated a full-

size Roborace Devbot 2.0 racecar through mixed-reality obstacle courses at up

to 100 mph.

• Chapter 9 discusses future work.
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Chapter 2

Related Work

In this chapter we go over existing work in literature that either attempt to solve

the same problem with a different approach, or that provide an insight that directly

contributed to the conception of S*.

2.1 Local Trajectory Optimization

Numerical methods for local trajectory optimization in scenes of static/dynamic ob-

stacles and targets are well-explored in literature. Methods like direct single shooting,

direct multiple shooting, and direct collocation are standard — hundreds of variables

representing control inputs and/or states are numerically optimized until convergence.

However, these methods struggle to deal with complex or dynamic environments un-

der limited computation. Timed elastic bands (TEBs) improve efficiency by using

artificial forces to deform a trajectory to prevent violations, but they do not account

for dynamic objects in spacetime [6].

Apex-based local trajectory optimization, which the Spline Racer algorithm ex-

pands on, has nearly no precedent in literature. The one existing work that resembles

our approach is [2], which iteratively improves spline paths by computing collisions

with obstacles and adding new waypoints on the obstacles’ boundaries to mitigate

collisions. However, this work only handles static obstacles, uses cubic splines, relies

on heuristics to prune unnecessary waypoints, and takes computation on the order of
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seconds to produce a single local solution.

2.2 Multimodal Trajectory Optimization

None of the above numerical methods extend well to multimodal optimization on

their own, on account of their gradient-based formulation. Instead, the standard is

to utilize a heuristic hierarchical approach, relying on an upstream search-based or

sampling-based behavior planner to select a few candidate homotopies for downstream

optimization. For example, [7] samples a random acyclic graph to probabilistically

explore homologies, and then solves a TEB for each homology in parallel. [4] searches

a Voronoi graph for promising homotopies instead.

2.3 Spiro Splines

The S* algorithm relies on Raph Levien’s Spiro spline, the four-parameter cubic cousin

of the Euler spiral spline. In Chapter 4, we discuss why this spline family in particular

is a great fit for S* and motion planning in general. The best reference on the Spiro

spline, and its relation to other splines, is Raph Levien’s PhD thesis [5].

2.4 Time-Optimal Speed Profiling

The problem of generating a time-optimal speed profile for a given path and initial

speed subject to acceleration constraints is solved in literature, and S* only makes

minor adjustments to the general idea to suit its needs. The general idea, which is well

illustrated in section 3.5 of [3], is to overlay partial speed profiles, one resulting from

a forward pass and another resulting from a backward pass, and take the minimum of

the two profiles as the maximum speed that ensures recursive feasibility at each step.

Acceleration constraints are often formulated using a GGV performance envelope,

which is maps speed to a contour of feasible longitudinal/lateral accelerations.

18



2.5 Racing Theory

We take this opportunity to highlight a book by Adam Brouillard, an avid racer

and specialist in the physics of racing line optimization, titled The Perfect Corner: A

Driver’s Step-By-Step Guide to Finding Their Own Optimal Line Through the Physics

of Racing (The Science of Speed) [1]. His insights on the intuitive nature of the apex

solidified our conviction that the Spiro spline was the ideal fit for S*.
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Chapter 3

Problem Formulation

In this chapter, we define the model of our planning problem.

3.1 Definitions

We denote ego as the agent for which we wish to plan a trajectory.

We represent ego’s 3D configuration as 𝑞 = (𝑝, 𝑅, 𝜅𝑦, 𝜅𝑧), including position

𝑝 ∈ R3, orientation 𝑅 ∈ 𝑆𝑂(3), signed lateral curvature 𝜅𝑦 ∈ R (positive denotes

curve left), and signed vertical curvature 𝜅𝑧 ∈ R (positive denotes curve up).

We also define ego’s associated 2D configuration 𝑞 = (𝑝, 𝜓, 𝜅̃) as the topdown pro-

jection of 𝑞, including 2D position 𝑝 ∈ R2, heading 𝜓 ∈ 𝑆𝑂(2), and signed topdown

curvature 𝜅̃ ∈ R (positive denotes curve counterclockwise). By querying road geom-

etry, we can easily convert between 𝑞 and 𝑞. As we will discuss, path optimization

and collision handling are better handled in 2D than 3D, motivating this conversion.

We will sometimes refer to a 3D point/vector (𝑥, 𝑦, 𝑧) in the ego frame 𝐹ego =

(iego, jego, kego). This frame’s origin is 𝑝 and its axes align with 𝑅. In particular,

iego points ahead of ego, jego points left of ego, and kego points up from ego. Unless

explicitly stated, we will instead imply the world frame 𝐹world = (iworld, jworld, kworld).

We represent ego’s path 𝜋 as an arclength-parameterized sequence

𝜋(𝑠) = 𝑞, 0 ≤ 𝑠 ≤ 𝑆(𝜋)

21



where 𝑆(𝜋) is the length of 𝜋.

We represent ego’s trajectory 𝜏 as a time-parameterized sequence

𝜏(𝑡) = (𝑞, 𝑣, 𝑎), 0 ≤ 𝑡 ≤ 𝑇 (𝜏)

where 𝑇 (𝜏) is the traversal time of 𝜏 , 𝑣 ∈ R≥0 is speed, and 𝑎 = (𝑎𝑥, 𝑎𝑦, 𝑎𝑧) ∈ R3 is

acceleration expressed in 𝐹ego and split into contributions from gravity, road contact,

and aerodynamics:

𝑎 = 𝑎grav + 𝑎road + 𝑎aero

We encapsulate most of the determination of 𝑎 at a given (𝑞, 𝑣) with an accelera-

tion model 𝒜. We can determine all but 𝑎road,x from 𝒜, easily accounting for inclined

roads, drag, downforce, and wind. We then explicitly control 𝑎road,x in order to speed

up or slow down ego. 𝒜 may also encapsulate constraints on 𝑎road,x such as throttle

limits.

We define the friction coefficient 𝜇 associated with 𝑎road as:

𝜇(𝑎road) =

√︁
𝑎2road,𝑥 + 𝑎2road,𝑦

𝑎road,𝑧

and we define 𝜇(𝜏) as the maximum such friction coefficient across all 𝑡.

We also define the effort 𝜂 associated with 𝑎road, best conceptualized as a signed

friction coefficient, as:

𝜂(𝑎road) =

⎧⎪⎨⎪⎩ 𝜇(𝑎road) if 𝑎road,𝑥 > 0

−𝜇(𝑎road) otherwise

We represent an obstacle 𝑜 as the 2D topdown projection of its collision region

parameterized by time, 𝑜(𝑡). Unless explicitly stated to be static obstacles, we will

assume all obstacles are dynamic, i.e. 𝑜(𝑡) is not necessarily invariant with respect to

𝑡. We will denote the set of all obstacles as 𝒪.

We define safety distance 𝛿(𝜏, 𝑜) as the minimum signed distance between 𝜏(𝑡)
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and 𝑜(𝑡) across all 𝑡 (positive denotes non-collision), which we compute in 2D. We

also define 𝛿(𝜏, 𝒪) = min𝑜∈𝒪 𝛿(𝜏, 𝑜). We assume for collision handling purposes that

ego is a point; this approach can easily handle circles by dilating obstacles. While we

posit that it should be simple to extend to other shapes (e.g. trucks), this is outside

the scope of this thesis.

We consider the homology class ℎ(𝜋, 𝑝) ∈ { left, right } of a path 𝜋 with respect

to an adjacent 2D point 𝑝 to be left if 𝜋 lies left of 𝑝, and right if 𝜋 lies right of 𝑝.

We formulate ego’s homology constraints ℋ with respect to 𝒪 as:

ℋ(𝑜) ⊆ { left, yield, right } , ∀ 𝑜 ∈ 𝒪

If ego does not maintain a sufficient safety distance from 𝑜, then:

• If left ∈ ℋ(𝑜), then ego may nudge left to increase its safety distance.

• If right ∈ ℋ(𝑜), then ego may nudge right to increase its safety distance.

• If yield ∈ ℋ(𝑜), then ego may slow down while maintaining its nominal path to

increase its safety distance.

Additionally, even if |ℋ(𝑜)| > 1, only one such action may be taken. We also re-

quire ℋ(𝑜) /∈ { ∅, { left, right } } because it simplifies our algorithm and there are no

motivating use cases.

We will sometimes refer to a 2D point (𝑠, 𝑑) in the Frenet frame ℱ(𝜋) of a path

𝜋, i.e. the point 𝑑 units to the left of 𝜋(𝑠). A static obstacle 𝑜 can intuitively be

mapped to a set of points (𝑠, 𝑑) in ℱ(𝜋).

We extend this concept to refer to a spacetime point (𝑡, 𝑑) in the "Frenet frame"

ℱ(𝜏) of a trajectory 𝜏 , i.e. the 2D point 𝑑 units to the left of 𝜏(𝑡) at time 𝑡. A

dynamic obstacle 𝑜 can also intuitively be mapped to a set of points (𝑡, 𝑑) in ℱ(𝜏).

We define a corridor 𝒞 with respect to the Frenet frame ℱ(𝜋) of a path 𝜋 as an

arclength-parameterized sequence

𝒞(𝑠) = (𝑑min, 𝑑max), 0 ≤ 𝑠 ≤ 𝑆(𝜋)
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and similarly, we define a corridor 𝒞 with respect to the Frenet frame ℱ(𝜏) of a

trajectory 𝜏 as a time-parameterized sequence

𝒞(𝑡) = (𝑑min, 𝑑max), 0 ≤ 𝑡 ≤ 𝑇 (𝜏)

A corridor is considered degenerate if 𝑑min > 𝑑max anywhere.

We define the free corridor between 𝒪left and 𝒪right with respect to the Frenet

frame of a path or trajectory and subject to safety distance 𝛿 as the maximal corridor

on the left of 𝒪left, on the right of 𝒪right, and maintaining safety distance 𝛿 from

𝒪left ∪ 𝒪right. When this free corridor is degenerate, it implies that it is unreasonable

to expect ego to respect these constraints.

3.2 "Optimization" Formulation

We wish to compute, in anytime best-first fashion, a library 𝒯 of homologically dis-

tinct trajectories where each trajectory 𝜏 ∈ 𝒯 starts from initial configuration 𝑞𝑖 and

initial speed 𝑣𝑖, ends at terminal configuration 𝑞𝑓 , and never exceeds maximum effort

𝜂max. Except in extraordinary circumstances, we also reject any trajectories for which

𝛿(𝜏, 𝒪) < 0 or 𝜇(𝜏) > 𝜇max, where 𝜇max is the maximum feasible friction coefficient.

While we do not claim to minimize a particular objective function, we instead

claim to heuristically balance the following conflicting objectives through our special-

ized approach:

• minimize 𝑇 (𝜏)

• penalize 𝛿(𝜏, 𝒪) < 𝛿safe

• penalize 𝜇(𝜏) > 𝜇safe

• minimize jerk

where 𝛿safe ≥ 0 is the ideal safety distance and 𝜇safe ≤ 𝜇max is the ideal friction

coefficient. For the purposes of optimization, we will assume that 𝛿 = 𝛿safe and

𝜇 = 𝜇safe are equally safe, while 𝛿 = 0 and 𝜇 = 𝜇max are equally dangerous.
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Chapter 4

Geometric Local Path Optimization

in Static Environments

We begin the discussion on S* by considering a simple operational design domain

(ODD) with many tractable solutions in literature — an autonomous ground vehicle

(such as a racecar) navigating a static environment with a single desired homology

class with respect to obstacles.

Numerical local path optimization, where we assume ego drives as fast as pos-

sible along the path, is largely a sufficient and tractable approach to this problem,

failing only when a safe path does not exist. And when those failures arise, most

implementations would opt to emergency stop.

However, while numerical optimization is tractable in this circumstance, we can

greatly reduce the number of optimization variables by formulating the problem as

a geometric optimization over apex interpolating Spiro splines. While quantitative

proof of computational superiority is outside the scope of this thesis for lack of time,

our limited results give us reason to believe that the efficiency of this method may

enable S* to uniquely offer a tractable solution to multimodal trajectory optimization

in dynamic environments, as we will cover in later chapters.
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4.1 Assumptions

In this chapter, we add the following assumptions to the original problem formulation

presented in Chapter 3:

• ℋ(𝑜) ∈ { { left } , { right } } , ∀ 𝑜 ∈ 𝒪

• 𝑜 is static, i.e. 𝑜(𝑡) is invariant with respect to 𝑡, ∀ 𝑜 ∈ 𝒪

• 𝜇safe =∞, i.e. there is no penalty for 𝜇 > 𝜇safe

Also, we compute a single path 𝜋 instead of a trajectory library 𝒯 . We wish to gen-

erally minimize the traversal time and jerk of the associated time-optimal trajectory

𝜏 to 𝜋, but we will not directly compute 𝜏 .

4.2 Apex Interpolating Spiro Splines?

We introduce this concept with a key inspiration from the world of racing, as S* was

conceived in response to the unique challenges of autonomous racing. Professional

racecar drivers surely don’t perform expensive numerical optimizations in their head;

they instead focus on key pieces of information, and let muscle memory fill in the rest.

One key concept is the apex — any point on a trajectory that just barely maintains the

desired safety distance from the nearest obstacle. If we can represent trajectories using

apexes instead of dense controls, we can eliminate orders of magnitude of variables

from our optimization.

Assuming 𝛿safe = 0 for simplicity, we arrive at our key insight: any trajectory

that optimally avoids a set of obstacles can be dually represented as the optimal

trajectory interpolating some sequence of apexes lying on the boundaries of those

obstacles. (See Figure 4-1 for a visual example.) As a corollary, an apex sequence is

a sufficient representation for any optimal trajectory.

We formally define an apex sequence 𝛼 as a sequence

𝛼(𝑖) = (𝑝, ℎ), 𝑖 = 1 . . . |𝛼|
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Figure 4-1: Any trajectory that optimally avoids a set of obstacles can be dually
represented as the optimal trajectory interpolating some sequence of apexes lying on
the boundaries of those obstacles. This visual example contains obstacles (in red)
and targets (in green), alluding to an analogous statement for targets; however, that
is out of scope for this thesis.

where 𝑝 ∈ R2 is the apex’s 2D position and ℎ ∈ { left, right } is the apex’s homology

with respect to the nearest obstacle.

Returning to the limited ODD of this chapter, we posit that by alternating between

optimizing an apex sequence 𝛼 (initialized to the empty sequence) and interpolating

a spline path from 𝑞𝑖 to 𝑞𝑓 via 𝛼, we will converge to an apex interpolating spline

path 𝜋 that minimizes 𝛿(𝜋, 𝒪). If our choice of spline family is prudent enough, we

will also generally minimize the traversal time and jerk of the associated time-optimal

trajectory in an efficient manner.

4.3 Spiro Splines?

To select a spline family, we first delineate the desired properties of our path.
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In order for a path to be feasible when ego’s initial speed is sufficiently low:

1. It must be 𝐺2-continuous.

2. It must respect initial and terminal curvature constraints, 𝜅𝑖 and 𝜅𝑓 respectively.

Furthermore, from studying telemetry of professional racecar drivers, we propose the

following criteria to be good indicators that a path resembles an optimal racing line:

3. It should be exceptionally smooth, at least 𝐺3-continuous.

4. It should generally feature low curvature and low variation in curvature.

One might naively propose the commonly-used cubic spline, since it exhibits 𝐶2-

continuity and minimizes the integral of the square of the second derivative. Indeed,

earlier iterations of S* represented paths as two cubic splines, parameterizing the 𝑥 and

𝑦 coordinates respectively, with a distance heuristic to assign 𝑡 values to waypoints in

order to approximate 𝐺2-continuity. However, 𝐶2-continuity is not 𝐺2-continuity, and

thus curvature is discontinuous at waypoints; and similarly, minimizing the second

derivative is not equivalent to minimizing curvature. The remaining criteria are also

entirely unmet.

The Euler spiral spline, also commonly used in motion planning for autonomous

ground vehicles, exhibits 𝐺2-continuity by constraining 𝜅(𝑠) to be a piecewise linear

function. It also efficiently approximates the Minimum Energy Curve (MEC), which

minimizes
∫︀
𝜅2 𝑑𝑠. However, it fails the remaining criteria. In fact, any two-parameter

spline, including the cubic spline and the Euler spiral spline, must violate criterion 2.

Thus, we turn to Raph Levien’s Spiro spline [5], the four-parameter cubic cousin

of the Euler spiral spline. Owing to its four-parameter formulation, we can use it to

satisfy criterion 2. Furthermore, it efficiently achieves many remarkable properties:

1. 𝐺4-continuity: By constraining 𝜅(𝑠) to be a piecewise cubic function, it achieves

exceptional smoothness.

2. Approximation of the Minimum Variation Curve: This spline is an efficient

high-fidelity small-angle approximation of the Minimum Variation Curve (MVC),

which minimizes
∫︀
(𝑑𝜅
𝑑𝑠
)2 𝑑𝑠 and generally features low curvature.
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3. Extensionality: Adding an additional waypoint on the curve of this spline will

preserve its shape. Any spline that represents the optimal path through a

sequence of points must have this property, because otherwise we would violate

the Triangle Inequality.

4. Roundness: Interpolating points on a circle results in a circle. This feature is

fairly unique to the MVC and the Spiro spline, and emulates racing at the limits

of traction.

Further elaboration on these three splines, as well as an efficient implementation

of the Spiro spline, can be found in Raph Levien’s PhD thesis [5].

So far, Algorithm 1 summarizes our approach — starting from the empty apex

sequence (line 3), we alternate between optimizing a Spiro spline path 𝜋 (line 5) and

improving our apex sequence 𝛼 (line 6) until we converge. As long as there exists an

efficient method to iteratively improve 𝛼 based on the previously computed 𝜋, and

as long as that method converges, then we should be able to solve this ODD.

Algorithm 1 The S* Algorithm (local, static environments, path only, high level)
1: 𝒪left ← { 𝑜 ∈ 𝒪 | ℋ(𝑜) = { left } }
2: 𝒪right ← { 𝑜 ∈ 𝒪 | ℋ(𝑜) = { right } }
3: 𝛼 ← empty apex sequence
4: repeat
5: 𝜋 ← Spiro spline path from 𝑞𝑖 to 𝑞𝑓 via 𝛼
6: 𝛼 ← improve 𝛼 | 𝜋, 𝒪left, 𝒪right, 𝛿safe

7: until ∆𝛼 ≈ 0 or search is aborted
8: return 𝜋

4.4 Geometric Apex Optimization via "Inflation"

At first, we consider an intuitive geometric method, which we will call inflation, that

updates 𝛼 independently of the previous 𝛼. This naive approach is incorporated in

Algorithm 2.

The concept of inflation is best explained visually — see Figure 4-2, Figure 4-3, and

Figure 4-4 for a great introductory example. Intuitively, if a trajectory collides with
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Algorithm 2 The S* Algorithm (local, static environments, path only, naive)
1: 𝒪left ← { 𝑜 ∈ 𝒪 | ℋ(𝑜) = { left } }
2: 𝒪right ← { 𝑜 ∈ 𝒪 | ℋ(𝑜) = { right } }
3: 𝛼 ← empty apex sequence
4: repeat
5: 𝜋 ← Spiro spline path from 𝑞𝑖 to 𝑞𝑓 via 𝛼
6: 𝒞 ← free corridor between 𝒪left and 𝒪right wrt ℱ(𝜋) | 𝛿safe

7: 𝛼 ← inflate 𝜋 | 𝒞
8: until ∆𝛼 ≈ 0 or search is aborted
9: return 𝜋

an obstacle, a sensible candidate for a new apex would be the leftmost or rightmost

point of the obstacle with respect to the trajectory. In fact, this concept works for

dynamic obstacles too, as we will explore further in Chapter 6. However, if we add

every local extremum as an apex, then it can result in overconstrained trajectories —

see Figure 8-4 for an example. In general, we seek to utilize as few apexes as possible

in order to avoid obstacles. Thus, for now, we limit ourselves to apex sequences

that alternate between left and right apexes, and when given the choice between two

consecutive left or right apexes, we select the more extreme one.

In order to facilitate this, we first compute the free corridor 𝒞 between 𝒪left and

𝒪right with respect to ℱ(𝜋) and subject to ideal safety distance 𝛿safe, as defined in

Chapter 3, on line 6. Now, we only consider adding apexes whenever 𝑑min > 0 or

𝑑max < 0; furthermore, we only consider alternating extrema of 𝑑min and 𝑑max. We

then improve our apex sequence 𝛼 through the aforementioned process of inflation on

line 7.

One important edge case is when it is infeasible to maintain the ideal safety

distance 𝛿safe because ℋ requires that ego drive between two obstacles that are not

sufficiently far apart. In this case, we find that 𝒞 is degenerate, and our solution is

fairly simple — widen 𝒞 until it is no longer degenerate, i.e. decrease 𝑑min and increase

𝑑max everywhere until 𝑑min ≤ 𝑑max everywhere. In practice, this is a computationally

efficient local approximation of simply reducing the required safety distance until it

is feasible, and it converges to the same solution.

So far, this approach succeeds whenever the optimal path can be represented

30



Figure 4-2: Example scenario, where red objects are obstacles and green objects are
targets. (Ignore targets for the purposes of this thesis.) Homology constraints are
indicated for some of the obstacles, and any obstacles without homology constraints
should be ignored. Certain extrema are selected as candidate apexes.

by an apex sequence of alternating left and right apexes. And to be fair, this case

accounts for many common racing scenarios; so-called "double apexes" are relatively

uncommon. However, we must be robust to cases that require double or even triple

apexes, such as in Figure 4-5. Our current approach would result in an infinite loop

— in our current example, we would cycle between the two one-apex solutions in

Figure 4-6 and Figure 4-7, never converging to the correct solution in Figure 4-5.

At this point, we throw out our ambition to update 𝛼 independently of the previous

𝛼. We want each successive path 𝜋 to be strictly better than the last, and thus, if

on a previous step 𝛼 contained some apex (𝑝, ℎ), then the only valid reason for 𝛼 to

later not contain that apex would be if 𝜋 is already in the correct homology class and

would thus be overconstrained by that apex, i.e. ℎ(𝜋, 𝑝) = ℎ.
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Figure 4-3: The next iteration after Figure 4-2. Candidate apexes are again indicated.

This approach is finalized in Algorithm 3. To summarize the changes from Algo-

rithm 2, we introduce a new variable 𝛽 that stores the apex sequence optimized in

the previous iteration. Then, every time we compute our Spiro spline path 𝜋 from

our apex sequence 𝛼 on line 6, we check if any apex in 𝛽 is violated by our path 𝜋 on

line 7; if any are, then we insert them into 𝛼 and recompute 𝜋. This process prevents

any new path from undoing progress that was made in the previous iteration.
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Figure 4-4: The next iteration after Figure 4-3, which replaces the previous apexes
with new apexes. At this point, the path sufficiently respects the homology con-
straints.

Figure 4-5: A double left apex maneuver.
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Figure 4-6: A failed attempt to solve Figure 4-5 with only one left apex.

Figure 4-7: Another failed attempt to solve Figure 4-5 with only one left apex. A
naive algorithm might oscillate between this solution and the solution in Figure 4-6,
never converging to the correct solution in Figure 4-5.
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Algorithm 3 The S* Algorithm (local, static environments, path only)
1: 𝒪left ← { 𝑜 ∈ 𝒪 | ℋ(𝑜) = { left } }
2: 𝒪right ← { 𝑜 ∈ 𝒪 | ℋ(𝑜) = { right } }
3: 𝛼, 𝛽 ← empty apex sequences
4: repeat
5: repeat
6: 𝜋 ← Spiro spline path from 𝑞𝑖 to 𝑞𝑓 via 𝛼
7: 𝛼 ← 𝛼 ∪ { (𝑝, ℎ) ∈ 𝛽 | ℎ(𝜋, 𝑝) ̸= ℎ }
8: until ∆𝛼 = 0
9: 𝒞 ← free corridor between 𝒪left and 𝒪right wrt ℱ(𝜋) | 𝛿safe

10: 𝛽 ← 𝛼
11: 𝛼 ← inflate 𝜋 | 𝒞
12: until ∆𝛼 ≈ 0 or search is aborted
13: return 𝜋
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Chapter 5

Extending to Trajectory Optimization

via Decoupled Speed Profiles

So far, we have succeeded in computing a path that is likely to resemble the time-

optimal trajectory through a static environment, but we have yet to actually compute

this trajectory. We posit that because our path optimization step already approxi-

mates the time-optimal trajectory without directly computing it, it suffices here to

develop a decoupled speed profiling step. In the racing world, computing this time-

optimal speed profile is non-trivial because it is often necessary to hit the brakes

ahead of a future high-curvature configuration in order to maintain recursive feasibil-

ity. In short, just as the path optimization module is responsible for finding apexes,

this module must be capable of finding braking points.

We must also incorporate the speed profiler into each iteration of the optimiza-

tion, instead of relegating it to an entirely downstream process. Computing the full

trajectory 𝜏 during optimization serves a few purposes:

• When 𝜇(𝜏) > 𝜇safe, it signals that the underlying path 𝜋 may have been con-

structed using unreasonable safety distance expectations. Thus, we can modu-

late our desired safety distance 𝛿* ≤ 𝛿safe in order to strike a reasonable tradeoff

between 𝜇(𝜏) and 𝛿(𝜏, 𝒪).

• In Chapter 6, when we extend to dynamic environments, we will require a
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time-parameterized trajectory in order to make a comparison with dynamic

obstacles.

• In Chapter 7, when we extend to multimodal optimization, we will use traversal

time as a heuristic acquisition function for our branch-and-bound, requiring the

computation of 𝜏 .

5.1 Assumptions

In this chapter, we add the following assumptions to the original problem formulation

presented in Chapter 3:

• ℋ(𝑜) ∈ { { left } , { right } } , ∀ 𝑜 ∈ 𝒪

• 𝑜 is static, i.e. 𝑜(𝑡) is invariant with respect to 𝑡, ∀ 𝑜 ∈ 𝒪

Also, we compute a single trajectory 𝜏 instead of a trajectory library 𝒯 .

5.2 Speed Optimization by Finding Braking Points

First, we focus on the singular task of computing the time-optimal trajectory 𝜏 along

a path 𝜋 subject to initial speed 𝑣𝑖, acceleration model 𝒜, and maximum effort 𝜂max.

Recall that our acceleration model 𝒜 maps (𝑞, 𝑣, 𝜂) to an acceleration 𝑎. Thus, in

the simplest case where ego accelerates with constant effort 𝜂, speed profiling boils

down to Algorithm 4, which computes the acceleration 𝑎 associated with effort 𝜂 at

each state on line 4, and then forecasts the speed at the next state on line 5.

Algorithm 4 Speed Profiling (constant effort, assumes feasibility)
1: // fails if 𝜂 is infeasible
2: 𝑣(0) ← 𝑣𝑖
3: for 𝑖 = 0 . . . 𝑁 − 1 do
4: 𝑎(𝑖) ← 𝒜(𝑞(𝑖), 𝑣(𝑖), 𝜂)
5: 𝑣(𝑖+ 1) ← forecast 𝑣(𝑖), 𝑎(𝑖)

However, the problem gets more interesting when we observe that it may not be

feasible to maintain that constant effort without later violating friction constraints.
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Given our maximum effort 𝜂max, we set our minimum desired effort 𝜂*min = −|𝜂max|

because intuitively, a reasonably comfortable trajectory should accelerate and brake

at the same friction coefficient except when acceleration is throttle-limited. For the

next part, we assume it is feasible to maintain 𝜂 ∈ [𝜂*min, 𝜂max] along 𝜏 .

Algorithm 5 summarizes our approach, which boils down to a backward pass

followed by a forward pass. In the backward pass (lines 3-8), we recursively compute

the maximum speed at each configuration such that the remaining path is traversable

without violating constraints on 𝜂. In the forward pass (lines 10-14), we forecast our

speed from 𝑣𝑖 while respecting the maximum speeds computed in the backward pass.

So far, the approach described is a literature-standard forward-backward-solver for

computing time-optimal speed profiles subject to a GGV performance envelope — a

clear example can be found in section 3.5 of [3].

Algorithm 5 Speed Profiling (assumes feasibility)
1: 𝜂*min ← −|𝜂max|
2: // backward pass
3: for 𝑖 = 0 . . . 𝑁 do
4: 𝑣(𝑖) ← maximum feasible speed at 𝑞(𝑖) | 𝒜, 𝜂*min

5: for 𝑖 = 𝑁 . . . 1 do
6: 𝑎(𝑖) ← 𝒜(𝑞(𝑖), 𝑣(𝑖), 𝜂*min)
7: 𝑣′ ← backprop 𝑣(𝑖), 𝑎(𝑖)
8: 𝑣(𝑖− 1) ← min { 𝑣(𝑖− 1), 𝑣′ }
9: // forward pass, fails if 𝑣𝑖 > 𝑣(0)

10: 𝑣(0) ← 𝑣𝑖
11: for 𝑖 = 0 . . . 𝑁 − 1 do
12: 𝑎(𝑖) ← 𝒜(𝑞(𝑖), 𝑣(𝑖), 𝜂)
13: 𝑣′ ← forecast 𝑣(𝑖), 𝑎(𝑖)
14: 𝑣(𝑖+ 1) ← min { 𝑣(𝑖+ 1), 𝑣′ }

There remains one issue, namely that the constraints on 𝜂 may be infeasible. We

observe this whenever we find that 𝑣𝑖 > 𝑣(0) on line 10 of Algorithm 5. In that case,

it suffices to optimize for the maximum 𝜂*min ≤ −|𝜂max| that results in 𝑣𝑖 ≤ 𝑣(0).

Intuitively, this means that when ego cannot feasibly maintain effort 𝜂 ∈ [𝜂*min, 𝜂max],

we simply brake harder until that constraint becomes feasible. The final iteration of

the speed profiler is highlighted in Algorithm 6 — in essence, we repeat the backward

pass until we find the maximum such 𝜂*min.
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Algorithm 6 Speed Profiling
1: 𝜂*min ← −|𝜂max|
2: repeat
3: // backward pass
4: for 𝑖 = 0 . . . 𝑁 do
5: 𝑣(𝑖) ← maximum feasible speed at 𝑞(𝑖) | 𝒜, 𝜂*min

6: for 𝑖 = 𝑁 . . . 1 do
7: 𝑎(𝑖) ← 𝒜(𝑞(𝑖), 𝑣(𝑖), 𝜂*min)
8: 𝑣′ ← backprop 𝑣(𝑖), 𝑎(𝑖)
9: 𝑣(𝑖− 1) ← min { 𝑣(𝑖− 1), 𝑣′ }

10: until maximized 𝜂*min ≤ −|𝜂max| s.t. 𝑣𝑖 ≤ 𝑣(0)
11: // forward pass
12: 𝑣(0) ← 𝑣𝑖
13: for 𝑖 = 0 . . . 𝑁 − 1 do
14: 𝑎(𝑖) ← 𝒜(𝑞(𝑖), 𝑣(𝑖), 𝜂)
15: 𝑣′ ← forecast 𝑣(𝑖), 𝑎(𝑖)
16: 𝑣(𝑖+ 1) ← min { 𝑣(𝑖+ 1), 𝑣′ }

We initially integrate speed optimization into S* in Algorithm 7 — the only change

is on line 9, where we compute a trajectory 𝜏 associated with path 𝜋. However, in

the next section, we will discuss how we can take advantage of our computation of 𝜏

to make a tradeoff between 𝛿 < 𝛿safe and 𝜇 > 𝜇safe.

Algorithm 7 The S* Algorithm (local, static environments, no tradeoff)
1: 𝒪left ← { 𝑜 ∈ 𝒪 | ℋ(𝑜) = { left } }
2: 𝒪right ← { 𝑜 ∈ 𝒪 | ℋ(𝑜) = { right } }
3: 𝛼, 𝛽 ← empty apex sequences
4: repeat
5: repeat
6: 𝜋 ← Spiro spline path from 𝑞𝑖 to 𝑞𝑓 via 𝛼
7: 𝛼 ← 𝛼 ∪ { (𝑝, ℎ) ∈ 𝛽 | ℎ(𝜋, 𝑝) ̸= ℎ }
8: until ∆𝛼 = 0
9: 𝜏 ← time-optimal trajectory along 𝜋 from 𝑣𝑖 | 𝒜, 𝜂max

10: 𝒞 ← free corridor between 𝒪left and 𝒪right wrt ℱ(𝜋) | 𝛿safe

11: 𝛽 ← 𝛼
12: 𝛼 ← inflate 𝜋 | 𝒞
13: until ∆𝛼 ≈ 0 or search is aborted
14: return 𝜏
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5.3 Trading Off Safety Distance and Friction

One of our goals is to make a decent tradeoff between penalizing 𝛿 < 𝛿safe and pe-

nalizing 𝜇 > 𝜇safe. For example, it would be undesirable to maintain a large safety

distance at the expense of losing control of the vehicle, as it would be undesirable to

limit traction at the expense of grazing an obstacle.

We previously proposed to consider 𝛿 = 𝛿safe and 𝜇 = 𝜇safe as equally safe, and

𝛿 = 0 and 𝜇 = 𝜇max as equally dangerous. Thus, given a value for 𝜇, our desired

safety distance 𝛿* should be

𝛿* = 𝛿safe ×min

{︂
1,

𝜇max − 𝜇
𝜇max − 𝜇safe

}︂

Incorporating this into Algorithm 8 on lines 10-11, we end up converging to a point

where 𝛿(𝜏, 𝒪) and 𝜇(𝜏) are equally penalized.

There is one additional detail in Algorithm 8 that becomes necessary because of

this, namely the "deflation" in line 12. Because we are modulating 𝛿* from iteration

to iteration, an apex planned in the previous iteration may be too conservative if 𝛿*

has decreased in the current iteration. Thus, we correct this by nudging any overly

conservative apexes back subject to the new desired safety distance 𝛿* — we call this

process "deflation" because it makes intuitive sense as the reverse of inflation. It is

actually possible for this to result in an infinite loop of inflation and deflation; we

fix this easily by decaying the maximum displacement every iteration, though this is

not depicted in the pseudocode. In Chapter 6, deflation will also double as a way

to account for conservatism owing to the unique challenges of dealing with dynamic

obstacles, as we will discuss.
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Algorithm 8 The S* Algorithm (local, static environments)
1: 𝒪left ← { 𝑜 ∈ 𝒪 | ℋ(𝑜) = { left } }
2: 𝒪right ← { 𝑜 ∈ 𝒪 | ℋ(𝑜) = { right } }
3: 𝛼, 𝛽 ← empty apex sequences
4: repeat
5: repeat
6: 𝜋 ← Spiro spline path from 𝑞𝑖 to 𝑞𝑓 via 𝛼
7: 𝛼 ← 𝛼 ∪ { (𝑝, ℎ) ∈ 𝛽 | ℎ(𝜋, 𝑝) ̸= ℎ }
8: until ∆𝛼 = 0
9: 𝜏 ← time-optimal trajectory along 𝜋 from 𝑣𝑖 | 𝒜, 𝜂max

10: 𝛿* ← 𝛿safe ×min
{︁
1, 𝜇max−𝜇(𝜏)

𝜇max−𝜇safe

}︁
11: 𝒞 ← free corridor between 𝒪left and 𝒪right wrt ℱ(𝜋) | 𝛿*
12: 𝛽 ← deflate 𝛼 | 𝒞
13: 𝛼 ← inflate 𝜋 | 𝒞
14: until max {∆𝛼, ∆𝛽 } ≈ 0 or search is aborted
15: return 𝜏
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Chapter 6

Extending to Dynamic Environments

We now set our eyes on a new horizon: dynamic environments. Considering that the

path optimization of S* has clearly been predicated on geometric concepts that make

sense only in static environments, you would think this would be a huge stretch. And

you’d be right — while the solution to this ambition, Algorithm 9, looks fairly similar

in pseudocode to Algorithm 8 from the previous chapter, this observation neglects

the fact that Algorithm 8 was meticulously formulated and iterated on in order to

easily extend to dynamic environments.

First, we will extend the geometric concepts from Chapter 4 to spacetime. The

only corresponding change to the pseudocode will be the shift from ℱ(𝜋) to ℱ(𝜏) on

line 15 of Algorithm 9; and yet, this singular change belies a fairly considerable shift

in thinking.

Second, we will introduce the yield maneuver, i.e. slowing down for an obstacle

instead of nudging to either side, rounding out the remaining changes in Algorithm

9. Thanks to our convenient formulation of speed optimization in Chapter 5, this will

be easily integrated.
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Algorithm 9 The S* Algorithm (local, dynamic environments)
1: 𝒪left ← { 𝑜 ∈ 𝒪 | ℋ(𝑜) = { left } }
2: 𝒪right ← { 𝑜 ∈ 𝒪 | ℋ(𝑜) = { right } }
3: 𝒪yield ← { 𝑜 ∈ 𝒪 | ℋ(𝑜) = { yield } }
4: 𝛼, 𝛽 ← empty apex sequences
5: 𝜂*max ← 𝜂max

6: repeat
7: repeat
8: 𝜋 ← Spiro spline path from 𝑞𝑖 to 𝑞𝑓 via 𝛼
9: 𝛼 ← 𝛼 ∪ { (𝑝, ℎ) ∈ 𝛽 | ℎ(𝜋, 𝑝) ̸= ℎ }

10: until ∆𝛼 = 0
11: repeat
12: 𝜏 ← time-optimal trajectory along 𝜋 from 𝑣𝑖 | 𝒜, 𝜂*max

13: 𝛿* ← 𝛿safe ×min
{︁
1, 𝜇max−𝜇(𝜏)

𝜇max−𝜇safe

}︁
14: until maximized 𝜂*max ≤ 𝜂max s.t. 𝛿(𝜏, 𝒪yield) ≥ 𝛿*

15: 𝒞 ← free corridor between 𝒪left and 𝒪right wrt ℱ(𝜏) | 𝛿*
16: 𝛽 ← deflate 𝛼 | 𝒞
17: 𝛼 ← inflate 𝜏 | 𝒞
18: until max {∆𝛼, ∆𝛽 } ≈ 0 or search is aborted
19: return 𝜏

6.1 Assumptions

In this chapter, the only assumption we add to the original problem formulation

presented in Chapter 3 is that

ℋ(𝑜) ∈ { { left } , { right } , { yield } } , ∀ 𝑜 ∈ 𝒪

Also, we compute a single trajectory 𝜏 instead of a trajectory library 𝒯 .

6.2 Extending Apex Optimization to Spacetime

The central incompatibility that dynamic obstacles present to our current formulation

in Algorithm 8 is that our intuition of selecting extrema in the Frenet frame of our path

as apexes makes little sense in spacetime. However, one intuition remains valid —

even if ego and an obstacle are in motion, the most extreme left or right displacement

ego would need in order to avoid the obstacle over the course of their respective

44



trajectories would be a sensible candidate for a new apex.

Thus, we are motivated to extend the concept of the Frenet frame to spacetime,

which has conveniently already been discussed in the definitions of Chapter 3 —

please compare the space and spacetime definitions of Frenet frame ℱ and corridor

𝒞 to better understand this leap of logic. Every other step of our apex optimization

framework translates well to spacetime in line 15 of Algorithm 9, aside from two issues

that have conveniently been solved by previous innovations:

• When we modify the path every iteration, we also modify our speed profile

along that path, and thus an apex that made sense in the previous iteration

may be overly conservative in the current iteration. For example, an attempted

overtake may turn too sharply in one iteration, and need correcting in the next

iteration because the act of turning naturally slows ego down. However, this is

already solved by the deflation mechanic described in the previous chapter.

• With dynamic obstacles in particular, inflation and deflation are more prone to

infinite loops; however, we already described a method of decaying maximum

displacement in the previous chapter.

6.3 The Yield Maneuver

Recall that we defined the yield maneuver in Chapter 3 as a maneuver where ego

maintains its nominal path but slows down in order to avoid collision. Our goal is to

modify the speed profiler to yield for any obstacles 𝑜 such that ℋ(𝑜) = { yield }.

Thankfully, this is fairly easy because of our formulation in Chapter 4. On line 12

of Algorithm 9, we see that any value of 𝜂*max < 𝜂max corresponds to a trajectory that,

compared to the trajectory associated with 𝜂max, is both slower and less extreme at

braking points, since we set 𝜂*min = −|𝜂max| in the nominal case. In other words, the

variable 𝜂*max ≤ 𝜂max corresponds to a family of speed profiles that get progressively

slower and less aggressive. The yield maneuver thus boils down to a binary search

over the maximum 𝜂*max ≤ 𝜂max satisfying 𝛿(𝜏, 𝒪yield) ≥ 𝛿*, as we see on line 14.
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Chapter 7

Extending to Multimodal Optimization

Finally, we tackle the central motivation for developing this non-numerical optimiza-

tion technique — tractable multimodal trajectory optimization. In this chapter, we

will borrow techniques from the field of multimodal optimization in order to efficiently

search through many homology classes in a best-first fashion. By this point, we have

eliminated all simplifying assumptions; we aim to solve the full extent of the problem

formulated in Chapter 3. This means that for any obstacle 𝑜, ℋ(𝑜) may contain mul-

tiple candidate homology classes, and it is up to the algorithm to determine which

homology classes are worth optimizing under limited computation.

Naturally, our solution will resemble a parallelizable branch-and-bound, resulting

in a search tree where each node represents a set of homology constraints ℋ, and

each node’s children partition ℋ into disjoint possibilities. In order to design this

branch-and-bound, we need to answer the following questions:

• When do we choose to expand a node by spawning children? And what homol-

ogy constraints should those children be subject to?

• How do we select the next node to optimize? In other words, what acquisition

function do we use to select the next node?

Over this course of this chapter, we will work up to the full pseudocode detailed

in Algorithm 10, which is the final iteration in this thesis.
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7.1 Node Expansion

In order to understand what it means to expand a node in the context of S*, we should

first discuss how our current working version of S* deals with cases where for some

obstacle 𝑜, |ℋ(𝑜)| > 1. If we plan a trajectory 𝜏 and it maintains a sufficiently high

safety distance from 𝑜, then our algorithm works as normal by ignoring 𝑜. However,

if 𝜏 is unsafe because of 𝑜, we now cannot proceed with our usual apex optimization

and speed optimization because we have not yet decided how ego should respond to 𝑜.

Should ego nudge left? Nudge right? Yield? The best we can do for now is pretend

𝑜 does not exist and proceed with optimization. This is our motivation for node

expansion — if there are multiple candidate homology classes to consider, we should

create child nodes for each one and offload the task of optimizing those children to

some priority queue capable of discerning the most promising node to optimize first.

However, it does not suffice to spawn children for every obstacle 𝑜 that the current

trajectory 𝜏 violates, for every candidate homology class contained in ℋ(𝑜). For

example, if the very first trajectory planned — the trajectory interpolating no apexes

— collides with a series of 20 obstacles, each of which ego can nudge left, nudge right,

or yield for, then a naive algorithm would spawn 320 children to search over. No

acquisition function would be able to accurately pinpoint the most promising node

among that many candidates.

Instead, we set a few ground rules:

• Each child ℋ′ may make at most one decision, i.e. for at most one obstacle 𝑜

may it be true that |ℋ(𝑜)| > 1 and |ℋ′(𝑜)| = 1.

• Given two potential decisions, e.g. "nudge left for obstacle 1" and "nudge left

for obstacle 2", if making the first decision could remove the need to make the

second decision, then we should prioritize making the first decision, and only

consider the second decision if we prohibit the first decision, i.e. enforce "cannot

nudge left for obstacle 1". In particular, if the displacement required to nudge

left for obstacle 1 is greater than the displacement required to nudge left for

obstacle 2, we claim that nudging left for obstacle 1 may remove the need to
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explicitly nudge left for obstacle 2, while the opposite is not true.

• If 𝜏 violates an obstacle 𝑜 for which |ℋ(𝑜)| > 1, but the degree of violation is

dwarfed by the violation of other obstacles with known homology classes, then

it is not yet the right time to make a decision on the homology class with respect

to 𝑜.

We realize these constraints in lines 26-43 of Algorithm 10. Note that if 𝒟 is

empty, or equivalently if we do not spawn any children, then we have the option on

lines 45-46 to submit the current node to the priority queue for re-optimization, if it

requires further improvement.

7.2 Node Acquisition

In order to select the next node to optimize, the simplest acquisition function is simply

the traversal time of the parent trajectory 𝑇 (𝜏) — the lower the traversal time, the

more likely a child node is to lead to the globally optimal trajectory. Ideally, we

would design our acquisition function to more accurately estimate the potential of a

node based on other factors like its displacement from its parent or lower bounds on

penalties for safety distance and friction. However, our simple solution performs well

enough.

There is one exception to this rule, which is that we always select child nodes

that yield for a new obstacle over child nodes that nudge for a new obstacle. This

choice is for two reasons: because it requires less computation, and because a good

multimodal trajectory optimizer should reliably output emergency stop maneuvers

even in the most extreme of circumstances.

7.3 The Full S* Algorithm

Finally, we attempt a line-by-line breakdown of Algorithm 10, summarizing the in-

novations across the last four chapters.
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Algorithm 10 The S* Algorithm (multimodal, dynamic environments)
1: 𝒯 ← empty trajectory library
2: 𝒬 ← empty priority queue
3: 𝛼0, 𝛽0 ← empty apex sequences
4: push (ℋ, 𝛼0, 𝛽0, 𝜂max) to 𝒬 with priority ∞
5: repeat (in parallel)
6: (ℋ, 𝛼, 𝛽, 𝜂*max) ← pop top priority from 𝒬
7: 𝒪left ← { 𝑜 ∈ 𝒪 | ℋ(𝑜) = { left } }
8: 𝒪right ← { 𝑜 ∈ 𝒪 | ℋ(𝑜) = { right } }
9: 𝒪yield ← { 𝑜 ∈ 𝒪 | ℋ(𝑜) = { yield } }

10: 𝒪undecided ← { 𝑜 ∈ 𝒪 | { yield } ⊊ ℋ(𝑜) ⊆ { left, yield, right } }
11: repeat
12: 𝜋 ← Spiro spline path from 𝑞𝑖 to 𝑞𝑓 via 𝛼
13: 𝛼 ← 𝛼 ∪ { (𝑝, ℎ) ∈ 𝛽 | ℎ(𝜋, 𝑝) ̸= ℎ }
14: until ∆𝛼 = 0
15: repeat
16: repeat
17: 𝜏 ← time-optimal trajectory along 𝜋 from 𝑣𝑖 | 𝒜, 𝜂*max

18: 𝛿* ← 𝛿safe ×min
{︁
1, 𝜇max−𝜇(𝜏)

𝜇max−𝜇safe

}︁
19: until maximized 𝜂*max ≤ 𝜂max s.t. 𝛿(𝜏, 𝒪yield) ≥ 𝛿*

20: 𝒯 (ℋ) ← 𝜏
21: // continued in part 2
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22: // continued from part 1
23: 𝒞 ← free corridor between 𝒪left and 𝒪right wrt ℱ(𝜏) | 𝛿*
24: 𝛽 ← deflate 𝛼 | 𝒞
25: 𝛼 ← inflate 𝜏 | 𝒞
26: 𝒟 ← empty set of new homology decisions
27: for 𝑜 ∈ 𝒪undecided | 𝛿(𝜏, 𝑜) < 𝛿* −max {∆𝛼, ∆𝛽 } do
28: if left ∈ ℋ(𝑜) then
29: 𝒞 ′left ← free corridor between 𝒪left ∪ { 𝑜 } and 𝒪right wrt ℱ(𝜏) | 𝛿*
30: 𝛼′

left ← inflate 𝜏 | 𝒞 ′left
31: push (𝑜, left, 𝛼′

left) to 𝒟
32: if right ∈ ℋ(𝑜) then
33: 𝒞 ′right ← free corridor between 𝒪left and 𝒪right∪{ 𝑜 } wrt ℱ(𝜏) | 𝛿*
34: 𝛼′

right ← inflate 𝜏 | 𝒞 ′right
35: push (𝑜, right, 𝛼′

right) to 𝒟
36: for (𝑜, ℎ, 𝛼′) ∈ 𝒟 in descending order of ∆𝛼′ do
37: ℋ′ ← ℋ but ℋ′(𝑜) = { ℎ }
38: push (ℋ′, 𝛼′, 𝛽, 𝜂*max) to 𝒬 with priority −𝑇 (𝜏)
39: ℋ(𝑜) ← ℋ(𝑜) ∖ { ℎ }
40: if ℋ(𝑜) = { yield } then
41: 𝒪undecided ← 𝒪undecided ∖ { 𝑜 }
42: 𝒪yield ← 𝒪yield ∪ { 𝑜 }
43: break
44: until 𝒟 is empty
45: if max {∆𝛼, ∆𝛽 } ≫ 0 then
46: push (ℋ, 𝛼, 𝛽, 𝜂*max) to 𝒬 with priority −𝑇 (𝜏)
47: until all workers are idle or search is aborted
48: return 𝒯
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• (line 1) We start with an empty trajectory library 𝒯 , where 𝒯 (ℋ) stores at

most one trajectory 𝜏 corresponding to homology constraints ℋ.

• (line 2) We start with an empty priority queue 𝒬, which we will periodically

push tasks to of the form (ℋ, 𝛼, 𝛽, 𝜂*max), for homology constraints ℋ, inflated

apex sequence 𝛼, deflated apex sequence 𝛽, and maximum effort 𝜂*max.

• (line 3) We initialize our apex sequence to the empty sequence; this means

our first path will interpolate no apexes, and will simply be the Spiro spline

connecting 𝑞𝑖 to 𝑞𝑓 .

• (line 4) We push our first task to 𝒬.

• (lines 5-6) We generalize our branch-and-bound as a parallelizable process where

workers continuously pop tasks from 𝒬, in order of priority.

• (lines 7-10) For a given ℋ, we can partition 𝒪 into 𝒪left ∪ 𝒪right ∪ 𝒪yield ∪

𝒪undecided.

• (lines 11-14) We first compute the Spiro spline path 𝜋 that starts from 𝑞𝑖, ends

at 𝑞𝑓 , and interpolates 𝛼. Then, we recompute 𝜋 as long as there exist any

apexes in 𝛽 that are violated by 𝜋 and thus should be inserted into 𝛼.

• (lines 16-19) For a given maximum effort 𝜂*max, we compute trajectory 𝜏 as

the time-optimal trajectory along 𝜋 from initial speed 𝑣𝑖 satisfying acceleration

model 𝒜 and maximum effort 𝜂*max. This loop repeats this process until 𝜂*max is

maximized under the constraint that 𝛿(𝜏, 𝒪yield) ≥ 𝛿*, i.e. ego is not danger-

ously close to any obstacle it should be yielding to. We compute 𝛿*, our desired

safety distance, as a function of the maximum friction coefficient 𝜇(𝜏) exerted

during 𝜏 , in order to strike a tradeoff between safety distance and friction.

• (line 20) We save our trajectory 𝜏 to the library 𝒯 .

• (line 23) In order to update our apex sequences, we first compute the free corri-

dor 𝒞 between 𝒪left and 𝒪right with respect to the ℱ(𝜏), the "Frenet frame" of 𝜏 ,

52



and subject to our desired safety distance 𝛿*. This corridor may be degenerate,

in which case we will need to widen it in order to loosen our safety distance

constraints.

• (line 24) We deflate our current apex sequence to obtain deflated apex sequence

𝛽, which we will use next iteration in order to prevent our next path from

undoing progress made in this iteration.

• (line 25) We inflate our trajectory to obtain inflated apex sequence 𝛼. Keep in

mind that 𝛼 is only based on obstacles in 𝒪left and 𝒪right, and thus completely

ignores obstacles in 𝒪undecided.

• (line 26) We will process obstacles in 𝒪undecided by constructing a set of new

homology decisions 𝒟, where each element (𝑜, ℎ, 𝛼′) consists of an obstacle 𝑜, a

homology ℎ ∈ { left, right }, and a new apex sequence 𝛼′ ̸= 𝛼 that incorporates

the homology decision (𝑜, ℎ).

• (line 27) We only process an obstacle 𝑜 ∈ 𝒪undecided if its violation by 𝜏 is

extreme enough to exceed the violation by 𝜏 of 𝒪left and 𝒪right. This is to delay

node expansion until absolutely necessary.

• (lines 28-35) We populate 𝒟 by considering each undecided obstacle 𝑜 and

recomputing our free corridor 𝒞 ′ and inflated apex sequence 𝛼′ after considering

whether to nudge left or right for 𝑜.

• (line 36) We process our homology decisions in descending order of displacement,

since if decision 1 requires a higher displacement than decision 2, then decision

2 can never remove the need to consider decision 1, but decision 1 may remove

the need to consider decision 2.

• (lines 37-38) When we process a homology decision, we spawn a new task for

it that incorporates the new homology constraints and the new inflated apex

sequence. We assign a priority to this task based on how low our traversal time

𝑇 (𝜏) is.
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• (lines 39-43) If we choose not to pursue some homology decision, then we must

prohibit making that choice in the future before moving on to the next candidate

decision. If it turns out that by prohibiting that choice, the only homology class

left for some obstacle is the yield maneuver, then we make the choice to yield.

Instead of spawning a new task for this, we instead jump to line 15 to start

anew, reusing our path 𝜋 since it does not change due to a yield maneuver.

• (lines 44-46) If we have no new homology decisions to consider, we may consider

pushing a new task to 𝒬 that corresponds to re-optimizing our current node.

We should only do this if the current node needs significant changes.

• (lines 47-48) Finally, when all modes have been explored or the search is aborted,

we return our trajectory library 𝒯 , enabling a downstream process to consume

the globally optimal trajectory or decide between any of the stored trajectories

at its own discretion.
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Chapter 8

Results

In this chapter, we will present results that demonstrate the S* algorihm in action.

Unfortunately, we were unable to collect results for the most recent version of S*,

which is capable of robustly navigating complex dynamic environments, within the

time frame of the thesis. Thus, the following results reflect two different preliminary

versions of S*, which we will name V1 and V2.

V1 is characterized by the following simplifications:

• V1 only nudges for static obstacles, i.e. ego may only yield to dynamic obstacles.

• V1 achieves the yield maneuver through a jerky and fallible method that has

since been discontinued.

• V1 used the cubic spline method described in Chapter 4 instead of Spiro splines,

resulting in occasional steering jerks (which are thankfully corrected somewhat

by downstream controls) and suboptimal racing.

• V1 fails whenever it is infeasible to maintain safety distance 𝛿safe because two

obstacles are not sufficiently far apart.

• V1 will not attempt to make a tradeoff between safety distance and friction,

instead attempting to enforce safety distance 𝛿safe at any cost.

• V1 will occasionally generate an overconstrained trajectory with an unnecessary

apex, like in Figure 8-4.
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• V1 is poorly optimized and does not handle parallel computation.

V1 also has a feature that is not within the scope of the thesis due to time constraints

— namely, in addition to nudging for static obstacles and yielding for dynamic ob-

stacles, V1 is capable of nudging to hit virtual targets spawned by the Roborace

Metaverse. We will see results that showcase this, but the method behind it will

remain a topic for the future.

V2 is characterized by the following simplifications:

• V2 fails whenever it is infeasible to maintain safety distance 𝛿safe because two

obstacles are not sufficiently far apart.

• V2 will not attempt to make a tradeoff between safety distance and friction,

instead attempting to enforce safety distance 𝛿safe at any cost.

• While V2 can typically navigate simple dynamic environments, it fails in more

complex environments, due to various convergence issues solved by post-V2

insights sprinkled throughout this thesis.

• V2 only handles local optimization, as the multimodal optimization in V1 did

not translate well to V2 and we opted to solve a smaller problem first.

• V2 is poorly optimized.

However, despite these limitations, we have observed very promising results, both

as a standalone multimodal trajectory optimizer and integrated into an autonomous

vehicle stack running in simulation and on a full-size Roborace Devbot 2.0 racecar

navigating multiple mixed-reality dynamically-perceived obstacle courses at up to 100

mph.

8.1 V1 in Randomly Generated Scenes

V1 was thoroughly tested for static scenes of obstacles and targets, including shapes

like circles, rectangles, rounded rectangles, and even track boundaries. In over 50
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Figure 8-1: Sparse obstacle course with narrow corridors. Warmer colors are lower
cost. Obstacles are red and targets are green. All trajectories generated during the
optimization are displayed, not just the ones in the trajectory library.

randomly generated scenes (including sparse scenes, dense scenes, scenes with different

shapes, and scenes with varying numbers of objects), with a fixed initial configuration,

flat road, no aerodynamics, and traversal time as the singular objective function,

we produce visually verifiable results, with the only notable error being shown in

Figure 8-4, where an unnecessary apex near (175, 150) overconstrains the reported

globally optimal trajectory. Even for dense scenes like Figure 8-3, which require more

computation because they have more reasonable modes to explore, V1 averages 500

milliseconds of serial computation for 10 objects, and 60 seconds of serial computation

for 22 objects.

8.2 V1 in Mixed-Reality Obstacle Courses

We also demonstrate V1 integrated into MIT Driverless’s autonomous racing stack

racing a full-size Roborace Devbot 2.0 racecar on mixed-reality obstacle courses at up

to 100 mph as part of Roborace Season Beta Round 7 and Round 10. Both rounds
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Figure 8-2: Globally optimal trajectory for Figure 8-1.

were held at the Las Vegas Motor Speedway’s Outside Road Course. Virtual objects

were revealed to ego by a V2X system 150 m away, and obstacles penalized 30 seconds,

while targets rewarded 2 seconds. In Round 7, ego yielded to all dynamic obstacles,

while in Round 10, ego ignored all dynamic obstacles. We finished in third place for

both events, out of six teams. In Round 7, we hit the second-most number of targets

and the only obstacle we hit was a dynamic obstacle owing to a failure in our yielding

implementation. In Round 10, we again hit the second-most number of targets, and

still finished with the fastest raw elapsed time and peak speed.

We highlight a couple of implementation details needed to integrate V1 into our

autonomy stack:

• At every time step, our terminal configuration 𝑞𝑓 is chosen from a lookahead

point on the global racing line, a precomputed cyclic path traversing the entire

track. In addition, we ignore all obstacles that are closer to 𝑞𝑓 than to 𝑞𝑖, which

is important because otherwise, our choice of 𝑞𝑓 may actually be infeasible.

• At every time step, our initial configuration 𝑞𝑖 is not set to the vehicle’s measured

configuration, but rather to a projected configuration based on the previously
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Figure 8-3: Dense obstacle course.

planned trajectory. This is to ensure stability when paired with a downstream

controller.

• Since we do not make a tradeoff between safety distance and friction, V1 is

capable of outputting dangerously extreme trajectories in order to correct minor

safety distance hazards. We mitigate this by simulating a "blind spot" in the

vicinity of ego, i.e. a circle around ego where ego does not see any obstacles.

• In order to forecast the motion of other virtual agents, we run V1 on each agent

but without any obstacles besides the track boundaries, since agents are known

to ignore virtual obstacles and targets. We then use these forecasted trajectories

when planning ego’s trajectories, in what amounts to a Stackelberg game.

8.3 V2 in Simple Dynamic Scenes

Finally, we demonstrate a simple dynamic environment for which V2 does not fail in

Figure 8-6. In this scenario, we are testing the "right undertake" maneuver, which
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Figure 8-4: Globally optimal trajectory for Figure 8-3 as computed by V1. Unfortu-
nately, V1 overconstrains this trajectory by including an unnecessary apex near (175,
150).

we describe as "nudging to the right to prepare for an overtake, but staying behind

our opponent for the time being"; this maneuver was actually motivated by the Indy

Autonomous Challenge race at the Las Vegas Motor Speedway, where one of the

rules for 1v1 racing was that for the first few laps, competitors were only allowed to

overtake during a specified passing zone in view of the spectators. Unfortunately, this

amount of complexity approaches the limit of what V2 could solve without failing to

converge, so this is our only result for V2.
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Figure 8-5: MIT Driverless’s run, streamed on Twitch during Roborace Season Beta
Round 7.

Figure 8-6: A "right undertake" maneuver. Both ego and its opponent start in
the upper right corner, and ego nudges to the right and closes the gap in order to
prepare to overtake its opponent while staying behind the opponent. The color coding
indicates the synchronized positions of ego and its opponent with respect to time.
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Chapter 9

Future Work

In this chapter, we touch on future work for S*.

9.1 Recent Results

By far the most pressing future work after this thesis is to collect results of the

final version of S* navigating complex dynamic environments, including randomly

generated scenes, simulated environments, and real racing scenarios from the Indy

Autonomous Challenge and Roborace. Without these results, it is hard to say with

certainty that the innovations in this thesis are correct and robust. When these results

are collected, we also hope to release the source code.

9.2 Rigorous Evaluation

Next, we hope to be more rigorous in our evaluation of the algorithm. In particular,

aside from visually verifiable results, we would like to collect quantitative results

showcasing its anytime qualities and benchmark it extensively against other methods.

We also hope to analyze data from any races that deploy S* in the future.
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9.3 Extending to Targets

While arguably not very important due to a lack of motivating use cases in industry,

we look forward to one day re-exploring the challenge of navigating toward targets,

instead of simply navigating around obstacles. V1 was already capable of this, and

ideally the final implementation will be capable of this too.

9.4 Multimodal Motion Forecasting

We believe S* will be able to solve multimodal motion forecasting. We have already

used S* V1 to solve unimodal motion forecasting for dynamic agents with known

behaviors (e.g. follow the racing line) in convex corridors such as empty racetracks; it

suffices to learn the acceleration model of the agent and then solve normally. However,

we hope to eventually infer likely behaviors and scene awareness directly within the

multimodal trajectory optimization. While trajectories are scored by cost for the

motion planning problem, they would be scored here by probability.

9.5 Joint Motion Forecasting and Planning

Furthermore, we eventually hope to model interactions between ego and non-ego

agents as Nash games instead of Stackelberg games, which is what we have currently

implemented. By conditioning predictions on ego plans, ego can confidently overtake

an agent before a turn while expecting that the agent will not drive ego off the track.

The hope is that the computational efficiency of the S* algorithm will enable this

type of joint motion prediction and planning to be more tractable as ever, even on a

latency-critical system like an autonomous racecar.
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