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Abstract

Machine learning models turn out to be brittle when faced with distribution shifts,
making them hard to rely on in real-world deployment. This motivates developing
methods that enable us to detect and alleviate such model brittleness, as well as to
verify that our models indeed meet desired robustness guarantees.

This thesis presents a set of tools that help us detect model vulnerabilities and
biases. This set comprises, on the one hand, a suite of new datasets that allow us to
obtain a finer-grained understanding of model reliance on backgrounds. On the other
hand, it involves 3DB, a framework that leverages photorealistic simulation, to probe
model vulnerabilities to more varied distribution shifts.

In addition to identifying these vulnerabilities, we discuss interventions that can
make models more robust to distribution shifts, including using more training data.
As we demonstrate, indiscriminately using more auxiliary data is not always beneficial,
and we thus develop dataset projection, a method to choose the "right" auxiliary data
to use.

Finally, we show how to efficiently and formally verify that our models are robust
to one of the most well-studied types of distribution shift: pixel-wise adversarial
perturbations.

Thesis Supervisor: Aleksander Mądry
Title: Cadence Design Systems Professor of Computing
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Chapter 1

Introduction

Machine learning (ML) is, in many ways, a success story with the potential to shape
society. Driven by advances in algorithms, faster hardware and more compute, and
ever-growing datasets, ML, and deep learning in particular, has shown immense
promise. In 2012, deep learning grew in popularity after surpassing the previous
state-of-the-art on the popular computer vision benchmark ImageNet [Rus+15]. Since
then, deep learning has achieved state-of-the-art results on a variety of other domains,
including natural language processing [Dev+19; Bro+20; Cho+22], recommender
systems [He+17b; Zha+19], object detection [He+17a; RF18], biology [Jum+21], and
game-playing [Sil+16; Sil+17; Ber+19; Sch+20b]. It has enabled the automation of
driverless vehicles, drug discovery, and financial strategies. Given the promise and
potential of ML, we may be tempted to use ML for more and more economically and
societally important decisions.

1.1 ML models make brittle predictions

However, ML is not a silver bullet that works in every scenario. While ML performs
impressively well on average, predictions of ML models are extremely brittle, and ML
models may learn spurious correlations that perpetuate existing biases.

One of the most striking demonstrations that predictions of ML models are brittle
is the phenomenon of adversarial examples [Big+13; Sze+14]. In Figure 1-1, a
high-accuracy ML model correctly classifies the image on the left as a pig with high
confidence. However, after adding an imperceptible amount of carefully-crafted noise
to the image, we can create the adversarial image on the right. This image still looks
like a pig to humans, but the same high-accuracy ML model incorrectly predicts that

19



Figure 1-1: A high-accuracy ML model correctly classifies the pig (left). Adding a
small amount of imperceptible noise results in an adversarial example (right), which
the ML model now confidently yet incorrectly predicts as an airliner.

it is an airliner with even higher confidence.
The phenomenon of adversarial examples is just one of many cases where ML

models lack robustness. More broadly, ML predictions are brittle when the data ML
models see at test time comes from a different distribution than the data these models
see at training time. This change in the data distribution is often called distribution
shift. We show two examples of such distribution shifts in Figure 1-2. This state of
affairs raises questions about whether ML is truly ready for real-world deployment.

Nevertheless, practitioners have already begun to use ML for critical systems in
the the real-world. At times, it can fail catastrophically, and in other cases, it can
make the right decision based on the wrong reasons. Although rare, self-driving car
have gotten into accidents [PMP20] and even caused casualties. ML models have
been used for critical decisions such as predictive policing [Pea10], estimating criminal
recidivism [RWC18], and loan approval [SGK20], but such models have also been
shown to make unfair and biased decisions based on factors such as race and gender
[BG18]. Finally, ML models have been used for predictions in health care, but such
models can depend on spurious correlations such as hospital-specific markers [Zec+18]
or the presence of a ruler (rather than a tumor) in an image [Est+17].

Thus, it is crucial to remedy the disconnect between the brittleness of ML and its
extensive usage in real-world settings. In this thesis, we aim to answer the central
question:

How can we ensure that our ML models are reliable enough for real-world deployment?

We approach this question from three angles. First, ML models have vulnerabilities
and biases that make them difficult to rely on. Diagnosing exactly what these
vulnerabilities and biases are can help us determine whether our ML models have
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Figure 1-2: ML models are also sensitive to changes such as common corruptions (left,
[HD19]) and simple geometric transformations such as rotations (right, [Eng+19b]).
ML model predictions change even when the ground-truth labels have not changed.

learned the right correlations. If we expect these correlations to still hold in real-world
situations, this can increase our confidence in deploying such models. Thus, our first
objective is to create tools to probe model robustness. Using these tools, we seek a
finer-grained understanding of exactly which signals models are most sensitive to.

Second, when model vulnerabilities and biases can be identified, it is critical to
perform interventions to make models more robust. Understanding what elements
of the training process improve robustness to model vulnerabilities is a key step to
improving the reliability of ML models.

Finally, even after performing robustness interventions, ML models may still have
vulnerabilities. To ensure the reliability of ML models, we further seek to formally
verify that these models satisfy certain robustness guarantees. Having mathematically
sound guarantees of robustness makes ML models much more deployment-ready in
safety-critical settings where these guarantees must be satisfied. By probing, improving,
and verifying ML model robustness, we make strides toward deployable ML.

1.2 Why does ML brittleness exist?

Before delving into ways to understand and improve model robustness, we begin by
discussing why ML model brittleness exists in the first place. Part of the strength,
but also the danger, of ML models is that they are excellent correlation extractors. In
fact, they often succeed by exploiting any correlations between inputs and their labels
that can improve test accuracy. As a result, models tend to overuse some correlations,
such as prioritizing object textures over object shape [Gei+19a], and also exploit other
correlations that humans cannot even perceive, such as non-robust features [Ily+19].
Indeed, while the added adversarial noise in Figure 1-1 may seem incomprehensible to
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us, it could be a pattern that occurs more frequently with the “airliner” class, and
therefore a valid correlation for the ML model to use.

Models use these correlations because they improves test accuracy; however, this
gives rise to model brittleness to changes in these features as well. This can be
especially concerning if the correlations models use are different from the ones that
humans consider to be important. If a correlation is not human-aligned, then the
correlations that exist on the training set will not necessarily hold under distribution
shift in the test set. Thus, the fact that ML models exploit not human-aligned
correlations can have negative implications for model reliability and robustness.

1.3 Probing model robustness

Although we know that models have vulnerabilities and biases due to the set of
correlations they learn from training data, we do not always have tools to characterize
exactly what these correlations are. Indeed, a multitude of studies have tried to shed
light on some of these correlations. In computer vision, ML models are sensitive to
a variety of distribution shifts, including slight rotations and translations [Eng+19b;
KMF18], image background changes [RSG16; ZXY17], new object orientations [Alc+19;
Bar+19], sub-population frequency shifts [STM21], image corruptions [HD19], and
changes to the data collection pipeline [Rec+19; Eng+20]. In this thesis, we develop
multiple toolkits to help us understand model vulnerabilities and biases, both more
deeply and more broadly.

Fine-grained understanding of image backgrounds. We begin with a deep
dive into a well-known correlation that models rely on—image backgrounds. Image
backgrounds are a natural source of correlation between images and their labels in
object recognition. Indeed, prior work has shown that models may use backgrounds
in classification [ZXY17; RSG16; BHP18], and suggests that even human vision
makes use of image context for scene and object recognition [Tor03]. However, most
prior work focused on anecdotes or newly-curated small datasets, and it was unclear
whether findings generalized to modern classifiers and datasets like ImageNet [Rus+15].
Thus, we aim to study how current image classifiers utilize image backgrounds by
focusing on ImageNet and analyzing state-of-the-art training methods, architectures,
and pre-trained models tuned to work well for it. To this end, in Chapter 2 we
create a toolkit for disentangling foreground and background signal on ImageNet
images, and find that (a) models can achieve non-trivial accuracy by relying on the
background alone, (b) models often misclassify images even in the presence of correctly
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classified foregrounds—up to 88% of the time with adversarially chosen backgrounds,
and (c) more accurate models tend to depend on backgrounds less. Our analysis of
backgrounds brings us closer to understanding which correlations machine learning
models use, and how they determine models’ out of distribution performance.

Leveraging synthetic data. Next, we answer the question more broadly. We
develop 3DB, a framework that leverages photorealistic simulation to automatically
probe model vulnerabilities to a large variety of distribution shifts, and present findings
from 3DB in Chapter 3. By using a system that integrates with photorealistic renderers,
we can progammatically control what model biases we want to probe. This helps us
reproduce previous robustness analyses with ease, and also allows us to study model
sensitivity to the composition of different biases. Studying synthetic images helps us
discover situations where ML models are expected to perform well, but instead fail
to make the right decision. Further, we show that many insights generated in the
synthetic data setting transfer to real-world data as well.

Overall, these toolkits enable us to better pinpoint the exact set of correlations
ML models pick up from training data. This tells us if ML models are succeeding
based on human-aligned signals, and informs us on if we should rely on such models
for unseen data from the real-world.

1.4 Improving model robustness and performance

In the previous section, we discussed creating new tools to understand the vulner-
abilities and biases that ML models have learned. However, merely understanding
what signals models use is not enough; to prepare ML for the real-world, we must find
interventions to train models that are more robust and perform better. Prior work
shows that techniques such as data augmentation [Cub+19] and adversarial training
[GSS15; Mad+18] can improve model robustness to some distribution shifts. Building
off the tools introduced in the previous section, we seek to understand what general
changes to the training procedure improve our robustness and performance.

We begin with our case study on image backgrounds, and investigate what factors
during the model training process affect model robustness to image background changes.
In the latter half of Chapter 2, we find that models that perform better on average
are also more robust to background changes. Further, we observe that various factors
relating to the training dataset, as well as changes to the training algorithm itself, can
improve robustness.

The best way to use auxiliary data to improve performance. One general
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trend in machine learning is that increased training dataset size frequently leads to
improved performance and robustness [Kap+20; Ros+20]. We show in Chapter 2
that this trend also holds for background robustness, while other work shows that the
same trend holds in other robustness settings too [Sch+20a; Mår+20]. Unfortunately,
sometimes it is difficult to acquire more data, as doing so can involve expensive data
collection and labeling procedures.

Thus, to obtain more training data for a target task, one can draw upon related
but distinct datasets, or auxiliary datasets. However, in Chapter 4, we show that
indiscriminately using auxiliary datasets can actually harm performance instead. In
particular, if an auxiliary dataset has relevant but biased data, it could potentially
harm model performance. Thus, we put forth the problem of dataset projection—
finding subsets of auxiliary datasets that are most aligned with a target dataset. These
so-called projected datasets can be used as training data to improve performance on
target tasks while being substantially smaller than the auxiliary dataset. We then
develop a framework for solving such dataset projection problems and demonstrate in
a variety of vision and language settings that the resulting projected datasets, when
compared to the original auxiliary datasets, (1) are closer approximations of target
datasets and (2) can be used to improve test performance or provide analysis for the
target datasets.

1.5 Verifying model robustness

After performing interventions to improve our models, we hope that our models are
indeed more robust and real-world ready. However, some robustness interventions that
appear to work well at first do not actually improve robustness. In particular, models
that are trained to be robust to adversarial examples (such as the one in Figure 1-1)
can be ineffective when faced with more carefully crafted adversarial examples [CW17a;
Ues+18; ACW18; Tra+20]. This state of affairs gives rise to the need for verification
of networks, i.e., the task of formally proving that no small perturbations of a given
input can cause it to be misclassified by the model.

Although some verifiers have been designed to solve this problem, the verification
process is often intractably slow. For example, researchers developed the Reluplex
verifier [Kat+17], but verifying robustness for even a small neural network model with
less than 100 neurons turns out to be computationally infeasible. Thus, we want to
develop methods to efficiently verify ML model robustness to adversarial examples.

Improving the verification procedure via MILP. First, we propose im-
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proving the verifier itself, by formulating the problem of verifying model robustness
to adversarial examples as a Mixed-Integer Linear Program (MILP) in Chapter 5.
This formulation allows us to take advantage of off-the-shelf MILP solvers that have
been optimized for decades [Gur17b]. To improve the speed further, we introduce
tight formulations for non-linearities in neural networks, and we use a novel presolve
algorithm that makes full use of all information available in the adversarial robustness
setting. Our MILP verifier is two to three orders of magnitude quicker than prior
state-of-the-art. This computational speedup allows us to verify the robustness of
larger convolutional networks, and determine, for the first time, the exact adversarial
accuracy of an MNIST classifier to norm-bounded perturbations.

Training models that are easier to verify. The verifier can be optimized
to improve the speed of ML model robustness verification, but another big factor
that determines verification speed is the ML model being verified. Thus, we propose
changing the model training process to make the ML model itself more amenable to
verification in Chapter 6. To achieve this, we begin by investigating what properties
of a model make the MILP verification procedure faster to solve. We find that weight
sparsity and so-called stable ReLUs in neural networks lead to verification problems
that can be solved more efficiently. Subsequently, we explore co-designing neural
networks to be simultaneously robust and easily verifiable by introducing regularization
terms in the model training process. These regularization terms achieve the primary
goals of weight sparsity and ReLU stability during training without significantly
hurting the neural network’s accuracy. We show that our techniques can be used in
conjunction with any standard training procedure, and that they allows us to train
MNIST and CIFAR-10 ML models that are provably robust on most test inputs and
can be verified an order of magnitude faster.

Overall, we take two steps forward to ML models that come with provable guar-
antees of robustness. Ensuring that our models are provably robust improves our
confidence that these models are ready to be deployed in the real world, especially for
safety critical scenarios where such robustness guarantees are necessary.

1.6 Outlook: Towards deployable machine learning

By probing, improving, and verifying ML model robustness, this thesis builds toward
ML that is safe and reliable. Despite the progress, there remains much work to be done.
Going forward, I believe that research in two key directions will play an important
role in ensuring that ML models can be deployed more extensively and safely in the
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real world.

The many faces of robustness. In this work, we primarily focused on
robustness to adversarial examples and specific types of distribution shift such as
changes to image backgrounds. While these are important stepping stones, the real
world comes with far more types of distribution shift that we would want our models
to be robust to. For example, what if a self-driving car company trained their autopilot
system on millions of images and videos in sunny weather in Phoenix, but now the
car needs to operate in rainy weather in Singapore? What if a loan approval system
is trained on all data available until today, but a massive overhaul to the financial
system means that useful predictive features no longer apply in the future?

One of the key challenges of tackling distribution shift robustness is that distribution
shift encompasses such a broad range of changes. In order to move forward, we need
varied benchmarks for different types of distribution shifts, including the backgrounds
datasets benchmark presented in Chapter 2 and related works such as WILDS [Koh+20]
and those of Hendrycks et al. [Hen+20]. Along with curating more realistic benchmarks,
we must continue to develop synthetic benchmarks like 3DB. While real-world data is
the gold standard, generating synthetic data is far more scalable. We already found
that insights from photorealistically rendered 3DB images transfer well to real data in
Section 3.4—and with recent advances in deep generative models such as DALL-E
2 [Ram+22], generative models could also be used to simulate real data effectively.
These synthetic data sources can be scaled both for more extensive testing of model
sensitivity to different factors of variation, and also for usage as training data to
encourage model invariance and robustness to those factors.

How does robustness transfer? Due to the trend that ML model perform
significantly better when dataset size, model size, and compute are scaled to extreme
amounts, most state-of-the-art models in today’s world are large models trained by
large tech companies. Notably, individuals or academic labs are unlikely to be able to
train ML models of such scale by themselves. As a result, the future of ML is likely
to involve individual ML practitioners starting with big foundation models [Bom+21]
trained by a big company, and fine-tuning [Rad+19; Dev+19] or otherwise tuning
[LL21] it for their own use case. Thus, understanding how robustness of the original
large models transfer upon fine-tuning is an important direction for ensuring the safety
of real-world ML use cases.

26



1.7 Thesis organization

We now describe how the rest of the thesis is organized.
Chapter 2 explores the role of image backgrounds in object recognition, and intro-
duces a toolkit of new evaluation datasets to help probe model reliance on background
signals over time. The material presented in this chapter is based on joint work with
Logan Engstrom, Andrew Ilyas, and Aleksander Mądry [Xia+21b].
Chapter 3 presents 3DB, a framework for debugging computer vision models. We
use this framework to automate discovery of ML model biases and vulnerabili-
ties. The material presented in this chapter is based on joint work with Logan
Engstrom, Andrew Ilyas, Guillaume Leclerc, Hadi Salman, Sai Vemprala, Vibhav
Vineet, Pengchuan Zhang, Shibani Santurkar, Greg Yang, Ashish Kapoor, and Alek-
sander Mądry [Lec+21a].
Chapter 4 discusses a refinement of the idea that more data is always useful for
improving model performance and robustness. It puts forth dataset projection, a
method to find the most useful subset of additional data to improve model performance.
The material presented in this chapter is based on joint work with Aleksander Mądry
and Eric Wong [WXM22].
Chapter 5 tackles the problem of verification of ML model robustness to adversarial
examples by formulating the problem as a mixed-integer linear program. The material
presented in this chapter is based on joint work with Russ Tedrake and Vincent Tjeng
[TXT19].
Chapter 6 details how to improve the robustness verification process by co-designing
ML models that are simultaneously robust and easy-to-verify. The material presented
in this chapter is based on joint work with Aleksander Mądry, Mahi Shafiullah, and
Vincent Tjeng [Xia+19b].
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Part I

Probing model robustness
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Chapter 2

Investigating the role of image
backgrounds

2.1 Introduction

Object recognition models are typically trained to minimize loss on a given dataset,
and evaluated by the accuracy they attain on the corresponding test set. In this
paradigm, model performance can be improved by incorporating any generalizing
correlation between images and their labels into decision-making. However, the actual
model reliability and robustness depend on the specific set of correlations that is
used, and on how those correlations are combined. Indeed, outside of the training
distribution, model predictions can deviate wildly from human expectations either
due to relying on correlations that humans do not perceive [JLT18; Ily+19; Jac+19],
or due to overusing correlations, such as texture [Gei+19a; Bak+18] and color [YS02],
that humans do use (but to a lesser degree). Characterizing the correlations that
models depend on thus has important implications for understanding model behavior,
in general.

Image backgrounds are a natural source of correlation between images and their
labels in object recognition. Indeed, prior work has shown that models may use
backgrounds in classification [Zha+07; RSG16; ZXY17; RZT18; Zec+18; Bar+19;
SSF19; Sag+20; Gei+20], and suggests that even human vision makes use of image
context for scene and object recognition [Tor03]. In this work, we aim to obtain a
deeper and more holistic understanding of how current state-of-the-art image classifiers
utilize image backgrounds. To this end, in contrast to most of the prior work (which
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tends to study relatively small and often newly-curated image datasets1), our focus
is on ImageNet [Rus+15]—one of the largest and most widely used datasets, with
state-of-the-art training methods, architectures, and pre-trained models tuned to work
well for it.

Zhu, Xie, and Yuille [ZXY17] analyze ImageNet classification (focusing on the
older, AlexNet model) to find that AlexNet achieves small but non-trivial test accuracy
on a dataset consisting of only backgrounds (where foreground objects are replaced by
black rectangles). While sufficient for establishing that backgrounds can be used for
classification, we aim to go beyond those initial explorations to get a more fine-grained
understanding of the relative importance of backgrounds and foregrounds, for newer,
state-of-the-art models, and to provide a versatile toolkit for others to use. Specifically,
we investigate the extent to which models rely on backgrounds, the implications of
this reliance, and how models’ use of backgrounds has evolved over time. Concretely:

• We create a suite of datasets that help disentangle (and control for different
aspects of) the impact of foreground and background signals on classification.
The code and datasets are publicly available for others to use in this repository:
https://github.com/MadryLab/backgrounds_challenge.

• Using the aforementioned toolkit, we characterize models’ reliance on image
backgrounds. We find that image backgrounds alone suffice for fairly success-
ful classification and that changing background signals decreases average-case
performance. In fact, we further show that by choosing backgrounds in an
adversarial manner, we can make standard models misclassify 88% of images as
the background class.

• We demonstrate that standard models not only use but require backgrounds for
correctly classifying large portions of test sets (35% on our benchmark).

• We study the impact of backgrounds on classification for a variety of classifiers,
and find that models with higher ImageNet test accuracy tend to simultaneously
have higher accuracy on image backgrounds alone and have greater robustness
to changes in image background.

1We discuss these works in greater detail in Section 2.5, Related Works.
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2.2 Methodology

To properly gauge image backgrounds’ role in image classification, we construct a
synthetic dataset for disentangling background from foreground signal: ImageNet-9.

insect

Original

bird

Only-BG-B

insect

Only-BG-T

bird

No-FG

instrument

Only-FG

insect

Mixed-Same

insect

Mixed-Rand

instrument

Mixed-Next

Figure 2-1: Variations of the synthetic dataset ImageNet-9, as described in Table 2.1.
We label each image with its pre-trained ResNet-50 classification—green, if correspond-
ing with the original label; red, if not. The model correctly classifies the image as
“insect” when given: the original image, only the background, and two cases where the
original foreground is present but the background changes. Note that, in particular,
the model fails in two cases when the original foreground is present but the background
changes (as in Mixed-Next or Only-FG).

Base dataset: ImageNet-9. We organize a subset of ImageNet into a new dataset
with nine coarse-grained classes and call it ImageNet-9 (IN-9) 2. To create it, we
group together ImageNet classes sharing an ancestor in the WordNet [Mil95] hierarchy.
We use coarse-grained classes because there are not enough images with annotated
bounding boxes (which we need to disentangle backgrounds and foregrounds) to use
the standard labels. The resulting IN-9 dataset is class-balanced and has 45405
training images and 4050 testing images. While we can (and do) apply our methods
on the full ImageNet dataset as well, we choose to focus on this coarse-grained version

2These classes are dog, bird, vehicle, reptile, carnivore, insect, instrument, primate, and
fish.
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of ImageNet because of its higher-fidelity images. We describe the dataset creation
process in detail and discuss the advantages of focusing on IN-9 in Appendix A.1.

Variations of ImageNet-9 From this base set of images, which we call the Origi-

nal version of IN-9, we create seven other synthetic variations designed to understand
the impact of backgrounds. We use both rectangular bounding boxes and the fore-
ground segmentation algorithm GrabCut [RKB04], as implemented in OpenCV, to
disentangle backgrounds and foregrounds. We visualize these variations in Figure 2-1,
and provide a detailed reference in Table 2.1. These subdatasets of IN-9 differ only in
how they process the foregrounds and backgrounds of each constituent image.

Larger dataset: IN-9L We finally create a dataset called IN-9L that consists of
all the images in ImageNet corresponding to the classes in Original (rather than
just the images that have associated bounding boxes). This dataset has about 180k
training images in total. We leverage this larger dataset to train better generalizing
models, and prefer to analyze models trained on IN-9L whenever possible.

Table 2.1: The 8 modified subdatasets created from ImageNet-9, which are visualized
in Figure 2-1. The foreground detection method refers to how the pixels corresponding
to the foreground are found. GrabCut refers to the foreground segmentation algorithm
implemented in OpenCV. Random backgrounds in the last three datasets are taken
from Only-BG-T. For more details see Appendix A.1.

Name Foreground Background Foreground Detection Method

Original Unmodified Unmodified —
Only-BG-B Black Unmodified Bounding Box
Only-BG-T Tiled background Unmodified Bounding Box
No-FG Black Unmodified GrabCut
Only-FG Unmodified Black GrabCut
Mixed-Same Unmodified Random BG of the same class GrabCut
Mixed-Rand Unmodified Random BG of a random class GrabCut
Mixed-Next Unmodified Random BG of the next class GrabCut

2.3 Quantifying reliance on background signals

With ImageNet-9 in hand, we now assess the role of image backgrounds in classification.

Backgrounds suffice for classification. Prior work has found that models are
able to make accurate predictions based on backgrounds alone; we begin by directly
quantifying this ability. Looking at the Only-BG-T, Only-BG-B, and No-FG
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Figure 2-2: We train models on each of the “background-only” datasets, then evaluate
each on its corresponding test set as well as the Original test set. Even though the
model only learns from background signal, it achieves (much) better than random
performance on both the corresponding test set and Original. Here, random guessing
would give 11.11% (the dotted line).

datasets, we find (cf. Figure 2-2) that models trained on these background-only
training sets generalize reasonably well to both their corresponding test sets and to
unmodified images from the Original test set (around 40-50% for every model, far
above the baseline of 11% representing random classification). Our results confirm
that image backgrounds contain signal that models can accurately classify standard
images with.

Models exploit background signal for classification. We discover that models
can misclassify due to background signal, especially when the background class does
not match that of the foreground. As a demonstration, we study model accuracies
on the Mixed-Rand dataset, where image backgrounds are randomized and thus
provide no information about the correct label. By comparing test accuracies on
Mixed-Rand and Mixed-Same 3, where images have class-consistent backgrounds,
we can measure classifiers’ dependence on the correct background. We denote the
resulting accuracy gap between Mixed-Same and Mixed-Rand as the BG-Gap;
this difference represents the drop in model accuracy due to changing the class signal
from the background. In Table 2.2, we observe a BG-Gap of 13-22% and 4-11% for
models trained on IN-9L and ImageNet, respectively, suggesting that backgrounds
often mislead state-of-the-art models even when the correct foreground is present.

3Mixed-Same controls for artifacts from image processing presented in Mixed-Rand. For further
discussion, see Appendix A.4.
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Table 2.2: Performance of state-of-the-art computer vision models on selected test sets
of ImageNet-9. We include both pre-trained ImageNet models and models of different
architectures that we train on IN-9L. The BG-Gap is defined as the difference in test
accuracy between Mixed-Same and Mixed-Rand and helps assess the tendency
of such models to rely on background signal. Architectures are sorted by their test
accuracies on ImageNet and Original for pre-trained and IN-9L-trained models,
respectively. Shaded in grey are the two architectures that can be directly compared
across datasets (ResNet-50 and Wide-ResNet-50x2).
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ImageNet 67.9% 77.2% 77.6% 78.5% 80.0% ——
Original 95.5% 96.1% 96.9% 96.6% 97.2% 86.7% 95.7% 96.3% 97.2% 97.6%
Only-BG-T 16.3% 16.5% 17.4% 18.8% 17.6% 41.5% 43.6% 43.6% 45.1% 45.7%

Mixed-Same 84.0% 86.2% 91.0% 88.3% 90.5% 76.2% 86.7% 89.9% 90.6% 91.0%
Mixed-Rand 73.2% 76.3% 84.3% 81.4% 86.1% 54.2% 69.4% 75.6% 78.0% 78.0%

BG-gap 10.8% 9.9% 6.7% 6.9% 4.4% 22.0% 17.3% 14.3% 12.6% 13.0%

More Training Data can reduce the BG-Gap. Our results indicate that
ImageNet-trained models are less dependent on backgrounds than their IN-9L-trained
counterparts—they have a smaller (but still significant) BG-Gap, and perform worse
when predicting solely based on backgrounds (i.e., on the Only-BG-T dataset). We
explore two ways that ImageNet differs from IN-9L to understand this phenomena—
ImageNet has (a) more datapoints than IN-9L, and (b) a more fine-grained class
structure. Figure 2-3 shows that more training data reduces the BG-Gap, particularly
when the training dataset size approaches the size of ImageNet. This indicates that
training on much more data (and thus, more backgrounds) can reduce (but not
eliminate) the effect of backgrounds on model predictions. An ablation study of
ImageNet’s more fine-grained class structure does not find strong evidence supporting
its helpfulness (cf. Appendix A.2).

Models are vulnerable to adversarial backgrounds. To understand how worst-
case backgrounds impact models’ performance, we evaluate model robustness to
adversarially chosen backgrounds. We find that 88% of foregrounds are susceptible
to such backgrounds; that is, for these foregrounds, there is a background that
causes the classifier to classify the resulting foreground-background combination as
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Figure 2-3: We compare test accuracies on Mixed-Same and Mixed-Rand and
observe that training with more data reduces the BG-Gap (BG-Gap measures the
effect of backgrounds on model predictions). While this trend is true for models
trained on both IN-9 and ImageNet, the trend is most noticeable for models trained
on the largest training set, the full ImageNet dataset—this is shown on the far right
side of the graph.

the background class. For a finer grained look, we also evaluate image backgrounds
based on their attack success rate (ASR), i.e., how frequently they cause models to
predict the (background) class in the presence of a conflicting foreground class. As
an example, Figure 2-4 shows the five backgrounds with the highest ASR for the
insect class—these backgrounds (extracted from insect images in Original) fool a
IN-9L-trained ResNet-50 model into predicting insect on up to 52% of non-insect
foregrounds. We plot a histogram of ASR over all insect backgrounds in Figure A-16
of the Appendix—it has a long tail. Similar results are observed for other classes as
well (cf. Appendix A.7).
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Figure 2-4: The adversarial backgrounds that most frequently fool IN-9L-trained
models into classifying a given foreground as insect, ordered by the percentage of
foregrounds fooled. The total portion of images that can be fooled (by any background
from this class) is 66.55%.
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Training on Mixed-Rand reduces background dependence. Next, we explore
how to reduce models’ dependence on background. To this end, we train models on
Mixed-Rand, a synthetic dataset where background signals are decorrelated from
class labels. As we would expect, Mixed-Rand-trained models extract less signal
from backgrounds: evaluation results show that Mixed-Rand models perform poorly
(15% accuracy—barely higher than random) on datasets with only backgrounds and
no foregrounds, (Only-BG-T or Only-BG-B).
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Figure 2-5: We compare the test performance of a model trained on the synthetic
Mixed-Rand dataset with a model trained on Original. We evaluate these models
on variants of IN-9 that contain identical foregrounds. For the Original-trained
model, test performance decreases significantly when the background signal is modified
during testing. However, the Mixed-Rand-trained model is robust to background
changes, albeit at the cost of lower accuracy on images from Original.

Indeed, such models are also more accurate on datasets where backgrounds do not
match foregrounds. In Figure 2-5, we observe that a Mixed-Rand-trained model
has 17.3% higher accuracy than its Original-trained counterpart on Mixed-Rand,
and 22.3% higher accuracy on Mixed-Next, a dataset where background signals
class-consistently mismatch foregrounds. (Recall that Mixed-Next images have
foregrounds from class 𝑦 mixed with backgrounds from class 𝑦 + 1, labeled as class 𝑦.)
The Mixed-Rand-trained model also has little variation (at most 3.8%) in accuracy
across all five test sets that contain the correct foreground.

Qualitatively, the Mixed-Rand-trained model also appears to place more relative
importance on foreground pixels than the Original-trained model; the saliency maps
of the two models in Figure 2-6 show that the Mixed-Rand-trained model’s saliency
maps highlight more foreground pixels than those of Original-trained models.
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Figure 2-6: Saliency maps for the the Original and Mixed-Rand models on two
images. As expected, the Mixed-Rand model appears to place more importance on
foreground pixels.

Table 2.3: Prediction categories we study for a given image-model pair. For a given
image, a model can make differing predictions based on the presence or absence of its
foreground/background. We label each possible case based on how the background
classification relates to the full image classification and the foreground classification.
To proxy classifying full images, foregrounds, and backgrounds separately, we classify
Original, Mixed-Rand, and Only-BG-T (respectively). “BG Irrelevant” demar-
cates images where the foreground classification result is the same as that of the full
image (in terms of correctness). We show illustrative examples of BG Required and
BG+FG Required below.

Label Correct Prediction Correct Prediction Correct Prediction
on Full Image on Foreground on Background

BG Required ✓ ✗ ✓

BG Fools ✗ ✓ ✗

BG+FG Required ✓ ✗ ✗

BG+FG Fools ✗ ✓ ✓

BG Irrelevant ✓/✗ ✓/✗ —

A fine grained look at dependence on backgrounds. We now analyze models’
reliance on backgrounds at an image-by-image level and ask: for which images does
introducing backgrounds help or hurt classifiers’ performance? To this end, for each
image in Original, we decompose how models use foreground and background signals
by examining classifiers’ predictions on the corresponding image in Mixed-Rand

and Only-BG-T. Here, we use the Mixed-Rand and Only-BG-T predictions as a
proxy for which class the foreground and background signals (alone) point towards,
respectively. We categorize each image based on how its background and foreground
signals impact classification; we list the categories in Table 2.3 and show the counts for
each category as a histogram per classifier in Figure 2-8. Our results show that while
few backgrounds induce misclassification (see Appendix A.8 for examples), a large
fraction of images require backgrounds for correct classification—approximately 35%
on the Original trained classifiers, as calculated by combining the “BG Required”
and “BG+FG Required” categories.
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Figure 2-8: We categorize each test set image based on how a model classifies the
full image, the background alone, and the foreground alone (cf. Table 2.3). The
model trained on Original needs the background for correct classification on 35% of
images (measured by adding “BG Required” and “BG+FG Required), while a model
trained on Mixed-Rand is much less reliant on background. The model trained on
Only-BG-T requires the background most, as expected; however, the model often
misclassifies both the full image and the background, so the “BG Irrelevant” subset is
still sizable.

Further insights derived from IN-9 are discussed in the Appendix A.4. We
focus on key findings in this section, but also include more comprehensive results and
examples of other questions that can be explored by using the toolkit of IN-9 in the
Appendix.

2.4 Benchmark progress and background dependence

In the previous sections, we demonstrated that standard image classification models
exploit signals from backgrounds. Considering that these models result from progress
on standard computer vision benchmarks, a natural question is: to what extent have
improvements on image classification benchmarks resulted from exploiting background
correlations? And relatedly, how has model robustness to misleading background signals
evolved over time?
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Figure 2-9: Measuring progress on each of the synthetic ImageNet-9 datasets with
respect to progress on the standard ImageNet test set. Higher accuracy on ImageNet
generally corresponds to higher accuracy on each of the constructed datasets, but the
rate at which accuracy grows varies based on the types of features present in each
dataset. Each pre-trained model corresponds to a vertical line on the plot—we mark
ResNet-50 and MobileNet-v3s models for reference.

As a first step towards answering these questions, we study the progress made
by ImageNet models on our synthetic IN-9 dataset variations. In Figure 2-9 we
plot accuracy on our synthetic datasets against ImageNet accuracy for each of the
architectures considered. As evidenced by the lines of best fit in Figure 2-9, accuracy
increases on the original ImageNet benchmark generally correspond to accuracy
increases on all of the synthetic datasets. This includes the Only-BG datasets—
indicating that models do improve at extracting correlations from image backgrounds.

Indeed, the Only-BG trend observed in Figure 2-9 suggests that either (a) image
classification models can only attain their reported accuracies in the presence of
background signals; or (b) these models carry an implicit bias towards features in
the background, as a result of optimization technique, model class, etc.—in this case,
we may need explicit regularization (e.g., through distributionally robust optimiza-
tion [Sag+20] or related techniques) to obtain models invariant to these background
features. The Only-BG trend does not indicate that models are failing per se; it could
also indicate that models learn to depend on backgrounds because they are necessary
for correctly classifying certain images due to quirks in the ImageNet dataset.

Still, models’ relative improvement in accuracy across dataset variants is promising—
models improve on classifying Only-BG-T at a slower (absolute) rate than Mixed-
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Rand, Mixed-Same and Mixed-Next. Furthermore, the performance gap between
the Mixed datasets and the others (most notably, between Mixed-Rand and Mixed-

Same; between Mixed-Next and Mixed-Rand; and consequently between Mixed-

Next and Mixed-Same) trends towards closing, indicating that models not only are
becoming better at using foreground features, but also are becoming more robust to
misleading background features (Mixed-Rand and Mixed-Next). Finally, models
also improve in accuracy faster on No-FG (which has foreground shape but no texture)
than on Only-BG-T, which implies that better models are using foreground shape
features more effectively.

Overall, the accuracy trends observed from testing ImageNet models on our
synthetic datasets reveal that better models (a) are capable of exploiting background
correlations, but (b) are increasingly robust to changes in background, suggesting that
invariance to background features may not necessarily come at the cost of benchmark
accuracy.

2.5 Related work

Prior works on contextual bias from image backgrounds4 show that background
correlations can be predictive [Tor03] and can influence model decisions. Zhang
et al. [Zha+07] find that (a) a bag-of-features object detection algorithm depends
on image backgrounds in the PASCAL dataset and (b) using this algorithm on a
training set with varying backgrounds leads to better generalization. Beery, Horn,
and Perona [BHP18] and Barbu et al. [Bar+19] collect new test datasets of animals
and objects, respectively. Barbu et al. [Bar+19] focus on object classes that also
exist in ImageNet, and their new test set contains objects photographed in front of
unconventional backgrounds and in unfamiliar orientations. Both works show that
computer vision models experience significant accuracy drops when trained on data
with one set of backgrounds and tested on data with another. Sagawa et al. [Sag+20]
create a synthetic dataset of Waterbirds, where waterbirds and landbirds from one
dataset are combined with water and land backgrounds from another. They show
that a model’s reliance on spurious correlations with the background can be harmful
for small subgroups of data where those spurious correlations no longer hold (e.g.
landbirds on water backgrounds). Rosenfeld, Zemel, and Tsotsos [RZT18] analyze
background dependence for object detection (as opposed to classification) models

4Here, we highlight works analyzing contextual bias from image backgrounds specifically, and
discuss contextual bias generally and foreground segmentation in Appendix A.5.
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on the MS-COCO dataset. They transplant an object from one image to another
image, and find that object detection models may detect the transplanted object
differently depending on its location, and that the transplanted object may also cause
mispredictions on other objects in the image. Zech et al. [Zec+18] study medical
imaging and show that a model learned to detect a hospital-specific metal token
on medical scans. The model then used each hospital’s pneumonia prevalence rate
to predict pneumonia fairly well (without learning much about actually detecting
pneumonia).

The only work that, similarly to us, studies a large-scale dataset in this context
is Zhu, Xie, and Yuille [ZXY17], who analyze ImageNet and show that AlexNet
can achieve nontrivial accuracy on a dataset similar to our Only-BG-B dataset.
While sufficient for establishing that backgrounds can be used for classification, this
dataset also introduces biases by adding large black rectangular patches to all of
the images (which our Only-BG-T dataset fixes). In comparison to [ZXY17] and
the other prior works, we: (a) properly segment foregrounds and backgrounds using
the GrabCut algorithm instead of relying on rectangular bounding boxes; (b) create
dataset variations that allow us to measure not just model performance without
foregrounds, but also the relative influence of foregrounds and backgrounds on model
predictions; (c) control for the effect of image artifacts by focusing on comparisons
between the Mixed-Same and Mixed-Rand datasets; (d) study model robustness to
adversarial backgrounds; (e) study a larger and more recent set of classifiers [He+16;
ZK16; TL19]; (f) show how improvements they give on ImageNet relate to background
dependence; and (g) make our benchmarking toolkit publicly accessible for others to
use and build on.

2.6 Discussion and conclusion

In this work, we study the extent to which classifiers rely on image backgrounds. To this
end, we create a toolkit for measuring the precise role of background and foreground
signal that involves constructing new test datasets that contain different amounts
of each. Through these datasets we establish both the usefulness of background
signal and the tendency of our models to depend on backgrounds, even when relevant
foreground features are present. Our results show that our models are not robust to
changes in the background, either in the adversarial case, or in the average case.

As most ImageNet images have human-recognizable foreground objects, our models
appear to rely on background more than humans on that dataset. The fact that models
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can be fooled by adversarial background changes on 88% of all images highlights
how poorly computer vision models may perform in an out-of-distribution setting.
However, contextual information like the background can still be useful in certain
settings. After all, humans do use backgrounds as context in visual processing, and
the background may be necessary if the foreground is blurry or distorted [Tor03].
Therefore, reliance on background is a nuanced question that merits further study.

On one hand, our findings provide evidence that models succeed by using back-
ground correlations, which may be undesirable in some applications. On the other
hand, we find that advances in classifiers have given rise to models that use foregrounds
more effectively and are more robust to changes in the background. To obtain even
more robust models, we may want to draw inspiration from successes in training on
the Mixed-Rand dataset (a dataset designed to neutralize background signal—cf.
Table 2.1), related data-augmentation techniques [SSF19], and training algorithms
like distributionally robust optimization [Sag+20] and model-based robust learning
[RHP20]. Overall, the toolkit and findings in this work help us to better understand
models and to monitor our progress toward the goal of reliable machine learning.
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Chapter 3

Debugging computer vision models
with 3DB

3.1 Introduction

Modern machine learning models turn out to be remarkably brittle under distribution
shift. Indeed, in the context of computer vision, models exhibit an abnormal sensi-
tivity to slight input rotations and translations [Eng+19b; KMF18], synthetic image
corruptions [HD19; Kan+19], and changes to the data collection pipeline [Rec+19;
Eng+20]. Still, while such brittleness is widespread, it is often hard to understand its
root causes, or even to characterize the precise situations in which this unintended
behavior arises.

How do we then comprehensively diagnose model failure modes? Stakes are often
too high to simply deploy models and collect eventual “real-world” failure cases. There
has thus been a line of work in computer vision focused on identifying systematic
sources of model failure such as unfamiliar object orientations [Alc+19], misleading
backgrounds [ZXY17; Xia+21b], or shape-texture conflicts [Gei+19b; Ath+18]. These
analyses—a selection of which is visualized in Figure 3-1—reveal patterns or situations
that degrade performance of vision models, providing invaluable insights into model
robustness. Still, carrying out each such analysis requires its own set of (often complex)
tools and techniques, usually accompanied by a significant amount of manual labor
(e.g., image editing, style transfer, etc.), expertise, and data cleaning. This prompts
the question:

Can we support reliable discovery of model failures in a systematic, automated, and
unified way?
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Contributions. In this work, we propose 3DB, a framework for automatically
identifying and analyzing the failure modes of computer vision models. This framework
makes use of a 3D simulator to render realistic scenes that can be fed into any computer
vision system. Users can specify a set of transformations to apply to the scene—such
as pose changes, background changes, or camera effects—and can also customize and
compose them. The system then performs a guided search, evaluation, and aggregation
over these user-specified configurations and presents the user with an interactive, user-
friendly summary of the model’s performance and vulnerabilities. 3DB is general
enough to enable users to, with little-to-no effort, re-discover insights from prior
work on robustness to pose, background, and texture bias (cf. Figure 3-2), among
others. Further, while prior studies have largely been focused on examining model
sensitivities along a single axis, 3DB allows users to compose various transformations
to understand the interplay between them, while still being able to disentangle their
individual effects.

The remainder of this paper is structured into the following parts: in Section 3.3
we illustrate the utility of 3DB through a series of case studies uncovering biases in an
ImageNet-pretrained classifier. Next, we show (in Section 3.4) that the vulnerabilities

Texture non-robustness Corruptions Geometric transformations Misleading backgrounds

Unfamiliar objects

Figure 3-1: Examples of vulnerabilities of computer vision systems identified through
prior in-depth robustness studies. Figures reproduced from [Gei+19b; Ath+18; HD19;
Kan+19; Alc+19; Eng+19b; Xia+21b; RZT18].

Texture Pose Background New objects CompositionCorruptions

Figure 3-2: The 3DB framework is modular enough to facilitate—among other tasks—
efficient rediscovery of all the types of brittleness shown in Figure 3-1 in an integrated
manner. It also allows users to realistically compose transformations (right) while still
being able to disentangle the results.
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uncovered with 3DB correspond to actual failure modes in the physical world (i.e.,
they are not specific to simulation). Finally, we discuss Related Work in Section 3.5.

3.2 Designing 3DB

The goal of 3DB is to leverage photorealistic simulation in order to effectively diagnose
failure modes of computer vision models. To this end, the following set of principles
guide the design of 3DB :

(a) Generality: 3DB should support any type of computer vision model (i.e., not
necessarily a neural network) trained on any dataset and task (i.e., not neces-
sarily classification). Furthermore, the framework should support diagnosing
non-robustness with respect to any parameterizable three-dimensional scene
transformation.

(b) Compositionality: Data corruptions and transformations rarely occur in
isolation. Thus, 3DB should allow users to investigate robustness along many
different axes simultaneously.

(c) Physical realism: The vulnerabilities extracted from 3DB should correspond
to models’ behavior in the real (physical) world, and, in particular, not depend
on artifacts of the simulation process itself. Specifically, the insights that 3DB
produces should not be affected by a simulation-to-reality gap, and still hold
when models are deployed in the wild.

(d) User-friendliness: 3DB should be simple to use and should relay insights to
the user in an easy-to-understand manner. Even non-experts should be able to
look at the result of a 3DB experiment and easily understand what the weak
points of their model are, as well as gain insight into how the model behaves
more generally.

(e) Scalability: 3DB should be performant and parallelizable.

Capabilities and workflow. To achieve the goals articulated above, we design
3DB in a modular manner, i.e., as a combination of swappable components. This
combination allows the user to specify transformations they want to test, search over
the space of these transformations, and aggregate the results of this search in a concise
way. More specifically, the 3DB workflow revolves around five steps (visualized in
Figure 3-3):

45



1. Setup: The user collects one or more 3D meshes that correspond to objects the
model is trained to recognize, as well as a set of environments to test against.

2. Search space design: The user defines a search space by specifying a set of
transformations (which 3DB calls controls) that they expect the computer vision
model to be robust to (e.g., rotations, translations, zoom, etc.). Controls are
grouped into “rendered controls” (applied during the rendering process) and “post-
processor controls” (applied after the rendering as a 2D image transformation).

3. Policy-guided search: After the user has specified a set of controls, 3DB
instantiates and renders a myriad of object configurations derived from compo-
sitions of the given transformations. It records the behavior of the ML model
on each constructed scene for later analysis. A user-specified search policy over
the space of all possible combinations of transformations determines the exact
scenes for 3DB to render.

4. Model loading: The only remaining step before running a 3DB analysis is
loading the vision model that the user wants to analyze (e.g., a pre-trained
classifier or object detection model).

5. Analysis and insight extraction: Finally, 3DB is equipped with a model
dashboard (cf. Appendix B.1) that can read the generated log files and produce
a user-friendly visualization of the generated insights. By default, the dashboard
has three panels. The first of these is failure mode display, which highlights
configurations, scenes, and transformations that caused the model to misbehave.
The per-object analysis pane allows the user to inspect the model’s performance
on a specific 3D mesh (e.g., accuracy, robustness, and vulnerability to groups of
transformations). Finally, the aggregate analysis pane extracts insights about
the model’s performance averaged over all the objects and environments collected
and thus allows the user to notice consistent trends and vulnerabilities in their
model.

Each of the aforementioned components (the controls, policy, renderer, inference
module, and logger) are fully customizable and can be extended or replaced by the
user without altering the core code of 3DB . For example, while 3DB supports more
than 10 types of controls out-of-the-box, users can add custom ones (e.g., geometric
transformations) by implementing an abstract function that maps a 3D state and a set
of parameters to a new state. Similarly, 3DB supports debugging classification and
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object detection models by default, and by implementing a custom evaluator module,
users can extend support to a wide variety of other vision tasks and models.
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Figure 3-3: An overview of the 3DB workflow: First, the user specifies a set of 3D
object models and environments to use for debugging. The user also enumerates
a set of (in-built or custom) transformations, known as controls, to be applied by
3DB while rendering the scene. Based on a user-specified search policy over all these
controls (and their compositions), 3DB then selects the exact scenes to render. The
computer vision model is finally evaluated on these scenes and the results are logged
in a user-friendly manner in a custom dashboard.

3.3 Debugging and analyzing models with 3DB

In this section, we illustrate through case studies how to analyze and debug vision
models with 3DB . In each case, we follow the workflow outlined in Section 3.2—
importing the relevant objects, selecting the desired transformations (or constructing
custom ones), selecting a search policy, and finally analyzing the results.

In all our experiments, we analyze a ResNet-18 [He+16] trained on the ImageNet
[Rus+15] classification task (its validation set accuracy is 69.8%). Note that 3DB
is classifier-agnostic (i.e., ResNet-18 can be replaced with any PyTorch classification
module), and even supports object detection tasks. For our analysis, we collect 3D
models for 16 ImageNet classes (see Appendix B.4 for more details on each experiment).
We ensure that in “clean” settings, i.e., when rendered in simple poses on a plain white
background, the 3D models are correctly classified at a reasonable rate (cf. Table 3.1)
by our pre-trained ResNet.
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banana baseball bowl drill golf ball hammer lemon mug

Simulated accuracy (%) 96.8 100.0 17.5 63.3 95.0 65.6 100.0 13.4
ImageNet accuracy (%) 82.0 66.0 84.0 40.0 82.0 54.0 76.0 42.0

orange pitcher base power drill sandle shoe spatula teapot tennis ball

Simulated accuracy (%) 98.5 7.9 87.5 88.0 59.2 76.1 47.8 100.0
ImageNet accuracy (%) 72.0 52.0 40.0 66.0 82.0 18.0 80.0 68.0

Table 3.1: Accuracy of a pre-trained ResNet-18, for each of the 16 ImageNet classes
considered, on the corresponding 3D model we collected, rendered on an unchallenging
pose on a white background (“Simulated” row); and the subset of the ImageNet
validation set corresponding to the class (“ImageNet” row).

3.3.1 Sensitivity to image backgrounds

We begin our exploration by using 3DB to confirm ImageNet classifiers’ reliance
on background signal, as pinpointed by several recent in-depth studies [Zha+07;
ZXY17; Xia+21b]. Out-of-the-box, 3DB can render 3D models onto HDRI files
using image-based lighting; we downloaded 408 such background environments from
hdrihaven.com. We then used the pre-packaged “camera” and “orientation” controls
to render (and evaluate our classifier on) scenes of the pre-collected 3D models at
random poses, orientations, and scales on each background. Figure 3-5 shows some
(randomly sampled) example scenes generated by 3DB for the “coffee mug” model.

Analyzing a subset of backgrounds. In Figure 3-4, we visualize the performance
of a ResNet-18 classifier on the 3D models from 16 different ImageNet classes—in
random positions, orientations, and scales—rendered onto 201 of the collected HDRI
backgrounds. One can observe that background dependence indeed varies widely across
different objects—for example, the “orange” and “lemon” 3D models depend much
more on background than the “tennis ball.” We also find that certain backgrounds
yield systemically higher or lower accuracy; for example, average accuracy on “gray
pier” is five times lower than that of “factory yard.”

Analyzing all backgrounds with the “coffee mug” model. The previous
study broadly characterizes classifier sensitivity classifiers to different models and
environments. Now, to gain a deeper understanding of this sensitivity, we focus our
analysis only a single 3D model (a “coffee mug”) rendered in all 408 environments. We
find that the highest-accuracy backgrounds had tags such as skies, field, and mountain,

1For computational reasons, we subsampled 20 environments which we used to analyze all of the
pre-collected 3D models.
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Figure 3-4: Visualization of accuracy on controls from Section 3.3.1. (Left) We
compute the accuracy of the model conditioned on each object-environment pair. For
each environment on the x-axis, we plot the variation in accuracy (over the set of
possible objects) using a boxplot. We visualize the per-object accuracy spread by
including the median line, the first and third quartiles box edges (the interval between
which is called the inter-quartile range, IQR), the range, and the outliers (points
that are outside the IQR by 3/2|IQR|). (Right) Using the same format, we track
how the classified object (on the x-axis) impacts variation in accuracy (over different
environments) on the y-axis.

while the lowest-accuracy backgrounds had tags indoor, city, and building.
At first, this observation seems to be at odds with the idea that the classifier relies

heavily on context clues to make decisions. After all, the backgrounds where the
classifier seems to perform well (poorly) are places that we would expect a coffee mug
to be rarely (frequently) present in the real world. Visualizing the best and worst
backgrounds in terms of accuracy (Figure 3-6) suggests a possible explanation for this:
the best backgrounds tend to be clean and distraction-free. Conversely, complicated
backgrounds (e.g., some indoor scenes) often contain context clues that make the mug
difficult for models to detect. Comparing a “background complexity” metric (based on
the number of edges in the image) to accuracy (Figure 3-7) supports this explanation:
mugs overlaid on more complex backgrounds are more frequently misclassified by the
model. In fact, some specific backgrounds even result in the model “hallucinating”
objects; for example, the second-most frequent predictions for the pond and sidewalk
backgrounds were birdhouse and traffic light respectively, despite the fact that neither
object is present in the environment.

Zoom/background interactions case study: the advantage of composable
controls. Finally, we leverage 3DB ’s composability to study interactions between
controls. In Figure 3-8 we plot the mean classification accuracy of our “orange” model
while varying background and scale factor. We, for example, find that while the model
generally is highly accurate at classifying “orange” with a 2x zoom factor, such a zoom
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bucket (90.4%) coffee mug (42.6%) cup (15.2%)

plunger (14.3%) coffeepot (49.5%) bucket (61.9%)

Figure 3-5: Examples of
rendered scenes of the coffee
mug 3D model in different
environments, labeled with
a pre-trained model’s top
prediction.

34% 31% 30%

1% 2% 2%

Figure 3-6: (Top) Best and (Bottom) worst
background environments for classification of the
coffee mug, and their respective accuracies (aver-
aged over camera positions and zoom factors).

factor induces failure in a well lit mountainous environment (“kiara late-afternoon”)—a
fine-grained failure mode that we would not catch without explicitly capturing the
interaction between background choice and zoom.

3.3.2 Texture-shape bias

We now demonstrate how 3DB can be straightforwardly extended to discover more
complex failure modes in computer vision models. Specifically, we will show how to
rediscover the “texture bias” exhibited by ImageNet-trained neural networks [Gei+19b]
in a systematic and (near-)photorealistic way. Geirhos et al. [Gei+19b] fuse pairs of
images—combining texture information from one with shape and edge information
from the other—to create so-called “cue-conflict” images. They then demonstrate that
on these images (cf. Figure 3-9), ImageNet-trained convolutional neural networks
(CNNs) typically predict the class corresponding to the texture component, while
humans typically predict based on shape features.

Cue-conflict images identify a concrete difference between human and CNN decision
mechanisms. However, the fused images are unrealistic and can be cumbersome to
generate (e.g., even the simplest approach uses style transfer [GEB16]). 3DB gives us
an opportunity to rediscover the influence of texture in a more streamlined fashion.

Specifically, we implement a control (now pre-packaged with 3DB) that replaces
an object’s texture with a random (or user-specified) one. We use this control to
create cue-conflict objects out of eight 3D models2 and seven animal-skin texture

2Object models: mug, helmet, hammer, strawberry, teapot, pitcher, bowl, lemon, banana and
spatula
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Figure 3-7: Relation between the com-
plexity of a background and its average
accuracy. Here complexity is defined as
the average pixel value of the image after
applying an edge detection filter.
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Figure 3-9: Texture vs. shape cue-
conflict images generated by Geirhos
et al. [Gei+19b] (top) and 3DB (bot-
tom).
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Figure 3-10: Model accuracy on previ-
ously correctly-classified images after
their texture is altered via 3DB , as a
function of texture-type.
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images3 (i.e., 56 objects in total). We test our pre-trained ResNet-18 on images of
these objects rendered in a variety of poses and camera locations. Figure 3-9 displays
sample cue-conflict images generated using 3DB .

Our study confirms the findings of Geirhos et al. [Gei+19b] and indicates that
texture bias indeed extends to (near-)realistic settings. For images that were originally
correctly classified (i.e., when rendered with the original texture), changing the texture
reduced accuracy by 90-95% uniformly across textures (Figure 3-10). Furthermore, we
observe that the model predictions usually align better with the texture of the objects
rather than their geometry (Figure 3-11). One notable exception is the pitcher object,
for which the most common prediction (aggregated over all textures) was vase. A
possible explanation for this (based on inspection of the training data) is that due to
high variability of vase textures in the train set, the classifier was forced to rely more
on shape.
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Figure 3-11: Distribution of classifier predictions after the texture of the 3D object
model is altered. In the top row, we visualize the most frequently predicted classes for
each texture (averaged over all objects). In the bottom row, we visualize the most
frequently predicted classes for each object (averaged over all textures). We find that
the model tends to predict based on the texture more often than based on the object.

3.3.3 Orientation and scale dependence

Image classification models are brittle to object orientation in both real and simulated
settings [KMF18; Eng+19b; Bar+19; Alc+19]. As was the case for both background
and texture sensitivity, reproducing and extending such observations is straightforward
with 3DB . Once again, we use the built-in controls to render objects at varying poses,
orientations, scales, and environments before stratifying on properties of interest.

3Texture types: cow, crocodile, elephant, leopard, snake, tiger and zebra
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Figure 3-12: Model sensitivity to pose. The heatmaps denote the accuracy of the
model in predicting the correct label, conditioned on a specific part of the object being
visible in the image. Here, red and blue denotes high and low accuracy respectively.

Indeed, we find that classification accuracy is highly dependent on object orientation
(Figure 3-13 left) and scale (Figure 3-13 right). However, this dependence is not
uniform across objects. As one would expect, the classifier’s accuracy is less sensitive
to orientation on more symmetric objects (like “tennis ball” or “baseball”), but can
vary widely on more uneven objects (like “drill”).

For a more fine-grained look at the importance of object orientation, we can
measure the classifier accuracy conditioned on a given part of each 3D model being
visible. This analysis is once again straightforward in 3DB , since each rendering
is (optionally) accompanied by a UV map which maps pixels in the scene back to
locations on on the object surface. Combining these UV maps with accuracy data
allows one to construct the “accuracy heatmaps” shown in Figure 3-12, wherein each
part of an object’s surface corresponds to classifier accuracy on renderings in which
the part is visible. The results confirm that atypical viewpoints adversely impact
model performance, and also allow users to draw up a variety of testable hypotheses
regarding performance on specific 3D models (e.g., for the coffee mug, the bottom rim
is highlighted in red—is it the case that mugs are more accurately classified when
viewed from the bottom)? These hypotheses can then be investigated further through
natural data collection, or—as we discuss in the upcoming section—through additional
experimentation with 3DB .

3.3.4 Case study: using 3DB to dive deeper

Our heatmap analysis in the previous section (cf. Figure 3-12) showed that classification
accuracy for the mug decreases when its interior is visible. What could be causing this
effect? One hypothesis is that in the ImageNet training set, objects are captured in
context, and thus ImageNet-trained classifiers rely on this context to make decisions.
Inspecting the ImageNet dataset, we notice that coffee mugs in context usually contain
coffee in them. Thus, the aforementioned hypothesis would suggest that the pre-
trained model relies, at least partially, on the contents of the mug to correctly classify
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Figure 3-13: (Left) We compute the accuracy of the model for each object-orientation
pair. For each object on the x-axis, we plot the variation in accuracy (over the set
of possible orientations) using a boxplot. We visualize the per-orientation accuracy
spread by including the median line, the first and third quartiles box edges, the range,
and the outliers. (Right) Using the same format as the left hand plot, we plot how
the classified object (on the x-axis) impacts variation in accuracy (over different zoom
values) on the y-axis.

it. Can we leverage 3DB to confirm or refute this hypothesis?

To test this, we implement a custom control that can render a liquid inside
the “coffee mug” model. Specifically, this control takes water:milk:coffee ratios as
parameters, then uses a parametric Blender shader (cf. Appendix B.5) to render a
corresponding mixture of the liquids into the mug. We used the pre-packaged grid
search policy, (programmatically) restricting the search space to viewpoints from
which the interior of the mug was visible.

The results of the experiment are shown in Figure 3-14. It turns out that the
model is indeed sensitive to changes in liquid, supporting our hypothesis: model
predictions stayed constant (over all liquids) for only 20.7% of the rendered viewpoints
(cf. Figure 3-14b). The 3DB experiment provides further support for the hypothesis
when we look at the correlation between the liquid mixture and the predicted class:
Figure 3-14a visualizes this correlation in a normalized heatmap (for the unnormalized
version, see Figure B-5b in the Appendix B.5). We find that the model is most likely
to predict “coffee mug” when coffee is added to the interior (unsurprisingly); as the
coffee is mixed with water or milk, the predicted label distribution shifts towards
“bucket” and “cup” or “pill bottle,” respectively. Overall, our experiment suggests that
current ResNet-18 classifiers are indeed sensitive to object context—in this case, the
fluid composition of the mug interior. More broadly, this illustration highlights how a
system designer can quickly go from hypothesis to empirical verification with minimal
effort using 3DB . (In fact, going from the initial hypothesis to Figure 3-14 took less
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Figure 3-14: Testing classifier sensitivity to context: Figure (a) shows the correlation
of the liquid mixture in the mug on the prediction of the model, averaged over random
viewpoints (see Figure B-5b for the raw frequencies). Figure (b) shows that for a fixed
viewpoint, model predictions are unstable with respect to the liquid mixture. Figure
(c) shows examples of rendered liquids (water, black coffee, milk, and milk/coffee mix).

than a single day of work for one author.)

3.4 Physical realism

The previous sections have demonstrated various ways in which we can use 3DB to
obtain insights into model behavior in simulation. Our overarching goal, however, is
to understand when models will fail in the physical world. Thus, we would like for the
insights extracted by 3DB to correspond to naturally-arising model behavior, and not
just artifacts of the simulation itself 4. To this end, we now test the physical realism
of 3DB : can we understand model performance (and uncover vulnerabilities) on real
photos using only a high-fidelity simulation?

To answer this question, we collected a set of physical objects with corresponding
3D models, and set up a physical room with its corresponding 3D environment. We
used 3DB to identify strong points and vulnerabilities of a pre-trained ImageNet
classifier in this environment, mirroring our methodology from Section 3.3. We then
recreated each scenario found by 3DB in the physical room, and took photographs
that matched the simulation as closely as possible. Finally, we evaluated the physical
realism of the system by comparing models’ performance on the photos (i.e., whether
they classified each photo correctly) to what 3DB predicted.

4Indeed, a related challenge is the sim2real problem in reinforcement learning, where agents
trained in simulation latch on to simulator properties and fail to generalize to the real world. In both
cases, we are concerned about artifacts or spurious correlations that invalidate conclusions made in
simulation.
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Setup. We performed the experiment in the studio room shown in Appendix Figure B-
3b for which we obtained a fairly accurate 3D model (cf. Appendix Figure B-3a).
We leverage the YCB [Cal+15] dataset to guide our selection of real-world objects, for
which 3D models are available. We supplement these by sourcing additional objects
(from amazon.com) and using a 3D scanner to obtain corresponding meshes. 5

We next used 3DB to analyze the performance of a pre-trained ImageNet ResNet-
18 on the collected objects in simulation, varying over a set of realistic object poses,
locations, and orientations. For each object, we selected 10 rendered situations: five
where the model made the correct prediction, and five where the model predicted
incorrectly. We then tried to recreate each rendering in the physical world. First
we roughly placed the main object in the location and orientation specified in the
rendering, then we used a custom-built iOS application (see Appendix B.2) to more
precisely match the rendering with the physical setup.

Results. Figure 3-15 visualizes a few samples of renderings with their recreated
physical counterparts, annotated with model correctness. Overall, we found a 85%
agreement rate between the model’s correctness on the real photos and the synthetic
renderings—agreement rates per class are shown in Figure 3-15. Thus, despite
imperfections in our physical reconstructions, the vulnerabilities identified by 3DB
turned out to be physically realizable vulnerabilities (and conversely, the positive
examples found by 3DB are usually also classified correctly in the real world). We
found that objects with simpler/non-metallic materials (e.g., the bowl, mug, and
sandal) tended to be more reliable than metallic objects such as the hammer and drill.
It is thus possible that more precise texture tuning of 3D models object could increase
agreement further (although a more comprehensive study would be needed to verify
this).

3.5 Related work

3DB builds on a growing body of work that looks beyond accuracy-based benchmarks
in order to understand the robustness of modern computer vision models and their
failure modes. In particular, our goal is to provide a unified framework for reproducing
these studies and for conducting new analyses. In this section, we discuss the existing

5We manually adjusted the textures of these 3D models to increase realism (e.g., by tuning
reflectance or roughness). In particular, classic photogrammetry is unable to model the metallicness
and reflectivity of objects. It also tends to embed reflections as part of the color of the object
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Figure 3-15: (Top) Agreement, in terms of model correctness, between model pre-
dictions within 3DB and model predictions in the real world. For each object, we
selected five rendered scenes found by 3DB that were misclassified in simulation,
and five that were correctly classified; we recreated and deployed the model on each
scene in the physical world. The positive (resp., negative) predictive value is rate at
which correctly (resp. incorrectly) classified examples in simulation were also correctly
(resp., incorrectly) classified in the physical world. (Bottom) Comparison between
example simulated scenes generated by 3DB (first row) and their recreated physical
counterparts (second row). Border color indicates whether the model was correct on
this specific image.

research in robustness, interpretability, and simulation that provide the context for
our work.

Adversarial robustness. Several recent works propose analyzing model robustness
by crafting adversarial, i.e., worst-case, inputs. For example, [Sze+14] discovered that a
carefully chosen but imperceptible perturbation suffices to change classifier predictions
on virtually any natural input. Subsequently, the study of such “adversarial examples”
has extended far beyond the domain of image classification: e.g., recent works have
studied worst-case inputs for object detection and image segmentation [Eyk+18;
Xie+17; Fis+17]; generative models [KFS18]; and reinforcement learning [Hua+17a].
More closely related to our work are studies focused on three-dimensional or physical-
world adversarial examples [Eyk+18; Bro+18; Ath+18; Xia+19a; Liu+19]. These
studies typically use differentiable rendering and perturb object texture, geometry, or
lighting to induce misclassification. Alternatively, Li, Schmidt, and Kolter [LSK19]
modify the camera itself via an adversarial camera lens that consistently cause models
to misclassify inputs.

In our work, we have primarily focused on using non-differentiable but high-
fidelity rendering to analyze a more average-case notion of model robustness to
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semantic properties such as object orientation or image backgrounds. Nevertheless,
the extensibility of 3DB means that users can reproduce such studies (by swapping out
the Blender rendering module for a differentiable renderer, writing a custom control,
and designing a custom search policy) and use our framework to attain a more realistic
understanding of the worst-case robustness of vision models.

Robustness to synthetic perturbations. Another popular approach to analyzing
model robustness involves applying transformations to natural images and measuring
the resultant changes in model predictions. For example, Engstrom et al. [Eng+19b]
measure robustness to image rotations and translations; Geirhos et al. [Gei+19b]
study robustness to style transfer (i.e., texture perturbations); and a number of
works have studied robustness to common corruptions [HD19; Kan+19], changes in
image backgrounds [ZXY17; Xia+21b], Gaussian noise [For+19], and object occlusions
[RZT18], among other transformations.

A more closely related approach to ours analyzes the impact of factors such as
object pose and geometry by applying synthetic perturbations in three-dimensional
space [HG19; Shu+20; HMG18; Alc+19]. For example, Hamdi and Ghanem [HG19]
and Jain et al. [Jai+20] use a neural mesh renderer [KUH18] and Redner [Li+18],
respectively, to render images to analyze the failure modes of vision models. Alcorn
et al. [Alc+19] present a system for discovering neural networks’ failure modes as a
function of object orientation, zoom, and (two-dimensional) background and perform
a thorough study on the impact of these factors on model decisions.

3DB draws inspiration from the studies listed above and tries to provide a unified
framework for detecting arbitrary model failure modes. For example, our framework
provides explicit mechanisms for users to make custom controls and custom search
strategies, and includes built-in controls designed to range across many possible failure
modes encompassing nearly all of the aforementioned studies (cf. Section 3.3). Users
can also compose different transformations in 3DB to get an even more fine-grained
understanding of model robustness.

Other types of robustness. An oft-studied but less related branch of robustness
research tests model performance on unaltered images from distributions that are
close to but not identical to that of the training set. Examples of such investigations
include studies of newly collected datasets such as ImageNet-v2 [Rec+19; Eng+20;
Tao+20], ObjectNet [Bar+19], and others (e.g., [Hen+19; Sha+19]). In a similar vein,
Torralba and Efros [TE11] study model performance when trained on one standard

58



dataset and tested on another. We omit a detailed discussion of these works since 3DB
is synthetic by nature (and thus less photorealistic than the aforementioned studies).
As shown in Section 3.4, however, 3DB is indeed realistic enough to be indicative of
real-world performance.

Interpretability, counterfactuals, and model debugging. 3DB can be cast as
a method for debugging vision models that provides users fine-grained control over the
rendered scenes and thus enables them to find specific modes of failure (cf. Sections
3.3 and 3.4). Model debugging is also a common goal in intepretability research, where
methods generally seek to provide justification for model decisions based on either
local features (i.e., specific to the image at hand) or global ones (i.e., general biases
of the model). Local explanation methods, including saliency maps [SVZ13; DG17;
STY17], surrogate models such as LIME [RSG16], and counterfactual image pairs
[FV17; ZXY17; Goy+19], can provide insight into specific model decisions but can
also be fragile [GAZ19; AJ18] or misleading with respect to global model behaviour
[Ade+18; STY17; Ade+20; Lip18]. Global interpretability methods include concept-
based explanations [Bau+17; Kim+18; Yeh+20; WSM21] (though such explanations
can often lack causal links to the features models actually use [Goy+19]), but also
encompass many of the robustness studies highlighted earlier in this section, which
can be cast as uncovering global biases of vision models.

Simulated environments and training data. Finally, there has been a long
line of work on developing simulation platforms that can serve as both a source of
additional (synthetic) training data, and as a proxy for real-world experimentation.
Such simulation environments are thus increasingly playing a role in fields such as
computer vision, robotics, and reinforcement learning (RL). For instance, OpenAI
Gym [Bro+16] and DeepMind Lab [Bea+16] provide simulated RL training environ-
ments with a fleet of control tasks. Other frameworks such as UnityML [Jul+20] and
RoboSuite [Zhu+20] were subsequently developed to cater to more complex agent
behavior.

In computer vision, the Blender rendering engine [Ble20] has been used to generate
synthetic training data through projects such as BlenderProc [Den+19] and BlendTorch
[Hei+20]. Similarly, HyperSim [RP] is a photorealistic synthetic dataset focused on
multimodal scene understanding. Another line of work learns optimal simulation
parameters for synthetic data generation according to user-defined objectives, such
as minimizing the distribution gap between train and test environments [Kar+19b;
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DKF20b; Beh+20]. Simulators such as AirSim [Sha+18], FlightMare [Son+20], and
CARLA [Dos+17] (built on top of video game engines Unreal Engine and Unity)
allow for the collection of synthetic training data for perception and control. In
robotics, simulators include environments that model typical household layouts for
robot navigation [Kol+17; Wu+18; Pui+18], interactive ones with objects that can be
actuated [Xia+18; Xia+20a; Xia+20b], and those that include support for tasks such
as question answering and instruction following [Sav+19].

While some of these platforms may share components with 3DB (e.g., the physics
engine, photorealistic rendering), they do not share the same goals as 3DB , i.e.,
diagnosing specific failures in existing models.

3.6 Conclusion

In this work, we introduced 3DB, a unified framework for diagnosing failure modes in
vision models based on high-fidelity rendering. We demonstrate the utility of 3DB by
applying it to a number of model debugging use cases—such as understanding classifier
sensitivities to realistic scene and object perturbations, and discovering model biases.
Further, we show that the debugging analysis done using 3DB in simulation is actually
predictive of model behavior in the physical world. Finally, we note that 3DB was
designed with extensibility as a priority; we encourage the community to build upon
the framework so as to uncover new insights into the vulnerabilities of vision models.
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Part II

Improving model robustness and
performance
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Chapter 4

Improving performance by finding
target-aligned subsets of auxiliary
data

4.1 Introduction

The use of larger datasets has been a key driver of recent progress in machine
learning. Indeed, language and computer vision models trained on datasets containing
billions of documents [Bro+20] and images [Sun+17; Mah+18] make the classic
ImageNet [Rus+15] benchmark look small in comparison. So, when training machine
learning models, there is a strong inclination to use as much data as possible. This can
amount to the costly process of collecting and labeling more data, or incorporating
auxiliary data from related but separate datasets.

Indeed, auxiliary datasets can be used to improve generalization [Pen+19; Bee+20]
and out of distribution robustness [Sch+20a; Mår+20]. They can also give rise
to learning richer representations [MPR16; Qiu+21] and better initializations via
pretraining [Rad+18; Car+19]. All of these reinforce the conventional wisdom that
more data leads to better performance [Ros+20; Kap+20]. As a result, when given the
option of using an auxiliary dataset, a typical strategy is to use all of it.

However, blindly using auxiliary data turns out to hurt model performance in
certain cases. For example, pooling medical imaging data from multiple hospitals causes
models to detect hospital sources instead of just medical symptoms [Zec+18]. Large
language datasets can over-represent certain populations while excluding marginalized
populations [Ben+21]. The widely used ImageNet benchmark [Rus+15] is often used
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as an auxiliary dataset for other tasks, yet was shown to contain spurious correlations
such as men holding fish [Xia+21a]. In light of the fact that auxiliary data may include
irrelevant or harmful biases, how can we best use auxiliary data for a particular task
while avoiding potential downsides?

To answer this question, we consider the task of identifying a subset of the auxiliary
data that is most aligned with the target data, which we call the dataset projection
problem. As we will demonstrate, using the “right” subset of auxiliary data can
be important for certain target tasks. In particular, intelligently and automatically
selected subsets of auxiliary data have the potential to decrease sources of unwanted
biases, amplify useful features, and ultimately improve task performance.

Our contributions. In this paper, we analyze the limitations of indiscriminately
using auxiliary data, and develop methods to better leverage such data. Specifically:

1. Through three experiments, we exhibit scenarios where using the entire auxiliary
dataset can hurt model performance, and demonstrate how manually selecting
what auxiliary data to use improves performance.

2. We formulate the problem of projecting datasets, and develop methods to solve
this problem that can automatically find target-aligned subsets of auxiliary
datasets.

3. We demonstrate on a variety of vision and language tasks that our methods
find projected datasets that are better approximations of target datasets than
the original auxiliary dataset. In particular, we find that these datasets can
improve downstream performance when augmenting the target dataset, even
when compared to the original auxiliary dataset.

4. Our framework enables a new form of analysis that uses projections of auxiliary
data to reveal insights about the composition of the target dataset.

4.2 Can indiscriminate use of auxiliary datasets hurt

performance?

The current trend in machine learning is to use more data when it is available. However,
recent studies have raised concerns about the unintended consequences of blindly
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Figure 4-2: Accuracy of a linear classifier
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ased auxiliary data for the Gaussian exam-
ple in Figure 4-3. Increasing the amount
of auxiliary data causes the classifier to
lose accuracy. Adding target-aligned data
can mitigate the bias and improve perfor-
mance over the original training data.

incorporating new dataset sources. For instance, pneumonia detectors learned to
identify hospital-specific markers rather than pneumonia itself when data was pooled
[Zec+18]. Furthermore, combining data from multiple surveys can introduce new
sources of sampling error and nonresponse bias [LR17].

Motivating example with CIFAR10 and ImageNet. The consequences of using
auxiliary data manifest themselves in commonly-studied machine learning settings as
well. Suppose we want to train a CIFAR10 classifier, but only have a limited amount
of CIFAR10 data. To improve performance, we can augment our limited CIFAR10
dataset using relevant classes of ImageNet as auxiliary data. As we increase the
amount of ImageNet data, performance initially improves (see blue curve in Figure 4-
1). However, we find that adding too much ImageNet data degrades performance
instead.

Why does this happen? It turns out that the model is overfitting to the patterns
in the ImageNet data. This trend becomes even clearer when we train a model only
on the data sourced from ImageNet (see orange curve in Figure 4-1). While some
amount of ImageNet data alone can provide useful features for CIFAR10, too much
ImageNet data introduces irrelevant patterns that hurt performance.
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(a) Training data
(b) Training + auxiliary
data

(c) Training + target-
aligned data

Figure 4-3: A synthetic example showing how auxiliary data can harm performance.
The optimal and estimated linear classifiers are plotted in the solid and dashed
lines respectively. (a) Training data is sampled from Gaussian distributions, and (b)
auxiliary data comes from a skewed Gaussian that biases the estimated classifier.
(c) Subsampling the auxiliary data to be aligned with training data can reduce the
auxiliary bias and improve performance.

Linear example. To better understand this phenomenon, we construct a simplified
linear example which replicates the empirical trends observed with CIFAR10 and
ImageNet. Consider a binary classification problem with labels 𝑦 ∈ {−1,+1} and
data 𝑥 drawn from a class conditional Gaussian distribution with mean 𝑦 · 𝜇:

𝑥 ∼ 𝒩 (𝑦 · 𝜇, 𝐼) (4.1)

With only a few training datapoints, the estimated linear classifier can have high error
(see Figure 4-3a). To improve performance, we can augment the training data with an
auxiliary dataset. In this case, our auxiliary data 𝑧 comes from a skewed and rotated
Gaussian distribution instead:

𝑧 ∼ 𝒩 (𝑦 · 𝜇,Σ) (4.2)

where Σ is different from the identity. Adding too much of this auxiliary data biases
the estimated linear classifier and actually hurts performance (see Figure 4-3b).

However, not all of the auxiliary data is harmful. Ideally, we would like to
keep auxiliary data that is most aligned with our original training dataset, and
discard irrelevant data. A natural way to achieve this is to fit multivariate Gaussian
distributions to the training data, and restrict the auxiliary data to those that fall
within a 95% confidence region (see Figure 4-3c). Augmenting the training data with
this target-aligned subset reduces the bias and improves performance, as measured in
Figure 4-2.
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(a) Biased dataset and unbiased ideal sub-
set of synthetic images generated via 3DB.
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Figure 4-4: (a) Training on the 15k-image biased dataset (top) results in 7% lower
accuracy than training on the 3k-image unbiased, ideal subset of the dataset (bottom)
when the model is tested on an unbiased test set. (b) Accuracy curves for each training
set.

Controlled synthetic setting. We further recreate this phenomenon in a controlled,
synthetic setting to show that indiscriminately using auxiliary data can be harmful
due to spurious correlations. Our synthetic setting involves rendering photorealistic
images with Blender and the 3DB framework [Lec+21b]. First, we generate a biased
auxiliary dataset of cats and dogs, where 90% of cats are indoors and 90% of dogs
are outdoors. For the target test dataset, we generate an unbiased dataset where the
background is not correlated with the class at all. Training models on the full auxiliary
dataset (containing the spurious correlation) leads to an average test accuracy of
90.4% while training models on a manually chosen subset of the auxiliary dataset
(without the spurious correlation) leads to a significantly higher average test accuracy
of 97.6%. Here, using strictly more data leads to worse performance due to the
spurious background correlation that models learn from the full auxiliary dataset.
Figure 4-4 shows examples of the biased auxiliary data and the unbiased subset.

Full details for reproducing all three of these examples are in Appendix C.1.

4.3 Dataset projection

Motivated by the limits of indiscriminately using auxiliary datasets, we aim to answer:
How can we extract the relevant portions of auxiliary datasets for a target dataset?
Unlike two of the three examples in Section 4.2 (linear example and the controlled
synthetic example), real-world datasets do not always have clear patterns for manually
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filtering out irrelevant auxiliary data. Instead, we would like an automatic way to
extract a target-aligned subset of auxiliary data.

More formally, let 𝑝 be the target distribution, and let 𝑞 be the auxiliary distribution.
We assume that 𝑞 is composed of 𝑘 source distributions, 𝑞1, . . . , 𝑞𝑘. Our goal is to
find a linear combination of source distributions {𝑞𝑖} that best matches the target
distribution 𝑝. We can formulate this task as the following optimization problem:

min
𝛼

E𝑋∼𝑝,𝑌∼𝑞 [𝑑(𝑋, 𝑌 )]

subject to 𝑞 =
𝑘∑︁

𝑖=1

𝛼𝑖𝑞𝑖,

𝑘∑︁
𝑖=1

𝛼𝑖 = 1, 𝛼𝑖 ≥ 0
(4.3)

where 𝑑 is a distance metric over datasets, (𝑋, 𝑌 ) are datasets sampled from (𝑝, 𝑞),
and 𝛼𝑖 denotes the proportion of each source distribution 𝑞𝑖 used for approximating
the target distribution 𝑝. Intuitively, this can be thought of as “projecting” the target
distribution 𝑝 onto the space spanned by source distributions 𝑞𝑖. Hence, we refer to
this optimization problem as dataset projection.

Source distributions. To apply our dataset projection framework, an auxiliary
distribution 𝑞 needs to be split into multiple source distributions 𝑞𝑖. How can we get
these source distributions? In supervised settings, a natural way to split an auxiliary
dataset is to use existing class or attribute labels. In completely unsupervised settings,
we can automatically split an auxiliary distribution with unsupervised clustering
methods. Finally, labels can be combined with clustering methods to generate even
finer-grained source distributions. Crucially, our framework can project any auxiliary
dataset onto a target dataset, including those with different labels or no labels at all.
We defer a detailed discussion of these splitting strategies for dataset projection to
Appendix C.2.

Distance metric. Our dataset projection framework requires a metric to measure
the distance between two datasets. We employ the Maximum Mean Discrepancy
(MMD) score [Gre+12], a statistic that measures the similarity of two distributions.
This metric has been successfully used in prior works to learn generative models
[Kar+19a; DRG15] and detect distribution shift [RGL19]. In Appendix C.2, we
describe in detail how we compute this distance metric.
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Algorithm 1 Active set algorithm for projecting datasets with soft active set estimate
𝐴𝑖

1: 𝛼0
𝑖 = 1/𝑘, 𝐴𝑖 = 0.5 for 𝑖 = 1 . . . 𝑘 // Initialize feasible point and soft active set

estimate
2: for 𝑡 = 0, 1, . . . do
3: if 𝛼𝑡 is stationary point then
4: Return 𝛼𝑡

5: end if
6: 𝑔 = ∇𝑓(𝛼𝑡) // Estimate numerical gradient of the dataset projection objective

7: (�̃�𝑡, 𝐴𝑡) = DampedUpdate(𝛼𝑡, 𝐴𝑡, 𝑔) // Active set update
8: (𝛼𝑡+1, 𝐴𝑡+1) = SearchUpdate(�̃�𝑡, 𝐴𝑡, 𝑔) // Line search update
9: end for

Solving the dataset projection problem. Solving the dataset projection
problem has several challenges. First, there is a simplex constraint on the optimization
variables 𝛼. Second, the objective is both stochastic and non-differentiable with
respect to the optimization variables 𝛼. To tackle this problem, we develop two
numerical solvers: an active set solver motivated by simplex optimization methods
with theoretical convergence guarantees, and a projected gradient descent (PGD)
solver based on the widely used proximal method for constrained minimization. In
practice, the active set solver converges faster to sparser solutions and tends to perform
better, while the PGD solver is more stable but slower to converge. We provide a brief
summary of the active set solver in Algorithm 1, and give a more detailed discussion
of the details of each solver, how we handle these challenges, and their corresponding
strengths and differences in Appendix C.2.

4.4 Projected datasets in practice

How well does our framework for projecting datasets work empirically? First, we
perform an extensive evaluation of our framework, in order to validate that our
projected datasets are indeed more target-aligned than the original auxiliary datasets.
We then highlight potential use-cases for projected datasets. In particular, we find
that projected datasets can improve downstream performance and provide insights on
the composition of the target dataset.

Experimental setup. Our benchmark for projecting datasets spans five vision
datasets for image classification and five language datasets for sentiment analysis,
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Domain Dataset

Vision

CIFAR10 [Kri09]
STL10 [Ada11]

Oxford-IIIT Pet [Par+12]
ImageNet [Rus+15]

3DB [Lec+21b]

Language

SST [Soc+13]
Yelp [ZZL15]

Emoji [Bar+18]
Emotion [Moh+18]

DailyDialog [Cha+20]

Table 4.1: All datasets used
in our dataset projection bench-
mark.

Target 
Train Data

Target 
Test Data

Projected 
Data

Auxiliary 
Data

Dataset 
Projection

Train

Test

Figure 4-5: Pipeline for validating alignment
and augmenting target data via training. After
projecting onto the auxiliary dataset, we can
(1) train a model on the projected data to vali-
date target-alignment and (2) augment target
training data to improve test performance.

summarized in Table 4.1. Each scenario in the benchmark consists of one auxiliary
dataset and one target dataset, resulting in a total of 36 scenarios. In all scenarios,
we use our framework to project each class from the target dataset onto the auxiliary
dataset, using either our active set or PGD solver, and compare to the random baseline
of uniformly using all sources (i.e. 𝛼𝑖 = 1/𝑘 for 𝑖 = 1 . . . 𝑘). The complete description
of the experimental setup and corresponding datasets is deferred to Appendix C.3.

4.4.1 Validating alignment with the target dataset

To solve the dataset projection problem from Equation (4.3), our framework aims to
maximize alignment with the target dataset. But how can we validate whether our
solvers actually achieve this goal?

To this end, we leverage a suite of metrics that quantify the alignment of a projected
dataset with the target dataset. Note that it may not always be possible to reach
perfect alignment with a projected dataset. This can occur when the auxiliary and
target datasets are too distinct, or if the sources are too coarse. Nonetheless, we
can still project datasets with our framework to find the most target-aligned subset.
In this section, we run experiments to validate whether projected datasets are more
target-alignment than the original auxiliary dataset.

Measuring target-alignment via training. One approach to validate our pro-
jected datasets is to train a model on the projected data, and evaluate that model on
the target dataset, as depicted in Figure 4-5. Intuitively, a better alignment with the
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Auxiliary Target Random PGD-PD Not PGD-PD AS-PD Not AS-PD

ImageNet

3DB

27.0± 5.0 22.2± 1.7 16.3± 2.4 29.5± 1.7 22.1± 1.6
CIFAR10 30.8± 3.7 32.7± 4.5 19.6± 3.1 35.4± 1.0 23.8± 0.9

Oxford-IIIT 66.8± 8.8 68.4± 14.4 55.9± 12.8 71.2± 8.0 56.3± 12.1
STL10 12.6± 4.0 34.8± 3.5 5.7± 4.0 37.7± 4.0 12.2± 3.4

Table 4.2: Approximating target datasets with auxiliary data. In this experiment, we
train on auxiliary data and test on target data. Higher test accuracy corresponds to
better approximation quality. AS-PD typically performs the best, and PGD-PD also
typically outperforms Random. The complementary subsets of Not AS-PD and Not
PGD-PD often perform worse than Random, as expected.

target dataset should lead to better accuracy. Indeed, we find that our framework
can find projections that are more accurate at predicting the target dataset. We
highlight a subset of our vision results in Table 4.2, which shows that models trained
on projected datasets (aligned with the target dataset 3DB) selected with active set
(AS-PD) and PGD (PGD-PD) consistently outperform models trained on the random
baseline (Random). We defer the full table of results evaluating our projections for
the rest of our benchmark to Appendix C.4.

Ablation: alignment of the complementary subset. Since our framework
searches for the most target-aligned subset, we would expect the complementary subset
to have poor alignment with the target dataset. Indeed, this sanity check turns out to
be the case: in Table 4.2 we evaluate the complementary subsets of those chosen by
our framework (Not PGD-PD and Not AS-PD), and find that these subsets have
even worse performance than the random baseline.

Measuring target-alignment via distance metrics. Another natural approach
to evaluate the projection is to calculate the MMD score from Equation (4.3) between
the target dataset and the projected dataset. However, since our framework directly
optimizes for this specific distance, a more holistic approach is to evaluate with
additional distance metrics not used in our framework. To validate our results, we
use distance metrics from [ZLB17] for the vision settings and similarity metrics for
the natural language settings [MRS10]. We confirm in Figure 4-6 that the projected
datasets are indeed closer to the target than the original auxiliary dataset. This
improvement in target approximation holds for nearly all choices of the auxiliary
and target datasets, which we evaluate and plot for the rest of our benchmark in
Appendix C.4.
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Figure 4-6: We validate that projected datasets have lower distance to the target
dataset, using additional distance metrics. These metrics are (left) 1D-statistics
based on contrast, luminance, and random filter response (RFR) for vision datasets
and (right) similarity metrics based on TF-IDF and Jaccard coefficients for language
datasets.

Auxiliary (ImageNet) Projected (ImageNet) Target (Oxford-IIIT Pet)

Figure 4-7: Visually comparing AS-PD (Middle) with random data from the original
auxiliary dataset (Left) and the target dataset (Right). While the full auxiliary
dataset includes wild outdoor cats, the projected dataset consists primarily of indoor
household cats which aligns with the target dataset.

Qualitative comparison via visualization. We provide a qualitative evaluation
of our framework in Figure 4-7, where we plot examples of the subset selected by
AS-PD and compare it to the auxiliary dataset and the target dataset. We find that
the images in AS-PD appear to have much more target-aligned backgrounds and types
of cats when compared to the auxiliary dataset, although differences still do exist
because the target is likely to be different from any subset of the auxiliary dataset.

4.4.2 Effectiveness at augmenting the target dataset

A natural use case for auxiliary data is to augment the target dataset in the hopes of
achieving higher test accuracy. In this section, we measure how useful the projected
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Auxiliary Target Target Only Target + Random Target + PGD-PD Target + AS-PD

ImageNet CIFAR10 43.6± 0.4 54.8± 2.1 55.3± 1.8 57.0± 3.0
CIFAR10 Oxford-IIIT 52.1± 1.9 54.2± 2.5 55.4± 2.0 59.5± 2.9

Oxford-IIIT STL10 54.2± 2.8 54.3± 3.1 65.1± 1.4 61.6± 1.1
Oxford-IIIT 3DB 69.8± 1.6 73.4± 7.2 82.2± 3.3 82.3± 10.2

Table 4.3: Augmenting a target dataset with auxiliary data for image classification.
In this experiment, we add auxiliary data to a target dataset for training, and test on
target data. In most cases, augmenting with AS-PD performs the best.

Auxiliary Target Target Only Target + Random Target + PGD-PD Target + AS-PD

Yelp SST 74.2± 6.0 60.8± 8.9 65.6± 12.0 78.6± 2.9
DailyDialog Emoji 12.4± 3.6 14.0± 3.3 12.8± 2.9 24.4± 1.0

SST Emotion 37.6± 4.3 39.4± 4.1 42.8± 7.8 45.2± 4.7
Emoji Yelp 28.6± 1.9 29.2± 3.0 27.0± 5.4 34.4± 5.7

Emotion DailyDialog 37.4± 6.3 37.6± 5.0 35.0± 8.0 67.4± 6.0

Table 4.4: Augmenting a target dataset with auxiliary data for sentiment analysis. In
this experiment, we add auxiliary data to a target dataset for training, and test on
target data. In most cases, augmenting with AS-PD performs the best.

dataset is for our full experimental benchmark. Specifically, we use the projected
dataset as extra training data (in addition to the target data itself), and evaluate
whether it can increase performance on the target test data, as illustrated in Figure 4-5.
We compare to the baselines of using no auxiliary data (Target Only) and augmenting
uniformly with all auxiliary sources (Target + Random). Tables 4.3, 4.4, and 4.5
highlight a subset of our vision and language results, and the full suite of experiments
are deferred to Appendix C.4.

Augmenting with auxiliary data. We first highlight that augmenting the target
dataset with projected datasets can often improve test performance in both image
classification (see Table 4.3) and sentiment analysis (see Table 4.4). For example,
augmenting STL10 with projected data from Oxford-IIIT (PGD-PD) increases test
accuracy by 11%, compared with a 0% increase when augmenting with random
auxiliary data. Similarly, augmenting DailyDialog with projected data from Emotion
(AS-PD) can increase test accuracy by 30% over both baselines. This demonstrates
that auxiliary data can be used much more effectively to augment existing data for
model training if we first apply dataset projection.

In our full benchmark, AS-PD outperforms Random at augmenting the target
in 10 out of 16 vision settings (Table C.5 in the Appendix) and all 20 language

73



Auxiliary Target DA Random + DA PGD-PD + DA AS-PD + DA

DailyDialog SST 78.4± 3.5 76.2± 4.7 76.0± 2.6 80.8± 2.7
DailyDialog Emoji 22.8± 3.2 23.8± 2.0 23.6± 1.9 25.0± 2.4

Emoji Emotion 50.6± 9.0 52.6± 6.7 52.6± 5.1 59.6± 4.4
Emoji Yelp 32.4± 4.3 33.8± 6.6 33.6± 6.6 36.8± 4.2
Yelp DailyDialog 76.2± 2.0 74.8± 2.9 76.8± 1.5 75.0± 1.8

Table 4.5: Augmenting a target dataset with both auxiliary data and back-translation
for sentiment analysis. We find that combining auxiliary data from AS-PD with data
augmentation (DA) gives the best results, showing that the performance gains of
AS-PD are complementary to data augmentation.

settings (Table C.8 in the Appendix). We find that in most cases, AS-PD tends to
achieve better results over PGD-PD due to its sparser solutions and faster convergence
properties.

Using auxiliary data with traditional data augmentation. Can auxiliary
data be used effectively with more traditional data augmentation techniques? To
measure this, we evaluate our benchmark with TrivialAugment [MH21] for vision
and back-translation augmentation [SHB15] for language. Indeed, we find that the
improvements from augmenting with auxiliary data are complementary to traditional
data augmentation techniques. For example, Table 4.5 highlights a subset of our
language results, which shows that AS-PD combined with traditional data augmenta-
tion (DA) achieves better results than traditional data augmentation alone. We see
similar results in our full benchmark for both vision and language (see Table C.6 and
Table C.9 in the Appendix).

4.4.3 Analyzing the target dataset

In this section, we highlight how our framework can further be used as an analysis tool
for the target dataset. Specifically, the subset of sources identified by our framework
provides a natural description of the composition of the target dataset. For example,
in Figure 4-8, we plot the projection of the Emotion dataset onto the Emoji dataset.
The resulting proportions of the projection informs us about what kinds of Emoji
data is closest to each Emotion class. “Optimistic” emotion data tends to be closest to
data with Christmas tree and sparkling emojis, while “sad” emotion data tends to be
closest to data with crying emojis. Figure 4-9 shows a similar analysis for projections
of cats from various datasets onto ImageNet cats, revealing that CIFAR10 contains
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Figure 4-8: A visualization of the proportions of each Emoji source that are most
aligned with classes of the Emotion dataset (Optimistic and Sad), as identified via
dataset projection. Additional examples showing the projections of the Angry and
Joy classes onto the Emoji dataset are in Appendix C.5.
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Figure 4-9: A visualization of the proportions of each ImageNet cat source that is
most aligned with cat classes from CIFAR10 and STL10, as identified via dataset
projection. Additional examples showing the projections of Oxford-IIIT Pet and 3DB
cats are in Appendix C.5.

primarily household cats, while STL10 also contains cats found in the wild. Additional
examples can be found in Appendix C.5.

4.5 Related work

Dataset projection is related to various methods including dataset pruning [AAP05],
core-set construction [TKC05], and dataset distillation [Wan+18; Ngu+21]. These
methods attempt to reduce the size of a single dataset while still retaining the most
“valuable” training data signal. In contrast, our goal in dataset projection is to match
a target dataset to the span of multiple auxiliary sources.

The use of an auxiliary dataset is related to the field of auxiliary learning [Vin+08;
Zha+14; Mor+18; LDJ19], in which additional tasks are used during training to help
improve performance on a target task. Crucially, these approaches train on auxiliary
tasks alongside the primary task, whereas dataset projection extracts target-aligned
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subsets of auxiliary data without requiring any auxiliary task.
Works have also explored modifying synthetic data generation processes to more

closely resemble a target dataset. Kar et al. [Kar+19a] and Devaranjan, Kar, and Fidler
[DKF20a] used a parameterized graphics engine and probabilistic scene grammars to
match a target dataset of scenes. On the other hand, dataset projection is agnostic to
the way in which auxiliary data is generated and can be used to select from any type
of data source. Our work is also broadly related to the field of domain adaptation
[WD18; WC20; Far+21], which aims to adapt models trained on an auxiliary dataset to
improve performance on a target dataset. In contrast, dataset projection is completely
model-agnostic and answers the fundamental question of how to align the data. Using
our framework with domain adaptation to align both the model and data jointly is an
interesting future direction.

Our method builds on an extensive line of work on minimization over simplex
constraints [Ber82; BM02], as well as distance metrics that measure the similarity
of two image distributions [Gre+12]. Our simplex formulation of aligning multiple
dataset sources uses constraints with similarities to the problems posed by Hashimoto
[Has21], but for a different purpose and objective. While Hashimoto [Has21] uses their
framework to study theoretical scaling laws for models generalization, we solve the
optimization problem to search for target-aligned subsets of auxiliary data.

4.6 Conclusion

In this work, we pose the problem of dataset projection and develop methods to find
the most target-aligned subset of auxiliary data. When using a biased auxiliary dataset,
we demonstrate that it can be beneficial to use just a portion of the data rather than
all of it. In these situations, dataset projection can select subsets of the data that
better approximate the target dataset and can lead to better test performance when
augmenting the target dataset. We highlight these trends empirically on a variety of
language and vision datasets and further highlight the use of our framework as an
analysis tool. Our work takes a step towards understanding when more data is useful,
and finding more useful data.
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Part III

Verifying model robustness
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Chapter 5

Evaluating model robustness with
mixed integer programming

5.1 Introduction

Neural networks trained only to optimize for training accuracy have been shown to
be vulnerable to adversarial examples: perturbed inputs that are very similar to
some regular input but for which the output is radically different [Sze+14]. There
is now a large body of work proposing defense methods to produce classifiers that
are more robust to adversarial examples. However, as long as a defense is evaluated
only via heuristic attacks (such as the Fast Gradient Sign Method (FGSM) [GSS15]
or [CW17c]’s attack (CW)), we have no guarantee that the defense actually increases
the robustness of the classifier produced. Defense methods thought to be successful
when published have often been later found to be vulnerable to a new class of attacks.
For instance, multiple defense methods are defeated in [CW17b] by constructing
defense-specific loss functions and in [ACW18] by overcoming obfuscated gradients.

Fortunately, we can evaluate robustness to adversarial examples in a principled
fashion. One option is to determine (for each test input) the minimum distance to
the closest adversarial example, which we call the minimum adversarial distortion
[Car+17]. Alternatively, we can determine the adversarial test accuracy [Bas+16],
which is the proportion of the test set for which no perturbation in some bounded class
causes a misclassification. An increase in the mean minimum adversarial distortion or
in the adversarial test accuracy indicates an improvement in robustness.1

1The two measures are related: a solver that can find certificates for bounded perturbations can
be used iteratively (in a binary search process) to find minimum distortions.
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We present an efficient implementation of a mixed-integer linear programming
(MILP) verifier for properties of piecewise-linear feed-forward neural networks. Our
tight formulation for non-linearities and our novel presolve algorithm combine to
minimize the number of binary variables in the MILP problem and dramatically
improve its numerical conditioning. Optimizations in our MILP implementation
improve performance by several orders of magnitude when compared to a naïve
MILP implementation, and we are two to three orders of magnitude faster than
the state-of-the-art Satisfiability Modulo Theories (SMT) based verifier, Reluplex
[Kat+17]

We make the following key contributions:

• We demonstrate that, despite considering the full combinatorial nature of the
network, our verifier can succeed on larger neural networks, including those
with convolutional and residual layers, when evaluating the robustness of these
networks to bounded perturbations.

• We identify why we can succeed on larger neural networks with hundreds of
thousands of units. First, a large fraction of the ReLUs can be shown to be
either always active or always inactive over the bounded input domain. Second,
since the predicted label is determined by the unit in the final layer with the
maximum activation, proving that a unit never has the maximum activation
over all bounded perturbations eliminates it from consideration. We fully exploit
both phenomena, reducing the overall number of non-linearities considered.

• We determine for the first time the exact adversarial accuracy for MNIST
classifiers to perturbations with bounded 𝑙∞ norm 𝜖. We are also able to certify
more samples than the state-of-the-art and find more adversarial examples across
MNIST and CIFAR-10 classifiers with different architectures trained with a
variety of robust training procedures.

Our code will be made available after review.

5.2 Related work

Our work relates most closely to other work on verification of piecewise-linear neural
networks; [Bun+17] provides a good overview of the field. We categorize verification
procedures as complete or incomplete. To understand the difference between these
two types of procedures, we consider the example of evaluating adversarial accuracy.
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As in [WK17], we call the exact set of all final-layer activations that can be
achieved by applying a bounded perturbation to the input the adversarial polytope.
Incomplete verifiers reason over an outer approximation of the adversarial polytope.
As a result, when using incomplete verifiers, the answer to some queries about the
adversarial polytope may not be decidable. In particular, incomplete verifiers can only
certify robustness for a fraction of robust input; the status for the remaining input
is undetermined. In contrast, complete verifiers reason over the exact adversarial
polytope. Given sufficient time, a complete verifier can provide a definite answer to
any query about the adversarial polytope. In the context of adversarial accuracy,
complete verifiers will obtain a valid adversarial example or a certificate of robustness
for every input. When a time limit is set, complete verifiers behave like incomplete
verifiers, and resolve only a fraction of queries. However, complete verifiers do allow
users to answer a larger fraction of queries by extending the set time limit.

Incomplete verifiers for evaluating network robustness employ a range of techniques,
including duality [Dvi+18a; WK17; RSL18], layer-by-layer approximations of the
adversarial polytope [XTJ18], discretizing the search space [Hua+17b], abstract
interpretation [Geh+18], bounding the local Lipschitz constant [Wen+18], or bounding
the activation of the ReLU with linear functions [Wen+18].

Complete verifiers typically employ either MILP solvers as we do [CNR17; Dut+18;
FJ18; LM17a] or SMT solvers [Car+17; Ehl17; Kat+17; Sch+15]. Our approach
improves upon existing MILP-based approaches with a tighter formulation for non-
linearities and a novel presolve algorithm that makes full use of all information available,
leading to solve times several orders of magnitude faster than a naïvely implemented
MILP-based approach. When comparing our approach to the state-of-the-art SMT-
based approach (Reluplex) on the task of finding minimum adversarial distortions,
we find that our verifier is two to three orders of magnitude faster. Crucially, these
improvements in performance allow our verifier to verify a network with over 100,000
units — several orders of magnitude larger than the largest MNIST classifier previously
verified with a complete verifier.

A complementary line of research to verification is in robust training procedures
that train networks designed to be robust to bounded perturbations. Robust training
attempts to minimize the “worst-case loss” for each example — that is, the maximum
loss over all bounded perturbations of that example [WK17]. Since calculating the exact
worst-case loss can be computationally costly, robust training procedures typically
instead minimize an estimate of the worst-case loss: either a lower bound as in the case
of adversarial training [GSS15], or an upper bound as for certified training approaches
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[HA17; WK17; RSL18]. Complete verifiers such as ours can augment robust training
procedures by resolving the status of input for which heuristic attacks cannot find an
adversarial example but incomplete verifiers cannot guarantee robustness, enabling
more accurate comparisons between different training procedures.

5.3 Background and notation

We denote a neural network by a function 𝑓(·; 𝜃) : R𝑚 → R𝑛 parameterized by a
(fixed) vector of weights 𝜃. For a classifier, the output layer has a neuron for each
target class.

Verification as solving an MILP. The general problem of verification is to
determine whether some property 𝑃 on the output of a neural network holds for
all input in a bounded input domain 𝒞 ⊆ R𝑚. For the verification problem to be
expressible as solving an MILP, 𝑃 must be expressible as the conjunction or disjunction
of linear properties 𝑃𝑖,𝑗 over some set of polyhedra 𝒞𝑖, where 𝒞 = ∪𝒞𝑖.

In addition, 𝑓(·) must be composed of piecewise-linear layers. This is not a
particularly restrictive requirement: piecewise-linear layers include layers that are
linear transformations (such as fully-connected, convolution, and average-pooling
layers) and layers that use piecewise-linear functions (such as ReLU or maximum-
pooling layers). We provide details on how to express these piecewise-linear functions
in Section 5.4.1. The “shortcut connections” used in architectures such as ResNet
[He+16] are also linear, and batch normalization [IS15] or dropout [Sri+14] are linear
transformations at evaluation time [Bun+17].

5.4 Formulating robustness evaluation of classifiers

as an MILP

Evaluating Adversarial Accuracy. Let 𝒢(𝑥) denote the region in the input domain
corresponding to all allowable perturbations of a particular input 𝑥. In general,
perturbed inputs must also remain in the domain of valid inputs 𝒳𝑣𝑎𝑙𝑖𝑑. For example,
for normalized images with pixel values ranging from 0 to 1, 𝒳𝑣𝑎𝑙𝑖𝑑 = [0, 1]𝑚. As
in [Mad+18], we say that a neural network is robust to perturbations on 𝑥 if the
predicted probability of the true label 𝜆(𝑥) exceeds that of every other label for all
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perturbations:

∀𝑥′ ∈ (𝒢(𝑥) ∩ 𝒳𝑣𝑎𝑙𝑖𝑑) : argmax𝑖(𝑓𝑖(𝑥
′)) = 𝜆(𝑥) (5.1)

Equivalently, the network is robust to perturbations on 𝑥 if and only if Equation 5.2
is infeasible for 𝑥′.

(𝑥′ ∈ (𝒢(𝑥) ∩ 𝒳𝑣𝑎𝑙𝑖𝑑)) ∧
(︂
𝑓𝜆(𝑥)(𝑥

′) < max
𝜇∈[1,𝑛]∖{𝜆(𝑥)}

𝑓𝜇(𝑥
′)

)︂
(5.2)

where 𝑓𝑖(·) is the 𝑖th output of the network. For conciseness, we call 𝑥 robust with
respect to the network if 𝑓(·) is robust to perturbations on 𝑥. If 𝑥 is not robust, we
call any 𝑥′ satisfying the constraints a valid adversarial example to 𝑥. The adversarial
accuracy of a network is the fraction of the test set that is robust; the adversarial
error is simply the complement of the adversarial accuracy.

As long as 𝒢(𝑥) ∩ 𝒳𝑣𝑎𝑙𝑖𝑑 can be expressed as the union of a set of polyhedra, the
feasibility problem can be expressed as an MILP. The four robust training procedures we
consider [WK17; Won+18; Mad+18; RSL18] are designed to be robust to perturbations
with bounded 𝑙∞ norm, and the 𝑙∞-ball of radius 𝜖 around each input 𝑥 can be succinctly
represented by the set of linear constraints 𝒢(𝑥) = {𝑥′ | ∀𝑖 : −𝜖 ≤ (𝑥− 𝑥′)𝑖 ≤ 𝜖}.

Evaluating Mean Minimum Adversarial Distortion. Let 𝑑(·, ·) denote a
distance metric that measures the perceptual similarity between two input images. The
minimum adversarial distortion under 𝑑 for input 𝑥 with true label 𝜆(𝑥) corresponds
to the solution to the optimization:

min𝑥′ 𝑑(𝑥′, 𝑥) (5.3)

subject to argmax𝑖(𝑓𝑖(𝑥
′)) ̸= 𝜆(𝑥) (5.4)

𝑥′ ∈ 𝒳𝑣𝑎𝑙𝑖𝑑 (5.5)

We can target the attack to generate an adversarial example that is classified in one
of a set of target labels 𝑇 by replacing Equation 5.4 with argmax𝑖(𝑓𝑖(𝑥

′)) ∈ 𝑇 .

The most prevalent distance metrics in the literature for generating adversarial
examples are the 𝑙1 [CW17c; Che+18], 𝑙2 [Sze+14], and 𝑙∞ [GSS15; Pap+16] norms.
All three can be expressed in the objective without adding any additional integer
variables to the model [BV04]; details are in Appendix D.1.3.
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5.4.1 Formulating piecewise-linear functions in the classifier

Tight formulations of the rectifier and maximum functions are critical to good per-
formance of the MILP solver; we thus present these formulations in detail with
accompanying proofs.2

Formulating ReLU Let 𝑦 = max(𝑥, 0), and 𝑙 ≤ 𝑥 ≤ 𝑢. There are three possibilities
for the phase of the ReLU. If 𝑢 ≤ 0, we have 𝑦 ≡ 0. We say that such a unit is stably
inactive. Similarly, if 𝑙 ≥ 0, we have 𝑦 ≡ 𝑥. We say that such a unit is stably active.
Otherwise, the unit is unstable. For unstable units, we introduce an indicator decision
variable 𝑎 = 1𝑥≥0. As we prove in Appendix D.1.1, 𝑦 = max(𝑥, 0) is equivalent to the
set of linear and integer constraints in Equation 5.6.

(𝑦 ≤ 𝑥− 𝑙(1− 𝑎)) ∧ (𝑦 ≥ 𝑥) ∧ (𝑦 ≤ 𝑢 · 𝑎) ∧ (𝑦 ≥ 0) ∧ (𝑎 ∈ {0, 1}) (5.6)

Formulating the Maximum Function Let 𝑦 = max(𝑥1, 𝑥2, . . . , 𝑥𝑚), and 𝑙𝑖 ≤
𝑥𝑖 ≤ 𝑢𝑖.

Proposition 1 Let 𝑙𝑚𝑎𝑥 ≜ max(𝑙1, 𝑙2, . . . , 𝑙𝑚). We can eliminate from consideration
all 𝑥𝑖 where 𝑢𝑖 ≤ 𝑙𝑚𝑎𝑥, since we know that 𝑦 ≥ 𝑙𝑚𝑎𝑥 ≥ 𝑢𝑖 ≥ 𝑥𝑖.

We introduce an indicator decision variable 𝑎𝑖 for each of our input variables,
where 𝑎𝑖 = 1 =⇒ 𝑦 = 𝑥𝑖. Furthermore, we define 𝑢𝑚𝑎𝑥,−𝑖 ≜ max𝑗 ̸=𝑖(𝑢𝑗). As we prove
in Appendix D.1.2, the constraint 𝑦 = max(𝑥1, 𝑥2, . . . , 𝑥𝑚) is equivalent to the set of
linear and integer constraints in Equation 5.7.

𝑚⋀︁
𝑖=1

((𝑦 ≤ 𝑥𝑖 + (1− 𝑎𝑖)(𝑢𝑚𝑎𝑥,−𝑖 − 𝑙𝑖) ) ∧ (𝑦 ≥ 𝑥𝑖 )) ∧
(︁∑︁𝑚

𝑖=1
𝑎𝑖 = 1

)︁
∧ (𝑎𝑖 ∈ {0, 1})

(5.7)

5.4.2 Progressive bounds tightening

We previously assumed that we had some element-wise bounds on the inputs to non-
linearities. In practice, we have to carry out a presolve step to determine these bounds.
Determining tight bounds is critical for problem tractability: tight bounds strengthen
the problem formulation and thus improve solve times [Vie15]. For instance, if we can
prove that the phase of a ReLU is stable, we can avoid introducing a binary variable.

2[HV17] presents formulations for general piecewise linear functions.
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More generally, loose bounds on input to some unit will propagate downstream, leading
to units in later layers having looser bounds.

We used two procedures to determine bounds: Interval Arithmetic (ia), also
used in [CNR17; Dut+18], and the slower but tighter Linear Programming (lp)
approach. Implementation details are in Appendix D.2.

Since faster procedures achieve efficiency by compromising on tightness of bounds,
we face a trade-off between higher build times (to determine tighter bounds to inputs
to non-linearities), and higher solve times (to solve the main MILP problem in
Equation 5.2 or Equation 5.3-5.5). While a degree of compromise is inevitable, our
knowledge of the non-linearities used in our network allows us to reduce average build
times without affecting the strength of the problem formulation.

The key observation is that, for piecewise-linear non-linearities, there are thresholds
beyond which further refining a bound will not improve the problem formulation.
With this in mind, we adopt a progressive bounds tightening approach: we begin by
determining coarse bounds using fast procedures and only spend time refining bounds
using procedures with higher computational complexity if doing so could provide ad-
ditional information to improve the problem formulation.3 Pseudocode demonstrating
how to efficiently determine bounds for the tightest possible formulations for the ReLU
and maximum function is provided below and in Appendix D.3 respectively.

GetBoundsForReLU(𝑥, 𝑓𝑠)

1 � 𝑓𝑠 are the procedures to determine bounds
2 � 𝑓𝑠 sorted in increasing computational complexity.
3 𝑙𝑏𝑒𝑠𝑡 = −∞; 𝑢𝑏𝑒𝑠𝑡 = ∞ � initialize best known upper and lower bounds on 𝑥

4 for 𝑓 in 𝑓𝑠: � carrying out progressive bounds tightening
5 do 𝑢 = 𝑓(𝑥, 𝑏𝑜𝑢𝑛𝑑𝑇𝑦𝑝𝑒 = 𝑢𝑝𝑝𝑒𝑟); 𝑢𝑏𝑒𝑠𝑡 = min(𝑢𝑏𝑒𝑠𝑡, 𝑢)

6 if 𝑢𝑏𝑒𝑠𝑡 ≤ 0 return (𝑙𝑏𝑒𝑠𝑡, 𝑢𝑏𝑒𝑠𝑡)

7 � Early return: 𝑥 ≤ 𝑢𝑏𝑒𝑠𝑡 ≤ 0; thus max(𝑥, 0) ≡ 0.
8 𝑙 = 𝑓(𝑥, 𝑏𝑜𝑢𝑛𝑑𝑇𝑦𝑝𝑒 = 𝑙𝑜𝑤𝑒𝑟); 𝑙𝑏𝑒𝑠𝑡 = max(𝑙𝑏𝑒𝑠𝑡, 𝑙)

9 if 𝑙𝑏𝑒𝑠𝑡 ≥ 0 return (𝑙𝑏𝑒𝑠𝑡, 𝑢𝑏𝑒𝑠𝑡)

10 � Early return: 𝑥 ≥ 𝑙𝑏𝑒𝑠𝑡 ≥ 0; thus max(𝑥, 0) ≡ 𝑥

11 return (𝑙𝑏𝑒𝑠𝑡, 𝑢𝑏𝑒𝑠𝑡) � 𝑥 could be either positive or negative.

The process of progressive bounds tightening is naturally extensible to more proce-
dures. [WK17; Won+18; Dvi+18a; Wen+18] each discuss procedures to determine

3As a corollary, we always use only ia for the output of the first layer, since the independence of
network input implies that ia is provably optimal for that layer.
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bounds with computational complexity and tightness intermediate between ia and lp.
Using one of these procedures in addition to ia and lp has the potential to further
reduce build times.

5.5 Experiments

Dataset. All experiments are carried out on classifiers for the MNIST dataset of
handwritten digits or the CIFAR-10 dataset of color images.

Architectures. We conduct experiments on a range of feed-forward networks.
In all cases, ReLUs follow each layer except the output layer. mlp-𝑚×[𝑛] refers to
a multilayer perceptron with 𝑚 hidden layers and 𝑛 units per hidden layer. We
further abbreviate mlp-1×[500] and mlp-2×[200] as mlpa and mlpb respectively. cnn
refers to the ConvNet architecture used for the robust MNIST classifier in [WK17].
The network has two convolutional layers (stride length 2) with 16 and 32 filters
respectively (size 4× 4 in both layers), followed by a fully-connected layer with 100
units. res refers to the ResNet architecture used in [Won+18], with 9 convolutional
layers in four blocks, followed by two fully-connected layers with 4096 and 1000 units
respectively.

Training Methods. We conduct experiments on networks trained with a regular
loss function and networks trained to be robust. Networks trained to be robust are
identified by a prefix corresponding to the method used to approximate the worst-case
loss: LPd

4 when the dual of a linear program is used, as in [WK17]; SDPd when the
dual of a semidefinite relaxation is used, as in [RSL18]; and Adv when adversarial
examples generated via Projected Gradient Descent (PGD) are used, as in [Mad+18].
Full details on each network are in Appendix D.4.1.

Experimental Setup. We run experiments on a modest 8 CPUs@2.20 GHz with
8GB of RAM. Appendix D.4.2 provides additional details about the computational
environment. Maximum build effort is lp. Unless otherwise noted, we report a timeout
if solve time for some input exceeds 1200s.

4This is unrelated to the procedure to determine bounds named lp.
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5.5.1 Performance comparisons

Comparisons to other MILP-based Complete Verifiers

Our MILP approach implements three key optimizations: we use progressive tightening,
make use of the information provided by the restricted input domain 𝒢(𝑥), and use
asymmetric bounds in the ReLU formulation in Equation 5.6. None of the four other
MILP-based complete verifiers implement progressive tightening or use the restricted
input domain, and only [FJ18] uses asymmetric bounds. Since none of the four verifiers
have publicly available code, we use ablation tests to provide an idea of the difference
in performance between our verifier and these existing ones.

When removing progressive tightening, we directly use lp rather than doing ia

first. When removing using restricted input domain, we determine bounds under the
assumption that our perturbed input could be anywhere in the full input domain
𝒳𝑣𝑎𝑙𝑖𝑑, imposing the constraint 𝑥′ ∈ 𝒢(𝑥) only after all bounds are determined. Finally,
when removing using asymmetric bounds, we replace 𝑙 and 𝑢 in Equation 5.6 with −𝑀

and 𝑀 respectively, where 𝑀 ≜ max(−𝑙, 𝑢), as is done in [CNR17; Dut+18; LM17a].
We carry out experiments on an MNIST classifier, and results from performing these
experiments are reported in Table 5.1.

Table 5.1: Results of ablation testing on our verifier, where each test removes a single
optimization. The task was to determine the adversarial accuracy of the MNIST
classifier LPd-cnn to perturbations with 𝑙∞ norm-bound 𝜖 = 0.1. Build time refers to
time used to determine bounds, while solve time refers to time used to solve the main
MILP problem in Equation 5.2 once all bounds have been determined. During solve
time, we solve a linear program for each of the nodes explored in the MILP search
tree.
†We exclude the initial build time required (3593s) to determine reusable bounds.

Optimization Removed Mean Time / s Nodes Explored Fraction
Timed OutBuild Solve Total Mean Median

(Control) 3.44 0.08 3.52 2.05 0 0
Progressive tightening 7.66 0.11 7.77 2.05 0 0

Using restricted input domain† 1.49 56.47 57.96 1343.21 67 0.0047
Using asymmetric bounds 4465.11 133.03 4598.15 1498.35 113 0.0300

The ablation tests demonstrate that each optimization is critical to the performance
of our verifier. In terms of performance comparisons, we expect our verifier to have
a runtime several orders of magnitude faster than any of the three verifiers not
using asymmetric bounds. While [FJ18] do use asymmetric bounds, they do not use
information from the restricted input domain; we thus expect our verifier to have a
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runtime at least an order of magnitude faster than theirs.

Comparisons to Other Complete and Incomplete Verifiers

We also compared our verifier to other verifiers on the task of finding minimum targeted
adversarial distortions for MNIST test samples. Verifiers included for comparison are 1)
Reluplex [Kat+17], a complete verifier also able to find the true minimum distortion;
and 2) LP5, Fast-Lip, Fast-Lin [Wen+18], and LP-full [WK17], incomplete verifiers
that provide a certified lower bound on the minimum distortion.

Verification Times, vis-à-vis the state-of-the-art SMT-based complete
verifier Reluplex. Figure 5-1 presents average verification times per sample. All
solves for our method were run to completion. On the 𝑙∞ norm, we improve on the
speed of Reluplex by two to three orders of magnitude.

Figure 5-1: Average times for determining bounds on / exact values of the minimum
targeted adversarial distortion for MNIST test samples. We improve on the speed of
the state-of-the-art complete verifier Reluplex by two to three orders of magnitude.
Results for methods other than ours are from [Wen+18]; results for Reluplex were
only available in [Wen+18] for the 𝑙∞ norm.

Minimum Targeted Adversarial Distortions, vis-à-vis incomplete verifiers.
Figure 5-2 compares lower bounds from the incomplete verifiers to the exact value
we obtain. The gap between the best lower bound and the true minimum adversarial
distortion is significant even on these small networks. This corroborates the observation
in [RSL18] that incomplete verifiers provide weak bounds if the network they are
applied to is not optimized for that verifier. For example, under the 𝑙∞ norm, the best
certified lower bound is less than half of the true minimum distortion. In context: a
network robust to perturbations with 𝑙∞ norm-bound 𝜖 = 0.1 would only be verifiable
to 𝜖 = 0.05.

5This is unrelated to the procedure to determine bounds named lp, or the training procedure
LPd.
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Figure 5-2: Average of bounds on / exact values of the minimum targeted adversarial
distortion for MNIST test samples. The gap between the true minimum adversarial
distortion and the best lower bound is significant and increases for deeper networks.

5.5.2 Determining adversarial accuracy of MNIST and CIFAR-

10 classifiers

We use our verifier to determine the adversarial accuracy of classifiers trained by a
range of robust training procedures on the MNIST and CIFAR-10 datasets. Table 5.2
presents the test error and estimates of the adversarial error for these classifiers.6

For MNIST, we verified a range of networks trained to be robust to attacks with
bounded 𝑙∞ norm 𝜖 = 0.1, as well as networks trained to be robust to larger attacks
of 𝜖 = 0.2, 0.3 and 0.4. Lower bounds on the adversarial error are proven by providing
adversarial examples for input that is not robust. We compare the number of samples
for which we successfully find adversarial examples to the number for PGD, a strong
first-order attack. Upper bounds on the adversarial error are proven by providing
certificates of robustness for input that is robust. We compare our upper bounds to
the previous state-of-the-art for each network.

While performance depends on the training method and architecture, we improve
on both the lower and upper bounds for every network tested.7 For lower bounds,
we successfully find an adversarial example for every test sample that PGD finds
an adversarial example for. In addition, we observe that PGD ‘misses’ some valid
adversarial examples: it fails to find these adversarial examples even though they are
within the norm bounds. As the last three rows of Table 5.2 show, PGD misses for a

6As mentioned in Section 5.2, complete verifiers will obtain either a valid adversarial example
or a certificate of robustness for every input given enough time. However, we do not always have a
guarantee of robustness or a valid adversarial example for every test sample since we terminate the
optimization at 1200s to provide a better picture of how our verifier performs within reasonable time
limits.

7On SDPd-mlpa, the verifier in [RSL18] finds certificates for 372 samples for which our verifier
reaches its time limit.
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Table 5.2: Adversarial accuracy of MNIST and CIFAR-10 classifiers to perturbations
with 𝑙∞ norm-bound 𝜖. In every case, we improve on both 1) the lower bound on
the adversarial error, found by PGD, and 2) the previous state-of-the-art (SOA) for
the upper bound, generated by the following methods: [1] [WK17], [2] [Dvi+18a], [3]

[RSL18]. For classifiers marked with a ✓, we have a guarantee of robustness or a
valid adversarial example for every test sample. Gaps between our bounds correspond
to cases where the solver reached the time limit for some samples. Additional solve
statistics on nodes explored are in Appendix D.5.

Dataset Network 𝜖
Test
Error

Certified Bounds on Adversarial Error Mean
Time
/ s

Lower Bound Upper Bound No
Gap?PGD Ours SOA Ours

MNIST LPd-cnn 0.1 1.89% 4.11% 4.38% 5.82%[1] 4.38% ✓ 3.52
Adv-cnn 0.1 0.96% 4.10% 4.21% — 7.21% 135.74

Adv-mlpb 0.1 4.02% 9.03% 9.68% 15.41%[2] 9.68% ✓ 3.69
SDPd-mlpa 0.1 4.18% 11.51% 14.36% 34.77%[3] 30.81% 312.43

LPd-cnn 0.2 4.23% 9.54% 10.68% 17.50%[1] 10.68% ✓ 7.32
LPd-cnn 0.3 11.40% 22.70% 25.79% 35.03%[1] 25.79% ✓ 5.13
LPd-cnn 0.4 26.13% 39.22% 48.98% 62.49%[1] 48.98% ✓ 5.07

CIFAR-10 LPd-res 8
255

72.93% 76.52% 77.29% 78.52%[1] 77.60% 15.23

larger fraction of test samples when 𝜖 is larger. We also found that PGD is far more
likely to miss for some test sample if the minimum adversarial distortion for that
sample is close to 𝜖; this observation is discussed in more depth in Appendix D.6. For
upper bounds, we improve on the bound on adversarial error even when the upper
bound on the worst-case loss — which is used to generate the certificate of robustness
— is explicitly optimized for during training (as is the case for LPd and SDPd training).
Our method also scales well to the more complex CIFAR-10 dataset and the larger
LPd-res network (which has 107,496 units), with the solver reaching the time limit
for only 0.31% of samples.

Most importantly, we are able to determine the exact adversarial accuracy for
Adv-mlpb and LPd-cnn for all 𝜖 tested, finding either a certificate of robustness or
an adversarial example for every test sample. For Adv-mlpb and LPd-cnn, running
our verifier over the full test set takes approximately 10 hours — the same order of
magnitude as the time to train each network on a single GPU. Better still, verification
of individual samples is fully parallelizable.
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Observations on Determinants of Verification Time

Ceteris paribus, we might expect verification time to be correlated to the total number
of ReLUs, since the solver may need to explore both possibilities for the phase of each
ReLU. However, there is clearly more at play: even though LPd-cnn and Adv-cnn

have identical architectures, verification time for Adv-cnn is two orders of magnitude
higher.

Table 5.3: Determinants of verification time: mean verification time is 1) inversely
correlated to the number of labels that can be eliminated from consideration and
2) correlated to the number of ReLUs that are not provably stable. Results are for
𝜖 = 0.1 on MNIST.

Network
Mean

Time / s

Number
of Labels

Eliminated

Number of ReLUs

Possibly
Unstable

Provably Stable Total
Active Inactive

LPd-cnn 3.52 6.57 121.18 1552.52 3130.30 4804
Adv-cnn 135.74 3.14 545.90 3383.30 874.80 4804

Adv-mlpb 3.69 4.77 55.21 87.31 257.48 400
SDPd-mlpa 312.43 0.00 297.66 73.85 128.50 500

The key lies in the restricted input domain 𝒢(𝑥) for each test sample 𝑥. When
input is restricted to 𝒢(𝑥), we can prove that many ReLUs are stable (with respect to
𝒢). Furthermore, we can eliminate some labels from consideration by proving that the
upper bound on the output neuron corresponding to that label is lower than the lower
bound for some other output neuron. As the results in Table 5.3 show, a significant
number of ReLUs can be proven to be stable, and a significant number of labels can
be eliminated from consideration. Rather than being correlated to the total number
of ReLUs, solve times are instead more strongly correlated to the number of ReLUs
that are not provably stable, as well as the number of labels that cannot be eliminated
from consideration.

5.6 Discussion

This paper presents an efficient complete verifier for piecewise-linear neural networks.
While we have focused on evaluating networks on the class of perturbations they
are designed to be robust to, defining a class of perturbations that generates images
perceptually similar to the original remains an important direction of research. Our
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verifier is able to handle new classes of perturbations (such as convolutions) as long
as the set of perturbed images is a union of polytopes in the input space.

We close with ideas on improving verifiability of neural networks. As previously
discussed, increasing the number of locally stable ReLUs speeds up verification. We also
observed (see Appendix D.7) that sparsifying weights promotes verifiability. Adopting
a principled sparsification approach (for example, 𝑙1 regularization during training,
or pruning and retraining [HMD16]) could potentially further increase verifiability
without compromising on the true adversarial accuracy.
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Chapter 6

Speeding up robustness verification
via inducing ReLU stability

6.1 Introduction

Deep neural networks (DNNs) have recently achieved widespread success in image
classification [KSH12], face and speech recognition [Tai+14; Hin+12], and game
playing [Sil+16; Sil+17]. This success motivates their application in a broader set of
domains, including more safety-critical environments. This thrust makes understanding
the reliability and robustness of the underlying models, let alone their resilience to
manipulation by malicious actors, a central question. However, predictions made by
machine learning models are often brittle. A prominent example is the existence of
adversarial examples [Sze+14]: imperceptibly modified inputs that cause state-of-the-
art models to misclassify with high confidence.

There has been a long line of work on both generating adversarial examples, called
attacks [CW17a; CW17b; ACW18; AS17; Ues+18; Evt+17], and training models
robust to adversarial examples, called defenses [GSS15; Pap+16; Mad+18; KKG18].
However, recent research has shown that most defenses are ineffective [CW17b; ACW18;
Ues+18]. Furthermore, even for defenses such as that of [Mad+18] that have seen
empirical success against many attacks, we are unable to conclude yet with certainty
that they are robust to all attacks that we want these models to be resilient to.

This state of affairs gives rise to the need for verification of networks, i.e., the task
of formally proving that no small perturbations of a given input can cause it to be
misclassified by the network model. Although many exact verifiers1 have been designed

1Also sometimes referred to as combinatorial verifiers.
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to solve this problem, the verification process is often intractably slow. For example,
when using the Reluplex verifier of [Kat+17], even verifying a small MNIST network
turns out to be computationally infeasible. Thus, addressing this intractability of
exact verification is the primary goal of this work.

Our contributions. Our starting point is the observation that, typically, model
training and verification are decoupled and seen as two distinct steps. Even though
this separation is natural, it misses a key opportunity: the ability to align these
two stages. Specifically, applying the principle of co-design during model training is
possible: training models in a way to encourage them to be simultaneously robust and
easy-to-exactly-verify. This insight is the cornerstone of the techniques we develop in
this paper.

In this work, we use the principle of co-design to develop training techniques that
give models that are both robust and easy-to-verify. Our techniques rely on improving
two key properties of networks: weight sparsity and ReLU stability. Specifically, we
first show that natural methods for improving weight sparsity during training, such as
ℓ1-regularization, give models that can already be verified much faster than current
methods. This speedup happens because in general, exact verifiers benefit from having
fewer variables in their formulations of the verification task. For instance, for exact
verifiers that rely on linear programming (LP) solvers, sparser weight matrices means
fewer variables in those constraints.

We then focus on the major speed bottleneck of current approaches to exact
verification of ReLU networks: the need of exact verification methods to “branch,” i.e.,
consider two possible cases for each ReLU (ReLU being active or inactive). Branching
drastically increases the complexity of verification. Thus, well-optimized verifiers will
not need to branch on a ReLU if it can determine that the ReLU is stable, i.e. that
the ReLU will always be active or always be inactive for any perturbation of an input.
This motivates the key goal of the techniques presented in this paper: we aim to
minimize branching by maximizing the number of stable ReLUs. We call this goal
ReLU stability and introduce a regularization technique to induce it.

Our techniques enable us to train weight-sparse and ReLU stable networks for
MNIST and CIFAR-10 that can be verified significantly faster. Specifically, by
combining natural methods for inducing weight sparsity with a robust adversarial
training procedure (cf. [GSS15]), we are able to train networks for which almost 90%

of inputs can be verified in an amount of time that is small2 compared to previous
verification techniques. Then, by also adding our regularization technique for inducing

2We chose our time budget for verification to be 120 seconds per input image.
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ReLU stability, we are able to train models that can be verified an additional 4–13x
times as fast while maintaining state-of-the-art accuracy on MNIST. Our techniques
show similar improvements for exact verification of CIFAR models. In particular,
we achieve the following verification speed and provable robustness results for ℓ∞

norm-bound adversaries:

Dataset Epsilon Provable Adversarial Accuracy Average Solve Time (s)

MNIST
𝜖 = 0.1 94.33% 0.49
𝜖 = 0.2 89.79% 1.13
𝜖 = 0.3 80.68% 2.78

CIFAR
𝜖 = 2/255 45.93% 13.50
𝜖 = 8/255 20.27% 22.33

Our network for 𝜖 = 0.1 on MNIST achieves provable adversarial accuracies
comparable with the current best results of [Won+18] and [Dvi+18b], and our results
for 𝜖 = 0.2 and 𝜖 = 0.3 achieve the best provable adversarial accuracies yet. To the
best of our knowledge, we also achieve the first nontrivial provable adversarial accuracy
results using exact verifiers for CIFAR-10.

Finally, we design our training techniques with universality as a goal. We focus
on improving the input to the verification process, regardless of the verifier we end
up using. This is particularly important because research into network verification
methods is still in its early stages, and our co-design methods are compatible with the
best current verifiers (LP/MILP-based methods) and should be compatible with any
future improvements in verification.

Our code is available at https://github.com/MadryLab/relu_stable.

6.2 Background and related work

Exact verification of networks has been the subject of many recent works [Kat+17;
Ehl17; Car+17; TXT19; LM17b; CNR17]. To understand the context of these works,
observe that for linear networks, the task of exact verification is relatively simple and
can be done by solving a LP. For more complex models, the presence of nonlinear
ReLUs makes verification over all perturbations of an input much more challenging.
This is so as ReLUs can be active or inactive depending on the input, which can cause
exact verifiers to “branch" and consider these two cases separately. The number of
such cases that verifiers have to consider might grow exponentially with the number of
ReLUs, so verification speed will also grow exponentially in the worst case. [Kat+17]
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further illustrated the difficulty of exact verification by proving that it is NP-complete.
In recent years, formal verification methods were developed to verify networks. Most
of these methods use satisfiability modulo theory (SMT) solvers [Kat+17; Ehl17;
Car+17] or LP and Mixed-Integer Linear Programming (MILP) solvers [TXT19;
LM17b; CNR17]. However, all of them are limited by the same issue of scaling poorly
with the number of ReLUs in a network, making them prohibitively slow in practice
for even medium-sized models.

One recent approach for dealing with the inefficiency of exact verifiers is to focus
on certification methods3 [WK17; Won+18; Dvi+18b; RSL18; MGV18; SND18]. In
contrast to exact verification, these methods do not solve the verification task directly;
instead, they rely on solving a relaxation of the verification problem. This relaxation
is usually derived by overapproximating the adversarial polytope, or the space of
outputs of a network for a region of possible inputs. These approaches rely on training
models in a specific manner that makes certification of those models easier. As a
result, they can often obtain provable adversarial accuracy results faster. However,
certification is fundamentally different from verification in two primary ways. First,
it solves a relaxation of the original verification problem. As a result, certification
methods can fail to certify many inputs that are actually robust to perturbations – only
exact verifiers, given enough time, can give conclusive answers on robustness for every
single input. Second, certification approaches fall under the paradigm of co-training,
where a certification method only works well on models specifically trained for that
certification step. When used as a black box on arbitrary models, the certification
step can yield a high rate of false negatives. For example, [RSL18] found that their
certification step was significantly less effective when used on a model trained using
[WK17]’s training method, and vice versa. In contrast, we design our methods to be
universal. They can be combined with any standard training procedure for networks
and will improve exact verification speed for any LP/MILP-based exact verifier. Our
methods can also decrease the amount of overapproximation incurred by certification
methods like [WK17; Dvi+18b]. Similar to most of the certification methods, our
technique can be made to have very little training time overhead.

Finally, subsequent work of [Gow+18] shows how applying interval bound prop-
agation during training, combined with MILP-based exact verification, can lead to
provably robust networks.

3These works use both “verification” and “certification” to describe their methods. For clarity,
we use “certification” to describe their approaches, while we use “verification” to describe exact
verification approaches. For a more detailed discussion of the differences, see Appendix E.6.
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6.3 Training verifiable ML models

We begin by discussing the task of verifying a network and identify two key properties of
networks that lead to improved verification speed: weight sparsity and so-called ReLU
stability. We then use natural regularization methods for inducing weight sparsity
as well as a new regularization method for inducing ReLU stability. Finally, we
demonstrate that these methods significantly speed up verification while maintaining
state-of-the-art accuracy.

6.3.1 Verifying adversarial robustness of ML models

Deep neural network models. Our focus will be on one of the most common
architectures for state-of-the-art models: 𝑘-layer fully-connected feed-forward DNN
classifiers with ReLU non-linearities4. Such models can be viewed as a function
𝑓(·,𝑊, 𝑏), where 𝑊 and 𝑏 represent the weight matrices and biases of each layer. For
an input 𝑥, the output 𝑓(𝑥,𝑊, 𝑏) of the DNN is defined as:

𝑧0 = 𝑥 (6.1)

𝑧𝑖 = 𝑧𝑖−1𝑊𝑖 + 𝑏𝑖 for 𝑖 = 1, 2, . . . , 𝑘 − 1 (6.2)

𝑧𝑖 = max(𝑧𝑖, 0) for 𝑖 = 1, 2, . . . , 𝑘 − 2 (6.3)

𝑓(𝑥,𝑊, 𝑏) = 𝑧𝑘−1 (6.4)

Here, for each layer 𝑖, we let 𝑧𝑖𝑗 denote the 𝑗𝑡ℎ ReLU pre-activation and let 𝑧𝑖𝑗(𝑥)

denote the value of 𝑧𝑖𝑗 on an input 𝑥. 𝑧𝑘−1 is the final, output layer with an output
unit for each possible label (the logits). The network will make predictions by selecting
the label with the largest logit.

Adversarial robustness. For a network to be reliable, it should make predictions
that are robust – that is, it should predict the same output for inputs that are very
similar. Specifically, we want the DNN classifier’s predictions to be robust to a set
Adv(𝑥) of possible adversarial perturbations of an input 𝑥. We focus on ℓ∞ norm-
bound adversarial perturbations, where Adv(𝑥) = {𝑥′ : ||𝑥′ − 𝑥||∞ ≤ 𝜖} for some
constant 𝜖, since it is the most common one considered in adversarial robustness and
verification literature (thus, it currently constitutes a canonical benchmark). Even so,
our methods can be applied to other ℓ𝑝 norms and broader sets of perturbations.

4Note that this encompasses common convolutional network architectures because every convolu-
tional layer can be replaced by an equivalent fully-connected layer.
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Verification of network models. For an input 𝑥 with correct label 𝑦, a perturbed
input 𝑥′ can cause a misclassification if it makes the logit of some incorrect label 𝑦
larger than the logit of 𝑦 on 𝑥′. We can thus express the task of finding an adversarial
perturbation as the optimization problem:

min
𝑥′,𝑦

𝑓(𝑥′,𝑊 )𝑦 − 𝑓(𝑥′,𝑊 )𝑦

subject to 𝑥′ ∈ Adv(𝑥)

An adversarial perturbation exists if and only if the objective of the optimization
problem is negative.

Adversarial accuracies. We define the true adversarial accuracy of a model to be
the fraction of test set inputs for which the model is robust to all allowed perturbations.
By definition, evaluations against specific adversarial attacks like PGD or FGSM
provide an upper bound to this accuracy, while certification methods provide lower
bounds. Given sufficient time for each input, an exact verifier can prove robustness
to perturbations, or find a perturbation where the network makes a misclassification
on the input, and thus exactly determine the true adversarial accuracy. This is in
contrast to certification methods, which solve a relaxation of the verification problem
and can not exactly determine the true adversarial accuracy no matter how much
time they have.

However, such exact verification may take impractically long for certain inputs,
so we instead compute the provable adversarial accuracy, which we define as the
fraction of test set inputs for which the verifier can prove robustness to perturbations
within an allocated time budget (timeout). Similarly to certifiable accuracy, this
accuracy constitutes a lower bound on the true adversarial accuracy. A model can
thus, e.g., have high true adversarial accuracy and low provable adversarial accuracy
if verification of the model is too slow and often fails to complete before timeout.

Also, in our evaluations, we chose to use the MILP exact verifier of [TXT19] when
performing experiments, as it is both open source and the fastest verifier we are aware
of.

6.3.2 Weight sparsity and its impact on verification speed

The first property of network models that we want to improve in order to speed up
exact verification of those models is weight sparsity. Weight sparsity is important for
verification speed because many exact verifiers rely on solving LP or MILP systems,
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which benefit from having fewer variables. We use two natural regularization methods
for improving weight sparsity: ℓ1-regularization and small weight pruning. These
techniques significantly improve verification speed – see Table 6.1. Verifying even
small MNIST networks is almost completely intractable without them. Specifically,
the verifier can only prove robustness of an adversarially-trained model on 19% of
inputs with a one hour budget per input, while the verifier can prove robustness of
an adversarially-trained model with ℓ1-regularization and small weight pruning on
89.13% of inputs with a 120 second budget per input.

Interestingly, even though adversarial training improves weight sparsity (see Ap-
pendix E.2) it was still necessary to use ℓ1-regularization and small weight pruning.
These techniques further promoted weight sparsity and gave rise to networks that
were much easier to verify.

Dataset Epsilon Training Test Set Provable Adversarial Average
Method Accuracy Accuracy Solve Time (s)

MNIST 𝜖 = 0.1

1 Adversarial Training 99.17% 19.00% 2970.43
2 +ℓ1-Regularization 99.00% 82.17% 21.99
3 +Small Weight Pruning 98.99% 89.13% 11.71
4 +ReLU Pruning (control) 98.94% 91.58% 6.43

Table 6.1: Improvement in provable adversarial accuracy and verification solve times
when incrementally adding natural regularization methods for improving weight
sparsity and ReLU stability into the model training procedure, before verification
occurs. Each row represents the addition of another method – for example, Row 3
uses adversarial training, ℓ1-regularization, and small weight pruning. Row 4 adds
ReLU pruning (see Appendix E.1). Row 4 is the control model for MNIST and 𝜖 = 0.1
that we present again in comparisons in Tables 6.2 and 6.3. We use a 3600 instead of
120 second timeout for Row 1 and only verified the first 100 images (out of 10000)
because verifying it took too long.

6.3.3 ReLU stability

Next, we target the primary speed bottleneck of exact verification: the number of
ReLUs the verifier has to branch on. In our paper, this corresponds to the notion
of inducing ReLU stability. Before we describe our methodology, we formally define
ReLU stability.

Given an input 𝑥, a set of allowed perturbations Adv(𝑥), and a ReLU, exact
verifiers may need to branch based on the possible pre-activations of the ReLU, namely
𝑧𝑖𝑗(Adv(𝑥)) = {𝑧𝑖𝑗(𝑥′) : 𝑥′ ∈ Adv(𝑥)} (cf. (6.2)). If there exist two perturbations
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𝑥′, 𝑥′′ in the set Adv(𝑥) such that sign(𝑧𝑖𝑗(𝑥′)) ̸= sign(𝑧𝑖𝑗(𝑥′′)), then the verifier has
to consider that for some perturbed inputs the ReLU is active (𝑧𝑖𝑗 = 𝑧𝑖𝑗) and for
other perturbed inputs inactive (𝑧𝑖𝑗 = 0). The more such cases the verifier faces, the
more branches it has to consider, causing the complexity of verification to increase
exponentially. Intuitively, a model with 1000 ReLUs among which only 100 ReLUs
require branching will likely be much easier to verify than a model with 200 ReLUs
that all require branching. Thus, it is advantageous for the verifier if, on an input 𝑥

with allowed perturbation set Adv(𝑥), the number of ReLUs such that

sign(𝑧𝑖𝑗(𝑥′)) = sign(𝑧𝑖𝑗(𝑥)) ∀𝑥′ ∈ Adv(𝑥) (6.5)

is maximized. We call a ReLU for which (6.5) holds on an input 𝑥 a stable ReLU on
that input. If (6.5) does not hold, then the ReLU is an unstable ReLU.

Directly computing whether a ReLU is stable on a given input 𝑥 is difficult because
doing so would involve considering all possible values of 𝑧𝑖𝑗(Adv(𝑥)). Instead, exact
verifiers compute an upper bound �̂�𝑖𝑗 and a lower bound �̂�𝑖𝑗 of 𝑧𝑖𝑗(Adv(𝑥)). If 0 ≤ �̂�𝑖𝑗

or �̂�𝑖𝑗 ≤ 0, they can replace the ReLU with the identity function or the zero function,
respectively. Otherwise, if �̂�𝑖𝑗 < 0 < �̂�𝑖𝑗, these verifiers then determine that they need
to “branch” on that ReLU. Thus, we can rephrase (6.5) as

sign(�̂�𝑖𝑗) = sign(�̂�𝑖𝑗) (6.6)

We will discuss methods for determining these upper and lower bounds �̂�𝑖𝑗, �̂�𝑖𝑗 in
Section 6.3.3.

A regularization technique for inducing ReLU stability: RS Loss

As we see from equation (6.6), a function that would indicate exactly when a ReLU
is stable is 𝐹 *(�̂�𝑖𝑗, �̂�𝑖𝑗) = sign(�̂�𝑖𝑗) · sign(�̂�𝑖𝑗). Thus, it would be natural to use this
function as a regularizer. However, this function is non-differentiable and if used in
training a model, would provide no useful gradients during back-propagation. Thus,
we use the following smooth approximation of 𝐹 * (see Fig. 6-1) which provides the
desired gradients:

𝐹 (�̂�𝑖𝑗, �̂�𝑖𝑗) = − tanh(1 + �̂�𝑖𝑗 · �̂�𝑖𝑗)

We call the corresponding objective RS Loss, and show in Fig. 6-2a that using
this loss function as a regularizer effectively decreases the number of unstable ReLUs.
RS Loss thus encourages ReLU stability, which, in turn, speeds up exact verification -
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Figure 6-1: Plot and contour plot of the function 𝐹 (𝑥, 𝑦) = − tanh(1 + 𝑥 · 𝑦)

see Fig. 6-2b.

Estimating ReLU upper and lower bounds on activations

A key aspect of using RS Loss is determining the upper and lower bounds �̂�𝑖𝑗, �̂�𝑖𝑗 for
each ReLU (cf. (6.6)). The bounds for the inputs 𝑧0 (cf. (6.1)) are simple – for the
input 𝑥, we know 𝑥− 𝜖 ≤ 𝑧0 ≤ 𝑥+ 𝜖, so �̂�0 = 𝑥− 𝜖, �̂�0 = 𝑥+ 𝜖. For all subsequent 𝑧𝑖𝑗 ,
we estimate bounds using either the naive interval arithmetic (IA) approach described
in [TXT19] or an improved version of it. The improved version is a tighter estimate but
uses more memory and training time, and thus is most effective on smaller networks.
We present the details of naive IA and improved IA in Appendix E.3.

Interval arithmetic approaches can be implemented relatively efficiently and work
well with back-propagation because they only involve matrix multiplications. This
contrasts with how exact verifiers compute these bounds, which usually involves solving
LPs or MILPs. Interval arithmetic also overestimates the number of unstable ReLUs.
This means that minimizing unstable ReLUs based on IA bounds will provide an
upper bound on the number of unstable ReLUs determined by exact verifiers. In
particular, IA will properly penalize every unstable ReLU.

Improved IA performs well in practice, overestimating the number of unstable
ReLUs by less than 0.4% in the first 2 layers of MNIST models and by less than 36.8%

(compared to 128.5% for naive IA) in the 3rd layer. Full experimental results are
available in Table E.1 of Appendix E.3.3.

Impact of ReLU stability improvements on verification speed

We provide experimental evidence that RS Loss regularization improves ReLU stability
and speeds up average verification times by more than an order of magnitude in Fig.
6-2b. To isolate the effect of RS Loss, we compare MNIST models trained in exactly
the same way other than the weight on RS Loss. When comparing a network trained
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with a RS Loss weight of 5e−4 to a network with a RS Loss weight of 0, the former
has just 16% as many unstable ReLUs and can be verified 65x faster. The caveat here
is that the former has 1.00% lower test set accuracy.

We also compare verification speed with and without RS Loss on MNIST networks
for different values of 𝜖 (0.1, 0.2, and 0.3) in Fig. 6-2c. We choose RS Loss weights
that cause almost no test set accuracy loss (less than 0.50% - See Table 6.3) in these
cases, and we still observe a 4–13x speedup from RS Loss. For CIFAR, RS Loss gives
a smaller speedup of 1.6–3.7x (See Appendix E.5).
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Figure 6-2: (a) Average number of unstable ReLUs by layer and (b) average verification
solve times of 6 networks trained with different weights on RS Loss for MNIST and
𝜖 = 0.1 . Averages are taken over all 10000 MNIST test set inputs. Both metrics
improve significantly with increasing RS Loss weight. An RS Loss weight of 0
corresponds to the control network, while an RS Loss weight of 0.00012 corresponds
to the “+RS” network for MNIST and 𝜖 = 0.1 in Tables 6.2 and 6.3. (c) Improvement
in the average time taken by a verifier to solve the verification problem after adding
RS Loss to the training procedure, for different 𝜖 on MNIST. The weight on RS Loss
was chosen so that the “+RS” models have test set accuracies within 0.50% of the
control models.

Impact of ReLU Stability improvements on provable adversarial accuracy

As the weight on the RS Loss used in training a model increases, the ReLU stability
of the model will improve, speeding up verification and likely improving provable
adversarial accuracy. However, like most regularization methods, placing too much
weight on RS Loss can decrease the model capacity, potentially lowering both the true
adversarial accuracy and the provable adversarial accuracy. Therefore, it is important
to choose the weight on RS Loss carefully to obtain both high provable adversarial
accuracy and faster verification speeds.

To show the effectiveness of RS Loss in improving provable adversarial accuracy,
we train two networks for each dataset and each value of 𝜖. One is a “control ”
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network that uses all of the natural improvements for inducing both weight sparsity
(ℓ1-regularization and small weight pruning) and ReLU stability (ReLU pruning - see
Appendix E.1). The second is a “+RS ” network that uses RS Loss in addition to
all of the same natural improvements. This lets us isolate the incremental effect of
adding RS Loss to the training procedure.

In addition to attaining a 4–13x speedup in MNIST verification times (see Fig.
6-2c), we achieve higher provable adversarial accuracy in every single setting when
using RS Loss. This is especially notable for the hardest verification problem we
tackle – proving robustness to perturbations with ℓ∞ norm-bound 8/255 on CIFAR-10
– where adding RS Loss nearly triples the provable adversarial accuracy from 7.09% to
20.27%. This improvement is primarily due to verification speedup induced by RS
Loss, which allows the verifier to finish proving robustness for far more inputs within
the 120 second time limit. These results are shown in Table 6.2.

Table 6.2: Provable Adversarial Accuracies for the control and “+RS” networks in
each setting.

MNIST, 𝜖 = 0.1 MNIST, 𝜖 = 0.2 MNIST, 𝜖 = 0.3 CIFAR, 𝜖 = 2/255 CIFAR, 𝜖 = 8/255

Control 91.58 86.45 77.99 45.53 7.09
+RS 94.33 89.79 80.68 45.93 20.27

6.4 Experiments

6.4.1 Experiments on MNIST and CIFAR

In addition to the experimental results already presented, we compare our control
and “+RS” networks with the best available results presented in the state-of-the-
art certifiable defenses of [Won+18], [Dvi+18b], and [MGV18] in Table 6.3. We
compare their test set accuracy, PGD adversarial accuracy (an evaluation of robustness
against a strong 40-step PGD adversarial attack), and provable adversarial accuracy.
Additionally, to show that our method can scale to larger architectures, we train and
verify a “+RS (Large)” network for each dataset and 𝜖.

In terms of provable adversarial accuracies, on MNIST, our results are significantly
better than those of [Won+18] for larger perturbations of 𝜖 = 0.3, and comparable
for 𝜖 = 0.1. On CIFAR-10, our method is slightly less effective, perhaps indicating
that more unstable ReLUs are necessary to properly learn a robust CIFAR classifier.
We also experienced many more instances of the verifier reaching its allotted 120
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second time limit on CIFAR, especially for the less ReLU stable control networks. Full
experimental details for each model in Tables 6.1, 6.2, and 6.3, including a breakdown
of verification solve results (how many images did the verifier A. prove robust B. find
an adversarial example for C. time out on), are available in Appendix E.5.

Table 6.3: Comparison of test set, PGD adversarial, and provable adversarial accuracy
of networks trained with and without RS Loss. We also provide the best available cer-
tifiable adversarial and PGD adversarial accuracy of any single models from [Won+18],
[Dvi+18b], and [MGV18] for comparison, and highlight the best provable accuracy for
each 𝜖.
* The provable adversarial accuracy for “+RS (Large)” is only computed for the first
1000 images because the verifier performs more slowly on larger models.
** [Dvi+18b; MGV18] use a slightly smaller 𝜖 = 0.03 = 7.65/255.
† [MGV18] computes results over 500 images instead of all 10000.
†† [MGV18] uses a slightly smaller 𝜖 = 0.007 = 1.785/255.

Dataset Epsilon Training Test Set PGD Adversarial Provable/Certifiable
Method Accuracy Accuracy Adversarial Accuracy

MNIST 𝜖 = 0.1

Control 98.94% 95.12% 91.58%
+RS 98.68% 95.13% 94.33%
+RS (Large)* 98.95% 96.58% 95.60%

Wong et al. 98.92% - 96.33%
Dvijotham et al. 98.80% 97.13% 95.56%
Mirman et al.† 99.00% 97.60% 96.60%

MNIST 𝜖 = 0.2

Control 98.40% 93.14% 86.45%
+RS 98.10% 93.14% 89.79%
+RS (Large)* 98.21% 94.19% 89.10%

MNIST 𝜖 = 0.3

Control 97.75% 91.64% 77.99%
+RS 97.33% 92.05% 80.68%
+RS (Large)* 97.54% 93.25% 59.60%

Wong et al. 85.13% - 56.90%
Mirman et al.† 96.60% 93.80% 82.00%

CIFAR 𝜖 = 2/255

Control 64.64% 51.58% 45.53%
+RS 61.12% 49.92% 45.93%
+RS (Large)* 61.41% 50.61% 41.40%

Wong et al. 68.28% - 53.89%
Mirman et al.†,†† 62.00% 54.60% 52.20%

CIFAR 𝜖 = 8/255

Control 50.69% 31.28% 7.09%
+RS 40.45% 26.78% 20.27%
+RS (Large)* 42.81% 28.69% 19.80%

Wong et al. 28.67% - 21.78%
Dvijotham et al.** 48.64% 32.72% 26.67%
Mirman et al.†, ** 54.20% 40.00% 35.20%
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6.4.2 Experimental methods and details

In our experiments, we use robust adversarial training [GSS15] against a strong
adversary as done in [Mad+18] to train various DNN classifiers. For each setting of
dataset (MNIST or CIFAR) and 𝜖, we find a suitable weight on RS Loss via line search
(See Table E.3 in Appendix E.4). The same weight is used for each ReLU. During
training, we used improved IA for ReLU bound estimation for “+RS” models and
use naive IA for “+RS (Large)” models because of memory constraints. For ease of
comparison, we trained our networks using the same convolutional DNN architecture
as in [Won+18]. This architecture uses two 2x2 strided convolutions with 16 and 32
filters, followed by a 100 hidden unit fully connected layer. For the larger architecture,
we also use the same “large” architecture as in [Won+18]. It has 4 convolutional layers
with 32, 32, 64, and 64 filters, followed by 2 fully connected layers with 512 hidden
units each.

For verification, we used the most up-to-date version of the exact verifier from
[TXT19]. Model solves were parallelized over 8 CPU cores. When verifying an image,
the verifier of [TXT19] first builds a model, and second, solves the verification problem
(See Appendix E.4.2 for details). We focus on reporting solve times because that is
directly related to the task of verification itself. All build times for the control and
“+RS” models on MNIST that we presented were between 4 and 10 seconds, and full
results on build times are also presented in Appendix E.5.

Additional details on our experimental setup (e.g. hyperparameters) can be found
in Appendix E.4.

6.5 Conclusion

In this paper, we use the principle of co-design to develop training methods that
emphasize verification as a goal, and we show that they make verifying the trained
model much faster. We first demonstrate that natural regularization methods already
make the exact verification problem significantly more tractable. Subsequently, we
introduce the notion of ReLU stability for networks, present a method that improves
a network’s ReLU stability, and show that this improvement makes verification an
additional 4–13x faster. Our method is universal, as it can be added to any training
procedure and should speed up any exact verification procedure, especially MILP-based
methods.

Prior to our work, exact verification seemed intractable for all but the smallest
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models. Thus, our work shows progress toward reliable models that can be proven to
be robust, and our techniques can help scale verification to even larger networks.

Many of our methods appear to compress our networks into more compact, simpler
forms. We hypothesize that the reason that regularization methods like RS Loss
can still achieve very high accuracy is that most models are overparametrized in the
first place. There exist clear parallels between our methods and techniques in model
compression [HMD16; Che+17] – therefore, we believe that drawing upon additional
techniques from model compression can further improve the ease-of-verification of
networks. We also expect that there exist objectives other than weight sparsity and
ReLU stability that are important for verification speed. If so, further exploring the
principle of co-design for those objectives is an interesting future direction.
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Appendix A

Additional details for Chapter 2

A.1 Datasets details

We choose the following 9 high-level classes.

Class WordNet ID Number of
sub-classes

Dog n02084071 116
Bird n01503061 52
Vehicle n04576211 42
Reptile n01661091 36
Carnivore n02075296 35
Insect n02159955 27
Instrument n03800933 26
Primate n02469914 20
Fish n02512053 16

Table A.1: The 9 classes of ImageNet-9.

All datasets used in the paper are balanced by randomly removing images from
classes that are over-represented. We only keep as many images as the smallest
post-modification synthetic dataset, so all synthetic datasets (except IN-9L) have the
same number of images. We also use a custom GUI to manually process the test set
to improve data quality. For IN-9L, the only difference from using the corresponding
classes in the original ImageNet dataset is that we balance the dataset.

For all images: we apply the following filters before adding each image to our
datasets.
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• The image must have bounding box annotations.

• For simplicity, each image must have exactly one bounding box. A large majority
of images that have bounding box annotations satisfy this.

For images needing a properly segmented foreground: This includes the 3
Mixed datasets, Only-FG, and No-FG. We filter out images based on the following
criteria.

• Because images are cropped before they are fed into models, we require that
less than 50% of the bounding box is removed by the crop, to ensure that the
foreground still exists. Almost all images pass this filter.

• The OpenCV foreground segmentation function cv2.grabCut (used to extract
the foreground shape) must work on the image. We remove images where it
fails.

• For the test set only, we manually remove images with foreground segmentations
that retain a significant portion of the background signal.

• For the test set only, we manually remove foreground segmentations that are
very bad (e.g. the segmentation selects part of the image, and that part doesn’t
contain the foreground object).

For images needing only background signal: This includes Only-BG-B and
Only-BG-T. In this case, we apply the following criteria:

• The bounding box must not be too big (more than 90% of the image). The
intent here is to avoid Only-BG-B images being just a large black rectangle.

• For the test set only, we manually remove Only-BG images that still have an
instance of the class even after removing the bounding box. This occurs when
the bounding boxes are imperfect or incomplete (e.g. only one of two dogs in an
image is labeled with a bounding box).

Creating the Only-BG-T dataset: We first make a “tiled” version of the back-
ground by finding the largest rectangular strip (horizontal or vertical) outside the
bounding box, and tiling the entire image with that strip. We then replace the removed
foreground with the tiled background. A visual example is provided in Figure A-1.
We purposefully choose not to use deep-learning-based inpainting techniques such as
[SFS18] to replace the removed foreground, as such methods could lead to biases that
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Figure A-1: Visualization of how Only-BG-T is created.

the inpainting model has learned from the data. For example, an inpainting model
may learn that the best way to inpaint a missing chunk of a flower is to place an insect
there, which is something we want to avoid.

Motivation for each IN-9 variation: We create Only-BG-B and Only-BG-T

to remove the foreground completely, including the shape of the foreground object.
We intend for Only-BG-B to be directly comparable to the prior work of [ZXY17]
that uses similar methodology to evaluate older AlexNet models, while Only-BG-T

is a more natural-looking background that avoids black rectangles introduced in
Only-BG-B.

The No-FG dataset is created to retain the foreground shape, but not the texture.
We can use it to assess the relative importance of foreground shape compared to
foreground texture.

Finally, we create four datasets that have identical foregrounds but each have
distinct background signals. Only-FG has a pure black background to go with
the foreground. Mixed-Same has background signal from the same class as the
foreground. Mixed-Rand has background signal from a random class, so it can be
thought of as having neutral background signal. Mixed-Next has background signal
from the next class, which will always be in conflict with the foreground . Any artifacts
in the foreground that result from our image processing pipeline are equally present
in all four datasets. Thus, these datasets help to isolate how much backgrounds alone
influence model predictions when the correct foreground exists in the image.

Full-ImageNet version of each synthetic variation: We also apply the
same methodology for disentangling foreground and background signal to the entire
ImageNet validation set, creating Full-ImageNet (Full-IN) versions of each of our 7
dataset variations.

We evaluate a pre-trained ResNet-50 on Full-IN for comparison in Table A.2,
and observe similar trends to ImageNet-9 that lead to similar conclusions on model

127



background reliance. We choose to focus on ImageNet-9 results in the main paper
because of the following shortcomings of Full-IN.

1. Individual classes are quite small, as some classes have very few (or even zero)
images that make it through our filters due to lack of proper annotated bounding
boxes.

2. When bounding boxes do exist, their quality is often lower than those in the
IN-9 classes. For example, many images of fruit contain multiple fruit, but only
one will be properly annotated with a bounding box.

3. When creating the Mixed-Next equivalent for Full-IN, the next class is often
similar to the previous one. For example, many dog breeds occur consecutively
in ImageNet. Thus, Full-IN’s Mixed-Next frequently has backgrounds that
are similar to backgrounds from the foreground class.

A.2 Explaining the decreased BG-Gap of pre-trained

ImageNet models

We investigate two possible explanations for why pre-trained ImageNet models have a
smaller BG-Gap than models trained on ImageNet-9. Understanding this phenomenon
can help inform how models should be trained to be more background-robust. We
find slight improvements to background-robustness from training on more fine-grained
classes. We find that training on larger datasets helps only slightly when the training
dataset set size is smaller than IN-9L, but larger improvements occur when the
training dataset size is bigger. Thus, we encourage training on larger datasets if
reduced background robustness is the goal.

A.2.1 The effect of fine-grainedness on the BG-Gap

One possible explanation is that training models to distinguish between finer-grained
classes forces them to focus more on the foreground, which contains relevant features
for making those fine-grained distinctions, than the background, which may be fairly
similar across sub-classes of a high-level class. This suggests that asking models to
solve more fine-grained tasks could improve model robustness to background changes.

To test the effect of fine-grainedness on ImageNet-9, we make a related dataset
called IN-9LB that uses the same 9 high-level classes and can be cleanly modified into

128



more fine-grained versions. Specifically, for IN-9LB we choose exactly 16 sub-classes for
each high-level class, for a total of 144 ImageNet classes. To create successively more
fine-grained versions of the IN-9LB dataset, we group every 𝑛 sub-classes together
into a higher-level class, for 𝑛 ∈ {1, 2, 4, 8, 16}. Here, 𝑛 = 1 corresponds to keeping all
144 ImageNet classes as they are, while 𝑛 = 16 corresponds to only having 9 high-level
classes, like ImageNet-9. Because we keep all images from those original ImageNet
classes, this dataset is the same size as IN-9L.

We train models on IN-9LB at different levels of fine-grainedness and evaluate the
BG-Gap of those models in Figure A-2. We find that fine-grained models have a
smaller BG-Gap as well as better performance on Mixed-Next, but the improvement
is very slight and also comes at the cost of decreased accuracy on Original. The
BG-Gap of the most fine-grained classifier is 2.3% smaller than the BG-Gap of the
most coarse-grained classifier, showing that fine-grainedness does improve background-
robustness. However, the improvement is still small compared to the size of the
BG-Gap (which is 13.3% for the fine-grained classifier).

A.2.2 The effect of larger dataset size on the BG-Gap

A second possible explanation for why pre-trained ImageNet models have a smaller
BG-Gap is that training on larger datasets is important for background-robustness.
To evaluate this possibility, we train models on different-sized subsets of IN-9LB. The
largest dataset we train on is the full IN-9LB dataset, which is 4 times as large as IN-9,
and the smallest is 1/4 as large as IN-9. Figure A-3 shows that increasing the dataset
size does increase overall performance but only slightly decreases the BG-Gap.

Next, we train models on different-sized subsets of ImageNet; we use the pre-trained
ResNet-50 ImageNet model for full-sized ImageNet, and we train new ResNet-50 models
on subsets that are 1/2, 1/4, 1/8, 1/16, and 1/32 as large as ImageNet. In these cases,
we observe in Figure A-4 that training on more data does not help significantly when
the training dataset sizes are still small, but it does help more noticeably for models
trained on 1/2 of ImageNet and all of ImageNet.

It is possible that having both a fine-grained class structure and more training data
simultaneously is important for background-robustness. Furthermore, more training
data (from other classes that are not in IN-9L) may also be the cause of the increased
background-robustness of pre-trained ImageNet models.
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Figure A-2: We train models on IN-9LB at different levels of fine-grainedness (more
training classes is more fine-grained). The BG-Gap, or the difference between the test
accuracies on Mixed-Same and Mixed-Rand, decreases as we make the classification
task more fine-grained, but the decrease is small compared to the size of the BG-Gap.

A.2.3 Summary of methods investigated to reduce the BG-

Gap

In Figure A-5, we compare the BG-Gap of ResNet-50 models trained on different
datasets and with different methods to a ResNet-50 pre-trained on ImageNet. We
explore ℓ𝑝-robust training, increasing dataset size, and making the classification task
more fine-grained, and find that none of these methods reduces the BG-Gap as much
as pre-training on ImageNet. The only method that reduces the BG-Gap significantly
more is training on Mixed-Rand. Furthermore, the same trends hold true if we
measure the difference between Mixed-Same and Mixed-Next as opposed to the
BG-Gap (the difference between Mixed-Same and Mixed-Rand).
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Figure A-3: We train models on different-sized subsets of IN-9LB. The largest training
set we use is the full IN-9LB dataset, which is 4 times larger than ImageNet-9. While
performance on all test datasets improves as the amount of training data increases,
the BG-Gap has almost the same size regardless of the amount of training data used.
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Figure A-4: We train models on different-sized subsets of ImageNet. We use a pre-
trained ResNet-50 for the rightmost datapoints corresponding to training on the full
ImageNet dataset, which is about 30 times larger than ImageNet-9. The BG-Gap
begins to decrease when the training dataset set size is sufficiently large.
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Figure A-5: We compare various different methods of training models and measure
their BG-Gap, or the difference between Mixed-Same and Mixed-Rand test
accuracy. We find that (1) Pre-trained IN models have surprisingly small BG-Gap.
(2) Increasing fine-grainedness (IN-9LB Coarse vs. IN-9LB Fine) and dataset size
(IN-9 vs. IN-9L) decreases the BG-Gap only slightly. (3) ℓ𝑝-robust training does
not help. (4) Training on Mixed-Rand (cf. Section 2.3 appears to be the most
effective strategy for reducing the BG-Gap. For such a model, the Mixed-Same and
Mixed-Rand accuracies are nearly identical.
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A.3 Training and evaluation details

For all models, we use fairly standard training settings for ImageNet-style models.
We train for 200 epochs using SGD with a batch size of 256, a learning rate of 0.1
(with learning rate drops every 50 epochs), a momentum parameter of 0.9, a weight
decay of 1e−4, and data augmentation (random resized crop, random horizontal flip,
and color jitter). Unless specified, we always use a standard ResNet-50 architecture
[He+16]. For the experiment depicted in Figure A-3, we found that using a smaller
learning rate of 0.01 was necessary for training to converge on the smallest training
sets. Thus, we used that same learning rate for all models in Figure A-3.

When evaluating ImageNet classifiers on IN-9, we map all ImageNet predictions to
their corresponding coarse-grained class in IN-9. For example, we map both giant

schnauzer and Irish terrier to dog, and both goldfish and tiger shark to fish.
If an ImageNet classifier outputs a class that has no corresponding coarse-grained
class in IN-9, we consider the prediction incorrect.

A.4 Additional evaluation results

We include full results of training models on every synthetic IN-9 variation and then
testing them on every synthetic IN-9 variation in Table A.2. In addition to being
more comprehensive, this table and these IN-9 variations can help answer a variety
of questions, of which we provide three examples here. Finally, we also evaluate a
pre-trained model on Full-ImageNet (Full-IN) versions of each synthetic IN-9 variation
for comparison.

How does more training data affect model performance with and without
object shape?

We already show closely related results on the effect of more training data on the
BG-Gap in Figure A-3. Here, we compare model test performance on the No-FG

and Only-BG-B test sets. Both replace the foreground with black, but only No-FG

retains the foreground shape.
By comparing the models trained on Original and IN-9L (4x more training

data), we find that

1. The Original-trained model performs about 9% better on No-FG than Only-

BG-B, indicating that it can slightly improve accuracy by using object shape.

2. The IN-9L-trained model performs about 22% better on No-FG than Only-
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BG-B, showing that it can improve accuracy far more by using object shape.

Furthermore, both models perform very similarly on Only-BG-B. Thus, this suggests
that more training data may allow models to learn to use object shape more effectively.
Understanding this phenomena further could help inform model training and dataset
collection if the goal is to train models that are able to leverage shape effectively.

How much information is leaked from the size of the foreground bounding
box?

The scale of an object already gives signal correlated with the object class [Tor03].
Even though they are designed to avoid having foreground signal, the background-only
datasets Only-BG-B and Only-BG-T may inadvertently leak information about
object scale due to the bounding box sizes being recognizable.

To gauge the extent of this leakage, we can measure how models trained on datasets
where only the foreground signal has useful correlation (Mixed-Rand or Only-FG)
perform on the background-only test sets. We find that there is small signal leakage
from bounding box size alone—a model trained on Only-FG achieves about 23%
background-only test accuracy, suggesting that it is able to exploit the signal leakage to
some degree. A model trained on Mixed-Rand achieves about 15% background-only
test accuracy, just slightly better than random, perhaps because it is harder for models
to measure (and thus, make use of) object scale when training on Mixed-Rand.

The existence of a small amount of information leakage in this case shows the
importance of comparing Mixed-Same (as opposed to just Original) with Mixed-

Rand and Mixed-Next when assessing model dependence on backgrounds. Indeed,
the Mixed datasets may contain (1) image processing artifacts, such as rough edges
from the foreground processing, and (2) small traces of the original background. This
makes it important to control for both factors when measuring how models react to
varying background signal.

How does foreground bounding box size affect accuracy on Only-BG-T?

We further find that models are more able to predict accurately using the back-
ground signal alone when the foreground object is smaller—this is visualized in
Figure A-6. Intuitively this result makes sense, as most state-of-the-art models are
trained with cropping-based data augmentation, which can remove small foreground
objects from training images. Thus, models are actually trained to succeed when small
foreground objects are cropped out, and our toolkit confirms that this is indeed the
case.

What about other ways of modifying the background signal?
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Figure A-6: Comparing model accuracy on Only-BG-T across different foreground
object bounding box sizes. We observe that the model is more likely to succeed
when shown only image backgrounds if the removed foreground objects have smaller
bounding boxes. The dotted line represents the overall accuracy of the model on
Only-BG-T (averaged over all bounding box sizes).

Trained on Test Dataset
Mixed-Next Mixed-Rand Mixed-Same No-FG Only-BG-B Only-BG-T Only-FG Original IN-9L

Mixed-Next 78.07 53.28 48.49 16.20 11.19 8.22 59.60 52.32 46.44
Mixed-Rand 71.09 71.53 71.33 26.72 15.33 14.62 74.89 73.23 67.53
Mixed-Same 45.41 51.36 74.40 39.85 35.19 41.58 61.65 75.01 69.21
No-FG 13.70 18.74 42.79 70.91 36.79 42.52 31.48 48.94 47.62
Only-BG-B 10.35 15.41 38.37 37.85 54.30 42.54 21.38 42.10 41.01
Only-BG-T 11.48 17.09 45.80 40.84 38.49 50.25 19.19 49.06 47.94
Only-FG 33.04 35.88 47.63 27.90 23.58 22.59 84.20 54.62 51.50
Original 48.77 53.58 73.80 42.22 32.94 40.54 63.23 85.95 80.38
IN-9L 71.21 75.60 89.90 55.78 34.02 43.60 84.12 96.32 94.61
ImageNet 82.99 84.32 90.99 52.69 12.69 17.36 90.17 96.89 95.33

ImageNet (Full-IN) 51.47 48.69 64.34 21.70 7.98 9.51 59.19 76.07 -

Table A.2: The test accuracies, in percentages, of ResNet-50 models trained on all
variants of ImageNet-9, and a pre-trained ImageNet ResNet-50. The bottom row
and the second-to-last-row test the same pre-trained ImageNet model; however, the
bottom row tests the model on the Full-IN version of each dataset variation. Testing
on Full-IN shows similar trends as testing on ImageNet-9. Note that the Mixed-Next
test accuracy is actually higher than the Mixed-Rand test accuracy in the bottom
row because the next class is often very similar to the previous class in Full-IN.

One can modify the background in various other ways—for example, instead of
replacing the background with black as in Only-FG, the background can be blurred as
in the BG-Blurred image of Figure A-7. As expected, blurred backgrounds are still
slightly correlated with the correct class. Thus, test accuracies for standard models on
this dataset are higher than on Only-FG, but lower than on Mixed-Same (which
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Original Only-FG BG-Blurred

Figure A-7: Backgrounds can also be modified in other ways; for example, it can be
blurred. Our evaluations on this dataset show similar results.

has signal from random class-aligned backgrounds that are not blurred). While we do
not investigate all possible methods of modifying background signal, we believe that
the variations we do examine in ImageNet-9 already improve our understanding of
how background signals matter. Investigating other variations could provide an even
more nuanced understanding of what parts of the background are most important.

A.5 Additional related works and explicit compar-

isons

There has been prior work on mitigating contextual bias in image classification, the
influence of background signals on various datasets, and techniques like foreground
segmentation that we leverage.

Mitigating Contextual Bias: [Kho+12] focuses on mitigating dataset-specific
contextual bias and proposes learning SVMs with both general weights and dataset-
specific weights, while [MTW12] creates an out-of-context detection task with 209
out-of-context images and suggests using graphical models to solve it. [SSF19] focuses
on the role of co-occurring objects as context in the MS-COCO dataset, and uses
object removal to show that (a) models can still predict a removed object when only
co-occurring objects are shown, and (b) special data-augmentation can mitigate this.

Explicit Comparison to Prior Works Studying the Influence of Back-
grounds: In comparison to prior works on the influence of image backgrounds
(described in Section 2.5), our work contributes the following.

• We develop a toolkit for analyzing the background dependence of ImageNet
classifiers, the most common benchmark for computer vision progress. Only
[ZXY17], which we compare to in Section 2.5, also focuses on ImageNet.
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• The test datasets we create separate and mix foreground and background signals
in various ways (cf. Table 2.1), allowing us to study the sensitivity of models to
these signals in a more fine-grained manner.

• Our toolkit for separating foreground and background can be applied without
human-annotated foreground segmentation, which prior works on MS-COCO
and Waterbirds rely on. This is important because foreground segmentation
annotations are hard to collect and do not exist for ImageNet.

• We study the extent of background dependence in the extreme case of adversarial
backgrounds.

• We focus on better vision models, including ResNet [He+16], Wide ResNet[ZK16],
and EfficientNet [TL19].

• We evaluate how improvements on the ImageNet benchmark have affected
background dependence (cf. Section 2.4).

• We will publicly release our toolkit (code and datasets) for benchmarking
background dependence so that others can also use it to better understand their
own models. Our toolkit is compatible with any ImageNet-trained model.

Foreground Segmentation and Image Inpainting: In order to create IN-9
and its variants, we rely on OpenCV’s implementation of the foreground segmentation
algorithm GrabCut [RKB04]. Foreground segmentation is a branch of computer vision
that seeks to automatically extract the foreground from an image [HGW01]. After
finding the foreground, we remove it and simply replace the foreground with copies
of parts of the background. Other works solve this problem, called image inpainting,
either using exemplar-based methods [CPT04] or using deep learning [Yu+18; SFS18].
[SFS18] both detects the foreground for removal and inpaints the removed region.
However, more advanced inpaintings techniques can be slow and inaccurate when
the region that must be inpainted is relatively large [SFS18], which is the case for
many ImageNet images. Exploring better ways of segementing the foreground and
inpainting the removed foreground could improve our analysis toolkit further.
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A.6 Additional examples of synthetic datasets

We randomly sample an image from each class, and display all synthetic variations of
that image, as well as the predictions of a pre-trained ResNet-50 (trained on IN-9L)
on each variant.
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Figure A-8: ImageNet-9 variations—Dog.
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Figure A-9: ImageNet-9 variations—Bird.
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Figure A-10: ImageNet-9 variations—Vehicle.
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Figure A-11: ImageNet-9 variations—Reptile.
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Figure A-12: ImageNet-9 variations—Carnivore.
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Figure A-13: ImageNet-9 variations—Instrument.
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Figure A-14: ImageNet-9 variations—Primate.
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Figure A-15: ImageNet-9 variations—Fish.
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A.7 Adversarial backgrounds

We compute the adversarial background attack success rate for 4 models in Table A.3.
While the Mixed-Rand model is more adversarially background robust than the
Original model, it is less adversarially background robust than the IN-9L model.
The model trained on all of ImageNet is the most adversarially background robust of
all models. This suggests that increasing training dataset size (IN-9L) has a bigger
effect on adversarial background robustness than randomizing backgrounds during
training (Mixed-Rand). On the other hand, the Mixed-Rand model has a much
lower BG-Gap than the IN-9L model, indicating that models with a smaller BG-Gap

are not necessarily robust to adversarial backgrounds, and vice versa.

Training Dataset Original Mixed-Rand IN-9L ImageNet

Attack Success Rate 99.0% 93.5% 88.0% 77.7%

Table A.3: Adversarial backgrounds attack success rates for 4 models analyzed in this
work. The Original and the Mixed-Rand are trained on equally small datasets,
IN-9L is trained on 4x more data, and the ImageNet model is trained on the most
data.

Next, we visualize the attack success rate distribution of the different backgrounds
from the insect class in Figure A-16. The long tail of the distribution indicates that
many backgrounds are especially capable of fooling models.

Finally, we include the 5 most fooling backgrounds for all classes, the fool rate for
each of those 5 backgrounds, and the total fool rate across all backgrounds from that
class (on the left of each row) below.
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Figure A-16: Histogram of insect backgrounds grouped by how often they cause
(non-insect) foregrounds to be classified as insect by a IN-9L-trained model. We
visualize the five backgrounds that fool the classifier on the largest percentage of
images in Figure 2-4.
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Figure A-19: Most adversarial backgrounds—Vehicle.
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Figure A-24: Most adversarial backgrounds—Fish.
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A.8 Examples of fooling backgrounds in unmodified

images

We visualize examples of images where the background of the full original image
actually fools models in Figure A-25. For these images, models classify the foreground
alone correctly, but they predict the same wrong class on the full image and the
background. We denote these images as “BG Fools” in Table 2.3 and Figure 2-8.
While this category is relatively rare (accounting for just 3% of the Original-trained
model’s predictions), they reveal a subset of original images where background signal
hurts classifier performance. Qualitatively, we observe that these images all have
confusing or misleading backgrounds.
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bird

Original Classification:

With Random Background:

instrument
vehicle

fish
reptile

fish
insect

vehicle
instrument

Figure A-25: Images that are incorrectly classified (as the class on the top row, which
is the same class that their background alone from Only-BG-T is classified as),
but are correctly classified (as the class on the bottom row) when the background
is randomized. Note that these images have confusing backgrounds that could be
associated with another class.
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Appendix B

Additional details for Chapter 3

B.1 Experiment dashboard

Figure B-1: The 3DB dashboard used for data exploration.

Since experiments usually produce large amounts of data that can be hard to get
a sense of, we created a data visualization dashboard. Given a folder containing the
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JSON logs of a job, it offers a user interface to explore the influence of the controls.
For each parameter of each control, we can pick one out three mode:

• Heat map axis: This control will be used as the x or y axis of the heat map.
Exactly two controls should be assigned to this mode to enable the visualization.
Hovering on cells of the heat map will filter all samples falling in that region.

• Slider: This mode enables a slider that is used to only select the samples that
match exactly this particular value.

• Aggregate: do not filter samples based on this parameter

B.2 iPhone app

We developed a native iOS app to help align objects in the physical experiment (Section
3.4). The app allows the user to enter one or more rendering IDs (corresponding to
scenes rendered by 3DB); the app then brings up a camera with a translucent overlay
of either the scene or an edge-filtered version of the scene (cf. Figure B-2). We used
the app to align the physical object and environment with their intended place in
the rendered scene. The app connects to the same backend serving the experiment
dashboard.

B.3 Controls

3DB takes an object-centric perspective, where an object of interest is spawned on
a desired background. The scene mainly consists of the object and a camera. The
controls in our pipeline affect this interplay between the scene components through
various combinations of properties, which subsequently creates a wide variety of
rendered images. The controls are implemented using the Blender Python API ‘bpy’
that exposes an easy to use framework for controlling Blender. ‘bpy’ primarily exposes
a scene context variable, which contains references to the properties of the components
such as objects and the camera; thus allowing for easy modification.

3DB comes with several predefined controls that are ready to use (see https:

//3db.github.io/3db/). Nevertheless, users are able (and encouraged) to implement
custom controls for their use-cases.
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Figure B-2: A screenshot of the iOS app used to align objects for the physical-world
experiment. After starting the dashboard server, the user can specify the server
location as well as a set of rendering IDs. The corresponding renderings will be
displayed over a camera view, allowing the user to correctly position the object in the
frame. The user can adjust the object transparency, and can toggle between overlaying
the full rendering and overlaying just the edges (shown here).
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B.4 Additional experiments details

We refer the reader to our package https://github.com/3db/3db for all source code,
3D models, HDRIs, and config files used in the experiments of this paper.

For all experiments we used the pre-trained ImageNet ResNet-18 included in
torchvision. In this section we will describe, for each experiment the specific 3D-
models and environments used by 3DB to generate the results.

(a) Synthetic (b) Real picture (iPhone 12 Pro)

Figure B-3: Studio used for the real-world experiments (Section 3.4).

B.4.1 Sensitivity to image backgrounds (Section 3.3.1)

Analysing a subset of backgrdounds

Models: We collected 19 3D-models in total. On top of the models shown on figure
B-6, we used models for: (1) an orange, (2) two different toy power drills, (3) a baseball
ball, (4) a tennis ball, (5) a golf ball, (6) a running shoe, (7) a sandal and (8) a toy
gun. Some of these models are from YCB [Cal+15] and the rest are purchased from
amazon.com and then put through a 3D scanner to get corresponding meshes.

Environments: We sourced 20 2k HDRI from the website https://hdrihaven.

com. In particular we used: abandoned_workshop, adams_place_bridge, altanka,

aristea_wreck, bush_restaurant, cabin, derelict_overpass,

dusseldorf_bridge, factory_yard, gray_pier, greenwich_park_03,
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kiara_7_late-afternoon, kloppenheim_06, rathaus, roofless_ruins, secluded_beach,

small_hangar_02, stadium_01, studio_small_02, studio_small_04.

Analyzing all backgrounds with the “coffee mug” model.

Models: We used a single model: the coffee mug, in order to keep computational
resources under control.

Environments: We used 408 HDRIs from https://hdrihaven.com/ with a 2K
resolution.

B.4.2 Texture-shape bias (section 3.3.2)

Textures: To replace the original materials, we collected 7 textures on the internet
and we modified them to make them seamlessly tilable. These textures are shown on
Figure B-6.

Models: We used all models that are shown on Figure B-6.

Environments: We used the virtual studio environment (Figure B-3).

B.4.3 Orientation and scale dependence (Section 3.3.3)

We use the same models and environments that are used in Appendix B.4.1.

B.4.4 3D models heatmaps (Figure 3-12)

Models: For this experiment we used the set of models shown on Figure B-6.

Environments: We used the virtual studio environment (see Figure B-3).

B.4.5 Case study: using 3DB to dive deeper (Section 3.3.4)

Models: We only used the mug since this experiment is mug specific.

Environments: We used the sudio set shown on Figure B-3.
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B.4.6 Physical realism (Section 3.4)

Real-world pictures: All images were taken with an handheld Apple iPhone 12
Pro. To help us align the shots we used the application described in appendix B.2.

Models: We used the models shown in Figure 3-15.

Environments: The environment shown on Figure B-3 was especially designed
for this experiment. The goal was to have an environment that matches our studio
as closely as possible. The geometry and materials were carefully reproduced using
reference pictures. The lighting was reproduce through a high resolution HDRI map.
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B.5 Omitted figures

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Heading

0.2

0.4

0.6

0.8

1.0
Re

la
tiv

e 
ac

cu
ra

cy

Other objects Spherical objects

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Tilt (cosine distance with z axis)

0.2

0.4

0.6

0.8

1.0

1.2

Re
la

tiv
e 

ac
cu

ra
cy

Other objects Spherical objects

0.8 1.0 1.2 1.4 1.6 1.8 2.0
Zoom factor

0.80

0.85

0.90

0.95

1.00

Re
la

tiv
e 

ac
cu

ra
cy

Figure B-4: Additional plots to Figure 3-13. We plot the distribution of model accuracy
as a function of object heading (top), tilt (middle) and zoom (bottom), aggregated
over variations in controls. For heading and tilt, we separately evaluate accuracy
for (non-)spherical objects. Notice how the performance of the model degrades for
non-spherical objects as the heading/tilt changes, but not for spherical objects. Also
notice how the performance depends on the zoom level of the camera (how large the
object is in the frame).

(a) Sample of the images rendered for
the experiment presented in section
3.3.4.

Coffee

Water Milk
Influence on model prediction:

Bucket, pail Coffee mug Cup OR Pill bottle

(b) Un-normalized version of Figure 3-14-(b).

Figure B-5: Additional illustration for the mug liquid experiment of Figure 3-14. This
figure shows the correlation of the liquid mixture in the mug on the prediction of the
model, averaged over random viewpoints
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Figure B-6: Additional examples of the experiment in Figure 3-11. Distribution of
classifier predictions after the texture of the 3D object model is altered. In the top
rows, we visualize the most frequently predicted classes for each texture (averaged over
all objects). In the bottom rows, we visualize the most frequently predicted classes
for each object (averaged over all textures). We find that the model tends to predict
based on the texture more often than based on the object.
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Appendix C

Additional details for Chapter 4

C.1 Examples from Section 4.2 on the limits of aux-

iliary data

In this section, we provide all the specifics for the three experiments discussed in
Section 4.2. These experiments demonstrate how indiscriminate usage of all auxiliary
data can actually harm performance.

C.1.1 Training on ImageNet data for CIFAR10

In the first example (Figure 4-1), we showed that training on more ImageNet data
does not always improve CIFAR10 performance. Indeed, although adding a small
amount of ImageNet does boost CIFAR10 performance, adding too much ultimately
decreases accuracy. The blue line shows the performance of a CIFAR10 classifier when
we add auxiliary ImageNet data to one thousand CIFAR10 training examples. The
orange line shows the performance of a CIFAR10 classifier when we only train on the
auxiliary ImageNet data. In both cases, we find that optimal CIFAR10 performance
is reached after adding approximately ten thousand ImageNet datapoints. After this
point, adding more ImageNet data degrades the classifier’s accuracy.

Our experimental setup for this setting follows our main experimental setup but
with one main difference: to examine the effect of auxiliary data, we vary the size of
the auxiliary dataset in the amounts of 2𝑘 for 𝑘 = 4 . . . 16. Otherwise, the remaining
specifics (how we select auxiliary data from ImageNet and training parameters) match
our benchmark, and are described in Appendix C.3.
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C.1.2 Gaussian example

In this section, we provide the specifics of the Gaussian example from Section 4.2,
where we showed how restricting data from auxiliary Gaussians can improve the
resulting classifier.

Data generation. The target data is generated from 2-dimensional Gaussians
with a class-conditional distribution of

𝑝(𝑥|𝑦) ∼ 𝒩 (𝑦 · 𝜇, 𝐼) (C.1)

for 𝜇 = (2, 0). The auxiliary data is also generated from 2-dimensional Gaussians
with the same mean but different covariance. Specifically, the auxiliary data has a
conditional distribution of

𝑝𝑎𝑢𝑥(𝑥|𝑦) ∼ 𝒩 (𝑦 · 𝜇,Σ) (C.2)

for Σ = 𝑅 diag([𝑠, 1/𝑠])𝑅𝑇 where 𝑠 = 4 and 𝑅 is the standard rotation matrix

𝑅 =

[︃
cos(𝜃) − sin(𝜃)

sin(𝜃) cos(𝜃)

]︃
(C.3)

for 𝜃 = 𝜋/8. In other words, 𝑝𝑎𝑢𝑥 is equivalent to a rotated and scaled version of 𝑝
with the same mean. This rotation and scaling amounts to the bias introduced from
the auxiliary dataset.

We generate 𝑛 = 12 datapoints 𝒟𝑡𝑎𝑟𝑔𝑒𝑡 = {𝑥𝑖, 𝑦𝑖} from the target distribution split
evenly between the two classes, and generate 𝑚 = 2 . . . 200 datapoints 𝒟𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 =

{𝑥′
𝑖, 𝑦

′
𝑖}𝑖=1...𝑚 from the auxiliary distribution, also split between the two classes.

Clipping auxiliary data. To clip the auxiliary data and get a target-aligned
subset, we simply throw away all datapoints that lie outside a high confidence region
of the Gaussians estimated from the target dataset. Specifically, use the following
steps:

1. We estimate the class conditional mean and covariance matrix of the target
dataset. Specifically, we calculate the sample mean 𝜇𝑦 and covariance Σ𝑦 of
each class in the target data, {𝑥𝑖 : 𝑦𝑖 = 𝑦} ⊆ 𝒟𝑡𝑎𝑟𝑔𝑒𝑡. This gives us an estimated
distribution 𝑝(𝑥|𝑦) = 𝒩 (𝜇𝑦,Σ𝑦) for the target distribution.
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2. We calculate the Mahalanobis distance of each auxiliary datapoint to the esti-
mated Gaussian of its class 𝑝(𝑥|𝑦), i.e.

𝑀𝐷(𝑥, 𝑦) =
√︁
(𝑥− 𝜇𝑦)𝑇Σ−1

𝑦 (𝑥− 𝜇𝑦) (C.4)

3. We then discard all auxiliary points whose Mahalanobis distances lies outside of
a certain threshold. Specifically, the resulting subset is the following:

𝒟𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 = {(𝑥′, 𝑦′) : 𝑀𝐷(𝑥′, 𝑦′) ≤ 𝑟 for (𝑥′, 𝑦′) ∈ 𝒟𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦} (C.5)

for 𝑟 = 3.

Fitting the linear classifier. In the experiment shown in Figure 4-2, we measure
how adding auxiliary data affects the performance of a linear classifier with a small
amount of target data. Similar to the previous experiment on augmenting CIFAR10
data with ImageNet data, we find that adding too much auxiliary data hurts accuracy
in this Gaussian example.

Specifically, we add data from the auxiliary dataset to the training data in various
amounts from 2 . . . 100, and fit a linear classifier. We use the default LogisticRegression
function from Scikit-learn. Test error is measured over an independent, random sample
of 1000 additional samples from the original training distribution 𝑝. Error bars are
averaged over five random seeds. We also compare to the analytically optimal classifier,

which is ℎ𝑜𝑝𝑡(𝑥1, 𝑥2) =

⎧⎨⎩ 1, if 𝑥1 ≥ 0

−1, otherwise
.

C.1.3 Training on biased 3DB data

Inspired by the common story of machine learning models picking up on biases between
animals and their backgrounds [RSG16], we construct a binary classification task with
explicitly planted biases. In contrast to the Gaussian example, we generate a more
realistic setting of cats and dogs using the Blender renderer and the 3DB framework
[Lec+21b]. In contrast to the CIFAR10 and ImageNet example, where the exact
ImageNet patterns that hurt CIFAR10 generalization are unknown, we can instead
construct a setting with an explicit bias. Since this is a controlled experiment, it
enables us to do the following:

1. Validate in isolation that biased auxiliary data can hurt performance in situations
more complex than the Gaussian example.
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Biased Dataset (Unbiased) Ideal Subset (Unbiased) Test Dataset

Figure C-1: The full 15k-image auxiliary dataset (Left) contains a background bias
where dogs appear more frequently outdoors and cats appear more frequently indoors.
We only show dog images here to highlight the background bias. The unbiased 3k-
image subset (Middle) does not have any background bias. Training on the unbiased
subset results in better test accuracy on the unbiased test set (Right), showing that
more data is not always more helpful.

2. Demonstrate how an "ideal" target-aligned subset can remove this bias and
improve performance over using all of the original auxiliary data

Data generation. We begin by constructing an auxiliary dataset with a background
bias. Specifically, we generate 50 images for each (3D-model, background) pairing.
We use 15 cat 3D-models and 15 dog 3D-models for the training data. We choose 1
indoor background and 1 outdoor background to be shared by both classes. Then, we
choose 8 new indoor backgrounds to appear with cats, and 8 new outdoor backgrounds
to appear with dogs. We hold out 1 indoor background, 1 outdoor background, and
three 3D-models per class for the test set.

Our resulting training set has a strong background bias; 90% of cats are indoors,
and 90% of dogs are outdoors. Meanwhile, the test set consists of two entirely new
backgrounds and is unbiased: half of the images use an outdoor background and the
other half use an indoor background irrespective of the class. We show examples
of generated train and test dog images on the left and right panels of Figure C-1
respectively.

The ideal target-aligned subset. The ideal subset of auxiliary data is one that
does not introduce a background bias. Specifically, we can accomplish this goal by
choosing images that use the shared indoor and outdoor backgrounds as the “ideal”
subset. Then, cats and dogs are equally likely to appear on either indoor or outdoor
backgrounds. This ensures that the backgrounds do not confer any useful correlations
for predicting the class, removing the background bias. Examples of the ideal dog
subset are shown shown in the middle of Figure C-1.
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Fitting a classifier. We train ResNet-18 models on both the full auxiliary dataset
and the target-aligned subset and evaluate their test performance on the unbiased
test set. Most training details are the same as the training details for the vision
experiments in the rest of the paper, which are described in Appendix C.3.3. The
main differences are the following.

• We train for 120 epochs for the full 15k-image auxiliary dataset, and we train
for 600 epochs for the unbiased 3k-image subset (so that the total number of
SGD iterations across both settings is the same).

• We use a learning rate of 0.1, and we only do a learning rate drop one time,
halfway through training.

Indiscriminately training on the full, biased dataset results in a test accuracy
of 90.4% ± 2.1. On the other hand, training on the smaller, target-aligned subset
improves the accuracy by over 7% to 97.6% ± 0.6, respectively. This suggests that
when a bias exists in the auxiliary data, it can be harmful to use the full dataset as
opposed to just a target-aligned subset.

C.2 How to project datasets

In this section, we describe in detail the framework that we developed to solve the
dataset projection problem. Specifically:

1. We provide a brief background on the active set optimization method that we
build upon (Appendix C.2.1).

2. We describe the exact algorithms of our active set (Appendix C.2.2) and PGD
(Appendix C.2.3) solvers.

3. We provide a more detailed description of how we obtain source distributions
(Appendix C.2.4).

4. We outline specifically how we compute the distance metric between datasets
(Appendix C.2.5).

C.2.1 Overview of active set framework

We build upon an extensive line of work on active set optimization frameworks for
minimization over the simplex [Ber82; BM02; Brá+17; Cri+17; FFK98; HZ06]. This
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family of algorithms can solve problems of the following form:

min
𝛼

𝑓(𝛼) subject to
𝑘∑︁

𝑖=1

𝛼𝑖 = 1, 𝛼𝑖 ≥ 0 (C.6)

where 𝑓 is the objective function to be minimized over the simplex. Existing algorithms
have favorable properties, such as global convergence to stationary points in non-convex
settings [Cri+20].

Our algorithm is an adaptation of the framework from Cristofari et al. [Cri+20] to
the stochastic and non-differentiable setting, in order to solve the dataset projection
problem from Equation (4.3).

As a brief overview, the simplex algorithm from Cristofari et al. [Cri+20] consists
of two main steps. First, the method calculates an estimate of the active set, and
performs a single coordinate update based on this update. Second, the method then
calculates a search direction, and performs a line search in this direction. With these
updates, Cristofari et al. [Cri+20] show that this method has linear convergence to a
stationary point for non-convex problems with simplex constraints.

However, the method as originally proposed was not intended for stochastic and
non-differentiable optimization. Indeed, if we attempt to directly apply this algorithm
to solve the dataset projection from Equation (4.3), we run into two main problems.
First, the estimate of the active set can vary due to the stochasticity in the objective
when sampling a dataset. This causes coordinates to rapidly fluctuate between being
in and out of the active set between iterations, which prevents the method from
converging. Second, the method requires a gradient calculation for both the active
set estimate and the search direction. However, the objective from Equation (4.3) is
non-differentiable with respect to the simplex variables.

C.2.2 Extending the active set framework

In order to address these two problems and solve the dataset projection problem, we
modify the active set simplex algorithm from Cristofari et al. [Cri+20] in two ways.

Damped updates for estimating the active set. In order to stabilize the
algorithm, we need to stop the active set estimates from fluctuating too much. To
do this, we instead introduce a soft active set estimate which varies between [0, 1] for
each coordinate. Then, to determine if a coordinate is in the active set or not, we
simply threshold the soft estimate at 0.5: coordinates with a soft estimate greater
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than 0.5 are in the active set, and coordinates below are not. Finally, each iteration
we update the soft estimate with a momentum-style update to damp the variability
at each iteration. This stabilizes the soft estimate, and creates a more consistent
active set across iterations that enables the method to converge. The specific steps for
calculating and updating the soft active set are in lines 5-11 of Algorithm 2. The rest
of the active set update remains the same as in Cristofari et al. [Cri+20].

Algorithm 2 The damped active set update DampedUpdate(𝛼,𝐴, 𝑔) for simplex
optimization, which applies a momentum update to the active set 𝐴 and performs a
coordinate step to the iterate 𝛼.
1: // Select coordinate to update and calculate hard active set for current iterate
2: 𝑗 = argmin𝑖{𝑔𝑖}
3: 𝐴 = {𝑖 : 𝛼𝑖 ≤ 𝜖𝑔𝑇 (𝑒𝑖 − 𝛼)}
4:
5: // Apply damped update to the soft active set estimate to stabilize the current

active set
6: 𝐴 = 𝛽𝐴
7: for 𝑖 ∈ 𝐴 do
8: 𝐴 = 𝐴+ (1− 𝛽)
9: end for

10: 𝐴 = {𝑖 : 𝐴𝑖 > 0.5}
11: 𝑁 = {𝑖 : 𝛼𝑖 > 𝜖𝑔𝑇 (𝑒𝑖 − 𝛼𝑡), 𝑖 ̸= 𝑗}
12:
13: // Apply coordinate update
14: Set �̃�𝐴 = 0, �̃�𝑁 = 𝛼𝑁 , �̃�𝑗 = 𝛼𝑗 +

∑︀
ℎ∈𝐴 𝛼ℎ

15: return (�̃�, 𝐴)

Numerical estimation for gradients. The active set algorithm has two updates
that require gradient directions. However, the dataset projection problem is non-
differentiable due to the sampling procedure. Instead, we use numerical estimation to
calculate the gradient. Specifically, we use the central difference formula for estimating
the gradient. Furthermore, in the second step of the framework, we use a stale gradient
from the previous update to keep computational overhead low. This contrasts with
the original framework, which uses a fresh gradient for the iterate after the initial
active set update step. Otherwise, the remainder of the second update is the same as
in Cristofari et al. [Cri+20], and is shown in Algorithm 3.
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Algorithm 3 The search direction update SearchUpdate(𝛼,𝐴, 𝑔), which uses a stale
gradient and line search to update the iterate 𝛼 with line search parameters (𝛾, 𝛿).
Here, 𝒫Δ is the projection operator onto the simplex.
1: // Compute a search direction that obeys the active set estimate
2: 𝑑 = 𝒫Δ (𝛼− 𝑠𝑔)− 𝛼
3: for 𝑖 : 𝐴𝑖 > 0.5 do
4: 𝑑𝑖 = 0
5: end for
6:
7: // Armijo line search
8: if 𝑔𝑇𝑑 < 0 then
9: 𝜆 = 1

10: while 𝑓(𝛼 + 𝜆𝑑) > 𝑓(𝛼) + 𝛾𝜆𝑔𝑇𝑑 do
11: 𝜆 = 𝛿𝜆
12: end while
13: else
14: 𝜆 = 0
15: end if
16: return 𝛼 + 𝜆𝑑 // Second update

Algorithm 4 Projected gradient descent (PGD) solver for projecting datasets with
step size 𝛾

1: 𝛼0
𝑖 = 1/𝑘 for 𝑖 = 1 . . . 𝑘 // Initialize feasible point

2: for 𝑡 = 0, 1, . . . do
3: 𝑔 = ∇𝑓(𝛼𝑡) // Estimate numerical gradient of the dataset projection objective

4: 𝛼𝑡 = ProjΔ(𝛼
𝑡 + 𝛾 · 𝑔) // Gradient update with projection onto simplex

5: end for

C.2.3 Projected gradient descent

As an another approach, we can apply projected gradient descent (PGD) to solve
Equation 4.3. Similarly to the active set approach, we can use numerical gradient
estimates to directly optimize 𝛼, and project 𝛼 back to the simplex after every
step. Although PGD does not have the global convergence guarantee that the active
set method does, PGD is an simple technique for solving constrained optimization
problems in deep learning settings. The PGD solver is shown in Algorithm 4.

C.2.4 Determining source distributions

To apply dataset projection to real-world datasets, we need to divide an auxiliary
distribution into multiple source distributions to search over. We do so primarily
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(a) STL10 cluster.
(b) CIFAR10 "blue" cluster of the car
class.

Figure C-2: Examples of clusters created when using a robust representation and
unsupervised learning to separate auxiliary datasets into source distributions. (a) A
cluster from the STL10 dataset, which has no label information and (b) a cluster from
the CIFAR10 car class, which contains mostly blue images.

with two main strategies: either by using existing labels when available, or generating
source distributions with unsupervised clustering methods.

Using label information. In some cases, datasets may already have existing class
or attribute labels. For example, suppose that the target dataset is CIFAR10 and
the auxiliary dataset is ImageNet. When projecting the CIFAR10 dog class onto
ImageNet, each ImageNet class that is a dog breed can be considered a separate source
distribution. Note that the labels for the auxiliary dataset do not need to strictly
line up with labels in the target dataset. For example, the Emoji dataset has labels
corresponding to emoticons such as a Christmas tree, a camera, and the sun. These
labels may not have an obvious correspondence to the labels of other datasets such
as the five star ratings from the Yelp dataset. Our framework can simply use the
auxiliary labels as a way to divide the data into source distributions, and then project
each target class onto the auxiliary data to re-assign labels for the target task.

Unsupervised data. Sometimes no label information is available. For example,
suppose we want to project CIFAR10 classes onto the unsupervised STL10 dataset.
The STL10 dataset is completely unlabeled and can contain images of objects that
are completely irrelevant to the base CIFAR10 class. In such cases, we can use
unsupervised clustering techniques to find source distributions. For our vision settings,
we use 𝑘-means clustering based on robust representations because it has been shown
to lead to good visual alignment within each cluster [Eng+19a]. We show several
examples from an STL10 cluster in Figure C-2.
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Combined label and clustering. The previous two approaches for dividing an
auxiliary distribution into source distributions can be combined to obtain even finer-
grained source distributions. This can enable source distributions to capture a narrower
population, which can then be used to find more accurate projections of the target
dataset. For example, when using CIFAR10 as an auxiliary dataset, we can not only
break the dataset into subsets corresponding to its classes, but also use clustering
techniques to break each class subset into finer-grained categories. We show an
example of this in Figure C-2, which shows a blue-car cluster within the CIFAR10 car
class.

C.2.5 Distance metric for dataset projection

In this section, we expand on the specific distance metric used in the objective of the
dataset projection problem. This objective is the fundamental metric that guides the
solvers towards “target-aligned” subsets.

We use what is known as the unbiased estimate for the Maximum Mean Dis-
crepency [Gre+12], as defined in Equation C.7:

MMD(𝑥, 𝑦) =

[︃
1

𝑚2

𝑚∑︁
𝑖,𝑗=1

𝑘(𝑥𝑖, 𝑥𝑗) +
1

𝑚𝑛

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑘(𝑥𝑖, 𝑦𝑗) +
1

𝑛2

𝑛∑︁
𝑖,𝑗=1

𝑘(𝑦𝑖, 𝑦𝑗)

]︃ 1
2

(C.7)

where 𝑘(𝑥, 𝑦) = exp(−𝛼 · 1
2
‖𝑥− 𝑦‖22) is a kernel with hyperparameter 𝛼.

This score was originally proposed as a way to distinguish whether two distributions
were different or indistinguishable via a two-sample hypothesis test. In our setting,
we consider the datasets as sampled from the source and target distributions, and use
the MMD score as the metric for distance without the hypothesis testing component.

However, these MMD scores run into numerical issues when the feature dimension
of the dataset is extremely large. These issues make it not possible for the MMD
score to distinguish between, for example, two different image distributions. However,
Rabanser, Günnemann, and Lipton [RGL19] found that calculating the MMD score in
the encoded representation space of a neural network was significantly more effective
than the original feature space, and in fact was the most powerful way to perform the
traditional two-sample hypothesis test for detecting distribution shift.

Thus, in this work we use the MMD score in the feature space of a neural network,
as suggested by Rabanser, Günnemann, and Lipton [RGL19]. For the vision setting
we use a randomly initialized encoder network, which found to be as effective as
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pretrained variants [RGL19]. For the language setting we use a pretrained BERT
model from HuggingFace [DBLP:journals/corr/abs-1810-04805]. To select the
hyperparameter 𝛼, we measured the MMD statistic over a range of possible 𝛼 and
selected one that resulted in a statistically significant hypothesis test in distinguishing
the original auxiliary data from the target data. For the vision settings, this turned
out to be 𝛼 = 500, and for the language settings this was 𝛼 = 0.01.

C.3 Experimental details

In this section, we provide a complete description of the datasets used and the
experimental setup for projecting datasets and training models.

C.3.1 Datasets

In this section, we describe each of the datasets used in the experiments of Section 4.4.
A table summary of how we assigned the auxiliary dataset, the target dataset, and
the held-out test set of the target dataset is shown in Table C.1.

Our computer vision experiments use four standard classification datasets — Ima-
geNet [Rus+15], Oxford-IIIT Pet [Par+12], CIFAR10 [Kri09], and STL10 [Ada11] —
and one synthetic dataset generated using 3DB [Lec+21b]. Our natural language exper-
iments use five sentiment analysis datasets — Stanford Sentiment Treebank [Soc+13],
Emotion Recognition [Moh+18; Bar+20], Emoji Prediction [Bar+18; Bar+20], Yelp
Reviews [ZZL15], and DailyDialog Act Corpus [Cha+20].

Personally identifiable information or offensive content. The datasets we
use are all open source and widely-used in the community. Nonetheless, there is a
non-zero chance that the data contains personal information or offensive content. For
example, unsupervised datasets such as the images in STL10 may contain such images
since the dataset has, by definition, not been supervised. The sentiment analysis
datasets may contain negative sentences that are possibly offensive towards people,
such as racist messages posted on Twitter or ad-hominen attacks in negative Yelp
reviews. To our knowledge, we are not aware of any such data within these datasets,
and have not explicitly encountered them in our research.

165



Target Test Auxiliary Source
Distribution

ImageNet - - Train Set Class labels
CIFAR10 Train Set (1000) Test Set (1000) Train Set Combined

Oxford-IIIT All but test set Random 250 per class All but test set Class labels
STL10 Train Set (500) Test Set (800) Unlabeled data Clustering
3DB Validation Set (1000) Test Set (1000) Train Set Attribute labels

SST Validation set Test set Train Set Sentiment scores
Emoji Validation set Test set Train Set Emoji labels

Emotion Validation set Test set Train Set Emotion labels
Yelp Train set (second half) Train set (first half) Test set Review scores

DailyDialog Validation set (100) Test set Train Set Emotion labels

Table C.1: We summarize the portions of each dataset used when the given dataset is
chosen as the target, test, or auxiliary dataset. For example, when CIFAR10 is the
target distribution, we project 1000 images from each class of CIFAR10’s training set
onto the auxiliary dataset. When testing a model (e.g., one trained on the projected
dataset) on CIFAR10, we test on the held-out test set of CIFAR10. When CIFAR10 is
used as an auxiliary dataset, we use both the CIFAR10 class labels and unsupervised
clustering to get source distributions.

Image classification

We standardize all of the image classification tasks into a single unified setting.
Specifically, all images are resized to have the same resolution (32 × 32), and for
each scenario, we use classes that are shared between datasets. For example, when
projecting Oxford-IIIT onto CIFAR10, we choose the auxiliary dataset to be the the
CIFAR10 classes cat and dog, and project the corresponding classes in Oxford-IIIT
onto the cluster-based sources of the cat and dog classes.

ImageNet. ImageNet is the largest vision dataset we consider, and it is substantially
larger (both in size and number of classes) than all the other vision datasets. Hence,
we use ImageNet primarily as an auxiliary dataset. Specifically, we use the training
set of ImageNet.

To get source distributions for a particular class, we find that class in the WordNet
hierarchy and use every descendant ImageNet class as a source for the class. For
example, for the “dog” class, we find the dog node in the WordNet hierarchy and use
all the various breeds of dogs under this node as individual source distributions for
the dog class.
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CIFAR10. The target and test datasets for CIFAR10 are random subsets of the
training and test data respectively. Specifically, we randomly subsample 1000 examples
from each class to match the ImageNet dataset.

When CIFAR10 is used as an auxiliary dataset, we split the training data into
sources with a combination of class labels and unsupervised clustering. Specifically,
we first encode each example into a robust feature representation. We do this with
an adversarially robust ImageNet classifier [Eng+19c], as this is known to be more
aligned with human visual features [Eng+19a]. We used the open-source pre-trained
ℓ2 robust model for 𝜖 = 3. For each class, we then cluster the training data into 16
clusters using the robust representations and the MiniBatchKMeans function from
Scikit-learn. These 16 clusters form the source distributions for the corresponding
CIFAR10 class.

Oxford-IIIT Pet. The Oxford-IIIT Pet dataset is originally not split into a training
set and test set. Thus, we randomly select 250 cats and 250 dogs for use as a test set,
and use the remaining data as the train set.

When Oxford-IIIT Pet is used as auxiliary data, we use the entire Oxford-IIIT
Pet dataset, other than the 250 cats and 250 dogs that were set aside as the test
set. Specifically, we use the fine-grained labels of dog breeds and cat breeds to divide
the dataset into source distributions. In other words, the dog breeds form the source
distributions for the dog class, and the cat breeds form the source distributions for the
cat class. In total, there are 12 cat breeds and 23 dog breeds, each with (on average)
200 images per cluster.

STL10. The target and test datasets are random subsets of the training and test
data, with 500 and 800 examples each, respectively.

We use the unlabeled data in STL10 as the auxiliary data. Similar to CIFAR10,
since there are no sources, we use unsupervised clustering to generate the sources.
However, in this case since there are no class labels, we rely purely on unsupervised
clustering. Specifically, we use the same methodology as for CIFAR10, but instead
create 160 clusters total that are not necessarily separated by class (instead of 16
clusters for each of 10 classes).

3DB. 3DB is a synthetic rendering platform that allows the user to generate synthetic
image data by specifying a 3D-model, an HDRI background, and a variety of other
parameters such as the camera location, camera and object orientation, and the scene
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brightness [Lec+21b]. In our case, we generate a “CIFAR10-like” synthetic dataset with
this renderer. Specifically, we use this framework with free, Blender-compatible 3D-
models that we find online from sketchfab.com, as well as free HDRI backgrounds
from polyhaven.com.

We first describe how we make the training set for 3DB. For each class that we
want to generate (e.g., airplane or dog), we find 15 high-quality 3D-models and 25
HDRI backgrounds. We also choose 4 distinct camera settings in terms of height
and zoom — in particular, we allow the camera to have a zoom factor of either 1.5
or 3.0, and we choose the camera height to be 0 or 11. This gives a total of 1500
unique triplets of (3D-model, HDRI background, camera setting) per class. For each
such choice of 3D-model, background, and camera setting, we generate 1000 different
images by rotating the camera around the object by a random angle and randomly
varying the brightness of the generated image.

Our validation and test sets use similar 3DB parameters, but they are generated
independently with different 3D models and HDRI backgrounds. Specifically, we
choose 3 new 3D-models per class and find 10 new HDRI backgrounds in total. For
each class, we randomly choose 4 out of the 10 backgrounds to be associated with
that class, in order to add a realistic background bias. This helps us mimic real image
datasets like CIFAR10, where there also exists a background bias. For each class, we
use exactly one of the 4 possible height and zoom settings for the camera instead of
using all 4. These settings are shown in Table C.2.

Class Height Zoom

Airplane -1 1.5
Automobile 0 3.0

Bird 0 3.0
Cat 0 1.5
Deer 1 1.5
Dog 0 1.5
Frog 1 3.0
Horse 0 1.5
Ship 0 3.0
Truck 0 1.5

Table C.2: Height and zoom values (randomly) chosen for each class in the 3DB
validation and test sets.

Using this combination of 3D-models and backgrounds for each class, we generate
1We choose camera heights to be 0 or -1 instead in the case of the two classes airplane and bird

because those classes are usually photographed from below rather than from above.
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1000 images for each validation set and test set.
Thus, we now associate the train, validation, and test sets of 3DB with the dataset

projection setting. When using 3DB as the auxiliary dataset, we use the training set,
which has 1500 unique labeled source distributions per class. Each source corresponds
to a specific triplet of (3D-model, HDRI background, camera setting). When using
3DB as the target dataset, we use the validation set of 3DB, and when using 3DB as
the test set, we use the test set of 3DB.

Sentiment analysis.

Similar to the computer vision setting, we standardize all of the language datasets into
a single unified setting. Specifically, all datasets are loaded via the Datasets package
built by HuggingFace. All sentences are tokenized with the BertTokenizerFast

tokenizer from the pre-trained bert-base-case model on https://huggingface.co/

with maximum length padding and truncation. All datasets are subsampled to 100
examples total.

Note that, since each sentiment analysis task has a different goal, we cannot
canonicalize all scenarios to predict the same set of labels like we could in the
computer vision setting. For example, it is unclear at what point a 1 through 5 star
rating on a Yelp review translates to positive or negative sentiment in the Stanford
Sentiment Treebank.

Stanford Sentiment Treebank (SST). The target and test datasets for SST are
random subsets of the corresponding validation and test splits. When SST is used as
an auxiliary dataset, we take the SST train set and discretize the sentiment scores
into 10 bins of size 0.1. Each bin forms a source distribution for the auxiliary SST
dataset. The dataset is available at https://huggingface.co/datasets/sst.

Emoji. The Emoji dataset is a subset of the tweet_eval dataset on HuggingFace.
Specifically, the target and test datasets for Emoji are random subsets of the corre-
sponding validation and test splits. When used as an auxiliary dataset, we use the
emoji labels to divide the dataset into 20 source distributions. The dataset is available
at https://huggingface.co/datasets/tweet_eval.

Emotion. The Emotion dataset is a subset of the tweet_eval on HuggingFace.
Specifically, the target and test datasets for Emotion are random subsets of the
corresponding validation and test splits. When used as an auxiliary dataset, we use
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the emotion labels to divide the dataset into 4 source distributions. The dataset is
available at https://huggingface.co/datasets/tweet_eval.

Yelp. The Yelp dataset does not have a validation set, so we split the training data
to get a target dataset. Specifically, the target dataset is the second half of the Yelp
training split, and the test dataset is the test split.

The Yelp auxiliary data comes from the first half of the Yelp training split. This
subset is further divided into source distributions by using the review scores of each
example. Specifically, we divide the subset into 5 source distributions corresponding
to 1 star reviews through 5 star reviews. The dataset is available at https://

huggingface.co/datasets/yelp_review_full.

DailyDialog. The DailyDialog dataset is the dyda_e subset of the sillicone

dataset, a collection of resources designed for spoken language. We make one modifi-
cation to the dataset: since some of the classes have fewer than 100 examples while
others have thousands, we subset the dataset to classes (3, 4, 6) (corresponding to
happiness, no emotion, and surprise) which have sufficient representation. We then
balance the classes to have no more than 100 examples per class.

The target and test datasets thus come from the corresponding validation and
test splits. When used as auxiliary data, we divide the training set into 3 source
distributions corresponding to the emotion labels. The dataset is available at https:
//huggingface.co/datasets/silicone.

C.3.2 Dataset projection benchmark

In this section, we provide the full experimental setup for projecting datasets, and
training neural networks to either evaluate the projection or to use the projection as
dataset augmentation.

Experimental setup

For each experiment we choose two datasets, one auxiliary dataset and one target
dataset. For final evaluation, we evaluate on the test set of the target dataset.

At a high level, we first use active set or PGD to project each class of the target
dataset onto the auxiliary dataset as described in Appendix C.2. After finding the
projected dataset, we validate its effectiveness by training deep learning models on it
and reporting the mean and standard deviation of the test accuracy over 5 training
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runs. These training runs can be in combination with the target dataset (to measure
augmentation performance) or without the target dataset (to validate the projection
method).

Baselines

We compare three different methods of choosing a subset of the auxiliary data to
determine the most effective one. In the rest of this section, we refer to them as
follows.

• AS-PD: We find the projected dataset via active set.

• PGD-PD: We find the projected dataset via PGD.

• Random (Baseline): We use a equally-sized subset of the auxiliary dataset cho-
sen uniformly at random from the sources. This baseline isolates the importance
of finding the “right” subset of the auxiliary dataset.

C.3.3 Training specifics for image classification

Our computer vision models are trained with settings that are standardized across all
experiments in this paper.

• We use a standard ResNet-18 architecture [He+16].

• We always randomly subsample 100 examples for each dataset we use during
model training. In other words, all training datasets (e.g. the target dataset, the
projected dataset, the random portion of the auxiliary dataset) have size 100.

• We use SGD to train for 100 epochs. We set the batch size to 32, the learning
rate to 0.1 (with learning rate drops every 33 epochs), the momentum parameter
to 0.9, and the weight decay to 5e−4.

• For data augmentation of the regular training runs (the ones not labeled as
“DA”), we use random crop and random horizontal flip. When using stronger
data augmentation (the ones labeled as “DA”), we use the default settings of
TrivialAugment [MH21].

• For each experiment, we repeat each training run with 5 different seeds in order
to get the mean and standard deviation of the test accuracies.
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C.3.4 Training specifics for sentiment analysis

Our language models are trained with settings that are standardized across all experi-
ments in this paper.

• We use a standard BERT architecture [He+16], specifically the pretrained
bert-base-cased from HuggingFace.

• We use the HuggingFace Trainer to fine-tune with the default arguments.

• Data augmentation via backtranslation is done via the French language using the
open source translation Opus-MT models Helsinki-NLP/opus-mt-en-ROMANCE
and Helsinki-NLP/opus-mt-ROMANCE-en from HuggingFace [TT20].

• For each experiment, we repeat each training run with 5 different seeds in order
to get the mean and standard deviation of the test accuracies.

C.3.5 Projecting dataset specifics

When projecting datasets, we use the same following settings for both AS-PD and
PGD-PD, most of which are typical settings from the optimization literature:

• We use 𝜖 ∈ {1, 0.1, 0.01, 0.001, 0.0001}

• We use a learning rate of 𝛾 = 1

• We use a tolerance level of 10−6. If an iteration does not change by more than
this amount, we terminate the algorithm

• We run for a maximum of 1000 iterations

• We use a momentum parameter of 𝛽 = 0.9 for the soft active set update

• We use (𝛿, 𝛾) = (0.9, 0.9) as parameters for the Armijo line search.

C.3.6 Compute requirements

All experiments across all scenarios can in theory be run with a single 1080Ti with 1
CPU core (double-threaded). Most projection and training runs can be completed
within a few hours, depending on the number of source distributions. For the pro-
jections onto the 3DB auxiliary dataset, we use multi-processing with 4 CPU cores
and 2 GPUs to accelerate the projection process due to the large number of source
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Figure C-3: Comparing test accuracies after projecting CIFAR10 on ImageNet and
training on either (1) the projected dataset (2) a random subset of the full auxiliary
dataset. Even though the entire projected dataset (marked by the dotted line) is
a strict subset of the full auxiliary dataset, training on just the projected dataset
gives higher test accuracy than training on the full auxiliary dataset (marked by the
datapoint at the far right of the blue line of the graph).

distributions, which makes the numerical gradient estimate expensive. Due to the
large number of scenarios and experiments, we run our scenarios in parallel across a
cluster consisting of 56 GPUs (1080Ti). In total, there are 36 scenarios, 3 training
experiments per scenario, 4-5 methods per experiment, and 5 random seeds, for a
total of 2340 models trained.

C.4 Additional experimental results

We include additional experimental results not presented in the main paper here.

Comparing AS-PD with training on the full auxiliary dataset. Figure C-3
compares training on the projected dataset (AS-PD) with training on the full auxiliary
dataset. The projected dataset is smaller, and training on an equally-sized random
subset of the full auxiliary dataset results in worse performance at all dataset sizes
up to the total size of AS-PD. Using even more auxiliary data, including the full
auxiliary dataset, only degrades performance further, due to the biases present in
the auxiliary dataset. In this case, training only on the smaller projected dataset is
beneficial compared to training on all available auxiliary data, even though the full
auxiliary dataset has strictly more datapoints than the projected dataset.
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Aux. \Target CIFAR10 Oxford-IIIT Pet STL10 3DB

ImageNet 2.54 1.64 1.40 −0.10
CIFAR10 1.83 2.84 −1.68 5.49

Oxford-IIIT Pet 2.83 −2.20 0.82 −2.74
STL10 1.73 2.56 2.03 0.90
3DB 1.33 0.88 2.72 2.94

Table C.3: Improvement of active set over PGD in approximating target datasets,
measured by the difference in test accuracy between a model trained on AS-PD and
a model trained on PGD-PD. Both methods improve approximation over uniformly
random sampling from the full auxiliary dataset, but active set is slightly better than
PGD (that is, the measured difference is positive) in 16 out of 20 settings.

Comparing AS-PD and PGD-PD. In Table C.3, we examine the differences
between the projected datasets found using PGD and active set. Overall, AS-PD

performs slightly better, and both methods of solving dataset projection outperform
sampling uniformly at random from the auxiliary dataset.

Quantitative comparison of AS-PD and the random baseline via distance
metrics. In Figure 4-6, we showed that when projecting Oxford-IIIT onto ImageNet,
the projected dataset is much closer in distance to the target dataset than the auxiliary
dataset is. We showed this for the MMD distance, which we explicitly use active set
and PGD to opimize for, as well as for 3 alternate distance metrics discussed in [ZLB17]
— the contrast, luminance, and random filter response (RFR). For completeness, we
produce the same plot for every possible choice of auxiliary dataset and target dataset.
In the majority of cases, such as in Figure C-4, the quantitative distance metrics add
further confirmation that the projected dataset is more effective at approximating the
target dataset than the original auxiliary dataset. In a few cases, although dataset
projection is able to decrease the MMD distance to the target dataset, it does not
always decrease the other distance metrics.

C.4.1 When projected datasets can and can’t help

Surprisingly, projected datasets that approximate the target better do not always lead
to better results when augmenting the target. When using 3DB as the auxiliary data,
projected datasets are better at approximating the target, but the Random baseline
is often better at augmenting the target. This may be because the 3DB dataset is
generated by pairing random backgrounds with random 3D-models of each class—thus,
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training on the baseline dataset encourages invariance to background and different
3D-models, which may actually be more beneficial for generalization. Understanding
exactly what properties of a projected dataset make it most useful for augmentation
is an interesting future direction.
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Figure C-4: 1D distance metrics showing how close the projected and auxiliary datasets
are to the target dataset (lower is better). 3DB is the target dataset.
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Figure C-5: 1D distance metrics showing how close the projected and auxiliary datasets
are to the target dataset (lower is better). STL is the target dataset.
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Figure C-6: 1D distance metrics showing how close the projected and auxiliary datasets
are to the target dataset (lower is better). Oxford-IIIT Pet is the target dataset.

Contrast Luminance RFR MMD
Test statistic

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

St
at

ist
ic

Projecting CIFAR10 onto ImageNet
Auxiliary
Projected

Contrast Luminance RFR MMD
Test statistic

0

2

4

6

8

10

12

St
at

ist
ic

Projecting CIFAR10 onto STL10
Auxiliary
Projected

Contrast Luminance RFR MMD
Test statistic

0

5

10

15

20

25

30

St
at

ist
ic

Projecting CIFAR10 onto 3DB
Auxiliary
Projected

Contrast Luminance RFR MMD
Test statistic

0.0

0.5

1.0

1.5

2.0

2.5

St
at

ist
ic

Projecting CIFAR10 onto Oxford-IIIT Pet
Auxiliary
Projected

Figure C-7: 1D distance metrics showing how close the projected and auxiliary datasets
are to the target dataset (lower is better). CIFAR10 is the target dataset.
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Auxiliary Target Random PGD-PD Not PGD-PD AS-PD Not AS-PD

ImageNet

CIFAR10

33.9± 0.4 35.5± 0.7 27.3± 0.7 37.0± 1.0 30.7± 0.8
Oxford-IIIT Pet 53.6± 0.8 50.5± 2.9 54.6± 1.9 53.0± 4.1 54.5± 1.1

STL10 12.2± 1.9 28.3± 0.7 10.7± 2.5 33.8± 1.2 13.1± 1.5
3DB 22.6± 1.0 24.3± 0.3 22.2± 0.8 25.4± 0.8 22.6± 0.7

ImageNet 50.1± 2.5 51.8± 1.5 48.0± 2.1 55.4± 1.6 51.8± 2.4
CIFAR10 Oxford-IIIT 53.0± 1.0 49.4± 1.5 49.4± 1.7 55.6± 2.1 51.3± 1.9
STL10 Pet 51.6± 2.4 54.0± 1.9 49.2± 0.8 53.3± 2.1 50.9± 2.3
3DB 52.0± 2.9 49.0± 1.9 48.8± 2.3 53.7± 1.6 49.1± 1.1

ImageNet

STL10

37.4± 1.0 37.7± 0.5 37.0± 0.5 38.3± 1.1 37.3± 0.8
CIFAR10 41.2± 1.2 34.8± 4.3 35.5± 1.1 38.8± 0.5 38.1± 1.5

Oxford-IIIT Pet 55.5± 1.5 50.1± 3.5 49.7± 2.2 55.1± 0.9 52.2± 1.2
3DB 24.6± 1.2 26.3± 1.3 21.0± 1.1 30.4± 1.5 24.5± 1.9

ImageNet

3DB

27.0± 5.0 22.2± 1.7 16.3± 2.4 29.5± 1.7 22.1± 1.6
CIFAR10 30.8± 3.7 32.7± 4.5 19.6± 3.1 35.4± 1.0 23.8± 0.9

Oxford-IIIT Pet 66.8± 8.8 68.4± 14.4 55.9± 12.8 71.2± 8.0 56.3± 12.1
STL10 12.6± 4.0 34.8± 3.5 5.7± 4.0 37.7± 4.0 12.2± 3.4

Table C.4: Approximating target datasets with auxiliary data. In this experiment, we
train on auxiliary data and test on target data. Higher test accuracy corresponds to
better approximation quality. AS-PD typically performs the best, and PGD-PD also
typically outperforms Random.

C.4.2 Experiments for vision benchmark

We present the complete set of results for our image classification scenarios. In
Table C.4, we record the target-alignment of our projected datasets as measured by
training on the projected dataset. In Table C.5, we record the performance of training
on the target dataset augmented with projected data. In Table C.6, we record similar
results but combined with TrivialAugment data augmentation.

C.4.3 Experiments for language benchmark

We present the complete set of results for our sentiment analysis scenarios. In Table C.7,
we record the target-alignment of our projected datasets as measured by training on
the projected dataset. In Table C.8, we record the performance of training on the
target dataset augmented with projected data. In Table C.9, we record similar results
but combined with back-translation data augmentation.
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Auxiliary Target Target Only Target + Random Target + PGD-PD Target + AS-PD

ImageNet

CIFAR10

43.6± 0.4 54.8± 2.1 55.3± 1.8 57.0± 3.0
Oxford-IIIT Pet 51.9± 2.1 54.2± 2.6 54.8± 2.0 59.3± 0.2

STL10 41.0± 1.6 37.2± 1.8 44.6± 0.4 44.3± 1.1
3DB 43.6± 1.1 50.0± 2.2 43.2± 0.9 49.4± 0.6

ImageNet 49.3± 1.3 58.2± 2.7 55.1± 2.2 57.4± 3.7
CIFAR10 Oxford-IIIT 52.1± 1.9 54.2± 2.5 55.4± 2.0 59.5± 2.9
STL10 Pet 47.6± 0.9 54.2± 2.5 55.7± 1.9 55.0± 2.3
3DB 51.1± 1.9 53.8± 3.8 51.8± 2.7 55.7± 1.0

ImageNet

STL10

41.7± 2.3 55.9± 1.0 53.2± 2.1 55.1± 1.3
CIFAR10 39.5± 0.9 58.6± 1.8 53.2± 0.8 58.4± 1.6

Oxford-IIIT Pet 54.2± 2.8 54.3± 3.1 65.1± 1.4 61.6± 1.1
3DB 42.8± 2.4 52.2± 1.5 46.9± 0.8 51.0± 1.4

ImageNet

3DB

84.0± 2.1 89.4± 1.6 83.2± 0.6 87.7± 1.4
CIFAR10 80.5± 2.0 89.0± 3.3 86.3± 0.4 89.5± 0.5

Oxford-IIIT Pet 69.8± 1.6 73.4± 7.2 82.2± 3.3 82.3± 10.2
STL10 68.5± 5.8 76.5± 6.9 77.8± 1.6 79.6± 1.7

Table C.5: Augmenting a target dataset with auxiliary data for vision scenarios. In
this experiment, we add auxiliary data to a target dataset for training, and test
on target data. For all target datasets, we can find an auxiliary dataset in which
augmenting with AS-PD or PGD-PD performs the best. For each target dataset, we
highlight the choice of auxiliary dataset where either AS-PD or PGD-PD has the
largest benefit in augmenting the target dataset.

C.5 Visualizations of projected datasets

In this section, we present additional visualizations of projected datasets. These
visualizations provide a way to analyze the composition of a target dataset via
inspection of the resulting source distributions proportions.

Figure C-8 shows the projection of the Angry and Joy classes of the Emotion
dataset onto the Emoji dataset. Here, we see that the Angry projection consists of an
Emoji with tears and an Emoji with a tongue sticking out. We suspect this is due
to the usage of these emojis in sarcastic or cynical expressions that are most closely
aligned with the Angry class, since the Emoji dataset does not contain any clearly
angry emojis. The Joy projection contains generally happy emojis, including a heart
emoji that none of the other Emotion classes had.

Figure C-9 shows the projection Oxford-IIIT Pet and 3DB onto ImageNet cats. The
Oxford-IIIT Pet projection has largely household cats, except for a small proportion
of lions. The 3DB projection consists primarily of two types of cats, suggesting that
the 3DB cats do not contain very much variation.
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Auxiliary Target DA Random + DA PGD-PD + DA AS-PD + DA

ImageNet

CIFAR10

45.5± 1.0 52.6± 0.9 55.2± 1.5 52.3± 3.3
Oxford-IIIT Pet 53.1± 2.2 52.6± 1.7 53.5± 2.7 57.8± 3.3

STL10 47.5± 1.8 37.1± 0.9 44.8± 1.3 44.9± 1.2
3DB 46.2± 2.1 48.2± 0.6 47.0± 1.9 48.0± 1.4

ImageNet

Oxford-IIIT Pet

47.0± 2.2 50.6± 4.4 57.0± 2.8 50.9± 3.5
CIFAR10 54.0± 3.1 53.5± 2.8 56.4± 2.0 58.1± 2.0
STL10 48.9± 2.0 48.9± 1.4 55.8± 3.1 53.2± 1.3
3DB 52.4± 3.5 50.7± 2.9 50.7± 2.3 50.4± 2.5

ImageNet

STL10

48.9± 1.6 54.0± 1.1 53.8± 1.5 52.9± 1.0
CIFAR10 49.7± 0.9 57.8± 1.5 57.3± 1.5 56.1± 3.1

Oxford-IIIT Pet 54.5± 4.3 51.9± 1.7 63.0± 1.1 58.7± 2.5
3DB 48.6± 1.1 48.5± 0.5 49.6± 0.3 49.0± 1.2

ImageNet

3DB

92.1± 1.9 93.6± 1.4 92.4± 0.8 94.3± 0.5
CIFAR10 91.4± 1.8 94.4± 0.6 92.4± 1.3 94.5± 1.0

Oxford-IIIT Pet 73.0± 7.6 59.5± 2.9 91.5± 0.9 86.3± 13.3
STL10 86.9± 2.3 91.3± 0.8 89.1± 1.0 88.2± 0.6

Table C.6: Augmenting a target dataset with auxiliary data, combined with Triv-
ialAugment data augmentation. In this experiment, we add auxiliary data and
TrivialAugment to a target dataset for training, and test on target data. For all
target datasets, we can find an auxiliary dataset in which augmenting with AS-PD
or PGD-PD performs the best. For each target dataset, we highlight the choice
of auxiliary dataset where either AS-PD or PGD-PD has the largest benefit in
augmenting the target dataset.
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Figure C-8: A visualization depicting the result of projecting various classes of the
Emotion dataset (angry and joy) onto the Emoji dataset. Each doughnut corresponds
to the subset of the Emoji dataset that is closest to the target Emotion class as
calculated by our framework.
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Auxiliary Target Random PGD-PD Not PGD-PD AS-PD Not AS-PD

Emoji

SST

57.6± 10.1 54.8± 7.5 56.2± 6.6 57.0± 0.0 54.0± 4.1
Emotion 52.2± 4.7 50.6± 3.9 57.0± 7.8 55.8± 3.5 57.4± 0.5

Yelp 50.4± 7.7 49.4± 5.2 57.8± 6.0 55.8± 6.7 50.6± 9.1
DailyDialog 51.6± 4.8 61.2± 9.8 51.4± 4.5 56.6± 11.4 55.6± 1.9

SST

Emoji

3.2± 1.0 4.0± 1.5 5.4± 2.6 5.4± 2.1 4.0± 1.5
Emotion 3.8± 1.5 4.2± 1.5 5.2± 1.3 4.2± 1.2 3.6± 0.8

Yelp 4.2± 1.8 4.8± 1.7 4.8± 1.7 6.4± 3.1 3.2± 0.4
DailyDialog 2.6± 0.5 6.2± 3.1 3.6± 1.2 5.0± 2.8 3.0± 0.0

SST

Emotion

16.6± 7.0 27.0± 6.3 13.4± 4.1 29.2± 2.8 31.0± 0.0
Emoji 16.2± 5.3 20.4± 3.3 15.0± 1.8 28.6± 2.3 28.6± 3.5
Yelp 16.4± 5.7 20.4± 8.8 22.8± 10.0 29.0± 2.7 24.6± 6.7

DailyDialog 15.0± 6.7 23.8± 7.6 20.2± 6.8 29.8± 2.9 30.4± 1.4

SST

Yelp

21.8± 1.6 22.6± 3.2 19.4± 2.7 22.2± 2.4 24.4± 0.8
Emoji 21.0± 0.0 19.0± 2.6 21.0± 0.0 23.2± 4.1 16.8± 2.9

Emotion 21.0± 0.0 22.8± 2.2 20.8± 0.4 21.2± 4.3 19.6± 4.1
DailyDialog 21.0± 0.0 21.8± 1.3 21.6± 1.4 23.2± 2.6 20.4± 6.6

SST

DailyDialog

14.6± 3.1 16.8± 1.0 15.8± 2.0 17.4± 3.4 14.2± 2.4
Emoji 13.6± 2.2 13.6± 1.5 14.4± 2.9 23.6± 2.5 19.6± 4.2

Emotion 14.6± 2.4 19.4± 5.9 15.0± 4.3 23.4± 5.8 12.0± 2.7
Yelp 16.6± 3.3 13.6± 0.5 14.2± 1.5 16.6± 5.0 13.2± 3.1

Table C.7: Approximating target datasets with auxiliary data. In this experiment, we
train on auxiliary data and test on target data. Higher test accuracy corresponds to
better approximation quality. AS-PD typically performs the best, and PGD-PD also
typically outperforms Random.
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57%

Persian cat
9%

Tabby cat
27%

(a) Oxford-IIIT Pet

Siamese cat
15%

Persian cat
85%

(b) 3DB

Figure C-9: A visualization depicting the result of projecting cat classes from various
target datasets (Oxford-IIIT Pet and 3DB) onto the ImageNet cats. Each doughnut
represents the subset of the ImageNet cats that is closest to the cat class from the
target dataset as calculated by our framework.
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Auxiliary Target Target Only Target + Random Target + PGD-PD Target + AS-PD

Emoji

SST 74.2± 6.0

66.2± 8.8 71.4± 6.1 77.0± 6.7
Emotion 61.2± 7.4 64.8± 9.9 75.8± 9.0

Yelp 60.8± 8.9 65.6± 12.0 78.6± 2.9
DailyDialog 63.6± 12.1 76.4± 5.4 76.4± 6.1

SST

Emoji 12.4± 3.6

12.4± 3.8 14.6± 3.4 24.0± 2.7
Emotion 15.0± 4.1 13.8± 4.1 23.6± 2.2

Yelp 13.0± 3.8 13.6± 3.1 22.6± 2.2
DailyDialog 14.0± 3.3 12.8± 2.9 24.4± 1.0

SST

Emotion 37.6± 4.3

39.4± 4.1 42.8± 7.8 45.2± 4.7
Emoji 39.2± 1.3 39.4± 4.7 44.0± 4.3
Yelp 41.6± 3.2 40.4± 4.9 44.8± 4.2

DailyDialog 43.2± 4.1 42.6± 8.0 42.6± 4.5

SST

Yelp 28.6± 1.9

27.4± 2.4 29.4± 4.8 30.0± 4.1
Emoji 29.2± 3.0 27.0± 5.4 34.4± 5.7

Emotion 27.8± 6.9 28.6± 4.9 33.6± 4.3
DailyDialog 29.0± 6.4 33.2± 4.8 32.0± 5.2

SST

DailyDialog 37.4± 6.3

37.0± 5.7 42.6± 5.4 61.2± 3.4
Emoji 36.0± 4.9 42.6± 5.9 66.2± 6.1

Emotion 37.6± 5.0 35.0± 8.0 67.4± 6.0
Yelp 38.2± 5.6 36.0± 7.3 64.6± 7.5

Table C.8: Augmenting a target dataset with auxiliary data for language scenarios.
In this experiment, we add auxiliary data to a target dataset for training, and test
on target data. For each target dataset, we highlight the choice of auxiliary dataset
where either AS-PD or PGD-PD has the largest benefit in augmenting the target
dataset.
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Auxiliary Target DA Random + DA PGD-PD + DA AS-PD + DA

Emoji

SST 78.4± 3.5

78.4± 3.5 78.2± 2.1 78.4± 2.1
Emotion 76.8± 6.5 76.0± 4.0 76.2± 5.7

Yelp 77.8± 1.9 78.0± 3.4 80.2± 2.7
DailyDialog 76.2± 4.7 76.0± 2.6 80.8± 2.7

SST

Emoji 22.8± 3.2

22.8± 3.2 22.2± 1.7 24.2± 1.9
Emotion 23.2± 1.3 22.8± 1.7 24.0± 0.6

Yelp 22.8± 1.3 23.6± 2.7 24.2± 4.0
DailyDialog 23.8± 2.0 23.6± 1.9 25.0± 2.4

SST

Emotion 50.6± 9.0

50.6± 9.0 56.0± 4.7 59.2± 7.4
Emoji 52.6± 6.7 52.6± 5.1 59.6± 4.4
Yelp 53.4± 6.7 53.6± 3.3 58.2± 3.8

DailyDialog 51.8± 8.0 51.2± 4.2 57.6± 9.0

SST

Yelp 32.4± 4.3

32.4± 4.3 32.2± 6.5 35.8± 3.7
Emoji 33.8± 6.6 33.6± 6.6 36.8± 4.2

Emotion 30.2± 3.2 33.2± 5.3 36.6± 5.4
DailyDialog 29.4± 1.9 32.8± 5.6 35.8± 4.4

SST

DailyDialog 76.2± 2.0

76.2± 2.0 75.6± 1.2 75.4± 2.3
Emoji 75.4± 1.7 75.2± 1.9 76.2± 1.5

Emotion 76.0± 2.7 76.0± 1.1 75.0± 2.5
Yelp 74.8± 2.9 76.8± 1.5 75.0± 1.8

Table C.9: Augmenting a target dataset with auxiliary data, combined with back-
translation augmentation via the French language. In this experiment, we add auxiliary
data and back-translated data to a target dataset for training, and test on target
data. For each target dataset, we highlight the choice of auxiliary dataset where either
AS-PD or PGD-PD has the largest benefit in augmenting the target dataset.
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Appendix D

Additional details for Chapter 5

D.1 Formulating the MILP model

D.1.1 Formulating ReLU in an MILP Model

We reproduce our formulation for the ReLU below.

𝑦 ≤ 𝑥− 𝑙(1− 𝑎) (D.1)

𝑦 ≥ 𝑥 (D.2)

𝑦 ≤ 𝑢 · 𝑎 (D.3)

𝑦 ≥ 0 (D.4)

𝑎 ∈ {0, 1} (D.5)

We consider two cases.

Recall that 𝑎 is the indicator variable 𝑎 = 1𝑥≥0.

When 𝑎 = 0, the constraints in Equation D.3 and D.4 are binding, and together
imply that 𝑦 = 0. The other two constraints are not binding, since Equation D.2 is
no stricter than Equation D.4 when 𝑥 < 0, while Equation D.1 is no stricter than
Equation D.3 since 𝑥− 𝑙 ≥ 0. We thus have 𝑎 = 0 =⇒ 𝑦 = 0.

When 𝑎 = 1, the constraints in Equation D.1 and D.2 are binding, and together
imply that 𝑦 = 𝑥. The other two constraints are not binding, since Equation D.4 is
no stricter than Equation D.2 when 𝑥 > 0, while Equation D.3 is no stricter than
Equation D.1 since 𝑥 ≤ 𝑢. We thus have 𝑎 = 1 =⇒ 𝑦 = 𝑥.

This formulation for rectified linearities is sharp [Vie15] if we have no further
information about 𝑥. This is the case since relaxing the integrality constraint on 𝑎
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leads to (𝑥, 𝑦) being restricted to an area that is the convex hull of 𝑦 = max(𝑥, 0).
However, if 𝑥 is an affine expression 𝑥 = 𝑤𝑇 𝑧 + 𝑏, the formulation is no longer sharp,
and we can add more constraints using bounds we have on 𝑧 to improve the problem
formulation.

D.1.2 Formulating the maximum function in an MILP model

We reproduce our formulation for the maximum function below.

𝑦 ≤ 𝑥𝑖 + (1− 𝑎𝑖)(𝑢𝑚𝑎𝑥,−𝑖 − 𝑙𝑖) ∀𝑖 (D.6)

𝑦 ≥ 𝑥𝑖 ∀𝑖 (D.7)
𝑚∑︁
𝑖=1

𝑎𝑖 = 1 (D.8)

𝑎𝑖 ∈ {0, 1} (D.9)

Equation D.8 ensures that exactly one of the 𝑎𝑖 is 1. It thus suffices to consider the
value of 𝑎𝑖 for a single variable.

When 𝑎𝑖 = 1, Equations D.6 and D.7 are binding, and together imply that 𝑦 = 𝑥𝑖.
We thus have 𝑎𝑖 = 1 =⇒ 𝑦 = 𝑥𝑖.

When 𝑎𝑖 = 0, we simply need to show that the constraints involving 𝑥𝑖 are never
binding regardless of the values of 𝑥1, 𝑥2, . . . , 𝑥𝑚. Equation D.7 is not binding since
𝑎𝑖 = 0 implies 𝑥𝑖 is not the (unique) maximum value. Furthermore, we have chosen
the coefficient of 𝑎𝑖 such that Equation D.6 is not binding, since 𝑥𝑖 + 𝑢𝑚𝑎𝑥,−𝑖 − 𝑙𝑖 ≥
𝑢𝑚𝑎𝑥,−𝑖 ≥ 𝑦. This completes our proof.

D.1.3 Expressing 𝑙𝑝 norms as the objective of an MIP model

𝑙1

When 𝑑(𝑥′, 𝑥) = ‖𝑥′ − 𝑥‖1, we introduce the auxiliary variable 𝛿, which bounds the
elementwise absolute value from above: 𝛿𝑗 ≥ 𝑥′

𝑗 − 𝑥𝑗, 𝛿𝑗 ≥ 𝑥𝑗 − 𝑥′
𝑗. The optimization
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in Equation 5.3-5.5 is equivalent to

min
𝑥′

∑︁
𝑗

𝛿𝑗 (D.10)

subject to argmax𝑖(𝑓𝑖(𝑥
′)) ̸= 𝜆(𝑥) (D.11)

𝑥′ ∈ 𝒳𝑣𝑎𝑙𝑖𝑑 (D.12)

𝛿𝑗 ≥ 𝑥′
𝑗 − 𝑥𝑗 (D.13)

𝛿𝑗 ≥ 𝑥𝑗 − 𝑥′
𝑗 (D.14)

𝑙∞

When 𝑑(𝑥′, 𝑥) = ‖𝑥′ − 𝑥‖∞, we introduce the auxiliary variable 𝜖, which bounds the
𝑙∞ norm from above: 𝜖 ≥ 𝑥′

𝑗 − 𝑥𝑗, 𝜖 ≥ 𝑥𝑗 − 𝑥′
𝑗. The optimization in Equation 5.3-5.5

is equivalent to

min
𝑥′

𝜖 (D.15)

subject to argmax𝑖(𝑓𝑖(𝑥
′)) ̸= 𝜆(𝑥) (D.16)

𝑥′ ∈ 𝒳𝑣𝑎𝑙𝑖𝑑 (D.17)

𝜖 ≥ 𝑥′
𝑗 − 𝑥𝑗 (D.18)

𝜖 ≥ 𝑥𝑗 − 𝑥′
𝑗 (D.19)

𝑙2

When 𝑑(𝑥′, 𝑥) = ‖𝑥′ − 𝑥‖2, the objective becomes quadratic, and we have to use a
Mixed Integer Quadratic Program (MIQP) solver. However, no auxiliary variables are
required: the optimization in Equation 5.3-5.5 is simply equivalent to

min
𝑥′

∑︁
𝑗

(𝑥′
𝑗 − 𝑥𝑗)

2 (D.20)

subject to argmax𝑖(𝑓𝑖(𝑥
′)) ̸= 𝜆(𝑥) (D.21)

𝑥′ ∈ 𝒳𝑣𝑎𝑙𝑖𝑑 (D.22)

D.2 Determining tight bounds on decision variables

Our framework for determining bounds on decision variables is to view the neural
network as a computation graph 𝐺. Directed edges point from function input to
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output, and vertices represent variables. Source vertices in 𝐺 correspond to the input
of the network, and sink vertices in 𝐺 correspond to the output of the network. The
computation graph begins with defined bounds on the input variables (based on
the input domain (𝒢(𝑥) ∩ 𝒳𝑣𝑎𝑙𝑖𝑑)), and is augmented with bounds on intermediate
variables as we determine them. The computation graph is acyclic for the feed-forward
networks we consider.

Since the networks we consider are piecewise-linear, any subgraph of 𝐺 can be
expressed as an MILP, with constraints derived from 1) input-output relationships
along edges and 2) bounds on the values of the source nodes in the subgraph. Integer
constraints are added whenever edges describe a non-linear relationship.

We focus on computing an upper bound on some variable 𝑣; computing lower
bounds follows a similar process. All the information required to determine the
best possible bounds on 𝑣 is contained in the subtree of 𝐺 rooted at 𝑣, 𝐺𝑣. (Other
variables that are not ancestors of 𝑣 in the computation graph cannot affect its value.)
Maximizing the value of 𝑣 in the MILP 𝑀𝑣 corresponding to 𝐺𝑣 gives the optimal
upper bound on 𝑣.

We can reduce computation time in two ways. Firstly, we can prune some edges
and vertices of 𝐺𝑣. Specifically, we select a set of variables with existing bounds 𝑉𝐼

that we assume to be independent (that is, we assume that they each can take on any
value independent of the value of the other variables in 𝑉𝐼). We remove all in-edges
to vertices in 𝑉𝐼 , and eliminate variables without children, resulting in the smaller
computation graph 𝐺𝑣,𝑉𝐼

. Maximizing the value of 𝑣 in the MILP 𝑀𝑣,𝑉𝐼
corresponding

to 𝐺𝑣,𝑉𝐼
gives a valid upper bound on 𝑣 that is optimal if the independence assumption

holds.

We can also reduce computation time by relaxing some of the integer constraints in
𝑀𝑣 to obtain a MILP with fewer integer variables 𝑀 ′

𝑣. Relaxing an integer constraint
corresponds to replacing the relevant non-linear relationship with its convex relaxation.
Again, the objective value returned by maximizing the value of 𝑣 over 𝑀 ′

𝑣 may not be
the optimal upper bound, but is guaranteed to be a valid bound.

D.2.1 full

full considers the full subtree 𝐺𝑣 and does not relax any integer constraints. The
upper and lower bound on 𝑣 is determined by maximizing and minimizing the value
of 𝑣 in 𝑀𝑣 respectively. full is also used in [CNR17] and [FJ18].

If solves proceed to optimality, full is guaranteed to find the optimal bounds on
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the value of a single variable 𝑣. The trade-off is that, for deeper layers, using full

can be relatively inefficient, since solve times in the worst case are exponential in the
number of binary variables in 𝑀𝑣.

Nevertheless, contrary to what is asserted in [CNR17], we can terminate solves
early and still obtain useful bounds. For example, to determine an upper bound on
𝑣, we set the objective of 𝑀𝑣 to be to maximize the value of 𝑣. As the solve process
proceeds, we obtain progressively better certified upper bounds on the maximum value
of 𝑣. We can thus terminate the solve process and extract the best upper bound found
at any time, using this upper bound as a valid (but possibly loose) bound on the value
of 𝑣.

D.2.2 Linear Programming (lp)

lp considers the full subtree 𝐺𝑣 but relaxes all integer constraints. This results
in the optimization problem becoming a linear program that can be solved more
efficiently. lp represents a good middle ground between the optimality of full and
the performance of ia.

D.2.3 Interval Arithmetic (ia)

ia selects 𝑉𝐼 to be the parents of 𝑣. In other words, bounds on 𝑣 are determined solely
by considering the bounds on the variables in the previous layer. We note that this is
simply interval arithmetic [MKC09].

Consider the example of computing bounds on the variable 𝑧𝑖 = 𝑊𝑖𝑧𝑖−1 + 𝑏𝑖, where
𝑙𝑧𝑖−1

≤ 𝑧𝑖−1 ≤ 𝑢𝑧𝑖−1
. We have

𝑧𝑖 ≥ 𝑊−
𝑖 𝑢𝑧𝑖−1

+𝑊+
𝑖 𝑙𝑧𝑖−1

(D.23)

𝑧𝑖 ≤ 𝑊+
𝑖 𝑢𝑧𝑖−1

+𝑊−
𝑖 𝑙𝑧𝑖−1

(D.24)

𝑊+
𝑖 ≜ max(𝑊𝑖, 0) (D.25)

𝑊−
𝑖 ≜ min(𝑊𝑖, 0) (D.26)

ia is efficient (since it only involves matrix operations for our applications). How-
ever, for deeper layers, using interval arithmetic can lead to overly conservative
bounds.
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D.3 Progressive bounds tightening

GetBoundsForMax finds the tightest bounds required for specifying the constraint
𝑦 = max(xs). Using the observation in Proposition 1, we stop tightening the bounds
on a variable if its maximum possible value is lower than the minimum value of some
other variable. GetBoundsForMax returns a tuple containing the set of elements
in xs that can still take on the maximum value, as well as a dictionary of upper and
lower bounds.

GetBoundsForMax(xs , fs)

1 � fs are the procedures to determine bounds
2 � fs sorted in increasing computational complexity.
3 𝑑𝑙 = {𝑥 : −∞ for 𝑥 in xs}
4 𝑑𝑢 = {𝑥 : ∞ for 𝑥 in xs}
5 � initialize dictionaries containing best known upper and lower bounds on xs

6 𝑙max = −∞ � 𝑙max is the maximum known lower bound on any of the xs

7 𝑎 = {xs}
8 � 𝑎 is a set of active elements in xs that can still take on the maximum value.
9 for 𝑓 in fs : � carrying out progressive bounds tightening

10 do for 𝑥 in 𝑥𝑠:
11 if 𝑑𝑢[𝑥] < 𝑙max

12 then 𝑎.𝑟𝑒𝑚𝑜𝑣𝑒(𝑥) � 𝑥 cannot take on the maximum value
13 else 𝑢 = 𝑓(𝑥, 𝑏𝑜𝑢𝑛𝑑𝑇𝑦𝑝𝑒 = 𝑢𝑝𝑝𝑒𝑟)

14 𝑑𝑢[𝑥] = min(𝑑𝑢[𝑥], 𝑢)

15 𝑙 = 𝑓(𝑥, 𝑏𝑜𝑢𝑛𝑑𝑇𝑦𝑝𝑒 = 𝑙𝑜𝑤𝑒𝑟)

16 𝑑𝑙[𝑥] = max(𝑑𝑙[𝑥], 𝑙)

17 𝑙max = max(𝑙max , 𝑙)

18 return (𝑎, 𝑑𝑙, 𝑑𝑢)

D.4 Additional experimental details

D.4.1 Networks used

The source of the weights for each of the networks we present results for in the paper
are provided below.

• MNIST classifiers not designed to be robust:
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– mlp-2×[20] and mlp-3×[20] are the MNIST classifiers in [Wen+18], and can
be found at https://github.com/huanzhang12/CertifiedReLURobustness.

• MNIST classifiers designed for robustness to perturbations with 𝑙∞ norm-bound
𝜖 = 0.1:

– LPd-cnn is the MNIST classifier in [WK17], and can be found at https:
//github.com/locuslab/convex_adversarial.

– Adv-cnn was trained with adversarial examples generated by PGD. PGD
attacks were carried out with 𝑙∞ norm-bound 𝜖 = 0.1, 8 steps per sample,
and a step size of 0.334. An 𝑙1 regularization term was added to the
objective with a weight of 0.0015625 on the first convolution layer and
0.003125 for the remaining layers.

– Adv-mlp-2×[200] was trained with adversarial examples generated by PGD.
PGD attacks were carried out with with 𝑙∞ norm-bound 𝜖 = 0.15, 200
steps per sample, and a step size of 0.1. An 𝑙1 regularization term was
added to the objective with a weight of 0.003 on the first layer and 0 for
the remaining layers.

– SDPd-mlp-1×[500] is the classifier in [RSL18].

• MNIST classifiers designed for robustness to perturbations with 𝑙∞ norm-bound
𝜖 = 0.2, 0.3, 0.4:

– LPd-cnn was trained with the code available at https://github.com/

locuslab/convex_adversarial at commit 4e9377f. Parameters selected
were batch_size=20, starting_epsilon=0.01, epochs=200, seed=0.

• CIFAR-10 classifiers designed for robustness to perturbations with 𝑙∞ norm-
bound 𝜖 = 8

255

– LPd-res courtesy of the authors of [Won+18].

D.4.2 Computational environment

We construct the MILP models in Julia [Bez+17] using JuMP [DHL17], with the
model solved by the commercial solver Gurobi 7.5.2 [Gur17b]. All experiments were
run on a KVM virtual machine with 8 virtual CPUs running on shared hardware,
with Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz processors, and 8GB of RAM.
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D.5 Additional solve statistics

Table D.1 presents additional solve statistics to supplement the results reported in
Table 5.2. If the solver explores zero nodes for a particular sample, it proved that
the sample was robust (or found an adversarial example) without branching on any
binary variables. This occurs when the bounds we find during the presolve step are
sufficiently tight. We note that this occurs for over 95% of samples for LPd-cnn for
𝜖 = 0.1.

Table D.1: Additional solve statistics when determining adversarial accuracy of MNIST
and CIFAR-10 classifiers to perturbations with 𝑙∞ norm-bound 𝜖. We solve a linear
program for each of the nodes explored in the MILP search tree.

Dataset Network 𝜖
Mean
Time

/s

Nodes Explored

Mean Median Percentile Max
90 95 99 99.9

MNIST LPd-cnn 0.1 3.52 2.05 0 0 0 1 701 1387
Adv-cnn 0.1 135.74 754.51 0 205 3535 20490 31767 50360

Adv-mlpb 0.1 3.69 97.51 0 1 3 2221 11866 103481
SDPd-mlpa 0.1 312.43 4661.51 39 17614 21769 27335 29875 29887

LPd-cnn 0.2 7.32 16.42 0 1 1 549 2205 7105
LPd-cnn 0.3 5.13 33.54 0 5 121 789 2213 19650
LPd-cnn 0.4 5.07 61.65 1 79 321 934 3681 43274

CIFAR-10 LPd-res 8
255

15.23 47.31 0 1 3 1808 4448 5022

D.6 Which adversarial examples are missed by PGD?

PGD succeeds in finding an adversarial example if and only if the starting point for
the gradient descent is in the basin of attraction of some adversarial example. Since
PGD initializes the gradient descent with a randomly chosen starting point within
𝒢(𝑥)∩𝒳𝑣𝑎𝑙𝑖𝑑, the success rate (with a single random start) corresponds to the fraction
of 𝒢(𝑥) ∩ 𝒳𝑣𝑎𝑙𝑖𝑑 that is in the basin of attraction of some adversarial example.

Intuitively, the success rate of PGD should be inversely related to the magnitude
of the minimum adversarial distortion 𝛿: if 𝛿 is small, we expect more of 𝒢(𝑥) ∩𝒳𝑣𝑎𝑙𝑖𝑑

to correspond to adversarial examples, and thus the union of the basins of attraction
of the adversarial examples is likely to be larger. We investigate here whether our
intuition is substantiated.

190



Figure D-1: Fraction of samples in the MNIST test set vulnerable to attack for which
PGD succeeds at finding an adversarial example. Samples are binned by their minimum
adversarial distortion (as measured under the 𝑙∞ norm), with bins of size 0.01. Each
of these are LPd-cnn networks, and were trained to optimize for robustness to attacks
with 𝑙∞ norm-bound 𝜖. For any given network, the success rate of PGD declines as the
minimum adversarial distortion increases. Comparing networks, success rate declines
for networks with larger 𝜖 even at the same minimum adversarial distortion.

To obtain the best possible empirical estimate of the success rate of PGD for each
sample, we would need to re-run PGD initialized with multiple different randomly
chosen starting points within 𝒢(𝑥) ∩ 𝒳𝑣𝑎𝑙𝑖𝑑.

However, since we are simply interested in the relationship between success rate
and minimum adversarial distortion, we obtained a coarser estimate by binning the
samples based on their minimum adversarial distortion, and then calculating the
fraction of samples in each bin for which PGD with a single randomly chosen starting
point succeeds at finding an adversarial example.

Figure D-1 plots this relationship for four networks using the cnn architecture
and trained with the same training method LPd but optimized for attacks of different
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size. Three features are clearly discernible:

• PGD is very successful at finding adversarial examples when the magnitude of
the minimum adversarial distortion, 𝛿, is small.

• The success rate of PGD declines significantly for all networks as 𝛿 approaches 𝜖.

• For a given value of 𝛿, and two networks 𝑎 and 𝑏 trained to be robust to attacks
with 𝑙∞ norm-bound 𝜖𝑎 and 𝜖𝑏 respectively (where 𝜖𝑎 < 𝜖𝑏), PGD is consistently
more successful at attacking the network trained to be robust to smaller attacks,
𝑎, as long as 𝛿 ≪ 𝜖𝑎.

The sharp decline in the success rate of PGD as 𝛿 approaches 𝜖 is particularly
interesting, especially since it is suggests a pathway to generating networks that appear
robust when subject to PGD attacks of bounded 𝑙∞ norm but are in fact vulnerable
to such bounded attacks: we simply train the network to maximize the total number
of adversarial examples with minimum adversarial distortion close to 𝜖.

D.7 Sparsification and verifiability

When verifying the robustness of SDPd-mlpa, we observed that a significant proportion
of kernel weights were close to zero. Many of these tiny weights are unlikely to be
contributing significantly to the final classification of any input image. Having said
that, setting these tiny weights to zero could potentially reduce verification time, by
1) reducing the size of the MILP formulation, and by 2) ameliorating numerical issues
caused by the large range of numerical coefficients in the network [Gur17a].

We generated sparse versions of the original network to study the impact of
sparseness on solve times. Our heuristic sparsification algorithm is as follows: for each
fully-connected layer 𝑖, we set a fraction 𝑓𝑖 of the weights with smallest absolute value
in the kernel to 0, and rescale the rest of the weights such that the 𝑙1 norm of the
kernel remains the same.1 Note that mlpa consists of only two layers: one hidden
layer (layer 1) and one output layer (layer 2).

Table D.2 summarizes the results of verifying sparse versions of SDPd-mlpa; the
first row presents results for the original network, and the subsequent rows present
results when more and more of the kernel weights are set to zero.

When comparing the first and last rows, we observe an improvement in both mean
time and fraction timed out by an order of magnitude. As expected, sparsifying

1Skipping the rescaling step did not appreciably affect verification times or test errors.
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Table D.2: Effect of sparsification of SDPd-mlpa on verifiability. Test error increases
slightly as larger fractions of kernel weights are set to zero, but the certified upper
bound on adversarial error decreases significantly as the solver reaches the time limit
for fewer samples.

Fraction
zeroed Test

Error

Certified Bounds
on Adversarial Error Mean

Time / s
Fraction

Timed Out
𝑓1 𝑓2 Lower Bound Upper Bound

0.0 0.00 4.18% 14.36% 30.81% 312.4 0.1645
0.5 0.25 4.22% 14.60% 25.25% 196.0 0.1065
0.8 0.25 4.22% 15.03% 18.26% 69.7 0.0323
0.9 0.25 4.93% 17.97% 18.76% 22.2 0.0079

weights increases the test error, but the impact is not significant until 𝑓1 exceeds 0.8.
We also find that sparsification significantly improves our upper bound on adversarial
error — to a point: the upper bound on adversarial error for 𝑓1 = 0.9 is higher than
that for 𝑓1 = 0.8, likely because the true adversarial error has increased significantly.

Starting with a network that is robust, we have demonstrated that a simple sparsi-
fication approach can already generate a sparsified network with an upper bound on
adversarial error significantly lower than the best upper bound that can be determined
for the original network. Adopting a more principled sparsification approach could
achieve the same improvement in verifiability but without compromising on the true
adversarial error as much.

D.8 Robust training and ReLU stability

Networks that are designed to be robust need to balance two competing objectives.
Locally, they need to be robust to small perturbations to the input. However, they
also need to retain sufficient global expressiveness to maintain a low test error.

For the networks in Table 5.3, even though each robust training approach estimates
the worst-case error very differently, all approaches lead to a significant fraction of
the ReLUs in the network being provably stable with respect to perturbations with
bounded 𝑙∞ norm. In other words, for the input domain 𝒢(𝑥) consisting of all bounded
perturbations of the sample 𝑥, we can show for many ReLUs that the input to the
unit is always positive (and thus the output is linear in the input) or always negative
(and thus the output is always zero). As discussed in the main text, we believe that
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the need for the network to be robust to perturbations in 𝒢 drives more ReLUs to be
provably stable with respect to 𝒢.

To better understand how networks can retain global expressiveness even as many
ReLUs are provably stable with respect to perturbations with bounded 𝑙∞ norm 𝜖, we
study how the number of ReLUs that are provably stable changes as we vary the size
of 𝒢(𝑥) by changing the maximum allowable 𝑙∞ norm of perturbations. The results
are presented in Figure D-2.

As expected, the number of ReLUs that cannot be proven to be stable increases
as the maximum allowable 𝑙∞ norm of perturbations increases. More interestingly,
LPd-cnn is very sensitive to the 𝜖 = 0.1 threshold, with a sharp increase in the number
of ReLUs that cannot be proven to be stable when the maximum allowable 𝑙∞ norm
of perturbations increases beyond 0.102. An increase of the same abruptness is not
seen for the other two networks.
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(a) LPd-cnn. Note the sharp increase
in the number of ReLUs that cannot be
proven to be stable when the maximum
𝑙∞ norm increases beyond 0.102.

(b) SDPd-mlpa.

(c) Adv-mlpb. Adversarial training
alone is sufficient to significantly in-
crease the number of ReLUs that are
provably stable.

Figure D-2: Comparison of provably ReLU stability for networks trained via different
robust training procedures to be robust at 𝜖 = 0.1, when varying the maximum
allowable 𝑙∞ norm of the perturbation. The results reported in Table 5.3 are marked
by a dotted line. As we increase the maximum allowable 𝑙∞ norm of perturbations,
the number of ReLUs that cannot be proven to be stable increases across all networks
(as expected), but LPd-cnn is far more sensitive to the 𝜖 = 0.1 threshold.
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Appendix E

Additional details for Chapter 6

E.1 Natural improvements

E.1.1 Natural regularization for inducing weight sparsity

All of the control and “+RS” networks in our paper contain natural improvements
that improve weight sparsity, which reduce the number of variables in the LPs solved
by the verifier. We observed that the two techniques we used for weight sparsity
(ℓ1-regularization and small weight pruning) don’t hurt test set accuracy but they
dramatically improve provable adversarial accuracy and verification speed.

1. ℓ1-regularization: We use a weight of 2e−5 on MNIST and a weight of 1e−5 on
CIFAR. We chose these weights via line search by finding the highest weight
that would not hurt test set accuracy.

2. Small weight pruning: Zeroing out weights in a network that are very close to
zero. We choose to prune weights less than 1e−3.

E.1.2 A basic improvement for inducing ReLU stability: ReLU

pruning

We also use a basic idea to improve ReLU stability, which we call ReLU pruning. The
main idea is to prune away ReLUs that are not necessary.

We use a heuristic to test whether a ReLU in a network is necessary. Our heuristic
is to count how many training inputs cause the ReLU to be active or inactive. If
a ReLU is active (the pre-activation satisfies 𝑧𝑖𝑗(𝑥) > 0) for every input image in
the training set, then we can replace that ReLU with the identity function and the
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network would behave in exactly the same way for all of those images. Similarly, if a
ReLU is inactive (𝑧𝑖𝑗(𝑥) < 0) for every training image, that ReLU can be replaced by
the zero function.

Extending this idea further, we expect that ReLUs that are rarely used can also be
removed without significantly changing the behavior of the network. If only a small
fraction (say, 10%) of the input images activate a ReLU, then replacing the ReLU
with the zero function will only slightly change the network’s behavior and will not
affect the accuracy too much. We provide experimental evidence of this phenomenon
on an adversarially trained (𝜖 = 0.1) MNIST model. Conservatively, we decided that
pruning away ReLUs that are active on less than 10% of the training set or inactive
on less than 10% of the training set was reasonable.

90%

10%

30%

0%

70%

50%

0.500.450.00 0.300.150.05 0.20 0.35 0.400.250.10

ReLU Pruning Threshold

 Our chosen pruning threshold

PGD Accuracy (ϵ = 0.1)

Natural Accuracy

Figure E-1: Removing some ReLUs does not hurt test set accuracy or accuracy against
a PGD adversary
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E.2 Adversarial training and weight sparsity

It is worth noticing that adversarial training against ℓ∞ norm-bound adversaries
alone already makes networks easier to verify by implicitly improving weight sparsity.
Indeed, this can be shown clearly in the case of linear networks. Recall that a linear
network can be expressed as 𝑓(𝑥) = 𝑊𝑥+ 𝑏. Thus, an ℓ∞ norm-bound perturbation
of the input 𝑥 will produce the output

𝑓(𝑥′) = 𝑥′𝑊 + 𝑏

= 𝑥𝑊 + 𝑏+ (𝑥′ − 𝑥)𝑊

≤ 𝑓(𝑥) + 𝜖||𝑊 ||1

where the last inequality is just Hölder’s inequality. In order to limit the adversary’s
ability to perturb the output, adversarial training needs to minimize the ||𝑊 ||1 term,
which is equivalent to ℓ1-regularization and is known to promote weight sparsity
[Tib94]. Relatedly, [GSS15] already pointed out that adversarial attacks against linear
networks will be stronger when the ℓ1-norm of the weight matrices is higher.

Even in the case of nonlinear networks, adversarial training has experimentally
been shown to improve weight sparsity. For example, models trained according to
[Mad+18] and [WK17] often learn many weight-sparse layers, and we observed similar
trends in the models we trained. However, it is important to note that while adversarial
training alone does improve weight sparsity, it is not sufficient by itself for efficient
exact verification. Additional regularization like ℓ1-regularization and small weight
pruning further promotes weight sparsity and gives rise to networks that are much
easier to verify.

E.3 Interval arithmetic

E.3.1 Naive interval arithmetic

Naive IA determines upper and lower bounds for a layer based solely on the upper
and lower bounds of the previous layer.

Define 𝑊+ = max(𝑊, 0), 𝑊− = min(𝑊, 0), 𝑢 = max(�̂�, 0), and 𝑙 = max(�̂�, 0).
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Then the bounds on the pre-activations of layer 𝑖 can be computed as follows:

�̂�𝑖 = 𝑢𝑖−1𝑊
+
𝑖 + 𝑙𝑖−1𝑊

−
𝑖 + 𝑏𝑖 (E.1)

�̂�𝑖 = 𝑙𝑖−1𝑊
+
𝑖 + 𝑢𝑖−1𝑊

−
𝑖 + 𝑏𝑖 (E.2)

As noted in [TXT19] and also [Dvi+18b], this method is efficient but can lead to
relatively conservative bounds for deeper networks.

E.3.2 Improved interval arithmetic

We improve upon naive IA by exploiting ReLUs that we can determine to always be
active. This allows us to cancel symbols that are equivalent that come from earlier
layers of a network.

We will use a basic example of a neural network with one hidden layer to illustrate
this idea. Suppose that we have the scalar input 𝑧0 with 𝑙0 = 0, 𝑢0 = 1, and the
network has the following weights and biases:

𝑊1 =
[︁
1 − 1

]︁
, 𝑏1 =

[︁
2 2

]︁
, 𝑊2 =

[︃
1

1

]︃
, 𝑏2 = 0

Naive IA for the first layer gives �̂�1 = 𝑙1 = [2 1], �̂�1 = 𝑢1 = [3 2], and applying naive
IA to the output 𝑧2 gives �̂�2 = 3, �̂�2 = 5. However, because �̂�1 > 0, we know that the
two ReLUs in the hidden layer are always active and thus equivalent to the identity
function. Then, the output is

𝑧2 = 𝑧11 + 𝑧12 = 𝑧11 + 𝑧12 = (𝑧0 + 2) + (−𝑧0 + 2) = 4

Thus, we can obtain the tighter bounds �̂�2 = �̂�2 = 4, as we are able to cancel out the
𝑧0 terms.

We can write this improved version of IA as follows. First, letting 𝑊𝑘 denote row
𝑘 of matrix 𝑊 , we can define the “active” part of 𝑊 as the matrix 𝑊𝐴, where

(𝑊𝐴)𝑘 =

⎧⎨⎩𝑊𝑘 if �̂�𝑖−1 > 0

0 if �̂�𝑖−1 ≤ 0

Define the “non-active” part of 𝑊 as

𝑊𝑁 = 𝑊 −𝑊𝐴
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Then, using the same definitions for the notation 𝑊+,𝑊−, 𝑢, 𝑙 as before, we can write
down the following improved version of IA which uses information from the previous
2 layers.

�̂�𝑖 = 𝑢𝑖−1𝑊𝑖
+
𝑁 + 𝑙𝑖−1𝑊𝑖

−
𝑁 + 𝑏𝑖

+ 𝑢𝑖−2(𝑊𝑖−1𝑊𝑖𝐴)
+ + 𝑙𝑖−2(𝑊𝑖−1𝑊𝑖𝐴)

− + 𝑏𝑖−1𝑊𝑖𝐴

�̂�𝑖 = 𝑙𝑖−1𝑊𝑖
+
𝑁 + 𝑢𝑖−1𝑊𝑖

−
𝑁 + 𝑏𝑖

+ 𝑙𝑖−2(𝑊𝑖−1𝑊𝑖𝐴)
+ + 𝑢𝑖−2(𝑊𝑖−1𝑊𝑖𝐴)

− + 𝑏𝑖−1𝑊𝑖𝐴

We are forced to to use 𝑙𝑖−1,𝑗 and 𝑢𝑖−1,𝑗 if we can not determine whether or not
the ReLU corresponding to the activation 𝑧𝑖−1,𝑗 is active, but we use 𝑙𝑖−2 and 𝑢𝑖−2

whenever possible.

We now define some additional notation to help us extend this method to any
number of layers. We now seek to define 𝑓𝑛, which is a function which takes in four
sequences of length 𝑛 – upper bounds, lower bounds, weights, and biases – and outputs
the current layer’s upper and lower bounds.

What we have derived so far from (E.1) and (E.2) is the following

𝑓1(𝑢𝑖−1, 𝑙𝑖−1,𝑊𝑖, 𝑏𝑖) = (𝑢𝑖−1𝑊
+
𝑖 + 𝑙𝑖−1𝑊

−
𝑖 + 𝑏𝑖, 𝑙𝑖−1𝑊

+
𝑖 + 𝑢𝑖−1𝑊

−
𝑖 + 𝑏𝑖)

Let u denote a sequence of upper bounds. Let u𝑧 denote element 𝑧 of the sequence,
and let u[𝑧:] denote the sequence without the first 𝑧 elements. Define notation for l,
W, and b similarly.

Then, using the fact that 𝑊𝑁𝑍 = (𝑊𝑍)𝑁 and 𝑊𝐴𝑍 = (𝑊𝑍)𝐴, we can show that
the following recurrence holds:

𝑓𝑛+1(u, l,W,b) = 𝑓1(u1, l1,W1𝑁 ,b1)

+ 𝑓𝑛(u[1:], l[1:], (W2W1𝐴,W[2:]), (b2W1𝐴,b[2:])) (E.3)

Let u(x,y) denote the sequence (𝑢𝑥, 𝑢𝑥−1, · · · , 𝑢𝑦), and define l(x,y), W(x,y), and b(x,y)

similarly. Then, if we want to compute the bounds on layer 𝑘 using all information from
the previous 𝑘 layers, we simply have to compute 𝑓𝑘(u(k−1,0), l(k−1,0),W(k,1),b(k,1)).

From the recurrence E.3, we see that using information from all previous layers to
compute bounds for layer 𝑘 takes 𝑂(𝑘) matrix-matrix multiplications. Thus, using
information from all previous layers to compute bounds for all layers of a 𝑑 layer neural
network only involves 𝑂(𝑑2) additional matrix multiplications, which is still reasonable
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for most DNNs. This method is still relatively efficient because it only involves
matrix multiplications – however, needing to perform matrix-matrix multiplications as
opposed to just matrix-vector multiplications results in a slowdown and higher memory
usage when compared to naive IA. We believe the improvement in the estimate of
ReLU upper and lower bounds is worth the time trade-off for most networks.

E.3.3 Experimental results on improved IA and naive IA

In Table E.1, we show empirical evidence that the number of unstable ReLUs in
each layer of a MNIST network, as estimated by improved IA, tracks the number of
unstable ReLUs determined by the exact verifier quite well. We also present estimates
determined via naive IA for comparison.

Dataset Epsilon Training Estimation Unstable ReLUs Unstable ReLUs Unstable ReLUs
Method Method in 1st Layer in 2nd Layer in 3rd Layer

MNIST 𝜖 = 0.1

Control
Exact 61.14 185.30 31.73
Improved IA 61.14 185.96 (+0.4%) 43.40 (+36.8%)
Naive IA 61.14 188.44 (+1.7%) 69.96 (+120.5%)

+RS
Exact 21.64 64.73 14.67
Improved IA 21.64 64.80 (+0.1%) 18.97 (+29.4%)
Naive IA 21.64 65.34 (+0.9%) 33.51 (+128.5%)

MNIST 𝜖 = 0.2

Control
Exact 17.47 142.95 37.92
Improved IA 17.47 142.95 48.88 (+28.9%)
Naive IA 17.47 142.95 69.75 (+84.0%)

+RS
Exact 29.91 54.47 24.05
Improved IA 29.91 54.47 28.40 (+18.1%)
Naive IA 29.91 54.47 40.47 (+68.3%)

MNIST 𝜖 = 0.3

Control
Exact 36.76 83.42 40.74
Improved IA 36.76 83.44 (+0.02%) 46.00 (+12.9%)
Naive IA 36.76 83.52 (+0.1%) 48.27 (+18.5%)

+RS
Exact 24.43 48.47 28.64
Improved IA 24.43 48.47 31.19 (+8.9%)
Naive IA 24.43 48.47 32.13 (+12.2%)

Table E.1: Comparison between the average number of unstable ReLUs as found by
the exact verifier of [TXT19] and the estimated average number of unstable ReLUs
found by improved IA and naive IA. We compare these estimation methods on the
control and “+RS” networks for MNIST that we described in Section 6.3.3
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E.3.4 On the conservative nature of IA bounds

The upper and lower bounds we compute on each ReLU via either naive IA or improved
IA are conservative. Thus, every unstable ReLU will always be correctly labeled as
unstable, while stable ReLUs can be labeled as either stable or unstable. Importantly,
every unstable ReLU, as estimated by IA bounds, is correctly labeled and penalized
by RS Loss. The trade-off is that stable ReLUs mislabeled as unstable will also be
penalized, which can be an unnecessary regularization of the model.

In Table E.2 we show empirically that we can achieve the following two objectives
at once when using RS Loss combined with IA bounds.

1. Reduce the number of ReLUs labeled as unstable by IA, which is an upper bound
on the true number of unstable ReLUs as determined by the exact verifier.

2. Achieve similar test set accuracy and PGD adversarial accuracy as a model
trained without RS Loss.

Dataset Epsilon Training Estimation Total Labeled Test Set PGD Adversarial
Method Method Unstable ReLUs Accuracy Accuracy

MNIST 𝜖 = 0.1

Control Improved IA 290.5 98.94% 95.12%
+RS Improved IA 105.4 98.68% (-0.26%) 95.13% (+0.01%)

Control (Large) Naive IA 835.8 99.04% 96.32%
+RS (Large) Naive IA 150.3 98.95% (-0.09%) 96.58% (+0.26%)

Table E.2: The addition of RS Loss results in far fewer ReLUs labeled as unstable
for both 3-layer and 6-layer (Large) networks. The decrease in test set accuracy as a
result of this regularization is small.

Even though IA bounds are conservative, these results show that it is still possible
to decrease the number of ReLUs labeled as unstable by IA without significantly
degrading test set accuracy. When comparing the Control and “+RS” networks for
MNIST and 𝜖 = 0.1, adding RS Loss decreased the average number of ReLUs labeled
as unstable (using bounds from Improved IA) from 290.5 to 105.4 with just a 0.26%

loss in test set accuracy. The same trend held for deeper, 6-layer networks, even when
the estimation method for upper and lower bounds was the more conservative Naive
IA.
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E.4 Full experimental setup

E.4.1 Network training details

In our experiments, we use robust adversarial training [GSS15] against a strong
adversary as done in [Mad+18] to train various DNN classifiers. Following the prior
examples of [WK17] and [Dvi+18b], we introduced a small tweak where we increased
the adversary strength linearly from 0.01 to 𝜖 over first half of training and kept it at
𝜖 for the second half. We used this training schedule to improve convergence of the
training process.

For MNIST, we trained for 70 epochs using the Adam optimizer [KB15] with a
learning rate of 1e−4 and a batch size of 32. For CIFAR, we trained for 250 epochs
using the Adam optimizer with a learning rate of 1e−4. When using naive IA, we
used a batch size of 128, and when using improved IA, we used a batch size of 16. We
used a smaller batch size in the latter case because improved IA incurs high RAM
usage during training. To speed up training on CIFAR, we only added in RS Loss
regularization in the last 20% of the training process. Using this same sped-up training
method on MNIST did not significantly affect the results.

Dataset Epsilon ℓ1 weight RS Loss weight

MNIST 0.1 2e−5 12e−5

MNIST 0.2 2e−5 1e−4

MNIST 0.3 2e−5 12e−5

CIFAR 2/255 1e−5 1e−3

CIFAR 8/255 1e−5 2e−3

Table E.3: Weights chosen using line search for ℓ1 regularization and RS Loss in each
setting

For each setting, we find a suitable weight on RS Loss via line search. The same
weight is used for each ReLU. The five weights we chose are displayed above in Table
E.3, along with weights chosen for ℓ1-regularization.

We also train “+RS” models using naive IA to show that our technique for inducing
ReLU stability can work while having small training time overhead – full details on
“+RS (Naive IA)” networks are in Appendix E.5.
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E.4.2 Verifier overview

The MILP-based exact verifier of [TXT19], which we use, proceeds in two steps for
every input. They are the model-build step and the solve step.

First, the verifier builds a MILP model based on the neural network and the input.
In particular, the verifier will compute upper and lower bounds on each ReLU using
a specific bound computation algorithm. We chose the default bound computation
algorithm in the code, which uses LP to compute bounds. LP bounds are tighter than
the bounds computed via IA, which is another option available in the verifier. The
model-build step’s speed appeared to depend primarily on the tightening algorithm (IA
was faster than LP) and the number of variables in the MILP (which, in turn, depends
on the sparsity of the weights of the neural network). The verifier takes advantage
of these bounds by not introducing a binary variables into the MILP formulation if
it can determine that a particular ReLU is stable. Thus, using LP as the tightening
algorithm resulted in higher build times, but led to easier MILP formulations.

Next, the verifier solves the MILP using an off-the-shelf MILP solver. The solver
we chose was the commercial Gurobi Solver, which uses a branch-and-bound method
for solving MILPs. The solver’s speed appeared to depend primarily on the number of
binary variables in the MILP (which corresponds to the number of unstable ReLUs)
as well as the total number of variables in the MILP (which is related to the sparsity
of the weight matrices). While these two numbers are strongly correlated with solve
times, some solves would still take a long time despite having few binary variables.
Thus, understanding what other properties of neural networks correspond to MILPs
that are easy or hard to solve is an important area to explore further.

E.4.3 Verifier details

We used the most up-to-date version of the exact verifier from [TXT19] using the
default settings of the code. We allotted 120 seconds for verification of each input
datapoint using the default model build settings. We ran our experiments using the
commercial Gurobi Solver (version 7.5.2), and model solves were parallelized over 8
CPU cores with Intel Xeon CPUs @ 2.20GHz processors. We used computers with
8–32GB of RAM, depending on the size of the model being verified. All computers
used are part of an OpenStack network.
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E.5 Full experimental verification results

Dataset Epsilon Training Test PGD Verifier Provable Total Avg Avg
Method Set Adversarial Upper Adversarial Unstable Solve Build

Accuracy Accuracy Bound Accuracy ReLUs Time (s) Time (s)

MNIST 𝜖 = 0.1

Adversarial Training* 99.17% 95.04% 96.00% 19.00% 1517.9 2970.43 650.93
+ℓ1-regularization 99.00% 95.25% 95.98% 82.17% 505.3 21.99 79.13
+Small Weight Pruning 98.99% 95.38% 94.93% 89.13% 502.7 11.71 19.30

+ReLU Pruning (Control) 98.94% 95.12% 94.45% 91.58% 278.2 6.43 9.61
+RS 98.68% 95.13% 94.38% 94.33% 101.0 0.49 4.98
+RS (Naive IA) 98.53% 94.86% 94.54% 94.32% 158.3 0.96 4.82
+RS (Large)** 98.95% 96.58% 95.60% 95.60% 119.5 0.27 156.74

MNIST 𝜖 = 0.2

Control 98.40% 93.14% 90.71% 86.45% 198.3 9.41 7.15
+RS 98.10% 93.14% 89.98% 89.79% 108.4 1.13 4.43
+RS (Naive IA) 98.08% 91.68% 88.87% 85.54% 217.2 8.50 4.67
+RS (Large)** 98.21% 94.19% 90.40% 89.10% 133.0 2.93 171.10

[Won+18]*** 95.06% 89.03% - 80.29% - - -

MNIST 𝜖 = 0.3

Control 97.75% 91.64% 83.83% 77.99% 160.9 11.80 5.14
+RS 97.33% 92.05% 81.70% 80.68% 101.5 2.78 4.34
+RS (Naive IA) 97.06% 89.19% 79.12% 76.70% 179.0 6.43 4.00
+RS (Large)** 97.54% 93.25% 83.70% 59.60% 251.2 37.45 166.39

CIFAR 𝜖 = 2/255

Control 64.64% 51.58% 50.23% 45.53% 360.0 21.75 66.42
+RS 61.12% 49.92% 47.79% 45.93% 234.3 13.50 52.58
+RS (Naive IA) 57.83% 47.03% 45.33% 44.44% 170.1 6.30 47.11
+RS (Large)** 61.41% 50.61% 51.00% 41.40% 196.7 29.88 335.97

CIFAR 𝜖 = 8/255

Control 50.69% 31.28% 33.46% 7.09% 665.9 82.91 73.28
+RS 40.45% 26.78% 22.74% 20.27% 54.2 22.33 38.84
+RS (Naive IA) 46.19% 29.66% 26.07% 18.90% 277.8 33.63 23.66
+RS (Large)** 42.81% 28.69% 25.20% 19.80% 246.5 20.14 401.72

Table E.4: Full results on natural improvements from Table 6.1, control networks
(which use all of the natural improvements and ReLU pruning), and “+RS” networks
from Tables 6.2 and 6.3. While we are unable to determine the true adversarial
accuracy, we provide two upper bounds and a lower bound. Evaluations of robustness
against a strong 40-step PGD adversary (PGD adversarial accuracy) gives one upper
bound, and the verifier itself gives another upper bound because it can also prove that
the network is not robust to perturbations on certain inputs by finding adversarial
examples. The verifier simultaneously finds the provable adversarial accuracy, which
is a lower bound on the true adversarial accuracy. Build times and solve times are
reported in seconds. Finally, average solve time includes timeouts. In other words,
verification solves that time out contribute 120 seconds to the total solve time.
* The “Adversarial Training” network uses a 3600 instead of 120 second timeout and
is only verified for the first 100 images because verifying it took too long.
** The “+RS (Large)” networks are only verified for the first 1000 images
*** [Won+18; Dvi+18b], and [MGV18], which we compare to in Table 6.3, do not
report results on MNIST, 𝜖 = 0.2 in their papers. We ran the publicly available code
of [Won+18] on MNIST, 𝜖 = 0.2 to generate these results for comparison.
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E.6 Discussion on verification and certification

Exact verification and certification are two related approaches to formally verifying
properties of neural networks, such as adversarial robustness. In both cases, the
end goal is formal verification. Certification methods, which solve an easier-to-solve
relaxation of the exact verification problem, are important developments because exact
verification previously appeared computationally intractable for all but the smallest
models.

For the case of adversarial robustness, certification methods exploit a trade-off
between provable robustness and speed. They can fail to provide certificates of
robustness for some inputs that are actually robust, but they will either find or fail to
find certificates of robustness quickly. On the other hand, exact verifiers will always
give the correct answer if given enough time, but exact verifiers can sometimes take
many hours to formally verify robustness on even a single input.

In general, the process of training a robust neural network and then formally
verifying its robustness happens in two steps.

• Step 1: Training

• Step 2: Verification or Certification

Most papers on certification, including [WK17; Won+18; Dvi+18b; RSL18] and
[MGV18], propose a method for step 2 (the certification step), and then propose a
training objective in step 1 that is directly related to their method for step 2. We call
this paradigm “co-training.” In [RSL18], they found that using their step 2 on a model
trained using [WK17]’s step 1 resulted in extremely poor provable robustness (less
than 10%), and the same was true when using [WK17]’s step 2 on a model trained
using their step 1.

We focus on MILP-based exact verification as our step 2, which encompasses the
best current exact verification methods. The advantage of using exact verification for
step 2 is that it will be accurate, regardless of what method is used in step 1. The
disadvantage of using exact verification for step 2 is that it could be extremely slow.
For our step 1, we used standard robust adversarial training. In order to significantly
speed up exact verification as step 2, we proposed techniques that could be added to
step 1 to induce weight sparsity and ReLU stability.

In general, we believe it is important to develop effective methods for step 1,
given that step 2 is exact verification. However, ReLU stability can also be beneficial
for tightening the relaxation of certification approaches like that of [Won+18] and
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[Dvi+18b], as unstable ReLUs are the primary cause of the overapproximation that
occurs in the relaxation step. Thus, our techniques for inducing ReLU stability can
be useful for certification as well.

Finally, in recent literature on verification and certification, most works have
focused on formally verifying the property of adversarial robustness of neural networks.
However, verification of other properties could be useful, and our techniques to induce
weight sparsity and ReLU stability would still be useful for verification of other
properties for the exact same reasons that they are useful in the case of adversarial
robustness.
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