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Abstract

Through changes in average temperature, precipitation patterns, and extreme weather events,
climate change is already causing severe ecological and economic damages. Further warming
is expected to have a profound effect on the functioning of ecological and human systems
worldwide. While it is a top priority to limit carbon emissions and mitigate future climate
change, it is also essential to prepare for damages from climate change in the remainder of
this century. Research is needed to understand these impacts, and whether it is possible to
adapt to these changes.

In this thesis, I measure damages and adaptation to recent climate change in three essays.
First, in joint work with Sylvia Klosin, I develop a novel debiased machine learning approach
to measure continuous treatment effects in panel settings. We demonstrate benefits of this
estimator over standard machine learning or classical statistics approaches. We apply this
estimator to measure the degree of damages from climate change in U.S. agriculture, and find
that extreme heat is significantly more damaging than linear models suggest. In the second
essay, I measure the degree of adaptation to extreme heat in U.S. agriculture using flexible
modeling of weather variables and a debiased machine learning estimator. I demonstrate that
my double machine learning approach works well in high-dimensional settings. Applying this
estimator to the past thirty years of crop yields, I find evidence of considerable adaptation
to extreme heat. Finally, I examine the equity of adaptation to increasing wildfire risk in
California. I study how electric utilities’ power shutoff decisions correlate with community
socioeconomic status and health risk factors.

Thesis Supervisor: Jing Li
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Chapter 1

Introduction

Anthropogenic climate change will lead to over 2 °C of warming by 2100, without consid-

erable global efforts to limit carbon emissions (IPCC, 2022). Through changes in average

temperature, precipitation patterns, and extreme weather events, climate change is already

causing severe ecological and economic damages. Further warming is expected to have a

profound effect on the functioning of ecological and human systems worldwide. While it is a

top priority to limit carbon emissions and mitigate future climate change, it is also essential

to prepare for damages from climate change in the remainder of this century.

One important element of preparing for these damages is understanding the economic con-

sequences of climate change. Understanding likely climate impacts is necessary in order to

motivate climate mitigation policies and to direct interventions towards those most likely to

be impacted. Developing this understanding requires a global scientific effort. The climate

science community has spent decades developing and improving models to predict climate

under carbon emissions scenarios (Eyring et al., 2016). To translate these expected changes

into economic implications, the environmental economics community has contributed many

empirical approaches to study the impacts of weather and climate change.

One focus among these economic assessments is to estimate the extent of likely adaptation

to climate change. By changing behavior or technologies to adapt to a changing climate, it

may be possible to offset a great deal of economic damages. However, adaptation requires

11



knowledge and/or capital that may not be available. IPCC (2022) finds that in many coun-

tries, limited access to capital is already impeding efforts to adapt to climate change. A

lack of adaptation may exacerbate global inequality if only higher income communities are

able to invest in climate adaptation. Adaptation is therefore an important component of the

economic consequences of climate change, both to estimate climate damages and to ensure

equitable responses to climate change.

In my dissertation, I study climate change damages and adaptation with three essays. Chap-

ter 1 introduces the problem and provides some context for the remainder of the work. In

Chapter 2, I (with co-author Sylvia Klosin) develop a novel debiased machine learning esti-

mator and use it to measure expected damages from extreme heat in United States (U.S.)

agriculture. In Chapter 3, I estimate the degree of adaptation to extreme heat in U.S.

agriculture using a novel statistical approach, also involving debiased machine learning esti-

mators. In Chapter 4, I consider an example of adaptation to wildfire risk among California

electric utilities and study the extent that income is correlated with this adaptation response.

Chapter 5 concludes.

This dissertation relates to a long history of attempting to project the economic consequences

of climate change. Early work on this topic involved assigning a dollar value to physical

damage assessments from literature in other sciences (Tol, 2009). Wary about the ability

to extrapolate from these studies, economists now typically measure economic impacts of

shifts in weather or climate directly. One of the earliest studies was Mendelsohn, Nordhaus,

and Shaw (1994), which studied the implications of climate change for U.S. agriculture

and concluded that global warming would be slightly beneficial. The authors came to this

conclusion by regressing a cross section of property values on average temperatures. This

study spurred years of debate among economists as to whether warming would pose a net

positive or negative for agriculture in temperate climates such as the United States.

While pursuing this debate, researchers made considerable progress on methodologies to

measure economic damages from weather events. Schlenker and Michael J. Roberts (2006)

proposed a parsimonious functional form that captures the nonlinear nature of crop growth

better than average temperatures, and Deschênes and Greenstone (2007) advocate for using
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panel variation to account for unobservable fixed effects and to isolate the impacts of weather

shocks. Schlenker and Michael J Roberts (2009) revisited the question of how climate change

might impact U.S. agriculture, using panel variation and the functional form from their

earlier work. They concluded that climate change would have severe consequences for U.S.

agriculture, a conclusion that is now widely accepted. For a history of progress in modeling

other relationships between weather and economic outcomes, Dell, Jones, and Olken (2014)

and Hsiang (2016) provide two excellent reviews. A consistent theme is that choosing an

appropriate functional form and isolating the impacts of weather shocks are essential to

correctly measuring damages.

These modeling approaches are now widely used to estimate economic consequences of cli-

mate change, including to develop climate damage functions. A climate damage function

translates a climate change scenario into economic outcomes, and is an important tool to

assess economic consequences of climate scenarios and to inform climate mitigation policies.

Dell, Jones, and Olken (2014) discuss the history of these damage functions, and argue that

they should be based on credible measurement of damages from weather shocks using panel

variation and nonlinear modeling. Recent contributions in the climate damage function liter-

ature have followed this advice. Burke, Hsiang, and Miguel (2015) integrate nonlinear panel

estimates of weather damages to form projections of global climate damages. Hsiang et al.

(2017) use nonlinear panel analyses across a range of sectors to study the likely impacts of

climate change within the United States. Rode et al. (2021) use this approach to empirically

estimate how the energy demand sector contributes to the social cost of carbon, another

important implication of the climate damage function.

These analyses typically rely on binning temperature variables to capture nonlinear impacts,

although this approach has a limited ability to incorporate high-dimensional weather vari-

ation. Deschênes and Greenstone (2011) is an early paper to use this approach, separating

daily records into bins by average temperature to measure nonlinearities in how temperature

influences both mortality and energy consumption. Dell, Jones, and Olken (2014) and Hsiang

(2016) advocate for binning temperature variables to nonlinearly model the role of weather

variables. This approach is now widely used, including in the damage function studies by
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Burke, Hsiang, and Miguel (2015), Hsiang et al. (2017), and Rode et al. (2021). However, this

approach has limitations when researchers consider higher dimensional weather variation. As

the researcher attempts to flexibly model multiple variables and interactions between them,

the dimensionality grows at a rapid rate and OLS fails to give consistent estimates.

Machine learning algorithms are well-suited for capturing nonlinear impacts in high-dimensional

settings, such as a climate damage function with high-dimensional weather features. Ma-

chine learning approaches like neural networks, random forests, or Lasso can estimate re-

gression functions in high-dimensional settings with minimal functional form assumptions

(Mullainathan and Spiess, 2017). Such algorithms work best with large datasets, where

there is sufficient variation to train an estimator (Varian, 2014). Researchers now have

access to such datasets and the computational resources to analyze them. Through adminis-

trative data, weather stations, and satellite observations, there are now many panel datasets

including high-dimensional records of weather and economic variables. Machine learning

techniques could allow researchers to model complex relationships between high-dimensional

weather variation and economic outcomes more effectively than classical approaches like

binning variables.

A growing number of environmental economists are using machine learning techniques, al-

though few applications focus on the measurement tasks needed to assess climate damages.

This is true more broadly in economics, as machine learning techniques become widespread

but are largely limited to processing data or solving prediction problems (Mullainathan and

Spiess, 2017). In environmental economics, Jean et al. (2016) uses a machine learning ap-

proach to predict missing data, Crane-Droesch (2018) constructs a neural network for panel

data to predict crop yields under climate change scenarios, and Knittel and Stolper (2019)

uses a random forest to predict customers most likely to respond to an energy efficiency

program. Econometricians have developed machine learning techniques for a variety of mea-

surement applications, including approaches to remove bias from naive machine learning

estimates (CCDDHNR, 2018; Chernozhukov, Newey, and Singh, 2022a). There are few

environmental economics applications using machine learning to measure environmental im-

pacts. Deryugina et al. (2019) use a machine learning approach to measure the mortality
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costs of air pollution, and Stetter, Mennig, and Sauer (2022) use a debiased machine learning

approach to measure effectiveness of an agricultural intervention. There is an opportunity

for broader use of machine learning for measurement in environmental economics, especially

given methodological progress in debiased machine learning.

Chapter 2 of this thesis introduces a machine learning approach for panel settings that can

be used to measure damages in settings with high-dimensional weather variation. This chap-

ter is joint work with Sylvia Klosin. The existing debiased machine learning literature does

not account for common features in panel settings, notably the existence of additive fixed

effects in short panels (that is, datasets with few time period observations). In short pan-

els, it is not possible to consistently estimate per-unit fixed effects via dummy variables.

Because they do not remove these fixed effects, standard machine learning models are not

suitable for measuring the impacts of weather shocks. In this chapter, we introduce a debi-

ased machine learning approach that does account for fixed effects terms via the econometric

technique of first differencing. This estimator combines benefits of machine learning, specifi-

cally consistent estimation in high-dimensional settings, with benefits of classical econometric

approaches for removing additive fixed effect terms. We introduce this estimator and demon-

strate its effectiveness in a simulation exercise, and then apply the estimator to study the

impact of extreme heat on U.S. corn yields.

To improve our understanding of climate impacts and to inform policies to promote adapta-

tion, a recent literature in climate economics has begun to measure the extent of adaptation

to climate change. In an early study to argue about the extent of possible adaptation to

climate change, Schlenker and Michael J Roberts (2009) compared elasticities of crop yield

with respect to extreme heat across regions. They found similar magnitudes between the

relatively cool U.S. North and the relatively warm U.S. south, concluding that adaptation to

extreme heat was limited because crops were susceptible to the same damages from extreme

heat even after generations in a warmer climate. Other approaches have sought to measure

adaptation using time series weather variation. Barreca et al. (2016) studies mortality from

heat exposure, comparing elasticities throughout the 20th century to conclude that adapta-

tion greatly reduced the mortality effects of extreme heat. To focus on adaptation to recent
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anthropogenic climate change, Burke and Emerick (2016) measures the degree of adaptation

to extreme heat by comparing locations that experienced more long-run increases in extreme

heat since over several decades. Lemoine (2018) proposes a related approach that partially

identifies the degree of possible adaptation by considering the role of ex-ante and ex-post

adaptation to heat exposure shocks.

Empirical work on adaptation to climate change has examined many other potential data

sources, including historical climate change and simulation studies of future climate change.

Meyers and Rhode (2019) and Sutch (2008) and Sutch (2011) present suggestive and nar-

rative evidence, respectively, that the 1934 and 1936 Dust Bowl drought events accelerated

hybrid corn seed adoption by farmers in subsequent years, especially in areas that already

cultivated a small amount of hybrid corn before the onset of the drought. Olmstead and

Rhode (2011) describe the dramatic change in the parts of the US that cultivated wheat,

corn, and cotton from 1839 - 2002 as farmers migrated westward, moving through undocu-

mented climate regions along the way. Farmers adopted varieties that were better suited for

the different growing conditions in those areas. Costinot, Donaldson, and Smith (2016) use

simulation studies to examine the potential for such crop switching to offset future damages.

They find that if farmers switch to the most-suited crops, up to 25% of climate damages by

the year 2100 could be avoided.

Chapter 3 of this thesis contributes to this literature on measuring adaptation to climate

change. My project uses recent variation in climate to identify adaptation, and is most

closely related to Burke and Emerick (2016). In this project, I propose a flexible modeling

framework that extends the basic estimation strategy from Burke and Emerick (2016). Their

strategy relies on the well-established functional form from Schlenker and Michael J Roberts

(2009) to model crop yields. In settings where no such functional form exists, my flexible

method can be implemented to measure the degree of adaptation without making restrictive

assumptions. My framework uses debiased machine learning to estimate high-dimensional

functions and measure the degree of adaptation. I apply this estimator to study the degree

of adaptation to extreme heat in U.S. corn and soy cultivation.

One of the most important limiting factors to climate adaptation is inequity, as lower income
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groups may lack the means to prepare for a changing climate. In their report, IPCC (2022)

identifies several settings where inequality and poverty have set “soft limits” on the ability

of groups to adapt to climate change. Among environmental advocates, there has long been

a call to focus on equity in climate change adaptation (Smit and Pilifosova, 2003; Thomas

and Twyman, 2005). Coggins et al. (2021) conducted a review of literature on equity in

climate change adaptation and highlighted several examples of work assessing the equity of

climate adaptation. Sheller and Leon (2016) use interviews to study how historical inequal-

ities between Haiti and the Dominican Republic impacted government responses to similar

environmental crises, and Satyal, Byskov, and Hyams (2021) use environmental justice the-

ory to examine how systemic injustices facing an indigenous group in Uganda undermine

adaptation planning. However, Coggins et al. (2021) ultimately conclude that more work is

needed in this area, especially in empirical assessment of equity and justice.

In chapter 4, I conduct an empirical analysis of equity in adaptation to climate change among

California electric utilities. I study how California investor-owned electric utilities have

adapted to rising wildfire risk, specifically with regards to their Public Safety Power Shutoff

(PSPS) decisions. In a PSPS, the utility removes electricity from communities to avoid

sparking catastrophic wildfires. I focus on how income influences these shutoff decisions.

Because it is likely that income may be correlated with objective fire risk as well as shutoff

decisions, I examine how utilities treat communities that differ in income but share the same

weather-based risk. This highlights the role that utilities have contributed to discrepancies

in shutoffs, either by investing more in certain communities or targeting certain communities

in shutoff decisions.

In the rest of this proposal, I introduce each essay in more detail. I state the goals for each

project and summarize the current status of the project.
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1.1 Summaries of Dissertation Chapters

1.1.1 Chapter 2: Estimating Continuous Treatment Effects in Panel

Data using Machine Learning with an Agricultural Applica-

tion (joint with Sylvia Klosin)

This paper introduces and proves asymptotic normality for a new semi-parametric estimator

of continuous treatment effects in panel data. Specifically, we estimate an average derivative

of the regression function. Our estimator uses the panel structure of data to account for

unobservable time-invariant heterogeneity and machine learning methods to flexibly estimate

functions of high-dimensional inputs. We construct our estimator using tools from double/de-

biased machine learning (DML) literature. We show the performance of our method in Monte

Carlo simulations and also apply our estimator to real-world data and measure the impact

of extreme heat in United States (U.S.) agriculture. We use the estimator on a county-level

dataset of corn yields and weather variation, measuring the elasticity of yield with respect to

a marginal increase in extreme heat exposure. Our DML procedure finds that extreme heat

will cause $17.7 billion in annual damages by the year 2050, under median climate scenarios.

OLS finds that damages will be $16.2 billion, and this difference is statistically significant.

We find little evidence that this elasticity is changing over time.

1.1.2 Chapter 3: A Machine Learning Approach to Measuring Cli-

mate Adaptation

I measure adaptation to climate change by comparing elasticities from short-run and long-run

changes in damaging weather. I propose a debiased machine learning approach to flexibly

measure these elasticities in panel settings. In a simulation exercise, I show that debiased

machine learning has considerable benefits relative to standard machine learning or ordi-

nary least squares, particularly in high-dimensional settings. I then measure adaptation to

damaging heat exposure in United States corn and soy production. Using rich sets of tem-

perature and precipitation variation, I find evidence that short-run impacts from damaging
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heat are significantly offset in the long run. I show that this is because the impacts of long-

run changes in heat exposure do not follow the same functional form as short-run shocks to

heat exposure.

1.1.3 Chapter 4: Equity and Adaptation to Wildfire Risk: Evidence

from California Public Safety Power Shutoffs

In the past decade, California investor-owned electric utilities have begun implementing

Public Safety Power Shutoffs (PSPS) as part of their effort to adapt to increasing risk of

catastrophic wildfires. I examine the extent that these decisions are correlated with two

measures of community vulnerability: health risk factors and socioeconomic status (SES).

I first construct a dataset linking weather, vulnerability indices, and PSPS decisions for

electric circuits in California’s three largest investor-owned utilities. I show that PSPS is

used more frequently in circuits with lower average SES among two of California’s major

utilities, and circuits with higher average health risk in one of the major utilities. To focus

on utilities’ decisions, rather than other sources of inequality that may place vulnerable

communities in areas with higher wildfire risk, I repeat this analysis after controlling for

weather variation. The results are qualitatively similar. I then model the utility’s decision

problem, as reported in regulatory filings, and measure which components of the model

may be responsible for the PSPS decisions. After controlling for weather variation, I find

that ignitions are more frequent in low-SES circuits and in lower health risk circuits for

one utility. I cannot reject that utilities’ estimated costs from declaring PSPS shutoffs or

expected damages from wildfires are equitably distributed.
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Chapter 2

Estimating Continuous Treatment

Effects in Panel Data using Machine

Learning with an Agricultural

Application

This project is joint work with Sylvia Klosin.

2.1 Introduction

Estimating continuous treatment effects in panel data is essential for many applications. For

example, environmental researchers study how health or economic outcomes change with

exposure to high temperatures, air pollution, or other continuous environmental factors. In

economics, applied work commonly studies the impact of a continuous variable such as price

(e.g. for demand models in industrial organization) or distance (e.g. for evaluating programs

in urban economics). Researchers seldom observe all relevant variables for each unit in a

panel, but can still measure treatment effects by using repeated observations to control for

unobservable factors. One popular technique is the fixed effects approach, where researchers

model time-constant factors as indicator variables for each unit in the data (Wooldridge
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2005). Applications using the fixed effects approach typically rely on linear models.This

can can cause significant biases if the linear model is not correctly specified, or if there is

heterogeneity in effects. With standard statistical approaches, flexible modeling can result

in large standard errors or inconsistent estimation.

Double/debiased machine learning (DML) can maintain small standard errors while flexibly

estimating functions, but the existing DML literature has not studied continuous treat-

ment effects in typical panel settings. Machine learning (ML) approaches like Lasso allow

researchers to estimate functions with many terms while preserving low standard errors,

although these approaches can induce biases. There are a growing number of DML ap-

proaches to overcome regularization and overfitting biases from standard ML (CCDDHNR,

2018; Chernozhukov, Newey, and Singh, 2022a; Chernozhukov, Newey, and Singh, 2022b;

Rothenhäusler and Yu, 2019). These approaches allow the researcher to form unbiased es-

timates and valid confidence intervals, while preserving the statistical benefits of ML such

as greater flexibility and power. However, current DML estimators either focus on discrete

treatments, do not consider the panel nature of data, or use stronger assumptions than those

common in applied work.

This paper introduces a new DML estimator that uses common assumptions in panel set-

tings to flexibly measure continuous treatment effects. Our estimator measures the average

derivative, using the fixed effects approach to address unobservable per-unit factors and

DML to form debiased estimates and valid confidence intervals. The estimator allows for

high dimensionality and general treatment effect heterogeneity, and works well in short (few

time period) panels. Our assumptions on the panel data match those commonly used in ap-

plied work, while our DML approach offers greater statistical power and modeling flexibility

than standard linear approaches. Chernozhukov, Goldman, et al. (2017) and Chernozhukov,

Newey, and Singh (2022a) also apply DML in panel settings with continuous treatment

variables. However, both papers use a random correlated effects approach, which imposes

a restriction on the relationship between the covariates and the unobserved factors. Our

fixed-effects approach does not impose that restriction.

Our estimator uses first differencing to remove additive fixed effects, and then estimates two
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machine learning problems to construct a debiased estimate of the average derivative. After

taking nonlinear transformations of input variables, we construct a first-differenced dataset

by taking the difference between values in each time period and their lagged values. This

technique is widely used to account for the role of the persistent unobservable fixed effects

(Wooldridge, 2010). For our DML approach, we apply the estimator from Chernozhukov,

Newey, and Singh (2022a). We estimate both the regression function, and an orthogonal

machine learner to correct for bias in estimating the derivative of a regression function.

We introduce a novel estimation procedure for this second machine learning problem, using

an optimization package to solve a regularized minimization problem. We prove that this

estimator is asymptotically normal, and give standard errors that account for within-panel-

unit correlation.

After introducing the estimator, we show that it performs well via Monte Carlo simulation.

We simulate a short panel dataset according to a nonlinear function, and demonstrate that

our estimator is able to estimate an average derivative with low bias and valid confidence

intervals. Standard OLS and Lasso both introduce bias in this setting, while OLS with a

flexible set of polynomial basis functions results in much larger standard errors. We also

compare the performance of our estimator to the iterative algorithm from Chernozhukov,

Newey, and Singh (2022a), and show that our approach results in lower bias and variance.

We then apply our estimator to study the impact of extreme heat on United States (U.S.)

corn yields from 1980-2019. Like Schlenker and Michael J Roberts (2009), we measure the

elasticity of corn yield with respect to a marginal increase in extreme heat. Our estimator is

well suited to this setting because of the importance of fixed effects modeling to isolate the

impact of weather shocks (Deschênes and Greenstone 2007) and the nonlinear relationships

between crop yields and continuous environmental factors such as temperature and precip-

itation (Schlenker and Michael J Roberts 2009). Schlenker and Michael J Roberts (2009)

introduce a parsimonious model that captures the response of crop yields to temperature

and precipitation. In our approach, we also consider polynomial functions of these terms

and the interactions between them.

Confirming results from the literature, we find significant damages from annual extreme
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heat shocks and little evidence of adaptation to these damages. Our procedure estimates a

elasticity is similar to those with a linear model, and within the range Burke and Emerick

(2016) find when they examine how this elasticity differs with long-run and short-run weather

variation. With the DML procedure, our standard errors are significantly lower to those from

using OLS with the same flexible set of terms. Using our approach, we project $17.7 billion

(2017 dollars) in annual damages by the year 2050, under median climate scenarios. Using

the weather variation and linear model from Schlenker and Michael J Roberts (2009), we

find damages of $16.2 billion. These estimates have 95% confidence intervals of r17.0, 18.4s

and r15.2, 17.1s, respectively. The difference is statistically significant (𝑝 value ă 0.001),

but much smaller than the difference between different climate models. From least to most

severe climate model, we find between $9.4 and $33.2 billion dollars in damages.

We then use this estimator to measure how the elasticity shifts over time, which could provide

evidence of adaptation to climate change. We estimate the value of this elasticity in shifting

2-year panels over our sample, and cannot reject that the elasticity remains constant over

time. This corroborates findings from Schlenker and Michael J Roberts (2009) and Burke

and Emerick (2016) who conclude that there has been limited adaptation to extreme heat in

U.S. agriculture. We find evidence of substantial interannual variability in this coefficient.

Some of this variability can be explained by large historical weather events, but we are unable

to fully explain this variability.

Our work relates to the panel, DML, continuous treatment effect, and climate economics

literature. Flexible continuous effects in panel data are under-explored in the theoretical

literature relative to binary treatment effects. While there are many interesting flexible

panel methods for binary treatment effects, including factor models and synthetic controls,

there are no such methods for continuous effects. The paper studying binary treatment

effects in panel flexibly that is most related to ours is Belloni et al. (2016). This paper uses a

fixed-effects approach, as we do, and allows for the outcome model to be a general function of

covariates estimated with ML, but does not allow for general treatment effect heterogeneity

as we do. Chernozhukov, Newey, and Singh (2022a) and Chernozhukov, Goldman, et al.

(2017) allow for general treatment effect heterogeneity and continuous treatment variables.
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However, Chernozhukov, Goldman, et al. (2017) considers the dynamic panel and imposes

the potentially strong assumption of sequential exogeneity, and Chernozhukov, Newey, and

Singh (2022a) does not consider panels with few observations per unit. Both these papers

use a random correlated effects approach, which imposes a restriction on the relationship

between the covariates and the unobserved fixed effects. Our fixed-effects approach does not

impose that restriction.

This paper focuses on the average derivative, although there are many other potentially in-

teresting continuous treatment effects. For example, Colangelo and Y.-Y. Lee (2020) and

Klosin (2021) study the dose-response curve, and Chernozhukov, Newey, and Singh (2022a)

considers average policy effects, average treatment effects, and the average equivalent varia-

tion bound. The methods in our paper could be adapted to other objects, such as average

policy effects or conditional average derivatives. We focus on the average derivative because

it can be estimated at parametric root 𝑛 rates and because there are many applications of

the average derivative in practice. Many papers estimate an elasticity, which is equivalent

to estimating an average derivative when the outcome variable is the logarithm of a raw

value. The average derivative is also studied by, among others, Imbens and Newey (2009)

and Rothenhäusler and Yu (2019).

Within the DML literature, our approach is most related to recent work in automatic de-

biased machine learning. CCDDHNR (2018) prove that sample splitting and constructing

Neyman-orthogonal moment conditions can yield approximately debiased machine learning

estimates in certain settings. Semenova and Chernozhukov (2021) extend the Neyman-

orthogonal moment condition approach to several other statistical targets, including struc-

tural derivatives. In an approach known as Auto-DML, Chernozhukov, Newey, and Singh

(2022a) and Chernozhukov, Newey, and Singh (2022b) give an approximately debiased es-

timator for a more general class of linear functionals based on the Riesz representation

theorem. Our approach is most closely related to Chernozhukov, Newey, and Singh (2022a),

but we extend their estimator to consider panel settings with additive fixed effect terms.

The application is also related to a literature in environmental economics on studying the

economic impacts of climate change. Rode et al. (2021) estimates elasticities of energy use
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with respect to temperature, to construct a global estimate of the social cost of carbon

from energy use. Burke, Hsiang, and Miguel (2015) and Hsiang et al. (2017) estimate

economic damages of climate change globally and within the U.S., respectively, by combining

estimates of elasticities of multiple economic sectors with respect to temperature. These

approaches model the impacts of temperature by separating heat exposure into bins and

estimating a coefficient for each bin, a model advocated by Dell, Jones, and Olken (2014)

and Hsiang (2016). These approaches can have limitations for high-dimensional weather

variation, as the number of variables grows exponentially if the researcher wishes to include

interactions between weather factors. Our project is the first, to our knowledge, to estimate

these elasticities using a machine learning approach, allowing us to flexibly model higher-

dimensional variation.

Our project is also related to a growing field applying machine learning techniques in environ-

mental economics. Many researchers have used machine learning for predictive properties,

such as forecasting crop yields (Crane-Droesch 2018), filling missing data to track global

poverty (Jean et al. 2016), or more effectively assign treatment (Knittel and Stolper 2019).

Recent work has begun using machine learners for measurement tasks. Deryugina et al.

(2019) uses a machine learning approach to measure the costs of air pollution. Stetter, Men-

nig, and Sauer (2022) use a de-biased machine learning approach to measure effectiveness of

an agricultural intervention. Our paper is the first application in environmental economics,

to our knowledge, to use DML to estimate continuous treatment effects.

The paper is structured in the following way. Section 2.2 sets up the framework of the

paper, introduces the parameter of interest, and presents our estimator. Simulation design

and results are given in Section 2.3. Section 2.4 covers our application. Section 2.5 concludes.

2.2 Estimation

2.2.1 Notation and Definitions

We work in a panel data setting with 𝑛 individuals and 𝑇 time periods. As is often the

case in economic data, we assume that 𝑛 is large but 𝑇 is small. We assume we have
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independent and identically distributed data p𝑊1, ¨ ¨ ¨ ,𝑊𝑛q where the 𝑊𝑖 “ tp𝑋𝑖, 𝐷𝑖, 𝑌𝑖qu
𝑇
𝑡“1

are copies of a random variable 𝑊 with support t𝒲 “ 𝒳 ˆ 𝒟 ˆ 𝒴u𝑇𝑡“1, with a cumulative

distribution function (cdf) 𝐹𝑌 𝐷𝑋p𝑌,𝐷,𝑋q. We use capital letters to denote random variables

and lowercase letters to denote their possible values. For each unit in a population 𝑋𝑖,𝑡 P IRℎ

denotes a vector of covariates, with ℎ potentially large, and 𝐷𝑖,𝑡 P IR denotes the treatment

variable.

For a given variable 𝑋, we use the notation ∆𝑋𝑖,𝑡 :“ 𝑋𝑖,𝑡 ´ 𝑋𝑖,𝑡´1 for the first difference

transformation. For the first difference transformation of a function 𝑓 of a variable 𝑋, we

apply the function 𝑓 before taking the difference: ∆𝑓p𝑋𝑖,𝑡q :“ 𝑓p𝑋𝑖,𝑡q ´ 𝑓p𝑋𝑖,𝑡´1q.

Define | ¨ |1 as the ℓ1 norm; that is, |𝛽|1 “
ř𝑝

𝑗“1 |𝛽𝑗| where 𝛽𝑗 is the 𝑗th component of 𝛽 and

𝑝 is the length of 𝛽.

2.2.2 Parameter of Interest

We are estimating a general additive fixed effects panel model.

𝑌𝑖,𝑡 “ 𝑎𝑖 ` 𝛾0p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q ` 𝜖𝑖,𝑡 𝐸r𝜖𝑖,𝑡|𝑎𝑖, 𝑋𝑖,1, ¨ ¨ ¨ , 𝑋𝑖,𝑇 , 𝐷𝑖,1, ¨ ¨ ¨ , 𝐷𝑖,𝑇 s “ 0 (2.1)

Here 𝑎𝑖 represents individual fixed effects, and 𝛾0 is a flexible function of treatment and

covariates. We are generic about the form of 𝛾0, allowing high-dimensional covariates, inter-

actions between terms, and higher order polynomial terms. We assume that 𝛾0 is constant

throughout time and that it can be estimated well with Lasso. This assumption implies that

𝛾0 is a sparse linear combination of some transformation of the treatment and covariates.

However, we do not assume that the fixed effects 𝑎𝑖 are sparse.

We estimate Lasso after applying a set of basis functions to transform t𝐷𝑖,𝑡, 𝑋𝑖,𝑡u into a high-

dimensional set of covariates. We define a 𝑝ˆ1 dictionary of basis functions 𝑏 that transforms

our original vector of covariates, so that 𝑏p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q P IR𝑝. Basis functions can include any

desired transformations of the covariates, such as polynomial terms or interactions between

variables. The assumption that Lasso estimates 𝛾 implies that there exists a sparse parameter

vector 𝛽0 P IR𝑝 such that 𝛾0p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q “ 𝑏p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q
1𝛽0.
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We choose these modeling assumptions because they match those commonly used in applied

work, while relaxing functional form assumptions on 𝛾0. We assume the additive error

term 𝜖𝑖,𝑡 is mean zero conditional on the history of covariates, an assumption called strict

exogeneity that is frequently used in applied work (Wooldridge 2010).

Our estimation target is the average of a continuous treatment effect, the moment function

𝑚 given in (2.2). We consider the average derivative:

𝜏0 “ IEr𝑚p𝑊𝑖,𝑡, 𝛾0qs “ IE

„

B𝛾0p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q

B𝐷𝑖,𝑡



(2.2)

Note here that the expectation is over both 𝐷𝑖,𝑡 and 𝑋𝑖,𝑡, and that the target derivative is

only a function of 𝐷𝑖,𝑡 and not its lagged value. The causal interpretation of 2.2 is the average

causal effect of a marginal increase in treatment. The average derivative has been studied

by, among others, Imbens and Newey (2009) and Rothenhäusler and Yu (2019). When 𝑦𝑖,𝑡

is in log scale, this parameter captures the elasticity of 𝑦 with respect to a marginal change

in 𝐷.

To account for the fixed effect term 𝑎𝑖, we introduce a first-differenced version of 2.1. In

short panels, it is not possible to consistently estimate 𝑎𝑖. By taking a first difference, we

can remove the time-invariant factor 𝑎𝑖 and consistently estimate 𝛾0 (Wooldridge 2010).

𝑌𝑖,𝑡 ´ 𝑌𝑖,𝑡´1 “ 𝛾0p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q ´ 𝛾0p𝐷𝑖,𝑡´1, 𝑋𝑖,𝑡´1q ` 𝜖𝑖,𝑡 ´ 𝜖𝑖,𝑡´1 (2.3)

∆𝑌𝑖,𝑡 “ ∆𝛾0p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q `∆𝜖𝑖,𝑡 (2.4)

Because we apply the first difference transformation after taking the function 𝛾0 of our data,

our linear representations of 𝛾0 and ∆𝛾0 share the same parameter vector 𝛽0. That is, if

𝛾0p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q :“ 𝑏p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q
1𝛽0, then ∆𝛾0p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q :“ ∆𝑏p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q

1𝛽0.

Note that we can express the estimation target in terms of the average derivative of ∆𝛾0:

𝜏0 “ IE

„

B𝛾0p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q

B𝐷𝑖,𝑡



“ IE

„

B∆𝛾0p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q

B𝐷𝑖,𝑡



(2.5)
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2.2.3 Estimator

We construct a de-biased estimator of the average derivative using two Lasso estimated high

dimensional functions, ∆𝛾 and 𝛼̂. The first, ∆𝛾, is an estimate of the regression function

∆𝛾0 in equation 2.4. This estimation procedure is explained in Section 2.2.3. The second, 𝛼̂

is a de-biasing term. We describe 𝛼̂ in more detail and explain how we construct it in Section

2.2.3 after introducing the full estimator. In short one can consider ∆𝛾 to be the initial ML

estimate of the effect, and the 𝛼̂ to be an add on that de-biases this initial estimate.

We use a cross-folds procedure to reduce the risk of overfitting. First the researcher chooses

the number of splits 𝐿 (𝐿 “ 5 is commonly used). Then each unit’s indices are randomly

partitioned into the 𝐿 equally sized groups. We use ℓ to denote these groups, ℓ “ 1, . . . , 𝐿.

Denote observations in group ℓ by 𝑊ℓ. All observations from a single panel unit are placed in

the same fold. This is important because the data in different folds should be independent,

and there is a dependence within the observations of a single unit. Our functions 𝛾ℓ and 𝛼̂ℓ

are trained using observations not in group ℓ. The full estimator takes these two functions

∆𝛾ℓ and 𝛼̂ℓ from each fold and uses them to construct our estimate 𝜏 :

𝜏 “
1

𝑛p𝑇 ´ 1q

𝐿
ÿ

ℓ“1

ÿ

𝑖Pℓ

𝑇
ÿ

𝑡“2

𝜏ℓ;𝑖,𝑡

𝜏ℓ;𝑖,𝑡 “
B∆𝛾ℓp𝐷𝑖,𝑡, 𝑋𝑖,𝑡q

B𝐷𝑖,𝑡

` 𝛼ℓp𝐷𝑖,𝑡, 𝑋𝑖,𝑡, 𝐷𝑖,𝑡´1, 𝑋𝑖,𝑡´1qp∆𝑌𝑖,𝑡 ´∆𝛾ℓp𝐷𝑖,𝑡, 𝑋𝑖,𝑡qq

(2.6)

To compute the asymptotic variance of our estimator, it is necessary to account for correlation

of our target within panel units. We assume that errors have a constant correlation within

a panel unit but are uncorrelated between panel units. Let 𝜏ℓ;𝑖 “ 1{p𝑇 ´ 1q
ř𝑇

𝑡“2 𝜏ℓ;𝑖,𝑡. Then

the asymptotic variance is:

𝑉 “
1

𝑛p𝑇 ´ 1q

𝐿
ÿ

ℓ“1

ÿ

𝑖Pℓ

#

𝑇
ÿ

𝑡“2

p𝜏ℓ;𝑖,𝑡 ´ 𝜏q
2
` 2

𝑇´1
ÿ

𝑡“2

𝑇
ÿ

𝑡1“𝑡`1

p𝜏ℓ;𝑖,𝑡 ´ 𝜏ℓ;𝑖qp𝜏ℓ;𝑖𝑡1 ´ 𝜏ℓ;𝑖q

+

(2.7)

Assumptions and the proof for asymptotic normality of our estimator are given in Appendix

2.A. We work with p𝑇 ´ 1q time periods rather than 𝑇 because we removed one time period
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by first-differencing the data.

In the following subsections, we describe how we compute the derivative of the regression

function and how we estimate the bias correction term 𝛼.

Derivative of Regression Function

There are two general steps to find the derivative of the regression function ,BΔ𝛾ℓp𝐷𝑖,𝑡,𝑋𝑖,𝑡q

B𝐷𝑖,𝑡
,

in 2.6.

1. Estimate ∆𝛾ℓ for each fold.

(a) Transform the covariates t𝐷𝑖,𝑡, 𝑋𝑖,𝑡u using a flexible specification. We do so by

using polynomial basis functions of terms and interactions, although other ap-

proaches like kernel functions or splines could be used as long as the derivatives

are bounded. Let 𝑏p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q denote the resulting 𝑝 ˆ 1 dictionary of functions
1. Then let ∆𝑏p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q :“ 𝑏p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q ´ 𝑏p𝐷𝑖,𝑡´1, 𝑋𝑖,𝑡´1q. We set each function

in the dictionary 𝑏 to have mean 0 and variance 1; Appendix 2.B.2 discusses this

procedure.

(b) Find a vector of coefficients 𝛽 for our dictionary such that ∆𝛾p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q :“

∆𝑏p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q
1𝛽 is a sparse linear approximation of ∆𝛾0p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q. We do so by

solving the following Lasso problem:

𝛽 “ argmin
𝛽

#

1

𝑛p𝑇 ´ 1q

𝑛
ÿ

𝑖“1

𝑇
ÿ

𝑡“1

p∆𝑌𝑖,𝑡 ´∆𝑏p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q
1𝛽q2 ` 𝑟𝐿|𝛽|1

+

(2.8)

This procedure depends on the regularization weight 𝑟𝐿, which we determine

by finding values that minimize test-set error in a cross-folds procedure. This

procedure is described in Appendix 2.B.1.

2. Calculate the derivative.

We calculate the derivative analytically. Many DML approaches use numeric differen-

tiation; we discuss this alternative in Appendix 2.B.4. Our procedure uses the estimate
1For example, when we estimate Δ𝛾ℓ we set 𝑏p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q to be a third order polynomial set of the covariate

variables and interactions between 𝐷 and each covariate in 𝑋.
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of 𝛽ℓ from the previous step to compute the derivative and derivatives of each function

in our dictionary of basis functions.

(a) Construct the dictionary 𝑏𝐷, a 𝑝ˆ1 dictionary of derivatives of each basis function

in 𝑏. For each basis function 𝑏𝑗 for 𝑗 “ 1, . . . , 𝑝 in our dictionary of basis functions,

define its derivative as follows:

𝑏𝑗𝐷p𝐷,𝑋q “
B𝑏𝑗p𝐷,𝑋q

B𝐷
(2.9)

(b) Estimate the average derivative as:

IE

„

B∆𝛾p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q

B𝐷𝑖,𝑡



“ IEr𝑏𝐷p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q
1𝛽s (2.10)

Example 1. Consider a simple setting where 𝑋𝑖,𝑡 P IR, and where 𝛾0p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q “ 𝐷2
𝑖,𝑡𝑋𝑖,𝑡.

Our basis function dictionary is 𝑏p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q “ t𝐷𝑖,𝑡, 𝑋𝑖,𝑡, 𝐷
2
𝑖,𝑡𝑋𝑖,𝑡u. In our linear representa-

tion, 𝛽0 “ t0, 0, 1u.

In step 1, we obtain an estimate 𝛽 using Lasso. In step 2, we first define the derivative of

the basis functions. Here, 𝑏𝐷p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q “ t1, 0, 2𝐷𝑖,𝑡𝑋𝑖,𝑡u. The estimated average derivative

is then: 𝛽1 ` IEr2𝐷𝑖,𝑡𝑋𝑖,𝑡s𝛽3, where 𝛽𝑗 is the 𝑗th component of 𝛽.

De-biasing term

Now the next term of equation (2.6) is the de-biasing term, 𝛼ℓp𝐷𝑖,𝑡, 𝑋𝑖,𝑡, 𝐷𝑖,𝑡´1, 𝑋𝑖,𝑡´1q. Our

𝛼 is based on the methods of Chernozhukov, Newey, and Singh (2022a), which use the Riesz

Representation theorem. This theorem states that for a given linear functional 𝑚, there

exists a function 𝛼 such that the following holds for any function 𝑏:

IEr𝑚p𝑊, 𝑏qs “ IEr𝛼p𝑊 q𝑏p𝑊 qs (2.11)

In our case using the definition of the moment and our derivative bases, we have 𝑚p𝑊, 𝑏q “

∆𝑏𝐷p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q. These basis functions are the same standardized basis functions as in Section

2.2.3. Plugging this into the above yields:
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IEr∆𝑏𝐷p𝐷𝑖,𝑡, 𝑋𝑖,𝑡qs “ IEr𝛼p𝐷𝑖,𝑡, 𝑋𝑖,𝑡, 𝐷𝑖,𝑡´1, 𝑋𝑖,𝑡´1q∆𝑏p𝐷𝑖,𝑡, 𝑋𝑖,𝑡qs (2.12)

Because this equality holds regardless of the function 𝑏, it is possible to estimate 𝛼 from

data independently of estimating the function 𝛾. In order to construct an estimate 𝛼̂, we

first assume that 𝛼0 has a sparse linear form: 𝛼0p𝐷𝑖,𝑡, 𝑋𝑖,𝑡, 𝐷𝑖,𝑡´1, 𝑋𝑖,𝑡´1q “ ∆𝑏p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q
1𝜌0.

Our estimate is then 𝛼̂p𝐷𝑖,𝑡, 𝑋𝑖,𝑡, 𝐷𝑖,𝑡´1, 𝑋𝑖,𝑡´1q “ ∆𝑏p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q
1𝜌. We follow Chernozhukov,

Newey, and Singh (2022a) and find 𝜌 to minimize the squared loss between 𝛼0 and 𝛼̂:

𝜌 “ argmin
𝜌

 

IErp𝛼0p𝐷𝑖,𝑡, 𝑋𝑖,𝑡, 𝐷𝑖,𝑡´1, 𝑋𝑖,𝑡´1q ´∆𝑏p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q
1𝜌q2s ` 𝑟𝛼|𝜌|1

(

(2.13)

Additional details about this solution are given in Appendix 2.B.3. Chernozhukov, Newey,

and Singh (2022a) provides an iterative procedure to solve this problem; we also introduce

an alternate approach using an optimization package to solve the minimization problem.

Our implementation using an optimization package guarantees that we find an optimal so-

lution to this minimization problem. Iterative approaches may fail to converge to the true

value of the parameter, with finite training time. Given the convex nature of the mini-

mization problem, we are able to find an exact solution using optimization software. We

use the Python package CvxPy (Diamond and Boyd 2016) to set up the problem and the

convex optimization software Mosek (ApS 2021) to solve the problem. In simulation trials,

we compare the performance of iterative and optimizer approaches for determining 𝛼̂.

With an estimate 𝛼̂, we can estimate the average derivative using only the 𝑌𝑖,𝑡 observations:

𝜏 “ IEr𝛼̂p𝐷𝑖,𝑡, 𝑋𝑖,𝑡, 𝐷𝑖,𝑡´1, 𝑋𝑖,𝑡´1q∆𝑌𝑖,𝑡s. We now provide an example to illustrate the role of

the Riesz Representer function in a simple setting.

Example 2. Consider the average derivative of a function 𝛾 of 𝑋 where 𝑋 „ 𝑁p0, 1q. Via

integration by parts after expanding the expectation, IE

„

B𝛾p𝑋q

B𝑋



“ IEr𝑋𝛾p𝑋qs.

That is, the Riesz Representer is 𝛼0p𝑋q “ 𝑋 when 𝑋 „ 𝑁p0, 1q and 𝑚 is the derivative

operator. The Riesz Representer depends on the distribution of data and the operator 𝑚, but

does not depend on the choice of function 𝛾.
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If our basis function is the identity (i.e. 𝑏p𝑋𝑖q “ 𝑋𝑖), then in our linear representation

above, 𝜌0 “ t1u. We construct an estimate 𝜌 using our Lasso procedure, and then estimate

the average derivative as: 𝜏 “ IEr𝑋𝑖𝜌𝑌𝑖s

2.3 Simulations

We demonstrate the performance of our estimator through a Monte Carlo simulation exercise.

We use the data generating process (DGP) defined below to create 1000 different datasets.

We report the true value of the derivative, our estimate, the average bias of our estimates,

and mean squared error between true and estimated values (MSE 𝜏). We also include

mean squared error of prediction for in-sample values (MSE 𝛾 In Sample) and out-of-sample

values (MSE 𝛾 Cross Folds). We compare the performance of our estimator with OLS on

the untransformed set of covariates (OLS Linear), OLS on the basis function transformation

of covariates (OLS Poly), Lasso without a bias correction term, and DML using an iterative

estimation procedure (DML Iterative). We show the results of this simulation trial in Table

2.1 and plot the distribution of the error in Figure 2-1.

DGP : 𝑁 “ 1000 number of individuals, 𝑇 “ 2 number of time periods, ℎ “ 20 original

number of 𝑋 covariates. Our basis function transformation takes third order polynomials

of each variable, then adds interactions between each t𝐷,𝑋p𝑗qu pair and their polynomials.

We have a total of 𝑝 “ 244 covariates after applying the basis function transformation.

We generate outcome variables according to the following function:

𝑌𝑖,𝑡 “ 𝑎𝑖 `𝐷𝑖,𝑡 `𝐷
2
𝑖,𝑡 `𝐷

3
𝑖,𝑡 `𝐷𝑖,𝑡𝑋

p1q
𝑖,𝑡 ` .1𝜃X𝑖,𝑡 ` 𝜖𝑖,𝑡 (2.14)

To match real-world panel settings, we impose a correlation between 𝑎𝑖, 𝐷𝑖,𝑡 and X𝑖,𝑡. We

set 𝜃 so that the 𝑗th element is 𝜃𝑗 “ 1{𝑗2. Fixed effects 𝑎𝑖, covariates X𝑖,𝑡, and random noise

𝜖𝑖,𝑡 are drawn from Gaussian distributions: 𝑎𝑖 „ 𝑁p1, 1q, 𝑋p𝑗q
𝑖,𝑡 „ 𝑁p𝑎𝑖, 1q 𝑗 “ 1, . . . , ℎ, and

𝜖𝑖,𝑡 „ 𝑁p0, 1q, while the treatment is correlated with X𝑖,𝑡 but includes simulation draws from

a Beta distribution: 𝐷𝑖,𝑡 „ .1𝜃X𝑖,𝑡 `𝐵𝑒𝑡𝑎p1, 7q
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method DML DML Iterative Lasso OLS Linear OLS Poly

True Value 2.96 2.96 2.96 2.96 2.96
Average Derivative 2.958 2.94 2.683 3.246 2.939
Bias -0.002252 -0.02015 -0.2771 0.2861 -0.0208
Standard Deviation 0.2991 0.341 0.3581 0.3311 0.5573
MSE 𝜏 0.08013 0.1069 0.1957 0.1836 0.3009
Coverage 0.924 0.962 0.224 0.886 0.95
MSE 𝛾 In Sample 1.951 1.951 1.951 2.338 1.515
MSE 𝛾 Cross Folds 2.048 2.048 2.048 2.454 10.04

Table 2.1: Summary of derivative estimates from 1000 bootstrap trials of our simulation pro-
cedure. Bias is the average of the estimated value of the derivative minus the true value of the
derivative in each simulation draw. “MSE 𝜏 ” is the mean squared error between the true aver-
age derivative and the estimated average derivative in each simulation draw, while “MSE 𝛾 in
sample” and “MSE 𝛾 cross folds” refer to the mean squared error of regression from own-sample
and out-of-sample estimation.

Table 2.1 demonstrates the value of our approach for applied research. If an applied re-

searcher were faced with our simulated data with 20 covariates and they wanted to use

classic OLS methods they could run either a classic linear regression with 20 covaraiates

(“OLS Linear”) or they could run a more flexible linear regression with polynomial terms

of these 20 base covaraites leading to 244 covariates (“OLS Poly”). Note that in order to

recover the average derivative using OLS Poly, the researcher must use either derivatives of

the basis functions, as described in Section 2.2.3, or numerical differentiation.

Researchers may prefer OLS Linear to OLS Poly because the large number of regressors in

OLS Poly can can lead to large standard errors, even though OLS Linear may be biased due

to misspecification. The bias and variance trade off of OLS Linear and OLS Poly is exactly

what we see in the table. OLS Linear has smaller standard errors than OLS Poly, but OLS

Linear has a large bias relative to OLS Poly.

Our DML method provides an alternative that preserves the low standard errors of OLS

Linear and the low bias of flexible modeling such as OLS Poly. Due to the regularization of

Lasso, our estimates have considerably lower standard errors as OLS Poly even though they

use the same set of basis functions. Figure 2-1 visualizes this benefit - the error from DML

and OLS Poly are both approximately centered around 0, but the distribution of errors using

OLS Poly is much wider. In this simulation trial, our DML method has lower bias than OLS
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Figure 2-1: Visualization of distributions of error per simulation trial, for the five methods
above. Error is defined as estimated value minus true value.

Poly and lower standard errors than OLS Linear.

Reassuringly, our DML procedure results in an approximately de-biased estimate of the

average derivative. This is especially clear relative to Lasso without any correction. The bias

of base Lasso is 100 times larger than the bias of our proposed method. Our estimates also

have substantially lower bias than OLS using the untransformed covariates (“OLS Linear”)

and lower bias than OLS using the basis function transformation (“OLS Poly”). We expect

these results, as misspecification of OLS Linear can induce a bias in estimating the average

derivative, and OLS Poly may be overfitting the data (as shown by the high error in MSE

cross folds). Our optimization-based DML approach results in lower bias and standard

deviation in the result than DML Iterative, although both dramatically improve over Lasso

without a correction. This comparison was done by creating our estimator and then using

two different algorithms to solve for the de-baising term.

We use the mean squared error of estimating the true parameter (MSE 𝜏) to compare

results, incorporating differences in both bias and variance. The MSE 𝜏 using our estimation

procedure is the lowest among all models considered, roughly half the magnitude from Lasso
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or OLS Linear and one quarter the magnitude from OLS Poly. The MSE 𝜏 is closest to the

result using DML Iterative, and shows that our general optimization solution to de-biasing

is leading to lower bias.

Note that simply comparing mean squared error in prediction (MSE 𝛾) does not find the

model with the lowest error in estimating 𝜏 . OLS Poly has the lowest in-sample MSE 𝛾,

but the highest MSE 𝛾 in out-of-sample prediction. This indicates that OLS Poly may be

overfitting the data, which is unsurprising given the high value of 𝑝 relative to the number of

observations. Lasso has higher in-sample MSE 𝛾 than OLS Poly, but the lowest out-of-sample

MSE 𝛾. However, Lasso has substantially higher bias than OLS Poly.

In Appendix 2.C, we include results from additional simulation trials where we vary the

number of covariates or the number of time periods. These results show that, as expected,

the bias generally decreases as the number of samples per covariate increases. Both DML

and DML Iterative continues to reduce bias relative to Lasso in all trials, and our DML

approach has the lowest MSE 𝜏 in all trials. This confirms that our approach has benefits

over standard OLS procedures and current DML approaches.

2.4 Application

In our application, we measure the elasticity of corn yields with respect to extreme heat

exposure and use this to project the damages from expected changes in the distribution of

extreme heat following climate change. We do so by regressing log crop yields on a set of

weather variables. The treatment variable 𝐷𝑖,𝑡 is annual aggregate exposure to temperatures

above 29 ˝C; for simplicity we refer to this variable as extreme heat. This variable roughly

captures the amount of heat stress a plant experiences. As Schlenker and Michael J Roberts

(2009) demonstrate, crop yields are generally decreasing in extreme heat, while increasing in

heat exposure below a crop-specific damaging threshold. Schlenker and Michael J Roberts

(2009) find that this threshold is 29°C for corn, and Burke and Emerick (2016) find that the

threshold is 29°C for the long-run impacts of heat exposure. In Section 2.D.1, we consider

alternate temperature thresholds and find that model fit slightly improves with alternate

thresholds; we use 29°C for the closest comparison to the existing literature. The covariates
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𝑋𝑖,𝑡 include other weather features, such as heat exposure below this temperature threshold

and precipitation. Their model is:

𝑦𝑖𝑡 “ 𝑎𝑖 ` 𝛽1𝐷𝑖𝑡 ` 𝑏𝑒𝑡𝑎2𝑋𝑖𝑡 ` 𝜀𝑖𝑡 (2.15)

where 𝑦𝑖𝑡 is log crop yields, 𝐷𝑖𝑡 is the treatment of interest, extreme heat exposure, and

𝑋𝑖𝑡 P IR2 is the vector of temperature and precipitation. In robustness checks, they demon-

strate that this model performs comparably to models including flexible specifications of

temperature.

In our estimation, we include models that include interactions between all weather vari-

ables. Interaction terms between variables are of particular interest. Schlenker and Michael

J Roberts (2009) test some models including interactions between temperature and precipi-

tation, but find that those models have limited improvements for out-of-sample prediction.

We examine whether including these terms changes the coefficient estimates.

We also use this estimator to evaluate how the target elasticity changes over time. Barreca et

al. (2016) measure the mortality-temperature relationship in the U.S. over time to estimate

the degree of adaptation to high temperatures. We conduct a similar exercise to evaluate

the extent that this crop yield-extreme heat relationship changes over time.

2.4.1 Data Description

We work with two datasets for the main estimation: corn yield from the USDA’s Survey of

Agriculture, and weather records from Abatzoglou (2013). To form projections about the

impacts under climate change, we use data generously shared from Burke and Emerick.

For corn yields, we use county-level reports from the USDA Survey of Agriculture, supple-

mented with additional data generously provided by Burke and Emerick (2016). We use the

metric bushels per acre, and focus on U.S. counties east of the 100˝West meridian. This re-

gion is commonly used in studies of U.S. agriculture because the region west of this meridian

relies on heavily subsidized irrigation. In our sample period, over 90% of corn in the U.S.

was grown in this region. This dataset also includes the planted area of corn per county in
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each year.

For weather observations, we use the GridMET weather dataset from Abatzoglou (2013).

This dataset contains a rich set of daily weather variables since 1979 at high spatial resolution

(4 km) across the United States. In our main results we follow Schlenker and Michael

J Roberts (2009) and include only precipitation, beneficial heat exposure, and damaging

heat exposure. In Appendix 2.D.2, we include additional results with the dataset’s 9 raw

variables2: specific humidity, precipitation, minimum relative humidity, maximum relative

humidity, surface downwelling shortwave flux in air (a measure of solar radiation), minimum

air temperature, maximum air temperature, wind speed, and wind direction. We generate a

county-level daily dataset by taking the average of daily weather from all grid observations

within each U.S. county.

We aggregate daily weather observations to the March-August growing season. We take

averages of the variables specific humidity, minimum relative humidity, maximum relative

humidity, surface downwelling shortwave flux in air (a measure of solar radiation), wind

speed, and wind direction. We take the sum of precipitation. We then construct the variables

beneficial and damaging heat exposure, total growing season heat exposure below and above

(respectively) 29 ˝C. Heat exposure is measured in Growing Degree Days (GDD), the amount

of time a crop is exposed to temperatures between an upper and lower bound during the

March-August growing season. This gives us a county-level dataset of weather variation for

our empirical application.

2.4.2 Empirical Results

We compare the estimated elasticity of corn yield with respect to extreme heat using our

DML procedure, Lasso, OLS Linear, and OLS Poly. We regress log corn yields on a set

of weather covariates, and recover the average derivative of log corn yields with respect to

increasing extreme heat exposure. In our primary results the set of weather covariates is

the widely-used set of weather variables from Schlenker and Michael J Roberts (2009): total

growing season precipitation and heat exposure below and above 29 ˝C. We use this speci-
2GridMET also includes several derived variables, such as Energy Release Component, for specific eco-

logical applications.
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fication in the main analysis as it allows for the cleanest comparison between DML and the

current literature. In Appendix 2.D.2, we include results using additional GridMET obser-

vations at a growing-season level. The central magnitudes using these additional weather

data are similar, although the differences between OLS and DML estimates is smaller and

not statistically significant.

Our estimation procedure uses the standardization, differencing, cross folds, analytical deriva-

tive, and de-biasing procedures described in Section 2.2. Standard errors are clustered at the

county level for all analyses. For our basis functions, we use third order polynomial expan-

sions and interactions up to depth 2 of all variables and polynomial expansions. Estimation

of Lasso for both the regression problem and the Riesz representer uses the optimization

package Mosek (ApS 2021).

We weight each observation by the area of corn planted when computing coefficients or

average derivatives. This choice is common in the applied literature, as the object of interest

is the elasticity of yield in an acre of corn with a marginal increase in damaging heat exposure.

We adjust the Lasso objective function to find the weighted mean squared error, and use the

weighted average of observations when estimating the Riesz representer. Appendix 2.D.3

includes results without this weighting choice; in these results, DML estimates a greater

degree of damages.

Table 2.3 shows the results from the main analysis. The average derivative can be interpreted

as the elasticity of corn yield with respect to additional exposure to extreme heat. That is,

each estimate is the percentage by which yields change with an additional growing degree

day of heat exposure above 29 ˝C over the growing season. The magnitude is relatively large

- this suggests that an increase of a single growing degree day is associated with corn yields

declining by 0.51%-0.58%. This finding is line with findings form other analyses of damages

to crop yields from extreme heat.3

Mean squared error (MSE) from both in-sample and out-of-sample prediction is slightly

higher for OLS Linear than any of the flexible methods. There is not a large difference

3Burke and Emerick, 2016 estimate this same elasticity in a range from -0.0036 to -0.0062, depending on
the specification.
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Table 2.2: Temperature and Precipitation

method OLS Linear OLS Poly Lasso DML

Average Derivative -0.005193 -0.005657 -0.005821 -0.005823
(0.000099) (0.000135) (0.000011) (0.000073)

MSE 𝛾 In Sample 0.080929 0.077958 0.077878 0.077878
MSE 𝛾 Cross Folds 0.080975 0.078353 0.078079 0.078079
Number of Observations 63662 63662 63662 63662
Number of Covariates 3 36 36 36

Table 2.3: Estimates of elasticity of corn yields with respect to increase in growing season expo-
sure to extreme heat, using two sets of weather covariates. Standard errors are in parentheses.
See text for estimation details.

Figure 2-2: Temperature and Precipitation

Figure 2-3: Extrapolating impacts of extreme heat to crop yields by the year 2050, using
elasticities from OLS Linear and DML. Each dot represents a central estimate from a model,
and the error bar represents the 95% confidence interval. Dotted line represents the median
value across climate models. See text for estimation details.
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between the MSE of the OLS Poly and Lasso models. This indicates that, for these sets of

weather variables, OLS Poly does not over-fit the data.

To illustrate the significance of these estimates, Figure 2-3 shows the projected overall change

in crop yield by 2050 due solely to an increase in damaging heat exposure. We apply the

estimated elasticity to climate projections from a range of scenarios. To generate these

projections, we find the weighted average degree of expected warming from 2015 to 2050

under various climate scenarios, where we weigh the degree of warming by the average area

of corn cultivated per county. The expected degree of damages is then the degree of expected

warming multiplied by the coefficient from Table 2.3. Climate scenarios are derived from

18 global climate models running the A1B emissions scenario. The per-county degree of

expected warming under each climate scenario are generously shared by Burke and Emerick

(2016). We compare the OLS Linear and DML estimates. In Appendix 2.D.2, we include

the same figure using all GridMET weather covariates.

These results illustrate that modeling assumptions significantly impact overall damage pro-

jections with the simple set of weather variables. The projected damages are quite significant

- in the median emissions scenario, log yields are 0.38-0.43 lower than a world that does not

experience climate change. There is also considerable variance in these estimates; from the

least to most severe climate scenario, log yields decline from 0.20-1.04. To put this in dollar

value, the 2017 Census of Agriculture reported the total value of sales of corn in the United

States as $ 51.2 billion . The median range of damage estimates translates to a dollar value

of $16.2-$17.7 billion (in 2017 dollars), and the overall range is $9.4-$33.2 billion.

The difference between OLS Linear and DML estimates is statistically significant and eco-

nomically meaningful. OLS Poly and DML find similar results, although the standard error

from OLS Poly is substantially higher than that of DML. OLS Linear, in the median speci-

fication, finds a 95% confidence interval of r15.2, 17.1s billion dollars in damages; DML finds

r17.0, 18.4s. The difference between OLS Linear and DML estimates is significant (𝑝 value

ă 0.001), as is the difference between OLS Linear and OLS Poly estimates (𝑝 value 0.0055).

Median estimates using DML instead of OLS Linear correspond to an additional $1.55 billion

in damages.
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(a) OLS Linear
Trend 3.43e-05, p-val 0.433

(b) DML
Trend 9.52e-05, p-val 0.387

Figure 2-4: Estimating elasticity of corn yield with respect to extreme heat over time. We
use our estimation procedure on 2-period samples from 1980 through 2019. Line shows central
estimate, and grey band shows 95% confidence interval.

These values overstate the degree of damages from climate change for several reasons, but

still provide a valuable illustration of the economic significance of using this measurement

technique. This is not a complete projection of climate change damages, but only highlights

the contribution of the elasticity estimated above using various modeling assumptions. Also

note that an elasticity is the marginal impact at the observed distribution of weather charac-

teristics; as the distribution of weather patterns changes with climate change, this elasticity

will likely change. Additionally, this estimate does not attempt to account for adaptation to

climate change.

We use our estimation procedure to study how the elasticity has changed over time, using

2-period panels from 1980 through 2019. A key advantage of our DML procedure is that it

allows de-biased estimation of flexible functions, even in relatively short panels. This allows

us to study how the elasticity has changed over time. This research design is similar to

Barreca et al. (2016), who study the mortality response from temperature during separate

decades across the 20th century to conclude that there has been significant adaptation to

extreme heat exposure.

Our estimates suggest that the degree of damages from extreme heat has remained approx-

imately stable from 1980 to 2019. Figure 2-4 shows these estimates, as well as the value

and statistical significance of the trend in elasticity. The trend and standard errors are com-

puted using weighted least squares, weighted by the inverse of the sum of the variance of the
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elasticity estimate and the residual from the regression of elasticity on the year. Using both

methods with both sets of weather variables, we are unable to reject the null hypothesis at

the 𝑝 “ 0.05 level, suggesting little adaptation to climate change. This finding is in line with

the literature on adaptation in U.S. agriculture. Schlenker and Michael J Roberts (2009)

and Burke and Emerick (2016) also find limited evidence of adaptation to extreme heat.

While there is no statistically significant trend, the variability of the elasticity is somewhat

surprising. In Appendix 2.D.2, we show that this variability persists after incorporating ad-

ditional weather variation. Appendix 2.D.4 includes some additional regression results, and

show that this variation cannot be explained by including state-by-year fixed effects or by

removing the interactions or polynomial terms from the basis functions. Significant events

in U.S. agriculture help explain some patterns in the data. The large negative elasticity from

1992-1993 in Figure 2-4b is likely due to significant flooding in 1993, leading to a negative

correlation of heat and crop yields when heat is interacted with precipitation. Similarly, a

1996 drought in the Midwest may be responsible for the relatively high elasticity estimated

from 1996-1997. The remaining variation could be explained by regional differences or ex-

treme heat occurring during different phases of plant growth (Ortiz-Bobea, 2013; Butler and

Huybers, 2015; Ortiz-Bobea et al., 2019).

2.5 Conclusion

In this paper, we presented the first DML based estimator for continuous treatment effects

in the classic fixed effect panel setting. It is also the first DML estimator in the fixed

effects panel setting to allow for general unrestricted heterogeneity in treatment effects. Our

estimator is one of the first methods for flexibly estimating continuous treatment effects in

high-dimensional panel data, and our estimation approach improves upon the current state-

of-the-art methods in simulations. We gave clear guidance on how to implement our methods

so they can be of use to an applied audience.

Our estimator is of broad applied interest - it allows for fixed effects in panel data, unre-

stricted heterogeneity in treatment effects, and ML tools, and keeps standard errors small

even with very flexible models. This allows the researcher to flexibly model high-dimensional
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data while addressing unobservable fixed effects and machine learning bias.

This is one of the first applications of DML in environmental economics. We applied the

estimator to study how extreme heat impacts crop yields. In our application, our DML

estimator leads to estimates of treatment effects that are significantly different from the

estimates based on OLS. Using a widely used set of weather variation, the difference is

significant at the 𝑝 “ 0.001 level and economically meaningful. Our method predicts an

effect of warmer temperature that is $1.55 billion larger than current OLS based estimates.
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Appendix to Chapter 2

2.A Asymptotic Normality

Proving our estimator is asymptotically normal follows from Theorem 14 of Chernozhukov,

Escanciano, et al. (2022). Theorem 14 gives us that if Assumptions (1), (2), and (3) below are

satisfied, asymptotic normality follows. In this appendix we explain either why our estimator

satisfies these assumptions, or give primitive conditions that justify the assumptions.

We start with notation used in the three assumptions before introducing them. Recall from

equation (2.2) from earlier our parameter of interest 𝜏0 is defined to be the solution to the

following moment equation.

𝜏0 “ IEr𝑚p𝑊, 𝛾qs “ IE

„

B𝛾0p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q

B𝐷𝑖,𝑡



We define

𝑔p𝑊, 𝛾, 𝜏q “ 𝑚p𝑊, 𝛾q ´ 𝜏 (2.16)

We define 𝜑 to be our first step influence function. In our application 𝜑 “ 𝛼0p𝑌 ´ 𝛾0q.

Adding the first step influence function to our moment function to create our de-biased

moment function 𝜓.

𝜓p𝑊, 𝛾, 𝛼0, 𝜏0q “ 𝑔p𝑊, 𝛾, 𝜏q ` 𝜑p𝑊, 𝛾, 𝛼0, 𝜏0q (2.17)

“ 𝑔p𝑊, 𝛾, 𝜏q ` 𝛼0p𝑌 ´ 𝛾0q (2.18)
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We also define 𝛿ℓ
4 below. This is a known as the interaction reminder, it shows up in

the decomposition of 𝜓 ´ 𝜓 , and we have to make an assumption about its behavior for

asymptotic linearity.

𝛿ℓ “ 𝛼̂ℓp𝑌 ´ 𝛾ℓq ´ 𝛼̂ℓp𝑌 ´ 𝛾0q ´ 𝛼0p𝑌 ´ 𝛾ℓq ´ 𝛼0p𝑌 ´ 𝛾0q

“ p𝛼̂ℓ ´ 𝛼0qp𝛾ℓ ´ 𝛾0q
(2.19)

We use notation } ¨ }𝐹,2 to denote the 𝐿2p𝐹 q-norm and } ¨ } for the ℓ2 vector norm.

Assumption 1. (mild mean-square consistency) : 𝐸r}𝜓p𝑊, 𝜏0, 𝛾0, 𝛼0q
2}s ă 8

i)
ş

}𝑔p𝑤, 𝛾ℓ, 𝜏0q ´ 𝑔p𝑤, 𝛾0, 𝜏0q}
2𝐹0p𝑑𝑤q

𝑝
ÝÑ 0

ii)
ş

}𝛼0p𝑌 ´ 𝛾ℓq ´ 𝛼0p𝑌 ´ 𝛾0q}
2𝐹0p𝑑𝑤q

𝑝
ÝÑ 0

iii)
ş

}𝛼̂ℓp𝑌 ´ 𝛾0q ´ 𝛼0p𝑌 ´ 𝛾0q}
2𝐹0p𝑑𝑤q

𝑝
ÝÑ 0

These are mild mean-square consistency conditions for 𝛾ℓ and p𝛼ℓ, 𝜃ℓq

Assumption 2. (rate on interaction remainder) For each ℓ “ 1, ¨ ¨ ¨ , 𝐿

?
𝑛

ż

𝛿ℓp𝑤q𝐹0p𝑑𝑤q
𝑝
ÝÑ 0,

ż

}𝛿ℓ}
2
p𝑤q𝐹0p𝑑𝑤q

𝑝
ÝÑ 0 (2.20)

Assumption 3. (double robust) For each ℓ “ 1, ¨ ¨ ¨ , 𝐿

i)
ş

𝜑p𝑤, 𝛾0, 𝛼0, 𝜃0q𝐹0p𝑑𝑤q “ 0 with probability approaching one

ii) IEr𝜓p𝛾, 𝛼0, 𝜃0qs is affine in 𝛾

As noted in Chernozhukov, Escanciano, et al. (2022), in our case because IEr𝜓p𝛾, 𝛼0, 𝜃0qs is

affine in 𝛾, Assumption 3 imposes no conditions additional to Assumption 1 and 2, but we

write it for clarity.

4note in the original paper by Chernozhukov, Escanciano, et al. (2022) this object was defined to be
capital Δ̂ℓ but given that capital delta is used to describe differences over time we changed notation

46



2.A.1 Primitive Conditions for Assumptions

Primitive Conditions for Assumption (1) Now we go into detail about the primitive

conditions for the assumptions starting with Assumption 1 part i). Plugging in the definition

of 𝑔 into the equation, we get that this assumption is the following. Given that our moment

is one dimensional we drop the norm notation for clarity.

ż
ˆ

p
B𝛾ℓ
B𝐷𝑖,𝑡

´ 𝜃0q ´ p
B𝛾0
B𝐷𝑖,𝑡

´ 𝜃0q

˙2

𝐹0p𝑑𝑤q
𝑝
ÝÑ 0 (2.21)

ż
ˆ

B𝛾ℓ
B𝐷𝑖,𝑡

´
B𝛾0
B𝐷𝑖,𝑡

˙2

𝐹0p𝑑𝑤q
𝑝
ÝÑ 0 (2.22)

For conciseness this we write this with expectation notation.

IE

„ˆ

B𝛾ℓ
B𝐷𝑖,𝑡

´
B𝛾0
B𝐷𝑖,𝑡

˙2

𝑝
ÝÑ 0 (2.23)

Which is a mean square consistency condition for the average derivative. Mean square

consistency for the average derivative follows from two primitive assumptions 1) mean square

consistency first step, stated in Assumption (4) and 2) mean square continuity for average

derivative, stated in Assumption (5). We start by writing down these two assumptions and

show how together they imply mean square consistency for the average derivative.

The first primitive assumption is mean square consistency of the first step estimator 𝛾.

Assumption 4. (mean square consistency first step)

}𝛾ℓ ´ 𝛾0}𝐹,2
𝑝
ÝÑ 0 (2.24)

The second primitive assumption is mean square continuity for average derivative.

Assumption 5. (mean square continuity for average derivative)

First we define a function class Γ𝑄̄ where 𝑄̄ ă 8 and such that for all 𝛾 P Γ𝑄̄
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IEp
B𝛾

B𝐷𝑖,𝑡

2

q ď 𝑄̄rIEp𝛾2qs
1
2 (2.25)

We assume that 𝛾0 P Γ𝑄̄ and 𝛾 P Γ𝑄̄ with high probability.

Now to show that Assumption (4) and Assumption (5) give us the mean square consistency

for the average derivative.

Proof.

IE

„ˆ

B𝛾ℓ
B𝐷𝑖,𝑡

´
B𝛾0
B𝐷𝑖,𝑡

˙2

“ IE

„ˆ

Bp𝛾ℓ ´ 𝛾0q

B𝐷𝑖,𝑡

˙2

(2.26)

ď 𝑄̄rIEp𝛾ℓ ´ 𝛾0q
2
s
1
2 (2.27)

“ 𝑄̄}𝛾ℓ ´ 𝛾0}𝐹,2
𝑝
ÝÑ 0 (2.28)

We can bound the left hand side of equation (2.23) using the two assumptions. First the

linearity of the average derivative give us the first equality below. Then the inequality

follows by mean square continuity since it holds for every realization of 𝛾. Then the last

line follows by Assumption (5). Hence we have mean square consistency condition for the

average derivative.

Please note that further primitive conditions Assumption (5) are given in Chernozhukov,

Newey, and Singh (2021) in Lemma B.4. Though we leave the details to Chernozhukov,

Newey, and Singh (2021), in short the conditions are given in Assumption (6)

Assumption 6. Primitive conditions for Assumption (5)

i) 𝑓p𝑑|𝑥q vanishes for each 𝑑 in the boundary of the support of 𝐷 given 𝑋 “ 𝑥 almost

everywhere

ii) ´B𝑑 log 𝑓p𝑑|𝑥q is bounded above
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iii) Γ consists of functions 𝛾 that are twice continuoysly differentiable in the first argument

and satisfy IErtB𝑑𝛾p𝐷,𝑋qu
2s ă 8 and IErtB2𝑑𝛾p𝐷,𝑋qu

2s ă 8

Assumption (6) is satisfied if Γ satisfies Sobolev conditions.

Primitive Conditions for Assumption (2) The rate condition on the interaction term

of Assumption (2) requires that 𝛼̂ℓ and 𝛾ℓ can be estimated fast enough.

}𝛼̂ℓ ´ 𝛼0}𝐹,2}𝛾ℓ ´ 𝛾0}𝐹,2 “ 𝑜𝑝p𝑛
1{2
q (2.29)

Rates and conditions for Lasso estimation of 𝛾ℓ are given in Bickel, Ritov, Tsybakov, et al.

(2009). As for 𝛼̂ℓ, either an approximate sparsity assumption or sparse eigenvalue assumption

can justify rates needed for (2.29) as explained in detail in Chernozhukov, Newey, and Singh

(2022a).

2.B Details of Estimation Procedure

2.B.1 Tuning

In this section we explain tuning 𝛼̂ and 𝛾.

We use a data-driven process to select the hyperparameters for Lasso and the Reisz repre-

senter function. We select hyperparameters by minimizing loss on the test set during each

fold of our cross validation procedure. Let 𝛾ℓ and 𝛼̂ℓ denote the estimates of 𝛾 and 𝛼 trained

using indices not in set ℓ using the above procedures, for the given hyperparameter value.

Let 𝛽ℓ and 𝜌ℓ be the corresponding estimates of parameter vectors in our sparse linear mod-

els. Recall that 𝑊ℓ denotes all observations in the fold ℓ. Let ℒ𝛾p𝛾,𝑊ℓ; 𝑟𝐿q be the sum of

squared error of the function 𝛾 with the hyperparameter 𝑟𝐿 on the data in ℐℓ:

ℒ𝛾p𝛾,𝑊ℓ; 𝑟𝐿q “
ÿ

𝑖

ÿ

𝑡

p∆𝛾ℓp𝐷𝑖,𝑡, 𝑋𝑖,𝑡q ´∆𝑌𝑖,𝑡q
2

Let ℒ𝛼p𝛼, ℐℓ; 𝑟𝛼q be the loss function of the function 𝛼 with the hyperparameter 𝑟𝛼 on the
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data in ℐℓ. That loss function is the sum of the distance between 𝛼0 and 𝛼̂ using our

dictionary of basis functions. See Appendix 2.B.3 for an explanation of this loss function.

Minimizing this distance is equivalent to minimizing:

ℒ𝛼p𝛼̂ℓ,𝑊ℓ; 𝑟𝛼q “
ÿ

𝑖

ÿ

𝑡

´2𝑏𝐷p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q
1𝜌ℓ ` 𝜌

1
ℓ∆𝑏p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q∆𝑏p𝐷𝑖,𝑡, 𝑋𝑖,𝑡q

1𝜌ℓ

Then, select hyperparameter 𝑟𝐿 that minimize test-set mean squared error of the regression:

𝑟𝐿 “ argmin
𝑟

1

𝑛p𝑇 ´ 1q

𝑘
ÿ

ℓ“1

ℒ𝛾p𝛾ℓ,𝑊ℓ; 𝑟q

And select hyparameter 𝑟𝛼 that minimize test-set loss of the Riesz representer:

𝑟𝛼 “ argmin
𝑟

1

𝑛p𝑇 ´ 1q

𝑘
ÿ

ℓ“1

ℒ𝛼p𝛼̂ℓ,𝑊ℓ; 𝑟q

2.B.2 Normalization

Many machine learning models perform better when the independent variables are standard-

ized, that is when the data has mean zero and variance 1. In this section, we include some

details about how to conduct this standardization so that the researcher is able to recover

derivatives after that step.

For each basis function 𝑏𝑗 for 𝑗 “ 1, . . . , 𝑝 in the dictionary 𝑏, define the mean and standard

deviation of the transformed data: 𝜇𝑗 :“ IEr𝑏𝑗p𝑊𝑖qs and 𝜎𝑗 :“
a

IErp𝑏𝑗p𝑊𝑖q ´ 𝜇𝑗q2s. Their

sample equivalents are: 𝜇̂𝑗 :“
1

𝑛

ÿ

𝑖

𝑏𝑗p𝑊𝑖q and 𝜎̂𝑗 :“

d

1

𝑁 ´ 1

ÿ

𝑖

p𝑏𝑗p𝑊𝑖q ´ 𝜇̂𝑗q2.

To generate a standardized basis function, we apply the following transformation: 9𝑏𝑗 :“

p𝑏𝑗p𝑊𝑖q ´ 𝜇̂𝑗q{𝜎̂𝑗. We assumed that there was some 𝛽0 such that 𝛾0p𝑊𝑖q “ 𝛽0𝑏p𝑊𝑖q. Then

there exists 𝛽0 such that 𝛾0p𝑊𝑖q “ 𝛽0 9𝑏p𝑊𝑖q ` 𝐶, where 𝛽𝑗
0𝜎

𝑗 “ 𝛽𝑗
0 for all 𝑗 components,

9𝑏 is the dictionary of all standardized basis functions 9𝑏𝑗, and 𝐶 is some generic constant.

This is easy to confirm via algebraic manipulation. When we take differences to remove the

unobserved individual fixed effect, this 𝐶 term is also removed.
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Recall that the average derivative is IEr𝛽0𝑏𝐷p𝑊𝑖qs. We could also write this in terms of 𝛽0,

with the fact that 𝛽𝑗
0 “ 𝛽𝑗

0𝜎
𝑗. Let 𝜎 “ t𝜎1, . . . , 𝜎𝑝u, and 𝜎´1 “ t1{𝜎1, . . . , 1{𝜎𝑝u Then,

we write this relationship more compactly as IErp𝛽0 ˝ 𝜎
´1q𝑏𝐷p𝑊𝑖q, where ˝ is elementwise

multiplication or the Hadamard product (i.e. 𝛽0 ˝ 𝜎´1 “ t𝛽1
0{𝜎

1, . . . , 𝛽𝑝
0{𝜎

𝑝u).

In our estimation procedure, we found it more convenient to producing scaled derivatives of

each basis function and multiplying by the beta estimate from using scaled data. 5 Define

the scaled derivative of each basis function, 9𝑏𝑗𝐷 :“ 𝑏𝑗𝐷{𝜎̂
𝑗. Then, the average derivative

is: IEr𝛽0 9𝑏𝑗𝐷p𝑊𝑖,𝑡qs. These procedures are equivalent, as can be confirmed through algebraic

manipulation.

This suggests our procedure to standardize data and recover the derivative:

1. For each basis function 𝑏𝑗 for 𝑗 “ 1, . . . , 𝑝, find 𝜇̂𝑗 and 𝜎̂𝑗. Store these estimates.

2. Create the sample standardized basis function and its derivative, 9𝑏𝑗 :“ p𝑏𝑗p𝑊𝑖q´𝜇̂
𝑗q{𝜎̂𝑗

and 9𝑏𝑗𝐷 :“ 𝑏𝑗𝐷{𝜎̂
𝑗.

3. Find an estimate ˆ̃𝛽 that satisfies the regression IEr∆𝑦𝑖,𝑡s “
ˆ̃𝛽∆9𝑏p𝑊𝑖,𝑡q.

Where ∆9𝑏p𝑊𝑖,𝑡q :“ 9𝑏p𝑊𝑖,𝑡q ´
9𝑏p𝑊𝑖,𝑡´1q. This could be via OLS or a cross-folds Lasso

procedure.

4. Estimate the average derivative as IEr ˆ̃𝛽 9𝑏𝐷p𝑊𝑖,𝑡qs.

Standardization of our basis functions is also relevant for estimating the Riesz representer.

After the standardization, our Riesz representer now takes the form 𝛼̂p𝑊𝑖,𝑡q “
9𝑏p𝑊𝑖,𝑡q𝜌.

Before standardizing the data, we had an estimator of the form:

𝜌original “ argmin
𝜌

´2𝑀̂𝜌` 𝜌1𝑄̂𝜌` 𝜆|𝜌|1

where 𝑀̂ “ IEr𝑏𝐷p𝑊𝑖,𝑡qs and 𝑄̂ “ IEr∆𝑏p𝑊𝑖,𝑡q
1∆𝑏p𝑊𝑖,𝑡qs. After applying the standardization,

we are taking the derivative of the standardized basis functions, so this estimator now takes
5This form can also be motivated by the chain rule, taking the derivative of the standardized data. In this

case, an additional bias correction would be necessary because we are estimating 𝜇̂𝑗 and 𝜎̂𝑗 . See Appendix
2.B.2 for more details.
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the form:

𝜌 “ argmin
𝜌

´2 9̂𝑀𝜌` 𝜌1 9̂𝑄𝜌` 𝜆|𝜌|1 (2.30)

where 9̂𝑀 “ IEr9𝑏𝐷p𝑊𝑖,𝑡qs and 9̂𝑄 “ IEr∆9𝑏p𝑊𝑖,𝑡q
1∆9𝑏p𝑊𝑖,𝑡qs. We use 9𝑏𝑗𝐷p𝑊𝑖,𝑡q “ 𝑏𝑗𝐷p𝑊𝑖,𝑡q{𝜎̂

𝑗,

although this neglects an additional correction because standardization involves estimating

the mean and variance of the dataset. Below, we include a derivation of a full bias correction

term to account for this estimation, and note this bias correction term is equivalent to the

above expression for large 𝑛. In our estimation, we therefore use the values 9𝑏𝑗𝐷p𝑊𝑖,𝑡q “

𝑏𝑗𝐷p𝑊𝑖,𝑡q{𝜎̂
𝑗 to construct 9̂𝑀 and estimate 𝛼̂ using 2.30.

In the remainder of this section, we proceed with the full derivation of the term
B 9𝑏𝑗p𝑊𝑖,𝑡q

B𝐷𝑖,𝑡

.

Recall that we use the notation 𝜉𝐷 to denote the partial derivative of 𝜉 with respect to 𝐷.

B

B𝐷𝑖

𝑏𝑗p𝑊𝑖q ´ 𝜇̂
𝑗

𝜎̂𝑗
“
p𝑏𝑗𝐷p𝑊𝑖q ´ 𝜇̂

𝑗
𝐷q𝜎̂

𝑗 ´ p𝑏𝑗p𝑊𝑖q ´ 𝜇
𝑗q𝜎̂𝑗

𝐷

p𝜎̂𝑗q2

p𝑏𝑗𝐷p𝑊𝑖q ´ 𝜇̂
𝑗
𝐷q “ 𝑏𝑗𝐷p𝑊𝑖q ´ 1{𝑁𝑏𝑗𝐷p𝑊𝑖q “

𝑁 ´ 1

𝑁
𝑏𝑗𝐷p𝑊𝑖q

𝜎̂𝑗
𝐷 “

1

2

ˆř

𝑖p𝑏
𝑗p𝑊𝑖q ´ 𝜇̂

𝑗q2

𝑁 ´ 1

˙´1{2
1

𝑁 ´ 1

ÿ

𝑘

2p𝑏𝑗p𝑊𝑖q ´ 𝜇̂
𝑗
qp𝑏𝑗𝐷p𝑊𝑖q ´ 𝜇𝐷

𝑗
q

ÿ

𝑘

p𝑏𝑗p𝑊𝑖q ´ 𝜇̂
𝑗
qp𝑏𝑗𝐷p𝑊𝑖q ´ 𝜇𝐷

𝑗
q “ p𝑏𝑗p𝑊𝑖q ´ 𝜇̂

𝑗
q𝑏𝑗𝐷p𝑊𝑖q ´

ÿ

𝑘

p𝑏𝑗p𝑊𝑖q ´ 𝜇̂
𝑗
q𝜇𝐷

𝑗

ÿ

𝑘

p𝑏𝑗p𝑊𝑖q ´ 𝜇̂
𝑗
q𝜇̂𝑗
q𝜇𝐷

𝑗
“ 0

ÿ

𝑘

p𝑏𝑗p𝑊𝑖q ´ 𝜇̂
𝑗
qp𝑏𝑗𝐷p𝑊𝑖q ´ 𝜇𝐷

𝑗
q “ p𝑏𝑗p𝑊𝑖q ´ 𝜇̂

𝑗
q𝑏𝑗𝐷p𝑊𝑖q

B

B𝐷𝑖

𝑏𝑗p𝑊𝑖q ´ 𝜇̂
𝑗

𝜎̂𝑗
“

𝑁´1
𝑁
𝑏𝑗𝐷p𝑊𝑖q𝜎̂

𝑗 ´
p𝑏𝑗p𝑊𝑖q´𝜇

𝑗q2

p𝑁´1q𝜎̂𝑗 𝑏𝑗𝐷p𝑊𝑖q

p𝜎̂𝑗q2

B

B𝐷𝑖

𝑏𝑗p𝑊𝑖q ´ 𝜇̂
𝑗

𝜎̂𝑗
“
𝑏𝑗𝐷p𝑊𝑖q

𝜎̂𝑗

ˆ

𝑁 ´ 1

𝑁
´
p𝑏𝑗p𝑊𝑖q ´ 𝜇

𝑗q2

p𝑁 ´ 1qp𝜎̂𝑗q2

˙

Note that
𝑏𝑗𝐷p𝑊𝑖q

𝜎̂𝑗
´
𝑏𝑗𝐷p𝑊𝑖q

𝜎̂𝑗

ˆ

𝑁 ´ 1

𝑁
´
p𝑏𝑗p𝑊𝑖q ´ 𝜇

𝑗q2

p𝑁 ´ 1qp𝜎̂𝑗q2

˙

“ 𝑂p1{𝑁q. This term is therefore

negligible, as it converges to 0 faster than the
?
𝑁 convergence rate.
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2.B.3 Riesz representer Details

Our goal is to find the estimator 𝛼̂p𝑊𝑖,𝑡q that minimizes the mean squared error (MSE)

between 𝛼̂ and 𝛼0:

𝛼̂ “ argmin
𝛼

IErp𝛼0p𝑊𝑖,𝑡q ´ 𝛼p𝑊𝑖,𝑡qq
2
s

Plugging in our guess at the functional form, 𝛼̂ “ ∆𝑏p𝑊𝑖,𝑡q𝜌, we form the following regular-

ized problem:

𝜌 “ argmin
𝜌

IE
“

p𝛼0p𝑊𝑖,𝑡q ´∆𝑏p𝑊𝑖,𝑡q𝜌q
2
‰

` 𝜆|𝜌|1

“ argmin
𝜌

IEr𝛼0p𝑊𝑖,𝑡q
2
´ 2∆𝑏p𝑊𝑖,𝑡q𝛼0p𝑊𝑖,𝑡q𝜌` 𝜌

1∆𝑏p𝑊𝑖,𝑡q
1∆𝑏p𝑊𝑖,𝑡q𝜌s ` 𝜆|𝜌|1

“ argmin
𝜌

´2IEr𝑏𝐷p𝑊𝑖,𝑡qs𝜌` 𝜌
1IEr∆𝑏p𝑊𝑖,𝑡q

1∆𝑏p𝑊𝑖,𝑡qs𝜌` 𝜆|𝜌|1

“ argmin
𝜌

´2𝑀̂𝜌` 𝜌1𝑄̂𝜌` 𝜆|𝜌|1

Where the 3rd equality comes from applying the Riesz Representation theorem, and the 4th

equality comes from the definition 𝑀̂ “ IEr𝑏𝐷p𝑊𝑖,𝑡qs and 𝑄̂ “ IEr∆𝑏p𝑊𝑖,𝑡q
1∆𝑏p𝑊𝑖,𝑡qs.

We use this estimator to find 𝜌; we use an optimization package to find the optimal value of

𝜌. Chernozhukov, Newey, and Singh (2022a) provides an iterative approach.

More generally, for any linear functional 𝑚 and any functional form for 𝛼̂:

𝛼̂ “ argmin
𝛼

IErp𝛼0p𝑊𝑖,𝑡q ´ 𝛼p𝑊𝑖,𝑡qq
2
s

“ argmin
𝛼

IEr𝛼0p𝑊𝑖,𝑡q
2
s ´ 2IEr𝛼0p𝑊𝑖,𝑡q𝛼p𝑊𝑖,𝑡qs ` IEr𝛼p𝑊𝑖,𝑡q

2
s

“ argmin
𝛼

´2IEr𝑚p𝑊𝑖,𝑡, 𝛼qs ` IEr𝛼p𝑊𝑖,𝑡q
2
s

Plugging in our estimator form, we get IEr𝑚p𝑊𝑖,𝑡, 𝛼qs “ IEr𝑏𝐷p𝑊𝑖,𝑡q𝜌s and IEr𝛼p𝑊𝑖,𝑡q
2s “

𝜌1IEr∆𝑏p𝑊𝑖,𝑡q
1∆𝑏p𝑊𝑖,𝑡qs𝜌 , confirming the above result.
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2.B.4 Analytical vs. Numerical Derivative

We propose calculating the derivative analytically, as opposed to the numerical methods. In

current DML and Auto DML papers, derivatives are computed using numerical differentia-

tion. To explain what we mean by analytical vs numerical let’s consider a function 𝛾p𝐷,𝑋q,

and let’s say we have an estimate of this function 𝛾p𝐷,𝑋q and we want to estimate the

derivative at point 𝐷 “ 𝐷0 and 𝑋 “ 𝑋0. To estimate derivative numerically we could use

Newton’s difference quotient (also known as a first-order divided difference) and pick some

small ℎ.

{B𝛾p𝐷0, 𝑋0q

B𝐷
„
𝛾p𝐷0 ` ℎ,𝑋0q ´ 𝛾p𝐷0, 𝑋0q

𝛿
“
𝑏p𝐷0 ` ℎ,𝑋0q𝛽 ´ 𝑏p𝐷0, 𝑋0q𝛽

ℎ
(2.31)

It is well known that this procedure can introduce biases, either through formula error or

rounding error. Formula error is introduced because, for most cases, the difference between

the true derivative and the numerical approximation is decreasing in ℎ. Formula error is

most relevant when ℎ is large. Rounding error is introduced during computation with small

ℎ, as computers must round floating point numbers in order to carry out computation.

There are approaches for reducing the error of numerical differentiation, although these ap-

proaches are still under development especially for noisy data. Simple modifications include

taking a symmetric difference instead of a one-sided difference. The problem of numeri-

cal differentiation with noisy data is more challenging and the subject of ongoing research

(Mboup, Join, and Fliess 2009; Chartrand 2011; Chartrand 2017; Van Breugel, Kutz, and

Brunton 2020). By taking analytical derivatives of our basis function, we avoid these nu-

merical challenges.

2.C Additional Simulation Results

Here, we include simulation results from different parameters of the data generating process

described in Section 2.3. Each table summarizes 1000 bootstrap trials, for the specified data

generating process. We vary the number of covariates and the number of time periods in
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comparison to our main simulation results in the paper which have T = 2 and 20 covariates.

These results show that, as expected, the bias generally decreases as the number of samples

per covariate increases. This is particularly true of OLS Poly. OLS Poly has the lowest bias

in these additional trials, but has higher mean squared error in estimating the true derivative

(MSE 𝜏) than DML, DML Iterative, or Lasso in all trials. DML has lower bias than DML

Iterative in Table 2.C.1 and Table 2.C.2, and lower MSE 𝜏 in all trials.

method DML DML Iterative Lasso OLS Linear OLS Poly

True Value 2.937 2.937 2.937 2.937 2.937
Average Derivative 2.929 2.909 2.819 3.245 2.932
Bias -0.007124 -0.02712 -0.1173 0.3082 -0.004251
Standard Deviation 0.3187 0.3498 0.311 0.3553 0.5017
MSE 𝜏 0.09302 0.1141 0.1021 0.2152 0.2436
Coverage 0.906 0.942 0.287 0.845 0.942
MSE 𝛾 In Sample 1.945 1.945 1.945 2.349 1.752
MSE 𝛾 Cross Folds 2.033 2.033 2.033 2.411 3.59

Table 2.C.1: Summary of derivative estimates from 1000 bootstrap trials of our simulation
procedure. Estimates use 𝑁 “ 1000, 𝑇 “ 2, and 10 covariates. Flexible basis functions include
3rd order polynomial functions of all terms and all interactions of 𝐷 and 𝑋 terms. After
applying the basis function transformation, 𝑝 “ 124. Bias is the average of the estimated value
of the derivative minus the true value of the derivative in each simulation draw. “MSE 𝜏 ” is the
mean squared error between the true average derivative and the estimated average derivative
in each simulation draw, while “MSE 𝛾 in sample” and “MSE 𝛾 cross folds” refer to the mean
squared error of regression from own-sample and out-of-sample estimation.

method DML DML Iterative Lasso OLS Linear OLS Poly

True Value 2.936 2.936 2.936 2.936 2.936
Average Derivative 2.935 2.922 2.864 3.239 2.936
Bias -0.0006326 -0.01354 -0.07144 0.3038 0.0003044
Standard Deviation 0.2258 0.2425 0.2187 0.2272 0.2925
MSE 𝜏 0.03628 0.04374 0.03838 0.1293 0.06965
Coverage 0.9 0.923 0.289 0.678 0.937
MSE 𝛾 In Sample 1.988 1.988 1.988 2.366 1.918
MSE 𝛾 Cross Folds 2.01 2.01 2.01 2.388 2.207

Table 2.C.2: Summary of derivative estimates from 1000 bootstrap trials of our simulation
procedure. Estimates use 𝑁 “ 1000, 𝑇 “ 5, and 10 covariates. Flexible basis functions include
3rd order polynomial functions of all terms and all interactions of 𝐷 and 𝑋 terms. After
applying the basis function transformation, 𝑝 “ 124. Rows are as described in Table 2.C.1.
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method DML DML Iterative Lasso OLS Linear OLS Poly

True Value 2.964 2.964 2.964 2.964 2.964
Average Derivative 2.977 2.96 2.902 3.258 2.973
Bias 0.01301 -0.003874 -0.06199 0.2943 0.008642
Standard Deviation 0.2292 0.25 0.2222 0.2351 0.2878
MSE 𝜏 0.03879 0.04942 0.0391 0.1245 0.07208
Coverage 0.8747 0.9114 0.27 0.6976 0.9287
MSE 𝛾 In Sample 1.98 1.98 1.98 2.369 1.838
MSE 𝛾 Cross Folds 2.013 2.013 2.013 2.409 2.577

Table 2.C.3: Summary of derivative estimates from 1000 bootstrap trials of our simulation
procedure. Estimates use 𝑁 “ 1000, 𝑇 “ 5, and 20 covariates. Flexible basis functions include
3rd order polynomial functions of all terms and all interactions of 𝐷 and 𝑋 terms. After
applying the basis function transformation, 𝑝 “ 244. Rows are as described in Table 2.C.1.

2.D Additional Applied Results

In our main estimation, we make some empirical choices to match those in the literature. In

this section, we include results with some alternate specifications, such as alternate temper-

ature thresholds for damaging heat exposure, estimates without weighting the county-year

observations, and using additional weather variables beyond the commonly used specification

involving only temperature and precipitation.

2.D.1 Testing Damaging Weather Threshold

In the main analysis, we define damaging heat as any temperature exposure above 29°C, as

in Burke and Emerick (2016). This threshold was selected by iterating over a potential range

and finding the value that minimizes the sum of squared errors from a linear model. We

inspect whether the same threshold also minimizes the sum of squared errors from a more

flexible model. Table 2.D.1 shows the results of this analysis. We find that 28°C minimizes

the mean squared error for all methods. We use the threshold from Burke and Emerick

(2016) to have a more straightforward comparison with the existing literature, and as there

is minimal model fit improvement from an alternate specification.
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MSE in sample MSE cross folds
method Lasso OLS Linear OLS Poly Lasso OLS Linear OLS Poly
Threshold

25 °C 0.07960 0.08191 0.07952 0.07992 0.08194 0.07994
26 °C 0.07863 0.08077 0.07863 0.07893 0.08080 0.07906
27 °C 0.07804 0.08007 0.07802 0.07832 0.08011 0.07844
28 °C 0.07783 0.08005 0.07779 0.07808 0.08010 0.07820
29 °C 0.07799 0.08093 0.07796 0.07823 0.08097 0.07835
30 °C 0.07841 0.08279 0.07840 0.07865 0.08284 0.07879
31 °C 0.07903 0.08557 0.07911 0.07925 0.08562 0.07951
32 °C 0.08024 0.08915 0.08021 0.08056 0.08920 0.08067
33 °C 0.08210 0.09326 0.08200 0.08254 0.09331 0.08253
34 °C 0.08486 0.09740 0.08470 0.08534 0.09745 0.08528

Table 2.D.1: Mean squared error (both own-sample and cross-folds) from the regression of corn
yields with alternate temperature thresholds.

2.D.2 Including New Weather Variables

The results are relatively similar between the two sets of weather variation. The results from

the main estimation are presented again in Table 2.D.2a next to the results including more

covariates in Table 2.D.2b. OLS Linear finds a lower magnitude of the average derivative

than the flexible models (OLS Poly, Lasso, and DML), all of which find relatively consistent

estimates of the average derivative. The estimates from OLS Poly have the highest variance

among any model, with roughly twice the standard deviation as OLS Linear. DML has a

slightly lower variance than OLS Linear, and is significantly higher than Lasso. Based on the

simulation results, we expect that the standard errors with Lasso do not accurately reflect

the uncertainty around the estimate.
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(a) Temperature and Precipitation

method OLS Linear OLS Poly Lasso DML

Average Derivative -0.005193 -0.005657 -0.005821 -0.005823
(0.000099) (0.000135) (0.000011) (0.000073)

MSE 𝛾 In Sample 0.080929 0.077958 0.077878 0.077878
MSE 𝛾 Cross Folds 0.080975 0.078353 0.078079 0.078079
Number of Observations 63662 63662 63662 63662
Number of Covariates 3 36 36 36

(b) All Weather Covariates

method OLS Linear OLS Poly Lasso DML

Average Derivative -0.005402 -0.005247 -0.005298 -0.005283
(0.000103) (0.000865) (0.000019) (0.000079)

MSE 𝛾 In Sample 0.079875 0.065521 0.065379 0.065379
MSE 𝛾 Cross Folds 0.079936 0.067955 0.067837 0.067837
Number of Observations 63662 63662 63662 63662
Number of Covariates 9 351 351 351

Table 2.D.2: Using the weighted estimates. Estimates of elasticity of corn yields with respect
to increase in growing season exposure to extreme heat, using two sets of weather covariates.
Standard errors (in parentheses) are clustered at the county level. See text for estimation
details.

(a) Temperature and Precipitation (b) All Covariates

Figure 2.D.1: Extrapolating impacts of extreme heat to crop yields by the year 2050, using
elasticities from OLS Linear and DML. This figure shows the weighted estimates. Each dot
represents a central estimate from a model, and the error bar represents the 95% confidence
interval. Dotted line represents the median value across climate models. See text for estimation
details.
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(a) OLS, Simple Covariates
Trend 3.43e-05, p-val 0.433

(b) DML, Simple Covariates
Trend 9.52e-05, p-val 0.387

(c) OLS, All Covariates
Trend 5.34e-05, p-val 0.213

(d) DML, All Covariates
Trend 0.000113, p-val 0.375

Figure 2.D.2: Estimating elasticity of corn yield over time with OLS Linear and DML. This
figure shows the weighted estimates. We use our estimation procedure on 2-period samples
from 1980 through 2019. Line shows central estimate, and grey band shows 95% confidence
interval. The trend and standard errors are computed using weighted least squares, weighted
by the inverse of the sum of the variance of the elasticity estimate and the residual from the
regression of elasticity on the year.
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2.D.3 Results Without Weighting

In our main estimates, we weight the results by the area of corn planted per county; the

average derivative we estimate in that panel is the effect averaged over all acres of corn. This

estimate is commonly used in the literature, including by Schlenker and Michael J Roberts

(2009) and Burke and Emerick (2016). It may also be of interest to consider the effect

without weighting, which gives the effect averaged over all U.S. counties. This appendix

includes those results, as well as results without weighting and with additional weather

variables.

Table 2.D.2 summarizes the estimation results, using each estimation method and the two

sets of covariates. Figure 2.D.3 shows the extrapolated damages from extreme heat by the

year 2050, using the same weighted procedure as in Burke and Emerick (2016) to generate

these extrapolations. That range of damage estimates translates to a dollar value of $17.1

-$21.7 billion (in 2017 dollars). Our preferred estimate, DML with all weather covariates,

finds an estimated damage of $21.7 billion. The difference between OLS Linear and DML

estimates is statistically significant and economically meaningful. Median damage estimates

using DML instead of OLS correspond to an additional $4.23 and $3.84 billion using the

simple set of covariates and the set of all weather variables, respectively. This difference in

parameter estimates is significant at the 𝑝 “ 0.001 level.

Figure 2.D.2 shows the estimated elasticity over time, without weighting to adjust for the

crop level. Using both methods for the simple set of covariates, the mean trend in the

elasticity is positive and we reject the null hypothesis at the 0.05 level. Using all covariates,

we fail to reject the null hypothesis at the 0.05 level for either estimation method.
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(a) Temperature and Precipitation

method OLS Linear OLS Poly Lasso DML

Average Derivative -0.005738 -0.007558 -0.007578 -0.007577
(8.484e-05) (0.0001199) (1.182e-05) (6.431e-05)

MSE 𝛾 In Sample 0.07901 0.07125 0.07124 0.07124
MSE 𝛾 Cross Folds 0.07911 0.07166 0.07161 0.07161
Number of Observations 63662 63662 63662 63662
Number of Covariates 3 36 36 36

(b) All Covariates

method OLS Linear OLS Poly Lasso DML

Average Derivative -0.005586 -0.007237 -0.007229 -0.007226
(9.5e-05) (0.0001926) (1.708e-05) (6.417e-05)

MSE 𝛾 In Sample 0.07785 0.05822 0.05802 0.05802
MSE 𝛾 Cross Folds 0.07797 0.06054 0.06054 0.06054
Number of Observations 63662 63662 63662 63662
Number of Covariates 9 351 351 351

Table 2.D.3: Same as 2.D.2 using the non-weighted estimates. Estimates of elasticity of corn
yields with respect to increase in growing season exposure to extreme heat, using two sets of
weather covariates. Standard errors (in parentheses) are clustered at the county level. See text
for estimation details.

(a) Only Temperature and Precipitation (b) All Covariates

Figure 2.D.3: Same as Figure 2.D.1 using the non-weighted estimates.
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(a) OLS, Simple Covariates
Trend 8.72e-05, p val 0.0286

(b) DML, Simple Covariates
Trend 0.000102, p val 0.0390

(c) OLS, All Covariates
Trend 7.18e-05, p-val 0.065

(d) DML, All Covariates
Trend 3.1e-05, p-val 0.631

Figure 2.D.4: Same figure as 2.D.2, using the non-weighted estimates.
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2.D.4 Variation in Elasticities Over Time

In this section, I include additional estimation results on the variability in elasticities over

time. I run a linear regression of crop yields and weather over the full sample, including yearly

fixed effects terms and interactions between each yearly fixed effect and all weather covariates.

Here, I use the within transformation to remove per-county unobservable heterogeneity and

isolate the effects of weather shocks from climate or other persistent factors. This regression

weights each observation by the area of corn planted in each county, and clusters standard

errors at the county level. Figure 2.D.5 shows the coefficient of the interaction between the

yearly fixed effect term and damaging heat exposure.

To isolate the effects of the polynomial expansion terms or the interaction terms from results

in Section 2.4, I include estimates of the elasticity over time using alternate basis functions.

In Figure 2.D.6, I use basis functions that include third-order polynomial expansions of each

variable, but do not include interactions. In Figure 2.D.7, I use basis functions that include

interactions but do not include polynomial expansions of each term.

(a) Simple Covariates (b) All Covariates

Figure 2.D.5: The coefficient of the interaction between the yearly fixed effect term and dam-
aging heat exposure. This analysis is run using weighted least squares, where weights are the
area of corn planted per county, after applying the within transformation to isolate the impact
of weather shocks.
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(a) DML, Simple Covariates
No interactions

Trend 3.7e-05, p-val 0.579

(b) DML, All Covariates
No interactions

Trend 1.81e-05, p-val 0.772

Figure 2.D.6: Estimating elasticity of corn yield over time with DML. Basis functions used to
create this figure include polynomial terms but not interactions. This figure shows the weighted
estimates. We use our estimation procedure on 2-period samples from 1980 through 2019. Line
shows central estimate, and grey band shows 95% confidence interval. The trend and standard
errors are computed using weighted least squares, weighted by the inverse of the sum of the
variance of the elasticity estimate and the residual from the regression of elasticity on the year.

(a) DML, Simple Covariates
No polynomials

Trend 5.05e-05, p-val 0.517

(b) DML, All Covariates
No polynomials

Trend 7.01e-05, p-val 0.248

Figure 2.D.7: Same figure as 2.D.6, using the weighted estimates and basis functions that
include interactions but do not include polynomial expansions of each term.
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Chapter 3

A Machine Learning Approach to

Measuring Climate Adaptation

3.1 Introduction

Measuring adaptation to recent climate change is important for informing climate policy and

projecting damages of future climate change. The extent of recent adaptation can signal when

policy interventions are needed and give a sense of how much adaptation will be possible

to projected changes. Researchers can study this by modeling how weather shocks impact

economic outcomes, and examining how impacts change with more exposure to the weather

shock (e.g. Burke and Emerick 2016) or over time (e.g. Barreca et al. 2016). These studies

depend on accurate models of the relationship between weather and economic outcomes.

Machine learning (ML) can help model these relationships when researchers have rich data,

but lack expert guidance to suggest a functional form. When domain experts provide a

model of how weather shocks impact economic outcomes, researchers can use this to accu-

rately measure and compare impacts. Otherwise the researcher must learn this relationship

from data. Economists typically use classic statistical tools to model weather-economic

relationships without imposing strong functional form assumptions (Hsiang, 2016). Such

tools work well with low-dimensional weather variation, but can lead to high variance or
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inconsistent estimates as the dimensionality of covariates increases. Even a model with only

temperature and precipitation can become high-dimensional if a researcher flexibly models

each variable and the interactions between them. ML is well suited for flexible modeling in

such settings (Mullainathan and Spiess, 2017), and can help researchers take full advantage

of high-dimensional weather variation in modern panel datasets.

I introduce an ML approach to study adaptation to damaging heat exposure in United

States (U.S.) corn and soy production. High temperatures are generally damaging for crop

growth, although adaptation may offset some of these damages in the long run. Schlenker

and Michael J. Roberts (2006) introduce a parsimonious model of how an annual shock of

heat exposure impacts crop yield. They model crop yields as a piecewise-linear function of

heat exposure below and above a crop-specific temperature threshold, where heat exposure

below the threshold is beneficial and heat exposure above the threshold is damaging. By

estimating the parameter on damaging heat using different sources of variation, Schlenker

and Michael J Roberts (2009), Burke and Emerick (2016), and Lemoine (2018) argue that

the observed degree of adaptation to damaging heat exposure will not be sufficient to offset

projected climate damages.

I measure the degree of adaptation after learning the crop yield-weather relationship from

data. I compare impacts from short-run and long-run changes in damaging heat exposure.

With a low-dimensional linear model, this is equivalent to the method from Burke and

Emerick (2016). The approach allows me to incorporate more flexible models and high-

dimensional weather variation, making the method suitable for applications with rich weather

variation and little expert guidance on how that variation impacts economic outcomes. I

use ML to model the crop yield-weather relationship, specifically Least Absolute Shrinkage

and Selection Operator (Lasso) and a neural network (NNet). My ML models account for

additive fixed effects while flexibly modeling temperature, precipitation, and interactions

between them.

To estimate the degree of adaptation, I estimate the elasticity of crop yields with respect to

damaging heat exposure. This elasticity summarizes how damaging heat exposure impacts

crop yields, and can be computed for each model. There is no single parameter I can compare
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across models, as in Burke and Emerick (2016). Instead, I find the elasticity by fitting

a regression function of log crop yields on temperature and precipitation and computing

the average directional derivative in the direction of a marginal increase in damaging heat

exposure. I estimate these regression functions via ordinary least squares (OLS) and ML.

I implement a debiasing procedure to address bias from standard ML models. ML approaches

can induce bias from overfitting or regularization, but there are approaches to reduce this bias

when estimating causal parameters or statistics based on regression functions (CCDDHNR,

2018; Chernozhukov, Newey, and Singh, 2022a). I adapt the estimator from Chernozhukov,

Newey, and Singh (2022a). This approach uses double machine learning (DML), where

standard ML estimates are corrected using a second ML algorithm. I adjust the second ML

algorithm to suit the panel setting. I then apply this DML procedure to debias the elasticity

estimates.

I compare elasticities to estimate the degree that short-run impacts from damaging heat

exposure are offset in the longer term. I construct panel datasets of long-run and short-run

variation in crop yield and weather variables from 1990-2019. I then estimate the elasticity of

crop yield with respect to damaging heat exposure in each dataset. I compute this elasticity

using OLS, DML, and ML without bias correction. Comparing these estimates, I find the

extent that short-run impacts from damaging heat exposure are offset in the longer term.

Before taking this approach to the data, I conduct a simulation exercise to evaluate DML

estimates of an elasticity relative to OLS and standard ML approaches. Each simulation

trial uses the empirical distribution of temperature and precipitation from U.S. counties,

but simulates outcome variables. I examine the performance of my DML procedure relative

to OLS and ML without bias correction, comparing the bias and variance of recovering the

true elasticity. I use three potential sets of weather variables: a simple, commonly used

set of annual temperature and precipitation variables, a set that includes richer variation in

annual temperature, and a set that includes monthly observations of precipitation and the

rich variation in temperature.

This simulation exercise clearly highlights the benefits of using debiased machine learning

for high-dimensional settings. Both NNet and Lasso have advantages over OLS in high-
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dimensional cases, although NNet has lower bias. With the rich set of annual temperature

variation, DML estimates have significantly lower variance than OLS and lower bias than

standard ML estimates. With the set of monthly temperature and precipitation, DML

estimates have significantly less bias and variance than OLS, and lower bias than standard

ML.

I then apply the approach to a dataset of U.S. crop yields, and find evidence that adaptation

is offsetting impacts from damaging heat exposure. I implement Lasso, NNet, and OLS

estimators on a county-level dataset of corn and soy yields from 1990 to 2019. I compare

estimates of the elasticity using short-run and long-run variation. I take 500 bootstrap trials

of the estimated elasticity, using the three sets of weather variation as in the simulation

exercise. Using the simple annual set of weather variables as in Schlenker and Michael

J Roberts (2009) and Burke and Emerick (2016), I find that there has been little to no

significant adaptation to climate change in corn or soy production. This confirms the results

from Burke and Emerick (2016).

Using more flexible sets of weather variation, I find that a large share of short-run impacts

from damaging heat exposure are offset in the long run. With short-run variation, I find

statistically and economically significant declines in yield from a marginal increase in dam-

aging heat exposure. However, I do not find evidence of such declines when using long-run

variation. These results hold for both corn and soy. The primary difference comes from us-

ing a richer set of weather variables. I make this same conclusion using OLS with the more

flexible set of weather variation, although the DML approach results in smaller confidence

intervals. This shows that a substantial degree of the short-run impacts from damaging heat

exposure are offset in the long run, suggesting substantial adaptation to this heat exposure.

This result differs dramatically from the conclusions by Burke and Emerick (2016) and other

analyses (Schlenker and Michael J Roberts, 2009; Lemoine, 2018). This is likely explained

by model misspecification for the impact of a long-run shift in heat exposure on crop yields.

I show that in the panel with long-run variation, the simple model from Schlenker and

Michael J. Roberts (2006) does not adequately summarize the flexible role of temperature

variables. While damaging heat exposure is correlated with declines in crop yield, other
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temperature variation is better able to explain these declines. This suggests that there

is limited adaptation to some damaging feature of climate change, but not to the specific

feature of marginal increase in damaging heat exposure.

This paper is related to several literatures. First is a literature on estimating the degree

of adaptation to climate change. Measuring adaptation to climate change requires under-

standing how weather influences economic outcomes. For a review of economics literature on

measuring the economic impacts of the weather, see Dell, Jones, and Olken (2014). Hsiang

(2016) provides an overview of econometric approaches to measuring these impacts. Much of

this literature focuses on agriculture, as this sector is directly exposed to weather and hence

is particularly vulnerable to climate change (Shukla et al., 2019). The first approach to

studying impacts of climate change used the Ricardian approach, where researchers compare

the value of agricultural land in cross sections. Mendelsohn, Nordhaus, and Shaw (1994)

forecast the impacts of climate change by regressing average temperature and agricultural

property value in a cross section of U.S. counties. This approach is susceptible to omit-

ted variable bias, and subsequent work has focused on addressing specific omitted variables

such as endogenous changes in farmer technology (Kurukulasuriya, Kala, and Mendelsohn,

2011) or nonfarm income (Ortiz-Bobea, 2020). Other approaches to estimate the poten-

tial for adaptation in agriculture involve economy-wide simulations (Costinot, Donaldson,

and Smith, 2016), production changes in historical migrations (Sutch, 2011; Olmstead and

Rhode, 2011), natural experiments (Hornbeck, 2012; Hagerty, 2021), or panel approaches.

Panel approaches address omitted variable bias by identifying adaptation from annual or

long-term variation within a panel dataset. Schlenker and Michael J Roberts (2009) uses

panel data to estimate the elasticity of crop yields with respect to extreme heat exposure,

and conclude that there is limited potential to adapt to climate change because these dam-

ages are similar in the southern and northern U.S. despite climatic differences. Barreca et al.

(2016) use a flexible model of temperature exposure to document how the mortality con-

sequences of extreme heat declined over the 20th century. Burke and Emerick (2016) show

that panel variation can be used to estimate adaptation to recent climate change by using

separate sources of variation to identify the impacts of weather shocks and shifts in average
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temperature. Lemoine (2018) provides an alternate approach that partially identifies the

degree of possible adaptation by considering the role of ex-ante and ex-post adaptation to

heat exposure shocks.

My paper is most closely related to Burke and Emerick (2016). Like their paper, I estimate

the degree that damages to corn and soy yields from short-run changes in weather are offset

over longer exposures. I also use crop and weather data from U.S. agriculture. My approach

differs because I consider richer sets of weather variables, and use DML to model learn the

relationship between these data and crop yields. I conclude that there has been a higher

degree of adaptation to damaging heat exposure.

Second is a growing literature on applying ML methods in economics. Kleinberg et al. (2015)

discuss applications of predictive machine learning in economics, and Varian (2014) and Mul-

lainathan and Spiess (2017) provide a practical guide to algorithms. Several recent papers

have used ML to measure important outcomes in environmental economics. Crane-Droesch

(2018) proposes a semi-parametric NNet and uses it to study the impact of climate change

on corn yields. Deryugina et al. (2019) uses a ML approach to measure the costs of air

pollution. Burlig et al. (2020) use ML to refine estimates of energy efficiency improvements.

Stetter, Mennig, and Sauer (2022) use a DML approach to measure effectiveness of an agri-

cultural intervention, and Klosin and Vilgalys (2022) introduce a DML approach to measure

elasticities in a panel setting. There are also numerous applications within agriculture; for a

review, Liakos et al. (2018).

My paper is most related to Crane-Droesch (2018) and Klosin and Vilgalys (2022). Crane-

Droesch (2018) estimates a NNet that accounts for unobservable county-level fixed effects,

and uses the model to predict yield under counterfactual climate change scenarios. I use

the same technique to address county-level fixed effects, although I modify the algorithm

in order to recover derivatives from the network and to ensure that the network is differen-

tiable. Crane-Droesch studies the impacts of future climate change, while I use this tool to

understand adaptation to recent climate change. Like Klosin and Vilgalys (2022), I estimate

the elasticity of crop yield with respect to an increase in damaging heat exposure. I consider

more flexible representations of temperature variation, and I apply the estimator to measure
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adaptation to recent climate change.

Within the literature on machine learning, this paper applies results from the emerging

field of DML. CCDDHNR (2018) prove that sample splitting and constructing Neyman-

orthogonal moment conditions can yield approximately debiased machine learning estimates

in certain settings. Semenova and Chernozhukov (2021) extend the Neyman-orthogonal mo-

ment condition approach to several other statistical targets, including structural derivatives.

In an alternate approach, Chernozhukov, Newey, and Singh (2022a) and Chernozhukov,

Newey, and Singh (2022b) give an approximately debiased estimator for a more general

class of linear functionals based on the Riesz representation theorem. Klosin and Vilgalys

(2022) adopt this approach in panel settings and prove asymptotic normality of the estimator

for the average derivative. Like Klosin and Vilgalys (2022), my approach applies the result

from Chernozhukov, Newey, and Singh (2022a) in panel settings; I use a different approach

to address fixed effects and consider a more flexible representation of temperature variation.

The rest of this paper proceeds as follows. In Section 3.2, I describe the data used for this

project. I illustrate the degree of climate change and describe the transformations required to

generate the growing degree days. In Section 3.3, I describe the methods used; this includes

details on how to compute average derivatives and an explanation of the debiased machine

learning estimation approach. In Section 3.4, I give details and results of the simulation

exercise. In Section 3.5, I present and discuss results from using the estimation procedure

to measure the degree of adaptation to climate change. Section 3.6 concludes.

3.2 Data

For the empirical application, I use weather and crop data from U.S. corn and soy produc-

tion from 1990-2019. I consider counties east of the 100°West meridian, which defines an

agricultural region of significant corn and soy cultivation. From 1990-2019, this region pro-

duced over 93% of the nation’s corn and over 99% of the nation’s soy. Crop data are annual

yield (bushels per acre) of corn and soy, from the U.S. Department of Agriculture’s Survey

of Agriculture. These data also include the area planted (acres) in each county.

Weather data are generously shared by Schlenker and Michael J Roberts, who provide a grid-
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(a) (b) (c)

(d) Monthly Flexible (e) Yearly Flexible (f) Yearly Linear

Figure 3.2.1: Transformations from daily minimum and maximum temperature records into
the weather variables used in the analysis. (a) shows daily temperature within one day. In
(b), this temperature is translated into growing degree days (GDD). (c) illustrates how daily
GDD observations are aggregated into cumulative GDD exposure. (d) is the Monthly Flexible
variable, where daily temperature is aggregated into GDD in each temperature bin for each
month. In (e), this is aggregated into total growing season heat exposure in each temperature
bin. In (f), this is further aggregated into total growing season heat exposure above and below
the dotted line, 29°C.

ded dataset of daily temperature and precipitation from a network of consistently reporting

weather stations. As in Schlenker and Michael J Roberts (2009) and Ortiz-Bobea (2013), I

consider weather during the March-August growing season. I aggregate the gridded dataset

to a county-level dataset of daily maximum temperature, minimum temperature, and pre-

cipitation. I then transform daily temperature exposure into growing degree days (GDD) at

a monthly level and for the growing season. Figure 3.2.1 illustrates the transformation from

daily temperature observations to GDD.

Throughout this paper, I consider three sets of weather variables per county: total growing

season heat exposure above and below 29°C plus total growing season precipitation (Yearly

Linear), total growing season heat exposure in each 1°C temperature bin plus total grow-

ing season precipitation (Yearly Flexible), and monthly heat exposure in each 1°C bin and

monthly precipitation for each month of the growing season (Monthly Flexible). Figure 3.2.1

illustrates the transformations of temperature variables. The Yearly Linear transformation,
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(a) Corn yields (b) Soy yields (c) GDD above 29°C

Figure 3.2.2: Differences in county-level values of corn yields, soy yields, and growing-season
GDD above 29°C, between 1990-1999 averages and 2010-2019 averages. Maps include counties
east of the 100 °W meridian. In (a) and (b), the first color bin includes all counties with yield
declines (roughly 4% of counties) and the remaining distribution is divided evenly among the
remaining bins. In (c), ‘X’ (‘O’) hatching indicates counties with an increase (decrease) in heat
exposure above 29°C.

shown in Figure 3.2.1f, is widely used in economic analysis. Schlenker and Michael J Roberts

(2009) demonstrate that, in a panel setting, regression based on heat exposure above and

below a crop-specific damaging threshold explains as much variation in yields as more flex-

ible models. Burke and Emerick (2016) identify 29°C as the threshold for damaging heat

exposure, for both corn and soy. I use the 29°C threshold throughout the analysis, and refer

to heat exposure above 29°C as damaging heat exposure.

Variation in the degree of climate change between counties is used to estimate the long-run

elasticities in our sample. Figure 3.2.2c shows illustrates the difference in GDD exposure

above 29°C per US county, from the period 1990-1999 to the period from 2010-2019. Heat

exposure increases in 80% of counties in the sample, but there is substantial variation in

the degree of warming even within states. There are many pairs of neighboring counties

where one experienced an increase in damaging heat exposure and the other experienced

a decrease. This variation is plausibly uncorrelated with unobservable factors such as soil

quality or per-state fixed effects. See Burke and Emerick (2016) for a detailed argument that

this type of variation can identify the effects of climate change.

While many counties experienced damaging heat exposure increases and decreases, only

a handful had average yields decline between these time periods. Figure 3.2.2a and Fig-
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ure 3.2.2b show changes in average yields of corn and soy over this time period. Only 4.03%

of counties saw corn yields decline and only 3.96% saw soy yields decline, among counties

that grew corn or soy in both 1990-1999 and 2010-2019. This suggests that improved farming

technology increased yields throughout the sample, and that these improvements exceeded

damages from increased damaging heat exposure.

3.3 Methods

In this section, I discuss the methods used to estimate the degree of adaptation. I first define

adaptation in terms of average directional derivatives, and describe how to measure these

average directional derivatives. I then introduce the ordinary least squares (OLS), Lasso and

neural network (NNet) procedures, including details on how to account for fixed effect terms

in each model and the cross-folds training procedures. I also describe the double machine

learning (DML) approach used to adjust for bias in the standard machine learning (ML)

estimates.

3.3.1 Adaptation

I define adaptation as the amount of short-term impact to yield from damaging heat exposure

that is offset in the longer term. This definition encompasses all adaptation behaviors an

agent makes to their production technology, management practices, or variety choice within

each crop as they are exposed to climate change. It does not capture some other important

margins of adaptation such as crop switching or exit from agriculture. Burke and Emerick

(2016) provide evidence that these margins of adaptation are limited. This definition also

does not capture changes that alter the impact of damaging heat independently from an

individual’s exposure to climate change, such as the decline in heat-related mortality as

studied by Barreca et al. (2016). First I define the estimation target, as introduced by Burke

and Emerick (2016). I generalize this definition in terms of elasticities, and discuss how

to estimate those elasticities using flexible functional forms and/or richer sets of weather

variation.

Following Burke and Emerick (2016), I measure adaptation by comparing the elasticity of
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crop yields with respect to extreme heat using short-run and long-run variation. Short-run

variation comes from year-to-year changes in an annual panel of weather observations and log

crop yields. To capture long-run variation, I first average weather and crop yield data over

a long period (I use 10-year periods) and then construct a two-period panel. The elasticity

computed using short run variation captures the extent that a weather shock of extreme heat

in a single year impacts yields, while the elasticity computed using long run variation captures

the extent that exposure to a long period of increased heat exposure will impact average

crop yields. Estimates using long-run variation arguably capture the extent of damages

from climate change, because there is a change in average heat exposure over a relatively

long period where farmers have time to adjust to those changes. Figure 3.2.2 illustrates

long-run variation in the sample, comparing the differences in long-run average crop yields

and damaging temperature exposure over the decades I study. Comparing impacts using

these sources of variation, I can conclude whether the short-term damages are offset in the

long term.

It is straightforward to recover these elasticities in a model where log yield is linear in total

growing season heat exposure. Burke and Emerick (2016) use such a model, which I adapt

below:

𝑦𝑖𝑡 “ 𝑎𝑖 ` 𝛽1𝑙𝑜𝑤𝑒𝑟𝑖𝑡 ` 𝛽2ℎ𝑖𝑔ℎ𝑒𝑟𝑖𝑡 ` 𝑔p𝑝𝑟𝑒𝑐𝑖𝑡q ` 𝜀𝑖𝑡 (3.1)

where ℎ𝑖𝑔ℎ𝑒𝑟𝑖𝑡 (𝑙𝑜𝑤𝑒𝑟𝑖𝑡) is total growing season heat exposure above (below) the damaging

temperature threshold, 𝑔 is some function of precipitation, 𝑎𝑖 is an additive per-county fixed

effect term, and 𝜀𝑖𝑡 is an additive error term. Burke and Emerick (2016) estimate this

equation with OLS, after using the within transformation to remove the fixed effect term1.

The key parameter here is 𝛽2, which captures the extent that log crop yield changes with

marginal increase in damaging heat exposure. This is equivalent to the elasticity of crop yield

with respect to damaging heat exposure. Note that 𝛽2 is expected to be negative in the short

run, as temperature shocks in this range are damaging to crop growth (Schlenker and Michael

J. Roberts, 2006; Schlenker and Michael J Roberts, 2009). The estimate of the share of short-

1Burke and Emerick (2016) advocate using first differences to remove the fixed effect in the long-run
variation panel; I use a within transformation approach as this is numerically equivalent to taking first
differences in a two-period panel.
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run damages that are offset in the longer term is therefore p𝛽𝑆𝑅
2 ´𝛽𝐿𝑅

2 q{𝛽𝑆𝑅
2 “ 1´𝛽𝐿𝑅

2 {𝛽𝑆𝑅
2 ,

where 𝛽𝑆𝑅
2 (𝛽𝐿𝑅

2 ) is the estimate using the short-run (long-run) variation. Burke and Emerick

(2016) take bootstrap samples of this ratio and fail to reject the null hypothesis that the

ratio is different from 0.

To recreate this ratio with a more flexible functional form, I replace the parameter estimates

with average directional derivatives. Consider a more general functional form:

𝑦𝑖𝑡 “ 𝑎𝑖 ` 𝛾p𝑋𝑖𝑡q ` 𝜀𝑖𝑡 (3.2)

Here, 𝑋𝑖𝑡 is a collection of weather variables, 𝛾 is a general function, 𝑎𝑖 is an additive fixed

effect term, and 𝜀𝑖𝑡 is an additive error term. I use three different collections of weather

variables for 𝑋𝑖𝑡, as described in Figure 3.2.1. As 𝑦𝑖𝑡 is the log of crop yields, the elasticity

of crop yield with respect to some variable is equivalent to the average directional derivative

of 𝛾 with respect to that variable.

The analogue to 𝛽2 from Equation (3.1) is therefore the average directional derivative of 𝛾

with respect to ℎ𝑖𝑔ℎ𝑒𝑟𝑖𝑡. Let 𝜃𝑆𝑅 (𝜃𝐿𝑅) be this average directional derivative using short-run

(long-run) variation. I then take bootstrap samples of the ratio 1 ´ 𝜃𝐿𝑅2 {𝜃𝑆𝑅2 to test the

hypothesis that damages from short-run heat exposure are offset in the longer run.

This average directional derivative is equivalent to an average partial derivative when using

the Yearly Linear set of weather variables. Specifically, take 𝜃 “ IErB𝛾p𝑋𝑖𝑡q{Bℎ𝑖𝑔ℎ𝑒𝑟𝑖𝑡s.

When using a linear specification, this average derivative is equivalent to the parameter

estimate from OLS. When using NNet, this can be recovered after training the network (see

Section 3.3.3). When the specification involves basis functions (such as OLS with polynomial

basis functions or Lasso), I recover this derivative by taking the average of the dot product of

the gradient of the basis functions and the estimated coefficients. I describe this procedure

in Section 3.3.2.

When I use another set of weather variation, it is also necessary to account for the extent

that each weather variable contributes to the total growing season heat exposure. I find this
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using the chain rule:

𝜃 “
ÿ

𝑋𝑖𝑡P𝑋
ℎ𝑖𝑔ℎ𝑒𝑟
𝑖𝑡

B𝛾p𝑋𝑖𝑡q

B𝑋𝑖𝑡

B𝑋𝑖𝑡

Bℎ𝑖𝑔ℎ𝑒𝑟𝑖𝑡
(3.3)

Where 𝑋ℎ𝑖𝑔ℎ𝑒𝑟
𝑖𝑡 is the set of weather variables that are summed to reach total growing season

heat exposure above the temperature threshold. I set B𝑋𝑖𝑡{Bℎ𝑖𝑔ℎ𝑒𝑟𝑖𝑡 “ 𝑋𝑖𝑡{ℎ𝑖𝑔ℎ𝑒𝑟𝑖𝑡; this

captures the assumption that additional marginal heat will be distributed proportionally to

the empirical heat exposure distribution.

This allows me to measure adaptation to climate change from recent panel variation while

using a flexible model of high-dimensional weather variation. In the following sections, I

describe how I estimate the regression function and average directional derivative using

various estimation techniques.

3.3.2 Ordinary Least Squares methods

Ordinary Least Squares (OLS) is a classical statistics approach to estimating this elasticity. I

use methods with a linear functional form (OLS Linear), and after applying a basis function

transformation of polynomial functions and interactions (OLS Poly). In both cases, I use

the within transformation to remove a county-level fixed effect term, and then include yearly

fixed effect terms via dummy variables.

I use basis functions that include interactions and flexible functional forms of the original

data. I specify polynomial basis functions of all terms, as well as interactions between

these polynomial expansions. To produce a tractable model, I limit the space of potential

interactions to interactions between heat exposure and precipitation variables within the

same time period. For example, in the Monthly Flexible specification, I consider cumulative

GDD in July between 28 and 29 C interacted with precipitation in July, as well as squared

values of each term and the interactions between those polynomial expansions, but do not

consider interactions of that variable with cumulative GDD in any other temperature bin,

or precipitation in any other month. I use 3rd order polynomials for the Yearly Linear and

Yearly Flexible variable sets, and 2nd order polynomials for the Monthly Flexible variable

set. I then scale each flexible basis function so that it has mean zero and variance 1.

77



For OLS Linear, I use the identity set of basis functions; that is, 𝑏p𝑋𝑖𝑡q “ 𝑋𝑖𝑡. For Yearly

Linear, 𝑋𝑖𝑡 has 3 covariates; for Yearly Flexible 𝑋𝑖𝑡 has 41; and for Monthly Flexible 𝑋𝑖𝑡

has 246. For OLS Poly, I use the set of basis functions described above. For Yearly Linear,

𝑏p𝑋𝑖𝑡q has 30 covariates; for Yearly Flexible 𝑏p𝑋𝑖𝑡q has 486; and for Monthly Flexible 𝑏p𝑋𝑖𝑡q

has 1464.

OLS assumes that the following is a true model of the relationship:

𝑦𝑖𝑡 “ 𝑎𝑖 ` 𝑏p𝑋𝑖𝑡q𝛽0 ` 𝜀𝑖𝑡 (3.4)

As is common in economics, I assume that we have relatively short panels where it is not

possible to consistently estimate 𝑎𝑖 by including dummy variables. I therefore use the within

transformation to remove county-level fixed effect terms:

:𝑦𝑖𝑡 “ :𝑏p𝑋𝑖𝑡q𝛽0 ` 𝜀𝑖𝑡 (3.5)

where the double dot denotes the within transformation, i.e. :𝑦𝑖𝑡 :“ 𝑦𝑖𝑡 ´meanpt𝑦𝑖𝑡@𝑡uq and
:𝑏p𝑋𝑖𝑡q :“ meanpt𝑏p𝑋𝑖𝑡@𝑡uq. Note that to construct :𝑏p𝑋𝑖𝑡q, the mean of all observations in

that panel unit is subtracted after applying the basis function transformation. This ensures

that 𝛽0 is the same parameter vector between models. I use OLS to estimate 𝛽.

I then compute the average directional derivative by projecting my estimate of 𝛽0 on partial

derivatives of the basis functions. Define the gradient of the basis function as 𝑏ℎ𝑖𝑔ℎ𝑒𝑟; this

is a 1 by 𝑝 dictionary of the derivative of each basis function with respect to ℎ𝑖𝑔ℎ𝑒𝑟𝑖𝑡.

The true average directional derivative is then 𝜃0 “ IEr𝑏ℎ𝑖𝑔ℎ𝑒𝑟p𝑋𝑖𝑡q𝛽0s and its estimate is

𝜃 “ IEr𝑏ℎ𝑖𝑔ℎ𝑒𝑟p𝑋𝑖𝑡q𝛽s.

In specifications in my main analysis, I include per-year fixed effects as dummy variables.

I assume that there are enough observations per time period to consistently estimate these

variables separately. The derivative of each per-year fixed effect is zero, so including these

terms does not change how I estimate the average directional derivative.
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3.3.3 Machine Learning Methods

Machine Learning (ML) methods include a range of estimation techniques that allow con-

sistent function approximation in high-dimensional settings, when the number of covariates

is large relative to the number of observations. Such settings poses challenges for classical

statistical methods such as OLS, binning, or kernel regression. I use Lasso and Neural Net-

works (NNets), although the same procedure could be used for another algorithm such as

random forests, support vector machines, or other methods. I focus on these two machine

learning algorithms because each enables the researcher to incorporate linear fixed effects and

to evaluate derivatives without numerical differentiation. Standard ML methods can induce

bias in regression analysis; I overcome this bias by using a procedure from Chernozhukov,

Newey, and Singh (2022a).

The average derivative is computed from a ML regression of the output variable on weather

inputs. Write 𝛾p¨;𝜆q to denote the flexible machine learning function, emphasizing the de-

pendence on the hyperparameter 𝜆. The hyperparameter is a researcher-specified value

that influences the behavior of the model, such as the regularization penalty in Lasso or

the network width in NNet. The machine learner is estimated as a regression function:

IEr:𝑦𝑖𝑡| :𝑋𝑖𝑡s “ :̂𝛾p𝑋𝑖𝑡;𝜆q. Section 3.3.3 and Section 3.3.3 give details on each estimation pro-

cedure. Let 𝑚p𝛾,𝑋𝑖𝑡;𝜆q denote the directional derivative of 𝛾p¨;𝜆q evaluated on observation

𝑋𝑖𝑡.

I use the double machine learning (DML) procedure from Chernozhukov, Newey, and Singh

(2022a) to find an approximately debiased estimate of the average directional derivative. I

discuss this procedure in more detail in Section 3.3.3. Briefly, I estimate a second machine

learner and use this to construct an estimate of the average directional derivative that is ro-

bust to errors in estimating either the first or second machine learner. Let 𝛼p𝑋;𝜅q denote this

second machine learner, emphasizing the dependence on hyperparameter 𝜅. Chernozhukov,

Newey, and Singh (2022a) show that the expression IEr𝑚p𝛾,𝑋𝑖𝑡;𝜆q ` 𝛼̂p𝑋𝑖𝑡;𝜅q𝜀𝑖𝑡s is an ap-

proximately unbiased estimate of the true average directional derivative, where 𝜀𝑖𝑡 is the

residual from estimating 𝑦𝑖𝑡. I modify the form of the doubly robust estimator in Cher-
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nozhukov, Newey, and Singh (2022a) to account for the panel structure of the data; details

are in Section 3.3.3.

I use a data-driven process to determine the value of the hyperparameters. First split each

panel unit (a U.S. county) into one of the 𝑘 folds for cross validation. Grouping observations

from each panel unit into the same fold reduces correlation between training and test data, as

counties share unobservable characteristics that likely influence the distribution of weather

and crop yields. Let ℐℓ denote the set of indices in fold ℓ, for ℓ P t1, 2, . . . , 𝑘u. For each of the

𝑘 folds, I train the ML and DML algorithm on data not in fold ℓ, and evaluate the algorithm

only on indices in fold ℓ. Let 𝛾ℓ and 𝛼̂ℓ denote the ML and DML estimators trained on the

set of indices not in fold ℓ. Then select a hyperparameter value by searching over a grid of

potential values, and selecting the value that minimizes a loss function. Let ℒ𝛾p𝛾ℓ, ℐℓ;𝜆q be

the mean squared error of the function 𝛾ℓ with the hyperparameter 𝜆 on the data in ℐℓ. Let

ℒ𝛼p𝛼ℓ, ℐℓ;𝜅q be the loss function of the function 𝛼ℓ with the hyperparameter 𝜅 on the data

in ℐℓ; I describe this loss function in Appendix 3.A.3.

Once the hyperparameter is selected, I evaluate the (debiased) score on the test sets using

the same folds defined above. The full estimation procedure for the debiased score is be-

low. To use this procedure without the debiasing correction, omit the bias correction term

𝛼̂ℓp𝑋𝑖𝑡; 𝜅̂qp:𝑦𝑖𝑡 ´ :̂𝛾ℓp𝑋𝑖𝑡; 𝜆̂qq from each step.

1. Select hyperparameter 𝜆̂ that minimize test-set mean squared error of the regression:

𝜆̂ “ argmin
𝜆

𝑘
ÿ

ℓ“1

ℒ𝛾p𝛾ℓ, ℐℓ;𝜆q

2. Select hyperparameter 𝜅̂ that minimize test-set loss of the double machine learner:

𝜅̂ “ argmin
𝜅

𝑘
ÿ

ℓ“1

ℒ𝛼p𝛼̂ℓ, ℐℓ;𝜅q
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3. Evaluate the debiased score using these hyperparameters:

𝜃 “
1

𝑁

𝑘
ÿ

ℓ“1

ÿ

𝑖𝑡Pℐℓ

𝑚p𝛾ℓ, 𝑋𝑖𝑡; 𝜆̂q ` 𝛼̂ℓp𝑋𝑖𝑡; 𝜅̂qp:𝑦𝑖𝑡 ´ :̂𝛾ℓp𝑋𝑖𝑡; 𝜆̂qq

4. Find the asymptotic variance of the estimator, after adjusting for within-panel-unit cor-

relations. Let 𝜃ℓ;𝑖𝑡 :“ 𝑚p𝛾ℓ, 𝑋𝑖𝑡; 𝜆̂q`𝛼̂ℓp𝑋𝑖𝑡; 𝜅̂qp:𝑦𝑖𝑡´ :̂𝛾ℓp𝑋𝑖𝑡; 𝜆̂qq and 𝜃ℓ;𝑖 :“ 1{𝑇
ř𝑇

𝑡“1 𝜃ℓ;𝑖𝑡.

Then the asymptotic variance is:

𝑉 “
1

𝑁

𝑘
ÿ

ℓ“1

ÿ

𝑖Pℐℓ

#

𝑇
ÿ

𝑡“1

p𝜃ℓ;𝑖𝑡 ´ 𝜃q
2
` 2

𝑇´1
ÿ

𝑡“1

𝑇
ÿ

𝑡1“𝑡`1

p𝜃ℓ;𝑖𝑡 ´ 𝜃ℓ;𝑖qp𝜃ℓ;𝑖𝑡1 ´ 𝜃ℓ;𝑖q

+

In the following subsections, I describe how to train and evaluate the Lasso and NNet

estimators, and introduce the DML procedure.

Lasso

Least absolute shrinkage and selection operator (Lasso) is a regression procedure that selects

a sparse linear model from a researcher-specified set of basis functions. The procedure finds

this sparse linear combination by minimizing squared error of estimation, while penalizing

more complex models via regularization. The procedure is similar to OLS Poly, but estimates

can differ greatly because of this penalization. The hyperparameter 𝜆 is the magnitude of

the regularization term, which I determine via the cross fitting procedure outlined above.

As with OLS, I assume that there is a true linear model of the form Equation (3.4) and

take within transformations to remove county-level fixed effects to result in Equation (3.5).

I use the same flexible set of basis functions used in OLS Poly, as defined in Section 3.3.2.

Unlike in OLS Poly, I assume that the true parameter vector is sparse and find an estimate

by solving a regularized optimization problem.

For each cross-validation fold, I find the estimate 𝛽ℓ via the following minimization problem:

𝛽ℓ “ argmin
𝛽

ÿ

𝑖Pℐℓ

𝑇
ÿ

𝑡“1

p:𝑦𝑖𝑡 ´ :𝑏p𝑋𝑖𝑡q𝛽q
2
` 𝜆|𝛽|1 (3.6)
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where |𝛽|1 is ℓ1 penalty or the sum of the absolute value of each component of 𝛽. To incor-

porate yearly fixed effects, I include dummy variables and do not apply the regularization

penalty to the coefficients on those dummy variables. This reflects the assumption that while

coefficients in 𝛾 are sparse, coefficients in the fixed effects terms are not (Belloni et al., 2016).

Additional details on the Lasso procedure are included in Appendix 3.A.1.

Once I have estimated 𝛽ℓ, I compute the directional derivative by projecting my estimate of

𝛽0 on partial derivatives of the basis functions. This is the same procedure to compute the

derivative using OLS, as described in Section 3.3.2.

Neural Network

A neural network (NNet) learns a relationship between inputs and outputs through an iter-

ative process, where the best fitting model is selected from a large space of flexible trans-

formations of all potential interactions of input features. NNets have several advantages for

my application. First, it is straightforward to compute a gradient of the output of the entire

network with respect to each input feature. Second, NNets can incorporate fixed effects in

panel models, as demonstrated by Crane-Droesch (2018). Third, estimating NNets does not

require the researcher to specify basis functions.

I compute derivatives of the NNet by extracting gradients computed during training the

network. A NNet is a weighted composition of activation functions (user-specified transfor-

mations) applied to an input vector. After a random initialization of internal parameters,

the model goes through many iterations of predicting the output variable, calculating a loss

from training data, and updating the parameter values. I use the mean squared error for this

loss function. While training or evaluating the network, the algorithm computes the deriva-

tive of the output with respect to each input. This is commonly used to adjust parameter

values during the training procedure, in a process known as back propagation. I also use

these automatic derivatives to compute the partial derivative of the prediction with respect

to each weather input.

I follow Crane-Droesch (2018) to estimate the model with nonparametric treatment of

weather inputs and additive linear fixed effects. Training this network involves an itera-
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tive procedure that can be interpreted as selecting basis functions from a large space of

candidate functions. After this training procedure is completed, I use standard econometric

techniques to account for linear terms, treating the nonlinear transformation of inputs as a

feature in a linear model. Specifically, I use the within transformation to remove individual

fixed effects and use OLS to find other linear terms such as yearly fixed effects. The itera-

tive procedure is performed on the set of training data, and the OLS step is performed on

the test set. This requires an architecture with a top layer that is linear in all fixed effect

components and the output of the nonlinear network transformation. See Crane-Droesch

(2018) for more details on such networks and their performance relative to linear models or

fully nonparametric models in estimating agricultural yields. Additional details of the NNet

architecture and training procedure are included in Appendix 3.A.2.

Double Machine Learning

Double machine learning (DML) is an approach to remove bias from standard machine

learning algorithms. I use an approach introduced by Chernozhukov, Newey, and Singh

(2022a), relying on the statistical theory of the Riesz representer.

There are two related, yet orthogonal, problems in estimating the average derivative. First

is the regression function, and second is the derivative operator on a regression function.

Chernozhukov, Newey, and Singh (2022a) show how to conduct this second step without

estimating a regression function, and that these two methods can be combined to construct

an approximately debiased estimate of the original target derivative.

This second function can be estimated from data using the Riesz representation theorem. I

denote this second function 𝛼0, and its estimate 𝛼̂. The Riesz representation implies that

IEr𝛼0p𝑋𝑖,𝑡q:𝛾0p𝑋𝑖,𝑡qs “ 𝑚p:𝛾0, 𝑋𝑖,𝑡q. Chernozhukov, Newey, and Singh (2022a) show how to use

this fact to estimate 𝛼0 from data. In a panel setting, I use the within-transformed function

:𝛾; I use 𝑚p:𝛾0, 𝑋𝑖,𝑡q “ 𝑚p𝛾0, 𝑋𝑖,𝑡q because the functional 𝑚 is a directional derivative and the

derivative of the mean value is 0. I assume that 𝛼0 is linear in the set of basis functions 𝑏.

The true Riesz representer is then 𝛼0p𝑋𝑖𝑡q :“ :𝑏p𝑋𝑖𝑡q𝜌0 and its estimate is 𝛼̂p𝑋𝑖𝑡q :“ :𝑏p𝑋𝑖𝑡q𝜌.

I estimate 𝜌 using an optimization package, based on the moment conditions identified by
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Chernozhukov, Newey, and Singh (2022a). Klosin and Vilgalys, 2022 demonstrate that

this procedure is effective in panel settings. Appendix 3.A.3 includes more details on the

motivation of this Riesz representer and the estimation procedure.

This estimate is then used to construct the following doubly robust score:

𝜃 “
1

𝑁

𝑘
ÿ

ℓ“1

ÿ

𝑖𝑡Pℐℓ

𝑚p𝛾ℓ, 𝑋𝑖𝑡; 𝜆̂q ` p:𝑦𝑖𝑡 ´ :̂𝛾ℓp𝑋𝑖𝑡qq𝛼̂ℓp𝑋𝑖𝑡; 𝜅̂q

3.4 Simulation Exercise

I conduct a simulation exercise to compare the performance of the estimation procedure to

OLS while varying the set of weather variables used. To match the setting as closely as

possible, I use the empirical distribution of weather covariates in all trials. I then apply

a simulated production function of the the piecewise-linear functional form from Schlenker

and Michael J Roberts (2009).

The simulation exercise focuses on comparing ML, DML, and OLS in a regression setting

with high-dimensional variation. OLS is correctly specified in all trials. In cases where OLS

is not correctly specified, ML and DML would likely perform better because they are able

to represent a richer set of flexible functional forms. Simulation exercises by CCDDHNR

(2018) demonstrate this property.

I conduct 1,000 Monte Carlo simulation trials of this estimation procedure. In each trial, I

first randomly draw a 1,000 county sample, and randomly select a 2-year panel from these

counties. I use the weather observations from this sample, guaranteeing that there are

realistic correlations between weather variables. Then, I generate a 𝑦 variable according

to the following function: 𝑦𝑖𝑡 “ 𝑎𝑖 ` 𝛽1𝑙𝑜𝑤𝑒𝑟𝑖𝑡 ` 𝛽2ℎ𝑖𝑔ℎ𝑒𝑟𝑖𝑡 ` 𝛽3𝑝𝑟𝑒𝑐𝑖𝑡 ` 𝜀𝑖𝑡, where 𝑙𝑜𝑤𝑒𝑟

(ℎ𝑖𝑔ℎ𝑒𝑟) is the total growing season accumulated GDD below (above) 29°C and 𝑝𝑟𝑒𝑐 is the

total growing season precipitation. This functional form closely matches the parsimonious

form suggested by Schlenker and Michael J Roberts (2009). Note that in this functional

form, OLS Linear is correctly specified for all sets of weather variables I consider. I set

𝛽1 “ 0.02; 𝛽2 “ ´0.05; 𝛽3 “ 0.001, and take 𝑎𝑖 „ 𝑁p1, 1q and 𝜀𝑖𝑡 „ 𝑁p0, 1q.
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(a) Yearly Linear

(b) Yearly Flexible

(c) Monthly Flexible

Figure 3.4.1: Violin plots of distribution of parameter estimates from 1,000 Monte Carlo simu-
lations. The subfigures indicate which set of weather variables are used, using the notation from
Figure 3.2.1. Each subfigure has a separate violin plot for each method used. The plot shows
the density of the parameter at the value on the y axis, based on the simulation trials. The
dotted lines within each plot show the median and upper/lower quartiles of the distribution.
The dotted horizontal line through the plots shows the true value of the parameter, -0.05.

85



method OLS Linear OLS Poly Lasso Lasso DML NNet NNet DML
Weather

Yearly Linear
𝜃 -0.0498 -0.0499 -0.047 -0.0473 -0.0588 -0.0533

(0.003756) (0.009589) (0.006619) (0.006594) (0.009762) (0.008802)
MSE 0.995 0.968 1.01 1.01 1.08 1.08

Yearly Flexible
𝜃 -0.0507 -0.0469 -0.0184 -0.0383 -0.0498 -0.0498

(0.108) (0.386) (0.01192) (0.02) (0.03537) (0.03649)
MSE 0.954 0.511 1.03 1.03 1.1 1.1

Monthly Flexible
𝜃 2.36 -0.0317 -0.00716 -0.0367 -0.0327 -0.0413

(58.22) (0.9779) (0.006234) (0.03336) (0.02993) (0.04387)
MSE 0.752 7.32e-09 1.08 1.08 1.13 1.13

Table 3.4.1: Summary of results from 1000 Monte Carlo simulation draws of the estimation
procedure. The true value of the average derivative in all trials is -0.05; 𝜃 is the average of the
estimated average derivative from all trials. Each column represents a separate method used
for the regression function. Standard errors are in parentheses, and are computed from the
distribution of bootstrap values.

The results of this simulation exercise are summarized visually in Figure 3.4.1 and numeri-

cally in Table 3.4.1. I estimate 𝛽2, the parameter of interest, using OLS, ML, and DML for

weather variables in the Yearly Linear, Yearly Flexible, and Monthly Flexible sets (as illus-

trated in Figure 3.2.1). For OLS, I OLS Linear and OLS Poly as described in Section 3.3.2.

For ML, I consider Lasso and NNet estimators as described in Section 3.3.3 and Section 3.3.3.

For DML, I adjust each ML result with the DML procedure in Section 3.3.3. I use Lasso

DML and NNet DML to describe the Lasso and NNet estimates with the DML correction.

I use the cross-folds and sample splitting procedure described in Section 3.3.

With Yearly Linear weather inputs, OLS performs best among all models. OLS Poly and

OLS Linear have the lowest bias, and OLS Linear has the lowest variance. The machine

learning models performed reasonably well, especially with the DML correction, although

they have greater variance and bias than the OLS results. The central estimate from both

DML approaches lie within 7% of the true elasticity, and a 95% confidence interval contains

the true elasticity.

With Yearly Flexible weather variables, ML estimates have considerably lower variance than

OLS. The estimates using OLS Linear have a standard deviation approximately three times

as large as the DML estimates, while estimates from OLS Poly have a standard deviation

approximately ten times as large. There is substantial bias from the Lasso estimates, al-

though the DML correction greatly reduces this bias. The NNet and NNet DML estimates
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have very little bias; central estimates from both are within 0.4% of the true value and have

less bias than OLS Linear. The 95% confidence interval from both DML procedures contains

the true elasticity, although the 95% confidence interval from Lasso without DML does not.

With Monthly Flexible variables, the benefits of using DML are even more dramatic. OLS

Linear and OLS Poly have extremely high variance, and both have greater bias than the

DML methods. The high variance is especially limiting, as confidence intervals using these

approaches are uninformative. As Figure 3.4.1c shows, the interquartile range of the boot-

strap estimates is not visible on a plot whose range is 8 times the magnitude of the true

target elasticity. OLS Linear estimates a mean value of 2.359, relative to the true value of

-0.05. OLS Poly has a bias of .018, which is greater than bias from Lasso DML (0.012) or

NNet DML (0.0087).

Note that while mean squared error (MSE) can help suggest a preferred model, a straight-

forward comparison of MSE does not select the model with lowest bias. MSE appears higher

among ML models than OLS because the MSE reported by ML is the MSE of the model

evaluated on a test set. When MSE from an ML model is low, this indicates that ML is

providing a better fit because the model extrapolates well to unseen data. When MSE from

an OLS approach is low, this could indicate overfitting. OLS Poly has the lowest MSE in all

trials, but is overfitting the data in the Yearly Flexible and Monthly Flexible cases. In the

data generating process (DGP), the additive error term has variance 1. The MSE from OLS

Poly is much lower than the true squared error from the DGP, indicating that OLS Poly is

fitting the noise instead of the desired pattern in the data. The MSE from OLS Linear with

Monthly Flexible weather terms is significantly lower than the true squared error, indicating

that OLS Linear may be overfitting the data in that setting. This suggests that a compari-

son of MSE alone should not be used to select the preferred model, but the researcher can

consider test-set MSE and performance in simulation trials.

This simulation exercise shows that when a researcher wishes to measure a relationship with

a high-dimensional set of weather variables, DML can provide results with lower bias and

less variance than OLS. With Yearly Flexible or Monthly Flexible weather, NNet DML has

the lowest bias among all models, and the DML methods have significantly lower variance.
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OLS performs best in the Yearly Linear case, which is expected because OLS is correctly

specified and the weather variation is low-dimensional.

3.5 Results

I implement the above estimation procedure to study adaptation to damaging heat exposure

in U.S. corn and soy production. When using the Yearly Linear set of weather variables (as

in Burke and Emerick 2016), I find little to no evidence of adaptation. However, when using

a richer set of weather variation, I find evidence that a considerable share of the short-run

damages from extreme heat are offset with greater exposure to those temperatures. To help

explain this discrepancy, I visualize OLS results with Yearly Flexible temperature variation

to show that the simple linear model may not accurately describe the long-run role of extreme

heat.

I run 500 bootstrap trials of the procedure described in Section 3.3 to measure the elasticity

of crop yields with respect to extreme heat. As described in Section 3.2, I study corn and

soy production from 1990-2019 in counties east of the 100 °W meridian. I use a panel of

the full data to capture short-run variation, and capture long-run variation by comparing

average yield and weather from 1990-1999 to 2010-2019. In each bootstrap trial, I draw a

random subsamples of 80% of counties. This resampling scheme addresses the intertemporal

correlation as suggested by Kapetanios (2008), while avoiding the risk of own-sample bias

from machine learning methods by including the same observations in train and test data.

I estimate the elasticity using the three sets of weather variation described in Figure 3.2.1

and all estimation approaches described in Section 3.3. Each method uses the within trans-

formation to remove individual fixed effects, and includes additive yearly fixed effects. For

estimation methods that use a set of basis functions, I use polynomial expansions of all tem-

perature and precipitation variables, and interactions of the polynomial expansions of each

precipitation variable with the polynomial expansions of each temperature variable. I use

third-order polynomial expansions for Yearly Linear and Yearly Flexible weather variables,

and second-order polynomial expansions for Monthly Flexible. The machine learning models

use a 5-fold cross validation procedure.
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(a) Corn, Yearly Linear (b) Corn, Yearly Flexible (c) Corn, Monthly Flexible

(d) Soy, Yearly Linear (e) Soy, Yearly Flexible (f) Soy, Monthly Flexible

Figure 3.5.1: Box plots of 500 bootstrap samples of ratio 1´ 𝜃𝐿𝑅{𝜃𝑆𝑅, from both corn and soy
production. The subfigures indicate which set of weather variables are used, using the notation
from Figure 3.2.1. The number in parentheses at the bottom of each box plot is the 𝑝 value for
the one-sided test that the ratio is greater than 0. Each subfigure has a separate box plot for
each method used. The line inside each box is the median, the edges of the box are the upper
and lower quartile of the distribution, and the whiskers extending from each box are 1.5 times
the interquartile range.

I only report results from OLS Linear, Lasso DML, and NNet DML in this section. The

simulation results showed that the debiasing procedures are effective at reducing bias from

naive machine learning methods, and that estimates using OLS Poly can have extremely high

variance. Results from the machine learning models without the debiasing procedure and

from OLS with polynomial basis functions are included in Appendix 3.B. Generally, estimates

using machine learning without bias correction are similar to their debiased counterparts,

and estimates using OLS Poly have unacceptably high variance when using richer sets of

weather variation.

Reassuringly, the results using Yearly Linear weather variation are similar to those of Burke

and Emerick (2016). Table 3.5.1 summarizes the results from the bootstrap trials. Long-run

89



Long-Run Short-Run
method OLS Linear Lasso DML NNet DML OLS Linear Lasso DML NNet DML

Crop Weather

Corn

Yearly Linear

𝜃 -0.00481˚˚˚ -0.007˚˚˚ -0.00597˚˚˚ -0.00535˚˚˚ -0.00709˚˚˚ -0.00663˚˚˚
(0.000326) (0.000568) (0.000464) (5.68e-05) (8.05e-05) (0.000337)

MSE 0.00652 0.00648 0.00673 0.0387 0.0363 0.0362
N 2850 2850 2850 38633 38633 38633

Yearly Flexible

𝜃 0.0322˚˚˚ 0.000429 -0.00249 -0.0125˚˚˚ -0.0106˚˚˚ -0.0104˚˚˚
(0.00826) (0.00234) (0.00247) (0.00106) (0.00115) (0.000603)

MSE 0.00531 0.00582 0.00603 0.0376 0.0343 0.0352
N 2850 2850 2850 38633 38633 38633

Monthly Flexible

𝜃 0.0213˚ -0.000793 0.00148 -0.0114˚˚˚ -0.00505˚˚˚ -0.00674˚˚˚
(0.00874) (0.00533) (0.00404) (0.00101) (0.000612) (0.000718)

MSE 0.00263 0.00544 0.00461 0.0334 0.0303 0.0306
N 2850 2850 2850 38633 38633 38633

Soy

Yearly Linear

𝜃 -0.00409˚˚˚ -0.0055˚˚˚ -0.00409˚˚˚ -0.00537˚˚˚ -0.00525˚˚˚ -0.00525˚˚˚
(0.000307) (0.000574) (0.000331) (5.2e-05) (8.07e-05) (0.000252)

MSE 0.00579 0.00562 0.00578 0.0308 0.029 0.0291
N 2422 2422 2422 33799 33799 33799

Yearly Flexible

𝜃 0.00805 -7.48e-05 0.00239 -0.00788˚˚˚ -0.00698˚˚˚ -0.00764˚˚˚
(0.0079) (0.00276) (0.0026) (0.00109) (0.000843) (0.000648)

MSE 0.00432 0.0056 0.00519 0.03 0.0276 0.0282
N 2422 2422 2422 33799 33799 33799

Monthly Flexible

𝜃 0.00955 0.000192 0.00247 -0.00565˚˚˚ -0.00362˚˚˚ -0.00465˚˚˚
(0.00914) (0.0069) (0.00572) (0.00104) (0.000717) (0.000611)

MSE 0.00204 0.00451 0.00421 0.0253 0.0236 0.0234
N 2422 2422 2422 33799 33799 33799

Table 3.5.1: Summary of results from 500 bootstrap draws of the estimation procedure. 𝜃 is the
mean of the average derivative over bootstrap trials. Standard errors are in parentheses, and
are computed from the distribution of bootstrap values. N is the average number of samples
per simulation trial. Stars indicate significance at the 𝑝 “ 0.05p˚q, 0.01p˚˚q, and 0.001p˚˚˚q

levels, based on a Z-score from the mean and standard error of bootstrap trials.

and short-run datasets both find that additional extreme heat decreases crop yields, with

comparable magnitudes for both corn and soy cultivation. The magnitude of these elasticities

are economically significant – an estimate of -0.005 implies that crop yields decline by 0.5%

for each additional day crops are exposed to temperatures above 29°C. The findings are

similar to the results reported by Burke and Emerick (2016). They find that the elasticity

of corn yield ranges from ´0.0037 to ´0.0062.

As in Burke and Emerick (2016), with Yearly Linear weather variation I find little to no

evidence that damages from the short run are offset in the long run. Figure 3.5.1 shows the

results of taking bootstrap samples of the ratio 1´ 𝜃𝐿𝑅{𝜃𝑆𝑅. As described in Section 3.3.1,

𝜃𝑆𝑅 p𝜃𝐿𝑅q is the estimated elasticity with short-run (long-run) variation. For corn cultivation,

I fail to reject the null hypothesis that this ratio is different from 0 for any estimation method.
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I test at the 𝑝 “ 0.05 level, with a Bonferroni correction to account for taking three hypothesis

tests. For soy cultivation, I find mixed results: for both OLS Linear and NNet DML I reject

the null hypothesis at this level, while with Lasso DML I fail to reject the null hypothesis.

For these soy estimates, the 95% confidence interval is r0.1278, 0.3488s using OLS Linear

and r0.07153, 0.3649s using NNet DML. Confidence intervals are computed using the sample

mean and standard deviation among bootstrap trials.

Using Yearly Flexible weather variables, I find significant evidence of adaptation. The

panel with short-run variation finds statistically and economically significant damages from

a marginal increase in extreme heat exposure. Central estimates range from ´0.01057 to

´0.01248 for corn, and ´0.006983 to ´0.00788 for soy. However, I fail to reject the null

hypothesis that the long-run elasticity is different from zero, for both crops using all specifi-

cations. Figure 3.5.1 confirms this finding. For both crops and using all estimation methods,

I reject the null hypothesis that the degree of short-run damages that are offset in the long

run is equal to zero.

Using this set of weather variables, my preferred estimator is NNet DML. Simulation results

showed the this estimator performed best with Yearly Flexible weather variables. The MSE

also suggests that the NNet Double is performing well in this case. The MSE of NNet DML

decreases for long-run regressions for both corn and soy. As the MSE of NNet DML is the

test-set MSE, an improvement relative to the MSE from the Yearly Linear weather variables

reflects am improvement in modeling the true functional form instead of overfitting. Using

this preferred estimate, I find a 95% confidence interval that the ratio is within r0.3023, 1.222s

for corn and r0.6331, 2.001s for soy.

The results from using the Monthly Flexible set of weather variables are similar to those us-

ing Yearly Flexible weather variables, although with greater variance. This greater variance

is not surprising, as the simulation results demonstrated that DML and OLS have higher

bias and variance using this set of weather variables. With short-run variation using this set

of weather variables, there is an economically and statistically significant decline in yields

associated with a marginal increase in heat exposure. With long-run variation, there is no

evidence of significant declines in yields from a marginal increase in heat exposure. Reas-
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(a) Corn, Long-Run Variation (b) Corn, Short-Run Variation

(c) Soy, Long-Run Variation (d) Soy, Short-Run Variation

Figure 3.5.2: Comparison of relationship between temperature and yields with short-run and
long-run variation. Each plot summarizes the coefficient estimates from results with the Yearly
Flexible set of weather variables, using NNet DML. The bar plot shows the expected change in
yields from exposure to a single degree day at the given temperature level. Error bars show one
standard deviation above/below each estimated coefficient. The line shows the best piecewise
linear fit to the bar plot, with one piece from 0-29°C and another from 29-40 °C.

suringly, this evidence is consistent with the result using Yearly Flexible weather variation.

Given the greater variance of these estimates, I fail to reject the null hypothesis that the ratio

of these elasticities is different from zero except using DML methods. Using OLS Linear, I

find that a marginal increase in heat exposure significantly increases crop yields.

These results show that, when the temperature-crop yield relationship is modeled flexibly,

there are not significant average declines in yields associated with a marginal change in long-

run damaging heat exposure. I do not estimate a significant decline from long-run exposure

to temperatures above 29°C because other variation is better able to explain differences

in average long-run yields. This is not the case when using short-run variation, where

flexible modeling confirms that a marginal increase in exposure to temperatures above 29°C

is significantly associated with a decline in crop yields. This finding is novel, and suggests

significant adaptation to damaging heat exposure.
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To better explain this result, I examine the estimates of temperature coefficients from each

weather bin of the Yearly Flexible weather variables. I use my NNet DML procedure to

estimate these plots. Section 3.C includes results using alternate estimation procedures.

Due to the computational cost of estimating each average derivative using the DML proce-

dure, I do not replicate the DML procedure for each of these temperature coefficients; the

results are similar. Figure 3.5.2 visualizes the results of these regressions. Figure 3.5.2b

and Figure 3.5.2d show the results of this estimate using short-run variation. These results

are similar to the results from Schlenker and Michael J Roberts (2009), who noted that the

piecewise linear fit (the dotted line in these figures) explains most of the variation from the

flexible modeling approach (the bar chart in these figures). Here, the piecewise linear model

seems to be a good fit: before around 29°C, additional heat exposure is generally associated

with an increase in yields. After this point, additional heat exposure is associated with a

decline in yields. Like Burke and Emerick (2016), I find that 29°C appears to be threshold

for damaging heat exposure.

The results using long-run variation do not share this pattern. Figure 3.5.2a and Figure 3.5.2c

show the results of this estimate using long-run variation. The coefficients do not demon-

strate a clear piecewise linear pattern. This suggests that the piecewise linear model relating

temperature exposure and crop yield may not be appropriate in long-run models. In Ap-

pendix 3.C, I replicate this figure for different time periods, starting from 1950-1979. These

figures confirm that the piecewise linear model is a better fit when using short-run variation

than when using long run variation. While the results from the Yearly Linear analysis show

that long-run damaging heat exposure is correlated with a decline in crop yields, these re-

sults show that other temperature variation is better able to explain the long-run changes

in crop yields. This shows the importance of flexible modeling to understanding the role of

a marginal increase in damaging heat exposure.

3.6 Discussion

I introduced a DML procedure that can estimate average directional derivatives in high-

dimensional settings, and demonstrated the benefits of this procedure over OLS estimation in
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a simulation exercise. The results show that this procedure can estimate average directional

derivatives with lower bias and variance than OLS. The simulation results also show that my

method is less reliable than having access to a true, parsimonious model of the underlying

function. In settings where the researcher has high-dimensional weather variation and does

not have a strong prior about the true functional form, this DML approach can be used to

estimate elasticities and the degree of adaptation to a weather feature.

Applying this estimator to panel of U.S. corn and soy yields with a rich set of temperature

variation, I conclude that there has been significant adaptation to damaging heat exposure.

Using this flexible method, a panel of short-run damages finds evidence that a marginal

increase in heat exposure above 29°C is damaging for both corn and soy yields. However, by

constructing a dataset of average changes to capture long-run variation, I cannot reject the

null hypothesis that a marginal increase in long-run damaging heat exposure is unrelated to

long-run crop yields. OLS estimates using a Yearly Flexible set of weather variables support

this finding. I demonstrate that long-run exposure to temperatures above 29°C is not clearly

associated with yield declines, as is the case with short-run exposures. This implies that

there has been significant adaptation to climate change in this setting, as the short-run

damages are significantly offset in the long run.

This approach does not offer insight into what form this adaptation may take. Farmers have

many possible adaptation mechanisms, such as investing in irrigation, purchasing improved

seeds, or adjusting planting times. It is important to learn which mechanisms may be re-

sponsible for offsetting damages in the long run, in order to study the long-term effectiveness

of these mechanisms or the ability to use them in other agricultural contexts. More research

is needed to understand how these damages are offset.

The apparent contradiction between this result and prior literature suggests that while there

is adaptation to a marginal increase in damaging heat exposure, there is limited adaptation to

some other damaging feature of climate change. Prior literature, such as Burke and Emerick

(2016), did not find evidence of substantial adaptation to damaging heat exposure. My

analysis shows that while a long-run increase in damaging heat exposure is correlated with

a decline in crop yields, variation in heat exposure at other temperature levels is better able

94



to explain this pattern. This is evidence of omitted variable bias in long-run estimates using

only beneficial and damaging heat exposure. While prior results indicate limited adaptation

to some change in the temperature distribution, my detailed analysis finds that there has

been substantial adaptation to damaging heat exposure.
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Appendix to Chapter 3

3.A Machine Learning Estimation Details

This appendix additional details on the ML estimation procedures.

3.A.1 Lasso

I vary the Lasso hyperparameter (the regularization penalty) on a grid of 15 values, evenly

distributed (in log space) from 10´10 to 100. The cross folds validation procedure gener-

ally selects a hyperparameter from the interior of this grid, suggesting that the range is

appropriate.

Recall the form of the optimization problem:

𝛽ℓ “ argmin
𝛽

ÿ

𝑖Pℐℓ

𝑇
ÿ

𝑡“1

𝑤𝑖p:𝑦𝑖𝑡 ´ :𝑏p𝑋𝑖𝑡q𝛽q
2
` 𝜆|𝛽|1 (3.7)

As this is a (weakly) convex optimization problem, I solve for 𝛽ℓ using the optimization

package CVXPY (Diamond and Boyd, 2016) with the optimizer Mosek (ApS, 2021). In the

optimization package implementation, the optimizer can occasionally fail to find a unique

optimal solution. In these cases, I introduce an ℓ2 of 10´20 to find a unique solution. Using the

optimization package ensures that the Lasso procedure converges, although this procedure is

more memory intensive than coordinate descent and will raise an error if it fails to converge.

I find that the model fails to converge in roughly 5% of simulation trials.

In the main specification, I include yearly fixed effects terms but do not apply a regularization
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to these terms. I accomplish this by selectively applying the regularization factor to terms

in 𝛽 not in those yearly fixed effects terms. The additional fixed effects are retuned before

evaluating the estimator on the test set; this does not impact the estimate of the gradient,

but does improve the mean squared error of the estimator.

I use the optimization package for two reasons. When the solver does not return an error,

the solution is guaranteed to be optimal, unlike in iterative methods such as stochastic

gradient descent or coordinate descent. Some packages contain this functionality for iterative

methods, but I am not aware of an implementation in Python.

3.A.2 Neural Network

I use a relatively simple network configuration, and vary the width of the neural network

(NNet) in each simulation trial. Three key researcher degrees of freedom when using a NNet

are the depth (the number of layers), the width (the number of nodes per hidden layer), and

the activation function (the nonlinear function applied to the outputs of each layer). I use

a network with one hidden layer, the minimal depth for which a NNet can approximate an

arbitrary function (Hornik, Stinchcombe, and White, 1990; Park and Sandberg, 1991). In

each trial run, I use cross-folds validation to select the width of the network. To ensure that

the network is differentiable, I use the Continuously Differentiable Exponential Linear Unit

(Barron, 2017) as the activation function in the network.

I select the hyperparameter from a grid space of 2 to 256, evenly spaced in log terms. The

cross folds procedure generally selects a width from the interior of this set, suggesting that the

range is appropriate. To train the network, I use batch normalization, the Adam optimizer

(Kingma and Ba, 2015), a learning rate of 0.01, and 1000 epochs of training. I retune the

parametric components (the county and yearly fixed effects terms) before evaluating on the

test set. This does not impact the estimate of the gradient, but does improve the mean

squared error of the estimator.

Simulation results show that this simple configuration performs well, although it is possible

that a more complex network configuration would perform better. Given the computational

cost of exploring a wide range of potential network configurations, I leave such exploration
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for future work.

3.A.3 Automatic Double Machine Learning

The theoretical basis for the double machine learning (DML) procedure comes from the Riesz

representation theorem. This theorem states that, for the linear functional2 𝑚, there exists

a function 𝛼0 such that for any function ℎ:

IEr𝑚pℎ,𝑋𝑖qs “ IErℎp𝑋𝑖q𝛼0p𝑋𝑖qs (3.8)

Because this relationship holds regardless of function ℎ, one can set known functions for

which the target 𝑚pℎ,𝑋𝑖q is known and estimate 𝛼̂ from the empirical distribution of 𝑋.

Alternate procedures involve the researcher solving for the functional form of 𝛼 given the

functional 𝑚, and often estimating densities or derivatives of densities. I use this procedure

because it does not require the researcher specifying the form of 𝛼, but instead learns 𝛼̂ from

data.

I follow Chernozhukov, Newey, and Singh (2022a) to estimate 𝛼̂ using Lasso and the basis

functions used to estimate the regression function. The goal is to find the estimator that

minimizes the mean squared error between 𝛼̂ and 𝛼0, where 𝛼0 is the true Riesz representer:

𝛼̂ “ argmin
𝛼

IErp𝛼0p𝑋𝑖,𝑡q ´ 𝛼p𝑋𝑖,𝑡qq
2
s

Using the Lasso functional form, I have 𝛼̂ “ :𝑏p𝑋𝑖,𝑡q𝜌. I find 𝜌 by solving the following

regularized problem:

𝜌 “ argmin
𝜌

IE
”

p𝛼0p𝑋𝑖,𝑡q ´
:𝑏p𝑋𝑖,𝑡q𝜌q

2
ı

` 𝜅|𝜌|1

Expanding the polynomial and applying the definition of the Riesz representer, the expression

simplifies:

𝜌 “ argmin
𝜌

´2IEr𝑚p:𝑏,𝑋𝑖,𝑡qs𝜌` 𝜌
1IEr:𝑏p𝑋𝑖,𝑡q

1:𝑏p𝑋𝑖,𝑡qs𝜌` 𝜅|𝜌|1

2A functional is a scalar summary of a function. The functional in this setting is the directional derivative.
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Chernozhukov, Newey, and Singh (2022a) include an additional iterative procedure to scale

each component’s regularization term by the inverse of its variance; I implement their sug-

gested procedure without modification.

As this is a (weakly) convex optimization problem, I use the optimization package Mosek

(ApS, 2021) to find the optimal value of parameter vector 𝜌 for a given value of regularization

𝜅. Klosin and Vilgalys (2022) present simulation results comparing this optimization method

to the iterative approach from Chernozhukov, Newey, and Singh (2022a); they find that the

optimization approach results in lower mean squared error in estimating the true average

derivative.

I select the value of the hyperparameter 𝜅 by minimizing the above loss function through

the cross-folds procedure described in Section 3.3.3. That is:

ℒ𝛼p𝛼̂ℓ, 𝑋𝑖,𝑡;𝜅q “ ´2𝑚p:𝑏,𝑋𝑖,𝑡q𝜌ℓ ` 𝜌
1
ℓ
:𝑏p𝑋𝑖,𝑡q

1:𝑏p𝑋𝑖,𝑡q𝜌ℓ

I search the hyperparameter over a grid of values suggested by Chernozhukov, Newey, and

Singh (2022a): 𝜅 “ 𝑐p𝑁 ´ 𝑁ℓq
´1{2Φ´1p1 ´ .05{𝑝q, for 𝑐 P t5{4, 1, 3{4, 5{8, 9{16, 1{2u, where

Φ´1 is the inverse of the standard normal density function and 𝑁ℓ is the size of the set of

observations in fold ℓ.

3.B Additional Results

This appendix includes additional results from the bootstrap trials described in Section 3.5.

Table 3.B.1 shows the full results from the estimation of corn yields, and Table 3.B.2 shows

the full results from the estimation of soy yields. As expected, the OLS Poly results have

higher variance than other methods, particularly in higher-dimensional settings. After apply-

ing the bias correction to Lasso, the variance increases. Figure 3.B.1 show the bootstrapped

values of the ratio 1 ´ 𝜃𝐿𝑅{𝜃𝑆𝑅 from all models for corn yields, and Figure 3.B.2 show the

bootstrapped values of this ratio from soy yields. Note that the variance from the OLS

Poly estimates dominates. These standard errors are large and in charge, particularly in

Figure 3.B.1c and Figure 3.B.2c.
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method OLS Linear OLS Poly Lasso Lasso DML NNet NNet DML
Variation Weather

Long-Run

Yearly Linear

𝜃 -0.00481˚˚˚ -0.0063˚˚˚ -0.00692˚˚˚ -0.007˚˚˚ -0.00583˚˚˚ -0.00597˚˚˚

(0.000326) (0.00052) (0.000547) (0.000568) (0.000485) (0.000464)
MSE 0.00652 0.00584 0.00648 0.00648 0.00673 0.00673
N 2850 2850 2850 2850 2850 2850

Yearly Flexible

𝜃 0.0322˚˚˚ 0.014 -0.00135 0.000429 0.00147 -0.00249
(0.00826) (0.0294) (0.000882) (0.00234) (0.00155) (0.00247)

MSE 0.00531 0.00159 0.00582 0.00582 0.00603 0.00603
N 2850 2850 2850 2850 2850 2850

Monthly Flexible

𝜃 0.0213˚ -5.83e+04 -0.00184˚˚˚ -0.000793 0.00356˚˚ 0.00148
(0.00874) (1.25e+06) (0.00042) (0.00533) (0.00126) (0.00404)

MSE 0.00263 3.72e-06 0.00544 0.00544 0.00461 0.00461
N 2850 2850 2850 2850 2850 2850

Short-Run

Yearly Linear

𝜃 -0.00535˚˚˚ -0.00704˚˚˚ -0.00708˚˚˚ -0.00709˚˚˚ -0.00645˚˚˚ -0.00663˚˚˚

(5.68e-05) (7.64e-05) (7.96e-05) (8.05e-05) (0.000595) (0.000337)
MSE 0.0387 0.0363 0.0363 0.0363 0.0362 0.0362
N 38633 38633 38633 38633 38633 38633

Yearly Flexible

𝜃 -0.0125˚˚˚ -0.0115˚˚˚ -0.0106˚˚˚ -0.0106˚˚˚ -0.00845˚˚˚ -0.0104˚˚˚

(0.00106) (0.000988) (0.00112) (0.00115) (0.00055) (0.000603)
MSE 0.0376 0.0316 0.0343 0.0343 0.0352 0.0352
N 38633 38633 38633 38633 38633 38633

Monthly Flexible

𝜃 -0.0114˚˚˚ -14 -0.0038˚˚˚ -0.00505˚˚˚ -0.00562˚˚˚ -0.00674˚˚˚

(0.00101) (491) (0.000589) (0.000612) (0.000677) (0.000718)
MSE 0.0334 0.0258 0.0303 0.0303 0.0306 0.0306
N 38633 38633 38633 38633 38633 38633

Table 3.B.1: Summary of results from 500 bootstrap draws of the estimation procedure, for
corn production. 𝜃 is the mean of the average derivative over bootstrap trials. Standard
errors are in parentheses, and are computed from the distribution of bootstrap values. N is
the average number of samples per simulation trial. Stars indicate significance at the 𝑝 “
0.05p˚q, 0.01p˚˚q, and 0.001p˚˚˚q levels, based on a Z-score from the mean and standard error
of bootstrap trials.
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method OLS Linear OLS Poly Lasso Lasso DML NNet NNet DML
Variation Weather

Long-Run

Yearly Linear

𝜃 -0.00409˚˚˚ -0.0042˚˚˚ -0.00538˚˚˚ -0.0055˚˚˚ -0.00404˚˚˚ -0.00409˚˚˚
(0.000307) (0.000485) (0.000585) (0.000574) (0.000374) (0.000331)

MSE 0.00579 0.00479 0.00562 0.00562 0.00578 0.00578
N 2422 2422 2422 2422 2422 2422

Yearly Flexible

𝜃 0.00805 -0.0554 -0.00169˚ -7.48e-05 0.00559˚˚ 0.00239
(0.0079) (0.0328) (0.000677) (0.00276) (0.00204) (0.0026)

MSE 0.00432 0.000905 0.0056 0.0056 0.00519 0.00519
N 2422 2422 2422 2422 2422 2422

Monthly Flexible

𝜃 0.00955 0.00374 -0.00182˚˚˚ 0.000192 0.00518˚˚˚ 0.00247
(0.00914) (0.0779) (0.000299) (0.0069) (0.00128) (0.00572)

MSE 0.00204 2.74e-23 0.00451 0.00451 0.00421 0.00421
N 2422 2422 2422 2422 2422 2422

Short-Run

Yearly Linear

𝜃 -0.00537˚˚˚ -0.00522˚˚˚ -0.00525˚˚˚ -0.00525˚˚˚ -0.00509˚˚˚ -0.00525˚˚˚
(5.2e-05) (7.43e-05) (8.01e-05) (8.07e-05) (0.000321) (0.000252)

MSE 0.0308 0.029 0.029 0.029 0.0291 0.0291
N 33799 33799 33799 33799 33799 33799

Yearly Flexible

𝜃 -0.00788˚˚˚ -0.00651˚˚˚ -0.00686˚˚˚ -0.00698˚˚˚ -0.00649˚˚˚ -0.00764˚˚˚
(0.00109) (0.00102) (0.000884) (0.000843) (0.000877) (0.000648)

MSE 0.03 0.0258 0.0276 0.0276 0.0282 0.0282
N 33799 33799 33799 33799 33799 33799

Monthly Flexible

𝜃 -0.00565˚˚˚ -38.3 -0.00396˚˚˚ -0.00362˚˚˚ -0.00444˚˚˚ -0.00465˚˚˚
(0.00104) (3.4e+03) (0.000839) (0.000717) (0.000544) (0.000611)

MSE 0.0253 0.0193 0.0236 0.0236 0.0234 0.0234
N 33799 33799 33799 33799 33799 33799

Table 3.B.2: Summary of results from 500 bootstrap draws of the estimation procedure,
for soy production. 𝜃 is the mean of the average derivative over bootstrap trials. Stan-
dard errors are in parentheses, and are computed from the distribution of bootstrap values.
N is the average number of samples per simulation trial. Stars indicate significance at the
𝑝 “ 0.05p˚q, 0.01p˚˚q, and 0.001p˚˚˚q levels, based on a Z-score from the mean and standard
error of bootstrap trials.
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(a) Corn, Yearly Linear

(b) Corn, Yearly Flexible

(c) Corn, Monthly Flexible

Figure 3.B.1: Box plots of 500 bootstrap samples of ratio 1´ 𝜃𝐿𝑅{𝜃𝑆𝑅, from corn production.
The subfigures indicate which set of weather variables are used, using the notation from Fig-
ure 3.2.1. The number in parentheses at the bottom is the 𝑝 value for the one-sided test that
the ratio is greater than 0. Each subfigure has a separate box plot for each method used. The
line inside each box is the median, the edges of the box are the upper and lower quartile of the
distribution, and the whiskers extending from each box are 1.5 times the interquartile range.
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(a) Soy, Yearly Linear

(b) Soy, Yearly Flexible

(c) Soy, Monthly Flexible

Figure 3.B.2: Box plots of 500 bootstrap samples of ratio 1´𝜃𝐿𝑅{𝜃𝑆𝑅, from soy production. The
subfigures indicate which set of weather variables are used, using the notation from Figure 3.2.1.
The number in parentheses at the bottom is the 𝑝 value for the one-sided test that the ratio
is greater than 0. Each subfigure has a separate box plot for each method used. The line
inside each box is the median, the edges of the box are the upper and lower quartile of the
distribution, and the whiskers extending from each box are 1.5 times the interquartile range.
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3.C Short-Run and Long-Run Estimates of Yearly Coef-

ficients

I provide additional results to show the difference between short-run and long-run estimates

of yearly coefficient bins. These results confirm that the functional form of long-run damages

does not follow the well-established pattern of short-run damages. I demonstrate that this

conclusions is robust to different modeling choices and time periods.

3.C.1 Comparisons using alternate estimators

The following plots show results from the comparison between short-run and long-run esti-

mates for each yearly coefficient bin. All plots use the sample from the main estimation, corn

and soy yields from 1990-2019. Each plot summarizes the coefficient estimates from results

with the Yearly Flexible set of weather variables, using either Lasso DML, OLS Poly, or OLS

Linear. The bar plot shows the expected change in yields from exposure to a single degree

day at the given temperature level. Error bars show one standard deviation above/below

each estimated coefficient. The line shows the best piecewise linear fit to the bar plot, with

one piece from 0-29°C and another from 29-40 °C.
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(a) Corn, Long-Run Variation, Lasso DML (b) Corn, Short-Run Variation, Lasso DML

(c) Soy, Long-Run Variation, Lasso DML (d) Soy, Short-Run Variation, Lasso DML

Figure 3.C.1: Comparison of relationship between temperature and yields with short-run and
long-run variation, using Lasso DML.

(a) Corn, Long-Run Variation, OLS Poly (b) Corn, Short-Run Variation, Lasso DML

(c) Soy, Long-Run Variation, OLS Poly (d) Soy, Short-Run Variation, OLS Poly

Figure 3.C.2: Comparison of relationship between temperature and yields with short-run and
long-run variation, using OLS Poly.
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(a) Corn, Long-Run Variation, OLS Linear (b) Corn, Short-Run Variation, Lasso DML

(c) Soy, Long-Run Variation, OLS Linear (d) Soy, Short-Run Variation, OLS Linear

Figure 3.C.3: Comparison of relationship between temperature and yields with short-run and
long-run variation, using OLS Linear.
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3.C.2 Comparisons Over Time

In this section, I provide OLS estimates of Yearly Flexible weather variables using short-run

and long-run variation from different historical periods. In each figure, I compare short-

run estimates using a panel dataset all years in the 30-year range, and long-run estimates

comparing average weather and crop yield values from the first and last decades in that

range.

Each figure contains four separate plots. Each plot summarizes the coefficient estimates

from OLS results with the Yearly Flexible set of weather variables. The bar plot shows the

expected change in yields from exposure to a single degree day at the given temperature level.

Error bars show one standard deviation above/below each estimated coefficient. The line

shows the best piecewise linear fit to the bar plot, with one piece from 0-29°C and another

from 29-40 °C. Regression is taken after the within transformation, and also includes yearly

fixed effects terms and precipitation; these terms are omitted from the figures.

(a) Corn, Long-Run Variation (b) Corn, Short-Run Variation

(c) Soy, Long-Run Variation (d) Soy, Short-Run Variation

Figure 3.C.4: Comparison of relationship between temperature and yields with short-run and
long-run variation, from 1950-1979.
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(a) Corn, Long-Run Variation (b) Corn, Short-Run Variation

(c) Soy, Long-Run Variation (d) Soy, Short-Run Variation

Figure 3.C.5: Comparison of relationship between temperature and yields with short-run and
long-run variation, from 1960-1989.

(a) Corn, Long-Run Variation (b) Corn, Short-Run Variation

(c) Soy, Long-Run Variation (d) Soy, Short-Run Variation

Figure 3.C.6: Comparison of relationship between temperature and yields with short-run and
long-run variation, from 1970-1999.
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(a) Corn, Long-Run Variation (b) Corn, Short-Run Variation

(c) Soy, Long-Run Variation (d) Soy, Short-Run Variation

Figure 3.C.7: Comparison of relationship between temperature and yields with short-run and
long-run variation, from 1980-2009.

(a) Corn, Long-Run Variation (b) Corn, Short-Run Variation

(c) Soy, Long-Run Variation (d) Soy, Short-Run Variation

Figure 3.C.8: Comparison of relationship between temperature and yields with short-run and
long-run variation, from 1990-2019.
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Chapter 4

Equity and Adaptation to Wildfire Risk:

Evidence from California Public Safety

Power Shutoffs

4.1 Introduction

In the last decade, electric utilities in California have been forced to adapt to increasing risk

of catastrophic wildfire. Climate change, forest management practices, and shifting wildland-

urban interface have contributed to the most severe wildfire seasons in California’s history.

Some of the costliest wildfires have been sparked by California electric utilities, and utilities

are responsible for those financial damages under California law. Utilities have already

faced billions in dollars in fines, notably driving Pacific Gas and Electric (PG&E) to declare

bankruptcy in 2019. To make their electric lines safer, utilities invest in managing vegetation,

upgrading infrastructure, and moving lines underground. However, these improvements are

relatively slow and wildfire risk can require utilities to respond quickly.

This paper focuses on utilities’ last-ditch effort to prevent wildfire, the Public Safety Power

Shutoff (PSPS). In a PSPS, a utility preemptively de-energizes lines that are likely to spark

large wildfires. PSPS imposes concentrated costs to impacted communities, and diffuse
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benefits to the utility and the overall public if utilities are successfully preventing wildfire.

These shutoffs are subject to strict regulation, and utilities must demonstrate that they

carefully weigh the costs and benefits of each de-energization event (CPUC, 2019). The first

PSPS was in 2013, and since then over 5,000 circuits (small segments of the electric grid)

have been de-energized and over 1 million customers impacted (Hill et al., 2020). I focus

on shutoffs by the three largest investor-owned utilities in California: Southern California

Edison (SCE), Pacific Gas and Electric (PG&E), and San Diego Gas and Electric (SDG&E).

Utilities must disclose PSPS events, unlike other investments for wildfire resilience that are

protected as information for critical national infrastructure. This makes PSPS decisions a

useful data source to examine the equitability of utilities’ adaptation to wildfire risk.

While PSPS is necessary in the short run to adapt to rising wildfire risk, shutoffs could

exacerbate inequalities if disadvantaged communities receive fewer benefits or bear more

costs. This paper focuses on evaluating the distribution of costs of PSPS. It is challenging to

evaluate the benefit of PSPS because this depends on predicting the damages from wildfires

that might occur without these shutoffs. Predicting wildfire size and damages are notoriously

challenging problems, even given modern machine learning techniques (Taylor et al., 2013; Xi

et al., 2019; Jain et al., 2020). Utilities use proprietary models and datasets to predict wildfire

size, and only declare a PSPS event when they believe that there is a high probability of

catastrophic wildfire (SCE, 2021; PG&E, 2021; SDG&E, 2021a). Many Californians benefit

from reduced wildfire risk, and rural populations or those with health risk factors may benefit

most from reducing wildfire smoke (D’Evelyn et al., 2022). I do not attempt to model the

benefits of PSPS, but note that these shutoffs are likely preventing catastrophic wildfires

and their associated health risks.

I examine how the costs of PSPS are distributed by measuring the extent that PSPS deci-

sions have been equitably targeted. Equitable targeting means that communities with the

same observable risk factors (e.g. weather variation), but differ in health risk factors or

socioeconomic status (SES), experience the same rate of shutoffs. I focus on health risk and

SES as measures of vulnerability because low-SES communities may have limited resources

to adapt to electricity failures and those with health risks may experience health complica-
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tions from wildfire smoke or electricity outages. I use definitions of health risk and SES from

CalEnviroScreen (August et al., 2021). Correlation between PSPS decisions and vulnera-

bility indices could be explained by differences in treatment by the utilities or by various

weather, vegetation, or development conditions that impact wildfire risk. If this correlation

persists after accounting for all factors outside the utility’s control, actions by the utility

(such as unequal infrastructure investments or biased PSPS decision rules) are responsible.

I compare circuits that differ in average SES or health risk, with and without population

and weather controls. This provides evidence of whether vulnerable populations experience

different rates of shutoffs and whether that is explained by observable factors outside the

utility’s control.

To conduct this analysis, I first construct an extensive dataset linking vulnerability indices,

weather, and PSPS records from 2014-2021. For vulnerability, I use Census tract-level data

on health risk factors and SES indices from August et al. (2021). The health risk index

includes rates of asthma, cardiovascular disease, and low birth weights. The SES index in-

cludes unemployment, rates of high school completion, and linguistic isolation. My weather

observations come from GridMET, a dataset of daily observations of 13 weather variables

used to predict wildfire size (Abatzoglou, 2013). I use records of PSPS outages and igni-

tions along power lines from filings to the California Public Utilities Commission (CPUC). I

merge all these datasets with geospatial records of circuits from utilities’ Integrated Capacity

Analysis maps.

I find that there are significant associations between vulnerability scores and PSPS decisions,

although these vary by utility. Without controlling for weather factors, circuits with lower

SES are significantly more likely to have a shutoff in PG&E and SDG&E (at the 𝑝 “

0.001 level), and less likely in SCE (𝑝 value 0.005). Populations with higher health risk are

significantly more likely to have a shutoff in SDG&E (at the 𝑝 “ 0.001 level) and less likely (at

the 𝑝 “ 0.001 level) in PG&E. After controlling for population and weather variation, model

fit improves but these patterns remain largely consistent. This shows that the difference

in rates of PSPS by vulnerability indices is largely unexplained by population or weather

differences.
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To better understand what factors lead to these decisions, I develop a model of PSPS deci-

sions based on guidelines in utilities’ published Wildfire Mitigation Plans (SCE, 2021; PG&E,

2021; SDG&E, 2021a). When weather conditions suggest that large fires are likely, utilities

identify circuits that could spark a large wildfire. Teams of meteorologists, fire scientists,

and data scientists predict regions where ignitions are likely to spread to large fires. They

use data of line conditions from public weather reports, service crews, and private weather

stations to identify lines that could spark wildfires. These experts form predictions using

these rich sources of public and private information, relying on machine learning models

and extensive simulations of wildfire behavior. If their predictions find that the likely costs

of wildfire exceed the costs of shutting off power, they notify residents and de-energize the

circuit. Power remains off until weather conditions are less severe and the utility inspects

affected circuits for any debris or damage.

I examine how health risk and SES indices correlate with the probability of an ignition and

the firm’s cost of declaring PSPS. To find the probability of ignition, I use logistic regression

with records of ignitions along circuits from 2014-2021. I find that ignitions are significantly

(at the 𝑝 “ 0.001 level) more frequent in low-SES circuits and in lower health risk circuits in

PG&E, after controlling for weather variation. To find the cost firms incur from declaring

PSPS, I examine Wildfire Mitigation Plans and post-event reports. In their regulatory filings,

utilities state that the cost of declaring PSPS is linear in the expected size of interruption

(SCE, 2021; PG&E, 2021; SDG&E, 2021a). However, the calculations I find from post-event

reports indicate that cost is linear in number of customers (Valdberg, Tozer, and Kilberg,

2021). The results using either metric as a proxy are fairly noisy, and I do not observe a

strong association between vulnerability indices and the utility’s cost of declaring PSPS.

I can infer how vulnerability indices correlate with the firm’s estimated cost of wildfire

by imposing a model of the utility’s decision problem. With my model, the estimated

coefficients relating probability of PSPS, probability of ignition, and utility’s cost of declaring

PSPS imply the coefficients on the missing component: the utility’s estimated damage from

a wildfire. I do not access this data directly, because utilities use complex, proprietary

software to project wildfire damages. After controlling for weather and population, my
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results are fairly noisy. The only significant finding (after controlling for population and

weather variation, at the 𝑝 “ 0.001 level) is that PG&E estimates higher wildfire damages in

lower-SES circuits. Overall, I cannot reject that utilities are equitably estimating damages.

This project relates to several literatures. First is a literature studying the environmental

justice of wildfire risk. In early work to explore this topic, Niemi and K. S. Lee (2001)

describe how poverty can increase wildfire incidence and damages and Ojerio (2008) shows

that federal wildfire preparedness grants are concentrated in higher-SES communities. One

strand of this literature focuses on comparing populations that live in high wildfire risk re-

gions. Wigtil et al. (2016) document that places with higher wildfire potential generally have

lower social vulnerability to wildfire risk. Wibbenmeyer and Robertson (2022) find higher

average property value, older residents, and more white residents in places with high wildfire

potential. Another strand focuses on the impacts and responses of wildfires. D’Evelyn et al.

(2022) argue that the health effects of wildfire smoke disproportionately impact populations

with limited adaptive capacity. Anderson, A. Plantinga, Wibbenmeyer, et al. (2020) study

inequality in firefighting responses, and document preferential treatment to higher SES com-

munities following salient wildfire events. A. J. Plantinga, Walsh, and Wibbenmeyer (2022)

study the historical spread of fires and find that firefighting efforts prioritize high-value

properties.

Within this literature, several recent studies have examined PSPS as a tool to combat wildfire

risk. Guliasi (2021) gives an analysis of the political economy and history of the PSPS. Hill

et al. (2020) examines potential health costs from PSPS, and Wong-Parodi (2020) surveys

impacted California residents about attitudes towards PSPS events. Rhodes, Ntaimo, and

Roald (2020) studies the PSPS as an optimization problem, and suggests improvements to

current decision processes using a test case. My paper is the first, to my knowledge, to

empirically study the equity of these shutoff decisions.

This project is also related to a literature on identifying bias in decision making, specifically in

cases where agents make decisions relying on complex algorithms. There is a broad literature

on studying discrimination in decision-making, dating back to at least Becker (1957). Lang

and Kahn-Lang Spitzer (2020) and Mehrabi et al. (2021) provide reviews of economics and
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machine learning literature, respectively, on identifying bias in decision making. Recent

examples examining bias in human decisions include an analysis of racial bias in healthcare

decision rules (Obermeyer et al., 2019) and in pretrial appearance risk (Rambachan, 2021).

Examples examining bias in algorithms include facial recognition software (Buolamwini and

Gebru, 2018) and predicting risks from medical records data (Gianfrancesco et al., 2018;

Parikh, Teeple, and Navathe, 2019). Like these studies, I examine decisions and look for

evidence of unequal treatment after controlling for relevant, exogenous variation. I focus on

a setting that is less well-studied in the literature, where agents make algorithm-supported

decisions.

My project is also related to literature on measuring equity in adaptation to climate change.

Among environmental advocates, there has long been a call to focus on equity in climate

change adaptation (Smit and Pilifosova, 2003; Thomas and Twyman, 2005). In their report,

IPCC (2022) identifies several settings where inequality and poverty have set “soft limits”

on the ability of groups to adapt to climate change. Coggins et al. (2021) conducted a

review of literature on equity in climate change adaptation and highlighted several examples

of work assessing the equity of climate adaptation. Sheller and Leon (2016) use interviews

to study how historical inequalities between Haiti and the Dominican Republic impacted

government responses to similar environmental crises, and Satyal, Byskov, and Hyams (2021)

use environmental justice theory to examine how systemic injustices facing an indigenous

group in Uganda undermine adaptation planning. However, Coggins et al. (2021) ultimately

conclude that more work is needed in this area, especially in empirical assessment of equity

and justice. This paper addresses this by providing more work on empirical assessment of

equity and justice in these shutoff decisions.

The remainder of this paper is structured as follows. Section 4.2 describes the various

datasets used in the analysis, and provides summary statistics. Section 4.3 describes my

modeling approach including references to utilities’ filings that justify my modeling decisions.

Section 4.4 gives the results of my analysis, and discusses their interpretation. Section 4.5

concludes.
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4.2 Data

I use a variety of sources to construct a dataset with circuit-level records of weather variation,

vulnerability indices, and shutoff decisions from 2014-2021. The unit of observation is a

circuit-day. An electric circuit is a small unit of the electricity distribution network, and

generally the level at which PSPS decisions are recorded. I treat vulnerability as fixed over

the sample period.

4.2.1 PSPS Events

For PSPS events, I use filings from firms to the CPUC. Firms are required to report statistics

after each shutoff, so this dataset represents the universe of shutoffs between October 2013

and December 2021. The CPUC summarizes these reports and publishes a record of each

shutoff. Each record includes the circuit targeted, the date and time of the shutoff, the

duration of the outage, the number of customers impacted, and information on what types

of customers are impacted. Table 4.2.1 summarizes these filings by year and firm.

PSPS events are generally reported at the circuit level. In some cases, a firm reports a sub-

circuit level outage. I sum these outages to the circuit level to match the weather records in

my data.

In order to link these with other geospatial records, I use integrated capacity analysis (ICA)

maps from each electric utility. ICA maps are circuit-level maps of the distribution in-

frastructure, although some circuit segments are not published due to privacy concerns. I

am able to match over 98% of PSPS records to their corresponding geographic file. The

ICA maps include 5,411 circuits; there are PSPS events recorded on 20.3% of these circuits.

Figure 4.2.1a shows the location of these circuits.

4.2.2 Fire Data

My main analysis uses data on fire ignitions along utility lines from filings to the CPUC from

2014 through 2021. Per CPUC guidelines, firms must report all fires to their knowledge larger

than one meter (CPUC, 2014). This dataset includes 4,550 ignitions from the three firms I
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year 2013 2014 2017 2018 2019 2020 2021
Utility

SCE
Customers – – – – 196,879 235,879 117,690
Million CMI – – – – 353 280 372
# PSPS Events – – – – 246 1,501 122

PG&E
Customers – – – 47,324 1,987,783 645,859 79,630
Million CMI – – – 89.8 6,670 1,560 174
# PSPS Events – – – 32 1,458 670 219

SDG&E
Customers 179 884 17,111 21,036 45,337 93,058 –
Million CMI 0.0797 0.665 40.5 65.4 78.2 165 –
# PSPS Events 3 6 51 38 218 110 –

Table 4.2.1: Number of PSPS events by firm, by year, and the number of customers impacted.
CMI is Customer Minutes Impacted, the product of the minutes of shutoff and number of
customers per circuit. Note that number of customers impacted is the sum of customer shutoffs
experiences, but not the unique number of customers impacted.

study. These filings are required to include the ignition location, but not the corresponding

circuit segment. To match these to the circuit records, I find the closest circuit segment from

the ICA maps to the ignition location. Figure 4.2.1b shows the location of these circuits.

4.2.3 Vulnerability

I use indices from CalEnviroScreen to measure population vulnerability (August et al., 2021).

The authors construct a Census tract-level database of health risk factors and socioeconomic

status (SES) indicators. I use these indexes, as well as the tract-level population, in my

analysis. This database is primarily intended to assess environmental and energy justice in

the state of California.

In the main analysis, I summarize these data with an SES index and a health risk index.

Each index ranges from 0-100, with 100 being the most vulnerable and 0 being the least.

The indices are constructed as the average of ranks of several factors, as in August et al.

(2021). For socioeconomic vulnerability, this includes rate of high school non-attainment,

rent-burdened low-income households, limited English proficiency, living below twice the

federal poverty line, and share unemployed. For the health risk index, this includes asthma

incidence, cardiovascular disease incidence, and rate of low birth weight infants.

To match these records to circuits, I take the average of values from each census tract that
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(a) PSPS Events (b) Ignitions

Figure 4.2.1: Map of which circuits had PSPS events (a) and ignitions (b) from my data. State
borders and boundaries between electric utilities are shown.

contains a given circuit segment. I weight these averages by the length of the circuit in each

census tract. I am able to match records for 5,000 out of 5,411 circuits, and for 1,071 of the

1,103 circuits with a PSPS event.

Figure 4.2.2 plots these scores per circuit against the total number of PSPS events (among

circuits with at least one event), the total number of recorded ignitions (among circuits with

at least one ignition), and the total customer minutes interrupted (among circuits with at

least one event). Each plot also includes the best-fitting line to these observations, to help

summarize the trend among these scatter plots.

4.2.4 Weather data

For weather observations, I use the GridMET weather dataset from Abatzoglou (2013) and

an archive of areas with a red flag warning. This dataset was designed to support applications
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(a) (b) (c)

(d) (e) (f)

Figure 4.2.2: Scatter plots showing vulnerability indices and various outcomes, for circuits
with nonzero values of PSPS events or ignitions. Each plot includes a best-fitting line for the
observations. The coefficient on the index and and the standard error (in parentheses) of each
line are reported in the legend.

in modeling wildfire risk, and includes a rich set of relevant weather variables. Each variable

is reported daily at a high spatial resolution (4 km) across the United States; I include

observations from California.

GridMET includes primary variables, constructed via satellite- and geography-guided inter-

polation from weather stations, and variables derived from these primary observations. To

merge GridMET records with my dataset, I find all grid points within 2
?

2 km of a circuit

and take the simple average of weather records at each observation. Primary variables are

specific humidity, precipitation, minimum relative humidity, maximum relative humidity,

surface downwelling shortwave flux in air (a measure of solar radiation), minimum air tem-

perature, maximum air temperature, wind speed, and wind direction. Derived variables are
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(1) (2) (3)
Max Air Temperature (C) 23.80 28.17 23.31

(8.048) (6.364) (6.390)

Min Air Temperature (C) 10.01 11.91 9.897
(5.564) (5.073) (4.850)

Precipitation Amount (daily mm) 1.265 0.0595 0.00312
(5.598) (0.775) (0.0579)

Specific Humidity (kg/kg) 0.00639 0.00521 0.00394
(0.00216) (0.00251) (0.00167)

Wind Velocity at 10 m (m/s) 3.318 3.670 5.325
(1.581) (1.655) (2.102)

Wind From Direction (Degrees past North) 233.6 228.1 224.2
(82.76) (90.89) (111.6)

Mean Vapor Pressure Deficit (kPa) 1.274 1.945 1.565
(0.946) (0.836) (0.694)

Max Relatively Humidity (%) 77.82 57.08 50.94
(19.37) (21.26) (19.13)

Min Relatively Humidity (%) 33.80 16.62 15.40
(18.47) (11.80) (9.803)

Surface Downwelling Shortwave Flux (W/m2) 223.8 232.1 190.1
(96.88) (74.95) (47.95)

Burning Index (Derived) 36.15 54.96 68.55
(20.91) (16.57) (19.45)

Energy Release Component (Derived) 46.07 67.08 70.08
(23.77) (14.89) (14.03)

Potential Evapotranspiration (Derived, mm) 4.204 5.440 5.092
(2.409) (2.138) (1.783)

Reference Evapotranspiration (Derived, mm) 5.769 7.994 7.978
(3.342) (3.076) (2.787)

Dead Fuel Moisture 100 hr (Derived, %) 12.91 8.538 7.821
(5.100) (3.055) (2.591)

Dead Fuel Moisture 1000 hr (Derived, %) 14.03 9.771 9.301
(5.494) (2.631) (2.689)

Elevation 241.0 314.8 493.6
(325.2) (382.9) (400.1)

Observations 16303343 652310 3333

Table 4.2.2: Summary statistics of GridMET data from October 2013 through 2021. Columns
separate the full sample, the sample during a red flag warning, and the sample during a PSPS
event. Observations are weighted by the length of each circuit segment. Standard errors of the
mean for each column are in parentheses.
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expected to be relevant for predicting wildfire risk: burning index, energy release compo-

nent, potential evapotranspiration, reference evapotranspiration, dead fuel moisture at 100

hours, and dead fuel moisture at 1000 hours. See Abatzoglou (2013) for more details on the

development of this dataset.

In addition to weather variation, firms use Red Flag Warnings from the National Weather

Service to make PSPS decisions. Over 98% of shutoffs occur during a Red Flag Warning,

a period when the National Weather Service has identified weather conditions that could

sustain catastrophic fires. I include an indicator of whether a Red Flag Warning was in effect

in any part of a circuit by merging a historical archive of Red Flag Warning shapefiles.1

Summary statistics of each weather variable are given in Table 4.2.2. Relative to the full

sample, Red Flag Warnings are drier, hotter, and more elevated, and PSPS events occur in

windier and drier conditions and in higher locations.

4.3 Model

My empirical model comes from firms’ descriptions of their shutoff decision process. Per

their filings to the CPUC, firms initiate a PSPS if the expected degree of damages (that

is, the product of expected damages conditional on ignition and the probability of ignition)

exceeds the cost of failing to provide power.2 I am interested in the degree that health risk

factors and SES are correlated with PSPS decisions, and whether this is due to the channels

of expected damages from wildfire, probability of ignition, or the firm’s cost of declaring a

PSPS event. I am unable to directly estimate the degree that these vulnerability indices

are associated with expected damages, but I can infer this parameter from my model and

estimates of the two other channels.

The shutoff decision is a binary choice model, where the firm weighs the expected damages

from a wildfire (“Wildfire Risk”) against the firm’s cost of failing to provide power (“PSPS

Risk”). Per filings to the state regulator, firms use separate prediction problems for probabil-

1From https://mesonet.agron.iastate.edu/info/datasets/vtec.html, accessed 9 December 2021.
2Legislation requires that firms making shutoff decisions must quantify benefits and risks of de-

energization events, and document “how the power disruptions to customers, residents, and the general
public is weighed against the benefits of a proactive de-energization.”
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ity of an ignition and size of fire conditional on ignition (PG&E, 2021; SCE, 2021; SDG&E,

2021a). This approach is common in both classical statistical (Xi et al., 2019) and machine

learning (Jain et al., 2020) approaches to predicting wildfire size. This implies that fire size

and ignition probability are conditionally independent, given an appropriate set of controls.

Conditional independence allows environmental factors and income to influence both fire

damages and ignition probability, but assumes that other shocks to fire ignition are unre-

lated to fire damages. This allows firms to have private information of shocks that influence

either ignition probability or fire size (e.g. having a line crew detect a fallen tree along a

power line), as long as those shocks provide no additional information on the other outcome

variable conditional on our control variables.

I therefore write the firm’s problem as:

PSPS𝑖 “ 1 tProb.pignition𝑖|𝑋𝑖, 𝑍𝑖qIEr𝐶pdamages𝑖q|𝑋𝑖, 𝑍𝑖s ě IErtPSPS Risku𝑖su (4.1)

where𝑋𝑖 is the set of vulnerability indices of interest, and 𝑍𝑖 are additional controls including

weather variation, elevation, and population.

I use a generic function 𝐶 for the expected degree of damages because firms’ profit function

is likely not linear in damages. If firms face nonlinearly increasing consequences from large

fires (e.g. bankruptcy, as PG&E experienced after the 2019 fire season) or are risk averse.3

Let 𝜋p𝑋𝑖, 𝑍𝑖q :“ IEr1tignition𝑖u|𝑋𝑖, 𝑍𝑖s be the conditional probability of ignition, 𝜑p𝑋𝑖, 𝑍𝑖q :“

IEr𝑈pdamages𝑖q|𝑋𝑖, 𝑍𝑖s be the firm’s expected cost from damages conditional on ignition, and

Vp𝑋𝑖, 𝑍𝑖q :“ IErtPSPS Risku𝑖|𝑋𝑖, 𝑍𝑖s be the firm’s expected cost from declaring PSPS. The

firm faces uncertainty over the cost of PSPS because this depends on the duration of an

outage, which is determined by how long weather factors remain in effect. Replacing each

term by its expectation and taking logs, I can rewrite Equation (4.1) as a sum of these

expectations plus an expectational error term:

PSPS𝑖 “ 1 tlogp𝜋p𝑋𝑖, 𝑍𝑖qq ` logp𝜑p𝑋𝑖, 𝑍𝑖qq ´ logpVp𝑋𝑖, 𝑍𝑖qq ` 𝜖𝑖 ě 0u (4.2)

3PG&E explicitly includes nonlinear risk weighting in their decision function; see PG&E (2021), section
4.2.a, for a description, and justifies this behavior as risk aversion in PG&E (2020).
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where 𝜖𝑖 is an expectational error term.

To summarize how factors 𝑋𝑖 influence decisions, I introduce a partially linear approximation

to each function 𝜋, 𝜑,V.

log 𝜋p𝑋𝑖, 𝑍𝑖q “ 𝜎1𝑋𝑖 ` 𝜋̃p𝑍𝑖q; log 𝜑p𝑋𝑖, 𝑍𝑖q “ 𝜎2𝑋𝑖 ` 𝜑p𝑍𝑖q; logVp𝑋𝑖, 𝑍𝑖q “ 𝜎3𝑋𝑖 ` Ṽp𝑍𝑖q

(4.3)

Let 𝛾 be the overall nuisance function: 𝛾p𝑍𝑖q :“ logp𝜋̃p𝑍𝑖qq` logp𝜑p𝑍𝑖qq´ logpṼp𝑍𝑖qq. Then,

I can estimate the following equation:

PSPS𝑖 “ 1 tp𝜎1 ` 𝜎2 ´ 𝜎3q𝑋𝑖 ` 𝛾p𝑍𝑖q ` 𝜖𝑖 ě 0u (4.4)

I make the standard assumption that 𝜖𝑖 is a type-I extreme value random variable, and

estimate this decision as a logistic model. The coefficient on 𝑋𝑖 from this logistic regression

is the overall degree that vulnerability indices influence PSPS decisions, p𝜎1 ` 𝜎2 ´ 𝜎3q. I

assume that 𝛾 is a linear function of log population and weather variables, although it is

also possible to use a more flexible approach. By taking hypothesis tests on whether this

overall parameter is different from zero, I evaluate the research question of whether circuits

with different vulnerability indices experience different rates of shutoffs.

I also wish to find which parts of the firm’s decision problem explain any differences in the

rates of shutoffs between circuits with different vulnerability indices. In terms of the model,

I wish to test whether each parameter 𝜎1, 𝜎2, and 𝜎3 is significantly different from zero. I am

able to estimate 𝜎2 (the contribution to the overall coefficient from ignition probabilities) and

𝜎3 (the contribution to the overall coefficient from PSPS cost) through separate regression

problems, but am not able to estimate 𝜎1 directly.

The value of 𝜎1 is implied given estimates of 𝜎2, 𝜎3, and p𝜎1`𝜎2´𝜎3q. I cannot estimate 𝜎1

directly, as I am not able to estimate the damages from a fire or the firms’ cost functions based

on those damages. Damages from a wildfire are a function of wildfire size and the features

of land damaged by the wildfire. Predicting fire size is a notoriously challenging problem,

even given modern machine learning techniques (Taylor et al., 2013; Xi et al., 2019; Jain
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et al., 2020). Firms use proprietary software to make these fire size predictions, and achieve

relatively high levels of accuracy. In Section 4.A, I document an attempt to predict fire size

using linear regression and random forest regressions. I am unable to provide informative

bounds on the degree of fire size, and am therefore unable to estimate the expected damages

or the firm’s expected damages (after applying the cost function).

To estimate 𝜎2, I use a two-stage procedure with data of ignitions along utility lines. To

estimate 𝜎3, I use a regression of proxies to the firm’s cost, according to their filings. I discuss

these estimation problems in subsections below.

4.3.1 Ignition Probability

I estimate 𝜎2 (the contribution to the overall coefficient from ignition probabilities) by first

finding the probability of ignition, and then finding the coefficient on vulnerability indices 𝑋𝑖

from a partially linear model to those predicted probabilities. To estimate the probability of

ignition, I use logistic regression of ignitions along power lines with control variables t𝑋𝑖, 𝑍𝑖u.

I adjust the standard errors from the second stage estimates, as the second stage estimates

depend on the results from the first stage.

To construct the probability, I model ignition probability as a binomial logit model. I assume

that there exists some latent model of fire ignitions, for some function 𝑔 of vulnerability

indices and environmental factors and a type-I extreme value distributed error term 𝜀𝑖:

ignition𝑖 “ 1t𝑔p𝑋𝑖, 𝑍𝑖q ` 𝜀𝑖 ą 0u (4.5)

With this model, I can calculate the ignition probability 𝜋̂p𝑋𝑖, 𝑍𝑖q given an estimate of 𝑔:

𝜋̂p𝑋𝑖, 𝑍𝑖q “
exp 𝑔p𝑋𝑖, 𝑍𝑖q

1` exp 𝑔p𝑋𝑖, 𝑍𝑖q
(4.6)

I estimate 𝑔 using a subset of data from years where firms do not use PSPS. Table 4.2.1

shows the years with PSPS observations. I use data from all firms in 2015 and 2016 and from

a subset of firms in 2014, 2017, 2018, and 2021. When firms use PSPS, data is censored: the
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researcher does not observe whether an ignition would have occurred without PSPS. With

endogenously censored outcome variables, it is generally only possible to partially identify

regression functions (Khan and Tamer, 2009). Subsets from years when firms do not use

PSPS are not subject to this censoring concern. I assume that the relationship between

weather variation and ignition probability is consistent between years when utilities do and

do not use PSPS; this could be violated if dry vegetation accumulates and fire risk increases

over time, or utilities choose to use other wildfire management strategies in years without

PSPS. In Appendix 4.C, I conduct a robustness exercise and estimate ignition probabilities

using the full sample. While I do not fully characterize the partially identified set, these

exercises support my main findings.

To estimate 𝜎2, I regress the log probability computed from the first stage on 𝑋𝑖 and 𝑍𝑖.

Per Equation (4.3), I assume that the log probability is additively separable in 𝑋𝑖 and 𝑍𝑖.

The parameter 𝜎2 can then be estimated via partially linear regression.

log 𝜋̂p𝑋𝑖, 𝑍𝑖q “ 𝜎2𝑋𝑖 ` 𝜋̃p𝑍𝑖q ` 𝜀𝑖 (4.7)

As this second stage depends on the first-stage estimation, I adjust standard errors for 𝜎2 to

incorporate uncertainty in my estimate of 𝑔. I do so by finding the influence function of the

first-stage problem and incorporating this into standard errors of the second-stage problem,

as in Newey and Daniel McFadden (1994). Section 4.B shows the derivation.

I implement these stages to estimate 𝜎2. I use linear models for the functions 𝑔 and 𝜋̃. The

procedure is as follows:

1. Estimate 𝑔 via logistic regression of ignitions on 𝑋𝑖 and 𝑍𝑖. With a linear model,

estimating 𝑔 means finding a parameter vector 𝛽 “ t𝛽0, 𝛽1, 𝛽2u that maximizes the

likelihood of the model ignition𝑖 “ 1t𝛽0 ` 𝛽1𝑋𝑖 ` 𝛽2𝑍𝑖 ` 𝜀𝑖 ą 0u.

2. Find 𝜎̂2 using Equation (4.7) and the results from the first stage. For the log prob-

abilities, use the estimated first-stage parameter vector to compute the probabilities

𝜋̂p𝑋𝑖, 𝑍𝑖q. Then find 𝜎2 via linear regression of these log probabilities on 𝑋𝑖 and 𝑍𝑖.

To find standard errors for 𝜎2, I adjust the standard errors from linear regression to
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incorporate error in estimating 𝑔.

4.3.2 Cost of PSPS

I estimate 𝜎3 (the contribution to the overall coefficient from PSPS cost) through regression

of proxies to the firm’s cost of PSPS, based on their filings to regulators. Due to ambiguity

between various documents, I use both the number of customers impacted and the customer

minutes interrupted (CMI) as proxies to the firm’s cost of PSPS. These proxies capture

major sources of variance in the firm’s expected costs of PSPS. While neither is a perfect

approximation, they provide a reasonable estimate of how vulnerability indices influence the

firm’s cost of PSPS.

In firms’ Wildfire Mitigation Plans, they state formulas to calculate cost of a PSPS that

depend on customer minutes interrupted (CMI) and the total number of customers inter-

rupted (SCE 2021, p. 61; PG&E 2021, p. 52; SDG&E 2021a, p. 26). Firms also incorporate

the safety cost and financial cost of PSPS, as well as a reliability score. This safety cost

is calculated as a constant factor multiplied by CMI, and the financial cost scales with the

cost of shutoff (SCE, 2022; PG&E, 2020; SDG&E, 2021b). PG&E incorporates a scaling

function if the safety, reliability, or financial costs of PSPS in a circuit exceed 10% of the

largest recorded wildfire damages; I assume that the damage at any circuit never exceeds

this threshold. SDG&E plans to incorporate the health sensitivity of subpopulations, but I

do not observe decisions made with these rules (SDG&E, 2021a, p. 30). In 2021, SCE began

weighting some components of its cost function by the number of vulnerable customers per

line; I do not have access to their conversion formula and do not attempt to model this im-

provement. While the conversion factors are not published, this is absorbed into the constant

if I take a regression of log CMI or log number of customers.

SCE is the only firm to specify how they form ex-ante predictions of the CMI. In their

post-event reports, SCE calculates their CMI as a constant number of minutes multiplied by

number of customers impacted, effectively making the cost of a shutoff a function of function

solely of the number of customers (Valdberg, Tozer, and Kilberg, 2021, p. 16). No other

firms publish their ex-ante PSPS cost calculations. I assume that they either use a constant
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(1) (2) (3) (4) (5) (6)

Health Risk Index 53.28 50.01 50.16 48.21 39.65 39.19
(1.610) (1.160) (1.010) (0.439) (1.130) (0.768)

SES Index 54.18 57.34 49.01 48.65 50.35 51.91
(1.149) (0.712) (0.758) (0.349) (2.018) (1.193)

Observations 223 469 451 1885 81 181
Utility SCE SCE PGE PGE SDGE SDGE
ě24 Hours X X X
mean coefficients; se in parentheses
˚ 𝑝 ă 0.05, ˚˚ 𝑝 ă 0.01, ˚˚˚ 𝑝 ă 0.001

Table 4.3.1: Summary of vulnerability indices (SES index and health risk index), by whether
the observed outage exceeds 24 hours. Standard error of the mean is in parentheses.

factor, or the expected CMI per outage based on the empirical duration of PSPS outages.

With these proxies selected, I estimate 𝜎3 using linear regression on the log of the proxy.

The number of customers impacted and CMI for a given outage are stochastic; depending

on weather conditions, firms may be able to de-energize a smaller section of the circuit or be

forced to prolong the outage. I estimate this relationship using outage duration and number

of customers impacted during each reported outage, with vulnerability indices, weather con-

trols, and log population as additional controls. I assume that for circuits with zero reported

shutoffs, there is the same relationship between average vulnerability indices and CMI.

If firms use a constant outage duration to estimate costs, this approximation may system-

atically undervalue the cost to low SES or high health risk communities. To inspect this, I

compare the average health risk and SES indices for circuits with PSPS outages above and

below 24 hours. Table 4.3.1 shows these summary statistics. For SCE, outages over 24 hours

occur in circuits with significantly higher SES index (indicating lower-SES circuits), and

significantly lower health risk index. This shows that SCE’s stated decision systematically

undervalues the cost of an outage to low-SES populations.
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(a) Health Risk Index (b) SES Index

Figure 4.4.1: Collected coefficient estimates of health risk or SES index on various outcomes,
using all weather and population controls. Each group of plots on the 𝑥 axis show coefficient
estimates for a given outcome variable. Damages (to the right of dotted line) are implied from
estimates to the left of dotted line and my model. Error bars show ˘1.96 times the standard
error. Each group of plots is ordered SCE, PG&E, SDG&E.

4.4 Results

As each firm has unique decision rules, I report separate coefficients for each firm in all trials.

All regressions include utility-by-year fixed effects, and all population or weather control

variables are interacted with these fixed effects. In each subsection, I use four specifications:

no controls (beyond fixed effects), only population as a control variable, primary weather

variables plus population, and all weather variables plus population.

The dependent variables of interest are the health risk index and socioeconomic factor index

from CalEnviroScreen. Recall that in these indices, 0 is the least vulnerable and 100 is the

most vulnerable. Increasing the socioeconomic or health risk index by 1 is equivalent to an

average increase of 1 percentage point across the ranks of the sub-indices. A positive coef-

ficient indicates that the event in a given logistic regression is more likely, or the expected

outcome in a linear regression is larger, when the population on the circuit has higher av-

erage health risk or lower average SES. I refer to circuits where the population has a lower

(higher) average health risk index as lower (higher) health risk circuits, and circuits where

the population has a lower (higher) average SES index as lower (higher) SES circuits.

Figure 4.4.1 summarizes the overall coefficient estimates, for regressions including population

and all weather controls. This figure shows that, after controlling for my set of covariates,

there is a significant association between PSPS decisions and my vulnerability characteristics,
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(a) Health Risk Index (b) SES Index

Figure 4.4.2: Coefficient estimates of vulnerability indices for logistic regression of PSPS events.
Groups on the 𝑥 axis collect results from regression with a given set of controls. Error bars
show ˘1.96 times the standard error. Each group of plots is ordered SCE, PG&E, SDG&E.

in some utilities. The estimates of CMI and number of customers impacted (and the damage

estimates that depend on these values) are especially noisy and I am unable to reject that

these metrics are equitably distributed. Additional summary figures are shown in Section 4.D

using different sets of weather variation.

The following subsections describe the results from each separate regression.

4.4.1 PSPS Decisions

To study PSPS decisions, I use a subset of data during red flag warnings, from October 2013

(the month of the first PSPS event) onward. I limit the scope to red flag events to recreate

the firm’s problem, as over 90% of PSPS events are declared during a red flag warning.

Coefficient estimates from the logistic regression are reported in Table 4.4.1, and visualized

in Figure 4.4.2.

A positive coefficient indicates that higher health risk (lower SES) circuits have a greater

rate of PSPS shutoffs. These coefficients represent the amount that log-odds change with

an increase of 1 unit of the index. They can be approximately interpreted as the percentage

change in PSPS likelihood given an increase in 1 unit of the index, as the coefficients are

fairly close to 0. For example, an estimated coefficient of 0.01 indicates that PSPS events

are 1% more likely in circuits with 1 higher index.
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(1) (2) (3) (4)
psps psps psps psps

SCE x Health -0.00335˚ -0.00355 0.000820 -0.00109
(0.00167) (0.00222) (0.00222) (0.00236)

SCE x SES -0.00565˚˚ -0.00562˚˚ -0.0248˚˚˚ -0.0240˚˚˚

(0.00202) (0.00211) (0.00268) (0.00267)

PG&E x Health -0.0193˚˚˚ -0.0184˚˚˚ -0.0110˚˚˚ -0.0149˚˚˚

(0.00145) (0.00147) (0.00143) (0.00163)

PG&E x SES 0.0122˚˚˚ 0.0111˚˚˚ 0.00926˚˚˚ 0.0151˚˚˚

(0.00129) (0.00124) (0.00157) (0.00183)

SDG&E x Health 0.0394˚˚˚ 0.0465˚˚˚ 0.0386˚˚˚ 0.0313˚˚˚

(0.00425) (0.00498) (0.00652) (0.00781)

SDG&E x SES 0.0247˚˚˚ 0.0404˚˚˚ 0.0131˚˚ 0.0185˚˚˚

(0.00397) (0.00385) (0.00451) (0.00494)
Observations 375064 375064 370263 370263
Pseudo 𝑅2 0.081 0.090 0.297 0.378
Population X X X
Primary X X
Derived X
Standard errors in parentheses
˚ 𝑝 ă 0.05, ˚˚ 𝑝 ă 0.01, ˚˚˚ 𝑝 ă 0.001

Table 4.4.1: Results from logistic regression of PSPS events. Perfectly predicted failures are
omitted. A positive coefficient indicates that higher health risk (lower SES) circuits have a
greater rate of PSPS shutoffs.

Without controlling for weather factors (column 1), higher health risk circuits are signifi-

cantly less likely to have a PSPS in both SCE and PG&E, and more likely in SDG&E. This

finding is significant at the 𝑝 “ 0.001 level for PG&E and SDG&E, and at the 𝑝 “ 0.05 level

for SCE. Lower SES circuits are more likely to have a shutoff in PG&E and SDG&E, and

less likely in SCE; this finding is significant at the 𝑝 “ 0.001 level for PG&E and SDG&E,

and at the 𝑝 “ 0.01 level for SCE. These magnitudes are on the order of 0.01, so a 1 point

increase in the index corresponds to roughly one percent difference in the likelihood of PSPS.

After controlling for weather variation (columns 2-3), model fit improves but these patterns

remain largely consistent. D. McFadden (1973) suggests that a pseudo-R squared of 0.2-0.4

suggests good model fit for logistic regression, indicating that our model acceptably fits the

PSPS decisions after controlling for weather variation. The exception is that the coefficient

on the health risk index for SCE is no longer significant, but the coefficient on socioeconomic
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factors for SCE is larger in magnitude and is statistically significant at the 𝑝 “ 0.001 level.

I do not observe the full set of relevant variation that firms have while making these decisions.

In linear models, Oster (2019) gives an approach to quantify the degree of omitted variable

bias by comparing the stability of coefficients as the model fit improves. I am not aware

of an analogous approach for logistic regression. Informally, the sign and magnitude of

coefficients remain relatively stable as the model fit improves from the null model to the

model including population and all weather controls, indicating that these conclusions may

be robust to incorporating additional variables.

4.4.2 Ignition Probability

I measure how vulnerability indices influence ignition probability via a two-stage procedure,

as described in Section 4.3.1. In the first stage, I use logistic regression of ignitions versus

vulnerability indices, log population, and weather covariates. In the second stage, I find

the best fitting linear approximation to the log probability given the first-stage results.

Standard errors from the second stage are adjusted to account for uncertainty from the first

stage estimation, as described in Section 4.B.

As described in Section 4.3.1, I use data from years where utilities did not conduct PSPS.

This avoids the identification concern that when a firm conducts a PSPS, I do not observe

whether an ignition would have occurred without that intervention. In Section 4.C, I conduct

a robustness exercise using the full set of data. I evaluate the coefficients assuming that

each PSPS event would be an ignition, or that no PSPS event would be an ignition. The

conclusions below still hold in both alternate specifications, suggesting that my findings hold

regardless of any changes in the relationship between weather and ignition probability over

time.

Table 4.4.2 shows the results from the first stage, logistic regression of ignitions on the

vulnerability indices and additional controls. The pseudo-R squared value is relatively low,

even for the model with both primary and derived weather covariates. Many of the coefficient

estimates are statistically indistinguishable from 0. In PG&E circuits, higher health risk

circuits are significantly (at 𝑝 “ 0.001 level) less likely to have an ignition and lower SES
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(1) (2) (3) (4) (5) (6) (7) (8) (9)
ignition ignition ignition ignition ignition ignition ignition ignition ignition

Health Risk Index -0.00314 -0.0113˚˚˚ 0.0213˚˚ -0.00178 -0.0111˚˚˚ 0.0162˚ 0.00652˚ -0.0121˚˚˚ 0.0113
(0.00209) (0.00114) (0.00665) (0.00264) (0.00115) (0.00723) (0.00305) (0.00127) (0.00859)

SES Index 0.00308 0.0148˚˚˚ 0.0174˚˚ 0.00244 0.0146˚˚˚ 0.0196˚˚ -0.00404 0.00916˚˚˚ 0.00955
(0.00258) (0.00110) (0.00664) (0.00262) (0.00110) (0.00625) (0.00278) (0.00133) (0.00666)

Observations 1950168 4939641 700344 1950168 4939641 700344 1950168 4939641 700344
Pseudo 𝑅2 0.006 0.007 0.013 0.007 0.007 0.017 0.047 0.060 0.080
Utility SCE PG&E SDG&E SCE PG&E SDG&E SCE PG&E SDG&E
Population X X X X X X
Primary X X X
Derived X X X
Standard errors in parentheses
˚ 𝑝 ă 0.05, ˚˚ 𝑝 ă 0.01, ˚˚˚ 𝑝 ă 0.001

Table 4.4.2: Results from first stage of ignition estimation, logistic regression of PSPS events.
Health risk and SES are both measured as indices, with 0 being least vulnerable and 100 being
most vulnerable. A positive coefficient indicates that higher health risk (lower SES) circuits
have a greater rate of ignitions. Robust standard errors are reported.

circuits are more likely to have an ignition. This finding is robust to including population

and weather variables. At the 𝑝 “ 0.01 level, ignitions in SDG&E lines are positively

correlated with higher vulnerability indices, although these relationships are not significant

after controlling for weather factors.

Table 4.4.3 shows the results from the second stage, fitting a linear model to the log predicted

probabilities from the first stage. These coefficients show the degree that vulnerability indices

are associated with the log probability of ignition. I suppress the 𝑅2 value from the second

stage procedure, as this statistic does not incorporate the uncertainty from the first stage

and may be misleading. Magnitudes and significance of second stage estimates are generally

quite similar to the first stage results.

Some patterns from the coefficient estimates in Table 4.4.3 are similar to those of the PSPS

decisions, although less precisely estimated. Without controlling for weather variation, I

find that lower SES circuits have higher rates of ignition in PG&E and SDG&E, and lower

rates of ignition in SCE. I find that higher health risk circuits have higher rates of ignition

in SDG&E, and lower rates in PG&E. Controlling for population and weather variation, the

only significant associations that remain are that lower SES circuits in PG&E have higher

rates of ignition and that higher health risk circuits in PG&E have lower rates of ignition.

This is similar to the findings from Table 4.4.1, although there is greater uncertainty. This

suggests that population and weather variation are able to explain much of the observed
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(1) (2) (3) (4)

SCE x Health -0.00015 -0.00178 -0.00141 0.00151
(0.00085) (0.00264) (0.00284) (0.00291)

SCE x SES -0.00299˚˚ 0.00244 0.00074 0.00028
(0.00094) (0.00262) (0.00278) (0.00279)

PG&E x Health -0.01231˚˚˚ -0.01110˚˚˚ -0.01294˚˚˚ -0.01290˚˚˚

(0.00045) (0.00115) (0.00125) (0.00126)

PG&E x SES 0.01340˚˚˚ 0.01463˚˚˚ 0.01025˚˚˚ 0.00959˚˚˚

(0.00046) (0.00110) (0.00130) (0.00133)

SDG&E x Health 0.03221˚˚˚ 0.01620˚ 0.01388 0.01264
(0.00182) (0.00723) (0.00840) (0.00857)

SDG&E x SES 0.01972˚˚˚ 0.01955˚˚ 0.01409˚ 0.01079
(0.00181) (0.00625) (0.00624) (0.00659)

Observations 14925285 7590153 7590153 7590153
Popuation X X X
Primary X X
Derived X

Table 4.4.3: Results from second stage of ignition probability regression. A positive co-
efficient indicates that higher health risk (lower SES) circuits have a greater rate of igni-
tions. Standard errors are computed using Appendix 4.B. Stars indicate significance at the
𝑝 “ 0.05p˚q, 0.01p˚˚q, and 0.001p˚˚˚q levels.

differences in ignitions between more and less vulnerable communities.

4.4.3 PSPS Costs

I use two proxies to find how vulnerability indices correlate with the utility’s computed

cost of PSPS. This cost is the value the utility uses when weighing the costs and benefits

of a shutoff; it reflects the estimated size of the disruption from declaring a PSPS event.

As discussed in Section 4.3.2, I use customer minutes interrupted (CMI) and number of

customers impacted. Results using log of CMI are shown in columns 1-4 of Table 4.4.4, and

log of the number of customers impacted are in columns 5-8.

The patterns are generally similar between regressions, although both are relatively noisy.

Estimates with log CMI are generally larger in magnitude and more precisely estimated

than those using log number of customers. Without controlling for weather variation, there
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(1) (2) (3) (4) (5) (6) (7) (8)
Log CMI Log CMI Log CMI Log CMI Log Cust Log Cust Log Cust Log Cust

SCE x Health -0.00808˚ -0.00780˚ 0.00871 0.00933 -0.00633˚ -0.00606 0.0106˚ 0.0116˚

(0.00327) (0.00384) (0.00489) (0.00506) (0.00309) (0.00364) (0.00479) (0.00491)

SCE x SES 0.0303˚˚˚ 0.0298˚˚˚ 0.0148˚˚ 0.0125˚ 0.0253˚˚˚ 0.0246˚˚˚ 0.0121˚ 0.0115˚

(0.00497) (0.00502) (0.00512) (0.00521) (0.00486) (0.00493) (0.00507) (0.00521)

PG&E x Health -0.0208˚˚˚ -0.0207˚˚˚ -0.0157˚˚˚ -0.0164˚˚˚ -0.0167˚˚˚ -0.0170˚˚˚ -0.0140˚˚˚ -0.0135˚˚˚

(0.00275) (0.00280) (0.00286) (0.00294) (0.00255) (0.00258) (0.00261) (0.00267)

PG&E x SES 0.0119˚˚ 0.0118˚˚ 0.00779˚ 0.0107˚˚ 0.00731˚ 0.00783˚ 0.00297 0.00372
(0.00363) (0.00369) (0.00385) (0.00384) (0.00335) (0.00340) (0.00355) (0.00355)

SDG&E x Health -0.0108 -0.0315˚˚ -0.0389˚ -0.0303 -0.00472 -0.0274˚˚ -0.0342˚ -0.0297
(0.00803) (0.0104) (0.0167) (0.0185) (0.00654) (0.00856) (0.0140) (0.0164)

SDG&E x SES 0.00697 -0.00131 0.0132 0.0149 0.00375 -0.00582 0.00683 0.00754
(0.00545) (0.00620) (0.0110) (0.0126) (0.00476) (0.00531) (0.00955) (0.0117)

Observations 3270 3270 3270 3270 3270 3270 3270 3270
𝑅2 0.172 0.176 0.309 0.351 0.106 0.112 0.237 0.268
Population X X X X X X
Primary X X X X
Derived X X
Standard errors in parentheses
˚ 𝑝 ă 0.05, ˚˚ 𝑝 ă 0.01, ˚˚˚ 𝑝 ă 0.001

Table 4.4.4: Results from linear regression of proxies to PSPS cost, CMI (columns 1-4) and
number of customers (columns 5-8). A positive coefficient indicates that higher health risk
(lower SES) circuits have higher average CMI or number of customers impacted. Robust stan-
dard errors are reported. Outcome variable values of 0 are omitted.

is a significant positive correlation between low SES and the cost proxy for SCE (𝑝 value

ă 0.001) and PG&E (𝑝 value 0.001 for CMI, 0.029 for customers). There is a significant

negative correlation for the health risk index for PG&E (𝑝 value ă 0.001). After controlling

for weather variation, these observations are largely similar. The difference between estimates

with no controls and all controls are not significant at the 𝑝 “ 0.05 except the “SCE x SES”

row, where the association is no longer significant after including all controls.

Rules that determine the cost of PSPS may disadvantage low-SES or high-health risk pop-

ulations if the number of customers is negatively correlated with these indices. This occurs

regardless of whether the rules intend to discriminate based on these characteristics; that is,

it is an example of statistical rather than taste-based discrimination (Guryan and Charles,

2013). The utility’s decision rule places more weight on circuits with higher historical cus-

tomer outages. If circuits with a higher share of vulnerable individuals are less impacted

by shutoffs, the utility’s rule calculates a lower cost from shutoffs in those circuits. These

findings indicate that PG&E’s decision rules may disadvantage high health risk circuits.
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Utilities can adjust their rules to avoid this potential discrimination, and some already are.

SCE already scales part of their PSPS risk score by the size of populations with medical

needs (Valdberg, Tozer, and Kilberg, 2021, p. 16), and SDG&E has plans to implement a

similar program (SDG&E, 2021a, p. 30).

4.4.4 Implied Coefficient of Expected Damages

While I am not able to estimate the firm’s expected damages from a wildfire, the results

of the other estimation steps and the firm’s decision-making rule allow me to infer how

vulnerability indices influence the firm’s expected damages from a wildfire. In Equation (4.2),

I write a model of firms’ decision making involving three parameters: 𝜎1 (the extent that

vulnerability indices influence the firms’ expected damages), 𝜎2 (the extent that vulnerability

indices influence log probability of ignition), and 𝜎3 (the extent that vulnerability indices

influence log cost of declaring PSPS). I am not able to estimate 𝜎1 directly, but estimate

𝜎1` 𝜎2´ 𝜎3 in Section 4.4.1. With separate estimates of 𝜎2 and 𝜎3, I can infer a value of 𝜎1

as 𝜎̂1 “ t𝜎1 ` 𝜎2 ´ 𝜎3u ´ 𝜎̂2 ` 𝜎3.

Table 4.4.5 shows the implied estimate of 𝜎1 given this model and my estimates of 𝜎2 and

𝜎3 from previous sections. I find standard errors by assuming that these problems are

uncorrelated; I take the square root of the sum of squared standard deviations from other

estimates. Overall, these estimates are quite noisy. I fail to reject that expected damages

from fires are equitably estimated by utilities.

These implied values assume that utilities have no control over the duration of an outage or

the number of customers impacted. This is supported by regulatory filings, which state that

the size and duration of an outage are as small as permitted by weather and infrastructure

conditions. This may not be accurate in practice. For example, I conclude that PG&E’s

expected damage is smaller for populations with higher health risk because there fewer

customers are impacted in circuits with higher health risk. This observation would also be

consistent with a model where firms face different costs for different populations, and set

the length of an outage or the number of customers impacted to prioritize populations with

higher health risk. I do not have the data necessary to falsify this model, although it would
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from CMI from CMI from CMI from CMI from Cust from Cust from Cust from Cust

SCE x Health -0.0113˚˚ -0.00957 0.0109 0.00673 -0.00953˚˚ -0.00784 0.0129˚ 0.00902
(0.00377) (0.00516) (0.00607) (0.0063) (0.00361) (0.00501) (0.00599) (0.00617)

SCE x SES 0.0277˚˚˚ 0.0217˚˚˚ -0.0107 -0.0117 0.0226˚˚˚ 0.0166˚˚ -0.0134˚ -0.0128˚
(0.00544) (0.00604) (0.00641) (0.00649) (0.00535) (0.00596) (0.00637) (0.00648)

PG&E x Health -0.0278˚˚˚ -0.0279˚˚˚ -0.0137˚˚˚ -0.0184˚˚˚ -0.0237˚˚˚ -0.0243˚˚˚ -0.0121˚˚˚ -0.0154˚˚˚
(0.00315) (0.00336) (0.00343) (0.00359) (0.00297) (0.00318) (0.00323) (0.00338)

PG&E x SES 0.0106˚˚ 0.00824˚ 0.00679 0.0162˚˚˚ 0.00606 0.00428 0.00197 0.00927˚
(0.00388) (0.00405) (0.00436) (0.00446) (0.00362) (0.00379) (0.00409) (0.00421)

SDG&E x Health -0.0036 -0.00118 -0.0142 -0.0116 0.00252 0.00295 -0.00949 -0.0111
(0.00927) (0.0136) (0.0198) (0.0218) (0.00801) (0.0123) (0.0176) (0.0201)

SDG&E x SES 0.0119 0.0196˚ 0.0122 0.0226 0.00869 0.0151 0.00589 0.0153
(0.00698) (0.00961) (0.0134) (0.0151) (0.00645) (0.00906) (0.0123) (0.0143)

Population X X X X X X
Primary X X X X
Derived X X

Table 4.4.5: Inferred value of 𝜎1, or the coefficient of vulnerability indices on log of expected
utility loss from a fire. Computed using coefficient estimates from previous regressions. Stan-
dard errors are the square root of sum of squares from previous regressions. Stars indicate
significance at the 𝑝 “ 0.05p˚q, 0.01p˚˚q, and 0.001p˚˚˚q levels.

be of interest to distinguish between these potential models of firm conduct.
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4.5 Conclusions

I find that PSPS is used more frequently in low-SES circuits among two of California’s major

utilities, and among higher health risk circuits in one of the major utilities. This finding is

robust to controlling for weather variation. After controlling for weather variation, I find that

ignitions are more frequent in low-SES circuits and in lower health risk circuits in PG&E, but

otherwise do not find significant evidence. With my proxies for the firm’s cost of declaring

a PSPS event, I am unable to make strong claims about the degree that these vulnerability

indices influence the utilities’ estimated costs from declaring a PSPS shutoff or their expected

damages from wildfires. I cannot reject that these costs are equitably distributed.

This work starts to explore a gap in the literature on empirically assessing the equity of

adaptation mechanisms. More research is needed in this area more broadly, as well as to

better understand the impacts of electric utilities’ response to wildfire risk. This research

agenda is challenging without better data about the firm’s problem, particularly how the

firm computes costs and benefits of PSPS. These data would allow researchers to explore a

broader range of research questions, such as the explorations of systematic bias in Obermeyer

et al. (2019) or Rambachan (2021).
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Appendix to Chapter 4

4.A Predicting Fire Size

I use public data to attempt to predict fire size given weather covariates. From 1992-2018,

comprehensive records of fire size are available from the US Forest Service (K C Short, 2014;

Karen C Short, 2021). From 2019-2021, I include records from the National Interagency

Fire Service.4 Records include the date, fire size, and latitude and longitude of ignition. The

final database includes 240,239 records within California. I then merge these data with my

weather observations from GridMET.

I model the problem of predicting catastrophic fires both as a regression and classification

problem. To predict fire size, I regress the log of fire size against the full set of weather

variables from GridMET, as well as yearly fixed effects and fixed effect terms per utility’s

service area. For classification trials, I use three definitions of “large fire”: top 0.02 quantile

(my definition), larger than 300 acres5, and larger than 500 acres.6. In each classification

trial, I weight each observation by the inverse frequency of its class to predict the relatively

rare event of a large fire. I consider a linear set of weather variables, linear regression with

interactions between weather variables, and random forests with 5-folds cross validation.

Table 4.A.1 summarizes the results of these trials. For classification trials, I report the

specificity (share of negative outcomes that are correctly predicted) and sensitivity (share

4From https://data-nifc.opendata.arcgis.com/datasets/nifc::wfigs-current-wildland-fire-perimeters/
about, accessed 11 January 2022.

5Definition from https://www.nps.gov/olym/learn/management/upload/
fire-wildfire-definitions-2.pdf, accessed 1 April 2022.

6Definition from Holmes, Huggett, and Westerling (2008).
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Regression Fire size ě 300 acres Fire size ě 500 acres Fire size ě top 2%
R squared Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity

Linear 0.06311 0.6907 0.6455 0.7017 0.6624 0.6691 0.6115
Linear Interacted 0.08927 0.723 0.6612 0.7302 0.6893 0.6888 0.6271
Random Forest 0.08446 0.02007 0.9994 0.01766 0.9994 0.02622 0.9991

Table 4.A.1: Results from random forest and linear regression at predicting large fires.

(a) Linear (b) Linear interacted (c) Random forest

Figure 4.A.1: Predicted vs actual fire size, using various regression methods.

of positive outcomes that are correctly predicted) of each prediction method, for each “large

fire” definition. For regression, I report the 𝑅2 value. Figure 4.A.1 shows the scatter plots

of predicted fire size vs. actual fire size.

Overall, these results indicate poor performance at predicting fire size. I have limited ability

to extrapolate fire size, meaning I cannot construct informative bounds on the missing data

as required to identify counterfactuals in Rambachan (2021).

4.B Standard Errors for Ignition Probability

In this section, I derive the asymptotic variance of the two-step estimation procedure from

Section 4.3.1. I write the problem as a two-step M estimation, and apply the method from

Newey and Daniel McFadden (1994) to find asymptotic variance after accounting for error

in estimating 𝑔.

I rewrite Equation (4.7) as a least squares problem. Let𝑚p𝜃,𝑋𝑖, 𝑍𝑖, 𝑔q :“ ´plog 𝜋̂p𝑋𝑖, 𝑍𝑖; 𝑔q´

𝜎2𝑋𝑖 ´ 𝜋̃p𝑍𝑖qq
2, emphasizing the dependence of predicted probabilities 𝜋̂ on the first-step

function 𝑔. The set of parameters 𝜃 includes 𝜎2 and the parameters defining the function 𝜋̃.
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Then:

𝜃 “ argmax
𝜃PΘ

1

𝑁

𝑁
ÿ

𝑖“1

𝑚p𝜃,𝑋𝑖, 𝑍𝑖, 𝑔q (4.8)

I can then express the asymptotic variance of estimating 𝜃, as long as 𝑔 is asymptotically

linear. The form comes from applying the Mean Value Theorem to the differences
?
𝑁p𝜃´𝜃0q

and
?
𝑁p𝑔 ´ 𝑔0q.

?
𝑁p𝜃 ´ 𝜃0q

𝑑
ÝÑ 𝑁p0, 𝑉 q, where

𝑉 “ 𝐻´1IE

„"

B𝑚p𝜃,𝑋𝑖, 𝑍𝑖, 𝑔q

B𝜃
`𝑀𝜓p𝑋𝑖, 𝑍𝑖q

*"

B𝑚p𝜃,𝑋𝑖, 𝑍𝑖, 𝑔q

B𝜃
`𝑀𝜓p𝑋𝑖, 𝑍𝑖q

*1

𝐻´1

(4.9)

where 𝐻 is the Hessian matrix of 𝑚: 𝐻 “ IE

„

B2𝑚p𝜃,𝑋𝑖, 𝑍𝑖, 𝑔q

B𝜃B𝜃1



, 𝑀 is the matrix of cross

derivatives of 𝑚: 𝑀 “ IE

„

B2𝑚p𝜃,𝑋𝑖, 𝑍𝑖, 𝑔q

B𝜃B𝑔1



, and 𝜓p𝑋𝑖, 𝑍𝑖q is the influence function of 𝑔 for

an observation t𝑋𝑖, 𝑍𝑖u.

With linear approximations to the functions 𝜃 and 𝑔, it is straightforward to derive these

expressions. Let 𝑊𝑖 “ t𝑋𝑖, 𝑍𝑖u be the column vector of all covariates for unit 𝑖. Then let

𝛽 “ 𝜃 so that 𝜎2𝑋𝑖 ` 𝜋̃p𝑍𝑖q “ 𝑊 1
𝑖𝛽, and let 𝜌 be a parameter vector so that 𝑔p𝑋𝑖, 𝑍𝑖q “

𝑊 1
𝑖𝜌. Recall that with the logistic assumption, 𝜋̂p𝑊𝑖; 𝜌q “ p1 ` expp´𝑊 1

𝑖𝜌qq
´1. I write

𝜋̂𝑖 :“ 𝜋̂p𝑊𝑖; 𝜌q Then:

𝑚p𝛽,𝑊𝑖, 𝜌q “ ´plog 𝜋̂𝑖 ´𝑊
1
𝑖𝛽q

1
plog 𝜋̂𝑖 ´𝑊

1
𝑖𝛽q (4.10)

B𝑚p𝛽,𝑊𝑖, 𝜌q

B𝛽
“ 2𝑊𝑖plog 𝜋̂𝑖 ´𝑊

1
𝑖𝛽q (4.11)

𝐻 “ ´2IEr𝑊𝑖𝑊
1
𝑖 s (4.12)

𝑀 “ 2IE

„

𝑊𝑖
expp´𝑊 1

𝑖𝜌q

1` expp´𝑊 1
𝑖𝜌q

𝑊 1
𝑖



“ 2IEr𝑊𝑖p1´ 𝜋̂𝑖q𝑊
1
𝑖 s (4.13)

Following Jann (2020), I derive the influence function for logistic regression after writing the

problem as a Generalized Method of Moments estimator:

𝜓p𝑊𝑖q “ pIEr𝑊𝑖𝜋̂𝑖p1´ 𝜋̂𝑖q𝑊
1
𝑖 sq
´1
𝑊𝑖p𝑦𝑖 ´ 𝜋̂𝑖q (4.14)
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Plugging these into Equation (4.9), I can determine the asymptotic variance of my estimator.

Note that this framework allows for more general semiparametric estimation, as long as 𝑔 is

asymptotically linear. This allows estimators like random forests or general double machine

learning techniques; see Athey, Tibshirani, and Wager (2019) for advice on deriving the

influence function of a random forest and Ichimura and Newey (2022) for influence functions

of general semiparametric functions.

4.C Ignitions regression with alternate sample

In the main text, I estimate ignition probability using data from years where firms do not

declare PSPS, to avoid a potential data censoring problem. As discussed in Section 4.3.1, this

choice if the relationship between weather variables and ignition probability is not consistent

between years when utilities do and do not use PSPS. As a robustness exercise, I include

results using the full time period, with two different assumptions on the observed ignitions

and shutoffs: that, absent a shutoff, each circuit with a PSPS event would either have an

ignition (Table 4.C.1 and Table 4.C.2) or no ignition (Table 4.C.3 and Table 4.C.4). Overall,

these results suggest that my conclusions in the main analysis are robust to including ignition

data from the full sample.

This provides suggestive evidence about the partially identified set that contains the true

parameter. To fully characterize that set, I could enumerate all possible potential realizations

of the missing data and repeat the estimation procedure for each potential outcome. Due to

the immense computational cost of such a procedure, I only repeat the two-stage estimation

procedure for these two scenarios.

Table 4.C.1 and Table 4.C.2 show the results from the first- and second-stage estimation

(respectively), using the full sample and treating each missing value as a true positive.

The findings that are statistically significant (at the 𝑝 “ 0.001 level) from Table 4.4.3 in

the main analysis are also significant in these regressions: low-SES circuits in PG&E have

higher rates of ignition, as do lower health risk circuits. This regression finds additional

significant associations, although many of these are not robust to an alternate assumption

on the missing data.
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Table 4.C.3 and Table 4.C.4 show the results from the first- and second-stage estimation

(respectively), using the full sample and treating each missing value as a true negative.

Again, the statistically significant findings from the main analysis are confirmed in these

regressions. Many of the additional significant associations from treating each missing value

as a true positive are not significant in this exercise, although both find that lines in low-SES

circuits in SDG&E are significantly more likely to have an ignition.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ignition ignition ignition ignition ignition ignition ignition ignition ignition

Health Risk Index -0.000153 -0.0123˚˚˚ 0.0322˚˚˚ 0.00128 -0.0117˚˚˚ 0.0243˚˚˚ 0.00238 -0.0115˚˚˚ 0.0189˚˚˚

(0.00113) (0.000615) (0.00272) (0.00141) (0.000617) (0.00303) (0.00151) (0.000691) (0.00374)

SES Index -0.00299˚ 0.0134˚˚˚ 0.0197˚˚˚ -0.00359˚˚ 0.0129˚˚˚ 0.0253˚˚˚ -0.0148˚˚˚ 0.00918˚˚˚ 0.0100˚˚˚

(0.00134) (0.000583) (0.00292) (0.00138) (0.000575) (0.00255) (0.00163) (0.000746) (0.00290)
Observations 3120696 9879282 1925307 3120696 9879282 1925307 3120696 9879282 1895814
Pseudo 𝑅2 0.034 0.029 0.045 0.035 0.030 0.069 0.198 0.168 0.334
Utility SCE PG&E SDG&E SCE PG&E SDG&E SCE PG&E SDG&E
Population X X X X X X
Primary X X X
Derived X X X
Standard errors in parentheses
˚ 𝑝 ă 0.05, ˚˚ 𝑝 ă 0.01, ˚˚˚ 𝑝 ă 0.001

Table 4.C.1: First stage ignition results, using the full sample, with PSPS results counted as
ignitions. This is the assumption that all censored results would have been true positives.
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(1) (2) (3) (4)

SCE x Health -0.00015 0.00128 -0.00204 -0.00224
(0.00113) (0.00141) (0.00131) (0.00143)

SCE x SES -0.00299˚ -0.00359˚˚ -0.01008˚˚˚ -0.01056˚˚˚

(0.00134) (0.00138) (0.00161) (0.00162)

PG&E x Health -0.01231˚˚˚ -0.01170˚˚˚ -0.01136˚˚˚ -0.01241˚˚˚

(0.00062) (0.00062) (0.00067) (0.00069)

PG&E x SES 0.01340˚˚˚ 0.01285˚˚˚ 0.00807˚˚˚ 0.00965˚˚˚

(0.00058) (0.00057) (0.00071) (0.00074)

SDG&E x Health 0.03221˚˚˚ 0.02432˚˚˚ 0.02337˚˚˚ 0.02043˚˚˚

(0.00272) (0.00303) (0.00372) (0.00374)

SDG&E x SES 0.01972˚˚˚ 0.02532˚˚˚ 0.01335˚˚˚ 0.01204˚˚˚

(0.00292) (0.00255) (0.00277) (0.00290)
Observations 14925285 14925285 14850777 14889258
Popuation X X X
Primary X X
Derived X

Table 4.C.2: Results from second stage of ignition probability regression, using the full sample,
with PSPS results counted as ignitions. Standard errors are adjusted to account for error in
estimating the probabilities; derivation is given in Section 4.B. Stars indicate significance at
the 𝑝 “ 0.05p˚q, 0.01p˚˚q, and 0.001p˚˚˚q levels.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ignition ignition ignition ignition ignition ignition ignition ignition ignition

Health Risk Index 0.00144 -0.0119˚˚˚ 0.0179˚˚˚ 0.00460˚ -0.0117˚˚˚ 0.0133˚˚ 0.00849˚˚˚ -0.0134˚˚˚ 0.00875
(0.00155) (0.000769) (0.00430) (0.00187) (0.000776) (0.00461) (0.00207) (0.000866) (0.00547)

SES Index 0.00298 0.0167˚˚˚ 0.0205˚˚˚ 0.00178 0.0166˚˚˚ 0.0224˚˚˚ -0.00347 0.0123˚˚˚ 0.0132˚˚

(0.00180) (0.000759) (0.00404) (0.00182) (0.000761) (0.00376) (0.00199) (0.000925) (0.00406)
Observations 3120696 9879282 1867158 3120696 9879282 1867158 3120696 9879282 1845942
Pseudo 𝑅2 0.007 0.007 0.013 0.008 0.007 0.019 0.052 0.061 0.088
Utility SCE PG&E SDG&E SCE PG&E SDG&E SCE PG&E SDG&E
Population X X X X X X
Primary X X X
Derived X X X
Standard errors in parentheses
˚ 𝑝 ă 0.05, ˚˚ 𝑝 ă 0.01, ˚˚˚ 𝑝 ă 0.001

Table 4.C.3: First stage ignition results, using the full sample, with no PSPS results counted
as ignitions. This is the assumption that all censored results would have been true negatives.
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(1) (2) (3) (4)

SCE x Health 0.00144 0.00460˚ 0.00177 0.00400˚

(0.00155) (0.00187) (0.00198) (0.00202)

SCE x SES 0.00298 0.00178 0.00073 0.00051
(0.00180) (0.00182) (0.00196) (0.00197)

PG&E x Health -0.01185˚˚˚ -0.01175˚˚˚ -0.01385˚˚˚ -0.01391˚˚˚

(0.00077) (0.00078) (0.00086) (0.00086)

PG&E x SES 0.01669˚˚˚ 0.01660˚˚˚ 0.01268˚˚˚ 0.01256˚˚˚

(0.00076) (0.00076) (0.00090) (0.00092)

SDG&E x Health 0.01787˚˚˚ 0.01328˚˚ 0.01025 0.01004
(0.00430) (0.00461) (0.00542) (0.00546)

SDG&E x SES 0.02049˚˚˚ 0.02238˚˚˚ 0.01569˚˚˚ 0.01445˚˚˚

(0.00404) (0.00376) (0.00375) (0.00404)
Observations 14867136 14867136 14844334 14844604
Popuation X X X
Primary X X
Derived X

Table 4.C.4: Results from second stage of ignition probability regression, using the full sample,
with no PSPS results counted as ignitions. Standard errors are adjusted to account for error
in estimating the probabilities; derivation is given in Section 4.B. Stars indicate significance at
the 𝑝 “ 0.05p˚q, 0.01p˚˚q, and 0.001p˚˚˚q levels.
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4.D Additional Coefficient Plots

In the main text, I include a visualization of coefficient estimates using all controls (weather

and population). In this section, I include additional visualizations for the other specifica-

tions.

(a) No controls, Health (b) No controls, SES

(c) Population, Health (d) Population, SES

(e) Primary weather, Health (f) Primary weather, SES

Figure 4.D.1: Collected coefficient estimates of health risk or SES index on various outcomes,
using varying sets of controls. Each group of plots on the 𝑥 axis show coefficient estimates for
a given outcome variable. Damages (to the right of dotted line) are implied from estimates to
the left of dotted line and my model. Error bars show ˘1.96 times the standard error. Each
group of plots is ordered SCE, PG&E, SDG&E.
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Chapter 5

Conclusion

It is becoming increasingly urgent to understand and prepare for the damages from anthro-

pogenic climate change. This thesis explored several important measurement questions for

evaluating these damages. I used tools from econometrics, statistics, machine learning, and

economics to measure damages from and adaptation to extreme heat in U.S. agriculture,

and the equitability of adaptation to wildfire risk by California electric utilities.

There is need for further research to understand the impacts of climate change and how

adaptation can offset those impacts. In Chapter 3, I find that the damages from extreme

heat in agriculture are significantly offset in the longer run. However, further work is needed

to measure what farming practices contribute to this adaptation. Without this knowledge,

we are unable to assess how sustainable these farming practices are, and whether they should

be applied to other settings. Datasets with records of farmers’ practices over time are needed

to address the role of unobservable characteristics and evaluate the effectiveness of farming

practices.

Should such data become more widely available, panel DML approaches (like those in Chap-

ters 2 and 3) could be instrumental in measuring the impacts of these practices. New

datasets could pose significant challenges for standard statistical approaches. There is no

guarantee that widely used linear approaches will continue to be good models for underlying

physical processes once the researcher starts to incorporate additional variables. Without
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expert guidance, it is desirable to flexibly model the role of these additional variables. Panel

DML approaches allow researchers to flexibly model these relationships with potentially high-

dimensional variation. In Chapter 2, we demonstrate the effectiveness of DML for estimating

unknown functions with higher power than conventional flexible modeling approaches. In

Chapter 3, I show that these approaches are also effective at recovering true functions from

high dimensional variation.

By augmenting DML approaches to account for unobservable variation, these estimators can

be useful for a variety of applications beyond the agricultural settings in this thesis. Re-

searchers have access to large datasets of weather variables and economic factors, but largely

rely on tools from classical statistics that struggle to represent the full space of interactions

and flexible terms in these variables. One benefit of classical approaches is in addressing

unobservable variation, such as persistent fixed effects. Literature in environmental eco-

nomics has demonstrated the importance of addressing these factors to identify the impacts

of weather shocks and other variables of interest. Panel DML methods allow researchers

to estimate functions with the benefits of modern machine learning, while addressing these

unobservable factors. This could be useful for measuring the impact of weather shocks or

climate change as inputs to a climate damage function, or for other applications studying

the economic consequences of environmental variation.

In addition to better understanding the damages from and adaptation to climate change,

more research is needed to study how the consequences of adaptation to climate change

for equity. Equity of climate change adaptation has long been a concern, as some of the

most impacted nations are those with the least resources to adapt. Even within countries,

adaptation has the potential to exacerbate or address equality. In Chapter 4, I show that

an adaptation response to wildfire risk is used more frequently in low-socioeconomic status

communities among two of California’s major utilities, and among sensitive populations in

one of the major utilities. This shows that this adaptation mechanism is not being applied

equally, although I do not have the data to identify what is responsible for this inequality.

Again, better data availability would help researchers identify these channels.

This thesis contributes several relevant methods and analyses to the literature on the eco-
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nomic impacts of climate change. More research is needed to understand the consequences

of climate change, but there is clearly an urgent need for political action to mitigate future

climate change and address the resulting inequality.
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