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Abstract

This thesis present= a high quality speech coding system. The system is based
on the Multi-Band Excitation (MBE) speech model as developed by Griffin [2].
The system divides speech into 25 ms. segments, and for each speech segment a
set of MBE speech model parameters are estimated. These parameters are then
quantized, transmitted and finally used to synthesize a speech signal. The primary
advantage of this approach is that the modelling process reduces the amount of
information needed to represent speech. Unfortunately, this approach often causes
a loss of speech quality, due tu the limitations of the speech model. One of the
primary advantages of the MBE speech model is that it can produce substantially
higher quality speech, especially when the speech is in the presence of background
noise. The MBE speech model uses » more flexible representation for the excitation
sequence, thereby eliminaiing th~ “buzziness” traditionally associated with model-
based coding of noisy speech.

The primary emphass of this thesis is the quantization of the MBE model
parameters. Earlier work resuited in MBE speech coders producing high cuality
speech at 9.6 kbps and 8 kbps. This thesis expiores the hypothesis that the use
of more compler. quantization methods can allow a major reduction in the bit rate
while maintaiaing high speech quality. This research shows that there are substan-
tial inter-dependencies which exist between the model parameterz. Quantization
algorithins which exploit these dependencies can be used to achieve high quality
speech at “&'8 kbps.
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Chapter 1

Introduction

1.1 Motivation

In a typical speech analysis/synthesis system (vocoder), a model is used to charac-
terize the speech signal. In speech analysis a set of model parameters is estimated,
and then in speech synthesis these parameters are used to generate a synthetic
speech signal. This process is illustrated in Figure 1.1.

One important application area for vocoders is speech coding. Speech is gener-
ally regarded to have an effective bandwidth of 4 kHz. If speech is sampled at the
Nyquist frequency of 8 kHz and quantized using 8 bit samples, then a bit rate of
64 kbps is required. Significant reductions in the bit rate can be achieved through
the use of a vocoder. The number of bits which are needed to characterize the
model parameters is considerably less than the bits needed to represent the actual
samples. The exact bit rate which can be achieved is dependent upon the required
speech quality and the particular vocoder which is being used. Reduction of the
bit rate past a certain point will cause significant defects in any vocoder system.
In addition performance is ultimately restricted by the underlying speech model.
In order to be successful, a speech model must be flexible enough to reproduce the

wide variety of sounds found in typical speech. Also in most applications some



amount of background noise will be present. Therefore it is desirable for a speech
model to be robust with recpect to the signal-to-noise ratio. A highly accurate and

robust speech model is essential for the production of high quality vocoder speech.

Model
Originai Parameters Synthetl
—» Speech »| Parameter —s| Speech >ynihetic
Speech Ar?alysis Quantization Synthesis | “»eech
[
MBE Speech Model

Figure 1.1: Vocoder Block Diagram

1.2 Background

Most current vocoders model speech as the response of a time varying linear filter
to some excitation sequence. Since speech is not a stationary signal it is necessary
to analyze speech over time intervals which are small compared to its time rate of
change. This is accomplished by multiplying the speech signal by a window which
is zero outside of some designated interval. By shifting the location of the non-
zero portion of the window over the speech signal, it is possible to segment the
entire signal. The vocoder analyzes each segment by estimating the parameters
which characterize the linear filter and the excitation sequence for that segment.
This is facilitated by dividing speech segments into two classes depending on the
nature of the excitation sequence. In voicad speech the excitation is modeled as a
periodic impulse train, while in unvoiced speech a white noise sequence is used as
the excitation. Using this distinction the excitation parameters for each segment

consist of a voiced/unvoiced decision and a pitch period, or fundamental frequency,
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for voiced speech. The synthesis system uses these excitation parameters to generate
either a white noise sequence for unvoiced speech or an impulse train with the
desired period for voiced speech. This sequence is then passed through a system
which is specified by the linear filter parameters, and the output is taken as the
synthesized speech.

Vocoders based on the model described above vary primarily by the manmuer
in which they extract the model parameters. Different techniques are exemplified
by linear prediction vocoders, homomorphic decoders and channel vocoders. While
some techniques out-perform others, due to their superior ability to estimate the
model parameters, they are all limited by the validity of the underlying rnodel.
Although this model has proved sufficient to allow the synthesis of intelligible speech,
it has not resulted in a system capable of producing high quality speech. In aa
attempt to circumvent this limitation, considerable work has been done ‘o improve
the correlation between the model and actual speech. In [5.2] a new model is
presented which does not perform a binary voiced or unvoiced classification of the
excitation sequence. Instead each speech segment is modeled using a partially voiced
and partially unvoiced excitation. This Multi-Band Excitation (MBE) speech model
provides more flexibility in the selection cf the excitation sequence, consequently,
it can be used to generate higher quality speech. In addition a new algorithm for
estimating the pitch and spectral envelope has been developed in {2,6] which offers
superior performance over previous methods. By combining these techniques a more
robust and accurate vocoder can be generated, which can potentially be used in a
number of applications requiring high quality speech.

One importart application of the MBE speech model is in speech coding. Speech
coding systems have typically fallen into two broad classes. At higher bit rates,
systems which reproduce the speech waveform on a sample by sample basis have
prevaled. These “waveform coders” typically operate above about 10 kbps. At these

rates there are sufficient bits to provide a reasonibly accurate characterization of
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each sample of the speech signal. Often this characterization takes the form of
a difference between the actual sample value and some predicted sample value.
However, in other systems the samples are characterized in the frequency domain,
or through some other representation. The primary advantage of these techniques
is that they do not force any structure on the output signal, thereby enabling it to
code both speech and non-speech signals. Given sufficient bits a “waveform coder”
can provide high quality speech and a high degree of robustness to background
noise. The traditionzl problem with these systems is that they have been restricted
to higher bit rates. At lower bit rates there are not enough bits to accurately
characterize each sample. The result is a sharp decrease in speech quality.

Very low bit rate speech coding systems have traditionally relied on vocoders.
As meniioned previously, vocoders operate under the assumption that their input
can be accurately represented by a speech model. Since the number of bits required
to represent the model parameters is typically much smaller than the number of
bits required to represent the samples, the vocoder can operate at, much lower rates
than a “waveform coder”. The major problem with vocoders, however, has been
that the degradations induced by the model were more significant than those due to
quantization. For this reason vocoders were generally limited to very low bit rates,
telow about 4 kbps. These systems have been shown to be capable of producing
intelligible speech, lowever they were not capable of producing high quality speech.
in addition the performance of these systems deteriorates rapidly in the presence
of background noise [1].

Several recent developments have extended the useful range of both “waveform
coders” and vocoders to rates hetween 4 kbps and 10 kbps. Vector quantization has
been applied to waveform coders and thereby reduced the required bit rate. The
code-excited linear prediction (CELP) schemes found in |14] have been shown to be
capable of producing high quality speech at these bit rates. Similarly new speech

models have made corresponding improvements in the quality of vocoder speech.
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The sinusoidal model described in [11] is an example. This system is very similar
to the MBE speech model except that it lacks the voiced/unvoiced decisions. This
difference iv important in the context of coding noisy speech as discussed in [2].

The applicability of the MBE speech model to high-quality mid-rate speech
coding has been shown in several systems. In [3] a 9.6 kbps MBE speech coder was
demonstrated. A latter system which was described in 2] operated at 8. kbps.
Both of these systems produced high quality speech in low and kigh Signal-to-Noise
Ratio (SNR) conditions. The advantage of the MBE vocoder was most apparent
from the lack of “buzziness” in the noisy speech. However in both systems the
effects of quantization could be discernea. The most notable of these was an added
reverberance in the speech of male speakers and a number of small artifacts in the
speech of female speakers. The primary cause of these degradations was the lack of
enough coded phase information and the low frame rate which was used.

The goal of this thesis was to investigate means of lowering the bit rate toward
an eventual target of 4.8 kbps. As mentioned above, the effects of quantization
were beginning to become apparent at 8 kbps. Since a rate of 4.8 kbps represented
a significant reduction over that used in the earlier system, it was reasonable tc
assume the degradations would become much more prevalent. Early experimental
evidence verified this hypothesis and showed that at 4.8 kbps the quality of the
speech was unsatisfactory. In order to maintain a high quality speech capability,
a number of alternative coding schemes were investigated. The techniques which
were used to code the parameters in (2| did not fully utilize the redundancy in the
speech parameters. /i more efficient coding algorithm can exploit these additional
dependencies. The problem is therefore reduced to finding a coding technique which
is efficient enough to provide the desired sneech quality at the desired rate. The
remainder of this thesis is focused on this problem for the particular case of a MBE
speech coder.

In the next chapter the MBE speech model is described. Later chapters deal with
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the use of this model in a speech coding system. Specifically, chapter 3 discusses
speech analysis, while chapter 4 is dedicated to the synthesis of speech from the
model parameters. Chapter 5 describes the quantization techniques which were
used in the development of a 4.8 kbps MBE speech coder. Chapter 6 then presents
the results which were obtained with this system for both infcrmal listening tests
and Diagnostic Rhyme Tests. Chapter 7 concludes this thesis with several ideas for

future research.
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Chapter 2

Multi-Band Excitation Speech
Model

The Fourier Transform, S, (w), of a windowed speech segment, s,,(n), can be mod-
eled as the product of an excitation spectrum E,,(w) and a spectral envelope H,, (w).
The primary difference between the MBE speech model and previous ones lies in
the form of the excitation spectrum. In previous models the excitation is entirely
specified by the fundamental frequency w, and a voiced/unvoiced decision: for the
entire speech segment. For voiced speech E,(w) is equal to P,(w), the Fourier
Transform of a windowed impulse train with spacing equal to M = 27 /w,. If the
effects of aliasing are ignored, P,(w) corresponds to the Fourier Transform of the
window sequence centered at cach harmonic of w,. Speech segments which do not
exhibit this periodic property are declared unvoiced. E,(w) for these segments is
modeled as the spectrum of a windowed white noise sequence. This approach al-
lows only two different types of excitation as shown in Figure 2.1. Consequently a
conventional model’s ability to represent the full range of speech signals is saverely
limited.

The extension which has resulted in the MBE speech model is to replace the

binary voiced/unvoiced distinction with a more continuous division as shown in
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Figure 2.1: Conventional Speech Model

Speciral Envelope

Figure 2.2. Instead of making a single voiced/unvciced decision for each speech
segment, the new model divides the spectrum into a number of regions. Within each
of these regions the speech spectrum is analyzed, and a voiced/unvoiced decision
is made. The resulting excitation spectrum is a frequency dependent mixture of
voiced anc unvoiced energy. In each band which is declared voiced P, {w) is used in
the excitation spectrum. The remaining frequency bands correspond to unvoiced
regions, and they are filled with noise energy. The use of many voiced/unvoiced
decisions allows the MBE speech model to have fine control over the makeup of the

excitation spectrum.

This approach was motivated by the observation that many speech segments
have some freqt;ency regions which are dominated by noise energy while other re-
gions are filled with periodic, voiced energy. This is especially the case in mixed
voicing segments of clean speech and in voiced segments of noisy speech. In previous
speech models these cases resulted in degradations in the quality of the synthesized
speech. This degradation often took the form of a “buzzy” sound, which is due to

the replacement of unvoiced energy with voiced energy. The flexibility provided by
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Figure 2.2: Multi-Band Excitation Speech Model

the MBE speech model allows it to avoid the “buzziness” typically associated with
vocoders.

The spectrum of each speech segment is only partially determined by the exci-
tation spectrum. In addition the spectral envelope H,(w) determines the relative
amplitude of each frequency component. Since the excitation spectrum is assumed
to have a constant amplitude, the spectral envelope provides the scaling between
Ey(w) and the actual speech spectrum. In this manner H,{w) can be viewed as
the frequency response which will map E, (w) into Sy (w). Since H,(w) is generally
slowly varying, it is often assumed to be a smoothed version of the actual speech
spectrum Sy, (w).

In Figure 2.3a the spectrum of a typical speech segment is shown. This was
obtained by windowing the speech signal with a 256 point Hamming window and
then calculating the Discrete Fourier Transform of the windowed sequence. Figure
2.3b shows the spectral envelope which has been found for the segment. One can see
that this is a smooth contour containing the general shape of the spectrum shown

in 2.3a. The pitch period which has been estimated for this segment is 78 samples
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at a 10 kHz sampling rate. P,(w) corresponding to this pitch period is shown in
Figure 2.3c. The voiced/unvoiced information is displayed in Figure 2.3d. A high
value on this graph corresponds to a voiced region of the spectrum where P, (w)
would be used in the excitation spectrum. Frequency regions having a low value
in Figure 2.3d are unvoiced and noise energy as shown in Figure 2.3e is used in
the excitation spectrum. This combination of voiced and unvoiced spectra is then
multiplied by the spectral envelope to create the synthetic speech. This product is

shown in Figure 2.3f.

17



A

..“ MNNWN\ [N | |

Figure 2.3a Original Speech Spectrum Figure 2.3b Spectral Envelope

i 0]

Mh lIJ DAL Md ] | \ 1

Figure 2.3¢ Periodic Spectrum Figure 2.3d V/UV Information

A

'\ i
L L "\‘\/\v’f\ ]\rm Ao o
Figure 2.3e Noise Spectrum Figure 2.3f Synthetic Speech Spectrum

aJ\

[

Figure 2.3: MBE Speech Spectra

18



Chapter 3

Speech Analysis

In order to produce high quality speech an accurate and -obust algorithm m* it be
used to estimate the model parameters. The technique described by Griffin in [2]
has been shown to be very successful. This approach differs from previous ones
in an important way. Instead of trying to estimate the excitation sequence and
the spectral envelope separately, these parameters are found simultaneously. This
approach allows the error between the original and synthetic speech spectra to be
minimized in a least squared sense.

In general each speech segment can be either voiced, unvoiced or a mixture of the
two. For unvoiced speech, the pitch period or fundamental frequency is not relevant,
since the excitation spectrum is the transform of a white noise sequence. However,
since most segments will be at least partially voiced, a fundamental frequency will be
needed to characterize the periodic portions of the excitation spectrum. Therefore,
the approach which is taken is to first assume the segment to be entirely voiced.
The fundamental frequency and spectral envelope are then found which minimize
the difference between the original speech spectrum and the synthetic spectrum.
The result of this operation will produce small differences over voiced regions of the
spectrum and large differences in the unvoiced regions. At this point the spectrufn

is broken up into bands which correspond to groups of harmonics of the chosen
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fundamental frequer.cy. The error is evaluated within each of these regions and is
used as the basis forr a voiced/unvoiced decision. The model parameters for voiced
areas have already been determined through the error minimization process. For
unvoiced regions the spectral envelope must still be characterized. This is done by
finding the average magnitude of the original speech spectrum around each harmonic

within the region.

3.1 Pitch Estimation

In early MBE systems a frequency domain algorithm was used to estirnate the pitch
and spectral envelope simultaneously. This procedure matched the synthetic speech
to the original speech in a least squares sense. In 6] the accuracy of this pitch esti-
male was shown to be considerably higher than that found with more conventional
pitch estimators. This high degree of accuracy was found to be necessary in order
to achieve reliable voiced/unvoiced determination [2]. An inaccurate pitch estimate
can result in large differences between the original and synthetic speech. This is es-
pecially the cise at higher frequencies where small pitch errors are accentuated. The
system interprets this difference as a lack of voicing in the speech, and consequently
voiced /unvoiced errors can be made.

The techinique described above was shown to result in accurate pitch and spec-
tral envelope estimates [5,3]. The primary disadvantage to this approach, however,
was the la:ge amount of computation needed to perform the estimation. The es-
timation is perf-ormed by minimizing the error between the original and synthetic
speech spectrum for some assumed fundamental frequency. For each fundamental
frequency there is an “optimal” synthetic spectrum and a corresponding minimal
error. By evaluating this error over a large range of fundmental frequencies the best.

estimate of the pitch and the spectral envelope can be found. In practice this is

accornplished in two stages. At first the error is evaluated on a coarse grid. The
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minimum of this error is found and the corresponding fundamental frequency is
used as an initial estimate in the second stage. The error is now reevaluated at
finer increments in a small band around the initial estimate. The fundamental fre-
quency resulting in the minimal error in this stage is taken as the refined estimate.
This procedure can be repeated on ever finer grids, until the desired accuracy is
achieved. The problem lies in obtaining the initial estimate. In the first stage the
error must be evaluated for a large number of fundamental frequencies, while in
the second stage the error only needs to be evaluated at about 5 to 10 fundamental
frequencies. Since the final accuracy of the estimate is determined by the second
stage, a less accurate technique can be used to gain the initial estimate without
adversely effecting the performance of the system.

The technique used to obtain the initial pitch estimate is based on an auto-
correlation function. As will be shown below, this procedure is equivalent to the
frequency domain method for integer pitch periods. In |2] the accuracy of this tech-
nique was shown to be sufficiently less than that achievable using the frequency
domain technique. Although this accuracy was found to be insufficient for reliable
voiced/unvoiced determination, it was shown to be sufficient for determination of
the initial estimate. The main advantage of the autocorrelation technique is its
computational savings. By using the Fast Fourier Transform (FFT) to perform the
autocorrelation, the initial pitch estimate can be obtained very efficiently.

In the next subsections the two pitch estimation algorithms are presented. The
frequency domz&in approach is shown first. The expression for the “optimal” spec-
tral envelope for an assumed fundamental frequency will be derived. This wili then
be used to evaluate the resulting least-squared error. These results are then refor-
mulated to produce the autocorrelation algorithm. The two expressions are shown

to be approximately equal for integer pitch periods.
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3.1.1 Frequency Domain Pitch Detection

Ir. order to find the parameter set resulting in the minimum error between the
original and synthetic speech it is necessary to solve @ highly non-linear optimization

problem. In general the error between the two can be expressed as:

1

E=— /w :_’ G(w)[Su(w) ~ Su(w)[2dw (3.1)

where S, (w) is the synthetic speech spectrum and G(w) is a frequency dependent
weighting function. Since S, (w) is equal to the product of H,(w) and E,(w), (3.1)

can be rewritten as the following:

E-= 5‘; [ 6)I8u() - Bufw) Ho(w)d (3.2)

At this point several assumptions must be made in order to simplify the form
of the error expression. The first is that the speech segment is entirely voiced.
In addition the fundamental frequency w, is assumed to be known. Given this

information the excitation spectrum takes the following form:

E,(w) = Z Won( (3.3)

where W (w) is the Fourier Transform of the segmentation window w(n), Wp(w) =
W(w — mw,), and M = [27m/w,]. For typical segmentation windows such as the
Hamming window, W (w) has an effective bandwidth which is less than w,. Conse-
quently the effects of aliasing between W, (w) and W;(w) can be ignored for all 1 # j.
In addition the'impulsive nature of W,,(w) allows the spectral envelope, H,(w) to
be approximately characterized by a set of M complex scale factors. These scale
factors are determined by error minimization around the region occupied by each
harmonic. Using these assumptions, the error around the m** harmonic can be

expressed as the following:

P~

[ G)ISu(w) = Anm(w) Fdw (3.4)
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where A,, is the complex scale factor associated with the m** harmonic. The range
of the integral is set such that it has a width equal te w,, centered at mw,. From
this information a, = (m — .5)w, and b, = (m + .5)w,. By differentiating (3.4)
with respect to A,,. the scale factor which minimizes the error over the region
an < w < b, is obtained. This leads to the following expression for the optimum
An:
1 [bm
/ G(w)Su (W)W, (w)dw
w .

27 Ju=am

An = S .
o Lo C@Wn(w)[ dw

The optimum A,, can be used to evaluate the resulting minimum error. Substituting

(3.5)

(3.5) into (3.4) and rearranging, the following expression is obtained for Ey, ., the
minimum error over the m** harmonic:
1 bm . . 2
L e = [ Gw)Su(w)W;(w)dw]
Enp .. = — G (w)|Sw(w)|*dw — Ll (3.6)
e 27w Ju=a 1 fbm 2
. = [ G) W (w) P

Since a,, and b,, are dependent upon the assumed fundamental frequency, the values
of A, and E,, . are also dependent on this value. For a given w, (3.5) can be used
to generate the scale factors which minimize the error over a particular harmonic
region. These scale factors can then be used to evaluate the minimum error as
shown in (3.6). This process can be extended to find the minimum error over the
entire spectrum. This quantity is denoted by E7,_, and is given by:
M-1
_ Bt = ). Em,, (3.7)
m=0
where E,, . is defined by (3.6).

Equation (3.7) can be used to select the best fundamental frequency out of a set
of hypotheses Er . is calculated for each possible value of w,. This information
is then processed to find the best hypothesis. The value of w, which corresponds
to this hypothesis is then used with equation (3.5) to calculate the optimum scale

factors.
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3.1.2 Autocorrelation Pitch Detection

The minimum error as a function of w, is given in the frequency domain by (3.7).
This expression can be reformulated in the time domain, yielding an alternative
pitch estimation algorithm. This time domain approach is approximately equal to
the frequency domain approach for integer pitch periods. In addition, an efficient
implementation can be found, which gives the time domain algorithm a substantial
computational advantage.

Subsequent analysis is simplified if G(w) = 1 for —n < w < w. This condition
does not cause a loss of generality since S, (w) and W, (w) can be prescaled accord-
ingly. Substituting (3.6) into (3.7) gives the following expression for the minimum

error over the entire spectrum:
1 [~ 9
B =5 [ 1Su()fd - W(w,) (3.8)
N Jw=—x

where ¥(w,) is given by:

1 [bm .
v 2 = [, o ()W, () doo] .
b /w " W)

From (3.8), minimizing the error against w, is equivalent to maximizing ¥(w,)

against w,. In the limit where E approaches zero, ¥(w,) approaches the energy

in the signal. For all other values ¥(w,) will be less than the energy in the signal.
Since the bandwidth of the window function W (w) is assumed to be less than
w,, the limits on the integrals in equation (3.9) can be extended. This yields the

following equation:

T / W (o) doo?

W(w,) = 2r ). - (3.10)

= / (W () e
27 Ju=—=x
If the window is energy normalized, the following equation holds:

1 L4
— W (w)]?dw = 1 3.11
s [ W) (3.11)
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Imposing this condition on the window function, and using Parseval’s Theorem, a
time domain expression for ¥(w,) can be realized. The result is given by:

U(w,) = z |st n)w,, ( (3.12)

Since Wy, (w) = W (w—muw,) and s,,(n) = s(r)w(n), equation (3.12) can be expanded

to yield:
M-1

¥(en) = 5 X s(m)slk)u (m)u () 3 e7ememd) (3.13)

m=0

where s(n) and w(n) are known to be real sequences. If w, is constrained to only
allow integer pitch periods, then w, = %—,’5, where M is equal to the pitch period.
Substituting this result into equation (3.13), the following expression for ¥(M) is
found,

Y(M) =) s(n)s(n — kM)w?(n)w?(n — kM) = Z ®(kM) (3.14)

n k

where,

®(l) = s(n)s(n — Hw*(n)w(n - 1) (3.15)

n

Equation (3.14) shows that ¥(M) is a function of the autocorrelation sequence
®(l). Since the autocorrelation of a sequence can be computed very efficiently with
a FFT algorithm, ¥(M) can also be calculated very efficiently. From equation (3.8),
the pitch period corresponding to the maximum of ¥(M) also yields the minimum
error. Therefore ¥(M) can be used to form an initial estimate for the pitch period.
One simple approach which could be used to form this initial estimate would be to
choose the pitch period yielding the maximum value of ¥(M). A better technique,
however, is to combine the information contained in ¥(M) with some restrictions

on pitch continuity, thereby improving the pitch estimate.

3.1.3 Pitch Refinement

The function ¥(M). which is generated by the autocorrelation pitch estimation

algorithm, is used in the generation of the pitch estimate. However, before the final
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estimate is obtained the data must undergo several additional processing steps.
These steps include bias removal, pitch tracking, harmonic checking, and finally
an increase in the accuracy of the estimate. Proper execution of these steps is
important for accurate and robust pitch estimation.

As shown in [2], B, is biased such that longer pitch periods are favored over
shorter pitch periods. If speech is modeled as a periodic signal in white noise, then
the expected value of Er_, is given by the following:

E|Er,. |~c*(1- M i w'(n)) (3.16)

n=-—>

where o is the standard deviation of the white noise. This expression can be used
to remove the bias from the error function as shown in [2].

A pitch tracking algorithm is used to process the unbiased error in order to
improve the continuity of the pitch estimates. This algorithm uses the unbiased
error from the current frame, several future frames and several past frames in order
to find a pitch track with the minimum total error. Dynamic programming tech-
niques as described in [12,2] are used to reduce the computational complexity of
this algorithm.

The output of the pitch tracking algorithra is an initial estimate of the pitch
period (or fundamental frequency) for the current speech frame. This pitch estimate
is checked against its harmonic sub-multiples in order to ensure that the initial
estimate is not a harmonic of the true pitch period. Figure 3.1 shows a typical
graph of unbiased pitch error versus pitch period. As can be seen, the error is
comparable at the true pitch period of 35 samples and at its near multiples of 69
and 104 samples. The pitch estimate must be chosen to equal the true pitch period
of 35 samples, regardless of whether the initial estimate was equal to 35, 69 or 104

samples.

Once the multiples of the true pitch period have been discarded the accuracy
of the new pitch estimate must be increased. As discussed earlier, the fundamental

frequency, which is inversely related to the pitch period, must be known very accu-
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Figure 3.1: Error vs. Pitch Period

rately in order to make reliable voiced /unvoiced decisions. Since the autocorrelation
pitch estimation algorithm is essentially restricted to integer pitch periods, it can-
not provide sufficient accuracy. In [2] it was shown that a fundamental frequency
accurate to within 1 Hz. was sufficient for reliable voiced/unvoiced determination.
In additior it was shown that the frequency domain pitch estimation algorithm
discussed above was capable of achieving this accuracy. The minimum error for
this algorithm as a function of the estimated fundamental frequency is given by
equations (3.7) and (3.6). This error function is evaluated over a small range of
fundamental frequencies, which is centered at the inverse of the refined pitch esti-
mate. The fundamental frequency which results in the minimum error is chosen as

the final estimate.
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3.2 Spectral Envelope Determination

As discussed previously, the frequency domain pitch estimation algorithm estimates
the optimum complex scale factors, A, for a given fundamenta! frequency. Since
these scale factors characterize the spectral envelope for voiced speech, only the
unvoiced portions of the spectral envelope remain undetermined. In order to de-
termine the speciral ervelope fer the unvoiced speech, the speech spectrum must
first be divided into voiced and unvoiced regions. This process is described in the
following section. Once a region has been determined to be unvoiced, the spectral
envelope is characterized in that region by the average of the spectral magnitude.

The phase of the spectral envelope is not obtaired for unvoiced regions.

3.3 Voiced/Unvoiced Determination

In the attempt to minimize the error between the original and the synthetic spec-
trum the speech segment was assumed to be all voiced. The estimation algorithm
uses this assumption to find the optimum fundamental frequency and complex scale
factors. The voicing information is determined by first dividing the spectrum into
regions which correspond to groups of three harmonics of the fundamental. Within
each region a decision is made as to whether the speech spectrum is voiced or un-
voiced. This determination is made by examining the error between the original
speech spectrum and the estimated speech spectrum within this region. Since the
estimated spectrum assumes the speech to be voiced, the error will be low in voiced
regions and high in unvoiced regions. Therefore the error can be used to make the
voiced /unvoiced decision by comparing it against a predetermined threshold.

The value of the threshold level is set to give the proper mix of voiced and
unvoiced energy. If the threshold is set too high, then the speech takes on a hollow,
reverberant sound due to the predominantly voiced nature of the speech. Similarly,

if the threshold is set too low, then the speech takes on a hoarseness due to the
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large amounts of unvoiced energy. Listening tests can be used to set the threshold
to the point where the ratio of voiced to unvoiced energy is perceptually optimal.
The value of the threshold is extremely important for high quality synthesis of
noisy speech. Early experiments with noisy speech showed a tendency for unwanted
voiced energy to appear at high frequencies. Lowering the threshold to eliminate
this effect caused the quality of the clean speech to decrease. In order to resolve this
problem the fixed threshold was replaced with one which was a fixed function of
frequency. The threshold function which is shown in Figure 3.2 was found to solve
the aforementioned problem. Voiced /unvoiced decisions are made by comparing
the normalized error for each region with the value of the threshold at the center

of that region.

9.5

) 1000 2000 3000 4000
Hz.

Figure 3.2: Voiced/Unvoiced Threshold Function
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Chapter 4

Speech Synthesis

The problem of synthesizing a speech signal from the MBE model parameters is
discussed in detail in [2]. The basic approach is to separate the speech signal into
its voiced and unvoiced components. The two components are then synthesized
separately and finally combined to produce the complete speecb signal. The algo-
rithms which are used to synthesize the voiced and unvoiced portions of the speech
are based on two very different techniques. The remainder of this chapter provides

an overview of these algorithms.

4.1 Voiced Synthesis

For each speech frame the analysis algorithms estimates a set of parameters. These
parameters consist of a fundamental frequency, the voiced/unvoiced information
and a set of harmonic magnitudes and phases. Since voiced speech is modeled as
being discrete in frequency, the synthesis procedure can be implemented as a bank
of tuned oscillators. For a particular speech segment, an oscillator is assigned to
each harmonic which has been declared voiced. Using this approach the voiced
speech synthesis problem reduces to finding the amplitude and phase function for

each oscillator. One simple solution to this procblem would be to set the amplitude
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equal to the current harmonic magnitude, and to use a linearly varying phase func-
tion, specified by the harmonic phase and fundamental frequency of the current
frame. The problem with this approach is that it causes discontinuities at the edges
of each speech segment. This is due to the fact that the voiced portion of the speech
is not periodic over intervals consisting of several analysis frames. Variations in the
estimated parameters at consecutive frames can cause amplitude and phase dis-
continuities in the synthesized speech. These discontinuities result in a substantial
degradation of speech quality. In order to solve this problem it is necessary to base
the amplitude and phase functions on the estimated parameters for the current and
the future frame. These functions are determined in such a manner as to ensure
that the voiced speech is continuous at the frame boundary.

The output of the oscillator for the m'* harmonic can be expressed as:
S (t) = Ap(t) cosb,(t) (4.1)

where A, (t) is the amplitude function for the m** harmonic and 0,,(t) is the phase
function for that harmonic. In order to ensure continuity at the beginning and end
of a speech segment, the amplitude function A, (t) is linearly interpolated between
the estimated value at the current segment and the estimated value one segment
in the future. If the time between speech segments corresponds to ¢t = S then the

amplitude function is given by:

Am(t) = An(0) + [An(S) — Am(0) (4.2)

t
s
where A,,(0) is the estimated harmonic magnitude for the current segment, and
An(S) is the value of the corresponding harmonic magnitude one frame in the
future. If the my, harmonic for either of the two segments is declared unvoiced then
its associated magnitude component in (4.2) is set to zero. This process ensures a
smooth transition as a harmonic changes from voiced to unvoiced, or vice-versa.

The phase function for the m,, harmonic, 8,,(t), is determined by the model

parameters in a manner very similar to the amplitude function. In general the
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phase functicn between two speech frames can be expressed as:
t
On(t) = [ wm(E)dE + om (4.3)

This expression separates the phase function into a frequency track, wn(t), and an
initial phase ¢,,. Att =0 ort = S the frequency is defined as the m;, harmonic of
the fundamental frequency which was chosen for that segment. Since the frequency
at these two points may not be identical, it is desirable to interpolate the frequency

in between. This can be accomplished in the following fashion:
t
wm(t) = mw,(0) + m|w,(S) — wo(O)]-S,- + Awnp, (4.4)

In order to match (4.3) with the known phase value at t = 0 and t = S, the variables
¢m and Aw,, must be properly chosen. If the m,, harmonic has been declared voiced
for both speech segments, then the initial phase, ¢,,, is set equal to the estimated
phase at the segment corresponding to ¢t = G. The frequency deviation, Aw,,, then
corresponds to the smallest value which will result in 8,,(t) having the phase which
was estimated at t = S. If the harmonic at either frame was declared unvoiced then
¢m is set equal to the estimated phase of the voiced segment. Since the phase of
the unvoiced segment is irrelevant the frequency deviation is set to zero.

The phase function #,,(t) which is determined by equations (4.3) and {4.4) is a
quadratic polynomial in ¢. Since a quadratic polynomial is completely specified by
threz parameters, it can only be made to satisfy three arbitrary boundary condi-
tions. However, the phase and frequency are specified at both t = 0 and t = S,
yielding a total of four boundary conditions if both harmonics are voiced. Since a
quadratic phase function is not able te meet all four conditions, one or more of the
boundary conditions must be perturbed. This is dore in equation (4.4) through the
inclusion of the variable Aw,,. This variable is set such that the phase boundary con-
ditions are matched exactly. As a consequence both frequency boundary conditions

are slightly perturbed. Although it is possible to change only one of the frequency
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boundary conditions, the magnitude of the resulting alteration would have to be
twice as large. Changing both equally minimizes the maximum perturbation.

An alternative approach to the construction of the phase function is to use
a cubic polynomial [11], which can match the four boundary conditions exactly.
Several tests were conducted to compare the quadratic and cubic phase fun.tions.
The result of these tests showed that there was no noticeable difference betwern the
two techniques. This can be explained by the fact that for most speech segments
the variable Aw,, is very small in comparison to the fundamental frequency. In this
situation the perturbation in the frequency track is not perceivable.

Once the oscillator parameters, A,(t) and 8,,(t), have been calculated for each
harmonic, the voiced portion of the speech signal between t = 0 and t = S is formed.
This is accomplished by adding the contributions of each harmonic oscillator. The
voiced speech component is given by the following:

M-1

5u(t) = ). Anit)cosb,(t) (4.5)

m=0

4.2 Unvoiced Speech Synthesis

The unvoiced component of the speech is generated from the harmonics which are
declared unvoiced. The synthesis algorithm uses a large Gaussian noise sequence
as a reference signal. For each speech segment the corresponding section of the ref-
erence signal is windowed and transformed with a Fast Fourier Transform (FFT).
The regions of this spectrum which correspond to voiced harmonics are set equal
to zero. The remaining regions of the spectrum correspond to the unvoiced har-
monics. In these regions the average magnitude is set equal to the value which
was estimated during speech analysis. The phase in these regions is not modified
and, therefore, corresponds to the phase of the original noise sequence. The inverse
transform of this modified noise spectrum corresponds to the unvoiced speech for

that segment. However, because the lergth of the synthesis window is longer than
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S, the unvoiced speech for each segment overlaps that of neighboring segments. The
weighted overlap-add procedure is used to average these sequences in the overlap-
ping regions. This technique, which is described in |7], is a method for generating a
signal from its Short-Time Fourier Transform (STFT). When applied to unvoiced
speech synthesis, it averages the overlapping sequences so that the result has a
STFT which is as close as possible to the modified noise spectra. The result can
then be added to the voiced speech component to complete the speech synthesis

procedure.

4.3 Speech Synthesis Evaluation

The techniques described in this and the previous chapter have been used to create a
high quality speech analysis/synthesis system. The performance of this system has
been found to be very good for both clean and noisy speech. Although it is possible
to discern the original from the synthesized speech, the analysis/synthesis system
can produce a natural sounding replica with virtually no degradation. However, in
order to obtain this high quality speech, the distance between analysis frames, S,
must be kept sufficiently small. If S is too large, then the frame to frame variation
in the speech will be too great for ihe synthesis algorithm to accurately reproduce.
Consequently, the synthesized speech lacks the clarity of the original speech. For
small values of S the speech varies gradually from frame to frame. This condition is
necessary in order for the amplitude and phase functions defined in (4.2) and (4.3)
to accurately in;erpolate the speech in between speech segments. One disadvantage
of a small value of S is that the number of parameters which are estimated per unit
time increases in inverse proportion to its value. This can complicate the use of the
system in such applications as speech coding.

One important aspect of any speech analysis/synthesis system is its associated

delay. Due to the presence of speech segments, or frames, which are processed in
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blocks, some samples of the speech cannot be synthesized until more future samples
are obtained. For the system described in this thesis the largest portion of the delay
is caused by the pitch tracking algorithm used in speech analysis. The three frame
look-ahead feature results in 60 ms. of delay for S = 20 ms. There is an additional
37.5 ms. of delay induced by the size of the analysis and synthesis window. This

yields a total delay of approximately 100 ms.
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Chapter 5

Multi-Band Excitation Speech
Coding

5.1 Introduction

One application of the MBE speech model is in speech coding. An MBE speech
coder operates by first estimating the MBE model parameters as described in Chap-
ter 3. These parameters are then quantized and transmitted. At the receiver, the
quantized parameters are reconstructed, and then used to synthesize speech in the
manner described in Chapter 4.

The quality of the coded speech is limited by two factors. The first is the accu-
racy of the speech model, and the other is the distortion induced by quantization
of the model parameters. Since quantization can only degrade the system’s per-
formance, the highest quality which can be achieved is found in the absence of
quantization. As discussed in the previous chapter, the unquantized model param-
eters can be used to synthesize very high quality speech. Therefore, given sufficient
bits, an MBE speech coder can do equally well.

A variety of quantization techniques exist, of which many could be used to quan-

tize the MBE model parameters. These different techniques all offer a unique com-
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bination of advantages and disadvantages. The choice of which techniques should be
used depends on the bit rate at which the system is designed to operate, and on the
relative iimportance of speech quality versus computation, storage, and delay. The
system which was designed as part of this thesis was required to have high quality
at 4.8 kbps, while maintaining reasonable computation and storage requirements.
In addition the coding delay was restricted to around 100 ms. These requirements
were set in such a manner that the resulting system would be applicable to real-time
speech communication.

The remainder of this chapter is used to describe the 4.8 kbps MBE speech
coding system which was designed as part of this thesis. First a description of
previous MBE speech coding work is given. Then the problems of applying these
previous techniques to a 4.8 kbps system are presented. This is followed by a short
discussion of several alternatives which could be used to solve these problems. The
chapter concludes with a detailed description of the 4.8 kbps MBE speech coder

which was developed.

5.2 Background

The MBE speech model has been used in the development of several speech coding
systems. Griffin first described a 9.6 kbps MBE speech coder in {3]. His later work
included an 8 kbps MBE speech coder which is described in [4,2]. These two systems
use analysis and synthesis algorith1. which wre very similar to the ones which have
been described .in this thesis. The quantizaticn of the model parameters is done
in a slightly different manner in the 8 kbps system in comparison to the 9.6 kbps
system, however, the general techniques are the same.

The 8 kbps system mentioned above provided the starting point for much of the
work done in this tnesis. This system was designed to operate with 4 kHz. band-

width speech sampled at 10 kHz. The analysis was done every 20 msec., yielding a
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parameter frame rate of 50 Hz. At this fraine rate 160 bits were available for the
coding of the model parameters. These bits were divided between the fundamental
frequency, the voiced /unvoiced decisions, and the harmonic magnitudes and phases.
These parameters were then quantized using the assigned number of bits. The re-
sulting bit stream is then passed to the decoder/synthesis system which reproduces
the speech.

In this system the number of harmonic magnitudes and phases is a function of
the fundamental frequency and the voiced/unvoicéd information. Therefore, the
fundamental frequency and voiced/unvoiced information are encoded first, allowing
the decoder to determine the correct bit assignment for the remaining parameters.
The fundamental frequency in this system is quantized to 1 Hz. increments between
80 Hz. and 500 Hz. This quantized value is then encoded using a fixed length,
nine bit, codeword. The voiced/unvoiced information is obtained by dividing the
spectrum into 12 regions, and a binary voiced/unvoiced decision is made for each
region. These decisions are then encoded using a single bit per decision, yielding a
total of 12 bits.

The next parameters to be quantized are the harmonic phases. Since phase
information was thought to be most important for low frequency harmonics, and
since the phase of unvoiced harmonics is not needed by the synthesis algorithm,
phase information is only retained for voiced harmonics which lie in the range of
1 to 12. The phase of these harmonics is quantized by forming a predicted phase
based on the previous phase and frequency information. A phase residual is then
found as the difference between the actual phase and the predicted phase. This
residual, Ad,, is equal to:

Al =S - Awp, (5.1)

where Awy, is defined in equation (4.4) and S is equal to 20 msec., the distance
between analysis frames. The reason for quantizing the phase residual, instead of

the phase itself, is that the phase residual has a lower variance, thereby allowing
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more efficient quantization [2]. A 13 level, non-uniform Max-Lloyd quantizer is used
to take advantage of the lowered variance. The total number of bits which are used
for quantizing the phase depends on the number of voiced harmonics in the range
1 to 12. If all 12 harmonics are voiced then the maximum of 45 bits are used for
coding the phase information. However, if all 22 harmonics are declared unvoiced
then no bits are required for the phase information. In general the bit requirement
for the harmonic phases is somewhere between these two extremes.

The harmonic magnitudes are quantized last, using all of the bits remaining
after the fundamental frequency, the voiced/unvoiced decisions and the harmonic
phases have been quantized. Due to the variable number of bits required to code
the harmonics phases, the number of bits available for the harmonic magnitudes
varies between 94 and 139. The harmonic magnitudes are quantized by first dis-
tributing the available bits over all of the harmonic magnitudes. This is done by
integrating the bit density curve shown in Figure 5.1 over the region occupied by
each harmonic. The percentage of the curve within each harmonic region corre-
sponds to the percentage of the available bits which are assigned to quantize that
harmonic magnitude. An important feature of this bit assignment procedure is that
it assigns more bits to the low frequency harmonic magnitudes, than to the higher
frequency harmonic magnitudes. This feature reflects the fact that the long term
power spectrum of speech has a low-pass characteristic [13]. Assigning more bits
to low frequency harmonics can provide for a reduction in the quantization error,

averaged over all of the harmonic magnitudes.

Once the bits have been assigned to each harmonic magnitude, their values
are quantized in a manner similar to that used by channel vocoders [8]. In this
scheme the log magnitude of the first harmonic is quantized. Then the difference
between the log magnitudes of each succeeding pair of harmonics is quantized. The
quantizers are zll uniform “mid-rise” quantizers, with the step size being a function

of the number of assigned bits. This function, which is tabulated in Table 5.1, was
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Figure 5.1: Bit Density Curve for Harmonic Magnitudes

found in (2] to provide good results for the quantization of the harmonic magnitudes.

The coding techniques, which are described above, were found in (2] to provide
high quality speech at a rate of 8 kbps. Informal listening tests were used as a
basis for this quality assessment. More formal testing was done to determine the
intelligibility of the system. A series of Diagnostic Rhyme Tests (DRT) were done
in order to quantitatively measure the intelligibility of the system. The results for
both clean and noisy speech are given in Table 5.2. Additional tests, documented
in [2], provide a comparison between the 8.0 kbps MBE vocoder and a more tra-
ditional vocoder with only a single voiced/unvoiced decision per frame. The major
conclusior which was gained from the DRT results is that the MBE vocoder could
provide highly intelligible speech. In addition the degradation of intelligibility in
the presence of background noise was substantially less for the MBE vocoder than

for the more traditional vocoder.
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Bits | Step Size (dB.) | Min (dB.) | Max (dB.)
1 8 4 4

2 6.5 9.75 9.75

3 5 17.5 17.5

4 3 225 22.5

5 2 -31 31

6 1 315 31.5

7 0.5 3175 | 31.75
8 0.25 -31.875 31875

Table 5.1: Step Sizes for Harmonic Magnitudes

Although the quantization techniques described in the previous section resulted
in satisfactory quality at 8 kbps, the quality of the coded speech was found to
degrade quickly as the bit rate was reduced. At a frame rate of 50 Hz., a 4.8
kbps speech coder can only use 96 bits per frame. Quantization of the MBE model
parameters with this number of bits, using the same methods as at 8 kbps, resulted
in seriously degraded speech. The best system which could be achieved with these
methods had two major problems. First it was considerably more reverberant and
“buzzy”, due to the reduction in the amount of quantized phase information. In
addition, exceedingly coarse quantization of the harmonic magnitudes caused the

speech tc sound weak, especially in the presence of background noise. One simple
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System Mean Score | Std. Dev.
Original Clean Speech 96.9 0.28

8 kbps Clean Speech 83.6 0.53
Original Noisy Speech 51.7 1.1

8 kbps Noisy Speech 49.6 1.1

Table 5.2: DRT Results for 8 Kbps MBE Coder

solution to this problem is to reduce the frame rate, thereby yielding more bits per
frame. However, experimental results showed that lower frame rates cause a loss
of clarity in the speech, even in the absence of quantization. The presumed effect
of this degradation is a loss of intelligibility, regardless of the quantization scheme
which is employed. Since one goal of this research is to maintain performance
comparable to that found in the 8 kbps system described above, the frame rate was
left fixed at 50 Hz. The resulting problem is then to develop a speech coding system
which could yield high quality performance at 96 bits per frame.

The solution to this problem was found by examination of the MBE model pa-
rameters. Experimental evidence showed that there are substantial inter-dependen-
cies amongst the model parameters which were not being exploited by the current
4uantization algorithms. A well known principle of information theory states that
the efficiency of a quantization algorithm can be improved by reducing the amount
of redundancy which is present in the data. An improvement in the efficiency of
a quantizer corresponds to reducing the quantization error at a fixed bit rate, or

equivalently, maintaining the same quantization error at a lower bit rate. Speech
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and image coding literature present several well known techniques for reducing the
redundancy present in a data source. Two techniques which were considered for
use in this thesis are vector quantization and transform coding. The next section

provides an overview of the issues associated with each of these techniques.

5.3 Review of Relevant Quantization Approaches

Vector quantization and transform coding are both block quantization algorithms.
Block quantization refers to the fact that the data which is to be quantized is
first grouped into a fixed length block. The block is then quantized, transmitted,
and then reconstructed at the receiver. The advantage of a block quantization
algerithm is that it provides a convenient manner for accessing the redundancies in
the data. In addition the size of each block can be easily varied to meet a number

of performance objectives.

5.3.1 Vector Quantization

Vector quantization represents each data block or vector by a single codeword. An
essential part of this technique is a stored table of N code vectors. Each input data
block is compared against all N code vectors and the or.e which is deemed closest
is chosen to represcnt the data block. In practice closeness is often determined by
evaluating the mean-square error between each of the stored code vectors and the
input vector. The one resulting in the minimum error is chosen as the closest code
vector. If the receiver and transmitter both have an identical table of stored code
vectors, then only the index of the chosen code vector needs to be transmitted. If a
fixed length binary code is used to send this information, then [log,(N)] bits must
be used. The quantized value of the data block is then equal to the closest code
vector.

Since every data block is represented by one of the stored code vectors, the
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performance of this quantization scheme is highly dependent on the chosen set of
code vectors. Several different approaches to the design of this table have been
proposed, however, a simple algorithra exists for the selection of a nearly optimal
set. This algorithm, which is often referred to as the k-means algorithm, has been
shown to converge to a local minimum of the quantization error function [10]. For
a large training set, these code vectors are assumed to be nearly optimal. Results
confirm the advantages of designing the code vectors in this manner.

The primary benefit of a vector quantizer is thai; it achieves excellent quantiza-
tion efficiency. As discussed in [10], a vector quantizer can utilize both linear and
non-linear dependencies within a data block. In addition it can utilize the added
dimensionality of the data, and the shape of its probability density function to gain
additional efficiency. These properties allow a vector quantizer to approach the
rate-distortion bound for a stationary source. The primary disadvantage of this
technique is that its computation and storage requirements are extremely high. If
each data block contains M elements, then M N memory elements are needed to
store the table of code vectors. In additicn the search over the N code vectors re-
quires M N multiplies and (2M — 1) N additions, if mean-square error is used as the
distance measure. In order to achieve good redundancy removal it is often necessary
to use a large block size. In addition low quantization error often requires the use of
a large table of code vectors. Since the size of this table, N, is exponentially related
to the bit rate, the addition of a single bit will double the computation and storage
requirements. For these reasons vector quantization is often limited to low bit rates

and srnall block sizes.

5.3.2 Transform Coding

Transform coding is another well known method of reducing the redundancy from
a block of data. Each input block is first transformed into a new data block. The

elements of the transformed data block are then scalar quantized and sent to the

44



receiver, where the inverse operation is used to generate the quantized version of
the original data block. The principle behind this technique is that the transformed
data block can be quantized more efficiently than the original data block. In gen-
eral this is caused by a reduction in the amount of correlation which exists in the
transformed elements, relative to the original data elements. Since the transforms
under consideration are restricted to be linear, transform coding techniques gener-
ally can only take advantage of linear dependencies in the data. Therefore, although
transform techniques can result in significant improvements in coding efficiency, it
cannot in general achieve the same performance level as a vector quantizer.

The primary factor in the design of a transform coding algorithm is the selection
of the transform. A number of different transforms have been shown to be useful in
coding applications. The choice of the vransform determines the algorithm’s ability
to decorrelate the input data block. In addition certain transforms have advantages
in terms of computation and storage requirements.

One transform which is frequently used in image and speech coding is the Dis-
crete Cosine Transform (DCT) [9]. This transform has a number of desirable prop-
erties. First it is data independent, which means that the basis vectors of the
transform do not need to be calculated and stored. In addition the DCT can be
implemented with a FFT algorithm, which reduces the computational requirement
of an M element transform from M? to M log M. Finally the DCT has been shown
to yield good decorrelation of stationary sources.

In order for a transform coder to improve the coding efficiency, a bit allocation
scheme must be.used which takes advantage of the non-stationarity of the transform
coefficients. The principle is to use more bits to quantize the transform coefficients
with large variances, and less bits to quantize the coefficients with small variances.

If the total number of bits per block is constrained to equal Ry, then the optimal
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bit allocation rule is given in [9] to be:

1 1 ol
Ry = vEr T 51082(7_1“:) (5.2)
[ H U?j]“
J=0

where R,, is the optimum number of bits to allocate to the m’th transform coeffi-
cient, and o?,, is the variance of the m’th transform coefficient. In practice this rule
must be modified to account for the non-negative integer constraint on R,,. The
important feature of this bit allocation rule.is that the number of bits is determined
by the logarithm of the element variances. This rule agrees with the intuitive no-
tion that a coefficient with twice the amplitude, and hence four times the variance,

would receive one more bit.

5.4 4.8 Kbps System Development

Using the information which is presented above, a basic approach was devised for a
high quality 4.8 kbps MBE speech coder. As mentioned previously the parameters
for each frame consist of a fundamental frequency, a set of voiced /unvoiced decisions,
and a set of harmonic magnitudes and phases. The quantization of each frame is
done in a manner similar to the previously designed 8 kbps system. However, a
series of different algorithms are used which are designed around the characteristics
of each parameter. By incorporating some of the techniques which were discussed
in the previous section, the new system is able to achieve performance comparable
to that of the earlier 8 kbps system.

As in the previous system, the number of parameters which occur for any frame
is a variable. Therefore the parameters cannot be quantized and transmitted in
an arbitrary order. Specifically, the fundamental frequency must be transmitted
first, since it determines the number of harmonics. In addition the voiced/unvoiced
information must be received before the harmonic phases, since there is no phase

information for unvoiced harmonics. A consequence of the variability in the number
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of parameters per frame is the need for a bit allocation algorithm, which assigns
the available number of bits over the number of parameters in the current frame.
Although this increases the complexity of the quentization process, it increases the

flexibility and performance of the system.

5.4.1 Fundamental Frequency Encoding

The primary characteristics of the fundamental frequency are determined by the
estimation algorithm described in Chapter 3. Since an analysis-by-synthesis ap-
proach is used to estimate tnis parameter, it’s value is only known to some fixed
resolution. The estimation algorithm therefore acts as a quantizer, fixing the value
of the fundamental to one of 512 levels between 70 Hz. and 400 Hz. Since additional
quantization is not necessary or desirable, fixed length encoding of the fundamental
frequency would require 9 bits. However, due to the pitch tracking portion of the
estimation algorithm, and the nature of speech, the fundamentzl frequency usually
only makes small variations from frame to frame. An ideal model for this form of
behavior would be a discrete Markov source, where the state corresponds to the
previous value of the fundamental frequency. An optimal coding scheme could be
based on this model and used to lower the average number of bits required to encode
this parameter. Unfortunately the large number of states in this model would add
far too much complexity for the few bits which could be saved. A simple alterna-
tive to this approach is to use a sub-optimal coding scheme which still captures the
basic memory in the process. The one which is used codes the difference between
successive fundamental frequencies with 6 bits if that difference is small. Otherwise
the current fundamental frequency is encoded using 10 bits. This scheme has a long
term average of about 7 bits per frame, which is a savings of 2 bits per frame over

fixed length coding.
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5.4.2 Voiced/Unvoiced Encoding

The voiced/unvoiced information consists of a series of binary decisions which in-
dicate the nature of different regions of the spectrum. In the 4.8 kbps system each
region corresponds to the portion of the spectrum covered by three consecutive
harmonics. Therefore the first decision corresponds to the first, second and third
harmonic, the second to the fourth, fifth, and sixth harmonic, etc... . There are a
maximum of 12 decisions, and any harmonics past the 36’th are set to be unvoiced
by default. This is different than the scheme which was used in the 8 kbps system,
where the number of decisions was always equal to 12 and the size of each region
was varied to cover the entire 4 kHz. bandwidth. These two schemes produce nearly
equivalent sounding speech. The motivation behind fixing the size of each region to
3 harmonics is that it simplified the phase quantization algorithm.

Since the voiced /unvoiced decisions only consist of binary information, a quan-
tization algorithm is not needed. Instead a simple and efficient method of repre-
senting this information needs to be employed. In the previous 8 kbps system the
voiced /unvoiced decisions were encoded using a single bit per decision. However,
this technique does not take advantage of the redundancy in the voiced/unvoiced
information. One approach which can utilize this redundancy is to block the de-
cisions into groups of four. A Huffman code is then used to represent the sixteen
possibilities with the minimum expected codeword length. The Huffman code tends
to assigns fewer bits when the block is either all voiced or all unvoiced. This reflects
the fact that the voicing information is often clustered into long strings of similar
decisions. The actual code is shown in Table 5.3, which uses a 1 to refer to a voiced

decision and a 0 to refer to an unvoiced decision.

5.4.3 Quantization of the Harmonic Phases

In contrast to both the fundamental frequency and the voiced/unvoiced information,

the harmonic phases are not quantized by the analysis algorithm. In the 8 kbps
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V/UV String | Prob. Bits Code Word
0000 0.114 4 1000
0001 0.066 4 1001
0010 0.029 5 11000
0011 0.065 4 1010
0100 0.029 5 11001
0101 0.035 5 11010
0110 0.016 7 1111110
0111 0.086 4 1011
1000 0.02 6 111100
1001 0.021 6 111101
1010 0.01 7 1111111
1011 0.054 5 11011
1100 0.019 6 111110

) 1101 0.035 5 11100
1110 0.026 5 11101
1111 0.375 1 0

Table 5.3: Huffman Code for Voiced/Unvoiced Decisions
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system the quantization was done by passing the phase residual through a non-
uniform Max-Lloyd quantizer [2]. The advantage of quantizing the phase residual
is that it possesses less entropy than the actual phase and therefore it can be coded
more efficiently. An alternative viewpoint is that the phase prediction algorithm
removes the redundancy between the previous harmonic phase and the current
one. The phase residual is then the new information which is not contained in
the previous phase. The use of a Max-Lloyd quantizer then provides the minimum
quantization error for a scalar quantizer.

The problem with this approach is that although the phase estimation algorithm
reduces the interframe dependencies, it does not address the dependencies which
exist between adjacent harmonics within the same frame. One approach to solving
this problem is to replace the scalar quantizer with a vector quantizer. If the phase
residuals are grouped into blocks and then passed through a vector quantizer, both
the interframe and intraframe dependencies are exploited. As discussed in the
previous section, vector quantization provides nearly optimal performance in terms
of quantization efficiency. However, the computation and storage costs can easily
become prohibitive.

In order to examine the advantages and disadvantages of this approach a vec-
tor quantizer with a block size of 3 and N = 64 was designed for the harmonic
phases. This block size was chosen because it corresponded to the size of each
voiced /unvoiced region. For each region which was declared voiced, three consec-
utive harmonic phases could be blocked together and passed to the vector quan-
tizer. It was pr-esumed that the use of consecutive harmonic phases would result
in the greatest coding efficiency from the vector quantizer. Since the size of each
voiced /unvoiced decision region was fixed at 3 harmonics, the implementation of the
vector quantizer was simplified, considerably. If this size was not fixed, then either
several different vector quantizers would have to be employed, or non-consecutive

phases would have to grouped together.
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Quantization of the harmonic phases using this vector quantizer yielded very
good results. When the harmonic phases were quantized in this manner, the resul-
tant speech sounded the same as when the 13 level Max-Lloyd quantizers were used.
The advantage of the vector quantizer is that it is able to represent 3 phases with 6
bits, for an average of two bits per phase. This is a 1.7 bits per phase improvement
over the scalar quantizer. The computational and storage requirements of this new
approach’ are still reasonable due to the small block size and the small number of
code vectors. In order io quantize each phase block the algorithm must do 192
multiplies and 320 additions. In addition 192 memory elements are required for the
storage of the code vectors. Although these figures may seem significant, they are
negligible compared to the requirements of the analysis and synthesis algorithms.

These results led to the inclusion of this vector quantizer in the 4.8 kbps speech
coding system. As in the 8 kbps system, only the voiced harmonics between the
first and the twelfih are quantized. The phase residual, defined by equation (5.1),
is calculated for each of these harmonics. These residuals are then grouped into
blocks of three, and vector quantized to one of 64 levels. The decoder reconstructs
each block of phase residuals, and combines them with the predicted phases to form
the actual phase information. Phase information for voiced harmonics beyond the
twelfth is not transmitted to the decoder. Therefore these phases are reconstructed
as random values between —7 and 7. Since phase information is not required
for unvoiced harmonics, this information is not quantized or reconstructed. The
total number of bits required to encode the harmonic phases is dependent on the
voiced/ unvoice(i information. The total number varies between 0, if all of the first

twelve harmonics are unvoiced, and 24, if all of the first twelve harmonics are voiced.

5.4.4 Quantization of the Harmonic Magnitudes

The last parameters which are quantized in each frame are the harmonic magni-

tudes. These parameters are quantized using all the bits which remain after the
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fundamental frequency, the voiced /unvoiced decisions and the harmonic phases are
encoded. For the 4.8 kbps speech coder, the number of bits which are available
varies between 50 and 89. At the same time the number of harmonic magnitudes
is varying between 9 and 50, depending on the value of the fundamental frequency.
As mentioned previously a bit allocation algorithm is used to match the number
of available bits to the number of harmonic magnitudes. Once al! of the bits have
been allocated, the harmonic magnitudes are quantized. The quantization algo-
rithm must be capable of achieving high efficiency, and it must be able to operate
with a variable number of parameters and available bits.

Since the basis behind high quantization efficiency is the removal of redundancy
from the data, several simple experiments were conducted which looked for corre-
lation among the harmonic magnitudes. One major finding was that there is a sig-
nificant amount of correlation which exists between adjacent parameters. Although
this correlation is high for adjacent harmonics within the same frame, it is actu-
ally higher for magnitudes which occupy the same frequency region in neighboring
frames. Another important finding was that there are also significant higher order
correlations between harmonics. These firdings indicate that an algorithm should
be able to quantize the harmonics in a substantially more efficient manner than was
done in the 8 kbps system. Since this system quantized the log difference between
harmonics at adjacent {requencies, it was only utilizing the first-order intra-frame
correlation. An algorithm which also incorporates the first-order inter-irame corre-
lation and higher-order correlations could yield substantially better performance. In
addition there may also be non-linear dependencies, which could also be exploited.

The algorithm which was developed to remove these additional redundancies is
based on a new time-frequency framework which is shown in Figure 5.2. Every 20
ms., the harmonic magnitudes for a new speech frame are cstimated. Since these
parameters correspond to spectral information in the speech, a two dimensional rep-

resentation can be constructed, with time on one axis and frequency on the other.
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The frequency index, m, corresponds to the harmonic number of the magnitude,
|An(m)|, while the time index, n, corresponds to the frame number. This represen-
tation is very similar to the spectrogram representation of a one-dimensional signal.
A convenient way of accessing the redundancies in the data is to divide these pa-
rameters into time-frequency blocks. Each block can then be quantized using either
a transform coding algorithm or a vector quantizer. By varying the size of the
blocks and the quantization method, this approach can be made to accommodate
a variety of performance requirements. In particular these variables determine the
algorithm’s quantization efficiency, its computation and storage requirements, and

its coding delay.

“

(time)

Figure 5.2: Time - Frequency Representation of the Harmonic Magnitudes

For the 4.8 kbps system, a transform coding algorithm, rather than a vector
quantizer, was chosen for the quantization of each time-frequency block. A vector
quantizer was ruled out because of its computation and storage requirements. The
variability in the number of available bits and the number of magnitudes can result
in a situation where there are nearly 10 bits per harmonic. In this situation a
vector quantizer would become almost unmanageable, even if there is only a single

magnitude per block. For larger block sizes the memory and storage requirements
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would exceed the capabilities of the computer. Another problem with a vector
quantizer is that it is usually designed to operate with a constant number of bits
per block. Since the number of available bits is changing from frame to frame, a
standard vector quantizer would not work. One option would be to design a set of
quantizers, each operating with a different number of bits per block. This solution,
however, would complicate the storage problem, since the number of stored code
vectors would increase dramatically. A transform coding algorithm avoids these
problems because it relies on scalar quantization. if uniform quantizers are used,
then the variability in the number of bits does not change the computation or
storage requirement of the algorithm. Instead, these requirements are dictated by
the transform.

The use of the DCT as the quantization transform results in good decorrelation
of the harmonic magnitudes, while maintaining reasonable computation and storage
requirements. As mentioned in a previous section, the DCT offers good performance
for stationary sequences. A block which has large time and frequency dimensions
could be used to provide good coding efficiency. Unfortunately, several factors limit
the allowable block size. The first centers around the issue of coding delay. The size
of a block in the time direction corresponds to the number of frames which must be
analyzed before the block can be transmitted. Since a frame is analyzed every 20
ms., an increase in the time dimension of a block corresponds to an additional 20 ms.
of delay. A delay less than 200 ms. is tolerable in typical real time applications,
however larger -delays limit the applicability of a system. Since the analysis and
synthesis algorithms have a combined delay of 100 ms., the coding system must not
significantly increase this delay. Another constraint on the block size is caused by the
non-stationarity of the harmonic magnitudes along the frequency axis. The variance
of lcw frequency harmonic magnitudes is generally much higher than for the high-
frequency magnitudes. The DCT can actually cause a reduction in coding efficiency

in this case. One solution to this problem is to limit the size of the blocks in the
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frequency direction, such that all the elements have nearly equal variance. Ideally
the frequency dimension of the block should vary with the fundamental frequency,
since the variance is a function of absolute frequency rather than harmonic number.

A block size which has a irequency dimension of 8 and a time dimension of 1 was
chosen in light of the aforementioned problems. For small fundamental frequencies,
the variance over 8 harmonic magnitudes is fairly constant. For large fundamental
frequencies the variances may be considerably different, since there may be only
10 or 12 harmonics with the 4 kHz. bandwidth of the system. Fortunately the
small total number of harmonic magnitudes decreases the need for very efficient
quantization. Any loss in efficiency from the DCT is negated by the large number
of bits per harmonic. This choice of block size also limits the coding delay to the
100 ms. imposed by the analysis and synthesis algorithms. Rather than increasing
the time dimension of the bleck, and incurring additional delay, a hybrid approach
was adopted.

The idea behind a hybrid coding system is to use different coding methods along
different directions in the data. A common approach to the coding of a video se-
quence is to calculate the transform coefficients for each frame in the sequence.
Each transform coefficient is then differentially quantized along the temporal di-
rection {9]. This technique uses the transform to reduce the spatial redundancy
in the sequence, and it uses a differential, or predictive, approach to reduce the
temporal redundancy. One zdvantage of predictive coding is that it is based only
on previously transmitted data, and therefore it does not add any delay to the sys-
tem. In additio;l predictive coders can actually out-perform transform coders when
the block size is very small. This fact arises because of the presence of blocking
boundaries in a transform coder (9.

Hybrid coding can be applied to the quantization of the harmonic magnitudes
in a very similar manner. First the differences between the log magnitudes of the

current frame and the log magnitudes of the previous frame are found. These

55



temporal differences are then grouped into blocks of 8 and transformed with the
DCT. The coefficients are then quantized and transmitted. A block diagram of
this coding algorithm is shown in Figure 5.3. Since all of the operations are
invertible, the decoding algorithm can perform the inverse procedure to calculate

the magnitudes of the current frame.
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Figure 5.3: Block Diagram of Harmonic Magnitude Encoder

The logarithm function is used in the quantization algorithm for several reasons.
First it provides a convenient method for insuring that the quantized maguitudes
are always positive. A DCT with scalar quantization cannot guarantee that the
decoded magnitudes remain positive. However, the exponential fur ~tion always
produces a positive value, and therefore the quantized magnitudes are guaranteed
to be positive. Another desirable property of the logarithm and exponential pair is
that it causes the signal to quantization noise ratio to remain constant, regardless
of the absolute level of the signal. This is beneficial because of the ear’s masking
ability. Essentially, the perceived effect of narrowband noise is dependent on the

signal-to-noise ratio in that band, rather than on the absolute noise level. The
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use of the logarithm function forces quantization errors to occur in such a manner
that their perceived effects are lessened. A final reason for including this function
is that the difference hetween log magnitudes is not effected by a scale change in
those magnitudes. This means that the quantization algorithm is not effected by
the average signal level of the speech. Very quiet speech and very loud speech can
be quantized, without the need for any variation in the quantizer characteristics.
The decorrelation which is performed by the DCT results in some transform
coefficients having much higher variance than others. In order to take advantage of
this fact a bit allocation algorithm is required. Equation (5.2) provides an optimal
bit allocation rule for the juantization of any set of parameters having the same
probability distribution. This rule is dependent on the variance of each member
in the set. It is applied to the quantization of the harmonic magnitudes in the
following manner. First, the number of available bits is divided among all of the
blocks which occur in that frame. This is accomplished by integrating a bit density
curve similar to that shown in Figure 5.1. Next, the number of bits which have
been allocated to each block are divided among the transform coefficients according
to equation (5.2). A “water-filling” algorithm is used to satisfy the positive-integer
constraint as discussed in [9]. After all of the bits have been allocated to the
transform coefficients, each is scalar quantized with the appropriate number of bits.
The quantizer for each coefficient is tuned to the characteristics of that coefficient.
In order to do the bit allocation and the quantization it is necessary to have an
estimate of the mean and variance of each transform coefficient. These estimates are
obtained by calculating the sample-mean and sample-variance over a large ensemble
of speech. From the variance information, the bit allocation rule follows directly.
In addition the step size and offset of each quantizer can be found if the probability
distribution of the transform coefficients is known. Tests have shown that the
system is fairly insensitive to the assumed distribution, and so, for simplicity, the

transform coefficients are assumed to be Gaussian. The optimal step size as a
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function of variance for this distribution is given in [9]. The quantizers for each

coefficient use this step size and an offset equal to the estimated mean.
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Chapter 6

Performance Evaluation

The 4.8 kbps speech coding system described in this thesis was evaluated using
several different procedures. Initial comparisons between this system and the pre-
viously developed 8 kbps system, showed the two to have nearly equal performance.
More extensive listening tests were then done to form a general opinion of the sys-
tem. A collection of speech material was processed by the system. This material
consisted of a variety of different speakers and noise conditions. The general impres-
sion was that the system maintained a high quality level across the test ensemble.
The system showed impressive robustness for a number of traditional problem cases
such as multiple speakers, and speech in the presence of harmonic noise. The pri-
mary artifact of the coded speech is a reverberant sound which is due to a lack of
enough coded phase information. Experiments showed that although this reverber-
ance could be reduced through small variations in bit allocation, the block sizes
and other system details, it was still noticeable. Fortunately, this effect is much
more masked in a normal listening environment than it is under close listening with
headphones.

In order to get more quantitative results on the performance of the system, a
series of Diagnostic Rhyme Tests (DRT) were conducted. The DRT is a standard-

ized test used to measure the intelligibility of a speech processing system [15]. The
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test consists of a sequence of words, each of which is one of two rhyming choices.
The word pairs differ only in the first consonant, thereby eliminating the effects of
context information. Three different tests were performed on the 4.8 kbps speech
coding system. Each test consisted of two DRT tapes, the first being unprocessed,
and the second being the output of the speech coding system. The use of two tapes
per test allows an estimate to be made of the lcss of intelligibility caused by the
coding system. The first test was performed on ciean speech; the second test added
26 dB. white gaussian noise; and the third test added 20 dB. of simulated aircraft
noise. For the latter two tests the noise level was chosen such that projected in-
telligibility score for the unprocessed speech would be close to 80 percent. This
level was chosen as representative of a typical noisy environment. The resuits for
the three tests are given in Tables 6.1, 6.2 and 6.3, respectively. The mean anc
standard deviation for each DRT tape is presented as an estimate of intelligibility

and the accuracy of this estimate.

System Mean Score | Std. Dev.
Original Clean Speech 97.53 0.31
4.8 kbps Clean Speech 95.01 0.42

Table 6.1: DRT Results for Clean Speech

The results of the DRT show that the system has very high intelligibility for clean
speech. The unprocessed clean speech has a mean intelligibility of 97.5% while
the coded speech has a mean intelligibility of 95.0%. These high scores indicate
that even in the absence of context information the speech is almost completely
intelligible. For the noisy speech the intelligibility scores were much lower. The

unprocessed speech with additive gaussian noise received a mean score of 83.2%
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System Mean Score | Std. 'Dev.

Original Noisy Speech 83.2 0.99

4.8 kbps Noisy Sneech 71.7 0.96

Table 6.2: DRT Results with 26 dB. Gaussian Noise

System Mean Score | Std. Dev.
Original Noisy Speech 90.62 0.66
4.8 kbps Noisy Speech 75.53 1.18

Table 6.3: DRT Results with 20 dB. Simulated Aircraft Noise

and the unproccssed speech with simulated aircraft noise received a mean score of
'00.6%. The mean scores for the coded noisy speech were 71.7% and 75.3% for the
gaussian noise and the simulated aircraft noise, respectively. Several conclusions
can be drawn from the noisy speech test data. First the presence of the noise has
substantially reduced the intelligibiiity of the unprocessed speech. The noise masks
some important cues which the ear uses to decipher the speech. Another finding is
that the coding system yields a much greater loss in intelligibility for noisy speech
than it did for clean speech. One of the principal attributes of the MBE speech
model, as reported in [2], is that it produces less degradation for noisy speech than
conventional spcech models. However, these DRT results seem to indicate that there
still is a substantial degradation. These findings can be explained in severa:. ways.

First DRT data was not obtained for a conventional coder at 4.8 kbps, therefore
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it is not known how this system would perform in comparison to the MBE coder.
A conventional coder probably would have yielded even greater degradation in the
presence of noise. Also it is possible that the loss in intelligibility for the MBE
coder is not due to the underlying model, but is instead related to the parameter
quantization method. Since c'ean and noisy speech have different characteristics,
the 4.8 kbps coding system may be adjusted to perform better for clean speech at
the expense of the noisy speech performance. Retuning the quantization algori.hms

may yield better overall performance.
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Chapter 7

Conclusion

A 4.8 kbps speech coding system has been presented which offers high quality speech
capability. The system can be implemented as a cascade of several algorithms. The
first element of the system estimates the MBE model parameters. These param-
eters are then quantized and transmitted across some channel. A decoder then
reconstructs the quantized parameter values, from which the synthesis algorithm
produces the synthesized speech. The primary focus of this thesis has been the
quantization of the model parameters. Initial experiments showed that there is a
substantial amount of redundancy which exists among these parameters. Quanti-
zation techniques have been developed which utilize this redundancy in order to
achieve higher quantizatior efficiency. A coding system based on these techniques
has been shown to produce high quality speech at 4.8 kbps, while attempts to
achieve equal qyality with less efficient techniques have not been successful.
Several features of this system make it particularly attractive for use in a number
of speech coding applications. Because the system is based on the MBE speech
model, it is extremely robust to the presence of background noise. In additicn the
use of the MBE speech model reduces the sensitivity of the system to errors in the
pitch estimation algorithm. The quantization methods which were chosen for the

system also enhance its applicability. These techniques result in high quality speech
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without inducing substantial computational penalties. The storage reguirements

and coding delay for the system are alsoc within acceptable bounds.

7.1 Suggestions For Improved Quantization Effi-
ciency

Although this speech coding system has a number of desirable features, it can still
be improved. Efforts to improve the quality of the system or lower the bit rate
may profit from the use of different quantization algorithms which achieve better
quantizzation efficiency. The time-frequency framework which has been presented
for ti 2 quantization of the harmonic magnitudes can accommodate a number of
quantization algorithms. Replacement of the DCT with either a Karhunen Loéve
Transform or a vector quantizer may resuit in more efficient quantization. Since the
formant structure in the harmonic magnitudes can result in both linear and non-
linear dependencies, vector quantization holds the most promise for performance
improvements. Unfortunately, the incorporation of these ideas are likely to cause a
substantial increase in the computational and storage requiremerts of the system.
One interesting possibility is to use a tree structured vector quantizer [10]. This
technique preserves many of the advantages of vector quantisation without incurring
the associated computational penalties. A structured vector quantizer also has the
advantage that the quantization of each block can be halted at any stage of the
tree. This property allows the quantizer to easily accommodate variations in the
number of available bits per block.

Quantization efficiency may also be improved by allocating bits over multiple
speech segments. Rather tha:i allocating 96 bits to each frame, it may be desirable
to allocate more bits to some frames and less to others. while keeping the total
number of bits constant. The non-staiionarity in the speech model parameters

results in some frames being more difficult to quantize than others. This problem
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can be lessened by adaptirg the bit allocation to correct for these non-stationarities.
One disadvantage of this approach is that the 'coding delay will increase.

Various other concepts may be used to improve the quantization efficiency of the
system. One possibility is to use a higher order predictor for the hybrid coding of
the harmonic magnitudes. This may allow the system to remove more redundancy
in the parameters. System performance may also gain from the use of non-uniform

quantization for the DCT coefficients, and variations in the magnitude and phase

block sizes.

7.2 Suggestions for Improved Speech Modeling

One problem with this and other model based speech ccders is that even with
perfect quantization, there is some degradation in speech quality. Errors in the
modeling process and in the estimation of the model parameters result in artifacts
in the speech. In very high bit-rate speech coding or in applications such as time-
scale modification of speech, these artifacts can be the limiting factors in system
performance. One of the principal advantages of the MBE speech model is that
it results in substantially fewer medel induced degrudations. Unfortunately, the
modeling and estimation process is still noticeable for most speech material. In
particular the presence of pitch errors and voiced/unvoiced errors results in small
artifacts in the speech.

One extension to the MBE speech model which may result in an increase in
speech quality i-s to replace the voiced/unvoiced decision with a dual voiced and
unvoiced representation. In the current MBE speech model a set of harmonic mag-
nitudes and phases are estimated under the assumptions that the speech is voiced.
The validity of this assumption is then determined for each harmonic by compar-

ing the actual spectrum with the estimated voiced spectrum. If the error between

these spectra is small then the region is declared voiced. However, if the error is
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large, then the region is declared unvoiced, and the voiced magnitude and phase
are discarded in favor of an unvoiced magnitude estimate. A better speech model
may result if each harmonic is allowed to be a combination of voiced and unvoiced
energy. This could easily be done by retaining the voiced magnitude and phase
estimate for each harmonic. The unvoiced portion of the spectrum could then be
obtained from the error between the original spectrum and the estimated voiced
spectrum. In practice the unvoiced spectrum could be parameterized by a small
numiber of values which correspond to the average magnitude over some frequency
region. Because this idea incorporates both a voiced and unvoiced spectrum, there
is no longer a need for voiced/unvoiced decisions. This information would now
reside in the relative amplitude of the voiced and unvoiced spectra.

This dual excitation speech model has several advantages in terms of both the
quality and the intelligibility of the synthesized speech. First it removes the problem
of determining a voiced/unvoiced threshold. This should improve the robustness of
the model to widely varying noise and speech conditions. In addition this extension
should improve the accuracy of the speech model in low SNR conditions. The reason
for this is that at most frequencies noisy speech contains both voiced and unvoiced
energy. For the harmonics which are declared voicsd, the current model eliminates
the unvoiced energy, resulting in an effect similar to that produced by comb-filtering.
In contrast, the harmonics which are declared unvoiced are principally filled with
background noise, and the voiced speech cues are eliminated. There are a number
of other ways in which this extension may improve the speech modeling process.
However, the applicability of this dual excitation speech model has not yet been

shown.
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