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Abstract

Machine learning in sensitive domains like healthcare currently faces a major bot-
tleneck due to the scarcity of data that is publicly available. Privacy protection
regulations such as HIPAA and GDPR and recent progress in information estimation
literature motivate us to investigate the issue from an information theoretic perspec-
tive. In this thesis, we propose InfoShape, an encoder training scheme that aims to
maintain privacy while also preserving utility for downstream prediction tasks. We
achieve this by utilizing mutual information neural estimation (MINE) [2] to estimate
two quantities, privacy leakage: the mutual information between the original inputs
and the encoded representations, and utility score: the mutual information between
the encoded representations and the intended labeling information for classification.
We train a neural network as our encoder by using our privacy and utility measures
in a Lagrangian optimization. We show empirically on Gaussian generated data that
InfoShape is capable of altering encoded sample outputs such that the privacy leakage
is reduced and the utility score increases. Moreover, we observe that the classification
accuracy of downstream models has a meaningful connection with the utility score,
which improves after we train an encoder compared to the untrained encoder. This
work has profound implications for privacy-preserving machine learning and could
serve as a pivotal tool in the future for revolutionizing AI in areas like healthcare.
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Chapter 1

Introduction

Contemporary machine learning efforts in various sensitive domains like healthcare

face a major bottleneck due to the shortage of publicly available training data [17].

Release and acquisition of sensitive medical data containing identifiable information

is currently federally prohibited by laws such as HIPAA [6] and GDPR [9]. However,

without the ability to train on large amounts of data, predictive models are not able

to confidently capture enough labeling information to accurately perform intended

classification tasks. This motivates us to approach the issue from an information

theoretic perspective. In this thesis, we investigate an encoding scheme that allows

data-owners to publicly release their encoded data with labels such that a model can

be trained for downstream predictive tasks. This could lead to the widespread release

of larger and more diverse medical datasets that simultaneously limit the use of data

for undesired applications.

1.1 Current Techniques

The state-of-the-art solutions to tackle this privacy-utility tradeoff primarily involve

allowing data-owners to share their encrypted data [4][7][16] or their noisy data

[32][19]. However, contemporary encryption practices are computationally inefficient

and ensure that an adversary learns nothing about the original data with very high

probability. This is not necessary for our purposes. One can see how in a chest x-ray

17



Figure 1-1: The data-owner tries to share its sensitive data that is encoded using
InfoShape with the researcher/client. The encoded data must reveal as little infor-
mation as possible to the adversary besides what is needed for the researcher/client’s
ML task.

dataset, there is no need to hide the fact that the images are actually chest x-rays,

or that a chest x-ray image has 24 ribs in it (most humans have this many). In addi-

tion, only limited operations can be performed on encrypted data. This implies that

downstream models must modify their architectures in order to train on encrypted

data, which could negatively affect accuracy. On the other hand, using the approach

of training on noisy data with methods like differential privacy lead to notable utility

costs.

1.2 Problem Statement

Our problem setting is as follows: we would like a data-owner of sensitive informa-

tion to be able to encode their data such that any malicious adversary would learn as

little information as possible beyond what is necessary to conduct proper inference

18



in downstream tasks. An example would be a hospital that would like to release en-

coded patient chest x-rays to AI researchers, who wish to train models for pneumonia

detection. From the perspective of the data-owner, once it sends its encoded data,

any adversary (including potentially the researcher/client themselves !) has access,

and, combined with other publicly available data, must not be able to learn anything

beyond what is necessary for the downstream classification task. Potentially sensi-

tive attributes that must remain hidden include age, gender, or race. We can see a

diagram of this example in Figure 1-1.

In other words, we would like an approach that aims to achieve both privacy

guarantees as well as the preservation of utility for downstream machine learning

tasks. For privacy, our goal is to limit the amount of information that is revealed about

each sample beyond its labels. For utility, there could be different goals depending

on the task at hand. We focus on the goal of being able to train a classifier on the

transformed data with the original labels, such that it performs close to the baseline

model that was trained on the original, un-encoded data. In practice, these two

design goals are competing. Therefore, providing a solution that offers a meaningful

and tune-able trade-off between these two goals has significant practical importance.

1.3 Our Contribution: InfoShape

We propose a novel dual optimization mechanism, dubbed InfoShape, to simulta-

neously preserve privacy while also maintaining utility on downstream classification

tasks. We choose the name of InfoShape since our scheme trains a neural network

encoder to act as a task-specific lossy compressor, by keeping as much relevant in-

formation as possible for our intended downstream task while “shaping” the data to

achieve a private representation. This is similar in concept to the idea of network

functional compression with distortion in [14], where they discuss how to compress

input data such that a function on the compressed data can be computed at the

receiving end.

Mutual information is chosen as our primary metric to quantify the privacy and
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utility performance. Treating the combined privacy and utility measures as an ob-

jective function allows us to train our encoder through traditional machine learning

methods. The importance of mutual information on bounding the privacy leakage has

already been investigated in previous work [20]. However, due to the computational

complexity of estimating mutual information for a high-dimensional dataset in the

image domain, using this critical metric has seen limited use. To circumvent this

challenge, recent works have used neural networks to estimate variational bounds on

mutual information [2][25][30].

We utilize the potential of neural estimation of mutual information to numerically

identify bounds on mutual information between original data and encoded data (as

a measure of privacy) and between labels and encoded data (as a measure of utility)

for a given neural network that encodes the data. We then propose to combine

these two measures as competing loss values into a single loss metric for training the

encoder. Once the encoder is trained, it can be utilized by individual data owners as

a task-based lossy compressor to encode their data and allow the release of data for

collaborative learning. Our overall scheme is illustrated in Figure 1-2.

Through experiments performed on a synthetic Gaussian dataset in Section 4.2,

we show that InfoShape successfully trains an encoder to simultaneously optimize

privacy and utility measures. Our empirical results and challenges that we faced

provide a rich set of paths for future work. We are hopeful that given better mutual

information estimators and careful encoder architecture construction, this work can

be extended into the image domain and be potentially used in encoding real, sensitive

medical images.

1.4 Thesis Overview

The rest of the thesis will be organized as follows: Chapter 2 will cover some of

the background of information theory concepts and related work that contribute to

the initial idea of InfoShape. Chapter 3 gives an overview of the landscape of mu-

tual information estimation, with a particular focus on Mutual Information Neural

20



Figure 1-2: General InfoShape blueprint for an example application in healthcare. 𝑋
represents our inputs, which could be chest x-ray images in this case. 𝑍 represents
the latent representations outputted by our encoder. The encoder can be thought
of as a lossy compressor that hides enough information for privacy guarantees, while
still keeping enough information for the final medical diagnosis, 𝐿(𝑥). The Informa-
tion Estimations calculate our measure of privacy leakage (𝐼(𝑥; 𝑧)) and utility score
𝐼(𝑧;𝐿(𝑥)), potentially via variational estimation methods. Both measures are then
combined in a Lagrangian optimization as the encoder’s loss function. The Training
Job modifies the encoder’s weights using back propagation, and the cycle repeats.

Estimation (MINE), which was a core component of our scheme. Chapter 4 ties

everything together into the main section on InfoShape and our promising results

demonstrating InfoShape’s ability to learn private and useful data representations.

Chapter 5 concludes the thesis and suggests areas of future work.
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Chapter 2

Background

In this section, we will explain some of the necessary background related to infor-

mation theory concepts as well as related work. Our work centers around improving

upon existing work related to data privacy and information estimation in order to

obtain a complete framework for optimizing the privacy-utility tradeoff.

2.1 Information Theory

To begin, we first review the idea of entropy, which measures the amount of “un-

certainty” or “surprise” present in a probability distribution. The idea was first in-

troduced by Claude Shannon in his 1948 paper "A Mathematical Theory of Commu-

nication," where he showed that entropy provided a theoretical bound on how well

certain data could be losslessly compressed in a perfectly noiseless communication

channel [27]. Given a discrete random variable 𝑋 that takes values from the alphabet

𝒳 with probability function 𝑃 : 𝒳 → [0, 1], entropy is given by the following formula:

𝐻(𝑋) = −
∑︁
𝑥∈𝒳

𝑃 (𝑥) log𝑃 (𝑥) (2.1)

Common units that are used for entropy include bits and nats, which indicate the

usage of either log2 or ln in Equation 2.1. As a concrete example, if 𝑋 has an out-

come space of all the integers from 0 to 7, each occurring with uniform probability,
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then we can efficiently and uniquely express any outcome as a binary number with 3

bits. Hence, 𝐻(𝑋) = log2(1/8) = 3 bits. However, if only the integers from 0 to 3

inclusive have a non-zero and equal probability of occurring, then the entropy drops

down to 2 bits since the entire outcome space can be described using just those 2 bits

of information.

Similarly, we can define joint entropy, the “uncertainty” for the outcomes of two

random variables 𝑋 and 𝑌 , by the following formula:

𝐻(𝑋, 𝑌 ) = −
∑︁
𝑥∈𝒳

∑︁
𝑦∈𝒴

𝑃 (𝑥, 𝑦) log𝑃 (𝑥, 𝑦) (2.2)

Conditional entropy, the “uncertainty” for the outcome of 𝑋 given 𝑌 , is defined as

follows:

𝐻(𝑋|𝑌 ) = −
∑︁
𝑥∈𝒳

∑︁
𝑦∈𝒴

𝑃 (𝑥, 𝑦) log𝑃 (𝑥|𝑦) (2.3)

Armed with these measures of entropy, we can now define the quantity of mutual

information between 𝑋 and 𝑌 as follows:

𝐼(𝑋;𝑌 ) = 𝐻(𝑋)−𝐻(𝑋|𝑌 ) (2.4)

Mutual information can be interpreted as the reduction in uncertainty of 𝑋 given 𝑌 .

The idea for mutual information was originally derived in Shannon’s seminal 1948

paper. Some basic properties:

𝐼(𝑋;𝑌 ) = 𝐼(𝑌 ;𝑋)

= 𝐻(𝑋)−𝐻(𝑋|𝑌 ) = 𝐻(𝑌 )−𝐻(𝑌 |𝑋)

= 𝐻(𝑋) +𝐻(𝑌 )−𝐻(𝑋, 𝑌 )

=
∑︁
𝑥∈𝒳

∑︁
𝑦∈𝒴

𝑃 (𝑥, 𝑦) log
𝑃 (𝑥, 𝑦)

𝑃 (𝑥)𝑃 (𝑦)
(2.5)
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Another useful tool in information theory is the Kullback-Leibler (KL) diver-

gence, which measures the “statistical distance” between two probability distribu-

tions. The KL-Divergence between two discrete probability distributions, 𝑃 and 𝑄,

over the same probability space 𝒳 , is defined as:

𝐷𝐾𝐿(𝑃 ||𝑄) :=
∑︁
𝑥∈𝒳

𝑃 (𝑥) log
𝑃 (𝑥)

𝑄(𝑥)
(2.6)

KL Divergence is also sometimes called relative entropy, which we can understand

with the interpretation that 𝐷𝐾𝐿(𝑃 ||𝑄) is the excess surprise from using 𝑄 as a

model for some data when the underlying distribution is actually 𝑃 [18].

This allows us to define mutual information alternatively by interpreting Equation

2.5 as the KL-divergence between the joint distribution between 𝑋 and 𝑌 , 𝑃𝑋𝑌 , and

the product of the marginals, 𝑃𝑋 ⊗ 𝑃𝑌 :

𝐼(𝑋;𝑌 ) := 𝐷𝐾𝐿(𝑃𝑋𝑌 ||𝑃𝑋 ⊗ 𝑃𝑌 ) (2.7)

Intuitively, the smaller the divergence between the joint and the product of the

marginals, the lower dependence 𝑋 and 𝑌 must have. In fact, mutual information is

0 precisely when 𝑋 and 𝑌 are independent from each other. This definition is used in

[2] for their neural MI estimation, which we in turn utilize extensively in InfoShape.

As an important aside, computing the mutual information for continuous or high-

dimensional data is nearly impossible without previous information about the data.

In particular, for most real world problems, the marginal, 𝑃 (𝑋) from Equation 2.4 is

intractable. As an example, for a machine learning problem on image classification,

it is impossible to know the input distribution of all possible images, as this would

either require an astronomical computation effort or would not even make sense to

compute. Therefore, direct computation of MI is usually impossible.

However, even contemporary variational estimation methods [25] require large

amounts of data to provide reliable estimates and several MI variational bounds

require prerequisite knowledge of certain distributions. This motivates our search for
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an appropriate MI estimator that has the numerical properties that would allow us

to use it in InfoShape.

2.2 Related Work

In this section we explore the literature in the areas of private data release and the

estimation of information. For each approach in the private data release section, we

list at least one reason why the approach would not address the goals in our problem

statement in Section 1.2. This section then motivates our discussion on the estimation

of information, in which we use previous works to illustrate why mutual information

is the most logical statistic to use and how existing neural estimation methods can

achieve this more reliably than conventional means.

2.2.1 Private Data Release

Anonymization and Perturbation

One of the most basic methods that attempts to preserve patient data privacy for

public release is anonymization. Recent work by the authors of [24], however, show

just how vulnerable anonymization efforts are to the power of deep learning-based

re-identification algorithms. They claim to achieve 95.55% accuracy and an AUC

of 0.9940 for identifying whether two frontal chest X-ray images are from the same

person. Furthermore, they note that the model can even reveal the same person ten or

more years after the initial scan. By cross-referencing other images or leaked sensitive

information about an individual, this re-identification could prove detrimental to a

patient’s privacy.

Additionally, rudimentary attempts of image obfuscation like blurring or pixelat-

ing also do not protect a patient’s privacy. Image de-blurring and the use of deep

learning methods to recreate the original image is a well studied topic [15][23]. Clearly,

we would like to approach our own goals from a direction that avoids these simple,

outdated obfuscation methods.
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Differential Privacy

The field of differential privacy centers around “the paradox of learning nothing about

an individual while learning useful information about a population” [13] [10]. Differ-

ential privacy itself is just a definition and not any specific algorithm. In Chapter 1

of [13], we can see how differential privacy is defined through an example: a study is

performed on a differentially private (DP) medical database that demonstrates that

smoking causes lung cancer. Regardless of whether an individual smoker opted in

or out of the medical database, their privacy would not be leaked since the study’s

conclusions would have been the same in either situation. To generalize, any series of

responses to queries to the DP database would be “essentially” equally likely to occur,

independent of whether an individual’s data is in the database or not. The parameter

𝜖 controls the degree of privacy guaranteed. Smaller 𝜖 will lead to stronger privacy

guarantees and thus more statistically noisy and less accurate query responses. One

classic approach to achieve 𝜖-differential privacy is to add Laplace noise to the inputs

[13].

Unfortunately, differential privacy would not achieve our stated goals, because in

this view, “acceptable” privacy would come at the cost of utility loss. We recognize

that utility and privacy fundamentally offer a tradeoff; however, we are more keen on

identifying encoded data representations that capture enough information to preserve

utility while also achieving privacy guarantees. Even if we were to adjust 𝜖 or the

differential privacy algorithm, this statistical approach would not fit into our problem

statement mold.

Encryption Methods

As discussed in Section 1.1, encryption methods are designed to let an adversary learn

nothing about the original unencrypted inputs. Encryption algorithms use compu-

tational assumptions, such as the integer factorization or discrete log problems, as a

basis for methods that operate under various different cryptographic attack models,

such as Chosen Plaintext Attack (CPA) or Chosen Ciphertext Attack (CCA) (both of
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which concern the abilities of a potential adversary), as a foundation to achieve privacy

[5]. Modern cryptographic methods like fully homomorphic encryption or functional

encryption [16][3] allow performing operations purely using encrypted data, such that

the same results would be obtained if that operation were performed on the unen-

crypted data. These techniques only allow certain types of computations and are

computationally expensive, however, which deters their use.

Furthermore, encryption techniques do not offer the granularity of privacy that we

seek. As an example, we would not be looking to hide the fact that an image used to

be chest x-ray, since we would still like to publicly release labels. These labels would

already implicitly inform an adversary about the nature of the data anyway. Instead,

we would like to encode the image such that certain privacy guarantees related to

sensitive information would be upheld. We believe that this “tunable” and specific

degree of privacy cannot be achieved with encryption alone.

2.2.2 Estimation of Information

In this section, we first discuss the Information Bottleneck, which is a highly related

area of work that motivated our approach. Next, we discuss why mutual information

is difficult to estimate for real-world datasets and what existing mutual information

bounds are covered in the literature. Finally, we explore the work of [2], where

they use neural networks to estimate mutual information. MINE serves as a core

component in our final overall scheme.

Information Bottleneck

The information bottleneck (IB) problem aims to find a minimal representation of

an input signal 𝑋, given a joint probability distribution between 𝑋 and 𝑌 , which is

another observed signal (this would be the target outputs in machine learning appli-

cations). The crux of the IB method is to find the best tradeoff between accuracy and

compression. When viewed from an information theory lens, we let 𝑇 be the com-
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pressed representation of 𝑋, which lends us the classic IB Lagrangian optimization:

min
𝑝(𝑡|𝑥)

[𝐼(𝑋;𝑇 )− 𝛽𝐼(𝑇 ;𝑌 )] (2.8)

where 𝛽 controls the tradeoff between compression and information preservation of

𝑋. [1]

This is quite similar to our dual optimization objective for InfoShape (see Equation

4.1), where we wish to find a suitable tradeoff between privacy and utility. We draw

motivation from the theoretical discussions in [21], where the authors discuss the

connection between the information bottleneck and private data transformation, via

a Privacy Funnel optimization. Furthermore, one can view privacy from the lens

of compression (i.e., with compressed sensing [11], where only a small subset of the

input signal would need to be preserved for “faithful recovery”). Our work extends

on these ideas by first identifying a concrete MI estimation algorithm, MINE, and

then training a neural network acting as a lossy encoder that tries to find an optimal

representation for our privacy and utility objectives.

Mutual Information Bounds

The authors of [25] provide a comprehensive review of various available MI estimation

bounds, which are summarized in Figure 2-1. Our intended applications of real-world

machine learning problems in fields like healthcare usually only have samples of 𝑥, 𝑦

available, but with probability densities that are unknown (such as 𝑝(𝑦|𝑥), which

is usually what classification aims to predict). Mutual information itself is difficult

to compute with finite datasets of this nature. As a result, we are limited to the

tractable variational lower bounds that approximate MI: 𝐼NWJ, 𝐼TUBA, 𝐼NCE, 𝐼𝛼, and

𝐼MINE. One can examine Section 2.2 and 2.3 in [25] to see how each of these bounds

was derived. The authors claim that 𝐼TUBA, 𝐼NWJ, and 𝐼MINE all “provide tractable

estimators which become tight with the optimal critic,” which led us to settle on

choosing MINE as an MI estimator, despite the warning that they also “exhibit high

variance due to their reliance on high variance upper bounds on the log partition
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Figure 2-1: Figure 1 from [25] outlining the variational MI bounds presented in
their paper. Green nodes can be used for both optimization and estimation, yellow
nodes for optimization but not estimation, and red for neither. Arrows indicate
approximations or assumptions building off of previous parent bounds. Since we are
working with unknown 𝑝(𝑦|𝑥) and since we would like to compute MI estimates, we
mainly focus on the green nodes in the bottom left.
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function.” The other bounds, 𝐼NCE and 𝐼𝛼, had upper bounds on their MI estimates

of log𝐾 and log 𝐾
𝛼
, respectively, where 𝐾 is the number of samples per batch and 𝛼

is a tunable parameter. We felt that using these could potentially negatively impact

our estimation accuracy. The upper bound of 𝐼𝛼, log 𝐾
𝛼
, is tunable, though, which

makes it a potential candidate for future exploration.

Mutual Information Neural Estimation (MINE)

As we have already seen in the previous section, mutual information is a difficult

statistic to estimate, despite there being various bounds available if certain conditions

about the data and experiment are met. Here, we briefly discuss the background for

MINE, an approach that utilizes a neural network to estimate mutual information.

MINE uses a deep neural network the authors call a “statistics network” to estimate

MI. They use the formula from Equation 2.4 and the Donsker-Varadhan representa-

tion of KL-divergence [12] to obtain what they call the “neural information measure”:

𝐼𝜃(𝑋;𝑌 ) = 𝐷(𝑃𝑋𝑌 ||𝑃𝑋 ⊗ 𝑃𝑌 ) ≥ sup
𝜃∈Θ

E𝑃𝑋𝑌
[𝑇𝜃]− ln(E𝑃𝑋⊗𝑃𝑌

[𝑒𝑇𝜃 ]) (2.9)

The function 𝑇𝜃 is parameterized by the statistics network with parameters 𝜃, and the

final neural information measure provides a lower bound on 𝐼(𝑋;𝑌 ). Using standard

backpropagation and gradient ascent, this value of 𝑇𝜃 (in theory) converges over time

to give a tight lower bound for MI [2]. More details, including the MINE algorithm,

the challenges we experienced, and how we used MINE in MNIST and Gaussian

datasets, are explored in Section 3.4.

2.3 Datasets Used

We initially started our work using a Kaggle dataset of chest x-ray images for pneu-

monia detection. Due to data imbalance and the complexity of images, we decided

to switch to the classic MNIST digits dataset for our later MINE experiments. While

the results from MNIST seemed promising at times, it became clear that working in
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the image domain led to various numerical stability issues when using MINE. Choi et

al in [8] also faced similar problems and suggested improvements to MINE that would

address the stability issues. However, their experiments were done on a simple, syn-

thetic Gaussian dataset originally used by [2]. When we used their ideas on MNIST,

the previous problems still persisted, albeit with milder severity. As a result, we used

synthetic Gaussian data for our final experiments. Please see Section 3.1.1 for more

details.
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Chapter 3

Estimating Mutual Information

In this chapter, we focus on the core component of the InfoShape pipeline, the mutual

information estimation algorithm. We first outline the setup for these experiments

and discuss why we even choose mutual information as our primary statistic. Then,

we cover the theory of MINE and outline the algorithm from their paper. Finally, we

present the estimation results on both MNIST and Gaussian datasets.

3.1 Experiment Setup

Each of our experiments required both our dataset as well as an encoder to transform

the data. We borrowed much of the MINE code from this MINE Github, in which

the author replicated many of the results from the original MINE paper. This led us

to stick with the author’s choice of using Pytorch Lightning as the primary tool for

implementation.

3.1.1 Dataset Setup

Our MINE experiments were primarily performed on the MNIST digits dataset and

our synthetic Gaussian dataset, both of which were introduced in Section 2.3. For

both datasets, we used 60,000 data samples. Importantly, there was no standard

notion of a train and test split for the mutual information estimation experiments
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Figure 3-1: Three output channels after encoding an MNIST image using the con-
volutional encoder from Table 3.1 with randomly initialized weights. Most spatial
information can still be observed.

since MINE is essentially an optimization problem that maximizes a lower bound of

MI via random sampling. Once its lower bound is optimized, that final MI measure

is our result. Furthermore, for our datasets that we passed into the MINE algorithm,

we set the flag shuffle =True inside of the Pytorch DataLoader to achieve the random

sampling required for the MINE algorithm (see Algorithm 1).

For the synthetic Gaussian dataset, we generated 30,000 samples each from two

multivariate Gaussian distributions of dimension 𝐷 = 20 and with two different

covariance matrices. Both had variances of 1 down the main diagonal. However, for

the first multivariate Gaussian, there was a constant value, 𝜌0 = −0.99 on the two

diagonals starting from (0, ⌊𝐷/2⌋) and (⌊𝐷/2⌋, 0), with zeros everywhere else. The

second was identical except it had 𝜌1 = 0.99. Below, we illustrate what the covariance

matrix would look like if the multivariate Gaussian dimensions were 4 instead of 20:⎡⎢⎢⎢⎢⎢⎢⎣
1 0 𝜌 0

0 1 0 𝜌

𝜌 0 1 0

0 𝜌 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
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3.1.2 Encoder Architecture

For our experiments on the MNIST data, we first tried a convolutional encoder ar-

chitecture, shown in Table 3.1. Our choice of using a non-overlapping stride for the

convolutional kernels was motivated by the encoder architecture from Figure 2 in

[32]. After some analysis, we decided to transition to using a simple, single-layer

nonlinear dense encoder instead, shown in Table 3.2. A dense encoder was able to

operate on the pixel level, whereas the convolutional encoder with its non-overlapping

stride would produce latent representations that still kept some spatial information

(see Figure 3-1).

For the synthetic Gaussian dataset, we used a dense encoder with fewer output

nodes, outlined in Table 3.3. By having fewer output nodes than total image pixels

or multivariate Gaussian components, we wished to architecturally induce all of our

encoders to act as lossy compressors. We paired each of these three encoders with

a compatible statistics network to calculate our MINE estimates: we used Table 3.4

for the MNIST convolutional encoder, Table 3.5 for the MNIST dense encoder, and

Table 3.6 for the Gaussian dense encoder.

Layer Number of Outputs Kernel Size Stride Activation Function

Input x 28× 28

Convolution 9× 9× 3 3× 3 3 ReLU

Table 3.1: Convolutional encoder architecture used for MNIST data. The use of non-
overlapping stride was motivated by the encoder family of functions from [32].

Layer Number of Outputs Activation Function

Input x 28× 28 -

Flatten

Dense 100 ReLU

Table 3.2: Dense encoder architecture used for MNIST data.
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Layer Number of Outputs Activation Function

Input x 20 -

Dense 10 Tanh

Dense 3 Tanh

Table 3.3: Dense encoder architecture used for synthetic Gaussian data. An extra
dense layer was added for more nonlinearity in the data.

3.2 Correlation vs Mutual Information

Before diving into MINE, we first studied the effects of using a simpler statistic like

correlation instead of mutual information for our InfoShape training pipeline. Our

experiment treated correlation as a metric for privacy leakage. This circumvented the

need for a complex algorithm like MINE. We trained the encoder from Table 3.2 with

−1× the correlation between the original image and the encoder output as our loss

for 25 epochs with learning rate 1𝑒-3. We used −1 to maximize the correlation. As

can be seen in Figure 3-2, on Epoch 0, our encoder completely scrambled the original

image with its randomly initialized weights. As the encoder trained, it approximated

the behavior of an identity function.

This should not be surprising since, from a theory point of view, correlation can

only measure the strength of the linear relationship between the pixels from our two

images. Therefore from this experiment, we can conclude that utilizing correlation in

our objective function would not induce a private encoded representation of data, as

having a simple, linear metric like correlation will just induce an encoder towards the

identity function. This motivates us to seek mutual information as a metric instead

due to its ability to measure non-linear relationships. Furthermore, we also draw

inspiration from [21], where they provide a proof for the notion that “the inference

threat under any bounded cost function can be upper bounded by an explicit function

of the mutual information between private data and disclosed data.” Their concept of

private data is precisely our original input data, and the disclosed data would be our

encoder outputted latent representations. With this theoretical backing for mutual
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Figure 3-2: Encoder latent representations between training epochs. The top left
image shows the original MNIST digit, denoted 𝑋, and the progression of encoder
latent representations, denoted 𝑍, clearly shows that the encoder learns the identity
function (𝑇 (𝑥) = 𝑥). We use the Pearson product-moment correlation coefficient
matrix from torch. corrcoef calculated for an input matrix with 𝑋 and 𝑍 flattened
and stacked on top of each other as rows (ie. a matrix of shape 2× (IMG_WIDTH×
IMG_HEIGHT).) The actual loss value is 𝑅0,1, the correlation value itself from the
correlation matrix, 𝑅.

information as motivation, we now turn to the estimation of mutual information.

3.3 Mutual Information Neural Estimation (MINE)

Formulation

As discussed previously in Section 2.1 and Section 2.2.2, directly computing MI is

essentially impossible if we are only provided with limited data samples with no

knowledge of underlying distributions. As a result, we turn to variational estimation,

which will give us a bound on the true MI. To derive the estimation formula for

MINE’s variational method, we start with Equation Section 2.7, repeated here:

𝐼(𝑋;𝑌 ) := 𝐷𝐾𝐿(𝑃𝑋𝑌 ||𝑃𝑋 ⊗ 𝑃𝑌 )
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The authors of MINE utilize the Donsker-Varadhan representation of KL-Divergence,

which is shown below for reference:

𝐷𝐾𝐿(𝑃 ||𝑄) = sup
𝑇 :Ω→R

E𝑃 [𝑇 ]− logE𝑄[𝑒
𝑇 ] (3.1)

where the supremum is taken over all functions 𝑇 such that the two expectations are

finite. This lends itself nicely to an optimization problem to estimate MI.

To establish MINE’s objective function, the authors define 𝐼Θ(𝑋;𝑍) as the neural

information measure, which acts as a lower bound of 𝐼(𝑋;𝑍).

𝐼Θ(𝑋;𝑍) := sup
𝜃∈Θ

E𝑃𝑋𝑍
[𝑇Θ]− logE𝑃𝑋⊗𝑃𝑍

[𝑒𝑇𝜃 ] (3.2)

The expectations in Equation 3.2 should be estimated using i.i.d empirical samples

from 𝑃𝑋𝑍 and 𝑃𝑋 ⊗ 𝑃𝑍 . The marginal samples 𝑥̂ ∼ P𝑋 and 𝑧 ∼ P𝑍 can be obtained

by dropping whichever other value from the joint samples, ie (𝑥̂, 𝑧) and (𝑥, 𝑧) ∼ P𝑋𝑍 .

Now we are ready to present the MINE algorithm (1), as shown in Section (3.1)

of the MINE paper [2].

Algorithm 1 MINE
𝜃 ← initialize network parameters
repeat

Draw 𝑏 minibatch samples from the joint distribution:
(𝑥(1), 𝑧(1)), . . . , (𝑥(𝑏), 𝑧(𝑏)) ∼ P𝑋𝑍

Draw 𝑏 samples from the 𝑍 marginal distribution:
𝑧(1), . . . , 𝑧(𝑏) ∼ P𝑍

Evaluate the lower bound:
𝒱(𝜃)← 1

𝑏

∑︀𝑏
𝑖=1 𝑇𝜃(𝑥

(𝑖), 𝑧(𝑖))− log
(︁

1
𝑏

∑︀𝑏
𝑖=1 𝑒

𝑇𝜃(𝑥
(𝑖),𝑧(𝑖))

)︁
Evaluate bias corrected gradients (e.g. moving average):
𝐺̂(𝜃)← ∇̃𝜃𝒱𝜃
Update the statistic network parameters:
𝜃 ← 𝜃 + 𝐺̂(𝜃)

until convergence

The authors show that the SGD gradients for Algorithm 1 exhibit high bias,

meaning that the final estimates of MI fall short of the true MI. We can see that the
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gradient for the samples of minibatch 𝐵, denoted 𝐺̂𝐵(𝜃), is:

𝐺̂𝐵(𝜃) := ∇𝜃𝒱(𝜃)

= E𝐵[∇𝜃𝑇𝜃]−
E𝐵[∇𝜃𝑇𝜃𝑒

𝑇𝜃 ]

E𝐵[𝑒𝑇𝜃 ]
(3.3)

This follows from applying the chain rule and taking expectations over minibatch 𝐵.

In order to correct for the bias, the authors replaced the denominator of the second

term in Equation 3.3 with an exponential moving average across iterations of the

MINE training loop, which improved empirical performance.

3.4 MINE Implementation and Extensions

3.4.1 MINE Architecture

We show our implementation of both the convolutional (3.4) and dense (3.5) statistics

networks for MINE used to calculate the privacy leakage measure when working with

the MNIST data. For the utility score, we used a separate statistics network with

the same architecture except with different input dimensions to calculate 𝐼(𝑍;𝐿(𝑋)).

Both convolutional and dense architectures drew inspiration from [2] in their “GAN

+ MINE: Stacked-MNIST” and “Information Bottleneck with MINE” experiments.

Our synthetic Gaussian data was much simpler than even MNIST images, since

it was 20-dimensional data, with only 10 different components of the multivariate

Gaussian having non-zero covariance, whereas MNIST images depicted 28× 28-pixel

handwritten digits of different styles. For this reason, we simplified our statistics

network for MINE to the architecture in Table 3.6. The rest of the MINE implemen-

tation can be seen in Our Github, where we use Pytorch Lightning to implement the

training loop of MINE.
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Layer Num. Outputs Kernel Stride Padding Activation Fn
Input z 9× 9× 3 - - - -

Convolution 5× 5× 16 5× 5 2 2 ReLU
Convolution 3× 3× 32 5× 5 2 2 ReLU
Convolution 2× 2× 64 5× 5 2 2 ReLU

Flatten - - - - -
Input x 28× 28 - - - -

Convolution 14× 14× 16 5× 5 2 2 ReLU
Convolution 7× 7× 32 5× 5 2 2 ReLU
Convolution 4× 4× 64 5× 5 2 2 ReLU

Flatten - - - - -
Hidden Flattened (x,z) 1280 - - - -

Dense 100 - - - ReLU
Dense 100 - - - ReLU
Dense 1 - - - -

Table 3.4: MINE convolutional statistics network architecture for MNIST data, used
for the privacy leakage measure. The output values are used to calculate an estimated
lower bound for 𝐼(𝑋;𝑍), where 𝑋 is the original data and 𝑍 is the encoded data.
Inputs 𝑧 and 𝑥 each undergo three convolutional layers, and then are flattened and
concatenated. The concatenated result then is passed through three dense layers to
output a final estimate.

Layer Number of Outputs Activation Function
Input x, z

Gaussian Noise(std=0.3) - -
Dense Layer 512 ELU

Gaussian Noise(std=0.5) - -
Dense Layer 512 ELU

Gaussian Noise(std=0.5) - -
Dense Layer 1 None

Table 3.5: MINE dense statistics network architecture for MNIST data, used for the
privacy leakage measure. The output values are used to calculate an estimated lower
bound for 𝐼(𝑋;𝑍). This architecture is exactly the same as the architecture used for
the “Information Bottleneck with MINE” experiment performed in Belghazi et al. [2].
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Layer Number of Outputs Activation Function
Input x, z

Dense Layer 100 ReLU
Dense Layer 100 ReLU
Dense Layer 1 None

Table 3.6: MINE statistics network architecture for the Gaussian data, used for
the privacy leakage measure. The output values are used to calculate an estimated
lower bound for 𝐼(𝑋;𝑍). Since the Gaussian data itself was much simpler in nature
compared to the MNIST images, we chose to use a simpler statistics network.

3.4.2 Convergence, Numerical Stability, and Variance Chal-

lenges

Our initial estimation results from MINE were erratic, as can be seen in Figure 3-3.

In particular, we observed three major challenges:

1. Convergence - MINE sometimes did not successfully converge to a non-zero

value when using convolutional statistics network architectures like those from

Section 8.1.3 from the appendix in [2].

2. Numerical Stability - We experienced exploding gradients (usually after

many iterations of MINE), which led to estimation values of NaN.

3. High Variance - With lower mini-batch sizes, the MI graphs across epochs

exhibited high variance and would appear extremely jumpy. We were only able

to obtain meaningful results when applying an aggressive smoothing factor.

For MNIST data, when we switched from the convolutional MINE and statistics

network architectures to their dense counterparts, we observed better convergence

results, perhaps due to the encoded outputs having minimal spatial information that

convolutional layers could exploit. With dense architectures, both the encoder and

the MINE statistics networks could operate at the granularity of the pixel-level, which

we believe was at least one factor in removing our convergence issues.

As for numerical stability, this was an issue that plagued us until we switched from

MNIST to our synthetic Gaussian data. We believe that the sheer complexity of the
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image domain and the limitations of either design choices or estimation abilities of

MINE indicate that operating strictly on Gaussian data is necessary until structural

improvements can be made. We also observe moderate improvements when modifying

our underlying estimation algorithm from MINE to Regularized MINE (ReMINE),

which we will discuss in the next section. Please also see Section 4.2 for our results

on Gaussian data.

Finally, high variance was particularly challenging to tackle, since there was inher-

ently a trade-off between bias and variance, as discussed in Section 2.2.2. However,

by providing a larger mini-batch size to to each iteration of MINE, we were able to

reduce the variance dramatically. We will also see how combining this optimization

with ReMINE on Gaussian data mostly resolved the difficulties that we faced.

3.4.3 Regularized MINE (ReMINE) for Better Numerical Sta-

bility

Due to the various challenges that we faced in Section 3.4.2, we turned to the litera-

ture for assistance. Regularized MINE (ReMINE) [8] proved to be extremely helpful.

The authors observed very similar issues with MINE as we did: in particular, they de-

scribed a “drifting phenomenon” where the estimates of E𝑃𝑋𝑌
[𝑇 ] and log

(︀
E𝑃𝑋⊗𝑃𝑌

[𝑒𝑇 ]
)︀

would drift in parallel, even after MI converged. They also observed exploding statis-

tics network outputs with smaller batch sizes, consistent with our observations. This

was backed by the literature surrounding the batch size limitation problem [22] [29],

which would require for MINE “a batch size proportional to the exponential of true

MI to control the variance of the estimation” [8].

While we omit the theoretical backing and proofs from [8], we will provide the

ReMINE loss function from their Theorem 5 as reference: Let 𝑑 be a distance function

on R. For Ω ⊂ R𝑑, any constant 𝐶 ′ ∈ R, and function 𝑇 : Ω→ R,

𝐷𝐾𝐿(P||Q) = sup
𝑇 :Ω→R

EP[𝑇 ]− log(EQ[𝑒
𝑇 ])− 𝑑(log(EQ[𝑒

𝑇 ]), 𝐶 ′) (3.4)

The extra regularization term at the end, 𝑑(log(EQ[𝑒
𝑇 ]), 𝐶 ′), prevents the drifting
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(a)

(b)

Figure 3-3: Various numerical challenges that we faced when using the MNIST
dataset. For all graphs, light colors represent true MI estimation values across it-
erations, and the dark lines track the EMA with a smoothing factor of 0.6. The top
is a graph of the MI estimate across MINE iterations for the convolutional encoder
and MINE architectures from Table 3.1 and Table 3.4, respectively. We can see that
the MI lower bound estimate fails to converge to a non-zero value. The top shows the
same experimental setup with a different seed for the convolutional encoder’s random
initialization of weights. This one converges; however, the variance is still high rela-
tive to the estimated MI value itself.
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(c)

(d)

Figure 3-3: Both graphs are the MI estimation results from using a dense encoder
with a dense MINE architecture from Table 3.2 and Table 3.5, respectively. We
observed gradient explosions with large spikes in both MI graphs. In the case of the
bottom graph, the MI value converged to NaN, or −∞ (there are many bold triangles
bunched together in a line, indicating a NaN value for each epoch past the explosion
point).
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Figure 3-4: Figure 6 from [8] comparing the different performance of multiple different
mutual information estimators on a 20-dimensional Gaussian dataset. Every 4000
iterations of the underlying estimation algorithm, the value of 𝜌 in the covariance
matrix was increased (the same Gaussian distribution construction as described in
Section 3.1.1. “The estimated MI (light) and smoothed estimation with exponential
moving average (dark) are plotted for each method,” and the dotted lines represent
theoretical bounds on MI estimation (as described in Sections 2.3 and 2.4 in [25].

Algorithm 2 ReMINE
𝜃 ← Initialize network parameters, 𝐾 ← Moving average window size, 𝑖← 0
repeat

Draw 𝐽 samples from the joint distribution:
(𝑥

(1)
𝑖 , 𝑦

(1)
𝑖 ), . . . , (𝑥

(𝐽)
𝑖 , 𝑦

(𝐽)
𝑖 ) ∼ P𝑋𝑌

Draw 𝑀 samples from the marginal distribution:
(𝑥̄

(1)
𝑖 , 𝑦

(1)
𝑖 ), . . . , (𝑥̄

(𝑀)
𝑖 , 𝑦

(𝑀)
𝑖 ) ∼ P𝑋 ⊗ P𝑌

Evaluate the lower bound:
ÊP𝑋𝑌

← 1
𝐽

∑︀𝐽
𝑗=1 𝑇𝜃(𝑥

(𝑗)
𝑖 , 𝑦

(𝑗)
𝑖 )

ÊP𝑋⊗P𝑌
← log( 1

𝑀

∑︀𝑀
𝑚=1 𝑒

𝑇𝜃(𝑥̄
(𝑚)
𝑖 ,𝑦

(𝑚)
𝑖 ))

𝒱(𝜃)← ÊP𝑋𝑌
− ÊP𝑋⊗P𝑌

− 𝑑(ÊP𝑋⊗P𝑌
, 𝐶)

Update the statistics network parameters:
𝜃 ← 𝜃 +∇𝜃𝒱𝜃
Estimate MI based on the last window 𝑊 = [max(0, 𝑖 − 𝐾 + 1),min(𝐾, 𝑖)] of

size 𝐾:
𝐼(𝑋;𝑌 ) = 1

𝐽 ·|𝑊 |
∑︀

𝑤∈𝑊
∑︀𝐽

𝑗=1 𝑇𝜃(𝑥
(𝑗)
𝑤 , 𝑦

(𝑗)
𝑤 )− log( 1

𝐽 ·|𝑊 |
∑︀

𝑤∈𝑊
∑︀𝑀

𝑚=1 𝑒
𝑇𝜃(𝑥̄

(𝑚)
𝑤 ,𝑦

(𝑚)
𝑤 ))

Next iteration: 𝑖← 𝑖+ 1
until convergence
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phenomenon by warping the loss surface so that there is only one solution, as opposed

to in MINE where there are many possible values for the first and second terms of the

Equation 3.2 that lead to an optimal lower bound. Furthermore, the authors propose

a micro-averaging strategy in the ReMINE Algorithm 2 to estimate MI based on a

sliding window of ReMINE results across previous iterations. Empirically, this was

shown to mitigate the exploding gradients issue. One can also see in Figure 3-4 that

ReMINE outperforms many other state of the art MI estimators (including MINE

itself) with respect to numerical stability, low bias, and variance reduction. We

observed similar outcomes in our own findings (see Section 3.5) when using ReMINE.

For the implementation, we followed the authors’ recommendation of using L2

regularization as the distance metric with default values of 𝐶 = 0 and 𝜆 = 0.1, and

we used a simple average with a sliding window of size 𝐾 = 10 for the final MI

estimate.

3.5 Analysis on Gaussian Dataset and MNIST

In this section, we present MI estimation results from utilizing ReMINE on Gaussian

data. We omit the results for MNIST data since the challenges illustrated in Section

3.4.2 persisted despite our switch to ReMINE. This was to be expected though, as the

authors of ReMINE described in Section 5.3 of [8] that even ReMINE (as well as the

other DV-based estimators like MINE and SMILE) failed to produce estimates close

to the ideal values in the image domain with the CIFAR-10 dataset. All ReMINE

charts in this chapter and the next show the convergence of MI estimation, with each

iteration’s estimation value in a lighter color and the smoothed result from applying

EMA with 𝛼 = 0.6 on the darker line. For each result in the ReMINE estimation

tables, we take the average of the last 10 values from the ReMINE charts.

Our initial ReMINE estimation results are shown in Figure 3-5 and Figure 3-6.

We can observe that the final estimation values in Figure 3-6a are upper bounded

by those in Figure 3-5a, ie: 𝐼(𝑋;𝑍) <= 𝐼(𝑋;𝑋) = 𝐻(𝑋). This inequality should

directly follow from the MI formula, expressed in terms of entropy values in Equation
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(a)

(b)

Figure 3-5: ReMINE estimation results. (3-5a) 𝐼(𝑋;𝑋), which is a lower bound on
𝐼(𝑋;𝑋) = 𝐻(𝑋). The true entropy of our synthetic Gaussian distribution is 8.79.
(3-5b) 𝐼(𝑋;𝐿(𝑋)), where 𝐿(𝑋) is the binary label of whether an input belongs to the
first or second Gaussian distribution (see our experimental setup in Section 3.1.1).
Note that 𝐻(𝐿(𝑋)) = 0.69.
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(a)

(b)

Figure 3-6: ReMINE estimation results with an untrained encoder generating 𝑍.
(3-6a) 𝐼(𝑋;𝑍), and (3-6b) 𝐼(𝑍;𝐿(𝑋)). Notice that both estimated values are lower
than their theoretical bounds (8.79 and 0.69, respectively).
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2.5: 𝐼(𝑋;𝑍) = 𝐻(𝑋)−𝐻(𝑋|𝑍) ≤ 𝐻(𝑋). We can also directly calculate the entropy

of our Gaussian dataset to verify the estimation result for 𝐼(𝑋;𝑋).

𝐻(𝑋) =
𝐻(𝑋|𝜌0)

2
+

𝐻(𝑋|𝜌1)
2

= 𝐻(𝑋|𝜌0)

=
ln |Σ|
2

+
𝐷

2
(1 + ln(2𝜋))

= 8.79 (3.5)

The first line follows from the nature of how the Gaussian dataset was constructed,

with 30,000 samples each from 2 different Gaussian distributions. The second line is

due to the covariance matrices for both distributions having the same structure and

𝜌0 = −1×𝜌1, which ensures that the determinant of their covariance matrices are the

same. This would cause 𝐻(𝑋|𝜌0) = 𝐻(𝑋|𝜌1). The third line is the definition of the

entropy for a multivariate Gaussian dataset of 𝒩 (𝜇,Σ) that is 𝐷-dimensional. We

notice that the estimation result for 𝐼(𝑋;𝑋) is around 7.59 (final 10 values averaged),

which is an appropriate lower bound on the actual value, 𝐻(𝑋) = 8.79.

Furthermore, since 𝑍 was obtained via an encoder transformation that reduced

the amount of output nodes, we can compare Figure 3-6b and Figure 3-5b to verify

that 𝐼(𝑍;𝐿(𝑋)) < 𝐼(𝑋;𝐿(𝑋)) <= 𝐻(𝐿(𝑋)). We can also directly compute the

entropy of the labelling function, since our experimental data was set up with binary

labels for the two groups of 30,000 samples from separate Gaussians: 𝐻(𝐿(𝑋)) =

−1× (0.5× ln 0.5+ 0.5× ln 0.5) = 0.6931. This corroborates the ReMINE results for

Figure 3-5b, where 𝐼(𝑋;𝐿(𝑋)) converges to a value around 0.69.

Now that there is a numerically stable MI estimation procedure for our Gaussian

data, we are ready to apply it for the InfoShape training pipeline, detailed in the next

section.
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Chapter 4

Encoder Training Pipeline

In this chapter we first describe the system model for InfoShape in Section 4.1. Then,

we discuss the empirical results of various experiments with encoder training in Sec-

tion 4.2. These results pose many research questions, which lead nicely into the future

works section in 5.1.

4.1 System Model

Our InfoShape schematic, which utilized ReMINE for the synthetic Gaussian dataset,

is outlined in Figure 4-1. In our implementation, we used ReMINE to train the

underlying statistics network until convergence for both privacy leakage and utility

score measures, and then, as the authors recommended, we took a simple average of an

extra 150 iterations of the algorithm as our final MI estimate. We further normalized

the privacy leakage and utility score against our empirical estimate of 𝐻(𝑋) from

earlier in Figure 3-5a and 𝐻(𝐿(𝑋)) in Figure 3-5b. These were combined, weighted,

and applied as the encoder’s loss function, which is shown here:

ℒ(𝜃,𝑋, 𝑍, 𝐿(𝑋)) = 𝜆1
𝐼(𝑋;𝑍)

𝐻(𝑋)
− 𝜆2

𝐼(𝑍;𝐿(𝑋))

𝐻(𝐿(𝑋))
(4.1)

Since there is no guarantee that we can directly calculate the entropy of the input

data, in our experiments we replace it with 𝐼(𝑋;𝑋), which gives a lower bound
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Figure 4-1: A specific adaptation of Figure 1-2 for ReMINE experiments on the syn-
thetic Gaussian dataset. The inputs, 𝑋, are samples from two possible 20-dimensional
multivariate Gaussians: 𝒩 (0,Σ0) or 𝒩 (0,Σ1), with each covariance matrix differing
in just two diagonals (see Section 3.1.1 for details). 𝑍 are the 3-dimensional encoded
outputs. The Information Estimations step utilizes ReMINE to minimize the MI
lower bounds on 𝐼(𝑋;𝑍) for the privacy leakage and maximize 𝐼(𝑍;𝐿(𝑋)) for utility
score, where 𝐿 is the labeling function. The final MI values are combined in a La-
grangian optimization as the encoder’s loss function. The Training Job modifies the
encoder’s weights using classic back propagation, and the cycle repeats.

estimate on 𝐻(𝑋).

Based on the lessons learned from Section 3.4.2, we used a large mini-batch size of

4000 for the ReMINE algorithm to fight variance in our estimates. This was critical

since our encoder would not have a productive training process if its loss values had

higher fluctuations from variance compared to any changes as a result of encoder back-

propagation. Furthermore, to mitigate any potential stability issues, we batched the

gradients for ReMINE in batches of 10, to discourage a single MINE back-propagation

step from blowing up the gradients.

Our core MI estimation algorithm uses the ReMINE implementation discussed

in Section 3.4.3. Due to the Pytorch lightning implementation choice, our ReMINE

estimator would consider a full pass through every data sample in the dataset as one

“epoch,” which is standard, but goes against the MINE algorithm’s random sampling

of one mini-batch at a time being considered as a single iteration. As a result, the x-
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Layer Number of Outputs Activation Function
Input x 20 -
Dense 100 ReLU
Dense 1 Sigmoid

Table 4.1: Dense classifier architecture for classification on Gaussian data. Note that
the outputs of the classifier are probability scores from 0 to 1 of the input data being
label 1 (being sampled from 𝒩 (0,Σ1) with 𝜌1 = 0.99).

Figure 4-2: The left graph shows the ROC Curve for the classifier from Table 4.1
trained and tested on the original Gaussian data, achieving an AUC of 1.00. The right
graph shows the ROC Curve for the same classifier trained and tested on randomly
encoded data (classifier’s first layer modified to have 3 input nodes for compatibility).
The classifier achieved a noticeably worse AUC of 0.72.

axis number of iterations in all of our ReMINE charts are downsampled to only include

the MI estimate after a full pass of the dataset through ReMINE’s main loop. Since we

used a minibatch size of 4000, our actual number of “ReMINE iterations” is 𝑁/𝐵𝑆×

epochs. By default, we chose to use 1000 epochs for utility score estimation and 1500

epochs for privacy leakage. This amounts to 15000 and 22500 ReMINE iterations,

respectively. We chose these values since running the ReMINE algorithm for this

many iterations across multiple training epochs was computationally expensive and

time-consuming. In later experiments we increased the number of epochs to achieve

better convergence.
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4.2 Results

In the left figure in Figure 4-2, we observe that on the original, unencoded Gaussian

data, a simple classifier is able to achieve an AUC of 1.00 for predicting which Gaus-

sian distribution each sample belongs to. This is not surprising, as the covariances

along the diagonal with 𝜌 have opposite values (see dataset setup in Section 3.1.1),

leading to a trivial decision boundary. However, after undergoing the transform from

an untrained encoder with randomly initialized weights, classification AUC suffers

dramatically, dropping to 0.72, as shown in the right figure in Figure 4-2. The drop

in classification performance is in line with our intentions of using the encoder as a

lossy compressor, as well as the observations from Section 3.5 (reference Figure 3-6),

where we showed that 𝐼(𝑋;𝐿(𝑋)) = 0.69 and 𝐼(𝑍;𝐿(𝑋)) = 0.13.

Now, we quantify the information gain from encoder training in Figure 4-5, which

shows the ReMINE estimation results for just the utility score across 10 encoder

training epochs (training job 2 in Figure 4-1). On epoch 0 with the untrained encoder,

𝐼(𝑍;𝐿(𝑋)) ≃ 0.13. On epoch 5, the value increased to 0.24, and on epoch 10, we

obtained 0.30. Our utility score more than doubled after just 10 epochs, with a

smooth increase in utility score after each epoch. This by itself demonstrates the

promising ability of InfoShape to utilize an estimate of mutual information as a part

of the loss to improve performance of a certain metric.

In Figure 4-3, we show the classifier’s AUC improvement to 0.94 after training

and testing on the trained encoder outputs, which verifies the observed increase in

utility score. We have included the encoder outputs visualized in 3 charts as well in

Figure 4-4.

While our utility score was able to increase as a result of encoder training, privacy

leakage largely stayed the same, with small fluctuations that could be due to variance.

The privacy leakage plots are shown in Figure 4-6. To address the stubbornness

of the privacy leakage, we conducted a series of follow-up experiments where we

increased the value of 𝜆2 to 10 in Figure 4-7, then 100 in Figure 4-8, and we also used

𝐼(𝑋;𝑍) as the only term in the loss function in Figure 4-9. For the last experiment,
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Figure 4-3: The improvement of classifier AUC after encoder training. The left graph
shows the previous AUC from the classifier training and testing on the untrained
encoder’s outputs. The right graph shows the AUC of the same classifier after the
encoder went through 10 training epochs of InfoShape. The AUC improved from 0.72
to 0.94, nearly at the same AUC as with the original data.

Figure 4-4: Encoder outputs from Section 4.2 with 𝜆1 = 1, 𝜆2 = 1 for epochs 0, 5,
and 9 (left to right) between multivariate Gaussian components 𝑥0 on the x-axis and
𝑥1 on the y-axis.
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(a)

(b)

(c)

Figure 4-5: Utility score: 𝐼(𝑍;𝐿(𝑋)) across encoder training epochs, with 𝜆1 = 1
and 𝜆2 = 1. Figure 4-5a shows the ReMINE algorithm convergence of 𝐼(𝑍;𝐿(𝑋)) =
0.13 on encoder training epoch 0 (ie 𝑍 is the untrained encoder-transformed data).
Figure 4-5b shows 𝐼(𝑍;𝐿(𝑋)) = 0.24 for encoder training epoch 5. Figure 4-5c shows
𝐼(𝑍;𝐿(𝑋)) = 0.30 for epoch 9.
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(a)

(b)

(c)

Figure 4-6: 𝐼(𝑋;𝑍) across encoder training epochs. Figure 4-6a shows 𝐼(𝑋;𝑍) = 3.61
after epoch 0. Figure 4-6b shows 𝐼(𝑍;𝐿(𝑋)) = 3.67 after epoch 5. Figure 4-6c shows
𝐼(𝑍;𝐿(𝑋)) = 3.52 after epoch 9.
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we simultaneously extended the number of training epochs to 25 and increased the

number of ReMINE epochs to 2500. With these new sets of parameters, we were

able to observe a small yet significant consistent decrease in the privacy leakage over

time. Despite fluctuations still causing certain epochs to display inconsistent behavior,

overall we can see that InfoShape is also able to optimize for a privacy leakage term.

We conclude and discuss potential future paths of work in the next section.
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(a)

(b)

(c)

Figure 4-7: 𝐼(𝑋;𝑍) across encoder training epochs with 𝜆2 = 10 (see the loss function
in Equation 4.1). Figure 4-7a shows 𝐼(𝑋;𝑍) = 3.66 after epoch 0. Figure 4-7b shows
𝐼(𝑍;𝐿(𝑋)) = 3.46 after epoch 5. Figure 4-7c shows 𝐼(𝑍;𝐿(𝑋)) = 3.38 after epoch 9.
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(a)

(b)

(c)

Figure 4-8: 𝐼(𝑋;𝑍) across encoder training epochs with 𝜆2 = 100. We extended the
number of ReMINE epochs to 2000 for this experiment for better convergence. Figure
4-7a shows 𝐼(𝑋;𝑍) = 4.03 after epoch 0. Figure 4-7b shows 𝐼(𝑍;𝐿(𝑋)) = 3.98 after
epoch 5. Figure 4-7c shows 𝐼(𝑍;𝐿(𝑋)) = 3.81 after epoch 9.
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(a)

(b)

(c)

Figure 4-9: 𝐼(𝑋;𝑍) across encoder training epochs with 𝐼(𝑋;𝑍) as the only term in
the loss function, trained for 25 epochs and with 2000 ReMINE iterations. Figure
4-9a shows 𝐼(𝑋;𝑍) = 3.94 after epoch 0. Figure 4-9b shows 𝐼(𝑍;𝐿(𝑋)) = 3.69 after
epoch 5. Figure 4-9c shows 𝐼(𝑍;𝐿(𝑋)) = 3.32 after epoch 9.
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Chapter 5

Discussion and Conclusion

In this thesis, we proposed the novel idea of InfoShape, which, to the best of our

knowledge, has not been studied in the literature in this practical setup. Our idea

centers on two fundamental concepts. First, with certain architectural choices, a

neural network encoder can be viewed as a lossy compressor that can potentially filter

out certain information (such as private features of sensitive data, or information

not needed for the downstream task, as in the Information Bottleneck) and keep

information related to the inputs and intended labels. Second, mutual information

is a general metric that has been shown to be an excellent theoretical substitute

for the goal of privacy, and it is possible to estimate mutual information with neural

estimation methods that produce low bias and low variance results. These results can

then be used to train the encoder to simultaneously drive down the privacy leakage

and increase the utility score.

Using ReMINE and carefully selected hyperparameters, we were able to train a

simple encoder to increase the utility score and decrease privacy leakage over time,

although not simultaneously. We are confident that, with further investigation, the

dual optimization that is desired can be achieved. In the next section, we discuss

potential avenues for future work that we believe can yield promising results, directly

building off of our thesis and the surrounding literature.
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5.1 Future Work

We propose five potential areas of future work, all of which could be important for

developing the robustness of InfoShape. For each area of work, we first discuss the

primary challenges that have not been addressed by this work and then suggest ideas

to tackle them.

One of the largest issues that we faced during our experiments was high variance.

Without a stable MI estimation, random fluctuations make the training of the encoder

in InfoShape almost impossible. We believe that lowering the variance while keeping

acceptable bias levels is a crucial next step. The authors of [25] presented many

different MI estimators and examined their advantages and drawbacks. We believe

that it is worth studying how 𝐼𝛼 with 𝛼 ∈ [0.01, 0.5] performs for our purposes,

since a higher value of 𝛼 runs into the limitation that InfoNCE experiences, namely

a theoretical upper bound on the estimation: 𝑂(log𝐾), 𝐾 being the number of

samples in each batch. Without a large enough batch size, if 𝐼(𝑋;𝑌 ) > log𝐾, then

the estimation would provide a loose bound. We wish to avoid this at all costs, since

this could lead to the same loss values for our encoder despite the encoder weights

being adjusted to change whichever metric is being calculated. We would prefer

high variance and low bias over the flip-side; however, exploring 𝐼𝛼 could potentially

identify a range of 𝛼 values for which the lowest variance is achieved.

Recent work by the authors of [31] suggest an interesting alternative to estimat-

ing MI itself. They claim that estimating the gradients of MI is more appealing

for representation learning and that their Mutual Information Gradient Estimation

(MIGE) method “exhibits a tight and smooth gradient estimation of MI in the high-

dimensional and large-MI settings.” These settings are precisely where existing MI

estimators struggle, especially with the image domain, as we experienced in our ex-

periments. We believe that if a custom training pipeline could be built for InfoShape

where gradients are manually computed and applied in back-propagation, our learned

representations from an encoder could be much more powerful, both in terms of pri-

vacy leakage and utility score. We would also have to investigate the difference be-
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tween convergence rates when using MIGE vs ReMINE, and also MIGE’s numerical

stability.

One critical aspect of the project that would enhance the robustness of InfoShape

would be the development of a suite of adversarial attacks, like in [32]. While we had

a basic classifier to verify any increases in utility score via classification AUC changes,

we would ideally also like some concrete method of measuring certain privacy metrics.

Although there was not enough time for me to develop this during my year at MIT,

I believe that this could be a relatively simple extension of the work that verifies the

practicality of the privacy leakage results. This area of work could even potentially

develop into adding specific terms in the InfoShape loss function to enforce that

certain privacy goals are met, as opposed to reducing a general measure of privacy

leakage.

Another possible path would be to study the convergence rates of MINE and

ReMINE from a theoretical standpoint, since this directly influences how long the

InfoShape training process takes. It would also be an interesting direction to be

able to visualize the loss landscape of ReMINE or MINE when working in the image

domain, in order to better understand why the results are so numerically unstable.

This was yet another potential mini-experiment that I did not have the time to finish.

In particular, I would have liked to have been able to visualize the loss surface for

ReMINE in our synthetic Gaussian experiments to verify the effects of regularization

that the authors in [8] claim that ReMINE has.

Finally, one could take a more theoretical direction and discover any potential

connections between the work of [28] and InfoShape. From our results, especially

those in Figure 4-5 and Figure 4-9, we can see that our encoder quickly doubled

the utility score after just 10 epochs; however, it needed 25 epochs before any sig-

nificant differences were to be observed for the decrease of privacy leakage. This is

directly in line with the hypothesis of Tishby et. al: they believe that “deep networks

undergo two distinct phases consisting of an initial fitting phase and a subsequent

compression phase,” which they believe “occurs due to the diffusion-like behavior of

stochastic gradient descent.” This paper has been supposedly refuted in [26], leading
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to some controversy, mostly from Tishby himself. This could be a remarkable area of

study that provides another stepping stone in the direction of developing a theoretical

understanding of neural networks, especially for our niche concerned with privacy.
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