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Abstract

Humans locate sounds in their environment to avoid danger and identify objects of
interest. In a ten-minute bike ride, a person might take note of a car approaching
from behind, a tree where a bird is singing, and pedestrians walking from around a
blind corner.

Research on human sound localization has greatly advanced our understanding
of binaural hearing but leaves us some ways from a complete understanding. In
particular, it has been difficult to assess human sound localization in ways that align
with humans experience on an everyday basis. This thesis aims to more closely align
research methods and modeling approaches with the natural sound localization tasks
that humans perform in the real world.

In the first study, we show that a model trained to localize sounds in naturalistic
conditions exhibits many features of human spatial hearing. But when trained in
unnatural environments without reverberation, noise, or natural sounds, the model’s
performance characteristics deviate from those of humans. The results show how
biological hearing is adapted to the challenges of real-world environments and illus-
trate how artificial neural networks can reveal the real-world constraints that shape
perception.

In the second study, we ran a behavioral experiment to evaluate human sound
localization in a naturalistic setting with natural sounds and identified specific sounds
that are difficult for humans to localize. We assessed whether the model of sound
localization from the first study could predict the accuracy with which individual
sounds are localized. We found that the model predicted human localization accuracy
well above chance. However, the model biases were distinct from those evident in
humans, suggesting room for future improvement.

In the third study, we constructed a model that uses a biologically inspired learning
approach to localizing sounds, relying on self-motion cues from head movements to
learn representations of sound locations. We show that this strategy can learn a
representation that enables accurate decoding of sound location without having access
to the ground truth location for sounds during training.

3



In the fourth study, we used a model of human speech perception as a percep-
tual metric to improve speech denoising. We found that while this perceptual metric
improved denoising over standard approaches, a simple model of the cochlea per-
formed similarly, suggesting much of the benefit of this approach may be in using a
frequency-based overcomplete representation of the signal.

Thesis Supervisor: Josh McDermott
Title: Associate Professor
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Chapter 1

Introduction

1.1 Motivation and Background

Humans locate sounds in their environment to avoid danger and identify objects of

interest. In a ten-minute bike ride, a person might take note of a car approaching

from behind, a tree where a bird is singing, and pedestrians walking from around a

blind corner. Human sound localization is both remarkable for its utility in our daily

lives and how quickly and automatically we perform it. The mechanisms underlying

this ability are not straightforward because the sensory periphery does not provide

explicit location information. This contrasts with vision, where the retina provides

fine-grained spatial information. This spatial readout is possible due to retinotopy:

light travels in rays which allows the retina to refract light from different directions to

stereotyped regions of the retina [155]. Spatial information is not as readily available

in audition, where each sound source produces diffuse waves, as opposed to rays,

that propagate through the environment. Extracting auditory spatial information

is also difficult because waves from each source sum together when they come in

contact, which results in one final waveform reaching each ear of a human listener. In

addition, this final waveform is a linear combination of all waves from all sources in

a scene as well as reflections of waves off of other surfaces [16]. The brain must infer

source location and identity from the pair of waveforms entering the two ears despite

there being an infinite number of combinations of sources and positions that could
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lead to the received waveforms. This problem is ill-posed and results in a difficult

computational challenge, yet is one the brain solves seemingly effortlessly.

Understanding how human listeners solve this problem has long been a subject of

scientific investigation, dating back over 100 years ago to foundational work by Lord

Rayleigh in 1907 [182]. This early work explored how well individuals could localize

tones produced by tuning forks in a quiet environment. It concluded that human

sound localization relies on level differences between the left and right ear for high-

frequency sounds and differences in arrival time between the ears for low-frequency

sounds. Over the next 100 years, scientists documented the details of and limits on

the sensitivity to these cues [182, 26, 85, 94]. In addition, they discovered new types

of cues for identifying a sound’s vertical position [11, 16, 220], azimuthal position

[101], and distance [12]. This body of work has proven critical in understanding the

basic organization of human sound localization strategies.

In addition to characterizing human sound localization, another field of study

emerged with the goal of building mathematical and computational models to under-

stand and replicate the mechanisms underlying localization. Examples in this line of

work include the Interaural Time Difference (ITD) delay line model[115], ITD inter-

action model[44], weighted-image model[202], a contralateral inhibition model[141],

and a model of auditory distance perception [23]. Although significant contributions,

these models were designed and tuned to explain behavioral or neural responses for

a single task and did not take waveform input, instead operating on precomputed

features [65, 23, 141], and thus could not be tested on natural sounds in natural

conditions.

These previous scientific approaches greatly advanced our understanding of bin-

aural hearing but leave us some ways from a complete understanding. One gap in

understanding derives from the field’s approach to modeling. Most binaural hearing

models are hand-designed to replicate a specific behavior or interest. Researchers

often design the models by relying on intuition to identify a chain of signal processing

steps that might lead to the observed human behavior. By fitting a model to one task

at a time, the model’s details may be overfit to their specific behavioral task. And
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by using hand-designed and precomputed features for the model input, the model is

restricted to operating on a small subset of all possible sounds. We localize sounds

with a single auditory system but have thus far lacked a single model that can account

for many aspects of human sound localization.

A second gap in understanding is that the field has tended to assess human sound

localization behavior using stimuli that deviate significantly from a person’s everyday

experience. Specifically, most stimuli used to test binaural hearing are unnatural, such

as variations on noise bursts or sinusoids. There are several reasons that researchers

used these types of stimuli. One previous issue was technological limitations on repli-

cating natural sounds. However, the most common is that traditional psychophysics

[?, 83] emphasizes holding all aspects of the stimulus constant except one variable

of interest, which is systematically varied while human responses are recorded. This

method is designed to measure human sensitivity to a specific variable of a stimulus.

However, the resulting stimuli lack the structure present in ecologically valid sounds.

This raises the possibility that the resulting scientific characterization of sound local-

ization may deviate from what would be observed in more realistic situations.

This thesis aims to more closely align research methods and modeling approaches

with the natural sound localization tasks that humans perform daily. We intend this

approach to advance binaural hearing research along its two primary axes. To ex-

tend and unify models, we explore approaches and applications that are constrained

and inspired by the natural world. To better understand behavior, we evaluate hu-

man sound localization in a naturalistic setting with natural sounds and measure the

accuracy of human listeners.

1.2 Organization of Thesis

This thesis consists of four studies: three computational studies and one behavioral

study.

The first study [63] builds a neural network-based model of human sound local-

ization. A core goal of binaural hearing models is to accurately predict and explain
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human behavior in sound localization tasks. We hypothesized that localizing sounds

in naturalistic conditions is a significant constraint on the solution space for humans.

To test this idea, we simulated a naturalistic environment using a virtual auditory

world and optimized a model to localize natural sounds in this environment. We

found that the resulting model was also able to accurately localize real-world binaural

recordings, indicating that the virtual acoustic world simulator captures enough as-

pects of the real world to allow the optimized model to generalize beyond the artificial

training data. The model also replicated human behavior in a range of psychophys-

ical experiments, including sensitivity to monaural spectral cues and interaural time

and level differences, integration across frequency, biases for sound onsets, and limits

on localization of concurrent sources. The similarity between human and model be-

havior suggests that many aspects of human sound localization behaviors may be a

consequence of optimizing performance in a natural environment. Lastly, deviating

from natural training conditions during training caused the model to deviate from

human behavioral data. In some cases, these deviations from human behavior were

specific to a single psychophysics experiment, such as the precedence effect, which

only emerged when the model learned to localize in a reverberant environment. The

approach provides a tool that can be used to discover links between specific behavioral

traits and challenges posed by specific properties of the natural environment.

The second study measured human localization of natural sounds presented in a

realistic environment. In addition to quantifying the spatial accuracy of localization

for natural sounds, we identified specific sounds that are difficult to localize. Lastly,

we evaluated how well the model in chapter 2 could predict which sounds would be

difficult to localize by measuring model localization errors for the same set of natural

sounds that were used in the human experiment. Model errors were correlated with

human errors, with correlation coefficients around 0.6-0.7, but the model also made

errors substantially larger than human listeners in some cases.

The third chapter explored a biologically inspired approach to learning to localize

sounds that relies on head self-motion cues. Specifically, we constructed a neural-

network model that receives the simulated binaural audio for an auditory scene at

20



many different head positions. The model uses contrastive learning to find a repre-

sentation in which binaural audio from nearby head positions and the same auditory

scene is represented similarly but where audio from distant head positions or different

auditory scenes is dissimilar. Specifically, the model compares pairs of binaural au-

dio excerpts and calculates the cosine similarity between the representations for each

pair. If the excerpts are from the same auditory scene and similar head positions, the

model uses gradient descent to increase the cosine similarity between the represen-

tations in that pair. In all other cases, the model uses gradient descent to minimize

cosine similarity between pairs of binaural audio excerpts. We show that this strat-

egy can learn a representation that enables accurate linear decoding of sound location

without having access to the ground truth location for sounds during training.

The fourth study [187] explores using a neural-network model of human speech

perception as a perceptual metric to improve speech denoising. Specifically, we mea-

sured the distance between features from a pre-trained model of speech or environ-

mental sound classification to quantify how much a stimulus deviated from a target

signal. We used the distance as an error signal to train a second neural network to

remove background noise from excerpts of noisy speech. We found that while this

perceptual metric improved denoising over standard waveform-based approaches, it

performed no better than a simple model of the cochlea. This suggests that much of

the benefit derived from this perceptual metric can be attributed to simply using a

frequency-based overcomplete signal representation of the signal.

Together, these studies suggest that natural sounds, environments, and behaviors

provide important constraints on human sound localization and suggest a promising

path forward for incorporating ecological constraints to advance the study of sound

localization.
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Chapter 2

Deep neural network models of sound

localization reveal how perception is

adapted to real-world environments

Abstract

Mammals localize sounds using information from their two ears. Localization in
real-world conditions is challenging, as echoes provide erroneous information and
noises mask parts of target sounds. To better understand real-world localization, we
equipped a deep neural network with human ears and trained it to localize sounds
in a virtual environment. The resulting model localized accurately in realistic con-
ditions with noise and reverberation. In simulated experiments, the model exhibited
many features of human spatial hearing: sensitivity to monaural spectral cues and
interaural time and level differences, integration across frequency, biases for sound on-
sets and limits on localization of concurrent sources. But when trained in unnatural
environments without reverberation, noise or natural sounds, these performance char-
acteristics deviated from those of humans. The results show how biological hearing
is adapted to the challenges of real-world environments and illustrate how artificial
neural networks can reveal the real-world constraints that shape perception.

2.1 Introduction

Why do we see or hear the way we do? Perception is believed to be adapted to

the world, shaped over evolution and development to help us survive in our eco-
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logical niche. Yet adaptedness is often difficult to test. Many phenomena are not

obviously a consequence of adaptation to the environment, and perceptual traits are

often proposed to reflect implementation constraints rather than the consequences of

performing a task well. Well-known phenomena attributed to implementation con-

straints include aftereffects[45, 117], masking[52, 150], poor visual motion and form

perception for equiluminant colour stimuli[146] and limits on the information that

can be extracted from high-frequency sound[7, 114, 113].

Evolution and development can be viewed as an optimization process that pro-

duces a system that functions well in its environment. The consequences of such op-

timization for perceptual systems have traditionally been revealed by ideal observer

models—systems that perform a task optimally under environmental constraints[73,

72] and whose behavioural characteristics can be compared to actual behaviour. Ideal

observers are typically derived analytically, but as a result are often limited to simple

psychophysical tasks[199, 99, 224, 77, 29, 28]. Despite recent advances, such models

remain intractable for many real-world behaviours. Rigorously evaluating adapted-

ness has thus remained out of reach for many domains. Here we extend ideas from

ideal observer theory to investigate the environmental constraints under which hu-

man behaviour emerges, using contemporary machine learning to optimize models

for behaviourally relevant tasks in simulated environments. Human behaviours that

emerge from machine learning under a set of naturalistic environmental constraints,

but not under alternative constraints, are plausibly a consequence of optimization for

those natural constraints (that is, adapted to the natural environment) (Fig. 2-1a).

Sound localization is one domain of perception where the relationship of behaviour

to environmental constraints has not been straightforward to evaluate. The basic out-

lines of spatial hearing have been understood for decades[182, 11, 32, 85]. Time and

level differences in the sound that enters the two ears provide cues to a sound’s loca-

tion, and location-specific filtering by the ears, head and torso provide monaural cues

that help resolve ambiguities in binaural cues (Fig. 2-1b). However, in real-world

conditions, background noise masks or corrupts cues from sources to be localized

and reflections provide erroneous cues to direction[16]. Classical models based on
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these cues thus cannot replicate real-world localization behaviour[18, 65, 40]. Instead,

modelling efforts have focused on accounting for observed neuronal tuning in early

stages of the auditory system rather than behaviour[115, 44, 17, 93, 245, 203, 56],

or have modelled behaviour in simplified experimental conditions using particular

cues[40, 203, 190, 179, 202, 213, 62]. Engineering systems must solve localization in

real-world conditions, but typically adopt approaches that diverge from biology, using

more than two microphones and/or not leveraging cues from ear/head filtering[156,

230, 233, 184, 34, 148, 1, 116]. As a result, we lack quantitative models of how

biological organisms localize sounds in realistic conditions. In the absence of such

models, the science of sound localization has largely relied on intuitions about opti-

mality. Those intuitions were invaluable in stimulating research, but on their own are

insufficient for quantitative predictions.

Here we exploit the power of contemporary artificial neural networks to develop

a model optimized to localize sounds in realistic conditions. Unlike much other con-

temporary work using neural networks to investigate perceptual systems[128, 88, 236,

41, 58, 126], our primary interest is not in potential correspondence between internal

representations of the network and the brain. Instead, we aim to use the neural net-

work as a way to find an optimized solution to a difficult real-world task that is not

easily specified analytically, for the purpose of comparing its behavioural characteris-

tics to those of humans. Our approach is thus analogous to the classic ideal observer

approach, but harnesses modern machine learning in place of an ideal observer for a

problem where one is not analytically tractable.

To obtain sufficient labelled data with which to train the model, and to enable

the manipulation of training conditions, we used a virtual acoustic world[197]. The

virtual world simulated sounds at different locations with realistic patterns of surface

reflections and background noise that could be eliminated to yield unnatural training

environments. To give the model access to the same cues available to biological

organisms, we trained it on a high-fidelity cochlear representation of sound, leveraging

recent technical advances[35] to train the large models that are required for such

high-dimensional input. Unlike previous generations of neural network models[40,
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156, 184, 148, 116], which were reliant on hand-specified sound features, we learn

all subsequent stages of a sound localization system to obtain good performance in

real-world conditions.

When tested on stimuli from classic laboratory experiments, the resulting model

replicated a large and diverse array of human behavioural characteristics. We then

trained models in unnatural conditions to simulate evolution and development in al-

ternative worlds. These alternative models deviated notably from human-like hearing.

The results indicate that the characteristics of human hearing are indeed adapted to

the constraints of real-world localization, and that the rich panoply of sound localiza-

tion phenomena can be explained as consequences of this adaptation. The approach

we use is broadly applicable to other sensory modalities, providing a way to test the

adaptedness of aspects of human perception to the environment and to understand

the conditions in which human-like perception arises.

2.2 Results

2.2.1 Model Construction

We began by building a system that could localize sounds using the information avail-

able to human listeners. The system thus had outer ears (pinnae), and a simulated

head and torso, along with a simulated cochlea. The outer ears and head/torso were

simulated using head-related impulse responses (HRIRs) recorded from a standard

physical model of the human[69]. The cochlea was simulated with a bank of band-

pass filters modelled on the frequency selectivity of the human ear[78, 159], whose

output was rectified and low-pass filtered to simulate the presumed upper limit of

phase locking in the auditory nerve[171]. The inclusion of a fixed cochlear front-end

(in lieu of trainable filters) reflected the assumption that the cochlea evolved to serve

many different auditory tasks rather than being primarily driven by sound localiza-

tion. As such, the cochlea seemed a plausible biological constraint on localization.

The output of the two cochleae formed the input to a standard convolutional
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neural network (CNN) (Fig. 2-1c). This network instantiated a cascade of simple

operations—filtering, pooling and normalization—culminating in a softmax output

layer with 504 units corresponding to different spatial locations (spaced 5° in azimuth

and 10° in elevation). The parameters of the model were tuned to maximize localiza-

tion performance on the training data. The optimization procedure had two phases:

an architecture search in which we searched over architectural parameters to find a

network architecture that performed well (Fig. 2-1d), and a training phase in which

the filter weights of the selected architectures were trained to asymptotic performance

levels using gradient descent.

27



(Caption on next page.)
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Figure 2-1:
a, Illustration of the method. A variety of constraints (left) shape human behaviour. Models opti-
mized under particular environmental constraints (right) illustrate the effect of these constraints on
behaviour. Environment simulators can instantiate naturalistic environments as well as alternative
environments in which particular properties of the world are altered, to examine the constraints
that shape human behaviour. b, Cues to sound location available to humans: interaural time and
level differences (ITDs and ILDs) (left and centre) and spectral cues to elevation (right). Time
and level differences are shown for low and high-frequency sinusoids (left and centre, respectively).
The level difference is small for the low frequency, and the time difference is ambiguous for the
high frequency. c, Training procedure. natural sounds (green) were rendered at a location in a
room, with noises (natural sound textures, black) placed at other locations. Rendering included
direction-specific filtering by the head/torso/pinnae, using head- related transfer functions from the
KEMAR mannequin. neural networks were trained to classify the location of the natural sound
source (azimuth and elevation) into one of a set of location bins (spaced 5° in azimuth and 10° in
elevation). d, Example neural network architectures from the architecture search. Architectures
consisted of sequences of ‘blocks’ (a normalization layer, followed by a convolution layer, followed
by a non-linearity layer) and pooling layers, culminating in fully connected layers followed by a
classifier that provided the network’s output. Architectures varied in the total number of layers,
the kernel dimensions for each convolutional layer, the number of blocks that preceded each pooling
layer and the number of fully connected layers preceding the classifier. Labels indicate an example
block, pooling layer and fully connected layer. The model’s behaviour was taken as the average of
the results for the ten best architectures (assessed by performance on a held-out validation set of
training examples). e, Recording setup for real-world test set. The mannequin was seated on a chair
and rotated relative to the speaker to achieve different azimuthal positions. Sound was recorded
from microphones in the mannequin ears. f, Free-field localization of human listeners, replotted from
a previous publication[240]. Participants heard a sound played from one of 11 speakers in the front
horizontal plane and pointed to the location. Graph plots kernel density estimate of participant re-
sponses for each actual location. g, Localization judgements of the trained model for the real-world
test set. Graph plots kernel density estimates of response distribution. For ease of comparison with
f, in which all locations were in front of the listener, positions were front–back folded. h, Localization
judgements of the model without front–back folding. Model errors are predominantly at front–back
reflections of the correct location.
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Figure 2-2:
a, Schematic of stimulus generation. noise bursts filtered into high or low-frequency bands were
rendered at a particular azimuthal position, after which an additional ITD or ILD was added to the
stereo audio signal. b, Schematic of response analysis. Responses were analysed to determine the
amount by which the perceived location (L) was altered (Δ L) by the added ITD/ILD bias, expressed
as the amount by which the ITD/ILD would have changed if the actual sound’s location changed
by Δ L. c, Effect of added ITD and ILD bias on human localization. The y axis plots amount by
which the perceived location was altered, expressed in ITD/ILD as described above. Each dot plots
a localization judgement from one trial. Data reproduced from a previous publication[151]. d, Effect
of additional ITD and ILD on model localization. Same conventions as b. Error bars plot s.e.m.,
bootstrapped across the ten networks.
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The architecture search consisted of training each one of a large set of possible ar-

chitectures for 15,000 training steps with 16 1-s stimulus examples per step (240,000

total examples; see Extended Data Fig. 2-9 for distribution of localization perfor-

mance across architectures and Extended Data Fig. 2-10 for the distributions from

which architectures were chosen). We then chose the ten networks that performed

best on a validation set of data not used during training (Extended Data Fig. 2-11).

The parameters of these ten networks were then reinitialized and each trained for

100,000 training steps (1.6 million examples). Given evidence that internal represen-

tations can vary across different networks trained on the same task[161], we present

results aggregated across the top ten best-performing architectures, treated akin to

different participants in an experiment[228]. Most results graphs present the average

results for these ten networks, which we collectively refer to as ‘the model’.

The training data were based on a set of roughly 500,000 stereo audio signals with

associated three-dimensional (3D) locations relative to the head (on average 988 ex-

amples for each of the 504 location bins, Methods). These signals were generated from

385 natural sound source recordings (Extended Data Fig. 2-12) rendered at a spa-

tial location in a simulated room. The room simulator used a modified source-image

method[197, 3] to simulate the reflections off the walls of the room. Each reflection

was then filtered by the (binaural) HRIR for the direction of the reflection[69]. Five

different rooms were used, varying in their dimensions and in the material of the walls

(Extended Data Fig. 2-13). To mimic the common presence of noise in real-world

environments, each training signal also contained spatialized noise. Background noise

was synthesized from the statistics of a natural sound texture[160], and was rendered

at between three and eight randomly chosen locations using the same room simulator

to produce noise that was diffuse but non-uniform, intended to replicate common

real-world sources of noise. At each training step, the rendered natural sound sources

were randomly paired with rendered background noises. The neural networks were

trained to map the binaural audio to the location of the sound source (specified by

its azimuth and elevation relative to the model’s ‘head’).
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2.2.2 Model evaluation in real-world conditions

The trained networks were first evaluated on a held-out set of 70 sound sources

rendered using the same pipeline used to generate the training data (yielding a total of

around 47,000 stereo audio signals). The best-performing networks produced accurate

localization for this validation set (the mean error was 5.3° in elevation and 4.4° in

azimuth, front–back folded: that is, reflected about the coronal plane to discount

front–back confusions).

To assess whether the model would generalize to real-world stimuli outside the

training distribution, we made binaural recordings in an actual conference room using

a mannequin with in-ear microphones (Fig. 2-1e). Humans localize relatively well in

such free-field conditions (Fig. 2-1f). The trained networks also localized real-world

recordings relatively well (Fig. 2-1g), on par with human free-field localization, with

errors mostly limited to the front–back confusions that are common to humans when

they cannot move their heads (Fig. 2-1h)[242, 220].

For comparison, we also assessed the performance of a standard set of two-

microphone localization algorithms from the engineering literature[223, 193, 55, 54,

238, 217]. In addition, we trained the same set of neural networks to localize sounds

from a two-microphone array that lacked the filtering provided to biological organ-

isms by the ears, head and torso but that included the simulated cochlea (Extended

Data Fig. 2-14a). Our networks that had been trained with biological pinnae, head

and torso filtering outperformed the set of standard two-microphone algorithms from

the engineering community, as well as the neural networks trained with stereo mi-

crophone input without a head and ears (Extended Data Fig. 2-14b,c). This latter

result confirms that the head and ears provide valuable cues for localization. Overall,

performance on the real-world test set demonstrates that training a neural network

in a virtual world produces a model that can accurately localize sounds in realistic

conditions.
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2.2.3 Model behavioural characteristics

To assess whether the trained model replicated the characteristics of human sound

localization, we simulated a large set of behavioural experiments from the literature,

intended to span many of the best-known and largest effects in spatial hearing. We

replicated the conditions of the original experiments as closely as possible (for ex-

ample, when humans were tested in anechoic conditions, we rendered experimental

stimuli in an anechoic environment). We emphasize that the networks were not fit to

human data in any way. Despite this, the networks reproduced the characteristics of

human spatial hearing across this broad set of experiments.

(Caption on next page.)

33



Figure 2-3:
a, Schematic of stimuli from experiment measuring localization accuracy at different azimuthal
positions. b, Localization accuracy of human listeners for broadband noise at different azimuthal
positions. Data were scanned from a previous publication[229], which measured discriminability of
noise bursts separated by 15° (quantified as d’). Error bars plot s.e.m. c, Localization accuracy of our
model for broadband noise at different azimuthal positions. Graph plots mean absolute localization
error (Mean abs. error) of the same noise bursts used in the human experiment in b. Error bars
plot the s.e.m. across the ten networks. d, Schematic of stimuli from experiment measuring effect of
bandwidth on localization accuracy. noise bursts varying in bandwidth were presented at particular
azimuthal locations; participants indicated the azimuthal position with a keypress. e, Effect of
bandwidth on human localization of noise bursts. Accuracy was quantified as r.m.s. error. Error
bars plot the s.d. Data are replotted from a previous publication[241]. f, Effect of bandwidth on
model localization of noise bursts. networks were constrained to report only the azimuth of the
stimulus. Error bars plot s.e.m. across the ten networks.

2.2.4 Sensitivity to interaural time and level differences

We began by assessing whether the networks learned to use the binaural cues known to

be important for biological sound localization. We probed the effect of interaural time

differences (ITDs) and interaural level differences (ILDs) on localization behaviour us-

ing an experiment in which additional time and level differences are added to high-

and low-frequency sounds rendered in virtual acoustic space[151] (Fig. 2-2a). This ex-

perimental method has the advantage of using realistically externalized sounds and an

absolute localization judgement (rather than the left/right lateralization judgements

of simpler stimuli that are common to many other experiments[249, 89, 102, 26]).

In the original experiment[151], the change to perceived location imparted by the

additional ITD or ILD was expressed as the amount by which the ITD or ILD would

change in natural conditions if the actual location were changed by the perceived

amount (Fig. 2-2b). This yields a curve whose slope indicates the efficacy of the

manipulated cue (ITD or ILD). We reproduced the stimuli from the original study,

rendered them in our virtual acoustic world, added ITDs and ILDs as in the original

study and analysed the model’s localization judgements in the same way.

For human listeners, ITD and ILD have opposite efficacies at high and low frequen-

cies (Fig. 2-2c), as predicted by classical ‘duplex’ theory[182]. An ITD bias imposed

on low-frequency sounds shifts the perceived location of the sound substantially (bot-

tom left), whereas an ITD imposed on high-frequency sound does not (top left). The
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opposite effect occurs for ILDs (right panels), although there is a weak effect of ILDs

on low-frequency sound. This latter effect is inconsistent with the classical duplex

story but consistent with more modern measurements indicating small but reliable

ILDs at low frequencies[31] that are used by the human auditory system[90, 239, 94].

As shown in Fig. 2-2d, the model qualitatively replicated the effects seen in hu-

mans. Added ITDs and ILDs had the largest effect at low and high frequencies,

respectively, but ILDs had a modest effect at low frequencies as well. This produced

an interaction between the type of cue (ITD/ILD) and frequency range (difference of

differences between slopes significantly greater than 0; P < 0.001, evaluated by boot-

strapping across the ten networks). However, the effect of ILD at low frequencies was

also significant (slope significantly greater than 0; P < 0.001, via bootstrap). Thus,

a model optimized for accurate localization both exhibits the dissociation classically

associated with duplex theory, but also its refinements in the modern era.

2.2.5 Azimuthal localization of broadband sounds

We next measured localization accuracy of broadband noise rendered at different

azimuthal locations (Fig. 2-3a). In humans, localization is most accurate near the

midline (Fig. 2-3b), and becomes progressively less accurate as sound sources move

to the left or right of the listener[188, 165, 229]. One explanation is that the first

derivatives of ITD and ILD with respect to azimuthal location decrease as the source

moves away from the midline[16], providing less information about location[17]. The

model qualitatively reproduced this result (Fig. 2-3c).
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Figure 2-4:
a, Photographs of ear alteration in humans (reproduced from a previous publication[105]). b, Sound
localization by human listeners with unmodified ears. Graph plots mean and s.e.m. of perceived
locations for four participants, superimposed on grid of true locations (dashed lines). Data scanned
from the original publication[105]. c, Effect of ear alteration on human localization. Same conven-
tions as b. d, Sound localization in azimuth and elevation by the model, using the ears (HRIRs) from
training, with broadband noise sound sources. Graph plots mean locations estimated by the ten net-
works. Tested locations differed from those in the human experiment to conform to the location bins
used for network training. e, Effect of ear alteration on model sound localization. Ear alteration was
simulated by substituting an alternative set of HRIRs when rendering sounds for the experiment.
Graph plots average results across all 45 sets of alternative ears (averaged across the ten networks).
f, Effect of individual sets of alternative ears on localization in azimuth. Graph shows results for a
larger set of locations than in d and e to illustrate the generality of the effect. g, Effect of individual
sets of alternative ears on localization in elevation. Bolded lines show ears at 5th, 25th, 75th and
95th percentiles when the 45 sets of ears were ranked by accuracy. h, Smoothing of HRTFs, produced
by varying the number of coefficients in a discrete cosine transform. Reproduced from the original
publication, ref. [137]. i, Effect of spectral smoothing on human perception. Participants heard two
sounds, one played from a speaker in front of them and one played through open-backed earphones,
and judged which was which. The earphone-presented sound was rendered using HRTFs smoothed
by various degrees. In practice, participants performed the task by noting changes in apparent sound
location. Data scanned from the original publication[137]. Error bars plot s.e.m. Conditions with
4, 2 and 1 cosine coefficients were omitted from the experiment, but are included on the x axis to
facilitate comparison with the model results in j. j, Effect of spectral smoothing on model sound
localization accuracy (measured in both azimuth and elevation, as the mean absolute localization
error). Conditions with 512 and 1,024 cosine components were not realizable given the length of the
impulse responses we used. k, Effect of spectral smoothing on model accuracy in azimuth. l, Effect
of spectral smoothing on model accuracy in elevation. m, Stimuli from experiment in n and o. noise
bursts varying in low- or high-pass cut-off were presented at particular elevations. n, Effect of low-
and high-pass cut-off on accuracy in humans. Data scanned from the original publication[98]; error
bars were not provided in the original publication. o, Effect of low- and high-pass cut-off on model
accuracy. networks were constrained to report only elevation. Here and in j, k and l, error bars plot
s.e.m. across the ten networks.
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2.2.6 Integration across frequency

Because biological hearing begins with a decomposition of sound into frequency chan-

nels, binaural cues are thought to be initially extracted within these channels[85, 115].

However, organisms are believed to integrate information across frequency to achieve

more accurate localization than could be mediated by any single frequency chan-

nel. One signature of this integration is improvement in localization accuracy as the

bandwidth of a broadband noise source is increased (Fig. 2-3d,e)[30, 241]. We repli-

cated one such experiment on the networks and they exhibited a similar effect, with

accuracy increasing with noise bandwidth (Fig. 2-3f).

2.2.7 Use of ear-specific cues to elevation

In addition to the binaural cues that provide information about azimuth, organisms

are known to make use of the direction-specific filtering imposed on sound by the

ears, head and torso[11, 227]. Each individual’s ears have resonances that ‘colour’ a

sound differently depending on where it comes from in space. Individuals are believed

to learn the specific cues provided by their ears. In particular, if forced to listen with

altered ears, either via moulds inserted into the ears[105] or via recordings made in a

different person’s ears[225], localization in elevation degrades even though azimuthal

localization is largely unaffected (Fig. 2-4a–c).

To test whether the trained networks similarly learned to use ear-specific elevation

cues, we measured localization accuracy in two conditions: one where sounds were

rendered using the HRIR set used for training the networks, and another where the

impulse responses were different (having been recorded in a different person’s ears).

Because we have unlimited ability to run experiments on the networks, in the latter

condition we evaluated localization with 45 different sets of impulse responses, each

recorded from a different human. As expected, localization of sounds rendered with

the ears used for training was good in both azimuth and elevation (Fig. 2-4d). But

when tested with different ears, localization in elevation generally collapsed (Fig. 2-

4e), much like what happens to human listeners when moulds are inserted in their
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ears (Fig. 2-4c), even though azimuthal localization was nearly indistinguishable from

that with the trained ears. Results for individual sets of alternative ears revealed that

elevation performance transferred better across some ears than others (Fig. 2-4f,g),

consistent with anecdotal evidence that sounds rendered with head-related transfer

functions (HRTFs) other than one’s own can sometimes be convincingly localized in

three dimensions.

2.2.8 Limited spectral resolution of elevation cues

Elevation perception is believed to rely on the peaks and troughs introduced to a

sound’s spectrum by the ears/head/torso[11, 16, 227] (Fig. 2-1b, right). In hu-

mans, however, perception is dependent on relatively coarse spectral features —

the transfer function can be smoothed substantially before human listeners notice

abnormalities[137] (Fig. 2-4h,i), for reasons that are unclear. In the original demon-

stration of this phenomenon, human listeners discriminated sounds with and without

smoothing, a judgement that was in practice made by noticing changes in the appar-

ent location of the sound. To test whether the trained networks exhibited a similar

effect, we presented sounds to the networks with similarly smoothed transfer func-

tions and measured the extent to which the localization accuracy was affected. The

effect of spectral smoothing on the networks’ accuracy was similar to the measured

sensitivity of human listeners (Fig. 2-4j). The effect of the smoothing was most

prominent for localization in elevation, as expected, but there was also some effect

on localization in azimuth for the more extreme degrees of smoothing (Fig. 2-4k,l),

consistent with evidence that spectral cues affect azimuthal space encoding[111].

2.2.9 Dependence on high-frequency spectral cues to elevation

The cues used by humans for localization in elevation are primarily in the upper part

of the spectrum[139, 14]. To assess whether the trained networks exhibited a similar

dependence, we replicated an experiment measuring the effect of high- and low-pass

filtering on the localization of noise bursts[98] (Fig. 2-4m). Model performance varied
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with the frequency content of the noise in much the same way as human performance

(Fig. 2-4n,o).

2.2.10 The precedence effect

Another hallmark of biological sound localization is that judgements are biased to-

wards information provided by sound onsets[18, 200]. The classic example of this

bias is known as the precedence effect[221, 143, 24]. If two clicks are played from

speakers at different locations with a short delay (Fig. 2-5a), listeners perceive a

single sound whose location is determined by the click that comes first. The effect is

often suggested to be an adaptation to the common presence of reflections off envi-

ronmental surfaces (Fig. 2-1c) — reflections arrive from an erroneous direction but

traverse longer paths and arrive later, such that basing location estimates on the

earliest arriving sound might avoid errors[18]. To test whether our model would ex-

hibit a similar effect, we simulated the classic precedence experiment, rendering two

clicks at different locations. When clicks were presented simultaneously, the model

reported the sound to be centred between the two click locations, but when a small

inter-click delay was introduced, the reported location switched to that of the leading

click (Fig. 2-5b). This effect broke down as the delay was increased, as in humans,

although with the difference that the model could not report hearing two sounds and

so instead reported a single location intermediate between those of the two clicks.

To compare the model results to human data, we simulated an experiment in

which participants reported the location of both the leading and lagging click as the

interclick delay was varied[144]. At short but non-zero delays, humans accurately

localize the leading but not the lagging click (Fig. 2-5c, because a single sound is

heard at the location of the leading click). At longer delays, the lagging click is more

accurately localized and listeners start to mislocalize the leading click, presumably

because they confuse which click is first[144]. The model qualitatively replicated both

effects, in particular the large asymmetry in localization accuracy for the leading and

lagging sound at short delays (Fig. 2-5d).
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2.2.11 Multi-source localization

Humans are able to localize multiple concurrent sources, but only to a point[189,

122, 244]. The reasons for the limits on multi-source localization are unclear[122].

These limitations could reflect human-specific cognitive constraints. For instance,

reporting a localized source might require attending to it, which could be limited

by central factors not specific to localization. Alternatively, localization could be

fundamentally limited by corruption of spatial cues by concurrent sources or other

ambiguities intrinsic to the localization problem.

To assess whether the model would exhibit limitations like those observed in hu-

mans, we replicated an experiment[244] in which humans judged both the number

and location of a set of speech signals played from a subset of an array of speakers

(Fig. 2-6a). To enable the model to report multiple sources we fine-tuned the final

fully connected layer to indicate the probability of a source at each of the location

bins, and set a probability criterion above which we considered the model to report a

sound at the corresponding location (Methods). The weights in all earlier layers were

‘frozen’ during this fine-tuning, such that all other stages of the model were identical

to those used in all other experiments. We then tested the model on the experimental

stimuli.

Humans accurately report the number of sources up to three, after which they

undershoot, only reporting about four sources in total regardless of the actual number

(Fig. 2-6b). The model reproduced this effect, also being limited to approximately

four sources (Fig. 2-6c). Human localization accuracy also systematically drops with

the number of sources (Fig. 2-6d): the model again quantitatively reproduced this

effect (Fig. 2-6e). The model–human similarity suggests that these limits on sound

localization are intrinsic to the constraints of the localization problem, rather than

reflecting human-specific central factors.
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Figure 2-5:
a, Diagram of stimulus. Two clicks are played from two different locations relative to the listener.
The time interval between the clicks is manipulated and the listener is asked to localize the sound(s)
that they hear. When the delay is short but non-zero, listeners perceive a single click at the location
of the first click. At longer delays, listeners hear two distinct sounds. b, Localization judgements
of the model for two clicks at + 45 and - 45°. The model exhibits a bias for the leading click when
the delay is short but non-zero. At longer delays, the model judgements (which are constrained to
report the location of a single sound, unlike those of humans) converge to the average of the two click
locations. Error bars plots s.e.m. across the ten networks. c, Error in localization of the leading and
lagging clicks by humans as a function of interclick delay. SC denotes a single click at the leading
or lagging location. Bars plot r.m.s. localization error. Error bars plot s.d. Data scanned from the
original publication[144]. d, Error in localization of the leading and lagging clicks by the model as
a function of interclick delay. Bars plot r.m.s. localization error. Error bars plots s.e.m. across the
ten networks.
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2.2.12 Effect of optimization for unnatural environments

Despite having no previous exposure to the stimuli used in the experiments and de-

spite not being fit to match human data in any way, the model qualitatively replicated

a wide range of classic behavioural effects found in humans. These results raise the

possibility that the characteristics of biological sound localization may be understood

as a consequence of optimization for real-world localization. However, given these

results alone, the role of the natural environment in determining these characteristics

is left unclear.

To assess the extent to which the properties of biological hearing are adapted to the

constraints of localization in natural environments, we took advantage of the ability

to optimize models in virtual worlds altered in various ways, intended to simulate

the optimization that would occur over evolution and/or development in alternative

environments (Fig. 2-1a). We altered the training environment in one of three ways

(Fig. 2-7a): (1) by eliminating reflections (simulating surfaces that absorb all sound

that reaches them, unlike real-world surfaces), (2) by eliminating background noise

and (3) by replacing natural sound sources with artificial sounds (narrowband noise

bursts). In each case, we trained the networks to asymptotic performance, then froze

their weights and ran them on the full suite of psychophysical experiments described

above. The psychophysical experiments were identical for all training conditions; the

only difference was the strategy learned by the model during training, as might be

reflected in the experimental results. We then quantified the dissimilarity between

the model psychophysical results and those of humans as the mean squared error

between the model and human results, averaged across experiments (normalized to

have uniform axis limits, Methods).

Figure 7b shows the average dissimilarity between the human and model results on

the suite of psychophysical experiments, computed separately for each model training

condition. The dissimilarity was lowest for the model trained in natural conditions,

and significantly higher for each of the alternative conditions (P < 0.001 in each

case, obtained by comparing the dissimilarity of the alternative conditions to a null
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distribution obtained via bootstrap across the ten networks trained in the naturalistic

condition; results were fairly consistent across networks, Extended Data Fig. 2-15).

The effect size of the difference in dissimilarity between the naturalistic training

condition results and each of the other training conditions was large in each case

(d = 2.13, anechoic; d = 2.75, noiseless; d = 3.06, unnatural sounds). This result

provides additional evidence that the properties of spatial hearing are consequences

of adaptation to the natural environment — human-like spatial hearing emerged from

task optimization only for naturalistic training conditions.

To get an insight into how the environment influences perception, we examined

the human–model dissimilarity for each experiment individually (Fig. 2-7c). Because

the absolute dissimilarity is not meaningful (in that it is limited by the reliability

of the human results, which are not perfect; Extended Data Fig. 2-16), we assessed

the differences in human–model dissimilarity between the natural training condition

and each unnatural training condition. These differences were most pronounced for

a subset of experiments in each case.

The anechoic training condition produced most abnormal results for the prece-

dence effect, but also produced substantially different results for ITD cue strength.

The effect size for the difference in human–model dissimilarity between anechoic and

natural training conditions was significantly greater in both these experiments (prece-

dence effect d = 4.16; ITD cue strength d = 3.41) than in the other experiments (P <

0.001, by comparing the effect sizes of one experiment to the distribution of the effect

size for another experiment obtained via bootstrap across networks). The noiseless

training condition produced most abnormal results for the effect of bandwidth (d

= 4.71; significantly greater than that for other experiments, P < 0.001, via boot-

strap across networks). We confirmed that this result was not somehow specific to

the absence of internal neural noise in our cochlear model, by training an additional

model in which noise was added to each frequency channel (Methods). We found

that the results of training in noiseless environments remained very similar. The

training condition with unnatural sounds produced most abnormal results for the ex-

periment measuring elevation perception (d = 4.4 for the ear alteration experiment;
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d = 4.28 for the high-frequency elevation cue experiment; P < 0.001 in both cases,

via bootstrap across networks), presumably because without the pressure to localize

broadband sounds, the model did not acquire sensitivity to spectral cues to elevation.

These results indicate that different worlds would lead to different perceptual systems

with distinct localization strategies.

The most interpretable example of environment-driven localization strategies is

the precedence effect. This effect is often proposed to render localization robust to

reflections, but others have argued that its primary function might instead be to

eliminate interaural phase ambiguities, independent of reflections[248]. This effect

is shown in Fig. 2-7d for models trained in each of the four virtual environments.

Anechoic training completely eliminated the effect, even though it was largely un-

affected by the other two unnatural training conditions. This result substantiates

the hypothesis that the precedence effect is an adaptation to reflections in real-world

listening conditions. See Extended Data Figs. 9 and 10 for full psychophysical results

for models trained in alternative conditions.

In addition to diverging from the perceptual strategies found in human listeners,

the models trained in unnatural conditions performed more poorly at real-world lo-

calization. When we ran models trained in alternative conditions on our real-world

test set of recordings from mannequin ears in a conference room, localization accuracy

was substantially worse in all cases (Fig. 2-7e, P < 0.001 in all cases). This finding is

consistent with the common knowledge in engineering that training systems in noisy

and otherwise realistic conditions aids performance[156, 148, 116, 91]. Coupled with

the abnormal psychophysical results of these alternatively trained models, this result

indicates that the classic perceptual characteristics of spatial hearing reflect strategies

that are important for real-world localization, in that systems that deviate from these

characteristics localize poorly.
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Figure 2-6:
a, Diagram of experiment. On each trial, between one and eight speech signals (each spoken by a
different talker) was played from a subset of the speakers in a 12-speaker circular array. The lower
panel depicts an example trial in which three speech signals were presented, with the corresponding
speakers in green. Participants reported the number of sources and their locations. b, Average
number of sources reported by human listeners, plotted as a function of the actual number of sources.
Error bars plot standard deviation across participants. Here and in d, graph is reproduced from
original paper[244] with permission of the authors. c, Same as b, but for the model. Error bars plot
standard deviation across the ten networks. d, Localization accuracy (measured as the proportion
of sources correctly localized to the actual speaker from which they were presented), plotted as a
function of the number of sources. Error bars plot s.d. across participants. e, Same as d, but for
the model. Error bars plot s.d. across the ten networks.

2.2.13 Model predictions of sound localizability

One advantage of a model that can mediate actual localization behaviour is that

one can run large numbers of experiments on the model, searching for ‘interesting’

predictions that might then be tested in human listeners. Here we used the model

to estimate the accuracy with which different natural sounds would be localized in

realistic conditions. We chose to examine musical instrument sounds as these are

both diverse and available as clean recordings in large numbers. We took a large
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set of instrument sounds[59] and rendered them at a large set of randomly selected

locations. We then measured the average localization error for each instrument.

As shown in Fig. 2-8a, there was reliable variation in the accuracy with which

instrument sounds were localized by the model. The median error was as low as 1.06°

for reed instrument no. 3 and as high as 40.02° for mallet no. 1 (folded to discount

front–back confusions: without front–back folding, the overall error was larger, but

the ordinal relations among instruments were similar). The human voice was also

among the most accurately localized sounds in the set we examined, with a mean

error of 2.39° (front–back folded).

Figure 8b displays spectrograms for example notes for the three best- and worst-

localized instruments. The best-localized instruments are spectrally dense, and thus

presumably take advantage of cross-frequency integration (which improve localization

accuracy in both humans and the model, Fig. 2-3e,f). This result is consistent with

the common idea that narrowband sounds are less well localized, but the model

provides a quantitative metric of localizability that we would not otherwise have.

To assess whether the results could be predicted by simple measures of spectral

sparsity, we measured the spectral flatness[118] of each instrument sound (the ratio

of the geometric mean of the power spectrum to the arithmetic mean of the power

spectrum). The average spectral flatness of an instrument was significantly correlated

with the model’s localization accuracy (rs = 0.77,P < 0.001), but this correlation was

well below the split-half reliability of the model’s accuracy for an instrument (rs =

0.99). This difference suggests that there may be sound features above and beyond

spectral sparsity that determine a sound’s localizability, and illustrates the value of

an optimized system to make perceptual predictions.

We had intentions of running a free-field localization experiment in humans to test

these predictions, but had to halt experiments due to COVID-19. We have hopes of

running the experiment in the future. However, we note that informal observation by

the authors listening in free-field conditions suggest that the sounds that are poorly

localized by the model are also difficult for humans to localize.
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(Caption on next page.)
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Figure 2-7:
a, Schematic depiction of altered training conditions, eliminating echoes or background noise or
using unnatural sounds. b, Overall human–model dissimilarity for natural and unnatural training
conditions. Error bars plot s.e.m., bootstrapped across networks. Asterisks denote statistically
significant differences between conditions (P < 0.001, two-tailed), evaluated by comparing the hu-
man–model dissimilarity for each unnatural training condition to a bootstrapped null distribution
of the dissimilarity for the natural training condition. c, Effect of unnatural training conditions on
human–model dissimilarity for individual experiments, expressed as the effect size of the difference
in dissimilarity between the natural and each unnatural training condition (Cohen’s d, computed
between human–model dissimilarity for networks in normal and modified training conditions). Pos-
itive numbers denote a worse resemblance to human data compared to the model trained in normal
conditions. Error bars plot s.e.m., bootstrapped across the ten networks d, The precedence effect
in networks trained in alternative environments. e, Real-world localization accuracy of networks for
each training condition. Error bars plot s.e.m., bootstrapped across the ten networks. Asterisks
denote statistically significant differences between conditions (P < 0.001, two-tailed), evaluated by
comparing the mean localization error for each unnatural training condition to a bootstrapped null
distribution of the localization error for the natural training condition.

(Caption on next page.)
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Figure 2-8:
a, Mean model localization error for each of 43 musical instruments. Each of a set of instrument
notes was rendered at randomly selection locations. Graph shows letter-value plots[106] of the mean
azimuthal localization error across notes, measured after actual and judged positions were front–back
folded. Letter-value plots are boxplots with additional quantiles. The widest box depicts the middle
two quartiles (1/4) of the data distribution, as in a box plot, the second widest box depicts the next
two octiles (1/8), the third widest box depicts the next two hexadeciles (1/16) and so on, up to the
upper and lower 1/64 quantiles. Horizontal line plots median value and diamonds denote outliers.
b, Spectrograms of an example note (middle C) for the three most and least accurately localized
instruments (top and bottom, respectively).

2.3 Discussion

We trained artificial neural networks to localize sounds from binaural audio rendered

in a virtual world and heard through simulated ears. When the virtual world mimicked

natural auditory environments, with surface reflections, background noise and natural

sound sources, the trained networks replicated many attributes of spatial hearing

found in biological organisms. These included the frequency-dependent use of ITDs

and ILDs, the integration of spatial information across frequency, the use of ear-

specific high-frequency spectral cues to elevation and robustness to spectral smoothing

of these cues, localization dominance of sound onsets and limitations on the ability

to localize multiple concurrent sources. The model successfully localized sounds in

an actual real-world environment better than alternative algorithms that lacked ears.

The model also made predictions about the accuracy with which different types of

real-world sound could be localized. But when the training conditions were altered to

deviate from the natural environment by eliminating surface reflections, background

noise or natural sound source structure, the behavioural characteristics of the model

deviated notably from human-like behaviour. The results indicate that most of the

key properties of mammalian spatial hearing can be understood as consequences of

optimization for the task of localizing sounds in natural environments. Our approach

extends classical ideal observer analysis to new domains, where provably optimal

analytic solutions are difficult to attain but where supervised machine learning can

nonetheless provide optimized solutions in different conditions.

The general method involves two nested levels of computational experiments: opti-
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mization of a model under particular conditions, followed by a suite of psychophysical

experiments to characterize the resulting behavioural phenotype. This approach pro-

vides an additional tool with which to examine the constraints that yield biological

solutions[38, 125], and thus to understand evolution[194]. It also provides a way to

link experimental results with function. In some cases, these links had been pro-

posed but not definitively established. For example, the precedence effect was often

proposed to be an adaptation to reverberation[16, 221], although other functional ex-

planations were also put forth[248]. Our results indicate it is indeed an adaptation to

reverberation (Fig. 2-7d). We similarly provide evidence that sensitivity to spectral

cues to elevation emerges only with the demands of localizing broadband sounds[164].

In other cases, the model provided explanations for behavioural characteristics that

previously had none. One such example is the relatively coarse spectral resolution

of elevation perception (Fig. 2-4h–j), which evidently reflects the absence of reliable

information at finer resolutions. Another is the number of sources that can be con-

currently localized (Fig. 2-6b,c), and the dependence of localization accuracy on the

number of sources (Fig. 2-6d,e). Without an optimized model there would be no way

to ascertain whether these effects reflect intrinsic limitations of localization cues in

auditory scenes or some other human-specific cognitive limit.

Previous models of sound localization required cues to be hand-coded and provided

to the model by the experimenter[18, 66, 40, 62]. In some cases, previous models were

able to derive optimal encoding strategies for such cues[93], which could be usefully

compared to neural data[201]. In other cases, models were able to make predictions of

behaviour in simplified conditions using idealized cues[62]. However, the idealized cues

that such models work with are not well-defined for arbitrary real-world stimuli[166],

preventing the modelling of general localization behaviour. In addition, ear-specific

spectral cues to elevation (Fig. 2-1b, right) are not readily hand-coded, and as a

result have remained largely absent from previous models. It has thus not previously

been possible to derive optimal behavioural characteristics for real-world behaviour.

Our results highlight the power of contemporary machine learning coupled with

virtual training environments to achieve realistic behavioural competence in compu-
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tational models. Supervised learning has traditionally been limited by the need for

large amounts of labelled data, typically acquired via painstaking human annotation.

Virtual environments allow the scientist to generate the data, with the labels coming

for free (as the parameters used to generate the data), and have the potential to

greatly expand the settings in which supervised learning can be used to develop mod-

els of the brain[67]. Virtual environments also allow tests of optimality that would

be impossible in biological systems, because they enable environmental conditions to

be controlled, and permit optimization on rapid timescales.

Our approach is complementary to the long tradition of mechanistic modelling

of sound localization. In contrast with mechanistic modelling, we do not produce

specific hypotheses about underlying neural circuitry. However, the model gave rise

to rich predictions of real-world behaviour, and normative explanations of a large

suite of perceptual phenomena. It should be possible to merge these two approaches,

both by training model classes that are more faithful to biology (for example, spiking

neural networks, or networks with biologically constrained weights)[86, 214], and by

building in additional known biological structures to the neural network (for example,

replicating brainstem circuitry)[119, 27].

One limitation of our approach is that optimization of biological systems occurs in

two distinct stages of evolution and development, which are not obviously mirrored

in our model optimization procedure. The procedure we used had separate stages

of architectural selection and weight training, but these do not cleanly map onto

evolution and development in biological systems. This limitation is shared by classical

ideal observers, but limits the ability to predict effects that might be specific to one

stage or the other, for instance involving plasticity[120].

Our model also shares many limitations common to current deep neural network

models of the brain[138]. The learning procedure is unlikely to have much in com-

mon with biological learning, both in the extent and nature of supervision (which

involves millions of explicitly labelled examples) and in the learning algorithm, which

is often argued to lack biological plausibility[86]. The model class is also not fully

consistent with biology, and so does not yield detailed predictions of neural circuitry.
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The analogies with the brain thus seem most promising at the level of behaviour and

representations. Our results add to growing evidence that task-optimized models can

produce human-like behaviour for signals that are close to the manifold of natural

sounds or images[126, 135, 187]. However, artificial neural networks also often exhibit

substantial representational differences with humans, particularly for unnatural sig-

nals derived in various ways from a network[80, 61, 70, 112, 79], and our model may

exhibit similar divergences.

We chose to train models on a fixed representation of the ear. This choice was

motivated by the assumption that the evolution of the ear was influenced by many

different auditory tasks, such that it may not have been strongly influenced by the

particular demands of sound localization, instead primarily serving as a constraint

on biological solutions to the sound localization problem[187]. However, the ear itself

undoubtedly reflects properties of the natural environment[140]. It could thus be

fruitful to ‘evolve’ ears along with the rest of the auditory system, particularly in a

framework with multiple tasks[126]. Our cochlear model also does not replicate the

fine details of cochlear physiology[246, 25, 8] due to practical constraints of limited

memory resources. These differences could in principle influence the results, although

the similarity of the model results to those of humans suggests that the details of

peripheral physiology beyond those that we modelled do not figure critically in the

behavioural traits we examined.

The virtual world we used to train our models also no doubt differs in many

ways from real-world acoustic environments. The rendering assumed point sources

in space, which is inaccurate for many natural sound sources. The distribution of

source locations was uniform relative to the listener, and both the listener and the

sound sources were static, all of which are often not true of real-world conditions.

And although the simulated reverberation replicated many aspects of real-world re-

verberation, it probably did not perfectly replicate the statistical properties of natural

environmental impulse responses[212], or their distribution across environments. Our

results indicate that the virtual world approximates the actual world in many of the

respects that matter for spatial hearing, but the discrepancies with the real world
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could make a difference for some behaviours.

We also emphasize that despite presenting our approach as an alternative to ideal

observer analysis[71, 72], the resulting model almost surely differs in some respects

from a fully ideal observer. The solutions reached by our approach are not provably

optimal like classic ideal observers, and the model class and optimization methods

could impose biases on the solutions. It is also likely that the architecture search was

not extensive enough to find the best architectures for the task. Those caveats aside,

the similarity to human behaviour, along with the strong dependence on the training

conditions, provides some confidence that the optimization procedure is succeeding

to a degree that is scientifically useful.

Our focus in this paper has been to study behaviour, as there is a rich set of audi-

tory localization behaviours for which normative explanations have traditionally been

unavailable. However, it remains possible that the model we trained could be usefully

compared to neural data. There is a large literature detailing binaural circuitry in

the brainstem[53] that could be compared to the internal responses of the model.

The model could also be used to probe for functional organization in the auditory

cortex, for instance by predicting brain responses using features from different model

stages[128, 88, 236, 41, 58, 126], potentially helping to reveal hierarchical stages of

localization circuitry.

A model that can predict human behaviour should also have useful applications.

Our model showed some transfer of localization for specific sets of ears (Fig. 2-4g),

and could be used to make predictions about the extent to which sound rendering in

virtual acoustic spaces (which may need to use a generic set of HRTF) should work

for a particular listener. It can also predict which of a set of sound sources will be

most compellingly localized, or worst localized (Fig. 2-8). Such predictions could

be valuable in enabling better virtual reality, or in synthesizing signals that humans

cannot pinpoint in space.

One natural extension of our model would be to incorporate moving sound sources

and head movements. We modelled sound localization in static conditions because

most experimental data have been collected in this setting. But in real-world con-
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ditions sound sources often move relative to the listener and listeners move their

heads[211, 21], often to better disambiguate front from back[220] and more accurately

localize. Our approach could be straightforwardly expanded to moving sound sources

in the virtual training environment and a model that can learn to move its head[148],

potentially yielding explanations of auditory motion perception[82, 33, 247]. The abil-

ity to train models that can localize in realistic conditions also underscores the need for

additional measurements of human localization behaviour — front–back confusions,

localization of natural sounds in actual rooms, localization with head movements and

so on — with which to further evaluate models.

Another natural next step is to instantiate both recognition and localization in

the same model, potentially yielding insight into the segregation of these functions

in the brain[15], and to the role of spatial cues in the ‘cocktail party problem’[46,

50, 22, 95, 129, 157, 195]. More generally, the approach we take here — using deep

learning to derive optimized solutions to perceptual or cognitive problems in different

operating conditions — is broadly applicable to understanding the forces that shape

complex, real-world, human behaviour.

2.4 Methods

2.4.1 Training data generation

Virtual acoustic simulator: image/source method

We used a room simulator[197] to render binaural room impulse responses (BRIRs).

This simulator used the image-source method, which approaches an exact solution

to the wave equation if the walls are assumed to be rigid[3], as well as an extension

to that method that allowed for more accurate calculation of the arrival time of a

wave[176]. This enabled the simulator to correctly render the relative timing between

the signals received by the two simulated ears, including reflections (enabling both

the direct sound and all reflections to be rendered with the correct spatial cues). Our

specific implementation was identical to that used in the original paper[197], except
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for some custom optimization to take advantage of vectorized operations and parallel

computation.

The room simulator operated in three separate stages. First, the simulator calcu-

lated the positions of reflections of the source impulse forward in time for 0.5 s. For

each of these positions, the simulator placed an image symmetrically reflected about

the wall of last contact. Second, the simulator accounted for the absorption spectra

of the reflecting walls for each image location and filtered a broadband impulse se-

quentially using the absorption spectrum of the simulated wall material. Third, the

simulator found the direction of arrival for each image and convolved the filtered im-

pulse with the HRIR in the recorded set whose position was closest to the computed

direction. This resulted in a left and right channel signal pair for each path from the

source to the listener. Last, each of these signal pairs was summed together, factoring

in both the delay from the time of arrival and the level attenuation given the total

distance travelled by each reflection. The original authors of the simulator previously

assessed this method’s validity and found that simulated BRIRs were good physical

approximations to recorded BRIRs provided that sources were rendered more than 1

m from the listener[197].

We used this room simulator to render BRIRs at each of a set of listener locations

in five different rooms varying in size and material (listed in Extended Data Fig.

2-15) for each of the source location bins in the output layer of the networks: all

pairings of seven elevations (between 0° and 60°, spaced 10°) and 72 azimuths (spaced

5° in a circle around the listener), at a distance of 1.4 m. This yielded 504 source

positions per listener location and room. Listener locations were chosen subject to

three constraints. First, the listener location had to be at least 1.4 m from the

nearest wall (because sounds were rendered 1.4 m from the listener). Second, the

listener locations were located on a grid whose axes ran parallel to the walls of the

room, with locations spaced 1 m apart in each dimension. Third, the grid was centred

in the room. These constraints yielded four listener locations for the smallest room

and 81 listener locations for the largest room. This resulted in 71,064 pairs of BRIRs,

each corresponding to a possible source–listener–room spatial configuration. Each

56



BRIR took approximately 4 min to generate when parallelized across 16 cores. We

parallelized[209] the generation of the full set of BRIRs across approximately 1,000

cores on the MIT OpenMind Cluster, which allowed us to generate the full set of

BRIRs in approximately 4 days.

Virtual acoustic simulator: HRIRs

The simulator relied on empirically derived HRIRs to incorporate the effect of pinna

filtering, head shadowing and time delays without solving wave equations for the ears,

head and/or torso. Specifically, the simulator used a set of HRIRs recorded with

KEMAR: a mannequin designed to replicate the acoustic effects of head and torso

filtering on auditory signals. These recordings consisted of 710 positions ranging from

40° to +90° elevation at 1.4 m (ref. [69]). A subset of these positions corresponded

to the location bins into which the network classified source locations.

Virtual acoustic simulator: two-microphone array

For comparison with the networks trained with simulated ears, we also trained the

same neural network architectures to localize sounds using audio recorded from a two-

microphone array (Extended Data Fig. 2-14). To train these networks, we simulated

audio received from a two-microphone array by replacing each pair of HRIRs in the

room simulator with a pair of fractional delay filters (that is, that delayed the signal

by a fraction of a sample). These filters consisted of 127 taps and were constructed

via a sinc function windowed with a Blackman window, offset in time by the desired

delay. Each pair of delay filters also incorporated signal attenuation from a distance

according to the inverse square law, with the goal of replicating the acoustics of a

two-microphone array. After substituting these filters for the HRIRs used in our main

training procedure, we simulated a set of BRIRs as described above.

Natural sound sources

We collected a set of 455 natural sounds, each cut to two seconds in length. Of these

sounds, 300 were drawn from a set used in previous work in the laboratory[169]. An-
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other 155 sounds were drawn from the BBC Sounds Effects Database, selected by

the first author to be easily identifiable. The sounds included human and animal vo-

calizations, human actions (chopping, chewing, clapping and so on), machine sounds

(cars, trains, vacuums and so on) and nature sounds (thunder, insects, running water,

etc.). The full list of sounds is given in Extended Data Fig. 2-12. All sounds were

sampled at 44.1 kHz. Of this set, 385 sounds were used for training and another

70 were withheld for model validation and testing. To augment the dataset, each of

these was bandpass-filtered with a two-octave-wide second-order Butterworth filter

with centre frequencies spaced in one-octave steps starting from 100 Hz. This yielded

2,492 (2,110 training, 382 testing) sound sources in total.

Background noise sources

Background noise sources were synthesized using a previously described texture gen-

eration method that produced texture excerpts rated as highly realistic[159]. The

specific implementation of the synthesis algorithm was that used in ref. [160], with

a sampling rate of 44.1 kHz. We used 50 different source textures obtained from

in-laboratory collections[158]. Textures were selected that synthesized successfully,

both subjectively (sounding perceptually similar to the original texture) and objec-

tively (the ratio between mean squared statistic values for the original texture and

the mean squared error between the statistics of the synthesized and original tex-

ture was greater than 40 dB). We then rendered 1,000 5-s exemplars for each texture

(subsequently cut to 2 s in length) for a total of 50,000 unique waveforms (1,000

exemplars × 50 textures). Background noises were created by spatially rendering

between three and eight exemplars of the same texture at randomly chosen loca-

tions using the virtual acoustic simulator described above. We made this choice on

grounds of ecological validity, on the basis of the intuition that noise sources are typ-

ically not completely spatially uniform[189] despite being more diffuse than sounds

made by single organisms or objects. By adding noises rendered at different locations

we obtained background noise that was not as precisely localized as the target sound

sources, which seemed a reasonable approximation of common real-world conditions.

58



Generating training exemplars

To reduce the storage footprint of the training data, we separately rendered the sound

sources to be localized, and the background noise, and then randomly combined

them to generate training exemplars. For each source, room and listener location, we

randomly rendered each of the 504 positions with a probability:

𝑃 =
0.025 × 𝑛𝑜. 𝑜𝑓 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑟𝑜𝑜𝑚

𝑛𝑜. 𝑜𝑓 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑟𝑜𝑜𝑚 𝑏𝑒𝑖𝑛𝑔 𝑟𝑒𝑛𝑑𝑒𝑟𝑒𝑑

We used base probability of 2.5% to limit the overall size of the training set and

normalized by the number of listener locations in the room being used to render

the current stimulus so that each room was represented equally in the dataset. This

yielded 545,566 spatialized natural sound source stimuli in total (497,935 for training,

47,631 for testing). This resulted in 988 examples per training location, on average.

For each training example, the audio from one spatialized natural sound source

and one spatialized background texture scene was combined (with a signal-to-noise

ratio (SNR) sampled uniformly from 5 to 30 dB SNR) to create a single auditory

scene that was used as a training example for the neural network. The resulting

waveform was then normalized to have an root-mean-square (r.m.s.) amplitude of

0.1. Each training example was passed through the cochlear model before being fed

to the neural network.

Stimulus preprocessing: cochlear model

Training examples were preprocessed with a cochlear model to simulate the human

auditory periphery. The output of the cochlear model is a time-frequency representa-

tion intended to represent the instantaneous mean firing rates in the auditory nerve.

The cochlear model was chosen to approximate the time and frequency information

in the human cochlea subject to practical constraints on the memory footprint of

the model and the dataset. Cochleagrams were generated using a filter bank similar

to that used in previous work from our laboratory[159]. However, the cochleagrams

we used provided fine timing information to the neural network by passing recti-
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fied subbands of the signal instead of the envelopes of the subbands. This came

at the cost of substantially increasing the dimensionality of the input relative to an

envelope-based cochleagram. The dimensionality was nonetheless considerably lower

than what would have resulted from a spiking model of the auditory nerve, which

would have been prohibitive given our hardware.

The waveforms for the left and right channels were first upsampled to 48 kHz, then

separately passed through a bank of 39 bandpass filters. These filters were regularly

spaced on an equivalent rectangular bandwidth scale[78] with bandwidths matched

to those expected in a healthy human ear. Filter centre frequencies ranged from 45 to

16,975 Hz. Filters were zero-phase, with transfer functions in the frequency domain

shaped like the positive portion of a cosine function. These filters perfectly tiled the

frequency axis such that the summed squared response of all filters was flat and al-

lowed for reconstruction of the signal in the covered frequency range. Filtering was

performed by multiplication in the frequency domain, yielding a set of subbands. The

subbands were then transformed with a power function (0.3 exponent) to simulate the

outer hair cells’ non-linear compression. The results were then half-wave rectified to

simulate auditory nerve firing rates and were low-pass filtered with a cut-off frequency

of 4 kHz to simulate the upper limit of phase locking in the auditory nerve[171], using

a Kaiser-windowed sinc function with 4,097 taps. The results of the low-pass filtering

were then downsampled to 8 kHz to reduce the dimensionality of the neural network

input (without information loss because the Nyquist limit matched the low-pass filter

cut-off frequency). Because the low-pass filtering and downsampling were applied to

rectified filter outputs, the representation retained information at all audible frequen-

cies, just with limits on fidelity that were approximately matched to those believed to

be present in the ear. We note also that the input was not divided into ‘frames’ as are

common in audio engineering applications, as these do not have an obvious analogue

in biological auditory systems. All operations were performed in Python but made

heavy use of the NumPy and SciPy library optimization to decrease processing time.

Code to generate cochleagrams in this way is available on the McDermott laboratory

webpage (http://mcdermottlab.mit.edu).
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To minimize artificial onset cues at the beginning and end of the cochleagram

that would not be available to a human listener in everyday listening conditions, we

removed the first and last 0.35 s of the computed cochleagram and then randomly

excerpted a 1-s segment from the remaining 1.3 s. The neural network thus received 1

s of input from the cochlear model, as a 39 × 8,000 × 2 tensor (39 frequency channels

× 8,000 samples at 8 kHz × 2 ears).

For reasons of storage and implementation efficiency, the cochlear model stage

was in practice implemented as follows, taking advantage of the linearity of the filter

bank. First, the audio from each spatialized natural sound source and each spatial-

ized background texture scene was run through the cochlear filter bank. Second, we

excerpted a 1-s segment from the resulting subbands as described in the previous

paragraph. Third, the two sets of subbands were stored in separate data structures.

Fourth, during training, the subbands for a spatialized natural sound source and a

spatialized background scene were loaded, scaled to achieve the desired SNR (sampled

uniformly from 5 to 30 dB), summed and scaled to correspond to a waveform with

r.m.s. amplitude of 0.1. The resulting subbands were then half-wave rectified, raised

to the power of 0.3 to simulate cochlear compression, and downsampled to 8 kHz to

simulate the upper limit of auditory nerve phase locking. This ‘cochleagram’ was the

input to the neural networks.

2.4.2 Environment modification for unnatural training condi-

tions

In each unnatural training condition, one aspect of the training environment was

modified.

Anechoic environment

All echoes and reflections in this environment were removed. This was accomplished

by setting the room material parameters for the walls, floor and ceiling to completely

absorb all frequencies. This can be conceptualized as simulating a perfect anechoic
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chamber.

Noiseless environment

In this environment, the background noise was removed by setting the SNR of the

scene to 85 dB. No other changes were made.

Unnatural sound sources

In this environment, we replaced the natural sound sources with unnatural sounds

consisting of repeating bandlimited noise bursts. For each 2-s sound source, we first

generated a 200 ms 0.5 octave-wide noise burst with a 2 ms half-Hanning window

at the onset and offset. We then repeated that noise burst separated by 200 ms of

silence for the duration of the signal. The noise bursts in a given source signal always

had the same centre frequency. The centre frequencies (the geometric mean of the

upper and lower cut-offs) across the set of sounds were uniformly distributed on a log

scale between 60 and 16.8 kHz.

2.4.3 Neural network models

The 39 × 8,000 × 2 cochleagram representation (representing 1 s of binaural audio)

was passed to a CNN, which instantiated a feedforward, hierarchically organized set

of linear and non-linear operations. The components of the CNNs were standard;

they were chosen because they have been shown to be effective in a wide range of

sensory classification tasks. In our CNNs, there were four different kinds of layer, each

performing a distinct operation: (1) convolution with a set of filters, (2) a point-wise

non-linearity, (3) batch normalization and (4) pooling. The first three types of layer

always occurred in a fixed order (batch normalization, convolution and a point-wise

non-linearity). We refer to a sequence of these three layers in this order as a ‘block’.

Each block was followed by either another block or a pooling layer. Each network

ended with either one or two fully connected layers feeding into the final classification

layer. Below, we define the operations of each type of layer.
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Convolutional layer

A convolutional layer consists of a bank of K linear filters, each convolved with the

input to produce K separate filter responses. Convolution performs the same opera-

tion at each point in the input, which in our case was the cochleagram. Convolution

in time is natural for models of sensory systems as the input is a temporal sequence

whose statistics are translation invariant. Convolution in frequency is less obviously

natural, as translation invariance does not hold in frequency. However, approximate

translation invariance holds locally in the frequency domain for many types of sound

signal, and convolution in frequency is often present, implicitly or explicitly, in audi-

tory models[51, 39]. Moreover, imposing convolution greatly reduces the number of

parameters to be learned, and we have found that neural network models train more

readily when convolution in frequency is used, suggesting that it is a useful form of

model regularization.

The input to a convolutional layer is a three-dimensional array with shape 𝑛𝑖𝑛,𝑚𝑖𝑛, 𝑑𝑖𝑛

where 𝑛𝑖𝑛 and 𝑚𝑖𝑛 are the spectral and temporal dimensions of the input, respectively,

and 𝑑𝑖𝑛 is the number of filters. In the case of the first convolutional layer, 𝑛𝑖𝑛 =

36 and 𝑚𝑖𝑛 = 8,000, corresponding to the spectral and temporal dimensions of the

cochleagram, and 𝑑𝑖𝑛 = 2, corresponding to the left and right audio channels.

A convolution layer is defined by five parameters:

1. 𝑛𝑘, the height of the convolutional kernels (that is, their extent in the frequency

dimension)

2. 𝑚𝑘, the width of the convolutional kernels (that is, their extent in the time

dimension)

3. K, the number of different kernels

4. W, the kernel weights for each of the K kernels; this is an array of dimensions

(𝑛𝑖𝑛,𝑚𝑖𝑛, 𝑑𝑖𝑛, K )

5. B, the bias vector, of length K
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For any input array X of shape 𝑛𝑖𝑛,𝑚𝑖𝑛, 𝑑𝑖𝑛, the output of this convolutional layer

is an array Y of shape (𝑛𝑖𝑛, 𝑚𝑖𝑛−𝑚𝑘 + 1, K ) (due to the boundary handling choices

described below):

𝑌 [𝑖, 𝑗, 𝑘] = B[𝑘] +
∑︀𝑛𝑘/2,𝑚𝑘/2,𝑑𝑖𝑛

𝑛=−𝑛𝑘/2,𝑚=−𝑚𝑘/2,𝑑=0𝑊 [𝑛,𝑚, 𝑑, 𝑘]⊙𝑋[𝑖+ 𝑛, 𝑗 + 𝑛, 𝑑]

where i ranges from (1, . . . , 𝑛𝑖𝑛), j ranges (1, . . . , 𝑚𝑖𝑛) and ⊙ represents point-wise

array multiplication.

Boundary handling via valid padding in time

There are several common choices for boundary handling during convolution opera-

tions. For the output of a convolution to be the same dimensionality as the input,

the input signal is typically padded with zeros. This approach —often termed ‘same’

convolution — has the downside of creating an artificial onset in the data that would

not be present in continuous audio in the natural world, and that might influence the

behaviour of the model. To avoid this possibility, we used ‘valid’ convolution in the

time dimension. This type of convolution only applies the filter at positions where

every element of the kernel overlaps with the actual input. This eliminates artificial

onsets at the start/end of the signal but means that the output of the convolution

will be slightly smaller than its input, as the filters cannot be centred over the first

and last positions in the input without having part of the filter not overlap with the

input data.

We used ‘same’ convolution in the frequency dimension because the frequency

dimension has lower and upper limits in the cochlea, such that boundary effects are

less obviously inconsistent with biology. In addition, the frequency dimension was

much smaller than the time dimension, such that it seemed advantageous to preserve

channels at each convolution stage.
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Point-wise non-linearity

If a neural network consists of only convolution layers, it can be mathematically

reduced to a single matrix operation. A non-linearity is needed for the neural network

to learn more complex functions. We used rectified linear units (a common choice in

current deep neural networks) that operate point wise on every element in the input

map according to a piecewise linear function:

𝑓(𝑥) =

⎧⎪⎨⎪⎩ 𝑥 𝑥 > 0

0 𝑒𝑙𝑠𝑒

Normalization layer

The normalization layer applied batch normalization[110] in a point-wise manner to

the input map. Specifically, for a batch B of training examples, consisting of examples

{𝑋1, . . . , 𝑋𝑀}, with shape 𝑛𝑖𝑛,𝑚𝑖𝑛, 𝑑𝑖𝑛, each example is normalized by the mean and

variance of the batch:

𝜇𝐵[𝑛,𝑚, 𝑑] = 1
𝑀

∑︀𝑀
𝑖=0𝑋𝑖𝑛[𝑛,𝑚, 𝑑]

𝜎2
𝐵[𝑛,𝑚, 𝑑] = 1

𝑀

∑︀𝑀
𝑖=0(𝑋𝑖𝑛[𝑛,𝑚, 𝑑]− 𝜇𝐵[𝑛,𝑚, 𝑑])2

𝑋̂𝑖[𝑛,𝑚, 𝑑] = 𝑋𝑖[𝑛,𝑚,𝑑]−𝜇𝐵 [𝑛,𝑚,𝑑]
2
√

𝜎2𝐵 [𝑛,𝑚,𝑑]+𝜖

where 𝑋̂𝑖 is the normalized three-dimensional matrix of the same shape as the

input matrix and 𝜖 = 0.001 to prevent division by zero.

Throughout training, the batch normalization layer maintains a cumulative mean

and variance across all training examples, 𝜇𝑇𝑜𝑡𝑎𝑙 and 𝜎2
𝑇𝑜𝑡𝑎𝑙. At test time 𝑋̂𝑖 is calcu-

lated using 𝜇𝑇𝑜𝑡𝑎𝑙 and 𝜎2
𝑇𝑜𝑡𝑎𝑙 in place of 𝜇𝐵 and 𝜎2

𝐵.
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Pooling layer

A pooling layer allows downstream layers to aggregate information across longer pe-

riods of time and wider bands of frequency. It downsamples its input by aggregating

values across nearby time and frequency bins. We used max pooling, which is defined

via four parameters:

1. 𝑃ℎ, the height of the pooling kernel

2. 𝑃𝑤, the width of the pooling kernel

3. 𝑠ℎ, the stride in the vertical dimension

4. 𝑠𝑤, the stride in the horizontal dimension

A pooling layer takes array X of shape (𝑛𝑖𝑛,𝑚𝑖𝑛, 𝑑𝑖𝑛) and returns array Y with

shape (𝑛𝑖𝑛/𝑠𝑤,𝑚𝑖𝑛/𝑠ℎ, 𝑑𝑖𝑛) according to:

𝑌 (𝑖, 𝑗, 𝑘) = 𝑚𝑎𝑥(𝑁𝑝𝑤𝑝ℎ (𝑋, 𝑖𝑠𝑤, 𝑗𝑠ℎ, 𝑘))

where 𝑁𝑝𝑤𝑝ℎ (X, i, j, k) is a windowing function that takes a (𝑃𝑤, 𝑃ℎ) excerpt of

X of centred at (i,j) from filter k. The maximum is over all elements in the resulting

excerpt.

Fully connected layer

A fully connected layer, also often called a dense layer, does not use the weight sharing

found in convolutional layers, in which the same filter is applied to all positions within

the input. Instead, each (input unit, output unit) pair has its own learned weight

parameter and each output unit has its own bias parameter. Given input X with

shape (𝑛𝑖𝑛,𝑚𝑖𝑛, 𝑑𝑖𝑛), a fully connected layer produces output Y with shape 𝑛𝑜𝑢𝑡. It

does so in two steps:

1. Flattens the input dimensions, creating an input 𝑋𝑓𝑙𝑎𝑡 of shape (𝑛𝑖𝑛×𝑚𝑖𝑛×𝑑𝑖𝑛)
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2. Multiplies 𝑋𝑓𝑙𝑎𝑡 by weight and bias matrices of shape (𝑛𝑜𝑢𝑡, 𝑛𝑖𝑛×𝑚𝑖𝑛×𝑑𝑖𝑛) and

𝑛𝑜𝑢𝑡, respectively. This is implemented as:

𝑌 (𝑛𝑖) = B(𝑛𝑖) +
∑︀𝑛𝑖𝑛×𝑚𝑖𝑛×𝑑𝑖𝑛

𝑙=1 W (n𝑖𝑛, 𝑙) 𝑋𝑓𝑙𝑎𝑡 (𝑙) ; 𝑛𝑖 𝜖 {1 . . . n𝑜𝑢𝑡}

where B(𝑛𝑜𝑢𝑡) is the bias vector, 𝑊 (𝑛𝑜𝑢𝑡,𝑙) is the weight matrix and l ranges from 1

to (𝑛𝑖𝑛 ×𝑚𝑖𝑛 × 𝑑𝑖𝑛) and indexes all positions in the flattened input matrix.

Softmax classifier

The final layer of every network was a classification layer, which consists of a fully

connected layer where 𝑛𝑜𝑢𝑡 is the number of class labels (in our case 504). The

output of that fully connected layer was then passed through a normalized exponential

(softmax) function. Together this was implemented as:

y(𝑖) =
𝑒𝑥𝑝 (

∑︀𝑛𝑇
𝑗=0 𝑤𝑖𝑗𝑥𝑗)∑︀𝑛𝑜𝑢𝑡

𝑘=0 𝑒𝑥𝑝 (
∑︀𝑛𝑇
𝑗=0 𝑤𝑘𝑗𝑥𝑗)

The vector y sums to one and all entries are greater than zero. This is often

interpreted as a vector of label probabilities conditioned on the input.

Dropout during training

For each new batch of training data, dropout was applied to all fully connected layers

of a network. Dropout consisted of randomly choosing 50% of the weights in the layer

and temporarily setting them to zero, thus effectively not allowing the network access

to the information at those positions. The other 50% of the weights were scaled up

such that the expected value of the sum over all inputs was unchanged. This was

implemented as:

𝑑𝑟𝑜𝑝𝑜𝑢𝑡 (𝑊𝑖,𝑗) =

⎧⎪⎨⎪⎩ 𝑊𝑖,𝑗
1

(1−0.5)
𝑗 /∈ weights to drop

0 𝑗 ∈weights to drop
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Dropout is common in neural network training and can be viewed as a form of

model averaging where exponentially many models using different subsets of the input

vector are being trained simultaneously[104]. During evaluation, dropout was turned

off (and no weight scaling was performed) so that all weights were used.

2.4.4 Neural network optimization

Architecture search: overview

When neural networks are applied to a new problem it is common to use architectures

that have previously produced good results on similar problems. However, most stan-

dard CNN architectures that operate on two-dimensional inputs have been designed

for visual tasks and make assumptions based on the visual world. For example, most

architectures assume that the units in the x and y dimension are equivalent, such

that square filter kernels are a reasonable choice. However, in our problem the two

input dimensions are not comparable (frequency versus time). Additionally, our input

dimensionality was several orders of magnitude larger than standard visual stimuli

(70,000 versus 1.1 million), even though some relevant features occur on the scale

of a few samples. For example, an ITD of 400 𝜇s (a typical value) corresponds to

only a six-sample offset between channels. Given that our problem was distinct from

many previous applications of standard neural network architectures, we performed

an architecture search to find architectures that were well-suited to our task. First,

we defined a space of architectures described by a small number of hyperparameters.

Next, we defined discrete probability distributions for each hyperparameter. Last,

we independently sampled from these hyperparameter distributions to generate ar-

chitectures. We then trained each architecture for a brief period and selected the

architectures that performed best on our task for further training.

68



Architecture search: distribution over hyperparameters

To search over architectures, we defined a space of possible architectures that were

encoded via a set of hyperparameters. The space had the following constraints:

• There could be between three and eight pooling layers for any given network.

• A pooling layer was preceded by between one and three blocks. Each block

consisted of batch normalization, followed by convolution, followed by a rectified

linear layer

• The number of channels (filters) in the network was always 32 in the first con-

volutional layer and could either double or remain the same in each successive

convolutional layer.

• The penultimate stage of each network consisted of one or two fully connected

layers containing 512 units each. Each of these was followed by a dropout layer.

• The final stage of each network was always a Softmax Classifier with 504 out-

put units, corresponding to the 504 locations the network could report.

We picked the pooling and convolutional kernel parameters at each layer by uni-

formly sampling from the lists of values in Extended Data Fig. 2-10. We chose these

distributions to skew toward smaller values at deeper layers, approximately in line

with the downsampling that resulted from pooling operations. Multiple copies of

the same number increased the probability of that value being chosen for the kernel

size. Note that differences between the time and frequency dimensions of the cochlear

input motivate the use of filters that are not square.

Filter weight training

Throughout training, the parameters in each convolutional kernel and all weights from

fully connected layers were iteratively adjusted to improve task accuracy via mini-

batch stochastic gradient descent (SGD)[19]. Training was performed with 1.6 million

sounds (100,000 training steps each with a batch of 16 training examples) generated

by looping over the 500,000 foreground sounds and combining each with a randomly
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selected background sound. Networks were assessed via a held-out set of 50,000 test

stimuli created by looping over the 48,000 sound sources in the validation set in the

same manner. We used a Softmax Cross-Entropy loss function. The trainable weights

in the convolutional layers and fully connected layers were updated using the gradient

of the loss function, computed using backpropagation.

Gradient checkpointing

The dimensionality of our input was sufficiently large (due to the high sampling rates

needed to preserve the fine timing information in the simulated auditory periphery) as

to preclude training neural networks using standard methodology. For example, con-

sider training a network consisting of four pooling layers (2 × 1 kernel), each preceded

by one block. If there are 32 convolutional filters in the first layer, and double the

number of filters in each successive layer, this network would require approximately

80 GB of memory at peak usage, which exceeded the maximum memory of graphical

processing units (GPUs) that were standard at the time of model training (available

GPUs varied between 12 and 32 GB). We addressed this problem using a previously

proposed solution called gradient checkpointing[35].

In the standard backpropagation algorithm, we must retain the output from each

layer of a network in memory because it is needed to calculate gradients for each

updatable parameter. The gradient checkpointing algorithm we used trades speed for

lower memory usage by not retaining each layer’s output during the forward pass,

instead recomputing it a second time during the backward pass when gradients are

computed. In the most extreme version, this would result in laboriously recomputing

each layer starting with the original network input. Instead, the algorithm creates

sparse, evenly spaced checkpoints throughout the network that save the output of

selected layers. This strategy allows recomputation during backpropagation to start

from one of these checkpoints, saving compute time. In practice, it also provides

users with a parameter that allows them to select a speed/memory trade-off that

will maximize speed subject to a network fitting onto the available GPU. We created

checkpoints at every pooling layer and found it kept our memory use below the 16-GB

70



limit of the hardware we used for all networks in the architecture search.

Network architecture selection and training

We performed our architecture search on the Department of Energy’s Summit Super-

computer at Oak Ridge National Laboratory. First, we randomly drew 1,500 archi-

tectures from our hyperparameter distribution. Next, we trained each architecture

(that is, optimized the weights of the convolutional and fully connected layers) using

mini-batch SGD for 15,000 steps, each with a batch size of 16, for a total of 240,000

unique training examples, randomly drawn from the training set described above. We

then evaluated the performance of each architecture on left-out data. The length of

this training period was determined by the job limits on Summit; however, it was

long enough to see substantial reductions in the loss function for many networks. We

considered the procedure adequate for architecture selection given that performance

early in training is a good predictor of training performance late in training[57]. In

total, this architecture search took 2.05 GPU years and 45.2 CPU years.

We selected the ten best-performing architectures. They varied significantly, rang-

ing from four to six pooling layers. We then retrained these ten architectures until a

point where performance on the withheld validation set began to decrease, evaluat-

ing every 25,000 iterations. This occurred at 100,000 iterations for the naturalistic,

anechoic and noiseless training conditions and at 150,000 iterations for the unnatu-

ral sounds training condition. Model architectures and the trained weights for each

model are available online in the associated codebase:

www.github.com/afrancl/BinauralLocalizationCNN.

2.4.5 Real-world evaluation

We tested the model in real-world conditions to verify generalization from the virtual

training environment. We created a series of spatial recordings in an actual confer-

ence room (part of our laboratory space, with dimensions distinct from the rooms in

our virtual training environment) and then presented those to the trained networks.
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We also made recordings of the same source sounds and environment with a two-

microphone array to test the importance of naturally induced binaural cues (from the

ears, head and/or torso).

Sound sources

We used 100 sound sources in total: 50 sound sources were from our validation set of

withheld environmental sounds, and the remaining 50 sound sources were taken from

the GRID dataset of spoken sentences[9]. For the examples from the GRID dataset,

we used five sentences from each of ten speakers (five male and five female). The

model performed similarly for stimuli from the GRID dataset as for our validation

set stimuli. All source signals were normalized to the same peak amplitude before the

recordings were made.

Recording setup

We made the set of real-world evaluation recordings using a KEMAR head and torso

simulator mannequin built by Knowles Electronics to replicate the shape and ab-

sorbency of a human head, upper body and pinna. The KEMAR mannequin contains

a microphone in each ear, recording audio similar to that which a human would hear

in natural conditions. The audio from these microphones was then passed through

Etymotic Research preamplifiers designed for the KEMAR mannequin before being

passed to a Zoom 8 USB to Audio Converter. Finally, it was passed to Audacity

where the left and right channels were simultaneously recorded at 48 kHz.

We made recordings of all 100 sounds at every azimuth (relative to the KEMAR

mannequin) from 0° to 360° in 30° increments. This led to 1,200 recordings in total.

All source sounds were played 1.5 m from the vertical axis of the mannequin using

a KRK ROKIT 7 speaker positioned at approximately 0° elevation. The audio was

played using Audacity and converted to an analogue signal using a Zoom 8 USB to

Audio Converter.

Recordings were made in our main laboratory space in building 46 on the MIT

campus, in a room that was roughly 7 × 6 × 3 m. The room was filled with fur-
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niture and shelves, and had multiple windows and doors (Fig. 2-1e). This setup

was substantially different from any of the simulated rooms in the virtual training

environment, in which all rooms were convex, empty and had smooth walls. During

the recordings, there was low-level background noise from the ventilation system, the

refrigerator and laboratory members talking in surrounding offices. For all recordings,

the mannequin was seated in an office chair, with the head approximately 1 m from

the ground.

Two-microphone array baseline

We made a second set of recordings using the same sound sources, room and record-

ing equipment as above, but with the KEMAR mannequin replaced with a two-

microphone array consisting of two Beyerdynamic MM-1 Omnidirectional Micro-

phones separated by 15 cm (the same distance separating the two microphones in

the mannequin ears). The microphone array was also elevated approximately 1 m

from the floor using a microphone stand (Extended Data Fig. 2-14a).

Baseline algorithms

We evaluated our trained neural networks against a variety of baseline algorithms.

These comprised: steered-response power phase transform (SRP)[55], multiple sig-

nal classification (MUSIC)[193], the coherent signal-subspace method (CSSM)[223],

weighted average of signal subspaces (WAVES)[54], test of orthogonality of projected

subspaces (TOPS)[238] and the WavLoc neural network[217]. With the exception of

the WavLoc model, in each case we used the previously validated and published algo-

rithm implementations in Pyroomacoustics[192]. For the WavLoc model, we used a

reference GitHub implementation and confirmed that we could reproduce the results

of the original paper[217] before testing with our KEMAR mannequin recordings. We

also created a baseline model trained using a simulation of the two-microphone array

described in the previous section within the virtual training environment (the same

ten neural network architectures used for our primary model were trained to localize

sounds using audio recorded from simulated a two-microphone array).
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The results shown in Extended Data Fig. 2-14b,c for the baselines (aside from

our two-microphone array baseline neural network model) all plot localization of the

KEMAR mannequin recordings. We found empirically that the baseline methods per-

formed better for the KEMAR recordings than for the two-microphone array record-

ings, presumably because the mannequin head increases the effective distance between

the microphones. The baseline algorithms require previous knowledge of the intermi-

crophone distance. To make the baselines as strong as possible relative to our method,

we searched over all distances shorter than 50 cm and found that an assumed dis-

tance of 26 cm yielded the best performance. We then evaluated the baselines at

that assumed distance. This optimal assumed distance is greater than the actual

intermicrophone distance of 15 cm, consistent with the idea that the mannequin head

increases the effective distance between microphones.

Comparison with human listeners

To provide an example of free-field human sound localization, Fig. 2-1f plots the

results of an experiment by Yost and colleagues[240]. In that experiment, humans

were presented with noise bursts (low-pass filtered white noise with a cut-off of 6 kHz,

200 ms in duration, with 20 ms cosine onset and offset ramps) played from one of 11

speakers in an anechoic chamber. The speakers were spaced every 15°, with the array

centred on the midline. Speakers were visible to participants. Participants indicated

the speaker from which the sound was played by entering a number corresponding to

the speaker. Results are shown for 45 participants (34 female), ages 21–49. Because

the human experiment was restricted to speakers in front of the participants, for ease

of comparison Fig. 2-1g plots model results after front–back folding of actual and

judged positions (Fig. 2-1h shows model results without front–back folding). Figure

1f–h display kernel density estimates of the response distributions, generated using

the seaborn statistical data visualization library.
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2.4.6 Psychophysical evaluation of model

Overview

We simulated a suite of classic psychoacoustic experiments on the ten trained neural

networks, using the same stimuli for each network. We then calculated the mean re-

sponse across networks for each experimental condition and calculated error bars by

bootstrapping across the ten networks. This approach can be interpreted as marginal-

izing out uncertainty over architectures in a situation in which there is no single ob-

viously optimal architecture (and where the space of architectures is so large that it

is probably not possible to find the optimum even if it exists). Moreover, recent work

suggests that internal representations across different networks trained on the same

task can vary considerably[162], so this approach aided in mitigating the individual

idiosyncrasies of any given network. Te approach could also be viewed as treating

every network as an individual experimental participant, calculating means and error

bars as one would in a standard human psychophysical experiment.

In each experiment, stimuli were run through our cochlear model and passed to

each of the networks, whose localization responses were recorded for each stimulus.

Stimuli were generated as 2 s sound signals, normalized to have an r.m.s. amplitude

of 0.1. The output of the cochlear model was then cropped to 1 s (by excerpting the

middle 1 s), which provided the input to the networks.

Front–back folding

For experiments in which human participants judged locations within the frontal

hemifield, we front–back folded the model responses to enable a fair comparison.

This consisted of treating each model response in the rear hemifield as though it

was a response in the corresponding front hemifield. For example, the 10° and 170°

azimuthal positions were considered equivalent.
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2.4.7 Sensitivity to ITDs and ILDs: stimuli

We reproduced the experimental stimuli from ref. [151], in which ITDs and ILDs were

added to 3D spatially rendered sounds. In the original experiment, participants stood

in a dark anechoic room and were played spatially rendered stimuli with modified

ITDs or ILDs via a set of headphones. After each stimulus presentation, participants

oriented their head towards the perceived location of the stimulus and pressed a

button. The experiment included 13 participants (five male) ranging in age from

18–35 years old.

Stimulus generation for the model experiment was identical to that in the original

experiments apart from using our acoustic simulator to render the sounds. First, we

generated high- and low-pass noise bursts with passbands of 4–16 and 0.5–2 kHz,

respectively (44.1 kHz sampling rate). Each noise burst was 100 ms long with a 1-ms

squared-cosine ramp at the beginning and end of the stimulus. We randomly jittered

the starting time of the noise burst by padding the signal to 2,000 ms in total length,

constrained such that the entire noise burst was contained in the middle second of the

2-s audio signal (the noise onset was uniformly distributed subject to this constraint).

These signals were then rendered at 0° elevation, with azimuth varied from 0 to 355°

(in 5° steps) for a total of 72 locations. All signals were rendered using our virtual

acoustic simulator in an anechoic environment without any background noise.

Next, we created versions of each signal with an added ITD or ILD bias. ITD

biases were ±300 and ±600 µs and ILD biases were ±10 and ±20 dB (Fig. 2-2a).

As in the original publication[151], we prevented presentation of stimuli outside the

physiological range by restricting the 400 µs/10 dB biases to signals rendered less

than 40° away from the midline and restricting the 600 µs/20 dB biases to signals

rendered less than 20° away from the midline. In total, there were four stimulus sets

(2 passbands × 2 types of bias) of 266 stimuli (72 locations with no bias, 52 locations

at ±medium bias, 45 locations ± large bias). We replicated the above process 20

times with different exemplars of bandpass noise, increasing each stimulus set size to

5,320 (20 exemplars of 266 stimuli).
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Sensitivity to ITDs and ILDs: analysis

We measured the perceptual bias induced by the added ITD or ILD bias in the same

manner as the published analysis of human listeners[151].

We first calculated the naturally occurring ITD and ILD for each sound source

position (varying in azimuth, at 0° elevation) from the HRTFs used to train our

networks. For ITDs, we ran the HRTFs for a source position through our cochlear

model and found the ITD by cross-correlating the cochlear channels whose centre

frequency was closest to 600, 700 and 800 Hz and taking the median ITD from the

three channels. For ILDs, we computed power spectral density estimates via Welch’s

method (29 samples per window, 50% overlap, Hamming windowed) for each of the

two HRTFs for a source position and integrated across frequencies in the stimulus

passband. We expressed the ILD as the ratio between the energy in the left and right

channel in decibels, with positive values corresponding to more power in the right

ear. This set of natural ILDs and ITDs allowed us to map the judged position onto

a corresponding ITD/ILD.

For each stimulus with added ITD, we used the response mapping described above

to calculate the ITD of the judged source position. Next, we calculated the ITD for

the judged position of the unaltered stimulus using the same response mapping. The

perceptual effect of the added ITD was calculated as the difference between these two

ITD values, quantifying (in microseconds) how much the added stimulus bias changed

the response of the model. The results graphs plot the added stimulus bias on the

x axis and the resulting response bias on the y axis. The slope of the best-fitting

regression line (the ‘bias weight’ shown in the subplots of Fig. 2-2c,d) provides a

unitless measure of the extent to which the added bias affects the judged position. We

repeated an analogous process for ILD bias using the natural ILD response mapping,

yielding the bias in decibels. The graphs in Fig. 2-2d plot the mean response across

the ten networks with standard error of the mean (s.e.m.) computed via bootstrap

over networks.
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Azimuthal localization of broadband sounds: stimuli

We reproduced the stimulus generation from ref. [229]. In the original experiment,

participants were played six broadband white noise bursts, with three noise bursts

(15 ms in duration, 5-ms cosine ramps, repeated at 10 Hz) played from a reference

speaker followed by three noise bursts played from one of two target speakers, located

15° to the left or right of the reference speaker. The reference speaker position ranged

from -97.5° to +97.5° azimuth in 15° intervals. Participants reported whether the

last three noise bursts were played to the left or the right of the reference speaker,

and performance was expressed as d ’. 18 speakers were arranged at 15° intervals

from -127.5° to +127.5° azimuth simultaneously played white noise during all trials,

producing spatially diffuse background noise that served to bring performance be-

low ceiling. The SNR of the stimulus was set individually for each participant. To

determine the SNR, stimuli were played from the speakers at +90° or -90° azimuth

and participants judged if each stimulus was to their right or left. The experiment

included 16 participants between the ages of 18 and 35 years old.

We measured network localization performance using the same stimuli as in the

original paper, but for simplicity rendered the stimulus at a single location and mea-

sured performance with an absolute, instead of relative, localization task. The stimuli

presented to the networks consisted of three pulses of broadband white noise. Each

noise pulse was 15 ms in duration and repeated at 10Hz. A 5-ms cosine ramp was

applied to the beginning and end of each pulse. We generated 100 exemplars of this

stimulus using different samples of white noise (44.1 kHz sampling rate). The stimuli

were zero-padded to 2,000 ms in length, with the temporal offset of the three-burst se-

quence randomly sampled from a uniform distribution such that all three noise bursts

were fully contained in the middle second of audio. We then rendered all 100 stimuli

at 0° elevation and azimuthal positions ranging from 0° to 355° in 5° steps. All stimuli

were rendered in an anechoic environment without any background noise using our

virtual acoustic simulator. This led to 7,200 stimuli in total (100 exemplars at each

of 72 locations). The stimuli were presented in spatially diffuse background noise,
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generated by presenting white noise from 19 positions at 15° intervals from -135° to

+135°. The SNR was set for each network individually by measuring its left/right

accuracy on stimuli rendered at +90 or -90 degrees at a range of SNRs spaced in 1

dB increments, and then selecting the highest SNR at which the network performed

below 95% accuracy. The SNRs selected in this way ranged from -8 dB to -14 dB

depending on the network.

Azimuthal localization of broadband sounds: analysis

Because human participants in the analogous experiment judged relative position in

the frontal hemifield, before calculating the model’s accuracy we eliminated front–back

confusions by mirroring model responses of each stimulus across the coronal plane.

We then calculated the difference in degrees between the rendered azimuthal position

and the position judged by the model. We calculated the mean absolute error for

each rendered azimuth for each network. The graph in Fig. 2-3c plots the mean error

across networks. Error bars are s.e.m., bootstrapped over networks.

Integration across frequency: stimuli

We reproduced stimuli from ref. [241]. In the original experiment, human participants

were played a single noise burst, varying in bandwidth and centre frequency, from one

of eight speakers spaced 15° in azimuth. Participants judged which speaker the noise

burst was played from. The experimenters then calculated the localization error in

degrees for each bandwidth and centre frequency condition. The experiment included

33 participants (26 female) between the ages of 18 and 36 years old.

The stimuli varied in bandwidth (pure tones, and noise bursts with bandwidths

of 1/20, 1/10, 1/6, 1/3, 1 and 2 octaves wide; all with 44.1 kHz sampling rate). All

sounds were 200 ms long with a 20-ms squared-cosine ramp at the beginning and end

of the sound. All pure tones had random phase. All other sounds were bandpass-

filtered white noise with the geometric mean of the passband cut-offs set to 250, 2,000

or 4,000 Hz (as in the original paper[241]).

For the model experiment, the stimuli were zero-padded to 2,000 ms in length, with
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the temporal offset of the noise burst randomly sampled from a uniform distribution

such that the noise burst was fully contained in the middle second of audio. We

generated 30 exemplars of each bandwidth–frequency pair using different exemplars

of white noise (or of random phase for the pure tone stimuli). Next, we rendered all

stimuli at 0° elevation and azimuthal positions ranging from 0° to 355° in 5° steps.

All stimuli were rendered in an anechoic environment without any background noise

using the virtual acoustic simulator. This led to 45,360 stimuli in total (30 exemplars

× 72 positions × 3 centre frequencies × 7 bandwidths).

Integration across frequency: analysis

Because human participants in the original experiment judged position in the frontal

hemifield, before calculating the model’s accuracy, we again eliminated front–back

confusions by mirroring model responses of each stimulus across the coronal plane.

We then calculated the difference in degrees between the rendered azimuthal position

and the azimuthal position judged by the model. For each network, we calculated

the r.m.s. error for each bandwidth. The graph in Fig. 2-3f plots the mean of this

quantity across networks. Error bars are s.e.m., bootstrapped over networks.

Use of ear-specific cues to elevation: stimuli

We simulated a change of ears for our networks, analogous to the ear mould manip-

ulation in ref. [105]). In the original experiment in ref. [105], participants sat in a

dark anechoic room and were played broadband white noise bursts from a speaker on

a robotic arm that moved ±30° in azimuth and elevation. Participants reported the

location of each noise burst by saccading to the perceived location. After collecting

a baseline set of measurements, participants were fitted with plastic ear moulds (Fig.

2-4a), which modified the location-dependent filtering of their pinnae. Participants

then performed the same localization task a second time. The experimenters plotted

the mean judged location for each actual location before and after fitting participants

with the plastic ear moulds (Fig. 2-4b,c). The experiment included four participants

between the ages of 22 and 44 years old.
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For the model experiment, instead of ear moulds we substituted HRTFs from

the CIPIC dataset[2]. The CIPIC dataset contains 45 sets of HRTFs, each of which

is sampled at azimuths from 80 to +80 in 25 steps of varying size, and elevations

from 0 to 360 in 50 steps of varying size. For the sound sources to be localized, we

generated 500 ms broadband (0.2 – 20 kHz) noise bursts sampled at 44.1 kHz (as

in ref. [105]). We then zero- padded these sounds to 2,000 ms, with the temporal

offset of the noise burst randomly sampled from a uniform distribution such that it

was fully contained in the middle second of audio. We generated 20 such exemplars

using different samples of white noise. We then rendered each stimulus at ±20 and

±10° azimuths, and 0°, 10°, 20° and 30° elevation for all 45 sets of HRTFs as well as

the standard set of HRTFs (that is, the one used for training the model). This led

to a total of 14,720 stimuli (46 HRTFs × 4 azimuths × 4 elevations). The rendered

locations were slightly different from those used in ref. [105] as we were constrained

by the locations that were measured for the CIPIC dataset.

Use of ear-specific cues to elevation: analysis

The results graphs for this experiment (Fig. 2-4b–e) plot the judged source position

for each of a set of rendered source positions, either for humans (Fig. 2-4b,c) or

the model (Fig. 2-4d,e). For the model results, we first calculated the mean judged

position for each network for all stimuli rendered at each source position. The graphs

plot the mean of this quantity across networks. Error bars are the s.e.m., bootstrapped

over networks. In Fig. 2-4d we plot model responses for stimuli rendered using

the HRTFs used during network training. In Fig. 2-4e we plot the average model

responses for stimuli rendered with 45 sets of HRTFs from the CIPIC database (none

of which were used during network training). In Fig. 2-4f,g we plot the results

separately for each alternative set of HRTFs, averaged across elevation or azimuth.

The thickest bolded line denotes the mean performance across all HRTFs, and thinner

bolded lines denote HRTFs at the 5th, 25th, 75th and 95th percentiles order by error.

Each line plots the mean over the ten networks.
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Limited spectral resolution of elevation cues: stimuli

We ran a modified version of the spectral smoothing experiment in ref. [137] on our

model using the training HRTFs. The original experiment[137] measured the effect of

spectral detail on human sound localization. The experimenters first measured HRTFs

for each participant. Participants then sat in an anechoic chamber and were played

broadband white noise bursts presented in one of two ways. The noise burst was either

played directly from a speaker in the room or virtually rendered at the position of the

speaker using the participant’s HRTF and played from a set of open-backed earphones

worn by the participant. The experimenters manipulated the spectral detail of the

HRTFs as described below. On each trial, two noise bursts (one for each of the two

presentation methods) were played in random order and participants judged which

of the two noise bursts were played via earphones. In practice, this judgement was

performed by noticing changes in the apparent sound position that occurred when the

HRTFs were sufficiently degraded. The results of the experiment were expressed as

the accuracy in discriminating between the two modes of presentation as a function

of the amount of spectral detail removed (Fig. 2-4i). The experiment included four

participants.

The HRTF is obtained from the Fourier transform of the HRIR, and thus can be

expressed as:

H[k] = ∑︀𝑁−1
𝑛=0 𝑋𝑛𝑒− 𝑖2𝜋𝑛𝑘

𝑁

where x is the HRIR, N is the number of samples in the HRTF and k = [0,𝑁 −

1]. To smooth the HRTF, we first compute the log-magnitude of 𝐻[𝑘]. This log-

magnitude HRTF can be decomposed into frequency components via the discrete

cosine transform:

log | 𝐻 [𝑘] |= ∑︀𝑀
𝑛=0 𝐶(𝑛) 𝑐𝑜𝑠(2𝜋𝑛𝑘/𝑁)
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where C(n) is the nth cosine coefficient of log|H[k]| and M = N/2.

As in the original experiment[137], we smoothed the HRTF by reconstructing it

with M < N/2. In the most extreme case where M = 0, the magnitude spectrum was

perfectly flat at the average value of the HRTF. Increasing M increases the number

of cosines used for reconstruction, leading to more spectral detail (Fig. 2-4h). After

smoothing, we calculated the minimum phase filter from the smoothed magnitude

spectrum, adding a frequency-independent time delay consistent with the original

HRIR. Our HRIRs consisted of 512 time points, corresponding to a maximum of 256

points in its cosine series.

We repeated this smoothing process for each left and right HRTF at each spatial

position. We then generated 20 exemplars of broadband white noise (0.2 – 20 kHz,

2,000 ms in length) with a 10 ms cosine ramp at the beginning and end of the signal.

The exemplars were rendered at elevations between 0° and 60° in 10° steps and a set

of azimuths ranging from 0° to 355° , the spacing of which varied with elevation due

to the locations in the original set of HRTFs. This yielded 74,340 stimuli (9 smoothed

sets of HRTFS x 20 exemplars x 413 locations).

Limited spectral resolution of elevation cues: analysis

For the model, the effect of the smoothing was measured as the average absolute

difference in degrees between the judged position and the rendered position for each

stimulus. Figure 4j plots the mean error across networks for each smoothed set of

HRTFs. Error bars are s.e.m., bootstrapped over networks. Figure 4k,l plot the mean

judged azimuth (left) and elevation (right) versus the actual rendered azimuth and

elevation, plotted separately for each smoothing level. Each line is the mean response

pooled across networks. Error bars are shown as bands around the line and show

s.e.m., bootstrapped over networks.

Dependence on high-frequency spectral cues to elevation: stimuli

In the original experiment[98], human participants were played high- and low-pass

noise bursts. The high-pass cut-off frequencies took on one of six values: 3.8, 5.8, 7.5,
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10.0, 13.2 and 15.3 kHz; low-pass cut-off frequencies took on one of seven values: 3.9,

6.0, 8.0, 10.3, 12.0, 14.5 and 16.0 kHz (imposed with an analogue Cauer–Chebychev

filter). The sampling rate was 44.1 kHz. Each noise burst was 1,000 ms in duration,

with a 5-ms squared-cosine ramp at the beginning and end. Each stimulus was

presented from one of nine speakers spaced along the midline at 30° increments in

elevation from 30° to 210°, with 0° being frontal horizontal. Participants judged which

speaker the noise burst was played from, indicating their judgement with a keypress.

The results graph (Fig. 2-4n) plots the proportion correct for each condition (error

bars were not plotted in the original publication, and the raw data were no longer

available). The experiment included ten participants.

Stimuli for the model experiment were similar to those from the human experiment

apart from being presented from a subset of elevations used in the human experiment

due to the constraints of the HRTF set in the model. We generated 50 exemplars of

each cut-off frequency used in the human experiment, each with a different exemplar

of white noise. Filtering was performed in the frequency domain by setting Fourier

coefficients beyond the cut-off to zero. We then rendered all 650 noise bursts at one of

six locations along the midline: 0°, 30°, 60°, 120°, 150° and 180°, with 0° being frontal

horizontal. This led to 3,900 stimuli in total (650 noise bursts at each of six locations).

All stimuli were rendered in an anechoic environment without any background noise

using the virtual acoustic simulator.

Dependence on high-frequency spectral cues to elevation: analysis

We determined the model’s response in the experiment to be the elevation in the stim-

ulus set that was closest to the elevation of the softmax class bin with the maximum

activation. Figure 4o plots the proportion of correct responses for each high-pass and

low-pass cut-off frequency, averaged across the ten networks. Error bars are s.e.m.,

bootstrapped over networks.
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Precedence effect: stimuli

For the basic demo of the precedence effect (Fig. 2-5b) we generated a click consisting

of a single sample at +1 surrounded by zeros. We then rendered that click at ±45

azimuth and 0° elevation in an anechoic room without background noise using the

virtual acoustic simulator. We added these two rendered signals together, temporally

offsetting the 45° click behind the 45° click by an amount ranging from 1 to 50 ms. We

then zero-padded the signal to 2,000 ms, sampled it at 44.1 kHz and randomly varied

the temporal offset of the click sequence, constrained such that all non-zero samples

occurred in the middle second of the stimulus. For each delay value, we created 100

exemplars with different start times.

To quantitatively compare the precedence effect in our model with that in human

participants, we reproduced the stimuli from ref. [144]. In the original experiment,

participants were played two broadband pink noise bursts from two different locations.

The leading noise burst came from one of six locations (±20°, ±40° or ±60°) and the

lagging noise burst came from 0°. The lagging noise burst was delayed relative to the

leading noise burst by 5, 10, 25, 50 or 100 ms. For each pair of noise bursts, partic-

ipants reported whether they perceived one or two sounds and the judged location

for each perceived sound. The experimenters then calculated the mean localization

error separately for the leading and lagging click for each time delay (Fig. 2-5c). The

experiment included ten participants (all female) between the ages of 19 and 26 years

old.

For both the human and model experiments, stimuli were 25-ms pink noise bursts,

sampled at 44.1 kHz, with a 2-ms cosine ramp at the beginning and end of the burst.

For the model experiment, we generated two stimuli for each pair of noise burst

positions, one where the 0° noise burst was the lead click and another where it was

the lag click. For each delay value, location and burst order, we created 100 exemplars

with different start times. This was achieved by zero-padding the signal to 2,000 ms

and randomly varying the temporal offset, constrained such that all non-zero samples

occurred in the middle second of the stimulus.
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Precedence effect: analysis

Because human experiments on the precedence effect typically query participants

about positions in the frontal hemifield, we corrected for front–back confusions in the

analysis of both the precedence effect demo and the Litovsky and Godar experiment

by mirroring model responses of each stimulus across the coronal plane. Figure 5b

plots the mean judged position at each interclick delay, averaged across the means of

the ten individual networks. Error bars are s.e.m., bootstrapped over networks.

To generate Fig. 2-5d (plotting the results of the model version of the Litovsky

and Godar experiment) we calculated errors for each stimulus between the model’s

judged position and the positions of the leading and lagging clicks. We calculated

the average lead click error and average lag click error for each network at each delay.

Figure 5d plots the mean of these quantities across the ten networks. Error bars are

s.e.m., bootstrapped over networks.

Multi-source localization: stimuli

We reproduced stimuli from the original experiment[244], in which human partici-

pants were played between one and eight concurrent speech stimuli. Each stimulus

was played from a different location (out of 12 possible, evenly spaced in azimuth).

Participants judged the number of stimuli as well as the locations at which stimuli

were presented in each trial. The experimenters then plotted the mean number of

sources perceived versus the actual number of sources presented (Fig. 2-6b) and lo-

calization accuracy (proportion correct) versus the number of sources presented (Fig.

2-6d). The experiment included eight normal-hearing participants.

Stimuli were 10 s in duration and consisted of a concatenation of ten 1-s recordings

of a person saying the name of a country (randomly drawn without replacement from

a list of 24 countries). Each stimulus used recordings from a single talker (out of 12

possible talkers, six were female). Each stimulus was presented from one of 12 speakers

at 0° elevation, spaced 30° apart in azimuth (Fig. 2-6a). On each trial, between one

and eight stimuli were simultaneously presented, each spoken by a different talker
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and presented from a different speaker.

The model experiment used the same 1-s recordings used in the original experiment

(kindly provided by W. Yost), but presented a single 1-s recording (of a speaker

saying a single country name, rather than the sequence of ten such recordings used

in the human experiment) at each location, to accommodate the 1-s input length of

the model. For each number of sources (one to eight) we computed each possible

spatial source configuration and rendered 20 scenes for each configuration, randomly

sampling talkers and country names for each trial (without replacement). All stimuli

were rendered in an anechoic environment without any background noise using the

virtual acoustic simulator. This led to 75,920 stimuli in total (20 exemplars in each

of 3,796 spatial configurations).

Multi-source localization: output layer fine-tuning

To enable the model to perform the multi-source localization experiment, we altered

the softmax output layer, which was designed to report one source at a time. We

replaced the softmax function with independent sigmoid functions for each output

unit. This allowed the model to independently report the probability of a source

at each location. To allow our model to use this new output representation, we

retrained this new final model stage. We froze all weights in each network except for

those in the final fully connected layer, which we then trained using gradient descent

for 10,000 steps (‘fine-tuning’). The fine-tuning used a dataset consisting of auditory

scenes generated and rendered in the same manner as the original training data (as

described in Training data generation above), with two exceptions. First, each scene

contained between one and eight natural sounds, each rendered at a different location.

Second, the scenes did not contain background noise. This process was repeated for

each network to allow the model to use its features on the multi-source localization

task.

To measure accuracy after fine-tuning, we created a multi-source validation set

using the natural sounds from the main model validation set. We measured the area

under the curve for the receiver operator characteristic curve over the entire multi-
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source validation set. The average area under the curve across fine-tuned networks

after fine-tuning was 0.73.

Multi-source localization: analysis

The output layer of the multi-source model contained a unit for each location, as

for the main single-source localization model, but differed in that the unit activation

represented the judged probability that a source was present at that location. To

enable the model to perform the multi-source experiment, we implemented a decision

rule whereby the model would determine a source to be present at a location if the

probability for that location exceeded a criterion. We set this criterion such that

the model would correctly estimate the number of sources when a single source was

present. We found empirically that the absolute activations resulting from the sigmoid

output units varied considerably across sounds, presumably because the networks

were trained with a softmax output layer that normalizes the output activations

(which was no longer present in the multi-source decision layer). We thus adopted a

criterion that was a proportion of the maximum probability across all output units

and found that this yielded results that were stable across stimuli. Using all the

experiment stimuli containing one source, we successively lowered the criterion from

1, each time running through the full set of scenes and estimating confidence intervals

on the average predicted number of sources, until the 95% confidence interval for

the predicted number of sources (after front–back folding) included 1. This yielded

a decision criterion of 0.09 times the maximum probability across all output unit

activations for the stimulus.

To perform a trial in the experiment, we first selected the model’s location bins

whose probability exceeded the criterion of 0.09 times the maximum probability across

all output unit activations for the stimulus. We then mapped these locations to the 12

possible speaker locations in the experiment (for each output location bin, we selected

the speaker location closest in azimuth). The number of sources was calculated as

the number of these 12 speaker locations to which a localized source was mapped

(Fig. 2-6c). The proportion correct was calculated as the hit rate: the fraction of the
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12 speaker locations at which the model correctly judged there to be a source (Fig.

2-6e).

2.4.8 Evaluation of models trained in unnatural conditions

Once trained, each alternative model was run on each of the psychophysical experi-

ments. The exception was the multi-source localization experiment, which was omit-

ted because it was not clear how to incorporate the background noise training manipu-

lation into the fine-tuning of the model output layer. The psychophysical experiments

were identical for all training conditions.

2.4.9 Analysis of results of unnatural training conditions

Human–model dissimilarity

We assessed the effect of training condition on model behaviour by quantifying the

extent of the dissimilarity between the model psychophysical results and the human

results. For each results graph, we measured human–model dissimilarity as the r.m.s.

error between corresponding y axis values in the human and model experiments.

To compare results between experiments, before measuring this error, we min–max

normalized the y axis to range from 0 to 1. For experiments with the same y axis

for human and model results, we normalized the model and human data together

(that is, taking the min and max values from the pooled results). For experiments

where the y axes were different for human and model results (because the tasks were

different, as in Figs. 3b,c and 4i,j), we normalized the data individually for human

and model results.

The one exception was the ear alteration experiment (Fig. 2-4a–g), in which

the result of primary interest was the change in judged location relative to the ren-

dered location, and for which the locations were different in the human and model

experiments (due to constraints of the HRTF sets that we used). To measure the

human–model dissimilarity for this experiment, we calculated the error between the

judged and rendered location for each point on the graph, for humans and the model.
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We then calculated human–model dissimilarity between these error values, treating

the two grids of locations as equivalent. This approach would fail to capture some

patterns of errors but was sufficient to capture the main effects of preserved azimuthal

localization along with the collapse of elevation localization.

This procedure yielded a dissimilarity measure that varied between zero and one

for each experiment, where zero represents a perfect fit to the human results. For

Fig. 2-7b, we then calculated the mean of this dissimilarity measure over the seven

experiments. To generate error bars, we bootstrapped across the ten networks, re-

calculating all results graphs and the corresponding mean normalized error for each

bootstrap sample. Error bars in Fig. 2-7b plot the s.d. of this distribution (that is,

the standard error of the mean). Additionally, we plotted the mean normalized error

individually for each of the ten networks (Extended Data Fig. 2-15).

Between-human dissimilarity

The dissimilarity that would result between different samples of human participants

puts a lower bound on human–model dissimilarity, and would thus be useful to com-

pare to the dissimilarity plotted in Fig. 2-7b. This between-human dissimilarity

could be estimated using data from the original individual human participants. Un-

fortunately, the individual participant data were unavailable for nearly all of the

experiments that we modelled, many of which were conducted several decades ago.

Instead, we used the error bars in the published results figures to simulate different

samples of human participants given the variability observed in the original exper-

iments. Error bars were provided for only some of the original experiments (the

exceptions being the experiments in Figs. 2 and 4n), so we were only able to estimate

the between-human dissimilarity for this subset. We then compared the estimated

between-human dissimilarity to the human–model dissimilarity for the same subset

of experiments (Extended Data Fig. 2-16).

We assumed that human data for each experimental condition were independently

normally distributed with a mean and variance given by the mean and error bars for

that condition. Depending on the experiment, the error bars in the original graphs
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plotted the standard deviation, the s.e.m., or the 95% confidence interval of the data.

In each case we estimated the variance from the mean of the upper and lower error

bar (for s.d. the square of the error bar; for s.e.m.: variance = (
√
𝑁×s.e.m.)2; for

95% confidence interval: variance = (
√
𝑁 × (error bar width)/1.96)2, where N is the

number of participants). To obtain behavioural data for one simulated human par-

ticipant, we sampled from the Gaussian distribution for each condition. We sampled

data for the number of participants run in the original experiment, and obtained

mean results for this set of simulated participants. We then calculated the r.m.s. er-

ror (described in the previous section) between the simulated human data and actual

human data (normalized as described in the previous section for the human– model

dissimilarity). We repeated this process 10,000 times for each experiment, yielding

a distribution of dissimilarities for each experiment. We then calculated the mean

dissimilarity across experiments and samples. Extended Data Fig. 2-16 plots this

estimated between-human dissimilarity (with confidence intervals obtained from the

distribution of between-human dissimilarity) alongside the human– model dissimilar-

ity for the same subset of experiments.

Models with internal noise

To test for the possibility that the noiseless training environments might have had

effects that were specific to the lack of internal noise in the cochlear model used as

input to our networks, we trained an alternative model with internal noise added to

the output of the cochlear stage. This alternative model was identical to the main

model used throughout the paper except that independent Gaussian noise was added

to each frequency channel before the rectification stage of the cochlear model. The

noise was sampled from a standard normal distribution and then scaled so that its

power was on average 60.6 dB below the average power in the subbands of the input

signal (intended to produce noise at 9.4 dB SPL assuming sources at 70 dB SPL[20]).

In practice, we pregenerated 50,000 noise arrays, sampled one at random on each

trial, and added it to the output of the cochlear filters at the desired SNR.
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Cohen’s d

To assess how training conditions affected individual psychophysical effects, we mea-

sured the effect size of the difference between human–model dissimilarity in the natu-

ralistic and unnatural training conditions for each psychophysical effect. Specifically,

we measured Cohen’s d for each experiment:

𝑑 =
𝜇𝑢𝑛𝑛𝑎𝑡𝑢𝑟𝑎𝑙 − 𝜇𝑛𝑎𝑡𝑢𝑟𝑎𝑙𝑖𝑠𝑡𝑖𝑐

𝑠

𝑠 =

⎯⎸⎸⎸⎷𝜎2
𝑢𝑛𝑛𝑎𝑡𝑢𝑟𝑎𝑙 + 𝜎2

𝑛𝑎𝑡𝑢𝑟𝑎𝑙𝑖𝑠𝑡𝑖𝑐

2

where 𝜇 and 𝜎2 are the mean and variance, respectively, of the human–model

dissimilarity across our ten networks for the naturalistic or unnatural training condi-

tion. We calculated error bars on Cohen’s d by bootstrapping across the ten networks,

computing the effect size for each bootstrap sample. Figure 7c plots the mean and

s.e.m. of this distribution.

2.4.10 Instrument note localization

Instrument note localization: stimuli

To assess the ability of the model to predict localization behaviour for natural sounds,

we rendered a set of instruments playing notes at different spatial positions. Instru-

ments were sourced from the Nsynth Dataset[59], which contains a large number of

musical notes from a wide variety of instruments. We used the validation set compo-

nent of the dataset, which contained 12,678 notes sampled from 53 instruments. For
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each note, room in our virtual environment, and listener location within each room, we

randomly rendered each of the 72 possible azimuthal positions (0° elevation, 0°–355°

azimuth in 5° steps) with a probability 𝑃 = 0.025 ×𝑛𝑜. 𝑜𝑓 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑟𝑜𝑜𝑚
𝑛𝑜. 𝑜𝑓 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑜𝑜𝑚

. We used

a base probability of 2.5% to limit the overall size of the test set and normalized

by the number of locations in the current room so that each room was represented

equally in the test set. This yielded a total of 456,580 stimuli.

Instrument note localization: analysis

We anticipated performing a human instrument note localization experiment in an

environment with speakers in the frontal hemifield, so we corrected for front–back

confusions by mirroring model responses of each stimulus across the coronal plane.

Different instruments in the dataset contained different subsets of pitches. To ensure

that differences in localization accuracy would not be driven solely by the instrument’s

pitch range, we limited analysis to instruments for which the dataset contained all

notes in the octave around middle C (MIDI note 55 to 66) and performed all analysis

on notes in that range. This yielded 43 instruments and 1,860 unique notes. We

calculated the mean localization error for each network judgement by calculating the

absolute difference, in degrees, between the judged and rendered azimuthal location.

We then averaged the error across networks and calculated the mean error for each

of the 1,860 remaining notes from the original dataset. We plotted the distributions

of the mean error over notes for each instrument (8 A) using letter-value plots[106].

To characterize the density of the spectrum we computed its spectral flatness. We

first estimated the power spectrum x(n) using Welch’s method (window size of 2,000

samples, 50% overlap). The spectral flatness was computed for each note of each

instrument as:

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙𝐹 𝑙𝑎𝑡𝑛𝑒𝑠𝑠 =

𝑛

⎯⎸⎸⎸⎷𝑁−1∏︁
𝑛=0

𝑥(𝑛)

1
𝑁

𝑁−1∑︁
𝑛=0

𝑥(𝑛)
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We averaged the spectral flatness across all notes of an instrument and then com-

puted the Spearman correlation of this measure with the network’s mean accuracy

for that instrument.

2.4.11 Statistics

Real-world localization

For plots comparing real-world localization across models (Extended Data Fig. 2-

14b,c), error bars are s.e.m., bootstrapped over stimuli (because there was only one

version of the baseline models).

Psychophysical experiments

For plots assessing duplex theory (Fig. 2-2d), azimuth sensitivity (Fig. 2-3c), band-

width sensitivity (Fig. 2-3f), ear alteration (Fig. 2-4d,e), spectral smoothing (Fig.

2-4j), sensitivity to low-pass and high-pass filtering (Fig. 2-4o), the precedence effect

(Fig. 2-5b,d) and multi-source localization (Fig. 2-6c,e) error bars are s.e.m., boot-

strapped across networks. In some cases, the graph of human results used s.d. rather

than s.e.m. for error bars because that is what was used in the original paper, the

results of which were scanned from the original figure. We opted to use s.e.m. error

bars for all model results for the sake of consistency.

To assess the significance of the interaction between the stimulus frequency range

and the magnitude of the ITD/ILD bias weights (Fig. 2-2d), we calculated the

difference of differences in bias weights across the four stimulus or cue-type conditions:

difference of differences = (𝐵ℎ𝑖𝑔ℎ𝑝𝑎𝑠𝑠
𝐼𝐿𝐷 −𝐵𝑙𝑜𝑤𝑝𝑎𝑠𝑠

𝐼𝐿𝐷 )− (𝐵ℎ𝑖𝑔ℎ𝑝𝑎𝑠𝑠
𝐼𝑇𝐷 −𝐵𝑙𝑜𝑤𝑝𝑎𝑠𝑠

𝐼𝑇𝐷 )

where B denotes the bias weight for each condition). We calculated the difference

of differences bootstrapped across models with 10,000 samples, and compared it to

0. As this difference of differences exceeded 0 for all 10,000 bootstrap samples, we fit

a Gaussian distribution to the histogram of values for the 10,000 bootstrap samples
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and calculated the P value (two-tailed) for a value of 0 or smaller from the fitted

Gaussian.

We assessed the significance of the low-pass ILD bias weight (Fig. 2-2d) by boot-

strapping across networks, again fitting a Gaussian distribution to the histogram of

bias weights from each bootstrap sample and calculating the P value (two-tailed) for

a value of 0 or smaller from the fitted Gaussian.

Statistical significance of unnatural training conditions

We assessed the statistical significance of the effect of individual unnatural training

conditions (Fig. 2-7b) by comparing the human–model dissimilarity for each unnatu-

ral training condition to a null distribution of the dissimilarity for the natural training

condition. The null distribution was obtained by bootstrapping the human–model

dissimilarity described above across networks. We fit a Gaussian distribution to

the histogram of the dissimilarity for each bootstrap sample and calculated the P

value (two-tailed) of obtaining the value of the dissimilarity measure (or smaller) for

each unnatural training condition under the fitted Gaussian. The effect size of the

difference in dissimilarity between training conditions was quantified as Cohen’s d

(calculated as described above for individual experiments, but with the dissimilarity

aggregated across experiments, as is plotted in Fig. 2-7b).

We also assessed the statistical significance of the effect size of the change to indi-

vidual experiment results (relative to other experiments) when training in alternative

conditions (Fig. 2-7c). We first measured Cohen’s d as described above for 10,000

bootstrap samples of the ten networks, leading to a distribution over Cohen’s d for

each experiment and each training condition. For each experiment of interest, we

assessed the probability under its bootstrap distribution that a value at or below

the mean Cohen’s d of each other experiment could have occurred. The histogram

of bootstrap samples was non-Gaussian so we calculated this probability by count-

ing the number of values at or below the mean for each condition and reported the

proportion of such values as the P value (two-tailed).

We assessed the statistical significance of the effect of training condition on real-
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world localization performance (Fig. 2-7e) by bootstrapping the r.m.s. localization

error across networks. We fit a Gaussian distribution to the histogram of the r.m.s.

error for the normal training condition. The reported P value (two-tailed) is the

probability that a value could have been drawn from that Gaussian at or above the

mean r.m.s. error for each alternative training condition.
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2.5 Extended Data Figures

Figure 2-9: a. Histogram of validation set accuracies (proportion correct) for neural
network architectures after 15k steps of training during architecture search. Here and
in B, histograms include the 897 architectures that remained (out of the initial set of
1500) at this point in the architecture search. b. Histogram of validation set losses
for neural network architectures after 15k steps of training during architecture search.
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Figure 2-10: Discrete prior distributions used for architecture search. Pooling and
convolutional kernel parameters at each layer were uniformly sampled from the lists
of values.
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Figure 2-11: Summary of the 10 network architectures. These architectures performed
best in the architecture search and were used as ‘the model’ in all experiments in this
paper.
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Figure 2-12: The set of sources contained multiple exemplars of some of the sound
classes, denoted with the numeral at the end of the source name.
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Figure 2-13: Room configurations used in virtual training environment. Dimensions
of rooms are given in meters.
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Figure 2-14: a. Photo of two-microphone array. Microphone spacing was the same as
that in the KEMAR mannequin (shown in Fig. 2-1e) used to record our real-world
test set, but the recordings lacked the acoustic effects of the pinnae, head, and torso.
b. Localization accuracy of standard two-microphone localization algorithms, our
neural network localization model trained with ear/head/torso filtering effects (same
data as plotted in Fig. 2-1g,h), and neural networks trained instead with simulated
input from the two-microphone array. Localization judgements are front-back folded.
Error bars here and in C plot SEM, obtained by bootstrapping across stimuli. c.
Front-back confusions by each of the algorithms from B. Chance level is 50%. Our
main model (that is, the one trained with ears) is the only model whose front-back
confusions are substantially below chance levels, confirming the utility of head-related
transfer function cues for partially resolving front-back ambiguity.
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Figure 2-15: Human-model dissimilarity for natural and unnatural training conditions
for each of the 10 individual neural networks
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Figure 2-16: Human-model dissimilarity and human-human dissimilarity (root-mean-
square error; RMSE) calculated over the subset of experiments for which across-
participant variability could be estimated (typically from error bars in the original
results graphs).
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Figure 2-17: Model psychophysical results across training conditions for first three
psychophysical experiments. a. Model sensitivity to interaural time and level dif-
ferences (Fig. 2-2d). b. Model accuracy for broadband noise at different azimuthal
positions (Fig. 2-3c). c. Effect of bandwidth on model localization of noise bursts
(Fig. 2-3f). All plotting conventions are the same as in the corresponding figures in
the main text.
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Figure 2-18: a. Sound localization by the model in azimuth and elevation before
and after ear alteration (Fig. 2-4d,e). b. Effect of spectral smoothing on model
localization accuracy (Fig. 2-4j). c. Effect of low-pass and high-pass cutoff on model
localization accuracy for elevation (Fig. 2-4o). d. Model error in localization of the
leading and lagging clicks in the precedence effect experiment, as a function of delay
(Fig. 2-5d). All plotting conventions are the same as in the corresponding figures in
the main text.
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Chapter 3

Human Sound Localization with

Natural Sounds

Abstract

Researchers often assess human sound localization using stimuli that deviate signifi-
cantly from what humans experience on an everyday basis. Measurements of everyday
sound localization have the potential to reveal new insights, and to provide an im-
portant benchmark for models of sound localization, which ultimately must explain
real-world competence. In this work, we evaluated human sound localization in a
naturalistic setting with natural sounds and quantified the accuracy of human local-
ization. We also identified specific sounds that are difficult for humans to localize.
Lastly, we assessed whether a neural network model of sound localization can predict
the accuracy with which individual sounds are localized. We found that the model
predicted human localization accuracy well above chance. However, the model bi-
ases were distinct from those evident in humans, suggesting room for future model
improvements through refinements of the model constraints and datasets.

3.1 Introduction

Research on human sound localization has characterized human sensitivity to many

features of an auditory stimulus. These include interaural time and level differences

[182, 151], spectral cues to elevation [137], frequency bandwidth [241], and reverber-

ation [221, 143]. One common approach is to carefully control stimulus presentation

and all potential cues available to a listener by presenting stimuli over headphones.
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While headphones ensure that subjects only have access to variables explicitly en-

coded in the stimuli by the researchers, it also means subjects do not have access

to natural cues induced by the interaction of incoming sound with a person’s head

and torso. As a result, such studies are not measuring a natural human behavior but

rather measure the sensitivity of the human auditory system to specific predefined

cues.

A limited number of studies have investigated human localization in a “free-field”

setting (i.e., in which sounds are played from speakers some distance from the lis-

tener), where subjects can use natural cues [152, 170, 227]. However, these studies

are relatively challenging to set up, requiring speakers assembled in a spatial array

or movable speaker mounts (in contrast to headphone studies that only need a quiet

room and computer), and as a result are less common than experiments with head-

phones.

Many studies in free-field conditions were also forced to choose between maximiz-

ing the frequency range used in the experiment and the number of spatial positions

that could be sampled. This tradeoff is due to the large speaker cones needed to

produce a strong signal at low frequencies [154]. Large speaker cones require large

and heavy speaker cabinets that need strong mounts, making them difficult to move

around quickly. One solution to this problem is to limit the number of speakers to a

few spatial locations [186, 98]. Another approach is to place subjects in a dark envi-

ronment and use small speakers mounted on a movable frame [152, 170]. This second

approach allows for experiments using many spatial locations, but suffers from two

substantial drawbacks. The first is that moving the array takes time, which means

that spatial sampling patterns either have to be blocked based on the speaker posi-

tion or that the speaker has to be moved between most trials, slowing data collection.

The second is that the speakers must be small enough to be easily movable, which

means that they will be too small and lightweight to produce significant power at

low frequencies. The lack of low frequencies means the experiment does not maintain

all the cues available to a listener in a natural sound. In part because of these con-

straints, free-field experiments have rarely presented naturalistic stimuli apart from
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some studies using speech [130, 5].

We built on this previous work by presenting natural sounds in a real-world envi-

ronment across a large range of tightly spaced positions. To enable the experiment, we

mounted 133 large speakers across a range of positions and supported the associated

weight of the speakers using a custom-designed support truss. This approach allowed

us to overcome several issues facing previous researchers, enabling us to accurately re-

produce natural sounds, render sounds from a wide range of spatial locations, provide

fine-grained reporting to allow accurate measurement of human errors, and control

hundreds of speakers quickly enough to allow for high throughput data collection. In

the sections that follow, we describe the design of the array, and the experiment that

used it to collect a large set of human localization judgments with natural sounds.

We then use this new dataset of natural human behavior to further test the model

described in chapter 1. We find that the correlation between the model and the human

pattern of errors is significantly greater than chance and, in some cases, predicts about

half of the explainable variance in the human data. However, we find our model falls

short when predicting elevation biases in the human data, suggesting room for future

improvement and the need to identify and incorporate other model constraints.

3.2 Results

3.2.1 Constructing the speaker array

We began by constructing a speaker array capable of reproducing natural sounds at

a large number of spatial locations. The speaker array (Fig. 3-1) produced sounds

from 133 speakers, which were arranged in a hemisphere with positions ranging from

-90° to +90° in azimuth and -20° to +40° in elevation. Each speaker was exactly 2

meters from the head of a human listener sitting at the center of the hemisphere. We

designed and built an aluminum support truss to mount the speakers. The truss was

constructed of heavy-duty aluminum to support the combined weight of the speakers

(which totaled one ton) while being light enough to transport and assemble without
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the use of specialized equipment.

We used KRK Classic 5 speakers with a flat frequency response between 46Hz

and 30 kHz, covering almost the entire range of human hearing. Each speaker was

capable of playing out a unique audio channel, allowing any single or combination

of speakers to play any combination of audio tracks. The speakers were all phase

locked and routed using MOTU digital-to-audio converters. We labelled each speaker

with an alphanumeric code, with the letters A through G representing elevations from

+40° to -20° and numbers 1 through 19 representing azimuths from -90° to +90°. We

created a custom keyboard with letters A through G and a standard number pad to

allow for rapid response input.

Figure 3-1: Picture of the Speaker Array
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3.2.2 Measuring Human Localization with Natural Sounds

We assembled a stimulus set of 160 natural sounds, each 1-second in duration, that

were common in everyday life (Table 3-1). We crossed each sound with each speaker

position. Due to practical constraints on participant time, we chose to split these

21,280 trials across 19 different subjects (i.e., presenting each combination of sound

and location once, to a unique subject). We chose this number by estimating that

each subject should be able to run about 600 trials/hour and targeted an experiment

duration of less than 2 hours to prevent fatigue. Trials were randomly assigned to

participants but constrained to be approximately uniform across position and sound

identity for each participant. We recruited 19 subjects (8 female, ages 19-28) from

the area around Cambridge, MA.

In the experiment, each subject fixated the speaker directly in front of them and

was presented with a randomly selected sound from a randomly selected speaker.

After the sound finished playing, the subject was allowed to move their head and was

instructed to enter the label from the speaker where they believed the sound played

from. Subjects would then reorient back to the speaker directly in front of them

and begin the next trial. Trials were grouped into 4 blocks of 280 trials, with breaks

between each block.

We separately analyzed the localization error in the azimuthal and elevation di-

mensions, as in previous studies. [152, 170, 227]. It is common to analyze these two

dimensions separately because there are thought to be distinct the mechanisms to

underlie localization in azimuth and elevation.

3.2.3 Measuring Model Localization with Natural Sounds

We measured the model’s localization judgments for our set of 160 natural sounds

rendered in an environment intended to mimic the one used with human subjects.

We rendered each sound at the same speaker positions used for human subjects but

excluded positions below 0° elevation because the model cannot report sources at

those positions (limited by the set of head-related transfer functions we used in model
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training). We collected a response from each of the 10 networks for each sound at

each rendered position, and analyzed the responses in the same way as those of the

human participants.

3.2.4 Accuracy vs. Azimuth

We began by measuring localization accuracy as a function of azimuthal position.

First, we grouped the human behavioral responses by the ground truth speaker loca-

tion. We then calculated the mean absolute error between the judged azimuth and

true azimuth for sounds at each azimuth. The results (Fig. 3-2A) show that human

localization accuracy is best at the midline, and becomes progressively less accurate

as sources move to the left or right of the listener. This aligns with results from

previous human studies with synthetic sounds [188, 165, 229], but shows that the

result generalizes to natural sounds, and illustrates the overall accuracy for natural

sound localization. One potential explanation for the effect of azimuth is that the first

derivatives of ITD and ILD with respect to azimuthal location decrease as the source

moves away from the midline and provide less information about location [16, 93].

We performed the same analysis for the model (Fig. 3-2B) and found that the model

replicated the general effect but was less accurate than humans.

We also calculated the mean absolute error between the judged elevation and true

elevation for sounds at each azimuth. The results (Fig. 3-2C) show that elevation

accuracy was worst on the midline and improved somewhat as the source moves to

the right or left of the midline, denoted by the roughly 1° decrease in absolute error.

This effect was not observed in previous studies [152, 170, 227]. The same analysis

of the model’s responses showed a similar effect (Fig. 3-2D), but the model exhibited

both higher overall error and a larger decrease in error for sources away from the

midline than we saw in humans.
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Figure 3-2: Azimuth localization accuracy at different azimuthal positions for human
listeners. Here and in B, graph plots mean absolute azimuth localization error. Error
bars plot SEM across listeners, obtained via bootstrap. B. Azimuth localization
accuracy at different azimuthal positions for the model. Error bars plot SEM across
ten networks. C. Elevation localization accuracy at different azimuthal positions for
human listeners. Here and in D, graph plots mean absolute elevation localization
error. Error bars plot SEM across listeners. D. Elevation localization accuracy at
different azimuthal positions for the model. Error bars plot SEM across ten networks.
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Figure 3-3: Azimuth localization accuracy at different elevation positions for human
listeners. Here and in B, graph plots mean absolute azimuth localization error. Error
bars plot SEM across listeners. B. Azimuth localization accuracy at different elevation
positions for the model. Error bars plot SEM across ten networks. C. Elevation
localization accuracy at different elevation positions for human listeners. Here and
in D, graph plots mean absolute elevation localization error. Error bars plot SEM
across listeners. D. Elevation localization accuracy at different elevation positions for
the model. Error bars plot SEM across ten networks.
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3.2.5 Accuracy vs. Elevation

We next measured accuracy for sounds presented at different elevations using the

same approach we used for analyzing azimuth. We found that azimuthal accuracy

was fairly consistent across elevations, with only slight advantages for sounds near the

horizon (Fig. 3-3A). The model also localized most accurately at the horizon (Fig.

3-3B). One possible explanation may be that the first derivatives of ITD and ILD

with respect to azimuthal location decrease for signals at higher elevations [220].

Next, we calculated the mean absolute error between the judged elevation and

true elevation for sounds at each elevation. Overall, both humans and the model

performed well across tested elevations. Humans were slightly more accurate when

sources were positioned at 0° elevation, with absolute elevation error increasing as

the source moved up or down (Fig. 3-3C). The model was slightly more accurate

at 20° elevation than above or below (Fig. 3-3D). One potential explanation for the

deviation between model and human results may be the idiosyncrasies of the specific

head-related transfer function (HRTF) used to train the model, e.g. if the model’s

HRTF has a feature for sources at 20° that is particularly salient. However, the similar

performance across the tested source elevation positions suggests that both humans

and models are accurate across different source elevations.

3.2.6 Sound Identity vs Accuracy

A primary question motivating the experiment was whether humans are better at

localizing some natural sounds than others. We assessed this by calculating the

mean absolute error in azimuth and elevation for each sound class (pooled across all

positions, using responses from all 19 subjects). We plot the human mean absolute

error for azimuth (Fig 4A) and elevation (Fig 4B) for each of the 160 sounds. Some

sounds are much harder to localize than others. These differences are not specific to

the source position or to idiosyncrasies of a single human subject’s HRTF, because

they are averaged across positions and participants. The variance across subjects is

likely instead caused by the acoustic properties of the sounds.
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We also measured localization bias, or mean signed error, for each sound, in az-

imuth and elevation (Fig. 3-4C&D). This analysis tests whether certain sounds are

consistently judged as occurring above/below (elevation bias) or to the left/right (az-

imuth bias) of their actual position. We found the majority (131/160) of sounds

showed a slight downward but not significant bias in elevation (mean bias of - 1.15°,

p > 0.05) and little to no bias in azimuth (mean bias = - 0.24°, p > 0.05).

Together these results characterize human localization behavior for natural sounds

and show that there is meaningful variance across sound classes.

Figure 3-4: A. Elevation localization accuracy by sound identity. Graph plots mean
absolute elevation localization error. Here and elsewhere, error bars plot SEM across
trials, via bootstrap. B. Azimuth localization accuracy by sound identity. Graph
plots mean absolute azimuth localization error. C. Azimuth localization bias by
sound identity. Graph plots mean azimuth error (the bias). D. Elevation localization
bias by sound identity. Graph plots mean elevation error (the bias).
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3.2.7 Comparison to Model Predictions

We next assessed whether our model could predict the pattern of human localization

errors across natural sounds. We calculated the mean absolute error in azimuth and

elevation for each sound class from the model’s responses, and plotted the model error

versus human error for each sound (Fig. 3-5). Next, we calculated the correlation

between the human and models for each of the four types of error described in the

previous section (Table 3-2). Lastly, we calculated the reliability of the pattern of

human errors by measuring the split-half reliability of each dependent measure, as

this determines the ceiling on the human-model correlation that is possible.

The model accurately predicted many of the sounds that human subjects strug-

gled to localize (Fig 5 A&B). The human-model correlation was substantial for both

elevation error (r=0.72; Fig. 3-5A) and azimuth error (r=0.6; Fig 5B). The model

also tended to make larger errors than human subjects. In both cases, the split-half

reliability of the human data was high, with split-half reliabilities greater than 0.75.

By contrast, the model biases were less closely related to human biases (Fig 5

C&D). There was in fact a negative correlation between human and model elevation

bias (r=-0.4). The model and human azimuth biases were virtually uncorrelated, but

the reliability of these biases was very low for humans, indicating that there is little

reliable variance for a model to explain.

Lastly, we asked whether the model and human behavior could be accounted

for by simple measures of the sparsity of a sound’s spectrum, as is often argued to

influence localization accuracy [204, 241]. We found that the spectral flatness of a

sound (a common measure of the sparsity of the frequency spectrum) was fairly well

correlated with human localization accuracy (r=0.68 for elevation error; r=0.56 for

azimuth error; Table 3-3). This suggests that some of the difficulty in localizing

sound is related to how power is distributed across frequencies in a signal, with

sounds with denser spectra being easier to localize. To test whether the human-model

correlation was driven by this acoustic factor, we computed the partial correlation

between the human and model accuracy, controlling for the effect of spectral flatness.
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This analysis revealed that a significant correlation remained between the model

and human residuals for absolute errors in azimuth as well as elevation (Table 3-

2), suggesting the model is capturing features beyond spectral sparsity alone, and

indicating that the model has independent value for predicting human localization

accuracy.

(Caption on next page.)
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Figure 3-5: A. Elevation localization accuracy for model and human listeners. Each
dot plots the mean absolute elevation error across all trials for one natural sound.
B. Azimuth localization accuracy for model and human listeners. Each dot plots the
mean absolute azimuth error across all trials for one natural sound. C. Elevation
localization bias for model and human listeners. Each dot plots the mean elevation
error (the bias) across all trials for one natural sound. D. Azimuth localization bias
for model and human listeners. Each dot plots the mean absolute azimuth error
(the bias) across all trials for one natural sound. All analysis of error and bias were
performed across the same subset of positions for the human and model (i.e., at 0
degrees elevation and above).

3.3 Discussion

We designed and constructed a speaker array capable of producing natural sounds

with high fidelity at many different locations. Building the array required us to over-

come a number of technical challenges that constrained previous researchers. We

addressed these challenges by physically supporting our speakers using a custom alu-

minum support truss and by using modern networking protocols to deliver sound

rapidly to the array. This speaker array allowed us to measure human localization

for a large set of natural sounds. This is the first experiment to document human

localization behavior in a naturalistic setting with a wide range of natural sounds.

The human results reproduced some previously documented aspects of human

sound localization, such as the decreasing accuracy of azimuthal localization (Fig.

3-2A) as a source moves away from the midline [152, 165, 229]. We also produced

novel measurements of the overall accuracy of natural sound localization, which was

overall fairly good (averaging between 1 and 8 degrees error in azimuth, depending

on the location, and around 6 degrees in elevation). We also found that sounds varied

substantially and reliably in the accuracy with which they were localized by humans

(Fig. 3-4).

Next, we assessed how well the model from chapter 1 could predict human be-

havior. Specifically, we asked if the sounds that were easiest and hardest for human

subjects to localize were also easiest and hardest for the model to localize. We found

that the model predicted a majority of the explainable variance in elevation error and
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49% (R2 in Table 3-4) of the explainable variance for azimuth error (Table 3-4).

Despite the similarities between the human and model results, discrepancies re-

main. The most notable difference is between the model and human elevation biases

(Fig. 3-5C). Humans make systematic errors in elevation judgments for particular

sounds (judging some sounds to be higher than they actually are, and some to be

lower). The model also exhibited biases, but they tended to be in the opposite di-

rection as humans. One possible explanation for the human-model difference is that

human elevation biases are caused by the natural distribution of source positions in

the world, which the model did not learn given that sources in its training data were

rendered uniformly across space. Another potential explanation is that the model’s

training set was generated from a relatively small set of natural sound sources (due

to limits on available recordings), with the model being somewhat overfit to its train-

ing set as a result. The model did generalize to novel sounds (all the sounds in the

experiment were distinct from those in its training set), but the training set sound

sources may nonetheless have influenced the learned localization strategy. Lastly, the

model was trained to report sources located only between 0° and 60° elevation (due

to constraints on available head-related transfer functions), whereas human listeners

learn to localize over the full range of possible sound locations. This difference may

have induced different biases in the model than naturally occur in humans.

Another salient discrepancy between the human and model data is the variability

in accuracy across sounds and locations. This is visible in the graphs showing model

error for source azimuth (Fig. 3-2 B&D), and in the size of the model errors in the

human-model error scatter plots (Fig. 3-5). This discrepancy could again be due to

the small set of sound sources in the training set, but could also reflect the small

number of network architectures used to make the judgments and/or limits of the

architectures and training due to the computational resources at the time of training

(roughly four years ago). Training a larger set of networks and rerunning a larger-

scale architecture search using modern computing resources (faster/larger memory

GPUs, faster CPU preprocessing) and a more diverse training dataset may result in

a better model with errors that more closely match those of human subjects.
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We have presented just a single experiment run on the speaker array we built, but

there are numerous promising future applications of the system. One such application

would be to study concurrent localization with multiple natural sounds. While there

have been some measurements of multi-source localization with noise bursts [?] or

speech [244, 123], we know little about how spatial location and grouping cues interact

in natural scenes to give rise to our perception of multiple sources. The current

speaker array will allow researchers to better quantify this behavior in humans with

more naturalistic stimuli and at a greater range of positions than was previously

possible.

The fine timing control of the array also offers the chance to perform more sophis-

ticated stimulus generation, including rendering full sound fields with ambisonics [64]

or rendering moving sound sources. One use case could be to revisit work on the role

of dynamic cues to source elevation. Hans Wallach noted that listeners experience

smaller changes in the interaural time and level differences (ITD and ILD) for high el-

evation sources when they move their head [220]. He also showed that listeners report

a source as originating from a higher elevation if the source is rendered with a smaller

ITD and ILD than a listener would naturally experience for a given head rotation.

Our array allows a more thorough exploration of this phenomena by rendering sources

with smaller or larger interaural cues than would be expected for sources at different

positions (by panning between speakers during participant head movements). Mea-

suring how these changes affect human judgments could allow researchers to quantify

how monaural cues and dynamic cues each contribute to elevation perception.

3.4 Methods

3.4.1 Room Impulse Response Measurement

We measured the room impulse response (RIR) using the method described in Traer

& McDermott (2016)[212]. We recorded a noise signal produced by a speaker in the

room. Because the noise signal was known and the speaker and microphone transfer
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functions were flat, we could infer the RIR from the recording. The noise signal was

played from a KRK Classic 5 speaker and was recorded using a Beyerdynamic MM-1

microphone. Both the broadcast and recording of the signal were managed using a

Scarlet 8i8 sound card connected to a 2018 MacBook Pro running Audacity 2.2.1.

The speaker was placed 1.5 meters from the microphone, and the microphone was

placed at the listener’s position in the room. Per the manufacturer’s instructions, the

microphone was oriented at 90 degrees to the speaker to maintain the flat frequency

response from 30Hz to 20kHz. The noise signal consisted of interleaved repetitions

of 6-second Golay sequences. The final noise signal was 3 minutes long and played

in the room at 85 dBA. The recorded Golay sequences were cross-correlated with the

broadcast Golay sequence to obtain a final measurement of the room-impulse response

using the code from Traer and McDermott 2016, where a detailed description of the

code and the mathematical basis for the approach is described.

3.4.2 Room Noise Level Measurement

We measured the background noise level in the room using a sound level meter. All

measurements were made by a Svantek 979 Class 1 sound level meter with a G.R.A.S.

40AE microphone cartridge. The free-field compensation filter was enabled on the

sound level meter, and frequency analysis was set to 1/3 octave bands during all

measurements. The sound level meter was placed on a small foam pad on top of

a small flat stand with the microphone extending off of the stand. The stand was

placed in the same position occupied by subjects in the experiment. We made a total

of eight recordings (two recordings at each of four separate microphone orientations).

The microphone was rotated on its z-axis to 0°, +90°, -90°, and 180°, where 0° is

the orientation of a forward-facing subject performing the experiment. For each

measurement, we recorded the average dBA measurement and reported the average

over the eight measurements (next section).
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3.4.3 Noise Reduction Treatment – Room

We reduced the background noise in the experiment room by building two false walls

along the walls adjacent to the room where a piece of mechanical equipment was

generating the background noise. The first wall was 254 inches long and 98 inches

tall. We constructed and installed a wood frame using 2x6 pine boards for the floor

and ceiling plate and 2x4 vertical studs. The frame was placed 6 inches in depth away

from the permanent room wall, and the studs were spaced 24 inches apart to decrease

the mechanical coupling between the wood frame and the interior wall. The frame was

secured to the back wall via 3 L brackets and masonry screws. Each of these contact

points was insulated with rubber to reduce vibration transfer between the wall and

frame. We installed Thermafiber Sound & Fire Guard mineral wool between each

stud. The mineral wool was 5” thick and was installed flush with the front of the

wall. We then mounted 5/8-in x 4-ft x 8-ft drywall to the front of the wood frame

to further dampen the background noise. The edges of this wall were insulated with

rubber weather stripping to minimize the airflow that could pass through the wall.

The second room wall where we installed noise reduction measures appeared to

have less noise passing through it than the first wall. As a result, we used a more

straightforward construction method where we simply leaned tightly joined drywall

against the permanent wall. We spliced together 5/8-in x 4-ft x 8-ft drywall along

the 4-ft edge such that the final drywall height made contact with the ceiling when

the drywall was leaned against with wall, with the drywall base 9 inches away from

the permanent wall at floor level. The splice between pieces of drywall was reinforced

by backing the seam with 1/4-in x 4-ft x 4-ft oriented strand board. We lined each

section of drywall with rubber weather stripping to minimize the airflow that could

pass through the wall. The wall was assembled in this manner, section by section, until

it spanned the entire length of the second wall. In addition to building two isolation

walls, we also contracted a Heating, Ventilation, and Air Conditioning specialist to

remove an exhaust vent from the ceiling and redirect it into the sub-ceiling to reduce

the audible turbulent airflow around the vent. We also insulated three drain pipes to
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attenuate the intermittent trickling sound.

The addition of these two walls reduced the overall noise level in the room from

53 dBA to 48 dBA and made the remaining background noise spatially diffuse.

3.4.4 Speaker Array Design

We designed the speaker array to have a speaker positioned every 10° in azimuth and

10° in elevation relative to the listener. Speaker positions ranged from +90° azimuth

to -90° azimuth and °40 elevation to -20° elevation, with 133 speakers in total. The

array was also set up across a hemisphere so that the distance between the front panel

of the speakers and the listener was always 2 meters. A support truss was designed

to allow us to mount the speakers at the chosen positions and support the weight of

133 speakers.

3.4.5 Speaker Array Truss Design

The support truss for the speaker array was designed to support the weight of over 133

speakers, weighing 15 pounds each. We decided to make the truss out of aluminum

to ensure that the structure could withstand the physical strain of the speakers while

being light enough to disassemble and move. To mount the speakers to the support

truss, we designed a plate to support the speaker that would then be mounted to a

metal tube using pipe clamps. This design choice provided future flexibility for the

speaker’s azimuthal position and the speaker mounting angle. The truss consisted

of 7 rings of aluminum piping, one at each elevation where the speakers would be

located. The truss was also designed to be separated into four pieces that could each

fit through a standard door. The truss was assembled by bolting together the four

pieces stabilized with additional metal plates that spanned the joints of the assembly.

To ensure the pipes could support the weight of all speakers, we performed a

series of load tests to ensure that the pipe could withstand the weight of the speakers

and selected a pipe with a 2-inch outer diameter and 1/8 wall thickness. When the

pipe was bent to the geometry and length that would be used in the longest span
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of the speaker array, the load test measured less than .3 inches of yield with 110

pounds of load. Additional static analysis suggested that the longest length of the

tube could hold over 500 pounds before yielding beyond where it would return to

its original shape. We estimated this provided a roughly 6x safety factor over the

expected speaker load of 80 pounds (5 speakers at 15 lbs./speaker)

We designed vertical supports for the pipes on each end of the four sections of the

support truss. These vertical supports were constructed from ½-inch thick aluminum

sheet stock, and the width varied from 11 inches at the bottom of the support to 6

inches across at the top of the support. Each vertical support was 98 inches in height.

The base of the structure was constructed from ½-inch thick aluminum sheet stock

and was 11.5 inches in width.

The joints between the pipes, vertical supports, and truss base were welded to-

gether and ground down to simplify assembly and disassembly. Each seam between

subsections was joined with steel bolts and ten steel bolts with ½ inch diameter.

3.4.6 Speaker Array Construction

An external vendor cut all aluminum sheet stock components using a high-pressure

computer-controlled waterjet to the specifications in the final design files. The alu-

minum tubes were then rolled to the proper curve and welded to the sheet stock pieces

by MIT’s central machine shop according to the specification in the final design files.

3.4.7 Speaker Mounting Mechanism

The speaker mount was designed to allow speakers to be moved to arbitrary azimuths

to provide maximum flexibility for future experiments. The mount was constructed

using a custom-cut aluminum plate that measured 11-in x 6-in (LxW) x 1/8-in thick.

These plates were designed to support the speakers from below and to be clamped

above the aluminum tube. Holes were drilled into each plate to secure the plates to

the tube and secure the speaker to the plate. Four holes that were ½ inch in diameter

were drilled on the back of the plate with two sets of holes 1 inches from each of the
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long edges and 0.5 inche from the wide edge. Each set of holes had a 2-inch intra-hole

distance along the length axis. Each plate had four additional holes to secure the

speaker, each 1/4 in diameter. These holes formed a rectangle with geometry 6.5 X

4.5 with 0.5 inches of margin from the front of the plate and 0.75 inches of margin

from each side of the plate.

The mounting mechanism involved two pipe clamps per plate that secured each

plate to the tube. We used Nickson 2 Inch Steel Exhaust Clamps with a 3/8 inch bolt.

Prior to construction, we performed a load test using these clamps and determined

that they provided enough clamping force to counteract the torque exerted by the

speaker’s weight pushing down on the speaker plate. We secured each speaker to the

mounting plate using four medium-density fiberboard screws. The screws were ½ inch

long and did not penetrate the interior of the speaker cabinet (which might otherwise

affect the sound output).

We inserted 1/16-inch thick rubber strips between the mounting plate and pipe

clamps and between the pipe clamps and support truss tube. These dampened the

vibrations transferred to the support truss from speakers when active and prevented

any metal-to-metal contact that may have caused rattling sounds from the speaker

vibration.

3.4.8 Speaker Array Construction – Speaker Calibration

We choose to use KRK Classic 5 speakers in the speaker array because they provide a

flat frequency response between 56 Hz to 30 kHz. We verified the speaker response by

measuring the transfer function of the speakers and found that the frequency response

met the manufacturer’s specifications. To measure this transfer function, we recorded

the speaker producing a pink noise signal with frequencies between 20Hz and 24 kHz.

We then calculated the power difference at each frequency between the recorded

signal and the input signal. We recorded the signal played from the speaker with a

Beyerdynamics MM-1 microphone and used a MOTU 16A as the audio interface for

both the KRK Classic 5 speaker and MM-1 microphone.
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3.4.9 Speaker Audio Interface and Routing

We used audio interfaces and network switches designed and built by Mark of The

Unicorn (MOTU). These audio interfaces implement the IEEE Audio Visual Bridging

(AVB) protocol for all-to-all routing network. The audio interfaces and network

switches also ensured that all broadcast audio was phase-locked across speakers if

multiple speakers played simultaneously. We constructed our routing network with

two connected network switches. We connected four MOTU 24 Ao audio interfaces

to one network switch and three 24Ao audio interfaces, and one MOTU 16A audio

interface to the other network switch. We attached the computer controlling the

routing network to the 16A interface via a thunderbolt cable, which allowed us to run

up to 128 simultaneous output audio streams.

We controlled routing using the MOTU HTTP API, which requires an ethernet

connection to the controlling computer, in addition to the thunderbolt connection

used to send audio streams.

3.4.10 Controller Software

We built a software package to control the array and abstract the speaker routing

and playback details from the experimental details. We route a speaker of interest by

making an HTTP POST request from our controller computer to the 24Ao interface

attached to the speaker of interest. The post request consists of a JSON string spec-

ifying the speaker to activate and the input stream for that speaker. We constructed

a mapping between speaker position and the audio interface and channel serving that

speaker. This approach allowed us to abstract away the networking details of the

speaker routing problem and allow experiments to be described in terms of physical

positions.

The controller software sets the level of playback by RMS-normalizing the incom-

ing audio and then scaling the audio to be played at a specified volume. Sounds are

normalized using the RMS calculated over the entire stimulus length and are scaled

according to a linear function that we fit to measurements of the speaker’s response to
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yield a playback level in dBA. We obtained this function by measuring the sound level

of white noise at the position of the listener played from the speaker at 0° azimuth

and 0° elevation. We made the level measurements over 8 seconds using the Svan 979

sound level meter and GRAS 4AE microphone with the free field compensation filter

active. We made sound level measurements ranging from 53.2 to 68.5 dBA for white

noise with RMS values ranging from 0.1 to 1.0. We additionally implemented a level

limiter function that prevents any speaker from playing sounds louder than 70 dBA.

We chose this level to limit any danger to participants or experimenters if all speakers

were to be simultaneously active at maximum volume. In this case, the total sound

level would be 70 dBA + 10*log(133 speakers) = 91 dBA, which is loud (on par with

a motorcycle) but not dangerous.

We play normalized sound signals through a routed speaker using the sound device

library. The sound device library is a python wrapper that allows audio to be sent

using the computer’s native audio drivers. The library also supports simultaneous

playback across an unbounded number of audio channels, which is critical for multi-

source experiments and experiments rendering complex auditory scenes.

The controller software was implemented using the python programming language

and ran using Microsoft Visual Studio on a Dell XPS 15 9500 computer.

3.4.11 Natural Sounds Set

We assembled a set of natural sounds intended to be representative of everyday life.

We started with a list of sound types from Norman-Haignere et al. (2015) [169] that

previous human subjects had rated as commonly heard in everyday life. We then

searched freesound.org for a recording of each sound that had been recorded using a

microphone that allowed power up to at least 15 kHz, did not have any significant

reverberation, and only contained sound that could conceivably be emitted from a

single object. This led to a core sound set of 121 sounds. We then supplemented this

set with 24 recordings of natural objects made in a sound booth by Traer, Norman-

Haignere, & McDermott (2021) [?] and samples from 15 different midi instruments

playing middle C from the Nsynth dataset [60]. In total, our final stimulus set had
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160 sounds.

We resampled all audio to 44.1 kHz and edited the sounds to 1-second. We edited

the clips to maintain a natural sound onset wherever possible. In addition, we applied

a 30 ms Hanning window to the beginning and end of the sound. The natural onsets

in the recordings were delayed at least 25ms from the start of the recording to prevent

the Hanning window from interfering with the natural onset.

3.4.12 Human Sound Localization Experiment – Experiment

design and trial balancing

We aimed to present every sound in the stimulus set at every position within the

speaker array. The stimulus set consisted of 160 sounds and the speaker array had

133 positions for a total of 21,280 sound/position pairs. Based on pilot experiments

we estimated that each trial would take a subject approximately 5 seconds. We

calculated that collecting a response at every location would take approximately 30

hours, which was impractical for a single subject. We chose instead to spread the

set of sound/position pairs across 19 subjects. This had the additional advantage of

averaging out effects of idiosyncrasies of a particular subject’s head-related transfer

functions, sound localization strategies, or biases. We split the number of trials evenly

between subjects so that each subject had 1120 trials, which could be collected in

approximately 2 hours, including breaks.

We assign trials to subjects by creating a list of all sound/position pairs and

shuffling this list. We then assign the first 1,120 trials to subject 0, the next 1,120

trials to subject 1 and continue assigning trials this way through subject 18. We then

searched across random shuffles until we found one that had an acceptable degree of

uniformity across positions and sounds within the trials for each subject. Specifically,

calculated the empirical marginal distributions for azimuth, elevation and sounds for

a given subject and shuffle. We then calculated the probability that the empirical

distributions were drawn from a uniform distribution by calculating the chi-square

goodness of fit test between the empirical distribution and a uniform distribution
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for positions and sounds. We accepted the shuffle if all the chi-square tests for all

subjects had a probability of greater than 25% that the empirical distribution could

have come from the uniform distribution. To make the acceptance criterion easier to

satisfy, the distribution over azimuths was measured across nine groups of positions

ranging from -90° to +90°, where eight groups spanned 20° each, and the center group

spanned 30° from -10° to 10°.

3.4.13 Speaker Array – Speaker labeling and Subject Response

Procedure

We labeled all speakers with a letter and number where each elevation corresponded

to a letter and azimuth corresponded to a number. Elevations were labeled from top

to bottom with ‘A’ corresponding to +40° and ‘G’ corresponding to -20°. Azimuths

were labeled from left to right with -90° corresponding to ‘1’ and +90° corresponding

to ‘19’. The number was appended to the letter to form the code. For example, the

speaker at -90° azimuth and +40° elevation had the code ‘A1’ while the speaker at 0°

azimuth and 0° elevation had the code ‘E10’.

We made a custom 23-key keyboard with three rows of six standard keys, one

bottom row with four standard keys, and one double-width key. The first two columns

of the keyboard contained the letters ‘A’ through ‘G’ in alphabetical order from top

to bottom and left to right. The last key in the second column was the ‘X’ key, which

indicates the subject did not hear any sound. We set up the next three columns

as a number pad in the standard layout, with ‘0’ located on its own in the bottom

row. We placed a backspace key at the top of the rightmost column and placed a

double-width enter key at the bottom right of the keyboard. The keyboard used a

standard USB-C interface and had a cable connected to the computer that ran the

controller software.
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3.4.14 Human Sound Localization Experiment – Experimen-

tal procedure

Each participant was presented with 1,120 1-second clips of one of 160 natural sounds

at one of 133 random positions at 65 dBA. For each trial, the participant fixated on

the speaker at 0° elevation and 0° azimuth (the “center” speaker) and then pressed

the enter key, indicating that they were ready for the next trial. The control software

played a 1-second sound from one of the speakers while the subject continued to

fixate. After the sound ended, the subject was allowed to orient to the position where

they judged the sound to have originated. The subject then selected the label of

the speaker they believed the sound to have originated from and entered it with the

keyboard. The subject would then reorient their head to face the center speaker and

press enter to begin the next trial.

If the subject believed that they did not hear any sound at all or they wanted to

report a lapse in attention for that specific trial, they had the option of entering an

‘X’. The experiment would progress to the next trial, and the marked trial would be

played again at the end of the experiment. If the subject reported a response without

a valid label, the experimenter would ask them what response they intended to enter

and make a note of it. In practice, this was very rare, and fewer than 100 trials across

all 21,280 were mistyped.

Subjects were instructed to face the center speaker before pressing the enter but-

ton, and the experimenter monitored the subject closely throughout the experiment

to ensure they were properly orienting before beginning the next trial. In practice,

all subjects readily understood and complied with the instructions.

Subjects performed trials in 4 blocks of 280 trials each. Each block took approxi-

mately 24 minutes, and subjects took breaks between trials that were unrestricted in

time. In practice, most subjects spent around 5 minutes on each break. At the end of

the experiment, trial responses were saved into a JSON file containing the metadata

and responses for each trial.
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3.4.15 Human Sound Localization Experiment – Analysis

Subject responses were loaded from the JSON files into a single pandas dataframe.

The responses were then converted from the alphanumeric labels on the speakers

into the speaker position, specified in azimuth and elevation. If the code did not

correspond to a known label, the trial was discarded, although this occurred in fewer

than 100 trials across all subjects.

We calculated absolute azimuth error for each trial by subtracting the true location

from the judged location, both measured in degrees, and then taking the absolute

value of the difference. We calculated the absolute elevation error using the same

method and also calculated the signed elevation error by recording the difference in

the true and judged locations without taking the absolute value.

We analyzed the patterns of absolute error in azimuth and elevation, grouped

according to the ground truth position of the sound in azimuth, elevation, and the

sound identity. For each graph, we grouped trials by the variable plotted on the x-axis

(ground truth azimuth, elevation, or sound identity) and calculated the mean value

for the error variable on the y-axis. Error bars plot the standard error of the mean

for the error variable, obtained by bootstrapping over trials.

We also analyzed individual sounds for elevation bias by plotting the sound iden-

tity vs. the signed elevation error across all positions. Deviations above or below 0

denote an upward or downward elevation bias for that sound, respectively.

3.4.16 Model Comparison

We assessed the extent to which the model from Francl & McDermott (2022) could

predict the pattern of errors across sound identities. First, we spatially rendered the

same set of natural sounds used in the human experiments and converted them to

binaural audio. Next, we used the model to make predictions about the locations

of each sound. Last, we calculated the model localization error for each sound and

compared that pattern of errors to human data.
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3.4.17 Model Comparison – Stimulus Rendering

We used the virtual acoustic world renderer from Shinn-Cunningham et al. (2001)

[198] and used in Francl & McDermott (2022) [63] to simulate binaural room impulse

responses (BRIRs) for a room similar to the one for the speaker array. We simulated

the room to have the same approximate geometry and materials as the actual room

and rendered a set of binaural room impulse responses for a listener at the same

approximate position in the room as the human subject in the localization experiment.

The rendered room geometry is 6 by 4 by 3 meters (LxWxH) and simulated ceiling

material with “Acoustic tiles, 0.625", 16" below ceiling”, floor material “Linoleum”,

and wall material with “Plaster on Concrete”. We simulated the listener position 2.4

meters down and 2.6 meters left from the upper left corner of the room. The renderer

simulated elevations ranging from -20° to +40° in 10° increments and azimuths ranging

from 0°to 355° in 5° increments. Specific details of the rendering procedure can be

found in the methods section of Francl & McDermott (2022).

We used the simulated BRIRs to render the natural sounds used in the human

experiment at the same position as the speakers in the speaker array for elevations

0° and higher. The current model is not capable of reporting elevations below this

threshold, so all human-model comparisons were limited to the subset of speaker

positions at 0° and higher.

3.4.18 Model Comparisons – Simulating Room Background

Noise

The background noise of the room was simulated to align the model and human

localization conditions more closely. We made recordings of the background noise

at varying locations behind the lister in the room using a directional microphone.

We then generated noise that was spectrally matched to that signal and spatially

rendered the noise at the recorded locations to create a diffuse background field that

approximated the background noise present when human subject performed their

experiments.
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We made recordings of the background noise using an AmiCV-2R Unidirectional

microphone connected to a Scarlett 8i8 digital-to-analog converter. The digital signal

was sent to a 2018 MacBook Pro running Audacity 2.2.1. We made these recordings

with the microphone facing along the ray passing through the listener’s head position

and the position of the microphone. The microphone recordings were made 2 meters

from the listener’s head position and at ten source positions relative to the listener.

The recording positions were (listed as (elevation, azimuth)): (40°,135°),(40°,180°),

(0°,225°), (0°,135°),(0°,180°), (-20°,225°), (-20°,135°),(-20°,180°), (-20°,225°), (90°,0°).

We made spectrum-matched noise for each of these recordings by taking the

Fourier transform of each recording, randomizing the phase information, and tak-

ing the inverse Fourier transform. We made 100 of these spectrally matched noise

versions of each of the ten recordings. The rationale for the spectrum-matched noise

was to avoid having the model’s judgments influenced by details of the particular

recordings we made.

We generated background noise by randomly selecting a spectrum-matched noise

for each of the ten recordings and rendering each at the spatial position where it was

recorded. We combined these spatially rendered spectrum-matched noises into one

auditory scene and then repeated this rendering procedure 10,000 times, randomly

selecting ten new spectrally matched corresponding to each of the ten recordings

in each pass. These background scenes were randomly selected and combined with

the natural sound stimuli used in the experiment at an SNR of 17 dB to match the

level difference in the human experiment. Levels were measured using the root-mean-

squared power of the audio signal.

3.4.19 Model Comparisons – Predictions

The final rendered stimuli were processed with the cochlear model described in Francl

& McDermott 2022. The cochlear model had 39 frequency channels and a frequency

response ranging from 30Hz to 20kHz. The model predicted the location of each

source using the procedure described in Francl & McDermott 2022 (see the original

paper for details).
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3.4.20 Model Comparison – Analysis

Human subjects chose between positions spaced every 10 in azimuth. However, the

model output layer had units corresponding to positions spaced every 5 in azimuth.

We assumed that if a human judged a sound as being located exactly between two

labeled locations, they would randomly select one of the two. We replicated the same

strategy in our model by reassigning model judgement to the left or right bin with 50%

chance if the model chose a location not available to human subjects. For example, if

the model selected a position at 25 azimuth it would be assigned to either 20 azimuth

or 30 azimuth with even chance between the two. In practice, this assignment means

that 50% of the time the trial will have 10 error and 0 of error the other half of the

time. The expected value of the error for each of these trails after reassigning the

bins is 5, which is equivalent to the error we would observe if we did not reassign the

stimuli to different bins.

Human Participants judged locations within the frontal hemifield so we front–back

folded the model responses to enable a fair comparison. This consisted of treating each

model response in the rear hemifield as though it was a response in the corresponding

front hemifield. For example, the 10° and 170° azimuthal positions were considered

equivalent.

We calculated error for each trial from each of the ten networks in the model using

the same procedure outlined in “Human Sound Localization Experiment – Analysis”.

For model plots, error bars plot the standard error of the mean for the error variable

bootstrapped over networks instead of trials.

3.4.21 Model Prediction of Human Behavior

We calculated the mean absolute elevation error for each of our 160 sounds and for

both human subjects and the model. For human data, we calculated the average error

for one sound by averaging across all subjects and across positions with elevations

greater or equal to zero to match the set of positions used in the model. For the

model, we calculated the average error for one sound by averaging across all rendered
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positions and all networks. We generated a scatter plot with model error on the x-axis

and human error on the y-axis. We calculated the Person and Spearman correlation

coefficients between the vectors containing the human error and model error for each

sound.

We repeated the procedure outline above for the other three error measures (ab-

solute error in azimuth, and bias in elevation and azimuth).

3.4.22 Measuring the Reliability of Human and Model Judg-

ments

We assessed the consistency between human subjects by measuring the split-half reli-

ability of the human behavioral data. First, we first divided the human subject pool

into two groups of eight subjects by randomly sampling from our nineteen subjects

without replacement. Next, we separately calculated the absolute elevation error for

each sound for the two groups. This resulted in two vectors containing the error from

the first group and the error from the second group. Each vector contained one value

for each of the 160 sounds in the dataset. We calculated the Person and Spearman

correlation coefficients between the vectors. Last, we then converted the correlations

between the split-halves into an estimate of reliability of the results from the full set

of subjects by applying the Spearman-Brown correction.

We assessed the model consistency by measuring the split-half reliability across

networks. First, we first divided our networks into two groups of five by randomly

sampling from our ten networks without replacement. We used these two groups to

calculate the reliability of the model data using the same procedure described above

to calculate the reliability of the human data.

3.4.23 Spectral Flatness

We measured the spectral flatness of each natural sound using the following formula:
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𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙𝐹 𝑙𝑎𝑡𝑛𝑒𝑠𝑠 =

𝑛

⎯⎸⎸⎸⎷𝑁−1∏︁
𝑛=0

𝑥(𝑛)

1
𝑁

𝑁−1∑︁
𝑛=0

𝑥(𝑛)

Where x(n) is the FFT of the signal. The spectral flatness is highest when all

frequencies have equal amplitudes.

3.4.24 Statistical Significance Testing

We assessed the statistical significance of Pearson and Spearman correlation coef-

ficients by calculating the probability that they differed significantly from 0. For

Pearson correlations, we compared to a null distribution of correlation coefficients

for two normal and uncorrelated variables. This distribution is known as the exact

distribution of r and is:

𝑓 (𝑟) =
(1− 𝑟2)

𝑛
2−2

𝐵(12,
𝑛
2 − 1)

where B is the Beta distribution.

For Spearman correlations, we calculated a t value using the formula:

𝑡 = 𝑟

⎯⎸⎸⎷ 𝑛− 2

1− 𝑟2

The t values from this function are distributed approximately normally with n-2

degrees of freedom under the null distribution that is calculated by permuting the

ranks. The details of this approach are laid out in Kendall 1973[127]. In both cases

we calculated the probability of drawing an r value from the null distribution with

an absolute value at or greater than the r value we calculated for our data.
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3.6 Tables

Table 3.1: List of 160 natural sounds, ordered alphabetically

Table 3.2: The two leftmost columns display the correlation coefficients between the
human and model for four different error metrics evaluated on each of the 160 natural
sounds: absolute elevation error, absolute azimuth error, elevation bias, azimuth bias.
The two rightmost columns display the human-model partial correlation coefficients
when controlling for spectral flatness.
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Table 3.3: The table displays the correlations between the spectral flatness of a sound
and the value for that sound of one of four error metrics computed from human
responses: absolute elevation error, absoluerror, elevation bias, azimuth bias.

(Caption on next page.)
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Table 3.4: The first four columns display the split-half reliability of the human and
model data, each of which determines the noise ceiling for its respective correlation.
The reported correlations are the mean value from 10,000 bootstrap samples across
subjects and are Spearman-Brown corrected. The last four columns use the split-half
reliability to calculate the noise-corrected correlation coeffects, which adjust for the
maximum correlation possible for that comparison (the correction for attenuation).
This adjustment involves dividing the human-model correlation by the appropriate
reliability for that comparison:

R𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =
𝑅𝐻𝑢𝑚𝑎𝑛−𝑀𝑜𝑑𝑒𝑙

2
√

𝑅𝐻𝑢𝑚𝑎𝑛𝑠𝑝𝑙𝑖𝑡−ℎ𝑎𝑙𝑓×𝑅𝑀𝑜𝑑𝑒𝑙𝑆𝑝𝑙𝑖𝑡−ℎ𝑎𝑙𝑓

R2
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =

(𝑅𝐻𝑢𝑚𝑎𝑛−𝑀𝑜𝑑𝑒𝑙)
2

𝑅𝐻𝑢𝑚𝑎𝑛𝑠𝑝𝑙𝑖𝑡−ℎ𝑎𝑙𝑓×𝑅𝑀𝑜𝑑𝑒𝑙𝑆𝑝𝑙𝑖𝑡−ℎ𝑎𝑙𝑓

142



Chapter 4

Self-Supervised Models of Human

Sound Localization

4.1 Introduction

In humans, fine-grained sound localization does not appear to be innate. Although

human newborns will correctly orient left or right if a sound is presented directly

to their left or right [226, 168], they show a marked increase in sound localization

acuity over the first 18 months of life [6, 43, 142, 167]. Infants have a smaller head

size compared to adults, which makes binaural cues to localization less pronounced,

but this difference is insufficient to explain the inability to localize sounds with high

acuity [42]. These findings suggest that sound localization is not fully innate and is

likely learned through experience. Experiments in adults have further demonstrated

that pinna-specific cues of human sound localization can be relearned over a month

or so [105], suggesting that humans continue to update sound localization strategies

over the course of their life, integrating new experiences as they occur.

Recent deep-learning-based models of human perception [237, 126, 187, 136, 181],

including recent models of human sound localization [63, 134], rely on supervised

learning. Supervised learning relies on access to the ground truth labels for a large

training data set. The models obtained via supervised learning provide examples of

models optimized for a problem that may be fruitfully compared to human observers
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[63]. But because humans do not have direct access to ground truth labels in the

quantities typically used to train deep neural networks, this learning paradigm is

likely implausible as a model of human learning in many domains, including sound

localization.

We set out to evaluate a more biologically plausible learning mechanism for sound

localization that relies exclusively on data available to humans. Vision could in prin-

ciple provide a supervisory cue, providing the ground-truth location of a sound source

if a listener could determine the sound identity and find the object visually. However,

this would require listeners to be able to associate auditory and visual objects before

learning how to localize. Additionally, congenitally blind individuals localize sounds

with similar acuity to sighted individuals [10], which suggests that vision is not crit-

ical to learning to localize sounds. It occurred to us that one plausible alternative

could involve head movements.

We hypothesized that head movements could provide a self-supervision signal that

could be used to learn representations of sound location. Purkinje cells use cues from

the vestibular system to calculate an internal representation of absolute head position

[235], and it seemed plausible that knowledge of head orientation could be present

early in development. This head orientation information could plausibly be used to

learn representations of locations by leveraging the fact that sounds in the world tend

to have stable locations over short timescales, such that the head-relative locations

of sounds tend to change across head movements by an amount proportional to the

head movement. We attempted to learn a representation of binaural audio for which

representations from different excerpts of binaural audio were similar if the audio ex-

cerpts came from the same auditory scene heard at similar head positions. We learned

this representation using a modified contrastive learning [37, 36, 81] approach with a

loss function that tries to maximize the similarity between representations of binau-

ral audio from the same scene and head position and otherwise minimize similarity.

If successful, the examples from the same auditory scene and similar head positions

will cluster in the representational space, potentially with separable representations

of location. We assessed whether the learned representation could support sound
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localization by fitting a linear decoder to the final learned representation. This final

step requires classic supervision for fitting the decoder, but can be achieved with less

labeled data than is needed to train a full deep neural network. If a biological system

could learn a representation of location with self-supervision, it seems possible that

it could then learn an analogous linear decoder with a modest amount of supervision,

as might be obtained from interacting with the world. We found that the model per-

formed well above chance, with an average of less than 10° of azimuthal localization

error, which is approximately ± 6 inches for an object 6 feet away.

4.2 Results

We trained our model using a modified version of noise contrastive learning [37, 81].

In standard noise contrastive learning, a single image is augmented twice to create

many pairs consisting of two augmented versions of the same image. The model then

learns to maximize the similarity between the representations for these pairs of images

[37, 36]. Our model used cochlear representations of binaural audio instead of images,

with head motion replacing image augmentation. We also used many auditory scenes

with different sets of sound in each scene. Our model was trained to maximize the

similarity between representations of the same scene for similar head positions (Fig

4-1a). Critically, the model only had access to information about the head orientation

associated with the binaural audio and did not have access to the locations of the

sounds in the auditory scene.

We trained our model using a set of 5,000 auditory scenes, each containing between

two and eight natural sounds. Each scene was rendered at 256 random head positions.

We then used a linear decoder to map the learned representation to sound localization

judgments (Fig 4-1b). Finally, we evaluated the model using a validation set of single

sound sources not used in either training phase.

We quantified performance as the error in the azimuthal dimension, for which

spatial resolution is well characterized in humans. The model localized sounds sub-

stantially better than chance (Fig 4-2) and showed an increase in azimuthal error away
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from the midline, as is seen in humans. However, the model also showed a substantial

increase in absolute azimuthal error as the source elevation increased. This could

in principle be partially explained by the decreasing distance per degree azimuth at

higher elevations (as sources move closer to 90 ° elevation, they converge to the same

location). However, the observed errors exceed what would be expected from this

effect. At 40° elevation, the radius of a circle would be cos(40°)=0.76 times the radius

of the original circle. Thus, if errors were a constant size in cm, we would expect

that the error at 40° elevation would be: (error at 0°)/0.76=(6.07° error)/0.76=7.92°.

The actual azimuthal error at 40° elevation is closer to 16° error, suggesting that

the results cannot be accounted for based on decreased distances between degrees at

higher elevations alone.

To compare to previous work using supervised learning, we evaluated the model

from Francl & McDermott (2022) [63] on the same validation set used for our self-

supervised model. We found that the supervised model consistently outperformed

the self-supervised model (Fig 4-2). The supervised model also showed a tendency

to localize less accurately at higher elevations. However, this effect was much smaller

than that in the self-supervised model (the supervised model error was 59% larger

at 40° elevation than at 0° elevation, while the self-supervised model error was 272%

larger at 40° than at 0° elevation). This suggests a limitation of the current self-

supervised approach.

4.3 Discussion

Our current results provide a proof of concept of a biologically inspired self-supervised

learning rule for sound localization. We found that providing information about

head orientation with binaural audio was sufficient to learn a localization strategy

that performed well above chance. However, this strategy still performed below the

accuracy of supervised approaches.

This gap could likely be partially closed by systematically exploring variations

across many aspects of the architecture, training procedure, and loss functions used
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in this work. Prior work in contrastive learning has found that the accuracy of

the final representation depends on many aspects of the architecture, embedding

network, and update rules [37, 36, 81]. At the time of training, we did not have

access to the computational resources necessary to pursue a systematic search over

these hyper-parameters, and it is likely that the architecture we chose is sub-optimal

in some respects. It is also likely that modifying the loss function could improve

the model. In the current approach, we modified a discrete loss function that had

been successfully used in past contrastive learning models [37, 36, 81]. To apply this

type of loss function to our problem, we discretized our data by choosing a distance

threshold and labeling pairs below the threshold as positive and above the threshold

as negative. We also introduced a weighting for each positive pair that increased

the loss for pairs with more similar head orientations to better align the continuous

nature of the distance metric with the loss function. However, other more biologically

plausible loss functions are possible [132]. For instance, a smoother loss function (such

as squared error or an inverted gaussian) might be more appropriate for incorporating

the distance between head orientations. Such loss functions could result in improved

models of self-supervised sound localization, potentially eventually explaining human

sound localization accuracy without extensive supervision.

4.4 Methods

4.4.1 Building a set of natural sounds

We started with the set of natural sound source recordings used in Francl & Mc-

Dermott (2022) [63] and initially assembled in Norman-Haignere (2015) [169]. We

excluded recordings shorter than 10 seconds to minimize the overlap between multi-

ple 1-second excerpts of the sound that were to be used in training. This yielded 222

source recordings.
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4.4.2 Rendering Binaural Room Impulse Responses

We used the virtual acoustic world simulator developed in Shinn-Cunningham et al.

(2001) [198] and used by Francl McDermott (2022) to render the binaural room im-

pulse responses (BRIRs) for the same five rooms, specified in Francl & McDermott

(2022) [63]. Each pair (one impulse response per ear) of rendered BRIRs was associ-

ated with a specific location. To spatialize a sound, we used a pair of BRIRs to modify

the sound so that the sound contained the cues a listener would experience with that

sound at a particular location. We rendered BRIRs for positions every 5 degrees in

azimuth from 0° to 355° and every 5° in elevation from -40° to 90°. This spacing

was slightly finer in azimuth and elevation than the original set of head-related im-

pulse responses (HRIRs); the renderer interpolated between positions to achieve this

spacing.

4.4.3 Rendering Auditory Scenes

For model training, we rendered five thousand auditory scenes with 256 head positions

for each. To render an auditory scene, we first sampled the number of sources from

a uniform distribution, ranging between two and eight sources per scene. Next, we

randomly sampled a sound file from each source, without replacement, from a set

of 222 sounds (described above). We assigned each source to a position in space by

drawing a random sample from a discrete uniform distribution corresponding to the

set of possible source positions (i.e., those for which we had rendered BRIRs). We

term the resulting auditory scenes the “base” auditory scenes. Our renderer supported

spatializing sounds at locations between -40° and 90° elevation. We constrained the

initial sound positions so that we could later make vertical head movements of up to

40° in elevation without sources moving to positions not supported by our renderer.

This constraint meant that the set of valid sound positions in the base condition

were locations at or above 0° elevation. We chose this limit in the base condition

to provide a 40° margin between the sound and the lower vertical limit of positions

that we could render, which is -40° elevation. This margin allowed us to make head
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movements up to 40° up or down without sources moving to elevations that were

not supported by our renderer. We used this sampling approach to generate a base

auditory scene where a variable number of sources were rendered at random positions.

We next simulated 256 head movements for each of the base auditory scenes. For each

head movement, we sampled a random azimuth change between -180° and 180° and

an elevation change between -40° and +40°. This limit on vertical head movement

ensured that head motion would not cause a source to move to a position where we

did not have a BRIR to render that source. We calculated the new positions of all

sources after each head movement and rendered each source at its new position. For

each movement, we also randomly sampled a one-second excerpt of each sound file

that was distinct from that used in the base auditory scene. Auditory scenes from

different head positions thus contained the same subset of sources with the same

spatial relationship but did not use the exact same sound segment for a source.

4.4.4 Model Training – Overview

We trained the model to learn a representational space that maximized similarity

between representations of the same auditory scene when the listener’s head orien-

tation was similar and that minimized similarity between representations of different

auditory scenes or those for which the head orientation was very different. We trained

the model on batches of binaural audio examples from multiple auditory scenes, with

multiple head orientations for each auditory scene. We trained the model by opti-

mizing the representation to increase the similarity between example pairs from the

same auditory scene and similar head positions. The model was trained to decrease

similarity in all other cases. We created a loss function for this purpose by calculat-

ing the pairwise similarity between the model representations of the examples (see

below for the equation). The final model was trained for 207,000 steps of gradient

descent, which took approximately three weeks using all available resources on an

Nvidia DGX-1. We used a base learning rate of 0.015 and decayed the learning rate

according to a cosine decay schedule as in Gordon (2020) [81].
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4.4.5 Model Training – Contrastive Learning

We trained the model using noise contrastive estimation, similar to the procedure

used in SimCLR [36] and MoCo [37], which seek to learn a representation of input

data where augmented examples of the same object are close in the learned repre-

sentational space, and all other examples are maximally separated. We used the

same approach and learning rules but made two modifications. First, we augmented

our examples through head rotation rather than modifying examples using unnatu-

ral transformations like cropping and color rotation (which is the standard approach

in contrastive learning [36, 37, 84]). Second, we modified the loss function to iden-

tify similar examples using head orientation rather than image identity. We used

momentum contrastive learning [37, 81] in which two separate networks with identi-

cal architectures each encode similarity for one example in each pair. This learning

method is essentially a hack that approximates some of the benefits of larger batch

sizes that are prohibitive for standard gradient descent learning given the memory

constraints of current hardware. The two networks differ only in their weight update

rule. One network is updated using standard gradient descent via backpropagation of

error. We refer to this network as the encoding network. Because this network must

compute gradients with respect to its parameters, it is constrained to a small batch

size. The second network is updated via a momentum update rule. This network is

known as the momentum encoder network. A momentum update linearly combines

the the current weight from the momentum network with the equivalent weight from

the encoder network using the following update rule:

𝜃𝑇+1
𝑚 = 𝑤𝜃𝑇𝑚 + (1− 𝑤)𝜃𝑇𝑒 (4.1)

Where 𝜃𝑚 is a network weight from the momentum encoder network, 𝜃𝑒 is a

network weight from the encoder network, T is the training iteration time step, and

m is the momentum weight. In this work we used a momentum weight of 0.999 as

suggested in [96]. The momentum network does not involve explicit gradient updates.

Pairwise comparisons within the loss function were always made between one example
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from the encoder network and one example from the momentum encoder network,

grouped into mini-batches. For the encoding network, each mini-batch contained

16 auditory scenes, each rendered at 8 different head positions. For the momentum

network, each mini-batch contained the same 16 auditory scenes that were used for

the encoding network, but each rendered at 64 head positions that were distinct

from both each other and from the 8 head positions used in the encoding network

examples. Each mini-batch thus contained 128 examples for the encoder network

and 1024 examples for the momentum encoder network. This resulted in 512 intra-

scene comparisons per mini-batch (8 x 64), and 7,680 comparisons across scenes (8

x 15 x 64). We processed more examples using the momentum encoder network to

provide more pairwise comparisons per training step without significantly increasing

the memory requirements to train the model. The momentum encoder requires less

memory per example because it does not perform gradient updates and consequently

does not have to save all network activations to calculate those gradients.

4.4.6 Model Training -Architecture

The model architecture used for both the encoder and momentum networks was based

on a ResNet-50 architecture that was modified to have only two input channels in-

stead of three input channels, corresponding to the cochlear representations of the

left and right audio channels instead of the RGB channels of an image. The ResNet-

50 transformed the binaural cochlear input into a vector with 2048 elements, which

corresponded to the final fully connected layer in a standard ResNet-50 architecture.

We appended a multi-layer perceptron with two hidden layers to the ResNet-50 ar-

chitecture to project the 2048-dimensional vector representation to a 64-dimensional

vector. This second embedding step has been shown to improve performance in recent

contrastive learning approaches [36, 37], perhaps for the same reason that standard

supervised network architectures often transform a higher-dimensional representation

to something lower-dimensional when performing classification tasks. We used a 64-

dimensional embedding to reduce memory requirements for calculating the loss and

based on recent results [37] showing that output dimensionalities greater than 32
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have little added benefit on final performance. After training, the 2048-dimensional

vector (the “primary” representation) was evaluated for information about sound lo-

cation (motivated by prior work using this approach, which found better read-out

performance when using the higher dimensional representation).

4.4.7 Model Training – Model Input

The final rendered stimuli were processed with the cochlear model described in Francl

& McDermott 2022. The cochlear model had 39 frequency channels and a frequency

response ranging from 30Hz to 20kHz. The output of this cochlear model was the

input to the ResNet-50 described above.

4.4.8 Model Training – Loss Function

The loss function was a modification of the standard noise contrastive loss function,

known as InfoNCE [36, 215], computed on “positive” and “negative” pairs of training

examples. This standard loss function is given by the following equation:

(4.2)

Here q is an encoder network representation, k+ is a momentum encoder represen-

tation of a positive (similar) example, and k are momentum encoder representations

of negative (dissimilar) examples. The positive examples would typically be aug-

mentations (e.g. croppings) of the same image, and negative examples would be

augmentations of different images. is a temperature hyper-parameter. In essence,

this function is a softmax cross-entropy across similarities between representations

where each pair of vectors is given a binary label of similar or dissimilar.

We modified this standard loss function to weight positive examples (generated

from the same auditory scene) based on the similarity of the head orientation with

which they were rendered, with examples from closer head orientations receiving a
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higher weighting. This forced the gradient updates to prioritize maximizing similarity

between examples that had very close head orientations. We operationalized the

distance between two head orientations by measuring the rotation angle 𝜃 from the

rotation matrix between the head orientations in a pair. This was the shortest rotation

along any axis that would move from one head position to another. We labeled all

example pairs from the same auditory scene with a rotational distance of less than

15° as positive example pairs and all others as negative example pairs. We weighted

positive example pairs based on the rotation angle between them so that example

pairs with smaller rotational angles contributed more heavily to the loss function:

𝐿𝑜𝑠𝑠 =
∑︁

𝑖∈𝑞,𝑘+
𝑙𝑜𝑠𝑠𝑤𝑒𝑖𝑔ℎ𝑡𝑖 × 𝐿𝑖 (4.3)

𝑙𝑜𝑠𝑠𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑔𝑙𝑜𝑏𝑎𝑙𝑤𝑒𝑖𝑔ℎ𝑡(1− (𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)/𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) (4.4)

We added a global weight constant to scale the loss and preserve the average

magnitude of the gradients during training. Without the global weight, the loss

weight was always less than 1, which decreased the size of the final loss value and

decreased the magnitude of the gradients, slowing training. We empirically derived

the global weight by calculating the average loss over the first 100 batches with and

without applying loss weights. We divided the average loss without the loss weights

by the average loss with the loss weights, and used the resulting value as our global

weight.

4.4.9 Model Evaluation – Overview

After model training was completed, we discarded the multi-layer perceptron embed-

ding network and fit a linear classifier to the 2048-dimensional primary representation

layer. This linear decoder used the primary representation layer to make judgments

about the absolute location of a single source rendered in an auditory scene.
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4.4.10 Linear Readout – Data generation

The linear readout classifier used to evaluate the model representations was fit using

a separate set of training data. We used the same rendering procedure to generate

this training data as that described for model training, with three notable differences.

First, the dataset used to fit the linear classifier always contained only a single ren-

dered source. Second, we used a new set of sounds. Specifically, we used a subset

of the GISE-51 dataset [234], selected to ensure that the sound recordings contained

power at high frequencies such that they would support the 3D localization cues that

the model might have learned during training. We evaluated this by measuring the

average power between 500-4000Hz and 8000-10000Hz using Welch’s spectral density

estimate. If the absolute value difference between the power in the two bands ex-

ceeded 25dB, we excluded the sound. This was designed to eliminate sounds that

were recorded with a sampling rate of less than 16kHz. The final classifier training

set had 2,163 total sounds, and the validation set had 390 total sounds. Third, we

rendered examples ranging between 0° and 60° elevation (in 10° steps) and from 0°

to 355° (in 5° steps) in azimuth. This resulted in 504 possible source locations. We

rendered 500,000 training examples and 20,000 validation examples.

4.4.11 Linear Readout – Fitting and Evaluation

The linear readout classifier mapped the 2048-dimensional representation vector to

504 sound location output classes. We fit the linear readout classifier using stochastic

gradient descent with batch sizes of 256 examples and performed 100 epochs of gra-

dient descent. We used an initial learning rate of 30 and decayed the learning rate by

a factor of 10 at 60 epochs and again at 80 epochs. To evaluate the trained represen-

tation, we fixed the weights of the linear readout and recorded predictions for each

response from the validation set. To remove front/back confusions, we front–back

folded the model responses as described in Francl McDermott (2022). This consisted

of treating each model response in the rear hemifield as though it was a response in

the corresponding front hemifield. For example, the 10° and 170° azimuthal positions
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were considered equivalent.

4.4.12 Supervised Model Baseline

We calculated the error for the supervised model baseline using the model from Francl

McDermott (2022) [63]. We recorded model predictions on the same validation set

(with 20,000 examples) that was used to evaluate the primary learned representation

above. We determined chance performance by calculating the average distance be-

tween two random points chosen from a uniform interval between 0 and 180 degrees.

These points correspond to a randomly chosen azimuthal source location and model

response.

4.5 Acknowledgements

I thank Cesar Duran for his help in implementing the model and refining the learning

rule.
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4.6 Figures

Figure 4-1: A. Schematic of Learning Procedure. The learning procedure tries to max-
imize the similarity between representations of binaural audio if a listener makes little
or no head movement between time points. If the listener makes a large head move-
ment, the learning procedure tried to minimizes similarity between representations. T
and T+1 represent sequential points in time. f(•) is the network that transforms the
binaural audio to the primary 2048-dimensional representation, labeled as h. g(h)
is the embedding network that transforms the primary representation into the 64-
dimensional similarity embedding, labeled as z. The e and m subscripts identify the
encoding and momentum encoding networks, respectively. B. Schematic of Linear
Decoder. The linear decoder maps the primary representation to a single position,
specified by an elevation and azimuth.
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(Caption on next page.)

Figure 4-2: Localization Accuracy of the Self-Supervised Model. The graphs plots the
absolute azimuthal error between the true and predicted sound location as a function
of the true source position in either azimuth or elevation. The self-supervised results
are derived from the predictions of a linear decoder operating on the learned primary
representation. The supervised results are derived from the predictions from the
model built in Francl McDermott (2022). Error bars in both conditions are SEM
bootstrapped across trials. The dashed line at the top shows chance performance (the
expected error between two positions randomly drawn from a uniform distribution).
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Chapter 5

Speech Denoising

Abstract

Contemporary speech enhancement predominantly relies on audio transforms that are
trained to reconstruct a clean speech waveform. The development of high-performing
neural network sound recognition systems has raised the possibility of using deep fea-
ture representations as ‘perceptual’ losses with which to train denoising systems. We
explored their utility by first training deep neural networks to classify either spoken
words or environmental sounds from audio. We then trained an audio transform to
map noisy speech to an audio waveform that minimized the difference in the deep
feature representations between the output audio and the corresponding clean audio.
The resulting transforms removed noise substantially better than baseline methods
trained to reconstruct clean waveforms, and also outperformed previous methods us-
ing deep feature losses. However, a similar benefit was obtained simply by using losses
derived from the filter bank inputs to the deep networks. The results show that deep
features can guide speech enhancement, but suggest that they do not yet outperform
simple alternatives that do not involve learned features.

Index Terms: speech enhancement, denoising, deep neural networks, cochlear model,

perceptual metrics

5.1 Introduction

Recent advances in speech enhancement have been driven by neural network models

trained to reconstruct speech sample-by-sample [173, 174, 222, 178, 185, 147, 172, 108].

These methods provide substantial benefits over previous approaches, but nonetheless

leave room for improvement. The resulting processed speech usually contains audible

159



artifacts, and noise removal is usually incomplete at lower SNRs.

A parallel line of work has explored the use of deep artificial neural networks

as models of sensory systems [236, 125]. Although substantial discrepancies remain

[180, 61], such trained neural networks currently provide the best predictive models of

brain responses and behavior in both the visual and auditory systems [236, 126]. The

apparent similarities between deep supervised feature representations and represen-

tations in the brain raises the possibility that such representations could be used as

perceptual metrics. Such metrics have been successfully employed in image processing

[243], but are not widely used in audio applications.

Deep feature losses for denoising were previously proposed in [75, 177, 206, 109,

121], but were explored only for relatively high signal-to-noise ratios (SNRs), a single

task and network, or were not compared to baseline methods using the same transform

architecture. Additionally, direct comparisons have not been made to simpler losses

derived from conventional filter banks. It was thus unclear the extent to which deep

feature losses could improve on simpler approaches, and what choices in the feature

training would produce the best results. The goal of this paper was to directly

compare deep perceptual losses to alternative losses, and to explore the conditions in

which benefits might be achieved. We found that deep feature losses produced more

natural denoising compared to waveform losses, but that a similar benefit could be

achieved using a loss derived from standard filter bank representations.

5.2 Methods

There were two components to our denoising approach (Figure 5-1). The first com-

ponent was a recognition network trained to recognize either speech or environmental

sounds. Once trained, this network was used to define deep feature losses. Speech

recognition is a natural choice in this context, but it also seemed plausible that more

general-purpose audio features learned for environmental sound recognition might

help to achieve natural-sounding audio even in speech applications. The input to the

network was the output of a filter bank modeled on the human cochlea.
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𝑾𝒂𝒗𝒆𝒇𝒐𝒓𝒎	𝒍𝒐𝒔𝒔 = 𝒙𝒅𝒆𝒏𝒐𝒊𝒔𝒆𝒅 	− 𝒙𝒄𝒍𝒆𝒂𝒏 𝟏

Clean speech

Noisy	speech Denoised
speech

Cochlear
model

Fixed	deep	feature	network
(weights	optimized	for	auditory	task)

Audio	transform	weights	are	
updated	via	gradient	descent

Figure 5-1: Schematic of audio transform training.

The second component was a waveform-to-waveform audio transform whose pa-

rameters were adjusted via gradient descent to minimize a loss function (evaluated on

features of the recognition network, or the outputs of a filter bank, or on the wave-

form). We used a Wave-U-Net [205], which has been found to perform comparably to

WaveNet [149] based on objective metrics of noise reduction, but which can be speci-

fied with many fewer parameters and run with a much lower memory footprint. Code,

models, and audio examples are available at: http://mcdermottlab.mit.edu/denoising/demo.html.

5.2.1 Recognition Networks

The recognition networks took as input simulated cochlear representations of 2s sound

clips (audio sampled at 20 kHz). The cochlear model consisted of a bank of 40 band-

pass filters whose frequency tuning mimics that of the human ear (evenly spaced on

an Equivalent Rectangular Bandwidth scale [78]), followed by half-wave rectification,

downsampling to 10 kHz, and 0.3 power compression [159].
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Recognition Network Architectures

We used three feed-forward CNN architectures for the recognition networks. Each

consisted of stages of convolution, rectification, batch normalization, and weighted

average pooling with a hanning kernel to minimize aliasing [100, 61]. The three

architectures were selected based on word recognition task performance from 3097

randomly-generated architectures varying in number of convolutional layers (from 4

to 8), size and shape of convolutional kernels, and extent of pooling. The selected

architectures had 6 (arch1) or 7 (arch2,3) convolutional layers.

Recognition Network Training

The recognition networks were trained to perform either word recognition or environ-

mental sound recognition. For the speech task, each training example was a speech

excerpt (from the Wall Street Journal [175] or Spoken Wikipedia Corpora [131]). The

task was to recognize the word overlapping with the center of the clip [126, 61] (out of

793 word classes sourced from 432 unique speakers, with 230,357 unique clips in the

training set and 40,651 segments in the validation set). For the environmental sound

recognition task, each training example was a non-speech YouTube soundtrack ex-

cerpt (from a subset of 718,625 AudioSet examples [74]), and the task was to predict

the AudioSet labels (spanning 516 categories in our dataset).

The three network architectures were trained on each task until performance on

the validation set task plateaued. Word task classification accuracies for the three

architectures were: arch1 = 90.4%, arch2 = 88.5%, and arch3 = 80.6%. AudioSet

task AUC values were: arch1 = 0.845, arch2 = 0.861, and arch3 = 0.869.

5.2.2 Audio Transforms

Wave-U-Net Architecture

The Wave-U-Net architecture was the same as in [149]: 12 layers in the contracting

path, a 1-layer bottleneck, and 12 layers in the expanding path. All layers utilized 1D

convolutions with learned filters and LeakyReLU activation functions. There were 24
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filters in the first layer, and the number of filters increased by a factor of 2 with each

successive layer prior to the bottleneck.

Deep Feature Losses

The recognition networks were used to define a deep feature loss function as the

𝐿1 distance between network representations of noisy speech and clean speech. The

total loss for a single recognition network and single training example was the sum

of the 𝐿1 distances between the noisy speech and clean speech activations for each

convolutional layer, weighted to approximately balance the contribution of each layer.

Cochlear Model Losses

We also trained transforms using losses derived from the cochlear model that provided

input to the recognition network, as well as variants of the model that varied in i) the

number of filters (5, 10, 20, 40, 80 and 160 filters, evenly spaced on an ERB-scale [78],

with bandwidths scaled to tile the spectrum in all cases), ii) the dependence of filter

bandwidth on frequency (linearly-spaced and ‘reversed’, with broad low-frequency

filters and narrow high-frequency filters, opposite to what is found in the ear), and

iii) in their phase invariance (subband envelopes computed by lowpass-filtering the

rectified subbands; cutoff of 100 Hz).

Wave-U-Net Training

Out of concern that the audio transform might overfit to idiosyncrasies of any indi-

vidual recognition network, we trained some transforms on losses computed simulta-

neously from an ensemble of three different networks (arch1,2,3), and some on just a

single network (arch1).

In all cases the Wave-U-Net was trained on speech superimposed on non-speech

AudioSet excerpts (the same corpora used to train the recognition networks) with

SNR drawn uniformly from [−20,+10] dB. AudioSet excerpts were used as the train-

ing ‘noise’ as they were highly varied and diverse. All Wave-U-Net models were

trained with the ADAM optimizer for 600,000 steps (batch size=8, learning rate=10−4).
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Baselines

We used two baseline models, both trained to explicitly reconstruct clean speech

waveforms from noisy speech waveforms drawn from the same training set described

above. The first was a previously described WaveNet [185] and the second was the

Wave-U-Net [149] used with the deep feature and filter losses.

We also compared our results to those of a previously published denoising trans-

form trained with a deep feature loss [75], using both the pre-trained model made

available by Germain et al. and a Wave-U-Net that we trained on our dataset using

the feature loss from [75] (deep network features trained on the DCASE 2016 [163]

environmental sound challenge).

5.2.3 Evaluation

We evaluated the trained models on 40 speech excerpts (from a separate validation

set) superimposed separately on each of four types of noise signals: speech-shaped

Gaussian noise, auditory scenes from the DCASE 2013 dataset [76], instrumental

music from the Million Song Dataset [13], and 8-speaker babble made from public-

domain audiobooks (librivox.org). These noise sources were chosen to be distinct from

those in the training set, and to span a variety of noise types to assess the generality

of the trained transforms.

Human Perceptual Evaluation and Objective Metrics

We evaluated the audio transforms by conducting perceptual experiments on Amazon

Mechanical Turk. Participants first completed a screening task to help ensure that

they were wearing headphones or earphones [232]. The participants who passed this

screening task then rated the naturalness of a set of processed speech signals, pre-

sented seven at a time in a MUSHRA-like paradigm. Listeners could listen to each

clip as many times as they wished and then gave each a numerical rating on a scale

of 1-7. Listeners were provided with anchors corresponding to the ends of the rating

scale (1 and 7). The anchor at the high end was always the original clean speech.
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The low-end anchor was 4-bit-quantized speech (an example of very high distortion).

To help ensure that participants were using the scale as instructed, each experiment

included 3 catch trials where two of the stimuli were the two anchors. In order to

be included in the analysis, participants had to rate all instances of the high and low

anchors as 7 and 1, respectively.

We ran two identically structured experiments to evaluate all of our audio trans-

forms. Experiment 1 compared various deep feature losses to baselines and contained

all of the conditions listed in Table 5.1. Experiment 2 compared losses derived from

different cochlear filter banks and contained all of the conditions listed in Table 5.2. 54

and 105 participants met the inclusion criteria for Experiments 1 and 2, respectively.

We also used three standard objective measures for evaluation: perceptual eval-

uation of speech quality (PESQ) [183], short-time objective intelligibility measure

(STOI) [208], and the signal-to-distortion ratio (SDR) [219].

5.3 Results

5.3.1 Deep Feature Losses Yield Improved Denoising

The best-performing systems trained with deep perceptual feature losses outper-

formed both waveform-based baselines. The average objective and subjective evalu-

ation results are shown in Table 5.1. Human listeners found the speech processed by

the deep feature models to be more natural than the speech processed by the baseline

models. We plot the naturalness results in more detail (Figure 5-2) for two of the

best-performing models trained on each of AudioSet features (A123) and word recog-

nition features (W123), as well as a model trained on random features (Random123),

the two baselines, and the two versions of the denoising network from [75].

5.3.2 Learned vs. Random Deep Features

The benefit of deep feature losses was specific to models trained with learned features.

Audio transforms trained to reconstruct random features did not produce better nat-
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Random123
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Waveform (Wave-U-Net)
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Germain (pre-trained)
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Figure 5-2: Rated naturalness vs. SNR for speech processed by Wave-U-Nets trained
on deep feature losses, in addition to baseline models trained to reconstruct clean
speech waveforms, and two versions of a related prior method [75]. Error bars plot
SEM (across 54 participants).

uralism than the baseline WaveNet, and performed worse overall than the baseline

Wave-U-Net (Figure 5-2; Table 5.1).

5.3.3 Comparison to Previous Deep Feature Systems

Our best-performing deep feature-based systems also outperformed previously pub-

lished systems with deep feature losses. The pre-trained system from Germain et al.

[75] generalized poorly to our test set. Furthermore, the Wave-U-Net we trained using

the deep feature loss from [75] also performed worse than the baseline Wave-U-Net.

These findings suggest that the features used for the perceptual loss are important,

and that the DCASE task used in [75] may not have produced sufficiently general

features.

5.3.4 Effect of Task Used to Train Deep Features

The best results occurred for features trained on the environmental sound recognition

task – naturalism was consistently higher than for features trained on word recognition

(Figure 5-2; Table 5.1). However, all of the models trained with feature losses from
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our recognition networks produced more natural-sounding speech than the baselines,

and than the systems trained with DCASE features based on [75]. There was no

obvious benefit from training on features from three different networks.

5.3.5 Cochlear Model Losses Match Deep Feature Losses

Although deep features produced better performance than baselines trained using

waveform losses, we found that we could reproduce their benefit using losses derived

from the cochlear model inputs to the recognition networks. Based on rated natu-

ralness, the transform trained with this ‘cochlear’ loss performed just as well as our

best model trained with deep feature losses (Table 5.1).

5.3.6 Effect of Filter Bank Characteristics

The benefit of the cochlear loss depended to some extent on the filter characteristics

(Table 5.2; Figure 5-3, left). Worse performance was obtained with a ‘reversed’ filter

bank, with wide filters at low frequencies and narrower filters at high frequencies,

opposite to that of the ear. Using the envelope of the filter outputs also produced

worse performance (counter to the hypothesis that phase invariance might be critical).

However, filters that were linearly spaced along the frequency axis worked about as

well as those modeled on the ear.

Worse performance was also obtained using only five filters (scaled to cover the

frequency spectrum), but good results were obtained provided at least 10 filters were

used (Figure 5-3, right). This result suggests that splitting the audio up into multiple

frequency channels is sufficient to replicate the benefit of deep features provided there

are enough channels with reasonably sensible frequency tuning.

5.3.7 Objective Metrics

The models trained on deep recognition features also performed better than the base-

lines according to PESQ and STOI. Notably, this advantage was not evident when

measured with SDR. The filter bank-trained models showed the opposite trend – bet-
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Figure 5-3: Rated naturalness vs. SNR for speech processed by Wave-U-Nets trained
on cochlear model losses with different filter banks (select examples depicted above).
Error bars plot SEM (across 105 participants).

ter performance as measured by SDR, and worse via PESQ and STOI (Table 5.2).

These differences suggest that the filter bank and deep feature losses are not fully

interchangeable despite having similar effects on overall naturalness. The results also

underscore the limitations of objective metrics for capturing human perception of

altered speech.

5.4 Discussion

Prior work has proposed denoising based on deep feature losses [75, 177, 206, 109, 121],

but has not evaluated it relative to methods using simpler waveform- or subband-

based losses. We found that deep recognition features could be used to train denoising

systems that outperform waveform-based methods, but that their benefit could be

matched using a standard one-layer auditory filter bank. The results thus provide no

evidence that deep features provide a unique benefit for denoising.
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Although deep neural networks yield the best current models of biological sensory

systems [236, 125], our results indicate that these similarities are not yet sufficient

to produce audio enhancement algorithms above and beyond what can be obtained

from simple filter bank models. However, it is possible that building better models

of human perceptual systems will also yield feature losses [4, 153] that would better

transfer their perceptual benefits to humans, and produce benefits relative to simpler

approaches. It also remains possible that the audio quality is limited more by the

audio transform than the feature loss. More expressive transforms, or transforms with

stronger generative constraints, might yield a clearer benefit of deep features.

The benefits of deep feature and cochlear model losses relative to waveform-based

losses were clear from the ratings of human listeners, but were less evident in the

objective metrics we tested (PESQ, STOI, SDR). This result indicates that optimizing

for auditory model-based losses may provide perceptual benefits that conventional

objective metrics are poorly suited to measuring, and suggests to the potential value

of auditory model features as new objective metrics.

In sum, we found that audio transforms trained to modify noisy speech so as to

reconstruct deep feature representations of clean speech produce better denoising per-

formance than transforms trained to reconstruct clean speech waveforms, as measured

by the ratings of human listeners. However, a similar benefit was obtained using one-

layer auditory filter banks, suggesting the importance of multi-channel, overcomplete

representations rather than learned features per se.
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Table 5.1: Experiment 1 results. Reported metrics are averaged across the five tested
SNR levels. Higher is better for all metrics.

Model
name

Loss
function Natural. PESQ STOI SDR

Cochlear
model
(N=40;
human)

40
ERB-spaced
subbands

4.43 1.55 0.75 7.16

A123
AudioSet
features
(arch123)

4.43 1.66 0.77 4.06

A1+W1

AudioSet +
Word
features
(arch1)

4.36 1.68 0.79 6.18

A123+W123

AudioSet +
Word
features

(arch123)

4.33 1.67 0.77 4.18

A1
AudioSet
features
(arch1)

4.33 1.65 0.78 3.63

W123 Word features
(archs123) 4.24 1.67 0.79 6.64

W1 Word features
(arch1) 4.22 1.63 0.77 3.30

Random1
Random

features
(arch1)

3.91 1.57 0.78 5.64

Random123
Random

features
(arch123)

3.84 1.57 0.77 5.08

Germain
DeepFeatures

DCASE
features from

[75]
3.83 1.47 0.77 6.72

Germain
(pre-

trained)

DCASE
features from

[75]
2.36 1.14 0.64 0.93

Waveform
(Wave-U-

Net)
Waveform 4.17 1.51 0.76 7.35

Waveform
(WaveNet) Waveform 3.72 1.40 0.75 6.00

Unprocessed
input 2.67 1.15 0.70 0.21
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Table 5.2: Experiment 2 results. Reported metrics are averaged across the five tested
SNR levels. Higher is better for all metrics.

Model
name

Loss
function Natural. PESQ STOI SDR

Cochlear
model

(N=20)

20
ERB-spaced
subbands

4.33 1.54 0.77 7.61

Cochlear
model
(N=40;
human)

40
ERB-spaced
subbands

4.30 1.55 0.75 7.16

Cochlear
model

(N=160)

160
ERB-spaced
subbands

4.26 1.60 0.77 7.51

Cochlear
model

(N=10)

10
ERB-spaced
subbands

4.22 1.49 0.76 7.08

Cochlear
model

(N=80)

80
ERB-spaced
subbands

4.21 1.53 0.74 6.69

Cochlear
model
(N=5)

5 ERB-spaced
subbands 3.93 1.42 0.75 6.02

Cochlear
model
(N=40;
linear)

40 linearly-
spaced

subbands
4.32 1.51 0.76 6.82

Cochlear
model
(N=40;
env.)

Envelopes of
40 ERB
subbands

4.16 1.59 0.75 6.94

Cochlear
model
(N=40;
reverse)

40
reverse-ERB-

spaced
subbands

4.08 1.47 0.73 4.73

A123
AudioSet
features

(arch123)
4.27 1.66 0.77 4.06

Waveform
(Wave-U-

Net)
Waveform 4.17 1.51 0.76 7.35

Unprocessed
input 2.47 1.15 0.70 0.21
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Chapter 6

Conclusions

In this thesis, I have shown the potential value of considering the ecological perspec-

tive when studying human sound localization. The body of work presented here builds

on previous modeling and behavioral research by extending the study of sound local-

ization to natural sounds and environments. These extensions advanced our ability

to account for human behavior using models. In one case, we were able to account for

many psychophysical results in human hearing with a single model. In another, we

demonstrated a simple local learning rule suffices to learn representations of sound

location using only information available to human learners in a natural environ-

ment. The approach also led to a better understanding of factors that drive specific

human behaviors in sound localization, such as the link between reverberation and

the precedence effect or between spectral sparsity and natural sound localization.

We first hypothesized that an auditory task – in this case, localizing sounds in

naturalistic conditions – provides substantial constraints on the methods that both

models and humans can use to solve that task. In Chapter 2, we trained a model to lo-

calize sounds in naturalistic conditions and found that the resulting model reproduced

a large and diverse array of human psychophysical judgments across various tasks.

These comparisons, however, were limited to synthetic stimuli that had been run

in prior psychoacoustics experiments, reflecting the historical focus of human sound

localization research on tightly controlled stimuli such as tones and noise bursts.

Chapter 3 sought to extend previous behavioral studies by measuring human local-
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ization of natural sounds. We constructed a hemispheric speaker array, collected the

first behavioral dataset of localization judgments of natural sounds, and found that

human localization accuracy varied substantially across natural sounds. The model

developed in Chapter 2 predicted these human responses to unseen natural stimuli

well above chance. However, a substantial gap remains between the current model

and ceiling performance. In particular, the correlation coefficients are still below the

split-half reliability of the data. Additionally, the model makes errors in some cases

that are much larger than the errors observed in humans. This modeling approach is

a step toward models that can accurately predict human localization behavior in any

scenario, which could have many practical uses, but the current model will need to

be improved to realize the full potential of these benefits.

Next, we returned to the idea that human interaction with the natural environ-

ment constrains behavior and proposed a biologically inspired learning rule using

self-motion to learn to localize sounds in complex environments. The model learned

to localize sounds well above chance, suggesting the feasibility of such a learning

rule (though the model’s accuracy remained worse than that of humans, indicating a

need for further refinement). Lastly, we demonstrated the value of models of human

perception in applied settings where we used a model of human speech perception

as a metric to improve speech denoising. This attempt demonstrates the potential

applications of models of human auditory perception.

Throughout this thesis, I have worked to better align research questions to the sit-

uations and environments that humans experience in their daily lives. This approach

has revealed that much of human behavior can be better understood by studying

the natural environment. We hope the tools developed here will be useful in further

advancing this understanding.

6.0.1 Future Directions

Our current model is a first step toward predicting human sound localization behavior

in arbitrary auditory scenes. However, the discrepancies between model and human

localization errors in Chapter 3 make it clear that we will need to improve the model to
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provide a full account of human sound localization behavior. We began constructing

the model 5 years ago, and were constrained by the availability of recorded audio and

by the computing resources of that time. The technological advancements in machine

learning and the proliferation of large datasets and data-sharing platforms over the

past five years mean that a model built today could straightforwardly improve on our

model in several respects.

Datasets and Renderer

The model’s performance is likely limited by its training dataset. The dataset used to

train the model in Chapter 2 contains only 385 natural sounds. While this dataset was

sufficient to train a model that performs reasonably well in the real world, it seems

likely that a future model could benefit from increasing the diversity of sounds in the

dataset. In particular, our model makes azimuthal localization errors that are much

larger than human errors for approximately twenty-five sounds in the dataset. The ten

sounds localized least accurately in azimuth by the model are all musical instrument

sounds gathered from the Nsynth musical instrument dataset [59]. The sounds in

that dataset often contain a few dominant frequencies, which is not something well

represented in our model’s training dataset. The model would likely benefit from

a training set that includes sounds dominated by a few specific frequencies, such a

musical instruments.

We augmented the 385 training set sounds by bandpass filtering each stimulus with

a bank of two-octave-wide filters, which yielded 2,492 sounds in total. The augmen-

tation strategy used a fixed set of bandpass filters centered at predefined frequencies.

This augmentation strategy meant that our final dataset had co-occurrence statistics

between frequencies that likely deviated from natural sound statistics. Future models

might benefit from randomizing the filter center weights.

We used a virtual acoustic world to simulate our auditory scenes and found that it

captured important aspects of the natural environment. The simulator was sufficiently

realistic to train a model that generalized to the real world, where it was able to

accurately localize natural sounds in a real room. However, the simulator used the
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image-source method [197],which assumes perfectly rigid walls. The simulator also is

limited to rendering spatial audio in empty rectangular rooms using a fixed set of wall,

floor, and ceiling materials. It is likely that a renderer that more directly models the

physical propagation of waves would allow the model to learn to better localize in more

complex environments, such as an auditory scene where a secondary object blocks the

direct path between the source and listener. Speedups in modern computing hardware

have enabled a new class of simulators, known as finite time difference simulators

(FTDTs) [196, 210, 107, 87], that accurately model the propagation of sound waves

in arbitrary environments.

Network Architecture

Identifying better architectures for the localization task may also help to build better

models. Our model uses standard convolutional network networks, where each layer

receives its input from only the previous layer. However, neural network architectures

have diversified in recent years, including inception modules [207], residual connec-

tions [97], and transformers [216]. Many of these approaches have been successfully

applied in the audio domain [103, 218, 145]. In one recent case, a transformer ar-

chitecture was applied to binaural audio with promising results [134], and it seems

possible that leveraging these types of architectures could yield better models of sound

localization.

Our current input representations learn directly from a cochlear representation,

which was roughly three times as large as a 256-by-256 image used in a standard

neural network. Our architecture search was thus constrained by the size of the

training examples and the limited memory (16GB) and training speed available with

GPUs in 2017. These constraints induced biases in the architecture space by limiting

the search to networks that needed less than 16GB of memory and that learned

quickly in a small number of steps. Modern hardware has improved significantly, and

a new architecture search would be able to explore a much larger space of network

architectures, potentially allowing the search to find better architectures for sound

localization.
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Loss Functions

We chose to discretize our network output representation into bins, each correspond-

ing to positions every 5 in azimuth and 10 in elevation. This representation may be

suboptimal for localization in two respects. First, locations vary continuously in the

physical world, and our discretization is likely to be too coarse to reflect the location

differences that a human can resolve. Second, we used a softmax cross-entropy loss

function to calculate the error between the true and predicted bins. This penalizes

all incorrect location judgments equally, regardless of the magnitude of the error (i.e.

the model is penalized equally for guessing 180 or 5 when the true sound position is

0). A future model may benefit from using a regression loss function which would

allow some encoding of the spatial relationship between bins and represent data using

a continuous metric.

Lastly, our work in Chapter 4 suggests a more biologically plausible approach

to learning to localize sound that relies on head motion. However, the approach we

employed used a loss function that discretizes the distance between head positions into

two categories, close or far, and thus does not take full advantage of the continuous

nature of head movement. Building a loss function that makes better use of the head

orientation distance could yield a superior model. For example, the model might be

improved with a loss function based on the goal of reporting the head motion that

occurred between two excerpts of binaural audio.

6.0.2 Open Questions

Are the details of the neural network critical to explaining these results?

We have shown that the training environment has a large and somewhat interpretable

effect on the behavioral phenotype of our models. However, it is unclear to what

extent these results depend on the details of the model class. We chose to use neural

networks because they have been effective for several tasks using natural data [133,

92, 126]. However, we cannot completely exclude the possibility that our model’s

behavior is a result of an interaction between the training environment and some
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specific constraint imposed by convolutional neural networks or neural networks in

general.

To test the specificity of these results to neural networks, new models of binaural

sound localization could be constructed using other model classes, including support

vector machines, gaussian processes, or probabilistic programs. If these models re-

produce the same results, it would demonstrate that these results are not critical to

the neural network model class. However, it remains unclear whether these alter-

native model classes can accurately perform a binaural localization task in complex

environments. Previous work suggests that it may be possible [231, 124] and recently

developed tools [68, 47] may increase the likelihood of successfully constructing such

models.

Recent work has also raised the possibility that many traits observed in neural

networks may be due to hyperparameter and implementation choices rather than

details of the loss function or task [191]. In our work, we did not tune any network

hyperparameters to achieve matches with human performance, instead relying on an

architecture search to find network architectures based solely on task performance.

In addition, we pooled network judgments over ten network architectures to reduce

the likelihood that our results were specific to the idiosyncrasies of any one network

architecture. It thus seems unlikely that the results depend critically on particular

hyperparameter choices beyond the general model class that we used, But a broader

architecture search enabled by current computing hardware could more definitively

address this issue.

What other constraints are necessary to capture human behavior?

This thesis focused on the role of the environment and natural sounds as constraints

on human sound localization behaviors. However, it is likely that some aspects of

human sound localization behavior will be driven by factors specific to human physi-

ology. These may include details of the sensory periphery, or the physical properties

and limitations of neurons. The approach presented here, in which we optimized a

model to perform a behavioral task under a defined set of constraints, is not limited
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to investigating environmental constraints. The approach can be directly extended

to any constraint that can be encoded into the model. This approach has already

been fruitfully applied in models of visual scene recognition and audio word recogni-

tion, where more accurately modeling the sensory periphery resulted in models that

were more closely aligned with human responses to adversarial examples [49, 48].

Additionally, a recent model of pitch perception has demonstrated how accurately

replicating the cochlea in certain specific respects is critical for accurately modeling

human behavior in pitch perception [187].

How can models of human sound localization be applied to improve human

experiences?

The central goal of this work was to build models of human behavior to better under-

stand the human mind and the conditions necessary to give rise to human behavior.

However, it should be possible to fruitfully apply such models to auditory design

problems and improve auditory experiences in immersive settings like virtual reality.

For example, it may be possible to leverage model predictions to choose sounds that

are likely to be well localized by human listeners. Using sounds that are well local-

ized would provide users with a more complete sense of immersion and improve their

experience.

In addition, the current work may be used to design better warning signals in cases

where the signal needs to be quickly localized. For instance, the behavioral data we

collected suggested that the beep associated with a truck backing up is very difficult

to localize, which likely poses a safety risk. Our model could be used to screen a

very large set of potential replacement sounds for the backing-up warning beep. This

screening process would allow a researcher to efficiently identify candidate sounds

before gathering human data, which is a much more expensive and time-consuming

process.
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