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Abstract

Humans locate sounds in their environment to avoid danger and identify objects of
interest. In a ten-minute bike ride, a person might take note of a car approaching
from behind, a tree where a bird is singing, and pedestrians walking from around a
blind corner.

Research on human sound localization has greatly advanced our understanding
of binaural hearing but leaves us some ways from a complete understanding. In
particular, it has been difficult to assess human sound localization in ways that align
with humans experience on an everyday basis. This thesis aims to more closely align
research methods and modeling approaches with the natural sound localization tasks
that humans perform in the real world.

In the first study, we show that a model trained to localize sounds in naturalistic
conditions exhibits many features of human spatial hearing. But when trained in
unnatural environments without reverberation, noise, or natural sounds, the model’s
performance characteristics deviate from those of humans. The results show how
biological hearing is adapted to the challenges of real-world environments and illus-
trate how artificial neural networks can reveal the real-world constraints that shape
perception.

In the second study, we ran a behavioral experiment to evaluate human sound
localization in a naturalistic setting with natural sounds and identified specific sounds
that are difficult for humans to localize. We assessed whether the model of sound
localization from the first study could predict the accuracy with which individual
sounds are localized. We found that the model predicted human localization accuracy
well above chance. However, the model biases were distinct from those evident in
humans, suggesting room for future improvement.

In the third study, we constructed a model that uses a biologically inspired learning
approach to localizing sounds, relying on self-motion cues from head movements to
learn representations of sound locations. We show that this strategy can learn a
representation that enables accurate decoding of sound location without having access
to the ground truth location for sounds during training.
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In the fourth study, we used a model of human speech perception as a percep-
tual metric to improve speech denoising. We found that while this perceptual metric
improved denoising over standard approaches, a simple model of the cochlea per-
formed similarly, suggesting much of the benefit of this approach may be in using a
frequency-based overcomplete representation of the signal.

Thesis Supervisor: Josh McDermott
Title: Associate Professor
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Chapter 1

Introduction

1.1 Motivation and Background

Humans locate sounds in their environment to avoid danger and identify objects of

interest. In a ten-minute bike ride, a person might take note of a car approaching

from behind, a tree where a bird is singing, and pedestrians walking from around a

blind corner. Human sound localization is both remarkable for its utility in our daily

lives and how quickly and automatically we perform it. The mechanisms underlying

this ability are not straightforward because the sensory periphery does not provide

explicit location information. This contrasts with vision, where the retina provides

fine-grained spatial information. This spatial readout is possible due to retinotopy:

light travels in rays which allows the retina to refract light from different directions to

stereotyped regions of the retina [155]. Spatial information is not as readily available

in audition, where each sound source produces diffuse waves, as opposed to rays,

that propagate through the environment. Extracting auditory spatial information

is also difficult because waves from each source sum together when they come in

contact, which results in one final waveform reaching each ear of a human listener. In

addition, this final waveform is a linear combination of all waves from all sources in

a scene as well as reflections of waves off of other surfaces [16]. The brain must infer

source location and identity from the pair of waveforms entering the two ears despite

there being an infinite number of combinations of sources and positions that could
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lead to the received waveforms. This problem is ill-posed and results in a difficult

computational challenge, yet is one the brain solves seemingly effortlessly.

Understanding how human listeners solve this problem has long been a subject of

scientific investigation, dating back over 100 years ago to foundational work by Lord

Rayleigh in 1907 [182]. This early work explored how well individuals could localize

tones produced by tuning forks in a quiet environment. It concluded that human

sound localization relies on level differences between the left and right ear for high-

frequency sounds and differences in arrival time between the ears for low-frequency

sounds. Over the next 100 years, scientists documented the details of and limits on

the sensitivity to these cues [182, 26, 85, 94]. In addition, they discovered new types

of cues for identifying a sound’s vertical position [11, 16, 220], azimuthal position

[101], and distance [12]. This body of work has proven critical in understanding the

basic organization of human sound localization strategies.

In addition to characterizing human sound localization, another field of study

emerged with the goal of building mathematical and computational models to under-

stand and replicate the mechanisms underlying localization. Examples in this line of

work include the Interaural Time Difference (ITD) delay line model[115], ITD inter-

action model[44], weighted-image model[202], a contralateral inhibition model[141],

and a model of auditory distance perception [23]. Although significant contributions,

these models were designed and tuned to explain behavioral or neural responses for

a single task and did not take waveform input, instead operating on precomputed

features [65, 23, 141], and thus could not be tested on natural sounds in natural

conditions.

These previous scientific approaches greatly advanced our understanding of bin-

aural hearing but leave us some ways from a complete understanding. One gap in

understanding derives from the field’s approach to modeling. Most binaural hearing

models are hand-designed to replicate a specific behavior or interest. Researchers

often design the models by relying on intuition to identify a chain of signal processing

steps that might lead to the observed human behavior. By fitting a model to one task

at a time, the model’s details may be overfit to their specific behavioral task. And
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by using hand-designed and precomputed features for the model input, the model is

restricted to operating on a small subset of all possible sounds. We localize sounds

with a single auditory system but have thus far lacked a single model that can account

for many aspects of human sound localization.

A second gap in understanding is that the field has tended to assess human sound

localization behavior using stimuli that deviate significantly from a person’s everyday

experience. Specifically, most stimuli used to test binaural hearing are unnatural, such

as variations on noise bursts or sinusoids. There are several reasons that researchers

used these types of stimuli. One previous issue was technological limitations on repli-

cating natural sounds. However, the most common is that traditional psychophysics

[?, 83] emphasizes holding all aspects of the stimulus constant except one variable

of interest, which is systematically varied while human responses are recorded. This

method is designed to measure human sensitivity to a specific variable of a stimulus.

However, the resulting stimuli lack the structure present in ecologically valid sounds.

This raises the possibility that the resulting scientific characterization of sound local-

ization may deviate from what would be observed in more realistic situations.

This thesis aims to more closely align research methods and modeling approaches

with the natural sound localization tasks that humans perform daily. We intend this

approach to advance binaural hearing research along its two primary axes. To ex-

tend and unify models, we explore approaches and applications that are constrained

and inspired by the natural world. To better understand behavior, we evaluate hu-

man sound localization in a naturalistic setting with natural sounds and measure the

accuracy of human listeners.

1.2 Organization of Thesis

This thesis consists of four studies: three computational studies and one behavioral

study.

The first study [63] builds a neural network-based model of human sound local-

ization. A core goal of binaural hearing models is to accurately predict and explain
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human behavior in sound localization tasks. We hypothesized that localizing sounds

in naturalistic conditions is a significant constraint on the solution space for humans.

To test this idea, we simulated a naturalistic environment using a virtual auditory

world and optimized a model to localize natural sounds in this environment. We

found that the resulting model was also able to accurately localize real-world binaural

recordings, indicating that the virtual acoustic world simulator captures enough as-

pects of the real world to allow the optimized model to generalize beyond the artificial

training data. The model also replicated human behavior in a range of psychophys-

ical experiments, including sensitivity to monaural spectral cues and interaural time

and level differences, integration across frequency, biases for sound onsets, and limits

on localization of concurrent sources. The similarity between human and model be-

havior suggests that many aspects of human sound localization behaviors may be a

consequence of optimizing performance in a natural environment. Lastly, deviating

from natural training conditions during training caused the model to deviate from

human behavioral data. In some cases, these deviations from human behavior were

specific to a single psychophysics experiment, such as the precedence effect, which

only emerged when the model learned to localize in a reverberant environment. The

approach provides a tool that can be used to discover links between specific behavioral

traits and challenges posed by specific properties of the natural environment.

The second study measured human localization of natural sounds presented in a

realistic environment. In addition to quantifying the spatial accuracy of localization

for natural sounds, we identified specific sounds that are difficult to localize. Lastly,

we evaluated how well the model in chapter 2 could predict which sounds would be

difficult to localize by measuring model localization errors for the same set of natural

sounds that were used in the human experiment. Model errors were correlated with

human errors, with correlation coefficients around 0.6-0.7, but the model also made

errors substantially larger than human listeners in some cases.

The third chapter explored a biologically inspired approach to learning to localize

sounds that relies on head self-motion cues. Specifically, we constructed a neural-

network model that receives the simulated binaural audio for an auditory scene at
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many different head positions. The model uses contrastive learning to find a repre-

sentation in which binaural audio from nearby head positions and the same auditory

scene is represented similarly but where audio from distant head positions or different

auditory scenes is dissimilar. Specifically, the model compares pairs of binaural au-

dio excerpts and calculates the cosine similarity between the representations for each

pair. If the excerpts are from the same auditory scene and similar head positions, the

model uses gradient descent to increase the cosine similarity between the represen-

tations in that pair. In all other cases, the model uses gradient descent to minimize

cosine similarity between pairs of binaural audio excerpts. We show that this strat-

egy can learn a representation that enables accurate linear decoding of sound location

without having access to the ground truth location for sounds during training.

The fourth study [187] explores using a neural-network model of human speech

perception as a perceptual metric to improve speech denoising. Specifically, we mea-

sured the distance between features from a pre-trained model of speech or environ-

mental sound classification to quantify how much a stimulus deviated from a target

signal. We used the distance as an error signal to train a second neural network to

remove background noise from excerpts of noisy speech. We found that while this

perceptual metric improved denoising over standard waveform-based approaches, it

performed no better than a simple model of the cochlea. This suggests that much of

the benefit derived from this perceptual metric can be attributed to simply using a

frequency-based overcomplete signal representation of the signal.

Together, these studies suggest that natural sounds, environments, and behaviors

provide important constraints on human sound localization and suggest a promising

path forward for incorporating ecological constraints to advance the study of sound

localization.
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Chapter 2

Deep neural network models of sound

localization reveal how perception is

adapted to real-world environments

Abstract

Mammals localize sounds using information from their two ears. Localization in
real-world conditions is challenging, as echoes provide erroneous information and
noises mask parts of target sounds. To better understand real-world localization, we
equipped a deep neural network with human ears and trained it to localize sounds
in a virtual environment. The resulting model localized accurately in realistic con-
ditions with noise and reverberation. In simulated experiments, the model exhibited
many features of human spatial hearing: sensitivity to monaural spectral cues and
interaural time and level differences, integration across frequency, biases for sound on-
sets and limits on localization of concurrent sources. But when trained in unnatural
environments without reverberation, noise or natural sounds, these performance char-
acteristics deviated from those of humans. The results show how biological hearing
is adapted to the challenges of real-world environments and illustrate how artificial
neural networks can reveal the real-world constraints that shape perception.

2.1 Introduction

Why do we see or hear the way we do? Perception is believed to be adapted to

the world, shaped over evolution and development to help us survive in our eco-
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logical niche. Yet adaptedness is often difficult to test. Many phenomena are not

obviously a consequence of adaptation to the environment, and perceptual traits are

often proposed to reflect implementation constraints rather than the consequences of

performing a task well. Well-known phenomena attributed to implementation con-

straints include aftereffects[45, 117], masking[52, 150], poor visual motion and form

perception for equiluminant colour stimuli[146] and limits on the information that

can be extracted from high-frequency sound[7, 114, 113].

Evolution and development can be viewed as an optimization process that pro-

duces a system that functions well in its environment. The consequences of such op-

timization for perceptual systems have traditionally been revealed by ideal observer

models—systems that perform a task optimally under environmental constraints[73,

72] and whose behavioural characteristics can be compared to actual behaviour. Ideal

observers are typically derived analytically, but as a result are often limited to simple

psychophysical tasks[199, 99, 224, 77, 29, 28]. Despite recent advances, such models

remain intractable for many real-world behaviours. Rigorously evaluating adapted-

ness has thus remained out of reach for many domains. Here we extend ideas from

ideal observer theory to investigate the environmental constraints under which hu-

man behaviour emerges, using contemporary machine learning to optimize models

for behaviourally relevant tasks in simulated environments. Human behaviours that

emerge from machine learning under a set of naturalistic environmental constraints,

but not under alternative constraints, are plausibly a consequence of optimization for

those natural constraints (that is, adapted to the natural environment) (Fig. 2-1a).

Sound localization is one domain of perception where the relationship of behaviour

to environmental constraints has not been straightforward to evaluate. The basic out-

lines of spatial hearing have been understood for decades[182, 11, 32, 85]. Time and

level differences in the sound that enters the two ears provide cues to a sound’s loca-

tion, and location-specific filtering by the ears, head and torso provide monaural cues

that help resolve ambiguities in binaural cues (Fig. 2-1b). However, in real-world

conditions, background noise masks or corrupts cues from sources to be localized

and reflections provide erroneous cues to direction[16]. Classical models based on
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these cues thus cannot replicate real-world localization behaviour[18, 65, 40]. Instead,

modelling efforts have focused on accounting for observed neuronal tuning in early

stages of the auditory system rather than behaviour[115, 44, 17, 93, 245, 203, 56],

or have modelled behaviour in simplified experimental conditions using particular

cues[40, 203, 190, 179, 202, 213, 62]. Engineering systems must solve localization in

real-world conditions, but typically adopt approaches that diverge from biology, using

more than two microphones and/or not leveraging cues from ear/head filtering[156,

230, 233, 184, 34, 148, 1, 116]. As a result, we lack quantitative models of how

biological organisms localize sounds in realistic conditions. In the absence of such

models, the science of sound localization has largely relied on intuitions about opti-

mality. Those intuitions were invaluable in stimulating research, but on their own are

insufficient for quantitative predictions.

Here we exploit the power of contemporary artificial neural networks to develop

a model optimized to localize sounds in realistic conditions. Unlike much other con-

temporary work using neural networks to investigate perceptual systems[128, 88, 236,

41, 58, 126], our primary interest is not in potential correspondence between internal

representations of the network and the brain. Instead, we aim to use the neural net-

work as a way to find an optimized solution to a difficult real-world task that is not

easily specified analytically, for the purpose of comparing its behavioural characteris-

tics to those of humans. Our approach is thus analogous to the classic ideal observer

approach, but harnesses modern machine learning in place of an ideal observer for a

problem where one is not analytically tractable.

To obtain sufficient labelled data with which to train the model, and to enable

the manipulation of training conditions, we used a virtual acoustic world[197]. The

virtual world simulated sounds at different locations with realistic patterns of surface

reflections and background noise that could be eliminated to yield unnatural training

environments. To give the model access to the same cues available to biological

organisms, we trained it on a high-fidelity cochlear representation of sound, leveraging

recent technical advances[35] to train the large models that are required for such

high-dimensional input. Unlike previous generations of neural network models[40,
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156, 184, 148, 116], which were reliant on hand-specified sound features, we learn

all subsequent stages of a sound localization system to obtain good performance in

real-world conditions.

When tested on stimuli from classic laboratory experiments, the resulting model

replicated a large and diverse array of human behavioural characteristics. We then

trained models in unnatural conditions to simulate evolution and development in al-

ternative worlds. These alternative models deviated notably from human-like hearing.

The results indicate that the characteristics of human hearing are indeed adapted to

the constraints of real-world localization, and that the rich panoply of sound localiza-

tion phenomena can be explained as consequences of this adaptation. The approach

we use is broadly applicable to other sensory modalities, providing a way to test the

adaptedness of aspects of human perception to the environment and to understand

the conditions in which human-like perception arises.

2.2 Results

2.2.1 Model Construction

We began by building a system that could localize sounds using the information avail-

able to human listeners. The system thus had outer ears (pinnae), and a simulated

head and torso, along with a simulated cochlea. The outer ears and head/torso were

simulated using head-related impulse responses (HRIRs) recorded from a standard

physical model of the human[69]. The cochlea was simulated with a bank of band-

pass filters modelled on the frequency selectivity of the human ear[78, 159], whose

output was rectified and low-pass filtered to simulate the presumed upper limit of

phase locking in the auditory nerve[171]. The inclusion of a fixed cochlear front-end

(in lieu of trainable filters) reflected the assumption that the cochlea evolved to serve

many different auditory tasks rather than being primarily driven by sound localiza-

tion. As such, the cochlea seemed a plausible biological constraint on localization.

The output of the two cochleae formed the input to a standard convolutional
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neural network (CNN) (Fig. 2-1c). This network instantiated a cascade of simple

operations—filtering, pooling and normalization—culminating in a softmax output

layer with 504 units corresponding to different spatial locations (spaced 5° in azimuth

and 10° in elevation). The parameters of the model were tuned to maximize localiza-

tion performance on the training data. The optimization procedure had two phases:

an architecture search in which we searched over architectural parameters to find a

network architecture that performed well (Fig. 2-1d), and a training phase in which

the filter weights of the selected architectures were trained to asymptotic performance

levels using gradient descent.

27



(Caption on next page.)
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Figure 2-1:
a, Illustration of the method. A variety of constraints (left) shape human behaviour. Models opti-
mized under particular environmental constraints (right) illustrate the effect of these constraints on
behaviour. Environment simulators can instantiate naturalistic environments as well as alternative
environments in which particular properties of the world are altered, to examine the constraints
that shape human behaviour. b, Cues to sound location available to humans: interaural time and
level differences (ITDs and ILDs) (left and centre) and spectral cues to elevation (right). Time
and level differences are shown for low and high-frequency sinusoids (left and centre, respectively).
The level difference is small for the low frequency, and the time difference is ambiguous for the
high frequency. c, Training procedure. natural sounds (green) were rendered at a location in a
room, with noises (natural sound textures, black) placed at other locations. Rendering included
direction-specific filtering by the head/torso/pinnae, using head- related transfer functions from the
KEMAR mannequin. neural networks were trained to classify the location of the natural sound
source (azimuth and elevation) into one of a set of location bins (spaced 5° in azimuth and 10° in
elevation). d, Example neural network architectures from the architecture search. Architectures
consisted of sequences of ‘blocks’ (a normalization layer, followed by a convolution layer, followed
by a non-linearity layer) and pooling layers, culminating in fully connected layers followed by a
classifier that provided the network’s output. Architectures varied in the total number of layers,
the kernel dimensions for each convolutional layer, the number of blocks that preceded each pooling
layer and the number of fully connected layers preceding the classifier. Labels indicate an example
block, pooling layer and fully connected layer. The model’s behaviour was taken as the average of
the results for the ten best architectures (assessed by performance on a held-out validation set of
training examples). e, Recording setup for real-world test set. The mannequin was seated on a chair
and rotated relative to the speaker to achieve different azimuthal positions. Sound was recorded
from microphones in the mannequin ears. f, Free-field localization of human listeners, replotted from
a previous publication[240]. Participants heard a sound played from one of 11 speakers in the front
horizontal plane and pointed to the location. Graph plots kernel density estimate of participant re-
sponses for each actual location. g, Localization judgements of the trained model for the real-world
test set. Graph plots kernel density estimates of response distribution. For ease of comparison with
f, in which all locations were in front of the listener, positions were front–back folded. h, Localization
judgements of the model without front–back folding. Model errors are predominantly at front–back
reflections of the correct location.
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Figure 2-2:
a, Schematic of stimulus generation. noise bursts filtered into high or low-frequency bands were
rendered at a particular azimuthal position, after which an additional ITD or ILD was added to the
stereo audio signal. b, Schematic of response analysis. Responses were analysed to determine the
amount by which the perceived location (L) was altered (� L) by the added ITD/ILD bias, expressed
as the amount by which the ITD/ILD would have changed if the actual sound’s location changed
by � L. c, Effect of added ITD and ILD bias on human localization. The y axis plots amount by
which the perceived location was altered, expressed in ITD/ILD as described above. Each dot plots
a localization judgement from one trial. Data reproduced from a previous publication[151]. d, Effect
of additional ITD and ILD on model localization. Same conventions as b. Error bars plot s.e.m.,
bootstrapped across the ten networks.
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The architecture search consisted of training each one of a large set of possible ar-

chitectures for 15,000 training steps with 16 1-s stimulus examples per step (240,000

total examples; see Extended Data Fig. 2-9 for distribution of localization perfor-

mance across architectures and Extended Data Fig. 2-10 for the distributions from

which architectures were chosen). We then chose the ten networks that performed

best on a validation set of data not used during training (Extended Data Fig. 2-11).

The parameters of these ten networks were then reinitialized and each trained for

100,000 training steps (1.6 million examples). Given evidence that internal represen-

tations can vary across different networks trained on the same task[161], we present

results aggregated across the top ten best-performing architectures, treated akin to

different participants in an experiment[228]. Most results graphs present the average

results for these ten networks, which we collectively refer to as ‘the model’.

The training data were based on a set of roughly 500,000 stereo audio signals with

associated three-dimensional (3D) locations relative to the head (on average 988 ex-

amples for each of the 504 location bins, Methods). These signals were generated from

385 natural sound source recordings (Extended Data Fig. 2-12) rendered at a spa-

tial location in a simulated room. The room simulator used a modified source-image

method[197, 3] to simulate the reflections off the walls of the room. Each reflection

was then filtered by the (binaural) HRIR for the direction of the reflection[69]. Five

different rooms were used, varying in their dimensions and in the material of the walls

(Extended Data Fig. 2-13). To mimic the common presence of noise in real-world

environments, each training signal also contained spatialized noise. Background noise

was synthesized from the statistics of a natural sound texture[160], and was rendered

at between three and eight randomly chosen locations using the same room simulator

to produce noise that was diffuse but non-uniform, intended to replicate common

real-world sources of noise. At each training step, the rendered natural sound sources

were randomly paired with rendered background noises. The neural networks were

trained to map the binaural audio to the location of the sound source (specified by

its azimuth and elevation relative to the model’s ‘head’).
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2.2.2 Model evaluation in real-world conditions

The trained networks were first evaluated on a held-out set of 70 sound sources

rendered using the same pipeline used to generate the training data (yielding a total of

around 47,000 stereo audio signals). The best-performing networks produced accurate

localization for this validation set (the mean error was 5.3° in elevation and 4.4° in

azimuth, front–back folded: that is, reflected about the coronal plane to discount

front–back confusions).

To assess whether the model would generalize to real-world stimuli outside the

training distribution, we made binaural recordings in an actual conference room using

a mannequin with in-ear microphones (Fig. 2-1e). Humans localize relatively well in

such free-field conditions (Fig. 2-1f). The trained networks also localized real-world

recordings relatively well (Fig. 2-1g), on par with human free-field localization, with

errors mostly limited to the front–back confusions that are common to humans when

they cannot move their heads (Fig. 2-1h)[242, 220].

For comparison, we also assessed the performance of a standard set of two-

microphone localization algorithms from the engineering literature[223, 193, 55, 54,

238, 217]. In addition, we trained the same set of neural networks to localize sounds

from a two-microphone array that lacked the filtering provided to biological organ-

isms by the ears, head and torso but that included the simulated cochlea (Extended

Data Fig. 2-14a). Our networks that had been trained with biological pinnae, head

and torso filtering outperformed the set of standard two-microphone algorithms from

the engineering community, as well as the neural networks trained with stereo mi-

crophone input without a head and ears (Extended Data Fig. 2-14b,c). This latter

result confirms that the head and ears provide valuable cues for localization. Overall,

performance on the real-world test set demonstrates that training a neural network

in a virtual world produces a model that can accurately localize sounds in realistic

conditions.
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2.2.3 Model behavioural characteristics

To assess whether the trained model replicated the characteristics of human sound

localization, we simulated a large set of behavioural experiments from the literature,

intended to span many of the best-known and largest effects in spatial hearing. We

replicated the conditions of the original experiments as closely as possible (for ex-

ample, when humans were tested in anechoic conditions, we rendered experimental

stimuli in an anechoic environment). We emphasize that the networks were not fit to

human data in any way. Despite this, the networks reproduced the characteristics of

human spatial hearing across this broad set of experiments.

(Caption on next page.)
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Figure 2-3:
a, Schematic of stimuli from experiment measuring localization accuracy at different azimuthal
positions. b, Localization accuracy of human listeners for broadband noise at different azimuthal
positions. Data were scanned from a previous publication[229], which measured discriminability of
noise bursts separated by 15° (quantified as d’). Error bars plot s.e.m. c, Localization accuracy of our
model for broadband noise at different azimuthal positions. Graph plots mean absolute localization
error (Mean abs. error) of the same noise bursts used in the human experiment in b. Error bars
plot the s.e.m. across the ten networks. d, Schematic of stimuli from experiment measuring effect of
bandwidth on localization accuracy. noise bursts varying in bandwidth were presented at particular
azimuthal locations; participants indicated the azimuthal position with a keypress. e, Effect of
bandwidth on human localization of noise bursts. Accuracy was quantified as r.m.s. error. Error
bars plot the s.d. Data are replotted from a previous publication[241]. f, Effect of bandwidth on
model localization of noise bursts. networks were constrained to report only the azimuth of the
stimulus. Error bars plot s.e.m. across the ten networks.

2.2.4 Sensitivity to interaural time and level differences

We began by assessing whether the networks learned to use the binaural cues known to

be important for biological sound localization. We probed the effect of interaural time

differences (ITDs) and interaural level differences (ILDs) on localization behaviour us-

ing an experiment in which additional time and level differences are added to high-

and low-frequency sounds rendered in virtual acoustic space[151] (Fig. 2-2a). This ex-

perimental method has the advantage of using realistically externalized sounds and an

absolute localization judgement (rather than the left/right lateralization judgements

of simpler stimuli that are common to many other experiments[249, 89, 102, 26]).

In the original experiment[151], the change to perceived location imparted by the

additional ITD or ILD was expressed as the amount by which the ITD or ILD would

change in natural conditions if the actual location were changed by the perceived

amount (Fig. 2-2b). This yields a curve whose slope indicates the efficacy of the

manipulated cue (ITD or ILD). We reproduced the stimuli from the original study,

rendered them in our virtual acoustic world, added ITDs and ILDs as in the original

study and analysed the model’s localization judgements in the same way.

For human listeners, ITD and ILD have opposite efficacies at high and low frequen-

cies (Fig. 2-2c), as predicted by classical ‘duplex’ theory[182]. An ITD bias imposed

on low-frequency sounds shifts the perceived location of the sound substantially (bot-

tom left), whereas an ITD imposed on high-frequency sound does not (top left). The
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opposite effect occurs for ILDs (right panels), although there is a weak effect of ILDs

on low-frequency sound. This latter effect is inconsistent with the classical duplex

story but consistent with more modern measurements indicating small but reliable

ILDs at low frequencies[31] that are used by the human auditory system[90, 239, 94].

As shown in Fig. 2-2d, the model qualitatively replicated the effects seen in hu-

mans. Added ITDs and ILDs had the largest effect at low and high frequencies,

respectively, but ILDs had a modest effect at low frequencies as well. This produced

an interaction between the type of cue (ITD/ILD) and frequency range (difference of

differences between slopes significantly greater than 0; P < 0.001, evaluated by boot-

strapping across the ten networks). However, the effect of ILD at low frequencies was

also significant (slope significantly greater than 0; P < 0.001, via bootstrap). Thus,

a model optimized for accurate localization both exhibits the dissociation classically

associated with duplex theory, but also its refinements in the modern era.

2.2.5 Azimuthal localization of broadband sounds

We next measured localization accuracy of broadband noise rendered at different

azimuthal locations (Fig. 2-3a). In humans, localization is most accurate near the

midline (Fig. 2-3b), and becomes progressively less accurate as sound sources move

to the left or right of the listener[188, 165, 229]. One explanation is that the first

derivatives of ITD and ILD with respect to azimuthal location decrease as the source

moves away from the midline[16], providing less information about location[17]. The

model qualitatively reproduced this result (Fig. 2-3c).
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Figure 2-4:
a, Photographs of ear alteration in humans (reproduced from a previous publication[105]). b, Sound
localization by human listeners with unmodified ears. Graph plots mean and s.e.m. of perceived
locations for four participants, superimposed on grid of true locations (dashed lines). Data scanned
from the original publication[105]. c, Effect of ear alteration on human localization. Same conven-
tions as b. d, Sound localization in azimuth and elevation by the model, using the ears (HRIRs) from
training, with broadband noise sound sources. Graph plots mean locations estimated by the ten net-
works. Tested locations differed from those in the human experiment to conform to the location bins
used for network training. e, Effect of ear alteration on model sound localization. Ear alteration was
simulated by substituting an alternative set of HRIRs when rendering sounds for the experiment.
Graph plots average results across all 45 sets of alternative ears (averaged across the ten networks).
f, Effect of individual sets of alternative ears on localization in azimuth. Graph shows results for a
larger set of locations than in d and e to illustrate the generality of the effect. g, Effect of individual
sets of alternative ears on localization in elevation. Bolded lines show ears at 5th, 25th, 75th and
95th percentiles when the 45 sets of ears were ranked by accuracy. h, Smoothing of HRTFs, produced
by varying the number of coefficients in a discrete cosine transform. Reproduced from the original
publication, ref. [137]. i, Effect of spectral smoothing on human perception. Participants heard two
sounds, one played from a speaker in front of them and one played through open-backed earphones,
and judged which was which. The earphone-presented sound was rendered using HRTFs smoothed
by various degrees. In practice, participants performed the task by noting changes in apparent sound
location. Data scanned from the original publication[137]. Error bars plot s.e.m. Conditions with
4, 2 and 1 cosine coefficients were omitted from the experiment, but are included on the x axis to
facilitate comparison with the model results in j. j, Effect of spectral smoothing on model sound
localization accuracy (measured in both azimuth and elevation, as the mean absolute localization
error). Conditions with 512 and 1,024 cosine components were not realizable given the length of the
impulse responses we used. k, Effect of spectral smoothing on model accuracy in azimuth. l, Effect
of spectral smoothing on model accuracy in elevation. m, Stimuli from experiment in n and o. noise
bursts varying in low- or high-pass cut-off were presented at particular elevations. n, Effect of low-
and high-pass cut-off on accuracy in humans. Data scanned from the original publication[98]; error
bars were not provided in the original publication. o, Effect of low- and high-pass cut-off on model
accuracy. networks were constrained to report only elevation. Here and in j, k and l, error bars plot
s.e.m. across the ten networks.
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2.2.6 Integration across frequency

Because biological hearing begins with a decomposition of sound into frequency chan-

nels, binaural cues are thought to be initially extracted within these channels[85, 115].

However, organisms are believed to integrate information across frequency to achieve

more accurate localization than could be mediated by any single frequency chan-

nel. One signature of this integration is improvement in localization accuracy as the

bandwidth of a broadband noise source is increased (Fig. 2-3d,e)[30, 241]. We repli-

cated one such experiment on the networks and they exhibited a similar effect, with

accuracy increasing with noise bandwidth (Fig. 2-3f).

2.2.7 Use of ear-specific cues to elevation

In addition to the binaural cues that provide information about azimuth, organisms

are known to make use of the direction-specific filtering imposed on sound by the

ears, head and torso[11, 227]. Each individual’s ears have resonances that ‘colour’ a

sound differently depending on where it comes from in space. Individuals are believed

to learn the specific cues provided by their ears. In particular, if forced to listen with

altered ears, either via moulds inserted into the ears[105] or via recordings made in a

different person’s ears[225], localization in elevation degrades even though azimuthal

localization is largely unaffected (Fig. 2-4a–c).

To test whether the trained networks similarly learned to use ear-specific elevation

cues, we measured localization accuracy in two conditions: one where sounds were

rendered using the HRIR set used for training the networks, and another where the

impulse responses were different (having been recorded in a different person’s ears).

Because we have unlimited ability to run experiments on the networks, in the latter

condition we evaluated localization with 45 different sets of impulse responses, each

recorded from a different human. As expected, localization of sounds rendered with

the ears used for training was good in both azimuth and elevation (Fig. 2-4d). But

when tested with different ears, localization in elevation generally collapsed (Fig. 2-

4e), much like what happens to human listeners when moulds are inserted in their
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ears (Fig. 2-4c), even though azimuthal localization was nearly indistinguishable from

that with the trained ears. Results for individual sets of alternative ears revealed that

elevation performance transferred better across some ears than others (Fig. 2-4f,g),

consistent with anecdotal evidence that sounds rendered with head-related transfer

functions (HRTFs) other than one’s own can sometimes be convincingly localized in

three dimensions.

2.2.8 Limited spectral resolution of elevation cues

Elevation perception is believed to rely on the peaks and troughs introduced to a

sound’s spectrum by the ears/head/torso[11, 16, 227] (Fig. 2-1b, right). In hu-

mans, however, perception is dependent on relatively coarse spectral features —

the transfer function can be smoothed substantially before human listeners notice

abnormalities[137] (Fig. 2-4h,i), for reasons that are unclear. In the original demon-

stration of this phenomenon, human listeners discriminated sounds with and without

smoothing, a judgement that was in practice made by noticing changes in the appar-

ent location of the sound. To test whether the trained networks exhibited a similar

effect, we presented sounds to the networks with similarly smoothed transfer func-

tions and measured the extent to which the localization accuracy was affected. The

effect of spectral smoothing on the networks’ accuracy was similar to the measured

sensitivity of human listeners (Fig. 2-4j). The effect of the smoothing was most

prominent for localization in elevation, as expected, but there was also some effect

on localization in azimuth for the more extreme degrees of smoothing (Fig. 2-4k,l),

consistent with evidence that spectral cues affect azimuthal space encoding[111].

2.2.9 Dependence on high-frequency spectral cues to elevation

The cues used by humans for localization in elevation are primarily in the upper part

of the spectrum[139, 14]. To assess whether the trained networks exhibited a similar

dependence, we replicated an experiment measuring the effect of high- and low-pass

filtering on the localization of noise bursts[98] (Fig. 2-4m). Model performance varied
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with the frequency content of the noise in much the same way as human performance

(Fig. 2-4n,o).

2.2.10 The precedence effect

Another hallmark of biological sound localization is that judgements are biased to-

wards information provided by sound onsets[18, 200]. The classic example of this

bias is known as the precedence effect[221, 143, 24]. If two clicks are played from

speakers at different locations with a short delay (Fig. 2-5a), listeners perceive a

single sound whose location is determined by the click that comes first. The effect is

often suggested to be an adaptation to the common presence of reflections off envi-

ronmental surfaces (Fig. 2-1c) — reflections arrive from an erroneous direction but

traverse longer paths and arrive later, such that basing location estimates on the

earliest arriving sound might avoid errors[18]. To test whether our model would ex-

hibit a similar effect, we simulated the classic precedence experiment, rendering two

clicks at different locations. When clicks were presented simultaneously, the model

reported the sound to be centred between the two click locations, but when a small

inter-click delay was introduced, the reported location switched to that of the leading

click (Fig. 2-5b). This effect broke down as the delay was increased, as in humans,

although with the difference that the model could not report hearing two sounds and

so instead reported a single location intermediate between those of the two clicks.

To compare the model results to human data, we simulated an experiment in

which participants reported the location of both the leading and lagging click as the

interclick delay was varied[144]. At short but non-zero delays, humans accurately

localize the leading but not the lagging click (Fig. 2-5c, because a single sound is

heard at the location of the leading click). At longer delays, the lagging click is more

accurately localized and listeners start to mislocalize the leading click, presumably

because they confuse which click is first[144]. The model qualitatively replicated both

effects, in particular the large asymmetry in localization accuracy for the leading and

lagging sound at short delays (Fig. 2-5d).
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2.2.11 Multi-source localization

Humans are able to localize multiple concurrent sources, but only to a point[189,

122, 244]. The reasons for the limits on multi-source localization are unclear[122].

These limitations could reflect human-specific cognitive constraints. For instance,

reporting a localized source might require attending to it, which could be limited

by central factors not specific to localization. Alternatively, localization could be

fundamentally limited by corruption of spatial cues by concurrent sources or other

ambiguities intrinsic to the localization problem.

To assess whether the model would exhibit limitations like those observed in hu-

mans, we replicated an experiment[244] in which humans judged both the number

and location of a set of speech signals played from a subset of an array of speakers

(Fig. 2-6a). To enable the model to report multiple sources we fine-tuned the final

fully connected layer to indicate the probability of a source at each of the location

bins, and set a probability criterion above which we considered the model to report a

sound at the corresponding location (Methods). The weights in all earlier layers were

‘frozen’ during this fine-tuning, such that all other stages of the model were identical

to those used in all other experiments. We then tested the model on the experimental

stimuli.

Humans accurately report the number of sources up to three, after which they

undershoot, only reporting about four sources in total regardless of the actual number

(Fig. 2-6b). The model reproduced this effect, also being limited to approximately

four sources (Fig. 2-6c). Human localization accuracy also systematically drops with

the number of sources (Fig. 2-6d): the model again quantitatively reproduced this

effect (Fig. 2-6e). The model–human similarity suggests that these limits on sound

localization are intrinsic to the constraints of the localization problem, rather than

reflecting human-specific central factors.
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Figure 2-5:
a, Diagram of stimulus. Two clicks are played from two different locations relative to the listener.
The time interval between the clicks is manipulated and the listener is asked to localize the sound(s)
that they hear. When the delay is short but non-zero, listeners perceive a single click at the location
of the first click. At longer delays, listeners hear two distinct sounds. b, Localization judgements
of the model for two clicks at + 45 and - 45°. The model exhibits a bias for the leading click when
the delay is short but non-zero. At longer delays, the model judgements (which are constrained to
report the location of a single sound, unlike those of humans) converge to the average of the two click
locations. Error bars plots s.e.m. across the ten networks. c, Error in localization of the leading and
lagging clicks by humans as a function of interclick delay. SC denotes a single click at the leading
or lagging location. Bars plot r.m.s. localization error. Error bars plot s.d. Data scanned from the
original publication[144]. d, Error in localization of the leading and lagging clicks by the model as
a function of interclick delay. Bars plot r.m.s. localization error. Error bars plots s.e.m. across the
ten networks.
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2.2.12 Effect of optimization for unnatural environments

Despite having no previous exposure to the stimuli used in the experiments and de-

spite not being fit to match human data in any way, the model qualitatively replicated

a wide range of classic behavioural effects found in humans. These results raise the

possibility that the characteristics of biological sound localization may be understood

as a consequence of optimization for real-world localization. However, given these

results alone, the role of the natural environment in determining these characteristics

is left unclear.

To assess the extent to which the properties of biological hearing are adapted to the

constraints of localization in natural environments, we took advantage of the ability

to optimize models in virtual worlds altered in various ways, intended to simulate

the optimization that would occur over evolution and/or development in alternative

environments (Fig. 2-1a). We altered the training environment in one of three ways

(Fig. 2-7a): (1) by eliminating reflections (simulating surfaces that absorb all sound

that reaches them, unlike real-world surfaces), (2) by eliminating background noise

and (3) by replacing natural sound sources with artificial sounds (narrowband noise

bursts). In each case, we trained the networks to asymptotic performance, then froze

their weights and ran them on the full suite of psychophysical experiments described

above. The psychophysical experiments were identical for all training conditions; the

only difference was the strategy learned by the model during training, as might be

reflected in the experimental results. We then quantified the dissimilarity between

the model psychophysical results and those of humans as the mean squared error

between the model and human results, averaged across experiments (normalized to

have uniform axis limits, Methods).

Figure 7b shows the average dissimilarity between the human and model results on

the suite of psychophysical experiments, computed separately for each model training

condition. The dissimilarity was lowest for the model trained in natural conditions,

and significantly higher for each of the alternative conditions (P < 0.001 in each

case, obtained by comparing the dissimilarity of the alternative conditions to a null
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distribution obtained via bootstrap across the ten networks trained in the naturalistic

condition; results were fairly consistent across networks, Extended Data Fig. 2-15).

The effect size of the difference in dissimilarity between the naturalistic training

condition results and each of the other training conditions was large in each case

(d = 2.13, anechoic; d = 2.75, noiseless; d = 3.06, unnatural sounds). This result

provides additional evidence that the properties of spatial hearing are consequences

of adaptation to the natural environment — human-like spatial hearing emerged from

task optimization only for naturalistic training conditions.

To get an insight into how the environment influences perception, we examined

the human–model dissimilarity for each experiment individually (Fig. 2-7c). Because

the absolute dissimilarity is not meaningful (in that it is limited by the reliability

of the human results, which are not perfect; Extended Data Fig. 2-16), we assessed

the differences in human–model dissimilarity between the natural training condition

and each unnatural training condition. These differences were most pronounced for

a subset of experiments in each case.

The anechoic training condition produced most abnormal results for the prece-

dence effect, but also produced substantially different results for ITD cue strength.

The effect size for the difference in human–model dissimilarity between anechoic and

natural training conditions was significantly greater in both these experiments (prece-

dence effect d = 4.16; ITD cue strength d = 3.41) than in the other experiments (P <

0.001, by comparing the effect sizes of one experiment to the distribution of the effect

size for another experiment obtained via bootstrap across networks). The noiseless

training condition produced most abnormal results for the effect of bandwidth (d

= 4.71; significantly greater than that for other experiments, P < 0.001, via boot-

strap across networks). We confirmed that this result was not somehow specific to

the absence of internal neural noise in our cochlear model, by training an additional

model in which noise was added to each frequency channel (Methods). We found

that the results of training in noiseless environments remained very similar. The

training condition with unnatural sounds produced most abnormal results for the ex-

periment measuring elevation perception (d = 4.4 for the ear alteration experiment;
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d = 4.28 for the high-frequency elevation cue experiment; P < 0.001 in both cases,

via bootstrap across networks), presumably because without the pressure to localize

broadband sounds, the model did not acquire sensitivity to spectral cues to elevation.

These results indicate that different worlds would lead to different perceptual systems

with distinct localization strategies.

The most interpretable example of environment-driven localization strategies is

the precedence effect. This effect is often proposed to render localization robust to

reflections, but others have argued that its primary function might instead be to

eliminate interaural phase ambiguities, independent of reflections[248]. This effect

is shown in Fig. 2-7d for models trained in each of the four virtual environments.

Anechoic training completely eliminated the effect, even though it was largely un-

affected by the other two unnatural training conditions. This result substantiates

the hypothesis that the precedence effect is an adaptation to reflections in real-world

listening conditions. See Extended Data Figs. 9 and 10 for full psychophysical results

for models trained in alternative conditions.

In addition to diverging from the perceptual strategies found in human listeners,

the models trained in unnatural conditions performed more poorly at real-world lo-

calization. When we ran models trained in alternative conditions on our real-world

test set of recordings from mannequin ears in a conference room, localization accuracy

was substantially worse in all cases (Fig. 2-7e, P < 0.001 in all cases). This finding is

consistent with the common knowledge in engineering that training systems in noisy

and otherwise realistic conditions aids performance[156, 148, 116, 91]. Coupled with

the abnormal psychophysical results of these alternatively trained models, this result

indicates that the classic perceptual characteristics of spatial hearing reflect strategies

that are important for real-world localization, in that systems that deviate from these

characteristics localize poorly.
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Figure 2-6:
a, Diagram of experiment. On each trial, between one and eight speech signals (each spoken by a
different talker) was played from a subset of the speakers in a 12-speaker circular array. The lower
panel depicts an example trial in which three speech signals were presented, with the corresponding
speakers in green. Participants reported the number of sources and their locations. b, Average
number of sources reported by human listeners, plotted as a function of the actual number of sources.
Error bars plot standard deviation across participants. Here and in d, graph is reproduced from
original paper[244] with permission of the authors. c, Same as b, but for the model. Error bars plot
standard deviation across the ten networks. d, Localization accuracy (measured as the proportion
of sources correctly localized to the actual speaker from which they were presented), plotted as a
function of the number of sources. Error bars plot s.d. across participants. e, Same as d, but for
the model. Error bars plot s.d. across the ten networks.

2.2.13 Model predictions of sound localizability

One advantage of a model that can mediate actual localization behaviour is that

one can run large numbers of experiments on the model, searching for ‘interesting’

predictions that might then be tested in human listeners. Here we used the model

to estimate the accuracy with which different natural sounds would be localized in

realistic conditions. We chose to examine musical instrument sounds as these are

both diverse and available as clean recordings in large numbers. We took a large
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set of instrument sounds[59] and rendered them at a large set of randomly selected

locations. We then measured the average localization error for each instrument.

As shown in Fig. 2-8a, there was reliable variation in the accuracy with which

instrument sounds were localized by the model. The median error was as low as 1.06°

for reed instrument no. 3 and as high as 40.02° for mallet no. 1 (folded to discount

front–back confusions: without front–back folding, the overall error was larger, but

the ordinal relations among instruments were similar). The human voice was also

among the most accurately localized sounds in the set we examined, with a mean

error of 2.39° (front–back folded).

Figure 8b displays spectrograms for example notes for the three best- and worst-

localized instruments. The best-localized instruments are spectrally dense, and thus

presumably take advantage of cross-frequency integration (which improve localization

accuracy in both humans and the model, Fig. 2-3e,f). This result is consistent with

the common idea that narrowband sounds are less well localized, but the model

provides a quantitative metric of localizability that we would not otherwise have.

To assess whether the results could be predicted by simple measures of spectral

sparsity, we measured the spectral flatness[118] of each instrument sound (the ratio

of the geometric mean of the power spectrum to the arithmetic mean of the power

spectrum). The average spectral flatness of an instrument was significantly correlated

with the model’s localization accuracy (rs = 0.77,P < 0.001), but this correlation was

well below the split-half reliability of the model’s accuracy for an instrument (rs =

0.99). This difference suggests that there may be sound features above and beyond

spectral sparsity that determine a sound’s localizability, and illustrates the value of

an optimized system to make perceptual predictions.

We had intentions of running a free-field localization experiment in humans to test

these predictions, but had to halt experiments due to COVID-19. We have hopes of

running the experiment in the future. However, we note that informal observation by

the authors listening in free-field conditions suggest that the sounds that are poorly

localized by the model are also difficult for humans to localize.
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(Caption on next page.)
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Figure 2-7:
a, Schematic depiction of altered training conditions, eliminating echoes or background noise or
using unnatural sounds. b, Overall human–model dissimilarity for natural and unnatural training
conditions. Error bars plot s.e.m., bootstrapped across networks. Asterisks denote statistically
significant differences between conditions (P < 0.001, two-tailed), evaluated by comparing the hu-
man–model dissimilarity for each unnatural training condition to a bootstrapped null distribution
of the dissimilarity for the natural training condition. c, Effect of unnatural training conditions on
human–model dissimilarity for individual experiments, expressed as the effect size of the difference
in dissimilarity between the natural and each unnatural training condition (Cohen’s d, computed
between human–model dissimilarity for networks in normal and modified training conditions). Pos-
itive numbers denote a worse resemblance to human data compared to the model trained in normal
conditions. Error bars plot s.e.m., bootstrapped across the ten networks d, The precedence effect
in networks trained in alternative environments. e, Real-world localization accuracy of networks for
each training condition. Error bars plot s.e.m., bootstrapped across the ten networks. Asterisks
denote statistically significant differences between conditions (P < 0.001, two-tailed), evaluated by
comparing the mean localization error for each unnatural training condition to a bootstrapped null
distribution of the localization error for the natural training condition.

(Caption on next page.)
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Figure 2-8:
a, Mean model localization error for each of 43 musical instruments. Each of a set of instrument
notes was rendered at randomly selection locations. Graph shows letter-value plots[106] of the mean
azimuthal localization error across notes, measured after actual and judged positions were front�back
folded. Letter-value plots are boxplots with additional quantiles. The widest box depicts the middle
two quartiles (1/4) of the data distribution, as in a box plot, the second widest box depicts the next
two octiles (1/8), the third widest box depicts the next two hexadeciles (1/16) and so on, up to the
upper and lower 1/64 quantiles. Horizontal line plots median value and diamonds denote outliers.
b, Spectrograms of an example note (middle C) for the three most and least accurately localized
instruments (top and bottom, respectively).

2.3 Discussion

We trained arti�cial neural networks to localize sounds from binaural audio rendered

in a virtual world and heard through simulated ears. When the virtual world mimicked

natural auditory environments, with surface re�ections, background noise and natural

sound sources, the trained networks replicated many attributes of spatial hearing

found in biological organisms. These included the frequency-dependent use of ITDs

and ILDs, the integration of spatial information across frequency, the use of ear-

speci�c high-frequency spectral cues to elevation and robustness to spectral smoothing

of these cues, localization dominance of sound onsets and limitations on the ability

to localize multiple concurrent sources. The model successfully localized sounds in

an actual real-world environment better than alternative algorithms that lacked ears.

The model also made predictions about the accuracy with which di�erent types of

real-world sound could be localized. But when the training conditions were altered to

deviate from the natural environment by eliminating surface re�ections, background

noise or natural sound source structure, the behavioural characteristics of the model

deviated notably from human-like behaviour. The results indicate that most of the

key properties of mammalian spatial hearing can be understood as consequences of

optimization for the task of localizing sounds in natural environments. Our approach

extends classical ideal observer analysis to new domains, where provably optimal

analytic solutions are di�cult to attain but where supervised machine learning can

nonetheless provide optimized solutions in di�erent conditions.

The general method involves two nested levels of computational experiments: opti-
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mization of a model under particular conditions, followed by a suite of psychophysical

experiments to characterize the resulting behavioural phenotype. This approach pro-

vides an additional tool with which to examine the constraints that yield biological

solutions[38, 125], and thus to understand evolution[194]. It also provides a way to

link experimental results with function. In some cases, these links had been pro-

posed but not de�nitively established. For example, the precedence e�ect was often

proposed to be an adaptation to reverberation[16, 221], although other functional ex-

planations were also put forth[248]. Our results indicate it is indeed an adaptation to

reverberation (Fig. 2-7d). We similarly provide evidence that sensitivity to spectral

cues to elevation emerges only with the demands of localizing broadband sounds[164].

In other cases, the model provided explanations for behavioural characteristics that

previously had none. One such example is the relatively coarse spectral resolution

of elevation perception (Fig. 2-4h�j), which evidently re�ects the absence of reliable

information at �ner resolutions. Another is the number of sources that can be con-

currently localized (Fig. 2-6b,c), and the dependence of localization accuracy on the

number of sources (Fig. 2-6d,e). Without an optimized model there would be no way

to ascertain whether these e�ects re�ect intrinsic limitations of localization cues in

auditory scenes or some other human-speci�c cognitive limit.

Previous models of sound localization required cues to be hand-coded and provided

to the model by the experimenter[18, 66, 40, 62]. In some cases, previous models were

able to derive optimal encoding strategies for such cues[93], which could be usefully

compared to neural data[201]. In other cases, models were able to make predictions of

behaviour in simpli�ed conditions using idealized cues[62]. However, the idealized cues

that such models work with are not well-de�ned for arbitrary real-world stimuli[166],

preventing the modelling of general localization behaviour. In addition, ear-speci�c

spectral cues to elevation (Fig. 2-1b, right) are not readily hand-coded, and as a

result have remained largely absent from previous models. It has thus not previously

been possible to derive optimal behavioural characteristics for real-world behaviour.

Our results highlight the power of contemporary machine learning coupled with

virtual training environments to achieve realistic behavioural competence in compu-
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tational models. Supervised learning has traditionally been limited by the need for

large amounts of labelled data, typically acquired via painstaking human annotation.

Virtual environments allow the scientist to generate the data, with the labels coming

for free (as the parameters used to generate the data), and have the potential to

greatly expand the settings in which supervised learning can be used to develop mod-

els of the brain[67]. Virtual environments also allow tests of optimality that would

be impossible in biological systems, because they enable environmental conditions to

be controlled, and permit optimization on rapid timescales.

Our approach is complementary to the long tradition of mechanistic modelling

of sound localization. In contrast with mechanistic modelling, we do not produce

speci�c hypotheses about underlying neural circuitry. However, the model gave rise

to rich predictions of real-world behaviour, and normative explanations of a large

suite of perceptual phenomena. It should be possible to merge these two approaches,

both by training model classes that are more faithful to biology (for example, spiking

neural networks, or networks with biologically constrained weights)[86, 214], and by

building in additional known biological structures to the neural network (for example,

replicating brainstem circuitry)[119, 27].

One limitation of our approach is that optimization of biological systems occurs in

two distinct stages of evolution and development, which are not obviously mirrored

in our model optimization procedure. The procedure we used had separate stages

of architectural selection and weight training, but these do not cleanly map onto

evolution and development in biological systems. This limitation is shared by classical

ideal observers, but limits the ability to predict e�ects that might be speci�c to one

stage or the other, for instance involving plasticity[120].

Our model also shares many limitations common to current deep neural network

models of the brain[138]. The learning procedure is unlikely to have much in com-

mon with biological learning, both in the extent and nature of supervision (which

involves millions of explicitly labelled examples) and in the learning algorithm, which

is often argued to lack biological plausibility[86]. The model class is also not fully

consistent with biology, and so does not yield detailed predictions of neural circuitry.
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The analogies with the brain thus seem most promising at the level of behaviour and

representations. Our results add to growing evidence that task-optimized models can

produce human-like behaviour for signals that are close to the manifold of natural

sounds or images[126, 135, 187]. However, arti�cial neural networks also often exhibit

substantial representational di�erences with humans, particularly for unnatural sig-

nals derived in various ways from a network[80, 61, 70, 112, 79], and our model may

exhibit similar divergences.

We chose to train models on a �xed representation of the ear. This choice was

motivated by the assumption that the evolution of the ear was in�uenced by many

di�erent auditory tasks, such that it may not have been strongly in�uenced by the

particular demands of sound localization, instead primarily serving as a constraint

on biological solutions to the sound localization problem[187]. However, the ear itself

undoubtedly re�ects properties of the natural environment[140]. It could thus be

fruitful to `evolve' ears along with the rest of the auditory system, particularly in a

framework with multiple tasks[126]. Our cochlear model also does not replicate the

�ne details of cochlear physiology[246, 25, 8] due to practical constraints of limited

memory resources. These di�erences could in principle in�uence the results, although

the similarity of the model results to those of humans suggests that the details of

peripheral physiology beyond those that we modelled do not �gure critically in the

behavioural traits we examined.

The virtual world we used to train our models also no doubt di�ers in many

ways from real-world acoustic environments. The rendering assumed point sources

in space, which is inaccurate for many natural sound sources. The distribution of

source locations was uniform relative to the listener, and both the listener and the

sound sources were static, all of which are often not true of real-world conditions.

And although the simulated reverberation replicated many aspects of real-world re-

verberation, it probably did not perfectly replicate the statistical properties of natural

environmental impulse responses[212], or their distribution across environments. Our

results indicate that the virtual world approximates the actual world in many of the

respects that matter for spatial hearing, but the discrepancies with the real world
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could make a di�erence for some behaviours.

We also emphasize that despite presenting our approach as an alternative to ideal

observer analysis[71, 72], the resulting model almost surely di�ers in some respects

from a fully ideal observer. The solutions reached by our approach are not provably

optimal like classic ideal observers, and the model class and optimization methods

could impose biases on the solutions. It is also likely that the architecture search was

not extensive enough to �nd the best architectures for the task. Those caveats aside,

the similarity to human behaviour, along with the strong dependence on the training

conditions, provides some con�dence that the optimization procedure is succeeding

to a degree that is scienti�cally useful.

Our focus in this paper has been to study behaviour, as there is a rich set of audi-

tory localization behaviours for which normative explanations have traditionally been

unavailable. However, it remains possible that the model we trained could be usefully

compared to neural data. There is a large literature detailing binaural circuitry in

the brainstem[53] that could be compared to the internal responses of the model.

The model could also be used to probe for functional organization in the auditory

cortex, for instance by predicting brain responses using features from di�erent model

stages[128, 88, 236, 41, 58, 126], potentially helping to reveal hierarchical stages of

localization circuitry.

A model that can predict human behaviour should also have useful applications.

Our model showed some transfer of localization for speci�c sets of ears (Fig. 2-4g),

and could be used to make predictions about the extent to which sound rendering in

virtual acoustic spaces (which may need to use a generic set of HRTF) should work

for a particular listener. It can also predict which of a set of sound sources will be

most compellingly localized, or worst localized (Fig. 2-8). Such predictions could

be valuable in enabling better virtual reality, or in synthesizing signals that humans

cannot pinpoint in space.

One natural extension of our model would be to incorporate moving sound sources

and head movements. We modelled sound localization in static conditions because

most experimental data have been collected in this setting. But in real-world con-
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ditions sound sources often move relative to the listener and listeners move their

heads[211, 21], often to better disambiguate front from back[220] and more accurately

localize. Our approach could be straightforwardly expanded to moving sound sources

in the virtual training environment and a model that can learn to move its head[148],

potentially yielding explanations of auditory motion perception[82, 33, 247]. The abil-

ity to train models that can localize in realistic conditions also underscores the need for

additional measurements of human localization behaviour � front�back confusions,

localization of natural sounds in actual rooms, localization with head movements and

so on � with which to further evaluate models.

Another natural next step is to instantiate both recognition and localization in

the same model, potentially yielding insight into the segregation of these functions

in the brain[15], and to the role of spatial cues in the `cocktail party problem'[46,

50, 22, 95, 129, 157, 195]. More generally, the approach we take here � using deep

learning to derive optimized solutions to perceptual or cognitive problems in di�erent

operating conditions � is broadly applicable to understanding the forces that shape

complex, real-world, human behaviour.

2.4 Methods

2.4.1 Training data generation

Virtual acoustic simulator: image/source method

We used a room simulator[197] to render binaural room impulse responses (BRIRs).

This simulator used the image-source method, which approaches an exact solution

to the wave equation if the walls are assumed to be rigid[3], as well as an extension

to that method that allowed for more accurate calculation of the arrival time of a

wave[176]. This enabled the simulator to correctly render the relative timing between

the signals received by the two simulated ears, including re�ections (enabling both

the direct sound and all re�ections to be rendered with the correct spatial cues). Our

speci�c implementation was identical to that used in the original paper[197], except
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for some custom optimization to take advantage of vectorized operations and parallel

computation.

The room simulator operated in three separate stages. First, the simulator calcu-

lated the positions of re�ections of the source impulse forward in time for 0.5 s. For

each of these positions, the simulator placed an image symmetrically re�ected about

the wall of last contact. Second, the simulator accounted for the absorption spectra

of the re�ecting walls for each image location and �ltered a broadband impulse se-

quentially using the absorption spectrum of the simulated wall material. Third, the

simulator found the direction of arrival for each image and convolved the �ltered im-

pulse with the HRIR in the recorded set whose position was closest to the computed

direction. This resulted in a left and right channel signal pair for each path from the

source to the listener. Last, each of these signal pairs was summed together, factoring

in both the delay from the time of arrival and the level attenuation given the total

distance travelled by each re�ection. The original authors of the simulator previously

assessed this method's validity and found that simulated BRIRs were good physical

approximations to recorded BRIRs provided that sources were rendered more than 1

m from the listener[197].

We used this room simulator to render BRIRs at each of a set of listener locations

in �ve di�erent rooms varying in size and material (listed in Extended Data Fig.

2-15) for each of the source location bins in the output layer of the networks: all

pairings of seven elevations (between 0° and 60°, spaced 10°) and 72 azimuths (spaced

5° in a circle around the listener), at a distance of 1.4 m. This yielded 504 source

positions per listener location and room. Listener locations were chosen subject to

three constraints. First, the listener location had to be at least 1.4 m from the

nearest wall (because sounds were rendered 1.4 m from the listener). Second, the

listener locations were located on a grid whose axes ran parallel to the walls of the

room, with locations spaced 1 m apart in each dimension. Third, the grid was centred

in the room. These constraints yielded four listener locations for the smallest room

and 81 listener locations for the largest room. This resulted in 71,064 pairs of BRIRs,

each corresponding to a possible source�listener�room spatial con�guration. Each
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BRIR took approximately 4 min to generate when parallelized across 16 cores. We

parallelized[209] the generation of the full set of BRIRs across approximately 1,000

cores on the MIT OpenMind Cluster, which allowed us to generate the full set of

BRIRs in approximately 4 days.

Virtual acoustic simulator: HRIRs

The simulator relied on empirically derived HRIRs to incorporate the e�ect of pinna

�ltering, head shadowing and time delays without solving wave equations for the ears,

head and/or torso. Speci�cally, the simulator used a set of HRIRs recorded with

KEMAR: a mannequin designed to replicate the acoustic e�ects of head and torso

�ltering on auditory signals. These recordings consisted of 710 positions ranging from

40° to +90° elevation at 1.4 m (ref. [69]). A subset of these positions corresponded

to the location bins into which the network classi�ed source locations.

Virtual acoustic simulator: two-microphone array

For comparison with the networks trained with simulated ears, we also trained the

same neural network architectures to localize sounds using audio recorded from a two-

microphone array (Extended Data Fig. 2-14). To train these networks, we simulated

audio received from a two-microphone array by replacing each pair of HRIRs in the

room simulator with a pair of fractional delay �lters (that is, that delayed the signal

by a fraction of a sample). These �lters consisted of 127 taps and were constructed

via a sinc function windowed with a Blackman window, o�set in time by the desired

delay. Each pair of delay �lters also incorporated signal attenuation from a distance

according to the inverse square law, with the goal of replicating the acoustics of a

two-microphone array. After substituting these �lters for the HRIRs used in our main

training procedure, we simulated a set of BRIRs as described above.

Natural sound sources

We collected a set of 455 natural sounds, each cut to two seconds in length. Of these

sounds, 300 were drawn from a set used in previous work in the laboratory[169]. An-

57



other 155 sounds were drawn from the BBC Sounds E�ects Database, selected by

the �rst author to be easily identi�able. The sounds included human and animal vo-

calizations, human actions (chopping, chewing, clapping and so on), machine sounds

(cars, trains, vacuums and so on) and nature sounds (thunder, insects, running water,

etc.). The full list of sounds is given in Extended Data Fig. 2-12. All sounds were

sampled at 44.1 kHz. Of this set, 385 sounds were used for training and another

70 were withheld for model validation and testing. To augment the dataset, each of

these was bandpass-�ltered with a two-octave-wide second-order Butterworth �lter

with centre frequencies spaced in one-octave steps starting from 100 Hz. This yielded

2,492 (2,110 training, 382 testing) sound sources in total.

Background noise sources

Background noise sources were synthesized using a previously described texture gen-

eration method that produced texture excerpts rated as highly realistic[159]. The

speci�c implementation of the synthesis algorithm was that used in ref. [160], with

a sampling rate of 44.1 kHz. We used 50 di�erent source textures obtained from

in-laboratory collections[158]. Textures were selected that synthesized successfully,

both subjectively (sounding perceptually similar to the original texture) and objec-

tively (the ratio between mean squared statistic values for the original texture and

the mean squared error between the statistics of the synthesized and original tex-

ture was greater than 40 dB). We then rendered 1,000 5-s exemplars for each texture

(subsequently cut to 2 s in length) for a total of 50,000 unique waveforms (1,000

exemplarsÖ 50 textures). Background noises were created by spatially rendering

between three and eight exemplars of the same texture at randomly chosen loca-

tions using the virtual acoustic simulator described above. We made this choice on

grounds of ecological validity, on the basis of the intuition that noise sources are typ-

ically not completely spatially uniform[189] despite being more di�use than sounds

made by single organisms or objects. By adding noises rendered at di�erent locations

we obtained background noise that was not as precisely localized as the target sound

sources, which seemed a reasonable approximation of common real-world conditions.
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Generating training exemplars

To reduce the storage footprint of the training data, we separately rendered the sound

sources to be localized, and the background noise, and then randomly combined

them to generate training exemplars. For each source, room and listener location, we

randomly rendered each of the 504 positions with a probability:

P =
0:025 � no: of listener locations in smallest room
no: of listener locations in room being rendered

We used base probability of 2.5% to limit the overall size of the training set and

normalized by the number of listener locations in the room being used to render

the current stimulus so that each room was represented equally in the dataset. This

yielded 545,566 spatialized natural sound source stimuli in total (497,935 for training,

47,631 for testing). This resulted in 988 examples per training location, on average.

For each training example, the audio from one spatialized natural sound source

and one spatialized background texture scene was combined (with a signal-to-noise

ratio (SNR) sampled uniformly from 5 to 30 dB SNR) to create a single auditory

scene that was used as a training example for the neural network. The resulting

waveform was then normalized to have an root-mean-square (r.m.s.) amplitude of

0.1. Each training example was passed through the cochlear model before being fed

to the neural network.

Stimulus preprocessing: cochlear model

Training examples were preprocessed with a cochlear model to simulate the human

auditory periphery. The output of the cochlear model is a time-frequency representa-

tion intended to represent the instantaneous mean �ring rates in the auditory nerve.

The cochlear model was chosen to approximate the time and frequency information

in the human cochlea subject to practical constraints on the memory footprint of

the model and the dataset. Cochleagrams were generated using a �lter bank similar

to that used in previous work from our laboratory[159]. However, the cochleagrams

we used provided �ne timing information to the neural network by passing recti-
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�ed subbands of the signal instead of the envelopes of the subbands. This came

at the cost of substantially increasing the dimensionality of the input relative to an

envelope-based cochleagram. The dimensionality was nonetheless considerably lower

than what would have resulted from a spiking model of the auditory nerve, which

would have been prohibitive given our hardware.

The waveforms for the left and right channels were �rst upsampled to 48 kHz, then

separately passed through a bank of 39 bandpass �lters. These �lters were regularly

spaced on an equivalent rectangular bandwidth scale[78] with bandwidths matched

to those expected in a healthy human ear. Filter centre frequencies ranged from 45 to

16,975 Hz. Filters were zero-phase, with transfer functions in the frequency domain

shaped like the positive portion of a cosine function. These �lters perfectly tiled the

frequency axis such that the summed squared response of all �lters was �at and al-

lowed for reconstruction of the signal in the covered frequency range. Filtering was

performed by multiplication in the frequency domain, yielding a set of subbands. The

subbands were then transformed with a power function (0.3 exponent) to simulate the

outer hair cells' non-linear compression. The results were then half-wave recti�ed to

simulate auditory nerve �ring rates and were low-pass �ltered with a cut-o� frequency

of 4 kHz to simulate the upper limit of phase locking in the auditory nerve[171], using

a Kaiser-windowed sinc function with 4,097 taps. The results of the low-pass �ltering

were then downsampled to 8 kHz to reduce the dimensionality of the neural network

input (without information loss because the Nyquist limit matched the low-pass �lter

cut-o� frequency). Because the low-pass �ltering and downsampling were applied to

recti�ed �lter outputs, the representation retained information at all audible frequen-

cies, just with limits on �delity that were approximately matched to those believed to

be present in the ear. We note also that the input was not divided into `frames' as are

common in audio engineering applications, as these do not have an obvious analogue

in biological auditory systems. All operations were performed in Python but made

heavy use of the NumPy and SciPy library optimization to decrease processing time.

Code to generate cochleagrams in this way is available on the McDermott laboratory

webpage (http://mcdermottlab.mit.edu).

60



To minimize arti�cial onset cues at the beginning and end of the cochleagram

that would not be available to a human listener in everyday listening conditions, we

removed the �rst and last 0.35 s of the computed cochleagram and then randomly

excerpted a 1-s segment from the remaining 1.3 s. The neural network thus received 1

s of input from the cochlear model, as a 39Ö 8,000Ö 2 tensor (39 frequency channels

Ö 8,000 samples at 8 kHzÖ 2 ears).

For reasons of storage and implementation e�ciency, the cochlear model stage

was in practice implemented as follows, taking advantage of the linearity of the �lter

bank. First, the audio from each spatialized natural sound source and each spatial-

ized background texture scene was run through the cochlear �lter bank. Second, we

excerpted a 1-s segment from the resulting subbands as described in the previous

paragraph. Third, the two sets of subbands were stored in separate data structures.

Fourth, during training, the subbands for a spatialized natural sound source and a

spatialized background scene were loaded, scaled to achieve the desired SNR (sampled

uniformly from 5 to 30 dB), summed and scaled to correspond to a waveform with

r.m.s. amplitude of 0.1. The resulting subbands were then half-wave recti�ed, raised

to the power of 0.3 to simulate cochlear compression, and downsampled to 8 kHz to

simulate the upper limit of auditory nerve phase locking. This `cochleagram' was the

input to the neural networks.

2.4.2 Environment modi�cation for unnatural training condi-

tions

In each unnatural training condition, one aspect of the training environment was

modi�ed.

Anechoic environment

All echoes and re�ections in this environment were removed. This was accomplished

by setting the room material parameters for the walls, �oor and ceiling to completely

absorb all frequencies. This can be conceptualized as simulating a perfect anechoic
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chamber.

Noiseless environment

In this environment, the background noise was removed by setting the SNR of the

scene to 85 dB. No other changes were made.

Unnatural sound sources

In this environment, we replaced the natural sound sources with unnatural sounds

consisting of repeating bandlimited noise bursts. For each 2-s sound source, we �rst

generated a 200 ms 0.5 octave-wide noise burst with a 2 ms half-Hanning window

at the onset and o�set. We then repeated that noise burst separated by 200 ms of

silence for the duration of the signal. The noise bursts in a given source signal always

had the same centre frequency. The centre frequencies (the geometric mean of the

upper and lower cut-o�s) across the set of sounds were uniformly distributed on a log

scale between 60 and 16.8 kHz.

2.4.3 Neural network models

The 39 Ö 8,000Ö 2 cochleagram representation (representing 1 s of binaural audio)

was passed to a CNN, which instantiated a feedforward, hierarchically organized set

of linear and non-linear operations. The components of the CNNs were standard;

they were chosen because they have been shown to be e�ective in a wide range of

sensory classi�cation tasks. In our CNNs, there were four di�erent kinds of layer, each

performing a distinct operation: (1) convolution with a set of �lters, (2) a point-wise

non-linearity, (3) batch normalization and (4) pooling. The �rst three types of layer

always occurred in a �xed order (batch normalization, convolution and a point-wise

non-linearity). We refer to a sequence of these three layers in this order as a `block'.

Each block was followed by either another block or a pooling layer. Each network

ended with either one or two fully connected layers feeding into the �nal classi�cation

layer. Below, we de�ne the operations of each type of layer.
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Convolutional layer

A convolutional layer consists of a bank ofK linear �lters, each convolved with the

input to produce K separate �lter responses. Convolution performs the same opera-

tion at each point in the input, which in our case was the cochleagram. Convolution

in time is natural for models of sensory systems as the input is a temporal sequence

whose statistics are translation invariant. Convolution in frequency is less obviously

natural, as translation invariance does not hold in frequency. However, approximate

translation invariance holds locally in the frequency domain for many types of sound

signal, and convolution in frequency is often present, implicitly or explicitly, in audi-

tory models[51, 39]. Moreover, imposing convolution greatly reduces the number of

parameters to be learned, and we have found that neural network models train more

readily when convolution in frequency is used, suggesting that it is a useful form of

model regularization.

The input to a convolutional layer is a three-dimensional array with shapenin ; min ; din

wherenin and min are the spectral and temporal dimensions of the input, respectively,

and din is the number of �lters. In the case of the �rst convolutional layer, nin =

36 and min = 8,000, corresponding to the spectral and temporal dimensions of the

cochleagram, anddin = 2, corresponding to the left and right audio channels.

A convolution layer is de�ned by �ve parameters:

1. nk , the height of the convolutional kernels (that is, their extent in the frequency

dimension)

2. mk , the width of the convolutional kernels (that is, their extent in the time

dimension)

3. K, the number of di�erent kernels

4. W, the kernel weights for each of theK kernels; this is an array of dimensions

(nin ; min ; din , K )

5. B , the bias vector, of lengthK
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For any input array X of shapenin ; min ; din , the output of this convolutional layer

is an arrayY of shape (nin , min � mk + 1, K ) (due to the boundary handling choices

described below):

Y[i; j; k ] = B [k] +
P nk =2;m k =2;din

n= � nk =2;m= � mk =2;d=0 W[n; m; d; k] � X [i + n; j + n; d]

wherei ranges from (1, . . . ,nin ), j ranges (1, . . . ,min ) and � represents point-wise

array multiplication.

Boundary handling via valid padding in time

There are several common choices for boundary handling during convolution opera-

tions. For the output of a convolution to be the same dimensionality as the input,

the input signal is typically padded with zeros. This approach �often termed `same'

convolution � has the downside of creating an arti�cial onset in the data that would

not be present in continuous audio in the natural world, and that might in�uence the

behaviour of the model. To avoid this possibility, we used `valid' convolution in the

time dimension. This type of convolution only applies the �lter at positions where

every element of the kernel overlaps with the actual input. This eliminates arti�cial

onsets at the start/end of the signal but means that the output of the convolution

will be slightly smaller than its input, as the �lters cannot be centred over the �rst

and last positions in the input without having part of the �lter not overlap with the

input data.

We used `same' convolution in the frequency dimension because the frequency

dimension has lower and upper limits in the cochlea, such that boundary e�ects are

less obviously inconsistent with biology. In addition, the frequency dimension was

much smaller than the time dimension, such that it seemed advantageous to preserve

channels at each convolution stage.
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Point-wise non-linearity

If a neural network consists of only convolution layers, it can be mathematically

reduced to a single matrix operation. A non-linearity is needed for the neural network

to learn more complex functions. We used recti�ed linear units (a common choice in

current deep neural networks) that operate point wise on every element in the input

map according to a piecewise linear function:

f (x) =

8
><

>:

x x > 0

0 else

Normalization layer

The normalization layer applied batch normalization[110] in a point-wise manner to

the input map. Speci�cally, for a batchB of training examples, consisting of examples

f X 1; : : : ; XM g, with shapenin ; min ; din , each example is normalized by the mean and

variance of the batch:

� B [n; m; d] = 1
M

P M
i=0 X in [n; m; d]

� 2
B [n; m; d] = 1

M
P M

i=0 (X in [n; m; d] � � B [n; m; d])2

X̂ i [n; m; d] = X i [n;m;d]� � B [n;m;d]
2
p

� 2
B [n;m;d]+ �

where X̂ i is the normalized three-dimensional matrix of the same shape as the

input matrix and � = 0.001 to prevent division by zero.

Throughout training, the batch normalization layer maintains a cumulative mean

and variance across all training examples,� T otal and � 2
T otal . At test time X̂ i is calcu-

lated using � T otal and � 2
T otal in place of � B and � 2

B .
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Pooling layer

A pooling layer allows downstream layers to aggregate information across longer pe-

riods of time and wider bands of frequency. It downsamples its input by aggregating

values across nearby time and frequency bins. We used max pooling, which is de�ned

via four parameters:

1. Ph, the height of the pooling kernel

2. Pw , the width of the pooling kernel

3. sh, the stride in the vertical dimension

4. sw , the stride in the horizontal dimension

A pooling layer takes arrayX of shape (nin ; min ; din ) and returns array Y with

shape (nin =sw; min =sh; din ) according to:

Y(i; j; k ) = max(Npw ph (X; is w ; js h; k))

whereNpw ph (X, i, j, k) is a windowing function that takes a (Pw ; Ph) excerpt of

X of centred at (i,j) from �lter k. The maximum is over all elements in the resulting

excerpt.

Fully connected layer

A fully connected layer, also often called a dense layer, does not use the weight sharing

found in convolutional layers, in which the same �lter is applied to all positions within

the input. Instead, each (input unit, output unit) pair has its own learned weight

parameter and each output unit has its own bias parameter. Given inputX with

shape (nin ; min ; din ), a fully connected layer produces outputY with shape nout . It

does so in two steps:

1. Flattens the input dimensions, creating an inputX f lat of shape (nin � min � din )
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2. Multiplies X f lat by weight and bias matrices of shape (nout ; nin � min � din ) and

nout , respectively. This is implemented as:

Y(ni ) = B(ni ) +
P n in � m in � din

l=1 W (n in ; l) X f lat (l ) ; ni � {1 . . . nout g

whereB(nout ) is the bias vector,W(nout;l ) is the weight matrix and l ranges from 1

to (nin � min � din ) and indexes all positions in the �attened input matrix.

Softmax classi�er

The �nal layer of every network was a classi�cation layer, which consists of a fully

connected layer wherenout is the number of class labels (in our case 504). The

output of that fully connected layer was then passed through a normalized exponential

(softmax) function. Together this was implemented as:

y(i ) =
exp (P nT

j =0 wij x j )
P nout

k=0 exp (P nT
j =0 wkj x j )

The vector y sums to one and all entries are greater than zero. This is often

interpreted as a vector of label probabilities conditioned on the input.

Dropout during training

For each new batch of training data, dropout was applied to all fully connected layers

of a network. Dropout consisted of randomly choosing 50% of the weights in the layer

and temporarily setting them to zero, thus e�ectively not allowing the network access

to the information at those positions. The other 50% of the weights were scaled up

such that the expected value of the sum over all inputs was unchanged. This was

implemented as:

dropout (Wi;j ) =

8
><

>:

Wi;j
1

(1� 0:5) j =2 weights to drop

0 j 2weights to drop
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Dropout is common in neural network training and can be viewed as a form of

model averaging where exponentially many models using di�erent subsets of the input

vector are being trained simultaneously[104]. During evaluation, dropout was turned

o� (and no weight scaling was performed) so that all weights were used.

2.4.4 Neural network optimization

Architecture search: overview

When neural networks are applied to a new problem it is common to use architectures

that have previously produced good results on similar problems. However, most stan-

dard CNN architectures that operate on two-dimensional inputs have been designed

for visual tasks and make assumptions based on the visual world. For example, most

architectures assume that the units in thex and y dimension are equivalent, such

that square �lter kernels are a reasonable choice. However, in our problem the two

input dimensions are not comparable (frequency versus time). Additionally, our input

dimensionality was several orders of magnitude larger than standard visual stimuli

(70,000 versus 1.1 million), even though some relevant features occur on the scale

of a few samples. For example, an ITD of 400� s (a typical value) corresponds to

only a six-sample o�set between channels. Given that our problem was distinct from

many previous applications of standard neural network architectures, we performed

an architecture search to �nd architectures that were well-suited to our task. First,

we de�ned a space of architectures described by a small number of hyperparameters.

Next, we de�ned discrete probability distributions for each hyperparameter. Last,

we independently sampled from these hyperparameter distributions to generate ar-

chitectures. We then trained each architecture for a brief period and selected the

architectures that performed best on our task for further training.
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Architecture search: distribution over hyperparameters

To search over architectures, we de�ned a space of possible architectures that were

encoded via a set of hyperparameters. The space had the following constraints:

ˆ There could be between three and eight pooling layers for any given network.

ˆ A pooling layer was preceded by between one and three blocks. Each block

consisted of batch normalization, followed by convolution, followed by a recti�ed

linear layer

ˆ The number of channels (�lters) in the network was always 32 in the �rst con-

volutional layer and could either double or remain the same in each successive

convolutional layer.

ˆ The penultimate stage of each network consisted of one or two fully connected

layers containing 512 units each. Each of these was followed by a dropout layer.

ˆ The �nal stage of each network was always a Softmax Classi�er with 504 out-

put units, corresponding to the 504 locations the network could report.

We picked the pooling and convolutional kernel parameters at each layer by uni-

formly sampling from the lists of values in Extended Data Fig. 2-10. We chose these

distributions to skew toward smaller values at deeper layers, approximately in line

with the downsampling that resulted from pooling operations. Multiple copies of

the same number increased the probability of that value being chosen for the kernel

size. Note that di�erences between the time and frequency dimensions of the cochlear

input motivate the use of �lters that are not square.

Filter weight training

Throughout training, the parameters in each convolutional kernel and all weights from

fully connected layers were iteratively adjusted to improve task accuracy via mini-

batch stochastic gradient descent (SGD)[19]. Training was performed with 1.6 million

sounds (100,000 training steps each with a batch of 16 training examples) generated

by looping over the 500,000 foreground sounds and combining each with a randomly
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selected background sound. Networks were assessed via a held-out set of 50,000 test

stimuli created by looping over the 48,000 sound sources in the validation set in the

same manner. We used a Softmax Cross-Entropy loss function. The trainable weights

in the convolutional layers and fully connected layers were updated using the gradient

of the loss function, computed using backpropagation.

Gradient checkpointing

The dimensionality of our input was su�ciently large (due to the high sampling rates

needed to preserve the �ne timing information in the simulated auditory periphery) as

to preclude training neural networks using standard methodology. For example, con-

sider training a network consisting of four pooling layers (2Ö 1 kernel), each preceded

by one block. If there are 32 convolutional �lters in the �rst layer, and double the

number of �lters in each successive layer, this network would require approximately

80 GB of memory at peak usage, which exceeded the maximum memory of graphical

processing units (GPUs) that were standard at the time of model training (available

GPUs varied between 12 and 32 GB). We addressed this problem using a previously

proposed solution called gradient checkpointing[35].

In the standard backpropagation algorithm, we must retain the output from each

layer of a network in memory because it is needed to calculate gradients for each

updatable parameter. The gradient checkpointing algorithm we used trades speed for

lower memory usage by not retaining each layer's output during the forward pass,

instead recomputing it a second time during the backward pass when gradients are

computed. In the most extreme version, this would result in laboriously recomputing

each layer starting with the original network input. Instead, the algorithm creates

sparse, evenly spaced checkpoints throughout the network that save the output of

selected layers. This strategy allows recomputation during backpropagation to start

from one of these checkpoints, saving compute time. In practice, it also provides

users with a parameter that allows them to select a speed/memory trade-o� that

will maximize speed subject to a network �tting onto the available GPU. We created

checkpoints at every pooling layer and found it kept our memory use below the 16-GB
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limit of the hardware we used for all networks in the architecture search.

Network architecture selection and training

We performed our architecture search on the Department of Energy's Summit Super-

computer at Oak Ridge National Laboratory. First, we randomly drew 1,500 archi-

tectures from our hyperparameter distribution. Next, we trained each architecture

(that is, optimized the weights of the convolutional and fully connected layers) using

mini-batch SGD for 15,000 steps, each with a batch size of 16, for a total of 240,000

unique training examples, randomly drawn from the training set described above. We

then evaluated the performance of each architecture on left-out data. The length of

this training period was determined by the job limits on Summit; however, it was

long enough to see substantial reductions in the loss function for many networks. We

considered the procedure adequate for architecture selection given that performance

early in training is a good predictor of training performance late in training[57]. In

total, this architecture search took 2.05 GPU years and 45.2 CPU years.

We selected the ten best-performing architectures. They varied signi�cantly, rang-

ing from four to six pooling layers. We then retrained these ten architectures until a

point where performance on the withheld validation set began to decrease, evaluat-

ing every 25,000 iterations. This occurred at 100,000 iterations for the naturalistic,

anechoic and noiseless training conditions and at 150,000 iterations for the unnatu-

ral sounds training condition. Model architectures and the trained weights for each

model are available online in the associated codebase:

www.github.com/afrancl/BinauralLocalizationCNN.

2.4.5 Real-world evaluation

We tested the model in real-world conditions to verify generalization from the virtual

training environment. We created a series of spatial recordings in an actual confer-

ence room (part of our laboratory space, with dimensions distinct from the rooms in

our virtual training environment) and then presented those to the trained networks.
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We also made recordings of the same source sounds and environment with a two-

microphone array to test the importance of naturally induced binaural cues (from the

ears, head and/or torso).

Sound sources

We used 100 sound sources in total: 50 sound sources were from our validation set of

withheld environmental sounds, and the remaining 50 sound sources were taken from

the GRID dataset of spoken sentences[9]. For the examples from the GRID dataset,

we used �ve sentences from each of ten speakers (�ve male and �ve female). The

model performed similarly for stimuli from the GRID dataset as for our validation

set stimuli. All source signals were normalized to the same peak amplitude before the

recordings were made.

Recording setup

We made the set of real-world evaluation recordings using a KEMAR head and torso

simulator mannequin built by Knowles Electronics to replicate the shape and ab-

sorbency of a human head, upper body and pinna. The KEMAR mannequin contains

a microphone in each ear, recording audio similar to that which a human would hear

in natural conditions. The audio from these microphones was then passed through

Etymotic Research preampli�ers designed for the KEMAR mannequin before being

passed to a Zoom 8 USB to Audio Converter. Finally, it was passed to Audacity

where the left and right channels were simultaneously recorded at 48 kHz.

We made recordings of all 100 sounds at every azimuth (relative to the KEMAR

mannequin) from 0° to 360° in 30° increments. This led to 1,200 recordings in total.

All source sounds were played 1.5 m from the vertical axis of the mannequin using

a KRK ROKIT 7 speaker positioned at approximately 0° elevation. The audio was

played using Audacity and converted to an analogue signal using a Zoom 8 USB to

Audio Converter.

Recordings were made in our main laboratory space in building 46 on the MIT

campus, in a room that was roughly 7Ö 6 Ö 3 m. The room was �lled with fur-
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niture and shelves, and had multiple windows and doors (Fig. 2-1e). This setup

was substantially di�erent from any of the simulated rooms in the virtual training

environment, in which all rooms were convex, empty and had smooth walls. During

the recordings, there was low-level background noise from the ventilation system, the

refrigerator and laboratory members talking in surrounding o�ces. For all recordings,

the mannequin was seated in an o�ce chair, with the head approximately 1 m from

the ground.

Two-microphone array baseline

We made a second set of recordings using the same sound sources, room and record-

ing equipment as above, but with the KEMAR mannequin replaced with a two-

microphone array consisting of two Beyerdynamic MM-1 Omnidirectional Micro-

phones separated by 15 cm (the same distance separating the two microphones in

the mannequin ears). The microphone array was also elevated approximately 1 m

from the �oor using a microphone stand (Extended Data Fig. 2-14a).

Baseline algorithms

We evaluated our trained neural networks against a variety of baseline algorithms.

These comprised: steered-response power phase transform (SRP)[55], multiple sig-

nal classi�cation (MUSIC)[193], the coherent signal-subspace method (CSSM)[223],

weighted average of signal subspaces (WAVES)[54], test of orthogonality of projected

subspaces (TOPS)[238] and the WavLoc neural network[217]. With the exception of

the WavLoc model, in each case we used the previously validated and published algo-

rithm implementations in Pyroomacoustics[192]. For the WavLoc model, we used a

reference GitHub implementation and con�rmed that we could reproduce the results

of the original paper[217] before testing with our KEMAR mannequin recordings. We

also created a baseline model trained using a simulation of the two-microphone array

described in the previous section within the virtual training environment (the same

ten neural network architectures used for our primary model were trained to localize

sounds using audio recorded from simulated a two-microphone array).
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The results shown in Extended Data Fig. 2-14b,c for the baselines (aside from

our two-microphone array baseline neural network model) all plot localization of the

KEMAR mannequin recordings. We found empirically that the baseline methods per-

formed better for the KEMAR recordings than for the two-microphone array record-

ings, presumably because the mannequin head increases the e�ective distance between

the microphones. The baseline algorithms require previous knowledge of the intermi-

crophone distance. To make the baselines as strong as possible relative to our method,

we searched over all distances shorter than 50 cm and found that an assumed dis-

tance of 26 cm yielded the best performance. We then evaluated the baselines at

that assumed distance. This optimal assumed distance is greater than the actual

intermicrophone distance of 15 cm, consistent with the idea that the mannequin head

increases the e�ective distance between microphones.

Comparison with human listeners

To provide an example of free-�eld human sound localization, Fig. 2-1f plots the

results of an experiment by Yost and colleagues[240]. In that experiment, humans

were presented with noise bursts (low-pass �ltered white noise with a cut-o� of 6 kHz,

200 ms in duration, with 20 ms cosine onset and o�set ramps) played from one of 11

speakers in an anechoic chamber. The speakers were spaced every 15°, with the array

centred on the midline. Speakers were visible to participants. Participants indicated

the speaker from which the sound was played by entering a number corresponding to

the speaker. Results are shown for 45 participants (34 female), ages 21�49. Because

the human experiment was restricted to speakers in front of the participants, for ease

of comparison Fig. 2-1g plots model results after front�back folding of actual and

judged positions (Fig. 2-1h shows model results without front�back folding). Figure

1f�h display kernel density estimates of the response distributions, generated using

the seaborn statistical data visualization library.
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2.4.6 Psychophysical evaluation of model

Overview

We simulated a suite of classic psychoacoustic experiments on the ten trained neural

networks, using the same stimuli for each network. We then calculated the mean re-

sponse across networks for each experimental condition and calculated error bars by

bootstrapping across the ten networks. This approach can be interpreted as marginal-

izing out uncertainty over architectures in a situation in which there is no single ob-

viously optimal architecture (and where the space of architectures is so large that it

is probably not possible to �nd the optimum even if it exists). Moreover, recent work

suggests that internal representations across di�erent networks trained on the same

task can vary considerably[162], so this approach aided in mitigating the individual

idiosyncrasies of any given network. Te approach could also be viewed as treating

every network as an individual experimental participant, calculating means and error

bars as one would in a standard human psychophysical experiment.

In each experiment, stimuli were run through our cochlear model and passed to

each of the networks, whose localization responses were recorded for each stimulus.

Stimuli were generated as 2 s sound signals, normalized to have an r.m.s. amplitude

of 0.1. The output of the cochlear model was then cropped to 1 s (by excerpting the

middle 1 s), which provided the input to the networks.

Front�back folding

For experiments in which human participants judged locations within the frontal

hemi�eld, we front�back folded the model responses to enable a fair comparison.

This consisted of treating each model response in the rear hemi�eld as though it

was a response in the corresponding front hemi�eld. For example, the 10° and 170°

azimuthal positions were considered equivalent.
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2.4.7 Sensitivity to ITDs and ILDs: stimuli

We reproduced the experimental stimuli from ref. [151], in which ITDs and ILDs were

added to 3D spatially rendered sounds. In the original experiment, participants stood

in a dark anechoic room and were played spatially rendered stimuli with modi�ed

ITDs or ILDs via a set of headphones. After each stimulus presentation, participants

oriented their head towards the perceived location of the stimulus and pressed a

button. The experiment included 13 participants (�ve male) ranging in age from

18�35 years old.

Stimulus generation for the model experiment was identical to that in the original

experiments apart from using our acoustic simulator to render the sounds. First, we

generated high- and low-pass noise bursts with passbands of 4�16 and 0.5�2 kHz,

respectively (44.1 kHz sampling rate). Each noise burst was 100 ms long with a 1-ms

squared-cosine ramp at the beginning and end of the stimulus. We randomly jittered

the starting time of the noise burst by padding the signal to 2,000 ms in total length,

constrained such that the entire noise burst was contained in the middle second of the

2-s audio signal (the noise onset was uniformly distributed subject to this constraint).

These signals were then rendered at 0° elevation, with azimuth varied from 0 to 355°

(in 5° steps) for a total of 72 locations. All signals were rendered using our virtual

acoustic simulator in an anechoic environment without any background noise.

Next, we created versions of each signal with an added ITD or ILD bias. ITD

biases were± 300 and± 600 µs and ILD biases were± 10 and ± 20 dB (Fig. 2-2a).

As in the original publication[151], we prevented presentation of stimuli outside the

physiological range by restricting the 400µs/10 dB biases to signals rendered less

than 40° away from the midline and restricting the 600µs/20 dB biases to signals

rendered less than 20° away from the midline. In total, there were four stimulus sets

(2 passbandsÖ 2 types of bias) of 266 stimuli (72 locations with no bias, 52 locations

at ± medium bias, 45 locations± large bias). We replicated the above process 20

times with di�erent exemplars of bandpass noise, increasing each stimulus set size to

5,320 (20 exemplars of 266 stimuli).
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Sensitivity to ITDs and ILDs: analysis

We measured the perceptual bias induced by the added ITD or ILD bias in the same

manner as the published analysis of human listeners[151].

We �rst calculated the naturally occurring ITD and ILD for each sound source

position (varying in azimuth, at 0° elevation) from the HRTFs used to train our

networks. For ITDs, we ran the HRTFs for a source position through our cochlear

model and found the ITD by cross-correlating the cochlear channels whose centre

frequency was closest to 600, 700 and 800 Hz and taking the median ITD from the

three channels. For ILDs, we computed power spectral density estimates via Welch's

method (29 samples per window, 50% overlap, Hamming windowed) for each of the

two HRTFs for a source position and integrated across frequencies in the stimulus

passband. We expressed the ILD as the ratio between the energy in the left and right

channel in decibels, with positive values corresponding to more power in the right

ear. This set of natural ILDs and ITDs allowed us to map the judged position onto

a corresponding ITD/ILD.

For each stimulus with added ITD, we used the response mapping described above

to calculate the ITD of the judged source position. Next, we calculated the ITD for

the judged position of the unaltered stimulus using the same response mapping. The

perceptual e�ect of the added ITD was calculated as the di�erence between these two

ITD values, quantifying (in microseconds) how much the added stimulus bias changed

the response of the model. The results graphs plot the added stimulus bias on the

x axis and the resulting response bias on the y axis. The slope of the best-�tting

regression line (the `bias weight' shown in the subplots of Fig. 2-2c,d) provides a

unitless measure of the extent to which the added bias a�ects the judged position. We

repeated an analogous process for ILD bias using the natural ILD response mapping,

yielding the bias in decibels. The graphs in Fig. 2-2d plot the mean response across

the ten networks with standard error of the mean (s.e.m.) computed via bootstrap

over networks.

77



Azimuthal localization of broadband sounds: stimuli

We reproduced the stimulus generation from ref. [229]. In the original experiment,

participants were played six broadband white noise bursts, with three noise bursts

(15 ms in duration, 5-ms cosine ramps, repeated at 10 Hz) played from a reference

speaker followed by three noise bursts played from one of two target speakers, located

15° to the left or right of the reference speaker. The reference speaker position ranged

from -97.5° to +97.5° azimuth in 15° intervals. Participants reported whether the

last three noise bursts were played to the left or the right of the reference speaker,

and performance was expressed asd'. 18 speakers were arranged at 15° intervals

from -127.5° to +127.5° azimuth simultaneously played white noise during all trials,

producing spatially di�use background noise that served to bring performance be-

low ceiling. The SNR of the stimulus was set individually for each participant. To

determine the SNR, stimuli were played from the speakers at +90° or -90° azimuth

and participants judged if each stimulus was to their right or left. The experiment

included 16 participants between the ages of 18 and 35 years old.

We measured network localization performance using the same stimuli as in the

original paper, but for simplicity rendered the stimulus at a single location and mea-

sured performance with an absolute, instead of relative, localization task. The stimuli

presented to the networks consisted of three pulses of broadband white noise. Each

noise pulse was 15 ms in duration and repeated at 10Hz. A 5-ms cosine ramp was

applied to the beginning and end of each pulse. We generated 100 exemplars of this

stimulus using di�erent samples of white noise (44.1 kHz sampling rate). The stimuli

were zero-padded to 2,000 ms in length, with the temporal o�set of the three-burst se-

quence randomly sampled from a uniform distribution such that all three noise bursts

were fully contained in the middle second of audio. We then rendered all 100 stimuli

at 0° elevation and azimuthal positions ranging from 0° to 355° in 5° steps. All stimuli

were rendered in an anechoic environment without any background noise using our

virtual acoustic simulator. This led to 7,200 stimuli in total (100 exemplars at each

of 72 locations). The stimuli were presented in spatially di�use background noise,

78



generated by presenting white noise from 19 positions at 15° intervals from -135° to

+135°. The SNR was set for each network individually by measuring its left/right

accuracy on stimuli rendered at +90 or -90 degrees at a range of SNRs spaced in 1

dB increments, and then selecting the highest SNR at which the network performed

below 95% accuracy. The SNRs selected in this way ranged from -8 dB to -14 dB

depending on the network.

Azimuthal localization of broadband sounds: analysis

Because human participants in the analogous experiment judged relative position in

the frontal hemi�eld, before calculating the model's accuracy we eliminated front�back

confusions by mirroring model responses of each stimulus across the coronal plane.

We then calculated the di�erence in degrees between the rendered azimuthal position

and the position judged by the model. We calculated the mean absolute error for

each rendered azimuth for each network. The graph in Fig. 2-3c plots the mean error

across networks. Error bars are s.e.m., bootstrapped over networks.

Integration across frequency: stimuli

We reproduced stimuli from ref. [241]. In the original experiment, human participants

were played a single noise burst, varying in bandwidth and centre frequency, from one

of eight speakers spaced 15° in azimuth. Participants judged which speaker the noise

burst was played from. The experimenters then calculated the localization error in

degrees for each bandwidth and centre frequency condition. The experiment included

33 participants (26 female) between the ages of 18 and 36 years old.

The stimuli varied in bandwidth (pure tones, and noise bursts with bandwidths

of 1/20, 1/10, 1/6, 1/3, 1 and 2 octaves wide; all with 44.1 kHz sampling rate). All

sounds were 200 ms long with a 20-ms squared-cosine ramp at the beginning and end

of the sound. All pure tones had random phase. All other sounds were bandpass-

�ltered white noise with the geometric mean of the passband cut-o�s set to 250, 2,000

or 4,000 Hz (as in the original paper[241]).

For the model experiment, the stimuli were zero-padded to 2,000 ms in length, with
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the temporal o�set of the noise burst randomly sampled from a uniform distribution

such that the noise burst was fully contained in the middle second of audio. We

generated 30 exemplars of each bandwidth�frequency pair using di�erent exemplars

of white noise (or of random phase for the pure tone stimuli). Next, we rendered all

stimuli at 0° elevation and azimuthal positions ranging from 0° to 355° in 5° steps.

All stimuli were rendered in an anechoic environment without any background noise

using the virtual acoustic simulator. This led to 45,360 stimuli in total (30 exemplars

Ö 72 positionsÖ 3 centre frequenciesÖ 7 bandwidths).

Integration across frequency: analysis

Because human participants in the original experiment judged position in the frontal

hemi�eld, before calculating the model's accuracy, we again eliminated front�back

confusions by mirroring model responses of each stimulus across the coronal plane.

We then calculated the di�erence in degrees between the rendered azimuthal position

and the azimuthal position judged by the model. For each network, we calculated

the r.m.s. error for each bandwidth. The graph in Fig. 2-3f plots the mean of this

quantity across networks. Error bars are s.e.m., bootstrapped over networks.

Use of ear-speci�c cues to elevation: stimuli

We simulated a change of ears for our networks, analogous to the ear mould manip-

ulation in ref. [105]). In the original experiment in ref. [105], participants sat in a

dark anechoic room and were played broadband white noise bursts from a speaker on

a robotic arm that moved ± 30° in azimuth and elevation. Participants reported the

location of each noise burst by saccading to the perceived location. After collecting

a baseline set of measurements, participants were �tted with plastic ear moulds (Fig.

2-4a), which modi�ed the location-dependent �ltering of their pinnae. Participants

then performed the same localization task a second time. The experimenters plotted

the mean judged location for each actual location before and after �tting participants

with the plastic ear moulds (Fig. 2-4b,c). The experiment included four participants

between the ages of 22 and 44 years old.
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For the model experiment, instead of ear moulds we substituted HRTFs from

the CIPIC dataset[2]. The CIPIC dataset contains 45 sets of HRTFs, each of which

is sampled at azimuths from 80 to +80 in 25 steps of varying size, and elevations

from 0 to 360 in 50 steps of varying size. For the sound sources to be localized, we

generated 500 ms broadband (0.2 � 20 kHz) noise bursts sampled at 44.1 kHz (as

in ref. [105]). We then zero- padded these sounds to 2,000 ms, with the temporal

o�set of the noise burst randomly sampled from a uniform distribution such that it

was fully contained in the middle second of audio. We generated 20 such exemplars

using di�erent samples of white noise. We then rendered each stimulus at± 20 and

± 10° azimuths, and 0°, 10°, 20° and 30° elevation for all 45 sets of HRTFs as well as

the standard set of HRTFs (that is, the one used for training the model). This led

to a total of 14,720 stimuli (46 HRTFsÖ 4 azimuths Ö 4 elevations). The rendered

locations were slightly di�erent from those used in ref. [105] as we were constrained

by the locations that were measured for the CIPIC dataset.

Use of ear-speci�c cues to elevation: analysis

The results graphs for this experiment (Fig. 2-4b�e) plot the judged source position

for each of a set of rendered source positions, either for humans (Fig. 2-4b,c) or

the model (Fig. 2-4d,e). For the model results, we �rst calculated the mean judged

position for each network for all stimuli rendered at each source position. The graphs

plot the mean of this quantity across networks. Error bars are the s.e.m., bootstrapped

over networks. In Fig. 2-4d we plot model responses for stimuli rendered using

the HRTFs used during network training. In Fig. 2-4e we plot the average model

responses for stimuli rendered with 45 sets of HRTFs from the CIPIC database (none

of which were used during network training). In Fig. 2-4f,g we plot the results

separately for each alternative set of HRTFs, averaged across elevation or azimuth.

The thickest bolded line denotes the mean performance across all HRTFs, and thinner

bolded lines denote HRTFs at the 5th, 25th, 75th and 95th percentiles order by error.

Each line plots the mean over the ten networks.
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Limited spectral resolution of elevation cues: stimuli

We ran a modi�ed version of the spectral smoothing experiment in ref. [137] on our

model using the training HRTFs. The original experiment[137] measured the e�ect of

spectral detail on human sound localization. The experimenters �rst measured HRTFs

for each participant. Participants then sat in an anechoic chamber and were played

broadband white noise bursts presented in one of two ways. The noise burst was either

played directly from a speaker in the room or virtually rendered at the position of the

speaker using the participant's HRTF and played from a set of open-backed earphones

worn by the participant. The experimenters manipulated the spectral detail of the

HRTFs as described below. On each trial, two noise bursts (one for each of the two

presentation methods) were played in random order and participants judged which

of the two noise bursts were played via earphones. In practice, this judgement was

performed by noticing changes in the apparent sound position that occurred when the

HRTFs were su�ciently degraded. The results of the experiment were expressed as

the accuracy in discriminating between the two modes of presentation as a function

of the amount of spectral detail removed (Fig. 2-4i). The experiment included four

participants.

The HRTF is obtained from the Fourier transform of the HRIR, and thus can be

expressed as:

H[k] = P N � 1
n=0 X ne� i2�nk

N

wherex is the HRIR, N is the number of samples in the HRTF andk = [0,N �

1]. To smooth the HRTF, we �rst compute the log-magnitude ofH [k]. This log-

magnitude HRTF can be decomposed into frequency components via the discrete

cosine transform:

log j H [k] j= P M
n=0 C(n) cos(2�nk=N )
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where C(n) is the nth cosine coe�cient of log|H[k]| and M = N/2.

As in the original experiment[137], we smoothed the HRTF by reconstructing it

with M < N/2. In the most extreme case where M = 0, the magnitude spectrum was

perfectly �at at the average value of the HRTF. Increasing M increases the number

of cosines used for reconstruction, leading to more spectral detail (Fig. 2-4h). After

smoothing, we calculated the minimum phase �lter from the smoothed magnitude

spectrum, adding a frequency-independent time delay consistent with the original

HRIR. Our HRIRs consisted of 512 time points, corresponding to a maximum of 256

points in its cosine series.

We repeated this smoothing process for each left and right HRTF at each spatial

position. We then generated 20 exemplars of broadband white noise (0.2 � 20 kHz,

2,000 ms in length) with a 10 ms cosine ramp at the beginning and end of the signal.

The exemplars were rendered at elevations between 0° and 60° in 10° steps and a set

of azimuths ranging from 0° to 355° , the spacing of which varied with elevation due

to the locations in the original set of HRTFs. This yielded 74,340 stimuli (9 smoothed

sets of HRTFS x 20 exemplars x 413 locations).

Limited spectral resolution of elevation cues: analysis

For the model, the e�ect of the smoothing was measured as the average absolute

di�erence in degrees between the judged position and the rendered position for each

stimulus. Figure 4j plots the mean error across networks for each smoothed set of

HRTFs. Error bars are s.e.m., bootstrapped over networks. Figure 4k,l plot the mean

judged azimuth (left) and elevation (right) versus the actual rendered azimuth and

elevation, plotted separately for each smoothing level. Each line is the mean response

pooled across networks. Error bars are shown as bands around the line and show

s.e.m., bootstrapped over networks.

Dependence on high-frequency spectral cues to elevation: stimuli

In the original experiment[98], human participants were played high- and low-pass

noise bursts. The high-pass cut-o� frequencies took on one of six values: 3.8, 5.8, 7.5,
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10.0, 13.2 and 15.3 kHz; low-pass cut-o� frequencies took on one of seven values: 3.9,

6.0, 8.0, 10.3, 12.0, 14.5 and 16.0 kHz (imposed with an analogue Cauer�Chebychev

�lter). The sampling rate was 44.1 kHz. Each noise burst was 1,000 ms in duration,

with a 5-ms squared-cosine ramp at the beginning and end. Each stimulus was

presented from one of nine speakers spaced along the midline at 30° increments in

elevation from 30° to 210°, with 0° being frontal horizontal. Participants judged which

speaker the noise burst was played from, indicating their judgement with a keypress.

The results graph (Fig. 2-4n) plots the proportion correct for each condition (error

bars were not plotted in the original publication, and the raw data were no longer

available). The experiment included ten participants.

Stimuli for the model experiment were similar to those from the human experiment

apart from being presented from a subset of elevations used in the human experiment

due to the constraints of the HRTF set in the model. We generated 50 exemplars of

each cut-o� frequency used in the human experiment, each with a di�erent exemplar

of white noise. Filtering was performed in the frequency domain by setting Fourier

coe�cients beyond the cut-o� to zero. We then rendered all 650 noise bursts at one of

six locations along the midline: 0°, 30°, 60°, 120°, 150° and 180°, with 0° being frontal

horizontal. This led to 3,900 stimuli in total (650 noise bursts at each of six locations).

All stimuli were rendered in an anechoic environment without any background noise

using the virtual acoustic simulator.

Dependence on high-frequency spectral cues to elevation: analysis

We determined the model's response in the experiment to be the elevation in the stim-

ulus set that was closest to the elevation of the softmax class bin with the maximum

activation. Figure 4o plots the proportion of correct responses for each high-pass and

low-pass cut-o� frequency, averaged across the ten networks. Error bars are s.e.m.,

bootstrapped over networks.
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Precedence e�ect: stimuli

For the basic demo of the precedence e�ect (Fig. 2-5b) we generated a click consisting

of a single sample at +1 surrounded by zeros. We then rendered that click at± 45

azimuth and 0° elevation in an anechoic room without background noise using the

virtual acoustic simulator. We added these two rendered signals together, temporally

o�setting the 45° click behind the 45° click by an amount ranging from 1 to 50 ms. We

then zero-padded the signal to 2,000 ms, sampled it at 44.1 kHz and randomly varied

the temporal o�set of the click sequence, constrained such that all non-zero samples

occurred in the middle second of the stimulus. For each delay value, we created 100

exemplars with di�erent start times.

To quantitatively compare the precedence e�ect in our model with that in human

participants, we reproduced the stimuli from ref. [144]. In the original experiment,

participants were played two broadband pink noise bursts from two di�erent locations.

The leading noise burst came from one of six locations (± 20°, ± 40° or ± 60°) and the

lagging noise burst came from 0°. The lagging noise burst was delayed relative to the

leading noise burst by 5, 10, 25, 50 or 100 ms. For each pair of noise bursts, partic-

ipants reported whether they perceived one or two sounds and the judged location

for each perceived sound. The experimenters then calculated the mean localization

error separately for the leading and lagging click for each time delay (Fig. 2-5c). The

experiment included ten participants (all female) between the ages of 19 and 26 years

old.

For both the human and model experiments, stimuli were 25-ms pink noise bursts,

sampled at 44.1 kHz, with a 2-ms cosine ramp at the beginning and end of the burst.

For the model experiment, we generated two stimuli for each pair of noise burst

positions, one where the 0° noise burst was the lead click and another where it was

the lag click. For each delay value, location and burst order, we created 100 exemplars

with di�erent start times. This was achieved by zero-padding the signal to 2,000 ms

and randomly varying the temporal o�set, constrained such that all non-zero samples

occurred in the middle second of the stimulus.
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Precedence e�ect: analysis

Because human experiments on the precedence e�ect typically query participants

about positions in the frontal hemi�eld, we corrected for front�back confusions in the

analysis of both the precedence e�ect demo and the Litovsky and Godar experiment

by mirroring model responses of each stimulus across the coronal plane. Figure 5b

plots the mean judged position at each interclick delay, averaged across the means of

the ten individual networks. Error bars are s.e.m., bootstrapped over networks.

To generate Fig. 2-5d (plotting the results of the model version of the Litovsky

and Godar experiment) we calculated errors for each stimulus between the model's

judged position and the positions of the leading and lagging clicks. We calculated

the average lead click error and average lag click error for each network at each delay.

Figure 5d plots the mean of these quantities across the ten networks. Error bars are

s.e.m., bootstrapped over networks.

Multi-source localization: stimuli

We reproduced stimuli from the original experiment[244], in which human partici-

pants were played between one and eight concurrent speech stimuli. Each stimulus

was played from a di�erent location (out of 12 possible, evenly spaced in azimuth).

Participants judged the number of stimuli as well as the locations at which stimuli

were presented in each trial. The experimenters then plotted the mean number of

sources perceived versus the actual number of sources presented (Fig. 2-6b) and lo-

calization accuracy (proportion correct) versus the number of sources presented (Fig.

2-6d). The experiment included eight normal-hearing participants.

Stimuli were 10 s in duration and consisted of a concatenation of ten 1-s recordings

of a person saying the name of a country (randomly drawn without replacement from

a list of 24 countries). Each stimulus used recordings from a single talker (out of 12

possible talkers, six were female). Each stimulus was presented from one of 12 speakers

at 0° elevation, spaced 30° apart in azimuth (Fig. 2-6a). On each trial, between one

and eight stimuli were simultaneously presented, each spoken by a di�erent talker
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and presented from a di�erent speaker.

The model experiment used the same 1-s recordings used in the original experiment

(kindly provided by W. Yost), but presented a single 1-s recording (of a speaker

saying a single country name, rather than the sequence of ten such recordings used

in the human experiment) at each location, to accommodate the 1-s input length of

the model. For each number of sources (one to eight) we computed each possible

spatial source con�guration and rendered 20 scenes for each con�guration, randomly

sampling talkers and country names for each trial (without replacement). All stimuli

were rendered in an anechoic environment without any background noise using the

virtual acoustic simulator. This led to 75,920 stimuli in total (20 exemplars in each

of 3,796 spatial con�gurations).

Multi-source localization: output layer �ne-tuning

To enable the model to perform the multi-source localization experiment, we altered

the softmax output layer, which was designed to report one source at a time. We

replaced the softmax function with independent sigmoid functions for each output

unit. This allowed the model to independently report the probability of a source

at each location. To allow our model to use this new output representation, we

retrained this new �nal model stage. We froze all weights in each network except for

those in the �nal fully connected layer, which we then trained using gradient descent

for 10,000 steps (`�ne-tuning'). The �ne-tuning used a dataset consisting of auditory

scenes generated and rendered in the same manner as the original training data (as

described in Training data generation above), with two exceptions. First, each scene

contained between one and eight natural sounds, each rendered at a di�erent location.

Second, the scenes did not contain background noise. This process was repeated for

each network to allow the model to use its features on the multi-source localization

task.

To measure accuracy after �ne-tuning, we created a multi-source validation set

using the natural sounds from the main model validation set. We measured the area

under the curve for the receiver operator characteristic curve over the entire multi-
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source validation set. The average area under the curve across �ne-tuned networks

after �ne-tuning was 0.73.

Multi-source localization: analysis

The output layer of the multi-source model contained a unit for each location, as

for the main single-source localization model, but di�ered in that the unit activation

represented the judged probability that a source was present at that location. To

enable the model to perform the multi-source experiment, we implemented a decision

rule whereby the model would determine a source to be present at a location if the

probability for that location exceeded a criterion. We set this criterion such that

the model would correctly estimate the number of sources when a single source was

present. We found empirically that the absolute activations resulting from the sigmoid

output units varied considerably across sounds, presumably because the networks

were trained with a softmax output layer that normalizes the output activations

(which was no longer present in the multi-source decision layer). We thus adopted a

criterion that was a proportion of the maximum probability across all output units

and found that this yielded results that were stable across stimuli. Using all the

experiment stimuli containing one source, we successively lowered the criterion from

1, each time running through the full set of scenes and estimating con�dence intervals

on the average predicted number of sources, until the 95% con�dence interval for

the predicted number of sources (after front�back folding) included 1. This yielded

a decision criterion of 0.09 times the maximum probability across all output unit

activations for the stimulus.

To perform a trial in the experiment, we �rst selected the model's location bins

whose probability exceeded the criterion of 0.09 times the maximum probability across

all output unit activations for the stimulus. We then mapped these locations to the 12

possible speaker locations in the experiment (for each output location bin, we selected

the speaker location closest in azimuth). The number of sources was calculated as

the number of these 12 speaker locations to which a localized source was mapped

(Fig. 2-6c). The proportion correct was calculated as the hit rate: the fraction of the
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12 speaker locations at which the model correctly judged there to be a source (Fig.

2-6e).

2.4.8 Evaluation of models trained in unnatural conditions

Once trained, each alternative model was run on each of the psychophysical experi-

ments. The exception was the multi-source localization experiment, which was omit-

ted because it was not clear how to incorporate the background noise training manipu-

lation into the �ne-tuning of the model output layer. The psychophysical experiments

were identical for all training conditions.

2.4.9 Analysis of results of unnatural training conditions

Human�model dissimilarity

We assessed the e�ect of training condition on model behaviour by quantifying the

extent of the dissimilarity between the model psychophysical results and the human

results. For each results graph, we measured human�model dissimilarity as the r.m.s.

error between corresponding y axis values in the human and model experiments.

To compare results between experiments, before measuring this error, we min�max

normalized the y axis to range from 0 to 1. For experiments with the same y axis

for human and model results, we normalized the model and human data together

(that is, taking the min and max values from the pooled results). For experiments

where the y axes were di�erent for human and model results (because the tasks were

di�erent, as in Figs. 3b,c and 4i,j), we normalized the data individually for human

and model results.

The one exception was the ear alteration experiment (Fig. 2-4a�g), in which

the result of primary interest was the change in judged location relative to the ren-

dered location, and for which the locations were di�erent in the human and model

experiments (due to constraints of the HRTF sets that we used). To measure the

human�model dissimilarity for this experiment, we calculated the error between the

judged and rendered location for each point on the graph, for humans and the model.
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We then calculated human�model dissimilarity between these error values, treating

the two grids of locations as equivalent. This approach would fail to capture some

patterns of errors but was su�cient to capture the main e�ects of preserved azimuthal

localization along with the collapse of elevation localization.

This procedure yielded a dissimilarity measure that varied between zero and one

for each experiment, where zero represents a perfect �t to the human results. For

Fig. 2-7b, we then calculated the mean of this dissimilarity measure over the seven

experiments. To generate error bars, we bootstrapped across the ten networks, re-

calculating all results graphs and the corresponding mean normalized error for each

bootstrap sample. Error bars in Fig. 2-7b plot the s.d. of this distribution (that is,

the standard error of the mean). Additionally, we plotted the mean normalized error

individually for each of the ten networks (Extended Data Fig. 2-15).

Between-human dissimilarity

The dissimilarity that would result between di�erent samples of human participants

puts a lower bound on human�model dissimilarity, and would thus be useful to com-

pare to the dissimilarity plotted in Fig. 2-7b. This between-human dissimilarity

could be estimated using data from the original individual human participants. Un-

fortunately, the individual participant data were unavailable for nearly all of the

experiments that we modelled, many of which were conducted several decades ago.

Instead, we used the error bars in the published results �gures to simulate di�erent

samples of human participants given the variability observed in the original exper-

iments. Error bars were provided for only some of the original experiments (the

exceptions being the experiments in Figs. 2 and 4n), so we were only able to estimate

the between-human dissimilarity for this subset. We then compared the estimated

between-human dissimilarity to the human�model dissimilarity for the same subset

of experiments (Extended Data Fig. 2-16).

We assumed that human data for each experimental condition were independently

normally distributed with a mean and variance given by the mean and error bars for

that condition. Depending on the experiment, the error bars in the original graphs
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plotted the standard deviation, the s.e.m., or the 95% con�dence interval of the data.

In each case we estimated the variance from the mean of the upper and lower error

bar (for s.d. the square of the error bar; for s.e.m.: variance = (
p

N � s.e.m.)2; for

95% con�dence interval: variance = (
p

N � (error bar width)=1:96)2, where N is the

number of participants). To obtain behavioural data for one simulated human par-

ticipant, we sampled from the Gaussian distribution for each condition. We sampled

data for the number of participants run in the original experiment, and obtained

mean results for this set of simulated participants. We then calculated the r.m.s. er-

ror (described in the previous section) between the simulated human data and actual

human data (normalized as described in the previous section for the human� model

dissimilarity). We repeated this process 10,000 times for each experiment, yielding

a distribution of dissimilarities for each experiment. We then calculated the mean

dissimilarity across experiments and samples. Extended Data Fig. 2-16 plots this

estimated between-human dissimilarity (with con�dence intervals obtained from the

distribution of between-human dissimilarity) alongside the human� model dissimilar-

ity for the same subset of experiments.

Models with internal noise

To test for the possibility that the noiseless training environments might have had

e�ects that were speci�c to the lack of internal noise in the cochlear model used as

input to our networks, we trained an alternative model with internal noise added to

the output of the cochlear stage. This alternative model was identical to the main

model used throughout the paper except that independent Gaussian noise was added

to each frequency channel before the recti�cation stage of the cochlear model. The

noise was sampled from a standard normal distribution and then scaled so that its

power was on average 60.6 dB below the average power in the subbands of the input

signal (intended to produce noise at 9.4 dB SPL assuming sources at 70 dB SPL[20]).

In practice, we pregenerated 50,000 noise arrays, sampled one at random on each

trial, and added it to the output of the cochlear �lters at the desired SNR.
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Cohen's d

To assess how training conditions a�ected individual psychophysical e�ects, we mea-

sured the e�ect size of the di�erence between human�model dissimilarity in the natu-

ralistic and unnatural training conditions for each psychophysical e�ect. Speci�cally,

we measured Cohen'sd for each experiment:

d =
� unnatural � � naturalistic

s

s =

vu
u
u
t

� 2
unnatural + � 2

naturalistic

2

where � and � 2 are the mean and variance, respectively, of the human�model

dissimilarity across our ten networks for the naturalistic or unnatural training condi-

tion. We calculated error bars on Cohen's d by bootstrapping across the ten networks,

computing the e�ect size for each bootstrap sample. Figure 7c plots the mean and

s.e.m. of this distribution.

2.4.10 Instrument note localization

Instrument note localization: stimuli

To assess the ability of the model to predict localization behaviour for natural sounds,

we rendered a set of instruments playing notes at di�erent spatial positions. Instru-

ments were sourced from the Nsynth Dataset[59], which contains a large number of

musical notes from a wide variety of instruments. We used the validation set compo-

nent of the dataset, which contained 12,678 notes sampled from 53 instruments. For
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each note, room in our virtual environment, and listener location within each room, we

randomly rendered each of the 72 possible azimuthal positions (0° elevation, 0°�355°

azimuth in 5° steps) with a probability P = 0:025 � no: of locations in smallest room
no: of locations in current room . We used

a base probability of 2.5% to limit the overall size of the test set and normalized

by the number of locations in the current room so that each room was represented

equally in the test set. This yielded a total of 456,580 stimuli.

Instrument note localization: analysis

We anticipated performing a human instrument note localization experiment in an

environment with speakers in the frontal hemi�eld, so we corrected for front�back

confusions by mirroring model responses of each stimulus across the coronal plane.

Di�erent instruments in the dataset contained di�erent subsets of pitches. To ensure

that di�erences in localization accuracy would not be driven solely by the instrument's

pitch range, we limited analysis to instruments for which the dataset contained all

notes in the octave around middle C (MIDI note 55 to 66) and performed all analysis

on notes in that range. This yielded 43 instruments and 1,860 unique notes. We

calculated the mean localization error for each network judgement by calculating the

absolute di�erence, in degrees, between the judged and rendered azimuthal location.

We then averaged the error across networks and calculated the mean error for each

of the 1,860 remaining notes from the original dataset. We plotted the distributions

of the mean error over notes for each instrument (8 A) using letter-value plots[106].

To characterize the density of the spectrum we computed its spectral �atness. We

�rst estimated the power spectrum x(n) using Welch's method (window size of 2,000

samples, 50% overlap). The spectral �atness was computed for each note of each

instrument as:

SpectralF latness =

n

vu
u
u
t

N � 1Y

n=0
x(n)

1
N

N � 1X

n=0
x(n)
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We averaged the spectral �atness across all notes of an instrument and then com-

puted the Spearman correlation of this measure with the network's mean accuracy

for that instrument.

2.4.11 Statistics

Real-world localization

For plots comparing real-world localization across models (Extended Data Fig. 2-

14b,c), error bars are s.e.m., bootstrapped over stimuli (because there was only one

version of the baseline models).

Psychophysical experiments

For plots assessing duplex theory (Fig. 2-2d), azimuth sensitivity (Fig. 2-3c), band-

width sensitivity (Fig. 2-3f), ear alteration (Fig. 2-4d,e), spectral smoothing (Fig.

2-4j), sensitivity to low-pass and high-pass �ltering (Fig. 2-4o), the precedence e�ect

(Fig. 2-5b,d) and multi-source localization (Fig. 2-6c,e) error bars are s.e.m., boot-

strapped across networks. In some cases, the graph of human results used s.d. rather

than s.e.m. for error bars because that is what was used in the original paper, the

results of which were scanned from the original �gure. We opted to use s.e.m. error

bars for all model results for the sake of consistency.

To assess the signi�cance of the interaction between the stimulus frequency range

and the magnitude of the ITD/ILD bias weights (Fig. 2-2d), we calculated the

di�erence of di�erences in bias weights across the four stimulus or cue-type conditions:

di�erence of di�erences= ( B highpass
ILD � B lowpass

ILD ) � (B highpass
IT D � B lowpass

IT D )

whereB denotes the bias weight for each condition). We calculated the di�erence

of di�erences bootstrapped across models with 10,000 samples, and compared it to

0. As this di�erence of di�erences exceeded 0 for all 10,000 bootstrap samples, we �t

a Gaussian distribution to the histogram of values for the 10,000 bootstrap samples
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and calculated the P value (two-tailed) for a value of 0 or smaller from the �tted

Gaussian.

We assessed the signi�cance of the low-pass ILD bias weight (Fig. 2-2d) by boot-

strapping across networks, again �tting a Gaussian distribution to the histogram of

bias weights from each bootstrap sample and calculating the P value (two-tailed) for

a value of 0 or smaller from the �tted Gaussian.

Statistical signi�cance of unnatural training conditions

We assessed the statistical signi�cance of the e�ect of individual unnatural training

conditions (Fig. 2-7b) by comparing the human�model dissimilarity for each unnatu-

ral training condition to a null distribution of the dissimilarity for the natural training

condition. The null distribution was obtained by bootstrapping the human�model

dissimilarity described above across networks. We �t a Gaussian distribution to

the histogram of the dissimilarity for each bootstrap sample and calculated theP

value (two-tailed) of obtaining the value of the dissimilarity measure (or smaller) for

each unnatural training condition under the �tted Gaussian. The e�ect size of the

di�erence in dissimilarity between training conditions was quanti�ed as Cohen'sd

(calculated as described above for individual experiments, but with the dissimilarity

aggregated across experiments, as is plotted in Fig. 2-7b).

We also assessed the statistical signi�cance of the e�ect size of the change to indi-

vidual experiment results (relative to other experiments) when training in alternative

conditions (Fig. 2-7c). We �rst measured Cohen'sd as described above for 10,000

bootstrap samples of the ten networks, leading to a distribution over Cohen's d for

each experiment and each training condition. For each experiment of interest, we

assessed the probability under its bootstrap distribution that a value at or below

the mean Cohen's d of each other experiment could have occurred. The histogram

of bootstrap samples was non-Gaussian so we calculated this probability by count-

ing the number of values at or below the mean for each condition and reported the

proportion of such values as theP value (two-tailed).

We assessed the statistical signi�cance of the e�ect of training condition on real-
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world localization performance (Fig. 2-7e) by bootstrapping the r.m.s. localization

error across networks. We �t a Gaussian distribution to the histogram of the r.m.s.

error for the normal training condition. The reported P value (two-tailed) is the

probability that a value could have been drawn from that Gaussian at or above the

mean r.m.s. error for each alternative training condition.
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2.5 Extended Data Figures

Figure 2-9: a. Histogram of validation set accuracies (proportion correct) for neural
network architectures after 15k steps of training during architecture search. Here and
in B, histograms include the 897 architectures that remained (out of the initial set of
1500) at this point in the architecture search. b. Histogram of validation set losses
for neural network architectures after 15k steps of training during architecture search.
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Figure 2-10: Discrete prior distributions used for architecture search. Pooling and
convolutional kernel parameters at each layer were uniformly sampled from the lists
of values.
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Figure 2-11: Summary of the 10 network architectures. These architectures performed
best in the architecture search and were used as `the model' in all experiments in this
paper.
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Figure 2-12: The set of sources contained multiple exemplars of some of the sound
classes, denoted with the numeral at the end of the source name.
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Figure 2-13: Room con�gurations used in virtual training environment. Dimensions
of rooms are given in meters.
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Figure 2-14: a. Photo of two-microphone array. Microphone spacing was the same as
that in the KEMAR mannequin (shown in Fig. 2-1e) used to record our real-world
test set, but the recordings lacked the acoustic e�ects of the pinnae, head, and torso.
b. Localization accuracy of standard two-microphone localization algorithms, our
neural network localization model trained with ear/head/torso �ltering e�ects (same
data as plotted in Fig. 2-1g,h), and neural networks trained instead with simulated
input from the two-microphone array. Localization judgements are front-back folded.
Error bars here and in C plot SEM, obtained by bootstrapping across stimuli. c.
Front-back confusions by each of the algorithms from B. Chance level is 50%. Our
main model (that is, the one trained with ears) is the only model whose front-back
confusions are substantially below chance levels, con�rming the utility of head-related
transfer function cues for partially resolving front-back ambiguity.
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Figure 2-15: Human-model dissimilarity for natural and unnatural training conditions
for each of the 10 individual neural networks

103



Figure 2-16: Human-model dissimilarity and human-human dissimilarity (root-mean-
square error; RMSE) calculated over the subset of experiments for which across-
participant variability could be estimated (typically from error bars in the original
results graphs).
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