Extracting Parallelism
from Sequential Programs
by
Wilson Cheng-Yi Hsieh

Submitted to the Department of
Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Computer Science and Engineering
and
Master of Science in Electrical Engineering and Computer Science
at the
Massachusetts Institute of Technology
May 1988
© Wilson C. Hsieh, 1988

The author hereby grants to MIT permission to reproduce and
to distribute copies of this thesis document in whole or in part.

Signature of Author

Department of Electrical Engineering and Computer Science
6 May 1988

Certified by.__

Michael Burke
Company Supervisor
IBM T.J. Watson Research Center

Certified by___
William E. Weihl

Assistant Professor of Electrical Engineering
- Thesis Supervisor

Accepted by___
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students
MASSALRLGE TS WSTIYTE
AN TERENCLGY

1
ARCHives JUL 21 1988

Extracting Parallelism from Sequential Programs
by
Wilson Cheng-Yi Hsieh

Submitted to the Department of Electrical Engineering and Computer Science
on 6 May 1988, in partial fulfillment of the
requirernents for the degrees of
Bachelor of Science in Computer Science and Engineering
and
Master of Science in Electrical Engineering and Computer Science

Abstract

Current vectorizers and parallelizers all concentrate on transforming innermost do loops
into vector or parallel loops; we present techniques for parallelizing nested do loops as
well as blocks of code that are more general than the iterations of do loops. These
techniques are based on a new representation for sequential programs, the constrained
forward control dependence graph.

We generate nested parallelism in the form of parallel loops (doall) and parallel
blocks (cobegin/coend). Our code generation incorporates an optimization, privatiza-
tion, that improves the parallelism that we can achieve. Working off of the constrained
forward control dependence graph, we present algorithrns to insert some explicit syn-
chronization, perform privatization, and generace parallel code.

Thesis Supervisor: William E. Weihl
Title: Assistant Professor of Electrical Engineering

Biography

The author is a member of Tau Beta Pi, Phi Beta Kappa, and Sigma Xi; he will be
receiving his bachelor’s and rnaster’s degrees this May from the Massachusetts Institute
of Technology. He is a co-author of two papers written while he was on an internship
assignment at IBM Research: “On the Automatic Generation of Useful Parallelism:
A Tool and An Experiment (Extended Abstract)”, with Michael Burke, Ron Cytron,
Jeanne Ferrante, Dave Shields, and Vivek Sarkar, which was accepted for the 1988
ACM Sigplan Symposium on Parallel Programming: Experience with Applications,
Languages, and Systems; and “Automatic Determination of Private and Shared Vari-
ables for Nested Processes”, with Michael Burke, Ron Cytron, and Jeanne Ferrante, an
IBM Technical Report. He will begin work toward his PhD at the Massachusetts Insti-
tute of Technology in the fall of 1988, with support from a National Science Foundation
Graduate Fellowship.

Contents

Acknowledgements

1 Introduction

1.1 Inputlanguage e
1.2 Outputlanguage
1.2.1 Privatevariables
1.2.2 Semaphores e e e e e e
1.3 Summary e e e e e e e e e e e e e

2 Program analyses

21 Controlflow e
2.2 Controldependence
2.3 Datadependence

2.3.1 Dataflowanalysis

3 Comnstrained forward control dependence

3.1 Forward control dependence
3.1.1 Discussion e e
3.2 Data dependence constraints e e e e e e e e e
2.2.1 Constraintedges
3.22 Constraintmarks. e e e e e e e
3.23 Discussion. e e

10
11
12
12
14
16

19
19
22
27
31

4 Algorithms

4.1 Privatization-.
4.1.1 Privatizing blocks
4.1.2 Privatizingloops

4.2 Explicit synchronization

4.3 Codegeneration

5 Conclusions

A Computing :onstraints

43
43
46
52
54
59

63

65

List of Figures

1-1
1-2
1-3

2-1
2-2

2-4
2-5
2-6

3-1

3-3
3-4

4-1
4-2
4-3
4-4
4-5
4-6

Output language example oo 13
Semaphore example e 15
Parallelizationexampleo oo 17
Sample program e e e e e 20
Control flow graph of program in Figure 2-1 21
Graph grammar for structured programs 23
Control dependence graph of program in Figure 2-1 25
Data dependenceexample oo oo 29
Loop-independent and loop-carried dependences 29
Forward control flow graph of program in Figure 2-1 34
Forward control dependence graph of program in Figure 2-1 35
Constraint edge discussion 0. 40
Forward control dependence graph of program in Figure 3-3(a) 41
Privatization example o oo 44
Privatization versusrenaming v h v e v e 45
No privatization due to flow dependences 46
Forward control dependence graph during block privatization 47
No privatization i 48
Privatization examples e e e e e e 49
Privatization forarrays o o 51

4-8 No privatization oo 53

4-9 Synchronizationexample., 54
4-10 Private semaphores e 55
4-11 Non-removable constraintedge 56

4-12 Adding synchronization to the forward control dependence graph 58

Acknowledgements

Special thanks to Ron Cytron, who is responsible for many of the ideas in this thesis,
and was always available to discuss things. Thanks also to the rest of the PTRAN
group at IBM’s T.J. Watson Research Center - Fran Allen, Michael Burke, Philippe
Charles, Jeanne Ferrante, Vivek Sarkar, and Dave Shields - who were a wonderful group
of people to werk with. Thanks also to Cathy McCarthy, Francois Irigoin, and Jan
Stone for being very friendly and helpful during my stay at IBM; thanks to Kip Fern,
who was a good friend and roommate.

Thanks to Bill Weihl, who was a great thesis and graduate advisor; Albert Meyer,
who was very helpful as my undergraduate advisor; Brian Oki, a great TA in 6.035 and
good friend.

Thanks also to all those who read my thesis and provided comments: Bill Weihl,
Ron Cytron, Michael Burke, Bob Gruber, and Jeff Cohen.

Thanks to Marcus Thompson, and all of the other musicians with whom I have
played; without them, I would not have enjoyed MIT very muvch: Joyce Wong, Chung-
Pei Ma, Richard Gotlib, Jee-Hoon Yap, Phil Hsu, Una Hwang, Barbara Hughey, Ellen
Lin, Ken Goodson, Nina Chen, Monty McGovern, Marc Ryser, Sam Osofsky, Kirk
Chao, Bob Hall, Bob Davis, Jean Rife, and many others.

Thanks also to my good friends at Burton House, who helped me survive this place:
David Krakauer (who put up with me as lab partner for three terms), Louis Pepe
and Jeff Finer (who helped turn the first triple play in Burton history), Kris Sheahan,

Joanne Chee, Orlee Israeli, Sam Osofsky, Anne Okamura, Julie Tsai, Chris Adams,

Chris Joerg, Harold Stern, Mike Niles, and lots of others.
Thanks to Oliver Liang, Steve Liu, Dave Shen, and Terry Fuang, who have been

great friends since high school.

And, last but certainly not least, thanks and love to my parents, who have unswerv-
ingly helped me stumble through life; thank you for all of the love that you have given

me.

Chapter 1

Introduction

As computers have steadily become smaller and faster, they have been used to solve
ever larger problems. However, device sizes and speeds are already approaching physical
limits, and there are still many problems that today’s fastest computers cannot begin
to solve in reasonable amounts of time. The obvious way to continue increasing the
speed of computers is to “divide and conquer” problems with multiple CPUs. Many
commercially available computers already have multi-CPU architectures, such as IBM’s
3090, Alliant’s FX-8, and Thinking Machines’ Connection Machine. To make full use
of the extra processing power in these machines, we need io develop parallel software.
Several research groups are building vectorizing or parallelizing compilers, which
convert sequential language programs into vector or parallel language programs. This
thesis deals with work on the PTRAN parallelizing system at TBM’s T.J. Watson
| Research Center [ABCC87|; related projects include Parafrase I and II at the University
of Illinois [KKLW80] and PFC at Rice University [AK87|.
’ Several important reasons for working on such systems exist. A large base of sofl-
ware already exists, and it would be infeasible to discard it and write new software: we
must be able to convert sequential software to run on parallel machines. Experience
in building and using parallelizers should also be uszful in developing solutions to sev-

eral problems in paralle! programming. Parallelizers may help in developing parallel

10

program debuggers or verifiers; debugging non-deterministic parallel programs is still
an incredibly difficult task — perhaps the most serious problem in using parallel lan-
guages. Future parallel programming languages should ideally be portable, yet efficient
on different parallel architectures; compilers will have to perform program restructuring
to make this possible.

PTRAN, Parafrase, and PFC are “source-to-source” compilers: they translate high-
level sequential languages into high-level parallel languages. PTRAN currently converts
VS FORTRAN programs into Parallel Fortran programs [IBM88]. This approach has
a major advantage over compiling to machine code: a PTRAN user can “hand-tune”
the output program that PTRAN produces, if he possesses some knowledge about the
input program that PTRAN cannot deduce.

Our work in the PTRAN system allows us to generate more parallelism than other
systems; current vectorizers and parallelizers all concentrate on transforming inner-
most do loops into vector or parallel loops. Our program representation allows us to
parallelize nested do loops, as well as blocks of code that are more general than the
iterations of do loops. We generate nested parallelism; each parallel process can itself
coniain paralle! processes.

Although the PTRAN system currently transforms only VS FORTRAN programs,
our techniques for parallelization can be applied to most imperative programming lan-
guages. For the sake of exposition, we shall assume that we have abstract input and

output languages as described in the following two sections.

1.1 Input language

Our input language {a sequential language) has only a single looping construct, do
loops (similar to Fortran 1o loops). We use an if-then-else statement for conditional
execution; multiway branches would not add any power to our language. We allow the

presence of unconditional goto statements and return statements, as long as they are

11

used in a structured manner (defined in Section 2.1). A block of code is bracketed by
begin and end statements. Variables can be either numbers (integers, reals, etc.) or
arrays of numbers, and expressions include standard arithmetic operations as well as

procedure calls.

1.2 OQutput language

Our output language (an explicitly parallel language) is a parallel extension of our
input language. The first extension that we provide is the doall construct, which
allows us to write parallel loops. A doall loop has the same form as a do loop, but all
of its iterations can be run in parallel. Within a doall loop, we will assume that each
iteration of the loop effectively receives its own copy of the loop’s induction variable.
The other language extension is the cobegin/coend construct, which allows us to
schedule blocks of statements to run in parallel [AS83]. Each statement or begin/end
block contained directly within a cobegin/coend block can be executed in parallel; we

call such a begin/end block a parallel block.

1.2.1 Private variables

Our output language has a private statement that can be used to specify the gener-
ation of private instances of variables within the iterations of a doall locp or within
a parallel block {IBM88]. Adding private statements is similar to renaming [CF87b],
but it does not change the variable names in the source program.

When used within a parallel loop, all private statements must immediately follow
the doall statement; when used within a parallel block, all private statements must
immediately follow the begin statement that opens the parallel block. Only non-array
variables may be private within a parallel loop; both array and non-array variables
may be private within a parallel block. A private statement specifies a variable name

and the optional keyword copyout; copyout means that the value of the private copy

12

(5) doall i =1 ton

(S7) private x copyout
(Ss) cobegin

(S4) begin

(Ss) x =3 *i
(56) y(i) = 4 + x
(S7) end

(Ss) begin

(Sy) private x copyout
(S10) x=3x*1i
(S11) z(i) = 6 - x
(S12) end

(S13) coend

(S14) end doall
(S15) y=6x*x-3

Figure 1-1: Output language example

of the variable is “copied out” to the surrounding scope’s copy of the variable when
the cobegin/coend block or doall loop finishes executing. For doall loops, the last
iteration’s private copy is the one whose value is copied out.

When the copyout keyword is used with a non-array variable, the value of the
variable is copied out; if the copyout keyword is used with an array variable, only
the elements of the array that are modified in the parallel block are copied out. For a
given memory location in a cobegin/coend block, only one parallel block can have that
variable specified as copyout; the actual copying occurs when the entire cobegin/coend
block finishes exectuting. We assume that iteration variables within doall loops never
require private statements.

Figure 1-1 illustrates the use of the private statement. S; specifies that x in Sg
and Sg effectively refers to an iteration-private copy of x. Each iteration can be run
in parallel, since no two iterations refer to the same storage location. The copyout

keyword in S; specifies that the value of the last iteration’s copy of x (the copy of the

13

iteration where i = n) is copied into the “global” copy of x, which is the copy that S5
references.

The references to x in S;g and S;; do not refer to the iteration-private copies of x; Sy
specifies that when the begin/end block from Sg to S), is entered, the block effectively
receives its own copy of x. This block can run in parallel with the other begin/end
block in the loop, since the two blocks do not refer to the same storage. The copyout
keyword in Sy specifies that when the cobegin/coend block ends, the value of the copy
of x within the second begin/end block is copied into the iteration-private copy of x;
this ensures that the last iteration’s copy has the correct value when it gets copied out
to the global copy.

Making variables private statements allows us to increase the parallelism that we
can generate: we can run blocks of code (or the iterations of a loop) in parallel if they
do not refer to the same storage location. We call the process of making variables
private privatization; in Section 4.1, we give an algorithm to perform privatization

[BCFHS7).

1.2.2 Semaphores

Our output language has three semaphore statements that allow us to insert explicit
synchrorization: semaphore, wait, and signal. The semaphore statement is used to
declare binary semaphores; wait and signal are the standard semaphore operations
(P and V) [AS83]. Given the sequential program in Figure 1-2(a) as input, we could
generate the parallel program in Figure 1-2(b) as output. Since we have inserted wait
and signal statements that refer to the semaphore 81, the two if blocks can be run in

parallel. In Section 4.2, we show how to insert explicit synchronization in our programs.

14

(Sy)
(S,)
(Ss)
(Sy)
(Ss)
(Se)
(Sy)
(Sg)
(Sy)
(S1e)
(S11)
(S12)

(513)

(51)

(52)
(Ss)
(Sy)
(Ss)

(Se)
(S7)

(Ss)
(Sy)
(S10)
(S11)

(512)
(513)

y=25
if p-
then begin
x =4
y=bx*xx+3
z=86+x*b
end
if q
then begin
a =20
b=30-¢ *a
c =48 * y
end
Figure 1-2(a): Inpu’ program
y=5
cobegin
semaphore sl
if p
then begin
x =4
y=5x*x+3
signal sl
z=6+x=*5b
end
else signal si
if q
then begin
a = 20
b=30-5 *a
wait sl
c =48 * y
end
coend

Figure 1-2(b): Output program

Figure 1-2: Semaphore example

15

1.3 Summary

This thesis presents a ﬁew representation for sequential programs, the constrained for-
ward control dependence graph, from which it is straightforward to generate parallel
code. We use control dependence and data dependence information to compute the
constrained forward control dependence graph: control dependences describe syntactic
constraints on parallelism, while data dependences describe semantic constraints. In
addition, we present two algorithms that utilize the constrained forward control depen-
dence graph: an algorithm to perform privatization, and an algorithm to add explicit
synchronization.

Figure 1-3 illustrates the types of transformations that we want to perform: given
the sequential program in Figure 1-3(a) as input, we want to generate the parallel
program in Figure 1-3(b) as output. Since the first two do loops in Figure 1-3(a)
initialize two separate arrays, we can run them in parallel with each other. Since each
iteration of these two loops writes to different elements of X and Y, respectively, we can
run the iterations of each loop in parallel. Since each statement within these loops also
writes to different elements of X and Y, they also can be run in parallel. However, since
the final do loop uses the values of X and Y that are set in the first two loops, it cannot
be executed until the first two loops both finish.! When the final do loop does execute,
all of its iterations can be run in parallel, since they all write to different elements of Z.

Our parallelization techniques are described for single procedures (or programs);
however, they work in an interprocedural setting as well, since code can still be gener-
ated on a procedure-by-prciedure basis. Interprocedural data flow analysis is necessary
to generate good parallel code; without it, worst-case assumptions about data depen-
dence must be made about procedure calls.

In Chapter 2, we describe the program analyses that we need to compute the con-

1We schedule all parallelism at compile-time; a dataflow machine could begin to execute the final do
loop before the other two loops finish, as could a pipelined machine. The addition of explicit synchro-
nization could also allow more parallelism.

16

(51)
(S2)
(S3)
(S9)
(Ss)
(Se)
(S7)
(Ss)
(Sp)
(S10)
(811)

(S1)

(S2)
(Ss)

(S4)
(Ss)

(Se)
(S1)

(Sg)
(Se)

(S10)
(S11)

doi=1¢%ton

X(2%i) =1 + b
X(2*%i+1) = 3 * i
end do
do j =1ton
Y(2%i) =1 - 4
Y(2*i+1) = 1 % i
end do

dok=2to2%*n+1
Z(1) = X(1) + Y(i)
end do

Figure 1-3(a): Input program

cobegin
doall i =1 ton
cobegin
X(2*i) = i
X(2+i+1) =
coend
end doall
doall j =1 ton
cobegin
Y(2*1) =
Y(2%i+1)
coend
end doall
coend
doall k=1 to 2 *n + 1
Z(1) = X(i) + Y(i)
end doall

[
w +
* O
[

[
Mo
* >
[

Figure 1-3(b): Output program

Figure 1-3: Parallelization example

17

strained forward contro} dupendence graph; in Chapter 3, we describe the constrained
forward control dependence graph; and in Chapter 4, we present algorithms to perform
privatization, to insert .explicit synchronization, and to generate parallel code from our
representation. The new work in this thesis is the material described in Chapters 3

and 4.

18

Chapter 2

Program analyses

This chapter describes the compiler analyses required to construct our program repre-

sentation.

2.1 Control flow

Definition 1 A control flow graph Gy(P) = (Ny(P),E;(P)) of a program P is a
directed graph, where the set of nodes N;(P) contains two distinguished nodes Entry
and Ezit, the set Ny(P) — {Entry, Ezit} is isomorphic to the statements of P, and
the set of edges E;(P) corresponds to the possible flow of control within P [ASUS86].
We assume that all programs are single-entry and single-exit without loss of generality

[HecT7].

Figure 2-2 contains the control flow graph for the program in Figure 2-1; it illustrates
the form of the control flow subgraph for a do loop. The do statement branches around
the body of the loop because it represents the initial test of the iteration variable
against the loop bounds. The end do statement represents an “increment and test”
statement, which branches to the “header” of the loop when the iteration variable is

less than the upper loop bound.

19

(Sl) if P

(Sz) then do 1 =1 ton
(Sa) if q

(S4) then begin
(Ss) a =10 + i
(Ss) X(i) =6 - i
(57) end

(Ss) Y(i) =4 % 1

(S9) Z(i) = X(1-1) + b
(S10) end do

(S1u) else begin

(512) a=4

(513) b=3%a

(S14) end

Figure 2-1: Sample program

A node n dominates a node m if all paths from Entry to m in G¢(P) contain n; n
post-dominates m if all paths from m to Ezit in G;(P) contain n. A node n properly
post-dominates a node m if n post-dominates m and n # m [Hec77]; the smmediate
post-dominator of a node m is the proper post-dominator n of m such that every proper
post-dominator of m post-dominates n.

Proper post-domination specifies how we can schedule statements to execute. In
the control flow graph in Figure 2-2, S)¢ properly post-dominates all of the statements
in the set {Ss,S4,...,S0}; if any of those statements execute, Syo will be executed
later. We will schedule a statement n to run in parallel with another statement m
only if n properly post-dominates m; since n will execute each time m executes, we are
guaranteed to accomplish some work in parallel.

Our assumption that all loops are do loops results in a loss of generality. However,
many non-do loops formed from goto and if-then-else statements can be converted
into do loops by performing induction variable analysis [Lep.85]. The parallelization of

arbitrary while or until loops is beyond the scope of this thesis.

20

PN
Stz
Ss
Se
s-,\ e
Ss
So
N o
\\ /

Figure 2-2: Controi flow graph of program in Figure 2-1

21

We assume that every program is structured [LM77,Mil82,BJ66|. Structured pro-
grams are a class of programs whose control flow graphs can be generated from a family
of simple graph grammars whose productions represent sequencing, conditionals, and
looping; Figure 2-3 contains a graph grammar that can generate our programs. Any
non-structured program is equivalent to some structured program, so the assumption
of structuredness loses no generality.

The property of being structured implies a property called reducsbslsty; if a program
P is reducible, any strongly-connected region (i.e. loop) in G;(P) contains a single
node (called the header of the region) that dominates all of the nodes in the region,
which means that the header is the first node executed in the region [ASU86|. Since
any irreducible program can be transformed into a reducible program via node splitting,
the assumption of reducibility alone also loses no generality [Hec77].

We define an edge e € E;(P) to be a back edge of G¢(P) if its head dominates its
tail in G;(P).! Reducibility is a useful assumption because the non-back edges in a

reducible control flow graph form a DAG (directed acyclic graph) [ASUS6|.

2.2 Control dependence

We use a form of control dependence to represent the parallelism that we can extract
from a program [Ban79,FOW87|. Several algorithms for computing the control depen-

dence relation are known [CF87a,FOWS87].

Definition 2 Given a control flow graph G;(P), a node m is control dependent upon
a node n via a control flow edge e; (alternatively, n controls m via e;) if all of the

following conditions hold:

o There exists a path from n to m in G;(P).

e m does not properly post-dominate n in G;(P).

1The head of an edge ¢ = (m,n) is n; the tail is m.

22

PROGRAM

Entry —. -+ FEzit

Figure 2-3: Graph grammar for structured programs

23

¢ m post-dominates n' in G;(P), where e; = (n,n') € E;(P).

If a node n controls a node m via a control flow edge e/, then exiting n on e 7 will
always result in m executing; exiting n on another edge may or may not result in m
executing. In other words, whether m executes depends on whether the flow of control
leaves n via ey.

We define a control dependence graph G.(G;) = (N.(Gy), E.(Gy)), where N,(G;) =
Ny. The edges in the set E, are labeled edges, where a labeled edge e, = ((rn,m), /)
is in E¢(Gy) if and only if n controls m via edge e; in G;. A node with children in a
control dependence graph is a decision point where a choice between control flow edges
will be taken.

The control dependence graph for the program in Figure 2-1 (page 20) is shown in
Figure 2-4; the labels of the control dependence edges are omitted for clarity. Assume
that the edges of the control flow graph in Figure 2-2 are named as follows: e, = (51, S2),
es = (S1,81), ec = (S, Ss), €a = (Ss,54), and e, = (S10,S3). The labels of the control
dependence edges in Figure 2-4 are:

¢ The label of the edge (.51,5,) is e,, and the labels of the edges (51,511)
(81,512), (51,513), and (S1,514) are e;.

e The labels of the edges (S,53), (S2,58), (S2,9), and (S2,10) are e..

o The labels of the edges (Ss,S,), (Ss,55), (S3,5), and (Ss,S7) are eg.

e The labels of the edges (S10,53), (510,55), (S10,5%), and (S0,510) are e,.
Lemma 1 If there exist two distinct nodes mq and m, that are both control dependent
upon the same node n via the same control flow edge ¢, then exactly one of the following

is true:

e my properly post-domiriates m;.

e m, properly post-dominates m,.

24

Eniry S, it

Figure 2-4: Control dependence graph of program in Figure 2-1

25

Proof: By the definition of control dependence, both my and m; post-dominate the

head of e;.

The control dependence graph represents constraints on the parallelism that we can
extract from a program. If a node m is controlled by a node n, we cannot run m in
parallel with n, since whether m executes depends on how the flow of control leaves
n. However, by Lemma 1, we can possibly execute two nodes in parallel if they are
siblings in the control dependence graph: if two nodes m and m' are both controlled
by n via ey, both will always be executed if we exit n via e;. In addition, if m and m/
both have childrcn in the control dependence graph, we can possibly schedule the two
groups of children to run in parallel with each other. |

The control dependence graph in Figure 2-4 specifies which statements we can run
in parallel:

» After S; executes, either we will execute S; and possibly the statements
that it indirectly controls, or we will execute S;;, Si2, S13, and Sy4, all of

which we could run in parallel.

e After S; executes, we may execute Ss, Ss, Sy, and Syg, all of which could

run in parallel.

o After S3 executes, we may execute Sy, S5, Sg, and Sy, all of which could

run in parallel.

Although the control dependence graph specifies which statements we can run in
parallel due to the syntactic structure of a program, it does not take into account the
semantics of the program: in the program in Figure 2-1 (page 20), we cannot execute
S12 and Sys in parallel, since S;3 makes use of the value that S;; computes. We use a
data dependence graph (described in Section 2.3) to compute semantic constraints on
parallelism.

Since the control dependence graph is very unstructured, generating code from it

is difficult. In general, a control dependence graph will contain loops: in Figure 2-

26

4, Sjo controls itself and every other statement within the loop that post-dominates
S3. However, we do not need such information: it complicates code generation, and
we do not need it to generate doall loops. The control dependence graph is also in
general unconnected, since any node that post-dominates Entry will not be control
dependent upon Entry: in Figure 2-4 both S; and Ezit are not controlled by any node.
This complicates code generation, since we cannot make a simple pass through the
graph. Our program representation, the constrained forward control dependence graph

(described in Section 3.1), does not have these problems.

Definition 3 Given a control dependence graph G.(Gy), a node m is indirectly control
dependent upon a node n via control flow edge e, (alternatively, n indirectly controls

m via ey) if all of the following conditions hold:

o There exists a path p from n to m in G.(Gy).

e The first control dependence edge in p has label e;.

If two nodes m; and m; are indirectly control dependent on the same node n via
the same control flow edge es, they may be scheduled to run in parallel (if one node
is an ancestor of the other, the control dependence graph constrains the parallelism; if
neither node is an ancestor of the other, they could be scheduled to run in parallel). If
one node must run only after the other, some of the common indirect controllers of m,
and m, must be “marked” to ensure that m; and m, are not scheduled to run in parallel.

We describe which common indirect controllers must be marked in Section 3.2.

2.3 Data dependence

Data dependences are constraints on the order of statement execution in sequential
programs that are due to either the flow of values or the reuse of storage; they must

be taken into account to ensure that the semantics of the output code is correct.

27

Following Kuck’s notation, there are fhree types of data dependence: flow dependence,
anti dependence, and output dependence [Kuc78,PW86|.

If a statement S; is data dependent upon another statement S; in a sequential
program, it must be executed after S;. We modify Kuck’s definitions to deal with
arrays more precisely (numeric variables could be considered as single-element arrays)
[Kuc78|:

o S; is flow dependent upon S; over certain elements of a variable v if an
instance of S; assigns values to those elements of v and an instance of S;

may use those values of those elements of v.

e S; is ants dependent upon S; over certain elements of a variable v if an
instance of S; assigns values to those element of v and an instance of S;
uses those elements of v, but not the values assigned by the instance of

S;.

o S; is output dependent upon S; over certain elements of a variable v if
instances of S; and S; both assign values to those elements of v, and the
values that the instance of S; assigns must be stored after the values that

the instance of S; assigns.

The last two types of data dependence are storage-related, in that they are due to
the reuse of storage locations (variables) in a program.

There is a flow dependence from S; to Ss in the program in Figure 2-5, since the
execution of S3 on the first iteration of the do loop will use the value of X(1). Similarly,
there is a flow dependence from Ss to itself, since the execution of Sg on some iteration
could use the value defined in the previous iteration by Ss; there is a flow dependensc«
from Sg to S5 by the same argument. There is a flow dependence from Sy to Ss, since
Ss defines X(i) and Ss may use X(1) on any iteration; similarly, there is an output
dependence from S3 to Ss since both statements could deﬁpe X(1) on any iteration.

There is no output dependence from Ss to itself, because each iteration of the loop

28

(Sy) X(1) = b
(S;) doi=2t%on

(Ss) X(1) = 4 * X(i-1) + 2
(Sa) if p
(Ss) ' then X(i) = X(i) * 4

(Se) end do

Figure 2-5: Data dependence example

(Sy1) doi=1¢ton

(Sz) if p
(Ss) then x = 3
(Sy) if q
(Ss) then x = b

(Sg) end do

Figure 2-6: Loop-independent and loop-carried dependences

assigns to a different element of X; similarly, there is no output dependence from Ss to
itself.

We further classify data dependences as loop-carried or loop-independent [All83].
A data dependence is loop-carried if the data dependence goes from a staterment in
one iteration of a loop to a statement in a later iteration of the same loop; otherwise,
the data dependence is loop-independent. In the program in Figure 2-5, the flow
dependence from Sy to Ss is loop-independent, since the dependence does not cross
between the iterations of any loop. The flow dependence from 53 to S5 and the output
dependence from Ss to S; are also loop-independent, since they occur within a single
iteration of the do loop. However, the flow dependences from S to itself and from Sj
to S are loop-carried, since the dependences go from one iteration of the do loop to
the next.

In the program in Figure 2-8, there are two data dependences present from Ss to

29

Ss: both a loop-independent output dependence and a loép-carried output dependence.
There is a loop-independent output dependence since both statements may define x
within any iteration of the do loop; there is a loop-carried output dependence since the
definition of x by S5 in some iteration of the loop could overwrite the value of x defined
by S3 in a previous iteration. There is a loop-carried output dependence from Sy to
Ss, since Ss in some iteration could overwrite the value of x defined by Ss in a previous
iteration; there is a loop-carried output dependence from Ss to itself, since S; in some
iteration could overwrite the value of x defined by Ss in a previous iteration; and there
is a loop-carried output dependence from Sg to itself, since S in some iteration could
overwrite the value of x defined by S; in a previous iteration.

Data dependences restrict the parallelism we can generate; the classification of data
dependences as loop-carried or loop-independent is important because it parallels the
distinction between the two types of parallelism that we generate: parallel loops and
parallel blocks. Intuitively, loop-carried data dependences restrict the parallelism we
can achieve among the iterations of a loop, and loop-independent data dependences
restrict the parallelism we can achieve from parallel blocks.

We can use interprocedural data flow analysis [Bur87,Hec77| and data dependence
analysis [Cyt87,Wol82] to find the data dependences that exist in a program, which we
represent via a data dependence graph G4(P) = (Na(P), E4(P)), where Ny(P) = N,(P),
and E4(P) is a set of labeled edges called data dependence edges.? Data dependence
edges are of the form ((ny,n;),v,t,l), where v is a variable, ¢ is either flow, anti, or
output, and ! is either independent or (carried, ny,); n4, € Ny(P) is the do node
that corresponds to the loop that carries the dependence. Data dependence edges
thus represent all six types of data dependence: loop-carried flow, anti, and output

dependences, and loop-independent flow, anti, and output dependences.

2Standard interprocedural data flow analysis and data dependence analysis will not give the exact
information about arrays that we desire; further research is necessary to determine how to compute such
information.

30

2.3.1 Data flow analysis

s

We need the solution to two distributive data flow problems for our algorithms: the
reaching definitions and live variable problems. The solutions to these two problems
are in a class known as “meet over al! paths” solutions [Hec77]. Soluiions to data flow
problems are inherently conservative, since they are based on compile-time knowledge.

A definition is a pair (n,v), where n is a node and v is a storage location (numeric
variable or array element) that n defines. A definition (n,v) reaches another node m if
that definition is “available” at m. A storage location v is live at a node n if the value
of v immediately before n executes could be used when or after n executes; if v is not

live at n, it is dead at n.3

3These definitions are more precise with respect to arrays than standard definitions; problems in
computing the solutions are similar to the problems in computing our data dependence graph.

31

Chapter 3

Constrained forward control

dependence

We use forward control dependence to represent the parallelism that we can extract from
a program. Control dependence does not give us the exact information that we want:
the control dependence graph is unconnected and has too much information about
loops, in that the exit from a loop controls other statements in the loop. We discard
this “extra” information about loops since it is not useful for our transformations.

To remove the extra control dependence edges and to create a connected graph,
we define a forward control flow graph, from which we compute the forward control
dependence graph. The forward control flow graph contains all of the non-back edges

of the control flow graph, and an additional edge from Entry to Exit.

Definition 4 Given a reducible control flew graph G(P), the forward control flow
graph Gyg(P) = (Nyg(P), Ey(P)) is defined as follows, where Forward(E,(P)) contains
exactly the non-back edges in E;(P):

Ny (P) = Ny(P)
Eg(P) = Forward(E(P)) U (Entry, Ezit)

Gyy(P) is a DAG, since the non-back edges of a reducible control flow graph form

32

a DAG and the edge (Entry, Ezit) cannot create a cycle;

Figure 3-1 shows the forward control flow graph of the program in Figure 2-1
(page 20); compare it with the control flow graph in Figure 2-2 (page 21). The only
node that post-dominates Entry in the forward control flow graph is Fzit, and there

are no strongly-connected regions in the forward control flow graph.

3.1 Forward control dependence

The forward control dependence graph is simply the control dependence graph of the

forward control flow graph minus Ezst.

Definition 5 The forward control dependence graph (alternately, the f-control depen-
dence graph) Gy.(P) = (Ny.(P), Es.(P)) of a program P is defined as follows:

Ny(P) = Nc(Gy(P)) — Ext
E;(P) = E.(Ggy(P))

Since Ezit properly post-dominates every other node in G;¢(P), there are no edges to

Ezit in G.(Gys(P)), and Gy.(P) is a well-defined graph.

Figure 3-2 contains the forward control dependencel graph of the program in Fig-
ure 2-1 (page 20); compare it with the control depend«nce graph in Figure 2-4 (page 25).
There are no outgoing edges from S, there is an edge (Entry, S;), and there are no

loops in the f-control dependence graph, which is connected.

3.1.1 Discussion

Theorem 1 An f-control dependence graph G.(P) is connected, and the distinguished
node Entry is its root.

Proof: First, we show that any node in G (P) is reachable from Entry in Gy.(P).
Take any node n € Ny (P), n # Entry, and take any path p = (Entry, p1,pz,...,pk,n)

33

SZ Sll
S
/
S4
Sl2
Ss
Se
87\ S13
Sg
So
\ Slo 814
\\‘ //
Ezit

Figure 3-1: Forward control flow graph of program in Figure 2-1

34

Entry

Figure 3-2: Forward control dependence graph of program in Figure 2-1

35

from Entry to n in Gyy(P). We prove by induction on the length ! of p that there is a
path from Entry to n in G (P).

If the length of p is one, Entry controls n, since n cannot post-dominate Entry in
Gys(P).

If the length of p is I + 1, then n either does or does not post-dominate p;. If n
does not post-dominate pi, px controls n. By the induction hypothesis, there is a path
from Entry to p, in G (P), which implies there is a path from Entry to n in G (P).
If n does post-dominate py, it must be controlled by the node that controls p,. By the
induction hypothesis, there is a path from Entry to pi in G.(P); there must be a path
from Entry to p,’s parent in Gy.(P), which implies that there is a path from Entry to
n in G (P).

Finally, no node can control Entry, so Entry is the root.

Since the f-control dependence graph is connected, generating code is simple - a

single pass through the graph starting at Eniry is guaranteed to visit every node.

Theorem 2 An f-control dependence graph G.(P) is a DAG (directed acyclic graph);
it is a tree if p is structured.
Proof: By induction on the graph grammar for structured programs (Figure 2-3 on

page 23).

Since we assume that all programs are structured, all f-control dependence graphs
will be trees. The f-control dependence graph directly represents the nested parallelism
that we generate: at each level in the tree we schedule siblings and their subtrees to run

in parallel, subject to constraints due to data dependences (discussed in Section 3.2).

Theorem 3 Given a structured program whose loops are do loops, the forward control
dependence graph Gj.(P) will have the following property: a do node d; of a do loop
is the root of a subtree S; C Gy.(P) such that S; contains exactly the nodes in the do
loop.

Proof: Directly from graph of do loop.

36

If we perform a top-down traversal of the f-control dependence graph to generate
code, we visit a do node before we visit the nodes in its loop. Thus, the do node of a
loop provides a convenient place to store information regarding the parallelization of

the loop.

3.2 Data dependence constraints

We add data dependence constraints to the forward control dependence graph to ensure
that we preserve the semantics imposed by data dependences in the program. These
constraints are of two types: constraint edges and constraint marks. Edges represent
restrictions on cobegin-type parallelism; marks represent restrictions upon doall-type
parallelism. Algorithms for computing data dependence constraints are given in Ap-

pendix A.

3.2.1 Constraint edges

Given a loop-independent data dependence from a node n to a node m, we must
ensure that m executes only after n. For each loop-independent data dependence
edge ¢4 € E4(P) from n to m, we add a constraint edge, a labeled edge of the form
((mi, m;), LCA(n,m), e4), where m;,m;, LCA(n,m) € N;.(P), and m;, m; are children
of LCA(n,m) in G;.(P). This constraint edge means that when we generate code for

LCA(n,m), we cannot run the subtrees beneath m; and m; in parallel.

Lemma 2 Given a loop-independent data dependence edge from a node n to a node
m, and LCA(n,m) € Ny.(P), if LCA(n,m) # n and LCA(n,m) # m, then LCA(n,m)
indirectly controls both n and m via the same control flow edge e;.

Proof: Assume that LCA(n,m) # n, LCA(n,m) # m, and that LCA(n,m) does 10t
indirectly control n and m via the same control flow edge. Let LCA(n,m) indirectly
control n via e, and m via en. If e, is taken upon leaving LCA(n,m), n will be

executed and m will not be executed; if e,, is taken, m will be executed and n will not

37

be executed. There cannot exist a loop-independent data dependence ¢4 from n to m;

there could only exist a loop-carried data dependence from n to m.

If there is some loop-independent data dependence between two nodes n and m,
we indicate this at LCA(n,m) to prevent us from generating code to run n and m in
parallel. If LCA(n,m) = n or LCA(n,m) = m we do not need to add a constraint,

since the forward control dependence edges already order n and m.

Lemma 3 The set of constraint edges is acyclic.

Proof: Take two siblings n and m in Ny (P) that are controlled via the same control
flow edge e;. Either n properly post-dominates m, or m properly post-dominates n.
Without loss of generality, assume that m properly post-dominates n; this implies that
m also properly post-dominates all of n’s descendants in G.(P). Take some depth-first
numbering dfs# of the nodes in G¢(P). Let n' be a descendant of n and m' a descendant
of m. Since m properly post-dominates n', dfs#(n’) < dfs#(m); since there is a path
in G;(P) from m to m', ¢fs#(m) < dfs#(m’). Therefore, dfs#(n’) < dfs#(m’).

By definition, the head of a loop-independent data dependence edge must have a
greater dfs# than the tail; this implies that data dependence edges can only go from
descendants of n to descendants of m. Therefore, constraint edges can only go in one
direction, from n to m.

Since the proper post-domination relation totally orders all siblings, the set of con-

straint edges is acyclic.

A constraint edge both groups and orders siblings in G;.(P). Each set of siblings
that is connected by constraint edges must be generated as part of the same parallel
block; siblings that are connected by constraint edges cannot be members of different
parallel blocks since they may refer to the same storage location. Within each parallel

block, the constraint edges specify the order in which we must generate the nodes.

38

3.2.2 Constraint marks

Given a loop-carried data dependence edge from n to m, we must ensure that the
loop that carries the dependence is not transformed into a doall loop. We mark this
information at the do ncde of the loop, since our code generation pass will alw: ‘s visit
the do node before visiting any nodes in the body of the loop (Theorem 3). For each
loop-carried data dependence in G4(P) we add a constraint mark, which is of the form
(ndo,€4), Where ng4, € G4, (P) is a do node, and e4 is a loop-carried data dependence
edge.

During code generation, the presence of a constraint mark (n4,,€q4) indicates that
n4,’s loop (the do loop that corresponds to ny,) cannot be run as a doall loop, since e,

goes between some of its iterations.

3.2.3 Discussion

The constraints on the f-control dependence graph represent sequentialization that we
must obey during code generation. The f-control dependence graph of the program in
Figure 3-3(a) is shown in Figure 3-4. The following data dependences edges exist in
the program:

e There is a loop-independent flow dependence edge e4; from Sg to 55.
e There is a loop-independent flow dependence edge eq4; from S;; to Sis.
e There is a loop-carried output dependence edge e4e from S to itself.

o There is a loop-carried output dependence edge e44 from Sg to itself.

There are no data dependences between statements in the set {Ss, Ss, Ss, Sp} and
the set {512, S13}; every control flow path from Entry to Ezit contains either the first
set of statements or the second, but not both.

The two flow dependences correspond to two constraint edges: e; = ((Ss, So), S1, €a1)

and e; = ((S12, S13), S1,€42). The two output dependences correspond to two constraint

39

(51)
(S;)
(Ss)
(54)
(Ss)
(Se)
(S7)
(Ss)
(Ss)
(S10)
(Sll)
(512)
(513)
(S14)

(S1)
(Sz)

(Ss)
(S4)

(Ss)
(Se)

(S7)
(Ss)

(S,)

(S10)
(Su)
(S12)
(S1s)
(S14)

it p
then begin
if q
then doi=1ton
a =10 * i
x=5-1
end do
y =4
z=x1+5b
end
else begin
z =4
y=3%*z
end
Figure 3-3(a): Input program
if p
then begin
cobegin
if q
then do i =1 ton
cobegin
a=10 * i
x=5b-1
coend
end do
y=4
coend
Zz=Xx+D5
end
else begin
z =4
y=3#%z2z
end

Figure 3-3(b): Output program

Figure 3-3: Constraint edge discussion

40

Entry

\

Sy

S 83 Sgs So Sw Su Siz Sis S14

Figure 3-4: Forward control dependence graph of program in Figure 3-3(a)

41

marks: m; = (Sy,es3) and my = (Sy,en). We can generate code that obeys the
constraints in a straightforward manner. We generate sequential code such that the
forward control dependence subtree beneath Sy executes after the subtree beneath Ss,
and such that the subtree beneath S;3 executes after the subtree beneath S,;; this
satifies the constrzint edges. We do not transform the do loop into a doall loop; this
satisfies the constraint marks. The output code that we would produce is shown in
Figure 3-3(b).

The constraints thus represent implicit synchronization - each one means that we
must sequentialize certain blocks of code or loop iterations before other blocks or loop
iterations. This does not give us good performance for two reasons: the original pro-
gram may have reused variable names, thus creating storage-related data dependences
that can be eliminated; and we sequentialize entire blocks of code, parts of which could
be run in parallel.! In Chapter 4 we present algorithms to deal with these problems: in
Section 4.1 we present an algorithm to perform privatization, a program optimization
that removes certain storage-related data dependences; in Section 4.2 we present an
algorithm to remove certain data dependence constraints and insert explicit synchro-

nization (wait and signal semaphore commands).

!In Figure 3-3(b), the do loop could be a doall loop if each iteration of the loop received private
copies of the variables x and a.

42

Chapter 4

Algorithms

This chapter describes algorithms for inserting synchronization, performing privati-

zation, and generating code. All of these algorithms utilize the constrained forward

conirol dependence graph.

4.1 Privatization

We use a technique that we call privatization to increase the amount of parallelism in
a program: it removes some storage-related constraint edges (those due to anti and

output data dependences) from a program [BCFHS87|.

In the program in Figure 4-1(a), we would like to execute statements S; and S; in
parallel with statements Ss and Sy; however, there are storage-related data dependences
between the statements that prevent us from doing so. The program reuses the storage
for x: there is an anti dependence from S; to S3 and an output dependence from S,
to Ss, which correspond to constraint edges between the same nodes. Privatization
increases the parallelism by transforming the program into two paralle! processes (one
consisting of S and S,, and one consisting of Ss and S;), where each process has its
own private copy of x; Figure 4-1(b) shows che result of privatizing x. We distinguish

between two types of privatization: block privatization, which increases cobegin-type

43

(S51)
(S2)
(Ss)
(Sy)

(51)
(S;)

(Ss)
(S4)

N ¥ <9 X

NN W

Figure 4-1(a): Input program

cobegin
begin
x
y

non
(<Y

end
begin
private x copyout
x=5b
Z =X
end
coend

Figure 4-1(b): Output program

Figure 4-1: Privatization example

44

T = g -

W —

(Sl) x =10

(S3) if p-

(Ss) then x = x + b
(S y=3=x*x

Figure 4-2(a): Sample program

(Sy) x1 = 10

(S;) if p

(Ss) then x2 = x1 + b
else x2 = x1

(54) y = 3 x x2

Figure 4-2(b): Renamed program

Figure 4-2: Privatization versus renaming

parallelism, and loop privatization, which increases doall-type parallelism.

Block privatization is a form of renaming [CF87b); however, there are some im-
portant differences between them. Privatization does not change any variable names;
the variable names from the sequential program are preserved, which makes output
programs more readable. Also, block privatization only renames variables in a manner
consistent with the parallelism that we generate; since we only run siblings and their
subtrees to run in parallel, privatization does not transform every variable that could
be renamed. In the program in Figure 4-2(a), instances of the variable x could be re-
named to get the program in Figure 4-2(b). However, privatization does not transform
any variables in this example; we do nct generate code to execute S; and Ss in parallel,
so we do not rename the instances of x in them.

Loop privatization is similar to scalar expansion; each reference to a private variable
in a loop iteration essentially refers to a member of a vector of private variables [PW&g6].

Loop privatization also preserves variable names.

45

(Sy) z = 2b

(S;) x=3+2z %2
(Ss) y=44 xx
(S¢) z=232x*y+ 19

Figure 4-3: No privatization due to flow dependences
4.1.1 Privatizing blocks

Given a constraint edge eyc between two siblings m, and m; that are children of a
node n, we can use block privatization to remove the edge if it is due to a storage-related
data dependence ey, where e; goes between two nodes s and ¢ that are in the subtrees
below m, and m;, respectively (see Figure 4-4). We do not use privatization to remove
such an edge if there is a path of constraint edges due to flow data dependences from m,
to m;. In Figure 4-3, we do not remove the constraint edge due to the anti dependence
edge from S; to Sy, since the constraint edges due to the flow dependence edges from
Sz to S; and from Sy to Sy cannot be removed. Also, we use block privatization to
remove a constraint edge between two nodes m, and m; only if we can remove all of

the constraint edges between m, and m;,.

Since the constraint edge that we remove is due to a storage-related data dependence
edge from s to i, ¢t must define elements v; of some variable v. We use block privatization
to make the definitions (¢, v;) define elements of a private instance of v within the subtree
beneath m;.! We can create a private instance of v private within m,’s subtree only if
the subtrees beneath m, and m; do not need to share storage for v, which could occur
in two cases:

e Nodes in m;’s subtree could use the values of v; from m,’s subtree: in
Figure 4-5(a), S could use the same value of x that S; uses (m, is S; and

m; is Sz).

! An alternative would be to make the use or definition of v at s private, but we would need to have
copyin instead of copyout.

46

Figure 4-4: Forward control dependence graph during block privatization

47

(51)
(S,)
(Ss)
(S4)
(Ss)
(Se)
(87)

(S1)
(S7)
(Ss)
(S54)

o The definition of the elements v; in m’s subtree could flow to a use of

those elements (outside of the two subtrees) to which the value of those

elements in m,’s subtree could also flow: in Figure 4-5(b), S, could use

the value of x used in S, or the value of x defined in S3 (m, is S; and m,

is Sz).

If all of the elements v; are dead at m,, neither case is possible, and we can privatize.
When we privatize x beneath my, nodes in a subtree beneath another sibling m, may
need my’s private copy of x; if that is the case, m,’s subtree will be in the same parallel

block as m,; and will correctly reference m’s private copy, since there must be a flow
b

z=x-4
if p.
then begin
if q
then x = 19
y = 40 * x
end

Figure 4-5(a): Privatization fails due to flow of values

z=x-4
if q

then x = 19
y = 40 * x

Figure 4-5(b): Privatization fails due to common use

Figure 4-5: No privatization

constraint edge from m,; to m,.

The immediate post-dominator p of n is the first statement executed after the
forward control dependence subtree beneath n finishes executing; if a definition (¢, v;)

reaches p and v; is live at p, the values of elements of the private copy of v could be

48

(S,) then begin
(Ss) z=x -4
(S4) x = 19
(Ss) y = 40 * x
(Ses) end

(S7) a=30x*x0Db

Figure 4-6(a): Simple privatization

(Sl) if p

(S2) then begin

(Ss) zZ=Xx-4

(Sy) if q

(Ss) ther begin
(Se) x = 19
(AS"I) w=230-x*4
(Ss) end

(Se) x = 23

(SIO) y = 40 * x
(S11) end

(S12) a=30%*b

Figure 4-6(b): More complex privatization

Figure 4-6: Privatization examples

used later, and the variable must be copied out.

In Figure 4-6(a), we would use privatization to remove the constraint edge from Ss
to S, (which is due to an anti-dependence between the same statements). Since the
flow constraint edge from S, to S ensures that S; and Sg will be in the same parallel
block, S, and S will both reference the same private copy of x. The definition of x at
S, reaches the immediate post-dominator Sy of S; if x is live at Sy, we must copy out
that private copy of x.

In Figure 4-6(b), we would privatize x at Sg to remove the constraint edge from Ss

49

to S, (which is due to an anti-dependence edge from Ss to Sg). This is possible since
x is not live at S;. Sg-and S7 will reference the same private copy of x, since the flow
constraint edge between the two nodes ensures that they will be in the same parallel
block. We would also privatize x at Sy to remove the constraint edges from S; and
Sy to Sy (which are due to the anti dependence from S3 to Sy, the output dependence
from Sg to Sp, and the anti dependence from S; to Sp); the flow constraint edge from
Sy to Sy will ensure that Sy and Sy are in the same parallel block. Since the definition
of x at Sg cannot reach the immediate post-dominator S;; of S;, that private copy of
x does not need to be copied out. The definition of x at Sy does reach 53, and if x is
live at S;4, that private copy of x must be copied out.

Block privatization can be performed upon both array and non-array variables. In
Figure 4-7(a), the i loop could be run in parallel with the j and k loops, if the j and k
loops had their own copies of the array A. The following data dependences exist in the
program:

e a flow dependence from S, to S; over the elements of A.

e an output dependence from S; to Sg over the odd elements of A.
e an anti dependence from Ss to Sg over the ocdd elements of A.

o an output dependence from S; to Sy over the even elements of A.

e an anti dependence from Ss to Sy over the even elements of A.

We do not use privatization to remove the first data dependence, since it is a flow
dependence. The elements of A over which the second and third data dependences
exist are all dead at S5, which implies that we can privatize A within the j loop. The
elements of A over which the last two data dependences exist are all dead at Sg, which
implies that we can privatize A within the k loop. Since Sg and Sy refer to different
elements of A, there is no output dependence between them; the j and k loops can be

run in parallel. Each parallel block only copies out the elements of A that it modifies;

30

(S;)
(S7)
(Ss)
(Sg)
(Ss)
(Se)
(Sy)
(Ss)
(Sp)
(S10)

(S1)
(S3)
(Ss)
(S¢)

(Ss)
(Ses)
(S7)

(Ss)
(Sy)
(S10)

do i =1 to 2*n

A(Q) =3 i - 44

B(i) = 23 * A(i) - 8
end do
do j =1¢ton

A(2)-1) = 13 * j - 2
end do

dok=1¢ton
A(2k) = 13 * k - 2

end do
Figure 4-7(a): Input program
cobegin
begin
doall i = 1 to 2*n
A(1) =3 %1 - 44
B(i) = 23 * A(i) - 8
end doall
end
begin
private A copyout
doall j =1 ton
A(2j-1) = 13 * j - 2
end doall
end
begin

private A copyout
doall k =1 ton
A(2k) = 13 * k - 2
end doall
end
coend

Figure 4-7(b): Output program

Figure 4-7: Privatization for arrays

51

since there is no output dependence, neither block will Eopy out to the same storage
location. The resulting output code is shown in Figure 4-7(b).

We represent block privatization by a block privatization mark, which is either
(n,m,,v,copyout) or (n,m:,v,nocopyout). This mark specifies that the subtree

beneath mm; receives a private copy of v.

Algorithm 1 To privatize blocks beneath a node n, call privatize-block(n).
Procedure privatize-block(n):

o We can remove a coustraint edge e;. = ((m,,m:),n, eq), if there is no
path of flow constraint edges from m, to m,, where e4 is a storage-related
data dependence edge from s to ¢ over elements v; of the variable v, and if
all the elements v; are dead at m, (see Figure 4-4). Since ¢4 is a storage-
related data dependence edge (an anti or output edge), (¢,v;) must be

definitions in the program. Let p be the immediate post-dominator of n.

e If any definition (¢,v;) reaches p and v; is live at p, add a

block privatization mark (n,m;,v,copyout).

e If the above condition is not satisfied, add a block privatiza-

tion mark (n,m,v, nocopyout).

4.1.2 Privatizing loops

We can loop privatize a non-array variable v if each iteration uses a completely separate
copy of v; loop privatization can remove some constraint marks due to loop-carried
anti and output dependences, but it cannot remove those due to loop-carried flow
dependences. We do not loop privatize array variables, since loop privatization is
similar to scalar expansion. Also, we use loop privatization to remove a constraint
mark at a node n only if we can remove all of the constraint marks at n,

If v is live at the header of a loop, an iteration may -explicitly or implicitly use

the value of v from a previous iteration, and we cannot privatize. In the program in

52

(§;) doi=1ton

(Sz) if P
(Ss3) then x = b * i
(Sy) end do

(Ss) z=5b#*x-4

Figure 4-8: No privatization

Figure 4-8, we cannot privatize x in the do loop, since all of the iterations conditionally
define x; the value of x after the loop ends could be the value defined in any iteration of
the loop, since each iteration of the loop implicitly uses the previous iteration’s value
of x. However, if v is dead at the header of a loop, then each iteration defines its own
value for v; each iteration can receive a private copy of v. We represent this via a loop
privatization mark, which can be either (n,v,copyout) or (n,v,nocopyout). We test

at the post-dominator for copyout as we did for block privatization.

Algorithm 2 To privatize a loop whose do node is n, call privatize-loop(n).

Procedure privatize-loop(n):

¢ We can remove a corstraint mark (ng4,, €q) if €4, a data dependence edge
over the variable v, is not a flow data dependence edge, if v is a non-array

variable, and if v is dead at the header node of the loop corresponding to

ndo .

e If v is live at the immediate post-dominator of n4, add a

loop privatization mark (n, v, copyout).

e Otherwise, add a loop privatization mark (n,v,nocopyout).

53

(Sl) x = 4b

(S2) y =46

(S3) z=x+*y+ 44
(Sy) w=280-2z+3%*x
(Ss) a =91

(Se) b=83-a

(57) c=w-b+5b+*a

Figure 4-9: Synchronization example
4.2 Explicit synchronization

To increase the amount of parallelism in our program, we may wish to introduce explicit
synchronization (i.e. semaphores) into the output code. Constraint edges between two
nodes can be satisfied in two ways: the sequentialization of their subtrees (implicit
synchronization), or the insertion of explicit synchronization within the subtrees. In
Figure 4-9, using implicit synchronization, we would execute the block of code from S,
to S4 before the block of code from Ss to S;. However, this does not give us maxirnal
parallelism: the only statement in the second block that must wait for the first block is
S7. To use explicit synchronization, we would insert a signal statement after S, and a
wait statement before S;; we could then run the two blocks in parallel with each other.

We present an algorithm to insert explicit synchronization that can remove some
constraint edges; however, more research needs to be done to decide when explicit
synchronization should be used instead of implicit synchronization. If we use more
explicit synchronization, we can achieve more parallelism, but the cost of using many
semaphores is not negligible.

We add information to the f-control dependence graph to represent the addition of
synchronization statements (signal and wait semaphore statements, and semaphore
declarations). A semaphore whose scope is a doall loop is automatically private within

the loop; this allows us to generate semaphores for loop-independent data dependences

54

(Sy) doall i =1 ton

(Sz) private a copyout

(Ss) private b copyout

(Sy) private d copyout

(Ss) private e copyout

(Se) semaphore s1

(S7) cobegin

(Sa) if P

(So) then begin

(S10) a=3x1
(Su) signal si
(S532) b=5%a-4
(S13) end

(S14) else begin

(S1s) a=4x*i
(S16) signal sl
(S17) b=6%a- 26
(S18) end

(Slg) if q

(S30) then begin

(521) d = 66

(S22) wait si

(S23) e=d-a+3
(524) end

(S25) else d = 23

(S2g) coend

(S37) end doall

Figure 4-10: Private semaphores

55

(S doi=1¢ton

(S2) do j=1¢tom

(Ss) if p ‘

(S4) then A(i) = 46 * i + j
(Ss) end do

(Se) dok=1%01

(S7) B(i,k) = 33 * A(i) - k
(Sg) end do

Figure 4-11: Non-removable constraint edge

within doall loops.? In Figure 4-10, each iteration of the doall loop contains its
own copy of the semaphore 81, and none of the iterations will conflict in their use of
semaphores.

We only generate explicit synchronization to remove constraint edges (constraints
due to loop-independent data dependences); constraint marks are very difficult to re-
move, since synchronization for loop-carried dependences would require a statement in
ong iteration to refer to some previous iteration’s semaphores. Also, our analysis does
not give us enough information to add synchronization for loop-carried dependences ef-
ficiently: we do not know how many iterations a loop-carried data dependence crosses,
only in what direction it crosses them.

We also do not add synchronization to remove all constraint edges. If a constraint
edge is caused by a loop-independent data dependence edge from n to m, we only
remove the constraint edge if n and m have the same immediately surrounding loop.
In the program in Figure 4-11, it would be difficult to use semaphores to remove the
constraint edge due to the loop-independent flow dependence from S; to Sy over the
elements of A, because we cannot be sure which iteration of the j loop assigns the final

value to A(i).

2 A semaphore whose scope is a do loop need not be private within each iteration, but the semaphore
must be reinitialised by the run-time system every time a new iteration of the do loop begins.

56

Given a loop-independent data dependence edge e, ffom m to n, n should execute
only after m executes. We ensure this by adding a signal s statement after m and
a wait s statement after n. However, we cannot add a signal s statement only
after m: if m does not execute, n should not wait for it. Therefore, we need to add
signal s statements at decision points that can avoid executing m; every node on the
f-control dependence path from Entry to m is such a decision point (see Figure 4-12).
The decision points on that path that are also ancestors of LCA(m,n) do not require
signal s statements, though: if the flow of control avoids LCA(m,n), it will avoid
n.® Since signal s and wait s statements need only be added in the subtree beneath
LCA(m,n), the scope of s can be limited to that subtree. We represent the scope of
s via a semaphore declaration mark, which is of the form (LCA(m,n),s,e.,), where

LCA(m,n) indirectly controls m and n via e, (see Lemma 2 on page 37).

Along the path p in the forward control dependence graph from LCA(n,m) to m,
we have to ensure that signal s is executed if the flow of control avoids m. Given a
node p; on p, where p; # LCA(m,n) and p; # m, and the forward control dependence
edge from p; to p;;; via ey, m will not be executed if the control flow exit e; # e 5 is
taken from p;. We represent this via a path signal mark, which is of the form (p;, s, e).
We do not need to add path signal marks at LCA(m,n), since if ey, is not taken from
LCA(m,n), neither m nor n will execute.

If m is not a decision point in the program, we can insert a signal s statement
immediately after m; we represent this via a node signal mark, which is of the form
(m, s). Otherwise, if m is a decision point, we must execute signal s on both control
flow exits, e; and ey, from m; we use path signal marks (m,s,e,;) and (m,s,es) to
represent this.

We can simply insert a wait s statement immediately before n; we represent this

via a wast mark, which is of the form (n, s).

3The same information could be computed by using data flow analysis instead of control dependence

[CKM88).

57

LCA(m,n)

Figure 4-12: Adding synchronization to the forward control dependence graph

58

Algorithm 3 We can remove a constraint edge due to a loop-independent data de-
pendence eq = ((m,n),v,t,independent) by calling synch(ey), if the same loop imme-
diately surrounds both n and m.
Procedure synch(es):
e Create a new semaphore s whose scope is the subtree of statements be-
neath LCA(m,n); add a semaphore declaration mark (LCA(m,n), s, €1.4),

where LCA(m,n) indirectly controls m and n via ej,.

e Do the following for each node p;, p; # LCA(m,n) and p; # m, that lies
on the path p from LCA(m,n) to m in Gy.(P):

o Let e, = ((pi, pi+1), €s) € Ey.(P) be the f-control dependence
edge with tail p; that is on the path p.

o We must execute signal s when e, is taken, where e; € E(P)

has tail p;, and e; # e¢;. Add a path signal mark (p, s, €;).

o We must execute signal s immediately after m executes. If m has chil-
dren in Gy (P), insert path signal marks (m,s,e;) and (m,s, es), where
e,ey € E¢(P) are the control flow arcs that have tail m. If m has no

children in Gy.(P), add a node signal mark, which is of the form (m, s).

o We must execute wait s immediately before n executes; add a wait mark

(n,s).

4.3 Code generation

We generate code during a single pass over the constrained forward control dependence
graph. The pass is handled by two mutually recursive procedures: one procedure
generates siblings beneath a node, and the other generates the code for a node itself.

We begin by generating code for the forward control dependence children of Entry.

59

- - — e m—e ——— —

When we generate code for the children of a node n fhat are controlled via an edge
~ €y, we partition the children into constraint-edge-connected sets: each such set can be
run in parallel with other such sets. Within each set, we can generate sequential code
for the nodes in any order consistent with that specified by the constraint edges. Our
algorithm first generates code for all of the children that have no incoming constraint
edges. We then generate all of the children who only have incoming constraint edges
from already generated siblings; we repeat this step until we have generated all of n’s

children.

Algorithm 4 Call child-gen(Entry,e,.m), where €,¢,,¢ is the control low edge in G 7(P)
with tail Entry.
Procedure child-gen(n,e,):

e For every semaphore declaration mark (n,s,e;), output a semaphore s

statement.
¢ For every path signal mark (n,s, e 1), output a statement signal s.
» Output a cobegin statement.

* Repeat the following for each constraint-edge-connected set S = {si} of
nodes that are controlled by n via e 7
¢ Output a begin statement.
* Repeat the following for each node s; € S:

o Output a statement private v; for each block pri-
vatization mark (n,s;,v;, nocopyout).
e Output a statement private v; copyout for each
block privatization mark (n, s, v;, copyout).
* Let d(s;) be the maximum length of a path of constraint edges
from s; € S to a node in S with no incoming constraint edges.

Repeat the following, with d.,, going from 0 to maz(d(s;)).

60

e Repeat the following for each node s; € S such
tha.t,_d(s.-) = deuyt
o Call code-gen(s;).

e Output an end statement.

o Output a coend statement.

Procedure code-gen(n):
e If n is an unconditional goto, return, begin, end or end do statement,

do nothing.
o If there exists a wait mark (n,s), output a wait s statement.

e If n is a do node:

e If there exists a constraint mark (n,dd), output a do state-

ment.

¢ If there do not exist any constraint marks (n,dd), do the

following:
o Output a corresponding doall statement.
e Output a statement private 1; for every loop pri-
vatization mark (n,v;,nocopyout).
e Output a statement private v; copyout for every

loop privatization mark (n,v;,copyout).

e Call child-gen(n,e;), where e, = (n,h), and h is the header

of n’s loop; this generates code for the body of the loop.

e Output a corresponding end do or end doall statement.

e If n is an if-then-else node:

e Output code for n.

61

e Output then, and call child-gen(n,e;), where e; is the control
flow edge taken under the then exit from n; this generates

the code for the then clause of the conditional.

e Output else, and call child-gen(n,e;), where e; is the control
flow edge taken under the else exit from n; this generates code

for the else clause of the conditional.

o If n has no children in Gy (P):

e Output code for n.

e If there exists a node signal mark (n,s), output a signal s

statement.

This algorithm could generate extra begin/end scopes in certain places, such as
around single statements within a cobegin block. These could be eliminated later by
periorming a “clean-up” pass over the generated program.

Additional parallelism could possibly be generated within each constraint-edge-
connected set of children; those siblings that do not have a path of constraint edges
connecting them could potentially be run in parallel. However, this is an area for
further research: problems arise in connection with privatization, because we must

ensure that statements still reference the correct storage locations.

62

Chapter 5

Conclusions

The constrained forward control dependence graph allows us to represent more par-
allelism than that allowed by current parallelizers; we are able to generate nested
parallelism, with parallel loops and paralle! blocks. However, this could produce too
much fine-grained parallelism, which could result in the output program running more
slowly than the input program! Research must be done in the area of cost analysis, so
that a compiler can correctly decide how much parallelism to generate. Tradeoffs be-
tween several factors are involved — the amount of parallelism, the amount of explicit
synchronization, and the amount of extra memory due to privatization.

The tradeoff between parallelization and vectorization must also be examined. On
machines with multiple CPUs and multiple vector or array processors, inner do loops
should probably be vectorized rather than parallelized, but it is not clear what combi-
nation of vectorization and parallelization would be optimal.

The generation of more general privatization and synchronization is another area
for further research. We should also be able to perform loop privatization upon ar-
rays, as well as generate synchronization for all data dependences, not just some loop-
independent data dependences.

An alternative to the copyout statement would be a copyin statement; we believe

that both statements have equal expressive power, but perhaps one is more “natural” to

63

use. Another issue that needs to be examined is whether parallelizers can make use of
non-determinism within parallel languages, since non-deterministic parallel constructs
are useful in expressing many parallel algorithms.

Methods for computing data flow and data dependence information for individual
elements of arrays need to be improved; the more precise such information is, the more
parallelism we can generate.

We have implemented our program representation, constrained forward control de-
pendence, in the PTRAN system at IBM Research, along with the privatization and
code generation algorithms; the synchronization algorithm is not implemented. Our im-
plementation of constrained forward control dependence is more general that described
in this thesis, in that it handles most non-structured, reducible code.

We have run PTRAN on EISPACK [SBDG76] and LINPACK [DBMS79), and the
results look promising. However, we do not have any data available for this thesis;

actual measurements will be published later [BCFHS88]. *

64

Appendix A
Computing constraints

Algorithm 5 This algorithm computes constraint edges. For every loop-independent
data dependence edge eq = (n,m) in E4(P), call markup-block(e,).
Procedure markup-block(eq):
o If LCA(n,m) = n or LCA(n,m) = m, then do nothing.
Otherwise, by Lemma 2, there must exist two control dependence edges
en = ((LCA(n,m),no),e5) and e, = ((LCA(n,m),mq),e;) in E;(P)
such that no is an ancestor of n in G;.(P), and my is an ancestor of m

in Gy.(P). Add the constraint edge ((no,mo), LCA(n,m),e;).

Algorithm 6 This algorithm computes constraint marks. For every loop-carried data
dependence edge eq4 in E4(P), call markup-loop(ey).
Procedure markup-loop(es):
¢ Let ny, be the do node of the loop that carries the data dependence;

add the constraint mark (ng4,,eq).

65

Bibliography

[ABCCB87] Frances Allen, Michael Burke, Philippe Charles, Ron Cytron, and Jeanne

[AK87]

[AlIs3]

[As83]

[ASUS6]

[Ban79)

Ferrante. An overview of the ptran analysis system for multiprocessing.
In Proceedings of the 1987 International Conference on Supercomputing,
Springer-Verlag, 1987. To appear in a special issue of the Journal of Parallel

and Distributed Computing.

J.R. Allen and K. Kennedy. Automatic transformation of fortran programs
to vector form. In ACM Transactions on Programming Languages and

Systems, pages 491-592, October 1987.

John Randal Allen. Dependence Analysis for Subscript Variables and its
Application to Program Transformation. Ph.D. dissertation, Rice Univer-

sity, 1983.

Gregory R. Andrews and Fred B. Schneider. Concepts and notations for
concurrent programming. Computing Surveys, 15(1):3-43, March 1983.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Technigques, and Tools. Addison-Wesley, Reading, MA, 1986.

Utpal Banerjee. Speedup of Ordinary Programs. Ph.D. dissertation, Uni-
versity of Illinois at Urbana-Champaign, 1979.

66

[BCFH87] Michael Burke, Ron Cytron, Jeanne Ferrante, and Wilson Hsieh. Automatic

[BCFHSS|

[BJ66)

[Bur87]

[CF87a]

[CF87b]

[CKMsS8]

Determinatson of Private and Shared Variables for Nested Processess. Tech-

nical Repoft RC 13194, IBM T.J. Watson Research Center, August 1987.

Michael Burke, Ron Cytron, Jeanne Ferrante, Wilson Hsieh, David Shields,
and Vivek Sarkar. On the Automatic Generation of Useful Parallelism: A
Tool and an Ezperiment (Extended Abstract). Technical Report, IBM T.J.
Watson Research Center, January 1988. Accepted for ACM SIGPLAN
Symposium on Parallel Programming: Experience with Applications, Lan-

guages, and Systems.

C. Bohm and G. Jacopini. Flow diagrams, turing machines and languages
with only two formation rules. In Communications of the ACM, pages 366—
71, Association for Computing Machinery, May 1966.

Michael Burke. An Interval-Based Approach to Ezhaustive and Incremental
Interprocedural Data Flow Analysis. Technical Report RC 12702, IBM T.J.
Watson Research Center, Sept 1987.

Ron Cytron and Jeanne Ferrante. An Improved Control Dependence Al-
gorithm. Technical Report RC 13291, IBM T.J. Watson Research Center,
1987.

Ron Cytron and Jeanne Ferrante. What’s in a name? -or- the value of
renaming for parallelism detection and storage allocation. In Proceedings
of the 1987 International Conference on Parallel Processing, pages 19-27,
St. Charles, IL, August 1987.

Ron Cytron, Steve Karlovsky, and Kevin P. McAuliffe. Automatic Man-
agement of Programmable Caches. Technical Report CSRD Report No.

728, University of Illinois Center for Supercomputing Research and De-

67

[Cyt87]

[DBMST9)

(FOWST|

[Hec77]

(IBMs8)]

velopment, January 1988. Submitted to 1988 International Conference on
Parallel Prpcessing, St. Charles, IL.

Ron Cytron. Lecture notes. June 1987. Lecture notes for course taught at

NYU by Ron Cytron.

J.J. Dongarra, J.R. Bunch, C.B. Moler, and G.W. Stewart. Linpack Users’
Guide. SIAM Press, Philadelphia, Pennsylvania, 1979.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program
dependence graph and its use in optimization. In ACM Transactions on
Programming Languages and Systems, pages 3.9-349, Association for Com-

puting Machinery, July 1987.

Matthew S. Hecht. Flow Analysis of Computer Programs. North-Holland,
New York, NY, 1977. Out of print.

IBM. Parallel Foriran Language and Library Reference. International Busi-
ness Machines, March 1988.

{KKLWSO] D.J. Kuck, R.H. Kuhn, B. Leasure, and M. Wolfe. The structure of an

(Kuc78]

[Lea85)

advanced vectorizer for pipelined processors. In Proceedings of CompSAC80
(Fourth International Computer Software and Applications Conference),
pages 709-715, October 1980.

David J. Kuck. The Structure of Computers and Computation. Volume 1,
John Wiley and Sons, New York, NY, 1978.

Bruce Leasure. The Parafrase Project’s Fortran Analyzer, Major Module
Documentation. Technical Report CSRD Report No. 504 PR-85-5, UILU-
ENG-85-8005, University of Illinois at Urbana-Champaign Center for Su-
percomputing Research and Development, July 1985.

68

[LM77]

[Mils2]

[PWs6]

[SBDG76]

[Wol82]

R.C. Linger and H.D. Mills. On the developnient of large reliable programs.
In Raymond T. Yeh, editor, Current Trends in Programming Methodology,
Volume I: Software Specification and Design, chapter 5, pages 120-139,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1977.

H.D. Mills. Mathematical foundations for structured programming. In
Edward Yourdon, editor, Writings of the Revolution: Selected Readings on
Software Engineering, chapter 14, pages 220-226, YOURDON Press, New
York, NY, 1982.

David A. Padua and Michael J. Wolfe. Advanced compiler optimizations
for supercomputers. Communications of the ACM, 29(12):1184-1201, De-

cember 1986.

B.T. Smith, J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ikebe, V.C. Klema,
and C.B. Moler. Matriz Eigensystem Routsnes - Fispack Guide. Springer-
Verlag, 1976.

Michael Wolfe. Optimizing Supercompilers for Supercomputers. Ph.D. dis-

sertation, University of Illinois at Urbana-Champaign, 1982.

69

