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Abstract

Incoherent light from random emitters, such as thermal radiation, are very common
in nature. However, modeling such random emitters may be challenging, as it naively
requires Maxwell’s equations to be solved for all emitters to obtain the total response,
which becomes computationally intractable in conjunction with large-scale optimiza-
tion (inverse design). In this work, we present a trace formulation of random emitters
that can be efficiently combined with inverse design, even for topology optimization
over thousands of design degrees of freedom.

We begin with a trivial case where the emitter is at a single location with random
orientations, which leads to compute the local density of states (LDOS). In a previous
work, a shape-independent upper limit was derived for LDOS, but simple geometries
such as bowtie are 2-3 orders of magnitude away from this limit. By computational
optimization of air-void cavities in metallic substrates, we show that the LDOS can
reach within a factor of ≈ 10 of the upper limits, and within a factor ≈ 4 for the single-
polarization LDOS, demonstrating that the theoretical limits are nearly attainable.

We then study the more general case where emitters are distributed randomly
in space. We present several examples of incoherent-emission topology optimization
(TopOpt), including tailoring the geometry of fluorescent particles, a periodically
emitting surface, and a structure emitting into a waveguide mode.

Finally, we employ our trace formulation for inverse design of nanopatterned sur-
faces that maximize spatially averaged surface-enhanced Raman (SERS) spectra from
molecules distributed randomly throughout a material or fluid. This leads to radi-
cally different designs than optimizing SERS emission at a single known location, as
we illustrate using several 2D design problems addressing effects of hot-spot density,
angular selectivity, and nonlinear damage. We obtain optimized structures that per-
form about 4× better than coating with optimized spheres or bowtie structures and
about 20× better when the nonlinear damage effects are included.

Thesis Supervisor: Steven G. Johnson
Title: Professor of Applied Mathematics and Physics
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Chapter 1

Introduction

Incoherent light from random emitters is everywhere. For example, when one heats

up material, thermal vibrations of the particles can be treated as random emitters

that produce thermal radiation in both far [18] and near [10,127] fields. Fluorescence

and spontaneous emission are produced by excited atoms randomly dropping down

from the excited states and emitting a photon, which can also be modeled as random

emitters [64,96,119]. There are many other phenomena that involve random emitters

such as scintillation [16, 130], Casimir and van der Waals forces [38], Raman scat-

tering in fluid suspensions [117,118], incoherent plane waves [114,153] (which can be

transformed to random sources via the equivalence principle [45]), and even scattering

from surface roughness via a Born approximation [57]. As a matter of fact, coherent

light sources such as lasers are primarily constructed artificially [31], while most light

sources in nature are incoherent.

However, accurate modeling of such spatially random emitters can pose severe

computational challenges, because a direct approach would involve averaging the

results of many simulations over an ensemble of sources [8, 84, 126].For example, to

evaluate the total power from randomly distributed spontaneous emission particles,

the direct approach would be computing the power from one particle at a time and

then sum them up, which requires a number of simulations that equals to the number

of particles (typically a huge number). This challenge is compounded when one

wishes to perform inverse design [98]—large-scale optimization of emission over many
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geometric parameters, perhaps even over “every pixel” of a design region via topology

optimization (TopOpt) [53]—because one must then repeat the computation 10s–

1000s of times as the design evolves, e.g. to maximize spontaneous emission [81,129,

150, 159] or Raman emission [22] from a single molecule, much less a distribution of

sources. Therefore, it is critical to find a method that can efficiently compute the

total (average) response from random emitters as well as optimize it.

1.1 Overview

In Chap. 2, we present a unified framework for computing incoherent emission that

can be efficiently combined with inverse design, even for TopOpt over thousands of

design degrees of freedom. We show that for the general case with many input/output

channels, the emission can be computed by a small number of “eigen-sources” of a Her-

mitian operator, which can be determined by a Rayleigh-quotient optimization [80]

that is combined with the inverse-design (geometric) optimization. In the special

case of emission into a small number 𝐾 of channels, such as 𝐾 far-field directions,

𝐾 waveguide modes, or 𝐾 points in space, we show that a simple algebraic manipula-

tion transforms the problem into 𝐾 simulations —this unifies and generalizes known

results based on Kirchhoff’s law of thermal radiation [39, 124] or (more generally)

reciprocity [52, 130] for computing emission into a single planewave direction—but

our alternative approach yields a small number of solves even for 𝐾 → ∞. The other

well known special case is that of a single emitter location with random orientations,

which reduces to the local density of states (LDOS) via three Maxwell solves [96,108],

and this appears as another low-rank special case in our formulation.

In Chap. 3, we study the trivial case where the emitter is at a single location

in space but with random polarization, which leads to the electric LDOS [61]. One

interesting question is how close can we approach the upper limit of LDOS proposed

in a recent work [95], as conventional simple resonant structures (such as bowtie

and nanorod antennas) were often orders of magnitude from this upper limit. We

perform many-parameter shape optimization of LDOS for cavities formed by voids
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in silver (since it has the largest bounds) at wavelengths 𝜆 from 400–900 nm and

a 𝑑 = 50 nm emitter–metal separation. We obtain single-polarization LDOS values

within a factor of ≈ 4 of the theoretical upper bounds, and total (all-polarization)

LDOS within a factor of ≈ 10 of the bounds. Of course, real cavities would have a

finite thickness of metal, but our goal is to attain the maximum possible LDOS—we

find that a finite-thickness coating has slightly worse performance, but > 95% of the

LDOS of the infinite metal is attained by ≈ 100 nm thickness at 𝜆 = 500 nm, and

more generally we can theoretically bound [95] the improvement attainable with any

additional structure of air voids outside of our cavity. Although our focus is on funda-

mental upper limits rather than manufacturable cavities, we find that simple shapes

(optimized cylinders) are within ≈ 20% of the LDOS of optimized many-parameter

irregular shapes, analogous to results we obtained previously for optimized scattering

and absorption [95]. (Our optimized cavities are deeply subwavelength along their

shortest axes, very different from the non-plasmonic resonant regime where the di-

ameter is much larger than the skin depth so that the walls simply act as mirrors.)

Moreover, we find that optimizing for a single emitter polarization (the “polarized”

LDOS) does nearly as well (within ≈ 10%) as optimizing the total LDOS (power

summed over all emitter polarizations), reminiscent of earlier results in 2D dielectric

cavities where LDOS optimization arbitrarily picked one polarization to enhance [81].

Although it is possible that even tighter LDOS bounds could be obtained in future

results by incorporating additional physical constraints [40,71,97,99], we believe that

our results show that the existing bounds are already closely related to attainable

performance and provide useful guidance for optical cavity design.

In Chap. 4, we briefly review the key ideas in density-based TopOpt [53] and

show how the trace formulation can be applied to perform density-based TopOpt

on several example problems in 2D: fluorescence from an optimized nanoparticle,

enhanced emission from a corrugated surface analogous to a light-emitting diode [32,

52], and optimized emission into a waveguide. In each case, the emission is not from a

single molecule, but the average power produced by an ensemble of incoherent emitters

at every point in some material. Those problems are computationally expensive to
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model in convention. However, with the trace formulation, we show that only a few

Maxwell’s solves are required to compute the average objective in each optimization

step, which greatly reduces the computation costs.

In Chap. 5, we propose an efficient technique for simulation and inverse design

of spatially averaged Raman enhancement, building from the trace formulation, and

analyze its results for TopOpt applied to several example problems addressing effects

of hot-spot density, angular selectivity, and nonlinear damage. In particular, we show

that spatially averaged Raman emission in a single direction can be modeled with only

two Maxwell simulations, one for the pump process and the other a “reciprocal” solve

for the average emission over all molecule locations, easily generalized to support

nonlinear damage and/or anisotropic Raman polarizability. Moreover, this formula-

tion is straightforwardly compatible with large-scale inverse design, requiring only two

additional “adjoint” simulations [98] to compute the sensitivity of the output power

with respect to “every pixel” of the design (e.g. a material density at every point

in TopOpt). Previous authors employed a simplified
∫︀
|E1|4 metric for distributed

Raman emission [120,137], where E1 is the pump electric field, and we show that this

is a special case of our framework when the emission is in the same direction as the

pump, the Raman shift is negligible (𝜔1 ≈ 𝜔2), and the Raman molecule is isotropic.

We also analyze how the ∼ |E1|4 nonlinearity favors hot spots and field singularities

(from sharp corners) in 3D, but less so in 2D (where the singularities have a finite

integral). We apply TopOpt to various example problems in 2D to illustrate the key

tradeoffs and physical effects: normal incidence and emission, 30∘ pump and normal

emission (which performs nearly as well but with a very different design), emission

with UV-like nonlinear damage (again leading to very different designs), and Raman

emission only from a material-surface coating [89] rather than in a volume/fluid coat-

ing. By comparing TopOpt for periodic surfaces of varying periods, we observe an

optimal density of the resulting hot spots. We obtain optimized structures that per-

form about 4× better than coating with optimized spheres or bowtie structures and

about 20× better when the nonlinear damage effects are considered. Also, we find

similar optimal structures when Raman molecules are distributed only on the metal
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surface, as opposed to throughout a volumetric (fluid) coating.

1.2 Numerical tools

Throughout this work, we use two main numerical tools for simulating the electro-

magnetic processes: SCUFF [122] and Gridap [6].

In Chap. 3 where we optimize the LDOS inside an metallic cavity, we use SCUFF

for the boundary element method (BEM) implementation. This is more efficient than

volume-based discretizations since the air-void cavity can simply be described by the

separation surface between the air and metal and all the unknowns are on the surface

in a BEM scheme. SCUFF is a free, open-source software implementation of the BEM

of electromagnetic scattering, more details about this implementation (including some

validation examples) can be found in my master thesis [158].

In Chap. 4 and Chap. 5 where we implement TopOpt for inverse design, we employ

the Gridap.jl package [6] (in the Julia language [13]) for the finite element method

(FEM). Unlike BEM, one must discretize not only the boundaries but also the whole

computation domain, and we use Gmsh [36] to generate this mesh. Gridap.jl is also a

free, open-source FEM package, which allows us to efficiently code highly customized

FEM-based trace formulations in a high-level language, with the construction of the

adjoint problem aided by automatic-differentiation (AD) tools [49, 125]. Because we

collaborated directly with Gridap author Francesc Verdugo to develop Gridap’s capa-

bilities for electromagnetic design, we contributed the first tutorials on this topic to

the Gridap documentation. In https://gridap.github.io/Tutorials/dev/pages/

t012_emscatter/, we provide a tutorial on a electromagnetic scattering problem

in 2D, explaining the basic usage of Gridap for electromagnetic scattering prob-

lems. Furthermore, in https://gridap.github.io/Tutorials/dev/pages/t018_

TopOptEMFocus/, we provide a second tutorial on a simple inverse design problem

of electromagnetics, showing how density-based topology optimization can be imple-

mented with Gridap.
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Chapter 2

Trace formulation for photonic

inverse design with random emitters

In this chapter, we present a unified framework for inverse design of incoherent emis-

sion, combining a trace formulation adapted from recent work [119, 123, 127] with a

new algorithm to simultaneously optimize the geometry and evolve to an accurate

estimate of the average emission/trace.

To begin with, we review the formulation of the frequency-domain Maxwell equa-

tions as a linear equation, discretized for numerical computation, with physical quan-

tities like power as quadratic forms (Sec. 2.1). Then we show how the ensemble

average of such an expression over a distribution of random current sources can be

rewritten as a deterministic trace formula (Sec. 2.2). Next, we derive the expression

for the correlation matrix which is a key quantity for trace formulation (Sec. 2.3).

The objective trace formula is presented in both factorization form (Sec. 2.4) and

factorization-free form (Sec. 2.8). Finally, we explain how such a trace formula can

be evaluated efficiently in the context of photonics optimization, both in the “easy”

cases of coupling to a small number of output/input channels (Sec. 2.5 and Sec. 2.6)

as well as in the more general cases of a continuum of outputs (Sec. 2.7).
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2.1 Wave sources and quadratic outputs

In the frequency domain, the linear Maxwell equations for the electric field E in

response to a time-harmonic current source at a frequency 𝜔 are [54]

[︂
∇× 1

𝜇
∇×−

(︁𝜔
𝑐

)︁2
𝜀

]︂
E = f , (2.1)

where 𝜀(x, 𝜔) is the relative electric permittivity, 𝜇 is the relative magnetic perme-

ability (𝜇 ≈ 1 for most materials at optical and infrared wavelengths, so we assume

𝜇 = 1 throughout this work), 𝑐 is the speed of light in vacuum, and f = i𝜔J is a

current-source term.

Numerically, one discretizes the problem (e.g. using finite elements [54]) into a

linear equation:

𝐴u = b , (2.2)

where 𝐴 is a matrix representing the Maxwell operator on the left-hand of Eq. (2.1),

u is a vector representing the discretized electric (and/or magnetic) field, and b is a

vector representing the discretized source term. In the following, it is algebraically

convenient to work with such a discretized (finite-dimensional) form, to avoid cum-

bersome infinite-dimensional linear algebra, but one could straightforwardly translate

to the latter context as well [55].

Most physical quantities 𝑃 of interest in photonics—such as power (via the Poynt-

ing flux), energy density, and force (via the Maxwell stress tensor)—can be expressed

as quadratic functions of the electromagnetic fields u. Since these are real-valued

quantities, they correspond in particular to Hermitian quadratic forms

𝑃 = u†𝑂u , (2.3)

where † denotes the conjugate transpose (adjoint) and 𝑂 = 𝑂† is a Hermitian ma-

trix/operator. In this work, we are mainly concerned with computing emitted power

𝑃 , which is constrained by the outgoing boundary conditions to be non-negative, in

which case 𝑂 must furthermore be a positive semi-definite Hermitian matrix (i.e., non-
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negative eigenvalues) in the subspace of permissible u, a property that will be useful

in Sec. 2.7.

2.2 Trace formula for random sources

Now, consider the case where one has an ensemble of random current sources b drawn

from some statistical distribution with zero mean and a known correlation function

(e.g. a known mean-square current at each point if they are spatially uncorrelated).

In this case, we wish to compute the ensemble average, denoted by ⟨· · · ⟩, of our

quadratic form Eq. (2.3):

⟨𝑃 ⟩ =
⟨︀
u†𝑂u

⟩︀
=
⟨︀
b†𝐴−†𝑂𝐴−1b

⟩︀
, (2.4)

where 𝐴−† denotes (𝐴−1)† = (𝐴†)−1. Note that only b is random in the right-hand

expression.

Naively, this average could be computed by a brute-force method in which one

explicitly solves the Maxwell equations (u = A−1b) for many possible sources b and

then integrates over the distribution, perhaps by a Monte-Carlo (random-sampling)

method. That approach is possible, and has been accomplished e.g. for evaluating

thermal radiation [84, 126], but is computationally expensive. Worse, such a direct

approach quickly becomes prohibitive in the context of inverse design, where the aver-

aging must be repeated for many geometries over the course of solving an optimization

problem using an iterative algorithm.

Instead, we adapt “trace formula” techniques that have been developed for similar

problems in thermal radiation [127] and spontaneous emission [119], where one must

compute the average effect of many random current sources distributed throughout a

volume. The basic trick (as reviewed in yet another related setting in [123]) is to write

the scalar ⟨𝑃 ⟩ as a 1×1 “matrix” trace, and then employ the cyclic-shift property [76]

to group the b terms together:

⟨𝑃 ⟩ =
⟨︀
b†𝐴−†𝑂𝐴−1b

⟩︀
= tr

⟨︀
b†𝐴−†𝑂𝐴−1b

⟩︀
= tr

[︀
𝐴−†𝑂𝐴−1⟨bb†⟩

]︀
. (2.5)
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Here, the ensemble average is now confined to the ⟨bb†⟩ term, which is just the

correlation matrix 𝐵 [56] of the currents; such a matrix is positive semi-definite, so

it can be factorized [143] (for convenience below) as

⟨bb†⟩ = 𝐵 = 𝐷𝐷† , (2.6)

for some known matrix 𝐷. (For the case of finite-element discretizations, we show

that 𝐵 is a sparse matrix that is straightforward to assemble and 𝐷 is, for example,

a sparse Cholesky factor [27].)

2.3 Correlation matrix

One can express the frequency-domain Maxwell equations either in terms of the elec-

tric field E, in which case the source term is proportional to J, or in terms of the

magnetic field H, in which case the source term is proportional to ∇× J [54]. These

two formulations lead to different 𝐵 correlation matrices.

In particular, we consider the case where the currents J (at a frequency 𝜔) are

spatially uncorrelated with a given correlation function:

⟨︀
J(x)J(x′)†

⟩︀
= 𝐶(x)𝛿(x− x′) , (2.7)

where 𝐶 is a given 3 × 3 Hermitian positive-semidefinite correlation matrix. For

example, in 2D with in-plane electric currents, one has

𝐶 =

⎛⎜⎜⎜⎝
𝐽2
0

𝐽2
0

0

⎞⎟⎟⎟⎠ , (2.8)

where 𝐽2
0 (x) is the mean-square current at x. For isotropic random currents, 𝐶 = 𝐽2

0 𝐼

where 𝐼 is the identity matrix.

In a finite-element method, the source vector b is constructed by taking inner
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products of the source current with real vector-valued basis “element” functions v̂𝑛

(Nedelec elements in 3D, or 𝑣𝑛ẑ with scalar Lagrange elements 𝑣𝑛 in 2D for 𝑧-polarized

fields) [54]. That is, the components of b are

𝑏𝑛 =

∫︁
v̂𝑛 · (source current) dΩ. (2.9)

For an electric-field formulation with a source current J, we obtain the correlation

function:

𝐵𝑚𝑛 = ⟨𝑏𝑚𝑏*𝑛⟩ ,

=

⟨∫︁∫︁
v̂𝑚(x)𝑇J(x)J(x′)†v̂𝑛(x′) dΩdΩ′

⟩
,

=

∫︁∫︁
v̂𝑚(x)𝑇

⟨︀
J(x)J(x′)†

⟩︀
v̂𝑛(x′) dΩdΩ′ ,

=

∫︁
v̂𝑇
𝑚𝐶v̂𝑛 dΩ . (2.10)

For localized basis functions (as in a finite-element method), this results in an ex-

tremely sparse matrix 𝐵—it is zero if v̂𝑚 and v̂𝑛 don’t overlap, or in regions where

the mean-square current 𝐶 is zero. (If 𝐶 is the identity, 𝐵 is equal to the Gram

matrix of the basis.) Note also that, by construction, 𝐵 is a Hermitian semidefinite

matrix, so it has factorization 𝐵 = 𝐷𝐷†, such as a Cholesky factorization [143].

For a magnetic-field formulation, J is replaced by ∇×J above, but we can simply

integrate by parts [55] to move the ∇× curl operation to act on the basis functions,

yielding:

𝐵𝑚𝑛 = ⟨𝑏𝑚𝑏*𝑛⟩ =

∫︁
(∇× v̂𝑚)𝑇𝐶(∇× v̂𝑛) dΩ . (2.11)

Again, this yields a sparse Hermitian semidefinite matrix 𝐵.

2.4 Trace formulation with factorization

Algebraically, expressing our results in terms of 𝐷 below leads to convenient Hermi-

tian matrices, but we show in Sec. 2.8 that the final algorithms can easily employ 𝐵
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directly to avoid the computational cost of an explicit factorization. In the simple

case where random currents are spatially uncorrelated, which holds for spontaneous

emission and thermal emission in local materials [74], 𝐵 and 𝐷 are conceptually diago-

nal linear operators whose diagonal entries are the mean-square and root-mean-square

currents, respectively, at each point in space. Whether this leads to a strictly diagonal

matrix depends on the discretization scheme as explained in Sec. 2.3. For instance, in

the case of thermal and quantum fluctuations, the mean-square currents are given by

the fluctuation–dissipation theorem (FDT) [74], while for spontaneous emission one

can use the FDT with a “negative temperature” determined by the population inver-

sion [112,116]. The FDT tells us that the random currents are spatially uncorrelated

as long as the materials can be described by local susceptibilities, e.g. a local 𝜀 and

𝜇—although this macroscopic description in principle breaks down at atomic length-

scales, or even at few-nm lengthscales in metals experiencing nonlocal ballistic charge

transport [121], in practice electromagnetic modeling with local materials has proved

extremely accurate for describing almost all experimental circumstances. (Note that

the lack of spatial correlations is a property of the source currents, which do not

interact in the linear Maxwell equations, not of the resulting material polarizations

and electromagnetic fields, which are spatially correlated [128, Sec. 4.1.2].)

Inserting Eq. (2.6) into Eq. (2.5), we obtain our objective as the trace of a de-

terministic Hermitian matrix 𝐻 (which is positive-semidefinite if 𝑂 is, as for power),

given by:

⟨𝑃 ⟩ = tr
[︀
(𝐴−1𝐷)†𝑂(𝐴−1𝐷)

]︀⏟  ⏞  
𝐻

. (2.12)

The challenge now is to efficiently compute such a matrix trace. Evaluating a trace

is easy once the matrix elements are known—it is the sum of the diagonal entries—

but the difficulty in Eq. (2.12) is the computation of 𝐴−1𝐷. Recall that the 𝑁 × 𝑁

matrix 𝐴 is a discretized Maxwell operator where 𝑁 is the number of grid points

(or basis functions), a huge matrix (especially in 3D). There are fast methods to

solve for 𝐴−1(𝐷v) for any single right-hand side v, typically because the matrix 𝐴

is sparse (mostly zero) as in finite-element methods [54], but computing the whole
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matrix 𝐴−1𝐷 corresponds to solving 𝑁 right-hand sides. Equivalently, computing

explicit (dense) matrix inverses 𝐴−1 is typically prohibitively expensive (in both time

and storage) for matrices arising in large physical systems [27]. Fortunately, a large

number of “iterative” algorithms have been proposed for estimating matrix traces to

any desired accuracy using relatively few matrix–vector products [47,145], and what

remains is to find a method well-suited to inverse design.

2.5 Trace computation: Few output channels

In the important special cases where the desired output is the power in a small number

(𝐾) of discrete directions/channels/ports, or perhaps the intensity at a few points in

space, we show in this section that the trace computation Eq. (2.12) simplifies to

only 𝐾 scattering problems. This fact is a generalization of earlier results commonly

derived from electromagnetic reciprocity [20], such as the well-known Kirchhoff’s law

of thermal radiation (reciprocity of emission and absorption) [124] or analogous results

for scintillation [130]. More generally, this simplification arises whenever the matrix

𝑂 in Eq. (2.3) is low rank.

For example, suppose that the objective function is the electric field intensity

‖E(x1)‖2 at a single point x1 in space, which is the case for “metalens” optimization

problems in which one is maximizing intensity at a focal spot [11]. In matrix notation

for a discretized problem, this quantity corresponds to

𝑃 = ‖E(x1)‖2 = ‖e†1u‖2 = u† e1e
†
1⏟ ⏞ 

𝑂

u , (2.13)

where e1 is the unit vector with a nonzero entry at the location (“grid point”) corre-

sponding to x1. We then have a rank-1 [76] matrix 𝑂 = e1e
†
1, and the trace Eq. (2.12)

simplifies to ⟨𝑃 ⟩ = v*
1v1 = ‖v1‖2 where

v1 = 𝐷†𝐴−†e1 (2.14)
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and 𝐴−†e1 corresponds to solving a (conjugate-) transposed Maxwell problem with

a “source” e1 at the output location, which is closely related to electromagnetic reci-

procity [20].

Another important example where 𝑂 is low-rank arises when the output 𝑃 is the

power in one (or more) orthogonal “wave channels” [136], such as waveguide modes,

planewave directions (e.g. diffraction orders), or spherical waves. In such cases the

power in a given channel can be computed by squaring a mode-overlap integral (e.g. a

Fourier component for planewaves) of the form ‖o†
1u‖2 [136]. Exactly as in the single-

point case above, this corresponds to a rank-1 matrix 𝑂 = o1o
†
1 and one must solve

only a single “reciprocal” scattering problem to obtain the trace, where the “source”

term is the (conjugated) output mode o1. This is precisely the situation in Kirchhoff’s

law, where in order to compute the average thermal radiation (emissivity) in a given

direction, one solves a reciprocal problem for the absorption of an incident planewave

in the opposite direction (the absorptivity) [39, 52, 124]. A similar technique was

recently applied to optimize the average power emitted in the normal direction from

a scintillation device [130].

More generally, such cases correspond to an output quadratic form 𝑂 that takes

a low-rank [76] form:

𝑂 =
𝐾∑︁
𝑖=1

o𝑖o
†
𝑖 , (2.15)

where 𝐾 is the number of rank-1 terms o𝑖o
†
𝑖 (e.g. output channels/ports, output

points, or other “overlap integrals”). Substituting Eq. (2.15) into Eq. (2.12) and

applying the cyclic-trace identity, we obtain:

⟨𝑃 ⟩ =
𝐾∑︁
𝑖=1

tr
[︁
(𝐴−1𝐷)†o𝑖o

†
𝑖𝐴

−1𝐷
]︁

=
𝐾∑︁
𝑖=1

o†
𝑖𝐴

−1𝐷(𝐴−1𝐷)†o𝑖

=
𝐾∑︁
𝑖=1

v†
𝑖v𝑖 =

𝐾∑︁
𝑖=1

‖v𝑖‖2 , (2.16)
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where

v𝑖 = 𝐷†𝐴−†o𝑖 (2.17)

corresponds to a single “reciprocal” Maxwell solve 𝐴−†o𝑖 = (𝐴−𝑇o*
𝑖 )

* (a single scat-

tering problem) for each 𝑖. (Electromagnetic reciprocity simply corresponds to the

fact that 𝐴𝑇 = 𝐴 for reciprocal materials [20].) Hence, the full trace—the average

emission into 𝐾 channels—can be computed with only 𝐾 solves, and in many such

cases 𝐾 = 1.

2.6 Trace computation: Few input channels

One trivial special case in which the trace computation drastically simplifies is that

of only a few sources or a few input channels, most famously in the case of the

local density of states (LDOS): emission by a molecule at a single location in space

but with a random polarization [96,108]. In the case of LDOS, this reduces the trace

computation to three Maxwell solves, one per principal polarization direction, making

the problem directly tractable for topology optimization [81,150,159]. More generally,

this situation corresponds to the correlation matrix 𝐵 being low-rank: if 𝐵 is rank

𝐾, we can compute the trace in 𝐾 solves.

In particular, suppose that the currents b are of the form b =
∑︀𝐾

𝑖=1 𝛽𝑖b𝑖 where

the b𝑖 are “input channel” basis functions (e.g. a point source with a particular

orientation, or an equivalent-current source for a waveguide mode [108]) and 𝛽𝑖 are

uncorrelated random numbers with zero mean and unit mean-square. Then the cor-

relation matrix 𝐵 = ⟨bb†⟩ is simply the rank-𝐾 matrix 𝐵 =
∑︀

𝑖 b𝑖b
†
𝑖 . In this case,

the trace simplifies to:

tr𝐻 =
𝐾∑︁
𝑖=1

u†
𝑖𝑂u𝑖 , (2.18)

where computing u𝑖 = 𝐴−1b𝑖 again requires only 𝐾 solves, one per source b𝑖.
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2.7 Trace computation: Many output channels

In general, neither the matrix 𝑂 nor the matrix 𝐵 are low rank—for example, one may

be interested in the total power radiated into a continuum of angles above a surface, or

some other infinite set of possible far-field distributions, from sources distributed over

a continuous spatial region. Fortunately, it turns out that there is another structure

we can exploit: the Hermitian matrix 𝐻 = (𝐴−1𝐷)†𝑂(𝐴−1𝐷) from Eq. (2.12) is itself

typically approximately low rank (“numerically low rank” [85]) even if 𝑂 is not: the

trace, which equals the sum of the eigenvalues of 𝐻 [76], is dominated by a few of 𝐻’s

largest eigenvalues. In this section, we first explain why that is the case, and then

show how it can be exploited to efficiently estimate the trace during optimization.

There are two reasons to expect approximate low-rank structure of 𝐻. First, on

physical grounds, emission enhancement arises due to resonances (via the Purcell ef-

fect) [2], but in any finite volume there is some limit to the number of resonances that

can interact strongly with emitters in a given bandwidth, related to an average den-

sity of states [160]. The traditional definition of resonant modes corresponds to poles

of 𝐴−1 at complex resonant frequencies, which are (linear or nonlinear) eigenvalues 𝜔

satisfying det𝐴(𝜔) = 0 [105]; analogously, Eq. (2.12) decomposes the total power into

a sum of eigenvalues corresponding to “resonant current” sources which diagonalize 𝐻

at a given frequency. More explicitly, if 𝐴−1𝐷 can be accurately approximated by the

action of 𝐾 resonances of 𝐴 (a quasinormal mode expansion [35,72]), so that 𝐴−1 can

be replaced by a rank-𝐾 matrix, it follows that 𝐻 is also approximately rank ≤ 𝐾

(since it is a product of rank-deficient matrices [76]). Moreover, geometric optimiza-

tion to maximize the emitted power modifies the structure to further enhance one or

more resonances [81], and we observe that this sometimes increases the concentration

of the trace into a few eigenvalues of 𝐻; that is, optimized structures tend to be even

lower rank. Second, in a more general mathematical sense, the matrix 𝐻 is built

from off-diagonal blocks of the Green’s function matrix 𝐴−1, connecting sources (at

the the support of 𝐷) to emitted power at some other location (the support of 𝑂,

e.g. where the Poynting flux is computed), and off-diagonal blocks of Green’s functions
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are known to be approximately low-rank [41]. This is closely related to fast methods

for integral equations, such as the fast-multipole method and others [37]; essentially,

far fields mostly depend on low-order spatial moments of the near fields/currents.

If tr𝐻 is dominated by 𝐾 ≪ 𝑁 largest eigenvalues of the 𝑁 × 𝑁 matrix 𝐻,

then one merely needs a numerical algorithm to compute the 𝐾 extremal (largest-

magnitude) eigenvalues using only a sequence matrix–vector products 𝐻v (corre-

sponding to individual scattering problems). Fortunately, there are many such al-

gorithms, especially for Hermitian 𝐻 [68, 73], and one can simply increase 𝐾 until

the trace converges to any desired tolerance. We argue here that methods based on

Rayleigh-quotient maximization are particularly attractive for inverse design because

they can be combined with geometric/topology optimization. The key fact is that one

can express the sum of the largest 𝐾 eigenvalues as the maximum of a block Rayleigh

quotient [58, 68, 69, 80], and for positive semidefinite 𝐻 (= positive semidefinite 𝑂)

this sum is a lower bound on the trace [69]:

tr𝐻 ≥ max
𝑉 ∈C𝑁×𝐾

tr
[︀
(𝐴−1𝐷𝑉 )†𝑂(𝐴−1𝐷𝑉 )(𝑉 †𝑉 )−1

]︀
, (2.19)

where 𝑉 represents any 𝐾-dimensional subspace basis, so that one is maximizing the

trace over all possible subspaces. This ≥ becomes equality for 𝑁 = 𝐾, but in many

problems (below) we find that 𝐾 < 10 suffices for < 1% error in the trace (and, as

expected from the arguments above, we find that the required 𝐾 increases with the

diameter of the emission region).

Computationally, one can maximize the right-hand side of Eq. (2.19) by some form

of gradient ascent [68,80], each step of which only requires the evaluation of 𝐴−1𝐷𝑉

for a 𝑁 ×𝐾 matrix 𝑉 . That is to say, one only needs 𝐾 Maxwell solves at each step

(instead of 𝑁 for the full matrix 𝐻), which vastly reduces the computational cost.

Moreover, this Rayleigh-quotient maximization formula is especially attractive in

the context of inverse design, because it can be combined with the geometric opti-

mization itself. That is, instead of “nesting” the trace computation inside a larger

geometric optimization procedure, we can simply add 𝑉 to the geometry degrees of

29



freedom and optimize over both 𝑉 and the geometry simultaneously. The full inverse-

design problem with incoherent emission can now be bounded by a single optimization

problem:

⟨𝑃 ⟩optimum ≥ max
geometry,𝑉 ∈C𝑁×𝐾

tr
[︀
(𝐴−1𝐷𝑉 )†𝑂(𝐴−1𝐷𝑉 )(𝑉 †𝑉 )−1

]︀
, (2.20)

where the geometric parameters (e.g. material densities [53] or level sets [147]) only

affect 𝐴 and (perhaps) 𝐷, and may be subject to some geometric and/or material

constraints. The gradient of the right-hand side with respect to the geometry can be

computed efficiently with adjoint methods [98], whereas the gradient with respect to

𝑉 has a simple analytical formula [58], so a variety of gradient-based optimization

algorithms [21] can be applied to simultaneously evolve both 𝑉 and the geometry.

Furthermore, the Rayleigh quotient has the nice property that, since we are maxi-

mizing a lower bound on the full trace, the actual performance ⟨𝑃 ⟩ is guaranteed to

be at least as good as the estimated performance at every optimization step.

2.8 Factorization-free trace formulation

Although it is conceptually attractive to use a trace formulation Eq. (2.12) in terms

of the Hermitian matrix 𝐻, this formulation required a factorization 𝐵 = 𝐷𝐷† of the

correlation matrix 𝐵. Computationally, it is desirable to avoid this factorization, es-

pecially if the current distribution (and hence 𝐵) depends on the geometric degrees of

freedom 𝜌 (which would require us to differentiate through the matrix factorization in

our adjoint calculation). Instead, it is straightforward to reformulate our optimization

problems Eq. (2.16) and Eq. (2.20) in terms of 𝐵 alone using a change of variables.

For the few-output-channel case in Sec. 2.5, one can simply start with Eq. (2.12)

and rewrite it as ⟨𝑃 ⟩ = tr[𝐴−†𝑂𝐴−1𝐵], which for a low-rank 𝑂 simplifies, similar to

Eq. (2.16), to

⟨𝑃 ⟩ =
𝐾∑︁
𝑖=1

u†
𝑖𝐵u𝑖 , (2.21)

where 𝐴†u𝑖 = o𝑖.
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For the many-channel case of Eq. (2.20), the key point is that we can choose 𝑉

to be orthogonal to the nullspace 𝑁(𝐷) of 𝐷, as any nullspace component would

contribute nothing to the trace (𝐷𝑉 projects it to zero). Equivalently, we can choose

𝑉 = 𝐷†𝑊 (⊥ 𝑁(𝐷) [76]) for any 𝑁 × 𝐾 matrix 𝑊 , and this change of variables

yields a new optimization problem:

⟨𝑃 ⟩ = tr[
(︀
𝐴−1𝐵𝑊

)︀†
𝑂
(︀
𝐴−1𝐵𝑊

)︀⏟  ⏞  
𝑈

(𝑊 †𝐵𝑊 )−1] = tr
[︀
𝑈 †𝑂𝑈(𝑊 †𝐵𝑊 )−1

]︀
, (2.22)

where 𝑈 = 𝐴−1𝐵𝑊 is introduced for simplicity.
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Chapter 3

Approaching the upper limits of the

local density of states via

optimized metallic cavities

In this chapter, we study the special case of a single emitter location with random

orientations, which leads to computing the (electric) local density of states (LDOS)

at a given location [61]. As discussed in Sec. 2.6, this simplifies the trace expression to

a few forward Maxwell solves and conventional methods can be applied to efficiently

optimize the LDOS.

First, we give a brief review of the LDOS and related questions (Sec. 3.1), and then

briefly review the upper limit of LDOS proposed in a recent work (Sec. 3.2) [95]. Next,

we present the methods we used to optimize the LDOS in a metallic cavity (Sec. 3.3).

And in Sec. 3.4, we show the optimization results for both total LDOS and single-

polarization LDOS, which approach the upper limit within a factor of 10 and 4,

respectively. Finally, we give some concluding remarks and discuss possible future

improvements (Sec. 3.5).
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Figure 3-1: Schematic cavity-optimization problem: the shape of an air cavity in a
metallic (silver) background is optimized to maximize the LDOS for emitters (dipoles)
at the center 𝑜, constrained for a minimum separation 𝑑 (the metal lies outside of a
sphere of radius 𝑑).

3.1 Introduction

Recently, we obtained theoretical upper bounds [95] to the (electric) LDOS 𝜌(x, 𝜔),

a key figure of merit for light–matter interactions (e.g. spontaneous emission) pro-

portional to the power emitted by a dipole current at a position x and frequency

𝜔 [19, 26, 61, 62, 86, 104, 108, 152, 155]. For a resonant cavity with quality factor 𝑄 (a

dimensionless lifetime), LDOS is proportional to the “Purcell factor” 𝑄/𝑉 where 𝑉

is a modal volume [2, 108], so LDOS is a measure of light localization in space and

time. Our LDOS bounds ∼ |𝜒|2/ Im𝜒/𝑑3 (reviewed in Sec. 3.2) depend on the mate-

rial used (described by the 𝜔-dependent susceptibility 𝜒 = 𝜀 − 1) and the minimum

separation 𝑑 between the emitter and the material, but are otherwise independent of

shape, and hence give an upper limit to the localization attainable by any possible

resonant cavity for (𝜒, 𝑑, 𝜔). However, it is an open question to what extent these

bounds are tight, i.e. is there any particular cavity design that comes close to the

bounds? Initial investigations of a few simple resonant structures were often orders

of magnitude from the upper bounds (except at the surface-plasmon wavelength for a

given metal) [90,95,134]. In this work, we perform computational optimization of 3D

metallic cavities at many wavelengths (Fig. 3-1) and find that the bounds are much

more nearly attainable than was previously known.

Many previous authors have computationally optimized the LDOS of cavities (or
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equivalent quantities such as the Purcell factor 𝑄/𝑉 ), including many-parameter

shape or “topology” optimization [53,87,132,148–150], but in most cases these works

did not compare to the recent upper bounds. In many cases, these works studied loss-

less dielectric materials where the bound diverges (though a finite LDOS is obtained

for a finite volume [22, 81] and/or a finite bandwidth [81, 134]). Designs specifically

for LDOS of metallic resonators that compared to the bounds initially yielded results

far below the bounds except for the special case of a planar surface at the surface-

plasmon frequency of the material [93, 95], but recent topology optimization in two

dimensions came within a factor of 10 of the 2D bound [22]. Semi-analytical calcula-

tions have also been published for resonant modes in spherical metallic voids [63], but

did not calculate LDOS. Therefore, the opportunity remains for optimized metallic

LDOS designs in three dimensions that approach the theoretical upper bounds. To

come as close as possible to the bounds, we focus initially on the idealized case of an

air void surrounded by metal filling the rest of space, so that there are no radiation

losses; later, we consider the small corrections that arise due to finite metal thickness.

3.2 The local density of states (LDOS)

The (electric) LDOS is equivalent to the total power expended by three orthogonal

dipole currents [61]:

𝜌 = Im

[︃
𝜖0
𝜋𝜔

3∑︁
𝑗=1

ŝ𝑗 · E𝑗(x0)

]︃
, (3.1)

where 𝜖0 is the vacuum electric permittivity, E𝑗 denotes the field produced by a

frequency-𝜔 unit-dipole source at x0 polarized in the ŝ𝑗 direction, and the sum over

𝑗 accounts for all three possible dipole orientations. This is equivalent to the average

response for any dipole orientation [152], and is therefore an isotropic figure of merit.

In contrast, we refer to the power Im[ 𝜖0
𝜋𝜔
ŝ𝑗 ·E𝑗(x0)] expended by only a single dipole

current as the “polarized” LDOS.

From energy-conservation considerations, previous work found an upper bound

for LDOS enhancement inside a cavity compared to vacuum electric LDOS (𝜌0 =
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𝜔2/2𝜋2𝑐3 [62]). In particular, the total (electric) LDOS limit can be evaluated as an

integral over the entire scattering volume 𝑉 (the region containing the material 𝜒):

𝜌

𝜌0
≤ 1 +

𝑘3

4𝜋

|𝜒(𝜔)|2

Im𝜒(𝜔)

∫︁
𝑉

[︂
3

(𝑘𝑟)6
+

1

(𝑘𝑟)4
+

1

(𝑘𝑟)2

]︂
d3𝑟 , (3.2)

where 𝜌0 = 𝜔2/2𝜋2𝑐3 is the free-space electric LDOS [62] and 𝑘 = 𝜔/𝑐 is the wavenum-

ber.

Ostensibly, this limit is dependent on the exact scattering geometry 𝑉 (leading to

a shape-dependent limit). However, Eq. (3.2) is also an upper bound on any scatterer

contained within 𝑉 [95]. In this work, we are interested in a minimal separation 𝑑 as

depicted in Fig. 3-1, so we take 𝑉 to be a spherical shell with inner radius 𝑑 and shell

thickness 𝐿, with 𝐿 → ∞ for arbitrary thickness. The integral of Eq. (3.2) can then

be evaluated as
𝜌

𝜌0
≤ 1 +

|𝜒(𝜔)|2

Im𝜒(𝜔)

[︂
1

(𝑘𝑑)3
+

1

𝑘𝑑
+ O(𝑘𝐿)

]︂
, (3.3)

where O(𝑘𝐿) is a “Big-O” asymptotic bound [25]. As discussed in Ref. 95, the O(𝑘𝐿)

divergence as 𝐿 → ∞, which arises from far-field scattering, is unphysical and overly

optimistic. The contribution of this term should be limited by the largest interaction

distance over which polarization currents contribute to the LDOS, thus is generally

small compared to the first two terms on the right-hand side of Eq. (3.3) and can

be neglected at small separation distance 𝑑. Therefore, the total LDOS limit for a

metallic cavity with minimum separation distance 𝑑 is

𝜌

𝜌0
≤ 1 +

|𝜒(𝜔)|2

Im𝜒(𝜔)

[︂
1

(𝑘𝑑)3
+

1

𝑘𝑑

]︂
. (3.4)

Note that this limit, where 𝑉 is the exterior of a sphere, is about 8 times larger

than the limit discussed in Ref. 95 where 𝑉 was a planar half-space. In practice,

this factor-of-8 improvement may be difficult to realize since optimized cavities will

typically have only a small surface area at the minimum separation 𝑑 (except for the

resonant spheres discussed in Sec. 3.4 below).

For the polarized LDOS limit, the integral in Eq. (3.2) (squared Frobenius norm
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of the homogeneous Green’s function [95]) is replaced with the norm of the dipole

polarization vector multiplied by the Green’s function norm [90]:

𝜌p
𝜌0

≤ 1

3
+

𝑘3

8𝜋

|𝜒(𝜔)|2

Im𝜒(𝜔)

∫︁
𝑉

[︀
𝑎(𝑟) + 𝑏(𝑟)|p̂ · r̂|2

]︀
d3𝑟 , (3.5)

where p̂ is the unit vector in the polarization direction, and 𝑎(𝑟) and 𝑏(𝑟) are:

𝑎(𝑟) =
1

(𝑘𝑟)6
− 1

(𝑘𝑟)4
+

1

(𝑘𝑟)2
(3.6)

𝑏(𝑟) =
3

(𝑘𝑟)6
+

5

(𝑘𝑟)4
− 1

(𝑘𝑟)2
. (3.7)

Similar to the total LDOS limit analysis, we can use a spherical bounding surface

of radius 𝑑 to derive a general upper bound (also excluding the diverging O(𝑘𝐿) term):

𝜌p
𝜌0

≤ 1

3
+

|𝜒(𝜔)|2

3 Im𝜒(𝜔)

[︂
1

(𝑘𝑑)3
+

1

𝑘𝑑

]︂
, (3.8)

which is exactly 1/3 of the total LDOS limit. That is, the total LDOS bound is

equivalent to assuming that the polarized LDOS bound can be attained for all three

polarizations simultaneously, which our results show to be unlikely.

To compute the shape-dependent polarized-LDOS bound (for a given optimized

shape) in Sec. 3.4.3, we performed numerical integration of Eq. (3.5) over spherical

angles (with the 𝑟 integral performed analytically), but excluding the 1/(𝑘𝑟)2 radiative

term that yields the O(𝑘𝐿) divergence.

It is important to emphasize that the derivation of Eq. (3.4) and Eq. (3.8) gives a

rigorous upper bound to the LDOS, but does not say what structure (if any) achieves

the bound. By actually solving Maxwell’s equations for various geometries, we can

investigate how closely the bound can be approached (how “tight” the bound is). It is

possible that incorporating additional constraints may lead to tighter bounds in the

future [40,71,97,99], but our results below already show that Eq. (3.4) and Eq. (3.8)

are achievable within an order of magnitude.
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3.3 Cavity-optimization methods

To numerically compute the LDOS inside a metal cavity, we employed a free-software

implementation [122] of the boundary element method (BEM) [7]. A BEM formula-

tion only involves unknown tangential fields on the metal surface, leading to modest-

size computations for 3D metallic voids (Fig. 3-1). The complex dielectric constant

of silver was interpolated from tabulated data [110]. In addition, we implemented an

adjoint method [98, 138] to rapidly obtain the gradient of the LDOS with respect to

the shape parameters described below.

The gradient of the LDOS with respect to many shape parameters can be com-

puted by solving Maxwell’s equations a single additional time (for “adjoint” fields) via

the adjoint method, a key algorithm for large-scale photonics optimization [98, 138].

The specific case of a boundary perturbation is reviewed in Ref. 92, which shows that

the variation of an objective function 𝐹 in response to small shape deformations 𝛿𝑅

(the surface displacement in the normal direction) over the surface 𝜕Ω is

𝛿𝐹 = 2 Re

∫︁∫︁
𝜕Ω

𝛿𝑅(x′)

[︂
(1 − 𝜀)E‖(x

′) · EA
‖ (x′) +

(︂
1

𝜀
− 1

)︂
D⊥(x′) ·DA

⊥(x′)

]︂
d𝑆,

(3.9)

where 𝜀 is the electric permittivity of the metal, E‖ is the surface-parallel electric

field, D⊥ is the surface-parallel displacement field, and the superscript “A” denotes

the adjoint field excited by an adjoint current source J = 𝜕𝐹/𝜕E.

In the case of LDOS, a further simplification arises. The objective function 𝐹 = 𝜌

at position x0 can be expressed as Eq. (3.1). We can see from Eq. (3.1) that the LDOS

is proportional to the electric field, leading to an adjoint field that is also proportional

to the original problem for each orientation 𝑗,

EA
𝑗 (x) = Im

[︁ 𝜖0
𝜋𝜔

E𝑗

]︁
. (3.10)

Inserting Eq. (3.10) into Eq. (3.9) gives us the LDOS gradient (first-order variation)
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with respect to any shape deformation:

𝛿𝜌 =
𝜖0
𝜋𝜔

Im
∑︁
𝑗

∫︁∫︁
𝜕Ω

𝛿𝑅(x′)

[︂
(1 − 𝜀)E𝑗‖(x

′)2 +

(︂
1

𝜀
− 1

)︂
D𝑗⊥(x′)2

]︂
d𝑆 . (3.11)

We can see that the gradient of LDOS with respect to all shape parameters simul-

taneously is obtained by the adjoint method using only two BEM simulations—the

original problem and an adjoint problem (the same Maxwell problem with artificial

“adjoint” sources). Since the adjoint problem is the same Maxwell/BEM operator,

we need only form and factorize the BEM matrix a single time, and the computa-

tional cost to solve both the forward and adjoint problems is essentially equivalent to

a single simulation. Validation against a semi-analytical solution for spheres [63] is

discussed in Sec. 3.4.2.

In order to parameterize an arbitrary cavity shape numerically, we use a level-set

description [106,146], combined with a free-software surface-mesh generator CGAL [15,

141]. In particular, we describe the radius of the cavity around the source point

by a function 𝑅(𝜃, 𝜑) (in spherical coordinates), which is expanded below in either

spherical harmonics or other polynomials, and equivalently pass a level-set function

Φ = 𝑟−𝑅(𝜃, 𝜑) to CGAL (such that Φ = 0 defines the surface). We considered various

parameterizations of the shape function 𝑅. The simplest geometries considered were

ellipsoids, cylinders, or rectangular boxes, described by two or three parameters. For

many-parameter optimization with a minimum radius (separation) 𝑑, the function 𝑅

is expressed as an expansion in some basis functions 𝑆𝑛(𝜃, 𝜑) as:

𝑅(𝜃, 𝜑) = 𝑑 +

⃒⃒⃒⃒
⃒

𝑁∑︁
𝑛=0

𝑐𝑛𝑆𝑛(𝜃, 𝜑)

⃒⃒⃒⃒
⃒
2

. (3.12)

For the basis functions 𝑆𝑛, we used either spherical harmonics 𝑌ℓ𝑚(𝜃, 𝜑) (for arbitrary

asymmetrical “star-shaped” cavities) or simple polynomials in 𝜃 (to impose azimuthal
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symmetry round the 𝑧 axis and a 𝑧 = 0 mirror plane):

𝑆𝑛(𝜃, 𝜑) =

⎧⎨⎩ 𝜃𝑛 𝜃 ≤ 𝜋
2
,

(𝜋 − 𝜃)𝑛 𝜃 > 𝜋
2
.

(3.13)

The level set is discretized for BEM (by the CGAL software) into a triangular

surface mesh. We used 5× greater resolution for surface points closer to the dipole

source (radius . 70 nm), since the singularity of the fields at the source point leads

to rapid variations nearby, for around 5000 triangles overall. As we deformed the

shape during optimization, we first deform the triangles smoothly as long as all an-

gles remained between 30∘ and 120∘, after which point we triggered a re-meshing

step. Unfortunately, re-meshing causes slight discontinuities in the objective function

and its derivatives which tend to confuse optimization algorithms expecting com-

pletely smooth functions [142]. We tried various optimization algorithms designed

to be robust to such “numerical noise” [46, 65], and found that the Adam stochastic-

optimization algorithm [65] seems to work best for our problem.

3.4 Cavity-optimization results

3.4.1 Total LDOS

We performed numerical shape optimization of the LDOS for cavities formed by voids

in silver [110] at wavelengths 𝜆 from 400–900 nm, for both simple geometries (cylin-

der, ellipsoid, and rectangular box) and complex many-parameter shape (spherical

harmonics). To obtain a finite optimum LDOS, one must choose a lower bound on

the emitter–metal separation distance 𝑑 [95]. We chose 𝑑 = 50 nm so that 𝑘𝑑 < 1 for

all optimized wavelengths; this allows us to use Eq. (3.4) as the LDOS upper bound,

neglecting additional far-field effects [95], while a much smaller 𝑑 was inconvenient to

model (due to extremely small feature sizes and even nonlocal effects [121] at such

scales). Note that 𝑑 also sets a lengthscale for the region of the cavity with maximum

LDOS: as long as one shifts the emitter location by ≪ 𝑑 (. 10 nm), the optimized
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Figure 3-2: (a) Total LDOS optima as a function of the wavelength 𝜆 for a minimum
separation 𝑑 = 50 nm, along with the upper bound (black line). A separately opti-
mized structure is used for each wavelength, either optimized cylinders (orange line)
and ellipsoids (green line) or general shape optimization via the optimized spherical-
harmonic (SH) surfaces (blue dots) of Eq. (3.12). Several SH local optima are shown
for each 𝜆, whereas for cylinders and ellipsoids only the global optima are shown.
(b) LDOS spectra of the spherical-harmonic (blue) and cylinder (orange) structures
optimized for 𝜆 = 500 nm, the the shapes (not to scale) inset (see supplementary
Visualizations 1 and 2 for 3D views). Also shown is the total-LDOS spectrum of a
polynomial shape (dashed blue line) optimized for the polarized LDOS in Sec. 3.4.3,
showing that optimizing for a single dipole orientation (polarized LDOS) is nearly
equivalent in performance to optimizing for all orientations (total LDOS).

LDOS will be of the similar magnitude, but other (unoptimized) locations in the

cavity will typically have a drastically different LDOS.

The results of the optimized LDOS as a function of the wavelength are displayed

in Fig. 3-2a. Note that each wavelength corresponds to a different structure opti-

mized for that particular wavelength. If we fix the structure as the one optimized

for 𝜆 = 500 nm, the resulting LDOS spectrum is shown in Fig. 3-2b, exhibiting a

peak at the optimized wavelength. For simple shapes (cylinder and ellipsoid), we

swept the parameters through a large range and found the global optimum among

several local optima. We also optimized rectangular boxes, but their performance was

nearly identical to that of the cylinders (but slightly worse), so they are not shown.

For the 16-parameter (spherical-harmonic) level-set optimization, we performed local

optimization for ∼ 10 random starting points and plotted the best result along with
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a few other typical local optima.

We found that the optimized LDOS comes within a factor of 10 of the upper

bound in the short-wavelength regions (𝜆 < 550 nm), and the optimized cylinders

are surprisingly good (within ≈ 20% of the many-parameter optima). The optimized

cavity geometries at 𝜆 = 500 nm are shown in the inset of Fig. 3-2b. We can see that

the optimized many-parameter shape has a three-fold rotational symmetry around one

axis; consequently, it has equal polarized LDOS in two directions but ∼ 100× smaller

polarized LDOS in the third direction. The spherical-harmonic basis is unitarily

invariant under rotations, so this means that the optimization of the total LDOS (an

isotropic figure of merit) exhibits a spontaneous symmetry breaking: it chooses two

directions to improve at the expense of the third. For the optimized cylinder and

ellipsoid, the polarized LDOS is only large for one polarization (along the cylinder

axis, the “short” axis). A similar spontaneous symmetry breaking was observed for

optimization of LDOS in two dimensions [81], as well as in saturating the upper

bounds for scattering and absorption [91, 95] (where it was related to quasi-static

sum rules constraining polarizability resonances [91]).

As discussed below, we found that we could approach the polarized LDOS bound

at 𝜆 = 500 nm within a factor of ∼ 3 for a single dipole orientation; the fact that the

total LDOS optimization is worse compared to its bounds (≈ 3 × polarized bound)

reiterates the conclusion that it is probably not generally possible to maximize the

polarized LDOS for all three directions simultaneously.

One possible shape with uniform polarized LDOS in all directions is a sphere. As

a matter of fact, we found that at each wavelength . 600 nm, there exists a resonant

sphere [14, 63] such that the LDOS at the center of the spheres comes within ≈ 20%

of the corresponding-𝑑 bound . However, this resonant radius 𝑑 is relatively large

(𝜆/4 < 𝑑 < 𝜆/2, in order to create a resonance at 𝜆) leading to small LDOS and

bound (𝜌/𝜌0 ∼ 10–100), so saturating such a large-𝑑 bound may have limited utility.

Spheres at much smaller 𝑑 do not exhibit these “void resonances” and have much

worse LDOS than the asymmetrical shapes in Fig. 3-2 for 𝑑 = 50 nm.
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Figure 3-3: LDOS of a resonant air sphere in silver as a function of the wavelength 𝜆
(blue line), where for each 𝜆 we choose the smallest radius 𝑎res for which we couple to a
resonant mode at 𝜆. The black line is the corresponding upper bound from Eq. (3.4),
setting the minimum separation distance 𝑑 = 𝑎res. The LDOS slightly exceeds the
bound at small wavelengths where the radius becomes so large that one would need
to include the O(𝑘𝐿) term that we dropped in Eq. (3.3).

3.4.2 Resonant Sphere

For a void sphere cavity, the resonant electromagnetic surface modes can be analyti-

cally obtained by solving the equation [14,63] (after correcting a typographical error

in Ref. 63):

𝜖m(𝜔)𝐻ℓ(𝑘m𝑎) [𝑘d𝑎𝐽ℓ(𝑘d𝑎)]′ = 𝜖d𝐽ℓ(𝑘d𝑎) [𝑘m𝑎𝐻ℓ(𝑘m𝑎)]′ , (3.14)

where 𝑎 corresponds to the void radius, ℓ is the (integer) index denoting the angular

momentum, 𝑘m =
√
𝜖m𝑘 and 𝑘d =

√
𝜖d𝑘 are wave vectors in metal and air/vacuum

respectively, 𝐽ℓ and 𝐻ℓ are spherical Bessel and Hankel functions of the first kind,

and the prime denotes differentiation with respect to 𝑘d𝑎 or 𝑘m𝑎. Since the excitation

source in our LDOS problem is a dipole at the center of the sphere, only an ℓ = 1

mode can be excited. Therefore, for each wavelength 2𝜋/𝑘, there is a minimal resonant

sphere: a minimal radius 𝑑 = 𝑎res satisfying Eq. (3.14) for ℓ = 1.

Using Eq. (3.14), we can directly compute this minimal resonance radius 𝑎res

and then evaluate the corresponding LDOS. Furthermore, since a semi-analytical

solution for the resonant modes is known for a void sphere [63], the LDOS can also
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be evaluated analytically via Eq. (3.1). We find that our BEM results are within

2% of the analytical values using a surface mesh of ≈ 5000 triangles, validating our

numerical solver. The resulting LDOS values are shown in Fig. 3-3, which shows that

the LDOS of the resonant sphere is very close to the theoretical limit (within ≈ 10%)

for the corresponding minimal separation 𝑑 = 𝑎res. These strong results verify the

limit at least at the resonance combinations of 𝑑 and 𝜆.

Notice that the resonant-sphere LDOS seems to actually slightly exceed the the-

oretical limit obtained with Eq. (3.4) in short wavelength range. There is no contra-

diction however: this is simply the effect of the O(𝑘𝐿) we dropped in Eq. (3.3).

In particular, the resonant radius here is relatively large compared to the wave-

length. For example, at 𝜆 = 700 nm we get 𝑎res = 273 nm, for which 𝑘𝑑 = 2.45

and 1/(𝑘𝑑)3 + 1/(𝑘𝑑) = 0.47. As a matter of fact, 1/(𝑘𝑑)3 + 1/(𝑘𝑑) < 1 for all res-

onant spheres, thus the O(𝑘𝐿) term in Eq. (3.3) will have a non-negligible influence

on the bound, causing the actual bound to be slightly higher than Eq. (3.4).

3.4.3 Polarized LDOS

Since the spontaneous symmetry-breaking in the previous section suggests that opti-

mization favors maximizing LDOS in a single direction, we now consider optimizing

the polarized LDOS. That is, we maximize the power expended by a dipole current

with a single orientation (similar to previous work on cavity optimization in dielectric

media [22,81,150]). As above, we performed few-parameter optimization of ellipsoids,

cylinders, and rectangular boxes. For many-parameter optimization, we initially used

spherical harmonics but observed that optimizing polarized LDOS naturally leads to

structures that are rotationally symmetric around the dipole axis. To exploit this

fact, we switched to simple polynomials in 𝜃 as described in Sec. 3.3. Specifically,

we first performed a rough scan of degree-2 polynomials to obtain a starting point,

then we performed a degree-5 optimization using the adjoint method (degree-10 gave

similar results at greater expense). (Gradually increasing the number of degrees of

freedom is “successive refinement,” a heuristic that has also been used in other work

to avoid poor local minima [109, 135].) The results are shown in Fig. 3-4. We only
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Figure 3-4: (a) Polarized LDOS optima (dashed lines) as a function of the wavelength
𝜆 at a minimum separation 𝑑 = 50 nm, along with the upper bound (black line) and
the shape-dependent bounds (black dots). Dashed lines are peak performance of
separately optimized structures for each 𝜆, either cylinders (orange) or the optimized
polynomials (blue) of Eq. (3.13). Solid blue lines are spectra of the polarized LDOS for
optimized polynomial designs at selected wavelengths 𝜆 = 400, 500, 600, 700, 800 nm,
respectively. (b) Optimized polynomial (top) and cylinder (bottom) structures at
the wavelength 𝜆 = 400, 500, 600, 700 nm (to scale; see supplementary Visualizations
3–10 for 3D views).

plotted the cylinder results (orange dashed line), because the ellipsoid and box results

were worse.

We obtain an optimized LDOS within a factor of about 4 of the polarized-LDOS

bound in the short wavelength regions (𝜆 < 550 nm). At a wavelength of 400 nm, the

optimized LDOS is only 2.5 times smaller than the bound, which greatly improves

upon previous results that often came only within 102–103 of the bound [93,95,134].

One interesting fact is that the optimized polarized LDOS is actually only slightly

smaller (≈ 10%) than the optimized total LDOS (blue dashed line in Fig. 3-2b),

which is consistent with the spontaneous symmetry breaking we commented on above:

optimizing total LDOS spontaneously chooses one or two directions to optimize at

the expense of all others, and hence is often equivalent to optimizing polarized LDOS.

(If an isotropic LDOS is required by an application, one approach is to maximize the

minimum of three polarized LDOSes [81].)

The upper bounds can help us to answer another important question: how much

additional improvement could be obtained by introducing additional void structures
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outside of our cavity? (For example, by giving the cavity walls a finite thickness.)

An upper bound to this improvement is provided by computing a shape-dependent

limit : we use the same bounding procedure, but evaluate the limit assuming the

material lies outside our optimized shape rather than outside of a bounding sphere.

This analysis, which is carried out in Sec. 3.2, shows that our optimized polarized

LDOS is nearly reaching this shape-dependent limit as shown by the black dots in

Fig. 3-4a. Therefore, little further improvement is possible using additional structures

outside of the cavity, which justifies optimizing over simple voids in order to probe

the bounds.

3.4.4 Radiative LDOS from a finite thickness cavity

In the previous sections, we optimized the total and polarized non-radiative LDOS

for an air-void cavity as in Fig. 3-1 (since the power is entirely absorbed). However,

the same theoretical procedure yielded a bound on the purely radiative power that

was simply 1/4 of the total-LDOS bound [95], and in fact the two results are closely

related. In general, the addition of low-loss input/output channels can be analyzed

via coupled-mode theory as small perturbations to existing cavity designs [55].

Given a purely absorbing resonant cavity such as the ones optimized in the previ-

ous sections, the addition of a radiation-loss channel (e.g. by coupling the cavity to

a waveguide, permitting radiation through a small hole in the cavity walls, or simply

thinning a portion of the wall) can be analyzed quantitatively using the technique of

temporal coupled-mode theory (TCMT) as long as the lifetime of the cavity remains

long enough to be treated as an isolated resonant mode [55, 139]. TCMT yields a

result identical to that of Ref. 95: the optimal radiated power is 1/4 of the original

absorbed power. We describe that straightforward analysis here, because it helps to

connect the results in the previous sections with applications to radiative cavities.

In particular, consider a purely absorptive cavity with a quality factor [55, 139]

𝑄𝑎 ≫ 1, so that the Purcell enhancement of the LDOS for a dipole source is propor-

tional to 𝑄𝑎/𝑉 where 𝑉 is a corresponding modal volume [55,108]. Now, suppose that

one perturbs the cavity to add a radiative loss channel with a corresponding quality
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factor 𝑄𝑟. As long as the radiation loss is low (𝑄𝑟 ≫ 1, as is necessary to retain a

well-defined resonance), it can be treated as a small perturbation and the effect on

𝑄𝑎 and 𝑉 can be neglected as higher-order in 1/𝑄𝑟 [55]. With the addition of this

channel, the total cavity 𝑄 becomes 𝑄 = 𝑄𝑎𝑄𝑟/(𝑄𝑎 + 𝑄𝑟), corresponding to a total

nondimensionalized loss rate of 1/𝑄 = 1/𝑄𝑎 + 1/𝑄𝑟 [55], so the Purcell enhancement

factor is reduced to 𝑄/𝑉 . However, only a fraction 𝑄/𝑄𝑟 of the dipole power goes

into radiation (vs. absorption), so the resonant enhancement of the radiated power

is proportional to
𝑄2

𝑉 𝑄𝑟

=
𝑄2

𝑎𝑄𝑟

(𝑄𝑎 + 𝑄𝑟)2𝑉
. (3.15)

Equation (3.15) is maximized when 𝑄𝑟 = 𝑄𝑎, i.e. when the absorptive and radiative

loss rates are matched, similar to results obtained previously [42, 131]. For 𝑄𝑟 = 𝑄𝑎,

Eq. (3.15) becomes 𝑄𝑎/4𝑉 , or exactly 1/4 of the 𝑄𝑎/𝑉 Purcell enhancement in the

purely radiative case.

This result is consistent with the fact that our radiative-LDOS bound is 1/4 of

the total LDOS bound [95], but is more far-reaching. It prescribes how any high-𝑄

absorbing cavity can be converted to a radiating cavity with about 1/4 the radiated

power, similar to the results we obtained numerically below.

To conclude, given an resonant absorptive cavity, one could modify it to radiate

at most ≈ 1/4 of the original LDOS by slightly perturbing it to add a radiative-

escape channel (e.g. a small hole or thinning in the cavity wall) tuned to match the

absorption-loss rate [42,131]. (The same channel could also be used to introduce input

energy, e.g. for pumping an emitter.) In the following we will show an example of

this: by thinning the cavity walls, we achieve radiated power ≈ 1/4 of the absorbed

power in the purely absorbing cavity.

Here, we study the effect of a finite thickness of the metallic walls, replacing the

infinite metallic regions of Fig. 3-1. To do this, we took the optimized cylinder at

𝜆 = 500 nm from Fig. 3-2b and modified the silver walls to have finite thickness with

the same inner surface. The LDOS as a function of the shell thickness is shown in

Fig. 3-5. We observe that the LDOS increases monotonically with the shell thickness,
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Figure 3-5: LDOS of optimized cylindrical cavity a function of the wall thickness
(blue line) at a wavelength 𝜆 = 500 nm and a minimum separation 𝑑 = 50 nm,
compared to the infinite-thickness LDOS (orange line). Also shown are the radiative
LDOS 𝜌rad/𝜌0 (solid green line: the radiated/non-absorbed power), as well as 4 ×
𝜌rad/𝜌0 (dashed green line) because the theoretical bounds predict that the maximum
𝜌rad is 1/4 of the total LDOS [95].

and that a shell thickness of about 100 nm (about 3.7 times the skin depth) yields

a polarized LDOS within 5% of the infinite-thickness result, which is not surprising

considering that the skin depth [51,110] of silver is < 33 nm for 𝜆 > 400 nm.

For a finite-thickness shell, some of the expended power (total LDOS) is absorbed

and some “leaks” through the finite thickness to radiate away, and it is interesting to

consider the radiative LDOS 𝜌rad defined as the latter radiated power for the same

dipole source (green line in Fig. 3-5). As a function of shell thickness, 𝜌rad exhibits a

peak: too thin and the resonance is too weak to enhance LDOS, but too thick and no

power escapes to radiate (all power is absorbed). The theoretical limit for 𝜌rad/𝜌0− 1

is 1/4 of the limit for the total (absorbed+radiated) LDOS [95]. Correspondingly,

we plot 4𝜌rad/𝜌0 in Fig. 3-5 (dashed green line) and see that, at the optimum 𝜌rad,

the radiative LDOS is approximately 1/4 of the total (4𝜌rad ≈ 𝜌), agreeing with the

prediction of polarization-maximization in Ref. 95.

48



3.5 Concluding remarks

In this work, we obtain LDOS values within a factor of ≈ 10 of the total LDOS bound

and a factor of ≈ 4 of the polarized LDOS bound in a many-parameter metal-cavity

optimization, showing that these upper bounds are much more nearly attainable

than was previously known [95]. Unlike previous work on scattering/absorption by

small particles [91], our optimized cavities do not appear to be in the quasi-static

regime, since their largest axes are ∼ 𝜆/2, even while their smallest axes are deeply

subwavelength and exhibit strong plasmonic effects.

It is possible that further improvements could be obtained by a more extensive

search of local optima, or by expanding the search to other classes of cavities beyond

“star-shaped” structures that can be described by a 𝑅(𝜃, 𝜑) level set, e.g. via full 3D

topology optimization. We would also like to systematically explore the attainability

of the finite-bandwidth bounds from Ref. 134, which are useful for lossless dielectrics

(where the single-frequency LDOS bound diverges). Conversely, it is possible that

incorporating additional constraints, such as considering a more complete form of the

optical theorem, may lower the LDOS bounds [40, 71, 97, 99]. There has also been

recent interest in the magnetic LDOS, corresponding to magnetic-dipole radiation [9],

and we expect that qualitatively similar results (albeit with different optimal shapes)

would be obtained for the magnetic LDOS (or some combination of magnetic and

electric, although trying to optimize both simultaneously would likely encounter dif-

ficulties similar to those for optimizing multiple polarizations). The magnetic LDOS

would merely require one to replace our electric-dipole source with a magnetic-dipole

source, along with a similar switch of the Green’s function that appears in the deriva-

tion of the bounds [95].

On a more practical level, a possible next step is to maximize LDOS (or similar

figures of merit) for 3D geometries more amenable to fabrication, whereas our goal

in the present paper was to probe the fundamental LDOS limits without concern

for fabrication. Fortunately, our results show that relatively simple (constant cross-

section) shapes such as cylinders can perform nearly as well as the irregular shapes
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produced by many-parameter shape optimization, and are relatively insensitive to

small details (e.g. curved or flat walls). This is a hopeful sign for adapting such

cavities to nano-manufacturing by lithography or other techniques. And, although

infinite-thickness cavities completely absorb the emitted power, our computation of

the radiated power in finite-thickness shells (Section 3.4.4) agrees with the theoretical

bound’s prediction that the optimal radiated power is ≈ 1/4 of the total [95].
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Chapter 4

Topology optimization and its

application for incoherent emission

In this chapter, we first briefly review the key ideas in density-based topology opti-

mization (TopOpt, Sec. 4.1) and the detailed numerical formulation for a 2D electro-

magnetic scheme (Sec. 4.2). We then illustrate our method with several 2D example

problems (Sec. 4.3: fluorescence from an optimized nanoparticle, enhanced emission

from a corrugated surface analogous to a light-emitting diode [32,52], and optimized

emission into a waveguide. Finally we discuss the potential application of the trace

formulation and possible improvements in future works (Sec. 4.4).

Density-based TopOpt has attracted increasing interest over the last few decades

because of its ability to reveal surprising high-efficiency designs by optimizing over

thousands or even millions of design degrees of freedom [53]. It parameterizes a

structure by an artificial “density” 𝜌(x) ∈ [0, 1] at every point (or every “pixel”) in

a design region, which is typically passed through smoothing and threshold steps to

yield a physical “binary” design consisting of one of two materials at every point.

We apply a damped-diffusion filter [77], which regularizes the problem by setting a

minimum lengthscale on the design. (Additional manufacturing constraints can be

imposed by well-known techniques [43], but in the present work we focus on the fun-

damental algorithms and not on experimental realization.) Once a scalar objective

function (to be optimized) is defined, such as the emitted power (e.g. the new for-
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mulation in this paper), its derivatives (sensitivities) with respect to all the design

parameters can be efficiently computed with a single additional simulation via adjoint

methods [98,142]. Given the objective function and its derivatives, a variety of large-

scale optimization algorithms are available; we use the CCSA/MMA method [140].

We employ a recent free/open-source finite-element method (FEM) package, Gri-

dap.jl [6], in the Julia language [13], which allows us to efficiently code highly cus-

tomized FEM-based trace formulations in a high-level language, with the construc-

tion of the adjoint problem aided by automatic-differentiation (AD) tools [49, 125].

In https://gridap.github.io/Tutorials/dev/pages/t018_TopOptEMFocus/, we

wrote a tutorial about how to use Gridap.jl for TopOpt.

4.1 Topology-optimization formulation

In this section, we briefly review the density-based TopOpt formulation [53] that we

employ for our example applications in Sec. 4.3. The key idea of TopOpt is that an

“artificial density” field, 𝜌(x) ∈ [0, 1], is defined on a spatial “design” domain. This

field is then filtered (to impose a non-strict minimum length-scale) and thresholded

(to mostly “binarize” the geometry, resulting in a physically admissible geometry).

The resulting smoothed and thresholded field is then used to control the spatial ma-

terial distribution, constituting the structure under design. The design field, 𝜌, is

discretized into a finite number of design degrees of freedom, which constitutes the

design variables in the inverse design problem to be solved, e.g. Eq. (2.20), using a

finite-element method (FEM) on a triangular mesh [6, 54], and the geometry is op-

timized using a well-known gradient-based algorithm that scales to high-dimensional

problems with thousands or millions of degrees of freedom [140].

Given a density 𝜌(x) ∈ [0, 1], one should first regularize the optimization problem

by setting a non-strict minimum lengthscale 𝑟𝑓 , as otherwise one may obtain arbitrar-

ily fine features as the spatial resolution is increased. This is achieved by convolving

𝜌 with a low-pass filter to obtain a smoothed density 𝜌 [53]. There are many possible

filtering algorithms, but in an FEM setting (with complicated nonuniform meshes), it

52

https://gridap.github.io/Tutorials/dev/pages/t018_TopOptEMFocus/


is convenient to perform the smoothing by solving a simple “damped diffusion” PDE,

also called a Helmholtz filter [77]:

−𝑟2𝑓∇2𝜌 + 𝜌 = 𝜌 ,

𝜕𝜌

𝜕n

⃒⃒⃒⃒
𝜕Ω𝐷

= 0 , (4.1)

where 𝑟𝑓 is the lengthscale design parameter and n is the normal vector at the bound-

ary 𝜕Ω𝐷 of the design domain Ω𝐷. This damped-diffusion filter essentially makes 𝜌

a weighted average of 𝜌 over a radius of roughly 𝑟𝑓 [77]. (In addition to this filtering,

it is possible to impose additional fabrication/lengthscale constraints, for example to

comply with semiconductor-foundry design rules [43].)

Next, one employs a smooth threshold projection on the intermediate variable 𝜌

to obtain a “binarized” density parameter ˜̃𝜌 that tends towards values of 0 or 1 almost

everywhere [151]:

˜̃𝜌 =
tanh(𝛽𝜂) + tanh (𝛽(𝜌− 𝜂))

tanh(𝛽𝜂) + tanh (𝛽(1 − 𝜂))
, (4.2)

where 𝛽 is a steepness parameter and 𝜂 = 0.5 is the threshold. During optimization,

one begins with a small value of 𝛽 (allowing smoothly varying structures) and then

gradually increases 𝛽 to progressively binarize the structure [22]; in the examples

below, we used 𝛽 = 5, 10, 20, 40, 80, similar to previous authors.

Finally, one obtains a material, described by an electric relative permittivity (di-

electric constant) 𝜀(r) in Eq. (2.1), given by:

𝜀(r) =
[︀
𝜀1 + (𝜀2 − 𝜀1)˜̃𝜌(r)

]︀(︂
1 +

i

2𝑄

)︂
, (4.3)

where 𝜀1 is the background material (usually air, 𝜀1 = 1) and 𝜀2 is the design material

(we use dielectric of 𝜀2 = 12 in this chapter).

Equation (4.3) includes an optional “artificial loss” term ∼ 1/𝑄, which effec-

tively smooths out resonances to have quality factors ≤ 𝑄 (fractional bandwidth

≥ 1/𝑄) [81]. Such an artificial loss is useful in single-𝜔 emission optimization in order

to set a minimum bandwidth of enhanced emission, rather than obtaining diverging
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enhancement over an arbitrarily narrow bandwidth as is possible with lossless dielec-

tric materials [81]. Also, optimizing low-𝑄 resonances often leads to better-behaved

optimization problems (less “stiff” problems with faster convergence), so during opti-

mization we start with a low 𝑄 = 5 and geometrically increase it (to 𝑄 = 1000) as

the optimization progresses [81]

Numerically, we use finite element method to discretize the computation domain

to standard triangular meshes with first-order Lagrange elements [54] and impose

perfectly matched layers (PMLs) for absorbing boundaries [107]. We discretized 𝜌

and {𝜌, ˜̃𝜌} with piecewise-constant (0th-order) and first-order elements, respectively.

During optimization, one must ultimately compute the sensitivity of the objective

function (the trace from Sec. 2.4) with respect to the degrees of freedom 𝜌—for

each step outlined above (smoothing, threshold, PDE solve, etcetera) we formulate a

vector–Jacobian product following the adjoint method for sensitivity analysis [98,142]

with some help from automation [125], and then these are automatically composed

(“backpropagated”) by an automatic-differentiation (AD) system [49]. In this way, the

gradient with respect to all of the degrees of freedom (𝜌 at every mesh element) can

be computed with about the same cost as that of evaluating the objective function

once [98]. More details are presented in Sec. 4.2.

4.2 Numerical formulation

In this section, we provide details of the mathematical formulation and numerical

implementation that we used for the examples in Sec. 4.3.

We employ the frequency-domain Maxwell equations for the magnetic field H

arising from an electric current J with a dielectric function (relative permittivity) 𝜀

and a relative magnetic permeability 𝜇:

[︂
∇× 1

𝜀
∇×−

(︁𝜔
𝑐

)︁2
𝜇

]︂
H(x) = ∇×

[︂
1

𝜀
J(x)

]︂
. (4.4)

For 2D (𝑧-invariant) problems, we chose in-plane currents J, so that the resulting

54



magnetic fields H = 𝐻𝑧ẑ are polarized purely in the 𝑧 direction [55]. In this case

Eq. (4.4) simplifies to a scalar Helmholtz equation:

[︂
−∇ · 1

𝜀
∇−

(︁𝜔
𝑐

)︁2
𝜇

]︂
𝐻𝑧 =

(︂
∇×

[︂
1

𝜀
J(x)

]︂)︂
· ẑ . (4.5)

Note that, for the correlation functions in the previous discussion, we simplified the

right-hand side by absorbing the 1/𝜀 scaling into J.

We employ perfectly matched layers (PMLs) for absorbing boundaries, with Dirich-

let (𝑢 = 0) boundary conditions behind the PML. The implementation of the “stretched-

coordinate” PML is simply a replacement ∇ → Λ∇ in Eq. (4.5) [54,107]:

[︂
−Λ∇ · 1

𝜀
Λ∇−

(︁𝜔
𝑐

)︁2
𝜇

]︂
𝐻𝑧 =

(︂
∇×

[︂
1

𝜀
J(x)

]︂)︂
· ẑ . (4.6)

where

Λ =

⎛⎜⎜⎜⎝
1

1+i𝜎𝑥(x)/𝜔

1
1+i𝜎𝑦(x)/𝜔

1
1+i𝜎𝑧(x)/𝜔

⎞⎟⎟⎟⎠ . (4.7)

The PML conductivity 𝜎ℓ(x), ℓ = 𝑥, 𝑦, 𝑧 function is used to gradually “turn on” the

PML to compensate for discretization errors [107], and we use a quadratic profile

𝜎ℓ(x) = 𝜎0(𝑥PML/𝑑PML)2 (where 𝑥PML ∈ [0, 𝑑PML] is the distance inside the PML).

The exact form of the optimization problem and the corresponding adjoint analysis

depend on the specific problem, as will be discussed in more detail in the next section.

4.3 Numerical examples

In this section, we present three example problems in 2D illustrating how our trace-

optimization procedure works in practice for typical problems involving ensembles of

spatially incoherent emitters. We start in Sec. 4.3.1 with a general case where we are

maximizing the total emitted power from many emitters distributed throughout a

“fluorescent” dielectric material. Next, in Sec. 4.3.2, we study the enhanced emission

from a corrugated surface, analogous to a light-emitting diode [32, 52], showing how
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the trace formulation can be applied to a periodic structure with aperiodic emitters.

Both of these examples are based on the general algorithm from Sec. 2.7, which

can handle emission into a continuum of possible angles. Finally, in Sec. 4.3.3 we

apply the more specialized algorithm from Sec. 2.5 to optimizing emission from a

fluorescent material into a single-mode waveguide. Since Maxwell’s equations are

scale-invariant [55], the same optimal designs will be obtained for any wavelength

𝜆 if the geometry (thickness and period) is scaled with 𝜆 (for the same dielectric

constants).

4.3.1 Fluorescent particle

In this example, illustrated in Fig. 4-2a, we optimize the shape/topology of a 2D

fluorescent dielectric (𝜀 = 12) particle constrained to have a given area lying within a

circular design domain of radius 𝑟, maximizing the total power 𝑃 radiated outwards

in any direction at a wavelength 𝜆. The emitters are distributed uniformly within

the dielectric material.

The governing equation is exactly Eq. (4.6) with 𝜇 = 1, whose weak form is [54]:

𝑎(𝑢, 𝑣) = 𝑏(𝑣),

𝑎(𝑢, 𝑣) =

∫︁
Ω

(∇Λ𝑣 · 1

𝜀
Λ∇𝑢− 𝑘2

0𝑣𝑢)dΩ ,

𝑏(𝑣) =

∫︁
Ω

𝑣𝑓dΩ , (4.8)

where 𝑘0 = 𝜔/𝑐 is the free-space wave number, 𝑓 = (∇×J) · ẑ is the source term, and

∇Λ denotes the linear operator ∇Λ𝑢 = ∇(Λ𝑢). The matrix 𝐴 and the source vector

b for the discretized Maxwell equation Eq. (2.2) are obtained by replacing 𝑢 and 𝑣

with the finite-element basis functions 𝑢̂𝑛 and 𝑣𝑛, using first-order Lagrange elements

on a triangular mesh [54]. The mesh was generated with Gmsh [36], corresponding

to a spatial resolution of roughly 𝜆/40 in the air and 𝜆/80 in the design region.

Notice that in Eq. (2.22), only 𝑈 (via 𝐴) and 𝐵 (describing emission only in

the dielectric) depend on the design parameters 𝜌. We have now the optimization
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problem as:

𝑔(𝜌,𝑊 ) = max
𝜌,𝑊

tr
[︀
𝑈(𝜌)†𝑂𝑈(𝜌)(𝑊 †𝐵(𝜌)𝑊 )−1

]︀
,

𝑈(𝜌) = 𝐴(𝜌)−1𝐵(𝜌)𝑊 ,

0 ≤ 𝜌 ≤ 1 ,∫︁
𝜌dΩ𝑑 <

∫︁
𝑅𝑓dΩ𝑑 , (4.9)

where we have defined the function 𝑔(𝜌,𝑊 ) = ⟨𝑃 ⟩ for the parameter and 𝑊 depen-

dence, 𝑅𝑓 is the area filling-ratio.

Applying adjoint-method analysis [98,142], we obtain the partial derivatives:

𝜕𝑔

𝜕𝜌
= − tr

[︂
𝑈 †𝑂𝑈(𝑊 †𝐵𝑊 )−1(𝑊 †𝜕𝐵

𝜕𝑝
𝑊 )(𝑊 †𝐵𝑊 )−1

]︂
− 2 Re

{︂
tr

[︂
𝑍†
(︂
𝜕𝐴

𝜕𝜌
𝑈 − 𝜕𝐵

𝜕𝜌
𝑊

)︂]︂}︂
, (4.10)

where 𝑍 is the result of an adjoint solve:

𝐴†𝑍 = 𝑂𝑈(𝑊 †𝐵𝑊 )−1 . (4.11)

The partial derivative with respect to 𝑊 is simply obtained via matrix [115] CR cal-

culus [70]:

𝜕𝑔

𝜕𝑊
=
[︀
𝐼 −𝐵𝑊 (𝑊 †𝐵𝑊 )−1𝑊 †]︀ (𝐴−1𝐵)†𝑂𝑈(𝑊 †𝐵𝑊 )−1 . (4.12)

We validated the derivatives from the adjoint method against finite differences at

random points, and found that the relative error was only about 10−6 or less, which

is not a problem for the CCSA algorithm when converging the optimum to only a few

decimal places.

The analysis workflow for this example is shown in Fig. 4-1. This CCSA update is
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Figure 4-1: Flowchart of the optimization steps for the fluorescent particle and peri-
odic emitting surface examples.

implemented with NLopt in Julia [59] for an increasing series of 𝛽 = 5, 10, 20, 40, 80.

And for each 𝛽, the loop is terminated either a relative difference of 10−8 is achieved

or the maximum iteration reaches 200. The design parameter 𝜌 is bounded from 0 to

1.

Because this is a non-convex optimization problem, topology optimization can

converge to different local optima from different initial geometries [98]. Figure 4-2b

shows multiple local-optima geometries for a design radius 𝑟 = 0.5𝜆 with filling-ratio

𝑅𝑓 = 0.5 and bandwidth quality factor 𝑄 = 1000 (artificial loss, from Sec. 4.1),

obtained from different initial geometries (disks of different radii and/or 𝜀). The

numbers above the geometries denote the corresponding emitted (average) power 𝑃 in

arbitrary units. In this particular case, after examining a large number of local optima

(not shown), we found that the best local optimum is simply a circular disk with a

particular radius. The existence of many local optima with performance varying by

factors of 2–5 is not unusual in wave problems [12,28,159], and while various heuristic

strategies have been proposed to avoid poor local minima [1, 12, 102, 133] beyond

simply probing multiple random starting points, the only way to obtain rigorous

guarantees is to derive theoretical upper bounds [95, 159] as discussed further in

Sec. 4.4 (purely numerical global search can generally provide practical guarantees
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Figure 4-2: (a) A 2D fluorescent particle (of dielectric 𝜀 = 12) with a circular design
domain of radius 𝑟. The emitters are distributed uniformly within the dielectric
material. The total power 𝑃 radiated outwards in any direction (integral of Poynting
flux over Γout) at a wavelength 𝜆 is optimized. (b) Typical local optima found for
design radius 𝑟 = 0.5𝜆 with filling-ratio 𝑅𝑓 = 0.5 and bandwidth quality factor
𝑄 = 1000. The numbers above denote the optimized emitting (average) power in
arbitrary units. (c) Emitted power of a disk as a function of the disk radius 𝑟 for
different bandwidth quality factors 𝑄. (d) The number of eigenvalues that contribute
99% of the trace as a function of the disk radius 𝑟 for different bandwidth quality
factors 𝑄.

only for very low-dimensional Maxwell optimization [5]).

Whether the best optimum is a disk changes with the design-domain radius, and

appears to depend on whether there is a nearby radius with a high-𝑄 resonance at

the design 𝜆. (In fact, for this particular case the locally optimal disk has an area

slightly less than our upper bound, meaning that the area constraint is not active. In

consequence, this particular disk remains a local optimum even if the design domain

is enlarged, and apparently remains a global optimum until the design domain is

sufficiently enlarged to admit a stronger resonance. Although the area constraint is
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not active at this particular local optimum, it is active at intermediate points during

the optimization process, and there are many other local optima that would also be

found if the area constraint were not present. Physically that emitted power can

increase simply by adding more fluorescent material; correspondingly, without an

area constraint we often find a local optimum in which the design region is almost

entirely filled with dielectric.) In Fig. 4-2c, we show how the average power radiated

by a circular disk varies with radius 𝑟/𝜆, and clearly exhibits a series of sharp peaks

correspond to radii which support high-𝑄 resonances at 𝜆: the familiar whispering-

gallery resonant modes [156].

The key assumption of our algorithm in Sec. 2.7 was that only a small number

of eigenvalues would contribute to the trace, and this assumption clearly holds here.

In Fig. 4-2d, we plot the number of eigenvalues that contribute 99% of the trace as

a function of the disk radius. We can see that only a small number of eigenvalues

is required to obtain a good estimate of the trace; we find similar results for other

shapes. Naively, one might expect that the number of contributing eigenvalues would

scale with the area (or volume in 3d), corresponding to the number of resonances per

unit bandwidth from the density of states (DOS) [160]. However, we find that the

scaling is nearly linear with the disk radius; the reason the simple DOS argument fails

is that it doesn’t take into account the variable loss (radiation) rates of the modes,

which causes most of the resonances to contribute weakly even if the real part of their

frequency is close to the emission frequency. In fact, we have found similar linear

scaling of the number of contributing eigenvalues for many other shapes, including

other locally optimized shapes, and it appears to be an interesting open theoretical

question to prove (or disprove) asymptotic linear scaling.

4.3.2 Periodic emitting surface

In this example, we enhance the emission from a thin "emitting layer" by optimizing

a periodically patterned surface situated on top of the layer.—this is inspired by a

light-emitting diode (LED) with a patterned surface above an active emitting layer,

where it is well known that a periodic pattern can enhance emission via guided-
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mode resonances [32, 52, 103]. As illustrated in Fig. 4-3a, the design domain consists

of dielectric material (𝜀 = 12) in air with a period 𝐿 and thickness 𝐻𝑑 = 0.5𝜆,

the spontaneous-emission current sources are uniformly distributed on an horizontal

line (“active layer”) inside a lower-index substrate (𝜀 = 2.25) a distance 𝐻𝑠 = 0.1𝜆

below the design domain. The objective, here, is the total power emitted upwards,

integrated over all angles (i.e., the total Poynting flux) using the methods of Sec. 2.7.

(Emission purely into the normal direction could be optimized much more efficiently

using the methods of Sec. 2.5.)

We simulate a single unit cell with Bloch-periodic boundary conditions in 𝑥. Since

Gridap [6] only supports periodic boundary conditions in its current version, we

make a change of variables 𝐻𝑧 → 𝐻𝑧𝑒
i𝑘𝑥 so that 𝐻𝑧 is the periodic “Bloch envelope”

function [55]. In comparison to Eq. (4.5), this corresponds to the transformation

∇ → ∇ + i𝑘x̂ [55]:

[︂
−(∇ + i𝑘x̂) · 1

𝜀
(∇ + i𝑘x̂) − 𝑘2

0

]︂
𝐻𝑧 = 𝑓 , (4.13)

with periodic boundaries in 𝑥, whose weak form (including PML in 𝑦) can then be

obtained via integration by parts:

𝑎(𝑢, 𝑣) = 𝑏(𝑣),

𝑎(𝑢, 𝑣) =

∫︁
Ω

[︂
(∇Λ − i𝑘x̂) 𝑣 · 1

𝜀
· (Λ∇ + i𝑘x̂)𝑢− 𝑘2

0𝑣𝑢

]︂
dΩ,

𝑏(𝑣) =

∫︁
Ω

𝑣𝑓dΩ . (4.14)

where Λ is the diagonal PML “stretching” matrix Eq. (4.7).

The objective (average power) is then constructed by a Brillouin-zone integration

over the Bloch wavevector 𝑘 [103]:

𝑔(𝜌) =
𝐿

2𝜋

∫︁ 𝜋/𝐿

−𝜋/𝐿

tr
[︁(︀
𝐴−1

𝑘 𝐷
)︀†
𝑂
(︀
𝐴−1

𝑘 𝐷
)︀]︁

d𝑘 , (4.15)
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where 𝐿 is the period of the unit cell and 𝐴𝑘 is assembled using Eq. (4.14). Since this

integrand is a periodic function of 𝑘, the integral can be approximated by a simple

trapezoidal sum over equally spaced points 𝑘 with exponential accuracy [144]; we

used 100 𝑘 points in order to resolve sharp resonances.

Commuting the integral and the trace in Eq. (4.15), similarly to Sec. 2.8 (noting

that
∫︀

tr = tr
∫︀

), we obtain

𝑔(𝜌,𝑊 ) = max
𝜌,𝑊

𝐿

2𝜋

∫︁ 𝜋/𝐿

−𝜋/𝐿

tr
[︀
𝑈𝑘(𝜌)†𝑂𝑈𝑘(𝜌)(𝑊 †𝐵(𝜌)𝑊 )−1

]︀
d𝑘 , ,

𝑈𝑘(𝜌) = 𝐴𝑘(𝜌)−1𝐵(𝜌)𝑊 ,

0 ≤ 𝜌 ≤ 1 . (4.16)

The adjoint analysis for Eq. (4.16) is almost the same as in Sec. 4.3.1, except for

the additional integration over 𝑘. Also, it shares the same analysis workflow as in

Sec. 4.3.1.

Even though the dielectric structure is periodic (the design domain is a single unit

cell of 𝜀), the emitters are not periodic—they are independent random currents at

every point in the active layer. Computationally, however, we can still reduce the

simulation of non-periodic sources in a periodic medium to a set of small unit-cell

simulations, using the “array-scanning method” [17]. An arbitrary aperiodic source

current can be Fourier-decomposed into a superposition of Bloch-periodic sources

(J𝑘(𝑥 + 𝐿) = 𝑒i𝑘𝐿J𝑘(𝑥)), each of which can be simulated with a single unit cell and

Bloch-periodic boundary conditions in 𝑥. The total power is then simply obtained

from an integral (
∫︀ 𝜋/𝐿

−𝜋/𝐿
d𝑘)) over the Bloch wavevector 𝑘 in the Brillouin zone. For

incoherent aperiodic random sources, each of these Bloch-periodic unit-cell calcula-

tions is an operator trace (over random currents in the unit cell only) computed by

the methods of Sec. 2.4. (Unit-cell calculations for different 𝑘 values are completely

independent and can be performed in parallel. Moreover, the array-scanning method

can be viewed as a special case of a reduction using symmetry: for any symmetry

group, sources can be decomposed into a superposition of “partner functions” of the
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Figure 4-3: (a) Unit cell of a 2D periodic emitting surface with period 𝐿. The design
domain consists of dielectric material (𝜀 = 12) in air with thickness 𝐻𝑑 = 0.5𝜆, the
spontaneous-emission current sources are uniformly distributed on an horizontal line
(purple line) inside a lower-index substrate (𝜀 = 2.25) a distance 𝐻𝑠 = 0.1𝜆 below
the design domain. The objective is the total power emitted upwards, integrated over
Γout (b) Optimized geometry with period 𝐿 = 0.6𝜆. (c) The eigenvalue distribution
of the average power for the optimized geometry.

irreducible representations of the symmetry group [50], thus reducing the simulation

domain even for asymmetrical random sources.)

The optimized structures for the design parameter 𝐻𝑑 = 0.5𝜆, 𝐻𝑠 = 0.1𝜆 is

shown in Fig. 4-3b. Note that we have also optimized over the period 𝐿 (here,

simply by repeating the optimization for different values of 𝐿) to find an optimized

period 𝐿 = 0.6𝜆. The eigenvalue distribution of the average power is given in Fig. 4-

3c: Again, we observe that only the first few eigenvalues contribute significantly to

the trace, as conjectured in Sec. 2.7.

4.3.3 Emission into a waveguide

This example considers a fluorescent dielectric (𝜀 = 12) medium in air, similar to

Sec. 4.3.1, but in this case we are maximizing the power coupled into a single-mode

dielectric waveguide (𝜀 = 12, width 𝜆/2
√

12) rather than into radiation (Fig. 4-4a).

Since the output is a single channel (𝑂 is rank 1), this allows us to apply the method

of Sec. 2.5 to perform only a single “reciprocal” Maxwell solve per optimization step.
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Figure 4-4: (a) A 2D fluorescent dielectric (𝜀 = 12) medium coupling to a waveguide
(𝜀 = 12, width 𝜆/2

√
12). The design domain is of height 𝐻𝑑 = 1.5𝜆 and width

𝐿𝑑 = 0.5𝜆, the power coupled into a single-mode dielectric waveguide (mode overlap
integral at Γout) is optimized. (b) Optimized shape with a filling-ratio 𝑅𝑓 = 0.5.
(c) Averaged field intensity ⟨|𝐻𝑧|2⟩ distribution. About 64% percent of the power is
coupled into the waveguide mode.

Since the waveguide breaks the rotational symmetry of the problem, the optimum

structure is now very different from a circular disk, and must somehow redirect light

emitted anywhere in the fluorescent material into the waveguide. This task is made

more difficult by the fact that we employ a design domain whose size is only 1.5𝜆×

0.5𝜆, so the optimization cannot simply surround the emitters with a multi-layer

Bragg mirror to confine the radiation (as occurs when optimizing LDOS in a large

design domain [81,150]).

The governing equation and the weak form are identical to Sec. 4.3.1. The main

difference is our objective function is now the power in a waveguide mode, computed

via an overlap integral using mode orthogonality [136], rather than a total Poynting

flux. Here, we briefly review how this overlap integral is implemented in the finite-

element method.

For a propagating waveguide mode with electric and magnetic fields e𝑖 and h𝑖,

the modal-expansion coefficient 𝛼𝑖 of that mode for a total magnetic field H is given

by the overlap integral [136]

𝛼*
𝑖 =

∫︀
e𝑖 ×H* · dS∫︀
e𝑖 × h*

𝑖 · dS
=

∫︀
𝑒𝑦𝑖𝐻

*
𝑧d𝑦∫︀

𝑒𝑦𝑖ℎ*
𝑧𝑖d𝑦

, (4.17)
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where we have assumed an 𝑥-oriented waveguide in 2D and an in-plane electric-field

polarization. The power carried by this mode is then simply |𝛼𝑖|2. In this example,

our objective is the power |𝛼0|2 in a single mode:

⟨𝑃 ⟩ = |𝛼0|2 =

⃒⃒⃒⃒
1

𝑁0

∫︁
𝑒𝑦0𝐻

*
𝑧d𝑦

⃒⃒⃒⃒2
, (4.18)

where 𝑁0 is the normalization (which can be omitted for optimization) from Eq. (4.17).

If 𝐻𝑧 is expressed as a linear combination
∑︀

𝑛 𝑢𝑛𝑢̂𝑛 of finite-element basis functions

𝑢̂𝑛, Eq. (4.18) becomes ‖o†u‖2 as in Eq. (2.15), where o has components 𝑜𝑛 given by

the linear functional

𝑜𝑛 = 𝑜(𝑢̂𝑛) =
1

𝑁0

∫︁
𝑒𝑦0𝑢̂𝑛d𝑦 . (4.19)

Computationally, the assembly of o in finite-element software is equivalent to con-

structing a right-hand-side (source) vector b.

The optimization becomes:

𝑔(𝜌) = max
𝜌

[︀
u(𝜌)†𝐵(𝜌)u(𝜌)

]︀
, ,

u(𝜌) = 𝐴(𝜌)−†o ,

0 ≤ 𝜌 ≤ 1 . (4.20)

By the adjoint method, for any 𝐾, we obtain the derivatives:

d𝑔

d𝑝
=

𝐾∑︁
𝑖=1

{︂
u†
𝑖

d𝐵

d𝑝
u𝑖 − 2 Re

[︂
w†

𝑖

(︂
d𝐴†

d𝑝
u𝑖

)︂]︂}︂
, (4.21)

where w𝑖 solves 𝐴w𝑖 = 𝐵u𝑖 and u𝑖 solves the reciprocal problem 𝐴†u𝑖 = o𝑖 from

Eq. (2.21). This derivative is also compared with the finite difference method and a

difference of about 10−6 is observed. The analysis work flow is provided in Fig. 4-5.

Figure 4-4b shows the optimized geometry with a design domain of height 𝐻𝑑 =

1.5𝜆 and width 𝐿𝑑 = 0.5𝜆. The material is constrained to fill at most half of the

design domain (to illustrate that we can independently constrain the design region

and the design volume); unlike for the disk optimum in Sec. 4.3.1, this area constraint
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Figure 4-5: Flowchart of the optimization steps for the emission into a waveguide
example.

was active at the optimum shown here. The corresponding averaged field intensity

⟨|𝐻𝑧|2⟩ is displayed in Fig. 4-4c. We found that 64% of the power is coupled into

the desired waveguide mode. In comparison, only 4% of the power is coupled to the

waveguide mode for a trivial rectangular design where the the whole design domain

is filled with 𝜀 = 12 fluorescent material.

4.4 Concluding remarks

In this chapter, we illustrated our trace formulation with several incoherent emission

problems in 2D in conjunction with TopOpt. There are still a wide variety of ap-

plications that the trace formulation applies. In Chap. 5, we use these techniques

to optimize Raman sensing in fluid suspensions of many Raman molecules, in con-

trast to previous work that only considered a single molecule location [22, 111]—it

will help us to answer the interesting open question of the optimal spatial density

of “hot spots” where light is concentrated to enhance Raman emission. Another ap-

plication is enhancing cathodoluminescence or other forms of scintillation detectors,

which were previously optimized only for normal emission [130]. In contrast to spon-
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taneous emission, where the light is emitted by spatially uncorrelated point sources,

one can instead consider incoherent beams of light consisting of uncorrelated random

planewave amplitudes—this corresponds to spatially correlated random currents [153],

and we are investigating the resulting trace formulation to design metalenses for inco-

herent focusing. Other applications include the study of radiation loss due to surface

roughness, which can be modeled via random sources with a prescribed correlation

function related to the manufacturing disorder and may naively require a large number

of Maxwell solves [57,66,113]. Nor is our approach limited to Maxwell’s equations—it

is applicable to any linear system where one wishes to optimize quadratic functions

of random source terms.

Algorithmically, we are investigating ways to apply more sophisticated algorithms

to the joint structure/trace optimization problem Eq. (2.20). When solving the eigen-

problem alone (maximizing over 𝑉 to obtain extremal eigenvalues), it is well known

that one can greatly improve upon straightforward gradient ascent by Krylov algo-

rithms such as Arnoldi [143] or LOBPCG [68], and we would like to incorporate Krylov

acceleration into to joint problem as well. Recent techniques to accelerate frequency-

domain solves for multiple sparse inputs and outputs [82] may also be applicable to

accelerate our trace optimization (since we have multiple sources in a sparse subset

of the domain, and objective functions like the power only involve sparse outputs).

Similar to the stochastic Lanczos algorithm [145], one could further exploit the fact

that we are computing the trace of a function 𝑓(𝐴) of the Maxwell operator 𝐴 in

order to relate the trace more efficiently to Krylov subspaces of 𝐴. More generally,

there are other applications where one is maximizing tr 𝑓(𝐴(𝑝), 𝑝) for some 𝑓 and

some parameters 𝑝, and it seems similarly beneficial to combine the trace estimation

with the parameter optimization in such problems.

Theoretically, it is desirable to complement improved numerical optimizations

with new rigorous upper bounds on incoherent emission. Significant progress has

already been made on bounding thermal-emission processes [94, 100] as well as to

absorption [71,95] (related to emission via reciprocity), and many of these techniques

should be adaptable to other forms of random emission.

67



68



Chapter 5

Topology optimization of spatially

averaged Raman scattering

In this chapter, we present a general framework for inverse design of nanopatterned

surfaces for spatially averaged Raman enhancement from emitters distributed ran-

domly throughout a material or fluid (Sec. 5.2), building upon the trace formulation

proposed in Chap. 2. This leads to radically different designs than optimizing Raman

emission at a single known location, as we illustrate using several 2D design problems

(Sec. 5.3) addressing effects of hot-spot density, angular selectivity, and nonlinear

damage. Looking forward, we believe that this framework sets the stage for future

work (Sec. 5.4) in 3D (where field singularities are stronger), TopOpt for dielectric

Raman [3] (instead of metal, trading sharper resonances for weaker localization), and

related problems in scintillation detectors (where previous work optimized emission

but not absorption [130]).

5.1 Introduction

Surface-enhanced Raman scattering (SERS) [34,75] is a common method to increase

the sensitivity of Raman spectroscopy [60] (with enhancements reaching ∼ 1010 for

a single molecule [44, 78, 154, 162]), important for a wide variety of sensing applica-

tions [67]. In SERS, active Raman molecules are placed in the vicinity of a textured
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surface (e.g. coated with metal nanoparticles [75]) that provides two (multiplicative)

resonant enhancements: it concentrates the incoming pump field (at frequency 𝜔1) at

the Raman-molecule location, and it also Purcell-enhances the emission (at a shifted

frequency 𝜔2). In previous work, we derived general upper bounds on the Raman

enhancement for arbitrary-shaped structures given the material’s susceptibility, the

size of the scatterer, and the distance to the Raman molecule [90]. Motivated by op-

timistic results from these bounds, we used TopOpt [22, 111] to inverse-design novel

structures maximizing the Raman enhancement, leading to ∼ 100× improvement

over conventional structures [111]. However, this previous work only analyzed the

emission of a single Raman molecule placed at a “hot spot” of maximal electric-field

intensity [22, 111]. In many practical experiments, however, the Raman molecules

are distributed randomly in space, either suspended in a fluid or deposited onto the

surface [89,118]—only a small fraction of the Raman molecules experiences the peak

hot-spot enhancement [33,88,157]–and it is an open question to determine what struc-

tures maximize average enhancement over all molecule locations. Some authors have

analyzed the effect of one or two geometric parameters on averaged enhancement us-

ing a simplified metric discussed below [120,137], but neither large-scale optimization

(e.g. TopOpt) nor a comprehensive theoretical approach have been developed. Also,

additional nonlinear effects arise in UV Raman spectroscopy, where extremely high

intensities (“too hot”) can damage the Raman molecules and suppress emission [157],

but the implications of the effect on optimal design have never been analyzed. Spa-

tially distributed Raman emission is challenging to rigorously model, as it naively

requires running a large number of simulations for molecules at different locations,

which is especially problematic for inverse design where many structures must be

simulated over the course of optimization. Building on the trace formulation for opti-

mizing incoherent emission processes proposed in Chap. 2, in this chapter we propose

an efficient technique for simulation and inverse design of spatially averaged Raman

enhancement and analyze its results for TopOpt applied to several example problems

addressing effects of hot-spot density, angular selectivity, and nonlinear damage.
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5.2 Model formulation

In this section, we provide a general mathematical framework for optimizing spatially

averaged Raman enhancement. We begin with the numerical model for Raman scat-

tering (Sec. 5.2.1) and then show how the trace formulation can be applied to the

Raman problem in general (Sec. 5.2.2). Next, we consider the special case where the

Raman signals are received in a single direction (Sec. 5.2.3). Finally, we provide some

analysis of the singularities in the Raman problem (Sec. 5.2.4).

5.2.1 Numerical model for Raman scattering

The Raman scattering can be modeled as a combination of two electromagnetic

processes [75]: first, an incident field (or equivalent current [108] source J1) pro-

duces an electric field E1𝑒
−i𝜔1𝑡 at a frequency 𝜔1. This solves the linear Maxwell

equations 𝑀1E1 = i𝜔1J1 where 𝑀1 is the Maxwell (vector Helmholtz) operator

𝑀1 = ∇ × 𝜇−1
1 ∇ × −𝜔2

1

𝑐2
𝜀1 with 𝜀1(x) and 𝜇1(x) being the relative electric per-

mittivity and magnetic permeability at frequency 𝜔1; second, a molecule at po-

sition x0 with a Raman polarizability tensor 𝛼 produces a dipole current density

J2 = 𝛼E1(x0)𝛿(x− x0)𝑒
−i𝜔2𝑡 at a frequency 𝜔2, which produces an emission field E2

satisfying 𝑀2E2 = i𝜔2J2 where 𝑀2 is the Maxwell operator at the frequency 𝜔2. The

difference |𝜔2 − 𝜔1| is the Raman shift, and usually |𝜔2 − 𝜔1| ≪ |𝜔1|.

Numerically, we discretize this problem (e.g. using finite elements) into a sequence

of finite-size linear equations:

𝑀1u1 = b1 ,b2 = 𝐴u1 ,𝑀2u2 = b2 , (5.1)

where u1/u2 is a vector representing the discretized incident/emission fields, 𝐴 is the

discretized Raman polarizability tensor, and b1/b2 is a vector representing the dis-

cretized source term. In the following, it is algebraically convenient to work with such

a discretized (finite-dimensional) form, to avoid cumbersome infinite-dimensional lin-

ear algebra, but one could straightforwardly translate to the latter context as well [55].
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Typically, we are interested in maximizing the power radiated into one or more

directions/channels by u2 for a given incident source b1. It can be expressed as

quadratic functions of the emission fields u2 via the Poynting flux. Since the power is

always a real-valued quantity, it corresponds in particular to a Hermitian quadratic

form as Eq. (2.3).

When the Raman molecules are distributed randomly in some region, one needs

to solve for the emission field u2 for every single Raman molecule (different 𝛼 and 𝐴)

and then take the the average:

⟨𝑃 ⟩𝛼 = ⟨u†
2𝑂u2⟩𝛼 = ⟨u†

1𝐴
†𝑀−†

2 𝑂𝑀−1
2 𝐴u1⟩𝛼 , (5.2)

where ⟨· · · ⟩𝛼 denotes an average over all allowed molecule positions x0 and orien-

tations of the Raman molecule (possibly weighted by some nonuniform probability

distribution); note that the only terms that depend on the Raman molecules are 𝐴

and 𝐴†. Naively, this average could be computed by a multidimensional quadrature

(numerical integral) of Raman solves—that is, we solve Eq. (5.1) for many different

positions and orientations in order to explicitly average. However, this could be com-

putationally expensive because of the many Maxwell solves that are required, and

may be prohibitive in the context of shape optimization where the averaging must

be repeated for many geometric shapes. Instead, we employ the trace formulation

proposed in Chap. 2 to efficiently compute this average during shape optimization.

5.2.2 Trace formulation for Raman scattering

The key idea is to rewrite our scalar objective Eq. (5.2) as a “1 × 1” trace, and then

employ the cyclic-shift trace property [76] to group the 𝐴u1 terms together:

⟨𝑃 ⟩𝛼 = tr
[︁
⟨u†

1𝐴
†𝑀−†

2 𝑂𝑀−1
2 𝐴u1⟩𝛼

]︁
= tr

⎡⎣𝑀−†
2 𝑂𝑀−1

2 ⟨𝐴u1u
†
1𝐴

†⟩𝛼⏟  ⏞  
𝐵

⎤⎦ . (5.3)
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We now derive a simple, tractable expression for the correlation matrix 𝐵 = ⟨𝐴u1u
†
1𝐴

†⟩𝛼
arising in the Raman trace (noting that u1 = 𝑀−1

1 b1 is a fixed vector independent of

𝐴). Recall that, for a single Raman molecule at position x0, the term b2 = 𝐴u1 rep-

resents the source current generated by the Raman polarizability tensor, discretized

in a particular numerical scheme for Maxwell’s equations. In particular we consider

the expansion of the Raman source current in a finite-element basis [54]:

(b2)𝑛 =

∫︁
Ω

[𝛼E1𝛿(x− x0)] · û𝑛(x)dΩ , (5.4)

where û𝑛(x) is the real vector-valued finite element basis function [54] (Nedelec ele-

ments in 3D, or 𝑣𝑛ẑ with scalar Lagrange elements 𝑣𝑛 in 2D for 𝑧-polarized fields), and

Ω is the computational domain. We can then write the components of the correlation

matrix 𝐵 as

𝐵𝑚𝑛 = ⟨(b2)𝑚(b2)𝑛⟩𝛼 =

∫︁∫︁
û𝑚(x)𝑇𝐶𝛼(x,x′)û𝑛(x′)dΩdΩ′ , (5.5)

where 𝐶𝛼(x,x′) = ⟨𝛼(x)E1(x)E†
1(x

′)𝛼†(x′)⟩𝛼 = ⟨𝛼(x)E1(x)E†
1(x)𝛼†(x)⟩𝛼 𝛿(x − x′)

because the emission process is incoherent (different points in space emit with uncor-

related phases).

The simplest case is that of isotropic (scalar) Raman polarizability 𝛼, in which case

⟨𝛼(x)E1(x)E†
1(x)𝛼†(x)⟩𝛼 = ⟨|𝛼(x)|2⟩𝛼E1(x)E†

1(x). Defining |𝛼0(x)|2 = ⟨|𝛼(x)|2⟩𝛼 as

the mean-square polarizability at each point (i.e. the Raman polarizability multi-

plied by the probability of the molecule being at that point), we obtain 𝐶𝛼(x,x′) =

|𝛼0(x)|2E1(x)E†
1(x

′)𝛿(x− x′) and consequently:

𝐵𝑚𝑛 =

∫︁
|𝛼0(x)|2û𝑇

𝑚E1E
†
1û𝑛dΩ , (5.6)

For more the general case of an anisotropic Raman polarizability tensor 𝛼, the

expression ⟨𝛼(x)E1(x)E†
1(x)𝛼†(x)⟩𝛼 must be averaged over all possible orientations

of the Raman molecule. If we assume that all orientations are equally likely, the
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average can be computed explicitly [101], resulting in:

𝐵𝑚𝑛 =

∫︁
û𝑇
𝑚

[︁
(𝛼2

‖ − 𝛼2
⊥)E1E

†
1 + 𝛼2

⊥E
†
1E1𝐼

]︁
û𝑛dΩ , (5.7)

where 𝐼 is the 3 × 3 identity matrix and

𝛼2
‖ =

| tr𝛼|2 + tr[𝛼†𝛼 + 𝛼*𝛼]

15
, 𝛼2

⊥ =
tr[𝛼†𝛼]/3 − 𝛼2

‖

2
(5.8)

(where 𝛼* denotes the complex conjugate).

Once the correlation matrix 𝐵 is determined, we can then apply different tech-

niques developed in Sec. 2.4 to combine the trace estimation problem with the shape

optimization for different scenarios depending on the number of input and output

channels. In this work, we focus on the case where the emitted Raman signals are

received in a single direction/channel, which means the objective matrix 𝑂 now be-

comes rank 1, and the trace formulation also simplifies to two Maxwell solves (one

forward and one reciprocal) as discussed below.

5.2.3 Single-channel simplification

For spatially incoherent Raman emission into a single direction/channel, the average

power of all the emitters can be computed with a single “reciprocal” solve. The

power emitted into a single direction can be expressed as a mode overlap integral

of the emitted field u2 and a planewave mode o, which is algebraically of the form

‖o†u2‖2 [136]. In terms of the quadratic form Eq. (2.3), the objective matrix 𝑂 is

now simply a rank-1 matrix 𝑂 = oo†, and the objective trace Eq. (5.3) reduces to

⟨𝑃 ⟩𝛼 = tr
[︁
𝑀−†

2 oo†𝑀−1
2 𝐵

]︁
= u′

2
†
𝐵u′

2 . , (5.9)

where u′
2 = 𝑀−†

2 o corresponds to solving a (conjugate-) transposed Maxwell problem

with a “source” o at the output location. Note that matrix 𝐵 is constructed from the

pump field u1, so Eq. (5.9) requires only two Maxwell solves (pump field u1 = 𝑀−1
1 b1
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and reciprocal field u′
2 = 𝑀−†

2 o) to obtain the averaged power.

The formulation can be further simplified when the Raman molecule is isotropic.

Inserting Eq. (5.6) into Eq. (5.9), we obtain

⟨𝑃 ⟩𝛼 =

∫︁
|𝛼0(x)|2|E1(x)|2|E′

2(x)|2 dΩ , (5.10)

where 𝛼0(x) indicates Raman molecules distribution, E1(x) is the pump field (con-

structed from u1) and E′
2(x) is the reciprocal field (constructed from u′

2). Therefore

the averaged power is just an overlap integral of the Raman molecule distribution,

the pump field intensity, and the reciprocal field intensity.

From Eq. (5.10), we can also see that the equation further simplifies if (i) the pump

and emission directions are the same and (ii) we make an approximation of a negligible

Raman shift (𝜔1 ≈ 𝜔2), in which case one can take E′
2 ≈ E1. For isotropic Raman

polarizability whose mean |𝛼0|2 is constant in some volume 𝑉 and zero elsewhere,

this leads to the
∫︀
𝑉
|E1|4 figure of merit used in several previous works [120, 137] for

Raman power (which is often presented heuristically, but has also been justified using

reciprocity [79]).

5.2.4 Corner singularities and hot spots

It is common knowledge that SERS tends to favor geometries with “hot spots” where

high field intensities arise from geometric singularities (such as sharp tips/cusps,

bowtie antennas, or touching spheres), especially for single-molecule SERS where

the enhancement theoretically diverges in the limit of arbitrarily sharp tips (in the

continuum macroscopic Maxwell equations with local materials). However, it is less

clear whether the average Raman enhancement of many volume-distributed emitters

still favors such hot spots, since the effect of a field singularity might be averaged out.

In this section, we analyze the effect of corner singularities on average Raman in 2D

and 3D for the single-channel isotropic-Raman case of Eq. (5.10).

Field singularities at sharp corners are frequency-independent and can be analyze

purely using electrostatics [4], so the pump E1 and reciprocal E′
2 fields have identical
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scaling near a sharp tip. Therefore, without loss of generality, we can analyze the

simplified metric
∫︀
|E1|4 in the neighborhood of a sharp tip.

For a 2D sharp corner in a dielectric or metallic material 𝜀 enclosing an angle

𝜑 < 𝜋, the field singularity of the field E1 is a fractional power law in the distance 𝑟

from the tip [4]:

E1 ∼ 𝑟𝑡−1 , (5.11)

where the exponent 1/2 < 𝑡 < 1 depends on 𝜀 and 𝜑 via a transcendental equation [4],

which simplifies to 𝑡 = 𝜋
2𝜋−𝜑

for a perfect electric conductor. The contribution of this

singularity to
∫︀
|E1|4 then scales as

∫︀
𝑟4(𝑡−1)𝑟 𝑑𝑟 ∼ 𝑟4𝑡−2, but 𝑡 > 1/2 =⇒ 4𝑡− 2 > 0

so the integral is finite (the singularity is integrable). Hence, in 2D there is no reason

for optimization to favor arbitrarily sharp tips. (The same is true for “2D edges” in

3D.) In Sec. 5.3.1, we correspondingly show that the topology-optimized geometry

does not exhibit sharp features (even without manufacturing constraints to prohibit

such features [43]), and performs better than optimized touching spheres or bowtie

antennas with a field singularity. (The optimized fields still exhibit “hot spots” with

high intensity, but no singularities.)

In 3D, the field singularity at sharp tips (e.g. cones or corners) is stronger than

in 2D. For example, the fields at the tip of a 3D cone with angle 𝜑 < 𝜋 also exhibit a

singularity E1 ∼ 𝑟𝑡−1 but with a stronger power law 0 < 𝑡 < 1 (e.g. 𝑡 = 1
2 log(8/𝜑)

> 0

for perfect conductors) [48]. The integral then becomes
∫︀
𝑟4(𝑡−1)𝑟2 𝑑𝑟 ∼ 𝑟4𝑡−1, which

diverges for 𝑡 < 1/4 (sufficiently small 𝜑). Therefore, we expect that 3D topology

optimization of incoherent Raman emission will favor arbitrarily sharp tips, limited

only by the imposition of manufacturing constraints [43].

It is worth contrasting the Raman case, in which the field singularity is squared

by the conjunction of pump and emission enhancement, with spontaneous emission

in cases with non-optical pumping (such as light-emitting diodes [52], scintillation

from high-energy particles [130], or thermal emission). In such cases, if the excita-

tion is nearly uniform in the vicinity of a sharp tip, then the emitted power scales

as
∫︀
|E′

2|2 from the reciprocal field alone. The contribution of a corner singularity is
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then ∼
∫︀
𝑟2(𝑡−1)𝑟 𝑑𝑟 ∼ 𝑟2𝑡 in 2D (𝑡 > 1/2) and ∼

∫︀
𝑟2(𝑡−1)𝑟2 𝑑𝑟 ∼ 𝑟2𝑡+1 in 3D (𝑡 > 0),

both of which vanish as 𝑟 → 0. In consequence, one does not expect arbitrarily

sharp corners/tips to be favored when optimizing spatially averaged emission alone

(or spatially averaged local density of states, LDOS). Indeed topology optimization

of incoherent emission (Sec. 4.3) or scintillation [130] did not exhibit arbitrarily sharp

corners, in contrast to the “bowtie antenna” singularities that typically arise when

optimizing emission/LDOS from a single emitter location [24, 29]. (Similar consid-

erations apply to optimization of photovoltaic cells, since maximizing absorption is

equivalent to maximizing spatially averaged emission via Kirchhoff’s law.)

5.2.5 Numerical formulation

We follow the TopOpt formulation in Sec. 4.1 but with a different interpretation of

the material and a different 𝛽 series (𝛽 = 8, 16, 32). Here, we describe the material

by an electric relative permittivity (dielectric constant) 𝜀(x) in the Maxwell operator

(𝑀1 or 𝑀2), given by:

𝜀(x) =
[︀
𝑛f + (𝑛metal − 𝑛f)˜̃𝜌(x)

]︀2
, (5.12)

where 𝑛f is the refractive index of the background fluid (water, 𝑛f = 1.33) and 𝑛metal is

the complex refractive index of the design metal (silver) throughout this work. Note

that we interpolate the electric relative permittivity of the material via the refractive

index instead of directly from the electric relative permittivity as Eq. (4.3), in order

to avoid artificial singularities that may arise when interpolating between metallic

(negative) and dielectric (positive) 𝜀 [23].

Similar to Sec. 4.2, we employ the frequency-domain Maxwell equations Eq. (4.5)

for the magnetic field H arising from an in-plane (𝐻𝑧-polarized) electric current J.

The electric field E is then retrieved from H by taking the curl of H [55]:

E(x) =
i

𝜔𝜀(x)
∇×H(x) . (5.13)
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For the Raman scattering process, similar to Eq. (5.1), one can also derive a series

of linear equations but u1 and u2 are now the discretized magnetic fields, 𝑀1 and 𝑀2

are now discretized Maxwell operators in the magnetic form, 𝐴 is also changed which

now contains not only the Raman polarizability tensor term but also a magnetic-field

to electric-field conversion term and a electric-current to equivalent magnetic-current

conversion term. We can rewrite Eq. (5.6) in terms of the scalar magnetic field 𝐻:

𝐵𝑚𝑛 =

∫︁
|𝛼0(x)

𝜀1𝜀2
|2 |∇H1|2 (∇û𝑚 · ∇u𝑛) dΩ , (5.14)

where H1 is the pump field in magnetic form constructed from u1.

For simplicity, we denote the objective ⟨𝑃 ⟩𝛼 by 𝑔, Eq. (5.9) still has the form

𝑔(˜̃𝜌) = u′
2
†
(˜̃𝜌)𝐵(˜̃𝜌)u′

2(˜̃𝜌) . (5.15)

Via the adjoint method, the derivative of the power with respect to the density 𝜌 can

be computed via
d𝑔

d˜̃𝜌
= u′

2
†d𝐵

d˜̃𝜌
u′
2 − 2 Re

[︃
w†

2

(︃
d𝑀 †

2

d˜̃𝜌
u′
2

)︃]︃
, (5.16)

where 𝑀2w2 = 𝐵u′
2 is the “adjoint” solve. Note that the correlation matrix 𝐵 is a

function of u1, so the chain rule for the derivative d𝐵
d˜̃𝜌

must be computed with another

adjoint solve but in a similar manner.

5.3 Results

In this section, we present various example problems building from a single-channel

framework (Sec. 5.2.3), illustrating the key tradeoffs and physical effects. We begin

with the simplest case with normal incidence and emission (Sec. 5.3.1), revealing

an optimal density of the hot spots. Next, we show that the pump and emission

angles can also be considered as design parameters. We provide an example where

the pump field is fixed at angle 𝜃1 = 30∘ and we search for the optimal emission

angle, which turns out to be roughly normal emission and performs nearly as well as
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Figure 5-1: Sketch of the 2D Raman scattering design problem. The Raman molecules
are distributed uniformly in fluid (water, 𝑛f = 1.33) background near a periodically
patterned metal (silver) surface with period 𝐿. The incident planewave (𝐻𝑧-polarized,
𝜆1 = 532 nm, green) at angle 𝜃1 excites the Raman molecules and the Raman-shifted
signal (𝜆2 = 549 nm, blue) at angle 𝜃2 is measured and optimized.

the normal-incidence pumping but with a very different design (Sec. 5.3.2). Then we

take into consideration the effect of UV-like nonlinear damage [157] suppressing the

emission and optimize with this taken into account, which again leads to very different

designs (Sec. 5.3.3). Finally, we briefly discuss the case where Raman emission is only

from molecules coating the material surface rather than being distributed throughout

the volume of a fluid (Sec. 5.3.4).

Figure 5-1 is a sketch of the single-channel Raman scattering design problem in

2D. The Raman molecules are distributed uniformly in a fluid (water) background

above a periodically patterned metal (silver) surface with period 𝐿. An incident

planewave (𝐻𝑧-polarized, 𝜆1 = 532 nm) at angle 𝜃1 excites the Raman molecules and

the Raman-shifted power (𝜆2 = 549 nm) at angle 𝜃2 is measured and optimized. The

design region is a 𝐿 × 200 nm rectangular domain, in which the material can either

be fluid (with Raman molecules) or metal (without Raman molecules). We sweep the

optimization over different periods 𝐿 to find an optimal period (which corresponds
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Figure 5-2: Power of the optimized surfaces (compared to that of a flat surface) over
different periods for silver at normal pump (𝜆1 = 532 nm, 𝜃1 = 0∘) and emission
(𝜆2 = 549 nm, 𝜃2 = 0∘). The insets show the optimized patterns and the pump fields
|𝐸1| in a unit cell for typical periods.

to an optimal density of hot spots). An infinitely thick layer of Raman molecules

would emit infinite power in the absence of water absorption and pump depletion,

but since we are only interested in optimizing near-field enhancement we limit the

Raman molecules to a half-wavelength layer of thickness (𝜆1 + 𝜆2)/(2𝑛f) above the

design domain.

5.3.1 Normal incidence and emission

In this example we consider the case when the incident pump and measured emission

are both normal to the surface (𝜃1 = 𝜃2 = 0∘). We optimize this power 𝑃 of the

emitted Raman signal at different periods 𝐿, normalized to a baseline power for a

flat metal surface (metal half-space). Since this optimization problem is non-convex,

TopOpt can easily converge to different local optima from different initial geome-

tries [98]. In Fig. 5-2, we plot only the largest local optima we found for each period

(from 100 nm to 500 nm) for 20 different random starting structures. (We find that

the largest local optima have very similar performance, within ∼ 10%, giving us some

confidence that there are unlikely to be dramatically better local optima yet to be

found.)
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Figure 5-3: Comparison of a) optimized sphere and b) optimized surface for the
normal pumping and emission case. The optimized sphere is found to have a diameter
of 310 nm and adjacent to each other. The optimized surface is found to have a
period of 𝐿 = 400 nm, approximately equal to the pumping and emission wavelength
in water. The pumping fields |𝐸1| are displayed below the pattern (The emission
fields |𝐸2| are similar because of the small Raman shift).

As shown in the inset of Fig. 5-2, the optimized patterns share a small “notch”

feature that creates a hot spot (localized resonance) and some of them exhibit sponta-

neous symmetry breaking (the resulting pattern is asymmetric although the problem

is mirror-symmetric)| [30]. This “notch” hot spot is different from the field singu-

larity arising from with sharp corners where the field theoretically diverges. Here,

the minimum length-scale of those notches is about 10 nm. The optimal density of

those hot spots is found to be at period 𝐿 = 400 nm, which is nearly the wave-

length 𝜆vacuum

√︁
1
𝜀f

+ 1
𝜀metal

= 375 nm of surface plasmons at a flat silver–air inter-

face [161]. We also did the same optimization in the UV regime with 𝜆1 = 400 nm

and 𝜆2 = 437 nm (not shown here), and the optimal period 𝐿 = 300 nm was also

found to be close to the surface-plasmon wavelength 241 nm. Intuitively, periodic per-

turbations with this wavelength implement a grating coupler between normal-incident

radiation and a surface-plasmon resonance [161], but of course the period changes as

the surface is deformed substantially. We also performed an optimization for a dou-

bled period of 𝐿 = 800 nm (not shown), and unsurprisingly found that it converges

to two hot spots in each unit cell with similar performance to the single-hotspot

𝐿 = 400 nm design.

To gain a better understanding of how the optimized surface performs, we also
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Figure 5-4: Optimized surface with a fixed incident angle at 𝜃1 = 30∘. a) Pattern of
the optimized surface, for the optimal emission angle: normal emission (𝜃2 = 0∘). b)
Emitted power (per unit cell) of the optimized surface with 𝜃1 = 30∘ as a function
of the emission angle 𝜃2, normalized by the normal emission of a flat surface. c)
Reciprocal fields |E′

2| at selected emission angles.

compare to a surface coated with optimized spheres (we optimized over both the

sphere diameter and period). As shown in Fig. 5-3a, the optimized spheres are of

diameter 310 nm and have periods equal to their diameters (i.e. touching). The

performance of our TopOpt surface is about 4× better than that of the optimized

spheres (A similar optimization was carried out for a bowtie structure, and the opti-

mized bowtie performs slightly worse than the optimized spheres). From the pump

field displayed below the pattern in Fig. 5-3, we can also see that the notch hot spot

in the optimized surface is more spread out than the singular hot spot produced by

tangent spheres—as predicted in Sec. 5.2.4, 2D distributed Raman emission does not

favor singularities at points or cusps.

5.3.2 Oblique incidence

In this example (Fig. 5-4), we consider the case where the incident pump field is fixed

at an angle 𝜃1 = 30∘ and we search for an optimal emission angle 𝜃2 that maximizes

the power (per unit cell) of the emitted signal (with a fixed period 𝐿 = 400 nm).

In Fig. 5-4a, we show the optimized surface for normal emission, which we find

to be optimal by scanning the power over the emission angle 𝜃2 (Fig. 5-4b). The
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structure again has small notches that create hot spots, but with a very different

design compared to the normal-incident pump in the previous section. The power

near 𝜃2 = −30∘ (inverse to the incident direction) is also large, which is expected

since the reciprocal field is similar (for small Raman shift) to the pump field when

𝜃1 = −𝜃2. On the other hand, the emitted power at 𝜃2 = 30∘ is very low. From

Fig. 5-4c, we can see that this is because the reciprocal fields E′
2 excite a localized

resonance for both 𝜃2 = −30∘ and 0∘ but not at 𝜃2 = 30∘: the resonant frequencies of

a periodic surface depend on angle (corresponding to Bloch wavevector).

5.3.3 Nonlinear damage

In this example, we discuss a nonlinear damage effect that suppresses emission at very

high field intensity, similar to phenomena observed experimentally for UV Raman

spectroscopy [33, 157]. In particular, we assume that pump fields larger than some

threshold magnitude |Eth| will damage the Raman molecules and inhibit emission.

We model this phenomenon by treating the mean Raman susceptibility |𝛼0|2 in

Eq. (5.10) as nonlinear, exponentially decreasing for pump fields larger than the

threshold. We replace |𝛼0|2 with

|𝛼0(x)|2

1 + exp [𝛾(|E1|2 − |𝐸th|2)]
, (5.17)

where 𝛾 is a coefficient that determines the rapidity of the damage threshold. A sharp

cutoff for emission would correspond to 𝛾 → ∞, but such a step-function behavior

would make the problem non-differentiable and impractical to optimize. Instead, we

use 𝛾 = 𝛾0/|𝐸th|2, where 𝛾0 ∈ {1, 10, 100} is gradually increased during optimization

similar to the 𝛽 parameter of binarization reviewed in Sec. 4.1.

Figure 5-5a shows the optimized surface for a nonlinear damage threshold |𝐸th| =

10 (for an pump planewave with |𝐸| = 1). We can see that the pump-field pattern

is much more spatially spread out than the highly concentrated hot spots of the

previous sections. For comparison, if we use the previous optimized structure (without

threshold) from Sec. 5.3.1 with a nonlinear damage, we find that its performance
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Figure 5-5: a) Pattern of the optimized surface with target threshold |𝐸th| = 10 and
the corresponding pump field |𝐸1|. b) Power of optimized surface without threshold
(blue), optimized spheres (black) and optimized surface with threshold (orange) as a
function of the damage threshold |𝐸th| (for a pump planewave with |𝐸| = 1).

rapidly degrades in the presence of nonlinear damage. This is shown in Fig. 5-5b: the

emitted power falls rapidly with the damage threshold for the optimized surface from

Sec. 5.3.1 or the optimized spheres (i.e., it is easy for the pump field to damage the

Raman molecules), while the design with nonlinear damage taken into account only

goes down for thresholds lower than the design target |𝐸th| = 10, and it performs

about 20× better than the optimized spheres at |𝐸th| = 10.

5.3.4 Surface-averaged Raman enhancement

In some experiments, there is a monolayer of Raman molecules deposited on the

metal surface [89, 157], which increases their exposure to the resonant enhancement.

In this case, the average emission should be computed as a integral over the surface

instead of the volume as in the examples above. One simple technique to model this

is to make the mean Raman polarizability |𝛼0|2 proportional to ˜̃𝜌(1 − ˜̃𝜌) (where ˜̃𝜌

is the thresholded and filtered density field from Sec. 4.1), which is ≈ 0 except near

the metal surface. This allows us to take the surface geometry into account during

sensitivity analysis and optimization. With a finite filter radius 𝑟𝑓 = 2 nm and a finite

𝛽 = 32 smoothing out the structure, we still obtain similar notch-featured patterns

(shown in Fig. 5-6) which perform about 3× better than optimized spheres.
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Figure 5-6: Optimized surface for surface-average instead of volume-average at period
𝐿 = 400 nm.

One thing to be noted is that the surface integral could diverge in principle at

sharp corners, as can be seen from the
∫︀
|E1|4 metric (Sec. 5.2.4). Here, the design

does not seem to exhibit a sharp corner, probably because we imposed a soft minimum

lengthscale by setting a smoothing filter radius of 𝑟𝑓 = 2 nm. However, ultimately one

might need to impose manufacturing constraints and/or nonlinear damage thresholds

to prevent inverse design from favoring singular structures for surface emission, even

in 2D.

5.4 Concluding remarks

We presented a general framework for optimizing spatially averaged Raman enhance-

ment, which requires only two Maxwell solvers per optimization step for emission in

a single direction, and we illustrated this technique for a number of 2D examples.

This illustrates the computational technique, and the basic phenomena of optimal

hot-spot densities, angular dependence, and the effect of nonlinear damage. The next

step is to carry these techniques into 3D, where the same computational principles

apply but radically different structures may arise due to the stronger singularities

at sharp 3D tips (Sec. 5.2.4). In 3D, these singularities mean that the imposition of

manufacturing constraints [43] and/or nonlinear thresholding will play a key role. Be-

cause only a small range of geometries have previously been explored for this problem,

it is possible that substantial practical improvements may be uncovered by TopOpt
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for 3D SERS, especially in less-explored circumstances such as distinct input/output

directions, nonlinear damage, or even integrated SERS with waveguide channels [22].

Another important complementary problem is the development of theoretical upper

bounds to distributed Raman emission, generalizing earlier work bounding emission

at a single location [90], as well as related efforts to bound the “density” of reso-

nant modes (e.g. for solar cells [160]). Computationally, there are a wide variety

of nonlinear-optics problems that may potentially be optimized using techniques in-

volving coupled linear Maxwell solves, from scintillation processes [130] to harmonic

generation [83], and balancing the tradeoffs between multiple physical processes is

precisely where large-scale optimization has the greatest advantages over intuitive

human design.
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Chapter 6

Concluding remarks

In this thesis, we proposed a trace formulation for inverse design of random emitters,

which is much more efficient than direct approaches.

We began with optimizing the LDOS, which is described by a single emitter with

random polarization, and showed that theoretical limits are nearly attainable via a

metallic-cavity optimization. We then presented a more general case where emitters

are distributed randomly in space with known statistics. We showed that only a

small number of simulations is required for each optimization step using the trace

formulation. In particular, when the output is coupled into a single channel, only

one reciprocal simulation is needed to compute the total (average) response, which

is closely related to the Kirchhoff’s law in thermal radiation. Finally we applied

the trace formulation on the spatially averaged SERS enhancement and analyzed its

results for TopOpt applied to several example problems addressing effects of hot-spot

density, angular selectivity, and nonlinear damage.

There are many future directions that are worth exploring. For the many-output-

channel trace formulations, it would be interesting to investigate ways to apply more

sophisticated algorithms to accelerate the optimization, a topic we are currently ex-

ploring with Dr. Andrew Horning at MIT. Also, recent techniques [82] to accelerate

frequency-domain solves for multiple sparse inputs and outputs may be applicable to

accelerate our trace optimization (since we have multiple sources in a sparse subset

of the domain, and objective functions like the power only involve sparse outputs).
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For the spatially averaged SERS enhancement, a 3D design with manufacturing con-

straints might yield unexpected geometries—it is expected to be qualitatively differ-

ent than the 2D case due to the change in the nature of the singularity at sharp

corners—and we hope to both complete a 3D design and collaborate on an exper-

imental realization. In addition, an upper bound on the spatially averaged SERS

enhancement might be derived similar to the single molecule case, which can provide

some guidance during the optimization. We also hope to apply an analogous trace-

optimization algorithm to other problems such as scintillation, incoherent focusing

(recently implemented in Ref. 114), and Casimir effects.
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