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ABSTRACT

Today's real-time digital beamformers do not make full use of the existing
architectural and computational advantages offered by the modern VLSI digital
signal processors. An efficient and modular architecture using distributed
processing techniques was designed and developed. A hardware prototype that
implements this architecture was successfully built and tested.

The design of this passive sonar beamforming system is based on several
ADSP-2100 digital signal processors that independently perform the beamforming
calculations under the supervision of another ADSP-2100 processor. The modular
architecture allows the user to tailor the size of the system to his performance
needs. The system samples its inputs at a rate of 10KHz. and is capable of taking
inputs from 32 or fewer hydrophones with an arbitrary arrangement. It can form
up to 32 simultaneous beams with 32 inputs. It is also capable of forming a larger
number of beams using fewer inputs. The array parameters are user configurable
through an IBM PC/AT interface. The output beams are available in analog and
digital formats for further processing.

This experimental beamforming system will be used in sonar systems for
oceanographic research in the Arctic areas.

Thesis Supervisor : Dr. Arthur B. Baggeroer
Title : Professor of Ocean Engineering and Electrical Engineering
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CHAPTER 1: Introduction

The beamforming concept (in general and specifically in sonar systems) is
discussed in an introductory manner in this chapter. Beamforming system issues
are presented, and the specifications for a desired sonar beamforming system are
defined.

1.1 Sonar Systems:

A basic sonar system can use two different methods to analyze and evaluate
possible targets in the water. The first is called " active sonar ". This method
involves the transmission of a well defined acoustic signal which can reflect from
objects in water. This provides the sonar receiver with a basis for detecting and
locating the targets of interest. The limitations of this method are mainly due to
the loss of the signal strength during propagation through the water and
reverberation caused by the signal reflections. Simplistically, active sonar can be
thought of as the underwater equivalent of radar.

The second method is called "passive sonar”. This one bases its detection
and localization on sounds which are emitted from the target itself {machine
noise, flow noise, transmissions of its active sonar). [ts limitations are due to the
imprecise knowledge of the characteristics of the target sources and to the
dispersion of the target signals by the undersea medium. A generic active sonar
system and a generic pacsive sonar system are shown in figures (1-1) and (1-2).

Sonar systems have a wide variety of military and commercial uses. Some
of the military applications include detection, localization, classification, tracking,
parameter estimation, weapons guidance, countermeasures and communications
Some of the commercial applications include fish location, bottom mapping,
navigation aids, seismic prospecting and acoustic oceanography. More detailed

information about sonar technology can be found in references [1],(2].
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1.2 Sonar Beamforming:
One of the important building blocks of a sonar system is the beamformer.
The concept, techniques and some implementaticns of sonar beamforming will be

briefly discussed in the following sections.

1.2.1 The Beamforming Concept:

In its simplest form, sonar beamforming can be defined as " the process of
combining the outputs from a number of omnidirectional transducer elements,
arranged in an array of arbitrary geometry, so as to enhance signals from some
defined spatial location while suppressing those from other sources " [3]. Thus, a
beamformer may be considered to be a spatial filter. It is generally assumed that
the waves arriving to the transducers all propagate with the same speed c , so that
the signals of interest lie on the surface of the cone defined by w =clkl in (k, w)
space. Ideally the passband of the beamformer is the intersection of this cone with

the plane concaining the desired direction vector, as shown in figure (1-3).

Beamformer
passband

Figure 1-3 : Passband of an ideal beamformer



The beamforming operation is accomplished through a series of operations
that involve the weighting, delay, and summation of the signals received by the
spatial elements. The summed output that contains infcrmation about a
particular direction is called a " beam ". This output is then sent to a signal
processor and/or a display for frequency and temporal discrimination. A
beamforning system can employ analog or digital componen‘s and techniques;
these are to be discussed in further sections.

Beamformers are used both in passive and active sonar systems. In passive
sonar, the beamformer acts on the received waveforms. Active sonar also utilizes
a conventional beamformer which acts on the waveforms that are reflected from
the targets (most active sonars use the same array for receiving/transmitting).
There are several well known techniques that can be utilized in forming beams
from receiver arrays. The discussion in the following section will concentrate on
the weighted delay-and-sum beamforming technique which is very connmon and
is also referred as time-delay beamforming. Discussion on other techniques, such
as FFT beamforming or phase-shift beamforming may be found in references

(2],14).

1.2.2 Time-del;;y Beamforming :

In time-delay beamforming, beams are formed by averaging weighted and
delayed versions of the receiver signals. Each receiver has a known location and
samples the incoming signals spatially. In order to steer the beams (i.e. to choose
beamforming directions), each receiver's output has to be delayed appropriately
ielative to the other receivers. An overall block diagram for a conventional time

delay beamformer is shown in Figure(1-4). The mathematical details of time

delayed beamforming are discussed in this section.



indinQ
weag
renbiq

1daduod Juruuojureaq [eR3Ip UIBWOP-3WY ‘[BUCHUIAUOY) : P~ ISy

SAV13d

OoC >0 w e @ .

(]

0l

<

L e TV COD W e e O . »

< C e -

| -
i

siojoe4
Buipeys

sinduj
losuag
bojeuy



In order to describe this operation mathematically, let us assume that the
array of receivers is composed of a three dimensional distribution of equally
weighted omnidirectional sensors. Their spatial ‘ocations are specified in the
Cartesian coordinate system of figure (1-3;. The beamforming task consists of
generating the waveform b, (t) (or its corresponding sample sequence) for each
desired steered beam direction B, . Each b, (t) consists of the sum of suitably
time delayed replicas of the individual sensor outputs e, (t) . The time delays
compensate for the differential travel time differences between sensors for a

signal {rom the desired beam direction.

Zz

& (X,Y,2) X=sin¢ cosb
Y=sin¢ sing
Z=cosl

/Y

Figure 1-5: Coordinate system definition
Let the output of an element located at the origin of coordinates be s(t).

Under the assumption of plane wave propagation, a source from direction )

(the 1th source direction unit vector) produces the following sensor outputs

10



(1.2.2-1)
where E, is the nth element position vector and v is the speed of propagation
{v~1500 m/s) for acoustic waves in the ocean. Appropriately delaying the
individual sensor outputs, to point a beam in the direction B),, yields the

beamformer output

al E .B
bm(t)=z en(t- - ‘“-)
n=1 v

(1.2.2-2)
The operation defined in (1.2.2-2) is known as beamforming. The complexity of
the beamforming operation arises from the need to carry out this summation in
real-time for a large number of sensors and a large number of beams.

At this point, for simplicity and further understanding of the beamforming
concept, the discussion will be limited to one dimensional (line) arrays with
regularly spaced hydrophones (i.e. underwater omnidirectional acoustic sensors).
It will also be assumed that the beamforming is performed digitally. This
discussion can be easily generalized to multi-dimensional arrays if necessary.

Assume that the presence of a plane wave signal s [t-(E.B) / v] needs to
be detected. Itis propagating with a known direction B , and is measured at F in
a background of spatially white noise ( B and E are vectors ). The line array of
figure (1-6) i5 used. The signal has the same value 2t each wavefront and the
noise is uncorrelated from sensor to sensor. Thus, in order to enhance the signal
from the noise, the sensor outputs are delayed and summed. The delays account

for the propagation delay of the wavefront to each sensor. This yields

11



1% E,.B
i-
b(nA)=—) X A+
(nA) igo (0

(1.2.2-3)
where X;(nA) is the sampled output of the ith sensor. Note that for the ith

sensor the following relationship holds:

E .B

= - —sin®
\4

(1.2.2-4)

The input to the beamformer is a set of time series, usually one set of time

/ SIGNAL WAVEFRONT

SENSORO 1 XX R N-2 N-1

um"ml-"‘lllll' lNDlCATES BACKGROUND NOISE

Figure 1-6 : line array of equispaced hydrophones
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series for each sensor, while the output of the beamformer is another set of time
series, generically referred to as beams.

The beamformer is spatially discriminating because for a plane wave with a
propagation direction ©, different than © 4 which assumed by the beamformer,
the sensor outputs will not be coherently combined. This leads to partial

cancellation of the incoming signals with @ = ® . Thus, for a plane wave signal

J(waA + wWid/vain®)

x1 (nA) =e
(1.2.2-5)
and
N-1
b (nA) =_E_z:ej(a)i.d(sine - 8in®o) /vejo.)n A
N

i=0

(1.2.2-6)

where d is the spacing between the sensors. Thus the amplitude of the plane
wave arriving from a direction © at the output of a beamformer steered to ©,

has an attenuztion given by

sin [N(®/2)d (sin® - sin®0)/v] |
Nsin[ (@/2)d (sin® - sin®o) /v]|

IB(W,0) =

(1.2.2-7)
This function is known as the beam pattern of the array. Various beam patterns
for line arrays are shown in figures (1-7), (1-8) and (1-9). It can be seen clearly that,
for a given wave frequency, ail plane waves with @ = ©, are attenwuated, leading
to the interpretation of a beamformer as a spatial filter. In most applications, it is
desirable to have a beam pattern with a very narrow main lobe and very low level

sidelobes for maximum noise rejection.

13
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There are various ways to approach the ideally desired beam pattern:
Increasing @ (the operating frequency) and/or N results in narrower main lobes
even though the side lobe level does not change. Increasing the sensor spacing
also results in narrower main lobes. But this is limited by the fact that spatial
aliasing will occur for Ax > in/2 (4], where A5, is the signal wavelength for
the highest frequency of interest. Spatial aliasing exhibits itself in terms of extra
main lobes nea~ the endfire region as shown in figure (1-10). In order to reduce
the sidelobe levels, the sensor outputs must be weighted. This procedure is
known as "shading ". Thus, in equation (1.2.2-6), we replace the 1/N factor by

w) . The corresponding beam pattern is

N-1

1B (0.8) |=| Qu,e

i=0

jwid(sin® - s51inO0) /v

(1.2.2-8)

The usual wirdowing techniques of Fourier transform theory can be used to
reduce the sidelobes[4]. By employing a Hamming window, for example, the
sidelobes may be reduced to -40 db at the expense of widening the main lobe.

Another problem, in a line array with fixed shading, is the quantization
errors that are introduced while inserting the appropriate delays. In a digital
beamformer, for ideal operation, the beamforming directions will be limited such
that the delays "t" are multiples of the sampling interval. Any other choice of
directions (delays) will introduce errors onto the beam pattern [5]. One method
that is used to reduce such errors involves the interpolation of the incoming

samples. Further discussion on this topic can be found in reference [6].

17
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1.2.3 Digital Beamforming System Issues:

The beamforming task can be performed using analog or digital systems.
Implementing analog tapped delay lines and attempting to form multiple beams
in real-time using analog hardware results in big, non-flexible and cumbersome
beamforming systems. The use of a digital beamformer results in a smaller, more
accurate, and much more flexible hardware/software unit than an analog
beamforming system. In this section, some of the important issues in digital
time-delay beamforming systems will be discussed. The section will concentrate
on the real-time beamformers.

The computational capacity required by a real-time beamformer can be
roughly computed as Nfg multiply and adds per second per beam from (1.2.2-3),
where N is the number of sensors and fg is the input sampling frequency. This
does not seem very computationally demanding in its current form. However,
multiple simultaneous beams are usually needed in order to span the space
around the sensors and consequently, the computation demand rises to N Nfg
multiply and adds per second, where Ny, is the number of beams formed. A
typical passive sonar system may utilize =30 sensors, require =30 or more beams
and use sampling rates up to 10 KHz or higher, which results in a need for at least
12 million multiply and adds per second. New generations of quieter sources will
require the use of more sensors (for higher resolution) and more beams, which
will cause the computation demand to increase very rapidly in the coming years.

Another concern in designing real-time beamformers is the amount of
storage that is needed in order to implement the digital delays. For example, in
the case of a line array with sensor spacings d, the storage necessary to form all
the synchronous beams is in the order of N 2fsd /v. The " synchronous beams "

are all the beams that can be formed using delays which are multiples of the input

19



sampling period. In the typical beamforming system that we considered earlier,
the size of storage required is in the order of 10000 memory locations. The

chosen memory word wicdth in a particular application could be =16 bits or more,
which would require at least 20 Kbytes of RAM per beam (unless shared). The
demand for fast accessible storage will be rising in the coming years along with the
demand for computation power. Advances in VLSI memory technology have
managed to somewhat keep up with the demand so far.

Current real-time digital beamforming systems in the market can be
classified into two groups: One class uses hardware and software that has been
designed for a very specific application. The result is that those systems tend to be
very compact and efficient but also inflexible and expensive. The other class uses
general purpose array processors and software that are gererally very flexible but
yet very costly, bulky and inefficient. An efficient compromise between flexibility,
computational power and cost is almost non-existent.

There are a number of applications that require beamforming systems
which can handle sensor arrays of arbitrary arrangement. This increases the
demand for a powerful real-time beamformer that is flexible enough to let the
user specify the arrangement of the sensors in water. In addition to this feature, a
beamforming system which also lets the user pick a large number of arbitrary
beamforming directions is desirable. A friendly user interface, obviously, would
be helpful during user's system configuration in a particular application. A low
price tag and small physical size are also very important factors that would satisf y
all possible users. Further discussion on beamforming system issues can be found

in references [4],[7],[8].

20



1.3 Specifications for an Experimental Beamformer for Oceanographic Research :

Today, there are a large number of oceanographic and military experiments
that are being performed by collecting acoustical underwater data. One area for
such applications is the Arctic. The passive sonar systems used in tnhese hostile
environments need to be small and power efficient due to a number of logistical
reasons. Given their physical constraints, these systems need to maximize their
computational power. All the building blocks for such a system must comply
with these demands.

A beamformer is needed for use in an Arctic passive sonar system. It must
be able to take inputs from an arbitrary array of up to 32 sensors, form multiple
beams in real time (= 30 beams) and be user configurable from an IBM AT
personal computer (or compatible). The acoustic frequencies of interest, in this
case, range from 0 Hz to 2000 Hz. The input sampling rate is required to be 10
KHz. The rate is higher than the Nyquist rate because of the need for a higher
resolution in the beamforming directions. The acoustic data is collected by
hydrophones and the analog data must be digitized to 12 bits. The gain applied to
the analog inputs must be manually selectable (1 - 1000). The output beams must
be sent to another system for further processing. This has to be done over a
specific parallel interface. The output beams must be also available at an analog
output, one at a time, for testing, monitoring and some other signal processing

tasks. The beamformer must be mountable on a 19" rack.

21



CHAPTER 2 : System Design and Operation

The details of the design for the experimental high performance research
beamf{ormer that was specified in 1.3 will be discussed in this chapter. The
discussion includes hardware, firmware and software design issues as well as

system test proceadures and results.

2.1 System Architecture :

The architectural goals, the building blocks and the overall operation of the
system are presented in this section.
2.1.1 Architectural Considerations:

There are several important architectural issues to be considered befoie
designing this beamforming system :

One important consideration is the need for modularity. Some users may
be interested in using fewer than 32 sensors and /or forming only a few beams.
Such users should not be forced to buy a system which exceeds their needs, but
they should also have the option of expanding their system's capabilities if
necessary.

Another consideration is the demand for speed. As discussed earlier, in
order to form multiple simultaneous beams, a large number of summations have
to be computed in real-time. This requirement, along with modularity, leads one
to consider distributed processing architectures.

One more consideration is flexibility and ease of use. The users must be
able to specify any array configuration that they desire and form any beam that
they may need. This requires a friendly and interactive user interface, through
which the users can specify many different system parameters.

The architecture of this beamforming system must be able to accomodete all

22
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Figure 2-1 : Gereral architecture for the experimental sonar beamformer
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of the considerations and goals listed above.
2.1.2 The Building Blocks :

The experimental beamformer consists of several buiiding blocks that are
explicitiy shown in figure (2-1). There are several parallel buses in the system for
data transfers and communication: A wide common bus is used for the
subsystems to communicate and exchange data with each other. Another bus
facilitates the communications with the IBM AT. This bus is used to dcwnload
the user system configuration data from the AT into the beamformer. Finally, a
bus is used to send the output beams to a sonar signal processing system which
performs further processing on the data. There are three maia types of
subsystems in this beamformer: One is the analog to digital conversion (A /D)
module. This module takes the hydrophone outputs as inputs, is responsible for
sampling the incoming analog signals and converting them into a digital format.
Each A/D module can handie a limited number of hydrophones, but more
modules may be attached to the common bus in order to handle a larger number
of inputs. Another subsystem is the "Master" module, which is responsible for
controlling the data exchange among all internal modules and the data flow over
the I/O buses. The final type of subsystem is the "Slave" module, which is
responsible for the actual beamforming task. Each slave can beamform in
multiple directions and more slaves may be added in order to form a larger
number of beams.

2.1.3 System Operation:

The internal operation of the system is strictly controlled by the master.
The handling of the incoming samples and the I/O exchanges are also under the
master's control. The operation of the system is synchronized to the input

sampling clock which has a period of 100 microseconds (10 KHz). This implies
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that the calculated beam samples have to be sent out every 100 microseconds.
This duration can be called a system cycle. Thus, the master has to go through its
duties within one system cycle and be ready to handle the next set of incoming
samples. In addition to its regular cyclic duties, the master has to accomplish a
one time task which is the handling of the system configuration data sent from
the AT. The sequence of the system events is illustrated on figure (2-2) and it is as
follows:

(1) The system configuration variables (e.g. number of sensors, beam
directions etc.) are entered into the AT by executing an interactive program. The
same program, after doing some calculations, downloads the necessary data to the
master. The master/AT communications are azcomplished using a simple ad hoc
protocol over a parallel interface card located on the AT's backplane. The master
keeps the necessary configuration variables in several of its internal registers. The
next step is to send this information to all the slaves in order for each of them to
identify the beams for which they are responsible.

(2) The master, after having sent this information, waits for a signal
from each one of the slaves confirming that they are ready to beamform. Once all
the slaves are ready, the master starts the cyclic operation of the beamformer by
responding to an interrupt initiated by an A/D conversion (the sampling clock
had been running but the conversions were not being recognized until now).

(3) At this point, the master starts to read the results of the A/D
conversions, which correspond to a simultaneous snapshot of the incoming
waveforms at the hydrophone locations. It reads all the results in sequence and
writes them into the memories of all the slaves. Thus, all slaves receive identical
copies of the incoming waveform samples. These samples are kept in circular

buffers (255 slots) which are located in each slave's data memory space. New
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MASTER SLAVE

Power-up (or RESET) Power-up (or RESET)

Waiting for the user to input the system set-up parameters

AT Communications | Idle
Download "set-up data" Accept "set-up data"
to slaves
Idle Self prepare using the
set-up data

Sample all the A/Ds 255 Receive the first 255
times and send samples to sets of conversion results
slaves (fill the sample buffer)
Idle I Beamform
Sample A/Ds, send samples | Receive samples
Read FIFOs, output beams | Beamform
Sample A/Ds, send samples | Receive samples
Read FIFOs, output beams Beamform

[ [ ]

[ ] [ ]

v

Operational time

Figure 2.2 : The sequence of system events

26



incoming samples are put into consecutive locations in this buffer. Once the end
of the buffer is reached, the oldest snapshot of samples get written over by the
newest samples and this cyclic process goes on. The consecutive snapshots of the
waveform provide the slave with the delayed samples that are needed in
time-delay beamforming.

(4) As soon as all the new current set of samples are stored into the
sample buffer, the master initiates an interrupt which orders all the slaves to start
beamforming.

Each slave performs the beamforming task by reading the appropriate
locations in its sample buffer, by multiplying those values with a shading factor
and by keeping a running sum cf these weighted samples until the summation is
finished. Once a summation is finalized (i.e. a beam sample is formed), the result
is shifted into a First-in First-out memory (FIFO) for further collection by the
master. Each slave has its own dedicated FIFO and only the master can shift the
beam samples out of the FIFOs. Each slave computes and stores its own beam
samples independent of other slaves. Once a slave has completed its assigned set
of beams, it waits fcr the next interrupt (initiated by the master) that orders all the
slaves to beamform again. While the slaves are busy forming and storing the
current set of beam samples, the master reads the set of beam samples that were
formed during the previous system cycle. The master reads and sends each beam
sample, one at a time, over its output bus. After finishing its output duties, the
master waits for the next A/D interrupt.

The user must realize that the first 255 sets of beam samples produced are
invalid! This is due to the fact that the sample buffer is not full until the end of
the 255th system cycle. Therefore, during that period, the locations read by the

slaves contain meaningless data. The actual valid system outputs are produced
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~25.5 ms. later (this is negligible compared to long hours of system operation).

There are a number of important operational timing issues due to the
length of the system cycles. The number of different beam samples that can be
formed by each slave is limited by the system cycle length. This constraint exists
because the slaves have to release the control of their individual memory buses
in order to allow write operations by the master. Another constraint is that the
master needs to read all the incoming samples and also send all the beam samples
out within a system cycle. The maximum number of beams that can be formed in
this system are directly limited by these timing constraints. The beam allocations
per slave must be calculated carefully during the system configuration phase.
Otherwise, incomplete beams and invalid outputs may result because of the
master not having enough time to send out all the beam samples or other
complications.

Another feature that is provided is the ability to observe some beams
through analog outputs. Digital to analog (D/A) converters are included on each
slave board and the desired analog beam output can be selected using a
thumbwheel switch. Each slave sends the desired beam sample to its D/ A before
shifting it into the FIFO. The overhead caused by adding this analog port is
minimal and it is a very useful test point for system debugging.

As one can conclude, the minimum system configuration consists of a
master, a slave and an A/D module. On the other hand, the maximum possible
system configuration is limited by the speed of the internal hardware and the
mavimum data rate capability of the output port. All buses, clearly, must be
present in any system configuration. The exact capability of different system

configurations will be discussed in later sections.
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2.2 System Hardware :

Because of the high performance requirements, the system hardware
includes state of the art VLSI digital signal processors, high speed hybrid A/D
converters and very high speed CMOS and Bipolar LSI components. Hardware
selection, cesign, timing, operation and interfacing issues in the system are
discussed in the following sections. An estimate of the total system cost is given
in appendix E.

2.2.1 Component Evaluations and Selection :

The system needs several critical fast components that require careful
selection. The first such component is the Central Processing Unit (CPU) that is
needed in the slave modules. Due to space limitations on the slave boards, the
microcoded control units are not feasible options and the selection will be made
ameng single chip processors. There are a large number of VLSI single chip
processors on the market, and we can roughly classify them into three groups:
The first are the general purpose micro-processors; the second are the general
purpose micro-controllers and finally the digital signal processors (DSP). For this
application, the DSPs are clearly the CPU of choice due to their fast multiply and
add times. The decision among such processors is the next step. In this
application, almost all of the commercially available DSPs are eligible since the
required resolution on the incoming data is only 12 bits. Speed is the criterion
that eliminates the eligibility of most DSPs for this application. The choice,
finally, is narrowed down to Texas Instruments' TMS-32020, NEC's upd77C20
and Analog Devices' ADSP-2100. Other DSPs and vector processors that can
handle wider data word widths are not considered because those luxuries are not

beneficial in this case. The following is the list of the features that were compared

before choosing the ADSP-2100:
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(1) The cycle times are: 200 ns. ior TMS-32020; 250 ns for upd77C20 and
125 ns for ADSP-2100.

(2) ADSP-2100 is the only among the three processors to have single
cycle access to all of its external memories.

(3) All processors have single cvcle multiply-accumulate instructions
but only the ADSP-2100 has a 40 bit result field.

(4) ADSP-2100 provides powerful circular addressing capabilities,
whereas the other two processors need special techniques in order to implement
similar addressing modes.

%) The assembly languages used by the Texas Instruments and the NEC
processors are cumbersome. The one for ADSP-2100 is clear and easy to learn.

(6) The projected cost for 1988 (on 6/87) was $150 for the ADSP-2100,
$100 for the TMS-32020 and $60 for the upd77C20.

Clearly the TMS-32020 and the upd77C20 are lacking a number of strengths
when compared to the Analog Devices' processor. The extra cost of the
ADSP-2100 is appropriate since it outperforms the other contestants. ADSP-2100
also manages to fulfill the CPU requirements of the master module. It provides
easy handling of memory mapped peripherals and can handle four external
interrupts. These features and the savings in the design time (it already is being
used as the slave CPU), again, balance its extra cost versus other available high
speed micro-controllers. More detailed information about ADSP-2100 is available
in appendix D and references [9],[10].

The next set of critical components to be selected are the ones to be used in
the A/D modules. These include 12 bit fast A/D converters, high precision
sample and hold circuits, very low noise operational amplifiers to be used in the

input gain section and the anti-aliasing filters. The prototyping of a front-end
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analog signal conditioning and A/D conversion section using discrete
components would be a very difficult task in such a noisy digital environment.

A hybrid A/ D converter with on board voltage references along with sample and
hold circuits can perform better than any discrete prototype circuit with similar
functionality. Thus, after some research the Analog Devices' AD-1332 is found to
be most appropriate and convenient. It integrates several of the necessary
components inside : Its central element is a 12 bit 5us AD-7672 A./D converter. A
voltage reference for the converter is included. The converter is preceded by an
AD-585 sample and hold circuit which itself is preceded by an optional 4 pole
Butterworth low-pass filter (anti-aliasing filter). The converter output is fed into

a 12 bit latch with tri-state output buffers (an optional integrated FIFO is also
available for the temporary storage of the conversion results). The AD-1332 is
very easily addressable from a micro-processor, which makes it ideal for this
application. Some more detailed specifications for the A-1332 is given in
appendix D. The availability of this hybrid also helps reduce the system design
and prototyping time, since this circuit must be duplicated for all incoming sensor
inputs. Multiplexing the sample and hold outputs into fewer converters is not
desirable because of system performance considerations.

The selection of the rest of the high speed VLSI and LSI components in the
system is relatively easier. Several levels of address decoding and buffering *hat
are present in the system result in high demands on the memory components.
Integrated Device Technologies' (IDT) 2K x 8 CMOS static RAMs with 25 ns. access
times are used as the data memory components on the slaves. The program
memories for the master and the slaves also need to be very fast. Cypress
Semiconductor's 2K x 8 CMOS EPROMs with 35 ns. access times are used as the

program memory components for all CPUs. The next set of important high speed
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components to be chosen are the slave FIFOs. IDT's 72413135, 64 x 5 CMOS FIFOs
are used for this purpose. Some more details about the FIFOs can be found in
appendix D. Spatially convenient high speed 64 x 8 FIFOs were not available at
that time. In order to provide an aralog output port on the sl ves, Analog
Devices' 16 bit D/ A converter AD-569 is used. The rest of the LSI components
that are used are off the shelf Advanced Schottky (Fairchild's FAST & Texas
Instruments' 74AS series), Advanced Low Power Schottky (Texas Instruments'
74ALS series) or very high speed CMOS (IDT's 74FCT series) integrated circuits.
More detailed information and specifications for these components are available
in their manufacturers' data books.

Another evaluation that had to be made was for the interface card between
the AT and the master. A parallel I/O card that can easily be plugged into the
AT's backplane and that can easily be addressed from a high level program was
desirable. There are a large number of such I/O boards but most of them have
very weil defined I/O protocols that have to be obeyed. The allowed development
time for the design was relatively short and this discouraged spending effort on a
complicated protocol. A simple non-standard protocol and a very flexible 1/O card
was needed. Analog Devices' RTI-817 parallel I/O board was the appropriate
choice. The board contains three 8 bit bi-directional ports that accept user
configured directions. These ports are memory mapped and addressable from
high level programs. More detailed information about the card can be found in

the RTI-817 User's Manual published by Analog Devices' IAD Division.

2.2.2 Master Board Hardware :
The details of the circuitry on the master module (board) is discussed in this

section. The hardware schematics for the master module and its interfaces are
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shown in several figures among the pages of this section. All components shown
on the schematics have a unique " U " number associated with them for ease of
referencing. '

The circuitry on the master board is centered around the CPU which is an
ADSP-2100 (U40). The master CPU takes its instructions from three CY7291-35
2Kx8 EPROM (U89-U91) over the Program Memory Data (PMD) bus. These
devices are mapped to the CPU's Program Memory Adress (PMA) space. A 74F138
decoder (U88) serves as an address decoder on the PMA bus. The timing diagrams
for the execution of a CPU program memory read cycle from the EPROMs is
shown in figure (2-5). The master board does not contain any data memory. The
CPU's internal registers are sufficient for most operations except during the

contiguration phase. The details of how this problem is handled will be discussed

later in the firmware design section.

/HMPHMS \
MPHA  __ XXXRKXRXX TXXXXIXX

/MPMRD AN 4

Cs

MPMD

-T2- ~T3~~

T1 = 15ns max. T2 = 25ns max. T3 = 14ns max. T4 = 35ns max.

Figure 2-5: Master CPU program memory read cycle (from ROM)
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The master recognizes two interrupts : The first one is the /ADCOMPLETE
interrupt, which occurs every 100 gs. and notifies the master about the
availability of new A/D conversion results. This interrupt comes directly from
the sampling clcck. The second one is the /BMTAKEN interrupt which notifies
the master that the external sonar signal processor has received a beam sample
and is ready to receive the next one. The inputs /MBR (master bus request) and
/MHALT (master halt) are tied high because no other component is allowed to
control the master

Another set of devices generate the sampling clock that is used to sample
the analog sensor inputs and tc initiate the A/D conversions (see figure 2-6).
These are three 4 bit counters (U66 - U68) and a 5.12 MHz oscillator (U75). There
is also another 4 bit counter (U70) and a 5.0 MHz oscillator which generate the
conversion clock input for the AD-1332s. The /CONVERT (10KHz) and CL.KIN
(2.5MHz) are sent over the backplane to the A/D boards. The /ADCOMPLETE is
the same signal as /CONVERT, different names are used for easy inderstanding
of component functions.

The master board also has three 74F138s (U41,U42%U94) used for data
memory address bus (DMA) decoding. These decoders provide the master CPU
with cecoded DMA lines (MCEO - MCE4) in order for it to access the slave data
memories. The /A/DREAD signal is used to enable some decoders on the A/D
boards which enable the output latches of the AD-1332s. /BEAMRD is used to
read the FIFOs on the slave boards. /FLAGEN is used to generate a series of
control signals and flags which are the following : /SBR which is used to signal
the slave CPUs to surrender the control of their DMA and Data Memory Data

(DMD) buses. This is necessary in order for the master CPU to take control.
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/SLHALT is used to hzlt all the slaves or to bring them back into operation if they
were in a TRAP state. BMOUTRDY is a flag sent over the output bus to notify
that a beam sample is ready to be transmitted. /CLRBMTAKEN is a signal that is
used to clear the BMTAKEN interrupt which is set by the external sonar
processor. /PCRD and PCWE allow the master to read and write to the AT
communications bus during system configuration downloading. These signals
enable the input and output latcnes on the AT communications bus. The
/SMEMRD signal sets the direction of the data transfers betw een the slaves and
the backplane bus (common bus). /BPOE is the signal that enables or disables the
backplane bus drivers on the master board. /SLINT line is used to interrupt the
slaves. The /SELEXT and /SELOSC lines are not currently used. These lines are
reserved for selecting a possible external sampling clock option.

The master board also contains a large number of devices dedicated for the
CPU's external bus interfaces. A bank of bus drivers and transceivers (1J54 - U59)
are used to provide the necessary buffering for the signals that are traveling over
the backplane bus. The names of the buffered signals (on the backplane side) are
always preceded with a" B ". For example, MDMDO0 becomes BMDMDO0 and so
on. The AT communications are handled through three octal latches (U60-U62).
These latches provide direct interfacing (over a flat parallel cable) to the parallel
I/0 board that is plugged into the AT's backplane. This board also carries two
inverting octal latches (U63 & U64) which facilitate the beam sample transfers
over the external output bus.

The master also houses the system reset circuitry (U97 & U98) which
generates the /RESET signal. This signal is used to initialize all CPUs , all A/D
coverter hybrids and all latches that are used for flag setting purposes. A

push-button switch is placed on the board to facilitate a manual system reset.
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Finally, the interfacing to the three separate buses requires 4 separate
connectors to be placed on the master board : A 96 pin Eurocard connector and is
the connection to the backplane, a 50 pin flat cable connector (MJ2) which is used
between the master and the AT, a 28 pin (M]3) and a 50 pin (MJ4) flat cable
connector which are used on the output bus connections betwecn the master and
the external sonar signal processor. The master only requires a +5 Volt digital

power supply for proper operation.

2.2.3 Slave Board Hardware:

The details of the circuitry on the slave boards (modules) are discussed in
this section. Hardware schematics for the slave board and its interfaces are shown
in several figures on the following pages.

The circuitry on the slave board is centered around the CPU, which is an
ADSP-2100 (U27). The CPU takes its instructions from three CY7291-35 2Kx8
EPROMs (U5 - U7). These are mapped into the PMA space of the slave CPU and
the instructions are made available over the 24 bit wide PMD bus. Two 2Kx8, 35ns
static RAMs (U3 & U4) are also mapped onto the PMA space and available for data
storage using the upper 16 bits of the PMD bus. A 74F138 (U8) decoder provides
the necessary address decoding for the PMA lines. The timing diagrams for the
slave program memory access cycles are given in figures (2-10), (2-11) and (2-12).
There are ten IDT6116LA-25 2Kx8 static RAM chips (U1,U2 &U10 - U17) on the
slave board. These devices are mapped into the DMA space of the slave CPU.

The first 8K locations of this space are dedicated to the circular sample buffer. The
remaining 2K locations are used for additional data storage. The 74F138 (U18)
decoder provides the necessary DMA decoding (SCLO0 - SCE4) for the static data

RAMSs. It is also used to provide the DMA mapping for some additional devices
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/SPMS N\
SPNA l ZXXXXXXX
/SPMRD \ y
cs -\
SPMD
-T2~ - T3-—

T1 = 15ns max. T2 = 25ns max. T3 = 14ns max. T4 = 35ns max.

Figure 2-11 : Slave CPU program memory read cycle (from ROM)

/sPHs  __\ {
SPMA  ___AXXXA XXX
/SPMRD ) {
/SPMUR XX/ XX
/CE {
SPMD XXX URLID__DATA TXXXXX

T 1 F—Tz"l 137

—T4
—T5

T1 = 12ns max. T2 = 12ns max. T3 = 8ns max. T4 = 25ns max. T5 = 25ns max.

Figure 2-12: Slave CPU program memory read cycle (from RAM)



/SPHs  __\ d
sPHA  __ RXXRX XXX
/SPMRD A&/ \AZ
/SPMUR 3 4
/cE XX\ )
SPMD XXX UALID__DATA TXXXXX
—T1 T2 T 3
k T4 y
5

Tt =32ns max. T2 = 18ns min. T3 = 8ns max. T4 = 25ns min. T5 = 45ns min.

Figure 2-13: Slave CPU prograra memory write cycle

and flags. The output FIFO for the slave module is built using 4 IDT72413L35
64x5 FIFO chips (U21 - U24). These chips can be loaded (written to) from the slave
DMD bus by issuing a "shift-in" (S5I) command. SSI is generated by combining
the BEAMOUT and SDMWR signals. The contents of the FIFO chips can be read
from the FDMD bus, which is tied to the backplane BDMD bus through buffers.
Reading the FIFO is accomplished by issuing a "shift-out” (MSO) signal. MSO is
produced by a 74F138 decoder (U20), which decodes some control lines generated
by the master. This decoder is placed on each slave board. But a different one of
its outputs is jumper selected depending on the slave's identity. This allows each
FIFO to hLave a unique location in the master's DMA space. The timing diagrams
for SSI and MSO cycles are shown in figures (2-14) and (2-15).

The slave CPU only recognizes one external interrupt. This interrupt is the

/SLINT signal generated by the master, which is used to start the beamforming
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SCLKIN | 1 | | \ \ \ I ! 1

SDMA XXIRXK XXIXKXXK
- T1 — - T6 -
SDMRD A 4
—T2— —T7
/MSO ) 4
SIT3 k-
MSO i \

FDMD A VAL ID_OUTPUT RXXX
T4 TS

T1=16ns min; T2=8ns max; T3=5ns max; T4=15ns max; T5=12ns max; T6=21ns max; T7=8ns max

Figure 2-14 : FIFO shift-out timing for the slave CPU

SCLKIN | | | | ] | | ] 1

T 1) - 13}

SCLKIN/2 | | [ I

r—rz-i
/DMUR )

,
| 78
SDMD XEXXXL RXRIXRX

/BERMOUT \ /

I -

PSI /

‘
Y -

SS|

\
Ate b fr7|

T1= 17nsmax T2= 28nsmax T3 = 40nsmax T4= 6nsmax TS= 10nsmax T6 = 6ns max
13ns min 11ns min 1ns min 5ns min 1ns min

T7= 6nsmax T8m -----
1ns min 11ns min

Figure 2-15: FIFO shift-in timing for the Slave CPU
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operation after a new circular sample buffer update. The slave CPU clears this
interrupt, by issuing the /CLRSLINT signal, immediately after it finishes forming
its assigned beams.

The slave board, like the master, contains a large number of bus drivers and
transceivers for easy interfacing with the backplane bus. Two of these devices
(U104 & U105) are dedicated for data transfers from the FIFO outputs onto the
backplane. These are controlled by the master generated MSO signal. Five of
these drivers (U32,33 & U35 - U37) are used to buffer the data, address and control
lines arriving from the master. These are all controlled by the /SBG signal which
is only enabled if the slave CPU surrenders the control of its buses (thus allowing
the master to gain control over these buses). Another buffer (1J34) is used to
isolate the outputs of the slave DMA decoder (U18) from the slave DMA bus
when the master has access to it. The timing diagrams for slave data memory
access cycles initiated by the master CPU are given in figures (2-19) and (2-20). The
timing for the Slave CPU's data memory access cycles can be directly followed
from the ADSP-2100 data sheet.

Another component located on the slave board is the AD-569, 16 bit D/A
converter (U100). This converter is mapped onto the slave DMA space. The
/BEAMDAC signal generated at U18, along with /DMWR, is used to latch the
data into the converter. An AD-588, +5 Volt voltage reference (U101) is used with
the D/ A converter. Since the D/A converter is a slow responding peripheral, the
slave /DMWR cycle must be extended using the SDMACK signal (this is an input
to the slave CPU). A small circuit (U103,U19,U9) is used to generate the SDMACK
during a write cycle to the D/A converter. A timing diagram for SODMACK with
the extended data memory write cycle is shown in figure (2-23).

The slave board also houses a 16 position thumbwheel switch which is
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Figure 2-17 : Slave sample buffer (Data Memo:y)
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/MDMS \ /
MDMA XRRXK ARXRA
/MDMRD A
— T1 —i_
/SDMRD , /
/MCE WX /
— 12—
/SAMPLEN CXRXX) /
— T4
SDMD VALID DATA XX XXXX
MDMD XXXXX§ UALID DATA m
T3 | TS |

T1 = 13ns max. T2 = 13ns max. T3 = 40ns max. T4 = 25ns max. T5 = 12ns min.

Figure 2-19: Sample buffer read cycle by the Master CPU

A\

/MDHMS

—XXXXK

MDMA

AnXXR

/MDMUR

— 71 —

/SDMHR

/MCE ARXXX)

=12
\ X

e

/SAMPLEN

SDMD

ARAAA

T1 = 13ns max. T2 = 13ns max. T3 = 13ns min. T4 = 16ns min.

URLID | DATA
T3 —— T4

Figure 2-20 : Sample buffer write cycle by the Master CPU
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SCLKIN I A N S I S I N N A IS S I B
SCLKOUT | 1 |
ssoms 1\ [
/BEAMDAC \ [
/SDMHR A\ V4
SDMACK VA A\

— CYCLE 1 —— CYCLE 2 —

Figure 2-22 : Slave CPU's write cycle to the D/ A (extended by SDMACK)

used to select the beam that will be sent out through the D/ A converter. It also
contains a set of 4 dipswitches that are used to give each slave board its own
identity. Setting these switches allow the slave CPU to recognize the beams that
are under its responsibility and to know the beam that is requested for the analog
output. A decoder (U102) and an octal buffer allow the slave CPU to "read" these
switches. These switches are also mapped onto the slave DMA space. The
/IDENTITY signal generated at U18 and the /BEAM# and /SLAVE# signals
generated at U102 provide the mapping.

There are two connectors on the slave board: A 96 pin Eurocard connector
and a male BNC connector. The first one is used to interface to the backplane bus,
and the second one is connected to the analog output of the D/A converter. The
user can utilize the BNC connector to analyze the switch selected output beam.

The slave board requires +5 Volt digital and £12 Volt analog power supplies for

proper operation.
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2.2.4 A/D Board Hardware :

The details of the circuitry on the A/D boards (modules) are discussed in
this section. Hardware schematics for the A/D boards and their interfaces are
shown in the following pages.

Each A/D board can receive up to 4 analog inputs ranging between +5 Volts
and can convert them into a 16 bit signed digital fixed point format (1.15 format)
with 12 bit accuracy. In order to accomplish the conversion task, the circuitry on
the boards is designed around four AD-1332, 12 bit hybrid A/D converters. Some
specifications and a block diagram of AD-1332 is provided in appendix D. A gain
stage for each input is included on the A/D boards in order to provide the
necessary amplification of the hydrophone outputs. The gain stage utilizes
AD-OP07 operational amplifiers in inverting configurations. The available gains
(1, 10, 100, 1000) are selected using an external 4 position rotary switch. AD-7590
analog CMOS switches are used to select the desired resistor combination for the
amplifier's feedback loop. The CMOS switches are used because of the future
possibility of using CPU generated signals to make gain selections. The board also
contains two octal bus drivers (U71 & U72) in order to provide adequate buffering
for the AD-1332 outputs. The outputs of these buffers are tied to the backplane
DMD bus. The lowest 4 bits of the buffer inputs are tied low because the A/D
converters have only 12 bit resolution. The A/D output, which is in offset binary
format, has to have its most significant bit inverted because of the fixed point
format that is used in the system. Another component that is on the board is a
decoder (U53) which provides a unique location for each AD-1332 in the master's
DMA space. The configuration of this decoder would be different in other A/D
boards in order for each hybrid to have a unique location. Another component

that is present is a AD-964 DC-DC converter, which is used to provide £15 Volts to
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the input gain amplifiers and the analog CMOS switches by converting the
incoming +12 Volt analog supply. +5 Volt digital and +12 Volt analog supplies
are needed for proper operation. There are 5 connectors on this board. One is the
96 pin male Eurocard connector that is used to interface to the backplane bus. The

other four are male BNC connectors that accept the hydrophone outputs.

2.3 System Firmware :
The assembly code that is responsible for the master and slave CPUs' /
operation will be discussed in this section. The code is written in the ADSP-2100's

easy to understand assembly language. Details of this language can be found in

the ADSP-2100 user's guide.
2.3.1 Master Firmware :

The firmware that runs in the master CPU is of moderate length, its listing
is given in appendix A. The listing consists of two sections: the first one is the
architecture description file, which describes the different memory sections and
ports that are necessary for proper system operation (this file is used by the
development tools of the ADSP-2100 for code assembly and prom coding). The
second section is the assembly file which contains the actual code that will run on
the CPU. The architecture description file is self-explanatory, the following
discussion will concentrate on the assembly file.

The master assembly code can be divided into two subdivisions: the AT
communications section and the A/D result handling section. All the code
sections will be briefly described in the following paragraphs.

The AT communications section of the master code starts at the beginning
of the file and ends at the " WAIT " routine. The beginning of the file contains a

series of port, variable and interrupt declarations. The port names correspond to
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the actual signal names that were discussed in the "master board" section in
chapter 2 (2.2.2). The interrupt names are self-explanatory. The program starts by
clearing certain flags and the PC_INIT_WAIT routine is entered. This routine
forces the master CPU to wait until the AT is ready to download the system
configuration data. Once the AT is ready, the PC_COMM routine is executed.
This routine sets some of the internal CPU registers to be used during the
communication. At the end of this routine, the AT is notified that the master is
ready and the master CPU enters the PC_WAIT1 loop. The first six pieces of data
downloaded by the AT are handled differently than the rest. These first six pieces
contain information about the number of sensors in the system, the number of
beams tc be formed, the total number of indexes to be used (the indexes are used
by the slave CPUs to pick the desired input samples from the circular buffer), the
number of slaves in the system, the number of beams assigned to each slave and
the number of beams assigned to the last slave. This data will be stored in the
master CPU's data memory (which actually is the same as the slave data
memories) in consecutive locations. These locations are declared at the beginning
of the program. This storage task is accomplished by the INIT_STO routine. At
this point, the indexes that were calculated by the AT are next to be downloaded.
These values are received and stored into data memory by the INDEX_STORE
routine. After receiving all of the necessary data, the master executes the
CHECKSUM routine. This routine compares the number of pieces of data that
was received to a new value sent by the AT. This new value is the number of
pieces of data that was sent by the AT. If these values are equal, that implies that
the downloading was successful. After establishing this, the master enters the

COMM_END routine. This routine prepares the master, using the downloade«

data, for its next set of tasks (responding to A/Ds etc.). This routine and the




INIT_STO routine are the only times the master CPU reads a value from a slave
data memory. This type of read operation, as mentioned before, is only allowed to
be done from a single slave which must be plugged into a designated slot on the
backplane. Another piece of data that is calculated during this routine is the
shading coefficient that will be used in the current set of beams. The system
currently can only handle a rectangular window with a magnitude of 1. Some
additional code that can handle several different shading windows will be added
later.

After preparing itself, the master CPU issues a /SLHALT signal which
commands the slaves to also prepare themselves using the recently downloaded
data (the slave CPUs were in a TRAP state until now). The master waits for 1000
cycles, in order to give more than enough time for the slaves to get prepared. It
finally enables two nested interrupts and enters the WAIT loop.

The second major section of the code starts at the WAIT loop. The master
CPU waits for the /ADCOMPLETE interrupt to occur and as soon as that is
received it jumps to the ADCOMPLETE routine. During this routine, the master
CPU reads the output latches (conversion results) of each AD-1332 and writes
these values into all of the slaves' sample buffers. The master CPU keeps track of
a few pointers in order to address the circular buffers and the A/D boards
properly. Once the sample storage is completed, the execution of the SENDBEAM
routine gets started. During this loop, the master CPU reads all the slave FIFOs in
sequence and writes them to the system output port. Output beam samples are
sent one at a time and the handshaking with the external sonar signal processor is
executed for each beam sample. The handshaking starts with the assertion of the
BMOUTRDY signal and requires a wait for the BMTAKEN interrupt (set by the

external processor). The arrival of this interrupt means that the external
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DATA A X
T1 —%— T2 —}T3

BMTAKEN A AN / \ /

T4

T1 = 250ns min. T2 = 1.5us max. T3 = 250ns max. T4 = 3us max. T5 = 625ns min.

Figure 2-25 : Beam output timing

processor is ready to receive the next value. Consequently, the interrupt is cleared
by the master CPU and the next beam sample is sent out in the same manner.
The timing diagrams for the beam sample output are shown in figure (2-26). The
ONESLAVE routine serves a similar purpose to the SENDBEAM routine, except
it only handles the output FIFO of the last slave. This is necessary because the
number of beams formed by the last slave is different than the amount that the
rest of the slaves are each responsible for. This inequality exists, since for a given
number of desired beam directions, it is ot always possible to divide the job
evenly among the slaves Once the beam output tasks are completed, a " rti "
(return from interrupt) instruction is executed and the program returns to the
WALIT loop where the master CPU waits for the next ADCOMPLETE interrupt.
The master firmware continues its cyclic, double interrupt driven operation

until the assertion of RESET or a system power-down.
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2.3.2 Slave Firlmware :

The slave board requires less firmware coding than the master, its listing is
given in the appendix B. Its listing, again, consists of two sections: an architecture
description file and an assembly file. The following discussion will concentrate
on the assembly file.

The slave firmware, like the master's, can be divided into two subdivisions:
the system set-up section and the beamforming section. Both code sections wili be
briefly described in the following paragraphs.

The set-up section of the code starts at the beginning of the file and ends at
the WAIT routine. The beginning of the file contains a series of port, variable
and interrupt declarations. The port names, as in the master's case, correspond to
the actual signal names that were discussed in the "slave board hardware" section
in chapter 2 (2.2.3). The only recognized interrupt, /SLINT, is initiated by the
master to start the beamforming operation. After the necessary system parameter
declarations are done, the program stops itself and the slave CPU enters a TRAP
state. The slave CPU gets re-activated after the master is finished communicating
with the AT. At that point in time, the master CPU asserts the /SLHALT signal,
which wakes up the slave and causes the program execution to continue from the
location following the "trap” instruction. The first part of the program lets the
slave CPU move the indexes from its data memory into its " index memory "
which is located in its program memory space (the indexes were in the data
memory until now, because that was the only place that the master could have
stored them temporarily). Once this is accomplished, the slave executes a series of
instruc:ions in order to set up its address registers. In order to do this, it uses the
downloaded beamforming information. Following the preparation, it enters the

WAIT loop and is now ready to respond to beamforming interrupts to be issued
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by the master.

The slave CPU constantly monitors the D/ A beam selection switch while it
is in the WAIT loop. Since the slave CPU returns to the WAIT loop every 100s ,
the monitoring allows it to make a decision, in real time, as to which beam to
send out through the analog port.

The second major section of the program starts at the WAIT loop. The
slave CPU waits for the /SLINT interrupt to occur and as soon as that is received,
it jumps to the BEAM_FORM routine. The BEAM_FORM routine allows the
slave CPU to read the index memory and pick the indexed samples from the
sample buffer. The samples determined by the indexes are the delayed samples
that are needed to perform beamforming. The frame of the circular buffer is
virtually rotated every time a new set of fresh samples come in. Therefore the
indexes that are read must be modified before their use, since they are referenced
to the absolute origin of the circular buffer. The samples that are read are
multiplied by the shading factor (which is currently 1) and accumulated in the "
mr " register. The resulting beam sample is finally written into the FIFO. In the
meantime, if the beam sample belongs to the beam that is requested at the analog
port, it is then written to the BEAMDAC port (the D/A converter). The slave
CPUJ, before returning from the interrupt, also clears the /SLINT flag. The
program finally returns to the WAIT loop where it will wait for the next /SLINT
interrupt that will be issued.

The slave firmware continues its cyclic, single interrupt driven operation

until the assertion of /RESET or a system power-down.
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2.4 System Software :

There is only one program in the system that can be classified as software.
This is the program that runs on the AT and that is responsible for the user
interface and the downloading of the system configuraton data. The code is
written in the " C " language and compiled on the Microsoft C Compiler. The
listing for the program is given in appendix C. The program is comprised of
several function call and definition sections. The details of these sections will be
briefly described in the following paragraphs.

The short declaration section at the beginning of the program includes
certain useful libraries, defines a number of variables and declares the 8 bit
parallel I/O port addresses. These ports are located on an Analog Devices RTI-817
parallel I/O card which is plugged into the AT's backplane. Following this section
there are a series of function definitions starting with main (). The duty of the
main() function is to call all the necessary sub-functions in correct order for
proper code execution. The user_io () function is the interactive function that
intakes the system variables from the user. This function prints questions on the
screen, which in turn have to be answered by the user via the keyboard. The
values that have to be entered are the following : the number of sensors, the
number of beams to be formed, the number of slaves in the system, ihe cartesian
coordinates for the sensor locations and the spherical coordinates for the desired
beams. The user_io() function assigns these values to variables and arrays in
order for other functions to calculate the necessary delays for beamforming.

The job of the index_calculate () function is explained in its name. It first
converts the spherical coordinate beam directions to cartesian coordinates. Once
this is accomplished, it calculates the necessary delays using the formula 1.2.2-2.

The propagation speed of the sound in water is assumed to be 1470 m/s which is
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typical for the Arctic waters (this value can be changed easily in the code
depending on the application environment). Another duty of this function is to
identify the beams that the system is unable to produce with the given array
configuration. This task is accomplished by checking whether any one of the
required delays falls outside of the sample buffer length.

The next function listed is slave_capacity () whose task is to determine the
maximum number of beams that can be formed with the given system
configuration. It also calculates the number of beams to be assigned to each slave
and the number of beams to be assigned to the last slave. These values are stored
as variables to be downloaded later to the master.

The next important function to be discussed is download (). As the name
suggests, this function is responsible for downloading the system configuration
information to the master. This download () function utilizes some other
conveniently defined utility functions which are shown on the rest of the
program listing. Some of these are send(x), wt(x), linv(w), iinv(w) and rnd(x).
The descriptions for these utility functions are clearly given, with comments, on
the program listing. The download () function first sends the initial six pieces of
system set-up data to the rnaster, as explained in the "master firmware" section in
chapter 2 (2.3.1). The next task is to send all the calculated indexes to the master.
At the end of that operation, a checksum is sent to the master. This checksum, as
explained earlier, corresponds to the number of pieces of data (number of indexes
+ 6) that was just downloaded. Upon the master's acknowledgement, the
downloading operation is completed by printing a positive message on the screen.
If the master sends an incorrect message the downloading operation is terminated
by printing a failure message on the screen. At this point, the user is given the

choice of aborting or retrying the downloading process.
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The downloading process is easily executable by the user. Once the system
parameters are entered, it takes at most a few seconds for the AT to download all

the information to the master.

2.5 System Enclosure :

The main enclosure constraint for the system is that it has to be mountable
on a 19" rack. Considering this constraint and considering the number of
integrated circuit packages to be used, a 19" subrack cage with the lowest available
height (13 cm.) was chosen to house the beamformer. Since this is only a
prototype system, a backplane is not used. Nine 96 pin female Eurocard
wire-wrap connectors are mounted in the rear of the subrack and the signals are
bussed using wire-wrap wires. The power and grour.d buses that feed all the
boards are bussed across the back of the cage. In a production version, in order to
have room for the maximum system configuration, a printed circuit board
backplane with 21 connectors and buried power and ground planes must be used.
All of the system prototype boards are wire-wrapped. A production version,
again, would require printed circuit boards with power and ground planes for
proper operation and maximum space utilization. A liftable cover is used to
protect the wires in the back of the cage. The input amplifiers' gain selector
switch is placed on the back cover. The input BNC connectors of the A /D boards
and the D/ A output BNC connectors are located in the front of the cage. They are
mounted on the A/D and slave boards on the opposite side of the Eurocard
connectors. The AT communications cable and the output cables are extended
out of the front of the cage. The system is very compact compared to its existing

lower performance counterparts and has a very low cost per formed beam.
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2.6 System Utilization Procedure :

This section describes the required equipment and the proper set-up
procedure for using the system in a passive sonar application.

The experimental research beamformer can be mounted on a 19" rack. The
power supplies that are required to be provided on the rack are: One digital power
supply (+5 Volts, 12 A) and one analog power supply (+12 Volts, 4A). The sensor
inputs to the system are standard male BNC connectors, therefore all hydrophone
outputs must be brought in coaxial cables with standard female BNC endings.
The D/ A output also requires the same type of coaxial cables for proper usage.
The input gain switch is located behind the cage. The flat cable connectors for the
output bus are located on the master board and their wire terminals are
perpendicular to the board's plane. The flat cable conncctor used for the AT
communications is also located on the master and it is oriented in the same
direction of the BNC connectors (facing outward). The master, slaves and the
A/D boards may be plugged into any slot on the backplane with the exception of
one slot which is reserved for a slave (it has to be always occupied, even in the
minimum system configuration). The dipswitches on the slave boards can be set
to a value between binary 0000 to 1111. These specify a unique identity for each
slave. The first slave is always set to 0000 (this slave must always be in the
reserved slot). The rest of the slaves should each have an identity incremented by
one; the second slave will get 0001, the third will get 0010 and so on. The "open"
position on the switches corresponds to a "1". The thumbwheel switch on the
slave boards allows the observation of up to 16 beams in analog form.

In order to install the user interface, several steps must be taken : The
parallel I/O card (RTI-817) has to be installed in one of the slots on the AT's

backplane. The AT to be used must have a Microsoft C Compiler installed. The
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library routines that are called at the beginning of the user interface program also
must be installed along with the compiler. The name of the user interface
program is "Comm.c" and it must be included into one of the user directories in
the AT.

The operation of the system starts with power-up. The next step is to
invoke the user interface program in ordersto enter the desired system
parameters. The "Comm.c" program is invoked by typing "Comm" and carriage
return into the AT.

At this point, the program will print " Enter the number of sensors :". The user
must type in the exact number of hydrophones and hit carriage return. The next
questions are about the number of beams to be formed and about the number of
slaves in the system. These parameters must be entered in a similar manner to
the number of sensors. The following questions ask the user to enter the

cartesian coordinates for each sensor location(in meters). The choice for the
origin of the cartesian space is left to the 1"ser. Once the origin is established, the
sensor locations relative to it should be used to answer these questions. The
entered coordinates must be separated by commas and followed by a carriage
return. The next set of questions ask the user to enter the desired beamforming
directions (in degrees). The angles for elevation (®), and azimuth (©) are to be
determined relative to the user chosen origin. The angles must be defined as they
were shown in figure (1-5). The entered angles, again, must be separated by
commas. The numbers assigned to each beam (e.g. beam 2, beam 3 etc.) determine
the order of the beam samples that will be in the digital output beam stream. This
implies that, every system cycle, the external sonar processor will receive the
beam samples in the order that they were assigned during the user interactions.

Once the questions are completed, the program calculates the delay indexes
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and other data that will be downloaded to the master. In case of the impossibility
to form a certain beam with the given sensor array, the program will print an
error message such as : "beam x will not have a valid output”. This notifies the
user that the output beam stream will still have a slot reserved for "beam x", but
that it will not contain useful data. Another message that will be printed lists the
beam assignments for the slaves. This listing is in such order that the analog
beam outputs can easily be selected using the thumbwheel switches on each slave.
Some further messages that might appear are used to notify the user abnut
checksum errors. In case of an error, the user is then given a choice to retry
downloading the parameters or to restart the entire operation. Finally, if the
downloading is successfully completed, the user is notified on the screen and the
beamformer starts its operation immediately. Any further changes that need to be
made in the system parameters can only be accomplished by resetting the system
and re-executing "Comm.c" with the new information.

As mentioned earlier, a prototype of the system is built at the minimum
possible configuration level: one A/D board, a master and only one slave. The
prototype can be powered and used by following the instructions provided in the
previous paragraphs. The prototype is lacking one of the features that the
finalized production level system would have: The slave beam assignments are
not yet computed and printed on the screen by "Comm.c". All the beams are
assigned to the single slave in the prototype and the formed beams are still
available at the D/A port. By selecting different positions on the thumbwheel
switch, the currently formed beams can be observed. Furthermore, the position
numbers selected on the switch correspond to the numbers that are assigned to
the current beams by "Comm.c". This enables the user to very easily reference

and test the output beams produced by the prototype.
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CHAPTER 3 : System testing

The debugging and testing procedures for the system prototype, along with

the test and characterization results, are presented in this chapter.

3.1 Prototype Construction and Debugging :

The construction and the debugging of the prototype hardware and
firmware were done in a modular fashion. Once the internal details of the system
functionality were determined, the hardware design of all the boards was started.
But in order to have the proper hardware, the firmware design also had to be
started at the same time. The system design was improved by an iterative process
that determined the needs of both the hardware and the firmware.

The hardware construction was started immediately following the first
completed version of the hardware schematics. The slave board was the first to
be built. Its debugging was accomplished by using the ADSP-2100 in-circuit
emulator. This emulator provides the designers with the ability to run
ADSP-2100 assembly code routines in real-time or in single-step mode within the
circuit that is being developed. Some short test routines were developed and ran
on the slave board. These simple test routines helped isolate and debug different
functional parts of the board. Longer routines were used to test the interactions of
these separate functional parts. A high speed logic analyzer and a digital
oscilloscope was used to evaluate the waveforms. The slave firmware was being
developed in parallel on the ADSP-2100 simulator. The simulator provides
software simulations for the ADSP-2100 assembly code programs. The actual
slave firmware was not used during this stage of slave development.

The user interface program on the AT was well under way of development

at this time. Some simple communication routines were written in " C " to test
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the input and output ports of the RTI-817 I/O card. These ports were tested by
extensive use of the logic analyzer. At this point, the ad hoc communications
protocol was determined and it was added to the user interface program. The
program was going to be fully tested after the master was operational.

The next step in the system development was the construction and
debugging of the master board. The master board was tested and debugged in a
similar fashion to the slave board. The emulator, again, was used extensively
during this stage of development. A different aspect of the master board that
needed to be tested was its AT interface. This interface was tested by writing and
running some simple I/O routines on the emulator and by observing their
interaction with the simplified user interface program on the AT. Once the
hardware and the firmware for the interface were debugged, 2 final version for
the master's I/O routines and a final version for the communications program on
the AT were produced.

The construction of the enclosure was also going on during the initial
phases of the system development. The cage and the backplane were ready for the
master and the slave to be plugged in before the debugging of the master was
finished. The master and the slave boards were plugged into the backplane and
tested together using two separate emulators instead of their CPUs. Their
backplane interiaces, as well as their message passing capabilities were debugged
and tested during this phase of development. Real-time data transfers were
accomplished and the inadequacies of this particular prototype construction style
at such high speeds were discovered. The most serious problem that prevented
proper system functionality was the lack of a strong ground plane on both boards.
Fast edges of the signals caused the integrated circuits to demand very large

amounts of instantaneous current. This demand and the lack of a ground plane
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caused considerable voltage differences among different parts of the boards. These
differences were large enough to disturb the valid logic levels of the signals and
caused the boards to malfunction. This problem was finally solved by adding a
ground grid, using thick metal bars, to both boards. Finally, some sections of the
actual master and slave firmware were also used during this phase. This effort
enabled the redesign for some parts of the firmware.

The next phase in the system development is the construction and testing
of the A/D boards. Because of the previous problems associated with not having
ground planes, the A/D board was constructed on a plastic Eurocard with built in
power and ground planes. The planes needed to be etched away in certain areas
in order to allow for proper component placement. In addition, isolated power
and ground planes had to be created for the analog and digital portions of the
circuitry. The debugging and testing of this board required the use of a function
generator, two emulators and the previously constructed boards. Some short test
routines allowed the input sine waves to be sampled, read by the master and sent
to the slave for D/ A output. Large voltage differences among separate boards'
grounds lead to the discovery of a new series of malfunctions. These problems
were mainly caused by the lack of a solid built-in ground bus on the backplane.
Most of these problems required mechanical corrections as well as electrical ones.
For example, the overall power requirement was reduced by using more CMOS
integrated circuits and additional thick bus wires were used to reduce the voltage
differences.

Once all of the above phases were completed, the master and slave
firmware programs were ready for final modifications. Some preliminary
beamforming tests were executed. These tests involved feeding a sine wave with

a constant amplitude and phase into the sensor inputs. The sine wave was inpul
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toone A/D at a time and the system was asked to beamform in the broadside
direction. The output was observed at the D/ A output on the slave board. Once
that test proved successful, the number of A/D's receiving the same input was
increased one at a time. All the A/Ds were finally fed the same sinewave, thus
simulating a planar wavefront. This qualitative test phase was completed by
coding the finalized versions of the slave and master firmware programs into the
EPROMS in their respective PMA spaces. The emulators, again, were the most
important tools during these stages of the system development. At the end of this
phase, the emulators were replaced with actual ADSP-2100s, and the prototype
system was ready for further quantitative beamforming tests.

The only section of the system that did not get thoroughly tested is the
digital beam output circuitry. The reason is that the sonar processor which will be
receiving the output beams is still under development (but its input interface is
already specified). The testing of this section was limited to some analysis on a

logic analyzer and a digital oscilloscope.

3.2 Prototype Testing and Characterization :

Once the construction and the qualitative functional testing were
completed, the next step was to test the system's beamforming capabilities more
thoroughly and characterize them. The essential testing technique that was used
during this stage of the system development will be described in this section.

In order to test that this system can beamform accurately in the desired
steering angles, it is necessary to simulate the arrival of wavefronts from a given
direction. The simulated hydrophone locations have to be determined and
entered into the system by using the AT interface. The test consists of evaluating

the beam outputs while beamforming in the known direction of wavefront

73




arrival and a number of other steering directions. The decrease in the magnitude
of the beam output, as the beamforming direction is varied, can be plotted as a
function of the steering direction. This plot corresponds to the actual beam
pattern of the simulated hydrophone array for the given direction of plane wave
arrival. By comparing this plot to the ideal beam pattern of an array with
identical parameters, it is possible to characterize the performance of this
beamforming system and of the beamforming algorithm.

In order to simplify the testing task, the hydrophone array to be simulated
will consist of four elements which are equally spaced along a line. The formula
for the beam pattern of such an array is given in Chapter 1 (equation 1.2.2-6).
Simulating a waveform with a desired arbitrary arrival angle is a very difficult
task. Therefore the arrival angle of the incoming wavefront is decided to be
perpendicular to the array. The perpendicular arrival angle implies that the input
wavefront will have identical levels at each sensor. The magnitude of the beams
formed in several directions, with the broadside presence of such a wavefront, can
be plotted as the beam pattern of the four element array.

The waveform that will be used to test the system is a sine wave that i,
produced by an analog function ger.erator. The output of the generator is
connected to all of the sensor inputs of the prototype system in order to simulate a
broadside wavefront arrival. The magnitude of the input waveform is kept in the
order of tens of millivolts. The manual input gain switch is used to amplify the
input and to keep it within £5 Volts. The desired beam directions and the sensor
locations are entered into the AT as they are needed. The cutput beams are
observed and measured at the D/A output. They are selected, one at a time, using
the thumbwheel switch on the front plane of the slave board. The output

attenuations are recorded for a fixed input frequency and the same procedure is
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repeated for different frequencies.

The resulting beam patterns for several test cases are presented in the
figures on the following pages. The ideal beam patterns for each case are also
shown. For a given array, as the input frequency is raised, one can observe an
increasing number of discrepancies between the ideal beam pattern and the actual
results. These are mainly due to the quantization of the time delays. In this case,
the time delay resolution is 100 ps. which is increasingly inadequate for higher
frequencies (shorter wavelengths). A detailed discussion on this topic can be
found in reference(5]. Some of the lesser discrepancies in the attenuation levels
are related to the imperfections of the measurements due to the high noise levels
in the D/A circuitry. The D/ A, in the constructed prtotype, only achieves a real
resolution of 8 bits in the proximity of a very noisy wire-wrapped digital
environment. Another cause of the minor attenuation discrepancies is the
unreliable sine-wave oscillator that generates the input waveforms. The voltage
output of this particular old oscillaior is not stable and fluctuates by £50 mV over
time.

It can be safely concluded that better results can be achieved with a properly

constructed production quality system.
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CHAPTER 4 : Concluding Notes

There are several ways to improve the performance, functionality and the
user interface of the experimental research beamformer. Possible additional
features, some architectural and circuit level enhancements and some production

recommendations are briefly discussed in this chapter.

4.1 Possible Additional Features:

A large number of features can be added to this system without great
difficulty. One possible feature is to provide the user with the option to choose
the frequency of the input sampling clock. It is possible to incorporate additional
hardware on the master board in order to allow an external clock to be routed to
the A/D boards. This can be accomplished by adding the circuit shown on figure
(3-1). /SELEXT and /SELINT are already existing decoder outputs that can be
firmware activated. A male BNC connector, that would receive the external
clock,could be added onto the master board. The external sampling clock option
could be asked as an additional question by "Comm.c" during the system
parameter configuration. The program would download the necessary
information to the master which, in turn, activate the needed signals for the
proper clock selection. Another duty of the program would be to modify the
beam assignments, since the system cycle may be shorter or longer depending on
the new sampling frequency.

A software feature that can be added is the ability to save the current system
parameters into a special file. The system could be re-started by invoking
"Comm.c" and instructing it to boot up the system using the parameters that werc
saved in this special file. This would also allow the user to edit this file and

re-start the system with a new set of configuration parameters in a very short
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time. Some software can be written in "C" to accomplish this task. This feature
would make "Comm.c" even more user-friendly than it already is.

One final and important feature could be the addition of a filtering and
smoothing circuit for the output of the D/ A converter. By smoothing the output
of the D/ As, it is possible to feed the analog output beams into a spectrum
analyzer, or a general purpose data acquisition system and perform some simple

analysis without using the external sonar processor.

4.2 Possible Performance Improvements :

There are two essential aspects of a real-time beamforming system that
always demand improvement. These aspects are the beam throughput and the
maximum number of sensor inputs. There are scveral ways to improve these
aspects by keeping the basic existing architecture and making relatively minor
modifications to the circuitry, the firmware and the software. The modifications
with ascending levels of complexity are discussed in this section.

The main performance issue for a real-time beamformer is the beam
throughput. The main goal of such a system is to form as many simultaneous
beams as possible using the existing technology. There are several ways to
improve the beam throughput performance of the experimental research
beamformer within its existing distributed processing architecture. The most
obvious and relatively easiest way to achieve this goal is to rerlace the current
ADSP-2100s with ADSP-2100As. The ADSP-2100A has an 83 ns. instruction cycle
time as opposed to 125 ns. cycle time of the ADSP-2100. This upgrade would
result in =50 % increase in system beam throughput. The ADSP-2100A is pin and
source code compatible with the ADSP-2100. This allows the easy upgrade of the

system with no firmware changes. The modifications that are needed for the CPU
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upgrade are mostly in hardware. The tirning requirements during the
ADSP-2100A's data and program memory access operations must be analyzed
carefully and faster devices should be placed on the critical data paths. It will
probably be possible to just upgrade the current memory components in order to
compensate for the new required shorter data and program memory access cycles.
2Kx8 Static RAMs with 15 and 20 ns. access times can probably be sufficient. These
memory chips will be commercially available very soon. Another modification
that would ve necessary is in "Comm.c"; because it would have to be ablc to assign
a larger number of beams per slave. At this stage, the input bandwidth of the
external sonar processor would have to be carefully evaluated. This is necessary
since it is very likely that the output bandwidth of the upgraded system, in
maximum configuration, could be higher than the input capacity of the external
processor. If such an incompatibility resulted, this would possibly result in using
fewer number of slaves in order to match the output bandwith requirements.

The overall consequence would be a cost reduction for the less demanding users
and higher performance for the more demanding users.

The next important aspect to be considered for improvement is the
maximum number of input sensors to be handled. It is possible to add more
input channels to the experimental research beamformer. But, each added A/D
converter would have to be placed in a unique location in the master CPU's data
memory address space and this would require some additional address decoding
circuitry on the A/D boards. There is enough room for more digital components
on these boards and the changes in the wiring would be relatively simple. One
important effect of such an addition is that the maximum number of beams that
can be formed simultaneously might be reduced. This effect might take place

because the master will have to read niore inputs within one system cycle and
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consequently might not have enough time to read all the results from the slave
FIFOs. But it is also possible that this addition might not affect the system's
beamforming capaktilities, especially if ADSP-2100As are used as CPUs. These
performance trade-offs must be carefully calculated before attempting to expand
the A/D capabilities of the system.

The availability of various shading windows for the inputs could be
another useful feature. The necessary work to implement tnis task would have
to be done in Comm.c and the system firmware programs. The option to pick a
particular shading window could be presented to the user during the user
interface phase of the system operation. The shading coefficients could be
calcula.ed by Comm.c on the fly, and downloaded to the master. The master
could send these coefficients to the slaves instead of sending the current unit
rectangular window factor. The shading factors could reside in the program
memory space of each siave and could ultimately used by the slaves during
beamforming. The downloading overhead would be minimal but the acditional
program memory accesses during the beamforming loop might result in system
performance degradation. The number of simultaneous beams that can be
formed might get reduced because of the added overhead of reading the shading
factors from program memory. Careful calculations are needed to determine the
exact consequences of such a system modification.

Another improvement that can be done to the system is to redesign the
A/D boards with multi channel A/D converter hybrids. Analog Devices’
AD-1334, which was not available at the initial prototyping phase, would be the
optimal choice for this purpose. The AD-1334 contains 4 sample and hold circuits,
a 4 to 1 analog multiplexer, an AD-7672 12 bit, 5us A/D converter and an output

FIFO. The 4 sample and hold circuits (AD-585) are the same as the one used in
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AD-1332. The A/D converter is also identical to the one in AD-1332. The output
FIFO is 12 bits wide and 64 locations deep. It is possible to use this hybrid in a
mode where all of the AD-585s would sample the inputs simultaneously. Some
overhead analog circuitry must be added externally because of the lack of on board
low-pass filters in the AD-1334. AD-1334 has the same package as the AID-1332, so
it would be possible to fit as many as 3 A/D hybrid packages on the same board
even with the addititonal digital and analog overhead circuitry that is needed.
Such a construction strategy would allow each A/D board to handle up to 12
sensor inputs. Some minor modifications in the master firmware would also be
neeced in order to properly address the AD-1334s. The system redesign effort that
is necessary to implement the substitution of AD-1334s is of moderate difficulty.
The backplane slot savings wec-ild prove this redesign effort to be very valuable,

especially if the need for more than 32 input channels is expected in the future.

4.3 Production Recommendations :

This secticn discusses several eiectrical and mechanical issues to be
considered in order to send this system into production.

The system enclosure should be an industry standard 19" wide and 3U card
cage capable of housing 20 Furocards (110mm x 220mm).

The first major issue to be decided for production is the choice of the circuit
boards. All the separate system modules should be constructed on printed circuit
boards with buried power and ground planes. The power planes are absolutely
necessary because of the large number of fast advanced schottky and advanced
CMOS chips. A separate ground plane should ve used for the analog components
wherever necessary. The analog and digital ground planes should have a

common connection as near tc the A/D and D/ A converters as possible. There
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should be a single board entry point for each power and ground bus. Soldering
should be used to mount the devices onto the printed circuit board. The
backplane to be used should also be constructed as a printed circuit board. Buried
power and ground buses should be routed over its whole length and brought to
the 96 pin female connectors in order to provide power and grounds to the
boards.

Power supply decoupling also should not be neglected. Each integrated
digital circuit on the circuit boards should have their power and ground pins
decoupled by at least 0.1uF ceramic capacitors. The +5 Volt power entry points for
each board should be decoupled from the digital ground by poiarized 300uF
tantalum capacitors. Analog supply decoupling must be done as shown in the
schematics.

The D/ A converters on the slaves are more susceptible for noise
interference than the A/D hybrids. This necessitates great care in routing the
digital signals and the digital power planes around the D/ A circuits. Some
additional protection, such as a metal case around the D/ A converters might be
appropriate.

In order to aid the user, some LEDs (light emitting diodes) should be
mounted in certain parts of the system. LEDs can be mounted on the front panel
of each board that would be lit when all the power supplies for that board are
functioning properly. Additional LEDs can be used to display the hex code selected
by each thumbwheel switch on each slave. This would allow the user to detect
whether the thumbwheel switches are functioning properly and selecting the
correct output beam. The system /RESET switch, also, should be mounted in the
front of the enclosure within user's easy reach.

Finally the last issue to be considered is the design and mounting of
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termination resistor networks for each signal line that is routed over the
backplane. This should be done after the decisions for all the boards, integrated
circuits and connectors are completed. The reason is that they all contribute to the

different parameters that will affect the necessary termination resistances.

3.4 Concluding Remarks :

The goals that were set in section 1.2.4 for an experimental beamformer for
oceanographic research have been met. The resulting beamformer design, with
no modifications, can take inputs from up to 32 hydrophones and form up to 32
simultaneous beams. The number of beams formed will increase if fewer
number of hydrophones are ured. The system is compact and relatively
inexpensive to manufacture and has a friendly user interface. Its architecture is
open and will allow the system to perform better by easy substitution of
technologically more advanced components in the future. The system is ready for

production and field testing as soon as the missing slave_capacity() function in

the Comm.c program is completed.
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Appendix Al

.system master system;
.seg/rom/abs=(/pm/code rom program_ storage(2048);
.seg/ram/abs=0/dm/data sample_mem{8160);
.seg/ram/abs=8160/dm/data system info[32};
.seg/ram/abs=8192/dm/data shading coetf mem({32];
.seg/ram/abs=8224/dm/data scratcthem(Zﬁlbl;
.seg/ram/abs=10240/dm/daca ad_read{32},
.seg/ram/abs=14337/dm/data fifo_shift out(7j;
.port/abs=h#300 f setbmoutrdy;
.port/abs=sh#304f clrbmoutrdy;
.port/abs=h#308f pcwe;
.port/abs=h#310f setsbr;
.port/abs=h#314f clrsbr;
.port/abs=h#318f clrsihalc;
.port/abs=h#3lcf setslhalt;
.port/abs=h#30c8 setbpoe;
.port/abs=h#30c9 clrbpoe;
.port/abs=h#30ca clrbmtaken;
.port/abs=h#30cd setsmemrd ;
.port/abs=h#30ce clrsmemrd;
.port/abs=h#30cf setslint;
.port/abs=h#3007 perd;
.port/abs=14336 beamsend ;

.endsys;
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.module/rom/abs=0

.porct
.port
.port
.port
.port
.port
.port
.port
.port
.port
.port
.port
.port
.port
.port

.var/dm/ram/abs=8160
.var/dm/ram/abs=8161
.var/dm/ram/abs=8162
.var/dm/ram/abs=8163
.var/dm/ram/abs=8164
.var/dm/ram/abs=8165

pc_1init waic:

pc_comm;

Appendix A2

master code;

setbmoutrdy;
clrbmoutrdy;
pcwe;
clrsbr;
setsbr;
clrslhalce;
setslhalt;
setbpoe;
clrbpoe;
clrbmtaken;
setsmemrd;
clrsmemrd;
setslint;
pcrd ;
beamsend ;

sensor_ num;

beam num;

inde;;pum;
slave_num;
beams per slave;
lasc_slave_beaq_pum;

jump adcomplete;
rei;
jump beamtaken;
rei;

imask=b#0000;

icnt l=b#00000;
ayO=h#0f££;
dm(clrbmoutrdy)=mx0;
dm(clrbmtaken)=mx0;
dm(clrsbr)=mx0;
da(clrslhalt)=mx0;
dm(clrbpoe)=mx0;
dm{clrsmemrd )=mx0;
nop;

ax0=dm(pcrd);
ar=ax(-ay0;

1f eq jump pc_comm;
jump pc_init wait;

mxO=h# ££0f ;
ayQm=5;
afwayy+];
ayO=h#ifff;
axlsh#ftff;
mxi=h#f£fOf;
11=8160;
mimj;

1l=6;

12=0;

m2=);
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{vectored addr. for interrupt 0}

{for interrupt 2}
{for interrupt 3}

{walt for the ready message)
{from the PC)

{initial set up before the}
{PC communications}

{a message is sent to the PC}
{at the end of this routine}
{signaling that the master 1is}
{ready}



pc_comm_end_check:

pc_waitl:

pc_read:

init_read:

init_gco:

1ndex_stote:

12=8160;
m3=—] ;
14=8166;

mé4=|;

15=9000;

m5=0 ;

15=1;

16=0;

m6=1;

16=2055;
dm(setsbr)may(;
nop;

nop;

dm(pcwe )=mx0 ;
jump pc_wait];

ayl=i3;
ar=ayl-l;
1f 1t jump pc_end;

ayl=dm(pcrd);
ar=ayl-axl;

if eq jump pc_read;
jump pc_waltl;

modify(16 ,m6);
afmaf-];

if lt jump index_store;

axO=sdm(pcrd);
ayl=h#e000;
ar=axl and ayl;
ayl=h#a000;
armar-ayl;

if eq jump init sto;

jump init read;
ar=axt and ayQ;
dm(setbpoe)=mx0;
nop;
dm(1il,ml)war;
dm(setsmemrd )=mx() ;
nop;

nop;

nop;

non;

nop;

l4mdm(beam num);
l4mdm(beam_num);
13=dm(index_num);
dm(clrsmemrd )=mx0;
13=13;

nop;

nop;

nop;

dm(clrbpoe y=mxU;
jump pc_walctl;

axU=dm(pcrd);
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{counter register to check for}
{the end of the index}
{downloading}

{walt for ffff from the PC}

{(write the initial 6 pleces}
{of data and then start the}
{index storage}

{mask out the bottom 13 bits}

{compazre to h#a000}

{mask ouz the top 3 bits}

{read the pc output}



ayl=h#e000;
ar=axQ and ayil;
ay l=h#a000;
armar-ayl;
if eq jump sto; {compare to h#a000}
jump index_store;
sto: ar=ax(® and ay0;
dm(s :tbpoe )=mx0;
nop;
dm(12 ,m2 )=ar; {store index}
modify(13,m3);
dm(clrbpoe)mmx0;
jump pc_comm end check;

pc end: axl=h#tfOff;
pc _end loop: ayl=sda(pcrd);
- armaxl-ayl;
if eq jump checksum;
jump pc_end_loop;
checksum: axi=i6;
checksum loop: ayl=dm(pcrd);
- ar=axl-ayl;
if eq jump comm_end;
jump checksum loop;

comm end: nxO=h#£0 ;

- dm(pcwe )=mx0;
dm(setbpoe)=mxi;
ayO=h#0201;
afmayQ-1; {afm]}
ayO=Q;
dm(setsmemrd )=mx0;
nop;
nop;
nop;
nop;
nop;
si-dm(sensor_num);
simsdm(sensor num);
dm(cltsmemrdjkaO;
nop;
nop;
nop;
nop;
ayO=si;
ar=ayQ-1;
if eq jump onesensor;
ay0Q=0;
sr=lghitt si by 9 (lo);
axl=sry;
astat=Q;
divq axl;
divq axl;divq axl;divq axl;
divq axl;divq axl;divq axl;
divq axl;divq axli;divq axl;
divq axl;divq axl;divq axi;
divq axl;divq axl;divq axl;
dm(B1Y2)=ayy; {shading coefficient}
jump allsensor;

onesensor: ayO=hft7£££;
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allsensor:

fix base:

normal:

slave_wait:

walt:

adcomplete:

sample store:

dm(8192)=ay0;
dm(setsmemrd )=mx| ;

nop;

nop;

nop;

nop;

nop;

ay0edm(slave num);
ayO=dm(slave num);
axl-dm(beams:pep_slave);
myl-dm(last_slave_beam_num);
mx(=dm(sensor_num);
dm(clrsmemrd )=mx0;

nop;

my0=255;

{do all the necessary}
{DMreads betore the}
{release of SBR}

meemx0*myO(uu); {total # of samples to be put into}

si=mrQ;
sr=lshift si by =i (hi);
12=gr});

ar=ayQ-];

dm(clrsbr)=mxl;

nop;

axOmar;

11=10240;

mls];

11=mx0;

12=0;

m2=];

1f eq jump fix_base;
13=h#3800; {base
m3=1; {with
ar=ayU+];

13mar;

jump normal;

13=h#3801; {base
m3=( ; {with
13=0;

dm(setslhalt )mmxl; {HALT
nop;

dm(clrslhalt)=mxl;
dm(clrbpoe)=mx};
cntr=2000;

do slave walt until ce;
nop;

ars|;

aylm}];

ientcl=b#00101;
imask=b#0001 ;

jump wait;

ar=ar-ayl;

if eq jump first adcomp;
du(setsbr)=mxl;
af=ay(Q-);

dm(setbpoe )=mx1;
cntr=mx(;

do sample_store until ce;
mxl=dm(il,ml);

dm(12 ,m2)=mx1;
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{the sample buffer}

addr. for the FIFOs}
multiple slaves)

addr. tor the FLFO}
single slave}

the slave}

{enable the slvtrap interrupt}

{we ignore the first}
{IRQD by using this}

{this routine 1is used}
{to f111 up the sample}
{memory after each}
{A/D conversion}



sendbeam:

resp waic:
fifo out:

beamout:

oneslave:

resp wt:
endfifo:
first _adcomp:

beamtaken:

.endmod ;

dm(clrsbr)=mx];
nop;

dm(setslint )=mxl;
dm(clrbpoe)=mxi;

if eq jump oneslave;
ni=];

modify(13,m3);

m3=Q ;

cntr=ax(;

do beamout until ce;
cntr=axl;

do fifo out until ce;
dm(se:b;be)-mxl;
nop;

mxl=dm(1i3,m3);
dm(clrbpoe)=mxl;

dm( beamsend )=mx1 ;
imask=b#0100;
dm(setbmoutrdy)=mxl;
cntr=o;

do resp wait until ce;

nop;
nop;
m3=];
modify(13,m3);
m3=Q ;

cntr=myl;

do endfifo until ce;
dm(setbpoe )=mx};
nop;

mxl=dm(1i3,m3);
dm(clzbpoe)=mx};
dm(beamsend )=mx | ;
imask=b#0100 ;
dm(setbmoutrdy)=mxl;
cner=6;

do resp wt until ce;
nop;

nop;

ar=(;

rei;

dm(clrbmoutrdy)=mxi;

dm(clrbmtaken)=mx|;
red;
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{read out the beams in a}

{sequential manner within each}
{FIFO in order of numbering}

{set a flayg tor the external}
{sonar processor}

{this routine is for single}
{slave contigurations and}

{is also used for handling}

{the last FIFO to be read out}
{ir copes with the irregularity}
{of the last set of beams}

{i.e. possibly tewer # of beans}

{int. routine to handle}
{KVDH"s confirmation}



.sygtem

.seg/rom/abs=0/pm/code
.seg/ram/abs=2048/pm/data

.seg/ram/abs=0/dm/data

.seg/ram/abs=8160/dm/data
.seg/ram/abs=8192/dm/data
.segf/ram/abs=8224/dm/data

.port/abs=h#2800
.port/abs=h#3000
.port/abs=h#3800
.porc/abs=h#3900
.port/abs=h#3A00
.endsys;

Appendix Bl

slave system;

rom_program storage|[2048];
index_mem(2048];

sample_mem{8160];
system info(32]);
shading_coetf mem(32];
sczatch_pemizalbl;

beamout;
beamdac;
clrslint;
slave id;
daq_Bgaq_sel;
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Appendix B2

.module/rom/abs=) slave code;
.port beamout ;

.port beamdac;

.port clrsling;

.port slave 1d;

.port dac_bgaq_sel;
.var/dm/ram/abs=8160 sensor num;
.var/dn/ram/abs=8161 beam num;
.var/dm/ram/abs=»8162 inde;_num;
.var/dm/ram/abs=8163 sleve num;
.var/dm/ram/abs=8164 beams per slave;
.var/dm/ram/abs=8165 lasc_glavz;peam_num;

index store:

jump beam torm;
rel;
rei;
redi;

1mask=b#0C00 ;
icnec l=b#00000;
dm(clrslinc)=mx0;

trap; {walting for pc_romm to end}
11=0; {this inticial routine i1, used}
miw=}; {to trarsfer the indexes trom}
ll=dm(index_num); {the sample mem into the)
14m2048; {index mem in PM}

mé=1]; -

l4m}];

cntr=l];

do index_store until ce;
mxO=dm( il ,ml);
pa(14 ,m4)=mx0;

mxU=dm(sensor nuu);
my0=255; -
mr=mxU*my0)(uu) ;

siemr(;

sr=lshitt si by =1 (hi);
1l=mx0;

mi=mxQ ;

{<~— # of sensors})

llmgryi;
si=dm(slave_1id);
sr=lshift si by =12 (h1);
ax=dm(slave num);

{<— length ot circular butter)

{determine this slave s}
{l.d. and the starting}
{location ot the tirst}

ay(msr}; {index.Also determine)
at=axt-ay0; {the # ot indexes}
af=mat-]; {tor this slave)

iIf eq jump last_slave;
se=dm(beams_per slave);
jump all*slave;-

se=dm( last_slave beam num);
mxo-dm(aensot_nuﬁ);

myU=dm( beams per_slave);
mr=mx0*myU (uu);

si=mr0;

srelshiftt st by =1 (hi);

last_slave:
all slave:
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wait:

beam rorm:

single_beam sample:

beau_gnd:

dac write:

.endmod ;

mxO=gsrl};

ar=axU-ay(Q;

aylwar;

ar=ayl-l1;

myQ=ar ;

mr=mxU*my0(uu);

si=mrv;

sr=lshift si by =1 (hi);

axi=2048;

aylmsr};

ar=axl+ayl;

i5=ar; {<— starcing addr. of the iudexes}

mS=] ; {for this slave}
nxOm=se ;

myO-dm(sensog_num); {<{=- index per beam}
onr=mxU*myU(uu);

simsmrQ;

sr=lshift si by =1 (hi);

15=sry; {(— rotal # of indexes to be used}
m3=Q ; {by this slave}
13=11;

16=8192;

mb=() ;

lé=};

myi=dm(16 ,m6); {<— shading coefficient , only one}
axl=dm(sensor_num); {for now: rectangular window}
icnecl=b#00001;

imask=t#0001;

si=mdm(dac_beam sel); {secup the down counter to be}
srelghift si by =-12(hi);{used in the dac_write process}
ayl=srl;

atmayl+];

jump wait; {wait for a circular buffer update}
nop;

cntr=sge;

do beam _end until ce;

mr=Q ;

cntr=axl,

do single beam_sample until ce;

ax()=pm(15,m5); {read index}

m3=axy ;

13=1];

modify(1i3,m3); {<{— modified index}
mxO=dm(13,m3); {<— get the desired sample}
nr=~mr+mx0*myl(rnd); {C== MAC it !1!}

af=af-];

if eq jump dac_write;

dm(beamout )=mr|; {<=—- write result to tito}
modify(il,ml); {{— advance the clrc. buffer pointer}
dm(clrslint)=mx0;

nop;

rei;

dm(beamdac )=mrl ; {<=— write result to DAC}
nop;

jump beam end;
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Appendix C

#include <stdio.h>
#include <math.h>
#include <setjmp.h>
#fdefine input 0x303
#tdefine out0 0x301
#define outl 0x302

jmp_buf env;

int index_num = 0;

int sensor_num , beam num , slave_num , beams per_slave , last_slave_bm num;
float loc(32](3];

float anglC4]){2];

float dir{64]{3];

int ind(32])[64];

main() /*this is the program for the user-master communications*/

{
setjmp(env);
user_1io();
index calculate();
slave:capacity();
download();

user_1o()

{

extern int sensor num ,
extern float loc(32])(3];
extern float ang(64][2];
int i = Q;

int sens_cntr , beam cntr;
float a,b;

beam num , slave nua;

while (+1i < 12){

printf("\n");
}
printf("“THIS IS THE SETUP INTERFACE FOR THE BEAMFORMER\n");
printf("PLEASE INPUT THE REQUESTED INFORMATION : \n\n");
printf("Enter the number of sensors: ");
scanf("d", &sensor_num);
printf("\nEnter the number of beams to be formed: ");
scanf("2d", &bear_num);
printf("\nEnter the number of slaves in the system: ");
scanf("d", &slave_num);
sens_cntr = sensor_num;
sens_cntr++;
while (sens_cntr— >1){

printf("\nEnter the x,y,z coordinates for sensor#id: "
y8ens_cntr);
scanf("“Xf,2f,2f", &loc(sens cntr][1], &loc(sens cntr){2]
,6loc[sens_cntr][3]); -
}
beam cntr = beam num;
beam_cntr++;
while (beam cntr— >1){
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printf('\nEnter the elevation,azimuthal augles tor beam#xd:
,beam num - beam cntr);
scant("Zf Zt' sa,bb);
ang[beaq_cntt]ll] = a * 0.0174533; /* convert degrees to */
ang|beam cntr]{2) = b * 0.0174533; /* radians */
}

printf("\n........Thank you! Please wait for further instructtons.");

index_calculate()
{
extern int sensor_num , beam num , slave num;
extern float loc{32])(3};
extern float ang(64](2];
extern float dir(64)(3];
extern int ind(32])(64];
int sens_cntr , beam cntr , cntr;
int s = 1470; /* speed of propagation for sound in the ocean */
floaz a,b,c,d;
float half_buffe{_size;
entr = beam num;
cntr++;
while (cntr— >1){/* determine the cartestfan coord. tor beam direction*/

dir(centr][1l) = cos(angfcncr](2]) * sin(ang{cntr}(l));
dir{entr}[2] = sin(ang(cntr}{2]) =» sin(angfcntr)(1]));
dirfentr][3]} = cos(ang(centr](1]);

}

sens_cntr = sensor_num;

sens_cntr++;

while (sens_cntr— >1){/*determine delay indexes per beam per sensor*/

brfam cntr = beam num;
beam_cntr++;
while (beam cntr— >1)({

index numt++;

am= (loc[sens cacr}{l) * dir|{beam _cner]fl] +
loc|sens . _cner}{2] + dirlbeam entrif2] +
loc(sens chIIIJI * dit[beam cntr)(3))/s;

b = sens _cntr -~ ) + sensor_num * Tnd(a * 10000 ) ;

half buffer size = 127 * gensor _num;

¢ = half buffer _slze;

1f (b > =c && b < ¢)
indlaens_cntr]lbeam_cncrl = bh+ c;
else{
printf("\n beamfZd won“t have a valid output!",
beam cntr);
1nd(sens_cntrllbeam_cncrl - (;

slave capacity()
/#t*t*ﬁt*i*****ﬁtﬂ*ﬁt*ﬂ**t.*ﬂtﬁﬁtﬂﬁﬂiﬂﬁtt*'*w*ﬁﬁt'ktﬁ**tﬁﬁkttt*lti**ﬁ‘ﬁ*k*.tﬂ/
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/*THLS ROUTINE WILL CALCULATE THE BEAM-FORMING CAPACITY OF THE SYSTEM.*/
/*IT WILL ALSO TELL THE USER WHICH BEAMS ARE BEING FORMED BY WHICH SLAVE AND*/
/*THEIR OUTPUT ORDER.*/

/*t**********ﬁ****ﬁ**ﬁ*ﬁ**t*ﬁ***ﬁ*ﬁ*tﬂ*****ﬁ*t*ttt*ﬂttti:t****ttt*tﬁ*tuw*tt***/

{

extern int beam num , beams per slave , last slave bm num;

beams per slave = 5;
last slave bm num = beam rum;

}

rnd(x) /*this runction rounds a real number to its closest integer*/
float x;
{
int z;
1f (x = (int) x >= 0.5)
z = (int) x + |;
else
z = (int) x;
return z;

download()

{

extern int sensor_num , beam_num . slave_num;
extern int beams_per_slave , last_slave_bm_num;
extern 1int ind[32)(64]);

int choice , go;

int mrdy = UxOf; /*master sends this when*/

int pchigh = Oxff; /*it is ready to receive data*/
int sens_cntr , beam cntr;

lo~ ! a;

int b , c;

begin: printf("\n bDownloading beamtormer initialization data....");

outp(out0 , 1inv(Uxff));/*pc is ready to transmit ,sends hitUtft*/
outp(outl , 1inv(0Oxf));

wt(mrdy); /*the pc tirst downloads b pleces of*/
send (sensor_num); /*setup data*/

send ( beam num);

send(inde;;num);

send(slave_num);

send (beams_per_slave);

send(last_slavz;bm_num);

beaq_cncr = beam_num;
beam cnir++;
while (bram _cntr— >1) |

printf("*");
sens_cntr = sensor_num;
sens_cntr++;
while (sens_cntr— >1) ({

send(indlaens_cncrllbeaq_cncr]);
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}

outp(outl , iinv(Oxff)); /*End of data is signaled*/

outp(outl , iinv(0xf0));

a = index_num + 6; /*checksunm is about to be sent*/

b = (int) a/256;

c=a-=-b>b* 256;

outp(out0 , iinv(c));

outp(outl , iinv(b));

a = inp(input);

if (a == 0x0f) /*check master”s response to checksum*/
{
printf("\n\n DOWNLOADINNG SUCCESSFULLY COMPLETED !! “);
}
{

printf("\n\n*AAxkARRAX% CHECKSUM ERROR ARANXRANXXAAXAAKKkA! )

else

error: printf("\r\nDo you want to... l: retry downloading?');
printf("\n 2: abort the operation?");
printf("“\n Enter 1 or 2 :");
scanf("Xd", &choice);
1f (choice == ])
{
printf("\n Reset the beamformer and hit 1 again :"):
walt: scanf("2d", &go);
1f (go == 1)
{
printf('\n\n RETRYING !!!....");
goto begin;
}
else
goto wait;
}
else
{
if (choice == 2)
{
printf("\n\n ABORTING !!!....");
printf("\n Reset the beamtormer!");
longjmp(env,0);
)
else
goto error;
}
}
}
send(x) /*this routine splits up the data to be sent into its lower*/
int x; /*and higher words and outputs them to the norte®/
{
int y,z; /*all valid data that will be downloaded is preceded*/
int pchigh = Oxff; /*by b#101 in the highest three bilts*/

outp(out0 , 1inv(pchigh));
outp(outl , iinv(pchigh));
if (x = 255 <= 0)

{
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outp(out0 , iinv(x));
outp(outi , iinv(0xa0));
}

else

{

y = (int) x/256;

z = x -y * 256;

outp(out0 , iinv(z));

outp(outl , iinv(0xad + y));

}
}
wt(x) /*this function will make the pc wait until the argument*/
int x; /*appears at the input port from the master*/

while ( inp(input) != iinv(x));

linv(w) /*this function inverts all the bits of its long a:igument*/
long w;
{
long z;
z = Oxffff - w;
return z;
}
iinv(w) /*this function inverts all the bits of its int argument®/
int w;
{
int z;

z » Oxff - w;
return z;
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Appendix D1

ANALOG
DEVICES

FEATURES
Separate Program and Data Buses, Extended Off-Chip

Single-Cycle Direct Access to 16K x 16 of Data Memory

Single-Cycle Direct Access to 16K x 24 (Expandable
to 32K x 24) of Program Memory

Dual Purpose Program Memory for Both Instruction
snd Data Storage

Thres Independent Computstional Units: ALU,
Multiplier/Accumulator a.cd Barrel Shifter

Two Independent Data Address Generaturs

Powerful Program Sequencer

internal Instruction Cache

Provisions for Multiprecision Computation and
Seturstion Logic

Singte-Cycle instruction Execution

Muttifunction instructions

Four Extemnal interrupts

125ns Cycle Time

475mW Maximum Power Dissipation ‘with CMOS
Technology (J and K Gradas)

100-Pin Grid Array, 100-Lead PLCC

APPLICAT.ONS

Optimixed for DSP Algorithms Including
Digital Filtering
Fast Fourier Transforms

Applications include
image Processing
Radar, Sonar
Speech Processing
Telecormmmunicstions

GENERAL DESCRIPTION
The ADSP-2100 is a single-chip microprocessor optimized for
digital signal processing (DSP) and other high-speed numeric
processing applications. It integrates computational units, daw
address generators and a program sequencer in a single device.
The ADSP-2100 makes cfficient use of external memories for
program and data storage, freeing silicon area for increased
processor performance. The resulting architecture combines the
fnncmm and performance of a bit-slice/building block system
with the ease of design and development of a general-purpose
microprocessor. The ADSP-2100 (K and T grades) operstes at
8.192MHz. Every instruction executes in a single 125ns cycle.
Fabricated in a high-speed 1.5 micron double-layer metal CMOS
process, the ADSP-2100 dissipates less than 475mW () and K

grades).

Intormation fumlnhod by Analog Devices is believed 1o be sccursts
and reilable. F . no sibility 18 by Analog Dwvices
for its use; nor for mv intring of or other rights of third
pertiss which may result trom its use, No license is granted by implico-
tion or otherwise uiidar any patent or petent rights ot Analog Devices.

DSP M|croproces<or

The ADSP-2100's fiexible architecture and comprehensive in-
struction set support a high degree of operational paralielism. In
one cycle the ADSP-2100 can:

® generate the next program address

® ferch the next instruction

® perform one or two data moves

® update one “r two data address pointers
® perform a computational operation.

DEVELOPMENT SYSTEM

The ADSP-2100 is supported by a complete set of tools for
software and hardware system development. The Cross-Sofrorare
System provides & System Builder for defining the architecture
of systems under development, an Assembler, a Linker and a
Simulator. The Simulator provides an interactive instruction-level
umulation. A PROM Splitter generates PROM burmer compatible
files. An Emulator is available for hardware debugging of
ADSP-2100 systems.

ADDITIONAL INFORMATION

For additional information on the architecture and instruction
set of the processor, refer to the ADSP-2100 User's Manual.
For more information about the Development System, refer to
the ADSP-2100 Cross-Software Manual and the ADSP-2100
Emulator Manual. For examples of a vaniety of ADSP-2100
applications rouunes, refer to the ADSP-2100 Applicanons Hand-
book, Volsme | or Volume 2. Manuals are available only from
your Jocal Analog Devices sales office. See ordering information.

One Technology Way; P. 0. Box 8108; Norwood, MA 02062-8106 U.8.A
Tol: 817/329-4700 Twi: 710/394-887?
Tolex: 524491 Cables: ANALOG NORWOODMASS
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Appendix D2

ANALOG COMPLETE
u DEVICES 12-BIT SAMPLING A/D CONVERTER
FOR DIGITAL SIGNAL PROCESSING
AD1332
]
FEATURES
Complete A/D System for DSP Includes:
4th-Order Anti-Aliasing Filter
12-Bit Sampling A/D Converter
32-Wcrd Deep FIFO Memory Buffer PRELIMI NARY
Fully Asynchronous High Speed Digital
Interface
Sample Rate up to 125KHz

Entire System is Dynamically Characterized
15ns Data Access Time Allows "no wait state"
Interface to:
ADSP2100, TMS320C25
DSP56000, NECuPD77230

APPLICATIONS

Sonar Signal Processing
Vibration Analysis
Ultra Sound Imaging

PRODUCT DESCRIPTION

The AD1332 is a complete, 12-bit A/D converter
system optimized for use in Digital Signal Pro-
cessing (DSP) applications. The device consists of a
fourth-order anti-aliasing filter, a 12-bit sampling
A/D, a 32-word FIFO buffer, and a fully asynchron-
ous high speed digital interface. The product is
manufactured using highly reliable advanced
hybrid drcuit assembly techniques and is packaged
in a 40 pin hermetic DIP.

The anti-aliasing filter is an active four-pole
Butterworth. Cut-off frequencies (f.) are user-
selectable (capacitor prcgrammable) and operation
is specified for f. up to 50 KHz. The filter may be
bypassed entirely if desired.

The 12-bit sampling A/ converter can convert 5
Volt full-scale signals at sample rates up to
125KHz. The rate 1s programmable by means of a
single external clock. The entire converter system is
specified and tested for Signal-to-Noise Ratic and
Total Harmonic Disto~tion.
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The digital interface provides a true asyn-
chronous link between the A/D and a high-speed
microprocessor. Data transfer is controlled by
generating an interrupt signal when data is
available. Interrupts can be generated when the
FIFO is full (32 words), half-full (16 words), or
when a single word of data 1s ready (FIFO
bypassed). In addition, the AD1332 can generate
an interrupt signal when the A/D conversion
results are over-range.

The AD1332 provides a completely specified and
tested system that bridges the interface and
specification gap between A/D converters and
high-speed DSP.
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Appendix D3

'Iniegmwd Device Kchnology nc R

WITH FL.AGS

‘CMOS PA "ALLEL-"
64 x 5-BIT FIFO

FEATURES:

First-in, First-Out dual-port memory—35 MHz

64 x 5 organization

Low-power consumption

— Active: 200mW (typical)

RAM-based internal structure allows fo: fast fall-through
ttma

Asynchronous and simultaneous read and write
Expandabte by bit width

Cascadable by depth at 25MHz (IDT72473L25) not
cascadable at 35MHz (IDT72413L35)

Half-full and Almost-full/Empty status flags

IDT72413 1s pin and functionally compatible with MMI67413
High-speed data communications applications
Bidirectional and rate bufter apphications
High-pertormance CEMOS™ technology

DESCRIPTION:

The IDT724131s a €4 x 5, high-speed First-In. First-Out (FIFO)
that loads and empties data on a hrst-in. tirst-out basis It (s
expandable in bit width The 1DT72413L25 (25MHz) 1s cascaa-
able in deptn The IDT72413L35 (35MHz) i1s not cascadable in
depth

The FIFO has a Halt-full flag, which signais when it has 32 or
more words in memory The Aimost-Full/Empty flag is active
when there are 56 or more words in memory, or when there are 8
or less words I1n memory

The IDT72413 is pin and tunctionally compatible 1o the MM
67413 1t operates at a shift rate of 35MHz This makes 11 idzal for
usein high-speed data buftering apptications The IDT72413 can
be useq as a rate butter, between two digital systems ot varying
data rates. in h:gh-speed tape drivers, (ard disk
controilers, gata communications controlers and graphics
controllers

The IDT72413 1s fabricated using IDT's high-pertormance

CEMOS process. This process maintains the speed angd high
output drive capability of TTL circuits in low-power CMOS

Availab'e in DIP and LCC
Military product available, 100% screened to MIL-STD-883.
Class 8

FUNCTIONAL BLOCI{ DIAGRAM PIN CONFIGURATION

OUTPUT ENABLE ot . T v,
OE :
(t) HF []. 5[] AF/E
R ] #[7] so
FIFO 64xs FIFO . [[::_ ) . % on
DATA;y —={ INPUT |—={ MEMORY OUTPUT |—— DATA
Do STAGE ARRAY STAGE Qo o, (]’ «[3a,
o, L4 " :J a,
. o, ] «[Ja,
sasTER e o, o,
RESET —P I I o, v %9_:
s o [JWR
INPUT (IR) 1(S0) SHIFT ano [}
READY «—{ INPUT REGISTER OuUTPUT out S
CONTROL [=={ CONTROL {=={ CONTROL
SHIFT -4 Loaic LoGIic LogGIC ouTPUT o
IN (S) 1 (OR) READY TOP VIEW
FLAG |-+ HALF-FULL (HF) Lcc
CONTROL CONSULY FACTORY
LOGIC | ALMOST-FULL/
EMPTY (AF/E)
OSPI2413 00!

CEMOS 18 a irademark of Iningrated Device Technology. Inc

MILITARY AND COMMERCIAL TEMPERATURE RANGES

DECEMBER 1986
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Appendix D4

ANALOG
DEVICES

IBM PC/XT/AT™ Compatible
Digital Input/Output Board

FEATURES

24 Channeis of Digital input/Output

Three 8-8it Groups independently Selectabie for VO

Interrupt Generation on Change of State

Compatible to 16 and 24 Position Solid-State Relay
Subsystems

GENERAL
Compatible to IBM PC/XT/AT or Equivalent
Optionel Screw Termination Panels

APPLICATIONS

Parailel D sta Transfor to PC

Digital VO Contsol

AC or DC Monitoring and Control of Voltages
Relay Control

GENERAL DESCRIPTION

An IBM-compatible member cf the RTI™ Interface family, the
RTI-817 is a 24-channel (bit) input and outpui beard that plugs
into one of the expansion slots in the IBM PC/XT/AT. The
board can be used with TTL low-level input/outpu: circuitry or
with solid-state relay subsysiems (16- or 24-channel versions) 10
provide 2500V isolation for interfacing with high-level ac and dc
signals.

The 24-channel capability of the RT1-817 is divided into three
ports (or groups) with 8 bits per group. These cight bit ports
can be configured for cither a digital input or output function.

There are two unique featu.es associated with the RTI-817: an
cight-bit latching capability and an interrupt on cha ‘w2 of state.
The latching capability is software or hardware selectuble. It
siores the state of eight digial input lines in a register which
can then be read from the FC data bus. Interrupt geneiauon
occurs when one of the eight digital input channels changes
swte in a single port. This feature frees up the PC to do other
activities since there is no need to poll the digital input port for
an event o occur.

The RTI-817 can be installed in cither a long or short slot in
the IBM PC/XT/AT. The ‘:vard maps into the VO channel
address structure as 4 consecutive bytes, addresssble in an unoc-
cupied 4-byte boundary using a DIP switch. The board operates
from the bus + 5V power source.

Typical applications of the RTI-817 include sensing and contrc!
of high-level signals, sensing low-level (TTL) switches or signals,
driving indicator lights or controlling :ccorders, and parallel
data transfer (via software) to computers or panel meters.

RTI™ is a trademark of Analog Devices, Inc.
IBM PC/XT/AT™ is a trademark of laternational Business Machi
Inc.

Information fuinished by Analog Devices is balieved to be sccurate
and reliable. Howsver, no responsibility 15 assumed by Analog Devices
for 1ts use; nor for any infringements ot patents or other rights of third
parties which may resuit from its use. No license is granted by implics-
tion or owtherwise under any patent or patent rights of Analog Davices.
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Figure 1. RTI-817 Block Diagram

Two Technology Way; Norwood, MA 02062-9106 U.5.A.
Tel: 617/329-4700 Twx: 710/384-6577
Telex: 174059 Cables: ANALOG NORWOODMASS
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