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Abstract
Real-world activities often have uncontrollable durations, which is a scheduling challenge for
temporal planners, where despite uncertainty, we need to meet deadlines and coordination
constraints. Missing these requirements can be costly, but it may be impossible to guarantee
complete success. Instead, we aim to control the risk of scheduling failure, so we consider
scheduling problems where activity durations are modeled with probability distributions.
Then, by specifying a maximum allowable probability of failure, called a chance constraint,
we gain access to solutions that are sufficiently safe. It is also known that reacting to duration
outcomes throughout plan execution is key to avoiding failure. Thus, the goal of this thesis
is to produce dynamic scheduling policies for chance-constrained temporal plans.

Our strategy is to build on prior art in chance-constrained static scheduling. First, we
characterize more rigorously the reformulation of the original problem into that of risk
allocation. This separates the probabilistic condition from the temporal conditions, but
also introduces conservatism. Second, we generalize the static solution’s conflict-directed
hybrid algorithm to produce dynamic policies. Due to the chance constraint, we still
employ nonlinear programming (NLP) to generate risk allocations, but now we leverage
dynamic controllability (DC) algorithms to generate scheduling conflicts. However, those
conflicts’ resolutions are disjunctive constraints, which require combinatorial search and
not just an NLP. So third, we map selected clauses into a form identical to that solved by the
conflict-directed algorithm for static schedules. Our algorithmic architecture thus wraps the
chance-constrained static solution within another layer of conflict discovery and resolution.

We evaluate our approach on lunar construction and car-sharing scenarios, which exem-
plify real-world complexity in coordinating parallel threads. We demonstrate that moving
from chance-constrained static to dynamic policies dramatically increases the problem sizes
we can schedule by at least 10 times. Additionally, our strategy for reallocating risk, based
on discovered conflicts, solves an additional 10% of the benchmark scenarios over that
achieved by uniform risk allocation. Finally, we show that our conflict-directed approach’s
runtime is an order-of-magnitude faster than solving a full encoding.

Thesis Supervisor: Brian C. Williams
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Reasoning about time is an integral component of intelligent planning, especially in modern

society, which is governed so much by schedules and coordination. We individuals are

constantly planning when to do things and how long they should take. On the small scale,

we organize our days according to when we need to meet others, how long it takes to travel

between locations, and when we simply have time to ourselves. Along the way, time needs to

be made for eating meals, getting enough sleep, and other essential health-maintaining tasks.

On the large scale, much of industry and commerce revolves around timed deliverables,

ranging from days to years in advance. Recent years, for instance, have demonstrated the

effects of delays propagating through our interconnected supply chains[18] [62].

Generally, there are two opposing factors that make scheduling a challenge. First, there

are criteria like deadlines or other coordination constraints that define what it means for

a plan to temporally succeed. That is, these are the temporal requirements on the plan’s

execution. Then, there are the plan’s activities themselves, each of which requires a certain

duration to complete. In other words, the execution of activities is what determines whether

the requirements are satisfied.

Sometimes, a scheduling challenge arises simply because the plan is very large, and

much work is required to calculate a schedule. More often, though, activities in real life pose

difficulties because their durations are not fully controllable by whoever is executing them.

For instance, most forms of travel between a source and destination are subject to various

disturbances, such as traffic and weather. And anyone who has ever tried to follow new
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instructions, be it for a recipe or for assembling furniture, has also experienced frustrating

delays. In these cases, prior to plan execution, there could be considerable uncertainty about

the actual durations, which would only be known after each activity completes.

This uncertainty threatens our ability to guarantee that the requirements will be satisfied

by the plan’s execution, and thus poses an important scheduling problem. One technique

for addressing this is to observe and respond to the durations’ outcomes online during

execution. This sort of dynamic reasoning is second-nature to us humans, as we constantly

adjust our daily routines on-the-fly. It helps avoid failure by preserve flexibility until the

last possible moment. However, to have guarantees on correctness, such reasoning typically

needs to be tailored to the particular plan at hand. Therefore, a complementary technique

is to analyze the plan’s structure and requirements offline. By considering all possible

outcomes in advance, we can develop contingencies that are scripted to varying degrees.

Traditional space operations, for instance, undergo heavy scripting due to the high stakes.

The difference between these two techniques is reminiscent of the distinction between

reactive and deliberative control for robotics and other autonomous systems [55]. While

dynamic responses to the current state of plan execution usually scale well, hedging against

all possibilities becomes impractical for large and complex plans. The key insight, though,

is that extreme outcomes are so unlikely that they can be safely ignored. This is a reasonably

strategy that we adopt in our everyday tasks. When we ride the subway or hail a taxi, we

assume that we’ll reach our destination within a fraction of an hour rather than a fraction of

a day. If it’s the latter, then some failure exogenous to the plan has occurred, and we adapt

by making alternative plans on-the-fly.

While we are comfortable in our daily lives with ignoring the possibility of extreme du-

rations, professional applications of scheduling often demand stronger guarantees. Namely,

when such assumptions are made, the risk of doing so needs to be quantified, in order

to justify the massive expenditures. For instance, if a lunar rover, costing hundreds of

millions, is sent to explore inside a crater where sunlight does not reach for long periods,

every meter it travels away from the rim is a meter it will have to double back on. Given a

deadline due to limited battery life, the rover must make a calculated risk for how far inside

it can safely explore. Without making such a calculation, we would typically resort back

12



to ultra-conservative scripted behavior, and even possibly forego the opportunity to explore

the crater.

To address the problem of quantifying scheduling risk, this thesis considers temporal

plans with probabilistic durations. That is, some activity durations are modeled as probabil-

ity distributions, from which Nature selects the outcome. The key value in doing so is that

it becomes well-defined to specify the risk of failing to satify the temporal requirements

during execution. By specifying acceptable risk, then, we avoid the ultra-conservative

criteria of handling every duration outcome. Instead, we open up a spectrum of scheduling

solutions that becomes wider with increasing tolerance of risk. In effect, this formulation of

the scheduling problem allows us to tune our scheduling solutions to more likely duration

outcomes.

Prior work in risk-bounded scheduling [20] [67] [69] [68] produced static schedules,

which lacks the valuable reactivity of online decision-making. This thesis thus generalizes

that work to produce dynamic scheduling policies. Our first contribution is to improve the

specificity of the problem statement with respect to outputting such policies. We then offer

a more rigorous treatment of the algorithmic approach, clarifying the relationship between

various spaces of mathematical objects. This facilitates our extending the algorithm to

encompass the necessary concepts for solving the dynamic version of the risk-bounded

scheduling problem.

The rest of this chapter presents an overview of the problem this thesis solves and its

approach for doing so. Section 1.1 examines the need for risk-bounded scheduling by

presenting two scenarios, one everyday and the other professional. Section 1.2 then lays out

the major claims of this thesis and maps them to the respective chapters. Finally, Section 1.3

provides an executive summary of our problem and algorithmic approach.

1.1 Need for managing scheduling risk

To highlight the importance of reasoning about temporal risk, we present two scenarios that

illustrate the role of such reasoning within larger planning contexts. The first is familiar

to anyone who has ever taken public transit and needs to deal with the uncertainty of
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Figure 1-1: Catching the subway from Kendall to see a movie at the AMC in Boston
Common is an experience shared by many students at the ’Tute. Typically, one transfers
to the Green Line at Park Street and gets off at Bolyston, which is closer to the theater.
However, if the transfer at Park is running late, then it might be safer to make a dash at street
level, rather than wait.

transferring vehicles. The second is based on an actual situation faced by the Woods-Hole

Oceanographic Institute (WHOI) when they were simultaneous operating multiple robotic

ocean exploration vehicles. In both cases, we are faced with alternative planning choices,

each of which result in a range of temporal outcomes that are tied to physical consequences.

1.1.1 Scheduling in everyday activities

Here along the banks of the Charles River, many students have experienced moviegoing at

the AMC theater in Boston Common at some point. A popular mode to arrive there is to

take the Red Line subway from Kendall Square into Boston. At the Park Street station, we

transfer to the Green Line, and one stop later, we are at Bolyston station, which is right in

front of the theater. This nominal plan is shown in Figure 1-1.

This plan requires us to wait twice for an arriving train, first at Kendall and then at Park

Street. Each wait introduces uncertainty into our total travel time. Additionally, the travel

times between stations plus the dwelling time at the intermediate Charles/MGH station

are also out of our control. The uncertainty associated with these is typically less than

14



that of waiting for a train. However, if consecutive trains have not been maintaining their

proper headways, then in an effort to restore them, the drivers may be forced to delay their

departures or even stop in the middle between stations.

What this amounts to is that when we pull into Park Street on the Red Line, we need

to consider the risk of waiting for a Green Line train to arrive (or more accurately, when it

will actually depart). If we are trying to make it to a 7:00 p.m. showing, and it’s already

6:50 p.m. at Park Street with no transfer in sight, we may be better off exiting to street level

there and jogging the two blocks to the AMC. However, if we are lucky and a train has just

pulled into Park Street as we enter the Green Line platform, there is a good chance that it

will leave within a couple minutes, and thus arrive at Boylston with time to spare.

This scenario demonstrates that we are constantly assessing the risk of missing the start

of the showing1, since the beginning of the plan at Kendall and especially at the critical

juncture of Park Street. Furthermore, we are reacting to the duration outcomes of each leg

in the trip, and using that information to decide whether to continue with the original plan

of riding to Boylston, or to switch to the alternate plan of exiting at Park. In both cases, we

regain control of the duration for the last leg, where we can decide how fast to walk or run

from the station into the theater.

Typically, the first decision, which is a discrete choice between alternative plans, would

be classified as a planning decision, while the second one of controlling our own speed

would be considered a scheduling decision. This thesis focuses on providing the latter

functionality. However, the planning decision still rests on whether successful scheduling

can be provided in either case. Therefore, the reasoning about risk that goes into our

scheduling decisions is equally applicable in the larger context of planning.

The last point about this example is that we humans are accustomed to making such

risk assessments on the fly, based on our previous experience with public transit. However,

this is a fuzzy process and prone to mistakes as the plans increase in complexity. Instead,

one could envision a digital assistant with statistical knowledge of waiting and transit times

for the subway. Such empirical distributions could be used to quantify the actual risk of

1Actually, we might only miss some previews. However, if we’re traveling with a large group, showing up
late reduces the chances of finding good seats.
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missing your deadlines, and thus better inform your decisions. Imagine, then, the leverage

you’d hold over your friends the next time you argue inside Park Street station about whether

to wait for the next train or to make a dash for it outdoors.

1.1.2 Scheduling in professional scenarios

While making bets with your friends is relatively harmless, scheduling risk can be a major

factor in professional scenarios where the stakes are much higher. Figure 1-2 depicts an

actual ocean exploration scenario where scientists onboard a ship are studying the seafloor

using a tethered remotely operated vehicle (ROV), while an autonomous underwater vehicle

(AUV) is surveying nearby waters. At some point, the AUV was meant to return to the

ship for recovery, but due to a navigational error, the AUV overshot, didn’t recognize it, and

continued in a beeline. The danger is that its trajectory eventually crosses a shipping lane,

where it risks collision.

The ship’s crew thus faces the following decision. They could gun the ship towards the

AUV and try to capture it before it hits the shipping lane, while reeling out the tether for the

ROV. Or, they could reel in the ROV first, and then chase after the AUV. Based on vehicle

cost alone, they might prioritize the ROV and choose the second option, but the AUV might

have traveled so far by then that they can’t catch up with it in time. Therefore, it’s worth

considering the first option of prioritizing the AUV. The risk there, though, is if the distance

between the ship and the ROV exceeds the total length of the tether, then the tether breaks,

we lose communication with the ROV, and we will have conduct an expensive follow-up

ROV recovery after retrieving the AUV. A middle ground, then, would be to chase after

the AUV first, but if we are running out of tether, then we switch to reeling it in, and then

continue to retrieve the AUV.

While this scenario is ultimately about meeting spatial targets, the range of speeds for

each vehicle relates the distance it travels into a range of possible durations. In theory, then,

we should be able to calculate how long it would take the ship to catch up with the AUV in

both scenarios, and decide which plan leaves more overall margin. Unfortunately, there is

the complicating factor of ocean currents, which vary considerably in all three dimensions
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Figure 1-2: Faced with a rogue AUV while conducting a tethered ROV mission, the ship’s
crew has to decide which vehicle to recover first. If the AUV is let loose for too long, it may
cross into a busy shipping lane. However, it would also be expensive to break the tether and
have to recover the ROV later. The temporal uncertainty in each scenario comes from the
ever-shifting ocean currents, which affect the transit times of all three vehicles.

17



and are notoriously hard to predict. Since the ship has the most powerful engines, its transit

durations are least affected by such currents, and surface ones at that. Conversely, the

energy-efficient AUV has the weakest propulsion, so its true distance from the ship over

time has fast-growing uncertainty. An accurate analysis of the situation must therefore take

into account this uncertainty for each vehicle, and consider the potential delay it introduces

in achieving the necessary rendezvous.

This scenario faces similar reasoning challenges as the moviegoing example. First,

the safety of either alternative is heavily influenced by the actual durations it takes to

complete the required actions. And second, those durations are difficult to estimate, but

their distributions could be maintained by a planning system, and thus contribute towards a

quantified assessment of the scheduling risk. In this case, historical data could be combined

with models of the vehicle dynamics and forecasts of the ocean currents to yield distributions

on the transit times between any two points for any vehicle.

In both the moviegoing example and this AUV retrieval situation, the scenario was

small enough that the humans in charge could personally intuit the risks and decide based

on that. However, suppose we wanted to simultaneously deploy a large number and wide

variety of robotic vehicles to explore in parallel. Such scenarios would greatly advance

the investigative abilities of oceanographers, but also require a degree of coordination that

would overwhelm our intuition for assessing risk. Instead, automated risk analyses could

be powerful tools for the human operators in charge, and thus enablers of such deployments.

1.2 Thesis claims and outline

In this section, we state in four main claims the technical contributions of this thesis to

risk-bounded scheduling. Each claim is addressed by a subsequent chapter, ranging from

Chapters 2 to 5.

The first claim pertains to the problem statement. In the non-probabilistic setting,

many previous authors have contributed to specifying the problem of dynamic scheduling.

Similarly, we found that the notion of risk-bounded scheduling, seemingly intuitive, actually

rests on an intricate network of concepts. Our goal is to elucidate that network and to enrich
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it with the work that went into defining dynamic scheduling.

Claim 1.1. We extend the concept of chance-constrained scheduling to encompass dynamic

scheduling. That is, we rigorously define what it means for a dynamic scheduling policy to

satisfy a chance constraint.

We use the term “chance-constrained” as a more precise synonym for “risk-bounded”,

since the problem statement actually contains a chance constraint that formally bounds

the acceptable probability of failure. From this point forward, we will thus use the term

“chance-constrained” when describing our problem.

Chapter 2 defines our chance-constrained scheduling problem, where the key concepts

we introduce are those of probabilistic durations and chance constraints. In order for these

to be well-defined, we rely on a foundational model of scheduling where the duration

uncertainty is not probabilistic but rather set-bounded. This turns out to be important later

in our solution approach. One concept we require, though, that prior work in scheduling

does not make, is the distinction between temporal requirements and activity durations.

Thus, we present upfront the set-bounded model, but now with that distinction built in.

In this presentation, we also address the full semantics of dynamic execution. The first

reason is that these semantics automatically carry over into the chance-constrained setting.

The second is that we explicitly show static schedules can be framed as a special case of

dynamic policies. These two reasons combined mean that our problem statement is a proper

generalization of prior art on chance-constrained static scheduling into dynamic scheduling.

With the problem in hand, we investigate the computational challenges in solving it,

and present a crucial reformulation of it into a more tractable form. It turns out most prior

work in probabilistic scheduling has used the same or similar reformulations. However,

many have not explicitly acknowledged that, so Chapter 3 examines the structure of that

reformulation, as well as its implications for soundness and completeness.

Claim 1.2. We reformulate the chance-constrained problem into one of risk allocation,

thereby decoupling the probabilistic requirement from the temporal constraints of the plan.

We introduce more rigor than prior art does when defining this reformulation, and also in

characterizing its inherent sources of incompleteness.
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As hinted above, this reformulation takes advantage of the well-developed theory for

set-bounded scheduling. We enforce the chance constraint in a way that effectively ignores

the unlikely extreme cases of duration outcomes. We call this risk allocation, and in doing

so, we transform the probabilistic durations of our plan into set-bounded durations. The

remaining constraints of the problem are then identical to that of set-bounded scheduling.

There are two aspects to this that we develop further than prior art.

First, this reformulation implies that when executing plans with probabilistic uncertainty,

we are actually employing scheduling policies that were designed for set-bounded uncer-

tainty. However, by definition, the latter encompasses more potential duration outcomes

than the former. Since a policy needs to be well-defined for any outcome, we actually need

to extend any valid set-bounded scheduling policies we find into a probabilistic context.

Fortunately, the concepts developed in Chapter 2 aid in this specification.

Second, the chance constraint enforcement strategy does rule out potentially valid

policies that cannot be accessed with the set-bounded model. It can be argued that the policy

space we give up would have been needed only for handling unlikely extreme outcomes.

However, it is still important to document these losses. To do so, we systematically illustrate

the relationships between the space of policies, the space of outcomes, and the space of risk

allocations. This makes it easy to identify the various sources of incompleteness, which

prior art had glossed over.

One of the major results of chance-constrained static scheduling is that a solving the

reformulated problem via a conflict-directed hybrid approach achieves significant runtime

gains [69]. Rather than encoding all the constraints, we iteratively discover conflicts from

the set-bounded theory, and use them to improve our risk allocation. It is thus natural to

ask whether those conflicts can be adapted to give information about producing dynamic

policies.

Claim 1.3. We adapt the conflict-directed hybrid approach of prior art to check for dynamic

controllability conflicts, so as to produce dynamic policies in the end. We characterize the

form of these conflicts’ resolutions as disjunctive linear constraints in the risk allocation

space.
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Chapter 4 gives a comprehensive treatment of how we leverage principles from conflict-

directed search to solve our problem. We begin by showing that fully encoding all the

constraints of our reformulated problem would be expensive, especially when searching

for dynamic policies. Then, we develop a hybrid algorithmic solution that uses two black-

box solvers to handle the two main conditions of the reformulated problem. A nonlinear

programming (NLP) solver is needed to generate candidate risk allocation, because the

chance constraint is inherently nonlinear. Then a controllability checker verifies whether

a policy exists for the resulting plan with set-bounded uncertainty. If not, it returns a

controllability conflict that further informs the NLP solver when generating subsequent risk

allocations.

The key step in this architecture is to understand the form of the conflicts and how to

resolve them. We develop the intuition to show that these conflicts are different depending on

whether we are solving the static or dynamic variant of our chance-constrained scheduling

problem. Namely, the dynamic controllability conflicts block out less of the risk allocation

space, which matches our hypothesis that enabling dynamic scheduling decisions widens

the space of feasible scheduling solutions. However, those conflicts’ resolutions have a

disjunctive form, which requires more general solvers than those specialized for NLP.

Rather than employ such a general-purpose solver, which is expensive, our insight is

to reduce the problem of handling those conflicts into a series of subproblems without

disjunctions. That is, those subproblems can be solved by existing algorithms for finding

chance-constrained static schedules.

Claim 1.4. We show that the combinatorial search required to handle the disjunctions

creates subproblems that are identical in form to the static variant of our problem. We are

thus able to frame chance-constrained static scheduling as a subproblem in our algorithm

for producing dynamic policies, and consequently leverage that existing solution.

Chapter 5 presents this insight and implements it by separating out three layers of

interacting subproblems. The bottom two layers form our solution for finding chance-

constrained static policies, and are functionally identical to our architecture in Chapter 4.

Then, instead of replacing the NLP solver in the second layer, we add a third layer on top to
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handle the branching on disjunctive conflict resolutions. Once we reach a leaf in our search

tree, the selected disjuncts are ready to be processed by the second layer’s NLP solver.

To further unify the algorithmic architecture, we show that all three layers share common

principles of finding and using conflicts in their solution methods. Therefore, we distill

these principles into a template algorithm that relies on conflicts from the layer below and

returns its own conflicts to the layer above. We then present each layer’s solution as an

instantiation of this template, so the full solution can be understood as the composition of

core principles across different levels of abstraction.

Beyond the four technical claims of this thesis, we survey the relevant literature and offer

experimental results. Chapter 6 reviews how others have approached similar scheduling

problems in probabilistic settings. Chapter 7 then presents benchmarks that demonstrate

our generalization of risk-bounded static scheduling to dynamic policies allows us to access

many more solutions. We also demonstrate the runtime advantages of our conflict-directed

algorithmic approach. Finally, Chapter 8 summarizes the thesis and offers roadmaps for

future work.

1.3 Approach in a nutshell

In this section, we walk through the problem statement and solution approach of this thesis.

The goal is to illustrate the concepts intuitively, and we rely heavily on visual depictions.

Most of the figures are adapted from subsequent chapters, where the concepts are more

deeply developed. In the figures presented here, we include details for completeness, but

only discuss the most salient points.

To define the notion of scheduling risk, we need to model activities’ durations prob-

abilistically. The modeling framework we use is called the probabilistic simple temporal

network (pSTN). Figure 1-3 depicts a pSTN that models a plan for making spaghetti. Each

arrow, except the red one, represents an activity, and through events, which are instantaneous

points in time, the activities link up to form threads, all moving forward in time to the right.

The key feature of a pSTN is that certain activities, indicated in dotted purple, have

probabilistic durations. Once such an activity is initiated, Nature samples a duration for
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Figure 1-3: This is a pSTN that models a plan for making spaghetti. The cooking activities
have uncontrollable duration, modeled probabilistically, while all the others are under the
chef’s control. Various temporal requirements are imposed throughout the plan, the main
one being the 15 minute overall deadline. The goal is to satify those requirements with no
more than 2% risk of failure.

it out of its distribution, and we as the plan executive do not find out until the activity

completes with that duration. The remaining activities, in green and blue, can be controlled

by us, within the time windows listed if any.

The final feature of a pSTN is the imposing of temporal requirements, indicated in red.

In the figure, we have a 15-minute deadline for completing the entire plan. We also have

local deadlines for how long we are willing to let the meatballs, spaghetti, and sauce sit

around before we begin the tossing and topping activities. The requirements are what define

the success criteria for the plan’s execution. Therefore, they are the constraints on which

we apply the notion of bounded risk.

The purple diamonds in Figure 1-3 represent a 2% chance constraint that is imposed on

the requirements. This expresses the idea that across all possible executions of the pSTN,

weighted by the probabilistic durations’ outcomes, the likelihood of violating any one of

the requirements may not be over 2%.

This definition of bounded risk relies on a clear notion of how a pSTN’s execution

is determined by a scheduling policy. Fortunately, we are able to borrow the definition
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Figure 1-4: As an example of dynamic execution, here is a situation where we’ve started
cooking all three ingredients, but only the boiling activity has completed at time 𝑡 = 9. Our
dynamic policy decides to finish the straining activity at 𝑡 = 10. However, Nature decides
that the sauce is done at 𝑡 = 9.5. This gets recorded in the execution history, so now our
policy has the option to respond by either straining at the same rate, or trying to finish it
earlier.

of a dynamic policy for simple temporal networks with uncertainty (STNUs), and apply it

directly to pSTNs. Figure 1-4 illustrates how such a policy might behave in the middle of

executing our spaghetti example.

This figure begins with an execution state where the meatballs are still baking in the

oven, the spaghetti has been taken off the burner at time 𝑡 = 9, and the sauce is still being

heated. Thus, the current time is 𝑡 = 9, and we’ve just begun straining the spaghetti. At this

point, the policy may decide to strain for one whole minute, ending that activity at 𝑡 = 10.

However, we may find out at 𝑡 = 9.5 that Nature has decided to terminate the heating

sauce activity. 2 Hence this observation gives us the opportunity to reevaluate its 𝑡 = 10

decision. We could decide to stay the course, or finish straining a little faster sometime in

the 30-second window between 𝑡 = 9.5 and 𝑡 = 10.

In this scenario, there is no particular advantage to finishing faster, but this is the kind of

flexibility that is key to dynamic execution. In other scenarios, we may wish to start or finish

activities later in response to observed uncontrollable durations. This dynamic execution

2It is somewhat formal to say that Nature “terminates” this activity. In real life, this likely corresponds to
us noticing that the sauce is bubbling vigorously, and we should take it off the heat.
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Figure 1-5: The core idea of our risk allocation reformulation is to impose [𝑙, 𝑢] interval
bounds on each probabilistic duration. First, this allows us to enforce that the probability
mass in the removed tails must not add up to more than the chance constraint’s risk bound.
Second, it maps the pSTN into an STNU, for which we can enforce controllability conditions.

mechanism thus completes our problem definition, namely, that given a chance-constrained

pSTN (cc-pSTN), we seek dynamic policies that will satisfy the chance constraint.

As given, the cc-pSTN is rather intractable due to two main factors. First, we allow

arbitrary probability distributions for the durations, so as the activities compose throughout

the plan, it becomes difficult to evaluate the actual probability that any given requirement

will be violated. Furthermore, this evaluation depends on the behavior of the policy we

choose, and not just Nature’s sampled outcomes. As Figure fig:nutshell-spaghetti-execution

demonstrates, the policy space would be extremely rich and difficult to navigate.

To sidestep these difficulties, the first step in our solution approach is to reformulate the

cc-pSTN into a more specific problem that follows the form of risk allocation. Figure 1-5

illustrates this being applied to our spaghetti scenario. Rather than consider probabilities

densities across the entire space of outcomes, we ignore the extreme cases in the tails,

and focus on the outcomes within an interval [𝑙, 𝑢] for each outcome. This allows us to

decouple the probabilistic condition of the chance constraint from the temporal condition

of satisfying the requirements, as follows.

First, we account for the probability mass in the tails that we ignore, and make sure that
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Figure 1-6: Our conflict-directed approach uses an STNU controllability checker to
discover conflicts that inform subsequent rounds of generating risk allocations. This avoids
having to encode all the controllability conditions at once. Eventually, either we will find
a risk allocation whose associated STNU is controllable, or we will have collected enough
conflicts that make the risk allocation problem infeasible.

it is less than the chance constraint’s risk bound. We call this condition the reformulated

chance constraint, and any valid solution based on ignoring those tails will thus respect the

original chance constraint. To get such a solution, we note that the [𝑙, 𝑢] bounds convert

our pSTN into an STNU, where the uncontrollable durations no longer have probabilistic

uncertainty, but only set-bounded. Thus, we can leverage STNU controllability theory

to express the deterministic condition that a policy exists for the converted STNU. In

summary, our reformulated problem is to find [𝑙, 𝑢] bounds, otherwise known as a risk

allocation, such that they satisfy the reformulated chance constraint and they result in a

dynamically controllable STNU.

To solve the reformulated problem, we note that fully encoding the STNU controllability

constraints would be expensive. Instead, we use a conflict-directed, hybrid approach that

follows a generate-and-test paradigm for converging to a valid risk allocation. Figure 1-6

illustrates this algorithmic architecture.

After reformulating the original problem, we generate a risk allocation, using an NLP

solver, without regard for the controllability conditions. Then, we check whether the

implied STNU is controllable, which is a much faster operation than trying to solve for such

an STNU. If it is controllable, then we’ve satisfied the necessary conditions. Otherwise,
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Figure 1-7: For static policies, the strong controllability conflicts we discover are
hyperplane-bounded regions in the risk allocation space. With each risk allocation we
generate, its associated conflict cuts down on the remaining feasible region of the chance
constraint.

we extract a conflict from the controllability checker, and derive a resolution constraint that

feeds back into the NLP solver for another candidate risk allocation. Thus, this approach is

hybrid in the sense that we leverage two black-box solvers to address respective subsets of

the full problem.

Intuitively, this algorithm replaces the full encoding of STNU controllability with an in-

cremental collection of conflict resolutions. If we kept collecting them, we would eventually

have an alternative formulation of the full encoding. However, with the chance constraint

limiting us to a certain set of risk allocations, we likely only need to discover a few conflicts

to find a valid solution, or otherwise prove infeasibility.

The key to this algorithm’s operation, then, is to understand the structure of the conflicts

and their resolutions. Although we are ultimately aiming for dynamic policies, it is helpful

to first consider how we obtain static policies, since the conflict-directed approach is equally

applicable in both cases. The only difference is that to obtain static policies, we check for

STNU strong controllability (SC), whereas obtaining dynamic policies requires that we

check for dynamic controllability (DC).

Figure 1-7 depicts how we navigate the space of risk allocations using strong control-
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Figure 1-8: For dynamic policies, the dynamic controllability conflicts form convex
polytope obstacles instead of half-volumes. Therefore, they also also trim the chance
constraint region, but less aggressively, and hence are more likely to lead to a solution.

lability conflicts. Initially, we choose any risk allocation within the green feasible region

specified by the reformulated chance constraint. If it results in an STNU that’s not strongly

controllable, then the conflict says that STNU has a negative cycle in its distance graph.

We don’t show the distance graph here, but the key result is that we avoid making that

cycle negative by deriving a linear “conflict resolution” constraint in the risk allocation

space. This means a half-volume containing the original risk allocation is pruned away,

and hence also cuts out part of the chance constraint feasible region. The conflict-directed

algorithm thus repeats this process, generating risk allocations in the remaining green

region, and cutting out portions that do not satify strong controllability.

When we replace the controllability check in Figure 1-6 with dynamic controllability, the

conflicts that are returned are called semi-reducible negative cycles (SRNCs) in the STNU’s

distance graph. Without going into detail here, the result is that the SRNC-avoidance

obstacle becomes a convex polytope instead of a half-volume, as shown in Figure 1-8.

Algebraically, the conflict resolution constraints are now disjunctions of linear constraints.

The major consequence of using DC conflicts versus SC conflicts is that each conflict
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Figure 1-9: When we branch on the DC conflicts’ facets, we relax the polytopes into
half-volumes. This mimics the form of the SC conflicts’ resolution constraints. Thus, once
all DC conflicts have been branched on, we can use the same static policy algorithm, with
minor adjustments, to find a risk allocation.

obstacle cuts out less of the risk allocation space, and hence potentially less of the chance

constraint region as well. This is what accounts for the increased solution space when

solving for dynamic policies. The difficulty, however, is that the NLP solver for the risk

allocation step in Figure 1-6 isn’t designed to handle disjunctive constraints. Swapping it out

for another black-box solver than can, such as those that perform mixed-integer nonlinear

programming (MINLP), is theoretically possible, but would be very expensive.

Instead, our key insight is that by branching on the linear disjuncts of each disjunction,

we map the problem of solving dynamic conflict resolution into a series of linear programs

(LPs) with the nonlinear chance constraint attached to each. This is exactly the form of

constraint program that is solved by our NLP solver in the static case, and it is depicted in

Figure 1-9.

We have the same two DC conflict obstacles as in Figure 1-8, but now we pick a single

“facet” of each obstacle to branch on. Each facet corresponds to a linear disjunct. With

facet A from obstacle 1 and facet B from obstacle 2 activated, they prune out half-volumes
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just like the ones in Figure 1-7. In this case, we are left with a sliver of the chance constraint

region, from which we select a third risk allocation.

Therefore, the strategy to solve for dynamic policies is to try all combinations of

facets from each known DC obstacle. For each combination, we use the static policy

algorithm to solve for a risk allocation, and with the modification of checking STNU

dynamic controllability. Some combinations may completely prune the chance constraint

region, so those are dead ends. Other combinations may yield STNUs that fail the DC

check, in which case we discover new SRNC conflicts. Only when we’ve exhausted all

combinations without finding a DC STNU do we return infeasible.

This strategy of branching over disjunctions can be abstracted into combinatorial search,

where we map each disjunction into a discrete variable, and each disjunct into a value for

that variable. The insight this abstraction brings is that the relationship between its search

and problem it frames for the static policy algorithm mirrors the relationship between the

NLP solver and the STNU problem it frames for the controllability checker. In both cases,

a higher level is responsible for the entire problem, while relying on a subsolver to verify

the remaining conditions. When the subsolver cannot generate a solution to the subproblem

it’s given, it returns a conflict for the higher level to resolve.

This insight leads us to unify our algorithms for generating chance-constrained static

and dynamic policies. We identify layers of subproblems and construct algorithms for

each. Each layer’s algorithm follows a common template where it calls a third-party solver

to handle the constraints that layer is designed for, and then frames a subproblem for the

layer below to verify. Figures 1-10 and 1-11 depict this architecture for static and dynamic

policies, respectively.

The main difference is that the dynamic version inserts a third layer between the common

top level, which performs the problem reformulation, and the second layer, which is the

entry point for the static algorithm. Minor modifications are also needed for the bottom

two layers. First, the bottommost layer now returns SRNC conflicts instead of just plain

negative cycles. However, a point of nuance is that under certain conditions, some SRNCs

only have a single linear resolution, which is not disjunctive. Thus, the second layer can

actually handle those resolutions and generate new risk allocations without going up to the
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Figure 1-10: Our algorithm for producing chance-constrained static policies is composed
of two interacting levels, underneath a top level which is responsible for the problem
reformulation. Level 2 uses an NLP solver to generate risk allocations, while Level 1
checks the implied STNU for strong controllability.
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Figure 1-11: To produce chance-constrained dynamic policies, we incorporate a third level
between the top level and Level 2 to perform combinatorial search over the polytope facets.
These polytopes are generated via a modification to Level 1 to check for dynamic rather
than strong controllability.
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third layer. Only when faced with a disjunctive constraint does the second layer return that

as a conflict up to the third layer for branching.

In summary, this section has presented a fast-paced, illustrated overview of this thesis’s

technical contributions. We began by showcasing the main features of cc-pSTN problem

and that of finding a dynamic policy. Then we reformulated the problem into a more

tractable risk allocation form. The structure of the reformulated problem led us to design a

conflict-directed, hybrid algorithm, where STNU controllability conflicts inform subsequent

rounds of risk allocation. The final step is to recognize that DC conflicts can be resolved by

branching on them in forms that mimic the SC conflict resolutions. This leads to a shared

algorithmic solution, where finding a chance-constrained dynamic policy is implemented

as a layer of combinatorial search over the algorithm for chance-constrained static policies.

Subsequent chapters develop each of these points thoroughly and in sequence.
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Chapter 2

Problem Statement for Risk-Bounded

Scheduling

Chapter 1 had expressed the need to model activities’ durations with probability distri-

butions, so that large, complex plans could be scheduled with bounded, quantifiable risk.

The goal of this chapter is thus to formally define the scheduling problem for plans with

probabilistic durations.

A key feature of this problem is the probabilistic condition for success. Unlike problems

based on non-probabilistic models, where the objective is to handle all possible uncertain

outcomes, our objective will be to handle enough outcomes such that we have a sufficiently

high probability of successfully scheduling the plan. I capture this notion of sufficiency

with a chance constraint, and I argue why this is preferred to simply minimizing the risk of

failure.

The second key feature of my problem is that it targets dynamic execution of the plan.

Previous work [67] [20] [69] had addressed a similar version of the problem that allowed

only for static execution. This limitation prevents us from reacting to duration outcomes as

they occur, and thus severely limits the solution space. In this chapter, I build up the concept

of a scheduling policy to support dynamic execution. I then show how it also encompasses

static execution as an edge case.

The notion of dynamic execution has been well-studied for a non-probabilistic plan

model called the simple temporal network with uncertainty (STNU) [38] [33] [40]. This
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model captures most of what we want except the probabilistic duration and the consequences

it entails for the problem statement. Therefore, I build our model, the probabilistic simple

temporal network (pSTN) by extending/modifying the STNU’s semantics.

Section 2.1 gives a thorough review of the STNU model and the form of its scheduling

policies. This allows me to rigorously define, in Section 2.2, the pSTN model and the

chance-constrained-pSTN (cc-pSTN) scheduling problem as precise extensions to their

STNU counterparts. Although Section 2.1 recaps much existing work, from the beginning I

present it with a key innovation to support my cc-pSTN definition. Namely, since the chance

constraint is a probabilistic condition on the plan being properly scheduled, I separate out the

notion of a temporal requirement from the activity durations in the plan. With the exception

of [69], prior work does not make this distinction, but I argue that this is necessary for the

notion of a chance constraint to be semantically sound in the context of plan execution.

2.1 Review of STNUs

Temporal plans are composed of activities that have flexible duration. This means during

execution, an activity’s duration could fall anywhere within some domain. For instance,

when I brush my teeth in the morning, it takes between one and three minutes, depending

on how thorough I wish to be. By composing multiple such activities (e.g., making the bed,

eating breakfast, doing dishes, etc.), and then imposing some constraints, such as a one-hour

deadline, we get a plan for my morning routine. A temporal network summarizes these

temporal relationships, while disregarding physical state, such as what exactly happens to

the dishes. (Those aspects are out of scope for scheduling, and left for a planner to consider.)

Sometimes, when we dispatch the activities of our plan, we don’t have control over how

long an activity lasts, but rather Nature determines it. When I walk out my apartment door

and push the elevator button, residents on other floors might be calling it, too. Thus, I am

at the mercy of the situation (and the opaque elevator scheduling algorithm). We could still

determine an upper bound on the wait time, as there are a finite number of floors, but once

I push that button, I have to accept a wait time ranging anywhere from zero (the elevator

is already on my floor) to that bound. This notion of uncontrollable duration is the key
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aspect1 of STNUs.

In the remainder of this section, I will first focus on how the STNU model captures the

semantics of uncontrollable durations in temporal plans. Once the STNU semantics are laid

out, I will then define the problem of scheduling STNUs, which will require the supporting

concepts of execution history and scheduling policy.

2.1.1 Modeling STNUs

To illustrate, I will model as an STNU a situation where you make spaghetti for your family.

I do this in two parts: first just the activities, and then with requirements imposed.

Example 2.1 (Family spaghetti: activities). It’s Saturday noon, and Chef You are going to

make spaghetti and meatballs lunch for your family. Figure 2-1 delineates your plan2 in

graphical form. There are three ingredients that need to be cooked: meatballs, spaghetti,

and marinara sauce. You can put the meatballs in the oven, while in parallel you boil the

spaghetti and heat the sauce on two burners. Once the spaghetti is cooked al dente, it’s

simply a matter of straining it, tossing it in the sauce, and topping it with the meatballs and

cheese.

Each activity has its own flexible time window, and if you were making spaghetti just

for yourself, you would be able to control the duration of each within its window. But since

your family’s job is to distract you, you might get lost in conversation and nearly forget to

strain the spaghetti before it turns to mush. Fortunately, you’ve set a timer that forces you to

take it off the burner once 11 minutes has passed. (It also beeps if you attempt to undercook

the spaghetti by taking it off before the 8-minute mark.) You have similar timers for the

other cooking activities, but not for the remaining ones, whose durations are so short that

you are focused and thus at no risk of under- or over-shooting.

1The other aspect is due to the word simple, which means durations’ domains must be unbroken intervals on
the real numbers. Once we start saying a duration could lie within disjoint time windows, our model becomes
disjunctive. This starts bringing in combinatorial complexity, which is typically dealt with in planning and
not scheduling.

2Technically, it specifies just the STNU temporal structure of your plan. The plan itself would contain
additional state information, such as preconditions and effects for the activities. For rhetorical convenience, I
may use the term “plan” throughout to refer to such temporal structure.

37



Figure 2-1: To make spaghetti for your family, these are the activities comprising your
plan, labeled with time windows. This model captures the distinction between controllable
and uncontrollable activities, and the waits linking them together. Together, these elements
provide a roadmap for your plan’s execution.

As Figure 2-1 shows, you begin by forking out three parallel threads for the three cooking

activities. Once the spaghetti is strained, you merge its thread with the sauce’s, so you can

toss, and then merge that thread with the meatballs’ for the final topping. I indicate activities

as arrows, showing that they move forwards in time, and each is labeled with its flexible

time window. Activities begin and end on events, which represent instantaneous timepoints.

At any point during the plan’s execution, events in the past are assigned, while events in the

future are not. For instance, if you’re in the middle of cooking the spaghetti, then its start

event has been assigned some value 𝑡𝑠. However, its end event is still unassigned, though it

must eventually end up in the window [𝑡𝑠 + 8, 𝑡𝑠 + 11].

In this example, the three cooking activities in dashed yellow have uncontrollable

duration, while the remaining three activities in green are considered “regular” activities

with controllable duration. The difference is that when you launch a controllable activity3

(i.e., by dispatching its start event at a certain time), you have full control over when to

dispatch its end event (as long as you stay within the bounds of that activity’s flexible time

window). In contrast, for uncontrollable activities, due to factors out of your control, you

wait for the “arrival” of their end events, as selected by Nature. You have no knowledge of

those arrivals until exactly when they happen, and all you’re guaranteed is that Nature will

38



respect the activities’ time windows. I distinguish such uncontrollable end events as yellow

squares instead of blue circles.

Finally, note that the figure visually distinguishes a third type of activity: waits. The

wait activities have implicit [0,+∞) durations, which are controllable, just like the regular

activities. I don’t distinguish them in Definition 2.3 below, but I do in the example because

wait activities give us the semantics for merging threads:4,
5 When two or more threads

merge onto a single event, they have to wait for each other to finish whatever prior activities

they were engaged in.

Now so far, the example STNU doesn’t contain any scheduling requirements. I’ve only

laid out the activities and how they structurally link together, but I haven’t said anything

yet about any deadlines, for instance. I also haven’t specified how tightly coordinated your

parallel cooking threads need to be; as is, the [0,+∞) waits mean that threads would be

happy to idle forever before merging.

In other words, I’ve only provided the execution model, which by itself will never

experience a scheduling failure. Only by specifying scheduling requirements do I create a

condition or constraint that has the possibility of being violated by and during execution.

Therefore, I will now complete the example (and the STNU) by stating timing requirements

on your plan.

Example 2.2 (Family spaghetti: requirements). Figure 2-2 augments the previous STNU by

adding scheduling requirements in red. Your first condition is that your family is so excited

to experience Chef You’s World-Famous Spaghetti Lunch, that they don’t want to wait more

than 15 minutes. Also, the talented chef that you are, you understand the importance of

3Again, for rhetorical convenience, I may use the terms “activity” and “duration” interchangeably, and
both terms may be prefaced by “controllable” or “uncontrollable” as needed. Technically, temporal networks
don’t really contain activities, which belong to the plan, but just the flexible time windows that model the
activities’ durations. However, I want to emphasize later that these durations are distinct from requirements,
which will look syntactically similar but are semantically different. Thus, I actually use the term “activity” in
my STNU definition below, and will use it as a proxy when technically referring to an activity’s duration.

4Waits are also useful for modeling temporal slack: By forking out onto wait activities, I allow you to
stagger the start times of each cooking activity. Conversely, I chose not to include a wait between cooking
and straining the spaghetti, lest you risk losing al dente perfection.

5I don’t include waits and threads in my STNU definition, for the following reasons: a) as noted above,
I consider waits a type of controllable duration activity; b) since threads could fork or merge anywhere, it
would be easier to define them separately, and then infer them as needed from the temporal network structure;
and c) I don’t wish to diverge too much from existing literature.
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Figure 2-2: The red additions, compared to Figure 2-1, indicate timing requirements for
your plan. For visual clarity in subsequent graphical depictions, I will label requirements
on waits with just the red intervals, and omit the red arrows.

keeping freshly cooked ingredients steaming hot, so you have three more timing conditions6

within the plan:

1. Once the meatballs are out of the oven, you don’t want them sitting out cooling for

more than two minutes.

2. Once the spaghetti is strained, they have to be tossed in sauce within two minutes, or

the strands will get starchy and stick together.

3. Like the meatballs, the sauce shouldn’t sit around cooling for too long, but being a

thick liquid, it cools slower, so you’re willing to let it sit for up to three minutes.

On the face of it, requirements look just like activities: they also span pairs of events and

are labeled with flexible time windows. But instead of representing physical processes, these

time windows are desired constraints on the separation between arbitrary pairs of events,

6These conditions effectively place restrictions on certain merging wait activities, by lowering the +∞
upper bound to a finite number. In Figure 2-2, I drew these requirements on top of those waits as interval-
labeled red arrows. To reduce clutter in subsequent diagrams, when there is a requirement over just a single
activity, I will simply write the requirement’s time window in red directly over the activity.
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so there is no default “guarantee” that the plan’s execution will result in those separations

falling within the time windows. For example, if your family had insisted on having lunch

in 10 minutes from now instead of 15, you would justifiably protest on the basis that you

need at least 10 minutes to simply bake the meatballs, plus at least 30 more seconds to

arrange them on top of the spaghetti.

Temporal requirements can be understood as pairs of constraints: Between any two

events, they establish both a lower and upper bound on their time separation. In Example 2.2,

you’ve actually only specified the upper bounds. That means I could have made the lower

bounds −∞ instead of zero, and still have captured your intent7. This observation leads to

two points of difference between activities and requirements:

1. Requirements can have negative lower bounds, whereas activities’ time windows must

be strictly non-negative8, because they represent physical processes.

2. As they specify pairs of constraints, requirements are actually reversible: A lower

bound 𝑙 and upper bound 𝑢 in one direction are equivalent to a lower bound −𝑢 and

upper bound −𝑙 in the reverse. For example, I could have specified the 15 minute

deadline as a reverse arrow from the end of the plan to the beginning with time

window [−15, 0]. In practice, unless a requirement is symmetric [−𝑥,+𝑥], it will

usually be more natural to write it one way over the other, but it makes no difference

to the model.

Now that I’ve illustrated a complete STNU through this spaghetti example, I will capture

its features in a formal definition of STNUs. Then I will complete the modeling discussion

by noting a couple aspects of the definition that I didn’t yet highlight in the example.

Definition 2.3 (STNU). A simple temporal network with uncertainty𝒩 𝑢 = ⟨ℰ , ℰ𝑢,𝒜,𝒜𝑢,

ℛ⟩ is a collection of the following:

• Controllable events ℰ . Each 𝑒𝑖 ∈ ℰ is a real-valued variable, to be dispatched by a

scheduling policy during execution.

7Upper bounds of +∞ and lower bounds of −∞ are equivalent: they both effectively indicate that there
is no constraint.

8 I allow for the idealization of activities with zero (i.e., instantaneous) duration. In real life, you may need
to account for+𝜖 of time for dispatching each event, but those considerations are typically application-specific,
so I don’t include them in my core theory.
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• Uncontrollable events ℰ𝑢. The only difference with respect to ℰ is that they are to

be dispatched by Nature. Also, each 𝑒𝑢𝑗 ∈ ℰ𝑢 serves as the end event for a unique

uncontrollable activity 𝑎𝑢𝑗 ∈ 𝒜𝑢.

• Activities with controllable duration 𝒜. Each 𝑎 ∈ 𝒜 takes the form
⟨︀
𝑒𝑖, 𝑒𝑗, [𝑙, 𝑢]

⟩︀
,

where 𝑒𝑖 ∈ ℰ
⋃︀
ℰ𝑢, 𝑒𝑗 ∈ ℰ , and 0 ≤ 𝑙 ≤ 𝑢. This specifies an activity that begins

on any event 𝑒𝑖, ends on a controllable event 𝑒𝑗 , and its duration 𝑒𝑗 − 𝑒𝑖 falls in the

non-negative interval [𝑙, 𝑢].

• Activities with uncontrollable duration 𝒜𝑢. Each 𝑎𝑢𝑗 ∈ 𝒜𝑢 takes the form
⟨︀
𝑒𝑖, 𝑒

𝑢
𝑗 ,

[𝑙, 𝑢]
⟩︀
, and it specifies an activity that ends on a unique uncontrollable event 𝑒𝑢𝑗 ∈ ℰ𝑢.

Otherwise, it has the same conditions as a controllable activity.

• Requirements ℛ. Each 𝑟 ∈ ℛ takes the form
⟨︀
𝑒𝑖, 𝑒𝑗, [𝑙, 𝑢]

⟩︀
, where 𝑒𝑖, 𝑒𝑗 ∈ ℰ

⋃︀
ℰ𝑢

and 𝑙 ≤ 𝑢. This specifies a requirement that 𝑒𝑗 − 𝑒𝑖 ∈ [𝑙, 𝑢], regardless of whether 𝑒𝑖

and 𝑒𝑗 are assigned by the plan dispatcher or by Nature.

A subtle but key property of this definition is the bijection between uncontrollable

activities and uncontrollable events (and therefore |𝒜𝑢| = |ℰ𝑢|). Uncontrollable events

arise in the first place because of the need to model how uncontrollable activities terminate.

Namely, the end event 𝑒𝑢𝑗 of an uncontrollable activity is a unique physical phenomenon,

and therefore cannot exist on its own, or terminate any other activity. However, any other

activity may start on 𝑒𝑢𝑗 , because with respect to launching an activity, all it needs is an

instantaneous start time, which any event, controllable or not, can provide. It is also the

case that requirements may freely point to or away from an uncontrollable event.

To summarize, the “restrictions” on an STNU are that activities must have non-negative

duration, and uncontrollable activities end on unique uncontrollable events. It may also be

helpful to think of the “un-restrictions” as being that activities may start on any event, and

requirements may link any pair of events with arbitrary lower and upper bounds.

When discussing the size of an STNU for complexity purposes, it turns out the two

most important parameters are the number of events total and the number of uncontrollable
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activities. By convention [33], I denote the former by 𝑁 and the latter by 𝐾:

𝑁 = |ℰ|+ |ℰ𝑢|,

𝐾 = |𝒜𝑢| = |ℰ𝑢|.

2.1.2 The STNU scheduling problem

Having presented the STNU model as threads of activities that must be executed in a way

that satisfies scheduling requirements, I will define in this subsection what it means to

perform such execution9. In a nutshell, I will encode the execution decisions of the user

(i.e., the plan dispatcher) into a scheduling policy, while representing the realized durations

of uncontrollable activities, determined by Nature, as outcomes. Together, a policy and a

full set of outcomes will produce a record of how execution unfolds, known as an execution

history, we want this history to satisfy the requirements.

To illustrate these concepts intuitively, I begin by presenting a sample execution of the

family spaghetti STNU, showing how you might carry out the plan under a specific scenario.

After making a few observations, I then formalize these concepts so that I can precisely

state the STNU scheduling problem.

Example 2.4 (Sample execution of the family spaghetti STNU). Taking stock of your

plan, you realize that baking the meatballs and boiling the spaghetti are the real timesinks,

whereas heating the sauce is relatively quick, and so are the remaining activities. Therefore,

you decide to waste no time putting the meatballs in the oven and the spaghetti on the burner.

Now you can rest a bit, but at seven minutes in, before either the meatballs or spaghetti are

done, you put the sauce on the second burner. This way, in the worst case, you can take the

9The terms “execution”, “dispatch”, and “scheduling” are related and often seem interchangeable. In my
writing, I endeavor to make the following distinctions: a) Scheduling is simply the act of deciding when
activites should begin and end. It can be performed offline or online. b) Execution and dispatch both refer
to the actual carrying-out of activities, which is online and in real time. Both terms can often be used
interchangeably, but I use “dispatch” only to describe an event being executed or a controllable activity being
initiated (via the dispatching of its start event). This is because the term connotes immediacy and something
being launched. In contrast, I typically use “execution”, which has a broader connotation, for describing
larger-scale happenings, such as the execution of a thread, or of an entire plan. c) One exception to this rule is
“plan dispatcher”, which is what executes the plan by running the scheduling policy. I inherit this term from
the literature, and you can think of it as execution via controlled dispatching of individual activities.
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spaghetti and sauce off their burners simultaneously at 𝑡 = 11 before you overcook them.

At this point, a relative calls you over to ask what happened to their computer and if

you can fix it. Reluctantly, you start thumbing through their menus and settings, but with

an eye on the desktop clock. A couple minutes in, they start asking you too many questions

about what you’re doing, so you cite culinary priority and glide back into the kitchen.

Now it’s 𝑡 = 10, and to look busy in the eyes of your confused relative, you decide to

take the spaghetti and sauce off the heat. But then that means time is of the essence. Setting

the sauce aside, you must immediately strain the spaghetti of hot boiling water, which you

do carefully with raised eyebrows, telegraphing your concentration (in case your relative is

watching). This take you a minute (it’s a large pot for a large family). Then you spend the

next minute distributing the spaghetti onto plates and mixing the sauce into each.

This brings you to 𝑡 = 12, and your hawk-eyed relative, sensing an opening, protests

at your leaving them hanging and resumes their line of questioning. Unfortunately (or

fortunately), you still have the meatballs in the oven, but being the gracious tech support

that you are, you summarize where they have to go look to restore their bookmarks, and

then you send them away. Now it’s 𝑡 = 13, and to stave off any further interruptions, you

whisk the meatballs out of the oven, and carefully arrange five on each plate in the shape of

a smiley face (except for one).

At 𝑡 = 14, you announce lunch is ready, one minute ahead of schedule. The floodgates

are opened, everyone pours into the dining room, and while musical chairs is happening, you

stare off into space, envisioning the rave reviews, the encouragement to open a restaurant,

your first Michelin star...

But first, back to reality. You just created an execution history for your STNU, depicted

in Figure 2-3. Let’s review how that happened from the point of view of a scheduling policy.

While you were busy fending off complaints about Firefox’s user interface, the STNU

execution center of your brain was subconciously hard at work, running a scheduling policy.

The first observation I want to make is that while I had described the example in terms of

you performing activities, the actual scheduling decisions were when to start activities, and

if they were controllable, when to end them. In other words, scheduling happens on the

events, and not during the activities. So fundamentally, a scheduling policy decides when
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Figure 2-3: I annotate the family spaghetti STNU with times indicating when each
event got dispatched, according to the sample execution in Example 2.4. Dispatchings for
controllable events, as decided by the scheduling policy, are written in light blue, while
those for uncontrollable events, as per Nature, are in magenta. To facilitate discussion
below, I have given each event a letter name.

to dispatch events, and controllable ones at that.

The uncontrollable events, then, are dispatched by Nature. You can think of Nature’s

process as follows: Every time an uncontrollable activity is launched (via the dispatching

of its start event), Nature selects a duration at random from the activity’s time window, and

decides to dispatch the activity’s end event that many time units afterward. When you put

the meatballs in the oven at event 𝐵, Nature already decided that you would take them out

13 minutes later at event 𝐶. You didn’t know it at the time, but “Nature” summarized (and

sampled) the eventual effects of dealing with your relative when it selected that duration

outcome. Of course, “Nature” is a theoretical construct, and processes in real life can’t see

into the future (unless you want to get metaphysical). But describing it like so provides a

clean semantics for how uncontrollable event dispatches happen.

The concept of an execution history can then be simply understood as a sequence of

event dispatches, building up as they happen in real time. Given such a history, it’s very

straightforward to check whether the requirements were satisfied. In our example, you were

very proactive with the tossing and topping activities, so that the waits from 𝐶 to 𝐾 and

𝐻 to 𝐼 were basically instantaneous, and the wait from 𝐺 to 𝐼 lasted only a minute, well
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within the three-minute limit. Finally as noted, you completed the plan with one minute to

spare.

Due to the uncertainty in the uncontrollable activities, running a policy multiple times

may yield varying execution histories. The question then is whether all those histories will

satisfy the requirements. For a negative example, suppose you had taken a minute to rest

between events 𝐻 and 𝐼 (it’s a very heavy pot). That would push 𝐽 to execute no earlier

than 𝑡 = 12.5, which would still be fine under the current circumstances. But then suppose

you had also decided to take out the meatballs at 𝑡 = 10 (maybe you were in the mood

for medium-well). Now you have a problem, because 𝐾 can’t happen earlier than 𝐽 , and

the difference between 𝐶 = 10 and 𝐾 ≥ 12.5 violates the two-minute limit on how long

the meatballs can sit out. To summarize, for any scenario that begins as Example 2.4 did,

except the meatballs were done in 10 minutes, if your policy waits more than 30 seconds

between straining the spaghetti and tossing it with sauce, you will end up with a history that

leaves the meatballs sitting out for too long.

Ultimately, the STNU scheduling problem is to find a scheduling policy that is robust

to any outcomes of the uncontrollable activities’ durations. The preceding example and

discussion a sample execution should have made this problem intuitive to understand, so

at this point, I will state the formal definition upfront. Then I will build up the formal

definitions of history and outcome, to support a rigorous definition of scheduling policy,

which is central to the problem definition.

Problem 2.5 (STNU scheduling problem). Given an STNU 𝒩 𝑢 = ⟨ℰ , ℰ𝑢,𝒜,𝒜𝑢,ℛ⟩,

determine whether there exists a feasible scheduling policy 𝒫 , i.e., for any full outcome 𝜔 to

the uncontrollable activities𝒜𝑢, repeatedly applying𝒫 produces a final execution history 𝜉

that satisfies the requirementsℛ.

The key word feasible refers to the guarantee that the final execution history will satisfy

the requirements. This property is straightforward to attach to the definitions, which I do

below, first for execution histories and then for policies.

The other key word I haven’t touched upon is “repeatedly”. I want to convey the idea

that when you execute a temporal network, you incrementally build an execution history,

46



every time an event is dispatched. At any moment in the execution, a scheduling policy

looks at the current state10, and decides what controllable event it will try to dispatch next

and when. The result of that decision is either that event will execute at the planned time, or

if there are any active uncontrollable activities, one of their end events might arrive earlier

than that time. Either way, the execution history would be extended by whichever event

arrived earlier, thus creating a new state for the policy to operate on.

The remaining definitions in this subsection codify this intuition. First, I have to define

how I represent execution histories:

Definition 2.6 (Execution history). A (full) execution history 𝜉 for an STNU 𝒩 𝑢 is a

sequence of monotonically increasing assignments to all the events ℰ
⋃︀
ℰ𝑢, i.e.,

𝜉 =
⟨︀
(𝑒𝑖1 , 𝑡1), (𝑒𝑖2 , 𝑡2), . . . , (𝑒𝑖𝑁 , 𝑡𝑁)

⟩︀
,

where 𝑡1 ≤ 𝑡2 ≤ . . . ≤ 𝑡𝑁 .

A partial execution history 𝜉𝑘 =
⟨︀
(𝑒𝑖1 , 𝑡1), . . . , (𝑒𝑖𝑘 , 𝑡𝑘)

⟩︀
only assigns 𝑘 events, where

0 ≤ 𝑘 < 𝑁 .

Thus, execution of an STNU begins with an empty partial history, and proceeds by

appending successive event assignments. The full history of the sample execution in

Example 2.4, and illustrated in Figure 2.4, would be:

𝜉 =
⟨︀
(𝐴, 0), (𝐵, 0), (𝐷, 0), (𝐹, 7), (𝐸, 10), (𝐺, 10), (𝐻, 11),

(𝐼, 11), (𝐽, 12), (𝐶, 13), (𝐾, 13), (𝐿, 14)
⟩︀
.

For clarity, I have bolded the uncontrollable events’ dispatches, even though the definition

of partial histories makes no distinction when they arrive. They exist to remind us that

those dispatches were made by Nature, while all the others were due to scheduling decisions

made by your scheduling policy.

Naturally, a history must respect activities’ time windows for it to capture the execution

semantics of STNUs. That is, for each activity, controllable or not, its realized duration

10By “state”, I mean the current state of what has executed and what has not. Again, this is scheduling and
not planning, so there is no “physical” state or other state spaces involved – only the “temporal” state of the
events.
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must fall within the activity’s time window. I call such a history valid. In the course of an

STNU’s execution, invalid histories are simply never generated.

Given a valid history, the next property we desire is for it to respect the requirementsℛ,

which I call feasible. Because activities and requirements share the same syntactic form,

it’s really the same condition drawn from an additional set of constraints. But there are

a couple wrinkles when it comes to partial histories and feasibility, which I detail in the

definition below.

Definition 2.7 (Valid and feasible execution histories). A full execution history 𝜉 for an

STNU 𝒩 𝑢 is valid if for all activities 𝑎 =
⟨︀
𝑒𝑖, 𝑒𝑗, [𝑙, 𝑢]

⟩︀
∈ 𝒜

⋃︀
𝒜𝑢, the assigned values

of 𝑒𝑖 and 𝑒𝑗 satisfy 𝑒𝑗 − 𝑒𝑖 ∈ [𝑙, 𝑢].11 Furthermore, a history is feasible if it is both valid

and for all requirements 𝑟 =
⟨︀
𝑒𝑖, 𝑒𝑗, [𝑙, 𝑢]

⟩︀
∈ ℛ, the assigned values of 𝑒𝑖 and 𝑒𝑗 satisfy

𝑒𝑗 − 𝑒𝑖 ∈ [𝑙, 𝑢].

A partial history 𝜉𝑘 is valid if the completed activities so far have respected their time

windows, and any currently executing activities haven’t violated theirs. So for any activity

where both its start event 𝑒𝑖 and end event 𝑒𝑗 have been executed, i.e., are in the scope of

𝜉𝑘, the same feasibility condition above applies. And for any activity where only its start

event 𝑒𝑖 is in scope, the current time, indicated by the last assignment (𝑒𝑖𝑘 , 𝑡𝑘) in 𝜉𝑘, must

not exceed the latest possible time the activity could finish, i.e., 𝑡𝑘 ≤ 𝑒𝑖 + 𝑢.

Finally, a partial history 𝜉𝑘 is feasible if it is valid to begin with, and then for all require-

ments whose events 𝑒𝑖 and 𝑒𝑗 are within scope, those events must respect the requirement’s

time window, 𝑒𝑗 − 𝑒𝑖 ∈ [𝑙, 𝑢].

The last point I wish to make about execution histories pertains to events happening

simultaneously: First, I assume the policy computes instantaneously12. This allows it to

treat simultaneous events as successive appends to the history. Second, if two events are

linked by an activity with a [0, 𝑢] time window, the end event has to come after the activity’s

start in the history. For example, 𝐻 → 𝐼 represents a wait activity that you spent zero time

on, but it is an activity with a start and an end, so 𝐻 must come first in the history. In

11Technically, I should be using the 𝑡 values attached to 𝑒𝑖 and 𝑒𝑗 in the execution history. Due to the
notational inconvenience of having to map subscripts 𝑖 and 𝑗 in an activity’s events to subscripts 𝑖𝑘 in a history,
I just use 𝑒𝑖 and 𝑒𝑗 directly here and in the rest of the definition.
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contrast, 𝐵 and 𝐷 could be interchanged, because they represent independent start events

of different activities, even though you dispatched them simultaneously with 𝐴.

Next, to describe how uncontrollable events get added to a history, I need to state how

Nature determines the durations of the activities those events terminate. When discussing

Example 2.4 prior, I stated that once you dispatch an uncontrollable activity, Nature imme-

diately, behind the scenes, chooses a duration for it at random. This was intuitive for a first

explanation, but in the definition below, I modify it slightly to say that Nature samples all

the uncontrollable durations prior to execution of the entire plan.

The main reason I say this is that there could be dependencies and/or correlations

between activities’ durations. For instance, because you were cooking the spaghetti and

the sauce on parallel burners, you might be inclined to take them off together (as you did)

if the current partial execution history allows for it. Thus, due to potentially complex and

unmodeled interactions between activities’ durations, it is more correct to say that Nature

“foresees” the entire outcome before plan execution, rather than independently sampling

each duration as it comes.

This is a small and digestible modification for defining outcomes, but you will shortly

see that it streamlines Definition 2.10, which explains the result of a scheduling decision. It

will also turn out to be helpful in the next section, when I make the durations’ uncertainty

probabilistic, and we’ll need to assign likelihoods to outcomes.

Definition 2.8 (Outcome). Let 𝜔𝑗 be a random variable representing the realized duration

of uncontrollable activity 𝑎𝑢𝑗 . The domain Ω𝑗 of variable 𝜔𝑗 is the activity’s time window.

Each value in Ω𝑗 is an outcome for 𝜔𝑗 .

The space of all outcomes for all uncontrollable activities is:

Ω = Ω1 × Ω2 × · · · × Ω𝑘.

Therefore, a full outcome 𝜔 ∈ Ω is a vector of outcomes to all the uncontrollable activities,

12This relates to my earlier point in footnote 8 about allowing activities to have zero duration. In reality,
online decision-making takes time, but as long as it is insignificant compared to the timescale of the activities’
durations (and we do have efficient algorithms), modeling it as instantaneous is a reasonable approximation.
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i.e,

𝜔 = ⟨𝜔1, 𝜔2, . . . , 𝜔𝐾⟩.

Just prior to the execution of an STNU 𝒩 𝑢, Nature selects a full outcome 𝜔 at ran-

dom; this selection is known only to Nature and is not revealed to the scheduling policy.

During execution, whenever an uncontrollable activity 𝑎𝑢𝑗 begins, Nature will automati-

cally dispatch the end event 𝑒𝑢𝑗 exactly 𝜔𝑗 time units afterward, regardless of the policy’s

decisions.

In Example 2.4, the three uncontrollable cooking activities form a three-dimensional

space of outcomes. If 𝜔1 is the duration for baking meatballs, 𝜔2 for boiling spaghetti, and

𝜔3 for heating sauce, then the full outcome in that example is 𝜔 = ⟨13, 10, 3⟩.

Having laid out definitions for execution histories and outcomes, I can finally state what

exactly is a scheduling policy and how it generates a full execution history. I do this in

two parts: first with a straightforward definition of what a policy outputs, and then a more

intricate description of how that output contributes to the execution history.

Definition 2.9 (Scheduling policy). A scheduling policy 𝒫 for an STNU 𝒩 𝑢 is a function

that maps a valid partial execution history 𝜉𝑘 into a scheduling decision 𝜎. This decision

may be one of two forms: 1) a proposed assignment (𝑒𝑖𝑙 , 𝑡𝑙), which signals the intent to

dispatch some unexecuted controllable event 𝑒𝑖𝑙 ̸∈ Scope(𝜉𝑘) at time 𝑡𝑙 ≥ 𝑡𝑘, which could

be now or in the future; or 2) a wait decision13.

A policy may output a wait only if 𝜉𝑘 indicates some uncontrollable activity is currently

in progress. I.e., there must exist 𝑎𝑢𝑗 =
⟨︀
𝑒𝑖, 𝑒

𝑢
𝑗 , [𝑙, 𝑢]

⟩︀
∈ 𝒜𝑢 such that 𝑒𝑖 ∈ Scope(𝜉𝑘) and

𝑒𝑢𝑗 ̸∈ Scope(𝜉𝑘). (And as a sanity check, if 𝜉𝑘 is valid, then 𝑒𝑖 + 𝑢 ≥ 𝑡𝑘.)

I have two points to make about this definition. First, as you can see, a policy does not

directly effect the execution history, but rather signals its intent to do so via a decision. The

following definition presents the result function 𝒪, which then transforms that intent into a

realized extension of the history.

13This wait should not be confused with the wait activities in the STNU model. As I mentioned earlier,
wait activities are considered a type of activity with controllable duration, so they are intrinsic to the STNU
form, which is ultimately the object being executed. In this definition, I am talking about the actions that the
policy may take in order to perform said execution on an STNU. So a wait action exists outside of an STNU,
and Definition 2.10 specifies its effect on that STNU’s execution.
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Second, the purpose of wait decisions is to allow policies to wait for uncontrollable

activities to conclude before proceeding. This is necessary, for instance, if there are only

uncontrollable activities towards the end of a plan. Once those activities begin, there will

be no more controllable events for the policy to schedule, so it can only wait for the final

outcomes. It wouldn’t make sense, however, to wait in the opposite situation, when there

remain only controllable events to dispatch, because execution would simply hang. Hence,

I place the restriction that waits may occur only if there is currently some uncontrollable

event to wait on.

Note that it is entirely possible for a policy to use a wait in the middle of a plan, when

there are still controllable events left. Suppose a thread contains an uncontrollable activity

𝐴 99K 𝐵 followed directly by a controllable one 𝐵 → 𝐶. Thus, 𝐵 is an uncontrollable

event, and 𝐶 is controllable. Given an execution history where 𝐴 has been executed but

𝐵 has not, the policy could eagerly try to schedule 𝐶 in the future. But 𝐵’s arrival would

preempt it anyway, forcing the policy to try again. So an alternative solution would be to

just wait (or try to scheduling something else on some other thread), allow 𝐵 to arrive, and

then decide on a time for 𝐶.

Because execution histories must always grow monotonically in time, the key to deciding

the result of a policy decision is to determine the earliest next arrival of an uncontrollable

event, if any. And if that arrival is earlier than when we had proposed to dispatch a

controllable event, then our proposal gets preempted by that arrival. This next definition

explains the exact mechanism of preemption, and how it factors into determining the result.

Definition 2.10 (Result of a policy decision). Given a partial execution history 𝜉𝑘, and a

decision 𝜎 = 𝒫(𝜉𝑘) generated by some policy 𝒫 , the result function𝒪 determines the result

(or outcome14) of applying 𝜎 to 𝜉𝑘. The result function is parameterized on a full outcome

𝜔 to the uncontrollable activities, which was preselected by Nature before execution began.

The result 𝒪(𝜉𝑘, 𝜎;𝜔) is always a new execution history 𝜉𝑘+1 that extends 𝜉𝑘 by an event

dispatch (𝑒𝑖𝑘+1
, 𝑡𝑘+1):

𝜉𝑘+1 =
⟨︀
(𝑒𝑖1 , 𝑡1), . . . , (𝑒𝑖𝑘 , 𝑡𝑘), (𝑒𝑖𝑘+1

, 𝑡𝑘+1)
⟩︀
.
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This new history is a partial one as well, unless 𝑘 = 𝑁 − 1, in which case 𝜉𝑘+1 is the full

and final history.

If 𝜎 is of the form (𝑒𝑖𝑙 , 𝑡𝑙), then either 𝑒𝑖𝑙 gets dispatched as planned, and so 𝒪 simply

appends 𝜎 to 𝜉𝑘; or, some other uncontrollable event 𝑒𝑢𝑗 preempts 𝜎 by arriving earlier (or

simultaneously) at time 𝑡𝑗 ≤ 𝑡𝑙, and 𝒪 appends (𝑒𝑢𝑗 , 𝑡𝑗) to 𝜉𝑘. The way 𝒪 decides is as

follows:

1. If there are no uncontrollable activities in progress, then 𝒪 dispatches event 𝑒𝑖𝑙
according to 𝜎.

2. Otherwise, 𝒪 uses the full outcome 𝜔 to determine the end times of the activities in

progress. For each of those activities 𝑎𝑢𝑗 =
⟨︀
𝑒𝑖, 𝑒

𝑢
𝑗 , [𝑙, 𝑢]

⟩︀
, 𝒪 computes that Nature

will dispatch 𝑒𝑢𝑗 at time 𝑡𝑗 = 𝑡𝑖 + 𝜔𝑗 , where 𝑡𝑖 is when 𝜉𝑘 says 𝑒𝑖 got dispatched, and

𝜔𝑗 is the predetermined outcome for 𝑎𝑢𝑗 ’s duration.

3. Finally𝒪 finds the minimum 𝑡𝑗,min among all the 𝑡𝑗 and compares it to 𝑡𝑙. If 𝑡𝑙 < 𝑡𝑗,min ,

then 𝒪 dispatches 𝑒𝑖𝑙 just like in step 1. Otherwise, 𝒪 finds the uncontrollable event

𝑒𝑢𝑗,min that Nature dispatches at 𝑡𝑗,min and appends (𝑒𝑢𝑗,min , 𝑡𝑗,min) to 𝜉𝑘. If there are

multiple such events, 𝒪 selects one at random. (The other(s) will get their turn in

subsequent calls to 𝒪.)

The other possibility for 𝜎 is that it’s a wait, which the policy may generate only if

uncontrollable activities are in progress. In this case, 𝒪 uses the same logic as in steps

2 and 3 above, minus the reasonining about 𝑡𝑙, to find the uncontrollable event 𝑒𝑢𝑗,min that

arrives first.

Together, my definitions for 𝒫 and 𝒪 imply the scheduling mechanism behind plan

execution: To begin with, Nature chooses behind our backs a full outcome 𝜔 to all the

uncontrollable events. Then we as the plan dispatcher step in, and starting from the empty

14Luke Hunsberger [33] uses the term “outcome” and the notation𝒪 for the function that produces it. Since
I already used “outcome” to describe what Nature selects for the uncontrollable durations, I use the term
“result” to indicate the consequence of and policy’s decision. But since I already useℛ for requirements, and
due to my reluctance to wade into capital Greek letters, I preserve Hunsberger’s 𝒪 notation. I think it also
nicely complements 𝒫 for the policy function. Hunsberger had used “situation” to refer to a realization of the
uncontrollable durations, but I feel “outcome” is more specific and applicable, because it connotes sampling
from a stochastic process.
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execution history 𝜉0 =
⟨︀⟩︀

, we apply 𝒫 to it to obtain the first decision 𝜎1 = (𝑒𝑖1 , 𝑡1).

Typically, 𝑒𝑖1 will be the start of some thread, and 𝑡1 will be 0. Next we apply 𝒪 to 𝜉0 and

𝜎1, conditioned on 𝜔, and 𝒪 sees that there are no uncontrollable activities in progress yet.

So it simply appends 𝜎1 to 𝜉0, thus creating 𝜉1 =
⟨︀
(𝑒𝑖1 , 𝑡1)

⟩︀
.

Subsequently, the plan dispatcher applies 𝒫 to generate 𝜎2, but the difference now is

that some activity is in progress. Thus, the preemption logic in 𝒪 comes into full force

when determining 𝜉2. This goes on, with 𝒫 and 𝒪 alternatingly operating on each other’s

outputs, until we get a full execution history 𝜉 = 𝜉𝑁 . Because there are 𝑁 events, and each

application of 𝒪 appends exactly one event dispatch onto the history, there must be exactly

𝑁 rounds of history generation.

For a fully grounded example, I return to the sample execution of the family spaghetti

scenario in Example 2.4, and I present a trace of𝒫 and𝒪 operating on each other to produce

the final history.

Example 2.11 (Sample execution in terms of 𝒫 and 𝒪). The sequence of 𝑁 = 12 steps,

plus the initial state, is as follows:

0. Prior to execution, Nature selects the durations for the uncontrollable activities, and

you have an empty execution history.

𝜔 = ⟨13, 10, 3⟩

𝜉0 =
⟨︀⟩︀

1. The first decision you make (as the policy 𝒫) is to launch the start event 𝐴 at 𝑡 = 0.

𝜎1 = 𝒫(𝜉0) = (𝐴, 0)

𝜉1 = 𝒪(𝜉0, 𝜎1;𝜔) =
⟨︀
(𝐴, 0)

⟩︀

2. You also decide to immediately begin baking the meatballs and boiling the spaghetti.
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This happens in two steps, both instantaneously. First you dispatch 𝐵 at 𝑡 = 0.

𝜎2 = 𝒫(𝜉1) = (𝐵, 0)

𝜉2 = 𝒪(𝜉1, 𝜎2;𝜔) =
⟨︀
(𝐴, 0), (𝐵, 0)

⟩︀
3. Then 𝐷 at 𝑡 = 0.

𝜎3 = 𝒫(𝜉2) = (𝐷, 0)

𝜉3 = 𝒪(𝜉2, 𝜎3;𝜔) =
⟨︀
(𝐴, 0), (𝐵, 0), (𝐷, 0)

⟩︀
4. Now you have uncontrollable events 𝐶 and 𝐸 on the horizon. Nature’s already

decided to dispatch them at 𝑡 = 13 and 𝑡 = 10 respectively, but you don’t know that.

You just know that they can’t arrive earlier than 𝑡 = 10 and 𝑡 = 8, respectively. So

you choose to begin heating the sauce at 𝑡 = 7 by dispatching 𝐹 , and 𝒪 obliges.

𝜎4 = 𝒫(𝜉3) = (𝐹, 7)

𝜉4 = 𝒪(𝜉3, 𝜎4;𝜔)

=
⟨︀
(𝐴, 0), (𝐵, 0), (𝐷, 0), (𝐹, 7)

⟩︀
5. Now you have a third uncontrollable event𝐺 on the horizon, and all three are blocking

subsequent controllable events, so all you can do is wait. At 𝑡 = 10, Nature dispatches

𝐸 and 𝐺. Because 𝒪 can only append one event at a time, it selects 𝐸.

𝜎5 = 𝒫(𝜉4) = wait

𝜉5 = 𝒪(𝜉4, 𝜎5;𝜔)

=
⟨︀
(𝐴, 0), (𝐵, 0), (𝐷, 0), (𝐹, 7), (𝐸, 10)

⟩︀
6. Once 𝐸 got dispatched, that launched the controllable activity to strain the spaghetti,

and you decide that will take one minute, so 𝒫 schedules 𝐻 for 𝑡 = 11. Unbeknowst

to you (at this point within the processing of 𝑡 = 10), 𝐺 has also arrived, and that

54



preempts your decision for 𝐻 .

𝜎6 = 𝒫(𝜉5) = (𝐻, 11)

𝜉6 = 𝒪(𝜉5, 𝜎6;𝜔)

=
⟨︀
(𝐴, 0), (𝐵, 0), (𝐷, 0), (𝐹, 7), (𝐸, 10), (𝐺, 10)

⟩︀

7. So you try again, and this time 𝐻 succeeds.

𝜎7 = 𝒫(𝜉6) = (𝐻, 11)

𝜉7 = 𝒪(𝜉6, 𝜎7;𝜔)

=
⟨︀
(𝐴, 0), (𝐵, 0), (𝐷, 0), (𝐹, 7), (𝐸, 10), (𝐺, 10), (𝐻, 11)

⟩︀

8. Immediately after straining, you merge the spaghetti thread with the sauce’s, and

commence tossing them together by requesting event 𝐼 to be dispatched right now

𝑡 = 11. Remember that by this point, we are in the time window for 𝐶’s potential

arrival, so event 𝐼 could be preempted. But𝒪 looks at 𝜔 and determines event 𝐼 gets

executed as planned.

𝜎8 = 𝒫(𝜉7) = (𝐼, 11)

𝜉8 = 𝒪(𝜉7, 𝜎8;𝜔)

=
⟨︀
(𝐴, 0), (𝐵, 0), (𝐷, 0), (𝐹, 7), (𝐸, 10), (𝐺, 10), (𝐻, 11)

(𝐼, 11)
⟩︀

9. You follow up event 𝐼’s successful dispatch with 𝐽 at 𝑡 = 12, still not preempted by
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𝐶.

𝜎9 = 𝒫(𝜉8) = (𝐽, 12)

𝜉9 = 𝒪(𝜉8, 𝜎9;𝜔)

=
⟨︀
(𝐴, 0), (𝐵, 0), (𝐷, 0), (𝐹, 7), (𝐸, 10), (𝐺, 10), (𝐻, 11)

(𝐼, 11), (𝐽, 12)
⟩︀

10. Finally, you are just waiting for the meatballs to pop out of the oven. At 𝑡 = 12, you

know that you can’t dispatch 𝐾 until 𝐶 arrives, which could happen as late as 𝑡 = 14.

You also calculate that to meet the 15 minute deadline, you can afford to dispatch

𝐾 as late as 𝑡 = 14.5, At this point, you could just wait, but let’s say you eagerly

schedule 𝐾 for 𝑡 = 14. It turns out that gets preempted by 𝐶’s arrival at 𝑡 = 13.

𝜎10 = 𝒫(𝜉9) = (𝐾, 14)

𝜉10 = 𝒪(𝜉9, 𝜎10;𝜔)

=
⟨︀
(𝐴, 0), (𝐵, 0), (𝐷, 0), (𝐹, 7), (𝐸, 10), (𝐺, 10), (𝐻, 11)

(𝐼, 11), (𝐽, 12), (𝐶, 13)
⟩︀

11. Now you just want to get the dish out as soon as possible, because all this reasoning

about𝒫’s and𝒪’s is making you dizzy. So you revise your previous decision, and you

tell𝒪 you want to dispatch 𝐾 now at 𝑡 = 13. Since there are no more uncontrollable

events left, 𝒪 happily obliges—

𝜎11 = 𝒫(𝜉10) = (𝐾, 13)

𝜉11 = 𝒪(𝜉10, 𝜎11;𝜔)

=
⟨︀
(𝐴, 0), (𝐵, 0), (𝐷, 0), (𝐹, 7), (𝐸, 10), (𝐺, 10), (𝐻, 11)

(𝐼, 11), (𝐽, 12), (𝐶, 13), (𝐾, 13)
⟩︀
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12. —and again when you request 𝐿 to finish the plan at 𝑡 = 14.

𝜎12 = 𝒫(𝜉11) = (𝐿, 14)

𝜉12 = 𝒪(𝜉11, 𝜎12;𝜔)

=
⟨︀
(𝐴, 0), (𝐵, 0), (𝐷, 0), (𝐹, 7), (𝐸, 10), (𝐺, 10), (𝐻, 11)

(𝐼, 11), (𝐽, 12), (𝐶, 13), (𝐾, 13), (𝐿, 14)
⟩︀

This example, though lengthy, illustrates a couple key features of how the result function

𝒪 operates. First, we saw two instances of uncontrollable preemptions: 𝐺 preempted 𝐻

at 𝑡 = 10, and 𝐶 preempted 𝐾 at 𝑡 = 13. In the first instance, you were unfazed about 𝐻

and just tried again, but in the second, you chose to bump up 𝐾 from 𝑡 = 14 to 𝑡 = 13.

Thus, preemptions give you (the policy 𝒫) the opportunity to change your mind as a form

of dynamic reactivity.

Second, we saw several instances of simultaneous events: 𝐴, 𝐵, and 𝐷 all fell at 𝑡 = 0;

𝐸 and 𝐺 were at 𝑡 = 10, and 𝐶 and 𝐾 were at 𝑡 = 13. These illustrate the earlier point

I made, when defining execution histories, that simultaneous events are appended through

successive applications of 𝒫 followed by 𝒪. Simultaneous events might be rare in practice

(unless you’re working with coarse-grained discrete times), but we still have to handle

them in our definition. It would have been possible to lump them together into a single

“super-assignment” that gets appended onto the history (Hunsberger [33] does this), and

a realistic implementation might handle them this way. But I decided to frame them as

multiple rounds to reduce the machinery needed in the definitions.

One consequence of this framing is that uncontrollable events always appear before

controllable ones at the same time (see step 3 in Definition 2.10), with one exception. For

example, if you had initially scheduled 𝐾 for 𝑡 = 13 instead of 𝑡 = 14, event 𝐶’s arrival

at 𝑡 = 13 would still preempt it. This is convenient, because it gives you a chance to

reschedule 𝐾 if you wish (e.g., at 𝑡 = 14). But it is also necessary, because conceptually,

𝐾 terminates a controllable activity (a wait) that begins on 𝐶; therefore 𝐶 should precede

𝐾 in the execution history. This reasoning also points to the exception, which is if you

have an uncontrollable activity 𝑈 99K 𝑉 with an outcome of zero duration, then 𝑈 will
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appear before 𝑉 . That is because Nature won’t consider 𝑈 99K 𝑉 to be in progress until 𝑈

is dispatched, and only then, on the next round will Nature preempt whatever decision you

make with 𝑉 ’s immediate arrival.

Lastly, note that in the example, I never actually specified what 𝒫 is, just what decisions

it outputs. Fully specifying an arbitrary policy 𝒫 would be intractable, as I’d have to map

over the entire space of execution histories, which in turn, accounts for the entire space of

outcomes. However, the concept of such a mapping is well-defined, and it would be readily

supplied by an algorithm. Morris [38] [39] has sketched such an algorithm for 𝒫 when a

feasible policy (see Definition 2.13) exists, and Hunsberger [33] explicitly provides one and

analyzes its properties.

The following definition summarizes the entire process demonstrated in Example 2.11.

Definition 2.12 (Execution semantics). Given a scheduling policy 𝒫 for an STNU 𝒩 𝑢,

execution proceeds as follows:

1. Nature selects a full outcome 𝜔 ∈ Ω at random, while the plan dispatcher initializes

an empty execution history 𝜉0.

2. At each step from 𝑖 = 1 to 𝑖 = 𝑁 , the plan dispatcher generates a new decision

𝜎𝑖 = 𝒫(𝜉𝑖−1). Then the result function responds by extending the previous execution

history to 𝜉𝑖 = 𝒪(𝜉𝑖−1, 𝜎𝑖;𝜔).

The final execution history 𝜉𝑁 is a deterministic product of the dispatcher’s policy 𝒫 and

the full outcome 𝜔 referenced by 𝒪. Therefore, I refer to it as 𝜉𝑁 = 𝜉(𝒫 , 𝜔).

Recall that the goal of the STNU scheduling problem in Problem 2.5 is to find a feasible

scheduling policy. With the above definition of execution semantics giving us a well-defined

final execution history, it becomes quite simple to state what feasibility means for a policy,

thus completing the scheduling problem definition.

Definition 2.13 (Feasible scheduling policy). A scheduling policy𝒫 is feasible for an STNU

𝒩 𝑢 if for every possible full outcome 𝜔 ∈ Ω, the final execution history 𝜉(𝒫 , 𝜔) is feasible.

At this point, I have fully presented all the necessary concepts to support my statement

of the STNU scheduling problem. I conclude this subsection by making one last major point
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about policies, which is to distinguish between static and dynamic variants. As presented,

my definition of scheduling policy has full access to the current partial history. That

means when making its next decision, the policy may observe and react to uncontrollable

outcomes, as well as its own prior decisions. In other words, my definition by default

specifies a dynamic policy.

In Example 2.4, I had illustrated dynamic decision-making at several points. For

example, consider what happened right after you wrapped your fascinating discussion on

web browsers in order to attend to the nearly overdone meatballs. At that moment 𝑡 = 13,

you observed the arrival of event 𝐶. Then knowing that 𝐽 had already executed at 𝑡 = 12

so that the two threads were ready to merge onto 𝐾, you immediately dispatched 𝐾 at the

same time 𝑡 = 13.

Sometimes, though, you may wish to not have to make scheduling choices online.

Suppose word of your culinary talent got out, but in the height of the pandemic, restaurants

are hard to open, so you settle for publishing a cookbook. You present your readers this

wonderful STNU, but to reduce their cognitive load when they execute the plan, you don’t

want them to have to calculate on-the-fly when to dispatch each controllable event. Could

you work out a schedule a priori so that no matter what distractions they might face in their

own cooking activities, they can dispatch all the controllable events at set times according

to you?

Unfortunately, you quickly see that’s not possible. Say like you did, you ask them to

start baking the meatballs at 𝑡 = 0. In the longest case, the meatballs don’t come out until

𝑡 = 14, so to be safe, you preassign 𝐾 = 14. But wait, other readers who are eager beavers

might take the meatballs out at 𝑡 = 10, and now they have to wait four minutes before

adding them to the spaghetti and sauce. By then, the meatballs will have lost their steaming

quality, and those readers will be biting into stale crusts. Either you dash your hopes for a

“Cooking is Easy!” bestseller, or you find another recipe to write up, and file this one under

“Family Secrets”.

Silly example aside, the difference in a nutshell is that static policies must preassign

all the controllable events15, and follow that template during online execution, whereas

dynamic policies have the flexibility to modify their decisions based on different realized
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outcomes. As I noted above, I originally defined policies in the dynamic sense, so for static

policies, I just impose restrictions on the original definition, codified below.

Definition 2.14 (Static scheduling policy). A static scheduling policy 𝒫 is associated with

a predetermined, full execution history 𝜉∖𝑢 for just the controllable events. That is, for all

𝑒𝑖 ∈ ℰ , this predetermined history takes the form:

𝜉∖𝑢 =
⟨︀
(𝑒𝑖1 , 𝑡1), (𝑒𝑖2 , 𝑡2), . . . , (𝑒𝑖𝑁−𝐾

, 𝑡𝑁−𝐾)
⟩︀
,

where 𝑡1 ≤ 𝑡2 ≤ . . . ≤ 𝑡𝑁−𝐾 .

When given a partial history 𝜉𝑘, 𝒫 finds the latest event in 𝜉∖𝑢 that has been executed, i.e.,

it identifies the largest 𝑙 such that 𝑒𝑖𝑙 ∈ Scope(𝜉𝑘). As long as 𝑙 < 𝑁 + 𝐾, there remains

further controllable events to dispatch, so𝒫 output the decision (𝑒𝑖𝑙+1
, 𝑡𝑙+1), thus proposing

to dispatch 𝑒𝑖𝑙+1
, the next event in 𝜉∖𝑢, at its planned time. Otherwise, 𝒫 outputs wait.

Note that the distinction applies only to the policy definition. For both static and dynamic

policies, the execution effects of their decisions are subject to the same set of rules laid

out in Definition 2.10. One way to interpret the execution of a static policy is that if one

of its decisions gets preempted by an uncontrollable event arriving earlier, the policy will

simply try again. Static policies stubbornly insist that their intended event get added to the

execution history at the intended time, before moving on to the next. Dynamic policies

don’t have this restriction; if preempted, they can modify the intended time, or even switch

to a different event altogether.

15Another seemingly reasonable interpretation of “static policy” would be that you decide on the duration
of each controllable activity beforehand. However, this definition would pose problems for merging threads.
For example, consider when the spaghetti and the sauce threads merge into 𝐼 . Because of the uncontrollable
𝐷 → 𝐸 and 𝐹 → 𝐺 activities, there’s no guarantee (and very unlikely) that rigidly set durations for the
remaining controllable activities would result in the two threads meeting up perfectly at 𝐼 .

One way to fix this might be to not preassign wait activities’ durations. But you’d still be left with the
question of how long to wait, and if you don’t decide offline, then you’d need a strategy for deciding online,
which turns it into a dynamic decision. Therefore, it’s semantically cleaner to define static policies as making
static decisions about the controllable events, rather than activity durations.

It turns out this definition does imply a small degree of dynamic execution: Any controllable activities that
begin off of an uncontrollable event will have their end events preset, but their start events variable. Thus, the
plan dispatcher would effectively have to “dynamically” decide such activities’ durations. But this is a very
local calculation in that you don’t have to consider information from other portions of the plan, e.g., other
threads or even other activities on your thread. So I don’t consider this calculation to violate the spirit of a
static policy.
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Defining static policies as a restricted form of dynamic policies makes it clear that the

former are technically a subset of the latter. So if we are looking for feasible static policies

to an STNU, then we have shrunk the solution space. However, the nature of the restriction

also means that it is easier to build algorithms that find static policies, and verify them (i.e.,

check they are actually feasible).

Indeed, the standard algorithm for determining whether an STNU admits a static policy

reduces to calculating single-source shortest paths (SSSP) [60], which runs in𝑂(𝑁𝑀) time

using Bellman-Ford. Constructing such a policy then typically requires the all-pairs shortest

paths matrix (APSP), which takes 𝑂(𝑁2 log𝑁 + 𝑁𝑀) time using Johnson’s algorithm.

Both of these are faster than the 𝑂(𝑁3) state-of-the-art for finding a dynamic policy [39].

This concludes my exposition of the STNU scheduling problem, as specified in Prob-

lem 2.5. And based on the discussion just now, there are actually two variants of the

problem: we can either look for feasible static policies, which are limited in their existence

and abilities, or we can seek feasible dynamic policies, which are more powerful but likely

require more complex algorithms to extract. If an STNU 𝒩 𝑢 has a feasible static policy,

then 𝒩 𝑢 is called strongly controllable. Analogously, if 𝒩 𝑢 admits a feasible dynamic

policy, then it is said to be dynamically controllable.

All the concepts above will carry over when I present my probabilistic version of

temporal networks. Therefore, for my definitions in the next section, I will focus on the

extensions and any modifications that they imply to the ones above.

2.2 The pSTN model and the chance-constrained schedul-

ing problem

Recall the morning routine scenario I outlined at the beginning of Section 2.1. When it

came to calling the elevator, I argued that there must be some finite upper bound on how

long I would have to wait for it, but I never actually calculated what that might be. It turns

out the numbers are not so merciful. In the worst case, the elevator would have to stop at

every floor on the way up, then skip my floor, continue stopping every floor until it reached
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the top, and then come down stopping every floor as well. If I assume the doors open and

close perfectly each time (which they don’t) and that residents shuffle on and off the elevator

expeditiously without holding the door for their roommate running down the hall (which

they do), we’re looking at ~20 seconds between floors. For any moderately sized apartment

building16, that’s a worst case of several minutes of waiting for the elevator, during which I

could have wolfed down a second breakfast.

I am happy to say that I rarely encounter such comically bad luck (with the elevators).

(And if I ever had, I probably just took the stairs before waiting for the final outcome.) That

means it would be just as comically unsuitable to model my elevator waiting duration as an

interval-bounded time window from 0 up to that bound. Therefore, the STNU model may

not be entirely appropriate or sufficient to capture certain temporal plans. For the sake of

shoehorning your plan into an STNU format (so that you might take advantage of efficient,

well-established STNU algorithms), you might be willing to compromise model fidelity,

such as by guessing a more reasonable upper bound. But then, you may have no idea how

good your guess is, i.e., how likely it is that your guess is right. And should execution

prove your guess to be wrong, you’d have no strategy to continue, because STNU policies

technically aren’t defined for outcomes that lie outside the time windows. (Oh, no! I can’t

make it to a lab meeting on time because the elevator didn’t come in 45 seconds like I

expected it to. Should I just give up on the plan and go back to bed?)

The information that STNUs’ interval bounds don’t capture is the likelihood of any given

outcome. In my experience, most days I wait less than a minute for the elevator to arrive.

That means from a scheduling viewpoint, I shouldn’t spend much effort accounting for the

possibility of waiting two, three, even four minutes, because those are precious minutes

I could spend on extra sleep or proper teeth-brushing. More generally (and seriously),

modeling the likelihoods of uncontrollable durations gives us justification for reducing the

range of uncertainty that our policies have to consider. This in turn allows us to schedule

16One might argue that multiple elevators are commonplace in such buildings, and they should reduce
the waiting time by a significant factor. Still, I could devise pathological counterarguments to preserve the
worst case: Maybe all the other elevators are either undergoing maintenance or being held hostage by a
resident in the lobby who’s chatting with someone going out. Or, given the opacity of manufacturers’ elevator
dispatching algorithms, a sequence of perfectly timed calls across all floors may result in all elevators in
staggered formation, or all but one cycling between adjacent floor pairs.
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and plan less conservatively, either by giving the scheduling policy more flexibility in its

decisions, or by fitting in more activities. In short, it widens the space of plans that admit

feasible scheduling policies.

Fortunately, with our understanding of the STNU model and all its associated concepts,

we already have most of the infrastructure needed to support duration likelihoods. All I

need to do is turn each uncontrollable activity’s duration from an interval-bounded range

of uncertainty into a probability distribution. Specifically, in order to respect the semantics

of activity duration, the distributions would be defined over non-negative time, relative to

their activities’ start events. In a sense, we would be stretching the domains of all the

uncontrollable durations to [0,+∞), and then mapping probability density functions over

those domains.

How would we obtain such distributions? If an activity could be modeled as some

well-defined stochastic process, there might be an analytic form for the distribution of its

duration. For example, introductory probability classes often “demonstrate” that you can

model the time you spend waiting at a bus stop as an exponential distribution. However,

anyone who has ever waited for a bus knows that the underlying assumptions in that argument

don’t match reality, which is a complex interaction of bus schedules, traffic conditions, and

driver behavior. So, analytic distributions may be better suited for plans involving particle

physics.

Another approach would be to gather enough samples of the duration in isolation, such

that you effectively build a histogram that summarizes all the hidden complexity. This

would be appropriate for my elevator scenario, as I could run a stopwatch every morning for

three months to collect ~100 samples. Or, I could parallelize it all by sending a survey to

the residents, and any visitors to the building would observe the curious sight of residents

in each elevator lobby staring at stopwatches on their phones. Once I have my histogram,

it’s quite simple to perform (one-dimensional) integrals, and to estimate derivatives on it as

needed.

Sometimes, exact samples are not so easy to obtain. If you’re dealing with an expensive

underwater robot that’s time-consuming to deploy, you would be justifiably averse to drop-

ping it in the ocean 100 times to estimate how quickly its (likely underpowered) propulsion
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system can fight the effects of current. In these cases, proxy deployments (e.g., extrapolate

data from safe harbor exercises) or computer simulations would be reasonable alternatives.

Lastly, most distributions for activities’ durations turn out to be unimodal. (If not, then

there is most likely an uncontrollable choice being made between two different processes,

and this should be addressed in the planning stage.) Therefore, if you really wanted an

analytic form, you could approximate your histogram via a normal distribution (or any other

unimodal curve of your choice), and then truncate it below zero and renormalize.

To see probabilistic durations in context, I revisit the STNU spaghetti example, and turn

it into a probabilistic STN.

Example 2.15 (Restaurant spaghetti). Word of your World-Famous17 Spaghetti Lunch has

finally spread, and when it reached the local billionaire, they wrote you a giant check to let

you start your own restaurant. Now you spend your days in the back office, feet on the desk,

dreaming of billions served, while a small army of apprentice chefs outside your window

churns out heaps of spaghetti orders. In the early days, you recruited your chefs by offering

each a smartwatch as a sign-on bonus. Unbeknownst to them, you had preloaded the

watches with an automatic stopwatch that times each activity they perform, and beams the

data to your control center back office.18 Thus, you’ve amassed histograms for the durations

of each of the three cooking activities.

These histograms are reflected in Figure 2-4, which depicts the temporal network for

fulfilling a single order of spaghetti. It’s entirely based on your original recipe, except that

in the industrial chaos of your restaurant’s kitchen, you must account for the occasional

extra-ordinary situation: If orders are coming in too fast, you might run out of freshly made

meatballs, and have to pull last night’s overstock from the freezer, so they’ll take longer to

bake. Or maybe a previous chef put too much spaghetti in the pot, so instead of boiling

a new batch, you just take what’s there already. These situations are all covered by your

histograms, which essentially smoothes the uncontrollable duration time windows from the

STNU version of your plan, previously depicted in Figure 2-2, and adds tails to them.

17Precognition at its finest.
18You were always gunning for a career in either the tech sector or espionage. Couldn’t decide which.
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Figure 2-4: This depicts the same temporal network as in Figure 2-2, except you’ve replaced
the time windows for uncontrollable activities’ durations with probability distributions.

This example shows that the only real change I am making to the STNU model is adding

probabilistic weighting to the uncontrollable activity outcomes. The semantics of executing

those activities, controllable or not, remain changed. And therefore, I can reuse all the

previous concepts relating to plan execution, including history, outcome, policy, and result

function. The only concept modification I need is to assign likelihoods to outcomes.

This modification will turn out to affect the problem statement, such that the original

criteria of simply finding feasible policies won’t be as meaningful. Instead, a notion of

quantifying risk and bounding it will come into play. Stated in the abstract, dealing with

risk might seem like a complication that makes the problem harder to solve. But my thesis

claim is that framing the problem as bounded risk-taking allows us to safely “cut corners”,

and thus dispatch plans that might otherwise have been unschedulable. I work towards this

problem framing in the rest of this section, and then demonstrate its advantages through

experiments in Chapter 7.

Below I present the formal definition of a pSTN, basing it on the STNU as much as

possible. Then I establish likelihoods for the outcomes, so that there is a well-defined

probability of failing to meet the temporal requirements. From this, it follows that the

relevant problem for scheduling pSTNs is not to satisfy the requirements directly, but to

65



impose some condition on the probability of failing to do so.

Definition 2.16 (pSTN). A probabilistic STN 𝒩 𝑝 = ⟨ℰ , ℰ𝑢,𝒜,𝒜𝑝,ℛ⟩ follows the same

structure as an STNU, except that in place of activities with uncontrollable duration 𝒜𝑢, it

has activities with probabilistic duration𝒜𝑝. Each 𝑎𝑝𝑗 ∈ 𝒜𝑝 takes the form
⟨︀
𝑒𝑖, 𝑒

𝑢
𝑗 , 𝑓𝑗

⟩︀
, thus

replacing the STNU uncontrollable [𝑙, 𝑢] bounds with a probability density function 𝑓𝑗 on

the duration of 𝑎𝑝𝑗 . The domain of 𝑓𝑗 is nominally [0,+∞), or a subset thereof.

By convention, I refer to the cumulative density function as 𝐹𝑗 , i.e.,

𝐹𝑗(𝑡) =

∫︁ 𝑡

0

𝑓𝑗(𝜔) d𝜔 .

Besides weighting the outcomes of probabilistic durations with likelihoods, the execution

semantics of pSTNs are identical to those of STNUs. Therefore, there is still a one-to-one

correspondence between each 𝑎𝑝𝑗 and the uncontrollable event 𝑒𝑢𝑗 it ends on.

Execution-wise, pSTN probabilistic activities behave just like STNU uncontrollable

activities, except that they introduce probabilistic semantics, which quantify how much

more likely certain outcomes are than other ones. Therefore, I need to update the definition

of outcome to account for likelihood. Recall from Definition 2.8 that Nature selects a

full outcome 𝜔 just before execution. As I hinted on page 49, these semantics make it

easier to attach likelihoods, which will be necessary to state the pSTN scheduling problem.

Namely, I simply assign likelihoods to the full outcomes, so that distributions for individual

outcomes’ fall out as marginals of the joint. This is completely general in that it allows

for unspecified dependencies between activities’ durations. If I had defined the outcome

semantics as saying that Nature samples them on-the-spot during execution, then to calculate

the full joint distribution (i.e., likelihoods of full outcomes), I would either have to assume

all durations are independent, or supply a complex set of conditional distributions.

Definition 2.17 (Outcome likelihood). For a given pSTN𝒩 𝑝, there exists a joint probability

distribution P over the space of full outcomes Ω. I.e, there exists a probability density

function 𝑓 : Ω→ R, such that ∫︁
Ω

𝑓(𝜔) d𝜔 = 1.
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Thus, for each probabilistic activity 𝑎𝑝𝑗 , its one-dimensional probability density function

𝑓𝑗 is a marginal distribution of the joint 𝑓 :

𝑓𝑗(𝜔𝑗) =

∫︁
Ω∖Ω𝑗

𝑓(𝜔∖𝑗) d𝜔∖𝑗 .

In practice, it’s unlikely that you would need to fully specify the joint P (or 𝑓 ) alongside a

pSTN. If you’re basing your distributions off previous experience (or simulation), you would

effectively have a joint distribution from all your previous trials. From those trials, it would

be straightforward to create marginal distributions, and thus discard the joint information,

in which outcomes for one individual duration were matched with outcomes for another.

With the definition of outcome likelihood in hand, it finally makes sense to talk about the

probability, or risk of a scheduling policy failing to satisfy the requirements. This wasn’t

possible with the STNU model, whose scheduling problem required an all-or-nothing

approach to feasibility: If there was even a single outcome that caused a policy to produce

an infeasible execution history, then that entire policy was deemed infeasible.

With pSTNs, we don’t have to be so unforgiving. The definition of feasibility still

applies to execution histories, which are fully grounded and therefore have no remaining

probabilistic uncertainty. But for a pSTN scheduling policy, we are interested in how likely

it is that we would encounter outcomes that lead to infeasible histories. The collective

probability mass of those outcomes thus gives us a measure of the “risk of infeasibility” we

take when we run that policy.

Definition 2.18 (Failure probability of a policy). Given a pSTN𝒩 𝑝 and a scheduling policy

𝒫 for it, the failure probability of𝒫 is the combined probability mass of all the full outcomes

𝜔 ∈ Ω, where executing 𝒫 to completion on 𝜔 yields a final execution history 𝜉𝑁 that is

infeasible. I.e.,

Pfail(𝒫) =

∫︁
Ω

1infeasible(𝜉(𝒫 , 𝜔))P(𝜔) d𝜔 .

This notion of failure probability is ultimately what my pSTN scheduling problem is

about. The final question to answer is what my problem tries to do with that probability,

and there are basically two possible answers. I could either find a policy that minimizes

it, or I could simply choose to bound it. My answer is the latter, and the reasoning is
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that I want to leave open the possibility of choosing other optimization objectives. For

example, a common scheduling objective is to finish the plan as fast as possible. This

means minimizing the total time between the start and end events of the plan itself, also

known as the makespan. If I choose a policy that minimizes scheduling risk, it may be

too conservative in that by taking so much time between activities – in order to buffer

against wide ranges of uncontrollable durations – it produces a much longer makespan than

expected. Therefore, I have the user explicitly state an acceptable bound on the scheduling

risk, so as not to preclude any desire to optimize some arbitrary objective function.19

I capture this notion of “acceptable risk” by a chance constraint. In a nutshell, a chance

constraint allows for a small probability of violating a regular requirement constraint (or a set

of them). Chance constraints are an established aspect of planning problems which involve

probabilistic uncertainty. For instance, for the problem of path planning with obstacles,

in which the vehicle dynamics have probabilistic noise, Ono [46] augments an ordinary

qualitative state plan with chance constraints that allow for small, bounded probabilities of

hitting certain obstacles. (In addition to hard physical constraints, those obstacles could

also represent virtual ones, e.g., a plane trying to avoid no-fly zones or weather boundaries.)

Thus, for pSTNs, I perform a similar augmentation by attaching chance constraints to

the temporal requirements. To preface that definition, I want to note that the concept of a

policy’s failure probability in Definition 2.18 can be specialized on a subset ℛ′ ⊆ ℛ of

the requirements. I.e., I can arbitrarily restrict the scope of (in)feasibility to only certain

temporal requirements that I care about in the moment, and ignore the rest. This allows me

to have multiple chance constraints over different requirements (or subsets thereof), each

tailored with a different levels of acceptable risk. For instance, if it is especially important

to me that some activities in the middle of the plan are tightly coordinated, I might ask for

a low risk bound on enforcing that coordination, while being more lenient with the plan’s

overall deadline.

Definition 2.19 (Temporal chance constraint). Given a pSTN 𝒩 𝑝 = ⟨ℰ , ℰ𝑢,𝒜,𝒜𝑝,ℛ⟩, a

chance constraint 𝑐 takes the form ⟨ℛ′,∆⟩, whereℛ′ ⊆ ℛ and ∆ is a real number between

19In this thesis, I do not include optimization objectives in my problems or algorithms; I only address
satisfiability. In my conclusion chapter, I summarize existing and future efforts on integrating optimization
into my work, and point out how easy or difficult it might be to deal with certain issues.
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Figure 2-5: This augments the pSTN in Figure 2-4 with a 2% chance constraint on the
network’s requirement constraints.

0 and 1. It expresses a probabilistic requirement that a policy 𝒫 may not have more than a

failure probability of ∆ with respect to a subsetℛ′ of the temporal requirements. I.e., with

probability at least 1−∆, the final execution history 𝜉(𝒫 , 𝜔) of a policy 𝒫 must satisfy all

the temporal requirements inℛ′.

In this thesis, I limit my scope to handling a single global chance constraint, i.e., a

chance constraint on the entire set of temporal requirementsℛ. I do this because addressing

multiple chance constraints involves a step prior to my main algorithm that performs an

entirely different kind of reasoning. Again, I summarize the issues in my conclusion chapter,

and leave it to future work. I still define below my pSTN scheduling problem to allow for

multiple chance constraints, but in subsequent chapters, I will assume only a single global

one is given.

As the final visual example in this chapter, Figure 2-5 illustrates the application of a

global chance constraint to the Restaurant Spaghetti scenario from Example 2.15. The pur-

ple diamonds are “attached” to all the temporal requirements, and request that collectively,

none of those constraints be violated with more than 2% probability.

At last, I can state my thesis’s problem as a chance-constrained pSTN. Put simply, we
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seek a policy that no longer has to directly satisfy the temporal requirements of a pSTN, but

rather has to meet the risk bounds declared in a set of chance constraints over said pSTN.

Problem 2.20 (cc-pSTN scheduling problem). Given a pSTN 𝒩 𝑝 = ⟨ℰ , ℰ𝑢,𝒜,𝒜𝑝,ℛ⟩,

and a set of chance constraints 𝒞 over the requirements ℛ, find a scheduling policy 𝒫 that

satisfies the chance constraints.

My final remark is that the same distinction between static and dynamic policies for

STNUs applies to pSTN scheduling. This distinction is central to how I organize the

subsequent chapters. Namely, while my end goal is to provide chance-constrained dynamic

policies, my expositional strategy is to aim first for a solution that provides static policies,

and then adapt it with the necessary insights for providing dynamic policies.
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Chapter 3

Problem Reformulation into Risk

Allocation

In the last chapter, I extended the STNU scheduling problem into a chance-constrained

version for pSTNs. By introducing probabilistic durations, it became necessary to have a

measure of a scheduling policy’s risk, i.e., its probability of failure. This risk is difficult

to evaluate directly, and therefore makes searching the policy space for a solution quite

intractable.

In this chapter, I address that issue by reformulating a cc-pSTN problem into that of

risk allocation, while leveraging STNU theory in the process. Risk allocation had been

previously introduced in the context of probabilistic path-planning [8] [46] to work around

the complexity of composing nonlinear probability distributions. The central idea is to

distribute the allowable risk throughout the plan intelligently while mapping the original

problem down into a non-probabilistic/deterministic formulation. This makes it much more

computationally tractable to find solutions, at the cost of some minor incompleteness.

In our chance-constrained scheduling context, risk allocation maps a given pSTN into

an STNU. Thus, all the power and efficiency of STNU controllability and dispatching

algorithms, including dynamic execution, become available to us. While most prior work

in pSTN scheduling has approximated the form of risk allocation, they are not as general or

rigorous as the framework that I present. Only [20] and [69] use the same form, and they

limit themselves to producing static policies. Fortunately, generating dynamic policies can
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happen downstream of risk allocation, so the same framework can be used. Throughout

this section, I cast the examples in terms of dynamic execution rather than static when

applicable.

This chapter’s main contribution, then, over [20] and [69] is a much more rigorous

treatment of risk allocation’s relationship to the original problem. I mentioned above that

risk allocation for path planning introduces some incompleteness. This is an unavoidable

feature of the same mechanism that guarantees risk allocation’s soundness. After explaining

in Section 3.1 the sources of the original problem’s intractability, I introduce risk allocation

in Section 3.2, and give the intuition for its soundness and incompleteness. I also argue that

the degree of incompleteness can often be acceptable, but can only be measured empirically,

as in Chapter 7.

Finally, Section 3.3 collects these ideas into formal definitions of risk allocation and the

reformulated problem that results from casting the original problem as risk allocation. It

ends with a systematic accounting of all possible sources of incompleteness, something not

previously seen in prior work on pSTN scheduling.

3.1 Intractability of the pSTN policy space

As I established in Definition 2.9, a scheduling policy is a function that maps partial

execution histories to scheduling decisions. Therefore, the policy space for a pSTN is a

space of functions, which could potentially be quite difficult to navigate.

In general, it’s not clear what is the best way to parameterize a policy’s behavior. The

options are less ambiguous for static policies, because they essentially follow a predeter-

mined execution history 𝜉∖𝑢 on the controllable events ℰ . Therefore, you could effectively

represent those policies by their backing histories 𝜉∖𝑢. That’s 𝑁 −𝐾 parameters1 to con-

sider, one for each controllable event. The ratio between 𝑁 and 𝐾 varies between types of

plans, and if your plan is chock full of uncontrollable activities, then 𝐾 might occupy much

of 𝑁 , so you’d have a smaller parameterization. On the other hand, if |ℰ𝑢| is small, then

you wouldn’t be so lucky.

1Recall from Chapter 2 that 𝑁 is the total number of events, and 𝐾 is the number of uncontrollable ones.
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For dynamic policies, parameterization is much more elusive. We’d have to capture the

whole range of dynamic decisions these policies could make, i.e., given any partial history,

any unexecuted controllable event is a candidate for subsequent dispatch. And because

events don’t always have to arrive in the same order, the space of partial histories (plus their

accompanying unexecuted events) that we’d have to act on is combinatorially huge with

respect to 𝑁 . We could try intuitive strategies that slice the policy space, like, “If event 𝐵

arrives before 𝑡 = 10, then these policies try to dispatch 𝐹 anywhere between 𝑡 = 12 and

𝑡 = 15, whereas those policies just wait.” However, the subsequent divisions you’d need to

cover the whole space are just too many. So this is the first challenge of trying to navigate

the policy space: that we don’t really know how to characterize it in terms of parameters.

Another challenge is distinguishing between policies that are solutions to our problem,

and those that are not. Even if we knew how to characterize the policy space, it’s not

easy to evaluate whether any one spot in it (i.e., any given policy) satisfies our cc-pSTN

problem. In the case of STNUs, it’s relatively easy to identify the boundaries between

feasible and infeasible policies. The reason relates to how STNU policies can be derived

out of the structure of the STNU itself.2 In that process of analyzing the network structure to

generate a policy, we only need to consider the lower and upper bounds of the uncontrollable

activities’ time windows.

For pSTNs, though such reasoning is insufficient. First of all, the effective “time

windows” on uncontrollable durations could very well stretch from 0 to +∞, depending on

the distributions, so analyzing their bounds is meaningless. Second, we can analyze STNUs

by reasoning about durations’ lower and upper bounds, because there is no likelihood

weighting on the outcomes in between. However, if we did that for pSTNs, we would

be throwing away all the distribution information, and therefore be unable to evaluate the

2To briefly summarize, the key data structure behind this derivation is the distance graph of a temporal
network. An STNU is dynamically controllable iff its distance graph has no semi-reducible negative cycles.
And if so, we can compile the distance graph into a form such that at any point during the STNU’s execution,
we can update the graph with the latest result, and read out a range of possible next decisions by a feasible
policy. I.e., choosing any decision outside the range of those provided by the graph results in an infeasible
policy. Therefore, we essentially construct a policy on-the-fly from the distance graph, and it is guaranteed to
be feasible due to the properties of the graph.

For strong controllability, we first compile the STNU into an STN, i.e., we compile out the uncontrollable
activities and events. Then, we operate on the STN’s distance graph, and a similar but simpler theory applies
for constructing a static policy.
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Figure 3-1: The chance constraint of a cc-pSTN problem carves out a well-defined but
hard-to-find region (shaded purple) in the policy space. Additionally, it is also difficult to
evaluate/certify whether any given policy falls within that region.

probabilistic condition in the chance constraint.

Therefore, the main challenge in deciding whether any given pSTN policy solves a

cc-pSTN lies in evaluating the policy’s failure probability according to Definition 2.18. I.e.,

we’d have to integrate the joint probability distribution over the space of outcomes, and for

each full outcome, simulate whether the policy succeeds or fails (in meeting the temporal

requirements). Only if it succeeds would we include that outcome’s probability density in

our integration. It should be apparent that such integration over arbitrary nonlinear distribu-

tions, with domains potentially stretching to +∞, coupled with the requisite simulation, is a

task better suited for massively parallel computing hardware than your ordinary workstation.

Figure 3-1 summarizes these difficulties via a visual approximation of the policy space.

Overall in green, we have the entire space of policies for some given pSTN. The wavy

boundaries connote that we don’t understand how to parameterize or navigate within this

space. (Note that this is a space of functions, and not the space of outcomes for the pSTN. I

will discuss the latter in the next section.) Within this policy space lies a region containing

all policies which satisfy the chance constraint. While this region is well-defined, its
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boundaries are also poorly understood, because it’s hard to evaluate whether any given

policy actually falls within it (i.e, satisfies the chance constraint).

In contrast, I represent the space of policies for some given STNU as a (slanted) rect-

angular region. The straight boundaries connote that we understand how to build policies

from the STNU’s structure, so that in effect, we can achieve some sort of parameterization

of the policy space. And so, given an STNU policy, we can efficiently analyze it to deter-

mine whether it’s feasible, without having to simulate it. I show this with a straight-line

delineation between the blue and red regions.

Note that I depict STNU policies as a subset of the pSTN policy space. This comes with

two caveats: The first is that this implicitly assumes the STNU shares the same structure as

the pSTN, i.e., how the activities and requirements connect to each other. While the duration

models differ, execution histories on the STNU would otherwise be indistinguishable from

those on the pSTN. Thus, the act of applying any STNU policy to those histories could be

interpreted as running a pSTN policy, hence the subset depiction.

This leads to the second caveat, though, which is that STNU activity durations usually

have smaller domains than their pSTN counterparts. That means there are technically pSTN

outcomes, and hence execution histories, that aren’t handled by STNU policies. Fortunately,

it is relatively straightforward to define “automatic extensions” to the latter to turn them into

proper pSTN policies. I will address this in the next section.

My last point is that I had suggestively oriented the STNU policy space such that its

feasible portion falls within the chance constraint region in the overall pSTN policy space.

There’s no guarantee that this must be the case. However, if we were to find such an STNU,

it would be tempting to use any one of its feasible policies as a surrogate for dispatching the

pSTN. This hints at the main insight behind how I map the cc-pSTN problem into a more

tractable one, which I discuss in the next two sections.

3.2 Leveraging STNU theory

To summarize what we know about STNUs and what we want to accomplish for pSTNs:

We know from the literature how to determine if an STNU is controllable. And if it is, we
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also know how to obtain a valid scheduling policy. These statements hold for both strong

and dynamic controllability, which correspond to static and dynamic policies, respectively.

Our goal is to answer the same questions for pSTNs, but in a chance-constrained context,

as established in Problem 2.20. Since STNUs and pSTNs share so much in plan structure

and policy structure, it would be reasonable to utilize our knowledge of STNUs to address

cc-pSTNs. However, all the reasoning for STNUs is based on the interval bounds that

characterize the activities and requirements. (This is a key reason why STNU algorithms

are efficient: they explicitly consider only the “edge” cases for each duration, and not all

the possibilities in between.) Unfortunately, this means those strategies are not directly

applicable to pSTNs’ probabilistic durations.

Instead, my strategy to avoid the intractabilities described previously is to map a pSTN’s

probabilistic durations into STNU interval-bounded form. If we apply this to a pSTN, then

the network effectively transforms into an STNU, and suddenly all the power of STNU

algorithms is available to us: We verify whether the STNU is controllable, and if so, extract

a policy of the desired flavor. As I argued in the previous section, this STNU policy

would be applicable to the original pSTN, modulo minor adjustments. I will discuss those

adjustments towards the end of this section.

So this strategy is promising in that if we can find such a mapping, then we could get a

suitable policy. Except, it doesn’t address obeying the chance constraint, which is the actual

criteria for our cc-pSTN problem. Therefore, in order to pursue this strategy, the mapping

of durations must be responsible for ensuring that whatever policy is produced will respect

the chance constraint.

Let’s consider what such a mapping would look like on a single probabilistic duration,

and what implications it has regarding the chance constraint. Figure 3-2 depicts an [𝑙, 𝑢]

interval over the probability density distribution 𝑓𝑗 of outcomes for a duration. If we had

mapped the duration into such an interval and applied STNU semantics, we would be

pretending that the duration’s possible outcomes can only fall inside that interval.

According to Definition 2.16, though, the original pSTN semantics dictate a reality

where the domain of possible outcomes is [0,+∞). So we would be ignoring any outcomes

in the ranges [0, 𝑙) and (𝑢,+∞). Furthermore, the likelihood that the actual outcome would

76



Figure 3-2: By imposing an STNU-style [𝑙, 𝑢] interval bound on a probabilistic duration,
we ignore any outcomes falling outside those bounds. The risk, then, of assuming those
bounds is the probability mass of the ignored outcomes. This risk applies to any policy that
is based on the [𝑙, 𝑢] interval. In other words, if a feasible policy is constructed based on
that interval, then the probability mass lying within the interval specifies the likelihood that
the policy is guaranteed to handle that duration’s outcome.

land in those ranges is given by the probability mass in the tails of the distribution. I call

this the risk of applying those [𝑙, 𝑢] bounds to that duration.

Definition 3.1 (Risk on a duration’s outcomes). Given an activity with probabilistic duration

𝑎𝑝𝑗 = ⟨𝑒𝑖, 𝑒𝑢𝑗 , 𝑓𝑗⟩, let the cumulative density function of the distribution be 𝐹𝑗 . The risk of

assuming that the duration’s outcome will lie within an interval [𝑙, 𝑢] is:

𝑅𝑗 = Pr [(𝜔𝑗 < 𝑙) ∪ (𝑢 < 𝜔𝑗)] = 𝐹𝑗(𝑙) + (1− 𝐹𝑗(𝑢)) .

Therefore, suppose that we construct an STNU by applying some [𝑙, 𝑢] bounds to each

probabilistic duration. (They don’t have to be the same for each duration.) Then with

respect to any particular probabilistic duration 𝑎𝑝𝑗 , there is a 1−𝑅𝑗 chance that its outcome

𝜔𝑗 will fall within its STNU bounds. In other words, the STNU is a valid model for 1−𝑅𝑗

of the pSTN outcomes for that duration. This condition thus becomes attached to any result

derived from the STNU. So if the STNU were controllable, then any of its feasible policies

would be applicable to 1−𝑅𝑗 of 𝑎𝑝𝑗 ’s outcomes.

This is a useful insight about the probabilistic applicability of an STNU policy to a
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pSTN. Still, though, it doesn’t address the exact criteria of our cc-pSTN problem. Namely,

we want the policy to hold for a percentage of the full outcomes, not just the outcomes for an

individual duration. Fortunately, it is straightforward to generalize this insight from being

about a single duration to all probabilistics durations in a pSTN. Consider the following

example on our restaurant spaghetti scenario.

Example 3.2 (Reframing restaurant spaghetti as an STNU). Consider the pSTN described

in Example 2.15 and depicted in Figure 2-4; call it 𝒩 𝑝. As manager and owner of your

restaurant, you’re very proud of having modeled your situation as a pSTN, but you’ve been

racking your brain ever since trying to find and verify a 2% chance-constrained scheduling

policy for it. You pine for the days when you only had to cook spaghetti for your family,

which you understood as an STNU (call it 𝒩 𝑢; see Example 2.2 and Figure 2-2), and thus

could generate policies at ease.

So in an act of desperation, you cross your eyes and superimpose 𝒩 𝑢 on top of 𝒩 𝑝.

What you get is Figure 3-3. Everything lines up, except the three cooking activities with

probabilistic duration have [𝑙, 𝑢] bounds slicing through the tails of their distributions.

Let the baking, boiling, and heating activites be indexed by 𝑗 = 1 through 3, respectively.

Then it is clear that the STNU would be a valid model for the pSTN’s outcomes (and thus

execution) when each duration’s outcome falls within its interval bounds. This happens

with probability:

Pr
[︁
(10 ≤ 𝜔1 ≤ 14)

⋂︁
(8 ≤ 𝜔2 ≤ 11)

⋂︁
(2 ≤ 𝜔3 ≤ 4)

]︁
.

Equivalently, the probability that some outcome will not fall outside its interval bounds,

and thus invalidate the STNU as a proxy for the pSTN, is

𝑅𝑢 = Pr
[︁
(𝜔1 < 10) ∪ (14 < 𝜔1)

⋃︁
(𝜔2 < 8) ∪ (11 < 𝜔2)

⋃︁
(𝜔3 < 2) ∪ (4 < 𝜔3)

]︁
.

(3.1)

𝑅𝑢 represents the risk of using 𝒩 𝑢 as a proxy for executing 𝒩 𝑝. In other words, any
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Figure 3-3: Imposing STNU-style [𝑙, 𝑢] bounds on all the probabilistic durations of a
pSTN, yields an STNU which carries the risk of ignoring any outcomes falling outside
those bounds.

feasible policy for 𝒩 𝑢 is also a feasible policy for 𝒩 𝑝 with probability at least 1−𝑅𝑢.

This example brings up a key observation: Before, I reasoned that the risk 𝑅𝑗 of

assuming [𝑙, 𝑢] bounds on a single duration 𝑎𝑝𝑗 carried over to any policy that depends on

those bounds. But we can apply same reasoning to the STNU𝒩 𝑢 that results from assuming

such bounds on all probabilistic durations simultaneously. Equation 3.1 expresses of doing

so, and hence that risk gets attached to using any feasible policy of 𝒩 𝑢 for dispatching the

original pSTN 𝒩 𝑝.

Now recall that the chance constraint (Definition 2.19) requires our policy to have a

failure probability no larger than ∆. If we can ensure that 𝑅𝑢 is no larger than ∆, then

any feasible policy for 𝒩 𝑢 will automatically satisfy the chance constraint. This is very

promising! It means we have mostly decoupled the reasoning about meeting the risk bound

∆ and the reasoning about satisfying the temporal requirementsℛ. The former is handled by

calculating 𝑅𝑢 based on the [𝑙, 𝑢] bounds, and the latter is supplied by STNU controllability

theory. These two aspects of reasoning intersect only in that they must be based on the same

[𝑙, 𝑢] bounds, and together, they guarantee the existence of a policy that satisfies the chance

constraint.

STNU controllability and policy generation is a solved problem, so I will not dwell
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Figure 3-4: Illustration of the union bound. The probability mass of the union of distinct
events is upper-bounded by the sum of the probability masses of the individual events.

on it here. Rather, the key remaining question is how to calculate 𝑅𝑢 efficiently. The

probability expression in Equation 3.1 is difficult to evaluate because the probabilistic event

in question spans multiple random variables. In fact, the total event is a multivariate union,

and since the semantics of outcome likelihood (Definition 2.17) allow for arbitrary full joint

distributions, there is little hope of evaluating its probability directly. In particular, I do not

assume that the marginal distributions for individual durations are independent.

My key insight to overcome this hurdle is to note that the total event is a disjunction of

single-variable events. Specifically, the probabilistic event in Equation 3.1 is a disjunction of

pairs of events for 𝜔1, 𝜔2, and 𝜔3. The probability of each of those pairs is just the individual

duration risk defined in Definition 3.1. Namely, it’s the probability mass of that duration’s

marginal distribution that lies outside the [𝑙, 𝑢] bounds. These marginal distributions are

supplied for each probabilistic duration as part of the pSTN (Definition 2.16), and their

cumulative density functions are directly accessible.

Recall that the goal is to upper-bound 𝑅𝑢 by ∆. Therefore, at this point, I invoke the

union bound (also known as Boole’s inequality) to split Equation 3.1 into probabilities of

individual single-variate events. For reference, Figure 3-4 depicts the union bound on three

events 𝐴, 𝐵, and 𝐶, which may overlap with each other on certain (full) outcomes. The

probability of the union of all three events is upper-bounded by the sum of the probabilities

of the individual events.
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Applying the union bound to 𝑅𝑢 yields:

𝑅𝑢 = Pr
[︁
(𝜔1 < 10) ∪ (14 < 𝜔1)

⋃︁
(𝜔2 < 8) ∪ (11 < 𝜔2)

⋃︁
(𝜔3 < 2) ∪ (4 < 𝜔3)

]︁
≤ Pr

[︀
(𝜔1 < 10) ∪ (14 < 𝜔1)

]︀
+ Pr

[︀
(𝜔2 < 8) ∪ (11 < 𝜔2)

]︀
+ Pr

[︀
(𝜔3 < 2) ∪ (4 < 𝜔3)

]︀
= 𝑅1 + 𝑅2 + 𝑅3.

Therefore, as long as we enforce

𝑅1 + 𝑅2 + 𝑅3 ≤ ∆, (3.2)

then we will also guarantee 𝑅𝑢 ≤ ∆.

Equation 3.2 is much more tractable to evaluate, because unlike 𝑅𝑢, we are able to

evaluate the individual 𝑅𝑖’s directly. This condition is called a risk allocation, because we

are effectively taking a risk budget of ∆ and “distributing” it additively across the individual

sources of uncertainty. Risk allocation had been previously introduced by Blackmore [8] and

Ono [48] in the context of path planning with obstacles. In our pSTN context, distributing

risk 𝑅𝑖 to a probabilistic duration 𝑎𝑝𝑖 means cutting off its distribution’s tails at 𝑙𝑖 and 𝑢𝑖,

such that combined mass in those tails is exactly 𝑅𝑖. More risk means more probability

mass in the tails, so the [𝑙𝑖, 𝑢𝑖] interval would shrink in width.

Figure 3-5 illustrates the concept of risk allocation on our example, and in the next

section, I will formalize it. Note that it’s possible Equation 3.2 might not allocate all of ∆

to the durations. Thus there may be “leftover risk” not allocated to any duration, and this is

okay. It just means we’re being more conservative than necessary, i.e., the uncontrollable

intervals are wider than they need to be. If there were leftover risk and we allocated it to

some durations, it would only shrink those durations’ intervals. If the STNU implied by
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Figure 3-5: Applying risk allocation to the spaghetti pSTN. Rather than enforcing the risk
bound on 𝑅𝑢, which is hard to evaluate, we enforce it on the sum of the individual risks.
This can be interpreted as distributing a “budget” of ∆ risk over the individual durations.

the original intervals is already controllable, then allocating any remaining risk would still

preserve controllability.

While the conservatism of having leftover risk is harmless, it does raise the issue of

what kinds of conservatism are present in the process of problem reformulation and risk

allocation. Recall that I proposed this approach to gain tractability into finding policies for

the original cc-pSTN. Along the way, I argued that mapping the pSTN into an STNU and

applying the risk allocation constraint guarantees that any policy for the STNU will respect

the chance constraint. Therefore, this process is sound. However, the converse is not true,

i.e., there may exist feasible scheduling policies for the original cc-pSTN that this approach

cannot find.

In the next section, I formally discuss incompleteness in terms of the relevant solution

spaces. Here, though, I present the intuition first, using the example below.

Example 3.3. Figure 3-6 shows a very simple pSTN with two probabilistic durations in

sequence. An overall constraint requires the two activities to finish between 𝑎 and 𝑏 time

units after the start. The two durations 𝑑1 and 𝑑2 are modeled as Gaussians with means

𝜇1 and 𝜇2, and standard deviations 𝜎1 and 𝜎2. Their joint outcome space is depicted on

the right. The purple ovals indicate the contours of the joint Gaussian distribution. (The
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Figure 3-6: A very simple pSTN with two probabilistic durations in sequence, plus an
overall deadline. There is only one trivial scheduling policy, which is to dispatch the start,
and let the rest of the plan execute. The space of duration outcomes is two-dimensional,
and the policy succeeds on all outcomes in the trapezoidal region between the two diagonal
lines.

contours get closer where the gradient of the PDF is larger.) Note that I’ve indicated

there is some dependence between the two durations, given the tilt of the distribution’s

axes. However, when projected/marginalized onto the individual durations, we recover the

one-dimensional Gaussian PDFs that come with the pSTN.

Technically, these Gaussians should be truncated below 𝑡 = 0 and renormalized.

However, if the standard deviations are significantly smaller than their respective means

(e.g., 𝜎 ≤ 𝜇
5
), and the chance constraint bound is, say, on the order of 1%, then the

probability mass below 𝑡 = 0 is negligible.

By inspection, we can see that there is only one trivial policy: dispatch the controllable

start event (say at time 0), and let the two activities run in sequence with whatever durations

Nature picks. The question then is with what probability will the [𝑎, 𝑏] requirement be

satisfied? In this simple example, we can easily visualize the exact answer: The condition

that 𝑎 ≤ 𝑑1 + 𝑑2 ≤ 𝑏 is represented by the trapezoidal region in between the two green

lines, which intersect both axes at 𝑎 and 𝑏. The sum 𝑑1 + 𝑑2 has a distribution that is the

convolution of 𝑑1’s and 𝑑2’s. And if you accept that the probability masses of the Gaussians

below 0 (i.e., outside of the first quadrant) are negligible, then 𝑑1+𝑑2 also follows a Gaussian
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(you’d be projecting the multivariate along a diagonal axis perpendicular to the green lines).

You could then integrate that Gaussian from 𝑎 to 𝑏 (equivalently, integrating over the area

of the corridor between the green lines) to get the exact success probability.

Now let’s see what conservatism/incompleteness is present in the STNU reformulation

and risk allocation approach. On the left of Figure 3-7, we see a rectilinear region carved

out by the [𝑙1, 𝑢1] and [𝑙2, 𝑢2] bounds. These are the outcomes captured by the STNU we’ve

transformed the pSTN into. This region needs to be contained within the green boundaries

in order to guarantee satisfaction of the [𝑎, 𝑏] requirement, and thus controllability of the

STNU.

Therefore, the largest likelihood of success we can guarantee is the largest probability

mass we can cover with a rectilinear region that fits in the corridor. I.e., suppose the exact

success probability was 𝑝*, but we could only find an STNU that covers 𝑝′ < 𝑝*. Then

whereas in theory there exists a policy that meets a chance constraint with risk bound

∆* = 1− 𝑝*, the best we can do is meet a risk bound of ∆′ = 1− 𝑝′, which is larger than

∆* by 𝑝* − 𝑝′

Whether this is incompleteness is costly depends on how “wide” the joint distribution is

relative to the width of the corridor. For the purpose of illustration, this example stretches out

and orients the joint distribution so that it’s clearly difficult to capture most of the mass in the

corridor with an STNU projection. However, when there are many probabilistic durations,

we get a joint distribution in a high-dimensional space, and the immense “volume” of these

spaces means most of the mass tends to be tightly clustered. So for large plans, we’d expect

to be better able to capture the mass with a rectilinear prism that represents the STNU’s

outcome space.

We also have to consider the conservatism introduced by the union bound approximation

in risk allocation. Recall that rather than evaluating the success probability, i.e., the

mass inside the rectangle, we are evaluating the risk 𝑅𝑢 of being outside. Equation 3.2

approximated and upper-bounded 𝑅𝑢 by adding the tail masses of the individual marginals.

This is depicted on the right side of Figure 3-7. The tail masses for duration 𝑑1 are in the

two vertical strips of red outside 𝑙1 and 𝑢1, and for 𝑑2 are in the horizontal strips outside 𝑙2

and 𝑢2.
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Figure 3-7: Transforming the pSTN into an STNU prevents us from collecting the full set
of joint outcomes that would lead to feasibility, since we don’t perform convolution. Then,
the union bound that risk allocation relies on creates further conservatism through overlap
/ double-counting of joint outcomes that the STNU doesn’t capture.

These four strips overlap with each other in the doubly-shaded regions. Therefore,

risk allocation is double-counting the probability mass in those regions, and thus further

increasing the lowest risk bound we can guarantee. For larger plans, this would lead to even

higher-multiple counting of certain regions.

Fortunately, there is good reason to believe this conservatism isn’t costing us too much

probability mass, either. As Figure 3-7 suggests, the probability masses in the overlapped

regions are already quite small. In this example, the two durations are not independent,

but they’re not super-dependent on each other, either. Thus, if the tails we cut off from

the individual marginals are already small, then their combined effects in the overlapping

regions result in very little mass there.

When Ono [46] presented risk allocation for path planning, he identified the worst-case

conservatism as 𝑁−1
𝑁

∆, where𝑁 was the number of distributions to which he was allocating

risk. (In the pSTN case, it would be the number of probabilistic durations.) However, he

also showed that if all durations were independent, then the probability mass we give up

is 𝑂(∆2). Namely, as we enforce tighter risk bounds, the conservatism decreases by an

additional factor of ∆. This means as long as we are interested in chance constraints with

small ∆’s, the union bound provides a very good approximation of 𝑅𝑢.
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Even though I presented the pSTN model without assuming independence, we can

ask how close actual durations are to being independent, and thus how often we achieve

this good approximation. This in turn depends on the scenario at hand. In a public transit

context, if a bus takes longer to drive between stops due to traffic, then there’s some reason to

believe that the same traffic would similarly affect the bus immediately following. However,

subway cars don’t have to deal with road traffic, so their travel durations are more likely to

depend on driver behavior, which is less tightly coupled.

Generally, activities that are closer in time or happening in parallel have more oppor-

tunities to have dependent durations. Larger separations in space and/or time afford fewer

opportunities for underlying processes to link activities. Therefore, for large plans that

span significant time, it’s reasonable to expect mainly local dependencies, and hence we

shouldn’t do much worse than the 𝑂(∆2) conservatism when there’s perfect independence.

To summarize this section, I introduced a two-step reformulation of the original cc-pSTN

problem to make searching for policies tractable. First, I cast the problem as searching for a

proxy STNU that is controllable, so that we can use any of its policies to dispatch the pSTN.

Those policies are guaranteed to work with probability at least the joint distribution mass

covered by the STNU’s outcome space. However, evaluating the joint mass, is still difficult.

So the second step is to recognize the complement of that mass represents the total risk of

assuming the STNU model, and that the union bound can upper bound the total risk by the

sum of the individual duration risks, which are accessible. This effectively reformulates the

chance constraint, which I will formally state in the next section.

I also explained how both of these steps introduce their own form of conservatism, so

the reformulation is sound but incomplete. I argue, though, that the incompleteness can

be tolerable under many circumstances. Again, in the next section, I will more formally

document the sources of incompleteness.

The last item I promised to address in this section is to explain how to adapt an

STNU policy to be applicable for pSTN execution. Right after the definition of pSTNs

(Definition 2.16), I noted that with the exception of outcome generation, the execution

semantics for pSTNs were identical to STNUs. This means that the STNU definitions

of scheduling policy (Definition 2.9) and results of policy decisions (Definition 2.10)
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apply equally for pSTNs. Namely, pSTN policies still map partial histories into decisions,

and Nature decides whether those decisions get preempted by the termination of active

probabilistic durations.

However, towards the end of Section 3.1, I noted that while probabilistic durations in

pSTNs are defined over the domain [0,+∞), their uncontrollable duration counterparts in

STNUs have finite [𝑙, 𝑢] domains. Therefore, for a pSTN and an STNU of the same structure

(i.e., activities and requirements), there are many more possible execution histories for the

pSTN than the STNU. Any policies for the STNU technically don’t have defined behavior for

execution histories containing outcomes beyond their respective durations’ [𝑙, 𝑢] domains.

So, this poses a slight hurdle for our strategy of using STNU policies as proxies for

dispatching pSTNs.

Fortunately, it is easy to patch this discrepancy. I already argued that once we transform

a pSTN into an STNU, any feasible policy for an STNU will behave exactly the same on

the pSTN for those outcomes. Furthermore, if those outcomes cover at least 1 − ∆ of

the probability mass (due to our risk allocation strategy), then the STNU policy already

nominally satisfies the chance constraint. That means we don’t really care how the policy

behaves on the remaining outcomes. We just have to define some behavior so that the

policy will execute the plan to completion, rather than producing “undefined” scheduling

decisions.

In other words, for these exceptional cases, we can effectively ignore the temporal

requirementsℛ, and just focus on executing the remaining activities of the plan. The main

condition, then, is to make sure the policy still generates decisions leading to valid execution

histories, rather than fully feasible ones. I.e., the policy has to respect the duration semantics

of the activities at all times, whether or not unhandled outcomes have occurred.

There are a couple possible strategies for defining such policy behavior. For example,

you could try to complete the rest of the plan as quickly as possible, by executing each

of the remaining controllable activities with their shortest allowed duration. (Nature still

gets to decide the durations for any probabilistic durations.) But you could also choose any

duration within those activities’ flexible [𝑙, 𝑢] intervals, and the execution history would still

be valid.
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The only problematic case is if you are trying to dispatch a wait activity (recall, these

are the blue arrows in the example diagrams, not the wait decision that could be output

by a policy), the upper bound is +∞. For example, consider the merging of the “bake

meatballs” and “toss w/ sauce” activities in Example 2.15 and Figure 2-4. Choosing +∞

for either of the waits’ durations would force the other one to be +∞ as well, and thus cause

execution to hang forever.

Therefore, to propose a valid, deterministic strategy for converting STNU policies into

valid pSTN ones, Definition 3.4 goes with the shortest possible duration for each remaining

activity. This covers all scenarios except when two or more threads of execution are merging

via wait constraints.

To use the above example of merging “baking” and “tossing”, suppose the meatballs

finished baking at 𝑡 = 10, but the other cooking activities took too lone, so we couldn’t

finish the tossing activity until 𝑡 = 13. Then we’d have no choice but to wait at least 3

minutes after “baking”. Then according to our strategy, we’d execute the wait activity from

“tossing” to “topping” with its shortest duration of 0 minutes. Thus, we’d begin “tossing”

at 𝑡 = 13, simultaneously ending the wait activity from “baking”. Note that this violates

the [0, 2] requirement on that wait activity, but we’ve already thrown that out since either

the “boil spaghetti” or “heat sauce” activities took too long.

Definition 3.4 (Extension of STNU policy into pSTN context). Let 𝒩 𝑝 be a pSTN, and

let 𝒩 𝑢 be an STNU with the same structure, but with probabilistic durations mapped into

finite-domain uncontrollable durations. For every probabilistic duration 𝑎𝑝𝑗 in 𝒩 𝑝, and let

it’s STNU counterpart 𝑎𝑢𝑗 have domain [𝑙𝑗, 𝑢𝑗]. Let 𝒫𝑢 be a scheduling policy for 𝒩 𝑢, and

let 𝜉𝑘 be the current execution history that 𝒫𝑢 has produced on the pSTN 𝒩 𝑝 so far. The

current time 𝑡𝑘 is the execution time of the last event 𝑒𝑖𝑘 in the history 𝜉𝑘.

If according to 𝜉𝑘, the following two conditions are true, then 𝒫𝑢 is still a valid policy

for 𝒩 𝑝, so we continue to use it to get the next decision 𝜎𝑘+1.

1. Any probabilistic duration 𝑎𝑝𝑗 that has completed had an outcome 𝜔𝑗 that fell in the

range [𝑙𝑗, 𝑢𝑗].

2. For any probabilistic duration 𝑎𝑝𝑗 that is still active (i.e., has been dispatched but
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not yet terminated by Nature), the current time is compatible with it’s mapped STNU

domain. I.e., suppose 𝑎𝑝𝑗 began at 𝑡 = 𝑡𝑗 . Then 𝑡𝑘 − 𝑡𝑗 ∈ [𝑙𝑗, 𝑢𝑗].

Otherwise, we switch to the following strategy:

1. First, check if any free-hanging controllable events that begin threads haven’t been

executed. (E.g., in the spaghetti example, suppose we didn’t have the initial start

event. Then the three cooking activities would have free-hanging events that start

their respective threads.) Decide to schedule any one of them (or equivalently, all of

them) right now (at time 𝑡𝑘).

2. For each controllable-duration activity 𝑎𝑖 currently in execution, determine the time

𝑡𝑖 it started according to the history 𝜉𝑘, and let it’s flexible time window be [𝑙𝑖, 𝑢𝑖]. We

are guaranteed that the current time has not exceeded 𝑎𝑖’s latest possible time, i.e.,

𝑡𝑘 ≤ 𝑡𝑖 + 𝑢𝑖.

3. According to the activity model, the remaining valid window of execution for 𝑎𝑖 would

be [max (𝑡𝑘, 𝑡𝑖 + 𝑙𝑖), 𝑡𝑖 + 𝑢𝑖]. Let 𝑡*𝑖 = max (𝑡𝑘, 𝑡𝑖 + 𝑙𝑖), which is the earliest time we

could decide to terminate 𝑎𝑖.

4. Pick the activity with the smallest 𝑡*𝑖 . If that activity’s end event does not merge two

or more threads, then there is no coordination needed to make sure those threads end

together. Therefore, decide to terminate that activity at the time of its 𝑡*𝑖 .

5. Otherwise, if the activity does merge with other threads, then it must be a wait

activites, with a [0,+∞) interval, and so must the other activities merging with it.

As the spaghetti example above illustrated, merging can only happen when all wait

activities are in execution. So we need to check if all the other wait activities are

active. If so, we can immediately merge and terminate all those waits right now at

time 𝑡𝑘 (which 𝑡*𝑖 must be equal to). Otherwise, we are not ready to merge, and we

move on to the activity with the next smallest 𝑡*𝑖 .

6. Finally, if all threads have been started, and the only activities in execution have

probabilistic duration, then the only possible decision is to wait for one of their

uncontrollable end events to arrive.
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While this definition may seem long, it really just expresses the simple idea of dispatching

a plan to completion as soon as possible without regard for the temporal requirements. All

the technicalities are needed to ensure that the policy respects the model of controllable

activity durations, and thus produces valid execution histories. These principles are rooted

in the original dispatching strategies for STNs and STNUs. For more information about

dispatching, see work by Muscettola, Morris, and Tsamardinos [43] [58] [40] as well as by

Hunsberger [33].

The ultimate takeaway, though, is that Definition 3.4 closes the technical gap between

a plain STNU policy and adapting it for use with a pSTN. The definitional extension only

applies when some duration’s outcome falls outside of the STNU model. There is always

a possibility the resulting execution history may still satisfy the temporal requirements, but

we make no effort to do so, nor any attempt to quantify the likelihood of that happening.

To simplify the exposition in subsequent sections and chapters, I will assume this extension

applies automatically to any STNU policy.

3.3 The cc-pSTN risk allocation problem

The previous section described the intuition of mapping the original pSTN down into an

STNU and viewing it as a form of risk allocation. This section will now formally state those

concepts and use them to transform the original cc-pSTN problem (Problem 2.20) into a

reformulated problem that is much more tractable to solve.

I begin by defining what a risk allocation is for a cc-pSTN. Applying a given risk

allocation to a pSTN yields an implied STNU that is a proxy for the pSTN, and we wish the

STNU to be controllable. The reformulated problem thus reduces to finding an appropriate

risk allocation, which must satisfy two conditions: The first is that the risk allocation

respects the original chance constraint’s risk bound ∆. I call this condition a reformulated

chance constraint. The second condition is for the implied STNU to be controllable.

At the beginning of Chapter 4, I will review how others have derived constraints that

express the condition of STNU controllability. The derivations are rather involved, so I

will not repeat them, but I will summarize their form and the computational complexity
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of deriving them. Combined with the reformulated chance constraint, they will form a

mathematical programming encoding of the reformulated problem. Thus, this will show

that the reformulated problem is tractable, i.e., one could employ off-the-shelf solvers to find

risk allocations for reformulated cc-pSTNs. However, I will also argue that the encoding is

not as efficient as could be, and that will motivate my algorithmic approach in Chapter 4.

For now, in this chapter, my concern is with defining the reformulated problem, and

stating its relationship to the original problem. Namely, I have argued previously that this

reformulation approach is sound but incomplete. I will end this section by documenting

the possible sources of incompleteness. However, this is for theoretical completeness, and

I have given the intuitions for why these sources would not be overly conservative.

Now, let’s begin with the central concept of risk allocation. Recall from Figure 3-5 that

the idea is to distribute a ∆ risk bound over the individual probabilistic durations, such

that their individual risks 𝑅𝑖 sum to at most ∆. In turn, for a duration to take on 𝑅𝑖 risk

means to cut off tails from that durations’ distribution such that their probability masses

sum to exactly 𝑅𝑖. Therefore, a risk allocation can be represented by a set of [𝑙, 𝑢] intervals

imposed on the probabilistic durations, and the CDFs for those distributions allow us to

express or verify that the tail masses we’re ignoring do not exceed the desired risk bound.

Definition 3.5 (Risk allocation). Given a pSTN 𝒩 𝑝 = ⟨ℰ , ℰ𝑢,𝒜,𝒜𝑝,ℛ⟩ and a chance

constraint 𝑐 = ⟨ℛ,∆⟩, a risk allocation ℒ is a mapping from 𝒜𝑝 to [𝑙, 𝑢] bounds. Each

probabilistic duration 𝑎𝑝𝑗 ∈ 𝒜𝑝 receives the bounds ℒ(𝑎𝑝𝑗) = [𝑙𝑗, 𝑢𝑗], and according to

Definition 3.1, this leads to an individual risk 𝑅𝑗 on 𝑎𝑝𝑗 ’s duration. The overall risk

allocation ℒ, then, must satisfy
𝐾∑︁
𝑗=1

𝑅𝑗 ≤ ∆, (3.3)

where 𝐾 = |𝒜𝑝|.

The first key concept in risk allocation is expressed in Equation 3.3, which is a linear

inequality in 𝑅𝑗 . However, the actual variables we control are the 𝑙𝑗 and 𝑢𝑗 bounds.

As Definition 3.1 says, 𝑅𝑗 is derived from these bounds based on the CDF 𝐹𝑗 of 𝑎𝑝𝑗 ’s

distribution, and generally 𝐹𝑗 has nonlinear characteristics. (The only case in which it

would be fully linear is if the distribution was uniform.) Therefore, the actual condition of

91



satisfying the risk budget is nonlinear in terms of 𝑙𝑗 and 𝑢𝑗 , and I call this the reformulated

chance constraint.

Definition 3.6 (Reformulated chance constraint). Given a pSTN𝒩 𝑝 and a chance constraint

𝑐 = ⟨ℛ,∆⟩, the reformulated chance constraint 𝑐 is a condition on finding a risk allocation

ℒ for the cc-pSTN. Namely, if ℒ maps each probabilistic duration 𝑎𝑝𝑗 to an interval [𝑙𝑗, 𝑢𝑗],

then we require:
𝐾∑︁
𝑗=1

[𝐹𝑗(𝑙𝑗) + (1− 𝐹𝑗(𝑢𝑗))] ≤ ∆, (3.4)

So this takes care of the original chance constraint: If a risk allocation ℒ satisfies this

condition, then any policy 𝒫 we find based on ℒ’s assumptions will satisfy the original ∆

risk bound. The next question is how we find that policy, and the answer lies in the intuition

expressed at the beginning of Section 3.2: By assuming that the probabilistic duration

outcomes actually fall within the [𝑙𝑗, 𝑢𝑗] bounds specified by ℒ, we transform the pSTN

model semantics into those of an STNU. Thus, a risk allocation conceptually maps a pSTN

into an implied STNU.

Definition 3.7 (Implied STNU). Given a pSTN 𝒩 𝑝, a chance constraint 𝑐, and a risk

allocation ℒ, the implied STNU 𝒩 𝑢 is a temporal network that is identical to 𝒩 𝑝, except

that each probabilistic duration 𝑎𝑝𝑗 has been turned into simply an uncontrollable one 𝑎𝑢𝑗

whose range of possible durations is ℒ(𝑎𝑝𝑗) = [𝑙𝑗, 𝑢𝑗].

All we need now is for the implied STNU to be controllable (either strongly or dynam-

ically), and that will guarantee the existence of a feasible scheduling policy 𝒫 (which we

then extend into a pSTN policy according to Definition 3.4). The fact that 𝒫 is feasible for

the STNU, combined with the reformulated chance constraint condition, makes it a valid

solution for the original cc-pSTN problem.

There is just one wrinkle, which is although we have efficient (i.e., low-order polynomial-

time) algorithms for checking STNU controllability [41] [38] [39] and then executing

scheduling policies for them [33], these algorithms all operate on fully grounded STNUs,

where the bounds on the uncontrollable durations are constants. What I’ve stated above is

we require the condition that the STNU is controllable, and we are trying to assign [𝑙𝑗, 𝑢𝑗]

bounds such that this is true.
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Fortunately, since STNU controllability is well-defined, it is thus also well-defined to

state such a condition on finding such bounds. As I’ve said, I will delay until Chapter 4 elab-

orating on how to encode that condition in terms of the 𝑙𝑗 and 𝑢𝑗 variables we have to assign.

However, it is good news that others have worked out constraint encodings of this precise

condition, both for strong controllability [60] [20] and dynamic controllability [66] [13].

This lends further evidence that this condition is well-defined.

At last, I can state the reformulation of our original cc-pSTN problem (Problem 2.20)

in terms of the risk allocation we are looking for.

Problem 3.8 (Reformulated cc-pSTN risk allocation problem). Given a pSTN 𝒩 𝑝 and a

chance constraint 𝑐, find a risk allocation ℒ for the cc-pSTN such that the reformulated

chance constraint 𝑐 is satisfied, and the implied STNU is controllable.

While the original problem is about finding a scheduling policy for the pSTN, the

reformulated problem only asks for a risk allocation. This is because once a suitable risk

allocation is found, the implied STNU will have fully grounded (i.e. constant) intervals

for its uncontrollable durations. Existing algorithms can thus directly dispatch the STNU,

effectively running a policy.

By imposing this risk allocation structure on our solution, the reformulated problem

explicitly decouples the temporal and probabilistic aspects of the original problem. Before,

if we had tried to evaluate a candidate policy 𝒫 for 𝒩 𝑝, we would have had to identify

the set of outcomes on which 𝒫 yields feasible histories, and simultaneously determine

the collective probability mass of those outcomes. The issues with that direct approach,

as discussed in Section 3.1 and then illustrated in Figure 3-6, are that set has complex

boundaries, and it is difficult to integrate an arbitrary joint distribution over it.

Risk allocation avoids these complexities by considering only rectilinear subsets of the

outcome space that could correspond to an STNU. It is easy, though still nonlinear, to

approximate the probability of outcomes landing outside such a region, and to ensure it

meets a risk bound. It is also straightforward, even if not concise, to then separately express

that the STNU must be controllable.

Figure 3-8 summarizes these two decoupled conditions given by Problem 3.8. The
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Figure 3-8: The reformulated risk allocation problem expresses two decoupled conditions
on the desired risk allocation. First, it must satisfy the reformulated chance constraint.
Second, the implied STNU needs to be controllable. Whether it is strongly or dynamically
controllable determines whether we thus have a static or dynamic policy for the original
cc-pSTN.

reformulated chance constraint handles the risk bound, while the controllability conditions

specify desired structure of the implied STNU in order for us to get a policy out of it. We

choose which flavor of controllability to specify depending on whether we are solving for a

static or a dynamic policy.

Throughout this chapter, I have argued that this approach produces valid policies that

respect the original chance constraint, and therefore the reformulated problem is sound with

respect to the original. I also gave an example in the last section, proving that limiting

ourselves to these rectilinear subsets makes the approach incomplete. In the following

subsection, I systematically document the sources of incompleteness.

3.3.1 Incompleteness of risk allocation

To be complete with respect to solving a problem, an algorithm or approach needs to be

able to find a solution if a solution actually exists. Therefore, completeness with respect to

a cc-pSTN is ultimately about what portion of the entire set of chance constraint-satisfying

policies our reformulated problem captures. This set was depicted in purple in Figure 3-

1, with wavy boundaries connoting the nonlinear probabilistic condition of satisfying the

chance constraint.
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For comparison, I also depicted what an STNU’s policy space might look like, as a

subset of the pSTN’s. A feasible STNU policy makes decisions based on linear conditions

on the event execution times [33], so the boundaries of that region would be “faceted”.

Thus, if we find a risk allocation solution, we have no reason to believe the implied STNU’s

feasible policy space lines up with the original full set of chance-constrained pSTN policies.

There is more to the story, however. Unlike Figure 3-1, we are not looking at just one

STNU; we are considering an entire space of possible STNUs, implied by the space of risk

allocations. Of course in the end, we will settle on a single grounded STNU (or none at

all), but we should consider the space where it comes from. We should also consider the

space of duration outcomes, both for the pSTN and the STNU, since the notion of risk

derives meaning from the joint distribution over that space, and what portion of the pSTN’s

outcome space the STNU covers. (This was shown on a concrete example in Figures 3-6

and 3-7.)

To summarize, then, I will consider three spaces: the space of pSTN and STNU policies,

the space of risk allocations, and the space of pSTN and STNU outcomes. Tracing the logic

of the reformulated approach, I will first make the connection between the risk allocation

space and the outcome space. Then I will link the outcome space to the policy space. Along

the way I will identify where the approach of mapping a pSTN into an STNU introduces

incompleteness/conservatism.

To begin with, the reformulated problem asks us to find a risk allocation. Since I defined

a risk allocation as a mapping from probabilistic durations to [𝑙𝑗, 𝑢𝑗] bounds, one can view

the 𝑙𝑗 and 𝑢𝑗 as the parameters of interest. Therefore, for a pSTN with 𝐾 probabilistic

durations, the risk allocation space has 2𝐾 dimensions. This is depicted in the upper right

of Figure 3-9.

Now, since every risk allocation maps to an implied STNU, we can consider that STNU’s

outcome space. Following the logic of Example 3.3 and Figure 3-7, that outcome space

will be a rectilinear polytope subset of the pSTN’s outcome space. This is shown in the

lower left of Figure 3-9. (High-dimensional polytopes are difficult to visualize, so I’ve

represented it as a convex polygon with parallel sides.) The risk 𝑅𝑢 of using the STNU

as a proxy for the pSTN is the probability mass falling outside that polytope. This was
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Figure 3-9: Each risk allocation maps to an STNU whose outcome space is a (rectilinear)
polytope subset of the entire pSTN outcome space. The probability mass lying outside the
STNU’s outcomes is the STNU’s total risk 𝑅𝑢.

illustrated in Example 3.2 with Equation 3.1.

Since the goal is to have 𝑅𝑢 ≤ ∆, this carves out a desired region in the risk allocation

space. However, it’s hard to evaluate the (probabilistic) disjunctive event that 𝑅𝑢 represents,

so our actual reformulated chance constraint applies the union bound, which tightens the

constraint to
∑︀

𝑅𝑗 ≤ ∆. We had shown in Example 3.3 and Figure 3-7 that this tightening

makes the actual risk 𝑅𝑢 smaller than necessary. Therefore, the reformulated chance

constraint is a subset of the desired region. Figure 3-10 updates Figure 3-9 to show this

relationship. We thus see the conservatism introduced by the union bound: that we can’t

access every risk allocation whose true total risk satisfies the risk bound.

Inside the risk allocation space, there should also be the second condition of the implied

STNU being controllable, which would carve out another feasible region. (Generally,

risk allocations with very wide [𝑙𝑗, 𝑢𝑗] bounds would yield uncontrollable STNUs, and

thus be likely to fall outside the region.) So, the set of solutions for the reformulated

problem would be the intersection of the reformulated chance constraint region and the

controllability region. I have not depicted this second region, because the constraints

that form it have been proven sound and complete with respect to the definition of STNU

controllability [42] [30] [33]. Therefore, it would not impact completeness with respect to
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Figure 3-10: There exists a set of risk allocations (shaded light green) whose total risk 𝑅𝑢

is no larger than ∆. The reformulated chance constraint (shaded darker green) then applies
the union bound, which tightens the region. Thus, by enforcing the reformulated chance
constraint, we are unable to discover potential risk allocations solutions.

the cc-pSTN problem.

Having identified a risk allocation and the outcome space of its implied STNU, we

can ask what the STNU’s policy space looks like. As I discussed in Section 3.1 and also

referenced at the beginning of this subsection, the STNU’s policy space is a subset of the

pSTN’s. This is because a) policies for the STNU are receiving execution histories on the

same plan structure, but b) the STNU contains a subset of the pSTN’s outcomes. Thus, the

STNU’s policies don’t have to handle as many potential execution histories.3 Figure 3-1 had

shown exactly that.

However, if the STNU’s total risk doesn’t exceed ∆, i.e., the chosen risk allocation

falls within the light green region, then all feasible policies for the STNU must satisfy the

original chance constraint. Figure 3-11 depicts this by showing the blue region of feasible

STNU policies falling entirely within the purple chance constraint region. This diagram,

then, illustrates two additional sources of incompleteness.

3One might question this argument since we are automatically extending all STNU policies into valid pSTN
policies according to Definition 3.4. However, the extension is applied after the fact to cover a technicality,
and it provides only a single deterministic strategy for responding to any outcome outside the STNU’s model.
Therefore, there are still many pSTN policies that could respond differently (e.g., executing later than at the
earliest possible time), which our STNU policy extension does not express.
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Figure 3-11: Given an STNU implied by a risk allocation, the STNU’s policy space is also
a subset of the pSTN’s policy space. If the risk allocation satisfies the 𝑅𝑢 ≤ ∆ condition,
then the feasible subset of the STNU’s policy space must fall within the set of chance
constraint-satisfying policies.

First, we see there are chance constraint-satisfying policies not covered by the STNU

feasible set. The reason why had been hinted at in Example 3.3. Even though that scenario

admitted only one possible policy (i.e., dispatch the start event and just keep waiting), it

demonstrated that if we were to extract the policy from the implied STNU, that policy

would only have been guaranteed to handle the outcomes in the blue rectangular region in

Figure 3-7. Namely, the STNU policy would not explicitly address any outcomes outside

that region.

In that specific example, it didn’t matter since there was only one possible policy.

But let’s modify the scenario by appending in sequence a controllable activity, shown in

Figure 3-12. Now the policy space is enriched by the decision of when to terminate that

activity.

Suppose we perform risk allocation and get our STNU with [𝑙1, 𝑢1] and [𝑙2, 𝑢2] bounds.

We then choose a policy that always decides to run the last activity for 7 time units. If we

run that policy on the pSTN, but then encounter an outcome where, say, 𝑑2 < 𝑙2, then the
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Figure 3-12: This extends the temporal plan in Example 3.3 by a single activity with
controllable duration interval [5, 10], so that the policy has to decide for how long to execute
that activity.

STNU policy defaults to the extension, which would run the last activity for only 5 time

units.

In contrast, a pSTN policy would be able to run the activity for 7 times units no

matter the previous outcomes. And if the [𝑎, 𝑏] requirement were “wide enough” relative

to the combined distribution of 𝑑1 + 𝑑2, then that policy would satisfy the original chance

constraint. Thus, it would fall inside the purple region but not the blue in Figure 3-11. This

proves that if we find a risk allocation that yields a controllable STNU, it is possible for

there to exist chance constraint-satisfying policies that are not among the STNU’s policies.

The second source of incompleteness shown by this diagram is that there may be

infeasible policies for the STNU that turn out to be in the chance constraint-satisfying

region. This is harder to come up with an example for, so I will just explain the concept.

If a policy is infeasible for the STNU, then all it means is there is at least one full outcome

on which it doesn’t succeed. It might still succeed on the vast majority of the STNU’s

outcomes. And, once the pSTN extension is applied, it might coincidentally succeed on

some of the remaining pSTN outcomes. The probability mass of those outcomes could

outweigh the STNU outcomes that the policy doesn’t work on, and thus, the (extended)

policy would still satisfy the original chance constraint. But that policy would never be

considered, at least in the context of the risk allocation that gave us the implied STNU.

Lastly, I relate feasible STNU policies back into the space of pSTN outcomes. Suppose

we have such a policy as depicted in Figure fig:stnu-policy-outcome-space. We already know

that it will succeed on the entire STNU outcome space. But it may also, by chance, succeed
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on some remaining portion of the pSTN outcomes. This was illustrated in Example 3.3

and Figure 3-7, where the (only) policy would succeed on the trapezoidal region between

the two green boundaries. If the blue region inside the trapezoid already contains enough

probability mass to meet the chance constraint, then the policy’s actual success probability

will be higher than 1−∆.

So as Figure 3-13 shows, every STNU feasible policy may succeed on a larger portion

of the pSTN outcomes than just the STNU’s outcomes, and therefore has a potentially

smaller than ∆ chance of violating temporal requirements. Hence, this is yet another

another form of conservatism, i.e., that we don’t consider all the pSTN outcomes that an

STNU policy succeeds on. This means there could be risk allocations that don’t satisfy

the reformulated chance constraint condition, and so their implied STNU’s outcomes have

too little probability mass. And yet, one of the STNU’s policies might succeed on enough

additional outcomes to meet the chance constraint’s 1−∆ requirement.

In Example 3.3, the joint distribution could be too spread out and/or the chance constraint

too tight for there to exist a rectilinear region within the trapezoid, containing enough

probability mass. But as long as the trapezoid itself has enough mass, then the STNU

policy would still be a solution to the original problem. Yet, our reformulated problem

would not be able to find it because the reformulated chance constraint region in the risk

allocation space would be empty.

It is worth noting that the argument for this last form of conservatism is also an argument

for the soundness of risk allocation. Namely, since the portion of outcomes an STNU policy

succeeds on encompasses the STNU’s own outcomes, and since risk allocation guarantees

those STNU outcomes to have at least 1 − ∆ probability mass, then the policy directly

satisfies the original chance constraint’s semantics.

To summarize, I have identified four forms of conservatism in my risk allocation ap-

proach for the reformulated problem:

1. The union bound approximation of an STNU’s risk prevents us from accessing risk

allocations that would otherwise satisfy the chance constraint’s risk bound.

2. For any implied STNU we use as a proxy for the pSTN, our policies can’t explicitly
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Figure 3-13: Given an STNU implied by risk allocation, any feasible policy we select from
the its policy space will succeed (i.e., respect the temporal requirements) on all the STNU’s
outcomes. But it may also succeed by coincidence on other pSTN outcomes (after applying
the pSTN policy extension in Definition 3.4).

react to outcomes not modeled by the STNU, and there may be policies with such

abilities that satisfy the original chance constraint.

3. For any implied STNU, there may be infeasible policies that we don’t consider but

which also satisfy the original chance constraint.

4. For any implied STNU, its feasible policies may succeed on more outcomes that just

those modeled by the STNU.

I have also given numerous explanations of risk allocation’s soundness. These results are

officially stated below.

Lemma 3.9 (Incompleteness). Problem 3.8 is incomplete with respect to the original cc-

pSTN problem 2.20.

Lemma 3.10 (Soundness). Problem 3.8 is sound with respect to the original cc-pSTN

problem 2.20.
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This has been a theoretical discussion of where conservatism/incompleteness could

creep in. In Section 3.2, I had argued that these sources were unlikely to significantly

reduce the solution space. Moreover, some incompleteness is expected when trying to

make tractable continuous probabilistic conditions that have been composed in a complex

constraint network. While one could always construct pathological examples, the loss of

solution space ultimately depends on the actual scenario at hand.
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Chapter 4

Conflict-Directed Approach to Risk

Allocation

Chapter 3 recast our original cc-pSTN problem as a risk allocation instead, such that any

solution implied by a valid risk allocation would satisfy the original, too. The key feature of

this reformulation was to separate out two classes of constraints, one probabilistic and one

temporal, illustrated in Figure 3-8. We fully specified the probabilistic condition, namely,

the reformulated chance constraint in Definition 3.6. However, we deferred specifying the

temporal controllability conditions until this chapter.

I begin by showing that if we did encode those conditions directly, then it would be

expensive to combine them with the reformulated chance constraint and solve for a risk

allocation. The key takeaway is the form of those constraints, and the complexity of

expressing them. While the encoding for strong controllability is somewhat tractable, the

encoding for dynamic controllability is notably more complex. There are also significant

hurdles to solving the DC constraints in conjunction with the reformulated chance constraint.

This chapter’s contribution, then, is to provide a more efficient, alternate approach

to solving the reformulated problem’s conditions. To do so, I leverage previous work in

chance-constrained static scheduling [67] [69], which used a conflict-directed architecture

in lieu of fully encoding strong controllability. Here, I adapt that architecture to produce

dynamic policies instead.

The key aspect that’s affected in the conflict-directed approach is the kind of conflicts
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we’re dealing with. In this approach, risk allocations are generated without fully specifying

controllability. Rather, they are checked for satisfying those conditions, and if they don’t,

a conflict is produced that informs subsequent rounds of risk allocation. If relatively

few rounds are needed to find a controllable STNU and thus a satisfying policy, then the

hypothesis is that this approach will be faster than solving the full set of controllability

conditions at once.

The existing version of this architecture discovered strong controllability conflicts and

specified how to resolve them. That meant the final implied STNU would only be guaranteed

to be strongly controllable, and so we could only output static policies. In this chapter, I

generalize conflict discovery and resolution to include dynamic controllability, so we have

a choice of whether to output static or dynamic policies.

The key difference with DC conflicts is that instead of being simple linear conditions in

the risk allocation space, they are conjunctive linear constraints. In turn, that means their

resolutions are disjunctive linear constraints, which can be interpreted as convex polytopes

obstacles in the risk allocation space. I defer until Chapter 5 to show how to reason around

those polytope obstacles. Here, my focus is on deriving the form of those constraints and

showing how they plug into the high-level architecture.

I review the previous conflict-directed approach, but as with Chapter 3, I present it

in a more general context so that the extension to dynamic policies builds naturally on

the prior concepts. At the end of this chapter, I also rigorously address soundness and

incompleteness, which prior work had not discussed. Namely, I show that the conflict-

directed approach preserves the soundness of the problem reformulation and does not

add additional conservatism. In other words, this approach is guaranteed to solve the

reformulated Problem 3.8 exactly.

4.1 Inefficiency of directly encoding risk allocation

In Section 3.3 and Figure 3-8, I had separated out the reformulated chance constraint and the

task of specifying the controllability constraints. Now, I address the latter, which has been

already performed by others in both strong [60] [20] and dynamic [13] [66] controllability
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Figure 4-1: Strong controllability can be encoded by statically compiling the STNU into
an STN and then encoding the STN as a linear program. Dynamic controllability requires
the addition of 𝑂(𝑁2) variables and 𝑂(𝑁3) disjunctive linear constraints, thus forming a
disjunctive linear program, on top of the STN LP. When combining these conditions with
the nonlinear reformulated chance constraint, it’s significantly easier to use a black-box
constraint solver for the SC conditions than the DC ones.

contexts. My goal here is to summarize the computational difficulties if we directly apply

those constraint encodings when solving our reformulated problem.

Figure 4-1 lists the key information needed to show why this approach would be inef-

ficient. It elaborates on Figure 3-8 by stating the complexity of simply writing down the

the constraints in the controllability encodings. The following subsections detail the key

insights needed to arrive that these complexity results. For now though, I focus on the effect

trying to solve constraints of those sizes and form.

In the case of strong controllability, we basically compile the STNU form into an STN.

This removes any scheduling dependence on the outcomes of the uncontrollable durations,

which is the essence of strong controllability. For every controllable activity and requirement

in the original STNU, if either of its endpoints “touches” an uncontrollable event, it gets

compiled into a new constraint that only touches controllable events. These new constraints

effectively form the STN and express the condition of STN consistency.

Now since each activity or requirement in an STN specifies an [𝑙, 𝑢] time window

between two events, it can be viewed as a pair of difference constraints over event variables.
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Therefore, if the STNU has 𝑁 events and 𝑀 activities and requirements altogether, then

the strong controllability encoding consists of 2𝑀 linear constraints over at most 𝑁 event

variables. It’s quite reasonable to assume 𝑀 = 𝑂(𝑁2), because even if there were multiple

activities/requirements linking the same pair of events, we only need to consider the tightest

conditions. For plans where the number of requirements does not greatly exceed the

number of activities, the constraint graph can be considered sparse, that is, 𝑀 = 𝑂(𝑁).

Nonetheless, in the worst case, we have a linear program of 𝑂(𝑁2) constraints over 𝑂(𝑁)

variables.

Combining this LP with the reformulated chance constraint was the approach of

Fang [20]. Recall that the [𝑙, 𝑢] bounds on each probabilistic duration are the risk allo-

cation variables. Thus, for a pSTN with 𝐾 such durations, there are 2𝐾 such variables.

Those variables actually get baked into the 2𝑀 linear constraints of STNU strong control-

lability during compilation. However, we must have 𝐾 ≤ 𝑀 and 𝐾 ≤ 𝑁 , so this falls

within the 𝑂(𝑁) variable count.

The size of the resulting nonlinear program is not unreasonable, and generic nonlinear

programming solvers, such as Snopt [25] or Ipopt [63], would be applicable. However, it was

demonstrated by Wang [69] that a conflict-directed approach, which avoids solving 𝑂(𝑁2)

constraints all at once, produces about an order-of-magnitude (10x) runtime improvement.

Therefore, it is natural to ask if a conflict-directed approach to producing dynamic policies

would yield similar improvements over solving a direct encoding of dynamic controllability

plus the chance constraint.

To answer this question, we have to first understand what that direct encoding would

be and its effect on the constraint program. Like strong controllability, the encoding of

dynamic controllability also includes consistency of a compiled STN. This is accounted

for in Figure 4-1 with a final LP. However, that compilation cannot be performed “offline”,

because DC semantics impose conditions on the derivation of intermediate constraints.

Namely, those intermediate constraints can only be derived from other existing constraints,

original or derived, that meet certain conditions. That means we cannot unconditionally

compile each STNU activity or requirement into a final STN form, like we do with strong

controllability.
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Figure 4-2: Dynamic controllability conditionally derives constraint𝐴𝐶 if𝐴𝐵’s and𝐵𝐶’s
weights satisfy the “plus-minus” relationship.

Therefore, the compilation semantics must be baked into the DC encoding itself. This

was first recognized by Wah [66] and further generalized by Cui [13]. The idea is that since

DC semantics specify the conditional derivation of 𝐴 → 𝐶 from 𝐴 → 𝐵 and 𝐵 → 𝐶 in

the constraint graph, we can express this logically.

Formally, the derivations operate on what’s known as the distance graph of the STNU.

For each activity or requirement with start and end events 𝐴 and 𝐵, the distance graph

contains a forward edge 𝐴→ 𝐵 and backward edge 𝐵 → 𝐴, each with a numeric weight.

Let 𝑥 and 𝑦 be the weights of edges 𝐴 → 𝐵 and 𝐵 → 𝐶, respectively. Then we can

conditionally impose a bound on the weight 𝑧 of edge 𝐴→ 𝐶 as follows:

(𝑥 ≥ 0) ∧ (𝑦 < 0)⇒ (𝑧 ≤ 𝑥 + 𝑦). (4.1)

This is shown in Figure 4-2.

The form of Equation 4.1 is a logical implication whose clauses are linear inequalities.

Recall that implications can be rewritten as disjunctions, i.e., 𝑎⇒ 𝑏 is equivalent to ¬𝑎∨ 𝑏.

Equation 4.1 can be thus be rewritten as

(𝑥 < 0) ∨ (𝑦 ≥ 0) ∨ (𝑧 ≤ 𝑥 + 𝑦). (4.2)

Hence, these additional constraints can be understood as disjunctive linear constraints.

The actual form and semantics of these edge derivation constraints are slightly more

107



nuanced, and we discuss them in Subsection 4.1.2. But the point is that such constraints

can be expressed over all triples of events, which can include both controllable and uncon-

trollable events. This is what gives rise to the 𝑂(𝑁3) disjunctive linear constraints listed in

Figure 4-1.

Furthermore, this means we need to introduce variables to represent the edge weights

in the distance graph. Some of those will be the original edge weights, corresponding to

the [𝑙, 𝑢] bounds in the STNU. (And recall that in our implied STNU, the [𝑙, 𝑢] bounds on

uncontrollable durations are variables, while the rest are constants.) But we need variables

to represent derived edge weights as well, so we actually need variables to represent all

possible edges.

It might seem that𝑁2 edges are enough, given that there are𝑁 events total, but these𝑁2

actually only correspond to what are called ordinary edges in the STNU distance graph. In

fact, there are three types of edges in an STNU distance graph: ordinary edges, lowercase-

labeled edges, and uppercase-labeled edges. Again, we elaborate in Subsection 4.1.2, but

for now, we just need to know there are always 𝐾 lowercase edges, and up to 𝑁𝐾 uppercase

edges.

What we’ve learned then, is that the DC encoding requires, on top of the SC encoding,

𝑂(𝑁3) constraints of the form given by Equation 4.1 or 4.2, over𝑁2+𝑁𝐾+𝐾 edge weight

variables. Thus, the DC encoding both enlarges the number of constraints and variables by

a polynomial degree, and raises the complexity of the constraints by requiring disjunctive

linear constraints. These constraints form a disjunctive linear program (DLP), and most

solvers are not equipped to handle the combination of that with our nonlinear reformulated

chance constraint. At the very least, any inefficiencies in the direct encoding approach to

generating static chance-constrained policies would only be magnified when switching to

the DC encoding in order to obtain dynamic policies.

One could consider existing approaches to solving the DLP and consider whether it’s

possible to graft on the nonlinear constraint. For instance, Li [36] offers a branch-and-

bound algorithm for solving DLPs. This applies principles of combinatorial search and

propagation over the disjunctions, and an LP solver is called at the leaves of the search. In

our case, we’d have to swap in an NLP solver, which is significantly more expensive. Also,
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we’d have 𝑂(𝑁3) disjuncts, which would correspond to the nominal depth of the search

tree. The branch-and-bound strategy coud help reduce this, but ultimately, the number of

leaves to consider is exponential in the search tree’s actual depth.

Cui [13] offers a mixed-integer linear programming (MILP) reformulation of the dis-

junctive linear constraints. The reformulation introduces extra constraints and variables,

but allows them to take advantage of powerful MILP machinery in MILP solvers such as

CPLEX or Gurobi. Unfortunately, generalizing this to mixed integer nonlinear program-

ming (MINLP) becomes very expensive.

Finally, Wah [65] [66] introduced a nonlinear programming encoding of the DC se-

mantics. Although it also introduces extra constraints and variables, these are cleverly

arranged so that no integer variables or disjunctive constraints are required. Therefore in

principle, the same NLP solver could be used to handle them along with our nonlinear

chance constraint.

The downside is that this encoding is particularly complex, and also involves non-

convex constraints. Cui [13] clarified certain aspects of this encoding, and showed in

experiments that it is both slower and solves fewer problem instances than their MILP

approach. In addition to the complexity of encoding, it also suffers from fact that NLP

solvers are designed to step locally through a continuous space, and thus may inefficiently

explore unpromising areas. Considering how NLP solvers perform on the static policy

version of our reformulated problem [69], it is not promising to consider adding 𝑂(𝑁3)

more constraints, along with the multiplicative factor of extra constraints and variables per

original constraint.

In conclusion, directly encoding STNU dynamic controllability along with the refor-

mulated chance constraint is not a computationally attractive method for obtaining chance-

constrained dynamic policies. While it seems theoretically possible to use the NLP formu-

lation of the DC conditions, the encoding would be unwieldy and quickly stretch the limits

of current NLP solvers. Therefore, the remaining sections in this chapter are devoted to

developing a conflict-directed approach akin to the method introduced by Wang [69] for

producing chance-constrained static policies.

For the interested reader, the following two subsections explain in more detail the

109



Figure 4-3: When compiling the 𝐶 → 𝐾 constraint for strong controllability, the 𝐶
endpoint gets propagated backwards through the 𝐵 → 𝐶 uncontrollable duration to 𝐵.
This removes the dependence of the scheduling solution on 𝐶’s arrival time, which is
exactly what strong controllability means. Combining the requirement bounds of [0, 2] with
the worst-case outcomes from the duration’s [10, 14] bounds, we derive a new constraint
𝐵 → 𝐾 with bounds of [14, 12]. Since the lower bound ends up greater than the upper
bound, this is an example of the STNU being not strongly controllable.

derivations of the constraints and variables in the full encodings of STNU strong and

dynamic controllability.

4.1.1 Strong controllability encoding

I mentioned previously that the semantics of STNU strong controllability are to remove

any dependence of the scheduling solution on the outcomes of the uncontrollable durations.

Therefore, if a controllable activity or requirement has an uncontrollable event as its start

or end event, then we must rewrite the constraint so it doesn’t involve that event.

Figure 4-3 illustrates this rewriting for the “bake meatballs” activity in our STNU

from Figure 2-2. The 𝐶 99K 𝐾 requirement begins on the uncontrollable event 𝐶, so

we must rewrite it. The key insight is that 𝐶 must be the end event of some unique

uncontrollable duration, due to the one-to-one correspondence between uncontrollable

events and durations. In this case, that duration would be is 𝐵 99K 𝐶. The intuition then

is to “propagate” the 𝐶 endpoint backwards along 𝐵 99K 𝐶, resulting in a new derived

constraint 𝐵 → 𝐾. This new constraint only involves controllable events, and it supercedes

the original, which we can now ignore.

It remains to discuss how the [𝑙, 𝑢] bounds on the new constraint are chosen. In order for

the new constraint to guarantee the original’s satisfaction in all circumstances, we need to
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consider the outcomes of the uncontrollable duration we propagated through. Namely, we

consider the extreme cases. If 𝐵 99K 𝐶 took the longest duration of 14 to finish, then the

earliest time we could dispatch 𝐾 would be immediately after, corresponding to the 0 lower

bound of 𝐶 → 𝐾. Therefore, the shortest duration from 𝐵 to 𝐾 that we could guarantee

for all outcomes of 𝐵 99K 𝐶 is 14 + 0 = 14. This becomes the lower bound on 𝐵 → 𝐾.

Conversely, if 𝐵 99K 𝐶 took the shortest duration of 10 to finish, then the latest time

we could dispatch 𝐾 would be 2 minutes after. Therefore, the longest duration from 𝐵 to

𝐾 that we could guarantee is 10 + 2 = 12, which becomes the upper bound on 𝐵 → 𝐾.

In this example, we derived a higher lower bound than upper bound on 𝐵 → 𝐾.

Clearly, this is an infeasible constraint. (Or more formally, it’s two inequalities that aren’t

consistent with each other.) Therefore, this segment, and hence the family spaghetti STNU

in Figure 2-2, is not strongly controllable.

When encoding strong controllability though, for our problem of finding a risk alloca-

tion, the [𝑙, 𝑢] bounds on 𝐵 99K 𝐶 would be variables. Thus, we would compile 𝐶 → 𝐾

into 𝐵 → 𝐾 with bounds [𝑢+ 0, 𝑙 + 2]. Since 𝐵 and 𝐾 are controllable events, they would

become event variables in the STN encoding, and so this derived constraint would be passed

into the solver as the following two linear constraints:

𝐾 −𝐵 ≤ 𝑙 + 2

𝐵 −𝐾 ≤ −𝑢.
(4.3)

This is thus the essence of encoding STNU strong controllability: We get an LP on the

event variables and the interval bound variables of interest. There are two more wrinkles

to mention to wrap up this discussion.

First, if we have a chain of uncontrollable durations, like 𝐴 99K 𝐵 99K 𝐶 99K 𝐷,

where 𝐴 is the only controllable event, then propagating an activity/requirement 𝐷 → 𝐸

back through 𝐶 99K 𝐷 simply replaces an uncontrollable event 𝐷 with another one 𝐶.

This fix is simple, though: just keep propagating back using the same rules until you

hit a controllable event. This is guaranteed, because it is impossible to have a cycle of

uncontrollable durations.
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Second, in our example above, we had a requirement that began on an uncontrollable

event 𝐶. But we could also have requirements that end on an uncontrollable event. Suppose

there were such a requirement 𝐷 → 𝐶 with bounds [𝑙, 𝑢]. Algebraically, this is equivalent

to a requirement 𝐶 → 𝐷 with inverted bounds [−𝑢,−𝑙]. Therefore, we can rewrite all such

requirements in this manner, and then the previous reasoning applies.

Originally, strong controllability was formulated in three separate cases [60] depending

on whether the start or end event of a given activity/requirement, or both, were uncontrol-

lable. However, one can see that the same reasoning is used for all, and so they can be

equivalently mapped to one another.

4.1.2 Dynamic controllability encoding

Like strong controllability, enforcing dynamic controllability can be understood as a set of

propagation rules applied to an STNU’s activity and requirement constraints. For strong

controllability, as per its semantics, the rules allowed us to compile the uncontrollable

durations’ outcomes out of the picture. For dynamic controllability, we require a weakening

of the rules, so that we can observe and react to those outcomes during execution. The form

of this weakening is expressed as conditions on both the derived constraints and when the

rules apply. Hence, rather than having a universal propagation rule, the reasoning gets split

into multiple cases, and the constraints derived from that reasoning hold only for certain

outcomes during execution.

The key difference to appreciate about dynamic controllability is that the lower and

upper bounds of uncontrollable durations have different implications for the scheduling

policy. This is due to the inherent forward direction of time during execution, whereby

dynamic policies can influence executions in the future, but not those that have already

happened. Suppose we had an uncontrollable duration 𝐴 99K 𝐵 with bounds [5, 10], and

without loss of generality suppose 𝐴 executes at time 𝑡 = 0.

If there is any event 𝐶 whose execution time could be impacted by the earliest possible

arrival of 𝐵 at 𝑡 = 5, it is because 𝐵’s early arrival forces 𝐶 to be early as well. For

example, suppose 𝐶 must occur before 𝐵, but maybe we were lazy with 𝐶 and still hadn’t
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executed it by 𝑡 = 5. Then, 𝐵 might arrive immediately, and it would be too late to fix 𝐶.

In such cases, then, 𝐶 must unconditionally assume that outcome for 𝐵, and this reasoning

is equivalent to how strong controllability handles uncontrollable lower bounds.

Conversely, consider if some event 𝐷’s execution depended on whether 𝐵 arrived at its

latest time 𝑡 = 10. This would be due to 𝐵’s late arrival forcing 𝐷 to execute later as well.

So a priori, 𝐷 has to wait for the possibility of𝐵’s arrival. However, if𝐵 happened to arrive

earlier, 𝐷 could move up in time as well, and a dynamic policy would be able to respond

to that. Therefore, any a priori propagation on 𝐵’s arrival affecting 𝐷 is conditioned on 𝐵

arriving at 𝑡 = 10. This is the essential insight for how dynamic controllability differs from

strong controllability: Uncontrollable upper bounds get conditionally propagated, and the

derived constraints are saved for the dynamic policy to observe and potentially invalidate,

as part of their reasoning during execution.

The DC propagation rules – also called reductions – formalize this distinction. Since

uncontrollable durations’ lower and upper bounds are treated differently, and are also

distinct from the “ordinary” bounds of the controllable durations and requirements, it helps

to separate them into different rules. To aid clarity when expressing these rules, Morris and

Muscettola defined the distance graph form of an STNU [41]. This is analogous to distance

graphs for STNs [17], where each 𝐴→ 𝐵 constraint with bounds [𝑙, 𝑢] gets mapped into an

weighted forward edge 𝐴 𝑢−→ 𝐵, and an inversely weighted backward edge 𝐵 −𝑙−→ 𝐴.

The same principle applies to STNU distance graphs, except that for uncontrollable

durations, their [𝑙, 𝑢] bounds are inversely mapped and also labeled. Given an uncontrollable

duration 𝐴 99K 𝐵 constraint with bounds [𝑙, 𝑢], its mapped forward edge 𝐴
𝑏:𝑙−→ 𝐵 is

weighted by the lower bound, and the weight has a lowercase 𝑏 label attached. Conversely,

the backward edge 𝐵 𝐵:−𝑢−−−→ 𝐴 is weighted by the upper bound, labeled by an uppercase 𝐵.

Figure 4-4 demonstrates this on the boiling and straining spaghetti activities of our spaghetti

STNU from Figure 2-2.

The interpretation of these edges is as follows: Across all possible duration outcomes

for the boiling activity 𝐷 99K 𝐸, 8 is the tightest upper bound on 𝐸 − 𝐷, but it is

conditioned on the outcome being the shortest duration. Similarly,−11 is the tightest upper

bound on 𝐷 − 𝐸, and it is conditioned on the longest duration outcome. Meanwhile, for
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Figure 4-4: In the distance graph form of an STNU, the STN-style [𝑙, 𝑢] bounds get
mapped to forward edges with weight 𝑢 and backward edges with weight −𝑙. However, for
uncontrollable durations, the lower bounds go forward with lowercase labels, and the upper
bounds backwards (and negated) with uppercase labels.

the straining activity 𝐸 → 𝐻 , whose duration we control, the [0.5, 1] interval only asks

that we spend at least 30 seconds and at no more than 1 minute on it. Therefore, 1 and

−0.5 are the only “forward” and “backward” upper bounds, respectively, with no range

of outcomes to consider. These distance graph edges, which are not labeled, are called

ordinary edges. In summary, the distance graph converts all [𝑙, 𝑢] duration and requirement

bounds into appropriately labeled upper bounds on the algebraic difference between two

events’ execution times.

Given the distance graph form, we can now concisely express the DC reduction rules.

Figure 4-5 illustrates that there are five cases. Each case is based on a triple of event

variables and two given distance graph edges. A third edge in red is then derived, with the

appropriate weight and label attached.

The first four cases are all variations on a theme: There is a two-edge path𝐴 𝑥−→ 𝐵
−𝑦−→ 𝐶,

from which we derive a new edge 𝐴
𝑥−𝑦−−→ 𝐶. In all cases, the weight 𝑥 on the first edge

is nonnegative, and the weight −𝑦 on the second edge is negative. The derived edge’s

weight is simply the the sum of those two, 𝑥− 𝑦. This structure has led to these rules being

informally called the plus-minus reductions [39], and we remind ourselves explicitly of it

with the negative sign on the 𝑦.
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Figure 4-5: The semantics of dynamic controllability imply these reduction rules for
deriving additional edges in the STNU’s distance graph. Derived edges can be either
ordinary or uppercase edges, but not lowercase. The fifth rule turns a derived uppercase
edge into an ordinary edge.
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What differs among the four cases are the labels on the edges, and their directionality.

The first case is called the ordinary reduction, because it combines ordinary edges in the

same way when propagating in STN distance graphs. Technically, STN propagation isn’t

usually restricted to plus-minus structure, but there is actually a deep connection STNU

DC that justifies this, which we touch on towards the end of this section. The second case

is the lowercase reduction, and it expresses the idea lowercase edges are unconditionally

compiled away in the same way that strong controllability does.

The third and fourth cases involve uppercase edges, and work in the backward direction.

The third case is the plain uppercase reduction. Here, 𝐵 𝐵:−𝑦−−−→ 𝐴 is the original uppercase

edge for the uncontrollable duration 𝐴 99K 𝐵. If there is an ordinary edge with nonnegative

weight 𝑥 going into 𝐵 from 𝐶, then we derive 𝐶 → 𝐴 with the uppercase-labeled weight

𝐵 : 𝑥− 𝑦.

The meaning of this edge is that in any execution scenario where 𝐴 99K 𝐵’s duration

outcome is 𝑦, the difference in execution times between𝐶 and𝐴must respect𝐴−𝐶 ≤ 𝑥−𝑦.

Any valid policy must therefore be aware of this edge unless 𝐵 arrives earlier than 𝑦 time

units after 𝐴. This can be rephrased as: Once 𝐴 has executed, wait at least 𝑥 − 𝑦 time

units or until 𝐵 has executed, before executing 𝐶. For this reason, uppercase edges are

sometimes called wait constraints. These should not be confused with the “wait” actions in

our STNU model, nor the wait decisions that a policy may output.

Although the third case was illustrated with 𝐵
𝐵:−𝑦−−−→ 𝐴 being an original uppercase

edge, it also works with derived edges. That is, suppose the uppercase label was 𝐷 instead

of 𝐵. Then 𝐵
𝐷:−𝑦−−−→ 𝐴 must have been an uppercase edge ultimatly derived from an

uncontrollable duration 𝐴 99K 𝐷. However, the conditional meaning of the uppercase 𝐷

label still holds, so the reduction rule remains applicable.

This is the logic behind the fourth case, called the cross-case reduction. It can be

viewed as a combination of the lowercase and uppercase reduction rules. We have an

original lowercase edge 𝐶 𝑏:𝑥−→ 𝐵 and a derived uppercase edge 𝐵 𝐷:−𝑦−−−→ 𝐴. The end result

is the same as the third case, a derived uppercase edge 𝐶 → 𝐴 with uppercase-labeled

weight 𝐷 : 𝑥− 𝑦.

Having shown how uppercase edges are derived, the remaining fifth case addresses
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when those uppercase labels can be removed. Note that due to the plus-minus structure,

derived uppercase edges always have larger weight (i.e., more positive) than that of the

uppercase edge they were derived from. Going back to our example above, where we had

an uncontrollable duration 𝐴 99K 𝐵 with bounds [5, 10], suppose we eventually derived a

new uppercase edge 𝐷 → 𝐴 with weight 𝐵 : −3. This means we should wait either 3 time

units after 𝐴 or until 𝐵 has executed before executing 𝐷. But the duration model guarantees

that 𝐵 won’t arrive until at least 5 time units after 𝐴. Therefore, the 3 time limit for waiting

will always activate first, and we can treat it just like an ordinary edge. This is what the fifth

case expresses.

Technically, the 𝑥 ≥ 0 conditions for the second and fifth cases are unneeded. This is

because lowercase edges are never derived, and by the STNU model semantics, the original

lowercase edges are always nonnegative.

The last point about these rules is why they are conditioned on the plus-minus form.

The reason ultimately relates to a deep connection between STNU dynamic controllability

and STN dispatchability. An STN is dispatchable if enough implied constraints are made

explicit in its distance graph, such that when executing it online via a dynamic policy, only

local propagations are needed. Local propagation means when an event executes and is

assigned a fixed time, that information gets sent to only the event’s direct neighbors in the

distance graph [43] [58].

Morris showed that to make an STN dispatchable, one simply needs to reduce every

nonegative edge 𝐴 𝑥−→ 𝐵 in the distance graph against any adjacent negative edge 𝐵 −𝑦−→ 𝐶,

thus deriving an implied edge𝐴 𝑥−𝑦−−→ 𝐶 [40]. This is exactly the form of our four plus-minus

STNU reductions. He also observed that an STNU can be viewed as a collection of STNs,

where each STN represents a full outcome where the [𝑙, 𝑢] bounds on the uncontrollable

durations have been collapsed to a single number. These are called the projections of the

STNU. Therefore, the underlying principle of the STNU reduction rules may be viewed as

preserving dispatchability of all the STNU’s projections, with the addition of the fifth rule

for remove uppercase labels. This is a deep insight that unites the otherwise seemingly

complex reduction rules.

Finally, we’ve covered all the reduction rules of dynamic controllability, but we still
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need a final condition to determine whether an STNU is DC. For strong controllability, the

test is whether the compiled STN is consistent, which can be determined by encoding the

difference constraints with the events as variables. For dynamic controllability, recall that

the intuition expressed upfront was that lowercase edges get compiled away, but uppercase

edges get propagated and saved for the policy. Without going into all the details, the

punchline is that after deriving all possible edges and ignoring the lowercase edges in the

distance graph, then for a policy to exist, that distance graph must be consistent in the same

sense as an STN’s [42] [41].

To summarize, then, the steps to check whether an STNU is dynamically controllable

are to: a) derive all possible edges in the distance graph according to the reduction rules, b)

throw away the lowercase edges, and c) throw away the uppercase labels on the remaining

edges, and check for this distance graph’s consistency as if it represented an STN. This lends

itself to an algorithmic solution for determining dynamic controllabillity, but what we need

is a declarative set of constraints that fully encode the DC condition, and can be evaluated

for truth or falsehood.

Fortunately, we already know how to encode part (c), given our knowledge of encoding

STNs from the previous subsection. We just create variables for each event and write down

the remaining edges as difference constraints relating them. Note that unlike for strong

controllability, here we need to define variables for the uncontrollable events because we

keep the original uppercase edges.1 It is also easy to address (b), by simply not including

them in our encoding. What remains is for (a), we need a way to encode all the possible

derived edges produced by the DC reduction rules without knowing in advance whether

they exist.

The way to solve this issue is to create variables representing the weight for every

possible edge in the distance graph, derived or not. Then we can assign the variables that

to the original, given edges, and let the encoding solve for the remaining derived ones. In

our case, for our risk allocation problem, the bounds on the uncontrollable durations are

also variables that we are solving for. Thus we leave them unassigned, and if a solution

1It may seem paradoxical to create variables for events that will be assigned by Nature, but with the derived
uppercase edges included, we are really expressing the idea that we could handle any assignment to them
given by Nature.
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exists, then we read the risk allocation off of their assignments, while treating all the other

variables in our encoding as auxiliary variables.

To this end, we define three sets of edge weight variables, corresponding to the ordinary,

lowercase, and uppercase edges, respectively. Ordinary edge weights are denoted 𝑤𝑂
𝐴𝐵,

representing the weight on distance graph edge 𝐴 𝑤−→ 𝐵. Similarly, lowercase edge weights

are denoted 𝑤𝐿
𝐴𝐵, representing the lowercase-labeled weight on edge 𝐴

𝑏:𝑤−−→ 𝐵. Finally,

uppercase edge weights require parameterization by three events, because the uppercase

label can be independent of the edge’s endpoints. So to represent the weight 𝑤 on uppercase

edge 𝐴 𝐷:𝑤−−→ 𝐵, we denote it as 𝑤𝑈
𝐴𝐵;𝐷.

Recall that the STNU has 𝑁 events total, 𝐾 of which are uncontrollable. For ordinary

edges, there are no restrictions on which events they may relate, so we need 𝑁2 such

variables. Lowercase edges, though are much more restricted. We never derive new

lowercase edges, so we only need 𝐾 of them to represent the original edges. Finally,

uppercase edges sharing the same label have the property of always pointing back to the

same event. This can be seen in the third and fourth reduction cases, where 𝐴 is start event

of the uncontrollable duration that terminates on 𝐵 or the 𝐷 that is not displayed. Since

there are exactly 𝐾 uncontrollable durations, we conclude there are at most 𝐾 possible

events that uppercase edges could end on, and they can start on any of the 𝑁 events. Thus,

we create 𝑁𝐾 uppercase weight variables.

With these variables, we can encode the DC reduction rules by simply applying the

rules to each triple of events, and substituting the edge weight variables into the derivation

for each case. Each derivation is conditioned on the plus-minus structure. For example, the

uppercase reduction rule on events 𝐴, 𝐵, and 𝐶 depicted in Figure 4-5 would be written as

[︁
(𝑤𝑂

𝐶𝐵 ≥ 0)
⋀︁

(𝑤𝑈
𝐵𝐴;𝐷 < 0)

]︁
⇒ (𝑤𝑈

𝐶𝐴;𝐷 ≤ 𝑤𝑂
𝐶𝐵 + 𝑤𝑈

𝐵𝐴;𝐷). (4.4)

And the label removal rule would be written as

(−𝑤𝑈
𝐶𝐴;𝐵 ≤ 𝑤𝐿

𝐴𝐵)⇒ (𝑤𝑂
𝐶𝐴 ≤ 𝑤𝑈

𝐶𝐴;𝐵). (4.5)

Note that we ask that the derived edge weight be less than or equal to the sum of the other
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two, and not just equal. This is because there might be another triple of events 𝐴, 𝐸, and

𝐶, where either the uppercase or cross-case reduction applies, and we can derive another

edge weight value for 𝑤𝑈
𝐶𝐴;𝐷. We don’t want to prevent either reduction from taking place,

yet we only have one such variable. We also want to keep the tightest such constraint on the

𝐷-labeled uppercase edge weight from 𝐶 to 𝐴. Using the less than or equal inequality lets

us achieve this.

Overall, there are 𝑂(𝑁3) triples to consider, and up to 5 rules to apply to each triple,

depending on the structure of the STNU. We’ve shown that the rules, when expressed in

terms of our edge weight variables, become logical implications over linear constraints,

which was our claim in Equation 4.1. As 5 is a constant, we end up with 𝑂(𝑁3) such

constraints in our encoding. Finally, since implications can be rewritten as disjunctions, we

thus have our disjunctive linear program as indicated in Figure 4-1, containing𝑁2+𝑁𝐾+𝐾

variables and 𝑂(𝑁3) constraints.

To complete the encoding, we append the linear program for encoding the final consis-

tency of the STNU distance graph with derived edges excluding the lowercase edges. This

adds 𝑁 variables, one for each event, and 𝑁2 + 𝑁𝐾 = 𝑂(𝑁2) constraints relating the

ordinary and uppercase edge weight variables to the event variables.

This concludes our presentation of the encoding for STNU dynamic controllability. As

we can see, it is substantially more complex than the encoding for strong controllability.

Thus, this thesis develops an alternate algorithmic approach to finding a risk allocation that

effectively meets those constraints.

4.2 Conflict-directed hybrid approach

The algorithmic approach we take towards solving our reformulated Problem 3.8 draws

ideas from conflict-directed search. We will end up with a hybrid solver, because rather

than trying to solve the entire problem at once monolithically, we break it down into a

master problem and subproblem, and utilize a specialized subsolver to address the latter.

Additionally, there is two-way communication between the master and the subproblem.

In our reformulated problem, we are searching within a continuous state space of risk
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allocations. However, the principles of conflict-directed search can be illustrated more

concretely with discrete variables. Thus, I begin by summarizing its key features in a

discrete setting. Then I extend those features to our specific problem.

In a discrete constraint satisfaction problem (CSP), we have a set of variables 𝒳 and a

set of constraintsℳ over them [16]. The most straightforward way to solve this problem is

to traverse a search tree that branches on the domain values for each variable, and to check

constraint satisfaction at the leaves. The complexity of this is clearly exponential in the

number of variables, which is the search tree’s depth.

The key feature of conflict-directed search is to separate out a subproblem determined

by the assignment to a subset of variables 𝒴 , sometimes called the decision variables [72].

The subproblem is defined over the remaining variables 𝒵 = 𝒳 ∖𝒴 . One advantage of this

is that the search tree can stop branching after all decision variables have been assigned,

thus reducing its depth.

The real advantage, though, is the ability to use a specialized solver for the subproblem If

that solver can return a conflict when the subproblem is infeasible, then the top-level search

can use that conflict to inform subsequent candidate assignments to the decision variables.

To understand what a conflict means and how that works, we need to characterize the

relationship between the top-level problem of assigning 𝒴 , often called the master problem,

and the subproblem. Figure 4-6 depicts this decomposition of the original CSP.

When we partition the original set of variables 𝒳 into 𝒴 and 𝒵 , it also partitions the

constraints as follows. Some constraints𝒜 are defined only over variables in 𝒴 , depicted in

orange. Others in ℬ are only over subsets of 𝒵 , depicted in green. Finally, there are those

in 𝒞 which involve variables from both 𝒴 and 𝒵 .

Thus, when the master searches over 𝒴 , it is responsible for checking whether the

constraints in 𝒜 are satisfied. If so, then the subproblem is responsible for assigning

variables in 𝒵 , and all the constraints in 𝒞 fall under its purview. However, it must also

make sure that its assignments to𝒵 , combined with the master’s assignment to𝒴 , satisfiesℬ.

For example, suppose the purple constraint in Figure 4-6 requires 𝑦3, 𝑧1, and 𝑧3 to all

be different, and suppose all the variables have the domain {red, green, blue}. Then if

the master assigns 𝑦3 = red, that removes red from 𝑧1’s and 𝑧3’s domains. That means
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Figure 4-6: A CSP is a set of constraints defined over a set of variables, which we partition
into 𝒴 and 𝒵 . Each constraint is defined over a subset of the variables 𝒳 , depicted as a
covering over that subset. The colors of the constraints indicate whether they involve only
variables in 𝒴 , only variables in 𝒵 , or variables from both.

the subproblem has to consider the projected constraint that (𝑧1, 𝑧3) can only be assigned

(green, blue) or (blue, green).

Therefore, while the master problem comprises constraints 𝒜 just on the decision

variables, the subproblem structure includes constraints 𝒞 on the non-decision variables,

plus the constraints ℬ conditioned on the assignments to 𝒴 and projected onto the space

of 𝒵 . We call these projected constraints ℬ𝒴 . Given this structure, we can say that if the

master successfully assigns 𝒴 satisfying all of 𝒜, followed by the subproblem successfully

assigning 𝒵 satisfying all of ℬ𝒴 and 𝒞, then we have a full solution to the original CSP.

What’s interesting, though, is if the subproblem turns out to be infeasible. In that case,

we would like the subsolver to return a conflict, which can be viewed as a subset of the

subproblem input ℬ𝒴 and 𝒞. We claimed above that such a subset could help inform the

master in searching for the next candidate 𝒴 assignment, and here’s how. First of all, if

the conflict only involves constraints in 𝒞, then the original CSP is always infeasible. No

further assignments to 𝒴 can help remove that conflict.

But if the conflict involves projected constraints in ℬ𝒴 , we can implicate the subset of
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assignments to 𝒴 those constraints were conditioned on. Back to the example with the

purple constraint in ℬ, once 𝑦3 got assigned red, it became a constraint in ℬ𝒴 , defined just

over 𝑧1 and 𝑧3. Call it 𝑏𝒴1 . Now consider the green constraint in 𝒞 on 𝑧3 and 𝑧5, and call it

𝑐1. Suppose 𝑐1 only allowed combinations where 𝑧3 = red. Then 𝑏𝒴1 and 𝑐1 would form a

subproblem conflict.

From the master problem’s point of view, there would be no value in ever framing

another subproblem with the same projected constraint 𝑏𝒴1 . It would just guarantee that the

same conflict appears in the subproblem, rendering it infeasible. So the master learns that

it should avoid assigning 𝑦3 = red. This thus reduces the branching factor on 𝑦3’s nodes

from 3 to 2, and this is the main feature of conflict-directed search: It lifts subproblem

conflicts into new constraints for the master, called conflict resolutions, which enable it to

prune large swaths of the remaining search space.

The idea of using conflicts to guide discrete search has a rich history [53] [14] [26],

with conflicts going by different names, such as nogoods or elimination sets. It is a versatile

concept that can be applied in many settings. For instance, Williams and Ragno [72]

combined conflict-resolution techniques with informed A* search to efficiently solve CSPs

with an objective function. And satisfiability modulo theories (SMT) solvers often rely on

the subtheory solvers to return conflicts that further guide the master-level boolean SAT

solver [21] [15].

SMT solvers exemplify an important aspect of using conflicts, because some subtheories

may involve constraints on continuous variables, while the master SAT solver is still operat-

ing on discrete values. This means conflicts have to be translated from a continuous space

into a discrete space. In many planning scenarios, one may have to make discrete choices

while accounting for continuous state, such as spatial localization, scheduling decisions, or

even probabilistic belief states. Similar translations of conflicts from continous spaces have

thus been used [52] [56] to inform search over the discrete choices.

With the above summary of the structure of conflict-directed search, we turn our attention

now to applying its principles to our reformulated risk allocation problem. The key is to

find an appropriate partition of the variables and constraints so as to separate out a master

problem and subproblem. What’s notable here is that we are searching within an entirely
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continuous space of risk allocation variables. The previous section also noted that encoding

STNU controllability required event variables, and in the case of dynamic controllability,

additional edge weight variables. Thus, there are no discrete variables at all, so assigning

variables in the master problem will need to involve a method other than discrete search.

Fortunately, the structure of our reformulated problem suggests a very natural partition-

ing, along with the appropriate solving methods. In Chapter 3, we had argued for finding

a risk allocation that yields a controllable STNU. Figures 3-8 and 4-1 then illustrated the

clear distinction between satisfying the reformulated chance constraint, and then making

sure the implied STNU is controllable. Thus, the key insight is to define our master problem

as finding a risk allocation, and then the subproblem as checking STNU controllability.

This avoids some of the difficulties, discussed in Section 4.1, of solving at once the

nonlinear reformulated chance constraint together with the full encoding of STNU control-

lability. Namely, we could first use an NLP solver to assign the risk allocation variables

while satisfying the nonlinear reformulated chance constraint. Then, we could employ

more specialized solvers just for the controllability conditions. For strong controllability,

an LP solver would suffice, whereas for dynamic controllability an MLLP or MILP solver

would be appropriate. If the subsolver determines the STNU is controllable, then we have

a solution, and any policy for the STNU will satisfy our original cc-pSTN problem.

The resulting algorithm flow is depicted in Figure 4-7. Note that when the master

generates a risk allocation, this implies a grounded STNU, where all the [𝑙, 𝑢] bounds

become constants. Thus for the remaining constraints expressing controllability, we would

turn all the 𝑙’s and 𝑢’s into their assigned values. This corresponds to the “conditioning”

and “projection” steps in the conflict-directed search paradigm.

This picture is missing, though, the key concept of conflict extraction from the subsolver.

There is no guarantee that the first risk allocation generated by the master problem will

result in a controllable STNU. Therefore, we need the subsolver to return a conflict if it’s

not controllable. The master records the conflict, so that when generating the next and any

subsequent risk allocations, it can explicitly avoid creating a subproblem with that same

conflict. Figure 4-8 updates the diagram to indicate this.

This raises two questions for applying the conflict-directed paradigm: First, we need
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Figure 4-7: In the master-subproblem decomposition of our reformulated problem, we first
solve for the risk allocation, and then check controllability of the implied STNU.

Figure 4-8: When the STNU implied by the risk allocation is not controllable, the master
problem needs a conflict returned back, so it can make sure the subsequent risk allocation
resolves that conflict.
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to figure out how the subsolver will detect and extract such conflicts. Second, we need to

understand how to map those conflicts back into the master problem’s space

To answer the first question, it helps to step back and consider what the subproblem

is asking, separate from how the subsolver achieves it. All we need to know is whether a

given STNU is controllable, whether strongly or dynamically, and if not, we should return

a conflict that is a subset of the STNU’s activities and requirements. So far, we’ve been

envisioning that we encode the controllability conditions as constraints, and then feed them

to a black box LP or MLLP/MILP solver. Unfortunately, it is difficult for such black boxes to

return conflicts. While other have studied methods to extract inreducible infeasible subsets

of the input constraints [11] [27], typically these involve running different combinations

of constraints through the solver again. The result is a rather inefficient, general-purpose

mechanism, if the solver supports it at all.

The key insight is to recognize that we have specialized algorithms for checking STNU

controllability, both in the strong [60] and dynamic cases [33] [38] [39]. Furthermore, these

algorithms rely on a fundamental property of STNs and STNUs that equates infeasibility

with a very specific form of conflict, namely a negative cycle in their distance graphs.

Section 4.3 will detail the exact nature of these conflicts. For now, it suffices to know that

these algorithms operate on the distance graphs to explicitly search for such conflicts. When

a conflict found, it becomes trivial to return them as proof of uncontrollability.

These algorithms are also quite efficient, performing in 𝑂(𝑁𝑀) for strong control-

lability, and 𝑂(𝑁3) in the dynamic case. These runtimes are inherited from classical

shortest-path graph algorithms that the methods rely on. Note that these time complex-

ities closely match the space complexities of simply writing down the input constraints

of the full controllability encodings. As general-purpose LP and MILP solvers operate

beyond polynomial time, we can expect significant savings in using the specialized STNU

algorithms.

Therefore, in Figure 4-8, we can swap out the subproblem’s black box solver for a

specialized STNU controllability checker. This leads to the second question, which is how

to translate STNU conflicts into the risk allocation space for the master. Since this depends

on detailed knowledge of those conflicts’ structure, I defer the full discussion to Section 4.3.
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However, I can make the following observations now.

Each edge in an STNU’s distance graph corresponds to either an 𝑙 bound or an 𝑢 bound

between two events, whether it comes from an activity or a requirement. A cycle in the

distance graph, then, is a collection of those weighted edges. The central point in the STNU

conflict is that the sum total of those edges’ weights is negative. Therefore, the resolution

constraint for a conflict is to make that sum total non-negative.

In the fully grounded STNU that the subproblem receives, all the edges have constant

weight. But those weights can easily be traced back to whether they were actually constants

in the pSTN, corresponding to [𝑙, 𝑢] bounds on controllable durations and requirements, or

whether they were the assignments to some risk allocation variables, corresponding to [𝑙, 𝑢]

bounds being assumed on probabilistic durations.

Thus, when given an STNU conflict, we can compose an arithmetic expression stating

the fact that a series of constant edge weights adds up to less than zero. Then we replace

certain terms of that addition with their corresponding 𝑙 or 𝑢 risk allocation variables. In

this manner, we “lift” the conflict from the grounded STNU into an expression in the risk

allocation space. Finally, we resolve that conflict by negating the expression (typically by

reversing the inequality), and that forms a new constraint for the master risk allocation

problem. This is the meaning of the yellow “conflict resolution” that gets attached to the

risk allocation block in Figure 4-8.

It is worth noting that by using STNU controllability-checking algorithms to extract

conflicts, we avoid having to introduce new variables for the events, and in the case of

dynamic controllability, variables for the derived edge weights. Not only does this speed

up the subsolver, it also simplifies the form of the conflicts and the task of translating

them for the master. If we had fed the full encoding to a black box for the subsolver, the

irreducible infeasible subsets we’d get as conflicts would contain constraints relating all

those extra variables, and many of those constraints would not be part of the input STNU.

Instead, the negative cycle form that our approach uses neatly summarizes how all those

“internal” variables and constraints would have composed to point to the relevant portions

of the STNU.

It remains to discuss the termination conditions of this conflict-directed solving ap-
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Figure 4-9: After multiple rounds of risk allocation and collecting conflicts, either the
STNU will be controllable, or the collected conflict resolutions will be incompatible with
the reformulated chance constraint, leading to infeasibility in the master solver. These are
the only two ways our conflict-directed algorithm will terminate.

proach. Figure 4-8 introduces a loop into the algorithmic flow, so the question is when do

we break out of the loop with an answer. We already mentioned, using Figure 4-8, that when

we find a risk allocation that yields a controllable STNU, we have an affirmative answer

and may return any policy of this STNU. This is what the green arrow in the bottom right

represents. This may not happen on the first round, but throughout subsequent rounds of

conflict discovery, we can take that exit as soon as controllability is satisfied.

Alternatively, the master problem might eventually collect enough conflicts that it be-

comes infeasible to resolve them along with satisfying the reformulated chance constraint.

Since these conflicts must be resolved in any instance of the subproblem, this means the

master is unconditionally infeasible2, and hence so is the entire reformulated problem. In

this situation, we exit out of the master, returning infeasible. This is shown in Figure 4-9.

Although we have identified the ways in which this algorithm would terminate, we

haven’t yet proven that it would actually terminate. That argument rests on the claim that

2One could also ask whether the subproblem could be unconditionally infeasible, and what that means.
The subproblem is inherently conditioned on the assignments the master makes for the “decision variables”,
in this case, the risk allocation. Recall that our subproblem conflicts are negative cycles in the STNU distance
graph. And the cycle weight is conditioned on the risk allocation, which is why we translate the cycle weight
expression back in terms of the risk allocation variables. But if none of the edges in the cycle mapped back to
a risk allocation variable (i.e., a bound on a probabilistic duration), then the cycle weight is unconditionally
negative in all instances of the STNU controllability subproblem. In this case, we could either return infeasible
from the subproblem directly, or pass that unconditional conflict back up, and let the master figure out that
the conflict resolution would be self-inconsistent.

128



there are only a finite number of possible conflict resolutions we could attach to the master

problem. Again, a full discussion relies on understanding the structure of these conflicts

and their resolutions, which is presented in Section 4.3. Therefore, I defer the termination

guarantee to Section 4.4.

Here is the gist of the argument, though: Within a given STNU structure, there are a

finite number of negative cycle topologies we could discover proving its uncontrollability.

So if we keep going around the loop, any new STNU conflicts would map into existing

conflict resolutions, leaving the master problem unchanged. Hence, in theory, once we’ve

exhausted those possibilities, the algorithm would be forced to satisfy one of the two exit

conditions.

In practice, it is highly unlikely that we would reach this situation. Our experiments

in Chapter 7 consistently require fewer than 10 iterations to exit the loop. And often,

approaching 10 iterations is a sign that the problem is tightly constrained, and that the

master solver is likely to fail.

The conflict-directed algorithmic approach I’ve presented for solving our reformulated

problem is formalized as pseudocode in Algorithm 4.1. Lines 7 and 11 correspond to

solving the master problem and the subproblem, respectively. To satisfy the original cc-

pSTN problem specification, when the subproblem is controllable, we generate and return

any feasible policy for the STNU on line 13. Implicit is that choosing whether to check

strong or dynamic controllability on line 11 determines whether we produce a static or a

dynamic policy.

In practice, the decisions of an STNU policy can be generated online during execution.

For dynamic policies, Hunsberger [33] has formally stated such an algorithm, based on

the principles outlined by Morris [38]. In the case of static policies, since STNU strong

controllability reduces to the compiled STN over its controllable events, we just need a

full schedule for the STN. However, STNs can also be dispatched online, via an extra

preprocessing step that puts them in dispatchable form [17]. Muscettola, Tsamardinos, and

Morris [43] [58] [40] have given algorithms for generating efficient dispatchable forms, as

well as theoretical characterizations of them.

One aspect of Algorithm 4.1 not yet discussed is the ability to return a conflict for the cc-
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Algorithm 4.1: Conflict-directed hybrid solver for the reformulated cc-pSTN
problem

Input: A pSTN 𝒩 𝑝

Input: A chance constraint with risk bound ∆
Output: Whether a scheduling policy for 𝒩 𝑝 with failure probability ≤ ∆ was

found
Output: If yes, the policy
Output: If no, a conflicting subset of the cc-pSTN

// Reformulate the chance constraint and initialize the master
problem

1 ra-vars←− Instantiate risk allocation variables
2 reformulated-cc←− Express reformulated chance constraint
3 master-problem←− Instantiate master problem object
4 AddVariables(master-problem, ra-vars)
5 AddConstraint(master-problem, reformulated-cc)

6 while true do
// Solve the master problem; return if infeasible

7 feasible, ra-assignment, infeasible-subset←− RunSolver(master-problem)
8 if not feasible then
9 return false, MapToCCpSTN(infeasible-subset)

// Solve the subproblem; return if controllable
10 stnu←− GenerateSTNU(𝒩 𝑝, ra-assignment)
11 controllable, negative-cycle←− CheckControllability(stnu)
12 if controllable then
13 return true, GeneratePolicy(stnu)

// Translate STNU conflict into master problem
14 conflict←− TranslateIntoRASpace(negative-cycle)
15 conflict-resolution←− NegateConstraint(conflict)
16 AddConstraint(master-problem, conflict-resolution)
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pSTN itself when it cannot find a chance constraint-satisfying policy. Technically, this was

not specified in the original cc-pSTN Problem 2.20. However, this is a useful capability to

consider when integrating with planners. On page 123, I had mentioned that conflicts from

continous spaces can help planners guide their search over discrete choices. Thus, when

checkers for STN consistency and STNU controllability return negative cycles, whoever

uses those checkers as a subroutine can translate those cycles into learned constraints, just

as Algorithm 4.1 does for risk allocation, but for a discrete space. Likewise, it would be

useful for our cc-pSTN solving algorithm to return some form of conflict when infeasible.

With respect to a problem’s inputs, a conflict is basically a subset of them. The smaller

the subset, the more powerful the conflict is, because the conflict resolution then prunes a

larger portion of the space of possible subproblems. In our solution approach, infeasibility

is determined by the master problem becoming overconstrained. Thus, we rely on the

master solver to identify a subset of the learned conflict resolutions that are incompatible,

either with themselves or with the reformulated chance constraint. Ideally, it would be an

irreducible infeasible subset (IIS), which makes the conflict as small as possible. This subset

is precisely what’s responsible for us returning false on line 9, so we map those conflict

resolutions (plus the reformulated chance constraint if included) back into the original

cc-pSTN’s components. That is what we return as our cc-pSTN conflict.

The weak link in this strategy, though, is our reliance on a third-party solver to return

such an IIS. Not all solvers support this feature, especially when a nonlinear constraint is

involved. In that case, one would have to implement a custom strategy that wraps around

the solver. Doing so would be a problem in and of itself, so I have chosen to descope it. At

the very least, one could always treat the entire set of conflict resolutions plus the chance

constraint as the infeasible set. It just means the conflicts returned are not miminal and thus

less informative.

To fully implement Algorithm 4.1, we need to understand the form of the negative cycles

returned by the controllability checkers, as well as how lines 14 and 15 process it as a conflict

to be learned by the master problem. In the following Section 4.3, I will discuss these in

turn for strong and dynamic controllability. Specifically, I will focus on what the conflict

resolution constraints look like in the risk allocation space, and what that means for the
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master solver. Finally, Section 4.4 will discuss termination and soundness/incompleteness

guarantees.

4.3 Extracting and resolving conflicts

The previous section claimed that the form of conflicts returned by the subproblem were

negative cycles in the STNU distance graph. The purpose of this section is to illustrate why

that is the case, and then given those cycles, what the master problem needs to do to resolve

them in subsequent risk allocations. That is, we will be translating the key condition(s) of

those cycles into a constraint in the space of risk allocation. The constraint’s negation then

becomes our desired conflict resolution constraint, which gets fed into the master’s solver.

The form of the conflict resolutions has important implications for the choice of solver

used by the master problem. Namely, the solver must be capable of processing those

constraints. What we will see is that strong controllability conflicts result in purely linear

conflict resolution constraints, whereas dynamic controllability conflicts require disjunctive

linear resolutions. Correspondingly then, when searching for a static or a dynamic policy,

the conflict resolutions form either a linear program or a mixed-logic linear program.

You will note that these are exactly the same class of constraints needed for the full

encodings of strong and dynamic controllability, given previously in Section 4.1. Therefore,

we haven’t changed the type of solver required to solve the reformulated chance-constrained

problem, going from the full encoding to the conflict-directed approach. This is perhaps no

accident, as we can view the conflicts as an incremental buildup of an alternate encoding

for strong or dynamic controllability.

What we have gained, though, is precisely this incremental buildup. I mentioned

previously that Wang [69] demonstrated significant runtime savings using the conflict-

directed approach to produce static policies. This can be attributed to avoiding the full

encoding’s 𝑂(𝑁) additional variables completely, and its 𝑂(𝑁2) additional constraints

upfront. Also, the full encoding’s constraints are each limited to relating just two events

in the temporal network, whereas a negative cycle has the potential to summarize how

multiple activities’ and requirments’ bounds compose into a conflict. These cycles can thus
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be viewed as being more “informative” than just single edge constraints, and this contributes

to the conflict-directed approach needing relatively few iterations.

We would expect these gains to carry over at least as much for dynamic controllability

conflicts. We still get the expressive power of negative cycles, and we are now discov-

ering them in lieu of encoding 𝑂(𝑁2) additional variables and 𝑂(𝑁3) disjunctive linear

constraints.

The fact remains, though, of having to solve either an LP or MLLP in conjunction with

the nonlinear reformulated chance constraint. Like with the full encoding, an NLP solver

suffices for generating static policies, but more sophisticated methods are needed to handle

the dynamic case. One might consider alternative MILP or NLP formulations of the MLLP,

others had provided for the DC full encoding, described in Section 4.1. However, those

formulations were specific to the full encoding, and thus not directly applicable to the DC

conflict resolutions we seek here.

Therefore, simply finding a black box solver to substitute in line 7 of Algorithm 4.1 will

not suffice for generating dynamic policies. Nevertheless, the general spirit is still valid

towards approaching a final solution. The focus of this chapter, then, is to derive the form

of the DC conflict resolutions, and Chapter 5 will provide additional algorithmic structure

to process those resolutions, resulting in a complete algorithm. Because DC conflicts build

on concepts of SC conflicts, I present the latter first in the next subsection. It is also the

case that since all strongly controllable STNUs are dynamically controllable, SC conflicts

can be viewed as a special case of DC conflicts.

4.3.1 Strong controllability conflicts

I begin with a summary of how we process and resolve strong controllability conflicts. The

remainder of this subsection then illustrates that process on our favorite spaghetti example.

In Subsection 4.1.1, I demonstrated that strong controllability is enforced by compiling

away constraints’ dependence on the arrival times of uncontrollable events. The intuition

was to push any activities’ or requirements’ endpoints back along the uncontrollable dura-

tions, and absorb the uncertain time window into the original constraint’s controllable slack.
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This is exactly what strong controllability-checking algorithms do [60], thus mapping the

STNU down into an STN on the controllable events.

The STN’s consistency is thus equivalent to the STNU’s strong controllability. By the

Fundamental Theorem of STNs [17] [33], an STN is consistent if and only it has no negative

cycles in its distance graph. Therefore, we run standard single-source shortest paths (SSSP)

algorithms [10] on the distance graph. If a negative cycle exists, these algorithms are

guaranteed to return a simple such cycle (i.e., no repeated vertices). If a negative cycle is

returned, we can trace each edge of that cycle back to the original STNU’s interval bounds,

and this will form a (potentially non-simple) negative cycle in the STNU’s distance graph.

STNU controllability is well-defined only for fully grounded STNUs, where the intervals

bounds are given as constants. Therefore, this is the input to any controllability-checking

algorithm. Internally, this gets translated into a distance graph with the constant bounds as

edge weights, so any negative cycle returned as a conflict will be in terms of those weighted

edges.

However, our master problem needs to know how that conflict helps prune the risk

allocation space. That is, we need to derive a constraint that helps it avoid, or resolve that

conflict for subsequent risk allocations. The first step, then, is to express the current fact

that our candidate risk allocation yielded that negative cycle. Once we have that, we can

simply negate the expression to enforce that no further risk allocation may produce that

negatice cycle again. This is what lines 14 and 15 in Algorithm 4.1 are meant to achieve.

Now the STNU remains topologically unchanged between different instances of the

subproblem, because it is always based on the original pSTN’s structure. Therefore, that

cycle will always exist; it’s just a question of whether its weight is negative. So the expression

we want is that the cycle’s weight is currently negative.

∑︁
edge∈cycle

weight(edge) < 0. (4.6)

For the STNU that was passed to the subsolver, all the weights on the left-hand side are

constants, and this is a true statement. However, we want it to be a statement about what

we want all such STNUs to avoid in the future. So for any edge that corresponds to a risk
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Figure 4-10: This is the original pSTN with the risk allocation variables about to be
imposed on its uncontrollable durations.

allocation bound on an uncontrollable duration, we replace its assigned weight with the

risk allocation variable itself. What we’ll have then, is an inequality in terms of the risk

allocation variables This basically identifies a region of the risk allocation space where that

cycle would have negative weight. So by flipping the inequality into a greater than or equal,

we create a constraint that tells the master problem to avoid that region.

Now we apply this process to the spaghetti scenario from Chapter 2. Figure 4-10 the

pSTN with risk allocation variables hovering over its uncontrollable durations. (This is a

repeat of Figure 3-3.) Once we assign those variables, line 10 of Algorithm 4.1 formulates

a grounded STNU out of that, and this becomes the subproblem. Figure 4-11 depicts

that STNU for the risk allocation assignment (𝑙1, 𝑢1) = (10, 14), (𝑙2, 𝑢2) = (8, 11), and

(𝑙3, 𝑢3) = (2, 4).

Inside the function that checks strong controllability, new constraints are derived ac-

cording to the principles in Subsection 4.1.1. For example, the 𝐶 endpoint on the [0, 2]

requirement of 𝐶 → 𝐾 gets compiled back through the “bake meatballs” uncontrollable

durations 𝐵 99K 𝐶. According to the rule, this creates a new “virtual requirement” on

𝐵 → 𝐾 with lower bound 𝑢1 + 0, and upper bound 𝑙1 + 2. This is shown in red in

Figure 4-12. The same rule is applied to the 𝐸 → 𝐻 controllable activity and the 𝐺 → 𝐼

requirement.
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Figure 4-11: Once the risk allocation variables are assigned, a fully grounded STNU is
posed as the subproblem.

When we bring in the assigned values of the risk allocation variables, the SC derivation

rules thus produce a [14, 12] requirement on 𝐵 → 𝐾, an [11.5, 9] controllable duration

on 𝐷 → 𝐻 , and a requirement [4, 5] on 𝐹 → 𝐼 . These new constraints dominate the

original 𝐶 → 𝐾, 𝐸 → 𝐻 , and 𝐺 → 𝐼 constraints, respectively, in that if we satisfy the

new ones, the original ones are guaranteed to be satisfied, too, for any outcome of the

uncontrollable durations. This means we can safely ignore any old constraints that touched

an uncontrollable event. We can also ignore the uncontrollable durations themselves,

because we have compiled away any dependence on their outcomes. This is shown in

Figure 4-13.

Since the remaining constraints only connect the controllable events, what we have is an

STN. This thus illustrates how STNU strong controllability is reduced to STN consistency.

If we can find a static schedule to the STN’s events, then a valid static policy for the

STNU can be built from it. Now, in this particular STN, one can intuitively see that the

derived 𝐵 → 𝐾 and 𝐺 → 𝐻 constraints are impossible to satisfy, because their lower

bounds are greater than their upper bounds. The remaining discussion will show how these

inconsistencies are detected formally, and thus what is the structure of the negative cycle

conflict we find.

I claimed earlier that an STN’s consistency can be determined by checking for negative

136



Figure 4-12: To enforce strong controllability, any controllable activities or requirements
that touch uncontrollable events are compiled according to the application of the rules
shown.

Figure 4-13: This is the result of applying the strong controllability compilation (or
reduction) rules. What’s left is an STN on the controllable events, and we can ignore any
constraints that touch an uncontrollable event.
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Figure 4-14: This is the distance graph of the STN. Upper bounds become forward weighted
edges, and lower bounds become reverse negatively-weighted edges.

cycles in its distance graph. The idea behind constructing this graph is that each constraint

in an STN really imposes two distinct difference inequalities. This is true regardless of

whether a constraint represents an activity (including wait activities) or a requirement.

Earlier in Subsection 4.1.1, we saw this idea at work through Equation 4.3.

In an STN’s distance graph, all the events become vertices, but every constraint 𝐴→ 𝐵

with bounds [𝑙, 𝑢] becomes two weighted edges: a forward edge 𝐴
𝑢−→ 𝐵 and a backward

edge 𝐵 −𝑙−→ 𝐴. Figure 4-14 is thus the distance graph of the STN in Figure 4-13. Remember

that the wait activities 𝐴→ 𝐵, 𝐴→ 𝐷, 𝐴→ 𝐹 , and 𝐽 → 𝐾 all have interval constraints

[0,+∞). An upper bound of +∞ is really no constraint at all, so those edges are missing

in the distance graph, but the backward edges with 0 weight remain. Also, the colors of the

edges don’t matter in the distance graph, but I keep them around to help visually associate

them with the STN constraints they’re derived from.

The advantange of putting the STN in distance graph form, rather than encoding it as a

set of linear constraints, is that we can leverage efficient shortest-paths algorithms to infer

implied constraints. The notion of adding weights along a path’s edges corresponds directly

to “adding” the linear inequalities those edges represent. All the internal vertices, or event

variables, “telescope” away, and we’re left with an upper bound on the “temporal distance”
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from the start of the path to the end.

For example, the path 𝐿
−0.5−−→ 𝐾

−14−−→ 𝐵
0−→ 𝐴 tells us that 𝐴 must happen at most

−14.5 minutes after 𝐿. This sounds a little convoluted due to the negative duration, but it’s

easily rectified by reinterpreting it using positive time: The entire plan must finish at 𝐿 at

least 14.5 minutes after it starts at 𝐴. (It may help to imagine fixing 𝐴 or 𝐿 in time when

reinterpreting.) While this could have been evident from the STN’s visual depiction in

Figure 4-13, the distance graph form establishes a uniform convention for the edge weights,

making it easier to apply graph algorithms.

It turns out that an STN has a solution (i.e., is consistent) if and only if its distance graph

has no negative cycles. And fortunately, we have the standard Bellman-Ford algorithm

for single-source shortest paths (SSSP), which detects negative cycles. There exist many

extensions to Bellman-Ford that improve its runtime for certain graph topologies [10], but

they all have the same worst-case runtime of 𝑂(𝑛𝑚), where 𝑛 is the number of vertices,

and 𝑚 is the number of edges. Regardless, the point is that any one of those variants will

detect and return a negative cycle if one exists. It’s also important to note that only one such

cycle will be returned, even if there are other negative cycles, and it will be a simple cycle.

(Theoretically, returning all negative cycles is a much more expensive operation.)

In our example, there are two simple negative cycles: 𝐵
12−→ 𝐾

−14−−→ 𝐵 and 𝐷
9−→

𝐻
−11.5−−−→ 𝐷. Figure 4-15 shows only the former being detected and returned by an SSSP

black box. This is the output of the subproblem, and now it is the master problem’s job to

translate this cycle into the risk allocation space.

Having received the negative cycle, the master observes that 12 + (−14) = −2 < 0.

But what it really needs is the cycle’s weight in terms of the risk allocation variables that

contributed to it having negative weight. The strategy is thus to trace back our derivation

steps, going from the distance graph, back to the STN, back to the STNU, and finally back

to the risk allocation that was applied to the pSTN.

Along this chain, the most consequential step is undoing the strong controllability

reductions when reconstructing the STNU. Figure 4-16 reminds us that the edges in the

negative cycle were derived from the STNU’s𝐵 99K 𝐶 uncontrollable duration and𝐶 → 𝐾

requirement. Namely, the weight on 𝐵
12−→ 𝐾 is derived from the assignment 𝑙1 = 10 plus
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Figure 4-15: A negative cycles exists within the distance graph, composed of the two edges
between 𝐵 and 𝐾. Other negative cycles exist, too, but this is the one we focus on in the
example.

the upper bound of 2 on 𝐶 → 𝐾. Similarly, the weight on 𝐾
−14−−→ 𝐵 is the negative (due to

distance graph semantics) of the assignment 𝑢1 = 14 plus the lower bound of 0 on 𝐶 → 𝐾.

Therefore, we can decompose the negative cycle’s weight expression into (10 + 2) +

(−14− 0) < 0. All that’s left to do is to “unassign” the risk allocation variables 𝑙1 and 𝑢1,

and we get the following inequality for the cycle’s weight:

(𝑙1 + 2) + (−𝑢1 − 0) < 0

⇔ 𝑙1 − 𝑢1 + 2 < 0.
(4.7)

Equation 4.7 is what generalizes the grounded negative cycle in the distacne graph into a

condition in the risk allocation space. Namely, it expresses precisely the condition needed

for a risk allocation to make the distance graph cycle 𝐵 → 𝐾 → 𝐵 have negative weight.

Therefore, by negating that condition and enforcing it for all future risk allocations, we

prevent that cycle from ever having negative weight again. This is the conflict resolution

constraint that the master problem must learn.

𝑙1 − 𝑢1 + 2 ≥ 0. (4.8)
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Figure 4-16: Recall that the weights of𝐵 12−→ 𝐾 and𝐾 −14−−→ 𝐵 were derived from reducing
requirement 𝐶 → 𝐾 through the uncontrollable duration 𝐵 99K 𝐶.

Figure 4-17 depicts the conflict and its resolution in terms of the STNU that was provided

as input to the subproblem, rather than the internally derived distance graph. The idea is

that I’ve put the 𝐵 99K 𝐶 and 𝐶 → 𝐾 of the STNU in distance graph form. I will elaborate

on this concept of STNU distance graph in the next subsection on dynamic controllability

conflicts. The gist for now, though, is that while 𝐶 → 𝐾 gets turned into an upper-

bound forward edge and negative lower-bound backward edge, we do the opposite for the

uncontrollable duration 𝐵 99K 𝐶: We put its lower bound 𝑙1 as the weight for the forward

edge, and use the negative upper bound 𝑢1 for the backward edge’s weight. In a nutshell,

the reasoning for the forward edge is that among all possible outcomes, 𝑙1 represents the

tightest upper bound on the difference in execution times 𝐶 − 𝐵, and to be safe, a static

schedule should respect that a priori. Similar reasoning can be applied for the backward

edge weight of −𝑢1.

Therefore, we could alternatively argue that the negative cycle conflict is 𝐵 10−→ 𝐶
2−→

𝐾
0−→ 𝐶

−14−−→ 𝐵 in the STNU’s distance graph. The disadvantage of doing so is that now

the cycle isn’t simple, which is a property that the SSSP algorithms rely on. We’d also have

to create exceptions for negative cycles that shouldn’t be considered conflicts. For instance

𝐵
10−→ 𝐶

−14−−→ 𝐵 shouldn’t be thought of as a conflict, because they come from the same

uncontrollable duration. This cycle being negative is just an artifact of the distance graph
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Figure 4-17: Tracing the edge weights in the negative cycle back to the STNU, we
get a negative cycle in the STNU’s own distance graph. “Unassigning” the risk allocation
variables yields a cycle weight expression in terms of those variables. Our conflict resolution
constraint for the master becomes enforcing that expression to be non-negative.

construction. Again, the following subsection will introduce mechanisms to handle that.

Ultimately, the semantics of strong controllability are rooted in the reduction to an STN.

So it makes sense to operate on the STN when testing the subproblem’s feasibility. It just

means we need to maintain records of the various mappings along the way, so we can

reconstruct and “lift” the negative cycle conflict into the risk allocation space.

For the remainder of this subsection, I will visually summarize how these conflict

resolutions manifest in the risk allocation space, and relate them to the notion of Benders

cuts from linear programming. Visually, the key observation is that Equation 4.8 is a linear

inequality. That means we can envision it as a hyperplane cutting through the risk allocation

space, depicted in Figure 4-18. Risk allocations on one side of the hyperplane correspond

to making a particular cycle in the distance graph have negative weight. Therefore, we want

to be on the other side, and treat the negative side as an obstacle.

Recall from Figure 3-10 that there is also a green region with nonlinear boundaries

corresponding to the reformulated chance constraint. All candidate risk allocations gener-

ated by the master problem must land inside this green region. If the first candidate results

in a not strongly controllable STNU, we will discover that it lies within a conflict region

that is bounded by the hyperplane representing some cycle’s weight being 0. In fact, the

orthogonal distance of that candidate to the hyperplane is exactly how negative that cycle’s
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Figure 4-18: Because the cycle weight expression is linear in terms of the risk allocation
variables, when the cycle’s weight is 0, it forms a “line” (or hyperplane) in the risk allocation
space. We want to be on the side of that line where the expression is non-negative, so the
conflict resolution blocks out a half-plane (or half-volume).

weight is.

Since this first risk allocation lies within the obstacle, the obstacle must prune away some

portion of the reformulated chance constraint region from further consideration. If there is

still some green region left, then the master solver will pick another candidate from within

it. For example, suppose a second risk allocation was generated where (𝑙1, 𝑢1) = (14, 15).

In the STN distance graph, the previously negative cycle would become 𝐵
16−→ 𝐾

−15−−→ 𝐵,

so it no longer has negative weight. However, it would introduce another negative weight

cycle 𝐴
15−→ 𝐿

−0.5−−→ 𝐾
−15−−→ 𝐵

0−→ 𝐴. If the subproblem returned this conflict, the master

would learn its resolution as another hyperplane-bounded region, with the boundary 0.5

away from the second candidate. This is shown in Figure 4-19.

This process would continue until either the master generates a candidate that results in

a controllable STNU, or the learned conflict resolutions entirely block out the green region,

in which case the master would return infeasible. There is the question of whether this

process is guaranteed to terminate. In other words, would we ever be in a situation where

the conflict resolutions prune ever-shrinking infinitesimal pieces out of the green region

for the master problem to select further risk allocations from. In Section 4.4, I prove this
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Figure 4-19: Subsequent risk allocations by the master must fall in the green chance
constraint-satisfying region, which is ever-shrinking due to linear cuts by the negative cycle
resolutions.

cannot be the case.

The final topic in this subsection is to relate these conflicts to the notion of cuts from

Benders decomposition. Although I presented conflict-directed search upfront in the context

of discrete variables, and then generalized its principles to our continuous-variable problem,

Benders [4] had invented decades ago a similar technique in the context of mathematical

programming. In his work, he allowed for mixed continuous and discrete variables, but

he was only concerned with formulating subproblems that are linear programs over the

continuous variables. He also allowed for an objective function in the overall master

problem, as is the custom in mathematical programming.

Benders’s key insight regarding the subproblem LPs was to leverage the concept of

duality. Rather than solve the LP outright, he formulated and solved the LP’s dual problem.

Suppose that original problem’s objective is to minimize a function over all the variables.

Then the subproblem LP’s objective would be to minimize that same function with the

non-LP variables assigned by the master. The subproblem’s dual LP would then have to

maximize a related function, but also with the non-LP variables assigned. Once we solve

the dual LP, then by strong duality, whatever maximum objective it arrived at would be a

lower bound for the original problem’s objective. Furthermore, by “unassigning” the non-
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LP variables, we could generalize that lower bound as a function across the entire non-LP

variable space. This is what’s known as a Benders cut, and it becomes a new constraint for

the master problem.

In our approach, the conflict resolutions learned by our master problem can be viewed as

a special case of Benders cuts. First of all, our cc-pSTN problem is one of satisfiability, not

optimization. This is easily accounted for in the Benders setting by making the objective

function 0. Second, we are concerned with the case when the subproblem is infeasible.

By duality, this means the subproblem dual would have a solution with an unbounded +∞

objective value.

To interpret the Benders cut we get out of this, we need to understand what the form

of the subproblem and its dual are. We already know, from Subsection 4.1.1, that our

STNU strong controllability subproblem can be encoded as an LP, where each constraint

has been compiled into a difference constraint relating two events. It turns out, as shown

by Bhargava [5], that the dual of this LP expresses the notion that there can be no negative

cycles in the compiled STN’s distance graph. Namely, the objective function of the dual

would be the negative weight of any path in the STN. If the STN has a negative cycle, then

that objective gets pushed to +∞.

The Benders cut extracted from this situation would express that the negative of the

cycle’s weight should be a lower bound of the original problem’s objective function. But

recall that objective is 0, so equivalently, we can say that 0 should be a lower bound on the

(non-negated) cycle’s weight. And thus, we have shown that the Benders decomposition

interpretation of our problem results in exactly the same conflict resolutions learned by

the master problem. Fang [19] makes note of this relationship in passing when citing

prior work [69] that established this conflict-directed approach for producing static chance-

constrained pSTN policies.

4.3.2 Dynamic controllability conflicts

The previous discussion of strong controllability conflicts and their resolutions in risk

allocation space sets up much scaffolding that we can reuse when switching to dynamic
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controllability. Namely, conflicts are still in the form of negative cycles, so the same

principles apply when lifting cycle-weight expressions into the risk allocation space. The

main differences are that the cycles will be in the distance graph of the STNU itself, and

they will come with extra conditions attached. These cycles are known as what’s called

semi-reducible.

Thus, while we don’t have to go through the step of compiling into an STN first, these

semi-reducible conditions will introduce logical conjunctions into the mathematical state-

ment of each DC conflict. By De Morgan’s law, that means when we negate the expressions

to form the conflict resolution constraints for the master, we’ll get logical disjunctions.

Each disjunct will be a linear inequality like the form of the strong controllability conflict

resolutions. Therefore, resolving DC conflicts requires an additional layer of reasoning over

that which is used to resolve SC conflicts.

As I said earlier in this section, this chapter is concerned only with establishing the

form of DC conflicts and their resolutions. Chapter 5 will introduce the machinery needed

to handle those resolutions. The remainder of this subsection will follow an arc similar to

that of the previous: I will walk through an example of finding a semi-reducible negative

cycle (SRNC). Then I write down the expression proving it’s an SRNC, and it will be in

conjunctive linear form. It thus remains to lift that expression into the risk allocation space,

and negate it into a disjunctive linear form. Finally, I present the visual interpretation of

these conflict resolutions, and I remark on potential relationships to extensions of classical

Benders decomposition.

The key property used to find DC conflicts is that an STNU is dynamically controllable

if and only if it has no SRNCs in its distance graph. This is known as the Fundamental

Theorem of STNUs, originally discovered by Morris [38] and so named by Hunsberge [33],

and it can be considered the counterpart to Fundamental Theorem of STNs. Unlike STN

negative cycles, though, SRNCs are not necessarily simple.

The running example I will use is presented in Figure 4-20. This is the same spaghetti

scenario as in Figures 4-10 and 4-11, but the risk allocation assignment being applied to

the pSTN has 𝑙2 = 6 instead of 𝑙2 = 8. I claim that the portion of the network boxed in red

forms an SRNC in its STNU distance graph form. Figure 4-21 isolates that portion of the
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Figure 4-20: A risk allocation is generated for our pSTN running example. (Note that 𝑙2
on 𝐷 99K 𝐸 has been assigned 6 as opposed to previous instances where it was 8.) This
subsection will focus on the highlighted subset of the pSTN.

Figure 4-21: This is the same subset of the pSTN from Figure 4-20, now in grounded
STNU form due to an assigned risk allocation.

STNU (the purple probabilistic durations have been replaced by yellow interval-bounded

uncontrollable durations). Figure 4-22 then presents it in distance graph form.

The notions of an STNU’s distance graph and semi-reducibility were presented in

Subsection 4.1.2 when discussing the DC encoding. As a quick refresher, an STNU’s

distance graph is constructed according to the same principles as an STN’s distance graph,

with the exception of uncontrollable durations. Given such a duration𝐴 99K 𝐵 with bounds

[𝑙, 𝑢], the forward edge in the distance graph becomes 𝐴
𝑏:𝑙−→ 𝐵, and the backward edge

is 𝐵
𝐵:−𝑢−−−→ 𝐴. The lowercase 𝑏 label means that 𝑙 is the tightest possible constraint on

the forward edge, but conditioned on the outcome of the 𝐴 99K 𝐵 duration taking on its

shortest value 𝑙. Likewise, the uppercase 𝐵 label is a condition on −𝑢 being the tightest
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Figure 4-22: This is the distance graph form of the STNU segment in Figure 4-21.

possible constraint on the backward edge. The key idea is that these labels become moot

during execution once the respective outcomes actually appear in the execution history. But

before then, and thus during offline analysis of controllability, it is essential to respect those

constraints.

It turns out there is an asymmetry in how we handle lowercase versus uppercase edges.

Because lowercase outcomes represent the earliest possible time an uncontrollable duration

𝐴 99K 𝐵 could finish, a scheduling policy has to unconditionally assume that outcome. If

it didn’t make that assumption and it turns out the outcome was indeed 𝑙, then if some event

𝐶 needed to execute before 𝐵 arrives, the policy might have accidentally dispatched 𝐶 too

late. In contrast, uppercase outcomes are not subject to such scrutiny, because in these

situations, if the actual outcome was earlier, that actually relaxes the deadlines for other

events’ execution. Therefore, the policy can actually react to those outcomes, by virtue of

being able to affect the future but not the past.

This asymmetry is what the DC reduction rules in Subsection 4.1.2 are trying to express:

The lowercase reduction rules result in new edges without the lowercase label, whereas the

rules involving uppercase labels preserve the label on the new edges (with the exception of

the uppercase-removal rule). In essence, the lowercase edges are compiled away just like

in strong controllability, but the uppercase edges are conditionally propagated. This then,

is the notion of semi-reducibility for a path, that there exists a sequence of reductions than

can be applied to adjacent edges, ultimately resulting in a path with no lowercase edges.
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Figure 4-23: The entire segment in Figure 4-22 forms a semi-reducible negative cycle.
Here we note that the cycle’s weight is indeed negative.

What this amount to is that the compiled distance graph necessary to begin dynamically

dispatching an STNU contains all the ordinary and uppercase-labeled edges, but drops the

original lowercase edges. This final form of the distance graph, which Morris calls the

AllMax projection [41], must not contain any negative cycles. If there is a negative cycle,

then we can trace in reverse the reduction rules that yielded any derived edges. We will

finally obtain a cycle in the original, non-compiled distance graph, and that cycle is an

SRNC, offering proof of the STNU being not dynamically uncontrollable.

Figures 4-23 through 4-25 demonstrate that the distance graph segment in Figure 4-22 is

indeed an SRNC. First, we verify that the entire cycle has a negative weight of−1.5. Then,

we need to make sure that 𝐷 𝑒:6−→ 𝐸 and 𝐹
𝑔:2−→ 𝐺 can be compiled away by application of

the lowercase or cross-case reduction rule.

Let’s begin with𝐷 𝑒:6−→ 𝐸. The claim that Figure 4-24 makes is that a series of reductions

apply to the path 𝐸
1−→ 𝐻

2−→ 𝐼
0−→ 𝐺

𝐺:−4−−−→ 𝐹 , transforming it into a new edge 𝐸 → 𝐹

with negative weight. This path is called an extension subpath for 𝐷 𝑒:6−→ 𝐸, and is what

allows the lowercase compilation to occur [38]. Recall from Subsection 4.1.2 that the DC

reduction rules all take on a plus-minus form. This extension subpath has the property

that the last edge weight is more negative than all the previous edge weights combined.

Therefore, we can apply reduction rules from the end of the extension, yielding a sequence

of new edges 𝐼 𝐺:−4−−−→ 𝐹 , 𝐻 𝐺:−2−−−→ 𝐹 , and 𝐸
𝐺:−1−−−→ 𝐹 . Since the magnitude of this last edge
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Figure 4-24: The first condition attached to the SRNC is the fact that lowercase edge
𝐷

𝑒:6−→ 𝐸 can be reduced against the negative-weight path 𝐸
1−→ 𝐻

2−→ 𝐼
0−→ 𝐺

𝐺:−4−−−→ 𝐹 .
The reduction would yield an ordinary edge 𝐷 5−→ 𝐹 .

weight is less than the shortest duration of 2 for the 𝐹 → 𝐺 activity, the label removal rule

applies, and we’re left with 𝐸
−1−→ 𝐹 . Finally then, we can reduce that against 𝐷 𝑒:6−→ 𝐸 to

yield 𝐷
5−→ 𝐹 .

The key condition that allowed this final reduction to happen was that the extension

subpath had a negative total weight. We also had to check that there existed a series of

reductions on the extension subpath itself to get it down to one edge. It turns out that as

long as the extension contains no other lowercase edges, and it ends on a negative weight

edge, then it can be reduced to a single edge.3 The only negative-weight edges are either

the negative upper bounds of uncontrollable durations, or simply negative-weight ordinary

edges. Since those edges will always be unconditionally negative for any candidate STNU,

there’s no value in encoding that. Therefore, the main condition for semi-reducibility is that

the extension paths have negative weight, and this is identified in Figure 4-24.

To complete the example, we consider the extension subpath for 𝐹 𝑔:2−→ 𝐺, shown in

Figure 4-25. In this case, we can’t reduce from the end because both 𝐸
𝐸:−11−−−→ 𝐷 and

𝐻
−0.5−−→ 𝐸 are negative. Instead we reduce from 𝐸 backwards, yielding 𝐼

−0.5−−→ 𝐸 and

then 𝐺
2.5−→ 𝐸. Now this is positive, so we reduce against 𝐸 𝐸:−11−−−→ 𝐷 to get 𝐺 𝐸:−8.5−−−−→ 𝐷.

3Technically, the extension could contain nested lowercase edges and their own extensions. However, that
would mean they could be reduced/compiled away into new ordinary or uppercase edges, which would then
be used in the reductions for the containing extension subpath.
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Figure 4-25: Likewise, lowercase edge𝐹 𝑔:2−→ 𝐺 can be reduced against the negative-weight
path 𝐺

3−→ 𝐼
0−→ 𝐻

−0.5−−→ 𝐸
𝐸:−11−−−→ 𝐷. This yields an uppercase edge 𝐹 𝐸:−6.5−−−−→ 𝐷.

Finally, the cross-case rule applies to 𝐹
𝑔:2−→ 𝐺

𝐸:−8.5−−−−→ 𝐷, and we get 𝐹 𝐸:−6.5−−−−→ 𝐷.

In summary, the SRNC in Figures 4-23 through 4-25 reduces down to𝐷 5−→ 𝐹
𝐸:−6.5−−−−→ 𝐷,

which is composed entirely of ordinary and uppercase edges. Thus, we have identified a

conjunction of conditions that verify a) the cycle has negative weight, and b) the lowercase

edges can be compiled away.

The remaining steps are to lift this expression into the risk allocation space, and then

negate it to form a conflict resolution constraint for the master. Fortunately, we already

know how to perform most of this from our experience with strong controllability conflicts.

We simply identify any terms in the grounded conflict that came from assignments to

risk allocation variables, and then “unassign” them, putting in their place the variables

themselves. Thus, we have a conjunction over multiple inequality expressions. This is

shown in Figure 4-26. The first conjunct is a linear inequality that says that the cycle weight

is negative. All subsequent conjuncts are then saying that certain subpaths of the cycle have

negative weight themselves, so they are linear inequality as well.

Now, instead of negating a single linear inequality, we are negating a conjunction of

them. Since we’d prefer not to deal with the “not” of an “or” explicitly, we push the negation

onto the linear inequality conjuncts themselves, which we know how to do. De Morgan’s

law thus requires us to replace the conjunction with a disjunction, so the conflict resolution

is expressed as a disjunction of linear inequalities with the inequality sign flipped. This is
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Figure 4-26: To lift the SRNC conflict expression into the risk allocation space, we simply
replace the terms that correspond to risk allocation variables with the variables themselves.
This gives us a conjunction of linear inequalities.

Figure 4-27: To resolve the conflict, we apply De Morgan’s law to flip the inequality signs
and turn the conjunction into a disjunction.

shown in Figure 4-27. In essence, what this says is to avoid the SRNC conflict in future risk

allocations, we can either make the cycle’s weight negative, or we can make non-negative

the weight of any of the extension subpaths, thus preventing the cycle from becoming

semi-reducible.

There are two edge cases to note about SRNC conflict resolutions: First, an extension

subpath becomes a useful disjunct only if it contains risk allocation variables in its weight

expression. If it doesn’t, then that extension can never change its weight, so there’s no value

in telling the master problem to try to raise it. Second, if a negative cycle in the STNU’s

(non-compiled) distance graph contains no lowercase edges, then there are no extension
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Figure 4-28: Each disjunct in a disjunctive linear conflict resolution cuts through the risk
allocation space on a hyperplane, with one side being feasible and the other not. The risk
allocation that led to the SRNC must fall within the infeasible side of each hyperplane. Its
distances to the hyperplane boundaries are exactly how negative the weights of the cycle
and the lowercase-edge path extensions were.

subpaths. In this case, the cycle remains in the AllMax graph, and it can be treated like the

negative cycles for strong controllability conflicts. That is, we can simply flip its inequality

sign, and not bother encapsulating it in a logical operator. In general though, we assume

DC conflict require disjunctive resolutions.

What do these disjunctive linear conflict resolutions mean for the risk allocation space?

Figure 4-28 provides insight. Since each disjunct is a linear inequality, we can interpret it the

same way as a strong controllability conflict resolution. That is, it specifies a hyperplane on

which one side the inequality is violated. In Figure 4-27, we had three distinct inequalities,

each with a different combination of risk allocation variables. Threfore, we get three cuts

through the risk allocation space, all with different “slope”.

The distance of the risk allocation to the hyperplane boundaries is exactly the amounts

by which the weights of the cycle and the extension paths were negative. Moreover, since the

conditions of the SRNC violated all of the disjuncts, the risk allocation must fall within the

violating side of all the hyperplanes. Thus, this identifies a region that is the intersection of

all the half-volumes bounded by the hyperplanes. This region is precisely the new obstacle
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Figure 4-29: To satisfy the disjunctive linear constraint, one can view its negation as
the obstacle in risk allocation space. The negation is exactly the intersection of all the
hyperplane-bounded obstacles. Hence, it is a convex polytope obstacle.

in the risk allocation space that the master problem must avoid from now on, shown in

Figure 4-29.

Like when we were searching for static policies, this obstacle prunes away a portion of

the remaining green region representing the reformulated chance constraint. However, the

options to remove any one of the SRNC’s extension subpaths make it a convex polytope

obstacle. This means it has the potential to prune less of the chance constraint region,

leaving more possibilities for the next candidate. For example, if we had only considered

making the cycle’s weight non-negative, and ignored the extension paths, then the obstacle

in Figure 4-29 would have been a half-volume bounded by the diagonal hyperplane.

Now that we know the form of DC conflict resolution obstacles, we can generalize

the diagram in Figure 4-19 to Figure 4-30. For each risk allocation that didn’t pass the

STNU-checking subsolver, instead of learning a half-volume obstacle, the master problem

learns a convex polytope. Although the diagram is only illustrative and not “to-scale” with

respect to any particular SRNCs, the key insight we get is that each DC obstacle might

block out less of the chance constraint region than SC obstacles do. This is consistent with

our intuitive hypothesis that we expect more cc-pSTNs to admit dynamic policy solutions
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Figure 4-30: A conflict-directed solver for chance-constrained dynamic policies would
discover a convex polytope obstacle for each candidate STNU that’s not dynamically con-
trollable. These obstacles are tighter than the half-volume obstacles in Figure 4-19. This
explains why dynamic policies have a potentially larger solution space than static policies.

than only static policies, just as dynamically controllable STNUs are a superset of strongly

controllable ones.

When we were searching for static policies, I claimed that the conflict-discovery process

must eventually terminate, because there are a finite number of topologies for strong con-

trollability conflicts. The same argument applies for dynamic controllability conflicts, but

it is harder to prove, because as we saw, SRNCs are not necessarily simple cycles. Fortu-

nately, it turns out that the way SRNCs are discovered by dynamic controllability-checking

algorithms implies they also have a finite number of topologies. There are simply many

more of them than those for SC conflicts. This will be fully argued in Section 4.4.

For dynamic policies, there remains the question of whether we can find a solver for the

master problem that can actually process these disjunctive linear constraints along with the

reformulated chance constraint. Unfortunately, the presence of convex obstacles means that

the remaining feasible space is non-convex, and so this prevents us from leverage efficient

convex solvers. This is unlike the case for SC conflict resolutions, where the complement of
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a hyperplane-bounded half-volume takes the same form, and therefore preserves convexity

of the solution space.

Ultimately, as I noted at the beginning of this Section 4.3, the master problem for

generating dynamic policies faces the same difficulty as the full DC encoding does in the

form of constraints it has to solve. It’s just that the conflict-directed approach typically

requires fewer such disjunctive linear constraints, and each of them is more informative in

encompassing entire SRNCs rather than individual edges. Chapter 5 will present the final

pieces needed to solve our master problem.

Like with the last subsection, I close by discussing the relation of our DC conflicts

to other work and Benders cuts. The concept of resolving STNU dynamic controllability

conflicts was first introduced by Yu [74]. This was done in the context of relaxing overcon-

strained temporal plans. Whereas prior work in plan relaxation would remove activities or

requirements entirely, Yu’s insight was to keep them but adjust their bounds, thus retaining

the cycles but making them either non-negative or not semi-reducible. Therefore, he faced

the same issue of disjunctive choices for resolving a DC conflict.

The main difference is that work assumed an STNU model, not a pSTN, so there was

no nonlinear chance constraint. However, it did include an objective function indicating

preference or cost for degrees of relaxation. For the purposes of experimentation, linear

cost functions were used, thus reducing the features required of the underlying solver.

Additionally, I expand on their work by giving a deeper argument about the structure of DC

conflicts and their resolutions, plus the geometrical interpretation.

In theory, we should be able to carry over our interpretation of SC conflict resolutions

as Benders cuts to DC conflict resolutions. The complicating factor, though, is that our

subproblem can no longer be encoded as a linear program. Recall that Benders cuts

are derived from the objective value of the dual problem’s solution. Whereas duality is

well-understood for LPs, the question is whether we can formulate a dual problem for the

disjunctive linear constraint program given in Subsection 4.1.2. If we could, then we would

expect the expression for an semi-reducible cycle to fall out of the dual’s objective function,

just as the objective for an STN’s dual LP gives us a cycle weight expression.

Currently, no one has yet tried to formulate this dual problem for the DC encoding. To be
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sure, it would be significantly more complex than the SC encoding’s dual. However, there

are some promising extensions to the classical Benders decomposition that may provide the

key insights forward. The most useful insight comes from Hooker [29], who summarized

the concept of an inference dual program and how Benders decomposition leverages the

dual’s solution in the abstract. He then applied it to the classical propositional satisfiability

(SAT) problem, partitioning the Boolean variables into two sets. The result, which he called

logic-based Benders decomposion, creates Benders cuts that are disjunctions of literals.

Imagine, then, if in our disjunctive linear DC encoding, we introduced Boolean variables

to indicate the truth- or falsehood of each linear disjunct. The encoding could then be framed

as a SAT modulo theories (SMT) problem, where the theory is that of linear difference

constraints. This suggests that the theory would return conflicts that string individual

difference constraints into negative-weight cycles or paths, and then the framework similar

to logic-based Benders decomposition could them combine them disjunctively into an

SRNC expression. To be sure, this is a conjecture and likely contains subtle errors, but

if something similar is true, it would highlight a deep connection that frames DC conflict

resolutions as Benders cuts.

An alternate way to reach the same conclusion might come from Geoffrion’s work,

which generalizes classical Benders decomposition to settings where the subproblem could

be nonlinear program [23]. In that work, the dual program from which Benders cuts are

extracted is formulated via nonlinear convex duality theory. I mentioned on page 109 that

there exists a nonlinear programming encoding of the DC conditions, albeit less efficient.

Nevertheless, from a theoretical standpoint, it may also be possible to extract SRNC conflict

expressions by applying Geoffrion’s work to that NLP encoding.

4.4 Incompleteness revisited

Throughout this chapter, we have argued that the policies we output meet all the conditions

of our reformulated Problem 3.8. Particularly, in Section 4.2, we constructed Algorithm 4.1

such that any solution is derived from a risk allocation that satisfies the chance constraint

and yields a controllable STNU, which is exactly what Problem 3.8 requires. Hence,
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Algorithm 4.1 is sound.

Lemma 4.1 (Soundness). Algorithm 4.1 is sound with respect to the reformulated Prob-

lem 3.8.

It is less straightforward to demonstrate it is complete. We know, however, there are

only two possible exit conditions: either the solver in line 7 couldn’t find a risk allocation

solution, or the STNU was found to be controllable in line 11. Furthermore, since discovered

conflicts’ resolutions are necessary conditions for STNU controllability, if we terminate due

to them making the risk allocation constraint program infeasible, then we know that no such

risk allocation solution exists for the overall Problem 3.8.

In other words, the algorithm is sound with respect to problem instances that have no

solution. Intuitively, the figures in Subsections 4.3.1 and 4.3.2 demonstrate this by how

the conflict resolutions block out portions of the risk allocation space. When they entirely

block out the green chance constraint region, we know that it is safe to return infeasible.

Therefore, as long as we show that Algorithm 4.1 always terminates, it follows that it

terminates with the correct answer, and so it is sound and complete with respect to the

reformulated problem. We address termination separately for static and dynamic policies.

The overall argument for both is the same, though. As previously indicated on page 129,

since each iteration discovers a new negative cycle, it suffices to show that the number of

such cycle topologies is bounded.

For static policies, we receive STNU strong controllability conflicts, which in turn are

derived from the compiled STN form. Namely, every such conflict is detected as a negative

cycle in the STN’s distance graph. The Bellman-Ford algorithm is commonly used for this

purpose, and it has the property that if a negative cycle exists, then it will discover some

negative cycle that is simple, i.e. the cycle contains no repetitions of vertices. (The nuance

here is that Bellman-Ford doesn’t necessarily discover the cycle we had in mind, which

might not be simple, but there exists at least one simple negative cycle, and Bellman-Ford

will detect one of them.) Clearly, there are a finite number of simple cycles in any finite

distance graph, even if it is exponential in the number of vertices. Therefore, we will

eventually run out of negative cycles to discover.
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For dynamic policies, the argument is slightly more involved, because STNU dynamic

controllability conflicts, which are semi-reducible negative cycles (SRNCs) aren’t neces-

sarily simple cycles. Morris provides an example of this [38]. However, he continues

with a crucial observation that if an STNU contains an SRNC, then there exists (possibly

another) SRNC of limited complexity, the form of which we explain shortly. Hence, when

checking DC, we can limit ourselves to semi-reducible cycles of that form. All DC-checking

algorithms effectively rely on this observation, which means there are a finite number of

such cycles they could discover. This is thus the parallel argument to the static case,

whereby we replace the restriction of looking only for simple cycles with that of looking

for semi-reducible cycles with a bounded structure.

This structure is argued as follows: If a semi-reducible path (and hence any cycle)

contains a lowercase edge, then by definition, that lowercase edge is followed by a subpath,

called an extension, which allows the lowercase edge to be reduced away. Recursively,

though, that extension must be semi-reducible as well, so we need to consider if it contains

any other lowercase edges, as well as their extensions nested within. This could be prob-

lematic if the extension for some lowercase edge, say 𝐴
𝑏:3−→ 𝐵, contains that same edge

inside of it, because this could lead to infinite nesting.

Morris’s observation is that the SRNCs we need to look for don’t have such nested

repetitions. Therefore, since there are 𝐾 lowercase edges total, there can be at most 𝐾 − 1

other lowercase edges within a top-level extension subpath in a semi-reducible path. By

induction on the nesting, starting from the innermost extension, we can conclude that the

top-level extension has a bounded number of edges. Hence, the SRNCs we consider must

consist of some number of top-level lowercase edges and their finite extensions, plus any

additional ordinary and uppercase edges interspersed in between.

The final step in arguing these SRNCs are bounded in size is to show that each lowercase

edge only needs to appear at most once as a top-level edge. Since the cycle is semi-reducible,

we will be able to reduce top-level lowercase edge against its extension, resulting in a cycle

consisting of only ordinary and uppercase edges. We can then apply the same reasoning

regarding simple cycles in the STN unlabeled distance graphs, and conclude that this cycle,

if not simple, must also have a simple nested cycle. We then undo all the reductions to
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restore the top-level lowercase edges, and we reach the contradiction that if such an edge

shows up twice, then the reduced cycle we restored from cannot be simple.

Therefore, for both strong and dynamic controllability, the negative cycle conflicts we

receive from the checker are restricted in their structure and bounded in the number of edges

they could contain, with respect to the size of the STNU. This means our conflict-directed

algorithm cannot continue discovering such conflicts forever, and must eventually terminate,

as Lemma 4.2 below states. Together, Lemmas 4.1 and 4.2 imply that our conflict-directed

algorithm solves the reformulated problem exactly.

Lemma 4.2 (Termination). Algorithm 4.1 is guaranteed to terminate.

Theorem 4.3 (Correctness). Algorithm 4.1 is sound and complete with respect to the

reformulated Problem 3.8.

In practice, the completeness of the algorithm depends on that of the NLP and STNU

subsolvers, which so far we have implicitly assumed are fully correct. The literature on

STNU controllability checking has produced several algorithms with rigorous proofs that

they are sound and complete [33] [39]. Completeness is harder to guarantee for NLP,

because algorithms for solving them typically step through a continuous space and may get

stuck in local features. For instance, the Ipopt solver we use in our implementation uses

an interior-point method, and when it can’t find a feasible region in the variable space, it

returns a message saying the problem seems to be locally infeasible [64].

The user of our algorithm has a couple options to reduce the chances of encountering

such incompleteness from the NLP solver. First, if we stick with unimodal PDF distributions

when modeling the probabilistic durations, it’s likely that the reformulated chance constraint

will be convex, and we can thus employ convex programming solvers, which generally have

stronger guarantees of convergence, and not to mention better runtimes. The justification

for convexity can be seen in back in Figure 3-2 and Definition 3.1, when we use the CDF

function to define the risk of cutting off tails. When the PDF is increasing, the CDF is

convex, and vice versa. Therefore, as long as the chosen lower and upper bounds are on

opposite sides of the mode, then the risk expression will be convex, and so will the total

sum of individual durations’ risks in the reformulated chance constrained, expressed in
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Definition 3.5 and Equation 3.3.

Second, when calling the NLP solver, we can supply an initial point that is reasonably

close to the actual feasible region. A simple choice would be the uniform risk allocation,

where the risk bound is distributed evenly across all 2𝐾 tails of the𝐾 probabilistic durations.

For more sophisication, we could use the previous risk allocation solution as the initial point

for the next round. That solution now lies in the infeasible region, due to the recently learned

conflict resolution, but the hope is that if it’s not too far from the new boundary, then it

won’t take much effort to cross into the remaining feasible region.

In conclusion, our algorithm is still incomplete with respect to the original cc-pSTN

problem. However, it introduces no new incompleteness on top of the reformulated prob-

lem, with the exception of the NLP solver’s incompleteness, which can be mitigated to a

reasonable degree.
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Chapter 5

Hierarchical Algorithm Design

Chapter 4 presented a high-level algorithmic strategy, illustrated by Figure 4-9, for finding

chance-constrained scheduling policies using conflict-directed search. This strategy relies

on supporting routines to identify STNU controllability conflicts, and then resolves them in

the risk allocation master problem. We were able to identify the form of these conflicts and

their resolutions in both the strong and dynamic controllability cases, which respectively

yield static and dynamic chance-constrained policies. Thus, we have a unified framework

that encompasses previous work [69], which only produced static policies.

However, in the dynamic case, the conflict is a semi-reducible negative cycle (SRNC),

whose validity is predicated on the existence of negative-weight extension subpaths for

any lowercase edges. Thus, there may exist alternate ways to resolve such a conflict, by

making the weight of such extensions nonnegative. The DC conflict resolutions express

these alternatives using disjunctive linear constraints.

Any further risk allocation must therefore satisfy at least one of the disjuncts from each

such conflict resolution, so our algorithm needs to be able to handle these disjunctions.

Unfortunately, using a black-box solver to handle those in combination with our nonlinear

reformulated chance constraint would be impractical. We would have to turn to mixed-

integer nonlinear programming (MINLP), which would pull in much generalized machinery

we may not need.

Instead, we take inspiration from disjunctive linear programming (DLP), and apply its

core technique of branching on disjuncts to yield a sequence of linear programs (LPs).
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For our problem of resolving DC conflicts within the risk allocation space, we replace

these LP subproblems with that of risk allocation. These risk allocation subproblems

necessarily include the nonlinear chance constraint, plus all the implied constraints of

STNU controllability.

To focus on framing these risk allocation subproblems, we employ the simplest branching

strategy, which is presented upfront in Section 5.1. This illustrates a key insight that lets

us build our solver for dynamic policies as a layer on top of the existing solution to the

static policy problem, rather than replacing the static version’s master solver. The idea is

to leverage the relationship between SC and DC conflicts presented in Chapter 4 so that by

“activating” a single disjunct for each disjunctive conflict resolution, we reduce the dynamic

version of the master problem back into a form that matches the static version’s. Solving

for chance-constrained dynamic policies, then, reduces to performing combinatorial search

over the disjuncts.

The ultimate contribution of this chapter is to implement this strategy as a collection of

interacting algorithms that solve a layered hierarchy of subproblems. Framing it this way

decomposes and extends the conflict-directed strategy of Algorithm 4.1. Our claim is that

the existing static policy solution can be framed as two layers interacting, and the dynamic

policy solution as a third layer on top.

The value in this framing is that we can identify common principles that apply to each

layer. That is, each layer is responsible for solving the constraints handed to it and framing

subproblems for the layer below, while returning conflicts to the layer above. Therefore,

rather than having a two separate monolithic algorithms in the style of Algorithm 4.1, we

arrive at a decomposable architecture that illuminates not just the structural similarities in

the discovered conflict, but also the computational similarities in how they are resolved.

Section 5.1 presents the intuition of our algorithmic strategy to resolve DC conflicts.

Then, Section 5.2 identifies the three subproblems that comprise what the three layers of

our dynamic policy-generating algorithm are solving. Section 5.3 gives us an algorithmic

template for addressing these layers in the abstract. Finally, Sections 5.4 and 5.5 instantiates

this template for each layer. The end result is a collection of functions that compose to form

the full algorithmic solution.
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5.1 Branching on DC conflict disjuncts

By themselves, solving the nonlinear chance constraint and solving the set of disjunctive

linear conflict resolutions do not pose significant computational challenges. The former can

be addressed by NLP solvers [25] [64]. The latter can be solved by DLP solvers [34] [36], or

even framed as a mixed-logic linear program (MLLP) and sent to an appropriate solver [28].

However, it’s the combination of solving both types of constraints at once that is not well-

studied.

Since our disjunctive constraints form a DLP, it is worth considering the techniques

that DLP solvers employ to handle this structure. The foundational method is to perform

search by branching on the disjuncts. That is, we select one disjunct to be “active” from

each disjunction. The key observation is that when branching, we “tighten”1 a disjunctive

constraint into just a single linear constraint. This means once we’ve branched on all

disjunctions, we’re left with a linear program to solve.

Thus, we can imagine a search tree that performs the branching, and each leaf represents

an LP. If we exhaustively traverse this tree, and solve the LP at each branch, this is a sound

and complete strategy for solving the original DLP. If one of the leaves yields a solution,

then it must be a solution to the DLP, because each disjunction is satisfied by the linear

constraint that was branched on. Conversely, if the DLP has a solution, then we can identify

at least one disjunct per disjunction that it satisfies. Stringing together the disjuncts, we can

thus find a leaf whose LP is satisfied by the DLP’s solution.

This is excellent news for us, because if we ourselves construct such a search tree on our

learned disjunctive conflict resolutions, and append our nonlinear chance constraint to the

LPs at the leaves, then we have a form that the static version of our conflict-directed approach

can solve. Thus, our viable strategy is to replicate the combinatorial search framework of

DLP, so that we can attach our custom nonlinear chance constraint, and replace the LP

solver at the leaves with an NLP solver. It is worth noting that this separation of higher-level

1The constraint programming literature often calls this “relaxation”, even though it actually expands
the obstacle representing the constraint, and thus reduces the remaining feasible space, which technically
“tightens” the problem. This terminology is likely related to the use of “relaxation” in shortest-paths algorithms
when applying the triangle rule [12]. The idea is that if the tighter constraint is satisfied, then there is no more
“pressure” to satisfy the original one, so it can now “relax”.
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combinatorial search and lower-level reasoning of constraints over continuous variables is

reminiscent of SMT solving, which was mentioned in the previous two chapters. This

insight will be key to helping us frame a “third-layer” subproblem in Section 5.2, which

specifies the role that our combinatorial search approach will be fulfulling.

To illustrate this approach, I visually elaborate on how the DC obstacles in Figure 4-30

would be processed. Recall that each linear inequality disjunct of a DC conflict resolution

corresponds to a hyperplane blocking off a half-volume in the risk allocation space. Since

the convex polytope obstacle is the intersection of all those half-volumes, the “facets” of the

obstacles are effectively specified by those hyperplanes. Therefore, branching on a disjunct

means choosing a facet, and “expanding” it back out into an infinite hyperplane.

This is shown in Figure 5-1, where we have generated a first risk allocation, but found

the implied STNU was not dynamically controllable, and so we extracted a conflict. The

master problem generalizes the conflict into a convex polytope obstacle containing the risk

allocation. We proceed by choosing the “top” facet to branch on.

We note two aspects of this branching. First, the expansion turns the original obstacle

into a linearly-bounded obstacle that entirely contains the original. Therefore, it potentially

removes from consideration a larger chunk of the chance constraint-satisfying region. This

accounts for the soundness argument: if a second risk allocation can be found in the

remaining green region and it yields a dynamically controllable STNU, then that risk

allocation respects the original convex polytope obstacle as well.

However, it also has the potential to overprune risk allocations which might have

otherwise succeeded. So second, this is why we need branching for completeness. If we

eventually branch on every facet of this obstacle, expanding them in turn, then all areas of

the green region not covered by the obstacle will be considered at least once by the risk

allocation generator.

At this stage in our example, we have chosen to branch on the “top” facet of the

first obstacle, and this leaves some green region remaining. Thus our NLP solver will

be able to find another risk allocation. Suppose like the first one, it also turns out to

yield an uncontrollable STNU. Then we learn another convex polytope obstacle, this time

surrounding the second risk allocation, as shown in Figure 5-2.
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Figure 5-1: When the first DC conflict is found, we branch on the edges, or “facets”, of
its convex polytope. Each facet represents a linear inequality constraint. In this diagram,
we are branching on the top facet, so this “tightens” the DC constraint, or equivalently
“expands” the obstacle into a half-volume of the risk allocation space.

Figure 5-2: In the remaining space of the chance constraint region, the master chooses a
second candidate risk allocation. If this yields an STNU that is not dynamically controllable,
then another convex polytope obstacle is discovered.
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Figure 5-3: Suppose for obstacle 2, we pick the leftmost facet to branch on first. Then
combined with obstacle 1’s facet that we had branched on earlier, they entirely block out
the chance constraint region. Therefore, no risk allocation can be generated, and we must
backtrack and try other combinations of facets to branch on.

Now we have the responsibility of branching on this second obstacle’s facets. Suppose

we pick the “leftmost” facet first. Note that this branching is performed under the first

branch of the first obstacle. Thus we collectively block out the two half-volumes shown

in Figure 5-3. Unfortunately, in this case, the chance constraint feasible region is entirely

contained within these two half-volumes. What this means is that the branch is a dead end,

and so we have to backtrack.

This is the key difference between our algorithmic solutions for generating dynamic

versus static chance-constrained policies. In the static case, if we had blocked out the

entire chance constraint region, then we would immediately terminate and say there is no

feasible policy. And that would be correct because our SC conflicts are unconditional

negative cycles. But since SRNCs are conditioned on the lowercase edges being reducible

by their extension subpaths, we can resolve them not only by enforcing those cycles to have

non-negative weight, but also by making at least one lowercase edge non-reducible. These

choices thus correspond to the different facets of the SRNC’s convex polytope obstacle.
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Figure 5-4: If we try branching on the bottom right facet of obstacle 2, then that leaves
a small slice of the green region, from which the master can choose a third candidate risk
allocation. Thus, we can continue checking for STNU dynamic controllability, and we will
find either a valid solution, or an SRNC conflict.

Hence, for the dynamic case, when the NLP solver returns infeasible because there is no

remaining chance constraint region, we still have to try other combinations of facets from

each obstacle. Only when all combinations have been tried or pruned, and shown infeasible,

do we conclude that we cannot find a dynamic chance-constrained policy.

To wrap up this example, let’s say we backtrack on the first facet we branched on for the

second obstacle, and then try branching on the “bottom-right” facet, shown in Figure 5-4.2

Once we expand that next facet, and combine it with the expanded facet from the first

obstacle, we see that there is a small sliver of the chance constraint region remaining. Thus,

the NLP solver will be able to find a risk allocation, and we proceed by checking the dynamic

controllability of its implied STNU, just as we did for the first and second risk allocations.

The takeaway here is that every time we successfully find a risk allocation, it must

yield either a feasible policy or a conflict that becomes a new obstacle in the risk allocation

space. This is the same as what happens in the static case, but because we require a layer of

2For the completeness argument, it’s not crucial that we follow any particular branching order, as long as
all facets are explored eventually. In this example, I chose this particular next facet for illustrative purposes.
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branching on top of our existing architecture for finding static policies, these obstacles have

implications for that layer. Namely, every DC conflict obstacle introduces a new choice3

that has to be made before we’ve reached a leaf in our search tree that resolves all discovered

conflicts. Therefore, the depth of our search tree grows with each DC conflict we find.

Since we’re borrowing from DLP solvers this notion of performing high-level combi-

natorial search, I conclude this section by noting that this is only the most basic principle.

DLP solvers typically employ additional strategies to speed up the search over their logical

components, prior to running an LP solver at the leaves [3] [36] [28]. For instance, logical

inference procedures in the categories of resolution or propagation can cut down on the

number of choices that need to be made. This, in turn, can reduce the number of leaves by

a multiplicative or even exponential factor.

For our solution approach, logical inference could manifest in the following ways: If we

branch on a facet from a convex polytope obstacle, and the resulting blocked-off half-volume

entirely contains another convex polytope obstacle, then there is no need to branch on that

other obstacle’s facets; it’s already “relaxed” by the application of the current facet. This

shaves off an entire level within the current subtree of our search. To be sure, determining

whether any remaining obstacles fall within a half-volume incurs computational cost. One

would have to identify all of their “extremal points”, which could be a large number for

high-dimensional obstacles.

A simpler, though less complete, method would be to simply check if the currently

selected facet is shared with any other obstacles. This could happen if the facet represented

the extension subpath of a particular lowercase edge, and that edge plus extension was also

present in another discovered SRNC conflict. This is, in fact, the general strategy of Yu [74]

when branching on DC conflict resolutions.

Another form of inference comes from the idea of conflict extraction at the level of the

nonlinear solver and not just STNU controllability. Whenever we find that the disjuncts

we’ve branched on completely block out our the chance constraint feasible region, we could

try to determine what subset of them were responsible for that infeasibility. That is, we’d

3Recall that some SRNC conflicts may not contain any lowercase edges. In these cases, their resolution
constraints are unconditionally linear, and so no branching is required. This distinction will be addressed in
Section 5.5.
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be looking for an irreducible infeasible subset of the chosen linear disjuncts plus the chance

constraint. The chance constraint is an unconditional aspect of our problem, so we can’t get

rid of it, but we could make sure that future branches on the search tree don’t replicate this

combination of disjuncts.

To express this as a conflict, we simply gather those disjuncts into a conjunction, and so

the resolution constraint is a disjunction over the negations of the offending disjuncts, which

are still linear constraints That means our existing branching strategy for handling SRNC

conflicts can also accept these conflicts. This actually increases the depth of branching

required in the search tree, but when combined with the propagation procedures, branching

on one of those disjuncts will automatically prune the associated disjuncts from the other

convex polytope obstacles, thus reducing the branching factor across multiple levels.

Li [36] explores similar ideas of conflict extraction in the general DLP setting, which

includes an objective function, but no nonlinear chance constraint. Her conflicts thus come

from an LP solver, and increasingly bound the objective value. This is reminiscent of

classical Benders cuts. Fang [19] generalizes the MLLP, which is itself a generalization

of DLP, by incorporating a chance constraint, turning it into a cc-MLLP problem. His

approach, however, is to avoid the computational expense of NLP solvers, and rather solve a

series of relaxed LP problems. Under the reasonable assumption that the chance constraint

region is convex, his strategy generates hyperplanes that provide outer-approximations of the

chance constraint. When a candidate is chosen, but turns out to be infeasible or non-optimal,

tighter hyperplanes are found.

Because the focus of this chapter is to create a layered architecture of subproblems that

can all be solved by common algorithmic principles, I have chosen not to incorporate most

of the above strategies for speeding up the combinatorial search. That is, in the spirit of

avoiding premature optimization, the discrete search strategy I instantiate in the following

sections is limited to simply branching on each facet of each discovered SRNC obstacle, as

shown in the previous figures. Nevertheless, since the architecture I present separates out

key patterns and roles, this makes it clearer where such additional strategies could fit in.

Section 6.4 discusses related work along these lines.
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5.2 Subproblem hierarchy

The previous section illustrated that we can resolve dynamic controllability conflicts, and

hence produce dynamic policies, by branching on the polytope facets of the conflict reso-

lutions. In doing so, we temporarily reduce, or “relax”, the problem to one that contains

only linear constraints plus the nonlinear chance constraint. This means that rather than

substitute a completely new solver in line 7 of Algorithm 4.1 – which using an NLP solver

satisfactorily produces static policies – we can largely preserve Algorithm 4.1 in that form

and use it as a subroutine within a parent algorithm that performs the branching.

To define that parent algorithm, we need to specify what problem it is solving, namely,

what its inputs and outputs are. We will also have to tweak the current inputs and outputs of

Algorithm 4.1 so that the parent algorithm can receive disjunctive SRNC conflict resolutions,

and send back down the linear disjuncts that were branched on. The key insight is that this

relationship between the desired parent and the existing algorithm closely mirrors the

master-and-subproblem relationship we designed for the latter!

That is, the parent algorithm can be viewed as solving the “master problem” for pro-

ducing chance-constrained dynamic policies. Within the parent, it frames risk allocation

subproblems for an algorithm similar to Algorithm 4.1 to solve. And as we know from

Chapters 3 and 4 already, the risk allocation algorithm further separates out the subproblem

of checking STNU controllability.

This section, then, is dedicated to specifying this three-layer hierarchy of master problem

and subproblem relationships. If we have algorithms that fulfill each of these problems’ input

and output specification, then they will automatically combine to solve our reformulated cc-

pSTN problem. This is what the remaining sections of this chapter provide. In preparation,

Section 5.3 presents an algorithmic template for each layer to play its role as master problem

to the layer below, and subproblem to the layer above. Sections 5.4 and 5.5 then instantiate

this template at the requisite layers for static and dynamic policies, respectively. We are thus

able to distill and unify the algorithmic principles linking the two variants of our problem.

In this rest of this section, I define the problem inputs and outputs for each layer, which

I call a level. I proceed in a top-down fashion, starting with a common “top level”, which is
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simply responsible for performing the problem reformulation presented in Chapter 3. Then,

I present Level 3, which is used only to generate dynamic policies by branching on SRNC

conflict resolution disjuncts. Next is Level 2, which is the main machinery for supplying

risk allocations. Finally, Level 1 is responsible for checking STNU controllability.

As the “user-facing” component of our architecture, the top level promises to solve the

original cc-pSTN problem statement as given by Problem 2.20. Therefore, it simply accepts

a pSTN, a chance constraint, and whether we are looking for a static or a dynamic policy.

Problem 5.1 sets this up for us.

Problem 5.1 (Top-level problem reformulation). Given a cc-pSTN, find a scheduling policy

that satisfies the chance constraint, or identify a subset of the cc-pSTN that prevents us from

being able to do so.

Inputs:

• A pSTN 𝒩 𝑝 = ⟨ℰ , ℰ𝑢,𝒜,𝒜𝑝,ℛ⟩

• A chance constraint 𝑐 = ⟨ℛ,∆⟩

• Whether we want a static or dynamic policy

Outputs:

• Whether a scheduling policy satisfying the chance constraint was found

• If yes, an actual policy 𝒫

• If yes, a risk allocation ℒ = ⟨𝑙1, 𝑢1, . . . , 𝑙𝐾 , 𝑢𝐾⟩ as proof of the policy’s correctness

• If no, a conflicting subset of the inputs

• If no, (optionally) an expression in terms of the conflicting subset, evaluating to false

Ideally, if we succeed, then we are able to return an appropriate scheduling policy. However,

since we know that the policies we find are ultimately derived from a proxy STNU, in practice

all we need is the STNU. Online dispatching algorithms can then effectively generate any

valid policy [39] [33]. For the purposes of conceptual exposition, I will continue to refer to
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the output solution as a scheduling policy 𝒫 . As a certificate of the policy’s correctness, we

also supply the risk allocation that was found, since that uniquely determines the implied

STNU from which the policy was derived.

If we have a negative result, then we would like to return a “cc-pSTN” conflict as an

analogue to the SC and DC conflicts of STNUs. While this might not be as elegant as a

single negative cycle, owing to the complicating nature of the chance constraint, we can

abstractly say that a conflict is simply a subset of the input. Any other cc-pSTN with that

same subset (e.g., certain activities or requirements plus the chance constraint) would be

unschedulable for the same reason. Therefore, the top level’s specification allows for a

broad definition of cc-pSTN conflict, and we leave it to the implementing algorithm to

decide what form that takes.

Like in the affirmative case, we allow for a certificate that shows why the conflict is a

valid reason for infeasibility. Again, the abstract idea is that there is some expression in

terms of the conflicting elements which cannot be satisfied. In the case of STN conflicts, for

example, we need all cycles to have non-negative weight, which a conflicting cycle violates.

Internally, the top level reformulates the original problem (Problem 2.20) into that of

risk allocation (Problem 3.8). Then it calls either Level 3 or Level 2 to solve it, depending on

whether we requested a dynamic or static policy. This is demonstrated in Algorithm 5.1 at

the end of this section. For now, we continue with the problem statements for the remaining

levels.

Level 3, as we just said, is responsible for finding a risk allocation that yields a dynamic

policy. Therefore, it takes in the original pSTN plus the reformulated chance constraint,

which is constructed by the top level. Since this reformulation is expressed in terms of the

risk allocation variables, those are passed in as well, so that a full assignment to them can

be returned as the desired solution. Problem 5.2 specifies these inputs.

Problem 5.2 (Level 3 branching on disjunctive SRNC conflict resolutions). Given a pSTN

and a reformulated chance constraint rcc, find an assignment to the risk allocation variables

that satisfies the rcc and yields a dynamically controllable STNU. If unable to, return a risk

allocation conflict.

Inputs:
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• A pSTN 𝒩 𝑝

• A set of risk allocation variables {𝑙1, 𝑢1, . . . , 𝑙𝐾 , 𝑢𝐾}

• A reformulated chance constraint rcc defined over those variables

Outputs:

• Whether a satisfying risk allocation was found

• If yes, an assignment to the risk allocation variables

• If yes, the STNU𝒩 𝑢 implied by the risk allocation, and a feasible dynamic scheduling

policy 𝒫 for it

• If yes, (optionally) a set of linear conflict resolution constraints as proof of a feasible

NLP when combined with the rcc

• If no, a set of learned SRNC conflict resolution constraints

The output of Level 3 is to say whether a risk allocation satisfying the conditions of the

reformulated problem was found. If so, that means the risk allocation implies an STNU

that is dynamically controllable via some policy. For conceptual completeness, we return

all three of these “objects” to the top level. A user’s implementation of the top level can

then decide which “form” of the solution to use; e.g., it could return the actual policy

(represented as some sort of lambda function), or just the STNU, or even construct another

policy according to a custom preference function.

Also, since the risk allocation assignment is ultimately generated by an NLP solver

in Level 2, we can return that nonlinear program as a certificate of the risk allocation’s

validity. In fact, we don’t need to include the reformulated chance constraint, since that’s

given. We can just return all the other constraints in the nonlinear program, which are just

linear conflict resolution constraints. The exact sources of those constraints will be made

clear in Section 5.5.

When Level 3 isn’t able to find a risk allocation, that’s because it has collected from

Level 2 a set of disjunctive SRNC conflict resolution constraints, and determined that
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their polytopes completely block out the chance constraint feasible region. Therefore,

that collection of polytopes (represented algebraically) is in conflict with the reformulated

chance constraint. We thus return that as Level 3’s conflict to the top level, where it will be

packaged into a cc-pSTN conflict.

I note that it could be possible there exists a subset of the polytopes which block out

the chance constraint region. We know that that the last polytope discovered must be in

that subset, because without it, a risk allocation was still found. But for example, if ten DC

conflicts were found total, maybe the last polytope and only three of the first nine block

out the region. Thus, these four polytopes would yield a smaller conflict, and thus be more

informative to return. As I mentioned at the end of Section 4.2, though, performing this

kind of analysis to make the conflict set minimal is out-of-scope for this thesis.

The last observation here is that although I motivated and claimed Level 3 is needed

to perform combinatorial search over the polytopes’ facets, the notion of search does not

appear in the problem statement. This is because from an external point of view, i.e., the top

level’s, Level 3’s job is to solve the reformulated problem for dynamic policies. Internally,

Level 3 receives the polytopes to branch over as conflicts from Level 2. Thus, it constructs

its own search problem, rather than being given it by the user. Sections 5.3 and 5.5 explain

that mechanism.

With Level 3’s problem statement defined, we can move on to Level 2’s, which turns out

to be quite similar. After all, from the top level’s perspective, the only difference between

them is that Level 3 supplies dynamic policies while Level 2 supplies static ones. However,

we also require Level 2 to be available as a subroutine to Level 3. Therefore, we will have

to adapt the inputs and outputs slightly to accomodate this additional role.

First, Level 2 needs to know whether the risk allocation it is looking for needs to

yield a strongly or dynamically controllable STNU. Therefore, compared to Problem 5.2,

Problem 5.3 takes an additional input specifying whether we want a static or dynamic policy.

If it’s the top level calling Level 2, then it will be static. Otherwise, it’s Level 3 calling,

requesting a dynamic policy. This parameter is ultimately passed down to Level 1.

In the dynamic case, we also allow Level 3 to include a starting set of linear constraints

that the risk allocation has to satisfy. These linear constraints represent the facets of the
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convex polytope obstacles that Level 3 has chosen to branch on. But they also include

previously discovered unconditional linear conflict resolutions discovered in Level 2. The

reason for this will be discussed in conjunction with the outputs below.

Problem 5.3 (Level 2 solving for a risk allocation). Given a pSTN, a reformulated chance

constraint rcc, and any a priori linear constraints, find an assignment to the risk allocation

variables that satisfies the rcc and yields a controllable STNU, either of the static or

dynamic flavor, as specified by the caller. If we cannot generate a risk allocation, return

a risk allocation conflict. In the dynamic case, if we can generate one, but encounter an

SRNC, return that cycle’s resolution instead of a policy.

Inputs:

• A pSTN 𝒩 𝑝

• A set of risk allocation variables {𝑙1, 𝑢1, . . . , 𝑙𝐾 , 𝑢𝐾}

• A reformulated chance constraint rcc defined over those variables

• Whether we want a static or a dynamic policy

• In the dynamic case, an (optional) set of linear constraints over the variables

Outputs:

• A status that can be one of found, infeasible, or srnc

• If found or srnc, an assignment to the risk allocation variables

• If found or srnc, the implied STNU 𝒩 𝑢

• If found, a feasible policy 𝒫 for 𝒩 𝑢

• If infeasible, a set of linear constraints that falsify rcc

• If srnc, a semi-reducible negative cycle from 𝒩 𝑢, and its disjunctive linear conflict

resolution constraint

• In all cases, the entire set of learned linear conflict resolutions
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Compared to Level 3, Level 2’s has three possible output categories, rather than the

usual true-false or feasible-infeasible distinction. This third category pertains to the dynamic

policy case, when it receives a semi-reducible negative cycle conflict from Level 1. We

saw in Subsection 4.3.2 that DC conflict resolutions are disjunctive linear constraints, in

contrast to the unconditionally linear resolutions for SC conflicts. Since Level 2 cannot

process these disjunctive constraints, we have to send them back up to Level 3 for branching.

For completeness, we also return the generated risk allocation and the resulting implied

STNU that contains the offending DC conflict.

Besides this third case, though, Level 2’s outputs are mostly identical as Level 3’s in

the affirmative and negative cases. When we find a satisfying risk allocation, we return

that along with the implied STNU and a policy. Likewise, when we can’t find such a risk

allocation, we return a set of constraints which are known to block out the reformulated

chance constraint region, thus forming a Level 2 risk allocation conflict. Those constraints

represent learned resolutions to all the negative cycle conflicts that have been received from

Level 1.

Internally, this infeasible set comes from Level 2’s NLP solver not being able to find an

assignment to the risk allocation variables. As with Level 3, we don’t require this set to be

minimal, because most NLP solvers do not provide irreducible infeasible subsets. In the

future, it is certainly worth considering how to build that capability around such solvers.

But generally, we will consider this infeasible set to be a subset of all the learned resolutions

that were sent to the NLP solver.

The final difference with Level 3 is that since Level 2 does not process disjunctive

constraints, it wouldn’t make sense for its risk allocation conflicts to include such constraints.

In other words, since Level 2 is expected to handle only linear conflict resolutions through

its NLP solver, any conflict it generates must consist only of linear constraints. For static

policies, this is always the case, since SC conflict resolutions are linear constraints. For

dynamic policies, though, recall that some DC conflicts don’t contain lowercase edges, and

those also have unconditionally linear resolutions. Thus, Level 2 can actually resolve those

conflicts itself, until it encounters one with a lowercase edge.

What this means is that when solving for dynamic policies and Level 2 returns with an
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infeasible or srnc status, it needs to be prepared to be called again when Level 3 chooses

a new combination of polytope facets to branch on. For this new call, Level 2 shouldn’t

forget about the unconditional conflict resolutions that it had learned in previous calls.

Otherwise, it might generate an STNU that contains the same negative cycles, and be forced

to rediscover them.

When designing these levels, though, we treat their invocations as stateless subroutines.

Therefore, if Level 2 needs to keep a “running memory” of linear conflict resolutions across

calls, it should return what it has learned to Level 3, and ask Level 3 to include them again

in subsequent calls. This is the purpose of the last output of Level 2: a record of all the

learned linear constraints, so that Level 3 can shuttle them back as part of Level 2’s last

input in the dynamic case. Level 2 also returns this record when it is successful, so that

Level 3 has a complete “log” of all the SRNC conflicts that were discovered to reach the

final solution.

Lastly, note that when Level 2 returns infeasible, the infeasible set is not the same as

the learned resolutions. The former is a subset of all the linear constraints sent to the

NLP solver, which includes linear facets selected by Level 3, all the unconditional linear

resolutions learned in previous calls to Level 2, and those that have been learned during the

current call. Any constraint in the last category may or may not be part of the infeasible set

returned by the NLP solver.

Having completed Level 2’s problem specification, we now turn to Level 1 for checking

STNU controllability. This is the most straightforward level to specify, because by the time

we call it, we have reduced the pSTN into an STNU, and scheduling STNUs is a solved

problem. All we need in addition to the STNU is to specify whether we want a static or a

dynamic policy. In turn, Level 1 will either provide such a policy, or return a negative cycle

conflict.

In the case of a dynamic policy, the conflict is conditioned on valid extension subpaths

for any lowercase edges in the negative cycle. Technically, these would be part of the SRNC

“object” that is returned. For clarity, I list them explicitly in Problem 5.4.

Problem 5.4 (Level 1 checking STNU controllability). Given a grounded STNU, find a

static or dynamic scheduling policy for it according to the caller’s specification. If the
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STNU is uncontrollable, return a negative cycle conflict.

Inputs:

• An STNU 𝒩 𝑢

• Whether we want a static or a dynamic policy

Outputs:

• Whether the STNU is controllable

• If yes, a scheduling policy 𝒫

• If no, a negative cycle in 𝒩 𝑢’s distance graph

• If no and we are want a dynamic policy, a set of valid extension subpaths for the

negative cycle’s lowercase edges

The remaining tasks of this chapter are to provide algorithms that implement each of

these problem statements. While Section 5.3 onwards will focus on the conflict-directed

structure within the numbered levels, the top level has a different role of reformulating the

original problem into risk allocation. This is computationally distinct from the other levels,

yet common to both our strategies for finding static and dynamic policies. Thus, we close

this section with the implementation for the top level problem, given by Algorithm 5.1.

The top-level implementation can be understood in three sections: First, we set up

the reformulation in lines 1–2 by creating the reformulated chance constraint, along with

the risk allocation variables that it is expressed in. Then we call either Level 3 (line 4) or

Level 2 (line 6) as our entry point, depending on whether we want a dynamic or static policy,

respectively. Finally, we return the policy solution if successful (line 8), or we translate the

infeasible outputs of Level 3 or 2 into a cc-pSTN conflict (lines 10–11).

As discussed earlier, the infeasible outputs from Levels 3 and 2 are a set of disjunctive

linear or unconditional linear constraints, representing resolutions to discovered negative

cycle conflicts coming from Level 1. Therefore, they can be mapped back into those negative

cycles in the various implied STNUs encountered along the way. Since those STNUs are

formed by applying risk allocations to the original pSTN𝒩 𝑝, we can translate each edge in
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Algorithm 5.1: Top-level problem reformulation and retrieval of solution from
lower levels

Input: A pSTN 𝒩 𝑝

Input: A chance constraint with risk bound ∆
Input: Whether we want a static or a dynamic policy

1 ra-vars←− Initialize risk allocation variables 𝑙1, 𝑢1, . . . , 𝑙𝐾 , 𝑢𝐾

2 rcc←− Reformulate chance constraint in terms of risk allocation

3 if dynamic policy requested then
4 found, rv-assign, 𝒩 𝑢, policy, feasible-LP, infeasible-constraints

←− CallLevel3(𝒩 𝑝, ra-vars, rcc)
5 else
6 found, rv-assign, 𝒩 𝑢, policy, infeasible-constraints

←− CallLevel2(𝒩 𝑝, ra-vars, rcc, static)

7 if found then
8 return true, policy, rv-assign
9 else

10 cc-pSTN-conflict←− Trace which components of the input cc-pSTN
participate in infeasible-constraints

11 return false, cc-pSTN-conflict, infeasible-constraints

those STNU cycles back into a component in 𝒩 𝑝. The cc-pSTN conflict is thus all those

components collected, along with the original chance constraint, whose reformulated form

was shown to be incompatible with all discovered conflict resolutions. This is what line 10

achieves.

Intuitively, this conflict tells the user that if they supply the same chance constraint

risk bound, and try to enforce it against another pSTN with those same components, that

cc-pSTN is guaranteed to be infeasible. The reason is that we just computed a series of risk

allocations, which would be just as applicable to those shared components. From those risk

allocations, we derived a set of necessary cycle resolution constraints, which we found to

be ultimately incompatible with the risk bound. Because those cycles are covered by the

shared pSTN components, they would be present in the STNUs implied by that series of

risk allocations, and hence discoverable. Thus, we could “replay” the entire computation

on the new pSTN, and reach the same conclusion.
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5.3 Template for solving each layer

As presented at the beginning of Section 5.2, the motivation for separating out three layers

of interacting problems was to illuminate the common master-and-subproblem relationship

between Levels 3 and 2, and Levels 2 and 1. Therefore, when implementing each of those

levels, it makes sense to follow common principles for observing that relationship. This

section is thus dedicated to specifying those principles through a template algorithm. The

numbered levels can then each be instantiated as versions of this template tailored to their

particular problem specification.

Note that Level 1 can be considered an edge case, since it doesn’t have a subproblem to

call; it only reports to its Level 2 master. However, Levels 2 and 3 both have subproblems,

and they report solutions or conflicts to the level above. Technically, Level 3 doesn’t act

as a subproblem to another master problem; the top level can be considered a shell that

packages up the main functionality in Level 3 and below. However, our levels don’t know

where they’re being called from, so Level 3 can be thought of as being a “subproblem” in

the sense of returning conflicts to the end user, after undergoing a cosmetic repackaging.

Recall that in Section 4.2, we applied the principles of conflict-directed search specif-

ically to our reformulated problem. This culminated in the algorithm flow illustrated in

Figure 4-9, and written in Algorithm 4.1. Here, we take a step back and generalize slightly,

so that we can then apply it to all three levels.

Figure 5-5 illustrates the nominal path of a solution through the algorithm for a level,

without encountering any infeasibilities or conflicts. That is, imagine if we had a “certificate”

for a correct solution handed down from an oracle. If we use that to guide our way through

the algorithm, every check against the constraints will be satisfied, and we require no

backtracking or looping.

The purpose of showing this nominal path is to remind ourselves that our conflict-

directed approach separates out a subproblem from the entire problem that this level solves.

The idea is to use a specialized solver for the subproblem that can return conflicts when

infeasible. Abstractly, we can think of the entire problem as a collection of variables and

constraints. Recall from the discussion surrounding Figure 4-6 that a subproblem is uniquely
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Figure 5-5: Given a problem, we first find a solution to a portion of its constraints, using
an external solver. Combining this partial solution with the remaining constraints forms
a subproblem, which is sent to the level below. If all goes well, the subproblem module
returns a solution, which combines with our solver’s partial solution to form a full solution
to the problem at this level.
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defined by assigning a subset of those variables, such that a subset of the constraints are

satisfied. The subproblem then becomes specified by the remaining unassigned variables

and the remaining constraints, projected as needed.

In Figure 5-5, we distinguish the tasks of assigning variables as yellow diamonds repre-

senting calls to encapsulated functionality. Pre-subproblem, we’ve isolated the “constraint

solving logic” of this level in a solver module. Then we have the subproblem itself, for

which we call an appropriate implementation. Around the yellow diamonds we have blue

rectangles representing the “plumbing” required to frame the inputs to these external calls,

as well as repackaging their outputs.

Since a full solution satisfies all the constraints, our algorithm could in principle generate

it all in one pass without encountering any conflicts. That is, when running this level’s

solver logic on the non-subproblem constraints, there exists a valid solution to the non-

subproblem variables that matches those given in the full solution. If the solver generates

that partial solution, then for the subproblem, the remaining assignments in the full solution

is a valid solution, and thus could be feasibly returned by the subproblem. Together, the

solver’s solution plus the subproblem’s solution would form the full solution, and this level

can thus return. So, the oracle’s certificate would simply walk us through this problem

decomposition, verifying along the way that all the original constraints are satisfied.

In real life, oracles don’t exist, so we have to consider alternative possibilities and

reasoning paths. Figure 5-6 amends the picture to include these. Namely, we ask what

happens if the yellow diamonds are unable to find solutions for their respective constraints.

As we discussed in Section 4.2, the first place this could happen is when the subproblem is

infeasible. Here is where we exercise the central idea of extracting a conflict and turning

its resolution expression into a learned constraint for the master problem at this level.

Nominally, the solver can process this constraint, so we append it to the list of constraints

the solver has to satisfy. Thus, this manifests the main loop of our conflict-directed approach.

The second place something could go wrong is with the current level’s solver. Whatever

reasoning it’s performing, if it can’t generate a partial solution, then the subsequent path

to framing a subproblem and returning a solution is unreachable. We know this because

in our framework, conflict resolutions are only ever accumulated, and constraints to the
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Figure 5-6: If the subproblem was unable to find a solution, then it returns a conflict that we
then resolve via a learned constraint for the solver on the next round. In turn, this level itself
may have conflicts to return to its caller. First, the solver may eventually face an infeasible
set of constraints, and we return the solver’s conflict (if available). Second, it may be the
case that the form of a conflict resolution cannot be handled by the solver, during which we
also kick the subproblem’s conflict up to the caller.
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solver are never discarded between rounds. Therefore, if the solver is given an infeasible

set of constraints, adding to it will never make the solver return a solution in the future. At

this point, we accept whatever conflict the solver returns, i.e., a subset of the constraints it

last received, and return that the current level’s own conflict. If the solver does not have a

conflict-returning capability, we can always just return all of its constraints, or try to build

our own analysis to extract a smaller infeasible set.

Finally, we revisit the spot where we processed the conflict from the subproblem level.

We had assumed that our solver could handle the conflict resolution constraint, but as

we’ve seen with STNU DC conflicts, their disjunctive resolutions cannot be handled by the

NLP solver in Level 2. Thus, we require a check of the constraint form at this point, also

represented by a yellow diamond. When we are faced with a learned constraint that the

current level is not designed to handle, we can let a higher level handle it. In short, when

the level below returns a conflict whose resolution we can’t process, we pass that resolution

up to the level above as a kind of conflict from the current level.

Algorithm 5.2 codifies the design of Figure 5-6 in pseudocode. Within the loop, the

three decision points of the yellow diamonds are specified in lines 4–5, lines 8–9, and lines

12–13. In sequence, these run the solver at the master level, call the subsolver, and check

compatibility of the conflict resolution. Each of these points has an exit route: We return a

conflict when the master solver fails, we return a solution when the subproblem succeeds,

and we pass up a conflict resolution that the master solver won’t accept.

Structurally, this algorithm is very similar to Algorithm 4.1, which is specific to our

overall risk allocation problem, but lacks details on handling SRNC conflicts. Here, we

abstract away the problem specification into a collection of constraints, which we partition

into 𝒞1 for the master solver and 𝒞2 for the subproblem. We also abstract away the learned

conflict resolutions into a set 𝒟. For brevity, we leave out the variables, which can be

inferred from the constraints.

Since the subproblem won’t handle them, we feed both 𝒞1 and 𝒟 into our master solver.

The partial solution we get out of it may include variables that appear in 𝒞2. Thus, we

project 𝒞2 onto the subspace where the partial solution freezes certain variable assignments

This yields 𝒞2, which specifies the subproblem.
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Algorithm 5.2: Template algorithm to be instantiated for solving each level
Input: A set of constraints 𝒞
Output: Whether a solution was found
Output: If yes, an actual solution
Output: If no, a conflicting subset of 𝒞

// Initialize constraint sets
1 𝒞1, 𝒞2←− Partition constraints according to solver’s capabilities
2 𝒟 ←− Initialize empty set of learned constraints

3 while true do
// Query a solver on the constraints it can handle; return
if infeasible

4 feasible, solver-sol, infeasible-subset←− RunSolver(𝒞1 ∪ 𝒟)
5 if not feasible then
6 return false, infeasible-subset

// Formulate and solve a subproblem; return if feasible

7 𝒞2←− Project 𝒞2 onto solver-sol
8 feasible, subproblem-sol, subproblem-conflict←− CallSubproblem(𝒞2)
9 if feasible then

10 full-solution←−Merge solver-sol and subproblem-sol
11 return true, full-solution

// Translate subproblem conflict into a learned constraint;
return if solver can’t handle

12 conflict-resolution←− Lift subproblem-conflict into current level
13 if solver can handle conflict-resolution then
14 Collect conflict-resolution into 𝒟
15 else
16 return unhandled, subproblem-conflict
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The other difference between this algorithm and Algorithm 4.1 is that the latter didn’t

include a check for whether the solver could handle the conflict resolutio constraint. That

was because it assumed it was solving the entire risk allocation problem, and thus had no

master problem to report to. Here, this mechanism is necessary for Level 2 to send the

disjunctive constraints that resolve SRNCs up to Level 3. In effect, we are breaking up the

direct connection in Algorithm 4.1 from line 16 to line 7 into the if-else block in lines 13–16

of Algorithm 5.2. Whatever implied logic there was for Algorithm 4.1’s solver to handle

disjunctive constraints in line 7 is now delegated to Level 3.

5.4 Subsolver hierarchy for static policies

In this section, we compose algorithmic solutions for Level 2 and Level 1 to produce chance-

constrained static scheduling policies. The end result is equivalent to Algorithm 4.1 with

strong controllability on line 11. However, we rewrite it as two interacting layers, both of

which are implemented as instantiations of the template Algorithm 5.2.

I begin with a series of diagrams that illustrate this interaction between Levels 2 and

1, as well as between the top level and Level 2. This gives us a birds-eye view of how the

applicable problem statements in Section 5.2 are intended to compose into an architecture.

Having given that oveview, I will then provide pseudocode for the two levels in a bottom-up

manner: first Level 1 since it is the base case, and then Level 2.

Like we did with the template, let’s start with the nominal path for generating a solution,

but at the level of the entire architecture, rather than within a particular layer. Figure 5-7

shows this path, highlighted into three segments of different color. On the left side are blue

rectangles representing the hierarchy of levels that get called. For Levels 2 and 1, I have

separated out their solver modules to the right, previously represented in Figure 5-6 as the

“Run Solver” diamond. This makes clear what “master” problem is being solved at each

level, and what subproblem is passed to the level below.

First, in orange, a cc-pSTN in passed into the top level, then translated into the risk

allocation problem via a reformulated chance constraint, which is passed into Level 2’s NLP

solver. In the next phase, in purple, the solver returns a risk allocation (i.e., an assignment
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Figure 5-7: This is the nominal path for finding a static policy. From the top level, the
reformulated chance constraint gets passed down to Level 2 into the NLP solver (orange
path). Once that generates a risk allocation, the implied STNU gets passed down to
Level 1 into the controllability checker (purple path). Finally, when the checker verifies
controllability, a policy gets passed back up all the way to the top level.
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to the risk allocation variables), from which the implied STNU is built and sent to Level 2’s

STNU strong controllability checker. Finally, in green, the checker finds us a static policy

for the STNU, which gets tossed back up through the levels to the user.

With that nominal path laid out, we can start asking where negative results might be

returned, and how the architecture should handle that. Figure 5-7 makes it easy to see that

the source of all consequential decisions come from the yellow solver boxes to the right,

which can either return a solution (feasible) or a conflict (infeasible). The blue boxes on the

left just have to respond to those results by remapping them and shuttling them appropriately.

Since the final policy solution comes from the lowest level, I will consider failures going

backwards along the solution path, first when the STNU controllability checker returns

infeasible, and then when the NLP solver fails.

Figure 5-8 shows the controllability checker returning a conflict when the STNU is

not strongly controllable. As shown in Subsection 4.3.1, these are negative cycles in the

STNU’s distance graph. If we look back to Figure 5-6, the checker is Level 1’s solver, so

it’s clear that Level 1 cannot handle this conflict. Therefore, it gets sent to Level 2, which

derives a resolution to that conflict as a constraint in the risk allocation space.

Due to the unconditional nature of the negative cycle, the resolution is a linear constraint,

and Level 2’s NLP solver is able to handle this. Therefore, we add it to the nonlinear program,

and resume the solution path starting from the Level 2 querying its solver. This establishes

a potential “cycle of computation”, bouncing between Level 2’s and Level 1’s respective

solvers, with the levels themselves providing the communication in between. If at any point,

Level 1’s checker finds a policy, then we break out of the cycle and head to the top.

The other place in the architecture where a solver could fail is Level 2’s NLP solver.

It won’t fail the first time it’s called, because the only constraint given is the reformulated

chance constraint. Unless the risk bound ∆ is 0, it will always be possible to establish risk

allocation cutoffs on the probabilistic durations to meet ∆. However, as conflicts come in

from Level 1, and conflict resolution constraints get added, the remaining feasible space in

the chance constraint region gets increasingly restricted. If at some point, the last constraint

that was added blocks out a half volume that includes the entire remaining feasible space,

then the solver returns in feasible.
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Figure 5-8: When the controllability checker fails, it returns a negative cycle conflict.
This becomes the conflict for Level 1, which returns it to Level 2. Level 2 then has the
responsibility of translating it into an expression in risk allocation space, and negating it so
that it becomes a conflict resolution constraint. This is passed to the NLP solver to start the
next round of risk allocation.
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Figure 5-9: When the NLP solver fails, that means the learned conflict resolutions altogether
are incompatible with the reformulated chance constraint. Thus, Level 2 returns the set
of negative cycle conflicts collected from Level 1 as its own conflict to the top level. The
top level then traces these cycles’ edges back to the components of the original pSTN, and
together with the original chance constraint, that forms the entire algorithm’s “conflict” for
the cc-pSTN.

According to the template in Figure 5-6, this is a Level 2 conflict. Thus, Figure 5-9

shows it getting returned to the top level, which then translates it into a cc-pSTN conflict.

For simplicity, we show only the simplest possible conflict extraction strategy for Level 2,

which is to treat the entire NLP as the conflict. It may be possible to trim down the conflict

to an irreducible infeasible set, but that is out of scope here.

By the argument above for when Level 2’s solver would return infeasible, we know that

the chance constraint is always involved in the conflict, and whoever called Level 2 already

knows about the chance constraint, since they were the one who passed it in. Therefore, the

only real new information is the collection of all the learned conflict resolution constraints.

In turn, these come directly from the negative cycles that were discovered by Level 1. So

even though officially and in the pseudocode below, Level 2 is returning a set of linear

constraints that are infeasible with the chance constraint as a conflict, we can intuitively
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think of it as returning the set of discovered negative cycles that were collected from Level 1

(or a subset thereof). In practice, if Level 2 returns the negative cycles, rather than their

linear resolution constraints, then that saves the top level one step of “backward lookup”

when mapping the Level 2 conflict into the cc-pSTN’s components.

One final note: It is technically possible for the chance constraint to not be involved

in a Level 2 conflict, if Level 1 returns a negative cycle that includes no edges from an

uncontrollable duration. That just means there is an STN-style negative cycle, where all

edges are constant, and will thus remain unchanged for any risk allocation.4 In this case,

that conflict is directly present in the original pSTN as well, and does not involve the chance

constraint.

The resolution constraint for such a conflict would thus be a false statement, namely,

that a sum we know to be negative is non-negative. Therefore, Level 2 can return this

directly to the top level as its conflict without having to send it through the NLP solver.

For conciseness, I did not display this edge case in the previous figures, nor will I in the

following pseudocode, but it is simple enough to check for it. In any case, if we feed the

false statement in to the NLP solver as in Figure 5-8, then the solver would return infeasible,

so the final output would still be correct.

Figure 5-9 thus completes the architecture for generating static chance-constraint poli-

cies. For the remainder of this section, I provide the pseudocode implementations for

Level 1 and Level 2, referencing the template in Algorithm 5.2.

Level 1 is rather straightforward. After checking controllability of the input STNU, there

is no further Level 0 subproblem, and thus no conflicts from below to process. Therefore,

as Algorithm 5.3 shows, there is no need to loop either. Level 1 thus functionally becomes

a wrapper around an actual STNU controllability-checking algorithm.

Although this section focuses on strong controllability, Level 1’s implementation can

4Even though the conflict is present, that does not guarantee the controllability checker will return that
specific one. If there are other negative cycles in the distance graph, then due to the nature of the underlying
SSSP Bellman-Ford algorithm, any one of those negative cycles could be returned, and only one would be.
However, even though there’s no guarantee that the constant-weight cycle would be discovered in the first
round, it will eventually be discovered, provided that the accumulated conflict resolutions did not make Level
2’s NLP risk allocation problem infeasible. This is because there are only a finite number of such cycles that
can be discovered, so at some point, we must be forced have resolved all other cycles, and have no choice but
to discover this one.
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Algorithm 5.3: Instantiation of template for Level 1: checking controllability
Input: An STNU 𝒩 𝑢

Input: Whether we want a static or dynamic policy

// Query an STNU controllability-checking algorithm; return if
uncontrollable

1 controllable, policy←− CheckControllability(𝒩 𝑢, policy-type)
2 if not controllable then
3 return false, neg-cycle

// There is no Level 0 subproblem to call; return true
4 return true, policy

be easily adapted for dynamic controllability by simply taking in a parameter indicating the

desired type of scheduling policy. Its solver module can then use this parameter to switch

between algorithms that check for strong or dynamic controllability. In both cases, the

solver’s conflicts are negative cycles in the STNU distance graph. And although earlier, for

clarity, we had specified in Level 1’s Problem 5.4 that DC conflicts are accompanied by an

additional output containing extension paths, it makes the pseudocode cleaner to consider

the extension information as part of the SRNC negative cycle. Hence, line 3 is identical for

the static and dynamic cases.

Level 2’s implementation for producing static policies is given by Algorithm 5.4, which

mirrors the template algorithm’s structure closely. Namely, the body of the while loop

consists of three major steps, corresponding to the three diamonds in Figure 5-6. First, we

use an NLP solver to solve the master problem. Then, we formulate the STNU subproblem,

and call on Level 1 to solve it.

The main difference is that in the third step, we don’t need to check whether the conflict

resolution is compatible with the NLP solver We already know that the resolutions are linear

constraints, so we add it directly to the set of learned constraints. This set is initialized

before the while loop, and corresponds to the set 𝒟 in the template.

Note that during initialization, partitioning of the input constraints is not required. This

is because the 𝒞2 constraints which would have expressed STNU strong controllability are

implied when we call Level 1. In other words, we are swapping out a generic subproblem

solver for a specialized solver STNU controllability. And the generic projection of 𝒞2 into
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Algorithm 5.4: Instantiation of template for Level 2: finding a risk allocation
Input: A pSTN 𝒩 𝑝

Input: A set of risk allocation variables ra-vars
Input: A reformulated chance constraint rcc
Input: Policy-type = static

// Initialize set of learned constraints
1 learned-constraints←− {}

2 while true do
// Query an NLP solver to generate a risk allocation; return
if infeasible

3 feasible, rv-assign, infeasible-set
←− CallNonlinearSolver(ra-vars, rcc, learned-constraints)

4 if not feasible then
5 return false, infeasible-set

// Formulate implied STNU for Level 1; return if
controllable

6 𝒩 𝑢←− Project rv-assign onto 𝒩 𝑝

7 controllable, policy, neg-cycle←− CallLevel1(𝒩 𝑢, static)
8 if controllable then
9 return true, rv-assign, 𝒩 𝑢, policy

// Translate Level 1 conflict into learned constraint
10 neg-cycle-RA←− Express neg-cycle in terms of ra-vars
11 neg-cycle-RA-res←− Negate neg-cycle-RA to form resolution constraint
12 Collect neg-cycle-RA-res into learned-constraints
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𝒞2 is represented by transforming the pSTN 𝒩 𝑝 into the implied STNU 𝒩 𝑢. Thus, we

obtain the benefit of not only the specialized solver’s efficiency, but also its conciseness of

inputs.

Together with Algorithm 5.1 for the top level, Algorithms 5.4 and 5.3 complete our

solution for generating static policies. They are functionally equivalent to running Algo-

rithm 4.1 with an NLP solver. As the next section shows, though, adapting the architecture

to supply dynamic policies requires only a minor change to Level 2’s implementation plus

an implementation for Level 3.

5.5 Subsolver hierarchy for dynamic policies

Like in the previous section, I begin by presenting how the different levels communicate

within the architecture for generating dynamic policies. A third level will be inserted

between the top level and Level 2, while the new type of SRNC conflicts from Level 1 will

increase the complexity of communication up and down the chain. In terms of pseudocode,

only a small change is needed to Level 2’s implementation, and Level 3 will handle the rest.

Figure 5-10 presents the nominal path for generating a solution. It is much the same as

Figure 5-7 in the static case, except we’ve inserted a Level 3. Recall that Level 3’s job is to

help us branch on disjunctive SRNC conflict resolutions. However, we won’t have any until

such a conflict is returned from Level 1, which subsequent figures will illustrate. Therefore,

on the first pass through Level 3, its “master problem” of finding a leaf in its search tree is

empty. This means Level 3 functions only a passthrough at this point in the solution process.

The conceptual distinction of segments along the solution path as problem reformulation,

risk allocation to STNU, and policy solution still holds.

Now we start considering possible solver failures along the way, starting from the

bottom. Figure 5-11 considers negative cycles from Level 1 being translated into learned

constraints for Level 2’s solver, just as Figure 5-8 for strong controllability did. For this red

path to hold, though, the conflict resolutions that Level 2 sends to its NLP solver must be

unconditional linear constraints. We know that certain SRNCs may have such resolutions,

namely, if they don’t contain lowercase edges that require extension paths to reduce them
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Figure 5-10: Just like in the static case, the nominal path for finding a dynamic policy goes
through two stages of external solvers before sending a policy solution all the way backc
up. However, a third level is present to handle disjunctive conflict resolution constraints as
they come up. At first, this level acts just as a pass-through.
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Figure 5-11: When the controllability checker returns negative cycle conflicts, as long
as they don’t contain any lowercase edges, they can be transformed into linear conflict
resolutions. Hence, these can be passed directly to the NLP solver in Level 2, just like in
the static case.

away. Therefore, Level 2 should check for this condition, and if true, allow the resolutions

to proceed to the solver.

It could also be the case that lowercase edges do exist in the SRNC, but their extension

paths do not contain any edges corresponding to an uncontrollable duration’s bound in the

STNU. Those paths’ weight expressions, when mapped back into the risk allocation space,

are purely constants, just like the STN-style conflicts mentioned previously on page 193.

Thus, it is impossible to resolve the SRNC conflict by choosing to make one of those

extension paths have non-negative weight. The only remaining choice of resolution is to

make the entire cycle’s weight non-negative, which Level 2’s solver is happy to consider.

Again, this is not shown explicitly in the figures or in the pseudocode, but its implementation

is encouraged.

The real question for handling dynamic controllability conflicts is when the extension
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paths do offer viable resolutions, via alternative conditions in the risk allocation space.

Figure 5-12 highlights the communication in the architecture that takes place, as well as

bringing in the specialized “solver” for Level 3. For convenience, I refer to an SRNC in

Level 1 that would generate a disjunctive resolution in Level 2 as simply the discovered

SRNC. The first key difference is that Level 2 can’t handle that resolution, so it kicks it back

up to Level 3. In terms of the figure, recall that although Level 2 technically sends up the

disjunctive resolution constraint, I show it as sending the SRNC itself, to remind us of what

the constraint represents.

Notice that in addition to sending the SRNC to Level 3, we also send all the negative

cycles with non-disjunctive resolutions that Level 2 had discovered prior to the SRNC. The

reason for this was given when discussing Level 2’s problem statement in Problem 5.3.

Namely, when Level 2 gets called again by Level 3, it shouldn’t relearn from scratch any

previous conflict resolutions that it can handle. But Level 2 is called with a fresh set of inputs

each time, so these other cycles should be “saved” and “restored” between invocations. Level

2 could have also been made to maintain its internal state, but it’s conceptually cleaner to

present its pseudocode as stateless. Whether to implement it as stateless or not in practice

is a choice we leave to the reader.

Once Level 3 receives the disjunctive constraint, its job is to frame a series of subprob-

lems for Level 2 that involve only unconditional linear constraints. Internally, it abstracts

away each disjunctive linear constraint into a discrete variable whose domain size is exactly

the number of disjuncts. Selecting a particular disjunct to be included in what’s sent down

to Level 2 thus maps to assigning a particular value to the corresponding discrete variable.

The task of assigning all such variables becomes Level 3’s “master problem”, and the

corresponding “solver” can be thought of as enumerating a next full assignment to those

variables. I say “enumerating” because we want to try all combinations of one linear

constraint from each disjunction, so Level 3’s master solver is performing combinatorial

search. Between calls to Level 2, we want to avoid enumerating the same combination,

which would result in the same conflicts being returned (assuming Level 2’s and Level 1’s

solvers run deterministically).

Once we have an assignment to all discrete variables, Level 3 maps that back into the
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Figure 5-12: If we discover an SRNC with lowercase edges, then Level 2 has to send it
up to Level 3 for branching. Level 3 maps the SRNC into a new discrete variable, with a
domain value for each “facet” of its convex polytope obstacle. Branching in Level 3 is then
performed by a variable assignment enumerator, which traverses the search tree and stops
at its leaves. Each leaf gets translated back into an LP, which is sent back down to Level 2
to “jump start” the NLP solver (light blue path). Since Level 2 does not remember its state
from its previous invocation, it’s necessary for it to report the “unconditional” negative
cycles as well, so they can be restored in the NLP on subsequent calls to Level 2. Finally,
we note that when the NLP itself returns infeasible, we have the option of handling this
“Level 2 conflict” using the same mechanism.
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selected disjuncts, which are linear constraints. Those are then combined with all the learned

linear constraints from previous calls to Level 2, and then sent back down to initialize the

nonlinear program that forms Level 2’s master problem. This is shown as the light blue

path, where the output from Level 3’s enumerator directly specifies the subsequent input to

Level 2’s solver. In effect, the unconditional linear constraints from Level 2 can be viewed

as singleton disjunctions that get returned to Level 3. At that point, it is unnecessary to

perform explicit branching on them, so they simply accumulate within Level 3, and get sent

back verbatim to Level 2 on each call.

The last point to make about Figure 5-12 is that failures from Level 2’s NLP solver are

included in the red path as well. We know from Level 2’s Problem 5.3 that the conflict

when a risk allocation can no longer be generated is a subset of the linear constraints that

were input to the NLP solver. That is, the form of the conflict is a conjunction of linear

constraints in terms of the risk allocation variables.

This is exactly the same form as the conflict expression for an SRNC lifted into the risk

allocation space! Therefore, its resolution is also a disjunctive linear constraint, which can

be handled by the same branching mechanism in Level 3. So the interpretation of the red

arrow going out of Level 2’s solver in Figure 5-12 is that when infeasible, the conflict it

returns follows the same path upstream into Level 3 for resolution. Even though the conflict

is not technically an SRNC, it follows the same form algebraically.

To complete the diagram, Figure 5-13 shows what happens when Level 3’s “solver”

returns infeasible. Recall that for static policies, when Level 2’s solver failed, the entire

solution process stopped, returning back to the top level, where a cc-pSTN conflict was

generated. Now that Level 3 is the highest numbered level, the same principles applies. The

question is what condition causes Level 3 to fail, and what is the conflict to be returned.

Since Level 3’s solver is performing combinatorial search by enumerating the remaining

assignments, it fails when it has exhausted the space of assignments to its discrete variables.

Typically in combinatorial search, there would be explicit constraints over those variables,

leading to certain combinations of their assignments being infeasible. And if all combi-

nations were infeasible, then one might be able to extract a subset of the constraints that

mutually block out the solution space.
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Figure 5-13: Our overall algorithm fails only when Level 3 has exhausted its search tree
without finding a satisfying dynamic policy. We now know, just like in the static case, that all
our discovered negative cycles cannot be resolved together with satisfying the reformulated
chance constraint. Thus, we make sure all those cycles make their way to the top level,
where they get traced back to the pSTN’s components.

202



In our case, our discrete variables are “discovered” along the way, corresponding to

each SRNC (or Level 2 infeasibility) that was sent up to Level 3. Thus, we have no explicit

constraints over them; they are all implied by the risk allocation conditions in Level 2 and

the STNU controllability conditions in Level 1. Nominally, what we can say then is that

when Level 3 has exhausted all assignments, we have tried all possible combinations of

resolutions to all known SRNCs, and none of them yielded a feasible risk allocation and

dynamically controllable STNU. Therefore, this collection of SRNCs should be comprise

Level 3’s conflict report to the top level.

In addition to the SRNCs with disjunctive resolutions, we also have resolution constraints

for negative cycles that have only one possible linear constraint resolution in the risk

allocation space. As mentioned before, these can be considered as nodes in Level 3’s search

tree with singleton branching factors. Therefore, they are also collected into Level 3’s

conflict.

Recall that Level 3 is ultimately responsible for solving the reformulated risk allocation

problem, according to Problem 5.2. Therefore, it is no surprise that Level 3’s conflicts

mirror Level 2’s, but with the addition of SRNC conflicts, which form convex polytope

obstacles rather than half-volumes in the risk allocation space. This was the intuition

expressed in Section 5.1 on page 169. It also hearkens back to Algorithm 4.1, where on

line 7 the abstract solver returns an infeasible subset of resolutions to all known conflicts.

In our case, we have split that solver into Level 3’s enumerator and Level 2’s NLP solver.

To summarize how this layered architecture works, each level decomposes the problem

given to it into its own master problem and a subproblem for the level below. This results in

a computational path where the full solution gets partially built at each level’s solver. When

a solver fails, though, its conflict gets translated into a resolution constraint for the level

above. In turn, that level decides whether its solver can handle the resolution, or whether it

needs to be kicked up yet another level. The entire computational path is thus an iterative

parley between Levels 2 and 1, recursively nested within iterations that reach into Level 3.

Each time Level 2’s solver is called, it always receives at least as many constraints as it did

last time, corresponding to the number of known conflicts so far.

Algorithm 5.5 adapts Level 2’s implementation from Algorithm 5.4 to produce dynamic
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policies instead of static ones. The key difference is at the end of the while loop, where we

append the negative cycle (SRNC) resolution to Level 2’s constraint program only if it’s an

unconditional linear constraint. Otherwise, we know it’s a disjunctive linear constraint, and

we return it to Level 3 with an srnc status.

Algorithm 5.5: Instantiation of template for Level 2 in the dynamic case: finding
a risk allocation

Input: A pSTN 𝒩 𝑝

Input: A set of risk allocation variables ra-vars
Input: A reformulated chance constraint rcc
Input: Policy-type = dynamic
Input: A set of linear constraints given-constraints

// Initialize set of learned constraints
1 learned-constraints←− {}

2 while true do
// Query an NLP solver to generate a risk allocation; return
if infeasible

3 feasible, rv-assign, infeasible-set
←− CallNonlinearSolver(ra-vars, rcc, given-constraints ∪
learned-constraints)

4 if not feasible then
5 return infeasible, infeasible-set, learned-constraints

// Formulate implied STNU for Level 1; return if
controllable

6 𝒩 𝑢←− Project rv-assign onto 𝒩 𝑝

7 controllable, policy, neg-cycle←− CallLevel1(𝒩 𝑢, dynamic)
8 if controllable then
9 return found, rv-assign, 𝒩 𝑢, policy, learned-constraints

// Translate Level 1 conflict into learned constraint;
return if disjunctive

10 neg-cycle-RA←− Express neg-cycle in terms of ra-vars
11 neg-cycle-RA-res←− Negate neg-cycle-RA to form resolution constraint
12 if neg-cycle-RA-res is unconditionally linear then
13 Collect neg-cycle-RA-res into learned-constraints
14 else
15 return srnc, rv-assign, 𝒩 𝑢, neg-cycle-RA-res, learned-constraints

There are a few additional minor differences: We pass in the dynamic keyword for the

desired type of policy, so it can be appropriately passed down to Level 1 on line 7. We also
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accept an input list of given linear constraints, selected by Level 3, and merge those with

the learned constraints when calling the NLP solver on line 3. These differences are minor

enough that Algorithm 5.5 can be considered suitable for producing static policies, and thus

a complete solution to Problem 5.3. We just have to call it with the policy type static, plus

an empty list for the given constraints. The if-else block on lines 12–15 is guaranteed to

fall into the if case, and thus the algorithm works identically to Algorithm 5.4.

The final piece to specify is the algorithm for Level 3’s Problem 5.2, and this is given

by Algorithm 5.6. Like with Level 2, this algorithm follows the structure of the template

Algorithm 5.2. We begin by initializing the sets of learned conflict resolutions, followed

by a while loop whose body consists of three decision blocks in sequence. For the learned

constraints, we distinguish between the disjunctive resolutions that Level 2 can’t handle,

and the unconditional linear constraints that Level 2 discovered before encountering a

disjunctive one. We then maintain a mapping from the disjunctive constraints to a set of

search variables, which Level 3’s enumerator acts on.

The enumerator needs the current (i.e., previous) assignment to the search variables

to know what options have been eliminated and hence what is the next full assignment.

Internally, one typically establishes an ordering to the domain values of each variable,

so traversing the nodes of the search tree occurs in a well-defined order. We get a next

assignment from the enumerator, and that becomes our new current assignment. If no such

assignment could be found, due to the search space being exhausted, then as discussed

previously, we return on line 8 all the learned STNU negative cycle resolutions, which is

the union of the disjunctive and unconditional constraints.

The second block “projects” the discrete search variable assignment into a set of selected

disjuncts, one from each constraint in disjunctions. These are combined with all the known

unconditional constraints, and sent down to Level 2 as the subproblem. No matter the

result of Level 2, the first thing we do when it returns is to collect any new unconditional

linear constraints it learned. Then, if Level 2 was successfull, we have a policy solution

to return. Also, according to Problem 5.2, we include the full list of selected disjuncts

plus unconditional constraints as proof of a feasible risk allocation program (with the

reformulated chance constraint implied) solved by Level 2’s NLP solver.

205



Algorithm 5.6: Instantiation of template for Level 3: branching on linear inequal-
ity disjuncts

Input: A pSTN 𝒩 𝑝

Input: A set of risk allocation variables ra-vars
Input: A reformulated chance constraint rcc

// Initialize different sets of learned constraints
1 disjunctions←− {}
2 unconditionals←− {}
3 search-vars←− {}
4 sv-assign←− {}

5 while true do
// Query an enumerator for next search variable assignment;
return when exhausted

6 exists, sv-assign-next
←− CallVariableEnumerator(search-vars, sv-assign)

7 if not exists then
8 return false, disjunctions ∪ unconditionals
9 sv-assign←− sv-assign-next

// Formulate risk allocation subproblem for Level 2 based on
selected constraints; collect learned constraints, and
return if feasible

10 selected←−Map sv-assign into selected linear constraints
11 status, rv-assign, 𝒩 𝑝, policy, infeasible-set, disjunctive-constraint,

linear-constraints
←− CallLevel2(𝒩 𝑝, ra-vars, rcc, selected ∪ unconditionals)

12 Collect linear-constraints into unconditionals
13 if status = found then
14 return true, rv-assign, 𝒩 𝑢, policy, selected ∪ unconditionals

// Translate Level 2 disjunctive conflict resolution into
discrete search variable

15 if status = infeasible then
// Handling risk allocation conflicts is descoped

16 else if status = srnc then
17 Collect disjunctive-constraint into disjunctions
18 new-svar←Map disjunctive-constraint into a new discrete search variable
19 Collect new-svar into search-vars
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Finally, we reach the last decision block, which determines how to handle conflicts

returned from Level 2. Since this is the highest numbered level, we must process any

conflict that Level 2 returns, instead of kicking it up to the top level. However, Level 2’s

problem statement allows for two types of failures, either infeasible where the NLP solver

can’t find a risk allocation, or srnc where it can’t process a disjunctive SRNC resolution.

When discussing Figure 5-12, we had shown that both these types of conflicts share the

same algebraic structure in the risk allocation space. Therefore, in principle, we should be

able to handle them identically. We already know how to handle the SRNC conflicts, which

form convex polytope obstacles. The intuition given in Section 5.1, and the whole point of

Level 3, was to perform branching on those obstacles’ facets.

A key observation, though, is that the number of such obstacles increases each time

Level 2 returns with an srnc status. The number of obstacles corresponds directly with the

depth of the search tree, which lines 17–19 are exactly doing by constructing a new search

variable with the appropriate domain size. When we then return to the top of the while

loop and call the enumerator on line 6, we will be extending the current branch we’re on

in the search tree by branching on that SRNC’s disjuncts, rather than backtracking on the

disjuncts for the already known SRNCs.

This is expected behavior for dealing with SRNCs as they get discovered. However, if

we apply the same behavior to when Level 2 returns infeasible, then we will also continue

to branch rather than backtrack. Our traversal of the search tree would end up being a single

branch going all the way down, and thus miss out on the opportunity to resolve our known

SRNCs via their other branches.

To avoid this outcome, our Level 3 enumerator needs to deduce that a node in its search

tree is a dead end, and thus it should backtrack. This would require building in some sort

of inference or propagation procedure, interleaved with the enumerator’s search. For this

thesis, we consider that out of scope, and thus declare that infeasible results from Level 2

are the dead ends in the search tree. This corresponds to doing nothing when line 15 is

satisfied, thus allowing the next call to the enumerator to backtrack.

For completeness, though, we illustrate how we could collect a new convex obstacle as

lines 17–19 do while still achieve backtracking. Figure 5-14 depicts a hypothetical situation
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Figure 5-14: When Level 2 returns infeasible, it is because a subset of the selected facets
ask us to find a risk allocation in a region that has no intersection with the chance constraint
feasible region.

where we have three SRNC obstacles, 𝑈 , 𝑉 , and 𝑊 , and we’ve branched on facets 𝑢, 𝑣, and

𝑤 from each of them, respectively. If Level 2 returns infeasible, it is because staying on the

“outside” of each of these three facets forms a region that lies entirely outside of the chance

constraint. Therefore, the Level 2 conflict is the conjunction of these facets plus the chance

constraint.

We can’t change the chance constraint, but we could try alternative facets of the existing

obstacles to help us stay out of this region. Therefore, the resolution of this conflict is a

disjunctive linear constraint ¬𝑢 ∨ ¬𝑣 ∨ ¬𝑤 telling us to stay “inside” at least one of the

facets from the conflict. If the enumerator had a logical inference procedure built in, then

it would recognize that any future branch containing both 𝑢 and ¬𝑢 is a dead end, and thus

backtrack. Better yet, if it could perform unit propagation, then once it selected 𝑢 on a

future branch, it would remove ¬𝑢 from this new constraint. Thus, by the time we branched

on this constraint, and assuming ¬𝑣 and ¬𝑤 hadn’t also been eliminated, we would only
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Figure 5-15: The resolution of a Level 2 infeasible conflict also creates a convex polytope
obstacle in the risk allocation space. By definition, branching on any one of this obstacle’s
facets would contradict one of the previously selected facets on this branch in the search
tree. Therefore, the enumerator should backtrack instead of branching on this new obstacle.

have to branch on those.

Figure 5-15 depicts the new obstacle this forms in the risk allocation space. In a sense,

this new obstacle doesn’t contain any new facets, but rather is built from the negation of

existing ones. The figure makes it clear, though, that if were to continue branching on this

new obstacle, we would hit a dead end in every case. Since the current branch already

contains linear constraints 𝑢, 𝑣, and 𝑤, then branching on any one of ¬𝑢, ¬𝑣, or ¬𝑤 will

result in infeasibility.

Again, this should be detected by any logical inference or propagation procedures in the

enumerator. In this chapter, we have treated the enumerator as a black box, just like the NLP

solver in Level 2 and the STNU controllability checker in Level 1. However, since the NLP

solver in Level 2 is expensive to run, it is worth considering pruning strategies to reduce the

number of times Level 2 is called. Section 6.4 addresses how others have handled similar

situations.
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Chapter 6

Related Approaches

In this chapter, we review how others have provided scheduling solutions for scheduling

plans with temporal uncertainty. Primarily, we consider prior efforts to provide scheduling

solutions for pSTNs, and we identify their advantages and disadvantages relative to our work.

Like ours, many of those research threads also began with static policies, and then turned

to dynamic policies, recognizing the value of online flexibility. There is less consensus,

though, on how to formulate the probabilistic condition of the problem. Some threads have

initially minimized the total risk of violating temporal constraints, and then switched to

chance-constrained formulations, while others have transitioned from chance-constrained

to risk-minimizing.

We begin by briefly recounting the history of developments in STNU scheduling in

Section 6.1. Though the foundational theory of STNU controllability has been documented

throughout this thesis, particularly in Sections 2.1, 4.1, and 4.3, it is valuable to situate it

within this history. Then in Section 6.2, we review early efforts to schedule pSTNs, which

occurred in parallel with those STNU developments.

The thread of work that formally defined chance-constrained scheduling, and which led

directly to this thesis, has also been extensively documented as part of this thesis, namely,

in Chapters 3 and 4. Therefore, we do not repeat it here. Instead, in Section 6.3, we review

some heuristic methods that were published contemporaneously with that work. These

methods aim for speed and ease of computation, and produce sound policies, but so far lack

theoretical analysis of their associated incompleteness.
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Finally in Section 6.4, we relate our work to other efforts in developing conflict-directed

hybrid algorithms. The problems they solve aren’t necessarily about scheduling, but they

share similar mathematical structure as ours, and hence similar solution techniques apply.

Sections 4.2 and 5.1 already touched on some of their techniques, but here we give a more

comprehensive overview.

6.1 STNU development history

The problem of STNU controllability along with its flavors of strong, dynamic, and weak,

was introduced by Vidal and Fargier when they generalized STNs to STNUs [60]. Strong

controllability was quickly shown to reduced to STN controllability, and at that time,

dynamic controllability was hypothesized to be in PSPACE, due to its “policy versus

Nature” aspect. A couple years later, Morris and Muscettola collaborated with Vidal to

show that a pseudo-polynomial time algorithm existed [42].

Morris and Muscettola continued working to bring down the polynomial exponent to

𝑂(𝑛5) and then 𝑂(𝑛4) [41] [38]. The 𝑂(𝑛5) result was enabled by defining the distance

graph form of STNUs, where lowercase and uppercase edges were introduced. By rewriting

the original reduction rules in terms of the distance graph edges, one could prove that only

a polynomial number of edge generation rounds were needed, hence leading to the 𝑂(𝑛5)

algorithm. The 𝑂(𝑛4) result was based on the discovery that semi-reducible negative cycles

(SRNCs) were the key analogue to STNs’ negative cycles. Thus, entire extension paths

could be traced and reduced against lowercase edges, thereby bypassing multiple rounds of

edge generation.

Several years later, Morris further brought that runtime down to 𝑂(𝑛3), acknowledging

its basis in insights from Muscettola [39]. The clever idea was to discover extension paths

in reverse rather than tracing them forward. In a nutshell, extension paths are distinguished

by their last edge having negative weight of sufficient magnitude. Thus, we treat every

negative edge as a potential termination of a extension path, and since the remaining

edges are non-negative, we run Dijkstra backwards on them to find the most negative, or

“strongest” possible extension paths. The proof of correctness is more intricate, but the
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result is an extremely efficient algorithm whose asymptotic runtime approaches that of

strong controllability-checking.

Meanwhile, Hunsberger joined the effort with his keen eye for rigor and accessibility,

and identified a flaw in the original definition of dynamic controllability [30]. While fixing

it, he offered a more intuitive definition based on his own definition of execution histories.

After several years steeped in the literature, Hunsberger gave us fully rigorous proofs on

the fundamental link between DC and the existence of SRNCs [33], whereas Morris and

Muscettola had omitted many details. He also formalized the notion of actually producing

a dynamic policy, that is, what decisions it outputs during execution, and what is the overall

execution algorithm. He started with an 𝑂(𝑛4) execution algorithm [31] before bringing it

down to 𝑂(𝑛3).

Besides the effort on faster DC checking and execution algorithms, others have provided

various extensions and alternative formulations. Wah and Xin were the first to encode the

conditions of dynamic controllability into a constraint program [66]. They were motivated

by the desire to reduce the flexibility available to the policy without making the STNU

uncontrollable. This may seem nonintuitive, but their justification was that maintaining

scheduling flexibility can increase the overhead of keeping resources on standby. Thus,

the variables they were solving for were the [𝑙, 𝑢] bounds on the controllable durations and

requirement constraints. However, the concept is equally applicable when we switch to

variable bounds on the uncontrollable durations for our risk allocation.

Although the distance graph form had been recently published, Wah and Xin’s encoding

was based on the original reduction rules and the pseudo-polynomial algorithm [42]. Since

those rules were less unified, the encoding had many special cases. They also directly

encoded any conditional constraints into a nonlinear form, so that an NLP solver could

handle them. This process adds an auxiliary variable and several new constraints for each

such original constraint. Cui et al. [13] later clarified this encoding by explicitly showing the

original disjunctive form of those conditional constraints. They also presented an alternative

encoding, where they translated the disjunctive form into a mixed-integer linear program

(MILP), requiring different auxiliary variables and additional constraints. However, they

showed that using a MILP solver on this encoding was faster than prior NLP approach.
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The last set of extensions we discuss is for the problem of incremental DC-checking,

where we are given modifications to an existing STNU, and expect to receive an answer

faster than checking DC from scratch. We say more about this problem in Chapter 8, where

we contemplate how to adapt it to pSTNs for future work. For now, we note that incremental

consistency checking existed for STNs [52], and Stedl began the effort to port over the ideas

to incremental DC [54].

Namely, when an existing constraint is either tightened or relaxed, certain derived edges

may need to be further tightened, or invalidated and regenerated. Stedl addressed the

tightening case, and Shah carried forward the work to include handling constraint relax-

ations [51]. Nilsson followed up by identifying a minor flaw in Stedl and Shah’s tightening

rules [44]. This jumpstarted independent lines of work by Nilsson and Hunsberger, in which

they provided ever faster algorithms for incremental DC, both culminating in 𝑂(𝑛3) time

algorithms [32] [45].

6.2 Early pSTN efforts

In contrast to the flowering of work on STNU dynamic controllability, relatively few have

addressed the extension to pSTNs. This section and the remaining ones in this chapter

document those efforts. Notably, all of them effectively “allocate risk” by looking for [𝑙, 𝑢]

bounds, i.e., chopping off the tails of distributions. Hence, they are also searching for an

STNU policy to apply to their pSTNs, whether they express that explicitly or not. What

distinguishes them is their unique strategies for assigning such bounds.

Not long after STNUs were introduced, Tsamardinos explored extending them to have

probabilistic durations, and proposed several candidate solution methods, but most were

not fully developed. He assumed the explicit objective of minimizing risk, and termed

this the probabilistic simple temporal problem (pSTP). His first and most complete result

was to derive an analytical solution for the least risky static schedule [57]. This solution

relied on a restriction of the STNU definition at the time, which was that uncontrollable

durations must start on controllable events [60].1 As a consequence, direct sequences of

uncontrollable durations were not allowed. Tsamardinos took advantage of the fact that
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controllable events existed interspersed between probabilistic durations, so he didn’t have

to consider compositions of two or more durations’ distributions.

Tsamardinos then turned his attention to dynamic scheduling, but success was more

limited. He began by proposing a couple heuristic solutions that manually tweaked candidate

STNUs. Then he attempted a mathematical programming approach by encoding the DC

reduction rules in the form they were known back then [59]. Unfortunately, he was only able

to encode the subset of the rules that resulted in unconditional ordinary edges, and not those

that yield uppercase edges, which have a conditional interpretation. This was also before

Wah and Xin had published their full DC encoding with conditional constraints. Therefore,

Tsamardinos’s optimization was necessarily incomplete, which he acknowledged, leaving

out portions of the solution space that a full DC encoding or checker might be able to access.

The second early effort at pSTN scheduling was due to Lau et al., who termed their

problem robust controllability [35]. Like ours, their problem is chance-constrained, in that

they are trying to satisfy a risk bound 𝜖 that limits the likelihood of failure. They also aim

to produce dynamic policies.

Their solution method is radically different, however. First, they implicitly assume a

uniform risk allocation. Second, they explicitly construct their policy, where the execution

time of each controllable event is an affine function of the probabilistic duration outcomes

that must precede it. Thus, they are solving for the coefficients of this function.

To do so, they construct a mathematical program that requires the total risk of violating

constraints2 not to exceed 𝜖. This is straightforward for them because their policy form gives

them direct access to expressions for each event’s execution time. Thus, the third difference

is that they don’t write down a reformulated chance constraint. Instead, their policy form

actually allows them to compose distributions, and rather than deal with convolving them,

they operate on a pair of “deviation parameters” that can be empirically measured for any

distribution. Ultimately, the mathematical program is takes the form of a second-order cone

program (SOCP), for which they use an external solver.

1This was seen as harmless at the time, because inserting extra controllable events with [0, 0] connections
doesn’t affect dynamic controllability. However, such [0, 0] “fillers” in between uncontrollable durations pose
difficulties for strong controllability. Eventually, this restriction was silently dropped.

2Recall that no one but us has made the distinction between requirements and activities. Hence, their
definition of failure or success applies to them all, not just the requirements.
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The major limitation of this approach is the restriction of the policy form. As our

sample policy execution in Example 2.11 showed, the decisions of a dynamic policy have

no reason to be linear functions of duration outcomes. Furthermore, there is no preset

ordering in the arrival of events in the execution history, so it’s premature to declare offline

which outcomes should affect which controllable events. Therefore, this approach leaves

many dynamic policies inaccessible. Nevertheless, it’s an interesting formulation, and the

principles underlying this offline analysis could be useful when we extend our problem to

encompass multiple chance constraints, discussed in Chapter 8.

The other limitation, which the authors acknowledge, is assuming the uniform risk allo-

cation. They offer a heuristic to rebalance risk across the probabilistic durations. However,

it only adjusts the risk for one such duration at a time, and thus isn’t a comprehensive

solution like ours, where we specify a reformulated chance constraint for the NLP solver to

perform “variable” risk allocation in one pass.

6.3 Heuristic methods

While Tsamardinos proposed a couple heuristic strategies for risk allocation to obtain

pSTN dynamic policies, those weren’t further studied at the time, likely due to their lack of

theoretical guarantees. More recently, Boerkoel and his students have contributed their own

such heuristics, and provided empirical evaluation of their performance. Instead of directly

limiting the probability of scheduling failure, these approaches use the proxy of sequentially

adjusting bounds on the probabilistic durations, according to custom heuristics. Therefore,

they would be unable to find solutions even when they exist, but their relative simplicity

likely gives them faster runtimes.

Lund et al. proposed a method to find pSTN static policies, called SREA, that sidesteps

the complexity of nonlinear optimization [37]. SREA performs a binary search on a

parameter 𝛼 that specifies the maximum allowable risk per probabilistic duration. (This

binary search is reminiscent of one of Tsamardinos’s heuristic solutions.) For each setting

of 𝛼, they remove 𝛼
2

probability mass from the tails of each distribution, resulting in initial

STNU-style [𝑙, 𝑢] bounds. Then they encode strong controllability (SC) into an LP (in the
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manner of Fang [20]), and push those [𝑙, 𝑢] bounds as far out as possible without violating

SC. The binary search thus wraps around this process, searching for the minimal 𝛼 whose

corresponding LP is still feasible.

SREA replaces the complexity of solving for a nonlinear chance constraint across the

entire plan with this binary search. Within each iteration, risk allocation is achieved by

starting with a uniform allocation, and then using an LP to dole out additional risk. The

main weakness is that this LP does not consider the probability mass when doing so. Instead

the heuristic only measures how much temporal uncertainty is captured. Therefore, this

strategy limits the space of risk allocations it can access.

In the same work, Lund et al. followed up SREA with DREA, which was their first

attempt at dynamic scheduling for pSTNs. DREA performed dynamic dispatch of a pSTN

by running STN dispatch algorithms [43] [58] on the STNU implied by the risk allocation

bounds. Then, whenever an uncontrollable event arrived and got observed, DREA would

simply rerun SREA to obtain new windows. The reasoning for this approach was that no

matter whether it arrived within or outside the assumed window, it’s known value reduced its

uncertainty to zero, and thus could inform whether the intervals on the remaining activities

should be widened or tightened.

Unfortunately, this purely reactive strategy falls short of a full-fledged dynamic policy,

which prepares for such reactivity in advance. It would be analogous to dynamically

dispatching an STNU by treating it like an STN, and repeatedly recomputing the schedule

on uncontrollable event arrivals. This is even weaker than the pseudo-controllability concept

that Morris et al. used as an intermediate step in their first algorithm for checking STNU

DC [42]. Therefore, many dynamic policies likely remain inaccessible to DREA.

DREA also suffers from repeated evaluation of LPs online, which can be expensive

with respect to the real-time decision-making required of dynamic execution. Abrahams

et al. mitigated this by introducing two thresholds for triggering rescheduling [1]. First,

they keep a “counter” of how much risk is accumulated by each passing outcome of a

probabilistic duration, and they rerun SREA only when that counter exceeds a threshold.

The precise semantics of “accumulated risk” is debatable, but the effect is to recalculate the

risk allocation only every once in a while. When they do, SREA’s binary search may arrive
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on a different 𝛼 per duration, and the second threshold is to let the new risk allocation take

effect only if 𝛼 changed significantly. Together, these two conditions reduce the amount of

proactive rescheduling by DREA. This improves its online runtime performance, but also

increases the likelihood of failure, due to the decreased reactivity.

The latest contribution comes from Gao and Popowski, who rely on using STNU

dynamic policies like we do, instead of providing their own in the style of DREA. They

provide two options for finding their risk allocations [22]. Their first initializes a uniform

risk allocation, just like SREA, and tries to discover an SRNC in the resulting STNU. Then

it tightens any [𝑙, 𝑢] bounds in that SRNC in order to resolve it. The tightening method they

use is guaranteed to minimize the total volume lost in the duration space, but not probability

mass [2]. It is implied that they repeat this process of finding and tightening SRNCs until

the STNU is dynamically controllable.

The incompleteness of this method stems from the fact that they only tighten certain

durations’ [𝑙, 𝑢] intervals without widening others. This monotonically decreases the amount

of temporal uncertainty in the STNU, so it is likely that eventually the STNU will become

controllable. Thus, there is no real effort to respect or even evaluate a risk bound. To do

so, or even to minimize the risk, they would need to wrap their procedure around a binary

search on the risk bound, like SREA does. Even then, since there is no guarantee on the

order in which SRNCs are discovered, and hence the order in which edges are tightened,

there are likely some risk allocations that remain inaccessible.

Gao and Popowski’s second option builds on the same concept of discovering and

resolving SRNCs, but tries to follow an order, starting with the “riskiest” SRNCs. Again,

they rely on uniform risk allocations to begin with, but their insight is that by perfoming

binary search on a risk bound 𝛼 (in the style of SREA), they can identify an 𝛼* below which

the STNU first becomes non-DC. Whatever SRNC comes out of the STNU with 𝛼*− 𝜖 risk

per duration is proclaimed “riskiest”, and gets resolved by tightening its durations’ intervals

to each have 𝛼* + 𝜖 level of risk. Those intervals are then frozen, so that the next round of

binary search and tightening for the “second riskiest” SRNC won’t disturb them.

In summary, both their methods can be viewed as sharing the same high-level strategy as

our conflict-directed algorithm, in that they also discover SRNC conflicts and resolve them
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sequentially. The difference is they propose custom heuristics to achieve the resolutions,

which choose certain [𝑙, 𝑢] bounds to tighten. Since this progressively increases the amount

of risk taken, they rely on a binary search wrapper to periodically reset the risk to acceptable

levels, and there are no completeness guarantees associated with this. Also, their tightening

strategies do not explicitly acknowledge the presence of extension subpaths, which could

be made non-negative to resolve the SRNC.

In contrast, we derive constraints that fully express the conditions for resolving the

SRNC conflicts. We rely on an external NLP solver, plus our own exhaustive combinatorial

search, to satify those constraints in our risk allocations. In particular, the solver allows us

to simultaneously reallocate risk from some durations to others in one step, without falling

back on a sequential binary search, which is likely to be incomplete. We thus solve the

risk allocation problem exactly, modulo any incompleteness from the solver, which we’ve

shown in Section 4.4 can be reasonably mitigated.

6.4 Conflict-directed hybrid approaches

Central to our approach in Algorithm 4.1 is the usage of an STNU controllability subsolver

to discover conflicts that prune away regions of the risk allocation space. Furthermore,

the risk allocation obstacles for dynamic controllability conflicts turn out to be convex

polytopes. Thus, we resolve conflicts both at a continuous level, using an NLP solver to

handle linear resolutions plus the nonlinear chance constraint, and at a discrete level, when

choosing which linear facet of each polytope to respect.

This principle of isolating a subproblem that can be efficiently solved, and returning

conflicts from it to inform a master problem or master search, has shown up in several other

works. It is especially favored when addressing scenarios that involve both discrete and

continuous features. Thus, there are two senses of the word “hybrid” when describing such

approaches. One is that expressing the problem requires both types of features. The other

sense, and the one we focus on, is that the algorithmic solution consists of two or more

solvers interacting to progressively cut down on the remaining solution space.

In this section, we identify such works and relate them to our approach. In most of
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them, they are solving problems more general than scheduling, and thus employ additional

techniques for handling the discrete conditions. Some but not all of those techniques could

be applied to our algorithm, and I note when that would be possible.

The common mathematical structure between our work and these others is the disjunctive

linear program (DLP), consisting of disjunctions where each clause is a linear constraint.

For us, the DLP arises from the alternative resolution options for SRNCs. That is, not

only can we make the cycle nonnegative, we can also make certain extension subpaths in it

nonnegative, and all of those options are linear.

DLPs were studied by Balas [3] as a more direct way of expressing discrete optimization

problems in certain scenarios. Previously, discrete options would have been represented

using binary or integer variables, which can significantly increase the dimensionality of

the problem. By working with the disjunctive form directly, Balas derived various LP

relaxations along the branches of the search tree, so that a standard branch-and-bound

strategy could avoid expanding to the entire depth of a tree. His relaxations typically have

interpretations as convex hulls of subsets of the convex polytope obstacles.

Krishnan [34] and Li [36] merged the techniques of conflict-directed forward search

for optimal constraint satisfaction [72] into the branch-and-bound framework for DLPs.

Namely, they detect conflicting subsets of linear constraints within the LP relaxations along

the branches and at the leaves of the search tree. In turn, these conflicts’ resolutions yield

additional disjunctive linear constraints, which provide options for further tightening the LP

relaxations on other branches of the tree. By applying these tightenings before proceeding

with branching on the remaining disjunctions of the original problem, this can significantly

reduce the depth of forward search.

While Krishnan omitted details on generating conflict sets, Li demonstrated that they

could be efficiently extracted when solving the dual LP. This is essentially how Benders’

cuts are extracted [4], which were discussed in Subsection 4.3.1 as an interpretation of

our strong controllability conflicts. Thus, our static algorithm shares the same underlying

theory of conflict extraction. The difference is we use an alternative algorithm that is tailored

for STNU distance graphs, and therefore has a natural counterpart in dynamic scheduling,

which is less easily expressed in terms of Benders’ decomposition.
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One aspect of DLPs not present in our problem is having to optimize an objective

function. Hence, we wouldn’t gain any pruning by applying the branch-and-bound frame-

work, which is meant to eliminate suboptimal subtrees. However, Chapter 8 discusses

the possibility of applying optimization to our problem, i.e., finding optimal scheduling

policies. In that case, the techniques of Balas and others could be helpful. For instance, Li

also generalized infeasibility conflicts for DLPs to suboptimality conflicts. That is, when a

relaxed LP at a node is feasible but whose solution is worse than the incumbent’s, we can

identify which clauses led to the solution being suboptimal. So, not only do we prune the

current subtree, as branch-and-bound would, we also prune potentially similar subtrees on

other branches without having to discover them.

Another difference between the DLP literature and the DLP in our problem is that we

are not given the DLP upfront, but rather we build it from the disjunctive conflict resolutions

we learn along the way. That is, we start with no constraints in our Level 3, and only when

an appropriate SRNC is discovered in Level 1, do we generate the disjunctive resolution

in Level 2 and pass it up to Level 3. Thus, our search tree in Level 3 is analogous to the

branching on conflicts that Krishnan and Li perform. We do lack the concept of solving

relaxed LPs at each node in our search tree, though it seems this could be easily incorporated.

Ultimately, DLP forms only a subset of our problem, addressed by Level 3. We also

have a nonlinear chance constraint and an STNU for which to check controllability, which

are handled by Levels 2 and 1, respectively. Relatively recently, Ono [46], Yu [74], and

Fang [19] have solved problems with similar features, so we conclude this section by relating

their work to ours.

Ono’s problem was that of chance-constrained path planning, where the goal is to avoid

obstacles with a bounded probability of collision [47] [46] [48]. This was the context

in which risk allocation was first developed for addressing chance constraints. In path

planning, since collision risk arises from uncertainty in vehicle dynamics, risk is allocated

to random state variables indicating the vehicle’s position along its nominal path. In our

scheduling problem, there is no single “trajectory”, so the “random variables” to which risk

is allocated are the probabilistic durations.

Ono modeled obstacles as convex polytopes, thus requiring a DLP to avoid those regions.
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(Any nonconvex obstacle can be modeled as a union of convex polytopes.) Like our problem,

he also had a nonlinear chance constraint, so at the leaves of the search tree, an NLP needs

to be solved. He called solving this convex risk allocation, since the chance constraint turns

out to be convex for reasonable risk bounds and uncertainty distributions [8].

Ono also solved relaxed problems on the non-leaf nodes, but here he avoided the expense

of NLP by applying a linear relaxation to the chance constraint. If the objective function is

linear as well, or even piecewise linear, then he only needs to solve inexpensive LPs to prune

suboptimal subtrees. Thus, Ono’s method mirrors prior branch-and-bound approaches to

solving DLPs, with the exception of an NLP at each leaf. He does not, however, employ the

conflict-directed methods of Krishnan or Li.

Yu addressed the problem of relaxing temporal plans, where to restore the schedulability

of a plan, certain requirements need to be relaxed or dropped [77] [75] [74]. Due to the

shared context of scheduling, this work has many parallels to ours. First of all, the problem

of relaxation is inherently about resolving existing conflicts. Thus, Yu discovers temporal

conflicts of the same form we do, that is, negative cycles in the distance graph. It follows

that his dynamic scheduling conflicts are also SRNCs which require disjunctive linear

constraints to resolve.

Yu’s temporal plans have built-in alternative subplans as relaxation options, and these

alternatives are associated with user preferences. To process conflicts and optimally restore

feasibility, then, he leverages the conflict-directed A* algorithm of Williams and Ragno [72],

just as Krishnan and Li did. He augments the algorithm by allowing scheduling conflicts

to be resolved not just by switching to different subplans, but also by adjusting bounds on

the requirements and activities’ durations. These bounds are directly analogous to the risk

allocation variables in our problem, and thus his method of finding optimal relaxations is

structurally similar to our algorithm. If the user preferences on those bounds are linear, then

an optimal relaxation can be found by solving an LP, followed by checking for temporal

controllability. Later, Yu incorporated a relaxable chance constraint, which turns the LP

into an NLP [76].

Finally, we consider Fang’s work [19], which can be viewed as a generalization of

Ono’s. While Ono was solving a chance-constrained DLP, Fang swaps the DLP for the more
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expressive mixed-logic linear program (MLLP), where the continuous linear constraints are

conditioned on boolean variables or logical formulas. Thus, the search tree branches on

those boolean variables, which activate various linear constraints along the way. At the

leaves, the original cc-MLLP becomes a chance-constrained linear program (cc-LP).

Like Ono, Fang handles the chance constraint by solving relaxed LPs instead of exact

NLPs along the branches. Notably, though, Fang does not solve an NLP even at the leaves.

Instead, he simply solves for lower and upper bounds on the random variables, and then

evaluates whether the “risk allocation” they form respects the chance constraint’s risk bound.

This is also an LP, and if its solution violates the chance constraint, then a cutting plane

conflict is generated based on how much we went over the allowed risk bound.

This strategy of generating conflicts from inexpensive evaluations of the chance con-

straint is a unique and elegant alternative to directly solving the chance constraint. It is

a different application of the same spirit in our strategy, where rather than fully encoding

STNU controllability, we simply check it and extract conflicts. In Fang’s case, when the LP

solution at the leaves violates the chance constraint, a linear conflict resolution is derived.

But if the LP or the relaxed LPs on the branches are infeasible, then an irreducible infea-

sible subset (IIS) is obtained, in a similar manner as Li’s conflict extraction. These form

additional disjunctive linear resolutions, just like how our SRNC Level 1 conflicts and risk

allocation Level 2 conflicts are handled by Level 3.

In summary, our work incorporates elements of Ono’s, Yu’s, and Fang’s solutions for

their respective problems. Namely, we share with Ono the need to respect a nonlinear

chance constraint while avoiding convex polytope obstacles, we share with Yu the form

of scheduling conflicts and resolutions, and our solutions for static and dynamic schedul-

ing parallel Fang’s solutions for solving cc-LPs and cc-MLLPs. Some aspects of their

algorithms could also be incorporated into ours, such as solving relaxed problems on the

branches, and finding optimal solutions, which we leave for future work.
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Chapter 7

Empirical Validation

The major claim of this thesis has been that chance-constrained dynamic policies are key

to enabling the execution of large, complex plans. After formally defining this problem in

Chapter 2 and reformulating it in Chapter 3, we built up an algorithmic solution to it in

Chapters 4 and 5. Thus, we now have the ability to provide policies of the desired form.

The remaining questions to evaluate the claim fall into two categories: a) how well do our

policies scale with plan size, and b) how efficiently can we generate our policies. The first

category is about how the increased richness of our problem captures more solution space,

while the second is about the runtime performance of our algorithm. The two sections of

this chapter present empirical evidence that support the overall claim with respect to these

two categories.

Section 7.1 addresses the solution space question by comparing how many of the test

scenarios for which we can find static versus dynamic policies. We find that the success

rate of finding static policies quickly falls with problem size, while we can continue finding

dynamic policies at the same rate for problems at least 10 times larger. We also evaluate

the improvement when allowing flexibility in allocating risk over fixing it to a uniform

allocation. These gains are less dramatic, but for dynamic policies, we can still solve about

an extra 10% of the scenarios. We perform these comparisons on a lunar construction

scenario inspired by extra-vehicular activities conducted by NASA astronauts.

Section 7.2 then addresses the efficiency of our algorithm in coming up with such

policies. This pertains to the conflict-directed strategy we adopted in Chapters 4 and 5 as an
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alternative to employing the full encoding of STNU controllability discussed in Section 4.1.

The end goal of both is to produce chance-constrained policies, so we will not be comparing

against STNU algorithms, which are much faster due to not having to solve a nonlinear

continuous constraint.

Based on Subsections 4.1.1 and 4.1.2, it is reasonable to find a solver that can handle

an encoding of strong controllability plus the chance constraint, but much harder when

we swap out the strong controllability conditions for dynamic controllability. Thus, we

descoped implementing the full encoding approach to generate chance-constrained dynamic

policies for our experiments. However, we observe that our conflict-directed algorithm

in Chapter 5 only slightly increases in runtime when switching from static to dynamic

policies. Meanwhile, the full encoding for static policies is typically at least an order of

magnitude (10 times) slower than the conflict-directed version. This shows that our conflict-

directed algorithm for dynamic policies would be at least similarly competitive against a

full encoding.

We review the results previously presented in [69] comparing the full encoding and

conflict-directed runtimes for static policies, but now explain them in more detail. The

benchmark scenarios are to manage a fleet of vehicles for a car-sharing company.

I begin both sections by describing the experiment setup. This includes the form

of algorithm implementation and the benchmark scenarios that were generated For the

benchmarks, I identify the various parameters that impact their problem size and complexity.

Then I present graphs of certain metrics as those parameters vary, increasing the problem

size, and I draw conclusions from the trends displayed.

7.1 Solution space evaluation

The ideal metric for evaluating the expressivity of chance-constrained dynamic policies

would be how much of the space of scheduling policies we can access. This is depicted in

Figure 7-1, which is based on Figures 3-11 and 3-13 from Subsection 3.3.1. Unfortunately,

we already showed in Chapter 3 that the policy space is intractable to work with, let alone

measure. Instead, we choose to measure how likely it is that our algorithm can find such
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Figure 7-1: We are interested in how much of the entire solution space of chance-
constrained policies (in purple) we can access. While our problem reformulation prevents
us from finding every policy, its flexible risk allocation approach lets us access the policy
spaces of various proxy STNUs (in blue). In contrast, a fixed uniform risk allocation
approach is limited to only one such policy space (in orange). Thus, the ideal metric would
be how much of the purple space is covered by the union of the blue regions, compared to
just the orange region.

a policy solution, across a set of randomized scenarios. To see why this is a reasonable

alternative, we consider what the ideal metric in the policy space really means.

First, note that in the absence of a flexible strategy for allocating risk where it is needed

most, a reasonable way to address a chance constraint would be to use a uniform risk

allocation. That is, we split the chance constraint’s ∆ risk bound equally among all the

probabilistic durations in a pSTN, and cut off tails of equal probability mass for both the

lower and upper bounds. This results in what we call the uniform risk allocation STNU,

and there is no guarantee that it is controllable. Since this approach sidesteps all the risk

allocation machinery of our cc-pSTN algorithms, for brevity we call this the “STNU”

approach when presenting our experiments, even though it still technically addresses a

cc-pSTN problem.

In Figure 7-1, recall that the purple region represents those pSTN policies that satisfy
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the chance constraint. For the uniform risk allocation STNU, its space of feasible1 policies

would be a subset of the purple region, represented as an orange parallellogram.2 In contrast,

our risk allocation approach to the cc-pSTN allows us to consider many different proxy

STNUs for the pSTN, all satisfying the reformulated chance constraint. The feasible policies

for these STNUs thus all fall inside the purple region, within their own blue parallelograms.

In actuality, there are an infinite number of such parallelograms, and the space of chance

constraint-satisfying policies that we can access is the union of them all. This union includes

the orange parallelogram, because that STNU respects the reformulated chance constraint

as well.

This relationship between the orange, blue, and purple regions holds regardless of

whether we are looking for static and dynamic policies. Hence, our figure is applicable in

both cases. It is also important to note that the solution spaces for static policies are subsets

of those for dynamic policies. This is because static policies, as shown in Definition 2.14,

can be considered special cases of dynamic policies, so every strongly controllable STNU

is also dynamically controllable.

Something that Figure 7-1 assumes, though, is that such orange and blue regions actually

exist. That is, it is not guaranteed that our risk allocation approach will find any proxy STNUs

that are controllable. Likewise, the uniform risk allocation STNU has no guarantee of being

controllable, and if not, then no orange region exists either. For both the blue and the orange

regions, it is also the case that there might exist dynamically controllable STNUs, but none

that are strongly controllable. Thus, as we make the pSTN more constrained by tightening

its requirements or widening the uncertainty on its probabilistic durations, the number of

parallelograms in Figure 7-1 will drop until there are none at all.

While we don’t have tools to directly measure how much of the pSTN’s policy space

is covered by the orange or blue regions, our algorithm does report whether we are able to

find3 such regions. Additionally, because we know that any orange region must be a subset

of the union of the blue regions, this means as we tighten the pSTN, the orange region will

1The STNU policy space, in all its richness, is not actually bounded by a parallelogram. This is just meant
to remind us that STNU policies can rely on the bounds of their uncontrollable durations, whereas pSTN
policies have to allow for the possibility of them going to +∞.

2To reduce clutter, I only display the feasible policy regions for STNUs.
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disappear before the blue union does. To be sure, the purple region of all chance-constrained

solutions also shrinks as the pSTN tightens. However, it will disappear last after the orange

and blue regions have been reduced to the null set, even though we will not be able to detect

exactly when.

If we perform a “sweep” over these pSTN tightenings, then we can observe how much

earlier STNU algorithms fail to find a solution compared to our algorithm for solving the

cc-pSTN model. We can also perform the same comparison for static versus dynamic

policies. This can be viewed as an indirect measurement of the solution space coverage.

Unlike the uniform risk allocation STNU, our risk allocation approach isn’t limited to that

one parallelogram. Rather, it can find other STNU policy spaces that fit in the shrinking

purple region, and that wiggle room accounts for its additional coverage of the solution

space.

7.1.1 Experiment setup

For our benchmark scenarios, we model the task of erecting satellite communication

dishes on the moon These are adapted from the benchmarking scenarios of Bhargava

and Pittman [6] [49], which in turn were inspired by operational knowledge of spacewalks,

combined with NASA’s Artemis program for lunar exploration. The goals is to assemble

an array of satellite dishes, and a team of astronauts can parallelize the activities. However,

there are also some coordination requirements which could introduce extra waiting times,

and thus endanger the overall deadline requirement.

The plan structure for these scenarios is shown in Figure 7-2. Each satellite dish’s

assembly task is encapsulated in a blue unit consisting of three activities in sequence.

First, the astronaut drives to the installation site in a rover vehicle 𝐴 99K 𝐵. Then, they

perform the actual installation 𝐵 → 𝐶. Next, they confirm that the dish is working by

verifying communication with mission control on earth 𝐶 99K 𝐷. When that’s completed,

the astronaut performs any final wrap-up for the installation 𝐷 → 𝐸.

The installation and wrap-up tasks, where the astronaut is working solo, have controllable

3Due to the incompleteness of the NLP solver in practice, this is distinct from whether such regions exist.
However, since we use the solver as a black box, this is the best we can do to approximate the criterion.
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Figure 7-2: Each satellite dish’s assembly task includes three activities, the outer two
of which have uncontrollable or probabilistic durations. An astronaut is assigned a series
of dish assemblies, forming a single “thread” of execution. The inter-thread constraints
between astronauts is that the final activities of each assembly need to be performed in
series, resulting in a staggered flow of assemblies between the astronauts. There is an
overall deadline constraint for completing all assemblies.

durations, each with their respective [𝑙, 𝑢] bounds. Meanwhile, the driving time is subject to

disturbances from the terrain, and the confirmation step could be delayed by electromagnetic

noise and network congestion. Those activities’ durations are modeled probabilistically

as normal distributions parameterized by respective means 𝜇 and standard deviations 𝜎.

Technically, such distributions have probability mass below 𝑡 = 0, but as long as 𝜇 is at

least four or five 𝜎 above 0, then that probability mass is vanishingly small with respect to

a chance constraint risk bound on the order of 10%.

To reduce the total time required to assemble all dishes, a team of 𝑛 astronauts is sent,

each independently assembling their own 𝑚 assigned dishes. Each astronaut’s timeline is

represented as a thread of these assembly tasks linked by [0,+∞) wait activities. Addi-

tionally, a mission requirement imposes some degree of coordination between their threads.

Namely, the centralized mission control center wishes to verify the dishes in a rotating

sequence among the 𝑛 astronauts. Therefore, from mission control’s perspective, they need

to see all the 𝐶 99K 𝐷 activities happen in a precise order. This is achieved by introducing

[0,+∞) requirements from the end of each confirmation to the start of the next. Finally,

the entire plan has an overall deadline of 𝑇𝑚 minutes, where 𝑇 represents the nominal time

it takes to install a single satellite dish, plus some slack.
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In summary, the plan structure and complexity is parameterized by 𝑛 astronauts, 𝑚

installations per astronaut, and 𝑇 for the nominal time allotted per installation. If we keep

the chance constraint’s risk bound constant while increasing 𝑛 and 𝑚, then the amount of

risk allocated to each probabilistic duration’s tails decreases. This results in wider STNU

intervals, both for the uniform risk allocation STNU as well as any others that our NLP

solver finds. As a result, those scenarios will be less likely to admit a policy solution.

Increasing 𝑇 , on the other hand, gives the installation tasks more slack in case an activity

takes unusually long. That should result in the opposite effect of postponing the dropoff, in

percentage of scenarios solved, until larger problems.

For any given problem size and deadline, we are interested in how likely we can

find a scheduling policy that respects the chance constraint. However, for any particular

[𝑙, 𝑢] bounds and (𝜇, 𝜎) parameters on the activities’ durations, we get a binary yes or

no. Therefore, we randomly generate those parameters, once per trial, and look at what

percentage of trials succeeded in finding a policy.

For the installation activities, the lower bounds are always 0 and the upper bounds are

selected at uniform from the interval [5, 10]. For the wrap-up activites, their lower bounds

are uniformly selected from within [0, 5]. Their upper bounds take the form 𝑢 = 𝑙 + 𝑢,

where 𝑢 is uniformly selected from within [12, 22].

The normal distribution parameters (𝜇, 𝜎) of the driving and confirmation activities are

based on slight perterbations to nominally specified parameters (𝜇, 𝜎). First, we select 𝜎

uniformly from the range (1± 0.1)𝜎. Then we select 𝜇 uniformly from 𝜇+ (1± 0.1)𝜎. For

driving, we choose (𝜇, 𝜎) = (10, 2), and for confirming, we choose (𝜇, 𝜎) = (8, 2).

For each benchmark trial, four different algorithm implementations were used to solve

it. First, we solve for static policies, using Vidal’s strong controllability algorithm [61] [60]

for the uniform risk allocation STNU, and our two-level algorithm from Chapter 5 for the

cc-pSTN. Then, we do the same for dynamic policies, using Morris’s 𝑂(𝑛3)4 algorithm [39]

and our three-level algorithm. All the algorithms are implemented in Common Lisp, except

for the external NLP solver, for which we use Ipopt [64] via a custom foreign function

interface. The experiments were carried out on a third-generation desktop Core i7.

4Recall that this 𝑛 refers to the number of events in our temporal network, and not the number of astronauts
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7.1.2 Results

To cover a wide range of problem sizes and complexities, we vary the number of tasks

per astronaut 𝑚 from 1 to 50, and the number of astronauts from 2 to 5. Nominally, we

set 𝑇 = 50. However, as the number of astronauts increases, the confirmation ordering

requirements impose more coordination, which effectively increases the 𝑇 necessary to

keep the plan controllable. For example, if astronaut 1 is having difficulty completing the

confirmation for a particular dish, then astronaut 2 will have to sit idle, effectively increasing

the total time for its installation task.

In our experiments, keeping 𝑇 constant at 50 resulted in precipitous dropoffs in the

percentage of scenarios solved while the problem size was still relatively small. Therefore,

to be able to observe trends over the entire range of 𝑚, we bumped up 𝑇 for the larger 𝑛.

Namely, we use 𝑇 = 65 for 𝑛 = 4, and 𝑇 = 80 for 𝑛 = 5. In the real world, this would

correspond to mission control increasing the built-in slack to accomodate the increased

complexity of coordinating more astronauts in parallel.

We ran 100 trials for each combination of 𝑛, 𝑚, and 𝑇 , and recorded the percentage

of scenarios solved in Figures 7-3 through 7-6. The static policy results for the uniform

risk allocation STNU and the full cc-pSTN approach are plotted in yellow and orange,

respectively. For dynamic policies, the analogous results are given in gray and blue,

respectively. Across all four graphs, the far right corresponds to the maximum number

of installation tasks, ranging from 100 to 250. Furthermore, there are two uncontrollable

activities per task and four activities total. This means we are solving problems containing

up to 500 probabilistic durations, and 1000 activities total.

The most significant trend is that dynamic policies far outperform static policies in

terms of scenarios solved. Even the uniform risk allocation STNU has dynamic policies

for significantly more instances than our full algorithm could find static policies for. This

dramatically highlights the value of having online flexibility to open up the solution space,

and thus underscores the importance of extending previous work in chance-constrained

static scheduling [20] [69] to dynamic policies. Due to the vast differences in performance

between finding static versus dynamic policies, I consider them separately.

in our scenario.
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Across all four plots, we are initially able to find static policies for a high percentage of

scenarios, but the success rate quickly drops off as we approach 5 or 10 tasks per astronaut.

With two astronauts, the cc-pSTN solution space vanishes just after 10 tasks, and it steadily

shrinks to 5 tasks as we increase the number of astronauts to five. Observing horizontally,

we see that our cc-pSTN algorithm can generally solve the same portion of scenarios at

twice the number of activities as the strong controllability algorithm for the fixed STNU.

Given the sharp slope in the dropoff, though, this means when observing vertically, for the

same problem size, our flexible risk allocation approach solves many more times instances

than the fixed uniform approach does.

It is also notable that at small problem sizes, the fixed STNU approach finds static

policies for much fewer problem instances than full cc-pSTN approach does, which still has

high success rates. However, this observation is tempered by noting the following artifact.

At low problem sizes, e.g., less than 5 tasks per astronaut, the trends are not very smooth

and can vary wildly. This is true for both the static and dynamic cases, where the number

of successful instances is sometimes puzzlingly low at first before shooting up dramatically.

Most likely, this is because when there are only one or two tasks per astronaut, an outlier in

the generated parameters for the durations can derail us from meeting the overall deadline,

which is a low multiple of 𝑇 . However, as the number of tasks increases, those outliers get

smoothed out, via the Central Limit Theorem, and 𝑇 becomes a better representation of the

average duration per task.

For dynamic policies, the trends are dramatically different. First, we see that the

algorithms are completely successful for the entire range of problem sizes when there are

only two astronauts. Only when we bump up to three astronauts do we start to encounter

scenarios for which we can’t find a policy, and mostly when using the fixed STNU approach.

The full cc-pSTN algorithm doesn’t reach that threshold until just below 45 tasks per

astronaut, which corresponds to about 130 installation tasks total. By the maximum problem

size of 50 tasks, the fixed STNU performance has dropped to about 80%, while the cc-pSTN

is at 90%. Thus, the dropoffs are much shallower than with the static policies.

When we move on to four and five astronauts, the dropoffs get gradually sharper, just as

they did for static policies. Partly this is due to the total number of activities increasing at
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Figure 7-3: When the plans involve two astronauts, all scenarios admit dynamic policies,
chanced-constrained or not, while the solution space for static policies falls off around 5
and 10 installation tasks per astronaut, for the uniform risk allocation STNU and the full
cc-pSTN, respectively.

a faster rate for every additional task we assign to each astronaut. The other contribution is

from the increased number of cross-thread coordination requirements. This is evident from

the slopes for five astronauts being more than 25% steeper than the slopes for four. In the

five-astronaut case, the success rate eventually plummets to near 0 by the time we reach 50

tasks, whereas for four astronauts, they still hover near 50%.

The shallower nature of the degradation for dynamic policies is further proof of the

benefits of online dispatching flexibility. In fact, it is surprising to see the the fixed STNU

policies perform so well that the full cc-pSTN policies don’t offer as much improvement as

they did in the static case. Still, the cc-pSTN policies typically solve 10% more of the total

scenarios than the STNU policies do, which is not insignificant. Also, due to the shallower

slopes, when observing horizontally at the same level of success, we can solve problems

with a larger number of tasks than in the static case.

Although the next section formally addresses runtime, it is with respect to a different set

of benchmark scenarios, so I close this section with a brief note about the runtimes of these

234



Figure 7-4: When the plans involve three astronauts, some fixed STNUs begin to be not
dynamically controllable around 30–35 tasks per astronaut, while the dropoff for flexible
risk allocations doesn’t begin until after 40 tasks. Compared to having two astronauts, the
static policy spaces vanish slightly earlier, a trend that continues for higher numbers of
astronauts.

Figure 7-5: For four astronauts, the dropoff for dynamic policies begins around 15 and 20
tasks per astronaut, and we are able to find cc-pSTN policies for about 10% more of the
total scenarios.
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Figure 7-6: At five astronauts, the trends are similar but sharper, and by 50 tasks per
astronaut, the dynamic policy spaces are nearly gone.

benchmarks. For our cc-pSTN algorithm, the vast majority of the computational time was

spent within the NLP solver. Therefore, the key factor that affects total runtime is how many

times the NLP solver is called. For static policies, this corresponds exactly to the number

of negative cycle conflicts discovered. For dynamic policies, it is at least that number, but

may include more due to combinations of alternative SRNC resolutions.

In our observations for the smaller problems where 𝑚 ≤ 20, all cases in which a policy

was found terminated after fewer than 10 calls to the solver, and usually no more than 5.

These low numbers are a good sign that the discovered conflicts were very informative

in blocking out infeasible portions of the chance constraint region. When a policy was

ultimately not found, though, our algorithm might discover up to 20 or 30 conflicts before

returning false. This suggests that the NLP solver was getting stuck in local gradient fields,

and while there may have been an actual solution, it was unable to find it.

For the largest problems, where the number of risk allocation variables approach 1000,

each call to the solver could take up to two minutes to complete. Therefore, to avoid needless

spinning, we cut off the algorithm after 10 discovered conflicts, and assumed the answer

was false. It is possible that we thus missed out on solutions that we could have found if
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we had kept discovering conflicts, but the difference is likely to be small. The effect on the

graphs would have been to push the orange and the blue lines slightly to the right.

In summary, the results in this section suggest potentially two different strategies de-

pending on whether we are searching for static or dynamic chance-constrained policies. For

static policies, using a fully flexible risk allocation approach is a clear win over the uniform

risk allocation. Even though we take on the extra cost of running an NLP solver, if we’re

already solving for a static policy offline, then presumably we can afford that cost. If we are

looking for dynamic policies, then in most cases, the policy is still being computed offline,

and the extra 10% likelihood of finding a solution is worth the full search for a variable risk

allocation. However, if we are in a real-time situation, or if computational power is limited,

then applying a uniform risk allocation is a reasonable strategy for producing an answer

quickly.

7.2 Runtime evaluation

When evaluating runtime, the claim in question is that our conflict-directed strategy of

discovering negative cycles to resolve is more efficient than employing a full encoding of

STNU controllability. To perform this comparison, we would need a solver that can handle

the full encoding in conjunction with our nonlinear reformulated chance constraint. As we

have shown in Chapter 4 previously, an NLP solver suffices for obtaining static policies,

but we would need a MINLP-style solver for dynamic policies. The DC encoding would

be complex to specify, and we can also expect general-purpose MINLP solvers to have

significantly longer runtimes than even NLP solvers. Therefore, we limit our comparison

to only static policies.

From our experience running the satellite installation scenarios in Section 7.1, the

observation that the solver was called fewer than 10 times per trial held true for both static

and dynamic policies. This suggests that our three-level algorithm for producing dynamic

policies is not much more expensive than our two-level static version. Combined with the

expectation of long MINLP-solving runtimes, any difference in our static comparsion would

only be magnified if we had been able to compare in the dynamic case as well.
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7.2.1 Experiment setup

The scenarios we tested on were adapted from the work of Fang et al. [20], which presented

the full encoding solution for finding chance-constrained static policies. These model the

logistics of an urban car-sharing company, where they have a fleet of cars available for short-

term rentals within within city limits. Each car may be reserved by different customers in

sequence, and each customer may take the car to a series of destinations.

The only requirement is that the cars may not be operated after the company’s close of

business at the end of the day. Additional complexities such as returning cars to designated

locations or time limits on rentals are not modeled. Therefore, the structure of the plan is

a series of parallel threads, one for each car, with an overall deadline requirement over all

threads. This is similar to the lunar construction scenario in Figure 7-2, except that there

are no inter-thread constraints.

Each thread is semantically divided into segments corresponding to each customer’s

reservation. Within a reservation, the activities alternate between driving to a destination

and shopping at the destination. Only the driving activities have uncontrollable duration.

Thus, the events corresponding to the beginning of driving, or equivalently the end of

shopping, are the controllable events that get assigned by our static policy.

Since these scenarios were provided to us by Fang et al., we do not know the exact

parameters that were used to generate the intervals bounds and probabilistic durations for

the activities, nor do we know how many trial scenarios were generated for each problem

size specification. However, we can list the following facts about the data set: A total of

1800 scenarios were generated. Within these, the number of cars ranged from 1 to 20,

the number of customers per car from 1 to 5, and the number of destinations per customer

between 1 and 3. That means at the upper range of problem size, there are approximately

300 uncontrollable driving activities in the plan. We also know that the chance constraint

risk bounds were set at one of 10%, 20%, or 40%.

Like before, the algorithms are all implemented in Common Lisp, and Ipopt is used

as the external NLP solver. However, we used an implementation of the conflict-directed

algorithm that follows Algorithm 4.1, rather than the two-level architecture in Chapter 5.
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The effect on runtime should be negligible, since the bulk of the time is spent in the NLP

solver anyway. In this case, the scenarios were run on a first-generation desktop Core i7.

7.2.2 Results

We compare our conflict-directed algorithm for generating static policies against sending

the full encoding to the NLP solver directly. We also evaluate a variant of the full encoding

where we turn the reformulated chance constraint into an objective function of minimizing

the total risk allocated. The runtimes for the each scenario are plotted in Figures 7-7

through 7-9. Since a wide range of runtimes are encompassed at each problem size, and the

ranges for the different algorithms overlap significantly, we introduce the runtime results

one algorithm at a time. First, we show the runtimes for the full encoding, in orange squares.

Then, we overlay the results for our conflict-directed approach, in blue diamonds. The last

overlay is for the full encoding that minimizes risk, in green triangles.

It turns out we have complete runtimes only for the conflict-directed algorithm. For

the chance-constrained and risk-minimizing variants of the full encoding approach, the raw

data contains runtimes for only approximately the first 1300 and the first 800 scenarios,

respectively. Beyond taking too much time to complete, the reasons for the cutoff are

unknown. However, the trends are still clear enough for us to draw conclusions.

The main comparison is between the orange and the blue clusters. For small problems,

they have comparable runtimes, but the orange cluster grows faster, and by 100 to 150

uncontrollable activities, it clearly averages at least 10 times longer. Both clusters sweep

out a wide vertical range for any given problem size. This can be attributed to the Ipopt’s

own variation in runtime for similar problem sizes. Even though the solver’s algorithm is

deterministic, it can perform wildly differently for similar-sized inputs.

For the full encoding, which calls the NLP solver only once, we reach runtimes ranging

from about 20 minutes to a few hours for plans containing around 150 probabilistic durations.

In contrast, the blue diamonds don’t reach those extreme runtimes until the plan size

increases to about 300 such durations. Even then, running for more than an hour is outlier

behavior, and most of the results are clustered around just over a minute to several minutes.
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Figure 7-7: When using the full encoding, the solver spends between several minutes to a
few hours on plans containing approximately 150 probabilistic durations.

Clearly, our conflict-directed approach can solve problems twice as large at still a faster

pace.

The wider overall range of runtimes when using conflicts may be partially attributed

to the fact that we have to run the NLP solver multiple times. However, as with the lunar

construction scenarios, we found that very few iterations were required to reach an answer:

never more than 5. Confoundingly, the scenarios with the longest runtimes never ran for

more than two iterations. This means the vast variation in runtime is still primarily due

to Ipopt’s performance. It might have been the case, for instance, that a particularly large

negative cycle with many edges was discovered, resulting in a linear resolution constraint

that contained many risk allocation variables. It is possible that such a constraint would be

more difficult for Ipopt to process, compared to those in the full encoding. While the full

encoding contains many linear constraints, each only involves two event variables and at

most one risk allocation variable.

Finally in Figure 7-9, we overlay the runtimes for the risk-minimizing variant of the

full encoding. Compared to Figure 7-7, these closely track the runtimes of the chance-

constrained version, but end up slightly faster on average. A similar relationship was
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Figure 7-8: Compared to the full encoding, our conflict-directed approach reaches the range
of maximum runtimes at about twice the problem size, with 300 probabilistic durations.
On average, for the same problem size, our approach’s runtime is about 10 times shorter.

Figure 7-9: Adding a minimum risk objective to the full encoding actually speeds it up
slightly.
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observed in Fang et al.’s work [20], even though they used a different NLP solver, Snopt [25].

The exact reason for this discrepancy is not clear, as it depends on the internal machinery

for handling objective functions versus constraints. It appears that the gradient imposed

by an objective function might provide more “incentive” towards approaching an optimal

point, if any, whereas as a chance constraint, it’s harder to nudge the solver into whatever

feasible region there may be.

The last observation is that the shape of each cluster suggests a polynomial-time com-

plexity of our algorithms with respect to problem size. This is true of the full encodings, as

Ipopt uses an interior-point method, which runs in polynomial time in terms of problem size

and solution accuracy [73]. Technically, our conflict-directed algorithm runs in exponential

time, because there could be an exponential number of negative cycles discovered. However,

this is the theoretical extreme, as as the results show, the actual number of iterations tends

to be very low. Combined with the fact that our conflict-directed approach doesn’t need to

encode event variables, its time complexity in practice is likely a lower-order polynomial

than that of the full encodings.
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Chapter 8

Conclusion and Future Work

This thesis has provided the capability to solve risk-bounded scheduling problems using

dynamic execution. We’ve argued that humans intuitively perform such reasoning, but only

on scenarios of limited complexity, and without precise quantification of risk. We now offer

a way to scale that reasoning to large, complex scenarios that would have previously eluded

efforts to be reliably scheduled. Our ultimate contribution is a conflict-directed algorithmic

architecture that offers efficiency without sacrificing bounded-risk guarantees. Moreover,

we illuminate the theoretical link between solving for chance-constrained static policies and

solving for those that are dynamic.

This chapter summarizes our contributions towards understanding the problem and

developing a solution. Then, we close by outlining several avenues for extending this work.

The most salient one is to be able to specify multiple chance constraints, each over subsets

of the temporal requirements. This allows us to designate portions of the plan to have higher

importance, which is a common need. Second, we consider the ability to efficiently adjust

computed policies in response to incremental plan updates. This is called incremental

scheduling, and it enhances the usefulness of scheduling algorithms when employed by

planners. Finally, we note methods for computing optimal scheduling policies and for

approximating the chance constraint. The latter extension sacrifices a small amount of

solution space for potentially large gains in runtime.
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8.1 Thesis summary

The overall advance of this thesis is to enable dynamic scheduling of temporal plans with

bounded-risk guarantees. Previous work in chance-constrained scheduling only offered

static schedules. Conversely, STNU models of scheduling have well-developed theory for

dynamic execution, but lack any notion of risk. This work can thus be seen as unifying

these two branches into a new and rich capability.

The first step in achieving this is to understand the structure and conditions of the

problem. Chapter 2 gave us several advances in this regard. First, the pSTN model was

defined by transforming the uncontrollable durations of STNUs into probabilistic durations.

To encompass arbitrary distributions and correlations for these durations, we defined a

joint distribution across the entire space of uncontrollable outcomes. Second, we adopted

Hunsberger’s notion of a STNU dynamic policy, and applied it to the pSTN outcome space.

This gives us clear semantics for executing dynamic scheduling policies on a pSTN, and

combined with the first advance, we now have likelihood densities attached to the execution

histories produced by those policies.

Finally, we separate out the notion of a temporal requirement from duration models in the

temporal network. This leads to a straightforward definition of the chance constraint, which

imposes a maximum likelihood of failing to satisfy the requirements. Again, the semantics

of this are very clear, because we can directly evaluate whether any given execution history

satisfies the requirements.

With the problem well-defined, we begin to build a tractable solution method in Chap-

ter 3. Just as we did for chance-constrained static scheduling, and consistent with virtually

every solution approach in the literature, we start by reformulating the problem into a deter-

ministic form via the concept of risk allocation. The intuition is to reduce the pSTN into an

STNU by chopping off the tails of the probability distributions, while making sure the tail

masses, aggregated via the union bound, don’t exceed the chance constraint’s risk bound.

This isolates the problem’s probabilistic condition, and allows us to directly leverage STNU

scheduling theory to address the remaining temporal requirements and duration models.

Any policy for the STNU will be a feasible solution for the original cc-pSTN, provided it is
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properly adapted to handle pSTN outcomes.

It is important to note that this decoupling introduces conservatism and reduces the

solution space with respect to the original problem. Previous works acknowledged this, but

this thesis is the first to rigorously account for the sources of incompleteness. Namely, we

explicitly map out the relationships between the policy space, the duration outcome space,

and the risk allocation space. With the exception of pathological scenarios, we argued that

the losses are likely minimal, and our analysis suggests a future roadmap for empirically

measuring the degree of conservatism.

Our algorithmic approach in Chapter 4 then takes advantage of the problem reformu-

lation by employing a hybrid approach, involving two subsolvers. First, we use an NLP

solver to process the reformulated chance constraint, giving us a risk allocation. Then, we

check the implied STNU for controllability. If it’s not controllable, we receive a negative

cycle conflict, whose resolution becomes an obstacle in the risk allocation space. Thus,

we iteratively add obstacles to our risk allocation space until we either find a controllable

STNU – and hence a policy along with it – or we’ve completely blocked out the chance

constraint feasible region.

To obtain dynamic policies, we must check for STNU dynamic controllability and

receive DC conflicts back. The difficulty is that unlike SC conflicts, which form half-

volume obstacles bounded by linear hyperplanes, DC conflicts form convex polytopes. Our

strategy for resolving them is to branch on the polytopes’ facets, each of which is a linear

hyperplane. Thus, by trying all combinations of one facet from each polytope, we reduce

our problem of generating dynamic policies into a series of problems that the static policy

algorithm can handle.

In Chapter 5, we recognized that this reduction shares common principles with the

conflict-directed approach presented in Chapter 4. Before, we were cutting down on the

risk allocation space by solving a series of STNU controllability problems. Now, we

encapsulate that in a black box, so that we can cut down on the discrete search space of

linear resolutions to DC conflicts. As we scan through the leaves of the search tree, we

solve a series of risk allocation problems, using that black box’s functionality.

This insight led us to a common architecture for producing both static and dynamic
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chance-constrained policies. The static solution comprises two layers interacting in the

traditional master-subproblem fashion, while the dynamic solution simply requires a third

layer on top to handle the combinatorial search. The middle layer acts as a passthrough for

the bottom layer’s SRNC DC conflicts, and also optionally returns its own risk allocation

conflicts for the third layer to resolve.

Finally in Chapter 7, we provided empirical evidence of the advantages of chance-

constrained dynamic policies when scheduling large plans. The primary result is that solving

dynamic policies, either with variable or uniform risk allocations, enables significantly more

scenarios to be scheduled. Compared to static policies, dynamic policies are shown to solve

problems at least 10 times larger at the same rate of success. We also observe that we

can obtain dynamic policies by expending only slightly more computational effort than

that needed for generating static policies. Thus, this is very strong validation of advancing

chance-constrained scheduling from static to dynamic policies.

Lastly, we demonstrate that our conflict-directed approach for static policies is typically

10 times faster than solving a full encoding. While it was impractical for us to implement

a full encoding for chance-constrained dynamic policies, the fact that our dynamic policy

algorithm had similar runtimes as our static algorithm strongly suggests that we would see

similar or greater gains in the dynamic case.

8.2 Multiple chance constraints

We formulated our main problem, Problem 2.20, with a single chance constraint that

applies to all the requirements of a pSTN. It is natural to consider, though, defining multiple

chance constraints, each over a chosen subset of the requirements. This would allow us

to prioritize the likelihood of satisfying the certain requirements, or bundles of them, over

others. There is precedent for such prioritization in other chance-constrained contexts,

such as path planning For example, Blackmore [7] and Ono [46] present scenarios where

remaining in a designated “safe zone” throughout the path is more important than visiting

certain waypoints along the way.

In our spaghetti example from Figure 2-5, perhaps our recipe’s most important step is
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to not let the pasta sit for too long after being strained, or else the strands begin to clump

together. Therefore, we might apply the 2% chance constraint to that [0, 2] requirement only,

while specifying a more relaxed 5% chance constraint over the remaining requirements.

From the user’s perspective, this means the other deadlines are more likely to fail than that

particular one. So we (and we hope the customer, too) are willing to sacrifice a bit of timely

service to avoid compromising the integrity of our recipe.

From our algorithm’s perspective, multiple chance constraints are also advantageous

in increasing the solution space of policies. In our example, the 2% risk bound needs to

be allocated now only to any probabilistic durations that could influence the satisfation of

the [0, 2] requirement after straining the spaghetti. Intuitively, we can deduce that only the

durations outcomes of the boiling spaghetti and heating sauce activities could threaten it.

This is because the requirement is defined on a wait activity that represents the merging of

the boiling thread with the heating thread. However, the bake meatballs activity’s duration

has no effect on this [0, 2] requirement, because that happens on a third thread that is still

independent by the time these two have merged.

What this illustrates is that by specifying a chance constraint on a local portion of the

plan, we don’t have to allocate its risk bound to non-relevant activities. Thus, we can be

more aggressive in removing the distribution tails on the relevant activities. This leads to

an STNU with less uncertainty, and is therefore more likely to admit a scheduling policy.

Meanwhile, the additional 5% chance constraint also relaxes our problem. Since it involves

the overall deadline, we can see that all three probabilistic durations are included in its risk

allocation. However, previously we had to allocate 2% risk over all three durations, so this

is still a looser condition.

To adapt our algorithm to handle multiple chance constraints, then, the key additional

reasoning we need is to identify the relevant durations for allocating each risk bound. That

is, based on the semantics of pSTN dynamic execution according to any policy, which

probabilistic durations could affect the satisfaction of that requirement? This is where

the value of distinguishing requirements from activities becomes apparent. Based on the

semantics of pSTN dynamic execution, we can evaluate whether a requirement is satisfied

or not by the time that both events it relates have been executed. It follows that we should
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trace the activity threads that led to those events being executed, and collect the probabilistic

durations along the way.

There is a nuance, though, and hence why fully handling multiple chance constraints

requires additional treatment. In our example, suppose that prior to the plan’s start event,

we inserted an additional thread of “preparation” activities, such as taking the meatballs

out of the freezer and waiting for them to thaw. If that thread had probabilistic durations,

then those should not be included when allocation risk for our 2% chance constraint after

straining. This is because the boiling and heating threads that our [0, 2] requirement depends

on were forked simultaneously from the original start event of the plan. Thus, anything

before that start event is also irrelevant to satisfying the requirement in question. Since plan

in general can have arbitrary forking and merging of threads, designing an algorithm that

accurately identifies the relevant activities is nontrivial.

To close this discussion, we note that for large plans, defining local chance constraints

is extremely advantageous, because it allows us to have a notion of “rolling risk” rather

than global risk for the entire plan duration. We saw this in our experiments in Section 7.1,

where the portion of scenarios solved dropped as the plan size increased. In large part, this

was because we were trying to allocation the same 10% risk bound over increasingly many

probabilistic durations. If we had local chance constraints, then we would have been able to

maintain the same rate of risk as we continue to install additional satellite dishes. Then, any

drop in the portion of scenarios solved would be due to the additional ordering restrictions

as we add more astronauts to the team.

8.3 Incremental scheduling

When planners make use of scheduling algorithms, they usually step through several can-

didate plans, and call the scheduler on each. For instance, this strategy is used by both the

Kirk [52] and tBurton [70] [71] planners. In such contexts, the candidate plans represent

alternative arrangements of activities to achieve the planning goals. These alternatives

usually differ from each other only in a few portions, and they share the same structure in

the rest.
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This can be seen in the scenarios from Section 1.1. For the movie example, we are

deciding between two options. However, the choice doesn’t happen until we reach Park

Street station, when we can either wait for the transfer, or make the rest of the trip on

foot. Either way, we still have to take the Red Line from Kendall to Park Street. In the

oceanography scenario, our nominal plan may be to chase after the AUV first. But we also

have to consider the alternative plan where we stop chasing after the tether runs out, and we

have to switch to recovering the ROV first.

Such use cases demonstrate that when the planner calls the scheduler on a modified plan,

it would be valuable for the scheduler to consider the shared structure, rather than compute

a solution entirely from scratch again. This is known as incremental scheduling, in the

sense that the input to the scheduling problem is a modification to an existing plan, rather

than an entirely new plan. It is also the case that sometimes plans need to modified during

execution, due to unexpected disturbances or new information. Again, the modifications

are usually localized, so incremental recalculation of the policy would be desired.

Efficient incremental scheduling solutions already exist for both STNs [52] and STNUs

[51] [45]. Therefore, it is natural to try to extend that capability to pSTNs as well. Our

cc-pSTN scheduling solution already relies on existing non-incremental algorithms for

checking STNU controllability, so there might be value in swapping in the incremental

variants. However, we handle the chance constraint by solving an NLP, which is entirely

absent from STN and STNU algorithms. Thus, we would have to develop an incremental

strategy to avoid constructing the NLP from scratch.

For insight, we look to how existing incremental scheduling solutions work [9] [24].

When checking STNs for consistency, the underlying data structure is a single-source

shortest-paths (SSSP) tree constructed by Bellman-Ford. When an STN constraint is

tightened, its effects are only felt downstream. Conversely, when a constraint is loosened

or relaxed, it affects the SSSP computation only if it was part of a shortest path. In either

case, we can derive a set of rules for invalidating certain portions of the SSSP tree and

recomputing just those portions. Incremental dynamic controllability for STNUs operates

on similar principles, just with slightly more complex rules to determine invalidation [51].

For cc-pSTNs, then, the question for incremental solving is what portions of the internal
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NLP should get invalidated. Recall that the NLP consists of a reformulated chance constraint

plus a collection of (selected) linear constraints, representing cycles or paths in the implied

STNU’s distance graph. So in brief, the answer is that when a pSTN constraint gets

tightened, if that constraint corresponds to a distance graph edge that participates in one of

those linear constraints, then that linear constraint gets tightened as well, so it is safe to keep

it in the NLP. However, if a pSTN constraint is removed, then its associated distance graph

edges no longer exist. Therefore, any linear constraints that rely on those edges should be

removed from the NLP.

This is only a broad overview, and there are edge cases to consider. However, once the

main principles are understood, it seems the solution would be relatively straightforward.

As a final point, we note that using a black box NLP solver forces us to reinitialize its input

every time we call it. If there were a way to call the solver with “warm starts”, or to reuse

its internal data structures, we might realize further incremental gains. This would also be

useful for our current non-incremental algorithm, since we are typically only adding new

linear constraints or swapping a few out between calls.

8.4 Optimization and approximation

The last two extensions we present have already been developed for chance-constrained

static policies. In this section, we summarize how they work, and how one might adapt

them to our algorithm for dynamic policies.

The first extension is to produce not just any policy that satisfies the chance constraint, but

an optimal one with respect to some objective function. For instance, a common objective is

to minimize the total duration of a plan, known as the makespace. Considering our restaurant

spaghetti example, instead of having an overall 15 minute deadline requirement, we could

turn it into a [0, 𝐷] constraint, where 𝐷 is a variable representing the makespan, and try to

minimize 𝐷 in our solutions.1 Keeping the [0, 15] requirement would be redundant, because

whatever value we find for 𝐷 in the solution, that determines whether we would have been

able to meet the 15 minute deadline.

1The logical evolution of your restaurant’s signature dish is to mass-produce it as a frozen dinner. Your
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We could also set objectives on the internal coordinating throughout a plan. In our

lunar construction scenario, we could insert extra activities that model the idle times as

astronauts queue up to confirm their satellite dish installations, and specify their sum total

as the objective to minimize. Finally, we could always elect to minimize total risk, instead of

bounding it by a chance constraint. However, we could still have local chance constraints that

enforce minimum levels of safety (i.e., maximum acceptable risk) on certain requirements.

Optimal static policies were first demonstrated by Fang [20] in the full encoding ap-

proach. Since it calls the NLP solver just once, and such solvers already accept objective

functions, it was natural to include an objective with the compiled constraints. Subsequent

work by Wang [69] focused on developing the conflict-directed approach for satisfying the

chance constraint, and did not include an objective.

Recently, though, optimization has been incorporated into the latter approach [68]. The

key result is that rather than include the objective function on every call to the NLP solver,

include only once a feasible solution has been found. In other words, run the original

conflict-directed algorithm, but rather than exit when a feasible solution is found, continue

to perform rounds of risk allocation and conflict discovery, now with the objective included,

until no more conflicts are discovered. This strategy allows us to converge to a feasible

solution quickly, without wasting energy upfront optimizing in regions of the risk allocation

space that are likely to be cut out anyway.

Adding an objective function to the NLP works well in the static case, because the

constraint program only ever collects additional linear constraints. In the dynamic case,

the NLP is partially governed by the linear disjuncts selected by Level 3’s branching.

Thus, when Level 3 backtracks, constraints in the NLP can be swapped out for others, and

feasibility is no longer guaranteed. Therefore, when incorporating an objective function

into our dynamic policy algorithm, unless we include it with every call to the NLP solver,

there are nuances in deciding when to include it, and that is the topic of futurer work.

The second extension addresses our current need to call an NLP solver, which we’ve

noted is by far the dominant factor in runtime. Santana derived a linear overapproximation

of the risk taken by removing the tails of durations’ distributions [50]. This allowed

job is now to churn out as many of these as you can, which means executing the recipe as fast as possible.
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him to rewrite the reformulated chance constraint as a tighter linear constraint, and hence

transform the NLP into a pure LP. LP solvers are generally much faster than NLP solvers,

so that even though Santana implemented the full encoding with this linearly approximated

chance constraint, it still outperformed the Wang’s conflict-directed approach by typically

two orders of magnitude.

Unlike an objective function, which is imposed on top of the constraints in our constraint

program, the reformulated chance constraint is an essential component of every call to the

solver. Thus, employing Santana’s linear approximation in our conflict-directed hybrid

algorithm would be a straightforward replacement in both the static and dynamic cases. We

could expect similar improvements in runtime, which would be valuable for solving even

larger problem instances. There are a couple limitations to be aware of, though.

First, the method requires the probability density function (PDF) of each duration’s

distribution to be unimodal, and we’ve already argued on page 64 that this is typically a very

reasonable modeling assumption. The approximation itself works by turning vertical slices

of the PDF into thin rectangles. Having a unique mode (or even a plateau) ensures that

rectangles on either side of it will cover the slices’ entire areas. The linearized constraint

is then formed with variables specifying where the slicings occur. It follows that the more

slicing variables we include, the tighter the approximation.

The two tradeoffs, then, are that we replace the NLP with an LP, while likely intro-

ducing many more auxiliary slicing variables, and also increasing conservatism due to the

overapproximation. We can reduce the conservatism by adding more slices, but we’ll get

diminishing returns, and eventually overwhelm the LP. These tradeoffs should be studied

empirically, so that users of this method can have an expectation of how to calibrate their

linearized approximation.
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