
On Improving the Acquisition and Reconstruction Of

Spatio-Temporal Magnetic Resonance Imaging

by

Siddharth Srinivasan Iyer

S.B., University of California Berkeley (2017)
S.M., Massachusetts Institute of Technology (2019)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2022

© Siddharth Srinivasan Iyer, MMXXII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly
paper and electronic copies of this thesis document in whole or in part in any medium

now known or hereafter created.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

August 26, 2022

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Kawin Setsompop

Professor of Radiology and Electrical Engineering, Stanford University
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students



2



On Improving the Acquisition and Reconstruction Of
Spatio-Temporal Magnetic Resonance Imaging

by
Siddharth Srinivasan Iyer

Submitted to the Department of Electrical Engineering and Computer Science
on August 26, 2022, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Magnetic Resonance Imaging (MRI) is a non-invasive but slow imaging modality that provides unparal-
leled flexibility in acquiring multiple forms of soft-tissue contrast. Recently, there has been a lot of interest
in mapping the inherent magnetization properties of the underlying human tissue and in temporally re-
solving the acquired data. Broadly classified as spatio-temporal MRI, these methods yield unprecedented
details of the human anatomy and function, improving clinical diagnostic performance and prognosis.
However, such methods are inherently high-dimensional, resulting in encoding-intensive data acquisi-
tion processes and computationally-intensive reconstructions. This begets long acquisition and recon-
struction times, making such methods difficult to integrate into clinical workflows. This thesis aims to
improve the acquisition and reconstruction times of spatio-temporal MRI to enable its use in clinical and
neuroscientific setting.
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1: Introduction

Magnetic Resonance Imaging (MRI) is a non-invasive but slow imaging modality that provides unparal-
leled flexibility in acquiring multiple forms of soft-tissue contrast. Advances in MRI are moving the field
towards using data acquisition across multiple spatial-temporal dimensions with high-density receiver
coils. These methods yield unprecedented details of the human anatomy and function, improving clini-
cal diagnostic performance and prognosis. However, such methods are inherently high-dimensional, re-
sulting in encoding intensive data acquisition processes and computationally expensive reconstructions.
This begets long acquisition and reconstruction times, making such methods difficult to integrate into
clinical workflows. With the advent of these imaging applications comes the comes the need to develop
techniques for more efficient data encoding and image recovery.

The process of image acquisition and reconstruction, and the challenges mentioned above, can be
viewed through the lens of the following regularized linear inverse problem.

argmin
x

1

2
∥Ax −b∥2

2︸ ︷︷ ︸
Data Consistency

+λg (x) (1.1)

Here, A is a linear function that models how the underlying image x propagates through the acquisition
process to become the acquired data b. Encoding optimization can be described as the architecting of the
data measuring process so that the resulting A matrix is better conditioned and more accurately models
how to image gets mapped to the acquired data. The consequent minimization of the “Data Consistency”
(DC) term in the objective function leverages the better encoding of A to ensure that the reconstruction
more closely describes the acquired data. This DC term is often augmented with a regularization function
g that enforce priors on the image during reconstruction, where the regularization value λ controls the
strength of the prior with respect to the DC term. This is done to aid reconstruction when the acquired
data is corrupted by noise and/or the A matrix is not injective or ill-posed.

The large acquisition matrix A of MRI makes gradient-based algorithms the go-to methods for solving
(1.1). In particular, iterative proximal gradient techniques have seen wide spread adoption due to their
ease-of-use and theoretically optimal properties. However, these algorithms are adversely affected by the
distribution of eigenvalues of A∗A, which translates to slow iterative convergence and long reconstruction
times. This is particularly true for spatio-temporal MRI applications.

Note that in the above context and for the rest of the thesis, “time-resolved” is not related to real-time
acquisitions, but rather the recovery of the magnetization temporal dynamics of the underlying human
tissue.

Outline

This thesis aims to enable to robust clinical translation of spatio-temporal MRI by jointly considering both
the acquisition and algorithmic reconstruction for overall faster acquisition and reconstruction times.

Chapter 2 provides a brief background of the topics covered in this thesis, and is split into four sections
that attempts to partition the topics covered in this thesis for ease of reference. In particular, the first
paragraph of the following chapters lists which of the four sections are “prerequisites” (used very loosely)
and “recommended readings” to hopefully aid the readability of this thesis.

Chapter 3 studies the iterative proximal gradient methods typically used to solve (1.1), and proposes

9



a generalizable polynomial-based preconditioner to accelerate iterative convergence, resulting in faster
reconstruction times. While focused in MRI reconstruction, this method is highly general and can be
applied to various imaging applications of interest.

Chapter 4 further reduces reconstruction times by using deep-learning to jump-start the above iter-
ative algorithm. This initialization approach is synergistic in that the iterative algorithm guards against
deep learning hallucinations while still leveraging the fast processing times of machine learning to reduce
the required number of iterations of the reconstructions. This chapter also discusses practical challenges
that come with deploying spatio-temporal MRI methods to the clinic.

Chapter 5 switches gears into the optimizing the MRI encoding. This chapter studies a specific spatio-
temporal MRI method that reconstructs a time-series of images at multiple clinical contrasts, and aug-
ments it with an improved encoding technique that better utilizes the MRI receive channel information
to reduce the acquisition time.

Lastly, Chapter 6 presents an ultra-fast unified, rapid calibration acquisition process termed Physics
Calibration (PhysiCal). This uses carefully designed sampling across the temporal dimension for robust
and accurate recovery of physics-based parameter maps, which enable the better modeling of A in (1.1)
for improved accuracy of spatio-temporal MRI.

10
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Assumptions and Conventions

Unless otherwise stated, the following conventions and assumptions hold true for all the following dis-
cussions.

• Complex numbers are always the underlying field and vector space.

• The assumed vector spaces are always finite dimensional.

• 〈·, ·〉 denotes standard Euclidean complex inner product.

• Given a linear function A, its adjoint is denoted as A∗.

• The normal operator of a linear function A is denoted A∗A.

• ∥·∥p denotes the standard Euclidean lp−norm.

• ∥·∥p→p denotes the induced lp−norm.

• Unless otherwise stated, the l2−induced norm of a linear function A is unitary. That is to say,

∥A∥2→2 = 1.
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2: Background

This chapter provides a succinct introduction to the topics considered in this thesis. First, the framework
of linear inverse problems is discussed along with typical optimization methods used to solve the same.
Next, a brief overview of MR acquisition is presented, followed by an overview of MR reconstruction as a
linear inverse problems.

2.1: Linear Inverse Problems

Computational sensing applications, particularly in imaging, perform reconstruction by solving an opti-
mization problem that enforces the result to be consistent with the acquisition model and the measured
information [21, 36]. When the measurement process is linear, the formulated optimization problems
are commonly denoted “Linear Inverse Problems”. If x is the true underlying signal and A is the linear
acquisition process, the acquired data b is modelled as follows:

Ax = b (2.1)

The linear function A that models the acquisition process is often referred to as either the “forward
model” of the application, or the “measurement matrix”. If A is injective, the image can be reconstructed
using simple linear inversion. However, in practice, reconstructing this is not desirable as there are nu-
merous factors that, if not accounted for, may yield sub-optimal results. Some examples include:

1. The linear measurement function A is not injective, resulting in many possible solutions to (2.1).

2. The measuring process is noisy, which is reflected in measurement vector b.

3. The linear function A is ill-conditioned, in that the ratio of its largest and smallest non-zero sin-
gular value is high, resulting in a linear inversion process that is highly susceptible to numerical
perturbations.

The process of matrix inversion is also typically expensive for large problems, as is the case in MRI.
In practice, the reconstruction problem is posed as an ordinary least squares problem and is solved

using iterative first-order algorithms such as Gradient Descent (GD) and Conjugate Gradient (CG) [47, 98,
91].

argmin
x

1

2
∥Ax −b∥2

2 (2.2)

If the A matrix is not injective, there are many solutions to (2.2), and it is common practice to use the re-
construction with the minimum l2-norm as the result. This can be calculated by either using the pseudo-
inverse of A∗A, or initializing iterative methods like CG and GD with the zero vector [43].

That being said, it is often not the case that solving (2.2) with the minimum l2−norm solution is the
optimal reconstruction. Many applications, particularly in sensing and imaging, have found success is
enforcing alternative priors to perform better reconstruction. These problems, broadly classified as regu-
larized linear inverse problems, solve the following program instead to perform reconstruction.

argmin
x

1

2
∥Ax −b∥2

2︸ ︷︷ ︸
Data Consistency

+λg (x) (1.1 revisited)
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The least squares segment in (1.1) is colloquially referred to as “Data Consistency” (or DC) as it is the
component of the objective that enforces the reconstruction to be consistent with the measured data b.
g is a convex regularization function that enforces a prior that is dependent on the application. Common
examples include the l2−norm, where g (x) = ∥x∥2

2, which helps reduce the sensitivity to numerical per-
turbations when solving (2.2), and the l1−norm, where g (x) = ∥x∥1, which helps enforce sparsity priors
on the reconstruction.

Unless otherwise stated, this work assumes without loss of generality that,

∥A∥2→2 = 1 (2.3)

This is because (1.1) can always be divided by the maximum eigenvalue of A∗A (estimated using Power
Iteration) without affecting the reconstructed result.

2.2: Iterative Proximal Algorithms

This section will discuss how regularized inverse problems as in (1.1) are solved using a class of optimiza-
tion algorithms called iterative proximal methods with [76] used as the main reference. These algorithms
have seen wide spread adoption in various imaging and applied mathematics fields due to their general
applicability and high level of abstraction, particularly for large dimensional applications where matrix-
free1 implementations of the linear function A are leveraged.

Given a closed, proper convex function g , its proximal operator is defined as follows:

Definition 2.1: Proximal Operator

proxαg(v) =
{

argmin
x

1

2
∥x − v∥2

2 +αg (x) (2.4)

This proximal operator can be used to solve optimization algorithms of the form (1.1), with arguably
the simplest algorithm being Proximal Gradient Descent (PGD) [76]. With the assumption that the in-
duced norm of A is unitary, the PGD algorithm to solve (1.1) is listed as Algorithm 2.1.

Algorithm 2.1: Proximal Gradient Descent [76]

Inputs:

� forward model A

� measurements b

� Proximal operator: proxλg

� x0 = 0

Step k: (k ≥ 0) Compute
xk+1 = proxλg

(
xk − A∗ (Axk −b)

)
(2.5)

Perhaps the most prolific example of using proximal operator to solve (1.1) is when g is the non-
smooth l1-norm, in which case its proximal operator is the Soft-Thresholding operator. In fact, PGD with
the soft-thresholding operator is so ubiquitous that it is often referred to instead “ISTA”, or the iterative
soft-thresholding algorithm. Please see [76, 4] and references therein for more information.

Other than the simplicity of implementing PGD (Algorithm 2.1), one of its main benefits is that it is
relatively easy to test different possibly non-smooth regularization functions g as long as its proximal
operator can be evaluated. PGD will always leverage the smoothness of the DC cost to at least achieve
sub-linear global rate of iterative convergence [4].

Before proceeding, it is worthwhile to briefly mention some properties of proximal operators that will
be leveraged in the sequel. With respect to the optimality, the stationary point of the iterations (2.5) is a
solution to (1.1)[76]. This is stated as Theorem 2.1.

1Matrix-free implies the individual entries of A, or the coefficient matrix, are not stored explicitly in memory thus saving signifi-
cant computational resources. Instead, the matrix-vector products of A and A∗ are calculated on the fly.
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Theorem 2.1: Fixed Point Iteration of PGD [76]

A solution x⋆ is the optimal solution to (1.1) if and only if

x⋆ = proxλg

(
x⋆− A∗(Ax⋆−b)

)
(2.6)

Another useful property of proximal operators that will be utilized in the sequel is the firm non-
expansiveness property, listed as Lemma 2.1.

Lemma 2.1: Firm Non-Expansiveness Property [76]

For all x, y ∈Cn ,
∥proxλg (x)−proxλg (y)∥2 ≤ ∥x − y∥2 (2.7)

Lemma 2.1 can be used to derive a simple proof that PGD will eventually converge.

Theorem 2.2: Convergence of Algorithm 2.1

When solving (1.1), assuming a solution exists, Algorithm 2.1 will always converge.

Proof. Let x⋆ be the solution and ek = xk − x⋆ be the error over iterations. Subtracting (2.5) with
(2.6), taking the l2−norm on both sides and utilizing Lemma 2.1 yields:

∥ek+1∥2 ≤ ∥(I − A∗A)ek∥2 (2.8)

The sequence {∥ek∥2} is a non-increasing sequence that is bounded below, thus the monotone
convergence theorem applies.

A natural extension of Theorem 2.2 is that upper bound on the degree of improvement between itera-
tions has a natural interpretation with respect to the spectrum of A∗A.

Lemma 2.2: Spectral Interpretation of PGD

Consider ek as in (2.8). Splitting ek into sk + tk where sk ∈ null(A) and tk ∈ null(A)⊥ results in:

∥ek+1∥2
2 ≤ ∥(I − A∗A)tk∥2

2 +∥sk∥2
2 (2.9)

Therefore, the decrease in error of tk is upper-bounded by the eigenvalue spectrum of I − A∗A.
This bound is strict when A∗A is injective.

If A∗A is badly conditioned in that the smallest non-zero eigenvalue is significantly smaller than one,
the component of the error vector ek (as defined in the proof of Theorem 2.2) that corresponds to that
small eigenvalue suffers from slow convergence.

This thesis focuses the Nesterov accelerated variant of PGD called FISTA [4, 70] as it enjoys theoret-
ically optimal iterative convergence and thus generalizes well to most cases. That being said, no one
algorithm is best suited for every imaging problem, and there are numerous algorithms to look into that
may leverage application specific properties to be more performant. Examples of algorithms to look into
are ADMM [76], PDHG [19] and many more. In applications where the regularization (g ) is cognate to the
l1−norm to enforce sparsity, Iteratively Re-Weighted Least Squares (IRWLS) [36, 29, 107, 20] are also well
worth consideration.

To improve the iterative convergence over PGD, FISTA [4, 70] smartly chooses different point zk (in-
stead of xk ) to evaluate (2.5). Listed as Algorithm 2.2 is FISTA (with βk proposed in [18]) to solve (1.1).
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Algorithm 2.2: FISTA[4] (βk from [18])

Inputs:

� forward model A

� measurements b

� Proximal operator: proxλg

� x−1 = x0 = 0

Step k: (k ≥ 0) Compute

xk+1 = proxλg

(
zk − A∗(Azk −b)

)
(2.10a)

βk = k/(k +3) (2.10b)

zk+1 = xk +βk (xk −xk−1) (2.10c)

2.3: MR Physics

This section will provide a brief overview of the physics used in MRI, using [71] as a foundation. The
Fourier acquisition of MRI and the temporal dynamics of the underlying signal are discussed.

2.3.1 Spin Dynamics

Atoms with an odd number of protons and/or neutrons posses non-zero spin angular momentum, and
consequently have a non-zero magnetic dipole movement. This property is present in Hydrogen atoms,
which constitute a large percentage of the human body’s composition in the form of water molecules. In
the presence of a strong directed external magnetic field, denoted B0, most of these magnetic moments
align and produce a net magnetic field in the same direction as B0, with more moments aligning with
stronger fields. By convention, the direction of B0 is the z−axis and is called the longitudinal direction,
while the perpendicular x y−axes is called the transverse plane. The net magnetization vector, M , also
experiences precession at frequency ω0 = γB0, where γ is the Larmor frequency and is an intrinsic prop-
erty of an atom species. This is depicted in Figure (2-1)(A), where M0 represents the magnitude of net
magnetization vector.

This magnetization M can be manipulated through the use of radio frequency (RF). RF pulses played
at frequencyω0 along the transverse plane (x, y) excite or “tip” the magnetization M away from the z−axis,
and the strength and duration of the RF pulse determines the angle of rotation. Figure (2-1)(B) depicts a
90◦ rotation, where an RF pulse is played to tip M onto the transverse plane.

The magnetization vector M can be considered in terms of two components: the transverse vector
Mx y on the x y−plane, and the longitudinal vector Mz . Mx y continues to precess around the z−axis, and
the changing magnetic field induces an electric current in receive coils due to Faraday’s Law. This is the
source of the MR signal.

Image contrast in MRI comes from the rate at which M returns to equilibrium, where M is aligned
parallel to B0 along the z−axis. The rate at which Mx y returns to 0 and Mz returns to M0 are parameterized
by the so-called T2 and T1 values respectively, where

Mx y = M0e−t/T2 and Mz = M0
(
1−e−t/T1

)
(2.11)

This is illustrated in Figure (2-1)(C). The intrinsic temporal dynamics allows MR to target particular con-
trasts based on (T1,T2) signal recovery, which differs between tissue types, through scan timing and RF
pulse design.

2.3.2 Fourier Modeling

While the rotating transverse magnetization Mx y is able to produce a detectable signal, additional spatial
encoding is needed to obtain an image. This is achieved by differentiating signal from different spatial
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Figure 2-1: (A) In MRI, the magnetization vector M of Hydrogen atoms in the body align with the strong
external B0 field along the z−direction. M , of magnitude M0, experiences precession at frequency ω0 =
γB0, where γ is the Larmor frequency and is an intrinsic property of atoms. (B) An RF pulse played at ω0

along the transverse plane (x, y) with a particular amplitude and duration will tip or rotate M onto the
transverse plane (x, y). (B) depicts a 90◦ rotation. Note that M will still precess at rate ω0. (C) Over time,
M slowly returns to the thermal equilibrium depicted in (A). The transverse component, Mx y decays over
time according to parameter T2. Mz recovers over time according to parameter T1. The time recovery
curves are described in (2.11).

locations through the use of linear gradient fields that vary the net magnetization in the z−direction as
a function of spatial position (x, y, z). Let B(t , x, y, z) denote the net magnetization in the z−direction at
spatial position (x, y, z) at time t .

B(t , x, y, z) = B0 +Gx (t )x +Gy (t )y +Gz (t )z (2.12)

Here, (Gx (t ),Gy (t ),Gz (t )) are the spatially varying linear gradient fields in the (x, y, z) directions respec-
tively. B prompts the magnetization vector at (x, y, z) to precess with frequency:

ω(t , x, y, z) = γ(
B0 +Gx (t )x +Gy (t )y +Gz (t )z

)
(2.13)

By changing the frame of reference to a rotating frame at frequency ω0 = γB0, the ω0 term in (2.13) is
dropped to simplify the following equations.

Consider the acquisition window from time t = 0 to time t = τ, where τ is small relative to the relax-
ation times implying no significant change to M . The phase, denoted φ, accumulated by the precessing
magnetization in this window is,

φ(x,y,z)(τ) = γ
(

x
∫ τ

0
Gx (t )d t + y

∫ τ

0
Gy (t )d t + z

∫ τ

0
Gz (t )d t

)
(2.14)
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Instead of the above, it is common to define (kx (t ),ky (t ),kz (t )) as follows to simplify the equation.

φ(x,y,z)(τ) = 2π
(
kx (τ)x +ky (τ)y +kz (τ)z

)
kx (τ) = γ

2π

∫ τ
0 Gx (t )d t

ky (τ) = γ
2π

∫ τ
0 Gy (t )d t

kz (τ) = γ
2π

∫ τ
0 Gz (t )d t

(2.15)

Let m(x, y, z) represents the net magnetization at location (x, y, z). The detected signal is the sum of
the magnetization vectors over all (x, y, z) locations at time τ. Let the transverse magnetization Mx y be en-
coded onto the complex plane, where the x−axis and y−axis form the real and imaginary axis respectively.
The acquired signal can then by modeled as:

M (kx (τ),ky (τ),kz (τ)) = ∑
x,y,z

m(x, y, z)e i 2π(kx (τ)x+ky (τ)y+kz (τ)z) (2.16)

Thus, the signal received at time τ represents the spatial frequency of the desired image at position (kx (τ),
ky (τ), kz (τ)). In other words, the spatial frequency representation of the underlying magnetization image
(m), called k-space, is the domain which MRI signal is acquired. Let F · represents the forward Fourier
transform. Then,

M =Fm (2.17)

Given that τ in (2.14) is smaller than typical relaxation times, it is common practice to acquire multiple
points within a time-window, denoted “readout”, for faster scan times. If the specified (kx ,ky ,kz) are
programmed to lie on a Cartesian grid, the kx direction is typically called the readout direction with one
kx line acquired during a readout.

2.3.3 Contrast in MRI

Multi-echo MRI acquisitions such as MPRAGE [68] and T2−Space [67] leverage specially designed RF
pulses to combat (T1,T2) relaxation effects and sustain the signal over a longer period of time, after which
a new sequence of RF pulses will need to be played. This reduces the overall scan time. Repetition Time
(TR) is the time window within which it is reasonable to acquire signal before a new series of RF pulses
is required to re-excite the signal. Within a TR, multiple kx lines are acquired, where the center of each
kx lines is commonly referred to as the “echo time”. Echo Spacing (ESP) is the time between each kx line,
and the number of echoes acquired in a TR is typically called the Echo Train Length (ETL) or Turbo Factor
(TF).

These timing parameters, along with the RF pulse train, largely determine the contrast of the desired
image. For example, in MPRAGE, the RF train starts with a 180◦ magnetization flip followed by a series
of small angle rotations, where a kx line is acquired after each flip. The Inversion Time (TI) is the time
between the first 180◦ flip and the middle echo (Echo number: ⌊ETL/2⌋). Along with a small TR, MPRAGE
results in images that are dominated by T1 differences within tissues. In T2−Space, the RF train is opti-
mized to sustain signal evolution over a long ETL [67] to acquire images that are dominated by T2 differ-
ences between tissues. This sequence is typically described with respect to its TR and echo time, or TE. TE
is the time between the first RF pulse to middle of the first echo, after which adjacent echoes are spaced
apart according to ESP.

When leveraging multi-echo images with Fourier encoding as described in the previous sections, the
temporal dynamics of the spins are not explicitly considered. This can cause undesirable blurring due to
k-space apodization arising from the (T1,T2) relaxation effects over the echo train.

2.3.4 Sources of Error

This section will very briefly describe a small subset of possible error sources. Fourier encoding is inher-
ently slow (in the order of minutes) making MRI susceptible to motion related artifacts. When scanning
a subject, the main B0 field is not perfectly homogeneous, which can cause inaccuracies when resolving
the image using Fourier model, such as signal dropout. Similarly, the applied RF pulse maybe spatially
varying, resulting in inaccuracies when estimating T1 values.
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2.4: MR Encoding

This section will use the linear inverse problem framework to describe how MRI acquisition is modeled
by the composition of linear operators.

2.4.1 Parallel Imaging

Real world MRI leverages several receive channels to acquire multiple views of the same underlying data.
These channels are arranged in spatially different locations around the anatomy of interest, and thus have
different “sensitivities” to the underlying signal. This performs a kind of spatial encoding in addition to
the data-redundancy introduced from using multiple receive channels. These properties can be used by
the reconstruction for either better noise performance or faster scan times.

In particular, the spatial encoding from the multiple channels enables robust image reconstruction
even when the number of k-space points acquired does not satisfy Nyquist criterion. This allows for faster
scan times as less data are acquired. Broadly described as Parallel Imaging, the two most common tech-
niques are SENSE [85] and GRAPPA [38], with many more optimized extensions such as [109, 95, 96, 92,
40]. This work will use the Parallel Imaging model described in [85, 96] as it easily integrates into the linear
inverse problem framework discussed previously.

Let S1, . . . ,Snc denote the spatial sensitivities of the nc receive channels, y1, . . . , ync be the raw k-space
data acquired from the respective channels, and m be the underlying image to be recovered. The acquisi-
tion model can be described as follows.

y1

y2
...

ync

=


M 0 . . . 0
0 M . . . 0
...

...
...

...
0 0 0 M




F 0 . . . 0
0 F . . . 0
...

...
...

...
0 0 0 F




S1

S2
...

Snc

m (2.18)

M represents the (ky ,kz ) sampling mask and F is the forward Fourier transform. Each Si is arranged as
a diagonal matrix. (2.18) is often compactly written as,

y =MFS︸ ︷︷ ︸
A

m (2.19)

In this way, MR acquisition is well modelled by (2.1), with A being the linear acquisition matrix or forward
model that maps the underlying signal m to the acquired data y .

The degree of under-sampling that can be performed is dependent on how “orthogonal” the spatial
sensitivities are to each other. In other words, the encoding-ability of S is what determines the degree
of scan acceleration. When the problem is “well-posed”, in the sense that enough k-space points are
acquired given the encoding-ability of the coil, the image m can be reconstructed using (2.2), typically
with CG.

2.4.2 Wave Encoding

In achieve further reduction in scan time, Wave-CAIPI [7] utilized additional sinusoidal (Gy ,Gz ) gradients
played during the acquisition of a readout (or kx line), as depicted in Figure (2-2).

The sinusoidal gradients results in controlled spreading in the x−direction as a function of spatial po-
sition (y, z), which in turn results in better utilization of the spatial sensitivity maps {Si }. The controlled
spreading is depicted in Figure (2-2)(B), which shows the effect of the (Gy ) sinusoidal gradient on the
image in the (x, y) plane. Here, the image voxels are spread along the x−direction, where the level of
spreading increases linearly as a function of absolute position (y). This spreading helps increase the spa-
tial distance between aliased voxels in an accelerated acquisition (with under-sampling along ky ), which
improves the conditioning of the parallel imaging reconstruction (2.19).

With respect to the forward model, the effect of the sinusoidal gradients is implemented with two
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Figure 2-2: (A) depicts Wave’s sinusoidal (Gy ,Gz ) gradients during readout. (B) depicts the controlled
spreading in the x direction as a function of (y, z) induced by the sinusoidal gradients.

additional operators, R and W , that are integrated into (2.19).

y =MFy zW Fx RSm (2.20)

Fx (·) is the forward Fourier transform along the x direction and Fy z (·) is the forward Fourier transform
along the (y, z) directions. R(·) is a resize operator that zero-pads the input image along the x direction,
and W models the x-spreading as a function of (y, z). W is an element wise multiplication in (kx , y, z), and
is constructed as follows.

W
(
kx , y, z

) = e−i 2π(Py (kx )y+Pz (kx )z)

Py (kx (t )) = γ
2π

t∫
0

Gy (τ)dτ

Pz (kx (t )) = γ
2π

t∫
0

Gz (τ)dτ

(2.21)

This inclusion of sinusoidal gradients non-trivially improves the encoding of the acquisition, allowing
for significant reductions in scan times. For example, [82] achieved 9× faster MPRAGE acquisition on a
standard 3T MRI scanner.

2.4.3 Compressed Sensing

Compressed sensing in MRI, introduced in [59, 9, 60], exploits the natural sparsity of images through
random sampling which in incoherent noise-like artifacts that can be “de-noised” through the use of reg-
ularization that promote sparsity in a transform domain. In the case of (2.19), the reconstruction problem

22



can be formulated as,
argmin

m
∥Ψm∥1

such that y =MFSm
(2.22)

Ψ is a sparsity promoting transform, and is chosen depending on the underlying application of interest.
The above problem is often reformulated as the following unconstrained problem to leverage the smooth-
ness of the DC term.

argmin
m

1

2
∥MFSm − y∥2

2 +∥Ψm∥1 (2.23)

This formulation falls in the regularized linear inverse problem category in (1.1), and is often solved
with proximal methods.

2.4.4 Spatio-Temporal MRI

Resolving the temporal dynamics of the acquisition during reconstruction yields a wealth of information,
such as a time-series images at multiple clinical contrasts and the parametric mapping of the T1 and T2

values of the underlying tissue. Additionally, by accounting for the temporal dynamics of the acquisition,
the reconstructed images are free from temporal-dynamics related image-blurring [94] as discussed in
Section (2.3.3)

However, such applications require three dimensional k-space encoding at each time-point, dramat-
ically increasing the size of the forward model A while worsening its conditioning, which necessitates
better encoding and reconstruction approaches.

This thesis focuses on spatio-temporal MRI applications that leverage partially separable functions as
described in [55], which take into account the magnetization temporal dynamics as it varies over the TR.

Let m1,m2, . . . ,mT be the magnetization image as it evolves time, where T is the number of time points.
In the applications considered in this thesis, the imaging process repeats in cycles every TR, resulting in
multiple readout lines in a single time point.

If each image is to be resolved using (2.19), the resulting problem would be posed as:
z1

z2
...

zT

=


M1 0 . . . 0

0 M2 . . . 0
...

...
...

...
0 0 0 MT




As 0 . . . 0
0 As . . . 0
...

...
...

...
0 0 0 As




m1

m2
...

mT


where As (·) =FS(·)

(2.24)

Here, i denotes the time index, with zi representing the multi-channel k-space of image mi and Mi

denoting k-space sampling at that time point. Acquiring enough samples to solve (2.24) is clinically in-
feasible due to long acquisition times. However, the signal evolutions of realistic T1 and T2 values are
observed to follow the Bloch equation, and for the tissue parameters within the range of interest, such
signal evolution is shown to be well approximated by a low dimensional linear subspace (see Figure (2-
3)). An orthonormal basis for this subspace can be incorporated into the forward model.

Let Φ be the orthonormal basis of rank tk that approximates the signal evolutions. This can then be
incorporated into (2.24) as,

z1

z2
...

zT

=


M1 0 . . . 0

0 M2 . . . 0
...

...
...

...
0 0 0 MT




As 0 . . . 0
0 As . . . 0
...

...
...

...
0 0 0 As

Φ
α1

...
αtk

 (2.25)

αi are the “coefficient” images that, when passed throughΦ, will recover the time series {mi }. In short
form, the forward model is described as:

z =MFSΦα (2.26)
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Figure 2-3: Realistic signal evolutions are generated for a particular application (in this case: MRF
[61, 15]). The ensemble of signals with different T1 and T2 relaxation values is observed to be well approx-
imated by a low-dimensional subspace, which can be calculated using the Singular Value Decomposition
(SVD).

Even with the incorporation of Φ, applications that leverage (2.26) are often still under-determined,
and consequently utilize sampling patterns with spatial and temporal incoherence akin to compressed
sensing. A regularized reconstruction (1.1) is then used to recover the underlying coefficient images {αi }.

argmin
m

1

2
∥MFSΦα− y∥2

2 +λg (x) (2.27)
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3: Polynomial Preconditioning for
Regularized Linear Inverse Problems

This chapter has section (2.1) and section (2.2) as “prerequisites”. Section (2.4) is recommended to have
better context of the results.

3.1: Introduction

In computational Magnetic Resonance Imaging, iterative proximal methods [76] have emerged as the
workhorse algorithms to solve linear inverse problems that are posed in the form of (1.1) [59, 9, 60, 58, 34].
This is arguably because:

1. These algorithms are highly generalizable as they do not impose any restrictions on the utilized
regularization function (g ) (as long as the proximal operator of (g ), defined in the sequel, can be
calculated).

2. These algorithms leverage matrix-free implementations of the forward-model A (i.e., the individ-
ual coordinates or entries of A are not known or stored in memory) for computationally efficient
processing of high-dimensional problems.

These reconstructions are typically implemented using the Fast Iterative Shrinkage-Thresholding Al-
gorithm (FISTA)[4], which enjoys theoretically optimal convergence. However, the iterative convergence
of FISTA and other iterative proximal methods is largely limited by the conditioning of A as determined by
the eigenvalues of A∗A, as discussed in Lemma 2.2. This limits the integration of MRI applications with an
ill-posed A that leverage (1.1) into clinical practice, as the ill-conditioning results in long reconstruction
times.

3.1.1 Contributions

This chapter proposes a generalizable polynomial-based preconditioner for faster iterative convergence
of regularized linear inverse problems that leverage proximal gradient methods (like FISTA). The evolu-
tion of the iterates in proximal gradient descent (PGD) [76] is analyzed and a cost function for polynomial
optimization is derived such that the optimized polynomial (p), when utilized as a spectral function, di-
rectly improves the convergence rate of PGD (and subsequently, FISTA). The proposed preconditioner P
is evaluated as P = p(A∗A). Once the polynomial is calculated, it can be applied to any application with
forward model A as long as the maximum eigenvalue of A∗A can be estimated. (Note that standard FISTA
also requires an estimate of the maximum eigenvalue of A∗A.) The proposed preconditioner does not as-
sume any structure on A, and can leverage matrix-free implementations of A∗A. Similarly, the proposed
preconditioner does not assume any additional structure on g other than that its proximal operator, de-
fined in the sequel, can be evaluated. Thus, the proposed preconditioner is highly generalizable and can
be applied to various regularized linear inverse problems of interest. In particular, the proposed method
retains the “plug-and-play” property of FISTA, and is thus an ideal candidate for integration into recon-
struction toolboxes like SigPy [74] and BART [97] whose users typically leverage proximal algorithms in an
“out-of-the-box” manner.
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3.1.2 Related Works

A polynomial-based preconditioner for accelerating the convergence of FISTA, which will be denoted
“IFISTA” in this work, was presented in [113]. IFISTA uses a polynomial with binomial coefficients to con-
struct the preconditioner by evaluating the polynomial on A∗A. In contrast, the polynomial coefficients
used in this work are obtained from optimizing a cost function derived from analyzing the error propa-
gation over iterations of PGD which, for a fixed polynomial degree, results in polynomial coefficients that
more explicitly target the improved convergence compared to the binomial coefficients used in IFISTA.
In fact, the cost function utilized in this work has a natural connection to [46], where a similar cost func-
tion was proposed as a means of accelerating the convergence of the Conjugate Gradient. While [46]
focuses explicitly on ordinary least squares without regularization and motivates the polynomial design
as a means of approximating the inverse of A∗A, this work arrives at the same cost function for polyno-
mial design, but from the completely different perspective of using PGD to solve ill-posed problems that
leverage regularization.

Jacobi-like “left-preconditioning” methods have also been proposed as a means of accelerating con-
vergence, where a matrix D is designed so that A∗D A is better conditioned. D is then incorporated into
the DC cost in (1.1) to yield the following [75]:

argmin
x

1

2
∥D1/2(Ax −b)∥2

2 +λg (x) (3.1)

For non-Cartesian MRI, these methods are typically called “Density Compensation” and have seen wide
adoption [79, 84]. Note that by defining A DCF and b DCF as D1/2 A and D1/2b respectively, (3.1) is a special
case of (1.1). Thus, general methods like FISTA, IFISTA and the proposed preconditioner can synergisti-
cally leverage such structure-based left-preconditioning.

In the intersection of computational MRI and regularized linear inverse problems, several precondi-
tioning methods have been proposed that leverage the circulant structure of A, such as in [51, 86, 105, 66].
In [75], a Frobenius-norm-optimized diagonal preconditioner for the dual variables of the primal-dual
hybrid gradient (PDHG) algorithm [19] was presented to improve convergence for non-Cartesian MRI ap-
plications. However, by utilizing explicit structure, it is unclear on whether the mentioned methods will
generalize well to an arbitrary A. This increases the barriers to entry of such preconditioning methods,
particularly for novel applications. This is particularly true for recent contrast-resolved MRI applications
[55, 61, 94, 15, 102, 45, 111, 100, 5, 48, 99, 14] with large measurement sizes and an ill-conditioned forward
operator A such as Echo Planar Time Resolved Imaging [102] and Magnetic Resonance Fingerprinting
(MRF) [61, 15, 14]. The high dimensionality and ill-conditioning of A may also result in computationally
intensive procedures to estimate the preconditioner, such as with the Frobenius norm formulation used
in [75] and circulant preconditioner design process proposed in [66].

Another advantage of FISTA, IFISTA and the proposed preconditioner is that they can utilize efficient
implementations of the normal operator (A∗A), which cannot be leveraged by PDHG and [75]. For exam-
ple, non-Cartesian MRI reconstructions can leverage the Toeplitz structure of the normal operator of the
non-uniform Fourier transform to avoid expensive gridding operations [101, 35, 3]. Temporal subspace
methods such as T2−Shuffling can use the “spatio-temporal” kernel to avoid expanding into the “echo”
dimension at each iteration to significantly reduce the number of Fast Fourier Transforms needed[94].

In applications where the regularization (g ) is cognate to the l1−norm to enforce sparsity, algorithms
that accelerate Iteratively Re-Weighted Least Squares (IRWLS) [29, 36] have been proposed such as [107]
and [20]. However, since these algorithms do not use proximal operators, it limits the different types
of regularizations that can be tested without significantly modifying the chosen algorithm. For exam-
ple, should a user choose to use the algorithm proposed in [20], it is on the user to verify whether their
operator A is “diagonally dominant” and that their chosen regularization (g ) yields an easy-to-calculate
preconditioner (which is re-calculated at every outer iteration).

In the spirit of generalizability and to retain the simplicity and the “plug-an-play” benefits of FISTA,
this work compares and contrasts the iterative convergence of the proposed preconditioner against other
generalizable methods like FISTA, IFISTA and the Alternating Direction Method of Multipliers (ADMM)
[76].

For simplicity, the following analysis focuses on traditional PGD. That being said, the improved con-
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ditioning of the method naturally translates into faster convergence when using FISTA as well.

3.2: Main Result

Lemma 2.2 motivates the design of a preconditioner that minimizes the magnitude of the eigenvalues of
I − A∗A for faster convergence. The main result of this work is to modify the gradient update steps in
Algorithm 2.1 and Algorithm 2.2 using preconditioner P = p(A∗A), where p is designed in such a way that
p(A∗A) increases the contributions of the smaller eigenvalues of A∗A over iterations for faster conver-
gence.

Let p have fixed degree d , where d is a hyper-parameter that is to be tuned for the application of
interest. The coefficients of p are calculated by optimizing over (3.2), which is motivated in Section (3.3.2).

p =
{

argmin
q

∫ 1

z=0
(1−q(z)z)2d z (3.2)

The polynomial from (3.2) is then used to derive preconditioner p(A∗A) that is included in Algo-
rithm 2.1 to arrive at Algorithm 3.1. The derivation is in Section (3.3.1).

Algorithm 3.1: Polynomial Preconditioning for PGD

Inputs:

� forward model A

� measurements b

� Proximal operator: proxλg

� y0 = 0

� Polynomial p from (3.2)

Step k: (k ≥ 0) Compute
yk+1 = proxλg

(
yk −p(A∗A)A∗(Ayk −b)

)
(3.3)

Remark. The iteration variable name has been changed in Algorithm 3.1 (and the following Algo-
rithm 3.2) from xk to yk to emphasize that the preconditioner is being used.

The preconditioner is integrated into Algorithm 2.2 to get Algorithm 3.2.

Algorithm 3.2: Polynomial Preconditioning for FISTA

Inputs:

� forward model A

� measurements b

� Proximal operator: proxλg

� y−1 = y0 = 0

� Polynomial p from (3.2)

Step k: (k ≥ 0) Compute

yk+1 = proxλg

(
zk −p(A∗A)A∗(Azk −b)

)
(3.4a)

βk = k/(k +3) (3.4b)

zk+1 = yk +βk
(
yk − yk−1

)
(3.4c)
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3.3: Theory

This section will derive and theoretically analyze Algorithm 3.1, which extends to Algorithm 3.2.

3.3.1 Deriving Polynomial Preconditioning for PGD

It helps to motivate Algorithm 3.1 before discussing (3.2). To motivate Algorithm 3.1, first consider the
imaging problem posed in noise-free compressed sensing applications [36] with b ∈ range(A).

argmin
x

g (x)

subject to Ax = b
(3.5)

In practice, due to measurement errors (such as noise), the following optimization problem is solved in-
stead [36, 59, 9, 58, 34]:

argmin
x

g (x)

subject to ∥Ax −b∥2 ≤ ϵ
(3.6)

This is often re-cast as the uncontrained problem (1.1) for ease-of-computation. The Karush-Kuhn-Tucker
(KKT) conditions can be used to verify that for any ϵ, there is an appropriate choice of λ such that the so-
lutions of (3.6) and (1.1) coincide.

Let the singular value decomposition (SVD) of A in dyadic form be as follows:

A(·) =
j∑

i=1
σi 〈·, vi 〉ui (3.7)

Here, j ≤ n,1 ≥ σ1 ≥ σ2 ≥ ·· · ≥ σ j > 0 are the singular values of A, {ui } and {vi } are the left and right
singular vectors respectively, and Let p(z) be a polynomial of degree d such that p(z) > 0 for z ∈ (0,1], and
let P = p(A A∗).

P (·) =
j∑

i=1
p(σ2

i )〈·,ui 〉ui (3.8)

As an ansatz, let P
1
2 be the square root of P :

P
1
2 (·) =

j∑
i=1

[
p(σ2

i )
] 1

2 〈·,ui 〉ui (3.9)

Lemma 3.1: Injectivity of the Polynomial Preconditioning

The condition Ax = b in (3.5) is equivalently enforced by the constraint P
1
2 Ax = P

1
2 b.

Proof. The condition p(z) > 0 for z ∈ (0,1] implies P and P
1
2 are injective when the domain and

co-domain for both operators are restricted to range(A).

Lemma 3.1 motivates the following “preconditioned” formulation that has the same solution as (3.5).

argmin
x

g (x)

subject to P
1
2 Ax = P

1
2 b

(3.10)

To account for model and measurement errors, (3.10) is relaxed to the following constrained formula-
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tion:
argmin

x
g (x)

subject to ∥P
1
2 (Ax −b)∥2 ≤ ϵp

(3.11)

Note that ϵ and ϵp in the constraints of (3.6) and (3.11) respectively are likely to be different as P
1
2 is not

necessarily unitary.
Similarly to how (3.6) is recast to (1.1), (3.11) is solved by the following for an appropriate choice of λp .

argmin
x

1

2
∥P

1
2 (Ax −b)∥2

2 +λp g (x) (3.12)

Defining AP = P
1
2 A and bP = P

1
2 b, the PGD iterations to solve (3.12) and the fixed point condition

(Theorem 2.1) of (3.12) is as follows:

yk+1 = proxλp g (yk − A∗
P (AP yk −bP )) (3.13a)

y⋆ = proxλp g (y⋆− A∗
P (AP y⋆−bP )) (3.13b)

Here, y⋆ is the solution to (3.12).
To significantly simply the iterations of (3.13), the permutability of spectral functions and A∗A, listed

as Lemma 3.2, is leveraged.

Lemma 3.2: Permutability of Spectral Functions

A∗p(A A∗)A = p(A∗A)A∗A (3.14a)

A∗p(A A∗) = p(A∗A)A∗ (3.14b)

Proof. Since p is a spectral function of A, p(A A∗) and p(A∗A) can be evaluated with respect to the
singular value decomposition of A as defined in (3.7) and (3.8) to verify this result.

Incorporating Lemma 3.2 into (3.13) results in the update step (3.3) of Algorithm 3.1.

yk+1 = proxλp g (yk −p(A∗A)A∗(Ayk −b)) (3.15a)

y∗ = proxλp g (y∗−p(A∗A)A∗(Ay∗−b)) (3.15b)

Extending Lemma 2.2 to (3.15) yields the following.

Theorem 3.1: Spectral Interpretation of Polynomial Preconditioning

The error of iterates yk in Algorithm 3.1 with respect to y⋆ are upper-bounded by the spectrum of
(I −p (A∗A) A∗A).

Proof. Let ek = yk − y⋆ be the error over iterations. Subtracting the equations of (3.15), taking the
l2−norm and utilizing Lemma 2.1 yields:

∥ek+1∥2 ≤ ∥(I −p (A∗A)A∗A)ek∥2 (3.16)

Similarly to Lemma 2.2, splitting ek into sk + tk where sk ∈ null(A) and tk ∈ null(A)⊥ results in:

∥ek+1∥2
2 ≤ ∥(I −p (A∗A)A∗A)tk∥2

2 +∥sk∥2
2 (3.17)
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Remark. Solving (3.12) with FISTA and using Lemma 3.2 results in Algorithm 3.2.

3.3.2 Polynomial Design

Theorem 3.1 motivates finding a polynomial p such that I − p (A∗A)A∗A is as close to zero as possible.
As the dimensions of A are typically very large, it is not computationally feasible (in terms of processing
time) to perform an eigenvalue decomposition of A∗A to use as prior information for polynomial design.
To avoid this, the coefficients of the polynomial p is found by optimizing the continuous approximation
of the induced norm. This is listed as (3.2). The polynomial that minimizes (3.2) in-turn minimizes the in-
duced l2-norm of I −p(A∗A)A∗A in Theorem 3.1. In other words, the component tk in vi (as in (3.17) and
(3.7)) is upper-bounded by |1−p(σ2

i )σ2
i |, which according to (3.2), is minimized to be close to zero. Note

that the larger degree d of polynomial p, the better (1−p(x)x)2 (equivalently |1−p(x)x|), can approximate
the zero function.

Priors on the spectrum can be easily incorporated into (3.2) as follows:

p =
{

argmin
q

∫ 1

z=0
w(z)(1−q(z)z)2d z (3.18)

Here, w can weight the cost to prioritize certain components of the spectrum.

At first glance, minimizing the following objective instead of (3.2) is preferable as it directly translates
into minimizing the appropriate induced norm of Theorem 3.1:

p =
{

argmin
q

max
z∈(0,1]

|1−q(z)z| (3.19)

It is well known that Chebyshev polynomials of the first kind can be used to derive the optimal polyno-
mials such that the maximum absolute value of that polynomial over a specified interval is minimized.
However, defining r (z) = 1−q(z)z, and using Chebyshev polynomials to determine r yields a polynomial
with r (z) = 1 for multiple values of z ∈ [0,1] due to the constraint r (0) = 1, which implies the components
of tk in (3.17) corresponding to eigenvalues σ2 such that r (σ2) = 1 will not decrease. However, if the min-
imum non-zero eigenvalue µ = σ2

j of A∗A is known a-priori, the following polynomial minimizes (3.19)

over the interval [µ,1] (See [47, 98, 91, 46]):

r (z) =
Td+1

(
1+µ−2z

1−µ
)

Td+1

(
1+µ
1−µ

) (3.20a)

p(z) = 1− r (z)

z
(3.20b)

Here, Td+1 is the Chebyshev polynomial of the first kind of degree d +1. In practice, (3.2) is preferred as it
is often computationally expensive to estimate µ unless A∗A happens to be injective, in which case µ can
be estimated by performing power-iteration on I − A∗A.

Rather interestingly, while (3.2) and (3.19) were motivated by studying the evolution of iterates in PGD
when solving regularized linear inverse problems in the form of (1.1), the exact formulation for polynomial
optimization was studied in [46] as a means of accelerating the convergence of Conjugate Gradient for
ordinary least squares optimization, where (3.2) and (3.19) were optimized to construct an incomplete
inverse of (A∗A) to use a preconditioner.

Theorem 3.2 verifies that the positivity assumption in Lemma 3.1 is satisfied by optimized results of
(3.2) and (3.19).
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Theorem 3.2: Polynomial Positivity

The polynomial p derived from optimized (3.2) and (3.19) satisfies the constraint p(z) > 0 for z ∈
(0,1].

Proof. This is a consequence of Theorem 4 of [46].

3.3.3 Error Bound

With the simplifying assumptions that A∗A is injective and λp = λ, Theorem 3.3 bounds the difference
between the solutions of (1.1) and (3.12). Let ∥·∥2→2 denote the induced l2−norm.

Theorem 3.3: Bounding Error when using Injective Left-Preconditioner

Assume A∗A is injective, and λ=λp in (1.1) and (3.12) respectively. Let ek ,γ and δ be defined as:

ek = yk −x⋆ (3.21a)

γ= ∥I −p(A∗A)A∗A∥2→2 (3.21b)

δ= ∥(I −p(A∗A))A∗(Ax⋆−b)∥2 (3.21c)

Here, x⋆ is the optimal solution to (1.1), yk are the iterates of Algorithm 3.1 that leverages polyno-
mial p. Then, the limit of the difference, e∞, satisfies the following:

∥e∞∥2 ≤ δ

1−γ (3.22)

Proof. Subtracting (3.3) from (2.6), taking the l2−norm of the difference and utilizing Lemma 2.1
with the triangle inequality yields:

∥ek+1∥2 ≤ ∥(I −PA∗A)ek∥2 +∥(I −P )A∗(Ax⋆−b)∥2 (3.23)

This reduces to:
∥ek+1∥2 ≤ γ∥ek∥2 +δ (3.24)

As A∗A is injective, it follows that, after optimizing for P via (3.2) or (3.19), γ < 1. This in-turn
implies (3.24) converges and the limit e∞ satisfies (3.22).

For most regularized linear inverse problems, ∥Ax⋆−b∥ is small, which in turn implies the error be-
tween (1.1) and (3.12) is also small as:

δ≤ ∥I −p (A∗A)∥2→2 ∥A∗(Ax⋆−b)∥2 (3.25)

3.3.4 Implementation Details and Complexity Analysis

Prior works [113, 46] that used polynomial preconditioning utilized the matrix entries of A to explicitly
pre-calculate p(A∗A) to save computation time. Since this work aims to leverage matrix-free implemen-
tations of A, this is no longer possible. Rather, utilizing a polynomial preconditioner of degree d involves
(d + 1) A∗A evaluations per iteration, thereby increasing the per-iteration cost compared to PGD and
FISTA. However, the main benefit of the preconditioner is that, for the same number of A∗A evaluations,
the components of the iterates corresponding to the smaller eigenvalues of A∗A are more explicitly tar-
geted. To make sure this point is well reflected in the sequel, the experiments in Section (3.4) reports
convergence as a function of the total number of A∗A evaluations (and the number of iterations, which
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reflects the number of proximal operator evaluations) in addition to reporting the iterative convergence
as a function of wall time to demonstrate real world performance.

To give an example, Figure (3-1) depicts the iteration progress assuming a degree 3 polynomial op-
timized using (3.2) after 4 A∗A evaluations for Algorithm 2.1 and Algorithm 3.1, which shows that the
polynomial preconditioner aids the convergence of components corresponding to the lower eigenvalues
of A∗A at the cost of slightly slower convergence of the higher eigenvalues. In the sequel, the degree of
the polynomial is a hyper-parameter that is tuned for the application of interest.

Figure 3-1: Iteration progress of Algorithm 2.1 and Algorithm 3.1 assuming a degree 3 polynomial opti-
mized using (3.2) after 4 A∗A evaluations. The x-axis denotes the spectrum of A∗A. The y-axis denotes
the percentage of decrease of error with respect to the respective final iterates. This figure shows that the
polynomial preconditioner aids the convergence of components corresponding to the lower eigenvalues
of A∗A at the cost of slower convergence of the higher eigenvalues.

Note that for both, numerical stability and achieving (d + 1) evaluations of A∗A per iteration, it is
important to leverage the polynomial structure to reduce the number of A∗A calls when evaluating the
preconditioner. For example, consider pseudo-code implementation in Listing 3.1 that utilizes recursion.
It is assumed that “ListOfPolynomialCoefficients” returns the coefficients of p in the order:

p(x) =
d∑

i=0
c[i ]xi (3.26)

3.3.5 Interpretation and Noise Coloring

At first glance, the proposed preconditioner is similar to the left-preconditioning methods such as (3.1).
However, instead of using a diagonal matrix to weight to the entries (or coordinates) of the measurement
b, P 1/2 “spectrally” weights b. In other words, P 1/2 is a diagonal matrix with respect to the left singular
vectors of A (or {ui }). A unique consequence of this property is that, in the absence of regularization,
polynomial preconditioning result in the same solution as (1.1) and thus introduces no noise coloring.
This is not necessarily true for general left-preconditioning methods.

Theorem 3.4: Identitcal l2 Solutions Without Regularization

When λ = λp = 0 in (1.1) and (3.12) respectively, the solutions to (1.1) and (3.12) are identical as
long as both optimizations are equivalently initialized.
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Listing 3.1: Pseudo-code for Polynomial Evaluation

I = IdentityOperator ( )
N = ForwardModelNormalOperator ( )

def CreatePolynomialPreconditioner ( c ) :
i f len ( c ) == 1 :

return c [ 0 ] * I
else :

return c [ 0 ] * I + N * CreatePolynomialPreconditioner ( c [ 1 : ] )

coef fs = ListOfPolynomialCoefficients ( )
Preconditioner = CreatePolynomialPreconditioner ( coef fs )

Proof. Using (3.7) and (3.8),

x solves (1.1) ⇐⇒ σi 〈x, vi 〉 = 〈b,ui 〉
⇐⇒ p(σ2

i )
1
2σi 〈x, vi 〉 = p(σ2

i )
1
2 〈b,ui 〉

⇐⇒ x solves (3.12)

(3.27)

3.4: MRI Experiments

In the spirit of reproducible research, the data and code used to perform the following experiments can
be found at:

https://github.com/sidward/ppcs1

All reconstructions were implemented in the Python programming language using SigPy2[74]. The poly-
nomial optimizations (3.2) were performed using SymPy3 [64], with the latter leveraging an excellent
Chebyshev polynomial package available at https://github.com/mlazaric/Chebyshev4.

To verify the efficacy of the preconditioner, three varied MRI reconstructions were studied using the
unconstrained formulations (1.1) and (3.12). The Nesterov accelerated variants, Algorithm 2.2 and Algo-
rithm 3.2, were used over their respective non-accelerated counterparts. For all cases, the corresponding
measurement matrix A was normalized to have a unitary induced l2-norm, and the measurement vector
b was normalized to have unitary l2-norm. All experiments were performed on an Intel (R) Xeon Gold
5320 CPU and an NVIDIA(R) RTX A6000 GPU.

3.4.1 Parameter Selection

Before discussing the specific experiments, this section will describe the efforts undertaken to ensure that
each algorithm is portrayed in the best light.

Solving linear inverse problems posed as (1.1) and (3.12) using FISTA, IFISTA, ADMM and the pro-
posed method requires the user to specify the regularization value (for each algorithm) and the desired
number of A∗A evaluations per iteration (for each algorithm modulo FISTA). FISTA utilizes one A∗A eval-
uation per iteration. IFISTA and the proposed polynomial preconditioner, when using a polynomial d , uti-
lizes (d +1) A∗A evaluations per iteration. ADMM utilizing n A∗A evaluations per iteration implies (n−1)
conjugate gradient (CG) iterations during the inner loop of ADMM (as one A∗A evaluation is needed to

1https://doi.org/10.5281/zenodo.6475880
2https://doi.org/10.5281/zenodo.5893788
3https://doi.org/10.7717/peerj-cs.103
4https://doi.org/10.5281/zenodo.5831845
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calculate the initial residual term in the CG algorithm). IFISTA and the proposed method require addi-
tional tuning of the regularization value as argued by the introduction of λp in (3.12).

The convergence of the iterates of the respective algorithms and the quality of the converged result
are dependent on the regularization value chosen and the number of A∗A evaluations per iteration. A fair
comparison between the algorithms necessitates a search through the large parameter space of regular-
ization values and the number of normal evaluations. It is difficult to manually choose parameters based
on the observed convergence and reconstruction quality. To overcome this, the following programmatic
procedure is used to select the parameters.

1. For all algorithms, the maximum number of total A∗A evaluations is fixed.

2. The minimum normalized root mean squared error (NRMSE) achieved by FISTA (with respect to
the reference image) among all tested regularization values (λ) is noted as ϵ f %.

3. For each method, if a parameter set yields a reconstruction with NRMSE (with respect to the refer-
ence image) that is greater than (ϵ f +2)%, then that parameter set is discarded. The “+2” term was
set to account for the finite resolution of the grid search of regularization values (λ) and potential
numerical errors. This “+2” term was observed to yield qualitatively similar reconstruction to the
minimum NRMSE FISTA result for each of the following experiments. Note that the reconstruction
error achieved might be lower than ϵ f %.

4. For each method, the convergence curves (with respect to the last iterate) as a function of the ob-
served wall-time is calculated for the remaining parameter sets that satisfy the (ϵ f +2)% constraint.

5. A log-linear fitting of the convergence curves is performed, and the parameters with the most neg-
ative slope (after the log-linear fitting) is chosen to represent the method.

By selecting parameters that yield reconstructions that fall within (ϵ f +2)% NRMSE of the reference,
the reconstruction quality is assured. Given the subset of parameters, the convergence is calculated with
respect to the last iterate of the respective methods instead of the reference image to directly show-case
iterative convergence, which allows the resulting plots in the following experiments to be directly inter-
preted in the context of equations (2.9) and (3.17).

Please see Section (3.4.2) for a visual example of the parameter selection process proposed in this
section.

3.4.2 Cartesian MRI

The first experiment is a 2D-Cartesian Compressed Sensing Knee application using publicly available data
[73, 89]. The reference data was acquired using a 3D-FSE CUBE acquisition with proton density weight-
ing that included fat saturation[89] on a 3T whole-body scanner (GE Healthcare, Waukesha, WI) using an
8-channel HD knee coil (GE Healthcare, Milwaukee, WI,USA) with an echo time (TE) of 25ms and repe-
tition time (TR) of 1550ms. The field-of-view was 160mm, the matrix size was 320×320, slice thickness
was 0.6mm and 256 slices were acquired. The reference data was fully-sampled and satisfied the Nyquist
criterion. This reference data was retrospectively under-sampled by approximately R = 7.21 times using a
variable density Poisson disc sampling mask generated by BART[97].

The unconstrained reconstruction formulation (1.1) for this experiment is as follows:

x⋆ =
{

argmin
x

1

2
∥MF Sx −b∥2

2 +λ∥W x∥1 (3.28)

Here, W is the forward Daubechies-4 Wavelet transform, S is the SENSE model of the parallel-imaging
acquisition [85] estimated using [96], F is the 2D-Fourier transform and M is the Poisson disc sampling
mask.

This application was solved with FISTA, IFISTA, ADMM and FISTA with the polynomial precondi-
tioner. Each algorithm was allowed to run for a maximum of 60 A∗A evaluations. For FISTA, IFISTA and
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polynomial preconditioned FISTA, regularization values λ were varied as:

λ ∈
{

10−2

1.5k
: k = 0,1, . . . ,14

}
(3.29)

For IFISTA, ADMM and the polynomial preconditioned FISTA, the number of A∗A evaluations were varied
as:

A∗A evaluations per iteration ∈ {2,3,4,5,6} (3.30)

The number of A∗A evaluations per iteration were chosen to cleanly divide the maximum number of
A∗A evaluations for fair comparison between methods. Lastly, the regularization value from the FISTA
experiments with the least NRMSE against the reference image was used for ADMM, with the step size (ρ)
varied as:

ρ ∈
{

3k : k =−7,−6, . . . ,−1,0,1, . . . ,6,7
}

(3.31)

To give a visual example of how the programmatic selection works (Section (3.4.1)), among the λ values
tested in (3.29), the minimum NRMSE achieved by FISTA was ϵ f = 13.61%. It is observed that for FISTA,
four different regularization valuesλ achieved (ϵ f +2)% or less NRMSE with respect to the reference image.
Qualitatively, the λ = 1.73×10−4 curve achieved the fastest iterative convergence as shown in Figure (3-
2)(A). This is seen to translate to the most negative slope for the corresponding log-linear fit as shown in
Figure (3-2)(B) and is thus the parametric value chosen to represent FISTA.

For IFISTA, ADMM and the proposed method, the identical process was used (with the same (ϵ f +
2)% NRMSE condition) to choose representative regularization value and number of A∗A evaluations per
iteration.

The convergence curves of the respective methods after the programmatically chosen parameters with
respect to both, the number of A∗A evaluations and observed wall times, are depicted in Figure (3-3), and
the final iterates of the corresponding methods are depicted in Figure (3-4)

3.4.3 Non-Cartesian MRI

The second experiment is a 2D non-Cartesian variable-density spiral brain application using data that is
publicly available at the code repository5. Reference data was acquired on a 3T scanner (GE Healthcare,
Waukesha, WI) with IRB approval and informed consent obtained using 32 coils with a variable density
spiral trajectory at 1mm × 1mm resolution and a field-of-view of 220mm × 220mm. The trajectory was
designed with 16-fold in-plane under-sampling at the center of k-space and a linearly increasing under-
sampling rate up to 32-fold at the edge of k-space. The readout duration was 6.7ms. This reference data
was SVD coil-compressed to 12 coils, and then retrospectively under-sampled by discarding every other
interleave out of 32 interleaves.

The unconstrained reconstruction formulation (1.1) for this experiment is as follows:

x⋆ =
{

argmin
x

1

2
∥FSx −b∥2

2 +λ∥W x∥1 (3.32)

Here, W is the forward Daubechies-4 Wavelet transform, S is the SENSE model of the parallel-imaging ac-
quisition [85] estimated using [96], and F is the non-uniform Fourier transform. This experiment utilized
the Toeplitz structure of F∗F for faster evaluation for both (1.1) and (3.12)[101, 35, 3].

This application was solved with FISTA, IFISTA, ADMM and FISTA with the polynomial precondi-
tioner. The regularization values (λ,ρ) tested were the same as in Section (3.4.2). The maximum num-
ber of A∗A set to 80. For IFISTA, ADMM and the polynomial preconditioned FISTA, the number of A∗A
evaluations were varied as:

A∗A evaluations per iteration ∈ {2,4,5,8,10} (3.33)

The number of A∗A evaluations per iteration were chosen to cleanly divide the maximum number of A∗A
evaluations for fair comparison between methods.

5https://github.com/sidward/ppcs
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The same programmatic procedure as in Section (3.4.1) was used to select representative parameters
for each method with the best FISTA reconstruction achieving an NRMSE of ϵ f = 16.03%. The conver-
gence curves of the respective methods after the programmatically chosen parameters with respect to
both, the number of A∗A evaluations and observed wall times, are depicted in Figure (3-5), and the fi-
nal iterates of the corresponding methods are depicted in Figure (3-6). Figure (3-7) shows the utilized
trajectory in (3.32).

3.4.4 Spatio-Temporal MRI

The third experiment is a 3D non-Cartesian spatio-temporal brain application. The data were obtained
on a 3T scanner (GE Healthcare, Waukesha, WI) with IRB approval and informed consent obtained. The
reference data were acquired with 48 channel coils using a 3D MRF[61] acquisition with the TGAS-SPI
trajectory with a total of 48 groups acquired to achieve adequate 3D k-space encoding at each temporal
data point [15].

Each acquisition group contains an adiabatic inversion preparation with TI of 15ms and 500 variable
flip-angle acquisitions with TR of 12.5 ms and TE of 1.75ms, with a 1.2s wait time for signal recovery to
improve the signal-to-noise ratio, resulting in a net acquisition per group of 7.45s and total acquisition
time of approximately 6 minutes. Additionally, a water-exciting rectangular pulse with duration of 2.38ms
was used to depress the fat signal [72]. A variable density spiral trajectory with a 16-fold in-plane under-
sampling rate at the center of k-space and a 32-fold under-sampling rate at the edge of k-space was used
to achieve an encoding at 1-mm isotropic resolution with a field-of-view of 220× 220× 220mm3 with a
readout duration of 6.7 ms. This reference data was coil-compressed to 8 coils (from 48) using a combi-
nation of [49] and SVD coil compression. Retrospective under-sampling was performed to simulate a 1
minute acquisition. The data used is publicly available at the code repository6.

The unconstrained reconstruction formulation (1.1) for this experiment is as follows [55, 78, 62, 112,
94, 15]:

x⋆ =
{

argmin
x

1

2
∥D1/2 (FSΦx −b)∥2

2 +λLLR(x) (3.34)

Here, LLR is the locally-low rank constraint [94] with a block-size of 8×8×8, S is the SENSE model of the
parallel-imaging acquisition [85] estimated using [109] and F is the 3D non-uniform Fourier transform.
Note that in this case, the reconstructed x consists of multiple “coefficient” images such that Φx recovers
the temporal evolution of the underlying signal. Please see [55, 61, 94, 15, 102, 45, 111, 100, 5, 99] for more
information. (3.34) leverages structural left-preconditioning D for faster convergence. The particular
method used to derive D was [79]. Since the structural left-preconditioner (D) derived from [79] differs
between the 6-minute acquisition and 1-minute acquisition, the 1-minute FISTA reconstruction of the
data is used as a reference for fair comparison.

The inclusion of D reduces the theoretical efficacy of the polynomial preconditioner as the resulting
normal operator when solving (3.34) (i.e. A∗D A) has a much narrower eigenvalue spectrum compared
to A∗A. That being said, utilizing the polynomial preconditioner (which can be directly applied to (3.34)
thanks to its generalizability) can still be beneficial to reduce real world reconstruction times. In partic-
ular, given the same number of A∗A evaluations, the polynomial preconditioner achieves qualitatively
similar reconstruction to the non polynomial preconditioned result while utilizing fewer proximal calls.
For applications where evaluating A∗A is much faster than a proximal call (such as in the sequel), the
fewer proximal evaluations yields significant reductions in processing times.

For this TGAS-SPI-MRF application, (3.34) is too big to solve directly on even high-end GPUs without
utilizing some form of “batching” that moves data between CPU memory and GPU memory when eval-
uating matrix-vector products of A and A∗. This increases the per-iteration costs. Instead, an ADMM
formulation is leveraged to split (3.34) into two smaller sub problems, where each sub problem com-
pletely fits (that is to say, there is no need to implement any kind of batching) in approximately 20GB of
GPU memory. Each sub problem can then be solved in parallel on separate GPU devices with significantly
fewer data transfers between CPU and GPU devices.

Let (A1,b1) denote the forward model and acquired data of the first four (of eight) receiver channels,

6https://github.com/sidward/ppcs
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and (A2,b2) denote the remaining four. Sub problems f1 and f2 are defined as:

fi = 1
2∥Ai x −bi∥2

2 + λ
2 LLR(x)

for i ∈ {1,2}
(3.35)

Note that the sum of the sub problems, i.e. f1 + f2, equals the objective of (3.34). This can now be solved
using Global Consensus ADMM [76], listed as Algorithm 3.3.

Algorithm 3.3: Global Consensus ADMM [76]

Inputs:

� Sub problems { f1, f2, . . . , fN }

� ADMM step-size ρ

� x = 0

� xi = 0

� ui = 0

Step k: (k ≥ 0) Compute

xi
k+1 = proxρ fi

(
xk −ui

k

)
(3.36a)

xk+1 =
1

N

∑
i

xi
k+1 (3.36b)

ui
k+1 = ui

k +xi
k+1 −xi

k+1 (3.36c)

With f1 and f2 as the sub problems, Algorithm 3.3 can be used to solve (3.34). (3.36a) and (3.36c) can
be evaluated independently of each other in parallel on separate devices, with data movement between
CPU and GPU occurring only during (3.36b). (3.36a) yields a regularized linear inverse problem simi-
lar to (3.34), and can thus be solved with FISTA and the polynomial preconditioner. When solving this
sub problem, Ai is much faster to evaluate compared to the proximal operator of the LLR regularization,
making the proximal evaluation the bottleneck. Utilizing polynomial preconditioning allows for similar
quality reconstruction given the same number of A∗A evaluations but with fewer proximal calls, resulting
in faster processing times.

Given the size of the problem, the following experiment only considers FISTA with and without the
proposed preconditioner. The maximum number of normal evaluations was set to 40. The ADMM step
size was set to 1× 103. For both, the standard FISTA and the polynomial preconditioned FISTA imple-
mentations of (3.36a), the respective λ and λp values were qualitatively tuned for the best reconstruction
performance. The respective convergence curves when solving sub problem associated with f1 during
the first ADMM iteration is depicted in Figure (3-8), and the final reconstruction after 2 ADMM iterations
are depicted in Figure (3-9) where the polynomial preconditioning resulted in an approximately 2× faster
reconstruction.

3.5: Discussion

The polynomial preconditioner is seen to improve the conditioning of the unconstrained formulation
(1.1), resulting in faster convergence compared to standard FISTA, IFISTA and ADMM. With appropriate
tuning of λp in (3.12), the reconstructed images with the preconditioner are qualitatively similar to the
solutions of (1.1).

By utilizing the permutability provided by polynomials and linear operators, the polynomial precon-
ditioner is applied to the iterates directly instead of in the range space of A, thus significantly reducing the
computational requirements (assuming n is much smaller than m, which is often the case in computa-
tional MRI). Consequently, none of the preconditioned unconstrained reconstructions utilized any dual
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variables or an application-specific preconditioner array, resulting in comparable computational mem-
ory requirements to FISTA. Additionally, it enables the use of the faster A∗A evaluations if applicable, such
as in Section (3.4.3), which is not possible with [75].

While the proposed preconditioner does increase the per-iteration computational cost compared to
FISTA, the proposed method enables faster computation compared to FISTA even when requiring that
both methods to utilize an equal number of A∗A evaluations. This is because, on-top of the theoretically
faster convergence offered by the polynomial preconditioner (as verified by the convergence curve as a
function of the number of A∗A evaluations), utilizing the preconditioner enables fewer proximal operator
evaluations while still achieving comparable reconstruction. In particular, for the experiments showcased
in this manuscript, the proximal operator is more computational expensive compared to evaluating A∗A,
translating to significantly faster real-world performance as demonstrated by the convergence curve ver-
sus wall-time, while achieving similar reconstruction performance. The reduced number of proximal
evaluations of the proposed method will be of even more benefit for highly intensive proximal operators,
such as the structured matrix completion approaches akin to the soft-thresholding versions of [92, 40].

The generalizability of the polynomial preconditioner allows it to be used directly in a subspace recon-
struction [55, 94, 15, 78, 62, 112] without needing to explicitly account for Φ when designing the precon-
ditioner while also easily integrating the structure-specific left-preconditioning (D in (3.34)). By utilizing
A∗A to construct the preconditioner, the method inherently takes into account information from Φ,S,F
and D without user modification. That being said, the amount of the theoretical convergence benefits of
the proposed preconditioner is dependent on the spectrum of A∗A.

Looking at the convergence of iterates as a function of the number of A∗A evaluations, IFISTA per-
forms slightly worse than standard FISTA in Section (3.4.2) and Section (3.4.3). This is arguably because,
as discussed in Section (3.3.4), the IFISTA preconditioner is instead evaluated in a matrix-free manner.
In contrast, by explicitly optimizing for the faster convergence of iterates for a given degree via (3.2), the
proposed polynomial preconditioner enables faster convergence.

This work does not explore incorporating a weighting-prior into the spectral cost (w in (3.18)). It is
expected that a reasonable prior estimate of the spectrum of an operator A derived for a specific appli-
cation will significantly improve the rate of convergence for that application. However, given the large
dimensionality of A and the consequent difficulty in approximating the spectrum of A∗A, estimating a
reasonable prior w will involve trial-and-error, and is thus left to future work.

A limitation of the polynomial preconditioner is with respect to numerical stability. In principle, it is
possible to utilize a polynomial p of a high degree d . However, in practice, evaluating powers of A∗A can
accumulate numerical errors. Therefore, tuning the degree d for the application of interest is required.

The error bound presented in Theorem 3.3 is applicable to any linear operator P such that P is in-
jective on null(A)⊥. Thus, deriving a P to minimize the error bound in (3.22) is a promising avenue for
application-specific preconditioner design. For example, (3.22) can be used to upper-bound the error of
the circulant preconditioner in [66].
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Figure 3-2: This figure demonstrates how the hyper-parameters were chosen to represent FISTA. Among
the hyper-parameters tested in (3.29), the minimum NRMSE against the reference image achieved by
FISTA was ϵ f = 13.61%. The four λ values shown in (A) and (B) achieved (ϵ f + 2)% NRMSE. In order to
programmatically pick the fastest converging value between the listed four values, a log-linear fitting of
the convergence curves is performed, as shown in (B). The parameter with the most negative log-linear
slope is chosen to represent the algorithm, which in this case is the λ= 1.73×10−4 curve.
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Figure 3-3: Cartesian MRI Convergence Results. This figure depicts the convergence results of the re-
spective methods described in Section (3.4.2) given the hyper-parameters selected as in Section (3.4.1)
with ϵ f = 13.61%. Given the chosen hyper-parameters, the error over iterations with respect to the last

iteration of each respective method is plotted. The k th iteration and last iteration are labelled as xk and
x∞ respectively. The legend on the top right depicts the algorithm and the chosen hyper-parameters. The
x-axis of the top and bottom subplots denotes the total number of A∗A evaluations and measured wall-
times respectively. The circular-markings on each line denote the respective iteration points. The number
of proximal operators evaluated by a point on the x-axis is equal to the number of iterations by that point.
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Figure 3-4: Cartesian MRI Reconstruction Results. This figure depicts the final iterations of the re-
spective methods in figure (3-3) The bottom left figure, labelled “SAMPLING MASK”, denotes the under-
sampling mask used in (3.28). The hyper-parameters for these results are depicted in figure (3-3).
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Figure 3-5: Non-Cartesian MRI Convergence Results. This figure depicts the convergence results of the
respective methods described in Section (3.4.3) given the hyper-parameters selected as in Section (3.4.1)
with ϵ f = 16.03%. Given the chosen hyper-parameters, the error over iterations with respect to the last

iteration of each respective method is plotted. The k th iteration and last iteration are labelled as xk and
x∞ respectively. The legend on the top right depicts the algorithm and the chosen hyper-parameters. The
x-axis of the top and bottom subplots denotes the total number of A∗A evaluations and measured wall-
times respectively. The circular-markings on each line denote the respective iteration points. The number
of proximal operators evaluated by a point on the x-axis is equal to the number of iterations by that point.
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Figure 3-6: Non-Cartesian MRI Reconstruction Results. This figure depicts the final iterations of the
respective methods in figure (3-5). The hyper-parameters for these results are depicted in figure (3-5).

Figure 3-7: Non-Cartesian MRI Trajectory. This figure depicts the under-sampled trajectory used in
(3.32).
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Figure 3-8: Spatio-Temporal MRI Convergence Results. This figure depicts the convergence results of
evaluating (3.36a) for the first sub problem f1. Given the chosen hyper-parameters, the error over iter-
ations with respect to the last iteration of each respective method is plotted. The k th iteration and last
iteration are labelled as xk and x∞ respectively. The legend on the top right depicts the algorithm and the
chosen hyper-parameters. The x-axis of the top and bottom subplots denotes the total number of A∗A
evaluations and measured wall-times respectively. The circular-markings on each line denote the respec-
tive iteration points. The number of proximal operators evaluated by a point on the x-axis is equal to the
number of iterations by that point.
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Figure 3-9: Spatio-Temporal MRI Reconstruction Results. This figure depicts the reconstructions after
two ADMM iterations, where (3.36a) is evaluated using (top) FISTA and (bottom) Polynomial Precondi-
tioned FISTA. The hyper-parameters for these results are depicted in figure (3-8).
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4: Deep Learning Initialized
Compressed Sensing

This chapter has Section (2.1) and Section (2.2) as “prerequisites”. Section (2.4) and Section (3.4.4) are
recommended to have better context of the results.

4.1: Introduction

Recent developments in spatio-temporal MRI acquisition techniques have enabled whole-brain multi-
parametric mapping in incredibly short exam times [94, 55, 61, 15, 102, 45, 111, 100, 5, 99, 48, 14]. These
techniques leverage highly-efficient k-space encoding with subspace reconstruction (discussed in Sec-
tion (2.4)) and carefully chosen regularization to achieve high-quality reconstruction without detrimental
noise and artifact penalty despite high rates of acceleration [55, 94, 15, 102, 111, 99]. However, this comes
at the cost of long reconstruction times for high-isotropic resolution volumetric imaging cases, making
such methods difficult to integrate into clinical practice despite the high acquisition efficiency.

For example, consider the “Tiny Golden Angle Shuffling Spiral Projection Imaging Magnetic Reso-
nance Fingerprinting” (TGAS-SPI-MRF[61, 15]) volumetric acquisition, which is the target application of
this chapter. This application uses an optimized trajectory to achieve whole-brain multi-parametric map-
ping at 1 mm isotropic resolution in 1 minute of acquisition time using a LLR [94] regularized reconstruc-
tion implemented in BART [97]. With the settings of BART used in [15], the reconstruction takes around
two hours on a CPU with around 130 GB of peak RAM usage, with the large dimensionality of the prob-
lem hindering out-of-the-box GPU utilization. This computational performance is achieved after BART’s
default optimizations to improve reconstruction speed, such as FISTA method [4] for solving the LLR reg-
ularized optimization, as well as the combination of the “Toeplitz Point Spread Function” [101, 35, 3] and
the “spatio-temporal kernel” [94] to reduce the per-iteration compute time.

Section (3.4.4) represents the first attempt at improving the reconstruction speed of this application,
and this chapter explains the introduction of Density Compensation into (3.34). Assuming a parallel im-
plementation and access to 2×20 GB GPUs, the polynomial preconditioner enables a less than 15 minute
reconstruction (8× improvement) at higher quality compared to prior work [15]. However, this recon-
struction performance is achieved by leveraging multiple high-end GPUs in parallel with minimal mem-
ory transfer between devices. Typical clinical workstations do not have access to such compute hardware,
such as the 2×20 GB GPUs used in Section (3.4.4). The wide distribution of this TGAS-SPI-MRF application
requires a compute efficient reconstruction with minimal hardware requirements. Given the significant
optimizations already performed to improve the iterative reconstruction speed, reaching this benchmark
warranted the exploration of other solutions.

Concurrently with the development of fast spatio-temporal MRI acquisition, great progress has been
made in utilizing deep learning for image reconstruction for acquisitions with high rates of acceleration
[1, 41, 52, 88, 103, 42]. These methods commonly leverage an “unrolled” deep learning architecture, where
the algorithm alternates between performing network inference and enforcing a physics-based Data-
Consistency (DC) step akin to traditional iterative methods for solving regularized linear inverse problems
[9, 59, 60, 58, 62, 34]. These works fall under the “physics-driven” classification proposed by [42], and will
be referred to as such in the sequel. The integration of the DC term into these unrolled physics-driven
methods has enabled the robust application of Deep Learning based MRI reconstruction without access
to the copious amounts of training data typically required by deep learning methods [1]. These methods
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have achieved excellent reconstruction performance at significantly faster processing times compared
to their iterative convex algorithm counter-parts, which makes such frameworks a promising means of
achieving fast spatio-temporal MRI reconstruction.

However, utilizing such unrolled physics-driven methods out of the box can be challenging depend-
ing on the dimensionality of the problem of interest. To use the target TGAS-SPI-MRF application as an
example, the underlying desired signal is of dimensions 256×256×256×5, where 256×256×256 is the
matrix size of the acquisition, and 5 denotes the number of subspace coefficients (that are needed to rep-
resent the temporal characteristics of the underlying signal) [55, 99, 111, 94, 102, 15]. This, along with
using multiple receive channels and Non-Uniform Fourier Transform (NUFFT) operator (due to the Non-
Cartesian trajectory utilized in TGAS-SPI-MRF[84, 61, 15]) dramatically increases the dimensionality of
the reconstruction problem, making such unrolled physics-driven reconstructions extremely computa-
tionally challenging to train and deploy.

To give a concrete example, the current infrastructure at the Lucile Packard Children’s Hospital (Stan-
ford, CA, USA) has multiple NVIDIA (R) GPUs with memories in the range from 6 GBs to 12 GBs. Pre-
liminary exploration of leveraging multiple GPUs in parallel for image reconstruction were futile due to
the synchronization costs (likely due to the large problem size of the application), and the 12 GB GPUs by
themselves were not sufficiently large enough to utilize the unrolled physics-driven methods for the target
application when utilizing a Residual Network[44] with 3D convolutions to perform model inference.

With these constraints in mind, this work proposes Deli-CS (pronounced “delicious”), which stands
for “Deep Learning Initialized Compressed Sensing”. The goal of this framework is the rapid and highly
compute-efficient subspace reconstruction of spatio-temporal MRI acquisitions (such as TGAS-SPI-MRF)
with the goal of clinical deployment. This framework targets less than 6 GB peak GPU memory usage and
approximately 10 minute reconstruction of the 1 minute TGAS-SPI-MRF acquisition that is comparable
in quality to iterative LLR reconstruction of the same data.

While this work aims to describe a general deep learning initialization approach, prior work [37] has
been proposed for rapid whole brain MRF reconstruction. Similarly to [16], [37] leverages an MRI trajec-
tory that is not incoherent over the TRs, allowing a sliding window reconstruction to unalias the image.
[37] improves over [16] by first projecting the signal onto a low-dimensional subspace to reduce the num-
ber of NUFFT required enabling faster reconstruction. However, as shown in [15], integrating coil sensitiv-
ity and subspace into the forward model (instead of a single coil combination and subspace projection in
[37]) with incoherent sampling across TRs enables higher rates of acceleration with good reconstruction
at just 1 minute of acquisition instead of 4 minutes and 55 seconds. This integration of coil informa-
tion and subspace into the reconstruction enables better reconstruction of accelerated data at the cost of
increased computation time. The proposed Deli-CS frameworks aims to fully leverage MRI physics and
differs from [37] in the following key ways. First, it utilizes subspace and coil information to enable robust
reconstruction at high accelerations. Second, the deep learning prediction is used to initialize an iterative
reconstruction instead of being used as the output of the framework, which is expected to guard against
potential hallucinations.

Given the strict 6GB GPU constraint of the proposed framework, it is worthwhile to discuss the mo-
tivations for enforcing the same. By being GPU efficient, the proposed framework is expected to scale
well to ultra-high resolution sub-millimeter applications such as the 0.66 mm isotropic resolution “vista-
MRF” acquisition for high-fidelity whole-brain myelin-water fraction (MWF) and T1,T2 and proton den-
sity mapping on a clinical 3T scanner [57]. Additionally, enforcing a minimal amount of GPU mem-
ory for training simplifies the process of “continuous training” to update the learned model to account
for potential distribution shifts, which is an important factor to consider when deploying deep learning
methods[30, 31, 26, 25, 27].

This chapter is organized as follows: First, the traditional LLR regularized reconstruction is imple-
mented in Python using SigPy[74] in a GPU-efficient manner. This reconstruction is then augmented
with Density Compensation to achieve an approximately 30 minute iterative reconstruction, which will
be used as the baseline for comparison. Next, the Deli-CS framework is described, where a fast initial
CG-based reconstruction is fed into a neural network that attempts to predict the final reconstruction.
The training and inference are performed in a block-wise manner to significantly lower memory usage.
Finally, since that the model does not have an integrated DC term and is not unrolled (this would be
classified as “data-driven” in [42]), a “compressed sensing certification” step is proposed.
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4.2: Background

The forward model of the TGAS-SPI-MRF application is similar what was discussed in (2.24). Let the
subscript t denote the data acquired at the t th TR (or time point), with T being the total number of TRs,
and let K denote the number of coefficient images, or the rank of the low-rank subspace utilized. Then,
the acquisition operator A is as follows:

A =


F1

F2
...

FT

SΦ (4.1)

Here, Ft denotes the forward NUFFT operator at the t th TR, S denotes the SENSE[85, 96] model andΦ de-
notes the prior low-rank linear subspace with dimensions [T ×K ]. The low-rank subspace Φ is estimated
by taking the Singular Value Decomposition (SVD) of signal dictionary generated from Bloch-simulations
using the following realistic brain tissue parameters that matches prior work [15].

T1 ∈ {20,40,60, . . . ,3000} ∪
{3200,3400,3600, . . . ,500}

T2 ∈ {10,12,14, . . . ,200} ∪
{220,240,260, . . . ,1000} ∪
{1050,1100,1150, . . . ,2000} ∪
{2100,2200,2400, . . . ,4000}

The forward operation Φx recovers the TR images of the TGAS-SPI-MRF acquisition. A rank K = 5 sub-
space was deemed sufficient in capturing the signal variation as per [15]. Please see [15] for more in-
formation about the acquisition and subspace forward model formulation. A modification made to the
acquisition compared to the prior work [15] is the inclusion of a water-exciting rectangular pulse with
duration of 2.38ms to minimize the excitation of the fat signal [72].

The linear inverse problem used to solve the subspace reconstruction is as follows:

1

2
∥Ax −b∥2

2 +λ LLR(x) (4.2)

Here, λ is the regularization value and LLR denotes the locally low-rank constraint [94, 15].
[15] solved (4.2) with FISTA [4] using BART [97], which combines the Toeplitz Point Spread Function

[101, 35, 3] operator with the subspace basis Φ to derive a spatio-temporal operator that is similar to the
spatio-temporal kernel in T2−Shuffling [94] for faster evaluation of the normal operator (A∗A) to reduce
the per iteration compute time. While effective in reducing reconstruction times, utilizing the spatio-
temporal kernel requires approximately 130 GB of CPU memory, increasing the computational demand
of the reconstruction. To reduce the memory requirement, this work does not utilize the spatio-temporal
kernel and instead relies on GPU processing for calculating the NUFFT using the default implementation
in SigPy [74], and is further discussed below. For the 1 minute TGAS-SPI-MRF application considered in
this work, this achieves similar iterations per second as the reconstruction in [15] while using less overall
memory.

4.3: Methods

This work uses the Python-based SigPy [74] framework for the following experiments for its ease-of-use in
prototyping the reconstruction. That being said, the methods proposed in this work still outperform the
parameters used by the prior work [15] despite Python being a slower language than C. That being said,
the planned future work is a C-based BART implementation of the methods discussed in this work, which
is expected to provide additional speed-up due to C being a more compute-efficient language.

The sequel will first describe how the traditional LLR regularized reconstruction was optimized to
improve iterative convergence, as this is leveraged by the Deli-CS framework in the “compressed sensing
certification” step.
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4.3.1 Memory Optimization

To reduce the memory requirements of A, the following standard optimizations are made. While not novel
in itself, this subsection is presented for reproducibility’s and posterity’s sake as the following is essential
to achieve low GPU memory usage.

First, the forward model A is split into smaller blocks so that each block can be iteratively and indepen-
dently efficiently evaluated on the GPU. Second, to avoid expanding into the range space of Φ (T ≫ K ),
the commutativity of the subspace operator Φ and the NUFFT is used akin to the spatio-temporal kernel
leveraged in T2−Shuffling[94]. These two optimizations together result in the following forward model:

A(x) =∑
k,c
Φk F(1+2+···+T ) Sc︸ ︷︷ ︸

A(k,c)

xk (4.3)

Here, xk and Φk denote the k th coefficient image and the k th column of Φ respectively, and Sc denotes
the c th SENSE[85, 96] coil-sensitivity map. The individual smaller block linear operators, A(k,c), are eval-
uated one-by-one. The input to each block linear operator, xk , is first transferred to GPU memory before
applying the operator, and the resulting output, A(k,c)xk , is then transferred into CPU memory before the
sum over coils (c) and coefficients (k) is applied.

The modified linear operator proposed in (4.3) achieves a computational speed of approximately 45
seconds per iteration of FISTA[4] when solving (4.2) for 1 minute TGAS-SPI-MRF acquisition, which coin-
cidentally matches the seconds-per-iteration of FISTA achieved by BART on the CPU, while only utilizing
approximately 16 GB of peak CPU memory and 4.5GB of peak GPU memory compared to 130 GB peak
CPU memory. This was observed on a Linux workstation with an Intel (R) Xeon Gold 5320 and an NVIDIA
(R) RTX A6000 GPU. Note that this performance is expected to vary between hardware, and that a BART
implementation of the same will be faster still.

4.3.2 Density Compensation

Having achieved lower memory usage at comparable speed to the prior work[15], the next optimization
targets improving the iterative convergence of FISTA. The acquisition operator A is ill-conditioned in that
the difference between the largest and smallest eigenvalue of A∗A is large, yielding slow iterative con-
vergence. Assuming 45 seconds per iteration and 200 over-all iterations, this results in approximately
2.5 hours required to reconstruct data. To improve this, first Pipe-Menon[79] density compensation was
integrated into the optimization (4.2) as described in [3, 24, 23], yielding the following optimization:

1

2
∥D1/2 (Ax −b)∥2

2 +λ LLR(x) (4.4)

Here, D is the Density Compensation array designed to target F(1+2+···+T ) in (4.3) so that A∗D A has better
conditioning. In the block linear operator form, this becomes:

A(x) =∑
k,c

D1/2 A(k,c)xk (4.5)

Similarly to the prior section, the summing is performed in CPU memory with each block evaluated in
GPU memory.

While the inclusion of D does in principle cause noise coloring, in practice, careful tuning of the LLR
regularization value was found to provide suitable levels of denoising, resulting in high quality reconstruc-
tions in shorter times. This reflects the results discussed in [3], and demonstrates that Density Compensa-
tion can be leveraged to achieve high quality subspace reconstruction. The inclusion of density compen-
sation into the optimization formulation is seen to significantly reduce the number of required iterations,
with 40 iterations qualitatively determined to be sufficient for good reconstruction. In this work, the LLR
block size used was 8.

Using Density Compensation significantly improves reconstruction quality compared to the prior
work that used LLR [15] at much faster processing times. This is evidenced by Figure (4-1).
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Figure 4-1: This figure compares the proposed reconstruction to the prior work [15]. Including Density
Compensation (bottom row) into the linear inverse problem is seen to significantly improve the condi-
tioning of the problem, resulting in much faster iterative convergence compared to not using Density
Compensation (top row).

4.3.3 Field of View Processing

As discussed in [3], it is beneficial to reduce the matrix size of the reconstruction for lower memory usage
and faster processing times. However, forcing a smaller field of view (FOV) without accommodating for
the same is not advisable as signal from outside the FOV, particularly when the signal of interest is not
properly centered (which happens in clinical practice), can result in artifacts during the reconstruction.
For the TGAS-SPI-MRF brain imaging application, signal from the shoulders and neck are particularly
troublesome. This is overcome by utilizing the automatic FOV shifting approach proposed in [3] that is
augmented with a newly proposed coil compression method for additional robustness.

Prior to each TGAS-SPI-MRF experiment presented in Section (4.4), an unoptimized, 20 second, low
resolution (6.9 mm isotropic) gradient echo (GRE) pre-scan with a large FOV of 440mm was performed.
This pre-scan was used for automatic detection of the head position within the large FOV, so that the
TGAS-SPI-MRF data could be automatically shifted to ensure that the brain, as well as the top of the head
and nose, was within the smaller FOV used for the TGAS-SPI-MRF reconstruction. The automatic FOV
centering was done by reconstructing the fully sampled, Cartesian, GRE image using a Fourier Transform,
and performing a sum-of-squares combination of data from the multiple receive coils. The image was
then flattened by taking a maximum intensity projection through the sagittal plane. The resulting 2D im-
age was then smoothed, binarized, and a bounding box was calculated around the largest continuous area
using the OpenCV toolbox [11]. A shift was then calculated to ensure the top and front of the bounding
box was within the target field of view.

[3] derived the binary image from the eigenvalues of the estimated ESPIRiT maps, which is not used in
this work as the target TGAS-SPI-MRF application utilizes 48 receive coils during the acquisition, making
ESPIRiT computationally expensive. Additionally, the FOV shifting is performed before applying any coil
compression techniques, which enables the following method for additional robustness.

Any signal originating from outside the bottom of the field of view after shifting (e.g. shoulders) was
removed using region-optimized virtual coil compression [49] (ROVir) estimated from the GRE with the
interference region set to any area outside the target FOV for the TGAS-SPI-MRF acquisition. The data
was pre-whitened as described in [49] before ROVir was applied. Signal outside the field of view was
removed by throwing away 8 virtual ROVir coils that contained the most signal in the interference region.
After that, SVD compression to 10 virtual channels of the remaining channels were performed to reduce
the size of the computation. The complete coil compression matrix containing coil whitening, ROVir, and
SVD compression was calculated based on the GRE, and used for compression of the TGAS-SPI-MRF data.

The reconstruction, automatic FOV shifting, and coil processing matrix calculation for the GRE data
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takes less than 30 seconds, and is run while the TGAS-SPI-MRF data is being acquired.

4.3.4 Deli-CS

With Deli-CS, the goal is to achieve an approximately 10 minute reconstruction of TGAS-SPI-MRF data
that is of comparable quality to the traditional reconstruction with minimal memory footprint. To achieve
this, the following design pillars are utilized:

1. Fully Leveraging MRI Physics. As a first step, in order to utilize prior coil sensitivity and the sub-
space information as much as possible, an approximate reconstruction is run by setting λ = 0 in
(4.4). This ordinary least squares optimization uses Conjugate Gradient (CG), and allows the mul-
tiple receive channels to perform an initial resolving of the subspace coefficients through Parallel
Imaging[85, 38, 96, 109]. CG was used as it was observed to be faster than the LLR reconstruction for
the initial resolving of the data while still doing better with respect to the zero-filled image. By not
using LLR regularization, the input to the next step suffers from temporal-aliasing artifacts and in-
creased noise, which the following deep learning step is expected to robustly mitigate. The resulting
CG reconstruction will be referred to as “Deli-CS Input”.

2. Block-based Data-Driven Deep Learning. A deep learning network is trained to denoise and dealias
the input CG image. The model is both trained and deployed in a “block-wise” manner to reduce
the memory and training data requirements, and is consequently not integrated with DC terms in
an unrolled manner. This is done to avoid needing to perform back-propagation during training
through the high-dimensional acquisition operator A, which is challenging to do even with a GPU
with large memory capacity. This deep learning methodology is similar to the “data-driven” classifi-
cation in [42], except that instead of taking in as input the adjoint image (A∗b), which is commonly
called the “zero-filled image”, the input is the above CG reconstruction which has reduced artifacts,
particularly for the first three coefficients. The block-based processing proposed in this steps allows
the deep learning model to be trained and deployed efficiently with under 6 GB of GPU memory.
The resulting inference will be referred to as “Deli-CS Prediction”.

3. Compressed Sensing Certification. Since the above network is block-based and data-driven, the in-
ferred reconstruction suffers is possibly susceptible to hallucinations. To protect against the same,
the inferred result is used to initialize (4.4) solved with an iterative reconstruction. By initializing the
iterative reconstruction with the inferred result, the number of iterations required to converge is sig-
nificantly reduced. Additionally, the resulting image is “Compressed Sensing Certified” in the sense
that the resulting image satisfies the same convergence criterion as the traditional reconstruction
achieved when solving (4.4). This step will be referred to as the “refinement” step, with the resulting
reconstruction denoted “Deli-CS Refined”.

In practice, block-wise network inference results in blocking artifacts, even when passing a large block
into the network (say 64× 64× 64) and cropping the inferred result to a smaller inner block (32× 32×
32) to account for boundary conditions. This process was further augmented with overlapping blocks
assuming a stride of 16 to attempt to average out the artifacts, but was not successful. In particular, this
instead overly smoothed the inference result to the point where the consequent refinement step required
a non-trivial number of iterations to add the details back in. Using a larger block (say 128×128×128) was
observed to degrade the quality of the network prediction while adding to the computational burden of
inference. More importantly, in the above two cases, the iterative refinement step was not able to resolve
said artifacts quickly enough for the initialization to be useful.

Instead, the following procedure is used. First, the network inference is performed using blocks of
size (8× 8× 8) with strides (4× 4× 4), which does still induce blocking artifacts. However, by utilizing a
small stride value, these artifacts manifest as high frequency artifacts that are subdued by performing one
round of wavelet thresholding at the cost of increased blurring, which is circumvented by the refinement
iterations. This processing is verified by Figure (4-2).
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Figure 4-2: This figure depicts the third coefficient of various reconstruction to demonstrate how artifacts
from block-wise network processing are alleviated. (A) is the reference “target” reconstruction from the 6
minute acquisition; (B) is the reference reconstruction from the 1 minute acquisition; (C) is the CG recon-
struction that is input to the network; (D) is the prediction; (E) is the result after wavelet thresholding; and
(F) is the result after 7 FISTA iterations of refinement. The input to the network was blocks of size (8×8×8)
with strides (4×4×4). (E) suffers from blocking artifacts that are suppressed by the wavelet thresholding
(E). The resulting undesirable loss of detail is overcome by performing refinement iterations (F).

4.3.5 Basis Balancing

The subspace basis is estimated by performing a SVD of a dictionary of realistic signal evaluations gen-
erated using the Bloch equation and using singular vectors corresponding to the top five singular values
to form Φ [15]. This rank-truncation level was deemed sufficient in capturing the signal variation as per
[15], and the parameters used to derive the dictionary was presented in Section (4.2). Using this basis
directly for the initial CG reconstruction results in very low signal level in the fourth and fifth coefficients
as most of the signal is already captured in the first three basis. This is shown in Figure (4-3)(A). To en-
sure each coefficient image contributes roughly equally to the objective function when model training
and to more equally distribute the artifacts across coefficients, a “basis balancing” heuristic is proposed
to equally distribute the energy across all the coefficients.

The low-rank basis Φ of dimensions T ×K with Φk denoting the k th column of Φ. Let B denote the
new basis with bk denoting the k th column. In order to balance B , the columns bk are derived so that bk

consists of equal contributions from each column of Φ. This translates to an equality constraint on the
magnitude of the inner products. That is to say, for some constant α,∣∣〈bp ,Φq 〉

∣∣=α for all p, q (4.6)

In other words, B∗Φ is a matrix where the magnitude of each matrix is the same.
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Figure 4-3: This figure depicts how the underlying images look after the initial least squares reconstruction
(A) without basis balancing, and (B) with basis balancing. Note the skull signal dropout in coefficient 4,
marked with a red arrow.

One such matrix that satisfies this property the Discrete Fourier Transform (DFT) matrix. LetΘ be the
DFT matrix of dimensions K ×K . Then, the balanced basis B can be derived as:

B =Φ×Θ (4.7)

With Θ normalized to have unitary columns, B is also an orthonormal matrix. Additionally, since the
columns B are constructed from a linear combination of the columns of Φ, B and Φ span the same sub-
space. In other words, B is a linear combination of the columns of Φ and thus a reconstruction with or
without basis balancing should give the same result up-to a change-of-basis transformation. Since B is
derived from Θ, Θ−1 can be used to perform a linear change of basis from B to Φ. This was leveraged by
the previous demonstrations as well as in (3.34), and will be used for rest of this chapter. In other words,
all reconstructions presented in this chapter used the balanced basis B , but the coefficient images with re-
spect to Φ are shown after applying the change-of-basis operation Θ−1 to the recovered coefficients. This
is done for interpretability and ease-of-comparison against prior reported reconstructions in [15]. Us-
ing B for the initial CG reconstruction yields coefficient images of roughly equal signal level with no one
coefficient suffering from significantly more artifacts compared to the others as shown in Figure (4-3)(B).

4.4: Experiments

To train and verify the Deli-CS framework, data from 14 healthy volunteers were acquired on a 3T Premier
MRI scanner (GE Healthcare, Waukesha, WI) and a 48-channel head receiver-coil. GRE and TGAS-SPI-
MRF (with 500 TRs)[15] data were acquired. The TGAS-SPI-MRF acquisition time was 6-minutes, acquired
resolution was 1 mm isotropic, and FOV was 220 mm isotropic. The TGAS-SPI-MRF acquisition param-
eters are described in Section (3.4.4). The data was retrospectively sub-sampled to simulate a 1-minute
acquisition. The data were partitioned as 10 training, 2 validation and 2 testing subjects. Coil sensitiv-
ity maps were estimated with JSENSE[109]. The dictionary and subspace were generated as describe in
Section (4.2), and the template matching was used to estimate the (T1,T2) parametric maps.

The reported λ values for all reconstructions are after right-hand-side of the DC term of (4.4) (i.e.
D1/2b) is normalized to have unitary l2−norm. The reference LLR reconstruction was performed on the
6-minute data with the LLR block size of 8 and a λ value of 3×10−5 with 40 FISTA iterations. Note that
the estimated density compensation function D is different for the 6 minute and 1 minute data. The
matrix size was 256 × 256 × 256. This will be referred to as the “target” reconstruction. The 6-minute
reconstruction was used as the label for network training instead of the 1-minute reconstruction as the
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6-minute result has higher SNR and is less likely to have residual aliasing artifacts, especially for the low-
energy coefficients. Future work is to use this 6-minute data to design a robust deep-learning unrolled
method that improves upon the LLR reconstructions to hopefully achieve further reduction in acquisition
time.

The retrospectively under-sampled 1-minute data LLR reconstruction was also performed for com-
parison using an LLR block size of 8 and a λ value of 5× 10−5 with 40 FISTA iterations. The assumed
matrix size was 256×256×256.

For Deli-CS, the initial CG reconstruction was performed with 6 CG iterations, which was qualitatively
determined to be suitable trade-off between noise amplification in the fourth and fifth coefficients (with
respect to the SVD basis) and the initial resolving of the first three coefficients. This is shown in Figure (4-
4). Corresponding blocks of dimensions 64×64×64×5 are extracted from the CG reconstruction and the

Figure 4-4: This figure depicts how the initial number of CG iterations were determined. Note that Co-
efficients 2 and 3 are well resolved at 6 iterations compare to 1 and 3. Higher iteration values increase
computation time and may induce noise amplification in the latter coefficients.

target reconstruction. For data augmentation, random flips, transposes and shifts are performed. Each
block is normalized so that the middle coefficient has a maximum value of 1. After normalization, if the
middle coefficient’s standard deviation is below 0.3, the block is discarded. This simple filter ensures that
the network avoids learning from regions with no signal. The blocks are split into real and imaginary
components, and concatenated along the subspace dimension. These blocks are piped into ResNet [44]
with 3D convolutions, where the channel dimension corresponds to the subspace dimension. The ResNet
utilized 2 residual blocks with a filter size of 3, a feature dimension of 128 and ReLU activation. The model
was implemented in PyTorch Lightning [77, 33] and trained for 2000 epochs using the ADAM optimizer
with a learning rate of 1× 10−5 that decays by 0.5 every 1000 steps. The training utilized under 5 GB of
GPU memory.

For the final step of Deli-CS, the model prediction is used to initialize (4.4) after performing wavelet
thresholding with a regularization value of 7.5× 10−5. The iterative reconstruction used for refinement
utilized the same parameters as the reference 1-minute reconstruction. Since the prediction is close to
the final solution, seven iterations of refinement are deemed sufficient to achieve to similar reconstruction
quality.
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4.5: Results

The reconstruction of the first test subject is depicted in Figures (4-5) to (4-7). The reconstruction of the
second test subject is depicted in Figures (4-8) to (4-10). The corresponding parametric fittings are shown
in Figures (4-11) and (4-12) and Figures (4-13) and (4-14). A magnitude threshold was applied to the
figures to zero-out regions outside the FOV of the signal for presentability.

On a Linux workstation with an Intel (R) Xeon Gold 5320 and an NVIDIA (R) RTX A6000 GPU, the
full GRE coil compression FOV processing took approximately 14.5 seconds; the JSENSE estimation took
approximately 21.5 seconds; the reference iterative reconstruction took 27 minutes; the Deli-CS initial CG
reconstruction took approximately 3 minutes and 10 seconds; the Deli-CS model inference with wavelet
thresholding took approximately 1 minute and 25 seconds; the final refinement step with seven iterations
took approximately 5 minutes and 6 seconds.

The whole pipeline takes approximately 30.4 minutes using the reference iterative reconstruction, and
approximately 10.3 minutes using Deli-CS. Thus, the initialization approach enables 3x faster processing
times.

As evidenced by Figure (4-12), the refinement step adds missing features that were over smoothed
from the network prediction and wavelet thresholding process.

4.6: Discussion

This work presented a framework for MRI reconstruction that targets high dimensional applications like
volumetric non-Cartesian spatio-temporal subspace reconstruction, with the goal of reconstructing said
application in an approximately 10-minute time frame with modest hardware requirements. This was
achieved with a block-based deep learning initialization approach, where the deep learning prediction
was used to jump-start a regularized linear inverse problem.

In order to achieve the less than 6 GB GPU condition, it is necessary to apply network inference in
a block wise manner which unfortunately introduces blocking artifacts. In order to overcome this, this
work leverages block-wise inference using small block sizes which resulted in “high-frequency” artifacts
that are well subdued by performing wavelet thresholding. This is at the cost of introducing some blur-
ring, which is accounted for by the refinement step. The number of iterations of refinement is a hyper-
parameter that determines the trade-off between reconstruction speed and image sharpness. The seven
iteration refinement outperforms the prior reconstruction [15] as evidences by Figure (4-1), but is a bit
more over-smoothed when looking at the parametric T2 compared to the iterative reconstruction with
Density Compensation. Adding more iterations will alleviate this issue at the cost of more reconstruction
time. This is because, in principle, the optimization in (4.4) has a unique solution that the iterations will
converge to, regardless of initialization. However, the reconstruction of the fourth and fifth coefficient
images are better than the reference 1 minute case as it is still benefits from the prediction power of the
deep learning component.

The basis balancing approach proposed is seen to spread the energy across the coefficient images,
avoiding excessive aliasing artifacts.

With respect to the fitted parametric maps, there are no significant differences between the reference
10 minute reconstruction, the reference 30 minute reconstruction and the Deli-CS refinement results.
This is likely because most of the information for standard quantitative map fitting of T1 and T2 maps
exists in the first three coefficients that contain the majority of the energy. However, the good recovery
of the fourth and fifth coefficients is expected to improve more advanced quantitative parameter fitting,
such as in multicomponent modeling and multidimensional correlation spectroscopic imaging [50]. In
particular, since a voxel typically consists of multiple tissue types, the better resolved fourth and fifth
coefficients are expected to allow for the better fitting of multiple T1 and T2 values per voxel.

This chapter did not leverage the polynomial preconditioner as discussed in Chapter 3 due to the fol-
lowing reasons. First, A∗D A has a narrow eigenvalue spectrum which reduces the theoretical efficacy
of the preconditioner. Next, the memory-efficient implementation of A resulted in A∗D A taking longer
to evaluate compared to the LLR proximal operator. With these two factors, the polynomial precondi-
tioner imparted a minor ∼ 1.5× reduction to the iterative reconstruction times. A more nuanced reason
is that an iterative LLR reconstruction typically leverages some kind of spatial shifting over iterations to
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Figure 4-5: This figure compares the coefficient axial images recovered from the TGAS-SPI-MRF data
using various methods for the first test subject. The first row denotes the reference LLR reconstruction of
the 6-minute data acquisition, and the second row denotes the LLR reconstruction of the retrospectively
under-sampled 1-minute acquisition. The third row depicts the LLR reconstruction after 10 minutes of
processing for comparison. The remaining rows depicts the various steps of Deli-CS and the time taken
to reach that point. The fourth row shows the initial CG reconstruction, the fifth row shows the model
inference, and the ultimate row shows the reconstruction after iterative refinement. “Acq” denotes the
acquisition time, and “Rec” denotes the reconstruction (or inference, for Deli-CS Prediction) time. Note
that the Deli-CS timings reported include the previous steps.
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Figure 4-6: This shows the coronal slices of the reconstructions presented in Figure (4-5).
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Figure 4-7: This shows the sagittal slices of the reconstructions presented in Figure (4-5).
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Figure 4-8: This figure compares the coefficient axial images recovered from the TGAS-SPI-MRF data us-
ing various methods for the second test subject. The first row denotes the reference LLR reconstruction of
the 6-minute data acquisition, and the second row denotes the LLR reconstruction of the retrospectively
under-sampled 1-minute acquisition. The third row depicts the LLR reconstruction after 10 minutes of
processing for comparison. The remaining rows depicts the various steps of Deli-CS and the time taken
to reach that point. The fourth row shows the initial CG reconstruction, the fifth row shows the model
inference, and the ultimate row shows the reconstruction after iterative refinement. “Acq” denotes the
acquisition time, and “Rec” denotes the reconstruction (or inference, for Deli-CS Prediction) time. Note
that the Deli-CS timings reported include the previous steps.
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Figure 4-9: This shows the coronal slices of the reconstructions presented in Figure (4-8).
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Figure 4-10: This shows the sagittal slices of the reconstructions presented in Figure (4-8).
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Figure 4-11: This figure compares the T1 parameter fittings of TGAS-SPI-MRF reconstructions depicted
in Figure (4-5). “Acq” denotes the acquisition time, and “Rec” denotes the reconstruction (or inference,
for Deli-CS Prediction) time. The zoomed in region demonstrates how the refinement step helps recover
sharp features that may be over-smoothed by the Deli-CS Prediction step. Note that the Deli-CS timings
reported include the previous steps.
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Figure 4-12: This figure compares the T2 parameter fittings of TGAS-SPI-MRF reconstructions depicted
in Figure (4-5). “Acq” denotes the acquisition time, and “Rec” denotes the reconstruction (or inference,
for Deli-CS Prediction) time. The zoomed in region demonstrates how the refinement step helps recover
sharp features that may be over-smoothed by the Deli-CS Prediction step. Note that the Deli-CS timings
reported include the previous steps.
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Figure 4-13: This figure compares the T1 parameter fittings of TGAS-SPI-MRF reconstructions depicted
in Figure (4-8). “Acq” denotes the acquisition time, and “Rec” denotes the reconstruction (or inference,
for Deli-CS Prediction) time. Note that the Deli-CS timings reported include the previous steps.
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Figure 4-14: This figure compares the T2 parameter fittings of TGAS-SPI-MRF reconstructions depicted
in Figure (4-8). “Acq” denotes the acquisition time, and “Rec” denotes the reconstruction (or inference,
for Deli-CS Prediction) time. Note that the Deli-CS timings reported include the previous steps.
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average out blocking artifacts from LLR. Consequently, utilizing the polynomial preconditioner reduced
the number of shifts performed given the same number of A∗D A evaluations, which was not desirable.
That being said, when performing an iterative reconstruction using the ADMM sub-problem approach in
Section (3.4.4), the proximal term in (3.36a) results in a slight Tikhonov regularization (from the ADMM
step size) when solving the respective sub-problems which helps alleviate the artifacts induced by the re-
duced number of shifts over iterations. Assuming multiple 20 GB GPUs, the polynomial preconditioner
was shown to enable an approximately 12 minute reconstruction in Section (3.4.4).

While this work uses a simple deep learning model (ResNet[44]) to jump-start the compressed sensing
reconstruction, given the flexibility of the Deli-CS framework, various deep learning architecture can be
easily integrated to try and improve the quality of the initialization, which is a promising avenue for fur-
ther optimization. Future work is to leverage a more advanced calibration scan, such as PhysiCal (further
discussed in Chapter 6) which aims to acquire B0,B+

1 and coil sensitivity information in close to 10 sec-
onds. The B+

1 map will enable robust parametric mapping, and the B0 information can be incorporated
into the A matrix in (4.2) to alleviate blurring issues related to spiral imaging that is still present even in
the highly accelerated spiral trajectory, particularly in regions where the B0 is large [15]. This is a good
fit for the Deli-CS framework, as the network can learn to predict a B0 corrected image using the non-B0

corrected CG input, which will result in fewer refinement iterations (that will use the full forward model
A with incorporated B0). This is beneficial as A augmented with B0 is computationally challenging as
discussed in [15], making the traditional LLR reconstruction even harder to perform. Finally, it would be
ideal to port Deli-CS to the more efficient C-language using the BART toolbox [97, 10], which is expected
to provide at least another 2−3x in speed improvement, moving the application towards near real-time
reconstruction.
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5: Better Encoding of Spatio-Temporal
MRI using Wave-Shuffling

This chapter switches gears into MRI encoding optimization, where the acquisition process is modified to
yield a measurement matrix A that results in a better condition regularized linear inverse problem. This
chapter has section (2.1) and section (2.4) as “prerequisites”.

5.1: Introduction

A number of widely used MR sequences such as Fast Spin Echo (FSE) [67] and Magnetization-Prepared
Rapid Gradient-Echo (MPRAGE) [68] reduce scan time by performing k-space encoding along a multi-
echo train, which is the time dimension in Section (2.4.4).

For high resolution acquisitions, signal variations along the long echo trains (from (2.11) can cause
significant image blurring. To solve this, spatio-temporal model-based techniques (as discussed in Sec-
tion (2.4)) have emerged to improve image sharpness while also recovering additional multiple image
contrasts across the echo train.

An inherent challenge in high resolution spatio-temporal imaging is acquiring enough k-space sam-
ples for each echo to resolve both spatial and temporal dimensions in a clinically feasible time frame. In
other words, acquiring enough data such that the A operator in (2.24) is fully-determined is not practical.

To overcome this, subspace methods have been introduced to greatly reduce the dimensionality of
the temporal domain during reconstruction [55]. Despite the smaller dimensionality, the problem is still
often ill-posed. Consequently, subspace methods have been used with random sampling and sparsity
constrained optimization for better time-resolved imaging and accelerated T1 and T2 parameter mapping
[55, 61, 94, 15, 102, 45, 111, 100, 5, 99].

T2-shuffling is one such subspace method that has been applied to clinical volumetric FSE (3D-FSE)
imaging [94, 93]. By leveraging random under-sampling in the phase-encode (y) and partition (z) direc-
tions, and applying subspace reconstruction with the LLR low-rank constraint, the method time-resolves
an image-series that captures the signal evolution across the echo train and avoids image blurring arti-
facts. By combating image blurring, T2-Shuffling has enabled clinical use of 3D-FSE for pediatric knee
MRI by producing diagnostic images in 6−7 minutes with similar quality to conventional 2D-FSE acqui-
sition that requires 13 minutes of scan time [2]. The Shuffling approach from T2-Shuffling has also been
applied to the MPRAGE sequence to extract a time-series of T1-weighted images [14].

In addition to the use of subspace modeling, new sequence-based approaches have also been pro-
posed to enable fast time-resolved imaging. MPnRAGE [48] is a multi-echo MPRAGE-like acquisition that
leverages radial sampling and a sliding window reconstruction to recover the image time-series across
the echo train. Echo Planar Time Resolved Imaging (EPTI) [102] improves on conventional multi-shot
Echo Planar Imaging by optimizing k-space and time sampling to exploit temporal correlations during re-
construction to recover distortion free, multi-contrast time series of EPI images. Further more, subspace
modeling has been incorporated into EPTI to achieve higher rates of acceleration [32].

In the pursuit of rapid, high resolution spatio-temporal imaging, advances in parallel imaging that
reduce the number of k-space samples needed to spatially resolve the underlying image in non time-
resolved acquisitions can be leveraged to improve the encoding of accelerated time-resolved imaging.
Wave-CAIPI [7] is a parallel imaging technique that utilizes additional sinusoidal gradients during the
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readout to spread aliasing in the readout direction. This is shown to improve the acceleration capabili-
ties of parallel imaging through better utility of 3D coil-sensitivity information, resulting in a better posed
inverse problem with excellent g-factor performance. Wave-CAIPI has been successfully applied to vol-
umetric 3D-FSE to achieve nine-fold acceleration at 3T [81], and to MPRAGE to enable nine-fold and
twelve-fold acceleration at 3T and 7T respectively [81, 82].

However, conventional Wave-CAIPI acquisitions cannot fully utilize the better conditioning provided
by wave-encoding. Simulation studies have shown that g-factor performance is largely determined by the
maximum gradient amplitude (Gmax) of the sinusoidal wave-gradient and is independent of the number
of sinusoidal cycles [81]. To achieve the maximum possible Gmax, lower wave cycle numbers are required
due to gradient hardware slew rate limitations. When utilizing such encoding, conventional Wave-CAIPI
acquisitions, where the data are acquired across a long echo train, suffer from undesirable image ring-
ing artifacts due to the interaction between signal modulation along the echo train from T1/T2 signal
relaxation and the voxel spreading effect from wave-encoding [81]. This “Signal-Mixing” artifact becomes
significant when a high Gmax and a low cycle number wave-encoding is used, limiting the amount of en-
coding performance that can be practically achieved. However, this can be overcome by time-resolving
the echo-train during reconstruction. In particular, while Wave-CAIPI was developed as a natural exten-
sion to controlled aliasing methods like Bunch Phase Encoding [65] and 2D-CAIPIRINHA [12, 13], the
sinusoidal gradients have also been successfully applied to data acquired with random k-space sampling
to achieve high rates of acceleration with good reconstruction [6, 20]. This suggests that wave-encoding
can be integrated into spatio-temporal model-based techniques to be robust to Signal-Mixing artifacts
while improving the acceleration performance of time-resolved applications.

When utilizing wave-encoding, hardware imperfections can cause errors in the sinusoidal gradient re-
sulting in detrimental image ringing artifacts if not accounted for in the reconstruction. Auto-calibrated
PSF (or “AutoPSF”) methods [17, 20] have been proposed to estimate these gradient imperfections directly
from the undersampled data, but these approaches cannot be directly applied to acquisitions with ran-
dom under-sampling without a fully sampled calibration region due to high computational cost. Con-
sequently, to avoid the need to acquire additional calibration data, a computationally efficient wave-
calibration method for the mentioned conditions is required.

In order to fully utilize the better conditioning provided by high Gmax wave-encoding, “Wave-Shuffling”
is proposed where wave-encoding is incorporated into the Shuffling model with the temporal subspace
and random undersampling. By temporally-resolving the underlying signal during the reconstruction,
“Wave-Shuffling” is shown to be robust to the “Signal Mixing” artifacts, enabling higher Gmax compared
to conventional Wave-CAIPI. The Gmax of wave-encoding is then optimized to achieve significantly higher
acceleration capability compared to standard Shuffling while retaining the multi-contrast and clinically
desirable blur-free reconstruction provided by Shuffling [2]. To enable Wave-Shuffling application that is
robust to hardware imperfections, a computationally efficient modification of the AutoPSF approach [17]
is proposed.

5.2: Theory

In Wave-Shuffling, the spatio-temporal model (2.26) is augmented with Wave-encoding (2.20), and is
solved akin to (2.27).

argmin
m

1

2
∥MFy zW Fx RSΦα− y∥2

2 +λg (α) (5.1)

As in T2−Shuffling, the prior utilized for reconstruction (g in both (2.27) and (5.1)) is the LLR constraint
[94]. The conditioning benefits of the Wave-encoding allows for better utilization of the coil sensitivity
information (S) for higher under-sampling compared to standard Shuffling.

5.2.1 Wave-Encoding Parameter Optimization

Better noise performance is achieved using sinusoidal wave-gradients with higher Gmax which require
lower wave cycle numbers due to gradient slew rate limitations. When utilizing such encoding, conven-
tional Wave-CAIPI acquisitions suffer from ringing artifacts, denoted “Signal-Mixing”, due to the inter-
action between the T1/T2 signal relaxation over the echo-train and the voxel-spreading effect from wave-
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encoding [81]. Wave-Shuffling mitigates this artifact as data are time-resolved across the temporal dimen-
sion. Consequently, more efficient wave-encoding is achieved by optimizing the wave-gradient maximum
amplitude.

When using LLR, the expected performance of (2.27) for a given Shuffling acquisition is qualitatively
analyzed by studying its Point Spread Function (PSF) [94]:

PSFn = (Φ∗F∗
x y z MFx y zΦ) δn (5.2)

The delta image (δn) is zero at all entries except at the center image of the nth coefficient, where it is
one. The ideal response would be the same delta image for the nth coefficient with zero cross talk across
the other coefficient images. Due to acceleration and random sampling, the resulting PSF will have noise-
like incoherent side-lobes in the nth coefficient image with signal aliasing to the other coefficients.

The peak-to-side-lobe ratio of PSFn is the largest absolute voxel value over all coefficients of PSFn not
including where δn is non-zero. The lower the peak-to-side-lobe of the PSF over all values of n, the more
likely a LLR reconstruction like (2.27) will “de-noise” the incoherent aliasing artifacts.

The PSF for Wave-Shuffling is calculated as follows.

WPSFn = (Φ∗R∗F∗
x W ∗F∗

y z MFy zW Fx RΦ) δn (5.3)

This is calculated as a function of wave-encoding parameters, and is used as a metric for parameter opti-
mization.

5.2.2 Wave-PSF Calibration

Hardware imperfections cause errors in the sinusoidal gradients of wave-encoding, resulting in image
ringing artifacts if not accounted for in the reconstruction. Auto-calibrated PSF (or “AutoPSF”) methods
[17, 20] estimate these gradient imperfections directly from the under-sampled wave data, but cannot be
directly applied to Wave-Shuffling as data are acquired with random undersampling without a fully sam-
pled calibration region. To enable Wave-Shuffling that is robust to hardware imperfections, an efficient
AutoPSF method is developed by modifying the approach proposed in [17].

The Wave-PSF (W ), used in (2.20), is constructed in the (kx , y, z) domain [7] as follows:

W (kx (t ), y, z) = exp
{
1i ×2π× [

Py (kx (t )) · y +Pz (kx (t )) · z
]}

Py (t ) = γ
2π

∫ t
0 Gy (τ)dτ

Pz (t ) = γ
2π

∫ t
0 Gz (τ)dτ

(5.4)

(Gy ,Gz ) are the sinusoidal gradients depicted in figure (2-2)(A), γ is the Larmor frequency and kx (t ) de-
notes the (kx ) point sampled at readout-time (t ). [17] proposed a joint optimization that solves for the
underlying image and the imperfections of the sinusoidal gradients during reconstruction where a small
set of Fourier coefficients accurately model the sinusoidal wave gradients along with the related gradient
hardware errors. Let (cy ,cz ) denote the small set of Fourier coefficients of the (Gy ,Gz ) gradients respec-
tively. Let F denote the Fourier transform. Then:

Gy (t ) = [
F (cy )

]
(t )

Gz (t ) = [F (cz )] (t )
(5.5)

The derived (Gy ,Gz ) gradients are used to generate the Wave-PSF (W ) as in (5.4). Let W (c) denote the
Wave-PSF derived from c = (cy ,cz ). AutoPSF alternates between minimizing the image (m) and the coef-
ficients (c) to reduce the data consistency error:

Data Consistency: m = argminm ∥v −MFy zW (c)Fx RSm∥2

Fourier Update: c = argminc ∥v −MFy zW (c)Fx RSm∥2
(5.6)

The first image (m) is reconstructed with Fourier estimates (c) derived from assuming no (Gy ,Gz ) hard-
ware errors.
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In the Data Consistency of (5.6), AutoPSF leverages the structured aliasing of Wave-CAIPI for fast com-
putation by selecting a small set of representative voxels from which an estimate of the data-consistency
error is calculated. This does not extend to Wave-Shuffling as random sampling causes incoherent alias-
ing artifacts making it not possible to select a small subset of representative voxels, thus dramatically
increasing computational cost. To overcome this, the following PSF-calibration is proposed.

Let c0 be the Fourier coefficients of the ideal wave sinusoidal gradients (assuming no errors). Let c∗ be
the Fourier coefficients of the corrected wave-gradients obtained from the result of (5.6). Define ce as:

ce = (c∗− c0). (5.7)

Let W∗,W0 and We denote the Wave-PSFs derived from c∗,c0 and ce respectively. Utilizing the linearity of
the Fourier transform, (5.7) and (5.4) imply:

W∗(kx (t ), y, z) = exp
{
1i ×2π× ([

F ((c∗)y )
]

(kx (t )) · y + [F ((c∗)z )] (kx (t )) · z
)}

= exp
{
1i ×2π× ([

F ((ce + c0)y )
]

(kx (t )) · y + [F ((ce + c0)z )] (kx (t )) · z
)}

= exp
{
1i ×2π× ([

F ((c0)y )
]

(kx (t )) · y + [F ((c0)z )] (kx (t )) · z
)}×

exp
{
1i ×2π× ([

F ((ce )y )
]

(kx (t )) · y + [F ((ce )z )] (kx (t )) · z
)}

= W0We

(5.8)

This suggests that the artifacts caused by an incorrect Wave-PSF can be modeled by a convolution with
We . It may be possible to estimate a deconvolution to recover W∗ using (5.8), which re-casts wave-
calibration into a deconvolution problem. Let (α0) be the initial Wave-Shuffling reconstruction performed
using (W0). This is expected to have ringing artifacts due to system hardware imperfections. It is assumed
that these artifacts are well approximated by a convolution with the Wave-PSF (We ), and finding the in-
verse PSF that mitigates these ringing artifacts allows for the recovery of (W∗). In particular, since (We ) is
a phase only PSF, the inverse PSF is simply the element wise complex conjugate PSF (W ∗

e ). Consequently,
finding a PSF that mitigates the ringing artifacts of the initial reconstruction (α0) is expected to be a good
approximation of (W ∗

e ) and consequently (We ).
Note that hardware error related artifacts are exaggerated by applying an edge detector along the read-

out direction. Let this edge detector be T . Consider the following optimization problem:

ce = argmin
c

∥T
(
F−1

x W ∗
e (c)Fxα0

)∥1 (5.9)

This optimization attempts to correct for Wave-PSF errors by performing deconvolution as a post-processing
step (by applying F−1

x W ∗
e (c)Fx ). After deconvolving (α0) with W ∗

e (c), the edge detector is applied to am-
plify the remaining artifacts. Since there are only a limited number of coefficients (c), (5.9) is efficiently
solved with the Nelder-Mead simplex algorithm, and is expected to recover the desired difference coef-
ficients (ce ). Other values of (c) in (5.9) are induce additional undesired voxel-spreading. The corrected
Wave-PSF (W∗) can then be recovered as in (5.8) to be used in a Wave-Shuffling reconstruction.

In this work, the following edge detector is used. Let Dx denote the finite difference along the readout
direction. Let µ be a positive scalar.

T (m) = sigmoid
(
µ×|Dx (m)|)− 1

2
(5.10)

µ = 100 is empirically found to sufficiently amplify wave-related ringing artifacts while not being over-
sensitive to noise.

For additional computational efficiency, the separability of wave-encoding is utilized. Since (Gy ,Gz )
induce voxel spreading independently, W can be split into separate (kx , y) and (kx , z) PSFs.

W (kx , y, z) =Wy (kx , y)Wz (kx , z) (5.11)

To calibrate for Wy without being affected by Wz , (5.9) is applied to a single slice of the three-dimensional
volume at z = 0 spatial position. The similar process is repeated for Wz by extracting the slice at y = 0
spatial position.

For succinctness, this method of Wave-Calibration is called “ShflPSF”.
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5.3: Methods

First, experiments to select that rank of the subspace and the wave parameter are performed. This is then
followed by in-vivo experiments to verify the efficacy of the method.

5.3.1 Subspace Design

The methodology used to generate the low-rank temporal basis is first described.

For all MPRAGE experiments, the Bloch equation was used to simulate the signal evolution across
the echo train during the inversion recovery using a flip angle of 9◦ and T1 values uniformly sampled
across the range [50,5000] milliseconds at 10 millisecond intervals. These are the expected T1 values
of tissues in the brain, and are similar to those used in prior work [108]. To be robust to B+

1 variation,
the simulations were repeated for flip angles across the range [6.3,11.7] degrees at 0.9◦ intervals. Unless
otherwise specified, an echo spacing of 8.1 ms was assumed.

The Singular Value Decomposition (SVD) of the simulated signal ensemble was used to derive the
temporal subspace. The ensemble was projected onto the subspace spanned by the first k singular vectors
corresponding to the k th largest singular values, and the normalized root mean squared error (NRMSE)
for each signal was calculated. The maximum NRMSE over all signals was used as a metric to determine
the basis rank.

For the 3D-FSE experiment, note that a variable flip angle train was utilized to extend the signal du-
ration over the echo-train [67], allowing signal recovery at echo-times much longer than conventional
spin-echo imaging. The signal evolutions were simulated using Extended Phase Graphs [104]. The flip
angle train used during acquisition was saved and the simulations were generated assuming T1 values
of [200,400,800,1400,2000,4000] in milliseconds and T2 values in the range [20,2000] milliseconds at 2
milliseconds intervals. These are the expected T1 and T2 values of tissues in the brain and are similar to
those used in prior work [108]. FSE has a weak dependence on T1 [94], hence a smaller range of T1 values
were used. The first 45 echoes (of 256) were discarded as they significantly ill-conditioned the reconstruc-
tion. The SVD of the simulated signal ensemble was used to derive the subspace. The signal ensemble
was projected onto the subspace spanned by the first k singular vectors corresponding to the k th largest
singular values and the NRMSE for each signal in the ensemble was calculated. The maximum NRMSE
over all signals was used as a metric to determine the number of basis vectors to use.

5.3.2 PSF Analysis and Wave-Encoding Parameter Optimization

To examine the benefit of incorporating wave-encoding into the Shuffling, the PSF of MPRAGE Shuffling
and MPRAGE Wave-Shuffling was calculated for a k-space sampling mask where 25% of all (ky ,kz ) en-
codes were sampled uniformly at random (each encode was sampled exactly once). The matrix size was
256×256×256 with a turbo factor (TF) of 256. The PSFs calculations were implemented using MATLAB
(MathWorks, Natick, MA). To aid visualization, only two basis vectors (corresponding to the two largest
singular values) are used.

Delta images δ1 and δ2 were passed through the Shuffling and Wave-Shuffling forward models ((5.2)
and (5.3)) to obtain “PSF1” and “PSF2” for Shuffling, and “WPSF1” and “WPSF2” for Wave-Shuffling re-
spectively.

The peak-to-side-lobe ratios of the PSFs were calculated. The result of the following (5.12) as a func-
tion of wave cycle number and maximum wave amplitude are visualized.

max
n

[
peak-to-side-lobe(WPSFn)

]
(5.12)

This value was used to optimize the parameters for wave-encoding, as discussed in Section (5.2.1) For
a given cycle number, the maximum amplitude was determined by either gradient hardware slew rate
limitations or the peripheral nerve stimulation limit.

73



5.3.3 In-Vivo Experiments

The 3D-FSE and MPRAGE sequences were modified to enable sinusoidal wave-gradients and random
sub-sampling of k-space. Three-dimensional Standard Wave MPRAGE, MPRAGE Shuffling, MPRAGE Wave-
Shuffling and 3D-FSE Wave-Shuffling data from a single 24 year old healthy male were acquired on a 3T
Siemens Prisma scanner with IRB approval and informed consent. All data were acquired using a matrix
size of 256× 256× 256, 1 mm-isotropic resolution, and 32-channel head coil. The turbo factor for both
MPRAGE and 3D-FSE was set to 256. 16-channel SVD coil compression was applied to all data sets. Coil
sensitivity maps were estimated using ESPIRiT [96] from a 2-second low-resolution GRE calibration scan.
All Shuffling and Wave-Shuffling data were prospectively under-sampled using a variable density Pois-
son disc sampling mask generated using BART [97]. Each phase encode was sampled at most once. The
Standard Wave MPRAGE data were acquired using a regular 2× undersampling pattern along ky .

This work lists the total acquisition times (Tacq ) instead of acceleration factors. An acquisition time
of 648 seconds corresponds to a fully sampled non time-resolved MPRAGE acquisition with the same
sequence parameters.

For all Standard Wave acquisitions, the associated Wave-PSFs were calibrated using [17]. For the Wave-
Shuffling acquisitions, the respective Wave-PSFs were estimated using ShflPSF. A 50−iteration reconstruc-
tion using a single basis was used as the initial reconstruction (α0) in (5.9).

The Wave-Shuffling reconstructions were performed at a synthetic resolution of ≈ 0.71 mm in (y, z)
directions by zero-padding the (ky ,kz ) dimensions. The sparsifying transform used was LLR. The recon-
struction algorithm used FISTA [4]. For all cases, the acquired k-space was normalized to have unitary l2

norm. Regularization values (λ) from the below set were searched through for the best qualitative recon-
struction, yielding a regularization value of λ= 0.002.

λ ∈ {0.0001,0.0002, . . . ,0.0009,0.001,0.002, . . . ,0.009,0.01,0.02} (5.13)

This value was then kept constant over all cases.
The Wave-Shuffling reconstruction was implemented with BART. Additionally, BART was compiled

using the Intel(R) Math Kernel Library. The reconstructions were performed on an Intel(R) Xeon(R) Gold
6248R CPU.

MPRAGE Experiments

As per [81], acquisitions were performed using an inversion time (TI) of 1100 ms, a repetition time (TR)
of 2500 ms and a bandwidth (BW) of 200 Hz/Pixel. The wave-encoding used a sine wave on one gradient
axis and a cosine wave on the other gradient axis (see Figure (5-1)(A)). The cosine wave-gradient required
a ramp up gradient period to reach the highest gradient amplitude at the start of the acquisition window
and a ramp down period after the end of the acquisition to return to zero. For simplicity, the current
cosine implementation utilized a quarter-cycle shifted sine wave with an additional half cycle as shown
in the Gz gradient of Figure (5-1)(A).

This increases the minimum viable echo spacing when the size of the wave sinusoid is large, which
then necessitates an increase to the minimum TI. The minimum possible number of cycles achievable
while maintaining a TI of 1100 milliseconds seconds was five. Consequently, this work used 5 cycles as a
lower limit to the number of cycles.

Standard Wave MPRAGE, MPRAGE Shuffling and MPRAGE Wave-Shuffling data were acquired using
the parameters listed in Table 5.1. Regular Shuffling data at various prospective accelerations were ac-
quired to determine how much acceleration can be achieved. Wave-Shuffling data at different prospec-
tive accelerations were also acquired at 17 cycles with a Gmax of 8 mT/m to match the wave parameters
used in [81]. To push Gmax of the wave-encoding to the maximum value while keeping the same TI, Wave-
Shuffling data at various prospective accelerations were acquired at 5 cycles with a Gmax of 27 mT/m.
To verify the efficacy of the Wave-Shuffling model in mitigating Signal Mixing artifacts, Standard Wave
MPRAGE data were acquired at 17 cycles with a Gmax of 8 mT/m (to match [81]) and at 5 cycles with Gmax

of 27 mT/m (to demonstrate the Signal Mixing artifacts).
For each acquisition listed in Table 5.1, the Bloch equation was used to simulate signal evolutions

across the echo train during the inversion recovery of MPRAGE using the acquisition parameters de-
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Figure 5-1: (A) In wave-encoding, additional sinusoidal (Gy ,Gz ) gradients are applied during the readout.
(B) The sinusoidal gradients induces a voxel spreading effect along the readout direction. The amount
of spreading increases linearly as a function of the spatial (y, z) locations. (C) This depicts simulated
MPRAGE signal evolutions. These realistic signal evolutions are observed to live in a low-rank subspace
that can be obtained via the Singular Value Decomposition (SVD).

Acquisition Type TI (ms) TR (ms) ESP (ms) Cycles Gmax (mT/m) Tacq (s)

Standard Wave 1100 2500 7.9 17 8 324
Standard Wave 1100 2500 8.4 5 27 324

Shuffling 1100 2500 7.8 0 0 648
Shuffling 1100 2500 7.8 0 0 230
Shuffling 1100 2500 7.8 0 0 144
Shuffling 1100 2500 7.8 0 0 81

Wave-Shuffling 1100 2500 7.9 17 8 144
Wave-Shuffling 1100 2500 7.9 17 8 81
Wave-Shuffling 1100 2500 8.4 5 27 144
Wave-Shuffling 1100 2500 8.4 5 27 81

Table 5.1: MPRAGE acquisition parameters. TI: Inversion Time, TR: Repetition Time. ESP: Echo Spacing,
Gmax: Maximum amplitude of the sinusoidal gradients, Tacq : Acquisition time.

scribed in the Section (5.3.2) with the appropriate echo-spacing.

All reconstructions were allowed to run for 500 FISTA[4] iterations.

3D-FSE Experiment.

For 3D-FSE, two cycle Wave-Shuffling data were acquired at the maximum possible amplitude of 22
mT/m. This corresponds to the lowest number of cycles such that the echo spacing and echo train length
of the acquisition is within 20% of prior work [81]. Note that this is a variable flip angle acquisition with
stimulated echoes, allowing for the reconstruction of images at later echo-times compared to conven-
tional spin-echo imaging. The echo spacing was 4.32 milliseconds, the TR was 3.2 seconds, the BW was
592 Hz per pixel and the middle echo was acquired at an echo time of 557 milliseconds. The data was
acquired with an acquisition time of 151 seconds.

The reconstruction was allowed to run for 500 FISTA [4] iterations with LLR.
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5.4: Results

This section will first present the results of parameter experiments, as they are used by the in-vivo recon-
structions.

5.4.1 Subspace Design

For both MPRAGE and 3D-FSE, a rank of 4 was the smallest subspace such that the NRMSE of any signal
was less than 2.5% (depicted in Figure (5-2)). The x-axis denotes an index into the signal ensemble (please
see caption for a detailed description) and the y-axis denotes the NRMSE.

A B C D E F G H
Dictionary Index

0

1

2

3

4

5

NR
M

SE
 (%

)

Rank 2 Projection

A B C D E F G H
Dictionary Index

0

1

2

3

4

5

NR
M

SE
 (%

)

Rank 3 Projection

A B C D E F G H
Dictionary Index

0

1

2

3

4

5

NR
M

SE
 (%

)

Rank 4 Projection

A B C D E F G
Dictionary Index

0

1

2

3

4

5

NR
M

SE
 (%

)

Rank 2 Projection

A B C D E F G
Dictionary Index

0

1

2

3

4

5

NR
M

SE
 (%

)

Rank 3 Projection

A B C D E F G
Dictionary Index

0

1

2

3

4

5

NR
M

SE
 (%

)

MPRAGE Subspace Analysis

3D-FSE Subspace Analysis
Rank 4 Projection

Figure 5-2: The simulated signal ensemble for MPRAGE and 3D-FSE are projected onto SVD-derived
subspaces of varying ranks and the NRMSE per signal is calculated. The red dotted line denotes the 2.5%
cut-off. For MPRAGE, the range (A-B) corresponds to T1 values in range [50, 5000] milliseconds with a
flip angle of 6.3◦, (B-C) corresponds to the same T1 values with a flip angle of 7.2◦, (C-D) corresponds to
the same T1 values with a flip angle of 8.1◦, (D-E) corresponds to the same T1 values with a flip angle of
9◦, (E-F) corresponds to the same T1 values with a flip angle of 9.9◦, (F-G) corresponds to the same T1

values with a flip angle of 10.8◦, and (G-H) corresponds to the same T1 values with a flip angle of 11.7◦.
For 3D-FSE, the range (A-B) corresponds to T2 values in range [20, 2000] milliseconds with a T1 of 200
ms, (B-C) corresponds to the same T2 values with a T1 value of 400 ms, (C-D) corresponds to the same
T2 values with a T1 value of 800 ms, (D-E) corresponds to the same T2 values with a T1 value of 1400 ms,
(E-F) corresponds to the same T2 values with a T1 value of 2000 ms, and (F-G) corresponds to the same T2

values with a T1 value of 4000 ms.

5.4.2 PSF and Parameter Optimization

PSF results are depicted in Figure (5-3).
The maximum of the peak side-lobes as a function of the maximum sinusoid amplitude (Gmax) and

number of cycles is depicted. For a particular Gmax, a lower peak side-lobe is observed when using lower
cycles. For a particular cycle, a lower peak side-lobe is observed when using higher Gmax. Therefore, in
the sequel, Wave-Shuffling acquisitions with a low number of cycles and large Gmax are targeted.

The PSFs of MPRAGE Shuffling (no wave encoding) and MPRAGE Wave-Shuffling with the highest
Gmax of 27 mT/m are plotted. The maximum along the (x, y), (x, z) and (y, z) spatial axes are taken to
better visualize the incoherence. “PSF1” and “2” depict the Shuffling outputs of δ1 and δ2 respectively.
“WPSF1” and “WPSF2” depict the Wave-Shuffling outputs of δ1 and δ2 respectively. The green dashed
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Figure 5-3: (Top) The maximum peak side-lobe as a function of sinusoid maximum gradient amplitude
(Gmax) and number of cycles is depicted. (See Equation (5.12).) A lower peak side-lobe is desirable. The
black color denotes unreachable parameters due to gradient hardware slew rate limitations. (Bottom
Left and Bottom Right) The PSFs associated with MPRAGE Shuffling (with no wave encoding) and high
Gmax MPRAGE Wave-Shuffling are plotted for comparison. The former is plotted with a dotted green line,
while the latter is plotted with a solid red line. The legend of the PSFs plots are depicted in the top-right
sub-plot. The left two columns denote the first coefficient response while the right two columns denote
the second coefficient response. To better visualize the side lobes, the peaks of the respective PSFs are
scaled to one and the range [0,0.1] is plotted. The maximum intensity projection along the (x, y), (x, z)
and (y, z) spatial axes are taken to better visualize the incoherence. PSF1/WPSF1 and PSF2/WPSF2 depict
the Shuffling/Wave-Shuffling outputs of δ1 and δ2 respectively.

lines denote Shuffling results and the red solid lines denote Wave-Shuffling results. The voxel-spreading
induced by Wave distributes the incoherent artifacts across (x, y, z) resulting in lower peak side-lobes. This
demonstrates how Wave-Shuffling achieves less signal cross-talk between coefficients.

5.4.3 In-Vivo Experiments

Figure (5-4) depicts the reconstructions at selected TIs for MPRAGE Shuffling at various levels of acceler-
ation with Tacq = (648s,230s,144s), and MPRAGE Wave-Shuffling at high acceleration (Tacq = 81s). For
ease of visualization, each image is individually normalized. This figure illustrates how Wave-Shuffling
provides comparable reconstruction at ≈ 8× higher acceleration compared to Shuffling. MPRAGE Shuf-
fling is stable at Tacq = 648s but suffers from reconstruction artifacts at higher accelerations that are par-
ticularly noticeable at the early time points. In contrast, MPRAGE Wave-Shuffling at Tacq = 81s is able to
stably recover the underlying time series with reconstruction quality comparable to MPRAGE Shuffling at
Tacq = 648s up-to noise arising from high levels of acceleration.

Figure (5-5) demonstrates the reconstruction quality of Wave-Shuffling as a function of wave-encoding
parameters, where reconstructions from a low-SNR TI with low signal level are shown to highlight the dif-
ferences in reconstruction performance. Regular Shuffling has severe artifacts at the displayed TI at both
accelerations Tacq = 144s and Tacq = 81s. The 17-cycle, Gmax = 8 mT/m case is seen to improve recon-
struction at Tacq = 144s and Tacq = 81s. The 5-cycle, Gmax = 27 mT/m case is seen to provide much better
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Figure 5-4: This figure depicts MPRAGE Shuffling at various accelerations and MPRAGE Wave-Shuffling
at high acceleration. MPRAGE Shuffling is stable at Tacq = 648s but suffers from reconstruction artifacts
at lower acquisition times. MPRAGE Wave-Shuffling at a significantly lower acquisition time provides well
conditioned reconstruction with image quality comparable to MPRAGE Shuffling at Tacq = 648s up-to
noise considerations due to sub-sampling.

conditioning and stably recovers the data at Tacq = 81s.

Figure (5-4) and 5-5 demonstrate how optimized wave-encoding enables Wave-Shuffling to achieve
significant increase in acceleration. There are slight contrast differences between the image at the specific
TIs due to echo spacing differences between the acquisitions (listed in Table 5.1).

Figure (5-6) demonstrates how Shuffling mitigates Signal Mixing artifacts. Standard Wave MPRAGE
with parameters used as per [81] (17 cycles, Gmax = 8 mT/m) shows good reconstruction with no arti-
facts. Standard Wave MPRAGE at 5 cycles, Gmax = 27 mT/m suffers from significant ringing artifacts from
the signal recovery mixing across the echo-train. Wave-Shuffling at the same wave parameters (5 cycles,
Gmax = 27 mT/m) at the comparable TI of 1100 milliseconds shows no ringing artifacts even at high accel-
eration (Tacq = 81s). This confirms that modelling the temporal evolution over the echo-train avoids the
Signal Mixing.

Figure (5-7) demonstrates how ShflPSF corrects for gradient hardware errors and mitigates ringing
artifacts related to incorrect wave sinusoids by performing a post-processing deconvolution with W ∗

e as
described in the Section (5.2.2).

Figure (5-8) represents a showcase of the Wave-Shuffling method when applied to the MPRAGE se-
quence for 1-mm isotropic resolution at Tacq = 81s. Four out of the 256 reconstructed images are de-
picted. A highly accelerated MPRAGE Wave-Shuffling acquisition and reconstruction stably recovers a
time series of images with multiple contrasts at high quality up to noise considerations. Note that the CSF
is hypo-dense compared to relative tissue, particularly at short TE. Due to having a high T1 value, the CSF
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Figure 5-5: The reconstruction quality of Wave-Shuffling varies as a function of wave-encoding param-
eters. Regular Shuffling is seen to have severe artifacts at the hard-to-reconstruct displayed time point
(TI = 430 ms) at both accelerations (Tacq = 144s and Tacq = 81s). The 5-cycle, Gmax of 27 mT/m case
demonstrates the superior encoding capability of high Gmax wave-encoding with significantly better re-
construction quality at both accelerations.

is unable to fully recover within the prescribed TR and consequently, once the signal reaches steady-state,
the CSF signal is suppressed relative to the surrounding tissue.

Figure (5-9) represents a showcase of the Wave-Shuffling method when applied to the 3D-FSE se-
quence for 1-mm isotropic acquisition at Tacq = 151s. Four out of the 256 reconstructed images are de-
picted. A highly accelerated 3D-FSE Wave-Shuffling acquisition and reconstruction recovers a time series
of images with multiple contrasts. Since 3D-FSE uses a variable flip angle train to stimulate echoes, there
is still signal at around 500 ms.

5.5: Discussion

In this chapter, Wave-Shuffling was developed for fast time-resolved structural imaging. Wave-encoding
parameters were optimized using the PSF analysis to improve acceleration capability. Wave-Shuffling was
successfully implemented on MPRAGE and 3D-FSE sequences and demonstrated to provide fast high-
quality time-resolved brain imaging.

A direct application of the Wave-Shuffling technique is the further reduction of scan times for knee
MRI exams [93]. A promising direction of Wave-Shuffling MPRAGE is to study deep-brain structure like
the lateral geniculate nucleus which is more visible at the earlier TIs [28]. This is motivated by the qual-
ity of the reconstruction performance demonstrated by Figure (5-8) with just 81 seconds of acquisition.
The SNR is expected to significantly improve at scan times comparable to MP2RAGE [63, 69]. Note that
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Wave (Tacq = 324s): 17 Cycles 8 mT/m Wave (Tacq = 324s): 5 Cycles 27 mT/m Wave-Shfl (Tacq = 81s): 5 Cycles 27 mT/m
Signal Mixing at High Wave Amplitude

Figure 5-6: The inclusion of the Shuffling model is seen to mitigate Signal Mixing artifacts associated with
high gradient amplitude (Gmax) wave-encoding acquisitions. Standard Wave MPRAGE at 17 cycles, Gmax

of 8 mT/m shows good reconstruction with no artifacts. Standard Wave MPRAGE at 5 cycles, Gmax of 27
mT/m suffers from significant ringing artifacts due to signal recovery over the partition encode direction.
MPRAGE Wave-Shuffling at the same parameters (5 cycles, Gmax of 27 mT/m) at the comparable TI of 1100
milliseconds shows no ringing artifacts even at high acceleration. For high Gmax Standard Wave MPRAGE
(the middle column), the red and blue arrows highlight two different locations where the Signal-Mixing
artifacts are observed. For the other two acquisitons, the arrows point to the respective comparable loca-
tions to demonstrate that low Gmax Standard Wave MPRAGE and high Gmax MPRAGE Wave-Shuffling are
robust to said artifacts.

Wave-Shuffling MPRAGE in this work resolves 256 echo-images versus the 2 echo-images recovered by
MP2RAGE.

Figure (5-2) shows that the SVD-derived subspace has difficulty representing low T1 values at lower
ranks for MPRAGE and low T2 values for 3D-FSE. While higher ranks results in lower projection NRMSE,
the added unknowns ill-conditions the reconstructions described by Equations (2.27) and (5.1).

For MPRAGE Wave-Shuffling, the lower bound on the number of wave cycles was set to five to main-
tain a TI of 1100 ms. A four cycle acquisition corresponds to a TI of 1130 ms and a three cycle acquisi-
tion corresponds to a TI of 1170 ms. Lower wave cycle numbers achieves higher Gmax but may result in
differential phase modulation within a voxel resulting in intra-voxel de-phasing [7]. At three cycles, the
MPRAGE Wave-Shuffling reconstruction suffers from significant artifacts. With these constraints in mind,
the PSF results in Figure (5-3) are a good qualitative indicator of Wave-Shuffling reconstruction perfor-
mance. Similarly, for 3D-FSE, one cycle wave-encoding results in the non-trivial artifacts.

The reconstruction noise level is tied to the amount of acceleration. Wave-Shuffling, being a time-
resolving method, is encoding-limited and SNR-limited (due to less noise averaging) at high accelerations,
and consequently the reconstructions presented in Figures (5-4) to (5-6) show increased noise levels. Ar-
eas to explore in this regard are optimized flip-angle encoding for a more noise-performant acquisition
and machine-learning based de-noising.

ShflPSF mitigates the ringing artifacts associated with an incorrect Wave-PSF. It is empirically ob-
served that a single coefficient usually suffices to effectively correct for the ringing artifacts. Since the
Fourier coefficient is allowed to be complex, the magnitude of the Fourier coefficient effectively models
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ShflPSF: Wave-Shuffling (Tacq = 81 s, 5 Cycles, 27 mT/m)

Figure 5-7: This figure depicts ShflPSF applied to the 5 cycles, 27 mT/m maximum gradient amplitude
MPRAGE Wave-Shuffling acquisition at Tacq = 81s. ShflPSF is able to correct for gradient hardware errors
and mitigate ringing artifacts related to incorrect wave calibration by performing deconvolution with W ∗

e
as described in the Section (5.2.2).

gradient amplitude errors while the phase of the coefficient encodes gradient delay errors.
Multiple rounds of ShflPSF that alternates between reconstruction and Wave-PSF calibration can be

performed. However, this does not noticeably improve reconstruction performance. For Standard Wave
acquisitions, ShflPSF performs similarly to [17].

MPRAGE and 3D-FSE are commonly used sequences for T1− and T2− weighted images respectively
that are designed for maximizing contrasts differences between tissues and not for quantitative mapping.
The signal evolutions over the echo train are highly correlated for both sequences. To give a specific exam-
ple, for MPRAGE, assuming a flip angle of 9◦, the absolute correlation coefficient between two simulated
signals with T1 values of 800 ms and 1000 ms is ≈ 0.99. Similarly, for 3D-FSE, assuming a T1 of 800 ms, the
absolute correlation coefficient between two simulated signals with T2 values of 20 ms and 40 ms is ≈ 0.98.
Since this work was focused on augmenting existing sequences with known contrasts without modifying
sequence parameters, it is not optimized for T1 and T2 mapping as there is no clean separability between
the highly correlated signal evolutions. Future work would be to modify the flip angle train and other
sequence parameters to increase the separability of the signal evolutions of tissues of interest in order to
better fit for quantitative maps.

Given the flexibility of the wave-encoding and Shuffling models, Wave-Shuffling can be extended
to numerous other sequences with the possibility of complimentary-sampling and joint-reconstruction
across multiple Wave-Shuffling acquisitions for higher rates of acceleration and better noise performance
[8], which may be further enhanced with Deep Learning methods [80, 41, 1]. To further improve recon-
struction, sampling mask optimization that is synergistic with regularization can be utilized [39].
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TI: 41.6 ms TI: 495.2 ms TI: 562.4 ms TI: 1100.0 ms

MPRAGE Wave-Shuffling (5 Cycles 27 mT/m): 81 seconds

Figure 5-8: Wave-Shuffling achieves 1 mm-isotropic resolution, time-resolved, multi-contrast MPRAGE
imaging at high acceleration. Four out of 256 reconstructed images are depicted.
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TE: 349.9 ms TE: 501.1 ms TE: 652.3 ms TE: 803.5 ms

3D-FSE Wave-Shuffling (2 Cycles 22 mT/m): 151 seconds

Figure 5-9: Wave-Shuffling achieves 1 mm-isotropic resolution, time-resolved, multi-contrast 3D-FSE
imaging at high acceleration. Four out of 256 reconstructed images are depicted.
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6: Physics Calibration for
Spatio-Temporal MRI

This chapter has section (2.3) and section (2.4) as “prerequisites”.

6.1: Introduction

Calibration scans for coil sensitivity maps (B−
1 ),B0 and B+

1 inhomogeneities information play an impor-
tant role in enabling modern acquisition and reconstruction techniques. Great progress has been made in
improving the accuracy and speed of these scans. For coil sensitivity estimation, ESPIRiT [96] and JSENSE
[109] have been successful in enabling wide-spread parallel imaging, while for accelerated echo planar
imaging, FLEET-ACS [83] and Gradient Echo (GRE) with B0 [110] field map have provided distortion-
matched coil sensitivity information for robust reconstruction. For B+

1 mapping, Bloch-Siegart (BS) meth-
ods [87] have gained prominence due to its flexibility and robustness, where recent improvements through
k-space undersampling and constrained reconstruction has enabled rapid B+

1 mapping [53]. Moreover, a
robust multi-echo general linear modelling (GLM) framework for BS has also been developed that enables
robust recovery of B0 and B+

1 maps [22]. Nonetheless, the acquisition of multiple calibration scans for
high-resolution coil sensitivity, B0 and B+

1 maps can be time consuming, taking 5-10 minutes for whole-
brain coverage.

This work proposes a unified, rapid calibration sequence termed Physics Calibration (PhysiCal) to ob-
tain accurate B0,B+

1 and coil sensitivity maps. PhysiCal utilizes a modified BS multi-echo GRE acquisition,
with a carefully designed mix of full and variable density sampling acquisitions across echoes to provide
complementary information. This along with synergistic constrained and eigenvalue reconstruction en-
able significant speedup of this calibration scan. Retrospective undersampling experiments demonstrate
robust and accurate recovery of whole-brain B0,B+

1 and channel coil sensitivity maps in just 11 seconds at
resolution at 3T. Furthermore, preliminary verification of PhysiCal is presented through using the rapidly
acquired B0 and B+

1 maps to process high-resolution diffusion-imaging data acquired with accelerated
gSlider-EPI [90, 56].

6.2: Methods

The acquisition process is summarized by Figure (6-1). A modified BS, bi-polar, multi-echo 3D-GRE ac-
quisition is used with interleaved, opposite, off-resonant frequencies (±4kH z) [54] and with multi-echo
readouts prior and subsequent to the BS pulse to achieve estimation robustness.

The k-space sampling of this acquisition is optimized with:

• A small fully-sampled auto-calibrated signal (ACS) in the first echo for ESPRIT coil sensitivity esti-
mation.

• Independently drawn variable density Poisson-disc sampling across echoes.

This ensures that the residual aliasing artifacts of these image echoes after a regularized reconstruction
(1.1) at very high accelerations are incoherent across echoes and can be robustly read-through during the
subsequent GLM parameter fitting (analogous to MRF dictionary fitting).
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Figure 6-1: A multi-echo GRE sequence is modified to play a strong, Gaussian-shaped, off-resonant
RF frequency pulse (denoted BS) after four echoes. The BS pulse is played at alternating opposite off-
resonant frequencies (±4kH z), denoted as BS + /BS−. Each echo is sampled according to an indepen-
dently drawn variable density Poisson-disc distributed sampling mask, with the first echo consisting of a
densely sampled ACS region.

Figure (6-2) depicts the reconstruction process. ESPIRiT is used to calibrate coil sensitivity estimation
from ACS of the first echo. This is then used to perform a highly regularized reconstruction using the l1

norm and sparsity in the Wavelet domain. GLM then robustly recovers artifact-free B0 maps from recon-
structed echo images (which contain temporally-incoherent residual artifacts). However, GLM is seen to
not recover an artifact free B+

1 map.

To overcome this, B+
1 is refined using an eigenvalue reconstruction approach inspired by ESPIRiT.

Phase of the reconstructed echoes after the negative-offset BS pulse is subtracted from the phase of the
reconstructed echoes from the positive-offset BS echoes. The resulting time-series is reshaped into “vir-
tual coils” and passed into ESPIRiT, which is expected to recover the smooth underlying B+

1 .

6.3: Experiment

Fully-sampled 1×2×2 mm3 resolution PhysiCal data with 16 echoes (4 before BS) are acquired in 19 min-
utes and 41 seconds with a TR of 36 ms and echo spacing of 1.25 ms. Gold standard B0 and B+

1 maps are
estimated using GLM and coil sensitivity information is estimated from the first GRE echo using ESPIRiT.

This acquired data are retrospectively undersampled by varying the number of (ky ,kz ) sampled points
per echo and the number of echoes. The first echo contains 16×16 ACS for ESPIRiT estimation, with B0

and B+
1 estimated using the procedure outlines in Section (6.2). These are then compared to the gold

standard. BART[97] was used for sampling-mask generation, ESPIRiT estimation and regularized recon-
structions.

To provide preliminary verification of the efficacy and application of the method, retrospectively ac-
celerated parametric maps obtained from PhysiCal are used in EPI-gSlider. B+

1 inhomogeneity is used to
mitigate striping artifacts in an EPI-gSlider acquisition. B0 is used to perform post-processing distortion
correction to un-distort an EPI reconstruction.
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Figure 6-2: First, ESPIRiT is estimated from the ACS of the first echo. Next, a regularized linear inverse
reconstruction with the wavelet prior estimates the echo images from the highly accelerated data. While
artifacts are still present, they are incoherent over time. GLM robustly recovers B0, but not B+

1 . Next,
the phase of reconstructed echoes from BS− is subtracted from the phase of the reconstructed echoes
from BS+. The resulting time-series is then reshaped into “virtual coils” and passed into ESPIRiT, which
recovers the expected smooth underlying B+

1 .

6.4: Results

Figure (6-3) presents results from a selected undersampled case that achieves good trade-off with respect
to speed versus recovered map quality. This constitutes an 11 second PhysiCal scan at over 48× accel-
eration across 12 echoes. Difference maps with respect to gold standard demonstrate high quality of
reconstruction that accurately captures high frequency spatial variations in the B0 and B+

1 maps.
Figure (6-4) shows the results of the preliminary application of the method. The B+

1 obtained from
the 11 second accelerated case is successful at mitigating striping artifacts in EPI-gSlider, and the B0 is
successful at performing post-processing distortion correction to match the EPI image to a distortion-
free structural image. However, it cannot resolve signal in voxel pile-up areas, which would require more
data (for example, from a 2-shots blip-up and blip-down EPI)

6.5: Discussion

A rapid multi-parametric calibration scan termed PhysiCal is proposed and demonstrated to capture ac-
curate high-resolution whole-brain B0,B+

1 and coil sensitivity information in 11 seconds. This rapid ac-
quisition is achieved through tailored undersampling and synergistic constrained eigenvalue reconstruc-
tion. Future work includes prospective undersampling implementation and evaluation at ultra-high field
with along with utility in pTx calibration. It is expected that the increased variations in these applications
will still be captured well by the eigenvalue approach given that ESPRiT successfully estimates B−

1 for local
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Figure 6-3: This figure compares the accelerated parametric maps (R48) to the gold standard (R1). By
designing tailored under-sampling and using synergistic constrained and eigenvalue reconstruction, ac-
curate and high resolution B0,B+

1 , and coil sensitivity maps can be recovered in 11 seconds.

coil arrays. More advanced reconstruction approaches through low-rank and phase-constraints will also
be explored to aid an even faster and robust calibration scan. Additionally, the efficacy of PhysiCal will
be verified on other applications including spatio-temporal encoding, such as like EPTI [102] and MRF
[61, 15]
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Figure 6-4: Preliminary applications of PhysiCal B0,B+
1 and coil sensitivity maps are recovered from a

simulated 11-second PhysiCal scan. B+
1 is able to mitigate striping artifacts in EPI-gSlider acquisition. B0

is successful at performing post-processing distortion correction to un-distort the EPI image to match a
distortion-free structural image. However, as expected, it is not able to resolve signal in the voxel pile-up
areas, which would require more data (for example, from a 2-shots blipped-up and down EPI).
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7: Conclusions

Spatio-Temporal MRI is a rapidly growing area of research due to the wealth of information it provides in
a single examination. The major barrier to its general adoption is the long acquisition and reconstruction
times. This thesis presented work done to improve the feasibility of such methods, with some future
directions suggested below.

An interesting continuation of the polynomial preconditioner project is to theoretically study its effect
on the Restricted Isometry Property and Robust Null Space Property [36]. On the practical side, approxi-
mating the polynomial preconditioner, say with a low-rank matrix, is expected to provide further practical
speed up to the iterative convergence, particularly when the utilized proximal operator is relatively expen-
sive to evaluate.

The Deli-CS framework utilized machine learning to jump-start an iterative algorithm for efficient
reconstruction of TGAS-SPI-MRF data [15] in clinical setting. Future work would be to study how to effec-
tively utilize multiple GPU devices in parallel for further reduction in reconstruction time, with the lofty
goal of an approximately 1 minute reconstruction of 1 minute TGAS-SPI-MRF data so that the reconstruc-
tion would finish before the subsequent scan in the clinical MR exam is completed.

A learned regularization approach such as unrolled methods is expected to even further shorten the
acquisition time of the same [42]. This would require the exploration of memory efficient training proce-
dures given the large size of the A matrix.

The immediate next steps for the works presented in this thesis are to integrate and optimize the Phys-
iCal acquisition, the TGAS-SPI-MRF acquisition and the Deli-CS reconstruction into a single, efficient
pipeline so as to enable a rapid 1 mm isotropic resolution whole brain study in under 5 minutes (includ-
ing reconstruction time) with BART [96] implementation.

On MRI acquisition, a metric to predict reconstruction quality in a manner that allows for sampling
pattern design is needed. Currently, the trade-off between the least squares term of (1.1) and the prior g is
determined qualitatively with no rigorous means of quantitative verification. This would be particularly
useful for spatio-temporal MRI with subspace reconstruction, where a sampling pattern can be designed
to better condition specific coefficients.

On MRI reconstruction in general, there is a need for a deterministic and rigorous regularization pa-
rameter selection process. Currently, this is done through trial-and-error with implicit factors like early
stopping for regularization not rigorously quantified. This makes deploying such methods challenging
as reconstruction quality in MRI is sensitive to chosen prior, regularization value and number of itera-
tions. Ideally, an easy-to-use data driven training/ validation/ testing experiment framework that enables
programmatic selection of hyper-parameters along with appropriate statistics to verify the choices will
significantly reduce the manual effort required to tune a reconstruction while improving repeatability of
the same. This can then be further augmented with techniques like [106].

With the advent of deep learning, there exists powerful cloud-based resources that can be leveraged
for faster MRI reconstruction. This is a promising avenue for near real time processing with an interest-
ing problem being how to best distribute the reconstruction. Similarly, leverage cloud compute requires
addressing the challenge of compressing the acquired data so that it can be efficiently and privately trans-
mitted to the servers.
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Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. SymPy: Symbolic Computing in
Python. PeerJ Computer Science, 2017.

[65] Hisamoto Moriguchi and Jeffrey L Duerk. Bunched Phase Encoding (BPE): A New Fast Data Acqui-
sition Method in MRI. Magnetic Resonance in Medicine, 2006.

[66] Matthew J Muckley, Douglas C Noll, and Jeffrey A Fessler. Fast, Iterative Sub-Sampled Spiral Recon-
struction via Circulant Majorizers. Proceedings of the International Society of Magnetic Resonance
in Medicine, Singapore, 2016.

[67] John P. Mugler III. Optimized Three-dimensional Fast-Spin-Echo MRI. Journal of Magnetic Reso-
nance Imaging, 2014.

[68] John P. Mugler III and James R. Brookeman. Three-dimensional Magnetization-Prepared Rapid
Gradient-Echo Imaging (3D MP RAGE). Magnetic Resonance in Medicine, 1990.

[69] Emilie Mussard, Tom Hilbert, Christoph Forman, Reto Meuli, Jean-Philippe Thiran, and Tobias
Kober. Accelerated MP2RAGE imaging using Cartesian phyllotaxis readout and compressed sensing
reconstruction. Magnetic Resonance in Medicine, 2020.

[70] Yurii Nesterov. Lectures on Convex Optimization, volume 137. Springer, 2018.

[71] Dwight G Nishimura. Principles of Magnetic Resonance Imaging. Stanford University, 2010.

[72] Ola Norbeck, Tim Sprenger, Enrico Avventi, Henric Rydén, Annika Kits, Johan Berglund, and Stefan
Skare. Optimizing 3D EPI for Rapid T1-Weighted Imaging. Magnetic Resonance in Medicine, 2020.

[73] Frank Ong, Shahab Amin, Shreyas Vasanawala, and Michael Lustig. mridata.org: An open archive
for sharing MRI raw data. Proceedings of the International Society of Magnetic Resonance in
Medicine, Paris, France, 2018.

[74] Frank Ong and Michael Lustig. SigPy: A Python Package for High Performance Iterative Reconstruc-
tion. Proceedings of the International Society of Magnetic Resonance in Medicine, Montréal, Canada,
2019.

[75] Frank Ong, Martin Uecker, and Michael Lustig. Accelerating Non-Cartesian MRI Reconstruction
Convergence Using k-Space Preconditioning. IEEE Transactions on Medical Imaging, 2020.

[76] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in Optimization,
2014.

[77] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Ed-
ward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing Systems 32. Curran Associates, Inc.,
2019.

[78] Frederike H Petzschner, Irene P Ponce, Martin Blaimer, Peter M Jakob, and Felix A Breuer. Fast
MR Parameter Mapping using k-t Principal Component Analysis. Magnetic Resonance in Medicine,
2011.

[79] James G. Pipe and Padmanabhan Menon. Sampling density compensation in MRI: Rationale and
an iterative numerical solution. Magnetic Resonance in Medicine, 1999.

97



[80] Daniel Polak, Stephen Cauley, Berkin Bilgic, Enhao Gong, Peter Bachert, Elfar Adalsteinsson, and
Kawin Setsompop. Joint multi-contrast variational network reconstruction (jVN) with application
to rapid 2D and 3D imaging. Magnetic Resonance in Medicine, 2020.

[81] Daniel Polak, Stephen Cauley, Susie Y Huang, Maria Gabriela Longo, John Conklin, Berkin Bilgic,
Ned Ohringer, Esther Raithel, Peter Bachert, Lawrence L Wald, and Kawin Setsompop. Highly-
accelerated Volumetric Brain Examination Using Optimized Wave-CAIPI Encoding. Journal of Mag-
netic Resonance Imaging, 2019.

[82] Daniel Polak, Kawin Setsompop, Stephen F Cauley, Borjan A Gagoski, Himanshu Bhat, Florian
Maier, Peter Bachert, Lawrence L Wald, and Berkin Bilgic. Wave-CAIPI for highly accelerated MP-
RAGE imaging. Magnetic Resonance in Medicine, 2018.

[83] Jonathan R Polimeni, Himanshu Bhat, Thomas Witzel, Thomas Benner, Thorsten Feiweier, Souheil J
Inati, Ville Renvall, Keith Heberlein, and Lawrence L Wald. Reducing sensitivity losses due to res-
piration and motion in accelerated echo planar imaging by reordering the autocalibration data ac-
quisition. Magnetic Resonance in Medicine, 2016.

[84] Klaas P. Pruessmann, Markus Weiger, Peter Börnert, and Peter Boesiger. Advances in sensitivity
encoding with arbitrary k-space trajectories. Magnetic Resonance in Medicine, 2001.

[85] Klaas P Pruessmann, Markus Weiger, Markus B Scheidegger, and Peter Boesiger. SENSE: Sensitivity
Encoding for Fast MRI. Magnetic Resonance in Medicine, 1999.

[86] Sathish Ramani and Jeffrey A. Fessler. Parallel MR Image Reconstruction Using Augmented La-
grangian Methods. IEEE Transactions on Medical Imaging, 2011.

[87] Laura I Sacolick, Florian Wiesinger, Ileana Hancu, and Mika W Vogel. b1 mapping by bloch-siegert
shift. Magnetic Resonance in Medicine, 2010.

[88] Christopher M Sandino, Peng Lai, Shreyas S Vasanawala, and Joseph Y Cheng. Accelerating cardiac
cine MRI using a deep learning-based ESPIRiT reconstruction. Magnetic Resonance in Medicine,
2021.

[89] Anne Marie Sawyer, Michael Lustig, Marcus Alley, Phdmartin Uecker, Patrick Virtue, Peng Lai, and
Shreyas Vasanawala. Creation of fully sampled mr data repository for compressed sensing of the
knee. SMRT 22nd Annual Meeting, Salt Lake City, USA, 2013.

[90] Kawin Setsompop, Qiuyun Fan, Jason Stockmann, Berkin Bilgic, Susie Huang, Stephen F Cauley,
Aapo Nummenmaa, Fuyixue Wang, Yogesh Rathi, Thomas Witzel, et al. High-resolution in vivo
diffusion imaging of the human brain with generalized slice dithered enhanced resolution: Simul-
taneous multislice (gslider-sms). Magnetic Resonance in Medicine, 2018.

[91] Jonathan Richard Shewchuk. An Introduction to the Conjugate Gradient Method Without the Ago-
nizing Pain. School of Computer Science, Carnegie Mellon University, 1994.

[92] Peter J Shin, Peder EZ Larson, Michael A Ohliger, Michael Elad, John M Pauly, Daniel B Vigneron,
and Michael Lustig. Calibrationless parallel imaging reconstruction based on structured low-rank
matrix completion. Magnetic Resonance in Medicine, 2014.

[93] Jonathan I. Tamir, Valentina Taviani, Marcus T. Alley, Becki C. Perkins, Lori Hart, Kendall O’Brien,
Fidaa Wishah, Jesse K Sandberg, Michael J. Anderson, Javier S. Turek, Theodore L. Willke, Michael
Lustig, and Shreyas S. Vasanawala. Targeted rapid knee MRI exam using T2-Shuffling. Journal of
Magnetic Resonance Imaging, 2019.

[94] Jonathan I Tamir, Martin Uecker, Weitian Chen, Peng Lai, Marcus T Alley, Shreyas S Vasanawala, and
Michael Lustig. T2-Shuffling: Sharp, Multicontrast, Volumetric Fast Spin-Echo Imaging. Magnetic
Resonance in Medicine, 2017.

98



[95] Martin Uecker, Thorsten Hohage, Kai Tobias Block, and Jens Frahm. Image reconstruction by reg-
ularized nonlinear inversion - joint estimation of coil sensitivities and image content. Magnetic
Resonance in Medicine, 2008.

[96] Martin Uecker, Peng Lai, Mark J Murphy, Patrick Virtue, Michael Elad, John M Pauly, Shreyas S
Vasanawala, and Michael Lustig. ESPIRiT - An Eigenvalue Approach to Autocalibrating Parallel MRI:
Where SENSE Meets GRAPPA. Magnetic Resonance in Medicine, 2014.

[97] Martin Uecker, Frank Ong, Jonathan I Tamir, Dara Bahri, Patrick Virtue, Joseph Y Cheng, Tao Zhang,
and Michael Lustig. Berkeley Advanced Reconstruction Toolbox. Proceedings of the International
Society of Magnetic Resonance in Medicine, Toronto, Canada, 2015.

[98] Abraham Van der Sluis and Henk A van der Vorst. The Rate of Convergence of Conjugate Gradients.
Numerische Mathematik, 1986.

[99] Julia V Velikina, Andrew L Alexander, and Alexey Samsonov. Accelerating MR Parameter Map-
ping using Sparsity-promoting Regularization in Parametric Dimension. Magnetic Resonance in
Medicine, 2103.

[100] Julia V Velikina and Alexey A Samsonov. Reconstruction of Dynamic Image Series from Undersam-
pled MRI Data using Data-driven Model Consistency Condition (MOCCO). Magnetic Resonance in
Medicine, 2015.

[101] FTAW Wajer and KP Pruessmann. Major speedup of reconstruction for sensitivity encoding with
arbitrary trajectories. Proceedings of the International Society of Magnetic Resonance in Medicine,
Toronto, Canada, 2001.

[102] Fuyixue Wang, Zijing Dong, Timothy G Reese, Berkin Bilgic, Mary Katherine Manhard, Jingyuan
Chen, Jonathan R Polimeni, Lawrence L Wald, and Kawin Setsompop. Echo Planar Time-Resolved
Imaging (EPTI). Magnetic Resonance in Medicine, 2019.

[103] Xiaoqing Wang, Zhengguo Tan, Nick Scholand, Volkert Roeloffs, and Martin Uecker. Physics-based
reconstruction methods for magnetic resonance imaging. Philosophical Transactions of the Royal
Society, 2021.

[104] Matthias Weigel. Extended Phase Graphs: Dephasing, RF Pulses, and Echoes - Pure and Simple.
Journal of Magnetic Resonance Imaging, 2015.

[105] Daniel S. Weller, Sathish Ramani, and Jeffrey A. Fessler. Augmented Lagrangian with Variable Split-
ting for Faster Non-Cartesian L1-SPIRiT MR Image Reconstruction. IEEE Transactions on Medical
Imaging, 2014.

[106] Daniel S Weller, Sathish Ramani, Jon-Fredrik Nielsen, and Jeffrey A Fessler. Monte Carlo SURE-
based parameter selection for parallel Magnetic Resonance Imaging reconstruction. Magnetic Res-
onance in Medicine, 2014.

[107] Zheng Xu, Sheng Wang, Yeqing Li, Feiyun Zhu, and Junzhou Huang. PRIM: An Efficient Precondi-
tioning Iterative Reweighted Least Squares Method for Parallel Brain MRI Reconstruction. Neuroin-
formatics, 2018.

[108] Huihui Ye, Dan Ma, Yun Jiang, Stephen F Cauley, Yiping Du, Lawrence L Wald, Mark A Griswold,
and Kawin Setsompop. Accelerating magnetic resonance fingerprinting (MRF) using t-blipped si-
multaneous multislice (SMS) acquisition. Magnetic Resonance in Medicine, 2016.

[109] Leslie Ying and Jinhua Sheng. Joint Image Reconstruction and Sensitivity Estimation in SENSE
(JSENSE). Magnetic Resonance in Medicine, 2007.

[110] Benjamin Zahneisen, Murat Aksoy, Julian Maclaren, Christian Wuerslin, and Roland Bammer. Ex-
tended hybrid-space SENSE for EPI: Off-resonance and eddy current corrected joint interleaved
blip-up/down reconstruction. NeuroImage, 2017.

99



[111] Bo Zhao, Wenmiao Lu, T Kevin Hitchens, Fan Lam, Chien Ho, and Zhi-Pei Liang. Accelerated MR Pa-
rameter Mapping with Low-rank and Sparsity Constraints. Magnetic Resonance in Medicine, 2015.

[112] Bo Zhao, Kawin Setsompop, Elfar Adalsteinsson, Borjan Gagoski, Huihui Ye, Dan Ma, Yun Jiang,
P. Ellen Grant, Mark A. Griswold, and Lawrence L. Wald. Improved magnetic resonance fingerprint-
ing reconstruction with low-rank and subspace modeling. Magnetic Resonance in Medicine, 2018.

[113] Md. Zulfiquar Ali Bhotto, M. Omair Ahmad, and M. N. S. Swamy. An Improved Fast Iterative Shrink-
age Thresholding Algorithm for Image Deblurring. SIAM Journal on Imaging Sciences, 2015.

100


	Cover
	Abstract
	Acknowledgments
	Contents
	1 Introduction
	2 Background
	2.1 Linear Inverse Problems
	2.2 Iterative Proximal Algorithms
	2.3 MR Physics
	2.3.1 Spin Dynamics
	2.3.2 Fourier Modeling
	2.3.3 Contrast in MRI
	2.3.4 Sources of Error

	2.4 MR Encoding
	2.4.1 Parallel Imaging
	2.4.2 Wave Encoding
	2.4.3 Compressed Sensing
	2.4.4 Spatio-Temporal MRI


	3 Polynomial Preconditioning for Regularized Linear Inverse Problems
	3.1 Introduction
	3.1.1 Contributions
	3.1.2 Related Works

	3.2 Main Result
	3.3 Theory
	3.3.1 Deriving Polynomial Preconditioning for PGD
	3.3.2 Polynomial Design
	3.3.3 Error Bound
	3.3.4 Implementation Details and Complexity Analysis
	3.3.5 Interpretation and Noise Coloring

	3.4 MRI Experiments
	3.4.1 Parameter Selection
	3.4.2 Cartesian MRI
	3.4.3 Non-Cartesian MRI
	3.4.4 Spatio-Temporal MRI

	3.5 Discussion

	4 Deep Learning Initialized Compressed Sensing
	4.1 Introduction
	4.2 Background
	4.3 Methods
	4.3.1 Memory Optimization
	4.3.2 Density Compensation
	4.3.3 Field of View Processing
	4.3.4 Deli-CS
	4.3.5 Basis Balancing

	4.4 Experiments
	4.5 Results
	4.6 Discussion

	5 Better Encoding of Spatio-Temporal MRI using Wave-Shuffling
	5.1 Introduction
	5.2 Theory
	5.2.1 Wave-Encoding Parameter Optimization
	5.2.2 Wave-PSF Calibration

	5.3 Methods
	5.3.1 Subspace Design
	5.3.2 PSF Analysis and Wave-Encoding Parameter Optimization
	5.3.3 In-Vivo Experiments

	5.4 Results
	5.4.1 Subspace Design
	5.4.2 PSF and Parameter Optimization
	5.4.3 In-Vivo Experiments

	5.5 Discussion

	6 Physics Calibration for Spatio-Temporal MRI
	6.1 Introduction
	6.2 Methods
	6.3 Experiment
	6.4 Results
	6.5 Discussion

	7 Conclusions

