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Abstract

The emergence of advanced engineering technologies creates the opportunity to im-
prove existing manual and silo-ed workflows within integrated energy companies. The
processes used for drilling engineering have not evolved at the pace of cutting-edge
technology advancements over the last 20 years. The most significant shifts in clas-
sical well development are standardized design methods, advanced disciplinary anal-
ysis, improved knowledge transfer systems, excel-based workflows, and structured
employee training.

As the Industrial Revolution 4.0 progresses, technologies in Model-Based Sys-
tems Engineering are emerging to enhance existing well design processes, yet the step
change is insufficient to close the technology gap. This research contributes to existing
drilling engineering and well design advancements by developing a system optimiza-
tion architecture for the well design process. A random search algorithm coupled
with a stochastic optimization methodology for multi-objective optimization emerges
through the relationships defined within a system Design Structure Matrix (DSM).
The optimization method includes the evaluation of the algorithms’ computational
efficiency, design diversity, and convergence. The development of a numerical solution
for well design, will provide the framework necessary to implement advanced analysis
of well design that can accurately predict the quality of engineering decision-making.

Thesis Supervisor: Eric S. Rebentisch
Title: Research Associate
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Industry 4.0

The overall progression in the oil and gas industry since the oil price drawback start-

ing in 2015, was to do more work with less resources. This is evident in the active

rig counts for the U.S. compared to the U.S. Production of Oil and Gas shown in

Figure 1-1. Although many other factors can be attributed to this relationship, such

as the emergence of unconventional resource development, well design is vital in driv-

ing significant improvements. The growth in operational efficiency of drilling can

be attributed to increased personnel experience, minimal growth-related disruptions,

and standardization of designs and processes within the oil and gas industry. "Lower

commodity prices drive the need to restore profitability through lowering the total

cost of exploration and production. The generational change in the workforce requires

attracting, training, and challenging the next influx of professionals. New innovations

and sources of competition force us to rethink, adopt, and push technological bound-

aries" [60]. The push for increased capital and environmental discipline will require

additional tools for engineers to explore and develop new, reliable, predictable, and

creative well designs. By adopting advanced analytical techniques, improved project

management practices, and Industry 4.0 digital technologies, oil and gas projects can
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see a 15 to 30 percent reduction in capital expenditures in major capital project from

reduced development time alone, as reported by McKinsey and Company [29]. Bound

by consistent cost overruns, schedule delays, and reduced profitability due to long de-

velopment duration, major capital projects in the oil and gas industry have been

significantly reduced as shale oil projects improve returns through low complexity

production.

Figure 1-1: U.S. Rig Count vs Oil and Gas Production

Data Source: Energy Information Agency [23], Baker Hughes Rig Count [33]

1.1.2 Financial Discipline and Efficiency

The requirements for engineering design have become more complex, design toler-

ances reduced for capital expenditure efficiency, and visibility into design failures are

highlighted for company and industry learning. The energy industry is undergoing a

significant shift in asset valuation due to challenges from investors and Environmen-

tal, Social, and Governance (ESG) objectives. Many of the existing exploration areas
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for oil and gas are considered mature, have moderately low levels of subsurface uncer-

tainty, and are expected to maintain the necessary production output needs for future

demand. The shift to more sustainable energy sources will require the exploration

of immature areas to develop carbon sequestration reservoirs and second-generation

geothermal wells using technology historically applied to oil and gas production [67].

The significant difference for new field development is that the return on investment is

uncertain, geological parameters are uncertain, and operational and design efficiencies

are uncertain. Drilling Engineers must develop high-quality wells at competitive eco-

nomics early in asset development plans under these uncertain conditions. Engineers

will require tools to aid in well design and decision-making to develop optimal designs

at low costs while preserving environmental, safety, structural, and operational in-

tegrity. Well development costs naturally tend to reduce over time as the magnitude

of uncertainty reduce. Developing sound strategies to accelerate cost reductions while

maintaining well design and operational integrity is critical to the future of subsurface

asset development.

1.1.3 Advancements in Engineering Requirements and Objec-

tives

As many legacy industries move through organizational shifts in technology adoption

and Digital Transformations, engineers are at the limits of human capabilities and dis-

ciplinary expertise. Engineers leverage fit-for-purpose tools to assist with managing

complexity, typically simplified in programs such as Excel. The use of spreadsheet-

based tools has been helpful but can be an impairment to new technology imple-

mentation, as described by Schuman [52]. Engineering progress using the simplified

approach is steady, has a manageable level of complexity, the results are discernible

by large groups of peers, and does not have a recurring overhead often associated

with complex systems software tools. "Every system is analyzed at a particular level

of complexity that corresponds to the interests of the individual who studies the sys-

tem" [47]. Managers accept the status quo, but have aspirations for more creativity.
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Investors are increasingly anxious for portfolio profits and modest improvements in

operational efficiency. To meet and exceed these expectations a technological shift is

needed.

Before understanding the significance of systems thinking, the importance of un-

derstanding how the changes in one system would impact downstream results is high-

lighted. As one discipline makes major decisions to change a design objective, what

does it affect? How does it change the overall project deliverables? Will the re-

alized savings be lost as the change propagates through the system? The mental

models developed through years of experience are not as prevalent in today’s disci-

plines. Advanced foundational principles are embedded into simulation software and

abstractions based on experimentation and experience. With the increasing complex-

ity of well design, the capabilities of rational human understanding of the system

are limited. The reliance on Subject Matter Experts (SME) has reduced the knowl-

edge necessary to be considered a competent Wells Engineer. A significant portion

of tacit knowledge has been recorded in the form of requirements, standards, and

standardized tools, which can be, and has been a source of failure as designs change.

1.2 Significance of Research

The integration of System Engineering tools in Well Design is a prevalent topic.

Multiple energy service companies have created tools to integrate drilling planning

workflows. Software applications such as Schlumberger DELFI, Oliasoft, and Dy-

namic Graphics WellArchitect contribute to the adoption of Systems Engineering for

Drilling Engineers and Geologists. These tools focus on design coupling and valida-

tion through industry-accepted well analysis and modeling methods. Designing is a

decision-making process to derive the best possible alternative [47]. The iterative na-

ture required to explore alternatives is a function of the engineers and organization’s

time, effort, and efficiency. The optimal design in any state is, therefore, a function

of the patience of the engineering organization to perform the necessary iterations to

obtain an optimal solution. The proposed contribution to well design methods is to
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formulate a mathematical model for well design that is reliable, feasible, and tractable

under uncertain conditions.

The well design process varies in form by the organization, but the overall function

of the well design process is to provide a detailed design summary that can be used

to complete the operation with minimal deviation. Azar describes the summary of

the well construction plan as the "Drilling Program", and is composed of [7]:

• Summary of the overall well information

• Details regarding fluid, casing, drill pipe, and cement design

• Listing of tangible equipment needed for the well

• Drilling rig details most relevant for the project

• Formation evaluation objectives

• Emergency and contingency plans

• Time and Cost estimations

• Regulatory and Permitting Details

Software applications used for well design take a Model Based Systems Engineering

(MBSE) approach to establish relationships needed to formulate the drilling program

efficiently. Szemat-Vielma et al. describe the current process as engineers "working in

disconnected silos" [60], which leads to the inefficiency and error propagation observed

over decades of drilling planning. The drawback for pure MBSE for well design

optimization, is that the resultant well designs are an engineers’ assumptions of a

good design, but often ignore the complex relationships that can be modified to

create emergent systems. An exploration of many designs requires exploration of

design sensitivities, and in many cases is a slow process to make impactful change.

Utilizing advanced optimization techniques can take advantage of the relationships

derived from MBSE, and further explore possibilities for better solutions.

"Industry 4.0 is understood as a new industrial stage in which there is an integra-

tion between manufacturing operations systems and information and communication

technologies (ICT) – especially the Internet of Things (IoT) – forming the so-called

21



Cyber-Physical Systems (CPS)" [20]. Large, integrated companies leverage scale

to maintain a competitive advantage over their smaller counterparts. Industry 4.0

highlights the need for accelerated systems development to take advantage of these

inherent competitive advantages. Optimized and interconnected strategy, design,

construction, and operation within the oil and gas industry can lead to capital and

operational expense reductions if managed at the proper level of abstraction.Using a

systematic approach to developing well design concepts and engineering, best prac-

tices can be implemented using numerical optimization for efficient and predictable

results. Figure 1-2 shows the interconnections of the oil and gas system. "The lifecycle

of petroleum operations includes exploration and development, production , refining,

marketing, transportation/distribution to the end user and final utilization" [31].

Each discipline is dependent on information in some form from other disciplines, and

the strongest connections require complex systems to ensure the shared information

is accurate and precise. Uncertainties must be defined, and effective communication

of risk must be quantified.

Figure 1-2: Network Representation of Oil and Gas Discipline Dependencies
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1.3 System Boundary Definition

The remainder of this work will explore the optimization of the well design system

setting the system boundary strictly around the well construction parameters. Ge-

ological, completion, and production inputs will be considered fixed and serve as

boundary conditions and constraints. Figure 1-3 highlights the technical functions

involved in an integrated oil company. The red box indicates the system boundary

for this optimization and will receive inputs from other technical disciplines as static

inputs.

Figure 1-3: Technical Decomposition of an Integrated Oil Company

Management of the interactions within the system can be managed using a De-

sign Structure Matrix, "The DSM is a network modeling tool used to represent the

elements comprising a system and their interactions, thereby highlighting the sys-

tem’s architecture" [24]. Management of the interactions at the system boundary
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and within the drilling system, which are represented in a visual tool, can reduce the

analytical complexity of identifying possible solutions for optimization of the system.

1.4 Research Questions

1. Does the use of a Design Structure Matrix (DSM) assist in identifying the ability

to modularize or couple sub-optimization algorithms?

2. Are any existing algorithms capable of handling the mixed variable nature used

in well design?

3. How can a the well design process be modeled as a numerical optimization

problem?

4. What optimization formulation will provide efficient exploration of the feasible

region of the design space?

1.5 Thesis Outline

The eight chapters of this thesis will develop a framework for optimizing a well design

system using a hybrid optimization approach. Chapter 2 will explore current oil and

gas optimization processes along with known optimization methods and functional-

ity. Chapter 3 will review possible optimization methods that can be used to solve

well optimization problems, with varying complexity. Most new research focused on

accuracy, speed, tractability, and scale. Chapter 4 will discuss the development of

definitions of the architecture and interactions of the well system. In Chapter 5 the

architectural analysis discussed in Chapter 4 will be use used to determine a suitable

optimization architecture and framework to optimize the well system using a hybrid

optimization technique. Chapter 6 will detail the model construction, data sources,

and methodologies used to derive a numerical optimization model. Chapter 7 will

perform a comparative analysis of designs generated in a trial optimization formula-

tion using a Genetic Algorithm. We will explore possible use cases and failure modes

associate with the numerical optimization technique. Chapter 8 will summarize the
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results of this research with an explicit discussion on the limitations of the research,

suggestions for future work, and overall contributions to Systems Engineering for

subsurface exploration and development.
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Chapter 2

Optimization in Oil and Gas

Exploration

Optimization in Exploration and Production involves numerical decision-making pro-

cesses that help to determine subsurface design parameters to maximize the produc-

tion and profitability of the assets of concern. A review of existing optimization offer-

ings in the exploration and production industry reveals that well design optimization

is treated as an abstraction in subsurface models and can introduce significant uncer-

tainty in well design feasibility and cost. Existing well design optimization is isolated

to disciplines such as directional trajectory design, fluid design, or real-time drilling

rate of penetration optimization. Each optimization formulation requires fixed input

parameters and manages improvement through sensitivity analysis. Integration of

existing optimization models could provide valuable insights and the emergence of

new well design solutions.

Optimization in well design is centered on time and cost, but must be balnaced

with risk and safety. Optimization of casing design, well trajectory design, discussed

in Section 2.3, drilling fluid design discussed in Section 2.4, and rate of penetration

optimization, are key parameters of the drilling process, and could improve the cost

and duration of well construction.
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2.1 Optimization of Reservoir and Production Sys-

tems

Optimization in reservoir and production systems for intelligent resource extraction

and Enhanced Oil Recovery (EOR) is the most commonly used process in the energy

industry. "EOR processes are oil recovery strategies that use the injection of fluids,

chemicals, and heat into a reservoir that alter the thermo-physical or chemical prop-

erties of the multi-phase fluid–rock system" [11]. The process of modeling reservoir

mechanics is computationally intensive, even by today’s standards. Historically, oil

and gas exploration companies used differentiation of this technology as a technical

advantage and considered the information contained in the reservoir models highly

proprietary. The petroleum experts company, PETEX, started in 1990 developed a

suite of tools to optimize the production, fluid routing, and well development system

using numerical analysis, simulation, and optimization techniques [49]. The work in

reservoir and production optimization is continuously studied due to the complexity

of model simulation, approximation, and cost-benefit.

Khor et al. defines optimization methods used in oil and gas production using

various known and well-understood techniques. Sensitivity analysis is the easiest to

implement, but the least useful at finding good or optimal solutions compared with

heuristics and mathematical programming techniques [39]. "Heuristic optimization

algorithms seed good feasible solutions to optimization problems in circumstances

where the complexity of the problem or the limited time available for its solution do

not allow exact solution" [51]. In many cases, the optimizations of the reservoir man-

agement systems utilize data with known uncertainty to derive reasonable solutions.

Therefore, developing an exact reservoir fluid and mechanical model is not tractable.

The scale of interactions within the rock structure, transient pressure changes, and

undetected natural fractures contribute to the complexity of the reservoir production

system, and prevents the development of an exact model.

Zhao et al. proposed the classification of production under uncertainty using Ge-

netic Algorithms based on a modified formulation of the Non-Sorting Genetic Algo-
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Figure 2-1: 3D Reservoir Model

Note. From Chevron Energy Technology Company.(2009).3-D Reservoir simulation model.

rithm using a "Classification-Based Surrogate-Assisted" model [69]. Figure 2-1 helps

to visualize the well placement in relation to reservoir features highlighted by a vari-

ation in color, where the objective of the classification model is to optimize the well

placement and classification for maximum production and injection efficiency. Many

genetic algorithms have good first-pass solutions, but can become very expensive

as the solution moves toward a global optimum. Meta-heuristics cannot guarantee

optimality, and therefore are used in applications where the non-optimality is accept-

able. Proposed formulations such as that published by Zhao, looks to accelerate the

evaluations of possible solutions, and promote efficient design space exploration [69].

Problems in reservoir and production modeling require complex transient non-linear

analysis, which lead most software and services to utilize sensitivity analysis instead

of heuristics or mathematical optimization. The utilization of model approximations

is important in the progression of meta-heuristics.

Optimization of production and reservoir systems is a developing discipline with
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mature capabilities. "The combination of large-scale numerical reservoir simulation

models and optimization algorithms for parameter estimation (using historical pro-

duction data as input) has been developed in the oil industry since the 1970s. Un-

der the names ’computer-assisted history matching’, ’automatic history matching’

or ’data assimilation" [62]. Emerging computational capabilities such as neural net-

works, parallel processing, and quantum computing will provide an additional spring-

board to this field of study. The significance of reservoir and production optimization

applications of water, oil, gas, heat, and carbon capture will continue to develop with

computational capabilities, and serve as the most valuable form of optimization for

oil and gas operators.

2.2 Optimization of Well Spacing

In the mid-2010s, horizontal drilling and hydraulic fracturing of low permeability,

low porosity rock began to emerge as a strategic development strategy. Conventional

reservoirs are hydrocarbon-containing rock that can be produced at a measure related

to its’ porosity and permeability and where oil is held in place by geological structures.

Unconventional wells produce oil from reservoirs that do not easily flow, have micro-

Darcy permeability, and must be fractured for commercial production.

The development of an unconventional or tight rock reservoir does not produce

if it is not stimulated or fractured. Overstimulation or fracture interaction of adja-

cent wells can be inefficient due to lost or inaccessible productivity [6]. Ineffective

fracture treatments are an improper use of capital or resources and can decrease the

overall well productivity and thus reduce the profitability. The work of well spacing

is directly related to reservoir production and stimulation. Similar to the studies

performed by [45] and [59], which are primarily sensitivity studies of the complex

reservoir interactions in hydraulic fracturing. The studies explore numerical methods

to evaluate the transient results provided by rock mechanics and production models

in unconventional reservoir systems. They also utilize data matching to tune models

and verify result accuracy. The optimization of these systems has been defined as a
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workflow to achieve acceptable or near-optimal solutions.

Uncertainty of reservoir characteristics can only be reduced through expensive

analysis such as drilling new wells, extracting large contiguous samples of rock (cor-

ing), advanced seismic technologies, drill stem testing, and subsurface fracture mon-

itoring. Even with these technologies, the information gathered will remain an esti-

mate. In unconventional reservoir systems, natural fractures play a significant role

in the dynamics of the fracture treatment, impact the optimal well spacing, and

ultimately affect the system’s overall productivity. Cheng et al. developed a numeri-

cal simulation to study the effect of natural fractures in an unconventional reservoir

and found that the relationships to well spacing, natural fractures, and productivity

have non-linear correlations, thus making it challenging to correlate or implement in

tractable optimization formulations [15].

2.3 Optimization of Directional Well Trajectory

Well Trajectory optimization optimizes a directional well path to minimize the mea-

sured depth while intersecting all targets. The constraints on well design, such as the

dogleg severity limitations, rate of penetration (ROP) variations, minimum separa-

tion distance from neighboring wells, and reservoir contact objectives, as described

by Cao, Wiktorski and Sui, add significant complexity to the optimization of the

well path [13]. The lens of the optimization objectives are dependent on the disci-

pline of concern. Optimization of multiple targets or reservoir models focuses on the

target placement, not the estimated well path, as described in the Particle Swarm

Optimization algorithm developed by Jesmani et al. [36].

Trajectory plans are designed to maximize drilling efficiency in parallel with meet-

ing the other constraints related to well design. Using the principles defined by Shokir

et al., the trajectory design must consider the casing points to determine inflection

points or as most works state, build, hold, and drop points [55]. The inflection points

are significant objective parameters to trajectory optimization, and the number of

individual inflections should be minimized to allow for more efficient drilling. A well
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with a continuous directional profile is challenging to drill, and is not an accepted

practice using current technology. Therefore, all well trajectories should follow the

principle defined by Shokir.

2.4 Drilling Fluid Design Modeling

Drilling fluid is a primary component in any well design. Azar lists the major and

minor functions of drilling fluid shown in Table 2.1. Varadarajan et al. developed

a numerical formulation for real-time optimization of drilling associated with the

drilling fluid [5]. Varadarajan used a transient formulation to estimate and model the

equivalent circulating density and pipe movement friction pressure changes or surge

and swab pressure. The development of this formulation is a single discipline approach

to optimizing the planned system variables while drilling. Accurate development of

this formulation could be used to simulate or model specific parameters within an

optimization problem.

Table 2.1: Drilling Fluid Functions

Major Functions Minor Functions

Drilling-cuttings removal Cooling and lubrication of the bit

Containment of subsurface fluid pres-
sure Removal of drilled solids

Hole stabilization Reduction in casing and drill string
weight, buoyancy

Aid in formation evaluation

Cleaning of drill bit

Power downhole equipment

Information adapted from [7]
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Chapter 3

Optimization Methods

This section covers algorithms that have the potential to solve complex engineering

problems. Each algorithm has advantages, but there is not a numerical solution that is

the best in all scenarios. "In engineering design of systems with realistic complexity we

rarely demand the identification of the mathematical optimum with precision, and we

often will settle for a design that represents a substantial improvement over an existing

one" [47]. Numerical optimization can be distributed into Design of Experiments,

Response Surface Modeling, Deterministic Optimization, Stochastic Optimization,

and Robust Design Analysis [14]. Figure 3-1 organizes the optimization methods

discussed in this section into their respective categorical class of optimization.

3.1 Deterministic Optimization Methods

Deterministic optimization or mathematical programming is a form of global opti-

mization that finds the optimal solution using analytical, mathematical, and combi-

natorial tools concurrently [30]. This process uses gradient-based optimization tech-

niques to solve for optimal solutions. The most common form of mathematical pro-

gramming is linear programming and is described along with non-linear programming

and Multidisciplinary Optimization in this section.
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Figure 3-1: Optimization Methods and Examples Discussed in This Section

3.1.1 Linear Programming

Linear programming is an efficient form of optimization that guarantees a global

optimum under linear conditions. Linear programs can be described as "minimizing

a linear cost function subject to linear equality and inequality constraints" [9]. Linear

programs can be represented using the standard notation:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐′𝑥

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑥 = 𝑏

𝑥 ≥ 0

The formulation of linear programming problems must be linear for all objectives

and constraints. The simplex method can be used to solve problems where "x" is a

continuous variable. If "x" is an integer value, then the problem is a harder to solve
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integer program, and in some cases, exponentially difficult to find optimal solutions

within the feasible region.

3.1.2 Non-Linear Programming

An optimization problem where any equation in the objective or constraints is non-

linear, then we have a non-linear programming problem. A non-linear problem can

have any of the properties listed below [17]:

• The presence of at least one non-linear function.

• One or more variables all of which are continuous.

• Inequality constraints, equality constraints, or no constraints.

• Properties of the functions, which may include continuity, differentiability, or

convexity.

• Occasionally intricate optimality criteria.

• Convergent (but not usually finite) solution algorithms with associated rates of

convergence, such as linear, superlinear, and quadratic.

3.1.3 Multi-Disciplinary Optimization

"Multidisciplinary design optimization (MDO) is a field of engineering that focuses

on the use of numerical optimization for the design of systems that involve a num-

ber of disciplines or subsystems" [43]. The development of MDO solutions is not a

one-size-fits-all. The concepts of MDO utilize fundamental continuous, integer, and

discrete optimization to solve and couple multiple optimization problems into one

solution. This concept has been utilized primarily in "aviation, bridges, building,

railway cars, microscopes, automobiles, ships, propellers, rotor-craft, wind turbines,

and spacecraft" [43]. The architectures used to solve MDO problems vary in complex-

ity, speed, and accuracy. The use of MDO is a broad family of solution architectures

that can take advantage of distributed computing systems, complex coupled analysis,

and surrogate-based optimization. The main drawback of MDO is its complexity,
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low speed of execution, relatively low level of adoption, and complex configuration

and maintenance. Alexandrov and Lewis describe one of the challenges for the de-

velopment of MDO is the complexity of integrating components to create tractable

solutions while maintaining as much autonomy of each discipline as possible [4]. Open-

MDAO developed in partnership with NASA is "an open-source MDO framework that

uses Newton-type algorithms to solve coupled systems and exploits problem structure

through new hierarchical strategies to achieve high computational efficiency" [27].

3.2 Design of Experiments

The goal of Design of Experiments (DOE) is to intelligently guide the evaluation of

a set of designs to solve for the best designs efficiently [14]. There are numerous

techniques used to perform DOE. Full Factorial designs require an evaluation of a full

permutation of design possibilities, which is not possible. A design with 20 variables,

having 5 distinct parameters for each variable, has 205 or 3.2 million possible design

combinations as an example of the scale of computation

Figure 3-2: Sample Selection of a 2D Design Space for DOE

a) Random Numbers, b) Sobol Sequence, and c) Latin Hypercube Selection

Depending on the design space complexity, it may not be possible to evaluate the

design space efficiently. Methods such as the Randomized Complete Block Design,

Box-Behnken, Taguchi Method, Random Sample, and Latin Hypercube Sampling
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have been developed to efficiently explore the design space [14]. The Latin Hypercube

breaks the design space into sections and selects a subset of samples from each section.

This enables random subsets to be more dispersed throughout the design space. A

uniform distribution function such as that proposed by Sobol has the most distributed

combination of design space variables of the described methods, and uses a numerical

formulation to develop an evenly distributed set of solutions [58]. A comparison of

a design set using a full factorial, Latin Hypercube, and Sobol Sequence is shown

in Figure 3-2. The Sobol Sequence shows the most evenly distributed set of sample

points, while the Latin Hypercube looks like a marginally improved distribution from

the random number sample.

3.3 Response Surface Modeling

A Response Surface Model (RSM) is an approximation of a design space based on

the outputs of a DOE [14]. RSM is commonly referred to as a meta-model, which is

known to be implemented to accelerate design evaluations. RSM methods include:

Least Squared Method, Optimal RSM, K-Nearest, Kriging, Radial Bias Methods, and

Neural Networks [14]. Kriging is a popular option to develop response surfaces for

multi-variate problems such as well design, and Neural Networks have broad capabil-

ities for accurately approximating the most complex problems.

3.3.1 Neural Network

Neural Networks (NN) are designed to mimic the central nervous system [14]. The

connections between neurons are trained to have predictive responses based on input

conditions. For a response surface, supervised learning is applied by training the

neurons from DOE data points, where "the learning process aims at finding the

weights of the neural connections so that a cost function C is minimized" [14].
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3.3.2 Kriging Response Surface

Kriging is a linear least squares algorithm that estimates the result of an input vector

using a linear combination of the results of a DOE [14]. The Kriging estimation can

be represented using the linear formulation:

𝑓(x) =
𝑁∑︁
𝑖=1

𝜆𝑖(x) 𝑦𝑖

where

𝜆𝑖 is a weight vector or system of linear equations

𝑦𝑖 is the response of a DOE data point

3.4 Stochastic Optimization

Stochastic optimization uses random or evolutionary selection to find the best solu-

tion [14]. Each respective algorithm uses the best points from each iteration through

selection, evaluation, and iteration to describe the best known solution. This class of

algorithms is used when there are many discrete decision variables with a non-convex

decision space. This section explores common stochastic optimization algorithms that

are used for optimization, primarily using Evolutionary or Genetic Algorithms.

3.4.1 Particle Swarm Optimization

The formulation of the Particle Swarm Optimization (PSO) proposed by Kennedy and

Eberhart uses the ideal of natural swarming to generate solutions that "swarm" to the

global optimum solution [38]. This algorithm uses, N, number of particles, and each

particle flocks to the current global optimal solution. As the global optimum solution

evolves, the direction of the flock also changes. If the global best solution does not

change, the flock will eventually converge to the global optimum solution of the swarm.

Poli describes several improvements to PSO [50]. Based on the exploration of Poli,

the original PSO method proposed by Kennedy and Eberhart has seen improvements

38



in swarm dynamics and particle interactions.

3.4.2 Non-Sorting Genetic Algorithm (NSGA)

The NSGA Algorithm, developed by Srinivas and Deb, is an Evolutionary algorithm

that advances the Evolutionary Algorithm used to encompass multi-objective opti-

mization by giving each member a fitness assignment and works to preserve diversity

among Pareto solutions [21]. Sloss and Gustafson describe the fitness function used

in Evolutionary algorithms as "the measure of how close a result is to the desired

goal" [57]. The calculation of the fitness function and the determination of diver-

sity is an expensive calculation. Therefore, many experts did not find the original

NSGA formulation to be advantageous to other Heuristic methods. Deb describes

the NSGA as an expensive formulation that lacks elitism with an expensive Non-

Dominated sorting process. In each iteration, "the chosen parents remain in the next

population or iteration rather than being discarded" [57], and a sharing parameter

had to be specified to gain sufficient diversity of the results.

3.4.3 NSGA-II

Deb’s proposal of the NSGA-II formulation improved upon the original NSGA formu-

lation based on criticism as compared to other Evolutionary Algorithms. NSGA-II

is frequently used as a baseline comparison for multi-objective optimization prob-

lems due to the computational success and ease of formulation implementation. It is

the benchmark comparison of other statistically significant methods such as Particle

Swarm Optimization [16] and MOEA/D [68]. In the NSGA-II formulation, the non-

dominated sorting is improved by a systemic discounting of Pareto rank solutions.

Each solution in a population is assigned to a Pareto ranking. For each Pareto front

p, solutions in the population are evaluated for each non-dominated Pareto solution.

If a solution in the Pareto front is dominated by a any solution in the population,

the dominated solution is moved up into the next Pareto front, 𝑝+1, and the current

solution is added to the Pareto front, 𝑝. This formulation is the determination of so-
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lution fitness. The solution that is placed in the Pareto front, 𝑝, is not evaluated for

domination again. This prevents the need to revisit previously evaluated solutions in

each population evaluation, which limits the computational requirements needed to

perform the non-dominated sorting function. Additionally, the NSGA-II formulation

uses the concept of crowding distance to replace the need to develop a user-defined

sharing parameter. The non-dominated Pareto solutions within each population are

evaluated for the crowding distance or concentration of non-dominated solutions to

maintain solution diversity within each Pareto rank. The solution space of the NSGA-

II solution works well for problems with two objective functions, but begins to slow

down significantly as the number of objective functions increases. Deb describes the

complexity of the algorithm as 𝑂(𝑀𝑁2), where M is the number of objectives, and N

is the population size [21]. Therefore, we see that increasing the number of objectives,

M, will increase the formulation complexity. As this increases, so does the expense of

the computation.

3.4.4 NSGA-III

The formulation of NSGA-III is similar to that of the NSGA-II formulation. The main

differences in the two algorithms are the selection operator used to select populations,

and the removal of the crowding distance parameter for the Pareto front [22]. The

NSGA-III is developed as a many objective optimization formulation, indicating that

it is designed to handle more than three objectives functions for one formulation.

Experiments for problems with more than 3 objectives outperformed the NSGA-II

formulation. The use of reference directions or reference points is an advantage of

the NSGA-III formulation, and the performance compares with that of the Multi-

Objective Evolutionary Algorithm with Decomposition discussed in the next section.
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3.4.5 Multi-Objective Evolutionary Algorithm with Decom-

position

The Multi-objective Optimization formulation proposed by Zhang and Li [68] de-

composes a Multi-objective problem into multiple scalar optimization sub-problems,

and uses pareto front methods such as Weighted Sum, Techebycheff, or Boundary

Intersection approaches to evaluate the problem space. This method has a similar

approach to the principles used in MDO, where each discipline would be it’s own

sub-problem. The drawback to this method is that the coupling created within most

MDO architectures is not present in MOEA/D. MOEA/D is an advancement from a

multi-objective optimization problem through it’s use of a genetic reproduction and

mutation operations of neighboring solutions. The process of executing the MOEA/D

is shown in Figure 3-3.

3.5 Hybrid Optimization

Optimization of complex non-linear problems in engineering strive to solve the so-

lution for the global minimum. Hybrid optimization algorithms look to utilize the

Wolpert and Macready "no free lunch theorem" [66] to develop combinations of al-

gorithms that outperform the conventional standalone algorithm. "The no free lunch

theorem states that no individual optimization algorithm is better than all the other

optimization algorithms for all classes of optimization problems" [28]. Indicating that

the best optimization algorithm does not exist for every situation. Combinations of

individual algorithms in some form of concurrency have shown improved convergence

rates and better solutions

In this text, the objective function for the optimal well design is a multi-objective

function; therefore, any Hybrid Optimization formulation must be able to compute

more than one objective function. Greiner et al. describe the two classes of hybrid

multi-objective algorithms as "High-level Relay Hybrid (HRH) algorithms where each

of the constitutive algorithms run on its own in a sequential non-parallelized scheme,
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Figure 3-3: Process Flowchart for MOEA/D Algorithm

Image adapted from [2]

or as High-level Teamwork Hybrid (HTH) metaheuristic algorithms where constitu-

tive optimization algorithms run in parallel and contribute a portion of each new

generation’s population" [28].

Vrugt and Robinson developed AMALGAM or A Multi-Algorithm, Genetically

Adaptive Multi-objective to take advantage of the strengths of multiple algorithms

to create a robust hybrid optimization algorithm [64]. The AMALGAM algorithm

substantially outperformed each individual algorithm, and converged to the Pareto

optimal solutions much faster and more distributed than the individual counterparts.

AMALGAM is an HTH algorithm that runs NSGA-II, Particle Swarm Optimization,

Differential Evolution, and Adaptive Metropolis Search in parallel. Each algorithm
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contributes a portion of the offspring, and the weights or ratio of each generated

population is evaluated for each iteration. The adaptive ratio can be defined by the

formulation [64]:

𝑁 𝑖
𝑡 = 𝑁 ·

(𝑃 𝑖
𝑡 /𝑁

𝑖
𝑡−1)∑︀𝑘

𝑖=1(𝑃
𝑖
𝑡 /𝑁

𝑖
𝑡−1)

∀𝑖 ∈ 𝑘

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

∙ N is the number of offspring in the population

∙ The ratio 𝑃 𝑖
𝑡 /𝑁

𝑖
𝑡−1 is the number of offspring points

an algorithm contributes to the new population, 𝑃 𝑖
𝑡

∙
𝑘∑︁

𝑖=1

(𝑃 𝑖
𝑡 /𝑁

𝑖
𝑡−1) scales the success of a single algorithm

to the combined success of all the algorithms

∙ {𝑁1
𝑡 , ..., 𝑁𝑘

𝑡 }

An HRH algorithm also utilizes multiple algorithms run in series to create a diverse

optimization set that outperforms the individual algorithms. Unlike AMALGAM, the

Multi-Objective Hybrid Optimizer (MOHO) developed by Moral and Dulikravich uses

three algorithms with a switching algorithm that determines which optimizer handles

the next generation [46]. Results of the work show an improvement of the solution

to convergence ot the optimal Pareto front over the individual algorithms. A com-

parison performed by Moral and Dulikravich shows that the AMALGAM algorithm

outperforms the MOHO algorithm in most cases, and the MOHO algorithm fails to

outperform the NSGA-II algorithm in all scenarios [46]. The results of the algorithm

use the convergence (𝛾) and diversity (𝛿) metrics defined by Deb, where the conver-

gence asymptotically approaches 0 as solutions approach the Pareto optimal solution,

and the diversity metric, is a measure of how the solutions span the optimal Pareto

front [21]. In Table 3.1 below, the results for NSGA-II, AMALGAM, and MOHO

algorithms run for 15,000 function evaluations.
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Table 3.1: Hybrid Optimization Comparison of NSGA-II [21], AMALGAM [64],
and MOHO [46]

NSGA-II AMALGAM MOHO

Problem Name 𝛾 𝛿 𝛾 𝛿 𝛾 𝛿

Fonseca and Fleming 0.0026 0.38 0.0017 0.33 0.006 0.33

Kursawe 0.0108 0.48 0.0099 0.47 0.037 0.37

ZDT1 0.0053 0.34 0.0011 0.33 0.0158 0.35

ZDT2 0.0068 0.36 0.0009 0.35 0.0128 0.34

ZDT3 0.0027 0.56 0.0010 0.55 0.600 0.62

ZDT4 0.0523 0.73 0.0022 0.32 14.6 0.99

ZDT6 0.0504 0.53 0.0011 0.40 0.289 1.00

Data source: [46]

3.6 Best Practices for Optimization

Numerical optimization requires strategic planning and organization to ensure the

accuracy of the numerical representation of the physical system. As the saying goes,

"garbage in, garbage out", and mismanaged or sloppy system design can lead to

inaccurate and useless results. "The early stages of an optimal design project are

critical for the success of the entire effort" [47]. Papalambros and Wildeprovide an

outline for developing an optimization formulation and some applicable best practices

include the following [47]:

• The formulation of an optimal design requires a sound problem statement prior

to a definition of the system. The use of physical or graphical tools can assist

in the problem definition, followed by an accurate representation of the physics,

assumptions, constraints, inputs, and objective functions.

• The selection of an algorithm or architecture used for optimization is naturally

subjective, and the tool with the most familiarity is typically the tool of choice.

A detailed search of existing models and how they are used in the field of study

is a great point of reference for the selection of an optimization model.
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• It is best to manage discrete variables as a continuous parameter, which can

provide opportunities to use more gradient-based or meta-heuristic methods.

• Continued effort into problem complexity reduction in the number of variables,

noisiness, and scale helps to simplify the model.

• Once a final model is generated, validate the results with existing systems or

other mature forms of analysis.

The optimization of a well design system is a factor of the stage of the well planning

process. Through the literature exploration, optimization of well disciplines such as

well location, trajectory, and fluid system exist in isolation, and there is no known

optimization method for the system optimization of the well design process. De-

veloping an integrated optimization system will require using multiple optimization

methods coupled to function as a hybrid optimization algorithm. Due to the historical

context of oil and gas development, it is infeasible to replace all discrete parameters

in exchange for continuous variables, as described by Papalambros and Wilde [47].

In Chapter 5, an exploration of the selection of an optimization framework will be

detailed based on the numerical relationships and parameter type.
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Chapter 4

Well Design System Analysis

Developing an analytical solution for well design requires the conversion of mental

models for standard drilling design practices into a numerical system of equations.

The system described by [60] is a model-based systems engineering process that

integrates the workflows of geologies, subject-matter experts, and drilling engineers

into a seamless process that cascades changes and information for more efficient and

reliable well designs. Szemat defines several workflow categories, shown in Table 4.1

are expanded throughout the remainder of Chapter 4 for the development of an op-

timization architecture. By expanding categories in terms of an optimization model,

a generalized Pareto solution can provide a comprehensive well design. With further

analysis and verification, it may be used as a primary well design. Many of the cat-

egories provided by Szemat have significant interdependence, and a DSM is used to

evaluate the interconnectivity in Section 4.3.

4.1 Well Design Workflow

4.1.1 Input Parameters

The interface parameters needed to develop a robust well are provided to the drilling

engineers during the well design process. These interface parameters define the sys-

tem boundary conditions and contribute to strategic decisions primarily based on
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Table 4.1: Drilling Program Workflow Categories

Workflow Categories

Regulatory Requirements Drilling Fluid Bottom Hole Assembly

Geological Parameters Casing Design Bit Design

Financial and Supply Chain Well Control Requirements Rig and Surface Equipment

Well Properties Cementing Dynamic Drilling Properties

Directional and Trajectory Drill Pipe

Data adapted from [60]

geographical location, design and operational risk tolerance, and organizational and

technical capabilities.

Regulatory Requirements

The regulatory body makes appropriate standards based on environmental impacts,

groundwater protections, land and lease obligations, and political pressure. Regula-

tory requirements for well design for the Continental Shelf and Deepwater Gulf of

Mexico are listed in Title 30 of the CFR [1], and is enforced by the Bureau of Safety

and Environmental Enforcement (BSEE) in the United States.

Regulatory and Political Environment

Separate from the regulatory bodies, the political environment can impact the design

regulations. Heavy influences from the political environment can exacerbate rulings

and determinations of minimum design standards, which push regulations to be more

stringent. The differences in California and Texas rules and regulations for drilling

activities highlight the differences based on political impact and geographical loca-

tion. Although both areas benefit from the profits of the hydrocarbon industry, the

reporting, regulations, and requirements are different due to political motivations

and geographical location. California has a more significant risk of earthquakes and

tectonic plate movement, which requires careful exploration of the subsurface forma-
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tions.

Geological Properties, Hazards, Surface Location, and Targets

Geological properties include lithology, pore pressure, fracture gradients, and esti-

mated well stability analysis. The expected geology’s simplified characteristics are

derived using geotechnical engineering and provided as a probabilistic range of ex-

pected values.

Geological hazards help drilling engineers to plan for abnormalities with varying

degrees of uncertainty. The hazards are significant deviations from the normalized

geological properties due to faulting, water injection formations, unconsolidated for-

mations, caverns, and many other factors. Drilling engineers use the identified hazards

for contingency planning or providing feedback for alternative well designs or drilling

locations.

Drilling targets are provided as the desired production location or injection inter-

val location based on reservoir simulations or best practices. The targets are used

to determine a possible drilling path or trajectory to reach the geospatial location.

The feasibility of a well path must be thoroughly evaluated, which makes trajectory

optimization a challenging task.

Overall Well Value

The budget of many wells, or the economic threshold, is based on the resources’

profitability over the well’s life. Wells with long lifespans may have a higher value

for quality and reliability, whereas wells with short expected lifespans may look for

lower-cost wells. Wells with higher costs are typically high productivity, resulting in

higher consequences of failure. Trade-offs must be made to ensure the well design is

able to balance the total well cost and risk of failure.

Material Availability

Some well designs’ feasibility depends on the current supply of items such as mud

systems, drilling rigs, and tubular goods such as drill pipe and casing. Tubular goods
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availability can be restricted based on geological location, supply chain constraints,

and industry partnerships for common or shared goods. The entire catalog of standard

and premium tubular components is unlikely to be available for all locations. The

availability is critical to consider in optimizing potentially feasible solutions.

Drilling Technology Implementation

Several advanced technologies are available for installation on the surface, such as

Managed Pressure Drilling, Bottom Hole Assembly logging tools, and wired drill pipe,

which are designed to decrease risk and increase drilling performance. "A technology

is selected based on criteria such as technical feasibility, cost-effectiveness, regula-

tory requirements, and environmental impacts" [31]. These technologies can create

complex inter-dependencies and costs but can alter Pareto solutions if implemented.

4.1.2 Well Constraints

Wells are constructed using geology, production engineering, and completions engi-

neering requirements. These constraints identify where the rig will start drilling, how

deep it must drill, and how the well should intersect production zones. Furthermore,

the drilling engineer is given a minimum feasible diameter from the production and

completions engineers, while the geologist assists in providing a safe and advanta-

geous surface location for drilling. With this information, the Drilling Engineer can

begin designing the well to fit within the well design boundary conditions. A failure

to meet any of these could result in a well with a reduced or negative value.

4.1.3 Drilling Fluid System

Drilling fluid in well construction operations performs multiple functions and must

consider several competing factors. The fluid system in oil and gas operations is one of

the most complex systems to manage while drilling. Engineers must design the system

to accomplish the necessary tasks for safe and efficient operations while working within

geological, regulatory, supply, and cost constraints. "The correct selection, properties
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and quality of mud is directly related to some of the most common drilling problems

such as rate of penetration, caving shales, stuck pipe and loss circulation etc." [31].

Failure to implement and practice safe fluid design and monitoring practices could

lead to costly, fatal, or environmental consequences.

Azar uses the definition of "major functions" and "minor functions" to deter-

mine the value the drilling fluid serves [7]. Major functions include hole cleaning,

formation fluid containment, and wellbore stabilization. Minor Functions include

powering, cooling, and lubricating downhole components, suspending solids during

connections, reducing tubular weights, enabling formation evaluation, and cleaning

of the drill bit [7]. The drilling fluid interactions involve complex rock chemistry, rock

mechanics, operational efficiencies, and requirements to reach the desired drilling tar-

get safely. In general, the design process for drilling mud aims to have the lowest

density fluid, minimal proprietary chemical additives, and the lowest cost base fluid.

A base fluid for drilling mud can be air, freshwater, brackish water, seawater, diesel,

or synthetic base oil. The selection of base fluid is derived from the evaluation of rock

chemistry, fluid cost, formation interactions, local mud supply, and environmental

risks. Detailed engineering and subject matter experts can discern these interactions

using best practices and generalizations of experienced-based learning.

During early planning and conceptual design, drilling engineers will use the mud

system as an abstraction and perform estimations using historical averages. Drilling

engineers and operations personnel must have a good understanding of the mud sys-

tem, but do not need to know all of the complex details [31]. Most drilling engineers

understand the chemical composition of drilling fluids, how chemicals function, and

how to independently identify common problems in the fluid system. The detailed

design, thresholds, and interactions of chemicals within the fluid are often tasks that

are not significant to the drilling plan at the drilling program level, but are important

for proper mud system development.
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4.1.4 Well Trajectory and Directional Drilling

In drilling, vertical wells may not be able to meet well objectives [31]. Directionally

drilled wells are implemented when vertical wells are infeasible due to: surface con-

straints, if using an existing well to deviate to a reservoir some specified distance from

the current wellbore, or where the production section has optimal production if the

well is drilled at an angle through the reservoir. Hossain lists common functions for

directional or deviated wells [31]:

• A single surface or platform location with more than one well requires deviated

drilling to avoid collision and to reach the desired target locations.

• Using a land drilling rig to drill under a body of water.

• Drilling to subsurface locations inaccessible for a drilling rig, such as environ-

mentally sensitive areas or city centers.

• Emergency wells drilled to intersect a well that has lost integrity.

• Drill through an existing wellbore, but away from an exiting branch.

• Avoidance of subsurface features such as shallow faulting or subsurface salt.

• Horizontal drilling for unconventional well production.

• Directional targets are aligned in a non-vertical path, but can be reached with

a single well.

4.1.5 Casing and Liner

The casing is a critical component used in the well construction process, as it serves

multiple functions such as well stability and isolation. The design and installation

of casing strings are treated as milestones for well construction. The installation of

casing that is secure and tested is an indication of a static situation. The wellbore

becomes a closed system upon successfully installing and testing a casing string.

Hossain identifies several key functions of casing strings [31]:
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1. The casing provides the support needed to maintain the geometry of the well-

bore. When drilling, the removal of the volume of rock creates an imbalance of

internal stress, which can cause fracturing or caving of the nearby rock.

2. Isolates the target interval from being contaminated by fluid from other intervals

when coupled with cementing.

3. Eliminates fluid communication between intervals or zones.

4. Protects the freshwater system from contamination of produced or drilling flu-

ids.

5. Protects the oil bearing zones from surrounding water containing intervals.

6. After casing is set in place, it will prevent interactions with previously drilled

intervals.

7. Creates a structural conduit for installing an inner string, tubing, to be installed

for hydrocarbon production.

8. Structural and pressure-containing system that can hold the wellhead and Blowout

Preventer (BOP).

9. Reduces the formation damage created by drilling fluids. This is an important

factor for some well designs within the target intervals.

10. Structural conduit is known, measurable, and consistent in well-designed situ-

ations. If the geometry of a casing string changes subsurface, this is considered

a casing failure.

11. Required for the subsequent completion and production operations.

Each casing string is designed for a specific set of expected load conditions. For

land-based wells, casing sections are defined as: Conductor, Surface, Intermediate,

and Production casing strings. Figure 4-1 depicts each string’s relative position in

the well, where the Conduction Pipe is the first string installed, and the Production

Tubing is the last string installed. Interestingly, the casing design process follows a

bottom-up approach, where the production tubing and production casing selections

are selected before strings at shallower depths.
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Figure 4-1: Wellbore Casing Schematic

Image Adapted From [31]
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Conductor Pipe

Conductor pipe is used as the first structural pipe and is used to isolate unconsol-

idated, soft and unstable topsoil and rock, water zones, and shallow gas zones [31].

This string is not used as a pressure-containing string. It is a critical structural com-

ponent for supporting the load of subsequent sections and in some cases, production

rig loads. The design of the conductor casing string is driven by the setting depth,

installation method, wellhead configuration, and ID requirements needed for the well.

Surface Casing

The surface casing string is the first pressure-containing string, and is drilled without

a BOP. This string is installed after the conductor pipe, is cemented to the surface,

and protects shallow zones and the migration of fluids to the surface [7].

Intermediate Casing

The intermediate casing can be one or multiple sections of string. In Figure 4-1

the intermediate string is set deeper than the surface casing, and before the last

string is set. It is installed to isolate zones needed for drilling to the final interval.

Well profiles can range from 0-3 intermediate casing string sections. A casing string

must be installed or set in a specialized profile, at or near the surface, therefore the

technical limit to the number of intermediate strings is based on the feasibility of

multiple casing strings installed in the wellhead. Cementing for this string is not

required to reach the surface. As the temperature of the well increases, trapped fluid

in the annulus could increase the annulus pressure significantly during production.

As shown in Figure 4-1.b, the exposed formation below the surface casing string, and

above the intermediate casing cement, can be used to maximize the possible annulus

pressure theoretically. The exposed formation will allow fluid to flow into the rock as

the fluid expands due to rising temperatures from produced fluids.
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Intermediate Liner

A string not installed at or near the surface is a liner [7]. Liners are used to isolate

formations to continue drilling to subsequent sections or simply to reduce the volume

of material in a well. Secondary benefits to liners are reduced surge pressures when

running the string into the well, faster installation time, and reductions in circulation

pressures. Liners do not protect the casing strings above it, so the casing strings are

exposed to more loads following the installation of a liner.

Production Casing

Production Casing is the last casing string to be installed and cemented in the well. In

cased hole completions, which is shown in Figure 4-1, the production string intersects

the production interval, but in open-hole completions, the production casing string is

installed above the production interval. The production casing string is designed for

the worst-case loads that could occur during production. This string must contain

all fluids throughout the life of the well, and irreparable failures of this casing string

lead to the loss of the well. The design and qualification criteria for the production

string are the most stringent of all casing strings.

4.1.6 Drilling Rig and Surface Equipment

A drilling rig is a package of equipment needed for circulation, control, hoisting,

power, data acquisition, and storing equipment needed to construct a well [7]. The

surface environment of the well location, expected drilling depth, maximum string

weights expected, and circulation and fluid storage capabilities are the drivers for rig

selections. A rig type referred to as a Jack-up rig is used for drilling in shallow offshore

water, typically up to 500 ft. The rig has all equipment, including the BOP, installed

above the water line and is fixed to the sea floor using three truss-supported pylons.

A common land-based rig is referred to as a "triple" due to its ability to utilize a

three joint drill string, measuring approximately 130 ft. The rig package comprises a

modular system that can be moved to a new rig site on public roads with regulatory-
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compliant vehicles and minimal infrastructure disruptions. A typical rig can relocate

within one week to begin work in a location in the same development region. The

most advanced and complex class of rigs operates in water approximately 10,000 ft

deep, houses more than 150 crew members, maintains position using satellite-based

dynamic positioning system, has a hoisting capacity greater than 1,500,000 lbs, is a

fully integrated system with multiple fixed cranes, and drills up to 40,000 ft. The

most recent class of deepwater drillships has a 3,000,000 lb hoisting capacity [40].

Table 4.2 shows a comparison of capabilities, which are not all-encompassing, but

show a glimpse of some of the major differences in rig types, such as water depth,

circulation system horsepower, and hook load capacity.

Table 4.2: Sample Drilling Specifications

Specification
Rig Type

Land Jackup Drillship

Hookload Capacity (lbs) 1,000,000 2,000,000 2,500,000

Circulation System (hp) 4,800 6,600 7,260

Circ. System ∆P Rating (psi) 7,500 7,500 7,500

Circ. System Max Q (gpm) 1,200 1,500 5,170

BOP Rating (psi) 10,000 15,000 15,000

Fluid Storage Capacity (bbl) Variable 26,420 63,203

Crew Capacity N/A 150 200

Maximum Drilling Depth (ft) 30,000 35,000 40,000

Operating Water Depth (ft) 0 400 10,000

Relative Cost 1x 5x 20x

4.1.7 Drilling Assembly

The design of the drilling components used to create the borehole, with acceptable

curvature or deviation, proper gauge diameter, ensure depth measurement, measure
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and transmit signal, and create localized stress to break the rock are essential func-

tions of the drill string assembly. The drill string assembly consists primarily of the

kelly, drill pipe, bottom hole assembly (BHA), and drill bit shown in Figure 4-2.

"The drilling fluid and rotational power are transmitted from the surface to the bit

through the drill string" [31]. The drill bit, measurement while drilling (MWD), log-

ging while drilling (LWD), directional control, and centralization configuration help

control, measure, and direct the tools to their desired targets. Drilling engineers work

to optimize the trade-offs for bottom hole assembly design and selection to lower the

costs needed to deliver the most value for each well. Hossain [31] describes the design

of the drill string as a function of the well depth, hole diameter, fluid density, safety

factors required, and bottom hole assembly configuration. The string is evaluated for

tension, torsion, shock, collapse, and pipe stretch.

Figure 4-2: Drill String Components Schematic

Image Adapted from [31]
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Drill Pipe

Drill pipe is the primary component used to convey the drill bit into the hole along

with the BHA. It transmits torque and provides a conduit to pump fluid throughout

the wellbore. A typical configuration in a 20,000 ft well would have 1,000 ft of BHA

and 19,000 ft of drill pipe. Therefore, the drill pipe is a critical point of failure, a major

contributor to the Equivalent Circulating Density (ECD), and increases the friction

pressure in the drill string as a function of its length. The drill string connections

are called tool joints, and the tool joint OD must be less than the hole and casing

diameters it will pass through. Drill string design is a factor of well trajectory,

bit, casing, and pipe diameter diameters, pump rates need for hole cleaning, ECD

limitations, rig hoisting capacity, formation fluid composition, and drilling depth.

Drill strings for deep applications are often tapered to allow for a higher axial tension

safety factor when additional tension is required on the drill string. The material

selection of drill pipe is important for sour service wells, as Hydrogen Sulfide causes

significant pitting in cracking over time, leading to frequent failures while drilling.

Bottom Hole Assembly

As shown in Figure 4-2, the BHA is located below the drill pipe and above the drill

bit. It provides weight to the bit, using large diameter, heavy pipe along with some

directional control mechanism. Directional control can be provided using stabilizer

configurations or other bit directional tools such as a rotary steerable system or

directional mud motor. Possible components of the bottom hole assembly could

include:

• Jars - device used to store and release energy in the direction of the bit if the

BHA becomes stuck.

• Drill Collars - Heavy, large OD, small ID pipe with high compressive strength.

• Stabilizers - Well Gauge OD component used to centralize the pipe and increase

the BHA stiffness.
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• Mud Motor - Hydraulically driven "positive displacement motor (PDM) or a

drilling turbine." [31].

• Measurement While Drilling - Specialized tool used to provide directional mea-

surements through geomagnetic or gyroscopic measurements and radioactive

responses of the rock. This signal can be transmitted to surface manually, as a

pulsating shock wave, or through wired drill pipe.

• Logging While Drilling - Measurement tool for formation evaluation using sen-

sors to detect changes in formation properties and lithology [31].

Drilling Bit

Drill bits are used to break or chip the rock to create a deeper wellbore. The design

of the drill bit is dependent on the expected lithology in each interval, desired ROP,

and vibration and shock tolerance of the bottom hole assembly, and the operational

risk associated with failed drill bits. Bit selection is different for each drilling area,

and minimal changes in lithology, operational parameters, and bit life cycle drive

final bit selections by engineers. The selection of a bit is not trivial, but it does not

significantly affect the overall system design.

4.1.8 Cementing

Cementing in well operations is used for impermeable isolation of well fluids and

structural support within the wellbore. The unique properties of cement, which flows

as a liquid, and sets as an ultra-low permeability rock that does not degrade or decay

under extreme conditions, make it well suited for wellbore operations. During well

design, primary cementing is the pumping of a cement slurry after the casing is run.

The goal of the cement is to isolate the casing shoe, and formations that have been

drilled and cased in previous sections. Failure of a primary cement job could lead to

costly remediation and, in some cases a loss of the well. During primary cementing,

a critical design component of the cementing operation is the timing and duration of

the cement transition. During the cement transition period, the density of the ce-
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ment slurry is equivalent to the fluid in the slurry and can lead to an underbalanced

well, which allows the formation fluid to contaminate the cement slurry. Strategic

design of the fluid hierarchy must be considered when designing the cement slurry to

prevent fluid mixing during the cement setting periods. Cementing follows a hierar-

chal relationship where each pumped fluid has a higher density. Careful selection of

wellbore fluid, spacer fluid, and cement densities must be selected to ensure the well

remains overbalanced at all times while minimizing the possibility of lost circulation

or exceeding the fracture stress of the rock.

4.1.9 Well Barriers

Well barriers are the most important constraint for all phases of work. As defined by

API Standard 65 Part 2, a barrier is a physical or operational system that inhibits the

flow of uncontrolled wellbore fluids. Barriers can be physical such as fluid, mechanical

plugs, or solid cement [34]. Throughout the drilling process, barriers must be clearly

defined and monitored for the safety of the people and the environment. When

barriers fail, a blowout occurs when uncontrolled wellbore fluid is released. Once

a blowout occurs, the wellbore is considered a lost asset, and hydrocarbon releases

and death are likely. The Blowout preventer must be rated to contain the maximum

expected reservoir pressure minus some standardized fluid gradient, the wellhead

must contain the maximum possible pressure of production fluids, and the wellbore

fluid must be monitored for abnormalities indicating an influx of wellbore fluid while

drilling. CRF-250 Subpart B states that two barriers must be maintained so that if

one barrier fails, a second is likely not to fail [1].

4.2 System Decomposition

To develop a proposed numerical simulation, the decomposition of the parameters

used for numerical and logical engineering help manage the complexity of the interac-

tions. A system decomposition is a tool used to divide the parameters into individual

entities for further evaluation [19]. The numerical relationships of the system decom-
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position use parameters with clear and logical numerical relationships. In Figure 4-3

the system is divided into a Level 2 architecture. The level two items are input vari-

ables, constraints, decision variables, or optimization parameters based on contextual

knowledge principles for drilling engineering. Although these variables are not repre-

sented in the Level 2 descriptions, it is important to note that these parameters are

ordered and labeled based on a Drilling Engineers perspective. To avoid increasing

Figure 4-3: Well Design Level 2 Decomposition

the complexity of the Level 2 Decomposition, it is critical to clearly understand the

use of abstractions, which can be defined as an "expression of quality apart from

the object or as a representation having only the intrinsic nature rather than the

detail" [19]. The job of a drilling engineer is to work with and manage abstractions
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within the complex nature of the materials used in well construction. Abstractions of

fluid mechanics, metallurgy, rock mechanics, and geomagnetic properties are critical

items managed as an abstraction for most well construction processes. For example,

determining the fluid viscosity in a Non-Newtonian fluid is a transient property that

changes when starting pumps and moving the drill pipe. The chemistry required

to reach the desired rheological properties is treated as an abstraction for many pro-

cesses. An external party, fluids engineer or contracting company, manages the details

and provides expert analysis using the well conditions as inputs and rheological dy-

namics as outputs. The importance of precision of the fluid properties is conditional

on the risk of well failures but must accurately represent the expected parameters

during operation. These challenges are natural occurrences for the neurological pro-

cessing of a Drilling Engineer but can be difficult to implement into a numerical

solution. Appendix A expounds on the details of the parameters used in the Level 2

decomposition.

When representing the system as a numerical model, it was a challenging task

to avoid over-constraining system variables. In the well engineering process, the

term "consider the..." is used frequently to describe a cause and effect relationship

of parameters. Changing the casing diameter causes one to consider the ECD of the

subsequent section. However, in a numerical optimization process, these relationships

are inherently built into the mathematical formulation and therefore do not require

symmetric relationships within the DSM. The reduction of the symmetric relation-

ships personifies the strength of how numerical analysis allows logical modularization

of the DSM, and could significantly improve the design process.

Using a Design Structure Matrix (DSM), the well design numerical relationships

can be visualized in an organized manner. The DSM has the input parameters on the

horizontal axis and output variables on the vertical axis. An ideal DSM would have

a "bottom-left" design, which indicates the ability to develop a waterfall or series-

based optimization algorithm. The cross-entity interaction increases the complexity

of optimizing the well design process significantly. In terms of MDO, these cross

entity interactions are "shared variables" [43].
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4.3 Development of a System DSM

Developing a system DSM required a methodical identification of the level 2 items

shown in Figure 4-3. The relationships of the level 2 items are developed using

physical equations, tabular relationships, or process design relationships that are

best practices. During the development of the DSM, all relatiohips that did not

have a direct numerical relationship, but instead were typical considerations were

not labeled within the DSM. The goal was to limit the interactions to numerical

formulations only. By using numerical relationships only, the DSM would represent

the resulting numerical model that is created. For example, the relationship of the

rate of penetration to the casing diameter has an indirect relationship. Increasing the

casing diameters size reduces the rate of penetration, but the numerical relationship

does not exist for the relationship, therefore should not be identified within the DSM.

However the hole diamter or bit size does have a numerical relationship to the rate

of penetration, and therefore is identified as a non-symmetric relational item within

the DSM.

4.4 Modularization for Numerical Analysis

Modularization or clustering is used to group the level 2 decomposition items into

clusters that penalize interactions that are not in an optimal location. Using "the

Principle of 2 Down, 1 Up" [19], a feasible strategy for implementing an optimization

algorithm emerges from the modularization of the DSM. The three main objectives

of the modularization of a numerical evaluation of a well design are:

1. Identify the input parameters passed from boundary disciplines, such as Pro-

duction, Geology, and Completions. These parameters are not decision variables

for a Drilling Engineer. Changing the input parameters requires communication

or a feedback loop to an external discipline to modify the well design boundary

conditions. In practice, this process is naturally a component of early phase

design decisions.
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2. Assume selection parameters are static values generated by an outer iterative

optimization algorithm, with a preference for discrete values. In Chapter 5

we will explore outer algorithm selection concepts to generate feasible design

sets. The outer algorithm encompasses the well architecture, which includes

the casing and trajectory information. Optimizing the well trajectory is an

expensive formulation, and improper coupling with the optimization algorithm

could lead to an infinitely large design space.

3. Modularize the remaining constraints and parameters by minimizing the num-

ber of shared variables above and to the right of the modules, which can be

considered feedback loops or wait-and-see variables. The sub-modules are eval-

uated for each well section; therefore, the expense of the evaluation is multiplied

by the number of hole sections in the well. The relationship for well sections

is not explicitly displayed in the DSM, but is a critical part of the well design

process. The volume of interactions across disciplines is significant, and the

numerical formulation must result in a tractable optimization solution.

The clustering of the DSM groups highly interactive components of the system

into groups, penalizing elements that are not within clusters [24]. The clustering of

the system for well design looked to group elements with the least amount of in-

teraction in the upper right diagonal of the DSM. A manual clustering process was

completed through the movement of variables to attain a reasonable reduction in

upper right interactions while maintaining a logical grouping of the design param-

eters. The Boundary Parameters and Well Architecture Parameters were allocated

first; then remaining disciplinary components were moved to develop a flow of re-

duced feedback dependencies in the upper right diagonal. The objective of making

the clusters small did not work for the Circulation System and Drill String group.

This highly integrated analysis was designated as one large integrated cluster with two

disciplinary processes for evaluation. One of the significant advantages of numerical

optimization, both principles of design will be integrated to formulate the best solu-

tions. The addition of the Well Performance and Objectives clusters have the most
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interactions with the outputs of the above clusters and are primary parameters for

feasibility and optimality. The modularization of the DSM reduces outer disciplinary

interactions. It moves the complexity of the decision-making to the performance and

objective disciplines, which provide feedback to the disciplinary modules to search for

optimal and feasible combinations of the variables.

4.4.1 Well Design Decomposition

After modularizing the DSM into categories, the quality of clustering can be con-

sidered sufficient for use in a numerical optimization formulation. The three main

objectives are sufficiently met to assist the evaluation of numerical optimization tech-

niques explored in Chapter5. The Level 1 decomposition for the well design process

are listed in Table 4.3 and in the DSM diagram in Figure 4-4. Section 4.4.2 discusses

the details and strengths of each modular section.

Table 4.3: Sample Drilling Specifications

Initial Level 1 Before Modu-
larization

Final Level 1 After Modular-
ization

Regulatory Requirements
Geological Parameters
Financial and Supply Chain Boundary Parameters
Well Properties Well Architecture
Directional and Trajectory Casing Depth
Drilling Fluid → Circulation System and Drill

StringCasing Design
Well Control Requirements Drill String Load Analysis
Cementing Cementing
Drill Pipe Well Performance
Bottom Hole Assembly (BHA) Well Objectives
Bit Design
Rig and Surface Equipment
Dynamic Drilling Properties
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Figure 4-4: Modularized DSM for a Numerical Well Optimization Process

4.4.2 Modularized Level 1 Decomposition

The final level 1 items for the well design numerical representation will be discussed

in detail in this section. The order and clustering of each Level 1 item follows the

logic of an optimization problem, where the problem constraints and input parame-

ters are first. The DSM shows these input parameters having feedback items from the

optimization elements, which reflect the information presented in Figure 1-2. Well

architecture is considered a component of the outer function, which provides an archi-

tecture for a subset within the design space. The subsequent items are treated as the
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well system’s constraints, decision variables, and optimization parameters. The well

performance attributes are mostly optimization parameters and provide feedback to

the well design system, for the quality of the design selection.

Boundary Parameters

The information given to a drilling engineer is treated as the drilling scope and drives

many of the trade-offs to creating well designs. Static conditions for regulations and

geological properties are things that cannot be easily modified for design optimization.

Geology is considered to carry the most uncertainty, as the predictability of geological

properties of even the most understood geological regions changes in unpredictable

manners. Geotechnical Engineering uses estimations of geological properties to de-

velop probabilistic and stochastic models with a range of certainty that is a function

of the expense of data collection of actual, nearby subsurface data [26]. In drilling,

this uncertainty can equate to risk, and the drilling design must remain within the

risk tolerance of the geographical and political environment, operation company, the

consequence of failure, and well value.

Other boundary parameters such as the well surface location, targets, supply chain

availability, and rig availability are fixed for a single design. Changes to material

availability can be modified if the value of the change is warranted. However, in

many cases, the cost of a change can significantly affect the development cost of a

well. As shown in Table 4.2, rig capabilities are static values, and operations that fall

outside of current availability require the engineering and construction of a new rig

class or global sourcing for a drilling rig.

Well Architecture

The architecture of a well is the structural makeup of a well. Drilling engineers ref-

erence the architecture of a well, using references to the number of casing strings,

the size of the casing strings, and the directional trajectory [56]. The geometric

properties of the casing are selected, along with the development of a potential well

trajectory. Casing diameters cannot be reasonably relaxed. Casing OD’s are stan-
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dardized throughout the industry, and the sequence of casing sizes creates a large

discontinuous design space.

Casing Design

Determining the casing attributes is a primary feedback sequence within the well

design process. The casing setting depths and material selections are functions of

subsequent optimization processes according to the process methodology described in

Figure 4-4. Through the optimization of the casing points, fluid density, formation

fluid concentration of corrosive elements, and geological changes, the casing must

maintain integrity for all applicable load cases. Failure of any single load case results

in an infeasible design.

Circulation System and Drill String

The parameters identified for optimization include two subsystems, the drilling fluid

and the circulation system. The drill string and circulation system selection are

tightly coupled, as the drill string and bottom hole assembly are the primary driver

for system friction pressure. Although the complexities of drilling warrant significant

attention, decoupling the system could add to the complexity of the problem as critical

interactions occur on the subsystem boundaries.

Drill String Load Analysis

The analysis of the drill string is a determination of "drillability", which indicates if a

design is physically possible to drill. The drill string load analysis could be considered

a constraining component of the Circulation System and Drill String decomposition

but is separated to allow optimal parameters to be explored without the relatively

expensive evaluation for feasibility. Any feasible design shall meet the constraints

necessary for drilling each hole section.
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Cementing

In Figure 4-4, Cementing is represented as a highly coupled system with limited

interaction with external systems. Cementing has the complexity and importance to

be considered a critical operation. However, the details associated with cementing

design optimization are represented as an abstraction for this numerical model. This

information remains unchanged from the original model decomposition and will be

calculated for feasibility within the existing well architecture.

Well Performance Attributes

Well performance factors directly correlate to a drilled well’s efficiency and quality.

The challenge of meeting the constraints of the operating environment, coupled with

the cost to drill a profitable well, leads to engineered trade-offs for optimal well design.

This section is a result of the decision made on optimal conditions and will implement

significant feedback throughout the system. An optimization formulation should focus

on the computational efficiency of the well performance attributes, as they are not

treated as constraints but as optimal or beneficial parameters used to calculate the

objective functions.

Well Objectives

Drilling Engineers use Well Cost, Drilling Risk, and Drilling Job Duration to design

wells under provided constraints. Minimizing tangible items, well depth, drilling

complexity, and minimizing safety factors for casing designs ultimately reduce cost

per foot. The well duration is a summation of distinct operational activities, each of

which has a duration associated with it. The time intervals result from equipment

installation times, maximum pipe speed (surge/swab) for running casing and drill

pipe, and the rate of penetration. Identification of risk can be complex to translate

into a numerical model. The numerical identification of risk using a probabilistic

approach to quantify the risk of an operation, given an uncertainty set, is described by

Sheng et al., which highlights how geological uncertainty propagates and is managed
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for well design [54].

4.4.3 Utilization of DSM For Optimization Architecture

The development of the DSM representing the well design system provided a visual

representation of the problem variables and their interconnectivity. In an analysis of

the problem using the principle of two down one up to develop a modular decompo-

sition, a system modularization for use in algorithm development. In Chapter 5, the

generalizations of the Level 1 decomposition from Figure 4-4 will be used to generate

a reasonable architecture for a numerical optimization formulation.

4.5 System Representation of the Well Design Pro-

cess

The DSM produced in this chapter is a useful tool in simplifying the complex in-

teractions in the well design. The development and identification of the numerical

relationships within the design help identify which variables are decision variables,

constraints, or parameters. Future evaluation of the DSM leads to modularization,

which further simplifies the system representation for analysis of the system interac-

tions in their most efficient form. The modularized DSM can be implemented into

disciplinary optimization formulations such as Multi-Disciplinary Design Optimiza-

tion or Multi-Objective Evolutionary Algorithm with Decomposition to develop a

multi-objective optimization problem. The final clustered DSM can be used to com-

municate and construct the system optimization model using the input variables on

the horizontal axis to generate a feasible optimization formulation. As the number

of top-right dependencies decreases, the complexity of the algorithm needed to rep-

resent the numerical system decreases. The newly constructed modularized DSM

represented by the three divisions of boundary parameters, outer optimization pa-

rameters, and continuous or integer optimization parameters can be used as a tool

for possible optimization formulations.
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4.5.1 Utilization of DSM For Optimization Architecture

The development of the DSM representing the well design system provided a visual

representation of the problem variables and their interconnectivity. An analysis of

the problem using the principle of two down one up to develop a modular decompo-

sition, a system modularization for use in algorithm development. In Chapter 5, the

generalizations of the Level 1 decomposition from Figure 4-4 will be used to generate

a reasonable architecture for a numerical optimization formulation.
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Chapter 5

Numerical Well Design Architecture

Analysis

This chapter evaluates the modeling methodologies for design space exploration of

a well design. Developing a numerical optimization model for well design requires

the creation of numerical models using decades of information from best practices,

physical principles, and operational limitations to derive reasonable solutions. An an-

alytical system architecture is proposed for optimal well design through an analysis of

the DSM constructed in Chapter 4. The objective of the numerical optimization is to

provide a set of Pareto optimal well designs derived from a comprehensive exploration

of the well design space by developing a tractable numerical formulation of the design

system using a hybrid optimization algorithm.

Numerical simulations using Genetic Algorithms enable the complex development

of continuous, discrete, discontinuous design spaces. In well design, multiple archi-

tectures can be explored by modifying the number of casing strings or hole sections

within the well construction parameters. The change in hole sections generates a new

set of decision variables within the optimization framework. For this study, we will set

the number of hole sections available for evaluation to a reasonable maximum for the

well boundary conditions. For a single architecture, multi-objective function system

with mixed continuous, integer, and discrete variables, evolutionary algorithms (EA)

can search the feasible solution space for Pareto optimal solutions in one optimization
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run [21].

5.1 Well Design as a Numerical Method

The development of any model is a numerical representation of a physical system [47].

The well design development process is represented as an abstraction throughout the

development phases of the project design. This section will explore the development

of an early phase well development plan using an optimization formulation. In the

early design phases, the well design is generally treated as a cost object, and receives

minimal input on detailed design variables. High fidelity rock mechanics, fluid design,

and ROP dynamics are developed in the late design phases to reduce the operational

well construction risk. During the drilling phase of the well construction process,

the goal is to have zero deviations from the planned well design, with the exception

of tuning parameters to manage geological and lithological uncertainties. The best

operations personnel are inherently those who can quickly analyze the system inter-

actions and develop logical solutions based on physical principles and industry best

practices.

5.1.1 Drilling Process and Source of Inputs

Within the subsurface exploration and production discipline, the construction of the

conduit used to access fluids beneath the surface, generally requires the construction

of a well. The depth, hazards, cost, and consequence of failure determine the value

and rigor of engineering for well design. Drilling engineers are given a list of inputs

ranging from locations to available equipment and cost. Appendix A details the

design inputs and how they relate to the numerical design functionality.

Drilling Engineers receive a package of information generated by an asset owner,

which defines the well objectives, geologic or geospatial targets, and cost limitations.

The asset owner receives information from other disciplines for reservoir characteri-

zation, geological interpretation, and production estimation to generate the well con-

straints and field development plan. Figure 1-2 highlights the complexities of the
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disciplinary interactions within the development of hydrocarbons. In Chapter 2, a

software package, PETEX, is described as a tool used to assist in field optimization

and planning. This software does not involve the optimization or design attributes of

the well that must be drilled, so the drilling engineering team must use the provided

constraints to generate the well design. In a numerical model of a drilling-specific

optimization process, the input information or boundary parameters are static pa-

rameters. The design variables must conform to those parameters while making

knowledgeable tradeoffs for optimal design.

5.1.2 Requirements and Assumptions

The diversity of well design solutions is a function of the interpretation of government

regulations, adherence to minimum recommended API specifications, and the risk

profile of the operating organization. Integration of complex interactions of social

impact, uncertainties in the regulatory environment, and location-dependent political

risks will not be in scope for developing the numerical method. Sheng and Guan

developed a probabilistic numerical risk ranking process that improves the numerical

evaluation of drilling risk with simplified rankings of safe, transitional, and dangerous

regions based on the probability of failure [54]. Comprehensive development of well

design risk is subjective and remains operator and location dependent. The operator

of the numerical evaluation must use an internal risk register that has been converted

into a numerical model for proper drilling and well design risk evaluation.

The numerical evaluation assumes that the input information are static parameters

and there will be a constrained set of casing, drill pipe, drilling rigs, and drilling fluid

available for use. This limitation of options intentionally reduces the design space

options and is a phenomenon realized by all drilling engineers during the design

process. Design options are essential when considering tradeoffs not included in the

numerical model, mainly where the bounding parameters are highly uncertain.
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5.1.3 Design System Constraints

All well designs must meet an acceptable determination of well construction dura-

tion, total well cost, well objectives, and risk of operational failures. The iron triangle

constraints concept, developed by Barnes [8], and later expounded by several others

to include more project constraints, applies to developing the well design system and

drives the solution space to make tradeoffs for design quality. A commonly referenced

tradeoff are those made for shallow water offshore wells and deepwater offshore wells.

The rate of production, cost of failure, and risk of catastrophic consequences modify

the constraints for deepwater wells, and allow cost to increase at the expense of well

integrity failures. For shallow water wells, the cost of well integrity failures over the

life and during the well construction process of the well is much lower and can with-

stand some design risks. The well development solution must fit within the design

boundaries defined by the input parameters and boundary interfaces. Any numerical

solution developed for the design and construction of a well must quantitatively eval-

uate the ilities within the design space, which currently exist as best practices, rules

of thumb, and corporate recommended practices. Operational best practices such

as changes in mud density, base fluid, and chemistry are significant to operational

feasibility but can be challenging to implement into a numerical simulation.

5.1.4 Early Phase Well Design Output

The use of an optimization process in a new area or reservoir target serves the most

advantage for drilling engineers, as the initial well design is a knowledge-based assess-

ment of the best option. The best option is a conservative estimation of an existing,

well-understood well architecture that is iteratively improved as more information on

the performance of the well architecture is generated. Ullah et al. describes the rate

of improvement as a learning curve. The learning curve approaches some subjective

technical limit as the feedback of new knowledge is implemented into the well engi-

neering process [61]. Utilizing an optimization process in the early well design process

would provide solutions that are valid options for implementation into a well design.
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Developing a numerical optimization model in the well engineering process will im-

prove the initial cost estimates, initial well construction designs, and the existing well

architectures. Shokry and Elgibaly’s removal of a casing section saved more than 25%

of drilling time and cost using a numerical approach to optimal design [56]. Integra-

tion of ilities is a challenging but necessary requirement to move past a minimum

viable product numerical design strategy. Considerations for non-standard equip-

ment and processes, such as managed pressure drilling or foam cementing, produces

much of the time and cost improvements in current well designs. New technology

and detailed analysis on formation evaluation, specialized equipment, and field expe-

rience can affect the numerical tractability, but serves as a barrier to entry into the

engineering process.

The design architecture is the most critical component for a detailed analysis of

a well design. Casing setting depths, casing string dimensions and strengths, bit

and hole sizes, and well trajectory are major architectural decisions that drive the

design possibilities in a well. The MBSE system described by Szemat-Vielma et al.

requires the input of a well design, and the integrated system verifies the design and

can run higher fidelity analysis on the selected design [60]. The drilling engineer

can perform a detailed well design exploration by coupling a low fidelity numerical

optimization process with a higher fidelity MBSE formulation through the supply of

optimal, feasible solutions. The process design integration would enhance the drilling

engineering workflow’s time, efficiency, and quality.

5.2 Optimization Architectures for Well Design

The selection of an optimization architecture for well design must be able to manage

the interdependencies shown in the well design DSM, Figure 4-4. The optimization

of feedback mechanisms or causal effects are strengths of Multi-Disciplinary Design

optimization. Stochastic optimization methods can utilize the random search meth-

ods to find and search local minima to iterate or progress toward optimal solutions

and eliminate numerical feedback within the mathematical model. This section will

77



Figure 5-1: Well Design Engineering Inputs
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Image adapted from [60]

explore the feasibility of using MDO and the Evolutionary Algorithms as a subset of

stochastic optimization for use in the numerical well design optimization formulation.

5.2.1 Utilization of Evolutionary Algorithms

Evolutionary Algorithms use the principles of biological processes to develop optimiza-

tion methods. Many of these techniques use stochastic and probabilistic methods to

make selections and mutations to find good potential solutions [37]. Many proposed

solutions are benchmarked with the Non-Sorting Genetic Algorithm (NSGA-II) [21]

for a comparison using standardized metrics for diversity, convergence, and Pareto

optimality. The goal of the evolutionary algorithms in multi-objective optimization

of non-linear, non-convex, discrete, continuous design spaces is to find the local min-

ima of the design space solutions efficiently. No known algorithms exist to guarantee

the global minima in non-linear optimization, with the exception of theoretical quan-

tum computing. Therefore most algorithms for complex optimization formulations
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efficiently explore local minima for the best known solution.

Figure 5-2: Basic Evolutionary Algorithm

Image adapted from [57]

The initialization of an Evolutionary Algorithm generates a sample or initial popu-

lation as the first iteration. The initial population is random selection of the permuta-

tion matrix or design space, constrained to an upper and lower limit. More advanced

methods of sample set generation of evenly spaced data points is highlighted in Figure

3-2. "Healthy populations are important for discovering good solutions" [57]. The

initial population set will evolve with each generation or iteration of the algorithm.

Following the selection of a population, evolutionary algorithms use some form

of evaluation to determine if a solution is a good evolution. The good solutions,

or those with the highest fitness, are used to generate more offspring, which share

part of the parent population. Note that evolutionary algorithms use the principle
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of fitness, mating, and offspring to describe the natural evolution of organisms to

formulate the algorithm. In well design, these changes or exchanges in design variables

create possibilities for random variable selections that may completely change the

architecture, which describes diversity. Diversity is a variation within the numerical

optimization objective function and design variables.

5.2.2 Multi-Disciplinary Optimization

Based on the analysis of the DSM in Figure 4-4, optimizing each discipline with in-

dependent decoupled gradient optimization would be inferior and would not provide

solutions within the optimal disciplines. The utilization of a full MDO, All-at-once

gradient-based optimization formulation is nearly impossible based on the number of

discrete variables in the design space. Due to equipment supply and standards con-

straints, the relaxation of all discrete variables would introduce extreme uncertainty,

making the solution unrealistic. Suppose the DSM is interpreted as having an outer

function that manages the discrete variables. In that case, MDO is a good solution

to manage the coupled design parameters for optimal well design.

Design optimization using MDO has been proven to be effective in physics-based

aviation applications and is used extensively in improving designs associated with

mechanical structural analysis coupled with fluid mechanics [44] [53]. Sgueglia et al.

compared the computational expense of generating a Pareto set of solutions using a

sensitivity approach to Multi-Objective Optimization with an NSGA-II model. The

experiment found that although the NSGA-II model generated more solutions on

the Pareto, the MDO model generated a good set of Pareto solutions in less time.

Utilization of parallel computing could improve the rate of convergence for Multi-

Objective MDO, and would be a viable option for evaluation.

5.2.3 Design of Experiment

The use of DOE as a design optimization strategy is the most robust method for

finding and evaluating feasible solutions but is the least efficient in exploring solutions
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to improve the Pareto front. The evaluation of a complex solution using a DOE

approach decreases in effectiveness as the design and solution space increases [25].

Using a design space exploration algorithm based on the NSGA-II framework will

generate more Pareto optimal solutions as the number of variables and complexity of

the design space increases. The random, or stochastic nature of DOE formulations, is

a simple approach to constrained optimization, but can be computationally inefficient

when continuous variables are present in the formulation.

5.2.4 Challenges for an Out of the Box Algorithm

The principle of the "No Free Lunch Theorem" highlights that optimization algo-

rithms are not one size fits all, and for any optimization, it is difficult to determine

the best solution [66]. Determining a single best algorithmic formulation is a func-

tion of the problem development, scale, computational capabilities, and design ob-

jectives. For optimization of the entire well design space, managing the constraints

and relationships within the design space are critical considerations for an algorithm.

Monolithic algorithms for a complex optimization algorithm in a discrete, integer,

continuous, non-linear, and non-convex design space is a challenging problem. Due

to the discontinuous design space, gradient-based algorithms in monolithic systems

are infeasible options. The benefit of MDO is the distinction of disciplines allows

the separation of disciplines, which can help eliminate the effects of discontinuity in

the design space. Stochastic optimization is an attractive alternative and features

many benefits that could lead to a set of good outputs for well design. Suppose the

well architecture is optimized using stochastic optimization on a well that will drill

four sections. In that case, the resulting design space has 1917 potential combinations

of solutions. Even with advanced evolutionary algorithms, exploring a very small

percentage of this design space does not yield promising logic.

Management of the discrete design space for the casing dimensions using standard

API pipe [35] yields 21 and 121 casing ODs and IDs, respectfully. The combination of

the discrete values for the casing design problem will require the use of a conditional

selection algorithm to limit the evaluation of infeasible design options. The standard-
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ized casing IDs are provided as ranges, within a specified tolerance, and could be

relaxed to a continuous design variable within optimization formulations. Consider-

ing the standard best practices shown in Figure 5-3, which represents a rule of thumb

selection for Casing OD and bit diameters, the casing design problem can be consid-

ered a minimum cost flow problem, where the objective is to minimize an objective

associated with each respective casing and bit node. The network representation in

Figure 5-3 does not capture the use of the various constraints binding the relation-

ship but gives reliable and consistent solutions that are well accepted throughout the

industry.
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Figure 5-3: Casing and Bit Size Selection Chart

Image adapted from [7]

Note: The casing and bit OD selection is a conservative estimate and does not com-

prehensively demonstrate the feasibility of all solutions.
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5.3 Research Methods

The optimization algorithm will have a population of at least 2500 members, which

indicates 2500 distinct designs will be evaluated for 120 generations or iterations.

There will be a total of 5 casing combinations for a three string design, and 4 com-

binations for a four string design generated at random intervals for consideration.

Each casing architecture generated will evaluate 175,000 potential design options us-

ing the NSGA-II and NSGA-III Genetic Algorithms to determine a set of Pareto

optimal solutions. The formulations are evaluated for the quality of solutions, rate

of improvement throughout the algorithm, and a subset of the genetic formulation

will measure the design space diversity throughout the iterations. The use of diver-

sity and rate of convergence are used in various forms for algorithm comparison and

effectiveness.

5.3.1 Well Design Validation

Well design validation will be performed using a visual to come in well designed and

construction. the casing point or plotted with the mud density and estimated changes

in operational mode density to ensure the casing architecture fit within the geological

envelope. for the purpose of this research, one Pareto optimal design from the three

section optimization, and one four section Pareto optimal design will be published

within Chapter 7. The valuation of feasibility for all solutions is not necessary if it is

understood that the constraints in the evolutionary algorithm hold true.

5.3.2 Design Feasibility

The important feature for the efficiency of an evolutionary algorithm is to measure

the rate of feasible solutions evaluated through each generation. Feasibility of the

designs within the optimization algorithm are defined as the set of design variables

that meet all constraints defined within the optimization formulation. As the algo-

rithm evolves the number of feasible solutions per generation should increase through

the combination of the feasible population crossover and mutation performed by the
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genetic operator. An algorithm that does not show and increase infeasible solutions

shall be considered a sub-optimal objective process. An algorithm that shows an

increasing to plateauing solution will be further evaluated for pareto improvement

and convergence. Li notes that an algorithm that forces populations into the feasible

region have a higher propensity to land in a feasible region, and and not explore

additional optimality within the design space or only evaluate feasible regions with

high concentrations of solutions [41]. Therefore, a measure of solution diversity and

convergence must be used in congruence with evaluation of feasibility.

5.3.3 Design Space Diversity

The well design space is a discontinuous optimization problem, with many design

variables and constraints. The measurement of design space diversity helps provide

confidence in the algorithms ability to search many local minima for the best solution.

The factor used to approximately measure design space diversity, D𝑘, for each design

space variable in the total design space population, X. Within each generation the

approximation of the diversity, 𝑑𝑘, for each design variable,𝑥𝑘 is described in the

equation below [48]:

𝑑𝑘 =

⎯⎸⎸⎷1

𝑙
·

𝑙∑︁
𝑖=1

(︂
𝑐𝑘 − 𝑥𝑖

𝑏𝑘 − 𝑎𝑘

)︂2

∀ 𝑘 ∈ X

𝑤ℎ𝑒𝑟𝑒 :

𝑘 = a design variable in the population d

𝑐𝑘 = centroid for k

𝑏𝑘 = minimum of variable k

𝑎𝑘 = maximum of variable k
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5.3.4 Pareto Analysis

The Pareto front are the non-dominated data points of the solution set. The theory

of non-dominated solutions are data points in a 2-D solution space, that have no

solutions with an objective function 𝑓1(𝑖) less than 𝑓1(0) and 𝑓1(𝑖) less than 𝑓2(0).

The definition of Pareto optimality means you can simply draw a line to each Pareto

optimal point, and will not intersect any other solutions. In a numerical computation,

the method developed for this research uses an iterative slope approach to find the

next Pareto optimal point.

Algorithm 1 Computation of the Non-Dominated Pareto Front
Require: 𝑆𝑜𝑟𝑡 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑆𝑒𝑡, 𝑆, 𝑖𝑛 𝐴𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑂𝑟𝑑𝑒𝑟
𝑃 (0)← 𝑆(0)
𝑅← 𝑟𝑜𝑤𝑠 𝑖𝑛 𝑆
𝑟 ← 1
𝑝← 𝑃 (0)
while 𝑟 ≤ 𝑅 do

𝑠← 𝑆(𝑟)
if 𝑠1 > 𝑝1𝑎𝑛𝑑𝑠2 < 𝑝2 then

𝑑𝑜𝑚← 𝐹𝑎𝑙𝑠𝑒
𝑓(𝑠1)← 𝑙𝑖𝑛𝑒𝑎𝑟 𝑐𝑢𝑟𝑣𝑒 𝑓𝑜𝑟 𝑝→ 𝑠, 𝑤ℎ𝑒𝑟𝑒 𝑓(𝑠1) = 𝑠2
𝑖← 𝑟
while 𝑑𝑜𝑚 = 𝐹𝑎𝑙𝑠𝑒 do

if 𝑆(𝑖)2 > 𝑝2 𝑜𝑟 𝑆(𝑖)2 > 𝑠2 then
𝑖 = 𝑖+ 1

else if 𝑓(𝑆(𝑖)1) < 𝑆(𝑖)2 𝑎𝑛𝑑 𝑆(𝑖)1 > 𝑠1 then
𝑑𝑜𝑚← 𝑇𝑟𝑢𝑒

end if
end while
if 𝑑𝑜𝑚 = 𝐹𝑎𝑙𝑠𝑒 then

𝑠 ∈ 𝑃
𝑝← 𝑠

end if
end if
𝑟 ← 𝑟 + 1

end while
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5.3.5 Optimization Convergence

Convergence of the well design formulation to a known Pareto solution can be per-

formed empirically using a Euclidean distance formulation. A measure of convergence

can be generated using the average Euclidean distance of the parental optimal solu-

tions to the solution Pareto. The solution pareto is the best Pareto set generated

by all design architectures. There will be no solutions that have a pareto line bet-

ter than the optimal solution Pareto. From this, a modified Inverse Generational

Distance (IGD) metric will be used to measure Pareto improvement through each

generation. Deb and Jain define IGD as [22]:

𝐼𝐺𝐷(A,Zeff ) =
1

| Zeff |
·
|Zeff |∑︁
𝑖=1

|𝐴|
min
𝑗=1
‖ 𝑧𝑖 − 𝑎𝑗 ‖2

where Z is the optimal Pareto and A is the generational Pareto front. The function

uses the minimum distance of a non-dominated solution to the nearest optimal pareto

solution. The IGD measure is a scalar comparison of all solutions to the best pareto

solutions, and provides a measure of improvement through the generations. As the

generations converge to the solution optimal Pareto, the IGD metric will approach

zero. The IGD measure will use the solution Non-dominated points as Z, and each

architecture will be evaluated individually for A. The major advantage for this method

is that it does not need to be subjectively scaled, and it is able to compare each

generated solution architecture with a unifying metric.

5.4 Proposed Well Optimization Architecture

The well optimization formulation should develop a small set of solutions that can

be evaluated in a high fidelity model or engineering process for ultimate implemen-

tation into the well construction process. This research proposes the development

of a hybrid Evolutionary Algorithm, developed using the Pymoo library [10], inte-

grated into a Design of Experiment. The design of experiment algorithm generates

possible feasible architectures of casing and trajectory design, while the Evolutionary
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Algorithm works to find Pareto feasible solutions. The computed solutions for each

architecture generation will be sorted, and a Pareto optimal design curve is generated.

This method is a generalization of the architectural exploration of an infinite design

space developed by Frank et al. [25].

Developing the Pareto optimal solution set using an Evolutionary Algorithm will

be inefficient. However, integration of the Evolutionary Algorithm with the existing

representation of well design is an advantage to the optimization framework. An ex-

ploration of the NSGA-II and NSGA-III algorithms’ solution exploration efficiency,

population diversity, and rate of convergence or improving solutions will be performed

in Chapter 7. The proposed architecture in Figure 5-4 uses the outer algorithm to

generate the Casing OD dimensions, with each casing string following a set of gen-

eralized design rules. The casing ID is relaxed for allowance into the evolutionary

algorithm evaluation. If Figure 4-4 is compared with the proposed architecture in

Figure 5-4, the bottom left dependency structure is maintained, but all upward de-

pendency is handled using the evolutionary operator. The evolutionary measure of

fitness, which is proportional to the objective function, is used to generate new solu-

tions and improve upon the existing Pareto optimality.
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Figure 5-4: Proposed Architecture for Well Design Optimization
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Chapter 6

Numerical Well Optimization

6.1 Numerical Well Design Architecture

The formulation of a comprehensive well optimization process is a multi-discipline

problem, that as shown in Figure 4-4, has significant interdependencies that must

be managed within a numerical formulation. The proposed algorithm in Figure 5-

4 manages the feedback dependencies throughout the genetic algorithm operators.

This section will discuss the formulation of a numerical well design solution that

is designed based on the data presented in Chapter 4, and optimization algorithms

selected in Chapter 5. The discussion of the optimization formulation within section

1 is based on using a detailed representation to develop well design options. Section

2 will discuss the algorithm as developed for the purpose of this research, and uses

a minimum viable constraint design approach to evaluate the feasiblity of using a

genetic algorithm for optimization.

6.1.1 Input Parameters

The initialization of the well design optimization requires the well design objectives,

fixed tables, and parameters to be defined as input parameters. Table 6.1 lists the

boundary parameters for the well design optimization formulation. Independent of the

optimization algorithm, the requirements for the well design process are constrained
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Table 6.1: Input Parameters

Lithology Formation Top Depth

Formation Temperature Profile Fluid Composition

Well Target Total Vertical Depth Well Geospatial Targets

Surface Location Life of Well

Available Drill Pipe Available Mud Systems

Available Rig Type Available Casing Type

by the boundary parameters. The bounding disciplines provide the boundary param-

eters as highlighted in Figure 1-2.

6.1.2 Decision Variables

The well optimization process aims to select a combination of decision variables, or

sets of numbers or indices that are changed to represent distinct options within a de-

sign space. Changes to the decision variables ultimately affect the design constraints,

feasibility, and objective functions. It is worth noting that this list is not compre-

hensive of all well design parameters. Implementation of technology options such as

bottom hole assembly components, logging technologies to reduce uncertainty, and

surface equipment such as managed pressure drilling, will increase the size of the

design space. Careful consideration should be taken when introducing additional de-

cision variables. A minimum feasible design approach was taken for this research

and does not include the technology-specific variables. As the number of decision

variables increases, there is a non-linear relationship between computational expense

and complexity vs. the number of decision variables for optimization. For well design

optimization, the 33 decision variables listed in Table 6.2 are evaluated for each well

section. Therefore a three-section well, which is a seemingly basic well design, could

have more than 99 design variables. Intelligent or adaptive design space exploration is

critical to solution convergence. The relationships for the Casing Dimensions OD are

generated in a random generator to limit the number of infeasible solutions explored.

This strategy also allows the Genetic Operator to use the fitness of existing solutions
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Table 6.2: Well Optimization Decision Variables

Casing Casing Top Measured
Depth Bit Type

Casing OD Mud Density Bit Total Flow Area

Casing ID Drill Pipe ID Fluid Rheology

Connection Type Casing Drill Pipe OD Lead Cement Height

Mud Base Fluid Drill Pipe Tensile Strength Tail Cement Density

Bottom Hole Assembly Di-
rectional Class

Heavy Weight Drill Pipe
OD Lead Cement Density

Well Inclination Drill Collar OD Tail Cement Height

Well Azimuth Heavy Weight Drill Pipe
Length Spacer Density

Kick Off Point Drill Collar Length Spacer Height

Casing Bottom Measured
Depth Bit Diameter Casing Connection

OD

Casing Material Mud Flow Rate Casing Yield Strength

to generate and improve upon the existing feasible Pareto front solutions. In Chapter

7 this research explores the effectiveness of the Genetic Algorithm and determines if

the convergence rate can lead to efficient design exploration.

6.1.3 Design Constraints

The well design constraints are physical, numerical, and logical constraints on the

well design formulation. The constraints for well optimization are used to set limits

and thresholds for fluid mechanics, equipment limitations, formation integrity limits,

directional drilling limitations, and metallurgical bounds for casing and drill pipe. All

design constraints must hold true for a well design to be considered feasible.

Optimizing with a genetic algorithm requires the explicit selection, crossover, and

mutation of design variable combinations that approach the boundary conditions of

the well design. Genetic algorithms rely on randomness to reach the best solution in

a fixed or set number of generations or iterations. Li et al. describe the management

of constraints by evolutionary algorithms in three classes [41]:
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1. Preservation of Feasible Solutions: The feasible solutions are prioritized and

kept for future iterations. This can limit the exploration of the design space if

the selection and mutation areas become biased to a feasible region.

2. Convergence to Feasibility Tradeoff: The feasible solutions are used to drive

convergence to the Pareto front, while the infeasible solutions are driven to

feasibility.

3. Solution Repair: Optimization of the solution to the Pareto Front is given a

lower priority than repairing infeasible solutions. As the infeasible solutions

enter the feasible region, the thought is that the boundary of the infeasible to

the feasible region will contain optimal solutions.

There is ongoing research to manage complex constraints, which involve more than

upper and lower limits of design variables. The parameters in Table 6.3 can be

considered complex constraints due to the multi-variant interactions described in the

System DSM, Figure 4-4. The generalized process of random crossover and mutation

by the NSGA-II and NSGA-III formulations indicates that the proposed formulation

uses class 1, Preservation of Feasible Solutions, which can lead to insufficient design

space exploration.
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Table 6.3: Well Optimization Constraint Variables

Casing Regulation Available Mud Systems Maximum Allowable
Dogleg Severity

Cement Regulation Available Rig Type Maximum Allowable
Surface Pressure

Disposal Regulation Available Casing Type Kick Intensity

Emissions Regulation Mud Capacity Kick Tolerance

Rig Regulation Disposal Fluid Capacity Surface Pump Pressure

Pore Pressure Base Fluid Capacity Maximum Weight on Bit

Fracture Gradient Rig Pump Horsepower Drill Pipe Overpull Ca-
pacity

Geological Hazard Hook load Drill Pipe Static Load
Evaluation

Wellhead Pressure Rating Blow Out Preventer Pres-
sure Rating Hole Cleaning Quality

Minimum Production Cas-
ing Inner Diameter Well Dogleg Severity Casing Load Cases

Available Drill Pipe

6.2 Well Design Objectives

The objective of the numerical well design process is a multi-objective optimization

formulation, summarized into three objective functions for total project duration, well

cost, and design and operational risk. Table 6.4 details the factors of each well design

objective function. Pareto front optimization with more than two objective functions

can be solved more efficiently using the NSGA-III formulation than the NSGA-II

formulation [22]. Although the use of three objectives will not be evaluated in this

research, it is essential to note that NSGA-III is considered to significantly improve

problems with more than two objective functions. When using the average weighted

sum method to manage multiple objectives, each sub-optimization parameter must

be scaled and weighted for use in the shared objective parameter. The weighting and

scaling process is a subjective determination of which factors are most important but

could serve as a helpful tool for the drilling engineers’ input or preference for valuable

solution searches. The use of the average weighted sum formulation for the Project
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Table 6.4: Well Design Objectives

Project Duration Project Cost Risk

Maximize ROP Minimize Casing Volume Well Control

Maximize Drill Pipe and Cas-
ing Tripping Speed Minimize Mud Cost Safety Factors

Minimize the Number of Hole
Sections Minimize Cementing Cost Uncertainty

Minimize the Energy Input for
Drilling

Duration can be described as:

𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝜆1 · 𝑆𝑐𝑎𝑙𝑒𝑑 𝑅𝑂𝑃

+ 𝜆2 · 𝑃𝑖𝑝𝑒 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑇 𝑖𝑚𝑒 𝑆𝑐𝑎𝑙𝑒𝑑

+ 𝜆3 · 𝐶𝑎𝑠𝑖𝑛𝑔 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑇 𝑖𝑚𝑒 𝑆𝑐𝑎𝑙𝑒𝑑

𝑊ℎ𝑒𝑟𝑒 :

𝜆1 + 𝜆2 + 𝜆3 = 1

The objective functions must be architecturally agnostic, which requires the nor-

malization of design vector and parameters within the design space. For the scope

of this research, the objectives evaluated are limited to simplified normalization of

factors such as cost. The rate of penetration is challenging to estimate and is only

optimized in a predictive form while drilling. The information and insights generated

while drilling is used after wells have been drilled, but the information in new fields

is not available. There are geological and dynamic uncertainties in bit wear, geology,

lithology, and drilling parameters, which have significant impacts on the drilling per-

formance [12]. Minimizing the project cost is, in most cases, directly correlated to

the project duration but inversely correlated with the project risk. The value of each

respective objective is valuable when considering options for an optimal well design.
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6.3 Well Design Optimization Formulation

The exact formulation of an optimal well design can be described in a generalized

format using the objectives, design variables, and constraints as abstractions to the

mathematical formulation. The true numerical representation of an optimal well de-

sign can involve implementing domain-specific technologies and methods, integrating

design approximations, and reducing design space by identifying suitable equipment

options.

The objective of the well design process is to minimize the project duration, project

cost, well construction, and operational risk. Well architecture is defined as a fixed

design for the number of hole sections, directional profile, and casing ODs. A genetic

algorithm is utilized for each well architecture to find a set of Pareto front solutions

to the well design. The well design vector feasible region must ensure the following

constraints are fulfilled to qualify as a feasible solution within the design space:

• Well Barrier Design

• Casing Architecture

• Casing and Tubing Integrity

• Fluid Design

• Geological Control and Stability

• Drill String Design

• Directional and Trajectory Design

• Cementing Integrity

• Drilling Assembly and Bit Design

The sub-optimization process Pareto optimal solutions generated from the Genetic

Algorithm are evaluated as a set of solutions to the well architecture and determine

an overall Pareto front. As shown in Figure 5-4, a Response Surface Model (RSM)

will be developed and used for well architecture approximation. The approximations

can be used to select a small subset of well architectures that have estimated solutions

near an approximate Pareto front. This will be a significant advantage to the random

selection process used in this research. The RSM will be developed, trained, and
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deployed on a program level, increasing the likelihood of finding solutions at or near

the system Pareto front. However, this research will not explore the development of

the RSM.

6.4 Algorithm Development for Analysis

The algorithm developed for this research uses a random conditional selection process

to generate a possibly viable set of casing OD configurations, which initializes the

stochastic algorithms under evaluation. A subset of decision variables are selected to

test the feasibility of using the NSGA-II and NSGA-III optimization algorithms. The

generated populations will measure the quality of feasible solutions and the diversity

of the design space as the algorithm progresses through each generation.

Innovative methods for optimizing a complex, constrained system requires a strate-

gic formulation of the system, represented as a numerical model. The development

of the system model generated within this analysis highlights the interdependencies

in the functional disciplines of well design. The analysis of the classical Genetic Al-

gorithm, NSGA-II [21] and NSGA-III [22] will explore avenues for future integration

of numerical optimization in well design.

The approach for this research uses a subset of all design variables and constraints

to explore the development of a constrained evolutionary algorithm for well design

optimization. The number of design variables generated by the algorithm is dependent

on the number of sections defined within the random architecture generation of the

outer algorithm. The proposed well design will be a vertical well, and will not include

the development and optimization of a directional profile. Table 6.5 describes the

remaining boundary conditions and assumptions. These conditions are used as input

variables to the optimization algorithms and remain constant throughout the analysis.
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Table 6.5: Well Design Boundary Parameters and Assumptions

Well Design Bound-
ary Parameters Boundary Condition Resulting Action

Directional Profile Vertical Well Trajectory
Considerations for deviated wells
are not applicable.
Indicates the surface location is
directly above the target location.

Total Vertical Depth 8,720 ft The total well or target depth is
set

Pore Pressure and
Fracture Gradient

Pore Pressure and Frac-
ture Gradient

Formation pressure and integrity
limits

Drilling Rig Max
Hookload Capacity 800,000 lbs Maximum casing load that can be

handled by the drilling rig

Maximum Hole Vol-
ume 11,800 bbls

Due to mud system constraints,
the maximum well fluid volume is
defined

Maximum Number of
Hole Sections 4 The maximum number of distinct

drilling intervals is set

Minimum Production
Casing ID 4 inches

Value set by production engineers
as the minimum ID limit to the
well construction

Regulatory Surface Casing must be
set Below 800’ TVD

Regulatory requirement that the
surface casing is set in the first
structurally competent interval.

6.4.1 Selection of Decision Variables

The subset of decision variables used in this research are primarily functions of archi-

tectural feasibility and basic casing point selection. The decision variables generalize

the functionality of the Genetic Algorithm as a strategy for a constrained well opti-

mization framework. A three-casing string well design has 57 design variables, while

a four-string well has 76 design variables. The subset of variables is approximately

two-thirds of the design variables identified in Table 6.2. Table 6.6 summarizes the

decision variables used for each casing section for the well design optimization. The

major modification to the design variables is the relaxation of the casing ID or wall

thickness as a continuous variable. The wall thickness range is defined as the min-

99



imum and maximum wall thicknesses defined in the API TR 5CE Table K1 [35].

The relaxation of the casing ID allows the optimization process to select an optimal

casing wall thickness without restricting the algorithm to a discrete OD and ID com-

bination of the casing string sizes. Actual casing wall thicknesses will be evaluated

using stochastic or robust design methods to determine the feasibility of each casing

string for a range of casing thicknesses expected or through a higher fidelity model.

Casing design standards have tolerance allowances for changes or variability in pipe

wall thickness, and all casing typically meet minimum tolerance values defined within

the API standards. Therefore the robust evaluation will help understand the impact

of the uncertainty.

Table 6.6: Algorithm Decision Variables

Design Variable Variable Type Range

OD Discrete

Casing Wall Thickness Continuous [0.2,0.8]

Casing Yield Strength Discrete [0,5]

Casing Shoe Depth Discrete [1,# of formations]

Drill Pipe OD Discrete [1,4]

Drill Pipe ID Discrete [1,3]

Drill Collar OD Discrete [1,4]

Drill Collar ID Discrete [1,2]

Heavy Weight Drill Pipe Length Integer [0,1000]

Drill Collar Length Integer [100,500]

Bit Diameter Integer [5,15]

300 RPM Viscocity Integer [10,35

600 RPM Viscosity Integer [20,45]

Minimum Annular Flow Rate Integer [80,250]

Mud Density Continuous [8.6,13.5]
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6.4.2 Constraints

The design constraints for formulating the optimization algorithm are to develop

valid architectures that meet the basic requirements of well design. With the random

nature of stochastic optimization decision vector selection, the feasibility of the de-

sign architectures is managed using constraints within the optimization formulation.

The formulation used for this research does not encompass all possible constraints;

therefore, the design results may not be feasible when analyzed in a higher fidelity

model.

Model Constraints:

• The Surface casing must be set within 1750’ of the surface, which in this specific

case, limits the surface casing to one setting depth. This is a common practice

for freshwater aquifer protection.

• The casing setting depth for each section must be at least 500’ difference, the

depth order of the casing strings must go from shallowest to deepest.

• The mud density must be above the Pore Pressure and below the frac gradient

by a 0.5 pound per gallon (ppg) generalized safety factor for each open hole

section.

• The casing string must not exceed 800 klbs, which is the drilling rig hookload

limitation for a small land-based drilling rig.

• The casing integrity must withstand a casing test, a potential worst-case gas

kick, a loss of fluid while drilling, and the production string must withstand a

fully evacuated string with gas.

• The kick tolerance of the drilling design must be at least 0.75 ppg.

• The weight on bit (WOB) for the drill string drill collar and heavy weight drill

pipe buoyed weight must exceed 500 𝑙𝑏𝑠/𝑖𝑛2.

• The drill pipe and bit must be less than the drift diameter of the casing string

• The ECD may not exceed the fracture gradient for a minimum annulus flow

rate defined within the decision vector.
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• The rheological factors for the Power Law formulation for a given fluid must be

a reasonable ratio for a non-Newtonian fluid.

The optimization constraints are a good set of design limitations for testing the

functionality of the optimization formulation. Additional constraints for cementing,

drilling pump rate limitations, surge and swab determinations, and rate of penetration

estimation are critical items that should be considered in future research.

6.4.3 Objective Functions

With the limited set of provided information, it is important to highlight and utilize

objectives that are constrained within the design space. One of the most significant

cost measures for drilling is the size and depth of the casing strings run into the

well. Therefore, one objective function minimizes the volume of casing and the total

open hole volume which directly correlates with total well cost. The second objective

function minimizes the difference in mud density and pore pressure with an additional

penalty factor that includes the apparent viscosity, using Moore’s Correlation [12]

multiplied by the minimum annulus flow rate in ft/s. The combination of fluid density

with Moores correlation balances the need for minimum fluid density for drilling and

flow rate and viscosity required for proper hole cleaning. Without the addition of

the penalty factor, the optimization formulation minimizes the difference in the N600

and N300 decision variables, if the well design is not limited by the ECD and fracture

gradient constraint.

Objective #1

min
∑︁

𝑠𝑒𝑐𝑡𝑖𝑜𝑛

(𝐶𝑎𝑠𝑖𝑛𝑔 𝐶𝑟𝑜𝑠𝑠 𝑆𝑒𝑐𝑡𝑖𝑜𝑛× 𝑆𝑡𝑟𝑖𝑛𝑔 𝐿𝑒𝑛𝑔𝑡ℎ)𝑠𝑒𝑐𝑡𝑖𝑜𝑛

+ 𝐴𝑛𝑛𝑢𝑙𝑢𝑠 𝑉 𝑜𝑙𝑢𝑚𝑒𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ∀ 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ∈ 𝑤𝑒𝑙𝑙
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Objective #2

min
1

𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠
· (𝑀𝑢𝑑 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑠ℎ𝑜𝑒 − 𝑃𝑜𝑟𝑒 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑠ℎ𝑜𝑒

− 𝐴𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝑉 𝑖𝑠𝑐 ·𝑀𝑖𝑛 𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒𝑠𝑒𝑐𝑡𝑖𝑜𝑛
50000

) ∀ 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ∈ 𝑤𝑒𝑙𝑙

The objective function defined for this formulation remains in two dimensions

for the benefit of visual analysis of the Pareto front, design space exploration. The

objective function also utilizes the available information to generate a reasonable

set of designs for evaluation. Minimizing material and well size is a typical cost

and time reduction strategy, while minimizing the mud density reduces cost and can

improve drilling time due to a reduction if formation pore pressure and fluid density

differential. Bourgoyne et al. show that the drilling rate relationship to the differential

pressure of the drilling mud density and pore pressure has a logarithmic relationship

to the pressure differential [12].
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Chapter 7

Evaluation of the Optimized Well

Design Formulation

This chapter will evaluate the solution space of the NSGA-II [21] and NSGA-III

[22] optimization formulations developed by K. Deb. The results are evaluated for

feasibility, design space diversity, Pareto convergence through the use of the inverse

gradient distance, and a discussion on computational expense. The resulting analysis

will determine if using a genetic algorithm for constrained well design optimization

is feasible for the implementation of the well system optimization problem at scale.

There is no known optimal solution to the optimization problem provided; therefore,

all comparisons to optimal are in reference to the known optimal solutions generated

within the algorithm.

7.1 Validation of Results

Optimizing the well designs using the process described in Section 6.4 generated

1,796,355 feasible design options of 9 architectures generated through the DOE. There

are 29 Non-Dominated solutions in the design space, 100% of the non-dominated

solutions are three-section casing architectures generated by the DOE, the first step

in the optimization formulation shown in Figure 5-4. The dominant designs will be

used to validate the optimization model results based on the design constraints and
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objective functions used within the optimization algorithm.

7.1.1 Optimal Well Design for Three and Four Section Well

The well design meets the minimum dimensional and mud density design constraints

provided to the algorithm. A drilling engineer would, however, have many questions

about the casing wall thickness, which is near the minimum design vector wall thick-

ness for the casing string, which was set to 0.20 inches. The casing grade is also a

minimum value, using the J-55 casing grade, which has a 55,000 psi yield strength.

The algorithm did not provide guidance on appropriate casing points, hole stability,

or hazardous zones. Therefore, the casing point selection is a function of the pore

pressure, fracture gradient, and Kick Tolerance. The results of the designs shown

in Figures 7-1 and 7-2 meet the design constraints of the constructed algorithm.

However, they would likely fall short as other design constraints and objectives are

integrated into the model. The four-section well design also meets the design objec-

tives of the algorithm, which has a fixed string architecture and looks to minimize

the volume of casing run into the well. As the casing selection points are selected,

the algorithm minimizes the casing sections’ length to ensure the design meets the

design requirements.

The equivalent circulating density function for the well did not perform as a dy-

namic variable. It would fail to meet minimum specifications if the calculation was

performed for each drilled depth vs. the simplified formulation performed at the

base of the well. Decreasing the fluid flow rate would decrease objective function #2

and could remove Figure 7-1 from the Pareto. If this scenario was encountered by a

drilling engineer, there are a multitude of solutions, but for this scenario, the engineer

would simply reduce the maximum allowable pump rate as the bottom hole assembly

reaches the weaker section. There are no rational reasons to install a casing string

at that depth if this is assumed to be a vertical wellbore. The four-section wellbore

shown in Figure 7-2 could also fail to remain below the fracture gradient, but the

corrective action would remain the same. Although corrective actions exist, future

models must address the dynamic equivalent circulation density measurement.
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Figure 7-1: Schematic of a Three-Section Pareto Designs
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Figure 7-2: Schematic of a Four-Section Pareto Design
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7.2 Model Evaluation

The development of the well design optimization model uses two genetic algorithms,

NSGA-II and NSGA-III, to evaluate the feasibility of the design choices produced

by the optimization algorithm for three and four-section well designs. The algorithm

evaluates five three-section and four four-section well designs with varying casing

OD’s, selected by the random selection algorithm. This section will review the design

outputs as a measure of design feasibility rate, design variable diversity, overall Pareto

front for the well optimization process, and convergence rate computed using the

Inverse Generational Distance formulation described in Section 5.3.5.

7.2.1 Feasibility

The set of feasible solutions within the design space indicates that the algorithm can

provide a solution space that evolves through multiple generations and provides many

solutions to develop the Pareto front. No penalty functions constrain the well design

or significantly reduce the objective function within this formulation; therefore, all

factors of feasibility are binary values. As the number of well sections increases, the

total number of design variables and constraints increases exponentially and results

in the feasibility reduction seen in Figure 7-3, which highlights the change in the rate

of feasible solutions to evaluate within the optimization algorithm. The four-section

algorithm is increased to a population size of 3000 individuals, with 150 generations.

With this increase, the possibility of finding solutions improved and developed solu-

tions that are at or near the optimal Pareto front. A detailed look into constraining

variables shows that if no feasible solutions are found, future generations continue

to search a wide range of combinations for a possible feasible solution, utilizing vari-

able combinations that show feasibility. The feasibility analysis varied throughout

the design exploration for each architecture and shows a significant difference in the

four section architecture in Figure 7-3. The four-string casing designs have a lower

percentage of feasible designs, as the feasibility rate is challenged when the number

of constraints and design variables increases. The combinations and relationships of
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Figure 7-3: Feasibility of Solutions By Number of Hole Sections

the constraining variables show a reduced rate of solution feasibility and drive the

requirement to increase the population size with an increase in constraints and de-

sign variables. The low level of feasibility shown with the addition of one well section

indicates the necessity to modify or limit the design space, if possible. The popu-

lation size required to find feasible solutions is directly correlated to the number of

design variables and constraints. As the algorithm begins to find feasible solutions,

there is an increase in the feasible solution rate. The fitness, crossover, and mutation

of the NSGA formulation continues to search for feasible solutions through genetic

evolution.

The differences in the rate and occurrence of feasible solutions for the three and

four-section well designs indicate that adding more design variables and constraints

will require carefully selected reference directions in the NSGA-III formulation. As

performed in this research, the four-section design required a more extensive design

space exploration to reach the feasible solution phase. Performing the analysis for

the four-section design yielded inconsistent and non-optimized solutions.
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7.2.2 Decision Space Diversity

Large continuous feasible regions can lead an optimization formulation to remain in

local minima and limit the design space diversity early in an algorithm [41]. Deci-

sion variable diversity is evaluated to understand the source of diversity within the

algorithms’ population and objective functions. It indicates the quality of solutions

provided by the algorithm. The diversity measure also indicates which variables

strongly influence the design objective, as the most influential variables maintain low

levels of diversity. Using the diversity approximation formulation in Section 5.3.3,

a computationally efficient means of calculating the sum of the difference of all in-

dividuals in the population, a reduction in diversity is seen in Figures 7-4 and 7-5.

The diversity measures for the three-section and four-section designs are different and

separated for clarity. As the algorithm finds feasible solutions, several design vari-

ables’ diversity decreases to optimize the feasible region. The NSGA-II and NSGA-III

algorithms are also separated by line marker style to highlight the differences in the

evolutionary variability. As the four-section well design searches for solutions, the

diversity is vast, but as the set of feasible solutions grows, the diversity decreases

rapidly. Although searching for a feasible solution takes many iterations, the rapid

reduction in variable diversity could signal minimal design space exploration, which

may lead to sub-optimal design choices.

The convergence of the decision variables that have the most significant impact

on the objective function shows an apparent decrease in diversity as the number of

generations increases. It is worth noting that feasible solutions did not begin to

appear until generation 25 for the three-section design, and generation 65 for the

four-section design, which Figures 7-4 and 7-5 highlights that the genetic algorithm

gradually decreases the variance in the design space as it approaches a feasible region.

Once the feasible region is reached, the decision variables responsible for tuning the

objective function continue to indicate higher levels of diversity, meaning the design

variables are exploring localized regions for feasible solution improvement. The vari-

ables that converge to lower diversity values will be considered feasibility variables,
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while variables that maintain a higher level of diversity are optimization variables.

The difference in the feasibility variables is that they are highly coupled with the de-

sign constraints and are likely at or near the design space boundary. The optimization

variables, on the other hand, have the ability to move throughout the design vector

to improve the objective function.

The information generated through the evaluation of the design vector feasibility

rate can provide insight for developing an alternative optimization algorithm, which

only looks at the changes in the optimization variables. The alternative algorithm

will convert the feasibility variables into variables or values with limited variability or

set them to static values. Alternative methods of using single objective optimization

methods such as Particle-Swarm Optimization could also generate additional feasible

solutions to the Pareto front using only the optimization variables in the design space.

112



Figure 7-4: Decision Variable Diversity with Three Sections
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Figure 7-5: Decision Variable Diversity with Four Sections
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7.2.3 Pareto Comparison

The Pareto solutions for 40 architectures are generated through the well optimization

algorithm using the NSGA-II and NSGA-III modules using the Pymoo open source

library [10]. Each three-section optimization formulation used a population size of

2,500 individuals and 70 generations, while the four-section designs used 3,500 in-

dividuals with 100 generations to develop the Pareto front described in Figure 7-6.

Using the objective functions for the Multi-Objective Evolutionary Algorithm de-

tailed in Section 6.4.3, a total of 1081 individual Non-dominated solutions from all

evaluated architectures are produced and showin in Figure 7-6.

Figure 7-6: Pareto Solutions Generated by All Designs

The NSGA-II formulation found solutions that outperformed the NSGA-III for-

mulation in nearly all architectures. The NSGA-III formulation is designed for many-

objective problems and only has small variations from the NSGA-II formulation [22].

The three-section casing designs heavily outweigh the Pareto optimal designs for the
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four-section well designs. An individual evaluation of the four-section Pareto is devel-

oped to compare the two well section designs. Using the information provided through

the Pareto analysis, it is concluded that the four-section well design is inferior to the

three-section well design.

7.2.4 Model Convergence

The algorithm’s convergence occurs when all feasible architectures show improvement

through each algorithm generation. The non-dominated Pareto of all architectures

evaluated is considered the optimal front and determines the zero distance point for

the IGD calculation. If a single architecture holds all non-dominate solutions, then

the IGD value for the architecture at some iteration will equal zero. If an architecture

converges but is not near the optimal Pareto, the IGD value will be relatively larger

than the average IGD metric.

Evaluation of the IGD is presented as a minimum and maximum range to show

that the worst algorithm converges to a reasonable IGD, indicating that convergence

occurs for all architectures of the three and four section well designs. The three-

section well designs begin to converge at earlier generations and fully converge near

70-80 generations. In comparison, the four-section design converges after 90 gen-

erations for the best architecture but requires 130 generations for the worst. The

additional generations required to reach a reasonable IGD value shows how increas-

ing the number of constraints and design variables requires additional generations to

reach convergence.

7.3 Computational Expense

An optimization algorithm’s acceptable computational expense is directly correlated

to the value it provides to the end-user or process. The question managers will

ask before accepting to develop the solutions is, what can it do that the Engineers

cannot? The realization is that the theoretical designs it produces are simply the best

reasonably generated solutions within the constraints of the optimization formulation.
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Figure 7-7: Algorithm Inverse Generational Distance by Function and Well Section

An engineer can conclude that a single design is better than the rest, but at what

level of effort?

The computational time to run the algorithm discussed in this research was per-

formed using Python, run on a 64-bit 1.8GHz processor with no concurrent func-

tionality in the Python computations. The three-section well design performed at

11.5 seconds over 70 iterations and 16 seconds over 100 iterations for the four-section

design. The increase in the population size, decision variables, and constraints signif-

icantly impacts each iteration’s performance, as the algorithm actively scales to meet

the desired number of well sections. The total duration of the optimization algorithm

on a single-thread machine takes approximately 9 hours to complete 20 casing ar-

chitecture design evaluations for a three or four-section casing design. Evolutionary

algorithms must be run in sequence to allow the evolution of the population to occur.

Therefore, parallelization may only occur outside of a single casing architecture but

could result in a total reduction of run-time for the algorithm to be equivalent to the

equation below.:

𝑇𝑖𝑚𝑒 =
𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑃𝑒𝑟 𝐶𝑎𝑠𝑖𝑛𝑔 𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒×𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠
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Based on the estimated time to run the algorithm, the expense to run the opti-

mization is a factor of the value the results can generate through well design improve-

ments and engineering time savings. Suppose the numerical formulation is searching

for design improvement to an existing design. In that case, the length of the compu-

tation may not be critical. However, if the process is used in tandem with engineering

development, the process may require generating good designs in a fixed duration.

Within the oil and gas industry, the simulations performed in reservoir optimization

can extend to hours and days of computation for the transient analysis of reservoir

mechanics. The extended time is accepted due to the value of the results for asset

development. A well design optimization process that provides consistent results that

increase the speed of cost reduction strategies in exploration and development wells,

the cost of computation will not hinder the process integration.

7.4 Analytical Conclusion

The analysis of the resulting feasibility, diversity, and convergence of the well opti-

mization formulation shows that the Genetic Algorithms NSGA-II and NSGA-III have

similar performance on solution feasibility, diversity, and convergence, with NSGA-II

showing a small advantage in Pareto front generation. It was observed that as the

number of design variables or constraints increased, the ability of the algorithms to

find the feasible region grew exponentially and resulted in an increased population

and generation size for the four-section well design over the three-section well de-

sign. The smaller design space converged faster, even though the population size was

smaller, indicating that a complete well design problem would require a significant

increase in the population size and number of generations to ensure the optimization

algorithm can find the feasible region.

By analyzing the solution feasibility and diversity together, one could infer that the

solution diversity significantly lowered after the first feasible region was discovered.

The optimization algorithm generates feasible solutions wherever it finds the first

feasible region. However, the diversity of the design variables never reached zero in
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Figures 7-4 or 7-5, so the diversity of feasible solutions for this optimization problem

could be more continuous than one would initially believe. Plotting the feasible region

for a visual representation is impossible; therefore, additional analysis is required to

understand the design space’s continuity. If the design space is continuous, then the

concern with low levels of diversity would lead one to believe that there is limited

exploration of local minima to find the best solution. The convergence of the plots

developed in this research show minimal improvement in later generations, which

indicates the formulation does, in fact, find good solutions while continuing to explore

infeasible regions for improved local minima.

Proper tuning of the genetic algorithms’ population size and number of gener-

ations is critical to confidently finding the local minima data points, as indicated

in Figure 7-7. The difference in population size and number of generations for the

four-section design nearly generated a non-dominated solution. This increase does

not come without consequence, as the computational expense for the increase in the

design space size and constraints adds additional time for computation. Due to the

non-parallelization of Evolutionary Algorithms, the time required for optimization

will remain factors of minutes for unique architectures. Therefore, any application

of the optimization algorithm will require the end user to wait for optimal results.

The use of the NSGA-II or NSGA-III formulation are possible feasible options for a

two-objective optimization formulation. However, they may be an expensive calcu-

lation as the well design formulation is scaled to encompass all design variables and

constraints.
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Chapter 8

Conclusion

8.1 Summary of Research and Analysis

An analytical model evaluation using the Design Structure Matrix for identification

of system inter-dependencies lead to the development of a hybrid optimization model

show in Figure 5-4, which utilizes an outer Design of Experiments and Response

Surface Model and the Evolutionary Optimizer for system design optimization. A

genetic algorithm formulation was utilized to conduct the evolutionary optimization

using the open source Pymoo library [10] to develop and optimize the system design.

A comparison of the NSGA-II [21] and NSGA-III [22] algorithms did not indicate

a clear winner as the best option, even though the NSGA-II formulation provided

the best objective functions for the corresponding designs. The algorithms displayed

similar feasibility, convergence, and design variable diversity levels.

A limited set of design architectures are tested using the Genetic Algorithms. The

three-section well design evaluated 300,000 design alternatives to develop a Pareto op-

timal design set. In contrast, the four-section well design required 525,000 solution

evaluations to reach an acceptable level of convergence, measured using the Inverse

Generational Distance Method [22] as the primary success measure for the determina-

tion of generational improvement. Utilizing a single thread computing process shows

limited feasibility of real-time design improvement, but parallel or batch computing

could improve the rate of architectural iteration. The Genetic Algorithms showed an
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acceptable convergence rate, indicating tractability of the formulation of a partially

constrained well design. Expansion of the model to include more design variables

and constraints will require a significant increase in computation and should utilize

adaptive or selective design space generations for efficient computation. As the design

space diversity decreases, adapting the design variable search region to a possible fea-

sible region could increase the feasibility rate and decrease the number of generations

required to reach a convergence point.

8.2 Discussion of Research

The numerical representation of the well design system for this research is a reduced

order formulation to explore the feasibility of utilizing a numerical optimization formu-

lation for the well design process. Through analysis of the resulting design feasibility,

computational efficiency, and design convergence, it is determined that this formula-

tion will assist in the improvements to development and exploratory well designs. As

the number of decision variables reduces, the efficiency of computations will increase

and can provide reasonable alternatives for design improvements. The integration of

this method into practice will involve the development of a quality numerical formula-

tion (Section 8.2.1), utilizing the strengths of Evolutionary Optimization development

(Section 8.2.2), and utilizing existing strategies and processes to integrate into the

Drilling engineering workflow (Section 8.2.3).

8.2.1 Production Ready Formulation

Well design and development is a capital-intensive and risky operation. An optimiza-

tion system’s resulting safety and reliability must utilize engineering and operational

best practices and standards when optimizing a system. Generation of designs with

simple, hidden errors could lead to catastrophic loss of assets or life. The care and

rigor placed on the well design processes are guided by the experiences of the indi-

viduals, their knowledge repositories, and the collective mental models of the indus-

try. Breakthrough applications and new technology must integrate the existing new
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methods and processes with existing mental models with seamless and reduced error

integration.

To accomplish the objective of developing and deploying a reliable optimization

formulation, the most valuable attribute is safety and efficiency coupled into one

program. A numerical representation of the well design process that provides engi-

neers with insights and metrics on the generated well designs ensures the numerical

representation is a feasible option. It is imperative to strategically identify the de-

pendencies and constraints that drive well design, and ensure preferences and rules of

thumb are minimized to allow the physical representation of the model to calculate

and formulate numerical rules. The analysis performed using the DSM in Chapter 4

helps to identify unnecessary circular dependencies that could introduce unnecessary

complexity into an optimization formulation.

The method proposed within this Thesis does not represent all industry standards

and design practices necessary to design optimal well design alternatives, but the

expansion of the design constraints, objective functions, and best practices can lead

to a formulation that could provide helpful insights for well design optimization and

architecture exploration.

8.2.2 Strengths of Method

Utilizing Evolutionary Algorithms for complex optimization to find good solutions us-

ing a stochastic genetic search is advantageous due to the genetic operator’s efficiency

in finding and improving feasible solutions. The natural evolution of the crossover

and mutation sequence works to preserve good solutions through combinations of

population solutions or crossover and mutation of the design space. A combination

of Figure 7-7 and 7-4 help describe how the evolutionary algorithm progresses to find

the Pareto optimal solutions while maintaining a diverse combination of variables for

efficient, multi-objective optimization.

Evaluation of the evolutionary algorithm for the system optimization of a well

design shows that the complexity depicted within the system DSM, Figure 4-4, is

evident in the rate of feasible solutions, Figure 7-3, and rate of convergence, Figure
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7-7. As the algorithm progresses, it can find and continuously optimize objective

functions in all cases with feasible solutions. The Pareto optimal design set also

highlights the concentration of architectural designs. It gives an insight into how

challenging it can be to determine the value of changes in design architecture. If a

numerical system model is developed and validated against existing data, exploring

the design space will become incredibly useful. Exploration of design improvements,

weaknesses, and sensitivities could emerge from a comprehensive system formulation.

Integrating best practices can be introduced into the optimization formulation as

penalty functions, parameters that can penalize or reward the objective functions for

preferred designs. The introduction of Moore’s correlation for the apparent viscosity

of the drilling fluid as it relates to the fluid density for objective #2, rewards higher

viscosity fluid, which helps to clean the wellbore, but increases the constraining for-

mulation for equivalent circulating density. Utilizing the principles of optimal design,

total flexibility in design options and principles is possible.

8.2.3 Drilling Engineering Process Integration

Integration of this process into existing model-based systems engineering programs,

such as the process described by Szemat [60], will increase the effectiveness and rate

of design improvements in drilling programs. Standardizing well construction designs,

processes, and supply chains is a competing objective to well design optimization and

could limit the implementation without strategic integration. In high-volume develop-

ment scenarios, such as unconventional drilling, optimization of a single design must

be robust for repeatable and predictable implementation to meet design standardiza-

tion and well construction simplification. The optimization algorithm should work

within the confines of the supply and design constraints to optimize designs where

possible but maintain a cycle of continuous improvements for system optimization.

Using a numerical simulation tool is a valuable method for integrating knowledge

requirements, where best practices, standards, and design requirements are repre-

sented within the algorithm as constraints of feasibility or penalties for the objective

function. The numerical model is only feasible where the "disconnected silos" [60],
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as referred to in Chapter 1, are removed in an analytical process. The variability of

information presented as best practices or design improvements must be converted

into a numerically representative form to be used by the model or stored for future

integration. By requiring applicable information integrated into the numerical rep-

resentation in a mathematical form specific to the model, storage, modification, and

replication of knowledge are configured to represent various scenarios, disciplines, and

teams.

Developing a complex constrained optimization algorithm shows that this process

can be used to find improvements to existing designs and perform a broad search

of possible feasible designs. The computational expense for a high-fidelity design

restricts a deterministic or stochastic systems optimization process to being used in-

frequently within the project development process. The use of an optimization tool

would serve the best value in early conceptual planning or as a tool for improve-

ments to existing engineered well designs. Early conceptual planning would utilize a

low-fidelity model with a large design space and generalized constraints. Methodical

design variable reduction in a high fidelity analysis, with emphasis on parameters such

as the rate of penetration and operational efficiencies, could serve as an improvement

to sensitivity studies to assist in improvements to existing well architectures. The

construction and function of the optimization process will not be suitable for use in

an active graphical user interface with real-time decision-making or modeling due to

the computational expense of the optimization process. Additional research into the

feasibility of deep learning and neural network development as a catalyst to design

optimization is required. This research shows that reducing decision variables con-

straining the design space is optimal for a scalable solution. The method used within

this Thesis could be a good tool for identifying non-optimal decisions in a well design,

and through that exploration, design improvements may be recommended.
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8.3 Limitations of Research

The system optimization of the well design and construction process is a complex

problem that multi-disciplinary teams of teams must solve to ensure the objectives

of well construction can be met with numerical representation. The information of

this Thesis is limited to an arbitrary set of information generated using a normally

pressured reservoir in a mid-sized vertical well. The introduction of trajectory op-

timization as a measure of feasibility and design options can exponentially increase

the design space’s size. To maintain a reasonably sized design space and problem

formulation, the design constraints are not comprehensive and may not represent a

feasible well design in reality. The research does not include constraints such as the

casing connection diameters, drill pipe tool joint dimensions, and geological interac-

tions with the mud system. For further exploration into the feasibility of this method,

additional feasibility constraints should be added to the problem space for a realistic

representation of the design. The algorithm used for this research had 34 constraints

for a three-section design and 47 constraints for a four-section design, all of which

have varying weights on the feasibility of designs.

In Chapter 5.4 implementation of a Response Surface Method for the Design of

Experiment selection is proposed to enhance the likelihood of selecting favorable archi-

tectures within the DOE generation of Casing OD architectures but was not explored

as part of this research. The DOE generation used a Random set of solutions gen-

erated with dimensional constraints to help achieve feasibility but did not guarantee

the optimizer to find a solution or an architecture that would produce a competitive

solution for the Non-Dominated Pareto set. The computational expense to run one

architecture did not provide sufficient training information to construct a response

surface, for use with the DOE.

Geographical information used for the optimization process utilized the minimum

practical information for the well construction boundaries. Inclusion of formation

fluid, geo-hazards, lithology and their impacts to drilling, and formation fluid content

are geological constraints that are not defined in this research. The objective function
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used for design does not consider risk and does not capture risks of wellbore failures

or significant uncertainties in the geological estimations.

8.4 Future Research

Implementing an Optimization formulation is feasible and possible at scale with ad-

vanced computing and parallel processing. This research finds that the solution im-

provement using the Non-Sorting Genetic Algorithm provided usable solutions. Fu-

ture research into well design optimization through a focus on speed, scalability, and

process integration will allow this work to progress to the point of implementation.

Many Objective Evaluation

As the complexity of the algorithm increases, the utilization of many objective algo-

rithms for optimal design development. The utilization of the additional objective

function within the NSGA-III algorithm could yield different sets of Pareto solutions

using decision variables and design parameters normally not considered for optimality.

Integration of Neural Networks

Integrating a neural network, deep learning, or response surface methods will increase

the scaleability of the optimization formulation by utilizing trained data models for in-

creased computing efficiency. Although the scalability of the Stochastic optimization

performed within this research is not feasible for advanced well design, implement-

ing methods to increase evaluation efficiency and design selection will significantly

improve the optimization process.

Cloud and Parallel Computing

Well design and construction is a capital-intensive process that ranges from $500,000

USD for shallow development wells to $250,000,000 USD for complex exploration

wells. Utilization of cutting-edge computational techniques such as parallel comput-

ing, caching methods for increased efficiency of Optimization Archiving, and machine
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swarms are viable options if the value of the results generated through the optimiza-

tion formulation consistently exceeds the computation cost.

Socio-Technical Evaluation for Adoption and Value

The integration of a complex optimization process must be accepted by the incum-

bent individuals developing well designs. A study into the process integration of an

optimization method must be completed to ensure the safe and reliable development

of wells. The ilities of well design are complex and require the re-tuning of models to

ensure best practices, failures, and regulatory changes are captured immediately. The

optimization process must have a minimum level of knowledge for integrity measures,

and proper audit and review of the model performance.

8.5 Closing Remarks

The process used in this research is a basic approach to well design, and introduces

the use of optimization to improve the processes used in well design and construction.

Although the research does not represent realistic designs and outputs, the value of

information presented is a strategic approach to optimal well design. I am confident

that the methods expressed within this research will be useful in generating advanced

methods of engineering well design.Integration of technical disciplinary engineering,

mathematics, and computational techniques can improve the accuracy, speed, and

robustness of the designs.
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Appendix A

Well Design Parameters

A.1 Design Structure Matrix Inputs

A.1.1 Regulatory Constraints

Casing Regulation

Casing Regulations are developed by the government, the Nomenclature of Eco-

nomic Activities (NACE), and API standards. Casing regulations sanctioned

by the government are required, while if not specifically specified, API and

NACE standards can be considered recommendations. Casing standards define

casing design parameters that must be met, such as: depths, safety factors, and

worst-case load definitions.

Cement Regulation

Cementing regulations define specific subsurface zones that must be isolated

with cement. These can include freshwater zones, Hydrogen Sulfide containing

zones, or oil containing zones. The cementing regulations define the minimum

cement heights or zones which must be isolated based on potential hazards.

Disposal Regulation

Fluid disposal regulations can eliminate potential design considerations. For

example, north sea regulations do not allow any fluids to be discarded overboard

vs. the Gulf of Mexico allows tested fluid to be discarded. This seemingly simple
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regulation creates an increase in operating costs, as all waste in the North Sea

must be discarded into disposal wells or landfills. On land, a major drawback

in some areas is the inability to use man-made ponds or pits. These are cheap

options for storing water and disposing of waste while drilling. If these pits

cannot be used, then all cuttings must have alternative disposal methods.

Emissions Regulation

Emissions regulations are new in the Oil and Gas Industry, and many operators

have taken a self-governance approach to potential future regulations. For the

drilling function, these regulations only require reporting total emissions.

Rig Regulation

The rig size regulations are essential on land. The rig configurations are bound

by component weights to meet Transportation Departments regulations. Other

factors could be, the inability to have the rig as an open structure in areas such

as Los Angeles, CA. If the rig must be behind containment, then you could be

limited in total rig height.
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A.1.2 Geological Inputs

Pore Pressure

Pore pressure is the pressure of the fluid within the formation and is a function

of depth. Normal, abnormal, and subnormal pressure gradients are greater

than, less than 0.433 psi/ft of depth, respectively [7].

Fracture Gradient

The fracture pressure is the maximum fluid pressure the formation can hold

before losing its integrity. It can be defined using the Hubbert and Willis Equa-

tion: "The minimum wellbore pressure required to extend an existing fracture

was given as the pressure needed to overcome the minimum principal stress" or

𝑝𝑓𝑓 = 𝜌𝑚𝑖𝑛 + 𝑝𝑓 [12]. Where 𝑝𝑓𝑓 is the wellbore pressure less than or equal to

the ECD, ESD, ESD + Surge Pressure, or Cementing ECD, depending on the

defined operation.

Fluid Composition

The fluid composition in this system is defined as the fluid medium in the pore

spaces of the rock. This could be water, gas, oil, and other substances such as

Hydrogen Sulfide or Carbon Dioxide.

Lithology Subsurface lithology is an abstraction of the rock minerology and is

vital for quantifying the type and composition of minerals within each forma-

tion.

Geological Hazard

In drilling, areas with increased or undefined uncertainty are termed hazards.

These areas are at times unavoidable and introduce significant risk into the

operation. Hossain states that any drilling operation is measured by its ability

to identify and mitigate these uncertainties [32]. Some problems that can be

encountered include "drill pipe sticking, stuck pipe, drill string failures, wellbore

instabilities, hole deviation and well path control, mud contamination, kicks,

hazardous and shallow gas release, lost circulation, formation damage, loss of

equipment, personnel, and communications" [32].
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Formation Top Depth

The expected formation transitions separate the formation depths provided to

drilling engineers. This is where geological properties encounter shifts in geo-

logical age and lithology.

Formation Temperature Profile

The formation temperature naturally increases with depth below the mud line,

or surface. The rate of change is variable and is an important factor for fluid,

cement and casing design. In cases of extreme heat, the bottom hole temper-

ature can be a limitation of drilling tools used for formation evaluation and

directional control.
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A.1.3 Well Cost and Material Supply

Cost Per Foot

The well cost per foot of drilled depth is the sum of all total costs for well

construction divided by the total well depth. This function is relative to the ge-

ographical area and expected profitability and is only a measure for normalizing

localized drilling costs.

Available Casing Type

The casing is offered in both standard API and non-standard sizes, grades,

and thicknesses. This term can be used to limit the number of casing strings

evaluated to define which casing string could be possible. This limits the design

space to possible solutions.

Available Rig Type

Drilling Rigs are limited in size and capability. Designing a well that cannot be

drilled, for example, a well that requires a 20,000 psi BOP on a shallow water

Jack-up, may not exist and would render a design option infeasible.

Available Drill Pipe

Drill pipe grades and sizes are limited in availability and this table will define

the drill pipe size and grades available.

Available Mud Systems

Drilling fluid availability is an industry norm. The availability of drilling fluid

can be driven by regulatory restrictions, geological anomalies, or industry best

practices. Using fluids not readily available can increase costs but may not

always lead to infeasible solutions.
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A.1.4 Well Design and Construction Constraints

Well Target Total Vertical Depth

The target total vertical depth is the depth in which the well will be placed

for optimal injection or production. There are generally multiple targets within

a well, which drive the inclination and azimuth needed to intersect each. The

targets can be in single or multiple formations, and have a defined inclination

and azimuth between them. The target TVD is the vertical distance from a

reference point, typically the rig floor or surface, that defines the depth of the

formation target.

Surface Location

A rig system’s surface location is selected carefully considering expected drilling

hazards, surface topography, surface environmental attributes, field design, pro-

duction, and subsurface targets. This can be considered an interface condition

for drilling, but the feasibility of a selected surface location can change as drilling

details are explored. Cox et al describe the surface location as critical to re-

ducing the possibilities of encountering shallow hazards, and possible deeper

hazards such as fractures or unconsolidated material [18].

Well Geospatial Targets

Factors outside of the well design define the target selection of a well. The

well targets are a function of time-dependent data for production, reservoir

mechanics, and rock and fluid interactions [11].

Minimum Production Casing Inner Diameter

The minimum production casing ID is the starting constraint for any well de-

sign. The completion design determines the equipment installed in the well, so

this is a boundary variable with the completion design process. The completion

equipment defines the minimum ID of any production casing or liner. "Suc-

cessful completions recognize the flow characteristics of the reservoir" [7]. The

completion design is a function of well profitability, lithology, fluid composition,

pore pressure, cementing capabilities, directional profile, expected production
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rates, and total well life [7].

Life Expectancy of Well The design of a well must take into consideration

the expected production duration of the well. Installed well components should

consider the transient corrosion effects to ensure the well design will meet the

expected loads during production. Most wells cannot be significantly modified

once constructed. The ilities associated with well productivity duration are the

casing material and thickness, surface equipment material specifications, the

minimum diameter of the wellbore, and cementing quality of the casing string.

The numerical representation can be presented as penalty factors or, in complex

cases, additional design constraints.
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A.1.5 Well Barriers and Well Control

Wellhead Pressure Rating

The wellhead rating is the maximum pressure expected at any point in the life

of the well. The minimum wellhead pressure is typically a function for the pore

pressure of the producing interval minus some fluid and gas gradient mixture.

This term is considered to be the worst case discharge.

𝑊𝐻 𝑅𝑎𝑡𝑖𝑛𝑔 ≥ 𝑃𝑜𝑟𝑒 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 * 0.052 * 𝑇𝑉 𝐷

− 𝐿𝑖𝑞𝑢𝑖𝑑 𝑂𝑖𝑙 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 * 𝑇𝑉 𝐷 * 𝐹𝑙𝑢𝑖𝑑 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛

−𝐺𝑎𝑠 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 * 𝑇𝑉 𝐷 * (1− 𝐹𝑙𝑢𝑖𝑑 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛)

𝑤ℎ𝑒𝑟𝑒

TVD is the True Vertical Depth of the highest pressure perforation

The Oil Gradient is dependent on formation characteristics

The fluid fraction is dependent on the design criteria of the well

Kick Tolerance

The kick tolerance factor is the allowable increase in equivalent circulating den-

sity due to a fluid influx. It should always be greater than 0, to ensure there is

a margin for a well influx. The formulation for kick tolerance factor is defined

below [42].

𝐾𝑖𝑐𝑘 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 =
𝑐𝑠𝑔𝑠ℎ𝑜𝑒𝑠𝑒𝑐−1

𝑐𝑠𝑔𝑠ℎ𝑜𝑒𝑠𝑒𝑐
· (𝑓𝑔𝑠𝑒𝑐 −𝑚𝑤𝑠𝑒𝑐)
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A.1.6 Well Trajectory and Directional Drilling

Well Inclination

The planned directional survey is constructed typically with a minimization of

the total well depth or Measured Depth (MD). The directional profile of a well

has the objective of minimizing drilling time and cost, minimizing the total well

length, optimizing target intersections for production, considering hole cleaning

and fluid flow, and maximizing the rate of penetration [13].

The well inclination vertical displacement of the wellbore from a reference point

of zero degrees indicates a direction perpendicular to the earth’s gravitational

center. The inclination changes to meet the objective to reach the target ob-

jectives and starts from the designated surface location.

Well Azimuth

The well azimuth is the direction of the wellbore in relation to the magnetic

north pole, where zero degrees directly aligns with the magnetic north pole.

Total Vertical Depth

The total vertical depth is the vertical displacement of the well, interpolated

using the well length, inclination and azimuth.

Measured Depth

The well’s measured depth is the wellbore’s length independent of the inclina-

tion, azimuth, or depth. The measured depth can be measured using a device

such as a wired tool string, drill pipe, or casing. The measured depth of the

well is a function of the inclination, azimuth, TVD, in relation to the directional

objectives from the surface location to the well targets.

Well Dogleg Severity

Dogleg Severity is a term that describes the triaxial change in the well trajectory

over a specified length. The dogleg severity is typically represented in degrees

per 100 ft in US units. The change in inclination and azimuth over a section of

the well determines this scalar factor. Abnormal increases in dogleg severity can

be catastrophic, and cause unplanned failures in the drilling string, increased
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torque and drag, and possibly stuck pipe.

Maximum Allowable Dogleg Severity

The maximum dogleg severity is generally a function of the well section. This

variable changes over the wellbore. It is a function of the well depth, casing

analysis, torque and drag, and tubular diameters.

Kick Off Point

The kick-off point is where a curve or change in planned inclination and az-

imuth begin. Well are not continuous curves due to equipment limitation and

rate of penetration optimization; therefore each change in geometry requires a

designated point (kick-off point) to make major changes in the planned trajec-

tory. The selection of kick-off points depends on the relative distance to the well

target, expected lithology encountered while drilling, the bottom hole assembly,

casing wear analysis, and the torque and drag analysis of the casing and drill

pipe at deeper intervals.

Curve Build Rate

The build rate is the maximum inclination change a bottom hole assembly can

achieve. The selection of build rate has the objective to occur with the fastest

rate of penetration but at the lowest cost. Excessive build rates can affect the

torque and drag analysis and, therefore, can be infeasible. This value is different

for build sections, and wells could have as many as 5 build sections in a single

well.

Bottom Hole Assembly Directional Class

The type of directional assembly could be separated by a straight assembly,

downhole motor, and rotary-steerable systems. Rotary-Steerable systems rely

on the drilling fluid to provide power to the downhole tools, including higher

viscosity fluids.
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A.1.7 Drilling Fluids

Fluid Rheology (Needs to Update for better description as Abstrac-

tion of properties)

Drilling fluid has many parameters that can improve the Rate of Penetration

and hole cleaning efficiency. In many cases, it can be best to drill with fluid with

the lowest shear rate and fluid loss. In such cases, fresh, brackish, or salt water

can be used as the primary drilling fluid. The rheology will in this research uses

the Power Law Model [7]:

𝜏 = 𝐾𝛾𝑛

where

𝜏 is the Shear Stress

𝛾 is the Shear Rate

𝐾 is the consistency index

𝑛 is the power law index

Mud Base Fluid

Azar describes drilling fluid selection parameters and attributes to the base fluid

selection listed below [7]. For use in optimization, the parameters marked with

an asterisk can be used as a component of the objective function.

Mud Density

The objective of the mud density is to achieve a value that is as low as possible.

𝑃𝑜𝑟𝑒 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ≤𝑀𝑢𝑑 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ≤ 𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒

Mud Flow Rate

In many cases, the objective of a well operation is to achieve the maximum

flow rate whenever possible. The drilling pump rates are limited by pump

capabilities and the wellbore fracture pressure. Circulation pressures must be

high enough to remove cuttings from the wellbore. There is an increased risk
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Table A.1: Base Fluid for Drilling Fluid Optimization

Influencing Parameters

Production Concerns

Rate of Penetration *

Circulating Friction Pressure

Torque and Drag *

Lithology and hole stabilization

Safety and Environmental

Solids Removal or Hole Cleaning *

Wellbore Temperature

Potential for Mud Losses - Low Fracture Gradient

Potential for Mud Contamination - High Pore Pressure

Drilling Rig Capabilities

Bottom Hole Assembly

Formation Evaluation Requirements

Data Table Adapted from [7]
* Indicates parameters that are defined in an objective function.

of pipe sticking due to excess debris in the well without a sufficient flow rate.

The mud pumps have a fluid displacement volume per stroke as a function of

"the piston diameter, the liner diameter, and the stroke length" [31]. The total

pump horsepower needed for a given circulation system is a function of the

rate and pressure. Drilling rigs can have multiple pumps with various liner and

piston sizes; therefore rate is dependent on the friction pressure encountered in

the system and the total available horsepower. This can be represented as [31]:

𝑃ℎ𝑝 =
𝑃𝑓 ×𝑅𝑎𝑡𝑒

1714

The circulating rate must be less than system friction pressure as a function of

the pump horsepower. Azar details the total friction pressure or pump pressure
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while drilling as [7]:

𝑃𝑓 = 𝑃𝑓𝑑𝑝 + 𝑃𝑓𝑑𝑐 + 𝑃𝑓𝑎𝑑𝑝 + 𝑃𝑓𝑎𝑑𝑐 + 𝑃𝑓𝑠 + 𝑃𝑏ℎ𝑎 + 𝑃𝑏

𝑅𝑎𝑡𝑒 ≤ 1714× 𝑃ℎ𝑝

𝑃𝑓

Where:

𝑃𝑓𝑑𝑝, 𝑃𝑓𝑑𝑐 are the respective pressure friction losses inside drill pipe and drill

collar

𝑃𝑓𝑎𝑑𝑝, 𝑃𝑓𝑎𝑑𝑐 are the respective pressure friction losses in the annulus around the

drill pipe and drill collar, respectively

𝑃𝑓𝑠 is the pressure friction loss inside surface connections

𝑃𝑏ℎ𝑎 is the pressure friction loss through the bottom hole assembly

𝑃𝑏 is the dynamic pressure change across the bit

The flow rate while drilling must also exceed the recommended velocity for

circulating in a wellbore. The hole cleaning index developed by Al-Rubaii [3]

must be greater than 1 to indicate good hole cleaning.

Mud Friction Factor

The Doge and Metzner correlation for use with their calculation of the Reynolds

number of a Power Law fluid yields an equivalent Reynolds number for pipe and

annulus fluid [12], with an approximate formulation for the friction factor [63] :
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𝑎 = 2 * log 𝑅

2.51

𝑐 =

(︂
𝜖𝑅

9.287𝐷
+ 𝑎

)︂
𝑑𝑒 = 0.816 * (𝑂𝐷 − 𝐼𝐷)√︀

1/𝑓 = 𝑎+ 2 log 𝑐

(︂
𝑑𝑒
𝑐
+ 1

)︂
𝑤ℎ𝑒𝑟𝑒 :

Pipe Reynolds Number

𝑁𝑅𝑒 =
89, 100𝜌𝜈2−𝑛

𝐾
·
(︂
0.0416 · 𝑑
3 + 1/𝑛

)︂𝑛

Concentric Annulus Reynolds Number

𝑁𝑅𝑒 =
109, 000𝜌𝜈2−𝑛

𝐾
·
(︂
0.02089 · (𝑂𝐷 − 𝐼𝐷)

2 + 1/𝑛

)︂𝑛

Equivalent Static Density

The equivalent static mud density can be represented using the simplified for-

mulation below.

𝐻𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 0.052× 𝑇𝑟𝑢𝑒 𝑉 𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐷𝑒𝑝𝑡ℎ× 𝐹𝑙𝑢𝑖𝑑 𝐷𝑒𝑛𝑠𝑖𝑡𝑦

Equivalent Circulating Density

Newtonian and Non-Newtonian fluids can separate the determination of the

annulus pressure loss formulation. The fluid is in the laminar flow state for

fluids with a Reynolds number less than 2100. For the Power Law, the annulus

pressure drop can be estimated for drilling ECD as turbulent flow.

Using the equations derived by [12]:

Laminar Fluid ECD, RE<2500

𝐸𝐶𝐷𝑙𝑎𝑚𝑖𝑛𝑎𝑟 =
𝐾𝜐𝑛

(︁
3+1/𝑛
0.0416

)︁𝑛

144, 000 · 𝑑1+𝑛
* 𝑙𝑒𝑛𝑠𝑒𝑐𝑡𝑖𝑜𝑛
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The Turbulent Fluid ECD, RE>2500

𝑣 =
𝑄

2.448 * (𝐼𝐷2
𝑜𝑢𝑡𝑒𝑟 −𝑂𝐷2

𝑝𝑖𝑝𝑒)

𝑛 = 3.32 * 𝑙𝑜𝑔 𝜃600
𝜃300

𝐾 =
510 * 𝜃300

511𝑛

𝐸𝐶𝐷𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 =
𝑓 * 𝜌 * 𝜐2

21.1 * (𝐼𝐷𝑜𝑢𝑡𝑒𝑟 −𝑂𝐷𝑝𝑖𝑝𝑒)
* 𝑙𝑒𝑛𝑠𝑒𝑐𝑡𝑖𝑜𝑛 + 𝐸𝑀𝑊

𝑤ℎ𝑒𝑟𝑒 :

𝜃600 & 𝜃300 are rheological relationship of the shear rate vs. shear stress

𝑄 is the fluid flow rate in gal/min

𝐼𝐷𝑜𝑢𝑡𝑡𝑒𝑟 is the ID of the previous casing string(s) or the hole diameter

𝜌 is the mud density

𝑓 is the friction factor correlations generated using the friction

factor approximation [63]

Surge and Swab Pressure

For moving pipe, the equation derivations from Bourgoyne apply for laminar

flow in the well annulus [12]. When moving pipe into the hole, the term "surge"

is used to describe an increase in wellbore pressure from the added frictional

pressure of moving fluid. Bourgoyne uses a formulation to estimate the fluid

velocity as a function of pipe speed in the open-ended pipe and estimates the

rate of fluid movement in closed-ended pipe [12].
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For open ended pipe:

𝜈𝑎 = 𝜈𝑝 ·
3𝑑4 − 4𝑑21(𝑑2 − 𝑑1)

2

−6𝑑4 − 4(𝑑2 − 𝑑1)2(𝑑22 − 𝑑21)

For closed ended pipe:

𝜈𝑎 =
𝑑21 · 𝜈𝑝

(𝑑22 − 𝑑21)(︂
𝑑𝑃𝑓

𝑑𝐿

)︂
𝑠𝑒𝑐

=
𝜇 (𝜈𝑎 + 𝜈𝑝/2)

1000(𝑑2 − 𝑑1)2
∀ 𝑠𝑒𝑐 ∈ 𝑊𝑒𝑙𝑙

Surge pressure can be calculated when 𝑣𝑝 ≥ 0 :

𝑓𝑔 ≥
∑︁
𝑠𝑒𝑐

(︂
𝑑𝑃𝑓

𝑑𝐿

)︂
𝑠𝑒𝑐

+ 𝐸𝑀𝑊

Swab pressure can be calculated when 𝑣𝑝 ≤ 0

𝑝𝑝 ≤
∑︁
𝑠𝑒𝑐

(︂
𝑑𝑃𝑓

𝑑𝐿

)︂
𝑠𝑒𝑐

+ 𝐸𝑀𝑊

Hole Cleaning Quality

Using the hole cleaning index developed by Al-Rubaii et al. [3] we can develop

a numerical estimation of hole cleaning quality as a function of rheology, flow

rate, hole geometry, cutting size, rate of penetration, and hole angle.

Drilling Surface Pressure

The drill pipe, BHA, and Bit friction pressures are the main contributors to

surface pressure. The summation of system friction pressures is equivalent to

the surface and mud pump pressures. Using correlations for the Power-Law

Model of fluid flow in turbulent fluid space the surface pressure estimation can
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be determined using the equations below [12].

𝑃 =

𝑆𝑡𝑟𝑖𝑛𝑔∑︁
𝑠

𝑑𝑃𝑓

𝑑𝐿𝑠

· 𝐿𝑠 + 𝑑𝑃𝑏ℎ𝑎 + 𝑑𝑃𝑏 +
𝑎𝑛𝑛𝑢𝑙𝑢𝑠∑︁

𝑎

𝑑𝑃𝑓

𝑑𝐿𝑎

· 𝐿𝑎

𝑤ℎ𝑒𝑟𝑒

𝑑𝑃𝑓

𝑑𝐿𝑠

=
𝑓𝜌𝜈2

25.8 𝑑𝑠
∀ 𝑠 ∈ 𝑠𝑡𝑟𝑖𝑛𝑔_𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑑𝑃𝑓

𝑑𝐿𝑎

=
𝑓𝜌𝜈2

21.1 (𝑑1,𝑎 − 𝑑2,𝑎)
∀ 𝑎 ∈ 𝑎𝑛𝑛𝑢𝑙𝑢𝑠_𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑃𝑓 is the friction pressure

𝑓 is the friction factor

𝜌 is the fluid density

𝜈 is the fluid velocity

𝑑 is the diameter
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A.1.8 Casing Design

Casing

This integer value is used to determine if a string will be rated as casing or

liner. Liners are cheaper and serve advantages in deeper wells. An evaluation

of the casing regulations, casing load analysis, hole cleaning, and casing wear will

determine the possibilities of a string becoming a liner. This is a binary variable

of 0,1. There are no defined dependencies other than regulatory requirements.

The evaluation of the casing load cases will determine if the use of the liner string

is a feasible option. The numerical evaluation will treat the casing parameter

as a binary variable that is an input parameter.

Casing Top Measured Depth

The top of the string is the reference point closest to the surface. For strings

that are casing, this will always equal 0. For liner strings, this depth is variable

but must meet the constraint of being shallower than the previous string minus

some required liner x casing overlap. This overlap distance is typically a mini-

mum of the previous strings shoe track, which is not discussed in this research.

(1− 𝐶𝑎𝑠𝑖𝑛𝑔) * 𝐶𝑠𝑔𝑡𝑜𝑝 + 𝐶𝑎𝑠𝑖𝑛𝑔 * 𝐶𝑠𝑔𝑡𝑜𝑝 ≤ 𝐶𝑎𝑠𝑖𝑛𝑔 * (𝐶𝑠𝑔𝑏𝑡𝑚,𝑖−1 − 𝐿𝑖𝑛𝑒𝑟 𝑂𝑣𝑒𝑟𝑙𝑎𝑝)

𝑤ℎ𝑒𝑟𝑒

𝐶𝑎𝑠𝑖𝑛𝑔 ∈ {0, 1}

Casing Bottom Measured Depth

In simple terms, the selection of casing depths is based on a static mud weight

greater than the pore pressure and less than the fracture gradients for the drilled

section. The casing bottom is approximately equal to the depth of a formation

break. The depth is also a function of operational parameters drilling hazards,
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ECD, Hole cleaning, surge and swab pressures.

𝜌𝑠𝑒𝑐 ≥ 𝑝𝑝𝑠𝑒𝑐

𝑠𝑤𝑎𝑏𝑠𝑒𝑐 ≥ 𝑝𝑝𝑠𝑒𝑐

𝜌𝑠𝑒𝑐 ≤ 𝑓𝑔𝑠𝑒𝑐

𝑠𝑢𝑟𝑔𝑒𝑠𝑒𝑐 ≤ 𝑓𝑔𝑠𝑒𝑐

𝐸𝐶𝐷𝑠𝑒𝑐 ≤ 𝑓𝑔𝑠𝑒𝑐

Casing ID

The inner diameter (ID) of the casing string should be maximized to meet the

constraints of the load cases of the evaluated section. Increasing the ID results

in a reduced wall thickness. In a bottom-up design strategy, the casing ID must

be greater than the bit diameter of the previous section.

Objective :𝑚𝑎𝑥 𝐼𝐷𝑐𝑠𝑔 𝑜𝑟 𝑚𝑖𝑛 𝑤𝑎𝑙𝑙 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

such that :

Casing Load Evaluation Passes

𝐼𝐷𝑐𝑠𝑔 ≥ 𝑂𝐷𝑏𝑖𝑡, 𝑠𝑒𝑐+1

𝐼𝐷𝑐𝑠𝑔 ≥ 𝑂𝐷𝑐𝑠𝑔_𝑐𝑜𝑛𝑛, 𝑠𝑒𝑐+1

Casing OD

The outer diameter of the casing string is driven by the bit size, minimum

ID allowance, next casing string ID, maximum allowable OD, connection type,

and the satisfaction of applicable load cases. "The size of the casing string is

controlled by the necessary ID of the production string and the number of in-

termediate casing strings required to reach the depth objective" [12].
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Objective : min𝑂𝐷𝑐𝑠𝑔,𝑠𝑒𝑐 ∀ 𝑠𝑒𝑐 ∈ 𝐶𝑎𝑠𝑖𝑛𝑔 𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑠

such that :

Casing Load Evaluation Passes

𝑂𝐷𝑐𝑠𝑔,𝑠𝑒𝑐 ≤ 𝐼𝐷𝑐𝑠𝑔,𝑠𝑒𝑐+1

𝑂𝐷𝑐𝑠𝑔,𝑠𝑒𝑐 ≥ 𝑂𝐷𝑐𝑠𝑔,𝑠𝑒𝑐

Min Drift Diameter for Casing String

The Drift diameter for any string is the minimum allowable ID that will allow the

passage of an object with a fixed OD and length. This factor is important when

considering the diameter clearance, tolerances, and bending angles. This is an

input parameter that is specified by API standards or the tubular manufacturer

and is a property of the discrete selection of a casing string. The drift ID is

approximately equal to 𝐼𝐷𝑐𝑠𝑔−𝑂𝐷𝑐𝑠𝑔/64. All equipment that will pass through

the casing must be less than the drift diameter.

𝐷𝑟𝑖𝑓𝑡𝐼𝐷𝑐𝑠𝑔 ≥ 𝑂𝐷𝑐𝑠𝑔_𝑐𝑜𝑛𝑛,𝑠𝑒𝑐+1

𝐷𝑟𝑖𝑓𝑡𝐼𝐷𝑐𝑠𝑔 ≥ 𝑂𝐷𝑏𝑖𝑡

𝐷𝑟𝑖𝑓𝑡𝐼𝐷𝑐𝑠𝑔 ≥ 𝑂𝐷𝑐𝑠𝑔,𝑠𝑒𝑐+1

Casing Connection OD

Most connections used have standardized dimensions or can be interpolated

from a table. For this research, we will leverage the standardization of API

connections in API Spec 5CT to define the OD of the casing connections, which

are lookup values to standard OD pipe for the diameter and length from API

Round and Buttress Connections.

Casing Connection Type

The connection type is selected as a factor of the lowest cost connection that will
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meet the ultimate well objectives. The well objectives that determine the type

of connection used could include: the total well cost, the total life expectancy of

the well, the risk and cost of failure, regulatory requirements, operational time

per connection, equipment availability for special operations, formation fluids,

well architecture limitations, and if the string is a casing string or liner.

Objective : min{𝑐𝑜𝑛𝑛𝑡𝑖𝑚𝑒, 𝑐𝑜𝑠𝑡, 𝑂𝐷}

such that :

Casing Load Evaluation Passes

𝑂𝐷𝑐𝑜𝑛𝑛, 𝑠𝑒𝑐 ≤ 𝐼𝐷𝑐𝑠𝑔, 𝑠𝑒𝑐−1

𝑂𝐷𝑐𝑜𝑛𝑛, 𝑠𝑒𝑐 ≥ 𝑂𝐷𝑐𝑠𝑔, 𝑠𝑒𝑐

Isolates Formation Fluids

Casing Yield Strength

The casing yield strength is the primary material factor of casing load analysis.

The geometry of a casing string can be modified with allowances for higher yield

pipes.

Casing Material

In well design, the casing material selection is essential for the life of the well.

The material selection is based on the casing yield strength, wettability or in

direct contact with oil, and corrosion resistance if placed in corrosive environ-

ments. Using Figure 8.27 from [31], the material selection for casing corrosive

environments can be implemented into a numerical simulation, where the 𝐶𝑂2

and 𝐻2𝑆 concentrations in parts per million in combination with the highest

expected fluid temperature, designates material classes suitable for the environ-

ment.

Casing Load Cases

The evaluation of casing string evaluates the possible failure modes of the cas-

ing string under the highest expected loads, such as pressure testing, a loss of
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internal fluid, or production pressure and temperature limitations. The cas-

ing load analysis evaluates burst, collapse, axial, and bending stresses for each

casing string at the most extreme, but controlled, data points possible during

the well construction operation [31]. Occurrences such as well blowouts, dam-

aged equipment, or subsurface anomalies such as unexpected caving or tectonic

movements are not evaluated. Using the tri-axial formulation defined in API

Technical Report 5C3 [35], the combined stresses must remain less than the

pipe yield strength.

𝜎𝑒 ≤ 𝑝𝑖𝑝𝑒_𝑦𝑖𝑒𝑙𝑑

𝑤ℎ𝑒𝑟𝑒

𝜎𝑒 = [𝜎2
𝑟 + 𝜎2

ℎ + (𝜎𝑎 + 𝜎𝑏)
2 − 𝜎𝑟𝜎ℎ − 𝜎𝑟(𝜎𝑎 + 𝜎𝑏)− 𝜎ℎ(𝜎𝑎 + 𝜎𝑏) + 3𝜏 2ℎ𝑎]

1/2

𝑤𝑖𝑡ℎ

𝜎𝑎 =
𝐹𝑎𝑥𝑖𝑎𝑙

𝜋
4
(𝑂𝐷2 − 𝐼𝐷2)

𝜎𝑏 = 𝐸𝑐𝑟

𝜎ℎ =
(𝑝𝑖𝑛𝑡 * 𝑑2𝑤𝑎𝑙𝑙 − 𝑝𝑒𝑥𝑡 *𝑂𝐷2) + (𝑝𝑖𝑛𝑡 − 𝑝𝑒𝑥𝑡) * 𝑑2𝑤𝑎𝑙𝑙 * 𝑂𝐷2

𝑑2𝑤𝑎𝑙𝑙

𝑂𝐷2 − 𝑑2𝑤𝑎𝑙𝑙

𝜎𝑟 =
(𝑝𝑖𝑛𝑡 * 𝑑2𝑤𝑎𝑙𝑙 − 𝑝𝑒𝑥𝑡 *𝑂𝐷2)− (𝑝𝑖𝑛𝑡 − 𝑝𝑒𝑥𝑡) * 𝑑2𝑤𝑎𝑙𝑙 * 𝑂𝐷2

𝑑2𝑤𝑎𝑙𝑙)

𝑂𝐷2 − 𝑑2𝑤𝑎𝑙𝑙

𝜏ℎ𝑎 =
𝑇𝑟

𝐽𝑝
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𝑤ℎ𝑒𝑟𝑒

𝐴𝑝 is the area of the pipe cross-section, 𝐴𝑝 = 𝜋/4(𝐷2 − 𝑑2)

𝑐 is the tube curvature, the inverse of the radius of curvature to the

centerline of the pipe

𝐷 is the specified pipe outside diameter

𝑑 is the pipe inside diameter, 𝑑 = 𝐷 − 2𝑡

𝑑𝑤𝑎𝑙𝑙 is the inside diameter based on 𝑘𝑤𝑎𝑙𝑙𝑡, 𝑑𝑤𝑎𝑙𝑙 = 𝐷 − 2𝑘𝑤𝑎𝑙𝑙𝑡

𝐸 is Young’s Modulus

𝐹𝑎 is the axial force

𝐼 is the moment of inertia of the pipe cross-section, 𝐼 = 𝜋/64(𝐷4 − 𝑑4)

𝐽𝑝 is the polar moment of inertia of the pipe cross-section, 𝐽𝑝 = 𝜋/32(𝐷4 − 𝑑4)

𝑘𝑤𝑎𝑙𝑙 is the factor to account for the specified manufacturing tolerance

of the pipe wall e.g. for a tolerance of − 12.5%, 𝑘𝑤𝑎𝑙𝑙 = 0.875

𝑀𝑏 is the bending moment

𝑝𝑖 is the internal pressure

𝑝𝑜 is the external pressure

𝑟 is the radial coordinate, as follows:

(𝑑/2) ≤ 𝑟 ≤ (𝐷/2) 𝑓𝑜𝑟 𝜎𝑎, 𝜎𝑏, 𝑎𝑛𝑑 𝜏ℎ𝑎

(𝑑𝑤𝑎𝑙𝑙/2) ≤ 𝑟 ≤ (𝐷/2) 𝑓𝑜𝑟 𝜎𝑟 𝑎𝑛𝑑 𝜎ℎ

𝑇 is the applied torque
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A.1.9 Cementing

Lead Cement Height The lead cement height is the lower density cement

pumped between the cementing spacer and tail cement. The height of the

slurry should be designed to meet the regulatory or cementing objectives, and

should account for eroded rock sections, termed "washout."

Tail Cement Height The tail cement is the last cement slurry pumped down-

hole, and has the highest density of all fluids within the wellbore. The height

of the tail cement slurry should be greater than the casing shoe track length,

but the hydrostatic pressure contribution must remain below the well fracture

gradient.

Lead Cement Density This cementing mixture should have a density greater

than the cementing spacer and drilling mud to prevent fluid mixing. The density

of the lead cementing slurry must be large enough to maintain the hydrostatic

pressure as the lead cementing slurry transitions to a solid, but allow the ce-

menting spacer to maintain hydrostatic pressure as the lead cement transitions

to a solid.

Tail Cement Density This slurry is used to isolate the casing shoe when

drilling the next hole section and should be designed to obtain a high compres-

sion load at the fastest rate. The tail cement density should be greater than

the lead cementing density, and must balance the setting time and compression

strength for casing shoe structural integrity.

Cementing Spacer Height and Density A properly designed cementing

spacer is critical to a successful primary cementing operation. The cementing

spacer is a water-based fluid that has low reactivity to the cementing slurry and

serves several purposes:

– Removes mud filter cake from the wellbore walls

– Displaces drilling mud away from cementing slurry

– Assists in maintaining hydrostatic integrity during cementing transition
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times. As cement transitions from a liquid to a solid, there is a transitional

period where the density of cement is equivalent to its base fluid, water.

– Carries corrosion prevention chemicals into the wellbore annulus

Equivalent Mud Density while Cementing The equivalent mud density

(EMW) of cement is equivalent to the sum of all hydrostatic pressures of all

fluids in the annulus. The sum of the pressures must remain below the well

fracture gradient.

𝐸𝑀𝑊𝑐𝑒𝑚𝑒𝑛𝑡 =(𝑚𝑤 *𝐻𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑀𝑢𝑑

+ 𝑠𝑝𝑎𝑐𝑒𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 *𝐻𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑆𝑝𝑎𝑐𝑒𝑟

+ 𝐿𝑒𝑎𝑑 𝐶𝑒𝑚𝑒𝑛𝑡 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 *𝐻𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐿𝑒𝑎𝑑 𝐶𝑒𝑚𝑒𝑛𝑡

+ 𝑇𝑎𝑖𝑙 𝐶𝑒𝑚𝑒𝑛𝑡 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 *𝐻𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑇𝑎𝑖𝑙 𝐶𝑒𝑚𝑒𝑛𝑡)

÷ 𝑇𝑉 𝐷𝐷𝑒𝑝𝑡ℎ

𝐸𝑀𝑊𝑐𝑒𝑚𝑒𝑛𝑡 ≤ 𝐹𝑟𝑎𝑐 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝐷𝑒𝑝𝑡ℎ

Equivalent Circulating Density while Cementing The ECD while ce-

menting calculation is similar to the mud ECD calculation. Cement is pumped

at a much lower flow rate to allow for proper mixing, and is limited by the ECD

while pumping. The viscosity of cement is significantly higher than the fluid

used to drill, and is a critical structural integrity component that could result

in significant cost implications for failure.
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A.1.10 Drilling Assembly

Drill Pipe OD

Drill pipe is supply constrained to standard API drill pipe grades. The Drill

Pipe OD, ID, and tool joint OD will be distinct table values that depend only

on the supply capabilities and material grade. Externally upset drill pipe is the

most common grade of drill pipe, making the tool joint’s OD larger than the

pipe’s OD. The drill pipe OD is a discrete decision variable that will not have

direct inputs. The standard drill pipe OD’s are 2.375", 2.875", 3.5", 4.0", 4.5",

5.0", 5.5", and 6.625".

Drill Pipe ID

The drill pipe ID depends on the OD and weight of the drill pipe. The ID of

the pipe is a significant contributor to the friction pressure of the drilling fluid

circulation system. A balance in pipe tensile strength, weight, ECD, and pipe

availability must be managed during the well design and construction process.

Drill Pipe Tool Joint OD

The tool Joint OD is a function of the drill pipe OD. The tool joint is designed

to be the weakest link in the drill pipe, which makes string retrieval easier. The

limits of the tool joint OD indicate that the tool joint OD must be less than

the drift ID of the previous casing string and the bit diameter.

𝑂𝐷𝑇𝐽 ≤ 𝐷𝑟𝑖𝑓𝑡𝐼𝐷𝑐𝑠𝑔,𝑠𝑒𝑐−1

𝑂𝐷𝑇𝐽 ≤ 𝑏𝑖𝑡_𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

Drill Pipe Tensile Strength

The drill pipe tensile strength is a tabular value of the pipe OD and grade

selected. The tensile strength of the drill pipe is determined by evaluating the

total string weight expected, the necessary overpull needed for safe operations,

and the fluid composition of the drilled formations. Formations with highly

corrosive fluids can cause stress cracking and premature failures and require
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a pipe with lower tensile stress to withstand the corrosive environment. For

numerical optimization, the minimum tensile stress for pipe will be calculated

using a summation of all weights in the drill string plus the required overpull

shown below.

𝑜𝑣𝑒𝑟𝑝𝑢𝑙𝑙𝑑𝑝 ≥𝑝𝑖𝑝𝑒_𝑡𝑒𝑛𝑠𝑖𝑙𝑒− [𝑤𝑝𝑓𝑑𝑝 + 𝑤𝑝𝑓ℎ𝑤𝑑𝑝 + 𝑤𝑝𝑓𝑑𝑐]

Drill Pipe Total Length

The total length of drill pipe is a function of the heavy-weight drill pipe (HWDP)

and Drill Collar (DC) lengths. When drill pipe limits are near the maximum

allowable tensile limit, two to three diameters of drill pipe may be used. The

length limit of the bottom (dp2) and top (dp1) drill string segments are defined

below [7], where the maximum tensile limit is 90% of the published tensile limit.

𝐿𝑒𝑛𝑑𝑝2 ≤
0.9 * 𝑇𝑒𝑛𝑠𝑖𝑙𝑒𝑑𝑝2 −𝑀𝑖𝑛_𝑂𝑣𝑒𝑟𝑝𝑢𝑙𝑙

𝑤𝑝𝑓𝑑𝑝2 *𝐵𝐹

− 𝑤𝑝𝑓ℎ𝑤𝑑𝑝 * 𝐿𝑒𝑛ℎ𝑤𝑑𝑝

𝑊𝑝𝑓𝑑𝑝2

− 𝑤𝑝𝑓𝑑𝑐 * 𝐿𝑒𝑛𝑑𝑐

𝑤𝑝𝑓𝑑𝑝2

𝐿𝑒𝑛𝑑𝑝1 ≤
0.9 * 𝑇𝑒𝑛𝑠𝑖𝑙𝑒𝑑𝑝1 −𝑀𝑖𝑛_𝑂𝑣𝑒𝑟𝑝𝑢𝑙𝑙

𝑤𝑝𝑓𝑑𝑝1 *𝐵𝐹

− 𝑤𝑝𝑓𝑑𝑝2 * 𝐿𝑒𝑛𝑑𝑝2

𝑊𝑝𝑓𝑑𝑝1

− 𝑤𝑝𝑓ℎ𝑤𝑑𝑝 * 𝐿𝑒𝑛ℎ𝑤𝑑𝑝

𝑊𝑝𝑓𝑑𝑝1

− 𝑤𝑝𝑓𝑑𝑐 * 𝐿𝑒𝑛𝑑𝑐

𝑤𝑝𝑓𝑑𝑝1

Drill Pipe Weight per Foot

The drill pipe weight per foot metric is the average dry weight of the drill string

before introducing the buoyancy factor. This value is generally given as a table

value, but could be be numerically calculated using 𝑓(𝑂𝐷𝑑𝑝, 𝐼𝐷𝑑𝑝, 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑑𝑝).

The tool joints add a relatively small amount of weight, but it can be significant
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when the error is scaled on an entire drill string. ‘

Drill Pipe Static Load Evaluation

Drill pipe load analysis evaluates torque, compression, tension, burst, and BOP

closure with MASP or BOP test pressures. These loads will ensure the drill

string can achieve a desired level of torque while drilling, pull the string if it

becomes stuck, and contain internal and external pressures.

Drill Pipe Overpull Capacity

The drill pipe overpull allowance is the minimum difference in the calculated

axial tension and the allowable axial tension [7]. This value is given as a constant

for each hole section.

Heavy Weight Drill Pipe OD

The heavy-weight Drill Pipe OD is equivalent to the smallest drill pipe in the

hole. The smallest OD drill pipe is also the deepest.

Heavy Weight Drill Pipe ID

The ID of the heavy-weight drill pipe is a lookup value and must be greater

than the minimum allowable ID in the drill string.

Heavy Weight Drill Pipe Length

The use of heavy-weight drill pipe in drill string design serves as an intermediary

to drill collars and drill pipe. The pipe length can be represented as a function

of maximum weight on bit, hole cleaning, ECD, and maximum angle. Heavy

weight drill pipe can be used in both tension and compression and is used in the

transition zone between drill collars and drill pipe. Furthermore, the HWDP

reduces the torque and drag and limits differential sticking [7]. The length of

the heavy-weight drill pipe is a decision variable that can be applied to cost and

performance objective functions.

Heavy Weight Drill Pipe Weight

The weight of the heavy-weight drill pipe is a function of the OD and ID of

the pipe. As the ID of a set heavy weight drill pipe OD string decreases, the

weight of the string in lbs/ft will increase. The string’s buckling strength will
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also increase due to the increasing Bulk Modulus.

Drill Collar OD

Drill collars have standardized sizes, and the diameter is dependent on the hole

section diameter.

Drill Collar ID

The drill collar ID is generally the smallest ID of the drill string. The ID is

limited by the minimum allowable diameter for objects that must pass through

the Bottom Hole Assembly, such as fishing tools and balls used for various

functions.

Drill Collar Length

The desired weight on bit primarily drives the length of drill collars, and in

deviated wells, the maximum deviation can impact the length of drill collars.

Long drill collar sections can make drilling highly deviated wells difficult due to

the stiffness of the drill collar assembly. The length of the drill collars and the

heavy-weight drill pipe is determined by the desired weight on bit in a vertical

well and can follow the equation below.

𝑚𝑎𝑥_𝑤𝑜𝑏 ≤ 𝑤𝑝𝑓𝑑𝑐 × 𝑙𝑒𝑛𝑑𝑐 ×𝐵𝐹 + 𝑤𝑝𝑓ℎ𝑤𝑑𝑝 × 𝑙𝑒𝑛ℎ𝑤𝑑𝑝 ×𝐵𝐹

Drill Collar Weight

Similar to the heavy weight drill pipe weight, the drill collar weight is driven

by the OD and ID of the pipe. The weight of the drill collars are used as the

primary source of bit weight, so there must be a sufficient balance in drill collar

weight to ensure drilling can occur with the bottom hole assembly configuration.

Bottom Hole Assembly Directional ROP

The ROP of any BHA is a complex function of the BHA and bit design. Using

the principles discussed by Witktorski, Kuznetcov and Sui, we can use a linear

relationship of the Rate of penetration of directional drilling to the Rate of

Penetration of the non-directional rate of penetration [65].
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Bottom Hole Assembly Pressure Differential

The maximum allowable BHA differential pressure is used to determine the type

of equipment that can be used in the BHA. This value is the remaining pump

pressure and rate that can be achieved with existing equipment [7].

𝑀𝑎𝑥𝑃𝑏ℎ𝑎 ≤
1714× 𝑃ℎ𝑝

𝑅𝑎𝑡𝑒
− (𝑃𝑓𝑑𝑝 + 𝑃𝑓𝑑𝑐 + 𝑃𝑓𝑎𝑑𝑝 + 𝑃𝑓𝑎𝑑𝑐 + 𝑃𝑓𝑠 + 𝑃𝑏)

Bit Diameter

The bit OD is a discrete set of values that is driven by an upper and lower limit of

the casing of the current and previous sections. To limit the number of possible

solutions, additional clearance can be added to the upper and lower bounds for

more realistic solutions and to limit the feasible design space. Therefore, for

this research, a diameter difference of 1/4" will be applied to all sections.

𝑂𝐷𝑏𝑖𝑡 ≤𝑀𝑖𝑛𝐼𝐷𝑝𝑟𝑒𝑣_𝑐𝑠𝑔 − 0.25

𝑂𝐷𝑏𝑖𝑡 ≥𝑀𝑎𝑥𝑂𝐷𝑐𝑠𝑔_𝑐𝑜𝑛𝑛 + 0.25

Bit Total Flow Area

The bit total flow area (TFA) is the sum of area of all jets in the bit. The small

area is the outlet to transfer fluid from the drill string to the drilling annulus.

The bit TFA is limited by the system friction pressure. The goal in TFA op-

timization can be to maximize the Bit Nozzle Velocity, Bit Jet Force, and Bit

Hydraulic Horsepower [12]. The formulation below describes the process used

to maximize the hydraulic horsepower, where Azar uses an absolute maximum

as the optimal point. However, for this integrated approach, the maximum will
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be treated as an objective function [7].

𝑃𝑓 = 𝑃𝑓𝑑𝑝 + 𝑃𝑓𝑑𝑐 + 𝑃𝑓𝑎𝑑𝑝 + 𝑃𝑓𝑎𝑑𝑐 + 𝑃𝑓𝑠 + 𝑃𝑏ℎ𝑎

𝑃𝑏 = 𝑚𝑎𝑥(𝑃𝑠𝑢𝑟𝑓 − 𝑃𝑓 ) *𝑄

𝑇𝐹𝐴 =

√︃
(8.3× 10−5𝛾𝑄

𝐶2
𝑑𝑃𝑏

Bit Type

The bit type will be defined as a selection of Polycrystalline Diamond Cutter,

Tri-Cone Roller, or Diamond Impregnated Bits. A data table of reliability,

vibration, cost and Rate of Penetration would need to be developed to perform

proper bit type selection in an optimization problem.
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A.1.11 Drilling Rig and Surface Equipment

The drilling rigs are designed and manufactured to drill small wells subsets at eco-

nomical costs. When designing a drilling program, it is a best practice to use a drilling

rig that is at or near the limitations of the well design. Drilling rigs with advanced or

exceeding capabilities are not cost-efficient. As described in the drilling specifications

Table 4.2, there are a wide array of drilling specification, many of which focus on the

drilling environment. The list of items below should be considered when designing a

well plan.

• Hoisting Capacity

• Rig Pump Horsepower

• Pump Liner Diameter

• Pump Liner Stroke Length

• Mud Capacity

• Base Fluid Capacity

• Disposal Fluid Capacity

• Blow Out Preventer Pressure Rating
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A.1.12 Performance Parameters

Rate of Penetration

The Penetration rate is a complex, non-linear calculation that must consider

all factors of drilling. During well planning the range of Rate of Penetration

prediction is generalized through the analysis of historical data, and supplied

as probabilistic values rather than simulated approximations. The Bourgoyne-

Young drilling model uses the product of functions to estimate the drilling rate.

Bit weight, rotary and bit speed, drill bit wear, formation depth, hole diameter,

pore pressure to mud density differential pressure, lithology correlations, and

impact force combine to estimate the drilling rate of a given formation [12]. This

calculation is used for real-time predictions and uses correlation and history

matching to define the constants within the algorithm.

Maximum Weight on Bit

The maximum bit weight is the maximum possible weight that can be applied to

the bit before the drill pipe is in compression or the technical specifications for

the axial load limit of the drilling bit is reached. Based on the Bourgoyne-Young

model, the drill bit weight has a positive correlation to the rate of penetration

[12].

𝑓5 =

[︃
𝑊
𝑑𝑏
− 𝑊

𝑑𝑏 𝑡

4− 𝑊
𝑑𝑏 𝑡

]︃𝑎5

𝑤ℎ𝑒𝑟𝑒

𝑊 −Weight on Bit

𝑑𝑏 − Bit Diameter

𝑎5 − Location drilling constant
𝑊

𝑑𝑏 𝑡

− Threshold bit weight,

weight in which the bit begins to drill

Rotary Torque While Drilling

169



The rotary torque is a limiting measure for drilling torque. Bit torque has a

positive effect on drilling rate, but depending on the lithology of the drilled

rock, could reduce the drilling bit reliability, and result in premature failures.

The rotary torque is equivalent to the summation of the torque required to drill

rock, plus the frictional system torque. This value must be less than the drill

pipe make-up torque, or drill pipe reliability is reduced.

Drill String Drag

Drill string drag is the sum of the forces opposing movement in the axial direc-

tion of the pipe. In directional drilling drag can limit the horizontal distance

achievable. The increase in drag results in decreased weight transferred to the

drilling bit. During drilling operations the drill string drag force can be an

indication of drilling anomalies, such as insufficient wellbore cleaning, failed

wellbore integrity, or differential sticking of the drill pipe to the wellbore walls.

Casing Torque and Drag Force

The casing drag force is summation of the opposing force to move the casing into

the well. This value is similar to the drill string drag, without the additional

bit torque. Most torque and drag simulations utilize arbitrary friction factor

values to represent friction reduction technologies, and is an acceptable method

for modeling.

Job Time

The duration for drilling is associated with the operational order of the well,

the time requirement to transition between activities, and the time required to

drill the well. An example of a well phase description for the total time required

to drill a well is described in Table A.2.
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Table A.2: Drilling Job Activity and Duration for a 3 Section Well

Activity Duration (days)

Drilling Rig Moves onto a Well and Configures the Rig for Drilling 7

Drill the Surface Section of the Well 0.25

Pull the Drill String and Drilling Bit out of the Well 0.1

Run the Surface Casing into the Well 0.3

Cement the Surface Casing 0.3

Install the Wellhead and Blowout Preventer 0.5

Pressure Test Blow Out Preventer and Surface Equipment 0.2

Drill the Intermediate Well Section 1.5

Pull the Drill String and Drilling Bit out of the Well 0.3

Cement the Intermediate Section 0.6

Drill the Production Well Section 1.5

Pull the Drill String and Drilling Bit out of the Well 0.5

Cement the Production Casing 0.6

Test the Well Integrity and Dismantle the Drilling Rig 3

Total Job Duration 16.65
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