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ABSTRACT 

 

Jobs are key determinants of urban phenomena ranging from daily trip patterns to urban 

structure. Despite their importance, the representation of jobs and firms in integrated urban 

models is limited. Existing approaches are exceedingly static, often lack theoretical 

underpinnings, and rarely account for the impact of agglomeration economies.  

 

I propose an agent-based dynamic programming structural model of firms’ job creation and lay-

off decisions. It models the evolutionary trajectory of firm sizes rather than discrete jumps 

between presumed steady states. Firms are forward-looking rational agents, attempting to follow 

the employment size adjustment trajectory that maximizes their present value of all future profits 

in face of a stochastic adjustment process. I model firms’ decision-making as a continuous-time 

Markov decision process, solved via dynamic programming. To estimate the model’s parameters, 

which are firm-specific, I formulate a hierarchical Bayesian estimation procedure. I repeatedly 

sample from the posterior distributions of the hyperparameters using a nested Gibbs and 

Metropolis-Hastings sampling algorithm. 

 

With a panel micro-dataset of businesses in the Greater Boston Area, I apply the model to 

explore the heterogeneous impacts of agglomeration economies for manufacturing, professional 

services, and food and accommodation services firms. The empirical findings broadly align with 

urban economic theory. However, uniquely, the dynamic structural model enables me to 

distinguish between benefits that increase productivity and those that reduce labour market 

friction. Overall, I find that employment size adjustments are more costly for more skills-

intensive sectors. Finally, using the estimation results from Boston, I examine the estimated 

impacts of a major urban rail line investment – the Green Line extension – in terms of job 

creation and gross production increase, and the cost of labour market frictions in terms of firms’ 

foregone profits. 
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 INTRODUCTION 

 Research Motivation & Objectives 

The rise of human civilization is intimately tied to the first permanent settlements. These early 

agglomerations provided several benefits, including protection, amenities, and various 

geographical endowments. However, since the industrial revolution, cities’ role as labour 

markets have become more dominant. In 1800, only an estimated 3% of the world’s population 

was urban; that figure crossed 50% in 2007, and by 2050 a predicted 68% of people will live in 

cities. The industrial revolution transformed production, made it more efficient but also less tied 

to natural resources and more reliant on large indivisible facilities, such as factories and 

machinery. Agglomeration into cities enabled the scale required for this industrialized mode of 

production. Evidence of this relationship between the nature of work and urbanization can be 

seen in many developing contexts today, where the more recent industrialization has caused a 

rapid and, in some cases, overwhelming, wave of rural-to-urban migration that cities and 

planners are struggling to accommodate. In the information age, the role of cities has continued 

to evolve. As work has become more skill-based and knowledge-intensive, cities’ role as 

catalysts of innovation has become more important. The frequent and diverse interactions in 

urban areas facilitate (tacit) knowledge transfer. How the next stages of the structural 

transformation of work, including automation, e-commerce, and telecommuting, change these 

dynamics largely remains an open question. Perhaps, the cataloguing of our collective 

experiences from the Covid-19 pandemic can provide some answers. Undoubtedly, role of cities 

as labour markets will continue to evolve. 

Jobs and firms are not only drivers of urbanization but also key determinants of urban structure, 

intra-urban location decisions, and day-to-day trip patterns. Considering their fundamental role 

in the evolution of cities, they have not received too little attention in the integrated urban 

modelling (IUM) literature. Broadly, existing approaches fail to account for the vast 

heterogeneity in firm characteristics that underlie the discussed differences in urban outcomes, 
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e.g. production technology, size, lifecycle stage, etc. and/or lack sound economic underpinnings 

in their modelling assumptions. Further contributing to this lack of sophistication is the static 

nature of current models. Cities comprise imperfect systems riddled with inertial effects and 

friction. Generally, they are not in steady state but instead continuously adapting to changing 

conditions/environments, e.g. economic up/downturns, transportation infrastructure investments, 

urban policy, etc. However, existing IUMs do not allow for these transitory states. That is, 

current modelling frameworks implicitly assume that system shocks cause jumps between steady 

states but abstract away the, sometimes long, paths between these steady states. This is illustrated 

by Figure 1-1. Error is visualized as the gap between the model and reality. Between the shock 

and the “after” observation, the model potentially overestimates the impact of the shock, whereas 

it potentially underestimates the impact following the “after” observation. Naturally, the severity 

of these potential errors depends on both the timing of observations and the shape of the real 

response curve. Systems with less inertia and friction will look more akin to the model response 

and thus generally be less erroneous. 

Figure 1-1: Schematic illustration of potential errors when disregarding dynamics 

 

Finally, existing IUMs are very limited in their representation of agglomeration economies even 

though they underlie the very existence of cities. With roots in transportation engineering, most 

frameworks capture various benefits associated with reduced travel costs, e.g. commuting or 

goods transport. However, agglomeration also increase productivity of workers and firms by 
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facilitating knowledge transfer, sharing the costs of indivisible facilities, and increasing 

specialization and variety. Additionally, they reduce search costs as part of the thick market 

effects. In turn, these benefits could increase labour demand and lower unemployment. Relating 

the effects back to Figure 1-1, productivity-increasing agglomeration effects would be 

represented by a higher horizontal asymptote, whereas friction-reducing effects would increase 

the steepness of the curve, allowing it to reach steady state faster. The study of agglomeration 

economies is by no means straightforward. A vast theoretical literature exists on the micro-

foundations of agglomeration economies. However, linking theory and empirical research 

remains a challenge. In almost all real-world scenarios, a multitude of underlying mechanisms of 

agglomeration economies work in tandem, thus making the task of disentangling and identifying 

the effect of each individual mechanism empirically difficult. Furthermore, the bundle of 

mechanisms at play for each sector and each firm can vary greatly, depending on firm 

characteristics and production processes. Just as the mechanisms differ, so too do the intensities 

and spatial scopes of the effects. 

Despite these challenges, pursuing more sophisticated representations of firms and jobs is a 

worthwhile and necessary effort to improve the fidelity of existing IUMs. In particular, failing to 

account for inertial effects can lead to biased coefficient estimates, resulting in erroneous 

predictions; and limited modelling of agglomeration economies results in an inability to both 

explain and predict more nuanced spatial outcomes, such as sector-specific cluster formation and 

interactions between sectors. Conversely, a more complete firm-side model would enable the 

design of more appropriately targeted interventions, e.g. in the form of place-based policies. 

In light of these deficiencies, the overarching purpose of my dissertation is to improve the 

modelling of businesses and jobs in IUMs. To this end, I propose a novel dynamic agent-based 

model of firms’ hiring and firing decisions. The improvements, although intertwined, can 

broadly be grouped as follows: 

1. Agent-based and economically sound decision-making: I model the decision-making 

processes at the level of individual businesses. This allows for an economically rational 

decision-making model and heterogeneity in characteristics and preferences. This is in 
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contrast to existing approaches, which are too aggregate and/or lacking in terms of 

economic underpinnings. 

2. Dynamic: Whereas existing approaches abstract away transitory periods and effectively 

model discrete jumps between steady states, I make explicit the paths of development. 

This provides a natural way to incorporate agent history and inertial effects. 

3. Agglomeration economies: My approach takes several steps towards improving the 

modelling of agglomeration economies. 

a. The proposed model separately quantifies effects acting through two channels: 

that increase businesses’ productivity and those that reduce labour market friction. 

Conceptually, the productivity benefits are identified by the steady state 

outcomes, whereas friction reduction is identified by how quickly firms approach 

their steady state employment sizes. 

b. By varying the spatial decay parameter in the gravity-based accessibility 

formulation, I explore the spatial scope of agglomeration economies.  

c. I explore how agglomeration economies work differently for different sectors 

(manufacturing, professional services, and food and accommodation services), 

and compare and contrast the results with a priori expectation based on theory. 

With the proposed modelling structure and a panel dataset of businesses in the Greater Boston 

Area, I estimate employment size decision models for firms in the following three sectors: 

manufacturing, professional services, and food and accommodation services. Using these 

models, I conduct two impact analyses. First, I examine the impact of transit improvements in 

the form of the Green Line extension on local job creation and gross production over time. In the 

second study, I take a closer look at the impacts of labour market frictions. Specifically, I 

examine the gap between actual and optimal employment size and translate that into foregone 

profits. 
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 Dissertation Structure 

The remainder of the dissertation is structured as follows: In Chapter 2 Background, I present 

reviews of two literatures: IUMs and agglomeration economies. In the section on IUMs, I begin 

with a brief historical overview before focusing on the modelling of firms and jobs and then the 

treatment of dynamics within common IUM frameworks. For the review of existing work on 

agglomeration economies, I draw primarily from the urban economics literature. I begin by 

discussing the micro-foundations underlying agglomeration economies, specifically the 

mechanism: sharing, matching, and knowledge spillovers. Then, taking the theory into practice, I 

present existing empirical evidence of the benefits, how agglomeration economies have been 

measured, and common empirical challenges. 

In Chapter 3 The Model, I present the dynamic programming Markov model. Following an 

introduction of the model structure, I derive the solution, i.e. optimal policy, to the Markov 

decision process (MDP) that firms face. The firm’s optimal policy is required to evaluate the 

model’s likelihood function, which I present subsequently. To estimate the model, I formulate a 

hierarchical Bayesian model, and repeatedly sample from the posterior distributions of the 

hyperparameters using a joint Gibbs and Metropolis-Hastings sampling algorithm. Finally, I 

discuss the model’s limitations, its relation to dynamic programming discrete choice models, 

how it could be integrated in a larger IUM framework, and other potential applications. 

In Chapter 4 Application to Boston, I take the model to the data. I begin by presenting the 

datasets that I use for the study and discuss how I use gravity-based accessibility to measure 

agglomeration. Subsequently, I show various descriptive statistics to provide an overview of the 

study context and data. Then, I present the model specification in detail, i.e. how the Boston data 

are used in the model, before presenting and discussing the estimation results. I wrap up the 

chapter with a discussion about the empirical limitations. 

In Chapter 5 Impact Analysis, I use the estimation results from the previous chapter to conduct 

impact analyses and, in doing so, demonstrate the potential usefulness of the proposed modelling 

approach. In particular, I examine the potential impacts of the Green Line extension in Boston 

and the foregone profits resulting from labour market frictions. 
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Finally, in Chapter 6 Conclusion, I summarize the key contributions and findings made in this 

dissertation and discuss possible avenues for future research. 
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 BACKGROUND  

 Integrated Urban Models 

Overview 

Integrated urban models (IUMs) are simulation tools for exploring urban development across 

space and over time. Generally, they comprise representations of urban land use and travel 

impedances and a quantitative model framework for how they interact. Urban development, at its 

core, captures where people live and where they conduct their out-of-home activities. However, 

these encompass a long list of decisions, including but not limited to individuals’ mode choices 

and day-to-day activity schedules, households’ vehicle ownership choices and residential 

location decisions, and firms’ location and employment size decisions. Importantly, all these 

decisions, directly or indirectly, both depend on and affect the land use-transportation system. 

Capturing these feedback effects when attempting to quantify the impacts of, say, new 

transportation infrastructure, zoning bylaws, or place-based economic policies is a central 

argument for the usefulness of IUMs.  

Among the first integrated models of regional land use change was Lowry’s Model of the 

Metropolis (Lowry, 1964). The Lowry model, as it is known colloquially, deserves particular 

attention because its use of the gravity model exemplifies the practice for the first two decades of 

integrated modelling. Starting with exogenously determined basic (export) sector employment, 

the Lowry model iteratively estimates non-basic employment and spatially allocates workers to 

residential locations by use of the gravity model until convergence. Since their original 

incarnations in the largely mechanistic underpinnings represented in the four-step travel 

forecasting models and Lowry-type integrated models, IUMs have undergone significant 

improvements. These have been aided by technological (e.g., computing, data, microsimulation) 

and theoretical (e.g., activity-based approaches; real estate transaction-based) advances. Overall, 

we have seen a movement from aggregate towards disaggregate approaches, from equilibrium- 
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to disequilibrium assumptions, and higher resolution data and greater technical sophistication 

(Engelberg et al., 2021).  

After more than half a century of innovations and advances today’s state-of-the-art IUMs look 

very different from Lowry’s original Model of the Metropolis. The Lowry model and its 

contemporaries relied on empirically calibrated gravity formulations to capture the interaction 

between land use and travel impedance. However, the models were lacking in terms theoretical 

underpinnings, instead encouraging the analyst to choose the functional form for the gravity 

formulation that best fit the empirical colocation patterns (Lowry, 1964). Major steps have also 

been taken to advance the theoretical foundations of IUMs. First and foremost, the proliferation 

of random utility theory and its logsum measures provided a theoretically founded way to 

quantify the benefits of the land use-transport system (Ben-Akiva and Lerman, 1985). Utility-

based frameworks have since become the de facto standard in the integrated modelling literature. 

In parallel, Anas (1983) showed the equivalence between the negative exponential gravity 

formulation and multinomial logit models, thus providing theoretical foundation for the whole 

class of gravity-based spatial interaction models.  

Whereas early IUMs modelled decision makers as homogeneous masses, most modern 

modelling frameworks are, to some extent, disaggregated. This prevents potential aggregation 

biases, makes explicit heterogeneity in preferences, and enables analysis of uneven impacts 

across different population characteristics. The most sophisticated models are agent-based, 

modelling decisions of individual agents at the level of decision-makers. The data for each agent, 

including socio-demographic attributes, location information, social linkages, etc., are stored in 

persistent databases, such that heterogeneity in characteristics and preferences remain consistent 

across different sub-models. 

Improvements in computational power and data collection methods have enabled modern IUMs 

to become more granular in their representation of both space and time. For example, the original 

application of the Lowry to Pittsburgh divided the city into 15 zones by distance to the city 

centre. By comparison, it is not uncommon for current IUMs to operate with zone counts in the 

thousands and use information from individual parcels (Engelberg et al., 2021). Advancements 

have also been made to model the temporal dimension more authentically since the Lowry model 
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and equilibrium-based spatial interaction models only allowed for a static solution. Most modern 

IUM frameworks have broken with strict equilibrium conditions and moved towards gradual 

adjustments or steady state solutions. However, these processes remain ad hoc rather than 

theoretically founded. A more elaborate discussion of the modelling of dynamics in IUMs is 

found in the subsequent sections.  

Considering these developments, current state-of-the-art IUM frameworks are without a doubt 

far more sophisticated than the early spatial interaction models. However, this has come at the 

very real price of increased complexity, making the models more difficult to communicate and 

less transparent. On the other hand, the practical benefits remain somewhat elusive and too often 

difficult to document. Consequently, the vast majority of real-world IUM applications, e.g. by 

metropolitan planning organizations, are of frameworks that are much simpler but more practical 

than the academic state-of-the-art (Engelberg et al., 2021). 

Over the years, numerous articles have provided overviews of the field, see e.g. Wegener (2004), 

Hunt et al. (2005), Iacono et al. (2008), Acheampong and Silva (2015), and Engelberg et al 

(2021). Rather than repeat their work, I focus my attention on two aspects of particular relevance 

to my model: the modelling of jobs and firms, and the treatment of dynamics. These are the 

topics of the following two sections. 

Jobs and Firms 

Although the feedback effects between the spatial distributions of households and jobs has been 

a core component of urban models from their inception, academic efforts in modelling since 

have disproportionately been focused on exploring the behaviour of individuals and households. 

Innovations in choice modelling have yielded theoretically founded microscopic models of 

activity and travel behaviour, vehicle ownership decision, and residential location choices. 

However, firm-side models have generally lagged behind, often lacking in either granularity or 

sound theory. This gap is even more apparent in the context of IUMs as the majority of firm and 

employment modelling efforts are stand-alone rather than integrated. The relative dearth of 

research on firm behaviour is likely not a result of negligence but rather the additional hurdles 

associated with studying firms compared to individuals and households. In particular, micro-

level data for firms are rarely publicly available if even collected, and there is considerable 
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heterogeneity in firm behaviour across industrial sectors and stages of firm life cycles (Kumar 

and Kockelman, 2009). Importantly, birth of new firms, relocation of existing firms, and growth 

within existing firms all play their part in total job creation, and no model without all three 

captures the full picture. However, it is worth noting that almost three-quarters of jobs in the U.S. 

are created by existing firms (U.S. Bureau of Labor Statistics, 2022). Yet, the bulk of research 

that does exist on firm behavior pertains to their location decisions, whereas employment 

expansion and contraction, i.e. hiring and firing decisions at micro-level, has received far less 

attention. Nonetheless, I provide a review of the latter here. 

Mirroring the IUM literature as a whole, advances in firm and employment models since the 

Lowry model largely follow two branches: equilibrium-based spatial input-output models and 

agent-based microsimulation models. Building on Leontief’s (1966) seminal work modelling 

inter-industry economic relationships using input-output matrices, spatial input-output models 

introduce to this framework the spatial dimension. These models typically comprise zonal-level 

production functions for firms, utility functions for workers, and transport cost functions for 

goods and people. By making explicit the transport costs, these models determine the spatial 

equilibrium of production and consumption of firms and workers by balancing the inputs and 

outputs of each zone. Notable examples of equilibrium-based spatial input-output models include 

MEPLAN (Echenique et al., 1990), PECAS (Hunt and Abraham, 2005), TRANUS (de la Barra, 

2011), METROSCOPE (Metro Research Center, 2016), and RELU-TRAN (Anas and Liu, 

2007).  

With roots in the economics tradition, this family of models has a strong theoretical foundation. 

However, they tend to be more aggregate than agent-based models. They generally treat zones as 

the unit of analysis. However, zones are neither monoliths nor decision-makers. Thus, while the 

approach captures the location-specific attributes that are necessary to establish spatial 

equilibrium, it disregards any heterogeneity within the groups of individuals, households, and 

firms that the zones represent. The high level of aggregation mirrors that of the input-output 

tables the models are built on. Furthermore, each zone is associated with a set of production, 

utility, and cost functions. Determining the equilibrium solution requires solving the system of 

equations comprising these functions for every zone. Thus, granularity is limited by the 

computational constraints in addition to the data sources. 
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At the other end of the spectrum, agent-based microsimulation models consider the development 

of each individual firm. Of particular interest are the so-called firmographic models, which map 

out the stages and transitions of firm life cycles, including formation, migration, growth, decline, 

and dissolution. This is analogous to a demographic model mapping out major life events of 

people, such as birth, death, completion of education, changes to household structure, etc. 

Firmographic models are by their nature more disaggregate; e.g. individual firms are typically 

treated as distinct entities with their own evolutionary trajectories (van Wissen, 2000; de Bok, 

2009; Moeckel, 2009). Furthermore, some models also allow for firm-specific panel effects 

(Mostafa, 2017). Most pertinent to the work presented in this dissertation are the employment 

size growth/contraction models. Given existing firm and local attributes, e.g. sector, size, 

agglomeration, etc., these model the employment size transitions between periods – either as 

transition probabilities between discretized bins (Kumar and Kockelman, 2009; Mostafa, 2017) 

or as autoregressive continuous counts (van Wissen, 2000; de Bok, 2009; Zondag et al., 2015; 

Ravulaparthy et al., 2017; Zhuge and Shao, 2019).  

It should be noted that few, if any, of these firmographic models have been integrated into a 

larger IUM framework that also models the activity and location decisions of households and 

workers. In part, this is because agent-based models by and large do not concern themselves with 

the broader market conditions and equilibrium like spatial input-output models do. As such, tight 

integration is not necessary for them to operate.  

While agent-based models can capture firm heterogeneity by virtue of their microscopic nature, 

they typically fail to represent the underlying decision processes despite modelling decision-

making at the level of the decision-maker. In fact, the production, utility, and cost functions of 

spatial input-output models are typically more theoretically informed than the transition 

equations of firmographic models. The latter, for the most part, capture statistical correlations 

rather than structural relationships. 

Finally, there are of course numerous models and frameworks that lie in between the extremes of 

the spectrum, equilibrium-based spatial input-output models and agent-based microsimulation 

models, and incorporate aspects from both traditions. For example, IRPUD (Wegener, 2011) and 

TigrisXL (de Graaff and Zondag, 2013) operate at aggregate zonal levels, similar to most 



21 

 

equilibrium models. However, they do not require equilibrium, and instead use employment 

transition models more akin to those in firmographic models. Broadly, current models of firm 

employment appear to make a trade-off between theoretical structure and disaggregation. 

However, these are not necessarily contradictory. Rather, the trade-off is an artifact of the 

methodological roots, and has been maintained by inadequate micro-data and computational 

limitations.  

Dynamics 

Urban development is first and foremost a spatial phenomenon. However, it is crucial to also 

acknowledge its temporal dimension. Cities evolve with considerable inertia and are unlikely to 

be in equilibrium at any given moment. Urban infrastructure investments perhaps best illustrate 

this; construction takes years, lifecycles range from decades to more than a century, and the 

impact on the surrounding land use is nearly irreversible (Wegener et al., 1986). However, even 

smaller scale urban processes, such as employment and job search, are riddled with dynamic 

phenomena that cannot be explained by traditional economic theory (Faggian, 2014). Despite 

these dynamics, modern modelling efforts have largely neglected the temporal dimension 

(Simmonds et al., 2013). The majority of IUMs, especially those that have found wide 

application in practice, are built on static equilibrium assumptions (Jin and Wegener, 2013). 

These models abstract away time and consequently represent urban development as memory-

less, path-independent, and effectively instantaneous. Such discrepancies between our 

understanding of real-world urban development and modelling assumptions are potentially 

problematic when we use the models to evaluate responses to land use and transport policies 

(Simmonds et al., 2013). These limitations vis-à-vis the inadequate representation of time in 

IUMs are not revelatory; warnings of overreliance on static discrete choice models 

(Timmermans, 2003) and calls for better modelling of dynamics (Miller, 2018b) have been 

brought to attention in the literature before. 

In particular, the equilibrium assumption in spatial input-output models made them intrinsically 

static. In other words, once the equilibrium solution has been determined, the state of the model 

can only change as a result of exogenous perturbations. While relatively simple and theoretically 

attractive, this behaviour is hardly a good representation of urban development in reality as cities 

appear to be in constant flux. Some models attempt to circumvent this by introducing quasi-
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dynamics. Specifically, spatial input-output models typically arrive at the equilibrium state 

through a converging iterative algorithm. By only running a single iteration of such algorithms in 

each time step, the models appear to change over time absent exogeneous perturbations. 

However, the link between the rate of convergence of the algorithm and the rate of urban 

development is questionable. In other words, the quasi-dynamics do not model urban 

development over time but rather model convergence over iterations, while undermining the 

equilibrium assumption on which the models are built.  

The relaxation of the equilibrium constraint in agent-based microsimulation models allows for 

somewhat more organic handling of dynamics with period-to-period transitions. However, none 

of these transition models capture the underlying frictions or decision processes. Thus, they 

merely capture averages and fail to account for potential spatial differences or temporal 

variation, e.g. greater or lesser inertia during times of great upheaval.  
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 Agglomeration Economies 

The benefits of proximity have been a topic of study since at least 1826, when von Thünen 

presented a theoretical model of agricultural land use in relation to a market located in the city 

(von Thünen, 1826). His model formalized the trade-off between transportation costs and rent as 

a function of the distance to the city centre. In turn, he showed that, all else equal, land uses 

would arrange themselves in concentric rings around the city with less land-intensive, and 

consequently, higher density uses with high freight costs closest to the centre. Conversely, the 

outer rings would be occupied by land intensive uses with low freight costs. Although the 

context of this original inquiry was agricultural, we see the same principles apply in a post-

industrial context more than a century later in Alonso’s bid-rent model (Alonso, 1964). He 

formalizes the preferences and willingness to pay for land, i.e. the properties of the “bid rent” 

curves, of urban firms, households, and agriculture. Using a game theoretic approach, he then 

derives the resulting equilibrium land uses.  

Alonso’s and von Thünen’s models show how dense build-up, i.e. cities, might arise as a natural 

consequence of people wanting to take advantage of lower transportation costs and access to 

goods and labour markets. However, alone they cannot adequately explain the vast unevenness 

of density and productivity across space1 (Ottaviano and Thisse, 2004). In addition to lower 

transport costs, proximity and access also give rise to external benefits (and costs), i.e. 

economies of agglomeration. Broadly, these are scale and network effects but also crowding and 

congestion. Marshall (1890) famously wrote about the technological spill-overs between firms 

locating in close proximity to each other that, “The mysteries of the trade become no mystery; 

but are as it were in the air”. He describes the benefits of specialization among co-locating firms 

– so-called localization economies – which additionally include labour pooling and reduced 

transport costs between suppliers and buyers. Examples of such industrial colocation include the 

semiconductor industry in Silicon Valley, entertainment industry in Los Angeles, financial 

                                                 

 

 

1 This follows from the spatial impossibility theorem (Starrett, 1978) as discussed by Octaviano and Thisse (2004). 
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services and advertising in New York City, country music production in Nashville (Carlino and 

Kerr, 2015). The benefits of within-industry co-location stand in contrast to urbanization 

economies which derive from urban diversity. Inspired by her own experiences in New York 

City, Jacobs (1961) popularized the idea that the melting pot of urban life is a crucial avenue for 

cross-fertilization and innovation. Considerable progress has been made since the writings of 

Marshall and Jacobs, both in terms of theory and empirics. In the following sections I review the 

theoretical micro-foundations underlying agglomeration externalities. Then, I discuss the 

challenges identifying these effects in practice and present some empirical evidence from the 

recent literature.  

The micro-foundations of agglomeration economies 

In this section I provide an overview of the micro-foundations of agglomeration economies. 

Although all agglomeration benefits appear as increasing returns to scale, they arise from 

numerous different mechanisms. An understanding of these causal channels serves as a 

foundation for interpreting the empirical findings. Furthermore, the different mechanisms can 

have vastly different policy implications. Hence, understanding and disentangling the micro-

foundations are important steps towards effective urban policy-making. 

I follow the typology used by Duranton and Puga (2004), and categorize the micro-foundations 

by sharing, matching, and learning effects. They also provide more rigorous mathematical 

models showing how each mechanism results in productivity gains. Additionally, I discuss other 

mechanisms, including social capital, neighbourhood effects, and more, that are not traditionally 

considered with agglomeration economies. Their omission is primarily a result of their 

ambiguous returns to scale. Nonetheless, a discussion of their potential impacts is still 

worthwhile. 

Sharing 

The sharing of fixed costs is the primary channel through which increasing returns arise from 

sharing mechanisms. Perhaps the most apparent benefit of agglomeration is the ability to share 

the fixed costs of indivisible facilities that would otherwise be too costly or infeasible 

(Buchanan, 1965; Scotchmer, 2002). These include physical infrastructure, e.g. airports, but also 

institutions and markets. Although not framed as such, farmers in von Thünen’s model cluster 
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around the market in the city due to its indivisible nature (von Thünen, 1826). If the market were 

divisible, e.g. selling software online, we would not expect agglomeration forming around cities 

solely from the effects in von Thünen’s model. 

As the name suggests, sharing mechanisms also underlie sharing economies (Davidson and 

Infranca, 2016). Although often enabled by information technology, sharing economies 

fundamentally work by sharing large fixed costs of goods or services with low utilization rates 

between its users. For example, on-demand mobility services share the cost of cars (and 

chauffeur services), that otherwise may have been prohibitively expensive, between their users.    

Duranton and Puga (2004) make the case for variety and specialization also being results of 

sharing. For example, a small town might have a single recreational field, perhaps a baseball 

diamond that is also occasionally used for other activities but lacks dedicated “infrastructure” for 

other sports. On the other hand, in a large city you will typically find a variety of venues, 

specialized for each discipline, e.g. basketball court, ice hockey rink, football field, etc. In this 

example, a critical mass of demand is necessary to sustain each facility due to the indivisible 

fixed cost. Thus, the presence of variety arises from the ability to share the fixed costs of 

indivisible facilities. Of course, this is not unique to athletics facilities; agglomeration economies 

enable firms to produce a greater variety of goods and services. Greater aggregate demand for 

intermediate inputs, i.e. input sharing, also lowers the average production costs of suppliers. 

Similarly, worker training in specific skills is a fixed cost with respect to production. Thus, 

following the same principles, sharing in agglomeration economies enable workers to train in a 

broader variety of more specialized skills (Rosen, 1983).   

A secondary, or at least less apparent, channel of increasing returns through sharing is by sharing 

risks. Specifically, a thicker labour market, i.e. one with both more firms and workers, is better 

able to absorb idiosyncratic shocks and fluctuations at the level of individual workers or firms 

(Krugman, 1991). Marshall (1980) described this effect as a “constant market for skill”. For 

example, a firm experiencing a positive productivity shock will see the cost of labour increase 

less in a thick labour market compared to a thin one. Similarly, a worker who has been laid off 

due to a negative idiosyncratic shock at the previous employer is more likely to find employment 

the more other employers exist in the market. 
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Matching 

Sharing mechanisms enable cities to sustain variety. While the benefits of variety may be 

intuitive to some, matching mechanisms formalize these. If preferences are heterogeneous, e.g. 

individuals might prefer certain goods or firms might prefer certain skillsets, having more 

different options increases the chances of finding matches that fit the specific taste preferences, 

thus increasing the expected match quality (Helsley and Strange, 1990). This mechanism is also 

captured by consumer surplus measures in choice models, so-called logsums (Ben-Akiva and 

Lerman, 1985). In the labour market context, this most obviously applies to the quality of 

matches between employers and worker skills; variety in the labour pool allows firms to hire 

workers that possess the exact skills required for the task. In turn, this increases firm production 

and worker wages. It similarly applies to matches between suppliers and buyers of intermediate 

inputs and matches final products and consumers.  

Agglomeration not only improves the quality of matches but also increases the chances of 

matches occurring, reducing search times and costs. This mechanism was first explored in the 

frictional search literature (Mortensen, 1986; Petrongolo and Pissarides, 2001). The intuition 

here is straight-forward; having access to more firms and workers, agents can explore more 

options simultaneously, thus increasing the rate of matching (Coles and Smith, 1998). As a 

consequence of lower search friction, we also expect rational agents to raise their reservation 

match quality, i.e. the threshold for quality of a match that an agent would accept, thus further 

raising the expected match quality. 

Finally, the availability of outside options can mitigate hold-up problems in case of incomplete 

contracts. For example, consider a location with a single employer and workers who are either 

skilled or unskilled. Skilled workers are more productive but becoming skilled requires training, 

which is an upfront cost incurred by the worker. However, if contracts are incomplete, workers 

can be held hostage by the firm’s monopsony power, and are thus discouraged to invest in 

training, despite it being socially optimal. Introducing other firms that can make use of the 

workers’ skills removes the firms’ monopsony power and the hold-up problem. The same line of 

reasoning can be applied to inter-firm relations between suppliers and buyers; suppliers are 

discouraged from investing in R&D if the buyers of their products hold monopsony power. This 
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matching mechanism contributes to the innovative advantages of agglomeration economies that I 

elaborate on in the subsequent section along with learning mechanisms. 

Learning 

Learning and knowledge spill-overs are very compelling explanations for the increasing returns 

to agglomeration and have been central to both Marshall’s (1890) and Jacobs’ (1961) works. 

However, whereas the assumptions underlying sharing and matching mechanism, e.g. existence 

of fixed costs and heterogeneous preference, are intuitive and require little additional 

explanation, the assumptions underlying learning mechanisms are often somewhat more 

nebulous and the mechanisms themselves remain somewhat of a black box (Carlino and Kerr, 

2015). Broadly, they appeal to the notion that learning, i.e. the transfer of information between 

people and/or firms, is an inter-personal activity best facilitated by proximity. For example, 

Helsley (1990) treats knowledge as a by-product of firms’ production that serves as an 

intermediate input for other firms. It diffuses spatially through contacts between firms, which in 

turn decay with distance. However, he does not further specify the mechanism of knowledge 

transfer. Similarly, Glaeser (1999) assumes, in a theoretical model of learning in cities, that every 

encounter between two people of different skill levels carries with it a possibility of learning. 

Encounters are more frequent in denser cities, per the discussion above on matching rates. He 

shows that the logical consequence of these assumptions is that the average skill level is higher 

in cities and that there is a higher variance of skill levels in cities. Exploring innovation in firm 

life cycles, Duranton and Puga (2001) assume that new firms produce inefficiently until they 

discover their optimal production process. This learning is less costly in diverse clusters 

(urbanization economies) due to the availability of variety in both worker skills and intermediate 

inputs. Once firms have determined their optimal production process they move to specialized 

industrial clusters (localization economies). As illustrated by these examples, in the urban 

economics literature, increasing returns from knowledge spill-overs are often micro-founded 

through sharing and matching mechanisms.  

Social mechanisms 

A variety of concepts and mechanisms from the social sciences, e.g. social capital, 

neighbourhood effects, intuitively relate to agglomeration economies. These examine the social 

determinants of choices and outcomes, i.e. the interdependencies between the behaviours 
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amongst individuals in a group. There are numerous reasons for such interdependences to exist. 

For example, individuals might have an intrinsic psychological desire to imitate the behaviours 

of other group members, or they might conform to group norms, consciously or not, to build 

social capital. Alternatively, the actions of one group member might alter the costs or constraints 

of others in the group, or later decision-makers might be able to observe and learn from the 

outcomes of earlier decisions, so-called social learning (Durlauf, 2004). These social 

mechanisms do not intrinsically exhibit increasing returns to scale but can in some cases amplify 

or be amplified by agglomeration. For example, if the average skill levels are higher in cities as 

in Glaeser’s (1999) model, neighbourhood effects could amplify these differences. Conversely, if 

social learning takes place, proximity could strengthen the informational signals. Unfortunately, 

to my knowledge, these social mechanisms have not been formally linked to agglomeration 

economies in a rigorous way. Theoretical models of neighbourhood effects, including role model 

and peer group effects, focus on exploring equilibria and phase transitions, rather than returns to 

scale (Durlauf, 2004), and empirical work brings with it a host of econometric challenges, 

including reflection problems, sorting problems, and spatially correlated shocks (Topa and 

Zenou, 2015). Conversely, the literature on social learning presents convincing micro-founded 

models of learning between agents; see e.g. Sobel (2000) for a survey. However, these models do 

not exhibit increasing returns to scale (Duranton and Puga, 2004). Finally, there is a vast 

literature on social capital. However, its interaction with agglomeration economies is unclear. 

For example, we expect social capital to decline with residential mobility but increase with 

proximity to people (Glaeser et al., 2002) – both attributes associated with dense cities. These 

issues are exacerbated by the nebulous definition and multitude of operationalizations of the 

concept. 

The empirics of agglomeration economies 

The micro-foundations provide plausible explanations for agglomeration economies, but they do 

not inform us concretely about the magnitude or scale of the effects. For that, we must turn to the 

real world. Evidence of the externalities of agglomeration is not difficult to come by. Bettencourt 

et al. (2007) famously documented urban increasing returns to scale for innovation, productivity, 

and wages using a dataset spanning more than several hundred cities across the United States, 

China, and Europe. However, these findings did not, nor did they attempt to, shed light on the 
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micro-foundations of agglomeration economies or how the mechanisms work at a more local 

scale. Rather, they establish the robustness of the increasing returns to scale at an aggregate 

level. Much of the recent empirical literature on agglomeration economies attempts to address 

the identification challenges and endogeneity issues, as described further below, and also try to 

disentangle the different underlying mechanism discussed in the previous section. These efforts, 

however, very much remain works in progress. In the following section, I discuss the potential 

issues with endogeneity in estimating agglomeration effects, measures of agglomeration, and 

finally existing empirical evidence of the magnitude and scale of agglomeration economies. 

Endogeneity 

Estimation of agglomeration effects requires careful consideration of potential endogeneity 

issues at both the firm and local levels (Combes & Gobillon, 2015). Endogeneity at the firm 

level, or individual level when examining individual outcomes, arises when unobserved agent 

effects are correlated with location attributes. This typically occurs when agents sort spatially 

according to characteristics not controlled for by the model, e.g. unobserved advantages in 

production technology for firms or unobserved abilities for individuals. Similarly, endogeneity at 

the local level arises when a local characteristic is correlated with unobserved local effects. This 

can typically happen if an aggregate variable that affects both the local characteristics and the 

outcomes is missing. For example, an airport might attract firms to the area and increase the 

productivity of the firms in the area, thus simultaneously increasing agglomeration and the 

measured outcome. In this case, the estimated agglomeration effect would be upwards biased. 

Alternatively, reverse causality also causes endogeneity issues at the local level. In other words, 

higher local productivity might cause workers and firms to move to the area, thus the causal 

interpretation of agglomeration economies would be wrong.  

With panel and micro-data becoming increasingly available, endogeneity is most commonly 

addressed by introducing time-invariant agent or location-specific effects (Combes & Gobillon, 

2015). These control for all the unobserved characteristics that remain constant over time, e.g. 

workers’ unobserved intrinsic ability or local endowments that have not been controlled for. 

However, this strategy is hardly a panacea and may fail to address endogeneity issues for several 

reasons: (1) unobserved characteristics that change over time can still cause endogeneity; (2) it 

also does not address endogeneity resulting from reverse causality; and (3) controlling for time-
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invariant effects means that the estimation of the coefficients of interest relies on changes in 

agglomeration and outcomes over time. If these are small, the estimated effects are susceptible to 

attenuation bias from measurement errors (Angrist & Pischke, 2008). Alternative approaches to 

handling endogeneity, particularly at the local level, include instrumentation with geological 

variables, e.g. bedrock depth, landslide hazard, etc. (Rosenthal & Strange, 2008), or historical 

variables, e.g. historical presence of a deep water port (Ciccone & Hall, 1993), or by exploiting 

natural experiments, such as the division and subsequent reunification of Berlin around the Cold 

War (Ahlfeldt et al., 2015). Finally, structural approaches can and have been used to handle 

endogeneity issues. For example, Baum-Snow and Pavan (2012) formulate a dynamic model 

inspired by the matching models in the job search literature. It jointly models workers’ wages 

and location decisions, thus explicitly accounting for spatial sorting. Structural approaches offer 

a potentially extremely useful tool for addressing endogeneity issues. However, the theory-based 

estimation relies heavily on both structural and parametric assumptions. Or, as expressed by Rust 

(1994, p.3130), “since structural models can be falsified but never proven true, their predictions 

should always be treated as tentative and subject to continual verification.” For illustrative 

examples of structural estimation in urban economics, see Holmes and Sieg (2015). 

Measurement 

Agglomeration economies refer to the external economic benefits arising from the agglomeration 

of people and economic activity. The urban economics literature typically measures these using 

employment, population, and production. Unfortunately, they are often highly correlated and 

may not allow for identification of separate parameters (Combes & Gobillon, 2015). Between the 

three, employment is usually the preferred explanatory variable because it more directly 

represents economic activity compared to population and suffers less from endogeneity issues 

than production. Where possible, the use of density instead of magnitude is preferred as it is 

more robust vis-à-vis modifiable areal unit problems (Ciccone & Hall, 1993). Related to 

modifiable areal unit problems, these elementary measures share a fundamental limitation. 

Namely, they imply that agglomeration effects are in full force within a zone but do not cross 

zonal borders, which are sometimes defined with little consideration for the spatial extent of 

economic activity. To incorporate the attenuating effect of distance more explicitly, some authors 

use Harris’s (1954) market potential variable. 
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𝐴𝑖 =∑
𝑑𝑗

𝑐𝑖𝑗
𝑗

 (2.1) 

Here, 𝑐𝑖𝑗 is the distance between the zone of interest 𝑖 and other zones 𝑗 and 𝑑𝑗  is the size of the 

market in of the other zones. This so-called gravity formulation was also adopted by 

transportation and urban planners to represent accessibility, or as Hansen (1959, p.73) defined it, 

“the potential of opportunities for interaction”. Gravity-based accessibility has also been 

formulated with other spatial decay functions. In particular, the negative exponential formulation 

is especially convenient, with the cost function evaluating to 1 for 𝑐𝑖𝑗 = 0. 

𝐴𝑖 =∑𝑑𝑗 exp(−𝑐𝑖𝑗)

𝑗

 (2.2) 

An important difference between applications of gravity-based measures in urban economics 

compared to transportation planning is the definition of the variable measuring spatial friction 

𝑐𝑖𝑗. Whereas, applications in urban economics, with few exceptions, consider distances, the 

transportation planning literature typically uses travel times or generalized costs on the real 

road/transportation network. From the perspective of transportation planning, space is not 

homogenous. The same physical distances can have entirely different implications for access, 

and by extension agglomeration economies, depending on the transportation network, built 

environment, and socio-demographics. The overlap with the transportation literature is hardly 

surprising. After all, “all of the benefits of cities come ultimately from reduced transport costs 

for goods, people, and ideas” (Glaeser, 1998, p. 140).  

Beyond proximity, density, and accessibility, a number of other measures have been useful for 

characterizing local economy activity – in particular for distinguishing between location and 

urbanization economies. For example, Henderson et al. (1995) measures specialization at 

location 𝑗 as the fraction of workers employed in a given sector 𝑘.  

𝑠𝑝𝑒𝑐𝑗
𝑘 =

𝑒𝑚𝑝𝑗
𝑘

𝑒𝑚𝑝𝑗
 (2.3) 
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Relatedly, the most common measure of industrial diversity is the inverse of the Herfindahl 

index (Duranton and Puga, 2001). 

𝑑𝑖𝑣𝑗
𝑘 = [∑(𝑠𝑝𝑒𝑐𝑗

𝑘)
2

𝑘

]

−1

 (2.4) 

An undesirable feature of this measure is that it is heavily dependent on how the researcher 

chooses to classify sectors 𝑘 with a finer breakdown yielding more diversity. Several alternative 

measures and proxy measures have been used to capture urbanization economies. For example, 

the Krugman Index (Krugman, 1991) measures the difference between local and region-wide 

distributions of employment specialization across sectors. Alternatively, simpler measures, such 

as average firm size (Glaeser et al., 1992) or total local employment size (Rosenthal and Strange, 

2004), have also been used. 

Evidence 

While there is ample evidence of the existence of agglomeration economies and the theoretical 

micro-foundations are well-established, relating the empirical evidence to the theory remains a 

challenge. The outcomes, i.e. increased productivity, innovation, etc., are observationally very 

similar regardless of the underlying mechanism (Rosenthal and Strange, 2004). In addition to 

comprising a combination of positive agglomeration mechanism, the observed effect also 

captures negative effects, such as congestion and crowding. Thus, disentangling and identifying 

which (combination of) mechanisms are at play is often not possible. Contributing to the issue is 

the fact that the measures of agglomeration tend to be much simpler than theory demands and are 

rarely able to capture the many nuances of the micro-foundations. 

Despite these challenges, many studies have attempted to quantify the magnitude of 

agglomeration economies. Combes and Gobillon (2015) provide a comprehensive survey of 

these efforts. Unavoidably, findings vary depending contexts of the studies and the specifications 

of the models, e.g. the sector of study, time periods, country contexts, control variables, and 

whether or not individual unobserved heterogeneity and reverse causality were accounted for. 

However, across the literature, typical elasticity values range between 0.04 and 0.07 (Melo et al., 

2009; Combes and Gobillon, 2015). Generally, firms’ total factor productivity (TFP) is more 
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elastic with respect to agglomeration variables than worker wages. Studies with fewer control 

variables tend to find larger magnitudes for their estimates of elasticity. Perhaps surprisingly, 

correcting for aggregate local level endogeneity has little effect on the estimates and the effect is 

not consistent in direction. On the other hand, correcting for individual level endogeneity yields 

smaller magnitudes, down to around 0.02.  

Investigations by sector remain rare. The primary reasons for this gap are inadequate granularity 

in the available datasets and the challenge of finding appropriate sector-specific instruments to 

correct for endogeneity issues. Furthermore, conclusions from studies that distinguish between 

sectors are mixed, with some finding stronger agglomeration effects for manufacturing (Melo et 

al., 2009) and others the opposite (Gould, 2007; Matano and Naticchioni 2012). This is likely a 

consequence of the differences in how agglomeration is measured and further emphasizes the 

importance of being able to disentangle the underlying mechanisms.  

Despite fundamentally dealing with spatial proximity, the theory on agglomeration economies is 

not particularly informative with respect to spatial scale. Whether indivisible facilities can be 

shared across metres or miles is another question left for the empirics to answer. Notably, many 

of the studies discussed thus far have used zones defined by jurisdictional boundaries to measure 

space. This was for a long time the norm in the literature. As more granular data have become 

available, studying the spatial extent of agglomeration economies has become more common 

(Rosenthal and Strange, 2004). The empirical evidence suggests that the agglomeration effects 

decay rapidly with distance. Di Addario and Patacchini (2008) find that the population size of the 

local labour market positively correlates with worker wages with the effects being strongest 

within 4 kilometres and no longer significant beyond 12 kilometres. Similarly, Rosenthal and 

Strange (2008) found that the wage premium resulting from the number of workers within a 5-

mile radius was 4-5 times that of the number of workers between 5 and 25 miles away. Holl 

(2012) uses a Harris-type measure and finds that population “market potential” increases 

regional wages in Spain. Such findings, of course, vary considerably by sector and inferred 

underlying mechanism. For example, Arzaghi and Henderson (2008) show that for the 

advertising industry in Manhattan, agglomeration benefits had completely vanished beyond 

merely 750 metres. Ellison et al. (2010) use industry colocation patterns to infer which 

mechanisms, input/output sharing, labour pooling, or knowledge spillovers, most strongly cause 
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agglomeration. They find that industries relying on knowledge spillovers tend to be the most 

tightly clustered. 
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 THE MODEL 

I present a dynamic model of employment growth and decline of individual firms. Profit-

maximizing businesses adjust their employment size in response to changes in their environment 

(physical, economic, or otherwise) that affect their profitability. However, hiring and firing 

employees is costly for a business, both directly, e.g. in the form of hiring bonuses or severance 

payments, and indirectly, e.g. through productive hours allocated to searching for an appropriate 

skills match, training, or re-organization of tasks and responsibilities. For example, surveys of 

HR professionals have found that it costs more than four thousand dollars, on average, to hire an 

employee (SHRM, 2016). It then takes on average eight months for the new employee to become 

fully productive (Allied, 2012). During this time, the firm still has to pay the employees full 

salary and potentially additional costs to train the employee. These figures naturally vary 

considerably depending on the nature of the job. Some estimates for the total costs of hiring and 

onboarding go up to 50%, 120%, and 400% of the employee’s annual salary for entry-level, mid-

level, and high-level or highly specialized employees, respectively (Borysenko, 2014). Given 

these non-negligible adjustment costs, and in the presence of discounted future values, 

adjustment decisions involve an intertemporal trade-off between adjustment costs and production 

profits. In turn, firms’ employment size adjustments will be partial and/or gradual rather than 

instantaneous. Take for example a myopic firm, i.e. one that discounts future values heavily. All 

else equal, they would choose to make smaller adjustments. For them, the upfront costs of 

adjusting may well outweigh the benefits of increased profit in the short term. On the other hand, 

for a firm that does not discount the future heavily, the cost of rapid upfront adjustments can be 

offset by less foregone profit in subsequent periods. Adjustment costs that are non-linear with 

respect to the rate of adjustment is another potential cause of lagged responses. For example, 

attempting to fill numerous vacancies quickly when the labour supply is limited might require an 

expanded advertising effort, larger onboarding incentives, and potentially result in poorer skills 

matches. Such non-linear costs can further discourage rapid adjustments.  
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To model this behaviour, I formulate a dynamic programming Markov model in which firms’ 

employment sizes are state variables and employment size adjustments serve as state transitions. 

Figure 3-1 below shows the model structure.  

Figure 3-1: Overview of the dynamic programming Markov model structure 

 

For each firm 𝑖 and time period 𝑡, we have observations comprising {𝐻𝑖𝑡, 𝑥𝑖𝑡 , Δ𝐻𝑖𝑡}, where 𝐻𝑖𝑡 is 

the firm’s employment size at the beginning of the period, 𝑥𝑖𝑡 are the relevant exogenous 

variables (including location-specific attributes such as agglomeration), and Δ𝐻𝑖𝑡 is the outcome 

variable, i.e. the total adjustment by the firm over the duration of the period. As modellers, we do 

not observe the time-invariant firm-specific parameters 휃𝑖 or the independent and identically 

distributed (IID) error term 휀𝑖𝑡. Similarly, we do not observe the inner workings of the 

adjustment process, i.e. we do not know the exactly when during the period 𝑡 each employee was 

hired or fired, much less the underlying adjustment rates Λ𝑖𝑡. To determine these adjustment 

rates, we assume that firms are rational, forward-looking decision-makers that choose Λ𝑖𝑡 to 

maximize the net present value of all future profits. I model the hiring and firing as events in 

stochastic processes. Consequently, the firm is faced with a Markov decision process (MDP), 

whose solution, i.e. optimal policy, is Λ𝑖𝑡. As shown in Figure 3-1, the solution is a function of 

the employment size at the beginning of the period 𝐻𝑖𝑡, exogeneous variables 𝑥𝑖𝑡, a random term 

휀𝑖𝑡, and the firm-specific parameters 휃𝑖.  
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Λ𝑖𝑡(𝐻𝑖𝑡, 𝑥𝑖𝑡, 휀𝑖𝑡, 휃𝑖) (3.1) 

Since adjustments are stochastic, the final outcome, i.e. the total adjustment Δ𝐻𝑖𝑡, is also 

stochastic and its probability function is conditional on the adjustment rates. This serves as the 

model’s likelihood function. 

 𝑃(Δ𝐻|Λ𝑖𝑡) (3.2) 

Finally, the initial employment in the subsequent period 𝑡 + 1 is the sum of the current 

employment size and the adjustment. Then the process repeats itself for each period. 

𝐻𝑖𝑡+1 = 𝐻𝑖𝑡 + Δ𝐻𝑖𝑡 (3.3) 

The model structure is summarized by these three components: the firm’s MDP and its solution 

(3.1), the likelihood function (3.2), and the transition to the subsequent period (3.3). In the 

following sections, I expand on these. Specifically, in Section 3.1 I present Λ𝑖𝑡(𝐻𝑖𝑡, 𝑥𝑖𝑡 , 휀𝑖𝑡, 휃𝑖) in 

full by showing the dynamic programming solution to the firm’s MDP; in Section 3.2 I derive 

the conditional transition probability function 𝑃(Δ𝐻𝑖𝑡|Λ𝑖𝑡) and formalize the likelihood function. 

To estimate the model, I use a Bayesian Markov chain Monte Carlo (MCMC) algorithm. A 

Bayesian hierarchical model offers a convenient way to estimate firm-specific parameters, which 

capture serial correlation in firm’s choices. In turn, this makes the IID assumption for 휀𝑖𝑡 more 

believable. I present this estimation procedure in Section 3.3.  

The model presented here is closely related to the dynamic programming discrete choice 

structural models encountered in the economics literature with a few important differences that 

reduce the computational burden of the estimation procedure. I discuss how this model relates to 

the broader class of dynamic programming discrete choice structural models in 3.4, along with 

several miscellaneous topics, including how the model can fit into a larger IUM framework and 

its potential usefulness for other applications. 
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 Firm Behaviour 

Firm’s Perspective 

Our objective in this section is to derive the firm’s decision rule for the adjustment rates Λ𝑡. For 

simplicity of notation, I drop the firm-specific subscript 𝑖 in this section as the firm’s decision 

rule does not involve other firms in the dataset. It is important to make a distinction between the 

researcher’s perspective and the firm’s perspective. Previously, Figure 3-1 presented the 

employment size adjustment process from the researcher’s point-of-view, observing the time 

series of the exogeneous variables (𝑥𝑡, 𝑥𝑡+1, 𝑥𝑡+2, … ) and inferring the distribution of the error 

terms based on the entire dataset. By contrast, the firm cannot access the whole dataset 

retrospectively but does observe the firm and period-specific terms that are stochastic to the 

researcher. At time 𝑡, the firm observes both the exogenous variables 𝑥𝑡 and the idiosyncratic 

error 휀𝑡 as well as the time-invariant parameters 휃 specific to them. However, the firm does not 

know the subsequent values of 𝑥 and 휀, which to them are in the future. This is reflected by the 

firm’s MDP, whose solution is only a function of the current values of the variables 𝑥 and 휀. 

That is to say, the periods (𝑡, 𝑡 + 1, 𝑡 + 2,… ) refer to real time periods created as a product of 

the data collection process and observed by the researcher. For the period 𝑡, the firm observes the 

period-specific variables 𝑥𝑡 and 휀𝑡 and solves an MDP to determine the optimal adjustment rates 

specific to that period Λ𝑡. In the subsequent period 𝑡 + 1, the firm will be faced with a new MDP 

with updated information 𝑥𝑡+1 and 휀𝑡+1, which it will solve to determine new optimal adjustment 

rates Λ𝑡+1. Put differently, each instance of the firm’s MDP effectively exists within a single 

period. It is a means of determining the optimal adjustment rates Λ for that period. Importantly, 

the time dimension within the MDP is different from the real periods observed by the researcher 

(𝑡, 𝑡 + 1, 𝑡 + 2,… ). Consequently, moving into the future within an MDP does not increment 𝑡. 

The Markov Decision Process 

Formally, let us consider an infinite time horizon where firms discount future cash flows at rate 

𝛿. The firm’s problem is a continuous-time MDP. In other words, transitions between states can 

occur at any time and do not need to adhere to discrete time intervals of fixed duration as in 

traditional discrete-time MDPs. Carrying out the derivation with fixed time periods ultimately 
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yields the same optimal decision rule but requires a few additional steps. Appendix A presents 

this alternative derivation.  

An MDP can be described by the four components: the state space, the action space, the 

transition rate function, and the reward function. These are summarized in Table 3-1 below. 

Table 3-1: Overview of the firm’s Markov decision process 

Component Description Notation 

State space 

Employment size is the only state 

variable; thus the state space is the set 

of possible employment sizes 

(𝐻𝑡, 𝐻𝑡 ± 1, 𝐻𝑡 ± 2,… , 𝐻𝑡
∗) 

Action space 
At each state 𝐻, the firm can choose to 

hire or fire employees at rate 𝜆𝐻 

Hire or fire employees at rate 

𝜆𝐻 ∀ 𝐻 

Transition rate 

function 

Given state 𝐻 and adjustment rate 𝜆𝐻, 

the time until the transition 𝐻 → 𝐻 ± 1 

is an exponential-distributed random 

variable 𝑧𝐻 

𝑧𝐻 ~ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝜆𝐻) 

Reward function 
The reward is the firm’s net profit 

during the time spent at state 𝐻 
𝑅(𝐻, 𝜆𝐻) 

 

The states of the MDP are defined by the firm’s employment size. If profit is globally concave 

with respect to employment size, the state space comprises only the interval between the initial 

employment size 𝐻𝑡 and the optimal employment size 𝐻𝑡
∗ (inclusive) rather than all natural 

numbers. In other words, if the profit function is single-peaked, a profit-maximizing firm never 

has reason to move farther away from the optimal employment size.  

The ± symbol is a plus (minus) if the optimal employment size 𝐻𝑡
∗ is greater (smaller) than the 

initial employment size 𝐻𝑡, in which case the firm will hire (fire) employees. It will choose the 

rate 𝜆𝐻 that maximizes the net present value of all expected future rewards. Adjustment rates 𝜆𝐻 

are defined to be non-negative and represent the hiring and firing rates when firms are hiring and 

the firing, respectively. The set of these adjustment rates, each corresponding to a state in the 
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state space, makes up the solution to the MDP at time 𝑡. Thus, rather than representing a single 

adjustment rate, Λ𝑡 comprises a vector of rates. 

Λ𝑡 = (𝜆𝐻𝑡 , 𝜆𝐻𝑡±1, 𝜆𝐻𝑡±2, … , 𝜆𝐻𝑡∗) (3.4) 

The vector is denoted by the Λ (uppercase lambda), while individual adjustment rates are 

denoted by 𝜆 (lowercase lambdas). Although, I have referred to Λ𝑡 as a single entity thus far, the 

fact that it comprises a vector of rates reflects that adjustment rates do not necessarily remain 

constant over the duration of a period 𝑡. From the firm’s perspective, it is generally desirable to 

change the adjustment rate each time they hire or fire an employee. For example, as a firm 

approaches its optimal employment size, we expect adjustment rates to slow down and 

eventually reach zero, as the firm’s incentive to make further adjustments diminishes. 

Altogether, Λ𝑡 describes an employment size adjustment trajectory over time between the 

employment size 𝐻𝑡 and the optimal employment size at time 𝐻𝑡
∗.  

State transitions increment (if hiring) or decrement (if firing) the employment size, i.e.  

𝐻 → 𝐻 ± 1. Let 𝑧𝐻 be a random variable representing the time between subsequent adjustment 

events, i.e. the time during which the employment size is 𝐻. It is exponential-distributed with 

adjustment rate parameter 𝜆𝐻, chosen by the firm. The parameter represents firms’ effort, 

eagerness, and urgency in making adjustments. 

𝑧𝐻 ~ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝜆𝐻) 

𝑓𝐻(𝑧𝐻) = 𝜆𝐻𝑒
−𝜆𝐻𝑧𝐻    ,   𝐹𝐻(𝑧𝐻) = 1 − 𝑒−𝜆𝐻𝑧𝐻    ,   �̃�𝐻(𝑧𝐻) = 𝑒

−𝜆𝐻𝑧𝐻   

 (3.5) 

𝑓𝐻(𝑧𝐻), 𝐹𝐻(𝑧𝐻), and �̃�𝐻(𝑧𝐻) are the PDF, CDF, and survival function of 𝑧𝐻, respectively. Note 

that the model only captures net adjustment, rather than hiring and firing separately. 

Figure 3-2 presents an example trajectory graphically. The slope represents the adjustment rate 

and the horizontal distance between events represents the (expected) time between events. If 

profit is concave with respect to the employment size, i.e. the incentive to make further 

adjustments diminishes with each subsequent adjustment as the employment size approaches 𝐻𝑡
∗, 

the rates in Λ𝑡 are also diminishing, eventually reaching 0 for the rate corresponding to 𝐻𝑡
∗. 
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Figure 3-2: Graphical representation of sample trajectory 𝛬𝑡 

 

Finally, the reward function captures the firm’s net profit during 𝑧𝐻, i.e. the time spent at state 𝐻, 

given the chosen adjustment rate (action). It is the net of production profits and adjustments 

costs. I describe the formulation of these in the following section. 

Production profits 𝝅, adjustment costs 𝜶, and rewards 𝑹 

Let 𝜋(𝐻; 𝑥𝑡, 휀𝑡) denote a firm’s annual profit associated with production during period 𝑡. Note 

that 𝑥𝑡 and 휀𝑡 are subscripted with 𝑡, indicating that they remain constant in the firm’s MDP for 

period 𝑡, whereas 𝐻 varies. 

𝜋(𝐻) = 𝜋(𝐻; 𝑥𝑡 , 휀𝑡) = �̅�(𝐻; 𝑥𝑡) + 𝐻휀𝑡 (3.6) 

The profit function comprises a systematic component �̅� and a random component. The 

systematic component is a function of the employment size 𝐻 and exogenous variables 𝑥𝑡. I 

leave the complete specification of �̅� for later but note for now that it is defined to be concave 

with respect to 𝐻, i.e. the profit exhibits diminishing marginal returns to employment size, and 

that a global maximum exists. This ensures that employment sizes do not tend to infinity. The 

random component is the product between the employment size 𝐻 and a zero-mean error term 휀𝑡, 

which represents heterogeneity in average worker productivity that is known to the firm but 

unobserved by the researcher. The firm’s optimal employment size 𝐻𝑡
∗ given the values of 𝑥𝑡 and 

휀𝑡 at time 𝑡 is the employment size which maximizes 𝜋. This profit function captures production 
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revenues and costs but not the costs associated with hiring and firing. Absent these frictional 

effects, firms would choose an infinitely high adjustment rate in order to instantaneously adjust 

to the optimal employment size 𝐻𝑡
∗.  

Let 𝛼(𝜆𝐻) represent the annual costs associated with employment size adjustments. These costs 

are a function of the adjustment rate 𝜆𝐻.  

𝛼(𝜆𝐻) = {
𝜇0
+ + 𝜇1

+𝜆𝐻 + 𝜇2
+𝜆𝐻

2 𝑖𝑓 ℎ𝑖𝑟𝑖𝑛𝑔

𝜇0
− + 𝜇1

−𝜆𝐻 + 𝜇2
−𝜆𝐻

2 𝑖𝑓 𝑓𝑖𝑟𝑖𝑛𝑔
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ,    𝜇0
+, 𝜇1

+, 𝜇2
+, 𝜇0

−, 𝜇1
−, 𝜇2

− > 0  (3.7) 

The + and – superscripts are used to distinguish between parameters associated with hiring and 

firing, respectively, as these may well be different. Firms only incur adjustment costs for non-

zero adjustment rates. The parameters 𝜇0, 𝜇1, 𝜇2, for either hiring or firing, characterize the 

adjustment costs. Specifically, 𝜇0 captures fixed costs, 𝜇1 captures linear costs, and 𝜇2 captures 

superlinear costs. The presence of fixed and linear costs is relatively intuitive. For example, 

placing a job advert is a fixed cost of hiring; once the advert has been posted its cost does not 

change regardless of how many employees the firm subsequently hires. Hiring bonuses are an 

example of linear hiring costs; each new employee will expect to be paid a similar hiring bonus. 

On the other hand, the intuition behind the superlinear adjustment costs, and the quadratic 

specification in particular, are perhaps less obvious. Numerous factors can contribute to costs 

rising superlinearly, e.g. decreasing quality of skills matches for each subsequent hire, increasing 

compensation demands, or increasingly complex reorganization of tasks following downsizing, 

etc. The quadratic specification is a relatively simple and a flexible way to capture these 

superlinear effects. There is also precedent for the use of a quadratic cost formulation in 

adjustment models. Specifically, the standard partial adjustment model, whereby adjustments in 

each period are proportional to the distance between the current and optimal values, arises as a 

result of quadratic adjustment costs (Kennan, 1979). These three cost specifications result in 

different modes of responses vis-à-vis firm’s employment adjustment, as will become apparent 

in the following derivation. 
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The firm’s net annual profit is the profit associated with production 𝜋 less the adjustment costs 

𝛼. The reward function 𝑅(𝐻, 𝜆𝐻) is the present value of the net profit until the next adjustment, 

i.e. over time 𝑧𝐻. 

𝑅(𝐻, 𝜆𝐻) = ∫ 𝑒−𝛿𝑠(𝜋(𝐻) − 𝛼(𝜆𝐻)) 𝑑𝑠

𝑧𝐻

0

 

                  =
𝜋(𝐻) − 𝛼(𝜆𝐻)

𝛿
(1 − 𝑒−𝛿𝑧𝐻) 

(3.8) 

Having the discount rate 𝛿 in the denominator yields the present value of a perpetuity, thus the 

fraction in equation (3.8) represents the value of a perpetuity with the firm’s net annual profit as 

the periodic cash flow. However, the reward function should only capture the value of this 

perpetuity up until time 𝑧𝐻, which is accounted for by the term in the brackets. 

Intertemporal decision-making and the value function 𝑽 

Given that adjustments are non-instantaneous and costly, and that costs increase with the rate of 

adjustment, a firm with a suboptimal employment size must consider the inter-temporal trade-off 

between production profit and adjustment costs. Specifically, if the firm chooses to adjust 

rapidly, it incurs large upfront adjustment costs but potentially makes up for it by increasing 

profits sooner. Conversely, slower adjustment lowers the upfront adjustment costs, but profits 

remain lower for longer. Optimal firm behaviour requires finding the trajectory between the 

initial employment size 𝐻𝑡 and the optimal employment size 𝐻𝑡
∗ that maximizes the net present 

value of all future rewards – we call this the value function. We can now write the value function 

𝑉(𝐻, 𝜆𝐻), as a recursive Bellman equation (3.9).  

𝑉(𝐻, 𝜆𝐻) = 𝐸[𝑅(𝐻, 𝜆𝐻) + 𝑒
−𝛿𝑧𝐻  𝑉(𝐻 ± 1, 𝜆𝐻±1)] 

                  = ∫ 𝑓𝐻(𝑧𝐻) [𝑅(𝐻, 𝜆𝐻) + 𝑒
−𝛿𝑧𝐻  𝑉(𝐻 ± 1, 𝜆𝐻±1)] 𝑑𝑧𝐻

∞

0

 
(3.9) 

Since 𝑧𝐻 is a random variable, we must consider the expectation over the distribution of 𝑧𝐻. The 

sign of the ± depends on the direction of adjustment with + for hiring and – for firing. 

Substituting in the PDF of 𝑧𝐻 from equation (3.5), evaluating the integral, and rearranging yields 
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equation (3.10). Due to the discontinuity in adjustment costs at 0, caused by the fixed costs 𝜇0 

applying only to non-zero adjustment rates, we must consider the 0-solution separately.  

𝑉(𝐻, 𝜆𝐻) =

{
 

 
𝜋(𝐻)

𝛿 + 𝜆𝐻
−
𝜇0 + 𝜇1𝜆𝐻 + 𝜇2𝜆𝐻

2

𝛿 + 𝜆𝐻
+
𝜆𝐻 𝑉(𝐻 ± 1, 𝜆𝐻±1)

𝛿 + 𝜆𝐻
𝑖𝑓 𝜆𝐻 > 0

𝜋(𝐻)

𝛿
𝑖𝑓 𝜆𝐻 = 0

 
(3.10) 

The firm chooses the 𝜆𝐻 that maximizes 𝑉(𝐻, 𝜆𝐻). We determine the optimal adjustment rate for 

𝜆𝐻 > 0 by taking first order condition. This yields a quadratic equation, whose positive root is 

the non-zero solution to the firm’s MDP. The negative root yields a negative adjustment rate and 

is not permissible. Again, due to fixed costs, firms may decide against making any adjustments 

despite their current employment size being sub-optimal. 

𝜆𝐻
∗ = argmax

𝜆𝐻

𝑉(𝐻, 𝜆𝐻) 

      

=

{
 
 

 
 0

𝑖𝑓 𝑉(𝐻, 0) ≥ 𝑉(𝐻, 𝜆𝐻)

∀𝜆𝐻

−𝛿 + √𝛿2 +
𝛿 𝑉(𝐻 ± 1, 𝜆𝐻±1) − 𝜋(𝐻) + 𝜇0 − 𝛿𝜇1

𝜇2
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(3.11) 

Some quick intuition to make sense of the optimal adjustment rate: if hiring an additional 

employee increases the value function considerably, i.e. the difference 𝛿𝑉(𝐻 ± 1, 𝜆𝐻±1) − 𝜋(𝐻) 

is large, firms are encouraged to make adjustments more urgently, and vice versa. The 

adjustment costs affect firms’ responses in two distinct ways: a hurdle effect and a retarding 

effect. The hurdle effect establishes a minimum improvement – a so-called hurdle that must be 

cleared – for adjustments to be worthwhile. This is reflected by the condition 𝑉(𝐻, 0) ≥

𝑉(𝐻, 𝜆𝐻) ∀𝜆𝐻 in equation (3.11). The retarding effect changes firms’ adjustment rate, given that 

it is non-zero. This is reflected by parameters 𝜇0, 𝜇1, 𝜇2 for non-zero optimal adjustment rates in 

equation (3.11). The fixed costs, as captured by 𝜇0, encourage bundling of adjustments. In other 

words, they contribute to the hurdle effect, but if the hurdle is cleared, they encourage higher 

adjustment rates, contributing negatively to the retarding effect. In practice, an example of a 

fixed adjustment cost is the placing of a job advert. The cost is incurred only if the firm has an 
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intention to hire. Once the advert has been posted, the firm does not incur any further costs 

associated with the advert regardless of how many new workers are actually hired. Linear 

adjustment costs, as captured by 𝜇1, include, for example, hiring bonuses, training costs, etc. and 

make adjustments more expensive overall. In turn, this contributes to both the hurdle and 

retarding effects provided firms discount future cash flows. Finally, the quadratic costs, captured 

by 𝜇2, also contribute to both the hurdle and the retarding effects but are chiefly responsible for 

the latter. Numerous factors could contribute to adjustment costs rising superlinearly, e.g. 

decreasing quality of skills matches for each subsequent hire, increasing compensation demands, 

or increasingly complex reorganization of tasks.  

Dynamic programming solution 

Armed with equations (3.10) and (3.11), we can now solve the MDP recursively using dynamic 

programming. Starting from the end – when the employment size is at its optimum 𝐻𝑡
∗ – we work 

our way backwards towards 𝐻𝑡. Table 3-2 illustrates the recursive algorithm. At optimal 

employment size, we know that 𝜆𝐻𝑡∗
∗  must necessarily be zero. Thus, the value function 𝑉(𝐻𝑡

∗, 0) 

depends only on present profit and the discount rate – both of which are known. Stepping 

backwards, i.e. 𝐻𝑡
∗ ∓ 1 with – for hiring and + for firing processes, the optimal rate 𝜆𝐻𝑡∗∓1

∗  

depends on the downstream value function 𝑉(𝐻𝑡
∗, 0), which we just determined. Evaluating the 

value function 𝑉 (𝐻𝑡
∗ ∓ 1, λ𝐻𝑡∗∓1

∗ ) is also straightforward now that the optimal adjustment rate is 

known. At each step, we insert the optimal rate into the vector describing the firm’s decision rule 

Λ𝑡. Repeating the recursive steps until 𝐻𝑡 provides the full trajectory.  Finally, note that in Table 

3-2, I have omitted the hurdle effect, as the purpose is to illustrate the recursive solution. In 

practice, the hurdle potentially forces several (or all) adjustment rates to 0 starting from the end 

𝐻𝑡
∗. The overall shape of the trajectories will remain the same, with rates diminishing before 

eventually reaching 0, however they may do so prior to reaching the optimal employment size.  
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Table 3-2: Illustration of the recursive solution to the firm’s MDP 

𝐻 𝜆𝐻
∗  𝑉(𝐻, 𝜆𝐻) Λ𝑡 

𝐻𝑡
∗ 0 

𝜋(𝐻𝑡
∗, 𝑥𝑡 , 휀𝑡)

𝛿
 (0) 

𝐻𝑡
∗ ∓ 1 −𝛿 + √𝛿2 +

𝛿 𝑉(𝐻𝑡
∗, 0) − 𝜋(𝐻𝑡

∗ ∓ 1) + 𝜇0 − 𝛿𝜇1
𝜇2

 
𝜋(𝐻𝑡

∗ ∓ 1) − 𝑎(𝜆𝐻𝑡∗∓1) + 𝜆𝐻𝑡∗∓1𝑉(𝐻𝑡
∗, 0) 

𝛿 + 𝜆𝐻𝑡∗∓1
 (𝜆𝐻𝑡∗∓1, 0) 

𝐻𝑡
∗ ∓ 2 −𝛿 + √𝛿2 +

𝛿 𝑉(𝐻𝑡
∗ ∓ 1, 𝜆𝐻𝑡∗∓1) − 𝜋(𝐻𝑡

∗ ∓ 2) + 𝜇0 − 𝛿𝜇1

𝜇2
 
𝜋(𝐻𝑡

∗ ∓ 2) − 𝑎(𝜆𝐻𝑡∗∓2) + 𝜆𝐻𝑡∗∓2𝑉(𝐻𝑡
∗ ∓ 1, 𝜆𝐻𝑡∗∓1)

𝛿 + 𝜆𝐻𝑡∗∓2
 (𝜆𝐻𝑡∗∓2, 𝜆𝐻𝑡∗∓1, 0) 

⋮ ⋮ ⋮ ⋮ 

𝐻𝑡 −𝛿 + √𝛿2 +
𝛿 𝑉(𝐻𝑡 ± 1, 𝜆𝐻𝑡±1) − 𝜋(𝐻𝑡  ) + 𝜇0 − 𝛿𝜇1

𝜇2
 

𝜋(𝐻𝑡) − 𝑎(𝜆𝐻𝑡) + 𝜆𝐻𝑡𝑉(𝐻𝑡 ± 1, 𝜆𝐻𝑡±1) 

𝛿 + 𝜆𝐻𝑡
 (𝜆𝐻𝑡 , … , 𝜆𝐻𝑡∗∓1, 0) 
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 Likelihood Function 

With the firm decision rule for Λ𝑖𝑡 in hand, the next step is to write out the likelihood function. 

Let 휃𝑖 denote the vector of firm 𝑖’s firm-specific parameters, including those of the adjustment 

cost function 𝛼(𝜆𝐻) and the yet unspecified profit function 𝜋(𝐻, 𝑥𝑖𝑡 , 휀𝑖𝑡).  

𝓛(휃𝑖∀𝑖, 휀𝑖𝑡∀𝑖𝑡) =∏∏𝑃(Δ𝐻𝑖𝑡|Λ𝑖𝑡)

𝑡𝑖

=∏∏𝑃(Δ𝐻𝑖𝑡|휃𝑖, 휀𝑖𝑡)

𝑡𝑖

 (3.12) 

The likelihood function is the joint probability of all the observations given the firms’ chosen 

trajectories, which depend on the parameters and error terms as shown in Figure 3-1. I am 

treating the errors 휀𝑖𝑡 as known quantities rather than random variables; this circumvents the 

need for numerically integrating over the PDF of the error when evaluating the likelihood 

function. Instead, it is drawn alongside the parameters 휃𝑖 in the Bayesian estimation procedure, 

presented in the next section.  

The conditional probability 𝑃(Δ𝐻𝑖𝑡|Λ𝑖𝑡) is the probability of observing Δ𝐻𝑖𝑡 given the firm’s 

chosen trajectory Λ𝑖𝑡. If all the adjustment rates in Λ𝑖𝑡 were equal, then the probability of Δ𝐻 

follows the PMF of a Poisson distribution with that fixed rate parameter. However, as we saw in 

the previous section, the adjustment rates diminish as the employment size 𝐻 approaches its 

optimum. Thus, we require a PMF of a stochastic process with exponential distributed inter-

event times that allows varying rate parameters. To this end, some additional notation is helpful. 

Let �̇�𝐻 be an exponential-distributed random variable representing the time of the event 

associated with 𝜆𝐻 but measured from the beginning of period 𝑡. The timeline in Figure 3-3 

illustrates the difference between �̇�𝐻 and 𝑧𝐻 
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Figure 3-3: Relationship between �̇�𝐻 and 𝑧𝐻 

 

�̇�𝐻 is by definition greater than the upstream adjustment event time, i.e.  

�̇�𝐻𝑖𝑡 < �̇�𝐻𝑖𝑡±1 < ⋯ < �̇�𝐻𝑖𝑡±Δ𝐻𝑖𝑡 and follows the same exponential distribution as 𝑧𝐻 with rate 

parameter 𝜆𝐻 described in (3.5). This can be seen by the memoryless property. 

𝑓𝐻(�̇�𝐻)

�̃�𝐻(�̇�𝐻−1)
=
𝜆𝐻𝑒

−𝜆𝐻�̇�𝐻

𝑒−𝜆𝐻�̇�𝐻−1  
= 𝜆𝐻𝑒

−𝜆𝐻(�̇�𝐻−�̇�𝐻−1) = 𝜆𝐻𝑒
−𝜆𝐻𝑧𝐻 = 𝑓𝐻(𝑧𝐻) (3.13) 

Let 𝑇 denote the length of period 𝑡. We can write the conditional probability 𝑃(Δ𝐻𝑖𝑡|휃𝑖 , 휀𝑖𝑡) as 

the joint probability that all observed adjustments occur before time 𝑇 and that the subsequent 

adjustment occurs after time 𝑇 given that the adjustments happen sequentially. 

𝑃(Δ𝐻𝑖𝑡|Λ𝑖𝑡) = Pr (�̇�𝐻𝑖𝑡 ≤ 𝑇 ∩ �̇�𝐻𝑖𝑡±1 ≤ 𝑇⋯∩ �̇�𝐻𝑖𝑡±𝛥𝐻𝑖𝑡−1 ≤ 𝑇 ∩ 

                                          �̇�𝐻𝑖𝑡±Δ𝐻𝑖𝑡 > 𝑇 | �̇�𝐻𝑖𝑡 < �̇�𝐻𝑖𝑡+1 < ⋯ < �̇�𝐻𝑖𝑡+Δ𝐻𝑖𝑡) 
(3.14) 

To evaluate this joint probability, we must consider the possible values of all the event times �̇�𝐻, 

which yields a nested integral. 

𝑃(Δ𝐻𝑖𝑡|Λ𝑖𝑡) 

= ∫⋯ ∫ 𝑓𝐻𝑖𝑡(�̇�𝐻𝑖𝑡)
𝑓𝐻𝑖𝑡+1(�̇�𝐻𝑖𝑡+1)

�̃�𝐻𝑖𝑡+1(�̇�𝐻𝑖𝑡)
⋯

�̃�𝐻𝑖𝑡+𝛥𝐻𝑖𝑡(𝑇)

�̃�𝐻𝑖𝑡+𝛥𝐻𝑖𝑡(�̇�𝛥𝐻𝑖𝑡)

𝑇

�̇�𝐻𝑖𝑡+𝛥𝐻𝑖𝑡−2

𝑑�̇�𝐻𝑖𝑡+𝛥𝐻𝑖𝑡−1⋯𝑑̇�̇�𝐻𝑖𝑡

𝑇

0

 
(3.15) 
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Substituting in the PDF and survival functions allows us to simplify the integrand. 

𝑃(Δ𝐻𝑖𝑡|Λ𝑖𝑡) 

= ∫⋯ ∫ 𝜆𝐻𝑖𝑡𝑒
−𝜆𝐻𝑖𝑡 �̇�𝐻𝑖𝑡

𝜆𝐻𝑖𝑡+1𝑒
−𝜆𝐻𝑖𝑡+1�̇�𝐻𝑖𝑡+1

𝑒−𝜆𝐻𝑖𝑡+1�̇�𝐻𝑖𝑡
⋯ 

𝑇

�̇�𝐻𝑖𝑡+𝛥𝐻𝑖𝑡−2

𝑇

0

                                               

                             
𝑒−𝜆𝐻𝑖𝑡+Δ𝐻𝑖𝑡𝑇

𝑒−𝜆𝐻𝑖𝑡+Δ𝐻𝑖𝑡�̇�𝐻𝑖𝑡+Δ𝐻𝑖𝑡
𝑑�̇�𝐻𝑖𝑡+𝛥𝐻𝑖𝑡−1⋯𝑑̇�̇�𝐻𝑖𝑡  

= ( ∏ 𝜆𝐻

𝐻𝑖𝑡+𝛥𝐻−1

𝐻=𝐻𝑡

)𝑒−𝜆𝐻𝑖𝑡+Δ𝐻𝑖𝑡𝑇∫⋯ ∫ 𝑒−(𝜆𝐻𝑖𝑡−𝜆𝐻𝑖𝑡+1)�̇�𝐻𝑖𝑡⋯

𝑇

�̇�𝐻𝑖𝑡+𝛥𝐻𝑖𝑡−2

𝑇

0

                             

                                                      𝑒−(𝜆𝐻𝑖𝑡+𝛥𝐻𝑖𝑡−1−𝜆𝐻𝑖𝑡+𝛥𝐻𝑖𝑡)�̇�𝐻𝑖𝑡+𝛥𝐻𝑖𝑡−1𝑑�̇�𝐻𝑖𝑡+𝛥𝐻𝑖𝑡−1⋯𝑑̇�̇�𝐻𝑖𝑡  

(3.16) 

Evaluating these nested integrals and rearranging, we arrive at the probability of each 

observation: 

𝑃(Δ𝐻𝑖𝑡|Λ𝑖𝑡) = ( ∏ 𝜆𝐻

𝐻𝑖𝑡+𝛥𝐻𝑖𝑡−1

𝐻=𝐻𝑖𝑡

) ∑
𝑒−𝜆𝐻𝑇

∏ (𝜆𝐻′ − 𝜆𝐻)
𝐻𝑖𝑡+Δ𝐻𝑖𝑡
𝐻′=𝐻𝑖𝑡
𝐻′≠𝐻

𝐻𝑖𝑡+𝛥𝐻𝑖𝑡

𝐻=𝐻𝑖𝑡

 (3.17) 

While convoluted, this can crucially still be evaluated analytically, which keeps the model 

estimation computationally tractable. As we might expect, this transition probability distribution 

has a structure that resembles that of the Poisson distribution with constant rate parameter 𝜆.  

𝑞(Δ𝐻|𝜆) = 𝜆Δ𝐻
𝑒−𝜆𝑇

Δ𝐻!
 (3.18) 

In fact, as the differences between the rates 𝜆𝐻 approach 0, the probability in (3.17) approaches a 

Poisson distribution with a fixed rate parameter, as shown in Figure 3-4. The more concave the 

profit function 𝜋(𝐻) is with respect to employment size, the more rapidly the adjustment rate 

diminishes with each change. In turn, this results in a more left-skewed (i.e. right-leaning) 

distribution. 
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Figure 3-4: Comparing probability functions with same mean rate but different levels of rate variation 

 

Finally, the likelihood function (3.19) is the product of the transition probabilities over all the 

observations in the dataset. 

𝓛(휃, 휀) =∏∏𝑃(Δ𝐻𝑖𝑡|휃𝑖, 휀𝑖𝑡)

𝑡𝑖

                                    

=∏∏𝑃(Δ𝐻𝑖𝑡|Λ𝑖𝑡)    

𝑡𝑖

                      

                                        =∏∏

[
 
 
 
 

( ∏ 𝜆𝐻

𝐻𝑖𝑡+𝛥𝐻𝑖𝑡−1

𝐻=𝐻𝑖𝑡

) ∑
𝑒−𝜆𝐻𝑇

∏ (𝜆𝐻′ − 𝜆𝐻)
𝐻𝑖𝑡+Δ𝐻𝑖𝑡
𝐻′=𝐻𝑖𝑡
𝐻′≠𝐻

𝐻𝑖𝑡+𝛥𝐻𝑖𝑡

𝐻=𝐻𝑖𝑡
]
 
 
 
 

𝑡

 

𝑖

 

(3.19) 
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 Bayesian Estimation Procedure 

The likelihood function (3.19) is highly non-convex. Using a traditional maximum likelihood 

estimation technique, the estimation procedure would too often get stuck in local extrema. 

Instead, I formulate a hierarchical Bayesian model and use an MCMC sampling algorithm to 

estimate the parameters. I assume that the model’s hyperparameters are normal-distributed. In 

other words, each firm 𝑖 is associated with a vector of parameters 휃𝑖; across all firms, these form 

a multi-variate normal distribution with unknown mean Θ and variance 𝑊. Additionally, I 

assume that the observation-specific error terms 휀𝑖𝑡 is Normal-distributed with zero-mean and 

variance 𝜎2. The objective of the estimation procedure is to repeatedly sample from these 

distributions until we can determine the hyperparameters Θ, W, and 𝜎2.  

Let 𝐾(Θ,𝑊, 𝜎2|Δ𝐻𝑖𝑡∀𝑖𝑡) be the probability distribution of these parameters given all the 

observed outcomes. This is the so-called posterior distribution. By Bayes’ theorem, we have  

𝐾(Θ,𝑊, 𝜎2|Δ𝐻𝑖𝑡∀𝑖𝑡) =
𝑃(Δ𝐻𝑖𝑡∀𝑖𝑡|Θ,𝑊, 𝜎

2)𝑘(Θ,𝑊, 𝜎2)

𝑃(Δ𝐻𝑖𝑡∀𝑖𝑡)
 

                                        =∏∏
𝑃(Δ𝐻𝑖𝑡|Θ,𝑊, 𝜎

2)𝑘(Θ,𝑊, 𝜎2)

𝑃(Δ𝐻𝑖𝑡)
𝑡𝑖

 

(3.20) 

where 𝑘(Θ,𝑊, 𝜎2) is prior distribution, i.e. our best guess prior to observing the data. Reflecting 

the lack of a priori knowledge, I assume diffuse priors. Namely, I assume for Θ a Normal 

distribution with unboundedly large variance. For 𝑊, I assume an Inverse Wishart distribution 

with 𝑉 degrees of freedom, where 𝑉 is the length of the vector Θ, and scale matrix 𝐽, a 𝑉-

dimensional identity matrix. Note however that for parameters with variances much smaller than 

unity, this diffuse prior is actually informative for practical sample sizes. In such cases, the use 

of alternative (Schuurman et al., 2016) or improper (Asparouhov, 2010) priors is preferred. For 

𝜎2, I assume an Inverse Gamma distribution, which is the univariate version of the Inverse 

Wishart. Both shape and scale parameters for this diffuse prior are set to 1, such that we have 

𝐼𝐺(1, 1).  

Note that the denominator on the right-hand side 𝑃(Δ𝐻𝑖𝑡) of equation (3.20) is independent of 

the parameters Θ, W, and 𝜎2. Thus, we can replace the equality with a proportionality and get 
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𝐾(Θ,𝑊, 𝜎2|Δ𝐻𝑖𝑡∀𝑖𝑡) ∝∏∏𝑃(Δ𝐻𝑖𝑡|Θ,𝑊, 𝜎
2)𝑘(Θ,𝑊, 𝜎2)

𝑡𝑖

 (3.21) 

Sampling directly from (3.21) using a Metropolis-Hastings algorithm is theoretically possible. 

However, it requires repeated evaluations of numerical integrals, making it practically infeasible. 

Instead, we can consider the realizations of the model parameters for each firm 휃𝑖 and all the 

error terms 휀𝑖𝑡 part of the joint distribution that we sample from.  

     𝐾(Θ,𝑊, 𝜎2, 휃𝑖∀𝑖, 휀𝑖𝑡∀𝑖𝑡|Δ𝐻𝑖𝑡∀𝑖𝑡) ∝ 

[∏𝜙(휃𝑖|Θ,𝑊)∏𝑃(Δ𝐻𝑖𝑡|휃𝑖 , 휀𝑖𝑡)𝜙(휀𝑖𝑡|0, 𝜎
2)

𝑡𝑖

] 𝑘(Θ,𝑊, 𝜎2)      
(3.22) 

Now the right-hand side consists only of our likelihood function (3.19), the Normal probability 

density functions for the parameters and error terms, and the priors. We can sample from this 

joint posterior distribution by repeating the following five-step Gibbs sampling algorithm until 

convergence: 

1. Draw 휃𝑖 for each firm 𝑖 conditional on 𝑏, 𝑊, 휀𝑖𝑡∀𝑡 and the observed data Δ𝐻𝑖𝑡∀𝑡.  

I use a Metropolis-Hastings algorithm to make these draws; evaluating trial values by the 

conditional probability (3.23) 

𝐾(휃𝑖|𝑏,𝑊, 휀𝑖𝑡∀𝑡, Δ𝐻𝑖𝑡∀𝑡) ∝∏𝑃(Δ𝐻𝑖𝑡|휃𝑖, 휀𝑖𝑡)𝜙(휃𝑖|𝑏,𝑊)

𝑡

   ∀𝑖 (3.23) 

2. Draw 휀𝑖𝑡 conditional on 𝜎2, 휃𝑖, and the observed data Δ𝐻𝑖𝑡. 

Again, I use a Metropolis-Hastings algorithm to make these draws. Here we evaluate trial 

values by the conditional probability (3.24). 

𝐾(휀𝑖𝑡|𝜎
2, 휃𝑖 , Δ𝐻𝑖𝑡) ∝ 𝑃(Δ𝐻𝑖𝑡|휃𝑖, 휀𝑖𝑡)𝜙(휀𝑖𝑡|0, 𝜎

2)   ∀𝑖𝑡 (3.24) 

 

3. Draw 𝑏 conditional on 𝑊 and 휃𝑖∀𝑖. 

This is a draw from a Normal distribution (3.25)  
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𝐾(𝑏|𝑊, 휃𝑖∀𝑖) = 𝒩 (
∑ 휃𝑖𝑖

𝑁
,
𝑊

𝑁
) (3.25) 

where 𝑁 is the total number of firms. 

 

4. Draw 𝑊 conditional on Θ and 휃𝑖∀𝑖. 

This is a draw from the Inverse Wishart distribution (3.26) 

𝐾(𝑊|Θ, 휃𝑖∀𝑖) = 𝐼𝑊 (𝑉 + 𝑁,
𝑉𝐽 + 𝑁𝑆̅

𝑉 + 𝑁
) (3.26) 

where 𝑆̅ =
∑ ( 𝑖−Θ)( 𝑖−Θ)

′
𝑖

𝑁
, 𝑉 is the number of parameters to be estimated, i.e. the length 

of each 휃𝑖, and 𝐽 is a 𝑉-dimensional identity matrix 

 

5. Draw 𝜎2 conditional on 휀𝑖𝑡∀𝑖𝑡 

This is a draw from the Inverse Gamma distribution (3.27) 

𝐾(𝜎2|휀𝑖𝑡∀𝑖𝑡) = 𝐼𝐺 (1 + 𝑁,
1 + 𝑁�̅�

1 + 𝑁
) (3.27) 

where �̅� =
∑ ( 𝑖𝑡−𝜎

2)( 𝑖𝑡−𝜎
2)
′

𝑖𝑡

𝑅
, and 𝑅 is the total number of observations in the dataset.  

I provide descriptions of the Gibbs and Metropolis-Hastings sampling algorithms in Appendix B. 

The likelihood function is evaluated in draws 1 and 2. Each of these evaluations require that we 

solve the firms’ MDPs for each firm in each period.  
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 Discussion 

The proposed model structure offers a flexible analysis framework for modelling firms’ 

employment size decisions over time. In this dissertation, I use it to examine the impacts of 

agglomeration economies. Specifically, I estimate the elasticity of productivity and labour 

market frictions with respect to various agglomeration measures in Chapter 4 and consider two 

scenario impact studies in Chapter 5 that explore the effects of a light-rail transit (LRT) line 

extension and quantify the costs of labour market frictions. However, the framework can be used 

to analyse any variety of subjects relevant for the evolution of the employment size of 

businesses. To examine specific subjects of interest, the researcher simply needs to specify the 

profit and adjustment cost functions with the relevant variables. For example, to examine the 

impact of economic policy, such as enterprise tax credits, the researcher only needs to make the 

appropriate changes to the profit function. Technological change can be modelled by 

appropriately changing the production function. For example, automation might change the total 

factor productivity and the returns to capital and labour inputs, and similarly, the ability to work 

remotely might change the returns to land and capital. The specification of the adjustment cost 

function is also a potentially fruitful avenue for research. By including the relevant variables, we 

can explore the impacts of spatial mismatches between the skills of workers and those demanded 

by businesses. If such mismatches increase the costs of hiring, we can model steady state 

unemployment at the micro-level. Furthermore, with measures of social network density and 

quality, we can also explore their impact on the job search costs. I present these examples to 

illustrate the flexibility of the framework. It merely provides a structure for modelling the 

decisions of businesses that are profit-maximizing and forward-looking. 

Challenges and limitations 

The modelling efforts presented in this chapter take several steps towards more economically 

sound representations of firm evolution at the microscopic level. However, these advances are 

certainly not without their limitations and areas for improvement. First and foremost, the 

complexity introduced by the structural approaches such as this make the models considerably 

more esoteric; they are less transparent, and their results are more difficult to interpret. In turn, 

this demands more precise communication from the researcher and more attention and effort 
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from the audience. Furthermore, the added sophistication of the model relies on detailed panel 

datasets and may not worthwhile if data of adequate quality are not available.  

In practice, uncertainty and imperfect information about current conditions are likely significant 

contributors to inaction and inertial responses on firms’ parts. The proposed model, in its present 

form, does not account for these effects explicitly. Instead, they may inadvertently be captured, 

partially or fully, by the 𝜇 parameters. Relatedly, the model assumes that firms are agnostic with 

respect to the future values of exogeneous variables 𝑥 and instead merely assume that current 

conditions persist. However, in reality expectations about future conditions likely play an 

important role in firm decision-making. Executives will form expectations and make decisions 

based on subject matter expertise and historical trend extrapolation. Although these rarely align 

perfectly with actual development, they are more informative than the constancy assumption 

made in the model. Introducing these expectations to the firms’ MDP would not add 

considerably complexity to the MDP or its solution. However, gathering data and formulating a 

model for the expectations requires considerable effort and is beyond the scope of this 

dissertation. 

The exponential-distributed inter-event times imply that adjustment events occur one at a time. 

Although perhaps technically accurate at the most microscopic level, this is likely not an 

accurate representation of all hiring and firing decisions. In particular, one can imagine 

employment size decisions being more individual for higher skill jobs in small firms, whereas 

they are likely made less on an individual basis for large, low-skill firms. Furthermore, hiring 

and firing are generally interspersed between each other in a firm’s employment size trajectory. 

However, the model structure does not allow that. Specifically, the likelihood function assumes 

that each observation only comprises adjustments in one direction. At first glance, this may 

appear quite restrictive. However, its impact should be small in practice. The model effectively 

disregards direct replacements, e.g. if an employee quits and the firm replaces them, as these 

changes are not resulting from changing profits. In other words, the issue only persists when a 

firm hires and fires employees due to profit fluctuations within observations. However, in many 

cases, the employment data is of the same or higher granularity than the explanatory variables. 
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Relation to Dynamic Programming Discrete Choice Models 

The model presented in this chapter is closely related to the class of models known as dynamic 

programming discrete choice (DPDC) models. As their name suggests, these models combine 

discrete choice models with dynamic programming. Specifically, traditional discrete choice 

models do not explicitly have a temporal dimension. Thus, decision-makers implicitly maximize 

instantaneous utility. On the other hand, DPDC models explicitly consider the temporal 

dimension by assuming that future utility depends on current choices and that decision-makers 

maximize (the present value of) lifetime utility instead of instantaneous utility. Such models of 

intertemporal decision-making processes have found application in many different contexts. For 

example, whether or not to have a child (Wolpin, 1984), job search (Miller, 1984), patent 

renewals (Pakes, 1986), bus engine replacement (Rust, 1987), occupation and schooling 

decisions (Keane and Wolpin, 1997), retirement behaviour from the labour force (Rust and 

Phelan, 1997; Karlstrom et al., 2004). My originally proposed dissertation work was another 

such model aimed at examining the impact of accessibility and agglomeration economies on 

workers’ wage progression. The central sections from that proposal are available in Appendix C. 

Aguirregabiria and Mira (2009) provide an overview of methods and issues related to DPDC 

models.  

Although similar, the model presented here differs from the typical DPDC model in a few ways 

that simplify the solution of the MDP and the estimation. Most obviously, firms do not choose 

from a discrete set of choice alternatives but instead decide on their adjustment rates, which can 

take any non-negative value. However, more importantly, the assumptions made here for the 

firm’s MDP significantly simplify its solution. Specifically, the state space is defined only by the 

firm’s employment size because the environment, i.e. exogenous variables 𝑥 and crucially the 

error terms 휀, are assumed constant. Furthermore, the relatively simple MDP enable the use of 

Bayesian estimation methods. Such methods would otherwise be infeasible, since re-solving a 

more complex MDP at each iteration of the Gibbs sampler quickly becomes too computationally 

burdensome (Aguirregabiria and Mira, 2009). In turn, the Bayesian estimation procedure allows 

me to simulate the errors. This considerably simplifies the evaluation of the likelihood function, 

which otherwise would require integration over the distribution of the error. 

 



57 

 

Integration in IUM framework 

The modelling work presented in this dissertation focuses on the hiring and firing of employees. 

Of course, this only represents one component of urban development, and the intended use of the 

model is as a part of a larger IUM framework.  Figure 3-5 shows the structure of the 

SimMobility framework, one of the state-of-the-art activity-based IUMs (Adnan et al., 2015). It 

models urban activity at three different timescales, ranging from second-to-second decisions in 

traffic in the short-term module, through day-to-day activity decisions in the mid-term module, 

to life and lifestyle decisions in the long-term module.  

Figure 3-5: SimMobility framework, adapted from Adnan et al. (2015) 

 

Within this framework, our firm employment size model fits in the long-term module. Figure 3-6 

presents an example schematic of how the employment size model could be integrated within a 

SimMobility-like framework.  
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Figure 3-6: Example integration of employment size model in SimMobility-like framework 

 

Although the proposed employment size model is able to operate in continuous time, there is 

generally no benefit to doing so in an integrated model. Instead it will adhere to the time steps of 

the larger framework. For SimMobility LT, this is typically year-by-year. The flexibility of the 

proposed model does mean that it can be adapted to operate with time steps of any size in a 

theoretically consistent manner. 

Firm behaviour, as it is relevant to integrated urban models, is generally captured by three (types 

of) models: birth and death models, location models, and employment size growth and decline 

models. Although all three models describe firm behaviour, they do not interact directly. For 

each time step, a birth model creates new firms for each sector. Initially, these firms will 

comprise a single employee and will not yet be assigned a location. Then, an awakening model 

determines the subset of firms that were looking to relocate. This model can be formulated as a 

survival model or a simple binary choice. SimMobility determines residential relocations by 

modelling the real estate market with a bidding model that simulates households’ willingness-to-

pay for available locations. A similar bidding model could be developed for commercial real 
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estate. Once all firm locations, including those of new firms, have been modelled, we can use the 

employment size model to determine the growth and decline of each firm. Finally, firm closures 

can also be handled by the employment size model, i.e. a firm closes if its optimal employment 

size is non-positive. However, this requires that the data used to estimate the employment size 

model includes firm deaths. If this is not the case, deaths should be modelled as a separate 

process. 

Naturally, firms interact with the larger urban system in numerous ways. This is reflected by firm 

model outputs serving as inputs for other models and vice versa. Within the long-term module, 

firm models interact with household models with flow of information in both directions. A firm’s 

labour pool depends on the location and composition of households. Additionally, the location of 

people is a key determinant in market access for consumer-facing firms. Conversely, the firm 

models collectively provide the location and quantity of jobs, which influence household 

residential location decisions.  

The assignment of workers to jobs should ideally be a matching model that finds the best match 

between the workers’ skill sets and the tasks associated with available jobs – similar to the 

residential bidding model with wages representing prices. 

The firm models also interact with the models in the mid-term module with data being passed in 

both directions. The transportation system plays a central role in facilitating agglomeration 

economies and is naturally a key determinant of the costs of transporting goods between firms. 

These inputs come from models in the mid-term module. On the other hand, the location of jobs 

and firms serve as destinations for work trips as well as many leisure and shopping trips. 

The focus on employment size adjustments in this dissertation should primarily be attributed to 

limited data availability. In particular the primary firm dataset, the historical micro-level business 

records from InfoGroup, does not describe firm birth and death events nor does it consistently 

identify relocations. Furthermore, a satisfactory location model requires additional real estate 

market data, including transaction prices, asking prices, availabilities, etc. I provide detailed 

descriptions of the datasets in this dissertation in Chapter 4.1.  
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Applications beyond employment 

The presented model was developed specifically for employment size adjustment processes. 

However, it is potentially useful for other applications beyond employment. In general, the 

model describes random incidence processes where the event rate changes between subsequent 

events. A timely example of an alternative application is for modelling the timing of repeated 

Covid-19 infections. Since the development of antibodies following an infection lowers the risk 

of subsequent reinfection, the event rate effectively changes.  

In the urban transportation context, the archetypical applications of Poisson processes are 

passenger arrivals at a bus stop and queuing systems. The presented varying-rate model can also 

be applicable for these purposes, especially in low-demand cases. For example, if on average 

only a few passengers arrive at a bus stop each hour, and several just arrived, it would seem 

likely that subsequent arrival rates are lower because demand has already been depleted. 

However, in most cases, particularly higher demand ones, the memoryless fixed-rate properties 

of the Poisson are adequate approximations and results in much simpler models. Activity 

scheduling models are perhaps a more appropriate and worthwhile application of the varying-rate 

model. For most people, activities such as shopping, leisure, and exercise happen with some 

level of regularity but are generally not fixed. For example, if someone usually makes two 

grocery shopping trips each week, it is much more likely that they will go on any given day if 

they have yet to go than if they had already gone twice this week. The events are not independent 

because they depend on the person’s demand for groceries which is finite within any given time 

period. 
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 APPLICATION TO BOSTON 

 Data 

In the following sections, I describe the datasets used for the empirical application of the model 

to the Greater Boston Area. No new data were collected specifically for this project. Instead, I 

make use of a combination of existing datasets, including commercial business intelligence data, 

transportation and land use data provided by local planning agencies, and publicly available 

economic datasets. The use of already existing datasets both demonstrates what can be achieved 

without a dedicated data collection effort and pinpoints where better data would be beneficial. 

Table 4-1 below provides an overview of the datasets I used, including the spatial and temporal 

resolutions of each dataset. 

Table 4-1: Overview of datasets for empirical application in the Greater Boston Area 

Dataset Source 
Year(s) 

available 

Temporal 

resolution 

Spatial  

resolution 

Historical Micro-

level Business 

Records 

InfoGroup (2014) 2003-13 Months  

Latitude, 

longitude; 

addresses 

Population and 

Employment 

Forecasts  

Metropolitan Area 

Planning Council 

(2009) 

2000, 

2030 

Months 

(interpolated) 
TAZ 

Travel Time and 

Cost Matrices 

Central 

Transportation 

Planning Staff 

(2007) 

2005 N/A TAZ 

Massachusetts 

Travel Survey 

Central 

Transportation 

Planning Staff 

(2012) 

2010-11 N/A 
Block groups;  

PUMA 
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Dataset Source 
Year(s) 

available 

Temporal 

resolution 

Spatial  

resolution 

Land Parcels 

Massachusetts 

Bureau of 

Geographic 

Information (2019) 

2009 N/A Parcels 

GDP by Industry 

U.S. Bureau of 

Economic 

Analysis. (2021b) 

2003-13 Years 

N/A (Boston-

Cambridge-

Newton MSA 

average) 

Compensation by 

Industry 

U.S. Bureau of 

Economic 

Analysis. (2021c) 

2003-13 Years 

N/A (Boston-

Cambridge-

Newton MSA 

average) 

Value Added by 

Industry 

U.S. Bureau of 

Economic 

Analysis. (2021e) 

2003-13 Years 
N/A (U.S. 

average) 

Employment by 

Industry 

U.S. Bureau of 

Economic 

Analysis. (2021a; 

2021d) 

2003-13 Years 

N/A (U.S. 

average; 

Boston-

Cambridge-

Newton MSA 

average) 

Weighted Average 

Cost of Capital by 

Industry 

Damodaran (2021) 2021 N/A N/A 

 

One overarching drawback of using such disparate data sources is the additional cleaning and 

processing necessary to ensure alignment in spatial and temporal resolution. Inevitably, the 

aggregation to shared units introduces some error. Table 4-2 summarizes and illustrates the 

differences in spatial resolution between public use micro areas (PUMAs), traffic analysis zones 

(TAZs), block groups, and parcels.  
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Table 4-2: Summary of spatial resolutions 

Resolution Count Mean area Median Area 

Public Use Micro 

Areas (PUMA) 
38 256 km2 170 km2 

Traffic Analysis 

Zones (TAZ) 
2728 2.69 km2 1.08 km2 

Block Groups 3337 2.11 km2 0.595 km2  

Parcels 1039437 0.00485 km2 0.00277 km2 

 

Historical Micro-level Business Records 

The historical micro-level business records are a panel dataset, providing information about 

company names, locations (addresses and latitude-longitude), employment sizes, which sectors 

they operate in, and more (InfoGroup 2014). The dataset is compiled by InfoGroup, a data and 

marketing services company based in the U.S. The business records used here are one of their 

commercial products that has been made available for academic purposes at MIT and Harvard 

through the Harvard Dataverse. InfoGroup compiled and continuously updated the data by 

combining telephone interviews with publicly available data sources, including yellow pages, 

government sources, public company filings, points-of-interest compilations. The academic-use 

dataset is published in annual snapshots, saved each December between 2003 and 2013.  

The variables of interest for this study remained present in the dataset in all snapshots. However, 

their values were unfortunately not always consistent. In other words, while business name, 

address, and coordinates were available in all years, their values for the same business in the 

same location sometimes change. For example, the same business might change their name, be 

recorded with/without corporate suffixes (e.g. ltd. Or inc.), or simply be misspelled in certain 

years. Similarly, locations might be recorded with inconsistent address numbering, e.g. when 

located in large malls spanning multiple numbers, with/without unit information, or with 

inconsistent latitude-longitude information jumping between parcel centroid coordinates and 
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curbside coordinates. To alleviate challenges linking records of the same business across 

different years, I use InfoGroup’s own business ID flag (known as ABI, short for American 

Business Information). On inspection, it appears to handle and overcome inconsistencies in other 

identifying fields. However, due to the proprietary nature of the data and ABI field definition, it 

is unknown how records of the same business are linked over time. In particular, this can be 

important for identifying relocations versus business birth/death. 

The employment size is one of the key variables that InfoGroup elicited through telephone 

interviews. However, these calls are made continuously and irregularly, as opposed to on a fixed 

schedule or with a fixed frequency. Consequently, businesses generally do not have updated 

records in every annual snapshot. This poses several challenges for the analysis. First, the dataset 

is an unbalanced panel with many observations for some firms and few for others. Fortunately, 

the model formulation is built to handle irregular inter-observation durations. Second, the lack of 

a fixed frequency makes it impossible to identify firm births and deaths. Periods without 

observations before the first and after the last data point could represent either gaps in the call 

schedule or the business no longer existing. Crucially, if the latter is prevalent, it can lead to 

attrition bias in the estimation. I elaborate on this in the limitations section. 

For this Boston study, I only consider records within the Greater Boston Area as defined by the 

Boston Metropolitan Area Planning Council (MAPC). I discard records where businesses’ 

employment sizes were not verified by phone interviews. Additionally, I discard records for 

which the provided address and coordinates could not reliably be geocoded to a parcel in the 

MassGIS parcel data (see below for a description of the parcel data). Geocoding was attempted 

by three methods: (1) matching the address strings between the records and parcels, (2) matching 

the location of the record coordinates and the parcels, and (3) finding the nearest parcel to the 

record coordinates. The last method was necessary because a large number of record coordinates 

were placed curbside, rather than within the parcel boundaries. Records whose coordinates did 

not have a parcel within 50 metres were discarded. Finally, I discard firms with only a single 

record since the analysis requires information about employment size over time. In total, the final 

dataset comprises 253,826 records from 79,360 unique businesses. Table 4-3 presents record and 

firm counts for the three sectors of interest. 
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Table 4-3: Records and firms in manufacturing, professional services, and food and accommodation 

services 

Sector Records Firms 

Manufacturing 13745 3939 

Professional  29225 8518 

Food and accommodation  15846 4989 

(InfoGroup, 2014) 

Population and Employment Forecasts 

The spatial distributions of population and employment are required to measure agglomeration. 

Using forecasts from the MAPC’s 2030 regional plan, known as MetroFuture (Metropolitan 

Area Planning Council, 2009), I interpolate population and employment by TAZ for each month 

between 2003-13. The plan takes population and employment numbers by TAZ based on the 

2000 US Census and information from the Central Transportation Planning Staff (CTPS) and 

projects their development to 2030. Note that while the historical business records from 

InfoGroup provides information about individual firms’ employment, they do not cover every 

business or provide expansion factors. Thus, the MAPC forecasts are likely reliable for aggregate 

counts. That said, the use of forecasts rather than observed data introduces its own problems. 

Specifically, their appropriateness as a proxy for actual development depends on the accuracy of 

the forecasting model and interpolation. This inevitably introduces additional error. On the other 

hand, since forecasts are by definition made independently of the actual development, they are 

useful for addressing potential simultaneity concerns. 

Travel Time and Cost Matrices 

The transportation system is represented by travel time and cost matrices connecting all TAZs to 

each other. These matrices are provided by the CTPS (2007). The data describe travel times and 

costs by auto (single and high occupancy vehicles) and transit modes. These are based on 

CTPS’s 2005 model. Additionally, the dataset also includes a distance matrix, which is useful for 

modelling travel impedance for active modes. Unfortunately, these travel time and cost data were 
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only available for a single point in time, i.e. they are cross-sectional. Thus, this study does not 

capture the impacts of changes to the transportation system over the analysis period.  

Massachusetts Travel Survey 2010-11 

The Massachusetts Travel Survey elicits information about individuals’ and households’ travel 

preferences, e.g. mode choices and vehicle ownership decisions, and relate these to various 

socio-demographic characteristics (CTPS, 2012). Specifically, the survey comprised a 24-hour 

weekday trip diary and a follow-up questionnaire administered by phone or mail. The data 

collection period spanned from May 2010 to October 2011. During this period, a total of 15,033 

households in Massachusetts completed the survey. Of these, 7,661 resided in the Greater Boston 

Area (i.e. within MAPC jurisdiction). The sample was then expanded by iterative proportional 

fitting (IPF) to align with the 2006-2010 American Community Survey (ACS). The 

Massachusetts Department of Transportation (2012) report provides a complete description of 

the survey methods and results.  

I use the data from the Massachusetts Travel Survey for two purposes: First, I estimate a 

commute mode choice model, whose coefficients I use for calculating accessibility measures. 

Second, I extract and expand survey responses vis-à-vis education to calculate average local 

education levels, which I control for in the model estimation. Similar to the travel time and cost 

matrices, these data are unfortunately cross-sectional only. 

Massachusetts Land Parcel Database 

The Massachusetts Bureau of Geographic Information (MassGIS) maintains a publicly 

accessible database of all the land parcels in the commonwealth (MassGIS, 2019). It has 

information about parcel sizes, number of occupants, publicly assessed values, land use 

designation, etc. I join this dataset with the historic micro-level business records to determine 

how much land each business occupies. The dataset being cross-sectional likely does not 

introduce considerable error, since parcels would mostly be limited to renovation rather than 

redevelopment while occupied. However, the dataset is updated to 2019, meaning that parcels 

and building stock may not match conditions in 2003-13, especially in rapidly developing areas. 
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Aggregate Economic Data 

To control for macroeconomic trends, I use several aggregate economic statistics, including 

GDP, average compensation per employee, and value-added per employee. All statistics are 

stratified by year and sector. The data are published by the U.S. Bureau of Economic Analysis 

and are publicly accessible. They are available at different levels of aggregation. Specifically, 

GDP and compensation data can be found for the Boston-Cambridge-Newton MSA, while value-

added data are only available at the national level. Although the Boston-Cambridge-Newton 

MSA does not perfectly overlap with the Greater Boston Area as defined by the MAPC 

jurisdiction, it covers the majority of the same economic centres. Thus, the statistics here are 

likely more representative of the Greater Boston Area than state or national averages. 

Weighted Average Cost of Capital 

Weighted average cost of capital (WACC) is a measure of a firm’s cost to raise money and is a 

key parameter in determining its profitability. Damodaran (2021) collected data for 7582 

businesses in the U.S and calculated the WACC for different sectors. For this study, I use these 

WACC as the discount rate, as specified in Chapter 3.1, of the firms in the respective sectors. 
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 Descriptive Statistics 

In this section, I present descriptive statistics for the three sectors of interest: manufacturing, 

professional services, and food and accommodation services. In particular, I aim to examine the 

differences aggregate patterns vis-à-vis labour and land inputs, and unevenness of growth across 

space and over time.  

Table 4-4 shows the mean and median employment size and land area for businesses in each of 

the three sectors. To avoid overrepresenting more frequently observed firms, these statistics are 

calculated using only the first observation (chronologically) of each business.  

Table 4-4: Employment size and land area by sector 

Sector Employment size Land area (sq. metres) 

Mean Median Mean Median 

Manufacturing 24.0 7 1437.5 559 

Professional  12.8 4 716.7 287 

Food and Acc. 15.9 8 950.5 316 

(Infogroup, 2014; Massachusetts Bureau of Geographic Information, 2019) 

Across the board, the mean sizes are larger than medians, suggesting that firm sizes are right-

skewed in all three sectors, i.e. there are many smaller businesses and a few very large ones. 

Comparisons across the sectors largely yield expected outcomes. Manufacturing is the most land 

intensive sector, both in absolute terms and on a per-employee basis. On the other hand, 

professional services firms are the smallest in terms of both employment size and land area. 

Notably, in the food and accommodation services sector, the mean-to-median ratio is 

considerably larger for land (3.0) than employment size (2.0), suggesting that land is more right-

skewed. This can likely be explained by the composition of the sector; food services and 

accommodation services, as their names imply, make use of space in very different ways. 

Next, I examine employment size changes in each of the three sectors. The total observed 

employment size changes in the InfoGroup dataset were -1493 in manufacturing, +1911 in 

professional services, and -2228 in food and accommodation services. For more than three-
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quarters of the observations in each of the three sectors, firms neither created new jobs nor 

eliminated existing ones. While many of these may indeed reflect stable employment sizes, some 

can likely be attributed rounding and erroneous reporting during phone interviews. To address 

potential underreporting of employment size changes, I estimate a zero-inflated model. I 

elaborate on this in Chapter 4.5.  

Table 4-5: Summary of job creation and destruction in manufacturing, professional services and food and 

accommodation services in the InfoGroup dataset 

Sector 
Total 

change 

% No 

change 

Job creation Job destruction 

Mean Median Mean Median 

Manufacturing -1493 78.7% 8.8  3  -9.1  -3  

Professional +1911 76.8% 5.6 2 -4.6  -2  

Food and 

accommodation 
-2228 77.5% 5.0 3 -5.6  -3  

(Infogroup, 2014) 

The job creation columns in Table 4-5 show the mean and median jobs created per observation 

for observations with positive change. Conversely, the job destruction columns show the mean 

and median jobs destroyed per observation for observations with negative change. 

Figure 4-1 shows the unevenness of these changes over space. We can observe manufacturing 

decline in satellite towns and the exurbs. Discrepancies in direction of development between this 

map and the specialization map are a result of growth and decline in other sectors in the same 

areas. For professional services, growth is centered around the urban core and the immediate 

suburbs. Changes in food and accommodation services are more uniform with less apparent 

peaks and troughs. This could be evidence that agglomeration economies play a smaller role for 

this sector and that it instead follows overall population and employment growth patterns. 
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Figure 4-1: Employment size growth in towns by sector 2003-13 

Manufacturing 

 

Professional services 

 

Food and accommodation services 

 

 

(Metropolitan Area Planning Council, 2009)
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Figure 4-2 compares annual average employment size changes to value added per worker in each 

sector. The latter are data for the entire U.S. and have been normalized, such that the mean for 

the period 2003-13 is equal to 1. Although the relationship between these two variables hardly 

tells complete or conclusive stories, we can glean some interesting information from the graphs. 

For manufacturing, employment has declined despite increased worker productivity. This trend 

is likely a consequence of the increased automation of the sector. On the other hand, the 

employment in food and accommodation services for the most part mimic the productivity 

trends. The 2008-09 financial crisis is also apparent in the productivity time series, albeit to 

varying degrees. Interestingly, the response in terms of employment changes differ in time 

between the sectors. For manufacturing and especially food and accommodation services the 

response in employment adjustments is immediate, whereas for professional services there 

appears to be a delay, both in eliminating jobs and in the subsequent recovery.  
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Figure 4-2: Annual employment size change and value added per worker by sector 

 

 

 
 

(InfoGroup, 2014; U.S. Bureau of Economic Analysis, 2021a, 2021d, 2021e) 
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 Measures of Agglomeration 

My study explores two channels through which agglomeration economies affects the evolution 

of firms’ employment sizes: (1) by increasing productivity; and (2) by reducing labour market 

frictions associated with searching for and hiring new employees. To quantify agglomeration, I 

use the gravity formulation. Popularized in transportation planning as accessibility, gravity-based 

accessibility fundamentally captures scale of activity and proximity. Although agglomeration 

economies encompass a multitude of different mechanisms, they are ultimately all enabled by a 

combination of scale and proximity.  

Gravity-based accessibility consists of two components: the count of opportunities 𝑑𝑗 (e.g. jobs, 

people, firms) in each zone j, representing the scale of activity; and a generalized cost function 

𝑐𝑖𝑗, representing the spatial friction between the zone of interest 𝑖 and each zone 𝑗.  

𝐴𝑖 =∑𝑑𝑗 exp(−휂𝑐𝑖𝑗)

𝑗

 
(4.1) 

Crucially, the gravity formulation assumes a gradual attenuation of the strength of effects, rather 

than a binary step function defined by (often arbitrary) zone boundaries. The parameter 휂 reflects 

how rapidly agglomeration effects decay over space. Thus, by varying this parameter we can 

examine the spatial extent of the agglomeration economies. Ideally, 휂 should be estimated as a 

parameter in the Bayesian estimation procedure. However, that would require recalculating 

equation (1) and its more than 7.4 million 𝑖𝑗 pairs at every iteration of the Gibbs sampler. 

Unfortunately, this is not feasible with existing computational resources. Instead, I estimate the 

model repeatedly with various fixed values of 휂 (0.25, 0.5, 1.0, 2.0, 5.0) to determine the best-fit 

in what is effectively a manual nested fixed-point algorithm. 

For the generalized costs 𝑐𝑖𝑗, I make use of the logsums from a commuting mode choice model. 

This captures the expected maximum utility (or minimum disutility) of making a trip accounting 

for all viable modes. Appendix D provides a description of the mode choice model, its utility 

functions, and estimated parameters. Finally, turning to the activity component 𝑑𝑗, I consider 

three different formulations. These are: 
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• Population: 𝑝𝑜𝑝𝑗 is defined as the total population in each TAZ 𝑗. This uses the 

population data from MAPC (Metropolitan Area Planning Council, 2009) and measures 

access to people at their place of residence. 

• Employment: 𝑒𝑚𝑝𝑗 is defined as the total employment in each TAZ 𝑗. This uses the 

employment data from MAPC (Metropolitan Area Planning Council, 2009) and measures 

access to economic activity or workers at their place of work. 

• Specialization: 𝑠𝑝𝑒𝑐𝑗
𝑘 is defined as the fraction of employment in TAZ 𝑗 belonging to 

sector 𝑘. Thus, this is a captures concentration of activity in a single sector, rather than 

the scale of total like the previous two measures did. 

𝑠𝑝𝑒𝑐𝑗
𝑘 =

𝑒𝑚𝑝𝑗
�̃� 

𝑒𝑚𝑝�̃� 
 (4.2) 

Here, I use the tilde superscript to denote that the data source for this agglomeration 

measure is the InfoGroup historical business records (InfoGroup, 2014). Using this 

dataset for calculating summary statistics has its drawbacks. Namely, it is unlikely to be a 

perfectly representative sample and InfoGroup does not provide any expansion factors. 

However, the MAPC dataset does not differentiate employment by sectors and data from 

the Bureau of Economic Analysis is too aggregated spatially to be of use. 

In addition to varying across space, all three measures also vary over time by virtue of both the 

InfoGroup and MAPC data being longitudinal. Ideally, the travel time and cost data underlying 

the generalized cost matrix should also vary over time to reflect changes in the transportation 

system. However, these data were only made available as a single snapshot. While these three 

measures suitably describe agglomeration of activity in space, we should be under no illusion 

that any of them perfectly align with any single mechanism of agglomeration economies. Rather, 

they are simplified measures that capture partially overlapping bundles of different mechanisms. 

Unfortunately, fully disentangling all these underlying mechanisms remains infeasible with the 

available data.  

Table 4-6 presents the mean normalized agglomeration measures (휂 = 1) of firm locations by 

sector. This shows the expected pattern with professional services being located with best access 
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to population and employment, followed by food and accommodation services. The comparisons 

between specialization measures might at first appear counter-intuitive with manufacturing 

having the lowest average. However, since each measure is normalized within its own sector, the 

comparison shows which sector is more centralized. For example, if all firms in one sector are 

located in the same area, whereas the firms in another sector are spread out, the former will yield 

a much higher average normalized specialization score. In this case, professional services firms 

are largely centralized in the downtown core, while manufacturing firms are spread out over the 

region. This somewhat counter-intuitive outcome is not an issue for estimation purposes, where 

scores are only compared within-sector. 

Table 4-6: Average agglomeration (휂 = 1) for firm locations by sector 

 Population Employment Specialization 

Manufacturing 0.76 0.67 0.97 

Professional 1.27 1.48 1.40 

Food and 

accommodation 
1.14 1.22 1.21 

 

The following section presents maps of the agglomeration measures. Two figures are presented 

for each measure, one showing the 2003 levels and showing change between 2003 and 2013. 

Additionally, each figure shows maps for 휂 values of 0.25, 1.0, and 5.0. All the values have been 

normalized such that the mean of each measure is 1. Figure 4-3 and  

Figure 4-4 show maps of population agglomeration, while Figure 4-5 and Figure 4-6 show maps 

of employment agglomeration. The maps show continued urbanization with growth centered 

around the urban core and along major highways, particularly near interchanges. In fact, drawing 

lines between high-growth areas would yield a decent approximation to the highway network in 

the Greater Boston Area. The 휂 parameter acts as a slider between regional (small 휂) and local 

(large 휂) lenses. A small 휂 reflects slow spatial decay and captures far-reaching agglomeration 

effects. Conversely, a large 휂 reflects rapid spatial decay and captures agglomeration effects 

acting in the immediate vicinity 

.
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Figure 4-3: Population agglomeration by TAZ in 2003 
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Figure 4-4: Population agglomeration change by TAZ in 2003-13 
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Figure 4-5: Employment agglomeration by TAZ in 2003 
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Figure 4-6: Employment agglomeration change by TAZ in 2003-13 
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Figure 4-7 through Figure 4-12 present maps of specialization in each of the three sectors of 

interest. For manufacturing, there are several clusters (휂 = 5.0) in satellite towns outside the 

urban core with the regional centre (휂 = 0.25) located north of the city proper. Specialization in 

manufacturing increased in the aforementioned satellite towns but decreased in the core. 

Professional services are, as expected, centered around the urban core, with the growth in the 

sector continuing that trend. However, there also appears to be a professional services cluster 

forming in the Taunton area south of Boston. The pattern of development for food and 

accommodation appears like a combination of the two other sectors. Specialization is highest in 

the core but its distribution is more homogenous across the region than professional services.  
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Figure 4-7: Manufacturing specialization by TAZ in 2003 
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Figure 4-8: Manufacturing specialization change by TAZ in 2003-13 
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Figure 4-9: Professional services specialization by TAZ in 2003 
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Figure 4-10: Professional services specialization change by TAZ in 2003-13 
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Figure 4-11: Food and accommodation services specialization by TAZ in 2003 
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Figure 4-12: Food and accommodation services specialization change by TAZ in 2003-13 
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 From Mechanisms to Measures 

In this section, I link the mechanisms of agglomeration economies to the measures formulated in 

Chapter 0. Specifically, I formulate hypotheses for which mechanisms I believe are relevant for 

each sector based on the literature review in Chapter 2.2 and then determine which measure best 

captures those mechanisms. This is summarized by Table 4-7 below. The following provides 

brief descriptions of the main mechanisms at play. The review of mechanisms and micro-

foundations of agglomeration economies in Chapter 2.2  elaborates on these. 

• Input/output sharing: The sharing of intermediate suppliers and buyers enable 

businesses to operate at larger scale. In turn, this allows for efficient use of indivisible 

equipment and facilities. Additionally, clustering also reduces the transport costs of 

physical goods. In this study, these mechanisms are primarily relevant for the 

manufacturing sector.  

• Learning: Learning mechanisms encompass innovation, spill-overs of existing 

production technologies, and transfer of tacit knowledge through face-to-face 

interactions, and can occur both within sectors (localization economies) and across 

sectors (urbanization economies). These mechanisms become more pertinent the more 

knowledge-intensive a sector is. Thus, they apply to professional services and, to a lesser 

extent, manufacturing. 

• Match quality: A thick labour market improves the average quality of matching between 

firms and workers, making better use of workers’ skills. Matching is most applicable to 

skills-intensive sectors, again, professional services and, to a lesser extent, 

manufacturing. 

• Labour pool: Access to a larger labour pool allows businesses to find workers with a 

suitable skillset more quickly. Population and specialization capture different aspects of 

the labour pool, namely size and appropriateness of the skillsets available. The latter is 

likely more important to skill-intensive sectors, i.e. professional services and 

manufacturing. 

• Competition and market potential: Competition and market potential have been 

included in the table even though they do not affect productivity directly. Instead they 
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affect prices and in turn revenue through supply and demand. However, I do not have 

adequately detailed price data to control for local price variations. Thus, the estimated 

coefficients of the agglomeration measures will likely also capture these market effects. 

Incorporating a spatial input-output model that determines local price variations from 

make/use tables is a potential solution to address this. However, the spatial granularity of 

these models is typically at the regional scale, whereas I examine the effects 

agglomeration within a metropolitan area.  

The expectations for the spatial extent of each mechanism depend primarily on who the 

interacting agents are. For match quality and frequency, which are interactions between 

employers and employees at the job search stage, it seems sensible to measure agglomeration at a 

spatial scale similar to people’s willingness to commute. I denote this as “metropolitan” in Table 

4-7. Learning mechanisms are usually associated with interactions between employees at or near 

their workplace, e.g. in an office complex. Hence, the expected spatial extent is relatively small. 

I denote this as “local”. Finally, input/output sharing, presence of competition, and access to 

markets are all interactions between firms and their suppliers and buyers. Thus, the spatial extent 

of these mechanisms depends on the nature of the trade linkages. For example, a manufacturing 

firm likely sources its intermediate inputs regionally and beyond, whereas the market area of a 

typical restaurant is far more local. For I/O sharing, which is primarily relevant for 

manufacturing firms, my hypothesis is that the spatial extent is “regional”. For market potential 

and competition, the spatial extent varies by sector but are likely decreasing in the following 

order: manufacturing, professional services, then food and accommodation services. 

Table 4-8 translates Table 4-7, such that rows represent agglomeration measures. It summarizes, 

by adding together all the +’s and –‘s, the total expected effect of all mechanisms captured by 

each measure, allowing me to compare the a priori hypotheses with empirical findings. 
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Table 4-7: A priori expectations of how the mechanisms interacts with each sector, which channel they act through, their spatial extent, and which 

measure they are captured by 

Mechanism Manufacturing Professional 
Food and 

accommodation 
Spatial extent 

Agglomeration 

measure 

I/O sharing +++   Regional Specialization 

Learning + +++  Local 
Employment 

Specialization 

Match quality + ++  Metropolitan 
Population 

Specialization 

[Match frequency] [++] [+++] [+] Metropolitan 
Population 

Specialization 

Competition - - - - - 
Varies 

(see text) 
Specialization 

Market potential + + +++ 
Varies 

(see text) 

Population 

Employment 

Specialization 
[] indicate mechanisms acting through the labour market friction channel as opposed to productivity 
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Table 4-8: Hypothesized relative magnitudes of agglomeration measures  

Agglomeration 

measure 
Spatial extent Mechanisms Manufacturing Professional 

Food and 

accommodation 

Population 

Local Market potential3     +++ 

Metropolitan 
Match quality123  

[Match frequency]123 

+ 

[++] 

++  

[+++] 
 [+] 

Employment Local 
Learning2  

Market potential3  
 +++ +++ 

Specialization 

Local 
Learning12 

Competition3 
+ +++ - - -  

Metropolitan 

Match quality12  

[Match frequency]123 

Competition2 

+  

[++] 

+  

[+++] 
 [+] 

Regional 

I/O sharing3 

Competition3 

Market potential3 

+++   

[] indicate mechanisms acting through the labour market friction channel as opposed to productivity 

1 applies to manufacturing  

2 applies to professional services 

3 applies to food and accommodation services 
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 Model Specification 

Table 4-9 presents the exogeneous variables used in the model specification that were not 

already discussed in the agglomeration measures section. These include employment size, land, 

wages, and various control variables. 

Table 4-9: Variable descriptions 

Variable Symbol Description 

Employment size 𝐻 Number of workers employed by firm 

Land 𝐿 Floorspace used by firm 

Wages 𝜔 
Average compensation by sector and year in the Boston-

Cambridge-Newton MSA 

GDP  𝛾1 
GDP by sector and year in the Boston-Cambridge-

Newton MSA 

Productivity 𝛾2 Value added per employee by sector and year in the US 

Education 𝛾3 

Percent of workers with college degree or above (for 

professional services and manufacturing) 

Percent of workers and residents with college degree or 

above (for food and accommodation services) 

 

Profit �̅� is the difference between revenue and costs. I model firm production with a Cobb-

Douglas production function with employment size 𝐻 and land 𝐿 inputs and total factor 

productivity 𝜏. Revenue is given by the product between output prices 𝑝 and the firm’s 

production.  

𝑟𝑒𝑣𝑒𝑛𝑢𝑒 = 𝑝 𝜏𝐻𝛽0𝐿𝛽1 

𝜏 = 𝛽2 𝛾1
𝛽3𝛾2

𝛽4𝛾3
𝛽5  𝐴1

𝛽6𝐴2
𝛽7 … 

(4.3) 
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𝛽0 and 𝛽1 are the elasticity parameters associated with employment and land, respectively. We 

normally expect that 0 < 𝛽0 , 𝛽1 < 1, such that production is concave with respect to each input. 

The 𝐴’s denote relevant agglomeration measures based on Table 4-8. Unfortunately, accurate 

information about the prices of the goods and services each firm produces is not available. 

Instead, I assume that firms are price-takers and that they can sell their entire production at a 

fixed market price. In estimating the model, this value will be captured by 𝛽3, the constant term 

in the total factor productivity. 

For production costs, only those that are a function of employment size are relevant for our 

purpose.  

𝑐𝑜𝑠𝑡 = 𝜔𝐻 + 𝑘 (4.4) 

Constant cost terms 𝑘 get cancelled out since we only consider differences in profit at various 

employment sizes. It is for this reason that the error term has also been specified as a function of 

the employment size 𝐻. The firm’s profit 𝜋 is the difference between its revenue and costs. 

�̅� =  𝑝𝜏𝐻𝛽0𝐿𝛽1 − 𝜔𝐻 + 𝑘 

𝜋 = 𝑝𝜏𝐻𝛽0𝐿𝛽1 − 𝜔𝐻 + 𝑘 +𝐻휀  
(4.5) 

Section 3.2 discussed the formulation of adjustment costs and their different impacts on firm 

behaviour. However, that discussion did not consider agglomeration economies. The literature on 

thick market effects suggest that having access to a larger labour pool enables quicker matching 

between employers and employees, all else equal. Thus, I include agglomeration measures 

capturing labour pool effects in the adjustment costs specification – see Table 4-8. Specifically, I 

include it in the superlinear term in hiring costs, since this most directly governs adjustment 

rates.  

𝛼(𝜆𝐻) = {
𝜇0
+ + 𝜇1

+𝜆𝐻 + 𝜇2
+𝐴3

𝜇3𝐴4
𝜇4⋯𝜆𝐻

2 𝑖𝑓 ℎ𝑖𝑟𝑖𝑛𝑔

𝜇0
− + 𝜇1

−𝜆𝐻 + 𝜇2
−𝜆𝐻

2 𝑖𝑓 𝑓𝑖𝑟𝑖𝑛𝑔
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   

                             𝑤ℎ𝑒𝑟𝑒 𝜇0
+, 𝜇1

+, 𝜇2
+, 𝜇0

−, 𝜇1
−, 𝜇2

− > 0 

(4.6) 
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To address potential “excess zeroes” in the dataset, i.e. observations where firms erroneously 

reported that no employment size adjustment were made, I estimate a zero-inflated model. This 

approach introduces and mixes-in an additional zero-generating process. For this purpose, I use a 

binary logit.  

Pr(𝑒𝑥𝑐𝑒𝑠𝑠 𝑧𝑒𝑟𝑜) = 𝑍 =
1

1 + 𝑒−
 (4.7) 

where 휁 is a parameter to estimate. Now, we might observe zeroes as a result of the original data-

generating process or this new zero-generating process.  

Pr(Δ𝐻𝑖𝑡 = 0) = 𝑍 + (1 − 𝑍) ⋅ 𝑃(0|휃𝑖 , 휀𝑖𝑡) 

Pr(Δ𝐻𝑖𝑡 > 0) = (1 − 𝑍) ⋅ 𝑃(Δ𝐻𝑖𝑡|휃𝑖 , 휀𝑖𝑡) 
(4.8) 
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 Results and Discussion 

Using Bayesian estimation procedure discussed in Chapter 3.3, I estimate separate models for 

each of the three sectors, manufacturing, professional services, and food and accommodation 

services. Table 4-10 presents estimation results for non-agglomeration variables. These variables 

are used in the models for all three sectors. The only exception is worker productivity for 

manufacturing, which is highly correlated with the GDP variable for that sector. Table 4-11, 

Table 4-12, and Table 4-13 below present the coefficients associated with agglomeration 

measures for each sector. To determine which measures best capture the relevant mechanisms of 

agglomeration economies for each sector, I use Table 4-8 as starting point. Then, I test 

alternatives and compare based on how well the estimated coefficient means and standard 

deviations align with the a priori hypotheses. I also consider overall model goodness-of-fit as 

measured by the mean of the posterior predictive distribution (PPD). However, this metric is 

dominated by the zero-inflation component of the model and thus not especially informative. 

Unlike traditional least squares or maximum likelihood-based approaches, results are presented 

as the mean and standard deviations of the parameter distributions. These make up the 

hyperparameters Θ and 𝑊.   

For ease of interpretation, the models have been specified in units of dollars and years. That is, 

for unit inputs and absent the effects of other factors, the average employee in manufacturing 

produces 127 thousand dollars worth per year. Of course, the TFP constants should not be 

assigned too much meaning, since they consist of an amalgamation of unobserved factors and 

unit inputs are not necessarily meaningful. Nonetheless, it is unsurprisingly the largest for 

professional services, followed by manufacturing then food and accommodation services. 

Examining the elasticities of the production inputs, we find that they are all less than 1, as 

expected, indicating diminishing marginal returns. Their relative magnitudes also seem largely 

intuitive: manufacturing firms scale better with land, whereas professional services scale better 

with human capital inputs. For food and accommodation services, the elasticity with respect to 

land is unexpectedly low. This is likely an artefact of the sector definitions. Specifically, 

restaurants and hotels make use of land very differently, thus attenuating the coefficient. If the 

data permit, separate models could be considered for the food services and accommodation 

services.  
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Table 4-10: Estimation results, means and (standard deviations) 

Variable Manufacturing Professional 
Food & 

Accommodation 

TFP constant 𝛽2 
126.77 

(29.47) 

159.74 

(34.58) 

84.85 

(7.71) 

Employment size 𝛽0  
0.25 

(0.07) 

0.34 

(0.07) 

0.29 

(0.02) 

Land 𝛽1 
0.28 

(0.08) 

0.23 

(0.07) 

0.18 

(0.07) 

GDP 𝛽3 
-0.24 

(2.45) 

-0.09 

(1.82) 

0.89 

(0.36) 

Productivity 𝛽4  
0.22 

(0.29) 

0.35 

(1.19) 

Education 𝛽5 
0.64 

(1.68) 

0.28 

(0.58) 

0.25 

(0.22) 

Fixed adj. cost, hiring 𝜇0
+ 

4.04 

(1.00) 

9.71 

(1.18) 

5.85 

(0.28) 

Fixed adj. cost, firing 𝜇0
− 

5.24 

(1.39) 

7.26 

(0.68) 

7.01 

(0.36) 

Linear adj. cost, hiring 𝜇1
+ 

9.47 

(1.80) 

11.87 

(1.39) 

5.82 

(1.37) 

Linear adj. cost, firing 𝜇1
− 

27.60 

(8.09) 

17.26 

(1.78) 

10.88 

(1.09) 

Quadratic adj. cost, hiring 𝜇2
+ 

3.50 

(1.25) 

5.86 

(1.83) 

2.38 

(0.43) 

Quadratic adj. cost, firing 𝜇2
− 

5.47 

(2.15) 

9.44 

(3.24) 

4.88 

(1.20) 

Zero-inflation 휁 
1.19 

(0.77) 

1.01 

(0.84) 

1.16 

(0.87) 

Error st. dev. 𝜎 14.94 20.13 7.22 

Mean PPD 0.67 0.66 0.67 
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Surprisingly, GDP and productivity have little bearing on the employment size of firms outside 

the food and accommodation services sector. The aggregate nature of the measures mean they 

may not be representative of the behaviour of individual firms. The controls for education have 

positive coefficients as expected. However, their magnitudes are surprisingly larger for the 

sectors typically less associated knowledge intensive work and the estimates are associated with 

considerable variance. For the manufacturing sector, this could reflect the types of manufacturing 

conducted in different areas, e.g. microchip manufacturing is very different from steel 

manufacturing in terms of technology and factor of production. In any case, the education 

variables only vary cross-sectionally, not longitudinally, and are thus easily biased by 

unobserved local fixed effects.  

As discussed in Chapter 3, the adjustment cost function encapsulates a myriad of different costs 

associated with hiring and firing employees, e.g. hiring bonuses, severance pay, training, 

reorganization, but also union rules and local legislation. However, in total, the coefficients 

suggest that adjustment costs increase with level of knowledge and skill-intensity of the sector. 

In particular, the professional services are associated with the largest coefficients for all but the 

linear firing costs. Adjustment costs are generally higher for manufacturing than for food and 

accommodation services. However, interestingly, the fixed cost of hiring is higher for the latter. 

Overall, the patterns align with the a priori expectation that adjustments, and in particular hiring, 

is more costly for higher skilled sectors as they have narrow skills requirements and are more 

likely to invest in worker training. Interpreting the coefficients for firing is less straightforward. 

Beyond simply adjustment costs, the coefficient could also be measures of how agile a firm is or 

the stringency of local labour market legislation. 

The zero-inflation parameters suggest that a large portion of the dataset comprise excess zeroes. 

This could be indicative of the poor data or poor adjustment cost specification – or both. The 

error terms represent average unexplained productivity per worker. Thus, the standard deviations 

of 15, 20, and 7 thousand dollars per year indicate that considerable variation remains 

unexplained.  

Next, we examine the coefficients associated with agglomeration measures and compare them to 

the a priori hypotheses from Table 4-8. Note that for coefficients associated with match 
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frequency, more [+]’s represent a larger hypothesized magnitude. However, this translates into a 

more negative coefficient since we expect the effect to be a friction reduction. For 

manufacturing, we find that local specialization considerably increases productivity (0.10). This 

potentially suggests that the improved quality of matches between workers and firms arise more 

locally and rely more on being in a specialized labour pool than anticipated. On other hand, 

regional specialization was only found to have a minute impact on productivity (0.01). While 

agglomeration of people does not appear to have a major impact on manufacturing firms’ hiring 

costs (-0.01), local specialization considerably reduces these (-0.34). It is worth pointing out that 

while the coefficient is several times larger than typical estimates for agglomeration economies 

found in the literature, the magnitude of the coefficient by itself is not a cause for concern. The 

coefficient estimated here captures the extent to which specialization allow firms to adjust their 

employment size faster, whereas the typical ranges discussed in the literature review, Chapter 

2.2, are for wage or productivity increases. As such these cannot be compared directly. 

Moreover, the spatial resolution of the measures used here is finer than what is commonly found 

in existing studies of agglomeration economies. 

Table 4-11: Estimation results, manufacturing agglomeration effects, means and (standard deviations) 

Agglomeration 

measure (휂) 
Parameter 

estimates 
Mechanisms 

Hypothesized 

magnitude 

Specialization  

(walk only, 2.0) 

0.10 

(0.05) 

Learning 

Match quality* 
++ 

Specialization  

(0.5) 

0.01 

(0.03) 

I/O sharing 

Competition 

Market potential 

+++ 

Population  

(2.0) 

-0.01 

(0.04) 
[Match frequency] [++] 

Specialization  

(walk only, 2.0) 

-0.34 

(0.16) 
[Match frequency]* [++] 

 [] indicate mechanisms acting through the labour market friction channel as opposed to productivity 
* indicate deviations from the hypothesis in terms of spatial extent 
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For professional services, agglomeration of people was not found to have a beneficial effect of 

firm productivity (-0.05) regardless of the spatial extent of the measure. However, this estimate 

likely also captures some of the effects associated with competition as the measure was highly 

correlated with that of local specialization, thus only allowing for the inclusion of one. As 

expected, the agglomeration of jobs has a positive effect (0.10) on the productivity of 

professional services firms. For reducing labour market frictions, having access to a large 

regional employment pool is an advantage (-0.08), so is being located in a specialized local 

cluster (-0.06), albeit to a lesser extent. 

Table 4-12: Estimation results, professional services agglomeration effects, means and (standard 

deviations)  

Agglomeration 

measure (휂) 
Parameter 

estimates 
Mechanisms 

Hypothesized 

magnitude 

Population  

(0.25) 

-0.05 

(0.06) 

Match quality* 

Competition* 
++ 

Employment  

(5.0) 

0.10 

(0.05) 

Learning  

Market potential*  
+++ 

Population  

(0.25) 

-0.08 

(0.06) 
[Match frequency]* [+++] 

Specialization  

(5.0) 

-0.06 

(0.07) 
[Match frequency]* [+++] 

 [] indicate mechanisms acting through the labour market friction channel as opposed to productivity 
* indicate deviations from the hypothesis in terms of spatial extent 

For food and accommodation services, agglomeration of people (0.05) and jobs (0.05) are both 

beneficial to their market potential, although the spatial extent of the residential market area is 

larger than expected. Local specialization, and by extension, competition appears to have an 

overall negative effect (-0.05) but is associated with considerable variance. Finally, while 

hypothesized that a larger labour pool also allows restaurants and hotels to find employees faster, 

this effect appears minimal (-0.01). 
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Table 4-13: Estimation results, food and accommodation services agglomeration effects, means and 

(standard deviations) 

Agglomeration 

measure (휂) 
Parameter 

estimates 
Mechanisms 

Hypothesized 

magnitude 

Population  

(1.0) 

0.05 

(0.02) 
Market potential* +++ 

Employment  

(walk only, 5.0) 

0.05 

(0.03) 
Market potential +++ 

Specialization  

(walk only, 5.0) 

-0.05 

(0.18) 
Competition - - - 

Population  

(1.0) 

-0.01 

(0.05) 
[Match frequency] [+] 

 [] indicate mechanisms acting through the labour market friction channel as opposed to productivity 
* indicate deviations from the hypothesis in terms of spatial extent 

Challenges and limitations 

The computational burden of estimating these models is quite significant. Each model estimation 

run requires between several days and a few weeks to complete on a typical personal computer2, 

depending on the starting values. From a computational point-of-view, three obstacles combine 

to prevent the estimation from running faster: (1) the draws of the Bayesian estimation procedure 

are fundamentally sequential, severely limiting the effectiveness of speed-ups through parallel 

processing; (2) although the dynamic programming problem is relatively simple, it must be 

solved for each firm and each time period in each iteration of the Bayesian estimation procedure; 

and (3) similarly, the likelihood function is evaluated firm-wise rather than simultaneously for 

the whole dataset because the nested products and sums of varying lengths in the likelihood 

                                                 

 

 

2 Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz; 8.00 GB RAM. 
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function do not lend themselves to efficient matrix algebra. Although model estimation, unlike 

simulation, is typically considered an upfront one-time cost, the sluggishness has made testing 

alternative specifications extremely cumbersome.  

The complex model structure results in some parameters converging relatively slowly, further 

exacerbating the long estimation times. In these cases, choosing the starting value close to the 

true value is particularly important. Appendix E presents convergence diagnostics, including 

Heidelberger-Welch p-values and Gelman-Rubin �̂� statistics. Several factors potentially 

contribute to the slow convergence. There is some evidence of poor mixing, which typically 

arises if the likelihood surface is very uneven or poorly connected. Potential strategies to address 

this include using a more advanced sampler, for example ones that use simulated or parallel 

tempering. Making different distributional assumptions could potentially also help. Another 

potential cause of the convergence issues is poorly identified parameters. The highly non-linear 

model structure means that parameters can interact in potentially unpredictable ways that usual 

linear-in-parameters models do not. Of particular concern is the simultaneous identification of 

the fixed adjustment cost and the zero-inflation parameter. Both serve the function of allowing 

more “zero” observation, albeit one as a hurdle and the other as a separate data-generating 

process. However, in testing, removing the zero-inflation model component yielded clearly 

unreasonable values for the fixed adjustment cost. This suggests that including the additional 

zero-generating process is appropriate. On the other hand, omitting the fixed cost largely 

eliminates the hurdle effect, and with it the “long periods of constancy broken by infrequent 

large jumps” that is characteristic of firms’ employment size adjustment at the micro-level (King 

and Thomas, 2006, p.782).  

When estimating agglomeration effects, we must consider potential endogeneity issues at both 

the firm and local levels. Endogeneity at the firm level arises when unobserved firm-specific 

effects are correlated with agglomeration variables. This typically occurs when firms sort 

spatially according to characteristics not controlled for by the model, e.g. unobserved advantages 

in firms’ production technology. Although no panacea, the use of panel data is crucial for dealing 

with potential endogeneity at the firm level. In particular, introducing time-invariant firm-

specific effects, e.g. the TFP constant, controls for unobserved firm characteristics – at least 

those that remain constant over time. Endogeneity at the local level arises when the 



101 

 

agglomeration variables are correlated with unobserved local effects. This typically happens if a 

variable that affects both local agglomeration and firm profits is missing from the model. For 

example, an airport might attract firms to an area and simultaneously increase worker 

productivity and by extension employment size, thus increasing agglomeration and the measured 

outcome at the same time. In this case, the estimated agglomeration effect would likely be 

upwards biased. Unfortunately, the model is less well-equipped to handle potential local level 

endogeneity. Estimating location-specific fixed effects for each of the 2728 TAZs is not feasible 

given data and computational constraints. Furthermore, insofar as prices and wages vary locally, 

the lack of spatially disaggregated price and wage data might also contribute to local level 

endogeneity. While including agglomeration variables in the cost term could address the issue, in 

practice it leads to further identification challenges.  

The InfoGroup historical micro-level business records do not have observations at regular 

intervals and thus make for an unbalanced panel. This is potentially problematic because of 

attrition / survivorship bias. In other words, we do not observe firms when they go out of 

business, thus the dataset is not representative of all firms but rather the subset that survived. The 

interaction of this bias with the agglomeration variables specifically is not obvious. However, the 

TFP of surviving firms is likely higher than that of those that closed. 

At its best, structural estimation is a powerful tool for quantifying structural – or so-called policy 

invariant – parameters. However, structural approaches are certainly not without their limitations 

and also bring with them additional drawbacks compared to traditional reduced-form approaches. 

In particular, the flexibility and believability of any such model are tied to its structural and 

parametric assumptions, such as those discussed in Chapter 3, and communicating and 

interpreting the model results is considerably more involved. Additionally, the data-hungriness 

of agent-based models is only exacerbated by the introduction of dynamics in the structural 

approach. Nonetheless, the ever-increasing computational power and continued gathering of 

microscopic datasets make addressing most these limitations feasible – if not now – in the future. 
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 IMPACT ANALYSES 

To demonstrate the usefulness of the proposed approach, I conduct two impact studies. These 

examine aspects of urban development that traditional static modelling approaches cannot shed 

light on. The first study examines the potential impacts of the extension of the MBTA Green 

Line in Boston – and importantly, how long it takes for these impacts to take effect. The second 

study quantifies the profits that firms forego due to labour market frictions and examines to what 

extent agglomeration can reduce these deadweight losses. 

 Green Line Extension 

The Green Line is a light rail transit route part of the MBTA network in Boston. Figure 5-1 

shows the Green Line route map. The line has four western branches, which merge before going 

through downtown Boston. It exits the downtown core, going north to Cambridge, terminating at 

Lechmere station. Various proposals for northwards extensions have been considered since 1922. 

Planning for the currently proposed alignment took place in the 2000’s with construction finally 

beginning in 2012. The branch to Union Square opened in March 2022, while the extension to 

Medford/Tufts is scheduled to open later the same year. 

In this scenario study, I examine the impacts of the Green Line extension on the employment 

size decisions of firm along the extension corridor. Specifically, I quantify job creation, 

production increase, and the time required to reach a new steady state. Using the estimates from 

Chapter 4, I evaluate separately the impacts for professional services and food and 

accommodation services firms. Impacts on manufacturing firms were not considered in this 

analysis, since the two agglomeration measures that were found to affect the productivity of 

manufacturing firms, local (walk only, 2.0) and regional (5.0) specialization, do not change 

considerably as a result of the Green Line extension. 
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Figure 5-1: Map of the Green Line and its extension 

 

(Wikipedia, 2022) 

Modelling Assumptions 

Unfortunately, the analysis is inevitably anachronistic because the firm dataset only covers up 

until 2013. Thus, the results reflect the impact of the Green Line extension, had it completed its 

construction in 2013. Improvements to the transportation system are captured directly by the 

agglomeration measures. Specifically, the generalized cost term 𝑐𝑖𝑗 in equation (4.1) is the 

logsum of a travel mode choice, which includes the (dis)utility of travel by transit. Thus, 

reducing the travel times used to calculate the agglomeration measures effectively reduces the 

rate of spatial decay of the agglomeration effects.  
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To model the changes to agglomeration variables resulting from the Green Line extension, I 

consider two scenarios: transportation network improvements only (GLX); and transportation 

network improvements and densification (GLX-D). I consider the transport network 

improvements separately for within-corridor travel and travel to/from the corridor. Specifically, 

for: 

• Within-corridor travel, I reduce the transit in-system travel times by 45% percent when 

both trip origin and destination are within a 500-metre buffer of the corridor. This is 

based on a comparison between the travel speed on other dedicated right-of-way transit 

services in Boston and the current travel speed by bus along the corridor. 

• Travel to/from corridor: I reduce transit in-system travel times by 5 minutes if either trip 

origin or destination is within a 500-metre buffer of the corridor. This is half the of the 

travel time reduction for traversing the entire corridor (10 minutes). While a flat 5-minute 

reduction will not accurately represent the improvements for all travellers and locations, 

it is a reasonable first-order that can be obtained without a detailed analysis of local travel 

patterns.  

These changes apply to both the GLX and GLX-D scenarios. It should be noted that these 

changes likely do not account for all the improvements to the transportation system resulting 

from the new transit service. In particular, they do not capture the potential reduction in 

congestion along parallel roadways from travellers choosing to take transit rather than to drive 

and from removing busses (and their frequent stops) from occupying lane space. Furthermore, 

the two cases do not cover through-travel. However, the speed of through-travel should have 

very limited impact on agglomeration within the corridor. 

We typically associate mass transit with higher density. However, since I do not model feedback 

effects (from the transport system to land development), modelling the densification resulting 

from the Green Line extension has to be accomplished by brute force. That is, for the GLX-D 

scenario, I increase both population and employment density by 20% within a 500-metre buffer 

of the corridor. Naturally, this is unlikely to be an accurate representation of future development 

– especially as densification would also be gradual rather than instantaneous with the opening of 
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the Green Line extension. However, it will provide an impression of the order of magnitude of 

changes that can be expected.  

Simulation 

The model estimated in Chapter 4 contained multiple sources of randomness. Specifically, the 

error terms 휀 representing idiosyncratic shocks to average worker productivity and the stochastic 

adjustment process with exponential-distributed inter-event times 𝑧. Omitting these sources of 

randomness would not accurately represent the likelihood of future development. Hence, I use 

simulation to capture the variance of this stochasticity. For each scenario-sector combination, the 

simulation repeats the following four steps: 

1. Initialize at baseline conditions, i.e. without the Green line extension 

2. Allow burn-in to ensure system is in steady state 

3. Introduce the GLX / GLX-D scenarios as shocks to the system 

4. Simulate the response of each firm until steady state (and beyond) using the estimated 

firm-specific parameters and drawing error terms 휀 and inter-event times 𝑧 

I run 100 simulations of each firm’s response and summarize the mean and 95% confidence 

interval of additional jobs created and increase in gross production. Note that for this study, I 

determine the point in time by which steady state has been reached by inspection of the 

aggregate employment size trajectories. A better method would use a standardized definition of 

steady state, e.g. once employment sizes remain within a certain number of standard deviations 

within a moving average.  This would yield more rigorous time to steady state and allow for 

calculation of confidence intervals for this result as well. However, I leave the testing and 

implementation of rules for future work.  

Furthermore, it should be noted that comparisons are made between scenarios under static 

conditions, i.e. the exogeneous variables such as GDP and agglomeration measures do not 

change over the course of the analysis. Furthermore, as mentioned, feedback effects are not 

captured. Modelling these feedbacks require integration into a larger IUM framework, as 

discussed in Section 3.4. Thus, the comparisons should be considered all else equal – and 

remaining equal. 
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Results and Discussion 

Table 5-1 and Table 5-2 present results for professional services and food and accommodation 

services, respectively. The results represent the impacts of agglomeration economies once the 

new steady state has been reached, i.e. number of jobs created at steady state and the increase in 

gross annual production at steady state. Note however, that the raw values reflect impact on 

firms in the InfoGroup dataset and not the entire firm population. 

Table 5-1: Impact of Green line extension and densification of professional services firms 

Professional  
Scenario 

GLX GLX-D 

Job creation 
3.9% 

[1.8% – 5.9%] 

56.3  

[26.7 – 85.9] 

jobs 

4.6%  

[2.3% – 6.9%] 

66.1 

[34.9 – 97.3] 

jobs  

Production increase 
3.2% 

[2.5% – 3.9%] 

9.4  

[7.3 – 11.6] 

million dollars 

3.7% 

[2.9% – 4.5%] 

10.9  

[8.5 – 13.3] 

million dollars 

Time to reach steady 

state 
12.4 years 16.4 years 

 

Table 5-2: Impact of Green line extension and densification of food and accommodation services firms 

Food & 

Accommodation  

Scenario 

GLX GLX-D 

Job creation 
2.2% 

[-1.7% – 6.1%] 

18.6  

[-14.7 – 51.6] 

jobs 

3.0% 

[-0.3% – 6.3%] 

25.4  

[-2.7 – 53.6]  

jobs 

Production increase 
0.84% 

[0.8% – 1.6%] 

0.54  

[-0.19 – 1.27] 

million dollars 

1.9% 

[0.9% – 2.9%] 

1.2  

[0.6 – 1.8] 

million dollars 

Time to reach steady 

state 
9.8 years 11.3 years 

 

The analysis shows that impacts on the professional services sector is greater than it is on food 

and accommodation services. This is not surprising, both intuitively, and considering the 
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estimation results from the previous chapter, where professional services were found to benefit 

considerably from agglomeration of employment.  

At first glance, the impacts may seem small overall – we usually associate new mass transit lines 

with large-scale development. But these impacts are for firms already existing in the area, i.e. on 

the intensive margin only. The extension will likely also attract businesses from elsewhere, 

impacting the extensive margin.  The analysis also highlights the importance of modelling 

feedback effects, rather than merely comparative statics. While building the Green Line 

extension clearly improves travel speed and access for many, focusing only on the individual 

traveller misses a crucial benefit of mass transit – namely increasing capacity. Although speed 

and capacity are obviously intertwined, the latter is more often neglected since the supply-side is 

less commonly modelled. In turn, this emphasizes the potential value of integrated modelling 

frameworks. Despite their issues, limitations, and lacking of widespread traction, there is clearly 

a need for IUMs to fulfill. For example, in a larger integrated urban modelling framework, we 

could model the evolution of land use, and in the long term, urban form. As professional services 

firms would be willing to pay more for real estate in dense areas due to the productivity benefits 

they derive from agglomeration, they will slowly displace other sectors, like manufacturing. The 

proposed model provides a theoretically consistent way of quantifying the valuation of 

agglomeration economies for different sectors. 

The last rows in Table 5-1 and Table 5-2 show the time until a new steady state is reached. 

Because I model the trajectories of firm’s employment sizes, I can predict how long it takes 

before the impacts take effect. If the temporal dimension is of interest – which it should be more 

often – the model can produce full development trajectories as shown in Figure 5-2.  
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Figure 5-2: Job creation over time for food and accommodation services firms under the GLX-D scenario 

 

The trajectory also illustrates the potential dangers of more static before/after-type approaches. If 

we measured the impact after 2 years, we would only capture a third of the effect. On the other 

hand, if we assumed that the full impact would take effect immediately, we would have been 

very wrong for the first five to ten years. Again, urban development is not just about what and 

where, but importantly also, when. 
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 Cost of Labour Market Frictions 

Most empirical work on agglomeration economies examines its innovation-promoting and 

productivity-enhancing effects. Although matching benefits are well-understood in both the 

urban and labour economics literature, few have attempted to quantify them in a micro-analytic 

framework. Uniquely, the modelling of individual businesses’ employment size trajectories 

allows me to determine the cost of labour market frictions and to what extent better matching 

between employers and employees can alleviate these. Specifically, the gap between profits at 

the actual and optimal employment sizes are effectively foregone profits resulting from poor 

matching, incomplete or imperfect knowledge, or other frictions in the labour market.  

𝐿𝑜𝑠𝑠(𝐻) = 𝜋(𝐻𝑖𝑡
∗ ) − 𝜋(𝐻) (5.1) 

This is depicted visually as the shaded area in Figure 5-3. The analysis in this section focuses 

specifically on businesses looking to expand their employment size. It is in hiring processes that 

matching benefits have effect, whereas there is no apparent or direct theoretically compelling 

link between agglomeration economies and firing processes. For negative parameters, the 

agglomeration measures associated with the quadratic adjustment costs, i.e. the 𝜇2 term in the 

model specification (4.6) increase the rate of hiring. This allows firms to approach their optimal 

employment size faster, in turn reducing the deadweight loss. In Figure 5-3 this corresponds to a 

steeper slope on the trajectory, which shrinks the shaded area representing lost profits. 

Figure 5-3: Foregone profits due to labour market frictions 
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Quantifying the Costs of Labour Market Frictions  

In practice, quantifying the firms’ actual foregone profits exactly is not straightforward since we 

do not observe firm’s full employment size trajectories. Rather they are inferred stochastically 

based on a subset of observed data points. Calculating the expected foregone profits given these 

observations requires integration of the loss function (5.1) over the joint probabilities of the exact 

time of each adjustment event, which does not lead to a convenient integral. Instead, I 

approximate the expected losses using the already derived model likelihood function as 

described by equation (5.2) and depicted in Figure 5-4.  

𝑈𝐵 = ∑ 𝑃(Δ𝐻|휃𝑖 , 휀𝑖𝑡)

𝐻𝑖𝑡
∗ −𝐻𝑖𝑡

Δ𝐻=0

⋅ 𝑇 ⋅ (𝑙𝑜𝑠𝑠(𝐻𝑖𝑡 + Δ𝐻) +
𝑙𝑜𝑠𝑠(𝐻𝑖𝑡) − 𝑙𝑜𝑠𝑠(𝐻𝑖𝑡 + Δ𝐻)

2
) (5.2) 

The idiosyncratic errors 휀𝑖𝑡 and firm-specific parameters 휃𝑖 come from the model in Chapter 4. 

The expected loss is represented by the probability-weighted average over the cases where the 

firm’s trajectory is constant, i.e. a straight line between 𝐻𝑖𝑡 and 𝐻𝑖𝑡 + Δ𝐻. Due to the concavity 

of actual employment size trajectories, the straight-line approximation will on average over-

estimate losses. 

Figure 5-4: Approximation of expected foregone profits 

 

I calculate the losses as a percentage of the optimal profit, i.e. 𝐿𝐵 / 𝜋(𝐻𝑖𝑡
∗ ) and 𝑈𝐵 / 𝜋(𝐻𝑖𝑡

∗ ), 

since the interpretation of the losses by themselves is not particularly meaningful.  
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Similarly, I calculate the approximate loss in total production. While firms act to maximize their 

profits, the impact on production is of more interest for an economic and policy-making 

perspective. Finally, I explore to what extent agglomeration economies can alleviate the 

production losses by conducting a sensitivity analysis. I increase by 10% each of the 

agglomeration measures that were found to improve hiring rates and repeat the calculation 

above. Specifically, the relevant measures were, for: 

• Manufacturing: population (2.0), specialization (walk-only, 2.0); 

• Professional services: population (0.25), specialization (5.0); and 

• Food and accommodation services: population (1.0). 

Results and Discussion 

Table 5-3 presents the results of this analysis for each of the three sectors, manufacturing, 

professional services, and food and accommodation services. Overall, firms forego between 

2.71% and 3.90% of their potential profits due to labour market frictions. For scale, the 3.90% of 

potential profits for professional services firms corresponds, on average, to around $55,000 per 

year for each firm.  

Table 5-3: The costs of labour market frictions 

  Manufacturing Professional 
Food & 

Accommodation 

Approximate Expected 

Profit Loss 
2.71% 3.90% 3.30% 

Approximate Expected 

Production Loss 
9.17% 13.17% 11.66% 

Elasticity (10%) -0.23% -0.11% -0.01% 

 

The losses are generally smaller, percentagewise, in the manufacturing sector. While the 

expected loss percentages are not too far apart for professional services and food and 

accommodation services, the absolute dollar value of the losses is much greater for the former. 
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For production, the approximate expected losses are 9.17%, 13.17%, and 11.66% percent for 

each of the sectors respectively. Put differently, a professional services firm that could produce a 

million dollars worth of output, instead only produces around 870,000 dollars. To test how much 

agglomeration can help reduce these losses I increase the relevant agglomeration measures by 

10% and examine the impact. I find that the effects are very small. A 10% increase in the 

relevant agglomeration measures reduces expected losses by between 0.01% and 0.23%. 

Manufacturing is the most sensitive to these changes, which is unsurprising given the large 

benefits this sector derives from a specialized local labour pool as we found in the previous 

chapter. On the other hand, food and accommodation services derive little benefit from the 

increased agglomeration measures. However, the adjustment costs they face, specifically as 

represented by the 𝜇2
+ parameter, were already the lowest. While the small elasticities are 

somewhat disappointing, this is ultimately not too surprising since spatial frictions only make up 

a small portion of the total search costs – especially as ICT has become more prevalent. This 

does perhaps suggest that policies aimed at addressing spatial mismatch should be considered 

and targeted very carefully. 
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 CONCLUSION 

 Summary of Contributions and Findings 

This dissertation makes several contributions to the modelling of firms, jobs, and agglomeration 

economies in the context of integrated urban models (IUM). In Chapter 3, I presented a novel 

approach to modelling the dynamics of firms’ employment expansion and contraction decisions. 

In particular, I designed a dynamic programming Markov model that predicts the evolution of 

employment size trajectories over time as opposed to merely static outcomes. This enables urban 

modellers to answer questions about when development happens in addition to the usual what 

and where. Crucially, as urban development is inertial and path-dependent, disregarding the 

former (when) can potentially result in erroneous answers about the latter (what and where). 

Firms in the model are forward-looking and maximize the net present value of all future profits. I 

formulated the firm’s Markov decision process (MDP), whose solution, the optimal trajectory 

found via dynamic programming, is the firm’s decision variable. I derived a bespoke likelihood 

function (3.19) that is effectively a rate-varying Poisson, reflecting the varying slope of the 

firm’s desired employment size trajectory. To estimate the model, I formulated a hierarchical 

Bayesian model in which parameters are firm-specific and distributed according to a set of 

hyperparameters. Repeatedly sampling from the joint posterior distribution using a Gibbs 

sampling algorithm recovers the model parameters. 

In Chapter 4, I applied the model to the Greater Boston Area. Using a panel dataset of historical 

business records between 2003-13, I explored the heterogenous effects of agglomeration 

economies on manufacturing, professional services, and food and accommodation services firms. 

Specifically, I found that manufacturing firms benefit primarily from specialization; it both 

increases productivity and reduces adjustment costs. However, the spatial extents of the effects 

are more local than expected. Professional services benefit from agglomeration of local 

employment, regardless of sector. They also benefit from having access to a larger regional 

labour pooling. However, these benefits only materialize through matching frequency, lowering 
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the cost hiring, and not match quality, which would increase productivity. For food and 

accommodation services, agglomeration of people and jobs increase their market potential, 

however local specialization also increases competition. Additionally, I found that adjustment 

costs, i.e. the costs associated with hiring and firing employees, appears to increase with the 

skills and knowledge intensity of the sector. As expected, when tasks become more specialized, 

finding the right skills match becomes increasingly difficult and firing employees whom you 

have invested training in becomes less desirable. 

In Chapter 5, I demonstrated some of the unique capabilities of the proposed model. Specifically, 

I use the estimation results from the previous chapter to examine the impacts of the Green Line 

extension in Boston and to quantify the foregone profits resulting from adjustment costs. The 

Green Line extension was found to increase professional services jobs by 3.9% and gross 

production by 3.2%, reaching a new steady state after 12.4 years. Similarly, for food and 

accommodation services it increases jobs by 2.2% and gross production by 0.84%, reaching 

steady state after 9.8 years. For manufacturing, the changes were not modelled because 

manufacturing firms benefit from specialization which change minimally as a result of the Green 

Line extension. Next, examining the costs of labour market frictions, I found that manufacturing, 

professional services, and food and accommodation services firms forego 2.71%, 3.90%, and 

3.30% of their potential profits, respectively, due to the costs of hiring. This corresponds to an 

loss in production of 9.17%, 13.17%, 11.66%, respectively. 
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 Future Research Avenues 

The effort to model the dynamics of firms’ employment size decisions presented in this 

dissertation is not conclusive. It builds upon a vast existing IUM literature and calls on future 

research to make further improvements. These potential improvements pertain to both the model 

itself and to how it is used.  

The main challenge for the current model formulation is that it is not well-suited for modelling 

very large firms. The fundamental assumptions about the adjustment process, i.e. that the occur 

one-at-a-time and sequentially, are likely not very appropriate for large firms – and especially for 

downsizing. Modelling large firms is also associated with practical challenges. Large, and very 

rapid, adjustments slow down the evaluation of the likelihood function, whose computation time 

scales with 𝑂(Δ𝐻𝑖𝑡
2). Furthermore, large adjustments yield very small likelihoods, to the point 

where numerical errors become a potential concern. Thus, formulating a natural way to 

accommodate larger firms could not only contribute to the credibility of the approach but also 

make its application less computationally demanding. Beyond the handling of large firms, the 

approach would benefit from additional testing of structural and distributional assumptions. For 

example, some parameters could possibly be more accurately modelled as log-normal distributed 

rather than the current normal assumption, or alternative specifications of adjustment cost 

functions could be considered. 

Applications of the current model also present numerous potential avenues for research. Most 

obviously, estimations for sectors other than those covered here will paint a more complete 

picture of the impacts of agglomeration economies. Applications to other locations would inform 

us about the degree to which agglomeration economies are generalizable or context-dependent. 

As noted in the impact analyses in Chapter 5, the omission of feedback effects is one of the key 

limitations of using the model on its own. Modelling these feedbacks and interactions with the 

larger urban system is main argument for the IUM approach. Chapter 3.4 provides an overview 

and a starting point for how to integrate the model into a larger IUM framework. However, the 

specifics, which comprise by far the bulk of the work, have been left for future research. Finally, 

the dynamic approach adopted here could be beneficial for the modelling other urban processes 

that exhibit inertial responses. In particular, literature already exists for dynamic job search and 
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wage progression models from the workers’ perspective. However, these models are very limited 

in their representation of space and agglomeration economies. Incorporating job search into the 

suite of urban models is potentially a fruitful avenue of research. Furthermore, the temporal 

dimension of existing relocation and vehicle ownership models is for the most part rudimentary 

or non-existent. Applying a duration modelling approach to these processes could improve the 

credibility of the long-term predictions made by IUMs. 
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APPENDIX A:  

ALTERNATIVE DERIVATION OF OPTIMAL FIRM 

POLICY 

Let us consider the same infinite time horizon where firms discount future cash flows at rate 𝛿, 

as well as the same profit and adjustment cost functions as described in Chapter 3.1. However, 

with discrete periods of length 𝑇, the reward function becomes 

𝑅(𝐻𝑡, 𝜆𝑡) = (𝜋(𝐻𝑡) − 𝛼(𝜆𝑡)) 𝑇 (A.1) 

We can write the value function as a recursive Bellman equation: 

𝑉(𝐻𝑡, 𝜆𝑡) = 𝑅(𝐻𝑡, 𝜆𝑡) + 𝑑(𝑇)𝐸[𝑉(𝐻𝑡+1, 𝜆𝑡+1)] (A.1) 

where 𝑑𝐸[𝑉(𝐻𝑡+1, 𝜆𝑡+1)] is the expected value in the subsequent period. The optimal policy, i.e. 

decision rule, for 𝜆 is that which maximizes the value function 𝑉.  

Before we can proceed, we need to be able to evaluate the expected value in the subsequent 

period 𝐸[𝑉(𝐻𝑡+1, 𝜆𝑡+1)]. If the adjustment rate 𝜆 is constant, then the probability of making an 

adjustment of size Δ𝐻 follows a Poisson PMF 𝑞(Δ𝐻, 𝜆𝑇), and we can evaluate the expectation of 

the subsequent period accordingly. 

𝐸[𝑉(𝐻𝑡+1, 𝜆𝑡+1)] = ∑ 𝑞(Δ𝐻, 𝜆𝑡𝑇) 𝑉(𝐻𝑡 + Δ𝐻, 𝜆𝑡+1)

∞

Δ𝐻=0

 

𝑉(𝐻𝑡, 𝜆𝑡) = (𝜋(𝐻𝑡) − 𝑎(𝜆𝑡)) 𝑇 + 𝑑(𝑇) ∑ 𝑞(Δ𝐻, 𝜆𝑡𝑇) 𝑉(𝐻𝑡 + Δ𝐻, 𝜆𝑡+1)

∞

Δ𝐻=0

 

(A.2) 

However, the adjustment rate does not generally remain constant as the employment size 

changes. In particular, we would expect that adjustment rates diminish as the employment size 
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approaches its optimum, as seen in standard partial adjustment models. To circumvent this issue 

we consider infinitesimal period lengths 𝑇 effectively changing to continuous time. However, 

before moving to continuous time, let us re-write the value function for convenience. First, we 

separate out the case with no adjustments made, i.e. Δ𝐻 = 0: 

𝑉(𝐻𝑡, 𝜆𝑡)  = (𝜋(𝐻𝑡) − 𝑎(𝜆𝑡)) 𝑇 + 𝑑(𝑇) ∑ 𝑞(Δ𝐻, 𝜆𝑡𝑇) 𝑉(𝐻𝑡 + Δ𝐻, 𝜆𝑡+1)

∞

Δ𝐻=1

+ 𝑑(𝑇)(1 − ∑ 𝑞(Δ𝐻, 𝜆𝑡𝑇)

∞

Δ𝐻=1

)𝑉(𝐻𝑡, 𝜆𝑡) 

                 = (𝜋(𝐻𝑡) − 𝑎(𝜆𝑡)) 𝑇 + 𝑑(𝑇) ∑ 𝑞(Δ𝐻, 𝜆𝑡𝑇) 𝑉(𝐻𝑡 + Δ𝐻, 𝜆𝑡+1)

∞

Δ𝐻=1

+ 𝑑(𝑇) 𝑉(𝐻𝑡, 𝜆𝑡) − 𝑑(𝑇) ∑ 𝑞(Δ𝐻, 𝜆𝑡𝑇)

∞

Δ𝐻=1

𝑉(𝐻𝑡, 𝜆𝑡) 

(A.3) 

Then rearrange and divide both sides by 𝑇. 

(1 − 𝑑(𝑇))𝑉(𝐻𝑡, 𝜆𝑡)  

= (𝜋(𝐻𝑡) − 𝑎(𝜆𝑡)) 𝑇 + 𝑑(𝑇) ∑ 𝑞(Δ𝐻, 𝜆𝑡𝑇) 𝑉(𝐻𝑡 + Δ𝐻, 𝜆𝑡+1)

∞

Δ𝐻=1

− 𝑑(𝑇) ∑ 𝑞(Δ𝐻, 𝜆𝑡𝑇)

∞

Δ𝐻=1

𝑉(𝐻𝑡, 𝜆𝑡)  

(A.4) (1 − 𝑑(𝑇))

𝑇
𝑉(𝐻𝑡, 𝜆𝑡)

= 𝜋(𝐻𝑡) − 𝑎(𝜆𝑡) + 𝑑(𝑇) ∑
𝑞(Δ𝐻, 𝜆𝑡𝑇)

𝑇
 𝑉(𝐻𝑡 + Δ𝐻, 𝜆𝑡+1)

∞

Δ𝐻=1

− 𝑑(𝑇) ∑
𝑞(Δ𝐻, 𝜆𝑡𝑇)

𝑇

∞

Δ𝐻=1

𝑉(𝐻𝑡, 𝜆𝑡) 

Now, we move to continuous time by letting 𝑇 → 0. For the Poisson distribution we have the 

following limits: 
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lim
𝑇→0

𝑞(1, 𝜆𝑇)

𝑇
= 𝜆 

lim
𝑇→0

𝑞(Δ𝐻, 𝜆𝑇)

𝑇
= 0      𝑓𝑜𝑟 Δ𝐻 > 1 

(A.5) 

And we can write the per-period discount rate 𝑑(𝑇) in continuous time as 𝑒−𝛿𝑇. 

lim
𝑇→0

1 − e−𝛿𝑇

𝑇
= 𝛿 (A.6) 

Thus, as 𝑇 → 0, equation (A.4) becomes: 

𝛿𝑉(𝐻𝑡, 𝜆𝑡) = 𝜋(𝐻𝑡) − 𝑎(𝜆𝑡) + 𝜆𝑡 𝑉(𝐻𝑡 ± 1, 𝜆𝑡+1) − 𝜆𝑡 𝑉(𝐻𝑡, 𝜆𝑡) (A.7) 

The sign of the ± depends on the direction of adjustment with + for hiring and – for firing. Next, 

rearranging and writing out the adjustment costs 

𝑉(𝐻𝑡, 𝜆𝑡) =
𝜋(𝐻𝑡)

𝛿 + 𝜆𝑡
−
𝑎(𝜆𝑡)

𝛿 + 𝜆𝑡
+
𝜆𝑡𝑉(𝐻𝑡 ± 1, 𝜆𝑡+1)

𝛿 + 𝜆𝑡
 

𝑉(𝐻𝑡, 𝜆𝑡) =
𝜋(𝐻𝑡)

𝛿 + 𝜆𝑡
−
𝜇0 + 𝜇1𝜆𝑡 + 𝜇2𝜆𝑡

2

𝛿 + 𝜆𝑡
+
𝜆𝑡𝑉(𝐻𝑡 ± 1, 𝜆𝑡+1)

𝛿 + 𝜆𝑡
 

(A.8) 

We can now determine the optimal adjustment rate using the first order condition.  

𝜕𝑉(𝐻𝑡, 𝜆𝑡)

𝜕𝜆𝑡
= 0 

                     = −
𝜋(𝐻𝑡)

(𝛿 + 𝜆𝑡)2
+
𝜇0 − 𝛿𝜇1 − 2𝛿𝜇2𝜆𝑡 − 𝜇2𝜆𝑡

2

(𝛿 + 𝜆𝑡)2
+
𝛿 𝑉(𝐻𝑡 ± 1, 𝜆𝑡+1)

(𝛿 + 𝜆𝑡)2
 

(A.9) 

This yields a quadratic equation. Finally, we can find the roots of the quadratic to arrive at the 

optimal adjustment rate  𝜆∗′(𝐻𝑡).  

𝜇𝜆𝑡
2 + 2𝛿𝜇𝜆𝑡 − (𝛿 𝑉(𝐻𝑡 ± 1, 𝜆𝑡+1) − 𝜋(𝐻𝑡) + 𝜇0 − 𝛿𝜇1) = 0 

(A.10) 
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𝜆∗′(𝐻𝑡) = −𝛿 + √𝛿2 +
𝛿 𝑉(𝐻𝑡 ± 1, 𝜆𝑡+1) − 𝜋(𝐻𝑡) + 𝜇0 − 𝛿𝜇1

𝜇2
 

The negative root yields a negative adjustment rate and is not permissible. 
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APPENDIX B:  

BAYESIAN ESTIMATION PROCEDURE 

We have the posterior distribution of the model parameters from equation (3.22): 

     𝐾(Θ,𝑊, 𝜎2, 휃𝑛∀𝑛, 휀𝑛𝑡∀𝑛𝑡|Δ𝐻) ∝ 

[∏𝜙(휃𝑛|Θ,𝑊)∏𝑃(𝑦𝑛𝑡|휃𝑛, 휀𝑛𝑡)𝜙(휀𝑛𝑡|0, 𝜎
2)

𝑡𝑛

] 𝑘(Θ,𝑊, 𝜎2)      
(3.22) 

We can sample from this joint posterior distribution by combining two MCMC methods, namely 

Gibbs sampling and the Metropolis-Hastings algorithm. I describe these two sampling methods 

in this appendix. 

Gibbs sampling 

Gibbs sampling is a useful technique for sampling from multivariate distributions, when drawing 

from the joint distribution directly is difficult but drawing from the conditional distributions is 

relatively easier. For illustrative purposes, let us consider the random variables 𝜖1 and 𝜖2. We 

want to sample from the joint distribution 𝑓1,2(𝜖1, 𝜖2) but doing so directly is not feasible. 

However, we know how to sample from the conditional distributions 𝑓1|2(𝜖1|𝜖2) and 𝑓2|1(𝜖2|𝜖1). 

Then we can use the following steps to achieve draws from the joint distribution. 

1. Initialize – set 𝑖 = 0 

2. Choose any initial value for 𝜖1 with non-zero density and label it 𝜖1
0 

3. Draw an initial value for 𝜖2 from 𝑓2|1(𝜖2|𝜖1
0) and label it 𝜖2

0 

4. Draw the subsequent value for 𝜖1 from 𝑓1|2(𝜖1|𝜖2
𝑖 ) and label it 𝜖1

𝑖+1 

5. Draw the subsequent value for 𝜖2 from 𝑓2|1(𝜖2|𝜖1
𝑖) and label it 𝜖2

𝑖+1 

6. Increment – set 𝑖 = 𝑖 + 1 

7. Repeat steps 4 through 6 

For large enough 𝑖, the draws of  𝜖1 and 𝜖2 approximate the joint distribution 𝑓1,2(𝜖1, 𝜖2). 
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Metropolis-Hastings 

The Metropolis-Hastings algorithm is another technique for circumventing direct sampling. It is 

useful when we know and can evaluate a function that is proportional to the density. Let 𝑓(𝜖) be 

the distribution of interest. The Metropolis-Hastings algorithm then proceeds as follows:  

1. Initialize – set 𝑖 = 0 

2. Choose an initial value for 𝜖 and label it 𝜖0 

3. Get a trial value for the subsequent draw of 𝜖 

𝜖𝑖+1̂ = 𝜖𝑖 + 휂 (B.1) 

where 휂 is a random variable drawn from a symmetric distribution 𝑔(휂), e.g. Normal, 

with 0-mean. 

4. Choose whether to accept the trial value or keep the previous value as the subsequent 

draw of 𝜖. 

𝜖𝑖+1 = {𝜖
𝑖+1̂   𝑖𝑓 

𝑓(𝜖𝑖+1̂ )

𝑓(𝜖𝑖)
≥ 𝑢

𝜖𝑖    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (B.2) 

Here, 𝑢 is a uniformly distributed random variable between 0 and 1. 

5. Increment – set 𝑖 = 𝑖 + 1 

6. Repeat steps 3 through 5 

For sufficiently many iterations, the draws of 𝜖 converge to 𝑓(𝜖). Note that we can calculate the 

ratio 
𝑓(𝜖𝑖+1̂)

𝑓(𝜖𝑖)
 if we know a function that is proportional to 𝑓(𝜖) since any constant cancels out.  

Putting it all together 

To sample from the joint distribution (C.1), we iterate over the five conditional distributions in a 

Gibbs sampling algorithm presented in section 3 (and repeated below for convenience). For 1. 

and 2. we nest Metropolis-Hastings samplers within the Gibbs algorithm. For each iteration of 

the outer Gibbs algorithm we also increment the inner Metropolis-Hastings algorithms a single 

time. Sampling from the conditional distributions 3., 4., and 5. is relatively straight-forward. 

These are draws from Normal, Inverse Wishart, and Inverse Gamma distributions. Most 

scientific computing software and libraries have built-in functions to carry out these draws. 
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1. Draw 휃𝑛 conditional on 𝑏, 𝑊, 휀𝑛𝑡 and the observed data Δ𝐻𝑛.  

I use a Metropolis-Hastings algorithm to make these draws; evaluating trial values by the 

conditional probability (3.23). 

𝐾(휃𝑛|𝑏,𝑊, 휀𝑛𝑡, Δ𝐻𝑛) ∝∏𝑃(Δ𝐻𝑛𝑡|휃𝑛, 휀𝑛𝑡)𝜙(휃𝑛|𝑏,𝑊)

𝑡

   ∀𝑛 (3.23) 

2. Draw 휀𝑛𝑡 conditional on 𝜎2, 휃𝑛, and the observed data Δ𝐻𝑛𝑡. 

Again, we use a Metropolis-Hastings algorithm to make these draws. Here we evaluate 

trial values by the conditional probability (3.24). 

𝐾(휀𝑛𝑡|𝜎
2, 휃𝑛, Δ𝐻𝑛𝑡) ∝ 𝑃(Δ𝐻𝑛𝑡|휃𝑛, 휀𝑛𝑡)𝜙(휀𝑛𝑡|0, 𝜎

2)   ∀𝑛𝑡 (3.24) 

 

3. Draw 𝑏 conditional on 𝑊 and 휃𝑛. 

This is a draw from a Normal distribution (3.25). 

𝐾(𝑏|𝑊, 휃𝑛∀𝑛) = 𝒩 (
∑ 휃𝑛𝑛

𝑁
,
𝑊

𝑁
) (3.25) 

where 𝑁 is the total number of firms. 

 

4. Draw 𝑊 conditional on Θ and 휃𝑛. 

This is a draw from the Inverse Wishart distribution (3.26) 

𝐾(𝑊|Θ, 휃𝑛∀𝑛) = 𝐼𝑊 (𝑉 + 𝑁,
𝑉𝐽 + 𝑁𝑆̅

𝑉 + 𝑁
) (3.26) 

where 𝑆̅ =
∑ ( 𝑛−Θ)( 𝑛−Θ)

′
𝑛

𝑁
, 𝑉 is the number of parameters to be estimated, i.e. the length 

of each 휃𝑛, and 𝐽 is a 𝑉-dimensional identity matrix 

 

5. Draw 𝜇 conditional on 휀𝑛𝑡 

This is a draw from the Inverse Gamma distribution (3.27) 

𝐾(𝜎2|휀𝑛𝑡∀𝑛𝑡) = 𝐼𝐺 (1 + 𝑁,
1 + 𝑁�̅�

1 + 𝑁
) (3.27) 

where �̅� =
∑ ( 𝑛𝑡−𝜎

2)( 𝑛𝑡−𝜎
2)
′

𝑛𝑡

𝑅
, and 𝑅 is the total number of observations in the dataset.   
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APPENDIX C:  

DYNAMIC MODELS OF JOB SEARCH AND 

ACCESSIBILITY 

Background and Purpose 

The central motivation for this study is to understand how cities facilitate economic activity and 

development. This question has been treated in several branches of the economics literature, 

including urban economics, economic geography, and to some extent, labour economics. Thus, 

the objective here is not to derive new theory, but rather to draw upon these ideas and examine 

empirically how they apply at the intra-metropolitan scale.  

Although cities are much more than just places of economic opportunity, their role as labour 

markets is central to their existence (Bertaud, 2014). Of particular interest for job search 

modelling purposes are agglomeration benefits, i.e. urban external scale economies, such as thick 

market effects and knowledge spillovers. The thick market effect, first formalized by Helsley and 

Strange (1990), describes how having access to more jobs, i.e. a thick labour market, improves 

worker-job matches given a system of heterogeneous workers and jobs. This makes intuitive 

sense since access to more jobs affords the job-seeker more opportunities to find one that suits 

their skills and interests, in turn making them more productive. Additionally, thick markets also 

reduce the risk of extended unemployment following idiosyncratic shocks (Moretti, 2011). From 

the workers’ perspective, these effects yield higher wages and shorter unemployment durations. 

The empirical evidence largely supports these hypotheses. For example, Petrongolo and 

Pissarides (2003) find, using a semi-structural model, that workers in larger cities in the UK have 

higher reservation wages, endogenizing the effects of better matching; Immergluck (1998) finds, 

in a reduced-form estimation, that unemployment rates at neighbourhood-level are lower where 

labour markets are thicker. Knowledge spill-overs, popularly associated with Marshall’s (1890) 

quote “The mysteries of the trade become no mystery; but are as it were in the air”, have also 

been the subject of much academic attention. From the worker’s point-of-view, this is 

particularly relevant vis-à-vis learning benefits. Notably, numerous studies have documented the 
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learning advantages of workers in large cities compared to those in small ones (Glaeser and 

Maré, 1994; de la Roca and Puga, 2017). Theoretical models of the mechanisms underlying 

knowledge spill-over generally rely on more frequent interactions between people in dense areas, 

resulting in more rapid learning (Glaeser, 1999). For a more detailed discussion on the micro-

foundations of urban agglomeration economies, see e.g. Duranton and Puga (2004) and Puga 

(2010).  

Another important distinction between the work of economists and that of urban and 

transportation modellers lies in the scope of analysis; the work of urban economists and 

economic geographers often examines regional dynamics, i.e. the interactions within a system of 

cities, whereas urban and transportation modellers generally focus their attention on intra-

metropolitan dynamics. Consequently, the treatment of space and spatial friction, in particular 

transportation costs, in economics is often simplistic or abstract compared to that in urban and 

transportation modelling. For example, most of the aforementioned studies on agglomeration 

effects compare between small and large cities, treating whole cities as single uniform markets. 

In comparison, urban and transportation modellers often use exceptionally detailed 

representations of both land use and transportation networks. For example, the SimMobility 

simulation framework accounts for parcel-level land use and travel times by different travel 

modes at various times of the day as inputs for the land market bidding models (Adnan et al., 

2015). The rigour and detail with which urban and transportation modellers consider space and 

spatial friction can potentially contribute to the understanding of the mechanisms underlying 

agglomeration economies. These effects fundamentally derive from the reduced spatial friction, 

i.e. transportation costs, in dense well-connected areas. However, agglomeration effects, beyond 

congestion, have largely been peripheral to the efforts of urban and transportation modellers. 

Early efforts to model the individual job seekers problem were essentially statistical optimal 

sample size or optimal stopping problems (Stigler, 1962; Chow et al., 1971), i.e. the optimal 

number of job offers to sample before taking a job. Building upon these, labour economists 

formalized equilibrium models. e.g. equilibrium aggregate unemployment rates as function of 

search friction, unemployment benefits, and wages expected from working (Diamond and 

Maskin, 1965; Mortensen, 1978; Pissarides, 1979). Empirical estimation of such models is the 

focus of the literature on dynamic discrete choice (DDC) models, also sometimes known as 
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dynamic programming discrete choice models. The methods in this study draw primarily from 

this literature. In essence, DDCs model decision processes where future utility depends on 

current choices and can be applied widely, e.g. having a child (Wolpin, 1984), bus engine 

replacement (Rust, 1987), and of course job search (Miller, 1984). Rust (1994) and 

Aguirregabiria and Mira (2009) provide comprehensive reviews of DDC modelling methods. 

There have been few applications of DDC that directly explore agglomeration effects in the 

labour market. However, two examples of are Petrongolo and Pissarides (2003) and Baum-Snow 

and Pavan (2012) who examine differences in wages and offer arrival rates between workers in 

small, mid-sized, and large cities.  

From a theoretical point-of-view, the structural estimation of such models with a detailed 

representation of spatial frictions is useful for testing the various hypothesized sources of 

agglomerations effects at an intra-metropolitan scale. Distinguishing different agglomeration 

benefits, e.g. learning from matching, is challenging using reduced-form approaches and must 

rely on convenient features in the data. From a practical point-of-view, the findings are useful for 

testing counterfactuals, e.g. the labour market impacts of transportation infrastructure 

investments, land use policy, etc. It is also a timely contribution to the understanding of spatial 

barriers to labour mobility considering the structural transformation that the economy is 

undergoing as consequence of the accelerated rate of technological innovation. Furthermore, a 

formalized model of job search should be an important component to large-scale urban 

modelling efforts given the fundamental role that the labour market plays in urban development. 

However, it is often omitted or ad hoc. For example, job assignment in SimMobility remains a 

static location choice that does not account for wages, wage progression, or agglomeration 

economies. Yet, income is an important input to several models, including daily activity choice, 

vehicle ownership choice, and the residential bidding models.  

The overall purpose of the study is to examine the impact of local job access, measured with high 

spatial resolution, on employment outcomes, such as unemployment rates and the rate of wage 

progression. More specifically, I will attempt to answer the following three questions: 

1. Does local labour market thickness affect employment outcomes? 

2. What inferences can we make vis-à-vis the job search processes in different sectors? 
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3. To what extents do matching and learning each contribute to the agglomeration benefits 

in job search? 

Methods and Data 

Modelling framework 

Let us now formalize a model of the choices that individuals face in job search. We consider a 

sequence of discrete time periods, e.g. months or years, and a finite time horizon 𝑇 counting 

periods since graduation until retirement age 𝑡 = 1,… , 𝑇. In each period, individuals can either 

be employed, receiving wage 𝑤, or unemployed and searching for work, receiving 

unemployment benefit 𝑢. Let �̅�𝑡  in period 𝑡 be the systematic utility a person derives in that 

period.  

�̅�𝑡(𝜔, 𝑐) = 𝜔 + 𝛽𝑐𝑐 (C.3) 

where, 

𝜔 = {
𝑤 𝑖𝑓 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑
𝑢 𝑖𝑓 𝑢𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑

 (C.4) 

𝑐 = {
1 𝑖𝑓 𝑠𝑤𝑖𝑡𝑐ℎ𝑒𝑑 𝑗𝑜𝑏𝑠 𝑠𝑖𝑛𝑐𝑒 𝑙𝑎𝑠𝑡 𝑝𝑒𝑟𝑖𝑜𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(C.5) 

𝛽𝑐 represents the inertia that must be overcome when switching jobs. Note that utility is 

measured in dollar-terms. At the end of a period, each person chooses to take one of three actions 

𝐴 = {𝑞, 𝑠, 𝑛}: 

• quit 𝑞 (provided they were employed);  

• stay 𝑠 (employed or unemployed), or  

• accept a new job 𝑛 (provided at least one new job opportunity presents itself). 
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Figure C-1: Dynamics of the job search model 

 

Each action is associated with an unobserved utility component 휀. We call the total utility a 

person derives in a period the reward and denote it 𝑅𝑡.  

𝑅𝑡(𝜔, 𝑐) = �̅�𝑡(𝜔, 𝑐) + ε (C.6) 

We assume that people are utility-maximizers. However, rather than simply maximizing the 

reward 𝑅𝑡, i.e. the utility derived in the period immediately following a choice, we assume 

instead that people have some foresight, which we approximate with a discounted lifetime utility. 

For example, an unemployed person with a job offer 𝑤 > 𝑢 may choose to stay unemployed. 

This decision is rational if they expect that remaining unemployed allows them to find a better 

job with sufficiently high wages to make up for the period(s) of foregone earnings. In other 

words, the optimal decision now depends on the expectation of actions and events at every future 

𝑡. Solving this problem by brute force methods becomes infeasible even for small 𝑇. Instead we 

adopt a dynamic programming approach. Let us describe the remaining lifetime utility at time 𝑡 

with a recursively defined value function 𝑉𝑡,  

𝑉𝑡(𝜔, 𝑐) = 𝑅𝑡(𝜔, 𝑐) + 𝛿𝐸[max(Vt+1  ̃)] (C.7) 

where 𝛿 is the per-period discount factor and 𝐸[max(Vt+1  ̃) ] is the expected maximum value, 

i.e. remaining lifetime utility, at time 𝑡 + 1 given the available actions at time 𝑡. Stated 

differently, the remaining lifetime utility at the state defined by (𝜔, 𝑐) at time 𝑡 is the sum of the 

immediate reward at 𝑡 and the expected maximum remaining lifetime utility at 𝑡 + 1. To 

evaluate the expected maximum value, let 휀, the random unobserved component associated with 

each action, be independent and identically distributed (IID) extreme-value with parameters 

(0, 𝜇), and let �̅�𝑡 denote the value function without this term.  
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𝑉�̅� (𝜔, 𝑐) = �̅�𝑡(𝜔, 𝑐) +  𝛿𝐸[max(Vt+1  ̃) ] = 𝜔 + 𝛽𝑐𝑐 + 𝛿𝐸[max(Vt+1  ̃) ] (C.8) 

Then we can express the expected maximum value analytically.  

𝐸[max(Vt+1  ̃) ] =
1

𝜇
log (∑exp(𝜇�̅�𝑡+1

𝐴 )

𝐴

) +
𝛾

𝜇
 (C.9) 

where 𝛾 is the Euler-Mascheroni constant. We determine the value function for every period 𝑡 by 

backwards induction. In the final period 𝑇, the value functions and rewards must be equal, since 

there are no subsequent periods with rewards. With 𝑉𝑇, we can evaluate the value functions in 

the second-to-last time period. Repeating these steps with decreasing 𝑡 we determine the value 

functions that serve as systematic utilities for the choice problem. 

𝑉𝑇(𝜔, 𝑐) = 𝑅𝑇(𝜔, 𝑐) 

(C.10) 

𝑉𝑇−1(𝜔, 𝑐) = R𝑇−1(𝜔, 𝑐) + 𝛿𝐸[max(VT̃) ] 

⋮ 

𝑉1(𝜔, 𝑐) = R1(𝜔, 𝑐) + 𝛿𝐸[max(V2̃) ] 

Finally, the choice probability in time period 𝑡 becomes a simple multinomial logit. 

𝑃(𝑎𝑡) =
exp(𝜇�̅�𝑡+1

𝑎𝑡 (𝜔, 𝑐))

∑ exp(𝜇�̅�𝑡+1
𝐴𝑡 (𝜔, 𝑐))𝐴𝑡

 (C.11) 

Data 

To estimate the model described above, we require detailed longitudinal data from both 

individuals and the land use transport system. Specifically, we need workers’ employment status, 

wages, and locational information. The section below describes a survey that I will conduct to 

elicit these. In addition to person-specific data, I will use origin-destination travel impedance 

matrices and job location data provided to the Future Urban Mobility (FM) research group at the 

Singapore-MIT Alliance for Research and Technology (SMART) by the Singapore Land 

Transport Authority (LTA). These describe the land use and transport systems with remarkable 

spatial detail, dividing Singapore in more than a thousand zones. The median zone area is 0.34 

km2 with sizes generally smaller in areas with dense build-up. This spatial granularity more than 

suffices for our purposes. On the other hand, the temporal granularity potentially comprises a 
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source of error. Over the past decade, we have received from government agencies historical and 

periodically updated land use and transportation data. However, matching these to the time steps 

of the model will undoubtedly still necessitate some interpolation. 

Survey of employment histories and wages 

The sampling frame for the survey consists of two distinct groups of individuals: 

• High school graduates; employed in the accommodation and food service activities 

sector, corresponding to section I in the Singapore Standard Industrial Classification 

(SSIC); graduated high school (if female) or completed mandatory military service (if 

male) in 2008. 

• College graduates; employed in the professional, scientific, and technical activities 

sector, corresponding to section M in the SSIC; graduated college in 2008. 

The two groups, representing low and high skill sectors, respectively, will be used for 

comparison. Constraining the sampling frame by the year survey participants completed their 

education or military service serves two purposes. First, it ensures that the initial state for the 

dynamic programming problem is exogenously determined. Additionally, it controls for the 

overall macro-economic conditions over surveyed period, although conditions can differ between 

the sectors.  

The survey consists of five sections: demographics, education, residential history, employment 

history, and commuting preferences. Table C-1 presents an initial outline of the survey 

questionnaire. I plan to conduct the survey on an online platform, such as Qualtrics, starting with 

a pilot in the early winter of 2019/20. Please refer to the workplan in Section 5 for a more 

detailed timeline of the survey.  
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Table C-1: Survey outline 

Section Information to elicit 

Demographics  Gender 

Race 

Birthday 

Citizenship / residential status 

  

Education Highest degree obtained 

Graduation date 

  

Residential history (since 

graduation) 

For each residential location 

Location 

If renting 

• Monthly rent 

If owning 

• Property value 

  

Employment history 

(since graduation) 

For each job/unemployment period 

If switched jobs 

• Reason for change 

• Expected annual raise if stayed at previous job 

Start and end dates 

Gross monthly income history (incl. promotions and raises) 

Occupation 

Sector 

Full-time or part-time 

If part-time  

• Reason for working part-time 

If unemployed 

• Reason for unemployment 

• Financial support while unemployed 

  

Commuting preferences Current commute mode 

If drive 

• Max one-way driving commute duration 

If transit 

• Max one-way transit commute duration 

• If able (license and vehicle availability) and willing to drive 

o Max one-way driving commute duration 

If walk 

• Max one-way walking commute duration 

• If able (license and vehicle availability) and willing to drive 

o Max one-way driving commute duration 

• If willing to take transit 

o Max one-way transit commute duration 
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Model Specification 

In the survey, we only observe new job opportunities when they are accepted. Unfortunately, this 

is a limitation for most practical dataset, considering the loose and somewhat subjective 

definition of what constitutes a new accessible job opportunity. Appropriately handling these 

opportunities, when they are unobserved, is the primary challenge in this study. First, let us 

assume that each job opportunity is associated with a wage offer 𝑤𝑜𝑓𝑓𝑒𝑟, consisting of a linear-

in-parameters terms and two random unobserved components, 𝜈 and 휂. 𝜈 represents person-

specific unobserved attributes, such as skill, ambition, etc. while 휂 captures unobserved offer-

specific heterogeneity. Let both random terms be normal-distributed with mean zero and 

standard deviations to be estimated.  

𝑤𝑜𝑓𝑓𝑒𝑟 = 𝛽𝑐𝑜𝑛𝑠𝑡 + 𝛽𝑥𝑥 + 𝜈 + 휂 (C.12) 

where 𝑥 denotes experience. Including an experience term means that the incentive for workers 

to accept a new job, i.e. take action 𝑛, increases the longer they stay in the same position without 

receiving raises. Additional linear-in-parameters terms, e.g. to account for education, sector, 

gender, etc., could be introduced to equation (C.12) if these were not controlled for in the 

dataset. For any given job, the wage offer is drawn from the normal distribution 

𝒩(𝛽𝑐𝑜𝑛𝑠𝑡 + 𝛽𝑥𝑥 + 𝜈, 𝜎
2). This approach of assuming a probability distribution for the 

unobserved wage offers is described by Ljungqvist & Sargent (2012). It is also similar in 

principle to a Heckman correction (Heckman, 1979), however the applications of course differ.  

At this point, the attentive reader may recall that wage is a state variable in our dynamic 

programming problem, whose value function was given in (C.7). A continuous distribution of 

wages results in an infinitely large state space. Hence, for the sake of tractability, let us instead 

consider a discrete approximation to the normal distribution 𝐻 with equally spaced grid points, 

cumulative distribution function 𝐹𝐻(휂), and mass function 𝑓𝐻(휂). Furthermore, we also need to 

expand the state space to account for individuals’ experience 𝑥. Specifically, the state variables 

are those that we require to evaluate the value function and can change over time. Equation 

(C.13) presents the updated value function with wage offers following 𝑓𝐻(휂).  
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𝑉𝑡(𝜔, 𝑐, 𝑥) = 𝑅𝑡(𝜔, 𝑐) + 𝛿∑𝐸[max(Vt+1  ̃)] 𝑓𝐻(휂)

∈𝐻

 
(C.13) 

If the wage offer is unobserved, i.e. 𝑎 ∈ {𝑞, 𝑠}, then the likelihood of the observed action must be 

considered over the all the possible values of 𝐻. On the other hand, if the person takes a new job, 

i.e. 𝑎 ∈ {𝑛}, we observe the new wage, and thus need only consider the joint likelihood of the 

action taken and the observed wage offer 휂.  

𝐿(𝑎𝑖𝑡) =

{
  
 

  
 
∑

exp (𝜇�̅�𝑡+1
𝑎𝑖𝑡(𝜔, 𝑐, 𝑥))

∑ exp (𝜇�̅�𝑡+1
𝐴𝑖𝑡(𝜔, 𝑐, 𝑥))𝐴𝑡

𝑓𝐻(휂)

∈𝐻

𝑖𝑓 𝑎𝑖𝑡 ∈ {𝑞, 𝑠}

exp (𝜇�̅�𝑡+1
𝑎𝑖𝑡(𝜔, 𝑐, 𝑥))

∑ exp (𝜇�̅�𝑡+1
𝐴𝑖𝑡(𝜔, 𝑐, 𝑥))𝐴𝑡

𝑓𝐻(휂) 𝑖𝑓 𝑎𝑖𝑡 ∈ {𝑛}

 (C.14) 

Note that when the person chooses to take a new job, 𝑎 ∈ {𝑛}, we may have to consider the 

person’s expectations of raises and promotions at the job they just left. I request this information 

in a separate question in the survey as it is not available in the employment histories. 

Additionally, equation (C.14) includes the subscript 𝑖 to account for the individual-specific 

heterogeneity, which affects the value functions and by extension the choice probabilities. 

Finally, there are a few decisions related to job search that we do not model. Specifically, I 

exclude part-time workers from the dataset. The decision to work part time is in many cases 

determined by outside factors that we do not model here. As such, modelling this decision would 

not contribute to the study while unnecessarily increasing the complexity of the model. 

Furthermore, I consider being fired a random exogenous event that occurs to everyone with the 

same probability. 

We now have a fully specified base model without any spatial effects. In the following sections, I 

propose ways to extend the model which allow us to test our hypotheses regarding various 

spatial and agglomeration effects. 

Thick markets 

For the first extension to the base model, we explicitly consider thick market effects. Given 

heterogeneity in job opportunities, having access to more offers generally results in better 

matches by allowing the job-seeker to choose the best offer from a larger pool. We incorporate 
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this effect by doing away with the assumption that people only consider a single new job 

opportunity in each period as was the case in the base model. Instead, I hypothesize that the 

number of new job opportunities revealed to a person in a time period, denoted 𝑁, is 

monotonously increasing with accessibility 𝑧ℎ𝑜𝑚𝑒 but with diminishing marginal return, e.g. a 

natural logarithm function.  

𝑁 = 𝛼ℎ ln(𝑧ℎ𝑜𝑚𝑒) (C.15) 

The parameter 𝛼 represents search effort in face of frictions and constraints, e.g. time to write 

applications, fatigue, etc. Here, we assume that 𝛼ℎ remains unchanged regardless of employment 

status or wage. However, one can imagine that those unemployed have more time and incentive 

to search or that those who feel undervalued at their current job more eagerly look for new 

opportunities. We can capture such effects by having distinct 𝛼’s by employment status or by 

letting 𝛼 be a function of the difference between an individual’s actual wage and their expected 

wage, i.e. mean of the normal distribution from which we draw wage offers. I will test such 

specifications empirically. For our purpose, relatively simple measures of accessibility, such as 

such as number of jobs within some travel time or distance from home, will suffice. We use it as 

a measure of market thickness as opposed to consumer surplus, which would have called for 

more comprehensive accessibility measures. The 𝑁 new opportunities revealed to an individual 

in a given time period, 𝑤𝑜𝑓𝑓𝑒𝑟
(1) , 𝑤𝑜𝑓𝑓𝑒𝑟

(2) , … , 𝑤𝑜𝑓𝑓𝑒𝑟
(𝑁)

, are IID draws from 𝒩(𝛽𝑐𝑜𝑛𝑠𝑡 + 𝛽𝑥𝑥 + 𝜈, 𝜎
2), 

i.e. the same normal distribution that we used for wage offers in the base model. Once again, we 

consider a discrete approximation to this distribution for tractability with cumulative distribution 

function 𝐹𝐻(휂) and mass function 𝑓𝐻(휂). Since we assume that people are utility-maximizers, 

they only consider the best offer 𝑚 to determine whether or not to accept a new job at a given 

time. 

𝑚 = max(𝑤𝑜𝑓𝑓𝑒𝑟
(1)

, 𝑤𝑜𝑓𝑓𝑒𝑟
(2)

, … , 𝑤𝑜𝑓𝑓𝑒𝑟
(𝑁)

) (C.16) 

The probability mass function is then, 

𝑓𝑀(𝑚) = 1 − 𝐹𝐻(𝑚)
𝑁
− (1 − 𝐹𝐻(𝑚)

𝑁) (C.17) 
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where 𝑚 is the discrete wage value of subsequent rank following 𝑚, i.e. the largest possible 

wage offer that is still smaller than 𝑚. In equation (C.25), the 𝐹𝐻(𝑚)
𝑁

-term is the probability 

that all offers are smaller than 𝑚 and the (1 − 𝐹𝐻(𝑚)
𝑁)-term is the probability that any offer is 

greater 𝑚. As the number of offers 𝑁 and number of grid points in the discretization increase, 𝑓𝑀 

approaches an extreme value distribution. 

I assume that residential relocation choices are exogenous to the model. In reality, job access 

often plays a role in residential location decisions. However, it is typically one of many factors, 

meaning that modelling these decisions without omitting factors from the reward function would 

require us to considerably expand the state space and likely increase computation time by several 

orders of magnitude. Thus, we keep the state space unchanged, however we still need to update 

our value and likelihood functions to account for the new distribution of wage offers. 

𝑉𝑡(𝜔, 𝑐, 𝑥) = 𝑅𝑡(𝜔, 𝑐) + 𝛿 ∑ 𝐸[max(Vt+1  ̃)] 𝑓𝑀(𝑚)

𝑚∈𝑀

 
(C.69) 

𝐿(𝑎𝑖𝑡) =

{
  
 

  
 
∑

exp (𝜇�̅�𝑡+1
𝑎𝑖𝑡(𝜔, 𝑐, 𝑥))

∑ exp (𝜇�̅�𝑡+1
𝐴𝑖𝑡(𝜔, 𝑐, 𝑥))𝐴𝑡

𝑓𝑀(𝑚)

𝑚∈𝑀

𝑖𝑓 𝑎𝑖𝑡 ∈ {𝑞, 𝑠}

exp (𝜇�̅�𝑡+1
𝑎𝑖𝑡(𝜔, 𝑐, 𝑥))

∑ exp (𝜇�̅�𝑡+1
𝐴𝑖𝑡(𝜔, 𝑐, 𝑥))𝐴𝑡

𝑓𝑀(𝑚) 𝑖𝑓 𝑎𝑖𝑡 ∈ {𝑛}

 (C.70) 

Deliberate search or serendipitous encounters 

In the previous section, we considered only accessibility from home locations. The underlying 

assumption is that commute time or distance constrain the set of opportunities people consider 

feasible and as such people limit their search accordingly. However, serendipitous encounters in 

professional settings are one of the central benefits associated with urban agglomeration and 

potentially an important avenue for finding new jobs. In practice, we account for this by letting 

the number of new job opportunities 𝑁 be a function of both accessibility from home 𝑧ℎ𝑜𝑚𝑒 and 

work 𝑧𝑤𝑜𝑟𝑘, as shown in equation (C.25) below. 

𝑁 = 𝛼ℎln (𝑧ℎ𝑜𝑚𝑒) + 𝛼𝑤 ln(𝑧𝑤𝑜𝑟𝑘) (C.71) 
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Given that we include accessibility from work to capture the benefits of serendipitous encounters 

in professional networks, it seems sensible to measure 𝑧𝑤𝑜𝑟𝑘 using a small, e.g. 10 minute, 

walking time radius. This is in contrast to the 𝑧ℎ𝑜𝑚𝑒, which should be measured by a radius 

reflecting commute willingness, e.g. 60 minutes by transit or car depending on vehicle 

availability. Again, I will test these hypotheses empirically. 

Including accessibility from work in our model introduces a further complication vis-à-vis the 

dynamic programming problem. Since job location now affects the number of new opportunities, 

it should be included as a state variable. Unfortunately, this requires that we know the location of 

each job offer, including those rejected. In essence, the problem is the same as that for 

unobserved wage offers, which we dealt with by assuming that offers were drawn from a normal 

distribution. However, conjuring a spatial distribution of job offers is less straightforward, as it 

should ideally account for job availability within the relevant sector and anchoring effects of the 

current job location. I discuss some ideas on ways to address this in 0 Potential Research 

Avenues. For the first iteration of this model extension, we assume that people do not account for 

changes in job accessibility in their career decisions. In other words, we use equation (C.71) for 

determining the number of opportunities but assume that people make decisions believing that 

the current number of opportunities will persist in the following time period regardless of where 

they work. Under this assumption, the value and likelihood functions still look like (C.69) and 

(C.70) from the previous section. 

Better matching or better learning 

Another aspect of urban agglomeration benefits, discussed in the background section, are the 

learning advantages. Our models thus far would likely have confounded the benefits from 

learning with those from matching. To capture the learning benefits of dense professional 

networks, we consider an additional experience term 𝜒 in the equation for wage offers. 

𝑤𝑜𝑓𝑓𝑒𝑟 = 𝛽𝑐𝑜𝑛𝑠𝑡 + 𝛽𝑥𝑥 + 𝛽𝜒𝜒 + 𝜈 + 휂 (C.72) 

where 𝜒, similarly to experience 𝑥, accumulates over time but the gain in each period is a 

function of accessibility from work 𝑧𝑤𝑜𝑟𝑘.  
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𝜒𝑡+1 = {
𝜒𝑡 + ln(𝑧𝑤𝑜𝑟𝑘) 𝑖𝑓 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑 

𝜒𝑡 𝑖𝑓 𝑢𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑
 (C.73) 

Importantly, these learning benefits persist across unemployment periods. On the other hand, 

matching benefits, while also cumulative, reset upon unemployment. For this extension, we need 

to expand the state space of the dynamic programming problem, which requires a reasonable 

discretization of the 𝜒 variable. Equations (C.74) and (C.75) present the updated value and 

likelihood functions. 

𝑉𝑡(𝜔, 𝑐, 𝑥, 𝜒) = 𝑅𝑡(𝜔, 𝑐) + 𝛿 ∑ 𝐸[max(Vt+1  ̃)] 𝑓𝑀(𝑚)

𝑚∈𝑀

 
(C.74) 

𝐿(𝑎𝑖𝑡) =

{
  
 

  
 
∑

exp (𝜇�̅�𝑡+1
𝑎𝑖𝑡(𝜔, 𝑐, 𝑥, 𝜒))

∑ exp (𝜇�̅�𝑡+1
𝐴𝑖𝑡(𝜔, 𝑐, 𝑥, 𝜒))𝐴𝑡

𝑓𝑀(𝑚)

𝑚∈𝑀

𝑖𝑓 𝑎𝑖𝑡 ∈ {𝑞, 𝑠}

exp (𝜇�̅�𝑡+1
𝑎𝑖𝑡(𝜔, 𝑐, 𝑥, 𝜒))

∑ exp (𝜇�̅�𝑡+1
𝐴𝑖𝑡(𝜔, 𝑐, 𝑥, 𝜒))𝐴𝑡

𝑓𝑀(𝑚) 𝑖𝑓 𝑎𝑖𝑡 ∈ {𝑛}

 (C.75) 

Estimation 

First, some useful notation: the dataset consists of employment histories from 𝐼 individuals, 𝑖 =

1, … , 𝐼. Let the set of observed actions for individual 𝑖 be denoted 𝑦𝑖 = 〈𝑎𝑖1, … , 𝑎𝑖𝑡, … , 𝑎𝑖𝑇〉, and 

the complete set of observed actions 𝑌 = 〈𝑦1, … , 𝑦𝑖 , … , 𝑦𝐼〉. For proof-of-concept testing, I coded 

the simple version of the model, generated synthetic data following the hypothesized decision-

making process with reasonable parameters, and then attempted to estimate the model to see if I 

could recover the underlying parameters. For these initial tests, I used maximum likelihood 

estimation in a so-called nested fixed-point algorithm, described by Rust (1994). In short, an 

outer loop iterates over and optimizes the parameters to be estimated, while an inner loop 

evaluates the likelihood of the observed actions (C.25) by solving the dynamic programming 

problem for each individual in the sample assuming the parameters given by the outer loop.  

𝐿(𝑌|𝛽) =∏∏𝐿(𝑎𝑖𝑡|𝛽)

𝑡𝑖

 
(C.25) 

Although occasionally successful, the estimation was unstable and highly sensitive to initial 

conditions due to local extrema. This behaviour is not too surprising considering the complexity 
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of the likelihood function, which involves the recursively solved dynamic programming problem 

for each individual. Instead, I will attempt to estimate the model using a Bayesian estimation 

procedure, which I describe below. 

Bayesian estimation procedure 

By using a Bayesian procedure, we can avoid having to maximize the likelihood function. 

Instead, we assume that our model parameters are normal-distributed and that the variation in the 

data we observe reflects this. The Bayesian estimation procedure essentially samples from these 

distributions conditional on the observed data and any other prior information we have available. 

Train (2003) provides a more complete description of Bayesian estimation methods. 

Let 𝛽 be the vector of parameters we are looking to estimate. The likelihood of an individual 𝑖’s 

employment history given 𝛽 is 

𝐿(𝑦𝑖|𝛽) =∏𝐿(𝑎𝑖𝑡)

𝑡

 
(C.77) 

However, we do not know the vector of parameters 𝛽. Instead, as mentioned previously, we 

assume that 𝛽 is normal-distributed with means 𝑏 and standard deviations 𝑊, both vectors 

themselves. Now, we can integrate over the distribution of 𝛽 to get the likelihood of 𝑦𝑖 not 

conditional on 𝛽. 

𝐿(𝑦𝑖|𝑏,𝑊) = ∫𝐿(𝑦𝑖|𝛽)𝜙(𝛽|𝑏,𝑊)𝑑𝛽 (C.78) 

where 𝜙 is the normal probability density function. By Bayes’ theorem (C.79), we can get the 

distributions of 𝑏 and 𝑊 conditional on the observed data 𝑌. These are the so-called posterior 

distributions, which we denote 𝐾(𝑏,𝑊|𝑌). 

𝐾(𝑏,𝑊|𝑌) =
𝐿(𝑌|𝑏,𝑊)𝑘(𝑏,𝑊)

𝐿(𝑌)
=∏

𝐿(𝑦𝑖|𝑏,𝑊)𝑘(𝑏,𝑊)

𝐿(𝑦𝑖)
𝑖

 
(C.79) 

Here, 𝑘(𝑏,𝑊) are the prior distributions, representing our best guess for the distributions of 𝑏 

and 𝑊 prior to the observations. Since we do not have any useful information about these 

beyond the data, we assume diffuse, i.e. uninformative, prior distributions for both. Specifically, 

we assume for 𝑏 a normal distribution with unboundedly large variance and for 𝑊 an Inverse 



139 

 

Wishart distribution with 𝑉 degrees of freedom, where 𝑉 is the number of parameters we are 

estimating, and scale matrix 𝐽, a 𝑉-dimensional identity matrix. In equation (C.79), the 

denominator on the right-hand side 𝐿(𝑌) is independent of the parameters 𝑏 and 𝑊. Thus, we 

can simplify and replace the equality with a proportionality to get 

𝐾(𝑏,𝑊|𝑌) ∝∏𝐿(𝑦𝑖|𝑏,𝑊)𝑘(𝑏,𝑊)

𝑖

 
(C.80) 

Sampling directly from (C.80) using a Metropolis-Hastings (MH) algorithm is theoretically 

possible but still computationally difficult due to the non-analytical integral (C.78), which must 

be solved at each iteration. However, we can avoid this by considering 𝛽𝑖, the realizations of the 

model parameters for each individual 𝑖, parameters in the Bayesian estimation procedure. In this 

case, the posterior distribution becomes  

𝐾(𝑏,𝑊, 𝛽𝑖∀𝑖|𝑌) =∏𝐿(𝑦𝑖|𝛽𝑖)𝜙(𝛽𝑖|𝑏,𝑊)𝑘(𝑏|𝑊)

𝑖

 
(C.81) 

Now we can sample from this joint posterior distribution by repeating the following three-step 

Gibbs sampling algorithm: 

1. Draw 𝛽𝑖 conditional on 𝑏, 𝑊, and the observed data for individual. 

𝐾(𝛽𝑖|𝑏,𝑊, 𝑦𝑖) ∝∏𝑃(𝑎𝑖𝑡|𝛽𝑖)

𝑡

𝜙(𝛽𝑖|𝑏,𝑊)   ∀𝑖 (C.82) 

This step is the bottleneck of the sampler because evaluating 𝑃(𝑎𝑖𝑡|𝛽𝑖) requires solving 

the dynamic programming problem with new parameters 𝛽𝑖 for each person at each 

iteration. Furthermore, drawing from the posterior distribution (C.82) requires an MH 

algorithm, though fortunately without any non-analytical integrals. 
 

2. Draw 𝑏 conditional on 𝑊 and 𝛽𝑖. 

𝐾(𝑏|𝑊, 𝛽𝑖∀𝑖) = 𝑁 (
∑ 𝛽𝑖𝑖

𝐼
,
𝑊

𝐼
) (C.83) 

This is a draw from a simple normal distribution where 𝐼 is the sample size. 
 

3. Draw 𝑊 conditional on 𝑏 and 𝛽𝑖. 
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𝐾(𝑊|𝑏, 𝛽𝑖∀𝑖) = 𝐼𝑊 (𝑉 + 𝐼,
𝑉𝐽 + 𝐼𝑆̅

𝑉 + 𝐼
) (C.84) 

This is a draw from the Inverse Wishart distribution where 𝑆̅ =
∑ (𝛽𝑖−𝑏)(𝛽𝑖−𝑏)

′
𝑖

𝐼
, 𝑉 is the 

number of parameters to estimated, i.e. the length of each 𝛽𝑖, and 𝐽 is a 𝑉-dimensional 

identity matrix.  

For illustrative purposes, I ran speed tests using the base model with 40 time steps, representing 

approximately the number of years between college graduation and retirement. Solving the 

dynamic programming problem with this model 100,000 times takes approximately five minutes 

on a single core on a typical laptop computer. Thus, drawing, say, 10,000 times from the 

posterior for a sample size 𝐼 of 1,000 on the same quad-core laptop would take in the order of 2 

hours. While somewhat cumbersome, this falls within the feasible range, provided that 

convergence is not too illusive. Furthermore, I will have access to several computing clusters at 

SMART FM, which can reduce the computation time by an order of magnitude, making the 

more complex model extensions feasible. 

Challenges 

Identification of the models relies fundamentally on job changes. Hence, it is crucial that the 

collected dataset covers, not just a sufficiently large number of individuals, but also follows them 

for long enough to observe changes in employment. The average monthly recruitment and 

resignation rates in the accommodation and food service sector since 2008 are 3.9% and 3.5%, 

respectively. For the professional, scientific, and technical services sector, the rates are 2.5% and 

1.8% for recruitment and resignation, respectively. These rates are averages across firms without 

accounting for firm size, so they do not translate directly to individuals. However, even if 1.8% 

of people change employment per month, our 12-year dataset will capture an average of 2.6 

changes per person. Furthermore, recent entrants to the labour market typically change jobs more 

frequently. 

It is crucial that we subject our model to a series of sensitivity and robustness checks. Structural 

models are highly simplified versions of reality, relying heavily on parametric assumptions. In 

our case, this pertains in particular to the assumption about normal-distributed wage offers. 

Ideally this would be validated empirically. However, if that is infeasible I will test the 
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sensitivity of the model to that assumption by considering alternative wage offer distributions. 

More broadly, we also need to consider the validity of the model’s structural assumptions by 

devising tests for confounding factors and omitted variables. 

Potential Research Avenues 

This section describes several potential extensions to the spatial job search model proposed here 

that I find intellectually compelling and warrant additional consideration. 

The cost of commuting 

Travel costs are fundamental to any spatial equilibrium model. Their importance is also well-

recognized in studies of urban transportation equity. However, the proposed models only 

consider travel impedances for determining accessibility as a measure of agglomeration; they do 

not offset wages. To incorporate the latter effect in a job search model, we need information the 

spatial distribution of the new job opportunities revealed individuals in each time period. 

Unfortunately, we generally do not observe these as discussed in Model Specification section. 

Hence, in practice we have to make a reasonable assumption about this distribution – analogous 

to the assumption about the wage offer distribution – and the interaction between the two. In 

other words, we would no longer draw wage offers from a normal distribution but from the joint 

normal distribution of wages and spatial distribution of job opportunity locations.  

Information and communications technology (ICT) 

The paradox of ICT is that it appears to simultaneously increase and decrease the importance of 

spatial impedance. It severely reduces the cost of communication and eliminates the need for 

face-to-face interactions in some context, while facilitating new trade linkages and collaborations 

that would not otherwise have existed. Examining the effect that ICT has had on the local nature 

of job search is technically straightforward but empirically difficult, since we require a 

comparable pre-ICT dataset.  

Competition 

The proposed models consider individuals in isolation. In other words, we do not account for 

competition for jobs or supply-demand interactions. Of course, this means that we must be 

careful in applying the findings to contexts with notably different labour supply or demand. 

However, more fundamentally, it also means that the proposed approach is not appropriate for 
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project evaluation. For example, investment in a new subway line may improve employment 

outcomes for those living near it. However, their improved matches with employers likely 

happen at the expense of those who would have matched otherwise. Thus, while the improved 

access is a net positive, since more options improves total surplus in theory, neglecting 

competition means we do not accurately account for the external costs. We can potentially 

address this by formulating the number of offers each person receives in each time period as a 

function of job demand in addition to supply, see for example Petrongolo and Pissarides (2001) 

for inspiration on matching function specifications, or by using a measure of accessibility that 

accounts for competition. 
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APPENDIX D:  

COMMUTING MODE CHOICE MODEL 

For determining the generalized cost of travel 𝑐𝑖𝑗 used in the agglomeration measures in equation 

(4.1), I estimate a commuting mode choice model and calculate the expected maximum utility 

(also known as logsum) between each zone pair. This simultaneously captures and summarizes 

the attributes of all modes and are thus an appropriate measure generalized cost measure. The 

mode choice model is based on the Massachusetts Travel Survey 2010-11. The dataset consists 

of 12030 respondents. Each respondent indicated their “usual mode to work” field and provide 

information about the location of both their home and workplace at the blockgroup level. Travel 

times and costs were extracted from the OD travel time matrices from the CTPS. The mode 

choice model itself is a multinomial logit with three choice alternatives: active modes, drive, and 

transit. Equation (D.1) shows the utility function. 𝑈𝑚 is the total utility of mode choice 𝑚, 

comprising the systematic component 𝑉𝑚 and the iid Gumbel-distributed error term 휀. Equation 

(D.2) shows the resulting multinomial logit choice probability, i.e. the probability of choosing 

mode 𝑚 given the choice set 𝑀.  

𝑈𝑚 = 𝑉𝑚 + 휀 
(D.1) 

𝑃(𝑚) =
𝑒𝑉𝑚

∑ 𝑒𝑉𝑚′𝑀
𝑚′

 (D.2) 

Equations (D.3) present the systematic utility function specification for each of the modes. 

𝑉𝑎𝑐𝑡𝑖𝑣𝑒 = 𝛽0 ⋅ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

(D.3) 
𝑉𝑑𝑟𝑖𝑣𝑒 = 𝛽1 + 𝛽2 ⋅ 𝑡𝑖𝑚𝑒 

𝑉𝑡𝑟𝑎𝑛𝑠𝑖𝑡 = 𝛽3 + 𝛽4 ⋅ 𝑖𝑛𝑠𝑦𝑠𝑡𝑒𝑚 𝑡𝑖𝑚𝑒 + 𝛽5 ⋅ 𝑎𝑐𝑐𝑒𝑠𝑠 𝑡𝑖𝑚𝑒 + 𝛽6 ⋅ 𝑓𝑎𝑟𝑒 

Table D-1 shows the estimated coefficients and their t-statistics. The model’s McFadden pseudo 

𝑅2 value is 0.22. 
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Table D-1: Mode choice model estimation results 

Variable description 𝛽 𝑡 

Active modes: Distance −0.59 −66.26 *** 

Drive: Alternative-specific constant 0.49 9.58 *** 

Drive: Time −0.13 −54.17 *** 

Transit: Alternative-specific constant 3.43 28.45 *** 

Transit: In-system travel time −0.04 −14.52 *** 

Transit: Access time −0.18 −32.98 *** 

Transit: Fare  −0.29 −5.88 *** 

p-value: 0.00 *** 0.001 ** 0.01 * 0.05 ‘ 0.1 

With these coefficients, I calculate logsums by equation (D.4).  

𝐸𝑀𝑈𝑖𝑗 = ln∑𝑒𝑉𝑚
𝑀

𝑚

 
(D.4) 

 

  



145 

 

APPENDIX E:  

CONVERGENCE DIAGNOSTICS 

Heidelberger and Welch (1983) propose a diagnostic to test the stationarity of a Markov chain. 

Specifically, they use the Cramér-von Mises test statistic to see if they can reject the null 

hypothesis that the chain is from a stationary distribution. The Cramér-von Mises criterion is 

defined as 

𝜔2 = ∫ [𝐹𝑁(𝑥) − 𝐹(𝑥)]
2𝑑𝐹(𝑥)

∞

−∞ 

 
(E.1) 

where 𝐹𝑁 is an empirical distribution function and 𝐹 is a CDF to which it is being compared. For 

a set of observed values in ascending order 𝑥1, 𝑥2, … , 𝑥𝑛, the Cramér-von Mises test statistic can 

be calculated as 

𝑇 = 𝑛𝜔2 =
1

12𝑛
+∑(

2𝑖 − 1

2𝑛
− 𝐹(𝑥𝑖))

2

 

𝑛

𝑖=1

 
(E.2) 

If 𝑇 is greater than the corresponding tabulated value in Anderson (1962), the null hypothesis 

that the data came from the distribution 𝐹 is rejected. 

The Heidelberger and Welch diagnostic should be repeated for each parameter and typically 

comprises the following steps: 

1. Choose a confidence level. 

2. Generate a chain of 𝑁 iterations. 

3. Calculate the Cramer-von Mises test statistic for the whole chain with the chosen 

confidence level.  

4. If the null hypothesis is rejected, remove the first 10% of the observations and recalculate 

the test statistic for the remainder of the chain. 
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5. Repeat 4 until either the null hypothesis cannot be rejected or 50% of the chain has been 

discarded. In the latter case, the chain has failed the Heidelberger and Welch diagnostic 

and requires more iterations. 

For the purposes of this study, I apply the Cramer-von Mises test to the final 100,000 iterations 

of each chain (using every 100 observation), rather than iteratively removing 10% of the chain. If 

the null hypothesis can be rejected with at least 95% confidence, I continue the chain for longer. 

This approach is less dependent on the starting values. The final p-values are presented in the 

tables below.  
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Table E-1: P-values from Heidelberger-Welch diagnostic  

Variable Manufacturing Professional 
Food & 

Accommodation 

TFP constant 𝛽2 
0.41 

(0.64) 

0.66 

(0.23) 

0.14 

(0.54) 

Employment size 𝛽0  
0.19 

(0.20) 

0.19 

(0.28) 

0.13 

(0.34) 

Land 𝛽1 
0.07 

(0.30) 

0.72 

(0.65) 

0.06 

(0.07) 

GDP 𝛽3 
0.93 

(0.17) 

0.92 

(0.11) 

0.37 

(0.40) 

Productivity 𝛽4  
0.05 

(0.21) 

0.26 

(0.28) 

Education 𝛽5 
0.25 

(0.13) 

0.14 

(0.05) 

0.17 

(0.33) 

Fixed adj. cost, hiring 𝜇0
+ 

0.40 

(0.08) 

0.19 

(0.15) 

0.10 

(0.51) 

Fixed adj. cost, firing 𝜇0
− 

0.13 

(0.05) 

0.28 

(0.39) 

0.50 

(0.23) 

Linear adj. cost, hiring 𝜇1
+ 

0.25 

(0.32) 

0.44 

(0.45) 

0.46 

(0.85) 

Linear adj. cost, firing 𝜇1
− 

0.24 

(0.11) 

0.17 

(0.17) 

0.68 

(0.31) 

Quadratic adj. cost, hiring 𝜇2
+ 

0.07 

(0.14) 

0.32 

(0.46) 

0.30 

(0.20) 

Quadratic adj. cost, firing 𝜇2
− 

0.13 

(0.24) 

0.40 

(0.20) 

0.16 

(0.33) 

Zero-inflation 휁 
0.99 

(0.17) 

0.91 

(0.72) 

0.53 

(0.41) 

Error st. dev. 𝜎 0.51 0.92 0.76 
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Table E-2: P-values from Heidelberger-Welch diagnostic for manufacturing agglomeration parameters 

Agglomeration 

measure (휂) 
Manufacturing 

Specialization  

(walk only, 2.0) 

0.37 

(0.57) 

Specialization  

(0.5) 

0.11 

(0.34) 

Population  

(2.0) 

0.75 

(0.17) 

Specialization  

(walk only, 2.0) 

0.07 

(0.35) 

 

Table E-3: P-values from Heidelberger-Welch diagnostic for professional services agglomeration 

parameters 

Agglomeration 

measure (휂) 
Professional 

Population  

(0.25) 

0.07 

(0.19) 

Employment  

(5.0) 

0.06 

(0.10) 

Population  

(0.25) 

0.23 

(0.06) 

Specialization  

(5.0) 

0.06 

(0.87) 
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Table E-4: P-values from Heidelberger-Welch diagnostic for food and accommodation services 

agglomeration parameters 

Agglomeration 

measure (휂) 
Food and 

accommodation 

Population  

(1.0) 

0.25 

(0.23) 

Employment  

(walk only, 5.0) 

0.11 

(0.05) 

Specialization  

(walk only, 5.0) 

0.26 

(0.12) 

Population  

(1.0) 

0.06 

(0.21) 
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A second diagnostic, the Gelman-Rubin convergence diagnostic, ensures that multiple chains of 

the same variable converge to the same value by comparing within and between chain variances. 

The mean within-chain variance 𝑊 is 

𝑊 =
1

𝑚
∑𝑠𝑗

2

𝑚

𝑗=1

 
(E.3) 

where 𝑠𝑗
2 is the within-chain variance of each chain 𝑗, calculated as 

𝑠𝑗
2 =

1

𝑛 − 1
∑(휃𝑖𝑗 − 휃̅𝑗)

2
𝑛

𝑖=1

 
(E.4) 

The between chain variance 𝐵 is 

𝐵 =
𝑛

𝑚 − 1
∑(휃̅𝑗 − 휃̅̅)

2
𝑚

𝑗=1

 
(E.5) 

 

where 휃̅̅ is the mean across all chains. 

휃̅̅ =
1

𝑚
∑휃̅𝑗

𝑚

𝑗=1

 
(E.6) 

The statistic of interest is called the potential scale reduction factor �̂�, and is calculated as 

�̂� =
√(1 −

1
𝑛)𝑊 +

1
𝑛𝐵

𝑊
 (E.7) 

If this value is large, say greater than 1.2, the chains require more iterations for convergence 

(Gelman & Rubin, 1992). 
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Table E-5: �̂�-values from Gelman-Rubin diagnostic 

Variable Manufacturing Professional 
Food & 

Accommodation 

TFP constant 𝛽2 
1.18 

(1.12) 

1.09 

(1.01) 

1.12 

(1.13) 

Employment size 𝛽0  
1.02 

(1.03) 

1.09 

(1.01) 

1.06 

(1.20) 

Land 𝛽1 
1.06 

(1.01) 

1.03 

(1.07) 

1.07 

(1.13) 

GDP 𝛽3 
1.06 

(1.16) 

1.03 

(1.12) 

1.02 

(1.10) 

Productivity 𝛽4  
1.10 

(1.14) 

1.01 

(1.04) 

Education 𝛽5 
1.02 

(1.07) 

1.01 

(1.10) 

1.00 

(1.01) 

Fixed adj. cost, hiring 𝜇0
+ 

1.14 

(1.13) 

1.14 

(1.11) 

1.10 

(1.17) 

Fixed adj. cost, firing 𝜇0
− 

1.17 

(1.18) 

1.12 

(1.10) 

1.13 

(1.17) 

Linear adj. cost, hiring 𝜇1
+ 

1.11 

(1.15) 

1.09 

(1.19) 

1.05 

(1.16) 

Linear adj. cost, firing 𝜇1
− 

1.10 

(1.11) 

1.09 

(1.12) 

1.08 

(1.10) 

Quadratic adj. cost, hiring 𝜇2
+ 

1.09 

(1.13) 

1.07 

(1.09) 

1.17 

(1.09) 

Quadratic adj. cost, firing 𝜇2
− 

1.08 

(1.08) 

1.09 

(1.05) 

1.01 

(1.01) 

Zero-inflation 휁 
1.03 

(1.02) 

1.00 

(1.11) 

1.00 

(1.04) 

Error st. dev. 𝜎 1.00 1.01 1.05 
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Table E-6: �̂�-values from Gelman-Rubin diagnostic for manufacturing firm agglomeration parameters 

Agglomeration 

measure (휂) 
Manufacturing 

Specialization  

(walk only, 2.0) 

1.05 

(1.03) 

Specialization  

(0.5) 

1.02 

(1.04) 

Population  

(2.0) 

1.00 

(1.09) 

Specialization  

(walk only, 2.0) 

1.12 

(1.12) 

 

 

Table E-7: �̂�-values from Gelman-Rubin diagnostic for professional services firm agglomeration 

parameters 

Agglomeration 

measure (휂) 
Professional 

Population  

(0.25) 

1.16 

(1.09) 

Employment  

(5.0) 

1.04 

(1.04) 

Population  

(0.25) 

1.02 

(1.04) 

Specialization  

(5.0) 

1.06 

(1.03) 
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Table E-8: �̂�-values from Gelman-Rubin diagnostic for food and accommodation services firm 

agglomeration 

Agglomeration 

measure (휂) 
Food and 

accommodation 

Population  

(1.0) 

1.16 

(1.14) 

Employment  

(walk only, 5.0) 

1.19 

(1.04) 

Specialization  

(walk only, 5.0) 

1.02 

(1.07) 

Population  

(1.0) 

1.10 

(1.02) 
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