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Abstract
Assessing the relationship between environmental and socio-economic conditions of an
urban area and local urban biodiversity loss is integral to informing policy decisions,
urban design, and community action plans.

Though some previous research explores the relationship between urban areas
and biodiversity loss, the limited available studies are often specific to only one city
or region. Those that do model this phenomena in multiple cities are limited to
environmental variables, and rarely examine the socio-economic conditions of a city,
such as average GDP or population density. To our knowledge, no studies analyze
the complex underlying relationship between socio-economic as well as environmental
conditions within urban areas and biodiversity, which is necessary for strategically
protecting the most at risk regions.

This work aims to leverage satellite datasets to predict cities’ risk exposure for
bird biodiversity loss. This research aspires to develop an analytical approach that
can be used for various types of biodiversity, though we restrict our initial analysis to
birds, as they offer a broad range of data and can be used as an indicator for other
species.1 We aim for our approach to be applicable to all urban areas, so this research
leverages a globally representative sample of cities with robust survey data. The
over-arching goal of this project is to design a methodology to better advise resource
allocation for the protection of global biodiversity.

We process 9 publicly available satellite datasets to create environmental and
socio-economic features for every functional urban area (FUA), as classified by the
OECD, totalling over 9,000 FUAs. We train and test 3 models: linear regression, ran-
dom forest regression, and a hybrid supervised and unsupervised model. We analyze
the predictive power of these approaches as well as relative importance assigned to
each input feature. We find that all 3 of the approaches have the ability to accurately
predict biodiversity loss and all of them find that the maximum land modification

1. Sara Fraixedas et al., “A state-of-the-art review on birds as indicators of biodiversity: Advances,
challenges, and future directions,” Ecological Indicators 118 (2020): 106728.
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value of each FUA is the most useful feature in determining biodiversity loss. Finally,
we discuss the implications of these findings and our models ability to inform resource
allocation.

Thesis Supervisor: John E. Fernandez
Title: Professor of building technology in the Department of Architecture
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Chapter 1

Introduction

1.1 Motivation and problem statement

Human manipulation of the global environment has caused extensive changes to the

distribution of organisms on earth, namely an immense loss of biodiversity. Un-

derstanding and mapping biodiversity loss is a fundamental conservation priority as

threats from the growing human population continue to surge, and stakeholders, such

as international agreements to reduce biodiversity loss (e.g. the Aichi Biodiversity

Targets, Convention on Biological Diversity 2010), call for a data driven basis to

prioritize their response.12

More than 4.3 billion people live in urban areas, comprising more than 56% of

the global population, whereas in 1900 only 10% of the population resided in cities.3

Clearly, the human population is continuing its rapid trend of urbanization. The

world is now hosting cities of unprecedented size.

As shown in Figure 1, a large proportion of this growth will occur in the global

south, a term often used to refer to developing countries–not the southern region of

the globe, potentially encroaching on many areas of rich biodiversity.4 The rapidly

1. Kevin J Gaston, “Global patterns in biodiversity,” Nature 405, no. 6783 (2000): 220–227.
2. Biosafety Unit, Aichi Biodiversity targets, September 2020, https://www.cbd.int/sp/targets/.
3. Hannah Ritchie and Max Roser, “Urbanization,” https://ourworldindata.org/urbanization,

Our World in Data, 2018,
4. Andrea Hollington et al., “Introduction: Concepts of the global south,” Voices from around the

World 1 (2015).
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changing urban environment is known to affect local biodiversity, yet comprehensive

global studies of the relationship between environmental variables, socio-economic

variables and avian biodiversity are lacking. In order to carry out a quantitative

analysis capable of representing this complex relationship, it is necessary to leverage

a multidisciplinary perspective. The combination of computer science and urban

studies is crucial to leverage the novel environmental data available.

Biodiversity is declining globally, and the aforementioned rapid urbanization poses

many risks to biodiversity, as well as many potential solutions.5 The growth in popu-

lation will undoubtedly lead to continued changes in land use, resource consumption,

and economic circumstances.

In past research, many studies have lacked socio-economic variables such as the per

capita GDP of cities and population density only examining environmental factors

such as change in land use. Leveraging socio-economic as well as environmental

data is key in understanding the complex underlying relationship of urban areas

and biodiversity. Furthermore, we do not limit our analysis to politically defined city

limits, as these boundaries are often political and do not represent the practical limits

of a city. As a result, using the official city limits can distort measures of population as

they do not consider individuals who may live right outside of the official boundaries,

but commute to the city everyday. Rather, we examine the OECD’s functional urban

area (FUA), or the area including the urban core, as well as the commuting zone.6

Assessing what factors are most important in determining biodiversity loss is

integral to informing policy decisions, urban design, and community action plans.

Global biodiversity targets set for 2020 by the Convention on Biological Diversity

were not achieved, so it is essential that we are able to determine where to focus

resources in order to minimize global biodiversity loss.7

5. Anne Larigauderie and Harold A Mooney, “The Intergovernmental science-policy Platform on
Biodiversity and Ecosystem Services: moving a step closer to an IPCC-like mechanism for biodiver-
sity,” Current opinion in environmental sustainability 2, nos. 1-2 (2010): 9–14.

6. Lewis Dijkstra, Hugo Poelman, and Paolo Veneri, “The EU-OECD definition of a functional
urban area,” 2019,

7. Unit, Aichi Biodiversity targets.
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Figure 1-1: Growth Rates of Cities

1.2 Research goal and methodology

This work seeks to leverage numerous satellite datasets to create environmental and

socio-economic parameters of global cities in machine learning models to predict which

cities are at highest risk for rapid avian biodiversity loss, and determine which param-

eters most influence local avian biodiversity. In addition to the main contribution,

this research presents a novel, more comprehensive set of features for urban areas

that can be used in future biodiversity research. We believe this work will help the

environmental planning community gain a deeper understanding of the drivers of

avian biodiversity loss that is not currently available in the literature. We restrict

our initial analysis to birds, as avian research and available data is most plentiful,

and bird biodiversity loss can be used as an indicator for other species.8 However,

we aim to create a feature set and analysis that can be generalized to other types of

biodiversity, such as plant diversity.

In this work, we aim to train machine learning models that can generalize to all

urban areas, though we initially focus on a subset of 54 cities which have robust avian

8. Fraixedas et al., “A state-of-the-art review on birds as indicators of biodiversity: Advances,
challenges, and future directions.”
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biodiversity survey data and have been used in previous research.9 These cities are

geographically diverse, representing 36 countries on 6 continents and 6 bio-geographic

realms, including representation of the global south. See figure 4-4 for a visualization

of the cities. We believe this selection of cities to be a representative set of the

worlds cities, and as far as we are aware it is the largest global compilation of urban

biodiversity data available.10

One of the major contributions of this work is the use of machine learning algo-

rithms to understand the drivers of biodiversity loss and predict where future loss will

occur. A novel combination of socio-economic and environmental variables derived

from satellite datasets are used to train machine learning algorithms that have not,

to our knowledge, been used to model these complex relationships. The over-arching

goal of this project is to design a methodology to better advise resource allocation for

the protection of global biodiversity.

1.3 Thesis outline

This research is divided into 6 chapters. In chapter 2 we discuss works related to

urbanization and biodiversity, the use of satellite and spatial data to predict biodi-

versity loss, and finally we discuss the key works and concepts related to machine

learning techniques used in this research. In chapter 3, we detail the modelling and

analysis methods used to obtain our results.

In chapter 4 we describe the sources we used to collect necessary data as well as

the methodology we used to process that data and create features.

Chapter 5 presents the results of our analysis. Chapter 6 discusses implications of

the work presented and outlines areas for future research. See table 1.1 for a summary

of chapter content and key contributions.

9. Myla FJ Aronson et al., “A global analysis of the impacts of urbanization on bird and plant
diversity reveals key anthropogenic drivers,” Proceedings of the royal society B: biological sciences
281, no. 1780 (2014): 20133330.

10. Aronson et al.
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Chapter and
section

Summary Contribution to the
field

3.2 This section describes how a ran-
dom forest classifier is used to pre-
dict avian biodiversity loss over a
global sample of cities

The use of ML for pre-
dicting biodiversity loss is
limited

3.3 This section describes how a hy-
brid model, combining both su-
pervised and unsupervised ML, is
used to predict avian biodiversity
loss over a global sample of cities

The use of ML for pre-
dicting biodiversity loss is
limited

4 This chapter describes the feature
creation and processing of 10 novel
datasets

Novel socio-economic and
environmental feature set
for all OECD FUAs

5.1 A summary and analysis of our
models ability to predict avian
biodiversity loss

Novel results present-
ing the ability of ML
models to use satellite
data measuring both
socio-economic and en-
vironmental variables to
predict avian biodiversity
loss across a global sam-
ple of urban areas

5.2 An analysis of feature importance
in predicting urban avian biodi-
versity loss

A novel understanding
of which environmental
and urban conditions are
most related to urban
avian biodiversity loss

Table 1.1: Contributions by chapter and section
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Chapter 2

Back ground and related works

2.1 Urbanization and biodiversity

According to Diaz et al. (2019), "The number of species currently threatened with

extinction is unprecedented in human history: an estimated 1 million species of ani-

mals and plants."1 Since the World’s first national park, Yellowstone, was created in

1872, a conservation based approach to biodiversity has dominated.2 Conservation,

however, has not been shown to work in all countries or regions, and has even led

to damaging social challenges.3 In order to quell the immense human impact on our

planet, we must make informed, strategic decisions to best promote a bio-diverse

population.

More than half of humanity currently resides in cities or urban areas, which is a

drastic increase from 1900 when city dwellers comprised only 10% of the population.4

Overall, the world’s urban population is growing by about 1% per year, with much

of that growth concentrated in the global south.5 Furthermore, it has been shown

1. Sandra Diaz et al., “Pervasive human-driven decline of life on Earth points to the need for
transformative change,” Science 366, no. 6471 (2019): eaax3100.

2. John E Fernández and Marcela Angel, “Ecological city-states in an era of environmental dis-
aster: Security, climate change and biodiversity,” Sustainability 12, no. 14 (2020): 5532.

3. Paige West, James Igoe, and Dan Brockington, “Parks and peoples: the social impact of pro-
tected areas,” Annu. Rev. Anthropol. 35 (2006): 251–277.

4. Diaz et al., “Pervasive human-driven decline of life on Earth points to the need for transfor-
mative change.”

5. Stuart Basten, “Re-Examining the fertility assumptions for Pacific Asia in the UN’s 2010 World
Population Prospects,” University of Oxford Department of Social Policy and Intervention, Barnett
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cities are likely to overlap with important biodiversity hot spots and naturally species

rich zones.6 In order to make key decisions for biodiversity conservation, we must

determine which factors impact urban biodiversity.

Over the past 20 years, there have been numerous studies evaluating the effect of

urban environmental conditions on biodiversity.7 Multiple studies examine the impact

of cities on global biodiversity, but limit their analysis of biodiversity loss to habitat

loss quantification, calling for more research to examine loss caused by other aspects

of urbanization. For example, the study done by Powers and Jetz examines land use

projections to 2070 to evaluate potential losses in suitable habitat.8 Similarly, Seto

et al. 2012 forecast global urban land cover change and examine its possible effects

on biodiversity hotspots and carbon biomass, and found that the projected land use

changes in urban area alone would cause concerning loss of biodiversity.9 However,

the main limitation with most of these studies is they do not examine other effects

of increased urban population such as light pollution, local temperature change, etc.

Overall, the study of ecology has focused on features of climate and geography

as determinants of biodiversity, neglecting to consider the local socio-economic con-

ditions. Consequently, there are limited studies examining the relationship between

the socio-economic features of a city and biodiversity loss. Those that do often limit

their scope to a small region. For example, Hope et al. 2003 examines the socioe-

conomic impact on plant biodiversity, but their analysis is limited to the Central

Arizona–Phoenix region, and uses a local biodiversity sampling approach.10 In the

Arizona-Phoenix region, their analysis found that more affluent neighborhoods host

Papers in Social Research 1 (2013).
6. Richard P Cincotta, Jennifer Wisnewski, and Robert Engelman, “Human population in the

biodiversity hotspots,” Nature 404, no. 6781 (2000): 990–992.
7. Sonja Knapp et al., “A research agenda for urban biodiversity in the global extinction crisis,”

BioScience 71, no. 3 (2021): 268–279.
8. Ryan P Powers and Walter Jetz, “Global habitat loss and extinction risk of terrestrial verte-

brates under future land-use-change scenarios,” Nature Climate Change 9, no. 4 (2019): 323–329.
9. Karen C Seto, Burak Güneralp, and Lucy R Hutyra, “Global forecasts of urban expansion to

2030 and direct impacts on biodiversity and carbon pools,” Proceedings of the National Academy of
Sciences 109, no. 40 (2012): 16083–16088.

10. Diane Hope et al., “Socioeconomics drive urban plant diversity,” Proceedings of the National
Academy of Sciences 100, no. 15 (2008): 8788–8792, issn: 0027-8424, https://doi.org/10.1073/pnas.
1537557100, eprint: https://www.pnas.org/content/100/15/8788.full.pdf, https://www.pnas.org/
content/100/15/8788.
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higher levels of plant biodiversity, and they name this phenomenon the "luxury effect."

The luxury effect on plant biodiversity has been recognized in various urban centers:

Beijing, Bujumbura, Las Angeles, etc.111213 Furthermore, some studies examine the

luxury effect on local bird diversity, as well as other abiotic factors such as median

housing age. For example, Loss et al. 2009 found that newer neighborhoods were

more likely to house more species in Chicago, Illinois, and they assert that their " re-

sults suggest that investigating a combination of abiotic and environmental features

of the built landscape, rather than focusing solely on environmental features, may

provide a more complete understanding of the factors influencing avian diversity in

human-dominated landscapes."14 Despite the various studies examining the luxury

effect, there is a limited understanding of the generalizability of this relationship to

all cities, since so much of the research had limited geographic scope. Studies in-

cluding multiple cities are necessary to examine what socio-economic factors drive

biodiversity globally rather than at the local level.15

Aaronson et al. recognize that "comparative studies of urban biodiversity leading

to robust generalities of the status and drivers of biodiversity in cities at the global

scale are lacking," and compiled a dataset of avian diversity in 54 cities around the

world. They also analyzed the loss of density in cities by modelling a number of

anthropogenic and non-anthropogenic features of the city, including land cover, city

age, climate and topography, but they do not consider socio-economic factors, such

as gross domestic product (GDP).16

11. Joseph Bigirimana et al., “Domestic garden plant diversity in Bujumbura, Burundi: Role of the
socio-economical status of the neighborhood and alien species invasion risk,” Landscape and Urban
Planning 107, no. 2 (2012): 118–126.

12. Lorraine Weller Clarke, G Darrel Jenerette, and Antonio Davila, “The luxury of vegetation
and the legacy of tree biodiversity in Los Angeles, CA,” Landscape and Urban Planning 116 (2013):
48–59.

13. Hua-Feng Wang et al., “A basic assessment of residential plant diversity and its ecosystem
services and disservices in Beijing, China,” Applied Geography 64 (2015): 121–131.

14. Scott R Loss, Marilyn O Ruiz, and Jeffrey D Brawn, “Relationships between avian diversity,
neighborhood age, income, and environmental characteristics of an urban landscape,” Biological
Conservation 142, no. 11 (2009): 2578–2585.

15. Misha Leong, Robert R Dunn, and Michelle D Trautwein, “Biodiversity and socioeconomics in
the city: a review of the luxury effect,” Biology Letters 14, no. 5 (2018): 20180082.

16. Aronson et al., “A global analysis of the impacts of urbanization on bird and plant diversity
reveals key anthropogenic drivers.”
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In short, many of these studies limit their scope to small regions or certain aspects

of biodiversity, rather than analyzing the complex underlying relationship between

urban environments and biodiversity, which is necessary for allocating limited re-

sources to strategically protect the most at risk biodiversity hot-spots. Therefore,

this research addresses this gap by examining a representative sample of global cities

and creating a broad set of parameters for each including both socio-economic as well

as environmental variables.

2.2 Spatial data

The novel abundance of spatial data, data that is largely collected by satellites,

presents an opportunity to develop a scalable and sophisticated model of biodiver-

sity. Tuia et al. state that "these new technologies and the data they generate hold

great potential for large-scale environmental monitoring and understanding."17 Fur-

thermore, many previously inaccessible areas of interest can now be analyzed through

high-resolution remote sensing technology.

Remote sensing data has been shown to be effective in measuring a number of envi-

ronmental conditions, such as vegetation cover, photosynthetic capacity, leaf density,

humidity, rainfall, etc.18 An example of satellite data can be seen in figure 2, which

depicts Normalized Difference Vegetation index (NDVI), a measure of greenery on

the surface of the earth. See section 4.1 for more details on how NDVI has been used

in previous research.

The work to use this data to map biodiversity is up and coming, but studies are

generally limited to specific regions, such as West Africa. For example, Vaglio et

al. (2014) explore whether airborbe hyperspectral imagery can be used to predict

the diversity of upper canopy trees in a West African forest. Their research finds

that airborn hyperspectral data is able to predict upper canopy diversity in this

17. Devis Tuia et al., “Perspectives in machine learning for wildlife conservation,” Nature Com-
munications 13, no. 1 (February 2022), https : //doi . org /10 .1038/s41467 - 022 - 27980 - y, https :
//doi.org/10.1038%2Fs41467-022-27980-y.

18. Shunlin Liang, Quantitative remote sensing of land surfaces (John Wiley & Sons, 2005).
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area, however, they call for additional research to examine whether this technique is

effective in different ecosystems.19 Guo et a. (2017) present another example of a

study which leverages airborne lidar data to model vegetation structure, but limits

the geographical range of study to only Alberta, Canada. The limited geographic

range of a large body of research in this field does not allow the findings to generalize

to many cities, so it can only advise on limited areas.

Studies are also frequently limited to only one source of satellite data that provide

a very limited measure of the factors that can affect biodiversity. For example, Powers

and Jetz (2019) use land use change scenarios to predict biodiversity loss20 While this

work provides a global predictions of biodiversity loss, they fail to account for features

outside of land use change that affect biodiversity, such as population density, night

light, etc. As far as we know, no research has combined both socio-economic and

environmental data to produce global predictions of biodiversity loss.

2.3 Machine learning

Machine learning (ML) is a rapidly growing field of artificial intelligence, changing

every industry and incorporating into every facet of society. ML is able to learn

patterns from large quantities of data and has been shown to be effective in predicting

a number of risk profiles.21 In fact, Christin et al. found that that deep learning, ML

techniques that use neural networks, "can be beneficial to most ecological disciplines,

including applied contexts, such as management and conservation."22

By generating data based predictions, ML techniques would allow scarce resources

to be allocated in a strategic manner to maximize environmental benefits. For ex-

ample, Hino et al. 2018 found that leveraging increasingly available electronic data

19. Gaia Vaglio Laurin et al., “Biodiversity mapping in a tropical West African forest with airborne
hyperspectral data,” PloS one 9, no. 6 (2014): e97910.

20. Powers and Jetz, “Global habitat loss and extinction risk of terrestrial vertebrates under future
land-use-change scenarios.”

21. Alexander Y Sun and Bridget R Scanlon, “How can Big Data and machine learning benefit
environment and water management: a survey of methods, applications, and future directions,”
Environmental Research Letters 14, no. 7 (2019): 073001.

22. Sylvain Christin, Éric Hervet, and Nicolas Lecomte, “Applications for deep learning in ecology,”
Methods in Ecology and Evolution 10, no. 10 (2019): 1632–1644.
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Figure 2-1: Example of Spatial Data: Normalized Difference Vegetation Index, global
average in 1990 Source: Eric Vermote and NOAA CDR Program, NOAA Climate
Data Record (CDR) of AVHRR Normalized Difference Vegetation Index (NDVI),
Version 5, 2019, https://doi.org/10.7289/V5ZG6QH9

allowed them to more appropriately distribute resources and prevent environmental

harms, doubling their rate of effectiveness.23 The allocation of scarce resources is par-

ticularly relevant to the topic of biodiversity. For example, if the US tries to create

cities that are able to preserve biodiversity, it is crucial to know what cities are most

important to focus on and what aspects of urban environments most affect the local

biodiversity.

Many studies that analyze the impact of urbanization on biodiversity do not lever-

age ML techniques and instead rely on more traditional statistical techniques. In fact,

Aronson MFJ et al. offer a novel global-scale comparative study of urban biodiversity,

and use regression models to find how anthropogenic and non-anthropogenic factors

23. Miyuki Hino, Elinor Benami, and Nina Brooks, “Machine learning for environmental monitor-
ing,” Nature Sustainability 1, no. 10 (2018): 583–588.
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correlate to bird and plant species density in cities worldwide, however their study

does not examine socio-economic factors, and they do not incorporate modern ML

techniques into their analysis.24

ML problems can be "supervised" or "unsupervised". In supervised learning prob-

lems, training inputs are labelled with their ground truth outputs, and the model is

trained on these outputs so it can learn the complex relationship between the inputs

to the model and the outputs, leading to the correct outcome prediction when con-

fronted with new, unseen inputs.25 A key assumption of supervised learning is that

the training data provided to the algorithm is representative of the examples that the

model will be asked to predict. Unsupervised ML approaches are commonly used to

separate data into different groups or "clusters." An unsupervised algorithm does not

train on ground truth labels, but learns underlying patterns of the data to predict

which outputs are most similar.

In this paper, we use 3 machine learning algorithms to learn the relationship

between the socio-economic and environmental features of a city and its avian biodi-

versity loss: linear regression, random forest regression, and a hybrid model. In the

remainder of this section we provide necessary background for the selected algorithms.

2.3.1 Linear regression

Linear regression is a simple statistical algorithm to analyze the linear relationship

between input variables with an output and which variables in particular are most

correlated with the output. Linear models are simple to evaluate and easy to visual-

ize, which make them particularly helpful in understanding the relationship between

environmental and socio-economic variables and avian biodiversity loss. For this rea-

son, linear regression, or similar variations of it, has been one of the most common

techniques within the environmental research community to model biodiversity loss.

For example, Aronson et al (2014) use a version of linear regression to model avian

24. Aronson et al., “A global analysis of the impacts of urbanization on bird and plant diversity
reveals key anthropogenic drivers.”

25. Sun and Scanlon, “How can Big Data and machine learning benefit environment and water
management: a survey of methods, applications, and future directions.”
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biodiversity loss, which serves as a great baseline for which this research can com-

pare.26 Linear regression, however, is limited in the types of relationships it can learn

between input variables and the predicted output, so it can potentially miss many of

the nuances inherit in environmental relationships.

Linear regression finds the linear equation which takes in one or more input vari-

ables and outputs the best approximation of the dependent variable.27 The relation-

ship is modelled as follows

𝑓(𝑥𝑖) = 𝜃0 + 𝜃(𝑥𝑖)𝑇

Where 𝜃0 if the value of 𝑓 when 𝑥𝑖 = 0, and 𝜃1 is a vector representing the

relationship between each variable and 𝑓

The most common method of fitting a regression line is ordinary least squares

(OLS), which minimizes the sum of squares of the vertical deviations from the actual

output data to the predicted line. In other words, linear regression fits a linear model

with coefficients 𝑡ℎ𝑒𝑡𝑎 = (𝑡ℎ𝑒𝑡𝑎1, . . . , 𝑡ℎ𝑒𝑡𝑎𝑛) to minimize the residual sum of squares

between the observed values in the dataset, and the values predicted by the linear

model.

2.3.2 Decision trees

A decision tree is a divide-and-conquer approach to classification and regression.28

A decision tree is constructed by recursively partitioning the input features of a

training set to find a set of decision rules that partition the input space to create

an informative hierarchical prediction model.29 Decision trees can be used for both

classification problems, those with discrete output spaces, or regression problems,

those with continuous output spaces.

26. Aronson et al., “A global analysis of the impacts of urbanization on bird and plant diversity
reveals key anthropogenic drivers.”

27. Evangelos C Alexopoulos, “Introduction to multivariate regression analysis,” Hippokratia 14,
no. Suppl 1 (2010): 23.

28. Anthony J Myles et al., “An introduction to decision tree modeling,” Journal of Chemometrics:
A Journal of the Chemometrics Society 18, no. 6 (2004): 275–285.

29. Myles et al.
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A classification problem takes in a training sample L = (X1, Y1), (X2 , Y2), ... ,

(XN, YN) of N observations, where each Xi = (Xa, . . Xk) is a k-dimensional vector

of input variables and Y is an independent variable that takes one of j discrete values.

The goal of classification algorithms is to learn the relationship between the values of

the X vector and the given value of Y such that given a new value of X, the algorithm

is able to correctly predict the corresponding value of Y.

Many classification algorithms exist, but decision trees have become increasingly

popular because of their interpretability and high demonstrated prediction accuracy.

Decision trees that are applied to classification problems are often called classification

trees.

Decision trees form the basis of the random forest algorithm, described in the

next section, and further used in this work to predict avian biodiversity loss from city

features.

2.3.3 Random forest algorithm

The random forest algorithm (RF) was proposed by L. Breiman in 2001, and has

since been successful as both a classification and regression method.3031 The algorithm

samples fractions of the data, creates a randomized decision tree predictor on that

subset of data, then finds the average of the decision trees’ predictions. Over the

past several decades, random forests have become widely used in machine learning

research due to their applicability to a wide range of problems. The algorithm is

also recognized for its accuracy and its ability to deal with small sample sizes and

high-dimensional feature spaces.

Despite its ubiquity within the ML community, RF has only seen limited appli-

cation within in biodiversity research, but there are recent examples of its use. For

instance, Bayat et al. (2021) use RF to model tree diversity in Hyrcanian forests in

northern Iran.32 However, to our knowledge we are the first to apply RF to predict

30. Leo Breiman, “Random forests,” Machine learning 45, no. 1 (2001): 5–32.
31. Gérard Biau and Erwan Scornet, “A random forest guided tour,” Test 25, no. 2 (2016): 197–

227.
32. Mahmoud Bayat et al., “Assessing biotic and abiotic effects on biodiversity index using machine
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biodiversity loss at a global scale.

An important aspect of the random forest algorithm is its ability to return mea-

sures of variable importance. Unlike most ML techniques where it is difficult to

tease out how inputs relate to the model’s predictions, random forests offer the trans-

parency and explainability by directly measuring the importance of each variable in

generating its predictions. For applied environmental research, model explainability

is key to using data driven research to guide real world resource allocation. This

property is particularly salient in this research, so that we can also identify which

factors contribute the most to loss of biodiversity, and offer targeted interventions.

For example, random forest may show that night light is extremely detrimental to

avian biodiversity, so that information can be used to launch targeted interventions

to help curb biodiversity loss in urban areas.

2.3.4 Hybrid supervised and unsupervised learning

Machine learning techniques are typically supervised or unsupervised. Supervised

algorithms tend to focus on finding the relationship between each input variable

and the output variable, while unsupervised techniques often reveal the structural

characteristics of the input data.33

In the last ten years, scholars have proposed a number of hybrid models that

combine unsupervised and supervised learning, to improve the performance of ML

models. The most commonly used method for constructing a hybrid model is to com-

bine a clustering algorithm with a decision tree algorithm. For example, Bose et al.

(2009) proposed a hybrid model consisting of an unsupervised clustering technique

and a boosted C5.0 decision tree to predict customer churn.34 First, a clustering al-

gorithm is used to cluster the samples. The clustering labels are then added to the

original dataset as a new feature. The new dataset, constaining the assigned cluster

learning,” Forests 12, no. 4 (2021): 461.
33. Jin Xiao et al., “A hybrid classification framework based on clustering,” IEEE Transactions on

Industrial Informatics 16, no. 4 (2019): 2177–2188.
34. Indranil Bose and Xi Chen, “Hybrid models using unsupervised clustering for prediction of

customer churn,” Journal of Organizational Computing and Electronic Commerce 19, no. 2 (2009):
133–151.
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of each datapoint, is used to train a boosted C5.0 decision tree model. Their results

show that the clustering technique improves the performance of their model com-

pared with the benchmark.35 Furthermore, Rajamohamed et al. combined K-means

clustering algorithms with five supervised models, to construct different versions of

hybrid models, indicating that various supervised and unsupervised techniques can

successfully be combined.36

35. Bose and Chen.
36. R Rajamohamed and J Manokaran, “Improved credit card churn prediction based on rough

clustering and supervised learning techniques,” Cluster Computing 21, no. 1 (2018): 65–77.
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Chapter 3

Methods

In this chapter, we describe how we implement machine learning models to take in

city features, such as average GDP and night light, and output the predicted amount

of biodiversity loss in a FUA. The main goals of our methods are twofold: to be able

to accurately predict avian biodiversity loss in cities where tedious survey data is not

available, and to identify the main drivers of urban biodiversity loss so we are able to

identify relevant interventions.

This chapter has 3 main sections. We discuss the machine learning methods, in-

cluding linear regression, random forest, and a hybrid unsupervised and supervised

model, used to create biodiversity loss predictions. These models are also used to

analyze how various socio-economic and environmental features relate to biodiver-

sity in order to increase understanding of the relationship between cities and avian

biodiversity.

The first models trained on the dataset include linear regression, described in

section 2.3.1, and serve as a useful baseline since regression models were used by

Aronson et al. (2014).1 Aronson et al. (2014) results offer a useful benchmark for our

model, since we use the dataset of avian biodiversity they compiled to create ground

truth labels, as described in 4.9

The random forest algorithm, as described in 2.3.3 was also selected due to its ease

1. Aronson et al., “A global analysis of the impacts of urbanization on bird and plant diversity
reveals key anthropogenic drivers.”
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of interpretability. Finally, we implement a hybrid model that uses both supervised

and unsupervised learning methods to leverage the structural insights gained from

clustering as the supervised model learns to predict on unseen data.

3.1 Linear regression

The linear regression analysis in this work was implemented in Python using scikit-

learns’s LinearRegression (version 1.0.2).2 For the regression problem the intercept

was calculated, because the data is not assumed to be centered. All variables were

normalized so that the model would not be biased toward features with a larger scale.

The coefficients were not constrained to be positive.

In all models (linear, random forest, and hybrid), dataset partitioning was done

with an 80:20 scheme, so out of the 𝑛 = 54 datapoints available, 43 were chosen

uniformly and identically at random for model training, and the remaining 11 formed

the test set on which the loss function was computed and reported. Training was

done in the MIT supercloud with 6 cpus.

Before running the regression algorithm, we visualized the Spearman rank corre-

lation coefficients for all pairwise combinations of our input features.3 Large correla-

tions between input features would imply multi-collinearity, which would not affect

the accuracy of the linear regression but could confound the ranking of importance

of features. By visualizing the Spearman coefficients in 3-1, we see that almost all of

the coefficients are near 0, and there are no significant correlations to confound our

model.4

2. F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” Journal of Machine Learning
Research 12 (2011): 2825–2830.

3. Leann Myers and Maria J Sirois, “Spearman correlation coefficients, differences between,” En-
cyclopedia of statistical sciences 12 (2004).

4. Kelly H Zou, Kemal Tuncali, and Stuart G Silverman, “Correlation and simple linear regres-
sion,” Radiology 227, no. 3 (2003): 617–628.
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Figure 3-1: Spearman rank correlation coefficients of features

3.2 Random forest

The Random forest algorithm used in this analysis was implemented in Python using

scikit-learn’s RandomForestRegressor (version 1.0.2).5 For the regression problem a

total of 100 individual decision trees were bagged. The trees had no max depth and

split nodes until complete purity was reached. Mean squared error was chosen as the

loss function to minimize.

3.3 Hybrid

Our hybrid model combines both unsupervised and supervised machine learning. For

the unsupervised component, the cities are clustered using an improved version of

K-means presented by Paul S Bradley and Usama M Fayyad..6 We chose K-means

5. Pedregosa et al., “Scikit-learn: Machine Learning in Python.”
6. Paul S Bradley and Usama M Fayyad, “Refining initial points for k-means clustering.,” in

ICML, vol. 98 (Citeseer, 1998), 91–99.

33



because it is a widely used algorithms, and we leverage a modification to make it less

sensitive to the initialization parameters. Analyzing the output of this step is helpful

in analyzing what trends the unsupervised algorithm is identifying in the data, and

it allows us to create visualizations of the clusters, as shown in section 5

In the supervised classification portion of our model, we train a C4.5 decision tree

on the entire training set, using the hybrid information gain ratio presented by Xiao

et al. to consider both the class labels and the clusters to which they belong.7 We

chose to use C4.5 because of its good performance, but also for its extremely strong

interpretability. We hope for this research to be able to inform policy decisions, so it

is extremely high priority that this model is able to be understood.

Figure 3-2: Hybrid Model

7. Xiao et al., “A hybrid classification framework based on clustering.”
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Chapter 4

Data collection and processing

This research aims to analyze both the environmental and socio-economic conditions

present in cities to predict avian biodiversity loss. Recent research has shown that

species diversity is affected by social, economic and cultural influences which are not

recognized by traditional ecological theory.1 For example, Hope et al. (2008) found

that family income was one of the most useful variables in predicting plant diversity

across the Arizona-Phoenix region.

In order to interpret and use the satellite data, we must find representative features

for every city. For example, If a city has many elevations recorded at different points

within the city, we must decide how to aggregate that into a feature for the city, e.g.

maximum elevation within a city or mean elevation. The datasets used in this study

are publicly available as referenced in the remainder of this section. All datasets

were processed in Python using statistical packages Pandas, and Numpy as well as

Geopandas and Rioxarray, libraries specific to processing spatial and geographical

data.234

We selected variables that have been shown to affect species diversity in previous

1. Hope et al., “Socioeconomics drive urban plant diversity.”
2. Wes McKinney, “Data Structures for Statistical Computing in Python,” in Proceedings of the

9th Python in Science Conference, ed. Stéfan van der Walt and Jarrod Millman (2010), 56–61,
https://doi.org/10.25080/Majora-92bf1922-00a.

3. The pandas development team, pandas-dev/pandas: Pandas, v. latest, February 2020, https:
//doi.org/10.5281/zenodo.3509134, https://doi.org/10.5281/zenodo.3509134.

4. Kelsey Jordahl et al., geopandas/geopandas: v0.8.1, v. v0.8.1, July 2020, https://doi.org/10.
5281/zenodo.3946761, https://doi.org/10.5281/zenodo.3946761.
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research, including Normalized Difference Vegetation Index, Wildfires, Land Surface

Temperature, Land Modification, Precipitation, Night Light, Elevation, Population

Density, and GDP. The remainder of this chapter describes the selection and cre-

ation of our features, citing relevant literature to justify why each feature is useful in

predicting biodiversity loss. Furthermore, the description and source of the data for

features used in our analysis in summarized in table 4.1

4.1 NDVI

Normalized Difference Vegetation Index (NDVI) describes the amount of vegeta-

tion cover on an area of land.5 NDVI ranges from -1 to +1 and quantifies vegeta-

tion by measuring the difference between the near-infrared spectrum, which vegeta-

tion strongly reflects, and red light, which vegetation absorbs. Using The National

Oceanic and Atmospheric Administration’s (NOAA) Advanced Very High Resolution

(AVHRR) imaging, scientists have been measuring the wavelengths and intensity of

visible (VIS) and near-infrared (NIR) light reflected by the surface of the earth back

into space.6

The NOAA AVHRR instrument has five sensors two of which measure light with

wavelengths ranging from 0.55 to 0.70 and 0.73 to 1.0 micrometers. Using these

AVHRR sensors, we can calculate the amount of light reflected by earth in visible and

near infrared spectra. To quantify the density of vegetation, each pixel corresponds to

1 square km of earth’s surface, and each NDVI value is given by near-infrared radiation

minus visible radiation divided by near-infrared radiation plus visible radiation, see

figure 4 for illustration.7

NDVI = NIR − VIS
NIR + VIS

5. Eric Vermote and NOAA CDR Program, NOAA Climate Data Record (CDR) of AVHRR
Normalized Difference Vegetation Index (NDVI), Version 5, 2019, https://doi.org/10.7289/V5ZG6
QH9.

6. Vermote and Program.
7. John Weier and David Herring, Measuring Vegetation (NDVI and EVI), https://earthobserva

tory.nasa.gov/features/MeasuringVegetation.
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Figure 4-1: Measuring NDVI

Using this dataset, we found two features based on NDVI for each city: maximum

NDVI and Integrated NDVI (INDVI). INDVI is defined as the number of positive

NDVi values over a year. It can also be thought of as the number of "green days,"

because it counts the number of days when the greenery is above 0. These indices were

chosen because Pettorelli et al. (2005) identify them as the most useful indicators for

overall productivity and bio-mass, both of which are extremely influential on local

biodiversity.8

8. Nathalie Pettorelli et al., “Using the satellite-derived NDVI to assess ecological responses to
environmental change,” Trends in ecology and evolution 20, no. 9 (2005): 503–510.
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4.2 Wildfires

Wildfires cause a massive amount of destruction to ecosystems and are known to

cause catastrophic biodiversity loss.9 Not only do the fires scorch necessary vegetation,

they also release immense amounts smoke and change local environments for decades.

Furthermore, Silveira et al. (2015) found that recurrent fires exhibit strong effects

on species richness and composition across all sample groups, and recurrent fires had

more severe environmental effects when compared to instances of non-recurrent fires

in the Amazon Forest.10

Wildfires play a crucial role in understanding how local bird populations may

be at risk for species loss. We have obtained data on wild fires over the past two

decades from NASA Earth Observations Active Fires dataset.11 This data captures

whether a wildfire was present on an area of land at a given time, so it is able to tell

us the frequency of fires as well as the intensity of the burn. Using the global raw

satellite data from 2015, we computed the percent of the functional urban area that

was burned throughout the course of the year by dividing the number of pixels that

were burned, by the total number of pixels contianed within the FUA. This metric

represents the spread of fire and how much of the FUA ’s environment was affected.

We also calculated the average fire radiative power (FRP) within a FUA over the

course of 2015 by taking the average of daily observations, and taking the average of

all of the pixels within the city. FRP is a measure of fire intensity, similar to how hot

a fire burns, and it is indicative of the amount of emissions released by a fire as well

as the degree of damage done.12 Both of these metrics were shown to impact avian

biodiversity in Bolivia in pervious research.13

9. Letıcia Couto Garcia et al., “Record-breaking wildfires in the world’s largest continuous tropical
wetland: integrative fire management is urgently needed for both biodiversity and humans,” Journal
of environmental management 293 (2021): 112870.

10. Juliana M Silveira et al., “A multi-taxa assessment of biodiversity change after single and
recurrent wildfires in a Brazilian Amazon forest,” Biotropica 48, no. 2 (2016): 170–180.

11. Louis Giglio et al., “Collection 6 modis burned area product user’s guide version 1.3,” NASA
EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2020,

12. O Maillard et al., Impact of Fires on Key Biodiversity Areas (KBAs) and Priority Bird Species
for Conservation in Bolivia. Fire 2022, 5, 4, 2022.

13. Maillard et al.
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4.3 Land surface temperature

Land surface temperature measures the temperature of an area of the earth’s surface,

which is related to many factors such as green house gases and land use.14 For example,

cities with black asphalt may have an increased surface temperature and may be

less hospitable to bird species. This effect is commonly referred to as the urban

heat island (UHI) effect, and is it a result of the increased heat storage capacity

of urban surfaces.15 In urban areas where the local temperature is abnormally hot,

food crops may die, ruining entire ecosystems and also affecting bird populations. In

fact, UHI has been identified as one of the major problems in the 21st century, as it

presents extremely detrimental effects to urban areas.16 Land surface temperature is

an important indicator of the UHI and, therefore, how the climate and local weather

is changing within a city.

We source data from NASA Earth Observation’s Land Surface Temperature data

set.17 We find all data points from 2015 that lie within the bounds of each FUA, and

create an average value per FUA by averaging each time observation, and averaging

all data points within the FUA. This metric is key to or research, because the model

may show that a higher average land surface temperature within a city is correlated

with a higher rish of avian biodiversity loss, suggesting that an effective potential

biodiversity intervention is reducing the UHI effect.

14. Duy X Tran et al., “Characterizing the relationship between land use land cover change and
land surface temperature,” ISPRS Journal of Photogrammetry and Remote Sensing 124 (2017): 119–
132.

15. Tran et al.
16. Ahmed Memon Rizwan, Leung YC Dennis, and LIU Chunho, “A review on the generation,

determination and mitigation of Urban Heat Island,” Journal of environmental sciences 20, no. 1
(2008): 120–128.

17. MOD11C2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 0.05Deg
CMG V006., 2015, https://doi.org/10.5067/MODIS/MOD11C2.006.
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4.4 Land modification/land use changes

The human modification of terrestrial systems is known to be one of the most signif-

icant drivers of habitat and, therefore, biodiversity loss.18 In fact, Sala et al. state

that for terrestrial ecosystems, land-use change will liely have the largest effect on

biodiversity loss.19 It is important to understand how the land in a city has been

changed from its natural state to be able to assess how that may affect local species

populations.

We leverage the The Global Human Modification (gHM) data set which estimates

the degree of human modification on all lands excluding Antarctica at a 1km reso-

lution.20 This dataset provides a continuous 0-1 metric at a resolution of 1 km that

reflects the proportion of a landscape modified. gHM is comprised of 5 types of

input variables: human settlement, agriculture, transportation, mining and energy

production, and electrical infrastructure. See figure 4-2 for a visualization of this

data. The Nature Conservancy Global Development Risk Assessment (GDRA) has

stated that this data set can be used to "improve conservation strategies in landscape

level mitigation, laws and regulations, lending requirements, and protection," such as

biodiversity preservation.21 To create a gHM value per city, we take the gHM for each

1𝑘𝑚2 of land in the FUA, and calculate the average throughout the city as well as the

maximum value within the city. These metrics are useful inputs in our biodiversity

analysis, as they gauge how much land modification really affects the biodiversity loss

within a FUA.

4.5 Precipitation

Precipitation, or the amount of rainfall that a city receives, is extremely important

in contextualizing the local environmental conditions. Many avian species rely on

18. Osvaldo E Sala et al., “Global biodiversity scenarios for the year 2100,” science 287, no. 5459
(2000): 1770–1774.

19. Sala et al.
20. Christina M Kennedy et al., “Managing the middle: A shift in conservation priorities based on

the global human modification gradient,” Global Change Biology 25, no. 3 (2019): 811–826.
21. Current land modification, http://gdra-tnc.org/current/.
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Figure 4-2: Cumulative human modification across global terrestrial lands. Source:
Christina M Kennedy et al., “Managing the middle: A shift in conservation priorities
based on the global human modification gradient,” Global Change Biology 25, no. 3
(2019): 811–826

predictable precipitation, and overly dry or wet conditions can threaten their pop-

ulation. In fact, McCain and Colwell (2011) modelled local population extirpation

risk for a range of temperature and precipitation scenarios and found that under the

driest conditions (minimum predicted precipitation), local extirpation risks increased

drastically (50–60%).22

The Microwave Climate Data Center offers high quality geophysical data from

satellite microwave sensors, providing accurate measures of liquid water precipitation,

rain rate, at a resolution of .25 x .25 degrees. These Special Sensor Microwave/Imager

(SSM/I) and Special Sensor Microwave Imager Sounder (SSMIS) data products are

produced as part of the NASA’s MEaSUREs Program.23

We isolate all precipitation within each functional urban area and take the spatial

22. Christy M McCain and Robert K Colwell, “Assessing the threat to montane biodiversity from
discordant shifts in temperature and precipitation in a changing climate,” Ecology letters 14, no. 12
(2011): 1236–1245.

23. F. J. Wentz, K. A. Hilburn, and D K. Smith, Remote Sensing Systems DMSP SSMI / SSMIS
Environmental Suite on 0.25 deg grid, Version 7, 2012, https://www.remss.com/missions/ssmi/.
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average followed the sum over year 2015, to find the average yearly precipitation.

Including this feature in our model allows us to gauge how the average precipitation

in a city affects the local avian population, which may indicate that droughts are an

issue and suggest possible interventions.

4.6 Night light development Index

Light pollution is increasingly recognized as a driver of biodiversity loss, as it may

cause a disruption in sleeping and mating patterns in many species.24 Brei et al. 2016

studied the effect of light pollution on Sea Turtles in the Caribbean and found that

nighttime light significantly reduces the number of sea turtle nests.25 Furthermore,

night light can serve as an empirical measurement of human development, where more

developed areas tend to emit more artificial night light.26 As a result, night light has

been shows to be negatively correlated to rates of poverty.

the Joint Polar-orbiting Satellite System (JPSS), the Visible and Infrared Imaging

Suite (VIIRS) Day Night Band (DNB) on board of JPSS satellites has been leveraged

by Colorado School of Mines’ Earth Observation Group to produce global Nighttime

Light maps. This data set is a cloud-free composite, as using a cloud free dataset is

integral to ensuring that areas with cloud cover are not biased toward lower emitted

light due to cloud blocking. Then, following the method outlined by Elvidge et al.

(2012), to create the night light development index (NLDI) we combine the night

light radiance values with FUA population count to form a Lorenz and obtain the

Gini coefficient for spatially at a resolution of a a quarter degree.27

This index acts as a simple, objective measure of human development. Not only

does it directly represent the amount of night light in a FUA, it also acts as a measure

24. Jari Lyytimäki, “Nature’s nocturnal services: Light pollution as a non-recognised challenge for
ecosystem services research and management,” Ecosystem Services 3 (2013): e44–e48.

25. Michael Brei, Agustin Perez-Barahona, and Eric Strobl, “Environmental pollution and biodi-
versity: Light pollution and sea turtles in the Caribbean,” Journal of Environmental Economics and
Management 77 (2016): 95–116.

26. C. D. Elvidge et al., “The Night Light Development Index (NLDI): a spatially explicit measure
of human development from satellite data,” Social Geography 7, no. 1 (2012): 23–35, https://doi.
org/10.5194/sg-7-23-2012, http://www.soc-geogr.net/7/23/2012/.

27. Elvidge et al.
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of wealth and income among a FUA, as the NLDI has been shown to be correlated

with both the overall human wellfare and the environmental quality of an urban

area.28 As a result, this metric is useful in our research for two reasons: NLDI helps

us gauge the impact of nightlight on biodiversity, and NLDI offerns insights into how

wealth and income within a FUA affect avian biodiversity.

4.7 Elevation

Elevation has been shown to be an important correlate of global patterns of species.29

While we do not expect elevation to significantly change due to urbanization (though

landscaping may cause some elevation difference), it is possible that elevation changes

the way avian species interact with an environment, and so we believe it is important

to include in a model predicting avian species richness.

To measure the elevation within our FUAs, we leverage data from the U.S. Geo-

logical Survey (USGS) and the National Geospatial-Intelligence Agency (NGA), who

have developed a global elevation model called Global Multi-resolution Terrain Ele-

vation Data (GMTED2010)30 For each FUA, we calculate the minimum, maximum,

and median elevation, which serve to represent the elevation most commonly found

within each FUA, as well as the extremes that the avian population may experience.

4.8 FUA population statistics

In 2010, 757 million people resided in the world’s 101 largest cities, and urban pop-

ulations are growing faster than ever.31 As urban populations expand, cities develop

new structures and strains on the environment. We will consider cities population size

by examining the European Commission’s Global Human Settlement (GHS) dataset,

28. Elvidge et al.
29. Gaston, “Global patterns in biodiversity.”
30. Jeffrey J Danielson and Dean B Gesch, Global multi-resolution terrain elevation data 2010

(GMTED2010) (US Department of the Interior, US Geological Survey Washington, DC, USA, 2011).
31. Daniel Hoornweg and Kevin Pope, “Population predictions for the world’s largest cities in the

21st century,” Environment and Urbanization 29, no. 1 (2017): 195–216.
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which allows us to obtain human populations of each city.32

In addition to total population, it is also important to consider how dense that

population is within a city, as a high population density can put unique strains on the

local environment. We will also leverage the European Commission’s GHS dataset to

obtain this information.

4.9 Ground truth labels

Following the method outlined by Aronson et al. 2014, we construct ground truth

labels by calculating the pre-urbanization species density and finding the current

species density within the urban area, then finding the density loss.33 The density of

species of extant birds is calculated as the number of species per km2 for each urban

using estimates of the city area given by the OECD.34

We first estimate the pre-urbanization bird species density by leveraging BirdLife

International range maps.35 As Aronsons et al. state, "Because range maps provide

representations of species’ extent of occurrence at coarse resolutions with little or

no consideration of changes in occupancy owing to land-use change, they are ide-

ally suited to estimate non-urban density of bird species within larger areas such as

cities."36

To measure the post-urbanization population density, we leverage the dataset

compiled by Aronson et al. (2014). This dataset was created by researchers who

comprehensively reviewed literature, databases, and expert surveys to compile an

estimate of bird species present in 54 cities globally. All species recorded in surveys

conducted since 1990 are counted for each city. According to Aronson et al., some of

the datasets were based on intensive surveys conducted for 1 or 2 years, whereas others

32. M Schiavina et al., “GHS-FUA R2019AGHS functional urban areas, derived from GHS-UCDB
R2019A,(2015),” R2019A. edited by Joint Research Centre (JRC) European Commission, 2019,

33. Aronson et al., “A global analysis of the impacts of urbanization on bird and plant diversity
reveals key anthropogenic drivers.”

34. Dijkstra, Poelman, and Veneri, “The EU-OECD definition of a functional urban area.”
35. BirdLife International and Handbook of the Birds of the World, Bird species distribution maps

of the world., 2021, http://datazone.birdlife.org/species/requestdis..
36. Aronson et al., “A global analysis of the impacts of urbanization on bird and plant diversity

reveals key anthropogenic drivers.”
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represented data collected over multiple time periods. Furthermore, the datasets were

complete lists from within the administrative boundary of a city, including inner urban

as well as the peri-urban areas which makes this data consistent with using the FUA,

rather than the official political boundaries of a city, which often do not include

peri-urban areas.

Figure 4-3: Change in population density in 54 test cities. Data source: Myla FJ
Aronson et al., “A global analysis of the impacts of urbanization on bird and plant
diversity reveals key anthropogenic drivers,” Proceedings of the royal society B: bio-
logical sciences 281, no. 1780 (2014): 20133330

Finally, to find the density loss we subtract the pre-urbanization population den-

sity from the post-urbanization and then divide by the pre-urbanization to find that

percent change in bird diversity. The distribution of our labels is depicted in figure

4-3 , which shows that bird diversity change in our labelled cities ranges from -90% to

over 10%. So, this distribution represents a wide range of avian biodiversity change,

which is helpful in training a model. The change in avian population density values
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are also geospatially visualized in figure 4-4, which presents the geographical range

of our labels as well.

Figure 4-4: World map of change in population density in 54 test cities. Sources:
Aronson et al. (2014) and BirdLife International and Handbook of the Birds of the
World
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Table 4.1: Description and sources for variables used in

our analysis

Variable Description Source

NDVI

Amount of veg-

etation cover of

an area of land

Vermote and Program, NOAA

Climate Data Record (CDR) of

AVHRR Normalized Difference

Vegetation Index (NDVI), Ver-

sion 5

Wildfires Percent of FUA

burned by wild-

fires and inten-

sity of fires as

FRP

Giglio et al., “Collection 6 modis

burned area product user’s guide

version 1.3”

Land

Surface

Tem-

pera-

ture

Annual mean

temperature

MOD11C2 MODIS/Terra Land

Surface Temperature/Emissivity

8-Day L3 Global 0.05Deg CMG

V006.

Land

Modifi-

cation

Average Global

Human mod-

ification and

Maximum

Global Human

Modification

Kennedy et al., “Managing the

middle: A shift in conservation

priorities based on the global hu-

man modification gradient”

PrecipitationAverage yearly

rainfall

Wentz, Hilburn, and Smith, Re-

mote Sensing Systems DMSP

SSMI / SSMIS Environmental

Suite on 0.25 deg grid, Version 7

Continued on next page

47



Table 4.1 – Continued from previous page

Variable Description Source

Night

Light

Average night

light

Elvidge et al., “The Night Light

Development Index (NLDI): a

spatially explicit measure of hu-

man development from satellite

data”

Elevation Minimum, max-

imum and me-

dian elevation

Danielson and Gesch, Global

multi-resolution terrain elevation

data 2010 (GMTED2010)

FUA

popu-

lation

statis-

tics

Total popula-

tion, population

density, and

change in popu-

lation density

Dijkstra, Poelman, and Veneri,

“The EU-OECD definition of a

functional urban area”

GDP GDP per capita Mo Elhabashy
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Chapter 5

Results

In this section we discuss the results of the 3 models, linear regression, random forest,

and hybrid, on our avian biodiversity dataset. This chapter is split into 2 parts: 5.1

discusses how well our models were able to fit to the data and predict on unseen

datapoints, and section 5.2 presents the importance that each model placed on the

input features.

5.1 Accuracy and predictive performance

To assess the models, we score their classification accuracy on a test dataset that

the model was not trained on, so that we can gauge the models ability to general-

ize to unseen data. We calculated severeal key metrics to gauge the performance

of our models: mean absolute error (MAE), mean squared error (MSE), and root

mean squared error (RMSE). These metrics are common in data science literature in

evaluating regression models, and the results are summarized in figure 5.1

The average absolute difference between a set of predicted (𝑝𝑖) and observed (𝑜𝑖)

values, or the mean absolute error (MAE), was calculated as follows

𝑀𝐴𝐸 = 𝑁−1
𝑁∑︁

𝑖=1
|𝑝𝑖 − 𝑜𝑖|

The MSE represents the square of the difference between a set of predicted (𝑝𝑖)
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and observed (𝑜𝑖) values, and it is useful in penalizing predictions that are very far

from observed values. RMSE is simply the square root of SME

𝑀𝑆𝐸 = 𝑁−1
𝑁∑︁

𝑖=1
(𝑝𝑖 − 𝑜𝑖)2

Model MAE MSE RMSE
Linear regression 13.49 360.78 18.99
Random forest 13.97 261.23 16.16

Hybrid 13.95 261.2 16.16

Table 5.1: Model key performance indicators

The lowest MAE achieved of 13.49 indicates that, on average, the linear regres-

sion was 13.49% off in predicting the percent change in avian biodiversity. Notably,

the MAE was within one standard deviation of the change in avian species density.

Therefore, any differences or prediction errors between the predicted and observed

values are within the range of natural variability. Despite the fact that our linear

regression performed the most accurately based on MAE, the random forest and hy-

brid model both achieved similarly low MAE’s. The Hybrid model obtained the best

accuracy when examining the MAE and MSE, though the RF achieved extremely

similar results.

Furthermore, the performance of each model on the test set can be visualized in

figures 5-1, 5-2, and 5-3. A visual analysis of these figures indicates that all three

models were able to successfully extract a predictive signal from the data.

5.2 Feature importance analysis

A key contribution of this research is not only the ability to predict which urban areas

are most at risk for avian biodiversity loss, but also to understand the key drivers of

that loss. The models we implemented offer insights into how they used each input

variable to predict the avian biodiversity loss. The remainder of this section will

analyze the feature importance of each model.
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Figure 5-1: Linear regression predicted vs. actual change in avian species density

5.2.1 Linear regression

Regression analysis describes how the changes in the variables affect the value of

the dependent variable. It does, however, assume the input variables are perfectly

independent, which, from our Pearson analysis, we know is not perfectly true. Though

the lack of independence in the input variables does not affect the performance of

the model, it does confound the interpretability of the models coefficients. In other

words, the coefficients should denote how much the dependent variable is expected

to increase when that input variable increases by one, while holding all the other

variables constant. However, since the input variables are not perfectly independent,

this statement is not entirely accurate. As a result, the implications of the assigned

coefficients of our input variables should be analyzed with this limitation in mind.

Nevertheless, it is notable that all three of our models consider the maximum land

modification of a FUA to be the most significant feature. Linear regression assigns

maximum land modification the highest coefficient, then maximum NDVI, followed
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Figure 5-2: Random forest predicted vs. actual change in avian species density

by perfect of the FUA burned.

5.2.2 Random forest

RF offers a more interpretable view of the importance it places on each variable. It

assigns each variable a measure of importance based on how perturbing each value

changes the predicted outcome.1 This measure does not require all features to be

independent in order to get an accurate ranking. The results can be visualized in

figure 5-5. Max land modification is again the most important variable in predicting

the change in avian biodiversity. GDP per capita is the next most important feature,

followed by median elevation, precipitation, population, elevation range, and FRP

respectively.

1. Breiman, “Random forests.”
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Figure 5-3: Hybrid predicted vs. actual change in avian species density

Figure 5-4: Linear regression coefficients

5.2.3 Hybrid

Our hybrid model was designed with interpretability in mind. It inherits the same

feature importance algorithm as the random forest model that it uses for supervised
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Figure 5-5: Random forest feature importance

Figure 5-6: Hybrid feature importance

learning. Similar to the previous models, our hybrid model ranked the maximum land

modification as the most important feature in predicting change in avian biodiversity.

GDP per capita is the next most important feature, followed by median elevation,

precipitation, and population respectively. After the top 5 features, the hybrid model

diverges from the random forest a bit, and it ranks evevation range, FRP, maximum

ndvi, and indvi almost identically.

Notably, the clusters input from the unsupervised learning portion of the model

is ranked last, implying that the clusters were not helpful in predicting the change in
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avian diversity. This explains why the RF and hybrid model achieved almost identical

performance metrics: the unsupervised portion of the model was simply not helpful

for this task.
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Chapter 6

Conclusions

6.1 Discussion

The results in the previous section suggest that machine learning methods are useful in

predicting avian diversity loss. In MAE, the ML methods performed similar to linear

regression, and they outperformed in MSE and RMSE. In addition to the improved

performance, the machine learning algorithms offered a level of explainability that

a linear regression model could not. While the linear regression’s coefficients were

potentially confounded by the lack of independence in our input variables, the random

forest and hybrid models offered a more helpful view of the relationship between

the socio-economic and environmental features of a FUA and its change in avian

biodiversity.

The most important feature identified by all three models was maximum land

modification, an estimate of human modification of land comprised of 5 input vari-

ables: human settlement, agriculture, transportation, mining and energy production,

and electrical infrastructure. This finding indicate that land use change is the most

significant driver of biodiversity loss, an idea that has long been posited by the ecolog-

ical research community.1 The confirmation of this assumption is helpful in identifying

potential interventions. For example, because land modification is extremely helpful

in predicting avian biodiversity loss, while human population density is less so, it may

1. Sala et al., “Global biodiversity scenarios for the year 2100.”
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be helpful to encourage cities to encourage building up instead of out. Taller build-

ings encourage greater population density, while minimizing the land that needs to be

developed in order to house the population. Furthermore, this finding helps explain

previous research that identified a positive correlation between human population

density and bird species richness, as in Luck (2007).2

Notably, the random forest and hybrid model both found that GDP per capita

was the second most significant driver of avian biodiversity change. This finding is

particularly significant because, to our knowledge, this research is the first to find

a relationship between GDP per capita and biodiversity change on a global scale.

Though it has been shown to hold true in small, local studies, the consequences of a

global correlation are much more informative. Hope et al.(2008) found that income

was extremely correlated with biodiversity in the Phoenix area, coining the term the

"luxury effect", but they called for more research into the connection.3 By examining

the relationship between GDP per capita and urban biodiversity in a group of 54

cities, we have confirmed that individual income does influence avian biodiversity.

This finding suggests that urban environmental interventions cannot be designed in

a vacuum: they have to take into account the socio-economic conditions of an urban

area as well.

Finally, our findings show that it is possible to accurately predict avian biodiversity

in areas where expensive, tedious survey data may not be available. By training

machine learning models and evaluating them on unseen data, we demonstrated their

effectiveness in generalizing to new datapoints across diverse geographies. The ability

to predict avian biodiversity loss is extremely important for stakeholders to be able

to plan interventions and resource allocations. For example, if a country wanted to

address biodiversity loss in its urban areas, it could use the feature set and model

presented in this research to predict in which cities avian biodiversity loss would be

most severe in order to respond most efficiently. We hope for this research to be

helpful for urban planners and policy makers in mitigating biodiversity loss in urban

2. Gary W Luck, “A review of the relationships between human population density and biodiver-
sity,” Biological Reviews 82, no. 4 (2007): 607–645.

3. Hope et al., “Socioeconomics drive urban plant diversity.”
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areas, where many biodiversity hot spots are severely at risk.

6.2 Future research

We hope our work can inform future research regarding biodiversity in urban areas.

A key area of future research is to expand the ML approach presented in this work

to other species. Though we began with avian biodiversity, we believe the feature

set we produced from satellite data should be applicable to any species. Future work

should examine the relationship between these features and plant, terrestrial, aquatic

and other forms of biodiversity. Though birds have been shown to be an indicator

species for biodiversity loss, there is still a lot of work to be done to understand the

complex underlying relationships between cities and urban biodiversity.

Furthermore, new features could easily be added and combined with our feature

set to better advise urban biodiversity interventions. For example, invasive species

are considered to be a leading threat to biodiversity.4 By including invasive species

in our feature set, future researchers could expand on our approach and continue to

develop a deeper understanding of the drivers of biodiversity loss.

There is also ample opportunity to incorporate our findings and models into ex-

isting biodiversity research. For example, Powers and Jetz (2019) used global decadal

land-use projections to year 2070 to examine suitable habitat loss, but their research

could be expanded upon by incorporating the land use change projections into our

trained models to create a data driven simulation of where avian biodiversity loss

may be most severe in year 2070.5 There are many ways to expand upon our research

to increase understanding of biodiversity loss and how to combat it.

4. Jennifer L Molnar et al., “Assessing the global threat of invasive species to marine biodiversity,”
Frontiers in Ecology and the Environment 6, no. 9 (2008): 485–492.

5. Powers and Jetz, “Global habitat loss and extinction risk of terrestrial vertebrates under future
land-use-change scenarios.”
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