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Abstract

Boolean-valued models generalize classical two-valued models by allowing arbitrary com-
plete Boolean algebras as value ranges. The goal of my dissertation is to study Boolean-
valued models and explore their philosophical and mathematical applications.

In Chapter 1, I build a robust theory of first-order Boolean-valued models that parallels
the existing theory of two-valued models. I develop essential model-theoretic notions like
“Boolean-valuation", “diagram", “elementary diagram", and prove a series of theorems on
Boolean-valued models, including the (strengthened) Soundness and Completeness Theo-
rem, the Lowenheim-Skolem Theorems, the Elementary Chain Theorem, and many more.

Chapter 2 gives an example of a philosophical application of Boolean-valued models. I
apply Boolean-valued models to the language of mereology to model indeterminacy in the
parthood relation. I argue that Boolean-valued semantics is the best degree-theoretic se-
mantics for the language of mereology. In particular, it trumps the well-known alternative
- fuzzy-valued semantics. I also show that, contrary to what many have argued, indetermi-
nacy in parthood entails neither indeterminacy in existence nor indeterminacy in identity,
though being compatible with both.

Chapter 3 (joint work with Bokai Yao) gives an example of a mathematical application
of Boolean-valued models. Scott and Solovay famously used Boolean-valued models on
set theory to obtain relative consistency results. In Chapter 3, I investigate two ways of
extending the Scott-Solovay construction to set theory with urelements. I argue that the
standard way of extending the construction faces a serious problem, and offer a new way
that is free from the problem.
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Introduction

Classical models are bivalent: there are two truth values, 1 (the True) and O (the False).
The set of classical truth values forms the smallest non-trivial complete Boolean algebra 2.
Under classical semantics, the logical symbols are interpreted as algebraic operations on 2:
conjunction as binary meet, disjunction as binary join, negation as Boolean complement,
universal quantifier as infinite meet and existential quantifier as infinite join.

This algebraic conception of classical semantics suggests a natural way to generalize
the classical models. What is really in need to carry out the semantic construction is the
underlying algebraic structure of the truth values. The complete Boolean algebra 2 can in
principle be replaced by any complete Boolean algebra. The resultant models, whose value
range can be an arbitrary complete Boolean algebra, are called Boolean-valued models. The
goal of this dissertation is to thoroughly investigate Boolean-valued models and explore
their philosophical and mathematical applications.

Historically, Boolean-valued models have been widely employed in the context of set
theory. Introduced by Dana Scott, Robert Solovay and others, Boolean-valued models for
the language of set theory are used to give semantics to Paul Cohen’s syntactic forcing,
which is a method for obtaining independence results. Nevertheless, outside the domain
of set theory, Boolean-valued models for arbitrary first order languages, as a subject on its
own, have not been as well-studied. Although the definition of a Boolean-valued model has
been mentioned at multiple occasions, little effort has been made to provide a full-fledged
theory of Boolean-valued models that parallels that of classical two-valued models.

The primary goal of Chapter 1 of this dissertation is to fulfill this theoretical gap. I will
build, step-by-step, a robust and detailed theory of Boolean-valued models. I will start with

two useful model-theoretic constructions on Boolean-valued models: the direct product
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construction and the quotient model construction, with which I will prove the (generalized)
Los§ Theorem. Then, I will introduce the key notion of “Boolean-valuations", and prove that
Boolean-valued models are sound and complete with respect to Boolean-valuations. With

LT3

the notion of “Boolean-valuations", I will then define notions like “diagram"”, “elementary
diagram", “elementary chain", etc, and prove a number of results on them, including the
equivalence theorems, the (generalized) Lowenheim-Skolem Theorems, the (generalized)
Elementary Chain Theorem, and so on. I will also discuss, in Chapter 1, some impor-

tant special kinds of Boolean-valued models that are particularly interesting: witnessing

models, full models and true-identity models.

I believe that the theory of Boolean-valued models, as a species of model theory, is
of tremendous interest on its own. But Boolean-valued models are worth studying for a
variety of other reasons as well. From a logical perspective, a number of critical model-
theoretic results on two-valued models can be shown to be special cases of more gener-
alized theorems on Boolean-valued models, including the aforementioned L.o§ Theorem,
Lowenheim-Skolem Theorems, and many more. These generalized theorems shed light
on which essential features of two-valued models are responsible for the holdings of these
results on them. For example, we will see in Chapter 1 that both Los’ Theorem and Down-
ward Lowenheim-Skolem Theorem are grounded in the property of being witnessing, and
both the theorem that every countably incomplete ultraproduct is @; saturated and the the-
orem that E{ formulas are preserved under ultraproducts are grounded in the property of

being full.

From a philosophical perspective, Boolean-valued models gives rise to a new intriguing
degree-theoretic semantics that is both classical and non-bivalent. With the existence of
non-extreme truth values, Boolean-valued models have fruitful applications to the general
phenomenon of indeterminacy. We will see an example of this kind in Chapter 2, where
Boolean-valued semantics is applied to the language of mereology to model indeterminacy
in the parthood relation. I will argue, in Chapter 2, that Boolean-valued semantics is the
best degree-theoretic semantics for the language of mereology. In particular, I will argue
that it trumps the well-known alternative - fuzzy-valued semantics, for three main reasons:

(a) it allows for incomparable degrees of parthood, (b) it enforces classical logic, and (c) it
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is compatible with all the axioms of classical mereology. Moreover, I will explore, under
the framework of Boolean semantics, the connection between indeterminacy in parthood
and indeterminacy in existence/identity. I will show that, contrary to many have argued,
indeterminacy in parthood entails neither indeterminacy in existence nor indeterminacy in
identity, although being compatible with both.

From a mathematical perspective, Boolean-valued models, as mentioned, have gener-
ated a fruitful theoretic enterprise when applied to ZFC, Zermelo—Fraenkel set theory. In
Chapter 3 (joint work with Bokai Yao), I take a step further in this direction by investigat-
ing Boolean-valued models of ZFCU, set theory with (potentially class many) urelements. I
will first show that the most direct, and also the most commonly adopted way of expanding
a Boolean-valued universe of pure sets to a Boolean-valued universe that allows urelements
has a serious problem. In particular, this traditional kind of Boolean-valued universe with
urelements is not witnessing and hence is not in the scope of L.o§ Theorem. This means
that the quotient model method, which is the simplest, and the most powerful method of
proving relative consistency results, cannot be used on the traditional kind of Boolean-
valued universe with urelements. I will remedy this problem by developing a new way
of constructing a Boolean-valued universe with urelements, one that satisfies the Mixing
Lemma, and is witnessing given the Axiom of Collection in the background theory. I will
also show that the Boolean-valued universe generated by old construction is an elementary
submodel of the Boolean-valued universe generated by the new construction. Moreover, |
will prove that over the background theory ZFCUpg, the Axiom of Collection is equivalent
with the statement that for any complete Boolean algebra, every Boolean-valued universe

with urelements generated by the new construction is witnessing.
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Chapter 1

A Theory of Boolean-Valued Models

1.1 Introduction

Traditionally, a model of a first order language £ has as its value range the complete
Boolean algebra 2 = {0, 1}. Logical symbols in the language are interpreted as operations
on the Boolean algebra: conjunction as binary meet, disjunction as binary join, negation
as Boolean complement, universal quantifier as infinite meet and existential quantifier as
infinite join. A natural way to generalize the traditional models, then, is to instead of just
using the complete Boolean algebra 2 as the value range, use arbitrary complete Boolean
algebra as value ranges.

Boolean-valued models are worth studying for a variety of reasons. To begin with, the
supervaluation models, which are used in the standard approach to vagueness, can be shown
to be a special type of Boolean-valued models (Theorem 1.6.1). In fact, we can show that
there is a duality between the class of supervaluation models and a subclass of true identity
Boolean-valued models (Theorem 1.6.3). Also, two important features of Boolean-valued
models - that they are degree-theoretic and that they induce classical logic - let them give

rise to attractive theories of different types of vagueness.!

Moreover, since the logic of
Boolean-valued models is both classical and non-bivalent, they are particularly useful in

illustrating certain points in the philosophy of model theory. For example, it seems to serve

"'We will see an example of this kind in Chapter 2, where we apply Boolean-valued models to mereological
indeterminacy. For an application to the general phenomenon of vagueness, see McGee and McLaughlin [25].
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as a strong case against the claim that our classical rules of inferences pin down uniquely
the range of semantic values ([5]).

Moreover, many important model-theoretic theorems on two-valued models can be
shown to be special cases of more generalized theorems on Boolean-valued models. These
results will shed light on what essential features of two-valued models are responsible for
the truth of these theorems on two-valued models. There are at least four examples of this

kind throughout this chapter:
1. The property of being witnessing and £.o§ Theorem. (Theorem 1.3.4)

2. The property of being witnessing and Downward Lowenheim-Skolem Theorem. (The-

orem 1.5.6)

3. The property of being full and the theorem that every countably incomplete ultra-

product is w;-saturated. (Theorem 1.7.4)

4. The property of being full and the theorem that Z{ formulas are preserved under

untraproducts. (Theorem 1.7.7)

Also, results on Boolean-valued models will also help us to have a better understanding
of certain model-theoretic constructions on two-valued models. For example, as we will
see in Section 1.3, the ultraproduct construction on two valued models can be reduced to a
two-step construction of taking first a direct product and then a quotient model.
Nevertheless, Boolean-valued models, as a subject on their own, have not been well-
studied, at least in comparison to the two-valued models. On two-valued models there
exists a full-fledged and fruitful theory - the entirety of model theory, roughly speaking,
that is based on important basic notions like “diagram”, “submodel”, “elementary", etc.
Few of these notions, however, have been generalized to Boolean-valued models, and this
is also the case with the many model-theoretic results based on these notions. There are a
number of natural questions on the model-theoretic properties of Boolean-valued models
that await answers: What is the diagram/elementary diagram of a Boolean-valued model?

What does it mean for a Boolean-valued model to be a submodel/elementary submodel of

another? Do Lowenheim-Skolem Theorems hold on all Boolean-valued models? etc. The
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primary goal of this chapter is to answer these questions, in order to develop, step by step,

a robust and detailed theory on Boolean-valued models.

Although some of these questions are (relatively) straightforward to answer, like “What
does it mean for a Boolean-valued model to be a submodel/elementary submodel of an-
other?", some of these questions are quite the opposite. One of the most difficult notions is
that of a diagram. When we only have two truth values, the diagram of a model is a set of
sentences, and therefore a theory. But when there are more than two truth values, the “di-
agram” of a model, if we want it to be something close to what we have in the two-valued
case, cannot be just a theory. The natural suggestion is that the diagram is a set of ordered
pairs whose first component is a sentence and second component is a truth value. In this pa-
per, we will call a set of this form a “Boolean-valuation". (First-order) Boolean valuations
are natural generalizations of (first-order) theories. A question that turns out to be quite
difficult and require a lot of efforts is “What does it mean for a Boolean-valuation to be
consistent and are consistent Boolean-valuations precisely those that have models?". One
of the major results of this chapter (Theorem 1.4.9.1) is that (under our definition of consis-
tency), Boolean-valued models are sound and complete with respect to Boolean-valuations,
which is a theorem that generalizes the known result that Boolean-valued models are sound
and complete with respect to first-order theories. Corollaries to this theorem include the
compactness theorem (Corollary 1.4.9.2) on Boolean valuations and the (weaker version

of) Downward-Léwenheim-Skolem theorem on Boolean valuations (Corollary 1.4.9.3).

With the notion of “Boolean valuation", we are then able to define notions like “dia-
gram"(Def 1.5.5), “elementary diagram"(Def 1.5.9), etc., and prove the equivalence the-
orems between diagrams and submodels (Theorem 1.5.2), elementary diagrams and ele-
mentary submodels (Theorem 1.5.5), etc. Another difficult question concerns the (stronger
version of) Downward-Lowenheim-Skolem theorem. With the help of Boolean-valuations,
we will prove that the (stronger version of) Downward-Léwenheim-Skolem theorem can be
generalized to witnessing Boolean-valued models (Theorem 1.5.6), though not to Boolean-

valued models in general (Theorem 1.5.7).

For the discussion of the Upward-Lowenheim-Skolem theorems to be non-trivial, we

will have to look at a special type of Boolean-valued models, the ones that define identity in
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the standard, or true way (Def 1.8.1). We will investigate which kind of Boolean valuations
corresponds to the “true identity" models. The next major result (Theorem 1.8.7) is that true
identity Boolean-valued models are sound and complete with respect to Boolean valuations
that “respect identity" (Def 1.8.2). From there, we will establish the Upward-Lowenheim-

Skolem theorems on true identity Boolean-valued models (Theorem 1.9.7, 1.9.8).

We will also discuss another special type of Boolean-valued models - the full models
(Def. 1.7.2). Full Booelan-valued models turn out to be equivalent to Boolean-valued mod-
els that remain witnessing no matter how they are expanded (Theorem 1.7.8). They are,
therefore, even more akin to the two-valued models than witnessing Boolean-valued mod-
els. Two major results in this chapter are that two important corollaries of L.o§ Theorem are
generalizable to full Boolean-valued models: that every countably incomplete ultraproduct
is w;-saturated (Theorem 1.7.4), and that Z{ formulas are preserved under untraproducts

(Theorem 1.7.7).

We organize this chapter as follows. In Section 1.2 we cover some preliminaries on
Boolean algebras and introduce Boolean-valued models. In Section 1.3, we introduce two
important construction on Boolean-valued models that will be useful throughout the paper.
In particular, we will introduce the quotient construction and prove the Generalized t.0$
Theorem. In Section 1.4, we first review the proof of the theorem that Boolean-valued
models are sound and complete with respect to first-order theorems, and then in 1.5.2, we
introduce Boolean valuations, define their consistency condition, and prove that Boolean-
valued models are sound and complete with respect to first-order Boolean valuations. In
Section 1.5, with the help of Boolean valuations, we extend basic model theoretic notions
like “diagram", “submodel", “elementary embedding" to Boolean-valued models, prove the
equivalence theorems, and prove the (stronger version of) Downward-Léwenheim-Skolem
theorem on witnessing Boolean-valued models. We will also study chains of models and
generalize the Elementary Chain Theorem to the Boolean-valued case. In Section 1.6,
we discuss the connection between supervaluation models and Boolean-valued models.
We prove that supervaluation models are equivalent to a special type of Boolean-valued
models. In Section 1.7, we will investigate the full Boolean-valued models. In Section 1.8,

we will discuss the true identity Boolean-value models. Finally, in Section 1.9, we discuss
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the Upward-Lowenheim-Skolem theorems on Boolean-valued models.

1.2 Boolean Valued Models

1.2.1 Boolean Algebra

This chapter assumes that the reader already has some basic knowledge about Boolean
algebras and model theory. The main purpose of this subsection is just to introduce the
symbols that will be used for Boolean operations. For a more detailed introduction of

Boolean algebras, see Givant and Halmos [14].

Definition 1.2.1. A lattice is a non-empty partially ordered set < L, <> such that for any
x,y € L, {x,y} has a supremum(join), x L1y, which is the least element that is greater than or
equal to both x and y, and a infimum(meet), x 1y, which is the greatest element that is less

than or equal to both x and y.

Definition 1.2.2. A lattice L is bounded just in case it has a top element 1, such that

Vx e L(x < 11), and a bottom element O, such that Vx € L(0y < x).
Definition 1.2.3. A lattice L is distributive just in case for any x,y,z€ L,

xn(yuz)=(xny)u(xmz)

xu(ymz)=(xuy)m(xuz)
Definition 1.2.4. Let L be a bounded lattice and x,y € L. y is a complement of x just in case
xuy=lpandxmy=0;.

Definition 1.2.5. A bounded lattice L is complemented just in case for any x € L, there

exists some y € L such that y is a complement of x.

In a distributive lattice, it can be easily shown that if an element x has a complement,

then it has a unique complement. We denote the complement of x, if it exists, as —x.

Definition 1.2.6. A Boolean algebra B is a bounded distributive complemented lattice.
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Definition 1.2.7. A Boolean algebra B is k-complete (where K is a cardinal) just in case for
any subset D B such that |D| < a, both the supremum of D, | |D, and the infimum of D,

[ 1D, exist in B. A Boolean algebra B is complete just in case for any k, B is k-complete.

1.2.2 Boolean Valued Models

Definition 1.2.8. Let . be an arbitrary first order language. For simplicity, we assume
that . has no function symbols, but only relation symbols and constants.”> Let B be a
non-trivial complete Boolean algebra. A B-valued model® 2 for the language . consists

of:
1. A universe A of elements;
2. The B-value of the identity symbol: a function [=]* : A> — B;
3. The B-values of the relation symbols: (let P be an n-ary relation) [P]* : A" — B;
4. The B-values of the constant symbols: (let ¢ be a constant) [c]* € A.
And it needs to satisfy:

1. For the B-value of the identity symbol*: for any a1,a,a3 € A

[a1 = a]* = 15 (1.1)
[a1 = a2]* = [az = ai]* (1.2)
[ar = az]]Ql M [ap = a3]]m < [a; = a3]]m (1.3)

2. For the B-value of relation symbols: let P be an n-ary relation; for any {ay,...,a,),{by, ...

2Qur theory can be easily generalized to first order languages with function symbols, as functions can
always be treated as relations that satisfy special conditions.

30ur definition of Boolean-valued models is the standard one. You can find the same definition in many
other places, including, Bell [3], Button and Walsh [5], Hamkins and Seabold [16], etc.

#*Here and in the following, when the context is clear, we use [a; = a;[* to abbreviate [=]*(a;,a;), and
similarly for cases of the relation symbols.
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eA",

[P(ar,...an)]* 1 ([ ] [ai =b6:*) < [P(by, ... ba)]* (1.4)

1<i<n
Given a B-valued model 2l for .Z, we define satisfaction in 2l as follows:

Definition 1.2.9. Let Var be the set of all variables. (We will use vy, v;,... to range over
variables.) An assignment on %l is a function from Var to A. Given a assignment x on £,

we define the value of an open formula of .# in 2 under assignment x as follows.
1. We first define the value of terms in %:

(a) Let v; be a variable. Then [v;]*[x] = x(v;) = x°.
(b) Let c be a constant. Then [c]*[x] = [c]*.
2. We then define the value of atomic formulas in %:
(a) Let1),t, be terms (a term is either a variable or a constant). Then [t; = ,]*[x] =
[[ai = aj]]m, where a; = [[tl]]m[x] and aj; = [[l‘z]]m[x].
(b) Let 11,...,t, be terms. Then [P(t1,...,t,)]*[x] = [P(ai,...,a,)]*, where a; =
[0 %], .o an = []*[x].

3. We finally define the value of complex formulas in 2A:

(a) Let ¢ be a formula. Then [~¢]%[x] = —[¢]*[x].

(b) Let ¢, w be formulas. Then [¢ A y]¥[x] = [¢]*[x] m [w]>[x].

(c) Let ¢,y be formulas. Then [¢ v w]>[x] = [¢]>[x] U [w]*[x].

(d) Let ¢ be a formula. Then [3v;¢]*[x] = LJ\[[(P]]Q‘[x(vi/a)], where x(v;/a) is the
assignment on 2 that takes v; to a and agrees with x everywhere else.

(e) Let ¢ be a formula. Then [¥v;¢]*[x] = rl\[[¢]]m[x(vi/a)], where x(v;/a) is the

assignment on 2 that takes v; to a and agrees with x everywhere else.

SHere and in the following, given an assignment x, we will use x; to abbreviate x(v;).
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Clearly, both [3v;¢]*[x] and [¥v;¢]*[x] are well-defined as B is assumed to be com-

plete.

It is easy to see that traditional two-valued models for first order languages are just
special cases of Boolean valued models, when we require B to be the two-element Boolean
algebra 2 and that the interpretation of the identity symbol is the true identity function on

the universe. ©

In the following, like in the case of atomic formulas, when the context is clear, we will

occasionally use [ (x1,...,x,)]%, instead of [¢ (vy,...,v,)]*[x].

Theorem 1.2.1. Let 2 be a B-valued model for .Z. For any formula ¢ (vy,...,v,) in .Z, any

assignments x,y on 2,

[9 (et o) (] T = 0I™) < IO O y) ¥

1<i<n

Proof. By a straightforward induction on the complexity of ¢ (vy,...,v,).

1.3 Two Important Constructions

Given one or more Boolean valued models, there are many ways to use them to construct
new Boolean valued models. In this section, we will introduce two of these methods of

construction that will be particularly useful for later purposes.

1.3.1 Direct Products

Definition 1.3.1. Let / be an index set. For each i € I, let B; be a Boolean algebra. The

product algebra [ [,.;B; is defined as the algebra on the Cartesian product of all the B;’s

6 Again, we assume that the reader has some basic knowledge of traditional two-valued models. For a
detailed introduction on model theory, see Chang and Keisler [7], or Hodges [17].
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with the following operations’ (let {p;Yier,{qiicr € [ ;B

—Ppijier = <_ipi>iel

Note that in a product algebra [ [,c; Bi, {piVier < {qiVier justin case for allie I, p; <' g;.

Also, 11 g, = (1, yier and similarly O[1..,B: = (0B, ier-

Proposition 1.3.1. Let / be an index set. For each i € I, let B; be a complete Boolean

algebra. Then their product algebra | [,_; B; is a complete Boolean algebra.

i€l

Definition 1.3.2. Let I be an index set. For each i € I, let 2l; be a B;-valued model of the
language .. Then the direct product model, | [,.;2;, of the 2;’s, is defined as the following
| [;; Bi-valued model of .Z":

1. The universe is | [A;, where for each i, A; is the universe of 2I;.
iel

[T24
2. Let{aier,bivier € [ 12 [Laidier = bdier]© = {Jai = bi]* ier.
iel

[
iel

A;
3. Let{a} ier, (a7 iet - {a}yier € [ 12, [P(a} ier, - {alyien) | = {[P(aj ... a} )] ier.
i€l

[124
4. For any constant ¢ in .7, [c]iel = {[c]* ies.

Theorem 1.3.1. Let / be an index set. For each i € I, let 2l; be a B;-valued model. Then the

direct product model, | [;.; 2, as defined in Def 1.3.2, is a [ [, Bi-valued model - that is,

it satisfies Def 1.2.8.

i€l i€l

Proof. We just need to check that requirements (1)-(4) in Def 1.2.8 are satisfied. This
follows straightforwardly from Def 1.3.1 and Def 1.3.2. 0

Theorem 1.3.2 (Direct Product Theorem). Let I be an index set. For each i € I, let 2;

be a B;-valued model. Let [ [,.;2; be their direct product model. Given an assignment

i€l

7In the following, m' denotes the meet operation in B;, and similarly for L/, —/, etc.
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x:Var — [ [, Aion [ [;o; 2, for each i € I, let y; : Var — A, be the assignment on 2; such
that for any v, € Var, y;j(v,) = proj;(x(v,)), where proj; : | [;c;Ai — A; is the ith projection

function. Then, for any formula ¢ in .Z,

614 1] = IOT™ [ylies

Proof. By induction on the complexity of ¢.

Let #; be a term. Then [r;]Ilier%i[x] = ([1;]%[yi]ies, by clause 4 of Def 1.3.2 and the
relationship between x and y;.

The case of the atomic formulas are covered by clause 2 and 3 of Def 1.3.2.

The cases of sentential connectives are straightforward. For example,

[6 7wl [ = [81% [ vl [
— (T b VT e
= 1 i) o T e
~ o Ay bl

Finally, the case of quantified formulas:
Hmi HQll
[wvjoler )= [ [0l [x(v;/aiyier)]
<ai>ielel_£Ai

= 1 AT Div/an e
<ai>ieleigAi

= ([ [01*[yi(vi/ai)]ies

a;€A;

= [0 ilier

And similarly for existential formulas.

]

[T
Corollary 1.3.2.1. For any sentence ¢ in .Z, [¢]=f = 1 if and only if for any i € I,
ol = 1.
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1.3.2 Quotient Models

Definition 1.3.3. Let B,C be Boolean algebras. Then a function 4 : B — C is a homomor-

phism just in case for any p,q € B, h(p 18 q) = h(p) € h(q) and h(—Bp) = —Ch(p).

It is easy to show that when / : B — C is a homomorphism, for any p,qge B, h(p LB q) =
h(p) € h(q), h(p) <€ h(q) if p <P g, h(1p) = 1¢, and h(0p) = Oc.

Definition 1.3.4. Let B,C be Boolean algebras. Let 4 : B — C be a homomorphism. Then
h is a complete homomorphism just in case for any D B that has a supremum, /[D] has a

supremum in C and h(| [P D) = | |“h[D].

Similarly, it is easy to show that when 4 : B — C is a complete homomorphism, for any

D < B that has a infimum, [D] has a infimum in C and A([ 1’ D) = [1° h[D].

Definition 1.3.5. Let 2l be a B-valued model of .Z. Let C be a complete Boolean algebra.
Let 1 : B — C be a homomorphism. Then the C-valued quotient model 2" of .# is defined

as follows:

1. Universe:
Let ay,as € A, define a; =, as iff h([a; = ap]*) = 1c.
It is easy to show that =, is an equivalence relation on A2, using Def 1.2.8.

Given a; € A, let [a;], = {aj € A|a; = a;}. Let the universe of A" be A" = {[a;],|a; €

Al

2. [[=]]th : A" x A" — C is the function such that for any [ay ], [a2], € A",

[[ai]n = [a2la]™ = h([ar = a2]®)

It is easy to show that [[:]]th is well-defined, using Def 1.2.8 and Def 1.3.3.
3. Let P be an n-ary relation in .Z. [P] A (A" — C is the function such that for any

{ar)ps - [an)ny € (AT,

[P([ar]ns-eos [andi) Y = B([P(ar, -y an)]%)
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Similarly, it is easy to show that [[:]]th is well-defined, using Def 1.2.8 and Def 1.3.3.

4. Let ¢ be a constant in .Z. [[c]]mh = [[c]*]5-

Lemma 1.3.2.1. Let 2 be a B-valued model of .Z. Let h: B— C be a complete homomor-
phism. Let x,x’ be assignments on 2 such that for any v; € Var, x(v;) =, x'(v;). Then, for

any formula ¢ of .Z,

AT [x]) = A(I9T™[x'])

Proof. By induction on the complexity of ¢. The base cases hold by Def 1.2.8 and Def
1.3.3. The inductive cases for sentential connective are straightforward, again using Def
1.2.8 and Def 1.3.3. The inductive cases for quantified formulas make use of the fact that &

is a complete homomorphism. For example,

h([#vig T [x]) = h(] ][9] [x(vi/a)])

acA

= [ ]A(191* x(vi/a)])

acA

= [ aMoI* ¥ (vi/a)])

acA

= h([ |[o1*[¥' (vi/a)])

acA

= h([wig]*[x'])

]

Theorem 1.3.3. Let 2 be a B-valued model of .Z. Let h: B— C be a complete homomor-
phism. Let 2" be the C-valued quotient model as defined in Def 1.3.5. Given x : Var — A"
an arbitrary assignment on 2", let y : Var — A be an assignment on 2 such that for any

v; € Var, y(v;) € x(v;). Then, for any formula ¢ in %,

[61%" [x] = h([o]*[])

Proof. By induction on the complexity of ¢.
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Terms: Let ¢ be a term. By the relationship between x and y and Def 1.3.5, it is easy to
show that [t][y] € [/]*"[x].

Base cases: Let 1y, t; be terms. Suppose [[tl]]glh [x] = [a;] € A" and [[tz]]glh [x] = [a;]ne A"

[t = ][] = [[ailn = [a;1:]*" = h(lai = a;]%) = h([t = ]2 ])

The last equation holds because of Lemma 1.3.2.1 and the fact that [t;]*[y] =}, a; and
[2]*[¥] = a;.
The other base case is very similar.

Inductive cases: The cases of sentential connectives are straightforward. For example,

[0 A W™ [x] = [01% [x] =€ [y ]
= n([01*[y]) n€ AT )
= n([01™[y] M® [T D))
= n([ A W [y))

Finally, the cases of quantified formulas. Again, we make use of the fact that /2 is a complete

homomorphism.

ol [xl =[] [01% [x(vi/laln)]

[a] A"

= [ AT p/a))

[a]eAn

= [ 1n(Io1* y(vi/a)))

acA

= h([ o1 bvi/a)])

acA

= h([vvio]*D])

The third equation holds because of Lemma 1.3.2.1. The fourth equation holds because h

is a complete homomorphism. The case of existential formulas is very similar.
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Boolean valued models and traditional two-valued models are similar in many impor-
tant ways, but they also have some interesting differences. In particular, some significant
features of two-valued models are not shared by all Boolean valued models. For example,
two-valued models are “witnessing", in the following sense: if an existential sentence Jv;@
has value 1 in a two-valued model, then there has to some object a in the universe of the
model such that ¢ [a] has value 1; similarly, if 3v;¢ has value 0, then there has to be some
object a in the universe of the model such that ¢[a] has value 0. Nevertheless, there can be
Boolean valued models that fail to have this feature. There can be, for example, a B-valued
model in which the sentence dv;@ has the value p € B, but for no object a of the universe,
¢[a] has value p.

It turns out many important results in traditional model theory essentially reply on the
fact that two-valued models are witnessing. Therefore, these results cannot be generalized
to all Boolean valued models, but only to those that are similar to two-valued models in

this respect. To this end, we introduce the following definition on Boolean valued models.

Definition 1.3.6. Let 2 be a B-valued model for the language .. Then 2 is witnessing®
just in case for any formula ¢ (u, vy, ...,vn)9 of £, any ay,...,a, € A, there is an a € A such

that!?

[[ﬂu(l)(u,vl,...,vn)]]ﬂ[al,...,an] = [[q)(u,vl,...,vn)]]m[a,al,...,an]

Lemma 1.3.3.1. Let 2 be a witnessing B-valued model of .Z. Let h : B— C be a homo-
morphism. Let x,x” be assignments on 2 such that for any v; € Var, x(v;) =5, ' (v;). Then,

for any formula ¢ of .2,
h([9]*[x]) = h([0]*['])

8Some people, including Hamkins and Seabold [16] and Jech [19], call witnessing models “full” models
instead. In this dissertation, we will also discuss full models, where full models are defined as those in which
there is an “upper" element for each antichain and each sequence of elements of the same length (see Section
1.7). This definition of full models is shared by Bell [3] and some others. A hidden misunderstanding on this
subject seems to be that these two definition coincide. But in fact they do not. Full models, defined in terms
of antichains, are all witnessing models, yet the converse does not hold, as we will show in Section 1.7.
“Here and in the following, when we write something like ¢ (v1,...,v,,), we mean that ¢ is a formula with
at most vy, ..., v, as its free variables.
101f ¢ is a formula with at most vy, ...,v,, as its free variables, and if x and y are two assignments on a
B-valued model 2 such that for any 1 < i < m, x; = y;, then it is easy to show that [¢]* [x] = [¢]*[y]. Hence,
when the context is clear, we can simply write [¢]%[x1,...,X,] to denote [¢]*[x] (or equivalently, [¢]> [x]).
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Proof. By induction on the complexity of ¢. The base cases and the cases for sentential
connectives are exactly the same as in Lemma 1.3.2.1. The only cases worth mentioning
are the cases for quantified formulas. Let ¢ = Jv;y. Then, since 2 is witnessing, for
some a € A, [Jviy]*[x] = [w]*[x(vi/a)]. Hence h([3viw]*[x]) = A([y]*[x(vi/a)]). By

inductive hypothesis,

W[y x(vi/a)]) = A(IWT* X (vi/a)]) < A([Briw]* [])

Similarly, 2([3v;w]*[x']) < h([3Iv;w]*[x]). The case for universal formals is very alike.
[

Theorem 1.3.4 (Generalized L.os Theorem). Let 2 be a witnessing B-valued model of .Z.
Let 1 : B — C be a homomorphism. Let 2" be the C-valued quotient model as defined
in Def 1.3.5. Given x : Var — A" an arbitrary assignment on ", let y : Var — A be an

assignment on 2 such that for any v; € Var, y(v;) € x(v;). Then, for any formula ¢ in .Z,
h
[01" [x] = h([9]* V)

Proof. By induction on the complexity of ¢. Again, the base cases and the cases for sen-

tential connectives are exactly the same as in Theorem 1.3.3. Let ¢ = dv;y.

Brvl™ [ = || [wI™ x(vi/laln)]

[a]neAn

= 1w b))

[a]neAn

LA D (vi/a)))

acA

h(|TvT*y(vi/a)])

acA

h([Bviv]™* b))

N

N

The fourth inequation holds because since 4 is a homomorphism, for any subset D < B,
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| |#[D] < k(] |D).M
For the other direction, since 2 is witnessing, for some a € A, [Iv;y]*[y] = [w]*[y(vi/a)].

Hence,

R([EvivT*]) = (YT D (vifa)])
= W] [x(vi/[a]i)]
< Byl [4]

The case for universal formulas is very similar.

]

We conclude this section with some remarks on the two constuctions introduced in this
section. A well-known key method of constructing new models from old ones in model
theory is the ultraproduct construction. Given {;|i € I} a set of (two-valued) models in-
dexed by I and D an ultrafilter on the Boolean algebra formed on P(I), we can construct
the ultraproduct | | D Qli.lz Now, the ultraproduct construction on two-valued models can
be shown to be just a special case of our direct product construction and quotient construc-
tion on Boolean valued models. Two-valued models are special cases of Boolean valued
models, and hence both kinds of constructions can be applied to them. Given a set of (two-
valued) models {2(;|i € I} indexed by I, we can first take their direct product [ [;.; 2, as

defined in Def 1.3.2, which is a [ [,;2 valued model, where [ [,_,; 2 is the product algebra

iel iel
of |I| many copies of the two element Boolean algebra 2.

Next, let D be an ultrafilter on P(I). It is easy to show that the Boolean algebra P(I)
and [ [;; 2 are isomorphic. (Each element of | [,_;2 can be thought of as the characteristic
function of a subset of 1.) Hence we can take D as a ultrafilteron [ [,.;2. Lethp : [ [,;2 — 2
be the characteristic function of D. & is then, a homomorphism, by a well-known result on
Boolean algebras.!> We can then construct the quotient model (] ],.;24)"> as defined in
Def 1.3.5. This quotient model, (] [, 21;)""P, can be easily shown to be the same model as

the ultraproduct [ [, 2.

"Note that the other direction might not hold, if 7 is not a complete homomorphism.
12For a detailed definition, see, for example, Chang and Keisler [7, p. 215-216].
13See, for example, Givant and Halmos [14, p. 158].
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One of the most important theorems on ultraproducts is the fundamental theorem of ul-
traproducts (or equivalently, L.os Theorem), which states that given an ultraproduct | [, 2L,
a formula ¢ (v1,...,v,) of £, and [{a} Yici|p; -, [{a@Diet]p € [ [pAi [ Ip i E ¢[[{a} dier]p,
o [(@Dier)p) iff {i € I|2; = @[a},...,a"]} € D.1* This theorem, it turns out, is a special
case of Theorem 1.3.4, the Generalized L.os’s Theorem, as its name may suggest. This is

because, firstly, | [..; 2L, the direct product of the 2;’s, is a witnessing model, as any direct

iel

product of a set of witnessing models is also witnessing:

Lemma 1.3.4.1. Let / be an index set. For each i € I, let €; be a witnessing B;-valued model

of .Z. Then their direct product | | €; is a witnessing | [ B;-valued model of .Z.

iel iel

Proof. For simplicity we ignore the parameters. Let ¢ (v,) be a formula of .#. For any i € I,
since €; is witnessing, for some a; € C;, [Iv,¢ (v,)]% = [¢(v,)]%[a:]. Then {a;)ic; € []C;

is a witness of 3v,¢(v,) in ]_[ ¢, by Theorem 1.3.2. ZEI
iel .
Since every 2; is a two-valued model, every 2, is witnessing. Hence their direct product
[ [;c; 24 is witnessing, by the above lemma. Hence it is in the scope of Theorem 1.3.4. Let
hp : [ [;c;2 — 2 be the characteristic function of the ultrafilter D. We have already argued

that the quotient model (] ],.;2l;)"? is the same as the ultraproduct [ ], 2l;. Also it is easy

iel

to see that any [{(a;)ies]p € [[pA; is the same as [{a;)ict]np € ([ ];c;Ai)™. According to
Theorem 1.3.4, then,

(01 Ther™" [ ier o [ ierliy) = R[0T ()i, .. e icr])

But [¢] Lier i [(aVics, ... (@ Vier] = {[9]%[a}, ..., a}]Dic1, by Theorem 1.3.2. And hence
hp ([0 ler ™ [(al vier, ..., aier]) = 1 justin case hp({[$]% [al, ...,a}]Dier) = 1, just in case
{iel|A; = oldl,...,a"]} e D.

The two major theorems (Theorem 1.3.3 and Theorem 1.3.4) are interesting for the
following reasons. First, they show that what essentially makes L.o§ Theorem hold on ul-

traproducts is the fact that it is the quotient model of a witnessing model. We see that

!4For a detailed proof of L.o$ Theorem, see, for example, Chang and Keisler [7, p. 217-219].
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Theorem 1.3.4 only holds on witnessing Boolean valued models, and if a B-valued model
2l is not witnessing, then we only have the weakened theorem (Theorem 1.3.3) that requires
h: B — C to be a complete homomorphism. In the special case when & : B — 2, h is then
the characteristic function of a complete ultrafilter on B. This is, indeed, a quite serious
limitation, as complete ultrafilters are usually rare. Also, a number of interesting results on
ultraproducts that follow from Lo§ Theorem depend on the ultrafilters used to build these
ultraproducts being incomplete to certain degrees. Hence, these results cannot be gener-
alized to random Boolean valued models, but only to Boolean valued models that share
certain important features with two-valued models, like the feature of being witnessing, as

t.0o§ Theorem can only be generalized to the latter but not the former.

1.4 Theories and Boolean Valuations

1.4.1 Theories

We construct Boolean valued models as models for first order languages. It is natural, then,
to wonder about the relationship between first-order theories and Boolean valued models.

In this subsection we intend to answer these questions'>.

Definition 1.4.1. Let 7 be a theory in a first order language .Z. Let 2 be a B-valued model
of Z. 2 is a model of T just in case for any ¢ € T, [¢]* = 13.

Definition 1.4.2. Let T be a theory and ¢ be a sentence in a first order language .Z. ¢ is a
Boolean-consequence of T, in symbols, 7' =g ¢ just in case for any Boolean valued model

20, if 2 is a model of T, then 2 is a model of ¢.

Theorem 1.4.1. Let T be a theory and ¢ be a sentence in a first order language .Z. If
TH¢,thenT =p ¢.

Proof. We can prove this by showing that all the axioms of first order logic have value 1 in

every Boolean valued model, and that the rules of inference always preserve truth.

5To my knowledge, the theorem that Boolean-valued models are sound and complete with respect to
first-order theories first appeared in [29].
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The proof that all the sentential axioms have value 1 is straightforward. For example,
(let x : Var — A be an assignment), [(¢ A @) — ¢]*[x] = 1 iff [¢ A w]¥[x] < [@]*[x] iff
[0]*[x] 7 [w]*[x] < [¢]*[x]. But the latter is true in every Boolean algebra. The cases of
the other sentential axioms are very similar.

That the identity axioms always have value 1 follows straightforwardly from the clauses
on the identity symbol in Def 1.2.8 and Theorem 1.2.1.

For the quantifier axioms, let ¢ and y be formulas. For the first axiom, suppose v; is a
variable that is not free in ¢, we want to show that for any assignment x : Var — A, [Vv;(¢ —

v) — (¢ — Yviw)]*[x] = 1. This is the case iff [Vvi(¢ — w)]¥[x] < [¢ — Vviy]*[x]. But

[7vi(9 — w)I* 2] = [ |19 — vI*[x(vi/a)]

acA

= [ 1-11*x(vi/a)] v [W]*[x(vi/a)]
acA

- |_| —[o1*[x] w [w]™[x(vi/a)]
acA

= —[o1*xl o[ |Tw]*[x(vi/a)]

acA

< [ — Yviy]*[x]

The third equation holds as v; is not free in ¢. For the second quantifier axiom, let y be
obtained from ¢ by freely substituting each free occurrence of v; in ¢ by the term ¢, such
that no variable v; in # will occur bound in y at the place where it is introduced. We want
to show that for any assignment x : Var — A, [Vv;¢ — w]*[x] = 1. This is just in case
[7vi0]*[x] < [w]*[x], which is just in case [ ], 4[0]*[x(vi/a)] < [w]¥[x]. But the latter
is always true, as [y]>[x] = [¢]*[x(v;/d’)], where d’ = [t]*[x] € A.

Moving on to the rules of inferences. We start with Modus Ponens. Suppose both
[0]*[x] and [¢ — w]*[x] are 1. The latter means that [¢]*[x] < [w]*[x], and since
[o]*[x] = 1, [y]*[x] =1

For Universal Generalization, we suppose for any assignment x, [¢]*[x] = 1. Then it

follows straightforwardly that [Vv;¢]*[x] =[] c4[9]*[x(vi/a)] = 1.
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Corollary 1.4.1.1. Let ¢ be a theorem of first order logic. Then in any Boolean valued
model 2, [¢]> = 1.

Theorem 1.4.2. Let T be a theory in .Z. T is consistent if and only if for some complete

Boolean Algebra B, T has a B-valued model 2.

Proof. For the left to right direction, if 7 is consistent, then by the Completeness Theorem
on two-valued models, T has a two-valued model. But a two-valued model is a Boolean
valued model.

For the right to left direction, suppose 7 is inconsistent. Then for some theorem ¢ of
first order logic, T — —¢. Assume for reductio that 7 has a B-valued model %I, then by
Theorem 1.4.1, [-¢]* = 1. Hence [¢]* = 0, but this contradicts Corollary 1.4.1.1.

[

Corollary 1.4.2.1. Let B be any complete Boolean algebra. A theory T has a B-valued

model just in case every finite subset of 7" has a B-valued model.

Theorem 1.4.3. Let T be a theory and ¢ be a sentence in a first order language .. If
T =g ¢,then T + ¢.

Proof. Suppose T =g ¢, then for any two-valued model 2, if 2 is a model of 7', then 2 is

a model of ¢. By the soundness theorem on two-valued models'®, T - ¢. [

Corollary 1.4.3.1. Let T be a theory and ¢ be a sentence in a first order language .Z.
T =p¢ifandonlyif T + ¢.

1.4.2 Boolean Valuations

When there are only two truth values, the notion of “theory" is sufficient for describing the
relationship between models and sentences. Given a two-valued model of a language .7,
the set of all sentences of .Z that are true in the model forms a complete theory in .#. This
theory decides the value of all sentences of .Z in the model: if ¢ is a member of the theory,

then ¢ has value 1 in the model, and if ¢ is not a member of the theory, then ¢ has value 0

16See, for example, Chang and Keisler [7, p. 66].
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in the model. This theory, in a certain sense, provides a full description of the model given
that our expressive power is limited to .Z.

The situation is different, however, when we allow more than two truth values. Given a
B-valued model of . where B is a proper extension of 2, the theory in . that consists of
all sentences of .Z’ that are true in the model no longer decides the value of all sentences
of .Z in the model. A simple example to illustrate this point is as follows: Let 2( and 2’
be two B-valued models of .#, where B is the four element Boolean algebra {0, p, —p, 1}
and .Z is the language {P,c} where P is a unary predicate and c is a constant. Let A = {a}
and A’ = {d'}. Let [c]? = a and [c]¥ = &' Let [P]*(a) = p and [P]¥ (¢) = —p. Then it
is easy to see that the set of sentences of .# that have value 1 in 2l is the same as the set
of sentences of .Z that have value 1 in 2. But obviously not all sentences of £ have the
same value in 2 and 2('.

This result is hardly surprising. Knowing which sentences have the top value only
allows us to know the values of those sentences that have extreme values. When we only
have two values, this amounts to knowing the value of every sentence. But when we have
more than two values, knowing the values of those that have extreme values is not enough:
we still need to know the values of those that have intermediate values. And the latter is
simply not decided by the former.

Therefore, in a Boolean-valued setting, we need a notion stronger than the notion of
“theory", one that is sufficiently strong to fulfill the kind of jobs that the notion of “theory"
does in the setting of two-valued models: one that is able to, for example, provide a full
description of a model that decides the value of every sentence in the model. A natural

candidate, as we will introduce right now, is the notion of “Boolean-valuations".

Definition 1.4.3. Let B be a complete Boolean algebra. Let £ be a first order language. A
Boolean-valuation S in .Z is a set of pairs of the form (¢, p) such that ¢ is a sentence of

% and p is an element of B. We say that B is the value range of the Boolean valuation SZ.

Definition 1.4.4. Let 2 be a B-valued model of .Z. Let S? be a .Z-Boolean-valuation with

value range B.!7 2l is a model of S just in case for any sentence ¢ € ., for any p € B, if

"Here and in the following, we use the superscript of a Boolean-valuation to indicate the value range of
the Boolean-valuation.
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(¢,p) €SB, then [¢]* = p.

Intuitively, a Boolean-valuation assigns values of a Boolean algebra to certain sentences
of a language. When a pair (¢, p) is in the Boolean-valuation S5, we can think of the
Boolean-valuation as “saying" that the sentence ¢ has value p. If a model 2l is a model of
SB, then figuratively, what S8 says about those sentences that are mentioned in S? is what
actually is the case in 2. We can already see why the notion of Boolean-valuations will
be useful for our purpose: a full description of a Boolean-valued model with respect to a
particular language, intuitively, is simply an assignment of values to all the sentences in the
language. But the latter, from a set-theoretic perspective, is just a collection of sentence-
value pairs, which is simply a Boolean-valuation given our definition.

Also, theories, in a natural sense, can be understood as special cases of Boolean-
valuations. Roughly, a theory T is a Boolean valuation T? = {{(¢,1)|¢ € T}. A model
2l is a model of T just in case 2 is a model of T2. The notion of “Boolean-valuation" is a
natural generalization of the notion of “theory", in the context of Boolean valued models.

An important property of theories is consistency. Consistent theories, as we have seen,
precisely correspond to theories that have Boolean valued models. This is a nice synergy
between syntax and semantics. But what about Boolean-valuations? What does it mean for
a Boolean-valuation to be “consistent"? Are consistent Boolean-valuations precisely those

that have models? These are the questions that we will answer in the rest of the section.

Definition 1.4.5. Let S® be a Boolean-valuation of .%. Let & : B — 2 be a homomorphism.

Sff is the following set of sentences: for any ¢ € .Z, any p € B,
1. If (¢, p)ye SB and h(p) = 1, then ¢ € S&.
2. If (¢p,p)e S® and h(p) = 0, then —¢ € 5.
3. Nothing else is in S?.

Definition 1.4.6. A Boolean-valuation S? is consistent if and only if for any homomor-

phism £ : B — 2, S is a consistent theory.
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Consistency of Boolean-valuations is thus defined in terms of consistency of theories.
Let T be a theory and let 78 be the Boolean-valuation {{¢,1)|¢ € T}. It follows straight-
forwardly from Def 1.4.5 and Def 1.4.6 that T is consistent just in case T2 is consistent in
the sense of Def 1.4.6, as every homomorphism takes 1 to 1;.

The major result of this section will be that consistent Boolean-valuations are precisely
those that have models. To reach that result, though, we will have to prove a series of sub-
sidiary theorems first, which are also interesting on their own. In the following, whenever
we mention a Boolean-valuation, we always assume that it is a Boolean-valuation of the

language .. Also, occasionally, we will call a Boolean-valuation S® a B-valuation.

Definition 1.4.7. A Boolean-valuation S’ is a sub-valuation of S8 if and only if §'8 c §%

and the value range of S'8 is the same as that of S5.

Theorem 1.4.4. If a Boolean-valuation S? is consistent , then every sub-valuation of S8 is

consistent.

Proof. Let §'B be a sub-valuation of SZ . Then for every homomorphism /: B — 2, S;lB c Sf .
If S8 is inconsistent, then S;lB is inconsistent for some homomorphism 4, and then Sf will
be inconsistent.

]

Proposition 1.4.1. Let S8 be a Boolean-valuation and let 4 : B — 2 be a homomorphism.

For any finite subset A S, for some finite sub-valuation % of S5, S8 = A.

Theorem 1.4.5. A Boolean-valuation S? is consistent if and only if every finite sub-valuation

of S8 is consistent.

Proof. The direction from left to right follows directly from Theorem 1.4.4.

For the other direction, let S® be an inconsistent B-valuation. Then for some homo-
morphism 4 : B — 2, S;lf 1s inconsistent. Hence some finite subset T of S,lf 1s inconsistent.
By Prop 1.4.1, for some finite sub-valuation T8 of S8, Tf = T. Hence ThB is inconsistent.

Hence T8 is inconsistent. ]

Theorem 1.4.6. Let S be a consistent B-valuation. For any sentence ¥ € .Z, for some

re B, S8 U {(y,r)} is consistent.
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Proof. LetX = {h:B — 2| h is a homomorphism}.

Let K = {AP | AP is a finite sub-valuation of $%}. Enumerate K by o where o = |K]|.
For each B < «, AP is a finite sub-valuation of S5, and S8 = Uﬁ - aAﬁ

For any B < a, h € X, we form Af according to Def 1.4.5. For any B < a, h€ X,
Af c SB. Also forany he X, {Ag | B < a} ={A|A is afinite subset of S5}.

Fix an B < a. Let AP = {{¢1,p1),....,{0, p)} for some k < w. For any h € X, let
q’é =g M ...M g, where for any 1 <i <k, g; = p;if h(p;) =1, and ¢; = —p; if h(p;) = 0.

To continue with the proof we need to prove two claims.

Claim 1.4.6.1. Forany < a, he X, h(qg) =

Proof of the Claim. Let qg = g1 M ...M g as defined above. Then for any 1 <i <k,
h(g;) = 1. Hence h(q}é) =1.

LetJ§ = {h; eX|A - ylandJg = (e X | A) - -y,

Let qB | ] qﬁ and 95 = |_|_qB.
h]eJB hiedg

Claim 1.4.6.2. For some re B, r > | | qﬁ and —r > | | qg -

B<a B<a

Proof of the Claim. We only need to show that
[l a5 || g5 =0
B<a B<a
By infinite distribution, this is equivalent to
L] @5rnay)=0
B.y<a
That is, for any 8,7 < «, ng mgy, =0,ie.
hj hy
L] ag'm L] ey =0

h jejg hyely
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Again by infinite distribution, this is equivalent to

L] [ (a5 ndy)=0

h; eJﬁ hiedy

That is, for any h; € JT, any hy € Jy*, qgj M qé’/‘ =0.

Suppose not, then for some £ € JE, hi € J,, , for some p # 0 € B, qZJ M q;l,k = p.

Since p # 0, there is some & € X such that h(p) = 1. Hence h(qgj) =1, h(q?,") =1.

But by definition of qu , then, for any p; such that some pair of the form {(¢;, p;> € AP if
hj(pi) =1, then qﬁ < pi, and hence h(p;) = 1. And similarly, if 2;(p;) = 0, then qgj < —pi
and hence h(—p;) = 1, h(p;) = 0.

Hence for any p; such that some pair of the form (¢;, p;> € AP, h i(pi) = h(pi). Hence
by Def 1.4.5, Aﬁ = Ay Similarly, A} =AY

But since eJE, A/3 - y; and since /i € J, Ah  —w. Hence A[3 -y, Al - =y

But Af c SB, Al Sff . Hence S% - w A —y. Hence S? is inconsistent. But this is a

contradiction as S? is assumed to be consistent.

Pick an r € B that witnesses Claim 1.4.6.2. Finally, we will show that S8 U {(y,r)} is
consistent.
Suppose it is not consistent. Then for some 4 € X, one of the two following situations

holds:
(a) h(r)=1and S¥ U {y} is inconsistent.
(b) h(r) = 0 and S? U {—y} is inconsistent.

We will show that both (a) and (b) lead to contradiction.
Assume (a). Since Sﬁ u {y} is inconsistent, SE  —wy. Hence for some 8 < a, Af -

—y. Hence h e Jﬁ_.

Hence —r> | | ¢, = qz = || g% =gt
y =49 — L 9p B
r<o thJﬁ

But by Claim 1.4.6.1, h(qg) = 1. Hence h(—r) = 1, h(r) = 0. Contradiction.
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Assume (b). Since S? U {—y} is inconsistent, S - y. Hence for some f§ < «, Af - .
Hence he J;.

B

Hence r > | | q?}qu qgj>qg.
<o

h
But by Claim 1.4.6.1, h(q%) = 1. Hence h(r) = 1. Contradiction.
]

Definition 1.4.8. A Boolean-valuation S? is maximal if and only if for every sentence ¢,

there is some p € B such that (¢, p) € SB.

Theorem 1.4.7. Every consistent Boolean-valuation is contained in some maximal consis-

tent Boolean-valuation.

Proof. Let S be a consistent B-valuation. Let D = {{¢, p) | ¢ is a sentence of .Z, p € B}.

Arrange all the pairs in D in a list:

<¢O,PO>7<¢1,P1>a---7<¢a’l9a>a--~ o< |D|

such that the list associates in a one-one fashion an ordinal with each pair.

We shall form an increasing chain of consistent B-valuations:
B _ B (B B
SP=8cSic..cS;<... a<|D|

If SB U {(¢o, po)} is consistent, define S5 = S8 U {(¢y, po)}. Otherwise, define S¥ = S5.

At the a-th stage, if & is a successor ordinal, define

SB =88 U{{pa-1,pa—1)} ifSB | U{{Pa—1,pa—1)} is consistent

sE=58 | if otherwise

If o is a limit ordinal, define S = |J S3. Let 7* be the union of all the S§s.
B<a

Claim 1.4.7.1. T8 is a consistent B-valuation.

Proof of the Claim. Suppose not. Then for some homomorphism 4 : B — 2, ThB is incon-

sistent. Then for some finite subset {y1, ya,..., Y} < ThB, {w1,v2,..., ¥} is inconsistent.
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By Prop 1.4.1, for some finite sub-valuation AZ of T2, Alg = {1, v, ...,y }. Hence AB is
inconsistent. But since A8 is finite, for some a < |D|, AB < SB. But then S is inconsistent.

Contradiction.

Claim 1.4.7.2. T2 is maximal.

Proof of the Claim. Let ¢ be a sentence of .. By Theorem 1.4.6, for some p € B,
TB U {{¢,p)} is consistent. But then {(¢,p)} will be added to T8 at the stage when it

1S enumerated.

Hence S is contained in a maximal consistent B-valuation, namely T5.

]

When S8 is a consistent B-valuation, it is easy to show that for any sentence ¢, for any
p,q € B, if (¢, p) and {¢,q) are both in S5, then p = ¢. This is because otherwise, there is
some homomorphism /4 : B — 2 such that 4(p) # h(q), and hence both ¢ and —¢ will be in
SB. making S8 inconsistent. Hence, in the following, when the context is clear, we will use
the term [¢]° to denote the unique p such that (¢, p) € SZ.

With the help of Theorem 1.4.6 and Theorem 1.4.7 we are finally able to prove the

completeness theorem on Boolean-valuations. '3

Theorem 1.4.8. Let . be a countable language. Let S® be a consistent Boolean-valuation

of .. Then S? has a B-valued model that is witnessing.

Proof. LetX = {h:B — 2| h is a homomorphism}.
Let S8 be a consistent scheme in .Z. Let C be a countable set of new constants (not
appearing in .%). Let ¥’ = £ U C.

Arrange all formulas with one free variable in .Z into a list:

00,01,y Oy <O

80ur proof of Theorem 1.4.8 is in the same spirit as Henkin’s proof of the completeness theorem on
two-valued first-order models.
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We now define an increasing sequence of B-valuations of .Z:

SP=sfcsfc.cSfc.. i<w

and a sequence dy, ...,d;, ..., i < @, of constants from C, in the following way:

Suppose S? has been defined. We first add to S? a pair of the form (3v;¢;(v;), p) such
that S8 U {(3vii(v;), p)} is consistent. Theorem 1.4.6 guarantees the existence of such a
pair. Then, we let d; be the first constant in C that has not appeared in S& U {(3v;¢;(v;), p)}.
Since until S? we have only added finitely many pairs to SZ, which contains no constant in
C, and each pair we have added at most contains finitely many new constants, there exists

such a new constant in C that hasn’t appeared. Then, we add to S? the pair (¢;(d;), p).
Claim 1.4.8.1. S2 | = S8 U {(Qvigi(vi), p),{9i(d;), p)} is consistent.

Proof of the Claim. Suppose not. Then for some 4 € X, (S?

i1+1)n is inconsistent. There are

two situations:
(a) h(p) = 1. Then (S8), L {3vi¢;(v), 9;(d;)} is inconsistent.
Then (S7)n w {Fvigi(vi)} - —i(di).
Since d; does not appear on the left hand side, (S2), U {3vigi(vi)} - Vvi—@i(v;).

But then (S%);, U {3v;¢:(v;)} is inconsistent, contradicting our choice of p.

(b) h(p) = 0. Then (SB), U {—3vi¢i(vi), ~¢:i(d;)} is inconsistent.
Then (S7);, u {=3vigi(vi)} = i(di).
Since d; does not appear on the left hand side, (S¥), U {=3vigi(vi)} = Vvigi(vy).
But then (S8);, U {—=3v;¢:(v;)} is inconsistent, contradicting our choice of p.

Let T8 = U SB. T'B is consistent, as if not, then by Theorem 1.4.5, a finite sub-

e
valuation of 7’8 will be in consistent, meaning that some Sf will be inconsistent.

Since T'2 is a consistent B-valuation of .#”, by Theorem 1.4.7 it is contained in some
maximal consistent B-valuation of .. Let T2 be such a B-valuation.

Let A = C. We will construct a B-valued model 2( of .’ with universe A/C:
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1. Let c be a constant in .#”. Then [c]* = d; such that [c = d;]" = [Fvi(vi = ¢)]T. (If

there is more than one d; € A that satisfies this, then just pick a random one.)
2. Let P be an n-nary relation. For any (¢, ...,c,> € A", let [P(cy, ...,c,)[* = [P(c1,...,cn)]T .
3. For the identity symbol, for any d;,d; € A, let [d; = d,]* = [d; = d;]".

Claim 1.4.8.2. 2l is a B-valued model.

Proof of the Claim. For any d;,d;,dy € A,

() [d; =d]* = 1.

Suppose not. Then for some h € X, h([d; = d;]*) = 0. Then d; # d; € T,%, making T2

inconsistent.

) [di=dj]* =[d; =d]*

Suppose not. Then for some 4 € X, h([d; = d;]*) # h([d; = &i]*). Then (without

loss of generality) d; = d; € TP and d; # d; € TP, making T,? inconsistent.

3) [di=d;]*n[d; = d]* < [di = di]*

Suppose not. Then for some & € X, h([d; = di]*) = 0 but h([d; = d;]* n [d; =
diJ*) = 1. Hence h([d; = d;]*) = 1 and h([d; = d;]*)) = 1. Hence d; = d;,d; =

di € Tf but d; # dy € TP, making ThB inconsistent.

For any n-nary relation P, for any {ci, ...,cn),{c],...,c},) € A",

[Plct, e[ P ([ ] [ei = clI™) < [P(chs s )™

1<i<n
For simplicity we only prove for the case when n = 1. The proofs for the cases when
n > 1 are very similar.
Suppose not. Then for some 4 € X, h([P(c})]*) = 0 but A([e; = 4 ]* M [P(e1)]*) = 1.
Hence h([c; = ¢}]*) = 1 and h([P(c1)]*) = 1. Hence ¢ = ¢}, P(c1) € TE but —P(c}) e TE,
making ThB inconsistent.
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Finally we will show that 2 is a model of T2, i.e. for any ¢ of ./, [¢]* = [¢]". We

prove this by an induction on the complexity of ¢.

Atomic cases:

(a)

(b)

[c = = [di = d;]" where [c = d]T = [vi(c =v)]T =1 and [¢' =d;]" =
[Fvi(c" =v)]T = 1.

We just need to show that p = [d; =d;]" = [e =] =¢.

Suppose not. Then for some & € X, h(p) # h(q). Hence (WLOG) d; = d; € TP,
c#c TP Butc=d;,c =djeTP. TP is inconsistent. Contradiction.

For the atomic cases of relations, again, we just show it for unary relations. The cases
of other n-nary relations where n > 1 are very similar.

[P(c)]* = [P(d;)]T where [c = d;]" = [Fvi(c =v;)]T = 1.

We just need to show that p = [P(d;)]” = [P(c)]" =q.

Suppose not. Then for some h€ X, h(p) # h(q). Hence (WLOG) P(d;) € %, —P(c) €

Tf .Butc=d;e ThB . ThB is inconsistent. Contradiction.

Inductive cases:

(@) ¢ =—v.

[01* = [-y]* = —[y]* = —[v]" = [-v]"

The last equation holds for the following reason. Suppose not, and suppose [y]” = p
and [-~y]” = g # —p. Then for some h € X, h(—p) # h(q). WLOG we can assume
h(—p) =1 and h(q) = 0. Then h(p) = 0. Then —y € T} and —~—y € T}F, making 7,2

inconsistent. Contradiction.

(b) ¢ =y Ay,

[y1 A llfz]]gl = [[11/1]]Ql m [[‘Ifz]]Ql = [[‘Ifl]]T M [[Wz]]T = [wv1 A sz]]T
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The last equation holds for the following reasons. Suppose not, and suppose [w;]” r
[w2]" = p # q=[wi A w]". Then for some h € X, h(p) = 1 and h(q) = 0, or
h(p) = 0 and h(q) = 1. Suppose h(p) =1 and h(q) = 0. Then yy,y» € T2, but
—(y1 A€ Tf , making Tf inconsistent. On the other hand, suppose A(p) = 0 and
h(g) = 1. Then y; A y, € TE. Then both 2([y1]7) and A([y2]7) have to be 1, as
otherwise =y or —, would be in 7%, which would make 7;? inconsistent. But then

h([y1]" m [w2]T) = h(p) has to be 1. Contradiction.

(©) ¢ =yivy,.

w1 v 1//2]]9‘ = [[llfl]]gl U [[llfz]]Ql = [[Vﬁ]]T U [[ll/zﬂT = [y1 v llfz]]T

The last equation holds for the following reasons. Suppose not, and suppose [w1]” L
[w2] = p #q=[wivw]'. Then for some h € X, h(p) = 1 and h(q) = 0, or
h(p) =0 and h(q) = 1. Suppose h(p) = 1 and h(g) = 0. Then —(y; v y,) € T, and
hence both A([y1]”) and A([w>]") have to be Om as otherwise Wi or W, would be
in T}, which would make T} inconsistent. But then 2([y1]7 u [y2]?) = h(p) has
to be 0. Contradiction. On the other hand, suppose A(p) = 0 and h(g) = 1. Then
h([y1]") = 0,A([y2]") = 0. Hence —y1,—~ys € TE, but vy v y, € T8, making T,

inconsistent.

(d) ¢ = Hvil//(v,-).

Let 0(v;) be any formula with only v; free. Then it is easy to show that for any d; € A,
[6(vi)[*[di] = [0(di)]™, as [d]* is some d; € A such that [d; = d,;]* = 1. Hence,

B )™ = || Two)l™di] = | | [w@)]* = | |[w(d)]"

d,'GA d,‘EA d,’EA

We need to show that | | [w(d;)]? = [Fviv(v)].
d,‘GA

For the < direction: We just need to show that for any d; € A, [w(d;)]” < [Iviw(v)]".

Suppose not, and suppose for some d; € A, [y(d;)]" = p and [Fv;y(v;)]" = g and
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p £ q. Then pr—q # 0. Then for some h € X, h(pr —q) = 1. Then h(q) = 0, and

hence —3v;y(v;) € TF. But y(d;) € T}, making 7;? inconsistent.

For the > direction: by the setup of 7’8 (hence of T%), at some stage of the sequence
(say, the ith stage), both (3v;w(v;), p) and {y(d;), p) are added to T3, for some p € B.
Hence for some d; € A, [Iv;iy(v)]" = [w(d)]".

Finally obviously 2l is witnessing.

]

Corollary 1.4.8.1 (Completeness). Let .Z be a countable language. Let S? be a consistent

Boolean-valuation of .Z. Then S? has a B-valued model.

Theorem 1.4.9 (Soundness). Let S be a Boolean-valuation that has a B-valued model,

then S? is consistent.

Proof. Let 2 be a B-valued model of SZ. Suppose S? is inconsistent, then for some homo-
morphism 4 : B — 2, Sﬁ is inconsistent. Then, some finite subset A, < Sf 1s inconsistent.

Let A, = {@1,....,0,}. Let ¢ = @1 A ... A @,. Clearly ¢ is a contradiction. Hence by
Corollary 1.4.1.1, [¢]* = 0.

Let 1 <i < n. Consider ¢;. Since ¢; € A, < SZ, there are two possibilities:
(1) for some p; € B, {¢i, piy € $7, and h(p;) = 1;
(2) for some p; e B, {y;, p;>e S8, and h(p;) =0, ¢; = —y;.

Suppose (1). Then since 2 is a model of S5, [¢;]* = p;. A([¢:]*) = h(pi) = 1.
Suppose (2). Then since 2l is a model of SB, [yi]* = pi. [0:]* = [~w]* = —p.
h([9]™) = h(=pi) = —h(pi) = —0 = 1.
In either case, h([¢;]*) = 1.
Hence h([0]*) = A([¢1 A .. AG]*) =1 .om 1 =1,
Hence h([¢]*) # 0. Contradiction.
]

Corollary 1.4.9.1. Let .Z be a countable language. A Boolean-valuation S& of .# is con-

sistent if and only if it has a B-valued model.
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Corollary 1.4.9.2 (Compactness). Let .Z be a countable language. A Boolean-valuation
SB of . has a B-valued model if and only if every finite sub-valuation of S? has a B-valued

model.

Corollary 1.4.9.3 (Downward-Lowenheim-Skolem). Let .Z be a countable language. If
a Boolean-valuation S8 of .Z has a B-valued model, then it has a countable witnessing

B-valued model.

1.5 Relationships Between Models

Two-valued models can stand in different relationships with one another: for example, a
model can be isomorphic to another, a model can be a submodel of another, a model can
be a elementary submodel of another, etc. These concepts are the cornerstone of the theory
of two-valued models. The primary goal of this section is to generalize these concepts to

Boolean-valued models.

1.5.1 Duplicate Resistant Models

Before we move on to generalize these concepts, there is one important complication that I
have to resolve first, which will be relevant to our later purposes. Astute readers might have
already noticed that the identity symbol is interpreted somewhat abnormally in Boolean-
valued models. The main abnormality, of course, is that a Boolean-valued model might
“think" that two objects in its domain are identical to an intermediate degree between 0 and
1. We will postpone the discussion of identity in Boolean-valued models to Section 1.8.
For current purposes, we will simply focus on the following minor yet interesting feature of
Boolean-valued models: our definition of Boolean-valued models (Def 1.2.8) allows there
to be “duplicates” in the models - that is, two different objects a, b in the domain such that
the value of @ = b is 1 in the model.

The existence of duplicates in a model, in a natural sense, is both harmless and useless.

To illustrate this point, we first introduce a new notion.
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Definition 1.5.1. A B-valued mode 2 of .Z is duplicate resistant just in case for any a,b €

A, if [a = b]* = 1, then a and b are the same element.

In other words, duplicate resistant models are those that disallow duplicates. The next
results show that any Boolean-valued model is practically equivalent to a duplicate resistant

model.

Definition 1.5.2. Let 2 be a B-valued model of .Z. Let h : B— B be the identity function

on B. The duplicate resistant copy of 2, A¢, is the B-valued quotient model 2" of .Z.

Figuratively, the duplicate resistant copy of a model 2l “collapses" all duplicates into
one object and keeps the remaining of the model the same. The duplicate resistant copy of

a model is practically equivalent to the original model, in the following sense.

Theorem 1.5.1. Let 2 be a B-valued model of .Z, and let A< be its duplicate resistant copy,
as defined in Def 1.5.2. Given x : Var — A? an arbitrary assignment on A%, let y : Var — A

be an assignment on 2 such that for any v; € Var, y(v;) € x(v;). Then, for any formula ¢,

[61% [+] = [¢]*[y]

Proof. The proof is a straightforward application of Theorem 1.3.3, since the identity func-

tion 4 : B — B is a complete homomorphism. [

In other words, the value of any formula under some assignment x in the original model
is the same as the value of the formula in the duplicate resistant copy, when we assign
instead of objects equivalence classes of objects to the variables. As a consequence, all
sentences have the same value in the duplicate resistant copy.

We have argued that the existence of duplicates is harmless and useless, from a technical
point of view!?. This is mostly true, except that the existence of duplicates does create some

technical difficulty when we intend to generalize concepts like isomorphism. Consider a

19The reason why I do not block the existence of duplicates in the definition of Boolean-valued models, as
one does in the case of two-valued models, is that the possibility of having duplicates might have interesting
applications to certain philosophical issues. Models are relative to languages. And sometimes the language
under discussion might have limited expressive power in that it cannot distinguish between two potentially
different objects. If we understand “=" as meaning “indistinguishable", then, we would want to allow there
to be objects that are “duplicates” of each other, in the sense defined above.
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model 2 with a finite domain and consider adding to 2( an new object b such that b is added
as a duplicate of an original object a. Call the latter model 2'. How are 2( and 2’ related?
Intuitively, they should be practically the same model. For any 2(-assignment x, for any
2'-assignment x’ we get from x by replacing some occurrences of a with b, for any formula
¢, [¢]%[x] will always be the same as [¢]% [x']. The addition of b is null in the sense that it
makes no contribution to the evaluation of formulas. We would want our theory to indicate

that the two models are isomorphic.

Nevertheless, if we generalize the concept of isomorphism in the most straightforward
way, 2 and 21" will not be isomorphic. This is because, in the two-valued framework, an
isomorphism between models is a bijection, and there is simply no bijection between the

domains of the two models.

Here’s another example to illustrate the same point. Let 2f and 2’ be two models that
are completely identical, and let there be two duplicates a,b in their domains. Now add a
new constant ¢ to the language and let [¢]® = @ and [c]* = b. Intuitively, the expanded
models 2f and 2’ are still practically the same model. But under the most straightforward
generalization of the concept of submodel, 2( will not be a submodel of 2’ (or vice versa),

simply because [¢]% # [¢]'.

One natural solution to these difficulties is to first define the notions of isomorphism,
submodel, etc. on duplicate resistant models, in the most straightforward way, and then
define isomorphism, etc. on arbitrary Boolean-valued models using the former. For exam-
ple, we can define two Boolean-valued models as isomorphic just in case their duplicate
resistant copies are isomorphic. This is going to be the method that we will adopt in the
following subsections, as I believe that under this method we have the most natural and
simple definitions for concepts like isomorphism. Alternative methods are available, of
course: for example, we can give a definition of isomorphism under which isomorphisms
do not have to be bijections. In the end, which method we adopt is more of a matter of taste

than a matter of mathematical significance.
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1.5.2 Isomorphism, Submodel, and Diagram

In this and the next two subsections, for reasons we have given in the previous subsection,
we will assume all Boolean-valued models are duplicate resistant. Also, whenever we do

not specify otherwise, we assume all models are models of a first-order language .7

Definition 1.5.3 (Isomorphism). Let 2, and 2, be two B-valued models. A bijection f :

A1 — Aj 1s an isomorphism just in case: (let #; be a term)
1. For any aj,as € Ay, [t; = Zz]]ml la1,a2] = [t1 = IZ]]QlZ[f(al)af(aZ)]-
2. Let P be an n-nary predicate. For any {ay, ...,an) € A%, [P(t1,....ta)[**[a1, ..., an]
= [P(t1, s t)]*=[f(@1), -oes f (an)]-
3. Let ¢ be a constant. [c]*> = f([c]*).
When there exists an isomorphism from 2l, to 2., we say that 2, and 2, are isomor-
phic.

Definition 1.5.4 (Submodel). Let [, and 2, be two B-valued models. Let A| < A,. 2, is

a submodel of 2, just in case: (let ¢; be a term)
1. For any ap,as €Ay, [[tl = tz]]ml [al,az] = [[ll = tz]]glz [al,az].

2. Let P be an n-nary predicate. For any (ay,...,a,) € A", [P(t1,....t,)]**[a1, ..., an]

= [[P(tl,...,tn)]]%[al,...,an].
3. Let ¢ be a constant. [c]*> = [c]%.

Definition 1.5.5 (Diagram). Let 2 be a B-valued model of .Z. Let %y = % U {c, | ac A},
where {c, | a € A} is a new set of constants, one for each a € A. Expand 2l to a model of
L (call it 2A*) such that for all a € A, [c,]* = a.

The diagram of 2 is the B-valuation S® which consists of all and only pairs of the form
(¢,[]%") where ¢ is an atomic sentence or the negation of an atomic sentence of % and

[6]*" is the value of ¢ in 2*.

Theorem 1.5.2. Let 2, and 2, be two B-valued models. The following statements are

equivalent:
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(1) %A, is isomorphic to a submodel of 2A,.
(2) 2, can be expanded to a model of the diagram of %, .

Proof. (1) = (2). Let f: A; — A3 < A3 be an isomorphism, where 2 is a submodel of 2.
Expand 2, to a model of %, (call it 21,) as follows: for any a € Ay, let [¢,]%* = f(a).
We will show that 21, is a model of the diagram of 2, . Let 2(* be the standard expansion
of A, to Ly, .
Let ¢(cq,,...,Cq,) be an atomic sentence or the negation of an atomic sentence of %y,
where ¢, , ..., cq, are all the constants of %y \.Z that appear in ¢. Let ¢’(vy,...,v,) be the
formula of . that we get by substituting c¢,, in ¢ with vy, ..., ¢4, in ¢ with v,, and we

assume that none of vy, ..., v, appear in ¢(cg,, ..., ¢4, ). Then

[[(P(Ca]a---acan)]]ml = [[(P(Vl»---;vn)]]ml[ala---aan]

= [[(P(Vl?"'vvn)]]ms [f<a1>7"'7f(an)]

=[O, v)I*2[f (@1), -oos f (an)]
(

The second equation holds since I, is isomorphic to 2(;. The third equation holds since
L5 is a submodel of 2A,.

(2) = (1). Let 2, be an expansion of 2, to %y, such that 2/, is a model of the diagram
of A, .

Construct f : A| — A, as follows: forany a€ Ay, f(a) = [ca]*>. Let 2, be the submodel
of 2(, whose domain is generated by f[A;].

We will show that the domain of 2; is precisely f[A;]. Let ¢ be a constant in .Z.
And suppose [c]® = a€A;. Then [c = ¢,]*7 = 1 and therefore [¢ = ¢,]%> = 1. Since
2, is duplicate resistant, 20, is also duplicate resistant. Hence [c]%> = [c,]%>. Hence
[e]*s = f(a) € flAL]

We will next show that f : Aj — A3 is an isomorphism. We first show that f is a
bijection. Trivially it is surjective. Suppose f(a;) = f(az), then ﬂcal]]m/z = ﬂcaz]]m/z and

therefore [c,, = Caz]]% = 1. Since 2, is a model of the diagram of 2, [c4, = caz]]Qlf =1.

51



Hence [a; = az]]ml = 1. Since 2, is duplicate resistant, a; = a>. Hence f is injective.
Let ¢(vy,...,v,) be an atomic formula of .Z with free variables vy, ...,v,. Letay,...,a, €

Aji. Then

Vi, --,Vn)]]mz[f(al)v"'vf(an)]
vis )3 [f (@), o f(an)]

The second equation holds because 2/, is a model of the diagram of 2(;. The third equation
holds by the definition of f. The fourth equation holds because 2(; is a submodel of 2,.

Let ¢ be a constant in .£. Then using the same reasoning as above, [c]% = [¢]¥> =
[ca]®> = f(a) = F([c]™), where [c]* = acA,.
]

Definition 1.5.6 (Homomorphism). Let 2, and 2, be two B-valued models. A surjection

f:A; — Ay is a homomorphism just in case: (let #; be a term)

1. Forany aj,ay €Ay, if [t} = tz]]ml [ai,az] = p (Where p € B), then [t; = tz]]le [f(a1), f(az)]

:p_

2. Let P be an n-nary predicate. For any {ay, ...,a,) € A", if [P(t1,....,tx)[**[a1, ...,an] =
p. then = [P(t1,...,t))[*2[f(a1), ..., f(an)] = p.

3. Let ¢ be a constant. [c]*> = f([c]™).

When there exists a homomorphism from 2, to 2(,, we say that 2, and 2, are homo-

morphic.

Definition 1.5.7 (Positive Diagram). Let 2 be a B-valued model of .Z. Let £ = £ u
{cqs | a€ A}, where {c, | a € A} is a new set of constants, one for each a € A. Expand 2( to a

model of % (call it A*) such that for all a € A, [[ca]]m* =a.
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The positive diagram of 2 is the B-valuation S® which consists of all and only pairs of
the form (¢, [¢]%") where ¢ is an atomic sentence of % and [¢]*" is the value of ¢ in

D/

Theorem 1.5.3. Let %[, and %[, be two B-valued models. The following statements are

equivalent:
(1) %A, is homomorphic to a submodel of 2.
(2) 2, can be expanded to a model of the positive diagram of 2A;.

Proof. The same proof as that of Theorem 1.5.2 with minor adjustments.

1.5.3 Elementary Submodel and Downward Lowenheim-Skolem

Definition 1.5.8 (Elementary Submodel). Let 2(; and 2(, be two B-valued models of .Z.
Let A; € A,. A, is an elementary submodel of 21, just in case: 2, is a submodel of 2I,, and

for any formula ¢ (vy,...,v,) of £, any ay,...,a, € Ay,

[0, .ov) ¥ [ar, .. an] = [0 (v1, ... va)[¥2[ar, .., an]

Theorem 1.5.4. Let 2, be a witnessing B-valued model and 2, be a B-valued model. 2, is
an elementary submodel 2, if and only if 2, is a submodel of 2,, and for any formula

W (v,v1,...,vy) of £, any ay,...,a, € A, for some a € Ay,

[[qu)(v,w,...,vn)]]%l[al,...,an] = [[¢(v,v1,...,vn)]]mz[a,al,...,an]

Proof. The left to right direction is proved by directly applying Def 1.5.8 and the fact that
2(, is witnessing.

The right to left direction is proved by induction on the complexity of ¢. The only
non-trivial step is the inductive step on existential formulas. Consider 3v¢ (v, vy, ...,v,) and

ai,...,a, € Ay. Obviously [Iv¢]* [ay, ...,a,] < [Iv@]®*[ay, ...,a,]. For the other direction,
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for someac Ay,

[[HV,-([)]]le lai,...,an] = [[q)]]ml[a,al,...,an]
= [[(Z)]]Qll[a,a],...,an]

< [vio]™ [ar, ..., an]

Definition 1.5.9 (Elementary Diagram). Let 2l be a B-valued model of .Z. Let £y =
L u{cy|ac A}, where {c, | ac A} is a new set of constants, one for each a € A. Expand

2l to a model of %y (call it (*) such that for all a € A, [[ca]]m* =a.

The elementary diagram of 2 is the B-valuation S® which consists of and only of all
pairs of the form (¢, [¢]*") where ¢ is a sentence of %y and [¢]*" is the value of ¢ in
D/

Theorem 1.5.5. Let 2, and %[, be two B-valued models. The following statements are

equivalent:

(1) 2, is isomorphic to an elementary submodel of 2.

(2) 2, can be expanded to a model of the elementary diagram of 2, .

Proof. (1) = (2). Similar proof as that of Theorem 1.5.2, with the minor adjustment that
we now let ¢ be a random sentence instead of just an atomic sentence or the negation of an

atomic sentence.

(2) = (1). The same construction we used in the proof of Theorem 1.5.2 gives us a

submodel 2(; of 2, that is isomorphic to 2, .

We only need to show that 2; as so defined is an elementary submodel of 2(,. Let

o (vi,...,vy) be a formula of .Z with free variables vy,...,v,. Let f(ay),...,f(a,) € As.
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Then

The first equation holds because f is an isomorphism. The second equation holds by the
definition of 2¥. The third equation holds because 2/, is a model of the elementary diagram
of ;. The fourth equation holds by the definition of f.

[

When 2, is isomorphic to an elementary submodel of 2, , we say that 2, is elementarily
embedded in ,.

In Section 1.4 we proved a weaker version of the generalized Downward-Lowenheim-
Skolem Theorem (Corollary 1.4.9.3). With the notion of elementary submodels we can
now prove a stronger version of this theorem. Again, we assume that . is a countable

language.

Theorem 1.5.6 (Downward-Lowenheim-Skolem). Let 2 be a B-valued model of .# that

is witnessing. Then 2( has a countable elementary submodel.

Proof. Let ¢ be an arbitrary sentence of .Z that is of the form Fvy. Since 2l is witnessing,
there is some a € A such that [3vy]* = [w]*[a]. Pick such a witness for each sentence
of the form Jvy. Let X < A be the set of all picked witnesses. Construct an increasing
sequence:

X=XpcXjcXc..cX,c...,i<w

Given X;. Let vy (v,vy,...,v,) be a formula with vy, ..., v, free, and let ay, ..., a, € X;. Again,
since 2 is witnessing, there is some a € A such that [3vy]¥[ay, ...,a,] = [W]*[a, a1, ...,a,].
We pick a witness for each formula of the form Ivy(v,vy,...,v,) and ay,...,a, € X;. Let

X1 be X union all the picked witnesses.
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LetA' = Ui o Xi- Since .Z is countable, X and each X; is countable. Hence A’ is also

countable. Form a model 2" with universe A’:
1. Forany a,be A’ [a = b]¥ = [a = b]*.
2. Let P be an n-ary relation. For any ay,...,a, €A, [P(ay, ...,an)]]g‘/ = [P(ay,...,a)]*

3. Let ¢ be a constant. Let [¢]% be some a € A’ such that [v; = ¢]*[a] = [Fvivi = ]

Such an a exists by the setup of 2.

It is easy to see that 2 is a submodel of 2. For any constant ¢, [[c]? = [¢]*]* = 1 by the
choice of [¢]%, and since 2 is duplicate resistant, [¢]% = [c]?.
We will show that 21’ is also an elementary submodel of 2(. Let vy /(v,v1,...,v,) be a

formula with vy,...,v, free, and let ay,...,a, € A’. Since ay, ...,a, € A’ = J,_, Xi. for some

i<W
i<,ay,...,a,€X;. Hence for some ae X;, | CA’, [Bvy]*[a1, ...,a,] = [w]*[a, a1, ...,an)].
By Theorem 1.5.4, 2’ is an elementary submodel.

]

Corollary 1.5.6.1. If a B-valuation S® has a witnessing B-valued model 2, then it has a

countable witnessing B-valued model that is an elementary submodel of 2.

The stronger Downward-Lowenheim-Skolem Theorem is a natural generalization of
the homonymous theorem on two-valued models, as every two-valued model is witnessing.
Interestingly, the requirement that 2( is witnessing in the stronger Downward-Lowenheim-
Skolem Theorem cannot be dropped, as the theorem no longer holds when 2! is not neces-
sarily witnessing. This result, I think, is another example of the fact that certain features of
two-valued models can only be generalized to witnessing Boolean-valued models, but not

to all Boolean-valued models.

Theorem 1.5.7. There exists a Boolean-valued model 2 that does not have a countable

elementary submodel.

Proof. Let B be a complete Boolean algebra such that from some D < B, |D| = ®; and for

any C € D suchthat |C| < oy, | [C# | |D=p.LetD = {pg | @ < @}.
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Let |A| = @;. Let A = {ay | ¢ < @;}. Let P be a unary predicate. (Predicates of other
arities can work as well.) Let 2l be such that for any @ < @y, [[P(aa)]]m = pa. The obviously
BvPW)* =11,- o, Pa =D = p. And no countable submodel of 2l is such that the value
of P(v) initis p.

]

1.5.4 Elementary Equivalence and Elementary Chain

Definition 1.5.10 (Elementary Equivalence). Let 2(, and 2/, be two B-valued models of .Z".

21, and 2, are elementarily equivalent just in case for any sentence ¢ in .Z, [¢]¥* = [¢]*>.

Theorem 1.5.8. Let {2 | i € I} be a set of witnessing B-valued models such that for any
i,j €1, 2 and 2l; are elementarily equivalent. Then there exists a B-valued model 2( such

that for any i € 1, 2|; is elementarily embedded in 2I.

Proof. For each 21;, let S? be the elementary diagram of 2l;. We assume that if i # j, then

{calaceAi}n{ca|acA;} = F. Let| J,.; S? be the union of all the elementary diagrams.

Claim 1.5.8.1. | JS? is a consistent B-valuation.
i€l

Proof of the Claim. By Theorem 1.4.5, we only need to show that every finite sub-valuation
of | J,.;SB is consistent. Let AP = {(¢;(c1),p1),...,{®u(cn), pny} be a finite sub-valuation
of J,.; 8. WLOG we assume that for any i < k < n, (¢ (cx), pr) € SB, and ¢ is the only
constant from {c, | a € Ay} that appears in ¢.

Assume for reductio that A® is inconsistent. Then for some homomorphism / : B — 2,
Aff 1s inconsistent.

Suppose AZ = {0(cy),...,0(c,)} such that 6, = ¢y if h(py) = 1 and 6, = — ¢y if h(py) =
0. Then 0;(c1) - —62(c2) v ... v =6, (cn).

Since (¢1(c1),p1) € S8, 0(cy) € (SF);,. Hence (SF), = —62(c2) v ... v —6,(c,). And by
assumption ¢z, ..., ¢, do not appear in (S¥),, hence (S8), = Vvi=6,(vi) v ... v ;i =6, (v;).

By assumption, Yv;—6,(v;), ..., Yv;—6,(v;) are sentences of .Z. Hence for each 2 < k <
n, for some gy € B, (¥v;—6(v;),qx) € SE. Also since S¥ is consistent (as it has a B-valued

model, namely 2, ), g is unique.

57



But all the 2l;’s are elementarily equivalent. Hence for any i € I, for any 2 < k < n,
(Wi=6k(vi),qry € SB. And as a result, for any i € I, (Vv;—6(v;) Vv ... v ¥v;—0,(vi),q2 L
. UgnyeSE.

Now since (S¥);, = Vv;—=62(vi) v ... v ¥v;—0,(v;), and since S¥ is consistent, (g L ... L

qn) = 1. Hence for some 2 < k <n, h(q;) = 1.

Hence Vv;—0(v;) € (S¥),. But 6;(ck), by assumption, is also in (S%),,. Hence (S%)j, is
consistent. But Sf is the elementary diagram of 2l¢, and therefore it has a B-valued model

and should be consistent. Contradiction.
[ |

We showed that | J,.;S? is consistent. By Corollary 1.4.8.1, it has a B-valued model
2A'. Let A be the reduct of A’ to .. By Theorem 1.5.5, for any i € I, 2; is elementarily
embedded in 2.

For the next theorem, we identify any Boolean algebra with its isomorphic copies.

Theorem 1.5.9. Let 2 be a B-valued model. Let / be an arbitrary index set. Then 2 is

elementarily embedded in [ [,.; .

Proof. Let 2" be the submodel of | [,.;2 generated by A’ = {{a)je; | a € A}. Tt is easy to

i€l
show that the domain of 2’ is precisely A’, since for any constant ¢, [c]Ilier? = ([c]®)ie; €

A

We can show that 2l is an elementary submodel of [ ]..,2( by induction on the com-

iel

plexity of ¢. The only non-trivial case is the inductive step on existential formulas. Let

58



o (v,vi,...,v,) be a formula with v,vy, ..., v, free:

[O1™ [Cavier, - Canyier] = || [00% [BYier,{aryier, - {aniei]

(bieieA’
[T

= |_| [o] [{byicr,{ar)iet; - {an)ier]

(byiereA’
= |_| <[[¢]]Ql[b7a17"'aan]>iel

<b>,‘e[€A/
= <|_| [[(P]]Ql[b?al ) ---;an]>iel

beA

<[[E|v¢]]%[a17"'7an]>iel
j§p
[Fvelie [ar)ier, ..., {an)iei]

The second equation holds by inductive hypothesis. The third equation holds by Theorem
1.3.2. The fourth equation holds by Def 1.3.1.

Finally, by Def 1.3.1, it is easy to see that B is isomorphic to the Boolean algebra
B’ = {{p)ici € [ [,; B | p € B}, and that the latter is a complete subalgebra of | [,., B.

Moreover, for any formula ¢ (vi,...,vy), any {a| )ier, -..,{an ier,

[61% Karier .- {anyicr] = [[‘l’]]’g’m[@l%ez, s an iet]
= ([91™ar, - an)yier € B

And hence although the value range of 2’ is officially [ [,.; B, only values from B’ will
actually be made used of. Hence 2!, in a natural sense, really has B as its value range.
Let f: A — A’ be such that for any a € A, f(a) = {(a)ie;. It is easy to show that f is an

isomorphism.

For the next theorem we need the following lemma.

Lemma 1.5.9.1. Let / be an index set. For any i € I, let 2; be a B;-valued model that is

witnessing. Then [ [..; % is a witnessing model.

iel

59



Proof. For simplicity we ignore the parameters. Let ¢ (v;) be a formula. Then [[Hviq)]]Hiel A —
<[[3vi¢]]mi>iel, by Theorem 1.3.2. Since for any i € I, 2l; is witnessing, for some a; € A;,
[3vio]™ = [¢]>i[a;]. Pick such an g; for each ;. Then ([Iv;¢]*ic; = ([d]% [a:]Dies =
[o] ler % [Capier]. .
Theorem 1.5.10. Let 2 be a witnessing B-valued model. Let I be an arbitrary index set.

Let i : [ [;; B — B be a homomorphism such that for any p € B, h({p)ie;) = p. Then 2 and

(I Lies 20)" are elementarily equivalent.

Proof. Let 2 be a witnessing model and let & : | [,.; B — B be a homomorphism such that

iel
for any p € B, h({pic;) = p. Let ¢ be a sentence of .Z. Let [¢]* = p € B.

By Lemma 1.5.9.1, | [,.; 2 is a witnessing model. Hence it is in the scope of Theorem

1.3.4. Hence [p]TLer®" = n([o] ler®) = n(([9]*)ier) = h((p)ier) = p-
]

Definition 1.5.11 (Chain of Models). Let o be an ordinal. For each 8 < «, let 2[,3 be a
B-valued model. A chain of models is an increasing sequence of models 2, =2, < ... <

Ql[; c ..., B < &, where 2, is a submodel of 2(;, 2, is a submodel of 2,, etc.

Definition 1.5.12 (Union of the Chain). Given a chain of models 2, c ... Q[B c.,pB<

a, the union of the chain is the B-valued model 2 = | B<a Qlﬁ such that:
1. The universe of 2 is A = Uﬁ<ocA[3-
2. Letay,ay,...,a, € A. The for some f§ < &, ay,...,a, € Ag.
(a) Let 1 <i,j,<n. [a;=a;]* = [a; = a,;]".
(b) Let P be an n-ary relation. [P(ay,...,an)]* = [P(ay,...,an)] 8.
(c) Let ¢ be a constant. [c]* = [c]™5.

Proposition 1.5.1. The union of a chain is a B-valued model. Also, for every 8 < a, Q[B 18

a submodel of UB<aQ[B-

Theorem 1.5.11 (Generalized Elementary Chain Theorem). Let {2(g | B < o} be an ele-

mentary chain of models. Then for any B < o, g is an elementary submodel of | g, 2.
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Proof. Let2A=|Jg_,2Ap. We need to show that for any § < e, for any formula ¢ (v1, ..., v,),
any aip,...,day eAﬁ,

[0]™[ar, ..., an] = [0]**[ay, ..., an]

The atomic cases are already covered by Proposition 1.5.1. The inductive cases on senten-
tial connectives are straightforward. Let ¢ (v, ...,v,) = vy (v, vy, ..., vy).

Let [Ivw]¥[ar,...;an] = | lcalV]? @, a1, -.an] = p1 € B. Let [3vy]™[ay, ...,an] =
Uuea T [aat, ] = p2 € B,

Since 2 = Uﬁ < 2p, Ag S A. By inductive hypothesis we have p> < p;. Hence we
only need to show that p; < ps.

Suppose p; € p». Then for some a € A, [y]®[a,ay, ...,a,] € p2. Let [y]*[a,ay,...,a,]
be ps3.

Since a € A = (Jg_Ap, for some 1 < &, a € Ay. Either n < f or B <n. We will
show that both possibilities lead to contradiction.

Suppose ) < . Then a,ay,...,a, € Ag. By inductive hypothesis, [w]*$[a,ay,...,a,] =
[wl*[a,a1,...,a,] = p3. But then p3 < pa = [3vy]™[ay, ...,a,]. Contradiction.

Suppose B < 1. Then a,ay,...,a, € Ay. By inductive hypothesis, [w]*n[a,ai,...,a,] =
[w]*[a,ai,...,a,] = p3. Butsince ay, ..., a, € Ag, and g is an elementary submodel of 2y,

by the construction of the chain,

[[Elvl[/]]m” lal,...,an] = [[Elvl//]]mﬁ lai,...,an] = P2

But then p3 < p;. Contradiction.
Hence p; < p». And therefore p; = p».
O

Corollary 1.5.11.1 (Robinson Consistency Theorem). Let £} and %, be two languages
and let £ = 4 n%. Let B be a complete Boolean algebra. Suppose S is a maximal
Boolean-valuation in . and S? c SB, Sg < S8 are consistent Boolean-valuations in A,

% respectively. Then S% U S5 is consistent in the language £ U %5.

Proof. Let 2l = Slf and By = Sg . Let 20y [ Z be the reduct of 2l to £ (and similarly for
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By |.Z) Then both YAy !.Z and By |.Z are models of SB, and since S? is maximal, Ay |.Z
and B [.Z are elementarily equivalent. Then, by an argument similar to that in the proof
of Theorem 1.5.8, we can show that the elementary diagram of 2(y[.Z is consistent with
the elementary diagram of ‘B(. Hence we there is some ‘B, that is an elementary extension
of B and also models the elementary diagram of 2( [.Z. Therefore there is an elementary
embedding f; : Ao [Zx, — B1!Z4,, where Ly, = Z U {cs | acAp}, and A%y, is the
canonical expansion of 2 [.Z.

For the same reason why the elementary diagram of 2y [.Z is consistent with the ele-
mentary diagram of B, the elementary diagram of B [.Z}, is consistent with the elemen-
tary diagram of the canonical expansion of 2y to .Z4,. Therefore there is an elementary
extension 2l of 2o such that 2 models the elementary diagram of B [.Z},. Hence there is
an elementary embedding g : B [.Z4, — A1 [.Z4,, such that for any a € Ay, g1 (f1(a)) = a.
1oy and B =], _, B,
By Theorem 1.5.11, 2 |= S¥ and B |= S5. Also, f = J,,— f» is an isomorphism between
2% and B1.Z. Putting 2 and B together we get a model for S5 U 5.

Repeating this construction method ad infinitum. Let A = | J

]

1.6 Supervaluationism

In this section, we show that supervaluation models are special cases of Boolean-valued
models. In particular, we show that every supervaluation model is equivalent to an elemen-
tary submodel of the direct product of the precisifications. Also, the class of supervaluation

models is equivalent to a subclass of true-identity Boolean-valued models.

Definition 1.6.1. A supervaluation model S for . is a pair (A,X) such that A is a do-
main of elements and £ = {o; | i € I} is a collection of two-valued interpretation functions

(indexed by I). In particular,?”

20We assume here that a constant is always interpreted as the same individual in all precisifications. Al-
though this is the default assumption in most standard formulations of supervaluationism (as in, for example,
[12] or [32]), we are aware of the need for loosening this assumption in certain situations. The results we
present below can be generated to more general definitions of supervaluation models, including ones in which
constants can have different referents in different precisifications, and even ones in which the domains of dif-
ferent precisifications can be different. Due to the lack of space we will not present the details here. Roughly,
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1. Let c be a constant in .. For some a € A, for any i € I, 0;(c) = a.
2. Let P be a n-ary relation in .Z. For any i € I, 6;(P) = R; € A™.

For each i € I, 2, is the two-valued model for .’ with domain A and interpretation function
Y. Every 2 is called a precisification in G.

For any formula ¢ (vy,...,v,) in .Z, and any assignment function x : Var — A,

-

(super)true if for every i€ I,2; = ¢[x];
[91°[x] = < (super)false if for every i€ L2 = —¢[x];

undefined if otherwise

Definition 1.6.2. Given a supervaluation model S = (A,{o; | i€ I}), we construct a P(I)-
valued model MM® for .Z as follows (where P(I) is the powerset of I endowed with the

powerset algebra):
1. The domain of 9 is A.

2. [[:]]9'7IG : A2 — P(I) is such that for any a,b € A, [a = b] = J if a and b are not the

same element, and [a = b] = I if a and b are the same element.
3. Let ¢ be a constant in .Z, [[c]]fm6 = oj(c), forany i € I.

4. Let P be a n-ary relation in .Z. [[P]]fm6 : A" — P(I) is such that for any ay, ...,a, € A,
[Plai,....a))]™ = {iel|2 & Play,....an)}.

It is easy to check that S satisfies Def 1.2.8.

Theorem 1.6.1. For any formula ¢ (vy,...,v,) in .Z, and any assignment function x : Var —

A,
[617 [x] = {ic 1| 2 = [x]}

in cases where we have constants without a unvarying referent, we can simply regard a constant as a unary
predicate that satisfies the special condition that its extension is a singleton. And in cases where we have
precisifications with different domains, we can simply pretend that all precisifications have the union of all
the domains as their domain, and have an existential predicate whose extension in each precisification is the
actual domain of the precisification, and have the quantifiers be restricted to what satisfies the existential
predicate in each precisification.
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Proof. By induction on the complexity of ¢. The atomic cases are covered by the defini-
tion of MS. The cases for sentential connectives are straightforward. For the existential

quantifier,

[3v;01™ [x] = |JI01™ [x(v;/a)]

acA

= | Jlier 1% = olx(vi/a)]}

acA

~ {iel |2 = 3v;0lx])

The case for the universal quantifier is similar.

]

IS is the Boolean counterpart of the supervaluation model &. They have the same
domain, and for any ¢ in .Z, the degree to which ¢ is true in 9 is the set of all precisi-
fications in G in which ¢ is true. Therefore, ¢ is (super)true in G iff [[q)]]Sme = I, which
is the top value in P(I), and ¢ is (super)false in & iff [[q)]]fm6 = (7, which is the bottom
value in P(I). Since all classical tautologies have value 1 in every Boolean-valued model,
all classical tautologies are (super)-true in every supervaluation model.

We next show that G is an elementary submodel of the direct product of all the precisi-

fications.

Theorem 1.6.2. Let S = (A,{0o; | i € I}) be a supervaluation model. Let {2; | i € I} be its

set of precisifications. Let | [2l; be their direct product. 9 is an elementary submodel of

i€l
T2

i€l
Proof. Clearly P(I) and | |2 are isomorphic. The elementary embedding is the function
i€l
f:A—]]A, that takes any a € A to {@)je;.
iel
We just need to show that for any formula ¢ (vy,...,v,) in £ and any ay,...,a, € A,

[6(at, - an)]™ = [6(ardier, e

IR
By the Direct Product Theorem (Theorem 1.3.2), [¢ ({a1)ier, ---,{anyicr) ] ={iel |2 =
o(ay,....an)} = [#(ar,...,an)]™ , by Theorem 1.6.1.
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Observation 1.6.2.1. Let G = (A, {0; | i € I}) be a supervaluation model. 9® may not
be a witnessing model, although HQ[i is always witnessing. The latter is because direct
products always inherit the propeftly of being witnessing, which follows from Theorem
1.3.2. It is easy to construct examples of the former. For example, we can let a unary
predicate P be such that it has a non-empty extension in every 2l; in G, yet thereisnoa € A

that is in the extension of P in in every 2f; in &. Then 3v;P(v;) will have value I in I

without a witness.

Corollary 1.6.2.1 (to Theorem 1.4.1 and Theorem 1.4.3). Let T be a theory and ¢ be a
sentence in a first order language .Z. T | ¢ if and only if for any supervaluation model &,

if every member of T is (super)true in G, then ¢ is (super)true in G.

We have shown that every supervaluation model is equivalent to a true identity Boolean-
valued model. Our next goal is to establish a duality between the class of supervaluation

models and a subclass of true identity models.

Theorem 1.6.3. Let 2 be a B-valued model. Then % is the Boolean counterpart of a
supervaluation model just in case 2 is a true identity model and the value range of 2 is

isomorphic to a powerset algebra.

Proof. The left to right direction holds by Theorem 1.6.1. For the other direction, let 2l
be a true identity B-valued model with value range &?(I). For each i € I, we construct a
2-valued model 2l; with domain A as follows. For any constant c, let [c]* = [¢]* € A.
For any n-ary relation P, any ay,...,a, € A, let 4; = P(ay, ...,a,) iff ie f([P(a1,...,an)]*).
Then it is easy to show that 2( is the Boolean counterpart of the supervaluation model with
precisifications {21; | i € I}.

]

The duality we established above shows that Boolean-valued models generalize super-
valuation models in two respects. First, Boolean-valued models allow identity clauses to
take intermediate truth values, whereas supervaluation models require true identity. Sec-

ond, Boolean-valued models allow the value range of a model to be any complete Boolean
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algebra, whereas supervaluation models require powerset algebras (or those embeddable in

a powerset algebra in a complete way).

1.7 Full Models

1.7.1 Full Models

We have argued in both Section 1.3 and 1.5 that certain features of two-valued models are
not shared by all Boolean-valued models but only those that are witnessing. As a step
further, in this section, we will define another condition on Boolean-valued models that is
even more demanding than being witnessing, and that some interesting features of two-

valued models can only be generalized to full Boolean-valued models.

Definition 1.7.1 (Antichain). Let B be a Boolean algebra. A subset D B is an antichain

just in case for any p,qe D, prig = 0.

Definition 1.7.2 (Full Model). Let 2 be a B-valued model. 2l is a full model just in case
for any antichain D € B, and {a, | d € D} < A, there is an a € A such that for any d € D,

d< [[Cl = ad]]m.
Proposition 1.7.1. Any two-valued model is full.

The definition of a full model might seem obscure to those who are not familiar with
Boolean-valued models. In the next subsection, we will present an alternative characteri-
zation of full models that are much more accessible. In particular, we will show (Theorem
1.7.8) that full models are precisely those that are highly witnessing (Def. 1.7.5), in the

sense that they remain witnessing no matter how they are expanded.

Theorem 1.7.1. Let / be an arbitrary index set. For any i € I, let 2l; be a full B;-valued
model. Let [ [,.,;2; be the 24;’s product model. Then [ [, 2 is full.

Proof. LetD < [[,;B;be an antichain. LetA = {{(a;)%, | d e D} = [ [,.;A:. Foranyiel, let

i€l
B;. Let pri|D] = {pri(d) | d € D}.

i€l
pri: | [,; Bi — Bi be the ith projection function on | |

iel
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Since D is an antichain in [ [,.; B;, for any i € I, pr;[D] is an antichain in B;. Similarly, let
pri: [ ie;Ai — A be the ith projection function on [ [;;Ai. pri[A] = {pri({a%,)) | {ai), €
A}

Since 2I; is a full model, there is an b; € A; such that for any pr;(d) € pri[D], pri(d) <
[b: = a?]™:, where a¢ = pri({a;)L,). Pick such a b; for each i € I. Form (b;)%, € [[,.;A:.
Hence, for any d € D, d < [{a;)L; = (biyL, [ er™s,

Hence | [, 2 is a full model.

O]

Theorem 1.7.2. Let I be an arbitrary index set. For any i € I, let 2l; be a full B;-valued
model. Let [ [,.,; 2 be the ;s product model. If | [,.,2; is a full model, then for any i € 1,
2l is a full model.

Proof. Fix an i€ l. Let D; < B; be an antichain. Let {a{ | c € D;} < A;. We construct the
following antichain D on [ [,; B;, with pr;i|D] = D;: d € D iff (a) for some c € D;, pri(d) = c,
and (b) for any j €I, if i # j, then prj(d) = Op;.

Let d € D. We construct an element {a;)%, € [ [..;Ai: let pri({a;)L;) = af, where ¢ =

pri(d). Then for any j € I that is different from i, let pr3(<a,~>flel) be an random element in
Aj.
Since [ [;.; 2 is full, for some (b))%, € [ [;;Ai» for any d € D, d < [{bi); = {ai)d,|*

In particular, for any d € D, pri(d) < [a¢,b;]*i. Hence for any c € D;, ¢ < [af,b;]™. Hence
2A; is full.
]

Theorem 1.7.3. Let 2 be a full B-valued model. Then 2 is witnessing.

Proof. For simplicity we ignore the parameters. Let ¢(v) be a formula with only v free.
Let [3v¢]® = p € B. We will show that for some a € A, [¢(v)]*[a] = p. If p = 0, then the
statement is trivial. So we assume p > 0.

Let D = {d € B\{0} | for some a? € A,d < [¢(a?)]*}. Let Q be the set of all antichains
made up of elements in D. By Zorn’s lemma, Q has a maximal element. Call it C.

We can show that D is dense below p. Let 0 # p’ < p. Since p = | |,.4[¢(a)]*, for
some a€ A, p' r[¢(a)]* # 0. But p' " [¢(a)]* € Dand p’ 1 [¢(a)]* < p'.
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Hence p <|_|C: suppose not, then pr1 —(|_|C) # 0. Since D is dense below p, for some
deD,d < prn—(]C)<—(|C). Then C U {d} is an antichain in D that properly extends
C. Contradiction.

For every d € C, let a® be some element in A such that d < [¢ (a?)]*.

Since 2 is full, there is some a € A such that for all d € C, d < [a = a/]*.

Since d < [¢(a)]* as well, d < [a = a?]* 1 [¢ (a?)]* < [¢(a)]*. Hence p = [Ivg]* <
| |C < [¢(a)]*. And trivially [¢(a)]* < [Iv¢]™. Hence [¢(a)]* = [Ive]>.

H

We proved that full models are witnessing. But are witnessing models full? The answer,
it turns out, is negative. There exist witnessing models that are not full. Being full is a
condition that is properly stronger than being witnessing. An example of a witnessing but
not full model will be given in the next section.

We began this section by claiming that more features of two-valued models can be
generalized to full Boolean-valued models. In the rest of this section, we will illustrate
this point by two examples. The first example is given by the following theorem, and the

second example will be given in the next subsection.

Theorem 1.7.4. Let .Z be a countable language. Let 2 be a full B-valued model of .Z.
Let 4 : B — 2 be a countably incomplete homomorphism. Then the quotient model 2" is

an @-saturated model of .Z.

Proof. We want to show that 21" is @ -saturated, i.e. for every countable sequence {[a,]; n<w
that consists of elements in A", for every type Z(v) of £ U {c; | i < @}, if Z(v) is consistent
with Th((A", [an]n)n<w)?', then Z(v) is realized in (A", [an]p)n<o-

Let2(v) = {o1(v),02(v),...} of L U{c; | i < @} be consistent with Th((A", [an]1)n<w)-
Let A(v) be a finite subset of X(v). Let ¢(v) the formula that is the conjunction of all
formulas in A(v)

Then v (v) is a sentence consistent with Th((A", [an]n)n<w). As a result, it is in

Th((A",[an)n)n<w). Hence A(v) is realized in (A", [a,]n)n<e.

2IThis is the set of all sentences true in the model (A")*, where (21")* is the model resulting from expand-
ing A" to the language .Z U {c; | i < @} by interpreting each ¢; with [a;],. And we use (A", [a,];)n<w to
denote (2A")*.
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Also & is arbitrary and .£ U {¢; | i < o} is countable. Hence to show what we want to
show, we just need to show the following: Let £(v) be a type of .Z. If every finite subset
of £(v) is realized in 2", then X(v) is realized in 2A".

Assume the antecedent. Let U < B be the subset of B whose characteristic function
is h. Then U is a countably incomplete ultrafilter. Hence there is some D < U such that
[ 1D ¢ U. Hence we can find a countable descending chain in B: 1 = pg = p; = p2 > ...,
such that foralln < w, p,e U, but [ |,_,, pn = 0.

For each n < w, let g, = p, 11 [Iv(o1(v) A ... A 6, (V)]

By Theorem 1.7.3, 2 is witnessing and hence it is in the scope of Theorem 1.3.4.
Hence [Iv(o1(v) A ... A 6,(v))]* € U iff A" = Fv(o1(V) A ... A 6,(v)). But by assump-
tion, {G1(v),...,0,(v)}, a finite subset of X(v), is realized in A*. Hence for every n < o,
[Iv(o1(v) A ..o A G (V)]

Also |—|n<a) qn < |_|n<a)pn =0.

For all n < @, since ppy1 < py and [I(o1(v) A .. A Gt (V)] < [Iv(o1(V) A .o A

e U. Hence forevery n < @, g, € U.

02 (V))]™, gns1 < gn. Hence —gn < —qu1.
Consider {g, M gu+1 | n < w}. This is an antichain: let i < j < ®, (i 1 —qi+1) 11 (gj ™
—qj+1) = (gimqj) N (=qgit1 1 —qj+1) = ¢; 1 —qi+1 = 0.
For any n < @, let a, € A be such that [o{(v) A ... A 6,(V)[*[an] = [Fv(c1(V) A ... A
0,(v))]*. The existence of such an a, is guaranteed by Theorem 1.7.3.
Since 2 is full, there is an a € A such that for all n < @, g, 1 —gp+1 < [a, = a]]gl.
We will show that [a], € A" realizes L(x). Leti<n < . [oi(a)]* = [o1(a)

e A Op(@)]* = [o1(an) A ... A Ou(an)]® M [an = a]* = gu 1 —gni1. Hence [o;(a)]* =

|_|i<n<w(4n r _QnJrl) = (|_|i<n<a> QH) r (|_|i<n<a) _Qn+1) =qimn (|_|j<a) _qJ') =gimn _(|_|j<a> C]j)

Z(]iﬁl:qiEU.
L]

1.7.2 L.os Theorem on Z% Formulas

A well-know corollary of the £.o§ Theorem on two-valued models is that Z% formulas are

preserved under ultraproducts.??> In this subsection, we will show that this corollary can

22See, for example, Chang and Keisler [7, p. 221-222].
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be generalized to full Boolean-valued models, yet not necessarily to witnessing Boolean-

valued models. First we need some definitions.

Definition 1.7.3. Let 2l be a B-valued model of .. For any n € o, we define Xy as
the following set: Xy = {R : A" — B |for any {ay,...,a,),{b1,...,by) € A", R(ay,...,a,) m
(I Mi<i<nlai = bi]™) < R(by,...,by)}. We call the X3’s the second-order domains of 2. For

each n € @, we call X the n-ary second-order domain of 2l.

Definition 1.7.4. Let 2 be a B-valued model of .. 2 is second-order full just in case for
any i € @, if D C B is an antichain and {R? : A" — B | d € D} < X1, then there exists some

Re Xj suchthatforany d € D, d <[y, 4 ean(R(a1,...;an) < RY(ay,....,ay)).
Theorem 1.7.5. Let 2 be a B-valued model of .Z. 2 is second-order full.

Proof. For simplicity we only prove the case where i = 1. The cases where i > 1 are very
similar. Let D B be an antichain and {R?: A — B|d e D} € X} = X.

We define R : A — B as follows: for any ae A,

R(@) = | J(enr(@)

ceD

We first prove that R € X, i.e. for any a,b € A, R(a) r1 [a = b]* < R(b):

R(a)m[a=b]" = (|_|(crR(a)))m [a=b]"

ceD

= | J(er (B (@) r]a = b]%)

ceD

< | |(emR (b))

ceD

— R(b)

The third line holds since R°(a) m [a = b]*) < R°(b), as R° € X.

Next, we prove that for any d € D, d < [],.4(R(a) < R%(a)). Fix some d € D, we
just need to show that for any a € A, d < R(a) <> R%(a). That is, d < —R(a) L R%(a) and
d <R(a) u—R%(a).
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This is equivalent to d MR?(a) < R(a) < —d LR%(a), and by definition R(a) = |_|.p(cm
R(a)).

The first inequality holds trivially, as d € D. For the second inequality, we just need to
show that for any c € D, cr1R(a) < —d L R%(a).

There are two cases. First, if ¢ = d, then R°(a) = R (a), and hence the inequality holds.
Second, if ¢ # d, then since ¢,d € D and D is an antichain, c md = 0, and hence ¢ < —d,
and hence the inequality holds. Either way the inequality holds.

Hence we find a R € X that witnesses the existential claim, and therefore 2( is second-

order full.

O

Let 2 be a B-valued model of .. The next thing we will do is to define the value
of a Z% sentence in 2. We first need some notation. Let P be an n-ary predicate that is
not in .Z. Let R € Xjj. Then we may expand 2l to a model of .# U {P} by interpreting
the new predicate P as R. We use (2, R) to denote the expanded model .2 U {P}, where
[P]R) = R,

A Z% formula over .Z is a formula y of the following form:

W: ElPl?"meq)

where for every 1 <i < m, P; is a new predicate symbol not occurring in ., and ¢ is a

formula in the expanded first-order language .Z U {Py, ..., P,,}.

Let w = 3Py,...,P,0 be a E% formula. For every 1 <i < m, we use n; to denote the
arity of P,. Then given an assignment x : Var — A, we define the value of y in 2l under

assignment x as follows:

3P P X = || | o [ Tel® R[]
RleXy! R2eX,?  RmeXy"
The next thing we will prove is that if 2 is a second-order full model, then for any

Z} formula y = 3P,...,P,¢, any assignment x : Var — A, there is some R; € Xé’[‘,Rz €
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X32, ..., Ry € Xgm such that [y]%[x] = [¢]@Rr--Rn)[x]. To this end we first need a lemma.

Lemma 1.7.5.1. Let 2 be a B-valued model of .Z. Let P, ..., P,, be new predicates that does
not occur in .Z. Let ¢ be a first-order formula of .Z U {P},...,P,}. For every 1 <i<m,
let n; be the arity of P. Let R|,R| € X3! ,Ro,R; € X3, ...,R, R}, € Xj". Then for any

assignment x : Var — A,

[[d)]](QL’Rl""’R’")[x] - ( |_| Pi) < [[d,]](Ql,R’l,..,R;n)[x]

1<is<m

where p; = |_|<a1.,...,un,->eA"i (Ri(ai,...,an,) < Ri(ai,...,an;)).

Proof. By a straightforward induction on the complexity of ¢. The atomic cases are cov-
ered by the definition of Xj.
[

Theorem 1.7.6. Let 2 be a B-valued model of . that is second-order full. Let Py, ..., P, be
new predicates that does not occur in .. Let ¢ be a first-order formula of £ U {Py, ..., P,}.

For every 1 < i < m, let n; be the arity of P,. Then given any assignment x : Var — A, there

is some R; € Xj', Ry € X}, ..., Ry € Xy such that [3Py, ..., Py¢] ¥ [x] = [9] FRrRn) ],

Proof. For simplicity we assume m = 1 and n| = 1. The proof we are about to give can be
easily generalized to the more general cases. Also for simplicity we ignore the parameters
and assume that ¢ is a sentence.

Let Xy = {S:A — B|forany a,be A,S(a) 1 [a =b]* < S(b)} = X. Let [3P¢]* =
| lsex [#]®4S) = p e B. If p = 0, then the statement is trivial. So we assume p > 0.

Let D = {d € B\{0} | for some S € X,d < [¢]*)}. Let Q be the set of all antichains
made up of elements in D. By Zorn’s lemma, Q has a maximal element. Call it C.

We can show that D is dense below p. Let 0 # p’ < p. Since p = | ¢y [0]S), for
some S € X, p' r1[o] ) # 0. But p' m [¢]™S) e D and p/ 1 [¢] ) < p'.

Hence p <|_|C: suppose not, then p 1 —(|_|C) # 0. Since D is dense below p, for some
deD,d < pr—(JC)<—(|C). Then C U {d} is an antichain in D that properly extends
C. Contradiction.

For every d € C, let R? be some element in X such that d < [¢] (AR
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Since 2 is full, there is some R € X such that for all d € C, d <[] ,.4(R(a) <> R%(a)).

By the choice of R, d < [¢] &) [, (R(a) < R%(a)) < [¢] *®), by Lemma 1.7.5.1.
Therefore, [3P¢]* = p <| |C < [[q)]]@l,R).

0

The moral of Theorem 1.7.6 is that every second-order full model is ‘“‘second-order
witnessing", and since every model is second-order full, every model is “second-order wit-
nessing". This feature will be essential when we prove the generalized corollary of £os
Theorem on full models. But to do so we first need to define the notion of a highly witness-
ing model. The plan, then, is to show that Z% formulas are preserved under quotient models

of highly witnessing models, and that highly witnessing models coincide with full models.

Definition 1.7.5. Let 2 be a B-valued model of .Z. 2 is highly witnessing just in case for

any language .’ that expands .Z, for any expansion 2" of 2 to .#”, 2 is witnessing.

Theorem 1.7.7 (Z} formulas are preserved under quotient models). Let 2 be a B-valued
model of .Z that is second-order full and highly witnessing. Let 4 : B — C be a homomor-
phism. Let 2" be the C-valued quotient model. Given x : Var — A" an arbitrary assignment
on A", lety : Var — A be an assignment on 2l such that for any v; € Var, y(v;) € x(v;). Then,

for any Z} formula y,
My ) < [wl™ [

Proof. Let wy = 3P, ..., P,¢, where for every 1 < i < m, the arity of P, is n;. Since 2 is
second-order full, by Theorem 1.7.6, for some Ry € Xp', Ry € Xp%, ..., R € Xy", [Py, ..., B ]* [y]
= [g]®*1--Fn)[y]. Hence h([3Pr, .., Pa]*[¥]) = A([9]*F1-Rm) [y]).

Expand 2 to a model of .Z U {Py,...,P,}, A, by setting [[Pl]]m/ =Ry, [[Pz]]m/ =R, ...,
[[Pm]]g" = R,,. Since 2 is highly witnessing, 2’ is witnessing.

Hence we can apply the Generalized L.os Theorem to 2’ and get 2([¢]% [y]) = [¢] )" [x].
Also, for any 1 < i < m, by definition of a quotient model, since [P]* = R;, [[Pi]](m/)h =
R : (AM)" — C, where for any ([a1], [@2]n, -, [an; ]n) € (AM)", RE([ar]n, [a2]ny -y [an;]n) =
h(Ri(a1,az,...,an,)). It is easy to see that (A')" = (A", R" R:,...,R").

Hence h([3P1,.... Ead]* [y) = A([0]% [Y]) = [6]*)"[x] < [Py, .. Pug] ™ [i]. as ob-

h ny h n
RheXy:. . Rl eXn

viously Rﬁ’ eXx™ ol

A’
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Theorem 1.7.8. Let A be a B-valued model of .Z. 2l is a full model if and only if 2 is
highly witnessing.

Proof. For the left to right direction. Let 2 be a full model. Then any expansion of 2l is a
full model, since fullness is only determined by the domain and the values of the identity
formulas. Since every full model is witnessing, every expansion of 2l is witnessing.

For the right to left direction. We assume that 2l is not full. Then for some antichain
DC B, {ay|de D} S A, every acAis such that for some d € D, d <« [a = ay]*. Pick such
an antichain D € B and {ay | d € D} < A.

For every d € D, let R? : A — B be such that for any b € A, R?(b) = [b = a4]*. It is easy
to see that R? € Xgll.

Let R : A — B be such that for any b € A,
R(b) = | |(cmR(b))
ceD
By the proof of Theorem 1.7.5, for any d € D, d <[ ],c4(R(b) < R4(D)).
Claim 1.7.8.1. R has no witness, i.e. no a € A is such that | |,_4 R(b) = R(a).

Proof of the Claim.

Suppose otherwise and let a be a witness. Then

R(a) = |R®) = ||| |(cnR(®))
beA beAceD
Then for any d € D, d < R(a), sinced =d R (a?) =dn[a? = a?]* =d 1.
Hence ford € D, d < R(a) [ |ye4 (R(b) <> R4 (b)) < R4(a) = [a = a?]*, contradicting
our assumption that 2l is not a full model.

Let P be a new unary predicate not occurring in .. Expand 2l to a model of .Z U {p},

', by setting [P]% = R. Then since R has no witness, 3vP(v) has no witness in 2/, and
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hence 21’ is not witnessing. Hence 2/ is not highly witnessing.

]

Corollary 1.7.8.1. Let 2 be a full B-valued model of .Z. Let h: B — C be a homomor-
phism. Let 2" be the C-valued quotient model. Given x : Var — A" an arbitrary assignment
on A", let y : Var — A be an assignment on 2l such that for any v; € Var, y(v;) € x(v;). Then,

for any X{ formula y, A([¢]*[y]) < W] [x].

Two remarks are in order. First, the theorem on two-valued models that Z% formulas
are preserved under ultraproducts is a special case of Corollary 1.7.8.1. As mentioned in
Section 1.3, given a collection of two-valued models {2; | i € I}, and D < P(I) a ultrafilter,
we just let 2 be the direct product of all the 2l;’s and & be the characteristic function of D.
Then the ultraproduct will be the same as the quotient model 21", and applying the above
corollary gives us the traditional result.

Second, Theorem 1.7.8 provides us another way to show that full models are witnessing.
This is simply because obviously highly witnessing models are witnessing, and since every

full model is highly witnessing, every full model is witnessing.

1.8 True Identity Models

The identity symbol in Boolean-valued models is interpreted in a non-standard way. When
B is a complete Boolean algebra that properly extends 2, our definition of Boolean-valued
models allows that in some B-valued model 2, for some a,b€ A, [a = b]]m = p € B, where p
is neither 15 or Op. This is an interesting feature of Boolean-valued models, which I believe
will give rise to attractive philosophical applications. But that is a topic for another paper.
In this section, we will study a special type of Boolean-valued models: those in which the

identity symbol is interpreted in a standard way.

Definition 1.8.1 (True Identity Model). A B-valued model 2l is a true identity model just
in case [[:]]Ql : A X A — B is the real identity function on A x A, i.e. for any a,b € A, if a and

b are not the same element, then [a = b]* = 0p.

75



Proposition 1.8.1. Let .Z be a first order language whose only non-logical symbols are
constants. Let 2 be a B-valued true identity model of .Z’. Then for any formula ¢ (vy,...,v,) €

Z,any ay,...,a, € A, [[gb]]m[a],...,an] € {0p, 15}.

Theorem 1.8.1. Let {2; | i € I} be a non-empty collection of Boolean-valued models. Sup-

A;| > 1, and for some ay,as € A;, [a; = ax]™ # 1. Then the product

pose for some i € I,

model [ [,.,; 2l is not a true identity model.

iel

Proof. Just pick two elements by, b € | [,.;A; such that the ith component of b; is aj, the

i€l
ith component of b; is ap, and b; and b, have the same element at every other position.
Then [b = by]llier%i is an intermediate value.

O

Theorem 1.8.2. Let 2 be a B-valued true identity model. Let & : B — C be a homomor-
phism. Then the quotient model 21" is a C-valued true identity model. Moreover, 2 and 2"

have the same domain.

Proof. A = A" because for any ay,a; € A, a; =, ay iff h([a; = ap]*) = 1 iff a; = a,, as A
is a true identity model. Also, if [a1]; # [a2]n, then a; # ap, and then [[a ], = [az]h]]mh =
h([a1 = a2]*) = h(0g) = Oc.

]

We’ve argued in Section 1.7 that not all witnessing models are full. The following

results aim to provide an example for this claim.

Theorem 1.8.3. Let 2 be a B-valued true identity model. If B is a proper Boolean extension

of 2, and if |A| > 1, then 2 is not a full model.

Proof. Since B is a proper extension of 2, there is some p € B such that 0 # p # 1. Then
{p,—p} is an antichain. Let a;,a; be any two different elements in A. Then for any a € A,
either p € [a = a1, or —p < [a = ay]*, as 2 is a true identity model.

[

Theorem 1.8.4. Let .Z be an arbitrary first order language. Let B be a complete Boolean
algebra that properly extends 2. Then there is a witnessing B-valued true identity model 2

of ¥, whose domain has more than one element.
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Proof. Pick p € B such that 0 # p # 1. For any n-ary relation P in .Z, for any ay,...,a, € A,
let [P(ay,...,a,)]* = p. Also let [=]* be the identity function on A x A. It is easy to show
that 2 is witnessing.

]

Corollary 1.8.4.1. Let . be an arbitrary first order language. Let B be a complete Boolean
algebra that properly extends 2. Then there is a witnessing B-valued true identity model of

Z that is not full.

In Section 1.4.1 we have proved a collection of results involving theories of first order
languages and Boolean-valued models. In the following we will state a few theorems about
theories and Boolean-valued true identity models. We will state the results without proofs

as they are all very straightforward.

Theorem 1.8.5. Let T be a theory in .Z. T is consistent if and only if for some complete

Boolean Algebra B, T has a B-valued true identity model 2I.

Theorem 1.8.6. Let B be any complete Boolean algebra. A theory T has a B-valued true

identity model just in case every finite subset of 7" has a B-valued true identity model.

Recall that in Section 1.4, we argue that the notion of Boolean-valuation is a natu-
ral generalization of the notion of theory. For the rest of this section we consider ques-
tions involving Boolean-valuations and true identity models. For example, what kind of
Boolean-valuations correspond to true identity models? Does compactness holds on these

Boolean-valuations? etc. Again, we assume that . is a countable language.

Definition 1.8.2. A B-valuation S? respects identity just in case for any countable set of
new constants D, SZ can be extended into a consistent B-valuation S'2 of . U D such that

for any constants ¢,d in £ U D, either {c =d, 1) € §'B or {c = d,0) € S'B.

Theorem 1.8.7. A B-valuation S respects identity if and only if it has a true identity B-

valued model.

Proof. For the right to left direction, we suppose S? has a true identity B-valued model L.

Let D be a countable set of new constants. Expand 2l to a model of . u D arbitrarily:
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for any c € D, let [c]* be a random element in A. Let S’Z be the set of all pairs of the
form (¢, p) where ¢ is a sentence of . U D and p = [¢]*. Then §'B is a consistent B-
valuation that extends S8 such that for any constants ¢,d in £ U D, either (¢ = d, 1) € S’
or{c=d,0ye S5

The proof for the left to right direction is similar that that of Theorem 1.4.8. Let C be
a new countable set of constants. Let .Z/ = % U D. Enumerate all formulas with one free
variable in .£": ¢o(v), d1(v), ...

For any sentence y in .#”, for some p € B, S8 U {(y, p)} is such that it is contained in
some consistent B-valuation of .#” that has either (¢ = d, 1) or {¢ = d,0), for any constants
c,d e &', as S respects identity, and any consistent B-valuation is contained in some

maximal consistent B-valuation.

Now form an increasing chain of B-valuations:
SB_sBcsbc. . csbc.. i<ow

Given S?, first add (3vg;(v), p) to S8, where S8 U {(Gve;(v), p)} is such that it is contained in
some consistent B-valuation of .#” that has either (¢ = d, 1) or (¢ = d,0), for any constants
c,de&'. Then add {¢;(d;), p), where d; is some new constant from C that has not appeared
in S8 U {(3vgi(v), p)}. Such a new constant exists as there are only finitely many constants
from C in S? U {(Gvei(v), p)}.

It is easy to show aht S%_ | = % U {(3v;(v), p),(¢i(d;), p)} is such that it is contained in
some consistent B-valuation of .#” that has either (¢ = d, 1) or (¢ = d,0), for any constants
c,de ?.

Let S =

valuation of .’ that has either (¢ = d, 1) or {¢ = d,0), for any constants c,d € .£’. Extend

ie wSlB . Tt is also easy to show that S is contained in some consistent B-

S’B to such a B-valuation, and then extend the latter to a maximal consistent B-valuation in
&' Callit T5.

We can construct a B-valued model for T2 using C as the domain in the same way as
we do in the proof of Theorem 1.4.8, with the only the following change. For any d; € C,
let [di] = {djeC|[d; =d;]T =1}. Let A= {[d;]|d; € C}. For any constant ¢ of ¢,
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let [c]* = [d;] such that [c = d;]” = 1. And similar changes to the interpretation of other
symbols of .&’.

In the same way as in the proof of Theorem 1.4.8, we can show that 2( is a B-valued
model of T2 that is witnessing. Also, it is very easy to show that 2 is a true identity model.

]

Corollary 1.8.7.1. A B-valuation S? respects identity if and only if it has a witnessing true

identity B-valued model.

Theorem 1.8.8. A B-valuation S? respects identity if and only if every finite sub-valuation

of S respects identity.

Proof. The left to right direction is obvious.

For the right to left direction, suppose that S® does not respect identity. Then for some
countable set of new constants D, for some constants ¢,d € . U D, both S8 U {(c = d, 1)}
and S8 U {{c = d,0)} are inconsistent. By Theorem 1.4.5, for some finite sub-valuation
AB < SB AB U {(c =d,1)}. Similarly, for some finite sub-valuation A’® < S8, A’B  {(c =
d,0)}. But then, AB U A’B | a finite sub-valuation of S, does not respect identity.

]

Corollary 1.8.8.1. A B-valuation S? has a true identity model if and only if every finite

sub-valuation of S? has a true identity model.

1.9 Lowenheim-Skolem Theorems

In previous sections we proved two versions of the downward Lowenheim-Skolem Theo-

rem:

Theorem 1.9.1. Let . be a countable language. If a Boolean-valuation S® of . has a

B-valued model, then it has a countable witnessing B-valued model.

Theorem 1.9.2. Let 2 be a B-valued model of . that is witnessing. Then 2l has a count-

able elementary submodel.
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A natural question is: what about the upward Lowenheim-Skolem Theorem? Can it
also be generalized to a Boolean-valued setting? In this section we investigate this question.
The case of the upward Lowenheim-Skolem is much more complicated than its down-
ward counterpart. Recall that in Section 1.5 we observed that our definition of Boolean-
valued models allow there to be “null" duplicates in a model. And with the existence of null
duplicates it is boringly easy to add more objects to a domain of a model without changing

which sentences are true in the model:

Theorem 1.9.3. Let T be a consistent theory of .. Then for any complete Boolean algebra
B, if T has a B-valued model of size o, it has B-valued models of arbitrary sizes larger than

.

Proof. Just pick some random element of the domain and add as many duplicates of the
element to the domain as desired.

]

Note that the above theorem is much stronger than the normal upward Lowenheim-
Skolem in the two-valued case. It says that any consistent theory can have models that
are arbitrarily large, including, for example, a theory that says there are only two objects.
This is a counter-intuitive result. Surely if a sentence saying that there are only two objects
is true in a model, then we would want there to be only two objects in the domain of the
model.

One might think that the culprit of this counter-intuitive result is the existence of dupli-
cates. What if we require the models to be duplicate resistant (Def 1.5.1)? Will it still be the
case that consistent theories can have arbitrarily large models? The answer, interestingly,

is positive, as the following results show.

Theorem 1.9.4. If T has a duplicate resistant model 2 with |A| > 1, then T has duplicate

resistant models of arbitrary sizes larger than |A].

Proof. We just make use of the direct product construction. Let I be an arbitrarily large

index set. By Theorem 1.5.9, [ [;;2( is a model of T'. O
Also, adding the further requirement that models should be full does not help.
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Corollary 1.9.4.1. If T has a duplicate resistant full model 2 with |[A| > 1, then T has

duplicate resistant full models of arbitrary sizes larger than |A|.
Proof. By Theorem 1.7.1, direct powers inherit fullness. [

The real culprit of this (kind of) result is the fact that the identity symbol is interpreted
in a non-standard way in Boolean-valued models. As a result, there can be, for example,
some Boolean-valued model in which the sentence Fv;3v,Vv3(v3 = vi v v3 = 1;) - that there
are at most two things - is true but the domain of the model consists of way more than two
things. Indeed, the only sentence that has control over the size of the domain of a model is

the sentence saying that there is at most one thing.

Theorem 1.9.5. Let ¢ be the sentence v Vv, (v) = v;). If 2 is a duplicate resistant model

of ¢, then |A| = 1.

Proof. [3vi¥a(vi = v2)]* = |ueal lpeala = b]*. Fix some a € A. Consider [Jy,[a =
b]*. We will show that [, [a = b]* =[], geallc = d]*. The > direction holds trivially.
The < direction holds as for any a,c,d € A, [a = c]* r [a = d]* < [c = d]*.

Hence | J,eq[Tpeala = 1% = Uueal egenle = dI* = geale = dJ* = 1.

Hence for any c,d € A, [c = d]® = 1. Since 2 is duplicate resistant, ¢ and d are the

same element.

]

We have argued that the real reason why we have these counter-intuitive results is that
the identity symbol is interpreted abnormally. Hence, in order to solve the problem, we
should, instead of requiring the models to be duplicate resistant, require the models to
be true identity models, as these are the Boolean-valued models in which identity is stan-
dard. Once we introduce this requirement, then, we can generalize the upward Lowenheim-

Skolem theorem in the most natural way. We assume that .’ is countable.

Theorem 1.9.6. Let ¢ expresses the sentence “there are exactly n things", where n < @.

Let 2 be a true identity model of ¢. Then |A| = n.

Proof. By appealing to Proposition 1.8.1.

81



Theorem 1.9.7. If a B-valuation S? has an infinite B-valued true identity models, then it

has infinite B-valued true identity models of any power a > ®.

Proof. Let cg,B < « be alist of new constant. Consider the B-valuation S’ B—=85BU{{cy=
cg,0) |y < B < a}. By Theorem 1.8.7, SB respects identity. And hence every finite sub-
valuation of S'Z respects identity. By Theorem 1.8.7 again, every finite sub-valuation of S"3
has a B-valued true identity model. By Corollary 1.8.8.1, '8 has a B-valued true identity

model.

]

Theorem 1.9.8. If a B-valuation S? has arbitrarily large finite B-valued true identity mod-

els, then it has an infinite B-valued true identity model.
Proof. The same proof as that of Theorem 1.9.7. [

Corollary 1.9.8.1. Every infinite true identity model has arbitrarily large elementary ex-

tensions.
As a special case of Theorem 1.9.7 and Theorem 1.9.8, we also have:

Theorem 1.9.9. If a theory T has arbitrarily large finite B-valued true identity models, then

it has an infinite B-valued true identity model.

Theorem 1.9.10. If a theory 7 has an infinite B-valued true identity models, then it has

infinite B-valued true identity models of any power o« > .
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Chapter 2

Boolean Mereology

2.1 Introduction

When we look around and inspect the ordinary objects around us, we will find that many
ordinary objects lack a precise mereological boundary, or at least they appear to do so.
Many ordinary objects are such that in certain natural situations, we can find things that are

neither definitely part of it nor definitely not part of it. Here are some typical examples:

Example One Consider Tibbles the cat. Suppose Tibbles has a whisker, call it W, that has
loosened up and is about to fall off. Is W part of Tibbles?

Example Two Consider Mount Kilimanjaro, the tallest mountain in Africa. Suppose there
is tree, call it T, that is located somewhere at the boundary of Kilimanjaro - say, some-

where in between Mweka Camp and Materuni Waterfall. Is T part of Kilimanjaro?

Example Three Consider Tim, an ordinary human being. Suppose there is a cell, call it C,
in Tim’s epidermis that has lost its nucleus and is about to be shed from the surface

of Tim’s skin. Is C part of Tim?

Example Four Consider Theseus the ship. Suppose there is an iron nail, call it N, that is

in the process of being hammered into Theseus by a repairer. Is N part of Theseus?

There are countless other examples of this type, involving ordinary objects of almost all

kinds, including animals, humans, artifacts, geographical areas, plants, buildings, and so
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on. If we describe the cases and ask the common man questions of the form “is W/T/C/N
part of Tibbles/Kilimanjaro/Tim/Theseus?", the answer we would most likely get would be
a hesitant “sort of/more or less/to some extent". These answers, I believe, are natural and
intuitive. They indicate that an all-encompassing theory of the relation of parthood should

have the ability to accommodate indeterminacy.

In this chapter I will present a novel degree-theoretic semantic framework that is able
to handle mereological indeterminacy with ease. The semantic framework I am about to
introduce is called Boolean-valued semantics, whose key feature is that degrees of truth
form a Boolean ordering. I will argue that Boolean-valued semantics is the best degree-
theoretic semantics for the language of mereology. In particular, I will argue that it trumps
the well-known alternative - fuzzy-valued semantics, for three main reasons: (a) it allows
for incomparable degrees of parthood, (b) it enforces classical logic, and (c) it is compatible
with all the axioms of classical mereology. Moreover, I will explore, under the framework
of Boolean semantics, the connection between vagueness in parthood and vagueness in ex-
istence/identity. I will show that, contrary to what many have argued, vagueness in parthood
entails neither vagueness in existence nor vagueness in identity, although being compatible

with both.

What I won’t do in this chapter is to develop a full-fledged philosophical theory of
mereological vagueness that has a decisive answer to every relevant question. The main
goal of this chapter is to construct a superior semantic framework for indeterminacy of
parthood, and I believe that it should never be the job of the semantics to take a stand on
deeper philosophical questions like “What is the nature of mereological indeterminacy?".
An ideal semantic framework should be flexible with regard to which philosophical view-
points one further upholds. In the final section of this chapter, I will illustrate the neutrality
and flexibility of Boolean semantics by sketching out two different philosophical theories
of mereological vagueness, one coming from applying Boolean semantics to the view that
mereological vagueness is linguistic, and the other coming from applying Boolean seman-
tics to the view that mereological vagueness is ontic. Another issue that I won’t discuss
in this chapter is higher-order vagueness. In this chapter, I will adopt (without arguing)

a McGee-style position that the issue of higher-order vagueness lies in the interpretation
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of the meta-language.! And since the the purpose of this chapter is to build a semantics,
that is, an interpretation framework of the object language - the language of mereology,
the issue of higher-order vagueness, on our assumption, lies outside of the scope of our
discussion.

The plan of this chapter goes as follows. I will start in Section 2.2 by arguing that facing
mereological vagueness, a natural, and good place to start is to adopt a degree-theoretic
semantics. In Section 2.3, I will present in detail Boolean semantics, which is a degree-
theoretic semantics whose key feature is that truth degrees form a Boolean structure. I will
explain how Boolean semantics can be applied to cases of mereological indeterminacy. In
Section 2.4, I will argue that Boolean semantics is the better degree-theoretic semantics for
handling mereological indeterminacy, in comparison to the alternative. The goal of Section
2.5 is to investigate a special kind of Boolean models for the language of mereology that are
of particular interest - the atomic Boolean models. Via these models I will also discuss the
connection between mereological vagueness on the one hand and vagueness in existence
and identity on the other hand. Finally, in Section 2.6, we end this chapter with a discussion
on the nature of mereological vagueness. In particular, we show that Boolean mereology
is neutral on the nature of mereological vagueness, and one can construct different theories
of mereological vagueness by combining Boolean semantics with different views on the

nature of mereological vagueness.

2.2 Many Degrees: A Natural Start

The language of mereology, depending on one’s taste, is a first-order or second-order lan-
guage whose only non-logical symbol is the binary relation symbol of parthood, <. The
classical semantics, for either first-order or second-order languages, has as its value range
the two-valued Boolean algebra {0, 1}. The classical semantics, therefore, leaves little if
not no room for mereological indeterminacy, as, for example, W is either part of Tibbles to
degree 0, meaning that it is not part of Tibbles, or it is part of Tibbles to degree 1, meaning

that it is part of Tibbles. In order to accommodate mereological indeterminacy, therefore,

ISee [23] and [25] for arguments for this viewpoint and replies to objects.
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we at least need revision of some kind to the classical semantics 2.

A natural and straightforward move is to enlarge the range of truth degrees. If “yes"
corresponds to degree 1 and “no" corresponds to degree 0, then we might want some in-
termediate degree between 0 and 1 to correspond to the common man’s hesitant “sort of",
when responding to the question “is W part of Tibbles". If we have decided to add more de-
gree of parthood, then, there seems to be no harm but only benefits if we add more than just
one. Consider the case of Tibbles. It is certainly possible that there is a different whisker,
call it W’, that has also loosened up and is about to fall off. But we can imagine that W’
is looser than W, and also has a stronger inclination to fall off. In this case, then, it seems
quite intuitive to say that the extent to which W’ is part of Tibbles is lower than the extent
to which W is part of Tibbles. If we want to transform this “extent talk" to “degrees talk",
we will then want to have multiple intermediate degrees that are comparable to each other,
so that we can assign a lower intermediate degree to “W’ is part of Tibbles" and a higher
one to “W is part of Tibbles".

Let us call a semantic framework ‘“degree-theoretic" if it allows for multiple degrees of
truth in addition to the extreme ones. The semantic framework that I am about to develop,
Boolean semantics, is a degree-theoretic one. There are, I believe, a number of advantages
to use a degree-theoretic semantics on cases of mereological indeterminacy. First, under a
degree-theoretic framework, the changes that need to be made to the classical semantics are
quite unsubstantial and procedural. All we need to do is to replace the classical value range
{0, 1} with a value range of a larger size. The core idea behind the classical semantics story
stays unchanged, including, for example, that constants in the language are interpreted by
objects in the domain, that truth values are assigned to the atomic formulas by an assign-
ment function that comes with the model, that complex formulas have their values calcu-

lated from the values of simpler formulas using certain algebraic operations, and so on°.

2 Although most people think that at least some change to classical semantics is needed for handling
mereological indeterminacy, there are also exceptions. For epistemicists like Williamson [36], sentences like
“W is part of Tibbles" do indeed have a definite truth value, and it is just impossible for us humans to know the
truth values of these sentences. Mereological vagueness is explained, on this view, as a kind of ignorance that
we cannot possibly overcome. Most people find this view highly counter-intuitive. Under this view, there
will have to be basic mereological facts about ordinary objects in the world that are simply epistemically
inaccessible to us, no matter how our cognitive abilities improve. It seems to me to be a heavy philosophical
burden to postulate these unreachable facts about the mereological relations among ordinary objects.

3 Admittedly it is of course theoretically possible for there to be degree-theoretic views of mereological
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What we end up with is a natural generalization of the classical semantics theory, rather
than a radical deviation. Second, a degree-theoretic semantics offers at least some level of
explanation of what mereological indeterminacy is. Under a degree-theoretic framework,
cases of mereological indeterminacy are cases of intermediate parthood degrees, that is,
cases where some object is part of another to an intermediate degree between O and 1.
The phenomenon of indeterminacy is explained in terms of non-extreme truth degrees. Of
course, this does not answer all the questions we care about regarding mereological indeter-
minacy, such as, for example, “What is the nature of mereological indeterminacy?", or “Is
mereological indeterminacy worldly or not?". But it is a decent first step. Last but not least,
as we have already observed, our ordinary intuition about the relation of parthood involves
that it is susceptible to comparison. Among the two loosened up whiskers the looser one is
less a part of Tibbles than the tighter one. Among the two trees at the boundary the further
one is less a part of Kilimanjaro than the closer one. So on and so forth. Such intuitions can
be neatly captured by a degree-theoretic semantics as long as we have multiple comparable

intermediate degrees.

The above discussion is not meant to be a decisive argument against using non-degree-
theoretic semantics for cases mereological indeterminacy. There is a variety of different
non-degree-theoretic semantics, and I do not believe there is a sufficiently strong objection
against them all. Each one has its own problems, and I will postpone the discussion of
some of them to the later sections*. The above discussion is only meant to point out some
general advantages enjoyed by having a degree-theoretic semantics, and that the latter is a
good place to start, if our goal is to develop a semantics for the relation of parthood that

tolerates indeterminacy.

indeterminacy that are not truth functional. But to my knowledge in the current context this is not something
worth of special discussion.

“For example, we will talk about supervaluation semantics and its connection to Boolean semantics in
Section 2.6.
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2.3 What Are Boolean Degrees?

The classical value range {0, 1} is the two-element complete Boolean algebra, and in classi-
cal semantics, logical terms like “and”, “or", etc. are interpreted by the algebraic operations
- meet, join, etc. - on the Boolean algebra. If our plan is to enlarge the classical value range
while keeping the rest of classical semantics unchanged, then the natural suggestion is to
use larger complete Boolean algebras as value range and still interpret logical terms using
Boolean operations. Degrees of truth, then, form a complete Boolean algebra that has more

than two elements.

Definition 2.3.1. A Boolean algebra® is a set B together with binary operations r and L,

unary operation —, and elements O and 1 that satisfies:
1. commutative and associative laws for m and L;
2. distributive laws for m over L and L over r;
3. forany x,yeB,xu(xmy)=x;xm(xuy)=x;xu—x=1;xn—x=0.

In each Boolean algebra we can define an ordering < as follows: for any x,ye B, x <y
just in case x My = x. We can show that this ordering is a partial order: in fact, it gives rise
to a bounded distributive complemented lattice. 1 is the top element with respect to this

ordering, and 0 is the bottom element with respect to this ordering®.

Definition 2.3.2. A complete Boolean algebra B is a Boolean algebra where each subset of

B has a supremum with respect to the ordering <.

In classical semantics, models are {0, 1}-valued. In Boolean semantics, models are B-
valued’, where B can be any complete Boolean algebra. Just as in the classical case, a
Boolean model 2l comes with a pre-given set of objects, A, as its domain. Any constant in

the language is interpreted by an object in the domain. The identity symbol is interpreted

SFor a detailed introduction to Boolean algebras, see [14].

®In fact, an alternative characterization of a Boolean algebra is a bounded distributive complemented
lattice.

"For a more formal definition of a Boolean-valued model, see Def. 2.7.1 in the Appendix.
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by a function from A? to B that satisfies the following conditions: for any a;,a»,a3 € A8,

[[a1 = Cll]]m = 1
la1 = az]* = [az = a1]*

a1 = 012]]2l M ax = a3]]m < [ar = a3]]EZl

An n-ary relation symbol P is interpreted by a function from A" to B that satisfies the

following conditions: for any aj, ...,an, b1, ..., b, € A®,

[P(ar,....an)]* 1 ([ ] [ai = bi*) < [P(b1,....ba)]*
1<i<n
Again, just as in the classical case, the sentential connectives and quantifiers are in-
terpreted by algebraic operations on the Boolean algebra: conjunction by binary meet,
disjunction by binary join, negation by complementation, universal quantifier by inifnite
meet and existential quantifier by infinite join. In particular, given an assignment function

x from the set of all variables to A, and suppose ¢, v are formulas,

[=9]™[x] = ~[9]™[x

[0 A wT*[x] = [01™[x] m [w]™ [«
[0 v wI™*[x] = [01™[x] v [w] ™ x
[3vio]"[x] = [_|19]*[x(vi/a)

acA

[vid]* [x] = [ (0] [x(vi/a)]

acA

]
]
]
]

where x(v;/a) is the assignment function that takes v; to a and agrees with x at everywhere

else.

Now we have shown that Boolean semantics arises from classical semantics simply

8Here and in the following, for any sentence ¢ and any Boolean model 2, [¢]* means the value of ¢ in
2(. We might omit the superscript occasionally when the context is clear.

°In any complete Boolean algebra B, for any D € B, [ D is the infimum of D with respect to the ording
<, whose existence is guaranteed by the definition of a complete Boolean algebra (with an easy derivation).
Similarly, | | D is the supremum of D with respect to <.
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by replacing the two-element complete Boolean algebra of classical truth degrees with a
complete Boolean algebra of any size. After this change, we faithfully follow the classical
procedure, step-by-step. The new value range can be as large as we want, as there can be
arbitrarily large complete Boolean algebras. Therefore, there can be multiple intermediate
degrees in between the top degree 1 and the bottom degree 0. Ordered by <, some of
the intermediate degrees are higher/lower than some others. These Boolean degrees are
perfect for modeling mereological indeterminacy. The whisker W that is firmly attached
to Tibbles is part of Tibbles to degree 1; the whisker W, that has already fallen off from
Tibbles is part of Tibbles to degree 0; the whisker W that has loosened up and is inclined
to fall off is part of Tibbles to degree p, where p is an intermediate degree between 0 and 1
in a complete Boolean algebra that is sufficiently large; the whisker W’ that is just like W
except that it is looser and has a greater inclination to fall off is part of Tibbles to degree g,
where ¢ is some intermediate degree between 0 and 1 that is strictly less than p. Boolean
mereology centers around the simple idea that parthood comes in Boolean degrees. The
basic thought behind the view is that while the classical picture does great in modeling
the parthood relations among abstract mathematical objects like geometrical spheres or
spacial-temporal regions that are perfectly precise, it is inadequate when we wish to further
theorize about the parthood relations among ordinary objects like cats and mountains that
have vague mereological boundaries. To deal with the ordinary objects we need a wider
range of parthood degrees in addition to 0 and 1, and we will argue in the next section that

the wider range should be a larger complete Boolean algebra.

2.4 Why Boolean Degrees?

In the literature on mereological indeterminacy, or the literature on vagueness in general,
the most mainstream, or even perhaps the only currently available version of degree theory,
is the one which changes the classical semantics by replacing the classical value range
with the real interval [0, 1], ordered in the standard way. Let us call a degree-theoretic
semantics of this kind, or just a degree-theoretic semantics under which the degrees of truth

are ordered linearly, a fuzzy semantics. Of course, my definition here of a fuzzy semantics
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is very general, and as it stands a cluster of views that differ from each other in bigger or
smaller details satisfy this definition. But the points that [ am about to make in the rest of

this section should be applicable to them all.

Since any complete Boolean algebra larger than {0, 1} is not a linear order, Boolean
semantics, in the sense that matters, is not a fuzzy semantics. Boolean semantics actu-
ally shares a lot in common with a fuzzy semantics. They both originate from the simple
thought that the classical semantics is inadequate at modeling the mereological status of
ordinary objects because it offers too few options. Therefore, they both plan to change the
classical semantics by enlarging the value range while keeping the rest untouched. The key
difference, of course, is which structure we should replace the classical value range with. It
is interesting to note that the classical value range {0, 1} is the only non-degenerate order-
ing that is both linear and Boolean. So both Boolean semantics and fuzzy semantics agree
in that we should generalize some algebraic property of the classical value range in order
to build larger ranges, but they disagree on which algebraic property we should generalize:
for the fuzzy semantics, it is the property of being linear; for Boolean semantics, it is the

property of being Boolean.

Despite sharing commonalities, Boolean mereology and the fuzzy alternative differ in
substantial ways. In the rest of this section, I will argue that Boolean semantics is the
better degree-theoretic semantic framework when it comes to theorizing about mereological
indeterminacy. The biggest motivation behind the fuzzy views is that our intuition that
parthood among ordinary objects is not an all-or-nothing matter; rather, it seems to come in
different degrees. Common sense confirms that the tighter whisker W is part of Tibbles to a
greater extent than the looser whisker W’, though neither of the two whiskers are definitely
part of Tibbles, as they are both on the verge of falling off. The biggest selling point of
the fuzzy views, I think, is that it is able to capture this intuition. Under a fuzzy view, we
can, for example, say that W is part of Tibbles to degree 0.5 while W’ is part of Tibbles
to degree 0.4; or in general, the tighter a shaky whisker is, the higher the degree we assign
to it being part of Tibbles. But we can do the same thing with a Boolean ordering of truth
degrees. Complete Boolean algebras can be as large as we want, and therefore there can be

as many intermediate parthood degrees as want. As long as the Boolean value range has

91



more than four elements, there will be two intermediate degrees p,q between 0 and 1 such
that g is strictly less than p, so that we can let p be the degree to which W is part of Tibbles
and g be the degree to which W’ is part of Tibbles.

Second, although sometimes we have borderline cases of parthood whose degrees of
parthood seem comparable, sometimes we have borderline cases of parthood whose degrees
of parthood seem incomparable. Consider, for example, the tree T that is boundary of
Mount Kilimanjaro. It is indeterminate whether T is part of Kilimanjaro, meaning that the
degree to which T is part of Kilimanjaro is an intermediate value between O and 1, just as the
degree to which the whisker W is part of Tibbles. But should the former degree be higher
than the latter, or should the latter be higher than the former, or should they be equivalent?
How exactly should we compare the degree to which T is part of Kilimanjaro to the degree
to which W is part of Tibbles? I think it is impossible to answer these questions. Unlike in
the case of W and W’, there is simply no sensible dimension by which we can compare the
degree to which T is part of Kilimanjaro and the degree to which W is part of Tibbles. The
two degrees should be simply incomparable. 1t is absurd to assert that T is more part of
Kilimanjaro than W is part of Tibbles and equally absurd to assert the opposite. But under a
fuzzy semantics we have no choice but to have the two degrees be comparable to each other,
since a linear ordering of degrees is connected, meaning that for any two fuzzy degrees
P,q, either p < g or g < p. This is, I believe, a unfortunate consequence of using a fuzzy
semantics on mereology. And we can avoid it by adopting a Boolean semantics instead.
Any complete Boolean algebra that is larger than {0,1} is not connected, and therefore
there will be elements p, g such that neither p < g nor g < p. Boolean mereology thus has
the resources to refrain from comparing the degree to which T is part of Kilimanjaro and
the degree to which W is part of Tibbles. In short, under Boolean mereology, unlike under
its fuzzy counterpart, we do not have to make incomparable comparisons.

Third, the most commonly held and perhaps the most powerful objection to the fuzzy
views is that they are in tension with classical rules of reasoning.!® Departing from classi-
cal logic, I believe, comes with great costs, for at least two reasons. First, classical rules and

tautologies that are invalid under the fuzzy views - say, for example, the law of excluded

108ee, for exmaple, [20].
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middle - are widely endorsed and employed in almost all other areas in philosophy and in
mathematics. Rejecting classical logic would mean that fuzzy mereology has to be an iso-
lated, lonely bubble in the theory space. Second, the way in which the fuzzy views violate
classical logic brings upon unwelcome consequences. For example, consider the sentence
that W is part of Tibbles. The truth degree of this sentence has to be an intermediate value,
since W is a borderline case. But by the same reasoning, the negation of this sentence -
that W is not part of Tibbles - also has to have an intermediate truth value. And because
the values are ordered linearly, the conjunction of the two sentences - that W is both part of
and not part of Tibbles - has to have an intermediate truth value as well, at least under the
standard form of the fuzzy view. But that sounds wrong: nothing can be both part of and
not part of Tibbles. The conjunction has the form of a contradiction, and a contradiction

should be outright false instead of being somewhere in between truth and falsity.

Boolean mereology, in contrary, avoids all these problems, as it not only is compatible
with but also enforces classical logic. As we will prove in the Appendix, Boolean-valued
models, for first-order languages, for example, are sound and complete with respect to first-
order logic. This means that all the theorems of first-order logic are true to degree 1 in every
Boolean-valued model. Therefore, sentences saying that W is both part of and not part of
Tibbles always have degree 0 in Boolean-valued models. Similarly, sentences saying that
W is either part of Tibbles or not part of Tibbles always have degree 1. With Boolean
truth degrees, we can have a many-degree truth-functional semantics with classical rules of

inferences satisfied.

Last but not least, under Boolean mereology, not only can we have theorems of classical
logic satisfied, we can also have principles of classical mereology satisfied. This point will
be exemplified in the next section where we discuss a special kind of Boolean models for
the language of mereology - the atomic Boolean models. Basically, we can have Boolean-
valued models of mereology where all the principles of classical mereology have value 1.
In contrast, this is something that is incredibly difficult, if not utterly impossible, to achieve,

under the fuzzy approach.

For example, consider the case of Tibbles, of which W is a vague part. Under fuzzy

semantics, the sentence that W is part of Tibbles should be a real number in (0, 1). Let’s say
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that W is part of Tibbles to degree 0.5. Now, clearly Tibbles is distinct from the whole mere-
ological universe (whose existence is guaranteed by classical mereology): lots of things,
the Eiffel Tower, for example, are part of Tibbles to degree 0. A consequence of classical
mereology - the principle of strong complementation'! - says that everything that is dis-
tinct from the universe has a (mereological) complement. Since Tibbles is distinct from
the universe to degree 1, there has to be an object, call it Complement, such that it is the
complement of Tibbles to degree 1. This means that (1) Complement overlaps with Tibbles
to degree 0, and (2) the fusion of Tibbles and Complement is identical to the entire universe
to degree 1. But, then, what should be the degree to which W is part of Complement? In
order for the degree to which Complement overlaps with Tibbles to be 0, the degree to
which W is part of Tibbles and is part of Complement has to be 0, which means that the
degree to which W is part of Complement can only be 0. But then the fusion of Tibbles
and Complement is such that W is part of it to degree 0.5, whereas the universe is such that
W is part of it to degree 1. So the fusion of Tibbles and Complement is not identical to the
entire universe to degree 1. Contradiction.

For similar but slightly more difficult reasons, we can see that even the principle of weak
supplementation'? is going to fail under fuzzy semantics. And it is not hard to see that the
failure of these classical mereological principles under fuzzy semantics is essentially due
to the linear ordering of the truth values. In the case of Tibbles and Complement, in order
for the principle of strong complementation to be true, we need the degree x to which W
is part of Complement to be such that the supremum of x and 0.5 is 1 and the infimum of
x and 0.5 is 0. Nevertheless, when the truth values are linearly ordered, there simply is no
such value. When the truth values form a Boolean ordering, on the other hand, such a value
does exist, as we will see shortly below. In any case, the general point here is simply that
by adopting a fuzzy semantics we will have to sacrifice part of classical mereology, and this
is a sacrifice that cannot be ignored, as classical mereology is well-understood and deeply

intertwined with other areas in contemporary metaphysics. We can avoid this sacrifice by

"Formally, the principle of strong complementation is the following sentence in %y Yvi(—=U(v1) —
Fva(—viovy A VY3 (Fu(vs,{vi,va}) = U(v3))))), where U(v;) := Vva(v2 < vq). For the definition of %,
and other defined notions, see Def. 2.5.1.

12Formally, the principle of weak supplementation is the following sentence in Zy: Vv Vva(v; 5 vy —
Jv3(v3 < va A —vyov3)). For the definition of .4, and other defined notions, see Def. 2.5.1.
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adopting Boolean semantics instead.

2.5 Atomic Boolean Models

The goal of this section is to investigate a special kind of Boolean model for mereology,
which we will call the atomic Boolean models. These models arise from a simple and nat-
ural idea. We start with a pre-given set of mereological atoms S. Then, taking a complete
Boolean algebra B as value range, we let domains of the models consist of functions from
S to B. Intuitively, any function f : § — B corresponds to an object composed of the mere-
ological atoms. For any a € S, f(a) is the degree to which the atom a is part of (the object
represented by) f.

The atomic Boolean models!? are particularly interesting and worth studying for mul-
tiple reasons. First, as mentioned above, atomic Boolean models are intuitively motivated.
If the world is built up from mereological atoms, and if mereological relations comes in
degrees, then the natural picture is that every object in the world is composed of the atoms
to certain degrees. That is, it should be the case that every object in the world can be rep-
resented by a function from the set of all atoms to Boolean degrees, which is exactly what
atomic Boolean models are like. Second, as argued above, Boolean mereology, unlike the
fuzzy views, is easily compatible with axioms of classical mereology. Below we will ex-
emplify this point by showing that a special case of the atomic Boolean models - the SEV'I
models - are models of the system CM, which is equivalent to classical mereology. So with
Boolean semantics we can have a degree-theoretic semantics of mereology with all axioms
of classical mereology satisfied.

Third, in the literature on vague mereology, there has been a fair amount of discussion
on the relationship between vague parthood on the one hand, and vague existence and vague

identity on the other hand.!* Many, for example, have either argued or tacitly assumed that

13The atomic Boolean models, as we will see in a moment, are models of the axiom of Atomicity. This
does not mean, however, that Boolean semantics are stuck with atomic mereology. Note that atomic Boolean
models are a special kind of Boolean-valued models for mereology that naturally arise on the assumption that
the world is atomic. There can certainly be other types of Boolean-valued models for mereology that model,
for example, some kind of gunky mereology. We focus on atomic Boolean models here simply because of
their simplicity and their effectiveness in illustrating our points, as will be listed below.

“Here’s a non-comprehensive list of articles that have touched on these equestions: Evans [11], Weather-
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vague parthood entails vague existence, and therefore proponents of mereological vague-
ness are also stuck with existential vagueness. A study of atomic Boolean models, as
I will show below, will shed light on how, under Boolean semantics, vague parthood is
connected with vague existence and vague identity. In particular, I will show that their con-
nection neither takes the form of entailment nor takes the form of exclusion, as there can
be atomic Boolean models, though being models of vagueness, that disallows vagueness in

existence/identity, and atomic Boolean models that allows vagueness in existence/identity.

Last but not least, I believe that atomic Boolean models are mathematically interesting
to study as well. This is because atomic Boolean models are similar in multiple aspects to
the standard Boolean-valued models of set theory, as presented in, say, Bell [3]. For exam-
ple, the definition of the values of the atomic clauses on parthood in the atomic Boolean
models is similar to the definition of the values of the clauses on subsethood in the Boolean
models for set theory: the former is defined in terms of the degree to which every atom
that is part of the first object is part of the second object, while the latter is defined in terms
of the degree to which every element that is a member of the first set is a member of the
second set. Another example is that when proving the axiom of Fusion holds in atomic
Boolean models, we construct a fusion in the same way as we construct a mixture of a col-
lection of Boolean-valued sets. These commonalities in techniques perhaps hint towards
a deeper connection between Boolean-valued parthood and Boolean-valued membership,

which seems to be worth of further study.

We will divide the rest of this section into two subsections. We will devote the first
subsection to presenting a version of the formal theory of mereology that is tailored specif-
ically to our needs. In the second subsection, we will define properly different kinds of the
atomic Boolean models, use them to explore the relationship between vagueness in part-
hood and vagueness in existence/identity, and discuss which axioms of classical mereology

hold in these different kinds of atomic Boolean models.

son [35], Barnes and Williams [2] have argued that vague parthood entails vague identity; Cook [8], Sainsbury
[30], and some others have argued for the opposite; van Inwagen [34], Lewis [21], Smith [31], Merricks [26]
and many others hold that vague parthood entails vague existence; Morreau [27] and Donnelly [9] hold the
opposite view.
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2.5.1 Classical Mereology

As mentioned above, one of the primary goals of studying atomic Boolean models is to
investigate the relation between vague parthood and vague existence/identity. We will also
investigate how, given the presence of vague parthood, different axioms of classical mere-
ology are connected with the presence/absence of vague existence/identity. But to meet
these needs we will have to deviate from the standard formulation of classical mereology
to some extent, for reasons I will explain in a moment. In particular, the deviation will
come in two parts: (a) we will alter, in minor but important details, the way in which some
non-primitive mereological notions are defined in terms of the notion of parthood, and (b)
we will present and group the axioms of classical mereology in a way that is slightly more

complicated and cumbersome than the standard.

Part (a) of the deviation further consists of two changes. The first, and the most im-
portant change we will make is that we will define an “existence" predicate and restrict
quantification to objects that satisfy this predicate at certain places (for example, when
defining “overlap", “fusion", etc.). The reason why we need this change is because the
standard formulation of classical mereology tacitly assumes that everything in the domain
of quantification fully exists, and therefore leaves no room for vague existence at all. In or-
der to be able to discuss the possibility of vague existence, therefore, we have to define this
“existence" predicate that serves the purpose of measuring the degree to which an object
exists, and have it impact the domain of quantification at places that matter. The second
change we will make is less non-trivial and is mostly just for convenience: we will define
the notion of proper part without using the identity symbol. Later we will see that this
small change allows all the axioms of atomic classical mereology except Anti-Symmetry
to be formulated without the identity symbol. Therefore, it will follow directly from the
formulation of these axioms that the truth/falsity of these axioms in a Boolean model is not
affected by how identity is defined in the model, or in other words, whether we have vague

identity or not.

Now we introduce the language of mereology and the defined notions:
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Definition 2.5.1. The language of mereology, %)y, is the second order language'> whose
signature contains a single binary relation < (parthood). We further define the following

relations in this language:
L. vigvai=viZSvaon—vy <.
2. E(vy) :=3va(—vi < ).
3. viovyi=3I3(E(vz) Av3 S vy Av3 < 1p).
4. At(vy) :=E(vi) AV (E(v2) = —va 5 v1).
5. FU(v1,X1) =Y (X1 (v2) = va S v1) AVv3(v3 v AE(v3) — (X (va) Avzovy)).

Intuitively, vi < v, means that vy is a part of vo. v £ v, means that v; is a proper part
of vo. E(v]) means that v; exists, or that v; is not zero, in the sense that v; is not a part
of everything. v; o v, means that v; and v, overlap. A¢(v|) means that v; is a mereological
atom. FU (v1,X|) means that v, fuses the X;’s.

We now move on to axioms of mereology, which are sentences in .Zy;. We divide these

axioms into four groups, for purposes we will explain in a moment:

Definition 2.5.2. The minimal theory of Classical Mereology (MCM) contains the follow-

ing three axioms:

(Transitivity) YwiVvVvs(vi S va Avy S v — v < 3)
(Supplementation) Yvi¥va(va £ v — Fv3(E(v3) Avs S va A —viov3))
(Fusion) VX] (E|V1X1 (V]) - HVZ(FU(Vz,Xl))

The theory of Classical Mereology without Identity (CM ~) contains MCM and the follow-

ISWhether classical mereology should be formulated as a first-order or second-order theory is not a trivial
issue, and one might have different preferences based on their other theoretical commitments. For example,
a nominalist might want to avoid quantifying over second-order entities. But none of these concerns, I
think, matter to our discussion of mereological indeterminacy. In this chapter I define the theory of classical
mereology as a second-order theory simply because this is the more demanding option, and all the Boolean
constructions we have laid out in this chapter can be easily carried over to the first-order case.
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ing extra axiom:

(NoZero) I (vi £ v2) = —Ivz—(E(v3))

The theory of Classical Mereology (CM) contains CM ™~ and the following extra axiom:

(Anti-Symmetry) WiV (vi S va Avy vy — vy =1p)

The minimal theory of Atomic Classical Mereology (MACM) / the theory of Atomic Classi-
cal Mereology without Identity (ACM ™) / the theory of Atomic Classical Mereology (ACM)
contains MCM/CM~/CM and the following extra axiom:

(Atomicity) VWi (E(vi) — Iva(At(v2) Ava S vy))

We have the minimal theory consisting of Transitivity, Supplementation and Fusion
because these, as we will show in the next subsection, will be the core axioms that will
be satisfied no matter whether we have vague existence, vague identity, or not, as we will
show in the next subsection. The axioms NoZero and Anti-Symmetry are listed separately
because these are the ones that do take a stand on whether there is vague existence/identity
or not: the former disallows vague existence and the latter requires vague identity. An inter-
esting observation is that the minimal theory MCM together with Anti-Symmetry forms a
neutral system that is in between the classical theory of mereology'® and the (second-order)

theory of complete Boolean algebras, in the following sense:

Theorem 2.5.1. CM is equivalent to Tarski’s system, which is the theory closed under the

following two axioms:

(Transitivity) YV (v S vo Avy S v3 —> v S 3)

(UniqueFusionExistence) VX1 (3o X1 (v2) — 3 (FU' (v1,X1))

16By “the classical theory of mereology" I mean the theory that originates from Tarski’s paper [33]. For a
full development of Tarski’s system, see [15].
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where FU'(v1,X1) is a slight variation of FU (v1, X)), and is defined as follows:

FU/(VI,Xl) = VVQ(Xl (VQ) — 1 3 vl) A VV3(V3 <vi— HV4(X1 (V4) A E|V5(V5 <A

vs < va)))-

Theorem 2.5.2. The (second-order) theory of complete Boolean algebras is equivalent to

MCM plus Anti-symmetry plus the following axiom:

(ZeroExistence) Fvi—E(vy)

The proofs of these theorems are in the Appendix.

2.5.2 Atomic Boolean Models

We shall now define the atomic Boolean models. As we mentioned above, the domain
of these models consists of functions from a pre-given set of mereological atoms S to a
complete Boolean algebra B. But which of these functions shall we include in the do-
main exactly? For reasons I will explain in a moment there are at least two collections of
functions from S to B that may reasonably form the domain of a model:

. M={f:S—B]| || fla)=1}.

ass

2. N={f:5—B]||]f(a) >0}

acs
In the Appendix (Lemma 2.7.8.1 and Lemma 2.7.13.1) we will prove that in any atomic
Boolean model, for any f : S — B in the domain, | |, f(a) = [E(f)], the degree to which
f exists. So the set M consists of functions that correspond to objects that exist to degree
1. In our setting, to exist vaguely means to satisfy the existence predicate E to a degree
that is in between 0 and 1. Therefore, atomic Boolean models with domain M has no room
for vague existence at all. They will be used to show that under Boolean mereology, vague
parthood does not entail vague existence, contrary to what many have argued, as there are
Boolean models of vague parthood that are not models of vague existence. On the other
hand, the set N consists of functions that correspond to objects that exist to any positive

degree. Atomic Boolean models with domain N, therefore, have objects in their domains
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that exist vaguely. Under Boolean mereology, mereological vagueness can co-occur with

existential vagueness, although not necessarily.

Definition 2.5.3. Let S be a set (of mereological atoms). Let B be a complete Boolean
algebra. A B-valued SE (“Sharp-Existence") model on S, S8, is a B-valued model for £,

with:

1. The domain M ={f:S—B| | | f(a) =1}.

acs

2. Forany f1,freM, [fi < fz]]Gg =[1fi(a) =>f2(a)17.

acs

A B-valued VE (“Vague-Existence") model on S, S8 is a B-valued model for %), with:

1. The domain N ={f:S— B| | | f(a) > 0}.

ass

2. Forany fi, £, €N, [fi < £]% = [ fila) = fr(a).

acs

In both kinds of models the values of parthood clauses are defined in the same way.
Roughly, the degree to which an object is a part of another is defined as the degree of the
sentence that every atom that is a part of the former is also a part of the latter.

Note that in defining these models we have omitted the definition of the values of iden-
tity clauses. This is because, depending on whether we want vague identity in our models
or not, there are two different ways of defining identity in atomic Boolean models. The
first way, which is given under the label “Vague-Identity", is to define identity in terms of
the degree to which two objects share the same atoms. This is the way that is friendly to
vague identity: it allows objects to be identical to each other to an intermediate degree.
The second way, which is given under the label “Sharp-Identity", is to define identity “in
the sharp way", that is, to define the degree to which two objects are identical as 1 when
the corresponding functions are the same, and as O when the corresponding functions are

different. This is the way, as you may expect, that is hostile to vague identity. Given two

"For any p,q in a Boolean algebra B, p = g = —p Lig.
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functions f1, f>:S — B:

(Vague-Identity) [fi=rl= |—|f1 (a) = fo(a).
acs
(Sharp-Identity) If f1 and f; are not the same, then [f] = f2] = 0.

We can freely combine Vague/Sharp-Identity with SE/VE models and get four different

kinds of models, as listed in the following:

Definition 2.5.4. Let S be a set (of mereological atoms). Let B be a complete Boolean
algebra. The B-valued SEVI (“Sharp-Existence Vague-Identity") model on S, 6§V, is the
B-valued model for %, with:

1. The domainM = {f:S—B| | | f(a) =1}.

aes

2. Forany f1,freM, [fi £ fz]]egv = [1fi(a) = f2(a).

acs

3. Forany fi,f>e M, [fi = ] = [ fi(a) < fr(a).

aes
The B-valued SESI (“Sharp-Existence Sharp-Identity") model on S, 6?5, is the B-valued
model for %), with:

1. The domain M ={f:S—B| | | f(a) =1}.

acs

2. Forany fi,f, € M, [fi < £]5% = [ fi(a) = f(a).

aes

3. For any f1, f» € M, if fi and f, are not the same, then [[f] < fz]]Ggs =0.

The B-valued VEVI (“Vague-Existence Vague-Identity") model on S, 65‘,, is the B-valued
model for £, with:

1. The domain N ={f:S— B| | | f(a) > 0}.

acs

2. Forany fi,f2€N, [fi < £]%W =1 fi(a) = fala).

acs

3. Forany fi, > €N, [fi = ] = [ fi(a) = fo(a).

aes
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The B-valued VESI (“Vague-Existence Sharp-Identity") model on S, 655, is the B-valued
model for %), with:

1. The domain N ={f:S— B| | | f(a) > 0}.

aesS

2. Forany f1,/5€N, [f1 < fz]]GgS = [ fi(a) = f2(a).

aesS

3. For any f1, f> € N, if fi and f, are not the same, then [f] < fz]]Gés =0.

Assuming that B is larger than {0, 1}, all of the four different kinds of models are models
of mereological vagueness, as it is easy to see that in all of the models there are objects that
are part of one another to an intermediate degree. But they deliver different answers on
whether there is vagueness in existence and/or on whether there is vagueness in identity.
Just as in the case of existential vagueness, mereological vagueness can co-occur with
vagueness in identity, but not necessarily.

In the rest of this section we will investigate which axioms of mereology hold in these
four kinds of models. Most results will be simply stated here with the proofs in the Ap-
pendix.

As we have mentioned before, we formulate most axioms of mereology (all except
Anti-Symmetry) without using the identity symbol. And hence whether these axioms hold

or not in these models do not depend upon whether they are VI or SI. In fact,

Theorem 2.5.3. In any SE model, Transitivity, Supplementation, Fusion, Atomicity and

NoZero all have value 1.

Theorem 2.5.4. In any VE model, Transitivity, Supplementation, Fusion and Atomicity all

have value 1, but NoZero has value 0.

So the core theory of atomic classical mereology - and by that [ mean the system MACM
- 1s satisfied by all four kinds of model discussed here. Therefore, all four models can be
legitimately considered models of atomic classical mereology. The difference between
the VE and the SE models, of course, is that the axiom of NoZero does not hold in the
VE models. This is, I believe, a somewhat unfortunate result for the supporters of vague

existence. It means that if we allow objects that exist vaguely, then we will have to have
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the model believe that there is an empty object that is part of everything, even when there is
more than one object. Under the standard conception of classical mereology, such an empty
object is disallowed, because it is normally considered as philosophically unmotivated'8.
Nevertheless, it is not hard to see why there has to be tension between existential vagueness
and the axiom of NoZero, in the current context. Assuming there is more than one object,
then the axiom of NoZero has value 1 just in case every object f in the domain satisfies the
existence predicate to degree 1. So the axiom of NoZero literally leaves no room for objects
that exist to intermediate degrees. Proponents of existential vagueness have to sacrifice the
axiom of NoZero.

Luckily, proponents of existential vagueness could argue that although the axiom of
NoZero, in its current form, cannot be satisfied by models in which objects may exist
vaguely, there is a satisfiable weaker meta-principle that is in the same spirit. The latter is
the principle that there cannot be in the domain any object that is truly empty - that is, any
object that satisfies the existence predicate to degree 0. This has to be a principle in the
meta-language because we simply do not have the expressive resources to state something
of the form “x satisfies F' to degree p" in the object language. As it is easy to see, all
V E models satisfy this meta-principle straightforwardly according to the definition of their
domain N. Proponents of V E models could argue that although the VE models believe that
there is an empty object, there isn’t really an empty object in the domain of these models,
and the latter is all we care about.'”

Moving on to the only axiom left - the axiom of Anti-Symmetry. As the readers might
have expected, the holding or not of Anti-Symmetry in an atomic Boolean model is only
associated with whether identity is defined in the vague way or in the sharp way in the
model. Let us call a model a VI model if it is SEVI or VEVI, and similarly a model a S/
model if it is SESI or VESI. It can be shown that:

Theorem 2.5.5. In any VI model, Anti-Symmetry has value 1.

18 Although most people find the existence of an empty object philosophically unmotivated, there are some
people who have provided ways to justify the existence of an empty object. Giraud [13] has construed it as a
Meinongian object lacking all nuclear properties. Priest [28] has construed it as an Heideggerian nothing.

19This is an example of an intriguing and perhaps weird feature of Boolean-valued models. Some models
could be such that an existential sentence is true in the model without there being a witness.
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Theorem 2.5.6. In any S/ model, Anti-Symmetry has value 0.

The opponents of vagueness in identity, therefore, has to sacrifice part of the standard
package of classical mereology, just as the proponents of existential vagueness. In this case
the sacrifice is the axiom of Anti-Symmetry. It is not hard to see why “Sharp-Identity"
makes trouble for the holding of Anti-Symmetry: since there is mereological vagueness,
there can be objects that are part of each other to an intermediate degree. Since their
corresponding functions has to be different, “Sharp-Identity" insists that they are identical
to degree 0, and hence the degree to which they are part of each other is strictly greater than
the degree to which they are identical, which causes the failure of Anti-Symmetry.

Just as the proponents of existential vagueness, there are, I believe, some ways for the
opponents of vagueness in identity to argue back. They could say that, for example, in the
context of mereology, there should really be two different notions of identity: one is the
notion of mereological coincidence, and the other is the notion of strict/real identity. Two
objects mereologically coincide - that is, are identical in the former sense - just in case they
are indistinguishable in terms of mereological relations. On the other hand, two objects are
strictly identical just in case they are indistinguishable in terms of any kind of properties or
relations, mereological or not. And the key idea is that the equality symbol in the axiom of
Anti-Symmetry should be interpreted as mereological coincidence instead of as strict iden-
tity: if two objects are part of one another, then they should be indistinguishable in terms
of mereological relations, but saying that they should also be indistinguishable in terms of
any relations seems like overkill. In an atomic Boolean model, the degree to which two
objects mereologically coincide should be defined according to “Vague-Identity", that is,
as the degree to which two objects share the same atoms, and the degree to which two ob-
jects are strictly identical should be defined according to “Sharp-Identity", such that it can
only be an extreme value. Since the relation that plays a role in Anti-Symmetry is mere-
ological coincidence, we will have Anti-Symmetry holding in the models, and since strict
identity is still defined traditionally, we also avoid the controversies surrounding vagueness
in identity. "

Below is a chart summarizing which axioms hold in each of the four kinds of atomic

20 A standard argument against vagueness in identity is Evans’ Argument. See [11].
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Boolean model:

MACM | MACM+NoZero | MACM+ Anti-Symmetry | ACM
SEVI 4 4 v v
SESI 4 4 X X
VEVI v X v X
VESI v X X X

Here’s a summary of what we have achieved in this section. First, we have introduced
a special kind of Boolean-valued models for mereology - the atomic Boolean models, and
argued that they are intuitively motivated, given that the world is atomic. Second, we have
used the SEVI models to illustrate our previous point that with Boolean degrees, we can
have a degree-theoretic semantics that is compatible with the whole package of atomic clas-
sical mereology. Finally, we have used the atomic Boolean models to investigate the con-
nection between mereological vagueness on the one hand and vagueness in existence and
identity on the other hand. We have shown that contrary to what many have argued, mere-
ological vagueness entails neither existential vagueness nor vagueness in identity. With
the four different kinds of atomic Boolean models, proponents of mereological vagueness
can freely choose between having and not having vagueness in existence or identity: SEVI
models for sharp existence plus vague identity, SESI models for sharp existence plus sharp
identity, V EVI models for vague existence plus vague identity, and V ESI models for vague
existence plus sharp identity. There are, nevertheless, prices to be paid. Although all four
models are models for the core theory of atomic classical mereology, the axiom of NoZero
does not hold in the “Vague-Existence" models and the axiom of Anti-Symmetry does not

hold in the “Sharp-Identity" models.

2.6 The Nature of Mereological Vagueness

Our investigation of Boolean mereology so far has been fruitful, but not all important ques-
tions about mereological vagueness have been properly addressed. One essential question
is: given that there is mereological vagueness, what is the source, or the nature of it? Is

mereological vagueness a pure linguistic phenomenon, or is the world itself vague? Does
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the picture of Boolean mereology entail that mereological vagueness is semantic or onto-

logical? In this section I intend to discuss these questions.

There are, I believe, two most commonly held answers to the question “What is the
nature of mereological vagueness?". One option, which I will call “the semantic thesis"
in the following, is to say that mereological vagueness has a semantic nature. The phe-
nomenon exists because our linguistic practices are indeterminate, in the sense that they
do not pin down the exact meanings of certain terms, including, perhaps, singular names
like “Tibbles". The linguistic rules that we have governing the name “Tibbles" do not pick
out a unique referent for it. The world in itself, on the other hand, is perfectly precise,
mereologically speaking: there is no indeterminacy in the mereological organization of the
underlying reality. Mereological indeterminacy happens when we try to represent what the
world is like using natural languages: if there were no language, or if natural languages

were perfectly precise, there would be no indeterminacy in the parthood relation.

The other option, which I will call “the ontic thesis", is to say that mereological vague-
ness has an ontic, or worldly, nature. There is indeed indeterminacy in the mereological
organization of reality. Regardless of the terms we use to represent them, ordinary ob-
jects in the world, like for example Tibbles the cat, are themselves vague, in the sense that
their mereological constitution is indeterminate. Mereological vagueness is a feature of the

world itself, not a feature of our languages.

Which one of the two theses should we adopt, as Boolean mereologists? I believe
that Boolean mereology, as the thesis that the relation of parthood should be modeled by
Boolean degrees, is compatible with either thesis. Boolean mereology only says that sen-
tences like “W 1is part of Tibbles" are true to an intermediate Boolean degree; it does not
specify why these sentences are true to an intermediate Boolean degree. I will show below
that the model-theoretic framework of Boolean-valued semantics can be applied to both
theses and give rise to two distinctive views that have their unique advantages and disad-
vantages. [ will call the view we get by combining the semantic thesis and Boolean-valued
semantics “semantic Boolean mereology" and the view we get by combining the ontic the-
sis and Boolean-valued semantics “ontic Boolean mereology", and discuss them in turn in

the following two subsections.
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2.6.1 Semantic Boolean Mereology

The semantic thesis explains mereological indeterminacy in terms of linguistic indetermi-
nacy and denies worldly indeterminacy. The most standard and commonly-held version of
the view locates the indeterminacy in singular names like “Tibbles" or “Kilimanjaro". On
this view, all there is in the world are objects with precise mereological boundaries. Names
like “Tibbles" do not pick out a unique referent among the precise objects. Rather, there
are multiple precise objects, located roughly where Tibbles is, that are equally qualified
candidates for the role of being the referent of “Tibbles".

How does Boolean-valued semantics accommodate this view? To simplify our discus-
sion, let us assume that the world is atomic and nothing exists but (sharp) fusions of atoms.
Let S be the collection of all atoms. Since everything that exists is a (sharp) fusion of
atoms, the domain of our Boolean-valued model has to be the collection M’ of all functions
from S to {0, 1} except the one that takes all atoms to 0, where each function represents a
fusion of atoms by being its characteristic function. As there are only precise objects in the
domain, the identity symbol in the model can simply be interpreted as the sharp identity
function on these objects. Now, since we want “Tibbles" to have no unique referent, “Tib-
bles" cannot be treated as an ordinary constant in the model. Rather, we need it to be the
case that “Tibbles" indeterminately refer to multiple objects in the domain. In the context
of Boolean-valued semantics, indeterminacy means having an intermediate truth value. So
we want “Tibbles" to be interpreted in the model as a function from M’ to B, which maps
each object in the domain to degree to which the name “Tibbles" refers to it. In other words,
we will treat “Tibbles" semantically as if it were a unary predicate. Of course, “Tibbles"
cannot be treated as if it were an arbitrary unary predicate: there are further constraints that
the interpretation of “Tibbles" has to satisfy. In particular, the interpretation of “Tibbles"
has to be such that the sentence 3!v(Tibbles(v)) - there is exactly one Tibbles - has value
1. As aresult, the values attributed to the objects by (the interpretation of) “Tibbles" has to
form a maximal antichain in the Boolean algebra.

Let me spell out the above picture in more details, by constructing a concrete B-valued?!

model for the language consisting of “Tibbles", “W", and “is part of", 9V, tailored to the

2Here we assume B is an arbitrary complete Boolean algebra.
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needs of the standard semantic approach. Again, we assume that the world is atomic and
all that exist are (sharp) fusions of atoms. Also, we assume, just for simplicity, that the
name “W" picks out, instead of a whisker, an atom in the whisker that is about to fall off
from the cat. The domain of the model, M’, consists of all functions from S to {0,1},
except the one that takes all @ € S to 0. That is, M’ = {g: S — B|foranya € S,g(a) =
O or 1, and for some b € S, g(b) # 0}, which is equivalent to Z(S) (the powerset of S) mi-
nus the empty set. The language ¢’ = {r,w, <}, where < is the binary relation of parthood,
w is a constant playing the role of “W", and ¢ is a unary predicate playing the role of “Tib-
bles". Since w is supposed to name an atom, the interpretation of w in 90V will be the
characteristic function of a singleton subset {a} of S. In other worlds, [w]™ = g¢: S — B,
where a € S and g° takes a to 1 and every b 5 a € S to 0. The interpretation of < in 9 will
be the function from M’ x M’ — 2 that corresponds to the subset relationship on 22 (S)\ .
The interpretation of = in 9 will be the “real" identity relation on M’: for any g,g' € M’,
[¢ =¢'] =1if g and g’ are the same and [g = ¢'] = 0 if g and g’ are not the same. Fi-
nally, the interpretation of ¢ in 9V, [[t]]m/, will be a function from M’ to B that satisfies the

following conditions:

1. Forany g # g’ e M', [t(g)]™ m [t(g")]™ =o.

2. U [@l™ =1.
geM’

3. For some g € M such that [t(g)]™ + 0, g(a) = 1, and for some g’ € M such that
[1(€)]™ #0, g(a) = 0.

For every g€ M’, [t(g)]™ is the degree to which r “refers to" g. [¢(g)]™ + 0 means that g
is a possible, or permissible referent of t. The third condition serves many purposes: first,
it guarantees that there are more than one permissible referent of #; second, it means that w
is part of some permissible referent of ¢ yet is not part of some other permissible referent
of ¢; and third, together with the first two conditions, it ensures that no g is the determinate
referent of 7, in the sense that [r(g)]™ = 1. The first two conditions also guarantee that
that [31v(r(v))]™ = 1: it is true in 90V that there is exactly one 7.

What is the degree to which w is part of 7 in 9¥? We want it to be an intermediate

degree between 0 and 1, capturing the fact that it is indeterminate whether w is part of
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t. And the conditions we impose on the interpretation of ¢ in 9 can indeed guarantee
that. But there is a small complication. The sentence w < ¢ contains ¢ syntactically as a
constant, yet our model 9 treats ¢ as a unary predicate. So we need to find some way
to translate this sentence, or any sentence that contains ¢ syntactically as a constant, to
a sentence that contains ¢ syntactically as a unary predicate. The trick we will use here
is to translate any sentence of the form ¢(z), which has ¢ as a constant, to the sentence
i(t(vi)) A Yv(t(v;) — ¢(v;)). Itis easy to check that this translation recipe always
preserves truth values for sentences involving constants. Moving on to the sentence under

concern: (let T’ = {ge M’ | [t(g)]™ +# 0 and g(a) = 0})

[w < ™ = [Bi(e(v) A V(e (v;) = (w S o)™
= [Wv;(t(v;) — (w < v))]™

= [11@1™ = g(a)

=[] -I@1™ == | | ()™
geT’ geT’

The three conditions we impose on the interpretation of ¢ guarantees that 0 < | | [t(g)]™ <
geT’

1. Therefore, 0 < [w < t]]m/ < 1, which is exactly what we want.

Since 9 is a Boolean-valued model, all principles of classical logic will hold in it.
Also, as it is easy to see that I restricted to the language of mereology %) is isomorphic
to the powerset model on S, the whole package of atomic classical mereology, by which I
mean the system ACM, will hold in 0. One feature of 9" worth mentioning is that 9 is
not a “witnessing" model, in the sense there are existential sentences whose truth value is
strictly greater than that of any of its instances. For example, the sentence “something is
Tibbles" will have value 1 in the model without any of its instances having value 1. But this
is exactly what supporters of the semantic thesis would want: although they would agree
that “Tibbles exists" is true, they would not identity any (sharp) object in the domain as
uniquely identical to Tibbles.

Therefore, Boolean-valued semantics, as shown above, provides an elegant model the-
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ory for the semantic thesis. Under semantic Boolean mereology, the actual world that we
live in is just like to the model 9)t we constructed above. All there is are sharp objects, and
the parthood relation that holds between them is also sharp. Mereological indeterminacy is
grounded in the linguistic indeterminacy of terms like “Tibbles", which is further explained
in terms of there being multiple objects in the domain to which the term applies to a degree
larger than O.

The standard model-theoretic framework that accompanies the semantic thesis is su-
pervaluation semantics?>. A supervaluation model consists of a fixed domain of objects
and multiple permissible precisifications. Each precisification can be understood as a two-
valued model with the given domain. A sentence is (super)true if it is true in all precisifi-
cations, (super)false if false in all precisifications, and neither (super)true nor (super)false
if otherwise. On cases like Tibbles, each permissible precisification assigns to “Tibbles" a
different object in the domain as its referent. “W is part of Tibbles", in the intended model,
will be a sentence that is neither (super)true nor (super)false. A supervaluation model is ac-
tually a special case of a Boolean-valued model like 9. Let & be a supervaluation model
for .2 with domain D and precisifications {2; | i € I}, where in each 2l;, [w]® = a € D and
[t]* = a; € D. We can transform & to a & (I)-valued Boolean model 9t® with domain D

as follows:
1. [[w]]im6 = a.
2. For any b € D, [[t(b)]]Eme ={iel | M =1t=">}.
3. Forany b,ce D, [b < c]]fmc5 ={iel|ME=b<].

. . . . S . .
Using the translation recipe we introduced above, [w < t]™ = {iel|2A =w <t} will
be a proper non-empty subset of /, as there are precisifications in which w is part of  and
ones in which w is not part of . That w < ¢, therefore has an intermediate truth value

in 9, which corresponds to the fact that it is neither (super)true nor (super)false in &.

22 As in, for example, [12].

23Sometimes supervaluationism is used on cases where it is indeterminate what the domain of quantifi-
cation is. One example are cases of quantum indeterminacy (see [6] or [22]). On cases of mereological
indeterminacy, nevertheless, it is usually safe to assume that the domain of quantification is determinate.
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Although mathematically speaking, transforming a supervaluation model into a Boolean-
valued model makes no significant difference, from a philosophical perspective such a
transformation brings a number of benefits. Since supervaluation models now become
Boolean-degree-theoretic, they enjoy all the advantages that the Boolean semantics has,
as discussed in the previous sections: being truth-functional, having distinct comparable

borderline statuses, having incomparable borderline statuses etc.

Semantic Boolean mereology is an attractive story and enjoys many theoretical advan-
tages. For example, some people ([10]) have argued that vagueness should be a uniform
phenomenon, in the sense that different types of vagueness should have the same nature:
they are either all semantic or all ontic. Since there are strong arguments for vagueness
in properties (like the property of being bald) being a semantic phenomenon, mereologi-
cal vagueness should be theorized as a semantic phenomenon as well. To me, the biggest
advantage of semantic Boolean mereology is that it naturally comes with a solution to the
notorious problem of the many (see, for example, [24]). As long as we accept classical
mereology, the principle of fusion existence will generate a great number of distinct ob-
jects that heavily overlap with each other, all located at where Tibbles is. There are, then,
two seemingly contradictory intuitions. The first intuition is that there should be only one
referent of “Tibbles", instead of many. The second intuition is that since these objects only
have minute differences - say, only in whether it has an atom on the periphery of Tibbles
like w, no one among them seems to have a better claim to be the referent of “Tibbles"
than others. It is not hard to see how semantic Boolean mereology resolves this apparent
contradiction. Under semantic Boolean mereology, the candidate referents are all such that
it is indeterminate whether they are the referent of “Tibbles", in the sense that “Tibbles"
refer to them to an intermediate degree, and none of these degrees are strictly higher or
lower than any one of the others. This captures the second intuition. Meanwhile, “there is
only one Tibbles" always has value 1 in the intended models, which corresponds to the first
intuition.

Despite its advantages, semantic Boolean mereology also has some problems. An im-
mediate consequence of semantic Boolean mereology is that the majority of names of or-

dinary objects - “Tibbles", “Kilimanjaro", “Marie Curie", “Earth", “Eiffel Tower", etc. - do
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not refer successfully, in the sense that they do not fix a unique referent. This is a bizarre
consequence. It means that our ordinary methods about identifying and naming objects
almost always fail, even under the best possible circumstances. The level of referential
ambiguity displayed in the scenario in which I point to the only furry creature in the room
and say “this is Tibbles", is the same as that displayed in the scenario in which I point to a
corner where there are three men and say “this is John". If the foundation of our theory of
meaning, as many have proposed, is that names designate objects, then that foundation is

based on an impossible idealization.

Also, although semantic Boolean mereology is not completely incompatible with the
existence of ordinary objects, ordinary objects under semantic Boolean mereology, in some
sense, are ontologically shallow. Let us consider Tibbles the cat. Under this theory, the
sentence that “Tibbles exists" is true to degree 1, and in this sense ordinary objects like
Tibbles do exist. But since all there is in the domain of the intended models are objects with
precise mereological boundaries, there is no existing object that is really, or determinately,
identical to Tibbles. In other words, there is no object x in the domain such that “x is
Tibbles" is true to degree 1. So Tibbles, in a certain sense, does not really exist. This
is, I believe, not quite in line with our common-sense conception of Tibbles’ existence:

normally we would think that there exists a cat in the world that truly is Tibbles.

2.6.2 Ontic Boolean Mereology

Unlike the semantic thesis, the ontic thesis holds that there are indeed objects in the world
that are vague in their mereological organization, and names of these objects refer to them
in the standard, determinate way. In the context of Boolean semantics, this is to say that
there are objects in the domain such that they stand in the parthood relation with other
objects to intermediate Boolean degrees; these objects are the (unique) referents of certain
constants. The intended models for ontic Boolean mereology, then, are along the lines
of our atomic Boolean models. Take, for example, the SEVI model GEV for %y. We
may extend (‘5?‘, to a model for .’ by letting w denote some g? € M such that a € S and

g% takes a to 1 and every b # a€ S to 0, and ¢ denote some f € M\M’ such that f(a)
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is some intermediate value between 0 and 1. In other words, w (determinately) denotes
(the characteristic function of) some atom and ¢ (determinately) denotes (the characteristic
function of) a vague object whose value distribution on atoms, especially on w, involves
intermediate values.

There are, then, two core differences between semantic Boolean mereology and ontic
Boolean mereology. The first difference is that the domain of an intended model for se-
mantic Boolean mereology contains only sharp objects, whereas the domain of an intended
model for ontic Boolean mereology contains both sharp objects and vague objects. The
second difference is that simple names like “Tibbles" under ontic Boolean mereology are
interpreted normally as constants and have determinate referents, whereas under semantic
Boolean mereology they are interpreted syntactically as unary predicates and have multiple
indeterminate referents.

It is interesting to note that given a model intended by the semantic Boolean mereol-
ogists, it is possible for us to convert it into a model intended by the ontic Boolean mere-
ologists. For example, consider 9V’ that we construct in the previous subsection. Let
{gi|i€I} = M be the set of all elements in M’ such that [#(g;)]™ + 0, or in other words,
the set of all permissible referents of # in 9. Then, construct a model 9™ for the language
iy of |I] many copies of 2.2
M to £ =ZL"\{t}. Let £* = £~ u{r*}, where t* is

&' as follows. First we construct the direct power [ |
Then let 9t~ be reduct of [ [,
a new constant, which is to play the role of “Tibbles". Then we let 9" be the expansion
of M~ to £* such that [r*]™" = (g;)ies. By the conditions we impose on the permissible

referents of 7 in 9V, it is easy to see that [w=< t*]]Em+ 1s an intermediate value between O
and 1. Also, since 2 satisfies atomic classical mereology, 9™ will also satisfy atomic
classical mereology.

In my opinion, Boolean-valued semantics provides the best model-theoretic framework
for proponents of the ontic thesis. The two alternative semantic frameworks, in compari-
son to Boolean-valued semantics, both have serious problems. The first alternative is the
fuzzy-valued model theory, and in section 2.4 I have already argued at length why it is less

suitable than Boolean model theory, to the task of interpreting mereological indeterminacy.

24See Chapter 1 Def. 1.3.2 for a definition.
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The second alternative is supervaluational model theory. But unlike in the semantic case,
the combination of supervaluation semantics and the ontic thesis (see [1]) yields, in my
opinion, an awkward theory (I call it “ontic supervaluationism"). Under ontic supervalua-
tionism, there are multiple distinct “precisificatons"” of the underlying reality that are used
to explain mereological vagueness. Although the model-theoretic techniques employed in
this view is basically identical to that in the semantic case, from the philosophical perspec-
tive ontic supervaluationism feels much more unnatural and faces more difficult questions,
compared to its semantic counterpart. For example, in the case of semantic supervalu-
ationism, we have a fairly good understanding of what a “precisification” is: it is a total
interpretation function that is consistent with how we use terms like “Tibbles" in languages.
But what is, or can be, a “precisification" of the reality, in the case of ontic supervaluation-
ism? It cannot be language or mind dependent, as it is supposed to capture a feature of the
world, so is it something that exists out there? What is its ontological status? If it is like a
possible world that exists along side our world, why is the vagueness of the objects in our
world grounded in these things? Also, following the ontic thesis, the referent of the name
“Tibbles" needs to be an object that exists in the actual world, but somehow it also has to
be a different object in each of these precisifications - how exactly can we reconcile these
claims? 1 do not see an easy answer for any of these questions, and therefore I think that

supervaluation semantics is not really a viable option for supporters of the ontic thesis.

Just like semantic Boolean mereology, or perhaps any philosophical theory, ontic Boolean
mereology has its advantages and disadvantages. Its biggest advantage is that it overcomes
the two difficulties held by semantic Boolean mereology, as presented in the previous sub-
section. Under ontic Boolean mereology, we are not stuck with a vast scale of referential
failure. Also for ordinary objects like Tibbles, we will have something existing in the do-
main that is determinately Tibbles, so the existence of Tibbles is not ontologically shallow.
The biggest problem plaguing ontic Boolean mereology, on the other hand, is the problem
of the many. Again, if we accept the principle of fusion existence, there will be a number
of distinct vague objects with minute differences, all located where Tibbles is. Now, ontic
semantic mereology claims that there is among them a unique referent for “Tibbles", but

which one of these objects should be the unique referent? Consider, for example, the model
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(‘5153‘,. Every function in M corresponds to an object in the world, and as long as B is large
enough, there can be many functions f in M that (1) has the same value on every other
atom except a € S, and (2) has an intermediate value on a (let a be the referent of w in
va)- The difficult question seems to be: what makes one of them a better candidate for

being the referent of 7 than others?

Note that this is a problem that troubles all supporters of the ontic thesis, not just sup-
porters of ontic Boolean mereology. Ontic fuzzy mereology and ontic supervaluationism
face this problem to roughly the same extent. In my opinion, the simplest and best way
for the ontic Boolean mereologist to respond is to reject the principle of fusion existence
and embrace an ontology that is less well-populated. In a model like 6159‘,, for example,
they could say that not all functions in M correspond to an object existing in the world.
Rather, only one of the many possible profiles of value distribution on the atoms relevant
to Tibbles actually corresponds to an existing (ordinary) object - a cat, in particular, and
that is the unique referent of “Tibbles". The difficult question they would face then, which
I will call the “special condition question”, is “What’s special about this particular value
profile, compared to the others, that makes it a profile of an object?". At this point, there
are two kinds of responses on the table. The first response is to suggest that there is some
kind of naturalness condition satisfied by this value profile, perhaps in terms of contact and
adhesion, that is responsible for its “objecthood" . The second response is to claim that it is
simply a piece of brute fact that this particular value profile corresponds to an object. And
in general, there are just brute facts of the world we live in to the effect that some Boolean

value profiles correspond to actually existing (ordinary) objects whereas others do not.?

Does this mean that ontic Boolean mereologists have to completely forsake classical
mereology? Not necessarily. What they have to deny is that classical mereology - the prin-
ciple of fusion existence, in particular, holds of ordinary objects like cats. But they could
still say that it holds on more fundamental and abstract entities like spatio-temporal regions.

They could hold that, for example, any Boolean profile on spatio-temporal points(atoms)

2 Note that when facing a similar many-valued version of the problem of many, the ontic fuzzy mereolo-
gists also typically tend to choose one of the two possible responses discussed here to the special condition
question. Nicholas Smith, for example, uses the first kind of response in [31]. Peter van Inwagen uses the
second kind of response in [34].
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corresponds to a spacial-temporal region that is part of the ontology, but only one of the
(relevant) special-temporal regions is occupied by a cat-like entity, which is Tibbles the
cat. Of course, what they would have to answer, then, is a slightly different version of the
special condition question, perhaps along the lines of “What’s special about this particular
value profile, compared to the others, that makes it a profile of an ordinary, cat-like ob-
ject?", and they could again adopt one of the two potential responses. The point here is
just that ontic Boolean mereologists do have the freedom to choose between a sparse on-
tology and a sparser ontology, and between completely and partially denying the principle

of fusion existence.

2.7 Appendices

2.7.1 Preliminaries on Boolean Model Theory
Definition 2.7.1. Let .Z be an arbitrary first-order/second-order language. For simplicity,
we assume that .Z has no function symbols/variables, but only relation symbols/variables,
individual constants/variables.”® Let B be a complete Boolean algebra. A B-valued model
2l for the language .’ consists of:

1. A universe A of elements;

2. The B-value of the identity symbol: a function [=]* : A> — B;

3. The B-values of the relation symbols: (let P be a n-ary relation) [P]® : A" — B;

4. The B-values of the constant symbols: (let ¢ be a constant) [c]* € A.

And it needs to satisfy:

260ur theory can be easily generalized to first order languages with function symbols, as functions can
always be treated as relations that satisfy special conditions.
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1. For the B-value of the identity symbol?’: for any a;,a»,a3 € A

a1 = a1 ]* =13 (2.1)
[a1 = a2]* = [az = a1 * (2.2)
[[a1 = az]]m r [[az = ag]]gl < [[a1 = a3]]2l 2.3)

2. For the B-value of relation symbols: let P be an n-ary relation; for any {ay,...,a,),

<b1, ...,bn> EAn,

[P(a,..;a)]* ([ ] [ai =B:]™) < [P(br, ... ba)]* (2.4)

1<i<n

Definition 2.7.2. Let 2 be a B-valued model of .. For any n € @, we define D} as
the following set: D} = {R : A" — B | for any {ay,...,a,),{b1,...,by) € A", R(ay,...,ay) M
(M <i<nlai = b:i]*) < R(b1,...,ba)}. We call the D% ’s the second-order domains of 2. For

each n € o, we call D} the n-ary second-order domain of .
Given a B-valued model 2 for .Z, we define satisfaction in 2l as follows:

Definition 2.7.3. Let Var be the set of all variables. (We will use vy, v;,... to range over
individual variables, and X, X5, ... to range over relation variables.) An assignment s on 2{

is a function with domain Var such that:
1. For any individual variable v;, s(v;) € A.
2. For any relation variable X; of arity n, s(X;) € Dﬁzg.

Given a assignment s on 2, we define the value of an open formula of . in 2l under

assignment x as follows.

1. We first define the value of terms in :

2"Here and in the following, when the context is clear, we use [a; = a;]* to abbreviate [=]*(a;,a;), and
similarly for cases of the relation symbols.

21n the case when . is a first-order language, this line can simply be ignored, for obvious reasons. And
similarly for 2(c), 3(f) and 3(g) below.
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(a) Letv; be an individual variable. Then [v;]*[s] = s(v;).

(b) Let ¢ be an individual constant. Then [c]*[s] = [c]*.
2. We then define the value of atomic formulas in 2(:

(a) Let 1y, be terms (a term is either an individual variable or an individual con-
stant). Then [t; = 6]%[s] = [s(t;) = s(t2)]*, where s(t;) = [t;]*[s] and s(t2) =
[22]*[s]-

(b) Let 11,...,t, be terms. Then [P(t1,...,t,)]*[s] = [P(s(t1),...,s(t,))]*, where
s(t1) = [t1]*[s]s ... $(t0) = []%[5]-

(c) Letty,...,t, be terms. Then [Xi(t1,....t,)[*[s] = [s(X;)(s(t1), ...,s(t,))]¥, where

s(ty) = [0]*[s], - s(ta) = [ta]*[5]-
3. We finally define the value of complex formulas in I:

(a) Let ¢ be a formula. Then [—¢]%[s] = —[¢]>[s].

(b) Let ¢,y be formulas. Then [¢ A y]*[s] = [¢]*[s] m [y]*[s].

(c) Let ¢, y be formulas. Then [¢ v y]*[s] = [¢]*[s] v [w]"[s].

(d) Let ¢ be a formula. Then [Iv;¢]*[s] = g [0]*[s(vi/a)], where s(v;/a) is the
assignment on 2 that takes v; to a and agrees with s everywhere else.

(e) Let ¢ be a formula. Then [Vv;¢]*[s] = [][¢]*[s(vi/a)], where s(v;/a) is the
acA

assignment on 2 that takes v; to a and agrees with s everywhere else.

(f) Let ¢ be a formula. Then [3X;0]*[s] = || [¢]*[s(X;/R)], where n is the arity
ReD’}

of X;, and s(X;/R) is the assignment on 2l that takes X; to R and agrees with s

everywhere else.

(g) Let ¢ be a formula. Then [VX;0]*[s] = [] [¢]*[s(X;/R)], where n is the arity
ReD'}

of X;, and s(X;/R) is the assignment on 2l that takes X; to R and agrees with s

everywhere else.
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The values of the quantified formulas are well-defined as B is complete. We say that ¢

is a first-order formula when ¢ has no second order variables.

Theorem 2.7.1. Let 2 be a B-valued model for .Z. For any formula ¢ (vy,...,v,) in .Z, any

assignments s,s’ on 2,

[9 (1) eessa)) T* P ([ ] Isi) = 5" G0)]™) < [9(5' (1) oo 8" o)™

1<i<n

Proof. By a straightforward induction on the complexity of ¢ (vy,...,v,).

2.7.2 Soundness and Completeness

Definition 2.7.4. Let T be a theory in a language .Z. Let 2 be a B-valued model of .Z. 2

is a model of T just in case for any ¢ € T, [¢]* = 13.

Definition 2.7.5. Let T be a theory and ¢ be a sentence in a language .Z. ¢ is a Boolean-
consequence of 7', in symbols, T =g ¢ just in case for any Boolean valued model 21, if 2

is a model of T, then 2l is a model of ¢.
In the rest of this section we assume that .Z is a first-order language.
Theorem 2.7.2. Let T be a theory and ¢ be a sentence in .Z. If T — ¢, then T =p ¢.

Proof. We can prove this by showing that all the axioms of first order logic have value 1 in
every Boolean valued model, and that the rules of inference always preserve truth.

The proof that all the sentential axioms have value 1 is straightforward. For example,
(let x : Var — A be an assignment), [(¢ A y) — ¢]*[x] = 1 iff [¢p A y]*[x] < [¢]*[x] iff
[0]*[x] 7 [w]*[x] < [¢]*[x]. But the latter is true in every Boolean algebra. The cases of
the other sentential axioms are very similar.

That the identity axioms always have value 1 follows straightforwardly from the clauses

on the identity symbol in Def 2.7.1 and Theorem 2.7.1.
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For the quantifier axioms, let ¢ and y be formulas. For the first axiom, suppose v; is a
variable that is not free in ¢, we want to show that for any assignment x : Var — A, [Vv;(¢ —

v) — (¢ — Yviw)]*[x] = 1. This is the case iff [Vvi(¢ — w)[¥[x] < [¢ — Yviy]*[x]. But

[Wi(¢ — w)[*[x] = [ |6 — w]*[x(vi/a)]

acA

= [ 101 x(vi/a)] o [wI* x(vi/a)]
acA

= [~ [91¥x] s [w] ™ [x(vi/a)]
acA

= —[o1*[x] o[ v x(vifa)]

acA

< [¢ — vviy]* ]

The third equation holds as v; is not free in ¢. For the second quantifier axiom, let y be
obtained from ¢ by freely substituting each free occurrence of v; in ¢ by the term ¢, such
that no variable v; in # will occur bound in y at the place where it is introduced. We want
to show that for any assignment x : Var — A, [Vv;¢ — w]*[x] = 1. This is just in case
[Vvio]*[x] < [w]?[x], which is just in case [],c4[0]*[x(vi/a)] < [w]*[x]. But the latter
is always true, as [W]*[x] = [¢]*[x(vi/d)], where @’ = [¢]¥[x] € A.

Moving on to the rules of inferences. We start with Modus Ponens. Suppose both
[6]*[x] and [¢ — w]*[x] are 1. The latter means that [¢]*[x] < [w]*[x], and since
[01*[x] = L, [w]*[x] =

For Universal Generalization, we suppose for any assignment x, [¢]*[x] = 1. Then it
follows straightforwardly that [Vv;¢]*[x] =[] c4[9]* [x(vi/a)] = 1.

O

Corollary 2.7.2.1. Let ¢ be a theorem of first order logic. Then in any Boolean valued
model 2, [¢]* =1

Theorem 2.7.3. Let T be a theory in .Z. T is consistent if and only if for some complete

Boolean Algebra B, T has a B-valued model 2.

Proof. For the left to right direction, if 7" is consistent, then by the Completeness Theorem
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on two-valued models, 7" has a two-valued model. But a two-valued model is a Boolean
valued model.

For the right to left direction, suppose T is inconsistent. Then for some theorem ¢ of
first order logic, T — —¢. Assume for reductio that 7 has a B-valued model 2, then by
Theorem 2.7.2, [-¢]> = 1. Hence [¢]* = 0, but this contradicts Corollary 2.7.2.1.

O

Corollary 2.7.3.1. Let B be any complete Boolean algebra. A theory 7 has a B-valued

model just in case every finite subset of 7 has a B-valued model.

Theorem 2.7.4. Let T be a theory and ¢ be a sentence in a first order language <. If
T ):B ¢,thenT |- ¢.

Proof. Suppose T =g ¢, then for any two-valued model 2, if 2( is a model of 7', then 2l is

a model of ¢. By the soundness theorem on two-valued models®®, T - ¢. [

Corollary 2.7.4.1. Let T be a theory and ¢ be a sentence in a first order language .Z.
T |=p ¢ if and only if T - ¢.

2.7.3 Equivalence Between Systems

In this section we prove the two promised theorems in Section 2.5 (Theorem 2.5.1 and

Theorem 2.5.2).

Theorem 2.7.5. CM is equivalent to Tarski’s system, which is the theory closed under the

following two axioms:

(Transitivity) ViYWV (v S va Avy S vs —> v S v3)

(UniqueFusionExistence) VX1 (3vi X1 (v1) — 3 (FU' (v, X))

Proof. We first show that CM entails Tarski’s system. (Transitivity) is already in CM. For
(UniqueFusionExistence), let X; be such that 3v;X;(v;). By (Fusion), 3v;(FU (v2,X})).

2See, for example, Chang and Keisler [7, p. 66].
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Let v3 < vy. If E(v3), then we are done. Suppose —E (v3). By (NoZero), Yv4¥vs(vs < vs).
Hence trivially v3 < v3 and v3 < vy.

For the other direction, we can just use the standard argument that these axioms are all
theorems of Tarski’s system. See, for example, [18].

]

Theorem 2.7.6. The (second-order) theory of complete Boolean algebra (CBA) is equiva-

lent to MCM plus Anti-symmetry plus the following axiom:

(ZeroExistence) v —E(v)

Proof. We first show that the latter system entails CBA. In particular, we show that (Re-
flexivity), (SupremumExistence), (Complementation) and (Distribution) are all theorems

of the latter system. We start with (Reflexivity):

(Reflexivity) Yvi(vi < vi)

It is easy to check that for any vy, FU(vi,{va|va < vi}). Suppose vi £ vi. Then by
(Supplementation), some v3 is such that E(v3) Av3 < vy A —vjovs. Since FU (v, {vy | v» <
vi}), Iva(va £ vi Avgovs). But then Jvs(E(vs) Avs < v3 Avs < vg). By (Transitivity),
vs < vi. Hence v ovs. Contradiction.

We next define the notion of “v; is the supremum of the X;’s":

Sup(vi,X1) =Y (X1(v2) = va < vi) A forallvs(Vva(X1(va) = va S v3) — (vi S v3))

The axiom of (SupremumEXxistence) says that every X; has a supremum:

(SupremumExistence) VX1 3vi (Sup(vi,X1))

We now show that (SupremumExistence) is a theorem of the latter system. By, (ZeroEx-
istence), there is some object that is part of anything. By (Anti-Symmetry), this object

is unique. From now on we will name it 0. Suppose —3v»(X;(v2)). Then it is easy to
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see that everything is a upper bound of Xj, and hence 0 is the supremum of X;. Suppose
v, (X1(v2)). By (Fusion), there is a v such that FU (vi,X;). We will show that Sup(vy,X).
Obviously v; is a upper bound of X;. Let v3 be a upper bound of X;. Assume for reductio
that vi X v3. By (Supplementation), some vy is such that E(v4) A v4 < vy A —v40v3. Since
FU(v1,X1), there is some vs such that X;(vs) A vsovs. Hence vs < vs, but then vq o v3,

contradiction.

For the next axiom we first define the dual notion to “supremum" - “infimum":

Inf(vi,X1) = Sup(vi,{v2 | Y'v3(X1(v3) = va < v3)})

(Fusion) guarantees that there is a “maximum" object that fuses all things. By (Anti-
Symmetry), this object is unique. Henceforth we will name it 1. The axiom of (Com-

plementation) says that:

(Complementation) VYv13va (Sup(1,{vi,va}) AInf(0,{vi,v2}))

We show that this is also a theorem of the latter system. Given vy, define —v; as the object
that fuses {v, | =vj ov,}. First we show that Sup(1,{vi,—v;}). Assume for reductio that
Sup(w,{vi,—v1}) and w # 1. Then some u is such that u # w. Hence there is a x such that
E(x) Ax < un—xow. Hence —xov;. But then x < —v; and hence xow. Contradiction.
Next we show that Inf(0,{vi,—v}). Let v, be such that vy < v; and vy < —v|. Assume

for reductio that v, # 0. Then there is some y such that —yov; A yov,. Contradiction.

For the next axiom we need two functional notions:

vi Uy == the unique v such that Sup(v,{vi,v2})

vi mvy == the unique v such that Inf(v,{vi,v2})

The axiom of (Distribution) says that:

(Distribution) YV Yvs(viw (v mivs) = (viuw) m(vi wvs))
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We show that this is again a theorem of the latter system. Let u = v 1 (v mv3) and w =
(viuwy) m(vy uvs). We first show that u < w, thatis, u < vy vy and u < vy LUv3. Assume
for reductio # X v; L. Then there is some x such that E(x) Ax < u A —xo (v Lvy). Since
x < u, either xovy or xo (v, m1v3). Either way we have a contradiction. We next show that
w < u. Assume for reductio otherwise. Then there is some y such that E(y) Ay <w A —you.
Hence y < vi uvy and y < vy Lvs. Suppose vy oy, then woy and we have a contradiction.
Hence —v;oy. Butsince y < vy uv;y. Hence y < vp. Similarly y < v3. Henceu <vomivy S u.
Contradiction.

It is (fairly) common knowledge that CBA is equivalent to (Transitivity), (Anti-Symmetry)
plus the four axioms discussed above. Since the other two are already axioms of the latter
system, we are done with this direction.

We move on to show the other direction: CBA entails the latter system. The only axiom
worth mentioning is (Fusion). Other axioms either are already an axiom of CBA or are a
theorem of CBA by a standard argument (any Boolean complement is a supplement, for
example). For (Fusion), we will show that if Sup(v,X;), then FU(v{,X;). That v; is a
upper bound of X; is obviously the case. We only need to show that Vv (v < vy A E(vp) —
Jv3(X1(v3) Av3ovy)). Suppose the antecedent. Assume for reductio that Vva(X(v4) —
vo mvg = 0). Then by infinite distribution, v mv; = 0. Since E(v2), v» # 0. Hence vy £ v;.

Contradiction.

2.7.4 The SE Models

In this section we prove the following result:

Theorem 2.7.7. In any SE model, Transitivity, Supplementation, Fusion, Atomicity and

NoZero all have value 1.
Theorem 2.7.8 (Transitivity). &5 |= VvV Vv3(vi < va Ava S vz — v < v3).
Proof. Forany fi,f>,f3€M,

([ 1Ai1(@) = fal@) ([ |£0)= £0) <[ |filo) = fHlc

acs beS cesS
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Lemma 2.7.8.1. Forany fe M, [E(f)] = || f(a) = 1°°.

acs
Proof. [E(f)]=[3v2(—f <v2)] = || L] f(a)—g(a). We want to show that | | | | f(a)m
geM aeS geM aeS
—g(a) = || f(a). For any a € S, let g“ be the function from S to B that takes a to 1 and

aes
every b # a to 0. Obviously g € M. Pick some a € S, then it is easy to see for any b # a € S,

fla) < || f(c) 1 —g(c). Hence f(a) < [E(f)]. For the other direction, pick some g € M.
cesS

Obviously | | f(a)m —g(a) < || f(a).

aes ass

Lemma 2.7.8.2. For any f1, f>€ M, [fi0 f2] = || fi(a) m f2(a).

aes
Proof. By definition, [fj o f2] = [Iv3(E(v3) Avs < fi Av3 < f2)]. Since every g € M is
such that [E(g)] = 1, [fi0 f2] = LA]/I[[g <Alnle< l= U Tgla) = (fi(e) n f2(a)).
ge

geM aeS
We will show that this is equal to | | fi(a) m f2(a) = p.

For the < direction: Fix g eailil. Since | |g(a) =1, [gla) = (fi(a) M fa(a)) =
aes aes
|_|S—g(a) L (fi(a) M fala)) < I_Is—g(a) up=0up=p.

For the > direction: Fix a € S. Then it is easy to see that fi(a) = [¢ < f1], and similarly
fa(a) = [¢ < f2]. Hence fi(a) m fi(a) < [fi0 f2].
O

Theorem 2.7.9 (Supplementation). G5 |= Vv Vvy(v2 £ vi — I3(E(v3) Avs S va A —wp0

V3))

Proof. Let fi, f> € M. Since every g € M is such that [E(g)] = 1, we just need to show that
—[L =2 Al Ul 2 ln—lgofi]l. —[f2 = fil= L f2(a) m —fi(a). Fix some a € S.
eM aes

[¢* < fi] = fzg(a). By the previous lemma, —[g% o fi] = —(b|_|Sg“(b) M f1(b)) = —f1(b).
O

Theorem 2.7.10 (Fusion). &% = VX (31X (vi) — I (FU (v2,X1)).

30We omit the superscripts when the context is clear.
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Proof. We will show that for any R € D}, [3viR(v{) — Iv2(FU(v2,R))] = 1. That is, ¢ =
LI R(7) < [3vi(Vv2(R(v2) = va S vi) AVv3(v3 S vi AE(v3) = va(R(va) Av3ova)))] =
teM
LI ((TTR(e) = [e = /T (T (Ih = /1= (L R(s)m[hos])))).
feM geM heM seM

We define fX € M as follows: pick some particulara€ S, let fR(a) = (| | R(g)rg(a)) L

geM
—q. Forany b # ae S, let fR(b) = | | R(g) ng(b).
geM
We first show that R is indeed in M, i.e. | | fR(c) =

cesS

LR =L £2®)uffa)

ces b#aeS
= (|| [|R)ng®)u((] | R )L —q)
b#aeS geM geM
= (||| | R(g) ms(c)) u—q
ceS geM
:(|_|R I_lg =(gnl)u—g=1
geM ces

Now we show that [ R(g) = [¢ < fR] = [1 R(g) = ([ g(c) = f&(c)) = 1. Pick any
geM geM ces

geEM. R(g) = (IZISg(C) = fX(c) = —R(g)u((cl;la g(e)u fR(e)) m(—gla) L fX(a))) =
(CI;IQ—R(g)u—g(C)ufR( ¢)) 1 (=R(g) v —g(a) L f¥(a)). I_I —R(g) L —g(c) L fX(c) =
['1-R(g)u—g(c)u (Ll R(h)mh(c)) = [] —R(g) b —g(c)u ( R(g)rg(c)) = 1. —R(g) v

c#a heM c#a
(R)mh(c))w—g=1.

—g(a)u f*(a) = —R(g) L )u(l_l
We next show that ¢ < [ | [[h<fR]]:>(|_|R() [hos])). Fix any h € M. We want to
h

—

—g(a
(
heM seM
show that ¢ < (| ] 2(c) m—fR(c)) u (| ] L] R(s) ms(d) mh(d)) = p. Now it is easy to see
(

ceS
|_| () =fRe) ol U

that p = p; U po, where p| = s)ms(d)mh(d)) and p; =
d#aseM

R(
(h(a) m—f*(a)) L (LI R(s) ()ﬂh( ))- But pi = (L] h(c) n=f*(e)) u (L] £5(d) m

seM c#a d;éa
h(d)) = Clgla(h(C) n=ffe) u (fR(e) mhe)) = clglah( ¢) = —h(a), as blaLh( )=
On the other hand, let l_Alsz(s) rs(a) = p3. Then py = (h(a) m—fR(a)) u(p3nh(a)) =
(h(a) m—p3mq) u(p3mih(a)) = (h(a) mq) v (h(a) M p3). Hence p = pi uipa = —h(a) L

(h(a) mq) L (h(a) M p3) = g.

deS seM
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To prove Atomicity we need some more lemmas.

Lemma 2.7.10.1. Let f e M. &% =Vv(E(v) > —v < f) just in case {f(a) |a € S} is an

antichain in B.

Proof. Right to left direction. Let f € M be such that {f(a) | a € S} is an antichain. Fix
some random g € M. We will show that [E(g) — —g < f] = 1. That is,

| Je(@) < ([ |e®)m—r®)u (] ele)u—rle))

aesS beS cesS

Fix some random a € S. It is easy to see that

gla)n—f(a) <| |g(b) n—f(b)

beS
gy ([ —fle) <[ |sle)u—r(o)
ceS\{a} ces

Since {f(a) | a € S} is an antichain, f(a) <( [] —f(c)). Hence, g(a)m f(a) <[ ]g(c)u
ceS\{a} ceS
—f(c). Therefore,

g(a) = (g(a) m —f(a)) u(gla) n f(a) < (|_|g(b) n—f (b)) L (] |8(c) u—f(c))

beS ceS

Left to right direction. Let f € M be such that for some a,b € S, f(a) m f(b) > 0. Define

g €M as follows: for any c € S,

flaym=f(b) if c=a;

fle) if otherwise.

g(c) =

It is easy to see that [E(g)] =]E(f)]. And hence g is indeed in M. We will show that
[E(g) —» —g = f] < 1. Thatis,

[ T—s@u (| Js@)n—r@)u( Jsl)u—fle) <1

acs besS cesS
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Observe that [ | —g(a) =0,as ge M. Also | | g(b)m—f(b) =0. And [ ] g(c)u—f(c) =
aes beS ceS
gla)u—fla) = (fl@)n=f(b))u—f(a) = —f(a) u—f(b) < 1,as f(a) m f(b) > 0. Hence
the whole thing is less than 1.
]

Lemma 2.7.10.2. Let f € M. &3 |= At(f) justin case {f(a) | a € S} is a maximal antichain
in B.

Proof. Recall that At(f) = E(f) AYv(E(v) — —v £ f). The result follows from the previ-

ous lemma as for any f e M, [E(f)] = 1.

Theorem 2.7.11 (Atomicity). &% = Vv (E(v1) — Iva(At(v2) Ava < v1)).

Proof. Fix some random f € M. Since [E(f)] = 1, we need to show that [Fv,(Ar(v2) Avy <
f)l =1.LetC ={ae S| f(a) # 0}. Enumerate C by o = |C|: C = {ay,...,ag,... | B < a}.

Define g € M as follows: for any c € S,

-

flag)m ([1)—flay) if c=apeC;

r<B

flc)=0 if c¢C.

Hence [E(g)] = I_Ig( )= I_If( ) =[E(f)] =1. Also, [g < f] = 1. Since {g(a) | a € S} is
an antichain, by LemmaZ 7 10 1, [Vv(E(v) > —v £ g)] = 1. Hence [At(g)] = [E(f)] = 1.

[
Theorem 2.7.12 (NoZero). &8 = 3viTva(vy £ v2) — —3v3—(E(v3))

Proof. This can be proven simply by showing that [-3v3—(E(v3))] = 1, as for any f € M,

[E(H] = 1.

Corollary 2.7.12.1. 6§ is a model of ACM ™.
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2.7.5 The VE Models

In this section we prove the following result:

Theorem 2.7.13. In any VE model, Transitivity, Supplementation, Fusion and Atomicity

all have value 1, but NoZero has value 0.

Transitivity is proven in the same way as before.

Lemma 2.7.13.1. Forany fe N, [E(f)] = | | f(a).

acs

Proof. The same proof as in that of Lemma 2.7.8.1.

Lemma 2.7.13.2. For any f, > €N, [ficf2] = || fi(a) ™ f2(a).

acs

Proof. For this proof and many followings, we need to consider two cases. Case one

is when | | fi(a) m fa(a) = 0. Then for any a € S, fi(a) m fa(a) = 0. Then [fj o 2] =

aesS

|_]|v I_ISg(a) m bI—ISg(b) = (fi(b) n f2(b)) = |_]|V I_Lg(a) m bl_ls—g(b) =0.
geN ae € geN ae €
Case two is when | | fi(a) m fa(a) > 0. Then define f € N such that for any a € S,
acs

fla) = fi(a)m fa(a). Itiseasy to see that [f < fi] = [f < 2] = 1.
[fio] =[WEM AvS finv )= LI [E@)AgZ ing< L2

€SB
Fix some random g € S5, [E(g) Ag S fi /fg < hl= |_|Sg(a) '_‘]FS(g(b) = (fi(b)
f2(b))) < |E|gg(a) n(gla) = (fila)m f2(a))) < Ig_qul(a) nfala)=[EN)] =[E)Af=
finf=fa] Hence | |[E(g)rgS fingS Ll=[Ef)AfSArf2IRLI=[E)]=
gesB
L| fi(a) m fa(a).

acs

]

Theorem 2.7.14 (Supplementation). Ge EYviVva(va £vi — I3(E(v3) Ava < vp A —vpo

v3)).

Proof. Let fi,f, € N. We want to show that [f> £ fi] < [IV(E(W) Av < fa A —fiov)].

[f2 % fil = |_|S—f1 (@) M fa(a).
ac
Again, there are two cases. If [f> £ fi] = 0, then we are done. If [f> X fi] > 0, then
define f € N such that for any a € S, f(a) = —fi(a) m fo(a). We can easily show that
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If < f2] = 1. Also, [E(f)] = |_|S—f1(a) m f2(a), by Lemma 2.7.13.1, and [—fj o f] =
—(] fila) m=(fi(a)m fz(a)))aez 1, by Lemma 2.7.13.2. Hence [v(E(v) < fo A —f10

WIS IEG) A f < fon—fiof] = Ll ~fi(a) i ala) = L £ i)

Theorem 2.7.15 (Fusion). 65 ): VX] (3V1X1 (V]) — E‘Vz(FU(Vz,X] ))

Proof. Let R € D},. Again, there are two cases. Case one: | | | | R(g) mg(a) = 0. Then
aeS geN

for any g€ N,ae S, R(g) m g(a) = 0. This case can be proven easily by unpacking the

definitions. Case two: | | | | R(g) mg(a) > 0. Then define fX e N: forany a€ S, let f(a) =
aeS geN

| ] R(g) mg(a). We will show that [FU(fR,R)] = [Vv2(R(v2) — v2 < &) AVv3(v3 <
geSsB
FRAE(W3) — va(R(v4) Avzowm))] = 1.

[Vv2(R(v2) = v2 < )] = h|—|SBR(h) = (th(a) = fR(a)). Fix some h € N. Then

—R() ([ ] -hl@)u( L R(g)ngla)) =1 —(R(r)nh(a)u LI Rg)ng(a)) =[] —(R(h)

acsS ges aes gGSB acsS

mh(a)) o (R(R) mg(h)) = 1.

[vv3(v3 < fRAE(v3) = 3va(R(va) Avsovs))] = I_SI (le< AN [E@]D = (hI_IS (R(h)m
gesB eS8

[hog])). Fix some g€ N. h|_S|B(R(h) mhog]) = h|_S|BR(h) M |E|§h(a) mg(a) = |E|9h|_5|BR(h) M
h(a)mg(a) = |_|SfR(a) rg(a) = [fRog]. But [fRog] = [Ii(E(vi) avi S fRAviZg)] =
LIE@OI [ < Alnle<e = [E@] g < /]

reSB

]
Lemma 2.7.15.1. Let f € N. &3, = At(f) justin case {f(a) | a € S} is a maximal antichain
in B.

Proof. Using the same proof as in Lemma 2.7.10.1 we can show that for any f e N, 65 =
YW(E(v) — —v £ f) justin case {f(a) | @ € S} is an antichain in B.
Recall that At(f) = E(f) AVV(E(v) — —v £ f). Suppose [A7(f)] = 1. Then {f(a) |ae
S} is an antichain. Also, since |_|Sf(a) =[E(f)] =1, {f(a) | a € S} is a maximal antichain.
ac

Similarly, suppose {f(a) | a € S} is a maximal antichain, then [E(f)] = | | f(a) = 1. Also,
[¥v(E(v) — —v < f)] = 1. Hence [A¢(f)] = 1. <
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Theorem 2.7.16 (Atomicity). &5 = Vvi(E(vi) — Fva(At(v2) Ava < v1)).

Proof. The same proof as in Theorem 2.7.11, using the previous lemma.

Theorem 2.7.17 (NoZero is false.). &5 = —(Iv1Iva(vi £ v2) — —Iv3—(E(13)))

Proof. This can be proven by showing two things. First, [Iv;Iva(v; £ v2)] has value 1.

[Fvidvatvi £wv2)] = || L] fila) m—fa(a). Let fi, f» € N be such that for some a € S,
S1,/2EN aeS

fi(a) =1 and f>(a) = 0. Then fi(a) m—f2(a) = 1. Second, [—3v3—(E(v3))] has value 0.

Define f” € S? to be the constant function that takes every a € S to p, where 0 < p < 1, and

f7P € N to be the constant function that takes every a € S to —p. Then [E(f?)] = p and
[E(f~7)] = —p. Hence [-3v3—(E(v3))] = [E(f?)| n [E(f~7)] = 0.

Corollary 2.7.17.1. 65 1s a model of MACM, but not a model of ACM .

2.7.6 Identity and Anti-Symmetry

Recall that an atomic Boolean model is a VI model if it is SEVI or VEV, and similarly is

aTlmodelifitis SETI or VETI.
Proposition 2.7.1. In any VI model, Anti-Symmetry has value 1.

Proof. Directly follows from Vague-Identity: forany f1, € M/N, [fi=f2] =[] fi(a) =
aes
fla)=[fi < LIn[f2< Al

Proposition 2.7.2. In any 71 model, Anti-Symmetry has value 0.

Proof. Define fi : S — B as follows: for some a € S, fi(a) = p, where 0 < p < 1; for any
b#acs, fi(b) =1. Define f, : S — B as follows: f,(a) = —p and for any b # a € S,
f2(b) = 1. Define f : S — B as follows: for any c € S, f(c) = 1. It is easy to see that
fi,fre MCN.

Itisalsoeasy tosee that [fi < fl=[A < fl=1. And [f X fi] =1=p=p, [f <
f2] =1= —p=—p. Also, since f, f1, f> are different functions, [f; = f] = [f1 = f] =0.
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Hence [fi S fAfSfi—=f=fAl=0np)=0=-p Ad [ S fAfSfa—f=
f2] = (1 m—p)=0=p. Hence [VviVva(vi SvaAnvy Zvi > vi=wn)]<prn—p=0.

]

Corollary 2.7.17.2. In any SEVI model, Transitivity, Supplementation, Fusion, Atomicity,

NoZero and Anti-Symmetry all have value 1.

Corollary 2.7.17.3. In any SETI model, Transitivity, Supplementation, Fusion, Atomicity

and NoZero all have value 1, but Anti-Symmetry has value 0.

Corollary 2.7.17.4. In any VEVI model, Transitivity, Supplementation, Fusion, Atomicity,

and Anti-Symmetry all have value 1, but NoZero has value 0.

Corollary 2.7.17.5. In any VETI model, Transitivity, Supplementation, Fusion and Atom-

icity all have value 1, but NoZero and Anti-Symmetry have value 0.
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Chapter 3

Boolean-Valued Models with Urelements

(with Bokai Yao)

3.1 Introduction

Boolean-valued models have a long history in set theory, to the extent that it is not unfair to
say that Boolean-valued models were birthed within set theory. In 1965, Solovay discov-
ered the idea of using Boolean-valued models to describe forcing, which greatly simplifies
Cohen’s syntactic method of using forcing conditions. Let V be a class model, or a universe
of ZFC, and let B be a complete Boolean algebra in V. Roughly, we are able to construct,
via transfinite recursion, a Boolean-valued universe V2 of ZFC within V , whose elements
are usually called B-names.! In order to show that a sentence ¢ is consistent with ZFC,
we just need to find a B such that [[(l)]]VB # 0. Since V2 is always witnessing, the quotient
model? (V)", where h : B— 2 is a homomorphism that takes M)]]VB to 1, satisfies ZFC and
¢, by Los Theorem. Hence we have found a classical model of ZFC + ¢ and have proven
the relative consistency of @.

The intended model of ZFC is a universe of pure sets. But if the material world is

not a total vacuum, there are objects in the world that are not sets: people, tables, planets,

For details, see [3].
2For the definition of “witnessing” and the quotient model construction, see Def 1.3.5 and Def 1.3.6 in
Chapter 1.
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and so forth. Let us call an object that is not a set a urelement. Just as there can be
sets of sets, it should be case that there can be sets of urelements as well. Just as there
are principles governing the behavior of pure sets - the axioms of ZFC - there should be
principles govering the behavior of sets and urelements - the axioms of a theory of sets and
urelements.

Combining the two trains of thought leaves us with a series of interesting questions:
can we construct a Boolean-valued universe of sets and urelements, in the same way as we
construct a Boolean-valued universe of (pure) sets? Will the construction give us a model
of the background theory of sets and urelements, just as V2 is model of ZFC? Will the
construction give us a witnessing model?

In this chapter we will discuss these questions in turn. We will work in two different
axiomatic systems - ZFCUg and ZFCU - in the first-order language of set theory with
urelements {€, o7}, where </ is a unary predicate for urelements. In both systems it is an
axiom that urelements have no members, and we allow the urelements to form a proper

class. In addition,

Definition 3.1.1. ZCU is the urelement set theory which includes the following axioms:

Extensionality, Foundation, Pairing, Union, Powerset, Infinity, Separation and Choice.

ZFCUpg =ZCU + Replacement.
ZFCU = ZCU + Collection.

ZFCU is known to be strictly stronger than ZFCUg.? For example, there can be models
of ZFCUg where the urelements form a proper class but every set of urelements is finite.
In models as such, the axiom of Collection fails. And many ZFC theorems, such as the
Reflection Principle, are provable in ZFCU but not in ZFCUg. For these reasons, one might
consider ZFCUpg as an inadequate set theory with urelements. However, since ZFCUg
proves transfinite recursion, the basic construction of Boolean-valued models can still be
carried out. It is thus natural to study Boolean-valued models with urelements over this

weaker theory.

3See [37] for a richer hierarchy of axioms in urelement set theory.
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In this chapter we will start by presenting an old, standard construction of a Boolean-
valued universe with urelements over a class model U of ZFCUg, which we call UZ. We
will show that this old construction is legit, in the sense that over the background theory
ZFCUg, U? is a model of ZFCUg, and if Collection holds in U, Collection holds in U?
(Theorem 3.2.6). Nevertheless, the old construction UB comes with a big problem: as we
will show in Section 3.3.1, U® does not satisfy the Mixing Lemma and is not witnessing,
which means that Solovay’s forcing method cannot be applied to it. We will remedy this
problem by presenting a new construction of a Boolean-valued universe with urelements,
which we call UB. Unlike U, UB can be proven to always satisfy the Mixing Lemma
(Theorem 3.3.3), and hence can be shown to be witnessing given that U satisfies Collection.
In fact, we will prove that over ZFCUpg, Collection is equivalent to the claim that UB is
witnessing ,for every complete Boolean algebra B (Theorem 3.4.1). We will also prove that
the old construction U? is an elementary submodel of the new costruction UPB (Theorem

3.3.3.4), and therefore UB is also legit.

We organize this chapter as follows. In Section 3.2, we present the old construction U2,
discuss how it is related to U, and prove that all the axioms of ZFCUp have value 1 in U B
and that given that U satisfies Collection, Collection also has value 1 in U B n section 3.3,
we will first argue that U® is almost never witnessing, which is partially because U® does
not satisfy the Mixing Lemma. Then, we will present the new construction UB, show that
UB always satisfies the Mixing Lemma, and prove that UZ is an elementary submodel of
UB. Finally, in Section 3.4, we will prove the major result that over ZFCUpg, Collection is
equivalent to the claim that UB is witnessing, for every complete Boolean algebra B. We

end this chapter with a few conjectures.

Before we move on to the next section, let us introduce some notations and basic facts
about ZFCUp, that will be useful for this chapter. We use U to denote the universe of every-
thing, V to denote the universe of pure sets, .7 to denote the unary predicate of urelements
as well as the class of all urelements. We let 7,0,7,... stand for B-names in a Boolean-

valued universe with urelements and p, ¢, ... stand for elements of a Boolean algebra.

ZFCUpg, proves that every set x has a transitive closure, denoted by TC(x), which is the

smallest transitive set # such that x < ¢. For every x, the kernel of x, denoted by ker(x), is
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the set of urelements in 7C({x}). For any set A of urelements, we define

Va+1(A) = P(Va(A)) U Va(A);
Vy(A) = Ug<yVa(A), where 7 is a limit ordinal;

V(A) = Uagcora Va(A).

Namely, V(A) is the accumulative hierarchy built from A. For every x, ker(x) < A iff
x € V(A). The universe of ZFCUp is non-rigid: for any definable permutation i of <7, i can
be extended to an automorphism of the universe by letting i(x) = {i(y) : y € x} for every x.

And i(x) = x whenever i point-wise fixes ker(x) (i.e., for all a € ker(x),i(a) = a).

3.2 The Model U?

3.2.1 The Old Construction

In this section, we review the standard way of constructing a Boolean-Valued model with
urelements with the background theory ZFCUg,* which is the most straightforward gener-
alization of the construction of V2 with the background theory ZFC (See [3]). We call this

model UB.

Definition 3.2.1. Let T U. 7 is a B-name iff 7 is a urelement, or 7 is a function from a set

of B-names to B.
Definition 3.2.2. The B-valued model U2 is defined as follows:
1. The domain of U? is the class of B-names.

2. Let 7,0 be B-names, we first define:

[rcol= [] =m)=Ineol

nedom(t)

4For example, such a construction is used and discussed in [4].
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‘We then define:

,

1 ifr,ces andt=0

[t=0]=10 ifte/oroced/, and T # 0

[tco]jnfocrt] ifr,o¢o

\

‘We next define:

[recl= || In=tlna(m)

nedom(o)
We finally define:
1 ifrteds
[« (7)] =
0 ifr¢.of

We next state without proving some basic facts about UZ. The proofs of these facts
are minimally different from the proofs of the similar facts about V5, the Boolean-valued

universe with pure sets only (see, for example, [3]).

Theorem 3.2.1 (Induction Principle for U?). For any formula ¢ (x),
v1e UP(¥n € dom()p(n) — ¢(7)) — ¥z e U%(9(1))

Proposition 3.2.1. For any 7,0, 7 in U5,
(i [r=1] =1
(ii) 7(n) < [n € ], for any 1 € dom(7).
(iii) [z = o] = [o = 1].
(iv) [t=0]n]o=n] <[r=n].
) [r=0c]r[ren] < [oex].
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(vi) [t=0o]rn[rer] <[rea].
(vii) [t =o]n[«(7)] <[« (0)]

Corollary 3.2.1.1. U? is a Boolean-valued model®. Hence all the axioms of the first-order

predicate calculus have value 1 in U B and all of its rules of inferences are valid in U5.

Proposition 3.2.2. For any formula ¢ (x) and any 7 in U®,

L [Bxete)]= L (z(m)mlemD).

nedom(t)

2. [vxez(o)l = [T (z(n)=T[om)]).

nedom(t)

322 UandU?

In this section we show that the universe U in a certain sense “sits inside" U®. In particular,
we will find a representative for each element x € U in UB, and we will show that the
representatives preserve the values of restricted formulas. Also, we show that U is in a
certain sense isomorphic to U 2 which can be viewed as a submodel of U2, for any (non-

trivial) complete Boolean algebra B.

Definition 3.2.3. For each x € U, we define:

{(x, 1)} ifxe o

{0 yext ifx¢d

=<
I

Proposition 3.2.3. (i) Forany xe U, te U®, [teX] = | | [t =]

(i) For any x,ye U,

xeyoUBExey

x=yoUlki=y

(ii1)) The map x — X is one-one from U to U B,

3In the sense of Def 1.2.8 in Chapter 1.
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(iv) For any formula ¢ (vy,...,v,), any xi,...x, € U,

O(x1, .0, Xn) < U = O(, .., 0)

And if ¢ is restricted then

O(x1,esXn) < UB = 9(x1, ..., %)

Proof. The proofs of these statements are all the same as the proofs of the similar state-

ments on V5, with minor adjustments. For proofs of the similar statements on V&, see

(.

Corollary 3.2.1.2. For any X formula ¢ (vy,...,vy,), any xy,...x, € U,
¢(x17"°;xn) —U¥ ): ¢<)€/1, ...,){n>

3.2.3 The Easy Axioms

In this subsection and the next, we will show that all the axioms of ZFCUy have value
1 in UB, given that U }= ZFCUg. The tricky axiom is Replacement, which will be the
topic of the next subsection. The proof that all the other axioms of ZFCUy (all except
Replacement) are true in U is standard: again, similar to the proof that these axioms have
value 1 in V2 (see for example [16]). We show as examples that the Axiom of Separation

and the Powerset Axiom have value 1 in U5,
Theorem 3.2.2 (Separation). Let ¢ (v) be a formula. UB | Vx3yVz(zey <> zex A 9(2)).

Proof. Let T be a B-name. Define ¢ € UB such that dom(c) = dom(t), and for any 1 €

dom(oc),c(n) =1(n)n[¢(n)]. Using 3.2.2, it is easy to check that

[Vz(zeo - zetrd(2))] =1
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Theorem 3.2.3 (Powerset). UB = VYxIyVz(zey <z S x A =4 (7).

Proof. Let T be a B-name. Define ¢ € U? such that dom(c) = B4"(%), and for any u €
dom(c), o(u) = [u < t]. Obviously [—.<7(u)] = 1, for any u € dom(o).

We will show that UZ “thinks" o is the powerset of 7, in the sense that
Ul EVilzeo -z A~ (2))

The left to right direction holds by the definition of o and 3.2.2. We are left to show that

for any € %5,
[rctAn—d(n)] <[reo] (3.1)

For any 7 € UB, we define 7* as follows: dom(n*) = dom(t), and for any 1 € dom(x*),

n*(n) = [n € n]. Hence * € dom(c). We will show first that
[rctA—d(n)] <[r=n"] (3.2)

If 7 is such that [.<7(7)] = 1, then the inequality trivially holds. Suppose [« ()] = 0. We
just need to show that [r < 7] < [ = n*].
It is easy to see that by the definition of 7*, [#* € ] = 1. Forany pe U5, [pet A

p € 7] = nedom(z) T(M) M [ = plnlp € 7] < pcaomiz+) [N = pIn]n € x] = [p € 7*].
Hence [rc 1] < [rcn*] =[x a*] m[n* < ] = [ = n*]. We next show that

*

[rct]<[n*eo] (3.3)

This is because [7 < 7] = [Vx(xe 7 > xe 7)] =[], cysln € 7] =][n € 7] <[ | caomz+) T (1) =
[ner] =[vxen*(xer)] =[rn*<1] =0c(n*) <[rn*eoc]. Finally, (3.1) follows from
combining (3.2) and (3.3).

O

As mentioned in Section 3.1, the Axiom of Collection is not a theorem of ZFCUp.

Therefore, it would be irrational to expect that the axiom of collection always has value
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1 in UB, when U is merely a model of ZFCUgr. What we do have, nevertheless, is that

Collection has value 1 in U given that U satisfies Collection.
Theorem 3.2.4 (Collection). If U = Collection, then U? |= Collection.

Proof. Tt suffices to show® that for every 7 € U®, there is a p € U® such that

[Vxe tay¢(x,y)] < [Vxe tdy e po(x,y)].

Now fix T € UB. For any ¢ € dom(t), let Xo = {pe B|In e UB(p = [¢(5,n)])}. By
Collection and Separation in U, it follows that there is a Y5 < U® such that Vp e Xs3m €
Yo(p = [¢(0,7)]). Then [Fy¢(0,x)] = | |zey, [¢(0,7)]. This shows that for every o €
dom(7), there is a Y5 < UB such that [Fy¢ (o, x)] = |lzey, [¢ (o, 7)]. By Collection again,
we can collect those Yy into a set Y. Now let p be ((| JY) nU®) x {1}. For any & € dom(7),
[By¢(0.,x)] = e yr[¢ (0, 7)] = [3y € p ¢(x,y)]. Thus, p is as desired.

]

3.2.4 The Axiom of Replacement

The case with the Axiom of Replacement, unlike the other axioms, is much trickier. This
is because the standard proof of the fact that Replacement has value 1 in V5 makes use
of Collection in the background theory, which is ZFC. Nevertheless, since our background
theory is ZFCUp, instead, and as we have mentioned, Collection is not a theorem of ZFCUg,
the standard proof cannot be adjusted into a proof of the fact that the Replacement has value
1 in UB. We have to use some entirely different techniques.

In this subsection, we prove that it is indeed the case that with the background theory
ZFCUp, Replacement has value 1 in UZ. The key method we use here is what we call “pu-
rification". Given a set of urelements A and a B-name 7, we can construct the A-purification
of T, 1%, which is also a B-name. Intuitively, 1% is what we get by “purifying off" the urele-
ments in 7 that are not in A. Through a long series of lemmas, we manage to prove that as

A
long as A is big enough, the degree to which 7 = 7 is always greater than or equal to the

“For simplicity we ignore the parameters here. Our proofs can be easily transformed to include parame-
ters. Similarly for Theorem 3.2.5 and Theorem 3.4.1.
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degree to which 7 is the unique thing that ¢’s with o, for any ¢ in the domain of a fixed 7.

With that, we can then easily show that Replacement has value 1 in U5,

Definition 3.2.4 (Purification). Let A be a set of urelements. For any urelement a € <7, we

A A .
define a as a. Let T be a B-name. We define T € U” recursively as follows:

a’om({{v) = {?] | n edom(t)NA}

A
Letue dom(é’). We define X, = {n e dom(t) | n = u}, and

neXy

Definition 3.2.5. Let a,b be two urelements. We define ij) : U — U as the automorphism

generated by the permutation of .27 which only swaps a and b.

Proposition 3.2.4. Let u be a B-name. Let ¢ be a urelement such that ¢ ¢ ker(pt). Then
for any urelement b, i%(u) is a B-name. Also, dom(i’(u)) = {i%(n) | n € dom(u)}, and for

any i2(n) € dom(ig(n)), 2(u)(i2(n)) = p(n).

Lemma 3.2.4.1. Let ¢ be a urelement. Let 17, 4 be B-names such that ¢ ¢ ker(n) U ker(u).

Then, for any urelement b,

[n=i(uw)] < [n=u]

Proof. We use the induction principle on p. Since ¢ ¢ ker(n) u ker(u), for any v €
dom(u),y € dom(n), c ¢ ker(v) U ker(y). By inductive hypothesis, then, for any v €
dom(p),y € dom(n), any urelement b,

[r=2W<[y=v]

We first show that [ < i2(u)] < [ < u]. That is,

[ nw=TIre2wl< []| ny=Ilreul
(n) (n)

Yedom Yedom
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It suffices to show that for any y e dom(n), [ye i®(u)] < [ye u]. By 3.2.4, [ye i’(un)] =
Lvedomm [y = i2(v)] mu(v). Hence [ye i®(u)] < [y € u] by inductive hypothesis.

By similar reasoning we also have [i2(u) < n] < [u < n].

Lemma 3.2.4.2. Let A be a set of urelements, T be a B-name. Then,

[tcd= [] =m=Ine1l

nedom(t)

Similarly, for any urelement ¢ ¢ ker(7), and any urelement b,

[e(nyccd= [] ) =T[mer]

nedom(7)

Proof. We need to show that

[ *w=lued= [ m=Meel

uedom(?‘) nedom(t)

A A
Recall that for each u € dom(7), we let X;, = {n € dom(t) | n = u}. Hence the above

A
equation holds because for any u € dom®(7),

)= [ue =[] o) = [uer]

nexy

~ [ ) =[me1

nexy

The second statement holds for similar reasons.

Lemma 3.2.4.3. Let A be a set of urelements, T be a B-name. Then, for any B-name o,

[oet]= || =mnlo=n]

nedom(t)
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Similarly, for any urelement ¢ ¢ ker(7), any urelement b,

[ce(t)]= || tm)nlo=im)]

nedom(t)
Proof. We need to show that

|| Twrlo=pl= || tm)nlo=nl

uedan(é) nedom(t)

A A A
It holds because for any u € dom(t), t(u) o =pu] = || ©(n)n[o =n]. The second
neXy
statement holds for similar reasons.

Lemma 3.2.4.4. Let A be a set of urelements, 7 be a B-name. Let C; = ker(7)\A. Let ¢ be

a urelement such that ¢ ¢ ker(7) U A. Then,

= 2@l <t -

beCr

Q>
=

Proof. We use the induction principle on 7. Since ¢ ¢ ker(t) U A, for any n € dom(7),

¢ ¢ ker(n) UA. Assume as inductive hypothesis that for any 1 € dom(7),

[ in=ml<ln=n]

bGCn

Our goal is to show that

Mt t@lnli@ cd<lrctnltc] (3.4)

beCr
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Observe that

t(n) = (In et nn e )

[rct]ntcr]=

=
m
IS
-
3

em)=( || wwnln=alnm=u)

uedom(t)

=
m
Y
)
3

BN
A

2

t(n) = (x(m)m [n =1 [7 = 7))

Y
_]

=
0
Y
S
3

=
A

a

t(n) = [n =1
= [ 1In=&m)]

||
_]

=
0
U
S
3

=
A

a

Y
_]

nedom(t) beCy
= = [ ]In=2&m)]
nedom(t) beCr

where the first line holds by 3.2.4.2. The second holds by 3.2.4.3. The second to the last

line holds by the inductive hypothesis. The last line holds because for any b € C;\Cp,

i2(n)=n.

Also observe that

[Mlrct@inliZocd=[] [] tm=Meg(n)]nlLn) e
beC: beCr nedom(t)
=[] em=[]eg@Inmer]
nedom(t) beCy

where the first line holds by 3.2.4.2.

Therefore, to show (3.4), we just need to show that for any 1 € dom(7), any b € C¢,
(second line holds by 3.2.4.3)

[n = 2] > In e 2] lim) e ]
- | swnin = Ewln - 2m)

uedom(t)
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But this holds because for any u € dom(t),

() nn=dwlnu=iéml<n=:i@w]nlw=imn)]
<[n=u]ru=:imn)]
<[n=1am)]

where the second line holds by 3.2.4.1, since ¢ ¢ ker(n) U ker(l), as ¢ ¢ ker(t) and n,u €
dom(T).

Theorem 3.2.5 (Replacement). Let ¢(v{,v,) be a formula. U? |= Vu(Vx € udlyo (x,y) —
IwVx € udy e wo(x,y)).

Proof. We may assume Collection does not hold in U, otherwise U? |= Replacement as
UB = Collection by Theorem 3.2.4. So we may assume there is a proper class of urelements
inU.

It suffices to show that for every 7 € U5, there is a p € UP such that for every o €

dom(T),

[Bly¢(o,y)] <[3yvep ¢(o,y)] (3.5)

Consider any 7. Let A = ker(B) U ker(T).

Claim 3.2.5.1. For every 6 € dom(x) and T € U, there is a t* € U such that ker(7*) € A

and [[¢)(G,T) A VZ(¢(672) — = T)]] < [[¢(Gvf*)]]'

Proof of the Claim. Let p = [¢(0,7) AVz(¢(0,z) — z=7)] and c be a urelement such that
c ¢ ker(T) U A, which exists by our assumption. Observe that [¢ (o, 7)] = [¢(0,i2(1))] for

every b € ker(7)\A. Moreover, for each b € ker(7)\A,
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p<[¢(o,0)]n([¢(c.i(r)] = [z =i(T)])
<[¢(o, D] [r=i(7)]

<[r=i(7)]

It follows that

beker(T)\A
<[o(c,7)] N[t =1] (by Lemma 3.2.4.4)
A
< [¢(o,7)]

As the kernel of f% is contained in A, this proves the claim.
|
Now for every o € dom(7) and p € B such that there is some 7€ U with p = [¢(0,T) A
Vz(¢(0,z) — z = 7)], let 0 ) be the least o such that 37* € V3 (A) with p < [¢ (o, 77)].
Such  exists by the claim. Let ¥ = /. »scqom(x) x5 %o.p- Let p = (Vy(A) N UB) x {1}. Ttis
easy to check that for every o € dom(n), [3ly¢(o,y)] < [Fyep ¢(o,y)], which completes
the proof.
O

Theorem 3.2.6 (The Fundamental Theorem of U?). UB |= ZFCUg. If Collection holds in
U, then UB = ZFCU.

3.2.5 U?B Can Recover Collection

In the previous subsection we proved that UZ preserves Collection. In this subsection,
we prove that U2 can also recover Collection: there is some universe U such that U ¥
Collection, and for some complete Boolean algebra B, U |= Collection. To this end, we

first introduce some new axioms.
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(DC Scheme) If for every x there is a y such that ¢@(x,y), then there is an ®-sequence

{xp :n < @) such that ¢(x,,x,,1) for every n.
(Plenitude) For every cardinal k, there is some set of urelements of size k.

(Tail) For every set of urelements A, there is a greatest cardinal x such that there is

B < & of size Kk with BN A = (.

The following is proved in [37].

Theorem 3.2.7. Over ZFCUg, the following implications hold and none of them can be

reserved.
1. Plenitude — Collection;
2. Collection — DC, Scheme;
3. Tail — Collection. 0

Theorem 3.2.8. Let A and x be infinite cardinals with A < k. If there is a double sequence
{pse | 6 <A,& <k} suchthatforany & <k, | |sc4 pse = 1,and forany 6 <A, {pse | § <

x} is an antichain, then U8 = |&] = |A].

Proof. Same proof as in Bell [3], p.109.
[

Corollary 3.2.8.1. Let B = RO(k®), where k is an infinite cardinal. Then, U® = & is countable.

Proof. Foreachn < @ and § € k, let p,e = {g€ k® | g(n) = §}. Then, for any & < K,

L] pug = (fg'= k@ for some n < 0, g(n) = £])° = &°
n<w

Also forany n < @, & # & < K,

Png, M Png, = (g€ |gn) =&} n{gex®|gn) =&} =T
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Theorem 3.2.9. If U = for every set of urelements, there is another infinite set of urele-

ments disjoint from it, then for some complete Boolean algebra B, U? |= ZFCU.

Proof. By Theorem 3.2.6 and Theorem 3.2.7, we may assume that in U, there is a least
cardinal k such that there is no set of urelements of size k. Let B = RO(k®). We will show
that U2 |= Collection.

By Corollary 3.2.8.1, U? = || = |K|. Let T € UP be such that UB |= Vv e t(/(v)).
We can assume without loss of generality that every 1) € dom(7) is such that 7(n) > 0.
Then, by definition of UB, every 1 € dom(7) has to be a urelement. Let A = dom(t). By
assumption, U |= |A| = A < k. Hence UZ |= |A| = |A| < |&| = |®|. Also, it is easy to show
that U? |= | 7| < |A|. Hence U® |= |7| < |®)|.

Since A is a set of urelements, there is an infinite set of urelements B € U such that
AnB= . Since U |= |o| < |B|, U |= |®| < |B|. But UB = every set of urelements is
countable. Hence U8 = Tail. By Theorem 3.2.7, U® |= Collection.

3.3 Non-Witnessing U”? and Witnessing U5

3.3.1 UZIs Almost Never Witnessing

An important property of Boolean-valued models is the property of being witnessing. It is

defined as follows:

Definition 3.3.1. Let 91 be a Boolean-valued model for the languague .. 901 is witnessing

iff for any formula ¢ (v,vy,...,v,) in .Z, any x1,...,x, € M, there is some x € M such that

[[EIV(})(V,)CI,...,)cn)]]Sm = [[(p(x,xl,...,xn)]]m

In other words, a Boolean-valued model is witnessing just in case there exists a “wit-

ness" in the model for every existential sentence. Note that classical two-valued models are

"This is because for every T € U, there is a 7/ such that [t’ = 7] = 1 and every 1 € dom(7’) is such that
7'(n) > 0.
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trivially witnessing. The property of being witnessing is especially important for Boolean-
valued models. This is mainly because witnessing models are precisely those that satisfy
the generalized L.o$ theorem (see Chapter 1 for details). Witnessing models are therefore
well-behaved in the sense that the values of formulas in these models correspond neatly
with the values of formulas in their two-valued quotient models. Hence, in the context of
set theory, witnessing Boolean-valued universes are special in that they are the ones by
which we prove relative consistency results.® Given a sentence ¢ that we want to prove to
be consistent with ZFC, we simply find a complete Boolean algebra B such that [[q)]]VB # 0.
Since V8 is witnessing, we can then apply L.os theorem and obtain the two-valued quotient
model generated by a ultrafilter that contains the value of the sentence, which will be a
model of ¢ together with all the axioms of ZFC.

The old/standard Boolean-valued construction U2, as introduced in the previous sec-
tion, comes with a major problem: it is never witnessing given that B is a proper exten-
sion of 2. Consider, for example, the B-name T = {{ay,p),{az, —p)}, where aj,a, are
two different urelements®, and p is an intermediate Boolean value. Consider, then the
sentence @(7) = Jv(</(v) Av e 7). Since both a; and a; are urelements, [<7(a;)] and
[<7 (a,)] are both 1. Also, by the identity clauses on urelements, [a; € ] = p and similarly
laz € t] = —p. Hence [¢(7)] = pu—p=1.

Assume for reductio that ¢(7) has a witness o in UB. Hence [«7(0)] = 1 and [o €
7] = 1. That [«7(0)] = 1 entails that o is a urelement. But by the the identity clauses on
urelements again, for any urelement a, [a € 7] = 0 if a is neither a; nor a,. Hence 7 can
only be a; or ay. But neither [a; € 7] nor [a; € 7] is 1, as we have already observed. Hence
¢(7) has no witness in U,

There are countless other counter-examples of this form, which raise an interesting
question. It is well known that V? is a witnessing model. So why is U? not witnessing,
when it is constructed under the same guiding idea as V5?

That V5 is witnessing is a corollary to an important lemma on VZ: the Mixing Lemma.

In VB, given an antichain {p; | i€ I} < B, and a sequence of names {x; | i € I} € VB, we may

8See [16] for more details.
U8 is not witnessing even if there is only one urelement (assuming that B properly extends 2). Example:
v = {{a, p),{&,—p)} where a is a urelement. Then [Iv(v € 7')] does not have a witness.
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construct their mixture u € VB as follows:

dom(u) = U dom(x;)

iel

and, for y € dom(u),

u(y) = |_|Pi nlye xi]]VB

i€l
Using the mixture construction, it can be proven that

Theorem 3.3.1 (The Mixing Lemma in V?). For any antichain {p; |i e I} < B, any se-
quence of names {x; | i € I} € V5, there is some u € V& (for example, their mixture) such

that for any i € I,
pi<u=x]"

The reason why U? is not witnessing is because it does not satisfy the Mixing Lemma
either. And the reason why the Mixing Lemma is violated in U? is essentially due to the

“strict" definitive clauses on urelements in UZ. Indeed, we can show that

Lemma 3.3.1.1. Let {p; | i € I} < B be an antichain and {7; | i € I} € U® be a sequence of
B-names. If there is some i € I such that 7; is an urelement, and there is some j € I such that

T; # T;, then there isno o € U® such that for any ke I, p; < [0 = ].

Proof. Assume for reductio that there is such a o € UB. Note that by 3.2.2, for any urele-
ment a € U®, for any 7€ UB, [t = a] is either O or 1. Since 0 < p; < [o = 7;] and 7; is a
urelement, [¢ = 7;] = 1. Hence o is 7;. But then [0 =] 7;] = 0, and hence it is not the case
that 0 < p; <] 7;]. Contradiction.

]

The above observation gives rise to the question: Is there a different construction of
Boolean-valued universe with urelements that satisfies the Mixing Lemma? Is there one

that is witnessing? The answers to both questions, interestingly, are positive. The key for
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a Boolean-valued universe with urelements to satisfy the Mixing Lemma, as illustrated by
the previous lemma, is that there has to be mixtures of different urelements, and similarly
mixtures of urelements and sets. In the next subsection, we present a new construction
of a Boolean-valued universe with urelements of this kind. We will show that this new
construction, which we call ﬁ, is closed under mixtures and therefore satisfies the Mixing

Lemma.

3.3.2 The New Construction UB

We begin with the definition of the Boolean-valued universe UB.

Definition 3.3.2. 7: A — B is a B-urelement iff A is a set of urelements and for any a # b €

A, t(a)mt(b) =0.

Definition 3.3.3. 7: X — B is a B-name iff for any x € X, x is either a urelement or a

B-name, and for any urelement a € X, any x # a € X, T(a) 1 t(x) = 0.
Proposition 3.3.1. Every B-urelement is a B-name.

Definition 3.3.4. Let T be a B-name. dom™ (t) = {a € dom(7) | a € «/}. dom®(1t) = {n e

dom(t) | n is a B-name}.
Definition 3.3.5. Let 7 be a B-name. For any urelement a ¢ dom® (1), t(a) = 0.
Definition 3.3.6. The B-valued model UB is defined as follows:

1. The domain of UB is the class of B-names.

2. For any B-names 7, 0, we first define:

[(0]" = | ] (@

acl

[t£6])"" =[] 7(a) < o(a)

acd
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We then define by double recursion:

[reo]” = || [Te=nl""row)

uedomB (o)

[tcol” = [ wm=[neo]”

nedomB (1)

[[TZG]]ﬁz ﬂrgcﬂﬁmﬂggfﬂﬁmﬂffg G]]ﬁ

We then state without proving some useful and elementary results on B-names. Again,

the proofs are similar to those in the case of V2.

Theorem 3.3.2 (Induction Principle for UB). For any formula ¢ (x),
¥z e UB(vn e dom®(1)9(n) — ¢(7)) — V1€ UB(9(1))

Proposition 3.3.2. For any 7,0, 7 in UB,
i) [t=1]"" = 1.
(i) () < [n € 7]V, for any 1 € domB (7).
(i) [t =o]"" = [0 = 1]V".
(iv) [t =0o]"" n[o = a]Y" <[z = x]"".
W [r=0]" ~[re ]’ <[oen]’".
i) [t =0]"" n[re ]V <[re o]’
wii) [t = o] n e/ (0)]V" < [/ (a)]V"

Corollary 3.3.2.1. UB is a Boolean-valued model. Hence all the axioms of the first-order

predicate calculus have value 1 in ﬁ, and all of its rules of inferences are valid in UB.

Proposition 3.3.3. For any formula ¢ (x) and any 7 in UB,

L [EBxet(@)]’ = U (=(m)nlemIv).

nedom?(7)

2. [xet(o()]Y" = 1 (e(n) = [o(m)]V").

nedomB (1)
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3.3.3 UB and the Mixing Lemma

In this subsection, we show that ﬁ, unlike U2, does satisfy the Mixing Lemma.

Definition 3.3.7. Let {7; | i€ I} = UB and {p; | i € I} < B be an antichain. We define the

mixture of {p; | i € I} with respect to {7; | i € I} to be the B-name 7 such that

dom(t) = Udom(ri)

iel

For any x € dom(7), we define J as {i € I | x e dom(;)}, and define

() = |_|pin ()

ieJy

Proposition 3.3.4. Let {7; | ie 1} < UB and {p; | i € I} < B be an antichain. Their mixture

T is a B-name.

Proof. Letac dom™ (1), x # ac dom(t). Then t(a) 1 t(v) = iy, Pir (@) M| ey, pjm

7;(x). We need to show that for any i € J,, j € J;,

pinTi(a)mpjnT(x) =0

If i # j, then p;ip; = 0as {p; | i € I} is an antichain. If i = j, then a,x € dom(7;), and
hence 7;(a) M 7;(x) = 0 as 7; is a B-name.

O]

Theorem 3.3.3 (The Mixing Lemma in UB). Let {1; | ie I} < UB and {p; | icI} < Bbe an

antichain. Let 7 be their mixture. Then, for any i € I,
B
i < [[T = ‘L',']]U
Proof. Letie I. We first show that

pi<ltcd]’ = [ tm=[nea]” (3.6)
nedomB (1)
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Since (1) = |_|]ej pimn7j(n), we just need to show that for any j € J,,

pi<—pju—ti(n)ulne Ti]]UB

If i # j, then p; < —p; as {p; | i € I} is an antichain. If i = j, then N € dom(7;). Hence
() < [n € ]Y” by 3.3.2(ii). Hence —7;(1) u[n € 7]" = 1.

We next show that

pi<luctd” = [] wum=Meq” 3.7)

nedomB (1;)

Let 1 € dom®(1;). Then 1 € dom®(t). Hence

We finally show that

pi<leZ g = [ t(a) < t(a) (3.8)

acd

Let a € dom? (1). Since t(a) = |ljes, Pj ™ 7j(a), we just need to show that the following

two both hold:

pi<[]=pju—1i(a) utla)
je‘la

<@ o] | pyntla)

ieJ,

For the first statement, if i # j, then p; < —pj; if i = j, then —7;(a) u 7;(a) = 1. For
the second statement, if a ¢ dom't;), then —7;(a) = 1. If a € dom(t;), then i € J,. Hence
RHS > —1i(a) u (pin ti(a)) = —Ti(a) L p; = pi.

Combining (3.6) and (3.7) and (3.8) gives us what we want.
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334 UBand UB

We have constructed two different Boolean-valued universes with urelements: UZ and UB.
We have shown that the latter satisfies the Mixing Lemma, whereas the former does not.
Curious readers may have wondered how the two constructions are connected. The big
result of this subsection is that U? is, up to isomorphism, an elementary submodel of UB.
The plan to reach this result is as follows. We will first create an isomorphic copy of
U8 within UP. consisting of the “sharp" B-names. Then, we will show that this isomorphic

copy is actually an elementary submodel of UB.

Definition 3.3.8. Let 7 € UB. 7 is a sharp B-name iff 7 = {(a,1)}, for some a € 7, or for

any x € dom(7), x is a sharp B-name.

Definition 3.3.9. U_f is the submodel of UB whose domain is the class of all the sharp

B-names.
Proposition 3.3.5. Let 7, 0 be sharp B-names. Then!?,

1 if for some urelement a, 7 = {{(a, 1)}.

0 [« (7)] =
0 if otherwise.
rl if [/(1)] =1,[«/(0)]=1,and T = ©O.
(i) [t=0]=<0 if [/(t)] =1or [«/(6)] =1, and T # ©.
[trco]|noct] if[(r)]=0and[<(0)]=0.

0 if [ ()] = 1.

LI [r=nlrno(m) if[z(0)]=0.
nedom(o)

(iii) [re o] =

Corollary 3.3.3.1. U_g and U8 are isomorphic.

19Here, for readability, we ignore the “model" superscript on Boolean values of formulas. [<7(7)] means,
for example, [« (7)]U”, or equivalently, [« (T)]]U§ .
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Proof. The isomorphism is witnessed by f : U_f — UP defined recursively as follows: (let

7 be a sharp B-name)

a if for some urelement a,7 = {{a, 1)}.

{{(f(n),t(n)) | nedom(t)} if otherwise.

f(7) =

That f is an isomorphism follows easily from 3.2.2 and 3.3.5.

We now show that U_f is an elementary submodel of UB. We first need some lemmas.

Lemma 3.3.3.1. Let 7€ UB. Let A; — ker(t) U ker(B). Then, for some {o;|ie I} =

U_g NV (Az), some maximal antichain {p; | i€ I} < B,
pi<[t= G,-]]ﬁ foranyiel.

Proof. We use the induction principle on 7. The inductive hypothesis is that for any 1 €

dom® (1), for some {ujn | jeIn} < U_gm V(Ap), some maximal antichain {q;] | jeJn} =B,
q;] <[n= /,L;’]]ﬁfor any j e Jy.
We define 7 e U_S'? as follows:
dom(r) = {/.1]77 | n edom® (1), j ey}
For any v € dom(m), let Xy, = {{(n,j) | v = u;’,n e dom®(t), j € Jy}. Then,

vy =[] en)ng]

M,jyeXy

It is easy to check that 7 € V(A;) and 7 is a sharp B-name.

We now show that [T < 71:]]W = 1. That is, for any 1 € dom®(7), 7(n) < [n e n]]ﬁ
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This is because

e’ = || In=v]""rnx(v)

vedom(x)

> | | = w19 rx(ul)

JE€Jn

> |In =" nen)ng]

JEJq

=4 nem) =)

JEJn

We next show that [ < T]]ﬁ = 1. That is, for any v € dom(x), n(v) < [ve T]]ﬁ. This

is because

ved" = || =mnlv=n]"

nedom?B (1)

> || em)nu] =n)””
(n.J)eXy

> || tmng] ==V
(n.J)eXy

Finally we observe that [t &4 n]]ﬁ =[],er —7(a), since & is sharp. Hence [T = n]]ﬁ
= [yey —T(@). Also, it is easy to check that for any a; € dom® (1), [t = {{a;, 1)}] =
7(a;). Hence the statement holds as {7(a;) | a; € dom™ (t)} U {[,c.y —T(a)} is a maximal

antichain in B, by the definition of B-names.

Corollary 3.3.3.2. Let 7€ UZ. Then,

|_| [[Tzcr]]ﬁzl

B
oeUg

Proof. By the previous lemma, for some {o; | i € I} < UB, some maximal antichain {p; | i e
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I} B, pi<[t= G,‘]]ﬁ for any i € I. Hence,

|_| [[T:Gﬂﬁ>|_|[[1':6i]]ﬁ>l_|m=l

GeUig iel iel

O

Corollary 3.3.3.3. U_f is an elemantary submodel of U2. That is, for any formula ¢ (vy,...,v,),

any 0y,...,0, € UJ,

[6(01,....0)]" = [9(o1,....0)]”"

Proof. By induction on the complexity of ¢. The atomic cases are already covered since

U_g is a submodel of UB. The cases for connectives are straightforward. Let ¢ (vy,...,v,) =

WY (v, v1,.ey V).

By (o1, 0)]% = | | [v(o,01,..0:]%

/B
oeUg

On the other hand,

Bry(vor,...o)]"" = | | Iv(z.01,..0)]""

teUB

= || L] lv(r.on,.oo]’" nlz=0]""  (by3.332)
reUBaeng

= || [w(o,o1,...,06,)]Y"
oeUf

Hence the case for quantifiers holds by inductive hypothesis.

Corollary 3.3.3.4. U® is elementarily embedded in UB.

Corollary 3.3.3.5. UB = ZFCUy. If Collection holds in U, then UB = ZFCU.
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Corollary 3.3.3.6. For each x € %, define:

{(x, 1)} ifxeo

{OWDlyext ifx¢os

Then all the clauses in 3.2.3 and 3.2.1.2 hold with respect to UB, meaning that X is defined

as above!! and all the occurrences of U® are replaced with UB.

3.4 Collection and Witnessing

In the previous section, we have shown that UB always satisfies the Mixing Lemma. So is
UB always witnessing, then? Those who have read Chapter 1 of this dissertation might
find this question trivial: after all, there is a theorem in Chapter 1 that says any full
Boolean-valued model is witnessing (Theorem 1.7.3), which is equivalent to saying that
any Boolean-valued model that satisfies the Mixing Lemma is witnessing.

Nevertheless, the situation here is actually much more complicated. The proof of the
theorem that any full Boolean-valued model is witnessing actually makes use of the Axiom
of Collection. But recall that our background theory here is ZFCUg, and as mentioned
above, Collection is not a theorem of ZFCUg. It turns out that within ZFCUpg, given a
special universe and complete Boolean algebra, it is possible for UB to satisfy the Mixing
Lemma without being witnessing. We will construct counter-examples of this kind in Sub-
section 3.4.2. But before we do that, we will first prove that over ZFCUpg, the Axiom of
Collection is actually equivalent to the statement that UB is always witnessing, which is

going to be the goal of the upcoming subsection.

3.4.1 Equivalence Between Collection and Witnessing

The major result of this subsection is that:

Theorem 3.4.1. Over ZFCUpg, the following are equivalent:

"'We have given two different definitions of ¥ in 3.2.3 and 3.3.3.6. But the ambiguity shouldn’t matter
since the X in 3.3.3.6 is simply the isomorphic image of X in 3.2.3 under f.
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1. (Collection) Yu(Vx € udy¢(x,y) — IwWxeudyev(d(x,y))).
2. (ﬁ—Always-Witnessing) For any complete Boolean algebra B, UB is witnessing.

Theorem 3.4.2. Collection implies ﬁ-Always-Witnessing. That is, if U = ZFCU, then

for any complete Boolean algebra B, UB is witnessing.

Proof. The same argument as in Chapter 1 Theorem 1.7.3, using the Axiom of Collection

and the fact that UB satisfies the Mixing Lemma.

]

Lemma 3.4.2.1. Let B be an atomic complete Boolean algebra and 7 € UB. Let A; =

ker(t) U ker(B). Then,!?

|| [e=4=1

x€V (A7)

Proof. Since B is an atomic complete Boolean algebra, it is isomorphic to some powerset
algebra #(I) ordered by <. We prove the lemma using the induction principle on 7. The
inductive hypothesis is that for any 1 € dom? (1), LLev An) [n = x] = 1. Therefore, for any
i € I, there is a unique v’ﬁ € V(Ay)suchthatie [n = vv§7]]

For any i € I, we define x; as follows:

Xi=a if a € dom™ (t) and i € t(a)

X = {v’n liet(n)} if otherwise

That x; is well-defined follows from the definition of B-names. Since A¢ = Uy cgoms () An Y
dom? (t), x; € V(Az).

We now show that for any i € I,

ic[r=x]=[rex]nxcr]n[rx]

121n this subsection and the next, [¢] always means [[q)]]UiB.
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‘We first show that

ie[tcx]= []| tn)=[nex]

nedomB (1)

Let n € domP (7). If i ¢ ©(n), then i e —7(n) < 7(n) = [n e Xi]. If i € T(n), then v’ﬁ € Xj,
and hence i € [n =vi] = [nex] = 7(n) = [nex].
We next show that
icelict=[]hher]
v’hexi
Let v% €x;. Thenie t(n). Henceie t(n) m[n = v%]] c [[vv’ﬁ e 1].
We finally show that

ic[tZx] =[] 1(a) < %i(a)

acd

Letae 7. i€ t(a) iff x; = a iff i € X;(a). Hence i € T(a) < Xi(a).

Since forany i€ 1, i€ [t = X,
| Jle=x]=1
il
Hence the lemma is proven as x; € V(A;) for any i € I.

]

Corollary 3.4.2.1. Let B be an atomic complete Boolean Algebra. Let ¢ (vy,...,v,) be a for-
mula and xy, ...,x, € U. Let [¢ (x1,...,x,)]* = 1iff U |= ¢ (x1,...,x,) and [ (x1,...,x,)]> =0
iff U =—¢(xy,...,x,). Then,

[0, i) = [0,

Proof. By induction on the complexity of ¢. The atomic cases are already covered by

3.3.3.6. The cases for connectives are straightforward. Let @ (vy,...,v,) = vy (v,vi,...,vy).
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Then,

[y (v,x1,....x)]* = |_| [w(x,x1,....x)]

xeU

On the other hand, since, by 3.4.2.1, every T € UB is such that el = B =1,

By, )]V = || Tw(e. i)Y

teUB

= [w(c,2, ... 50" m | |1 _q7

1eUB xeU

= | v, )]

The second to the last equation holds by inductive hypothesis.
]

Theorem 3.4.3. ﬁ—Always—Witnessing implies Collection. That s, for any U that satisfies
ZFCUR, if for any complete Boolean algebra B, UB is witnessing, then U = ZFCU.

Proof. Assume the antecedent of Collection, that is, U = Vx € udy¢(x,y). Let B = & (u).
By 3.4.2.1,

UB | Vx e iidyd (x,y)

Clearly {{x} |x € u} < Z(u) is an antichain. Let u be the mixture of {{x} | x € u} with

respect to {X | x € u}. By the Mixing Lemma, then, for any x € u,
xe[u=1]

Hence, [u €] = | |,.,[1 = X] = 1. Therefore, [3y¢ (u,y)] = 1.
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Since UB is witnessing, there is some T € UB such that [¢ (i, 7)] = 1. By 3.4.2.1,

L] =311

yeV (Ar)

Let x € u. Then for some y € V(Az), x € [t = ¥]. Hence

xeu=nlew)nlr=y <o ] (3.9)

But [¢(X,y)] is either O or 1 by 3.4.2.1. Hence [¢ (X,¥)] = 1. By 3.4.2.1 again, U = ¢(x,y).

Hence,
U (= Vx e udy(ker(y) < ker(t) uker(B) A §(x,y))
By Replacement, it follows that

U = IVxeudyev(d(x,y))

3.4.2 A Non-Atomic Example

The proof of 3.4.3 suggests that if the Axiom of Collection fails in U, then there is an
atomic complete Boolean algebra B such that UB is not witnessing, though satisfying the
Mixing Lemma. To see this, suppose for some formula ¢, there is some u € U such that
U = Vx € udyd(x,y), but U = —=IvVx € udy € v (x,y). Then we take B = L (u). Let L,
again, be the mixture of {{x} | x € u} with respect to {X | x € u}. By the same reasoning as
in 3.4.3, [3y¢(u,y)] = 1. But there cannot be any T € UB such that [¢(u,7)] = 1, since
otherwise U |= FvVx € udy € v@(x,y), using the same argument in 3.4.3.

A unresolved question is: can the failure of being witnessing happen for some non-
atomic complete Boolean algebra B? That is, can there be some universe U of ZFCUg such
that for a non-atomic complete Boolean albebra B, UB is not witnessing? The answer turns

out to be positive. In this subsection, we give such an example.
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For the rest of this subsection we assume U is a universe that satisfies ZFCUg, that
there is no infinite set of urelements, and that for any n € w, there is a set of urelements
of size n.'> We also let B = RO(2?). The main result of this subsection is that UB is not

witnessing, despite satisfying the Mixing Lemma.

Definition 3.4.1. We define y e UB as follows:
dom(y) = {7l | n€ o}
and for any n € ®,
Y1) ={f€2?| f(n) =1}

Proposition 3.4.1. Letn € @, f € 2?. Then,

iyl ={fe2”|f(n) =1}
li¢ vl ={fe2”| f(n) =0}

Lemma 3.4.3.1. UB = 3x(Vyex(Z/(y)) Adne d(|x| =nané¢y))

Proof. Since the sentence that for any n € , there is a set of urelements of size n is X1, UB
“thinks" that for any n € @, there is a set of urelements of size n. Hence we only need to

show that
UBL3nednéy)

Thatis, | |,.,[7 ¢ 7] =2%. Let f€2?.If f(n) = 0 for some n € w, then f € [7i ¢ y]. Hence,

Llﬂﬁg:"y]]=({f62“’|f0rsomenea),f(n)=0})0=2w

new

Theorem 3.4.4. UB is not witnessing.

13The existence of such a universe is relatively well-known. For details, see, for example, [37].
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Proof. Assume for reductio that UB is witnessing. By the previous lemma, if suffices to

show that there is no 7 € UB such that
UBEVyet((y) Adned(|t|=nrng¢?y)

Suppose otherwise. Let T € UB be such that UB = Vy e 1(7 (y)) Adne d(|t| =nan¢
y). Since there are no infinite sets of urelements in U, ker(t) = m for some m € ®. Let

ker(t) ={ay,...,an} where ay,...,ay € <.
Claim 3.4.4.1. UB =Vxet(y=d| v ...vy =dp).

Proof of the Claim. Since UB =Yy € t(4/(y)), for any 1 € dom® (1), 1(n) < [/ ()] =
| |,cor N(a) = | ,cr[m = d], by the definition of B-names. Let b € o/ be such that b # a;
for any i < m. Then [ = b] = n(b) has to be 0, as otherwise b € ker(n) < ker(1).
Hence 7(n) < [« ()] < | )ic,u[n = a@]. Hence UB =Vxe T(y=d| v ...vy=dp).
[
Therefore, UB = |7| <. Let M = {f € 2© | for any i < m, f(m) = 1} € RO(2?). Ob-
viously M # . Hence there is some ultrafilter D < RO(2%) such that M € D. For any

i <m,
[Feyl={fe2®|f()=1}2MeD

Since UB |=3n e (|t = n An¢ y), and since UB is witnessing, for some & € UB, [|7| =
orc<mnao¢y] =1 Since||,[o =i =[o<m]=1€eD, for some i<m, [c =
i] e D.

Hence [cey]eDas[cey]=[oc=iriey]. But[o¢y] = 1. Contradiction.
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