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Abstract
Boolean-valued models generalize classical two-valued models by allowing arbitrary com-
plete Boolean algebras as value ranges. The goal of my dissertation is to study Boolean-
valued models and explore their philosophical and mathematical applications.

In Chapter 1, I build a robust theory of first-order Boolean-valued models that parallels
the existing theory of two-valued models. I develop essential model-theoretic notions like
“Boolean-valuation", “diagram", “elementary diagram", and prove a series of theorems on
Boolean-valued models, including the (strengthened) Soundness and Completeness Theo-
rem, the Löwenheim-Skolem Theorems, the Elementary Chain Theorem, and many more.

Chapter 2 gives an example of a philosophical application of Boolean-valued models. I
apply Boolean-valued models to the language of mereology to model indeterminacy in the
parthood relation. I argue that Boolean-valued semantics is the best degree-theoretic se-
mantics for the language of mereology. In particular, it trumps the well-known alternative
- fuzzy-valued semantics. I also show that, contrary to what many have argued, indetermi-
nacy in parthood entails neither indeterminacy in existence nor indeterminacy in identity,
though being compatible with both.

Chapter 3 (joint work with Bokai Yao) gives an example of a mathematical application
of Boolean-valued models. Scott and Solovay famously used Boolean-valued models on
set theory to obtain relative consistency results. In Chapter 3, I investigate two ways of
extending the Scott-Solovay construction to set theory with urelements. I argue that the
standard way of extending the construction faces a serious problem, and offer a new way
that is free from the problem.

Thesis Supervisor: Vann McGee
Title: Professor of Philosophy
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Introduction

Classical models are bivalent: there are two truth values, 1 (the True) and 0 (the False).

The set of classical truth values forms the smallest non-trivial complete Boolean algebra 2.

Under classical semantics, the logical symbols are interpreted as algebraic operations on 2:

conjunction as binary meet, disjunction as binary join, negation as Boolean complement,

universal quantifier as infinite meet and existential quantifier as infinite join.

This algebraic conception of classical semantics suggests a natural way to generalize

the classical models. What is really in need to carry out the semantic construction is the

underlying algebraic structure of the truth values. The complete Boolean algebra 2 can in

principle be replaced by any complete Boolean algebra. The resultant models, whose value

range can be an arbitrary complete Boolean algebra, are called Boolean-valued models. The

goal of this dissertation is to thoroughly investigate Boolean-valued models and explore

their philosophical and mathematical applications.

Historically, Boolean-valued models have been widely employed in the context of set

theory. Introduced by Dana Scott, Robert Solovay and others, Boolean-valued models for

the language of set theory are used to give semantics to Paul Cohen’s syntactic forcing,

which is a method for obtaining independence results. Nevertheless, outside the domain

of set theory, Boolean-valued models for arbitrary first order languages, as a subject on its

own, have not been as well-studied. Although the definition of a Boolean-valued model has

been mentioned at multiple occasions, little effort has been made to provide a full-fledged

theory of Boolean-valued models that parallels that of classical two-valued models.

The primary goal of Chapter 1 of this dissertation is to fulfill this theoretical gap. I will

build, step-by-step, a robust and detailed theory of Boolean-valued models. I will start with

two useful model-theoretic constructions on Boolean-valued models: the direct product
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construction and the quotient model construction, with which I will prove the (generalized)

Łoś Theorem. Then, I will introduce the key notion of “Boolean-valuations", and prove that

Boolean-valued models are sound and complete with respect to Boolean-valuations. With

the notion of “Boolean-valuations", I will then define notions like “diagram", “elementary

diagram", “elementary chain", etc, and prove a number of results on them, including the

equivalence theorems, the (generalized) Löwenheim-Skolem Theorems, the (generalized)

Elementary Chain Theorem, and so on. I will also discuss, in Chapter 1, some impor-

tant special kinds of Boolean-valued models that are particularly interesting: witnessing

models, full models and true-identity models.

I believe that the theory of Boolean-valued models, as a species of model theory, is

of tremendous interest on its own. But Boolean-valued models are worth studying for a

variety of other reasons as well. From a logical perspective, a number of critical model-

theoretic results on two-valued models can be shown to be special cases of more gener-

alized theorems on Boolean-valued models, including the aforementioned Łoś Theorem,

Löwenheim-Skolem Theorems, and many more. These generalized theorems shed light

on which essential features of two-valued models are responsible for the holdings of these

results on them. For example, we will see in Chapter 1 that both Łos’ Theorem and Down-

ward Löwenheim-Skolem Theorem are grounded in the property of being witnessing, and

both the theorem that every countably incomplete ultraproduct is ω1 saturated and the the-

orem that Σ1
1 formulas are preserved under ultraproducts are grounded in the property of

being full.

From a philosophical perspective, Boolean-valued models gives rise to a new intriguing

degree-theoretic semantics that is both classical and non-bivalent. With the existence of

non-extreme truth values, Boolean-valued models have fruitful applications to the general

phenomenon of indeterminacy. We will see an example of this kind in Chapter 2, where

Boolean-valued semantics is applied to the language of mereology to model indeterminacy

in the parthood relation. I will argue, in Chapter 2, that Boolean-valued semantics is the

best degree-theoretic semantics for the language of mereology. In particular, I will argue

that it trumps the well-known alternative - fuzzy-valued semantics, for three main reasons:

(a) it allows for incomparable degrees of parthood, (b) it enforces classical logic, and (c) it
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is compatible with all the axioms of classical mereology. Moreover, I will explore, under

the framework of Boolean semantics, the connection between indeterminacy in parthood

and indeterminacy in existence/identity. I will show that, contrary to many have argued,

indeterminacy in parthood entails neither indeterminacy in existence nor indeterminacy in

identity, although being compatible with both.

From a mathematical perspective, Boolean-valued models, as mentioned, have gener-

ated a fruitful theoretic enterprise when applied to ZFC, Zermelo–Fraenkel set theory. In

Chapter 3 (joint work with Bokai Yao), I take a step further in this direction by investigat-

ing Boolean-valued models of ZFCU, set theory with (potentially class many) urelements. I

will first show that the most direct, and also the most commonly adopted way of expanding

a Boolean-valued universe of pure sets to a Boolean-valued universe that allows urelements

has a serious problem. In particular, this traditional kind of Boolean-valued universe with

urelements is not witnessing and hence is not in the scope of Łoś Theorem. This means

that the quotient model method, which is the simplest, and the most powerful method of

proving relative consistency results, cannot be used on the traditional kind of Boolean-

valued universe with urelements. I will remedy this problem by developing a new way

of constructing a Boolean-valued universe with urelements, one that satisfies the Mixing

Lemma, and is witnessing given the Axiom of Collection in the background theory. I will

also show that the Boolean-valued universe generated by old construction is an elementary

submodel of the Boolean-valued universe generated by the new construction. Moreover, I

will prove that over the background theory ZFCUR, the Axiom of Collection is equivalent

with the statement that for any complete Boolean algebra, every Boolean-valued universe

with urelements generated by the new construction is witnessing.

13
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Chapter 1

A Theory of Boolean-Valued Models

1.1 Introduction

Traditionally, a model of a first order language L has as its value range the complete

Boolean algebra 2 “ t0,1u. Logical symbols in the language are interpreted as operations

on the Boolean algebra: conjunction as binary meet, disjunction as binary join, negation

as Boolean complement, universal quantifier as infinite meet and existential quantifier as

infinite join. A natural way to generalize the traditional models, then, is to instead of just

using the complete Boolean algebra 2 as the value range, use arbitrary complete Boolean

algebra as value ranges.

Boolean-valued models are worth studying for a variety of reasons. To begin with, the

supervaluation models, which are used in the standard approach to vagueness, can be shown

to be a special type of Boolean-valued models (Theorem 1.6.1). In fact, we can show that

there is a duality between the class of supervaluation models and a subclass of true identity

Boolean-valued models (Theorem 1.6.3). Also, two important features of Boolean-valued

models - that they are degree-theoretic and that they induce classical logic - let them give

rise to attractive theories of different types of vagueness.1 Moreover, since the logic of

Boolean-valued models is both classical and non-bivalent, they are particularly useful in

illustrating certain points in the philosophy of model theory. For example, it seems to serve

1We will see an example of this kind in Chapter 2, where we apply Boolean-valued models to mereological
indeterminacy. For an application to the general phenomenon of vagueness, see McGee and McLaughlin [25].
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as a strong case against the claim that our classical rules of inferences pin down uniquely

the range of semantic values ([5]).

Moreover, many important model-theoretic theorems on two-valued models can be

shown to be special cases of more generalized theorems on Boolean-valued models. These

results will shed light on what essential features of two-valued models are responsible for

the truth of these theorems on two-valued models. There are at least four examples of this

kind throughout this chapter:

1. The property of being witnessing and Łoś Theorem. (Theorem 1.3.4)

2. The property of being witnessing and Downward Löwenheim-Skolem Theorem. (The-

orem 1.5.6)

3. The property of being full and the theorem that every countably incomplete ultra-

product is ω1-saturated. (Theorem 1.7.4)

4. The property of being full and the theorem that Σ1
1 formulas are preserved under

untraproducts. (Theorem 1.7.7)

Also, results on Boolean-valued models will also help us to have a better understanding

of certain model-theoretic constructions on two-valued models. For example, as we will

see in Section 1.3, the ultraproduct construction on two valued models can be reduced to a

two-step construction of taking first a direct product and then a quotient model.

Nevertheless, Boolean-valued models, as a subject on their own, have not been well-

studied, at least in comparison to the two-valued models. On two-valued models there

exists a full-fledged and fruitful theory - the entirety of model theory, roughly speaking,

that is based on important basic notions like “diagram”, “submodel”, “elementary", etc.

Few of these notions, however, have been generalized to Boolean-valued models, and this

is also the case with the many model-theoretic results based on these notions. There are a

number of natural questions on the model-theoretic properties of Boolean-valued models

that await answers: What is the diagram/elementary diagram of a Boolean-valued model?

What does it mean for a Boolean-valued model to be a submodel/elementary submodel of

another? Do Löwenheim-Skolem Theorems hold on all Boolean-valued models? etc. The
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primary goal of this chapter is to answer these questions, in order to develop, step by step,

a robust and detailed theory on Boolean-valued models.

Although some of these questions are (relatively) straightforward to answer, like “What

does it mean for a Boolean-valued model to be a submodel/elementary submodel of an-

other?", some of these questions are quite the opposite. One of the most difficult notions is

that of a diagram. When we only have two truth values, the diagram of a model is a set of

sentences, and therefore a theory. But when there are more than two truth values, the “di-

agram” of a model, if we want it to be something close to what we have in the two-valued

case, cannot be just a theory. The natural suggestion is that the diagram is a set of ordered

pairs whose first component is a sentence and second component is a truth value. In this pa-

per, we will call a set of this form a “Boolean-valuation". (First-order) Boolean valuations

are natural generalizations of (first-order) theories. A question that turns out to be quite

difficult and require a lot of efforts is “What does it mean for a Boolean-valuation to be

consistent and are consistent Boolean-valuations precisely those that have models?". One

of the major results of this chapter (Theorem 1.4.9.1) is that (under our definition of consis-

tency), Boolean-valued models are sound and complete with respect to Boolean-valuations,

which is a theorem that generalizes the known result that Boolean-valued models are sound

and complete with respect to first-order theories. Corollaries to this theorem include the

compactness theorem (Corollary 1.4.9.2) on Boolean valuations and the (weaker version

of) Downward-Löwenheim-Skolem theorem on Boolean valuations (Corollary 1.4.9.3).

With the notion of “Boolean valuation", we are then able to define notions like “dia-

gram"(Def 1.5.5), “elementary diagram"(Def 1.5.9), etc., and prove the equivalence the-

orems between diagrams and submodels (Theorem 1.5.2), elementary diagrams and ele-

mentary submodels (Theorem 1.5.5), etc. Another difficult question concerns the (stronger

version of) Downward-Löwenheim-Skolem theorem. With the help of Boolean-valuations,

we will prove that the (stronger version of) Downward-Löwenheim-Skolem theorem can be

generalized to witnessing Boolean-valued models (Theorem 1.5.6), though not to Boolean-

valued models in general (Theorem 1.5.7).

For the discussion of the Upward-Löwenheim-Skolem theorems to be non-trivial, we

will have to look at a special type of Boolean-valued models, the ones that define identity in
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the standard, or true way (Def 1.8.1). We will investigate which kind of Boolean valuations

corresponds to the “true identity" models. The next major result (Theorem 1.8.7) is that true

identity Boolean-valued models are sound and complete with respect to Boolean valuations

that “respect identity" (Def 1.8.2). From there, we will establish the Upward-Löwenheim-

Skolem theorems on true identity Boolean-valued models (Theorem 1.9.7, 1.9.8).

We will also discuss another special type of Boolean-valued models - the full models

(Def. 1.7.2). Full Booelan-valued models turn out to be equivalent to Boolean-valued mod-

els that remain witnessing no matter how they are expanded (Theorem 1.7.8). They are,

therefore, even more akin to the two-valued models than witnessing Boolean-valued mod-

els. Two major results in this chapter are that two important corollaries of Łoś Theorem are

generalizable to full Boolean-valued models: that every countably incomplete ultraproduct

is ω1-saturated (Theorem 1.7.4), and that Σ1
1 formulas are preserved under untraproducts

(Theorem 1.7.7).

We organize this chapter as follows. In Section 1.2 we cover some preliminaries on

Boolean algebras and introduce Boolean-valued models. In Section 1.3, we introduce two

important construction on Boolean-valued models that will be useful throughout the paper.

In particular, we will introduce the quotient construction and prove the Generalized Łoś

Theorem. In Section 1.4, we first review the proof of the theorem that Boolean-valued

models are sound and complete with respect to first-order theorems, and then in 1.5.2, we

introduce Boolean valuations, define their consistency condition, and prove that Boolean-

valued models are sound and complete with respect to first-order Boolean valuations. In

Section 1.5, with the help of Boolean valuations, we extend basic model theoretic notions

like “diagram", “submodel", “elementary embedding" to Boolean-valued models, prove the

equivalence theorems, and prove the (stronger version of) Downward-Löwenheim-Skolem

theorem on witnessing Boolean-valued models. We will also study chains of models and

generalize the Elementary Chain Theorem to the Boolean-valued case. In Section 1.6,

we discuss the connection between supervaluation models and Boolean-valued models.

We prove that supervaluation models are equivalent to a special type of Boolean-valued

models. In Section 1.7, we will investigate the full Boolean-valued models. In Section 1.8,

we will discuss the true identity Boolean-value models. Finally, in Section 1.9, we discuss
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the Upward-Löwenheim-Skolem theorems on Boolean-valued models.

1.2 Boolean Valued Models

1.2.1 Boolean Algebra

This chapter assumes that the reader already has some basic knowledge about Boolean

algebras and model theory. The main purpose of this subsection is just to introduce the

symbols that will be used for Boolean operations. For a more detailed introduction of

Boolean algebras, see Givant and Halmos [14].

Definition 1.2.1. A lattice is a non-empty partially ordered set ă L,ďą such that for any

x,y P L, tx,yu has a supremum(join), x\y, which is the least element that is greater than or

equal to both x and y, and a infimum(meet), x[ y, which is the greatest element that is less

than or equal to both x and y.

Definition 1.2.2. A lattice L is bounded just in case it has a top element 1L such that

@x P Lpxď 1Lq, and a bottom element 0L such that @x P Lp0L ď xq.

Definition 1.2.3. A lattice L is distributive just in case for any x,y,z P L,

x[py\ zq “ px[ yq\px[ zq

x\py[ zq “ px\ yq[px\ zq

Definition 1.2.4. Let L be a bounded lattice and x,y P L. y is a complement of x just in case

x\ y“ 1L and x[ y“ 0L.

Definition 1.2.5. A bounded lattice L is complemented just in case for any x P L, there

exists some y P L such that y is a complement of x.

In a distributive lattice, it can be easily shown that if an element x has a complement,

then it has a unique complement. We denote the complement of x, if it exists, as ´x.

Definition 1.2.6. A Boolean algebra B is a bounded distributive complemented lattice.
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Definition 1.2.7. A Boolean algebra B is κ-complete (where κ is a cardinal) just in case for

any subset DĎ B such that |D| ď α , both the supremum of D,
Ů

D, and the infimum of D,
Ű

D, exist in B. A Boolean algebra B is complete just in case for any κ , B is κ-complete.

1.2.2 Boolean Valued Models

Definition 1.2.8. Let L be an arbitrary first order language. For simplicity, we assume

that L has no function symbols, but only relation symbols and constants.2 Let B be a

non-trivial complete Boolean algebra. A B-valued model3 A for the language L consists

of:

1. A universe A of elements;

2. The B-value of the identity symbol: a function J“KA : A2 Ñ B;

3. The B-values of the relation symbols: (let P be an n-ary relation) JPKA : An Ñ B;

4. The B-values of the constant symbols: (let c be a constant) JcKA P A.

And it needs to satisfy:

1. For the B-value of the identity symbol4: for any a1,a2,a3 P A

Ja1 “ a1KA “ 1B (1.1)

Ja1 “ a2KA “ Ja2 “ a1KA (1.2)

Ja1 “ a2KA[ Ja2 “ a3KA ď Ja1 “ a3KA (1.3)

2. For the B-value of relation symbols: let P be an n-ary relation; for any xa1, ...,any,xb1, ...,bny

2Our theory can be easily generalized to first order languages with function symbols, as functions can
always be treated as relations that satisfy special conditions.

3Our definition of Boolean-valued models is the standard one. You can find the same definition in many
other places, including, Bell [3], Button and Walsh [5], Hamkins and Seabold [16], etc.

4Here and in the following, when the context is clear, we use Jai “ a jKA to abbreviate J“KApai,a jq, and
similarly for cases of the relation symbols.
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P An,

JPpa1, ...,anqKA[p
ę

1ďiďn

Jai “ biKAq ď JPpb1, ...,bnqKA (1.4)

Given a B-valued model A for L , we define satisfaction in A as follows:

Definition 1.2.9. Let Var be the set of all variables. (We will use v1,v2, ... to range over

variables.) An assignment on A is a function from Var to A. Given a assignment x on A,

we define the value of an open formula of L in A under assignment x as follows.

1. We first define the value of terms in A:

(a) Let vi be a variable. Then JviKArxs “ xpviq “ xi
5.

(b) Let c be a constant. Then JcKArxs “ JcKA.

2. We then define the value of atomic formulas in A:

(a) Let t1, t2 be terms (a term is either a variable or a constant). Then Jt1“ t2KArxs “

Jai “ a jKA, where ai “ Jt1KArxs and a j “ Jt2KArxs.

(b) Let t1, ..., tn be terms. Then JPpt1, ..., tnqKArxs “ JPpa1, ...,anqKA, where a1 “

Jt1KArxs, ..., an “ JtnKArxs.

3. We finally define the value of complex formulas in A:

(a) Let φ be a formula. Then J␣φKArxs “ ´JφKArxs.

(b) Let φ ,ψ be formulas. Then Jφ ^ψKArxs “ JφKArxs[ JψKArxs.

(c) Let φ ,ψ be formulas. Then Jφ _ψKArxs “ JφKArxs\ JψKArxs.

(d) Let φ be a formula. Then JDviφKArxs “
Ů

aPA
JφKArxpvi{aqs, where xpvi{aq is the

assignment on A that takes vi to a and agrees with x everywhere else.

(e) Let φ be a formula. Then J@viφKArxs “
Ű

aPA
JφKArxpvi{aqs, where xpvi{aq is the

assignment on A that takes vi to a and agrees with x everywhere else.
5Here and in the following, given an assignment x, we will use xi to abbreviate xpviq.
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Clearly, both JDviφKArxs and J@viφKArxs are well-defined as B is assumed to be com-

plete.

It is easy to see that traditional two-valued models for first order languages are just

special cases of Boolean valued models, when we require B to be the two-element Boolean

algebra 2 and that the interpretation of the identity symbol is the true identity function on

the universe. 6

In the following, like in the case of atomic formulas, when the context is clear, we will

occasionally use Jφpx1, ...,xnqKA, instead of Jφpv1, ...,vnqKArxs.

Theorem 1.2.1. Let A be a B-valued model for L . For any formula φpv1, ...,vnq in L , any

assignments x,y on A,

Jφpx1, ...,xnqKA[p
ę

1ďiďn

Jxi “ yiKAq ď Jφpy1, ...,ynqKA

Proof. By a straightforward induction on the complexity of φpv1, ...,vnq.

1.3 Two Important Constructions

Given one or more Boolean valued models, there are many ways to use them to construct

new Boolean valued models. In this section, we will introduce two of these methods of

construction that will be particularly useful for later purposes.

1.3.1 Direct Products

Definition 1.3.1. Let I be an index set. For each i P I, let Bi be a Boolean algebra. The

product algebra
ś

iPI Bi is defined as the algebra on the Cartesian product of all the Bi’s

6Again, we assume that the reader has some basic knowledge of traditional two-valued models. For a
detailed introduction on model theory, see Chang and Keisler [7], or Hodges [17].
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with the following operations7 (let xpiyiPI,xqiyiPI P
ś

iPI Bi)

xpiyiPI[xqiyiPI “ xpi[
i qiyiPI

xpiyiPI\xqiyiPI “ xpi\
i qiyiPI

´xpiyiPI “ x´
i piyiPI

Note that in a product algebra
ś

iPI Bi, xpiyiPI ď xqiyiPI just in case for all i P I, pi ď
i qi.

Also, 1ś

iPI Bi “ x1BiyiPI and similarly 0ś

iPI Bi “ x0BiyiPI .

Proposition 1.3.1. Let I be an index set. For each i P I, let Bi be a complete Boolean

algebra. Then their product algebra
ś

iPI Bi is a complete Boolean algebra.

Definition 1.3.2. Let I be an index set. For each i P I, let Ai be a Bi-valued model of the

language L . Then the direct product model,
ś

iPI Ai, of the Ai’s, is defined as the following
ś

iPI Bi-valued model of L :

1. The universe is
ś

iPI
Ai, where for each i, Ai is the universe of Ai.

2. Let xaiyiPI,xbiyiPI P
ś

iPI
Ai, JxaiyiPI “ xbiyiPIK

ś

iPI
Ai

“ xJai “ biKAiyiPI .

3. Let xa1
i yiPI,xa2

i yiPI, ...,xan
i yiPI P

ś

iPI
Ai, JPpxa1

i yiPI, ...,xan
i yiPIqK

ś

iPI
Ai

“xJPpa1
i , ...,a

3
i qK

AiyiPI .

4. For any constant c in L , JcK
ś

iPI
Ai

“ xJcKAiyiPI .

Theorem 1.3.1. Let I be an index set. For each i P I, let Ai be a Bi-valued model. Then the

direct product model,
ś

iPI Ai, as defined in Def 1.3.2, is a
ś

iPI Bi-valued model - that is,

it satisfies Def 1.2.8.

Proof. We just need to check that requirements (1)-(4) in Def 1.2.8 are satisfied. This

follows straightforwardly from Def 1.3.1 and Def 1.3.2.

Theorem 1.3.2 (Direct Product Theorem). Let I be an index set. For each i P I, let Ai

be a Bi-valued model. Let
ś

iPI Ai be their direct product model. Given an assignment

7In the following, [i denotes the meet operation in Bi, and similarly for \i, ´i, etc.
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x : VarÑ
ś

iPI Ai on
ś

iPI Ai, for each i P I, let yi : VarÑ Ai be the assignment on Ai such

that for any vn PVar, yipvnq “ projipxpvnqq, where proji :
ś

iPI Ai Ñ Ai is the ith projection

function. Then, for any formula φ in L ,

JφK
ś

iPI
Ai

rxs “ xJφKAiryisyiPI

Proof. By induction on the complexity of φ .

Let ti be a term. Then JtiK
ś

iPI Airxs “ xJtiKAiryisyiPI , by clause 4 of Def 1.3.2 and the

relationship between x and yi.

The case of the atomic formulas are covered by clause 2 and 3 of Def 1.3.2.

The cases of sentential connectives are straightforward. For example,

Jφ ^ψK
ś

iPI
Ai

rxs “ JφK
ś

iPI
Ai

rxs[ JψK
ś

iPI
Ai

rxs

“ xJφKAiryisyiPI[xJψKAiryisyiPI

“ xJφKAiryis[
i JψKAiryisyiPI

“ xJφ ^ψKAiryisyiPI

Finally, the case of quantified formulas:

J@v jφK
ś

iPI
Ai

rxs “
ę

xaiyiPIP
ś

iPI
Ai

JφK
ś

iPI
Ai

rxpv j{xaiyiPIqs

“
ę

xaiyiPIP
ś

iPI
Ai

xJφKAiryipv j{aiqsyiPI

“ x
ę

aiPAi

JφKAiryipv j{aiqsyiPI

“ xJ@v jφKAiryisyiPI

And similarly for existential formulas.

Corollary 1.3.2.1. For any sentence φ in L , JφK
ś

iPI
Ai

“ 1 if and only if for any i P I,

JφKAi “ 1.
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1.3.2 Quotient Models

Definition 1.3.3. Let B,C be Boolean algebras. Then a function h : BÑC is a homomor-

phism just in case for any p,q P B, hpp[B qq “ hppq[C hpqq and hp´B pq “ ´Chppq.

It is easy to show that when h : BÑC is a homomorphism, for any p,q P B, hpp\B qq “

hppq\C hpqq, hppq ďC hpqq if pďB q, hp1Bq “ 1C, and hp0Bq “ 0C.

Definition 1.3.4. Let B,C be Boolean algebras. Let h : BÑC be a homomorphism. Then

h is a complete homomorphism just in case for any DĎ B that has a supremum, hrDs has a

supremum in C and hp
ŮB Dq “

ŮC hrDs.

Similarly, it is easy to show that when h : BÑC is a complete homomorphism, for any

DĎ B that has a infimum, hrDs has a infimum in C and hp
ŰB Dq “

ŰC hrDs.

Definition 1.3.5. Let A be a B-valued model of L . Let C be a complete Boolean algebra.

Let h : BÑC be a homomorphism. Then the C-valued quotient model Ah of L is defined

as follows:

1. Universe:

Let a1,a2 P A, define a1 ”h a2 iff hpJa1 “ a2KAq “ 1C.

It is easy to show that ”h is an equivalence relation on A2, using Def 1.2.8.

Given ai P A, let raish “ ta j P A |ai ”h a ju. Let the universe of Ah be Ah “ traish |ai P

Au.

2. J“KA
h

: AhˆAh ÑC is the function such that for any ra1sh, ra2sh P Ah,

Jra1sh “ ra2shKA
h
“ hpJa1 “ a2KAq

It is easy to show that J“KA
h

is well-defined, using Def 1.2.8 and Def 1.3.3.

3. Let P be an n-ary relation in L . JPKA
h

: pAhqn ÑC is the function such that for any

xra1sh, ..., ranshy P pAhqn,

JPpra1sh, ..., ranshqKA
h
“ hpJPpa1, ...,anqKAq
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Similarly, it is easy to show that J“KA
h

is well-defined, using Def 1.2.8 and Def 1.3.3.

4. Let c be a constant in L . JcKA
h
“ rJcKAsh.

Lemma 1.3.2.1. Let A be a B-valued model of L . Let h : BÑC be a complete homomor-

phism. Let x,x1 be assignments on A such that for any vi P Var, xpviq ”h x1pviq. Then, for

any formula φ of L ,

hpJφKArxsq “ hpJφKArx1
sq

Proof. By induction on the complexity of φ . The base cases hold by Def 1.2.8 and Def

1.3.3. The inductive cases for sentential connective are straightforward, again using Def

1.2.8 and Def 1.3.3. The inductive cases for quantified formulas make use of the fact that h

is a complete homomorphism. For example,

hpJ@viφKArxsq “ hp
ę

aPA

JφKArxpvi{aqsq

“
ę

aPA

hpJφKArxpvi{aqsq

“
ę

aPA

hpJφKArx1
pvi{aqsq

“ hp
ę

aPA

JφKArx1
pvi{aqsq

“ hpJ@viφKArx1
sq

Theorem 1.3.3. Let A be a B-valued model of L . Let h : BÑC be a complete homomor-

phism. Let Ah be the C-valued quotient model as defined in Def 1.3.5. Given x : VarÑ Ah

an arbitrary assignment on Ah, let y : Var Ñ A be an assignment on A such that for any

vi PVar, ypviq P xpviq. Then, for any formula φ in L ,

JφKA
h
rxs “ hpJφKArysq

Proof. By induction on the complexity of φ .
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Terms: Let t be a term. By the relationship between x and y and Def 1.3.5, it is easy to

show that JtKArys P JtKA
h
rxs.

Base cases: Let t1, t2 be terms. Suppose Jt1KA
h
rxs “ raish PAh and Jt2KA

h
rxs “ ra jsh PAh.

Jt1 “ t2KA
h
rxs “ Jraish “ ra jshKA

h
“ hpJai “ a jKAq “ hpJt1 “ t2KArysq

The last equation holds because of Lemma 1.3.2.1 and the fact that Jt1KArys ”h ai and

Jt2KArys ”h a j.

The other base case is very similar.

Inductive cases: The cases of sentential connectives are straightforward. For example,

Jφ ^ψKA
h
rxs “ JφKA

h
rxs[C JψKA

h
rxs

“ hpJφKArysq[C hpJψKArysq

“ hpJφKArys[B JψKArysq

“ hpJφ ^ψKArysq

Finally, the cases of quantified formulas. Again, we make use of the fact that h is a complete

homomorphism.

J@viφKA
h
rxs “

ę

rashPAh

JφKA
h
rxpvi{rashqs

“
ę

rashPAh

hpJφKArypvi{aqsq

“
ę

aPA

hpJφKArypvi{aqsq

“ hp
ę

aPA

JφKArypvi{aqsq

“ hpJ@viφKArysq

The third equation holds because of Lemma 1.3.2.1. The fourth equation holds because h

is a complete homomorphism. The case of existential formulas is very similar.
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Boolean valued models and traditional two-valued models are similar in many impor-

tant ways, but they also have some interesting differences. In particular, some significant

features of two-valued models are not shared by all Boolean valued models. For example,

two-valued models are “witnessing", in the following sense: if an existential sentence Dviφ

has value 1 in a two-valued model, then there has to some object a in the universe of the

model such that φ ras has value 1; similarly, if Dviφ has value 0, then there has to be some

object a in the universe of the model such that φ ras has value 0. Nevertheless, there can be

Boolean valued models that fail to have this feature. There can be, for example, a B-valued

model in which the sentence Dviφ has the value p P B, but for no object a of the universe,

φ ras has value p.

It turns out many important results in traditional model theory essentially reply on the

fact that two-valued models are witnessing. Therefore, these results cannot be generalized

to all Boolean valued models, but only to those that are similar to two-valued models in

this respect. To this end, we introduce the following definition on Boolean valued models.

Definition 1.3.6. Let A be a B-valued model for the language L . Then A is witnessing8

just in case for any formula φpu,v1, ...,vnq
9 of L , any a1, ...,an P A, there is an a P A such

that10

JDuφpu,v1, ...,vnqKAra1, ...,ans “ Jφpu,v1, ...,vnqKAra,a1, ...,ans

Lemma 1.3.3.1. Let A be a witnessing B-valued model of L . Let h : BÑC be a homo-

morphism. Let x,x1 be assignments on A such that for any vi P Var, xpviq ”h x1pviq. Then,

for any formula φ of L ,

hpJφKArxsq “ hpJφKArx1
sq

8Some people, including Hamkins and Seabold [16] and Jech [19], call witnessing models “full" models
instead. In this dissertation, we will also discuss full models, where full models are defined as those in which
there is an “upper" element for each antichain and each sequence of elements of the same length (see Section
1.7). This definition of full models is shared by Bell [3] and some others. A hidden misunderstanding on this
subject seems to be that these two definition coincide. But in fact they do not. Full models, defined in terms
of antichains, are all witnessing models, yet the converse does not hold, as we will show in Section 1.7.

9Here and in the following, when we write something like φpv1, ...,vmq, we mean that φ is a formula with
at most v1, ...,vm as its free variables.

10If φ is a formula with at most v1, ...,vm as its free variables, and if x and y are two assignments on a
B-valued model A such that for any 1ď iďm, xi “ yi, then it is easy to show that JφKArxs “ JφKArys. Hence,
when the context is clear, we can simply write JφKArx1, ...,xms to denote JφKArxs (or equivalently, JφKArxs).
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Proof. By induction on the complexity of φ . The base cases and the cases for sentential

connectives are exactly the same as in Lemma 1.3.2.1. The only cases worth mentioning

are the cases for quantified formulas. Let φ “ Dviψ . Then, since A is witnessing, for

some a P A, JDviψKArxs “ JψKArxpvi{aqs. Hence hpJDviψKArxsq “ hpJψKArxpvi{aqsq. By

inductive hypothesis,

hpJψKArxpvi{aqsq “ hpJψKArx1
pvi{aqsq ď hpJDviψKArx1

sq

Similarly, hpJDviψKArx1sq ď hpJDviψKArxsq. The case for universal formals is very alike.

Theorem 1.3.4 (Generalized Łoś Theorem). Let A be a witnessing B-valued model of L .

Let h : B Ñ C be a homomorphism. Let Ah be the C-valued quotient model as defined

in Def 1.3.5. Given x : Var Ñ Ah an arbitrary assignment on Ah, let y : Var Ñ A be an

assignment on A such that for any vi PVar, ypviq P xpviq. Then, for any formula φ in L ,

JφKA
h
rxs “ hpJφKArysq

Proof. By induction on the complexity of φ . Again, the base cases and the cases for sen-

tential connectives are exactly the same as in Theorem 1.3.3. Let φ “ Dviψ .

JDviψKA
h
rxs “

ğ

rashPAh

JψKA
h
rxpvi{rashqs

“
ğ

rashPAh

hpJψKArypvi{aqsq

ď
ğ

aPA

hpJψKArypvi{aqsq

ď hp
ğ

aPA

JψKArypvi{aqsq

“ hpJDviψKArysq

The fourth inequation holds because since h is a homomorphism, for any subset D Ď B,
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Ů

hrDs ď hp
Ů

Dq.11

For the other direction, since A is witnessing, for some a PA, JDviψKArys “ JψKArypvi{aqs.

Hence,

hpJDviψKArysq “ hpJψKArypvi{aqsq

“ JψKA
h
rxpvi{rashqs

ď JDviψKA
h
rxs

The case for universal formulas is very similar.

We conclude this section with some remarks on the two constuctions introduced in this

section. A well-known key method of constructing new models from old ones in model

theory is the ultraproduct construction. Given tAi | i P Iu a set of (two-valued) models in-

dexed by I and D an ultrafilter on the Boolean algebra formed on PpIq, we can construct

the ultraproduct
ś

DAi.12 Now, the ultraproduct construction on two-valued models can

be shown to be just a special case of our direct product construction and quotient construc-

tion on Boolean valued models. Two-valued models are special cases of Boolean valued

models, and hence both kinds of constructions can be applied to them. Given a set of (two-

valued) models tAi | i P Iu indexed by I, we can first take their direct product
ś

iPI Ai, as

defined in Def 1.3.2, which is a
ś

iPI 2 valued model, where
ś

iPI 2 is the product algebra

of |I| many copies of the two element Boolean algebra 2.

Next, let D be an ultrafilter on PpIq. It is easy to show that the Boolean algebra PpIq

and
ś

iPI 2 are isomorphic. (Each element of
ś

iPI 2 can be thought of as the characteristic

function of a subset of I.) Hence we can take D as a ultrafilter on
ś

iPI 2. Let hD :
ś

iPI 2Ñ 2

be the characteristic function of D. h is then, a homomorphism, by a well-known result on

Boolean algebras.13 We can then construct the quotient model p
ś

iPI Aiq
hD as defined in

Def 1.3.5. This quotient model, p
ś

iPI Aiq
hD , can be easily shown to be the same model as

the ultraproduct
ś

DAi.
11Note that the other direction might not hold, if h is not a complete homomorphism.
12For a detailed definition, see, for example, Chang and Keisler [7, p. 215-216].
13See, for example, Givant and Halmos [14, p. 158].
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One of the most important theorems on ultraproducts is the fundamental theorem of ul-

traproducts (or equivalently, Łoś Theorem), which states that given an ultraproduct
ś

DAi,

a formula φpv1, ...,vnq of L , and rxa1
i yiPIsD, ..., rxan

i yiPIsD P
ś

D Ai,
ś

DAi |ù φ rrxa1
i yiPIsD,

..., rxan
i yiPIsDs iff ti P I |Ai |ù φ ra1

i , ...,a
n
i su P D.14 This theorem, it turns out, is a special

case of Theorem 1.3.4, the Generalized Łos’s Theorem, as its name may suggest. This is

because, firstly,
ś

iPI Ai, the direct product of the Ai’s, is a witnessing model, as any direct

product of a set of witnessing models is also witnessing:

Lemma 1.3.4.1. Let I be an index set. For each i P I, let Ci be a witnessing Bi-valued model

of L . Then their direct product
ś

iPI
Ci is a witnessing

ś

iPI
Bi-valued model of L .

Proof. For simplicity we ignore the parameters. Let φpvnq be a formula of L . For any i P I,

since Ci is witnessing, for some ai PCi, JDvnφpvnqKCi “ JφpvnqKCirais. Then xaiyiPI P
ś

iPI
Ci

is a witness of Dvnφpvnq in
ś

iPI
Ci, by Theorem 1.3.2.

Since every Ai is a two-valued model, every Ai is witnessing. Hence their direct product
ś

iPI Ai is witnessing, by the above lemma. Hence it is in the scope of Theorem 1.3.4. Let

hD :
ś

iPI 2Ñ 2 be the characteristic function of the ultrafilter D. We have already argued

that the quotient model p
ś

iPI Aiq
hD is the same as the ultraproduct

ś

DAi. Also it is easy

to see that any rxaiyiPIsD P
ś

D Ai is the same as rxaiyiPIshD P p
ś

iPI Aiq
hD . According to

Theorem 1.3.4, then,

JφKp
ś

iPI Aiq
hD
rrxa1

i yiPIshD, ..., rxa
n
i yiPIshDs “ hDpJφK

ś

iPI Airxa1
i yiPI, ...,xan

i yiPIsq

But JφK
ś

iPI Airxa1
i yiPI, ...,xan

i yiPIs “ xJφKAira1
i , ...,a

n
i syiPI , by Theorem 1.3.2. And hence

hDpJφK
ś

iPI Airxa1
i yiPI, ...,xan

i yiPIsq “ 1 just in case hDpxJφKAira1
i , ...,a

n
i syiPIq “ 1, just in case

ti P I |Ai |ù φ ra1
i , ...,a

n
i su P D.

The two major theorems (Theorem 1.3.3 and Theorem 1.3.4) are interesting for the

following reasons. First, they show that what essentially makes Łoś Theorem hold on ul-

traproducts is the fact that it is the quotient model of a witnessing model. We see that

14For a detailed proof of Łoś Theorem, see, for example, Chang and Keisler [7, p. 217-219].
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Theorem 1.3.4 only holds on witnessing Boolean valued models, and if a B-valued model

A is not witnessing, then we only have the weakened theorem (Theorem 1.3.3) that requires

h : BÑC to be a complete homomorphism. In the special case when h : BÑ 2, h is then

the characteristic function of a complete ultrafilter on B. This is, indeed, a quite serious

limitation, as complete ultrafilters are usually rare. Also, a number of interesting results on

ultraproducts that follow from Łoś Theorem depend on the ultrafilters used to build these

ultraproducts being incomplete to certain degrees. Hence, these results cannot be gener-

alized to random Boolean valued models, but only to Boolean valued models that share

certain important features with two-valued models, like the feature of being witnessing, as

Łoś Theorem can only be generalized to the latter but not the former.

1.4 Theories and Boolean Valuations

1.4.1 Theories

We construct Boolean valued models as models for first order languages. It is natural, then,

to wonder about the relationship between first-order theories and Boolean valued models.

In this subsection we intend to answer these questions15.

Definition 1.4.1. Let T be a theory in a first order language L . Let A be a B-valued model

of L . A is a model of T just in case for any φ P T , JφKA “ 1B.

Definition 1.4.2. Let T be a theory and φ be a sentence in a first order language L . φ is a

Boolean-consequence of T , in symbols, T |ùB φ just in case for any Boolean valued model

A, if A is a model of T , then A is a model of φ .

Theorem 1.4.1. Let T be a theory and φ be a sentence in a first order language L . If

T $ φ , then T |ùB φ .

Proof. We can prove this by showing that all the axioms of first order logic have value 1 in

every Boolean valued model, and that the rules of inference always preserve truth.

15To my knowledge, the theorem that Boolean-valued models are sound and complete with respect to
first-order theories first appeared in [29].
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The proof that all the sentential axioms have value 1 is straightforward. For example,

(let x : Var Ñ A be an assignment), Jpφ ^ψq Ñ φKArxs “ 1 iff Jφ ^ψKArxs ď JφKArxs iff

JφKArxs[ JψKArxs ď JφKArxs. But the latter is true in every Boolean algebra. The cases of

the other sentential axioms are very similar.

That the identity axioms always have value 1 follows straightforwardly from the clauses

on the identity symbol in Def 1.2.8 and Theorem 1.2.1.

For the quantifier axioms, let φ and ψ be formulas. For the first axiom, suppose vi is a

variable that is not free in φ , we want to show that for any assignment x :VarÑA, J@vipφ Ñ

ψq Ñ pφ Ñ@viψqKArxs “ 1. This is the case iff J@vipφ ÑψqKArxs ď Jφ Ñ@viψKArxs. But

J@vipφ Ñ ψqKArxs “
ę

aPA

Jφ Ñ ψKArxpvi{aqs

“
ę

aPA

´JφKArxpvi{aqs\ JψKArxpvi{aqs

“
ę

aPA

´JφKArxs\ JψKArxpvi{aqs

“ ´ JφKArxs\
ę

aPA

JψKArxpvi{aqs

ď Jφ Ñ@viψKArxs

The third equation holds as vi is not free in φ . For the second quantifier axiom, let ψ be

obtained from φ by freely substituting each free occurrence of vi in φ by the term t, such

that no variable v j in t will occur bound in ψ at the place where it is introduced. We want

to show that for any assignment x : Var Ñ A, J@viφ Ñ ψKArxs “ 1. This is just in case

J@viφKArxs ď JψKArxs, which is just in case
Ű

aPAJφKArxpvi{aqs ď JψKArxs. But the latter

is always true, as JψKArxs “ JφKArxpvi{a1qs, where a1 “ JtKArxs P A.

Moving on to the rules of inferences. We start with Modus Ponens. Suppose both

JφKArxs and Jφ Ñ ψKArxs are 1. The latter means that JφKArxs ď JψKArxs, and since

JφKArxs “ 1, JψKArxs “ 1.

For Universal Generalization, we suppose for any assignment x, JφKArxs “ 1. Then it

follows straightforwardly that J@viφKArxs “
Ű

aPAJφKArxpvi{aqs “ 1.
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Corollary 1.4.1.1. Let φ be a theorem of first order logic. Then in any Boolean valued

model A, JφKA “ 1.

Theorem 1.4.2. Let T be a theory in L . T is consistent if and only if for some complete

Boolean Algebra B, T has a B-valued model A.

Proof. For the left to right direction, if T is consistent, then by the Completeness Theorem

on two-valued models, T has a two-valued model. But a two-valued model is a Boolean

valued model.

For the right to left direction, suppose T is inconsistent. Then for some theorem φ of

first order logic, T $ ␣φ . Assume for reductio that T has a B-valued model A, then by

Theorem 1.4.1, J␣φKA “ 1. Hence JφKA “ 0, but this contradicts Corollary 1.4.1.1.

Corollary 1.4.2.1. Let B be any complete Boolean algebra. A theory T has a B-valued

model just in case every finite subset of T has a B-valued model.

Theorem 1.4.3. Let T be a theory and φ be a sentence in a first order language L . If

T |ùB φ , then T $ φ .

Proof. Suppose T |ùB φ , then for any two-valued model A, if A is a model of T , then A is

a model of φ . By the soundness theorem on two-valued models16, T $ φ .

Corollary 1.4.3.1. Let T be a theory and φ be a sentence in a first order language L .

T |ùB φ if and only if T $ φ .

1.4.2 Boolean Valuations

When there are only two truth values, the notion of “theory" is sufficient for describing the

relationship between models and sentences. Given a two-valued model of a language L ,

the set of all sentences of L that are true in the model forms a complete theory in L . This

theory decides the value of all sentences of L in the model: if φ is a member of the theory,

then φ has value 1 in the model, and if φ is not a member of the theory, then φ has value 0

16See, for example, Chang and Keisler [7, p. 66].
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in the model. This theory, in a certain sense, provides a full description of the model given

that our expressive power is limited to L .

The situation is different, however, when we allow more than two truth values. Given a

B-valued model of L where B is a proper extension of 2, the theory in L that consists of

all sentences of L that are true in the model no longer decides the value of all sentences

of L in the model. A simple example to illustrate this point is as follows: Let A and A1

be two B-valued models of L , where B is the four element Boolean algebra t0, p,´p,1u

and L is the language tP,cu where P is a unary predicate and c is a constant. Let A“ tau

and A1 “ ta1u. Let JcKA “ a and JcKA
1

“ a1. Let JPKApaq “ p and JPKA
1

pa1q “ ´p. Then it

is easy to see that the set of sentences of L that have value 1 in A is the same as the set

of sentences of L that have value 1 in A1. But obviously not all sentences of L have the

same value in A and A1.

This result is hardly surprising. Knowing which sentences have the top value only

allows us to know the values of those sentences that have extreme values. When we only

have two values, this amounts to knowing the value of every sentence. But when we have

more than two values, knowing the values of those that have extreme values is not enough:

we still need to know the values of those that have intermediate values. And the latter is

simply not decided by the former.

Therefore, in a Boolean-valued setting, we need a notion stronger than the notion of

“theory", one that is sufficiently strong to fulfill the kind of jobs that the notion of “theory"

does in the setting of two-valued models: one that is able to, for example, provide a full

description of a model that decides the value of every sentence in the model. A natural

candidate, as we will introduce right now, is the notion of “Boolean-valuations".

Definition 1.4.3. Let B be a complete Boolean algebra. Let L be a first order language. A

Boolean-valuation SB in L is a set of pairs of the form xφ , py such that φ is a sentence of

L and p is an element of B. We say that B is the value range of the Boolean valuation SB.

Definition 1.4.4. Let A be a B-valued model of L . Let SB be a L -Boolean-valuation with

value range B.17 A is a model of SB just in case for any sentence φ PL , for any p P B, if

17Here and in the following, we use the superscript of a Boolean-valuation to indicate the value range of
the Boolean-valuation.
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xφ , py P SB, then JφKA “ p.

Intuitively, a Boolean-valuation assigns values of a Boolean algebra to certain sentences

of a language. When a pair xφ , py is in the Boolean-valuation SB, we can think of the

Boolean-valuation as “saying" that the sentence φ has value p. If a model A is a model of

SB, then figuratively, what SB says about those sentences that are mentioned in SB is what

actually is the case in A. We can already see why the notion of Boolean-valuations will

be useful for our purpose: a full description of a Boolean-valued model with respect to a

particular language, intuitively, is simply an assignment of values to all the sentences in the

language. But the latter, from a set-theoretic perspective, is just a collection of sentence-

value pairs, which is simply a Boolean-valuation given our definition.

Also, theories, in a natural sense, can be understood as special cases of Boolean-

valuations. Roughly, a theory T is a Boolean valuation T B “ txφ ,1y |φ P Tu. A model

A is a model of T just in case A is a model of T B. The notion of “Boolean-valuation" is a

natural generalization of the notion of “theory", in the context of Boolean valued models.

An important property of theories is consistency. Consistent theories, as we have seen,

precisely correspond to theories that have Boolean valued models. This is a nice synergy

between syntax and semantics. But what about Boolean-valuations? What does it mean for

a Boolean-valuation to be “consistent"? Are consistent Boolean-valuations precisely those

that have models? These are the questions that we will answer in the rest of the section.

Definition 1.4.5. Let SB be a Boolean-valuation of L . Let h : BÑ 2 be a homomorphism.

SB
h is the following set of sentences: for any φ PL , any p P B,

1. If xφ , py P SB and hppq “ 1, then φ P SB
h .

2. If xφ , py P SB and hppq “ 0, then ␣φ P SB
h .

3. Nothing else is in SB
h .

Definition 1.4.6. A Boolean-valuation SB is consistent if and only if for any homomor-

phism h : BÑ 2, SB
h is a consistent theory.
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Consistency of Boolean-valuations is thus defined in terms of consistency of theories.

Let T be a theory and let T B be the Boolean-valuation txφ ,1y |φ P Tu. It follows straight-

forwardly from Def 1.4.5 and Def 1.4.6 that T is consistent just in case T B is consistent in

the sense of Def 1.4.6, as every homomorphism takes 1B to 12.

The major result of this section will be that consistent Boolean-valuations are precisely

those that have models. To reach that result, though, we will have to prove a series of sub-

sidiary theorems first, which are also interesting on their own. In the following, whenever

we mention a Boolean-valuation, we always assume that it is a Boolean-valuation of the

language L . Also, occasionally, we will call a Boolean-valuation SB a B-valuation.

Definition 1.4.7. A Boolean-valuation S1B is a sub-valuation of SB if and only if S1B Ď SB

and the value range of S1B is the same as that of SB.

Theorem 1.4.4. If a Boolean-valuation SB is consistent , then every sub-valuation of SB is

consistent.

Proof. Let S1B be a sub-valuation of SB . Then for every homomorphism h : BÑ 2, S1B
h Ď SB

h .

If S1B is inconsistent, then S1B
h is inconsistent for some homomorphism h, and then SB

h will

be inconsistent.

Proposition 1.4.1. Let SB be a Boolean-valuation and let h : BÑ 2 be a homomorphism.

For any finite subset ∆Ď SB
h , for some finite sub-valuation S1B of SB, S1B

h “ ∆.

Theorem 1.4.5. A Boolean-valuation SB is consistent if and only if every finite sub-valuation

of SB is consistent.

Proof. The direction from left to right follows directly from Theorem 1.4.4.

For the other direction, let SB be an inconsistent B-valuation. Then for some homo-

morphism h : BÑ 2, SB
h is inconsistent. Hence some finite subset T of SB

h is inconsistent.

By Prop 1.4.1, for some finite sub-valuation T B of SB, T B
h “ T . Hence T B

h is inconsistent.

Hence T B is inconsistent.

Theorem 1.4.6. Let SB be a consistent B-valuation. For any sentence ψ P L , for some

r P B, SBYtxψ,ryu is consistent.

37



Proof. Let X “ th : BÑ 2 | h is a homomorphismu.

Let K “ t∆β | ∆β is a finite sub-valuation of SBu. Enumerate K by α where α “ |K|.

For each β ă α , ∆β is a finite sub-valuation of SB, and SB “
Ť

βăα
∆β .

For any β ă α , h P X , we form ∆
β

h according to Def 1.4.5. For any β ă α , h P X ,

∆
β

h Ď SB
h . Also for any h P X , t∆β

h | β ă αu “ t∆ | ∆ is a finite subset of SB
h u.

Fix an β ă α . Let ∆β “ txφ1, p1y, ...,xφk, pkyu for some k ă ω . For any h P X , let

qh
β
“ q1[ ...[qk, where for any 1ď iď k, qi “ pi if hppiq “ 1, and qi “´pi if hppiq “ 0.

To continue with the proof we need to prove two claims.

Claim 1.4.6.1. For any β ă α , h P X , hpqh
β
q “ 1.

Proof of the Claim. Let qh
β
“ q1 [ ...[ qk as defined above. Then for any 1 ď i ď k,

hpqiq “ 1. Hence hpqh
β
q “ 1.

■

Let J`

β
“ th j P X | ∆β

h j
$ ψu and J´

β
“ thk P X | ∆β

hk
$␣ψu.

Let q`

β
“

Ů

h jPJ`
β

qh j
β

and q´

β
“

Ů

hkPJ´
β

qhk
β

.

Claim 1.4.6.2. For some r P B, r ě
Ů

βăα

q`

β
and ´r ě

Ů

βăα

q´

β
.

Proof of the Claim. We only need to show that

ğ

βăα

q`

β
[

ğ

βăα

q´

β
“ 0

By infinite distribution, this is equivalent to

ğ

β ,γăα

pq`

β
[q´

γ q “ 0

That is, for any β ,γ ă α , q`

β
[q´

γ “ 0, i.e.

ğ

h jPJ`
β

qh j
β
[

ğ

hkPJ´
γ

qhk
γ “ 0
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Again by infinite distribution, this is equivalent to

ğ

h jPJ`
β

ğ

hkPJ´
γ

pqh j
β
[qhk

γ q “ 0

That is, for any h j P J`

β
, any hk P J´

γ , qh j
β
[qhk

γ “ 0.

Suppose not, then for some h j P J`

β
, hk P J´

γ , for some p‰ 0 P B, qh j
β
[qhk

γ “ p.

Since p‰ 0, there is some h P X such that hppq “ 1. Hence hpqh j
β
q “ 1, hpqhk

γ q “ 1.

But by definition of qh j
β

, then, for any pi such that some pair of the form xφi, piy P ∆β , if

h jppiq “ 1, then qh j
β
ď pi, and hence hppiq “ 1. And similarly, if h jppiq “ 0, then qh j

β
ď´pi,

and hence hp´piq “ 1, hppiq “ 0.

Hence for any pi such that some pair of the form xφi, piy P ∆β , h jppiq “ hppiq. Hence

by Def 1.4.5, ∆
β

h j
“ ∆

β

h . Similarly, ∆
γ

hk
“ ∆

γ

h

But since h j P J`

β
, ∆

β

h j
$ ψ; and since hk P J´

γ , ∆
γ

hk
$␣ψ . Hence ∆

β

h $ ψ , ∆
γ

h $␣ψ .

But ∆
β

h Ď SB
h , ∆

γ

h Ď SB
h . Hence SB

h $ ψ ^␣ψ . Hence SB
h is inconsistent. But this is a

contradiction as SB is assumed to be consistent.

■

Pick an r P B that witnesses Claim 1.4.6.2. Finally, we will show that SBYtxψ,ryu is

consistent.

Suppose it is not consistent. Then for some h P X , one of the two following situations

holds:

(a) hprq “ 1 and SB
h Ytψu is inconsistent.

(b) hprq “ 0 and SB
h Yt␣ψu is inconsistent.

We will show that both (a) and (b) lead to contradiction.

Assume (a). Since SB
h Ytψu is inconsistent, SB

h $ ␣ψ . Hence for some β ă α , ∆
β

h $

␣ψ . Hence h P J´

β
.

Hence ´r ě
Ů

γăα

q´
γ ě q´

β
“

Ů

hkPJ´
β

qhk
β
ě qh

β
.

But by Claim 1.4.6.1, hpqh
β
q “ 1. Hence hp´rq “ 1, hprq “ 0. Contradiction.
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Assume (b). Since SB
h Yt␣ψu is inconsistent, SB

h $ψ . Hence for some β ă α , ∆
β

h $ψ .

Hence h P J`

β
.

Hence r ě
Ů

γăα

q`
γ ě q`

β
“

Ů

h jPJ`
β

qh j
β
ě qh

β
.

But by Claim 1.4.6.1, hpqh
β
q “ 1. Hence hprq “ 1. Contradiction.

Definition 1.4.8. A Boolean-valuation SB is maximal if and only if for every sentence φ ,

there is some p P B such that xφ , py P SB.

Theorem 1.4.7. Every consistent Boolean-valuation is contained in some maximal consis-

tent Boolean-valuation.

Proof. Let SB be a consistent B-valuation. Let D = txφ , py | φ is a sentence of L , p P Bu.

Arrange all the pairs in D in a list:

xφ0, p0y,xφ1, p1y, ...,xφα , pαy, ... α ă |D|

such that the list associates in a one-one fashion an ordinal with each pair.

We shall form an increasing chain of consistent B-valuations:

SB
“ SB

0 Ď SB
1 Ď ...Ď SB

α Ď ... α ă |D|

If SBYtxφ0, p0yu is consistent, define SB
1 “ SBYtxφ0, p0yu. Otherwise, define SB

1 “ SB.

At the α-th stage, if α is a successor ordinal, define

$

’

&

’

%

SB
α “ SB

α´1Ytxφα´1, pα´1yu if SB
α´1Ytxφα´1, pα´1yu is consistent

SB
α “ SB

α´1 if otherwise

If α is a limit ordinal, define SB
α “

Ť

βăα

SB
β

. Let T B be the union of all the SB
α ’s.

Claim 1.4.7.1. T B is a consistent B-valuation.

Proof of the Claim. Suppose not. Then for some homomorphism h : BÑ 2, T B
h is incon-

sistent. Then for some finite subset tψ1,ψ2, ...,ψku Ď T B
h , tψ1,ψ2, ...,ψku is inconsistent.
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By Prop 1.4.1 , for some finite sub-valuation ∆B of T B, ∆B
h “ tψ1,ψ2, ...,ψku. Hence ∆B is

inconsistent. But since ∆B is finite, for some α ă |D|, ∆B Ď SB
α . But then SB

α is inconsistent.

Contradiction.

■

Claim 1.4.7.2. T B is maximal.

Proof of the Claim. Let φ be a sentence of L . By Theorem 1.4.6, for some p P B,

T BYtxφ , pyu is consistent. But then txφ , pyu will be added to T B at the stage when it

is enumerated.

■

Hence SB is contained in a maximal consistent B-valuation, namely T B.

When SB is a consistent B-valuation, it is easy to show that for any sentence φ , for any

p,q P B, if xφ , py and xφ ,qy are both in SB, then p “ q. This is because otherwise, there is

some homomorphism h : BÑ 2 such that hppq ‰ hpqq, and hence both φ and ␣φ will be in

SB
h , making SB inconsistent. Hence, in the following, when the context is clear, we will use

the term JφKS to denote the unique p such that xφ , py P SB.

With the help of Theorem 1.4.6 and Theorem 1.4.7 we are finally able to prove the

completeness theorem on Boolean-valuations.18

Theorem 1.4.8. Let L be a countable language. Let SB be a consistent Boolean-valuation

of L . Then SB has a B-valued model that is witnessing.

Proof. Let X “ th : BÑ 2 | h is a homomorphismu.

Let SB be a consistent scheme in L . Let C be a countable set of new constants (not

appearing in L ). Let L 1 = L YC.

Arrange all formulas with one free variable in L into a list:

φ0,φ1, ...,φi, ... iă ω

18Our proof of Theorem 1.4.8 is in the same spirit as Henkin’s proof of the completeness theorem on
two-valued first-order models.
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We now define an increasing sequence of B-valuations of L :

SB
“ SB

0 Ď SB
1 Ď ...Ď SB

i Ď ... iă ω

and a sequence d0, ...,di, ..., iă ω , of constants from C, in the following way:

Suppose SB
i has been defined. We first add to SB

i a pair of the form xDviφipviq, py such

that SB
i YtxDviφipviq, pyu is consistent. Theorem 1.4.6 guarantees the existence of such a

pair. Then, we let di be the first constant in C that has not appeared in SB
i YtxDviφipviq, pyu.

Since until SB
i we have only added finitely many pairs to SB, which contains no constant in

C, and each pair we have added at most contains finitely many new constants, there exists

such a new constant in C that hasn’t appeared. Then, we add to SB
i the pair xφipdiq, py.

Claim 1.4.8.1. SB
i`1 “ SB

i YtxDviφipviq, py,xφipdiq, pyu is consistent.

Proof of the Claim. Suppose not. Then for some h P X , pSB
i`1qh is inconsistent. There are

two situations:

(a) hppq “ 1. Then pSB
i qhYtDviφipviq,φipdiqu is inconsistent.

Then pSB
i qhYtDviφipviqu $ ␣φipdiq.

Since di does not appear on the left hand side, pSB
i qhYtDviφipviqu $ @vi␣φipviq.

But then pSB
i qhYtDviφipviqu is inconsistent, contradicting our choice of p.

(b) hppq “ 0. Then pSB
i qhYt␣Dviφipviq,␣φipdiqu is inconsistent.

Then pSB
i qhYt␣Dviφipviqu $ φipdiq.

Since di does not appear on the left hand side, pSB
i qhYt␣Dviφipviqu $ @viφipviq.

But then pSB
i qhYt␣Dviφipviqu is inconsistent, contradicting our choice of p.

■

Let T 1B “
Ť

iPω
SB

i . T 1B is consistent, as if not, then by Theorem 1.4.5, a finite sub-

valuation of T 1B will be in consistent, meaning that some SB
i will be inconsistent.

Since T 1B is a consistent B-valuation of L 1, by Theorem 1.4.7 it is contained in some

maximal consistent B-valuation of L 1. Let T B be such a B-valuation.

Let A“C. We will construct a B-valued model A of L 1 with universe A{C:
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1. Let c be a constant in L 1. Then JcKA “ di such that Jc “ diKT “ JDvipvi “ cqKT . (If

there is more than one di P A that satisfies this, then just pick a random one.)

2. Let P be an n-nary relation. For any xc1, ...,cny PAn, let JPpc1, ...,cnqKA“ JPpc1, ...,cnqKT .

3. For the identity symbol, for any di,d j P A, let Jdi “ d jKA “ Jdi “ d jKT .

Claim 1.4.8.2. A is a B-valued model.

Proof of the Claim. For any di,d j,dk P A,

(1) Jdi “ diKA “ 1.

Suppose not. Then for some h P X , hpJdi “ diKAq “ 0. Then di ‰ di P T B
h , making T B

h

inconsistent.

(2) Jdi “ d jKA “ Jd j “ diKA

Suppose not. Then for some h P X , hpJdi “ d jKAq ‰ hpJd j “ diKAq. Then (without

loss of generality) di “ d j P T B
h and d j ‰ di P T B

h , making T B
h inconsistent.

(3) Jdi “ d jKA[ Jd j “ dkKA ď Jdi “ dkKA

Suppose not. Then for some h P X , hpJdi “ dkKAq “ 0 but hpJdi “ d jKA [ Jd j “

dkKAq “ 1. Hence hpJdi “ d jKAq “ 1 and hpJd j “ dkKAqq “ 1. Hence di “ d j,d j “

dk P T B
h but di ‰ dk P T B

h , making T B
h inconsistent.

For any n-nary relation P, for any xc1, ...,cny,xc1
1, ...,c

1
ny P An,

JPpc1, ...,cnqKA[p
ę

1ďiďn

Jci “ c1
iK
A
q ď JPpc1

1, ...,c
1
nqK

A

For simplicity we only prove for the case when n “ 1. The proofs for the cases when

ną 1 are very similar.

Suppose not. Then for some h P X , hpJPpc1
1qK

Aq “ 0 but hpJc1 “ c1
1K

A[ JPpc1qKAq “ 1.

Hence hpJc1“ c1
1K

Aq “ 1 and hpJPpc1qKAq “ 1. Hence c1“ c1
1,Ppc1q P T B

h but␣Ppc1
1q P T B

h ,

making T B
h inconsistent.

■
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Finally we will show that A is a model of T B, i.e. for any φ of L 1, JφKA “ JφKT . We

prove this by an induction on the complexity of φ .

Atomic cases:

(a) Jc “ c1KA “ Jdi “ d jKT where Jc “ diKT “ JDvipc “ viqKT “ 1 and Jc1 “ d jKT “

JDvipc1 “ viqKT “ 1.

We just need to show that p“ Jdi “ d jKT “ Jc“ c1KT “ q.

Suppose not. Then for some h P X , hppq ‰ hpqq. Hence (WLOG) di “ d j P T B
h ,

c‰ c1 P T B
h . But c“ di,c1 “ d j P T B

h . T B
h is inconsistent. Contradiction.

(b) For the atomic cases of relations, again, we just show it for unary relations. The cases

of other n-nary relations where ną 1 are very similar.

JPpcqKA “ JPpdiqKT where Jc“ diKT “ JDvipc“ viqKT “ 1.

We just need to show that p“ JPpdiqKT “ JPpcqKT “ q.

Suppose not. Then for some h PX , hppq ‰ hpqq. Hence (WLOG) Ppdiq P T B
h ,␣Ppcq P

T B
h . But c“ di P T B

h . T B
h is inconsistent. Contradiction.

Inductive cases:

(a) φ “␣ψ .

JφKA “ J␣ψKA “´JψKA “´JψKT
“ J␣ψKT

The last equation holds for the following reason. Suppose not, and suppose JψKT “ p

and J␣ψKT “ q‰´p. Then for some h P X , hp´pq ‰ hpqq. WLOG we can assume

hp´pq “ 1 and hpqq “ 0. Then hppq “ 0. Then ␣ψ P T B
h and ␣␣ψ P T B

h , making T B
h

inconsistent. Contradiction.

(b) φ “ ψ1^ψ2.

Jψ1^ψ2KA “ Jψ1KA[ Jψ2KA “ Jψ1KT
[ Jψ2KT

“ Jψ1^ψ2KT
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The last equation holds for the following reasons. Suppose not, and suppose Jψ1KT [

Jψ2KT “ p ‰ q “ Jψ1 ^ψ2KT . Then for some h P X , hppq “ 1 and hpqq “ 0, or

hppq “ 0 and hpqq “ 1. Suppose hppq “ 1 and hpqq “ 0. Then ψ1,ψ2 P T B
h , but

␣pψ1^ψ2q P T B
h , making T B

h inconsistent. On the other hand, suppose hppq “ 0 and

hpqq “ 1. Then ψ1^ψ2 P T B
h . Then both hpJψ1KT q and hpJψ2KT q have to be 1, as

otherwise␣ψ1 or␣ψ2 would be in T B
h , which would make T B

h inconsistent. But then

hpJψ1KT [ Jψ2KT q “ hppq has to be 1. Contradiction.

(c) φ “ ψ1_ψ2.

Jψ1_ψ2KA “ Jψ1KA\ Jψ2KA “ Jψ1KT
\ Jψ2KT

“ Jψ1_ψ2KT

The last equation holds for the following reasons. Suppose not, and suppose Jψ1KT \

Jψ2KT “ p ‰ q “ Jψ1 _ψ2KT . Then for some h P X , hppq “ 1 and hpqq “ 0, or

hppq “ 0 and hpqq “ 1. Suppose hppq “ 1 and hpqq “ 0. Then ␣pψ1_ψ2q P T B
h , and

hence both hpJψ1KT q and hpJψ2KT q have to be 0m as otherwise ψ1 or ψ2 would be

in T B
h , which would make T B

h inconsistent. But then hpJψ1KT \ Jψ2KT q “ hppq has

to be 0. Contradiction. On the other hand, suppose hppq “ 0 and hpqq “ 1. Then

hpJψ1KT q “ 0,hpJψ2KT q “ 0. Hence ␣ψ1,␣ψ2 P T B
h , but ψ1_ψ2 P T B

h , making T B
h

inconsistent.

(d) φ “ Dviψpviq.

Let θ pviq be any formula with only vi free. Then it is easy to show that for any di P A,

Jθ pviqKArdis “ Jθ pdiqKA, as JdiKA is some d j P A such that Jdi “ d jKA “ 1. Hence,

JDviψpviqKA “
ğ

diPA

JψpviqKArdis “
ğ

diPA

JψpdiqKA “
ğ

diPA

JψpdiqKT

We need to show that
Ů

diPA
JψpdiqKT “ JDviψpviqKT .

For theď direction: We just need to show that for any di PA, JψpdiqKT ď JDviψpviqKT .

Suppose not, and suppose for some di P A, JψpdiqKT “ p and JDviψpviqKT “ q and
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p ę q. Then p[´q ‰ 0. Then for some h P X , hpp[´qq “ 1. Then hpqq “ 0, and

hence ␣Dviψpviq P T B
h . But ψpdiq P T B

h , making T B
h inconsistent.

For the ě direction: by the setup of T 1B (hence of T B), at some stage of the sequence

(say, the ith stage), both xDviψpviq, py and xψpdiq, py are added to T 1B, for some p PB.

Hence for some di P A, JDviψpviqKT “ JψpdiqKT .

Finally obviously A is witnessing.

Corollary 1.4.8.1 (Completeness). Let L be a countable language. Let SB be a consistent

Boolean-valuation of L . Then SB has a B-valued model.

Theorem 1.4.9 (Soundness). Let SB be a Boolean-valuation that has a B-valued model,

then SB is consistent.

Proof. Let A be a B-valued model of SB. Suppose SB is inconsistent, then for some homo-

morphism h : BÑ 2, SB
h is inconsistent. Then, some finite subset ∆h Ď SB

h is inconsistent.

Let ∆h “ tφ1, ...,φnu. Let φ “ φ1^ ...^ φn. Clearly φ is a contradiction. Hence by

Corollary 1.4.1.1, JφKA “ 0.

Let 1ď iď n. Consider φi. Since φi P ∆h Ď SB
h , there are two possibilities:

(1) for some pi P B, xφi, piy P SB, and hppiq “ 1;

(2) for some pi P B, xψi, piy P SB, and hppiq “ 0, φi “␣ψi.

Suppose (1). Then since A is a model of SB, JφiKA “ pi. hpJφiKAq “ hppiq “ 1.

Suppose (2). Then since A is a model of SB, JψiKA “ pi. JφiKA “ J␣ψiKA “ ´pi.

hpJφiKAq “ hp´piq “ ´hppiq “ ´0“ 1.

In either case, hpJφiKAq “ 1.

Hence hpJφKAq “ hpJφ1^ ...^φnKAq “ 1[ ...[1“ 1.

Hence hpJφKAq ‰ 0. Contradiction.

Corollary 1.4.9.1. Let L be a countable language. A Boolean-valuation SB of L is con-

sistent if and only if it has a B-valued model.
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Corollary 1.4.9.2 (Compactness). Let L be a countable language. A Boolean-valuation

SB of L has a B-valued model if and only if every finite sub-valuation of SB has a B-valued

model.

Corollary 1.4.9.3 (Downward-Löwenheim-Skolem). Let L be a countable language. If

a Boolean-valuation SB of L has a B-valued model, then it has a countable witnessing

B-valued model.

1.5 Relationships Between Models

Two-valued models can stand in different relationships with one another: for example, a

model can be isomorphic to another, a model can be a submodel of another, a model can

be a elementary submodel of another, etc. These concepts are the cornerstone of the theory

of two-valued models. The primary goal of this section is to generalize these concepts to

Boolean-valued models.

1.5.1 Duplicate Resistant Models

Before we move on to generalize these concepts, there is one important complication that I

have to resolve first, which will be relevant to our later purposes. Astute readers might have

already noticed that the identity symbol is interpreted somewhat abnormally in Boolean-

valued models. The main abnormality, of course, is that a Boolean-valued model might

“think" that two objects in its domain are identical to an intermediate degree between 0 and

1. We will postpone the discussion of identity in Boolean-valued models to Section 1.8.

For current purposes, we will simply focus on the following minor yet interesting feature of

Boolean-valued models: our definition of Boolean-valued models (Def 1.2.8) allows there

to be “duplicates" in the models - that is, two different objects a,b in the domain such that

the value of a“ b is 1 in the model.

The existence of duplicates in a model, in a natural sense, is both harmless and useless.

To illustrate this point, we first introduce a new notion.
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Definition 1.5.1. A B-valued mode A of L is duplicate resistant just in case for any a,b P

A, if Ja“ bKA “ 1, then a and b are the same element.

In other words, duplicate resistant models are those that disallow duplicates. The next

results show that any Boolean-valued model is practically equivalent to a duplicate resistant

model.

Definition 1.5.2. Let A be a B-valued model of L . Let h : BÑ B be the identity function

on B. The duplicate resistant copy of A, Ad , is the B-valued quotient model Ah of L .

Figuratively, the duplicate resistant copy of a model A “collapses" all duplicates into

one object and keeps the remaining of the model the same. The duplicate resistant copy of

a model is practically equivalent to the original model, in the following sense.

Theorem 1.5.1. Let A be a B-valued model of L , and let Ad be its duplicate resistant copy,

as defined in Def 1.5.2. Given x : VarÑ Ad an arbitrary assignment on Ad , let y : VarÑ A

be an assignment on A such that for any vi PVar, ypviq P xpviq. Then, for any formula φ ,

JφKA
d
rxs “ JφKArys

Proof. The proof is a straightforward application of Theorem 1.3.3, since the identity func-

tion h : BÑ B is a complete homomorphism.

In other words, the value of any formula under some assignment x in the original model

is the same as the value of the formula in the duplicate resistant copy, when we assign

instead of objects equivalence classes of objects to the variables. As a consequence, all

sentences have the same value in the duplicate resistant copy.

We have argued that the existence of duplicates is harmless and useless, from a technical

point of view19. This is mostly true, except that the existence of duplicates does create some

technical difficulty when we intend to generalize concepts like isomorphism. Consider a
19The reason why I do not block the existence of duplicates in the definition of Boolean-valued models, as

one does in the case of two-valued models, is that the possibility of having duplicates might have interesting
applications to certain philosophical issues. Models are relative to languages. And sometimes the language
under discussion might have limited expressive power in that it cannot distinguish between two potentially
different objects. If we understand “=" as meaning “indistinguishable", then, we would want to allow there
to be objects that are “duplicates" of each other, in the sense defined above.
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model A with a finite domain and consider adding to A an new object b such that b is added

as a duplicate of an original object a. Call the latter model A1. How are A and A1 related?

Intuitively, they should be practically the same model. For any A-assignment x, for any

A1-assignment x1 we get from x by replacing some occurrences of a with b, for any formula

φ , JφKArxs will always be the same as JφKA
1

rx1s. The addition of b is null in the sense that it

makes no contribution to the evaluation of formulas. We would want our theory to indicate

that the two models are isomorphic.

Nevertheless, if we generalize the concept of isomorphism in the most straightforward

way, A and A1 will not be isomorphic. This is because, in the two-valued framework, an

isomorphism between models is a bijection, and there is simply no bijection between the

domains of the two models.

Here’s another example to illustrate the same point. Let A and A1 be two models that

are completely identical, and let there be two duplicates a,b in their domains. Now add a

new constant c to the language and let JcKA “ a and JcKA
1

“ b. Intuitively, the expanded

models A and A1 are still practically the same model. But under the most straightforward

generalization of the concept of submodel, A will not be a submodel of A1 (or vice versa),

simply because JcKA ‰ JcKA
1

.

One natural solution to these difficulties is to first define the notions of isomorphism,

submodel, etc. on duplicate resistant models, in the most straightforward way, and then

define isomorphism, etc. on arbitrary Boolean-valued models using the former. For exam-

ple, we can define two Boolean-valued models as isomorphic just in case their duplicate

resistant copies are isomorphic. This is going to be the method that we will adopt in the

following subsections, as I believe that under this method we have the most natural and

simple definitions for concepts like isomorphism. Alternative methods are available, of

course: for example, we can give a definition of isomorphism under which isomorphisms

do not have to be bijections. In the end, which method we adopt is more of a matter of taste

than a matter of mathematical significance.
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1.5.2 Isomorphism, Submodel, and Diagram

In this and the next two subsections, for reasons we have given in the previous subsection,

we will assume all Boolean-valued models are duplicate resistant. Also, whenever we do

not specify otherwise, we assume all models are models of a first-order language L .

Definition 1.5.3 (Isomorphism). Let A1 and A2 be two B-valued models. A bijection f :

A1 Ñ A2 is an isomorphism just in case: (let ti be a term)

1. For any a1,a2 P A1, Jt1 “ t2KA1ra1,a2s “ Jt1 “ t2KA2r f pa1q, f pa2qs.

2. Let P be an n-nary predicate. For any xa1, ...,any P An
1, JPpt1, ..., tnqKA1ra1, ...,ans

“ JPpt1, ..., tnqKA2r f pa1q, ..., f panqs.

3. Let c be a constant. JcKA2 “ f pJcKA1q.

When there exists an isomorphism from A1 to A2, we say that A1 and A2 are isomor-

phic.

Definition 1.5.4 (Submodel). Let A1 and A2 be two B-valued models. Let A1 Ď A2. A1 is

a submodel of A2 just in case: (let ti be a term)

1. For any a1,a2 P A1, Jt1 “ t2KA1ra1,a2s “ Jt1 “ t2KA2ra1,a2s.

2. Let P be an n-nary predicate. For any xa1, ...,any P An
1, JPpt1, ..., tnqKA1ra1, ...,ans

“ JPpt1, ..., tnqKA2ra1, ...,ans.

3. Let c be a constant. JcKA2 “ JcKA1 .

Definition 1.5.5 (Diagram). Let A be a B-valued model of L . Let LA “L Ytca | a P Au,

where tca | a P Au is a new set of constants, one for each a P A. Expand A to a model of

LA (call it A˚) such that for all a P A, JcaKA
˚

“ a.

The diagram of A is the B-valuation SB which consists of all and only pairs of the form

xφ ,JφKA
˚

y where φ is an atomic sentence or the negation of an atomic sentence of LA and

JφKA
˚

is the value of φ in A˚.

Theorem 1.5.2. Let A1 and A2 be two B-valued models. The following statements are

equivalent:
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(1) A1 is isomorphic to a submodel of A2.

(2) A2 can be expanded to a model of the diagram of A1.

Proof. (1)ñ (2). Let f : A1 Ñ A3 Ď A2 be an isomorphism, where A3 is a submodel of A2.

Expand A2 to a model of LA1 (call it A1
2) as follows: for any a P A1, let JcaKA2 “ f paq.

We will show that A1
2 is a model of the diagram of A1. Let A˚

1 be the standard expansion

of A1 to LA1 .

Let φpca1, ...,canq be an atomic sentence or the negation of an atomic sentence of LA1 ,

where ca1, ...,can are all the constants of LA1zL that appear in φ . Let φ 1pv1, ...,vnq be the

formula of L that we get by substituting ca1 in φ with v1, ..., can in φ with vn, and we

assume that none of v1, ...,vn appear in φpca1, ...,canq. Then

Jφpca1, ...,canqK
A˚
1 “ Jφpv1, ...,vnqKA1ra1, ...,ans

“ Jφpv1, ...,vnqKA3r f pa1q, ..., f panqs

“ Jφpv1, ...,vnqKA2r f pa1q, ..., f panqs

“ Jφpca1, ...,canqK
A1
2

The second equation holds since A1 is isomorphic to A3. The third equation holds since

A3 is a submodel of A2.

(2)ñ (1). Let A1
2 be an expansion of A2 to LA1 such that A1

2 is a model of the diagram

of A1.

Construct f : A1ÑA2 as follows: for any a PA1, f paq“ JcaKA
1
2 . Let A3 be the submodel

of A2 whose domain is generated by f rA1s.

We will show that the domain of A3 is precisely f rA1s. Let c be a constant in L .

And suppose JcKA1 “ a P A1. Then Jc “ caKA
˚
1 “ 1 and therefore Jc “ caKA

1
2 “ 1. Since

A2 is duplicate resistant, A1
2 is also duplicate resistant. Hence JcKA

1
2 “ JcaKA

1
2 . Hence

JcKA3 “ f paq P f rA1s.

We will next show that f : A1 Ñ A3 is an isomorphism. We first show that f is a

bijection. Trivially it is surjective. Suppose f pa1q “ f pa2q, then Jca1K
A1
2 “ Jca2K

A1
2 and

therefore Jca1 “ ca2K
A1
2 “ 1. Since A1

2 is a model of the diagram of A1, Jca1 “ ca2K
A˚
1 “ 1.
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Hence Ja1 “ a2KA1 “ 1. Since A1 is duplicate resistant, a1 “ a2. Hence f is injective.

Let φpv1, ...,vnq be an atomic formula of L with free variables v1, ...,vn. Let a1, ...,an P

A1. Then

Jφpv1, ...,vnqKA1ra1, ...,ans “ Jφpca1, ...,canqK
A˚
1

“ Jφpca1, ...,canqK
A1
2

“ Jφpv1, ...,vnqKA2r f pa1q, ..., f panqs

“ Jφpv1, ...,vnqKA3r f pa1q, ..., f panqs

The second equation holds because A1
2 is a model of the diagram of A1. The third equation

holds by the definition of f . The fourth equation holds because A3 is a submodel of A2.

Let c be a constant in L . Then using the same reasoning as above, JcKA3 “ JcKA
1
2 “

JcaKA
1
2 “ f paq “ f pJcKA1q, where JcKA1 “ a P A1.

Definition 1.5.6 (Homomorphism). Let A1 and A2 be two B-valued models. A surjection

f : A1 Ñ A2 is a homomorphism just in case: (let ti be a term)

1. For any a1,a2 PA1, if Jt1“ t2KA1ra1,a2s “ p (where p PB), then Jt1“ t2KA2r f pa1q, f pa2qs

= p.

2. Let P be an n-nary predicate. For any xa1, ...,any P An
1, if JPpt1, ..., tnqKA1ra1, ...,ans “

p, then = JPpt1, ..., tnqKA2r f pa1q, ..., f panqs “ p.

3. Let c be a constant. JcKA2 “ f pJcKA1q.

When there exists a homomorphism from A1 to A2, we say that A1 and A2 are homo-

morphic.

Definition 1.5.7 (Positive Diagram). Let A be a B-valued model of L . Let LA “ L Y

tca | a P Au, where tca | a P Au is a new set of constants, one for each a P A. Expand A to a

model of LA (call it A˚) such that for all a P A, JcaKA
˚

“ a.
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The positive diagram of A is the B-valuation SB which consists of all and only pairs of

the form xφ ,JφKA
˚

y where φ is an atomic sentence of LA and JφKA
˚

is the value of φ in

A˚.

Theorem 1.5.3. Let A1 and A2 be two B-valued models. The following statements are

equivalent:

(1) A1 is homomorphic to a submodel of A2.

(2) A2 can be expanded to a model of the positive diagram of A1.

Proof. The same proof as that of Theorem 1.5.2 with minor adjustments.

1.5.3 Elementary Submodel and Downward Löwenheim-Skolem

Definition 1.5.8 (Elementary Submodel). Let A1 and A2 be two B-valued models of L .

Let A1 Ď A2. A1 is an elementary submodel of A2 just in case: A1 is a submodel of A2, and

for any formula φpv1, ...,vnq of L , any a1, ...,an P A1,

Jφpv1, ...,vnqKA1ra1, ...,ans “ Jφpv1, ...,vnqKA2ra1, ...,ans

Theorem 1.5.4. Let A1 be a witnessing B-valued model and A2 be a B-valued model. A1is

an elementary submodel A2 if and only if A1 is a submodel of A2, and for any formula

Dvφpv,v1, ...,vnq of L , any a1, ...,an P A1, for some a P A1,

JDvφpv,v1, ...,vnqKA1ra1, ...,ans “ Jφpv,v1, ...,vnqKA2ra,a1, ...,ans

Proof. The left to right direction is proved by directly applying Def 1.5.8 and the fact that

A1 is witnessing.

The right to left direction is proved by induction on the complexity of φ . The only

non-trivial step is the inductive step on existential formulas. Consider Dvφpv,v1, ...,vnq and

a1, ...,an P A1. Obviously JDvφKA1ra1, ...,ans ď JDvφKA2ra1, ...,ans. For the other direction,
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for some a P A1,

JDviφKA2ra1, ...,ans “ JφKA2ra,a1, ...,ans

“ JφKA1ra,a1, ...,ans

ď JDviφKA1ra1, ...,ans

Definition 1.5.9 (Elementary Diagram). Let A be a B-valued model of L . Let LA “

L Ytca | a P Au, where tca | a P Au is a new set of constants, one for each a P A. Expand

A to a model of LA (call it A˚) such that for all a P A, JcaKA
˚

“ a.

The elementary diagram of A is the B-valuation SB which consists of and only of all

pairs of the form xφ ,JφKA
˚

y where φ is a sentence of LA and JφKA
˚

is the value of φ in

A˚.

Theorem 1.5.5. Let A1 and A2 be two B-valued models. The following statements are

equivalent:

(1) A1 is isomorphic to an elementary submodel of A2.

(2) A2 can be expanded to a model of the elementary diagram of A1.

Proof. (1) ñ (2). Similar proof as that of Theorem 1.5.2, with the minor adjustment that

we now let φ be a random sentence instead of just an atomic sentence or the negation of an

atomic sentence.

(2) ñ (1). The same construction we used in the proof of Theorem 1.5.2 gives us a

submodel A3 of A2 that is isomorphic to A1.

We only need to show that A3 as so defined is an elementary submodel of A2. Let

φpv1, ...,vnq be a formula of L with free variables v1, ...,vn. Let f pa1q, ..., f panq P A3.
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Then

Jφpv1, ...,vnqKA3r f pa1q, ..., f panqs “ Jφpv1, ...,vnqKA1ra1, ...,ans

“ Jφpca1, ...,canqK
A˚
1

“ Jφpca1, ...,canqK
A1
2

“ Jφpv1, ...,vnqKA2r f pa1q, ..., f panqs

The first equation holds because f is an isomorphism. The second equation holds by the

definition of A˚
1. The third equation holds because A1

2 is a model of the elementary diagram

of A1. The fourth equation holds by the definition of f .

When A1 is isomorphic to an elementary submodel of A2, we say that A1 is elementarily

embedded in A2.

In Section 1.4 we proved a weaker version of the generalized Downward-Löwenheim-

Skolem Theorem (Corollary 1.4.9.3). With the notion of elementary submodels we can

now prove a stronger version of this theorem. Again, we assume that L is a countable

language.

Theorem 1.5.6 (Downward-Löwenheim-Skolem). Let A be a B-valued model of L that

is witnessing. Then A has a countable elementary submodel.

Proof. Let φ be an arbitrary sentence of L that is of the form Dvψ . Since A is witnessing,

there is some a P A such that JDvψKA “ JψKAras. Pick such a witness for each sentence

of the form Dvψ . Let X Ď A be the set of all picked witnesses. Construct an increasing

sequence:

X “ X0 Ď X1 Ď X2 Ď ...Ď Xi Ď ..., iă ω

Given Xi. Let Dvψpv,v1, ...,vnq be a formula with v1, ...,vn free, and let a1, ...,an PXi. Again,

since A is witnessing, there is some a P A such that JDvψKAra1, ...,ans “ JψKAra,a1, ...,ans.

We pick a witness for each formula of the form Dvψpv,v1, ...,vnq and a1, ...,an P Xi. Let

Xi`1 be X union all the picked witnesses.
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Let A1 “
Ť

iăω
Xi. Since L is countable, X and each Xi is countable. Hence A1 is also

countable. Form a model A1 with universe A1:

1. For any a,b P A1, Ja“ bKA
1

“ Ja“ bKA.

2. Let P be an n-ary relation. For any a1, ...,an P A1, JPpa1, ...,anqKA
1

“ JPpa1, ...,anqKA.

3. Let c be a constant. Let JcKA
1

be some a P A1 such that Jvi “ cKAras “ JDvivi “ cKA.

Such an a exists by the setup of A1.

It is easy to see that A1 is a submodel of A. For any constant c, JJcKA
1

“ JcKA
1

KA “ 1 by the

choice of JcKA
1

, and since A is duplicate resistant, JcKA
1

“ JcKA.

We will show that A1 is also an elementary submodel of A. Let Dvψpv,v1, ...,vnq be a

formula with v1, ...,vn free, and let a1, ...,an P A1. Since a1, ...,an P A1 “
Ť

iăω
Xi, for some

iăω , a1, ...,an PXi. Hence for some a PXi`1ĎA1, JDvψKAra1, ...,ans “ JψKAra,a1, ...,ans.

By Theorem 1.5.4, A1 is an elementary submodel.

Corollary 1.5.6.1. If a B-valuation SB has a witnessing B-valued model A, then it has a

countable witnessing B-valued model that is an elementary submodel of A.

The stronger Downward-Löwenheim-Skolem Theorem is a natural generalization of

the homonymous theorem on two-valued models, as every two-valued model is witnessing.

Interestingly, the requirement that A is witnessing in the stronger Downward-Löwenheim-

Skolem Theorem cannot be dropped, as the theorem no longer holds when A is not neces-

sarily witnessing. This result, I think, is another example of the fact that certain features of

two-valued models can only be generalized to witnessing Boolean-valued models, but not

to all Boolean-valued models.

Theorem 1.5.7. There exists a Boolean-valued model A that does not have a countable

elementary submodel.

Proof. Let B be a complete Boolean algebra such that from some DĎ B, |D| “ ω1 and for

any C Ď D such that |C| ă ω1,
Ů

C ‰
Ů

D“ p. Let D“ tpα | α ă ω1u.
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Let |A| “ ω1. Let A “ taα | α ă ω1u. Let P be a unary predicate. (Predicates of other

arities can work as well.) Let A be such that for any α ăω1, JPpaαqKA“ pα . The obviously

JDvPpvqKA “
Ů

αăω1
pα “

Ů

D“ p. And no countable submodel of A is such that the value

of DvPpvq in it is p.

1.5.4 Elementary Equivalence and Elementary Chain

Definition 1.5.10 (Elementary Equivalence). Let A1 and A2 be two B-valued models of L .

A1 and A2 are elementarily equivalent just in case for any sentence φ in L , JφKA1 “ JφKA2 .

Theorem 1.5.8. Let tAi | i P Iu be a set of witnessing B-valued models such that for any

i, j P I, Ai and Aj are elementarily equivalent. Then there exists a B-valued model A such

that for any i P I, Ai is elementarily embedded in A.

Proof. For each Ai, let SB
i be the elementary diagram of Ai. We assume that if i ‰ j, then

tca | a P AiuXtca | a P A ju “H. Let
Ť

iPI SB
i be the union of all the elementary diagrams.

Claim 1.5.8.1.
Ť

iPI
SB

i is a consistent B-valuation.

Proof of the Claim. By Theorem 1.4.5, we only need to show that every finite sub-valuation

of
Ť

iPI SB
i is consistent. Let ∆B “ txφ1pc1q, p1y, ...,xφnpcnq, pnyu be a finite sub-valuation

of
Ť

iPI SB
i . WLOG we assume that for any i ď k ď n, xφkpckq, pky P SB

k , and ck is the only

constant from tca | a P Aku that appears in φk.

Assume for reductio that ∆B is inconsistent. Then for some homomorphism h : BÑ 2,

∆B
h is inconsistent.

Suppose ∆B
h “ tθ1pc1q, ...,θ pcnqu such that θk “ φk if hppkq “ 1 and θk “␣φk if hppkq “

0. Then θ1pc1q $ ␣θ2pc2q_ ..._␣θnpcnq.

Since xφ1pc1q, p1y P SB
1 , θ pc1q P pSB

1 qh. Hence pSB
1 qh $␣θ2pc2q_ ..._␣θnpcnq. And by

assumption c2, ...,cn do not appear in pSB
1 qh, hence pSB

1 qh $ @vi␣θ2pviq_ ..._@vi␣θnpviq.

By assumption, @vi␣θ2pviq, ...,@vi␣θnpviq are sentences of L . Hence for each 2ď kď

n, for some qk P B, x@vi␣θkpviq,qky P SB
1 . Also since SB

1 is consistent (as it has a B-valued

model, namely A1), qk is unique.
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But all the Ai’s are elementarily equivalent. Hence for any i P I, for any 2 ď k ď n,

x@vi␣θkpviq,qky P SB
i . And as a result, for any i P I, x@vi␣θ2pviq_ ..._@vi␣θnpviq,q2\

...\qny P SB
i .

Now since pSB
1 qh$@vi␣θ2pviq_ ..._@vi␣θnpviq, and since SB

1 is consistent, hpq2\ ...\

qnq “ 1. Hence for some 2ď k ď n, hpqkq “ 1.

Hence @vi␣θkpviq P pSB
k qh. But θkpckq, by assumption, is also in pSB

k qh. Hence pSB
k qh is

consistent. But SB
k is the elementary diagram of Ak, and therefore it has a B-valued model

and should be consistent. Contradiction.

■

We showed that
Ť

iPI SB
i is consistent. By Corollary 1.4.8.1, it has a B-valued model

A1. Let A be the reduct of A1 to L . By Theorem 1.5.5, for any i P I, Ai is elementarily

embedded in A.

For the next theorem, we identify any Boolean algebra with its isomorphic copies.

Theorem 1.5.9. Let A be a B-valued model. Let I be an arbitrary index set. Then A is

elementarily embedded in
ś

iPI A.

Proof. Let A1 be the submodel of
ś

iPI A generated by A1 “ txayiPI | a P Au. It is easy to

show that the domain of A1 is precisely A1, since for any constant c, JcK
ś

iPI A “ xJcKAyiPI P

A1.

We can show that A1 is an elementary submodel of
ś

iPI A by induction on the com-

plexity of φ . The only non-trivial case is the inductive step on existential formulas. Let
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φpv,v1, ...,vnq be a formula with v,v1, ...,vn free:

JDvφKA
1

rxa1yiPI, ...,xanyiPIs “
ğ

xbyiPIPA1

JφKA
1

rxbyiPI,xa1yiPI, ...,xanyiPIs

“
ğ

xbyiPIPA1

JφK
ś

iPI
A
rxbyiPI,xa1yiPI, ...,xanyiPIs

“
ğ

xbyiPIPA1

xJφKArb,a1, ...,ansyiPI

“ x
ğ

bPA

JφKArb,a1, ...,ansyiPI

“ xJDvφKAra1, ...,ansyiPI

“ JDvφK
ś

iPI
A
rxa1yiPI, ...,xanyiPIs

The second equation holds by inductive hypothesis. The third equation holds by Theorem

1.3.2. The fourth equation holds by Def 1.3.1.

Finally, by Def 1.3.1, it is easy to see that B is isomorphic to the Boolean algebra

B1 “ txpyiPI P
ś

iPI B | p P Bu, and that the latter is a complete subalgebra of
ś

iPI B.

Moreover, for any formula φpv1, ...,vnq, any xa1yiPI, ...,xanyiPI ,

JφKA
1

rxa1yiPI, ...,xanyiPIs “ JφK
ś

iPI
A
rxa1yiPI, ...,xanyiPIs

“ xJφKAra1, ...,ansyiPI P B1

And hence although the value range of A1 is officially
ś

iPI B, only values from B1 will

actually be made used of. Hence A1, in a natural sense, really has B1 as its value range.

Let f : A Ñ A1 be such that for any a P A, f paq “ xayiPI . It is easy to show that f is an

isomorphism.

For the next theorem we need the following lemma.

Lemma 1.5.9.1. Let I be an index set. For any i P I, let Ai be a Bi-valued model that is

witnessing. Then
ś

iPI Ai is a witnessing model.
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Proof. For simplicity we ignore the parameters. Let φpviq be a formula. Then JDviφK
ś

iPI Ai “

xJDviφKAiyiPI , by Theorem 1.3.2. Since for any i P I, Ai is witnessing, for some ai P Ai,

JDviφKAi “ JφKAirais. Pick such an ai for each Ai. Then xJDviφKAiyiPI “ xJφKAiraisyiPI “

JφK
ś

iPI AirxaiyiPIs.

Theorem 1.5.10. Let A be a witnessing B-valued model. Let I be an arbitrary index set.

Let h :
ś

iPI BÑ B be a homomorphism such that for any p P B, hpxpyiPIq “ p. Then A and

p
ś

iPI Aq
h are elementarily equivalent.

Proof. Let A be a witnessing model and let h :
ś

iPI BÑ B be a homomorphism such that

for any p P B, hpxpyiPIq “ p. Let φ be a sentence of L . Let JφKA “ p P B.

By Lemma 1.5.9.1,
ś

iPI A is a witnessing model. Hence it is in the scope of Theorem

1.3.4. Hence JφKp
ś

iPI Aqh
“ hpJφK

ś

iPI Aq “ hpxJφKAyiPIq “ hpxpyiPIq “ p.

Definition 1.5.11 (Chain of Models). Let α be an ordinal. For each β ă α , let Aβ be a

B-valued model. A chain of models is an increasing sequence of models A0 Ă A1 Ă ... Ă

Aβ Ă ..., β ă α , where A0 is a submodel of A1, A1 is a submodel of A2, etc.

Definition 1.5.12 (Union of the Chain). Given a chain of models A0 Ă ...Ă Aβ Ă ..., β ă

α , the union of the chain is the B-valued model A“
Ť

βăα
Aβ such that:

1. The universe of A is A“
Ť

βăα
Aβ .

2. Let a1,a2, ...,an P A. The for some β ă α , a1, ...,an P Aβ .

(a) Let 1ď i, j,ď n. Jai “ a jKA “ Jai “ a jKAβ .

(b) Let P be an n-ary relation. JPpa1, ...,anqKA “ JPpa1, ...,anqKAβ .

(c) Let c be a constant. JcKA “ JcKAβ .

Proposition 1.5.1. The union of a chain is a B-valued model. Also, for every β ă α , Aβ is

a submodel of
Ť

βăα
Aβ .

Theorem 1.5.11 (Generalized Elementary Chain Theorem). Let tAβ | β ă αu be an ele-

mentary chain of models. Then for any β ăα , Aβ is an elementary submodel of
Ť

βăα
Aβ .
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Proof. Let A“
Ť

βăα
Aβ . We need to show that for any β ăα , for any formula φpv1, ...,vnq,

any a1, ...,an P Aβ ,

JφKAra1, ...,ans “ JφKAbetara1, ...,ans

The atomic cases are already covered by Proposition 1.5.1. The inductive cases on senten-

tial connectives are straightforward. Let φpv1, ...,vnq “ Dvψpv,v1, ...,vnq.

Let JDvψKAra1, ...,ans “
Ů

aPAJψKAra,a1, ...,ans “ p1 P B. Let JDvψKAβ ra1, ...,ans “
Ů

aPAJψKAβ ra,a1, ...,ans “ p2 P B.

Since A “
Ť

βăα
Aβ , Aβ Ď A. By inductive hypothesis we have p2 ď p1. Hence we

only need to show that p1 ď p2.

Suppose p1 ę p2. Then for some a P A, JψKAra,a1, ...,ans ę p2. Let JψKAra,a1, ...,ans

be p3.

Since a P A “
Ť

βăα
Aβ , for some η ă α , a P Aη . Either η ď β or β ď η . We will

show that both possibilities lead to contradiction.

Suppose η ď β . Then a,a1, ...,an P Aβ . By inductive hypothesis, JψKAβ ra,a1, ...,ans “

JψKAra,a1, ...,ans “ p3. But then p3 ď p2 “ JDvψKAβ ra1, ...,ans. Contradiction.

Suppose β ď η . Then a,a1, ...,an P Aη . By inductive hypothesis, JψKAη ra,a1, ...,ans “

JψKAra,a1, ...,ans “ p3. But since a1, ...,an P Aβ , and Aβ is an elementary submodel of Aη

by the construction of the chain,

JDvψKAη ra1, ...,ans “ JDvψKAβ ra1, ...,ans “ p2

But then p3 ď p2. Contradiction.

Hence p1 ď p2. And therefore p1 “ p2.

Corollary 1.5.11.1 (Robinson Consistency Theorem). Let L1 and L2 be two languages

and let L “L1XL2. Let B be a complete Boolean algebra. Suppose SB is a maximal

Boolean-valuation in L and SB
1 Ď SB, SB

2 Ď SB are consistent Boolean-valuations in L1,

L2 respectively. Then SB
1 YSB

2 is consistent in the language L1YL2.

Proof. Let A0 |ù SB
1 and B0 |ù SB

2 . Let A0æL be the reduct of A0 to L (and similarly for

61



B0æL ) Then both A0æL and B0æL are models of SB, and since SB is maximal, A0æL

and B0æL are elementarily equivalent. Then, by an argument similar to that in the proof

of Theorem 1.5.8, we can show that the elementary diagram of A0æL is consistent with

the elementary diagram of B0. Hence we there is some B1 that is an elementary extension

of B0 and also models the elementary diagram of A0æL . Therefore there is an elementary

embedding f1 : A0æLA0 ÑB1æLA0 , where LA0 “L Ytca | a P A0u, and A0æLA0 is the

canonical expansion of A0æL .

For the same reason why the elementary diagram of A0æL is consistent with the ele-

mentary diagram of B0, the elementary diagram of B1æLA0 is consistent with the elemen-

tary diagram of the canonical expansion of A0 to LA0 . Therefore there is an elementary

extension A1 of A0 such that A1 models the elementary diagram of B1æLA0 . Hence there is

an elementary embedding g1 : B1æLA0 ÑA1æLA0 , such that for any a P A0, g1p f1paqq “ a.

Repeating this construction method ad infinitum. Let A“
Ť

năω
An and B“

Ť

năω
Bn.

By Theorem 1.5.11, A |ù SB
1 and B |ù SB

2 . Also, f “
Ť

năω
fn is an isomorphism between

AæL and BæL . Putting A and B together we get a model for SB
1 YSB

2 .

1.6 Supervaluationism

In this section, we show that supervaluation models are special cases of Boolean-valued

models. In particular, we show that every supervaluation model is equivalent to an elemen-

tary submodel of the direct product of the precisifications. Also, the class of supervaluation

models is equivalent to a subclass of true-identity Boolean-valued models.

Definition 1.6.1. A supervaluation model S for L is a pair xA,Σy such that A is a do-

main of elements and Σ “ tσi | i P Iu is a collection of two-valued interpretation functions

(indexed by I). In particular,20

20We assume here that a constant is always interpreted as the same individual in all precisifications. Al-
though this is the default assumption in most standard formulations of supervaluationism (as in, for example,
[12] or [32]), we are aware of the need for loosening this assumption in certain situations. The results we
present below can be generated to more general definitions of supervaluation models, including ones in which
constants can have different referents in different precisifications, and even ones in which the domains of dif-
ferent precisifications can be different. Due to the lack of space we will not present the details here. Roughly,
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1. Let c be a constant in L . For some a P A, for any i P I, σipcq “ a.

2. Let P be a n-ary relation in L . For any i P I, σipPq “ Ri Ď An.

For each i P I, Ai is the two-valued model for L with domain A and interpretation function

Σi. Every Ai is called a precisification in S.

For any formula φpv1, ...,vnq in L , and any assignment function x : VarÑ A,

JφKSrxs “

$

’

’

’

’

’

&

’

’

’

’

’

%

(super)true if for every i P I,Ai |ù φ rxs;

(super)false if for every i P I,Ai |ù ␣φ rxs;

undefined if otherwise

Definition 1.6.2. Given a supervaluation model S “ xA,tσi | i P Iuy, we construct a PpIq-

valued model MS for L as follows (where PpIq is the powerset of I endowed with the

powerset algebra):

1. The domain of MS is A.

2. J“KM
S

: A2 Ñ PpIq is such that for any a,b P A, Ja “ bK “H if a and b are not the

same element, and Ja“ bK“ I if a and b are the same element.

3. Let c be a constant in L , JcKM
S
“ σipcq, for any i P I.

4. Let P be a n-ary relation in L . JPKM
S

: An Ñ PpIq is such that for any a1, ...,an P A,

JPpa1, ...,anqKM
S
“ ti P I | Ai |ù Ppa1, ...,anqu.

It is easy to check that MS satisfies Def 1.2.8.

Theorem 1.6.1. For any formula φpv1, ...,vnq in L , and any assignment function x : VarÑ

A,

JφKM
S
rxs “ ti P I | Ai |ù φ rxsu

in cases where we have constants without a unvarying referent, we can simply regard a constant as a unary
predicate that satisfies the special condition that its extension is a singleton. And in cases where we have
precisifications with different domains, we can simply pretend that all precisifications have the union of all
the domains as their domain, and have an existential predicate whose extension in each precisification is the
actual domain of the precisification, and have the quantifiers be restricted to what satisfies the existential
predicate in each precisification.
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Proof. By induction on the complexity of φ . The atomic cases are covered by the defini-

tion of MS. The cases for sentential connectives are straightforward. For the existential

quantifier,

JDv jφKM
S
rxs “

ď

aPA

JφKM
S
rxpv j{aqs

“
ď

aPA

ti P I | Ai |ù φ rxpv j{aqsu

“ ti P I | Ai |ù Dv jφ rxsu

The case for the universal quantifier is similar.

MS is the Boolean counterpart of the supervaluation model S. They have the same

domain, and for any φ in L , the degree to which φ is true in MS is the set of all precisi-

fications in S in which φ is true. Therefore, φ is (super)true in S iff JφKM
S
“ I, which

is the top value in PpIq, and φ is (super)false in S iff JφKM
S
“ H, which is the bottom

value in PpIq. Since all classical tautologies have value 1 in every Boolean-valued model,

all classical tautologies are (super)-true in every supervaluation model.

We next show that S is an elementary submodel of the direct product of all the precisi-

fications.

Theorem 1.6.2. Let S “ xA,tσi | i P Iuy be a supervaluation model. Let tAi | i P Iu be its

set of precisifications. Let
ś

iPI
Ai be their direct product. MS is an elementary submodel of

ś

iPI
Ai.

Proof. Clearly PpIq and
ś

iPI
2 are isomorphic. The elementary embedding is the function

f : AÑ
ś

iPI
Ai that takes any a P A to xayiPI .

We just need to show that for any formula φpv1, ...,vnq in L and any a1, ...,an P A,

Jφpa1, ...,anqKM
S
“ Jφpxa1yiPI, ...,xanyiPIqK

ś

iPI
Ai

By the Direct Product Theorem (Theorem 1.3.2), Jφpxa1yiPI, ...,xanyiPIqK
ś

iPI
Ai

“ti P I | Ai |ù

φpa1, ...,anqu “ Jφpa1, ...,anqKM
S

, by Theorem 1.6.1.
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Observation 1.6.2.1. Let S “ xA,tσi | i P Iuy be a supervaluation model. MS may not

be a witnessing model, although
ś

iPI
Ai is always witnessing. The latter is because direct

products always inherit the property of being witnessing, which follows from Theorem

1.3.2. It is easy to construct examples of the former. For example, we can let a unary

predicate P be such that it has a non-empty extension in every Ai in S, yet there is no a P A

that is in the extension of P in in every Ai in S. Then DviPpviq will have value I in MS

without a witness.

Corollary 1.6.2.1 (to Theorem 1.4.1 and Theorem 1.4.3). Let T be a theory and φ be a

sentence in a first order language L . T $ φ if and only if for any supervaluation model S,

if every member of T is (super)true in S, then φ is (super)true in S.

We have shown that every supervaluation model is equivalent to a true identity Boolean-

valued model. Our next goal is to establish a duality between the class of supervaluation

models and a subclass of true identity models.

Theorem 1.6.3. Let A be a B-valued model. Then A is the Boolean counterpart of a

supervaluation model just in case A is a true identity model and the value range of A is

isomorphic to a powerset algebra.

Proof. The left to right direction holds by Theorem 1.6.1. For the other direction, let A

be a true identity B-valued model with value range PpIq. For each i P I, we construct a

2-valued model Ai with domain A as follows. For any constant c, let JcKAi “ JcKA P A.

For any n-ary relation P, any a1, ...,an P A, let Ai |ù Ppa1, ...,anq iff i P f pJPpa1, ...,anqKAq.

Then it is easy to show that A is the Boolean counterpart of the supervaluation model with

precisifications tAi | i P Iu.

The duality we established above shows that Boolean-valued models generalize super-

valuation models in two respects. First, Boolean-valued models allow identity clauses to

take intermediate truth values, whereas supervaluation models require true identity. Sec-

ond, Boolean-valued models allow the value range of a model to be any complete Boolean
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algebra, whereas supervaluation models require powerset algebras (or those embeddable in

a powerset algebra in a complete way).

1.7 Full Models

1.7.1 Full Models

We have argued in both Section 1.3 and 1.5 that certain features of two-valued models are

not shared by all Boolean-valued models but only those that are witnessing. As a step

further, in this section, we will define another condition on Boolean-valued models that is

even more demanding than being witnessing, and that some interesting features of two-

valued models can only be generalized to full Boolean-valued models.

Definition 1.7.1 (Antichain). Let B be a Boolean algebra. A subset D Ď B is an antichain

just in case for any p,q P D, p[q“ 0.

Definition 1.7.2 (Full Model). Let A be a B-valued model. A is a full model just in case

for any antichain D Ď B, and tad | d P Du Ď A, there is an a P A such that for any d P D,

d ď Ja“ adKA.

Proposition 1.7.1. Any two-valued model is full.

The definition of a full model might seem obscure to those who are not familiar with

Boolean-valued models. In the next subsection, we will present an alternative characteri-

zation of full models that are much more accessible. In particular, we will show (Theorem

1.7.8) that full models are precisely those that are highly witnessing (Def. 1.7.5), in the

sense that they remain witnessing no matter how they are expanded.

Theorem 1.7.1. Let I be an arbitrary index set. For any i P I, let Ai be a full Bi-valued

model. Let
ś

iPI Ai be the Ai’s product model. Then
ś

iPI Ai is full.

Proof. Let DĎ
ś

iPI Bi be an antichain. Let A“txaiy
d
iPI | d PDuĎ

ś

iPI Ai. For any i P I, let

pri :
ś

iPI Bi Ñ Bi be the ith projection function on
ś

iPI Bi. Let prirDs “ tpripdq | d P Du.
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Since D is an antichain in
ś

iPI Bi, for any i P I, prirDs is an antichain in Bi. Similarly, let

pr1
i :

ś

iPI AiÑ Ai be the ith projection function on
ś

iPI Ai. pr1
irAs “ tpripxaiy

d
iPIq | xaiy

d
iPI P

Au.

Since Ai is a full model, there is an bi P Ai such that for any pripdq P prirDs, pripdq ď

Jbi “ ad
i K

Ai , where ad
i “ pr1

ipxaiy
d
iPIq. Pick such a bi for each i P I. Form xbiy

d
iPI P

ś

iPI Ai.

Hence, for any d P D, d ď Jxaiy
d
iPI “ xbiy

d
iPIK

ś

iPI Ai .

Hence
ś

iPI Ai is a full model.

Theorem 1.7.2. Let I be an arbitrary index set. For any i P I, let Ai be a full Bi-valued

model. Let
ś

iPI Ai be the Ai’s product model. If
ś

iPI Ai is a full model, then for any i P I,

Ai is a full model.

Proof. Fix an i P I. Let Di Ď Bi be an antichain. Let tac
i | c P Diu Ď Ai. We construct the

following antichain D on
ś

iPI Bi, with prirDs “Di: d PD iff (a) for some c PDi, pripdq “ c,

and (b) for any j P I, if i‰ j, then pr jpdq “ 0B j .

Let d P D. We construct an element xaiy
d
iPI P

ś

iPI Ai: let pr1
ipxaiy

d
iPIq “ ac

i , where c “

pripdq. Then for any j P I that is different from i, let pr1
jpxaiy

d
iPIq be an random element in

A j.

Since
ś

iPI Ai is full, for some xbiy
d
iPI P

ś

iPI Ai, for any d P D, d ď Jxbiy
d
iPI “ xaiy

d
iPIK

A.

In particular, for any d PD, pripdq ď Jad
i ,biKAi . Hence for any c PDi, cď Jac

i ,biKAi . Hence

Ai is full.

Theorem 1.7.3. Let A be a full B-valued model. Then A is witnessing.

Proof. For simplicity we ignore the parameters. Let φpvq be a formula with only v free.

Let JDvφKA “ p P B. We will show that for some a P A, JφpvqKAras “ p. If p “ 0, then the

statement is trivial. So we assume pą 0.

Let D“ td P Bzt0u | for some ad P A,d ď JφpadqKAu. Let Q be the set of all antichains

made up of elements in D. By Zorn’s lemma, Q has a maximal element. Call it C.

We can show that D is dense below p. Let 0 ‰ p1 ď p. Since p “
Ů

aPAJφpaqKA, for

some a P A, p1[ JφpaqKA ‰ 0. But p1[ JφpaqKA P D and p1[ JφpaqKA ď p1.
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Hence pď
Ů

C: suppose not, then p[´p
Ů

Cq ‰ 0. Since D is dense below p, for some

d PD, d ď p[´p
Ů

Cq ď ´p
Ů

Cq. Then CYtdu is an antichain in D that properly extends

C. Contradiction.

For every d PC, let ad be some element in A such that d ď JφpadqKA.

Since A is full, there is some a P A such that for all d PC, d ď Ja“ adKA.

Since dď JφpadqKA as well, dď Ja“ adKA[JφpadqKAď JφpaqKA. Hence p“ JDvφKAď
Ů

C ď JφpaqKA. And trivially JφpaqKA ď JDvφKA. Hence JφpaqKA “ JDvφKA.

We proved that full models are witnessing. But are witnessing models full? The answer,

it turns out, is negative. There exist witnessing models that are not full. Being full is a

condition that is properly stronger than being witnessing. An example of a witnessing but

not full model will be given in the next section.

We began this section by claiming that more features of two-valued models can be

generalized to full Boolean-valued models. In the rest of this section, we will illustrate

this point by two examples. The first example is given by the following theorem, and the

second example will be given in the next subsection.

Theorem 1.7.4. Let L be a countable language. Let A be a full B-valued model of L .

Let h : BÑ 2 be a countably incomplete homomorphism. Then the quotient model Ah is

an ω1-saturated model of L .

Proof. We want to show that Ah is ω1-saturated, i.e. for every countable sequence xranshynăω

that consists of elements in Ah, for every type Σpvq of L Ytci | iăωu, if Σpvq is consistent

with T hppAh, ranshqnăωq
21, then Σpvq is realized in pAh, ranshqnăω .

Let Σpvq “ tσ1pvq,σ2pvq, ...u of L Ytci | iăωu be consistent with T hppAh, ranshqnăωq.

Let ∆pvq be a finite subset of Σpvq. Let φpvq the formula that is the conjunction of all

formulas in ∆pvq

Then Dvφpvq is a sentence consistent with T hppAh, ranshqnăωq. As a result, it is in

T hppAh, ranshqnăωq. Hence ∆pvq is realized in pAh, ranshqnăω .

21This is the set of all sentences true in the model pAhq˚, where pAhq˚ is the model resulting from expand-
ing Ah to the language L Ytci | i ă ωu by interpreting each ci with raish. And we use pAh, ranshqnăω to
denote pAhq˚.
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Also L is arbitrary and L Ytci | iă ωu is countable. Hence to show what we want to

show, we just need to show the following: Let Σpvq be a type of L . If every finite subset

of Σpvq is realized in Ah, then Σpvq is realized in Ah.

Assume the antecedent. Let U Ď B be the subset of B whose characteristic function

is h. Then U is a countably incomplete ultrafilter. Hence there is some D ĎU such that
Ű

D RU . Hence we can find a countable descending chain in B: 1 “ p0 ě p1 ě p2 ě ...,

such that for all nă ω , pn PU , but
Ű

năω
pn “ 0.

For each nă ω , let qn “ pn[ JDvpσ1pvq^ ...^σnpvqqKA.

By Theorem 1.7.3, A is witnessing and hence it is in the scope of Theorem 1.3.4.

Hence JDvpσ1pvq ^ ...^σnpvqqKA P U iff Ah |ù Dvpσ1pvq ^ ...^σnpvqq. But by assump-

tion, tσ1pvq, ...,σnpvqu, a finite subset of Σpvq, is realized in Ah. Hence for every n ă ω ,

JDvpσ1pvq^ ...^σnpvqqKA PU . Hence for every nă ω , qn PU .

Also
Ű

năω
qn ď

Ű

năω
pn “ 0.

For all n ă ω , since pn`1 ď pn and JDvpσ1pvq^ ...^σn`1pvqqKA ď JDvpσ1pvq ^ ...^

σnpvqqKA, qn`1 ď qn. Hence ´qn ď´qn`1.

Consider tqn[qn`1 | nă ωu. This is an antichain: let iď j ă ω , pqi[´qi`1q[pq j[

´q j`1q “ pqi[q jq[p´qi`1[´q j`1q “ q j[´qi`1 “ 0.

For any n ă ω , let an P A be such that Jσ1pvq^ ...^σnpvqKArans “ JDvpσ1pvq^ ...^

σnpvqqKA. The existence of such an an is guaranteed by Theorem 1.7.3.

Since A is full, there is an a P A such that for all nă ω , qn[´qn`1 ď Jan “ aKA.

We will show that rash P Ah realizes Σpxq. Let i ď n ă ω . JσipaqKA ě Jσ1paq ^

...^ σnpaqKA ě Jσ1panq ^ ...^ σnpanqKA[ Jan “ aKA ě qn[´qn`1. Hence JσipaqKA ě
Ů

iďnăω
pqn[´qn`1q“ p

Ů

iďnăω
qnq[p

Ů

iďnăω
´qn`1q“ qi[p

Ů

jăω
´q jq“ qi[´p

Ů

jăω
q jq

“ qi[1“ qi PU .

1.7.2 Łoś Theorem on Σ1
1 Formulas

A well-know corollary of the Łoś Theorem on two-valued models is that Σ1
1 formulas are

preserved under ultraproducts.22 In this subsection, we will show that this corollary can
22See, for example, Chang and Keisler [7, p. 221-222].

69



be generalized to full Boolean-valued models, yet not necessarily to witnessing Boolean-

valued models. First we need some definitions.

Definition 1.7.3. Let A be a B-valued model of L . For any n P ω , we define Xn
A as

the following set: Xn
A “ tR : An Ñ B | for any xa1, ...,any,xb1, ...,bny P An,Rpa1, ...,anq [

p
Ű

1ďiďnJai “ biKAq ď Rpb1, ...,bnqu. We call the Xn
A’s the second-order domains of A. For

each n P ω , we call Xn
A the n-ary second-order domain of A.

Definition 1.7.4. Let A be a B-valued model of L . A is second-order full just in case for

any i P ω , if DĎ B is an antichain and tRd : An Ñ B | d P Du Ď Xn
A, then there exists some

R P Xn
A such that for any d P D, d ď

Ű

xa1,...,anyPAnpRpa1, ...,anq Ø Rdpa1, ...,anqq.

Theorem 1.7.5. Let A be a B-valued model of L . A is second-order full.

Proof. For simplicity we only prove the case where i “ 1. The cases where i ą 1 are very

similar. Let DĎ B be an antichain and tRd : AÑ B | d P Du Ď X1
A “ X .

We define R : AÑ B as follows: for any a P A,

Rpaq “
ğ

cPD

pc[Rc
paqq

We first prove that R P X , i.e. for any a,b P A, Rpaq[ Ja“ bKA ď Rpbq:

Rpaq[ Ja“ bKA “ p
ğ

cPD

pc[Rc
paqqq[ Ja“ bKA

“
ğ

cPD

pc[pRc
paq[ Ja“ bKAqq

ď
ğ

cPD

pc[Rc
pbqq

“ Rpbq

The third line holds since Rcpaq[ Ja“ bKAq ď Rcpbq, as Rc P X .

Next, we prove that for any d P D, d ď
Ű

aPApRpaq Ø Rdpaqq. Fix some d P D, we

just need to show that for any a P A, d ď Rpaq Ø Rdpaq. That is, d ď ´Rpaq\Rdpaq and

d ď Rpaq\´Rdpaq.
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This is equivalent to d[RdpaqďRpaqď´d\Rdpaq, and by definition Rpaq“
Ů

cPDpc[

Rcpaqq.

The first inequality holds trivially, as d P D. For the second inequality, we just need to

show that for any c P D, c[Rcpaq ď ´d\Rdpaq.

There are two cases. First, if c“ d, then Rcpaq “ Rdpaq, and hence the inequality holds.

Second, if c ‰ d, then since c,d P D and D is an antichain, c[ d “ 0, and hence c ď ´d,

and hence the inequality holds. Either way the inequality holds.

Hence we find a R P X that witnesses the existential claim, and therefore A is second-

order full.

Let A be a B-valued model of L . The next thing we will do is to define the value

of a Σ1
1 sentence in A. We first need some notation. Let P be an n-ary predicate that is

not in L . Let R P Xn
A. Then we may expand A to a model of L YtPu by interpreting

the new predicate P as R. We use pA,Rq to denote the expanded model L YtPu, where

JPKpA,Rq “ R.

A Σ1
1 formula over L is a formula ψ of the following form:

ψ “ DP1, ...,Pmφ

where for every 1 ď i ď m, Pi is a new predicate symbol not occurring in L , and φ is a

formula in the expanded first-order language L YtP1, ...,Pmu.

Let ψ “ DP1, ...,Pmφ be a Σ1
1 formula. For every 1 ď i ď m, we use ni to denote the

arity of Pi. Then given an assignment x : Var Ñ A, we define the value of ψ in A under

assignment x as follows:

JDP1, ...,PmφKArxs “
ğ

R1PXn1
A

ğ

R2PXn2
A

...
ğ

RmPXnm
A

JφKpA,R1,...,Rmq
rxs

The next thing we will prove is that if A is a second-order full model, then for any

Σ1
1 formula ψ “ DP1, ...,Pmφ , any assignment x : Var Ñ A, there is some R1 P Xn1

A ,R2 P
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Xn2
A , ...,Rm P Xnm

A such that JψKArxs “ JφKpA,R1,...,Rmqrxs. To this end we first need a lemma.

Lemma 1.7.5.1. Let A be a B-valued model of L . Let P1, ...,Pm be new predicates that does

not occur in L . Let φ be a first-order formula of L YtP1, ...,Pmu. For every 1 ď i ď m,

let ni be the arity of Pi. Let R1,R1
1 P Xn1

A ,R2,R1
2 P Xn2

A , ...,Rm,R1
m P Xnm

A . Then for any

assignment x : VarÑ A,

JφKpA,R1,...,Rmq
rxs [ p

ę

1ďiďm

piq ď JφKpA,R1
1,..,R

1
mq
rxs

where pi “
Ű

xa1,...,ani yPAni pRipa1, ...,aniq Ø R1
ipa1, ...,aniqq.

Proof. By a straightforward induction on the complexity of φ . The atomic cases are cov-

ered by the definition of Xn
A.

Theorem 1.7.6. Let A be a B-valued model of L that is second-order full. Let P1, ...,Pm be

new predicates that does not occur in L . Let φ be a first-order formula of L YtP1, ...,Pmu.

For every 1ď iď m, let ni be the arity of Pi. Then given any assignment x : VarÑ A, there

is some R1 P Xn1
A ,R2 P Xn2

A , ...,Rm P Xnm
A such that JDP1, ...,PmφKArxs “ JφKpA,R1,...,Rmqrxs.

Proof. For simplicity we assume m“ 1 and n1 “ 1. The proof we are about to give can be

easily generalized to the more general cases. Also for simplicity we ignore the parameters

and assume that φ is a sentence.

Let X1
A “ tS : A Ñ B | for any a,b P A,Spaq[ Ja “ bKA ď Spbqu “ X . Let JDP1φKA “

Ů

SPXJφKpA,Sq “ p P B. If p“ 0, then the statement is trivial. So we assume pą 0.

Let D “ td P Bzt0u | for some S P X ,d ď JφKpA,Squ. Let Q be the set of all antichains

made up of elements in D. By Zorn’s lemma, Q has a maximal element. Call it C.

We can show that D is dense below p. Let 0 ‰ p1 ď p. Since p “
Ů

SPXJφKpA,Sq, for

some S P X , p1[ JφKpA,Sq ‰ 0. But p1[ JφKpA,Sq P D and p1[ JφKpA,Sq ď p1.

Hence pď
Ů

C: suppose not, then p[´p
Ů

Cq ‰ 0. Since D is dense below p, for some

d PD, d ď p[´p
Ů

Cq ď ´p
Ů

Cq. Then CYtdu is an antichain in D that properly extends

C. Contradiction.

For every d PC, let Rd be some element in X such that d ď JφKpA,Rdq.
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Since A is full, there is some R P X such that for all d PC, d ď
Ű

aPApRpaq Ø Rdpaqq.

By the choice of Rd , d ď JφKpA,Rdq[
Ű

aPApRpaq Ø Rdpaqq ď JφKpA,Rq, by Lemma 1.7.5.1.

Therefore, JDP1φKA “ pď
Ů

C ď JφKpA,Rq.

The moral of Theorem 1.7.6 is that every second-order full model is “second-order

witnessing", and since every model is second-order full, every model is “second-order wit-

nessing". This feature will be essential when we prove the generalized corollary of Łoś

Theorem on full models. But to do so we first need to define the notion of a highly witness-

ing model. The plan, then, is to show that Σ1
1 formulas are preserved under quotient models

of highly witnessing models, and that highly witnessing models coincide with full models.

Definition 1.7.5. Let A be a B-valued model of L . A is highly witnessing just in case for

any language L 1 that expands L , for any expansion A1 of A to L 1, A is witnessing.

Theorem 1.7.7 (Σ1
1 formulas are preserved under quotient models). Let A be a B-valued

model of L that is second-order full and highly witnessing. Let h : BÑC be a homomor-

phism. Let Ah be the C-valued quotient model. Given x : VarÑ Ah an arbitrary assignment

on Ah, let y : VarÑ A be an assignment on A such that for any vi PVar, ypviq P xpviq. Then,

for any Σ1
1 formula ψ ,

hpJψKArysq ď JψKA
h
rxs

Proof. Let ψ “ DP1, ...,Pmφ , where for every 1 ď i ď m, the arity of Pi is ni. Since A is

second-order full, by Theorem 1.7.6, for some R1 PXn1
A ,R2 PXn2

A , ...,Rm PXnm
A , JDP1, ...,PmφKArys

“ JφKpA,R1,...,Rmqrys. Hence hpJDP1, ...,PmφKArysq “ hpJφKpA,R1,...,Rmqrysq.

Expand A to a model of L YtP1, ...,Pmu, A1, by setting JP1KA
1

“ R1, JP2KA
1

“ R2, ...,

JPmKA
1

“ Rm. Since A is highly witnessing, A1 is witnessing.

Hence we can apply the Generalized Łoś Theorem to A1 and get hpJφKA
1

rysq“ JφKpA1qh
rxs.

Also, for any 1 ď i ď m, by definition of a quotient model, since JPiKA
1

“ Ri, JPiKpA1qh
“

Rh
i : pAhqni ÑC, where for any xra1sh, ra2sh, ..., ranishy P pA

hqni , Rh
i pra1sh, ra2sh, ..., ranishq “

hpRipa1,a2, ...,aniqq. It is easy to see that pA1qh “ pAh,Rh
1,R

h
2, ...,R

h
mq.

Hence hpJDP1, ...,PmφKArysq “ hpJφKA
1

rysq “ JφKpA1qh
rxs ď JDP1, ...,PmφKA

h
rxs, as ob-

viously Rh
1 P Xn1

Ah , Rh
2 P Xn2

Ah , ..., Rh
m P Xnm

Ah .
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Theorem 1.7.8. Let A be a B-valued model of L . A is a full model if and only if A is

highly witnessing.

Proof. For the left to right direction. Let A be a full model. Then any expansion of A is a

full model, since fullness is only determined by the domain and the values of the identity

formulas. Since every full model is witnessing, every expansion of A is witnessing.

For the right to left direction. We assume that A is not full. Then for some antichain

DĎ B, tad | d PDu Ď A, every a P A is such that for some d PD, d ę Ja“ adKA. Pick such

an antichain DĎ B and tad | d P Du Ď A.

For every d PD, let Rd : AÑ B be such that for any b P A, Rdpbq “ Jb“ adKA. It is easy

to see that Rd P X1
A.

Let R : AÑ B be such that for any b P A,

Rpbq “
ğ

cPD

pc[Rc
pbqq

By the proof of Theorem 1.7.5, for any d P D, d ď
Ű

bPApRpbq Ø Rdpbqq.

Claim 1.7.8.1. R has no witness, i.e. no a P A is such that
Ů

bPA Rpbq “ Rpaq.

Proof of the Claim.

Suppose otherwise and let a be a witness. Then

Rpaq “
ğ

bPA

Rpbq “
ğ

bPA

ğ

cPD

pc[Rc
pbqq

Then for any d P D, d ď Rpaq, since d “ d[Rdpadq “ d[ Jad “ adKA “ d[1.

Hence for d P D, d ď Rpaq[
Ű

bPApRpbq Ø Rdpbqq ď Rdpaq “ Ja“ adKA, contradicting

our assumption that A is not a full model.

■

Let P be a new unary predicate not occurring in L . Expand A to a model of L Ytpu,

A1, by setting JPKA
1

“ R. Then since R has no witness, DvPpvq has no witness in A1, and
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hence A1 is not witnessing. Hence A is not highly witnessing.

Corollary 1.7.8.1. Let A be a full B-valued model of L . Let h : B Ñ C be a homomor-

phism. Let Ah be the C-valued quotient model. Given x : VarÑ Ah an arbitrary assignment

on Ah, let y : VarÑ A be an assignment on A such that for any vi PVar, ypviq P xpviq. Then,

for any Σ1
1 formula ψ , hpJφKArysq ď JψKA

h
rxs.

Two remarks are in order. First, the theorem on two-valued models that Σ1
1 formulas

are preserved under ultraproducts is a special case of Corollary 1.7.8.1. As mentioned in

Section 1.3, given a collection of two-valued models tAi | i P Iu, and DĎ PpIq a ultrafilter,

we just let A be the direct product of all the Ai’s and h be the characteristic function of D.

Then the ultraproduct will be the same as the quotient model Ah, and applying the above

corollary gives us the traditional result.

Second, Theorem 1.7.8 provides us another way to show that full models are witnessing.

This is simply because obviously highly witnessing models are witnessing, and since every

full model is highly witnessing, every full model is witnessing.

1.8 True Identity Models

The identity symbol in Boolean-valued models is interpreted in a non-standard way. When

B is a complete Boolean algebra that properly extends 2, our definition of Boolean-valued

models allows that in some B-valued model A, for some a,b P A, Ja“ bKA “ p P B, where p

is neither 1B or 0B. This is an interesting feature of Boolean-valued models, which I believe

will give rise to attractive philosophical applications. But that is a topic for another paper.

In this section, we will study a special type of Boolean-valued models: those in which the

identity symbol is interpreted in a standard way.

Definition 1.8.1 (True Identity Model). A B-valued model A is a true identity model just

in case J“KA : AˆAÑ B is the real identity function on AˆA, i.e. for any a,b P A, if a and

b are not the same element, then Ja“ bKA “ 0B.
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Proposition 1.8.1. Let L be a first order language whose only non-logical symbols are

constants. Let A be a B-valued true identity model of L . Then for any formula φpv1, ...,vnq P

L , any a1, ...,an P A, JφKAra1, ...,ans P t0B,1Bu.

Theorem 1.8.1. Let tAi | i P Iu be a non-empty collection of Boolean-valued models. Sup-

pose for some i P I, |Ai| ą 1, and for some a1,a2 P Ai, Ja1 “ a2KAi ‰ 1. Then the product

model
ś

iPI Ai is not a true identity model.

Proof. Just pick two elements b1,b2 P
ś

iPI Ai such that the ith component of b1 is a1, the

ith component of b2 is a2, and b1 and b2 have the same element at every other position.

Then Jb1 “ b2K
ś

iPI Ai is an intermediate value.

Theorem 1.8.2. Let A be a B-valued true identity model. Let h : B Ñ C be a homomor-

phism. Then the quotient model Ah is a C-valued true identity model. Moreover, A and Ah

have the same domain.

Proof. A “ Ah because for any a1,a2 P A, a1 ”h a2 iff hpJa1 “ a2KAq “ 1 iff a1 “ a2, as A

is a true identity model. Also, if ra1sh ‰ ra2sh, then a1 ‰ a2, and then Jra1sh “ ra2shKA
h
“

hpJa1 “ a2KAq “ hp0Bq “ 0C.

We’ve argued in Section 1.7 that not all witnessing models are full. The following

results aim to provide an example for this claim.

Theorem 1.8.3. Let A be a B-valued true identity model. If B is a proper Boolean extension

of 2, and if |A| ą 1, then A is not a full model.

Proof. Since B is a proper extension of 2, there is some p P B such that 0 ‰ p ‰ 1. Then

tp,´pu is an antichain. Let a1,a2 be any two different elements in A. Then for any a P A,

either pę Ja“ a1KA, or ´pę Ja“ a2KA, as A is a true identity model.

Theorem 1.8.4. Let L be an arbitrary first order language. Let B be a complete Boolean

algebra that properly extends 2. Then there is a witnessing B-valued true identity model A

of L , whose domain has more than one element.
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Proof. Pick p P B such that 0‰ p‰ 1. For any n-ary relation P in L , for any a1, ...,an P A,

let JPpa1, ...,anqKA “ p. Also let J“KA be the identity function on AˆA. It is easy to show

that A is witnessing.

Corollary 1.8.4.1. Let L be an arbitrary first order language. Let B be a complete Boolean

algebra that properly extends 2. Then there is a witnessing B-valued true identity model of

L that is not full.

In Section 1.4.1 we have proved a collection of results involving theories of first order

languages and Boolean-valued models. In the following we will state a few theorems about

theories and Boolean-valued true identity models. We will state the results without proofs

as they are all very straightforward.

Theorem 1.8.5. Let T be a theory in L . T is consistent if and only if for some complete

Boolean Algebra B, T has a B-valued true identity model A.

Theorem 1.8.6. Let B be any complete Boolean algebra. A theory T has a B-valued true

identity model just in case every finite subset of T has a B-valued true identity model.

Recall that in Section 1.4, we argue that the notion of Boolean-valuation is a natu-

ral generalization of the notion of theory. For the rest of this section we consider ques-

tions involving Boolean-valuations and true identity models. For example, what kind of

Boolean-valuations correspond to true identity models? Does compactness holds on these

Boolean-valuations? etc. Again, we assume that L is a countable language.

Definition 1.8.2. A B-valuation SB respects identity just in case for any countable set of

new constants D, SB can be extended into a consistent B-valuation S1B of L YD such that

for any constants c,d in L YD, either xc“ d,1y P S1B or xc“ d,0y P S1B.

Theorem 1.8.7. A B-valuation SB respects identity if and only if it has a true identity B-

valued model.

Proof. For the right to left direction, we suppose SB has a true identity B-valued model A.

Let D be a countable set of new constants. Expand A to a model of L YD arbitrarily:
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for any c P D, let JcKA be a random element in A. Let S1B be the set of all pairs of the

form xφ , py where φ is a sentence of L YD and p “ JφKA. Then S1B is a consistent B-

valuation that extends SB such that for any constants c,d in L YD, either xc “ d,1y P S1B

or xc“ d,0y P S1B.

The proof for the left to right direction is similar that that of Theorem 1.4.8. Let C be

a new countable set of constants. Let L 1 “L YD. Enumerate all formulas with one free

variable in L 1: φ0pvq,φ1pvq, ....

For any sentence ψ in L 1, for some p P B, SBYtxψ, pyu is such that it is contained in

some consistent B-valuation of L 1 that has either xc“ d,1y or xc“ d,0y, for any constants

c,d P L 1, as SB respects identity, and any consistent B-valuation is contained in some

maximal consistent B-valuation.

Now form an increasing chain of B-valuations:

SB
“ SB

0 Ď SB
1 Ď ...Ď SB

i Ď ... iă ω

Given SB
i , first add xDvφipvq, py to SB

i , where SB
i YtxDvφipvq, pyu is such that it is contained in

some consistent B-valuation of L 1 that has either xc“ d,1y or xc“ d,0y, for any constants

c,d PL 1. Then add xφipdiq, py, where di is some new constant from C that has not appeared

in SB
i YtxDvφipvq, pyu. Such a new constant exists as there are only finitely many constants

from C in SB
i YtxDvφipvq, pyu.

It is easy to show aht SB
i`1 “ SB

i YtxDvφipvq, py,xφipdiq, pyu is such that it is contained in

some consistent B-valuation of L 1 that has either xc“ d,1y or xc“ d,0y, for any constants

c,d PL 1.

Let S1B “
Ť

iăω
SB

i . It is also easy to show that S1B is contained in some consistent B-

valuation of L 1 that has either xc“ d,1y or xc“ d,0y, for any constants c,d PL 1. Extend

S1B to such a B-valuation, and then extend the latter to a maximal consistent B-valuation in

L 1. Call it T B.

We can construct a B-valued model for T B using C as the domain in the same way as

we do in the proof of Theorem 1.4.8, with the only the following change. For any di PC,

let rdis “ td j P C | Jdi “ d jKT “ 1u. Let A “ trdis | di P Cu. For any constant c of L 1,
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let JcKA “ rdis such that Jc “ diKT “ 1. And similar changes to the interpretation of other

symbols of L 1.

In the same way as in the proof of Theorem 1.4.8, we can show that A is a B-valued

model of T B that is witnessing. Also, it is very easy to show that A is a true identity model.

Corollary 1.8.7.1. A B-valuation SB respects identity if and only if it has a witnessing true

identity B-valued model.

Theorem 1.8.8. A B-valuation SB respects identity if and only if every finite sub-valuation

of SB respects identity.

Proof. The left to right direction is obvious.

For the right to left direction, suppose that SB does not respect identity. Then for some

countable set of new constants D, for some constants c,d PL YD, both SBYtxc “ d,1yu

and SBYtxc “ d,0yu are inconsistent. By Theorem 1.4.5, for some finite sub-valuation

∆B Ď SB, ∆BYtxc “ d,1yu. Similarly, for some finite sub-valuation ∆1B Ď SB, ∆1BYtxc “

d,0yu. But then, ∆BY∆1B, a finite sub-valuation of SB, does not respect identity.

Corollary 1.8.8.1. A B-valuation SB has a true identity model if and only if every finite

sub-valuation of SB has a true identity model.

1.9 Löwenheim-Skolem Theorems

In previous sections we proved two versions of the downward Löwenheim-Skolem Theo-

rem:

Theorem 1.9.1. Let L be a countable language. If a Boolean-valuation SB of L has a

B-valued model, then it has a countable witnessing B-valued model.

Theorem 1.9.2. Let A be a B-valued model of L that is witnessing. Then A has a count-

able elementary submodel.
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A natural question is: what about the upward Löwenheim-Skolem Theorem? Can it

also be generalized to a Boolean-valued setting? In this section we investigate this question.

The case of the upward Löwenheim-Skolem is much more complicated than its down-

ward counterpart. Recall that in Section 1.5 we observed that our definition of Boolean-

valued models allow there to be “null" duplicates in a model. And with the existence of null

duplicates it is boringly easy to add more objects to a domain of a model without changing

which sentences are true in the model:

Theorem 1.9.3. Let T be a consistent theory of L . Then for any complete Boolean algebra

B, if T has a B-valued model of size α , it has B-valued models of arbitrary sizes larger than

α .

Proof. Just pick some random element of the domain and add as many duplicates of the

element to the domain as desired.

Note that the above theorem is much stronger than the normal upward Löwenheim-

Skolem in the two-valued case. It says that any consistent theory can have models that

are arbitrarily large, including, for example, a theory that says there are only two objects.

This is a counter-intuitive result. Surely if a sentence saying that there are only two objects

is true in a model, then we would want there to be only two objects in the domain of the

model.

One might think that the culprit of this counter-intuitive result is the existence of dupli-

cates. What if we require the models to be duplicate resistant (Def 1.5.1)? Will it still be the

case that consistent theories can have arbitrarily large models? The answer, interestingly,

is positive, as the following results show.

Theorem 1.9.4. If T has a duplicate resistant model A with |A| ą 1, then T has duplicate

resistant models of arbitrary sizes larger than |A|.

Proof. We just make use of the direct product construction. Let I be an arbitrarily large

index set. By Theorem 1.5.9,
ś

iPI A is a model of T .

Also, adding the further requirement that models should be full does not help.
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Corollary 1.9.4.1. If T has a duplicate resistant full model A with |A| ą 1, then T has

duplicate resistant full models of arbitrary sizes larger than |A|.

Proof. By Theorem 1.7.1, direct powers inherit fullness.

The real culprit of this (kind of) result is the fact that the identity symbol is interpreted

in a non-standard way in Boolean-valued models. As a result, there can be, for example,

some Boolean-valued model in which the sentence Dv1Dv2@v3pv3“ v1_v3“ v2q - that there

are at most two things - is true but the domain of the model consists of way more than two

things. Indeed, the only sentence that has control over the size of the domain of a model is

the sentence saying that there is at most one thing.

Theorem 1.9.5. Let φ be the sentence Dv1@v2pv1 “ v2q. If A is a duplicate resistant model

of φ , then |A| “ 1.

Proof. JDv1@v2pv1 “ v2qKA “
Ů

aPA
Ű

bPAJa “ bKA. Fix some a P A. Consider
Ű

bPAJa “

bKA. We will show that
Ű

bPAJa “ bKA “
Ű

c,dPAJc “ dKA. The ě direction holds trivially.

The ď direction holds as for any a,c,d P A, Ja“ cKA[ Ja“ dKA ď Jc“ dKA.

Hence
Ů

aPA
Ű

bPAJa“ bKA “
Ů

aPA
Ű

c,dPAJc“ dKA “
Ű

c,dPAJc“ dKA “ 1.

Hence for any c,d P A, Jc “ dKA “ 1. Since A is duplicate resistant, c and d are the

same element.

We have argued that the real reason why we have these counter-intuitive results is that

the identity symbol is interpreted abnormally. Hence, in order to solve the problem, we

should, instead of requiring the models to be duplicate resistant, require the models to

be true identity models, as these are the Boolean-valued models in which identity is stan-

dard. Once we introduce this requirement, then, we can generalize the upward Löwenheim-

Skolem theorem in the most natural way. We assume that L is countable.

Theorem 1.9.6. Let φ expresses the sentence “there are exactly n things", where n ă ω .

Let A be a true identity model of φ . Then |A| “ n.

Proof. By appealing to Proposition 1.8.1.
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Theorem 1.9.7. If a B-valuation SB has an infinite B-valued true identity models, then it

has infinite B-valued true identity models of any power α ě ω .

Proof. Let cβ ,β ă α be a list of new constant. Consider the B-valuation S1B “ SBYtxcγ “

cβ ,0y | γ ă β ă αu. By Theorem 1.8.7, SB respects identity. And hence every finite sub-

valuation of S1B respects identity. By Theorem 1.8.7 again, every finite sub-valuation of S1B

has a B-valued true identity model. By Corollary 1.8.8.1, S1B has a B-valued true identity

model.

Theorem 1.9.8. If a B-valuation SB has arbitrarily large finite B-valued true identity mod-

els, then it has an infinite B-valued true identity model.

Proof. The same proof as that of Theorem 1.9.7.

Corollary 1.9.8.1. Every infinite true identity model has arbitrarily large elementary ex-

tensions.

As a special case of Theorem 1.9.7 and Theorem 1.9.8, we also have:

Theorem 1.9.9. If a theory T has arbitrarily large finite B-valued true identity models, then

it has an infinite B-valued true identity model.

Theorem 1.9.10. If a theory T has an infinite B-valued true identity models, then it has

infinite B-valued true identity models of any power α ě ω .
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Chapter 2

Boolean Mereology

2.1 Introduction

When we look around and inspect the ordinary objects around us, we will find that many

ordinary objects lack a precise mereological boundary, or at least they appear to do so.

Many ordinary objects are such that in certain natural situations, we can find things that are

neither definitely part of it nor definitely not part of it. Here are some typical examples:

Example One Consider Tibbles the cat. Suppose Tibbles has a whisker, call it W, that has

loosened up and is about to fall off. Is W part of Tibbles?

Example Two Consider Mount Kilimanjaro, the tallest mountain in Africa. Suppose there

is tree, call it T, that is located somewhere at the boundary of Kilimanjaro - say, some-

where in between Mweka Camp and Materuni Waterfall. Is T part of Kilimanjaro?

Example Three Consider Tim, an ordinary human being. Suppose there is a cell, call it C,

in Tim’s epidermis that has lost its nucleus and is about to be shed from the surface

of Tim’s skin. Is C part of Tim?

Example Four Consider Theseus the ship. Suppose there is an iron nail, call it N, that is

in the process of being hammered into Theseus by a repairer. Is N part of Theseus?

There are countless other examples of this type, involving ordinary objects of almost all

kinds, including animals, humans, artifacts, geographical areas, plants, buildings, and so
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on. If we describe the cases and ask the common man questions of the form “is W/T/C/N

part of Tibbles/Kilimanjaro/Tim/Theseus?", the answer we would most likely get would be

a hesitant “sort of/more or less/to some extent". These answers, I believe, are natural and

intuitive. They indicate that an all-encompassing theory of the relation of parthood should

have the ability to accommodate indeterminacy.

In this chapter I will present a novel degree-theoretic semantic framework that is able

to handle mereological indeterminacy with ease. The semantic framework I am about to

introduce is called Boolean-valued semantics, whose key feature is that degrees of truth

form a Boolean ordering. I will argue that Boolean-valued semantics is the best degree-

theoretic semantics for the language of mereology. In particular, I will argue that it trumps

the well-known alternative - fuzzy-valued semantics, for three main reasons: (a) it allows

for incomparable degrees of parthood, (b) it enforces classical logic, and (c) it is compatible

with all the axioms of classical mereology. Moreover, I will explore, under the framework

of Boolean semantics, the connection between vagueness in parthood and vagueness in ex-

istence/identity. I will show that, contrary to what many have argued, vagueness in parthood

entails neither vagueness in existence nor vagueness in identity, although being compatible

with both.

What I won’t do in this chapter is to develop a full-fledged philosophical theory of

mereological vagueness that has a decisive answer to every relevant question. The main

goal of this chapter is to construct a superior semantic framework for indeterminacy of

parthood, and I believe that it should never be the job of the semantics to take a stand on

deeper philosophical questions like “What is the nature of mereological indeterminacy?".

An ideal semantic framework should be flexible with regard to which philosophical view-

points one further upholds. In the final section of this chapter, I will illustrate the neutrality

and flexibility of Boolean semantics by sketching out two different philosophical theories

of mereological vagueness, one coming from applying Boolean semantics to the view that

mereological vagueness is linguistic, and the other coming from applying Boolean seman-

tics to the view that mereological vagueness is ontic. Another issue that I won’t discuss

in this chapter is higher-order vagueness. In this chapter, I will adopt (without arguing)

a McGee-style position that the issue of higher-order vagueness lies in the interpretation
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of the meta-language.1 And since the the purpose of this chapter is to build a semantics,

that is, an interpretation framework of the object language - the language of mereology,

the issue of higher-order vagueness, on our assumption, lies outside of the scope of our

discussion.

The plan of this chapter goes as follows. I will start in Section 2.2 by arguing that facing

mereological vagueness, a natural, and good place to start is to adopt a degree-theoretic

semantics. In Section 2.3, I will present in detail Boolean semantics, which is a degree-

theoretic semantics whose key feature is that truth degrees form a Boolean structure. I will

explain how Boolean semantics can be applied to cases of mereological indeterminacy. In

Section 2.4, I will argue that Boolean semantics is the better degree-theoretic semantics for

handling mereological indeterminacy, in comparison to the alternative. The goal of Section

2.5 is to investigate a special kind of Boolean models for the language of mereology that are

of particular interest - the atomic Boolean models. Via these models I will also discuss the

connection between mereological vagueness on the one hand and vagueness in existence

and identity on the other hand. Finally, in Section 2.6, we end this chapter with a discussion

on the nature of mereological vagueness. In particular, we show that Boolean mereology

is neutral on the nature of mereological vagueness, and one can construct different theories

of mereological vagueness by combining Boolean semantics with different views on the

nature of mereological vagueness.

2.2 Many Degrees: A Natural Start

The language of mereology, depending on one’s taste, is a first-order or second-order lan-

guage whose only non-logical symbol is the binary relation symbol of parthood, À. The

classical semantics, for either first-order or second-order languages, has as its value range

the two-valued Boolean algebra t0,1u. The classical semantics, therefore, leaves little if

not no room for mereological indeterminacy, as, for example, W is either part of Tibbles to

degree 0, meaning that it is not part of Tibbles, or it is part of Tibbles to degree 1, meaning

that it is part of Tibbles. In order to accommodate mereological indeterminacy, therefore,

1See [23] and [25] for arguments for this viewpoint and replies to objects.
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we at least need revision of some kind to the classical semantics 2.

A natural and straightforward move is to enlarge the range of truth degrees. If “yes"

corresponds to degree 1 and “no" corresponds to degree 0, then we might want some in-

termediate degree between 0 and 1 to correspond to the common man’s hesitant “sort of",

when responding to the question “is W part of Tibbles". If we have decided to add more de-

gree of parthood, then, there seems to be no harm but only benefits if we add more than just

one. Consider the case of Tibbles. It is certainly possible that there is a different whisker,

call it W’, that has also loosened up and is about to fall off. But we can imagine that W’

is looser than W, and also has a stronger inclination to fall off. In this case, then, it seems

quite intuitive to say that the extent to which W’ is part of Tibbles is lower than the extent

to which W is part of Tibbles. If we want to transform this “extent talk" to “degrees talk",

we will then want to have multiple intermediate degrees that are comparable to each other,

so that we can assign a lower intermediate degree to “W’ is part of Tibbles" and a higher

one to “W is part of Tibbles".

Let us call a semantic framework “degree-theoretic" if it allows for multiple degrees of

truth in addition to the extreme ones. The semantic framework that I am about to develop,

Boolean semantics, is a degree-theoretic one. There are, I believe, a number of advantages

to use a degree-theoretic semantics on cases of mereological indeterminacy. First, under a

degree-theoretic framework, the changes that need to be made to the classical semantics are

quite unsubstantial and procedural. All we need to do is to replace the classical value range

t0,1u with a value range of a larger size. The core idea behind the classical semantics story

stays unchanged, including, for example, that constants in the language are interpreted by

objects in the domain, that truth values are assigned to the atomic formulas by an assign-

ment function that comes with the model, that complex formulas have their values calcu-

lated from the values of simpler formulas using certain algebraic operations, and so on3.
2Although most people think that at least some change to classical semantics is needed for handling

mereological indeterminacy, there are also exceptions. For epistemicists like Williamson [36], sentences like
“W is part of Tibbles" do indeed have a definite truth value, and it is just impossible for us humans to know the
truth values of these sentences. Mereological vagueness is explained, on this view, as a kind of ignorance that
we cannot possibly overcome. Most people find this view highly counter-intuitive. Under this view, there
will have to be basic mereological facts about ordinary objects in the world that are simply epistemically
inaccessible to us, no matter how our cognitive abilities improve. It seems to me to be a heavy philosophical
burden to postulate these unreachable facts about the mereological relations among ordinary objects.

3Admittedly it is of course theoretically possible for there to be degree-theoretic views of mereological
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What we end up with is a natural generalization of the classical semantics theory, rather

than a radical deviation. Second, a degree-theoretic semantics offers at least some level of

explanation of what mereological indeterminacy is. Under a degree-theoretic framework,

cases of mereological indeterminacy are cases of intermediate parthood degrees, that is,

cases where some object is part of another to an intermediate degree between 0 and 1.

The phenomenon of indeterminacy is explained in terms of non-extreme truth degrees. Of

course, this does not answer all the questions we care about regarding mereological indeter-

minacy, such as, for example, “What is the nature of mereological indeterminacy?", or “Is

mereological indeterminacy worldly or not?". But it is a decent first step. Last but not least,

as we have already observed, our ordinary intuition about the relation of parthood involves

that it is susceptible to comparison. Among the two loosened up whiskers the looser one is

less a part of Tibbles than the tighter one. Among the two trees at the boundary the further

one is less a part of Kilimanjaro than the closer one. So on and so forth. Such intuitions can

be neatly captured by a degree-theoretic semantics as long as we have multiple comparable

intermediate degrees.

The above discussion is not meant to be a decisive argument against using non-degree-

theoretic semantics for cases mereological indeterminacy. There is a variety of different

non-degree-theoretic semantics, and I do not believe there is a sufficiently strong objection

against them all. Each one has its own problems, and I will postpone the discussion of

some of them to the later sections4. The above discussion is only meant to point out some

general advantages enjoyed by having a degree-theoretic semantics, and that the latter is a

good place to start, if our goal is to develop a semantics for the relation of parthood that

tolerates indeterminacy.

indeterminacy that are not truth functional. But to my knowledge in the current context this is not something
worth of special discussion.

4For example, we will talk about supervaluation semantics and its connection to Boolean semantics in
Section 2.6.
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2.3 What Are Boolean Degrees?

The classical value range t0,1u is the two-element complete Boolean algebra, and in classi-

cal semantics, logical terms like “and", “or", etc. are interpreted by the algebraic operations

- meet, join, etc. - on the Boolean algebra. If our plan is to enlarge the classical value range

while keeping the rest of classical semantics unchanged, then the natural suggestion is to

use larger complete Boolean algebras as value range and still interpret logical terms using

Boolean operations. Degrees of truth, then, form a complete Boolean algebra that has more

than two elements.

Definition 2.3.1. A Boolean algebra5 is a set B together with binary operations [ and \,

unary operation ´, and elements 0 and 1 that satisfies:

1. commutative and associative laws for [ and \;

2. distributive laws for [ over \ and \ over [;

3. for any x,y P B, x\px[ yq “ x; x[px\ yq “ x; x\´x“ 1; x[´x“ 0.

In each Boolean algebra we can define an ordering ď as follows: for any x,y P B, xď y

just in case x[ y“ x. We can show that this ordering is a partial order: in fact, it gives rise

to a bounded distributive complemented lattice. 1 is the top element with respect to this

ordering, and 0 is the bottom element with respect to this ordering6.

Definition 2.3.2. A complete Boolean algebra B is a Boolean algebra where each subset of

B has a supremum with respect to the ordering ď.

In classical semantics, models are t0,1u-valued. In Boolean semantics, models are B-

valued7, where B can be any complete Boolean algebra. Just as in the classical case, a

Boolean model A comes with a pre-given set of objects, A, as its domain. Any constant in

the language is interpreted by an object in the domain. The identity symbol is interpreted

5For a detailed introduction to Boolean algebras, see [14].
6In fact, an alternative characterization of a Boolean algebra is a bounded distributive complemented

lattice.
7For a more formal definition of a Boolean-valued model, see Def. 2.7.1 in the Appendix.
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by a function from A2 to B that satisfies the following conditions: for any a1,a2,a3 P A8,

Ja1 “ a1KA “ 1

Ja1 “ a2KA “ Ja2 “ a1KA

Ja1 “ a2KA[ Ja2 “ a3KA ď Ja1 “ a3KA

An n-ary relation symbol P is interpreted by a function from An to B that satisfies the

following conditions: for any a1, ...,an,b1, ...,bn P A9,

JPpa1, ...,anqKA[p
ę

1ďiďn

Jai “ biKAq ď JPpb1, ...,bnqKA

Again, just as in the classical case, the sentential connectives and quantifiers are in-

terpreted by algebraic operations on the Boolean algebra: conjunction by binary meet,

disjunction by binary join, negation by complementation, universal quantifier by inifnite

meet and existential quantifier by infinite join. In particular, given an assignment function

x from the set of all variables to A, and suppose φ ,ψ are formulas,

J␣φKArxs “ ´JφKArxs

Jφ ^ψKArxs “ JφKArxs[ JψKArxs

Jφ _ψKArxs “ JφKArxs\ JψKArxs

JDviφKArxs “
ğ

aPA

JφKArxpvi{aqs

J@viφKArxs “
ę

aPA

JφKArxpvi{aqs

where xpvi{aq is the assignment function that takes vi to a and agrees with x at everywhere

else.

Now we have shown that Boolean semantics arises from classical semantics simply

8Here and in the following, for any sentence φ and any Boolean model A, JφKA means the value of φ in
A. We might omit the superscript occasionally when the context is clear.

9In any complete Boolean algebra B, for any D Ď B,
Ű

D is the infimum of D with respect to the ording
ď, whose existence is guaranteed by the definition of a complete Boolean algebra (with an easy derivation).
Similarly,

Ů

D is the supremum of D with respect to ď.
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by replacing the two-element complete Boolean algebra of classical truth degrees with a

complete Boolean algebra of any size. After this change, we faithfully follow the classical

procedure, step-by-step. The new value range can be as large as we want, as there can be

arbitrarily large complete Boolean algebras. Therefore, there can be multiple intermediate

degrees in between the top degree 1 and the bottom degree 0. Ordered by ď, some of

the intermediate degrees are higher/lower than some others. These Boolean degrees are

perfect for modeling mereological indeterminacy. The whisker W1 that is firmly attached

to Tibbles is part of Tibbles to degree 1; the whisker W2 that has already fallen off from

Tibbles is part of Tibbles to degree 0; the whisker W that has loosened up and is inclined

to fall off is part of Tibbles to degree p, where p is an intermediate degree between 0 and 1

in a complete Boolean algebra that is sufficiently large; the whisker W’ that is just like W

except that it is looser and has a greater inclination to fall off is part of Tibbles to degree q,

where q is some intermediate degree between 0 and 1 that is strictly less than p. Boolean

mereology centers around the simple idea that parthood comes in Boolean degrees. The

basic thought behind the view is that while the classical picture does great in modeling

the parthood relations among abstract mathematical objects like geometrical spheres or

spacial-temporal regions that are perfectly precise, it is inadequate when we wish to further

theorize about the parthood relations among ordinary objects like cats and mountains that

have vague mereological boundaries. To deal with the ordinary objects we need a wider

range of parthood degrees in addition to 0 and 1, and we will argue in the next section that

the wider range should be a larger complete Boolean algebra.

2.4 Why Boolean Degrees?

In the literature on mereological indeterminacy, or the literature on vagueness in general,

the most mainstream, or even perhaps the only currently available version of degree theory,

is the one which changes the classical semantics by replacing the classical value range

with the real interval r0,1s, ordered in the standard way. Let us call a degree-theoretic

semantics of this kind, or just a degree-theoretic semantics under which the degrees of truth

are ordered linearly, a fuzzy semantics. Of course, my definition here of a fuzzy semantics
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is very general, and as it stands a cluster of views that differ from each other in bigger or

smaller details satisfy this definition. But the points that I am about to make in the rest of

this section should be applicable to them all.

Since any complete Boolean algebra larger than t0,1u is not a linear order, Boolean

semantics, in the sense that matters, is not a fuzzy semantics. Boolean semantics actu-

ally shares a lot in common with a fuzzy semantics. They both originate from the simple

thought that the classical semantics is inadequate at modeling the mereological status of

ordinary objects because it offers too few options. Therefore, they both plan to change the

classical semantics by enlarging the value range while keeping the rest untouched. The key

difference, of course, is which structure we should replace the classical value range with. It

is interesting to note that the classical value range t0,1u is the only non-degenerate order-

ing that is both linear and Boolean. So both Boolean semantics and fuzzy semantics agree

in that we should generalize some algebraic property of the classical value range in order

to build larger ranges, but they disagree on which algebraic property we should generalize:

for the fuzzy semantics, it is the property of being linear; for Boolean semantics, it is the

property of being Boolean.

Despite sharing commonalities, Boolean mereology and the fuzzy alternative differ in

substantial ways. In the rest of this section, I will argue that Boolean semantics is the

better degree-theoretic semantic framework when it comes to theorizing about mereological

indeterminacy. The biggest motivation behind the fuzzy views is that our intuition that

parthood among ordinary objects is not an all-or-nothing matter; rather, it seems to come in

different degrees. Common sense confirms that the tighter whisker W is part of Tibbles to a

greater extent than the looser whisker W’, though neither of the two whiskers are definitely

part of Tibbles, as they are both on the verge of falling off. The biggest selling point of

the fuzzy views, I think, is that it is able to capture this intuition. Under a fuzzy view, we

can, for example, say that W is part of Tibbles to degree 0.5 while W’ is part of Tibbles

to degree 0.4; or in general, the tighter a shaky whisker is, the higher the degree we assign

to it being part of Tibbles. But we can do the same thing with a Boolean ordering of truth

degrees. Complete Boolean algebras can be as large as we want, and therefore there can be

as many intermediate parthood degrees as want. As long as the Boolean value range has
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more than four elements, there will be two intermediate degrees p,q between 0 and 1 such

that q is strictly less than p, so that we can let p be the degree to which W is part of Tibbles

and q be the degree to which W’ is part of Tibbles.

Second, although sometimes we have borderline cases of parthood whose degrees of

parthood seem comparable, sometimes we have borderline cases of parthood whose degrees

of parthood seem incomparable. Consider, for example, the tree T that is boundary of

Mount Kilimanjaro. It is indeterminate whether T is part of Kilimanjaro, meaning that the

degree to which T is part of Kilimanjaro is an intermediate value between 0 and 1, just as the

degree to which the whisker W is part of Tibbles. But should the former degree be higher

than the latter, or should the latter be higher than the former, or should they be equivalent?

How exactly should we compare the degree to which T is part of Kilimanjaro to the degree

to which W is part of Tibbles? I think it is impossible to answer these questions. Unlike in

the case of W and W’, there is simply no sensible dimension by which we can compare the

degree to which T is part of Kilimanjaro and the degree to which W is part of Tibbles. The

two degrees should be simply incomparable. It is absurd to assert that T is more part of

Kilimanjaro than W is part of Tibbles and equally absurd to assert the opposite. But under a

fuzzy semantics we have no choice but to have the two degrees be comparable to each other,

since a linear ordering of degrees is connected, meaning that for any two fuzzy degrees

p,q, either p ď q or q ď p. This is, I believe, a unfortunate consequence of using a fuzzy

semantics on mereology. And we can avoid it by adopting a Boolean semantics instead.

Any complete Boolean algebra that is larger than t0,1u is not connected, and therefore

there will be elements p,q such that neither pď q nor qď p. Boolean mereology thus has

the resources to refrain from comparing the degree to which T is part of Kilimanjaro and

the degree to which W is part of Tibbles. In short, under Boolean mereology, unlike under

its fuzzy counterpart, we do not have to make incomparable comparisons.

Third, the most commonly held and perhaps the most powerful objection to the fuzzy

views is that they are in tension with classical rules of reasoning.10 Departing from classi-

cal logic, I believe, comes with great costs, for at least two reasons. First, classical rules and

tautologies that are invalid under the fuzzy views - say, for example, the law of excluded

10See, for exmaple, [20].
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middle - are widely endorsed and employed in almost all other areas in philosophy and in

mathematics. Rejecting classical logic would mean that fuzzy mereology has to be an iso-

lated, lonely bubble in the theory space. Second, the way in which the fuzzy views violate

classical logic brings upon unwelcome consequences. For example, consider the sentence

that W is part of Tibbles. The truth degree of this sentence has to be an intermediate value,

since W is a borderline case. But by the same reasoning, the negation of this sentence -

that W is not part of Tibbles - also has to have an intermediate truth value. And because

the values are ordered linearly, the conjunction of the two sentences - that W is both part of

and not part of Tibbles - has to have an intermediate truth value as well, at least under the

standard form of the fuzzy view. But that sounds wrong: nothing can be both part of and

not part of Tibbles. The conjunction has the form of a contradiction, and a contradiction

should be outright false instead of being somewhere in between truth and falsity.

Boolean mereology, in contrary, avoids all these problems, as it not only is compatible

with but also enforces classical logic. As we will prove in the Appendix, Boolean-valued

models, for first-order languages, for example, are sound and complete with respect to first-

order logic. This means that all the theorems of first-order logic are true to degree 1 in every

Boolean-valued model. Therefore, sentences saying that W is both part of and not part of

Tibbles always have degree 0 in Boolean-valued models. Similarly, sentences saying that

W is either part of Tibbles or not part of Tibbles always have degree 1. With Boolean

truth degrees, we can have a many-degree truth-functional semantics with classical rules of

inferences satisfied.

Last but not least, under Boolean mereology, not only can we have theorems of classical

logic satisfied, we can also have principles of classical mereology satisfied. This point will

be exemplified in the next section where we discuss a special kind of Boolean models for

the language of mereology - the atomic Boolean models. Basically, we can have Boolean-

valued models of mereology where all the principles of classical mereology have value 1.

In contrast, this is something that is incredibly difficult, if not utterly impossible, to achieve,

under the fuzzy approach.

For example, consider the case of Tibbles, of which W is a vague part. Under fuzzy

semantics, the sentence that W is part of Tibbles should be a real number in p0,1q. Let’s say
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that W is part of Tibbles to degree 0.5. Now, clearly Tibbles is distinct from the whole mere-

ological universe (whose existence is guaranteed by classical mereology): lots of things,

the Eiffel Tower, for example, are part of Tibbles to degree 0. A consequence of classical

mereology - the principle of strong complementation11 - says that everything that is dis-

tinct from the universe has a (mereological) complement. Since Tibbles is distinct from

the universe to degree 1, there has to be an object, call it Complement, such that it is the

complement of Tibbles to degree 1. This means that (1) Complement overlaps with Tibbles

to degree 0, and (2) the fusion of Tibbles and Complement is identical to the entire universe

to degree 1. But, then, what should be the degree to which W is part of Complement? In

order for the degree to which Complement overlaps with Tibbles to be 0, the degree to

which W is part of Tibbles and is part of Complement has to be 0, which means that the

degree to which W is part of Complement can only be 0. But then the fusion of Tibbles

and Complement is such that W is part of it to degree 0.5, whereas the universe is such that

W is part of it to degree 1. So the fusion of Tibbles and Complement is not identical to the

entire universe to degree 1. Contradiction.

For similar but slightly more difficult reasons, we can see that even the principle of weak

supplementation12 is going to fail under fuzzy semantics. And it is not hard to see that the

failure of these classical mereological principles under fuzzy semantics is essentially due

to the linear ordering of the truth values. In the case of Tibbles and Complement, in order

for the principle of strong complementation to be true, we need the degree x to which W

is part of Complement to be such that the supremum of x and 0.5 is 1 and the infimum of

x and 0.5 is 0. Nevertheless, when the truth values are linearly ordered, there simply is no

such value. When the truth values form a Boolean ordering, on the other hand, such a value

does exist, as we will see shortly below. In any case, the general point here is simply that

by adopting a fuzzy semantics we will have to sacrifice part of classical mereology, and this

is a sacrifice that cannot be ignored, as classical mereology is well-understood and deeply

intertwined with other areas in contemporary metaphysics. We can avoid this sacrifice by

11Formally, the principle of strong complementation is the following sentence in LM: @v1p␣Upv1q Ñ

Dv2p␣v1 ˝ v2^@v3pFupv3,tv1,v2uq Ñ Upv3qqqqq, where Upv1q :“ @v2pv2 À v1q. For the definition of LM
and other defined notions, see Def. 2.5.1.

12Formally, the principle of weak supplementation is the following sentence in LM: @v1@v2pv1 Ä v2 Ñ

Dv3pv3 À v2^␣v1 ˝ v3qq. For the definition of LM and other defined notions, see Def. 2.5.1.
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adopting Boolean semantics instead.

2.5 Atomic Boolean Models

The goal of this section is to investigate a special kind of Boolean model for mereology,

which we will call the atomic Boolean models. These models arise from a simple and nat-

ural idea. We start with a pre-given set of mereological atoms S. Then, taking a complete

Boolean algebra B as value range, we let domains of the models consist of functions from

S to B. Intuitively, any function f : SÑ B corresponds to an object composed of the mere-

ological atoms. For any a P S, f paq is the degree to which the atom a is part of (the object

represented by) f .

The atomic Boolean models13 are particularly interesting and worth studying for mul-

tiple reasons. First, as mentioned above, atomic Boolean models are intuitively motivated.

If the world is built up from mereological atoms, and if mereological relations comes in

degrees, then the natural picture is that every object in the world is composed of the atoms

to certain degrees. That is, it should be the case that every object in the world can be rep-

resented by a function from the set of all atoms to Boolean degrees, which is exactly what

atomic Boolean models are like. Second, as argued above, Boolean mereology, unlike the

fuzzy views, is easily compatible with axioms of classical mereology. Below we will ex-

emplify this point by showing that a special case of the atomic Boolean models - the SEV I

models - are models of the system CM, which is equivalent to classical mereology. So with

Boolean semantics we can have a degree-theoretic semantics of mereology with all axioms

of classical mereology satisfied.

Third, in the literature on vague mereology, there has been a fair amount of discussion

on the relationship between vague parthood on the one hand, and vague existence and vague

identity on the other hand.14 Many, for example, have either argued or tacitly assumed that

13The atomic Boolean models, as we will see in a moment, are models of the axiom of Atomicity. This
does not mean, however, that Boolean semantics are stuck with atomic mereology. Note that atomic Boolean
models are a special kind of Boolean-valued models for mereology that naturally arise on the assumption that
the world is atomic. There can certainly be other types of Boolean-valued models for mereology that model,
for example, some kind of gunky mereology. We focus on atomic Boolean models here simply because of
their simplicity and their effectiveness in illustrating our points, as will be listed below.

14Here’s a non-comprehensive list of articles that have touched on these equestions: Evans [11], Weather-
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vague parthood entails vague existence, and therefore proponents of mereological vague-

ness are also stuck with existential vagueness. A study of atomic Boolean models, as

I will show below, will shed light on how, under Boolean semantics, vague parthood is

connected with vague existence and vague identity. In particular, I will show that their con-

nection neither takes the form of entailment nor takes the form of exclusion, as there can

be atomic Boolean models, though being models of vagueness, that disallows vagueness in

existence/identity, and atomic Boolean models that allows vagueness in existence/identity.

Last but not least, I believe that atomic Boolean models are mathematically interesting

to study as well. This is because atomic Boolean models are similar in multiple aspects to

the standard Boolean-valued models of set theory, as presented in, say, Bell [3]. For exam-

ple, the definition of the values of the atomic clauses on parthood in the atomic Boolean

models is similar to the definition of the values of the clauses on subsethood in the Boolean

models for set theory: the former is defined in terms of the degree to which every atom

that is part of the first object is part of the second object, while the latter is defined in terms

of the degree to which every element that is a member of the first set is a member of the

second set. Another example is that when proving the axiom of Fusion holds in atomic

Boolean models, we construct a fusion in the same way as we construct a mixture of a col-

lection of Boolean-valued sets. These commonalities in techniques perhaps hint towards

a deeper connection between Boolean-valued parthood and Boolean-valued membership,

which seems to be worth of further study.

We will divide the rest of this section into two subsections. We will devote the first

subsection to presenting a version of the formal theory of mereology that is tailored specif-

ically to our needs. In the second subsection, we will define properly different kinds of the

atomic Boolean models, use them to explore the relationship between vagueness in part-

hood and vagueness in existence/identity, and discuss which axioms of classical mereology

hold in these different kinds of atomic Boolean models.

son [35], Barnes and Williams [2] have argued that vague parthood entails vague identity; Cook [8], Sainsbury
[30], and some others have argued for the opposite; van Inwagen [34], Lewis [21], Smith [31], Merricks [26]
and many others hold that vague parthood entails vague existence; Morreau [27] and Donnelly [9] hold the
opposite view.
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2.5.1 Classical Mereology

As mentioned above, one of the primary goals of studying atomic Boolean models is to

investigate the relation between vague parthood and vague existence/identity. We will also

investigate how, given the presence of vague parthood, different axioms of classical mere-

ology are connected with the presence/absence of vague existence/identity. But to meet

these needs we will have to deviate from the standard formulation of classical mereology

to some extent, for reasons I will explain in a moment. In particular, the deviation will

come in two parts: (a) we will alter, in minor but important details, the way in which some

non-primitive mereological notions are defined in terms of the notion of parthood, and (b)

we will present and group the axioms of classical mereology in a way that is slightly more

complicated and cumbersome than the standard.

Part (a) of the deviation further consists of two changes. The first, and the most im-

portant change we will make is that we will define an “existence" predicate and restrict

quantification to objects that satisfy this predicate at certain places (for example, when

defining “overlap", “fusion", etc.). The reason why we need this change is because the

standard formulation of classical mereology tacitly assumes that everything in the domain

of quantification fully exists, and therefore leaves no room for vague existence at all. In or-

der to be able to discuss the possibility of vague existence, therefore, we have to define this

“existence" predicate that serves the purpose of measuring the degree to which an object

exists, and have it impact the domain of quantification at places that matter. The second

change we will make is less non-trivial and is mostly just for convenience: we will define

the notion of proper part without using the identity symbol. Later we will see that this

small change allows all the axioms of atomic classical mereology except Anti-Symmetry

to be formulated without the identity symbol. Therefore, it will follow directly from the

formulation of these axioms that the truth/falsity of these axioms in a Boolean model is not

affected by how identity is defined in the model, or in other words, whether we have vague

identity or not.

Now we introduce the language of mereology and the defined notions:
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Definition 2.5.1. The language of mereology, LM, is the second order language15 whose

signature contains a single binary relation À (parthood). We further define the following

relations in this language:

1. v1 Ä v2 :“ v1 À v2^␣v2 À v1.

2. Epv1q :“ Dv2p␣v1 À v2q.

3. v1 ˝ v2 :“ Dv3pEpv3q^ v3 À v1^ v3 À v2q.

4. Atpv1q :“ Epv1q^@v2pEpv2q Ñ ␣v2 Ä v1q.

5. FUpv1,X1q “ @v2pX1pv2qÑ v2 À v1q^@v3pv3 À v1^Epv3qÑ Dv4pX1pv4q^v3 ˝v4qq.

Intuitively, v1 À v2 means that v1 is a part of v2. v1 Ä v2 means that v1 is a proper part

of v2. Epv1q means that v1 exists, or that v1 is not zero, in the sense that v1 is not a part

of everything. v1 ˝ v2 means that v1 and v2 overlap. Atpv1q means that v1 is a mereological

atom. FUpv1,X1q means that v1 fuses the X1’s.

We now move on to axioms of mereology, which are sentences in LM. We divide these

axioms into four groups, for purposes we will explain in a moment:

Definition 2.5.2. The minimal theory of Classical Mereology (MCM) contains the follow-

ing three axioms:

(Transitivity) @v1@v2@v3pv1 À v2^ v2 À v3 Ñ v1 À v3q

(Supplementation) @v1@v2pv2 Â v1 Ñ Dv3pEpv3q^ v3 À v2^␣v1 ˝ v3qq

(Fusion) @X1pDv1X1pv1q Ñ Dv2pFUpv2,X1qq

The theory of Classical Mereology without Identity (CM´) contains MCM and the follow-

15Whether classical mereology should be formulated as a first-order or second-order theory is not a trivial
issue, and one might have different preferences based on their other theoretical commitments. For example,
a nominalist might want to avoid quantifying over second-order entities. But none of these concerns, I
think, matter to our discussion of mereological indeterminacy. In this chapter I define the theory of classical
mereology as a second-order theory simply because this is the more demanding option, and all the Boolean
constructions we have laid out in this chapter can be easily carried over to the first-order case.
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ing extra axiom:

(NoZero) Dv1Dv2pv1 Â v2q Ñ ␣Dv3␣pEpv3qq

The theory of Classical Mereology (CM) contains CM´ and the following extra axiom:

(Anti-Symmetry) @v1@v2pv1 À v2^ v2 À v1 Ñ v1 “ v2q

The minimal theory of Atomic Classical Mereology (MACM) / the theory of Atomic Classi-

cal Mereology without Identity (ACM´) / the theory of Atomic Classical Mereology (ACM)

contains MCM/CM´/CM and the following extra axiom:

(Atomicity) @v1pEpv1q Ñ Dv2pAtpv2q^ v2 À v1qq

We have the minimal theory consisting of Transitivity, Supplementation and Fusion

because these, as we will show in the next subsection, will be the core axioms that will

be satisfied no matter whether we have vague existence, vague identity, or not, as we will

show in the next subsection. The axioms NoZero and Anti-Symmetry are listed separately

because these are the ones that do take a stand on whether there is vague existence/identity

or not: the former disallows vague existence and the latter requires vague identity. An inter-

esting observation is that the minimal theory MCM together with Anti-Symmetry forms a

neutral system that is in between the classical theory of mereology16 and the (second-order)

theory of complete Boolean algebras, in the following sense:

Theorem 2.5.1. CM is equivalent to Tarski’s system, which is the theory closed under the

following two axioms:

(Transitivity) @v1@v2@v3pv1 À v2^ v2 À v3 Ñ v1 À v3q

(UniqueFusionExistence) @X1pDv2X1pv2q Ñ D!v1pFU 1
pv1,X1qq

16By “the classical theory of mereology" I mean the theory that originates from Tarski’s paper [33]. For a
full development of Tarski’s system, see [15].
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where FU 1pv1,X1q is a slight variation of FUpv1,X1q, and is defined as follows:

FU 1pv1,X1q “ @v2pX1pv2q Ñ v2 À v1q^@v3pv3 À v1 Ñ Dv4pX1pv4q^Dv5pv5 À v3^

v5 À v4qqq.

Theorem 2.5.2. The (second-order) theory of complete Boolean algebras is equivalent to

MCM plus Anti-symmetry plus the following axiom:

(ZeroExistence) Dv1␣Epv1q

The proofs of these theorems are in the Appendix.

2.5.2 Atomic Boolean Models

We shall now define the atomic Boolean models. As we mentioned above, the domain

of these models consists of functions from a pre-given set of mereological atoms S to a

complete Boolean algebra B. But which of these functions shall we include in the do-

main exactly? For reasons I will explain in a moment there are at least two collections of

functions from S to B that may reasonably form the domain of a model:

1. M “ t f : SÑ B |
Ů

aPS
f paq “ 1u.

2. N “ t f : SÑ B |
Ů

aPS
f paq ą 0u.

In the Appendix (Lemma 2.7.8.1 and Lemma 2.7.13.1) we will prove that in any atomic

Boolean model, for any f : SÑ B in the domain,
Ů

aPS f paq “ JEp f qK, the degree to which

f exists. So the set M consists of functions that correspond to objects that exist to degree

1. In our setting, to exist vaguely means to satisfy the existence predicate E to a degree

that is in between 0 and 1. Therefore, atomic Boolean models with domain M has no room

for vague existence at all. They will be used to show that under Boolean mereology, vague

parthood does not entail vague existence, contrary to what many have argued, as there are

Boolean models of vague parthood that are not models of vague existence. On the other

hand, the set N consists of functions that correspond to objects that exist to any positive

degree. Atomic Boolean models with domain N, therefore, have objects in their domains
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that exist vaguely. Under Boolean mereology, mereological vagueness can co-occur with

existential vagueness, although not necessarily.

Definition 2.5.3. Let S be a set (of mereological atoms). Let B be a complete Boolean

algebra. A B-valued SE (“Sharp-Existence") model on S, SB
S , is a B-valued model for LM

with:

1. The domain M “ t f : SÑ B |
Ů

aPS
f paq “ 1u.

2. For any f1, f2 PM, J f1 À f2KS
B
S “

Ű

aPS
f1paq ñ f2paq17.

A B-valued V E (“Vague-Existence") model on S, SB
V , is a B-valued model for LM with:

1. The domain N “ t f : SÑ B |
Ů

aPS
f paq ą 0u.

2. For any f1, f2 P N, J f1 À f2KS
B
V “

Ű

aPS
f1paq ñ f2paq.

In both kinds of models the values of parthood clauses are defined in the same way.

Roughly, the degree to which an object is a part of another is defined as the degree of the

sentence that every atom that is a part of the former is also a part of the latter.

Note that in defining these models we have omitted the definition of the values of iden-

tity clauses. This is because, depending on whether we want vague identity in our models

or not, there are two different ways of defining identity in atomic Boolean models. The

first way, which is given under the label “Vague-Identity", is to define identity in terms of

the degree to which two objects share the same atoms. This is the way that is friendly to

vague identity: it allows objects to be identical to each other to an intermediate degree.

The second way, which is given under the label “Sharp-Identity", is to define identity “in

the sharp way", that is, to define the degree to which two objects are identical as 1 when

the corresponding functions are the same, and as 0 when the corresponding functions are

different. This is the way, as you may expect, that is hostile to vague identity. Given two

17For any p,q in a Boolean algebra B, pñ q“´p\q.
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functions f1, f2 : SÑ B:

(Vague-Identity) J f1 “ f2K“
ę

aPS

f1paq ô f2paq.

(Sharp-Identity) If f1 and f2 are not the same, then J f1 “ f2K“ 0.

We can freely combine Vague/Sharp-Identity with SE/V E models and get four different

kinds of models, as listed in the following:

Definition 2.5.4. Let S be a set (of mereological atoms). Let B be a complete Boolean

algebra. The B-valued SEV I (“Sharp-Existence Vague-Identity") model on S, SB
SV , is the

B-valued model for LM with:

1. The domain M “ t f : SÑ B |
Ů

aPS
f paq “ 1u.

2. For any f1, f2 PM, J f1 À f2KS
B
SV “

Ű

aPS
f1paq ñ f2paq.

3. For any f1, f2 PM, J f1 “ f2KS
B
SV “

Ű

aPS
f1paq ô f2paq.

The B-valued SESI (“Sharp-Existence Sharp-Identity") model on S, SB
SS, is the B-valued

model for LM with:

1. The domain M “ t f : SÑ B |
Ů

aPS
f paq “ 1u.

2. For any f1, f2 PM, J f1 À f2KS
B
SS “

Ű

aPS
f1paq ñ f2paq.

3. For any f1, f2 PM, if f1 and f2 are not the same, then J f1 À f2KS
B
SS “ 0.

The B-valued V EV I (“Vague-Existence Vague-Identity") model on S, SB
VV , is the B-valued

model for LM with:

1. The domain N “ t f : SÑ B |
Ů

aPS
f paq ą 0u.

2. For any f1, f2 P N, J f1 À f2KS
B
VV “

Ű

aPS
f1paq ñ f2paq.

3. For any f1, f2 P N, J f1 “ f2KS
B
VV “

Ű

aPS
f1paq ô f2paq.
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The B-valued V ESI (“Vague-Existence Sharp-Identity") model on S, SB
V S, is the B-valued

model for LM with:

1. The domain N “ t f : SÑ B |
Ů

aPS
f paq ą 0u.

2. For any f1, f2 P N, J f1 À f2KS
B
V S “

Ű

aPS
f1paq ñ f2paq.

3. For any f1, f2 P N, if f1 and f2 are not the same, then J f1 À f2KS
B
V S “ 0.

Assuming that B is larger than t0,1u, all of the four different kinds of models are models

of mereological vagueness, as it is easy to see that in all of the models there are objects that

are part of one another to an intermediate degree. But they deliver different answers on

whether there is vagueness in existence and/or on whether there is vagueness in identity.

Just as in the case of existential vagueness, mereological vagueness can co-occur with

vagueness in identity, but not necessarily.

In the rest of this section we will investigate which axioms of mereology hold in these

four kinds of models. Most results will be simply stated here with the proofs in the Ap-

pendix.

As we have mentioned before, we formulate most axioms of mereology (all except

Anti-Symmetry) without using the identity symbol. And hence whether these axioms hold

or not in these models do not depend upon whether they are V I or SI. In fact,

Theorem 2.5.3. In any SE model, Transitivity, Supplementation, Fusion, Atomicity and

NoZero all have value 1.

Theorem 2.5.4. In any V E model, Transitivity, Supplementation, Fusion and Atomicity all

have value 1, but NoZero has value 0.

So the core theory of atomic classical mereology - and by that I mean the system MACM

- is satisfied by all four kinds of model discussed here. Therefore, all four models can be

legitimately considered models of atomic classical mereology. The difference between

the V E and the SE models, of course, is that the axiom of NoZero does not hold in the

V E models. This is, I believe, a somewhat unfortunate result for the supporters of vague

existence. It means that if we allow objects that exist vaguely, then we will have to have

103



the model believe that there is an empty object that is part of everything, even when there is

more than one object. Under the standard conception of classical mereology, such an empty

object is disallowed, because it is normally considered as philosophically unmotivated18.

Nevertheless, it is not hard to see why there has to be tension between existential vagueness

and the axiom of NoZero, in the current context. Assuming there is more than one object,

then the axiom of NoZero has value 1 just in case every object f in the domain satisfies the

existence predicate to degree 1. So the axiom of NoZero literally leaves no room for objects

that exist to intermediate degrees. Proponents of existential vagueness have to sacrifice the

axiom of NoZero.

Luckily, proponents of existential vagueness could argue that although the axiom of

NoZero, in its current form, cannot be satisfied by models in which objects may exist

vaguely, there is a satisfiable weaker meta-principle that is in the same spirit. The latter is

the principle that there cannot be in the domain any object that is truly empty - that is, any

object that satisfies the existence predicate to degree 0. This has to be a principle in the

meta-language because we simply do not have the expressive resources to state something

of the form “x satisfies F to degree p" in the object language. As it is easy to see, all

V E models satisfy this meta-principle straightforwardly according to the definition of their

domain N. Proponents of V E models could argue that although the V E models believe that

there is an empty object, there isn’t really an empty object in the domain of these models,

and the latter is all we care about.19

Moving on to the only axiom left - the axiom of Anti-Symmetry. As the readers might

have expected, the holding or not of Anti-Symmetry in an atomic Boolean model is only

associated with whether identity is defined in the vague way or in the sharp way in the

model. Let us call a model a V I model if it is SEV I or V EV I, and similarly a model a SI

model if it is SESI or V ESI. It can be shown that:

Theorem 2.5.5. In any V I model, Anti-Symmetry has value 1.

18Although most people find the existence of an empty object philosophically unmotivated, there are some
people who have provided ways to justify the existence of an empty object. Giraud [13] has construed it as a
Meinongian object lacking all nuclear properties. Priest [28] has construed it as an Heideggerian nothing.

19This is an example of an intriguing and perhaps weird feature of Boolean-valued models. Some models
could be such that an existential sentence is true in the model without there being a witness.
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Theorem 2.5.6. In any SI model, Anti-Symmetry has value 0.

The opponents of vagueness in identity, therefore, has to sacrifice part of the standard

package of classical mereology, just as the proponents of existential vagueness. In this case

the sacrifice is the axiom of Anti-Symmetry. It is not hard to see why “Sharp-Identity"

makes trouble for the holding of Anti-Symmetry: since there is mereological vagueness,

there can be objects that are part of each other to an intermediate degree. Since their

corresponding functions has to be different, “Sharp-Identity" insists that they are identical

to degree 0, and hence the degree to which they are part of each other is strictly greater than

the degree to which they are identical, which causes the failure of Anti-Symmetry.

Just as the proponents of existential vagueness, there are, I believe, some ways for the

opponents of vagueness in identity to argue back. They could say that, for example, in the

context of mereology, there should really be two different notions of identity: one is the

notion of mereological coincidence, and the other is the notion of strict/real identity. Two

objects mereologically coincide - that is, are identical in the former sense - just in case they

are indistinguishable in terms of mereological relations. On the other hand, two objects are

strictly identical just in case they are indistinguishable in terms of any kind of properties or

relations, mereological or not. And the key idea is that the equality symbol in the axiom of

Anti-Symmetry should be interpreted as mereological coincidence instead of as strict iden-

tity: if two objects are part of one another, then they should be indistinguishable in terms

of mereological relations, but saying that they should also be indistinguishable in terms of

any relations seems like overkill. In an atomic Boolean model, the degree to which two

objects mereologically coincide should be defined according to “Vague-Identity", that is,

as the degree to which two objects share the same atoms, and the degree to which two ob-

jects are strictly identical should be defined according to “Sharp-Identity", such that it can

only be an extreme value. Since the relation that plays a role in Anti-Symmetry is mere-

ological coincidence, we will have Anti-Symmetry holding in the models, and since strict

identity is still defined traditionally, we also avoid the controversies surrounding vagueness

in identity.20

Below is a chart summarizing which axioms hold in each of the four kinds of atomic
20A standard argument against vagueness in identity is Evans’ Argument. See [11].
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Boolean model:

MACM MACM`NoZero MACM`Anti-Symmetry ACM
SEV I ✓ ✓ ✓ ✓

SESI ✓ ✓ ✗ ✗

V EV I ✓ ✗ ✓ ✗

V ESI ✓ ✗ ✗ ✗

Here’s a summary of what we have achieved in this section. First, we have introduced

a special kind of Boolean-valued models for mereology - the atomic Boolean models, and

argued that they are intuitively motivated, given that the world is atomic. Second, we have

used the SEV I models to illustrate our previous point that with Boolean degrees, we can

have a degree-theoretic semantics that is compatible with the whole package of atomic clas-

sical mereology. Finally, we have used the atomic Boolean models to investigate the con-

nection between mereological vagueness on the one hand and vagueness in existence and

identity on the other hand. We have shown that contrary to what many have argued, mere-

ological vagueness entails neither existential vagueness nor vagueness in identity. With

the four different kinds of atomic Boolean models, proponents of mereological vagueness

can freely choose between having and not having vagueness in existence or identity: SEV I

models for sharp existence plus vague identity, SESI models for sharp existence plus sharp

identity, V EV I models for vague existence plus vague identity, and V ESI models for vague

existence plus sharp identity. There are, nevertheless, prices to be paid. Although all four

models are models for the core theory of atomic classical mereology, the axiom of NoZero

does not hold in the “Vague-Existence" models and the axiom of Anti-Symmetry does not

hold in the “Sharp-Identity" models.

2.6 The Nature of Mereological Vagueness

Our investigation of Boolean mereology so far has been fruitful, but not all important ques-

tions about mereological vagueness have been properly addressed. One essential question

is: given that there is mereological vagueness, what is the source, or the nature of it? Is

mereological vagueness a pure linguistic phenomenon, or is the world itself vague? Does

106



the picture of Boolean mereology entail that mereological vagueness is semantic or onto-

logical? In this section I intend to discuss these questions.

There are, I believe, two most commonly held answers to the question “What is the

nature of mereological vagueness?". One option, which I will call “the semantic thesis"

in the following, is to say that mereological vagueness has a semantic nature. The phe-

nomenon exists because our linguistic practices are indeterminate, in the sense that they

do not pin down the exact meanings of certain terms, including, perhaps, singular names

like “Tibbles". The linguistic rules that we have governing the name “Tibbles" do not pick

out a unique referent for it. The world in itself, on the other hand, is perfectly precise,

mereologically speaking: there is no indeterminacy in the mereological organization of the

underlying reality. Mereological indeterminacy happens when we try to represent what the

world is like using natural languages: if there were no language, or if natural languages

were perfectly precise, there would be no indeterminacy in the parthood relation.

The other option, which I will call “the ontic thesis", is to say that mereological vague-

ness has an ontic, or worldly, nature. There is indeed indeterminacy in the mereological

organization of reality. Regardless of the terms we use to represent them, ordinary ob-

jects in the world, like for example Tibbles the cat, are themselves vague, in the sense that

their mereological constitution is indeterminate. Mereological vagueness is a feature of the

world itself, not a feature of our languages.

Which one of the two theses should we adopt, as Boolean mereologists? I believe

that Boolean mereology, as the thesis that the relation of parthood should be modeled by

Boolean degrees, is compatible with either thesis. Boolean mereology only says that sen-

tences like “W is part of Tibbles" are true to an intermediate Boolean degree; it does not

specify why these sentences are true to an intermediate Boolean degree. I will show below

that the model-theoretic framework of Boolean-valued semantics can be applied to both

theses and give rise to two distinctive views that have their unique advantages and disad-

vantages. I will call the view we get by combining the semantic thesis and Boolean-valued

semantics “semantic Boolean mereology" and the view we get by combining the ontic the-

sis and Boolean-valued semantics “ontic Boolean mereology", and discuss them in turn in

the following two subsections.
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2.6.1 Semantic Boolean Mereology

The semantic thesis explains mereological indeterminacy in terms of linguistic indetermi-

nacy and denies worldly indeterminacy. The most standard and commonly-held version of

the view locates the indeterminacy in singular names like “Tibbles" or “Kilimanjaro". On

this view, all there is in the world are objects with precise mereological boundaries. Names

like “Tibbles" do not pick out a unique referent among the precise objects. Rather, there

are multiple precise objects, located roughly where Tibbles is, that are equally qualified

candidates for the role of being the referent of “Tibbles".

How does Boolean-valued semantics accommodate this view? To simplify our discus-

sion, let us assume that the world is atomic and nothing exists but (sharp) fusions of atoms.

Let S be the collection of all atoms. Since everything that exists is a (sharp) fusion of

atoms, the domain of our Boolean-valued model has to be the collection M1 of all functions

from S to t0,1u except the one that takes all atoms to 0, where each function represents a

fusion of atoms by being its characteristic function. As there are only precise objects in the

domain, the identity symbol in the model can simply be interpreted as the sharp identity

function on these objects. Now, since we want “Tibbles" to have no unique referent, “Tib-

bles" cannot be treated as an ordinary constant in the model. Rather, we need it to be the

case that “Tibbles" indeterminately refer to multiple objects in the domain. In the context

of Boolean-valued semantics, indeterminacy means having an intermediate truth value. So

we want “Tibbles" to be interpreted in the model as a function from M1 to B, which maps

each object in the domain to degree to which the name “Tibbles" refers to it. In other words,

we will treat “Tibbles" semantically as if it were a unary predicate. Of course, “Tibbles"

cannot be treated as if it were an arbitrary unary predicate: there are further constraints that

the interpretation of “Tibbles" has to satisfy. In particular, the interpretation of “Tibbles"

has to be such that the sentence D!vpTibblespvqq - there is exactly one Tibbles - has value

1. As a result, the values attributed to the objects by (the interpretation of) “Tibbles" has to

form a maximal antichain in the Boolean algebra.

Let me spell out the above picture in more details, by constructing a concrete B-valued21

model for the language consisting of “Tibbles", “W", and “is part of", M1, tailored to the
21Here we assume B is an arbitrary complete Boolean algebra.
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needs of the standard semantic approach. Again, we assume that the world is atomic and

all that exist are (sharp) fusions of atoms. Also, we assume, just for simplicity, that the

name “W" picks out, instead of a whisker, an atom in the whisker that is about to fall off

from the cat. The domain of the model, M1, consists of all functions from S to t0,1u,

except the one that takes all a P S to 0. That is, M1 “ tg : S Ñ B | for any a P S,gpaq “

0 or 1, and for some b P S,gpbq ‰ 0u, which is equivalent to PpSq (the powerset of S) mi-

nus the empty set. The language L 1 “ tt,w,Àu, where À is the binary relation of parthood,

w is a constant playing the role of “W", and t is a unary predicate playing the role of “Tib-

bles". Since w is supposed to name an atom, the interpretation of w in M1 will be the

characteristic function of a singleton subset tau of S. In other worlds, JwKM
1

“ ga : SÑ B,

where a P S and ga takes a to 1 and every b‰ a P S to 0. The interpretation of À in M1 will

be the function from M1ˆM1 Ñ 2 that corresponds to the subset relationship on PpSqzH.

The interpretation of “ in M1 will be the “real" identity relation on M1: for any g,g1 PM1,

Jg “ g1K “ 1 if g and g1 are the same and Jg “ g1K “ 0 if g and g1 are not the same. Fi-

nally, the interpretation of t in M1, JtKM
1

, will be a function from M1 to B that satisfies the

following conditions:

1. For any g‰ g1 PM1, JtpgqKM
1

[ Jtpg1qKM
1

“ 0.

2.
Ů

gPM1

JtpgqKM
1

“ 1.

3. For some g P M such that JtpgqKM
1

‰ 0, gpaq “ 1, and for some g1 P M such that

Jtpg1qKM
1

‰ 0, gpaq “ 0.

For every g PM1, JtpgqKM
1

is the degree to which t “refers to" g. JtpgqKM
1

‰ 0 means that g

is a possible, or permissible referent of t. The third condition serves many purposes: first,

it guarantees that there are more than one permissible referent of t; second, it means that w

is part of some permissible referent of t yet is not part of some other permissible referent

of t; and third, together with the first two conditions, it ensures that no g is the determinate

referent of t, in the sense that JtpgqKM
1

“ 1. The first two conditions also guarantee that

that JD!vptpvqqKM
1

“ 1: it is true in M1 that there is exactly one t.

What is the degree to which w is part of t in M1? We want it to be an intermediate

degree between 0 and 1, capturing the fact that it is indeterminate whether w is part of
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t. And the conditions we impose on the interpretation of t in M1 can indeed guarantee

that. But there is a small complication. The sentence w À t contains t syntactically as a

constant, yet our model M1 treats t as a unary predicate. So we need to find some way

to translate this sentence, or any sentence that contains t syntactically as a constant, to

a sentence that contains t syntactically as a unary predicate. The trick we will use here

is to translate any sentence of the form φptq, which has t as a constant, to the sentence

D!viptpviqq ^ @v jptpv jq Ñ φpv jqq. It is easy to check that this translation recipe always

preserves truth values for sentences involving constants. Moving on to the sentence under

concern: (let T 1 “ tg PM1 | JtpgqKM
1

‰ 0 and gpaq “ 0u)

Jw À tKM
1

“ JD!viptpviqq^@v jptpv jq Ñ pw À v jqqKM
1

“ J@v jptpv jq Ñ pw À v jqqKM
1

“
ę

gPM1

JtpgqKM
1

ñ gpaq

“
ę

gPT 1

´JtpgqKM
1

“´
ğ

gPT 1

JtpgqKM
1

The three conditions we impose on the interpretation of t guarantees that 0ă
Ů

gPT 1

JtpgqKM
1

ă

1. Therefore, 0ă Jw À tKM
1

ă 1, which is exactly what we want.

Since M1 is a Boolean-valued model, all principles of classical logic will hold in it.

Also, as it is easy to see that M1 restricted to the language of mereology LM is isomorphic

to the powerset model on S, the whole package of atomic classical mereology, by which I

mean the system ACM, will hold in M1. One feature of M1 worth mentioning is that M is

not a “witnessing" model, in the sense there are existential sentences whose truth value is

strictly greater than that of any of its instances. For example, the sentence “something is

Tibbles" will have value 1 in the model without any of its instances having value 1. But this

is exactly what supporters of the semantic thesis would want: although they would agree

that “Tibbles exists" is true, they would not identity any (sharp) object in the domain as

uniquely identical to Tibbles.

Therefore, Boolean-valued semantics, as shown above, provides an elegant model the-
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ory for the semantic thesis. Under semantic Boolean mereology, the actual world that we

live in is just like to the model M we constructed above. All there is are sharp objects, and

the parthood relation that holds between them is also sharp. Mereological indeterminacy is

grounded in the linguistic indeterminacy of terms like “Tibbles", which is further explained

in terms of there being multiple objects in the domain to which the term applies to a degree

larger than 0.

The standard model-theoretic framework that accompanies the semantic thesis is su-

pervaluation semantics22. A supervaluation model consists of a fixed domain of objects23

and multiple permissible precisifications. Each precisification can be understood as a two-

valued model with the given domain. A sentence is (super)true if it is true in all precisifi-

cations, (super)false if false in all precisifications, and neither (super)true nor (super)false

if otherwise. On cases like Tibbles, each permissible precisification assigns to “Tibbles" a

different object in the domain as its referent. “W is part of Tibbles", in the intended model,

will be a sentence that is neither (super)true nor (super)false. A supervaluation model is ac-

tually a special case of a Boolean-valued model like M1. Let S be a supervaluation model

for L 1 with domain D and precisifications tAi | i P Iu, where in each Ai, JwKAi “ a PD and

JtKAi “ ai P D. We can transform S to a PpIq-valued Boolean model MS with domain D

as follows:

1. JwKM
S
“ a.

2. For any b P D, JtpbqKM
S
“ ti P I |Mi |ù t “ bu.

3. For any b,c P D, Jb À cKM
S
“ ti P I |Mi |ù b À cK.

Using the translation recipe we introduced above, Jw À tKM
S
“ ti P I | Ai |ù w À tu will

be a proper non-empty subset of I, as there are precisifications in which w is part of t and

ones in which w is not part of t. That w À t, therefore has an intermediate truth value

in MS, which corresponds to the fact that it is neither (super)true nor (super)false in S.

22As in, for example, [12].
23Sometimes supervaluationism is used on cases where it is indeterminate what the domain of quantifi-

cation is. One example are cases of quantum indeterminacy (see [6] or [22]). On cases of mereological
indeterminacy, nevertheless, it is usually safe to assume that the domain of quantification is determinate.
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Although mathematically speaking, transforming a supervaluation model into a Boolean-

valued model makes no significant difference, from a philosophical perspective such a

transformation brings a number of benefits. Since supervaluation models now become

Boolean-degree-theoretic, they enjoy all the advantages that the Boolean semantics has,

as discussed in the previous sections: being truth-functional, having distinct comparable

borderline statuses, having incomparable borderline statuses etc.

Semantic Boolean mereology is an attractive story and enjoys many theoretical advan-

tages. For example, some people ([10]) have argued that vagueness should be a uniform

phenomenon, in the sense that different types of vagueness should have the same nature:

they are either all semantic or all ontic. Since there are strong arguments for vagueness

in properties (like the property of being bald) being a semantic phenomenon, mereologi-

cal vagueness should be theorized as a semantic phenomenon as well. To me, the biggest

advantage of semantic Boolean mereology is that it naturally comes with a solution to the

notorious problem of the many (see, for example, [24]). As long as we accept classical

mereology, the principle of fusion existence will generate a great number of distinct ob-

jects that heavily overlap with each other, all located at where Tibbles is. There are, then,

two seemingly contradictory intuitions. The first intuition is that there should be only one

referent of “Tibbles", instead of many. The second intuition is that since these objects only

have minute differences - say, only in whether it has an atom on the periphery of Tibbles

like w, no one among them seems to have a better claim to be the referent of “Tibbles"

than others. It is not hard to see how semantic Boolean mereology resolves this apparent

contradiction. Under semantic Boolean mereology, the candidate referents are all such that

it is indeterminate whether they are the referent of “Tibbles", in the sense that “Tibbles"

refer to them to an intermediate degree, and none of these degrees are strictly higher or

lower than any one of the others. This captures the second intuition. Meanwhile, “there is

only one Tibbles" always has value 1 in the intended models, which corresponds to the first

intuition.

Despite its advantages, semantic Boolean mereology also has some problems. An im-

mediate consequence of semantic Boolean mereology is that the majority of names of or-

dinary objects - “Tibbles", “Kilimanjaro", “Marie Curie", “Earth", “Eiffel Tower", etc. - do
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not refer successfully, in the sense that they do not fix a unique referent. This is a bizarre

consequence. It means that our ordinary methods about identifying and naming objects

almost always fail, even under the best possible circumstances. The level of referential

ambiguity displayed in the scenario in which I point to the only furry creature in the room

and say “this is Tibbles", is the same as that displayed in the scenario in which I point to a

corner where there are three men and say “this is John". If the foundation of our theory of

meaning, as many have proposed, is that names designate objects, then that foundation is

based on an impossible idealization.

Also, although semantic Boolean mereology is not completely incompatible with the

existence of ordinary objects, ordinary objects under semantic Boolean mereology, in some

sense, are ontologically shallow. Let us consider Tibbles the cat. Under this theory, the

sentence that “Tibbles exists" is true to degree 1, and in this sense ordinary objects like

Tibbles do exist. But since all there is in the domain of the intended models are objects with

precise mereological boundaries, there is no existing object that is really, or determinately,

identical to Tibbles. In other words, there is no object x in the domain such that “x is

Tibbles" is true to degree 1. So Tibbles, in a certain sense, does not really exist. This

is, I believe, not quite in line with our common-sense conception of Tibbles’ existence:

normally we would think that there exists a cat in the world that truly is Tibbles.

2.6.2 Ontic Boolean Mereology

Unlike the semantic thesis, the ontic thesis holds that there are indeed objects in the world

that are vague in their mereological organization, and names of these objects refer to them

in the standard, determinate way. In the context of Boolean semantics, this is to say that

there are objects in the domain such that they stand in the parthood relation with other

objects to intermediate Boolean degrees; these objects are the (unique) referents of certain

constants. The intended models for ontic Boolean mereology, then, are along the lines

of our atomic Boolean models. Take, for example, the SEV I model SB
SV for LM. We

may extend SB
SV to a model for L 1 by letting w denote some ga P M such that a P S and

ga takes a to 1 and every b ‰ a P S to 0, and t denote some f P MzM1 such that f paq
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is some intermediate value between 0 and 1. In other words, w (determinately) denotes

(the characteristic function of) some atom and t (determinately) denotes (the characteristic

function of) a vague object whose value distribution on atoms, especially on w, involves

intermediate values.

There are, then, two core differences between semantic Boolean mereology and ontic

Boolean mereology. The first difference is that the domain of an intended model for se-

mantic Boolean mereology contains only sharp objects, whereas the domain of an intended

model for ontic Boolean mereology contains both sharp objects and vague objects. The

second difference is that simple names like “Tibbles" under ontic Boolean mereology are

interpreted normally as constants and have determinate referents, whereas under semantic

Boolean mereology they are interpreted syntactically as unary predicates and have multiple

indeterminate referents.

It is interesting to note that given a model intended by the semantic Boolean mereol-

ogists, it is possible for us to convert it into a model intended by the ontic Boolean mere-

ologists. For example, consider M1 that we construct in the previous subsection. Let

tgi | i P Iu ĎM1 be the set of all elements in M1 such that JtpgiqKM
1

‰ 0, or in other words,

the set of all permissible referents of t in M1. Then, construct a model M` for the language

L 1 as follows. First we construct the direct power
ś

iPI M
1 of |I| many copies of M1.24

Then let M´ be reduct of
ś

iPI M
1 to L ´ “L 1zttu. Let L ˚ “L ´Ytt˚u, where t˚ is

a new constant, which is to play the role of “Tibbles". Then we let M` be the expansion

of M´ to L ˚ such that Jt˚KM
`

“ xgiyiPI . By the conditions we impose on the permissible

referents of t in M1, it is easy to see that Jw À t˚KM
`

is an intermediate value between 0

and 1. Also, since M1 satisfies atomic classical mereology, M` will also satisfy atomic

classical mereology.

In my opinion, Boolean-valued semantics provides the best model-theoretic framework

for proponents of the ontic thesis. The two alternative semantic frameworks, in compari-

son to Boolean-valued semantics, both have serious problems. The first alternative is the

fuzzy-valued model theory, and in section 2.4 I have already argued at length why it is less

suitable than Boolean model theory, to the task of interpreting mereological indeterminacy.

24See Chapter 1 Def. 1.3.2 for a definition.
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The second alternative is supervaluational model theory. But unlike in the semantic case,

the combination of supervaluation semantics and the ontic thesis (see [1]) yields, in my

opinion, an awkward theory (I call it “ontic supervaluationism"). Under ontic supervalua-

tionism, there are multiple distinct “precisificatons" of the underlying reality that are used

to explain mereological vagueness. Although the model-theoretic techniques employed in

this view is basically identical to that in the semantic case, from the philosophical perspec-

tive ontic supervaluationism feels much more unnatural and faces more difficult questions,

compared to its semantic counterpart. For example, in the case of semantic supervalu-

ationism, we have a fairly good understanding of what a “precisification" is: it is a total

interpretation function that is consistent with how we use terms like “Tibbles" in languages.

But what is, or can be, a “precisification" of the reality, in the case of ontic supervaluation-

ism? It cannot be language or mind dependent, as it is supposed to capture a feature of the

world, so is it something that exists out there? What is its ontological status? If it is like a

possible world that exists along side our world, why is the vagueness of the objects in our

world grounded in these things? Also, following the ontic thesis, the referent of the name

“Tibbles" needs to be an object that exists in the actual world, but somehow it also has to

be a different object in each of these precisifications - how exactly can we reconcile these

claims? I do not see an easy answer for any of these questions, and therefore I think that

supervaluation semantics is not really a viable option for supporters of the ontic thesis.

Just like semantic Boolean mereology, or perhaps any philosophical theory, ontic Boolean

mereology has its advantages and disadvantages. Its biggest advantage is that it overcomes

the two difficulties held by semantic Boolean mereology, as presented in the previous sub-

section. Under ontic Boolean mereology, we are not stuck with a vast scale of referential

failure. Also for ordinary objects like Tibbles, we will have something existing in the do-

main that is determinately Tibbles, so the existence of Tibbles is not ontologically shallow.

The biggest problem plaguing ontic Boolean mereology, on the other hand, is the problem

of the many. Again, if we accept the principle of fusion existence, there will be a number

of distinct vague objects with minute differences, all located where Tibbles is. Now, ontic

semantic mereology claims that there is among them a unique referent for “Tibbles", but

which one of these objects should be the unique referent? Consider, for example, the model
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SB
SV . Every function in M corresponds to an object in the world, and as long as B is large

enough, there can be many functions f in M that p1q has the same value on every other

atom except a P S, and p2q has an intermediate value on a (let a be the referent of w in

SB
SV ). The difficult question seems to be: what makes one of them a better candidate for

being the referent of t than others?

Note that this is a problem that troubles all supporters of the ontic thesis, not just sup-

porters of ontic Boolean mereology. Ontic fuzzy mereology and ontic supervaluationism

face this problem to roughly the same extent. In my opinion, the simplest and best way

for the ontic Boolean mereologist to respond is to reject the principle of fusion existence

and embrace an ontology that is less well-populated. In a model like SB
SV , for example,

they could say that not all functions in M correspond to an object existing in the world.

Rather, only one of the many possible profiles of value distribution on the atoms relevant

to Tibbles actually corresponds to an existing (ordinary) object - a cat, in particular, and

that is the unique referent of “Tibbles". The difficult question they would face then, which

I will call the “special condition question", is “What’s special about this particular value

profile, compared to the others, that makes it a profile of an object?". At this point, there

are two kinds of responses on the table. The first response is to suggest that there is some

kind of naturalness condition satisfied by this value profile, perhaps in terms of contact and

adhesion, that is responsible for its “objecthood" . The second response is to claim that it is

simply a piece of brute fact that this particular value profile corresponds to an object. And

in general, there are just brute facts of the world we live in to the effect that some Boolean

value profiles correspond to actually existing (ordinary) objects whereas others do not.25

Does this mean that ontic Boolean mereologists have to completely forsake classical

mereology? Not necessarily. What they have to deny is that classical mereology - the prin-

ciple of fusion existence, in particular, holds of ordinary objects like cats. But they could

still say that it holds on more fundamental and abstract entities like spatio-temporal regions.

They could hold that, for example, any Boolean profile on spatio-temporal points(atoms)

25Note that when facing a similar many-valued version of the problem of many, the ontic fuzzy mereolo-
gists also typically tend to choose one of the two possible responses discussed here to the special condition
question. Nicholas Smith, for example, uses the first kind of response in [31]. Peter van Inwagen uses the
second kind of response in [34].
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corresponds to a spacial-temporal region that is part of the ontology, but only one of the

(relevant) special-temporal regions is occupied by a cat-like entity, which is Tibbles the

cat. Of course, what they would have to answer, then, is a slightly different version of the

special condition question, perhaps along the lines of “What’s special about this particular

value profile, compared to the others, that makes it a profile of an ordinary, cat-like ob-

ject?", and they could again adopt one of the two potential responses. The point here is

just that ontic Boolean mereologists do have the freedom to choose between a sparse on-

tology and a sparser ontology, and between completely and partially denying the principle

of fusion existence.

2.7 Appendices

2.7.1 Preliminaries on Boolean Model Theory

Definition 2.7.1. Let L be an arbitrary first-order/second-order language. For simplicity,

we assume that L has no function symbols/variables, but only relation symbols/variables,

individual constants/variables.26 Let B be a complete Boolean algebra. A B-valued model

A for the language L consists of:

1. A universe A of elements;

2. The B-value of the identity symbol: a function J“KA : A2 Ñ B;

3. The B-values of the relation symbols: (let P be a n-ary relation) JPKA : An Ñ B;

4. The B-values of the constant symbols: (let c be a constant) JcKA P A.

And it needs to satisfy:

26Our theory can be easily generalized to first order languages with function symbols, as functions can
always be treated as relations that satisfy special conditions.
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1. For the B-value of the identity symbol27: for any a1,a2,a3 P A

Ja1 “ a1KA “ 1B (2.1)

Ja1 “ a2KA “ Ja2 “ a1KA (2.2)

Ja1 “ a2KA[ Ja2 “ a3KA ď Ja1 “ a3KA (2.3)

2. For the B-value of relation symbols: let P be an n-ary relation; for any xa1, ...,any,

xb1, ...,bny P An,

JPpa1, ...,anqKA[p
ę

1ďiďn

Jai “ biKAq ď JPpb1, ...,bnqKA (2.4)

Definition 2.7.2. Let A be a B-valued model of L . For any n P ω , we define Dn
A as

the following set: Dn
A “ tR : An Ñ B | for any xa1, ...,any,xb1, ...,bny P An,Rpa1, ...,anq [

p
Ű

1ďiďnJai “ biKAq ď Rpb1, ...,bnqu. We call the Dn
A’s the second-order domains of A. For

each n P ω , we call Dn
A the n-ary second-order domain of A.

Given a B-valued model A for L , we define satisfaction in A as follows:

Definition 2.7.3. Let Var be the set of all variables. (We will use v1,v2, ... to range over

individual variables, and X1,X2, ... to range over relation variables.) An assignment s on A

is a function with domain Var such that:

1. For any individual variable vi, spviq P A.

2. For any relation variable Xi of arity n, spXiq P Dn
A

28.

Given a assignment s on A, we define the value of an open formula of L in A under

assignment x as follows.

1. We first define the value of terms in A:
27Here and in the following, when the context is clear, we use Jai “ a jKA to abbreviate J“KApai,a jq, and

similarly for cases of the relation symbols.
28In the case when L is a first-order language, this line can simply be ignored, for obvious reasons. And

similarly for 2(c), 3(f) and 3(g) below.
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(a) Let vi be an individual variable. Then JviKArss “ spviq.

(b) Let c be an individual constant. Then JcKArss “ JcKA.

2. We then define the value of atomic formulas in A:

(a) Let t1, t2 be terms (a term is either an individual variable or an individual con-

stant). Then Jt1 “ t2KArss “ Jspt1q “ spt2qKA, where spt1q “ Jt1KArss and spt2q “

Jt2KArss.

(b) Let t1, ..., tn be terms. Then JPpt1, ..., tnqKArss “ JPpspt1q, ...,sptnqqKA, where

spt1q “ Jt1KArss, ..., sptnq “ JtnKArss.

(c) Let t1, ..., tn be terms. Then JXipt1, ..., tnqKArss “ JspXiqpspt1q, ...,sptnqqKA, where

spt1q “ Jt1KArss, ..., sptnq “ JtnKArss.

3. We finally define the value of complex formulas in A:

(a) Let φ be a formula. Then J␣φKArss “ ´JφKArss.

(b) Let φ ,ψ be formulas. Then Jφ ^ψKArss “ JφKArss[ JψKArss.

(c) Let φ ,ψ be formulas. Then Jφ _ψKArss “ JφKArss\ JψKArss.

(d) Let φ be a formula. Then JDviφKArss “
Ů

aPA
JφKArspvi{aqs, where spvi{aq is the

assignment on A that takes vi to a and agrees with s everywhere else.

(e) Let φ be a formula. Then J@viφKArss “
Ű

aPA
JφKArspvi{aqs, where spvi{aq is the

assignment on A that takes vi to a and agrees with s everywhere else.

(f) Let φ be a formula. Then JDXiφKArss “
Ů

RPDn
A

JφKArspXi{Rqs, where n is the arity

of Xi, and spXi{Rq is the assignment on A that takes Xi to R and agrees with s

everywhere else.

(g) Let φ be a formula. Then J@XiφKArss “
Ű

RPDn
A

JφKArspXi{Rqs, where n is the arity

of Xi, and spXi{Rq is the assignment on A that takes Xi to R and agrees with s

everywhere else.
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The values of the quantified formulas are well-defined as B is complete. We say that φ

is a first-order formula when φ has no second order variables.

Theorem 2.7.1. Let A be a B-valued model for L . For any formula φpv1, ...,vnq in L , any

assignments s,s1 on A,

Jφpspv1q, ...,spvnqqKA[p
ę

1ďiďn

Jspviq “ s1
pviqKAq ď Jφps1

pv1q, ...,s1
pvnqqKA

Proof. By a straightforward induction on the complexity of φpv1, ...,vnq.

2.7.2 Soundness and Completeness

Definition 2.7.4. Let T be a theory in a language L . Let A be a B-valued model of L . A

is a model of T just in case for any φ P T , JφKA “ 1B.

Definition 2.7.5. Let T be a theory and φ be a sentence in a language L . φ is a Boolean-

consequence of T , in symbols, T |ùB φ just in case for any Boolean valued model A, if A

is a model of T , then A is a model of φ .

In the rest of this section we assume that L is a first-order language.

Theorem 2.7.2. Let T be a theory and φ be a sentence in L . If T $ φ , then T |ùB φ .

Proof. We can prove this by showing that all the axioms of first order logic have value 1 in

every Boolean valued model, and that the rules of inference always preserve truth.

The proof that all the sentential axioms have value 1 is straightforward. For example,

(let x : Var Ñ A be an assignment), Jpφ ^ψq Ñ φKArxs “ 1 iff Jφ ^ψKArxs ď JφKArxs iff

JφKArxs[ JψKArxs ď JφKArxs. But the latter is true in every Boolean algebra. The cases of

the other sentential axioms are very similar.

That the identity axioms always have value 1 follows straightforwardly from the clauses

on the identity symbol in Def 2.7.1 and Theorem 2.7.1.
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For the quantifier axioms, let φ and ψ be formulas. For the first axiom, suppose vi is a

variable that is not free in φ , we want to show that for any assignment x :VarÑA, J@vipφ Ñ

ψq Ñ pφ Ñ@viψqKArxs “ 1. This is the case iff J@vipφ ÑψqKArxs ď Jφ Ñ@viψKArxs. But

J@vipφ Ñ ψqKArxs “
ę

aPA

Jφ Ñ ψKArxpvi{aqs

“
ę

aPA

´JφKArxpvi{aqs\ JψKArxpvi{aqs

“
ę

aPA

´JφKArxs\ JψKArxpvi{aqs

“ ´ JφKArxs\
ę

aPA

JψKArxpvi{aqs

ď Jφ Ñ@viψKArxs

The third equation holds as vi is not free in φ . For the second quantifier axiom, let ψ be

obtained from φ by freely substituting each free occurrence of vi in φ by the term t, such

that no variable v j in t will occur bound in ψ at the place where it is introduced. We want

to show that for any assignment x : Var Ñ A, J@viφ Ñ ψKArxs “ 1. This is just in case

J@viφKArxs ď JψKArxs, which is just in case
Ű

aPAJφKArxpvi{aqs ď JψKArxs. But the latter

is always true, as JψKArxs “ JφKArxpvi{a1qs, where a1 “ JtKArxs P A.

Moving on to the rules of inferences. We start with Modus Ponens. Suppose both

JφKArxs and Jφ Ñ ψKArxs are 1. The latter means that JφKArxs ď JψKArxs, and since

JφKArxs “ 1, JψKArxs “ 1.

For Universal Generalization, we suppose for any assignment x, JφKArxs “ 1. Then it

follows straightforwardly that J@viφKArxs “
Ű

aPAJφKArxpvi{aqs “ 1.

Corollary 2.7.2.1. Let φ be a theorem of first order logic. Then in any Boolean valued

model A, JφKA “ 1.

Theorem 2.7.3. Let T be a theory in L . T is consistent if and only if for some complete

Boolean Algebra B, T has a B-valued model A.

Proof. For the left to right direction, if T is consistent, then by the Completeness Theorem

121



on two-valued models, T has a two-valued model. But a two-valued model is a Boolean

valued model.

For the right to left direction, suppose T is inconsistent. Then for some theorem φ of

first order logic, T $ ␣φ . Assume for reductio that T has a B-valued model A, then by

Theorem 2.7.2, J␣φKA “ 1. Hence JφKA “ 0, but this contradicts Corollary 2.7.2.1.

Corollary 2.7.3.1. Let B be any complete Boolean algebra. A theory T has a B-valued

model just in case every finite subset of T has a B-valued model.

Theorem 2.7.4. Let T be a theory and φ be a sentence in a first order language L . If

T |ùB φ , then T $ φ .

Proof. Suppose T |ùB φ , then for any two-valued model A, if A is a model of T , then A is

a model of φ . By the soundness theorem on two-valued models29, T $ φ .

Corollary 2.7.4.1. Let T be a theory and φ be a sentence in a first order language L .

T |ùB φ if and only if T $ φ .

2.7.3 Equivalence Between Systems

In this section we prove the two promised theorems in Section 2.5 (Theorem 2.5.1 and

Theorem 2.5.2).

Theorem 2.7.5. CM is equivalent to Tarski’s system, which is the theory closed under the

following two axioms:

(Transitivity) @v1@v2@v3pv1 À v2^ v2 À v3 Ñ v1 À v3q

(UniqueFusionExistence) @X1pDv1X1pv1q Ñ D!v2pFU 1
pv2,X1qq

Proof. We first show that CM entails Tarski’s system. (Transitivity) is already in CM. For

(UniqueFusionExistence), let X1 be such that Dv1X1pv1q. By (Fusion), Dv2pFUpv2,X1qq.

29See, for example, Chang and Keisler [7, p. 66].
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Let v3 ď v2. If Epv3q, then we are done. Suppose ␣Epv3q. By (NoZero), @v4@v5pv4 À v5q.

Hence trivially v3 À v3 and v3 À v1.

For the other direction, we can just use the standard argument that these axioms are all

theorems of Tarski’s system. See, for example, [18].

Theorem 2.7.6. The (second-order) theory of complete Boolean algebra (CBA) is equiva-

lent to MCM plus Anti-symmetry plus the following axiom:

(ZeroExistence) Dv1␣Epv1q

Proof. We first show that the latter system entails CBA. In particular, we show that (Re-

flexivity), (SupremumExistence), (Complementation) and (Distribution) are all theorems

of the latter system. We start with (Reflexivity):

(Reflexivity) @v1pv1 À v1q

It is easy to check that for any v1, FUpv1,tv2 | v2 À v1uq. Suppose v1 Â v1. Then by

(Supplementation), some v3 is such that Epv3q^v3 À v1^␣v1˝v3. Since FUpv1,tv2 | v2 À

v1uq, Dv4pv4 À v1^ v4 ˝ v3q. But then Dv5pEpv5q^ v5 À v3^ v5 À v4q. By (Transitivity),

v5 À v1. Hence v1 ˝ v3. Contradiction.

We next define the notion of “v1 is the supremum of the X1’s":

Suppv1,X1q “ @v2pX1pv2q Ñ v2 À v1q^ f orallv3p@v4pX1pv4q Ñ v4 À v3q Ñ pv1 À v3qq

The axiom of (SupremumExistence) says that every X1 has a supremum:

(SupremumExistence) @X1Dv1pSuppv1,X1qq

We now show that (SupremumExistence) is a theorem of the latter system. By, (ZeroEx-

istence), there is some object that is part of anything. By (Anti-Symmetry), this object

is unique. From now on we will name it 0. Suppose ␣Dv2pX1pv2qq. Then it is easy to
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see that everything is a upper bound of X1, and hence 0 is the supremum of X1. Suppose

Dv2pX1pv2qq. By (Fusion), there is a v1 such that FUpv1,X1q. We will show that Suppv1,X1q.

Obviously v1 is a upper bound of X1. Let v3 be a upper bound of X1. Assume for reductio

that v1 Â v3. By (Supplementation), some v4 is such that Epv4q^ v4 À v1^␣v4 ˝ v3. Since

FUpv1,X1q, there is some v5 such that X1pv5q^ v5 ˝ v4. Hence v5 À v3, but then v4 ˝ v3,

contradiction.

For the next axiom we first define the dual notion to “supremum" - “infimum":

In f pv1,X1q “ Suppv1,tv2 | @v3pX1pv3q Ñ v2 À v3quq

(Fusion) guarantees that there is a “maximum" object that fuses all things. By (Anti-

Symmetry), this object is unique. Henceforth we will name it 1. The axiom of (Com-

plementation) says that:

(Complementation) @v1Dv2pSupp1,tv1,v2uq^ In f p0,tv1,v2uqq

We show that this is also a theorem of the latter system. Given v1, define ´v1 as the object

that fuses tv2 | ␣v1 ˝ v2u. First we show that Supp1,tv1,´v1uq. Assume for reductio that

Suppw,tv1,´v1uq and w‰ 1. Then some u is such that u‰ w. Hence there is a x such that

Epxq^ x À u^␣x ˝w. Hence ␣x ˝ v1. But then x À ´v1 and hence x ˝w. Contradiction.

Next we show that In f p0,tv1,´v1uq. Let v2 be such that v2 À v1 and v2 À ´v1. Assume

for reductio that v2 ‰ 0. Then there is some y such that ␣y˝ v1^ y˝ v2. Contradiction.

For the next axiom we need two functional notions:

v1\ v2 :“ the unique v such that Suppv,tv1,v2uq

v1[ v2 :“ the unique v such that In f pv,tv1,v2uq

The axiom of (Distribution) says that:

(Distribution) @v1@v2@v3pv1\pv2[ v3q “ pv1\ v2q[pv1\ v3qq
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We show that this is again a theorem of the latter system. Let u “ v1\pv2[ v3q and w “

pv1\v2q[pv1\v3q. We first show that u À w, that is, u À v1\v2 and u À v1\v3. Assume

for reductio u Â v1\v2. Then there is some x such that Epxq^x À u^␣x˝pv1\v2q. Since

x À u, either x˝ v1 or x˝ pv2[ v3q. Either way we have a contradiction. We next show that

w À u. Assume for reductio otherwise. Then there is some y such that Epyq^y À w^␣y˝u.

Hence y À v1\ v2 and y À v1\ v3. Suppose v1 ˝ y, then w˝ y and we have a contradiction.

Hence␣v1˝y. But since y À v1\v2. Hence y À v2. Similarly y À v3. Hence u À v2[v3 À u.

Contradiction.

It is (fairly) common knowledge that CBA is equivalent to (Transitivity), (Anti-Symmetry)

plus the four axioms discussed above. Since the other two are already axioms of the latter

system, we are done with this direction.

We move on to show the other direction: CBA entails the latter system. The only axiom

worth mentioning is (Fusion). Other axioms either are already an axiom of CBA or are a

theorem of CBA by a standard argument (any Boolean complement is a supplement, for

example). For (Fusion), we will show that if Suppv1,X1q, then FUpv1,X1q. That v1 is a

upper bound of X1 is obviously the case. We only need to show that @v2pv2 À v1^Epv2qÑ

Dv3pX1pv3q ^ v3 ˝ v2qq. Suppose the antecedent. Assume for reductio that @v4pXpv4q Ñ

v2[v4 “ 0q. Then by infinite distribution, v2[v1 “ 0. Since Epv2q, v2 ‰ 0. Hence v2 Â v1.

Contradiction.

2.7.4 The SE Models

In this section we prove the following result:

Theorem 2.7.7. In any SE model, Transitivity, Supplementation, Fusion, Atomicity and

NoZero all have value 1.

Theorem 2.7.8 (Transitivity). SB
S |ù @v1@v2@v3pv1 À v2^ v2 À v3 Ñ v1 À v3q.

Proof. For any f1, f2, f3 PM,

p
ę

aPS

f1paq ñ f2paqq[p
ę

bPS

f2pbq ñ f3pbqq ď
ę

cPS

f1pcq ñ f3pcq

125



Lemma 2.7.8.1. For any f PM, JEp f qK“
Ů

aPS
f paq “ 130.

Proof. JEp f qK“ JDv2p␣ f À v2qK“
Ů

gPM

Ů

aPS
f paq[´gpaq. We want to show that

Ů

gPM

Ů

aPS
f paq[

´gpaq “
Ů

aPS
f paq. For any a P S, let ga be the function from S to B that takes a to 1 and

every b‰ a to 0. Obviously ga PM. Pick some a P S, then it is easy to see for any b‰ a P S,

f paq ď
Ů

cPS
f pcq[´gbpcq. Hence f paq ď JEp f qK. For the other direction, pick some g PM.

Obviously
Ů

aPS
f paq[´gpaq ď

Ů

aPS
f paq.

Lemma 2.7.8.2. For any f1, f2 PM, J f1 ˝ f2K“
Ů

aPS
f1paq[ f2paq.

Proof. By definition, J f1 ˝ f2K “ JDv3pEpv3q^ v3 À f1^ v3 À f2qK. Since every g P M is

such that JEpgqK“ 1, J f1 ˝ f2K“
Ů

gPM
Jg À f1K[ Jg À f2K“

Ů

gPM

Ű

aPS
gpaq ñ p f1paq[ f2paqq.

We will show that this is equal to
Ů

aPS
f1paq[ f2paq “ p.

For the ď direction: Fix g P M. Since
Ů

aPS
gpaq “ 1,

Ű

aPS
gpaq ñ p f1paq [ f2paqq “

Ű

aPS
´gpaq\p f1paq[ f2paqq ď

Ű

aPS
´gpaq\ p“ 0\ p“ p.

For theě direction: Fix a P S. Then it is easy to see that f1paq “ Jga À f1K, and similarly

f2paq “ Jga À f2K. Hence f1paq[ f1paq ď J f1 ˝ f2K.

Theorem 2.7.9 (Supplementation). SB
S |ù @v1@v2pv2 Â v1 Ñ Dv3pEpv3q^ v3 À v2^␣v1 ˝

v3qq.

Proof. Let f1, f2 PM. Since every g PM is such that JEpgqK“ 1, we just need to show that

´J f2 À f1Jď
Ů

gPM
Jg À f2K[´Jg ˝ f1K. ´J f2 À f1J“

Ů

aPS
f2paq[´ f1paq. Fix some a P S.

Jga À f1K“ f2paq. By the previous lemma, ´Jga ˝ f1K“´p
Ů

bPS
gapbq[ f1pbqq “ ´ f1pbq.

Theorem 2.7.10 (Fusion). SB
S |ù @X1pDv1X1pv1q Ñ Dv2pFUpv2,X1qq.

30We omit the superscripts when the context is clear.
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Proof. We will show that for any R P D1
M, JDv1Rpv1q Ñ Dv2pFUpv2,RqqK“ 1. That is, q“

Ů

tPM
Rptq ď JDv1p@v2pRpv2q Ñ v2 À v1q^@v3pv3 À v1^Epv3q Ñ Dv4pRpv4q^ v3 ˝ v4qqqK “

Ů

f PM
pp

Ű

gPM
Rpgq ñ Jg À f Kq[p

Ű

hPM
pJh À f Kñ p

Ů

sPM
Rpsq[ Jh˝ sKqqqq.

We define f R PM as follows: pick some particular a P S, let f Rpaq “ p
Ů

gPM
Rpgq[gpaqq\

´q. For any b‰ a P S, let f Rpbq “
Ů

gPM
Rpgq[gpbq.

We first show that f R is indeed in M, i.e.
Ů

cPS
f Rpcq “ 1:

ğ

cPS

f R
pcq “ p

ğ

b‰aPS

f R
pbqq\ f R

paq

“ p
ğ

b‰aPS

ğ

gPM

Rpgq[gpbqq\pp
ğ

gPM

Rpgq[gpaqq\´qq

“ p
ğ

cPS

ğ

gPM

Rpgq[gpcqq\´q

“ p
ğ

gPM

Rpgq[
ğ

cPS

gpcqq\´q“ pq[1q\´q“ 1

Now we show that
Ű

gPM
Rpgqñ Jg À f RK“

Ű

gPM
Rpgqñ p

Ű

cPS
gpcqñ f Rpcqq “ 1. Pick any

g PM. Rpgq ñ p
Ű

cPS
gpcq ñ f Rpcqq “ ´Rpgq\ pp

Ű

c‰a
´gpcq\ f Rpcqq[ p´gpaq\ f Rpaqqq “

p
Ű

c‰a
´Rpgq\´gpcq\ f Rpcqq[ p´Rpgq\´gpaq\ f Rpaqq.

Ű

c‰a
´Rpgq\´gpcq\ f Rpcq “

Ű

c‰a
´Rpgq\´gpcq\p

Ů

hPM
Rphq[hpcqqě

Ű

c‰a
´Rpgq\´gpcq\p´Rpgq[gpcqq“ 1. ´Rpgq\

´gpaq\ f Rpaq “ ´Rpgq\´gpaq\p
Ů

hPM
Rphq[hpcqq\´q“ 1.

We next show that qď
Ű

hPM
pJh À f RKñp

Ů

sPM
Rpsq[Jh˝sKqq. Fix any h PM. We want to

show that qď p
Ů

cPS
hpcq[´ f Rpcqq\p

Ů

dPS

Ů

sPM
Rpsq[ spdq[hpdqq “ p. Now it is easy to see

that p “ p1\ p2, where p1 “ p
Ů

c‰a
hpcq[´ f Rpcqq\ p

Ů

d‰a

Ů

sPM
Rpsq[ spdq[hpdqq and p2 “

phpaq[´ f Rpaqq\ p
Ů

sPM
Rpsq[ spaq[ hpaqq. But p1 “ p

Ů

c‰a
hpcq[´ f Rpcqq\ p

Ů

d‰a
f Rpdq[

hpdqq “
Ů

c‰a
phpcq[´ f Rpcqq\p f Rpcq[hpcqq “

Ů

c‰a
hpcq ě ´hpaq, as

Ů

bPS
hpbq “ 1.

On the other hand, let
Ů

sPM
Rpsq[spaq “ p3. Then p2 “ phpaq[´ f Rpaqq\pp3[hpaqq “

phpaq[´p3[qq\pp3[hpaqq “ phpaq[qq\phpaq[ p3q. Hence p“ p1\ p2 ě´hpaq\

phpaq[qq\phpaq[ p3q ě q.
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To prove Atomicity we need some more lemmas.

Lemma 2.7.10.1. Let f P M. SB
S |ù @vpEpvq Ñ ␣v Ä f q just in case t f paq | a P Su is an

antichain in B.

Proof. Right to left direction. Let f P M be such that t f paq | a P Su is an antichain. Fix

some random g PM. We will show that JEpgq Ñ ␣g Ä f K“ 1. That is,

ğ

aPS

gpaq ď p
ğ

bPS

gpbq[´ f pbqq\p
ę

cPS

gpcq\´ f pcqq

Fix some random a P S. It is easy to see that

gpaq[´ f paq ď
ğ

bPS

gpbq[´ f pbq

gpaq[p
ę

cPSztau

´ f pcqq ď
ę

cPS

gpcq\´ f pcq

Since t f paq | a P Su is an antichain, f paq ď p
Ű

cPSztau

´ f pcqq. Hence, gpaq[ f paq ď
Ű

cPS
gpcq\

´ f pcq. Therefore,

gpaq “ pgpaq[´ f paqq\pgpaq[ f paqq ď p
ğ

bPS

gpbq[´ f pbqq\p
ę

cPS

gpcq\´ f pcqq

Left to right direction. Let f PM be such that for some a,b P S, f paq[ f pbq ą 0. Define

g PM as follows: for any c P S,

gpcq “

$

’

&

’

%

f paq[´ f pbq if c“ a;

f pcq if otherwise.

It is easy to see that JEpgqK “KEp f qK. And hence g is indeed in M. We will show that

JEpgq Ñ ␣g Ä f Kă 1. That is,

ę

aPS

´gpaq\p
ğ

bPS

gpbq[´ f pbqq\p
ę

cPS

gpcq\´ f pcqq ă 1
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Observe that
Ű

aPS
´gpaq “ 0, as g PM. Also

Ů

bPS
gpbq[´ f pbq “ 0. And

Ű

cPS
gpcq\´ f pcq “

gpaq\´ f paq “ p f paq[´ f pbqq\´ f paq “´ f paq\´ f pbq ă 1, as f paq[ f pbq ą 0. Hence

the whole thing is less than 1.

Lemma 2.7.10.2. Let f PM. SS
A |ù Atp f q just in case t f paq | a P Su is a maximal antichain

in B.

Proof. Recall that Atp f q “ Ep f q^@vpEpvq Ñ␣v Ä f q. The result follows from the previ-

ous lemma as for any f PM, JEp f qK“ 1.

Theorem 2.7.11 (Atomicity). SB
S |ù @v1pEpv1q Ñ Dv2pAtpv2q^ v2 À v1qq.

Proof. Fix some random f PM. Since JEp f qK“ 1, we need to show that JDv2pAtpv2q^v2 À

f qK“ 1. Let C “ ta P S | f paq ‰ 0u. Enumerate C by α “ |C|: C “ ta1, ...,aβ , ... | β ă αu.

Define g PM as follows: for any c P S,

gpcq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

f paβ q[p
Ű

γăβ

q´ f paγq if c“ aβ PC;

f pcq “ 0 if c RC.

Hence JEpgqK“
Ů

aPC
gpaq “

Ů

aPC
f paq “ JEp f qK“ 1. Also, Jg À f K“ 1. Since tgpaq | a P Su is

an antichain, by Lemma 2.7.10.1, J@vpEpvqÑ␣v Ä gqK“ 1. Hence JAtpgqK“ JEp f qK“ 1.

Theorem 2.7.12 (NoZero). SB
S |ù Dv1Dv2pv1 Â v2q Ñ ␣Dv3␣pEpv3qq

Proof. This can be proven simply by showing that J␣Dv3␣pEpv3qqK“ 1, as for any f PM,

JEp f qK“ 1.

Corollary 2.7.12.1. SB
S is a model of ACM´.
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2.7.5 The V E Models

In this section we prove the following result:

Theorem 2.7.13. In any V E model, Transitivity, Supplementation, Fusion and Atomicity

all have value 1, but NoZero has value 0.

Transitivity is proven in the same way as before.

Lemma 2.7.13.1. For any f P N, JEp f qK“
Ů

aPS
f paq.

Proof. The same proof as in that of Lemma 2.7.8.1.

Lemma 2.7.13.2. For any f1, f2 P N, J f1 ˝ f2K“
Ů

aPS
f1paq[ f2paq.

Proof. For this proof and many followings, we need to consider two cases. Case one

is when
Ů

aPS
f1paq [ f2paq “ 0. Then for any a P S, f1paq [ f2paq “ 0. Then J f1 ˝ f2K “

Ů

gPN

Ů

aPS
gpaq[

Ű

bPS
gpbq ñ p f1pbq[ f2pbqq “

Ů

gPN

Ů

aPS
gpaq[

Ű

bPS
´gpbq “ 0.

Case two is when
Ů

aPS
f1paq [ f2paq ą 0. Then define f P N such that for any a P S,

f paq “ f1paq[ f2paq. It is easy to see that J f À f1K“ J f À f2K“ 1.

J f1 ˝ f2K“ JDvpEpvq^ v À f1^ v À f2qK“
Ů

gPSB
JEpgq^g À f1^g À f2K.

Fix some random g P SB, JEpgq^ g À f1^ g À f2K “
Ů

aPS
gpaq[

Ű

bPS
pgpbq ñ p f1pbq[

f2pbqqq ď
Ů

aPS
gpaq[pgpaq ñ p f1paq[ f2paqqq ď

Ů

aPS
f1paq[ f2paq “ JEp f qK“ JEp f q^ f À

f1^ f À f2K. Hence
Ů

gPSB
JEpgq^g À f1^g À f2K“ JEp f q^ f À f1^ f À f2K“ JEp f qK“

Ů

aPS
f1paq[ f2paq.

Theorem 2.7.14 (Supplementation). SB
V |ù @v1@v2pv2 Â v1 ÑDv3pEpv3q^v3 À v2^␣v1 ˝

v3qq.

Proof. Let f1, f2 P N. We want to show that J f2 Â f1K ď JDvpEpvq^ v À f2^␣ f1 ˝ vqK.

J f2 Â f1K“
Ů

aPS
´ f1paq[ f2paq.

Again, there are two cases. If J f2 Â f1K “ 0, then we are done. If J f2 Â f1K ą 0, then

define f P N such that for any a P S, f paq “ ´ f1paq [ f2paq. We can easily show that
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J f À f2K “ 1. Also, JEp f qK “
Ů

aPS
´ f1paq [ f2paq, by Lemma 2.7.13.1, and J␣ f1 ˝ f K “

´p
Ů

aPS
f1paq[´p f1paq[ f2paqqq “ 1, by Lemma 2.7.13.2. Hence JDvpEpvq À f2^␣ f1 ˝

vqKě JEp f q^ f À f2^␣ f1 ˝ f K“
Ů

aPS
´ f1paq[ f2paq “ J f2 Â f1K.

Theorem 2.7.15 (Fusion). SB
V |ù @X1pDv1X1pv1q Ñ Dv2pFUpv2,X1qq.

Proof. Let R P D1
M. Again, there are two cases. Case one:

Ů

aPS

Ů

gPN
Rpgq[ gpaq “ 0. Then

for any g P N,a P S, Rpgq [ gpaq “ 0. This case can be proven easily by unpacking the

definitions. Case two:
Ů

aPS

Ů

gPN
Rpgq[gpaq ą 0. Then define f R PN: for any a P S, let f paq “

Ů

gPSB
Rpgq [ gpaq. We will show that JFUp f R,RqK “ J@v2pRpv2q Ñ v2 À f Rq ^ @v3pv3 À

f R^Epv3q Ñ Dv4pRpv4q^ v3 ˝ v4qqK“ 1.

J@v2pRpv2q Ñ v2 À f RqK “
Ű

hPSB
Rphq ñ p

Ű

aPS
hpaq ñ f Rpaqq. Fix some h P N. Then

´Rphq\p
Ű

aPS
´hpaq\p

Ů

gPSB
Rpgq[gpaqqq“

Ű

aPS
´pRphq[hpaqq\

Ů

gPSB
Rpgq[gpaqqě

Ű

aPS
´pRphq

[hpaqq\pRphq[gphqq “ 1.

J@v3pv3 À f R^Epv3qÑDv4pRpv4q^v3˝v4qqK“
Ű

gPSB
pJg À f RK[JEpgqKqñ p

Ů

hPSB
pRphq[

Jh˝gKqq. Fix some g PN.
Ů

hPSB
pRphq[Jh˝gKq “

Ů

hPSB
Rphq[

Ů

aPS
hpaq[gpaq “

Ů

aPS

Ů

hPSB
Rphq[

hpaq[gpaq “
Ů

aPS
f Rpaq[gpaq “ J f R˝gK. But J f R˝gK“ JDv1pEpv1q^v1 À f R^v1 À gqK“

Ů

tPSB
JEptqK[ Jt À f RK[ Jt À gKě JEpgqK[ Jg À f RK.

Lemma 2.7.15.1. Let f P N. SS
V |ù Atp f q just in case t f paq | a P Su is a maximal antichain

in B.

Proof. Using the same proof as in Lemma 2.7.10.1 we can show that for any f P N, SB
V |ù

@vpEpvq Ñ ␣v Ä f q just in case t f paq | a P Su is an antichain in B.

Recall that Atp f q “ Ep f q^@vpEpvqÑ␣v Ä f q. Suppose JAtp f qK“ 1. Then t f paq | a P

Su is an antichain. Also, since
Ů

aPS
f paq “ JEp f qK“ 1, t f paq | a P Su is a maximal antichain.

Similarly, suppose t f paq | a P Su is a maximal antichain, then JEp f qK“
Ů

aPS
f paq “ 1. Also,

J@vpEpvq Ñ ␣v Ä f qK“ 1. Hence JAtp f qK“ 1.
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Theorem 2.7.16 (Atomicity). SB
V |ù @v1pEpv1q Ñ Dv2pAtpv2q^ v2 À v1qq.

Proof. The same proof as in Theorem 2.7.11, using the previous lemma.

Theorem 2.7.17 (NoZero is false.). SB
V |ù ␣pDv1Dv2pv1 Â v2q Ñ ␣Dv3␣pEpv3qqq

Proof. This can be proven by showing two things. First, JDv1Dv2pv1 Â v2qK has value 1.

JDv1Dv2pv1 Â v2qK “
Ů

f1, f2PN

Ů

aPS
f1paq[´ f2paq. Let f1, f2 P N be such that for some a P S,

f1paq “ 1 and f2paq “ 0. Then f1paq[´ f2paq “ 1. Second, J␣Dv3␣pEpv3qqK has value 0.

Define f p P SB to be the constant function that takes every a P S to p, where 0ă pă 1, and

f ´p P N to be the constant function that takes every a P S to ´p. Then JEp f pqK “ p and

JEp f ´pqK“´p. Hence J␣Dv3␣pEpv3qqKě JEp f pqK[ JEp f ´pqK“ 0.

Corollary 2.7.17.1. SB
V is a model of MACM, but not a model of ACM´.

2.7.6 Identity and Anti-Symmetry

Recall that an atomic Boolean model is a V I model if it is SEV I or V EV I, and similarly is

a T I model if it is SET I or V ET I.

Proposition 2.7.1. In any V I model, Anti-Symmetry has value 1.

Proof. Directly follows from Vague-Identity: for any f1, f2 PM{N, J f1“ f2K“
Ű

aPS
f1paqô

f2paq “ J f1 À f2K[ J f2 À f1K.

Proposition 2.7.2. In any T I model, Anti-Symmetry has value 0.

Proof. Define f1 : SÑ B as follows: for some a P S, f1paq “ p, where 0 ă p ă 1; for any

b ‰ a P S, f1pbq “ 1. Define f2 : S Ñ B as follows: f2paq “ ´p and for any b ‰ a P S,

f2pbq “ 1. Define f : S Ñ B as follows: for any c P S, f pcq “ 1. It is easy to see that

f1, f2 PM Ď N.

It is also easy to see that J f1 À f K “ J f2 À f K “ 1. And J f À f1K “ 1ñ p “ p, J f À

f2K“ 1ñ´p“´p. Also, since f , f1, f2 are different functions, J f1 “ f K“ J f1 “ f K“ 0.
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Hence J f1 À f ^ f À f1 Ñ f “ f1K“ p1[ pq ñ 0“´p. And J f2 À f ^ f À f2 Ñ f “

f2K“ p1[´pq ñ 0“ p. Hence J@v1@v2pv1 À v2^ v2 À v1 Ñ v1 “ v2qKď p[´p“ 0.

Corollary 2.7.17.2. In any SEV I model, Transitivity, Supplementation, Fusion, Atomicity,

NoZero and Anti-Symmetry all have value 1.

Corollary 2.7.17.3. In any SET I model, Transitivity, Supplementation, Fusion, Atomicity

and NoZero all have value 1, but Anti-Symmetry has value 0.

Corollary 2.7.17.4. In any V EV I model, Transitivity, Supplementation, Fusion, Atomicity,

and Anti-Symmetry all have value 1, but NoZero has value 0.

Corollary 2.7.17.5. In any V ET I model, Transitivity, Supplementation, Fusion and Atom-

icity all have value 1, but NoZero and Anti-Symmetry have value 0.
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Chapter 3

Boolean-Valued Models with Urelements

(with Bokai Yao)

3.1 Introduction

Boolean-valued models have a long history in set theory, to the extent that it is not unfair to

say that Boolean-valued models were birthed within set theory. In 1965, Solovay discov-

ered the idea of using Boolean-valued models to describe forcing, which greatly simplifies

Cohen’s syntactic method of using forcing conditions. Let V be a class model, or a universe

of ZFC, and let B be a complete Boolean algebra in V . Roughly, we are able to construct,

via transfinite recursion, a Boolean-valued universe V B of ZFC within V , whose elements

are usually called B-names.1 In order to show that a sentence φ is consistent with ZFC,

we just need to find a B such that JφKV B
‰ 0. Since V B is always witnessing, the quotient

model2 pV Bqh, where h : BÑ 2 is a homomorphism that takes JφKV B
to 1, satisfies ZFC and

φ , by Łoś Theorem. Hence we have found a classical model of ZFC + φ and have proven

the relative consistency of φ .

The intended model of ZFC is a universe of pure sets. But if the material world is

not a total vacuum, there are objects in the world that are not sets: people, tables, planets,

1For details, see [3].
2For the definition of “witnessing" and the quotient model construction, see Def 1.3.5 and Def 1.3.6 in

Chapter 1.
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and so forth. Let us call an object that is not a set a urelement. Just as there can be

sets of sets, it should be case that there can be sets of urelements as well. Just as there

are principles governing the behavior of pure sets - the axioms of ZFC - there should be

principles govering the behavior of sets and urelements - the axioms of a theory of sets and

urelements.

Combining the two trains of thought leaves us with a series of interesting questions:

can we construct a Boolean-valued universe of sets and urelements, in the same way as we

construct a Boolean-valued universe of (pure) sets? Will the construction give us a model

of the background theory of sets and urelements, just as V B is model of ZFC? Will the

construction give us a witnessing model?

In this chapter we will discuss these questions in turn. We will work in two different

axiomatic systems - ZFCUR and ZFCU - in the first-order language of set theory with

urelements tP,A u, where A is a unary predicate for urelements. In both systems it is an

axiom that urelements have no members, and we allow the urelements to form a proper

class. In addition,

Definition 3.1.1. ZCU is the urelement set theory which includes the following axioms:

Extensionality, Foundation, Pairing, Union, Powerset, Infinity, Separation and Choice.

ZFCUR = ZCU + Replacement.

ZFCU = ZCU + Collection.

ZFCU is known to be strictly stronger than ZFCUR.3 For example, there can be models

of ZFCUR where the urelements form a proper class but every set of urelements is finite.

In models as such, the axiom of Collection fails. And many ZFC theorems, such as the

Reflection Principle, are provable in ZFCU but not in ZFCUR. For these reasons, one might

consider ZFCUR as an inadequate set theory with urelements. However, since ZFCUR

proves transfinite recursion, the basic construction of Boolean-valued models can still be

carried out. It is thus natural to study Boolean-valued models with urelements over this

weaker theory.

3See [37] for a richer hierarchy of axioms in urelement set theory.
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In this chapter we will start by presenting an old, standard construction of a Boolean-

valued universe with urelements over a class model U of ZFCUR, which we call UB. We

will show that this old construction is legit, in the sense that over the background theory

ZFCUR, UB is a model of ZFCUR, and if Collection holds in U , Collection holds in UB

(Theorem 3.2.6). Nevertheless, the old construction UB comes with a big problem: as we

will show in Section 3.3.1, UB does not satisfy the Mixing Lemma and is not witnessing,

which means that Solovay’s forcing method cannot be applied to it. We will remedy this

problem by presenting a new construction of a Boolean-valued universe with urelements,

which we call UB. Unlike UB, UB can be proven to always satisfy the Mixing Lemma

(Theorem 3.3.3), and hence can be shown to be witnessing given that U satisfies Collection.

In fact, we will prove that over ZFCUR, Collection is equivalent to the claim that UB is

witnessing ,for every complete Boolean algebra B (Theorem 3.4.1). We will also prove that

the old construction UB is an elementary submodel of the new costruction UB (Theorem

3.3.3.4), and therefore UB is also legit.

We organize this chapter as follows. In Section 3.2, we present the old construction UB,

discuss how it is related to U , and prove that all the axioms of ZFCUR have value 1 in UB,

and that given that U satisfies Collection, Collection also has value 1 in UB. In section 3.3,

we will first argue that UB is almost never witnessing, which is partially because UB does

not satisfy the Mixing Lemma. Then, we will present the new construction UB, show that

UB always satisfies the Mixing Lemma, and prove that UB is an elementary submodel of

UB. Finally, in Section 3.4, we will prove the major result that over ZFCUR, Collection is

equivalent to the claim that UB is witnessing, for every complete Boolean algebra B. We

end this chapter with a few conjectures.

Before we move on to the next section, let us introduce some notations and basic facts

about ZFCUR that will be useful for this chapter. We use U to denote the universe of every-

thing, V to denote the universe of pure sets, A to denote the unary predicate of urelements

as well as the class of all urelements. We let τ,σ ,η , ... stand for B-names in a Boolean-

valued universe with urelements and p,q, ... stand for elements of a Boolean algebra.

ZFCUR proves that every set x has a transitive closure, denoted by TCpxq, which is the

smallest transitive set t such that x Ď t. For every x, the kernel of x, denoted by kerpxq, is
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the set of urelements in TCptxuq. For any set A of urelements, we define

V0pAq “ A;

Vα`1pAq “ PpVαpAqqYVαpAq;

VγpAq “
Ť

αăγ
VαpAq, where γ is a limit ordinal;

V pAq “
Ť

αPOrd VαpAq.

Namely, V pAq is the accumulative hierarchy built from A. For every x, kerpxq Ď A iff

x PV pAq. The universe of ZFCUR is non-rigid: for any definable permutation i of A , i can

be extended to an automorphism of the universe by letting ipxq “ tipyq : y P xu for every x.

And ipxq “ x whenever i point-wise fixes kerpxq (i.e., for all a P kerpxq, ipaq “ a).

3.2 The Model UB

3.2.1 The Old Construction

In this section, we review the standard way of constructing a Boolean-Valued model with

urelements with the background theory ZFCUR,4 which is the most straightforward gener-

alization of the construction of V B with the background theory ZFC (See [3]). We call this

model UB.

Definition 3.2.1. Let τ PU . τ is a B-name iff τ is a urelement, or τ is a function from a set

of B-names to B.

Definition 3.2.2. The B-valued model UB is defined as follows:

1. The domain of UB is the class of B-names.

2. Let τ,σ be B-names, we first define:

Jτ Ď σK“
ę

ηPdompτq

τpηq ñ Jη P σK

4For example, such a construction is used and discussed in [4].
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We then define:

Jτ “ σK“

$

’

’

’

’

’

&

’

’

’

’

’

%

1 if τ,σ PA and τ “ σ

0 if τ PA or σ PA , and τ ‰ σ

Jτ Ď σK[ Jσ Ď τK if τ,σ RA

We next define:

Jτ P σK“
ğ

ηPdompσq

Jη “ τK[σpηq

We finally define:

JA pτqK“

$

’

&

’

%

1 if τ PA

0 if τ RA

We next state without proving some basic facts about UB. The proofs of these facts

are minimally different from the proofs of the similar facts about V B, the Boolean-valued

universe with pure sets only (see, for example, [3]).

Theorem 3.2.1 (Induction Principle for UB). For any formula φpxq,

@τ PUB
p@η P dompτqφpηq Ñ φpτqq Ñ @τ PUB

pφpτqq

Proposition 3.2.1. For any τ,σ ,π in UB,

(i) Jτ “ τK“ 1.

(ii) τpηq ď Jη P τK, for any η P dompτq.

(iii) Jτ “ σK“ Jσ “ τK.

(iv) Jτ “ σK[ Jσ “ πKď Jτ “ πK.

(v) Jτ “ σK[ Jτ P πKď Jσ P πK.
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(vi) Jτ “ σK[ Jπ P τKď Jπ P σK.

(vii) Jτ “ σK[ JA pτqKď JA pσqK

Corollary 3.2.1.1. UB is a Boolean-valued model5. Hence all the axioms of the first-order

predicate calculus have value 1 in UB, and all of its rules of inferences are valid in UB.

Proposition 3.2.2. For any formula φpxq and any τ in UB,

1. JDx P τpφpxqqK“
Ů

ηPdompτq

pτpηq[ JφpηqKq.

2. J@x P τpφpxqqK“
Ű

ηPdompτq

pτpηq ñ JφpηqKq.

3.2.2 U and UB

In this section we show that the universe U in a certain sense “sits inside" UB. In particular,

we will find a representative for each element x P U in UB, and we will show that the

representatives preserve the values of restricted formulas. Also, we show that U is in a

certain sense isomorphic to U2, which can be viewed as a submodel of UB, for any (non-

trivial) complete Boolean algebra B.

Definition 3.2.3. For each x PU , we define:

x̌“

$

’

&

’

%

txx,1yu if x PA

txy̌,1y | y P xu if x RA

Proposition 3.2.3. (i) For any x PU , τ PUB, Jτ P x̌K“
Ů

yPxJτ “ y̌K.

(ii) For any x,y PU ,

x P yØUB
|ù x̌ P y̌

x“ yØUB
|ù x̌“ y̌

(iii) The map x ÞÑ x̌ is one-one from U to UB.

5In the sense of Def 1.2.8 in Chapter 1.
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(iv) For any formula φpv1, ...,vnq, any x1, ...xn PU ,

φpx1, ...,xnq ØU2
|ù φpx̌1, ..., x̌nq

And if φ is restricted then

φpx1, ...,xnq ØUB
|ù φpx̌1, ..., x̌nq

Proof. The proofs of these statements are all the same as the proofs of the similar state-

ments on V B, with minor adjustments. For proofs of the similar statements on V B, see

[].

Corollary 3.2.1.2. For any Σ1 formula φpv1, ...,vnq, any x1, ...xn PU ,

φpx1, ...,xnq ÑUB
|ù φpx̌1, ..., x̌nq

3.2.3 The Easy Axioms

In this subsection and the next, we will show that all the axioms of ZFCUR have value

1 in UB, given that U |ù ZFCUR. The tricky axiom is Replacement, which will be the

topic of the next subsection. The proof that all the other axioms of ZFCUR (all except

Replacement) are true in UB is standard: again, similar to the proof that these axioms have

value 1 in V B (see for example [16]). We show as examples that the Axiom of Separation

and the Powerset Axiom have value 1 in UB.

Theorem 3.2.2 (Separation). Let φpvq be a formula. UB |ù @xDy@zpz P yØ z P x^φpzqq.

Proof. Let τ be a B-name. Define σ PUB such that dompσq “ dompτq, and for any η P

dompσq, σpηq “ τpηq[ JφpηqK. Using 3.2.2, it is easy to check that

J@zpz P σ Ø z P τ^φpzqqK“ 1
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Theorem 3.2.3 (Powerset). UB |ù @xDy@zpz P yØ zĎ x^␣A pzqq.

Proof. Let τ be a B-name. Define σ PUB such that dompσq “ Bdompτq, and for any µ P

dompσq, σpµq “ Jµ Ď τK. Obviously J␣A pµqK“ 1, for any µ P dompσq.

We will show that UB “thinks" σ is the powerset of τ , in the sense that

UB
|ù @zpz P σ Ø zĎ τ^␣A pzqq

The left to right direction holds by the definition of σ and 3.2.2. We are left to show that

for any π PU B,

Jπ Ď τ^␣A pπqKď Jπ P σK (3.1)

For any π PUB, we define π˚ as follows: dompπ˚q “ dompτq, and for any η P dompπ˚q,

π˚pηq “ Jη P πK. Hence π˚ P dompσq. We will show first that

Jπ Ď τ^␣A pπqKď Jπ “ π
˚K (3.2)

If π is such that JA pπqK“ 1, then the inequality trivially holds. Suppose JA pπqK“ 0. We

just need to show that Jπ Ď τKď Jπ “ π˚K.

It is easy to see that by the definition of π˚, Jπ˚ Ď πK “ 1. For any ρ PUB, Jρ P τ ^

ρ P πK“
Ů

ηPdompτq τpηq[ Jη “ ρK[Kρ P πKď
Ů

ηPdompπ˚qJη “ ρK[Kη P πK“ Jρ P π˚K.

Hence Jπ Ď τKď Jπ Ď π˚K“ Jπ Ď π˚K[ Jπ˚ Ď πK“ Jπ “ π˚K. We next show that

Jπ Ď τKď Jπ
˚
P σK (3.3)

This is because Jπ Ď τK“ J@xpx P πÑ x P τqK“
Ű

ηPUBJη P πKñKη P τKď
Ű

ηPdompπ˚q π˚pηqñ

Jη P τK “ J@x P π˚px P τqK “ Jπ˚ Ď τK “ σpπ˚q ď Jπ˚ P σK. Finally, (3.1) follows from

combining (3.2) and (3.3).

As mentioned in Section 3.1, the Axiom of Collection is not a theorem of ZFCUR.

Therefore, it would be irrational to expect that the axiom of collection always has value

142



1 in UB, when U is merely a model of ZFCUR. What we do have, nevertheless, is that

Collection has value 1 in UB given that U satisfies Collection.

Theorem 3.2.4 (Collection). If U |ù Collection, then UB |ù Collection.

Proof. It suffices to show6 that for every τ PUB, there is a ρ PUB such that

J@x P τDyφpx,yqKď J@x P τDy P ρφpx,yqK.

Now fix τ P UB. For any σ P dompτq, let Xσ “ tp P B | Dπ P UBpp “ Jφpσ ,πqKqu. By

Collection and Separation in U , it follows that there is a Yσ ĎUB such that @p P XσDπ P

Yσ pp “ Jφpσ ,πqKq. Then JDyφpσ ,xqK “
Ů

πPYσ
Jφpσ ,πqK. This shows that for every σ P

dompτq, there is a Yσ ĎUB such that JDyφpσ ,xqK“
Ů

πPYσ
Jφpσ ,πqK. By Collection again,

we can collect those Yσ into a set Ȳ . Now let ρ be pp
Ť

Ȳ qXUBqˆt1u. For any σ P dompτq,

JDyφpσ ,xqK“
Ů

πP
Ť

Ȳ Jφpσ ,πqK“ JDy P ρ ϕpx,yqK. Thus, ρ is as desired.

3.2.4 The Axiom of Replacement

The case with the Axiom of Replacement, unlike the other axioms, is much trickier. This

is because the standard proof of the fact that Replacement has value 1 in V B makes use

of Collection in the background theory, which is ZFC. Nevertheless, since our background

theory is ZFCUR instead, and as we have mentioned, Collection is not a theorem of ZFCUR,

the standard proof cannot be adjusted into a proof of the fact that the Replacement has value

1 in UB. We have to use some entirely different techniques.

In this subsection, we prove that it is indeed the case that with the background theory

ZFCUR, Replacement has value 1 in UB. The key method we use here is what we call “pu-

rification". Given a set of urelements A and a B-name τ , we can construct the A-purification

of τ ,
A
τ , which is also a B-name. Intuitively,

A
τ is what we get by “purifying off" the urele-

ments in τ that are not in A. Through a long series of lemmas, we manage to prove that as

long as A is big enough, the degree to which τ “
A
τ is always greater than or equal to the

6For simplicity we ignore the parameters here. Our proofs can be easily transformed to include parame-
ters. Similarly for Theorem 3.2.5 and Theorem 3.4.1.
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degree to which τ is the unique thing that φ ’s with σ , for any σ in the domain of a fixed π .

With that, we can then easily show that Replacement has value 1 in UB.

Definition 3.2.4 (Purification). Let A be a set of urelements. For any urelement a PA , we

define
A
a as a. Let τ be a B-name. We define

A
τ PUB recursively as follows:

domp
A
τq “ t

A
η | η P dompτqXAu

Let µ P domp
A
τq. We define Xµ “ tη P dompτq |

A
η “ µu, and

A
τpµq “

ğ

ηPXµ

τpηq

Definition 3.2.5. Let a,b be two urelements. We define iab : U ÑU as the automorphism

generated by the permutation of A which only swaps a and b.

Proposition 3.2.4. Let µ be a B-name. Let c be a urelement such that c R kerpµq. Then

for any urelement b, ibcpµq is a B-name. Also, dompibcpµqq “ ti
b
cpηq | η P dompµqu, and for

any ibcpηq P dompibcpµqq, ibcpµqpi
b
cpηqq “ µpηq.

Lemma 3.2.4.1. Let c be a urelement. Let η ,µ be B-names such that c R kerpηqYkerpµq.

Then, for any urelement b,

Jη “ ibcpµqKď Jη “ µK

Proof. We use the induction principle on µ . Since c R kerpηq Y kerpµq, for any ν P

dompµq,γ P dompηq, c R kerpνq Y kerpγq. By inductive hypothesis, then, for any ν P

dompµq,γ P dompηq, any urelement b,

Jγ “ ibcpνqKď Jγ “ νK

We first show that Jη Ď ibcpµqKď Jη Ď µK. That is,

ę

γPdompηq

ηpγq ñ Jγ P ibcpµqKď
ę

γPdompηq

ηpγq ñ Jγ P µK
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It suffices to show that for any γ P dompηq, Jγ P ibcpµqKď Jγ P µK. By 3.2.4, Jγ P ibcpµqK“
Ů

νPdompηqJγ “ ibcpνqK[µpνq. Hence Jγ P ibcpµqKď Jγ P µK by inductive hypothesis.

By similar reasoning we also have Jibcpµq Ď ηKď Jµ Ď ηK.

Lemma 3.2.4.2. Let A be a set of urelements, τ be a B-name. Then,

J
A
τ Ď τK“

ę

ηPdompτq

τpηq ñ J
A
η P τK

Similarly, for any urelement c R kerpτq, and any urelement b,

Jibcpτq Ď τK“
ę

ηPdompτq

τpηq ñ Jibcpηq P τK

Proof. We need to show that

ę

µPdomp
A
τq

A
τpµq ñ Jµ P τK“

ę

ηPdompτq

τpηq ñ J
A
η P τK

Recall that for each µ P domp
A
τq, we let Xµ “ tη P dompτq |

A
η “ µu. Hence the above

equation holds because for any µ P domBp
A
τq,

A
τpµq ñ Jµ P τK“

ę

ηPXµ

τpηq ñ Jµ P τK

“
ę

ηPXµ

τpηq ñ J
A
η P τK

The second statement holds for similar reasons.

Lemma 3.2.4.3. Let A be a set of urelements, τ be a B-name. Then, for any B-name σ ,

Jσ P
A
τK“

ğ

ηPdompτq

τpηq[ Jσ “
A
ηK
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Similarly, for any urelement c R kerpτq, any urelement b,

Jσ P ibcpτqK“
ğ

ηPdompτq

τpηq[ Jσ “ ibcpηqK

Proof. We need to show that

ğ

µPdomp
A
τq

A
τpµq[ Jσ “ µK“

ğ

ηPdompτq

τpηq[ Jσ “
A
ηK

It holds because for any µ P domp
A
τq,

A
τpµq[ Jσ “ µK“

Ů

ηPXµ

τpηq[ Jσ “
A
ηK. The second

statement holds for similar reasons.

Lemma 3.2.4.4. Let A be a set of urelements, τ be a B-name. Let Cτ “ kerpτqzA. Let c be

a urelement such that c R kerpτqYA. Then,

ę

bPCτ

Jτ “ ibcpτqKď Jτ “
A
τK

Proof. We use the induction principle on τ . Since c R kerpτq YA, for any η P dompτq,

c R kerpηqYA. Assume as inductive hypothesis that for any η P dompτq,

ę

bPCη

Jη “ ibcpηqKď Jη “
A
ηK

Our goal is to show that

ę

bPCτ

Jτ Ď ibcpτqK[ Jibcpτq Ď τKď Jτ Ď
A
τK[ J

A
τ Ď τK (3.4)
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Observe that

Jτ Ď
A
τK[ J

A
τ Ď τK“

ę

ηPdompτq

τpηq ñ pJη P
A
τK[ J

A
η P τKq

“
ę

ηPdompτq

τpηq ñ p
ğ

µPdompτq

τpµq[ Jη “
A
µK[ J

A
η “ µKq

ě
ę

ηPdompτq

τpηq ñ pτpηq[ Jη “
A
ηK[ J

A
η “ ηKq

“
ę

ηPdompτq

τpηq ñ Jη “
A
ηK

ě
ę

ηPdompτq

τpηq ñ
ę

bPCη

Jη “ ibcpηqK

“
ę

ηPdompτq

τpηq ñ
ę

bPCτ

Jη “ ibcpηqK

where the first line holds by 3.2.4.2. The second holds by 3.2.4.3. The second to the last

line holds by the inductive hypothesis. The last line holds because for any b P CτzCη ,

ibcpηq “ η .

Also observe that

ę

bPCτ

Jτ Ď ibcpτqK[ Jibcpτq Ď τK“
ę

bPCτ

ę

ηPdompτq

τpηq ñ Jη P ibcpτqK[ Jibcpηq P τK

“
ę

ηPdompτq

τpηq ñ
ę

bPCτ

Jη P ibcpτqK[ Jibcpηq P τK

where the first line holds by 3.2.4.2.

Therefore, to show (3.4), we just need to show that for any η P dompτq, any b P Cτ ,

(second line holds by 3.2.4.3)

Jη “ ibcpηqKě Jη P ibcpτqK[ Jibcpηq P τK

“
ğ

µPdompτq

τpµq[ Jη “ ibcpµqK[ Jµ “ ibcpηqK

147



But this holds because for any µ P dompτq,

τpµq[ Jη “ ibcpµqK[ Jµ “ ibcpηqKď Jη “ ibcpµqK[ Jµ “ ibcpηqK

ď Jη “ µK[ Jµ “ ibcpηqK

ď Jη “ ibcpηqK

where the second line holds by 3.2.4.1, since c R kerpηqY kerpµq, as c R kerpτq and η ,µ P

dompτq.

Theorem 3.2.5 (Replacement). Let φpv1,v2q be a formula. UB |ù @up@x P uD!yφpx,yq Ñ

Dw@x P uDy P wφpx,yqq.

Proof. We may assume Collection does not hold in U , otherwise UB |ù Replacement as

UB |ùCollection by Theorem 3.2.4. So we may assume there is a proper class of urelements

in U .

It suffices to show that for every π P UB, there is a ρ P UB such that for every σ P

dompπq,

JD!yφpσ ,yqKď JDy P ρ φpσ ,yqK (3.5)

Consider any π . Let A“ kerpBqY kerpπq.

Claim 3.2.5.1. For every σ P dompπq and τ PUB, there is a τ˚ PUB such that kerpτ˚q Ď A

and Jφpσ ,τq^@zpφpσ ,zq Ñ z“ τqKď Jφpσ ,τ˚qK.

Proof of the Claim. Let p“ Jφpσ ,τq^@zpφpσ ,zqÑ z“ τqK and c be a urelement such that

c R kerpτqYA, which exists by our assumption. Observe that Jφpσ ,τqK“ Jφpσ , ibcpτqqK for

every b P kerpτqzA. Moreover, for each b P kerpτqzA,
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pď Jφpσ ,τqK[pJφpσ , ibcpτqqKñ Jτ “ ibcpτqKq

ď Jφpσ ,τqK[ Jτ “ ibcpτqK

ď Jτ “ ibcpτqK

It follows that

pď Jφpσ ,τqK[
ę

bPkerpτqzA

Jτ “ ibcpτqK

ď Jϕpσ ,τqK[ Jτ “
A
τK (by Lemma 3.2.4.4)

ď Jϕpσ ,
A
τqK

As the kernel of
A
τ is contained in A, this proves the claim.

■

Now for every σ P dompπq and p PB such that there is some τ PUB with p“ Jφpσ ,τq^

@zpφpσ ,zq Ñ z “ τqK, let ασ ,p be the least α such that Dτ˚ P VαpAq with p ď Jφpσ ,τ˚qK.

Such α exists by the claim. Let γ “
Ť

xσ ,pyPdompπqˆB ασ ,p. Let ρ “ pVγpAqXUBqˆt1u. It is

easy to check that for every σ P dompπq, JD!yφpσ ,yqKď JDy P ρ φpσ ,yqK, which completes

the proof.

Theorem 3.2.6 (The Fundamental Theorem of UB). UB |ù ZFCUR. If Collection holds in

U , then UB |ù ZFCU.

3.2.5 UB Can Recover Collection

In the previous subsection we proved that UB preserves Collection. In this subsection,

we prove that UB can also recover Collection: there is some universe U such that U *

Collection, and for some complete Boolean algebra B, UB |ù Collection. To this end, we

first introduce some new axioms.
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(DCω Scheme) If for every x there is a y such that ϕpx,yq, then there is an ω-sequence

xxn : nă ωy such that ϕpxn,xn`1q for every n.

(Plenitude) For every cardinal κ , there is some set of urelements of size κ .

(Tail) For every set of urelements A, there is a greatest cardinal κ such that there is

BĎA of size κ with BXA“H.

The following is proved in [37].

Theorem 3.2.7. Over ZFCUR, the following implications hold and none of them can be

reserved.

1. PlenitudeÑ Collection;

2. CollectionÑ DCω Scheme;

3. TailÑ Collection.

Theorem 3.2.8. Let λ and κ be infinite cardinals with λ ď κ . If there is a double sequence

tpδξ | δ ă λ ,ξ ă κu such that for any ξ ă κ ,
Ů

δPλ
pδξ “ 1, and for any δ ă λ , tpδξ | ξ ă

κu is an antichain, then UB |ù |κ̌ | “ |λ̌ |.

Proof. Same proof as in Bell [3], p.109.

Corollary 3.2.8.1. Let B“ROpκωq, where κ is an infinite cardinal. Then, UB |ù κ̌ is countable.

Proof. For each nă ω and ξ P κ , let pnξ “ tg P κω | gpnq “ ξu. Then, for any ξ ă κ ,

ğ

năω

pnξ “ ptg P κω | for some nă ω,gpnq “ ξuq
˝
“ κ

ω

Also for any nă ω , ξ1 ‰ ξ2 ă κ ,

pnξ1
[ pnξ2

“ tg P κ
ω
| gpnq “ ξ1uXtg P κ

ω
| gpnq “ ξ2u “H
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Theorem 3.2.9. If U |ù for every set of urelements, there is another infinite set of urele-

ments disjoint from it, then for some complete Boolean algebra B, UB |ù ZFCU .

Proof. By Theorem 3.2.6 and Theorem 3.2.7, we may assume that in U , there is a least

cardinal κ such that there is no set of urelements of size κ . Let B“ ROpκωq. We will show

that UB |ù Collection.

By Corollary 3.2.8.1, UB |ù |ω̌ | “ |κ̌ |. Let τ PUB be such that UB |ù @v P τpA pvqq.

We can assume without loss of generality that every η P dompτq is such that τpηq ą 0.7

Then, by definition of UB, every η P dompτq has to be a urelement. Let A “ dompτq. By

assumption, U |ù |A| “ λ ă κ . Hence UB |ù |Ǎ| “ |λ̌ | ď |κ̌ | “ |ω̌ |. Also, it is easy to show

that UB |ù |τ | ď |Ǎ|. Hence UB |ù |τ | ď |ω̌ |.

Since A is a set of urelements, there is an infinite set of urelements B P U such that

AXB “H. Since U |ù |ω | ď |B|, UB |ù |ω̌ | ď |B̌|. But UB |ù every set of urelements is

countable. Hence UB |ù Tail. By Theorem 3.2.7, UB |ù Collection.

3.3 Non-Witnessing UB and Witnessing UB

3.3.1 UB Is Almost Never Witnessing

An important property of Boolean-valued models is the property of being witnessing. It is

defined as follows:

Definition 3.3.1. Let M be a Boolean-valued model for the languague L . M is witnessing

iff for any formula φpv,v1, ...,vnq in L , any x1, ...,xn PM, there is some x PM such that

JDvφpv,x1, ...,xnqKM “ Jφpx,x1, ...,xnqKM

In other words, a Boolean-valued model is witnessing just in case there exists a “wit-

ness" in the model for every existential sentence. Note that classical two-valued models are

7This is because for every τ PUB, there is a τ 1 such that Jτ 1 “ τK“ 1 and every η P dompτ 1q is such that
τ 1pηq ą 0.
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trivially witnessing. The property of being witnessing is especially important for Boolean-

valued models. This is mainly because witnessing models are precisely those that satisfy

the generalized Łoś theorem (see Chapter 1 for details). Witnessing models are therefore

well-behaved in the sense that the values of formulas in these models correspond neatly

with the values of formulas in their two-valued quotient models. Hence, in the context of

set theory, witnessing Boolean-valued universes are special in that they are the ones by

which we prove relative consistency results.8 Given a sentence φ that we want to prove to

be consistent with ZFC, we simply find a complete Boolean algebra B such that JφKV B
‰ 0.

Since V B is witnessing, we can then apply Łoś theorem and obtain the two-valued quotient

model generated by a ultrafilter that contains the value of the sentence, which will be a

model of φ together with all the axioms of ZFC.

The old/standard Boolean-valued construction UB, as introduced in the previous sec-

tion, comes with a major problem: it is never witnessing given that B is a proper exten-

sion of 2. Consider, for example, the B-name τ “ txa1, py,xa2,␣pyu, where a1,a2 are

two different urelements9, and p is an intermediate Boolean value. Consider, then the

sentence φpτq “ DvpA pvq ^ v P τq. Since both a1 and a2 are urelements, JA pa1qK and

JA pa2qK are both 1. Also, by the identity clauses on urelements, Ja1 P τK“ p and similarly

Ja2 P τK“␣p. Hence JφpτqKě p\␣p“ 1.

Assume for reductio that φpτq has a witness σ in UB. Hence JA pσqK “ 1 and Jσ P

τK “ 1. That JA pσqK “ 1 entails that σ is a urelement. But by the the identity clauses on

urelements again, for any urelement a, Ja P τK “ 0 if a is neither a1 nor a2. Hence τ can

only be a1 or a2. But neither Ja1 P τK nor Ja2 P τK is 1, as we have already observed. Hence

φpτq has no witness in UB.

There are countless other counter-examples of this form, which raise an interesting

question. It is well known that V B is a witnessing model. So why is UB not witnessing,

when it is constructed under the same guiding idea as V B?

That V B is witnessing is a corollary to an important lemma on V B: the Mixing Lemma.

In V B, given an antichain tpi | i P Iu Ď B, and a sequence of names txi | i P Iu PV B, we may

8See [16] for more details.
9UB is not witnessing even if there is only one urelement (assuming that B properly extends 2). Example:

τ 1 “ txa, py,xH,␣pyu where a is a urelement. Then JDvpv P τ 1qK does not have a witness.

152



construct their mixture u PV B as follows:

dompuq “
ď

iPI

dompxiq

and, for y P dompuq,

upyq “
ğ

iPI

pi[ Jy P xiKV B

Using the mixture construction, it can be proven that

Theorem 3.3.1 (The Mixing Lemma in V B). For any antichain tpi | i P Iu Ď B, any se-

quence of names txi | i P Iu P V B, there is some u P V B (for example, their mixture) such

that for any i P I,

pi ď Ju“ xiKV B

The reason why UB is not witnessing is because it does not satisfy the Mixing Lemma

either. And the reason why the Mixing Lemma is violated in UB is essentially due to the

“strict" definitive clauses on urelements in UB. Indeed, we can show that

Lemma 3.3.1.1. Let tpi | i P Iu Ď B be an antichain and tτi | i P Iu PUB be a sequence of

B-names. If there is some i P I such that τi is an urelement, and there is some j P I such that

τ j ‰ τi, then there is no σ PUB such that for any k P I, pk ď Jσ “ τkK.

Proof. Assume for reductio that there is such a σ PUB. Note that by 3.2.2, for any urele-

ment a PUB, for any τ PUB, Jτ “ aK is either 0 or 1. Since 0 ă pi ď Jσ “ τiK and τi is a

urelement, Jσ “ τiK“ 1. Hence σ is τi. But then Jσ “Kτ jK“ 0, and hence it is not the case

that 0ă p j ďKτ jK. Contradiction.

The above observation gives rise to the question: Is there a different construction of

Boolean-valued universe with urelements that satisfies the Mixing Lemma? Is there one

that is witnessing? The answers to both questions, interestingly, are positive. The key for
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a Boolean-valued universe with urelements to satisfy the Mixing Lemma, as illustrated by

the previous lemma, is that there has to be mixtures of different urelements, and similarly

mixtures of urelements and sets. In the next subsection, we present a new construction

of a Boolean-valued universe with urelements of this kind. We will show that this new

construction, which we call UB, is closed under mixtures and therefore satisfies the Mixing

Lemma.

3.3.2 The New Construction UB

We begin with the definition of the Boolean-valued universe UB.

Definition 3.3.2. τ : AÑ B is a B-urelement iff A is a set of urelements and for any a‰ b P

A, τpaq[ τpbq “ 0.

Definition 3.3.3. τ : X Ñ B is a B-name iff for any x P X , x is either a urelement or a

B-name, and for any urelement a P X , any x‰ a P X , τpaq[ τpxq “ 0.

Proposition 3.3.1. Every B-urelement is a B-name.

Definition 3.3.4. Let τ be a B-name. domA pτq “ ta P dompτq | a PA u. domBpτq “ tη P

dompτq | η is a B-nameu.

Definition 3.3.5. Let τ be a B-name. For any urelement a R domA pτq, τpaq “ 0.

Definition 3.3.6. The B-valued model UB is defined as follows:

1. The domain of UB is the class of B-names.

2. For any B-names τ,σ , we first define:

JA pτqKUB
“

ğ

aPA

τpaq

Jτ
A
“ σKUB

“
ę

aPA

τpaq ô σpaq
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We then define by double recursion:

Jτ P σKUB
“

ğ

µPdomBpσq

Jτ “ µKUB
[σpµq

Jτ Ď σKUB
“

ę

ηPdomBpτq

τpηq ñ Jη P σKUB

Jτ “ σKUB
“ Jτ Ď σKUB

[ Jσ Ď τKUB
[ Jτ

A
“ σKUB

We then state without proving some useful and elementary results on B-names. Again,

the proofs are similar to those in the case of V B.

Theorem 3.3.2 (Induction Principle for UB). For any formula φpxq,

@τ PUBp@η P domB
pτqφpηq Ñ φpτqq Ñ @τ PUBpφpτqq

Proposition 3.3.2. For any τ,σ ,π in UB,

(i) Jτ “ τKUB
“ 1.

(ii) τpηq ď Jη P τKUB , for any η P domBpτq.

(iii) Jτ “ σKUB
“ Jσ “ τKUB .

(iv) Jτ “ σKUB
[ Jσ “ πKUB

ď Jτ “ πKUB .

(v) Jτ “ σKUB
[ Jτ P πKUB

ď Jσ P πKUB .

(vi) Jτ “ σKUB
[ Jπ P τKUB

ď Jπ P σKUB .

(vii) Jτ “ σKUB
[ JA pτqKUB

ď JA pσqKUB

Corollary 3.3.2.1. UB is a Boolean-valued model. Hence all the axioms of the first-order

predicate calculus have value 1 in UB, and all of its rules of inferences are valid in UB.

Proposition 3.3.3. For any formula φpxq and any τ in UB,

1. JDx P τpφpxqqKUB
“

Ů

ηPdomBpτq

pτpηq[ JφpηqKUB
q.

2. J@x P τpφpxqqKUB
“

Ű

ηPdomBpτq

pτpηq ñ JφpηqKUB
q.

155



3.3.3 UB and the Mixing Lemma

In this subsection, we show that UB, unlike UB, does satisfy the Mixing Lemma.

Definition 3.3.7. Let tτi | i P Iu ĎUB and tpi | i P Iu Ď B be an antichain. We define the

mixture of tpi | i P Iu with respect to tτi | i P Iu to be the B-name τ such that

dompτq “
ď

iPI

dompτiq

For any x P dompτq, we define Jx as ti P I | x P dompτiqu, and define

τpxq “
ğ

iPJx

pi[ τipxq

Proposition 3.3.4. Let tτi | i P Iu ĎUB and tpi | i P Iu Ď B be an antichain. Their mixture

τ is a B-name.

Proof. Let a P domA pτq, x‰ a P dompτq. Then τpaq[τpvq “
Ů

iPJa
pi[τipaq[

Ů

jPJx
p j[

τ jpxq. We need to show that for any i P Ja, j P Jx,

pi[ τipaq[ p j[ τ jpxq “ 0

If i ‰ j, then pi[ p j “ 0 as tpi | i P Iu is an antichain. If i “ j, then a,x P dompτiq, and

hence τipaq[ τipxq “ 0 as τi is a B-name.

Theorem 3.3.3 (The Mixing Lemma in UB). Let tτi | i P Iu ĎUB and tpi | i P Iu Ď B be an

antichain. Let τ be their mixture. Then, for any i P I,

pi ď Jτ “ τiKUB

Proof. Let i P I. We first show that

pi ď Jτ Ď τiKUB
“

ę

ηPdomBpτq

τpηq ñ Jη P τiKUB
(3.6)
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Since τpηq “
Ů

jPJη
pi[ τ jpηq, we just need to show that for any j P Jη ,

pi ď␣p j\␣τ jpηq\ Jη P τiKUB

If i ‰ j, then pi ď ␣p j as tpi | i P Iu is an antichain. If i “ j, then η P dompτiq. Hence

τipηq ď Jη P τiKUB by 3.3.2(ii). Hence ␣τ jpηq\ Jη P τiKUB
“ 1.

We next show that

pi ď Jτi Ď τKUB
“

ę

ηPdomBpτiq

τipηq ñ Jη P τKUB
(3.7)

Let η P domBpτiq. Then η P domBpτq. Hence

pi ď τipηq ñ ppi[ τipηqq

“ τipηq ñ τpηq

ď τipηq ñ Jη P τKUB

We finally show that

pi ď Jτ
A
“ τiKUB

“
ę

aPA

τpaq ô τipaq (3.8)

Let a P domA pτq. Since τpaq “
Ů

jPJa
p j[ τ jpaq, we just need to show that the following

two both hold:

pi ď
ę

jPJa

␣p j\␣τ jpaq\ τipaq

pi ď␣τipaq\
ğ

iPJa

p j[ τ jpaq

For the first statement, if i ‰ j, then pi ď ␣p j; if i “ j, then ␣τipaq \ τipaq “ 1. For

the second statement, if a R dompτiq, then ␣τipaq “ 1. If a P dompτiq, then i P Ja. Hence

RHS ě␣τipaq\ppi[ τipaqq “ ␣τipaq\ pi ě pi.

Combining (3.6) and (3.7) and (3.8) gives us what we want.
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3.3.4 UB and UB

We have constructed two different Boolean-valued universes with urelements: UB and UB.

We have shown that the latter satisfies the Mixing Lemma, whereas the former does not.

Curious readers may have wondered how the two constructions are connected. The big

result of this subsection is that UB is, up to isomorphism, an elementary submodel of UB.

The plan to reach this result is as follows. We will first create an isomorphic copy of

UB within UB. consisting of the “sharp" B-names. Then, we will show that this isomorphic

copy is actually an elementary submodel of UB.

Definition 3.3.8. Let τ PUB. τ is a sharp B-name iff τ “ txa,1yu, for some a PA , or for

any x P dompτq, x is a sharp B-name.

Definition 3.3.9. UB
S is the submodel of UB whose domain is the class of all the sharp

B-names.

Proposition 3.3.5. Let τ,σ be sharp B-names. Then10,

(i) JA pτqK“

$

’

&

’

%

1 if for some urelement a,τ “ txa,1yu.

0 if otherwise.

(ii) Jτ “ σK“

$

’

’

’

’

’

&

’

’

’

’

’

%

1 if JA pτqK“ 1,JA pσqK“ 1, and τ “ σ .

0 if JA pτqK“ 1 or JA pσqK“ 1, and τ ‰ σ .

Jτ Ď σK[ Jσ Ď τK if JA pτqK“ 0 and JA pσqK“ 0.

(iii) Jτ P σK“

$

’

’

&

’

’

%

0 if JA pσqK“ 1.
Ů

ηPdompσq

Jτ “ ηK[σpηq if JA pσqK“ 0.

Corollary 3.3.3.1. UB
S and UB are isomorphic.

10Here, for readability, we ignore the “model" superscript on Boolean values of formulas. JA pτqK means,

for example, JA pτqKUB , or equivalently, JA pτqKUB
S .
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Proof. The isomorphism is witnessed by f : UB
S ÑUB defined recursively as follows: (let

τ be a sharp B-name)

f pτq “

$

’

&

’

%

a if for some urelement a,τ “ txa,1yu.

tx f pηq,τpηqy | η P dompτqu if otherwise.

That f is an isomorphism follows easily from 3.2.2 and 3.3.5.

We now show that UB
S is an elementary submodel of UB. We first need some lemmas.

Lemma 3.3.3.1. Let τ P UB. Let Aτ “ kerpτq Y kerpBq. Then, for some tσi | i P Iu Ď

UB
S XV pAτq, some maximal antichain tpi | i P Iu Ď B,

pi ď Jτ “ σiKUB
for any i P I.

Proof. We use the induction principle on τ . The inductive hypothesis is that for any η P

domBpτq, for some tµη

j | j P Jηu ĎUB
S XV pAηq, some maximal antichain tqη

j | j P Jηu ĎB,

qη

j ď Jη “ µ
η

j KUB
for any j P Jη .

We define π PUB
S as follows:

dompπq “ tµη

j | η P domB
pτq, j P Jηu

For any ν P dompπq, let Xν “ txη , jy | ν “ µ
η

j ,η P domBpτq, j P Jηu. Then,

πpνq “
ğ

xη , jyPXν

τpηq[qη

j

It is easy to check that π PV pAτq and π is a sharp B-name.

We now show that Jτ Ď πKUB
“ 1. That is, for any η P domBpτq, τpηq ď Jη P πKUB .
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This is because

Jη P πKUB
“

ğ

νPdompxq

Jη “ νKUB
[ xpνq

ě
ğ

jPJη

Jη “ µ
η

j KUB
[ xpµη

j q

ě
ğ

jPJη

Jη “ µ
η

j KUB
[ τpηq[qη

j

“
ğ

jPJη

qη

j [ τpηq “ τpηq

We next show that Jπ Ď τKUB
“ 1. That is, for any ν P dompπq, πpνq ď Jν P τKUB . This

is because

Jν P τKUB
“

ğ

ηPdomBpτq

τpηq[ Jν “ ηKUB

ě
ğ

xη , jyPXν

τpηq[ Jµ
η

j “ ηKUB

ě
ğ

xη , jyPXν

τpηq[qη

j “ πpνq

Finally we observe that Jτ
A
“ πKUB =

Ű

aPA ␣τpaq, since π is sharp. Hence Jτ “ πKUB

=
Ű

aPA ␣τpaq. Also, it is easy to check that for any ai P domA pτq, Jτ “ txai,1yuK “

τpaiq. Hence the statement holds as tτpaiq | ai P domA pτquYt
Ű

aPA ␣τpaqu is a maximal

antichain in B, by the definition of B-names.

Corollary 3.3.3.2. Let τ PUB. Then,

ğ

σPUB
S

Jτ “ σKUB
“ 1

Proof. By the previous lemma, for some tσi | i P Iu ĎUB
S , some maximal antichain tpi | i P
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Iu Ď B, pi ď Jτ “ σiKUB for any i P I. Hence,

ğ

σPUB
S

Jτ “ σKUB
ě

ğ

iPI

Jτ “ σiKUB
ě

ğ

iPI

pi “ 1

Corollary 3.3.3.3. UB
S is an elemantary submodel of UB. That is, for any formula φpv1, ...,vnq,

any σ1, ...,σn PUB
S ,

Jφpσ1, ...,σnqKUB
S “ Jφpσ1, ...,σnqKUB

Proof. By induction on the complexity of φ . The atomic cases are already covered since

UB
S is a submodel of UB. The cases for connectives are straightforward. Let φpv1, ...,vnq “

Dvψpv,v1, ...,vnq.

JDvψpv,σ1, ...,σnqKUB
S “

ğ

σPUB
S

Jψpσ ,σ1, ...,σnqKUB
S

On the other hand,

JDvψpv,σ1, ...,σnqKUB
“

ğ

τPUB

Jψpτ,σ1, ...,σnqKUB

“
ğ

τPUB

ğ

σPUB
S

Jψpτ,σ1, ...,σnqKUB
[ Jτ “ σKUB

(by 3.3.3.2)

“
ğ

σPUB
S

Jψpσ ,σ1, ...,σnqKUB

Hence the case for quantifiers holds by inductive hypothesis.

Corollary 3.3.3.4. UB is elementarily embedded in UB.

Corollary 3.3.3.5. UB |ù ZFCUR. If Collection holds in U , then UB |ù ZFCU.
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Corollary 3.3.3.6. For each x PU , define:

x̌“

$

’

&

’

%

txx,1yu if x PA

txy̌,1y | y P xu if x RA

Then all the clauses in 3.2.3 and 3.2.1.2 hold with respect to UB, meaning that x̌ is defined

as above11 and all the occurrences of UB are replaced with UB.

3.4 Collection and Witnessing

In the previous section, we have shown that UB always satisfies the Mixing Lemma. So is

UB always witnessing, then? Those who have read Chapter 1 of this dissertation might

find this question trivial: after all, there is a theorem in Chapter 1 that says any full

Boolean-valued model is witnessing (Theorem 1.7.3), which is equivalent to saying that

any Boolean-valued model that satisfies the Mixing Lemma is witnessing.

Nevertheless, the situation here is actually much more complicated. The proof of the

theorem that any full Boolean-valued model is witnessing actually makes use of the Axiom

of Collection. But recall that our background theory here is ZFCUR, and as mentioned

above, Collection is not a theorem of ZFCUR. It turns out that within ZFCUR, given a

special universe and complete Boolean algebra, it is possible for UB to satisfy the Mixing

Lemma without being witnessing. We will construct counter-examples of this kind in Sub-

section 3.4.2. But before we do that, we will first prove that over ZFCUR, the Axiom of

Collection is actually equivalent to the statement that UB is always witnessing, which is

going to be the goal of the upcoming subsection.

3.4.1 Equivalence Between Collection and Witnessing

The major result of this subsection is that:

Theorem 3.4.1. Over ZFCUR, the following are equivalent:

11We have given two different definitions of x̌ in 3.2.3 and 3.3.3.6. But the ambiguity shouldn’t matter
since the x̌ in 3.3.3.6 is simply the isomorphic image of x̌ in 3.2.3 under f .
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1. (Collection) @up@x P uDyφpx,yq Ñ Dv@x P uDy P vpφpx,yqqq.

2. (UB-Always-Witnessing) For any complete Boolean algebra B, UB is witnessing.

Theorem 3.4.2. Collection implies UB-Always-Witnessing. That is, if U |ù ZFCU , then

for any complete Boolean algebra B, UB is witnessing.

Proof. The same argument as in Chapter 1 Theorem 1.7.3, using the Axiom of Collection

and the fact that UB satisfies the Mixing Lemma.

Lemma 3.4.2.1. Let B be an atomic complete Boolean algebra and τ P UB. Let Aτ “

kerpτqY kerpBq. Then,12

ğ

xPV pAτ q

Jτ “ x̌K“ 1

Proof. Since B is an atomic complete Boolean algebra, it is isomorphic to some powerset

algebra PpIq ordered by Ď. We prove the lemma using the induction principle on τ . The

inductive hypothesis is that for any η P domBpτq,
Ů

xPV pAη qJη “ x̌K“ 1. Therefore, for any

i P I, there is a unique vi
η PV pAηq such that i P Jη “ v̌i

ηK.

For any i P I, we define xi as follows:

$

’

&

’

%

xi “ a if a P domA pτq and i P τpaq

xi “ tvi
η | i P τpηqu if otherwise

That xi is well-defined follows from the definition of B-names. Since Aτ “
Ť

ηPdomBpτq AηY

domA pτq, xi PV pAτq.

We now show that for any i P I,

i P Jτ “ x̌iK“ Jτ Ď x̌iK[ Jx̌i Ď τK[ Jτ
A
“ x̌iK

12In this subsection and the next, JφK always means JφKUB .
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We first show that

i P Jτ Ď x̌iK“
ę

ηPdomBpτq

τpηq ñ Jη P x̌iK

Let η P domBpτq. If i R τpηq, then i P ␣τpηq Ď τpηq ñ Jη P x̌iK. If i P τpηq, then vi
η P xi,

and hence i P Jη “ v̌i
ηKĎ Jη P x̌iKĎ τpηq ñ Jη P x̌iK.

We next show that

i P Jx̌i Ď τK“
ę

vi
η Pxi

Jv̌i
η P τK

Let vi
η P xi. Then i P τpηq. Hence i P τpηq[ Jη “ v̌i

ηKĎ Jv̌i
η P τK.

We finally show that

i P Jτ
A
“ x̌iK“

ę

aPA

τpaq ô x̌ipaq

Let a PA . i P τpaq iff xi “ a iff i P x̌ipaq. Hence i P τpaq ô x̌ipaq.

Since for any i P I, i P Jτ “ x̌iK,

ğ

iPI

Jτ “ x̌iK“ 1

Hence the lemma is proven as xi PV pAτq for any i P I.

Corollary 3.4.2.1. Let B be an atomic complete Boolean Algebra. Let φpv1, ...,vnq be a for-

mula and x1, ...,xn PU . Let Jφpx1, ...,xnqK2 “ 1 iff U |ù φpx1, ...,xnq and Jφpx1, ...,xnqK2 “ 0

iff U |ù ␣φpx1, ...,xnq. Then,

Jφpx1, ...,xnqK2
“ Jφpx̌1, ..., x̌nqKUB

Proof. By induction on the complexity of φ . The atomic cases are already covered by

3.3.3.6. The cases for connectives are straightforward. Let φpv1, ...,vnq “ Dvψpv,v1, ...,vnq.
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Then,

JDvψpv,x1, ...,xnqK2
“

ğ

xPU

Jψpx,x1, ...,xnqK2

On the other hand, since, by 3.4.2.1, every τ PUB is such that
Ů

xPUJτ “ x̌KB “ 1,

JDvψpv,x1, ...,xnqKUB
“

ğ

τPUB

Jψpτ, x̌1, ..., x̌nqKUB

“
ğ

τPUB

Jψpτ, x̌1, ..., x̌nqKUB
[

ğ

xPU

Jτ “ x̌KUB

“
ğ

xPU

Jψpx̌, x̌1, ..., x̌nqKUB

“
ğ

xPU

Jψpx̌, x̌1, ..., x̌nqK2

“ JDvψpv,x1, ...,xnqK2

The second to the last equation holds by inductive hypothesis.

Theorem 3.4.3. UB-Always-Witnessing implies Collection. That is, for any U that satisfies

ZFCUR, if for any complete Boolean algebra B, UB is witnessing, then U |ù ZFCU .

Proof. Assume the antecedent of Collection, that is, U |ù @x P uDyφpx,yq. Let B “Ppuq.

By 3.4.2.1,

UB |ù @x P ǔDyφpx,yq

Clearly ttxu | x P uu ĎPpuq is an antichain. Let µ be the mixture of ttxu | x P uu with

respect to tx̌ | x P uu. By the Mixing Lemma, then, for any x P u,

x P Jµ “ x̌K

Hence, Jµ P ǔK“
Ů

xPuJµ “ x̌K“ 1. Therefore, JDyφpµ,yqK“ 1.
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Since UB is witnessing, there is some τ PUB such that Jφpµ,τqK“ 1. By 3.4.2.1,

ğ

yPV pAτ q

Jτ “ y̌K“ 1

Let x P u. Then for some y PV pAτq, x P Jτ “ y̌K. Hence

x P Jµ “ x̌K[ Jφpµ,τqK[ Jτ “ y̌KĎ Jφpx̌, y̌qK (3.9)

But Jφpx̌, y̌qK is either 0 or 1 by 3.4.2.1. Hence Jφpx̌, y̌qK“ 1. By 3.4.2.1 again, U |ù φpx,yq.

Hence,

U |ù @x P uDypkerpyq Ď kerpτqYkerpBq^φpx,yqq

By Replacement, it follows that

U |ù Dv@x P uDy P vpφpx,yqq

3.4.2 A Non-Atomic Example

The proof of 3.4.3 suggests that if the Axiom of Collection fails in U , then there is an

atomic complete Boolean algebra B such that UB is not witnessing, though satisfying the

Mixing Lemma. To see this, suppose for some formula φ , there is some u PU such that

U |ù @x P uDyφpx,yq, but U |ù ␣Dv@x P uDy P vφpx,yq. Then we take B “Ppuq. Let µ ,

again, be the mixture of ttxu | x P uu with respect to tx̌ | x P uu. By the same reasoning as

in 3.4.3, JDyφpµ,yqK “ 1. But there cannot be any τ PUB such that Jφpµ,τqK “ 1, since

otherwise U |ù Dv@x P uDy P vφpx,yq, using the same argument in 3.4.3.

A unresolved question is: can the failure of being witnessing happen for some non-

atomic complete Boolean algebra B? That is, can there be some universe U of ZFCUR such

that for a non-atomic complete Boolean albebra B, UB is not witnessing? The answer turns

out to be positive. In this subsection, we give such an example.
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For the rest of this subsection we assume U is a universe that satisfies ZFCUR, that

there is no infinite set of urelements, and that for any n P ω , there is a set of urelements

of size n.13 We also let B “ ROp2ωq. The main result of this subsection is that UB is not

witnessing, despite satisfying the Mixing Lemma.

Definition 3.4.1. We define γ PUB as follows:

dompγq “ tň | n P ωu

and for any n P ω ,

γpňq “ t f P 2ω
| f pnq “ 1u

Proposition 3.4.1. Let n P ω , f P 2ω . Then,

Jň P γK“ t f P 2ω
| f pnq “ 1u

Jň R γK“ t f P 2ω
| f pnq “ 0u

Lemma 3.4.3.1. UB |ù Dxp@y P xpA pyqq^Dn P ω̌p|x| “ n^n R γqq

Proof. Since the sentence that for any n P ω , there is a set of urelements of size n is Σ1, UB

“thinks" that for any n P ω̌ , there is a set of urelements of size n. Hence we only need to

show that

UB |ù Dn P ω̌pn R γq

That is,
Ů

nPω
Jň R γK“ 2ω . Let f P 2ω . If f pnq “ 0 for some n Pω , then f P Jň R γK. Hence,

ğ

nPω

Jň R γK“ pt f P 2ω | for some n P ω, f pnq “ 0uq˝ “ 2ω

Theorem 3.4.4. UB is not witnessing.
13The existence of such a universe is relatively well-known. For details, see, for example, [37].
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Proof. Assume for reductio that UB is witnessing. By the previous lemma, if suffices to

show that there is no τ PUB such that

UB |ù @y P τpA pyqq^Dn P ω̌p|τ | “ n^n R γq

Suppose otherwise. Let τ PUB be such that UB |ù @y P τpA pyqq^Dn P ω̌p|τ | “ n^n R

γq. Since there are no infinite sets of urelements in U , kerpτq “ m for some m P ω . Let

kerpτq “ ta1, ...,amu where a1, ...,am PA .

Claim 3.4.4.1. UB |ù @x P τpy“ ǎ1_ ..._ y“ ǎmq.

Proof of the Claim. Since UB |ù @y P τpA pyqq, for any η P domBpτq, τpηq ď JA pηqK “
Ů

aPA ηpaq “
Ů

aPA Jη “ ǎK, by the definition of B-names. Let b PA be such that b ‰ ai

for any iď m. Then Jη “ b̌K“ ηpbq has to be 0, as otherwise b P kerpηq Ď kerpτq.

Hence τpηq ď JA pηqKď
Ů

iďmJη “ ǎiK. Hence UB |ù @x P τpy“ ǎ1_ ..._ y“ ǎmq.

■

Therefore, UB |ù |τ | ď m̌. Let M “ t f P 2ω | for any i ď m, f pmq “ 1u P ROp2ωq. Ob-

viously M ‰ H. Hence there is some ultrafilter D Ď ROp2ωq such that M P D. For any

iď m,

Jǐ P γK“ t f P 2ω
| f piq “ 1u ĚM P D

Since UB |ù Dn P ω̌p|τ | “ n^n R γq, and since UB is witnessing, for some σ PUB, J|τ | “

σ ^σ ď m̌^σ R γK “ 1. Since
Ů

iďmJσ “ ǐK “ Jσ ď m̌K “ 1 P D, for some i ď m, Jσ “

ǐK P D.

Hence Jσ P γK P D as Jσ P γKě Jσ “ ǐ^ ǐ P γK. But Jσ R γK“ 1. Contradiction.
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