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Abstract

Wireless Software Defined Network (SDN) has emerged as a new programmable network
paradigm that facilitates flexibility in robust control and management. Toward the
production-level network deployment at scale, there has been a surge of interest in
distributed architectures of wireless SDN. Despite the inherent importance, optimal
network control for either centralized or distributed wireless SDN has remained an
open problem, where previous works either fail to account for wireless interference
constraints, or are only sub-optimal in throughput due to quasi-static shortest path
routing. Though throughput-optimal and well-established in the literature, the Back-
Pressure (BP) algorithm is not compatible with wireless SDN architecture. In contrast,
the recently developed Universal Max-Weight (UMW) policy also achieves throughput-
optimality, yet permits algorithmic structure more congruent with SDN’s requirements.
Unlike BP, UMW pre-computes a fixed route per-packet upon a packet arrival, which
can be integrated with the flow installation phase of SDN, and uses novel easy-to-track
virtual queues in place of physical queues (of backlogged packets), whose operations
are not supported by SDN switches. In this thesis, we propose novel UMW-based
optimal control frameworks for both centralized and distributed wireless SDN that
achieve the full network capacity and support an arbitrary mix of multi-type traffic.

For centralized wireless SDN, we develop a Mininet-based implementation of the
UMW framework to evaluate its performance. In order to improve robustness in
dynamic wireless environments, we modify the UMW algorithm to enable re-routing
around failed links. Compared against the conventional SDN shortest path routing,
our algorithm improves throughput by over 100% and significantly reduces average
per-packet delay in high-throughput regime. We further present the Randomized
UMW (RUMW) algorithm that performs scheduling in linear time, yet still maintains
the throughput-optimality under the setting of dynamic network.

For distributed wireless SDN, our proposed Distributed Universal Max-Weight
(DUMW) algorithm is throughput-optimal and non-trivially extends the UMW policy
to permit distributed control and optimal inter-domain scheduling under the setting of
heterogeneously delayed network state information. Furthermore, we design controller
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synchronization strategies that resolve the problem of multi-domain flow installation
and are tailored to DUMW for maintaining throughput-optimality with negligible
communication overhead. Extensive simulations validate the throughput-optimality
and exhibit superior scalability of our framework.

Thesis Supervisor: Eytan H. Modiano
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Optimal Control for Wireless SDN

Software-Defined Networking (SDN) [35] emerged from the urgent need for a pro-

grammable networking framework with adaptive reconfiguration to meet modern

networking requirements [30]. Its flexibility has facilitated the implementation of

widespread network management functionalities such as routing [14] , load-balancing

[62] and traffic engineering [44]. Unlike traditional network architectures, SDN decou-

ples the data plane from the control plane, where the data forwarding devices, called

switches, passively execute the instructions received from the programmable network

controller. This unique architecture is often incompatible with many state-of-the-art

network control algorithms, which is further exacerbated in wireless systems [12] with

the requirements for dynamic control, distributed operations [59], and link scheduling.

Nonetheless, there has been increasing interest in wireless SDN thanks to the surge in

mobile communication [8] and wireless infrastructures [10].

Despite its inherent importance, the literature of scheduling in wireless SDN remains

nascent. In terms of SDN scheduling, all the previous work fails to accommodate

interference constraints, which are a critical element in any wireless networking

system [19]. Moreover, the vast literature of routing in wireless SDN has only
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considered quasi-static shortest path (SP) routing [12,23], which is known to be sub-

optimal in terms of throughput and delay. While the Back-Pressure (BP) algorithm is

known to be throughput-optimal in wireless networks, it is incompatible with the SDN

architecture, hindering its adoption. Moreover, though SDN routing that is robust to

link failures via pre-computed backup paths has been well studied [18, 27,28, 52], this

naive approach is only effective against rare failures and is ineffective in highly dynamic

wireless networks. The first goal of the thesis is thus to design a new framework for

routing and scheduling in wireless SDN that is throughput-optimal and can handle

generalized interference constraints.

1.1.2 Optimal Control for Distributed Wireless SDN

In addition to the challenges introduced by the wireless setting, the SDN architecture

possesses some inherent limitations. Utilizing its global view of the network information,

the logically centralized controller can be designed to make optimal decisions for

application performance. However, the centralized nature of SDN incurs significant

communication overhead to the control plane in large-scale networks [57] and suffers

from the single point-of-failure problem [45]. Consequently, distributed SDN [2] has

emerged to mitigate the scalability and reliability bottlenecks.

A distributed wireless SDN system decomposes the underlying network topology

into inter-connected sub-networks, referred to as domains, and assigns each domain to

a physically separate SDN controller. The controllers then synchronize with each other

to partially or fully maintain their global view of the network state, which can be

utilized to enhance decision making for inter-domain tasks. The coordination among

controllers has attracted a lot of research [36]. While there have been several consistency

models considered in the literature, the two most predominant classes are: strong

consistency [3,20] and eventual consistency [1,20,48,51] . By requiring all the controllers

to be synchronized at any time, strongly consistent protocols strive to maintain fresh

global network information for optimizing application performance. However, its

practicality is hindered by the unreliable nature of network communications [43] and the

prohibitively high overhead incurred by frequent controller coordination [17]. On the
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other hand, eventual consistency requires the controllers to be eventually synchronized,

thereby allowing for temporarily inconsistent network view. The overhead reduction

due to the relaxed synchronization requirement has been both a blessing and a

curse: distributed SDN can scale pervasively and has been adopted at production-

level [16, 20, 24,47, 56] with wide applicability [13, 40,54], yet the inconsistent network

information significantly degrades the inter-domain application performance [26].

Improving the performance of ad-hoc inter-domain tasks via customized algorithms

and synchronization strategies is an active area of research [37]. In particular, while

there have been several applications considered in the literature, such as traffic

engineering [29], load-balancing [15] or utility maximization [7], optimal network

control comprised of routing and scheduling is the most prominent for being the

backbone of network operations [53]. To this end, we focus on studying the optimal

network control framework for distributed wireless SDN under the eventual consistency

model.

To the best of our knowledge, optimal network control for distributed wireless

SDN has remained an open problem. We attribute this to the nascent literature on

network control for wireless SDN, and the challenge of making decisions with respect

to inconsistent view of global network state information (NSI) and flow statistics.

For inter-domain routing, the vast literature relies on quasi-static shortest path (SP)

algorithms [21,38], where much of the work is focused on optimizing the controller-

synchronization rate [39, 60, 61]. Since SP routing is known to be sub-optimal in

terms of throughput and not tailored to handling heterogeneous view of NSI, all

of the proposed algorithms, even when predicated on sophisticated synchronization

strategies, still operate below the throughput capacity of the network. In fact, to the

best of our knowledge, no work has theoretically studied the throughput capacity of

the inter-domain routing approaches. In terms of wireless scheduling for SDN, all

the previous works fail to accommodate interference constraints, which are a critical

element in any wireless networking system [19]. To fill this gap, we thus investigate

the unsolved yet critical problem of optimal network control for distributed wireless

SDN. Our second goal of this thesis is to develop a new algorithm that is theoretically
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throughput-optimal and practically congruent with the distributed SDN architecture

and the wireless environments.

1.2 Universal Max Weight (UMW)

We attribute the lack of an optimal control solution for wireless SDN in the literature

to the unconventional routing requirement and limited control of physical queues of

SDN, which will be discussed in details in Section 2.1.2 later. To this end, we propose

the adoption of the recently developed Universal Max-Weight (UMW) algorithm [46]

as a general network control framework for SDN that is throughput-optimal and

compatible with the SDN architecture.

Nevertheless, in its original form, the UMW policy incurs significant computational

cost for obtaining scheduling decisions, which can be practically prohibitive in certain

modern wireless SDNs, especially in view of the emerging low-power devices in wireless

systems. Moreover, toward optimal control for distributed wireless SDN, the analytical

model of UMW lacks the generality to readily be extended to distributed control.

In particular, the UMW policy is centralized in nature, which is incompatible with

inter-domain operations and is not designed to deal with sophisticated dynamic

networks.

1.3 Contributions

In this thesis, we propose novel UMW-based unified optimal control frameworks for

both centralized and distributed wireless SDN, that fully address the aforementioned

challenges. Our contributions can be summarized as follows:

• In chapter 2, we study the adaptation of UMW as an optimal control framework

for wireless SDN. Next, we implement UMW on the real SDN system comprised

of a Mininet backbone, OpenFlow switches and a Ryu controller. In terms of

both throughput and latency, the results exhibit superior performance of UMW

over the conventional SP routing. We also illustrate UMW’s congruence with
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SDN’s requirements and natural extension to dynamic topologies that experience

link failures. Our robust UMW version consistently improves the throughput

of standard UMW under the setting of dynamic link failures, confirming the

efficiency of our approach. Finally, in view of the emerging low-power devices in

wireless systems, we propose the Randomized UMW (RUMW) algorithm with

linear complexity scheduling which is throughput-optimal under the dynamic

network setting. Finally, we propose the Randomized UMW (RUMW) algorithm

for dynamic network setting that performs scheduling in linear time.

• In chapter 3, we present the Distributed Universal Max-Weight (DUMW) algo-

rithm for distributed wireless SDN that is throughput-optimal and can handle

generalized wireless interference constraints. In particular, we formulate the

problem of optimal inter-domain routing and scheduling for distributed wireless

SDN, whereby our analytical model is the first to capture the interplay between

distributed control and SDN system idiosyncrasies. The fully wireless system

studied in this work also accommodates wireless inter-domain communication,

which was neglected by the previous works whereby wired inter-domain commu-

nication was assumed for simplicity [59]. Next, we propose a novel scheduling

algorithm for DUMW, which is optimal under the considered setting of het-

erogeneously delayed NSI with hierarchy, and is of independent interest. For

inter-domain routing, DUMW resolves the challenge of inter-domain flow instal-

lation by enforcing consensus among controller through periodic synchronization.

Deviating from the vast literature on distributed SDN that relies on generic con-

sensus protocols [37], we design wireless controller synchronization mechanisms

specifically customized to DUMW so as to maintain throughput-optimality with

negligible communication overhead.
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Chapter 2

Optimal Control for Centralized

Wireless SDN

2.1 Wireless SDN

2.1.1 Wireless SDN Architecture

Figure 2-1: SDN architecture and packet life cycle.

The SDN architecture decouples the control plane from the data plane (Figure

2-1). This is in contrast to traditional network architecture where control logic is

embedded to the forwarding hardware.

Data plane: The data plane is the SDN’s infrastructure, comprised of forwarding

devices, called switches, all connected to the control plane and interconnected by

links to form the underlying network topology. While the switches are responsible

for deploying the flows, i.e. packet forwarding rules, and activating their respective
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links for packet transmissions, they rely on the control plane’s logical computation of

packet routes and link schedules.

Control plane: The control plane is in charge of all logical operations and essential

functionalities of the network, such as traffic management, device configuration and

network management. It gathers network state information from the data plane to

compute routing and scheduling decisions, to be sent to the switches for packet routing

and link activation. The control plane acts as a logically centralized controller, where

multiple physically distributed controllers can be deployed as long as the collective

behavior is consistent with the behavior of a single controller. In this paper, we

interchangeably refer to the control plane as the controller.

Packet life cycle: Whenever a packet arrives at a switch in the network, a flow

request is generated by the switch and sent to the control plane. The controller

accumulates all the flow requests and network state information to consequently

compute the flow installation rules and scheduling decisions. The link schedule is a

subset of links that can be simultaneously activated, according the the interference

constraints (e.g. primary or node-exclusive model [6]) of the network. The controller

then deploys the packet forwarding rules, i.e. flows, onto the switches belonging to

the computed routes and notifies the switches adjacent to activated links (in the link

schedule) to transmit packets. The process is summarized in Figure 3-1.

Wireless model: The inter-switch communication corresponds to the network link

activation for packet transmission, whereby wireless interference constraints [6] must

be satisfied. We assume reliable and stable wireless controller-switch communication

in order to ensure error-free flow installation and accumulation of network statistics.

Reliable controller-switch communication is required by the SDN literature and,

under the wireless setting, is facilitated via the controller placement in proximity to

switches [41] or enhanced coding and retransmission at the physical and link layers.

2.1.2 Challenges of SDN Optimal Control

While facilitating flexibility and programmability, SDN architecture imposes new

challenges for network flow control that hinder the adoption of prevalent routing and
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scheduling algorithms.

Unconventional routing requirement: traditional multi-hop network routing

schemes, including the throughput optimal BP policy, admit hop-by-hop routing

decisions that are made along the way of packets’ traversal. On the other hand, the

installation of packet forwarding rules in SDN’s workflow requires the route per packet

to be established immediately upon a packet arrival and further deployed afterward.

Limited control of physical queues: Optimal control schemes such as BP leverage

the physical queues of backlogged packets for both routing and scheduling. While

traditional network architecture well supports operations on physical queues, SDN’s

switches lack logical capability for managing or distilling statistics from the physical

queues. Although the SDN’s controller can still request simple packet-in and packet-

out information from the switches to maintain its own estimate of the physical queues,

such process imposes significant burden on the communication bandwidth between

the control plane and the data plane.

2.1.3 A New Optimal Control Framework for SDN

We attribute the lack of an optimal control solution for SDN in the literature to the

two challenges described above. To bridge this gap, we propose the adoption of UMW

as a general network control framework for SDN. UMW is a throughput-optimal

routing and scheduling scheme, and is compatible with the SDN architecture, as its

distinctive features directly address the SDN challenges discussed in Section 2.1.2,

namely:

1. UMW computes a route per packet class immediately upon the arrival of any

new packet and prescribes the route for the packet throughout its traversal in

the network.

2. UMW maintains a system of virtual queues instead of physical queues to perform

routing and scheduling. The update of the virtual queues does not require real-

time packet-in and packet-out information from the switches.
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2.2 Universal Max-Weight (UMW)

The UMW algorithm was introduced in [46] as a routing and scheduling scheme

that maximizes network capacity and supports generalized flow problems including

unicast, multicast and broadcast. The core idea of UMW is to relax the precedence

constraint [25] to obtain a simple single-hop virtual queue system in place of the

physical queues. The policy is then designed to stabilize the virtual queues, which is

further proven to be sufficient for network throughput-optimality. To formally define

the UMW policy, we hereby describe the system model in Section 2.2.1, establish the

virtual queue dynamics in Section 2.2.2, and present the main algorithm in Section

2.2.3.

2.2.1 Network Model

We consider a wireless network with arbitrary topology represented by the directed

graph 𝐺(𝑉,𝐸), where 𝑉 is the set of nodes, 𝐸 is the set of directed point-to-point

links. Time is slotted. At any time slot, only certain subsets of links can be activated,

according to the interference constraints of the network. The set of all admissible link

activations is denoted by ℳ ∈ {0, 1}|𝐸|, where 1 denotes that the link is activated

and vice versa. An incoming packet belongs to some class 𝑐 traffic, which is identified

by its source node 𝑠(𝑐) ∈ 𝑉 , the set of its required destination nodes 𝒟(𝑐) ⊆ 𝑉 and the

set 𝒯 (𝑐) of all admissible routes from 𝑠(𝑐) to 𝒟(𝑐). An admissible route 𝑇 (𝑐) ∈ 𝒯 (𝑐) is a

tree rooted at the source node 𝑠(𝑐) with the set of leaves formed by 𝒟(𝑐). We define

the set of distinct classes of incoming traffic as 𝒞. Packet arrivals are i.i.d. at every

slot. At time slot 𝑡, 𝐴(𝑐)(𝑡) packets from class 𝑐 arrive at source node 𝑠(𝑐). The mean

rate of arrival for class 𝑐 is E[𝐴(𝑐)(𝑡)] = 𝜆(𝑐).

Precedence Constraints: In a multi-hop network, if a packet is routed along some

path 𝑃 = 𝑒1 − 𝑒2 − ...− 𝑒𝑘, where 𝑒𝑖 ∈ 𝐸 is the 𝑖𝑡ℎ edge on the path, then it can be

transmitted over the link 𝑒𝑗 only after being transmitted by all the 𝑗 − 1 preceding

links 𝑒1, 𝑒2, ..., 𝑒𝑗−1.
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2.2.2 The Virtual Queue Process {Q(𝑡)}𝑡≥1

The UMW policy controls the |𝐸|-dimensional stochastic virtual queue process

Q(𝑡) = (𝑄𝑒(𝑡), 𝑒 ∈ 𝐸) imitating a fictitious queueing network without the prece-

dence constraints. For all 𝐴(𝑐)(𝑡) packets of class 𝑐 arriving at the source node 𝑠(𝑐)

during time slot 𝑡, the UMW policy prescribes a suitable route 𝑇 (𝑐)(𝑡) ∈ 𝒯 (𝑐) to

them. These incoming packets are routed along the prescribed physical path, while

the corresponding virtual queues are immediately incremented. The total number of

virtual packet arrivals to the virtual queue 𝑄𝑒 at time 𝑡 is:

𝐴𝑒(𝑡) =
∑︁
𝑐∈𝒞

𝐴(𝑐)(𝑡)1(𝑒 ∈ 𝑇 (𝑐)(𝑡)), ∀𝑒 ∈ 𝐸. (2.1)

Since we assume the relaxation of precedence constraints in the virtual network, any

packet present in the virtual queues is eligible for service. Let {𝜇(𝑡)}𝑡≥1 be the service

process of the virtual queues controlled by the UMW policy. At time slot 𝑡, the

service vector is selected with respect to the activation constraints, i.e. 𝜇(𝑡) ∈ ℳ,

and further used for link activation in the physical network. Then the virtual queue

process {Q(𝑡)}𝑡≥1 evolves as the following dynamics:

𝑄𝑒(𝑡+ 1) =
(︀
𝑄𝑒(𝑡) + 𝐴𝑒(𝑡)− 𝜇𝑒(𝑡)

)︀+
, 𝑒 ∈ 𝐸. (2.2)

2.2.3 UMW Algorithm

Utilizing the virtual queue process, the UMW scheme performs routing and dynamic

scheduling on the physical network by solving weighted min-cost and max-weight

problems.

Routing: For any class 𝑐 ∈ 𝒞 packet at time 𝑡, select route 𝑇 (𝑐)(𝑡) ∈ 𝒯 (𝑐) that solves

the weighted min-cost problem:

𝑇 (𝑐)(𝑡) ∈ argmin
𝑇 (𝑐)∈𝒯 (𝑐)

(︂∑︁
𝑒∈𝐸

𝑄𝑒(𝑡)1(𝑒 ∈ 𝑇 (𝑐))

)︂
(2.3)
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Upon the arrival of a new packet, its route is immediately computed according to (3.8)

and fixed throughout execution. This unique algorithmic structure of UMW makes it

compatible with the SDN architecture.

Scheduling: Select the link schedule 𝜇(𝑡) ∈ℳ that solves the max-weight problem:

𝜇(𝑡) ∈ argmax
𝜇∈ℳ

(︂∑︁
𝑒∈𝐸

𝑄𝑒(𝑡)𝜇𝑒

)︂
, (2.4)

and forward physical packets from the physical queues over the activated links 𝜇(𝑡).

Virtual queue update: Update the virtual queues assuming a precedence-relaxed

system via (3.7).

While dynamically routing and scheduling packets via (3.8) and (3.9) to stabilize

the virtual queues, UMW transmits real packets in the physical network and is

guaranteed to achieve the full capacity region [46].

2.3 UMW Implementation in SDN

This Section presents details of our UMW implementation in SDN and related design

perspectives. The high-level architecture is depicted in Figure 2-2, which has three

hierarchical layers: the application plane, the control plane and the data plane.

The northbound interface serves as the customized API passing application-oriented

instructions between the application and the control plane. The southbound interface

abstracts the communication between the control plane and the data plane. We also

extend the three planes with additional features that support link failure simulation,

network measurement and flow management.

2.3.1 Application Plane and Northbound Interface

The application plane contains high level programs that disseminate information to

controllers via a northbound interface. An SDN thus may contain multiple applications

for use cases such as load balancing, security, telemetry, etc. The controller then

communicates with the switches to properly configure them for the applications.
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Figure 2-2: Architecture of SDN with UMW controller

Figure 2-3: Workflow of flow installation and packet forwarding

UMW controller: We build the UMW algorithm (described in Section 2.2.3) at the

application plane. The UMW server is responsible for keeping track of the virtual

queues based on flow information from the controller, computing optimal paths, and

decrementing virtual queues over time.

Northbound interface: The application layer communicates with the controller

using TCP synchronously with a custom protocol using JSON packets. All of the

routing and scheduling decisions are made in the application layer, which are then

disseminated from the control plane to the data plane. The controller stores hashtables

and other necessary data structures for keeping track of OpenFlow port numbers,
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OpenFlow group numbers, MPLS labels, packet headers and link traffic statistics.

Handling link failures: We also add a robust mechanism to the original UMW

algorithm that handles link failures and adapts to the dynamic nature of the SDN

environment. When a link 𝑒 fails, it is temporarily excluded from the topology and

a copy of its latest virtual queue 𝑄𝑒(𝑡) right before the failure is stored. Due to

the exclusion of the failed link 𝑒 from routing (3.8) and scheduling (3.9), any packet

afterward would be routed around 𝑒 and any schedule would not activate 𝑒. Once the

failed link is restored, it is included in the topology with its old virtual queue value.

2.3.2 Data Plane

The data plane is implemented using Mininet [31], which simulates multiple switches,

hosts, and controllers on the same machine. Hosts are emulated as a group of processes

running in a network namespace. Yet each independent host has only its assigned

processes visible, and is provided with its own network interfaces. Switches are

emulated using Open vSwitch, which is compatible with OpenFlow and is responsible

for routing with respect to table entries and switching packets.

Switches, hosts and links: Openflow switches forward packets via the packet

delivery semantics installed by the controller. Each virtual host is connected to a

switch. Switches are connected to each other via Ethernet links that have a configurable

bounded capacity, and connected to the controller via dedicated links with unbounded

capacity. These elements form the backbone for network simulation.

Network traffic: Traffic is generated in the data plane via Python applications

running on the host nodes. Each Python sending process periodically sends UDP

packets, which will be later received by Python receiving processes at the hosts.

Packet header: Packet header is critical for the execution of routing decisions and

network traffic measurement. The standard IPv4 header section of each packet is

comprised of the following static information: number of bytes per session, IP address,

port number, OS process ID, timestamp of session, and 8 bytes of randomly generated

salt value for hashing. This information is utilized to uniquely identify the session to

which any packet belongs. We further augment the packet with a 24 byte dynamic
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header that contains the session size, total bytes sent and the timestamp when the

packet is generated. The information of session size and bytes sent is required by the

UMW controller to correctly increment the virtual queues according to (3.7). The

whole dynamic header is also used for post-simulation network traffic logging and

analysis.

2.3.3 Control Plane and Southbound Interface

We design and implement the controller using the Ryu framework (under the Apache

2.0 license), and utilizing OpenFlow 1.5 [30] as the southbound interface.

Flow installation and packet forwarding: Packets arrive at the network in the

form of sessions. A session contains multiple packets, identified by the port numbers

and the same source and destination IPs. The UMW controller initially installs a

routing table entry to forward all incoming packets to the control plane. Receiving the

first packet in a new session, the controller parses the session size information from the

packet, which is further communicated to the UMW server at the application layer to

increment the virtual queues and compute the optimal route for the session’s packets.

Given the routing decisions, the controller augments every incoming packet with a

Multiprotocol Label Switching (MPLS) label at only the first switch, i.e. the source

node at which packets arrive, and installs the routing tables onto all the participating

switches 1. The routing tables allow the switches to forward packets to the next ports

based on the MPLS labels without any further communication with the control plane.

The whole workflow is illustrated in Figure 2-3.

2.3.4 Additional Features

We further extend the system with additional features to support network traffic

measurement, built-in topology generation and simulation of link failures.

Network traffic measurement: As discussed in Section 2.3.2, Python receiving

processes at the Mininet hosts receive UDP packets when they reach the destination

1i.e. switches that are on the routing path of the packet.
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nodes. The UDP destination nodes extract the headers of each incoming UDP

packet to identify its source node, timestamp, and packet size for later network traffic

measurement. The Python receiving processes periodically log the output throughout

the duration of the simulation. At the end of the simulation, the log files are parsed to

compute the average delay and throughput. For packets that were dropped or did not

reach the destination by the end of the simulation, we set their delay value to infinity.

Topology generation: Our framework wraps the Mininet library and allows for

generation of a variety of network topologies. The generation of the topology is based

on our own standardized JSON configuration protocol, which allows for the topology

information to be passed to the controller and server in a consistent way, for making

routing decisions.

Link failure simulation: We utilize the Mininet SDN system to simulate dynamic

single link failures, where the interval between two failed links follows exponential

distribution and every time a random link is chosen to be deactivated for a fixed

period of time. Whenever a link is deactivated or reactivated, the switches attached

to the link send OpenFlow port status messages to the controller to notify the link’s

status change.

2.4 Experiments

2.4.1 Experimental Design

Our topology library supports automatic generation of multiple toplogies including

bidirectional grid of arbitrary size and the National Science Foundation (NSF) topology.

In this work, we compare our proposed UMW scheme with SP routing, vastly used

in SDN network control, through extensive testings on the 3 × 3 grid (Figure 2-4)

and the NSF topology (Figure 2-5). Some complementary tests are also conducted on

the 6× 6 grid with 36 nodes and 120 links, thereby describing a moderately complex

and large-scale network in practice. Each link in all our considered topologies is

bidirectional, emulating full-duplex ethernet and effectively corresponding to two
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unidirectional links.

Figure 2-4: Bidirectional
3× 3 grid Figure 2-5: NSF topology

To replicate the realistic high-throughput regime, we set the bandwidth of each

link to 5 Mbps. We limit the bandwidth based on Mininet simulation scalability

tests we conducted, to ensure that the simulation is as realistic as possible and is

not hampered by the limitations of CPU processing capabilities, since all hosts and

switches are emulated on one machine. We experiment with unicast traffic, which

corresponds to a source-destination (s-d) pair, and assume Poisson arrivals at the

sources all with the same packet generation rate. To test the network capacity and

saturation point, we gradually increase the packet generation rate at every source,

and report the throughput (averaged over the s-d pairs) and packet delay (averaged

over the total number of packets). Every simulation (i.e. one point in a plot) is run

for 10 minutes.

2.4.2 Throughput Optimality of UMW via Dynamic Routing

We start with single s-d pair test, which is the simplest, yet already indicative of

UMW’s optimality and unique features.

Benefit of dynamic routing: For the 3 × 3 grid, we consider the s-d pair (1, 9)

and report the results in Figure 2-6. Since the bandwidth of every link is 5 Mbps and

the destination node 9 has two incoming edges, the maximum throughput is 10 Mbps.

Our throughput results illustrate that while UMW achieves close to the optimal rate

10 Mbps, SP routing loses half of the capacity, i.e. its maximum rate is only around 5
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(a) Average throughput (b) Average packet delay

Figure 2-6: Test on 3× 3 grid with single s-d pair (1, 9)

(a) Average throughput (b) Average packet delay

Figure 2-7: Test on 6× 6 grid with single s-d pair (1, 36)

Mbps. The limitation of SP routing is due to its deployment of a fixed path and thus

inability to dynamically switch between paths to utilize both of the destination node’s

incoming edges. The delay results also show that SP routing leads to dropped packets

at a packet generation rate rate of 5+ Mbps due to infinite delay. On the other hand,

all packets of UMW are eventually served. The same effects on throughput and delay

can be observed again in the test on 6× 6 grid with the single s-d pair comprised of

the bottom-left source node and top-right destination node (Figure 2-7). Though its

structure is very similar to the 3× 3 grid test, this 6× 6 grid test requires UMW to

operate on a considerably more complex network and thus incurs more overhead to

the SDN controller for computationally intensive routing tasks. Nevertheless, UMW

is not undermined in its efficiency and reproduces the favorable results in terms of
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(a) Average throughput (b) Average packet delay

Figure 2-8: Test on NSF topology with single s-d pair (1, 14)

both throughput and delay.

Routing non-shortest paths for optimal throughput: In the above 3× 3 grid

test (and similarly the 6× 6 case), throughput optimality can be achieved for example,

by routing along two separate paths 1→ 4→ 7→ 8→ 9 and 1→ 2→ 3→ 6→ 9,

which themselves are shortest paths from 1 to 9. We now consider the test on the NSF

topology with single s-d pair (1, 14). Since the bandwidth of every link is 5 Mbps

and the destination node 14 has three incoming edges, the maximum throughput

is 15 Mbps. However, in order to achieve the full throughput of 15 Mbps, three

paths, some of which can be potentially be not shortest, must be deployed. One

example is the combination of routes 1→ 8→ 9→ 14, 1→ 3→ 6→ 13→ 14 and

1 → 2 → 4 → 11 → 14, where only the first one is a shortest path. Despite the

prominence of SP routing in SDN, this setting is meant to show its inherent inability

to achieve throughput-optimality. To this end, in Figure 2-8 we illustrate UMW’s

superior performance achieving close to the optimal rate of 15 Mbps, while SP routing

loses two thirds of the capacity, i.e. its maximum rate is only around 5 Mbps. The

delay results also show that SP routing leads to dropped packets at 5 Mbps packet

generation, in contrast to UMW’s serving of all packets with bounded delay.
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(a) Average throughput (b) Average packet delay

Figure 2-9: Test on 3× 3 grid with two s-d pairs (1, 3) and (2, 3)

(a) Average throughput (b) Average packet delay

Figure 2-10: Test on 3× 3 grid with three s-d pairs (1, 9), (3, 9) and (7, 9)

2.4.3 Congestion Control by UMW

We now move to multiple s-d pairs tests that better capture the congestion phenomenon

where different flows compete for the same link. The throughput reported in this

Section is averaged among the s-d pairs considered.

Routing around congested links: We consider the 3× 3 grid with two s-d pairs

(1, 3) and (2, 3). In this scenario, if SP routing is deployed, the link 2→ 3 is used by

both of the flows 1→ 2→ 3 and 2→ 3. This would expectedly drive the incoming

rate received at destination node 3 to just 5 Mbps, i.e. exactly the capacity of the

congested link 2 → 3, and saturate the network at the packet generation rate of

5/2 = 2.5 Mbps. On the other hand, the maximum supportable rate at node 3 is 10

Mbps, achieved by, for example, prescribing the two s-d pairs with any two separate
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paths. The result of this test is given in Figure 2-9, which confirms UMW’s mitigation

of link congestion and illustrates our aforementioned phenomena. In particular, while

SP routing’s average throughput is only 2.5 Mbps (total 5 Mbps averaged by 2 s-d

pairs), UMW achieves close to optimal average throughput 5 Mbps (total 10 Mbps

averaged by 2 s-d pairs). In terms of delay, UMW starts to drop packets at packet

generation rate 5 Mbps, while SP routing saturates the network at packet generation

rate 2.5 Mbps.

Dynamic routing around congested links: We now consider a more intricate

test on the 3 × 3 grid, yet with three s-d pairs (1, 9), (3, 9) and (7, 9), and report

the results in Figure 2-10. Unlike our previous test where static routing could avoid

congestion, dynamic routing is required for alleviating congestion in this case. Indeed,

since there are three routes (1, 9), (3, 9) and (7, 9) and only two incoming edges

of destination node 9, if static routing is deployed, there must be two routes that

compete for the same node 9’s incoming edge. Given that the capacity of any link is 5

Mbps, any type of static routing would saturate the network at packet generation rate

5/2 = 2.5 Mbps. On the other hand, an optimal routing scheme should saturate the

network at packet generation rate 10/3 ≈ 3.33 Mbps, i.e. when total arrivals at three

sources match exactly the receiving capacity of the destination node 9. One example

of such optimal routing is that (3, 9) and (7, 9) are routed respectively via 3→ 6→ 9

and 7→ 8→ 9, while (1, 9) is routed by switching with equal probability between

1 → 4 → 5 → 8 → 9 and 1 → 2 → 5 → 6 → 9. The delay plot also reasserts the

above analytical interpretation where SP routing and UMW start to drop packets at

packet generation rate 2.5 Mbps and ≈ 3.3 Mbps respectively. In terms of throughput,

UMW can also achieve close to average optimal throughput of 3.33 Mbps (10 Mbps

averaged by 3 s-d pairs) at its saturation point. Note that though SP routing could

also reach the average throughput close to 3.33 Mbps at packet generation rate of 5

Mbps, it is because of network overloading, i.e. links are overloaded and drop packets.

Complex network setting: The next test on NSF topology with three s-d pairs (1,

14), (3, 14) and (7, 14) illustrates a more realistic setting with multiple possibilities

for routing. For any s-d pair, there always exists a path that reaches the destination
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(a) Average throughput (b) Average packet delay

Figure 2-11: Test on NSF topology with three s-d pairs (1, 14), (3, 14) and (7, 14)

node via any of its three incoming edges. While the 15 Mbps optimal throughput

(corresponding to average throughput 5 Mbps) can be achieved at a 5 Mbps packet

generation rate, SP routing would congest two links 8 → 9 and 9 → 14 due to the

competing shortest paths of (1, 14) and (7, 14) and thus saturate the network at

a packet generation rate of 5/2 = 2.5 Mbps. The result in Figure 2-11 shows that

UMW and SP routing start to drop packets at packet generation rates of 4.5 and 2.5

Mbps respectively. Though UMW loses packets before our expected 5 Mbps point, it

still achieves close to optimal 5 Mbps average throughput. This test exhibits UMW’s

consistency even in challenging network settings.

2.4.4 Link Failure Tolerance

We hereby test the efficiency of our robust mechanism integrated with UMW (details

in Section 2.3), termed robust UMW, on a variety of both single s-d pair and multiple

s-d pair tests. Since in the presence of failed links packet drops are inevitable, which

corresponds to infinite packet delay, we only report the average throughput in the

failure tests. On a side note, in these failure tests, the average packet delay among

packets successfully served in the system is upperbounded by the average packet delay

in non-failure tests, in which UMW has already shown its superior performance.
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(a) Average throughput of 3× 3 grid test with single s-d
pair (1, 9)

(b) Average throughput of 6× 6 grid test with single s-d
pair (1, 36)

Figure 2-12: Failure tests on grid topologies with single s-d pair

Figure 2-13: Failure test on NSF topology with single s-d pair (1, 14)

To simulate dynamic single link failures, we set the interval between two failed

links to follow an exponential distribution with a mean of 30s, and at every time

choose a random link to be shut down for 20s.

UMW’s utilization of all possible routes: Under the setting of dynamic link

failures, we rerun all the single s-d pair tests on 3×3 grid, 6×6 grid and NSF topology

as in Section 2.4.2. In particular, the three tests for 3× 3 grid, 6× 6 grid and NSF

topology respectively use the single s-d pairs (1, 9), (1, 36)2 and (1, 14), and are

depicted in Figure 2-12a, 2-12b and 2-13. The robust UMW algorithm consistently

improves the throughput of standard UMW in all three tests. The less noticeable

improvement of robust UMW in 6× 6 grid and NSF topology also exhibits UMW’s
2Source node 1 is the bottom-left corner and destination node 36 is the top-right corner in the

6× 6 grid.
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tendency to diversify its routing options. In particular, since these two topologies

are more complex than simple 3× 3 grid and offer many more routing options, the

marginal loss in performance of UMW compared to robust UMW shows that UMW

well utilizes all the possible routes and evenly distributes the traffic onto them. Thus,

even if a link fails, thereby invalidating a route, UMW only loses a small fraction of

the throughput. Such comprehensive route utilization makes UMW, even without any

robustness augmentation, inherently good against link failures.

Failure test with multiple s-d pairs: We run the failure tests on 3× 3 grid and

NSF topologies with multiple s-d pairs. The 3× 3 grid test with three s-d pairs (1,

9), (3, 9) and (7, 9) is plotted in Figure 2-14. The NSF topology test with three

s-d pairs (1, 14), (3, 14) and (7, 14) is plotted in Figure 2-15. Robust UMW again

demonstrates throughput improvement over UMW in both tests except in the case of

packet generation rate of 5 Mbps in Figure 2-14. However, we note that at such point

the network is highly overloaded (5 × 3 = 15 Mbps arrival rate and only 10 Mbps

receiving capacity at node 9), which may cause some minor fluctuation in the results.

Figure 2-14: Failure test on 3 × 3 grid with
three s-d pairs (1, 9), (3, 9) and (7, 9)

Figure 2-15: Failure test on NSF topology
with three s-d pairs (1, 14), (3, 14) and (7,
14)

2.5 UMW with Linear Complexity Scheduling

In the previous Section, we have empirically experimented the basic UMW algorithm

for static network on a real SDN system to validate its potential of being the solu-

tion for SDN optimal control. Nevertheless, in its original form, the UMW policy

incurs significant computational cost for scheduling, which cannot meet the stringent
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requirement of computation resources required by many emerging wireless systems

of low-power devices. To this end, we propose to integrate the well-known pick-and-

compare algorithm [11,49] with UMW for the practical setting of dynamic network.

The core idea is to perform sampling of incrementally "better" scheduling decisions

instead of always finding the optimal one, which is computationally prohibitive. Con-

sequently, we present the novel Randomized UMW (RUMW) algorithm for wireless

SDN with dynamic topology that is throughput-optimal and incurs linear complexity

for scheduling. Since the original pick-and-compare algorithm [11,49] has considered

only the static network setting, RUMW is derived by non-trivially generalizing the

algorithmic development and analysis to the setting of dynamic network.

2.5.1 Setting of Dynamic Network

To model time-variation, we consider the ON-OFF model where a link can be in one

of the two states, ON or OFF3. We denote by 𝐶𝑒[𝑡] the state of link 𝑒 ∈ 𝐸 at time

slot 𝑡:

𝐶𝑒[𝑡] =

⎧⎪⎨⎪⎩1, if 𝑒 is ON at time 𝑡

0, if 𝑒 is OFF at time 𝑡

.

For any link subset 𝐸 ′ ⊆ 𝐸, we define 𝐶𝐸′ [𝑡] = {𝐶𝑒[𝑡]}𝑒∈𝐸′ as the vector of links’ states

of 𝐸 ′. At a given time, the network can be in any configuration 𝐶𝐸[𝑡] = 𝛼, out of the

set of all possible network configurations Ξ. Each element 𝛼 ∈ Ξ corresponds to a

sub-graph 𝐺(𝑉,𝐸𝛼) ⊆ 𝐺(𝑉,𝐸), with 𝐸𝛼 ⊆ 𝐸, denoting the set of links that are ON.

The set of all admissible link activations of 𝐺(𝑉,𝐸𝛼) is denoted by ℳ𝛼 ∈ {0, 1}|𝐸|,

where 1 denotes that the link is activated and vice versa. The network-configuration

process {𝐶𝐸[𝑡]}𝑡≥0 evolves in discrete-time according to a stationary ergodic process

3We use this ON-OFF model for simplicity of presentation. Generalization to more sophisticated
models is straightforward (albeit cumbersome).
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with the stationary distribution {𝑝(𝛼)}𝛼∈Ξ, where:

∑︁
𝛼∈Ξ

𝑝(𝛼) = 1, where 𝑝(𝛼) > 0,∀𝛼 ∈ Ξ.

Definition 1 (Capacity Region). We define the set Λ̄ to be the set of all arrival vectors

𝜆 ∈ R|𝒞|
+ , for which there exists non-negative scalars {𝜆(𝑐)

𝑖 }, indexed by admissible

routes 𝑇
(𝑐)
𝑖 ∈ 𝒯 (𝑐), and ∀𝛼 ∈ Ξ there exists a convex combination of the link activation

vectors 𝜇𝛼 ∈ 𝑐𝑜𝑛𝑣(ℳ𝛼) such that,

𝜆(𝑐) =
∑︁

𝑇
(𝑐)
𝑖 ∈𝒯 (𝑐)

𝜆
(𝑐)
𝑖 , ∀𝑐 ∈ 𝒞 (2.5)

𝜆𝑒
(𝑑𝑒𝑓.)
=

∑︁
(𝑖,𝑐):𝑒∈𝑇 (𝑐)

𝑖 ,𝑇
(𝑐)
𝑖 ∈𝒯 (𝑐)

𝜆
(𝑐)
𝑖 ≤

∑︁
𝛼∈Ξ

𝑝(𝛼)𝜇𝛼
𝑒 , ∀𝑒 ∈ 𝐸 (2.6)

Theorem 1. The network-layer capacity region is characterized by the set Λ̄, up to

its boundary.

Proof. Proof of Theorem consists of converse and achievability. The proof of achiev-

ability follows from the construction of the policy with linear complexity scheduling

in Section 2.5.2 that achieves any arrival rate in the interior of the set Λ̄. For the

converse, consider any admissible arrival rate vector 𝜆 supported by some policy 𝜋.

WLOG, we may assume the policy 𝜋 to be stationary and the associated DTMC to

be ergodic. Let 𝐴
(𝑐)
𝑖 (𝑡) and 𝐴(𝑐)(𝑡) be respectively the total number of packets from

class 𝑐 up to time 𝑡 that have finished their routing along the route 𝑇
(𝑐)
𝑖 and have

arrived at the source 𝑠(𝑐). We first note that the number of serviced packets of class 𝑐

is upperbounded by the total arrival of that class, i.e.

𝐴(𝑐)(𝑡) ≥
∑︁

𝑇
(𝑐)
𝑖 ∈𝒯 (𝑐)

𝐴
(𝑐)
𝑖 (𝑡) = 𝑅(𝑐)(𝑡). (2.7)
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Dividing both sides of (3.35) by 𝑡 and taking the limit 𝑡→∞, we obtain that w.p.1:

𝜆(𝑐) (𝑎)
= lim

𝑡→∞

𝐴(𝑐)(𝑡)

𝑡
≥ lim

𝑡→∞

∑︀
𝑇

(𝑐)
𝑖 ∈𝒯 (𝑐) 𝐴

(𝑐)
𝑖 (𝑡)

𝑡
= lim

𝑡→∞

𝑅(𝑐)(𝑡)

𝑡

(𝑏)
= 𝜆(𝑐), (2.8)

where (a) is by SLLN, and (d) follows the definition of supportable arrival rate vector

𝜆. We thus conclude that w.p.1:

lim
𝑡→∞

∑︀
𝑇

(𝑐)
𝑖 ∈𝒯 (𝑐) 𝐴

(𝑐)
𝑖 (𝑡)

𝑡
= 𝜆(𝑐)

Since 𝜋 is stationary and the associated DTMC is ergodic, the time-average limits

lim𝑡→∞
1
𝑡
𝐴

(𝑐)
𝑖 (𝑡) exist a.s.. We consequently define:

𝜆
(𝑐)
𝑖 := lim

𝑡→∞

1

𝑡
𝐴

(𝑐)
𝑖 (𝑡). (2.9)

By (3.37), we have:

𝜆(𝑐) =
∑︁

𝑇
(𝑐)
𝑖 ∈𝒯 (𝑐)

𝜆
(𝑐)
𝑖

Now for any edge 𝑒 ∈ 𝐸, the total number of packets that have have finished their

routing along the the routes 𝑇
(𝑐)
𝑖 such that 𝑒 ∈ 𝑇

(𝑐)
𝑖 is upperbounded by the total

service of the edge 𝑒, i.e.

∑︁
(𝑖,𝑐):𝑒∈𝑇 (𝑐)

𝑖 ,𝑇
(𝑐)
𝑖 ∈𝒯 (𝑐)

𝐴
(𝑐)
𝑖 (𝑡) ≤

𝑡∑︁
𝜏=1

𝜇𝜋
𝑒 (𝜏). (2.10)

We have:

1

𝑡

𝑡∑︁
𝜏=1

𝜇𝜋
𝑒 (𝜏) =

∑︁
𝛼∈Ξ

|{𝜏 : 𝐶[𝜏 ] = 𝛼}|
𝑡

·
(︂ ∑︁

𝜏 :𝜏≤𝑡,𝐶[𝜏 ]=𝛼

1

|{𝜏 : 𝐶[𝜏 ] = 𝛼}|
𝜇𝜋
𝑒 (𝜏)

)︂

Let 𝜇𝛼
𝑒 = lim𝑡→∞

∑︀
𝜏 :𝜏≤𝑡,𝐶[𝜏 ]=𝛼

1
|{𝜏 :𝐶[𝜏 ]=𝛼}|𝜇

𝜋
𝑒 (𝜏). Since 𝜇𝜋(𝜏) ∈ℳ𝛼 for all 𝜏 : 𝐶[𝜏 ] = 𝛼

and the set 𝑐𝑜𝑛𝑣(ℳ𝛼) is closed, we conclude that 𝜇𝛼 ∈ 𝑐𝑜𝑛𝑣(ℳ𝛼). Furthermore, we
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have lim𝑡→∞
|{𝜏 :𝐶[𝜏 ]=𝛼}|

𝑡
= 𝑝(𝛼), and thus obtain that:

lim
𝑡→∞

1

𝑡

𝑡∑︁
𝜏=1

𝜇𝜋
𝑒 (𝜏) =

∑︁
𝛼∈Ξ

𝑝(𝛼)𝜇𝛼
𝑒

Dividing both sides of (2.10) by 𝑡 and taking the limit 𝑡 → ∞ and noting that the

left hand side limit exists w.p.1, we obtain that:

∑︁
(𝑖,𝑐):𝑒∈𝑇 (𝑐)

𝑖 ,𝑇
(𝑐)
𝑖 ∈𝒯 (𝑐)

𝜆
(𝑐)
𝑖 ≤

∑︁
𝛼∈Ξ

𝑝(𝛼)𝜇𝛼

2.5.2 Randomized UMW (RUMW)

Algorithm 1: Randomized UMW (RUMW) for Dynamic Network
Input: Network topology 𝐺 = (𝑉,𝐸)

1 for 𝑡 = 1, ..., 𝑇 do
2 Maintain the set of link activation vectors {𝐷𝛼

𝐸(𝑚)}𝛼∈Ξ.
3 Solve the min-cost route selection for every class 𝑐 packet:

𝑇 (𝑐)(𝑡) ∈ argmin
𝑇 (𝑐)∈𝒯 (𝑐)

(︂∑︁
𝑒∈𝐸

𝑄𝑒(𝑡)1(𝑒 ∈ 𝑇 (𝑐))

)︂

4 Observe the current global NSI 𝐶𝐸[𝑡] = 𝛼 and obtain a scheduling decision
vector 𝑅𝛼

𝐸(𝑚) ∈ℳ𝛼 uniformly at random.
5 if

∑︀
𝑒∈𝐸 𝑄𝑒(𝑚)𝑅𝛼

𝑒 (𝑚) >
∑︀

𝑒∈𝐸 𝑄𝑒(𝑚)𝐷𝛼
𝑒 (𝑚− 1) then

6 Set 𝐷𝛼
𝐸(𝑚) = 𝑅𝛼

𝐸(𝑚).
7 end
8 else
9 Set 𝐷𝛼

𝐸(𝑚) = 𝐷𝛼
𝐸(𝑚− 1).

10 end
11 Set 𝐷𝛼′

𝐸 (𝑚) = 𝐷𝛼′
𝐸 (𝑚− 1),∀𝛼′ ̸= 𝛼.

12 Activate the link schedule 𝜇(𝑡) = 𝐷𝛼
𝐸(𝑡)

13 Compute the arrivals to links: 𝐴𝑒(𝑡) =
∑︀

𝑐∈𝒞 𝐴
(𝑐)(𝑡)1(𝑒 ∈ 𝑇 (𝑐)(𝑡)),∀𝑒 ∈ 𝐸

14 Update the virtual queues: 𝑄𝑒(𝑡+ 1) =
(︀
𝑄𝑒(𝑡) + 𝐴𝑒(𝑡)− 𝜇𝑒(𝑡)

)︀+
, ∀𝑒 ∈ 𝐸

15 end

We first establish Theorem 2 that shows the strong stability of the virtual queue
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process under the RUMW policy, which is crucial for later proving the rate-stability

of the physical queues and thus the throughput-optimality.

Theorem 2. The RUMW policy (Algorithm 1) strongly stabilizes the virtual queue

process, i.e.

lim sup
𝐾→∞

1

𝐾

𝐾−1∑︁
𝑡=0

∑︁
𝑒∈𝐸

E[𝑄𝑒(𝑡)] <∞,

Proof. Consider any arrival rate vector 𝜆 ∈ 𝑖𝑛𝑡(Λ). Then there exists some scalar

𝜖 > 0 and vectors 𝜇𝛼 ∈ 𝑐𝑜𝑛𝑣(ℳ𝛼) for all 𝛼 ∈ Ξ, such that we can decompose the

total arrival for each class 𝑐 ∈ 𝒞 into a finite number of routes in the sense of (3.33),

and such that:

𝜆𝑒
(𝑑𝑒𝑓.)
=

∑︁
(𝑖,𝑐):𝑒∈𝑇 (𝑐)

𝑖 ,𝑇
(𝑐)
𝑖 ∈𝒯 (𝑐)

𝜆
(𝑐)
𝑖 ≤

∑︁
𝛼∈Ξ

𝑝(𝛼)𝜇𝛼
𝑒 − 𝜖, ∀𝑒 ∈ 𝐸 (2.11)

From the proof of Theorem 8, there exists some randomized policy RAND such that

E[𝐴𝑅𝐴𝑁𝐷
𝑒 (𝑡)] = 𝜆𝑒 and E[𝜇𝑅𝐴𝑁𝐷

𝑒 (𝑡)
⃒⃒
𝐶𝐸[𝑡− 𝜏 ] = 𝛼] = 𝜇𝛼

𝑒 .

Consider the quadratic Lyapunov function in terms of the virtual queue lengths:

𝐿(𝑄(𝑚)) = 𝑄(𝑚)𝑇𝑄(𝑚) =
∑︁
𝑒∈𝐸

𝑄𝑒(𝑚)2.

From the queue evolution

𝑄𝑒(𝑚+ 1) = (𝑄𝑒(𝑚) + 𝐴𝑒(𝑚)− 𝜇𝑒(𝑚))+,

we obtain that:

𝐿(Q(𝑚+ 1))− 𝐿(Q(𝑚)) ≤ 𝐵 + 2Q(𝑚)𝑇A(𝑚)− 2Q(𝑚)𝑇𝜇(𝑚)
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where 𝐵 is a constant bounded by 𝐴2
𝑚𝑎𝑥 + |𝐸|. For some fixed 𝑇 , telescoping gives:

𝐿(Q(𝑚+ 𝑇 ))− 𝐿(Q(𝑚)) ≤ 𝐵𝑇 + 2
𝑇−1∑︁
𝑘=0

Q(𝑚+ 𝑘)𝑇A(𝑚+ 𝑘)− 2
𝑇−1∑︁
𝑘=0

Q(𝑚+ 𝑘)𝑇𝜇(𝑚+ 𝑘)

Given some fixed 𝑇 to be decided later, we define 𝑚𝑗 = 𝑗 · 𝑇 and consider the 𝑇 -step

Lyapunov drift of 𝐿(.) conditioned on the virtual queue lengths as follows:

Δ(𝑚𝑗) = E
[︀
𝐿(Q(𝑚𝑗+1))− 𝐿(Q(𝑚𝑗))

⃒⃒
Q(𝑚𝑗)

]︀
≤ 𝐵𝑇 + 2E

[︀ 𝑇−1∑︁
𝑘=0

Q(𝑚𝑗 + 𝑘)𝑇A(𝑚+ 𝑘)
⃒⃒
Q(𝑚𝑗)

]︀
− 2E

[︀ 𝑇−1∑︁
𝑘=0

Q(𝑚𝑗 + 𝑘)𝑇𝜇(𝑚𝑗 + 𝑘)
⃒⃒
Q(𝑚𝑗)

]︀
(2.12)

Now, at any time slot 𝑚, we define 𝐷*𝛼
𝐸 (𝑚) = argmax𝜇∈ℳ𝛼

∑︀
𝑒∈𝐸 𝑄𝑒(𝑚)𝜇𝑒, i.e.

𝐷*𝛼
𝐸 (𝑚) is the optimal link schedule at time slot 𝑚 if the global NSI is 𝐶𝐸[𝑚] = 𝛼.

From lines 4, 5 and 6 of Algorithm 1, we obtain that ∀𝑡 > 0:

𝑃 (𝑅𝛼(𝑡) = 𝐷*𝛼
𝐸 (𝑡)|𝐶𝐸[𝑡] = 𝛼) ≥ 1/|Ξ| ≥ 2−|𝐸| (2.13)∑︁

𝑒∈𝐸

𝑄𝑒(𝑡)𝐷
𝛼
𝑒 (𝑡) ≥

∑︁
𝑒∈𝐸

𝑄𝑒(𝑡)𝐷
𝛼
𝑒 (𝑡− 1) (2.14)

Now, we define ∀𝛼 ∈ Ξ:

𝑍𝛼 = inf
𝑘≥0
{𝑘 : 𝐶𝐸[𝑚𝑗 + 𝑘] = 𝛼 and 𝑅𝛼(𝑚𝑗 + 𝑘) = 𝐷*𝛼

𝐸 (𝑚𝑗 + 𝑘)} (2.15)

Consider any 𝑘 ∈ [0, 𝑇 − 1] and assume that 𝐶𝐸[𝑚𝑗 + 𝑘] = 𝛼 for some 𝛼 ∈ Ξ. If
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𝑍𝛼 ≤ 𝑘 ≤ 𝑇 − 1, by (2.14) we have:

∑︁
𝑒∈𝐸

𝑄𝑒(𝑚𝑗 + 𝑘)𝐷𝛼
𝑒 (𝑚𝑗 + 𝑘) ≥

∑︁
𝑒∈𝐸

𝑄𝑒(𝑚𝑗 + 𝑘)𝐷𝛼
𝑒 (𝑚𝑗 + 𝑘 − 1)

≥
∑︁
𝑒∈𝐸

𝑄𝑒(𝑚𝑗 + 𝑘 − 1)𝐷𝛼
𝑒 (𝑚𝑗 + 𝑘 − 1)− ‖Q(𝑚𝑗 + 𝑘)−Q(𝑚𝑗 + 𝑘 − 1)‖1

≥
∑︁
𝑒∈𝐸

𝑄𝑒(𝑚𝑗 + 𝑘 − 1)𝐷𝛼
𝑒 (𝑚𝑗 + 𝑘 − 1)− |𝐸|(𝐴𝑚𝑎𝑥 + 1).

Repeating the above inequality, we obtain:

∑︁
𝑒∈𝐸

𝑄𝑒(𝑚𝑗 + 𝑘)𝐷𝛼
𝑒 (𝑚𝑗 + 𝑘) ≥

∑︁
𝑒∈𝐸

𝑄𝑒(𝑚𝑗 + 𝑍𝛼)𝐷
𝛼
𝑒 (𝑚𝑗 + 𝑍𝛼)− (𝑘 − 𝑍𝛼)|𝐸|(𝐴𝑚𝑎𝑥 + 1)

≥
∑︁
𝑒∈𝐸

𝑄𝑒(𝑚𝑗 + 𝑍𝛼)𝐷
𝛼
𝑒 (𝑚𝑗 + 𝑍𝛼)− 𝑇 |𝐸|(𝐴𝑚𝑎𝑥 + 1)

∴
∑︁
𝑒∈𝐸

𝑄𝑒(𝑚𝑗 + 𝑘)𝜇RUMW
𝑒 (𝑚𝑗 + 𝑘) ≥

∑︁
𝑒∈𝐸

𝑄𝑒(𝑚𝑗 + 𝑍𝛼)𝐷
𝛼
𝑒 (𝑚𝑗 + 𝑍𝛼)− 𝑇 |𝐸|(𝐴𝑚𝑎𝑥 + 1)

(2.16)

Recall that (2.16) holds for 𝑘 ∈ [𝑍𝛼, 𝑇 − 1] and is conditioned on 𝐶𝐸[𝑚𝑗 + 𝑘] = 𝛼. We

thus obtain:

E
[︀ 𝑇−1∑︁
𝑘=0

Q(𝑚𝑗 + 𝑘)𝑇𝜇RUMW(𝑚𝑗 + 𝑘)
⃒⃒
{Q(𝑚𝑗 + 𝑘)}𝑇−1

𝑘=0 , {𝐶𝐸[𝑚𝑗 + 𝑘]}𝑇−1
𝑘=0

]︀
=E
[︂∑︁

𝛼∈Ξ

[︀ ∑︁
𝑘:𝐶𝐸 [𝑚𝑗+𝑘]=𝛼

Q(𝑚𝑗 + 𝑘)𝑇𝜇RUMW(𝑚𝑗 + 𝑘)
⃒⃒
{Q(𝑚𝑗 + 𝑘)}𝑇−1

𝑘=0 , {𝐶𝐸[𝑚𝑗 + 𝑘]}𝑇−1
𝑘=0

]︀
(2.16)
≥ E

[︂∑︁
𝛼∈Ξ

[︀
− 𝑇 |𝐸|(𝐴𝑚𝑎𝑥 + 1) +Q(𝑚𝑗 + 𝑍𝛼)

𝑇𝜇RUMW(𝑚𝑗 + 𝑍𝛼)
]︀

×𝑁(𝛼)
⃒⃒
{Q(𝑚𝑗 + 𝑘)}𝑇−1

𝑘=0 , {𝐶𝐸[𝑚𝑗 + 𝑘]}𝑇−1
𝑘=0

]︂
, (2.17)

where 𝑁(𝛼) = "number of 𝑘’s such that 𝐶𝐸[𝑚𝑗 + 𝑘] = 𝛼 and 𝑘 ∈ [𝑍𝛼, 𝑇 −

1]". By definition of 𝑍𝛼, we know that 𝜇RUMW(𝑚𝑗 + 𝑍𝛼) = 𝐷*𝛼
𝐸 (𝑚𝑗 + 𝑍𝛼) =
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argmax𝜇∈ℳ𝛼

∑︀
𝑒∈𝐸 𝑄𝑒(𝑚+ 𝑍𝛼)𝜇𝑒. We thus bound (2.17) as follows:

E
[︀ 𝑇−1∑︁
𝑘=0

Q(𝑚𝑗 + 𝑘)𝑇𝜇RUMW(𝑚𝑗 + 𝑘)
⃒⃒
{Q(𝑚𝑗 + 𝑘)}𝑇−1

𝑘=0 , {𝐶𝐸[𝑚𝑗 + 𝑘]}𝑇−1
𝑘=0

]︀
≥E
[︂∑︁

𝛼∈Ξ

[︀
− 𝑇 |𝐸|(𝐴𝑚𝑎𝑥 + 1) +Q(𝑚𝑗 + 𝑍𝛼)

𝑇𝜇𝛼
]︀
𝑁(𝛼)

⃒⃒
{Q(𝑚𝑗 + 𝑘)}𝑇−1

𝑘=0 , {𝐶𝐸[𝑚𝑗 + 𝑘]}𝑇−1
𝑘=0

]︂
≥E
[︂∑︁

𝛼∈Ξ

[︀
− 𝑇 |𝐸|(𝐴𝑚𝑎𝑥 + 1)− 𝑍𝛼|𝐸|+Q(𝑚𝑗)

𝑇𝜇𝛼
]︀
𝑁(𝛼)

⃒⃒
{Q(𝑚𝑗 + 𝑘)}𝑇−1

𝑘=0 , {𝐶𝐸[𝑚𝑗 + 𝑘]}𝑇−1
𝑘=0

]︂
≥E
[︂∑︁

𝛼∈Ξ

[︀
− 𝑇 |𝐸|(𝐴𝑚𝑎𝑥 + 2) +Q(𝑚𝑗)

𝑇𝜇𝛼
]︀
𝑁(𝛼)

⃒⃒
{Q(𝑚𝑗 + 𝑘)}𝑇−1

𝑘=0 , {𝐶𝐸[𝑚𝑗 + 𝑘]}𝑇−1
𝑘=0

]︂

Now, taking iterated expectation of the above, we obtain:

E
[︀ 𝑇−1∑︁
𝑘=0

Q(𝑚𝑗 + 𝑘)𝑇𝜇RUMW(𝑚𝑗 + 𝑘)
⃒⃒
Q[𝑚𝑗]

]︀
≥
∑︁
𝛼∈Ξ

[︀
− 𝑇 |𝐸|(𝐴𝑚𝑎𝑥 + 2) +Q(𝑚𝑗)

𝑇𝜇𝛼
]︀
E[𝑁(𝛼)].

(2.18)

The next Lemma establishes the evaluation of E[𝑁(𝛼)].

Lemma 1. We have ∀𝛼 ∈ Ξ:

E[𝑁(𝛼)] ≥ 𝑝(𝛼)𝑇 − 2|𝐸| + 𝑜(𝑇 ). (2.19)

Proof. We first equivalently characterize 𝑁(𝛼) from its definition as follows:

𝑁(𝛼) =
𝑇−1∑︁
𝑘=0

1(𝐶𝐸[𝑚𝑗 + 𝑘] = 𝛼)−
𝑍𝛼−1∑︁
𝑘=0

1(𝐶𝐸[𝑚𝑗 + 𝑘] = 𝛼) (2.20)

Since both 𝑇 − 1 and 𝑍𝛼 − 1 are stopping times, the generalized Wald’s identity for

finite state Markov process [32] gives:

E[
𝑇−1∑︁
𝑘=0

1(𝐶𝐸[𝑚𝑗 + 𝑘] = 𝛼)] = 𝑝(𝛼)𝑇 + 𝑜(𝑇 )

E[
𝑍𝛼−1∑︁
𝑘=0

1(𝐶𝐸[𝑚𝑗 + 𝑘] = 𝛼)] = 𝑝(𝛼)E[𝑍𝛼] + 𝑜(𝑍𝛼).

44



Taking the expectation of (2.20) in view of the above identities, we obtain that:

E[𝑁(𝛼)] ≥ 𝑝(𝛼)𝑇 − 𝑝(𝛼)E[𝑍𝛼] + 𝑜(𝑇 ). (2.21)

Furthermore, from (2.13) we have:

𝑃 (𝐶𝐸[𝑚𝑗 + 𝑘] = 𝛼,𝑅𝛼(𝑚𝑗 + 𝑘) = 𝐷*𝛼
𝐸 (𝑚𝑗 + 𝑘))

=𝑃 (𝑅𝛼(𝑚𝑗 + 𝑘) = 𝐷*𝛼
𝐸 (𝑚𝑗 + 𝑘)

⃒⃒
𝐶𝐸[𝑚𝑗 + 𝑘] = 𝛼)𝑃 (𝐶𝐸[𝑚𝑗 + 𝑘] = 𝛼)

≥2−|𝐸|𝑝(𝛼).

The above bound and (2.15) imply that:

E[𝑍𝛼] ≤ 1/(2−|𝐸|𝑝(𝛼)) = 2|𝐸|𝑝(𝛼)−1.

Applying the above inequality to (2.21), we conclude the proof of the Lemma.

Back to the main proof, using Lemma 1, we can bound (2.18) as:

E
[︀ 𝑇−1∑︁
𝑘=0

Q(𝑚𝑗 + 𝑘)𝑇𝜇RUMW(𝑚𝑗 + 𝑘)
⃒⃒
Q[𝑚𝑗]

]︀
≥
∑︁
𝛼∈Ξ

[︀
− 𝑇 |𝐸|(𝐴𝑚𝑎𝑥 + 2) +Q(𝑚𝑗)

𝑇𝜇𝛼
]︀(︀
𝑝(𝛼)𝑇 − 2|𝐸| + 𝑜(𝑇 )

)︀
≥− 𝑇 |𝐸|(𝐴𝑚𝑎𝑥 + 2)(𝑇 + 2|𝐸|𝑜(𝑇 )) + 𝑇Q(𝑚𝑗)

𝑇
∑︁
𝛼∈Ξ

𝑝(𝛼)𝜇𝛼
(︀
1− 2|𝐸|𝑝(𝛼)−1𝑇−1 + 𝑜(1)𝑝(𝛼)−1

)︀
(2.22)

Since lim𝑇→∞
(︀
2|𝐸|𝑝(𝛼)−1𝑇−1 + 𝑜(1)𝑝(𝛼)−1

)︀
= 0, by taking 𝑇 large enough in (2.22),

we obtain that:

E
[︀ 𝑇−1∑︁
𝑘=0

Q(𝑚𝑗 + 𝑘)𝑇𝜇RUMW(𝑚𝑗 + 𝑘)
⃒⃒
Q[𝑚𝑗]

]︀
≥− 𝑇 |𝐸|(𝐴𝑚𝑎𝑥 + 2)(𝑇 + 2|𝐸|𝑜(𝑇 )) + 𝑇Q(𝑚𝑗)

𝑇
[︀∑︁
𝛼∈Ξ

𝑝(𝛼)𝜇𝛼 − 𝜖1
]︀

(2.23)
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Since we perform UMW min-cost routing (line 3 of Algorithm 1), we have:

E
[︀ 𝑇−1∑︁
𝑘=0

Q(𝑚𝑗 + 𝑘)𝑇A(𝑚𝑗 + 𝑘)
⃒⃒
Q(𝑚𝑗)

]︀
≤ E

[︀ 𝑇−1∑︁
𝑘=0

Q(𝑚𝑗 + 𝑘)𝑇𝜆
⃒⃒
Q(𝑚𝑗)

]︀
≤ 𝐵1𝑇

2 +
𝑇−1∑︁
𝑘=0

Q(𝑚)𝑇𝜆 = 𝐵1𝑇
2 + 𝑇 ·Q(𝑚)𝑇𝜆

(2.11)
≤ 𝐵1𝑇

2 + 𝑇Q(𝑚)𝑇 (
∑︁
𝛼∈Ξ

𝑝(𝛼)𝜇𝛼 − 𝜖),

(2.24)

where 𝐵1 = 𝐴𝑚𝑎𝑥 + |𝐸|. Now plugging (2.23) and (2.24) into (2.12), we obtain:

Δ(𝑚𝑗) ≤ 𝐵𝑇 +𝐵1𝑇
2 + 𝑇 |𝐸|(𝐴𝑚𝑎𝑥 + 2)(𝑇 + 2|𝐸|𝑜(𝑇 ))− 𝜖𝑇‖Q(𝑚𝑗)‖1.

By Foster’s criteria, the virtual queue process are strongly stable.

Finally, the strong stability of the virtual queue process under RUMW policy is

sufficient to establish the throughput-optimality.

Theorem 3. RUMW is throughput-optimal.

Proof. The reasoning exactly follows the proof of [46, Theorem 4], whereby RUMW

only differs from UMW in the proof of virtual queue process’ strong stability as in

Theorem 2 above.

2.6 Chapter Summary

In this chapter, we present the first unified framework, based on the throughput-

optimal UMW policy, for optimal network control in wireless SDN. Our framework

satisfies the stringent requirements of the SDN architecture, which had hindered the

adoption of traditional optimal control schemes such as BP, and can be flexibly applied

to any SDN variant. The UMW algorithm can be further augmented to route around

failed links in highly dynamic wireless networks. Extensive experiments on a real SDN

system based on Mininet backbone illustrate UMW’s superior performance compared
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to conventional SP routing in terms of throughput, delay and robustness. Finally, we

propose a linear complexity scheduling algorithm for dynamic network setting that

is suitable for emerging wireless systems of low-power devices. This work can open

up directions that adapt the UMW framework to ad-hoc SDN systems with highly

dynamic environments [10], or stringent requirements in throughput and delay [22].
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Chapter 3

Optimal Control for Distributed

Wireless SDN

3.1 Distributed Wireless SDN Architecture

We recall the standard SDN architecture in Figure 3-1, which exemplifies the simplified

setting of single domain. In particular, the control plane is decoupled from the data

plane, which is in contrast to the traditional network architecture where control logic

is embedded in the forwarding hardware.

CONTROL PLANE

DATA PLANE

packet-in packet-out

1

2
2 2 2

3 3

3

4

: flow request
: return instructions on flow 

installation (grey route) and link 
activation (solid links) 

: Nodes on the computed route 
install the flow

: activate the link schedule: solid 
links are ON; dotted links are OFF

1
2

4

3

4

3

Figure 3-1: Basic SDN architecture and packet life cycle

Distributed wireless SDN has emerged to mitigate the scalability and reliability

bottlenecks of standard SDN, and adapt to the modern wireless infrastructure. In

49



C1
C2

C3

packet-out

1b. If there is no routing 
instruction, flow request 
is sent to controller

1a. Packet enters 
new domain 

1c. Controller installs routing 
tables on switches

2. Frist switch adds/updates 
MPLS header and forwards 
packet 

4. Packet 
exits domain

packet-in

3. Subsequent switches forward 
according to MPLS label without 
controller input 

Controllers periodically synchronize for exchanging 
information and reaching consensus

Control plan traffic:
: controller- switch traffic
: inter-controller traffic

Data plane traffic:
: packet route

Figure 3-2: Distributed wireless SDN architecture and workflow

this setting, the underlying network topology is decomposed into inter-connected

domains, each of which is an independent sub-network and managed by a separate

SDN controller. The high-level architecture is depicted in Figure 3-2, which generalizes

the basic wireless SDN with the following distinctive features:

Wireless inter-controller communication: The controllers, each of which

manages only a sub-network domain, must communicate to exchange their local

network information. The inter-controller network is separate from the underlying

network infrastructure and is constrained by the operational wireless characteristics:

i) the controllers may not have a centralized entity for facilitating coordination, and

ii) the inter-controller topology may not be known to the controllers.

Controller synchronization: Unlike that in basic SDN, a controller in dis-

tributed wireless SDN only has instantaneous view of its local domain’s NSI and

statistics. Under the eventual consistency model [51], all the controllers periodically

synchronize to maintain the global view of the delayed NSI and statistics. Additionally,

the synchronization must be designed to accommodate the wireless inter-controller

communication.

Inter-domain routing: Whenever a packet enters a new domain, the domain

controller is triggered for flow installation if no routing instructions are available, and

augments the packet with a MPLS header, which can either be new if the packet joins
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the network for the first time, or replace the preceding domain’s MPLS header. This

process of packet traversal within a domain is summarized in steps 1, 2 and 3 in Figure

3-2. The partial control capability, whereby a controller can only route packets within

its domain, makes inter-domain routing especially challenging and inter-dependent

with the controller synchronization problem. In Figure 3-2 for example, even though

the blue controller (C1) receiving the new packet can compute the optimal path,

colored in grey, it must rely on the other controllers (red (C2) and green (C3)) to

install the flow in the other domains; however, the blue controller can only reach

consensus with other controllers via periodic synchronization.

Inter-domain wireless scheduling: Under the eventual consistency model,

since a controller cannot observe the fresh state of certain inter-domain links, i.e.

links with end nodes belonging to two different domains, which can interfere with its

domain’s internal links yet are managed by other controllers, interference is inevitable.

It is thus important to design scheduling policies that minimize such interference,

thereby maximizing the overall network throughput.

3.2 Preliminaries and Problem Formulation

3.2.1 System Model

Network Infrastructure

The data plane is a multi-hop wireless network with arbitrary topology represented

by the directed graph 𝐺 = (𝑉,𝐸), where 𝑉 is the set of nodes, i.e. SDN switches, and

𝐸 is the set of directed point-to-point links. For simplicity, we assume each link has

capacity 1. The network operation time is slotted; when there is no confusion, we

refer to it as time slot. At any time slot, only certain subsets of links can be activated,

according to the wireless interference constraint of the network. An incoming packet

belongs to some class 𝑐 ∈ 𝒞 traffic, which is identified by its source node 𝑠(𝑐) ∈ 𝑉 ,

the set of its required destination nodes 𝒟(𝑐) ⊆ 𝑉 and the set 𝒯 (𝑐) of all admissible
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routes from 𝑠(𝑐) to 𝒟(𝑐)1. An admissible route 𝑇 (𝑐) ∈ 𝒯 (𝑐) is a tree rooted at the source

node 𝑠(𝑐) with the set of leaves formed by 𝒟(𝑐). We define the set of distinct classes of

incoming traffic as 𝒞. Packet arrivals are i.i.d. at every slot. At time slot 𝑡, 𝐴(𝑐)(𝑡)

packets from class 𝑐 arrive at source node 𝑠(𝑐). The mean rate of arrival for class 𝑐 is

E[𝐴(𝑐)(𝑡)] = 𝜆(𝑐). The total number of external packet arrivals to the entire network

at any slot 𝑡 is assumed to be bounded by a finite number 𝐴𝑚𝑎𝑥.

To model time-variation, we consider the ON-OFF model where a link can be in

one of the two states, ON or OFF2. We denote by 𝐶𝑒[𝑡] the state of link 𝑒 ∈ 𝐸 at time

slot 𝑡:

𝐶𝑒[𝑡] =

⎧⎪⎨⎪⎩1, if 𝑒 is ON at time 𝑡

0, if 𝑒 is OFF at time 𝑡

.

For any link subset 𝐸 ′ ⊆ 𝐸, we define 𝐶𝐸′ [𝑡] = {𝐶𝑒[𝑡]}𝑒∈𝐸′ as the vector of links’ states

of 𝐸 ′. At a given time, the network can be in any configuration 𝐶𝐸[𝑡] = 𝛼 ∈ {0, 1}|𝐸|.

Each element 𝛼 corresponds to a sub-graph 𝒢(𝑉,𝐸𝛼) ⊆ 𝒢(𝑉,𝐸), with 𝐸𝛼 ⊆ 𝐸,

denoting the set of links that are ON. The network-configuration process {𝐶𝐸[𝑡]}𝑡≥0

evolves in discrete-time according to a stationary ergodic process with the stationary

distribution {𝑝(𝛼)}𝛼∈∈{0,1}|𝐸| , where
∑︀

𝛼∈∈{0,1}|𝐸| 𝑝(𝛼) = 1.

In the distributed wireless SDN setting, 𝑚 controllers 𝐷1, 𝐷2, ..., and 𝐷𝑚 collec-

tively manage the entire network infrastructure. We interchangeably refer to 𝐷𝑖 as

the 𝑖𝑡ℎ domain. The underlying network topology 𝐺 = (𝑉,𝐸) is decomposed into

independent and inter-connected domains 𝐺 = ∪𝑚𝑖=1𝐺𝑖 with 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖), whereby

the sub-graph 𝐺𝑖 is associated with the controller 𝐷𝑖. The decomposition must satisfy

𝐸𝑖 = {𝑒 = (𝑢, 𝑣)
⃒⃒
𝑢 ∈ 𝑉𝑖}, so that any node 𝑢 ∈ 𝑉𝑖 within the domain of 𝐷𝑖 can

transmit over links out-going from it. The controllers synchronize every 𝜏 time slots,

where 𝜏𝑗 = 𝑗𝜏 is the 𝑗𝑡ℎ synchronization point. For analytical simplicity, we assume

that the global NSI changes at every synchronization point 𝜏𝑗 and remains the same

1This captures unicast, multicast or broadcast traffic. In the case of unicast, 𝐷(𝑐) corresponds to
a single node.

2We use this ON-OFF model for simplicity of presentation. Generalization to more sophisticated
models is straightforward (albeit cumbersome).
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until the next synchronization point, i.e.

𝐶𝐸[𝜏𝑗] = 𝐶𝐸[𝜏𝑗 + 1] = ... = 𝐶𝐸[𝜏𝑗+1 − 1]. (3.1)

We assume that the network state is random and can be described as a finite-state

Markov chain, i.e.

𝑃 (𝐶𝑒[𝜏𝑗]
⃒⃒
𝐶𝑒[𝜏𝑗−1], ..., 𝐶𝑒[𝜏0]) = 𝑃 (𝐶𝑒[𝜏𝑗]

⃒⃒
𝐶𝑒[𝜏𝑗−1]). (3.2)

Furthermore, at time 𝜏𝑗 , any controller 𝐷𝑖 gets access to the instantaneous view of its

domain’s NSI 𝐶𝐸𝑖
[𝜏𝑗 ] and delayed view of the global NSI 𝐶𝐸[𝜏𝑗−1], which precedes the

current time by 𝜏 time slots and is the result of the closest controller synchronization

point at time 𝜏𝑗−1. By (3.1) and (3.2), at any time 𝑡, the controller 𝐷𝑖 always has the

fresh local NSI 𝐶𝐸𝑖
[𝑡] and delayed global NSI 𝐶𝐸[𝑡− 𝜏 ], the dynamics of which can be

characterized by the Markov probability 𝑃 (𝐶𝐸[𝑡)]
⃒⃒
𝐶𝐸[𝑡− 𝜏 ]).

For the data plane network, we assume a general collision model for wireless inter-

switch interference. If two links interfere with each other, simultaneous transmissions

over the two links will lead to a collision and no packet will get through. Denote by 𝐼𝑒

the set of links that interfere with link 𝑒 ∈ 𝐸 and by 𝐷𝑒(𝑡) the decision of whether to

activate link 𝑒 ∈ 𝐸 at time slot 𝑡:

𝐷𝑒(𝑡) =

⎧⎪⎨⎪⎩1, if 𝑒 is activated at time 𝑡

0, if 𝑒 is not activated at time 𝑡

.

For any link subset 𝐸 ′ ⊆ 𝐸, we define 𝐷𝐸′(𝑡) = {𝐷𝑒(𝑡)}𝑒∈𝐸′ as the link activation

vector of 𝐸 ′. Link 𝑒 successfully transmits a packet at time 𝑡 if the following conditions

hold:

• Link 𝑒 is ON (i.e. 𝐶𝑒[𝑡] = 1) and activated (i.e. 𝐷𝑒(𝑡) = 1) at the same time.

This is equivalent to 𝐶𝑒[𝑡] ·𝐷𝑒(𝑡) = 1.

• No interfering links initiate packet transmission, i.e. 𝐶𝑒′ [𝑡] ·𝐷𝑒′(𝑡) = 0,∀𝑒′ ∈ 𝐼𝑒.
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The effective service rate of edge 𝑒 is thus characterized by:

𝜇𝑒(𝑡) = 𝐶𝑒[𝑡] ·𝐷𝑒(𝑡)
∏︁
𝑒′∈𝐼𝑒

(1− 𝐶𝑒′ [𝑡] ·𝐷𝑒′(𝑡)), (3.3)

where 𝜇𝑒(𝑡) = 1 indicates that link 𝑒 successfully transmits a packet at time slot 𝑡

and vice versa. We also assume that the effective service rate is known to the local

controller at the end of time slot 𝑡. From the system perspective, this can be attained

by simply having the nodes actively listen to the channel feedback and then send an

acknowledgement to the controllers upon successful packet transmission. In the case

that the link is successfully activated for transmission, i.e. 𝜇𝑒(𝑡) = 1, yet there is no

packet backlogged, the sending node can transmit a dummy packet, which will be

discarded right upon its reception, to signal the channel for feedback.

As discussed in Section 2.1, a complete algorithm for distributed wireless SDN

must also accommodate:

• SDN routing requirement: Traditional wireless network routing schemes, in-

cluding the throughput optimal Back Pressure (BP) policy, admit hop-by-hop

routing decisions that are made along the way of packets’ traversal. However,

the SDN’s workflow requires the route per packet to be established immediately

upon the packet’s arrival at the domain and fixed afterward throughout the

packet’s intra-domain traversal until exiting the domain.

• Limited control of physical queues: Prevalent optimal control schemes such as

BP heavily rely on the physical queues of backlogged packets. While operations

on physical queues are well supported by traditional networks, SDN’s switches

lack logical capability for managing the physical queues or distilling the statistics

therein.

• Communication-efficient wireless controller synchronization: the time allowed

for synchronization is bounded by the synchronization period 𝜏 .

• Inter-domain routing: the controllers must also reach consensus for flow installa-

tions via periodic synchronization.
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We refer to the above challenges as the SDN system idiosyncrasies, which are inter-

dependent and additional to the traditional network problem.

Inter-Controller Network

The inter-controller network is separated from the underlying network infrastructure

and denoted by 𝐺𝑐 = (𝑉𝑐, 𝐸𝑐), where 𝑉𝑐 is the set of controllers and 𝐸𝑐 is the set of

bi-directional controller-to-controller links. Let 𝑁(𝐷𝑖) be the set of neighbours of

controller 𝐷𝑖. We characterize 𝐺𝑐 by an |𝑉𝑐|× |𝑉𝑐| graph matrix 𝑃 such that 𝑃𝑖𝑗 > 0 if

(𝐷𝑖, 𝐷𝑗) ∈ 𝐸𝑐 and 𝑃𝑖𝑗 = 0 otherwise. For technical reason, we assume 𝑃 is stochastic

and has the largest eigenvalue equal 1, while the remaining 𝑛− 1 eigenvalues are less

than 1. Such 𝑃 always exists, if 𝐺𝑐 is connected and nonbipartite. We assume the

inter-controller communication to be synchronous and, for generality, operate on the

time-scale independent of that of the inter-switch network; the time is divided into

frames and, for clarity, we always refer to it as inter-controller time frame, which also

corresponds to a round of communication. At any inter-controller time frame, each

controller is allowed to communicate with only its neighbours. Toward completing

certain inter-controller task (e.g. controller synchronization), we characterize the

communication complexity by the number of rounds, i.e. inter-controller time frames,

and the total number of messages sent over all links during the entire execution time.

We assume the multi-port model, whereby each controller can send to or receive from all

of its neighbours simultaneously in one inter-controller time frame. The communication

complexity analyzed for this model can be translated via sequentialization to the

one-port model, where each controller can communicate with at most one controller

within a round, with just a multiplicative factor of 𝑑*- maximum node degree of 𝐺𝑐.

3.2.2 Policy Space and Problem Statement

For any decision variable3, we add the superscript 𝜋 to acknowledge that it is under

the action of the policy 𝜋. An admissible policy 𝜋, which is mutually deployed by the

3These variables include 𝐷𝑒(𝑡), 𝜇𝑒(𝑡) and 𝐴𝑒(𝑡), which will be presented later in Section 3.3.2, for
any 𝑒 ∈ 𝐸.
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𝑚 controllers, executes the following actions at every time slot 𝑡:

• Route Computation: Controller 𝐷𝑖 computes the route 𝑇 (𝑐)(𝑡) ∈ 𝒯 (𝑐) for

any new packet in class 𝑐 ∈ 𝒞 that arrives at its domain. All packets in class 𝑐

arriving at the network in the current time slot are then prescribed such route

𝑇 (𝑐)(𝑡) throughout their deployment in the network4.

• Scheduling: Based on 𝐶𝐸𝑖
[𝑡] and 𝐶𝐸[𝑡− 𝜏 ], the controller 𝐷𝑖 independently

of other controllers activates the link activation vector 𝐷𝜋
𝐸𝑖
(𝑡).

• Packet Transmission: Switches transmit packets over the activated links

𝑒 ∈ 𝐸𝑖 if 𝐷𝜋
𝑒 (𝑡) = 1.

We denote by Π the set of all admissible policies under the distributed wireless SDN

setting. The set Π includes policies which can use all past and future packet arrival

information. Let 𝑅(𝑐)(𝑡) be the number of distinct packets of class 𝑐 ∈ 𝒞 that have

reached all of the destination nodes 𝑖 ∈ 𝒟(𝑐) by time 𝑡. We say that an arrival rate

vector 𝜆 = {𝜆(𝑐)}𝑐∈𝒞 is supported by policy 𝜋 if under the action of 𝜋 and for any

𝑐 ∈ 𝒞, the destination nodes commonly receive the distinct packets of class 𝑐 at the

rate of 𝜆(𝑐).

Definition 2. An arrival rate vector 𝜆 = {𝜆(𝑐)}𝑐∈𝒞 is supported by policy 𝜋 if under

the policy 𝜋:

lim inf
𝑡→∞

𝑅(𝑐)(𝑡)

𝑡
= 𝜆(𝑐), ∀𝑐 ∈ 𝒞, 𝑤.𝑝.1 (3.4)

Finally, we define the network-layer throughput region Λ to be the set of all

supportable arrival rate vectors, i.e.

Λ = {𝜆 ∈ R|𝒞|
+ : ∃𝜋 ∈ Π that supports 𝜆} (3.5)

4This specification on routing policy is meant to accommodate the SDN routing requirement as
described in the previous Section.
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Definition 3 (Throughput-optimality). A policy 𝜋 ∈ Π is throughput-optimal if it

supports any arrival rate vector 𝜆 ∈ 𝑖𝑛𝑡(Λ), i.e. in the interior of the throughput

region.

In this work, we aim to develop a control scheme for the distributed wireless

SDN that is throughput-optimal, and simultaneously satisfies all the SDN system

idiosyncrasies.

3.3 Optimal Network Control for Distributed Wire-

less SDN

In this section, we present a unified optimal network control framework for distributed

wireless SDN, termed Distributed Universal Max-Weight (DUMW), and establish its

throughput-optimality. The algorithmic development is based on the design of a novel

network control policy for the model of interest, and its adaptation to the SDN system

idiosyncrasies. To this end, our proposed network control framework DUMW non-

trivially extends UMW to support distributed control under the considered dynamic

network setting, i.e. inter-domain routing and link scheduling under heterogeneously

delayed NSI, while accommodating the wireless controller synchronization. All the

proofs in this Section are omitted due to space limitation.

3.3.1 Centralized Universal Max-Weight (UMW)

We first review the Universal Max-Weight (UMW) policy [46] which was shown to

be throughput-optimal under a mix of unicast, multicast and broadcast traffic. In

particular, UMW permits algorithmic structure directly congruent with SDN routing

requirement and leverages easy-to-track virtual queues in place of physical queues.

However, while having the potential for being the solution for SDN network control,

the UMW policy in its original form is centralized in nature, which is incompatible

with inter-domain operations and is not designed to deal with sophisticated dynamic

networks.
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Setting and Virtual Queue Process of UMW

The original setting of [46] assumes the centralized view of the global NSI which

changes every time slot according to some prescribed Markov chain; this is captured by

our generalized model (in Section 3.2.1) for the specific case of 𝑚 = 1 domain controller

and step size of 𝜏 = 1. Under this setting, UMW utilizes the virtual queue process

Q(𝑡) = {𝑄𝑒(𝑡)}𝑒∈𝐸, which relaxes the precedence constraints of multi-hop networks

to dynamically route packets and schedule link activations. Unlike the conventional

concept of physical queues, in which the queue counter is incremented only when

physical packets arrive at the edge in the current time slot [50], the virtual queue of

edge 𝑒 is incremented immediately upon a packet arrival as long as its prescribed route

passes through 𝑒. Formally, for all 𝐴(𝑐)(𝑡) packets of class 𝑐 arriving at the source

node 𝑠(𝑐) during time slot 𝑡, the UMW policy prescribes them a route 𝑇 (𝑐)(𝑡) ∈ 𝒯 (𝑐),

along which these packets are routed throughout their traversal in the network. The

total number of virtual packet arrivals to the virtual queue 𝑄𝑒 at time 𝑡 is:

𝐴𝑒(𝑡) =
∑︁
𝑐∈𝒞

𝐴(𝑐)(𝑡)1(𝑒 ∈ 𝑇 (𝑐)(𝑡)), ∀𝑒 ∈ 𝐸. (3.6)

Recall from Section 3.2.1 that 𝐷𝑒(𝑡) and 𝜇𝑒(𝑡) are respectively the decision variable

and the effective service rate of link 𝑒. Then the virtual queue process evolves as:

𝑄𝑒(𝑡+ 1) =
(︀
𝑄𝑒(𝑡) + 𝐴𝑒(𝑡)− 𝜇𝑒(𝑡)

)︀+
, 𝑒 ∈ 𝐸. (3.7)

Utilizing the virtual queues, the UMW scheme performs routing and dynamic schedul-

ing on the physical network by solving weighted min-cost and max-weight problems

as follows.

Routing: For any class 𝑐 ∈ 𝒞 packet at time 𝑡, select route 𝑇 (𝑐)(𝑡) ∈ 𝒯 (𝑐) that solves

the weighted min-cost problem:

𝑇 (𝑐)(𝑡) ∈ argmin
𝑇 (𝑐)∈𝒯 (𝑐)

(︂∑︁
𝑒∈𝐸

𝑄𝑒(𝑡)1(𝑒 ∈ 𝑇 (𝑐))

)︂
. (3.8)
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Thus the routing algorithm uses shortest paths based on virtual queue lengths. Upon

the arrival of a new packet, its route is immediately computed according to (3.8) and

fixed throughout execution. This unique algorithmic structure of UMW makes it

compatible with the SDN routing requirement.

Scheduling: Denote by ℳ ∈ {0, 1}|𝐸| the set of all admissible link activations.

For x ∈ ℳ, we have 𝑥𝑒𝑥𝑒′ = 0,∀𝑒′ ∈ 𝐼𝑒, i.e. no pair of interfering links can

be simultaneously activated. The UMW policy selects the link activation vector

𝐷𝐸(𝑡) ∈ {0, 1}|𝐸| that solves the max-weight problem:

𝐷𝐸(𝑡) ∈ argmax
x∈ℳ

(︂∑︁
𝑒∈𝐸

𝑄𝑒(𝑡) · 𝐶𝑒[𝑡] · 𝑥𝑒

)︂
. (3.9)

Thus the scheduling algorithm activates the schedule of maximum weight using virtual

queue lengths. While dynamically routing and scheduling packets via (3.8) and (3.9)

to stabilize the virtual queues, UMW transmits packets in the physical network and is

guaranteed to achieve the full capacity region [46].

Limitations of UMW

The analytical model of UMW lacks the generality to readily be extended to distributed

control. The queue dynamics (3.7) cannot exemplify the distributed view of the

network, whereby each controller has only local network statistics and information.

Moreover, the scheduling algorithm (3.9) requires the fresh global NSI 𝐶𝐸[𝑡], which is

not available to controllers in the distributed setting. The dependence onℳ as above

also cannot capture the inter-domain characteristics: for example, even if a controller

𝐷𝑖 decides to activate link 𝑒 ∈ 𝐸, i.e. 𝑥𝑒 = 1, it cannot control or even observe the

interfering links handled by other domains, i.e. the values of 𝑥𝑒′ for 𝑒′ ∈ 𝐼𝑒 ∩ {𝐸 ∖𝐸𝑖}.

On the other hand, our new analytical characterization of effective service rate (3.3)

in place ofℳ captures interference from inter-domain links.
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3.3.2 The Virtual Queue Process of Distributed UMW (DUMW)

Next, we develop the Distributed UMW (DUMW) framework that non-trivially

extends UMW to the setting of distributed wireless SDN. We hereby define some

notations and formally present our generalized virtual queue dynamics. The set 𝒞

of packet classes can be decomposed into mutually exclusive sets 𝒞 = ∪𝑚𝑖=1𝒞𝑖 with

𝒞𝑖 = {𝑐 ∈ 𝒞 : 𝑠(𝑐) ∈ 𝑉𝑖}, whereby any packet of class 𝑐 ∈ 𝒞𝑖 enters the network through

the domain 𝐷𝑖, which manages the source node 𝑠(𝑐) of the packet. At any time slot

𝑡, a policy 𝜋 prescribes any packet of class 𝑐 ∈ 𝒞 an admissible route 𝑇 (𝑐)(𝑡) ∈ 𝒯 (𝑐).

Controller 𝐷𝑖 is in charge of packets arriving to its domain, i.e. class-𝑐 packets with

𝑐 ∈ 𝒞𝑖; consequently, the controller 𝐷𝑖 computes the route 𝑇 (𝑐)(𝑡) for such packets and

keeps track of the total virtual packet arrival from the classes 𝑐 ∈ 𝒞𝑖:

𝐴𝜋𝑖
𝑒 (𝑡) =

∑︁
𝑐∈𝒞𝑖

𝐴(𝑐)(𝑡)1(𝑒 ∈ 𝑇 (𝑐)), ∀𝑒 ∈ 𝐸. (3.10)

Summing up over all the domains, we obtain the total virtual packet arrivals from all

classes as:

𝐴𝜋
𝑒 (𝑡) =

𝑚∑︁
𝑖=1

𝐴𝜋𝑖
𝑒 (𝑡), ∀𝑒 ∈ 𝐸. (3.11)

Recall from Section 3.2.1 that 𝜇𝜋
𝑒 (𝑡) is the effective service rate of link 𝑒. At time 𝑡,

the virtual queue for link 𝑒 ∈ 𝐸, under the action of policy 𝜋, would be incremented

by 𝐴𝜋
𝑒 (𝑡) due to the routing decisions, and decremented by 𝜇𝜋

𝑒 (𝑡) due to the scheduling

decisions. However, since domain controller 𝐷𝑖 only has information on 𝐴𝜋𝑖
𝑒 (𝑡) and,

if 𝑒 ∈ 𝐸𝑖, 𝜇𝜋
𝑒 (𝑡), the controllers must exchange information to maintain the virtual

queues. Moreover, the exchange must be synchronized in order for the controllers to

make consistent routing decisions. To model the periodic synchronization, we allow

the virtual queues to be updated only at the synchronization points 𝜏𝑗 (𝑗 = 1, 2, ...),
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and thus obtain the 𝜏 -step evolution of the virtual queue process as:

𝑄𝑒(𝜏𝑗+1) =

(︂
𝑄𝑒(𝜏𝑗) +

𝜏𝑗+1−1∑︁
𝑡=𝜏𝑗

[𝐴𝜋
𝑒 (𝑡)− 𝜇𝜋

𝑒 (𝑡)]

)︂+

, ∀𝑒 ∈ 𝐸

(3.11)
=

(︂
𝑄𝑒(𝜏𝑗) +

𝜏𝑗+1−1∑︁
𝑡=𝜏𝑗

[
𝑚∑︁
𝑖=1

𝐴𝜋𝑖
𝑒 (𝑡)− 𝜇𝜋

𝑒 (𝑡)]

)︂+

, ∀𝑒 ∈ 𝐸. (3.12)

It is notable that our virtual queue process generalizes that of [46], whereby for the

setting of 𝑚 = 1 domain controller and step size of 𝜏 = 1, the recursion (3.12) reduces

to the queue dynamics (3.7) of UMW. The DUMW policy is then designed to stabilize

the virtual queue process {Q(𝑡)}𝑡≥0 for any arrival rate vector 𝜆 ∈ 𝑖𝑛𝑡(Λ), which is

further shown in Section 3.3.6 to be sufficient for throughput-optimality. In particular,

the stability of the virtual queues is obtained by minimizing the 𝜏 -step drift of the

following quadratic Lyapunov function:

𝐿(Q(𝑡)) = Q(𝑡)𝑇Q(𝑡) =
∑︁
𝑒∈𝐸

𝑄𝑒(𝑡)
2. (3.13)

For any policy 𝜋, we consider the 𝜏 -step Lyapunov drift of 𝐿(.) conditioned on the

virtual queue lengths as follows:

Δ𝜋(𝜏𝑗) = E
[︀
𝐿(Q(𝜏𝑗+1))− 𝐿(Q(𝜏𝑗))

⃒⃒
Q(𝜏𝑗)

]︀
, (3.14)

where we recall that 𝜏𝑗 = 𝑗𝜏 . Unlike a traditional control problem, the solution

for distributed wireless SDN requires the interplay between network control and

algorithmic adaptation to the SDN system idiosyncrasies. In the next Section, we

present our algorithmic design for controller synchronization that fully addresses

the SDN system idiosyncrasies and is the backbone of DUMW’s network control

operations.
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3.3.3 Controller Synchronization and Virtual Queue Estimates

Besides resolving consensus for inter-domain routing, controller synchronization helps

maintaining the delayed global NSI and virtual queue updates, all of which are required

for making DUMW’s dynamic routing and scheduling decisions. At time slot 𝜏𝑗, the

NSI changes to 𝐶𝐸[𝜏𝑗] triggering the new synchronization round. Consequently, each

controller 𝐷𝑖 executes the sync operation (described below) in order to exchange

its fresh local NSI 𝐶𝐸𝑖
[𝜏𝑗] and local statistics required for virtual queue update, and

retrieve the information from the last synchronization point 𝜏𝑗−1 (computed by the

past sync).

Algorithmic Development of sync

At the synchronization point 𝜏𝑗 , each controller observes its fresh local NSI 𝐶𝐸𝑖
[𝜏𝑗 ] and

has the past local statistics, comprised of virtual arrival packets {𝐴𝜋𝑖
𝑒 (𝑞)}𝜏𝑗−1

𝑞=𝜏𝑗−1 ,∀𝑒 ∈ 𝐸

and local service rates {𝜇𝜋
𝑒 (𝑞)}

𝜏𝑗−1
𝑞=𝜏𝑗−1 ,∀𝑒 ∈ 𝐸𝑖. Besides exchanging the NSI, the con-

trollers initiate the calculation of Q(𝜏𝑗) for virtual queue update. From (3.12), this re-

quires the inter-controller global computation of
∑︀𝜏𝑗−1

𝑡=𝜏𝑗−1
𝜇𝜋
𝑒 (𝑡) and

∑︀𝑚
𝑖=1

∑︀𝜏𝑗−1
𝑡=𝜏𝑗−1

𝐴𝜋𝑖
𝑒 (𝑡)

for all edges 𝑒 ∈ 𝐸. We first show how the controllers can collaboratively deploy

the well-studied MAX gossip protocol [34] for maintaining the (delayed) view of the

global NSI 𝐶𝑒[𝜏𝑗] and computing
∑︀𝜏𝑗−1

𝑡=𝜏𝑗−1
𝜇𝜋
𝑒 (𝑡). At inter-controller time frame 𝑘,

each controller 𝐷𝑖 maintains 𝑐𝑖𝑒[𝑘] and 𝑠𝑖𝑒[𝑘] respectively as its estimates of 𝐶𝑒[𝜏𝑗] and∑︀𝜏𝑗−1
𝑡=𝜏𝑗−1

𝜇𝜋
𝑒 (𝑡) for all 𝑒 ∈ 𝐸. Based on the NSI and statistics of its local links in 𝐸𝑖,

each controller 𝐷𝑖 initializes:

𝑐𝑖𝑒[0] =

⎧⎪⎨⎪⎩𝐶𝑒[𝜏𝑗] , if 𝑒 ∈ 𝐸𝑖

0 , otherwise
, (3.15)

𝑠𝑖𝑒[0] =

⎧⎪⎨⎪⎩
∑︀𝜏𝑗−1

𝑡=𝜏𝑗−1
𝜇𝜋
𝑒 (𝑡) , if 𝑒 ∈ 𝐸𝑖

0 , otherwise
. (3.16)
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These values represent controller 𝐷𝑖’s local information with respect to NSI and

service rates. Now, observe that the global NSI 𝐶𝑒[𝜏𝑗] and
∑︀𝜏𝑗−1

𝑡=𝜏𝑗−1
𝜇𝜋
𝑒 (𝑡) can be

written respectively as:

𝐶𝑒[𝜏𝑗] = max
𝑖∈[1,𝑚]

𝑐𝑖𝑒[0] and
𝜏𝑗−1∑︁

𝑡=𝜏𝑗−1

𝜇𝜋
𝑒 (𝑡) = max

𝑖∈[1,𝑚]
𝑠𝑖𝑒[0], (3.17)

since every 𝑐𝑖𝑒[0] (resp. 𝑠𝑖𝑒[0]) can be either 0 or the true value 𝐶𝑒[𝜏𝑗 ] (resp.
∑︀𝜏𝑗−1

𝑡=𝜏𝑗−1
𝜇𝜋
𝑒 (𝑡)).

In order to distributedly compute the global maximum, at every inter-controller

time frame 𝑘, each controller 𝐷𝑖 first sends c𝑖[𝑘 − 1] and s𝑖[𝑘 − 1] to all the neigh-

bours 𝑁(𝐷𝑖). After receiving the messages, 𝐷𝑖 proceeds to update its estimates as

𝑐𝑖𝑒[𝑘] = maxℎ:𝐷ℎ∈𝐷𝑖∪𝑁(𝐷𝑖) 𝑐
ℎ
𝑒 [𝑘− 1] and 𝑠𝑖𝑒[𝑘] = maxℎ:𝐷ℎ∈𝐷𝑖∪𝑁(𝐷𝑖) 𝑠

ℎ
𝑒 [𝑘− 1] for all 𝑒 ∈ 𝐸,

i.e. taking the max of its own value and all other neighbours. It can be shown [34]

that, after 𝑂(|𝑉𝑐|) rounds, each controller 𝐷𝑖 has 𝑐𝑖𝑒[𝑘] and 𝑠𝑖𝑒[𝑘] respectively as the

exact values of 𝐶𝑒[𝜏𝑗] and
∑︀𝜏𝑗−1

𝑡=𝜏𝑗−1
𝜇𝜋
𝑒 (𝑡). The process incurs 𝑂(|𝑉𝑐||𝐸𝑐|) messages.

We are now left with the inter-controller computation of
∑︀𝑚

𝑖=1

∑︀𝜏𝑗−1
𝑡=𝜏𝑗−1

𝐴𝜋𝑖
𝑒 (𝑡). Since

each controller 𝐷𝑖 can locally compute the vector a𝑖 ∈ R|𝐸|
+ of partial sums:

𝑎𝑖𝑒 =

𝜏𝑗−1∑︁
𝑡=𝜏𝑗−1

𝐴𝜋𝑖
𝑒 (𝑡), ∀𝑒 ∈ 𝐸, (3.18)

this problem reduces to computing the global sum
∑︀𝑚

𝑖=1 𝑎
𝑖
𝑒 across all the 𝑚 controllers.

Unlike the MAX gossip protocol, the summing gossip for wireless setting may incur

error to the estimator of the global sum [4]. We purposefully require and thus design

the synch operation to ensure that every controller gets the same estimate ̃︀𝐴𝑒 of∑︀𝑚
𝑖=1

∑︀𝜏𝑗−1
𝑡=𝜏𝑗−1

𝐴𝜋𝑖
𝑒 (𝑡) and denote by 𝜖𝑒(𝜏𝑗) the estimation error, i.e.

| ̃︀𝐴𝑒 −
𝑚∑︁
𝑖=1

𝜏𝑗−1∑︁
𝑡=𝜏𝑗−1

𝐴𝜋𝑖
𝑒 (𝑡)| ≤ 𝜖𝑒(𝜏𝑗), ∀𝑒 ∈ 𝐸. (3.19)
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We further define the following quantities of gossip errors:

𝜖(𝜏𝑗) =
∑︁
𝑒∈𝐸

𝜖𝑒(𝜏𝑗), 𝜖(𝑗) =

𝑗−1∑︁
𝑞=1

𝜖(𝜏𝑞). (3.20)

Next, we present our algorithms for the distributed computation of the global sum∑︀𝑚
𝑖=1 𝑎

𝑖
𝑒, under two settings: semi-static wireless environment and highly dynamic

wireless environment.

Semi-static wireless environment: We design the mechanism, termed tree-

sum, that finds the global sum precisely under the semi-static setting where controllers

support unique node identities, are capable of coordination, and have access to the

inter-controller topology 𝐺𝑐. First, we designate a controller, say 𝐷1, as the root

controller and compute a spanning tree 𝑇𝑐, rooted at 𝐷1, of the inter-controller topology

𝐺𝑐. Let 𝑇𝑐 have depth 𝑑𝑐 and denote by 𝐿𝑖 (𝑖 ∈ [0, 𝑑𝑐]) be the set of controllers at the

𝑖𝑡ℎ level. Second, all the controllers accumulate the result until the root of the tree is

reached. Formally, for 𝑙 = 1→ 𝑑𝑐 iteratively, every controller 𝐷𝑖 ∈ 𝐿𝑑𝑐−𝑙+1 sends a𝑖

along the tree to its "parent" controller 𝐷𝑗 ∈ 𝐿𝑑𝑐−𝑙 in the next level; 𝐷𝑗 then adds up

all the received values to its original partial values as:

𝑎𝑗𝑒 ← 𝑎𝑗𝑒 +
∑︁

𝑖:𝐷𝑖∈𝑁(𝐷𝑗)∩𝐿𝑑𝑐−𝑙+1

𝑎𝑖𝑒, ∀𝑒 ∈ 𝐸.

At the end of the 𝑑𝑐 inter-controller time frames, the root controller 𝐷1 will have

𝑎1𝑒 as the exact value of the global sum
∑︀𝑚

𝑖=1

∑︀𝜏𝑗−1
𝑡=𝜏𝑗−1

𝐴𝜋𝑖
𝑒 (𝑡), which also takes 𝑑𝑐

inter-controller time frames. Finally, it broadcasts a1 along the tree 𝑇𝑐 to all the

controllers. The total number of communication rounds is 2𝑑𝑐 = 𝑂(|𝑉𝑐|), and the total

number of messages is 𝑂(|𝐸𝑐|). Moreover, under this mechanism, 𝜖𝑒(𝜏𝑗) = 0,∀𝑒 ∈ 𝐸.

Highly dynamic wireless environment: We now describe our second mecha-

nism, termed gossip-sum, that finds the global sum approximately under the setting

constrained by stringent operational wireless characteristics: i) controllers have limited

capability, where no centralized identity or specialized coordination is allowed, and ii)

the inter-controller network topology is not known to any of the controllers. The design
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of gossip-sum is comprised of two phases: the estimation phase and the consensus

phase. In the estimation phase, all the controllers deploy the Distributed Synchronous

Algorithm (DSA) of [4]5 to compute their discrepant estimates of the global sum.

Under DSA, each controller 𝐷𝑖 maintains 𝑥𝑖
𝑒[𝑘] as its estimate of the true global sum∑︀𝑚

𝑖=1

∑︀𝜏𝑗−1
𝑡=𝜏𝑗−1

𝐴𝜋𝑖
𝑒 (𝑡) at inter-controller time frame 𝑘. Denote by 𝑘(𝜖, 𝜏𝑗) the number of

inter-controller time frames that the DSA runs for the current synchronization point 𝜏𝑗

to achieve arbitrarily small error 𝜖 > 0 in the sense of Lemma 4. At the end of DSA’s

last iteration 𝑘(𝜖, 𝜏𝑗), every controller 𝐷𝑖 separately has 𝑥𝑖
𝑒[𝑘(𝜖, 𝜏𝑗)] as the estimate of

the global sum
∑︀𝑚

𝑖=1 𝑎
𝑖
𝑒. Since the estimators 𝑥1

𝑒[𝑘(𝜖, 𝜏𝑗)], 𝑥
2
𝑒[𝑘(𝜖, 𝜏𝑗)], ..., 𝑥

𝑚
𝑒 [𝑘(𝜖, 𝜏𝑗)] are

potentially dissimilar under DSA, the consensus phase next enforces all the controllers

to get the same estimate ̃︀𝐴𝑒 of
∑︀𝑚

𝑖=1 𝑎
𝑖
𝑒, which is crucial for inter-domain routing as

discussed later in Section 3.3.4. In the consensus phase, the controllers deploy the

MAX gossip protocol [34] to mutually obtain ̃︀𝐴𝑒 = max𝑖∈[1,𝑚]{𝑥𝑖
𝑒[𝑘(𝜖, 𝜏𝑗)]} as the same

estimate of the global sum
∑︀𝑚

𝑖=1 𝑎
𝑖
𝑒. The process is similar to deploying the MAX

gossip protocol to compute (3.17). Now, to analyze the complexity of gossip-sum,

we present some notations for technical exposition. Recall that the inter-controller

network 𝐺𝑐 is characterized by the matrix 𝑃 and has maximum node degree of 𝑑*. We

consider the diagonal matrix 𝐻 with 𝐻𝑖𝑖 =
∑︀|𝑉𝑐|

𝑗=1(𝑃𝑖𝑗 + 𝑃𝑗𝑖) and 𝑑 = 1
𝑑*

(︀
1− 1

2𝑑*

)︀𝑑*−1.

Now, we let 𝑊 = 𝐼 − 𝑑
8
𝐻 + 𝑑

8
(𝑃 + 𝑃 𝑇 ) and denote by 𝜆2(𝑊 ) the second largest

eigenvalue of 𝑊 . The next Theorem establishes the number of inter-controller time

frames required for gossip-sum to achieve the desired estimation error in expectation.

Theorem 4. For any 𝜖 > 0, if the DSA in gossip-sum at the synchronization point

𝜏𝑗 runs for 𝑘(𝜖, 𝜏𝑗) = Θ
(︀
log(𝑚𝜖−1)/ log(𝜆2(𝑊 )−1)

)︀
inter-controller time frames, then

the following bound holds:

E[𝜖𝑒(𝜏𝑗)] ≤ 𝜖𝜏(𝑚+ 2)𝐴𝑚𝑎𝑥, ∀𝑒 ∈ 𝐸.

Based on Theorem 4, we design gossip-sum as follows:

5The DSA is designed to compute global average, yet it can be equivalently converted to global
sum in our case with a multiplicative factor.
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Construction 1. At synchronization point 𝜏𝑗, gossip-sum runs DSA for 𝑘(𝑗−2, 𝜏𝑗)

inter-controller time frames.

Lemma 2. gossip-sum under Construction 1 satisfies lim𝐾→∞

∑︀𝐾
𝑗=1 E[𝜖(𝑗)]

𝐾
< ∞.

Moreover, at synchronization point 𝜏𝐾 , it requires 𝑂( log(𝑚𝐾)
log(𝜆2(𝑊 )−1)

+ |𝑉𝑐|) inter-controller

time frames and a total of 𝑂( |𝐸𝑐| log(𝑚𝐾)
log(𝜆2(𝑊 )−1)

+ |𝑉𝑐||𝐸𝑐|) messages.

The guarantee in Lemma 2 is necessary for establishing the stability of the virtual

queue process (needed to prove Theorem 5). The complexity on inter-controller time

frames that scales with 𝑂(log(𝐾)) is not overly restrictive since the controllers can

support much faster time-scale than the switches.

Virtual Queue Estimate

Due to the delayed queue update from the periodic synchronization and the error

incurred by the wireless gossip algorithm, the controllers cannot have access to the

exact and fresh values of the virtual queues Q in (3.12); instead, they maintain the

potentially inexact estimate ̃︀Q. At the synchronization point 𝜏𝑗, each controller 𝐷𝑖,

upon retrieving 𝐶𝐸[𝜏𝑗−1],𝜇 (whereby 𝜇𝑒 =
∑︀𝜏𝑗−1−1

𝑡=𝜏𝑗−2
𝜇𝜋
𝑒 (𝑡)) and ̃︀A (whereby ̃︀𝐴𝑒 =

max𝑖∈[1,𝑚]{𝑥𝑖
𝑒[𝑘(𝜖, 𝜏𝑗−1)]}), proceeds to update:

̃︀𝑄𝑒(𝜏𝑗−1) =
(︀ ̃︀𝑄𝑒(𝜏𝑗−2) + ̃︀𝐴𝑒 − 𝜇𝑒

)︀+
, ∀𝑒 ∈ 𝐸. (3.21)

At any time 𝑡 ∈ [𝜏𝑗, 𝜏𝑗+1), each controller 𝐷𝑖 thus has only the estimate of the delayed

virtual queues, i.e. ̃︀Q(𝜏𝑗−1), for making routing and scheduling decisions.

3.3.4 Inter-Domain Routing

In order to address the inter-domain flow installation, we require every controller 𝐷𝑖

to compute the min-cost route selection for any class 𝑐 ∈ 𝒞 at time 𝜏𝑗 as:

𝑇 (𝑐)(𝜏𝑗) ∈ argmin
𝑇 (𝑐)∈𝒯 (𝑐)

(︂∑︁
𝑒∈𝐸

̃︀𝑄𝑒(𝜏𝑗−1) · 1(𝑒 ∈ 𝑇 (𝑐))

)︂
, (3.22)
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and accordingly install forwarding rules onto its local switches, i.e. nodes 𝑉𝑖 ⊆ 𝑉 .

This means that even the packets of class 𝑐 ̸∈ 𝒞𝑖, i.e. not entering the network

through 𝐷𝑖, are also supported by 𝐷𝑖 for the flow installation on 𝑉𝑖. Since every

controller 𝐷𝑖 maintains the mutual view of ̃︀Q(𝜏𝑗−1), they can obtain and solve the same

problem (3.22). By imposing the same deterministic tie-breaking rules for optimizing

(3.22), we ensure that all the controllers select the same routes 𝑇 (𝑐)(𝜏𝑗). Moreover,

for any time slot 𝑡 ∈ (𝜏𝑗, 𝜏𝑗+1), we reuse the old routes computed from the latest

synchronization point, i.e. setting 𝑇 (𝑐)(𝑡) = 𝑇 (𝑐)(𝜏𝑗),∀𝑐 ∈ 𝒞, thereby requiring no

flow installation during this period. While our approach incurs some overhead due

to repetitive computation, which is inevitable in inter-domain routing [55] and not a

barrier in distributed SDN, it fully resolves the consensus problem for inter-domain

flow installation and alleviates the controller-switch communication via infrequent

flow installation, which is a major scalability bottleneck for large-scale SDN [51].

3.3.5 Inter-Domain Scheduling

Algorithm 2: schedule

Input: 𝑡, 𝐷𝑖, 𝐶𝐸𝑖
[𝑡], 𝐶𝐸[𝑡− 𝜏 ], ̃︀Q(𝜏𝑗−1)

Output: Link activation vector 𝐷𝐸𝑖
(𝑡) ∈ {0, 1}|𝐸𝑖| for domain 𝐷𝑖.

1 Form the view of fresh local NSI as 𝐶𝐸𝑖
[𝑡] = 𝛾𝐸𝑖

and delayed global NSI as
𝐶𝐸[𝑡− 𝜏 ] = 𝛼.

2 Define 𝑘𝑒 such that 𝑒 ∈ 𝑉𝑘𝑒 . Consider the binary vector variable
x = {𝑥(𝑒, 𝜉, 𝛼)}

𝑒∈𝐸,𝜉∈{0,1}|𝐸𝑘𝑒
|} ∈ {0, 1}𝑀0 with 𝑀0 =

∑︀𝑚
𝑗=1 |𝐸𝑗|2|𝐸𝑗 |. Solve

the optimization:

x* = argmax
x

{︀ ∑︁
𝛽∈{0,1}|𝐸|

𝑃 (𝐶𝐸[𝑡] = 𝛽
⃒⃒
𝐶𝐸[𝑡− 𝜏 ] = 𝛼)×

∑︁
𝑒∈𝐸

̃︀𝑄𝑒(𝜏𝑗−1)𝛽𝑒 · 𝑥(𝑒, 𝛽𝐸𝑘𝑒
, 𝛼)

∏︁
𝑒′∈𝐼𝑒

(1− 𝑥(𝑒′, 𝛽𝐸𝑘𝑒′
, 𝛼))

}︀
3 Set 𝐷𝑒(𝑡) = 𝑥*(𝑒, 𝛾𝐸𝑖

, 𝛼), ∀𝑒 ∈ 𝐸𝑖.
4 Return the link activation vector 𝐷𝐸𝑖

(𝑡)

The inter-domain scheduling problem can be characterized as scheduling with

heterogeneously delayed NSI. Though sharing similarities with the literature [42], the

67



system within our interest is more generalized: [42] can be viewed as a special case of

our problem where every domain only has one node. On the other hand, we allow every

domain to handle an arbitrary set of nodes, thereby imposing the hierarchical domain

structure. Consequently, decisions for nodes inside one domain can be inter-dependent

in our problem, which is distinctive from [42] where each node makes independent

decisions. We hereby present our inter-domain scheduling policy, termed schedule,

in Algorithm 2. At time slot 𝑡 ∈ [𝜏𝑗, 𝜏𝑗+1), each controller 𝐷𝑖 formulates the same

optimization problem from the the common information, which includes the delayed

global NSI 𝐶𝐸[𝑡 − 𝜏 ] and the approximate virtual queue ̃︀Q(𝜏𝑗−1); under the same

deterministic tie-breaking rule, all the controllers then obtain the mutual optimal

solution x*. Given 𝐶𝐸[𝑡 − 𝜏 ] = 𝛼, the index 𝑥*(𝑒, 𝜉, 𝛼) ∈ {0, 1} corresponds to the

(optimal) decision of whether to activate link 𝑒 ∈ 𝐸 if the fresh local NSI of the

domain 𝐷𝑘𝑒 managing 𝑒 is instantaneously observed as 𝐶𝐸𝑘𝑒
[𝑡] = 𝜉. Thus, controller

𝐷𝑖, upon observing its fresh local NSI as 𝐶𝐸𝑖
[𝑡] = 𝛾𝐸𝑖

, sets its link activation vector

according to 𝐷𝑒(𝑡) = 𝑥*(𝑒, 𝛾𝐸𝑖
, 𝛼),∀𝑒 ∈ 𝐸𝑖. The schedule algorithm is novel and the

first optimal scheduling policy for the setting of heterogeneously delayed NSI with

hierarchy. Under this setting, the only applicable algorithm in the literature [58]6 does

not leverage fresh local NSI and is thus sub-optimal.

3.3.6 The DUMW Framework and Throughput-Optimality

We depict the full DUMW framework in Algorithm 3, which combines all the technical

operations described previously, and proceeds to establish the throughput-optimality

of DUMW.

Theorem 5. DUMW is throughput-optimal.

Theorem 5 is derived by first minimizing an upperbound of (3.14) and deploying the

Lyapunov drift analysis in order to show that the virtual queue process under DUMW is

strongly stable for any arrival rate 𝜆 ∈ 𝑖𝑛𝑡(Λ), i.e. lim sup𝐾→∞
1
𝐾

∑︀𝐾−1
𝑗=0

∑︀
𝑒∈𝐸 E[𝑄𝑒(𝜏𝑗)] <

6We can adapt [58] to the UMW framework by using virtual queues instead of physical queues;
this will result in the same achievable throughput region.
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Algorithm 3: Distributed UMW (DUMW) framework
1 for 𝑡 = 1, ..., 𝑇 each domain 𝐷𝑖 do
2 if 𝑡 = 𝜏𝑗 ∈ 𝒯 = {𝜏1, 𝜏2, ..., 𝜏𝐾} then
3 Initialize c𝑖[0], s𝑖[0], a𝑖[0] as in (3.15), (3.16), (3.18)
4 [Synchronization] Start the new round 𝜏𝑗 and retrieve from the

previous round 𝜏𝑗−1: (𝐶𝐸[𝜏𝑗−1],𝜇, ̃︀A) = sync
(︀
𝜏𝑗, 𝐷𝑖, c

𝑖[0], s𝑖[0], a𝑖[0])
5 Update the (approximate) virtual queues as (3.21).
6 [Flow installation] Solve for 𝑇 (𝑐)(𝜏𝑗),∀𝑐 ∈ 𝒞 from (3.22) and install

all such flows on 𝑉𝑖 ⊆ 𝑉 .
7 end
8 [Routing] Reuse routes 𝑇 (𝑐)(𝑡) = 𝑇 (𝑐)(𝜏𝑗), ∀𝑐 ∈ 𝒞.
9 [Scheduling] Activate the link activation vector:

𝐷𝐸𝑖
(𝑡) = schedule(𝑡,𝐷𝑖, 𝐶𝐸𝑖

[𝑡], 𝐶𝐸[𝑡− 𝜏 ], ̃︀Q(𝜏𝑗−1))
10 end

∞. The key components of the proof leverage the bounded queue delay, the results

on gossip error (Theorem 4), and the optimality of our novel scheduling algorithm

schedule to obtain the strong stability of virtual queues, which then provably implies

the stability of physical queues and thus the throughput-optimality.

3.4 Numerical Simulation

In all simulations, we report the total average physical queue, which differs from

the virtual queue used by DUMW and illustrates the number of packets backlogged

in the system. Unless specified otherwise, the DUMW used in our tests deploys

the tree-sum mechanism. We consider the centralized UMW (Section 3.3.1) as an

unrealistic baseline. In all experiments, our setting assumes fully-connected inter-

controller topology 𝐺𝑐, node-exclusive wireless interference constraints [6], unit link

capacity, and unicast traffic, which is specified by a source-destination (s-d) pair

assuming Poisson arrivals with the same packet generation rate 𝜆. For abbreviation,

we denote the link statistics by 𝑃𝑒(𝑎|𝑏) = 𝑃 (𝐶𝑒[𝑡] = 𝑎|𝐶𝑒[𝑡− 𝜏 ] = 𝑏).
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Figure 3-3: The tested 2× 3 grid is decomposed into three domains.

DUMW on Dynamic Network

Consider the 2× 3 grid decomposed into three domains, as in Figure 3-3, with two s-d

pairs (1, 6) and (5, 6), and 𝜏 = 50. We explore the throughput capacity of DUMW on

the dynamic network with 𝑃𝑒(1|0) = 𝑃𝑒(1|1) = 0.5. The only applicable algorithm in

the literature [58] only uses the delayed global NSI 𝐶𝐸[𝑡 − 𝜏 ] for scheduling and is

thus sub-optimal in throughput. As illustrated in Figure 3-4, DUMW gains noticeable

throughput improvement compared to the literature by leveraging the fresh local NSI

𝐶𝐸𝑖
[𝑡].

Figure 3-4: DUMW notably gains throughput by leveraging fresh local NSI.

DUMW versus Centralized Controller

For a fair comparison with centralized UMW, we test DUMW (now with both

tree-sum and gossip-sum mechanisms) on the same network with reliable links

𝑃𝑒(1|0) = 𝑃𝑒(1|1) = 1, since in this setting DUMW also knows the fresh global NSI

𝐶𝐸[𝑡]. Results in Figure 3-5 illustrate that DUMW achieves the same throughput
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capacity as the centralized controller. The higher physical queue value of DUMW

is merely due to the fact that DUMW performs distributed control to reduce the

communication overhead.

Figure 3-5: DUMW gets the same throughput region as the centralized controller.

Scalability of DUMW

From Section 3.3.4, DUMW drastically alleviates the controller-switch communication

via infrequent flow installation with period 𝜏 . We experiment on the 9× 9 grid (81

nodes and 144 edges) with reliable links and three s-d pairs, whereby three corner

nodes send to the last corner node, and high arrival rate 𝜆 = 0.3 (the capacity is

0.33). Figure 3-6 illustrates the system stability and the tradeoff between physical

queue values, i.e. estimates of packet delay, and different levels of 𝜏 . We note that the

queues remain stable even with large values of 𝜏 , implying the scalability of DUMW.

Figure 3-6: Moderately large-scale network test with infrequent flow installation.
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3.5 Chapter Summary

In this chapter, we propose the first network control framework for distributed wireless

SDN. The control framework is throughput-optimal and alleviates the communica-

tion overhead, which has been a major bottleneck for large-scale SDN. Extensive

experiments confirm throughput-optimality and favorable scalability of the algorithm.

3.6 Chapter Appendix

3.6.1 Proof of Theorem 4

In the estimation phase of the gossip-sum mechanism for the synchronization point 𝜏𝑗 ,

each controller 𝐷𝑖 sets 𝑥𝑖
𝑒[0] = 𝑚·

∑︀𝜏𝑗−1
𝑡=𝜏𝑗−1

𝐴𝜋𝑖
𝑒 (𝑡) and follows the DSA to maintain 𝑥𝑖

𝑒[𝑘]

as the estimate of the true global sum 𝑥𝑔𝑙𝑜𝑏𝑎𝑙 =
∑︀𝑚

𝑖=1

∑︀𝜏𝑗−1
𝑡=𝜏𝑗−1

𝐴𝜋𝑖
𝑒 (𝑡) at inter-controller

time frame 𝑘. Now we present the following adapted [4, Theorem 5]7 that provides

the guarantee of DSA.

Theorem 6. At the end of inter-controller time frame 𝑘 in the estimation phase of

gossip-sum, we have:

𝑃

(︂√︀∑︀𝑚
𝑖=1[𝑥

𝑖
𝑒[𝑘]− 𝑥𝑔𝑙𝑜𝑏𝑎𝑙]2√︀∑︀𝑚
𝑖=1 𝑥

𝑖
𝑒[0]

2
≤ 𝛾1

)︂
≥ 1− 𝜖

for 𝑘 = Θ(
log 𝜖−1+log 𝛾−1

1

log 𝜆2(𝑊 )−1 ).

From Theorem 6, we establish the following supplementary Lemma.

Lemma 3. At the end of inter-controller time frame 𝑘 in the estimation phase of

gossip-sum, we have the following guarantee for the global sum estimator of any

controller 𝐷𝑖:

𝑃

(︂
𝑥𝑖
𝑒[𝑘] ∈ [𝑥𝑔𝑙𝑜𝑏𝑎𝑙 · (1− 𝜖), 𝑥𝑔𝑙𝑜𝑏𝑎𝑙 · (1 + 𝜖)]

)︂
≥ 1− 𝜖

7The DSA is designed to compute global average, yet it can be equivalently converted to global
sum in our case with a multiplicative factor of 𝑚 in the initialization.
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for 𝑘 = Θ( log(𝑚·𝜖−1)
log 𝜆2(𝑊 )−1 ).

Proof. For the 𝑘 = Θ(
log 𝜖−1+log 𝛾−1

1

log 𝜆2(𝑊 )−1 ) as defined in Theorem 6, we have:

𝑃

(︂⎯⎸⎸⎷ 𝑚∑︁
𝑖=1

[𝑥𝑖
𝑒[𝑘]− 𝑥𝑔𝑙𝑜𝑏𝑎𝑙]2 ≤ 𝛾1

⎯⎸⎸⎷ 𝑚∑︁
𝑖=1

𝑥𝑖
𝑒[0]

2

)︂
≥ 1− 𝜖.

For any 𝑖 ∈ [1,𝑚], we have:

|𝑥𝑖
𝑒[𝑘]− 𝑥𝑔𝑙𝑜𝑏𝑎𝑙| ≤

⎯⎸⎸⎷ 𝑚∑︁
𝑖=1

[𝑥𝑖
𝑒[𝑘]− 𝑥𝑔𝑙𝑜𝑏𝑎𝑙]2.

Furthermore, we have: ⎯⎸⎸⎷ 𝑚∑︁
𝑖=1

𝑥𝑖
𝑒[0]

2 ≤
𝑚∑︁
𝑖=1

𝑥𝑖
𝑒[0] = 𝑚 · 𝑥𝑔𝑙𝑜𝑏𝑎𝑙.

Combining all the above, we obtain that:

𝑃

(︂
𝑥𝑖
𝑒[𝑘] ∈ [𝑥𝑔𝑙𝑜𝑏𝑎𝑙 · (1−𝑚 · 𝛾1), 𝑥𝑔𝑙𝑜𝑏𝑎𝑙 · (1 +𝑚 · 𝛾1)]

)︂
≥ 1− 𝜖.

By choosing 𝛾1 = 𝜖/𝑚, we obtain the final result.

Back to the main proof, we proceed to bound the gossip error in expectation.

Since 𝑥𝑖
𝑒[0] = 𝑚 ·

∑︀𝜏𝑗−1
𝑡=𝜏𝑗−1

𝐴𝜋𝑖
𝑒 (𝑡) ≤ 𝑚 · (𝜏𝑗 − 𝜏𝑗−1)𝐴𝑚𝑎𝑥 = 𝑚 · 𝜏𝐴𝑚𝑎𝑥 and each domain

𝐷𝑖 only averages itself with the neighbours during the estimation phase of gossip-

sum, we obtain that 𝑥𝑖
𝑒[𝑘] ≤ 𝑚 · 𝜏𝐴𝑚𝑎𝑥 for any 𝑘. In the consensus phase, after

running the DSA for 𝑘(𝜖, 𝜏𝑗) inter-controller time frames in the estimation phase, the

controllers use ̃︀𝐴𝑒 = max𝑖∈[1,𝑚]{𝑥𝑖
𝑒[𝑘(𝜖, 𝜏𝑗)]} as the mutual estimate of the true global

sum. Consequently, we have:

̃︀𝐴𝑒 ≤ 𝑚 · 𝜏𝐴𝑚𝑎𝑥. (3.23)
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Now, note that:

𝑥𝑔𝑙𝑜𝑏𝑎𝑙 =
𝑚∑︁
𝑖=1

𝜏𝑗−1∑︁
𝑡=𝜏𝑗−1

𝐴𝜋𝑖
𝑒 (𝑡) =

𝜏𝑗−1∑︁
𝑡=𝜏𝑗−1

𝑚∑︁
𝑖=1

𝐴𝜋𝑖
𝑒 (𝑡) ≤ 𝜏𝐴𝑚𝑎𝑥 (3.24)

We thus can bound the (worst-case) gossip error as:

𝜖𝑒(𝜏𝑗) = | ̃︀𝐴𝑒 − 𝑥𝑔𝑙𝑜𝑏𝑎𝑙| ≤ ̃︀𝐴𝑒 + 𝑥𝑔𝑙𝑜𝑏𝑎𝑙

(3.23)+(3.24)
≤ (𝑚+ 1)𝜏𝐴𝑚𝑎𝑥. (3.25)

From Lemma 3 and the fact that ̃︀𝐴𝑒 = max𝑖∈[1,𝑚]{𝑥𝑖
𝑒[𝑘(𝜖, 𝜏𝑗)]}, we have:

𝑃

(︂ ̃︀𝐴𝑒 ∈ [𝑥𝑔𝑙𝑜𝑏𝑎𝑙 · (1− 𝜖), 𝑥𝑔𝑙𝑜𝑏𝑎𝑙 · (1 + 𝜖)]

)︂
≥ 1− 𝜖. (3.26)

For abbreviation, we let 𝑝1 = 𝑃 (𝜖𝑒(𝜏𝑗) ≤ 𝜖 · 𝜏𝐴𝑚𝑎𝑥). From (3.24) and recalling that

𝜖𝑒(𝜏𝑗) = | ̃︀𝐴𝑒 − 𝑥𝑔𝑙𝑜𝑏𝑎𝑙|, we obtain:

𝑝1 ≥ 𝑃 (𝜖𝑒(𝜏𝑗) ≤ 𝜖 · 𝑥𝑔𝑙𝑜𝑏𝑎𝑙)

= 𝑃

(︂ ̃︀𝐴𝑒 ∈ [𝑥𝑔𝑙𝑜𝑏𝑎𝑙 · (1− 𝜖), 𝑥𝑔𝑙𝑜𝑏𝑎𝑙 · (1 + 𝜖)]

)︂
(3.26)
≥ 1− 𝜖. (3.27)

Finally, we bound the expected gossip error as follows:

E[𝜖𝑒(𝜏𝑗)] = 𝑝1E[𝜖𝑒(𝜏𝑗)
⃒⃒
𝜖𝑒(𝜏𝑗) ≤ 𝜖 · 𝜏𝐴𝑚𝑎𝑥] + (1− 𝑝1)E[𝜖𝑒(𝜏𝑗)

⃒⃒
𝜖𝑒(𝜏𝑗) > 𝜖 · 𝜏𝐴𝑚𝑎𝑥]

(3.25)
≤ 𝑝1𝜖𝜏𝐴𝑚𝑎𝑥 + (1− 𝑝1)(𝑚+ 1)𝜏𝐴𝑚𝑎𝑥

= 𝜖𝜏𝐴𝑚𝑎𝑥 + (1− 𝑝1)(𝑚+ 1− 𝜖)𝜏𝐴𝑚𝑎𝑥

(3.27)
≤ 𝜖𝜏𝐴𝑚𝑎𝑥 + 𝜖(𝑚+ 1)𝜏𝐴𝑚𝑎𝑥

= 𝜖𝜏(𝑚+ 2)𝐴𝑚𝑎𝑥
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3.6.2 Proof of Lemma 2

Under Construction 1, we obtain from Theorem 4 that:

𝐾∑︁
𝑗=1

E[𝜖(𝑗)] (3.20)
=

𝐾∑︁
𝑗=1

𝑗−1∑︁
𝑞=1

∑︁
𝑒∈𝐸

E[𝜖(𝜏𝑞)] ≤ |𝐸|𝜏(𝑚+ 2)𝐴𝑚𝑎𝑥

𝐾∑︁
𝑗=1

𝑗−1∑︁
𝑞=1

1

𝑞2

≤ |𝐸|𝜏(𝑚+ 2)𝐴𝑚𝑎𝑥

𝐾∑︁
𝑗=1

𝜋2

6
= 𝐾 · |𝐸|𝜏(𝑚+ 2)𝐴𝑚𝑎𝑥𝜋

2/6,

where the last inequality follows the result of the well-known Basel problem. Dividing

both sides by 𝐾 and taking the limit 𝐾 →∞, we have:

lim
𝐾→∞

∑︀𝐾
𝑗=1 E[𝜖(𝑗)]

𝐾
<∞.

At synchronization point 𝜏𝐾 , the gossip-sum mechanism is comprised of:

• The estimation phase: The DSA is run for 𝑘(𝐾−2, 𝜏𝐾) inter-controller time

frames, which incur Θ( log(𝑚·𝜖−1)
log 𝜆2(𝑊 )−1 ) communication round. Since in each commu-

nication round there are at most 𝑂(|𝐸𝑐|) pairs of controllers and thus number of

messages exchanged, the total number of exchanged messages is 𝑂( |𝐸𝑐| log(𝑚·𝜖−1)
log 𝜆2(𝑊 )−1 ).

• The consensus phase: The controllers compute the global maximum via the

max protocol [34], which incurs 𝑂(|𝑉𝑐|) communication rounds, and 𝑂(|𝑉𝑐||𝐸𝑐|).

Combining the cost of the above two phases, we get the final complexity of the

synchronization point 𝜏𝐾 as 𝑂( log(𝑚𝐾)
log(𝜆2(𝑊 )−1)

+ |𝑉𝑐|) inter-controller time frames and a

total of 𝑂( |𝐸𝑐| log(𝑚𝐾)
log(𝜆2(𝑊 )−1)

+ |𝑉𝑐||𝐸𝑐|) messages.

3.6.3 Errors of the queue estimates

From (3.19), we bound the error of our virtual queue estimate as follows:

Lemma 4. At any time slot 𝜏𝑗, we have

| ̃︀𝑄𝑒(𝜏𝑘)−𝑄𝑒(𝜏𝑘)| ≤
𝑘∑︁

𝑞=1

𝜖𝑒(𝜏𝑞), ∀𝑒 ∈ 𝐸 (3.28)
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Proof. We prove (3.28) by induction on 𝑘.

Base case 𝑘 = 0: Initially, we have ̃︀𝑄𝑒(𝜏0) = 𝑄𝑒(𝜏0) = 0, so the statement trivially

holds.

Inductive step from 𝑘 − 1 to 𝑘: Recall from (3.21) that:

̃︀𝑄𝑒(𝜏𝑘) =

(︂̃︀𝑄𝑒(𝜏𝑘−1) + ̃︀𝐴𝑒 −
𝜏𝑘−1∑︁
𝑡=𝜏𝑗−1

𝜇𝜋
𝑒 (𝑡)

)︂+

, ∀𝑒 ∈ 𝐸, (3.29)

where as in (3.19) the estimate ̃︀𝐴𝑒 satisfies:

| ̃︀𝐴𝑒 −
𝑚∑︁
𝑖=1

𝜏𝑘−1∑︁
𝑡=𝜏𝑘−1

𝐴𝜋𝑖
𝑒 (𝑡)| ≤ 𝜖𝑒(𝜏𝑘), ∀𝑒 ∈ 𝐸. (3.30)

By inductive hypothesis, we have:

̃︀𝑄𝑒(𝜏𝑘−1) ≤ 𝑄𝑒(𝜏𝑘−1) +
𝑘−1∑︁
𝑞=1

𝜖𝑒(𝜏𝑞), ∀𝑒 ∈ 𝐸.

Plugging the above to (3.29), we obtain ∀𝑒 ∈ 𝐸:

̃︀𝑄𝑒(𝜏𝑘) ≤
(︂
𝑄𝑒(𝜏𝑘−1) +

𝑘−1∑︁
𝑞=1

𝜖𝑒(𝜏𝑞) + ̃︀𝐴𝑒 −
𝜏𝑘−1∑︁
𝑡=𝜏𝑗−1

𝜇𝜋
𝑒 (𝑡)

)︂+

(3.30)
≤
(︂
𝑄𝑒(𝜏𝑘−1) +

𝑘∑︁
𝑞=1

𝜖𝑒(𝜏𝑞) +
𝑚∑︁
𝑖=1

𝜏𝑘−1∑︁
𝑡=𝜏𝑘−1

𝐴𝜋𝑖
𝑒 (𝑡)−

𝜏𝑘−1∑︁
𝑡=𝜏𝑗−1

𝜇𝜋
𝑒 (𝑡)

)︂+

≤
(︂
𝑄𝑒(𝜏𝑘−1) +

𝑚∑︁
𝑖=1

𝜏𝑘−1∑︁
𝑡=𝜏𝑘−1

𝐴𝜋𝑖
𝑒 (𝑡)−

𝜏𝑘−1∑︁
𝑡=𝜏𝑗−1

𝜇𝜋
𝑒 (𝑡)

)︂+

+
𝑘∑︁

𝑞=1

𝜖𝑒(𝜏𝑞)

= 𝑄𝑒(𝜏𝑘) +
𝑘∑︁

𝑞=1

𝜖𝑒(𝜏𝑞).

With similar reasoning, we can prove that ̃︀𝑄𝑒(𝜏𝑘) ≥ 𝑄𝑒(𝜏𝑘)−
∑︀𝑘

𝑞=1 𝜖𝑒(𝜏𝑞). Finally, we

conclude that:

| ̃︀𝑄𝑒(𝜏𝑘)−𝑄𝑒(𝜏𝑘)| ≤
𝑘∑︁

𝑞=1

𝜖𝑒(𝜏𝑞), ∀𝑒 ∈ 𝐸
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The DUMW policy leverages the estimates of the delayed queue values for making

decisions. The following Lemma bounds the impact of delayed queue values.

Lemma 5. We have the following bounds:

‖Q(𝜏𝑘−1)−Q(𝜏𝑘)‖1 ≤ 𝜏(𝐴𝑚𝑎𝑥 + |𝐸|), (3.31)

‖̃︀Q(𝜏𝑘−1)−Q(𝜏𝑘)‖1 ≤ 𝜖(𝑘) + 𝜏(𝐴𝑚𝑎𝑥 + |𝐸|), (3.32)

Proof. From (3.12), we have:

|𝑄𝑒(𝜏𝑘)−𝑄𝑒(𝜏𝑘−1)| ≤
𝜏𝑘−1∑︁

𝑡=𝜏𝑘−1

𝐴𝜋
𝑒 (𝑡) +

𝜏𝑘−1∑︁
𝑡=𝜏𝑘−1

𝜇𝜋
𝑒 (𝑡) ≤

𝜏𝑘−1∑︁
𝑡=𝜏𝑘−1

𝐴𝜋
𝑒 (𝑡) + 𝜏.

Summing up over all 𝑒 ∈ 𝐸 and noting that
∑︀

𝑒∈𝐸 𝐴𝜋
𝑒 (𝑡) ≤ 𝐴𝑚𝑎𝑥:

‖Q(𝜏𝑘−1)−Q(𝜏𝑘)‖1 ≤ 𝜏𝐴𝑚𝑎𝑥 + 𝜏 |𝐸| = 𝜏(𝐴𝑚𝑎𝑥 + |𝐸|).

By triangular inequality, Lemma 4 and the above (3.31), we have:

‖̃︀Q(𝜏𝑘−1)−Q(𝜏𝑘)‖1 ≤ ‖̃︀Q(𝜏𝑘−1)−Q(𝜏𝑘−1)‖1 + ‖Q(𝜏𝑘−1)−Q(𝜏𝑘)‖1

≤
∑︁
𝑒∈𝐸

𝑘−1∑︁
𝑞=1

𝜖𝑒(𝜏𝑞) + 𝜏(𝐴𝑚𝑎𝑥 + |𝐸|)

(3.20)
= 𝜖(𝑘) + 𝜏(𝐴𝑚𝑎𝑥 + |𝐸|).

3.6.4 Characterization of Throughput Region

Recall that Π the set of all admissible policies under the distributed wireless SDN

setting. Moreover, we consider Π𝑠 as the set of policies in Π that make stationary

scheduling decisions. The scheduling of any 𝜋 ∈ Π𝑠 can be further characterized and

have additional properties as follows:
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• Stationary scheduling: At any time 𝑡 and for any 𝑖 ∈ [1,𝑚], given 𝐶𝐸𝑖
[𝑡] =

𝛽𝐸𝑖
∈ {0, 1}|𝐸𝑖| and 𝐶𝐸[𝑡 − 𝜏 ] = 𝛼 ∈ {0, 1}|𝐸|, the controller 𝐷𝑖 activates

the link activation vector 𝛾𝐸𝑖
∈ {0, 1}|𝐸𝑖| with certain probability 𝑃 (𝐷𝜋

𝐸𝑖
(𝑡) =

𝛾𝐸𝑖

⃒⃒
𝐶𝐸𝑖

[𝑡] = 𝛽𝐸𝑖
, 𝐶𝐸[𝑡− 𝜏 ] = 𝛼) := 𝑝𝜋(𝛾𝐸𝑖

|𝛽𝐸𝑖
, 𝛼).

• Independence across domains: The decisions made by the domains are indepen-

dent of each other:

𝑃 (𝐷𝜋
𝐸(𝑡) = 𝛾

⃒⃒
𝐶𝐸[𝑡] = 𝛽, 𝐶𝐸[𝑡− 𝜏 ] = 𝛼) =

𝑚∏︁
𝑖=1

𝑃 (𝐷𝜋
𝐸𝑖
(𝑡) = 𝛾𝐸𝑖

⃒⃒
𝐶𝐸[𝑡] = 𝛽, 𝐶𝐸[𝑡− 𝜏 ] = 𝛼)

=
𝑚∏︁
𝑖=1

𝑃 (𝐷𝜋
𝐸𝑖
(𝑡) = 𝛾𝐸𝑖

⃒⃒
𝐶𝐸𝑖

[𝑡] = 𝛽𝐸𝑖
, 𝐶𝐸[𝑡− 𝜏 ] = 𝛼)

=
𝑚∏︁
𝑖=1

𝑝𝜋(𝛾𝐸𝑖
|𝛽𝐸𝑖

, 𝛼),

where the second equality is by the fact that each domain controller 𝐷𝑖 relies

on only its fresh local NSI 𝐶𝐸𝑖
[𝑡] and delayed global NSI 𝐶𝐸[𝑡− 𝜏 ] for making

scheduling decisions.

Definition 4. For network state 𝛼 ∈ Ξ, and policy 𝜋 ∈ Π𝑠, we define: 𝑆(𝛼, 𝜋) =

{E[𝜇𝜋
𝑒 (𝑡)
⃒⃒
𝐶[𝑡−1] = 𝛼]}𝑒∈𝐸 = {E[𝐶𝑒[𝑡]·𝐷𝜋

𝑒 (𝑡)
∏︀

𝑒′∈𝐼𝑒(1−𝐶𝑒′ [𝑡]·𝐷𝜋
𝑒′(𝑡))

⃒⃒
𝐶[𝑡−1] = 𝛼]}𝑒∈𝐸.

Definition 5 (Capacity Region). We define the set Λ to be the set of all arrival vectors

𝜆 ∈ R|𝒞|
+ , for which there exists non-negative scalars {𝜆(𝑐)

𝑖 }, indexed by admissible

routes 𝑇
(𝑐)
𝑖 ∈ 𝒯 (𝑐), and ∀𝛼 ∈ Ξ there exists 𝜇𝛼 ∈ 𝑐𝑜𝑛𝑣𝜋∈Π𝑠(𝑆(𝛼, 𝜋)) such that,

𝜆(𝑐) =
∑︁

𝑇
(𝑐)
𝑖 ∈𝒯 (𝑐)

𝜆
(𝑐)
𝑖 , ∀𝑐 ∈ 𝒞 (3.33)

𝜆𝑒
(𝑑𝑒𝑓.)
=

∑︁
(𝑖,𝑐):𝑒∈𝑇 (𝑐)

𝑖 ,𝑇
(𝑐)
𝑖 ∈𝒯 (𝑐)

𝜆
(𝑐)
𝑖 ≤

∑︁
𝛼∈Ξ

𝑝(𝛼)𝜇𝛼
𝑒 , ∀𝑒 ∈ 𝐸 (3.34)

Theorem 7 (Network Capacity). The network-layer capacity region is characterized

by the set Λ, up to its boundary.

Proof. Proof of Theorem consists of converse and achievability. The proof of converse

follows Lemma 6, which shows that any admissible arrival rate vector 𝜆 is inside Λ.
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The proof of achievability follows Theorem 5 which shows that DUMW achieves any

arrival rate in the interior of the set Λ.

Lemma 6. For any admissible arrival rate vector 𝜆, ∀𝛼 ∈ Ξ there exists 𝜇𝛼 ∈

𝑐𝑜𝑛𝑣𝜋∈Π𝑠(𝑆(𝛼, 𝜋)) that satisfy (3.33) and (3.34).

Proof. Consider any admissible arrival rate vector 𝜆 supported by some policy 𝜋.

WLOG, we may assume the policy 𝜋 to be stationary and the associated DTMC to

be ergodic.

Let 𝐴
(𝑐)
𝑖 (𝑡) and 𝐴(𝑐)(𝑡) be respectively the total number of packets from class 𝑐

up to time 𝑡 that have finished their routing along the route 𝑇
(𝑐)
𝑖 and have arrived

at the source 𝑠(𝑐). We first note that the number of serviced packets of class 𝑐 is

upperbounded by the total arrival of that class, i.e.

𝐴(𝑐)(𝑡) ≥
∑︁

𝑇
(𝑐)
𝑖 ∈𝒯 (𝑐)

𝐴
(𝑐)
𝑖 (𝑡) = 𝑅(𝑐)(𝑡). (3.35)

Dividing both sides of (3.35) by 𝑡 and taking the limit 𝑡→∞, we obtain that w.p.1:

𝜆(𝑐) (𝑎)
= lim

𝑡→∞

𝐴(𝑐)(𝑡)

𝑡
≥ lim

𝑡→∞

∑︀
𝑇

(𝑐)
𝑖 ∈𝒯 (𝑐) 𝐴

(𝑐)
𝑖 (𝑡)

𝑡
= lim

𝑡→∞

𝑅(𝑐)(𝑡)

𝑡

(𝑏)
= 𝜆(𝑐), (3.36)

where (a) is by SLLN, and (d) follows the definition of supportable arrival rate vector

𝜆. We thus conclude that w.p.1:

lim
𝑡→∞

∑︀
𝑇

(𝑐)
𝑖 ∈𝒯 (𝑐) 𝐴

(𝑐)
𝑖 (𝑡)

𝑡
= 𝜆(𝑐) (3.37)

Since 𝜋 is stationary and the associated DTMC is ergodic, the time-average limits

lim𝑡→∞
1
𝑡
𝐴

(𝑐)
𝑖 (𝑡) exist a.s.. We consequently define:

𝜆
(𝑐)
𝑖 := lim

𝑡→∞

1

𝑡
𝐴

(𝑐)
𝑖 (𝑡). (3.38)
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Plugging (3.38) to (3.37), we obtain that w.p.1:

𝜆(𝑐) =
∑︁

𝑇
(𝑐)
𝑖 ∈𝒯 (𝑐)

𝜆
(𝑐)
𝑖 ,

which validates (3.33). It is left to show that (3.34) holds. Now for any edge 𝑒 ∈ 𝐸,

the total number of packets that have have finished their routing along the the routes

𝑇
(𝑐)
𝑖 such that 𝑒 ∈ 𝑇

(𝑐)
𝑖 is upperbounded by the total service of the edge 𝑒, i.e.

∑︁
(𝑖,𝑐):𝑒∈𝑇 (𝑐)

𝑖 ,𝑇
(𝑐)
𝑖 ∈𝒯 (𝑐)

𝐴
(𝑐)
𝑖 (𝑡) ≤

𝑡∑︁
𝜏=1

𝜇𝜋
𝑒 (𝜏)

∑︁
(𝑖,𝑐):𝑒∈𝑇 (𝑐)

𝑖 ,𝑇
(𝑐)
𝑖 ∈𝒯 (𝑐)

1

𝑡
𝐴

(𝑐)
𝑖 (𝑡) ≤ 1

𝑡

𝑡∑︁
𝜏=1

𝜇𝜋
𝑒 (𝜏). (3.39)

Let Ξ = {𝛼 ∈ {0, 1}|𝐸| : 𝑝(𝛼) > 0}. The RHS of (3.39) can be further expressed as:

1

𝑡

𝑡∑︁
𝜏=1

𝜇𝜋
𝑒 (𝜏) =

∑︁
𝛼∈Ξ

|{𝜏 : 𝐶[𝜏 − 1] = 𝛼}|
𝑡

·
(︂ ∑︁

𝜏 :𝜏≤𝑡,𝐶[𝜏−1]=𝛼

1

|{𝜏 : 𝐶[𝜏 − 1] = 𝛼}|
𝜇𝜋
𝑒 (𝜏)

)︂
=
∑︁
𝛼∈Ξ

𝑃𝑡(𝛼) ·𝐻𝛼,𝑒(𝑡) (3.40)

where we consequently define:

𝑃𝑡(𝛼) =
|{𝜏 : 𝐶[𝜏 − 1] = 𝛼}|

𝑡
(3.41)

𝐻𝛼,𝑒(𝑡) =
∑︁

𝜏 :𝐶[𝜏−1]=𝛼

,
1

|{𝜏 : 𝐶[𝜏 − 1] = 𝛼}|
𝜇𝜋
𝑒 (𝜏), (3.42)

and let 𝐻𝛼(𝑡) = {𝐻𝛼,𝑒(𝑡)}𝑒∈𝐸. Since topology state is assumed to evolve according to

a finite state and irreducible Markov chain, we obtain that w.p.1:

lim
𝑡→∞

𝑃𝑡(𝛼) = lim
𝑡→∞

1

𝑡

𝑡∑︁
𝜏=1

1{𝐶[𝜏 − 1] = 𝛼} = 𝑝(𝛼). (3.43)
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We proceed to show 𝐻𝛼(𝑡) ∈ 𝑐𝑜𝑛𝑣𝜋∈Π𝑠(𝑆(𝛼, 𝜋)) when 𝑡→∞. Observe that:

𝐻𝛼,𝑒(𝑡) =
∑︁

𝜏 :𝐶[𝜏−1]=𝛼

1

|{𝜏 : 𝐶[𝜏 − 1] = 𝛼}|
𝜇𝜋
𝑒 (𝜏)

=
∑︁

𝛽,𝑀∈{0,1}|𝐸|

(︂ ∑︁
𝜏 :𝐶[𝜏−1]=𝛼,𝐶[𝜏 ]=𝛽,𝐷𝜋(𝜏)=𝑀

1

|{𝜏 : 𝐶[𝜏 − 1] = 𝛼}|
𝜇𝜋
𝑒 (𝜏)

)︂

(3.3)
=

∑︁
𝛽,𝑀∈{0,1}|𝐸|

⎛⎝ ∑︁
𝜏 :𝐶[𝜏−1]=𝛼,𝐶[𝜏 ]=𝛽,𝐷𝜋(𝜏)=𝑀

1

|{𝜏 : 𝐶[𝜏 − 1] = 𝛼}|
· 𝛽𝑒𝑀𝑒

∏︁
𝑒′∈𝐼𝑒

(1− 𝛽𝑒′𝑀𝑒′)

⎞⎠
=

∑︁
𝛽,𝑀∈{0,1}|𝐸|

(︃
|{𝜏 : 𝐶[𝜏 − 1] = 𝛼,𝐶[𝜏 ] = 𝛽,𝐷𝜋(𝜏) = 𝑀}|

|{𝜏 : 𝐶[𝜏 − 1] = 𝛼}|
· 𝛽𝑒𝑀𝑒

∏︁
𝑒′∈𝐼𝑒

(1− 𝛽𝑒′𝑀𝑒′)

)︃

=
∑︁

𝛽,𝑀∈{0,1}|𝐸|

(︃
𝑃𝑡(𝐷

𝜋(𝜏) = 𝑀,𝐶[𝜏 ] = 𝛽
⃒⃒
𝐶[𝜏 − 1] = 𝛼) · 𝛽𝑒𝑀𝑒

∏︁
𝑒′∈𝐼𝑒

(1− 𝛽𝑒′𝑀𝑒′)

)︃
,

(3.44)

In the last equation (3.44), we consider the following empirical distributions:

𝑃𝑡(𝐷
𝜋(𝜏) = 𝑀,𝐶[𝜏 ] = 𝛽, 𝐶[𝜏 − 1] = 𝛼) =

|{𝜏 : 𝐶[𝜏 − 1] = 𝛼,𝐶[𝜏 ] = 𝛽,𝐷𝜋(𝜏) = 𝑀}|
𝑡

𝑃𝑡(𝐷
𝜋(𝜏) = 𝑀,𝐶[𝜏 ] = 𝛽

⃒⃒
𝐶[𝜏 − 1] = 𝛼) =

|{𝜏 : 𝐶[𝜏 − 1] = 𝛼,𝐶[𝜏 ] = 𝛽,𝐷𝜋(𝜏) = 𝑀}|
|{𝜏 : 𝐶[𝜏 − 1] = 𝛼}|

(3.41)
=

𝑃𝑡(𝐷
𝜋(𝜏) = 𝑀,𝐶[𝜏 ] = 𝛽, 𝐶[𝜏 − 1] = 𝛼)

𝑃𝑡(𝛼)
,

(3.45)

where by the fact that 𝑝(𝛼) > 0 for 𝛼 ∈ Ξ and (3.43), for 𝑡 large enough we have

𝑃𝑡(𝛼) > 0, so that (3.45) is well-defined. Since 𝜋 is stationary and the associated

DTMC is ergodic, it well-defines and enforces the existence of 𝑃 (𝐷𝜋(𝜏) = 𝑀
⃒⃒
𝐶[𝜏−1] =

𝛼,𝐶[𝜏 ] = 𝛽). Consequently, the following probability also exists and is well-defined:

𝑃 (𝐷𝜋(𝜏) = 𝑀,𝐶[𝜏 − 1] = 𝛼,𝐶[𝜏 ] = 𝛽) =𝑃 (𝐶[𝜏 − 1] = 𝛼) · 𝑃 (𝐶[𝜏 ] = 𝛽
⃒⃒
𝐶[𝜏 − 1] = 𝛼)

· 𝑃 (𝐷𝜋(𝜏) = 𝑀
⃒⃒
𝐶[𝜏 − 1] = 𝛼,𝐶[𝜏 ] = 𝛽).
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We thus obtain w.p.1 that:

lim
𝑡→∞

𝑃𝑡(𝐷
𝜋(𝜏) = 𝑀,𝐶[𝜏 ] = 𝛽, 𝐶[𝜏 − 1] = 𝛼)

= lim
𝑡→∞

1

𝑡

𝑡∑︁
𝜏=1

1{𝐷𝜋(𝜏) = 𝑀,𝐶[𝜏 ] = 𝛽, 𝐶[𝜏 − 1] = 𝛼}

=𝑃 (𝐷𝜋(𝜏) = 𝑀,𝐶[𝜏 ] = 𝛽, 𝐶[𝜏 − 1] = 𝛼) (3.46)

Combining (3.43), (3.45) and (3.46), we conclude that w.p.1:

lim
𝑡→∞

𝑃𝑡(𝐷
𝜋(𝜏) = 𝑀,𝐶[𝜏 ] = 𝛽

⃒⃒
𝐶[𝜏 − 1] = 𝛼) = 𝑃 (𝐷𝜋(𝜏) = 𝑀,𝐶[𝜏 ] = 𝛽

⃒⃒
𝐶[𝜏 − 1] = 𝛼).

Now taking 𝑡→∞ on both sides of (3.44), we obtain that w.p.1:

lim
𝑡→∞

𝐻𝛼,𝑒(𝑡) =
∑︁

𝛽,𝑀∈{0,1}|𝐸|

(︃
𝑃 (𝐷𝜋(𝜏) = 𝑀,𝐶[𝜏 ] = 𝛽

⃒⃒
𝐶[𝜏 − 1] = 𝛼) · 𝛽𝑒𝑀𝑒

∏︁
𝑒′∈𝐼𝑒

(1− 𝛽𝑒′𝑀𝑒′)

)︃

= E
[︀
𝐶𝑒[𝑡] ·𝐷𝜋

𝑒 (𝑡)
∏︁
𝑒′∈𝐼𝑒

(1− 𝐶𝑒′ [𝑡] ·𝐷𝜋
𝑒′(𝑡))

⃒⃒
𝐶[𝑡− 1] = 𝛼

]︀
= 𝑆(𝛼, 𝜋)𝑒, (3.47)

where the last line follows Definition 4. Using (3.43) and (3.47), we obtain the limit

of (3.40) as 𝑡→∞ w.p.1:

lim
𝑡→∞

1

𝑡

𝑡∑︁
𝜏=1

𝜇𝜋
𝑒 (𝜏) =

∑︁
𝛼∈Ξ

𝑃 (𝛼) · 𝑆(𝛼, 𝜋)𝑒. (3.48)

Applying (3.38) and (3.48) to (3.39) as 𝑡→∞, we obtain w.p.1:

𝜆𝑒
(𝑑𝑒𝑓.)
=

∑︁
(𝑖,𝑐):𝑒∈𝑇 (𝑐)

𝑖 ,𝑇
(𝑐)
𝑖 ∈𝒯 (𝑐)

𝜆
(𝑐)
𝑖 ≤

∑︁
𝛼∈Ξ

𝑃 (𝛼) · 𝑆(𝛼, 𝜋)𝑒,

which validates (3.34) wherein we take 𝜇𝛼 = 𝑆(𝛼, 𝜋).
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3.6.5 Proof of Theorem 5

We first establish Theorem 8 that shows the strong stability of the virtual queue

process under the DUMW policy, which is crucial for later proving the rate-stability

of the physical queues and thus the throughput-optimality.

Theorem 8. The DUMW policy (Algorithm 3) strongly stabilizes the virtual queue

process, i.e.

lim sup
𝐾→∞

1

𝐾

𝐾−1∑︁
𝑗=0

∑︁
𝑒∈𝐸

E[𝑄𝑒(𝜏𝑗)] <∞,

Proof. Consider any arrival rate vector 𝜆 ∈ 𝑖𝑛𝑡(Λ). Then there exists some scalar

𝜖 > 0 and vectors 𝜇𝛼 ∈ 𝑐𝑜𝑛𝑣𝜋′∈Π𝑠(𝑆(𝛼, 𝜋
′)) for all 𝛼 ∈ Ξ, such that we can decompose

the total arrival for each class 𝑐 ∈ 𝒞 into a finite number of routes in the sense of

(3.33), and such that:

𝜆𝑒
(𝑑𝑒𝑓.)
=

∑︁
(𝑖,𝑐):𝑒∈𝑇 (𝑐)

𝑖 ,𝑇
(𝑐)
𝑖 ∈𝒯 (𝑐)

𝜆
(𝑐)
𝑖 ≤

∑︁
𝛼∈Ξ

𝑝(𝛼)𝜇𝛼
𝑒 − 𝜖, ∀𝑒 ∈ 𝐸 (3.49)

By the Carathéodory’s theorem, every 𝜇𝛼 ∈ 𝑐𝑜𝑛𝑣𝜋′∈Π𝑠(𝑆(𝛼, 𝜋
′)) can be expressed as:

𝜇𝛼 =
∑︁

𝜋′∈𝑌⊆Π𝑠

𝑝𝛼𝜋′𝑆(𝛼, 𝜋′), (3.50)

where 𝑌 is a finite set of policies in Π𝑠 and the non-negative 𝑝𝛼𝜋′ ’s are such that

∑︁
𝜋′∈𝑌⊆Π𝑠

𝑝𝛼𝜋′ = 1. (3.51)

Recall the quadratic Lyapunov function in terms of the virtual queue lengths:

𝐿(𝑄(𝑚)) = 𝑄(𝑚)𝑇𝑄(𝑚) =
∑︁
𝑒∈𝐸

𝑄𝑒(𝑚)2.

For any policy 𝜋, we consider the 𝜏 -step Lyapunov drift of 𝐿(.) (recall that 𝜏𝑗 = 𝑗 · 𝜏)
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conditioned on the virtual queue lengths as follows:

Δ𝜋(𝜏𝑗) = E
[︀
𝐿(𝑄(𝜏𝑗+1))− 𝐿(𝑄(𝜏𝑗))

⃒⃒
𝑄(𝜏𝑗)

]︀
(3.52)

From the virtual queue dynamics, we first have ∀𝑒 ∈ 𝐸:

𝑄𝑒(𝜏𝑗+1)
2 ≤

(︂
𝑄𝑒(𝜏𝑗) +

𝜏𝑗+1−1∑︁
𝑡=𝜏𝑗

[
𝑚∑︁
𝑖=1

𝐴𝜋𝑖
𝑒 (𝑡)− 𝜇𝜋

𝑒 (𝑡)]

)︂2

= 𝑄𝑒(𝜏𝑗)
2 +

(︂ 𝜏𝑗+1−1∑︁
𝑡=𝜏𝑗

[
𝑚∑︁
𝑖=1

𝐴𝜋𝑖
𝑒 (𝑡)− 𝜇𝜋𝑘𝑒

𝑒 (𝑡)]

)︂2

+ 2𝑄𝑒(𝜏𝑗)

𝜏𝑗+1−1∑︁
𝑡=𝜏𝑗

[
𝑚∑︁
𝑖=1

𝐴𝜋𝑖
𝑒 (𝑡)− 𝜇𝜋

𝑒 (𝑡)].

Combining with the following simple bound:

(︂ 𝜏𝑗+1−1∑︁
𝑡=𝜏𝑗

[
𝑚∑︁
𝑖=1

𝐴𝜋𝑖
𝑒 (𝑡)− 𝜇𝜋

𝑒 (𝑡)]

)︂2

≤
(︂ 𝜏𝑗+1−1∑︁

𝑡=𝜏𝑗

[
𝑚∑︁
𝑖=1

𝐴𝜋𝑖
𝑒 (𝑡) + 𝜇𝜋

𝑒 (𝑡)]

)︂2

≤
(︂ 𝜏𝑗+1−1∑︁

𝑞=𝜏𝑗

[𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥]

)︂2

= 𝜏 2(𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥)
2,

we obtain that:

𝑄𝑒(𝜏𝑗+1)
2 −𝑄𝑒(𝜏𝑗)

2 ≤ 𝜏 2(𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥)
2 + 2𝑄𝑒(𝜏𝑗)

𝜏𝑗+1−1∑︁
𝑡=𝜏𝑗

[
𝑚∑︁
𝑖=1

𝐴𝜋𝑖
𝑒 (𝑡)− 𝜇𝜋

𝑒 (𝑡)]

Summing up over all edges 𝑒 ∈ 𝐸 and taking the expectation conditioned on 𝑄(𝜏𝑗),

we have:

Δ𝜋(𝜏𝑗) ≤ 𝜏 2|𝐸|(𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥)
2 + 2

𝜏𝑗+1−1∑︁
𝑡=𝜏𝑗

E
[︀∑︁
𝑒∈𝐸

𝑄𝑒(𝜏𝑗)(
𝑚∑︁
𝑖=1

𝐴𝜋𝑖
𝑒 (𝑡))

⃒⃒
𝑄(𝜏𝑗)

]︀
− 2

𝜏𝑗+1−1∑︁
𝑡=𝜏𝑗

E
[︀∑︁
𝑒∈𝐸

𝑄𝑒(𝜏𝑗)𝜇
𝜋
𝑒 (𝑡)

⃒⃒
𝑄(𝜏𝑗)

]︀
(3.53)

Construction of the randomized policy RAND: For any class 𝑐 packet with

𝑠(𝑐) ∈ 𝐷𝑖 for some 𝑖 ∈ [1,𝑚] (i.e. the packet arrives at node 𝑠(𝑐) belonging to domain

𝐷𝑖), the RAND policy routes it along the path 𝑇
(𝑐)
𝑗 ∈ 𝒯 (𝑐) with probability 𝜆

(𝑐)
𝑗

𝜆(𝑐) . For
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scheduling, in view of (3.50), at every time slot 𝑡 the RAND policy observes the

delayed global NSI as 𝐶[𝑡 − 𝜏 ] = 𝛼 and activates link according to policy 𝜋′ with

probability 𝑝𝛼𝜋′ . Note that 𝐴RAND𝑖
𝑒 (𝑡) is the number of packets that arrive at domain

𝐷𝑖 and are routed through edge 𝑒 by the RAND policy. We obtain that:

E[𝐴RAND𝑖
𝑒 (𝑡)] = E[

∑︁
𝑐∈𝒞:𝑠(𝑐)∈𝐷𝑖

𝐴(𝑐)(𝑡)1(𝑒 ∈ 𝑇 (𝑐)(𝑡))] =
∑︁

(𝑖,𝑐):𝑒∈𝑇 (𝑐)
𝑖 ,𝑠(𝑐)∈𝐷𝑖

𝜆
(𝑐)
𝑖 := 𝜆𝑖

𝑒

From our definition of 𝜆𝑖
𝑒 above, we have:

E[𝐴RAND
𝑒 (𝑡)] =

𝑚∑︁
𝑖=1

𝜆𝑖
𝑒 = 𝜆𝑒. (3.54)

Under DUMW, each domain 𝐷𝑖 finds the routing 𝑇 (𝑐)(𝑡) that, for 𝑡 ∈ [𝜏𝑗, 𝜏𝑗+1),

minimizes

(︂∑︁
𝑒∈𝐸

̃︀𝑄𝑒(𝜏𝑗−1) · 1(𝑒 ∈ 𝑇 (𝑐))

)︂
, ∀𝑐 ∈ 𝒞𝑖 (3.55)

as in (3.22). Consequently, under DUMW, domain 𝐷𝑖 minimizes the following objec-

tive:

∑︁
𝑐∈𝒞𝑖

𝐴(𝑐)(𝑡)

(︂∑︁
𝑒∈𝐸

̃︀𝑄𝑒(𝜏𝑗−1) · 1(𝑒 ∈ 𝑇 (𝑐))

)︂
(3.56)

=
∑︁
𝑒∈𝐸

̃︀𝑄𝑒(𝜏𝑗−1)

(︂∑︁
𝑐∈𝒞𝑖

𝐴(𝑐)(𝑡)1(𝑒 ∈ 𝑇 (𝑐))

)︂
=
∑︁
𝑒∈𝐸

̃︀𝑄𝑒(𝜏𝑗−1)𝐴
𝜋𝑖
𝑒 (𝑡), (3.57)

since the separable objective (3.56) is the weighted sum of (3.55) over 𝑐 ∈ 𝒞. As

domain 𝐷𝑖 under DUMW minimizes (3.57), we obtain that:

∑︁
𝑒∈𝐸

̃︀𝑄𝑒(𝜏𝑗−1)𝐴
DUMW𝑖
𝑒 (𝑡) ≤

∑︁
𝑒∈𝐸

̃︀𝑄𝑒(𝜏𝑗−1)𝐴
RAND𝑖
𝑒 (𝑡)

∴
∑︁
𝑒∈𝐸

̃︀𝑄𝑒(𝜏𝑗−1)𝐴
DUMW
𝑒 (𝑡) ≤

∑︁
𝑒∈𝐸

̃︀𝑄𝑒(𝜏𝑗−1)𝐴
RAND
𝑒 (𝑡), (3.58)
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where the last inequality follows the identity (3.11). Now using Lemma 5, we obtain:

∑︁
𝑒∈𝐸

̃︀𝑄𝑒(𝜏𝑗−1)𝐴
DUMW
𝑒 (𝑡) ≥

∑︁
𝑒∈𝐸

𝑄𝑒(𝜏𝑗)𝐴
DUMW
𝑒 (𝑡)− 𝐴𝑚𝑎𝑥‖̃︀Q(𝜏𝑗−1)−Q(𝜏𝑗)‖1

(3.32)
≥
∑︁
𝑒∈𝐸

𝑄𝑒(𝜏𝑗)𝐴
DUMW
𝑒 (𝑡)− 𝜏𝐴𝑚𝑎𝑥(𝐴𝑚𝑎𝑥 + |𝐸|)− 𝐴𝑚𝑎𝑥𝜖(𝑗),

(3.59)

and similarly:

∑︁
𝑒∈𝐸

̃︀𝑄𝑒(𝜏𝑗−1)𝐴
RAND
𝑒 (𝑡) ≤

∑︁
𝑒∈𝐸

𝑄𝑒(𝜏𝑗)𝐴
RAND
𝑒 (𝑡) + 𝐴𝑚𝑎𝑥‖̃︀Q(𝜏𝑗−1)−Q(𝜏𝑗)‖1

(3.32)
≤
∑︁
𝑒∈𝐸

𝑄𝑒(𝜏𝑗)𝐴
RAND
𝑒 (𝑡) + 𝜏𝐴𝑚𝑎𝑥(𝐴𝑚𝑎𝑥 + |𝐸|) + 𝐴𝑚𝑎𝑥𝜖(𝑗).

(3.60)

Combining (3.58), (3.59) and (3.60), we obtain that:

∑︁
𝑒∈𝐸

𝑄𝑒(𝜏𝑗)𝐴
DUMW
𝑒 (𝑡) ≤

∑︁
𝑒∈𝐸

𝑄𝑒(𝜏𝑗)𝐴
RAND
𝑒 (𝑡) + 2𝜏𝐴𝑚𝑎𝑥(𝐴𝑚𝑎𝑥 + |𝐸|) + 2𝐴𝑚𝑎𝑥𝜖(𝑗).

Taking expectation conditioned on Q(𝜏𝑗) and using (3.54), we have:

E
[︀∑︁
𝑒∈𝐸

𝑄𝑒(𝜏𝑗)𝐴
DUMW
𝑒 (𝑡)

⃒⃒
Q(𝜏𝑗)

]︀
≤ Q(𝜏𝑗)

𝑇𝜆+ 2𝜏𝐴𝑚𝑎𝑥(𝐴𝑚𝑎𝑥 + |𝐸|) + 2𝐴𝑚𝑎𝑥E[𝜖(𝑗)]

∴
𝜏𝑗+1−1∑︁
𝑡=𝜏𝑗

E
[︀∑︁
𝑒∈𝐸

𝑄𝑒(𝜏𝑗)𝐴
DUMW
𝑒 (𝑡)

⃒⃒
Q(𝜏𝑗)

]︀
≤ 𝜏Q(𝜏𝑗)

𝑇𝜆+ 2𝜏 2𝐴𝑚𝑎𝑥(𝐴𝑚𝑎𝑥 + |𝐸|) + 2𝜏𝐴𝑚𝑎𝑥E[𝜖(𝑗)].

(3.61)

Recall that Π𝑠 is the space of stationary admissible policies making decisions

independently of the virtual queue lengths. Besides Π𝑠, we consider ̃︀Π𝑠 as the space

of stationary admissible policies making decisions based on not only the NSI (i.e.

decisions for domain 𝑖𝑡ℎ depend on fresh local NSI 𝐶𝐸𝑖
[𝑡] and delayed global NSI

𝐶𝐸[𝑡− 𝜏 ]), but also the queue length information 𝑄(𝑡). Since ̃︀Π𝑠 is the same as Π𝑠

with the exception that policies in ̃︀Π𝑠 has additional knowledge in terms of queue
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lengths for making decision, the maximum effective service rate achieved by policies

in ̃︀Π𝑠 is better than by policies in Π𝑠:

max
𝜋∈̃︀Π𝑠

E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇𝜋
𝑒 (𝑡)

⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼,Q(𝜏𝑗)

]︂
≥ max

𝜋∈Π𝑠

E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇𝜋
𝑒 (𝑡)

⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼,Q(𝜏𝑗)

]︂
= max

𝜋∈Π𝑠

E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇𝜋
𝑒 (𝑡)

⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼

]︂
, (3.62)

where the last line is by the fact that policies in Π𝑠 make decision independently of the

virtual queue lengths. Next, from Lemma 9, the DUMW policy satisfies ∀𝑡 ∈ [𝜏𝑗, 𝜏𝑗+1):

E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇DUMW
𝑒 (𝑡)

⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼,Q(𝜏𝑗)

]︂
≥ max

𝜋∈̃︀Π𝑠

E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇𝜋
𝑒 (𝑡)

⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼,Q(𝜏𝑗)

]︂
− 2E[𝜖(𝑗)]− 2𝜏(𝐴𝑚𝑎𝑥 + |𝐸|).

(3.63)

Combining (3.62) and (3.63), we obtain that:

E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇DUMW
𝑒 (𝑡)

⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼,Q(𝜏𝑗)

]︂
≥ max

𝜋∈Π𝑠

E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇𝜋
𝑒 (𝑡)

⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼

]︂
− 2E[𝜖(𝑗)]− 2𝜏(𝐴𝑚𝑎𝑥 + |𝐸|)

≥ E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇𝜋′

𝑒 (𝑡)
⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼

]︂
− 2E[𝜖(𝑗)]− 2𝜏(𝐴𝑚𝑎𝑥 + |𝐸|), ∀𝜋′ ∈ Π𝑠

= 𝑄(𝜏𝑗)
𝑇𝑆(𝛼, 𝜋′)− 2E[𝜖(𝑗)]− 2𝜏(𝐴𝑚𝑎𝑥 + |𝐸|), ∀𝜋′ ∈ Π𝑠

∴𝑝𝛼𝜋′E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇DUMW
𝑒 (𝑡)

⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼,Q(𝜏𝑗)

]︂
≥ 𝑄(𝜏𝑗)

𝑇
(︀
𝑝𝛼𝜋′𝑆(𝛼, 𝜋′)

)︀
− 𝑝𝛼𝜋′

[︀
2E[𝜖(𝑗)]− 2𝜏(𝐴𝑚𝑎𝑥 + |𝐸|)

]︀
.
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Summing up the above in view of (3.50) and (3.51), we obtain:

E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇DUMW
𝑒 (𝑡)

⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼,Q(𝜏𝑗)

]︂
≥ 𝑄(𝜏𝑗)

𝑇𝜇𝛼 − 2E[𝜖(𝑗)]− 2𝜏(𝐴𝑚𝑎𝑥 + |𝐸|)

Taking expectation w.r.t. 𝛼 ∈ Ξ of the above, we have:

E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇DUMW
𝑒 (𝑡)

⃒⃒
Q(𝜏𝑗)

]︂
≥ Q(𝜏𝑗)

𝑇
(︀∑︁
𝛼∈Ξ

𝑝(𝛼) · 𝜇𝛼
)︀
− 2E[𝜖(𝑗)]− 2𝜏(𝐴𝑚𝑎𝑥 + |𝐸|)

(3.49)
≥ Q(𝜏𝑗)

𝑇 (𝜆+ 𝜖1)− 2E[𝜖(𝑗)]− 2𝜏(𝐴𝑚𝑎𝑥 + |𝐸|)

Summing up the above over 𝑡 = 𝜏𝑗 → 𝜏𝑗+1 − 1, we obtain:

𝜏𝑗+1−1∑︁
𝑡=𝜏𝑗

E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇DUMW
𝑒 (𝑡)

⃒⃒
Q(𝜏𝑗)

]︂
≥ 𝜏Q(𝜏𝑗)

𝑇 (𝜆+ 𝜖1)− 2𝜏E[𝜖(𝑗)]− 2𝜏 2(𝐴𝑚𝑎𝑥 + |𝐸|)

(3.64)

Now applying the bounds (3.61) and (3.64) into (3.53), we have:

ΔDUMW(𝜏𝑗) ≤ 𝜏 2|𝐸|(𝐴𝑚𝑎𝑥 + 𝜇𝑚𝑎𝑥)
2 + 2𝜏 2(𝐴𝑚𝑎𝑥 + |𝐸|) + 4𝜏 2𝐴𝑚𝑎𝑥(𝐴𝑚𝑎𝑥 + |𝐸|)

+ 4𝜏𝐴𝑚𝑎𝑥E[𝜖(𝑗)] + 2𝜏𝜖(𝑗)− 2𝜏𝜖Q(𝜏𝑗)
𝑇1

= 𝜏 2𝐶1 + (4𝜏𝐴𝑚𝑎𝑥 + 2𝜏)E[𝜖(𝑗)]− 2𝜏𝜖‖Q(𝜏𝑗)‖1, (3.65)

where 𝐶1 = |𝐸|(𝐴𝑚𝑎𝑥+𝜇𝑚𝑎𝑥)
2+2(𝐴𝑚𝑎𝑥+|𝐸|)+4𝐴𝑚𝑎𝑥(𝐴𝑚𝑎𝑥+|𝐸|). Taking expectation

on both sides of (3.65) w.r.t the virtual queue lengths Q(𝜏𝑗), we bound the expected

drift as:

E𝐿(Q(𝜏𝑗+1))− E𝐿(Q(𝜏𝑗)) ≤ 𝜏 2𝐶1 + (4𝜏𝐴𝑚𝑎𝑥 + 2𝜏)E[𝜖(𝑗)]− 2𝜏𝜖
∑︁
𝑒∈𝐸

E[𝑄𝑒(𝜏𝑗)]

Summing the above from 𝑗 = 0 → 𝐾 − 1 and noting that 𝐿(Q(𝜏𝐾)) ≥ 0 and
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𝐿(Q(𝜏0)) = 0, we obtain that:

1

𝐾

𝐾−1∑︁
𝑗=0

∑︁
𝑒∈𝐸

E[𝑄𝑒(𝜏𝑗)] ≤
𝜏𝐶1

2𝜖
+

2𝐴𝑚𝑎𝑥 + 1

𝜖
·
∑︀𝐾−1

𝑗=0 E[𝜖(𝑗)]
𝐾

. (3.66)

If DUMW is under the error-free tree-sum mechanism, then
∑︀𝐾−1

𝑗=0 E[𝜖(𝑗)]
𝐾

= 0.

Else if DUMW is under the gossip-sum mechanism, then by Lemma 2 we have

lim𝐾→∞

∑︀𝐾−1
𝑗=0 E[𝜖(𝑗)]

𝐾
<∞. Thus taking lim sup of (3.66), we conclude that:

lim sup
𝐾→∞

1

𝐾

𝐾−1∑︁
𝑗=0

∑︁
𝑒∈𝐸

E[𝑄𝑒(𝜏𝑗)] <∞,

i.e. the virtual queues are strongly stable under DUMW.

Back to the main proof, besides the 𝜏 -step virtual queue process {Q(𝜏𝑗)}𝑗≥0, we

now also consider 1-step virtual queue process {Q̂(𝑡)}𝑡≥0 as follows:

𝑄̂𝑒(𝑡+ 1) =
(︀
𝑄̂𝑒(𝑡) + 𝐴𝜋

𝑒 (𝑡)− 𝜇𝜋
𝑒 (𝑡)

)︀+
, ∀𝑒 ∈ 𝐸. (3.67)

The next Lemma 7 derives the strong stability of {Q̂(𝑡)}𝑡≥0 from the strong stability

of {Q(𝜏𝑗)}𝑗≥0. Since the 1-step virtual queue process {Q̂(𝑡)}𝑡≥0 with the dynamics as

in (3.67) is exactly the same as that considered in [46], its strong stability immediately

implies the throughput-optimality of DUMW following the results from [46].

Lemma 7. Under the DUMW policy, the virtual queue process {Q̂(𝑡)}𝑡≥0 is strongly-

stable, i.e.

lim sup
𝑇→∞

1

𝑇

𝑇−1∑︁
𝑡=0

∑︁
𝑒∈𝐸

E[𝑄̂𝑒(𝑡)] <∞.

Proof. For any 𝑇 > 0, we consider 𝑇0 = (𝑇 −1) mod 𝜏 and express 𝑇 −1 = 𝐾 ·𝜏 +𝑇0
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for some integer 𝐾. From Lemma 11, we have ∀𝑗 ∈ [0, 𝐾 − 1]:

(𝑗+1)𝜏−1∑︁
𝑡=𝑗𝜏

∑︁
𝑒∈𝐸

E[𝑄̂𝑒(𝑡)] ≤
(𝑗+1)𝜏−1∑︁

𝑡=𝑗𝜏

∑︁
𝑒∈𝐸

(︀
E[𝑄𝑒(𝜏𝑗)] + 𝜏𝐴𝑚𝑎𝑥

)︀
= 𝜏 2|𝐸|𝐴𝑚𝑎𝑥 + 𝜏

∑︁
𝑒∈𝐸

E[𝑄𝑒(𝜏𝑗)]. (3.68)

Noting that 𝑇 − 1−𝐾𝜏 = 𝑇0 < 𝜏 , we similarly have:

𝑇−1∑︁
𝑡=𝐾𝜏

∑︁
𝑒∈𝐸

E[𝑄̂𝑒(𝑡)] ≤
𝑇−1∑︁
𝑡=𝐾𝜏

∑︁
𝑒∈𝐸

(︀
E[𝑄𝑒(𝜏𝐾)] + 𝜏𝐴𝑚𝑎𝑥

)︀
≤ 𝜏 2|𝐸|𝐴𝑚𝑎𝑥 + 𝜏

∑︁
𝑒∈𝐸

E[𝑄𝑒(𝜏⌊(𝑇−1)/𝜏⌋)]. (3.69)

Summing up (3.68) over 𝑗 = 0→ 𝐾 − 1 and (3.69), we obtain that for 𝑇 > 1:

1

𝑇

𝑇−1∑︁
𝑡=0

∑︁
𝑒∈𝐸

E[𝑄̂𝑒(𝑡)] ≤
⌊(𝑇 − 1)/𝜏⌋+ 1

𝑇
𝜏 2|𝐸|𝐴𝑚𝑎𝑥 + 𝜏

∑︀⌊(𝑇−1)/𝜏⌋
𝑗=0

∑︀
𝑒∈𝐸 E[𝑄𝑒(𝜏𝑗)]

𝑇

≤ 2𝜏 |𝐸|𝐴𝑚𝑎𝑥 +

∑︀⌊(𝑇−1)/𝜏⌋
𝑗=0

∑︀
𝑒∈𝐸 E[𝑄𝑒(𝜏𝑗)]

⌊(𝑇 − 1)/𝜏⌋
.

Taking lim sup with 𝑇 →∞ and using Theorem 8, we conclude that under DUMW:

lim sup
𝑇→∞

1

𝑇

𝑇−1∑︁
𝑡=0

∑︁
𝑒∈𝐸

E[𝑄̂𝑒(𝑡)] <∞.

We now also consider the physical queues {U(𝑡)}𝑡≥0 [50], whereby 𝑈𝑒(𝑡) captures

the number of physical packets backlogged at edge 𝑒 ∈ 𝐸 at time slot 𝑡. The strong

stability of {Q̂(𝑡)}𝑡≥0 (Lemma 7) is sufficient to establish the rate-stability of the

physical queues in the following Theorem.

Theorem 9. Under the DUMW policy, the physical queues are rate-stable [33] for
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any arrival rate vector 𝜆 ∈ 𝑖𝑛𝑡(Λ), i.e.

lim
𝑡→∞

∑︀
𝑒∈𝐸 𝑈𝑒(𝑡)

𝑡
= 0, 𝑤.𝑝.1

Proof. The proof directly follows the proof of [46, Theorem 3], which requires the

strong stability of the 1-step virtual queue process {Q̂(𝑡)}𝑡≥0 proven in Lemma 7.

Remark 1. While [46] proved Theorem 9 for the case of Extended Nearest To Origin

(ENTO) packet scheduling, we strongly note that the results also hold for FIFO packet

scheduling. For the proof sketch, using SLLN and the strong stability of the virtual

queue process, we can show that the FIFO fluid model is stable [5], which then implies

the stability of the physical network [9].

Now, we can bound the number of distinct packets 𝑅(𝑐)(𝑡) of class 𝑐 ∈ 𝒞 that have

reached all of the destination nodes as follows:

𝑡∑︁
𝑞=0

𝐴(𝑐)(𝑡)−
∑︁
𝑒∈𝐸

𝑈𝑒(𝑡) ≤ 𝑅(𝑐)(𝑡) ≤
𝑡∑︁

𝑞=0

𝐴(𝑐)(𝑡), (3.70)

where the lower bound follows the fact that any packet out of the
∑︀𝑡

𝑞=0𝐴
(𝑐)(𝑡) packets

that have entered the network must either have reached the final destination, i.e.

counted in 𝑅(𝑐)(𝑡), or be present in some physical queue, i.e. counted in
∑︀

𝑒∈𝐸 𝑈𝑒(𝑡).

Dividing both sides of (3.70) by 𝑡, taking the limit 𝑡 → ∞, using Theorem 9, and

noting that E𝐴(𝑐)(𝑡) = 𝜆(𝑐), we obtain that under DUMW policy:

lim inf
𝑡→∞

𝑅(𝑐)(𝑡)

𝑡
= 𝜆(𝑐), ∀𝑐 ∈ 𝒞, 𝑤.𝑝.1

By definition, we conclude that DUMW is throughput-optimal.
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3.6.6 Supplementary Lemmas

For technical exposition, We define the function:

𝐺(x, 𝛼,Q) =
∑︁
𝛽∈Ξ

𝑃 (𝐶[𝑡] = 𝛽
⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼)

×
[︂∑︁

𝑒∈𝐸

𝑄𝑒 · 𝛽𝑒 · 𝑥(𝑒, 𝛽𝐸𝑘𝑒
, 𝛼)

∏︁
𝑒′∈𝐼𝑒

(1− 𝛽𝑒′𝑥(𝑒
′, 𝛽𝐸𝑘′𝑒

, 𝛼))

]︂
. (3.71)

Furthermore, given 𝛼 ∈ {0, 1}|𝐸|, for notation, we define 𝑆𝛼 = {x ∈ {0, 1}𝑀0 : x =

{𝑥(𝑒, 𝜉, 𝛼)}
𝑒∈𝐸,𝜉∈{0,1}|𝐸𝑘𝑒

|} with 𝑀0 =
∑︀𝑚

𝑗=1 |𝐸𝑗|2|𝐸𝑗 | be the set of binary vectors x of

𝑀0 entries indexed by 𝑒,Ξ and 𝛼. Intuitively, as in schedule, 𝑥(𝑒, 𝜉, 𝛼) corresponds

to the scheduling decision of whether to activate link 𝑒 given the observation of fresh

local NSI as Ξ and delayed global NSI as 𝛼.

Properties of 𝐺(x, 𝛼,Q)

Lemma 8. Let x1 = argmaxx∈𝑆𝛼
𝐺(x, 𝛼,Q) and x2 = argmaxx∈𝑆𝛼

𝐺(x, 𝛼,Q′). We

have the followings:

|𝐺(x, 𝛼,Q)−𝐺(x, 𝛼,Q′)| ≤ ‖Q−Q′‖1,∀x ∈ 𝑆𝛼 (3.72)

|max
x∈𝑆𝛼

𝐺(x, 𝛼,Q)−max
x∈𝑆𝛼

𝐺(x, 𝛼,Q′)| ≤ ‖Q−Q′‖1 (3.73)

𝐺(x1, 𝛼,Q
′) ≥ max

x∈𝑆𝛼

𝐺(x, 𝛼,Q′)− 2‖Q−Q′‖1 (3.74)

Proof. For (3.72), we have:
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𝐺(x1, 𝛼,Q)

=
∑︁
𝛽∈Ξ

𝑃 (𝐶[𝑡] = 𝛽
⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼)×

[︂∑︁
𝑒∈𝐸

𝑄𝑒 · 𝛽𝑒𝑥(𝑒, 𝛽𝐸𝑘𝑒
, 𝛼)

∏︁
𝑒′∈𝐼𝑒

(1− 𝛽𝑒′𝑥(𝑒
′, 𝛽𝐸𝑘′𝑒

, 𝛼))

]︂
= 𝐺(x, 𝛼,Q′)

+
∑︁
𝛽∈Ξ

𝑃 (𝐶[𝑡] = 𝛽
⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼)×

[︂∑︁
𝑒∈𝐸

(𝑄𝑒 −𝑄′
𝑒) · 𝛽𝑒𝑥(𝑒, 𝛽𝐸𝑘𝑒

, 𝛼)
∏︁
𝑒′∈𝐼𝑒

(1− 𝛽𝑒′𝑥(𝑒
′, 𝛽𝐸𝑘′𝑒

, 𝛼))

]︂
≤ 𝐺(x, 𝛼,Q′) +

∑︁
𝛽∈Ξ

𝑃 (𝐶[𝑡] = 𝛽
⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼)×

[︂∑︁
𝑒∈𝐸′

|𝑄𝑒 −𝑄′
𝑒|
]︂

= 𝐺(x, 𝛼,Q′) +
∑︁
𝛽∈Ξ

𝑃 (𝐶[𝑡] = 𝛽
⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼)× ‖Q−Q′‖1

= 𝐺(x, 𝛼,Q′) + ‖Q−Q′‖1.

By symmetry, we obtain that: maxx∈𝑆𝛼 𝐺(x, 𝛼,Q′) ≤ 𝐺(x, 𝛼,Q) + ‖Q−Q′‖1, which

concludes the proof of (3.73).

For (3.73), we have:

max
x∈𝑆𝛼

𝐺(x, 𝛼,Q) = 𝐺(x1, 𝛼,Q)
(3.72)
≤ 𝐺(x1, 𝛼,Q) + ‖Q−Q′‖1

≤ max
x∈𝑆𝛼

𝐺(x, 𝛼,Q′) + ‖Q−Q′‖1.

By symmetry, we obtain that: maxx∈𝑆𝛼 𝐺(x, 𝛼,Q′) ≤ maxx∈𝑆𝛼 𝐺(x, 𝛼,Q)+‖Q−Q′‖1,

which concludes the proof of (3.73).

For (3.74), we have:

𝐺(x1, 𝛼,Q
′)

(3.73)
≥ 𝐺(x1, 𝛼,Q)− ‖Q−Q′‖1

= max
x∈𝑆𝛼

𝐺(x, 𝛼,Q)− ‖Q−Q′‖1
(3.73)
≥ max

x∈𝑆𝛼

𝐺(x, 𝛼,Q′)− 2‖Q−Q′‖1
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Optimality of the Scheduling Algorithm schedule

Lemma 9. The DUMW policy satisfies ∀𝑡 ∈ [𝜏𝑗, 𝜏𝑗+1):

E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇DUMW
𝑒 (𝑡)

⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼,Q(𝜏𝑗)

]︂
≥ max

𝜋∈̃︀Π𝑠

E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇𝜋
𝑒 (𝑡)

⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼,Q(𝜏𝑗)

]︂
− 2E[𝜖(𝑗)]− 2𝜏(𝐴𝑚𝑎𝑥 + |𝐸|)

Proof. We first prove that there exists an optimal policy:

𝜋* = argmax
𝜋∈̃︀Π𝑠

E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇𝜋
𝑒 (𝑡)

⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼,Q(𝜏𝑗)

]︂
, (3.75)

which is deterministic. We know that any policy 𝜋 ∈ ̃︀Π𝑠 can be characterized by

the set of feasible probabilities
{︀
𝑃 (𝐷𝜋

𝐸𝑖
(𝜏) = 𝑀𝐸𝑖

⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼,𝐶𝐸𝑖

[𝑡] = 𝛽𝐸𝑖
,Q(𝑡))

}︀
with 𝑀𝐸𝑖

∈ {0, 1}|𝐸𝑖| ∀𝑖 ∈ [1,𝑚] and 𝛼, 𝛽 ∈ {0, 1}|𝐸|. For abbreviation, we let

𝑝𝜋𝑖 (𝑀𝐸𝑖

⃒⃒
𝛽𝐸𝑖

, 𝛼,Q(𝑡)) = 𝑃 (𝐷𝜋
𝐸𝑖
(𝜏) = 𝑀𝐸𝑖

⃒⃒
𝐶[𝑡 − 𝜏 ] = 𝛼,𝐶𝐸𝑖

[𝑡] = 𝛽𝐸𝑖
,Q(𝑡)). The

objective (3.75) can be expressed as:

E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇𝜋
𝑒 (𝑡)

⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼,Q(𝜏𝑗)

]︂
(3.76)

=
∑︁
𝛽∈Ξ

𝑃 (𝐶[𝑡] = 𝛽
⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼)× E

[︂∑︁
𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇𝜋
𝑒 (𝑡)

⃒⃒
𝐶[𝑡] = 𝛽, 𝐶[𝑡− 𝜏 ] = 𝛼,Q(𝜏𝑗)

]︂
(3.77)

=
∑︁
𝛽∈Ξ

𝑃 (𝐶[𝑡] = 𝛽
⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼)×

[︂ ∑︁
𝑀∈{0,1}|𝐸|

𝑃 (𝐷𝜋(𝜏) = 𝑀
⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼,𝐶[𝑡] = 𝛽,Q(𝜏𝑗))

× E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇𝜋
𝑒 (𝑡)

⃒⃒
𝐷𝜋(𝜏) = 𝑀,𝐶[𝑡] = 𝛽, 𝐶[𝑡− 𝜏 ] = 𝛼,Q(𝜏𝑗)

]︂]︂
⏟  ⏞  

𝐹 (𝑀,𝛽,𝛼,Q(𝜏𝑗))

(3.78)

=
∑︁
𝛽∈Ξ

𝑃 (𝐶[𝑡] = 𝛽
⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼)×

[︂ ∑︁
𝑀∈{0,1}|𝐸|

𝑚∏︁
𝑖=1

𝑝𝜋𝑖 (𝑀𝐸𝑖

⃒⃒
𝛽𝐸𝑖

, 𝛼,Q(𝜏𝑗))× 𝐹 (𝑀,𝛽, 𝛼,Q(𝜏𝑗))

]︂
,

(3.79)

where (3.77) and (3.78) are by law of iterated expectation, and (3.79) is by the fact
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that decisions across domains are made independently. Furthermore, we note that

𝐹 (𝑀,𝛽, 𝛼,Q(𝜏𝑗)) is non-negative and can be evaluated as:

𝐹 (𝑀,𝛽, 𝛼,Q(𝜏𝑗)) =
∑︁
𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝛽𝑒𝑀𝑒

∏︁
𝑒′∈𝐼𝑒

(1− 𝛽𝑒′𝑀𝑒′). (3.80)

Now take any optimal policy ̃︀𝜋 maximizing (3.76), i.e.:

̃︀𝜋 = argmax
𝜋∈̃︀Π𝑠

E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇𝜋
𝑒 (𝑡)

⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼,Q(𝜏𝑗)

]︂
. (3.81)

= argmax
{𝑝𝜋𝑖 (|)}

∑︁
𝛽∈Ξ

𝑃 (𝐶[𝑡] = 𝛽
⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼)

×
[︂ ∑︁

𝑀∈{0,1}|𝐸|

𝑚∏︁
𝑖=1

𝑝𝜋(𝑀𝐸𝑖

⃒⃒
𝛽𝐸𝑖

, 𝛼,𝑄(𝜏𝑗))× 𝐹 (𝑀,𝛽, 𝛼,Q(𝜏𝑗))

]︂

Now fix any 𝛽𝐸𝑖
∈ {0, 1}|𝐸𝑖| and 𝛼 ∈ {0, 1}|𝐸|. We show that from ̃︀𝜋 we can construct

a new optimal policy ̃︀𝜋′ (i.e. maximizing (3.76)) that makes deterministic scheduling

decisions for the domain 𝑖𝑡ℎ given the observation of its fresh local NSI as 𝐶𝐸𝑖
[𝑡] = 𝛽𝐸𝑖

,

, delayed global NSI as 𝐶𝐸[𝑡− 𝜏 ] = 𝛼, and virtual queue values Q(𝜏𝑗). Since (3.79) is

multi-linear in term of the variables 𝑝𝜋𝑖 (𝑀𝐸𝑖

⃒⃒
𝛽𝐸𝑖

, 𝛼,Q(𝜏𝑗))’s, we can write (3.76) as:

E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇̃︀𝜋
𝑒 (𝑡)

⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼,Q(𝜏𝑗)

]︂
=

∑︁
𝑀 ′∈{0,1}|𝐸𝑖|

𝑝̃︀𝜋𝑖 (𝑀 ′|𝛽𝐸𝑖
, 𝛼,Q(𝜏𝑗)) · 𝐶̃︀𝜋

𝑀 ′ ,

(3.82)

where:

𝐶̃︀𝜋
𝑀 ′ =

∑︁
𝑀∈{0,1}|𝐸𝑖|:𝑀𝐸𝑖

=𝑀 ′

[︂∑︁
𝛽∈Ξ

𝑃 (𝐶[𝑡] = 𝛽
⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼)

×
𝑚∏︁
𝑗 ̸=𝑖

𝑝𝜋𝑗 (𝑀𝐸𝑗

⃒⃒
𝛽𝐸𝑗

, 𝛼,Q(𝜏𝑗))× 𝐹 (𝑀,𝛽, 𝛼,Q(𝜏𝑗))

]︂
,

∑︁
𝑀 ′∈{0,1}|𝐸𝑖|

𝑝̃︀𝜋𝑖 (𝑀 ′|𝛽𝐸𝑖
, 𝛼,Q(𝜏𝑗)) = 1 (3.83)

All 𝐶̃︀𝜋
𝑀 ′ for 𝑀 ′ ∈ {0, 1}|𝐸𝑖| do not depend on the variables 𝑝̃︀𝜋𝑖 (|) in their formulas. Let
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𝑀 ′
1 = argmax𝑀 ′∈{0,1}|𝐸𝑖| 𝐶

̃︀𝜋
𝑀 ′ Consider the policy ̃︀𝜋′ such that:

𝑝̃︀𝜋′

𝑖 (𝑀
′|𝛽𝐸𝑖

, 𝛼,Q(𝜏𝑗)) =

⎧⎪⎨⎪⎩1, if 𝑀 ′ = 𝑀 ′
1

0, otherwise
(3.84)

𝑝̃︀𝜋′

𝑗 (𝑀
′|𝛽′

𝐸𝑗
, 𝛼′,Q(𝜏𝑗)) = 𝑝̃︀𝜋𝑗 (𝑀 ′|𝛽′

𝐸𝑗
, 𝛼′,Q(𝜏𝑗)), ∀(𝛽′

𝐸𝑗
, 𝛼′) ̸= (𝛽𝐸𝑖

, 𝛼) (3.85)

Since ̃︀𝜋′ only differs from ̃︀𝜋 in 𝑝̃︀𝜋𝑖 (.|𝛽𝐸𝑖
, 𝛼,Q(𝜏𝑗)), we have 𝐶̃︀𝜋′

𝑀 ′ = 𝐶̃︀𝜋
𝑀 ′ for all 𝑀 ′ ∈

{0, 1}|𝐸𝑖|. Thus,

E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇̃︀𝜋′

𝑒 (𝑡)
⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼,Q(𝜏𝑗)

]︂
=

∑︁
𝑀 ′∈{0,1}|𝐸𝑖|

𝑝̃︀𝜋′

𝑖 (𝑀
′|𝛽𝐸𝑖

, 𝛼,Q(𝜏𝑗)) · 𝐶̃︀𝜋′

𝑀 ′ = 𝐶̃︀𝜋
𝑀 ′

1
(3.86)

≥
∑︁

𝑀 ′∈{0,1}|𝐸𝑖|

𝑝̃︀𝜋𝑖 (𝑀 ′|𝛽𝐸𝑖
, 𝛼,Q(𝜏𝑗)) · 𝐶̃︀𝜋

𝑀 (3.87)

= E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇̃︀𝜋
𝑒 (𝑡)

⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼,Q(𝜏𝑗)

]︂
, (3.88)

where (3.87) is by (3.82) and 𝐶̃︀𝜋
𝑀 ′

1
≥ 𝐶̃︀𝜋

𝑀 ′ ,∀𝑀 ′ ∈ {0, 1}|𝐸𝑖|. Now, (3.88) and the fact

that ̃︀𝜋 is an optimal policy (as in (3.81)) imply that ̃︀𝜋′ is also an optimal policy, i.e.:

̃︀𝜋′ = argmax
𝜋∈̃︀Π𝑠

E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇𝜋
𝑒 (𝑡)

⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼,Q(𝜏𝑗)

]︂
,

with the property that ̃︀𝜋′ makes deterministic decisions given 𝛽𝐸𝑖
, 𝛼 and 𝑄(𝑡) according

to (3.84). Repeating the process for all 𝛽𝐸𝑗
’s, we obtain a deterministic optimal policy

𝜋*. Now consider ̃︀Π𝑑𝑒𝑡 = {𝜋 ∈ ̃︀Π𝑠 : 𝜋 is deterministic}. Our original problem of

maximizing the expected service rate can be equivalently characterized as:

max
𝜋∈̃︀Π𝑠

E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇𝜋
𝑒 (𝑡)

⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼,Q(𝜏𝑗)

]︂
= max

𝜋∈̃︀Π𝑑𝑒𝑡

E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇𝜋
𝑒 (𝑡)

⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼,Q(𝜏𝑗)

]︂
(3.89)

Take any 𝜋 ∈ ̃︀Π𝑑𝑒𝑡. Consider any 𝛽, 𝛼 ∈ {0, 1}|𝐸| representing the fresh and delayed
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global NSI and the decomposition of fresh global NSI into fresh local NSI as 𝛽 = ∪𝑚𝑖=1𝛽𝐸𝑖

with 𝛽𝐸𝑖
∈ {0, 1}|𝐸𝑖|. Since 𝜋 is deterministic, there exists a unique schedule vector

𝑀𝜋
𝛽𝐸𝑖

,𝛼 ∈ {0, 1}|𝐸𝑖| such that 𝑝𝜋𝑖 (𝑀
𝜋
𝛽𝐸𝑖

,𝛼|𝛽𝐸𝑖
, 𝛼,Q(𝜏𝑗)) = 1 and 𝑝𝜋𝑖 (𝑀

′|𝛽𝐸𝑖
, 𝛼,Q(𝜏𝑗)) =

0,∀𝑀 ′ ̸= 𝑀𝜋
𝛽𝐸𝑖

,𝛼. We denote the decision of 𝜋 on whether to activate link 𝑒 based on

the observation of NSI as:

𝑥𝜋(𝑒, 𝛽𝐸𝑖
, 𝛼) = (𝑀𝜋

𝛽𝐸𝑖
,𝛼)𝑒 (3.90)

Following the uniqueness of 𝑀𝜋
𝛽𝐸𝑖

,𝛼, we uniquely define global schedule vector 𝑀𝜋
𝛽,𝛼 =

∪𝑚𝑖=1(𝑀
𝜋
𝛽,𝛼)𝐸𝑖

∈ {0, 1}|𝐸| with (𝑀𝜋
𝛽,𝛼)𝐸𝑖

= 𝑀𝜋
𝛽𝐸𝑖

,𝛼. We then obtain that ∀𝑀 ∈ {0, 1}|𝐸|:

𝑃 (𝐷𝜋(𝜏) = 𝑀
⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼,𝐶[𝑡] = 𝛽,Q(𝜏𝑗))

=
𝑚∏︁
𝑖=1

𝑝𝜋𝑖 (𝑀𝐸𝑖

⃒⃒
𝛽𝐸𝑖

, 𝛼,𝑄𝑄(𝜏𝑗)) =

⎧⎪⎨⎪⎩1, if 𝑀 = 𝑀𝜋
𝛽,𝛼

0, otherwise

From the above, we further expand (3.79) ∀𝜋 ∈ ̃︀Π𝑑𝑒𝑡 as:

E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇𝜋
𝑒 (𝑡)

⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼,Q(𝜏𝑗)

]︂
=
∑︁
𝛽∈Ξ

𝑃 (𝐶[𝑡] = 𝛽
⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼)×

[︂
𝐹 (𝑀𝜋

𝛽,𝛼, 𝛽, 𝛼,Q(𝜏𝑗))

]︂
(3.80)
=
∑︁
𝛽∈Ξ

𝑃 (𝐶[𝑡] = 𝛽
⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼)

×
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝛽𝑒 · (𝑀𝜋
𝛽,𝛼)𝑒

∏︁
𝑒′∈𝐼𝑒

(1− 𝛽𝑒′(𝑀
𝜋
𝛽,𝛼)𝑒′)

]︂
(3.90)
=
∑︁
𝛽∈Ξ

𝑃 (𝐶[𝑡] = 𝛽
⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼)

×
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝛽𝑒 · 𝑥𝜋(𝑒, 𝛽𝐸𝑘𝑒
, 𝛼)

∏︁
𝑒′∈𝐼𝑒

(1− 𝛽𝑒′𝑥
𝜋(𝑒′, 𝛽𝐸𝑘′𝑒

, 𝛼))

]︂
(3.71)
= 𝐺(x𝜋, 𝛼,Q(𝜏𝑗))

∴ max
𝜋∈̃︀Π𝑑𝑒𝑡

E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇𝜋
𝑒 (𝑡)

⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼,Q(𝜏𝑗)

]︂
= max

x𝜋
𝐺(x𝜋, 𝛼,Q(𝜏𝑗))
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Combining with (3.89), we conclude that:

max
𝜋∈̃︀Π𝑠

E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇𝜋
𝑒 (𝑡)

⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼,Q(𝜏𝑗)

]︂
= max

x𝜋
𝐺(x𝜋, 𝛼,Q(𝜏𝑗)), (3.91)

i.e. finding the optimal policy 𝜋 ∈ ̃︀Π𝑠 corresponds to finding the optimal schedule

vector x𝜋 maximizing 𝐺(x𝜋, 𝛼,Q(𝜏𝑗)). Now, from the scheduling algorithm schedule

of DUMW, we know that DUMW solves maxx𝜋 𝐺(x𝜋, 𝛼, ̃︀Q(𝜏𝑗−1)). Applying Lemma

8, we get:

E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇DUMW
𝑒 (𝑡)

⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼,Q(𝜏𝑗)

]︂
= 𝐺(xDUMW, 𝛼,Q(𝜏𝑗))

≥ max
x𝜋

𝐺(x𝜋, 𝛼,Q(𝜏𝑗))− 2E‖̃︀Q(𝜏𝑗−1)−Q(𝜏𝑗)‖1
(3.32)
≥ max

x𝜋
𝐺(x𝜋, 𝛼,Q(𝜏𝑗))− 2E[𝜖(𝑗)]− 2𝜏(𝐴𝑚𝑎𝑥 + |𝐸|)

(3.91)
≥ max

𝜋∈̃︀Π𝑠

E
[︂∑︁

𝑒∈𝐸

𝑄𝑒(𝜏𝑗) · 𝜇𝜋
𝑒 (𝑡)

⃒⃒
𝐶[𝑡− 𝜏 ] = 𝛼,Q(𝜏𝑗)

]︂
− 2E[𝜖(𝑗)]− 2𝜏(𝐴𝑚𝑎𝑥 + |𝐸|),

which concludes the proof.

Skorokhod Map Representation of {Q(𝜏𝑗)}𝑗≥0

Lemma 10. Define 𝐴𝜋
𝑒 (𝑡1, 𝑡2) =

∑︀𝑡2−1
𝑞=𝑡1

𝐴𝜋
𝑒 (𝑞) and 𝜇𝜋

𝑒 (𝑡1, 𝑡2) =
∑︀𝑡2−1

𝑞=𝑡1
𝜇𝜋
𝑒 (𝑞) . The

discrete-time Skorokhod map representation of the virtual queue process {Q(𝜏𝑗)}𝑗≥0

can be expressed as:

𝑄𝑒(𝜏𝑗) =

(︂
sup
1≤𝑞≤𝑗

(︀
𝐴𝜋

𝑒 (𝜏𝑗 − 𝑞𝜏, 𝜏𝑗)− 𝜇𝜋
𝑒 (𝜏𝑗 − 𝑞𝜏, 𝜏𝑗)

)︀)︂+

, ∀𝑒 ∈ 𝐸

Proof. From the virtual queue dynamics (3.12), we have ∀𝑒 ∈ 𝐸:

𝑄𝑒(𝜏𝑗) =

(︂
𝑄𝑒(𝜏𝑗−1) + 𝐴𝜋

𝑒 (𝜏𝑗−1, 𝜏𝑗)− 𝜇𝜋
𝑒 (𝜏𝑗−1, 𝜏𝑗)

)︂+

≥ 𝑄𝑒(𝜏𝑗−1) + 𝐴𝜋
𝑒 (𝜏𝑗−1, 𝜏𝑗)− 𝜇𝜋

𝑒 (𝜏𝑗−1, 𝜏𝑗)

= 𝑄𝑒(𝜏𝑗−1) + 𝐴𝜋
𝑒 (𝜏𝑗 − 𝜏, 𝜏𝑗)− 𝜇𝜋

𝑒 (𝜏𝑗 − 𝜏, 𝜏𝑗),
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where for the last line we recall that 𝜏𝑘 = 𝑘𝜏,∀𝑘. Iterating the above for 𝑞 ∈ [1, 𝑗]

times and using the fact that the virtual queue values are non-negative, we obtain

that ∀𝑒 ∈ 𝐸:

𝑄𝑒(𝜏𝑗) ≥ 𝑄𝑒(𝜏𝑗−𝑞) + 𝐴𝜋
𝑒 (𝜏𝑗 − 𝑞𝜏, 𝜏𝑗)− 𝜇𝜋

𝑒 (𝜏𝑗 − 𝑞𝜏, 𝜏𝑗)

≥ 𝐴𝜋
𝑒 (𝜏𝑗 − 𝑞𝜏, 𝜏𝑗)− 𝜇𝜋

𝑒 (𝜏𝑗 − 𝑞𝜏, 𝜏𝑗)

Taking sup of the above over 𝑞 ∈ [1, 𝑗] and using the fact that the virtual queue values

are always non-negative, we have:

𝑄𝑒(𝜏𝑗) ≥
(︂

sup
𝑞∈[1,𝑗]

{︀
𝐴𝜋

𝑒 (𝜏𝑗 − 𝑞𝜏, 𝜏𝑗)− 𝜇𝜋
𝑒 (𝜏𝑗 − 𝑞𝜏, 𝜏𝑗)

}︀)︂+

. (3.92)

Now, we proceed to show that (3.92) holds with equality. If 𝑄𝑒(𝜏𝑗) = 0, then the

non-negative RHS of (3.92) must be equal to 0, implying equality in (3.92). Else

if 𝑄𝑒(𝜏𝑗) > 0, we consider the latest time 𝜏𝑗−𝑞 (with 𝑞 ∈ [1, 𝑗]) prior to 𝜏𝑗 such

that 𝑄𝑒(𝜏𝑗−𝑞) = 0. Such 𝜏𝑗−𝑞 must exist since the system starts with 𝑄𝑒(𝜏0) = 0.

Consequently, 𝑄(𝜏𝑗−𝑞′) > 0 for any 𝜏𝑗−𝑞 < 𝜏𝑗−𝑞′ ≤ 𝜏𝑗 (or equivalently for 𝑞′ < 𝑞).

Therefore, the virtual queues 𝑄(𝜏𝑗−𝑞′) for 𝑞′ ∈ [0, 𝑞) are positive and thus have the

dynamics from (3.12) as:

𝑄𝑒(𝜏𝑗−𝑞′) = 𝑄𝑒(𝜏𝑗−𝑞′−1) + 𝐴𝜋
𝑒 (𝜏𝑗−𝑞′−1, 𝜏𝑗)− 𝜇𝜋

𝑒 (𝜏𝑗−𝑞′−1, 𝜏𝑗). (3.93)

Iterating (3.93) for the interval 𝑞′ ∈ [0, 𝑞), we obtain that:

𝑄𝑒(𝜏𝑗) = 𝑄𝑒(𝜏𝑗−𝑞) + 𝐴𝜋
𝑒 (𝜏𝑗−𝑞, 𝜏𝑗)− 𝜇𝜋

𝑒 (𝜏𝑗−𝑞, 𝜏𝑗)

= 𝐴𝜋
𝑒 (𝜏𝑗−𝑞, 𝜏𝑗)− 𝜇𝜋

𝑒 (𝜏𝑗−𝑞, 𝜏𝑗),

which implies the equality of (3.92) and thus concludes the proof of this Lemma.
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Properties of the 1-Step Virtual Queue Process { ^Q(𝑡)}𝑡≥0

Lemma 11. We have the following bounds ∀𝑒 ∈ 𝐸:

|𝑄̂𝑒(𝑡1)− 𝑄̂𝑒(𝑡2)| ≤ |𝑡1 − 𝑡2|(𝐴𝑚𝑎𝑥 + 1) (3.94)

𝑄𝑒(𝜏𝑗) ≤ 𝑄̂𝑒(𝜏𝑗) ≤ 𝑄𝑒(𝜏𝑗) + 𝜏𝐴𝑚𝑎𝑥, (3.95)

Proof. (3.94) trivially holds for 𝑡1 = 𝑡2. If 𝑡1 ̸= 𝑡2 , WLOG, we assume that 𝑡1 > 𝑡2.

From the queue dynamics (3.67), we have:

𝑄̂𝑒(𝑡1) ≥ 𝑄̂𝑒(𝑡1 − 1) + 𝐴𝜋
𝑒 (𝑡1 − 1)− 𝜇𝜋

𝑒 (𝑡1 − 1) ≥ 𝑄̂𝑒(𝑡1 − 1)− 1,

𝑄̂𝑒(𝑡1) ≤ 𝑄̂𝑒(𝑡1 − 1) + 𝐴𝜋
𝑒 (𝑡1 − 1) ≤ 𝑄̂𝑒(𝑡1 − 1) + 𝐴𝑚𝑎𝑥.

Iterating the above, we obtain that:

𝑄̂𝑒(𝑡1) ≥ 𝑄̂𝑒(𝑡2)− (𝑡1 − 𝑡2),

𝑄̂𝑒(𝑡1) ≤ 𝑄̂𝑒(𝑡2) + (𝑡1 − 𝑡2)𝐴𝑚𝑎𝑥.

Combining the two above, we obtain (3.94).

Now, we proceed to prove (3.95). Define 𝐴𝜋
𝑒 (𝑡1, 𝑡2) =

∑︀𝑡2−1
𝑞=𝑡1

𝐴𝜋
𝑒 (𝑞) and 𝜇𝜋

𝑒 (𝑡1, 𝑡2) =∑︀𝑡2−1
𝑞=𝑡1

𝜇𝜋
𝑒 (𝑞). From Lemma 10, we express the virtual queue process {Q(𝜏𝑗)}𝑗≥0 as:

𝑄𝑒(𝜏𝑗) =

(︂
sup
1≤𝑞≤𝑗

(︀
𝐴𝜋

𝑒 (𝜏𝑗 − 𝑞𝜏, 𝜏𝑗)− 𝜇𝜋
𝑒 (𝜏𝑗 − 𝑞𝜏, 𝜏𝑗)

)︀)︂+

, ∀𝑒 ∈ 𝐸. (3.96)

From the discrete time Skorokhod map representation of Q̂(𝜏𝑗) in [46], we have ∀𝑒 ∈ 𝐸:

𝑄̂𝑒(𝜏𝑗) =

(︂
sup

1≤𝑙≤𝜏𝑗

(︀
𝐴𝜋

𝑒 (𝜏𝑗 − 𝑙, 𝜏𝑗)− 𝜇𝜋
𝑒 (𝜏𝑗 − 𝑙, 𝜏𝑗)

)︀)︂+

(3.97)

(3.96)
= sup

(︂
𝑄𝑒(𝜏𝑗), sup

1≤𝑙≤𝜏𝑗 : 𝑙̸
... 𝜏

(︀
𝐴𝜋

𝑒 (𝜏𝑗 − 𝑙, 𝜏𝑗)− 𝜇𝜋
𝑒 (𝜏𝑗 − 𝑙, 𝜏𝑗)

)︀)︂
≥ 𝑄𝑒(𝜏𝑗).
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For any 𝑙 ∈ [1, 𝜏𝑗], we consider 𝑢 ∈ [1, 𝑗] be the smallest number such that 𝑢𝜏 − 𝑙 ≥ 0.

Such 𝑢 exists since 𝜏𝑗 − 𝑙 = 𝑗𝜏 − 𝑙 ≥ 0. Furthermore, we must have 𝑢𝜏 − 𝑙 ≤ 𝜏 ;

otherwise (𝑢− 1)𝜏 > 𝑙 contradicting the fact that 𝑢 is the smallest number such that

𝑢𝜏 − 𝑙 ≥ 0. Thus, we have:

0 ≤ 𝑢𝜏 − 𝑙 ≤ 𝜏 (3.98)

Noting that 𝜏𝑗 − 𝑙 ≤ 𝜏𝑗 − 𝑢𝜏 , we bound:

𝐴𝜋
𝑒 (𝜏𝑗 − 𝑙, 𝜏𝑗)− 𝜇𝜋

𝑒 (𝜏𝑗 − 𝑙, 𝜏𝑗) = [𝐴𝜋
𝑒 (𝜏𝑗 − 𝑢𝜏, 𝜏𝑗)− 𝜇𝜋

𝑒 (𝜏𝑗 − 𝑢𝜏, 𝜏𝑗)]

+ [𝐴𝜋
𝑒 (𝜏𝑗 − 𝑙, 𝜏𝑗 − 𝑢𝜏)− 𝜇𝜋

𝑒 (𝜏𝑗 − 𝑙, 𝜏𝑗 − 𝑢𝜏)]

(3.96)
≤ 𝑄𝑒(𝜏𝑗) + (𝑢𝜏 − 𝑙)𝐴𝑚𝑎𝑥 + 0

(3.96)
≤ 𝑄𝑒(𝜏𝑗) + 𝜏𝐴𝑚𝑎𝑥.

Taking sup of the above over all 𝑙 ∈ [1, 𝜏𝑗], we obtain in view of (3.97) that:

𝑄̂𝑒(𝜏𝑗) ≤ 𝑄𝑒(𝜏𝑗) + 𝜏𝐴𝑚𝑎𝑥.
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