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Abstract

Multicomponent metal oxides, such as perovskite oxides, hold promise for use as sus-
tainable alternatives to Ir-, Ru-, and Pt-based electrocatalysts at scale. Perovskites
can accommodate a wide variety of elements in their A- and B-sites, enabling tuning
of their structural and electronic properties through compositional alloying. These
properties, which are obtainable from density functional theory (DFT) calculations,
can be used as low-dimensional descriptors that correlate with experimental stability
and activity in, for example, the oxygen evolution reaction (OER). Established de-
scriptors of stability include energy above convex hull and energy above Pourbaix hull,
while those for catalytic activity include oxygen 2p- and B-site metal d-band centers,
for example. We are therefore presented with a combinatorial problem of determin-
ing which A- and B-site compositions optimize such descriptors. The compositional
search space of 𝐴𝑥𝐴

′
1−𝑥𝐵𝑦𝐵

′
1−𝑦𝑂3 perovskites with up to two different elements in

A- and B-sites is at least 𝑂(106), making it intractable to calculate descriptors ex-
haustively using DFT. We therefore combine high-throughput DFT calculations with
crystal-based graph neural networks to screen multicomponent perovskites.

Using a high-throughput virtual screening platform, a DFT-simulated dataset
of over 5,000 multicomponent perovskites was generated, with varied A- and B-
site alloying ratios and over 3,000 unique cationic combinations. Leveraging this
dataset, alongside calculations available in the literature, graph convolutional neu-
ral networks (GNNs) were trained to predict the aforementioned crystal descrip-
tors from unrelaxed cubic structures and used to predict descriptors for 𝑂(106)
𝐴𝑥𝐴

′
1−𝑥𝐵𝑦𝐵

′
1−𝑦𝑂3 perovskites. GNNs were also combined with baseline estimates

of multicomponent perovskite properties calculated as interpolations of constituent
𝐴𝐵𝑂3 perovskites, thereby achieving improved model performance. Moreover, im-
pacts of varied cationic ordering were modelled, showing that different decorations of
cations within the perovskite lattice can modulate resulting properties to the same
degree as—or more than—varying compositional ratios. Equivariant message passing
neural networks were thus implemented to achieve cation decoration-aware property
predictions. Lastly, GNNs predicting per-site properties were established, encoding
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local chemical environments to provide physical insights about each atom in a crystal
lattice.

The presented work provides the community with a benchmark multicomponent
perovskite dataset, improved machine learning models, and physical insights to be
used in further studies of alloyed perovskites, and thus lays groundwork for improved
design of multicomponent oxide electrocatalysts.

Thesis Supervisor: Rafael Gómez-Bombarelli
Title: Assistant Professor of Materials Science
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Chapter 1

Introduction

Successful adoption of sustainable energy technologies hinges on the development of

improved energy storage systems to ensure energy from intermittent natural sources

can be accessed on demand [Fabbri and Schmidt, 2018]. Naturally-derived electricity—

such as solar—can be stored in chemical bonds by electrochemically splitting water

into hydrogen and oxygen. The oxygen evolution reaction at the anode is a bottle-

neck in the process, however, due to large overpotentials and slow kinetics [Fabbri

and Schmidt, 2018, Guo et al., 2020, Rossmeisl et al., 2007]. The development of

efficient OER electrocatalysts is thus critical to developments in sustainable energy

technology. Use of current best-performing Ru- or Ir-based oxide catalysts is not

feasible at-scale due to the scarcity, high-cost, and moderate stability of these mate-

rials [Vazhayil et al., 2021]. Non-platinum group metal electrocatalysts are therefore

desired. Multicomponent oxides, such as perovskite oxides, have been identified as

promising candidates due to their low-cost, availability, and tunable properties [Beall

et al., 2021].

1.1 Multicomponent perovskites as electrocatalysts

Perovskites oxides—with formula 𝐴𝐵𝑂3—are a class of compounds with crystal struc-

tures analogous to that of 𝐶𝑎𝑇𝑖𝑂3. The A- and B-atoms are 6- and 12-fold oxygen

coordinated cations, respectively, as shown in Figure 1-1. The promise of perovskites
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Figure 1-1: Perovskite structure. The structure of one 5-atom perovskite unit cell
is shown with A-sites, B-sites, and oxygen atoms coloured in blue, yellow, and red,
respectively.

as electrocatalysts stems from their ability to accommodate a wide variety of cations

in their A- and B-sites. Moreover, these sites can be alloyed, forming what will be re-

ferred to here as multicomponent perovskite oxides: 𝐴𝐴′𝐵𝑂3, 𝐴𝐵𝐵′𝑂3, 𝐴𝐴′𝐵𝐵′𝑂3,

etc. By varying A- and B-site compositions, the properties of such pervoskites are

tunable, thus presenting a combinatorial problem of determining which cationic com-

positions optimize electrocatalytic performance [Beall et al., 2021].

1.2 Descriptors of catalytic stability and activity

To accelerate the discovery of new functional materials, high-throughput virtual

screening (HTVS) can be employed to model material behaviour in silico prior to

experimental testing of promising candidates [Emery et al., 2016, Emery and Wolver-

ton, 2017, Castelli et al., 2012b, Jacobs et al., 2018]. For heterocatalysts such as

perovskites, density functional theory (DFT) simulations can used to calculate a

variety of structural and electronic properties that have been mapped to catalytic

behaviour, yielding quantitative structure-activity relationships [Liao et al., 2022]. In

theory, improved perovskite electrocatalysts can thus be designed by tuning cationic

compositions to obtain DFT-calculated descriptors indicative of desired catalytic per-

formance [Lee et al., 2011, Jacobs et al., 2019]. Established descriptors of catalytic
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stability include energy above convex hull (∆𝐸ℎ𝑢𝑙𝑙) and energy above Pourbaix hull

(∆𝐺𝑝𝑏𝑥) [Bartel, 2022, Shinde et al., 2017, Singh et al., 2017]. Catalytic activity de-

scriptors, meanwhile, can include oxygen 2𝑝-band centers (𝑂2𝑝−𝐸𝑉 ) and B-site metal

𝑑-band centers (𝐵𝑑−𝐸𝑉 )—as well as their difference, 𝐵𝑑−𝑂2𝑝 [Grimaud et al., 2013,

Lee et al., 2020, Jacobs et al., 2018, Mueller et al., 2015, Hong et al., 2017].

1.2.1 Energy above convex hull

Energy above the convex hull provides a measure of thermodynamic stability, denoting

the energy needed to form a given phase—here, the perovskite phase 𝐴𝐵𝑂3—from

the lowest-energy phase(s) with the same overall composition. Energies above hull are

calculated as the difference between a material’s energy per atom and the energy at

its compositional makeup in the associated convex hull phase diagram (PD) [Bartel,

2022].

In theory, compositional PDs present the ground state polyform(s) at all possible

ratios of constituent species. The ternary PD of 𝐴,𝐵,𝑂, for example, is a Gibbs

triangle with each pure component—𝐴, 𝐵, and 𝑂—on a vertex, all binary combi-

nations of the constituent components on its edges (e.g. 𝐴0.5𝐵0.5 is equidistant on

the edge between 𝐴 and 𝐵 vertices), and all linear combinations of the three com-

ponents in the intervening space [Ong et al., 2013, Jain et al., 2013]. Each point on

the PD is associated with the lowest energy polyforms(s) of the given composition,

yielding an energetic convex hull because 𝐸(𝑃𝐷[𝐴,𝐵, 3𝑂]) ≤ 𝐸(𝐴) +𝐸(𝐵) + 3𝐸(𝑂)

by definition.

The energetic distance of a material above this convex hull at its compositional

makeup is thus its ∆𝐸ℎ𝑢𝑙𝑙. For a perovskite with 𝑁 atoms,

∆𝐸ℎ𝑢𝑙𝑙(𝐴𝐵𝑂3) = 𝐸𝐷𝐹𝑇 (𝐴𝐵𝑂3)− 𝐸𝐷𝐹𝑇 (𝑃𝐷[𝐴,𝐵, 3𝑂]), (1.1)

where 𝐸𝐷𝐹𝑇 (𝐴𝐵𝑂3) is the energy per atom of the 𝐴𝐵𝑂3 perovskite and

𝐸𝐷𝐹𝑇 (𝑃𝐷[𝐴,𝐵, 3𝑂]) is the energy per atom of the lowest energy material(s) with

overall composition of 𝐴 + 𝐵 + 3𝑂. For stable materials, ∆𝐸ℎ𝑢𝑙𝑙 = 0, indicat-
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ing that the material is the lowest energy phase at the given composition—i.e. if

∆𝐸ℎ𝑢𝑙𝑙(𝐴𝐵𝑂3) = 0 then 𝑃𝐷[𝐴,𝐵, 3𝑂] = 𝐴𝐵𝑂3. Meanwhile if ∆𝐸ℎ𝑢𝑙𝑙 > 0, it is

thermodynamically favourable for the material to decompose into a different poly-

morph or a linear combination of its components [Bartel, 2022]. For instance, if the

lowest energy material system with overall composition 𝐴+𝐵 + 3𝑂 is 2𝐴𝑂 + 2𝐵𝑂2

then the decomposition 2𝐴𝐵𝑂3 → 2𝐴𝑂 + 2𝐵𝑂2 is thermodynamically favoured and

∆𝐸ℎ𝑢𝑙𝑙(𝐴𝐵𝑂3) = 𝐸𝐷𝐹𝑇 (𝐴𝐵𝑂3)− 2𝐸𝐷𝐹𝑇 (𝐴𝑂)− 2𝐸𝐷𝐹𝑇 (𝐵𝑂2).

Energy above convex hull is therefore an important descriptor of catalytic stability.

Optimizing ∆𝐸ℎ𝑢𝑙𝑙 to be close to 0 is useful in screening for materials likely to be

thermodynamically stable [Li et al., 2018].

1.2.2 Energy above Pourbaix hull

Energy above Pourbaix hull provides an analogous measure of aqueous stability, at

a given pH and potential [Singh et al., 2017]. ∆𝐺𝑝𝑏𝑥 values are calculated as the

Gibbs free energy difference between a material and the electrochemical equilibrium

combination of possible decomposition products [Singh et al., 2017, Persson et al.,

2012]. In general, it has been shown that materials with ∆𝐺𝑝𝑏𝑥 < 0.5 eV/atom can

be stable against corrosion [Singh et al., 2017].

Pourbaix diagrams present the aqueous phase electrochemical equilibria—water-

stable phase(s)—across a range of potentials and pH values. In the Materials Project,

these diagrams are computed from the free energies of solid phases and of aqueous

ions [Jain et al., 2013].

1.2.3 Electronic density of states band centers

Studies have shown that perovskites exhibit scaling relations between catalytic surface

kinetics and electronic density of states (DOS) band centers [Lee et al., 2011, Grimaud

et al., 2013]. 𝑂2𝑝 − 𝐸𝑉 is the canonical descriptor of catalytic activity with higher

values having been correlated with decreased overpotentials and oxygen migration

barriers, for example [Grimaud et al., 2013, Mayeshiba and Morgan, 2016]. Although

12



𝑂2𝑝 − 𝐸𝑉 is the most commonly used band center descriptor of activity, correlations

between other band center-derived descriptors and, for example, current density have

also been reported [Hong et al., 2017]. Therefore, tailoring band center values—

namely, maximizing 𝑂2𝑝 in stable perovskites—may be used to optimize catalytic

performance.

1.3 Data-driven property prediction

Although DFT calculations make screening thousands of perovskite oxides feasible,

allowing us to identify those with promising descriptor values, such calculations be-

come intractable for large material search spaces. The DFT calculations used to

simulate 𝐴𝐴′𝐵𝐵′𝑂3 perovskite structures in this work, described in Section 2.1, have

runtimes on the order of days. Considering 20 A- and 20 B-site atoms, there are

𝑂(106) 𝐴𝑥𝐴
′
1−𝑥𝐵𝑦𝐵

′
1−𝑦𝑂3 structures, making it infeasible to exhaustively compute

descriptors with DFT. Moreover, this search space becomes significantly larger if var-

ied cationic arrangements within the lattice are considered—as will be described in

Section 3.3.

To overcome the need for expensive DFT calculations, machine learning techniques

have been increasingly implemented to predict descriptors of catalytic stability and

activity [Xie and Grossman, 2018, Li et al., 2018, Tao et al., 2021].

1.4 Per-site properties

The bulk descriptors described above are very useful to guide compositional tuning

towards optimized catalytic performance. Nevertheless, they have limitations in that

they do not capture atomic level structure-function relationships. Catalysis occurs

on individual active sites, and thus per-site properties influence catalytic activity. It

may therefore be useful to also model site-level descriptors based on local electronic

structure (Bader charges, site-projected O2p- and d-band centers), local magnetic

structure, and local vibrational structure (site-projected phonon band centers). Like
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the descriptors outlined above, these properties can be calculated from DFT simula-

tions and partitioned into per-site contributions.

This thesis work builds upon perovskite datasets and property predictions models

from the literature to (a) generate a broad set of DFT-calculated multicomponent

perovskite data; (b) predict catalytic descriptors from unrelaxed perovskites using

graph neural networks, mitigating the need for DFT calculations; (c) screen 𝑂(106)

multicomponent catalysts, identifying promising candidates to be tested experimen-

tally; (d) explore and model cationic decorations in perovskite lattices, and their

impacts on structural and electronic properties; and (e) extend bulk crystal graph

neural networks to predict per-site properties. Together, the presented work sets the

stage for subsequent inverse design of multicomponent perovskites with optimized

properties.
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Chapter 2

Methodology

2.1 Density functional theory

Density functional theory (DFT) is a quantum mechanical method used to calculated

structural and electronic properties of many-electron systems using functionals of

spatially-dependent electron density [Hafner, 2008]. The ability to predict properties

of crystalline solids from first principles enables us to simulate material behaviour in

silico, providing fundamental physical insights and reducing experimental demands.

Indeed, it is feasible to screen thousands of structures in a high-throughput manner

using DFT to identify promising candidates to test experimentally [Kirklin et al.,

2015].

2.1.1 High-throughput DFT workflow

Our high-throughput workflow to calculate electronic properties from first-principles

consisted of two DFT calculation types, 1) structure optimization and 2) electronic

structure calculation. All calculations were conducted with parameters compatible

with the Materials Project [Jain et al., 2013, 2011], enabling us to leverage this expan-

sive database to calculate properties such as energy above hull—as described below.

Previous benchmarking comparisons between our DFT calculations and Materials

Project-derived data confirmed this compatability. Simulations were conducted using

15



the Vienna Ab Initio Simulation Packaged (VASP) [Kresse and Hafner, 1993, Kresse

et al., 1994, Kresse and Furthmüller, 1996a,b]. The Projector Augmented Wave

(PAW) approach was used to describe core electrons and Perdew-Burke-Enzerhof

(PBE) PAW pseudopotentials were implemented. A PBE Generalized Gradient Ap-

proximation (GGA) exchange-correlation functional was used, with or without the

+U correction following the Materials Project conventions [Kresse and Joubert, 1999,

Jain et al., 2013]. All DFT calculations were performed at 0K and 0atm with spin

polarization and the Materials Projects high-spin ferromagnetic default initializations

[Jain et al., 2013].

Initial, unrelaxed perovskite structures for input to DFT simulations were gener-

ated using Atomic Simulation Environment (ASE) and Python Materials Genomics

(pymatgen) [Larsen et al., 2017, Ong et al., 2013]. To accommodate varied cationic

alloying in the A- and B-sites, cubic 2x2x2 𝐴8𝐵8𝑂24 supercells were used to initialize

most DFT calculations. Calculations for reference binary 𝐴𝐵𝑂3 perovskites, however,

were initialized with a single unit cell, 1x1x1 supercell, for consistency with literature

data. Using modules from the ASE and pymatgen packages, a workflow for unique

structure generation was also developed. Given the composition of a multicomponent

perovskite (or other mulitcomponent oxide), this functionality generates all possible

symmetrically-inequivalent crystals structures.

2.1.2 DFT-derived descriptors

Many DFT-calculated properties can provide insights into the relationship between

material structures and electrochemical performance [Liao et al., 2022]. In this work,

energies above the convex hull (∆𝐸ℎ𝑢𝑙𝑙) and above the Pourbaix hull (∆𝐺𝑝𝑏𝑥) were

used has descriptors of thermodynamic and aqueous stability, while electronic denstiy

of state (DOS) band centers were used as descriptors of catalytic activity.
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Energy above convex hull

To calculate its energy above the convex hull, a material’s energy per atom is com-

pared to all other polyform(s) with the same overall composition. The accuracy

of ∆𝐸ℎ𝑢𝑙𝑙 calculations thus depends largely on the dataset with which the convex

hull is generated. Though it is not feasible in practice to construct the hull from

all possible polyform(s), having as many as possible provides improved approxima-

tions of the ground state at a given composition. To expand the dataset on which

convex hulls were generated, we thus extracted all metal oxide structures from the

Materials Project [Jain et al., 2013]. Leveraging the compatibility of our DFT cal-

culations with the Materials Project, ∆𝐸ℎ𝑢𝑙𝑙 values were then calculated from phase

diagrams built upon the oxides dataset and our perovskite dataset (from both in-

house and literature-derived calculations) using the pymatgen phase diagram module

[Ong et al., 2013].

Energy above Pourbaix hull

Analogously to ∆𝐸ℎ𝑢𝑙𝑙, energies above Pourbaix hull were computed as the free energy

difference between a material and the electrochemical equilibrium combination of

decomposition products with the same overall composition [Jain et al., 2013]. The

accuracy of ∆𝐺𝑝𝑏𝑥 thus also depends on the dataset upon which the Pourbaix hull is

generated. To maximize the amount of data used to construct the hull, we therefore

employed the Pourbaix modules in pymatgen, which can draw on all Materials Project

data [Ong et al., 2013, Jain et al., 2013]. ∆𝐺𝑝𝑏𝑥 values were then calculated by, again,

leveraging the compatibility of our DFT calculations with the Materials Project.

∆𝐺𝑝𝑏𝑥 is computed at a given pH and potential—here, we considered pH 13.5 and

1.6 V vs. RHE to reflect conditions for alkaline OER.
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Density of state band centers

Electronic densities of state, as well as the Fermi level, can be obtained from electronic

structure DFT calculations. Using these results, we calculate band centers as

Band center =
∫︀
𝐸
𝐷(𝐸)𝐸𝑑𝐸∫︀

𝐸
𝐷(𝐸)𝑑𝐸

− 𝐸𝑉 , (2.1)

where 𝐷(𝐸) is the density of states at energy 𝐸 and 𝐸𝑉 is the Fermi level. 𝑂2𝑝 −𝐸𝑉

and 𝐵𝑑 −𝐸𝑉 were calculated as the band centers of the 𝑝 DOS and 𝑑 DOS combined

over all oxygen atoms and B-site metal atoms, respectively.

Per-site 𝑂2𝑝 and 𝐵𝑑 band centers, as well as per-site phonon band centers, were

computed as the band centers of the respective site-projected DOS—again using

Equation 2.1.

2.2 Bulk crystal graph neural networks

High-throughput virtual screening (HTVS) enables exploration of chemical space for

materials with desired properties. Although traditional approaches have calculated

material properties using first-principles simulations such as DFT, these methods are

expensive and often are not scalable to exhaustively screen the desired space [Jain

et al., 2011, Emery et al., 2016, Emery and Wolverton, 2017]. Machine learning (ML)-

based property prediction is thus becoming increasingly used towards materials dis-

covery [Unterthiner et al., 2014, Gómez-Bombarelli et al., 2016]. Initial approaches

leveraged fixed-dimensional manually-engineered molecular fingerprints as input to

machine learning architectures [Unterthiner et al., 2014, Ramsundar et al., 2015], but

differentiable graph-based fingerprints have since improved property prediction and

interpretability [Duvenaud et al., 2015]. In such methods, chemical structures are

represented graphically as a set of atoms (nodes) connected by bonds (edges) upon

which neural network training methods optimize an end-to-end mapping between

structure and property. Message passing over such graphs has become a widely-used

architecture wherein convolutions between nodal features of neighbouring atoms, and
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optionally their associated bonds, generate representations of local chemical environ-

ment. Subsequent application of feed-forward neural networks then map these local

environments to global properties [Yang et al., 2019, Xie and Grossman, 2018].

Although these graph convolutional neural network (GNN) methods were origi-

nally developed for non-periodic molecular systems, they have since been extended

to crystalline systems through integration of periodic-boundary conditions. In such

architectures, the molecular graphs can accommodate multiple edges between a given

pair of nodes to represent periodicity. Moreover, since crystalline systems do not have

discrete covalent bonds, edges instead connect each atomic node with all neighbouring

atoms within a defined cutoff radius [Xie and Grossman, 2018].

2.2.1 CGCNN: Crystal graph convolutional neural networks

The crystal graph convolutional neural network (CGCNN) architecture developed by

Xie and Grossman [2018], illustrated in Figure 2-1, takes a three-dimensional crystal

structure as input and represents it as an undirected multigraph 𝒢. Each site 𝑖 in the

crystal is designated by a feature vector v𝑖 encoding its atomic properties. Each graph

edge (𝑖, 𝑗)𝑘—connection 𝑘 between neighbouring atoms 𝑖 and 𝑗—is featurized with

the distance between atoms and represented by a feature vector u(𝑖,𝑗)𝑘 . Neighbour

distances are computed in a periodicity-aware manner and thus the crystal graph can

have multiple edges between a given pair of nodes.

The crystal graph is passed through message passing layers, which iteratively

update the nodal feature vectors with information from their associated neighbors

and edges, thus automatically learning crystal site representations informed by their

unique chemical environments. In each convolutional layer 𝑡, each edge vector and

their associated neighbour vectors are concatenated as z𝑡(𝑖,𝑗)𝑘 = v𝑡
𝑖 ⊕ v𝑡

𝑗u(𝑖,𝑗)𝑘 and

convolved as

v𝑡+1
𝑖 = v𝑡

𝑖 +
∑︁
𝑗,𝑘∈𝒢

[︀
𝜎
(︀
z𝑡(𝑖,𝑗)𝑘W

𝑡
1 + b𝑡

1

)︀
⊙ 𝑔

(︀
z𝑡(𝑖,𝑗)𝑘W

𝑡
2 + b𝑡

2

)︀]︀
, (2.2)

where ⊕ and ⊙ denote concatenation and element-wise multiplication, respectively,
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W𝑡 and b𝑡 denote weight and bias matrices for the 𝑡th convolution layer, 𝜎(·) denotes a

sigmoid function, and 𝑔(·) denotes a non-linear activation function. The terms within

the summation denote the two-body correlation between neighbour pairs wherein 𝜎(·)

acts to differentiate interaction strengths between v𝑖 and its various neighbours [Xie

and Grossman, 2018, Sanyal et al., 2018, Park and Wolverton, 2020].

After the specified number of convolutions, the updated nodal feature vectors are

then pooled to yield a crystal feature vector v𝑐,

v𝑐 =
1

𝑁

∑︁
𝑖∈𝒢

v𝑖, (2.3)

where N is the total number of atomic nodes in the crystal. Note that the outlined

formulation to construct crystal features from crystal graphs ensures that the resulting

crystal feature vector is permutationally invariant with respect to atom indexing and

size invariant with respect to supercell size. The crystal feature vector is then passed

through several fully connected hidden layers,

v𝑙+1
𝑐 = 𝑓

(︀
v𝑙
𝑐Wh

𝑙 + b𝑙
h
)︀
, (2.4)

where Wh
𝑙 and b𝑙

h denote weight and bias matrices for the 𝑙th hidden layer. The

final output layer maps v𝑐 to a scalar output 𝑦, the predicted target property [Xie

and Grossman, 2018].

The model is trained by minimizing the difference, defined by a loss function

𝐿(𝑦, 𝑦), between target (DFT-calculated) property 𝑦 and predicted property 𝑦, re-

spectively, computed as 𝑦 = CGCNN(𝒢;W), where CGCNN is the neural network,

𝒢 is the crystal graph, and W is the set of weights that parametrizes the model layers

[Xie and Grossman, 2018]. Here, a mean average error loss function was used. Dur-

ing training, model weights W were optimized to minimize 𝐿(𝑦, 𝑦 = CGCNN(𝒞;W))

through iterative updates calculated by backpropagation and stochastic gradient de-

scent or an Adam optimization algorithm [Xie and Grossman, 2018, Kingma and Ba,

2014].
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pmax

pmin

Property p+

Convolutional
Layers

Fully Connected
Layers

(a) (b) (c)
Pooling

Figure 2-1: Crystal graph convolutional neural network architecture. (a) Three-
dimensional crystal structure is converted to a graph, with nodes representing atoms
and edges representing connections between neighbouring atoms. Atomic feature vec-
tors from neighbouring atoms are passed through convolutional layers to obtain (b)
nodal feature vectors encoding local chemical environment. This graphical represen-
tation is pooled into a crystal-wide vector, which is passed through a feed-forward
neural network and mapped to (c) a scalar output value.

Crystal graph neural networks on unrelaxed crystals

The CGCNN model developed by Xie and Grossman [2018] has traditionally been

trained on datasets of relaxed structures. Such models act as a surrogate for DFT

electronic structure property calculation. To mitigate DFT structure optimization

calculations—the more computationally expensive task—models must be trained on

unrelaxed crystal structures, however. In the presented work, we therefore trained

and tested CGCNN—as well as the PAINN model described below—on unrelaxed per-

ovskite structures. For crystals derived from our own HTVS-generated dataset, the

unrelaxed structures were available. This was not the case for literature-derived struc-

tures and therefore these structures were unrelaxed by 1) identifying the component

A- and B-site atoms, 2) matching each atom with the nearest A- or B- site, respec-

tively, in an unrelaxed template structure, and 3) removing from the training dataset

any crystals for which uncertainty in matching sites between the template and relaxed

structure was beyond a designated threshold. All unrelaxed crystals were scaled to

have the same lattice parameters—namely, structures were scaled to have a 4 Å cubic

unit cell and thus a 8 Å cubic 2x2x2 supercell for multicomponent perovskites. It
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follows that each perovskite was represented by the same graphical structure, with

only the atomic feature vectors differing to represent cationic composition. Models

trained to predict DFT-calculated properties from unrelaxed structures thereby act as

a surrogate for both the DFT structure relaxation and electronic structure property

calculations.

2.2.2 PAINN: Polarizable atom interation neural networks

Although crystals are represented as 2D graphs in the CGCNN formulation described

above, the interactions of atoms indeed occur in continuous 3D space. The relative

arrangement of atomic nodes is represented using only the scalar distance between

atoms. Moreover, CGCNN and other such commonly-used graph-based message pass-

ing neural networks pass messages with rotationally invariant filters, and thus there

can be loss of relevant directional information, see Figure 2-2 [Xie and Grossman,

2018, Yang et al., 2019]. To account for this, equivariant directional message passing

was introduced in the directional message passing neural network (DimeNet) formula-

tion, wherein message embeddings are transformed not only by the distance between

atoms but also by the directions to neighbouring atoms [Klicpera et al., 2020]. Never-

theless, angular information in DimeNet is restricted to messages while the molecular

graph representations remain rotationally invariant. The polarizable atom interation

neural network (PAINN) architecture thus extends this formulation to include rota-

tionally equivariant representations alongside this equivariant message passing, see

Figure 2-2 [Schütt et al., 2021].

In the PAINN formulation, the molecular graph 𝒢 is embedded in 3D space with

edges denoted by the vector 𝑟⃗𝑖𝑗 = 𝑟𝑖 − 𝑟𝑖 between associated nodes 𝑖, 𝑗, see Figure

2-2. Indeed, this contrasts the invariant approach in CGCNN, which featurizes edges

only by the scalar distance between nodes 𝑖, 𝑗. Moreover, PAINN allows nodal rep-

resentations to be both scalar and vectorial, v𝑖 and v⃗𝑖. Generally, the 𝑡th message
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PAINN on unrelaxed structures

	−𝑟! 	
𝑟"

	𝑟! 	
𝑟"

	𝑟! 	
−𝑟"

	−𝑟! 	
𝑟"= different representations between the two crystals 

(a) (b)CGCNN on unrelaxed structures

Figure 2-2: Capabilities of CGCNN and PAINN to differentiate atomic ordering dif-
ferences in unrelaxed crystalline systems. The two toy crystal structures shown here,
with sites coloured by arbitrary atomic type, have the same chemical composition but
different atomic ordering. After one message passing layer between the first sphere of
nearest neighbours (a) all atoms in the CGCNN-generated representation would have
the same featurization between the two structures except those starred, despite the
non-starred purple atoms being in differing local environments. Meanwhile, (b) the
PAINN-generated representation captures the differing local environments between
the structures for all purple atoms. The purple atom second from the left and sec-
ond from the bottom, for example, would have the same (a) CGCNN representation
because edges with the two diagonal red neighbours have the same distance regard-
less of position. The (b) PAINN-generate representation, however, distinguishes the
positional difference of the red atoms through differing edge vectors, shown in yellow.

passing update is given by

v𝑡+1
𝑖 = U𝑡

(︃
v𝑡
𝑖,
∑︁
𝑗,𝑖𝑗∈𝒢

M𝑡 (v𝑖,v𝑗, 𝑟⃗𝑖𝑗)

)︃

v⃗𝑡+1
𝑖 = U⃗𝑡

(︃
v⃗𝑡
𝑖,
∑︁
𝑗,𝑖𝑗∈𝒢

M⃗𝑡 (v𝑖,v𝑗, v⃗𝑖, v⃗𝑗, 𝑟⃗𝑖𝑗)

)︃
,

(2.5)

for scalar and vectorial representations v𝑡+1
𝑖 and v⃗𝑡+1

𝑖 , respectively, wehre U𝑡 and U⃗𝑡

are update functions, and M𝑡 and M⃗𝑡 are message functions [Schütt et al., 2021].

For any rotation matrix 𝑅 ∈ R3𝑥3, rotational invariance of v𝑡+1
𝑖 can be achieved

with rotationally invariant functions M𝑡(x⃗) = M𝑡(𝑅x⃗) and U𝑡(x⃗) = U𝑡(𝑅x⃗) while

rotational equivariance of v⃗𝑡+1
𝑖 can be achieved with rotationally equivariant functions

𝑅M⃗𝑡(x⃗) = M⃗𝑡(𝑅x⃗) and 𝑅U⃗𝑡(x⃗) = U⃗𝑡(𝑅x⃗). It follows from these constraints that

non-linear functions can be applied to the scalar features v𝑡+1
𝑖 while vectorial features
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v⃗𝑡+1
𝑖 are only transformed linearly [Schütt et al., 2021].

Following message passing layers, a feed-forward neural network is applied to the

learned molecular representation, with the final layer mapping to a scalar output

𝑦 for each target property, similar to the formulation described above for CGCNN.

As above, during training model weights W were optimized to minimize 𝐿(𝑦, 𝑦 =

PAINN(𝒞;W)), here using an Adam optimizer and a mean squared error loss function

[Schütt et al., 2021, Kingma and Ba, 2014].

Though the original formulation of PAINN by Schütt et al. [2021] was for non-

periodic molecular systems, we have adapted the method for use in crystalline systems

by implementing periodic boundary conditions. Displacement vectors between atoms

are computed in a periodicity-aware manner and thus the resulting graph can have

multiple edges between a given pair of nodes. Also like CGCNN, edges are defined to

pair each atomic node 𝑖 with all neighbouring atoms 𝑗 within a defined cutoff radius.

Schütt et al. [2021] implemented PAINN with nuclear charges 𝑍𝑖 ∈ N and positions

𝑟⃗𝑖 ∈ R3 as inputs for each atom 𝑖. We found, however, that model performance was

improved by instead using the atom initialization vectors from Xie and Grossman

[2018] as input alongside positions 𝑟⃗𝑖 ∈ R3.

2.2.3 Interpolation of multicomponent perovskite properties

In this work, we are aiming to predict the properties of multicomponent perovskites,

with composition 𝐴𝐴′𝐵𝐵′𝑂3 (including ternary perovskites 𝐴𝐵𝐵′𝑂3 or 𝐴𝐴′𝐵𝑂3),

which constitute a 𝑂(106) search space. Given the considerably smaller 𝑂(103) search

space of binary 𝐴𝐵𝑂3 perovskites, however, we propose to leverage their calculated

properties to generate a baseline prediction of multicomponent perovskite proper-

ties. This smaller search space, in combination with the ability to calculate DFT

descriptors for binary 𝐴𝐵𝑂3 perovskites using a 1x1x1 supercell, makes it tractable

to calculate target properties from first-principles. As is discussed in the results below,

this has been done, in the literature or in this work, for over 3,000 𝐴𝐵𝑂3 perovskites

[Emery et al., 2016, Emery and Wolverton, 2017, Castelli et al., 2012a,b, Jacobs et al.,

2018].
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For a given 𝐴𝑥𝐴
′
1−𝑥𝐵𝑦𝐵

′
1−𝑦𝑂3 perovskite, we propose to calculate a baseline prop-

erty approximation 𝑃𝐴𝑥𝐴′
1−𝑥𝐵𝑦𝐵′

1−𝑦𝑂3
as as linear combination of constituent binary

perovskites properties:

𝑃𝐴𝐴′𝐵𝐵′𝑂3 = 𝑥 · 𝑦 · 𝑃𝐴𝐵𝑂3 + (1− 𝑥) · 𝑦 · 𝑃𝐴′𝐵𝑂3+

𝑥 · (1− 𝑦) · 𝑃𝐴𝐵′𝑂3 + (1− 𝑥) · (1− 𝑦) · 𝑃𝐴′𝐵′𝑂3

(2.6)

We propose to use this interpolated property approximation 𝑃𝐴𝐴′𝐵𝐵′𝑂3 as a base-

line to be improved upon using crystal GNNs. We calculate the deviation from the

linear approximation as ∆𝑃𝐴𝐴′𝐵𝐵′𝑂3 = 𝑃𝐷𝐹𝑇
𝐴𝐴′𝐵𝐵′𝑂3

− 𝑃𝐴𝐴′𝐵𝐵′𝑂3 and train a GNN to

predict ∆𝑃𝐴𝐴′𝐵𝐵′𝑂3 . The steps for interpolation-guided property prediction are thus:

(1) Calculate interpolation baseline 𝑃𝐴𝐴′𝐵𝐵′𝑂3

(2) Use GNN to predict ∆𝑃𝐺𝑁𝑁
𝐴𝐴′𝐵𝐵′𝑂3

, minimizing 𝐿(∆𝑃𝐴𝐴′𝐵𝐵′𝑂3 ,∆𝑃𝐺𝐶𝑁
𝐴𝐴′𝐵𝐵′𝑂3

)

(3) Compute property prediction as 𝑃 predicted
𝐴𝐴′𝐵𝐵′𝑂3

= 𝑃𝐴𝐴′𝐵𝐵′𝑂3 +∆𝑃𝐺𝐶𝑁
𝐴𝐴′𝐵𝐵′𝑂3

2.3 Per-site crystal graph neural networks

In this work, we extend the capabilities of crystal graph neural networks to predict

per-site crystal properties, assigning an output property to each site in the crystal lat-

tice. This task is a natural extension of predicting bulk properties—one output prop-

erty for each crystal—and has been implemented as a modification to the CGCNN

architecture [Xie and Grossman, 2018].

2.3.1 Per-site CGCNN

The crystal graph generation and message passing layers implemented in the per-site

CGCNN model are the same as described above for the bulk CGCNN. After the

convolutional layers, however, no pooling is conducted. Instead, the learned nodal

feature vectors are passed through several fully connected hidden layers, then finally

to an output layer yielding a vector of predicted properties for each site, see Figure 2-3.

The model is trained by minimizing the difference, defined by a loss function 𝐿(p, p̃),
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between target (DFT-calculated) and predicted per-site property vectors, p and p̃,

respectively. As in the bulk model, a mean average loss function was used. The vector

of per-site predictions is computed as p̃ = CGCNN(𝒞;W). Analogously to the bulk

CGCNN training, model weights W were optimized to minimize 𝐿(p, p̃ = 𝑓(𝒞;W))

[Xie and Grossman, 2018].

pmax

pmin

Property p+

Convolutional
Layers

Fully Connected
Layers

(a) (b) (c)

Figure 2-3: Per-site crystal graph convolutional neural network architecture. (a)
Three-dimensional crystal structure is converted to a graph, with nodes represent-
ing atoms and edges representing connections between neighbouring atoms. Atomic
feature vectors from neighbouring atoms are passed through convolutional layers to
obtain (b) nodal feature vectors encoding local chemical environment. The resulting
feature vectors for each atom are passed through a feed-forward neural network and
mapped to a (c) property vector whose entries correspond to each site in the crystal.

2.3.2 Per-site multilayer perceptron

A multi-layer perceptron (MLP) was implemented as a baseline for performance com-

parison with per-site CGCNN. The MLP takes as input all the same structural data

as the CGCNN, but does not leverage graph structure nor convolutions. Each atom in

the crystal is featurized as its CGCNN atomic encoding, along with the atomic encod-

ing of and radial distance to its nearest neighbours, up to the same cutoff used in the

CGCNN model. The resulting atomic feature vectors were passed through through

several fully connected hidden layers, with the final layer mapping to a vector of pre-

dicted properties for each site. This MLP model formulation is memory-inefficient

compared to the per-site CGCNN because instead of linking atom featurizations to-

gether in a graph, it repeats them in each associated neighbour list.
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2.4 Neural network training and hyperparameter

optimization

All models presented here were trained, validated, and tested on 60%, 20%, and 20%

of the data, respectively. Randomly-generated train-validation-test splits were ap-

plied and kept consistent between all models using a given dataset. All presented

results reflect performance on the test set. Reported averages and standard devia-

tions reflect statistics from initializing three replicate models with different random

model weights. Final model weights were chosen based on optimal validation set

performance. Hyperparameter tuning was performed using SigOpt [Clark and Hayes,

2019], optimizing hyperparameters including the number of convolutional layers, ac-

tivation functions, number of hidden layers, hidden feature dimensions, learning rate.
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Chapter 3

Results

3.1 Datasets

In this work, we leverage density functional theory (DFT) datasets of perovskite

oxides both from the literature and calculated using our in-house high-throughput

virtual screening (HTVS) platform. Previous high-throughput screening efforts in

perovskites have largely focused on 𝐴𝐵𝑂3 perovskites, without alloying of the A-

and B-sites, or on narrow compositional ranges of perovskites with A- and/or B-site

alloying. We have therefore used our HTVS capabilities to generate a dataset of

highly-alloyed multicomponent perovskites over a wide compositional space, which is

then leveraged to train graph neural networks for rapid property prediction.

As shown in Table 3.1, perovskite datasets available in the literature from the

Open Quantum Materials Database (OQMD) [Kirklin et al., 2015, Saal et al., 2013,

Emery et al., 2016, Emery and Wolverton, 2017] and the K. Jacobsen research group

[Castelli et al., 2012a,b] contain over 3,000 binary 𝐴𝐵𝑂3 perovskites. Together, these

datasets include perovskites with 72 and 73 different A- and B-site cations, respec-

tively. Despite their lack of cationic alloying, these datasets thus cover a broad

chemical space.

In contrast, the dataset from the D. Morgan research group [Jacobs et al., 2018]

includes perovskites with 19 and 23 different A- and B-site cations, respectively, but

explores the impacts of alloying—it contains both ternary 𝐴𝐴′𝐵𝑂3, 𝐴𝐵𝐵′𝑂3 and
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quaternary 𝐴𝐴′𝐵𝐵′𝑂3 perovskites.

The HTVS-generated dataset presented contains over 5,000 multicomponent per-

ovskites, focusing primarily on quaternary 𝐴𝐴′𝐵𝐵′𝑂3 structures, with 22 and 25

different A- and B-site cations, respectively. The numbers reported in this section do

not include additional series of calculations completed for several 𝐴𝑥𝐴
′
1−𝑥𝐵𝑦𝐵

′
1−𝑦𝑂3

families, however, which are discussed in Section 3.3.1.

Table 3.1: DFT-calculated perovskite datasets

Dataset Total Perovskites
Binary Perovskites

𝐴𝐵𝑂3

Ternary Perovskites
𝐴𝐴′𝐵𝑂3 or 𝐴𝐵𝐵′𝑂3

Quaternary Perovskites
𝐴𝐴′𝐵𝐵′𝑂3

Literature 5964 3611 1384 956
OQMD1 1135 1135 0 0
Jacobsen et al.2 2363 2363 0 0
Morgan et al.3 2466 113 1384 956

HTVS (this work) 5797 160 1029 4608
1 [Emery et al., 2016, Emery and Wolverton, 2017]
2 [Castelli et al., 2012a,b]
3 [Jacobs et al., 2018]

We performed electronic structure calculations on all datasets outlined here—

including those from the literature—to obtain DFT-derived descriptors of catalytic

activity and stability, including energy above convex hull (∆𝐸ℎ𝑢𝑙𝑙), energy above Pour-

baix hull (∆𝐺𝑝𝑏𝑥), differences between oxygen 2𝑝-band centers and the Fermi level

(𝑂2𝑝 −𝐸𝑉 ), and differences between B-site metal 𝑑-band centers and the Fermi level

(𝐵𝑑−𝐸𝑉 ). The property coverage space of the literature and in-house HTVS datasets

are shown in Figure 3-1. We find that the distributions of ∆𝐸ℎ𝑢𝑙𝑙 and ∆𝐺𝑝𝑏𝑥 values

found in our HTVS dataset are more narrowly concentrated near 0 eV/atom, indi-

cating that the dataset achieves better thermodynamic and aqueous stability overall.

Instability of certain perovskites in the literature datasets is likely attributed to the

presence of atypical A- and B-site cations in some binary perovskites. Meanwhile,

despite containing significantly less cationic diversity than the binary perovskite lit-

erature data, our dataset displays similar distributions of electronic density of state

(DOS) descriptors—lacking only upper-limit 𝑂2𝑝 − 𝐸𝑉 values near 0 eV and both

lower- and upper-limit 𝐵𝑑 −𝐸𝑉 values. This highlights the capacity of alloying in A-

and B-sites to tune properties.
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Figure 3-1: Distribution and correlation of DFT-calculated properties in perovskite
datasets. Distributions of bulk descriptors of catalytic stability—energy above convex
hull (∆𝐸ℎ𝑢𝑙𝑙) and above Pourbaix hull (∆𝐺𝑝𝑏𝑥)—and catalytic stability—oxygen 2𝑝-
band centers (𝑂2𝑝 − 𝐸𝑉 ) and B-site metal 𝑑-band centers (𝐵𝑑 − 𝐸𝑉 ) are compared
between literature and HTVS datasets. The literature values here reflect data from
Emery et al. [2016], Emery and Wolverton [2017], Castelli et al. [2012a,b], Jacobs
et al. [2018].

3.1.1 Multicomponent perovskite datasets

This work mainly focuses on multicomponent perovskite systems, wherein composi-

tional alloying of A- and B-sites facilitates tuning of catalytically-relevant properties.

The HTVS efforts presented here thus focused on generating an improved multicom-

ponent perovskite dataset. All data in this section are derived from DFT simulations

of 40-atom 2x2x2 perovskite supercells.
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Figure 3-2: Occurrences of A- and B-site cations in multicomponent perovskite
datasets. Cations found in multicomponent perovskites from (a) literature and (b)
HTVS datasets are shown. Note that both the literature and HTVS datasets in-
clude certain elements—Ti, Mg, Be, Zr, Sn, Ta, Nb, Hf, Zn, Y and Mg, Cu, Y,
respectively—in both A- and B-sites. In these cases, elemental occurrences are pre-
sented for the site where the element was most commonly found.
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Figure 3-2 shows the distribution of A- and B-site cations in literature and HTVS

multicomponent perovskite datasets. Our HTVS dataset has greater spread over

different cations whereas the dataset from the Morgan research group [Jacobs et al.,

2018] focuses much of its data on a small subset cations—namely, Ba, Sr, Ca, La in

the A-site and Nb, Fe, Mn, Co, Ni, V in the B-site.

The diversity of compositions in the HTVS dataset is further highlighted in Figure

3-3a. Despite containing slightly fewer ternary perovskites, the HTVS dataset covers

slightly more 𝐴,𝐴′,𝐵 and 𝐴,𝐵,𝐵′ compositions. This broader coverage of composi-

tional space is more pronounced for quaternary perovskites, with our HTVS dataset

containing over ten-times the number of unique 𝐴,𝐴′,𝐵,𝐵′ groupings compared to

the literature dataset. The HTVS dataset also contains more thorough sampling of

compositional ratios, shown in Figure 3-3b. This dataset is more evenly spread over

possible 𝑥 and 𝑦 values in 𝐴𝑥𝐴
′
1−𝑥𝐵𝑂3, 𝐴𝐵𝑦𝐵

′
1−𝑦𝑂3, and 𝐴𝑥𝐴

′
1−𝑥𝐵𝑦𝐵

′
1−𝑦𝑂3.

Indeed, as shown in Figure 3-4, the HTVS dataset covers property regions not

present in the literature dataset—e.g. perovskites with both low 𝑂2𝑝−𝐸𝑉 and 𝐵𝑑−𝐸𝑉

values, perovskites with low ∆𝐺𝑝𝑏𝑥 and low 𝑂2𝑝 − 𝐸𝑉 or 𝐵𝑑 − 𝐸𝑉 values. All the

while, HTVS-derived structures exhibit similar stability to that found in the literature

dataset—this is reflected in the distributions of ∆𝐸ℎ𝑢𝑙𝑙 and ∆𝐺𝑝𝑏𝑥 near 0 eV/atom.

Beyond its broadened compositional coverage, our multicomponent HTVS

dataset’s novelty lies in the decorational diversity of cations within the perovskite

lattice. In the literature dataset, cations were arranged in largely consistent

configurations—e.g. with B-site alloying in a rock salt arrangement. Although B-sites

typically do order into rock salt arrangements when ordering occurs, many alloyed

perovskites do not have regular ordering [King and Woodward, 2010]. We therefore

require datasets with varied cationic arrangements to analyze the impacts of deco-

rational differences. Moreover, such datasets are required to build machine learning

models that capture property differences across perovskites of the same composition

but with different cationic decorations. Therefore, when generating input structures

for the presented HTVS dataset, the desired combinations of A- and B-cations were

populated into random sites within their respective sublattices.
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Figure 3-3: Compositional makeup of multicomponent perovskite datasets. The
number of unique ternary 𝐴𝐴′𝐵𝑂3, 𝐴𝐵𝐵′𝑂3 compositions (a, left) and quater-
nary 𝐴𝐴′𝐵𝐵′𝑂3 compositions (a, right) are compared between literature and HTVS
datasets. This analysis ignores the ratios of A- and B-site alloying, counting only
the number of unique 𝐴,𝐴′,𝐵,𝐵′ groupings. Overlap denotes compositions present in
both datasets. Separately, distributions of A- and B-site alloying ratios are compared
between literature (b, top) and HTVS (b, bottom) datasets. Presented counts were
combined from both ternary and quaternary perovskites. Note that the symmetry in
these histograms arises from the reciprocal occurrences of 87.5%/12.5%, 75%/25%,
62.5%/37.5%, and 50%/50%.
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Figure 3-4: Distribution and correlation of DFT-calculated properties in multicom-
ponent perovskite datasets. Distributions of bulk descriptors of catalytic stability—
energy above convex hull (∆𝐸ℎ𝑢𝑙𝑙) and above Pourbaix hull (∆𝐺𝑝𝑏𝑥)—and cat-
alytic stability—oxygen 2𝑝-band centers (𝑂2𝑝 −𝐸𝑉 ) and B-site metal 𝑑-band centers
(𝐵𝑑 − 𝐸𝑉 ) are compared between literature and HTVS datasets of multicomponent
perovskites. The literature values here reflect data from Jacobs et al. [2018].

For quaternary perovskites alone, the presented HTVS dataset includes over 4,000

𝐴𝐴′𝐵𝐵′𝑂3 structures with highly varied A- and B-site alloying ratios and over 2,000

unique cationic combinations. Compared to the 𝑂(100) unique combinations of

cations in the literature, our dataset significantly increases the diversity of available

highly-alloyed perovskite DFT data. This broader compositional coverage provides

improved training data for machine learning models described in the following section.

Moreover, the varied cationic arrangements present in the HTVS dataset enable us
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to study the impact of decorational differences—as is discussed in Section 3.3. Upon

publication, this HTVS dataset will therefore provide the research community with

a more thorough benchmark dataset for study of alloyed perovskites and analyses of

compositional trends.

3.2 Bulk crystal property prediction

DFT-derived electronic structure properties are useful as descriptors of catalytic sta-

bility and activity for candidate materials, but screening highly-alloyed systems with

DFT becomes intractable due the requirement for large supercells and the size of the

compositional search space. To achieve the A- and B-site alloying in the multicompo-

nent perovskites described above, for example, 40-atom 2x2x2 supercells (𝐴8𝐵8𝑂24)

were used. Geometry optimization and electronic structure calculations thus re-

quired DFT calculations with runtimes on the order of days. The search space of

these 𝐴𝑥𝐴
′
1−𝑥𝐵𝑦𝐵

′
1−𝑦𝑂24 structures, considering 𝑥, 𝑦 ∈ [0, 8], is 𝑂(106) and thus not

tractable to simulate exhaustively.

We therefore aimed to implement data-driven approaches with which screening

𝑂(106) multicomponent 𝐴𝐴′𝐵𝐵′𝑂3 structures becomes tractable. To do so, we must

be able to predict properties from unrelaxed crystal structures, thus mitigating the

need for expensive structure optimization DFT calculations. Here, we implemented

graph neural networks (GNNs) to predict energies above hull (∆𝐸ℎ𝑢𝑙𝑙), energies above

Pourbaix hull (∆𝐺𝑝𝑏𝑥), differences between the oxygen 2𝑝-band center and the Fermi

level (𝑂2𝑝 − 𝐸𝑉 ), differences between the B-site metal 𝑑-band center and the Fermi

level (𝐵𝑑−𝐸𝑉 ), as well as differences between the B-site atom d-band center and the

oxygen 2p-band center (𝐵𝑑 −𝑂2𝑝).

Unlike that of multicomponent 𝐴𝐴′𝐵𝐵′𝑂3 perovskites, the search space of bi-

nary 𝐴𝐵𝑂3 perovskites is tractable to screen exhaustively with DFT as it is 𝑂(103)

and simulations can be performed using a 5-atom 1x1x1 supercell (𝐴1𝐵1𝑂3) with

runtimes on the order of hours instead of days. Leveraging this accessiblity, we pro-

pose interpolating preliminary estimates of multicomponent perovskite descriptors
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from calculated properties of constituent binary perovskites. GNNs were then used

to predict deviations from these baseline estimates, improving property prediction

performance on unrelaxed bulk perovskite structures.

The mulitcomponent perovskite datasets presented in the previous section were

used to train and test the models—a combination of data from the literature and from

calculations with our in-house high-throughput virtual screening (HTVS) platform.

Each presented model was validated on ∼1,400 structures and tested on ∼1,400 struc-

tures, consistent between all models. Models trained to predict properties directly

were trained on ∼4,700 perovskites while those trained to predict deviations from in-

terpolated property estimates were trained on a subset of ∼4,000 crystal structures.

Statistics reflect performance on the held-out test set, reported over three replicate

models initialized with different random weights.

Direct property prediction models, without interpolation priors, were also trained

on a dataset of both multicomponent and binary 𝐴𝐵𝑂3 perovskites. The multicompo-

nent perovskite training data (∼4,700) was supplemented with all binary perovskites

(∼3,700) for a total of >8,000 training structures. The same validation and testing

data as above were used to evaluate the models. Performance on these multicompo-

nent perovskite datasets was decreased in all cases, however, and thus these models

were not pursued further. This drop in performance may be attributed to model

training over the broader elemental variety (∼70 A- and B-site elements, respec-

tively, instead of ∼20) and property distribution present in the binary perovskite

dataset, see Figure 3-1. It is conceivable that training on this more general dataset

caused increased attention toward the presence/absence of individual elements and

less toward the effects of alloying in multicomponent systems.

3.2.1 Property prediction from unrelaxed perovskite

structures

The crystal graph convolutional neural network (CGCNN) developed by Xie and

Grossman [2018] has shown success in predicting electronic structure properties from
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crystal structure. From the input structure, a graph representing atoms as nodes and

atom connectivity as edges is constructed, with atom connectivity defined as all pairs

of neighbouring atoms within a cutoff radius. The nodal feature vectors encode the

element present at each site, while the edge features encode the distance between each

atom in connected pairs. Given a relaxed crystal structure these interatomic distances

encode information about structural distortions, which influence bulk properties of a

crystalline system. Expensive geometry optimization DFT simulations are required

to determine the relaxed structure of a perovskite system, however, thereby negating

the use of machine learning to bypass ab initio calculations and make large search

spaces tractable.

Table 3.2: CGCNN performance on relaxed and unrelaxed datasets
MAE

Property Units Relaxed structures Unrelaxed structures

∆𝐸ℎ𝑢𝑙𝑙 eV/atom 0.073 ± 0.003 0.114 ± 0.003
∆𝐺𝑝𝑏𝑥

1 eV/atom 0.059 ± 0.004 0.087 ± 0.004
𝑂2𝑝 − 𝐸𝑉 eV 0.239 ± 0.001 0.273 ± 0.005
𝐵𝑑 − 𝐸𝑉 eV 0.422 ± 0.009 0.450 ± 0.005
𝐵𝑑 −𝑂2𝑝 eV 0.331 ± 0.001 0.353 ± 0.003
1 Δ𝐺𝑝𝑏𝑥 was predicted at pH 13.5 and 1.6 V vs. RHE

We therefore performed property prediction on unrelaxed structures, scaling all

inputs to be cubic perovskites with the same lattice parameter. Performance was

compared to that of models trained on relaxed structures. The mean average error

(MAE) of properties predicted with these models on test sets are reported in Table

3.2. For all properties, performance decreased upon training on unrelaxed structures,

albeit to varying degrees. MAE values of stability descriptors, ∆𝐸ℎ𝑢𝑙𝑙 and ∆𝐺𝑝𝑏𝑥,

were increased by 45 − 55% while those of DOS descriptors were increased by only

5 − 15%, suggesting that distortional information encoded in the edge features of

relaxed structure graphs is more important in calculating energetic information.

We also implemented polarizable atom interaction neural network (PAINN) mod-

els for property prediction on unrelaxed structure, mainly aiming to improve the

ability to distinguish between different cationic decorations, as described in Section
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3.3. PAINN performance, as reported in the first column of Table 3.3, was superior

than CGCNN for all properties. Further, models for ∆𝐸ℎ𝑢𝑙𝑙, ∆𝐺𝑝𝑏𝑥, 𝐵𝑑 − 𝐸𝑉 , and

𝐵𝑑 − 𝑂2𝑝 achieved MAE values within standard deviation or lower than respective

CGCNN models on relaxed structures.

3.2.2 Interpolation of multicomponent perovskite properties

Properties of multicomponent 𝐴𝐴′𝐵𝐵′𝑂3 perovskites are inherently related to those

of binary perovskites of constituent cations—𝐴𝐵𝑂3, 𝐴𝐵′𝑂3, 𝐴′𝐵𝑂3, 𝐴′𝐵′𝑂3. We

thus sought to leverage binary perovskite data, with thousands of such DFT calcu-

lations available in the literature [Emery et al., 2016, Emery and Wolverton, 2017,

Jacobs et al., 2018], to predict multicomponent perovskite properties. As described

in Section 2.2.3, we calculated approximations of multicomponent perovskite prop-

erties, 𝑃𝐴𝐴′𝐵𝐵′𝑂3 , as a weighted linear combination of constituent binary perovskite

properties. Constituent binary perovskites of interest not found in the literature were

simulated using our HTVS DFT workflow.

Table 3.3: Interpolation-PAINN performance
MAE

Property Units PAINN Interpolation
Interpolation +

PAINN

∆𝐸ℎ𝑢𝑙𝑙 eV/atom 0.058 ± 0.006 0.063 0.034 ± 0.001
∆𝐺𝑝𝑏𝑥

1 eV/atom 0.064 ± 0.005 0.080 0.041 ± 0.001
𝑂2𝑝 − 𝐸𝑉 eV 0.281 ± 0.024 0.417 0.237 ± 0.004
𝐵𝑑 − 𝐸𝑉 eV 0.341 ± 0.021 0.574 0.294 ± 0.005
𝐵𝑑 −𝑂2𝑝 eV 0.244 ± 0.023 0.393 0.191 ± 0.006
1 Δ𝐺𝑝𝑏𝑥 was predicted at pH 13.5 and 1.6 V vs. RHE. Models were also trained on

data at pH 13 and 14, achieving performance statistics within t.

The MAE values of these interpolation estimates, evaluated on the same test set

used to evaluate GNN performance, are reported in Table 3.3. The interpolation esti-

mate for ∆𝐸ℎ𝑢𝑙𝑙 was particularly successful in predicting multicomponent perovskite

properties, achieving MAE values <10% higher than and within standard deviation

of those from PAINN predictions—and less than those from CGCNN predictions on
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relaxed structures. The quality of interpolation results for ∆𝐸ℎ𝑢𝑙𝑙 perhaps owes to en-

ergy additivity [Huggins and Sun, 1946]. Indeed, the ∆𝐸ℎ𝑢𝑙𝑙 of all constituent binary

perovskites is calculated from a subset of the compositional phase diagram used to

calculate ∆𝐸ℎ𝑢𝑙𝑙 for 𝐴𝐴′𝐵𝐵′𝑂3. This may also explain the relative success of ∆𝐺𝑝𝑏𝑥

interpolations as compared to those for band centers.

3.2.3 Prediction of deviations from interpolation estimates

Aiming to synergize the promising performance of the interpolation estimates and

PAINN predictions from unrelaxed structure, we implemented a PAINN model to

learn the deviations of multicomponent perovskite properties from the interpolation.

As described in Section 2.2.3, interpolated property estimates were calculated for

all training/validation/test data and compared to DFT-calculated values to compute

deviations, ∆𝑃𝐴𝐴′𝐵𝐵′𝑂3 = 𝑃𝐷𝐹𝑇
𝐴𝐴′𝐵𝐵′𝑂3

− 𝑃𝐴𝐴′𝐵𝐵′𝑂3 , from ideal mixing. PAINN mod-

els were trained to predict these deviations and model outputs were summed with

interpolation estimates to obtain an updated property prediction. As reported in

Table 3.3, this combined interpolation-PAINN approach achieved better performance

than any other method presented here. For all properties, the interpolation-PAINN

approach outperformed CGCNN on relaxed structures and decreased MAE values

achieved by PAINN or interpolation alone by 14− 41% and 46− 51%, respectively.

3.2.4 Screening multicomponent perovskites

The bulk crystal property prediction methods described in Sections 3.2.1-3.2.3 make

it possible to screen the 𝑂(106) compositional search space of 40-atom 2x2x2 supercell

multicomponent 𝐴𝐴′𝐵𝐵′𝑂3 perovskites. Unrelaxed structures of 𝐴𝑥𝐴
′
8−𝑥𝐵𝑦𝐵

′
8−𝑦𝑂24

for all possible combinations of the 20 A- and 20 B-site elements shown in Figure

3-5 were generated, with 𝑥, 𝑦 ∈ [0, 8]. For each composition, a random decoration

of A- and B-site atoms within the crystal lattice was used. All properties listed in

Table 3.3 were predicted for these 1.2 million multicomponent perovskite structures.

The direct PAINN model, without interpolation as a prior, was used because not all
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constituent binary perovskite DFT simulations had been completed. Results will be

repeated using the improved interpolation-PAINN approach.
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Figure 3-5: Predicted 𝑂2𝑝−𝐸𝑉 of 1.2 million multicomponent 𝐴𝐴′𝐵𝐵′𝑂3 perovskites.
PAINN-predicted 𝑂2𝑝 − 𝐸𝑉 values of 𝐴𝑥𝐴

′
8−𝑥𝐵𝑦𝐵

′
8−𝑦𝑂24 perovskites were averaged

over all 𝑥, 𝑦 ∈ [0, 8] to obtain an average value for each 𝐴𝐴′𝐵𝐵′𝑂3 composition shown
here. The outer and inner horizontal axes indicate A-site elements while the vertical
axes indicate B-site elements. Elements on each set of axes are sorted by increasing
𝑂2𝑝−𝐸𝑉 value, averaged across all structures containing the element. The order of 𝐴,
𝐴′ and of 𝐵, 𝐵′ here is meaningless and thus the 𝑂2𝑝 −𝐸𝑉 value of each 𝐴𝐴′𝐵𝐵′𝑂3

is displayed at four corresponding pixels in the heatmap.
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Averaged predictions of differences between the 𝑂2𝑝 band center and the Fermi

level for each 𝐴𝐴′𝐵𝐵′𝑂3 combination are shown in Figure 3-5, giving an overview

of elemental contributions to 𝑂2𝑝 − 𝐸𝑉 in multicomponent systems. To obtain these

𝑂2𝑝−𝐸𝑉 values for each 𝐴𝐴′𝐵𝐵′𝑂3 composition, predicted 𝑂2𝑝−𝐸𝑉 values for each

𝐴𝑥𝐴
′
8−𝑥𝐵𝑦𝐵

′
8−𝑦𝑂24 were averaged over all 𝑥, 𝑦 ∈ [0, 8]. These results are now being

investigated to identify materials with a confluence of desirable properties for catal-

ysis of the oxygen evolution reaction (OER) under alkaline conditions—optimizing

for both catalytic stability (low ∆𝐸ℎ𝑢𝑙𝑙 and ∆𝐺𝑝𝑏𝑥 at pH ∼13.5) and activity (e.g.

minimizing 𝑂2𝑝 − 𝐸𝑉 ).

3.3 Modelling cationic decorational differences

In Section 3.2, analyses focused on the ability of GNNs to predict bulk properties of

different 𝐴𝐴′𝐵𝐵′𝑂3 compositions. In this section, we will extend our analyses to also

consider the impacts of different cationic decorations—the relative arrangements of

A- and B-site elements within the perovskite lattice.

For a given 𝐴𝑥𝐴
′
8−𝑥𝐵𝑦𝐵

′
8−𝑦𝑂24 composition, 𝐴, 𝐴′ and 𝐵, 𝐵′ atoms can have dif-

ferent relative arrangements within the alloyed A- and B-site sublattices, respectively.

For 𝑥, 𝑦 ∈ {1, 8} there is a single symmetrically inequivalent sublattice while there are

3 and 6 inequivalent sublattice arrangements for 𝑥, 𝑦 ∈ {2, 3, 5, 6} and 𝑥, 𝑦 = 4, respec-

tively. Symmetry inequivalence increases when two alloyed sublattices are combined

in the full 𝐴𝑥𝐴
′
8−𝑥𝐵𝑦𝐵

′
8−𝑦𝑂24 perovskite structure. While there is only one inequiv-

alent structure for 𝑥 = 𝑦 = 1, this number increases to 6 for 𝑥 = 1, 𝑦 = 4; 26 for

𝑥 ∈ {2, 3, 6, 7}, 𝑦 = 4; and 52 for 𝑥 = 4, 𝑦 = 4, for example. Note that these numbers

are the same upon interchanging 𝑥 and 𝑦.
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3.3.1 Impact of decorational differences on DFT-calculated

properties

We sought to analyze whether cationic decorations significantly impact DFT-

calculated descriptors—and thus whether they are an important consideration when

modelling perovskite properties. We therefore performed DFT calculations for all

symmetrically-inequivalent structures of several perovskite families, three of which

are presented in Figure 3-6. For each 𝐴𝑥𝐴
′
8−𝑥𝐵𝑦𝐵

′
8−𝑦𝑂24 series, 𝑦 = 4 (𝑦 = 0.5) is

held constant in while 𝑥 ranges from 1 (0.125) to 7 (0.875). We found that deco-

rational differences impacted DFT-calculated properties to varying degrees. Energy

above hull distributions calculated for three representative series are shown in the

first row of Figure 3-6.

In the case of 𝐿𝑎𝑥𝑃𝑟1−𝑥𝑌4𝑁𝑖4𝑂24, ∆𝐸ℎ𝑢𝑙𝑙 differences between structures of a given

𝑥 composition are larger (∼0.2 eV/atom on average) than those between average

∆𝐸ℎ𝑢𝑙𝑙 values for different 𝑥 concentrations (up to ∼0.06 eV/atom). Similar results

are seen for 𝑌𝑥𝐿𝑎1−𝑥𝐼𝑛4𝑀𝑔4𝑂24, with ∆𝐸ℎ𝑢𝑙𝑙 ranges of over 0.3 eV/atom between

decorations of a given 𝑥 concentration and only ∼0.15 eV/atom differences in aver-

age ∆𝐸ℎ𝑢𝑙𝑙 values between different 𝑥 compositions. These findings demonstrate that

cationic decorations play a crucial role in determining perovskite properties. To suc-

cessfully determine whether a given 𝐴𝐴′𝐵𝐵′𝑂3 composition is stable as a perovskite,

for example, we must consider ∆𝐸ℎ𝑢𝑙𝑙 of the ground state cationic arrangement—or

of a Boltzmann distribution of decorational states. If DFT results—or machine learn-

ing model predictions—do not account for decorations, properties may be calculated

for structures that are not thermodynamically accessible, making them meaningless

towards the goal of developing experimentally useful perovskites.

In contrast to the first two families, however, we find that decorational differences

in 𝐾𝑥𝐵𝑎1−𝑥𝑇𝑖4𝐴𝑙4𝑂24 have very little impact on ∆𝐸ℎ𝑢𝑙𝑙 values at a given 𝑥 concen-

tration. While mean ∆𝐸ℎ𝑢𝑙𝑙 values differ by 0.15 eV/atom between 𝑥 = 0.125 and

𝑥 = 0.875, ∆𝐸ℎ𝑢𝑙𝑙 differs by <0.03 eV/atom between cationic arrangements of any

given 𝑥. This suggests that these compositions have high entropy, making various
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arrangements thermodynamically accessible. For 𝐾𝑥𝐵𝑎1−𝑥𝑇𝑖4𝐴𝑙4𝑂24, composition—

not cationic arrangement—is thus the main determinant of DFT-calculated proper-

ties.

We note that similarly varied distributions of other properties, such as 𝑂2𝑝 −𝐸𝑉 ,

are observed and thus decorations should be considered in all cases.

Together, these results highlight the need to consider cationic decorations when

predicting the catalytic stability and activity of perovskites. To identify promis-

ing compositions, property optimization should be conducted over distributions of

thermodynamically-accessible structures. The probability 𝑝𝑖 that a perovskite will be

in a cationic arrangement 𝑖 may be given by the Boltzmann distribution

𝑝𝑖 =
1

𝑍
𝑔𝑖𝑒

− 𝐸𝑖
𝑘𝐵𝑇 , (3.1)

where 𝑔𝑖 is the degeneracy of decoration 𝑖, 𝐸𝑖 is the energy, 𝑘𝐵 is the Boltzmann

constant, 𝑇 is temperature, and 𝑍 =
∑︀
𝑖

𝑔𝑖𝑒
− 𝐸𝑖

𝑘𝐵𝑇 is the partition function. Note that

degeneracy 𝑔𝑖 is the number of symmetrically equivalent structures corresponding to

a given decoration 𝑖. We can then consider properties of multicomponent perovskite

systems, 𝑃𝐴𝐴′𝐵𝐵′𝑂3 , to be Boltzmann-weighted averages

𝑃𝐴𝐴′𝐵𝐵′𝑂3 =
∑︁
𝑖

𝑝𝑖𝑃𝑖, (3.2)

where 𝑃𝑖 is the property computed for cationic decoration 𝑖.
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Figure 3-6: DFT-calculated and GNN-predicted distributions of ∆𝐸ℎ𝑢𝑙𝑙 for
𝐴𝑥𝐴

′
8−𝑥𝐵4𝐵

′
4𝑂24 perovskites with varied cationic decorations. All symmetrically-

inequivalent structures of 𝐴𝑥𝐴
′
8−𝑥𝐵4𝐵

′
4𝑂24 perovskites with the denoted compositions

and 𝑥 ∈ [1, 7] were simulated with DFT. The distributions of ∆𝐸ℎ𝑢𝑙𝑙 values, shown in
the top row, across different cationic decorations vary among 𝐴, 𝐴′, 𝐵, 𝐵′ composi-
tions. Models trained on relaxed perovskite structures reproduce these distributions,
as shown in the second row. Note that performance of PAINN and CGCNN is ap-
proximately the same on relaxed structures. On unrelaxed data, CGCNN predicts
approximately constant values for all decorations. PAINN on unrelaxed structures,
by contrast, can capture impacts of decorational differences, albeit less successfully
than the relaxed equivalent.
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3.3.2 Capturing decorational differences with graph neural

networks

Given the impacts of cationic arrangement differences presented in Section 3.3.1,

accurate perovskite property prediction requires machine learning methods capable

of capturing decorational effects. We therefore tested the performance of models

described in Section 3.2 on the 𝐴𝑥𝐴
′
8−𝑥𝐵4𝐵

′
4𝑂24 series shown in Figure 3-6. All

CGCNN and PAINN models employed here were trained to predict deviations from

ideal interpolation, with properties then computed using the steps outlined in Section

2.2.3. All models were trained on data described in Section 3.2, with a maximum of

one 𝐴𝑥𝐴
′
8−𝑥𝐵4𝐵

′
4𝑂24 structure included in the training data for any 𝑥.

CGCNN models trained on relaxed perovskite structures were able to reproduce

distributions of DFT-calculated properties across different cationic decorations. Re-

sults for ∆𝐸ℎ𝑢𝑙𝑙 are shown in Figure 3-7 and the second row of Figure 3-6, noting

that results from CGCNN on relaxed structures generated approximately the same

distributions as those shown from PAINN.

On unrelaxed perovskites, however, CGCNN predictions collapsed to a single value

for all symmetrically-inequivalent structures of a given composition, seen for ∆𝐸ℎ𝑢𝑙𝑙

predictions in Figure 3-6. Predictions typically corresponded approximately to the

mean of the predicted property at a given composition. The failure of CGCNN to

capture decoration-dependent variations is also seen as horizontal clustering in parity

plots comparing DFT-calculated and CGCNN-predicted values. This clustering at

constant ∆𝐸ℎ𝑢𝑙𝑙 values predicted by CGCNN is displayed in Figure 3-7. This drastic

decrease in performance may be attributed to the use of only scalar distance edge fea-

tures in CGCNN. With relaxed structures, distorted distances between neighbouring

atoms appear to encode sufficient information for CGCNN to differentiate decora-

tional differences. With unrelaxed structures, however, the edge features are the

same for every perovskite—the distances between a pair of atoms is the same across

neighbours and across all structures regardless of decorational and/or compositional

differences.
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Figure 3-7: Capabilities of GNN models to predict ∆𝐸ℎ𝑢𝑙𝑙 distributions across varied
cationic decorations. CGCNN and PAINN models were trained to predict ∆𝐸ℎ𝑢𝑙𝑙 from
relaxed and from unrelaxed perovskite structures. Parity plots show the performance
of each model on series of 𝐴𝑥𝐴

′
8−𝑥𝐵4𝐵

′
4𝑂24 perovskites with varied symmetrically-

inequivalent cationic arrangements. CGCNN and PAINN exhibit similar performance
on relaxed structures, but PAINN predictions on unrelaxed perovskites outperform
those of CGCNN. Horizontal clustering shown in the parity plot of CGCNN on un-
relaxed structures reflects convergence to a constant prediction for all decorations of
a given composition.
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The failure of CGCNN models to capture decorational effects from unrelaxed

structures motivates our implementation of PAINN models in perovskite systems.

In contrast to CGCNN, PAINN models trained on unrelaxed structure were able

to capture effects of decorational differences. As shown in the last row of Figure

3-6, PAINN successfully reflects that 𝐿𝑎𝑥𝑃𝑟1−𝑥𝑌4𝑁𝑖4𝑂24 and 𝑌𝑥𝐿𝑎1−𝑥𝐼𝑛4𝑀𝑔4𝑂24

compositions display differences in ∆𝐸ℎ𝑢𝑙𝑙 across structures with different cationic

arrangements while 𝐾𝑥𝐵𝑎1−𝑥𝑇𝑖4𝐴𝑙4𝑂24 compositions do not. Although PAINN on

unrelaxed structures does not achieve the same performance as models on relaxed

structures, the horizontal clustering observed with CGCNN is not seen in the PAINN

parity plots, see Figure 3-7.

These results demonstrate successful use of an equivariant message passing GNN

to capture 3D information in crystal structures. Encoding directional information as

graph edge features greatly improved the ability of PAINN models to differentiate

cationic decorations in unrelaxed structures compared to CGCNN, whose edge fea-

tures only encode scalar distances. Despite these promising initial results, however,

further model improvement is desired to achieve results equivalent or superior to those

obtained here with relaxed structures.

The ability to predict decorational-based distributions with the unrelaxed PAINN

model makes it feasible to begin representing perovskite systems as thermodynamic

ensembles and predicted properties as ensemble averages. In doing so, we aim to

make our computational perovskite property modelling increasingly indicative of ex-

perimental results in the future.
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3.4 Per-site property prediction

Models described in Sections 3.2 and 3.3 were used to predict bulk descriptors of

catalytic stability and activity. It is often useful to obtain per-site descriptors as well,

however, because in reality catalytic reactions on localized active sites. Moreover,

understanding contributions to catalytic properties at an atomic level opens to door

to more fine-tuned understanding and design of crystalline materials. We therefore

implemented GNNs to predict properties at each site in a crystal, in contrast to the

bulk models that yield one scalar output for each crystal.

Datasets used to train, validate, and test per-site property prediction models were

compiled from the Materials Project [Jain et al., 2013] and the in-house HTVS calcu-

lations described in Section 3.1. Bader charge, magnetic moment, atomic vibration

frequency (site-projected phonon band center), and site-projected 𝑂2𝑝- and metal

𝑑-band centers were considered due to both their data availability and promise as

descriptors of catalytic activity.

A wide range of different crystal structures for each property was included in

the training data, making the models applicable to a wide range of structures and

stoichiometries.

The Bader charge dataset consists of all ∼120,000 structures in the Materials

Project with available charges and is therefore not limited to a given materials class.

Here, Bader charges refer to the partial atomic charges on metal centers as calculated

by Bader analysis [Tang et al., 2009]. Similarly, all ∼10,000 structures in the Materials

Project with available phonon calculations were used to generate the atomic vibration

frequency dataset, where atomic vibration frequency refers to the band center of the

site-projected phonon density of states.

The magnetic moment dataset is comprised of ∼35,000 magnetic oxides from both

the Materials Project and the perovskite datasets presented in Section 3.1. Structures

with unphysical magnetic moments—those greater than 5 for 𝑑-band valence—were

removed from the dataset. Moreover, crystals containing any atoms with 𝑓 -band

valence were left out, given the scarcity of data and limited accuracy of 𝑓 -element
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DFT pseudopotentials. Only ferromagnetic structures were considered, taking the

absolute value of magnetic moments. Finally, the site-projected 𝑂2𝑝- and metal 𝑑-

band center dataset is comprised of the ∼10,000 perovskites described in Section 3.1,

from both the literature and our HTVS calculations. These band centers are predicted

simultaneously for the metal and oxygen atoms, respectively, in each structure.

Table 3.4: Per-site model performance
MAE

Property
# Train
Crystals Units

Per-site
CGCNN

Per-site
MLP

Per-element
average

Atomic vibration frequency 5,899 THz 0.817 ± 0.003 1.025 ± 0.011 1.571
Metal d-band center 6,024 eV 0.581 ± 0.002 1.266 ± 0.017 1.281
O 2p-band center 6,024 eV 0.303 ± 0.004 0.579 ± 0.003 1.227
Magnetic moment 21,113 |𝜇𝐵| 0.185 ± 0.002 0.377 ± 0.002 0.553
Bader charge 71,787 𝑞𝑒 0.068 ± 0.001 0.147 ± 0.001 0.578

Performance of the per-site CGCNN models is summarized in Table 3.4. Results

are compared to those from the per-site multilayer perceptron (MLP) model described

in Section 2.3.2 as well as to a per-element average—the mean property value for each

element over the respective train dataset. Per-site CGCNN was found to have the

best performance for each property. The superior performance of per-site CGCNN

compared to the MLP model, which takes all the same structural information as

input but does not leverage graph representations or convolutions, reflects the power

of message passing GNNs in encoding local environments.

Comparison of DFT-calculated and CGCNN-predicted properties on an element-

wise basis demonstrates the ability of per-site CGCNN to explicitly learn physical

principles dictated by local environments. For all row 4 transition metals in the

test set, distributions of calculated and predicted Bader charge, magnetic moment,

and per-site 𝑑-band center are compared in Figure 3-8a-c. Per-site CGCNN accu-

rately captures both periodic trends across the row—obtainable from basic phys-

ical principles—as well as property distributions across each element in different

materials—dictated by local chemical environments. Similar comparisons of 𝑂2𝑝-

band centers are shown in Figure 3-8c and of per-site atomic vibration frequencies

for the first 10 elements in the periodic table in Figure 3-8d.
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Figure 3-8: Elemental distributions of calculated and predicted per-site properties.
Distributions of DFT-calculated values are compared to per-site CGCNN predictions
for a variety of materials properties. Bader charges (a), magnetic moments (b), and
site-projected metal 𝑑-band centers (c) are compared for each row 4 transition metal.
Per-site atomic vibration frequencies are compared for the first ten elements of the
periodic table (d). Calculated and predicted site-projected 𝑂2𝑝-band centers (c) are
also compared. Per-site CGCNN predictions capture periodic trends and property
distributions across each element in different chemical structures. Schematic (e) de-
picts the relation between d-band filling, oxidation states, and magnetic moments.
Plot (f) models calculated per-site atomic vibration frequencies using a simple mass-
on-a-spring analogy, as a function of mass 𝑚 and average bonding length 𝑟 .

While periodic trends generally follow well-known physical principles, per-element

distributions of material properties result from local chemical environments and are

not always obvious from basic physical principles alone—thus highlighting the ability

of per-site CGCNN capture local environments. Insights captured by the models are

discussed for each property:

Bader charges

Per-site CGCNN captures the trend of decreasingly positive charges across the peri-

odic table, from Sc to Zn, as electronegativity increases. The model also reproduces

nodes within Bader charge distributions for each element, indicative of different ox-

idation states. The oxidation site of site 𝑖 is traditionally estimated by the bond
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valence method as
∑︀
𝑗

𝑒
𝑅0−𝑅𝑖𝑗

𝑏 over all neighbouring sites 𝑗, where 𝑅𝑖𝑗 is the distance

between sites 𝑖 and 𝑗, 𝑅0 is a tabulated material system-specific bond valence param-

eter, and 𝑏 is an empirical constant [O’Keefe and Brese, 1991]. Moreover, previous

data-driven efforts have learned oxidation states from hand crafted features [Jablonka

et al., 2021], a requirement which the per-site CGCNN mitigates by predicting Bader

charges directly from crystal structure.

Magnetic moments

Broadly, per-site predictions capture band filling across the 3𝑑 row of the periodic ta-

ble. Namely, as unpaired electrons fill the 𝑑-band from Sc to Mn, magnetic moments

increase in discrete intervals of one Bohr magneton (𝜇𝐵). From Mn to Zn, however,

the magnetic moment decreases as further 𝑑-band filling causes paired electrons, thus

cancelling spins. Schematic 3-8e summarizes the relationship between magnetic mo-

ment, d-band filling, and oxidation state. Similarly to Bader charge model results,

the magnetic moment CGCNN model learns oxidation state effects to reproduce the

varied discrete magnetic moments for each element, as modulated by local chemical

environments.

Site-projected electronic density of states

Per-site CGCNN reproduces known trends in 𝑑-band centers: as the number of 3𝑑

electrons increases across the periodic table, the 𝑑-band widens to maintain the Fermi

level, thus pushing the 𝑑-band center to be more negative [Nørskov et al., 2014]. In-

deed, the model also captures the distributio of 𝑂2𝑝-band centers in different environ-

ments.

Atomic vibration frequency

For the first 10 elements in the periodic table shown here, per-site atomic vibration

frequency generally decays as atomic mass increases. In Figure 3-8f, a simple mass-

on-a-spring analogy is used to model calculated vibration frequencies as a function
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of 𝑚𝑟2, where 𝑚 is site mass and 𝑟 is average bonding length—indicative of bonding

strength. A best fit line across the dataset is shown in black. Deviations from the

best fit line reflect modulation of bond strengths by nearest neighbour environments,

which are learned by the per-site CGCNN.

Together, these results underscore the ability of our model to learn per-site prop-

erties from local chemical environments, thus providing physical insights. Note, how-

ever, that all datasets used in this section consist of DFT-relaxed structures and

performance on unrelaxed structures has yet to be tested. Moreover, following the

success of PAINN in predicting bulk crystal properties, we will train models to predict

per-site properties using the equivariant message passing architecture.
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Chapter 4

Conclusions and Outlook

This thesis work developed improved computational modelling of multicomponent

perovskites, leveraging DFT calculations, graph convolutional neural networks, and

physical chemistry insights. Ultimately, this work contributes to the broader goal of

developing inverse design frameworks for the discovery of improved multicomponent

oxide electrocatalysts.

We presented a new DFT dataset of over 5,000 multicomponent perovskites, cov-

ering a wide compositional space and studying how cationic arrangements impact

perovskite properties. This dataset was not only useful for our analyses and machine

learning model development, but will also provide the research community with a

significantly larger and broader benchmark dataset of highly-alloyed perovskite data.

We are now also supplementing this dataset with calculations of defected structures,

containing oxygen vacancies or oxynitride substitutions, to further our understandings

of perovskite systems and expand the search space for useful electrocatalysts.

Graph neural networks previously developed in the literature were implemented

and tailored to predict (a) bulk crystal properties from unrelaxed perovskites, and (b)

per-site properties in a variety of crystalline systems. The former mitigates the need

for expensive DFT structure optimization calculations, which enabled our predictions

of catalytic descriptors for 1.2 million multicomponent perovskites. Using available

binary 𝐴𝐵𝑂3 data to interpolate baseline property estimates, PAINN equivariant

message passing neural networks on unrelaxed structures outperformed the popular
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CGCNN model on relaxed data. Meanwhile, per-site property prediction models

allowed us to capture atomic level insights of DFT-derived properties and are now

being used to model and design individual catalytic sites on perovskite surfaces.

Lastly, our analyses and models of the impacts of cation decorations in perovskite

lattices enable us to consider perovskite systems as ensembles and thus predict prop-

erties of thermodynamically-relevant structures. Nevertheless, further optimization

of GNNs capturing decorational effects from unrelaxed structure is needed, perhaps

by employing E(3)-equivariant graph neural networks [Batzner et al., 2022, Geiger

and Smidt, 2022]. The ability to capture decorational effects paves the way for in-

verse design frameworks that populate perovskite lattices site-by-site. For example,

by representing perovskite structure as a decision tree, we have implemented a Monte

Carlo tree search algorithm that assigns atoms to each cationic site with the objective

of optimizing desired catalytic descriptors.
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