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Abstract
Interactive proof systems, introduced in a seminal work of Goldwasser, Micali, and
Rackoff, have become one of the most powerful and flexible tools in cryptography and
computer science at large. They have directly led to some of the biggest breakthroughs
in theoretical cryptography, complexity, and quantum computation. They are also
at the center of a revolution in practical cryptography, particularly in the context of
blockchains and cryptocurrencies.

However, despite their importance, our understanding of cryptographic proofs
is surprisingly limited. The central problem studied in this thesis is the following
question:

Can we remove interaction from interactive proofs?
Even though this question sounds almost paradoxical, Fiat and Shamir (1986)

proposed (and Blum extended) a heuristic methodology for removing interaction from
a huge class of interactive proofs. This methodology is ubiquitous and essential for
practical applications, but for over thirty years, we had no proof of its security, even
for a single non-trivial case.

The main goal of this thesis is to give a solid theoretical foundation for the Fiat-
Shamir transformation by developing general-purpose tools, techniques, and abstrac-
tions for characterizing its security. We propose a two-step methodology for obtaining
provable instantiations that relies on the notion of correlation intractability, which
is a hash function security property requiring that it is computationally infeasible to
find pre-specified input-output correlations in the hash function.

Using this methodology, we obtain various new results in cryptography, touch-
ing on areas such as non-interactive zero knowledge, delegation of computation, the
insecurity of parallel repetition, and the cryptographic hardness of computing Nash
Equilibria in game theory.

Thesis Supervisor: Vinod Vaikuntanathan
Title: Professor of Electrical Engineering and Computer Science

3



4



Acknowledgments

I was extremely fortunate to spend my graduate school years surrounded by wonderful

people – collaborators, colleagues, friends, and family – that shared with me their

drive, curiosity, inspiration, and kindness. Without them, this thesis would not have

been possible.

My advisor, Vinod Vaikuntanathan, was incredibly generous with his time, atten-

tion, patience, and thoughts. Vinod constantly and enthusiastically discussed with

me countless open problems and research directions that excited him. I specifically

credit this for developing my high-level understanding of cryptography as a whole:

what we know, what we would like to know, what ideas are developing at the moment,

and how everything fits together. He also deliberately and actively introduced me

to the cryptography community and encouraged outside collaborations that proved

to be highly impactful and influential. My conception of what a great researcher is

and does largely stems from Vinod’s explicit advice and his leading by example. At

the same time, Vinod gave me the freedom to be my own researcher and was a great

source of personal support and understanding throughout my PhD. I could not have

asked for a better advisor.

The work done in this thesis was in joint collaboration with many amazing re-

searchers: Ran Canetti, Yilei Chen, Justin Holmgren, Fermi Ma, Willy Quach, Guy

Rothblum, Ron Rothblum, Vinod Vaikuntanathan, and Daniel Wichs. I thank them

for helping to make this research possible and, by virtue of the collaborations, help-

ing me develop as a cryptographer and as a person. I would also like to thank my

collaborators in works not appearing in this thesis: Prabhanjan Ananth, James Bar-

tusek, Zvika Brakerski, Yael Kalai, Giulio Malavolta, Luke Schaeffer, Gil Segev, Nick

Spooner, Thomas Vidick, June Vuong, David Wu, and Lisa Yang.

I would specifically like to thank a number of research mentors – Zvika Brakerski,

Ran Canetti, Justin Holmgren, Yael Kalai, Ron Rothblum, and Daniel Wichs – for,

at various points in my career, taking me on as a “charge” and going far out of

their way to share their knowledge and learn alongside me. Each of them has had

5



a lasting impact on how I think about both research and mentorship, and they are

all inspiration for any future collaboration I might have with younger people and

students especially. I am especially indebted to Justin Holmgren, who managed to do

all of these things while a student himself (at the beginning), and whom I collaborated

with closely for much of the work in this thesis.

It takes a village to raise a graduate student, and the MIT theory group was

an extremely vibrant and welcoming village to grow up in. At the beginning of

graduate school, I knew quite little about TCS and cryptography; fortunately, I

had an amazing time learning by osmosis from all of the students, postdocs, and

faculty around me. I specifically want to thank all of the cryptography students

and postdocs who were at MIT when I started: Itay Berman, Nir Bitansky, Aloni

Cohen, Ran Cohen, Akshay Degwekar, Justin Holmgren, Rio LaVigne, Tianren Liu,

Omer Paneth, Ron Rothblum, Sunoo Park, Srinivasan Raghuraman, Adam Sealfon,

and Prashant Vasudevan. I was also fortunate to have a collaborative and supportive

cohort who joined MIT at the same time as me, including Willow Ahrens, Sitan Chen,

Robin Hui, Quanquan Liu, Aleksandar Makelov, Saleet Mossel, Nicholas Schiefer, and

Helen Xu.

I thank Michael Cohen for being uniquely willing to (enthusiastically) talk about

math/TCS for an arbitrary amount of time, especially late at night on the 5th floor

of Stata; Michael will be remembered fondly by everyone who knew him.

Finally, I want to thank all of the theory group friends who joined me in var-

ious shenanigans over the years including theory retreat, cards, crosswords, chess,

Pokemon Go, Super Smash Bros, etc. The full list of these people would be incredi-

bly long, but let me specifically thank Aviv Adler, Michael Coulombe, Daniel Grier,

Dhiraj Holden, Gautam Kamath, Pritish Kamath, Jerry Li, Andrea Lincoln, Dy-

lan McKay, Saeed Mehraban, Madalina Persu, Govind Ramnarayan, Luke Schaeffer,

Mike Sun, Nicole Wein, and Kai Xiao, in addition to everyone I already mentioned.

Beyond the MIT theory group, I was constantly energized and supported by friends

who were with me through good and bad times. Life was enjoyable and worthwhile

because I had all of them around. I want to thank all of my friends from college,

6



especially Keno Fischer, Patrick Komiske, Eric Metodiev, and Erik Tamre, who all

remained in Cambridge with me during grad school (Keno and Patrick as roommates,

who were there for me when I needed it the most). Fermi Ma and Willy Quach became

close friends during grad school; I greatly enjoyed all of our intellectual conversations,

climbing and restaurant adventures, video games, and summer of living together.

Andy Lu, Eric Lu, and Yuna Joung have been entertaining, crazy, and incredibly

kind roommates for the last couple of years.

Brynmor Chapman went through all of the last five-and-a-half years with me,

including a large fraction of everything mentioned so far. I have no idea how to thank

him properly, so we are going to have to settle for “you know what you did.”

Finally, I want to thank my family: my parents (Robin Lewis and Alfred Lom-

bardi), my brother (Nick Lombardi), and my partner (Jess Xu). Their unconditional

love and support gives me the strength to be my best self, and I would not have made

it without them. Jess, the last three years have been the best of my life so far, and I

can’t wait for what comes next.

7



8



Contents

1 Introduction 17

1.1 The Fiat-Shamir Heuristic . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Cryptographic Hash Functions and Correlation Intractability . . . . . 23

1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.1 Results in Part I . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3.2 Results in Part II . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3.3 Results in Part III . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4.1 Correlation Intractability and Fiat-Shamir for Proofs . . . . . 29

1.4.2 Our Methodology in a Nutshell . . . . . . . . . . . . . . . . . 31

1.4.3 An Example: Fiat-Shamir for the Blum Protocol . . . . . . . 32

1.4.4 Our Methodology, Revisited . . . . . . . . . . . . . . . . . . . 36

1.5 Conclusion and Open Problems . . . . . . . . . . . . . . . . . . . . . 37

I The Basic Framework and Initial Constructions 40

2 Fiat-Shamir from Simpler Assumptions 41

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2 Our Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2.1 Round-By-Round Soundness . . . . . . . . . . . . . . . . . . . 51

9



2.2.2 Bounded Correlation Intractable Hash Families . . . . . . . . 54

2.2.3 Constructing Optimal Bounded-KDM Secure Encryption . . . 55

2.3 Correlation Intractability from KDM-Secure Encryption . . . . . . . . 62

2.3.1 Correlation Intractable Hash Functions . . . . . . . . . . . . . 63

2.3.2 Encryption Schemes and Key-Dependent Message (KDM) Se-

curity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.3.3 Correlation Intractability from Strong KDM Security . . . . . 66

2.4 Optimally KDM-Secure Encryption From Simpler Assumptions . . . 69

2.4.1 Learning with Errors . . . . . . . . . . . . . . . . . . . . . . . 69

2.4.2 (P/Poly)-KDM Security via Fully Homomorphic Encryption . 70

2.4.3 SIZE(𝜅𝑐)-KDM Security via Randomized Encodings . . . . . . 76

2.5 Round-by-Round Soundness and Fiat-Shamir . . . . . . . . . . . . . 91

2.5.1 Definitions: Interactive Proofs and Arguments . . . . . . . . . 91

2.5.2 Round-by-Round Soundness . . . . . . . . . . . . . . . . . . . 92

2.5.3 Round-by-Round Soundness and Fiat-Shamir . . . . . . . . . 96

2.6 Publicly Verifiable SNARG . . . . . . . . . . . . . . . . . . . . . . . . 98

2.6.1 Fields and Polynomials . . . . . . . . . . . . . . . . . . . . . . 98

2.6.2 GKR: Round by Round Soundness and Efficient Sampleability 99

2.6.3 Publicly Verifiable Delegation for Log-Space Uniform NC . . . 104

2.7 Non-Interactive Zero Knowledge . . . . . . . . . . . . . . . . . . . . . 106

2.7.1 Non-Interactive Zero Knowledge Arguments . . . . . . . . . . 106

2.7.2 NIZK from Bounded Correlation Intractability . . . . . . . . . 108

2.7.3 Our NIZK Protocol . . . . . . . . . . . . . . . . . . . . . . . . 116

2.8 Success probability of polynomial time algorithms on LWE . . . . . . 118

2.8.1 The success probability of the lattice basis reduction approach 120

3 Non-Interactive Zero Knowledge and Correlation Intractability from

Circular-Secure FHE 123

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . 126

10



3.1.2 Prior Work on Correlation Intractability and Fiat-Shamir . . . 131

3.1.3 Our Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 135

3.1.4 Subsequent Work . . . . . . . . . . . . . . . . . . . . . . . . . 141

3.1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

3.2.1 (Lossy) Public Key Encryption . . . . . . . . . . . . . . . . . 143

3.2.2 Fully Homomorphic Encryption and Circular Security . . . . . 144

3.2.3 Non-Interactive Zero Knowledge Arguments (and Proofs) . . . 145

3.3 Somewhere Statistically Correlation Intractable Hash Families . . . . 148

3.3.1 Efficiently Searchable Relations . . . . . . . . . . . . . . . . . 150

3.3.2 Programmability . . . . . . . . . . . . . . . . . . . . . . . . . 152

3.4 Correlation Intractability via Fully Homomorphic Encryption . . . . . 153

3.4.1 Correlation Intractability for Efficiently Searchable Relations . 154

3.4.2 Universal Correlation Intractability from LWE . . . . . . . . . 156

3.4.3 Multi-Input Correlation Intractability . . . . . . . . . . . . . . 159

3.5 Non-Interactive Zero Knowledge Arguments . . . . . . . . . . . . . . 162

3.5.1 The [FLS90] Protocol . . . . . . . . . . . . . . . . . . . . . . . 163

3.5.2 Our NIZK Protocol . . . . . . . . . . . . . . . . . . . . . . . . 164

3.5.3 Obtaining Theorem 3.3, Theorem 3.4, and LWE-based Instan-

tiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

3.6 Fiat-Shamir for (Instance-Dependent) Trapdoor Σ-protocols . . . . . 170

3.6.1 Instance-Dependent Trapdoor Σ-Protocols . . . . . . . . . . . 171

3.6.2 Examples and Implications . . . . . . . . . . . . . . . . . . . . 174

II CI Self-Reductions and Further Applications to Proto-
cols 177

4 Fiat-Shamir for Repeated Squaring and Applications to PPAD-Hardness

and VDFs 179

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

11



4.1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

4.1.2 Comparison with Prior Work . . . . . . . . . . . . . . . . . . 189

4.1.3 Additional Related Work . . . . . . . . . . . . . . . . . . . . . 191

4.1.4 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . 192

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

4.2.1 Repeated Squaring modulo a Composite . . . . . . . . . . . . 199

4.2.2 Learning with Errors . . . . . . . . . . . . . . . . . . . . . . . 200

4.2.3 Correlation Intractable Hash Families . . . . . . . . . . . . . . 201

4.2.4 Interactive Proofs and Arguments . . . . . . . . . . . . . . . . 204

4.2.5 Non-trivial Preprocessing Algorithms for the Discrete Loga-

rithm Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 207

4.3 Correlation Intractability for Special Inefficient Functions . . . . . . . 208

4.3.1 A Self-Reduction for Correlation Intractability . . . . . . . . . 209

4.3.2 CI for Efficient Functions Relative to Discrete-Log . . . . . . . 209

4.4 Round-by-Round (Unambiguous) Soundness and Fiat-Shamir . . . . 211

4.5 Fiat-Shamir for the Repeated Squaring Protocol . . . . . . . . . . . . 214

4.5.1 Our Variant of the Repeated Squaring Protocol . . . . . . . . 214

4.5.2 Unambiguous Round-by-Round Soundness and Bad-Challenge

Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

4.6 Applications to PPAD-Hardness and VDFs . . . . . . . . . . . . . . 219

4.6.1 Hardness in PPAD and CLS . . . . . . . . . . . . . . . . . . 219

4.6.2 Verifiable Delay Functions . . . . . . . . . . . . . . . . . . . . 221

5 Fiat-Shamir via List-Recoverable Codes (or: Parallel Repetition of

GMW is Not Zero Knowledge) 225

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

5.1.1 Securely Instantiating Fiat-Shamir . . . . . . . . . . . . . . . 228

5.1.2 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . 234

5.1.3 Reflections: Fiat-Shamir via Coding Theory . . . . . . . . . . 245

5.1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

12



5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

5.2.1 Interactive Proofs and Zero-Knowledge . . . . . . . . . . . . . 250

5.2.2 Cryptographic Primitives and Assumptions . . . . . . . . . . . 253

5.2.3 Correlation-Intractable Hash Functions . . . . . . . . . . . . . 255

5.2.4 The Fiat-Shamir Transform . . . . . . . . . . . . . . . . . . . 256

5.2.5 Error Correcting Codes and List Recovery . . . . . . . . . . . 257

5.2.6 Concentration Inequalities . . . . . . . . . . . . . . . . . . . . 258

5.3 Derandomization for Correlation Intractability . . . . . . . . . . . . . 259

5.3.1 Correlation Intractability via List Recovery . . . . . . . . . . . 259

5.3.2 Handling Large Alphabets via Subsampling . . . . . . . . . . 263

5.4 Basic List Recovery Bounds . . . . . . . . . . . . . . . . . . . . . . . 264

5.5 Fiat-Shamir for Commit-And-Open Protocols . . . . . . . . . . . . . 268

5.5.1 Correlation Intractability for Efficiently Verifiable Product Re-

lations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

5.5.2 Fiat-Shamir for Trapdoor 3-Message Protocols . . . . . . . . . 272

5.5.3 Commit and Open Protocols . . . . . . . . . . . . . . . . . . . 274

5.5.4 Zero Knowledge is Not Preserved by Parallel Repetition . . . 276

5.6 Fiat-Shamir for Round-By-Round Sound Protocols . . . . . . . . . . 277

5.6.1 CI for Efficiently Verifiable Approximate Product Relations . . 278

5.6.2 Applications to Fiat-Shamir for Round-by-Round Sound Pro-

tocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

6 2-Message Publicly Verifiable WI from (Subexponential) LWE 289

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

6.1.1 Concurrent Work . . . . . . . . . . . . . . . . . . . . . . . . . 291

6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

6.2.1 Witness Indistinguishable Arguments . . . . . . . . . . . . . . 291

6.3 Correlation Intractable Hash Families . . . . . . . . . . . . . . . . . . 293

6.3.1 Efficiently Searchable Relations . . . . . . . . . . . . . . . . . 294

6.4 Reverse Randomization-Compatible Trapdoor Σ-Protocols . . . . . . 295

13



6.5 Constructing 2-Message WI . . . . . . . . . . . . . . . . . . . . . . . 296

6.5.1 Parameter Settings and Instantiation . . . . . . . . . . . . . . 299

III Multi-Input Correlation Intractability 301

7 One-Way Product Functions and their Applications 303

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

7.1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . 305

7.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

7.1.3 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . 315

7.1.4 Conclusions and Questions . . . . . . . . . . . . . . . . . . . . 320

7.1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

7.2.1 One-Way Functions . . . . . . . . . . . . . . . . . . . . . . . . 322

7.2.2 Cryptographic Hash Functions . . . . . . . . . . . . . . . . . . 323

7.3 One-Way Product Functions: Definitions and Reductions . . . . . . . 325

7.3.1 Concrete Candidate: Discrete Logarithm . . . . . . . . . . . . 328

7.3.2 OWPFs that are Sufficient for CRHFs . . . . . . . . . . . . . . 329

7.3.3 From OWPFs to Injective OWPFs . . . . . . . . . . . . . . . 329

7.3.4 From OWPFs to Symmetric OWPFs . . . . . . . . . . . . . . 336

7.4 Collision Resistance from OWPFs . . . . . . . . . . . . . . . . . . . . 340

7.4.1 Parameter Settings and Discussion . . . . . . . . . . . . . . . 344

7.5 Output Intractability from OWPFs . . . . . . . . . . . . . . . . . . . 345

7.5.1 Examples Arising from Theorem 7.45 . . . . . . . . . . . . . . 350

7.6 Constructions from IO and OWPFs . . . . . . . . . . . . . . . . . . . 352

7.6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

7.6.2 Warm-Up: Target Collision Resistance . . . . . . . . . . . . . 354

7.6.3 Multi-Input Correlation Intractability . . . . . . . . . . . . . . 357

7.6.4 Examples Arising from Theorem 7.57 . . . . . . . . . . . . . . 362

7.7 A Proof of the Refined Asharov-Segev Bound . . . . . . . . . . . . . 369

14



8 Correlation-Intractable Hash Functions via Shift Hiding 375

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

8.1.1 Our Results and Techniques . . . . . . . . . . . . . . . . . . . 377

8.1.2 Applications: Multi-Input CI from LWE and CI from iO . . . 382

8.1.3 Additional Related Work Discussion . . . . . . . . . . . . . . 387

8.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

8.2.1 Hash Functions and Correlation Intractability . . . . . . . . . 389

8.2.2 Shift-Hiding Shiftable Functions . . . . . . . . . . . . . . . . . 393

8.2.3 Learning with Errors and (One-Dimensional) Short Integer So-

lution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

8.3 Correlation Intractability from Shift-Hiding Shiftable Functions . . . 397

8.4 Construction of (Weighted) Sum-Resistant SHSF . . . . . . . . . . . 399

8.4.1 The Ingredients . . . . . . . . . . . . . . . . . . . . . . . . . . 399

8.4.2 The Shift-Hiding Shiftable Function . . . . . . . . . . . . . . . 403

8.4.3 Proof of Computational Correctness . . . . . . . . . . . . . . . 405

8.4.4 Proof of Shift-Hiding . . . . . . . . . . . . . . . . . . . . . . . 407

8.4.5 Proof of Sum-Resistance . . . . . . . . . . . . . . . . . . . . . 409

8.4.6 Putting it Together: Weighted Sum-Resistant SHSFs . . . . . 412

8.5 Output-Intractable SHSFs from iO . . . . . . . . . . . . . . . . . . . 412

8.5.1 IO-Related Preliminaries . . . . . . . . . . . . . . . . . . . . . 412

8.5.2 Output-Intractable SHSFs from iO + Output-Intractable Punc-

turable PRFs . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

8.5.3 Construction 1: Postcomposition with an Output-Intractable

Hash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

8.5.4 Construction 2: Precomposition with a Lossy Function . . . . 417

8.5.5 Putting it Together . . . . . . . . . . . . . . . . . . . . . . . . 419

A Fiat-Shamir from CI, without using a Commitment Trapdoor 421

15



16



Chapter 1

Introduction

One of computer science’s greatest insights has been in understanding the power and

versatility of proofs. Nowhere is this more clearly demonstrated than in a seminal

work of Goldwasser, Micali, and Rackoff [GMR85], which established a radically new

conception of proofs that are interactive and randomized. In such a proof system, one

party (𝑃 , “the prover”) wants to convince another (𝑉 , “the verifier”) of the validity

of some statement 𝑥. In order to do so, the prover and verifier exchange messages

according to a pre-specified protocol; at the end, the verifier decides whether to accept

the prover’s claim that 𝑥 is true.

It is hard to overstate how powerful and versatile this computational model has

been over the last thirty-five years. The model has an extraordinary tendency to

identify fundamental questions about and insights into the nature of computation.

This stems (in part) from how it simultaneously incorporates three individually pow-

erful computational resources: randomization (the ability of an algorithm to flip

coins), interaction (the ability to exchange many back-and-forth messages before

the verifier makes a decision), and computational hardness (the conjectured in-

ability of efficient algorithms to solve important computational tasks). Computational

hardness can appear in multiple aspects of a proof system, but one instance worth

immediately highlighting is computational soundness: it is possible to construct proof

systems where valid proofs of false statements exist but it is computationally infeasible

to find one.
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Since their introduction, interactive proofs have directly led to some of the biggest

breakthroughs in cryptography [GMW86, GMW87, Kil92, Mic94] as well as related

areas such as complexity [LFKN90, Sha90, BFLS91, ALM+92] and, more recently,

quantum computation [BCM+18,Mah18]. We elaborate on some examples below:

1. [GMR85] introduced and constructed zero knowledge interactive proof systems,

which are proof systems in which the verifier learns nothing beyond the validity

of the statement 𝑥. This property is formalized by a simulation security def-

inition requiring that the entire “view” of any efficient (potentially malicious)

verifier 𝑉 * can be simulated in polynomial time given the statement 𝑥. We note

that security is typically only required to hold against polynomial-time 𝑉 *.

In addition to the amazing standalone result that any NP language has a zero-

knowledge proof system [GMW86], zero-knowledge proofs have become a ubiq-

uitous tool in cryptography starting from their use in constructing general-

purpose secure multiparty computation [GMW87].

2. Lund, Fortnow, Karloff, Nisan, and Shamir [LFKN90,Sha90] demonstrated the

incredible power of interactive proofs by proving that IPs with a polynomial-

time verifier and computationally unbounded prover exist for all languages in

PSPACE (polynomial space). These techniques were later “scaled down” to

construct similarly powerful interactive proofs for polynomial-time computa-

tion [GKR08, RRR16] (with super-efficient verifiers) and also strongly influ-

enced complexity-theoretic results about the related computational model of

“probabilistically checkable proofs” (PCPs) [BFLS91,FGL+91,ALM+92].

3. Kilian and Micali [Kil92,Mic94] introduced and constructed succinct, computa-

tionally sound interactive proof systems (hereafter called succinct arguments).

In these proof systems, the prover and verifier exchange an extremely short

(polynomial in a security parameter 𝜆) transcript that enables the verifier to

check the validity of the statement 𝑥 more efficiently than would have been

possible without the prover. For example, they showed that every NP language
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has a succinct argument system where the verifier runs in time poly(𝜆, |𝑥|),

independent of the size of the NP witness or NP language’s verification time.

Succinct and zero-knowledge arguments are also now at the center of a revolu-

tion in practical cryptography [ZKP], particularly in the context of blockchains and

cryptocurrencies [W+14,SCG+14,CM19,Sta].

Removing Interaction. Despite the fact that they have been studied intensely for

thirty-five years, our understanding of cryptographic proofs is extremely limited. In

this thesis, we focus primarily on the following basic question:

Question 1.1. Can we remove interaction from interactive proof systems?

In many of the most compelling applications of cryptographic proof systems, it is

highly desirable to use protocols that are non-interactive. Non-interactive proofs

can be written down, transferred from person to person, and be verified by anyone,

a feature that is often important in the digital world. However, Question 1.1 may

sound paradoxical or nonsensical: what was the point of introducing the interactive

proofs model if it was possible to remove the interaction anyway?

There are a couple of ways to address this confusion. First of all, as will be

explained below, there are necessarily going to be trade-offs when interaction is re-

moved; specifically, proof systems will be made non-interactive using a hash function

family, and the security of this transformation must rely on a security property of

the hash function (even if the original proof system had no cryptography in it). So

in some sense, Question 1.1 can be viewed as asking about trading interaction for

additional computational hardness assumptions.

Second of all, even if it may have been possible to design a non-interactive proof

system from the start, it has proved extremely fruitful – both in understanding the

feasibility and in obtaining concretely efficient constructions – to solve cryptographic

tasks by first designing an interactive protocol and then removing interaction with

a compiler. Indeed, this thesis concerns the Fiat-Shamir heuristic [FS87], a general-

purpose compiler for this task.
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1.1 The Fiat-Shamir Heuristic

Question 1.1 (in our cryptographic context) was first studied in the 1980s by Fiat,

Shamir, and Blum1 [FS87, BR93]. Specifically, they introduced a highly influential

transformation that generically removes interaction from a wide class of interactive

protocols. The transformation can be in principle applied to any interactive protocol

that is public-coin, meaning that (1) all verifier messages in the protocol are uniformly

random strings, and (2) the verifier’s decision is a public, deterministic function of

the protocol transcript. While certainly a non-trivial condition, public-coin protocols

are quite common and also can sometimes be obtained generically [GS86].

Given any such protocol Π and a hash function family ℋ, the Fiat-Shamir heuristic

compiles Π into a two-message protocol ΠFS = ΠFS,ℋ, as follows.

• The ΠFS verifier first sends a description of a hash function ℎ.

• The ΠFS prover responds with the transcript of an emulated execution of Π

(including an input 𝑥, as well as all messages exchanged between the prover

and verifier), in which each verifier message is set to be the value of ℎ applied

to the transcript so far.

• The ΠFS verifier checks that the transcript it received is consistent with ℎ, and

that the verifier of Π would have accepted.

The resulting protocol ΠFS from this transformation satisfies many highly desirable

properties: it is non-interactive (ℎ could be chosen ahead of time as part of a common

reference string), it is publicly verifiable, and the communication and computational

overhead of ΠFS is minimal over that of Π!

In practice, the Fiat-Shamir transform has been heuristically used as the basis for

many important protocols, including identification and signature schemes, succinct

non-interactive arguments (SNARGs) and non-interactive zero-knowledge protocols

(NIZKs), e.g. [FS87,BR93,Mic94,PS96,BCS16,WTs+18]. The Fiat-Shamir transform
1 [BR93] credits Blum (via personal communication through Micali and Rudich) for formulating

the general-purpose variant of the transformation introduced in [FS87].
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was (and remains) indispensable for these constructions largely due to (1) its simplic-

ity (it adds little in computational overhead or complexity) and (2) its generality (it

can be applied to a huge class of protocols).

The specific form of Question 1.1 studied in this thesis is understanding the secu-

rity of this transformation:

Question 1.2. For which protocols and hash families does the Fiat-Shamir transform

preserve soundness? Under what assumptions can we prove this?

Unfortunately, and despite its importance, the Fiat-Shamir transformation was

largely known to have only heuristic [FS87, BR93, CGH98] and poorly understood

[Bar01, GK03, GW11] security. Its main justification appeals to the random oracle

model [BR93]: If ℎ is modeled as a random oracle (to which the adversary only

has query-access), then ΠFS is sound as long as Π is computationally sound and

either has a constant number of rounds [FS87, PS96, AABN02] or more generally,

satisfies a stronger soundness property called soundness against state restoration at-

tacks [BCS16].

Are we done? While we have already declared the security of the Fiat-Shamir

transform to be “poorly understood,” let us pause to discuss why this is the case:

• Efficiently computable random oracles do not exist. First and foremost,

while the random oracle heuristic has been indispensable for constructing and

justifying hash function-based cryptographic schemes, it has been known for

decades [CGH98] that security in the random oracle model does not imply that

secure instantiations exist. This is especially relevant in our context: there

are constructions of protocols [Bar01, GK03], to which Fiat-Shamir can be se-

curely applied in the ROM, such that applying Fiat-Shamir with any efficiently

computable hash function family results in a broken protocol.

• Hash functions in the real world are not used as oracles. In addition to

the fact that ROM security does not imply standard model security for our pro-

tocols, the model itself simply does not accurately represent how hash functions
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are used in the real world. For example, it is very common for proof systems

to be recursively composed [Val08,BCCT13] so that proofs can be bootstrapped

(from simpler to more complex statements) as well as updated over time. Secu-

rity using concrete hash function families is essential in order for the security

of such composition to be established.

• The line between “possible” and “impossible” is not understood.

Given impossibility results such as [Bar01, GK03], one could hope to identify

a way to distinguish between protocols with sound Fiat-Shamir instantiations

and those without. Unfortunately, we do not currently know how to do this.

For example, it is even unclear how strong of an impossibility result holds for

Kilian’s highly influential protocol [BBH+19].

• We want provable security. Given these serious issues with the random

oracle model, how is security typically argued without heuristics? Whenever

possible, the theory of cryptography follows a framework pioneered in [GM84]:

– Formulate a strong and comprehensive definition of what it means for a

cryptosystem to be secure, and

– Give a security reduction showing that violating the definition would imply

an efficient algorithm for a simple, well-studied computational problem

believed to be intractable.

The Fiat-Shamir heuristic has thus far resisted analysis within this (standard)

framework. For example, Bitansky et al. [BDSG+13] show that, even restricting

to three-round (statistically sound) proofs (avoiding the above impossibility re-

sults), soundness of the general-purpose Fiat-Shamir transform with a concrete

hash family cannot be proved via black box reduction to a standard “falsifiable”

assumption [Nao03,GW11].

Finally, perhaps best illustrating our poor understanding, we note that for over

thirty years (until this thesis), we had no proof of security for the Fiat-Shamir trans-

22



formation applied to even a single non-trivial proof system based on a standard

computational assumption.

1.2 Cryptographic Hash Functions and Correla-

tion Intractability

Understanding the security of the Fiat-Shamir heuristic is primarily a question about

hash functions: what kind of hash function should be used, and how can security

when using this hash function be proven?

This question is subtle because we do not have a general-purpose definition of

a secure hash function. In the context of constructing digital signatures and other

specific applications, security properties such as one-wayness [DH76, Mer79], uni-

versal one-wayness [Mer79,NY89] and collision resistance [Mer79,Dam88] were

initially proposed and used. However, there is no single security definition captur-

ing all common hash function use cases. The formalism that comes the closest to

this goal is the random oracle model [BR93], but as discussed above, the ROM is

uninstantiable in the real world.

Given the above state of affairs, this thesis also studies the following basic question

about hash functions:

Question 1.3. Which random oracle properties can be instantiated with concrete

hash functions? Under what computational assumptions?

We study Question 1.3 from the perspective of correlation intractability [CGH98],

a simple-to-state but extremely expressive family of hash function security properties.

Definition 1.4 (Correlation Intractability, informal). A hash function family ℋ is

correlation intractable for a 2𝑡-ary relation 𝑅(𝑥1, . . . , 𝑥𝑡, 𝑦1, . . . , 𝑦𝑡) if the following

problem is computationally hard: given a hash function ℎ← ℋ, find 𝑡 inputs 𝑥1, . . . , 𝑥𝑡

such that (𝑥1, . . . , 𝑥𝑡, ℎ(𝑥1), . . . , ℎ(𝑥𝑡)) ∈ 𝑅.

For some choices of relation 𝑅 (such as the trivial 𝑅 containing every string), this

property is clearly unsatisfiable (even if you had a random oracle). On the other
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hand, for all 𝑅 satisfying an appropriate notion of sparsity, it is not hard to show

that a random oracle is 𝑅-correlation intractable. Moreover, a few special cases of

correlation intractability are quite familiar to the cryptography community:

• When 𝑡 = 1 and 𝑅 = {(𝑥, 0)}, R-correlation intractability corresponds to the

hardness of inverting the hash function ℎ at 0, a form of one-wayness.

• When 𝑡 = 2 and 𝑅 = {(𝑥1, 𝑥2, 𝑦1, 𝑦2) : 𝑥1 ̸= 𝑥2 and 𝑦1 = 𝑦2}, 𝑅-correlation

intractability is exactly collision-resistance.

• It is folklore knowledge [DNRS99] that general-purpose correlation intractability

in the 𝑡 = 1 case (“single-input CI”) has important connections to Question 1.2.

Thus, the more specific form of Question 1.3 studied in this thesis is as follows.

Question 1.5. Can we build correlation-intractable hash functions? Which kinds,

and under which computational assumptions?

1.3 Results

The main goal of this thesis is to give a solid theoretical foundation for correlation

intractability and the Fiat-Shamir heuristic. We will do so by developing general-

purpose tools, techniques, and abstractions for characterizing the security of

these objects. Finally, we will apply these ideas and tools to obtain various new

feasibility results in cryptography.

Our results appear in the following papers (listed in chronological order):

• Cryptographic Hashing from Strong One-Way Functions (or: One-Way Product

Functions and their Applications), by Justin Holmgren and Alex Lombardi

[HL18].

• Fiat-Shamir, From Practice to Theory, by Ran Canetti, Yilei Chen, Justin

Holmgren, Alex Lombardi, Guy N. Rothblum, and Ron D. Rothblum, and

Daniel Wichs [CCH+19].
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– Part I: Fiat-Shamir From Simpler Assumptions, by Ran Canetti, Yilei

Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, and Ron D.

Rothblum [CCH+18].

– Part II: Non-Interactive Zero Knowledge and Correlation Intractability

from Circular-Secure FHE, by Ran Canetti, Alex Lombardi, and Daniel

Wichs [CLW18].

• 2-Message Publicly Verifiable WI from (Subexponential) LWE, by Alex Lom-

bardi, Vinod Vaikuntanathan, and Daniel Wichs [LVW19].

• Fiat-Shamir for Repeated Squaring and Applications to PPAD-Hardness and

VDFs, by Alex Lombardi and Vinod Vaikuntanathan [LV20a].

• Does Fiat-Shamir Require a Cryptographic Hash Function? by Yilei Chen,

Alex Lombardi, Fermi Ma, and Willy Quach [CLMQ21]. We only include one

auxiliary result (Theorem A.1) from [CLMQ21] that is most relevant to this

thesis.

• Correlation-Intractable Hash Functions via Shift Hiding, by Alex Lombardi and

Vinod Vaikuntanathan [LV20b].

• Fiat-Shamir via List-Recoverable Codes (or: Parallel Repetition of GMW is Not

Zero Knowledge), by Justin Holmgren, Alex Lombardi, and Ron D. Rothblum

[HLR21].

Our results touch on independently important areas such as non-interactive zero

knowledge, delegation of computation, the insecurity of parallel repetition (Ques-

tion 1.6), and the cryptographic hardness of computing Nash Equilibria in game

theory. The broader community has also built on the ideas in this thesis, leading to

vibrant lines of work that use provable Fiat-Shamir instantiations to build exciting

new cryptographic protocols (e.g. [PS19, BFJ+20, GJJM20, BKM20, LNPY20, JJ21,

JKKZ21,CJJ21a,CJJ21b,HJKS22]).
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In the rest of this introduction, we first summarize our results appearing in Parts I

to III, we give an overview of (some of) our methodology and techniques, and we

briefly discuss some conclusions and open problems.

1.3.1 Results in Part I

Part I, titled “The Basic Framework and Initial Constructions,” builds families of

correlation-intractable hash functions and instantiates the Fiat-Shamir heuristic (for

certain protocols of interest) making use of simple, clean computational assumptions

following the “win-win” framework of [GM84]. In Chapter 2 we make use of stronger-

than-standard assumptions that we call “(Quantitatively) Optimal Security Assump-

tions,” while in Chapter 3 we rely on truly standard assumptions. Some noteworthy

implications are as follows:

• We build succinct non-interactive arguments for (logspace-uniform) bounded

depth computation from optimal hardness assumptions related to the learning

with errors (LWE) problem. This is the first publicly-verifiable succinct non-

interactive argument that does not rely on knowledge assumptions or otherwise

unfalsifiable assumptions.2

• We build a non-interactive zero-knowledge proof system for NP based on the

circular-security of the LWE assumption (as used to build fully homomorphic

encryption [BV11]). This is the first lattice-based NIZK for NP, despite the

otherwise unreasonable effectiveness of lattice-based cryptogrpahy [Pei16] and

the fact that other approaches to achieving NIZKs (without Fiat-Shamir) were

known in other contexts [BFM88,FLS90,CHK03]. Finally, this also constituted

the first provable instantiation of the Fiat-Shamir heuristic based on a standard

cryptographic assumption.

Our result was improved by a follow-up work of Peikert and Shiehian [PS19] to

rely on the plain LWE assumption (without circular security).
2Concurrent with another approach developed in [KPY18,KPY19].
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This part contains the results of [CCH+18] and [CLW18], which appeared together

in [CCH+19].

1.3.2 Results in Part II

In Part II, titled “CI Self-Reductions and Further Applications to Protocols,” we build

additional non-interactive protocols using variants of the Fiat-Shamir heuristic based

on LWE. Unlike Part I, which builds CI hash families “from scratch,” this part mainly

proceeds by using the technical results of Part I (about correlation intractability) as

a black box to achieve further results about cryptographic proofs. Relatedly, we

expand the class of relations with provable instantiations of correlation intractability

via forms of self-reduction (building more complex CI from simple CI).

This part contains the results of [LV20a, HLR21, LVW19], and includes the fol-

lowing implications:

• We prove that the complexity class PPAD [Pap94] is hard-on-average, assuming

on the sub-exponential hardness of LWE along with the hardness of iterated

squaring modulo a composite [RSW96]. This implies the cryptographic hard-

ness of computing a Nash equilibrium in bimatrix games [DGP06, CDT09],

resolving a long-standing open problem in complexity theory. This was the first

construction of PPAD-hardness based on standard cryptographic assumptions.3

We additionally build a verifiable delay function (VDF) [BBBF18] additionally

assuming the sequential hardness of iterated squaring, which constitutes the

first VDF whose security is based on standard (up to the necessary assumption

of sequential hardness) cryptographic assumptions.

• We substantially generalize the results of [CCH+19] to apply to a much broader

class of interactive proof systems. One major downstream implication is a fairly

comprehensive answer to a surprisingly basic open problem about the original

zero-knowledge proof systems of [GMR85,GMW86,Blu86]:
3Concurrent with [KPY20], which relies on a new but reasonable assumption about bilinear maps.
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Question 1.6. Do these proof systems remain zero knowledge when executed many

times in parallel?

In particular, we show that essentially any “commit-and-open” protocol4 (in-

cluding the [GMW86] 3-coloring protocol) fails to remain zero knowledge under

parallel repetition.

These techniques have already been used to great effect: in a recent work

[CJJ21b], Choudhuri, Jain, and Jin showed how to build succinct non-interactive

arguments for all polynomial-time computation by relying on a Fiat-Shamir in-

stantiation leveraging these new ideas.

• We build (based on the LWE assumption) 2-message witness indistinguishable

(WI) arguments for NP that are publicly verifiable; the argument system consists

of a single verifier message followed by a single prover message, and anyone

can verify a proof given only the transcript. These are quite related to NIZK

proofs/arguments, but also require a form of security against malicious verifiers.

1.3.3 Results in Part III

Part III, titled “Multi-Input Correlation Intractability,” studies (in large part) forms

of CI that reason about multiple hash function input-output pairs simultaneously.

However, this part also contains key insights regarding the single-input case and the

Fiat-Shamir heuristic.

As discussed earlier, one of the most basic properties one might desire from a

hash function is collision resistance. As such, the following problem has received

much attention in theoretical cryptography.

Question 1.7. What are the assumptions from which collision-resistant hash func-

tions can be built? In particular, can they be built from an arbitrary one-way function?

Collision resistance can also be viewed as a simple special case of multi-input

CI (Definition 1.4). However, more complex forms of multi-input CI are far less
4This captures a wide class of basic 3-message protocols; our result holds for specific (natural)

choices of “commitment scheme” for these protocols.
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understood; indeed, most of them had no instantiations based on standard (or even

reasonable) assumptions at all!

This part contains the results of [HL18, LV20b], including the following implica-

tions:

• We construct various forms of multi-input correlation intractable hash func-

tions, including basic primitives such as collision-resistant hash functions, from a

quantitatively strong (close to optimally-secure) one-wayness assumption. This

circumvents a decades-old barrier due to Simon [Sim98]. The construction also

generalizes to build hash functions that are correlation-intractable for what we

call “efficiently locally samplable relations.”

• Specialized to the single-input case, we show how to instantiate the Fiat-Shamir

heuristic in order to obtain NIZK arguments for NP (based on strong but reason-

able assumptions). This was the first usage of “efficient correlation intractabil-

ity” for Fiat-Shamir and was a key idea towards [CCH+18,CLW18] (Part I).

• We develop a new framework for constructing CI hash functions using a cryp-

tographic primitive called shift-hiding shiftable functions (SHSFs) [PS18]. This

implies a conceptually simple construction of CI for functions based on LWE

(as an alternative to [PS19]). Our construction transparently generalizes to

achieving new variants of multi-input CI based on standard assumptions.

1.4 Techniques

Having stated our main results, we now proceed to give a high-level overview of our

approach, starting with a brief discussion of what was previously known.

1.4.1 Correlation Intractability and Fiat-Shamir for Proofs

Despite all of the negative results and barriers towards instantiating the Fiat-Shamir

heuristic, there was a known plausible (but unrealized and relatively unstudied) point
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of attack to at least partially resolving Question 1.2 (and therefore Question 1.1).

In [DNRS99], it was noted that if a hash family ℋ is correlation-intractable (Defini-

tion 1.4) for all sparse single-input (𝑡 = 1) relations,5 then it suffices to instantiate

the Fiat-Shamir heuristic for a broad class of statistically-sound interactive proofs. It

is not precisely stated in [DNRS99] which protocols they had in mind,6 but here is a

folklore argument for the case of compiling 3-message public-coin interactive proofs:

Claim 1.7.1. If ℋ is CI for all sparse relations, then it instantiates the Fiat-Shamir

heuristic for all 3-message public-coin statistically sound interactive proofs Π.

Proof sketch. Let transcripts of Π be denoted by (𝛼, 𝛽, 𝛾) where 𝑥 is the statement, 𝛼

is the first message, 𝛽 is the (uniformly random) second message), and 𝛾 is the third

message. For every 𝑥 ̸∈ 𝐿, consider the relation 𝑅 = 𝑅𝑥 defined as

𝑅 =
{︂

(𝛼, 𝛽) : ∃𝛾 : 𝑉 (𝑥, 𝛼, 𝛽, 𝛾) = 1
}︂

.

The proof then amounts to two observations:

• The soundness of Π implies that 𝑅 is sparse (for all false 𝑥). This is because

if 𝑅 were not sparse, a computationally unbounded prover would break the

soundness of Π by finding an 𝛼 (given some false statement 𝑥) such that (𝛼, 𝛽) ∈

𝑅 with non-negligible probability over the choice of 𝛽. Provided that this event

(𝛼, 𝛽) ∈ 𝑅 occurs over the verifier’s randomness 𝛽, the prover can then find

some string 𝛾 that tricks 𝑉 into accepting.

• The 𝑅-correlation intractability of ℋ implies that ΠFS,ℋ is computationally

sound. This is simply because if an efficient algorithm can convince the ΠFS,ℋ

verifier to accept a transcript (𝑥, 𝛼, 𝛽, 𝛾) for some fixed false statement 𝑥, then

by definition of ΠFS,ℋ it must be the case that 𝛽 = ℎ(𝛼) and (𝛼, 𝛽) ∈ 𝑅𝑥.
5A single-input relation 𝑅 is sparse if for all inputs 𝑥 ∈ {0, 1}𝑛, the fraction of outputs 𝑦 such

that (𝑥, 𝑦) ∈ 𝑅 is a negligible function 𝑛−𝜔(1).
6 [DNRS99] reported an unpublished observation of Chaum and Impagliazzo and did not provide

details.
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Claim 1.7.1 was known since the 1990s, but it did not seem to lead to any positive

results on the Fiat-Shamir heuristic. Instead, it reduced one tricky problem (instan-

tiating Fiat-Shamir) to another (building CI for all sparse relations). Indeed, some

of the barriers referenced above [BDSG+13] can be (and were) formulated as barriers

for constructing correlation-intractable hash functions. Looking ahead, it turns out

that the hypothesis of Claim 1.7.1 is simply too strong for us to be able to derive any

useful results out of it.

1.4.2 Our Methodology in a Nutshell

We propose and develop a two-step methodology for obtaining secure Fiat-Shamir

instantiations:

1. For various protocols Π (or protocol classes) of interest, reduce the soundness of

(the specific protocol) ΠFS,ℋ to various weak forms of correlation intractability.

2. Build hash functions satisfying these weak forms of correlation intractability

from “nice” cryptographic assumptions. We would prefer these assumptions to

be falsifiable [Nao03,GW11] or “standard” (e.g., the hardness of learning with

errors (LWE, [Reg05])), but will sometimes settle for stronger-than-standard

assumptions if they are clean and simple-to-state.

The key insight in formulating this two-step methodology is to restrict the relation

class subject to our correlation intractability requirement; specifically, we will always

consider classes of relations satisfying some efficiency properties. This avoids known

impossibility results for building correlation intractability and thus makes Step (2)

plausible. However, the folklore FS-to-CI reduction (Claim 1.7.1) does not produce

relations 𝑅 that are efficient in any useful sense, so it is a priori unclear how to carry

out either Step (1) or Step (2). In the end, our results require a careful coordination

of what we can construct in Step (2) with what is actually useful in Step (1).
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1.4.3 An Example: Fiat-Shamir for the Blum Protocol

To illustrate our approach, we sketch how to instantiate Steps (1) and (2) to obtain

a provably secure Fiat-Shamir instantiation for an interactive zero-knowledge proof

system for graph Hamiltonicity (due to Blum [Blu86]). We first recall the [Blu86]

protocol, where the prover and verifier have an 𝑛-vertex graph 𝐺 and the prover

additionally has a permutation 𝜎 : [𝑛] → [𝑛] mapping the standard 𝑛-cycle to a

subgraph of 𝐺. The prover and verifier make use of a commitment scheme (allowing

the prover to commit to bits that are hidden from the verifier until later opened by

the prover) and execute the following protocol:

𝑃 (𝐺, 𝜎) 𝑉 (𝐺)
𝜋 ← 𝑆𝑛, 𝐺′ = 𝜋(𝐺)
𝛼← Com(𝐺′||𝜋)

𝛼

𝛽 𝛽 ← {0, 1}

If 𝛽 = 0, decommit to (𝐺′, 𝜋).
If 𝛽 = 1, reveal 𝜋 ∘ 𝜎 and decommit
to the edges in 𝐺′ corresponding to
the cycle 𝜋 ∘ 𝜎.

𝛾

Accept if all decommitments
are correct and:
either 𝛽 = 0 and 𝐺′ = 𝜋(𝐺)
or 𝛽 = 1 and all edge
decommitments are 1.

Figure 1-1: The Blum Hamiltonicity Protocol ΠBlum

ΠBlum as stated only has soundness error 1/2, so we consider the problem of

applying Fiat-Shamir to the parallel repeated protocol Π(𝑡)
Blum (for some large enough

𝑡 ≥ 𝜆). As discussed above, Claim 1.7.1 states that if a hash function family ℋ is CI

for all sparse relations, then it can be used to instantiate Fiat-Shamir for ΠBlum, but

this does not seem useful enough on its own. Instead, let us examine the particular

relations 𝑅𝐺 that appear in the analysis

𝑅𝐺 =
{︂

(𝛼1, . . . , 𝛼𝑡, 𝛽1, . . . , 𝛽𝑡) : ∃𝛾1, . . . , 𝛾𝑡 : 𝑉 (𝐺, 𝛼𝑖, 𝛽𝑖, 𝛾𝑖) = 1 for all 𝑖
}︂

.

Reading off from the description of ΠBlum, we can interpret that a challenge vector

(𝛽1, . . . , 𝛽𝑡) is “bad” for commitments (𝛼1, . . . , 𝛼𝑡) (in the sense of being in 𝑅𝐺) if

for all 𝑖, 𝛼𝑖 is a commitment to some (𝜋(𝐺), 𝜋) whenever 𝛽𝑖 = 0, and 𝛼𝑖 includes
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a commitment to a graph containing a cycle whenever 𝛽𝑖 = 1. This is an exact

characterization of when the prover can produce accepting 𝛾1, . . . , 𝛾𝑡 in the last round.

CI for functions suffices. One important observation is that the relations 𝑅𝐺

are not as complex as general sparse relations 𝑅, in the following sense: every 𝑅𝐺

has the property that for all 𝛼1, . . . , 𝛼𝑡, there is at most one 𝛽1, . . . , 𝛽𝑡 such that

(𝛼1, . . . , 𝛼𝑡, 𝛽1, . . . , 𝛽𝑡) ∈ 𝑅𝐺. This is essentially a reformulation of what is called

the special soundness property of ΠBlum. What this means is that to obtain a sound

Fiat-Shamir instantiation for ΠBlum, it would suffice to have a ℋ that is CI for all

functions, rather than all sparse relations.

But we still seem stuck. Unfortunately, it still seems difficult to build a correlation-

intractable hash family for relations of the form 𝑅𝐺; one serious concern is that the

relation 𝑅𝐺 (or equivalently, the underlying (partial) function 𝑓𝐺) cannot be decided

in polynomial time. This seems quite inherent, by the following reasoning:

• Deciding 𝑅𝐺 requires understanding what messages are contained in the com-

mitments 𝛼1, . . . , 𝛼𝑡, and

• The commitment scheme is supposed to hide the underlying messages from

all polynomial-time algorithms. This is necessary for the protocol to be zero

knowledge.

Solution: Use a Trapdoor! Fortunately (and perhaps surprisingly), there is a

resolution that allows 𝑅𝐺 to be efficiently decidable without compromising the secu-

rity of ΠBlum. The key point is this: the above reasoning only implies that it must be

infeasible for the verifier to decide 𝑅𝐺, while we only need to be able to decide 𝑅𝐺

in the soundness security reduction. Thus, we can take the following approach.

• Instantiate Com using a public-key encryption scheme, so that Com(𝑏; 𝑟) =

Enc(pk, 𝑏; 𝑟) for a public key pk sampled as part of the description of the pro-

tocol. As long as the encryption scheme is secure, Com(𝑏) will hide 𝑏 from the

verifier, as desired.
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• On the other hand, soundness of the protocol will hold even in a world where

the corresponding secret key sk to pk is known! In this mental experiment, we

can forget the (possibly still hard-to-decide) relation 𝑅pk,𝐺 and instead consider

the following modified relation:

𝑅′pk,sk,𝐺 =
{︂

(𝛼1, . . . , 𝛼𝑡, 𝛽1, . . . , 𝛽𝑡) : for all 𝑖, if 𝑖 = 0 then

Dec(sk, 𝛼𝑖) = (𝜋(𝐺), 𝐺) and if 𝑖 = 1 then Dec(sk, 𝛼𝑖) contains a cycle
}︂

.

One can show that if ℋ is CI for 𝑅′pk,sk,𝐺 then ℋ yields a sound Fiat-Shamir

instantiation for ΠBlum. But now the game has completely changed: given the

secret key sk as a trapdoor, 𝑅′pk,sk,𝐺 is efficiently decidable! Indeed, since it

still represents a (partial) function, the conclusion is that 𝑅′pk,sk,𝐺 represents an

efficiently computable (partial) function.

With this idea, we are left with a highly promising approach: to instantiate Fiat-

Shamir for ΠBlum (for a particular, natural choice of commitment scheme), it now

suffices to build a CI hash family for efficiently computable functions, rather than for

all sparse relations.

CI for Efficiently Computable Functions. So far, we have shown how to in-

stantiate Step (1) of our framework: reducing Fiat-Shamir for ΠBlum to a weak form

of correlation intractability. What remains is Step (2): constructing this form of CI.

Again, we remark that only fairly trivial forms of single-input CI were known (from

standard assumptions such as LWE) before this thesis.

We construct a hash function family ℎ(𝑘, 𝑥) with a public hash key 𝑘 and input 𝑥

that satisfies correlation-intractability for all “efficiently computable functions” with

some fixed polynomial time bound 𝑇 , meaning the following. For any function 𝑓

having circuit size 𝑇 , if a polynomial time adversary is given a random 𝑘, it cannot

find an input 𝑥 such that ℎ(𝑘, 𝑥) = 𝑓(𝑥).
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At a high level, the idea of the construction is the following. Designing a hash

function ℎ𝑓 (𝑘, 𝑥) that is correlation intractable for a single function 𝑓 is trivial: simply

define ℎ𝑓 (𝑘, 𝑥) = 𝑓(𝑥) + 1 (or, just flip the last bit of 𝑓(𝑥)). We will construct a hash

function family so that, for any 𝑓 , a random function from the family will look

indistinguishable from a hash function that is specifically designed to be correlation

intractable with respect to 𝑓 .

The actual construction is simple, making use of a fully homomorphic encryption

(FHE) scheme [Gen09,BV11]:

ℎ(𝑘, 𝑥) = Evalpk(𝑈𝑥, ct), where 𝑘 = (pk, ct), ct = FHE.Enc(pk, 𝑔0), and 𝑈𝑥(𝑔) = 𝑔(𝑥).

That is, the hash function interprets the hash-key 𝑘 = (pk, ct) as a public key pk of an

FHE scheme, along with a ciphertext ct encrypting some fixed “dummy” circuit 𝑔0.

The hash function homomorphically computes the map 𝑔 ↦→ 𝑔(𝑥) over the ciphertext

ct. The key insight is that the function 𝑔 (initially set to 𝑔0) is completely hidden

by the security of the encryption scheme; therefore, one can prove that this ℋ is CI

for a function 𝑓 by switching ct to be an encryption of some function 𝑔 = 𝑔𝑓 so that

ℎ(𝑘, 𝑥) is never equal to 𝑓(𝑥)!

Our proof of security is a simple implementation of this intuition. Assume that

an adversary gets 𝑘 and is able to find 𝑥 such that ℎ(𝑘, 𝑥) = 𝑓(𝑥) with non-negligible

probability. We first switch the ciphertext ct in the key 𝑘 to be an FHE encryption of

the circuit 𝑔(𝑥) = Decsk(𝑓(𝑥))⊕ 1, where sk is the FHE secret key. In other words, 𝑔

first computes 𝑓(𝑥), then interprets it as an FHE ciphertext, decrypts it and outputs

the opposite bit. We argue that this change is indistinguishable to the adversary by

the security of the FHE; this requires circular security since the circuit 𝑔 depends on

sk. Since the adversary cannot distinguish this change, it still outputs 𝑥 such that

ℎ(𝑘, 𝑥) = 𝑓(𝑥) with non-negligible probability. So, we have:

𝑓(𝑥) = ℎ(𝑘, 𝑥) = FHE.Evalpk(𝑈𝑥, ct)

= FHE.Evalpk(𝑈𝑥, Encpk(⟨Decsk(𝑓(·))⊕ 1⟩), (1.1)
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where 𝑈𝑥(⟨Decsk(𝑓(·)) ⊕ 1⟩) = Decsk(𝑓(𝑥)) ⊕ 1. However, applying Decsk(·) to both

sides of (1.1) we get

Decsk(𝑓(𝑥)) = Decsk(FHE.Evalpk(𝑈𝑥, Encpk(⟨Decsk(𝑓(·))⊕ 1⟩)) = Decsk(𝑓(𝑥))⊕ 1,

where the last equality follows by correctness of FHE.Eval. In other words, once

we switched ct to be an encryption of 𝑔, we ensured that there is no 𝑥 for which

ℎ(𝑘, 𝑥) = 𝑓(𝑥).

This completes our sketch of Step (2); combining Steps (1) and (2), we obtain

a provably secure Fiat-Shamir instantiation for ΠBlum (and thus, in particular, a

non-interactive zero-knowledge protocol for NP) relying on a circular-secure FHE

scheme. This construction appears in [CLW18] (Chapter 3 of this thesis), and, fol-

lowing [PS19], can even be modified to rely on plain LWE.

1.4.4 Our Methodology, Revisited

The example from Section 1.4.3 is one instantiation of our methodology as described

in Section 1.4.2. Throughout this thesis, our main results and techniques typically

fall into the following two categories:

• We build various kinds of correlation-intractable hash functions from simple

(and often standard) computational assumptions. As in Section 1.4.3, it is

crucial that the scope of our CI hash families is not to handle all sparse relations.

• We show how to use these weak CI hash families to instantiate the Fiat-Shamir

heuristic for protocols of interest.

In Section 1.4.3 (and Chapter 3), the key variant of CI that we considered was

CI for efficiently computable functions. Many of our other results instead work with

more powerful forms of CI (that we nevertheless are able to construct). We list some

important examples below:

• In Chapter 2, we consider correlation intractability for efficiently samplable

relations: namely, there is a polynomial time algorithm that given 𝑥, samples
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a uniformly random 𝑦 such that (𝑥, 𝑦) ∈ 𝑅. Importantly, for the application

to SNARGs, we require a compact hash family that does not grow with the

running time of the sampler.

• In Chapter 4, we rely on correlation intractability for functions that can be

efficiently guessed with inverse-subexponential probability.

• In Chapter 5, we work with correlation intractability for relations that are far

from being functions, but that satisfy nice combinatorial structure arising from

(e.g.) parallel repetition.

We refer the reader to the body of the thesis for more details.

1.5 Conclusion and Open Problems

We believe that the general-purpose tools, techniques and abstractions developed in

this thesis will help enable a broader understanding of hash functions, the Fiat-Shamir

heuristic, and cryptographic proofs. We conclude with a few open research directions

related to the progress made in this thesis.

Succinct Arguments. Our progress on correlation intractability and Fiat-Shamir

has already led to many new succinct non-interactive arguments for various languages

[CCH+18,LV20a,JKKZ21,CJJ21a,CJJ21b,KVZ21]. In particular, we now know how

to construct SNARGs for all languages that have non-signalling PCPs. However,

it remains wide open to achieve a holy grail of cryptographic proof systems: short,

efficiently verifiable non-interactive arguments for any NP language.

Question 1.8. Can we construct succinct non-interactive arguments for all of NP?

Question 1.8 is subject to some limitations [GW11], although it remains unclear

how strong these limitations are. On the other hand, the Fiat-Shamir heuristic pre-

dicts that such arguments exist [Mic94] via Kilian’s interactive protocol [Kil92]. Thus,

Question 1.8 is also related to questions about the Fiat-Shamir heuristic applied to

argument systems.
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Question 1.9. Which kinds of interactive arguments have sound Fiat-Shamir in-

stantiations?

Fiat-Shamir for arguments is subject to strong impossibility results [Bar01,GK03],

so the landscape here is quite uncertain. For the sake of concreteness, we can be very

explicit and ask about Kilian’s protocol specifically:

Question 1.10. Can we instantiate Fiat-Shamir for the [Kil92] protocol?

A recent work [BBH+19] studies Question 1.10 directly but obtains inconclusive

results.

Better Correlation Intractability Even restricted to the setting of Fiat-Shamir

for (statistically sound) proofs, where correlation intractability is immediately ap-

plicable, a number of intriguing directions remain. One very natural direction is

understanding which sparse relations 𝑅 we can build CI hash functions for. A con-

ceptually clean breaking point seems to be relations 𝑅 that are efficiently decidable.

We ask:

Question 1.11. Can we build hash functions that are correlation-intractable for all

efficiently decidable relations from standard assumptions?

Another direction is on compactness. In all of our constructions based on standard

assumptions, the runtime of the hash function family ℋ grows (at least linearly) with

the computational complexity of the relation 𝑅. Sometimes (such as in Chapter 2)

this is too expensive of a runtime for the application; one could instead hope for a

compact family where the runtime of ℋ is a fixed polynomial in its input length.

Question 1.12. Can we build compact CI from standard assumptions?

One can also hope to minimize the computational assumptions required for cor-

relation intractability and Fiat-Shamir. Some recent works [BKM20,JJ21] have suc-

cessfully built (weak forms of) correlation intractability without relying on the LWE

assumption. However, this area remains rather poorly understood. We ask (rather

aggressively):
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Question 1.13. Can we build useful forms of CI from any one-way function? Can

we build NIZK arguments from any one-way function?

Again, a recent work [Mou21] studies Question 1.13 but obtains inconclusive results.

Finally, looking back on the example given in Section 1.4.3, we remark that it is

somewhat strange that we had to instantiate the commitment scheme in the [Blu86]

protocol carefully (in particular, to include a trapdoor) in order to obtain provable

Fiat-Shamir instantiations. Intuitively, using a commitment scheme without a trap-

door should make the scheme more secure (rather than potentially less secure), but

we currently do not know how to analyze these variants of (e.g.) Blum’s protocol.

We ask:

Question 1.14. Can we prove the soundness of Fiat-Shamir for ΠBlum for any choice

of commitment scheme?

We remark in Appendix A (which is from [CLMQ21] Appendix A) that one can

provably combine a hash function family ℋ that is CI for efficiently computable func-

tions with a random-oracle based commitment scheme, which has no trapdoor! Of

course, the whole point of this thesis is to use concrete cryptographic primitives and

not resort to heuristic models. Nevertheless, we leave this short result as a philo-

sophical point that, in contrast to “trapdoored” commitment schemes that have been

used so far, Blum’s protocol using a “maximally unstructured” commitment scheme

also admits standard-model Fiat-Shamir hash functions. Nevertheless, Question 1.14

remains wide open.

Progress on any of the listed open questions (and many others) should shed sig-

nificant light on this emerging area in the theory of cryptography.
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Part I

The Basic Framework and Initial

Constructions
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Chapter 2

Fiat-Shamir from Simpler

Assumptions

2.1 Introduction

The Fiat-Shamir transform [FS87] is an attractive template for designing non-interactive

argument schemes:

1. Design a potentially highly interactive proof (or argument) system Π in which

the verifier is “public-coin”, meaning that its only messages are fresh random

coins.

2. Compile Π into a two-message protocol ΠFS, as follows.

- The ΠFS verifier first sends a description of a “sufficiently complex” hash

function ℎ.

- The ΠFS prover responds with the transcript of an emulated execution of

Π (including an input 𝑥, as well as all messages exchanged between the

prover and verifier), in which each verifier message is set to be the value

of ℎ applied to the transcript so far.

- The ΠFS verifier checks that the transcript it received is consistent with ℎ,

and that the verifier of Π would have accepted.
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The resulting protocol ΠFS is indeed non-interactive (ℎ can be chosen ahead of

time, say as part of a common reference string), it is publicly verifiable, and it adds

little in communication and computation. In practice, the Fiat-Shamir transform has

been heuristically used as the basis for many important protocols, including identifi-

cation and signature schemes, publicly-verifiable succinct non-interactive arguments

(pv-SNARGs) and NIZKs, e.g. [FS87,PS96,Mic94,BCS16,WTs+18].

A central question in the foundational study of cryptography regards the security

of this transformation:

For which protocols and hash families does the Fiat-Shamir transform pre-

serve soundness? Under what assumptions can we prove this?

Security analysis in the random oracle model (ROM) has provided some justifi-

cation for this design methodology: If ℎ is modeled as a random oracle, then ΠFS

is sound as long as Π is computationally sound and either has a constant number

of rounds [FS87, PS96, AABN02] or more generally, satisfies a stronger soundness

property called soundness against state restoration attacks [BCS16].

Still, it has remained largely open whether there exist concrete hash families that

are “FS-compatible” (i.e. that can guarantee soundness and potentially also zero-

knowledge for the transformed protocol). Initial results in this direction were nega-

tive. Indeed, Goldwasser and Kalai [GK03] (following Barak [Bar01]) demonstrated a

three-round, public-coin argument scheme for which applying the Fiat-Shamir trans-

form with any hash family never yields a sound protocol. Furthermore, Bitansky et

al. [BDG+13] show that, even when starting with a three-round proof, soundness of

the Fiat-Shamir transform with a concrete hash family cannot be proved via black

box reduction to a standard, game-based assumption.

In contrast, a recent line of work [KRR17,CCRR18,HL18] circumvents the [BDG+13]

impossibility result by using stronger than standard hardness assumptions to con-

struct FS-compatible hash families. Kalai et al. [KRR17] gave the first construction of

a hash family that is FS-compatible for arbitrary constant-round (public-coin) inter-

active proofs, albeit from complex obfuscation assumptions. Canetti et al. [CCRR18]
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then provide alternative constructions of FS-compatible hash families without ob-

fuscation, but using complex KDM-security assumptions on secret-key encryption

schemes.

We emphasize that the assumptions made by [KRR17,CCRR18] are highly com-

plex in the following sense: both involve an adversary that is in part computationally

unbounded. For example, the KDM security of [CCRR18] allows messages to be

arbitrary functions of the key (which may not be efficiently computable). These as-

sumptions are problematic: they are not complexity assumptions [GK16], and they

are not falsifiable [Nao03,GW11] except with exponential time. Holmgren and Lom-

bardi [HL18], building on [KRR17], construct a hash family with a different set of

serious drawbacks; it relies on indistinguishability obfuscation and is applicable only

to a comparatively limited class of protocols.

2.1.1 Our Contributions

We construct explicit hash functions that are FS-compatible for a rich class of pro-

tocols, and we prove their security under assumptions that are qualitatively weaker

than what was previously known. Using these hash families, we derive new results

for delegation of computation and zero knowledge.

We first describe our delegation protocol, which we obtain by applying Fiat-Shamir

to the interactive proof of [GKR08] using our new FS-compatible hash functions (and

overcoming some technical obstacles that will be further discussed below).

Theorem 2.1 (Informally Stated, see Theorem 2.45). If any one of the LWE-based

fully homomorphic encryption schemes in the literature (such as [BV11, BGV12,

Bra12, GSW13, BV14]) has optimal security against polynomial-size key-recovery at-

tacks, then there is a publicly verifiable succinct non-interactive argument (pv-SNARG)

for (log-space uniform) NC. Moreover, there is an efficiently computable hash func-

tion family ℋ such that applying the Fiat-Shamir transform to the [GKR08] doubly

efficient interactive proof, using ℋ, results in such a protocol.

Here and below, by optimal security against poly-size attacks, we mean that every
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poly-size circuit family breaks the assumption with probability at most 𝜆𝑂(1)/2𝜆. We

identify a range of the LWE parameters in which this assumption seem plausible.

(This range, in particular, involves very high noise magnitude. See further discussion

in Section 2.8).

Note that this is the first time that the Fiat-Shamir transform, with an explicit

hash function family, is meaningfully applied to an interactive protocol with a super-

constant number of rounds. In particular the results of [KRR17,CCRR18,HL18] only

hold when the Fiat-Shamir transform is applied to constant-round protocols. See

further discussion in Sections 2.1.1 and 2.2.1.

Second, by applying the Fiat-Shamir transform to a specific instantiation of the

classical [GMW86] zero-knowledge proof-system we obtain a non-interactive (statis-

tical) zero-knowledge argument for NP from a strong variant of LWE:

Theorem 2.2 (Informally Stated, see Theorem 2.53). If Search-LWE is optimally

hard for polynomial-size adversaries, then there is a non-interactive zero-knowledge

(NIZK) argument system for NP satisfying either (1) adaptive soundness or (2)

statistical zero knowledge. Moreover, there is an efficiently computable hash family ℋ

such that applying the Fiat-Shamir transform to the [GMW86] honest-verifier zero-

knowledge proof, using ℋ (and a specific commitment scheme), results in such a

protocol.

Note that the assumption made in Theorem 2.2 is weaker than that made in The-

orem 2.1 as it is directly related to the Search-LWE problem (rather than relying on

security of the fully homomorphic encryption schemes which rely on LWE together

with a certain circular security assumption). Both assumptions are significantly sim-

pler than those in previous work [KRR17,CCRR18]. In particular, our assumptions

do not involve a universal quantifier over computationally unbounded functions.

Note on Adaptively Sound NISZK. We emphasize that our NISZK arguments

are only shown to be non-adaptively sound. As is often the case when considering

adaptive soundness, the difficulty of using our techniques to get adaptively sound
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NISZK arguments stems from the fact that the condition of breaking adaptive sound-

ness is not (in general) efficiently verifiable. Indeed, the work [Pas13] shows that there

is no non-black-box reduction from the adaptive soundness of an NISZK argument

system to a falsifiable assumption; while we use stronger-than-standard assumptions,

this impossibility result still applies to our technique because our NISZK is proven

secure via a black-box reduction to an intermediate assumption (the assumption that

our candidate hash functions satisfy certain kinds of correlation intractability, to be

described below) that is falsifiable.

The proofs of both Theorems 2.1 and 2.2 rely on new correlation intractable hash

functions that we construct as well as new insights on interactive proofs. We next

describe these in more detail, since we believe they may be of independent interest.

To do so, we first recall the notion of correlation intractability and its relation to

Fiat-Shamir.

Correlation Intractability. Loosely speaking, a hash function family ℋ is corre-

lation intractable (CI) for a sparse relation 𝑅 if any polynomial size adversary, given

a description of ℎ ← ℋ, outputs 𝑥 such that
(︁
𝑥, ℎ(𝑥)

)︁
∈ 𝑅 with only negligible

probability [CGH98]. (A relation is sparse if for every 𝑥, the fraction of 𝑦’s such

that (𝑥, 𝑦) ∈ 𝑅, is negligible.) The hash function is fully correlation intractable if it is

𝑅-correlation intractable for all sparse relations 𝑅. Halevi et al. [HMR08] observed

that if a hash family ℋ is fully correlation intractable then it is also FS-compatible

for every constant-round public-coin interactive proof.

Obtaining fully correlation intractable hash functions appears to be quite dif-

ficult; as discussed earlier, the only known constructions of such a hash family

[KRR17, CCRR18] require assumptions that are not falsifiable except with expo-

nential time. We circumvent this difficulty by focusing on hash families that are

correlation intractable for a rich subclass of relations. Namely, we consider the class

of relations 𝑅 with the property that it is computationally easy, given an input 𝑥,

to sample a random output 𝑦 such that (𝑥, 𝑦) ∈ 𝑅. We call such relations efficiently
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sampleable.

A priori, it is unclear (1) that such hash families are useful for obtaining the desired

applications, and (2) that they are any easier to construct than fully correlation

intractable hash families. The main focus of this work is showing that both of these

are actually the case:

• We give new constructions of hash families that are correlation intractable for

efficiently sampleable relations, extending the work of [CCRR18]. Crucially,

we are able to prove security relying on simple, polynomial time game-based

assumptions (albeit with exponentially small winning probability).

• We show that if a hash family ℋ is correlation intractable for efficiently sam-

pleable relations, then it suffices to instantiate the Fiat-Shamir transform in

order to obtain both pv-SNARGs and NIZKs.

We now describe these two contributions in more detail.

Correlation Intractability for Efficient Relations

We construct two types of efficiently computable hash families that are correlation

intractable for the class of efficiently sampleable relations. In our first construction,

the (polynomial) complexity of the hash family is allowed to depend on the complexity

of sampling the relation.

Theorem 2.3 (Informally Stated, see Theorems 2.13 and 2.25). If Search-LWE is

optimally hard for polynomial-size circuits, then for every polynomial 𝑆(𝜆), there is

a hash family (whose description size grows with 𝑆) that is 𝑅-correlation intractable

for all relations that are sampleable by size-𝑆 circuits.

This theorem suffices for our construction of NIZK arguments (i.e., Theorem 2.2)

because the verifier (which must evaluate a hash function), is allowed to run in any

polynomial time, even potentially larger than the time required by the NP verification

procedure. In contrast, for our delegation application, we do not know how to use such
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a non-compact hash function. Rather, we construct a compact correlation intractable

hash function (under a stronger assumption).

Theorem 2.4 (Informally Stated, see Theorems 2.13 and 2.20). If any one of the

LWE-based fully homomorphic encryption schemes in the literature (such as [BV11,

BGV12,Bra12,GSW13,BV14]) has optimal circular security1 against polynomial-size

key-recovery attacks, then there exists a hash family that is 𝑅-correlation intractable

for all relations 𝑅 that are sampleable by polynomial-size circuits.

Round-by-Round Soundness

Toward proving Theorem 2.1, we would like to apply the Fiat-Shamir transform to

the [GKR08] protocol using the hash function that we constructed in Theorem 2.4.

However, we run into a difficulty: correlation intractability is only known to suffice for

the Fiat Shamir transform of constant-round interactive proofs, whereas the [GKR08]

protocol has a super-constant number of rounds.2

We overcome this difficulty by formulating a stronger soundness requirement for

public-coin interactive proofs that we call round-by-round (RBR) soundness. We

show that RBR soundness suffices for applying the Fiat-Shamir transform (using a

correlation intractable hash function) even for multi-round interactive proofs.3 To

complete the proof of Theorem 2.1, we show that the [GKR08] protocol satisfies

RBR soundness and is moreover compatible with our notion of bounded correlation

intractable hash functions.
1The circular security assumption is actually redundant here because all these schemes include an

encryption of the secret key to facilitate the bootstrapping procedure [Gen09] and so their security
implies that they are also circular secure.

2As a matter of fact, there exist statistically sound interactive proofs with a super constant
number of rounds (and negligible soundness), to which the Fiat-Shamir transform cannot be applied
securely, even in the random oracle model. Consider for example taking the sequential repetition of
any interactive proof with constant soundness. While sequential repetition reduces the soundness at
an exponential rate, applying the Fiat-Shamir transform (even in the random oracle model) results
in an insecure protocol.

3We remark that soundness against state restoration attacks (which is weaker than RBR sound-
ness) was shown by Ben Sasson et al. [BCS16] to suffice for proving soundness of the Fiat-Shamir
transform in the random oracle model, even for protocols with a super-constant number of rounds.
In contrast, we are interested in using Fiat-Shamir in the plain model using explicit hash functions,
see further discussion in Section 2.2.1.
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As a side note, we also show that any public-coin interactive proof Π can be

easily transformed into an interactive proof that has RBR soundness. The transfor-

mation simply applies parallel repetition. As an immediate corollary, fully correlation

intractable hash families can be used to transform any public-coin, doubly-efficient

interactive proof into a publicly verifiable non-interactive argument.

Our main results are summarized in Fig. 2-1:

Compact CI for Non-Compact CI for

NIZKpv-SNARG

Efficiently Sampleable Relations Efficiently Sampleable Relations

Trivial

New Result

(Regev-Extractable) FHE

Optimally Secure Optimal Hardness of LWE

Figure 2-1: Summary of results.

2.1.2 Related Work

On Fiat-Shamir and Magic Functions. Dwork et al. [DNRS99] define magic

functions to be FS-compatible hash functions for the case of transforming a three-

round honest-verifier zero-knowledge argument into a signature scheme, and study

the relationship between the existence of magic functions and the existence of general

three round zero knowledge protocols.

Correlation Intractability and Fiat-Shamir This work continues a series of

recent developments [CCR16,KRR17,CCRR18,HL18] focused on instantiating corre-

lation intractable hash functions in the standard model. We discuss the latter three

works, which provide instantiations of FS-compatible hash functions in the standard

model.
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Kalai et al. [KRR17] and Canetti et al. [CCRR18] construct correlation intractable

hash families from very strong assumptions. Specifically, [KRR17] assumed input-

hiding obfuscation for multi-bit point functions and general-purpose indistinguisha-

bility obfuscation. Subsequently, [CCRR18] gave a construction that assumed encryp-

tion satisfying a form of nearly optimal key-dependent message (KDM) security. More

specifically, they assume that polynomial-size adversaries cannot recover the secret

key with significantly better probability than random guessing, even given encryp-

tions of arbitrary (even inefficiently computable) functions of the secret key. [CCRR18]

then give candidate encryption schemes satisfying this security property under strong

variants of the LWE and CDH assumptions.

We emphasize that both of these assumptions involve an adversary that is in part

computationally unbounded. The input-hiding obfuscation in [KRR17] applied to a

distribution of point functions

𝑃𝛼,𝛽(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝛽 if 𝑥 = 𝛼

0 otherwise

must hide 𝛼 even when 𝛽 is chosen as an arbitrary function of 𝛼, and the KDM

security of [CCRR18] similarly allows messages to be arbitrary functions of the key.

This makes these assumptions difficult to analyze, and in particular they are not

falsifiable [Nao03,GW11] except with (non-uniform) exponential time.

A first step towards rectifying this situation was taken by Holmgren and Lom-

bardi [HL18], who consider a weakening of full correlation intractability. Their weak-

ening essentially only asks for 𝑅-correlation intractability when 𝑅 is non-uniformly

efficiently sampleable – there is a circuit of fixed polynomial size that, given 𝑥, sam-

ples approximately uniformly from the set {𝑦 : (𝑥, 𝑦) ∈ 𝑅}. [HL18] constructs this

form of “bounded” correlation intractable hash family from a sub-exponentially se-

cure indistinguishability obfuscator and a nearly optimally secure one-way function,

and demonstrate that this restricted form of correlation intractability still implies

FS-compatibility for the [GMW86] 3-message zero-knowledge proof system for NP.
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However, their result still requires subexponentially secure indistinguishability obfus-

cation and has no implications for pv-SNARGs.

pv-SNARGs. Constructions of pv-SNARGs are known in the random oracle model

[Mic94], from knowledge assumptions [BCCT13], or from generic assumptions on

strong (noiseless) graded encodings with no known candidates [PR17].

A construction of pv-SNARGs was also given by [CCRR18]: they applied the Fiat-

Shamir transform (using their hash family) to the [RRR16] constant round interactive

proof system for bounded space computation.

In very recent independent work, Kalai et al. [KPY18] also construct a publicly

verifiable argument system for (logspace uniform) NC. On the positive side, they rely

only on falsifiable assumptions about groups equipped with a bilinear map. However,

their argument system is in the preprocessing model. In this model, the prover and

verifier have access to a common reference string, which is as long as the computation

transcript (and must be generated securely by a trusted party). In contrast, our

protocol requires only a short common random string but relies on seemingly stronger

assumptions.

In a later version of their work [KPY19], Kalai et al. improve their result to

rely on a short common reference string (and extend their pv-SNARGs to work for all

polynomial-time computation rather than NC).

Lastly, we remark that privately-verifiable (aka designated verifier) non-interactive

arguments for all of P are known to exist under LWE [KRR14,BHK17].

NIZK Arguments for NP. NIZK arguments for NP are currently known from trap-

door permutations [FLS90], falsifiable assumptions on bilinear maps [GOS06], or in-

distinguishability obfsucation [SW14, BP15]. The works [GOS06, SW14] also con-

struct NIZK arguments for NP satisfying statistical zero knowledge. Constructing

NIZK proofs (or even arguments) for NP from LWE is a long-standing open problem.

Prior works on instantiating the Fiat-Shamir heuristic in the standard model

[KRR17,CCRR18,HL18] also give NIZK argument schemes for NP under qualitatively
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stronger assumptions than what is required in this work.

Finally, while not explicitly noted in prior work, combining results of [CCR16,

HL18] yields a construction of NIZK arguments (in the common reference string

model) from sub-exponentially secure indistinguishability obfuscation and VGB ob-

fuscation. This is the only standard model application of Fiat-Shamir that we are

aware of that does not require assuming nearly optimal hardness.

2.2 Our Techniques

We now describe our contributions and high level proof ideas in more detail.

2.2.1 Round-By-Round Soundness

We provide a new soundness definition for interactive proofs that interacts well with

the Fiat-Shamir transform. We say that a public-coin interactive proof Π for a lan-

guage 𝐿 is round-by-round (RBR) sound if at any stage of the protocol there is a

well-defined state (depending on the transcript thus far) and some of these states

are “doomed”; in the sense that once doomed you will forever remain doomed. More

specifically, the first requirement is that for 𝑥 ̸∈ 𝐿, the initial state (i.e., corresponding

to the empty transcript) is doomed. Second, for every doomed state and every pos-

sible next message that a cheating prover might send, with overwhelming probability

over the verifier’s next message, the protocol state will still be doomed. Lastly, we

require that if at the end of the interaction the state is doomed then the verifier will

reject (in particular, the state function is efficiently computable on full transcripts).

An illustrative example of an interactive proof with round-by-round soundness

is the celebrated sumcheck protocol of Lund et al. [LFKN90]. Recall that the pur-

pose of the sumcheck protocol is to allow the verifier to check a claim of the form∑︀
𝑥1,...,𝑥𝑚∈{0,1} 𝑃 (𝑥1, . . . , 𝑥𝑚) = v, where 𝑃 : F𝑚 → F is an 𝑚-variate polynomial (to

which the verifier has oracle access) over a finite field F and v ∈ F is a fixed field

element.4
4Here and throughout this work we use lowercase blackboard font to denote elements of a finite
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The protocol proceeds as follows - the first message from the prover is the (uni-

variate) polynomial 𝑔(·) = ∑︀
𝑥2,...,𝑥𝑚∈{0,1} 𝑃 (·, 𝑥2, . . . , 𝑥𝑚). Upon receiving some poly-

nomial 𝑔 (which may or may not be equal to the prescribed 𝑔) from the prover, the

verifier checks that it is indeed a low degree polynomial and that 𝑔(0) + 𝑔(1) = v.

Observe that if the initial claim is false, then the prover must send a polynomial 𝑔 ̸≡ 𝑔

(or the verifier will immediately reject). Since 𝑔 and 𝑔 are low degree polynomials,

they must differ on many points. The idea then is for the verifier to select r1 ∈ F

at random and send r1 to the prover. Since 𝑔 and 𝑔 differ on many points, with

high probability 𝑔(r1) ̸= 𝑔(r1) = ∑︀
𝑥2,...,𝑥𝑚∈{0,1} 𝑃 (r1, 𝑥2, . . . , 𝑥𝑚). The point is that

the latter equation is a sumcheck instance with respect to an (𝑚− 1)-variate polyno-

mial 𝑃 ′(𝑥2, . . . , 𝑥𝑚) def= 𝑃 (r1, 𝑥2, . . . , 𝑥𝑚), so the parties recursively run the sumcheck

protocol on 𝑃 ′.

To see that the sumcheck protocol has round-by-round soundness we define a

partial transcript as doomed if the initial claim for the corresponding step in the

recursion is false. As explained above, the sumcheck protocol has the property that

at any step of the recursion if we start with a false claim then, with overwhelming

probability, we end up with a false claim for the next step in the recursion. This is

exactly the meaning of round-by-round soundness. For further details, see Section 2.5.

As one of our contributions, and toward establishing our main delegation result,

in Section 2.6 we show that the GKR protocol for log-space uniform NC also has

round-by-round soundness.

Round-by-round Soundness and Fiat-Shamir. Our primary motivation for

defining round-by-round soundness is to instantiate the Fiat-Shamir transform in

the standard model for protocols with a possibly super-constant number of rounds.

Indeed, we show that a correlation-intractable hash family suffices for the soundness

of the FS transform if the initial protocol is RBR-sound.

To see this, fix any RBR-sound interactive proof Π along with an input 𝑥 ̸∈ 𝐿,

field.
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and consider the relation:

𝑅
def=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(𝜏, 𝛽) :

𝜏 is a doomed partial transcript

and

𝜏 |𝛽 is not doomed

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(where 𝜏 is a partial transcript ending with a prover message and 𝛽 is a verifier

message).

Round-by-round soundness ensures that 𝑅 is a sparse relation. Suppose we now

apply the Fiat-Shamir transform to the interactive proof, while using a hash function ℎ

that is 𝑅-correlation intractable. Suppose further that the (computational) soundness

of the resulting non-interactive argument is broken. By definition of RBR soundness,

this means that the cheating prover has efficiently found some partial transcript 𝜏

and verifier message 𝛽 = ℎ(𝜏) such that 𝜏 is doomed, but (𝜏, 𝛽) is not doomed.5

Thus, the prover can be used to find a pair
(︁
𝜏, ℎ(𝜏)

)︁
∈ 𝑅, in contradiction to the

correlation intractability of the hash function.

Round-by-Round Soundness vs. State Restoration Attacks. A state restora-

tion attack [BCS16] on an interactive proof (or more generally an interactive oracle

proof) is a cheating prover strategy that is allowed to rewind the protocol to some

previous state a limited number of times. Ben Sasson et al. showed that soundness

against state restoration attacks suffices for compiling interactive proofs using the

Fiat-Shamir in the random oracle model.6

Negligible round-by-round soundness readily implies state restoration soundness

for a polynomial number of rewinds. Although it seems reasonable that soundness

against state restoration attacks would suffice for instantiating the Fiat-Shamir trans-

form using a correlation interactable hash function (rather than in the random oracle

model as shown in [BCS16]), we were unable to prove this.

5Such a partial transcript must exist since the empty transcript is doomed, but a full accepting
transcript is not doomed.

6Prior to the work of [BCS16] this was only shown for constant-round interactive proofs [HMR08].
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2.2.2 Bounded Correlation Intractable Hash Families

So far, we have shown that correlation intractable hash functions can be used to

instantiate the Fiat-Shamir transform for the [GKR08] protocol, yielding pv-SNARGs.

In addition, it was already known7 [CCRR18,HL18] that correlation intractable hash

families – with mild additional properties – are also sufficient to yield NIZK argument

schemes for NP.

The rest of this work focuses on new constructions of correlation intractable hash

families that suffice to yield these applications. These constructions and security

reductions all use as a first step (a parameterized version of) the main theorem of

[CCRR18] (our Theorem 2.13), which shows how to interpret a secret-key encryption

scheme as a correlation intractable hash family if the encryption scheme satisfies two

properties (the first being a statistical property and the second a computational one):

1. Universal Ciphertexts: An encryption of a random message under any fixed

secret key is distributed like an encryption of a random message under a random

secret key. In particular, this means that ciphertexts are not attached to any

one particular key.

2. Nearly Optimal Bounded-KDM Security against Poly-size Adver-

saries: For any function 𝑓 computable by circuits of a fixed polynomial size,

every adversary of arbitrary polynomial size can, given an encryption of 𝑓(𝑘)

under a (uniformly random) key 𝑘, can recover 𝑘 with probability at most

1/Ω̃
(︁
2|𝑘|
)︁

- i.e., only a polynomial factor better than guessing.

The above property does not suffice to obtain correlation intractable hash families

for all sparse relations; however, it does suffice to obtain hash families that are corre-

lation intractable for all sparse relations that are sampleable in some fixed polynomial

time. We note that the notion of “bounded correlation intractability” considered in

this work is incomparable to that of [CCR16]; they consider correlation intractability

for relations that are decidable in a fixed polynomial time.
7As mentioned earlier, we do improve on previous Fiat-Shamir NIZK instantiations by obtaining

statistical zero knowledge, for example.
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Since the relations arising from the [GKR08] protocol and a broad class (including

[GMW86]) of 3-message zero knowledge proofs for NP satisfy the above notion of

efficient sampleability, we have reduced the overall problem to constructing encryption

schemes satisfying this weaker notion of bounded-KDM security.

2.2.3 Constructing Optimal Bounded-KDM Secure Encryp-

tion

There is a long line of prior work on constructing bounded-KDM secure encryption

schemes [BHHO08,ACPS09,BG10,BHHI10,App11]. Unfortunately, the optimal level

of security stated above that we require is more stringent than was achieved by prior

work (which considered any negligible success probability) and poses a significant

technical problem, especially when combined with the universal ciphertexts require-

ment. Still, we show that some of the techniques and instantiations can be adapted

to our setting.

Non-Compact CI from Search-LWE. We construct an encryption scheme as

above assuming the nearly optimal hardness of search-LWE for poly-time adversaries.

Our construction follows the blueprint of [App11], which shows that the class of

functions for which an encryption scheme satisfies KDM security can be amplified

using randomized encodings in the regime of polynomial-size adversaries with inverse

polynomial success probabilities.

Recall that a randomized encoding [AIK04] for a function 𝑓 is a randomized func-

tion 𝑓 such that 𝑓(𝑥) reveals exactly 𝑓(𝑥) and nothing else8 – i.e., there are algorithms

RE.Dec and RE.Sim such that for all 𝑥, RE.Dec(𝑓(𝑥)) = 𝑓(𝑥), and RE.Sim(𝑓(𝑥)) ≈

𝑓(𝑥). The key point is achieving this so that the function 𝑓 is significantly simpler

than 𝑓 in some way. For example, Yao’s garbled circuits [Yao86] are a randomized

encoding 𝑓 for any polynomial-time computable 𝑓 , with the special property that for

every 𝑟 and every input length 𝑛, each bit of 𝑓(𝑥; 𝑟) for 𝑥 ∈ {0, 1}𝑛 is a projection of

8Technically, 𝑓(𝑥) may also reveal the input length |𝑥|. We will avoid this technicality by, without
loss of generality, only considering functions that additionally output the length of their input.
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𝑥 – that is, either a constant or 𝑥𝑖 ⊕ 𝑏 for some fixed 𝑖 ∈ [𝑛] and fixed bit 𝑏.

Applebaum’s idea, following [BHHI10], was to construct an 𝑓 -KDM secure encryp-

tion scheme out of an encryption scheme ℰ that is 𝑓(· ; 𝑟)-KDM secure for every choice

of randomness 𝑟. Since 𝑓 is simpler than 𝑓 , we have made progress. Specifically,

the constructed scheme ℰ ′ encrypts messages as ℰ ′.Enc(𝑚) def= ℰ .Enc(RE.Sim(𝑚)),

and correspondingly decrypts ciphertexts as ℰ ′.Dec(ct) def= RE.Dec(ℰ .Dec(ct)). The

point is that an adversary for ℰ ′ receives ℰ ′.Enc
(︁
𝑓(𝑘)

)︁
≡ ℰ .Enc

(︁
RE.Sim(𝑓(𝑘))

)︁
≈

ℰ .Enc
(︁
𝑓(𝑘; 𝑟)

)︁
for some random 𝑟, which still “protects” 𝑘 by the assumed KDM

security of ℰ . This construction can also be modified to obtain a (single) encryption

scheme that is simultaneously 𝑓 -KDM secure for all 𝑓 in a family ℱ . What is needed

in this case is (1) a randomized encoding for a universal function 𝑈ℱ , that takes as

input a description of 𝑓 ∈ ℱ and an input 𝑥 and outputs 𝑓(𝑥), and (2) an encryption

scheme ℰ that is �̂�ℱ(𝑓, · ; 𝑟)-KDM secure for every 𝑓 and 𝑟.

Crucially, we observe that the additional properties we require of ℰ ′, namely uni-

versal ciphertexts and nearly optimal security, are inherited from ℰ as long as the

randomized encoding scheme RE satisfies two additional properties. First (to en-

sure universal ciphertexts), RE should be blind [BLSV18]: for a uniformly random 𝑦,

RE.Sim(𝑦) should also be uniformly random. Additionally, RE should be 1/Ω̃(2|𝑘|)-

secure.

Bounded KDM Security from Binary-Secret Search-LWE. Our first ap-

proach for instantiating the above framework is to use point-and-permute garbled

circuits [BMR90] in conjunction with the known circular security of binary-secret

Regev encryption. Point-and-permute garbled circuits are perfectly blind [BLSV18],

they yield a universal randomized encoding �̂� for all circuits of some fixed polynomial

size, and Regev encryption with an appropriate9 noise distribution also has (perfectly)

universal ciphertexts.

In terms of security, the randomized encoding �̂� can also be made sufficiently
9Specifically, let the modulus 𝑞 be even, and take the noise distribution to be uniform on the

interval [−𝑞/4, 𝑞/4). With a limited number of samples (as is the case in our application), Search-
LWE with this setting of parameters reduces to the more typical “narrow discrete Gaussian” noise
by a “drowning out the noise” technique.
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secure if one-way functions exist that are 2−𝜆Ω(1)-hard to invert for 𝜆𝑂(1)-size ad-

versaries. This assumption is in turn implied by our nearly-optimal Search-LWE

assumption. As mentioned previously, for any fixed circuit 𝐶 and randomness 𝑟, each

bit of �̂�(𝐶, 𝑥; 𝑟) is a projection of 𝑥. Regev encryption with binary secrets is known

to be KDM-secure with respect to such projections of the key, under the assumption

that binary-secret Search-LWE is hard, and the reduction in fact preserves nearly

optimal hardness [ACPS09].

Combining point-and-permute garbled circuits with Regev encryption with bi-

nary secrets thus yields, for any polynomial 𝑆 = 𝑆(𝑛), an encryption scheme that

has universal ciphertexts and is KDM-secure with respect to any size-𝑆 computable

functions.

Bounded KDM Security from More General Search-LWE One unsettling

aspect of the preceding construction is the reliance on binary-secret LWE, a variant

for which algorithms empirically perform better [BG14]. Although we are not aware

of attacks on binary-secret LWE that are successful enough to refute a nearly-optimal

security conjecture, we still wish to base our constructions on a more general setting

of parameters.

We do so by turning to the encryption scheme of [ACPS09], a variant of Regev

encryption whose KDM security reduces to Search-LWE with a secret distribution

in which each coordinate has higher entropy. Specifically, the secret distribution is

uniform over [−𝑝
2 , 𝑝

2)𝑛 , and the noise distribution is uniform over [− 𝑞′

2 , 𝑞′

2 )ℓ, for a

modulus 𝑞 = 𝑝𝑞′ and a prime 𝑝. Unfortunately, the KDM security of this scheme is

with respect to affine functions over Z𝑝. In particular, this scheme is not known to

be secure with respect to bit-by-bit encryptions of its secret key.

To address this difficulty, we construct a new blind randomized encoding from

sub-exponentially secure one-way functions for the function 𝑈𝑝 that takes as input a

boolean circuit 𝐶 : Z𝑛
𝑝 → {0, 1}ℓ (with elements of Z𝑛

𝑝 encoded in binary), an input

𝑥 ∈ Z𝑛
𝑝 , and outputs 𝐶(𝑥). Our construction has the property that for any 𝐶 and

any 𝑟, the function �̂�𝑝(𝐶, · ; 𝑟) is Z𝑝-affine, which renders our construction suitable
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for amplifying the KDM security of [ACPS09].

Our construction composes two (blind) randomized encodings.

1. Point-and-permute garbled circuits, which give an encoding �̂�bin of the function

𝑈bin that maps (𝐶, 𝑥) ↦→ 𝐶(𝑥), where 𝐶 : Z𝑛
𝑝 → {0, 1}ℓ is a boolean circuit, and

𝑥 ∈ Z𝑛
𝑝 is an input. The advantage of this scheme is that it supports arbitrary,

e.g. high-depth circuits. On the other hand, �̂�bin(𝐶, · ; 𝑟) is a projection of the

binary representation of 𝑥, instead of a Z𝑝-affine function of 𝑥.

2. An encoding �̂�proj for projections 𝜋 : Z𝑛
𝑝 → {0, 1}, where for any 𝜋, the

function �̂�proj(𝜋, · ; 𝑟) is affine over Z𝑝. Such a randomized encoding follows

from a (modified) result of [AIK11] (hereafter AIK), which states that any

function 𝑓 computable by a uniform depth-𝑑 arithmetic circuit (ensemble)

{𝐶𝑛 : Z𝑛
𝑝 → Z𝑝}𝑛 has a perfectly secure, perfectly blind randomized encod-

ing 𝑓 such that 𝑓(· ; 𝑟) is affine over Z𝑝 for every 𝑟. Specifically, we represent

𝜋 by a vector e ∈ {0, 1}𝑛·⌈log 𝑝⌉ (with at most one 1) and a bit 𝑏 such that

𝜋(𝑥) = ⟨e, [[𝑥]]⟩ ⊕ 𝑏, where [[𝑥]] denotes the binary representation of 𝑥. Then we

use the AIK encoding of

𝑈proj
(︁
(e, 𝑏), 𝑥

)︁
= ⟨e, [[𝑥]]⟩ ⊕ 𝑏 =

𝑏 ·
(︁∑︀𝑛·⌈log 𝑝⌉

𝑖=1 𝑒𝑖 · [[𝑥]]𝑖
)︁

+

(1− 𝑏) ·
(︁
1−∑︀𝑛·⌈log 𝑝⌉

𝑖=1 𝑒𝑖 · [[𝑥]]𝑖
)︁
.

(2.1)

𝑈proj is computable by a depth 𝑂(log 𝑛 + log 𝑝) and size �̃�(𝑛 · 𝑝) arithmetic

circuit over Z𝑝 by applying the formula

[[𝑥𝑗]]𝑘 =
∑︁

𝑦∈Z𝑝:[[𝑦]]𝑘=1

(︁
1− (𝑦 − 𝑥𝑗)𝑝−1

)︁

to compute each [[𝑥]]𝑖.

A first attempt at composition defines10 �̂�𝑝(𝐶, 𝑥; 𝑟proj, 𝑟bin) def= �̂�proj
(︁
�̂�bin(𝐶, · ; 𝑟bin), 𝑥; 𝑟proj

)︁
,

10Here, we abuse notation in two ways. First, we write �̂�bin(𝐶, · ; 𝑟bin) to denote the descriptions
of the corresponding projection functions. Second, we allow �̂�proj to take as input these multiple
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but this (with the natural simulator) is not blind. The issue is that the simulator for

�̂�bin produces a uniformly random string with alphabet {0, 1}, but the AIK simulator

for �̂�proj requires a uniformly random string with alphabet Z𝑝 for its output to be

uniformly random (also with alphabet Z𝑝).

To remedy this, we modify �̂�proj. To start, we partition Z𝑝 into two sets of nearly

equal size, Z𝑝 = 𝑃 (0) ⊔ 𝑃 (1), and define a function 𝑈 ′proj that, compared to 𝑈proj

takes two additional inputs 𝑟(0) and 𝑟(1). On input
(︁
(e, 𝑏, 𝑟(0), 𝑟(1)), 𝑥

)︁
, 𝑈 ′proj outputs

𝑟(⟨e,[[𝑥]]⟩⊕𝑏) (this can be done by a low-depth circuit analogous to Eq. (2.1)). We then

redefine �̂�proj so that �̂�proj
(︁
(e, 𝑏), 𝑥

)︁
samples 𝑟(0) ← 𝑃 (0) and 𝑟(1) ← 𝑃 (1), then returns

the AIK encoding �̂� ′proj

(︁
(e, 𝑏, 𝑟(0), 𝑟(1)), 𝑥

)︁
. The new decoder for �̂�proj evaluates the

AIK decoder for �̂� ′proj, obtaining 𝑦′ ∈ Z𝑝, and outputs 𝑏 if 𝑦′ ∈ 𝑃 (𝑏). The new

simulator for �̂�proj on input 𝑏 samples 𝑦′ ← 𝑃 (𝑏), and then returns the output of the

AIK simulator for �̂� ′proj on 𝑦′.

This nearly completes the description of our randomized encoding, except for one

subtle issue. For any odd prime 𝑝, it is impossible for a partition Z𝑝 = 𝑃 (0) ⊔ 𝑃 (1)

to be exactly balanced. This causes the randomized encoding to only be approxi-

mately blind, where our notion of approximation is the Renyi divergence (rather than

statistical difference) between the simulator output distribution and the uniform dis-

tribution. To suitably decrease the approximation error, we need to replace Z𝑝 by Z𝑘
𝑝

for a sufficiently large 𝑘.

A Compact Family From FHE. While the above hash families suffice to obtain

NIZK argument schemes, they do not yield pv-SNARGs when combined with the

[GKR08] protocol. This is because in the above hash family, the description of a hash

function (and the complexity of hashing) grows polynomially with the complexity

of the sampling algorithms of the relations 𝑅 for which correlation intractability

holds.11 In order to obtain pv-SNARGs, we require a hash family (corresponding

projection functions. We let �̂�proj((𝜋1, . . . , 𝜋𝑚), 𝑥) denote the product distribution �̂�proj(𝜋1, 𝑥)×· · ·×
�̂�proj(𝜋𝑚, 𝑥).

11In the case of [GKR08], we can only give a sampling algorithm that runs in time poly(𝑇 ), which
ruins succinctness.
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to an encryption scheme) that is SIZE(𝑆)-correlation intractable, but yet consists of

functions that are evaluable in time much less than 𝑆. We in fact construct something

stronger – a single hash family that is correlation intractable against all relations that

are sampleable by polynomial-size circuits.

This construction also adapts KDM-security amplification techniques in the lit-

erature; instead of using randomized encodings [App11], we use fully homomorphic

encryption to amplify KDM-security. In particular, [BHHI10] observe that any cir-

cularly secure FHE scheme satisfying a strong form of evaluation correctness12 is also

KDM-secure for arbitrary polynomial functions of the secret key. The basic [BHHI10]

idea is that an adversary can homomorphically generate encryptions of 𝑓(𝑘) from the

encryption of 𝑘 (for efficiently computable functions 𝑓).

The [BHHI10] observation suggests the following plan to obtain the CI hash fam-

ilies that we desire: start with a FHE scheme that has universal ciphertexts and

(sufficiently strong) circular security, and invoke an appropriately modified [BHHI10]

argument. However, there are two major flaws in this plan.

• No fully homomorphic encryption scheme in the literature has (anything re-

motely resembling) universal ciphertexts. Indeed, all schemes in the literature

utilize (at the very least) some form of a low-noise Regev encryption, which it-

self is very far from having universal ciphertexts. A low-noise Regev ciphertext

(𝐴, 𝑏) under secret key 𝑠 has the property that 𝑠𝑡𝐴− 𝑏 is close to either 0 or 𝑞
2 ,

and therefore Regev encryption is not universal.

• It is not clear how to adapt the [BHHI10] security reduction (that relies on

a generic FHE scheme) to the setting of (near-)optimal security. This is be-

cause [BHHI10] relies on a FHE scheme with the following strong correctness

property: the distribution Eval(𝑓, Enc(𝑥)) is statistically indistinguishable from

an encryption of 𝑓(𝑥). In the setting of near-optimal security, a naive applica-

tion of the [BHHI10] argument would require an extreme form of this correctness

property that does not hold for existing FHE schemes in the literature.
12Namely, that an 𝑓 -evaluated encryption of 𝑚 is statistically indistinguishable from an encryption

of 𝑓(𝑚)
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As a result of these problems, we deviate from the plan above in order to achieve

unbounded polynomial correlation intractability. Instead of directly working with

a fully homomorphic encryption scheme in the construction, we consider secret-key

Regev encryption, with secret keys uniformly distributed over a moderately sized

interval [−𝐵, 𝐵)𝑛 ⊆ Z𝑛
𝑞 , and noise distribution [−𝑞/4, 𝑞/4). This setting of pa-

rameters (which by design yields a scheme with universal ciphertexts) was proposed

by [CCRR18]13, and should be contrasted with the typical Regev encryption scheme

in which the secret is uniform in Z𝑛
𝑞 but the noise must be smaller to allow for correct

decryption.

We prove that this encryption scheme satisfies unbounded polynomial KDM-

security using some associated FHE scheme in the security proof.

The KDM security of Regev encryption with these parameters follows from two

main observations.

1. Many natural fully homomorphic encryption schemes (e.g., [BV11, BGV12,

Bra12, GSW13, BV14]) contain a low-noise instantiation of Regev encryption

“embedded” within them. That is, from any homomorphically evaluated ci-

phertext that decrypts to 𝑚 under an FHE key 𝑠, one can efficiently extract

a small-noise Regev encryption of 𝑚 under 𝑠. We call this property Regev-

extractability.

2. Any Regev ciphertext with small noise (which may be arbitrary and malicious)

can be re-randomized to obtain a Regev ciphertext whose noise distribution is

statistically approximately uniform over [−𝑞/4, 𝑞/4)𝑚.

Combining (1) and (2) yields a multiplicatively advantage-preserving reduction

from the KDM security of high-noise Regev to the circular security of the (low-noise)

Regev-extractable FHE scheme. At a high level, the reduction works as follows:

given FHE-circular ciphertexts {ct𝑖 = FHE.Enc(sk, sk𝑖)}𝑖, one can homomorphically
13 [CCRR18] leaves the relationship between 𝐵 and 𝑞 to be arbitrary except that 𝐵 ≤ 𝑞; we

require that 𝐵 is significantly smaller than 𝑞 because we reduce from the security of (necessarily
low-noise) FHE schemes. Our notion of optimal security for these FHE schemes can only hold when
the secret has less entropy than the noise.
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compute a (non-random) FHE-ciphertext corresponding to an arbitrary polynomial

function 𝑓(sk). Then, a secret-key Regev ciphertext of 𝑓(sk) can be extracted from

this FHE-ciphertext, and the Regev ciphertext can be re-randomized to obtain an

approximately uniform Regev encryption of 𝑓(sk). Thus, an algorithm that recovers

sk from a Regev encryption of 𝑓(sk) with better-than-trivial probability can be used

to achieve the same key recovery success for the FHE scheme.

We note that a crucial aspect of the analysis is the use of Renyi divergence rather

than total variational (aka, statistical) distance in characterizing the re-randomization

sampling error.

2.3 Correlation Intractability from KDM-Secure

Encryption

This section recalls the definitions of correlation intractable (CI) hash functions and

encryption schemes that are secure against key-dependent message (KDM) attacks,

as well as the [CCRR18] construction of CI hash functions from strong KDM secure

encryption.

Since this work crucially relies on finer-grained notions of indistinguishability and

security against resource bounded adversaries, we first adopt the following notation,

which is more fine-grained than the standard one. We say that a game 𝒢 (that takes as

input a security parameter 1𝜆) is (A,B)-hard if for all adversaries 𝒜 = {𝒜𝜆}𝜆∈Z+ ∈ A,

there exists a bound 𝜖(·) ∈ B such that for every 𝜆 ∈ Z+, 𝒜𝜆 wins 𝒢(1𝜆) with

probability at most 𝜖(𝜆). When A is the set of polynomial-size circuit ensembles, we

will omit A and simply say that 𝒢 is (computationally) B-hard. If additionally B is

the set of all negligible functions, we simply say that 𝒢 is (computationally) hard.

For example, we say that two distribution ensembles {𝑋𝜆} and {𝑌𝜆} are
(︁
𝜆𝑂(1), 1

2 +
1

Ω̃(2𝜆)

)︁
-indistinguishable if for all polynomial-sized circuit ensembles 𝒜 = {𝒜𝜆}, there

exists some 𝜖(·) with 𝜖(𝜆) ≤ poly(𝜆)
2𝜆 (where the poly(𝜆) factor may depend on 𝒜) such

that the advantage of 𝒜𝜆 in distinguishing 𝑋𝜆 from 𝑌𝜆 is at most 𝜖(𝜆).
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2.3.1 Correlation Intractable Hash Functions

Definition 2.1. A hash family is a collection ℋ = {ℎ𝜆 : ℐ𝜆 × 𝑋𝜆 → 𝑌𝜆}𝜆∈Z+ of

keyed hash functions such that {ℐ𝜆} is uniformly poly(𝜆)-time sampleable and {ℎ𝜆}

is uniformly poly(𝜆)-time evaluable.

We will also write ℋ𝜆 to denote the distribution on functions ℎ𝜆(𝐼, ·) obtained by

sampling 𝐼 ← ℐ𝜆.

The above definition details the functionality of a hash function; there are sev-

eral security notions that one could require. We focus on (single input) correlation

intractability, as put forth by Canetti et al. [CGH98].

Definition 2.2 (Correlation Intractability). For a hash family ℋ = {ℎ𝜆 : ℐ𝜆×𝑋𝜆 →

𝑌𝜆}𝜆∈Z+ and a relation ensemble 𝑅 = {𝑅𝜆 ⊆ 𝑋𝜆 × 𝑌𝜆}, the correlation intractability

game 𝒢CI
ℋ,𝑅 is the following game, played by any adversary 𝒜 against a fixed “chal-

lenger” 𝒞:

1. On input 1𝜆, 𝒞 samples 𝐼 ← ℐ𝜆 and sends 𝐼 to 𝒜.

2. 𝒜 sends 𝑥 ∈ 𝑋𝜆 to 𝒞, and wins the game if
(︁
𝑥, ℎ𝜆(𝐼, 𝑥)

)︁
∈ 𝑅𝜆.

We say that ℋ is 𝑅-correlation (A,B)-intractable if 𝒢CI
ℋ,𝑅 is (A,B)-hard.

Correlation intractability is a useful and versatile property of random oracles that

we would like to guarantee in the standard model. However, even a random oracle is

only 𝑅-correlation intractable for sparse relations 𝑅.

Definition 2.3 (Sparsity). For any relation ensemble 𝑅 = {𝑅𝜆 ⊆ 𝑋𝜆 × 𝑌𝜆}, we say

that 𝑅 is 𝜌(·)-sparse if for 𝜆 ∈ Z+ and any 𝑥 ∈ 𝑋𝜆,

Pr
𝑦←𝑌𝜆

[︁
(𝑥, 𝑦) ∈ 𝑅𝜆

]︁
≤ 𝜌(𝜆).

When 𝜌 is a negligible function, we say simply that 𝑅 is sparse.
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An important complexity measure of a relation 𝑅 for the purpose of achieving

correlation intractability is the complexity of sampling from the relation. More for-

mally, we define (following [HL18]) what it means for a relation 𝑅 to be efficiently

(approximately) samplable.

Definition 2.4. A distribution 𝑃 multiplicatively 𝜖-approximates a distribution 𝑄 if

for all outcomes 𝜔, it holds that 𝑃 (𝜔) ≥ 𝜖 ·𝑄(𝜔).

We note that if 𝑃 multiplicatively 𝜖-approximates a distribution 𝑄, then it also

holds for all events 𝐸, that 𝑃 (𝐸) ≥ 𝜖 ·𝑄(𝐸).

Definition 2.5 (Approximate Samplability of Relations). A relation ensemble 𝑅 =

{𝑅𝜆 ⊆ 𝑋𝜆 × 𝑌𝜆} is non-uniformly efficiently 𝜖-approximately samplable if there is a

poly(𝜆)-sized circuit ensemble {Samp𝜆} such that for every (𝑥, 𝑦) ∈ 𝑅𝜆, the distri-

bution Samp𝜆(𝑥) multiplicatively 𝜖-approximates the uniform distribution on the (by

assumption, non-empty) set
{︁
𝑦′ ∈ 𝑌𝜆 : (𝑥, 𝑦′) ∈ 𝑅

}︁
.

We say that 𝑅 is (non-uniformly) efficiently approximately samplable if it is non-

uniformly 𝜖-approximately samplable for some 𝜖 ≥ 1
poly(𝑛) .

Remark 2.6 (Domain Translation). Throughout this paper, we make use of the fol-

lowing fact: if ℛ is a sparse ensemble of relations {𝑅𝜆 ⊆ 𝑋 ′𝜆 × 𝑌𝜆}, then the en-

semble ℛ′ obtained by viewing each 𝑅𝜆 as a subset of 𝑋𝜆 × 𝑌𝜆 via some embedding

𝑓𝜆 : 𝑋 ′𝜆 → 𝑋𝜆 is also sparse. Moreover, if ℛ is efficiently sampleable and if {𝑓−1
𝜆 } is

efficiently sampleable, then ℛ′ is also efficiently sampleable.

This result is used implicitly, e.g. to view a correlation-intractable hash family

mapping Z𝑛
𝑝 → {0, 1}ℓ as a correlation-intractable hash family mapping {0, 1}𝑛·⌊log 𝑝⌋ →

{0, 1}ℓ.

2.3.2 Encryption Schemes and Key-Dependent Message (KDM)

Security

Definition 2.7. A secret-key encryption scheme (SKE) ℰ with message space ℳ =

{ℳ𝜆} consists of poly(𝜆)-time sampleable key distributions {𝒦𝜆}𝜆 along with poly(𝜆)-

time computable functions Enc and Dec (where Enc is probabilistic) such that when
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sampling (pk, sk)← 𝒦𝜆, it holds with probability 1 for all 𝑚 ∈ℳ𝜆 that Dec
(︁
sk, Enc(sk, 𝑚)

)︁
=

𝑚.

In the special case that ℳ𝜆 = {0, 1} for every 𝜆, we say that ℰ is a secret-key

bit-encryption scheme.

Remark 2.8. In Definition 2.7, we assumed that keys are of the form (pk, sk), where

pk denotes key information that we wish to make available to adversaries. For in-

stance, for FHE schemes pk will include the evaluation key. Still, it is appropriate

to refer to these encryption schemes as secret-key because we do not assume that it

is possible to encrypt given only pk. In cases where pk is always the empty string, we

will sometimes just write sk← 𝒦𝜆 rather than (pk, sk)← 𝒦𝜆.

Definition 2.9. A secret-key encryption scheme ℰ = ({𝒦𝜆}, Enc, Dec) with message

space ℳ𝜆 has 𝛼-universal ciphertexts if for any key (pk*, sk*) ∈ 𝒦𝜆, the distribution

Enc(sk*,𝒰ℳ𝜆
) multiplicatively 𝛼(𝜆)-approximates the distribution Enc(sk,𝒰ℳ𝜆

), where

𝒰ℳ𝜆
denotes the uniform distribution on ℳ𝜆 and (pk, sk) is sampled from 𝒦𝜆.

If ℰ has 𝛼-universal ciphertexts for some 𝛼(𝜆) ≥ 𝜆−𝑂(1), then we simply say that

ℰ has universal ciphertexts.

Definition 2.10. A secret-key bit-encryption scheme ℰ = ({𝒦𝜆}, Enc, Dec) is said

to be fully homomorphic if there is a polynomial-time algorithm Eval such that when

sampling (pk, sk)← 𝒦𝜆, then it holds with probability 1 for any circuit 𝐶 : {0, 1}𝑛 →

{0, 1} and any 𝑚1, . . . , 𝑚𝑛 ∈ {0, 1}, that

Dec
(︂

sk, Eval
(︁
pk, 𝐶, Enc(sk, 𝑚1), . . . , Enc(sk, 𝑚𝑛)

)︁)︂
= 𝐶(𝑚1, . . . , 𝑚𝑛).

Definition 2.11. If ℰ is a secret-key encryption scheme
(︁
{𝒦𝜆}, Enc, Dec

)︁
with mes-

sage space ℳ𝜆, and if 𝑓 = {𝑓𝜆 : 𝒦𝜆
$→ℳℓ𝜆

𝜆 } is any (potentially probabilistic) func-

tion, the 𝑓 -KDM security game 𝒢KDM
ℰ,𝑓 is the following game, played by any adversary

𝒜 against the following fixed challenger 𝒞:

1. On input 1𝜆, 𝒞 samples (pk, sk)← 𝒦𝜆, computes (𝑀1, . . . , 𝑀ℓ)← 𝑓𝜆(sk), com-

putes encryptions ct𝑖 ← Enc(sk, 𝑀𝑖) for each 𝑖 ∈ [ℓ], and sends (pk, ct1, . . . , ctℓ)
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to 𝒜.

2. 𝒜 outputs sk′, and wins if sk′ = sk.

ℰ is said to be 𝑓 -KDM (A,B)-secure if 𝒢KDM
ℰ,𝑓 is (A,B)-hard. If ℱ is a set of

(potentially probabilistic) functions then we say that ℰ is ℱ -KDM (A,B)-secure if ℰ

is 𝑓 -KDM (A,B)-secure for all 𝑓 ∈ ℱ .

2.3.3 Correlation Intractability from Strong KDM Security

In this section, we recall the generic transformation of [CCRR18] and state a stronger

version of their main theorem (that follows from their security proof). The differences

are explained immediately after the theorem statement.

Construction 2.12 (CCRR Hash Family). Let ℰ = ({𝒦𝜆}, Enc, Dec) be any secret

key encryption scheme with message space {0, 1}ℓ for ℓ = ℓ(𝜆). The CCRR hash family

associated to this encryption scheme, denoted ℋℰCCRR, is

ℋℰCCRR =
{︂

ℎ𝜆 : ℐ𝜆 ×𝒦𝜆 → {0, 1}ℓ
}︂

𝜆

where

ℎ𝜆(𝐶, 𝑥) := Dec(𝑥, 𝐶),

and ℐ𝜆 is the distribution of ciphertexts 𝐶 obtained by sampling 𝐾 ← 𝒦𝜆, 𝑀 ←

{0, 1}ℓ, and 𝐶 ← Enc(𝐾, 𝑀).

The following theorem, which is based on [CCRR18], shows that the hash family

associated with any encryption scheme that (1) has universal ciphertexts (see Defi-

nition 2.9) and (2) is exponentially KDM secure (see Definition 2.11), is suitable for

the Fiat-Shamir transform.

Theorem 2.13. Let ℰ = ({𝒦𝜆}, Enc, Dec) be a secret key encryption scheme with

𝛼(𝜆)-universal ciphertexts, message space ℳ𝜆 = {0, 1}ℓ(𝜆), and key space 𝒦𝜆 equal

to the uniform distribution on {0, 1}𝜅(𝜆) for some ℓ(·), 𝜅(·). If ℰ is ℱ-KDM (A,B)-

secure and 𝑅 = {𝑅𝜆 ⊆ {0, 1}𝜅(𝜆) × {0, 1}ℓ(𝜆)} is a 𝜌-sparse relation ensemble that

66



is 𝛽(𝜆)-approximately ℱ-sampleable, then ℋℰCCRR is 𝑅-correlation
(︂
A,B · 2𝜅(𝜆)·𝜌(𝜆)

𝛼(𝜆)·𝛽(𝜆)

)︂
-

intractable.

Remark 2.14. There are two main differences between Theorem 2.13 and the original

statement in [CCRR18].

• Theorem 2.13 parameterizes what KDM functions are required in order to prove

correlation intractability for a given relation 𝑅 in terms of its (approximate)

samplability.

• Theorem 2.13 assumes a weaker notion of “universal ciphertexts” (Definition 2.9)

as compared to [CCRR18].

However, Theorem 2.13 follows directly from the proof given in [CCRR18], and

our proof is included only for completeness.

Proof of Theorem 2.13. Let ℰ and 𝑅 be as in the hypothesis of the theorem. Let

ℋℰCCRR =
{︂

ℎ𝜆 : ℐ𝜆 ×𝒦𝜆 → {0, 1}ℓ(𝜆)
}︂

𝜆
be as in Construction 2.12.

Suppose that there is an adversary 𝒜 ∈ A that, given 𝐼 ← ℐ𝜆, finds an input

𝑥 ∈ 𝒦𝜆 such that
(︁
𝑥, ℎ𝜆(𝐼, 𝑥)

)︁
∈ 𝑅𝜆 with probability 𝜖(𝜆) that, for every 𝛿 ∈ B,

satisfies 𝜖(𝜆) > 𝛿(𝜆) · 2𝜅(𝜆)·𝜌(𝜆)
𝛼(𝜆)·𝛽(𝜆) for some 𝜆. Recall that ℐ𝜆 is the distribution of an

encryption of a uniformly random message under a uniformly random key. That is, we

have 𝐼 ← Enc(𝐾, 𝑀) where 𝐾 and 𝑀 denote random variables whose distributions

are uniform over {0, 1}𝜅(𝜆) and {0, 1}ℓ(𝜆), respectively.

Consider independently sampling a uniformly random key 𝑋* ← 𝒦𝜆. Then, we

have that

Pr
𝐾,𝑋*←𝒦𝜆

𝑀←{0,1}ℓ(𝜆)

𝐼←Enc(𝐾,𝑀)

[︂
𝒜(𝐼) = 𝑋* ∧

(︁
𝑋*, ℎ𝜆(𝐼, 𝑋*)

)︁
∈ 𝑅𝜆

]︂
= 𝜖(𝜆)

2𝜅(𝜆) ,

because the above expression can be interpreted as the probability that 𝒜 wins the

correlation intractability game and that 𝒜(𝐼) = 𝑋*.

The universal ciphertexts property of ℰ implies that
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Pr
𝑋*←𝒦𝜆

𝑀←{0,1}ℓ

𝐼←Enc(𝑋*,𝑀)

[︂
𝒜(𝐼) = 𝑋* ∧

(︁
𝑋*, ℎ𝜆(𝐼, 𝑋*)

)︁
∈ 𝑅𝜆

]︂
≥ 𝜖(𝜆) · 𝛼(𝜆)

2𝜅(𝜆) ,

because the distribution Enc(𝑋*, 𝑀) multiplicatively 𝛼(𝜆)-approximates the distri-

bution Enc(𝐾, 𝑀).

Next, we note that for 𝐼 ← Enc(𝑋*, 𝑀), we have that ℎ𝜆(𝐼, 𝑋*) def= Dec(𝑋*, 𝐼) =

𝑀 by the perfect correctness of ℰ . Thus if
(︁
𝑋*, ℎ𝜆(𝐼, 𝑋*)

)︁
∈ 𝑅𝜆, then (𝑋*, 𝑀) ∈ 𝑅𝜆.

Let 𝑆𝑥,𝜆 denote the set {𝑚 : (𝑥, 𝑚) ∈ 𝑅𝜆}.

Pr
𝑋*←𝒦𝜆, ̃︀𝑀←𝑆𝑋*,𝜆

𝐼←Enc(𝑋*, ̃︀𝑀)

[︁
𝒜(𝐼) = 𝑋*

]︁
=
∑︁

𝑥

Pr
𝑋*←𝒦𝜆

[𝑋* = 𝑥] · Pr̃︀𝑀←𝑆𝑥,𝜆

𝐼←Enc(𝑥, ̃︀𝑀)

[𝒜(𝐼) = 𝑥]

≥
∑︁

𝑥

Pr[𝑋* = 𝑥] ·

Pr
𝑀←{0,1}ℓ

𝐼←Enc(𝑥,𝑀)

[𝒜(𝐼) = 𝑥 ∧ (𝑥, 𝑀) ∈ 𝑅𝜆]

Pr
𝑀←{0,1}ℓ

[𝑀 ∈ 𝑆𝑥,𝜆]

≥ 1
𝜌(𝜆) ·

∑︁
𝑥

Pr[𝑋* = 𝑥] · Pr
𝑀←{0,1}ℓ

𝐼←Enc(𝑥,𝑀)

[𝒜(𝐼) = 𝑥 ∧ (𝑥, 𝑀) ∈ 𝑅𝜆]

= 1
𝜌(𝜆) · Pr

𝑋*←𝒦,𝑀←𝑈𝜆
𝐼←Enc(𝑋*,𝑀)

[𝒜(𝐼) = 𝑋* ∧ (𝑋*, 𝑀) ∈ 𝑅𝜆]

≥ 𝜖(𝜆) · 𝛼(𝜆)
𝜌(𝜆) · 2𝜅(𝜆) ,

where 𝜌(𝜆) denotes the sparsity of 𝑅 = 𝑅𝜆.14

Finally, we let Samp = {Samp𝜆} ∈ ℱ denote an multiplicatively 𝛽(𝜆)-approximate

sampler for the relation 𝑅, which exists by assumption. We see that

Pr
𝑋*←𝒦, ̃︀𝑀←Samp𝜆(𝑋*)

𝐼←Enc(𝑋*, ̃︀𝑀)

[𝒜(𝐼) = 𝑋*] ≥ 𝜖(𝜆) · 𝛼(𝜆) · 𝛽(𝜆)
𝜌(𝜆) · 2𝜅(𝜆) ,

14To avoid ambiguity in the case where 𝑆𝑋* is empty,
we note that by “ Pr

𝑋*←𝒦𝜆, ̃︀𝑀←𝑆𝑋*,𝜆

𝐼←Enc(𝑋*, ̃︀𝑀)

[𝑓(𝑋*, ̃︁𝑀)]” we actually mean

“ E
𝑋*←𝒦𝜆

𝜒(𝑆𝑋* is nonempty) Pr̃︀𝑀←𝑆𝑋*,𝜆

𝐼←Enc(𝑋*, ̃︀𝑀)

[𝑓(𝑋*, ̃︁𝑀)].”
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which for all 𝛿 ∈ B, is greater than 𝛿(𝜆) for some 𝜆. Thus 𝒜 contradicts the assumed

ℱ -KDM (A,B)-security of ℰ . Thus, we have proved Theorem 2.13.

2.4 Optimally KDM-Secure Encryption From Sim-

pler Assumptions

This section presents our two new constructions of KDM-secure encryption schemes

from assumptions that are weaker and simpler than previously known. Combined

with the results of [CCRR18], recalled in the previous section, this amounts to proving

Theorems 2.3 and 2.4 (in Sections 2.4.2 and 2.4.3, respectively).

2.4.1 Learning with Errors

The learning with errors (LWE) problem was introduced by Regev [Reg05]. The

following overview is based on Peikert’s survey [Pei16].

Definition 2.15 (LWE Distribution). For any s ∈ Z𝑛
𝑞 and any distribution 𝜒 ⊆ Z𝑞,

the LWE distribution 𝐴s,𝜒 ∈ Z𝑛
𝑞 × Z𝑞 is sampled by choosing a ∈ Z𝑛

𝑞 uniformly at

random, sampling 𝑒← 𝜒, and outputting (a, 𝑏 = ⟨s, a⟩+ 𝑒).

Definition 2.16 (Search LWE). Let ℓ = ℓ(𝑛) ≥ 1, 𝑞 = 𝑞(𝑛) ≥ 2 be integers, and

let 𝜒sec(𝑛) and 𝜒err(𝑛) be distributions on Z𝑞(𝑛). The Search-LWEℓ,𝑞,𝜒sec,𝜒err problem,

parameterized by 𝑛, is to output s given as input ℓ(𝑛) independent samples from

𝐴s,𝜒err(𝑛), for s that is sampled from 𝜒sec(𝑛)𝑛.

For the rest of this paper, we will write LWE in place of Search-LWE. All of our

lattice based hash functions require (at least) making an assumption of the following

form.

Assumption 2.1. Any poly(𝑛)-time algorithm 𝒜 solves Search-LWEℓ,𝑞,𝜒sec,𝜒err with

probability at most 𝜇(𝜒sec)𝑛 · poly(𝑛, log(𝑞)), where 𝜇(𝜒sec) := |Supp(𝜒sec)|−1.

In order for this assumption to have any hope of being true, 𝜒sec must be nearly

uniform on its support and it must hold that 𝜇(𝜒err) ≤ 𝜇(𝜒sec) (so that the “error
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guessing attack” does not violate the assumption). Moreover, when the modulus 𝑞 is

composite, we must take additional care to make sure that “error guessing” modulo

factors of 𝑞 does not break the assumption15; see later for more discussion.

In Section 2.8 we describe some basic analysis showing that the best-known

polynomial-time algorithms for LWE do not violate our assumption subject to the

two conditions above.

Definition 2.17 (Secret-Key Regev Encryption). For any poly(𝜆)-time computable

positive integers 𝑞 = 𝑞(𝜆) ≤ 2poly(𝜆) and 𝑛 = 𝑛(𝜆) ≤ poly(𝜆), and any poly(𝜆)-time

sampleable distribution ensembles 𝜒sec = {𝜒sec(𝜆)} and 𝜒err = {𝜒err(𝜆)} over Z𝑞(𝜆),

we define the encryption scheme Regev𝑛,𝑞,𝜒sec,𝜒err to be the secret-key bit-encryption

scheme
(︁
{𝒦𝜆}, Enc, Dec)

)︁
, where:

• 𝒦𝜆 is the distribution 𝜒𝑛
sec.

• For any 𝜆 with 𝑛 = 𝑛(𝜆) and 𝑞 = 𝑞(𝜆), for any s ∈ Z𝑛
𝑞 , and any 𝑚 ∈ {0, 1},

the output of Enc(s, 𝑚) is a pair (a, 𝑏) ∈ Z𝑛
𝑞 ×Z𝑞 obtained by sampling a← Z𝑛

𝑞 ,

sampling 𝑒← 𝜒err(𝜆), and outputting (a, s𝑡 · a + 𝑚 ·
⌈︁

𝑞
2

⌋︁
+ 𝑒)

• Dec𝜆 : Z𝑛
𝑞 × (Z𝑛

𝑞 × Z𝑞)→ {0, 1} is defined so that Dec(s, (a, 𝑏)) is the bit 𝑚 for

which 𝑏− s𝑡 · a is closer to 𝑚 ·
⌈︁

𝑞
2

⌋︁
than to (1−𝑚) ·

⌈︁
𝑞
2

⌋︁
.

A pair (a, 𝑏) ∈ Z𝑛
𝑞 × Z𝑞 is a Regev encryption of 𝑚 ∈ {0, 1} under s ∈ Z𝑛

𝑞 with

𝐵-bounded noise if 𝑏− s𝑡 · a −𝑚 ·
⌈︁

𝑞
2

⌋︁
is in the interval [−𝐵, 𝐵).

2.4.2 (P/Poly)-KDM Security via Fully Homomorphic En-

cryption

In this section, we describe a somewhat generic assumption on the circular security of

FHE schemes that implies the existence of a (P/poly)-KDM exponentially-secure en-

cryption scheme with an obliviously sampleable universal ciphertext distribution. Our

assumption is efficiently falsifiable [Nao03, GW11], albeit with exponentially small
15We thank Oded Regev and Noah Stephens-Davidowitz for pointing this out to us.
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probability, and is a complexity assumption [GK16]. The (P/poly)-KDM secure en-

cryption scheme is simply secret-key Regev encryption (Definition 2.17) where both

the secret and the noise distributions are uniform over a relatively large interval in

Z𝑞.

We prove that this scheme achieves (P/poly)-KDM security assuming the security

of a LWE-based FHE scheme such as [BV11,BGV12,Bra12,GSW13,BV14] in which

both the secret and the noise are drawn from the uniform distribution on [−𝐵, 𝐵).

Our security reduction preserves the kind of exponential security considered in The-

orem 2.13, so our assumption can be used as the basis for a candidate correlation

intractable hash family.

We now define the notion of homomorphic encryption that suffices for our security

reduction. As discussed in Section 2.2, this notion captures FHE schemes whose

ciphertexts in some sense “contain” a (low-noise) secret-key Regev ciphertext.

Definition 2.18 (Regev-Extractable Secret-Key Homomorphic Encryption). A secret-

key fully homomorphic bit-encryption ({𝒦𝜆}, Enc, Dec) with associated homomorphic

evaluation algorithm Eval is Regev𝑛,𝑞,𝜒sec-extractable with 𝐵(𝜆)-bounded noise (where

𝜒sec(𝜆) is a distribution on Z𝑞(𝜆)) if it satisfies the following structural properties.

For any 𝜆 ∈ Z+, denoting 𝑛 = 𝑛(𝜆), 𝑞 = 𝑞(𝜆), and 𝜒sec = 𝜒sec(𝜆):

• The distribution of s when sampling (pk, s)← 𝒦𝜆 is 𝜒𝑛
sec.

• There is a polynomial-time algorithm Extract such that:

– For any 𝜆, any s ∈ 𝜒𝑛
sec, and any 𝑚 ∈ {0, 1}, it holds that Extract(Enc(s, 𝑚))

is a Regev encryption (a, 𝑏) of 𝑚 under s with 𝐵-bounded noise, and with

a uniformly random in Z𝑛
𝑞 .

– For any 𝑚1, . . . , 𝑚𝑛 ∈ {0, 1}, any circuit 𝐶 : {0, 1}𝑛 → {0, 1}, and any

(pk, s) ∈ 𝒦𝜆, it holds with probability 1 that

Extract
(︂

Eval
(︁
pk, 𝐶, Enc(s, 𝑚1), . . . , Enc(s, 𝑚𝑛)

)︁)︂
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is a Regev encryption (a, 𝑏) of 𝐶(𝑚1, . . . , 𝑚𝑛) under s with 𝐵-bounded

noise.

We do not assume any particular distribution on the noise of Regev ciphertexts

that are extracted from homomorphically evaluated ciphertexts; we assume only that

the noise is bounded. For our applications, we require Regev-extractable encryption

schemes with the following security property.

Definition 2.19. Let ℰ be an FHE scheme with key distributions {𝒦𝜆}. For (pk, sk)←

𝒦𝜆, let 𝒦(sk)
𝜆 denote the distribution of sk. Let [[sk]] denote a binary representation

of sk, and let 𝜅 = 𝜅(𝜆) denote the bit-length of such a representation. For any

ℓ = ℓ(𝜆) and any class B of functions Δ : Z+ → R+, ℰ is said to be [ℓ-bit CPA +

circular] B-optimally secure with 𝜅-bit key (abbreviated (𝜅, ℓ,B)-CCO secure) if for ev-

ery 𝑚1, . . . , 𝑚𝜆 ∈ {0, 1},16 ℰ is 𝑓 -KDM
(︁
2−𝜅+B

)︁
-secure for the “augmented bit-by-bit

circular security function”

𝑓 = {𝑓𝜆 : 𝒦(sk)
𝜆 → {0, 1}ℓ(𝜆)+𝜅(𝜆)}

𝑓𝜆(𝑘) = 𝑚1 ∘ · · · ∘𝑚𝜆 ∘ [[𝑘]] (∘ denotes concatenation)

Discussion. The requirement that an encryption scheme is (𝜅, ℓ,B)-CCO secure be-

comes stronger as ℓ or 𝜅 increases, or as the functions Δ ∈ B grow more slowly. In

particular, the requirement is trivially satisfied if Δ(𝜆) ≥ 𝜅(𝜆) for sufficiently large

𝜆. This is related to the triviality of constructing a correlation-intractable hash family

{ℋ𝜆} in which the output length of ℋ𝜆 is 𝑂(log 𝜆) – in this case, the only sparse

relations are the empty ones.

Assumption 2.2 (Dream FHE). For some 𝑛, 𝑞, 𝜒sec, there exists17 a (𝜅, ℓ,B)-CCO

secure secret-key FHE scheme that is Regev𝑛,𝑞,𝜒sec-extractable with 𝐵-bounded noise

for 𝜅 = 𝜆Θ(1), ℓ = 𝜆Ω(1), B = {Δ s.t. Δ(𝜆) ≤ 𝑂(log 𝜆)}, 𝐵 ≤ 𝑞/Ω̃(𝜆), and 𝜒𝑛
sec that

is sampleable in �̃�(𝑛) time using at most 𝜅 + 𝑂(log 𝜆) random bits.

16In the case of Regev encryption, and also in our applications with Regev-extractable encryption,
we can without loss of generality assume that each message consists entirely of 0’s.

17In fact, it would even suffice for the construction to be non-uniform.
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While Assumption 2.2 is not itself falsifiable , the (stronger) assumption that any

particular Regev-extractable FHE scheme satisfies Definition 2.19 is a falsifiable (with

exponentially small probability) complexity assumption, as claimed.

We also note that the security property postulated in Assumption 2.2 is, even

qualitatively, slightly stronger than what is needed for our applications – see the

discussion following the proof of Theorem 2.20.

Possible Instantiations of Assumption 2.2 As mentioned earlier, a large family

of (secret key variants of) LWE-based FHE schemes – such as [BV11, BGV12, Bra12,

GSW13,BV14] are Regev-extractable. Like Regev’s encryption scheme, these homo-

morphic encryption schemes are parameterized by a modulus 𝑞, a secret distribution

𝜒sec, and an error distribution 𝜒err. All of these schemes, as written, set 𝜒sec to either

be the uniform distribution on Z𝑞 or a sufficiently wide discrete Gaussian. These dis-

tributions are optimal in the polynomial hardness regime [Reg05,ACPS09], but they

are trivially sub-optimal in the regime of exponential hardness. Specifically, if 𝜒sec is

very non-uniform (i.e., a discrete Gaussian), then a key can be directly guessed with

probably much better than 2−𝜅.18 On the other hand, if 𝜒sec were the uniform dis-

tribution over Z𝑞, then given many Regev ciphertexts (where each ciphertext’s noise

level is 𝑞
4 -bounded), a secret can be relatively efficiently guessed by first guessing the

noise and then computing the secret by linear algebra.

We propose instantiating any of the above-mentioned schemes with secret dis-

tribution 𝜒sec and noise distribution 𝜒err such that both are uniformly random on

intervals of length ℓsec and ℓerr, respectively, such that ℓerr ≥ ℓsec and ℓsec is sufficiently

large. We emphasize that, up to a polynomial increase in the modulus-noise ratio,

these changes do not affect the polynomial security of the schemes. We are not aware

of any algorithm violating Assumption 2.2 for any of these schemes (with the secret

distribution as described above), despite the fact that most of the schemes require a

superpolynomial (in the case of [BV11], even sub-exponential) modulus-to-noise ratio.

18Abstractly, the description length 𝜅 is the Shannon entropy of the secret key, while (the negative
log of) the trivial guessing probability is the min-entropy. The two entropies agree only for uniform
distributions.
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However, we note that the scheme [BV14] only relies on a polynomial modulus-to-

noise ratio in the underlying LWE scheme, which may give us more confidence in the

claimed exponential security. We describe the known cryptanalytic results further in

Section 2.8.

We are now ready to state our security reduction.

Theorem 2.20. If Assumption 2.2 is true, then there exist parameters 𝑛 = 𝑛(𝜆), 𝑞 =

𝑞(𝜆), and 𝜒sec = 𝜒sec(𝜆) such that for some ℓ = 𝜆Ω(1), Regev𝑛,𝑞,𝜒sec,𝜒err is (P/poly)ℓ-

KDM 1/Ω̃(2𝜅(𝜆))-secure where:

• (P/poly)ℓ is the class of probabilistic functions that are computable by poly(𝜆)-

size probabilistic circuits with ℓ output bits,

• 𝜒err is the uniform distribution on [−𝑞/4, 𝑞/4), and

• 𝜅 is the length of the binary representation of an element of 𝜒𝑛
sec.

Our proof of Theorem 2.20 relies on the following lemma, whose proof easily

follows from direct computation.

Lemma 2.21. For any 𝑒 ∈ Z with |𝑒| ≤ 𝑏 and for any interval 𝐼 = [𝑐, 𝑑] of length ℓ,

the distribution 𝑒 + 𝑈[𝑐−𝑏,𝑑+𝑏] multiplicatively ( ℓ
ℓ+2𝑏

)-approximates the distribution 𝑈𝐼 ,

where for a set 𝑆, 𝑈𝑆 denotes the uniform distribution on 𝑆.

Proof of Theorem 2.20. Let ℰ = ({𝒦𝜆}, Enc, Dec} denote the dream FHE scheme that

is (𝜅, ℓ, Δ)-CCO secure and Regev𝑛,𝑞,𝜒sec-extractable with 𝐵-bounded noise for 𝐵 ≤

𝑞/Ω̃(𝜆). Without loss of generality suppose that ℓ ≤ 𝜆. Let Eval and Extract

denote the corresponding homomorphic evaluation and extraction algorithms.

Let 𝜒err(𝜆) denote the uniform distribution on [−𝑞/4, 𝑞/4), and let ({𝒦′𝜆}, Enc′, Dec′)

denote Regev𝑛,𝑞,𝜒sec,𝜒err . Suppose for contradiction that Regev𝑛,𝑞,𝜒sec,𝜒err is not (P/poly)ℓ-

KDM 𝛿-secure.

That is, suppose there exist functions {𝑓𝜆 : Z𝑛(𝜆)
𝑞(𝜆) → {0, 1}ℓ(𝜆)} and {𝒜𝜆}, evaluable

by poly(𝜆)-size circuits, such that for infinitely many 𝜆,

Pr[𝒜𝜆(ct1, . . . , ctℓ) = s] > 𝛿(𝜆).
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in the probability space defined by sampling s ← 𝒦′𝜆 and, for each 𝑖 ∈ [ℓ], indepen-

dently sampling Regev encryptions ct𝑖 ← Enc′(s, 𝑓𝜆(s)𝑖).

We will now describe an adversary ℬ = {ℬ𝜆}, implementable by a poly(𝜆)-sized

circuit, that contradicts Assumption 2.2. ℬ𝜆 is given as input (pk, 𝑐1, . . . , 𝑐ℓ+𝜅), and

does the following.

1. For 𝑖 ∈ [ℓ], define (a𝑖, 𝑏𝑖) := Extract(𝑐𝑖).

2. Compute (𝑐′1, . . . , 𝑐′ℓ) := Eval(pk, 𝑓𝜆, 𝑐ℓ+1, . . . , 𝑐ℓ+𝜅) and define (y𝑖, 𝑧𝑖) := Extract(𝑐′𝑖)

for every 𝑖 ∈ [ℓ].

3. For each 𝑖 ∈ [ℓ], update y𝑖 := y𝑖 + a𝑖 and 𝑧𝑖 := 𝑧𝑖 + 𝑏𝑖.

4. For each 𝑖 ∈ [ℓ], sample 𝑒𝑖 from the uniform distribution on [− 𝑞
4 − 2𝐵, 𝑞

4 + 2𝐵]

and update 𝑧𝑖 := 𝑧𝑖 + 𝑒𝑖.

5. Compute and output 𝒜𝜆

(︁
(y1, 𝑧1), . . . , (yℓ, 𝑧ℓ)

)︁
.

If (pk, s) is sampled at random from 𝒦𝜆, if 𝑐ℓ+𝑗 ← Enc(s, [[s]]𝑗) for each 𝑗 ∈ [𝜅],

and if 𝑐𝑖 ← Enc𝜆(s, 0), then by the definition of extractability, it holds that after

Step 2, each (y𝑖, 𝑧𝑖) is a Regev encryption of 𝑓𝜆(s)𝑖 under s with 𝐵-bounded noise,

and (a1, . . . , aℓ) is uniformly random (and independent of (y1, . . . , yℓ)). After Step 3,

each (y𝑖, 𝑧𝑖) is a Regev encryption of 𝑓𝜆(s)𝑖 under s with 2𝐵-bounded noise. After

Step 4, by Lemma 2.21, it holds that, for

𝜖 = 𝜖(𝜆) def=
(︃

𝑞/2
𝑞/2 + 2𝐵

)︃ℓ

>

(︃
1− 4𝐵

𝑞

)︃ℓ

≥
(︃

1− 1
Ω̃(𝜆)

)︃𝜆

= 𝜆−𝑂(1),

the distribution of
(︁
(y1, 𝑧1), . . . , (yℓ, 𝑧ℓ)

)︁
multiplicatively 𝜖-approximates the distri-

bution on (ct1, . . . , ctℓ) obtained by independently sampling ct𝑖 ← Enc′(s, 𝑓𝜆(s)𝑖)

for each 𝑖 ∈ [𝜆]. Thus 𝒜𝜆, and therefore ℬ𝜆, outputs s with probability at least
𝛿

poly(𝜆) = 2−𝜅 · 𝜆𝜔(1).

Loosely speaking, what our reduction really requires is the ability to re-randomize

Regev encryptions in a somewhat weaker sense than what is typically meant by
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re-randomization. It can receive this ability in the form of Regev ciphertexts. In

contrast, (𝜅, ℓ, Δ)-CCO security gives the reduction even more, specifically fresh ℰ-

ciphertexts from which Regev ciphertexts can be extracted. It would instead suffice

for ℰ to satisfy a version of (𝜅, 0, Δ)-CCO security in a setting where the adversary

is only given ℓ Regev encryptions {(a𝑖, 𝑏𝑖)}𝑖∈[ℓ] for uniform and independent {a𝑖}.

2.4.3 SIZE(𝜅𝑐)-KDM Security via Randomized Encodings

In this section, we give two additional constructions of encryption schemes satisfying

universal ciphertexts (Definition 2.9) as well as SIZE(𝜅𝑐)-KDM 𝛿-security for 𝛿(𝜆) =

2−𝜅 · poly(𝜅).19 These schemes differ from the encryption scheme in Theorem 2.20 in

two (related) ways:

• The size bound 𝑆 for the KDM functions must be specified in advance before

choosing the encryption scheme; in contrast, Theorem 2.20 gives a single en-

cryption scheme that (under Assumption 2.2) is KDM-secure for KDM functions

that are computable by any polynomial-size (probabilistic) circuit.

• Moreover, the encryption schemes in this section are non-compact; that is, the

size of a ciphertext depends polynomially on the size bound 𝑆.

While these schemes satisfy weaker efficiency properties than the scheme in The-

orem 2.20, we are able to prove security based on the exponential hardness of plain

search-LWE (in contrast to the additional circular security assumptions that were re-

quired in Theorem 2.20). Since non-compact (exponential) KDM-secure encryption

schemes of the above form suffices to instantiate NIZK arguments in the common ran-

dom string model (as shown in Section 2.7.2), this yields candidate NIZK arguments

based on exponential variants of plain LWE.

To prove our results in this section, we revisit the idea of KDM security amplifi-

cation via randomized encodings [BHHI10, App11]. In particular, we prove that the
19As usual, by this we mean that for every polynomial size adversary 𝒜, there exists a constant 𝑐

such that 𝒜 recovers the secret key with probability at most 2−𝜅 · 𝜅𝑐. Recall that 𝜅 = 𝜅(𝜆) denotes
the length of a secret key.
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generic transformation of [App11] allows us to amplify CCRR-compatibility provided

that we use a randomized encoding that is perfectly blind (which just means that the

simulator applied to a uniformly random string outputs a uniformly random string20).

By modifying (and composing) standard randomized encoding schemes from the lit-

erature [BMR90, IK02, AIK11], we therefore reduce the problem to constructing ℱ -

KDM 2−𝜅 · poly(𝜅)-secure encryption schemes (with universal ciphertexts) for simple

function classes ℱ (namely, some form of affine functions modulo a prime). We then

give schemes (based on secret-key Regev encryption or a variant of the [ACPS09] en-

cryption scheme) that satisfy these weaker requirements under an appropriate LWE

assumption.

The Generic Transformation

We first recall the generic transformation from [App11] that amplifies (standard)

KDM security.

Definition 2.22 (Randomized Encoding). A randomized encoding scheme for a cir-

cuit class 𝒞 consists of three algorithms (RE.Enc, RE.Dec, RE.Sim) with the following

syntax.

• RE.Enc takes as input a circuit 𝐶 and an input 𝑥; it outputs an encoding ⟨𝐶, 𝑥⟩.

• RE.Dec takes as input an encoding ⟨𝐶, 𝑥⟩; it outputs an evaluation 𝑦.

• RE.Sim takes as input a size bound 1𝑆, a circuit 𝐶, and an output 𝑦; it outputs

an encoding 𝑦.

A randomized encoding scheme must satisfy two properties:

• Correctness: for any circuit 𝐶 and input 𝑥, we have that RE.Dec(RE.Enc(𝐶, 𝑥)) =

𝐶(𝑥) with probability 1.

20We can actually rely on a slightly weaker property defined below.
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• 𝜇-simulation security: For every circuit 𝐶 of size at most 𝑆 and any input

𝑥, the following two distributions are 𝜇-(computationally) indistinguishable.

RE.Enc(𝐶, 𝑥) ≈𝑐,𝜇 RE.Sim(1𝑆, 𝐶, 𝐶(𝑥)).

We say that a randomized encoding scheme is universal if there is a simulator RE.Sim

as above that takes as input only (1𝑆, 𝐶(𝑥)) and not the circuit 𝐶.

Definition 2.23 (Amplified KDM-secure Encryption Scheme). Let ℰ ′ = {(𝒦′𝜆, Enc′𝜆, Dec′𝜆)}

denote a secret key encryption scheme, and let RE = (RE.Enc, RE.Dec, RE.Sim) de-

note a universal randomized encoding scheme for some circuit class 𝒞. Finally, let

𝑆 = poly(𝜅) denote some size bound. We then define the RE-amplified secret key

encryption scheme AMPℰ ′ = {(𝒦𝜆, Enc𝜆, Dec𝜆)} as follows.

• 𝒦𝜆 is identical to 𝒦′𝜆.

• The output of Enc𝜆(sk, 𝑚) is Enc′𝜆
(︁
sk, RE.Sim(1𝑆, 𝑚)

)︁
.

• The output of Dec𝜆(sk, ct) is RE.Dec
(︁
Dec′𝜆(sk, ct)

)︁
.

In [App11], it is shown that if ℰ ′ satisfies ordinary KDM security with respect to

some function class 𝒢, and if ℱ is some function class with circuit representations

such that for any 𝑓 ∈ ℱ , the function 𝑥 ↦→ RE.Enc(𝑓, 𝑥; 𝑟) lies in 𝒢 for any fixed 𝑟,

then AMPℰ ′ is KDM secure with respect to ℱ . Our goal is to prove an analogous

result that also preserves the conditions of Theorem 2.13, namely nearly optimal

security and, more challengingly, the universal ciphertexts property. To do this, we

will require randomized encoding schemes satisfying the additional property that we

call (a relaxation of) blindness, following [BLSV18].

Definition 2.24 (Blind Randomized Encodings). A randomized encoding scheme

RE = (RE.Enc, RE.Dec, RE.Sim) is called 𝜖-approximately blind for output distribu-

tion 𝜒out if for any circuit 𝐶 of size at most 𝑆, the following two distributions 𝜖-

multiplicatively approximate each other:
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1. RE.Sim(1𝑆, 𝐶, 𝜒out).

2. The uniform distribution on strings of length ℓ′ :=
⃒⃒⃒
RE.Sim(1𝑆, 𝐶, 0ℓ)

⃒⃒⃒
.

We say that RE is perfectly blind for output distribution 𝜒 if it is 1-approximately

blind for 𝜒.

In the context of statistical (or perfect) randomized encodings, [AIK04] refers to

such an encoding scheme as balanced.

Given this additional property, we are able to state our theorem for this subsection.

Theorem 2.25. Suppose that RE is a universal randomized encoding scheme for a

circuit class 𝒞 ⊆ SIZE(𝑆) satisfying the following properties.

• RE satisfies 𝑜(2−𝜅)-simulation security.

• RE is 𝜖-approximately blind for the uniform output distribution, where 𝜖 is any

non-negligible function.

• For every circuit 𝐶 ∈ 𝒞 and every fixed choice of randomness 𝑟, the function

RE.Enc(𝐶, 𝑥; 𝑟) is in the class 𝒢.

Moreover, suppose that ℰ ′ is an encryption scheme with universal ciphertexts that

is 𝒢-KDM 𝛿-secure with uniformly random 𝜅-bit keys and message length ℓ′. Then,

the amplified encryption scheme AMP (Definition 2.23) is an encryption scheme for

messages of length ℓ that has universal ciphertexts and is ℱ-KDM secure, where ℱ

denotes the class of all functions computable by circuits in 𝒞.

Proof. We first prove the universal ciphertexts property; that is, that for any fixed

secret key sk, we have that the distribution AMP.Enc(sk, 𝑈ℓ) multiplicatively 𝜖 =
1

poly(𝜅) -approximates the distribution AMP.Enc(𝑈𝑛, 𝑈ℓ). To see this, let Enc′𝜆 and Dec′𝜆
denote the encryption and decryption procedures of ℰ ′, and note that by the blindness

of RE, we have that

AMP.Enc(sk, 𝑈ℓ) ≡ Enc′𝜆(sk, RE.Sim(1𝑆, 𝑈ℓ)) ⪰𝜖 Enc′𝜆(sk, 𝑈ℓ′),
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where ⪰𝜖 denotes multiplicative 𝜖-approximation. Similarly, we have that

AMP.Enc(𝑈𝑛, 𝑈ℓ) ≡ Enc′𝜆(𝑈𝑛, RE.Sim(1𝑆, 𝑈ℓ)) 𝜖⪯ Enc′𝜆(𝑈𝑛, 𝑈ℓ′).

Thus, we conclude that the universal ciphertexts property of AMP follows directly

from the same property for ℰ ′.

Next, we prove that the transformation also preserves nearly-optimal KDM secu-

rity. To see this, suppose that for some 𝑓 ∈ ℱ , a ppt adversary 𝒜 that is given

ct← AMP.Enc(sk, 𝑓(sk)) ≡ Enc′𝜆(sk, RE.Sim(1𝑆, 𝑓(sk)))

returns sk with probability 𝛿 = 𝜔(2−𝑛). Then, by the 𝑜(2−𝑛)-simulation security of

RE, the same is true when 𝒜 is given

ct← Enc′𝜆(sk, RE.Enc(𝐶, sk))

where 𝐶 ∈ 𝒞 is some circuit computing 𝑓 . This will allow us to break the KDM

security of ℰ ′ for some function 𝑔 ∈ 𝒢. Namely, an adversary 𝒜′ can break the

security of ℰ ′ by choosing uniformly random encoding randomness 𝑟 and submitting

the KDM function 𝑔(sk) = RE.Enc(𝐶, sk; 𝑟). By assumption, 𝑔 lies in the class 𝒢, and

feeding a SKE-KDM ciphertext ct to 𝒜 will result in recovering sk with probability

𝛿 − 𝑜(2−𝜅) = Ω(𝛿). This completes the security reduction.

SIZE(𝜅𝑐)-KDM Secure Encryption Schemes with Universal Ciphertexts

Together with suitable randomized encoding schemes, Theorem 2.25 reduces the

problem of constructing (non-compact) SIZE(𝜅𝑐)-KDM secure encryption schemes

with universal ciphertexts to the problem of constructing ℱ -KDM secure encryption

schemes for smaller classes of KDM functions. We follow this recipe with two ran-

domized encoding schemes from the literature, combined with KDM-secure encryp-

tion schemes for (two classes of) simple functions. The first construction is straight-

forward, and assumes the nearly optimal hardness of Search-LWE with binary secrets
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and a specific noise distribution (uniform on [−𝑞/4, 𝑞/4)). The second construction

is more involved, but allows more general secret and noise distributions.

Point-and-Permute Garbled Circuits. Point-and-Permute garbled circuits, in-

troduced by [BMR90] in order to achieve constant round secure multiparty computa-

tion, are a modification of Yao’s garbling scheme [Yao86,LP09]; in a nutshell, rather

than requiring every entry of a garbled table in Yao’s scheme to be decrypted (and that

in an honest evaluation only one of the four ciphertexts should be decrypted success-

fully), point-and-permute garbled circuits augment each wire key 𝑘𝑔,𝑏 with a random

pointer 𝑏⊕ 𝑟𝑔 indicating which table entries 𝑘𝑔,𝑏 is able to decrypt. While originally

introduced in order to allow for a form of distributed garbling [BMR90], and later

used for reasons of efficiency (i.e. saving a factor of 4 in evaluation time), [BLSV18]

noted and took advantage of the fact that point-and-permute garbled circuits are also

perfectly blind.

The following theorem follows from the works [BMR90,Rog91,BLSV18]. We refer

the reader to [BLSV18] for details on the proof of blindness.

Imported Theorem 2.26. If one-way functions exist, then there exists a universal

randomized encoding scheme RE for the class of all polynomial size circuits with the

following properties.

• RE is perfectly blind.

• For any fixed choice of randomness 𝑟 and circuit 𝐶, the function 𝑥 ↦→ RE.Enc(𝐶, 𝑥; 𝑟)

is an F2-affine projection of 𝑥. This means that every output bit of RE.Enc(𝐶, 𝑥; 𝑟)

is an F2-affine function of 𝑥 that depends only one bit of 𝑥.

• The function (𝐶, 𝑥) ↦→ RE.Enc(𝐶, 𝑥; 𝑟) is a concatenation 𝑓1(𝐶, 𝑥; 𝑟)||𝑓2(𝑟),

where each bit of 𝑓1(𝐶, 𝑥; 𝑟) has constant input locality.21

Moreover, if subexponentially secure one-way functions exist, then for any 𝑐 > 0,

RE can be modified so that it is 2−𝜅𝑐-simulation secure.
21We only use this property in Section 2.4.3.
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A Scheme from Exponential LWE with Binary Secrets. Combining Theo-

rem 2.25 with Imported Theorem 2.26, we conclude that to construct a SIZE(𝜅𝑐)-

KDM 2−𝜅 · poly(𝜅)-secure encryption scheme with universal ciphertexts, it suffices to

construct a ℱ -KDM 2−𝜅 · poly(𝜅)-secure encryption scheme (with universal cipher-

texts), where ℱ is the class of all Z2-linear functions and 𝜅 is the bit-length of an

encryption key.

We now claim that such an encryption scheme exists assuming the nearly optimal

hardness of Search-LWE𝑛,ℓ,𝑞,𝜒sec,𝜒err (Assumption 2.1) where 𝑞 is even and 𝑞 ∈ Ω(𝜆2)

, 𝜒sec is the uniform distribution on {0, 1} ⊆ Z𝑞 (so the key length 𝜅 is 𝑛) and 𝜒err is

the uniform distribution on [− 𝑞
4 , 𝑞

4) ⊆ Z𝑞.

Indeed, secret-key Regev encryption (Definition 2.17) with distributions (𝜒sec, 𝜒err)

as above immediately presents itself as a candidate encryption scheme. The reason

that we choose 𝜒sec to be supported on {0, 1} ⊆ Z𝑞 is that ℱ -KDM security of

this scheme for Z2-linear functions tightly follows from LWE. The folklore security

reduction works as follows. Let 𝜙 : F𝑛
2 → Fℓ

2 be any affine function parameterized by a

matrix 𝐶 and vector d such that 𝜙(x) = x𝐶+d. Given an LWE sample (𝐴, b = s𝐴+e)

with 𝐴 ← Z𝑛×ℓ
𝑞 and e𝑡 ← 𝜒err, one can efficiently produce a ciphertext, namely

(𝐴− 𝑞
2 ·𝐶, b+ 𝑞

2 ·d), that is identically distributed to a Regev encryption of 𝜙(s) = s𝐶+d

(mod 2) with the above parameters. Therefore, if some adversary 𝒜 when given a

Regev encryption Enc(s, s𝐵 + c (mod 2)) recovers s with probability 𝜖, then the

adversary 𝒜′ that is given LWE samples (𝐴, b) and computes 𝒜(𝐴− 𝑞
2𝐶, b + 𝑞

2d) as

above will also recover s with probability 𝜖.

Finally, we note that this scheme has universal ciphertexts (Definition 2.9) –

indeed, for any s, an encryption of a random bit-string under 𝑠 is a uniformly random

string – so this completes our first construction and security proof.

Arithmetic Randomized Encodings. We next generalize the construction from

Section 2.4.3 to rely on forms of LWE with secrets that are not restricted to be

elements of {0, 1}𝑛, and thus more plausibly are nearly optimally secure. Specifically,

letting the modulus 𝑞 = 𝑝𝑞′ ∈ Ω(𝜆2) be polynomially large, we will be able to have

82



secrets that are uniformly random on the range [−𝑝
2 , 𝑝

2)𝑛 and errors that are uniformly

random in the range [− 𝑞′

2 , 𝑞′

2 )ℓ, where 𝑝 is prime, either 𝑝 | 𝑞′ or 𝑞′ ≥ 𝑝 · 𝜆2. For

example, setting 𝑞′ = 𝑝, we could rely on an LWE assumption with secret and noise

of order 1√
𝑞
.

For this construction, we combine two tools: the KDM-secure encryption scheme

of [ACPS09] (appropriately modified to have the desired statistical property) and a

slightly non-standard variant of arithmetic randomized encodings over Z𝑝 [AIK11].

We first describe the latter tool.

Theorem 2.27. Let 𝑝 be an arbitrary prime and let 𝜖 > 0. Then, there is an uncon-

ditionally and information theoretically secure (non-universal) randomized encoding

scheme REapprox
𝑝 for Z𝑝-arithmetic circuits of depth at most 𝑑 that compute {0, 1}ℓ-

output functions with the following properties:

• REapprox
𝑝 is perfectly secure.

• REapprox
𝑝 is (1 − 𝜖)-approximately blind for the output distribution that is

uniform on {0, 1}ℓ ⊆ Zℓ
𝑝.

• The size of a randomized encoding of (𝐶, 𝑥) is poly(log 𝑝, 2𝑑, |𝐶|, log(1
𝜖
)).

• For any fixed choice of randomness 𝑟, the function REapprox
𝑝 .Enc(𝐶, 𝑥; 𝑟) is a

Z𝑝-affine function of (𝐶, 𝑥).

In order to prove Theorem 2.27, we first construct an intermediate randomized en-

coding using the techniques of [AIK11].

Theorem 2.28. Let 𝑝 be an arbitrary prime. Then, there is an unconditionally and

information-theoretically secure (non-universal) randomized encoding scheme RE𝑝 for

Z𝑝-arithmetic circuits of depth at most 𝑑 with the following properties:

• RE𝑝 is perfectly secure.

• RE𝑝 is perfectly blind for the uniform distribution on Z𝑡
𝑝 (when the simulator is

called on length-𝑡 outputs).
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• The size of a randomized encoding of (𝐶, 𝑥) is poly(log 𝑝, 2𝑑, |𝐶|).

• For any fixed choice of randomness 𝑟, the function RE𝑝.Enc(𝐶, 𝑥; 𝑟) is a Z𝑝-

affine function of (𝐶, 𝑥).

Proof. Our construction is a modification of [AIK11], Section 7.1; namely, we remove

the key-shrinking gadget to obtain unconditional security.22

More formally, the construction is as follows: represent an arithmetic circuit

𝐶 = 𝐵𝑑 ∘ . . . ∘𝐵2 ∘𝐵1

as a composition of 𝑑 depth-1 circuits (with fan-in 2). We now inductively define

encodings Enc𝑖(𝐶, 𝑦(𝑖); 𝑟(𝑖)) and simulators Sim𝑖(𝐶, 𝑦(𝑑)) as follows:

• Enc𝑑(𝐶, 𝑦(𝑑); 𝑟) := 𝑦(𝑑) and Sim𝑑(𝐶, 𝑦(𝑑)) = 𝑦(𝑑).

• For each 𝑖 < 𝑑, define 𝑓𝑖(𝐶, 𝑦(𝑖); 𝑟(𝑖+1)) = Enc𝑖+1(𝐶, 𝐵𝑖+1(𝑦(𝑖)); 𝑟(𝑖+1)). By the

inductive hypothesis, each component Z𝑝-element of 𝑓𝑖,ℓ(𝐶, 𝑦(𝑖); 𝑟(𝑖+1)) is either

a quadratic or a linear function of (two components of) 𝑦(𝑖), with coefficients

that may depend arbitrarily on 𝑟(𝑖+1).

• For every linear component 𝑓𝑖(·)ℓ of the form 𝑓𝑖(𝑦(𝑖))ℓ = 𝑎ℓ · (𝑦(𝑖)
𝑗 + 𝑦

(𝑖)
𝑘 ) + 𝑏ℓ,

define

Enc𝑖,ℓ,0(𝐶, 𝑦(𝑖); 𝑟(𝑖+1)||𝑟) = 𝑎ℓ · 𝑦(𝑖)
𝑗 + 𝑟

Enc𝑖,ℓ,1(𝐶, 𝑦(𝑖), 𝑟(𝑖+1)||𝑟) = 𝑎ℓ · 𝑦(𝑖)
𝑘 + 𝑏ℓ − 𝑟,

where 𝑟 ∈ Z𝑝 is uniformly random. Define corresponding simulators

Sim𝑖,ℓ,0(𝐶, 𝑦
(𝑖+1)
ℓ ; 𝑟) = 𝑟

Sim𝑖,ℓ,1(𝐶, 𝑦
(𝑖+1)
ℓ ; 𝑟) = 𝑦

(𝑖+1)
ℓ − 𝑟,

22 [AIK11] notes that the construction with the key-shrinking gadget removed should give a
randomized encoding scheme but does not actually analyze it. [AIK11] also notes that previous
works give perfect randomized encodings with the parameters that we want, but it remains unclear
if those schemes can be made perfectly blind.
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where 𝑟 ∈ Z𝑝 is uniformly random.

• For every quadratic component 𝑓𝑖(·)ℓ of the form 𝑎ℓ · 𝑦(𝑖)
𝑗 · 𝑦

(𝑖)
𝑘 + 𝑏ℓ, define

Enc𝑖,ℓ,1,1(𝐶, 𝑦(𝑖); 𝑟(𝑖+1)||𝑟, 𝑠, 𝑡) = 𝑎ℓ · 𝑦(𝑖)
𝑗 − 𝑟,

Enc𝑖,ℓ,1,2(𝐶, 𝑦(𝑖), 𝑟(𝑖+1)||𝑟, 𝑠, 𝑡) = 𝑠 · 𝑎ℓ · 𝑦(𝑖)
𝑗 + 𝑡,

Enc𝑖,ℓ,2,1(𝐶, 𝑦(𝑖), 𝑟(𝑖+1)||𝑟, 𝑠, 𝑡) = 𝑦
(𝑖)
𝑘 − 𝑠,

Enc𝑖,ℓ,2,2(𝐶, 𝑦(𝑖), 𝑟(𝑖+1)||𝑟, 𝑠, 𝑡) = 𝑟𝑦
(𝑖)
𝑘 + 𝑏ℓ − 𝑡,

where 𝑟, 𝑠 and 𝑡 are uniformly random Z𝑝-elements. Define corresponding sim-

ulators

Sim𝑖,ℓ,1,1(𝐶, 𝑦
(𝑖+1)
ℓ ; 𝑟, 𝑠, 𝑡) = 𝑟,

Sim𝑖,ℓ,1,2(𝐶, 𝑦
(𝑖+1)
ℓ , 𝑟, 𝑠, 𝑡) = 𝑡,

Sim𝑖,ℓ,2,1(𝐶, 𝑦
(𝑖+1)
ℓ , 𝑟, 𝑠, 𝑡) = 𝑠,

Sim𝑖,ℓ,2,2(𝐶, 𝑦
(𝑖+1)
ℓ , 𝑟, 𝑠, 𝑡) = 𝑦

(𝑖+1)
ℓ − 𝑟𝑠− 𝑡,

where 𝑟, 𝑠 and 𝑡 are uniformly random Z𝑝-elements.

• Define the encoding algorithm

Enc𝑖(𝐶, 𝑦(𝑖)) =
(︁
Enc𝑖,ℓ,𝑏,𝑐(𝐶, 𝑦(𝑖); 𝑟(𝑖+1)‖𝑟ℓ, 𝑠ℓ, 𝑡ℓ)

)︁
ℓ,𝑏,𝑐

and simulator

Sim𝑖(𝐶, 𝑦(𝑑)) =
(︁
Sim𝑖,ℓ,𝑏,𝑐(𝐶, 𝑦

(𝑖+1)
ℓ ; 𝑟ℓ‖𝑠ℓ, 𝑡ℓ)

)︁
ℓ,𝑏,𝑐

where 𝑦(𝑖+1) = (𝑦(𝑖+1)
ℓ )← Sim𝑖+1(𝐶, 𝑦(𝑑)).

Finally, the overall encoding algorithm RE𝑝.Enc is defined to be Enc0 with associ-

ated simulator RE𝑝.Sim = Sim0.
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For decoding, Dec𝑑(𝑦𝑑) is defined to output 𝑦𝑑, and Dec𝑖 is defined to add every

pair of “additive” encodings (𝑧1, 𝑧2) ↦→ 𝑧1 + 𝑧2, combine multiplicative encodings by

computing (𝑧1, 𝑧2, 𝑧3, 𝑧4) ↦→ 𝑧1𝑧3 + 𝑧2 + 𝑧4, and then iteratively call Dec𝑖+1 on the

resulting concatenation of Z𝑝-elements. The algorithm Dec0 is then defined to be the

decoding algorithm associated to RE𝑝.Enc.

Correctness of the above scheme is clear by inspection. We argue by induction

that this scheme is perfectly private and perfectly blind.

Perfect blindness is shown inductively as follows: Sim𝑑(𝐶, 𝑦(𝑑)) := 𝑦(𝑑) is a uni-

formly random string when 𝑦(𝑑) is uniformly random. Moreover, if Sim𝑖+1(𝐶, 𝑦(𝑑)) is

a uniformly random string when 𝑦(𝑑) is a uniformly random string, then Sim𝑖(𝐶, 𝑦(𝑑))

is also uniformly random, as for each Z𝑝-element 𝑦
(𝑖+1)
ℓ of Sim𝑖+1, the four (or two,

in the additive case) Z𝑝-elements in the corresponding Sim𝑖-simulation are sampled

to be uniformly random strings (𝑟, 𝑠, 𝑡, 𝑢) subject to the equation 𝑟𝑠 + 𝑡 + 𝑢 = 𝑦
(𝑖+1)
ℓ

(or 𝑟 + 𝑠 = 𝑦
(𝑖+1)
ℓ in the additive case). Thus, by induction we conclude that Sim0 is

perfectly blind.

Perfect privacy follows by a similar inductive argument; namely, Sim𝑑(𝐶, 𝑦(𝑑)) is

clearly a perfectly private simulator for the identity function, and if Sim𝑖+1(𝐶, 𝑦(𝑑))

is a perfectly private simulator for the function 𝐵𝑑 ∘ . . . ∘ 𝐵𝑖+2, then we see that

Sim𝑖(𝐶, 𝑦(𝑑)) is a perfectly private simulator for the function 𝐵𝑑 ∘ . . . ∘ 𝐵𝑖+1. To see

this, we note that for every circuit-input pair (𝐶, 𝑦(𝑖)), we have

Sim𝑖

(︁
𝐶, 𝑦𝑑 := (𝐵𝑑 ∘ . . . ∘𝐵𝑖+1)(𝑦(𝑖))

)︁
≡
(︁
Sim𝑖,ℓ,𝑏,𝑐(𝐶, 𝑦

(𝑖+1)
ℓ ; 𝑟ℓ, 𝑠ℓ, 𝑡ℓ)

)︁
ℓ,𝑏,𝑐

for 𝑦(𝑖+1) ← Sim𝑖+1(𝐶, 𝑦(𝑖)). By the induction hypothesis, we know that Sim𝑖+1(𝐶, 𝑦𝑑)

is identically distributed to 𝑦(𝑖+1) ← Enc𝑖+1
(︁
𝐶, 𝐵𝑖+1(𝑦(𝑖))

)︁
. Thus, it suffices to show

that the distribution
(︁
Sim𝑖,ℓ,𝑏,𝑐(𝐶, 𝑦

(𝑖+1)
ℓ ; 𝑟ℓ, 𝑠ℓ, 𝑡ℓ)

)︁
ℓ,𝑏,𝑐

is identical to the distribution(︁
Enc𝑖,ℓ,𝑏,𝑐(𝐶, 𝑦(𝑖); 𝑟(𝑖+1), (𝑟ℓ, 𝑠ℓ, 𝑡ℓ))

)︁
ℓ,𝑏,𝑐

. But for each ℓ, the corresponding component(︁
Enc𝑖,ℓ,𝑏,𝑐(𝐶, 𝑦(𝑖); 𝑟(𝑖+1), (𝑟ℓ, 𝑠ℓ, 𝑡ℓ))

)︁
𝑏,𝑐

is simply a uniformly random tuple (𝛼, 𝛽, 𝛾, 𝛿) ∈

Z4
𝑝 subject to the constraint that 𝛼𝛾 +𝛽 +𝛿 = 𝑦

(𝑖+1)
ℓ (or a random tuple (𝛼, 𝛽) subject
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to 𝛼 + 𝛽 = 𝑦
(𝑖+1)
ℓ in the additive case), which exactly matches the corresponding

distribution
(︁
Sim𝑖,ℓ,𝑏,𝑐(𝐶, 𝑦

(𝑖+1)
ℓ ; 𝑟ℓ, 𝑠ℓ, 𝑡ℓ)

)︁
𝑏,𝑐

. This completes the induction, and hence

the proof of Theorem 2.28.

Using Theorem 2.28, we now prove Theorem 2.27.

Proof. The randomized encoding scheme REapprox
𝑝 for circuits of output length ℓ is

defined as follows.

• REapprox
𝑝 .Enc(𝐶, 𝑥; R, r0, r1) uses as randomness R for RE𝑝.Enc as in Theorem 2.28

along with (for each 𝑖 ∈ [ℓ]) Zlog( ℓ
𝜖
)

𝑝 -elements23 𝑟0,𝑖 sampled uniformly from the

set {0, 1, . . . , 𝑝log( ℓ
𝜖 )−1
2 } and Zlog( ℓ

𝜖
)

𝑝 -elements 𝑟1,𝑖 sampled uniformly from the set

{𝑝log( ℓ
𝜖 )+1
2 , . . . , 𝑝log( ℓ

𝜖
) − 1}. It outputs

RE𝑝.Enc(𝐶 ′, (𝑥, r0, r1); R)

where 𝐶 ′(𝑥, r0, r1) = r[𝑦] := (𝑟𝑦𝑖,𝑖)𝑖 ∈ Zℓ log( ℓ
𝜖
)

𝑝 for 𝑦 = 𝐶(𝑥).

• REapprox
𝑝 .Dec(𝐶, 𝑦) computes r = RE𝑝.Dec(𝐶 ′, 𝑦) and then sets output bit 𝑦𝑖 to

0 if and only if 0 ≤ 𝑟𝑖 ≤ 𝑝log( ℓ
𝜖 )−1
2 (and sets 𝑦𝑖 = 1 otherwise).

• The simulator REapprox
𝑝 .Sim(𝐶, 𝑦) will sample (r0, r1) as above and output RE𝑝.Sim(𝐶 ′, r𝑦).

Perfect correctness of the above scheme is clear by inspection. Moreover, perfect

privacy is also clear: for any (𝐶, 𝑥, r0, r1), we know that RE𝑝.Sim(𝐶 ′, r[𝐶(𝑥)]) is iden-

tical to the distribution RE𝑝.Enc(𝐶 ′, (𝑥, r0, r1)), which immediately implies perfect

privacy of the new scheme.

Finally, we see that the scheme is (1− 𝜖)-approximately blind, as for a uniformly

random bit 𝑦𝑖, the resulting distribution on 𝑟 = 𝑟𝑦𝑖
is a (1 − 1

𝑝log( ℓ
𝜖 ) )-multiplicative

approximation of the uniform distribution on Z𝑝 (and is (1− 1
𝑝log( ℓ

𝜖 ) )-multiplicatively

approximated by the same distribution). By repetition, we see that for a uniformly

random 𝑦, the resulting distribution on r = r[𝑦] is (1− 𝜖)-multiplicatively comparable

23We interpret elements of Zlog( ℓ
𝜖 )

𝑝 as represented by integers in the range [0, 𝑝log( ℓ
𝜖 ) − 1].
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to the uniform distribution on Zℓ log( ℓ
𝜖
)

𝑝 . Thus, (1 − 𝜖)-approximate blindness follows

from the perfect blindness of RE𝑝.

We now combine Theorem 2.27 with Imported Theorem 2.26 to obtain a random-

ized encoding scheme ̃︂RE𝑝 satisfying the structural and security properties required

to be used with an [ACPS09]-like encryption scheme. In this scheme, we consider

the following notion of evaluating boolean circuits on Z𝑝-inputs: if 𝐶 is a boolean

circuit with input length 𝜅 · ⌈log(𝑝)⌉ and 𝑥 ∈ Z𝜅
𝑝 , we define 𝐶(𝑥) := 𝐶([[𝑥]] :=

([[𝑥]]1 , . . . , [[𝑥]]𝜅⌈log(𝑝)⌉)), where [[𝑥]]𝑖 is defined to be the 𝑖th bit of 𝑥 in the representa-

tion [0, 𝑝− 1]𝜅 ⊆ ({0, 1}⌈log(𝑝)⌉)𝜅. We consider randomized encodings of circuit-input

pairs (𝐶, 𝑥) of this form, in which encodings are strings over the alphabet Z𝑝.

Theorem 2.29. Let 𝑝 = 𝑝(𝜅) be an arbitrary prime (sequence) and 𝜖 = 𝜖(𝜅) > 0.

If sub-exponentially secure one-way functions exist, there is a universal randomized

encoding scheme ̃︂RE𝑝 for polynomial-size boolean circuits with Z𝑝-inputs with the fol-

lowing properties:

• ̃︂RE𝑝 is 𝑜(2−𝜅)-secure, and all operations run in time poly(𝜅, 𝑝).

• ̃︂RE𝑝 is (1− 𝜖)-approximately blind.

• For any fixed choice of randomness 𝑟 and circuit 𝐶, the function ̃︂RE𝑝.Enc(𝐶, 𝑥; 𝑟)

is a Z𝑝-affine function of 𝑥.

Proof. The randomized encoding scheme ̃︂RE𝑝 is a certain kind of composition of RE𝑝

with point-and-permute garbled circuits (which we denote by RE).24 More specifially,̃︂RE𝑝 works as follows:

• Input: A circuit 𝐶, input 𝑥 ∈ Z𝑛
𝑝 , and randomness 𝑟1, 𝑟2.

• Compute 𝑓2(𝑟1), where RE.Enc(𝐶, [[𝑥]] ; 𝑟1) = 𝑓1(𝐶, [[𝑥]] ; 𝑟1)||𝑓2(𝑟1) as in Im-

ported Theorem 2.26.
24This does not exactly match the usual notion of composition, as in [AIK04] Lemma 4.11.
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• Output RE𝑝.Enc(𝑓1, (𝐶, 𝑥, 𝑟1, 𝑓2(𝑟1); 𝑟2), where 𝑓1(𝐶, 𝑥, 𝑟, 𝑟′) def= (𝑓1(𝐶, [[𝑥]] ; 𝑟), 𝑟′)

is interpreted as a Z𝑝-arithmetic circuit and the bit-strings 𝐶 and 𝑟 are inter-

preted as strings over the alphabet {0, 1} ⊆ Z𝑝.

To see that this scheme is efficient, we note that RE𝑝 is only used to compute

randomized encodings of a function 𝑓1(𝐶, 𝑥, 𝑟, 𝑟′) with the property that each output

bit depends on a constant number of bits of [[𝑥]] and a constant number of bits of

(𝐶, 𝑟, 𝑟′). This in turn depends on only a constant number of Z𝑝-blocks of the input

(𝐶, 𝑥, 𝑟, 𝑟′). We claim that any such function can be computed by a 𝑂(log(𝑝))-depth

Z𝑝-arithmetic circuit: a function 𝑓(𝑧1, . . . , 𝑧𝑐) of 𝑐-many Z𝑝 symbols can be expressed

in the following form:

𝑓(𝑧1, . . . , 𝑧𝑐) =
∑︁

𝑎1,...,𝑎𝑐∈Z𝑝

𝑓(𝑎1, . . . , 𝑎𝑐)
𝑐∏︁

𝑖=1
(1− (𝑧𝑖 − 𝑎𝑖)𝑝−1).

The outer sum can be computed in log(𝑝) depth, and each term can be computed in

at most 1 + log(𝑐) + log(𝑝) depth with repeated squaring. Thus, RE𝑝 can be used to

encode the function 𝑓 with the desired efficiency.

The simulator for this scheme ̃︂RE𝑝.Sim(𝑦) will simply call RE𝑝.Sim(RE.Sim(𝑦)).

Simulation security follows from a standard hybrid argument.

Finally, (1 − 𝜖)-approximate blindness follows because RE.Sim(𝑈ℓ) is identical to

the uniform distribution on binary strings of the appropriate length by the perfect

blindness of RE, and so ̃︂RE𝑝.Sim(RE.Sim(𝑈ℓ)) is (1 − 𝜖)-approximately comparable

to the uniform distribution on Z𝑝-strings of the appropriate length by the (1 − 𝜖)-

approximate blindness of ̃︂RE𝑝.

A Scheme from Exponential LWE with Moderately Small Secrets. Combin-

ing Theorem 2.25 with Theorem 2.29, we conclude that to construct a SIZE(𝜅𝑐)-KDM

2−𝜅poly(𝜅)-secure encryption scheme with universal ciphertexts, it suffices to con-

struct a ℱ -KDM 2−𝜅poly(𝜅)-secure encryption scheme (with universal ciphertexts),

where ℱ is the class of all Z𝑝-linear functions.

We now claim that such an encryption scheme exists assuming the exponential

89



hardness of LWE𝑛,ℓ,𝑞,𝜒sec,𝜒err (Assumption 2.1) where the modulus 𝑞 = 𝑝𝑞′ ∈ Ω(𝜆2) is

polynomially large, 𝜒sec is the uniform distribution on [−𝑝
2 , 𝑝

2) ⊆ Z𝑞 and 𝜒err is the

uniform distribution on [− 𝑞
2𝑝

, 𝑞
2𝑝

) ⊆ Z𝑞. In order for this assumption to be plausible,

we pick 𝑞′ such that either 𝑞′ ≥ 𝑝 · 𝜆2 or 𝑞′ is divisible by 𝑝.

To do this, we will use a modification of secret-key Regev encryption in the spirit

of [ACPS09]. Our scheme (Gen, Enc, Dec) is as follows.

• Gen(1𝑛, 𝑞, 𝑝) samples a uniformly random 𝑠← [−𝑝
2 , 𝑝

2)𝑛 ⊆ Z𝑛
𝑞 .

• Enc(𝑠, 𝑚 ∈ Zℓ
𝑝) samples a uniformly random matrix 𝐴 ← Z𝑛×ℓ

𝑞 and error 𝑒 ←

[− 𝑞
2𝑝

, 𝑞
2𝑝

)ℓ and outputs (𝐴, 𝑠𝑡𝐴 + 𝑒𝑡 + 𝑞′ ·𝑚).

• Dec(𝑠, ct) interprets ct = (𝐴, 𝑏), computes 𝑏 − 𝑠𝑡𝐴 (mod 𝑞), rounds each entry

to the nearest multiple of 𝑞′, and divides each entry by 𝑞′.

Correctness of the encryption scheme is clear. Moreover, (Gen, Enc, Dec) satisfies the

statistical property required of a CCRR-compatible encryption scheme, as for any

fixed 𝑠, a random encryption Enc(𝑠, 𝑈ℓ,𝑝) is identical to a uniformly random element

of Z𝑛×ℓ
𝑞 × Zℓ

𝑞.

Finally, we see that our scheme satisfies exponential KDM-security for F𝑝-affine

functions of the secret key by a similar reduction to that of Section 2.4.3. Namely, for a

secret 𝑠← [−𝑝
2 , 𝑝

2)𝑛, given an LWE𝑛,ℓ,𝑞,𝜒sec,𝜒err sample (𝐴, 𝑏 = 𝑠𝑡𝐴+𝑒𝑡) with 𝐴← Z𝑛×ℓ′
𝑞 ,

one can efficiently produce a ciphertext (𝐴−2𝑞′𝐵, 𝑏+ 𝑐) that is identically distributed

to a Regev encryption of 𝑠𝑡𝐵 + 𝑐 (mod 𝑝) with the above parameters. Therefore, if

some adversary 𝒜 that is given a Regev encryption Enc(𝑠, 𝑠𝑡𝐵 + 𝑐 (mod 𝑝)) recovers

𝑠 with probability 𝜖, then the adversary 𝒜′ that is given an LWE sample (𝐴, 𝑏) and

computes 𝒜(𝐴− 2𝑞′𝐵, 𝑏 + 𝑐) as above will also recover 𝑠 with probability 𝜖.

Discussion. Our scheme most notably differs from that of [ACPS09] in our choice of

error distribution (which is also made possible by the fact that we consider a secret-key

variant). Namely, [ACPS09] takes the error distribution 𝜒err to be the same as 𝜒sec

(and they use Gaussian distributions of width Θ(𝑝) rather than uniform distributions

as well). Using uniformly random secrets (over intervals) and errors is required for the
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exponential security and statistical properties of our encryption scheme to plausibly

hold. However, we note that it is also possible to rely on an LWE assumption in which

our error distribution 𝜒err is instead uniform on [−𝑝
2 , 𝑝

2) (i.e. the same as 𝜒sec).

Namely, this LWE variant actually follows from the LWE variant that we assume

here, with the caveat that we must then take 𝑞 > ℓ · 𝑝. The reduction is similar to the

high-noise-to-low-noise reduction in Theorem 2.20.

A Scheme from ElGamal Encryption. In addition to our LWE-based construc-

tions, we note that by combining our amplification theorem (Theorem 2.25) with

point-and-permute garbled circuits, we can generically reduce the problem of con-

structing SIZE(𝜅𝑐)-KDM secure encryption schemes (with universal ciphertexts and

almost optimal security) to constructing circular secure encryption schemes (with

the same properties). In particular, we can plug in the variant of ElGamal encryp-

tion defined in [CCRR18].25 We immediately conclude that if this variant of ElGa-

mal encryption satisfies almost optimal circular security, then NIZK arguments exist

(combining Theorem 2.25 and Theorem 2.52).

2.5 Round-by-Round Soundness and Fiat-Shamir

In this section we define the notion of an interactive proof with round-by-round sound-

ness, and prove that correlation intractability for a specific related relation is sufficient

for a hash family to ensure that the associated Fiat-Shamir heuristic is sound.

2.5.1 Definitions: Interactive Proofs and Arguments

We being by recalling the definitions of interactive proofs and arguments. We focus

on doubly-efficient proof-systems, in which the prover is polynomial-time and the

verifier is quasi-linear.

25In [CCRR18], this scheme was assumed to satisfy almost optimal KDM-security for arbitrary
KDM functions.
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Definition 2.30. A doubly-efficient interactive proof (resp., interactive argument) for

a promise problem ℒ = (ℒyes,ℒno) is a pair (𝑃, 𝑉 ) of interactive algorithms satisfying:

• Completeness. For any 𝑥 ∈ ℒyes, when 𝑃 and 𝑉 interact on common input

𝑥, the verifier 𝑉 outputs 1 with probability 1.

• Soundness. For any 𝑥 ∈ ℒno∩{0, 1}𝑛 and any unbounded (resp., polynomial-

time) interactive 𝑃 *, when 𝑃 * and 𝑉 (𝑥) interact, the probability that 𝑉 outputs

1 is a negligible function of 𝑛.

• Efficiency. 𝑉 runs in time �̃�(𝑛) and 𝑃 runs in poly(𝑛) time, where 𝑛 is the

input length.

The protocol is public coin if each of 𝑉 ’s messages is an independent uniformly random

string of some length (and the verifier’s decision to accept or reject does not use any

secret state).

Definition 2.31. A two-message argument scheme is one in which the interaction

consists of a single message from the verifier to the prover followed by a single message

from the prover to the verifier. The scheme is delayed input if the joint distribution

of the first message together with the resulting verifier state also depends only on 𝑛.

A delayed-input two-message argument scheme is said to be adaptively sound if

soundness holds for a cheating prover that chooses 𝑥 after seeing the verifier’s first

message. The scheme is publicly verifiable if the verifier’s first message includes the

verifier’s subsequent state.

2.5.2 Round-by-Round Soundness

Definition 2.32 (Round-by-Round Soundness). Let Π = (𝑃, 𝑉 ) be a 2𝑟-message

public coin interactive proof system for a language 𝐿. For any 𝑥 ∈ {0, 1}*, and any

prefix 𝜏 of a protocol transcript, let 𝑉 (𝑥, 𝜏) denote the distribution of the next message

(or output) of 𝑉 when the transcript so far is 𝜏 and 𝑉 was executed on input 𝑥.

We say that Π has round-by-round soundness error 𝜖(·) if there exists a deterministic

(not necessarily efficiently computable) function State that takes as input an instance
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𝑥 and a transcript prefix 𝜏 and outputs either acc or rej such that the following prop-

erties hold:

1. If 𝑥 ̸∈ 𝐿, then State(𝑥, ∅) = rej, where ∅ denotes the empty transcript.

2. If State(𝑥, 𝜏) = rej for a transcript prefix 𝜏 , then for every potential prover

message 𝛼, it holds that

Pr
𝛽←𝑉 (𝑥,𝜏 |𝛼)

[︂
State

(︁
𝑥, 𝜏 |𝛼|𝛽

)︁
= acc

]︂
≤ 𝜖(𝑛)

3. For any full26 transcript 𝜏 , if State(𝑥, 𝜏) = rej then 𝑉 (𝑥, 𝜏) = 0.

We say that Π is round-by-round sound if it has round-by-round soundness error 𝜖

for some 𝜖(𝑛) = negl(𝑛).

Remark 2.33. The completeness condition of the interactive proof implies that for

𝑥 ∈ 𝐿 (i.e., a YES instance) and an honestly generated transcript 𝜏 , with high prob-

ability over the coins tossed, it holds that State(𝑥, 𝜏) = acc.

Before diving into the proof that the Fiat-Shamir paradigm can be applied to any

interactive proof with round-by-round soundness (in Section 2.5.3), we first discuss

some basic properties of these type of protocols.

Round-by-round Soundness vs. Standard Soundness. A first basic obser-

vation is that round-by-round soundness implies standard soundness (with a loss

proportional to the number of rounds).

Proposition 2.34. Let Π be 2𝑟-message interactive proof with round-by-round sound-

ness error 𝜖. Then, Π has standard soundness error 𝑟 · 𝜖.

Proof. By a union bound over the error in all of the rounds.

Conversely, standard soundness implies some (smaller) amount of round-by-round

soundness.
26By a full transcript, we mean a transcript for which the verifier halts.
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Proposition 2.35. Let Π be a 2𝑟-message interactive proof with soundness error 𝜇.

Then, Π has round-by-round soundness error 𝜇
1
𝑟 .

Proof. Let Π = (𝑃, 𝑉 ) denote a 2𝑟-message (public coin) interactive proof with sound-

ness error 𝜇. We associate to Π the following State function, defined inductively for

partial transcripts of length 2𝑖.

• Given a full transcript 𝜏 , we define State(𝑥, 𝜏) = acc if and only if 𝑉 (𝑥, 𝜏)

accepts.

• Inductively, given a transcript 𝜏 of length 2𝑖, we define State(𝑥, 𝜏) = acc if and

only if there exists a message 𝛼*𝑖+1 such that

Pr
𝛽𝑖+1

[︁
State(𝑥, 𝜏 |𝛼*𝑖+1|𝛽𝑖+1) = acc

]︁
> 𝜇

1
𝑟 .

We claim that Π has round-by-round soundness error 𝜇
1
𝑟 with respect to this State

function. We note that properties (2) and (3) of round-by-round soundness are

satisfied by construction. All that we need to verify is property (1), i.e., that

State(𝑥, ∅) = rej for 𝑥 ̸∈ 𝐿. To see this, we note that if 𝑥 ̸∈ 𝐿 but State(𝑥, ∅) = acc,

then by definition of State, there exists a prover strategy 𝑃 * such that

Pr
𝛽=(𝛽1,...,𝛽𝑟)

[State(𝑥, 𝜏𝑃 *,𝛽) = acc] > (𝜇 1
𝑟 )𝑟 = 𝜇,

where 𝜏𝑃 *,𝛽 denotes the transcript associated to prover strategy 𝑃 * and verifier mes-

sages 𝛽. This contradicts the 𝜇-soundness of Π (since if State(𝑥, 𝜏𝑃 *,𝛽) = acc then the

verifier accepts). Thus, we conclude that Π satisfies round-by-round 𝜇
1
𝑟 -soundness

with respect to State, as desired.

Finally, we note that Proposition 2.35 is tight in its security loss.

Proposition 2.36. There exists an 𝑟-round interactive proof with soundness error

2−𝑟 that does not have round-by-round soundness error 1
2 − 𝜖 for any 𝜖 > 0.
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Proof. Consider the following interactive proof for the empty language. On input

𝑥 ∈ {0, 1}𝑛, the protocol proceeds as follows. In each round the prover sends nothing,

then the verifier tosses a fresh coin and sends the result to the prover. After 𝑟 rounds

the verifier accepts if and only if all coin tosses were 0.

Clearly this constitutes an interactive proof for the empty language (with sound-

ness error 2−𝑟). Suppose that the protocol has round-by-round soundness error 1/2−𝜖

and let State be a corresponding state function. Fix also an arbitrary input 𝑥* (a NO

input, needless to say).

By the first property of round-by-round soundness State(𝑥*, ∅) = rej. On the

other hand, by the third property, it holds that State(𝑥*, 0𝑟) = acc (since the verifier

accepts in case all coin tosses were 0).

Thus, there must exist 𝑖 ∈ [𝑟] such that State(𝑥*, 0𝑖) = rej and State(𝑥*, 0𝑖+1) =

acc. This means that

Pr
𝑏∈{0,1}

[︁
State(𝑥*, 0𝑖|𝑏) = acc

]︁
≥ 1

2 ,

in contradiction to the second property of round-by-round soundness.

Parallel Repetition and Round-by-Round Soundness. Given an interactive

proof Π = (𝑃, 𝑉 ) we can consider the 𝑘-fold parallel repetition of Π, denoted by

Π𝑘 = (𝑃 𝑘, 𝑉 𝑘), in which (𝑃, 𝑉 ) is executed 𝑘 times independently and the verifier

accepts if and only if a majority of executions accept.27 It is known that parallel

repetition reduces the completeness error and soundness error of interactive proofs at

an exponential rate (see [Gol99, Lemma C.1]).28 Together with Proposition 2.35, this

implies that any sound public coin proof system can be converted into one satisfying

round-by-round soundness.

Corollary 2.37. Suppose that Π is a 2𝑟-round (public coin) proof system with sound-

ness error 𝜇. Then, Π𝑘 has round-by-round soundness error 𝜇
𝑘
𝑟 .

27In case the base protocol (𝑃, 𝑉 ) has perfect completeness, it suffices for 𝑉 𝑘 to check that all
executions accept.

28The fact that the completeness error is reduced at an exponential rate is trivial. Soundness is
more difficult to analyze though since a cheating prover for 𝑉 𝑘 does not have to act independently
on the 𝑘 executions. Nevertheless, it was shown [Gol99, Lemma C.1] that the soundness error is
reduced at an exponential rate.
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2.5.3 Round-by-Round Soundness and Fiat-Shamir

The main result of this section is that the Fiat-Shamir transform for compressing a

public-coin interactive proof Π into a non-interactive transform is provably (adap-

tively) sound when applied to round-by-round sound interactive proofs using a hash

family satisfying a restricted form of correlation intractability.

Specifically, we show that it suffices for the hash family to be correlation in-

tractable with respect to a specific relation, which we now define. Let Π be an inter-

active proof with round-by-round soundness error 𝜖 and let State be a corresponding

state function. For every 𝑛 ∈ N, we define a relation 𝑅
(𝑛)
State as follows:

𝑅
(𝑛)
State

def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(︂(︁

𝑥, 𝜏 |𝛼
)︁
, 𝛽
)︂

:

𝑥 ∈ {0, 1}𝑛,

State(𝑥, 𝜏) = rej

and

State(𝑥, 𝜏 |𝛼|𝛽) = acc

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

We define the relation ensemble 𝑅State = (𝑅(𝑛)
State)𝑛∈N.

Note that 𝑅State is 𝜖-sparse, since Π has round-by-round soundness 𝜖. When there

is a canonical choice of the function State for a protocol Π, we will often write 𝑅Π to

denote 𝑅State.

Theorem 2.38. Suppose that Π = (𝑃, 𝑉 ) is a 2𝑟-message public-coin interactive

proof for a language 𝐿 with perfect completeness, polylog(𝑛) total bits of prover-to-

verifier communication, and round-by-round soundness with a corresponding state

function State. Let 𝑋𝑛 denote the set of partial transcripts (including the input and

all messages sent) and let 𝑌𝑛 denote the set of verifier messages when Π is executed

on an input of length 𝑛. If a hash family ℋ = {ℋ𝑛 : 𝑋𝑛 → 𝑌𝑛} is 𝑅State-correlation

intractable and evaluable in time �̃�(𝑛),29 then the algorithms (Gen, 𝑃 , 𝑉 ) as defined

below constitute an adaptively sound publicly verifiable argument for 𝐿.

• On input 1𝑛, Gen samples 𝐻 ← ℋ𝑛, and publishes 𝐻 as a common reference
29This is only due to our definition of a doubly-efficient argument, which stringently requires that

the verifier’s running time is �̃�(𝑛).
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string (or common random string if 𝐻 ← ℋ𝑛 is a uniformly random binary

string of some length.

• On input 𝑥, the prover 𝑃 sends the 𝑟 strings 𝛼1, . . . , 𝛼𝑟 that 𝑃 would send on

input 𝑥 if the verifier’s messages were given by 𝛽𝑗 = 𝐻(𝑥, 𝛼1|𝛽1| · · · |𝛼𝑗) for

𝑗 ∈ [𝑟]

• The verifier 𝑉 , on input 𝑥* and 𝛼*1, . . . , 𝛼*𝑟 (which might be chosen maliciously)

iteratively computes

𝛽*𝑗 = 𝐻
(︁
𝑥*, 𝛼*1|𝛽*1 |𝛼*2| . . . |𝛽*𝑗−1|𝛼*𝑗

)︁

for each 𝑗 ∈ [𝑟]. The verifier then accepts if and only if 𝑉 (𝑥*, 𝛼*1|𝛽*1 | . . . |𝛼*𝑟|𝛽*𝑟 ) =

1.

Remark 2.39 (On Interactive Proofs with Imperfect Completeness). Theorem 2.38

applies to protocols with perfect completeness. However, it can be easily extended

to protocols with imperfect completeness by further requiring that the correlation in-

tractable hash function is 𝑟-wise independent (so as to assure the correct distribu-

tion of verifier messages). This can be done without loss of generality by xor-ing

the (bounded) correlation intractable hash function with an 𝑟-wise independent hash

function, which preserves (bounded) correlation intractability.

Proof of Theorem 2.38. Completeness follows immediately from the perfect complete-

ness of (𝑃, 𝑉 ).

We proceed to show the adaptive soundness of the argument scheme. Suppose

that a cheating prover 𝑃 * given input (1𝑛, 𝐻) produces, with probability at least

𝜖 = 𝜖(𝑛), a string 𝑥* ∈ {0, 1}𝑛 ∖𝐿 and (𝛼*1, . . . , 𝛼*𝑟) such that 𝑉 accepts the transcript

derived from 𝐻(·). Let 𝜏𝑖 denote the transcript prefix 𝛼*1|𝛽*1 | · · ·𝛼*𝑖 |𝛽*𝑖 with 𝛽*𝑗 defined

as above.

Properties 1 and 3 of round-by-round soundness (see Definition 2.32) imply that

for any accepting transcript 𝜏 for 𝑥 /∈ 𝐿 there is at least one index 𝑖 ∈ [𝑟] such that

State(𝑥, 𝜏𝑖) = rej and State(𝑥, 𝜏𝑖+1) = acc. Thus, there must exist some index 𝑖*𝑛 ∈ [𝑟]
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such that with probability at least 𝜖
𝑟
, the output of 𝑃 * satisfies that State(𝑥, 𝜏𝑖*) = rej

and State(𝑥, 𝜏𝑖*+1) = acc.

This fact can be used to construct an adversary 𝒜 = {𝒜𝜆} that violates the 𝑅State-

correlation intractability of ℋ: on input 𝐻 ← ℋ𝑛, 𝒜𝜆 runs 𝑃 *(1𝑛, 𝐻) to obtain 𝑥*

and (𝛼*1, . . . , 𝛼*𝑟), computes 𝛽𝑗 = 𝐻(𝑥*, 𝜏𝑗−1|𝛼𝑗) for all 𝑗, and outputs 𝜏𝑖*|𝛼*𝑖+1. This

is a contradiction, so the protocol must be adaptively sound.

2.6 Publicly Verifiable SNARG

We present our construction of a publicly verifiable SNARG based on the GKR inter-

active protocol. We begin in Section 2.6.1 by recalling some standard algebraic facts

and notations.

Font Conventions. Throughout this section we will use the convention that black-

board bold lowercase (e.g., z) is used for field elements whereas standard bold lower-

case (e.g., z) is used for bits. Likewise, we use z̄ to denote vectors of field elements

and z̄ to denote bit strings.

2.6.1 Fields and Polynomials

We recall the definition of the multilinear extension and explicit representations of

finite fields.

Definition 2.40 (Multilinear Extension). For any function 𝑓 : {0, 1}𝑛 → {0, 1} and

any field F, the multilinear extension of 𝑓 over F is the (uniquely) defined multilinear

polynomial 𝑓 : F𝑛 → F satisfying 𝑓(𝑥) = 𝑓(𝑥) for each 𝑥 ∈ {0, 1}𝑛.

The polynomial 𝑓(z) is given explicitly by the formula

𝑓(z) =
∑︁

𝑥∈{0,1}𝑛

𝑓(𝑥) · 𝛽𝑥→z̄

where 𝛽𝑥→z̄
def= ∏︀

𝑖∈[𝑛]

(︁
𝑥𝑖 · z𝑖 + (1− 𝑥𝑖) · (1− z𝑖)

)︁
.
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When the field F is clear from the context, we will omit it and simply say that 𝑓

is the multilinear extension of 𝑓 .

Definition 2.41. A 𝑇F(·)-time explicit representation of a finite field ensemble F =

{F𝑖}𝑖∈ℐ is an algorithm for solving each of the following problems in time 𝑇F(𝑖) given

an index 𝑖 ∈ ℐ.

• Field Membership. Given an additional string 𝑧, decide whether or not 𝑧 ∈

F𝑖.

• Enumerability. Evaluate some bijection 𝜙𝑖 : [|F𝑖|]→ F𝑖.

• Explicit 0 and 1. Compute 0 ∈ F𝑖 and 1 ∈ F𝑖.

• Efficient Field Operations. Evaluate the operations +, −, ×, and ÷ on F𝑖.

• Sampleable. Sample from the uniform distribution on F𝑖.

When a 𝑇F(·)-time explicit representation exists, we say that F is 𝑇F(·)-time repre-

sentable.

2.6.2 GKR: Round by Round Soundness and Efficient Sam-

pleability

In this section, we briefly describe the interactive proof system of Goldwasser, Kalai,

and Rothblum [GKR08], hereafter referred to as GKR. We explain why GKR (or

rather a simplification due to Goldreich [Gol17]) has round-by-round soundness, and

we show that the corresponding relation (as defined in Section 2.5) can be sampled

in polynomial time.

We start by using a result from [Gol17] that allows one to transform uniform low

depth circuits into a form that is convenient for the GKR protocol.

Imported Lemma 2.42 ([Gol17]). If ℒ is a promise problem decidable by an ensem-

ble of log-space uniform boolean circuits of size 𝑆 ′ = 𝑆 ′(𝑛) (without loss of generality

𝑆 ′(𝑛) ≥ 𝑛) and depth 𝑑′ = 𝑑′(𝑛), then ℒ is also decidable by an ensemble {𝐶𝑛} of

boolean circuits that satisfies the following uniformity properties:
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• 𝐶𝑛 has size 𝑆(𝑛) ≤ poly(𝑆 ′(𝑛)) and depth 𝑑(𝑛) ≤ 𝑑′(𝑛) · polylog(𝑆 ′(𝑛)). As-

sume without loss of generality that 𝑆(𝑛) is a power of two, and define 𝑠(𝑛) def=

log2 𝑆(𝑛).

• The gates of 𝐶𝑛 have fan-in 2, and each compute either ⊕ or ∧.

• The gates of 𝐶𝑛 can be (uniquely) partitioned into layers such that the inputs to

a gate in layer 𝑖 are outputs of gates in layer 𝑖− 1, with the input wires viewed

as layer 0.

• The wires of 𝐶𝑛 can be labeled with the numbers 1 through 𝑆(𝑛) (equivalently

with 𝑠(𝑛)-bit strings) so that:

– The first 𝑛 wires of 𝐶𝑛 are the input wires.

– The last wire of 𝐶𝑛 is the output wire.

– Let “wiring predicates” add𝑛, mult𝑛 :
(︁
{0, 1}𝑠(𝑛)

)︁3
→ {0, 1} be defined so

that add𝑛 (respectively, mult𝑛) applied to (𝑤1, 𝑤2, 𝑤3) is 1 iff 𝑤3 is an ⊕

(respectively, ∧) gate whose input wires are 𝑤1 and 𝑤2, in that order.

Then both add𝑛 and mult𝑛 are computable by polylog(𝑛)-sized boolean for-

mulas that themselves are computable from 𝑛 in polylog(𝑛) time. In par-

ticular this implies that over any 𝑇F(·)-time representable finite field en-

semble F = {F𝑖}, there exist polylog(𝑛)-degree extensions ̃︂add𝑛,𝑖, ̃︂mult𝑛,𝑖 :(︁
F𝑠(𝑛)

𝑖

)︁3
→ F𝑖 that are evaluable in time polylog(𝑛) · 𝑇F(𝑖).

Low-Degree Arithmetization. GKR depends on several polynomials, which we

now define. Fix ℒ = (ℒyes,ℒno) to be any promise problem that is decidable by

log-space uniform circuits of size 𝑆 ′(𝑛) and depth 𝑑′(𝑛).30 Let {𝐶𝑛} denote a circuit

family that decides ℒ as in the conclusion of Imported Lemma 2.42.

For any 𝑥 ∈ {0, 1}𝑛, any field F , any 𝑖 ∈ {0, . . . , 𝑑(𝑛)}, and any 𝑗 ∈ [3 · 𝑠(𝑛)],

we define polynomials 𝑉
(𝑖)

𝑥,F : F𝑠(𝑛) → F and 𝑃
(𝑖)
𝑥,𝑗,F : F𝑗 × F𝑠(𝑛) → F as follows.

30Recall that log-space uniformity implies that 𝑆′(𝑛) = poly(𝑛).
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We first define a function 𝑉 (𝑖)
𝑥 : {0, 1}𝑠(𝑛) → {0, 1} so that 𝑉 (𝑖)

𝑥 (𝑤) is 1 iff wire 𝑤

is in layer 𝑖 and carries the value 1 when 𝐶𝑛 is evaluated on 𝑥. The polynomial 𝑉
(𝑖)

𝑥,F

is defined as the multi-linear extension of 𝑉 (𝑖)
𝑥 over the field F (see Definition 2.40 for

the definition of the multilinear extension).

The polynomial 𝑃
(𝑖)
𝑥,3𝑠(𝑛),F : F4𝑠(𝑛) → F is defined as

𝑃
(𝑖)
𝑥,3𝑠(𝑛),F(w̄1, w̄2, w̄3, w̄) def=

⎛⎜⎜⎜⎜⎜⎝
̃︂add𝑛(w̄1, w̄2, w̄3) ·

(︂
𝑉 (𝑖−1)

𝑥 (w̄1) + 𝑉 (𝑖−1)
𝑥 (w̄2)

)︂
+̃︂mult𝑛(w̄1, w̄2, w̄3) · 𝑉 (𝑖−1)

𝑥 (w̄1) · 𝑉 (𝑖−1)
𝑥 (w̄2)

⎞⎟⎟⎟⎟⎟⎠·𝛽w̄3→w̄.

(2.2)

with 𝛽w̄3→w̄ as in Definition 2.40 on page 98. For 𝑗 ∈ {0, . . . , 3𝑠(𝑛) − 1}, the we

define a polynomial 𝑃
(𝑖)
𝑥,𝑗,F as follows

𝑃
(𝑖)
𝑥,𝑗,F(z1, . . . , z𝑗, w̄) def=

∑︁
𝑧𝑗+1∈{0,1}

𝑃
(𝑖)
𝑥,𝑗+1,F(z1, . . . , z𝑗, 𝑧𝑗+1, w̄) (2.3)

for z1, . . . , z𝑗 ∈ F and w̄ ∈ F𝑠(𝑛). The polynomials 𝑃
(𝑖)
𝑥,𝑗,F are often referred to as the

“sumcheck polynomials”, arising from the sumcheck protocol of [LFKN90] that we

are implicitly using.

By the definitions of the wiring predicates and multi-linear extension, it holds for

any 𝑖, any w̄, and any field F of characteristic two that

𝑉
(𝑖)

𝑥,F(w̄) = 𝑃
(𝑖)
𝑥,0,F(w̄) (2.4)

=
∑︁

�̄�1,�̄�2,�̄�3∈{0,1}𝑠(𝑛)

𝑃
(𝑖)
𝑥,3𝑠(𝑛),F(�̄�1, �̄�2, �̄�3, w̄)

These polynomials each have degree polylog(𝑛), and the relations between them are

at the heart of the GKR interactive proof scheme, which we now describe.

The Protocol and Round-by-Round Soundness. Let {F𝑛}𝑛 be a polylog(𝑛)-

time explicit representation of finite fields of characteristic two and order |F𝑛| ≥ 𝑛𝜔(1),

|F𝑛| ≤ 2polylog(𝑛). When executed on input 𝑥 ∈ {0, 1}𝑛, the protocol will only involve
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polynomials over the field F𝑛, and we omit subscripts accordingly.

Throughout the GKR protocol, both the prover and verifier maintain a list of

pending claims. The initial claim, corresponding to the assertion that 𝑥 ∈ ℒyes, is

that 𝑉 𝑑(𝑛)
𝑥 (𝑤out) = 1, where 𝑤out is the label of the output wire of 𝐶𝑛. In general

claims will be of the form 𝑝(ū) = v where 𝑝 is one of the above polynomials, and ū

and v are arbitrary.

In each round, the prover and verifier: (1) reduce multiple claims regarding some

polynomial 𝑝 to a single claim regarding 𝑝, and (2) reduce that claim to several claims

about a “simpler” polynomial.

1. Suppose that the currently pending claims are 𝑝(ū1) = v1, . . . , 𝑝(ū𝑘) = v𝑘 (𝑘

will in fact always be at most 2). For some canonical association of the set [𝑘]

with a subset of F, the prover and verifier construct the unique degree 𝑘 − 1

polynomial curve for which 𝛾(𝑖) = ū𝑖 for all 𝑖 ∈ [𝑘]. The prover sends to the

verifier an explicitly represented univariate polynomial 𝑔* that has degree at

most (𝑘− 1) · deg(𝑝) and is purportedly equal to 𝑝 ∘ 𝛾. The verifier checks that

𝑔*(𝑖) = v𝑖 for each 𝑖 ∈ [𝑘], and responds with a random challenge r ← F. All

claims about 𝑝 are then replaced with the single claim that 𝑝(ū*) = v
*, where

ū
* = 𝛾(r) and v

* = 𝑔*(r).

2. The polynomial 𝑝 has a defining equation – either Equation (2.2), (2.3), or

(2.4) – that expresses 𝑝(ū*) as a function 𝜙 applied to a constant number of

other polynomial evaluations. The prover sends these other evaluations, and

the verifier checks that applying 𝜙 yields v*.

After 𝑟(𝑛) = 𝑂
(︁
𝑑(𝑛) · 𝑠(𝑛)

)︁
rounds a single claim remains, regarding �̂�(0)

𝑥 . Such a

claim is directly checkable by the verifier in �̃�(𝑛) field operations.

Theorem 2.43. For every promise problem ℒ = (ℒyes,ℒno) in log-space uniform

NC, there is a public-coin interactive proof Π for ℒ with verifier running time �̃�(𝑛),

prover running time poly(𝑛), and round-by-round soundness error negl(𝑛). Moreover,

the corresponding relation 𝑅Π is sampleable in poly(𝑛) time.
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Proof. The prover and verifier efficiency claims follow directly from examination of

the above protocol.

We define State so that State(𝑥, 𝜏𝑖−1) is acc if each pending claim after 𝜏𝑖−1 is true,

and otherwise State(𝑥, 𝜏𝑖−1) is rej. All the polynomials involved are evaluable in time

poly(𝑆), which by log-space uniformity is poly(𝑛), so State is too.

We analyze the round-by-round soundness error of steps 1 and 2 of the protocol,

described above.

The round-by-round soundness error incurred in step 1 is the fraction of r’s for

which 𝑔*(r) = 𝑝(𝛾(r)). The assumption that the currently pending claims are not all

true implies that the polynomials 𝑔* and 𝑝 ∘ 𝛾 are not equal, so the fraction of “bad

r’s” is bounded by 𝑘·deg(𝑝)
|F| . With our choice of F, this is negligible in 𝑛.

Step 2 incurs no round-by-round soundness error: if v* ̸= 𝑝(ū*), then at least one

of the right-hand-side claims must be false.

To write the relation 𝑅Π more explicitly, we first observe by inspection of Eqs. (2.2)

to (2.4) that there is a fixed sequence of polynomials 𝑄1, . . . , 𝑄𝑟 such that claims in

the 𝑖𝑡ℎ round are about 𝑄𝑖. 𝑅Π consists of the pairs
(︁
(𝑥, 𝜏 |𝛼), r

)︁
for which:

• 𝛼 and 𝛽 are in F𝑛, where 𝑛 is the length of 𝑥.

• 𝜏 is of the form 𝛼1|𝛽1| · · · |𝛼𝑖|𝛽𝑖 for some 0 ≤ 𝑖 < 𝑟(𝑛).

• Each 𝛼𝑗 is of the form (v𝑗,1,v𝑗,2, 𝑔𝑗), for some v𝑗,1,v𝑗,2 ∈ F𝑛 and some 𝑔𝑗 that

is a degree-polylog(𝑛) univariate polynomial, represented as a list of coefficients

in F𝑛.

• Each 𝛽𝑗 lies in F𝑛.

• Of the claims “𝑄𝑖+1(ū𝑖+1,1) = v𝑖+1,1” and “𝑄𝑖+1(ū𝑖+1,2) = v𝑖+1,2” that are

pending after the prover sends 𝛼𝑖+1, at least one claim is false, but 𝑔𝑖+1(1) =

v𝑖+1,1 and 𝑔𝑖+1(2) = v𝑖+1,2.

• 𝑔𝑖+1(r) = 𝑄𝑖+1
(︁
(1− r) · v𝑖+1,1 + r · v𝑖+1,2

)︁
.
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The algorithm for sampling 𝑅Π works as follows. Given a transcript 𝜏𝑖−1|𝛼𝑖,

compute the list of pending claims 𝑝(ū1) = v1, . . . , 𝑝(ū𝑘) = v𝑘 that follow 𝜏𝑖−1. If

all pending claims are correct, then there is nothing to do. Otherwise, let 𝛾 denote

the unique degree 𝑘 − 1 polynomial curve for which 𝛾(𝑖) = ū𝑖 for all 𝑖 ∈ [𝑘], and

parse 𝛼𝑖 as a univariate polynomial 𝑔*. A verifier message 𝛽𝑖 ∈ F is bad – that is,(︁
(𝑥, 𝜏𝑖−1|𝛼𝑖), 𝛽𝑖

)︁
∈ 𝑅Π – if and only if 𝑔*(𝛽𝑖) = 𝑝(𝛾(𝛽𝑖)).

Thus, to sample from 𝑅Π, we just need to output a random root of 𝑔* − 𝑝 ∘ 𝛾.

Using the Cantor-Zassenhaus algorithm [CZ81], we can enumerate all roots with

probability 2
3 , and therefore with any probability arbitrarily exponentially close to 1

(i.e., 1−𝑒−poly(𝑛) for any desired poly). If this factorization succeeds, we can sample an

element from the set of all roots with arbitrarily exponentially small sampling error,

giving the stated result.

2.6.3 Publicly Verifiable Delegation for Log-Space Uniform

NC

Theorem 2.44. If Assumption 2.2 holds, then every promise problem in log-space

uniform NC has a publicly verifiable non-interactive argument scheme with adaptive

soundness such that for inputs of length 𝑛:

• The scheme uses a common random string of length �̃�(𝑛).

• Proofs are of length polylog(𝑛) and are generatable in time poly(𝑛).

• Proofs are publicly verifiable in time �̃�(𝑛).

Proof. Our construction uses the following building blocks.

• The round-by-round sound interactive proof of Theorem 2.43.

• A secret-key encryption scheme SKE = (SKE.Gen, SKE.Enc, SKE.Dec) with keys

of length 𝜅 = 𝜅(𝜆) ≥ 𝜆Ω(1) and universal ciphertexts that are 2−𝜅 · poly(𝜅)-
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KDM-secure for arbitrary poly(𝜆)-size computable functions of the secret key.31

Specifically, Assumption 2.2 implies that secret-key Regev encryption satisfies

these properties, with secret distribution 𝜒sec that is uniform on [−𝐵, 𝐵) for

some 𝐵 specified below and error distribution 𝜒err that is uniform on [− 𝑞
4 , 𝑞

4).

Furthermore, the proof of security of our delegation scheme uses an additional building

block:

• A (secret-key) fully homomorphic encryption scheme FHE that is 2−|sk|·poly(|sk|)-

circular secure. We instantiate FHE using the [BV14] FHE scheme in which the

underlying LWE secret and error distributions (𝜒sec and 𝜒err) are uniform in the

range [−𝐵, 𝐵) for 𝐵 ≈ 𝑞
𝑛.51 max𝑖 |𝛽𝑖| . Here, |𝛽𝑖| = polylog(𝑛) denotes the length

of the 𝑖th verifier message in the [GKR08] protocol.

Combining Theorem 2.13, Theorem 2.38, Theorem 2.43, and Theorem 2.20, we

conclude that the following protocol is a succinct non-interactive argument system

for log-space uniform NC.

• Input: An instance 𝑥 ∈ ℒyes ∪ ℒno.

• Common Random String: A uniformly random string ℎ that describes a

Regev ciphertext ct ∈ Z(𝑛′+1)×𝑚
𝑞 where 𝑛′ · ⌊log(2𝐵 + 1)⌋ is at least the length

of a [GKR08] transcript (including the input 𝑥), and 𝑚 is at least as large as

any verifier message.

• Proof : messages 𝛼𝑖 computed according to the [GKR08] prover algorithm,

where the verifier messages 𝛽1, . . . , 𝛽𝑟 are computed inductively by first padding

the transcript prefix 𝜏𝑗
def= 𝛼1|𝛽1| · · · |𝛼𝑗 so that it can be viewed as an element

of [−𝐵, 𝐵)𝑛′ , and then computing 𝛽𝑗 = SKE.Dec(𝜏𝑗, ℎ),

• Verification: The verifier accepts the transcript (ℎ, 𝛼1, . . . , 𝛼𝑟) as a proof for 𝑥

if the GKR verifier algorithm accepts the transcript 𝛼1|𝛽1| · · · |𝛽𝑟−1|𝛼𝑟 on input

𝑥, where each 𝛽𝑖 is computed as above.
31If given a time bound 𝑇 in advance for the computations to be supported in the delegation

protocol, there is an explicit polynomial 𝑝(|sk|) that can replace the “arbitrary poly(|sk|)” condition.
However, the description size of the hash function must depend only logarithmically on 𝑇 .
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Security follows from the exponential KDM-security of SKE (and the universal ci-

phertexts property of SKE, which holds unconditionally), which in turn follows from

the exponential circular security of FHE.

We are able to achieve an even shorter CRS (any 𝑛𝜖 rather than �̃�(𝑛)) if we are

willing to settle for non-adaptive soundness.

Theorem 2.45. If Assumption 2.2 holds, then for every promise problem ℒ = (ℒyes,ℒno)

in log-space uniform NC and every 𝜖 > 0, there is a publicly verifiable non-interactive

argument scheme with non-adaptive soundness such that for inputs of length 𝑛:

• The scheme uses a common random string of length 𝑂(𝑛𝜖).32

• Proofs are of length polylog(𝑛) and are generatable in time poly(𝑛).

• Proofs are publicly verifiable in time �̃�(𝑛).

2.7 Non-Interactive Zero Knowledge

We present the construction of Non-Interactive Zero Knowledge (NIZK) Arguments

assuming that LWE holds with exponentially small inversion probability (and suitable

parameters). We begin by recalling the definition of NIZK.

2.7.1 Non-Interactive Zero Knowledge Arguments

Definition 2.46. A non-interactive zero knowledge (NIZK) argument system Π for an

NP relation 𝑅 consists of three ppt algorithms (Setup, 𝑃, 𝑉 ) with the following syntax.

• Setup(1𝑛) takes as input a statement length 𝑛 and outputs a common reference

string crs.

• 𝑃 (crs, 𝑥, 𝑤) takes as input the common reference string, as well as 𝑥 and 𝑤 such

that (𝑥, 𝑤) ∈ 𝑅. It outputs a proof 𝜋.
32Under stronger but still plausible assumptions, the common random string can instead have

length polylog(𝑛); this would correspond to assuming FHE satisfying almost-optimal security against
subexponential-time adversaries.
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• 𝑉 (crs, 𝑥, 𝜋) takes as input the common reference string, a statement 𝑥, and a

proof 𝜋. It outputs a bit 𝑏. If 𝑏 = 1, we say that 𝑉 accepts, and otherwise we

say that 𝑉 rejects.

The proof system Π must satisfy the following requirements. Recall that ℒ(𝑅) denotes

the language {𝑥 : ∃𝑤 s.t. (𝑥, 𝑤) ∈ 𝑅} and 𝑅𝑛 denotes the set 𝑅 ∩ ({0, 1}𝑛 × {0, 1}*).

• Completeness. For every (𝑥, 𝑤) ∈ 𝑅, it holds with probability 1 that 𝑉 (crs, 𝑥, 𝜋) =

1 in the probability space defined by sampling crs ← Setup(1|𝑥|) and 𝜋 ←

𝑃 (crs, 𝑥, 𝑤).

• Soundness. For every
{︁
𝑥𝑛 ∈ {0, 1}𝑛 ∖ ℒ(𝑅)

}︁
and every polynomial size 𝑃 * =

{𝑃 *𝑛}, there is a negligible function 𝜈 such that

Pr
crs←Setup(1𝑛)

𝜋←𝑃 *
𝑛(crs)

[︁
𝑉 (crs, 𝑥𝑛, 𝜋) = 1

]︁
≤ 𝜈(𝑛).

• Zero Knowledge. There is a ppt simulator Sim such that for every ensemble{︁
(𝑥𝑛, 𝑤𝑛) ∈ 𝑅𝑛

}︁
, the distribution ensembles

{︂(︁
crs𝑛, 𝑃 (crs𝑛, 𝑥𝑛, 𝑤𝑛)

)︁}︂
𝑛

and {︁
Sim(𝑥𝑛))

}︁
𝑛

are computationally indistinguishable in the probability space defined by sam-

pling crs𝑛 ← Setup(1𝑛) (and evaluating 𝑃 and Sim with independent and uni-

formly randomness).

If the distributions are statistically indistinguishable, then Π is said to be sta-

tistically zero knowledge.

A NIZK argument system can also satisfy various stronger properties. We list two

important variants below.
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• Public Coin (or “Common Random String”): Π is called public coin

(aka, a NIZK in the common random string model) if Setup(1𝑛) simply samples

and outputs a uniformly random string.

• Adaptive Soundness: Π is adaptively sound if for every polynomial size algo-

rithm 𝑃 * = {𝑃 *𝑛}, there is a negligible function 𝜈 such that for all 𝑛,

Pr
crs←Setup(1𝑛)
(𝑥,𝜋):=𝑃 *

𝑛(crs)

[𝑥 /∈ ℒ(𝑅) ∧ 𝑉 (crs, 𝑥, 𝜋) = 1] ≤ 𝜈(𝑛).

2.7.2 NIZK from Bounded Correlation Intractability

In this section, we construct NIZK arguments in the common random string (CRS)

model from hash families that are correlation intractable with respect to efficiently

sampleable relations. We obtain these NIZK arguments by applying the Fiat-Shamir

transform to an instantiation of the [GMW86] proof system (repeated in parallel) in

which the underlying commitment scheme is encryption under a public key that is

included as part of the CRS).

With a generic public-key encryption scheme or with a secret-coin hash family,

this approach yields NIZKs with a common reference string.33 However, if the public

key encryption scheme and the hash family both have pseudorandom (public) keys,

then this approach yields NIZK arguments in the common random string model. Also,

we show that if encryption under a uniformly random public key34 is lossy [KN08,

PVW08, BHY09], then this argument system is statistical zero knowledge (rather

than just computational zero knowledge). Finally, we note that we can also obtain

adaptive soundness35 if the Fiat-Shamir hash function is applied to the concatenation

𝑥||a (where a is the first message of a three-round protocol) rather than just to a.

We begin by recalling the folklore notion of a “commit-challenge-response” proof
33In the common reference string model, the prover and verifier have shared access to a CRS

sampled by some trusted setup algorithm. In the common random string model, the CRS is required
to be a uniformly random string.

34By “uniformly random public key”, we mean a public key that is a uniformly random string,
rather than a public key sampled according to the key generation algorithm.

35if the CRS distribution uses well-formed (rather than lossy) public keys
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system. In particular, the [GMW86] protocol for the (NP-complete) problem of 3-

coloring falls into this framework. We include for completeness an explicit definition

that is taken verbatim from [HL18].

Definition 2.47 (Commit-Challenge-Response Proof System). A 3-message proof

system Π = (𝑃, 𝑉 ) for a language 𝐿 with witness relation 𝑅 is called commit-challenge-

response if it satisfies the following properties.

1. The first message is sent by the prover to the verifier. This message, which we

denote by a, consists of a block-wise commitment (under a statistically binding

commitment scheme) to a string 𝑦 that is a function of both the common input

𝑥 and the prover’s private input 𝑤.

2. The second message, which we denote by e and refer to as the verifier’s “chal-

lenge”, is sent by the verifier to the prover and is sampled uniformly at random

from a poly(|𝑥|)-size alphabet Σ.

3. The third and final message, which we denote by z, is sent by the prover to the

verifier, and consists of a decommitment to 𝑦𝑇 , i.e., a subset 𝑇 of the blocks of

𝑦. Here, 𝑇 is a function of the challenge 𝑒.

4. The verifier 𝑉 accepts if and only if (1) z is a valid decommitment of a𝑇 , and

(2) the tuple (𝑥, 𝑦𝑇 , e) passes some efficient test Check, where 𝑦𝑇 is the value

to which a𝑇 was decommitted.

In order to obtain our result on statistical zero knowledge, we also a define a spe-

cific kind of honest-verifier zero knowledge for commit-challenge-response protocols.

Definition 2.48 (Special Honest-Verifier Zero Knowledge). We say that a commit-

challenge-response proof system Π is special honest-verifier zero knowledge if there is

a ppt simulator SHVSim that on input 𝑥 produces a string (𝑒, 𝑦𝑇 (𝑒)) that is identical

to the distribution of (𝑒, 𝑦𝑇 (𝑒)) where 𝑒 is uniformly random and 𝑦 is produced by the

honest proving algorithm 𝑃 (𝑥, 𝑤).
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We note that if a commit-challenge-response protocol Π is special honest-verifier

zero knowledge, then it is also honest-verifier zero knowledge; the simulator simply

runs SHVSim(𝑥) and then commits to a string 𝑦 that matches 𝑦𝑇 (𝑒) in the locations

corresponding to 𝑇 (𝑒) and satisfies 𝑦𝑗 = 0 otherwise.

Given any commit-challenge-response proof system Π = (𝑃, 𝑉 ) and any public

key encryption scheme PKE = (PKE.Gen, PKE.PKE.Enc, PKE.Dec), we instantiate the

commitment scheme in Π using PKE. That is, Π is augmented with a common refer-

ence string pk (a public key sampled using PKE.Gen) and a commitment com(pk, 𝑏)

is sampled by calling PKE.Enc(pk, 𝑏). The encryption randomness used in the call to

PKE.Enc(pk, 𝑏) serves as a decommitment for the bit 𝑏.

We will apply the Fiat-Shamir transform to Π repeated 𝜆 · |Σ| times in parallel.36

The repeated protocol Π𝜆·|Σ| consists of three messages (a, e, z), and for a fixed secret

key sk and instance 𝑥 ̸∈ 𝐿, we consider the relation

𝑅𝑥,sk =
{︁
(a, e) : Check

(︁
𝑥, 𝑦

(𝑖)
𝑇 (𝑒(𝑖)), 𝑒(𝑖)

)︁
= 1 for all 𝑖, where y = Dec(sk, a)

}︁
.

In [HL18], it was shown that

Imported Theorem 2.49 ( [HL18], see Theorem 6.6). If ℋ is correlation intractable

with respect to all relations of the form 𝑅𝑥,sk, then applying the Fiat-Shamir transform

to Π𝜆·|Σ| yields a sound two-message protocol.

In order to obtain adaptive soundness, we define a new relation 𝑅sk as follows:

𝑅sk =
{︁
((𝑥, a), e) : 𝑥 ̸∈ 𝐿 and Check

(︁
𝑥, 𝑦

(𝑖)
𝑇 (𝑒(𝑖)), 𝑒(𝑖)

)︁
= 1 for all 𝑖, where y = Dec(sk, a)

}︁
.

As written, the length of the “output” e may depend on the input 𝑥 (i.e. not just

its length); however, we can extend this relation by padding the output up to the

maximum length of e as a function of 𝑛.
36Parallel repetition is done so that the soundness error is reduced to 2−Ω(𝜆).
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We first note the following.

Lemma 2.50. 𝑅sk is sparse and non-uniformly efficiently sampleable for every (pk, sk)

in the support of PKE.Gen.37

Proof. The sparsity of 𝑅sk follows from the 2−Ω(𝜆)-soundness of Π𝜆·|Σ|.38 To see

this, note that because Π is sound, we have in particular that for every 𝑥 ̸∈ 𝐿

and every string 𝑦, with 1 − 2−Ω(𝜆) probability over the choice of e, we have that

Check
(︁
𝑥, 𝑦

(𝑖)
𝑇 (𝑒(𝑖)), 𝑒(𝑖)

)︁
= 0 for some 𝑖. Therefore, we have that for every a, the same

statement holds for 𝑦 = PKE.Dec(sk, a) (and every 𝑥 ̸∈ 𝐿). Thus, 𝑅sk is 2−Ω(𝜆)-sparse.

To see that 𝑅sk is efficiently sampleable, we note that given 𝑥, a and sk, we can

compute 𝑦 = Dec(sk, a); then, for each block 𝑦(𝑖), we can enumerate over all challenges

𝑒(𝑖), compute Check(𝑥, 𝑦
(𝑖)
𝑇 (𝑒(𝑖))), and then sample a uniformly random 𝑒(𝑖) subject to

passing the check.

We will use this fact to construct a NIZK argument system for NP assuming

public-key encryption and programmable hash functions that are correlation intractable

for all efficiently sampleable relations. This follows the NIZK constructions of [CCRR18,

HL18]. In addition, and as noted above, we prove that for special PKE schemes such

as Regev encryption, the NIZK can be made to satisfy statistical zero knowledge and

rely on a common random string.

Construction 2.51. Suppose that:

• Π = (𝑃, 𝑉 ) is a commit-challenge-response proof system for a language 𝐿,

• PKE = (Gen, Enc, Dec) is a public key encryption scheme, and

• ℋ is a hash family.

We then define NIZKΠ,PKE,ℋ
FS = (Setup, 𝑃 , 𝑉 ) as follows.

37It is worth noting that 𝑅sk may not be efficiently decidable, as this would require deciding
whether 𝑥 ∈ 𝐿. We only need to be able to sample a uniformly random “bad” challenge when
promised that 𝑥 ̸∈ 𝐿.

38We technically need the fact that 2−Ω(𝜆)-soundness holds for every fixed choice of (pk, sk).
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• Setup: On input 1𝑛, the setup algorithm samples pk ← Gen(1𝑛) and ℎ ← ℋ𝑛,

and then outputs the common reference string (pk, ℎ).

• 𝑃 : On input
(︁
(pk, ℎ), 𝑥, 𝑤

)︁
, the prover 𝑃 generates a proof 𝜋 that consists of:

– 𝜆·|Σ| independently sampled first messages (commitments) a =
(︁
𝑎(1), . . . , 𝑎(𝜆·|Σ|)

)︁
that arise from instantiating 𝑃 with the non-interactive commitment Enc(pk, ·).

– The responses z =
(︁
𝑧(1), . . . , 𝑧(𝜆·|Σ|)

)︁
of 𝑃 that correspond to the 𝜆 · |Σ|

challenges e = (e(1), . . . , e(𝜆·|Σ|)) obtained as an appropriate-length prefix

of ℎ(𝑥||a).

• 𝑉 : On input
(︁
(pk, ℎ), 𝑥, 𝜋), the verifier accepts iff 𝑉 accepts the 𝜆·|Σ| transcripts(︁

pk, 𝑥, 𝑎(𝑖), 𝑒(𝑖), 𝑧(𝑖)
)︁

where e is again the first 𝜆 · |Σ| · log(|Σ|) bits of ℎ(𝑥||a).

Theorem 2.52. Suppose that:

• Π = (𝑃, 𝑉 ) is an honest-verifier zero knowledge commit-challenge-response proof

system for an NP language 𝐿.

• PKE = (Gen, Enc, Dec) is a public key encryption scheme.

• ℋ is a hash family (with appropriate input and output lengths) that is correlation

intractable for all efficiently sampleable relations, and in addition satisfies the

following additional property:

– Approximate Average-Case Programmability: There is an efficient

sampling algorithm ℎ ← Samp(a, e) such that for any fixed a, the distri-

bution {ℎ ← Samp(a, e)} for uniformly random e is statistically indistin-

guishable from ℎ← ℋ.

Then, the protocol ̃︀Π (as in Construction 2.51) is an adaptively sound NIZK argument

scheme for 𝐿.

Moreover:
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1. If public keys pk generated using PKE.Gen are (computationally) pseudorandom

and ℋ has (computationally) pseudorandom keys, then ̃︀Π is a (non-adaptively

sound) NIZK when the CRS is instead sampled to be a uniformly random string.

2. If a uniformly random public key pk of the scheme is lossy – meaning that

(pk, Enc(pk, 0)) ≈𝑠 (pk, Enc(pk, 1)) when pk is sampled uniformly at random

– and Π satisfies special honest-verifier zero knowledge, then ̃︀Π is a (non-

adaptively sound) non-interactive statistical zero knowledge (NISZK) argument

system.

3. If condition (2) holds and ℋ has statistically pseudorandom keys, then ̃︀Π is

a (non-adaptively sound) NISZK argument when the CRS is sampled to be a

uniformly random string.

Proof. Completeness of the protocol follows directly from the completeness of Π.

We next argue (adaptive) soundness. Suppose that some efficient algorithm 𝒜,

given (pk, ℎ), is able to produce (𝑥, a, z) such that, with non-negligible probability, it

holds that 𝑥 ̸∈ 𝐿 and ̃︀Π.𝑉 (pk, ℎ, 𝑥, a, z) = 1. We then define the following algorithm

𝒜′ breaking the correlation intractability of ℋ.

• 𝒜′ first samples (pk, sk)← PKE.Gen(1𝜆) and chooses the relation 𝑅sk defined as

above.

• 𝒜′ is then given a hash function ℎ ← ℋ. It runs 𝒜(pk, ℎ), obtaining (𝑥, a, z)

and outputs (𝑥, a).

To see that this breaks the correlation intractability of ℋ with respect to 𝑅sk, we

note that whenever ̃︀Π.𝑉 (pk, ℎ, 𝑥, a, z) = 1, z must contain valid decommitments

to some strings 𝑦
(𝑖)
𝑇 (𝑒𝑖) for each 𝑖 (where e is computed as in Construction 2.51),

which are necessarily the corresponding blocks of PKE.Dec(sk, a) by perfect decryption

correctness. Then, the fact that ̃︀Π.𝑉 (pk, ℎ, 𝑥, a, z) = 1 implies by definition that

𝑅sk(𝑥, a, ℎ(𝑥, a)) = 1.
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Therefore, since we know by Lemma 2.50 that 𝑅sk is sparse and efficiently sam-

pleable and ℋ is correlation intractable for all such relations, we conclude that ̃︀Π is

adaptively sound.

If the CRS is instead sampled to be a uniformly random string and PKE and ℋ

have pseudorandom (public) keys, then non-adaptive soundness follows by a hybrid

argument: if an efficient cheating prover could break the (non-adaptive) soundness of

the protocol with a uniformly random CRS, then the same prover would break (non-

adaptive) soundness of the protocol ̃︀Π where the CRS is generated using PKE.Gen and

ℋ.Gen. This would contradict soundness of the basic protocol, hence the modified

protocol is sound. Note that this argument only shows that the modified protocol is

non-adaptively sound, because the win condition of the adaptive soundness game is

not efficiently checkable.

Finally, we show that our scheme is zero knowledge. To do so, we write down

the following simulator Sim(𝑥, pk):

• Given 𝑥, first sample a uniformly random challenge vector e.

• Then, run the honest verifier simulator Π.HVSim(𝑥, pk, e) associated to Π to

produce a simulated first message a and third message z

• Finally, sample a hash function ℎ using the sampler Samp(a, e) and output

(CRS, a, z) where CRS = (pk, ℎ).

The claim is that when 𝑥 ∈ 𝐿 and pk is generated using PKE.Gen, Sim(𝑥, pk) is

computationally indistinguishable from an honest proof (using 𝑥 and a witness 𝑤).

This follows by a hybrid argument. First, we note that (a, e, z) as sampled by HVSim

is computationally indistinguishable from an honest proof (a, e, z) (using a uniformly

random e) by the simulation security of Π, which implies that the output of Sim(𝑥, pk)

is computationally indistinguishable from (CRS, a, z) where (a, e, z) is an honest proof

and ℎ is sampled from the distribution ℎ ← Samp(a, e). The approximate average-

case sampleability of ℋ then implies that this distribution is indistinguishable from

an honest (CRS, proof) pair in the round-compressed protocol.
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Finally, suppose that PKE is a lossy encryption scheme in which lossy public

keys are uniformly random. We again consider the modified protocol in which the

public key portion of the CRS is sampled uniformly at random, and our simulator

will operate as follows.

• Sample a public key pk uniformly at random.

• Repeatedly call the special simulator Π.SHVSim(𝑥), producing (𝑒(𝑖), 𝑦
(𝑖)
𝑇 (𝑒(𝑖)))𝑖.

• Set a to be a commitment to strings 𝑦(𝑖) matching the substrings above (and 0

otherwise), and z to be decommitments to (𝑦(𝑖)
𝑇 (𝑒(𝑖)))𝑖.

• Sample ℎ← Samp(a, e).

In this situation, the commitment scheme used to instantiate Π is actually statis-

tically hiding by the lossiness of PKE, which implies that the simulated distribution

(a, e, z) is statistically indistinguishable from a honest (parallel repeated) Π-proof.

This implies that our simulated proof (pk, ℎ, a, z) is statistically indistinguishable

from the distribution (pk, ℎ, a, z) in which (a, e, z) is an honest (parallel repeated)

Π-proof and ℎ is sampled from ℎ← Samp(a, e). Then, the approximate average-case

sampleability of ℋ (along with the fact that ℋ has statistically pseudorandom keys)

again tells us that this is statistically indistinguishable from an honest proof in the

round-compressed protocol. This completes the proof of statistical zero knowledge,

and of Theorem 2.52.

Instantiations

If the (standard) LWE assumption holds, then a variant of Regev public-key encryp-

tion satisfies all the conditions required by Theorem 2.52 to ensure that the resulting

NIZK argument is statistically zero knowledge in the common random string model:

• Regev public-key encryption [Reg05] is a lossy public key encryption scheme.

• To ensure that decryption is perfectly correct, we will use a truncated Gaussian

distribution for the noise distribution in our variant of Regev encryption. The
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polynomial security of this variant (which is all that we require of our com-

mitment scheme) follows from this follows from the security of standard Regev

encryption, i.e. from LWE.

The hash family ℋ in Theorem 2.52 can be instantiated using any of the KDM-

secure encryption schemes from Section 2.4.2 or Section 2.4.3. It is clear by inspection

that the hash family from Section 2.4.2 satisfies (perfect) programmbility (this was

already noted in [CCRR18]). Moreover, the hash families from Section 2.4.3 satis-

fies approximate programmability. An approximate sampling algorithm for the hash

family using a secret-key Regev (or [ACPS09]) encryption scheme (Gen, Enc, Dec)

and randomized encoding scheme (RE.Enc, RE.Dec, RE.Sim) samples ℎ← Samp(a, e)

by calling E ← RE.Sim(e) and then sampling from the conditional distribution

ℎ | Dec(a, ℎ) = E. If the randomized encoding is (1− negl(𝜆))-approximately blind,

then this sampling algorithm satisfies the desired property.

2.7.3 Our NIZK Protocol

We conclude this section by giving an explicit description of our NIZK protocol.

Theorem 2.53. If Assumption 2.1 holds with modulus 𝑞 = 𝑝𝑞′ for some prime 𝑝, se-

cret distribution uniform over [−𝑝
2 , 𝑝

2), and noise distribution uniform over [− 𝑞′

2 , 𝑞′

2 ),

then every language ℒ ∈ NP has a (publicly verifiable) NIZK argument scheme Π.

Moreover, Π can be chosen to have either adaptive soundness or statistical zero knowl-

edge.

Proof. For simplicity, we describe the NIZK argument system assuming the exponen-

tial hardness of Search-LWE with binary secrets, but our argument system that

considers Search-LWE for larger secrets follows the same blueprint.

Our NIZK argument scheme for NP uses the following building blocks.

• The 3-coloring protocol of [GMW86].

• A public-key encryption scheme PKE = (PKE.Gen, PKE.Enc, PKE.Dec) with

perfect decryption correctness, which we instantiate with standard public-key
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Regev encryption. The only constraint placed on this instantiation is that the

error distribution 𝜒err for this scheme must be 𝑞
4𝑛

-bounded with probability 1.

• A secret-key encryption scheme ̃︂SKE = ( ̃︂SKE.Gen, ̃︂SKE.Enc, ̃︂SKE.Dec) with uni-

versal ciphertexts that is 2−|sk|poly(|sk|)-KDM-secure for 𝑆(|sk|)-size computable

functions of the secret key, where 𝑆(|sk|) is an explicit polynomial function dic-

tated by the protocol below.

In order to instantiate ̃︂SKE, we use two additional building blocks

• A secret-key encryption scheme SKE = (SKE.Gen, SKE.Enc, SKE.Dec) with uni-

versal ciphertexts that is 2−|sk| · poly(|sk|)-KDM secure for key-dependent mes-

sages that are Z2-linear functions of the secret key. This is instaniated with

secret-key Regev encryption in which the secret 𝑠← {0, 1}𝑛 is a uniformly ran-

dom binary string, and the error distribution 𝜒err is uniform on the set [− 𝑞
4 , 𝑞

4)

(and 𝑞 is even).

• A randomized encoding scheme RE = (RE.Enc, RE.Dec, RE.Sim) for P/poly that

is perfectly blind and 2−𝜔(𝑛 log(𝑞))-secure. This is instantiated with point-and-

permute garbled circuits (see Imported Theorem 2.26) instantiated with a subexponentially-

secure one-way function.39

Combining Theorem 2.13, Theorem 2.52, Theorem 2.25, and Imported Theorem 2.26,

we conclude that the following protocol is a NIZK argument scheme for NP. In fact,

it relies on a common random string and satisfies statistical zero knowledge.

• Input: A graph 𝑥 = (𝑉, 𝐸). The prover receives as additional input a 3-coloring

𝑤 of 𝑥.

• Common Random String: A pair (pk, ℎ), where |pk| is the length of a Regev

public key and |ℎ| is the length of a ̃︂SKE ciphertext corresponding to a message

of length 𝜆 · |RE.Sim(0𝑂(log(|𝑥|)))|.
39In particular, the existence of such a function (family) follows trivially from the exponential

LWE-hardness assumed for the security of SKE.
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• Proof: A proof 𝜋 consists of

– A sequence of 𝜆·|Σ| independently sampled first messages a = (𝑎(1), . . . , 𝑎(𝜆|𝐸|))

using the [GMW86] proof system, where commitment is instantiated using

PKE.Enc.

– Responses z = (𝑧(1), . . . , 𝑧(𝜆|𝐸|)) using the [GMW86] proof system when

provided 𝜆|𝐸| challenges e consisting of the first 𝜆 · |𝐸| · log(|𝐸|) bits of

RE.Dec(SKE.Dec(𝑥||a, ℎ)).

• Verification: The verifier accepts 𝜋 if the [GMW86] verifier accepts the 𝜆 · |𝐸|

transcripts (pk, 𝑥, 𝑎(𝑖), 𝑒(𝑖), 𝑧(𝑖)) where e computed as above.

2.8 Success probability of polynomial time algo-

rithms on LWE

We provide a survey of the existing algorithms for breaking LWE and their success

probabilities when restricted to run in polynomial time. Recall from Assumption 4.11,

we assume the success probability of a polynomial time secret-recovery attack is at

most |Supp(𝜒sec)|−𝑛 · poly(𝑛, log(𝑞)). For example, achieving the success probability

of 2−0.99𝜆 would violate this assumption (w.r.t. a search space of size 2𝜆).

Loosely speaking, all known algorithms for LWE use one or more of the following

techniques:

• Lattice basis reduction (e.g. [LLL82,Sch87,SE94]),

• Enumeration (since [Kan87])

• Sieving (since [AKS01])

• Combinatorial (since [BKW03])

• Algebraic (since [AG11]).
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These algorithms are typically optimized to run in the smallest possible running time

while still solving LWE with overwhelming (or at least noticeable) probability. In

contrast, we are concerned with the complexity of solving LWE with tiny (but non-

trivial) probability. It is in general not clear if existing algorithms can be adapted to

this setting. In particular, we do not know of any way to scale enumeration, sieving, or

combinatorial algorithms down to the polynomial-time regime while achieving better

success probability than guessing. Let us remark that any polynomial time algorithm

with success probability of 2−𝑐𝜆 can be turned into an algorithm that in �̃�(2𝑐𝜆) time

and polynomial space that succeeds with overwhelming probability, which would be

a surprising improvement to these types of algorithms.

We further narrow down the scope of our discussion by restricting each entry of

the error vector e to be sampled from a distribution of standard deviation 𝜎 greater

or equal to 2
√

𝑛. This is justified by the worst-case to average-case reduction [Reg05]

which requires 𝜎 to be greater or equal to 2
√

𝑛, and the Arora-Ge attack [AG11]

which is only effective when 𝜎 < 𝑂(
√

𝑛). Let us remark that the Arora-Ge attack also

requires sufficiently many samples. Meanwhile, [MP13] shows when limited number

of LWE samples are given out, LWE with small errors is as secure as standard LWE.

Still, we choose to restrict ourselves to the high noise regime, given that we need the

search space of the noise to be larger than the one for the secret anyway.

Let us further remark that when choosing a composite modulus 𝑞, additional care

has to be taken on the secret and error distributions to avoid the attack by guessing a

CRT component of each entry. Consider the following example.40 Let 𝑞 = 𝑞1·𝑞2, where

𝑞1 is a prime of polynomial size and 𝑞2 = 𝑞1 +1. Let 𝜒sec be uniformly over [0, 𝑞1)∩Z,

𝜒err be uniformly over [0, 𝑞2) ∩ Z (the dimension 𝑛 of the secret vector will then be

the nearest integer of 𝜆/ log 𝑞1). Then to find the secret vector, it suffices to guess the

error vector modulo 𝑞1, and the error distribution is biased modulo 𝑞1. So by always

guessing 𝑛 entries of the error vector to be 0 modulo 𝑞1, the probability of winning is

(2/𝑞1)𝑛 > 2−𝜆+𝜆/𝑂(log(𝜆)), violating our assumption. Picking 𝑞2 to be sufficiently large,

or picking 𝑞2 to be a multiple of 𝑞1, avoids this error-guessing attack.

40We thank Oded Regev and Noah Stephens-Davidowitz for pointing out this vulnerability to us.
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2.8.1 The success probability of the lattice basis reduction

approach

In the rest of the survey we analyze the success probabilities of the basis reduction

algorithms. The flexible parameters in the LWE instance are the secret distribution

𝜒sec, the modulus 𝑞, and noise/modulus ratio. We assume the secret distribution is

uniform over [−𝐵, 𝐵]𝑛 where 𝐵 is a bound that is typically much smaller than 𝑞/2,

and (2𝐵 + 1)𝑛 is chosen to be close to 2𝜆.

Given an 𝑛-dimensional lattice ℒ. The quality of the basis B produced by a

lattice basis reduction algorithm is typically measured by the root Hermite factor

𝛿, defined as
(︁
‖b1‖

det(Λ)1/𝑛

)︁1/𝑛
where b1 is the shortest vector in B. The probabilistic

polynomial time version of the LLL algorithm [LLL82] achieves 𝛿 = 1.0746 in the

worst case. Furthermore, Schnorr’s algorithm offers a trade-off of finding a 2𝑛/𝑘-

approximate shortest vector with the running time 2𝑘 [Sch87]. Within polynomial

time, Schnorr’s algorithm outputs a 2𝑂(𝑛 log log 𝑛
log 𝑛 )-approximate shortest vector in ℒ.

In practice, it is widely observed that the basis reduction algorithms perform much

better than the worst-case bound in theory. Nguyen and Stehlé [NS06] suggest that

the root Hermite factor achieved by LLL is 1.02 on average. So to give a proper

estimation of the hardness of LWE, we consider both the theoretical bounds and the

experimental evidences.

Choosing a proper basis. Let A ∈ Z𝑚×𝑛
𝑞 , y = As + e (mod 𝑞) be our target

LWE instance. Considering the following lattice ℒA with basis B:

B =

⎛⎜⎝𝑞I𝑚×𝑚 A

0 I𝑛×𝑛

⎞⎟⎠ .

Expressing y as As + e + 𝑞k gives us B ·

⎛⎜⎝k

s

⎞⎟⎠−
⎛⎜⎝y

0

⎞⎟⎠ =

⎛⎜⎝−e

s

⎞⎟⎠. If ‖s‖ is small (which

is the interesting case in our applications), then LWE can be solved by running a
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CVP solver on given the basis B and target t :=

⎛⎜⎝y

0

⎞⎟⎠, or running an SVP solver on
⎛⎜⎝B t

0 𝑀

⎞⎟⎠ where 𝑀 is a relatively small integer (e.g. 𝑀 = 1). This is referred to as

the primal approach.

Alternatively, we can try to solve the SIS problem for A, then conduct a distin-

guishing attack. This is referred to as the dual approach.

For both approaches, when 𝑚 (i.e. the number of LWE samples) is sufficiently

large, the success probability (or the running time) of the basis reduction algorithm

can be optimized by throwing away a few samples and working with a smaller 𝑚. From

now we assume 𝑚 is the optimized number of LWE samples. According to [MR09],

for the dual approach, given a desired root Hermite factor 𝛿, the optimal choice for 𝑚

is to set 𝑚 ≈
√︁

𝑛 log 𝑞/ log 𝛿, then the state-of-art basis reduction algorithm outputs

a vector of length min{𝑞, 22
√

𝑛 log 𝑞 log 𝛿}. For the primal approach the estimation is

similar.

The distribution of the reduced basis. Recall our goal is to estimate the suc-

cess probability of the secret-recovery attack, in an extreme setting where a success

probability of say 2−0.99𝜆 would be considered non-trivial w.r.t. a search space of size

2𝜆. So we would like to estimate the probability of finding a “significantly short”

vector via the basis reduction algorithms. To keep the discussion concrete, we stick

with the following meaning of “significantly short”: the root Hermite factor is (1 + 𝜖)

where 𝜖 > 0 is an arbitrarily small constant.

However, understanding the distribution of the outputs produced by LLL/BKZ

is known as a challenging problem. Below we survey a few recent studies that tackle

the problem from different directions. Jumping ahead, currently we are not able to

draw a solid conclusion from these studies to our assumption.

Fixing two target root Hermite factors 𝛿0 > 𝛿1 > 1. Suppose the LLL/BKZ

algorithm outputs a random basis among all the 𝛿0-reduced bases (under a well-

defined probability measure), then the probability of achieving root Hermite factor 𝛿1
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can be estimated by counting the number of 𝛿1-reduced bases out of all the 𝛿0-reduced

bases. To this end, Kim and Venkatesh [KV16] study the statistical behavior of 𝛿-

Siegel-reduced bases (the Siegel-reduced bases satisfy a slightly weaker condition than

the LLL-reduced bases). Their study shows that most of the 𝛿-Siegel-reduced bases

have root Hermit factors very close to 𝛿. Formally, let 𝑁𝛿(𝐿) be the number of the

Siegel-reduced bases for a lattice 𝐿 of 𝑛-dimension with reduction parameter 𝛿. The

expectation of 𝑁𝛿(𝐿) satisfies limn
log EN𝛿(L)

n3 = 1
6 log 𝛿. Assuming Riemann hypothesis,

the standard deviation of 𝑁𝛿(𝐿) is at most 𝑒−𝑂(𝑛2) times its mean. This means for a

fixed lattice 𝐿, by Chebyshev’s inequality, with probability greater than 1− 𝑒−𝑂(𝑛2),

the portion of (𝛿0 − 0.0001)-reduced bases out of all the 𝛿0-reduced bases is 𝑒−𝑂(𝑛3).

However, the result of [KV16] indeed justifies that the bases produced by the

LLL/BKZ algorithm in practice are largely biased, since otherwise the average root

Hermite factor would be closer to 1.0746 but not 1.02. The precise statistical behavior

of LLL/BKZ remains largely elusive. Recent experimental studies (cf. [GN08,CN11,

MW16, YD17], and more) provide more predictions on the standard deviation and

other parameters, which suggest that the basis reduction algorithms might produce

an extremely short vector “more often than expected”. But at this moment, we are

not able to conclude that the basis reduction algorithms achieve root Hermite factor

(1 + 𝜖) for an arbitrarily small constant 𝜖 > 0 with non-trivial probability.

Summary. Under the current understanding of the statistical behavior of LLL/BKZ,

if the modulus 𝑞 is chosen to be smaller or equal to 2polylog(𝑛), then the existing lattice

reduction algorithms do not seem to achieve non-trivial success probabilities in break-

ing LWE. As a precautionary measure, the modulus 𝑞 can be chosen as a polynomial

in 𝑛, which implies the modulus/noise ratio is polynomial. All of the applications in

our paper can use such a choice of 𝑞.

122



Chapter 3

Non-Interactive Zero Knowledge

and Correlation Intractability from

Circular-Secure FHE

3.1 Introduction

Zero-knowledge (ZK) protocols, introduced by [GMR85], have been ubiquitous in

cryptography for the last 30 years. At a high level, a zero-knowledge protocol Π is

an interactive protocol between a prover 𝑃 and a verifier 𝑉 , in which the verifier

𝑉 is convinced that some statement “𝑥 ∈ 𝐿” is true but learns nothing beyond this

fact. This “zero knowledge” property is formalized by the simulation paradigm: prov-

ing that an interaction between an honest prover 𝑃 and any (potentially dishonest)

verifier 𝑉 * can be simulated given only the verifier 𝑉 * and its input.

An important and extremely useful variant of zero-knowledge protocols is a non-

interactive zero-knowledge (NIZK) protocol, in which a proof consists of a single

message from the prover to the verifier. While it is known [GO94] that such NIZKs

(or even 2 message zero-knowledge argument systems) for languages outside BPP do

not exist in the plain model, we can construct NIZK proof systems in a setting where

the prover and the verifier have access to a common reference string which is chosen
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from a predefined distribution, e.g. [BFM88, FLS90, CHK03, GOS06, SW14, BP15].

In this work, we make progress on two related open problems in the study of non-

interactive zero-knowledge protocols.

Lattice-Based Non-Interactive Zero Knowledge. While it is known how to

construct NIZKs for NP under standard number-theoretic assumptions such as factor-

ing and Bilinear Diffie-Helllman in prime-order elliptic-curve groups [BFM88,FLS90,

CHK03], we do not know how to construct NIZK protocols based on lattice assump-

tions [Ajt96,AD97,Reg05] (except for extremely strong assumptions that suffice for in-

distinguishability obfuscation). In particular, we do not know how to construct NIZK

protocols from any known variant of the learning with errors (LWE) problem [Reg05].

This stands in sharp contrast to the large body of work ( [GPV08, PVW08, Gen09,

BV11,BLMR13,GVW13,GKP+13,BV15,CC17,GKW17a,WZ17,GKW18], to name a

few) that successfully constructed a variety of cryptographic applications from LWE

and closely related lattice assumptions — including many applications where LWE-

based realizations are the only known ones. In fact, NIZK has stood out as possi-

bly the exceptional core cryptographic primitive that can be constructed from the

above number-theoretic assumptions (which are notably all broken by polynomial-

time quantum computers) but not lattice assumptions.

NIZK via the Fiat-Shamir Transform. A natural approach to constructing

NIZK protocols is to use the Fiat-Shamir transform [FS87], which prescribes a gen-

eral way to remove interaction from public-coin interactive proofs: To transform an

interactive proof Π to a non-interactive one, have the verifier first send a hash func-

tion ℎ to the prover, and then have the prover compute the entire transcript of Π by

itself, replacing the verifier’s challenges by the result of applying the hash function to

the transcript so far (or portions thereof). The prover sends this entire transcript to

the verifier in one message, and the verifier accepts if all checks verify.

Fiat and Shamir proposed to apply this methodology to a three-round identifica-

tion protocol, using a fixed hash function such as ℎ(𝑥) = DES𝑥(0), with the goal of
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obtaining a signature scheme; later instantiations used SHA and other cryptographic

hash functions. As heuristic evidence for its security, Bellare and Rogaway [BR93]

showed that when applied to a three-round honest-verifier Zero-Knowledge protocol

with negligible soundness error, the Fiat-Shamir transform yields a NIZK protocol

for the same language, as long as the hash function is modeled as a random oracle.

Still, while this paradigm seems like a natural and attractive way to construct simple

and efficient NIZK protocols, finding explicit hash functions that suffice to make the

approach work under well-defined hardness assumptions has proved to be elusive.

Furthermore, several works have demonstrated that such a hash function would

have implications elsewhere, and might also be hard to come by. Specifically, [DNRS99]

show that if there is a hash function ℋ instantiating the Fiat-Shamir transform for

some three round public coin interactive proof Π, then Π is not (general verifier)

zero knowledge. [Bar01,GK03] show that there exists some (artificially constructed)

3-round public-coin computationally sound proof (a.k.a an argument) Π, for which

the Fiat-Shamir heuristic fails to preserve soundness no matter what hash function

is used to instantiate it. Furthermore, [BDG+13] show that no hash function family

can be shown to suffice for the Fiat-Shamir via black-box reduction to a game-based

assumption, even if one restrict attention to the case where the initial protocol is

a three-round statistically sound proof. Nevertheless, it remains plausible that the

Fiat-Shamir heuristic could be securely instantiated via some explicit hash family for

specific classes of protocols. Showing that this is the case under standard assumptions

is a long-standing open problem [BLV03].

Correlation Intractability and Recent Progress. Another hardness property

for hash functions, which turns out to be easier to formalize and closely related to

“soundness for the Fiat-Shamir transform,” is correlation intractability (which was

defined in [CGH98] for a different purpose). Roughly speaking, a hash function

family ℋ is correlation intractable (CI) for a relation 𝑅(𝑥, 𝑦) if it is computationally

hard, given a random hash key 𝑘, to find any input 𝑥 such that (𝑥, 𝐻𝑘(𝑥)) ∈ 𝑅. The

most general class of relations typically considered is the set of all sparse relations: a
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relation 𝑅 is sparse if for every 𝑥, the set of all 𝑦 such that (𝑥, 𝑦) ∈ 𝑅 is a negligible

faction of all possible values 𝑦. As observed in [HMR08], CI families (for this broadest

possible class of relations) suffice for the soundness of the Fiat-Shamir transform,

whenever the initial protocol is a statistically sound proof.

Initially this observation was taken as evidence for the hardness of constructing

CI functions. Recently, however, a number of explicit hash function families were

shown to be CI for certain classes of relations under well-defined assumptions [CCR16,

KRR17,CCRR18,HL18,CCH+18]. Moreover, these hash functions were shown to be

sound for the Fiat-Shamir transform for large classes of protocols. While these are

significant advancements, the hardness assumptions used in these works are very

strong and not well understood. See more discussion in Section 3.1.2.

3.1.1 Our Contributions

Our main result is a correlation-intractable hash family for a large class of relations,

based on circular-secure fully homomorphic encryption (FHE). This is the first con-

struction based on a “fully falsifiable” assumption: one defined via a game between an

adversary and a polynomial-time challenger where we assume that every polynomial-

time adversary has at most a negligible advantage in the game. Moreover, it is a

cryptographic assumption that is widely used elsewhere; in particular, it is currently

an essential step for obtaining fully (non-leveled) homomorphic encryption in the first

place.

Our correlation-intractable hash family is powerful enough to instantiate the Fiat-

Shamir transform for a certain class of public-coin proof systems. The class is quite

broad; in particular, it suffices for obtaining NIZKs for all of NP. We provide two

variants of this transformation: one variant results in NIZK protocol where the zero-

knowledge property is statistical, and the CRS is “public coin” (in fact, it is uniformly

distributed). The other variant results in a NIZK with statistical soundness. The

latter variant is especially surprising since, even in the random oracle model, the

Fiat-Shamir transform only provides computational soundness and therefore our hash

function has some advantages even over a random oracle. Furthermore, the two
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variants have reference strings that are indistinguishable from each other, so the

resulting NIZK protocol has a “dual mode” property [DN01,GOS06].

In addition to the NIZK application, we show two other interesting applications of

our hash family. One result – essentially following from [DNRS99] – is that assuming

circular-secure FHE, a class of natural three-message public-coin protocols (which

in particular includes the [GMR85] Quadratic Residuosity protocol) are not zero

knowledge when repeated in parallel. This partially resolves open questions posed

in [DNRS99,BLV03].

The other application (or extension) is that our hash family has the following

interesting universality properties for correlation intractability, assuming only plain

LWE: if any one of a class of hash functions is correlation intractable for all (even

inefficiently verifiable) sparse relations, then our family is correlation intractable for

all (efficiently verifiable and sufficiently sparse) relations. Remarkably, universality

holds even for multi-input correlation intractability (namely, when the relation can

depend on multiple inputs to the hash function and the corresponding outputs).

We now describe our contributions in more detail.

Correlation Intractability from Fully Homomorphic Encryption

We focus on obtaining correlation intractability for the following class of relations.

First, we consider relations 𝑅 where for every 𝑥 there is a single 𝑦 such that 𝑅(𝑥, 𝑦)

holds. We let 𝑓 denote the function that maps 𝑥 to the corresponding 𝑦 that makes

𝑅(𝑥, 𝑦) hold. That is, 𝑅(𝑥, 𝑦) = 1 iff 𝑦 = 𝑓(𝑥). We say that 𝑅 is searchable in time

𝑇 if 𝑓 is computable in time 𝑇 . We then construct, for each time bound 𝑇 , a hash

function family that is CI with respect to all relations that are searchable in time 𝑇 .

That is:

Theorem 3.1. If there exists a circular secure fully homomorphic encryption scheme,

then for every polynomial time bound 𝑇 = 𝑇 (𝜆), every polynomial input size 𝑛 = 𝑛(𝜆)

and every constant 𝜖 > 0, there exists a hash family ℋ that is correlation intractable

for all relations that are searchable in time 𝑇 , with input size 𝑛 and output size 𝜆𝜖.
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We emphasize that efficient searchability is quite different than the notions of ef-

ficient relations used in prior work [CCR16,HL18,CCH+18]. Still, we will see that it

suffices for our needs. Moreover, our construction is very different from most prior

work on correlation intractability: we show that a random key 𝑘 is indistinguishable

from a key 𝑘′ for which there do not exist any 𝑥 for which ℎ𝑘(𝑥) = 𝑓(𝑥). We call

this property “somewhere statistical correlation intractability” in analogy to the no-

tion of “somewhere statistically binding” hash functions of [HW15b]. This statistical

property is also what allows us to modify our NIZK argument system to obtain NIZK

proofs rather than just arguments. See more details in Section 3.1.3

Universal CI. We also show that our particular hash function ℎ(𝑘, 𝑥) with some

fixed time bound 𝑇 is correlation-intractable for general efficiently verifiable relations

of sufficient sparsity, assuming that:

1. There exists some hash function ℎ′(·, ·) of size 𝑇 which is correlation-intractable

for general (even inefficiently verifiable) relations of sufficiently smaller sparsity.

2. The FHE scheme is semantically secure (we do not rely on circular security for

this result).

In addition, our universality argument even extends to the case of multi-input corre-

lation intractability, about which very little is currently known.

We note that the flavor of universality demonstrated in this work is very different

than other universality results which rely on “Levin’s trick” [Lev73]. Specifically,

Levin’s trick involves guessing the description of a Turing Machine 𝑀 that securely

implements the primitive, and the resulting universal schemes incur a security loss

which is exponential in the length of 𝑀 . Although this is only a constant loss, it is

likely to be quite large. In contrast, our universal scheme does not involve guessing

a Turing Machine and does not incur the corresponding security loss. In fact, in

contrast to Levin’s trick, our technique even works in the “non-uniform” setting: if

we only start with the premise that there exists a non-uniform constructions of a

secure correlation-intractable hash family, then our construction (which is uniform)

128



is still secure (but the security reduction is non-uniform).

Applications to Fiat-Shamir and NIZK

By applying our hash family from Theorem 3.1 to a particular 3-round proof system

for graph Hamiltonicity based on [FLS90], we obtain NIZK arguments in the com-

mon reference string model from any (circular-secure) fully homomorphic encryption

scheme.

Theorem 3.2. If there exists a circular-secure fully homomorphic encryption scheme,

then there exist (adaptively sound) NIZK arguments for NP in the common reference

string model.

In fact, we prove two different strengthenings of Theorem 3.2: we construct (non-

adaptively sound) non-interactive statistical zero-knowledge (NISZK) arguments for

NP in the common random string model, and we construct statistically (and adap-

tively) sound NIZK proofs for NP in the common reference string model.

Theorem 3.3. If there exists a circular secure fully homomorphic encryption scheme,

then there exist statistically (and adaptively) sound NIZK proofs for NP in the com-

mon reference string model.

Theorem 3.4. Suppose that there exists a circular secure fully homomorphic encryp-

tion scheme with pseudorandom ciphertexts and public keys. Furthermore, suppose

that there exists a lossy public key encryption scheme [KN08, PVW08, BHY09] with

uniformly random lossy public keys. Then, there exist (non-adaptively sound) NISZK

arguments for NP in the common random string model.

The additional hypotheses of Theorem 3.4 are satisfied under LWE. Interestingly,

to the best of our knowledge, we did not previously have NISZK argument systems in

the common random string model from any standard cryptographic assumption (the

[GOS06] NISZK argument system requires a non-random common reference string).

Also, we previously did not have any approach toward achieving statistically sound

proofs via the Fiat-Shamir heuristic.
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Note on Adaptively Sound NISZK: An earlier version of this paper erroniously

claimed to construct adaptively sound NISZK arguments; in fact, there are notable

barriers to obtaining such a result [Pas13] and we do not prove that our NIZKs can

simultaneously satisfy these two properties (see footnote 13 regarding Theorem 3.48).

To reiterate, our NIZK arguments are shown to satisfy either adaptive soundness or

statistical zero knowledge, but not both simultaneously.

Fiat-Shamir for Trapdoor Σ-Protocols As explained above, our hash family ℋ

can be used to soundly instantiate the Fiat-Shamir heuristic for a particular modi-

fication of the 3-round proof system of [FLS90]. More generally, we can apply Fiat-

Shamir to “trapdoor Σ-protocols” (see Definition 3.50): roughly speaking, these are

3-message protocols Π in the common reference/random string (CRS) model with the

following two properties:

• If the statement 𝑥 is false, then for every first message a, there is a unique

challenge e for which there is an accepting third message z that results in an

accepting transcript (a, e, z).

• There is a trapdoor 𝜏 associated with the CRS that allows us to efficiently

compute this “bad challenge” e from the first message a.

In this language, we modify the [FLS90] 3-round proof system to make it a “trap-

door Σ-protocol” by choosing a commitment scheme that has a commitment public

key (which we put in the CRS) for which there exists a trapdoor allowing for extrac-

tion. Moreover, we define a generalization called an “instance-dependent trapdoor

Σ-protocol” (see Definition 3.51), in which the trapdoor is allowed to depend on the

instance 𝑥, that also captures the unmodified [GMR85] protocol. We prove that our

hash family suffices to instantiate Fiat-Shamir for all such protocols. By [DNRS99],

this implies that the (parallel repeated) [GMR85] protocol is not zero knowledge.

Corollary 3.5. Suppose that there exists a circular secure fully homomorphic encryp-

tion scheme, and further assume the hardness of quadratic residuosity. Then for any
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𝜖 > 0, the [GMR85] protocol for quadratic residuosity, repeated 𝜆𝜖 times in parallel,

is not zero knowledge.

About the Assumption: Circular Secure FHE

We know how to construct leveled FHE under the learning with errors (LWE) as-

sumption [BV11,BGV12,Bra12,GSW13,BV14] which is in turn as hard as worst-case

lattice problems [Reg05, BLP+13, PRSD17]. As far as we know, it is reasonable to

assume that any of these FHE schemes is circular secure, meaning that if we encrypt

the secret key (one bit at a time) then this is indistinguishable from encrypting a

dummy message consisting of all 0s. This is a “fully falsifiable” assumption where

we only need to assume a standard poly/negligible level of security. In fact, this

assumption is needed to perform bootstrapping [Gen09] and is currently the only

known approach1 to get fully (non-leveled) homomorphic encryption. Moreover, cir-

cular security appears to be a very mild assumption: as far as we know all natural

encryption schemes that are semantically secure are also circular secure. In fact, it is

highly non-trivial to come up with even contrived constructions of semantically secure

encryption schemes which are not circular secure and we had no such examples until

fairly recently with the works of [Rot13, GKW17b, GKW17a, WZ17]. Although we

do not know how to prove the circular security of any FHE candidate under LWE

directly, we consider circular secure FHE to be a mild, fully falsifiable, lattice-based

assumption. Our work achieves the first constructions of correlation-intractable hash

functions, instantiations of Fiat-Shamir and NIZKs under such assumptions.

3.1.2 Prior Work on Correlation Intractability and Fiat-Shamir

This work continues a recent line of works [CCR16,KRR17,CCRR18,HL18,CCH+18]

focused on constructing correlation-intractable hash families and using them to in-

stantiate the Fiat-Shamir transform in the standard model. Throughout, we consider

and compare the following main aspects of the constuctions and assumptions in these
1It has also been shown that indistinguishability obfuscation can be used to bootstrap FHE

[CLTV15], but there are currently no instantiations of IO from standard assumptions.
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works (we consider game-based assumptions):

(a) Our level of familiarity with the assumption

(b) Formal characterictics of the assumption, namely:

(b.1) The complexity of the algorithm conducting the security game and de-

ciding whether a purported adversary won the game (is it exponential

in the security parameter?)

(b.2) The bound on the allowed success probability of the adversary (is it

exponential in the security parameter?)

(c) The class of relations for which correlation intractability is achieved; in partic-

ular, whether the hash family is compact (namely whether the a single family

of functions can withstand relations of arbitrary polynomial size).

The works are described below.

• [CCR16] constructs hash functions that are correlation intractable for all effi-

ciently verifiable relations assuming subexponentially secure indistinguishabil-

ity obfuscation (IO) [BGI+01, GGH+13] for all circuits as well as input-hiding

obfuscation [BCKP14] for all evasive circuits. Both of these assumptions are

non-standard; indeed, IO has no constructions from standard assumptions, and

input-hiding obfuscation is even less understood. The [CCR16] construction is

non-compact: the description size of the hash function depends polynomially on

the maximum description size of the relations covered. Using ideas from [HL18],

the [CCR16] construction can be used to instantiate the Fiat-Shamir heuristic

for specific 3-message protocols of interest in a similar way to what is done in

later works.

• [KRR17] (independently of [CCR16]) constructs hash functions that are cor-

relation intractable for all sparse relations; in particular, they instantiate the
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Fiat-Shamir transform for all constant-round interactive proofs, yielding a con-

struction of NIZK arguments as well as showing that no constant-round public-

coin zero knowledge proofs exist. They do so assuming subexponential indis-

tinguishability obfuscation, and in addition a strong variant of point function

obfuscation satisfying a form of “fully exponential KDM security.” Roughly

speaking, this requires that it is fully exponentially hard for a polynomial-time

adversary to recover a point 𝑥* given an obfuscation of a program that outputs

𝑦* = 𝑓(𝑥*) on a particular (random) input 𝑥*, for any (possibly inefficient)

function 𝑓 .

• [CCRR18] obtains results similar to [KRR17], with significantly simpler and

more efficient constructions that avoid obfuscation. Furthermore, their assump-

tions pertain to security properties of known constructs such as Regev and El-

Gamal encryption. Still, their assumptions have the same strong flavors as those

of [KRR17]: in particular, they require the existence of an encryption scheme

with the property that it is fully exponentially hard to recover the secret key sk

given a KDM-encryption Enc(sk, 𝑓(sk)) for any (possibly inefficient) function 𝑓

(where Enc is either Regev or El-Gamal encryption).

• [HL18] constructs a correlation-intractable hash family for all relations sam-

pleable in a bounded polynomial time, assuming subexponential IO and expo-

nentially secure one-way functions. This removes the KDM-style assumption

(as compared to [KRR17]) but retains the reliance on indistinguishability obfus-

cation and fully exponential hardness. Their construction is also non-compact.

Still, their hash family suffices to instantiate the Fiat-Shamir heuristic for a

wide class of 3-message protocols – a strictly broader class than the protocols

that we can handle in this work.

• [CCH+18] constructs two correlation-intractable hash families for efficiently

sampleable relations: a compact one (i.e., a single poly-size family that covers

all poly-size relations) and a non-compact one. Unlike the [CCRR18] construc-

tions, both of these hash families are secure under lattice assumptions that
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Reference Assumes IO? Exotic Exp-time Exponential
(Functionality) Assumption? Challenger? Probability?

[CCR16] Yes Yes++ No No(Non-Compact, verifiable relations)
[KRR17] Yes Yes Yes Yes(Compact, all relations)

[CCRR18] No No Yes Yes(Compact, all relations)
[HL18] Yes No No Yes(Non-Compact, sampleable relations)

[CCH+18] No No No Yes(Compact, sampleable relations)
This work No No No No(Non-Compact, searchable relations)

Figure 3-1: Constructions of Correlation Intractable Hash Families

are falsifiable in polynomial time (but with exponentially small success prob-

ability). The compact family requires a form of circular security, whereas the

non-compact one relies on plain search-LWE (albeit with fully exponentially

small success probability). Their non-compact family suffices to instantiate

Fiat-Shamir for a broad class of protocols similarly to [HL18, CCR16]. Fur-

thermore, their compact scheme suffices for applying the Fiat-Shamir paradigm

to the GKR interactive proof [GKR08], thereby obtaining a publicly verifiable

succinct non-interactive argument for logspace-uniform NC without assuming

indistinguishability obfuscation or non-interactive knowledge extraction from

general adversaries.

In Fig. 3-1, we compare key features of the above works. As evident from our de-

scription, [KRR17] and all subsequent works have a “fully exponential success prob-

ability” barrier: they can only prove security under an assumption that polynomial

time adversaries cannot solve some problem with probability significantly better than

random guessing. This seems somewhat inherent to the proof technique used in all

of these results.

We note that this work is a direct follow-up to [CCH+18]. Indeed, the results and

techniques of [CCH+18] were the initial inspiration for this work.
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3.1.3 Our Techniques

We give a high-level overview of the proofs of Theorem 3.1, Theorem 3.2, and Corol-

lary 3.5. We begin with our main contribution: a new correlation-intractable hash

family.

CI for Efficiently Searchable Relations. We construct a hash-function family

ℎ(𝑘, 𝑥) with a public hash-key 𝑘 and input 𝑥 that satisfies correlation-intractability

for all “efficiently searchable relations” with some fixed polynomial time bound 𝑇 ,

meaning the following. For any function 𝑓 having circuit size 𝑇 , if a polynomial time

adversary is given a random 𝑘, he cannot find an input 𝑥 such that ℎ(𝑘, 𝑥) = 𝑓(𝑥).

The output length of the hash function can be as low as 𝜆𝜖 for any 𝜖 > 0 and the

input length can be an arbitrary polynomial in 𝜆. Note that our hash family ℎ only

depends on the bound 𝑇 but not on 𝑓 ; it is correlation intractable for all functions 𝑓

of size 𝑇 .

At a high level, the idea of the construction is the following. Designing a hash

function ℎ𝑓 (𝑘, 𝑥) that is correlation intractable for a single function 𝑓 is trivial: simply

define ℎ𝑓 (𝑘, 𝑥) = 𝑓(𝑥) + 1 (or, just flip the last bit of 𝑓(𝑥)). We will construct a hash

function family so that, for any 𝑓 , a random function from the family will look

indistinguishable from a hash function that is specifically designed to be correlation

intractable with respect to 𝑓 .

The actual construction is simple:

ℎ(𝑘, 𝑥) = FHE.Evalpk(𝑈𝑥, ct), where 𝑘 = (pk, ct), ct = FHE.Enc(pk, 𝑔0), and 𝑈𝑥(𝑔) = 𝑔(𝑥).

(3.1)

That is, the hash function interprets the hash-key 𝑘 = (pk, ct) as a public key pk

of an FHE scheme, along with a ciphertext ct encrypting some fixed circuit 𝑔0 with

input length |𝑥|, 1-bit output, and description size 𝑚 which is related to 𝑇 (the

specific structure of 𝑔0 is unimportant; in particular, it can be the all-zero circuit, i.e.

𝑔0 = 0𝑇 ′ for some 𝑇 ′). The hash function then interprets its input 𝑥 as the universal
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circuit 𝑈𝑥(𝑔) = 𝑔(𝑥), and homomorphically evaluates 𝑈𝑥(·) over the ciphertext ct. We

note that if the FHE scheme in use has pseudorandom public-keys and ciphertexts,

we can even choose 𝑘 as a uniformly random string.

Our proof of security is also simple. Assume that an adversary gets 𝑘 and is

able to find 𝑥 such that ℎ(𝑘, 𝑥) = 𝑓(𝑥) with non-negligible probability. We first

switch the ciphertext ct in the key 𝑘 to be an FHE encryption of the circuit 𝑔(𝑥) =

Decsk(𝑓(𝑥))⊕1, where sk is the FHE secret key. In other words, 𝑔 first computes 𝑓(𝑥),

then interprets it as an FHE ciphertext of a 1-bit plaintext, decrypts it and outputs

the opposite bit.2 We argue that this change is indistinguishable to the adversary by

the security of the FHE; this requires circular security since the circuit 𝑔 depends on

sk.3 Since the adversary cannot distinguish this change, it still outputs 𝑥 such that

ℎ(𝑘, 𝑥) = 𝑓(𝑥) with non-negligible probability. So, we have:

𝑓(𝑥) = ℎ(𝑘, 𝑥) = FHE.Evalpk(𝑈𝑥, ct)

= FHE.Evalpk(𝑈𝑥, Encpk(⟨Decsk(𝑓(·))⊕ 1⟩), (3.2)

where 𝑈𝑥(⟨Decsk(𝑓(·)) ⊕ 1⟩) = Decsk(𝑓(𝑥)) ⊕ 1. However, applying Decsk(·) to both

sides of (3.2) we get

Decsk(𝑓(𝑥)) = Decsk(FHE.Evalpk(𝑈𝑥, Encpk(⟨Decsk(𝑓(·))⊕ 1⟩)) = Decsk(𝑓(𝑥))⊕ 1,

where the last equality follows by correctness of FHE.Eval. In other words, once

we switched ct to be an encryption of 𝑔, we ensured that there is no 𝑥 for which

ℎ(𝑘, 𝑥) = 𝑓(𝑥). This is because we ensure that ℎ(𝑘, 𝑥) outputs a ciphertext that

is guaranteed to decrypt to a different value than the value 𝑣 obtained by applying

the decryption algorithm to 𝑓(𝑥). (We stress that we do not assume any “semantic”

meaning to the value 𝑣. Indeed, 𝑓(𝑥) is in general not a valid ciphertext, so there are

2Without loss of generality, we assume that the decryption algorithm always outputs some bit
𝑏 ∈ {0, 1}; e.g., if the decryption algorithm finds a ciphertext to be invalid then it outputs 0.

3In slightly more detail, instead of encrypting 𝑔 directly we separately encrypt 𝑓, sk and then
homomorphically compute 𝑔. This allows us to just rely on circular security (encrypting the secret
key itself) rather than key-dependent message security (encrypting functions of the secret key).
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no guarantees as to what 𝑣 might be. Still, it is a well-defined binary value.)

We note that the above proof actually demonstrates a property stronger than

plain correlation intractability: For any function 𝑓 of size 𝑇 , we can switch the

hash-key 𝑘 to a computationally indistinguishable hash-key 𝑘′ = 𝑘′𝑓 such that the

hash function is statistically correlation intractable for 𝑓 : there does not exist any 𝑥

such that ℎ(𝑘′, 𝑥) = 𝑓(𝑥). This is reminiscent of the somewhere statistically binding

hashing of [HW15b]; we call such hash functions somewhere statistically correlation

intractable.

In terms of parameters, the output size of the hash function needs to be as large

as a single FHE ciphertext encrypting a single bit, which can be set to be as low as

𝜆𝜖 for any 𝜖 > 0. On the other hand, the size of the key 𝑘 = (pk, ct) and the time to

evaluate ℎ(𝑘, ·) depend on 𝑇 ; this is because ct needs to be large enough to encrypt

𝑓 and 𝑈𝑥 needs to be large enough to evaluate 𝑓 .4

NIZKs for NP via Fiat-Shamir. We show that CI for efficiently searchable rela-

tions is sufficient to instantiate the Fiat-Shamir heuristic for a particular Σ-protocol

(i.e. 3 round public-coin protocol with “special soundness”) and get NIZK arguments

for NP. This follows the general framework explored in [HL18] and [CCH+18].

We take the Σ-protocol of [FLS90] for showing that a graph 𝐺 has a Hamiltonian

cycle. The prover sends a commitment to a random cycle graph 𝐶. The verifier sends

a challenge bit. If the bit is 0, the prover decommits to the entire graph and the

verifier checks that it is indeed a cycle. If the bit is 1, the prover sends a random

permutation of 𝐺 which maps the Hamiltonian cycle in 𝐺 to 𝐶 along with the opening

of all the non-edges of the permuted 𝐺. We amplify soundness via parallel repetition.

Borrowing an idea from [HL18], we use a public-key encryption scheme to implement

the commitment, where the public key pk is in the CRS.

The above Σ-protocol has the following property. If the statement is false, then

given the prover’s first message 𝑎, there is a unique “bad” challenge 𝑒 that for which
4If 𝑓 has a succinct description as a Turing Machine that runs in time 𝑇 , we can make the key

𝑘 shorter than 𝑇 by having ct encrypt the Turing Machine description of 𝑓 and letting 𝑈𝑥 be a
universal circuit which takes as input a Turing Machine and runs it for 𝑇 steps. Still, the time to
evaluate ℎ(𝑘, ·) depends on the run-time 𝑇 .
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a valid response 𝑧 exists. Furthermore, this “bad” challenge would be efficiently

computable if we had all the committed values. Since we use a public-key encryption

scheme as a commitment, we can extract the committed values from the commitment

𝑎 using the encryption secret key sk. Combining the above, given the encryption secret

key sk, there is an efficiently computable function 𝑓sk(𝑎) which maps the prover’s first

message 𝑎 to the unique “bad” challenge 𝑒 that has a valid response. The size of the

function 𝑓sk is bounded by some bound 𝑇 .

We show that, if we apply the Fiat-Shamir heuristic to the above protocol and use

a hash function which is correlation-intractable for all “efficiently searchable relations”

with the bound 𝑇 , we get a NIZK argument. Recall that the Fiat-Shamir heuristic

adds a hash key 𝑘 to the CRS and requires the prover to come up with a valid

protocol transcript (𝑎, 𝑒, 𝑧) where 𝑒 = ℎ(𝑘, 𝑎). Since the hash function is correlation-

intractable for all “efficiently searchable relations” with the bound 𝑇 , it is in particular

correlation-intractable for 𝑓sk. This means that an efficient prover cannot come up

with a value 𝑎 such that ℎ(𝑘, 𝑎) = 𝑓sk(𝑎). But if the statement is false, then the only

way a proof (𝑎, 𝑒, 𝑧) can be valid is if ℎ(𝑘, 𝑎) = 𝑒 = 𝑓sk(𝑎). Therefore, the prover

cannot come up with any valid proofs and we have soundness. The zero-knowledge

(ZK) property of the NIZK follows from the honest-verifier zero-knowledge property

of the Σ-protocol.5 We elaborate that in the above argument, we only need the hash

function to be correlation-intractable for a particular function 𝑓sk but since sk is secret

(releasing it would break zero-knowledge) we rely on the fact that we can choose the

hash key 𝑘 in a way that does not reveal sk.

We obtain a statistically sound NIZK proof system by using a “statistically cor-

relation intractable” hash key 𝑘𝑓sk instead of a plain hash key 𝑘. This makes use the

fact that the function 𝑓sk depends on a trapdoor to the 3-message CRS but not on the

instance 𝑥. Now, when we argue zero-knowledge, we make use of the computational

property that 𝑘𝑓sk is indistinguishable from a random 𝑘 which does not depend on sk.

Finally, if we use a “lossy encryption” scheme to implement the commitments,

5For this to work, we also need the hash function to be 1-universal, meaning that for any 𝑎
the value ℎ(𝑘, 𝑎) is uniformly random over the choice of 𝑘. We show that 1-universality can be
generically added to any correlation-intractable hash function.
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we obtain statistical zero-knowledge. In this variant, we can also make the CRS

truly random assuming that we have FHE where the public-keys and ciphertexts are

pseudorandom (implied by circular LWE) and that we have “lossy encryption” with

random public keys (implied by LWE).

Fiat-Shamir for the [GMR85] Protocol. By a very similar argument to our

NIZK construction, we show that the [GMR85] Quadratic Residuosity protocol is

not zero knowledge when repeated a large number of times in parallel, assuming the

existence of correlation-intractable hash functions for efficiently searchable relations.

This takes advantage of the aforementioned [DNRS99] result that if there exists a hash

function that suffices for the Fiat-Shamir transform for a protocol Π (for a language

𝐿 ̸∈ BPP), then Π cannot be zero knowledge. In this overview, we use [GMR85] as

an example for the general notion of an “instance-dependent trapdoor Σ-protocol”

that we introduce.

Recall the [GMR85] protocol: in order to prove that a number 𝑦 is a quadratic

residue modulo a composite number 𝑁 = 𝑝𝑞, the prover sends to the verifier a random

square 𝑎 = 𝑟2 modulo 𝑁 ; the verifier sends a random bit 𝑒 to the prover, at which

point the prover reveals a square root of 𝑎 · 𝑦𝑒 (either 𝑟 or 𝑟𝑥 for some square root 𝑥

of 𝑦).

To show that our hash family suffices to instantiate Fiat-Shamir for the [GMR85]

protocol (repeated in parallel), we note that the soundness of Fiat-Shamir for this

protocol follows from correlation intractability for the function

𝑓𝑁(a) = e := (𝑒𝑖 = 𝑄𝑅(𝑁, 𝑎𝑖))𝑖,

where 𝑄𝑅(𝑁, 𝑎) = 1 if and only if 𝑎𝑖 is a square modulo 𝑁 . This function 𝑓𝑁 simply

computes, for every first message a in the (parallel repeated) [GMR85] protocol, the

unique challenge e ∈ {0, 1}𝑡 that a cheating prover has any hope of being able to win

on (provided that the instance 𝑦 is not a quadratic residue).

While 𝑓𝑁 is not efficiently computable as a function of (𝑁, a), it is efficiently

computable given the factorization 𝑁 = 𝑝𝑞 as non-uniform advice, so we can show
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that our hash family is correlation intractable for every 𝑓𝑁 and hence demonstrates

our claimed result.

At a high level, the [GMR85] protocol is similar to our modified [FLS90] protocol

in that no-instances (𝑁, 𝑦) have an associated “bad challenge function” 𝑓𝑁 and there

is a trapdoor (𝑝, 𝑞) making 𝑓𝑁 efficiently computable. However, in this case, the

trapdoor depends on the instance (𝑁, 𝑦) (as opposed to in the [FLS90] modification,

where it only depends on the CRS). This motivates our definition of an “instance-

dependent trapdoor Σ-protocol” in Section 3.6.

Universal CI. We also show that our particular hash function ℎ(𝑘, 𝑥) described in

(3.1) with some fixed time bound 𝑇 is correlation-intractable for general efficiently

decidable relations of sufficient sparsity, assuming that:

1. There exists some hash function ℎ′(·, ·) of description size 𝑇 which is correlation-

intractable for general (even inefficient) relations of sufficient (necessarily larger)

sparsity.

2. The FHE scheme is semantically secure (we do not rely on circular security for

this result).

To see why our construction is “universal”, assume for contradiction that there

is some sufficiently sparse and efficiently computable relation 𝑅 as well as an ad-

versary that, given the key 𝑘 = (pk, ct) of our hash function, computes 𝑥 such that

(𝑥, ℎ(𝑘, 𝑥)) ∈ 𝑅 with non-negligible probability. We first switch ct to be an encryp-

tion of the correlation-intractable hash function ℎ′(𝑘′, ·) for a random 𝑘′. By the

semantic security of the encryption, this is indistinguishable and therefore the adver-

sary still produces 𝑥 such that (𝑥, ℎ(𝑘, 𝑥)) ∈ 𝑅 with non-negligible probability. Since

ℎ′(𝑘′, ·) is correlation-intractable for all sufficiently sparse relations, it is in particular

correlation-intractable for the (inefficient) relation6:

𝑅*sk = {(𝑥, 𝑧) : ∃𝑦 such that (𝑥, 𝑦) ∈ 𝑅 and 𝑧 = Dec(sk, 𝑦)},
6For this argument to work, parameters must be set so that this relation is still sparse.
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But if (𝑥, 𝑦 = ℎ(𝑘, 𝑥)) ∈ 𝑅 then 𝑦 = Encpk(ℎ′(𝑘′, 𝑥)) and therefore, for 𝑧 = Dec(sk, 𝑦),

we have (𝑥, 𝑧 = ℎ′(𝑘′, 𝑥)) ∈ 𝑅*sk. So the adversary also breaks the correlation in-

tractability of ℎ′(𝑘′, ·) with respect to the relation 𝑅*sk, which should be impossible.

3.1.4 Subsequent Work

Following this work, Peikert and Shiehian [PS19] give a beautiful construction of

a (somewhere statistically) correlation intractable hash family from the plain LWE

assumption, yielding NIZKs from plain LWE. We briefly provide an interpretation of

their construction in light of our high-level paradigm.

Recall that for our hash family is defined by having an FHE encryption Encpk(𝑓)

of a function 𝑓 in the hash key, and the hash function evaluation on input 𝑥 consists of

homomorphically evaluating the function 𝑈𝑥(𝑓) = Decsk(𝑓(𝑥))⊕ 1 under FHE. Note

that the function 𝑈𝑥(𝑓) depends on sk. In our work, this evaluation procedure is im-

plemented by releasing an encryption FHE.Enc(sk) of the FHE secret key sk as part of

the hash key, and this forces us to rely on circular secure FHE to prove security of our

hash family. At a high level, the work of [PS19] cleverly shows that one can homo-

morphically evaluate 𝑈𝑥(𝑓) directly without needing to release an encryption of the

secret key! This is done by switching between two different encryption schemes: the

“input” ciphertext is an encryption of 𝑓 under the GSW FHE scheme [GSW13], while

the “output” ciphertext is tantamount to an encryption of 𝑈𝑥(𝑓) = Decsk(𝑓(𝑥)) ⊕ 1

under the Regev encryption scheme (with the same secret key used for both schemes).

At a high level, given a GSW encryption of 𝑓 , it is possible to compute a GSW

encryption of 𝑓(𝑥) using the GSW homomorphic evaluation procedure. One can then

“downgrade” the GSW encryption of 𝑓(𝑥) to a Regev ciphertext and, in doing so,

incorporate the secret key into the computation (for some intuition as to why this is

possible, note that Regev encryption is circular secure under the plain LWE assump-

tion and therefore we can get Regev encryptions of the secret key for free). However,

since Regev encryption is no longer “fully homomorphic” but only “additively ho-

momorphic”, after downgrading to a Regev encryption, only linear functions can be

evaluated. Luckily, this suffices to perform a Regev decryption of 𝑓(𝑥) and therefore
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one can homomorphically derive a Regev ciphertext encrypting 𝑈𝑥(𝑓).

There is a caveat with the above due to the fact that Regev decryption also involves

rounding, which is non-linear. To get around this, one can think of a “noisy Regev”

variant that operates over the message space Z𝑞, and decryption does not perform

rounding, but correctness is only approximate – the decrypted value is close to the

encrypted one. One can then define 𝑈𝑥(𝑓) = Decsk(𝑓(𝑥)) + ⌊𝑞/2⌋ where Dec is the

linear “noisy Regev” decryption procedure. Using the above template, given a GSW

encryption of 𝑓 , one can compute an encryption of 𝑈𝑥(𝑓) under the “noisy Regev”

scheme. This still ensures that the hash of 𝑥, which is a “noisy Regev” encryption of

𝑈𝑥(𝑓), cannot be equal to 𝑓(𝑥) since they decrypt to values in Z𝑞 that are far from

each other.

3.1.5 Organization

The remainder of the paper is organized as follows. In Section 3.2, we recall basic

preliminaries, and in Section 3.3, we define correlation intractability [CGH98] and the

specific variants focused on in this work. In Section 3.4, we present our main con-

structions of correlation intractable hash families from fully homomorphic encryption.

Finally, we apply these hash families in Section 3.5 to obtain our main results (Theo-

rem 3.2 and its extensions), and in Section 3.6 to obtain our most general Fiat-Shamir

instantiation.

3.2 Preliminaries

We say that a function 𝜇(𝜆) is negligible if 𝜇(𝜆) = 𝑂(𝜆−𝑐) for every constant 𝑐,

and that two distribution ensembles 𝑋 = {𝑋𝜆} and 𝑌 = {𝑌𝜆} are computationally

indistinguishable (𝑋 ≈𝑐 𝑌 ) if for all polynomial-sized circuit ensembles {𝒜𝜆},

⃒⃒⃒⃒
Pr [𝒜𝜆(𝑋𝜆) = 1]− Pr [𝒜𝑛(𝑌𝜆) = 1]

⃒⃒⃒⃒
= negl(𝜆).
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3.2.1 (Lossy) Public Key Encryption

Definition 3.6 (Public Key Encryption). A public-key encryption scheme PKE =

(Gen, Enc, Dec) consists of three p.p.t. algorithms:

• Gen(1𝜆) takes as input the security parameter and outputs a public key pk and

a secret key sk.

• Enc(pk, 𝑚) takes as input the public key and a bit7 𝑚 ∈ {0, 1}; it outputs a

ciphertext ct.

• Dec(sk, ct) takes as input the secret key and a ciphertext ct; it outputs a message

𝑚′.

PKE must furthermore satisfy the following properties.

• Correctness: For all 𝜆, all 𝑚 ∈ {0, 1}, and all (pk, sk) in the support of 1𝜆,

it holds with probability 1 that Dec(sk, Enc(pk, 𝑚)) = 𝑚.

• Semantic Security: The distribution ensembles {(pk, sk)← Gen(1𝜆) : (pk, Enc(pk, 0))} ≈𝑐

{(pk, sk)← Gen(1𝜆) : (pk, Enc(pk, 1))} are computationally indistinguishable.

We say that a public key encryption scheme PKE has pseudorandom ciphertexts

if the distribution ensembles {(pk, sk) ← Gen(1𝜆) : (pk, Enc(pk, 0))} ≈𝑐 {(pk, sk) ←

Gen(1𝜆), 𝑢 ← 𝑈|Enc(pk,0)| : (pk, 𝑢)}, where ≈𝑐 denotes computational indistinguishabil-

ity, and PKE has pseudorandom public keys if a public key pk sampled according to

Gen(1𝜆) is computationally pseudorandom.

Definition 3.7 (Lossy PKE). A public-key encryption scheme PKE is said to be

lossy [KN08,PVW08,BHY09] if there exists a fake key generation algorithm FakeGen

such that:

• The (randomized) output ̃︁pk of FakeGen(1𝜆) is computationally indistinguishable

from a public key pk sampled by Gen(1𝜆).
7As usual, this extends naturally to encrypting many-bit plaintexts.
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• Encryption under fake keys is statistically hiding. That is,

{(̃︁pk, Enc(̃︁pk, 0))} ≈𝑠 {(̃︁pk, Enc(̃︁pk, 1))},

where ̃︁pk← FakeGen(1𝜆) and ≈𝑠 denotes statistical indistinguishability.

We say that PKE is lossy with uniformly random lossy public keys if (in addition)

FakeGen outputs a uniformly random string.

In this work, we make use of the fact that public-key Regev encryption [Reg05] is

lossy with uniformly random lossy public keys under the LWE assumption.

3.2.2 Fully Homomorphic Encryption and Circular Security

Definition 3.8. A fully homomorphic encryption scheme FHE = (Gen, Enc, Dec, Eval)

consists of four p.p.t. algorithms such that (Gen, Enc, Dec) is a public key encryption

scheme, and:

• Eval(pk, 𝑓, ct1, . . . , ct𝑛) takes as input the public key, a function 𝑓 (represented

by a boolean circuit), and a vector of ciphertexts (ct1, . . . , ct𝑛); it outputs an-

other ciphertext ct′, which has size that is polynomial in 𝜆 (and, without loss of

generality, linear in the output length of 𝑓).

• For any (pk, sk) ← (Gen(1𝜆)), any 𝑚1, . . . , 𝑚𝑛 ∈ {0, 1}, and any circuit 𝐶 :

{0, 1}𝑛 → {0, 1}, it holds with probability 1 that

Dec
(︂

sk, Eval
(︁
pk, 𝐶, Enc(pk, 𝑚1), . . . , Enc(pk, 𝑚𝑛)

)︁)︂
= 𝐶(𝑚1, . . . , 𝑚𝑛).

Definition 3.9. A leveled fully homomorphic encryption scheme FHE = (Gen, Enc, Dec, Eval)

satisfies the same syntax, correctness, and security properties of a FHE scheme, except

that

• Gen(1𝜆, 1𝑑) takes as additional input a circuit depth 𝑑.
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• Homomorphic evaluation correctness is only guaranteed to hold for circuits of

depth at most 𝑑.

• Ciphertexts output by Enc(pk, 𝑚) and Eval(pk, 𝑓, ct) have size that are polyno-

mial in 𝜆 (and the output length of 𝑓), independent of 𝑑.

• The decryption algorithm Dec(sk, ct) has a fixed poly(𝜆) depth (independent of

𝑑).

Leveled fully homomorphic encryption schemes are known to exist from the learn-

ing with errors (LWE) assumption [BV11,BGV12,Bra12,GSW13,BV14]. Fully homo-

morphic encryption schemes are known to exist using Gentry’s bootstrapping tech-

nique [Gen09], which requires making a circular security assumption on an LWE-based

encryption scheme. In this work, we consider the following variant of circular security.

Definition 3.10. A public key encryption scheme PKE is said to be circular secure if

{(pk, sk)← Gen(1𝜆) : (pk, Enc(pk, 0|sk|))} ≈𝑐 {(pk, sk)← Gen(1𝜆) : (pk, Enc(pk, sk))}.

3.2.3 Non-Interactive Zero Knowledge Arguments (and Proofs)

The following preliminaries are taken (with edits) from [CCH+18].

Definition 3.11. A non-interactive zero knowledge (NIZK) argument system Π for an

NP relation 𝑅 consists of three ppt algorithms (Setup, 𝑃, 𝑉 ) with the following syntax.

• Setup(1𝑛, 1𝜆) takes as input a statement length 𝑛 and a security parameter 𝜆.

It outputs a common reference string crs.

• 𝑃 (crs, 𝑥, 𝑤) takes as input the common reference string, as well as 𝑥 and 𝑤 such

that (𝑥, 𝑤) ∈ 𝑅. It outputs a proof 𝜋.

• 𝑉 (crs, 𝑥, 𝜋) takes as input the common reference string, a statement 𝑥, and a

proof 𝜋. It outputs a bit 𝑏. If 𝑏 = 1, we say that 𝑉 accepts, and otherwise we

say that 𝑉 rejects.
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The proof system Π must satisfy the following requirements for every polynomial func-

tion 𝑛 = 𝑛(𝜆). Recall that ℒ(𝑅) denotes the language {𝑥 : ∃𝑤 s.t. (𝑥, 𝑤) ∈ 𝑅} and

𝑅𝑛 denotes the set 𝑅 ∩ ({0, 1}𝑛 × {0, 1}*).

• Completeness. For every (𝑥, 𝑤) ∈ 𝑅, it holds with probability 1 that 𝑉 (crs, 𝑥, 𝜋) =

1 in the probability space defined by sampling crs ← Setup(1|𝑥|, 1𝜆) and 𝜋 ←

𝑃 (crs, 𝑥, 𝑤).

• Soundness. For every
{︁
𝑥𝑛 ∈ {0, 1}𝑛 ∖ ℒ(𝑅)

}︁
and every polynomial size 𝑃 * =

{𝑃 *𝜆}, there is a negligible function 𝜈 such that

Pr
crs←Setup(1𝑛,1𝜆)

𝜋←𝑃 *
𝜆 (crs)

[︁
𝑉 (crs, 𝑥𝑛, 𝜋) = 1

]︁
≤ 𝜈(𝜆).

• Zero Knowledge. There is a ppt simulator Sim such that for every ensemble{︁
(𝑥𝑛, 𝑤𝑛) ∈ 𝑅𝑛

}︁
, the distribution ensembles

{︂(︁
crs𝜆, 𝑃 (crs𝑛, 𝑥𝑛, 𝑤𝑛)

)︁}︂
𝜆

and {︁
Sim(𝑥𝑛, 1𝜆))

}︁
𝜆

are computationally indistinguishable in the probability space defined by sam-

pling crs𝜆 ← Setup(1𝑛, 1𝜆) (and evaluating 𝑃 and Sim with independent and

uniform randomness).

If the distributions are statistically indistinguishable, then Π is said to be sta-

tistically zero knowledge.

A NIZK argument system can also satisfy various stronger properties. We list

some important variants below.

• “Common Random String”: A NIZK argument system in the common ran-

dom string model is a NIZK argument system Π such that Setup(1𝑛, 1𝜆) simply

samples and outputs a uniformly random string.
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• Adaptive Soundness: Π is adaptively sound if for every polynomial size algo-

rithm 𝑃 * = {𝑃 *𝜆}, there is a negligible function 𝜈 such that for all 𝜆,

Pr
crs←Setup(1𝑛,1𝜆)

(𝑥,𝜋):=𝑃 *
𝜆 (crs)

[𝑥 /∈ ℒ(𝑅) ∧ 𝑉 (crs, 𝑥, 𝜋) = 1] ≤ 𝜈(𝜆).

• Statistical Soundness: Π is statistically sound if there is a negligible function

𝜈 such that for all 𝜆,

Pr
crs←Setup(1𝑛,1𝜆)

[∃(𝑥, 𝜋) such that 𝑥 /∈ ℒ(𝑅) ∧ 𝑉 (crs, 𝑥, 𝜋) = 1] ≤ 𝜈(𝜆).

A NIZK argument system satisfying statistical soundness is called a NIZK proof

system.

• Multi-Theorem Zero Knowledge: Π is multi-theorem zero knowledge if for

every polynomial function 𝑝(𝜆), there is a p.p.t. simulator Sim such that for

every ensemble {(𝑥(𝑛(𝜆))
𝑖 , 𝑤

(𝑛(𝜆))
𝑖 )𝑝(𝜆)

𝑖=1 }, the distribution ensembles

{︂(︁
crs𝜆, 𝑃 (crs𝜆, 𝑥

(𝑛)
𝑖 , 𝑤

(𝑛)
𝑖 )

)︁𝑝(𝜆)

𝑖=1

}︂
𝜆

and {︁
Sim(𝑥1, . . . , 𝑥𝑝(𝜆)))

}︁
𝜆

are computationally indistinguishable. [FLS90] showed a generic transformation

from a NIZK proof or argument system to one satisfying multi-theorem zero

knowledge. This transformation preserves computational zero knowledge in the

common random string model and statistical zero knowledge in the common

reference string model.

• Adaptive Zero Knowledge: Π is adaptive zero knowledge if for every p.p.t.

verifier 𝑉 *, there is a p.p.t. simulator Sim such that the following distribution

147



ensembles are computationally indistinguishable:

{︂
crs← Setup(1𝑛, 1𝜆), (𝑥, 𝑤, aux)← 𝑉 *(crs) : (crs, 𝑃 (crs, 𝑥, 𝑤), aux)

}︂

and {︂
Sim(1𝑛, 1𝜆)

}︂
.

This can (analogously to above) be extended to a definition of adaptive multi-

theorem zero knowledge, which can be obtained generically from adaptive

zero-knowledge by [FLS90].

3.3 Somewhere Statistically Correlation Intractable

Hash Families

In this section, we recall the notion of correlation intractability [CGH98], which is

a particular security property associated to a hash family ℋ. We then introduce a

new strengthening of this definition, which we call “somewhere statistical correlation

intractability” by analogy to the “somewhere statistically binding” hash functions

of [HW15b].

We also define new classes of relations – “efficiently searchable” and “efficiently

enumerable” relations – for which we later (1) achieve correlation intractability (“some-

where statistical,” in the case of efficiently searchable relations), and (2) obtain ap-

plications of interest.

Definition 3.12. For a pair of efficiently computable functions (𝑛(·), 𝑚(·)), a hash

family with input length 𝑛 and output length 𝑚 is a collection ℋ = {ℎ𝜆 : {0, 1}𝑠(𝜆) ×

{0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆)}𝜆∈N of keyed hash functions, along with a pair of p.p.t. algo-

rithms:

• ℋ.Gen(1𝜆) outputs a hash key 𝑘 ∈ {0, 1}𝑠(𝜆).
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• ℋ.Hash(𝑘, 𝑥) computes the function ℎ𝜆(𝑘, 𝑥). We may use the notation ℎ(𝑘, 𝑥)

to denote hash evaluation when the hash family is clear from context.

We cay that ℋ is public-coin8 if ℋ.Gen outputs a uniformly random string 𝑘 ←

{0, 1}𝑠(𝜆).

Definition 3.13 (Correlation Intractability). For a given relation ensemble 𝑅 =

{𝑅𝜆 ⊆ {0, 1}𝑛(𝜆) × {0, 1}𝑚(𝜆)}, a hash family ℋ = {ℎ𝜆 : {0, 1}𝑠(𝜆) × {0, 1}𝑛(𝜆) →

{0, 1}𝑚(𝜆)} is said to be 𝑅-correlation intractable with security (𝑠, 𝛿) if for every 𝑠-size

𝒜 = {𝒜𝜆},

Pr
𝑘←ℋ.Gen(1𝜆)

𝑥←𝒜(𝑘)

[︂(︁
𝑥, ℎ(𝑘, 𝑥)

)︁
∈ 𝑅

]︂
= 𝑂(𝛿(𝜆)).

We say that ℋ is 𝑅-correlation intractable if it is (𝜆𝑐, 1
𝜆𝑐 )-correlation intractable for

all 𝑐 > 1.

If ℛ is a collection of relation ensembles, then ℋ is said to be uniformly ℛ-

correlation intractable if for every polynomial-size 𝒜, there exists a function 𝜈(𝜆) =

negl(𝜆) such that for every 𝑅 ∈ ℛ,

Pr
𝑘←ℋ.Gen(1𝜆)

𝑥←𝒜(𝑘)

[︁
(𝑥, ℎ(𝑘, 𝑥)) ∈ 𝑅

]︁
≤ 𝜈(𝜆).

As noted in [CGH98], a random oracle (typically thought of as an “ideal hash

function” [BR93]) behaves like an 𝑅-correlation intractable for all sparse relations 𝑅.

Definition 3.14 (Sparsity). For any relation ensemble 𝑅 = {𝑅𝜆 ⊆ {0, 1}𝑛(𝜆) ×

{0, 1}𝑚(𝜆)}, we say that 𝑅 is 𝜌(·)-sparse if for 𝜆 ∈ N and any 𝑥 ∈ {0, 1}𝑛,

Pr
𝑦←{0,1}𝑚

[︁
(𝑥, 𝑦) ∈ 𝑅

]︁
≤ 𝜌(𝜆).

When 𝜌 is a negligible function, we say that 𝑅 is sparse.

8Sometimes “public-coin” hash families are defined to be hash families whose security properties
hold even when the adversary is given the random coins used to sample 𝑘 ← ℋ.Gen(1𝜆). For our
purposes (e.g. ignoring compactness), this definition is equivalent to ours.
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We now introduce our new notion of “somewhere statistical correlation intractabil-

ity.”

Definition 3.15 (Somewhere Statistical Correlation Intractability). Given a collec-

tion ℛ of relation ensembles, we say that a hash family ℋ is somewhere statistically

correlation intractable with respect to ℛ if there is an additional key generation algo-

rithm StatGen with the following properties.

• Syntax: StatGen(1𝜆, aux𝜆) takes as input the security parameter 𝜆 as well as

an auxiliary input aux𝜆. It outputs a hash key 𝑘.

• Security: For any relation ensemble 𝑅 ∈ ℛ, there exists an auxiliary input

ensemble aux such that the following two properties hold.

– Key Indistiguishability: An honestly generated key 𝑘 ← ℋ.Gen(1𝜆) is

computationally indistinguishable from a fake key 𝑘 ← ℋ.StatGen(1𝜆, aux𝜆).

– Statistical Correlation Intractability:

Pr
𝑘←ℋ.StatGen(1𝜆,aux𝜆)

[︁
∃𝑥 ∈ {0, 1}𝑛(𝜆) : (𝑥, ℎ(𝑘, 𝑥)) ∈ 𝑅𝜆

]︁
= negl(𝜆).

That is, with high probability over the choice of 𝑘 ← StatGen(1𝜆, aux𝜆),

input-output pairs satisfying 𝑅𝜆 do not exist.

Remark 3.16. By a simple hybrid argument, somewhere statistical correlation in-

tractability with respect to a family of relations ℛ implies (ordinary) correlation in-

tractability for ℛ.

3.3.1 Efficiently Searchable Relations

In this work, we focus further on achieving (somewhere statistical) correlation in-

tractability for relations 𝑅 with a unique output 𝑦 = 𝑓(𝑥) associated to each input

𝑥, and such that 𝑦 = 𝑓(𝑥) is an efficiently computable function of 𝑥.
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Definition 3.17 (Unique Output Relation). We say that a relation 𝑅 is a unique

output relation if for every input 𝑥, there exists at most one output 𝑦 such that

(𝑥, 𝑦) ∈ 𝑅.

Remark 3.18. When restricted to the case of unique output relations, correlation

intractable hash functions for output length 𝑚 immediately imply the existence of

correlation intractable hash functions for any output length 𝑚′ > 𝑚 (by appending

zeros).

Definition 3.19 (Efficiently Searchable Relation). We say that a (necessarily unique-

output) relation ensemble 𝑅 is searchable in (non-uniform) time 𝑇 if there exists a

function 𝑓 = 𝑓𝑅 : {0, 1}* → {0, 1}* computable in (non-uniform) time 𝑇 such that

for any input 𝑥, if (𝑥, 𝑦) ∈ 𝑅 then 𝑦 = 𝑓(𝑥); that is, 𝑓(𝑥) is the unique 𝑦 such that

(𝑥, 𝑦) ∈ 𝑅, provided that such a 𝑦 exists. We say that 𝑅 is efficiently searchable if it

is searchable in time poly(𝑛).

We now relate our notion of efficient searchability to that of efficient sampleability

[HL18,CCH+18]. Efficiently sampleable relations 𝑅 are not necessarily unique-output,

but it is possible to sample, given an input 𝑥, an (approximately) uniformly random

𝑦 subject to the condition (𝑥, 𝑦) ∈ 𝑅. Correlation intractability for these relations

is not required in order for our Fiat-Shamir applications, but as noted below, we

obtain it for sufficiently sparse relations without loss of generality. In particular, if

the relation has sparsity 𝑝, we obtain it with a security loss of 𝑝 · 2𝑚.

Definition 3.20 (Efficiently (Approximately) Sampleable Relation). We say that a

relation 𝑅 is sampleable in (non-uniform) time 𝑇 if there exists a (non-uniform) time

𝑇 algorithm Samp(𝑥; 𝑟) and a polynomial 𝑞(·) such that for any (𝑥*, 𝑦*) ∈ 𝑅,

Pr
𝑟

[︂
Samp(𝑥*; 𝑟) = 𝑦*

]︂
≥ 1

𝑞(𝜆)

⃒⃒⃒⃒
{𝑦 ∈ {0, 1}𝑚 : (𝑥, 𝑦) ∈ 𝑅}

⃒⃒⃒⃒−1
.

Lemma 3.21. Suppose that a hash family ℋ is 𝛿-correlation intractable for all re-

lations searchable in time 𝑇 . Then, it is also 𝛿𝑝2𝑚-correlation intractable for all

𝑝-sparse relations samplable in time 𝑇 .
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Proof. Let 𝑅 denote a relation that is sampleable in time 𝑇 with approximation factor

𝑞(𝜆), and let Samp(𝑥; 𝑟) denote a sampling algorithm for 𝑅. Then, for every fixed 𝑟,

the relation

𝑅𝑟 = {(𝑥, Samp(𝑥; 𝑟))}

is searchable in time 𝑇 . Moreover, if some adversary 𝒜 breaks the 𝑅-correlation

intractability of a hash family ℋ with probability 𝛿′, then by an averaging argument,

𝒜 breaks the 𝑅𝑟-correlation intractability ofℋ with probability 𝛿′

𝑞(𝜆)𝑝2𝑚 for some choice

of randomness 𝑟.

In particular, this shows that CI for efficiently searchable relations directly implies

CI for efficiently sampleable relations for which every input 𝑥 has at most polynomially

many outputs 𝑦 for which (𝑥, 𝑦) ∈ 𝑅. We call such relations efficiently enumerable,

because this is equivalent to the existence of an efficient algorithm that enumerates

all “bad outputs” 𝑦 for a given input 𝑥.

3.3.2 Programmability

As previously discussed, correlation intractability is useful in proving the soundness

of the Fiat-Shamir transform for certain proof systems, as seen in Section 3.5 and

Section 3.6. Since we hope to use our correlation intractable hash families to build

NIZK arguments (which in particular must also be zero knowledge), we would like to

have correlation intractable hash families satisfying a weak notion of programmability.

Definition 3.22. We say that a hash family ℋ is 1-universal if for any 𝜆, input

𝑥 ∈ {0, 1}𝑛(𝜆), and output 𝑦 ∈ {0, 1}𝑚(𝜆), we have that

Pr
𝑘←ℋ.Gen(1𝜆)

[ℎ(𝑘, 𝑥) = 𝑦] = 2−𝑚.

We say that a hash family ℋ is programmable if it is 1-universal, and if there

exists an efficient sampling algorithm Samp(1𝜆, 𝑥, 𝑦) that samples from the conditional

distribution 𝑘 ← ℋ.Gen(1𝜆) | ℎ(𝑘, 𝑥) = 𝑦.
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We describe a simple transformation showing that for reasonable classes of re-

lations (including efficiently searchable relations), programmability can be obtained

without loss of generality.

Construction 3.23. Let ℋ be any hash family. We define the programmable variant

ℋ′ = ℋprog of ℋ as follows:

• ℋ′.Gen(1𝜆) calls 𝑘 ← ℋ.Gen(1𝜆), samples a uniformly random 𝛼 ← {0, 1}𝑚,

and outputs (𝑘, 𝛼).

• ℋ′.Hash((𝑘, 𝛼), 𝑥) outputs ℋ.Hash(𝑘, 𝑥)⊕ 𝛼.

We first remark that ℋ′ is evidently programmable: 1-universality follows from

the randomness of 𝛼, and the algorithm Samp(1𝜆, 𝑥, 𝑦) calls 𝑘 ← ℋ.Gen(1𝜆) and

outputs (𝑘,ℋ.Hash(𝑘, 𝑥)⊕ 𝑦).

Moreover, we note that if ℋ′ directly inherits correlation intractability properties

from ℋ.

Remark 3.24. For any relation class ℛ, if ℋ is (somewhere statistically) correlation

intractable for the class of relations

{𝑅*𝛼 = {(𝑥, 𝑦) : (𝑥, 𝑦 ⊕ 𝛼) ∈ 𝑅}}𝑅∈ℛ,

then ℋ′ is (somewhere statistically) correlation intractable for ℛ.

3.4 Correlation Intractability via Fully Homomor-

phic Encryption

In this section, we describe a new candidate correlation intractable hash family ℋ

that can be based on any fully homomorphic encryption scheme. We then prove that

ℋ satisfies various notions of correlation intractability under different assumptions.

Namely, we show:
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• One variant of our hash family is (somewhere statistically) correlation intractable

for efficiently searchable relations assuming that the FHE scheme is circular se-

cure.

• Another variant of our hash family is “universal” for correlation intractable hash

families (in a specific sense defined in Section 3.4.2), assuming that the FHE

scheme is semantically secure. This holds both for single-input and multi-input

correlation intractability.

3.4.1 Correlation Intractability for Efficiently Searchable Re-

lations

Construction 3.25. Let FHE = (Gen, Enc, Dec, Eval) be any circular secure fully

homomorphic encryption scheme. We define the following hash family ℋ = ℋcirc
FHE

associated to FHE along with some circuit size bound 𝐿(𝜆), input length 𝑛(𝜆), and

constant 𝜖 > 0:

• ℋ.Gen(1𝜆) calls Gen(1𝜆), obtaining a pair (pk, sk). It then computes ct1 =

Enc(pk, 0|sk|), ct2 = Enc(pk, 0𝐿), and outputs 𝑘 = (pk, ct1, ct2).

• ℋ.Hash(𝑘, 𝑥) interprets 𝑘 = (pk, ct1, ct2) and outputs

𝑦 = Eval(pk, 𝑈𝑥, ct1, ct2),

where 𝑈𝑥 denotes the universal circuit for evaluation of circuits of size 𝐿(𝜆),

single bit output, and input length |𝑥|+ |sk|; that is,

𝑈𝑥(𝑠, 𝐶) = 𝐶(𝑥, 𝑠).

We note that the output length of this hash function is some fixed polynomial

poly(𝜆). By setting the security parameter 𝜆 appropriately (in relation to 𝑛),

this can result in a hash function with arbitrary polynomial relationship between

input and output length.
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Remark 3.26. One could define the above scheme to use a single ciphertext ct (rather

than ct1 and ct2) and universal circuit 𝑈𝑥(𝐶) = 𝐶(𝑥). We take this approach in

Section 3.4.2 when we do not use circular security. The advantage of the present

formulation, where 𝐶 has an separate input of length |sk|, is that it allows for a

security proof where the decryption key is an input to 𝐶 rather than hardcoded into

𝐶. This makes it explicit that we only need to assume plain circular security of the

FHE in use, rather than general KDM security.

Theorem 3.27. Suppose that FHE is a circular secure fully-homomorphic encryption

scheme, let 𝑛(𝜆) = 𝜆Θ(1), and let 𝑇 = poly(𝑛, 𝜆) be given. Then, ℋ = ℋcirc with input

length 𝑛(𝜆) and size parameter 𝐿 = 𝑇 + poly(𝜆) is correlation intractable for all

relations 𝑅 that are searchable in time 𝑇 (and appropriate input/output lengths).

In fact, ℋ is somewhere statistically correlation intractable for this class of re-

lations, such that the function StatGen(1𝜆, aux) can use any circuit computing the

search function 𝑓𝑅 as its auxiliary input.

Proof. Let FHE and 𝑅 be fixed; recall by the definition of 𝑇 -searchability, there exists

a function 𝑓 = 𝑓𝑅 : {0, 1}* → {0, 1}* computable in (non-uniform) time 𝑇 such that

if (𝑥, 𝑦) ∈ 𝑅 then 𝑓(𝑥) = 𝑦.

To show thatℋ is somewhere statistically correlation intractable for all 𝑇 -searchable

relations 𝑅, we define the auxiliary algorithm ℋ.StatGen(1𝜆, aux), which operates as

follows:

• Interpret aux as a circuit 𝐶 of size 𝑇 .

• Call Gen(1𝜆), obtaining a pair (pk, sk). Then, compute ct = Enc(pk, (sk, 𝐶 ′)),

where

𝐶 ′(𝑥, sk) = 1⊕ Dec(sk, 𝐶(𝑥)).

• Output 𝑘 = (pk, ct).

It now suffices to prove that our augmented hash familyℋ satisfies key indistinguisha-

bility and statistical correlation intractability (for keys generated by StatGen).
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• Key indistinguishability follows immediately from the circular security of

FHE, as the only difference between ℋ.Gen and ℋ.StatGen is that the former

samples ct = Enc(pk, 0|sk|+𝐿) while the latter samples ct = Enc(pk, (sk, 𝐶 ′)).

• Statistical correlation intractability holds by the following argument. Let

𝑅 be any 𝑇 -searchable relation, let 𝐶 be any circuit computing the search

function 𝑓𝑅, and let 𝑘 = (pk, ct) ← StatGen(1𝜆, 𝐶). Then, for any 𝑥 ∈ {0, 1}𝑛

and 𝑦 = ℎ(𝑘, 𝑥), we see that by the correctness of FHE-evaluation,

Dec(sk, 𝑦) = Dec(sk, Eval( ̃︀𝑈𝑥, ct)) = 1⊕ Dec(sk, 𝐶(𝑥)).

Therefore, if (𝑥, 𝑦) ∈ 𝑅, then 𝑦 = 𝑓𝑅(𝑥) = 𝐶(𝑥) and we obtain the equation

Dec(sk, 𝑦) = 1⊕Dec(sk, 𝑦), a contradiction. Thus, input-output pairs satisfying

𝑅 (unconditionally) do not exist.

This completes the proof of Theorem 3.27.

Remark 3.28. If we assume that FHE is subexponentially secure, then ℋcirc is corre-

lation intractable with security 2−𝑚𝜖 for some 𝜖 > 0. By Lemma 3.21, this implies that

for some 𝜖 > 0, ℋcirc is correlation intractable for all efficiently sampleable relations

with sparsity 2𝑚𝜖

2𝑚 .

Finally, by applying Remark 3.24, we obtain programmable CI hash functions for

efficiently searchable relations assuming circular-secure FHE.

Corollary 3.29. Fix functions 𝑚(𝜆) = 𝑛(𝜆)Θ(1). If circular-secure FHE exists, then

for every polynomial function 𝑇 , there exists a programmable hash family ℋ that

is somewhere statistically correlation intractable for the class of relation ensembles

𝑅 = {𝑅𝜆 ⊆ {0, 1}𝑛(𝜆) × {0, 1}𝑚(𝜆)} that are searchable in (non-uniform) time 𝑇 .

3.4.2 Universal Correlation Intractability from LWE

We now show that a simplified version of Construction 3.25 yields a hash family satis-

fying interesting notions of universality for correlation intractable hash families. We
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obtain results based on the LWE assumption, either with polynomial or subexponen-

tial (that is, 2𝜆𝛿 -) security.

Construction 3.30. Let FHE = (Gen, Enc, Dec, Eval) be any (leveled) fully homomor-

phic encryption scheme. We define the following hash family ℋ = ℋuniv
FHE associated

to FHE along with some circuit size bound 𝐿(𝜆), input length 𝑛(𝜆), plaintext length

𝑚′(𝜆), and constant 𝜖 > 0:

• ℋ.Gen(1𝜆) calls Gen(1𝜆𝜖). It then computes ct = Enc(pk, 0𝐿) and outputs 𝑘 =

(pk, ct).

• ℋ.Hash(𝑘, 𝑥) interprets 𝑘 = (pk, ct) and outputs

𝑦 = Eval(pk, 𝑈𝑥, ct),

where 𝑈𝑥 denotes the universal circuit for evaluation of any given circuit 𝐶,

whose size is 𝐿(𝜆) and whose output length is 𝑚′(𝜆), on input 𝑥. That is,

𝑈𝑥(𝐶) = 𝐶(𝑥).

We note that the output length of this hash function is not 𝑚′ but 𝑚(𝜆) =
⃒⃒⃒
Enc(pk, 0𝑚′(𝜆))

⃒⃒⃒
=

𝑚′ · poly(𝜆𝜖).

Theorem 3.31. Suppose that FHE is a (leveled) fully-homomorphic encryption scheme,

and let 𝑅 = {𝑅𝜆 ⊆ {0, 1}𝑛(𝜆) × {0, 1}𝑚(𝜆)=𝑚′(𝜆)poly(𝜆𝜖)} be a relation ensemble that is

decidable in polynomial time. Then, if there exists a hash family ℋ𝑅, computable

by circuits of size at most 𝐿, that is correlation intractable for all relations on

{0, 1}𝑛 × {0, 1}𝑚′ of the form

𝑅*sk = {(𝑥, 𝑧) : ∃𝑦 such that (𝑥, 𝑦) ∈ 𝑅 and 𝑧 = Dec(sk, 𝑦)},

then ℋ = ℋuniv with parameters (𝐿, 𝑛, 𝑚′, 𝜖) is correlation intractable for 𝑅. More-

over, if FHE (with security parameter 𝜆𝜖) is secure against 2𝜆𝛿-time adversaries,

then the same statement holds for all relations 𝑅 decidable in (non-uniform) time

2𝜆𝛿 − 𝜆𝜔(1).
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Proof. Let FHE and 𝑅 be fixed. Suppose that some p.p.t. adversary 𝒜, given 𝑘 ←

ℋ.Gen(1𝜆), outputs some 𝑥 ∈ {0, 1}𝑛 such that (𝑥, ℎ(𝑘, 𝑥)) ∈ 𝑅 with non-negligible

probability. Let ℋ𝑅 denote the correlation intractable hash family hypothesized to

exist in the theorem statement.

We first claim that the adversary 𝒜 still succeeds with non-negligible probability

when given a key 𝑘 = (pk, Enc(pk, 𝐻𝑅,𝑘′)), where 𝐻𝑅,𝑘′ is a circuit computing 𝐻𝑅

with randomly sampled key 𝑘′ ← ℋ𝑅.Gen(1𝜆). This follows immediately from the

semantic security of FHE, as 𝒜’s win condition is decidable in the time required to

decide 𝑅.

We now describe a p.p.t. adversary 𝒜′ that breaks the correlation intractability

of ℋ𝑅:

1. 𝒜′ samples FHE parameters (pk, sk) ← Gen(1𝜆𝜖) and declares the relation 𝑅*sk

as its challenge.

2. 𝒜′ is given a hash key 𝑘′ ← ℋ𝑅.Gen(1𝜆).

3. 𝒜′ computes ct← Enc(pk, 𝐻𝑅,𝑘′), and runs 𝒜′((pk, ct)).

4. 𝒜′ obtains an input 𝑥 ∈ {0, 1}𝑛 and returns 𝑥.

By construction, whenever 𝒜((pk, ct)) breaks the 𝑅-correlation intractability of

ℋ, we have that 𝒜′ breaks the 𝑅*sk-correlation intractability of ℋ𝑅. To see this, note

that if 𝑦 = ℎ((pk, ct), 𝑥) in the above experiment, then

Dec(sk, 𝑦) = Dec(sk, Eval(pk, 𝑈𝑥, ct)) = ℎ𝑅(𝑘′, 𝑥).

Thus, if (𝑥, 𝑦) ∈ 𝑅, then (𝑥, ℎ𝑅(𝑘′, 𝑥)) ∈ 𝑅*sk. This completes the proof of Theo-

rem 3.31.

As an immediate corollary of Theorem 3.31, we conclude that ℋuniv is weakly

universal for correlation intractable hash families (for sufficiently sparse relations), in

the following sense.
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Corollary 3.32. Let 𝛾 < 1 and 𝛿 < 1 be arbitrary, and let 𝑚′(𝜆) = 𝜆Ω(1) grow at

least polynomially with 𝜆. Set

𝜖 = Ω
(︃

𝛿

1− 𝛿
log𝜆(𝑚′)

)︃

and

𝛽 = 𝛾

1− 𝛿
.

Finally, suppose that there exists a hash family (computable by a size 𝐿 circuit) ℋ𝛽

that is correlation intractable for all relations on {0, 1}𝑛×{0, 1}𝑚′ with sparsity 2𝑚′𝛽

2𝑚′ .

Then, assuming the security of FHE, ℋuniv implemented with parameters (𝐿, 𝑛, 𝑚′, 𝜖)

is correlation intractable for all efficiently decidable relations on {0, 1}𝑛 × {0, 1}𝑚 of

sparsity 2𝑚′𝛽

2𝑚 = 2𝑚𝛾

2𝑚 . The same is true for all (sufficiently sparse) subexponentially

decidable relations on {0, 1}𝑛×{0, 1}𝑚 if FHE is assumed to be subexponentially secure.

Finally, we note that Theorem 3.27 – our construction of CI for efficiently search-

able relations from circular secure FHE – can be thought of as a twist on the proof

of Theorem 3.31. The difference between the two proofs is that in Theorem 3.27,

we use the circular security of FHE to reduce from the security of ℋcirc for 𝑓 to the

existence of a hash family ℋ𝑓,sk that is correlation intractable for single relation that

depends on 𝑓 and sk, the FHE secret key. Moreover, again due to the circular security

assumption, we can use sk in the construction of ℋ𝑓,sk. This allows for an uncon-

ditional construction of the “inner hash function” that we have to assume exists in

Theorem 3.31.

3.4.3 Multi-Input Correlation Intractability

Our universality results even extend to the notion of multi-input correlation in-

tractability, about which very little is known.9

9The only known instantiations of multi-input correlation intractable hash families focus on the
special case where the relation depends only on the output [Zha16,HL18] or rely on indistinguisha-
bility obfuscation [HL18].
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Definition 3.33 (Multi-Input Correlation Intractability). Let ℓ (possibly depending

on 𝜆) denote an arity. For a given relation ensemble 𝑅 = {𝑅𝜆 ⊆ ({0, 1}𝑛(𝜆))ℓ(𝜆) ×

({0, 1}𝑚(𝜆))ℓ(𝜆)}, a hash family {ℎ𝜆 : {0, 1}𝑠(𝜆) × {0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆)} is said to be

𝑅-correlation intractable if for every polynomial-size 𝒜 = {𝒜𝜆},

Pr
𝑘←ℋ.Gen(1𝜆)

x=(𝑥1,...,𝑥ℓ)←𝒜(𝑘)

[︂(︁
𝑥1, . . . , 𝑥ℓ, ℎ(𝑘, 𝑥1), . . . , ℎ(𝑘, 𝑥ℓ)

)︁
∈ 𝑅

]︂
= negl(𝜆)

If ℛ is a collection of relation ensembles, then ℋ is said to be uniformly ℛ-

correlation intractable if for every polynomial-size 𝒜, there exists a function 𝜈(𝜆) =

negl(𝜆) such that for every 𝑅 ∈ ℛ,

Pr
𝑘←ℋ.Gen(1𝜆)

x=(𝑥1,...,𝑥ℓ)←𝒜(𝑘)

(︁
𝑥1, . . . , 𝑥ℓ, ℎ(𝑘, 𝑥1), . . . , ℎ(𝑘, 𝑥ℓ)

)︁
≤ 𝜈(𝜆).

Analogously to Theorem 3.31, we observe that Construction 3.30 satisfies inter-

esting notions of universality for multi-input correlation intractable hash families.

Theorem 3.34. Suppose that FHE is a (leveled) fully-homomorphic encryption scheme,

and let 𝑅 = {𝑅𝜆 ⊆ ({0, 1}𝑛(𝜆))ℓ(𝜆)×({0, 1}𝑚(𝜆)=𝑚′(𝜆)poly(𝜆𝜖))ℓ(𝜆)} be a relation ensemble

that is decidable in polynomial time. Then, if there exists a hash family ℋ𝑅, com-

putable by circuits of size at most 𝐿, that is correlation intractable for all relations

on ({0, 1}𝑛)ℓ × ({0, 1}𝑚′)ℓ of the form

𝑅*sk = {(x, z) : ∃y such that (x, y) ∈ 𝑅 and z = Dec(sk, y)},

then ℋ = ℋuniv with parameters (𝐿, 𝑛, 𝑚′, 𝜖) is correlation intractable for 𝑅. More-

over, if FHE (with security parameter 𝜆𝜖) is secure against 2𝜆𝛿-time adversaries,

then the same statement holds for all relations 𝑅 decidable in (non-uniform) time

2𝜆𝛿 − 𝜆𝜔(1).

Proof. This is largely identical to the proof of Theorem 3.31, but we include a proof

for completeness.

Let FHE and 𝑅 be fixed. Suppose that some p.p.t. adversary 𝒜, given 𝑘 ←
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ℋ.Gen(1𝜆), outputs some x ∈ ({0, 1}𝑛)ℓ such that (x, ℎ(𝑘, 𝑥1), . . . , ℎ(𝑘, 𝑥ℓ)) ∈ 𝑅 with

non-negligible probability. Let ℋ𝑅 denote the correlation intractable hash family

hypothesized to exist in the theorem statement.

We first claim that the adversary 𝒜 still succeeds with non-negligible probability

when given a key 𝑘 = (pk, Enc(pk, 𝐻𝑅,𝑘′)), where 𝐻𝑅,𝑘′ is a circuit computing 𝐻𝑅

with randomly sampled key 𝑘′ ← ℋ𝑅.Gen(1𝜆). This follows immediately from the

semantic security of FHE, as 𝒜’s win condition is decidable in the time required to

decide 𝑅.

We now describe a p.p.t. adversary 𝒜′ that breaks the correlation intractability

of ℋ𝑅:

1. 𝒜′ samples FHE parameters (pk, sk) ← Gen(1𝜆𝜖) and declares the relation 𝑅*sk

as its challenge.

2. 𝒜′ is given a hash key 𝑘′ ← ℋ𝑅.Gen(1𝜆).

3. 𝒜′ computes ct← Enc(pk, 𝐻𝑅,𝑘′), and runs 𝒜′(pk, ct).

4. 𝒜′ obtains an input x ∈ ({0, 1}𝑛)ℓ and returns x.

By construction, whenever 𝒜(pk, ct) breaks the 𝑅-correlation intractability of ℋ,

we have that 𝒜′ breaks the 𝑅*sk-correlation intractability of ℋ𝑅. To see this, note that

if 𝑦𝑖 = ℎ((pk, ct), 𝑥𝑖) in the above experiment, then

Dec(sk, 𝑦𝑖) = Dec(sk, Eval(pk, 𝑈𝑥𝑖
, ct)) = ℎ𝑅(𝑘′, 𝑥𝑖).

Thus, if (x, y) ∈ 𝑅, then (x, ℎ𝑅(𝑘′, 𝑥1), . . . , ℎ𝑅(𝑘′, 𝑥ℓ)) ∈ 𝑅*sk. This completes the

proof of Theorem 3.34.

It follows, as a corollary of Theorem 3.34, that if there exists a hash family that

is correlation intractable for all (sufficiently sparse) multi-input relations, then for

an appropriate parameter setting, ℋuniv is correlation intractable for all (efficiently

decidable, sufficiently sparse) multi-input relations.
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Although little is known about the existence of general multi-input correlation

intractable hash families, the security reduction in Theorem 3.34 maps output rela-

tions (i.e. relations 𝑅(x, y) that depend only on y) to output relations, so we obtain

a concrete hash function that combines a family of candidates from [HL18].10 As an

example, we obtain the following corollary.

Corollary 3.35. Assume the hardness of LWE. In addition, assume that there exists

family of (symmetric, injective) 𝑘-one way product functions (OWPFs) with security

2−𝑘𝑛𝛽 · negl(𝑛) for some 𝛽 < 1.11

Then for arbitrary 𝛾 < 𝛽, the hash family ℋuniv (for appropriate parameter set-

tings) using an LWE-based (leveled) FHE scheme is correlation intractable for effi-

ciently decidable output relations of sparsity 2𝑘𝑛𝛾−𝑘𝑛.

Note that we only need to assume that the [HL18] OWPFs exist; we do not need

an explicit description of one in the construction of ℋuniv. This is similar to the

obfuscation-based result of [HL18], but Corollary 3.35 replaces indistinguishability

obfuscation with LWE. However, our result only applies in the regime of fairly low

(2𝑘𝑛𝛾−𝑘𝑛) sparsity.

3.5 Non-Interactive Zero Knowledge Arguments

In this section, we apply Theorem 3.27 to obtain Theorem 3.2, that is, NIZK ar-

guments for NP assuming circular secure FHE. This closely follows the framework

of [HL18,CCH+18] for obtaining NIZK arguments from weak forms of correlation in-

tractability, but we apply the framework to the 3-message [FLS90] protocol for graph

Hamiltonicity. This allows us to rely on correlation intractable hash functions for effi-

ciently searchable relations (as constructed in Theorem 3.27) as opposed to efficiently

samplable relations (as defined in [HL18,CCH+18]).

We augment our basic NIZK argument system in two different ways:
10The [Zha16] construction does not give a hash family that is correlation intractable for all output

relations – only efficiently decidable relations – so we cannot use it as is.
11We refer the reader to [HL18] for a discussion of OWPFs.

162



• By using our somewhere statistically correlation intractable hash functions (Def-

inition 3.15), we show that our NIZK argument system has a statistically sound

mode, yielding NIZK proofs in the common reference string model.

• By using a lossy public key encryption scheme with uniformly lossy public keys

(Definition 3.7), we show that our NIZK argument system has a statistical

zero knowledge mode in which the CRS is uniformly random, yielding NISZK

arguments in the common random string model.

We begin by recalling the 3-message [FLS90] protocol.

3.5.1 The [FLS90] Protocol

We construct NIZK arguments by applying the Fiat-Shamir transform to a vari-

ant of the 3-message [FLS90] proof system for graph Hamiltonicity. Recall that the

Hamiltonicity language 𝐿Ham consists of all graphs 𝐺 with a Hamitonian cycle, and

the standard NP-relation for 𝐿Ham uses a permutation 𝜎 as a witness exhibiting a

Hamiltonian cycle 𝜎−1(𝐶𝑛) in 𝐺. We describe the 3-message protocol Π = ΠFLS in

Fig. 3-2. For the purpose of obtaining adaptive zero knowledge, we recall that this

protocol is “delayed input,” namely the prover need to know the graph 𝐺 and the

cycle 𝜎 only for computing the third message. In our proof below, we will make use

of the following facts.

𝑃 (pk, 𝐺, 𝜎) 𝑉 (pk, 𝐺)
𝜋 ← 𝑆𝑛, 𝐻 = 𝜋(𝐶𝑛)
𝑎← Com(pk, 𝐻)

𝑎

𝑒 𝑒← {0, 1}

If 𝑒 = 0, decommit to 𝐻.
If 𝑒 = 1, reveal 𝜋 ∘ 𝜎 and
decommit to the edges in 𝐻

corresponding to non-edges
of 𝜋 ∘ 𝜎(𝐺).

𝑧
Accept if all decommitments are correct and:
either 𝑏 = 0 and 𝐻 is a cycle
or 𝑏 = 1 and all edge decommitments are 0.

Figure 3-2: The Zero Knowledge Proof System ΠFLS for Graph Hamiltonicity.
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Fact 3.36. For any computationally hiding commitment scheme Com (potentially in

the CRS model), Π is honest-verifier zero knowledge. If Com is a statistically hiding

commitment scheme, then Π is honest-verifier statistical zero knowledge.

Finally, Π is “honest-verifier adaptive zero knowledge”, meaning that Π remains

honest-verifier zero knowledge when the adversary is allowed to choose (𝑥, 𝑤) as an

(arbitrary) efficient function of the transcript (crs, a, e) up to the second message.

We emphasize that our variant of the [FLS90] protocol explicitly allows for the

commitment scheme Com to rely on a public commitment key pk.

3.5.2 Our NIZK Protocol

We start by defining three different modes for our protocol and use them to help

prove security. We use the following tools in our construction.

• A hash family ℋ satisfying two properties:

– Correlation intractability for all (subexponentially sparse) relations that

are (non-uniformly) searchable in a fixed polynomial time 𝑇 .

– Programmability, as in Definition 3.22.

In Construction 3.38, we will assume that ℋ is somewhere statistically corre-

lation intractable for the above class of relations, and that ℋ.StatGen(1𝜆, 𝐶)

can use any circuit 𝐶 computing the search function 𝑓𝑅 as auxiliary input. In

Construction 3.39, we will assume that ℋ has pseudorandom keys, and that the

modified hash family ℋ′ using a uniformly random key is also programmable.12

• A public key encryption scheme PKE = (Gen, Enc, Dec). In Construction 3.39,

we will assume that PKE is lossy (Definition 3.7) with uniformly random lossy

public keys.

12The generic transformation (Construction 3.23) from correlation intractable hash families to
programmable correlation intractable hash families guarantees this property.
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Construction 3.37 (Basic NIZK). Let Π = ΠFLS be the [FLS90] protocol from Sec-

tion 3.5.1, in which we instantiate the commitment scheme Com in the CRS model us-

ing PKE in the natural way: Com(pk, 𝑏; 𝜌) = Enc(pk, 𝑏; 𝜌). We apply the Fiat-Shamir

transform, using ℋ, to the protocol Π𝜆; that is, the protocol Π repeated 𝜆 times in

parallel. We call the resulting protocol ̃︀Π, which is formally defined as follows.

• Common reference string: a PKE-public key pk along with a hash key 𝑘 ←

ℋ.Gen(1𝜆).

• Prover message: given an instance 𝑥, witness 𝑤, and common reference string

crs = (pk, 𝑘), the prover computes a ← Π𝜆.𝑃 (crs, 𝑥, 𝑤), e = ℎ(𝑘, a), z =

Π𝜆.𝑃 (crs, 𝑥, 𝑤, a, e), and outputs (a, e, z).

• The verifier accepts a transcript (crs, 𝑥, a, e, z) if e = ℎ(𝑘, a) and Π𝜆.𝑉 (crs, 𝑥, a,

e, z) = 1.

Our two modified constructions change only the common reference string distri-

bution.

Construction 3.38 (Statistically Sound Mode). Let Π = ΠFLS be the [FLS90] pro-

tocol from Section 3.5.1, in which we instantiate the commitment scheme Com in the

CRS model using PKE. The statistically sound mode of our protocol ̃︀ΠSound is then

defined as follows.

• Common reference string: a PKE-public key pk along with a fake hash key

𝑘 ← ℋ.StatGen(1𝜆, 𝐶sk). Here, sk is the PKE-secret key associated to pk, and

𝐶sk is a (poly-size) circuit computing the function 𝑓sk(a) = e such that for every

𝑖 ∈ [𝜆], 𝑒𝑖 = 0 if and only if Dec(sk, 𝑎𝑖) is a cycle.

• Prover message: given an instance 𝑥, witness 𝑤, and common reference string

crs = (pk, 𝑘), the prover computes a ← Π𝜆.𝑃 (crs, 𝑥, 𝑤), e = ℎ(𝑘, a), z =

Π𝜆.𝑃 (crs, 𝑥, 𝑤, a, e), and outputs (a, e, z).

• The verifier accepts a transcript (crs, 𝑥, a, e, z) if e = ℎ(𝑘, a) and Π𝜆.𝑉 (crs, 𝑥, a,

e, z) = 1.
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Construction 3.39 (Statistical Zero Knowledge Mode). Let Π = ΠFLS be the [FLS90]

protocol from Section 3.5.1, in which we instantiate the commitment scheme Com in

the CRS model using PKE. The statistical zero knowledge mode of our protocol ̃︀ΠZK

is then defined as follows.

• Common reference string: a (uniformly random) PKE-lossy public key pk ←

FakeGen(1𝜆) along with a uniformly random hash key 𝑘.

• Prover message: given an instance 𝑥, witness 𝑤, and common reference string

crs = (pk, 𝑘), the prover computes a ← Π𝜆.𝑃 (crs, 𝑥, 𝑤), e = ℎ(𝑘, a), z =

Π𝜆.𝑃 (crs, 𝑥, 𝑤, a, e), and outputs (a, e, z).

• The verifier accepts a transcript (crs, 𝑥, a, e, z) if e = ℎ(𝑘, a) and Π𝜆.𝑉 (crs, 𝑥, a,

e, z) = 1.

Theorem 3.40. ̃︀Π is a NIZK argument system for NP in the common reference

string model satisfying both adaptive soundness and adaptive zero knowledge. More-

over, ̃︀ΠSound is a NIZK proof system for NP in the common reference string model

satisfying adaptive zero knowledge, and ̃︀ΠZK is a non-adaptively sound NISZK argu-

ment system for NP in the common random string model.

We now proceed to prove Theorem 3.40 by proving a sequence of lemmas about our

construction.

Lemma 3.41. ̃︀Π is (adaptively) sound.

Proof. To see this, we argue that ̃︀Π is adaptively sound if ℋ is correlation intractable

for all relations of the form

𝑅sk = {(a, e) : e = 𝑓sk(a)} .

This holds because if Dec(sk, 𝑎𝑖) is not a cycle and 𝑒𝑖 = 0, then there is no input

graph 𝑥 and third message 𝑧𝑖 such that (𝑥, 𝑎𝑖, 𝑒𝑖, 𝑧𝑖) is an accepting transcript in the

original protocol Π. Similarly, if Dec(sk, 𝑎𝑖) is a cycle and 𝑒𝑖 = 1, then there is no
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input graph 𝑥 that is not Hamiltonian (i.e. there is no false statement 𝑥) and third

message 𝑧𝑖 such that (𝑥, 𝑎𝑖, 𝑒𝑖, 𝑧𝑖) is an accepting transcript in Π. These two facts

make use of the perfect decryption correctness of PKE and the standard (adaptive)

soundness analysis of Π.

From this analysis, we conclude that any adversary 𝒜 breaking the (adaptive)

soundness of ̃︀Π breaks the correlation intractability of ℋ with respect to some sk

(indeed, a random sk sampled according to PKE.Gen suffices).

Finally, we note that for every secret key sk, 𝑅sk is an efficiently searchable relation:

indeed, the function 𝑓sk is efficiently computable given sk. Thus, since we assumed ℋ

is correlation intractable for all efficiently searchable relations, we conclude that ̃︀Π is

adaptively sound.

Lemma 3.42. ̃︀Π is (adaptive) zero knowledge.

Proof. The proof that ̃︀Π is zero knowledge is almost identical to the proof of zero

knowledge in ( [CCH+18] Theorem 7.7). For completeness, we describe a simulator

for ̃︀Π:

• Input: a graph 𝑥.

• Sample (pk, sk)← PKE.Gen(1𝜆).

• Call the honest verifier simulator Π𝑡.HVSim(𝑥, pk) associated to the parallel

repeated protocol Π𝑡, producing (a, e, z).

• Sample a hash key ̃︀𝑘 from the conditional distribution 𝑘 ← ℋ.Gen(1𝜆) | ℎ(𝑘, a) =

e.

• Output (pk, ̃︀𝑘, a, e, z).

Zero knowledge then follows from Fact 3.36 and the programmability of ℋ (by a

standard hybrid argument).

To see that ̃︀Π is adaptive zero knowledge, we use the fact that Π is honest-verifier

adaptive zero knowledge (and use this two-part simulator in place of HVSim above).
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We refer the reader to [CCRR18] (Proposition 7.6) for more details on obtaining

adaptive zero knowledge using Fiat-Shamir.

This completes the proof that ̃︀Π is an adaptively sound NIZK argument system

in the common reference string model.

Lemma 3.43. ̃︀ΠSound is statistically sound.

Proof. Let (pk, sk) ← Gen(1𝜆) and 𝑘 ← ℋ.StatGen(1𝜆, 𝐶sk) as in Construction 3.38.

Then, for any first message a for the protocol Π𝜆, if Dec(sk, 𝑎𝑖) is not a cycle and

𝑒𝑖 = 0, then there is no input graph 𝐺 and third message 𝑧𝑖 such that (𝐺, 𝑎𝑖, 𝑒𝑖, 𝑧𝑖) is

an accepting transcript in the original protocol Π. Similarly, if Dec(sk, 𝑎𝑖) is a cycle

and 𝑒𝑖 = 1, then there is no input graph 𝐺 that is not Hamiltonian (i.e. there is

no false statement 𝐺) and third message 𝑧𝑖 such that (𝐺, 𝑎𝑖, 𝑒𝑖, 𝑧𝑖) is an accepting

transcript in Π. These two facts make use of the perfect decryption correctness of

PKE and the standard (adaptive) soundness analysis of Π.

This tells us that any accepting transcript (pk, 𝐺, a, e, z) for ̃︀ΠSound must satisfy

e = 𝑓sk(a). However, by the statistical correlation intractability of ℋ, we know that

there does not exist an input a such that ℎ(𝑘, a) = 𝑓sk(a), so we conclude that ̃︀ΠSound

is statistically sound.

Lemma 3.44. For any p.p.t. verifier 𝑉 *(crs) outputting a triple (𝑥, 𝑤, aux), honestly

generated transcripts in ̃︀Π and ̃︀ΠSound are computationally indistinguishable (even

given (𝑥, 𝑤, aux)).

Proof. This follows immediately from the key indistinguishability of ℋ.

Combining Lemma 3.43, Lemma 3.44, and Lemma 3.42, we conclude that Con-

struction 3.38 is a NIZK proof system for NP in the common reference string model

satisfying adaptive zero knowledge.

Lemma 3.45. ̃︀ΠZK is statistical zero knowledge.

Proof. We define a simulator for ̃︀ΠZK as follows.

• Input: a graph 𝑥.
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• Sample a uniformly random public key ̃︁pk.

• Call the statistical honest verifier simulator Π𝜆.HVSim(𝑥, pk) associated to the

parallel repeated protocol Π𝜆, producing (a, e, z).

• Sample a hash key ̃︀𝑘 from the conditional distribution 𝑘 ← ℋ′.Gen(1𝜆) |

ℎ(𝑘, a) = e, where ℋ′ is the modified hash family using uniformly random

hash keys.

• Output (̃︁pk, ̃︀𝑘, a, e, z).

Zero knowledge then follows directly from the lossiness of PKE (which implies

that the resulting commitment scheme is statistically hiding), Fact 3.36, and the

programmability of ℋ′ (by a standard hybrid argument).

Lemma 3.46. The common reference strings in ̃︀Π and ̃︀ΠZK are computationally

indistinguishable.

Proof. This follows immediately from the key indistinguishability of PKE (between

real and lossy keys) and the pseudorandomness of the ℋ-keys.

Combining Lemma 3.45, Lemma 3.46 and Lemma 3.41, we conclude that ̃︀ΠZK is

a non-adaptively sound13 NISZK argument system for NP in the common random

string model. This completes the proof of Theorem 3.40.

3.5.3 Obtaining Theorem 3.3, Theorem 3.4, and LWE-based

Instantiation

Recall the statements of Theorem 3.3 and Theorem 3.4, our main results on obtaining

NIZK arguments.
13 We only obtain non-adaptive soundness because switching modes (i.e., invoking computational

indinguishability between two CRS distributions) is only guaranteed to preserve non-adaptive sound-
ness. This is because the adversary’s win condition in the adaptive soundness security game – pro-
ducing (𝑥, 𝜋) such that 𝑥 ̸∈ 𝐿 and 𝜋 is an accepting proof – is not efficiently checkable; it may not
be possible to efficiently verify that 𝑥 ̸∈ 𝐿. Relatedly, [Pas13] proves a black-box impossibility result
for constructing adaptively sound NISZK arguments from falsifiable assumptions.
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Theorem 3.47. Suppose that circular-secure fully homomorphic encryption exists.

Then, there exist NIZK proofs for NP in the common reference string model.

Theorem 3.48. Suppose that there exists a circular-secure fully homomorphic en-

cryption scheme with pseudorandom ciphertexts and public keys. Furthermore, sup-

pose that there exists a lossy public key encryption scheme [KN08, PVW08, BHY09]

with uniformly random lossy public keys. Then, there exist (non-adaptively sound)

NISZK arguments for NP in the common random string model.

We obtain these results by a direct combination of Theorem 3.27 and Theo-

rem 3.40. Theorem 3.40 states that (1) the desired NIZK proofs follow from the

existence of somewhere statistically correlation intractable hash functions for (subex-

ponentially sparse) efficiently searchable relations, and (2) under the lossy PKE as-

sumption, the desired NIZK arguments follow from the existence of correlation in-

tractable hash functions for (subexponentially sparse) efficiently searchable relations

(with pseudorandom hash keys). Theorem 3.27 states that assuming circular secure

FHE (with pseudorandom ciphertexts and public keys), such hash families exist.

Moreover, we note that both of the generic primitives in Theorem 3.4 can be

instantiated from (circular secure) LWE. Namely, under plain LWE, Regev encryption

[Reg05] is a lossy PKE scheme and has uniformly random lossy public keys, and under

various circular security assumptions on LWE [BV11,BGV12, Bra12,GSW13,BV14],

there exist circular secure FHE schemes.

3.6 Fiat-Shamir for (Instance-Dependent) Trapdoor

Σ-protocols

In this section, we formalize our notions of “trapdoor Σ-protocols” and “instance-

dependent trapdoor Σ-protocols,” and we prove that our hash family from Theo-

rem 3.27 suffices to instantiate the Fiat-Shamir heuristic for such protocols. Ex-

amples of (instance-dependent) trapdoor Σ-protocols include variants of the [Blu86]

and [FLS90] protocols for graph Hamiltonicity (in which the commitment scheme is
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instantiated using public-key encryption as in Section 3.5) as well as the unmodi-

fied [GMR85] protocol for quadratic residuosity. By the connection between Fiat-

Shamir and (malicious verifier) zero knowledge [DNRS99], we conclude that these

protocols cannot be malicious verifier zero knowledge, assuming the existence of

circular-secure FHE and the hardness of deciding the underlying languages. This

partially resolves open questions due to [DNRS99,BLV03].

3.6.1 Instance-Dependent Trapdoor Σ-Protocols

We provide the following definition of a Σ-protocol, which suffices for our purposes.

We do not require any extractability (“proof of knowledge”) property.

Definition 3.49 (Σ-Protocol). We say that a three-message honest-verifier zero-

knowledge proof system Π = (Gen, 𝑃, 𝑉 ) in the common reference string model is a

Σ-protocol if for every common reference string crs, every instance 𝑥 ̸∈ 𝐿, and every

first message a, there is at most one challenge e := 𝑓(crs, 𝑥, a) such that (crs, 𝑥, a, e, z)

is an accepting transcript for any choice of third message z.

We informally call 𝑓 the “bad-challenge function” associated to Π, and note that

𝑓 may not be efficiently computable.

We now define a trapdoor Σ-protocol to be, roughly speaking, a Σ-protocol that

has a trapdoor making the bad-challenge function 𝑓 efficiently computable.

Definition 3.50 (Trapdoor Σ-Protocol). We say that a Σ-protocol Π = (Gen, 𝑃, 𝑉 )

with bad-challenge function 𝑓 is a trapdoor Σ-protocol if there are p.p.t. algorithms

TrapGen, BadChallenge with the following syntax.

• TrapGen(1𝜆) takes as input the security parameter. It outputs a common refer-

ence string crs along with a trapdoor 𝜏 .

• BadChallenge(𝜏, crs, 𝑥, a) takes as input a trapdoor 𝜏 , common reference string

crs, instance 𝑥, and first message a. It outputs a challenge e.

We additionally require the following properties.
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• CRS Indistinguishability: An honestly generated common reference string

crs is computationally indistinguishable from a common reference string output

by TrapGen(1𝜆).

• Correctness: for every instance 𝑥 ̸∈ 𝐿 and for all (crs, 𝜏)← TrapGen(1𝜆), we

have that BadChallenge(𝜏, crs, 𝑥, a) = 𝑓(crs, 𝑥, a).

While this definition is enough to capture our modification to the [FLS90] protocol, it

is necessarily limited to Σ-protocols that have a common reference string. To capture

the unmodified [GMR85] protocol, we generalize our definitition so that the trapdoor

𝜏 can depend on the instance 𝑥.

Definition 3.51 (Instance-Dependent Trapdoor Σ-Protocol). We say that a Σ-protocol

Π = (Gen, 𝑃, 𝑉 ) with bad-challenge function 𝑓 is an instance-dependent trapdoor Σ-

protocol if there are p.p.t. algorithms TrapGen, BadChallenge with the following syntax.

• TrapGen(1𝜆, 𝑥, aux) takes as input the security parameter, an instance 𝑥, and

an auxiliary input aux. It outputs a common reference string crs along with a

trapdoor 𝜏 .

• BadChallenge(𝜏, crs, 𝑥, a) takes as input a trapdoor 𝜏 , common reference string

crs, instance 𝑥, and first message a. It outputs a challenge e.

We additionally require the following properties.

• CRS Indistinguishability: For any (𝑥, aux), an honestly generated common

reference string crs is computationally indistinguishable from a common refer-

ence string output by TrapGen(1𝜆, 𝑥, aux).

• Correctness: for every instance 𝑥 ̸∈ 𝐿, there exists an auxiliary input aux such

that for all (crs, 𝜏)← TrapGen(1𝜆, 𝑥, aux), we have that BadChallenge(𝜏, crs, 𝑥, a) =

𝑓(crs, 𝑥, a).

Given this definition, we can now state our result on Fiat-Shamir for instance-

dependent trapdoor Σ-protocols.
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Theorem 3.52. Suppose that ℋ is a hash family that is correlation-intractable for

all subexponentially sparse relations that are searchable in time 𝑇 . Moreover, sup-

pose that Π = (Gen, 𝑃, 𝑉, TrapGen, BadChallenge) is an instance-dependent trapdoor

Σ-protocol with 2−𝜆𝜖 soundness for some 𝜖 > 0, such that BadChallenge(𝜏, crs, 𝑥, a) is

computable in time 𝑇 . Then, ℋ soundly instantiates the Fiat-Shamir heuristic for Π.

Proof. Let ̃︀Π denote the one-message protocol resulting from applying the Fiat-

Shamir transform, using ℋ, to Π. Explicitly, ̃︀Π is defined as follows.

• The common reference string consists of a common reference string crsΠ

associated to Π, along with a hash key 𝑘 ← ℋ.Gen(1𝜆).

• Prover message: a triple (a, e, z), where a is computed by Π.𝑃 (crsΠ, 𝑥, 𝑤),

e = ℎ(𝑘, a), and z is computed by Π.𝑃 (crsΠ, 𝑥, 𝑤, a, e).

• The verifier accepts a transcript (crsΠ, 𝑘, 𝑥, a, e, z) if Π.𝑉 (crsΠ, a, e, z) = 1 and

e = ℎ(𝑘, a).

By construction, and by the definition of a Σ-protocol, we know that for every

𝑥 ̸∈ 𝐿 and every crsΠ, an accepting ̃︀Π-transcript (crsΠ, 𝑘, 𝑥, a, e, z) must satisfy the

condition that ℎ(𝑘, a) = e = 𝑓(crsΠ, 𝑥, a).

Suppose that some efficient prover 𝑃 *, given 𝑥 ̸∈ 𝐿 and a random crs = (crsΠ, 𝑘),

could find (a, e, z) making the transcript (crsΠ, 𝑘, 𝑥, a, e, z) accepting with non-negligible

probability. Then, by CRS indistinguishability, the same would be true for crsΠ

sampled by the algorithm TrapGen(1𝜆, 𝑥, aux) for an auxiliary input aux satisfy-

ing the correctness property of Definition 3.51. In other words, for (crsΠ, 𝜏Π) ←

TrapGen(1𝜆, 𝑥, aux) and crs = (crsΠ, 𝑘), 𝑃 *(𝑥, crs) would output (with non-negligible

probability) some a such that ℎ(𝑘, a) = 𝑓(crsΠ, 𝑥, a) = BadChallenge(𝜏Π, crsΠ, 𝑥, a).

This directly contradicts the correlation intractability ofℋ for the relation 𝑅𝜏Π,crsΠ,𝑥 =

{(a, e) : e = BadChallenge(𝜏Π, crsΠ, 𝑥, a)}. In more detail, a correlation-intractability

adversary 𝒜 could break the correlation intractability of ℋ by sampling (crsΠ, 𝜏Π)

itself, declaring the relation 𝑅𝜏Π,crsΠ,𝑥 to be broken, and then running 𝑃 *(𝑥, crs) af-

ter being given 𝑘 ← ℋ.Gen(1𝜆). Since Π originally had 2−𝜆𝜖 soundness, the relation
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𝑅𝜏Π,crsΠ,𝑥 indeed has subexponential sparsity, so this contradicts our assumption on

ℋ. Thus, we conclude that ℋ soundly instantiates the Fiat-Shamir heuristic for Π,

as desired.

3.6.2 Examples and Implications

It is easy to see that the variant of the [FLS90] Hamiltonicity protocol described

in Section 3.5 satisfies Definition 3.50; the (instance-independent) trapdoor genera-

tion algorithm simply samples (pk, sk)← PKE.Gen(1𝜆) and outputs pk as the common

reference string and sk as the trapdoor. As already described, the bad-challenge func-

tion associated to ΠFLS is indeed efficiently computable given sk. Similarly, variants

of the [Blu86] Hamiltonicity protocol in which the commitment scheme is instantiated

using public-key encryption also satisfy Definition 3.50.14

We now describe an interesting example of an instance-dependent trapdoor Σ-

protocol with a trapdoor that actually depends on the instance: the [GMR85] protocol

for quadratic residuosity. Recall that an input 𝑥 = (𝑁, 𝑦) to this protocol consists of

an integer 𝑁 = 𝑝𝑞 that is a product of two primes along with an element 𝑦 ∈ Z×𝑁 .

An instance 𝑥 is in the language QR if 𝑦 is a quadratic residue modulo 𝑁 . A witness

𝑤 for this fact is a square root of 𝑦 modulo 𝑁 . The [GMR85] protocol Π = ΠGMR is

described in Fig. 3-3.

𝑃 (𝑁, 𝑤) 𝑉 (𝑦)
𝑟 ← Z×𝑁
𝑎 = 𝑟2

𝑎

𝑒 𝑒← {0, 1}

𝑧 = 𝑟𝑤𝑒 𝑧 If 𝑧2 = 𝐴𝑦𝑒, accept.

Figure 3-3: The Zero Knowledge Proof System ΠGMR for Quadratic Residuosity.

We additionally consider the protocol Π𝑡
GMR repeated 𝑡 times in parallel for 𝑡 =

Ω(𝜆𝜖). Note that this is indeed a Σ-protocol (with an empty common reference
14This requires one further modification: the prover must additionally commit to the hidden

permutation 𝜋 and reveal it when asked to reveal the entire graph. We require this so that the
bad-challenge function is computable given the PKE secret key – naively, the bad-challenge function
would require solving a graph isomorphism problem.
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string) with bad-challenge function 𝑓(𝑥, a) = e such that 𝑒𝑖 = 𝑄𝑅(𝑁, 𝑎𝑖) for all 𝑖,

and 𝑄𝑅(𝑁, 𝑎) is defined to be 1 if and only if 𝑎 is a square mod 𝑁 . This holds because

for any 𝑥 = (𝑁, 𝑦) such that 𝑦 is not a quadratic residue modulo 𝑁 , if 𝑎 ∈ Z×𝑁 and

𝑄𝑅(𝑁, 𝑎) = 1, then 𝑄𝑅(𝑁, 𝑎𝑦) = 0 and hence then “1” challenge associated to 𝑎

cannot be answered by any third message 𝑧; similarly, if 𝑄𝑅(𝑁, 𝑎) = 0 then the “0”

challenge associated to 𝑎 cannot be answered by any third message 𝑧.

Finally, we note that the function 𝑓(𝑥, a) is efficiently computable given the fac-

torization of 𝑁 = 𝑝 · 𝑞, so we conclude that Π𝑡
GMR is an instance-dependent trapdoor

Σ-protocol with auxiliary information aux = (𝑝, 𝑞) and trapdoor 𝜏 = aux (satisfying

subexponential soundness if 𝑡 ≥ 𝜆𝜖). Thus, we conclude

Corollary 3.53. Assuming the existence of circular-secure FHE, for any 𝑡 ≥ 𝜆𝜖, there

exists a hash family ℋ soundly instantiating the Fiat-Shamir heuristic for Π𝑡
GMR.

We obtain Corollary 3.5 as a consequence of Corollary 3.53 along with one of the main

results from [DNRS99] (additionally assuming that QR ̸∈ BPP), which generalizes to

any protocol (not just Π𝑡
GMR):

Theorem 3.54 ( [DNRS99]). If there exists a hash family ℋ that soundly instantiates

the Fiat-Shamir transform for a 3-message protocol Π for a language 𝐿 ̸∈ BPP, then

Π is not zero knowledge.

For clarity, we include a proof of Theorem 3.54; we only consider the standard

definition of (auxiliary input) zero knowledge as opposed to the weakenings introduced

in [DNRS99], but the argument extends to such weakenings.

Proof. (sketch) Let ℋ soundly instantiate the Fiat-Shamir transform for Π, and sup-

pose for the sake of contradiction that Π is zero knowledge. We the define the following

cheating verifier 𝑉 * for Π:

• Auxiliary input: a hash key 𝑘 (sampled according to ℋ.Gen).

• Second message: upon receiving the first message a, 𝑉 * computes e = ℎ(𝑘, a)

and sends e to the prover.
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• Output: upon receiving a third message z, 𝑉 * outputs the transcript (a, e, z).

If Π is (auxiliary input) zero knowledge, then there is a PPT simulator 𝑆*(𝑥, 𝑘) that

produces a computationally indistinguishable transcript (a, e, z) (for all 𝑥 ∈ 𝐿 and

for 𝑘 ← ℋ.Gen(1𝜆)). In particular, this guarantees that transcripts output by 𝑆*

satisfy (with all but negligible probability)

1. e = 𝐻𝑘(a), and

2. 𝑉 (𝑥, a, e, z) = 1,

because these are both efficiently checkable conditions given (𝑥, 𝑘).

Now, since we assumed that 𝐿 ̸∈ BPP, there must also exist some 𝑥* ̸∈ 𝐿 such

that 𝑆*(𝑥*, 𝑘) produces a transcript (a, e, z) satisfying conditions (1) and (2) with all

but negligible probability; otherwise, we would have a BPP algorithm deciding the

language 𝐿 (sample 𝑘, run 𝑆*(𝑥, 𝑘), and check if conditions (1) and (2) are satisfied).

This allows us to contradict the soundness of the Fiat-Shamir protocol ̃︀Π defined

by Π and ℋ: the simulator 𝑆*, given 𝑥* and 𝑘 ← ℋ.Gen(1𝜆), exactly breaks the

soundness of ̃︀Π by the previous paragraph. This completes the proof.

Theorem 3.54 and Corollary 3.53 directly imply that the (parallel repeated) [GMR85]

protocol is not zero-knowledge (assuming the existence of circular-secure FHE and

the hardness of quadratic residuosity), as desired.
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Part II

CI Self-Reductions and Further

Applications to Protocols
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Chapter 4

Fiat-Shamir for Repeated Squaring

and Applications to

PPAD-Hardness and VDFs

4.1 Introduction

The Fiat-Shamir transform [FS87] is a methodology for compiling a public-coin inter-

active proof (or argument) system for a language 𝐿 into a non-interactive argument

system for 𝐿. While originally developed in order to convert 3-message identification

schemes into signature schemes, the methodology readily generalized [BR93] to apply

to a broad, expressive class of interactive protocols, with applications including non-

interactive zero knowledge for NP [BR93], succinct non-interactive arguments for

NP [Mic94,BCS16], and widely used/practically efficient signature schemes [Sch89].

However, these constructions and results come with a big caveat: the security

of the Fiat-Shamir transformation is typically heuristic. While the transformation

has been proved secure (in high generality) in the random oracle model [BR93,PS96,

Mic94,BCS16], it is known that some properties that hold in the random oracle model

– including the soundness of Fiat-Shamir for certain contrived interactive arguments

– cannot be instantiated at all in the standard model [CGH98,DNRS99,Bar01,GK03,
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BBH+19].

Given these negative results, security in the random oracle model is by no means

the end of the story. Indeed, the question of whether Fiat-Shamir can be instanti-

ated for any given interactive argument system (and under what computational as-

sumptions this can be done) has been a major research direction over the last twenty

years [DNRS99,Bar01,GK03,BLV03,CCR16,KRR17,CCRR18,HL18,CCH+19,PS19,

BBH+19, BFJ+20, JJ19, LVW19]. After much recent work, some positive results are

known, falling into three categories (in the decreasing order of strength of assumptions

required):

1. We can compile arbitrary (constant-round, public-coin) interactive proofs under

extremely strong assumptions [KRR17,CCRR18] that are non-falsifiable in the

sense of [Nao03].

2. We can compile certain succinct interactive proofs [LFKN90, GKR08] – and

variants of other interactive proofs not captured in item (3) below, such as

[GMW86] – under extremely strong but falsifiable assumptions [CCH+19].

3. We can compile variants of some classical 3-message zero knowledge proof sys-

tems [GMR85,Blu86,FLS90] under standard cryptographic assumptions [CCH+19,

PS19].

Elaborating on item (2) above, what is currently known is that the sumcheck pro-

tocol [LFKN90] and the related Goldwasser-Kalai-Rothblum (GKR) [GKR08] inter-

active proof system can be compiled under an “optimal security assumption” related

to (secret-key) Regev encryption. Roughly speaking, an optimal hardness assump-

tion is the assumption that some search problem cannot be solved with probability

significantly better than repeatedly guessing a solution at random. This is an ex-

tremely strong assumption that (in the context of Regev encryption) requires careful

parameter settings to avoid being trivially false.

In this work, we focus on improving item (2); in particular, we ask:

Under what computational assumptions can we instantiate Fiat-Shamir
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for an interesting succinct interactive proof?

Instead of considering the [LFKN90, GKR08] protocols, we work on compiling a

protocol of Pietrzak [Pie18] for the “repeated-squaring language” [RSW96]. At a

high level, Pietrzak constructs a “sumcheck-like” succinct interactive proof system

for the computation 𝑓𝑁,𝑔(𝑇 ) = 𝑔2𝑇 (mod 𝑁) over an RSA modulus 𝑁 = 𝑝𝑞. Compil-

ing this protocol turns out to have applications related to verifiable delay functions

(VDFs) [BBBF18] and hardness in the complexity class PPAD [CHK+19a,CHK+19b,

EFKP19], which we elaborate on below.

Applications. We consider two apparently different questions: the first is that of

establishing the hardness of the complexity class PPAD (“polynomial parity argu-

ments on directed graphs”) [Pap94] that captures the hardness of finding Nash equi-

libria in bimatrix games [DGP06, CDT09]; the second is that of constructing verifi-

able delay functions (VDFs), a recently introduced cryptographic primitive [BBBF18]

which gives us a way to introduce delays in decentralized applications such as blockchains.

The Hardness of PPAD. Establishing the hardness of PPAD [Pap94], possibly

under cryptographic assumptions, is a long-standing question in the foundations of

cryptography and computational game theory. After two decades of little progress

on the question, a recent sequence of works [BPR15, HY17, CHK+19a, CHK+19b,

EFKP19] has managed to prove that there are problems in PPAD (and indeed a

smaller complexity class, CLS [DP11]) that are hard (even on average) under strong

cryptographic assumptions. The results so far fall roughly into two categories, de-

pending on the techniques used.

1. Program Obfuscation. Bitansky, Paneth and Rosen [BPR15], inspired by an

approach outlined in [AKV04], showed that PPAD is hard assuming the exis-

tence of subexponentially secure indistinguishability obfuscation (IO) [BGI+01,

GGH+13] and one-way functions. This was later improved [GPS16, HY17]

to rely on polynomially-secure functional encryption and to give hardness in

CLS ⊆ PPAD.
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2. Unambiguously Sound Incrementally Verifiable Computation. The

recent beautiful work [CHK+19a] constructs a hard-on-average CLS instance

assuming the existence of a special kind of incrementally verifiable computation

(IVC) [Val08]. Instantiating this approach, they show that CLS ⊆ PPAD

is hard-on-average if there exists a hash function family that soundly instanti-

ates the Fiat-Shamir heuristic [FS87] for the sumcheck interactive proof system

for #P [LFKN90]. Two follow-up works [CHK+19b, EFKP19] show the same

conclusion if Fiat-Shamir for Pietrzak’s interactive proof system [Pie18] can

be soundly instantiated (and if the underlying “repeated squaring language” is

hard).

Regarding the first approach [BPR15, GPS16, HY17], secure indistinguishability ob-

fuscators have recently been constructed based on the veracity of a number of non-

standard assumptions (see, e.g., [AJL+19, BDGM20a]). Regarding the second ap-

proach [CHK+19a, CHK+19b, EFKP19], the hash function can be instantiated in

the random oracle model, or under “optimal KDM-security” assumptions [CCRR18,

CCH+19].

In summary, despite substantial effort, there are no known constructions of hard

PPAD instances from standard cryptographic assumptions (although see Section 4.1.3

for a recent independent work [KPY20] that shows such a result under a new assump-

tion on bilinear groups).

Verifiable Delay Functions. A Verifiable Delay Function (VDF) [BBBF18] is a

function 𝑓 with the following properties:

• 𝑓 can be evaluated in some (moderately large) time 𝑇 .

• Computing 𝑓 (on average) requires time close to 𝑇 , even given a large amount

of parallelism.

• There is a time 𝑇 +𝑜(𝑇 ) procedure that computes 𝑦 = 𝑓(𝑥) on an input 𝑥 along

with a proof 𝜋 that 𝑦 = 𝑓(𝑥) is computed correctly. This proof (argument)
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system should be verifiable in time ≪ 𝑇 (ideally poly(𝜆, log 𝑇 ))) and satisfy

standard (computational) soundness.

Since their introduction [BBBF18], there have been a few proposed candidate

VDF constructions [BBBF18,Pie18,Wes19,dFMPS19,EFKP19]. There are currently

no constructions based on standard cryptographic assumptions, but this is somewhat

inherent to the primitive: a secure VDF implies the existence of a problem which can

be solved in time 𝑇 and also requires (sequential) time close to 𝑇 . Nonetheless, one

can ask1 whether VDFs can be constructed from “more standard-looking” assump-

tions, a question partially answered by [Pie18, Wes19]. In particular, each of their

constructions relies on two assumptions:

(1) The 𝑇 -repeated squaring problem [RSW96] requires sequential time close to 𝑇 .

(2) The Fiat-Shamir heuristic for some specific public-coin interactive proof/argument2

can be soundly instantiated.

The techniques used in both the construction of hard PPAD instances and the

construction of VDFs are similar, and so are the underlying assumptions (this is due

to the connection between PPAD and incrementally verifiable computation [Val08,

CHK+19a]). In particular, the works of [CHK+19b,EFKP19] construct hard PPAD

(and even CLS) instances under two assumptions:

(1′) The 𝑇 -repeated squaring problem [RSW96] requires super-polynomial (standard)

time for some 𝑇 = 𝜆𝜔(1).

(2′) The Fiat-Shamir heuristic for a variant of the [Pie18] interactive proof system

can be soundly instantiated.

The assumption (1) (and its weakening, assumption (1′)) is the foundation of the

Rivest-Shamir-Wagner time-lock puzzle [RSW96] and has been around for over 20
1 [BBBF18] explicitly suggested this.
2The two works [Pie18, Wes19] consider qualitatively different interactive argument systems. In

this work, we focus on the [Pie18] protocol since (1) it has unconditional soundness and therefore is
more conducive to provable Fiat-Shamir compilation, and (2) it is more closely related to PPAD-
hardness.
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years. In particular, breaking the RSW assumption has received renewed cryptana-

lytic interest recently [Riv99,Fab19].

On the other hand, as previously discussed, the assumptions (2, 2′) are not well

understood. Indeed, our main question about Fiat-Shamir for succinct arguments (if

specialized to the [Pie18] protocol) is intimately related to the following question.

Can we construct hard PPAD instances and VDFs under more well-studied

assumptions?

4.1.1 Our Results

We show how to instantiate the Fiat-Shamir heuristic for the [Pie18] protocol under

a quantitatively strong (but relatively standard) variant of the Learning with Errors

(LWE) assumption [Reg05]. We give a family of constructions of hash functions that

run in subexponential (or even quasi-polynomial or polynomial) time, and prove that

they soundly instantiate Fiat-Shamir for this protocol under a sufficiently strong LWE

assumption.

More generally, we extend the “bad-challenge function” methodology of [CCH+19]

for proving the soundness of Fiat-Shamir to a class of protocols whose bad-challenge

functions are not efficiently computable. We elaborate on this below in the technical

overview (Section 4.1.4).

As a consequence, we obtain CLS-hardness and VDFs from a pair of quantitatively

related assumptions on the [RSW96] repeated squaring problem and on the learning

with errors (LWE) problem [Reg05]; the latter can in turn be based on the worst-

case hardness of the (approximate) shortest vector problem (GapSVP) on lattices. In

particular, we can base the hardness of CLS ⊆ PPAD, as well as the security of a

VDF, on the hardness of two relatively well-studied problems.

Fiat-Shamir for Pietrzak’s Protocol. For our main result, we show that for

any 𝜖 > 0, an LWE assumption of quantitative strength 2𝑛1−𝜖 allows for a Fiat-

Shamir instantiation with verification runtime 2�̃�(𝑛𝜖) on a repeated squaring instance
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with security parameter 𝜆 = 𝑂(𝑛 log 𝑛). Such a result is meaningful as long as the

verification runtime is smaller than the time it takes to solve the repeated squaring

problem; the current best known algorithms for repeated squaring run in heuristic

time 2�̃�(𝜆1/3) = 2�̃�(𝑛1/3) [LLMP90].

Here and throughout the paper, we will use (𝑡, 𝛿)-hardness to denote that a cryp-

tographic problem is hard for 𝑡-time algorithms to solve with 𝛿 probability (or distin-

guishing advantage).

Theorem 4.1. Let 𝜖 > 0 be arbitrary. Assume that (decision) LWE is
(︂

2�̃�(𝑛1/2),

2−𝑛1−𝜖
)︂

-hard (or alternatively,
(︁
2�̃�(𝑛𝜖), 2−𝑛1−𝜖

)︁
-hard for non-uniform algorithms). Then,

there exists a hash family ℋ that soundly instantiates the Fiat-Shamir heuristic for

Pietrzak’s interactive proof system [Pie18]. When the proof system is instantiated for

repeated squaring over groups of size 2𝑂(𝜆) with 𝜆 = 𝑂(𝑛 log 𝑛), the hash function ℎ

from the family ℋ can be evaluated in time 2�̃�(𝜆𝜖).

Under the assumption that (decision) LWE is
(︁
2�̃�(𝑛1/2), 2−

𝑛
log𝑐 𝑛

)︁
-hard for some

constant 𝑐 > 0 (or alternatively,
(︁
quasipoly(𝑛), 2−

𝑛
log𝑐 𝑛

)︁
-hard for non-uniform algo-

rithms), there exists such a hash family ℋ with quasi-polynomial evaluation time.

Moreover, the LWE assumption that we make falls into the parameter regime

where we know worst-case to average-case reductions [Reg05, BLP+13, PRSD17], so

we obtain the following corollary.

Corollary 4.2. The conclusions of Theorem 4.1 (with parameter 𝜖 < 1
2) follow from

the assumption that the worst case problem poly(𝑛)-GapSVP for rank 𝑛 lattices re-

quires time 2𝜔(𝑛1−𝜖). Similarly, the protocol with quasi-polynomial verification time

is sound under the assumption that poly(𝑛)-GapSVP requires time 2
𝑛

log(𝑛)𝑐 for some

𝑐 > 0.

The Shortest Vector Problem (SVP) on integer lattices is a well-studied problem

(see discussion in [Pei16, ADRS15]); despite a substantial effort, all known poly(𝑛)-

approximation algorithms for the problem have exponential run-time 2Ω(𝑛). As a

result, our current understanding of the approximate-SVP landscape is consistent

with the following conjecture.
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Conjecture 1 (Exponential Time Hypothesis for GapSVP). For any fixed 𝛾(𝑛) =

poly(𝑛), the 𝛾(𝑛)-GapSVP problem cannot be solved in time 2𝑜(𝑛).

Assuming Conjecture 1, the conclusion of Theorem 4.1 holds for every 𝜖 > 0; more-

over, the variant of the Theorem 4.1 protocol with quasi-polynomial time evaluation

is sound as well.

What about polynomial-time verification? Given a non-interactive protocol

for repeated squaring with 2�̃�(𝜆𝜖) verification time (or quasi-polynomial evaluation

time), one can always define a new security parameter 𝜅 = 2�̃�(𝜆𝜖) (or 𝜅 = 2log(𝜆)𝑐)

to obtain a protocol with polynomial-time verification. However, this makes use of

complexity leveraging [CGGM00], so (i) this requires making the assumption that

repeated squaring (on instances with security parameter 𝜆) is hard for poly(𝜅(𝜆))-

time adversaries, and (ii) the resulting protocol cannot have security subexponential

in 𝜅.

If one does not wish to use complexity leveraging, we give an alternative construc-

tion that has (natively) polynomial-time verification, at the cost of a stronger LWE

assumption.

Theorem 4.3. Let 𝛿 > 0 be arbitrary and 𝑞(𝑛) = poly(𝑛) be a fixed (sufficiently large)

polynomial in 𝑛. Assume that (decision) LWE is
(︂

poly(𝑛), 𝑞−𝛿𝑛

)︂
-hard for non-uniform

distinguishers (or
(︂

2�̃�(𝑛1/2), 𝑞−𝛿𝑛

)︂
-hard for uniform distinguishers). Then, there exists

a hash family ℋ that soundly instantiates the Fiat-Shamir heuristic for Pietrzak’s

interactive proof system [Pie18] with poly(𝜆) = poly(𝑛 log 𝑛)-time verification. More

specifically, the verification time is 𝜆𝑂(1/𝛿).

Moreover, this strong LWE assumption still falls into the parameter regime with

a meaningful worst-case to average-case reduction:

Corollary 4.4. The conclusion of Theorem 4.3 follows from the assumption that

worst-case 𝛾(𝑛)-GapSVP (for a fixed 𝛾(𝑛) = poly(𝑛)) cannot be solved in time 𝑛𝑜(𝑛)

with poly(𝑛) space and poly(𝑛) bits of nonuniform advice (independent of the lattice).

186



Polynomial-space algorithms for GapSVP have themselves been an object of study

for over 25 years [Kan83,KF16,BLS16,ABF+20], but the current best (poly-space) al-

gorithms for this problem run in time 𝑛Ω(𝜖𝑛) for approximation factor 𝑛1/𝜖. Therefore,

under a sufficiently strong (and plausible) worst-case assumption about GapSVP, we

have a polynomial-time Fiat-Shamir compiler without complexity leveraging.

By combining Theorems 4.1 and 4.3 with the results of [CHK+19b,EFKP19], we

obtain the following construction of hard-on-average CLS instances.

Theorem 4.5. For a constant 𝜖 > 0, suppose that

• 𝑛-dimensional LWE (with polynomial modulus) is
(︁
2�̃�(𝑛1/2), 2−𝑛1−𝜖

)︁
-hard, and

• The repeated squaring problem on an instance of size 2𝜆 requires 2𝜆𝜖 log(𝜆)𝜔(1)

time.

Then, there is a hard-on-average problem in CLS ⊆ PPAD. The same conclusion

holds if for some 𝑐 > 0,

• LWE is
(︁
2�̃�(𝑛1/2), 2−

𝑛
log(𝑛)𝑐

)︁
-hard, and

• The repeated squaring problem is hard for quasi-polynomial time algorithms.

The same conclusion also holds if for some 𝛿 > 0,

• LWE is
(︂

poly(𝑛), 𝑞−𝛿𝑛

)︂
-hard for non-uniform distinguishers, and

• The repeated squaring problem is hard for polynomial time algorithms.

We obtain Theorem 4.5 by plugging our standard model Fiat-Shamir instantiation

into the complexity-theoretic reduction of [CHK+19b].3 For use in this reduction,

our non-interactive protocol must satisfy a stronger security notion called (adaptive)

unambiguous soundness [RRR16,CHK+19a], which we show is indeed the case.

Note that the two hardness assumptions in the theorem statement are in oppo-

sition to each other. As 𝜖 becomes smaller, the repeated squaring assumption be-

comes weaker, but the LWE assumption becomes stronger. In particular, we cannot
3Our protocol differs very slightly from the formulation in [CHK+19b], but the difference is

irrelevant to the reduction.
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set 𝜖 ≥ 1/3 as there are known algorithms [LLMP90] solving repeated squaring in

(heuristic) time 2̃︀𝑂(𝜆1/3).

Additionally, as a direct consequence of Theorem 4.1, we obtain VDFs in the

standard model as long as the underlying repeated squaring problem is sufficiently

(sequentially) hard. Recall that the repeated squaring problem [RSW96] is the com-

putation of the function 𝑓𝑁,𝑔(𝑇 ) = 𝑔2𝑇 (mod 𝑁), for the appropriate distribution on

𝑁 = 𝑝𝑞 and 𝑔.

Theorem 4.6. For a constant 𝜖 > 0, suppose that

• LWE is
(︁
2�̃�(𝑛1/2), 2−𝑛1−𝜖

)︁
-hard, and

• The repeated squaring problem [RSW96] over groups of size 2𝑂(𝜆) requires 𝑇 (1−

𝑜(1)) sequential time for 𝑇 ≫ 2�̃�(𝜆𝜖).

Then, the repeated squaring function 𝑓𝑁,𝑔 can be made into a VDF with verification

time 2�̃�(𝜆𝜖) on groups of size 2𝑂(𝜆) (with 𝜆 = 𝑂(𝑛 log 𝑛)). Similarly, if for some

𝑐 > 0,

• LWE is
(︁
2�̃�(𝑛1/2), 2−

𝑛
log(𝑛)𝑐

)︁
-hard, and

• The repeated squaring problem requires 𝑇 (1 − 𝑜(1)) sequential time for 𝑇 ≫

2�̃�(log(𝜆)𝑐+1),

Then, 𝑓𝑁,𝑔 can be made into a VDF with verification time 2�̃�(log(𝜆)𝑐+1). Finally, if for

some 𝛿 > 0,

• LWE (with modulus 𝑞) is
(︂

poly(𝑛), 𝑞−𝛿𝑛

)︂
-hard for non-uniform distinguishers,

and

• The repeated squaring problem requires 𝑇 (1− 𝑜(1)) sequential time for all 𝑇 =

poly(𝜆).

Then, 𝑓𝑁,𝑔 can be made into a VDF with 𝜆𝑂(1/𝛿)-time verification.
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Theorem 4.6 follows immediately from Theorem 4.1 along with the construction

of Pietrzak [Pie18]. While many of the VDFs in Theorem 4.6 have super-polynomial

verification time (and therefore do not fit the standard definition), they can be con-

verted into (standard) VDFs with polynomial verification time via complexity lever-

aging; however, the leveraged VDFs will only support quasi-polynomial (respectively,

22poly log log 𝜅) time computation (and soundness of the VDF will only hold against ad-

versaries running in time quasi-polynomial in the new security parameter 𝜅). Because

of this, we consider the formulation in terms of super-polynomial time verification to

be more informative.

4.1.2 Comparison with Prior Work

Cryptographic Hardness of PPAD. As described in the introduction, prior

works on the cryptographic hardness of PPAD fall into two categories – those based

on obfuscation and ones based on incrementally verifiable computation (IVC). The

obfuscation-based constructions all make cryptographic assumptions related to the

existence of indistinguishability obfuscation or closely related primitives that we cur-

rently do not know how to instantiate based on well-studied assumptions. (For the

latest in obfuscation technology, we refer the reader to [JLMS19,JLS19].) We there-

fore focus on comparing to the previous IVC-based constructions.

• [CHK+19a] constructs hard problems in CLS under the polynomial hardness of

#SAT with poly-logarithmically many variables along with the assumption that

Fiat-Shamir can be soundly instantiated for the sumcheck protocol [LFKN90].

The latter follows either in the random oracle model or under the assumption

that a LWE-based fully homomorphic encryption scheme is “optimally circular-

secure” [CCH+18,CCH+19] for quasi-polynomial time adversaries.

While the hardness of #SAT (with this parameter regime) is a weaker assump-

tion than the subexponential hardness of repeated squaring, the [CHK+19a]

(standard model) result has the drawback of relying on an optimal hardness

assumption. Roughly speaking, an optimal hardness assumption is the assump-
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tion that some search problem cannot be solved with probability significantly

better than repeatedly guessing a solution at random. This is an extremely

strong assumption that requires careful parameter settings to avoid being triv-

ially false.

In contrast, our main LWE assumption is subexponential (concerning distin-

guishing advantage 2−𝑛1−𝜖) and follows from the worst-case hardness of poly(𝑛)-

GapSVP for time 2𝑛1−𝜖 algorithms. Even our most optimistic LWE assumption

(as in Theorem 4.3) follows from a form of worst-case hardness quantitatively

far from the corresponding best known algorithms.

• [CHK+19b,EFKP19] construct hard problems in CLS assuming the polynomial

hardness of repeated squaring along with a generic assumption that the Fiat-

Shamir heuristic can be instantiated for round-by-round sound (see [CCH+18,

CCH+19]) public-coin interactive proofs. The latter can be instantiated either

in the random oracle model, or under the assumption that Regev encryption (or

ElGamal encryption) is “optimally KDM-secure” for unbounded KDM functions

[CCRR18].

The [CCRR18] assumption is (up to minor technical details) stronger than the

optimal security assumption used in [CHK+19a] (because the security game

additionally involves an unbounded function), so the [CHK+19b, EFKP19] are

mostly framed in the random oracle model. In this work, we give a new Fiat-

Shamir instantiation to plug into the [CHK+19b,EFKP19] framework.

VDFs. We compare our construction of VDFs to previous constructions [BBBF18,

Pie18,Wes19,dFMPS19,EFKP19].

• [BBBF18] and [dFMPS19] give constructions of VDFs from new cryptographic

assumptions related to permutation polynomials and isogenies over supersingu-

lar elliptic curves, respectively. These assumptions are certainly incomparable

to ours, but we rely on the hardness of older, more well-studied problems.
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• [Pie18, EFKP19] have the same basic VDF construction as ours; the main

difference is that they use a random oracle to instantiate their hash function,

while we use a hash function in the standard model and prove its security under

a quantitatively strong variant of LWE.

• [Wes19] also builds a VDF based on the hardness of repeated squaring, but

by building a different interactive argument for computing the function and

assuming that Fiat-Shamir can be instantiated for this argument. Again, this

assumption holds in the random oracle model, but we know of no instantiation

of this VDF in the standard model.

On the negative side, our main VDF (for the natural choice of security parameter)

has verification time 2�̃�(𝜆𝜖); this can be thought of as polynomial-time via complexity

leveraging, but this results in a VDF that is only quasi-polynomially secure. Alter-

natively, based on our optimistic LWE assumption, we only obtain a VDF with large

polynomial (i.e. 𝜆1/𝛿 for small 𝛿) verification time. As a result, we consider our VDF

construction to be a proof-of-concept regarding whether VDFs can be built based

on “more standard-looking assumptions”, in particular, without invoking the random

oracle model.

4.1.3 Additional Related Work

[BG20] constructs hard instances in the complexity class PLS – which contains

CLS and is incomparable to PPAD – under a falsifiable assumption on bilinear

maps introduced in [KPY19] (along with the randomized exponential time hypothesis

(ETH)).

In recent independent work, [KPY20] constructs hard-on-average CLS instances

under the (quasi-polynomial) [KPY19] assumption. In fact, they give a protocol for

unambiguous and incrementally verifiable computation for all languages decidable in

space-bounded and slightly super-polynomial time.
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4.1.4 Technical Overview

We now discuss the ideas behind our main result, Theorem 4.1, which is an instan-

tiation of the Fiat-Shamir heuristic for the [Pie18] repeated squaring protocol. In

obtaining this result, we also broaden the class of interactive proofs for which we

have Fiat-Shamir instantiations under standard assumptions.

The main tool used by our construction is a hash function family ℋ that is cor-

relation intractable [CGH98] for efficiently computable functions [CLW18,CCH+19].

Recall that a hash family ℋ is correlation intractable for 𝑡-time computable functions

if for every function 𝑓 computable time 𝑡, the following computational problem is

hard: given a description of a hash function ℎ, find an input 𝑥 such that ℎ(𝑥) = 𝑓(𝑥).

We now know [PS19] that such hash families can be constructed under the LWE

assumption.

Correlation Intractability and Fiat-Shamir. In order to describe our result,

we first sketch the [CCH+19] paradigm for using such a hash family ℋ to instantiate

the Fiat-Shamir heuristic.

For simplicity, consider a three-message (public-coin) interactive proof system (Σ-

protocol)

𝑃 (𝑥) 𝑉 (𝑥)
𝛼

𝛽

𝛾 If Check(𝑥, 𝛼, 𝛽, 𝛾) = 1, accept.

Figure 4-1: A Σ-protocol Π.

as well as its corresponding Fiat-Shamir round-reduced protocol ΠFS,ℋ for a hash

family ℋ.

Moreover, suppose that this protocol Π satisfies the following soundness property

(sometimes referred to as “special soundness”): for every 𝑥 ̸∈ 𝐿 and every prover

message 𝛼, there exists at most one verifier message 𝛽*(𝑥, 𝛼) allowing the prover to
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𝑃FS(𝑥, ℎ) 𝑉FS(𝑥, ℎ)

𝛼, 𝛽 := ℎ(𝛼), 𝛾 If 𝛽 = ℎ(𝛼)
and Check(𝑥, 𝛼, 𝛽, 𝛾) = 1, accept.

Figure 4-2: The Protocol ΠFS,ℋ.

cheat.4

It then follows that if a hash family ℋ is correlation intractable for the function

family 𝑓𝑥(𝛼) = 𝛽*(𝑥, 𝛼), then ℋ instantiates the Fiat-Shamir heuristic for Π.5 This

is because a cheating prover 𝑃 *FS breaking the soundness of ΠFS,ℋ must find a first

message 𝛼 such that its corresponding challenge ℎ(𝑥, 𝛼) is equal to the bad challenge

𝑓𝑥(𝛼) (or else it has no hope of successfully cheating).

Therefore, using the hash family of [PS19], we can (under the LWE assumption) do

Fiat-Shamir for any protocol Π whose “bad-challenge function” 𝑓𝑥(𝛼) is computable

in polynomial time; this has the important caveat that the complexity of computing

the hash function ℎ is at least the complexity of computing 𝑓𝑥(𝛼).

This paradigm seems to run into the following roadblock: intuitively, for protocols

Π of interest, computing 𝑓𝑥(𝛼) appears to be hard rather than easy. For example,

1. For a standard construction of zero-knowledge proofs for NP such as [Blu86],

computing 𝑓𝑥(𝛼) involves breaking a cryptographically secure commitment scheme.

2. For (unconditional) statistical zero knowledge protocols such as the [GMR85]

Quadratic Residuosity protocol, computing 𝑓𝑥(𝛼) involves deciding the under-

lying hard language 𝐿.

3. For doubly efficient interactive proofs such as the [GKR08] interactive proof for

logspace-uniform NC, computing 𝑓𝑥(𝛼) again involves deciding the underlying

language 𝐿; in this case, 𝐿 is in P, but this Fiat-Shamir compiler would result

in a non-interactive argument whose verifier runs in time longer than it takes

to decide 𝐿.
4The prover can cheat on a pair (𝛼, 𝛽) if and only if there exists a third message 𝛾 such that

(𝑥, 𝛼, 𝛽, 𝛾) is accepted by the verifier.
5To obtain adaptive soundness, we modify the protocol to set 𝛽 = ℎ(𝑥, 𝛼) and instead consider

the function 𝑓(𝑥, 𝛼) = 𝛽*(𝑥, 𝛼).
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The work [CCH+19] resolves issues (1) and (2) in the following way: in both cases,

we can arrange for 𝑓𝑥(𝛼) to be efficiently computable given an appropriate trapdoor : in

the case of [Blu86], the commitment scheme can have a trapdoor allowing for efficient

extraction, while in the case of [GMR85], 𝑓𝑥(𝛼) is efficient given an appropriate NP-

witness for the complement language 𝐿. However, we have no analogous resolution

to (3), which is the setting of interest to us.6

The bad-challenge function of the [Pie18] protocol. With this context in

mind, we now consider the [Pie18] protocol.7 This protocol (like the [GKR08] protocol

and the related sumcheck protocol [LFKN90]) is not a constant-round protocol, but

is instead composed of up to polynomially many “reduction steps” of the following

form.

𝑃 (𝑁 = 𝑝𝑞, 𝑇, 𝑔, ℎ = 𝑔𝑇 ) 𝑉 (𝑁, 𝑇, 𝑔, ℎ)

Compute 𝑢 = 𝑔2𝑇/2 𝑢

𝑟

Compute 𝑔′ = 𝑢 · 𝑔𝑟, ℎ′ = ℎ · 𝑢𝑟 Compute 𝑔′ = 𝑢 · 𝑔𝑟, ℎ′ = ℎ · 𝑢𝑟

Recurse on the statement (𝑁, 𝑇/2, 𝑔′, ℎ′).

Figure 4-3: One reduction step of the [Pie18] protocol.

That is, the prover sends 𝑢, the (supposed) “halfway point” of the computation,

yielding two derivative claims: 𝑢 = 𝑔2𝑇/2 and ℎ = 𝑢2𝑇/2 . The verifier then challenges

the prover to prove a random linear combination of the two statements: ℎ · 𝑢𝑟 =

(𝑢 · 𝑔𝑟)2𝑇/2 .

Soundness can then be analyzed in a “round-by-round” fashion [CCH+19]: if you

start with a false statement (or if you start with a true statement but send an incorrect

6The only current known Fiat-Shamir instantiation for the [GKR08] protocol utilizes a compact
correlation intractable hash family (in the sense that the hash evaluation time is independent of
the time to compute the correlation function/relation) which we only know how to build from an
optimal security assumption [CCH+19].

7For this overview, we ignore the details of working over the group QR𝑁 ⊆ Z×𝑁 and the corre-
sponding technical challenges.
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value �̃� ̸= 𝑢), there is at most one8 bad challenge 𝑟* resulting in a recursive call on a

true statement.

To invoke the [CCH+19] paradigm, we ask: how efficiently can we compute the

function 𝑓(𝑁, 𝑇, 𝑔, ℎ, 𝑢) = 𝑟*? To answer this question, let 𝑔 denote a fixed group

element of order 𝜑(𝑁)/2 such that 𝑔, ℎ, 𝑢 ∈ ⟨𝑔⟩. Letting 𝛾, 𝜂, 𝜔 denote the discrete

logs of 𝑔, ℎ, and 𝑢 in base 𝑔, we see that (for corresponding challenge 𝑟) the statement

(𝑁, 𝑇/2, 𝑔′, ℎ′) is true if and only if

𝜂 + 𝑟 · 𝜔 ≡ 2𝑇/2(𝜔 + 𝑟 · 𝛾) (mod 𝜑(𝑁)/2).

As a result, we see that 𝑟 can be efficiently computed from the following information:

• The discrete logarithms 𝜂, 𝜔, 𝛾, and

• The factorization of 𝑁 .

While the factorization of 𝑁 can be known a priori in the security reduction (similar to

prior work), the discrete logarithms depend on the prover message 𝑢 and (adaptively

chosen) statement (𝑔, ℎ). We conclude that the “bottleneck” for computing 𝑓 is the

problem computing a constant number of discrete logarithms in Z×𝑝 .

Since computing discrete logarithms over Z×𝑝 is believed to be hard, and is not

known to have a trapdoor, it appears unlikely that this approach would allow us to

rely on the polynomial hardness of the [PS19] hash family. However, it is plausible

that we could use a variant of the [PS19] hash family supporting super-polynomial

time computation (proven secure under a super-polynomial variant of LWE) to capture

the complexity of computing discrete logarithms.

Unfortunately, the naive version of this approach fails: the best known runtime

bounds9 for computing discrete logarithms over Z×𝑝 for 𝑝 = 2𝑂(𝜆) are of the form

2�̃�(𝜆1/2) [Adl79, Pom87], and the best known heuristic algorithms (plausibly) run in

time 2�̃�(𝜆1/3) [LLMP90]. If we were to instantiate the [PS19] hash family to support
8To guarantee this property, 𝑟 is selected from a range smaller than either of the prime factors

of 𝑁 .
9See [JOP14] for a detailed discussion of the state-of-the-art on discrete logarithm algorithms.
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functions of this complexity, we could prove the soundness of Fiat-Shamir for the

[Pie18] protocol, but the resulting non-interactive protocol would run in time 2�̃�(𝜆1/2)

(or in time 2�̃�(𝜆1/3) with a heuristic security proof); these are the same runtime bounds

for the best known algorithms for solving the repeated squaring problem [Dix81,

Pom87, LLMP90] (via factoring the modulus 𝑁). In other words, the verifier would

run in enough time to be able to solve the repeated squaring problem itself. This is

a very similar problem to issue (3) regarding the [LFKN90,GKR08] protocols, so we

appear to be stuck.

Computing bad-challenge functions with low probability. We overcome the

above problem with the following idea:

What if we give up on computing the bad-challenge function exactly, and instead

compute it using a faster randomized algorithm with low success probability?

In other words, we consider a new variant of the [CCH+19] framework for instantiating

Fiat-Shamir in the standard model, where:

• An interactive protocol Π is characterized by some bad-challenge function 𝑓 ,

• 𝑓 can be computed by a time 𝑡 algorithm (or size 𝑠 circuit) with some small

but non-trivial probability 𝛿.

• The hash function ℋ is assumed to be correlation intractable – with sufficiently

strong quantitative security – against adversaries running in time 𝑡 (or with size

𝑠).

Then, it turns out that the resulting non-interactive protocol is sound! Informally,

this is because if 𝑓 is “approximated” by a time 𝑡-computable randomized function 𝑔𝑟

(in the sense that 𝑔𝑟(𝑥) and 𝑓(𝑥) agree with probability 𝛿 on a worst-case input), then

an adversary breaking the protocol ΠFS,ℋ will break the correlation intractability of

ℋ with respect to 𝑔 (rather than 𝑓) with probability 𝛿. More formally, a cheating

prover 𝑃 *FS yields an algorithm that breaks the correlation intractability of ℋ with
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respect to 𝑓 , which in turn breaks the correlation intractability of ℋ with respect to

𝑔𝑟 (for hard-coded randomness 𝑟) with probability 𝛿 · 1
poly(𝜆) (since 𝑔𝑟 and 𝑓 agree on

an arbitrary input with probability at least 𝛿). Therefore, if ℋ is (𝑡, 𝛿 ·𝜆−𝜔(1))-secure,

we conclude that ΠFS,ℋ is sound.

This modification allows us to instantiate Fiat-Shamir for the [Pie18] protocol.

In particular, we make use of folklore10 [CCRR18] preprocessing algorithms for the

discrete logarithm problem over Z×𝑝 that run in time 2𝜆𝜖 and have success probability

2−𝜆1−𝜖 . More specifically, we consider a computation of the bad challenge function

𝑓(𝑁, 𝑇, 𝑔, ℎ, 𝑢) in the following model:

• Hard-code (1) the factorization 𝑁 = 𝑝𝑞, (2) an appropriately chosen group

element 𝑔 of high order, and (3) 2�̃�(𝜆𝜖) discrete logarithms (of fixed numbers

modulo 𝑝 and modulo 𝑞, respectively) in base 𝑔.

• Compute a (constant-size) collection of worst-case discrete logarithms by the

standard index calculus algorithm [Adl79] in time 2�̃�(𝜆𝜖) with success probability

2−𝜆1−𝜖 .

This can be thought of as either a non-uniform 2�̃�(𝜆𝜖)-time algorithm, or a 2�̃�(𝜆𝜖)-

time algorithm with 2�̃�(𝜆1/2)-time preprocessing.11 By using this algorithm for the

computation of the bad-challenge function 𝑓(𝑁, 𝑇, 𝑔, ℎ, 𝑢), we obtain a Fiat-Shamir

instantiation with verification time 2�̃�(𝜆𝜖) – a meaningful result as long as this run-

time does not allow for solving the repeated squaring problem. Finally, the required

assumption is that the [PS19] hash function is correlation intractable for adversaries

that succeed with probability 2−𝜆1−𝜖 , which holds under the claimed LWE assumption

with parameters (𝑛, 𝑞) for 𝜆 = 𝑛 log 𝑞.

Generalizations. In this overview, we focused specifically on the [Pie18] protocol,

but our techniques give general blueprints for obtaining Fiat-Shamir instantiations.
10We are not aware of prior work considering this particular time-probability trade-off, but the

necessary smooth number bounds appear in [CEP83, Gra08]. Quite curiously, [CCRR18] considers
the poly(𝜆)-time variant of this algorithm to give evidence against the optimal hardness of computing
discrete logarithms over Z×𝑝 . That was bad for them, but for us, the non-optimal hardness is a feature!

11This second variant allows for an invocation of correlation intractability against uniform adver-
saries in the security proof.
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We believe these blueprints may be useful in future work, so we state them (as “meta-

theorems”) explicitly here:

• Fiat-Shamir for protocols with low success probability bad-challenge

functions. Our approach shows that if an interactive protocol Π is governed

by a bad-challenge function 𝑓 that is computable by an efficient randomized

algorithm that is only correct with (potentially very) low probability, it is still

possible to instantiate Fiat-Shamir for Π under a sufficiently strong LWE as-

sumption.

• Fiat-Shamir for discrete-log based bad-challenge functions. Our ap-

proach also shows that if a protocol Π is governed by a bad-challenge function

𝑓 that is efficiently computable given oracle access12 to a discrete log solver

(over Z×𝑝 for 𝑝 ≤ 2𝑂(𝜆)), then it is possible to instantiate Fiat-Shamir for Π

under a sufficiently strong LWE assumption.

We formalize both of these “meta-theorems” in the language of correlation in-

tractability (rather than Fiat-Shamir) in Section 4.3.

Organization. The rest of the paper is organized as follows. Section 4.2 consists

of the relevant preliminaries to describe and prove our results. In Section 4.3, we

state and prove our results about low-success probability bad-challenge functions

(and discrete-log based bad-challenge functions in particular) through the lens of

correlation intractability. In Section 4.4, we formalize the round-by-round soundness

property necessary to conclude the “adaptive unambiguous soundness” [CHK+19a]

of the round-reduced [Pie18] protocol that suffices for CLS-hardness. In Section 4.5,

we describe and analyze (our variant of) the [Pie18] protocol within the outlined

framework and prove Theorem 4.1. Finally, in Section 4.6, we apply Theorem 4.1 to

obtain Theorem 4.5 and Theorem 4.6.
12Crucially, we must also bound the number of calls that can be made to the oracle to be at most

poly log(𝜆) to get a meaningful result.
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4.2 Preliminaries

4.2.1 Repeated Squaring modulo a Composite

Following [Pie18,CHK+19b], we consider the following formulation of the RSW time-

lock puzzle [RSW96]. For an integer 𝑁 = 𝑝𝑞, recall that Z×𝑁 is defined to be the

group of units mod 𝑁 , QR𝑁 is defined to be the group of quadratic residues mod 𝑁 ,

and QR+
𝑁 is defined to be the set

{︁
𝑥 : 0 ≤ 𝑥 ≤ 𝑁

2 and
(︁

𝑥
𝑁

)︁
= 1

}︁
, where

(︁
·

𝑁

)︁
is defined

to be the Jacobi symbol.

We now define (our variant of the) RSW moderately hard function.

• Setup(1𝜆): On input the security parameter, sample an integer 𝑁 = 𝑝𝑞 along

with a group element 𝑔 ∈ Z×𝑁 such that 𝑝, 𝑞 are uniformly random safe primes

in the range [2𝜆, 2𝜆+1] and 𝑔 has order 𝜑(𝑁)/2 in Z×𝑁 (for example, 𝑔 can be the

CRT lift of any generator for Z×𝑝 and any generator for Z×𝑞 ). Let 𝑝′ = 𝑝−1
2 , 𝑞′ =

𝑞−1
2 (primes by construction), and note that 𝑔 := 𝑔2 generates QR𝑁 . Output

(𝑁, 𝑔).

• Function evaluation. Define the function

𝑓𝑁,𝑔(𝑇 ) = 𝑔2𝑇 (mod 𝑁).

We note that for any (𝑁, 𝑔), the function 𝑓𝑁,𝑔(𝑇 ) can be computed in time 𝑇 .13

We now consider two hardness assumptions related to the RSW moderately hard

function.

Definition 4.7 (𝑡(𝜆)-RSW Hardness Assumption). For some efficiently computable

function 𝑇 (·), computing 𝑓𝑁,𝑔(𝑇 (𝜆)) for (𝑁, 𝑔)← Setup(1𝜆) requires time 𝑡(𝜆).

For our main result on PPAD-hardness, we will assume the 2𝜆𝜖-RSW hardness

assumption for some constant 𝜖 > 0.

13As in prior work, we measure time complexity in terms of group operations.
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Definition 4.8 ((𝜎, 𝑝)-RSW Sequentiality Assumption). For some efficiently com-

putable function 𝑇 (·), computing 𝑓𝑁,𝑔(𝑇 (𝜆)) for (𝑁, 𝑔) ← Setup(1𝜆) requires 𝜎(𝑇 )

sequential time for algorithms with 𝑝(𝜆, 𝑇 ) parallel processors.

For our main VDF construction, we assume the (𝜎, 𝑝)-RSW sequentiality assump-

tion for some large parallelism function 𝑝(𝜆, 𝑇 ) = 𝜆𝜔(1) and sequentiality parameter

𝜎(𝑇 ) = 𝑇 (1 − 𝑜(1)) to obtain a VDF with verification time 2𝜆𝜖 . By redefining the

security parameter, this leads to a VDF with poly-time verification that can evaluate

up to quasi-polynomial time computation. As discussed in the introduction, other

parameter settings are possible (under different hardness assumptions).

4.2.2 Learning with Errors

The following preliminaries about the Learning with Errors (LWE) problem are based

on [Pei16].

Definition 4.9 (LWE Distribution). For any s ∈ Z𝑛
𝑞 and any distribution 𝜒 ⊆ Z𝑞, the

LWE distribution 𝐴s,𝜒 ∈ Z𝑛
𝑞 ×Z𝑞 is sampled by choosing a ∈ Z𝑛

𝑞 uniformly at random,

sampling 𝑒← 𝜒, and outputting (a, 𝑏 = ⟨s, a⟩+ 𝑒).

Definition 4.10 (Decision LWE). Let 𝑚 = 𝑚(𝑛) ≥ 1, 𝑞 = 𝑞(𝑛) ≥ 2 be integers, and

let 𝜒(𝑛) be a probability distribution on Z𝑞(𝑛). The Decision-LWE𝑛,𝑚,𝑞,𝜒 problem,

parameterized by 𝑛, is to distinguish whether 𝑚(𝑛) independent samples are drawn

from 𝐴s,𝜒 (for s that is sampled uniformly at random) or are drawn from the uniform

distribution.

For the rest of this paper, we will write LWE in place of Decision-LWE. Next,

we consider quantitative hardness assumptions related to LWE.

Definition 4.11 ((𝑇, 𝛿)-LWE assumption). Any 𝑇 (𝑛)-time algorithm 𝒜 solves LWE𝑛,𝑚,𝑞,𝜒

with distinguishing advantage at most 𝑂(𝛿(𝑛)).

The discrete Gaussian distribution with mean 𝑐 and standard deviation parameter

𝑠 is a distribution supported over Z and assigns probability mass 𝜌𝑐,𝑠(𝑥) ∝ 𝑒−𝜋(𝑥−𝑐)2/𝑠2

to a number 𝑐 ∈ Z.
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Worst-Case to Average-Case Reduction. When the LWE error distribution is

instantiated with a discrete Gaussian distribution, we obtain a beautiful worst-case to

average-case reduction which says that solving LWE gives us a worst-case algorithm

for an approximate decisional version of the lattice shortest vector problem. The

connection is stated formally below, with the most general version due to Brakerski

et al. [BLP+13].

Theorem 4.12. [Reg05,BLP+13,PRSD17] Let 𝑛, 𝑚, 𝑞, 𝜒 be parameters that define

the LWE problem as above, where 𝜒 is the discrete Gaussian distribution over Z

with parameter 𝛼𝑞 for some 𝛼 = 𝛼(𝑛). If the (𝑇 (𝑛), 𝛿(𝑛))-LWE assumption is false,

then there is a 𝑇 ′(𝑛)-time algorithm for the worst-case ̃︀𝑂(𝑛/𝛼)-approximate GapSVP

problem on 𝑛-dimensional lattices where 𝑇 ′ = poly
(︂

𝑛, 𝑚, log 𝑞, 𝑇, 1/𝛿
)︂

.

Moreover, the space complexity of this worst-case algorithm is bounded by poly
(︂

𝑛, 𝑚, 𝑞, 𝑇, log(1/𝛿)
)︂

.

4.2.3 Correlation Intractable Hash Families

Definition 4.13. For a pair of efficiently computable functions (𝑛(·), 𝑚(·)), a hash

family with input length 𝑛 and output length 𝑚 is a collection ℋ = {ℎ𝜆 : {0, 1}𝑠(𝜆) ×

{0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆)}𝜆∈N of keyed hash functions, along with a pair of p.p.t. algo-

rithms:

• ℋ.Gen(1𝜆) outputs a hash key 𝑘 ∈ {0, 1}𝑠(𝜆).

• ℋ.Hash(𝑘, 𝑥) computes the function ℎ𝜆(𝑘, 𝑥). We may use the notation ℎ(𝑘, 𝑥)

to denote hash evaluation when the hash family is clear from context.

As in prior works [CCH+19, PS19] we consider the security notion of correlation

intractability [CGH98] for single-input relations and its restriction to (single-input)

functions.

Definition 4.14 (Correlation Intractability). For a given relation ensemble 𝑅 =

{𝑅𝜆 ⊆ {0, 1}𝑛(𝜆) × {0, 1}𝑚(𝜆)}, a hash family ℋ = {ℎ𝜆 : {0, 1}𝑠(𝜆) × {0, 1}𝑛(𝜆) →
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{0, 1}𝑚(𝜆)} is said to be 𝑅-correlation intractable with security (𝑠, 𝛿) if for every 𝑠-size

𝒜 = {𝒜𝜆},

Pr
𝑘←ℋ.Gen(1𝜆)

𝑥←𝒜(𝑘)

[︂(︁
𝑥, ℎ(𝑘, 𝑥)

)︁
∈ 𝑅

]︂
= 𝑂(𝛿(𝜆)).

We say that ℋ is 𝑅-correlation intractable with security 𝛿 if it is (𝜆𝑐, 𝛿)-correlation

intractable for all 𝑐 > 1. Finally, we say that ℋ is 𝑅-correlation intractable if it is

(𝜆𝑐, 1
𝜆𝑐 )-correlation intractable for all 𝑐 > 1.

To allow for a uniform security reduction in our results, we also consider the

following modified definition.14

Definition 4.15 (Correlation Intractability against Uniform Adversaries). Let ℛ de-

note a collection of relation ensembles with input length function 𝑛(·) and output

length function 𝑚(·). A hash family ℋ is said to be ℛ-correlation intractable with se-

curity (𝑇, 𝛿) against uniform adversaries if every 𝑇 -time adversary 𝒜 wins the following

game with probability at most 𝑂(𝛿(𝜆)):

1. 𝒜(1𝜆) outputs the description of a relation 𝑅 ∈ ℛ and sends it to a challenger.

2. The challenger samples a hash key 𝑘 ← ℋ.Gen(1𝜆) and sends 𝑘 to 𝒜.

3. 𝒜, given 𝑘, returns an input 𝑥 ∈ {0, 1}𝑛(𝜆). 𝒜 wins if (𝑥, ℎ𝑘(𝑥)) ∈ 𝑅.

Definition 4.16 (Correlation Intractability for Functions). For a given function en-

semble ℱ = {𝑓𝜆 : {0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆)}, a hash family ℋ = {ℎ𝜆 : {0, 1}𝑠(𝜆) ×

{0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆)} is said to be 𝑓 -correlation intractable with security (𝑠, 𝛿) if for

every 𝑠-size 𝒜 = {𝒜𝜆},

Pr
𝑘←ℋ.Gen(1𝜆)

𝑥←𝒜(𝑘)

[︂
ℎ(𝑘, 𝑥) = 𝑓(𝑥)

]︂
= 𝑂(𝛿(𝜆)).

We say that ℋ is 𝑓 -correlation intractable with security 𝛿 if it is (𝜆𝑐, 𝛿)-correlation

intractable for all 𝑐 > 1. Finally, we say that ℋ is 𝑓 -correlation intractable if it is

(𝜆𝑐, 1
𝜆𝑐 )-correlation intractable for all 𝑐 > 1.

14This was implicit in prior works, but we make the distinction explicit here.
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Remark 4.17. We can define correlation intractability for functions against uniform

adversaries similarly to Definition 4.15.

We note that syntactically, correlation intractability for functions implies correla-

tion intractability for relations that are implicitly described by (partial) functions.

Definition 4.18 (Unique Output Relation). We say that a relation 𝑅 is a unique

output relation if for every input 𝑥, there exists at most one output 𝑦 such that

(𝑥, 𝑦) ∈ 𝑅.

Lemma 4.19. Suppose that ℛ is a class of unique output relations. Let ℱ denote a

class of functions such that for all 𝑅 ∈ ℛ, there exists a function 𝑓 ∈ ℱ “explaining

𝑅” in the sense that for all (𝑥, 𝑦) ∈ {0, 1}* × {0, 1}*, if 𝑅(𝑥, 𝑦) = 1 then 𝑓(𝑥) =

𝑦. Then, if a hash family ℋ is correlation intractable for ℱ , then it is correlation

intractable for ℛ with the same parameters.

In our constructions, we will make use of the correlation intractable hash family

of [PS19]; in particular, we make use of the fact that it inherits strong quantitative

security from the underlying LWE assumption.

Theorem 4.20 ( [PS19], slightly modified). Assume the (𝑇 · 𝑛𝜔(1), 𝛿)-hardness of

LWE𝑛,𝑚+1,𝑞,𝜒 for sufficiently large 𝑞 = poly(𝑛, 𝑚) and 𝑚 = 𝑛⌈log 𝑞⌉). Then, for every

polynomial function ℓ(𝑛), there is a hash family ℋ = {ℎ𝜆 : {0, 1}𝑠×{0, 1}ℓ → {0, 1}𝑚}

that is (𝑇 · 𝑛𝜔(1), 𝛿)-correlation intractable for all 𝑇 -time computable functions 𝑓 :

{0, 1}ℓ → {0, 1}𝑚.

Proof (sketch). The [PS19] construction (making use of a polynomial modulus 𝑞)

consists of two parts: a hash family for branching programs, followed by a “boot-

strapping step” via levelled FHE. The security of the bootstrapping step follows from

a comparatively weaker LWE security invocation (as a larger security parameter for

the FHE scheme can be chosen without affecting the output length of the overall

hash function), so we focus on the branching program step. Their hash function for

branching programs is constructed to have output length 𝑛⌈log 𝑞⌉ and has a security

proof consisting of two steps: a “leftover hash lemma” argument for the (statistically
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hiding) fully homomorphic commitments, and a direct invocation of LWE𝑛,𝑚+1,𝑞,𝜒.

By choosing large enough public parameters for the fully homomorphic commitment

scheme (which does not effect the output length of the hash function), the leftover

hash lemma can be made to guarantee 𝑞−𝑛-statistical indistinguishability of this step

in the security proof. Finally, the security reduction from LWE𝑛,𝑚+1,𝑞,𝜒 runs in time

𝑇 · poly(𝑛, log 𝑞). This completes the proof of Theorem 4.20.

Remark 4.21. In our later constructions, we will consider functions 𝑓 computed in

an “online-offline” model, where 𝑓 ∈ Size(𝑆) is computable by a size 𝑆 circuit 𝐶,

but the circuit requires time 𝑇 ≫ 𝑆 to construct. Theorem 4.20 above then says that

correlation intractability for 𝑓 can be built from a non-uniform LWE assumption for

size 𝑆 · 𝑛𝜔(1)-size adversaries, but the same argument shows that one can instead rely

on a uniform LWE assumption for time 𝑇 · 𝑛𝜔(1) adversaries.

4.2.4 Interactive Proofs and Arguments

We being by recalling the definitions of interactive proofs and arguments.

Definition 4.22. An interactive proof (resp., interactive argument) for a promise

problem ℒ = (ℒyes,ℒno) is a pair (𝑃, 𝑉 ) of interactive algorithms satisfying:

• Completeness. For any 𝑥 ∈ ℒyes, when 𝑃 and 𝑉 interact on common input

𝑥, the verifier 𝑉 outputs 1 with probability 1.

• Soundness. For any 𝑥 ∈ ℒno∩{0, 1}𝑛 and any unbounded (resp., polynomial-

time) interactive 𝑃 *, when 𝑃 * and 𝑉 (𝑥) interact, the probability that 𝑉 outputs

1 is a negligible function of 𝑛.

The protocol is public coin if each of 𝑉 ’s messages is an independent uniformly random

string of some length (and the verifier’s decision to accept or reject does not use any

secret state). In this setting, we will denote prover messages by (𝛼1, . . . , 𝛼ℓ) and

verifier messages by (𝛽1, . . . , 𝛽ℓ−1) in a 2ℓ− 1-round protocol.
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Definition 4.23. A non-interactive argument scheme (in the CRS model) is for a

promise problem ℒ = (ℒyes,ℒno) is a triple (Setup, 𝑃, 𝑉 ) of non-interactive algorithms

with the following properties:

• Setup(1𝑛) outputs a common reference string crs.

• 𝑃 (crs, 𝑥) outputs a proof 𝜋.

• 𝑉 (crs, 𝑥, 𝜋) outputs a bit 𝑏 ∈ {0, 1}

It satisfies the notions of completeness and (computational) soundness as above.

Remark 4.24. Given an argument system Π, we consider three important complexity

measures of Π:

• The runtime of the prover 𝑃 on an instance of size 𝑛.

• The quantitative soundness of Π; that is, how long a cheating prover 𝑃 * can

run with the guarantee that soundness is unbroken.

• The runtime of the verifier 𝑉 on an instance of size 𝑛. For a nontrivial argu-

ment system, this quantity should be smaller than the previous two.

In this paper, we will sometimes consider non-interactive protocols with a crs whose

length is superpolynomial in the instance size 𝑛 or security parameter 𝜆. In this sit-

uation, we will still parameterize prover efficiency, verifier efficiency, and quantative

soundness as functions of (𝑛, 𝜆) rather than the Prover/Verifier input length (which

is at least the length of the crs).

Definition 4.25 (Fiat-Shamir Transform). Let Π denote a public coin interactive

proof (or argument) system Π that has ℓ prover messages and ℓ−1 verifier messages of

length 𝑚 = 𝑚(𝜆). Then, for a hash family ℋ = {{ℎ𝑘 : {0, 1}* → {0, 1}𝑚(𝜆)}𝑘∈{0,1}𝜆}𝜆,

we define the Fiat-Shamir non-interactive protocol ΠFS,ℋ = (Setup, 𝑃FS, 𝑉FS) as fol-

lows:

• Setup(1𝜆): sample a hash key 𝑘 ← ℋ.Gen(1𝜆).
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• 𝑃FS(𝑥): for 𝑖 ∈ {1, . . . , ℓ}, recursively compute the following pairs (𝛼𝑖, 𝛽𝑟):

– Compute 𝛼𝑖 = 𝑃 (𝜏𝑖 for 𝜏𝑖 = (𝑥, 𝛼1, 𝛽1, . . . , 𝛼𝑖−1, 𝛽𝑖−1).

– Compute 𝛽𝑖 = ℎ𝑘(𝜏𝑖−1, 𝛼𝑖).

Then, 𝑃FS(𝑥) outputs 𝜋 = (𝛼1, 𝛽1, . . . , 𝛼ℓ).

• 𝑉FS(crs, 𝑥, 𝜋) parses 𝜋 = (𝛼1, 𝛽1, . . . , 𝛼ℓ) and verifies that:

– 𝛽𝑖 = ℎ𝑘(𝜏𝑖−1, 𝛼𝑖) for all 1 ≤ 𝑖 ≤ ℓ− 1, and

– 𝑉 (𝑥, 𝜋) = 1.

We note the following facts about ΠFS,ℋ

• The honest prover complexity of ΠFS,ℋ is equal to the honest prover complexity

of Π with an additive overhead of computing ℓ− 1 hash values.

• The verifier complexity of ΠFS,ℋ is equal to the verifier complexity of Π with the

same hashing additive overhead.

• The protocol ΠFS,ℋ is not necessarily sound, even if Π is sound and ℋ is a

“strong cryptographic hash function.”

Finally, we define the notion of unambiguous soundness [RRR16], which is crucial

for our PPAD-hardness result. For non-interactive arguments, the soundness notion

we consider is adaptive in that we allow the prover 𝑃 * to adaptively choose the

statement 𝑥 after seeing the crs.

Definition 4.26 (Unambiguous Soundness [RRR16, CHK+19a]). A public-coin in-

teractive proof system Π is unambiguously sound if (1) it is sound, and (2) for every

𝑥 ∈ 𝐿 and every (complete) collection of verifier messages (𝛽1, . . . , 𝛽ℓ−1), there exists

a distinguished proof 𝜋*(𝑥, 𝛽1, . . . , 𝛽ℓ−1) such that the following soundness condition

holds: For all 𝑥 ∈ 𝐿 and all cheating provers 𝑃 *, the probability that the transcript

⟨𝑃 *(𝑥), 𝑉 (𝑥)⟩ contains a proof 𝜋 such that 𝑉 (𝑥, 𝜋) = 1 and 𝜋 ̸= 𝜋*(𝑥, 𝛽1, . . . , 𝛽ℓ−1) is

negligible.
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Definition 4.27 (Adaptive Unambiguous Soundness). A non-interactive argument

system Π = (Setup, 𝑃, 𝑉 ) is adaptively unambiguously sound against (uniform or

nonuniform) time 𝑇 adversaries if for all instances 𝑥 ∈ 𝐿 and all common refer-

ence strings crs, there exists a “distinguished proof” 𝜋*(crs, 𝑥) such that the following

soundness condition holds: For all time 𝑇 cheating provers 𝑃 *, the probability that

𝑃 *(crs) = (𝑥, 𝜋) where 𝑉 (𝑥, 𝜋) = 1 and either 𝑥 ̸∈ 𝐿 or 𝜋 ̸= 𝜋*(crs, 𝑥) is negligible.

4.2.5 Non-trivial Preprocessing Algorithms for the Discrete

Logarithm Problem

In this section, we describe a family of randomized algorithms for solving the (worst-

case) discrete logarithm problem over Z×𝑝 for a prime 𝑝. This will be necessary for

the analysis of our variant of Pietrzak’s interactive proof system of repeated squaring,

and for its associated Fiat-Shamir hash function.

The algorithm is a simple variant of the index calculus algorithm, as presented

in [CCRR18], but with different parameter choices. We present the algorithm, analyze

its runtime, and state (with citation) its success probability.

Given an arbitrary generator 𝑔 for Z×𝑝 for 𝑝 = 2𝑂(𝜆) and a time bound 𝑡, we

consider the following preprocessing algorithm for discrete logarithms with base 𝑔.

• Offline Phase: for all 1 ≤ 𝑘 ≤ 𝑡, compute the discrete logarithm of 𝑘 in base

𝑔, and store the answer 𝛼𝑘.

• Online Phase: given challenge ℎ, define ℎ′ = ℎ · 𝑔−𝑟 for a uniformly random

𝑟, and check if ℎ′ ∈ Z factors into a product of elements of the set {2, . . . , 𝑡}. If

such a factorization ℎ′ = 𝑘1 · . . . ·𝑘ℓ is found, then output the discrete logarithm

𝑟 + 𝑘1 + 𝑘2 + . . . + 𝑘ℓ. Otherwise, output ⊥.

For a runtime analysis, note that each discrete logarithm in the offline phase can

be computed in time 2�̃�(𝜆1/2) via the algorithm of [Adl79,Pom87], so the entire offline

phase can be computed in time 𝑡 · 2�̃�(𝜆1/2).
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The online phase can be computed in time 𝑡 · poly(𝜆), with the most expensive

step being the attempted factorization of ℎ′ via trial division.

Finally, since ℎ′ is a uniformly random element of {1, . . . , 𝑝 − 1}, the success

probability of one iteration of the online phase is simply the probability that a random

element of {1, . . . , 𝑝− 1} has no prime factor larger than 𝑡. Based on smooth number

estimates (such as those following from [CEP83]; see [Gra08] for a survey of results),

we note the following special cases.

Theorem 4.28 (Follows from [CEP83]). The following probability bounds hold:

• For 𝑡 = 𝜆𝐴, the algorithm has success probability at least 2−𝜆
𝐴

(1−𝑜(1)).

• For 𝑡 = 2log(𝜆)𝑐, the algorithm has success probability at least 2
−𝜆

log(𝜆)𝑐−1 (1−𝑜(1)).

• For sufficiently large 𝑡 = 2�̃�(𝜆𝜖), the algorithm has success probability at least

2
−𝜆1−𝜖(1−𝑜(1))

log2(𝜆) .

We note that this algorithm, in the regime 𝑡 = poly(𝜆), was considered in [CCRR18]

as evidence against the optimal security of discrete log over Z×𝑝 ; a simple application

of Rankin’s method [Ran38] sufficed for their calculations, but we are interested in

analyzing larger values of 𝑡.

4.3 Correlation Intractability for Special Inefficient

Functions

In this section, we show how to construct correlation-intractable hash families that

support certain functions 𝑓 that are not necessarily efficiently computable. Specifi-

cally, we handle functions that can be computed by a randomized algorithm that is

only correct with low probability(Section 4.3.1). As a special case (by appealing to

Section 4.2.5), this implies that we can handle functions 𝑓 that are efficient given a

small number of calls to a discrete log oracle (Section 4.3.2).
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4.3.1 A Self-Reduction for Correlation Intractability

We first show the following simple self-reduction for correlation-intractable hash fam-

ilies.

Theorem 4.29. If a hash family ℋ is (𝑠, 𝛿)-correlation intractable for all non-

uniform time 𝑡-computable functions, then it is (𝑠, 𝛿
𝜖
)-correlation intractable for all

functions 𝑓 that are computable in the following preprocessing model:

• Preprocessing Phase: In unbounded time, output the description of a ran-

domized function 𝑔𝑟 running in time 𝑡.

• Online Phase: Given an input 𝑥, compute 𝑔𝑟(𝑥).

• Correctness Guarantee: For all inputs 𝑥, we have that Pr[𝑔𝑟(𝑥) = 𝑓(𝑥)] ≥ 𝜖.

Proof. Given a function 𝑓 computable in the above preprocessing model, suppose that

an adversary 𝒜 breaks the (𝑠, 𝛿
𝜖
)-correlation intractability of ℋ. Then, 𝒜(𝑘) finds an

input 𝑥 such that ℎ𝑘(𝑥) = 𝑓(𝑥) with probability at least 𝛿
𝜖
. But for a uniformly

random 𝑟, we are guaranteed that (for any fixed 𝑥), 𝑓(𝑥) = 𝑔𝑟(𝑥) with probability at

least 𝜖. From this, we conclude that for a random 𝑟, the exact same adversary 𝒜(𝑘)

finds an input 𝑥 such that ℎ𝑘(𝑥) = 𝑔𝑟(𝑥) with probability at least 𝛿, breaking the

(𝑠, 𝛿)-correlation intractability of ℋ.

Remark 4.30. If the preprocessing phase of this online-offline algorithm can be im-

plemented in some (uniform) time 𝑇 , then correlation intractability against uniform

adversaries (with the appropriate parameters) is also preserved.

4.3.2 CI for Efficient Functions Relative to Discrete-Log

By combining Theorem 4.29 with the non-trivial discrete log algorithms in Sec-

tion 4.2.5 as well as the construction of correlation-intractable hash families due

to [PS19] (Theorem 4.20), we obtain a CI construction for a class of functions that

are efficient relative to a discrete log oracle. We formalize the result as follows.
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Definition 4.31. We say that a function 𝑓 is (𝑇, 𝑞, ℓ)-computable given a discrete log

oracle if 𝑓 is computable by an oracle algorithm 𝐴𝒪(·), where

• 𝐴 runs in time 𝑇 ,

• 𝐴 makes at most 𝑞 queries to 𝒪,

• Every query (𝑔, ℎ, 𝑝) to 𝒪 has length at most ℓ, and

• 𝒪(𝑔, ℎ, 𝑝) computes the discrete logarithm of ℎ with respect to 𝑔 in the group

Z×𝑝 .

Theorem 4.32. Let 𝜖 > 0 be arbitrary. Assume that (decision) LWE is
(︁
2�̃�(𝑛1/2),

2−𝑛1−𝜖
)︁
-hard (or alternatively,

(︁
2�̃�(𝑛𝜖), 2−𝑛1−𝜖

)︁
-hard for non-uniform algorithms) for

some 𝑞 = poly(𝑛). Then, for 𝑚 = 𝑛 log 𝑞 and every polynomial function ℓ(𝑛), there

exists a hash family ℋ mapping {0, 1}ℓ(𝑛) → {0, 1}𝑚 such that

• ℋ is correlation intractable for all functions 𝑓 that are (2𝑛𝜖
, poly log 𝑛, �̃�(𝑚))-

computable given a discrete log oracle, and

• A hash function ℎ from ℋ can be evaluated in time 2�̃�(𝑛𝜖).

Under the assumption that (decision) LWE is
(︁
2�̃�(𝑛1/2), 2−

𝑛
log𝑐 𝑛

)︁
-hard for some

constant 𝑐 > 0 (or alternatively,
(︁
quasipoly(𝑛), 2−

𝑛
log𝑐 𝑛

)︁
-hard for non-uniform algo-

rithms), there exists such a hash family ℋ where

• ℋ is correlation intractable for all functions 𝑓 that are (quasipoly(𝑛), poly log 𝑛,

�̃�(𝑚))-computable given a discrete log oracle, and

• A hash function ℎ from ℋ can be evaluated in time quasipoly(𝑛).

Finally, under the assumption that (decision) LWE is
(︂

poly(𝑛), 𝑞−𝛿𝑛

)︂
-hard for

non-uniform distinguishers (or
(︂

2�̃�(𝑛1/2), 𝑞−𝛿𝑛

)︂
-hard for uniform distinguishers) for

a fixed 𝛿 > 0, there exists such a hash family ℋ where

• ℋ is correlation intractable for all functions 𝑓 that are (𝑛1/𝛿, 𝑂(1), 𝑂(𝑚))-

computable given a discrete log oracle, and
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• A hash function ℎ from ℋ can be evaluated in time 𝑛𝑂(1/𝛿).

Remark 4.33. Looking ahead, Theorem 4.32 is not directly used in this work to

obtain our main theorem (Theorem 4.1). The reason for this is due to technicalities

about preprocessing and non-uniformity when describing the [Pie18] protocol and its

bad challenge function. A more complicated version of Theorem 4.32 could be directly

used to prove Theorem 4.1, but we prefer to state a simpler version of Theorem 4.32

and then directly analyze the [Pie18] protocol in Section 4.5.1.

4.4 Round-by-Round (Unambiguous) Soundness and

Fiat-Shamir

Following [CCH+18, CCH+19], we consider the notion of round-by-round soundness

to capture a particular kind of soundness analysis for super-constant round interactive

proofs. Since we are interested in unambiguous soundness for our protocol, we define

an analogous notion of “unambiguous round-by-round soundness” and note (as in

[CCH+18]) that correlation intractability for an appropriate relation suffices for a

hash family to instantiate the Fiat-Shamir heuristic for unambiguously round-by-

round sound interactive proofs.

Definition 4.34 (Unambiguous Round-by-Round Soundness, adapted from [CCH+18]).

Let Π = (𝑃, 𝑉 ) be a 2ℓ−1-message public coin interactive proof system for a language

𝐿.

We say that Π has unambiguous round-by-round soundness error 𝜖(·) if there exist

functions (State, NextMsg) with the following syntax.

• State is a deterministic (not necessarily efficiently computable) function that

takes as input an instance 𝑥 and a transcript prefix 𝜏 and outputs either acc or

rej.

• NextMsg is a deterministic (not necessarily efficiently computable) function that

takes as input an instance 𝑥 and a transcript prefix 𝜏 and outputs a (possibly
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aborting) prover message 𝛼 ∈ {0, 1}* ∪ {⊥}.

We additionally require that the following properties hold.

1. If 𝑥 ̸∈ 𝐿, then State(𝑥, ∅) = rej, where ∅ denotes the empty transcript.

2. If State(𝑥, 𝜏) = rej for a transcript prefix 𝜏 , then NextMsg(𝑥, 𝜏) = ⊥. That is,

NextMsg(𝑥, 𝜏) is only defined on accepting states.

3. For every input 𝑥 and partial transcript 𝜏 = 𝜏𝑖, then for every potential prover

message 𝛼𝑖+1 ̸= NextMsg(𝑥, 𝜏), it holds that

Pr
𝛽𝑖+1

[︂
State

(︁
𝑥, 𝜏 |𝛼𝑖+1|𝛽𝑖+1

)︁
= acc

]︂
≤ 𝜖(𝑛)

4. For any full15 transcript 𝜏 , if State(𝑥, 𝜏) = rej then 𝑉 (𝑥, 𝜏) = 0.

We say that Π is unambiguously round-by-round sound if it has unambiguous round-

by-round soundness error 𝜖 for some 𝜖(𝑛) = negl(𝑛).

Remark 4.35. Note that a proof system that satisfies unambiguous round-by-round

soundness also satisfies standard unambiguous soundness. Indeed, if a proof sys-

tem Π satisfies unambiguous round-by-round soundness, every statement 𝑥 ∈ 𝐿 and

collection of verifier messages (𝛽1, . . . , 𝛽ℓ−1) has an associated “distinguished proof”

defined by iterating the NextMsg function on the appropriate partial transcripts. It

is (statistically) hard for a cheating prover 𝑃 * to find any proof �̃� other than 𝜋* =

𝜋*(𝑥, 𝛽1, . . . , 𝛽ℓ−1) because finding such a proof violates unambiguous round-by-round

soundness at whichever round �̃� first deviates from 𝜋*.

With this definitional framework, a direct adaptation of ( [CCH+18], Theorem

5.8) yields the following result.

Theorem 4.36. Suppose that Π = (𝑃, 𝑉 ) is a 2ℓ− 1-message public-coin interactive

proof for a language 𝐿 with perfect completeness and unambiguous round-by-round

soundness with corresponding functions (State, NextMsg). Let 𝑋𝑛 denote the set of
15By a full transcript, we mean a transcript for which the verifier halts.
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partial transcripts (including the input and all messages sent) and let 𝑌𝑛 denote the

set of verifier messages when Π is executed on an input of length 𝑛.

Finally, define the relation ensemble 𝑅 = 𝑅State,NextMsg as follows:

𝑅
(𝑛)
State,NextMsg

def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(︂(︁

𝑥, 𝜏 |𝛼
)︁
, 𝛽
)︂

:

𝑥 ∈ {0, 1}𝑛,

𝛼 ̸= NextMsg(𝑥, 𝜏)

and

State(𝑥, 𝜏 |𝛼|𝛽) = acc

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

If a hash family ℋ = {ℋ𝑛 : 𝑋𝑛 → 𝑌𝑛} is 𝑇 ·𝜆𝜔(1)-correlation intractable for 𝑅, then the

round-reduced protocol ΠFS,ℋ is an adaptively unambiguously sound argument system

(against time 𝑇 · 𝜆𝜔(1) cheating provers) for 𝐿.

Finally, we consider the special case where the relation 𝑅State,NextMsg associated to

a protocol Π is a unique output relation (Definition 4.18).

Definition 4.37 (Bad Challenge Function). Let Π denote a public-coin interactive

proof system satisfying unambiguous round-by-round soundness with associated func-

tions (State, NextMsg). Suppose that the relation 𝑅State,NextMsg as defined above is a

unique output relation.

We say that a function 𝑓State,NextMsg is a bad challenge function for Π if for all

partial transcripts (𝑥, 𝜏), and all verifier messages 𝛽, if (𝑥|𝜏, 𝛽) ∈ 𝑅State,NextMsg, then

𝛽 = 𝑓State,NextMsg(𝑥, 𝜏)

Invoking Lemma 4.19 and Theorem 4.36, we obtain the following corollary.

Corollary 4.38. In the setting of Theorem 4.36, if 𝑓 is a bad challenge function

for Π and ℋ is 𝑇 · 𝜆𝜔(1)-correlation intractable for 𝑓 , then ΠFS,ℋ is an adaptively

unambiguously sound non-interactive argument system against 𝑇 ·𝜆𝜔(1)-time cheating

provers.
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4.5 Fiat-Shamir for the Repeated Squaring Proto-

col

In this section, we describe our variant of the [Pie18] repeated squaring protocol,

analyze its round-by-round unambiguous soundness (Definition 4.34), and show that

the protocol has an associated bad-challenge function (Definition 4.37) that allows

for the desired Fiat-Shamir instantiation (Theorem 4.1).

4.5.1 Our Variant of the Repeated Squaring Protocol

For ease of notation and analysis, we adopt the following variant of Pietrzak’s protocol

[Pie18]. While it is essential for us to use a protocol with unambiguous soundness,

our deviation from the variant of [CHK+19b] is voluntary. For simplicity, we only

consider 𝑇 = 2𝑡 to be a power of 2.

• Setup: Sample (𝑁, 𝑔)← Setup(1𝜆) for the RSW function (Section 4.2.1).

• Initial Claim: On input 𝑇 , the prover outputs ℎ = 𝑔2𝑇 = 𝑓𝑁,𝑔(𝑇 ). The

implicit claim is that ℎ is indeed equal to 𝑓𝑁,𝑔(𝑇 ).

• Round-by-Round Reduction given a claim (𝑁, 𝑇, 𝑔𝑖, ℎ𝑖), the prover and ver-

ifier execute a 2-round reduction step that outputs a new claim:

– With 𝑇
2 +𝑂(1) group operations, the prover computes 𝑢𝑖 = 𝑔2

𝑇
2

𝑖 along with

the unique square root 𝑣𝑖 of 𝑢𝑖 such that 𝑣𝑖 ∈ QR+
𝑁 . In particular, this 𝑣𝑖

is equal to one of ±𝑔2𝑇/2−1
𝑖 . The prover outputs (𝑢𝑖, 𝑣𝑖).

– The verifier checks that 𝑣𝑖 ∈ QR+
𝑁 and that 𝑣2

𝑖 = 𝑢𝑖; if a check fails,

the verifier aborts. Otherwise, the verifier samples a random string 𝑟𝑖 ←

{0, 1}𝜆.

– The prover and verifier recurse on the new claim (𝑁, 𝑇/2, 𝑔𝑖+1 = 𝑢𝑖 ·

𝑔𝑟
𝑖 , ℎ𝑖+1 = ℎ𝑖 · 𝑢𝑟

𝑖 ).

214



• Base Case: On the final claim (𝑁, 1, 𝑔𝑡, ℎ𝑡), the verifier accepts if and only if

ℎ𝑡 = 𝑔2
𝑡 .

We denote this main interactive protocol by Π. We now proceed to analyze its

soundness properties.

4.5.2 Unambiguous Round-by-Round Soundness and Bad-

Challenge Function

We show that Π satisfies unambiguous round-by-round soundness and has an associ-

ated bad challenge function 𝑓 : Z𝑁×Z𝑁 → {0, 1}𝜆 that has a non-trivial preprocessing

algorithm.

We begin by defining the functions (State, NextMsg), using the fact that every

partial transcript (𝑥, 𝜏) has an associated “current claim”.

• State(𝑥, 𝜏) is defined to be acc if and only if all prover messages (𝑢, 𝑣) pass the

verifier’s local check (that 𝑣2 = 𝑢 and 𝑣 ∈ QR+
𝑁) and the “current claim” of the

form ℎ𝑖 = 𝑔𝑇𝑖
𝑖 is true.

• NextMsg(𝑥, 𝜏) is defined (for accepting states) to be (𝑢𝑖, 𝑣𝑖) for 𝑢𝑖 = 𝑔
𝑇𝑖/2
𝑖 and

𝑣𝑖 ∈ ±𝑔
𝑇𝑖/2−1
𝑖 the appropriately chosen square root in QR+

𝑁 . For rejecting states,

NextMsg(𝑥, 𝜏) = ⊥ by definition.

Theorem 4.39. The protocol Π satisfies unambiguous round-by-round soundness with

associated functions (State, NextMsg). Moreover, Π has a bad challenge function 𝑓 .

Proof. Properties (1), (2), and (4) of unambiguous round-by-round soundness fol-

low immediately from the definitions of (State, NextMsg). What remains is to verify

property (3), which follows from two facts that we will prove:

• At each step 𝑖 of the round-by-round reduction, if Claim 𝑖 is false, then for every

prover message (𝑢𝑖, 𝑣𝑖), there is at most one challenge 𝑟* such that Claim 𝑖 + 1

is true.
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• At each step 𝑖, if Claim 𝑖 is true, then for every prover message (𝑢𝑖, 𝑣𝑖) that

deviates from the correct messages, there is at most one challenge 𝑟* such that

Claim 𝑖 + 1 is true.

To prove this, we consider the reduction step for an arbitrary verifier message 𝑟𝑖:

ℎ𝑖+1 := ℎ𝑖 · 𝑢𝑟
𝑖 , 𝑔𝑖+1 = 𝑢𝑖 · 𝑔𝑟

𝑖

Let (𝜂, 𝜔, 𝛾) denote the discrete logarithms of (ℎ𝑖, 𝑔𝑖, 𝑢𝑖), respectively, in base 𝑔.

We then see that Claim 𝑖 + 1 is true if and only if

𝜂 + 𝑟 · 𝜔 ≡ 2𝑇𝑖/2(𝜔 + 𝑟 · 𝛾) (mod 𝑝′𝑞′),

which is true if and only if

𝑟(𝜔 − 2𝑇𝑖/2𝛾) ≡ 2𝑇𝑖/2𝜔 − 𝜂 (mod 𝑝′𝑞′).

We then have two cases to analyze:

• Case 1: If 𝜔 = 2𝑇𝑖/2𝛾, then the equality above holds if and only if 𝜂 = 2𝑇𝑖/2𝜔

as well, which is exactly the case that Claim 𝑖 was true and 𝑢𝑖 is the correct

prover message. 𝑣𝑖 must additionally be the correct prover message because of

the verifier’s local check.

• Case 2: If 𝜔 ̸= 2𝑇𝑖/2𝛾, then either the verifier rejects some pair (𝑢, 𝑣) (if the

local check on (𝑢, 𝑣) fails) or we are guaranteed that 𝜔 − 2𝑇𝑖/2𝛾 ̸∈ {0, 𝑝′𝑞′}

(because we are guaranteed that 𝑔𝑖 and 𝑢𝑖 are both in QR𝑁). This implies that

𝜔 − 2𝑇𝑖/2 has additive order at least min(𝑝′, 𝑞′), and hence there is at most one

choice of 𝑟 satisfying the above equation in the range {0, 1, . . . , 2𝜆 − 1}.

This completes the analysis. In fact, the analysis above shows that for every step

of the round-by-round reduction, there is a bad challenge function 𝑓𝑖(𝑁, 𝑔, 𝑇𝑖, 𝑔𝑖, ℎ𝑖, 𝑢𝑖)

governing the soundness of the 𝑖th reduction, so we also conclude the existence of a

bad challenge function 𝑓 .
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Having showed that Π has a bad challenge function 𝑓 , we now describe and analyze

an algorithm for computing it.

First, we note that the function 𝑓𝑖 can be computed exactly as follows:

1. Given (𝑁, 𝑔, 𝑇𝑖, 𝑔𝑖, ℎ𝑖, 𝑢𝑖), compute the three discrete logarithms 𝜂, 𝜔, 𝛾 as above

as well as the factorization 𝑁 = 𝑝𝑞 = (2𝑝′ + 1)(2𝑞′ + 1).

2. Solve the linear equation

𝑟(𝜔 − 2𝑇𝑖/2𝛾) ≡ 2𝑇𝑖/2𝜔 − 𝜂 (mod 𝑝′𝑞′).

for 𝑟, and output the unique solution 𝑟* (if one exists) in the range [2𝜆]. This

second step is efficient: first compute 2𝑇𝑖/2 (mod 𝑝′𝑞′), and then solve the linear

equation via a GCD computation.

Since step (1) of this computation is extremely inefficient to compute exactly, this

description is insufficient for our purposes. However, by invoking Theorem 4.28, we

can show the following efficiency property of 𝑓 .

Theorem 4.40. The bad challenge function 𝑓 can be computed by a preprocessing

algorithm with any one of the three following efficiency guarantees:

• Offline time 2�̃�(𝜆1/2), online time 2�̃�(𝜆𝜖), and success probability 2−Ω
(︁

𝜆1−𝜖

log2(𝜆)

)︁

• Offline time 2�̃�(𝜆1/2), online time 2log(𝜆)𝑐 ·poly(𝜆), and success probability 2
−Ω(𝜆)

log(𝜆)𝑐−1 ( 1
6−𝑜(1))

• Offline time 2�̃�(𝜆1/2), online time 𝜆1/𝛿·poly(𝜆), and success probability 2−𝛿𝜆( 1
6−𝑜(1)).

Proof. The algorithm is as follows.

• Offline phase: factor 𝑁 in time 2�̃�(𝜆1/2) using Dixon’s factorization method

[Dix81,Pom87]. Also, compute 𝑔, a square root of 𝑔 that has order 𝜑(𝑁)/2.

• Compute the discrete logarithms of 𝑔𝑖, ℎ𝑖, 𝑢𝑖 (in base 𝑔) modulo 𝑝 and the

discrete logarithms of 𝑔𝑖, ℎ𝑖, 𝑢𝑖 (in base 𝑔) modulo 𝑞 using the preprocessing
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algorithm from Section 4.2.5.16 With the appropriate parameter choice, this

contributes 2�̃�(𝜆1/2) offline time, 2�̃�(𝜆𝜖) online time, and has success probability

2
−𝜆1−𝜖

log2(𝜆) .

• Compute 𝜂, 𝜔, and 𝛾 by halving the six discrete logarithms above and using the

Chinese remainder theorem.

• Finish the computation of 𝑟* as above.

The claimed efficiency follows directly from Theorem 4.28.

Remark 4.41. In order to match the preprocessing model defined in Section 4.3.1,

we note that the modulus 𝑁 = 𝑝𝑞 is not considered part of the “input” to the protocol,

but is instead considered a global public parameter.

Finally, by combining Theorem 4.39 (the existence of a bad-challenge function

𝑓 for Π), Theorem 4.40 (the low-probability preprocessing algorithm for 𝑓), Corol-

lary 4.38 (hash families that are correlation intractable for a function 𝑓 suffice to com-

pile interactive protocols with bad-challenge function 𝑓), Theorem 4.29 (relating CI

for efficient deterministic functions to CI for functions computable via low-probability

preprocessing algorithms), and Theorem 4.20 (CI for efficient functions exist under

LWE), we obtain Theorem 4.1, which we restate here for convenience. We note that

the LWE security parameter 𝑛 is related to the repeated squaring security parameter

𝜆 via the relation 𝜆 = 𝑛 log(𝑞) = 𝑂(𝑛 log 𝑛).

Theorem 4.42 (Theorems 4.1 and 4.3, restated). Let 𝜖 > 0 be arbitrary. Assume that

(decision) LWE is
(︁
2�̃�(𝑛1/2), 2−𝑛1−𝜖

)︁
-hard (or alternatively,

(︁
2�̃�(𝑛𝜖), 2−𝑛1−𝜖

)︁
-hard for

non-uniform algorithms). Then, there exists a hash family ℋ that soundly instantiates

the Fiat-Shamir heuristic for the [Pie18] interactive proof system. A hash function ℎ

from the family ℋ can be evaluated in time 2�̃�(𝜆𝜖) for repeated squaring over groups

of size 2𝑂(𝜆) with 𝜆 = 𝑂(𝑛 log 𝑛).

16Note that 𝑔 generates Z×𝑝 and Z×𝑞 when reduced modulo 𝑝 and 𝑞 respectively, so the hypotheses
of the algorithm are satisfied.
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Under the assumption that (decision) LWE is
(︁
2�̃�(𝑛1/2), 2−

𝑛
log𝑐 𝑛

)︁
-hard for some

constant 𝑐 > 0 (or alternatively,
(︁
quasipoly(𝑛), 2−

𝑛
log𝑐 𝑛

)︁
-hard for non-uniform algo-

rithms), there exists such a hash family ℋ with quasi-polynomial evaluation time.

Finally, under the assumption that (decision) LWE is
(︂

poly(𝑛), 𝑞−𝛿𝑛

)︂
-hard for

non-uniform distinguishers (or
(︂

2�̃�(𝑛1/2), 𝑞−𝛿𝑛

)︂
-hard for uniform distinguishers) for

a fixed 𝛿 > 0, there exists such a hash family ℋ with evaluation time 𝜆𝑂(1/𝛿).

4.6 Applications to PPAD-Hardness and VDFs

Having proved Theorem 4.1, we now conclude our main applications, Theorem 4.5

and Theorem 4.6. Theorem 4.5 follows directly from Theorems 4.1 and 4.3 along

with the work of [CHK+19b, EFKP19, CHK+19a], while Theorem 4.6 follows from

Theorems 4.1 and 4.3 as an instantiation of the [Pie18] protocol in the standard

model.

For each of the two applications, we state the relevant definitions and re-state the

main theorems.

4.6.1 Hardness in PPAD and CLS

The following preliminaries are taken from [CHK+19b]. We first recall the definition

of PPAD.

Definition 4.43 (End-of-Line Problem). An instance of the End-of-Line (search)

problem consists of a pair (S, P) of circuits computing functions from {0, 1}𝑚 →

{0, 1}𝑚. We assume without loss of generality that 𝑃 (0𝑚) = 0𝑚 and 𝑆(0𝑚) ̸= 0𝑚

(as this can be checked efficiently). A solution to the search problem is a vertex

𝑣 ∈ {0, 1}𝑚 such that P(S(𝑣)) ̸= 𝑣 or S((𝑃 (𝑣)) ̸= 𝑣 ̸= 0𝑚.

Definition 4.44 (PPAD). The complexity class PPAD is the subclass of TFNP

(search problems with efficient verification such that every instance is guaranteed to

have a solution) consisting of all problems that are polynomial-time reducible to End-

of-Line.
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To obtain hardness for PPAD (and indeed the subclass CLS [DP11]), we con-

struct a hard instance of the “relaxed sink-of-verifiable-line problem” [CHK+19a].

Definition 4.45 (rSVL). An instance of the relaxed sink-of-verifiable-line (rSVL)

(promise) problem consists of two circuits (S, V), a distance 𝐿 ∈ [2𝑚], and a “source

vertex” 𝑣0 ∈ {0, 1}𝑚. We are promised that for every pair (𝑣, 𝑖) ∈ {0, 1}𝑚 × [𝐿] such

that 𝑣 = S𝑖(𝑣0), it holds that V(𝑣, 𝑖) = 1. A solution to the problem is one of the

following two types:

• The sink: a vertex 𝑣 ∈ 0, 1𝑚 such that V(𝑣, 𝐿) = 1, or

• False positive: a pair (𝑣, 𝑖) ∈ {0, 1}𝑚×[𝐿] such that 𝑣 ̸= S𝑖(𝑣0) but V(𝑣, 𝑖) = 1.

We note that rSVL is itself not a total search problem, but it is known [CHK+19a]

that rSVL reduces to some total search problems (indeed, even problems in CLS).

Our CLS-hardness result relies on the following theorem implicit in [CHK+19b].

Theorem 4.46 (Implicit in [CHK+19b]). Suppose that Fiat-Shamir for the [Pie18]

interactive proof system (as defined in Section 4.5.1) can be instantiated using some

efficiently computable hash family ℋ so that the resulting non-interactive argument

system is adaptively unambiguously sound (Definition 4.27). Then, there is an effi-

cient construction of a hard-on-average rSVL problem.

We note two differences between our setting and the setting of [CHK+19b]. First,

our variant of the [Pie18] is not identical to theirs; however, the differences are in-

substantial to their hardness reduction.17 Second, the verification procedure in (one

variant of) our non-interactive protocol takes time 2�̃�(𝜆𝜖) rather than poly(𝜆); this

is resolved by redefining the security parameter 𝜅 = 2�̃�(𝜆𝜖) and then running their

reduction to produce rSVL instances where the circuits (S, V) are poly(𝜅)-size and

the problem is hard for poly(𝜅)-time algorithms.

With the two modifications above, by combining Theorem 4.46 with Theorems 4.1

and 4.3, we obtain our main PPAD-hardness result, Theorem 4.5.
17What is important is that our protocol satisfies adaptive unambiguous soundness and has a

similarly efficient merging procedure (see Section 4.4, Property 3 in [CHK+19b]. This allows for
their construction of “unambiguously sound incrementally verifiable computation” [CHK+19a] to go
through.
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Theorem 4.47 (Theorem 4.5, restated). For a constant 𝜖 > 0, suppose that

• 𝑛-dimensional LWE (with polynomial modulus) is
(︁
2�̃�(𝑛1/2), 2−𝑛1−𝜖

)︁
-hard, and

• The repeated squaring problem on an instance of size 2𝜆 requires 2𝜆𝜖 log(𝜆)𝜔(1)

time.

Then, there is a hard-on-average problem in CLS ⊆ PPAD. The same conclusion

holds if for some 𝑐 > 0,

• LWE is
(︁
2�̃�(𝑛1/2), 2−

𝑛
log(𝑛)𝑐

)︁
-hard, and

• The repeated squaring problem is hard for quasi-polynomial time algorithms.

The same conclusion also holds if for some 𝛿 > 0,

• LWE is
(︂

poly(𝑛), 𝑞−𝛿𝑛

)︂
-hard for non-uniform distinguishers, and

• The repeated squaring problem is hard for polynomial time algorithms.

4.6.2 Verifiable Delay Functions

The following definition is taken from [BBBF18].

Definition 4.48 (Verifiable Delay Function). A verifiable delay function (VDF) is a

triple of algorithms (Setup, Eval, Verify) with the following syntax.

• Setup(1𝜆, 𝑡) is a randomized algorithm that takes as input the security parameter

1𝜆 along with a time bound 𝑡. It outputs public parameters pp.

• Eval(pp, 𝑥) takes an input 𝑥 (along with the public parameters pp) and returns

an output 𝑦 along with a proof 𝜋.

• Verify(pp, 𝑥, 𝑦, 𝜋) takes as input the public parameters pp, and input 𝑥, an output

𝑦, and a proof 𝜋. It outputs a bit 𝑏 ∈ {0, 1}.

The scheme must satisfy the following properties.
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• Correctness: For all pp in the support of the distribution Setup(1𝜆, 𝑡), we have

that Verify(pp, 𝑥, 𝑦, 𝜋) = 1 for 𝑦 = Eval(pp, 𝑥).

• Soundness: Suppose that a poly(𝑡, 𝜆)-time algorithm 𝒜(pp) is given the public

parameters as input (for pp← Setup(1𝜆, 𝑡) and outputs a triple (𝑥, 𝑦, 𝜋). Then,

the probability that 𝑦 ̸= Eval(pp, 𝑥) and Verify(pp, 𝑥, 𝑦, 𝜋) = 1 is negligible.

• (𝜎, 𝑝)-Sequentiality: suppose that a 𝜎(𝑡) parallel time algorithm 𝒜(pp, 𝑥) (with

𝑝(𝜆, 𝑡)-parallelism) is given public parameters pp← Setup(1𝜆, 𝑡) and a uniformly

random input 𝑥. Then, the probability that 𝒜(pp, 𝑥) = Eval(pp, 𝑥) is negligible.

• Efficiency: The algorithms Setup and Verify runs in time poly(𝜆, log 𝑡)18. The

algorithm Eval(pp, 𝑥) runs in parallel time 𝑡 poly(log 𝑡, 𝜆)-wise parallelism.

The parameter regime of interest is when 𝜎(𝑡) = 𝑡(1− 𝑜(1)) is very close to 𝑡, and

𝑝(𝜆, 𝑡) is relatively large. Combining our Fiat-Shamir result (Theorems 4.1 and 4.3)

with the construction of Pietrzak [Pie18], we immediately obtain our VDF result

(Theorem 4.6).

Theorem 4.49 (Theorem 4.6, in more detail.). For a constant 𝜖 > 0, suppose that

• LWE is
(︁
2�̃�(𝑛1/2), 2−𝑛1−𝜖

)︁
-hard, and

• The repeated squaring problem [RSW96] over groups of size 2𝑂(𝜆) requires (𝜎(𝑡), 𝑝(𝜆, 𝑡))

sequential time for 𝑡≫ 2�̃�(𝜆𝜖).

Then, the repeated squaring function 𝑓𝑁,𝑔 can be made into a VDF with (𝜎(𝑡), 𝑝(𝜆, 𝑡))-

sequentiality. The algorithms (Setup, Verify) of this scheme run in time 2�̃�(𝜆𝜖) on

groups of size 2𝑂(𝜆) (with 𝜆 = 𝑂(𝑛 log 𝑛)). Similarly, if for some 𝑐 > 0,

• LWE is
(︁
2�̃�(𝑛1/2), 2−

𝑛
log(𝑛)𝑐

)︁
-hard, and

• The repeated squaring problem requires (𝜎(𝑡), 𝑝(𝜆, 𝑡)) sequential time for 𝑡 ≫

2�̃�(log(𝜆)𝑐+1),
18We can achieve this efficiency via complexity leveraging, but more generally allow for sub-

exponential time setup and verification.
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Then, 𝑓𝑁,𝑔 can be made into a VDF with (𝜎(𝑡), 𝑝(𝜆, 𝑡))-sequentiality. The algorithms

(Setup, Verify) of this scheme run in time 2�̃�(log(𝜆)𝑐+1). Finally, if for some 𝛿 > 0,

• LWE is
(︂

poly(𝑛), 𝑞−𝛿𝑛

)︂
-hard for non-uniform distinguishers, and

• The repeated squaring problem requires (𝜎(𝑡), 𝑝(𝜆, 𝑡)) sequential time for all 𝑡 =

poly(𝑛).

Then, 𝑓𝑁,𝑔 can be made into a VDF with (𝜎(𝑡), 𝑝(𝜆, 𝑡))-sequentiality. The algorithms

(Setup, Verify) of this scheme run in time 𝜆𝑂(1/𝛿).
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Chapter 5

Fiat-Shamir via List-Recoverable

Codes (or: Parallel Repetition of

GMW is Not Zero Knowledge)

5.1 Introduction

Zero-knowledge proofs, introduced by Goldwasser, Micali and Rackoff [GMR85], are

a beautifully paradoxical construct. Such proofs allow a prover to convince a veri-

fier that an assertion is true without revealing anything beyond that to the verifier.

Following the introduction of zero-knowledge proofs, Goldreich, Micali and Wigder-

son [GMW86] constructed a zero-knowledge proof system (henceforth referred to as

the GMW protocol) for the 3-coloring problem. This result is a cornerstone in the

development of zero-knowledge proofs, since 3-coloring is NP-complete, and so the

GMW protocol actually yields zero-knowledge proofs for any problem in NP.

Roughly speaking, the idea underlying the GMW protocol is for the prover to

commit (via a cryptographic commitment scheme) to a random 3-coloring of the

graph. The verifier chooses a random edge and the prover decommits to the colors

of the two endpoints. Intuitively, the protocol is zero-knowledge since the verifier

(even if acting maliciously) knows what to expect: two random different colors. An
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important point however is that this base protocol has poor soundness. For example,

suppose that the input graph 𝐺 = (𝑉, 𝐸) is not 3-colorable, but has a coloring that

miscolors only one edge. In such a case, the verifier’s probability of detecting the

monochromatic edge is only 1/|𝐸|.

Thankfully, the soundness of the GMW protocol (or any other interactive proof)

can be amplified by repetition. That is, in order to reduce the soundness error, one

can repeat the base GMW protocol multiple times, either sequentially or in parallel,

using independent coin tosses in each repetition (for both parties). At the end of the

interaction the verifier accepts if and only if the base verifier accepted in all of the

repetitions.

Repetition indeed reduces the soundness error, but does it preserve zero-knowledge?

While it is relatively straightforward to argue that sequential repetition indeed pre-

serves zero-knowledge (given the definition of auxiliary input zero knowledge [GO94]),

this yields a protocol with a prohibitively large number of rounds. Thus, a major

question in the field is whether parallel repetition also preserves zero-knowledge.1

Curiously, it has long been known that parallel repetition does not preserve zero-

knowledge for some (contrived) protocols [GK96]. However, for “naturally occur-

ring” protocols, the question remained open for decades. A sequence of recent

works [KRR17,CCRR18,HL18,CCH+18] showed that zero-knowledge is not preserved

by repetition in very high generality (in fact, general 3-message zero-knowledge proofs

can be ruled out [FGJ18]), but these works relied on extremely strong, non-falsifiable,

and/or poorly understood cryptographic assumptions. The first progress on this ques-

tion based on standard assumptions was due to Canetti et al. [CCH+19] and Peikert

and Shiehian [PS19], who showed that some classical ZK protocols [GMR85, Blu86]

fail to remain ZK under parallel repetition. However, their results conspicuously

fail to capture the GMW protocol (and indeed fail to capture “most” protocols).

Thus, an answer to the following basic question has remained elusive for over 30

years [DNRS99,BLV03]:

1In particular, a positive resolution of this question would yield 3-message zero-knowledge proofs
for all of NP (assuming also non-interactive commitments), thereby settling the long-standing open
problem of the round complexity of zero-knowledge proofs.
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Does parallel repetition of the GMW protocol preserve zero-knowledge

(under standard cryptographic assumptions)?

As one of our main results, we answer this question in the negative, assuming the

hardness of learning with errors (LWE) [Reg05].

Theorem 5.1 (Informally Stated, see Theorem 5.54). Assume that LWE holds. Then,

there exists a commitment scheme 𝐶 (in the common random string model) and a

polynomial 𝑡 such that 𝑡-fold parallel repetition of the GMW protocol (using 𝐶 as its

commitment scheme) is not zero-knowledge.

We briefly make two remarks on Theorem 5.1:

• The commitment scheme 𝐶 used in order to prove Theorem 5.1 is a natural

one.2 The common random string consists of a public-key of an encryption

scheme (which if using a suitable encryption scheme can simply be a uniformly

random string). One commits by simply encrypting messages and decommits

by revealing the randomness used in the encryption.

Still, we point out that Theorem 5.1 leaves open the possibility that parallel

repetition of GMW is zero-knowledge when instantiated with a specially tailored

commitment scheme.

• The number of repetitions 𝑡 for which we can show that the 𝑡-fold parallel

repetition of GMW has negl(𝑛) soundness error, but is not zero knowledge,

is |𝐸(𝐺)| · 𝑛𝜖 for any 𝜖 > 0, where |𝐸(𝐺)| denotes the number of edges in

the graph. Under the subexponential LWE assumption, the 𝑛𝜖 factor can be

reduced to log𝑐 𝑛 for some 𝑐 > 1. This still leaves open a (very) small window

of possible values for 𝑡 so that the 𝑡-fold repetition of GMW is both sound and

zero-knowledge (see Remark 5.55 for further discussion).

We prove Theorem 5.1 through a more general result showing that parallel rep-

etition does not preserve zero-knowledge for a large class of protocols. This class
2In fact, this instantiation dates back to the original [GMW86] paper.
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includes all general-purpose public-coin3 zero-knowledge proofs for NP that we are

aware of (when instantiated with a specific commitment scheme). In particular, this

includes protocols based on the influential MPC-in-the-head paradigm [IKOS07] and

more generally based on zero-knowledge PCPs (see, e.g., a recent survey [Ish20]).

All of the above negative results are shown by making positive progress on the

closely related question of soundly instantiating the prolific Fiat-Shamir heuristic,

which is our main focus, and is discussed next.

5.1.1 Securely Instantiating Fiat-Shamir

The Fiat-Shamir heuristic [FS87] is a generic technique for eliminating interaction in

public-coin interactive proofs.4 This technique has been extremely influential both in

practice and in theory.

Consider for example a 3-message public-coin interactive proof that 𝑥 ∈ 𝐿. In

such a protocol first the prover sends a message 𝛼, the verifier responds with random

coins 𝛽 and finally the prover sends the last message 𝛾. The basic idea underlying the

Fiat-Shamir heuristic is to replace the random coin tosses 𝛽 of the verifier by applying

a hash function to the the transcript thus far, i.e., by setting 𝛽 = ℎ(𝑥, 𝛼). Since the

prover can now compute the verifier’s coin tosses, the entire interaction consists of

having the prover send the message (𝛼, 𝛽, 𝛾) in one shot.

It has been long known that the Fiat-Shamir heuristic is sound when the hash

function is modeled as a random oracle [BR93, PS96, BCS16]. In reality however,

we need to realize the hash function with a concrete cryptographic hash function.

Following [CCH+19], we say that a hash function family ℋ is FS-compatible5 with

a (public-coin) interactive protocol Π, if applying the Fiat-Shamir transform to Π,

with a random choice of ℎ ∈ ℋ, yields a computationally sound argument system. A

3Recall that an interactive proof is public-coin if all the verifier does throughout the interaction
is simply toss random coins and immediately reveal them to the prover.

4The original goal in [FS87] was to efficiently compile (interactive) identification schemes into
signature schemes, but the technique is applicable to more general protocols.

5We remark that the term “FS-compatible” has a different meaning in a recent work of [JKKZ21].
More specifically, [JKKZ21] defines “FS-compatibilty” to be a property of a protocol Π; their property
consists of technical conditions that suffice for their specific hash family to instantiate FS for Π.
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central problem in cryptography is to construct FS-compatible hash functions for a

variety of interactive protocols of interest, thereby making them non-interactive.

While designing FS-compatible hash function families is an extremely important

goal in its own right, Dwork, Naor, Reingold, and Stockmeyer [DNRS99] also showed

that the existence of an FS-compatible hash function family for a (public-coin) inter-

active proof Π for a language 𝐿 /∈ BPP, is equivalent to Π not being zero-knowledge.6

This means, in particular, that in order to prove Theorem 5.1, it suffices to construct

an FS-compatible hash function for the GMW protocol.

For a long time almost all results on instantiating Fiat-Shamir were negative

[CGH98, Bar01, GK03, BDG+13]. However, a recent line of work [KRR17, CCRR18,

HL18,CCH+19,PS19,BKM20,LV20a,JKKZ21] has made substantial positive progress,

culminating in secure realizations of Fiat-Shamir in certain (important) cases, based

on standard cryptographic assumptions.

In particular, a combination of the results of [CCH+19, PS19] implies the exis-

tence of hash functions, based on LWE, that are FS-compatible for a certain class of

interactive proofs. More specifically (and restricting our attention to three message

protocols), this class contains interactive proofs, in the CRS model, in which for every

𝑥 /∈ 𝐿 and first prover message 𝛼, the number of random coins 𝛽 that could lead

the verifier to accept is polynomially bounded, and moreover, there is an efficient

algorithm that finds these “bad” 𝛽’s (given 𝑥, 𝛼 and possibly a trapdoor associated

with the CRS).

Fortunately, a natural variant of Blum’s [Blu86] zero-knowledge protocol for Hamil-

tonicity has the above property. This is due to the fact that Blum’s protocol is

obtained by applying parallel repetition to a base protocol which has only a single

choice of bad randomness. Since 1𝑡 = 1, the number of bad random choices when the

base protocol is repeated is still 1 (and this unique bad randomness can be efficiently

found). Since Hamiltonicity is NP-complete, the works of [CCH+19, PS19] yielded

6Roughly speaking, [DNRS99] consider a malicious verifier that answers according to the Fiat-
Shamir hash function. They show that a successful simulation of such a verifier can be used to
decide the language.
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non-interactive zero-knowledge7 proof-systems for all of NP.

While the base GMW protocol has a polynomial number of bad random strings

(after all, even the total number of verifier random strings is polynomial), in contrast

to Blum’s protocol, when the protocol is repeated, this number becomes exponential.

This means that the approach of [CCH+19,PS19] no longer applies. A similar problem

occurs for the parallel repetition of any base protocol with more than a single bad

random choice for the verifier, which is extremely common.

We emphasize that the interest in these additional zero-knowledge protocols is

not purely theoretical. In particular, some of the most efficient zero-knowledge proof-

systems, such as those based on the MPC-in-the-head paradigm, also do not have a

polynomial set of bad randomnesses and consequently the techniques of [CCH+19,

PS19] are not applicable to them.

Fiat-Shamir for Commit-and-Open Protocols. Our second main result shows

how to securely realize the Fiat-Shamir transformation when applied to a much

broader class of interactive proofs than what was known before (including the GMW

protocol). More specifically, this class consists of the “parallel repetition of any

commit-and-open protocol”. By a commit-and-open protocol, we basically refer to

protocols that have the following structure:

1. 𝑃 commits to a string 𝑤.

2. 𝑉 samples random coins 𝑟 and sends them to 𝑃 . These random coins, together

with the main input 𝑥, specify a subset 𝑆 of indices of 𝑤.

3. 𝑃 decommits to 𝑤𝑆 and 𝑉 accepts or rejects based on some predicate 𝑉 (𝑥, 𝑟, 𝑤𝑆).

Note that the GMW protocol indeed fits into this framework: 𝑤 is a (random) 3-

coloring of the graph, the set 𝑆 specifies a random edge and 𝑉 simply checks that

the edge is properly colored.
7In contrast to the discussion in the beginning of the introduction, in the context of applying

Fiat-Shamir positively in order to construct non-interactive zero-knowledge proofs, it suffices that
the base interactive proof be honest-verifier zero-knowledge. Honest-verifier is indeed known to be
preserved under parallel repetition.
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Theorem 5.2 (Informally Stated, see Theorem 5.53). Assume that LWE holds. Then,

there exists a commitment scheme 𝐶 (in the CRS model), such that for every commit-

and-open protocol Π𝐶 there exists a polynomial 𝑡 and a hash function family ℋ, such

that the hash family ℋ is FS-compatible with the 𝑡-fold parallel repetition (Π𝐶)𝑡 of

Π𝐶.

By the connection established by [DNRS99], Theorem 5.1 follows immediately

from Theorem 5.2.

Remark 5.3. An important example of a commit-and-open protocol is Kilian’s [Kil92]

celebrated succinct argument-system, as well as its generalizations based on interactive

oracle proofs [BCS16]. However, we point out that Theorem 5.2 is not applicable to

this protocol since Kilian relies on a particular succinct commitment scheme (based

on Merkle hashing), whereas the commitment scheme 𝐶 that we use is inherently

non-succinct.

Indeed, the question of securely applying Fiat-Shamir to Kilian’s protocol (as en-

visioned by Micali [Mic94]), remains a fundamental open problem (see also [GW11,

BBH+19]).

Because it applies to parallel repetitions of all commit-and-open protocols (rather

than just those with a single bad challenge), Theorem 5.2 substantially generalizes

the class of protocols that have sound Fiat-Shamir instantiations in the standard

model. We believe that Theorem 5.2 (and the techniques underlying its proof) are

likely to lead to new feasibility results for non-interactive cryptographic protocols in

the standard model.

Fiat-Shamir for Parallel Repetition of Multi-Round Protocols. We next

turn to discuss our results for multi-round protocols. Let Π be a public-coin multi-

round interactive proof system. As above, the application of Fiat-Shamir to such a

protocol simply replaces the verifier’s random coin tosses in each round with a hash

of the entire transcript up to that point.

When considering protocols with a large number of rounds, some care must be

taken. For example, if we take the sequential repetition of (say) the GMW protocol
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and try to apply Fiat-Shamir, it is not too difficult to see that the resulting non-

interactive protocol is not sound regardless of the Fiat-Shamir hash function (e.g.,

even if the hash function is modeled as a random oracle). The issue is that after the

compilation, the cheating prover can effectively “rewind” the verifier to a previous

state (see [BCS16] for more details).

Thus, following [CCH+19], we restrict our attention to protocols satisfying a

stronger soundness condition called round-by-round soundness. Loosely speaking,

a protocol is round-by-round (RBR) sound, if soundness holds in each round indi-

vidually. In more detail, RBR soundness dictates the existence of a predicate State

(which need not be efficiently computable) mapping partial transcripts to the set

{accept, reject} such that:

1. If 𝑥 /∈ 𝐿 then the State of the empty transcript is rejecting.

2. Given a rejecting partial transcript 𝜏 and any prover message 𝛼, with all but

negligible probability over the verifier’s next coin tosses 𝛽, the partial transcript

(𝜏 |𝛼|𝛽) is also rejecting (where ‘|’ denotes concatenation).

3. The verifier always rejects full rejecting transcripts.

Note that round-by-round soundness implies standard soundness: the protocol starts

off in a rejecting state and, with high probability, will remain so until the very end

in which case the verifier is required to reject. Prototypical examples of protocols

satisfying round-by-round soundness include the sumcheck protocol [LFKN90] and

the related [GKR08] protocol (see [CCH+19,JKKZ21] for details).

We say that a protocol with RBR soundness has efficiently recognizable bad ran-

domness if given a rejecting partial transcript 𝜏 |𝛼, ending with a prover message 𝛼,

the set of verifier coins 𝛽 that make (𝜏 |𝛼|𝛽) turn into an accepting partial transcript

is efficiently recognizable (potentially also given access to a trapdoor of a CRS, if such

exists).

The works [CCH+19, PS19] imply LWE-based FS-compatible hash functions for

interactive proofs with negligible RBR soundness error in which the bad randomness
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is not just efficiently recognizable, but moreover the set is efficiently enumerable (i.e.,

the set of bad randomness is polynomially bounded and can be explicitly generated

in polynomial time). We extend their result to protocols obtained by taking parallel

repetition of an 𝑟-round base protocol with RBR soundness error close to 1/𝑟, and

without any constraint on the number of choices of bad randomness.

Theorem 5.4 (Informally Stated, see Theorem 5.68). Let Π be a 2𝑟 + 1-message

interactive proof with round-by-round soundness error 1−𝜖
𝑟

with efficiently reconizeable

bad randomness. Then, there exists a polynomial 𝑡 = 𝑡(𝑛, 𝜆, 𝜖), and a hash family ℋ,

such that ℋ is FS-compatible with Π𝑡.

Remark 5.5. Theorem 5.2 actually follows from Theorem 5.4 since constant-round

protocols with negligible soundness are automatically round-by-round sound, and the

specific type of commitment scheme makes the bad randomnesses efficiently com-

putable.

However, we set apart these two results for two reasons. First, the proof of Theo-

rem 5.2 is simpler than that of Theorem 5.4 and suffices for many protcols of interest.

Second, we are unable to achieve a tight result with respect to the number of repetitions

in Theorem 5.4 as we did for Theorem 5.2.

Finally, we note that Theorem 5.4 can be combined with the main insight of

[JKKZ21] (which is orthogonal to our work) to further generalize the class of protocols

Π that have sound Fiat-Shamir instantiations. Informally, the [JKKZ21] technique

of lossy correlation intractability allows us to additionally handle protocols where

bad challenges for the 𝑖-th round can only be efficiently recognized given non-uniform

advice about the previous rounds’ challenges. For example, this allows us to instanti-

ate Fiat-Shamir for parallel repetitions of the [GKR08] protocol, even when the field

size of the base protocol is poly-logarithmic. In contrast, [JKKZ21] can only handle

variants of [GKR08] with an exponential field size.8 For example, this precludes ap-

plications in which one needs to materialize entire truth tables of polynomials over

the field.
8 [JKKZ21] use a large field in order to have negligible soundness error but only polynomially

many bad challenges.
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5.1.2 Technical Overview

We now describe our techniques for proving Theorem 5.2, with a particular focus

on the GMW protocol for ease of understanding. Our starting point is the work

of [CCH+19], which gave the first instantiation of Fiat-Shamir in the standard model

based on standard cryptographic assumptions. As in prior work [KRR17, CCRR18,

HL18], their Fiat-Shamir instantiation makes use of the framework of correlation

intractability [CGH98], which we recall here.9

A hash family ℋ is said to be (single input) correlation-intractable for a binary re-

lation 𝑅 if it is computationally hard, given a hash key ℎ← ℋ, to find a “correlation”,

i.e., an input 𝑥 such that
(︁
𝑥, ℎ(𝑥)

)︁
∈ 𝑅. Such a security property is plausibly instan-

tiable, and is satisfied by a random oracle, whenever the relation 𝑅 is sparse, meaning

that for any input 𝑥, the fraction of outputs 𝑦 for which (𝑥, 𝑦) ∈ 𝑅 is negligible.

Despite this plausibility argument, and despite the intriguing connection to Fiat-

Shamir in the standard model (which we will see in a moment), there were essentially

no instantiations of correlation intractability (beyond very simple relations such as

those for which (𝑥, 𝑦) ∈ 𝑅 if and only if 𝑦 = 𝑐 for a constant 𝑐) before 2016. How-

ever, a flurry of recent works (including [CCR16, KRR17, CCRR18, HL18, CCH+19,

PS19,LVW19,BFJ+20,GJJM20,LNPT19,BKM20,LV20a,JKKZ21,LNPY20,LV20b])

have (1) instantiated various flavors of correlation-intractable hash functions based on

plausible cryptographic assumptions and (2) applied these hash functions to achieve

independently useful cryptographic goals.

We discuss this line of work in detail in Section 5.1.4, but for now, we recall

the following result from [PS19], which is most relevant for our purposes. It is a

construction of correlation intractability for functions: we say that ℋ is CI for a

function 𝑓 if it is CI for the relation 𝑅𝑓 = {(𝑥, 𝑓(𝑥))}.

Theorem 5.6 ( [PS19], informal). Under the LWE assumption, there exists a hash

family ℋ that is correlation intractable for all functions that are computable in (a

priori bounded) polynomial time.
9In fact, [DNRS99] cites personal communication with Chaum and Impagliazzo for an early

variant of this connection. Full formalizations of this paradigm appear in [CCRR18,CCH+19].
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As described in the theorem statement, Theorem 5.6 has the following two limi-

tations (which are also present in the predecessor work [CCH+19]10).

• They only achieve security for relations 𝑅 ⊆ 𝑋 × 𝑌 that represent functions.

That is, for every 𝑥 ∈ 𝑋 there is (at most) a single 𝑦 ∈ 𝑌 such that (𝑥, 𝑦) ∈ 𝑅.

• They require that the functions are efficiently computable.

Both of these drawbacks turn out to be relevant for Fiat-Shamir instantiations.

To see this, we first discuss how CI relates to the instantiation of Fiat-Shamir for

interactive proofs. For simplicity, we focus on the task of compiling 3-message public

coin interactive proofs. Such protocols have the following syntax.

𝑃 (𝑥, 𝑤) 𝑉 (𝑥)

𝛼

𝛽

𝛾 If 𝑉 (𝑥, 𝛼, 𝛽, 𝛾) = 1, accept.

Figure 5-1: A 3-message public coin interactive proof Π.

After applying the Fiat-Shamir transform using hash familyℋ, we obtain the protocol

ΠFS,ℋ below.

𝑃FS(𝑥, 𝑤; ℎ) 𝑉FS(𝑥; ℎ)

𝛼, 𝛽 := ℎ(𝛼), 𝛾
If 𝛽 = ℎ(𝛼) and

𝑉 (𝑥, 𝛼, 𝛽, 𝛾) = 1, accept.

Figure 5-2: The Protocol ΠFS,ℋ.

In this situation, consider the following relation 𝑅(0) = 𝑅
(0)
𝑥,Π for a false statement

𝑥, which we call the (naive) bad-challenge relation for Π:

𝑅
(0)
𝑥,Π = {(𝛼, 𝛽) : ∃𝛾 s.t. 𝑉 (𝑥, 𝛼, 𝛽, 𝛾) = 1}.

10More specifically, this limitation is present in the subset of results in [CCH+19] that are based
on quantitatively standard cryptographic assumptions
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It follows almost syntactically that if ℋ is CI for 𝑅
(0)
𝑥,Π (for all false statements

𝑥), then ℋ soundly instantiates Fiat-Shamir for Π. Thus, the problem of instanti-

ating Fiat-Shamir is reduced to constructing sufficiently general-purpose correlation

intractable hash functions. Bearing in mind the two drawbacks of Theorem 5.6, it

is worth noting that 𝑅𝑥,Π is (in general) not even a function, let alone an efficiently

computable one.

Fiat-Shamir for GMW. With the above background in mind, we turn to the task

at hand: finding a Fiat-Shamir instantiation for the parallel repeated GMW protocol.

Abstractly, a 𝑡-wise parallel repetition of a protocol Π has the following syntax.

𝑃 (𝑥, 𝑤) 𝑉 (𝑥)
𝛼1, . . . , 𝛼𝑡

𝛽1, . . . , 𝛽𝑡 ← [𝑞]

𝛾1, . . . , 𝛾𝑡
If 𝑉 (𝑥, 𝛼𝑖, 𝛽𝑖, 𝛾𝑖) = 1

for all 𝑖, accept.

Figure 5-3: A parallel-repeated protocol Π𝑡.

In the case of GMW, the input 𝑥 is a graph 𝐺 = (𝑉, 𝐸), the witness 𝑤 is a 3-

coloring of 𝐺, the messages 𝛼𝑖 are commitments to (a random shuffling of the colors

of) 𝑤, each 𝛽𝑖 = (𝑢𝑖, 𝑣𝑖) ∈ 𝐸(𝐺) specifies a randomly selected edge, and the 𝛾𝑖 are

decommitments11 (𝑧𝑖, 𝑟𝑖) to the colors 𝑧𝑖 = (𝑤(𝑢𝑖), 𝑤(𝑣𝑖)). The verification procedure

checks that the decommitments are all valid and that each (revealed) colored edge

is not monochromatic. Note that the “alphabet size” 𝑞 denotes the size of the the

verifier’s challenge space, which in this case is 𝑞 = |𝐸|.12

Recall that by Theorem 5.6, we would be done if (1) the relation 𝑅(0) = 𝑅
(0)
𝑥,Π𝑡

above represented a function 𝑓 , and (2) the function 𝑓 were efficiently computable.
11A decommitment (𝑚, 𝑟) of a string com is a message 𝑚 and choice of commitment randomness

𝑟 such that com = Com(𝑚; 𝑟).
12Our results in this overview may appear to require that 𝑞 is polynomial in 𝑛, but we show in

Section 5.3.2 how to reduce from general 𝑞 to polynomial-size 𝑞 via subsampling. This allows us to
handle Fiat-Shamir for parallel repetitions of arbitrary commit-and-open protocols.
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As a first step, we show (following [HL18,CCH+19]) how to replace the relation 𝑅(0)

with a relation 𝑅 that is efficiently verifiable, i.e., there is an efficient algorithm that

recognizes bad challenges.

In a nutshell, the “commit-and-open” structure of the GMW protocol allows us

to replace the “naive bad-challenge relation” 𝑅
(0)
𝑥,Π𝑡 with the relation

𝑅𝑥,Π𝑡 :=
{︂(︁

(𝛼1, . . . , 𝛼𝑡), (𝛽1, . . . , 𝛽𝑡)
)︁

: each 𝑧𝑖 := Extract(𝛼𝑖[𝛽𝑖]) has two distinct colors
}︂

,

where Extract denotes a function that extracts a committed bit 𝑏 from a commitment

com. In other words, the relation 𝑅𝑥,Π(𝛼, 𝛽) can be verified by extracting from 𝛼[𝛽]

the appropriate committed string 𝑧 and then checking whether the two colors de-

fined by 𝑧 are distinct. If the commitment scheme is efficiently extractable (given a

trapdoor; e.g., this holds if Com is the encryption algorithm of a public-key encryp-

tion scheme), then 𝑅𝑥,Π𝑡 can be efficiently verified. Thus, to instantiate Fiat-Shamir

for this (natural) instantiation of the GMW protocol, it suffices to construct a hash

family ℋ that is CI for this particular (efficiently verifiable) relation 𝑅𝑥,Π𝑡 .

The Problem: Too Many Bad Challenges. The main barrier to instantiating

Fiat-Shamir for GMW is due to the first drawback of the [CCH+19, PS19] results,

namely, that 𝑅 is not a function. We quantify the extent to which 𝑅 is not a function

with the following terminology.

Definition 5.7 (𝑑-Bounded Relation). We say that a relation 𝑅 ⊆ {0, 1}𝑛 × {0, 1}𝑚

is 𝑑 = 𝑑(𝑛)-bounded if |𝑅(𝑥)| ≤ 𝑑, for all 𝑥 ∈ {0, 1}𝑛, where 𝑅(𝑥) = {𝑦 ∈ {0, 1}𝑚 :

(𝑥, 𝑦) ∈ 𝑅}.

We focus on absolute rather than relative boundedness (aka density) due to

the limitations of prior work on instantiating correlation intractability. In partic-

ular, the CI hash families of [CCH+19, PS19] were shown to satisfy correlation in-

tractability for (efficiently computable) functions, i.e., 1-bounded relations. In prior

work [CCH+19, JKKZ21], CI for relations that are not functions was only achieved
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in a very limited sense: for 𝑑-bounded relations 𝑅, it is noted that a hash family

ℋ that is CI for efficiently computable functions with 1
𝑑

quantitative security is also

CI for 𝑑-bounded relations that are “efficiently enumerable”.13 This is proved via a

trivial “guessing” reduction from CI for functions with a security loss of 1
𝑑
. In prior

works, only polynomial (or slightly superpolynomial) values of 𝑑 were considered for

this reason.

However, in the case of parallel repeated GMW, the relation 𝑅 = 𝑅𝑥,Π𝑡 may be

only (|𝐸(𝐺)| − 1)𝑡-bounded. In other words, for every 𝛼 = (𝛼1, . . . , 𝛼𝑡), there may

be (|𝐸(𝐺)| − 1)𝑡 challenges 𝛽 such that (𝛼, 𝛽) ∈ 𝑅𝑥,Π𝑡 . As a result, the “guessing

reduction” above incurs a security loss that is exponential in the security parameter,

resulting in a useless reduction. Achieving CI for 𝑑-bounded relations for large values

of 𝑑 – and instantiating Fiat-Shamir for protocols with many bad challenges – was

an unsolved problem.

Main Idea: Derandomization. Our high-level idea for resolving this problem

is using derandomization to reduce the effective 𝑑-boundedness of the relation 𝑅.

Namely, we employ a two-step process.

1. Devise a randomness-efficient procedure for sampling challenges (𝛽1, . . . , 𝛽𝑡)←

Samp(𝑟) such that only polynomially many bad choices of 𝑟 lead to bad chal-

lenges (for any given pair (𝑥, 𝛼)). Note that we need to do so while maintaining

negligible soundness error. That is, we want the set of bad challenges to have

absolute size that is polynomial, while its relative size (or density) is negligible.

2. Compose the sampling procedure with a hash family ℋinner that is CI for

polynomially-bounded relations. In particular, ℋinner must satisfy CI for a new

relation �̃� := �̃�𝑥,Π,Samp that depends on the procedure Samp as well as Π.

13A 𝑑-bounded relation 𝑅 is efficiently enumerable if there is an efficient algorithm that, on input
𝑥, explicitly generates the set of all 𝑦 such that (𝑥, 𝑦) ∈ 𝑅.
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This process yields a correlation-intractable hash family for 𝑅 by a natural composi-

tion. Namely, our hash family will consist of hash functions ℎ′ defined as

ℎ′(𝑥) = Samp(ℎ(𝑥))

where ℎ ← ℋinner comes from a previously constructed CI hash family (namely, the

families from [CCH+19,PS19]).

Another interpretation of our approach is that we instantiate Fiat-Shamir for a

(parallel repeated) protocol Π𝑡 by implicitly working with a derandomized parallel

repetition14 of Π.

Still, several crucial details remain unclear from this outline:

• How should we instantiate the sampling procedure Samp?

• How do we prove that the resulting hash family ℋ′ is FS-compatible for Π𝑡?

Indeed, standard derandomization techniques such as expander walks and pseudo-

random generators turn out not to suffice for our application, as we elaborate below.

Instead, we need a new derandomization technique: our main technical contribution

is a special-purpose instantiation of Samp and proof of security for ℋ′.

Naive Idea: Use a PRG. As a first (flawed) attempt to solve our problem, one

might consider setting Samp(𝑟) = 𝐺(𝑟) for some pseudorandom generator 𝐺 (either

cryptographic [BM82] or “Nisan-Wigderson style” [NW88, IW97, AK97]; indeed, the

PRG would only have to fool a specific test related to Π). We briefly describe why

this approach fails:

• The new relation �̃� is still not bounded enough. To understand this

point, we need to specify what tests the PRG 𝐺 has to fool. By staring at the

problem, we see that 𝐺 should have the property that for every statement 𝑥

14The type of derandomization that we require is related to, but different from, the “sampler-
based” [Gol11, Vad12] derandomized parallel repetition of Bellare, Goldreich and Goldwasser
[BGG90]. The exact approach of [BGG90] does not work for us for reasons similar to the “naive”
PRG approach below.
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and first messages 𝛼1, . . . , 𝛼𝑡, the probability that 𝐺(𝑟) = (𝛽1, . . . , 𝛽𝑡) has the

property that (𝛼, 𝐺(𝑟)) ∈ 𝑅𝑥,Π is close to the sparsity of 𝑅. Unfortunately,

known PRG constructions still have the property that the absolute number of

such “bad 𝑟” is exponential in the seed length,15 while we need this number to

be polynomial in the seed length.

• The new relation �̃� is not efficiently enumerable. On top of parameter

issues, the relation �̃� constructed in step (2) above seems hard to compute,

because it syntactically requires computing preimages (of exponential-size sets!)

under the map 𝐺. Indeed, the relation �̃� has the form:

�̃�𝑥,Π,𝐺 = {(𝛼, 𝑟) : (𝛼, 𝐺(𝑟)) ∈ 𝑅𝑥,Π𝑡} ,

so the set of all 𝑟 such that (𝛼, 𝑟) ∈ �̃�𝑥 is 𝐺−1({𝛽 : (𝛼, 𝛽) ∈ 𝑅𝑥}). Since �̃� does

not seem to be efficiently enumerable, we do not know how to construct a CI

hash family for it.

Our Code-Based Derandomization. Since the naive idea of using a PRG for

derandomization fails, we now study our special-purpose derandomization problem

in more detail. In particular, we crucially take advantage of the parallel repetition

structure of the relation 𝑅𝑥,Π𝑡 to reframe the problem.

As above, our plan is to use some function Samp(𝑟) → (𝛽1, . . . , 𝛽𝑡) along with a

hash familyℋ that is correlation intractable for the relation �̃�, which can be expressed

as

�̃�𝑥,Π𝑡,Samp =
{︂

(𝛼, 𝑟) : (𝛼𝑖, Samp(𝑟)𝑖) ∈ 𝑅𝑥,Π for all 𝑖
}︂

.

Moreover, for each fixed pair (𝑥, 𝛼𝑖), we know that the collection 𝑆𝑖 of all 𝛽𝑖 such that

(𝛼𝑖, 𝛽𝑖) ∈ 𝑅𝑥,Π is not too large: if the protocol Π has soundness error 1− 𝜖 (meaning
15This boils down to the suboptimal 𝜖-dependence of the seed length of known PRGs that are

𝜖-pseudorandom. In order for the number of “bad 𝑟” to be polynomial, we would need a PRG with
seed length 𝑂(log 𝑚)+log(1/𝜖) – that is, we cannot afford any constant 𝑐 > 1 in front of the log(1/𝜖)
term).

240



that cheating provers are caught with probability 𝜖; in the case of GMW, we have

𝜖 = 1
|𝐸(𝐺)|), then |𝑆𝑖| ≤ (1− 𝜖)𝑞 for all 𝑖 (recall that 𝑞 denotes the verifier’s challenge

space in the base protocol).

More abstractly, we are interested in relations of the form

�̃�𝑥,Π𝑡,Samp =
{︂

(𝛼, 𝑟) : Samp(𝑟)𝑖 ∈ 𝑆𝑖 for all 𝑖
}︂

,

where:

• Each set 𝑆𝑖 ⊆ [𝑞] is promised to have some bounded size |𝑆𝑖| ≤ (1− 𝜖)𝑞,

• Each set 𝑆𝑖 can be efficiently computed from (𝑥, 𝛼). (This property is guaran-

teed by the efficient verifiability of 𝑅).

Since our hope is to use ℋ from [CCH+19,PS19] – which is only CI for efficiently

enumerable relations – we have two strong demands of the procedure (𝛽1, . . . , 𝛽𝑡) ←

Samp(𝑟):

• For all 𝑥 and all 𝛼, the number of 𝑟 such that Samp(𝑟) ∈ 𝑆1 × . . . × 𝑆𝑡 should

be polynomial in the length of 𝑟.

• Moreover, the (polynomial-size) set of all such 𝑟 should be be efficiently com-

putable given (𝑥, 𝛼) (or, essentially equivalently, the sets 𝑆1, . . . 𝑆𝑡).

Almost miraculously, if we think of our sampler Samp as the encoding procedure

Encode of an error-correcting code, this set of requirements exactly corresponds to an

important notion in coding theory: (errorless) list recovery [GI01]!

We now (informally) recall the definition of an (error-free) list-recoverable code.

Let Encode : {0, 1}𝜆 → [𝑞]𝑡 denote an efficient encoding procedure. We say that

(Encode, Recover) is a (ℓ, 𝐿)-list recoverable code if

• For all sets (called input lists) 𝑆1, . . . , 𝑆𝑡 of size at most ℓ, the number of messages

𝑚 ∈ {0, 1}𝜆 such that Encode(𝑚) ∈ 𝑆1 × . . .× 𝑆𝑡 is at most 𝐿, and
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• The algorithm Recover(𝑆1, . . . , 𝑆𝑡), given descriptions of the input lists 𝑆1, . . . , 𝑆𝑡,

efficiently returns the ≤ 𝐿 corresponding messages (called the output list).

List-recoverable codes were introduced by [GI01] as a tool for constructing more

efficient list-decodable codes. For our application, we define Samp(𝑟) := Encode(𝑟) ∈

[𝑞]𝑡, so that

• The alphabet 𝑞 of the code is exactly the challenge space for the base protocol

Π.

• The block-length 𝑡 of the code is the number of repetitions of the protocol Π,

• The input list size ℓ = (1 − 𝜖)𝑞 corresponds to the boundedness of the relation

𝑅Π, and

• The output list size 𝐿 is a bound on the number of seeds 𝑟 that are mapped

to bad challenges, and so should be some polynomial in the security parameter

𝜆.16

We emphasize that the parameter regime we are interested in is qualitatively differ-

ent than is typical in coding theory. In the coding theory literature (see [HW15a, Fig-

ure 1] as well as [RW18] for examples), the input list size ℓ is typically very small17

compared to the alphabet size 𝑞, while the parameters they want to optimize are the

block-length 𝑡 (ideally 𝑡 = 𝑂(𝜆)), as well as the output list size 𝐿 (which is important

for efficient decoding when the list-recoverable code is used as a component in a larger

construction).

On the other hand, our setting has a very large value of ℓ (potentially as high

as (1 − 𝜖)𝑞); we then want to optimize for the block-length 𝑡, which is ideally not

much larger than 1/𝜖, but multiplicative factors of poly(𝜆) do not really bother us

(in particular, the code can have rate 𝑜(1)). Meanwhile, the output list size 𝐿 is not

too important for us (as long as it is polynomial), but it is crucial that list-recovery
16The dependence is actually allowed to be poly(𝜆, 𝑞, 1/𝜖)
17For example, degree 𝑘 Reed-Solomon codes over F𝑞 can handle ℓ ≤ 𝑞

𝑘 , while known higher rate
constructions can only tolerate much smaller values of ℓ.
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is computationally efficient (rather than information-theoretic), which differs from

many prior works.

As described above, there is a tight connection between list-recoverable codes and

correlation-intractable hash families through the construction ℎ′(𝑥) = Encode(ℎ(𝑥)):

Theorem 5.8 (Informally stated, see Theorem 5.36). Suppose that

• ℋ is a hash family that is CI for efficient functions,

• 𝑅 = 𝑅𝑥,Π is an efficiently verifiable relation with output space [𝑞] and sparsity

1− 𝜖, and

• (Encode, Recover) is a ((1− 𝜖)𝑞, 𝐿)-list recoverable code mapping {0, 1}𝜆 → [𝑞]𝑡.

Then, the hash family defined by ℎ′(𝑥) = Encode(ℎ(𝑥)) is CI for the relation 𝑅𝑥,Π𝑡,

and is therefore FS-compatible with the protocol Π𝑡.

In Section 5.3.1, we rephrase Theorem 5.8 fully in the language of correlation

intractability (without reference to any protocol Π) by defining a natural notion of

“product relation”. We then show that list-recoverable codes can be used to generically

construct CI for product relations from CI for functions. Then, in Sections 5.5 and 5.6,

we show how this form of CI allows us to prove our general FS results: Theorem 5.2

and Theorem 5.4. For the generalization to many-round protocols, we in fact make

use of error-tolerant (rather than error-free) list-recoverable codes.

Final Step: Constructing the Codes. However, an important question remains:

do there actually exist codes satisfying all of the properties that we need? To sum-

marize (for the case of 3-message protocols), we want the following conditions to hold

for a code defined by Encode : {0, 1}𝜆 → [𝑞]𝑡.

1. The code should be (ℓ, 𝐿)-list recoverable for ℓ = (1− 𝜖)𝑞 and 𝐿 = poly(𝑞/𝜖).

2. Both encoding and list recovery should be computationally efficient rather than

information-theoretic.
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3. Subject to (1) and (2), the block-length 𝑡 should be as small as possible.

Conditions (1) and (2) are necessary to obtain any valid Fiat-Shamir instantiation

for some sufficiently large number of (parallel) repetitions of a protocol Π, while

condition (3) seeks to minimize the number of repetitions (hopefully to a number not

much larger than what is required in the interactive setting).

It is not difficult to argue that a random code 𝑓 : {0, 1}𝜆 → [𝑞]𝑡 satisfies condition

(1) with high probability, with 𝑡 indeed on the order of 1/𝜖 (see Theorem 5.40);

however, it (of course) does not satisfy condition (2). On the other hand, known list-

recoverable codes with efficient list-recovery are only designed to handle small input

list sizes. This includes algebraic codes [GS98, PV05, GR08], expander codes [SS94,

HW15a], and codes built by a combination of these tools [GI01,GI02,GI03,GI04]. As

mentioned before, prior work did not primarily optimize for the input list sizes. In

fact, aside from some of the works on algebraic codes, the parameter settings in prior

work require ℓ = 𝑞𝑜(1);18 these prior works were instead mostly focused on achieving

high rate and very efficient algorithmic encoding/recovery.

In this work, we give a randomized construction of a code satisfying our demands

via code concatenation [For66] combining an algebraic code with a random code (in

a parameter regime where brute force decoding is polynomial-time). This is similar

to the approach of [GI01] (although they use random “pseudolinear” codes rather

than truly random codes for reasons of efficiency), but the parameters of our code

concatenation (i.e. the relationship between the algebraic code’s parameters and the

random code’s parameters) are quite different from [GI01].

Code concatenation is a technique based on the following simple idea: given two

codes 𝐶out, 𝐶in such that alphabet symbols of 𝐶out can be interpreted as messages

for 𝐶in, it is possible to encode a message 𝑚 by first computing 𝑦 = Encodeout(𝑚)

and then encoding each symbol 𝑦𝑖 using 𝐶in. Code concatenation admits simple

composition theorems for list-recovery, so the main question is whether there are

parameter settings for 𝐶out, 𝐶in that meet our demands.
18An interesting concurrent and independent work [DW20] uses expander code-based techniques

to construct a variant of list-recoverable codes with constant rate and ℓ = 𝑞Ω(1), but this is still far
from the parameter regime that we care about.
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It turns out that by setting the alphabet size 𝑞′ of the outer code to be polynomially

larger than the alphabet size of the inner code (which is 𝑞), the concatenation 𝐶out∘𝐶in

can be shown to be list-recoverable for large input list sizes as long as the outer code is

list-recoverable for moderately large input list sizes. Moreover, list-recovery is efficient

even if the inner code must be list-recovered by brute force; this allows for the input

list size for 𝐶out ∘𝐶in to be very large (as this parameter is inherited from 𝐶in). In the

end, our choice of 𝐶out is a Parvaresh-Vardy code with carefully chosen parameters

to optimize for the block-length 𝑡 of the final construction:

Theorem 5.9 (Informal, see Lemma 5.45). For all ℓ < 𝑞 = poly(𝜆), there exists a

probabilistically constructable family of codes

{︂
𝐶 : {0, 1}𝜆 → [𝑞]𝜆

2· log(𝜆)
log(𝑞/ℓ)

}︂

that is
(︁
ℓ, poly(𝜆)

)︁
-list recoverable with all but 2−𝜆 probability.

In particular, for ℓ = (1 − 𝜖)𝑞, we obtain block-length 𝑡 = �̃�(𝜆2/𝜖). We refer the

reader to Sections 5.4, 5.5.1 and 5.6.1 for more details.

5.1.3 Reflections: Fiat-Shamir via Coding Theory

In summary, our main technique relates correlation intractability for relations to

correlation intractability for functions in two high-level steps.

1. List Recoverable Codes. Given a protocol Π whose bad challenges are (ap-

proximate) product sets 𝑆 = 𝑆1 × . . . 𝑆𝑡 ⊆ [𝑞]𝑡 (such as those arising from

parallel repetition), we construct a code 𝐶 : {0, 1}𝜆 → [𝑞]𝑡 that avoids all such

𝑆: namely, every product set 𝑆 contains only polynomially many codewords

𝐶(𝑚).

2. Composition. We prove that such codes compose with a hash family ℋ that is

CI for functions to obtain a hash family 𝐶 ∘ℋ that is CI for product relations.

One can view this as a special case of a more general paradigm: given the results

of [CCH+19, PS19], we can reduce the problem of instantiating Fiat-Shamir for any
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public-coin interactive proof to a coding-theoretic problem. For example, given a

constant-round (or more generally, round-by-round sound) interactive proof Π for a

language ℒ, soundness guarantees that for every transcript prefix 𝜏 of Π on an input

𝑥 /∈ ℒ there is a sparse set 𝑆𝜏 of “bad” verifier messages. We would like to construct

a code 𝐶 : {0, 1}𝜆 → [𝑞] such that 𝐶 “evades” 𝑆𝜏 in the sense that there are at

most polynomially many messages 𝑚 for which 𝐶(𝑚) ∈ 𝑆𝜏 , and furthermore there

is a polynomial-time algorithm that enumerates all such 𝑚. Given such a code 𝐶,

the composition of the [PS19] hash function with 𝐶 instantiates Fiat-Shamir for Π

(assuming LWE).

For general interactive proofs, the sets 𝑆𝜏 may be extremely complex and decoding

seems intractable. In our results above, we took advantage of the following structure

of Π that makes decoding feasible:

• Π is a parallel repetition, which ensures that each set 𝑆𝜏 is a product set;

• Moreover, the base protocol has efficiently recognizable bad challenges.

We were then able to leverage highly non-trivial existing algorithms [GS98,PV05] to

solve the resulting coding problem.

An interesting direction for future work is whether other forms of efficient decoding

can be used to instantiate Fiat-Shamir for other natural protocols.

5.1.4 Related Work

Correlation Intractability and Fiat-Shamir.

We survey the recent constructions of correlation intractable (CI) hash families [CCR16,

KRR17,CCRR18,HL18,CCH+19,PS19,BKM20] for comparison with our work. These

constructions roughly fall into two categories:

CI for Large Classes of Relations based on Non-Standard Assumptions.

The initial works [CCR16,KRR17,CCRR18,HL18,CCH+18] constructed hash families

that achieve correlation intractability for very broad classes of relations, but they can
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only prove security based on strong and non-standard cryptographic assumptions. In

more detail,

• [CCR16] constructs a hash family that is CI for all efficiently verifiable relations

(i.e., relations 𝑅 such that it is efficiently decidable whether (𝑥, 𝑦) ∈ 𝑅) assum-

ing (sub-exponentially secure) indistinguishability obfuscation (iO) as well as

input-hiding obfuscation for evasive circuits [BBC+14].

• [KRR17, CCRR18] construct hash families that are CI for all (even hard-

to-decide) sparse relations. To do so, they make assumptions that are both

extremely quantitatively strong and non-falsifiable [Nao03, GW11]. For exam-

ple, [CCRR18] assumes the existence of an encryption scheme such that key-

recovery attacks, given (even inefficiently generated) key-dependent-message

(KDM) ciphertexts, cannot succeed with probability significantly better than

random guessing. [KRR17] makes a simiar assumption, and additionally as-

sumes (subexponentially secure) iO.

• [HL18] constructs a hash family that is CI for all “efficiently sampleable rela-

tions” (similar in spirit but technically incomparable to “efficiently verifiable re-

lations” as in [CCR16]) assuming (subexponentially secure) iO and optimally se-

cure one-way functions—that is, a one-way function 𝑓 with no inversion attacks

that are significantly better than random guessing. [CCH+19] (see [CCH+18])

also gives constructions of such a hash family under “optimally secure” variants

of the learning with errors (LWE) assumption (without iO).

To summarize, these hash families achieve strong notions of CI (which suffice to

instantiate Fiat-Shamir for broad classes of interactive proofs) at the cost of highly

non-standard assumptions.

CI for Efficient Functions based on Standard Assumptions Beginning with

the work of [CCH+19] (see [CLW18]), a sequence of works [CCH+19, PS19, BKM20]

gave constructions of restricted forms of correlation intractability based on widely

accepted assumptions. In more detail,
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• [CCH+19,PS19] construct hash families that are CI for all efficiently computable

functions, that is, for relations 𝑅 such that (𝑥, 𝑦) ∈ 𝑅 ⇐⇒ 𝑦 = 𝑓(𝑥) for some

efficiently computable function 𝑓 . [CCH+19] constructs such a hash family under

circular-secure fully homomorphic encryption, while [PS19] relies on the plain

LWE assumption.

• [BKM20] constructs hash families that are CI for low-degree polynomial func-

tions based on any one of various assumptions including LWE, the decisional

Diffie-Hellman (DDH) assumption, and the Quadratic Residuosity (QR) as-

sumption. In fact, their hash families are CI for relations 𝑅 that are “efficiently

approximable” by low-degree polynomials over F2, i.e., relations 𝑅 such that

(𝑥, 𝑦) ∈ 𝑅 ⇐⇒ 𝑦 is close to 𝑝(𝑥) in Hamming distance.

To summarize, these works construct hash families that are CI for (classes of)

efficient functions (rather than relations), possibly up to some error tolerance on bits

of the output.19 To emphasize even further, there are two main drawbacks to these

CI constructions:

1. They only achieve security for relations 𝑅 ⊆ 𝑋 × 𝑌 that represent functions

(possibly tolerating some error).

2. They require that the functions (or, equivalently, the relations) are efficiently

computable.

In the context of FS-compatibility, what this means is that prior work has suc-

cessfully constructed hash families that are FS-compatible with interactive proofs Π

whose bad-challenge relations 𝑅𝑥,Π can be interpreted as efficient functions.20 The

3-message protocols whose bad-challenge relations are (possibly inefficient) functions

are those satisfying “special soundness”: for every false statement 𝑥 and every prover

message 𝛼, there is at most one choice of challenge 𝛽 such that an accepting proof of
19Indeed, the constructions of [CCH+19, PS19] also support a kind of error tolerance, although

this was irrelevant for their purposes.
20For 3-message protocols, these are abstracted as “trapdoor Σ-protocols” in [CCH+19].
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the form (𝛼, 𝛽, 𝛾) exists. Proof systems satisfying this notion include important pro-

tocols such as [GMR85, Blu86, FLS90], but a “typical” protocol Π will be extremely

far from satisfying this notion. By a “random guessing” reduction, is it not hard to

handle protocols Π that have only polynomially many bad challenges 𝛽 for any fixed

𝛼, but again, this captures only a small class of protocols.

Finally, we note that while drawback (2) has been circumvented to a small extent

in later works [LV20a, JKKZ21], some form of efficiency requirement has been nec-

essary for all bad-challenge functions of protocols Π with Fiat-Shamir instantiations

under standard assumptions. As in prior work [CCH+19, PS19,BKM20], we instead

work with protocols Π such that (a relaxation of) the relation 𝑅𝑥,Π can be efficiently

verified given a trapdoor td. In the case of [GMW86], this is achieved by using a com-

mitment scheme with a trapdoor that can extract committed bits (i.e., a public-key

encryption scheme).

One might wonder whether it is possible to directly show that the CI hash families

of [CCH+19, PS19] are also CI for relations such as 𝑅𝑥,ΠGMW . The intuitive reason

this appears to be hard is as follows: to show that the [CCH+19,PS19] hash families

ℋ are CI for a function 𝑓 , they show that a hash function ℎ← ℋ is computationally

indistinguishable from a hash function (distribution) ℎ𝑓 that on input 𝑥 internally

(1) computes 𝑓(𝑥) and then (2) outputs a value 𝑦 that specifically avoids 𝑓(𝑥). It is

possible to extend this proof to make ℋ “avoid” a polynomial number of evaluations

𝑓1(𝑥), . . . , 𝑓𝑘(𝑥) (by internally computing all of them), but for our relations of interest,

the number of (𝑥, 𝑦) ∈ 𝑅 (for a fixed 𝑥) can be close to 2𝑚 (for 𝑚 = |𝑦|)! As a

result, proving that the [CCH+19,PS19] hash functions satisfy this form of correlation

intractability appears out of reach for current techniques.

CI for Approximable Relations We note that in order to instantiate Fiat-Shamir

for round-by-round sound protocols(Section 5.6), we implicitly rely on (and construct)

hash families that are correlation intractable for approximations of a relation 𝑅 in

a sense similar to the abstraction introduced in [BKM20]. However, in our setting,

we think of hash outputs as elements of [𝑞]𝑡 and our metric of interest is Hamming
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distance in the space [𝑞]𝑡; correspondingly, our security requirement is stronger, in that

we want CI for even extremely poor approximations of 𝑅 (i.e. distance significantly

greater than 1
2). We achieve this notion of CI when 𝑅 is any (sufficiently bounded)

product relation using error-tolerant list-recoverable codes.

List-Recoverable Codes and Cryptography

List-recoverable codes have previously been used [MT07,DS11,HIOS15,KNY18,BKP18]

in cryptography in the context of domain extension [Mer88] for hash functions. That

is, given a hash function ℎ : {0, 1}𝑛 → {0, 1}𝑚, their goal is to construct another hash

function 𝐻 : {0, 1}* → {0, 1}𝑚 while preserving security properties such as collision-

resistance. In particular we highlight the work of [HIOS15] who use list-recoverable

codes to construct hash functions 𝐻 that are indifferentiable from random functions (if

ℎ is modeled as a random oracle). In their construction (as well as in [MT07,DS11]),

it suffices to use off-the-shelf Parvaresh-Vardy codes [GUV09], albeit in somewhat

non-standard parameter regimes. For example, [HIOS15] considers a regime with (1)

subexponential (rather than polynomial) time list-recovery and (2) input list sizes of

size 𝑞𝛿 for some 0 < 𝛿 < 1 (and 𝑞 is the alphabet size).

One notable difference between our use of list-recoverable codes as compared

to [MT07, DS11, HIOS15, KNY18, BKP18] is that in the context of domain exten-

sion, precomposition with a list-recoverable code (i.e. encoding the input 𝑥 and then

hashing it) is the technique used; on the other hand, we post-compose a hash function

ℎ with a code (i.e. we encode the output ℎ(𝑥)) in order to facilitate a kind of “output

compression” (rather than domain extension).

5.2 Preliminaries

5.2.1 Interactive Proofs and Zero-Knowledge

Definition 5.10. An interactive proof for a language 𝐿 with completeness error 𝑐 = 𝑐(𝑛)

and soundness error 𝑠 = 𝑠(𝑛) consists of a probabilistic polynomial-time interactive
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verifier 𝑉 such that:

• (Completeness:) If 𝑥 ∈ 𝐿 then there is an interactive function 𝑃𝑥 such that

𝑉 (𝑥), when interacting with 𝑃𝑥, accepts with probability at least 1− 𝑐(|𝑥|).

• (Soundness:) If 𝑥 /∈ 𝐿 then 𝑉 (𝑥), when interacting with any (even computa-

tionally unbounded) interactive function 𝑃 *, accepts with probability at most

𝑠(|𝑥|).

If the error parameters 𝑐 or 𝑠 are omitted, by default we require them to be negligible

functions. If 𝑐 = 0, we say that the proof-system has perfect completeness.

One of the main metrics of a proof system is the number of messages 𝑚 exchanged

between the prover and the verifier before the verifier decides whether or not to accept.

Typically, this depends only on the input length 𝑛 of the verifier’s input. We call

𝑚 = 𝑚(𝑛) the message complexity of the proof system.

It is useful to have a notion of efficiency for the prover as well as for the verifier.

The appropriate notion turns out to depend on the “type” of the language 𝐿 for which

the interactive proof is designed.

• 𝐿 ∈ NP and a strategy 𝑃𝑥 as above can be implemented in polynomial-time

given 𝑥 and an NP witness21 for 𝑥; or

• if 𝐿 ∈ P and a strategy 𝑃𝑥 can be implemented in polynomial-time given only

𝑥,

then we say that the proof-system has an efficient prover.

Definition 5.11 (Arguments). An (𝑠, 𝜖)-computationally sound interactive proof (or

argument) for a language ℒ is an interactive proof for ℒ in which the soundness

condition is weakened to:

• ((𝑠, 𝜖)-Computational Soundness): For all 𝑥 ∈ {0, 1}𝑛 ∖ ℒ and all size-𝑠 prover

strategies 𝑃 *, it holds that 𝑉 (𝑥) when interacting with 𝑃 * accepts with at most

𝜖 probability.
21The notion of an NP witness relies on associating a relation 𝑅 with the language 𝐿; such a

relation will usually be implicit from context.
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We omit 𝑠 and 𝜖 if for all 𝑠 = 𝑠(𝑛) ≤ 𝑛𝑂(1), the protocol satisfies (𝑠, 𝜖)-computational

soundness for some 𝜖 = 𝜖(𝑛) ≤ negl(𝑛).

Definition 5.12 (Public-Coin). An interactive proof or argument 𝑉 is said to be

public-coin if:

• For some ℓ(𝑛) ≤ 𝑛𝑂(1) and every 𝑥 ∈ {0, 1}𝑛, the messages sent by 𝑉 (𝑥) are

i.i.d. uniformly random ℓ(𝑛)-bit strings.

• The final output of 𝑉 (𝑥) when interacting with a prover 𝑃 is a fixed polynomial-

time computable function of 𝑥 and the transcript 𝜏 of its interaction with 𝑃 .

We denote this output by 𝑉 (𝑥, 𝜏).

For 2-message arguments, we also consider the notion of adaptive soundness, in

which a prover may decide what it is trying to prove after seeing the verifier’s first

message.

Definition 5.13 (Adaptive Soundness). Let 𝑉 be a 2-message argument in which the

verifier’s messages have length ℓ = ℓ(𝑛) and are independent of the statement 𝑥.

𝑉 is said to be (𝑠, 𝜖)-adaptively sound if for all size-𝑠 circuit ensembles 𝑃 *, the

probability that 𝑉 (𝑥, 𝜎, 𝛼) = 1 and 𝑥 ∈ {0, 1}𝑛 ∖ ℒ is at most 𝜖 when sampling

𝜎 ← {0, 1}ℓ(𝑛)

(𝑥, 𝛼) := 𝑃 *(1𝑛, 𝜎).

If for all 𝑠 = 𝑠(𝑛) ≤ 𝑛𝑂(1), 𝑉 is (𝑠, 𝜖)-adaptively sound for some 𝜖 = 𝜖(𝑛) ≤

negl(𝑛), then we say simply that 𝑉 is adaptively sound.

Zero-Knowledge. We recall here the definition of auxiliary-input computational

zero-knowledge, referred to henceforth simply as zero-knowledge. Our presentation

follows [Gol07].

Definition 5.14. We say that an interactive proof (𝑃, 𝑉 ) for a language 𝐿 is zero-

knowledge, if for every (malicious) probabilistic polynomial-time verifier 𝑉 * there
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exists a probabilistic polynomial-time simulator Sim, such that for every (even in-

efficient) function 𝑧 = 𝑧(𝑥), referred to as the auxiliary input, the following two

distribution ensembles are computationally indistinguishable:

•
{︁
view𝑃,𝑉 *(𝑧(𝑥))(𝑥)

}︁
𝑥∈𝐿

, where view𝑃,𝑉 *(𝑥) includes the entire view of the verifier

𝑉 * in the interaction with 𝑃 on common input 𝑥 and auxiliary input 𝑧; and

•
{︁
Sim(𝑥, 𝑧(𝑥))

}︁
𝑥∈𝐿

.

5.2.2 Cryptographic Primitives and Assumptions

Definition 5.15 (Non-Interactive Statistically Binding Commitments in the CRS

Model). A non-interactive bit commitment scheme in the CRS model is a pair of effi-

cient randomized algorithms (Setup, Com), where:

• Setup(1𝜆) outputs a string crs, which we refer to as a common reference string.

• Com(crs, 𝑚; 𝑟) takes as input a common reference string crs and a message 𝑚 ∈

{0, 1}; then, using randomness 𝑟, it outputs a commitment com.

We require the following security properties:

• Statistical binding: With high probability over crs← Setup(1𝜆), there do not

exist any two strings 𝑟0, 𝑟1 such that Com(crs, 0; 𝑟0) = Com(crs, 1; 𝑟1).

• Computational hiding: The distribution of (crs, com) when sampling

crs← Setup(1𝜆)

com← Com(crs, 0)

is computationally indistinguishable from the distribution when sampling

crs← Setup(1𝜆)

com← Com(crs, 1).

Given a commitment string com and common reference string crs, we call a valid

message-randomness pair (𝑚, 𝑟) an opening for com.
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Remark 5.16. Any public-key encryption scheme PKE = (Gen, Enc, Dec) with perfect

decryption correctness22 implies a non-interactive commitment scheme in the CRS

model: The CRS is a public key pk, and a commit to a message 𝑚 is an encryption

of 𝑚 under pk.

Moreover, this commitment scheme has the following “trapdoor extractability”

property: given the secret key sk corresponding to pk and a (potentially malicious)

commitment com, one can efficiently compute 𝑚 such that the only possible opening

of com (if any) is to 𝑚.

Learning with Errors (LWE). We next define the learning with errors problem

[Reg05].

Definition 5.17. The (Decisional) Learning With Errors (LWE) assumption with pa-

rameters 𝑛 = 𝑛(𝜆), 𝑚 = 𝑚(𝜆), 𝑞 = 𝑞(𝜆), 𝜒 ∈ 𝒟(Z𝑞), denoted by LWE𝑛,𝑚,𝑞,𝜒, states

that the distribution ensembles {(A, b)}𝜆 and {(A, r)}𝜆 are computationally indis-

tinguishable, where A ← Z𝑛×𝑚
𝑞 , b𝑇 = s𝑇 A + e𝑇 (mod 𝑞), s ← Z𝑛

𝑞 , e ← 𝜒𝑚 and

r← Z𝑚
𝑞 .

The subexponential variant of the LWE assumption states that for some 𝜖 > 0,

every size-2𝑛𝜖 adversary has advantage at most 2−𝑛𝜖 in distinguishing these two dis-

tributions.

The subexponential advantage variant of the LWE assumption states that for some

𝜖 > 0, every poly-size adversary has advantage at most 2−𝑛𝜖 in distinguishing these

two distributions.

A typical parameter setting for LWE (which suffices for our purposes) is 𝑞 =

poly(𝑛), 𝑚 = Θ(𝑛 log 𝑞) and 𝜒 defined to be the uniform distribution on [−𝐵, 𝐵] ⊆ Z𝑞

for 𝐵 = poly(𝜆) (but significantly smaller than 𝑞).

22In fact, it is sufficient if for almost all key pairs (pk, sk), it holds for all messages 𝑚 and ran-
domnesses 𝑟 that Dec

(︀
sk, Enc(pk, 𝑚; 𝑟)

)︀
= 𝑚.
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5.2.3 Correlation-Intractable Hash Functions

In this section, we recall the notion of correlation intractable hash functions as in-

troduced by Canetti, Goldreich and Halevi [CGH98].23 We first give a syntactic

definition of keyed hash functions.

Definition 5.18. A hash family is a collection ℋ = {ℎ𝜆 : ℐ𝜆 × 𝑋𝜆 → 𝑌𝜆}𝜆∈Z+ of

keyed hash functions such that {ℐ𝜆} is uniformly poly(𝜆)-time sampleable and {ℎ𝜆}

is uniformly poly(𝜆)-time evaluable.

We will also write ℋ𝜆 to denote the distribution on functions ℎ𝜆(𝐼, ·) obtained by

sampling 𝐼 ← ℐ𝜆.

Correlation-intractability is defined as follows.

Definition 5.19 (Correlation-Intractability). For a hash family ℋ = {ℎ𝜆 : ℐ𝜆×𝑋𝜆 →

𝑌𝜆}𝜆 and a relation ensemble 𝑅 = {𝑅𝜆 ⊆ 𝑋𝜆×𝑌𝜆}, the correlation intractability game

𝒢CI
ℋ,𝑅 is the following game, played by any adversary 𝒜 against a fixed “challenger”

𝒞:

1. On input 1𝜆, 𝒞 samples 𝐼 ← ℐ𝜆 and sends 𝐼 to 𝒜.

2. 𝒜 sends 𝑥 ∈ 𝑋𝜆 to 𝒞, and wins the game if
(︁
𝑥, ℎ𝜆(𝐼, 𝑥)

)︁
∈ 𝑅𝜆.

We say that ℋ is
(︁
𝑠(·), 𝜖(·)

)︁
-correlation intractable for 𝑅 if for every size-𝑠(𝜆) cir-

cuit 𝒜 and every sufficiently large 𝜆, the adversary 𝒜 wins the correlation intractabil-

ity game with probability at most 𝜖(𝜆).

If we omit 𝑠, we mean (𝑠, 𝜖)-security simultaneously for all 𝑠(𝜆) ≤ 𝜆𝑂(1). If we

omit 𝜖, we mean (𝑠, 𝜖)-security simultaneously for all 𝜖(𝜆) ≥ 𝜆−𝑂(1).

Theorem 5.20 ( [PS19]). Assume that LWE 𝑚
2 log 𝑞

,𝑚,𝑞,𝐵 holds for a particular parameter

setting 𝑞 = poly(𝑚), 𝐵 = 𝑞Ω(1). Then, for every triple of polynomials 𝑇 = 𝑇 (𝜆), 𝑛 =

𝑛(𝜆), 𝑚 = 𝑚(𝜆), there exists a hash function family ℋ : {0, 1}𝑛 → {0, 1}𝑚 log 𝑞 that is

correlation-intractable for every function ensemble 𝑓 = {𝑓𝜆}𝜆 that is computable in

time 𝑇 (𝜆).
23A related security notion was introduced by Okamoto [Oka93] in the context of applying Fiat-

Shamir to a particular identification scheme.
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5.2.4 The Fiat-Shamir Transform

Definition 5.21. Let Π = (𝑃, 𝑉 ) be a public-coin interactive protocol and denote its

messages by 𝛼1, 𝛽1, . . . , 𝛼𝑟, 𝛽𝑟, where the 𝛼𝑖’s are the prover messages and the 𝛽𝑖’s

are the verifier messages. Suppose that all verifier messages have length ℓ. For a

family ℋ of hash functions mapping {0, 1}* → {0, 1}ℓ, we define FSℋ[Π] to be the

non-interactive protocol obtained by sampling as a common reference string ℎ ← ℋ,

and replacing each verifier message 𝛽𝑖 by ℎ(𝑥, 𝛼1, 𝛽1, . . . , 𝛼𝑖), where 𝑥 is the main

input to the protocol. The verifier for FSℋ[Π] accepts if and only if the underlying

verifier accepts and all messages 𝛽𝑖 were computed correctly.

In case Π is defined in the CRS model, with CRS 𝜎, then we likewise view FSℋ[Π]

as a protocol in the CRS model, using the CRS (𝜎, ℎ).

Definition 5.22. We say that a hash function family ℋ is FS-compatible with an

interactive proof Π for a language ℒ, if the non-interactive protocol FSℋ[Π] is an

adaptively sound argument for ℒ. We say that ℋ is non-adaptively FS-compatible

with Π if FSℋ[Π] is a (not necessarily adaptively) sound argument for ℒ.

We say that ℋ is FS-compatible (or non-adaptively FS-compatible) with quanti-

tative security SubExp(𝜆) (for 𝜆 = 𝜆(𝑛)) if in addition there exists 𝜖 > 0 such that

FSℋ[Π] is (2𝜆𝜖
, 2−𝜆𝜖)-computationally sound.

[DNRS99] established the following negative connection between the existence of

FS-compatible hash functions and zero-knowledge.

Theorem 5.23 ( [DNRS99]). Let Π be a public-coin interactive proof for a language

𝐿. Suppose that there exists an FS-compatible hash function family ℋ for Π. Then,

if Π is zero-knowledge, then 𝐿 ∈ BPP.

The proof of Theorem 5.23 is simple but not exactly in this form in [DNRS99], so

we provide a proof for completeness.

Proof Sketch. Suppose that Π is zero-knowledge and consider a cheating verifier 𝑉 *

that gets as auxiliary input a hash function ℎ and answers each prover message by

applying ℎ to the transcript thus far (as in Fiat-Shamir). Since Π is zero-knowledge,
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there exists a simulator Sim for 𝑉 *. Consider a decision procedure 𝐷 for 𝐿 that

samples a random hash function ℎ, runs Sim(𝑥, ℎ) (i.e., using ℎ as the auxiliary

input) and accepts if any only if (1) the transcript is accepting, and (2) the verifier

messages in the transcript are computed correctly (i.e., by applying ℎ).

First observe that if 𝑥 ∈ 𝐿, by the zero-knowledge property the simulated tran-

script 𝜏 is computationally indistinguishible from the real interaction. By complete-

ness, the real interaction produces an accepting transcript and so 𝜏 is accepting (and

consistent with ℎ) with all but negligible probability. Thus, 𝐷(𝑥) accepts with all

but negligible probability if 𝑥 ∈ 𝐿.

Next, note that if 𝑥 ̸∈ 𝐿, the soundness of FSℋ(Π) implies that 𝐷(𝑥) accepts

with only negligible probability. This is because, given a Fiat-Shamir hash function

ℎ, one efficient cheating strategy 𝑃 * for FSℋ(Π) is to run Sim(𝑥, ℎ) and send the

simulated 𝜏 transcript as its message. Therefore, such a transcript can be accepting

(and consistent with ℎ) with only negligible probability.

We conclude that 𝐷 is a BPP algorithm for 𝐿.

5.2.5 Error Correcting Codes and List Recovery

Definition 5.24. A 𝑞-ary code is a function 𝐶 : ℳ → [𝑞]𝑛, where 𝑛 is called the

block length, ℳ is called the message space, and [𝑞] is called the alphabet of 𝐶. The

distance of 𝐶 is the minimum Hamming distance between 𝐶(𝑚) and 𝐶(𝑚′) for distinct

𝑚, 𝑚′ ∈ℳ. If 𝐶 has distance 𝑑, then its relative distance is 𝑑/𝑛.

When discussing the asymptotic performance of codes, it makes sense to consider

ensembles of codes {𝐶𝑘 : ℳ𝑘 → [𝑞𝑘]𝑛𝑘}𝑘∈Z+ with varying parameters. We will only

consider constructable codes, which are ensembles for which:

• There is an efficiently computable (and invertible) bijection between ℳ𝑘 and[︁
|ℳ𝑘|

]︁
, and |ℳ𝑘| is computable in time poly(𝑘).

• 𝑞𝑘, and 𝑛𝑘 are computable given 1𝑘 in time poly(𝑘).
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• There is a polynomial-time algorithm 𝐸 that, given 𝑚 ∈ ℳ𝑘 (represented as

an integer in
[︁
|ℳ𝑘|

]︁
), outputs 𝐶𝑘(𝑚).

Definition 5.25 (Concatenated Code [For66]). Let 𝐶 :ℳ→ [𝑄]𝑁 and 𝑐 : [𝑄]→ [𝑞]𝑛

denote codes. The concatenated code 𝐶 ∘ 𝑐 :ℳ→ [𝑞]𝑁𝑛 is defined by

(𝐶 ∘ 𝑐)(𝑚)(𝑖−1)𝑛+𝑗 = 𝑐
(︁
𝐶(𝑚)𝑖

)︁
𝑗
,

for all 𝑚 ∈ℳ, 𝑖 ∈ [𝑁 ], and 𝑗 ∈ [𝑛].

Definition 5.26 (List-Recoverable Codes [GI01,GS98]). An ensemble of codes
{︁
𝐶𝑘 :

ℳ𝑘 → [𝑞𝑘]𝑛𝑘

}︁
is said to be (𝛼(·), ℓ(·), 𝐿(·))-list recoverable (for 𝛼 : Z+ → (0, 1) and

ℓ, 𝐿 : Z+ → Z+) if there is a polynomial-time algorithm Recover that:

• Takes as input 𝑘 ∈ Z+ and explicit descriptions of “constraint” sets 𝑆1, . . . , 𝑆𝑛𝑘
⊆

[𝑞𝑘] with each |𝑆𝑖| ≤ ℓ(𝑘);

• Produces as output a list of at most 𝐿(𝑘) messages, containing all 𝑚 ∈ℳ𝑘 for

which (𝐶𝑘(𝑚))𝑖 ∈ 𝑆𝑖 for at least an 𝛼(𝑘) fraction of 𝑖 ∈ [𝑛𝑘].

The code {𝐶𝑘} is said to be combinatorially (𝛼, ℓ, 𝐿)-list recoverable if an arbitrarily

inefficient algorithm Recover exists with the above functionality. If 𝛼 = 1, we omit it.

When ℓ = 1, list recoverability is the same as the more common notion of list

decodability.

5.2.6 Concentration Inequalities

Theorem 5.27 (Multiplicative Chernoff). If 𝑋1, . . . , 𝑋𝑛 are independent {0, 1}-valued

random variables with 𝑋
def= ∑︀

𝑖 𝑋𝑖 and 𝜇
def= E[𝑋], then for all 𝛿 ≥ 0,

Pr[𝑋 ≥ (1 + 𝛿)𝜇] ≤
(︃

𝑒𝛿

(1 + 𝛿)1+𝛿

)︃𝜇

. (5.1)
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Corollary 5.28. There is an absolute constant 𝑐 > 1 such that if 𝑋 and 𝜇 are as

above, then for any 𝜏 ≥ 3𝜇, we have

Pr[𝑋 ≥ 𝜏 ] ≤ 𝑐−𝜏 .

Proof. Follows from viewing 𝜏 as (1 + 𝛿)𝜇 for 𝛿 ≥ 2 and rewriting Eq. (5.1) as

Pr[𝑋 ≥ (1 + 𝛿)𝜇] ≤
(︃

𝑒𝛿/(1+𝛿)

1 + 𝛿

)︃(1+𝛿)𝜇

=
(︃

1 + 𝛿

𝑒𝛿/(1+𝛿)

)︃−𝜏

≤
(︂3

𝑒

)︂−𝜏

.

Theorem 5.29 (Additive Chernoff). If 𝑋1, . . . , 𝑋𝑛 are independent {0, 1}-valued ran-

dom variables with 𝑋
def= ∑︀

𝑖 𝑋𝑖 and 𝜇
def= E[𝑋], then for all 𝜖 ≥ 0,

Pr
[︂ 1
𝑛

𝑋 ≥ 𝜇 + 𝜖
]︂
≤ 𝑒−2𝜖2𝑛. (5.2)

5.3 Derandomization for Correlation Intractabil-

ity

In this section, we describe and analyze two derandomization techniques that help

achieve correlation intractability for more expressive relation classes. The first tech-

nique, described in Section 5.3.1, gives a reduction from CI for (approximate) product

relations to CI for functions, based on list-recoverable codes. Next, in Section 5.3.2,

we show a generic technique for reducing the alphabet size of product relations using

subsampling.

5.3.1 Correlation Intractability via List Recovery

Throughout this section, let 𝑅 ⊆ 𝑋 × 𝑌 𝑡 be a binary relation. Our positive result

on correlation intractability are for relations with a product structure along with
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relatively mild sparsity and computational efficiency requirements.

Definition 5.30 (Product Relation). We say that 𝑅 is a product relation if for every

𝑥, the set 𝑅𝑥 = {𝑦 : (𝑥, 𝑦) ∈ 𝑅} ⊆ 𝑌 𝑡 has a decomposition

𝑅𝑥 = 𝑆1 × 𝑆2 × . . . 𝑆𝑡

(where 𝑆1, . . . , 𝑆𝑡 may depend on 𝑥).

We generalize Definition 5.30 to handle (a large fraction of) errors:

Definition 5.31 (Approximate Product Relation). We say that 𝑅 is an 𝛼-approximate

product relation if for every 𝑥, the set 𝑅𝑥 = {𝑦 ∈ 𝑌 𝑡 : (𝑥, 𝑦) ∈ 𝑅} consists exactly of

all those 𝑦 ∈ 𝑌 𝑡 for which

⃒⃒⃒
{𝑖 ∈ [𝑡] : 𝑦𝑖 ∈ 𝑆𝑖}

⃒⃒⃒
≥ 𝛼𝑡.

for some sets 𝑆1, . . . , 𝑆𝑡 ⊆ 𝑌 that may depend on 𝑥.

We construct hash functions that are CI for (approximate) product relations sat-

isfying a form of efficient verifiability.

Definition 5.32 (Efficient Product Verifiability). We say that an (𝛼-approximate)

relation 𝑅 is efficiently product verifiable if there is a polynomial-size circuit 𝐶 such

that, on every input 𝑥 with some corresponding sets (𝑆1, . . . , 𝑆𝑡) (as in Definition 5.31)

corresponding to 𝑥, it holds that 𝐶(𝑥, 𝑦, 𝑖) = 1 if and only if 𝑦 ∈ 𝑆𝑖.

Whenever we consider an approximate product relation 𝑅, we assume (and, when

necessary, provide) a specific decomposition
{︂

(𝑆1,𝑥, . . . , 𝑆𝑡,𝑥)
}︂

𝑥∈𝑋
for 𝑅; the decom-

position is represented by a circuit deciding membership of 𝑦 in 𝑆𝑖,𝑥 given (𝑥, 𝑦, 𝑖).

The notion of sparsity that is most relevant for these relations is simply a bound

on the (relative) size of the component sets 𝑆𝑖:

Definition 5.33 (Product Sparsity). We say that a product (resp., 𝛼-approximate

product) relation 𝑅 has product sparsity 𝜌 if for every input 𝑥, the sets 𝑆1, . . . , 𝑆𝑡 as

in Definition 5.30 (resp., Definition 5.31) have size at most 𝜌𝑞.

260



In order to construct a hash family that is correlation intractable for (approximate)

product relations, we simply compose a “base” CI hash function with an appropriate

list recoverable code.

Definition 5.34 (Encoded Hash Function). Let ℎ : ℐ ×𝑋 → 𝑍 be a hash function

with index set ℐ, domain 𝑋, and codomain 𝑍, and let 𝒞 : 𝑍 → 𝑌 𝑡 be a (probabilis-

tically) constructable code24 (see Section 5.2.5). We write 𝒞 ∘ ℎ to denote the hash

function ℎ̃ : ℐ̃ ×𝑋 → 𝑌 𝑡, where ℐ̃ def= ℐ × 𝒞 and ℎ̃
(︁
(𝑖, 𝐶), 𝑥

)︁ def= 𝐶
(︂

ℎ
(︁
𝑖, 𝑥

)︁)︂
.

In order to analyze the correlation intractability of encoded hash functions, we

introduce a kind of derandomization for (approximate) product relations 𝑅, which

will help us achieve correlation intractability for 𝑅.

Specifically, if 𝑅 ⊆ 𝑋 × 𝑌 𝑡 is a product (or approximate product) relation and

𝐶 : 𝑍 → 𝑌 𝑡 is a code, we define

�̃�𝐶 =
{︂

(𝑥, 𝑧) :
(︁
𝑥, 𝐶(𝑧)

)︁
∈ 𝑅

}︂
.

The following lemma then holds syntactically.

Lemma 5.35. If 𝒞 is a (probabilistically) constructable code ensemble, 𝑅 = {𝑅𝜆} is

a relation (ensemble) and if ℋ is a hash family that is correlation intractable for �̃�𝐶,

then 𝒞 ∘ℋ as in Definition 5.34 is a hash family that is correlation intractable for 𝑅.

Proof. Suppose that 𝒞 ∘ ℋ is not CI for 𝑅; then, there exists an efficient adversary

𝒜(ℎ) that on input ℎ ← ℋ, outputs an 𝑥 such that (𝑥, 𝐶(ℎ(𝑥)) ∈ 𝑅 with non-

negligible probability. By the definition of �̃�𝐶 , we know that (𝑥, 𝐶(ℎ(𝑥)) ∈ 𝑅 implies

that (𝑥, ℎ(𝑥)) ∈ �̃�𝐶 , so this contradicts the CI of ℋ with respect to �̃�𝐶 .

Theorem 5.36. Let 𝑇 be an arbitrary time bound; then, define ℛ = ℛ𝛼,𝜖,𝑇 to be

the class of all time-𝑇 verifiable 𝛼-approximate product relations 𝑅 ⊆ 𝑋 × 𝑌 𝑡 with

product sparsity 1− 𝜖. Moreover, suppose that
24We omit the parameterization of ℎ (respectively 𝒞) by a security parameter (respectively the

message length) for simplicity.
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• 𝐶 : 𝑍 → 𝑌 𝑡 is a code that is (𝛼, (1 − 𝜖)𝑞, 𝐿) list-recoverable in poly(𝐿)-time,

with 𝐿 = poly(𝑛, 𝑞); and

• The hash family ℋ is (quantitatively negl(𝜆)
𝑇 ′ -) correlation intractable for all

functions that are computable within some sufficiently large time bound 𝑇 ′ =

poly(𝑇, 𝑡, |𝑌 |).

Then, 𝐶 ∘ ℋ is correlation intractable for all relations in ℛ. In particular, when

𝑇, |𝑌 |, 𝑡 are all fixed polynomials in a security parameter 𝜆, then if ℋ is CI for func-

tions computable in poly(𝜆) time, then 𝐶 ∘ ℋ is CI for ℛ.

Proof. Lemma 5.35 tells us that for any time-𝑇 verifiable (approximate) product

relation 𝑅, the hash family ℋ′ is CI for 𝑅 as long as ℋ is CI for the derandomized

relation �̃� above.

We now claim that subject to the hypotheses above, �̃� is efficiently enumerable in

the sense of [CCH+19]: there is an efficient (meaning poly(𝑇, 𝑡, |𝑌 |)) algorithm that,

given 𝑥, enumerates all 𝑧 ∈ 𝑍 such that (𝑥, 𝑧) ∈ �̃�𝐶 . Indeed, this is possible via the

following procedure:

• First, construct the sets 𝑆1, . . . , 𝑆𝑡 given 𝑥 = (𝑥1, . . . , 𝑥𝑡); this can be done in

time 𝑡 · 𝑇 · |𝑌 |.

• Then, evaluate Recover(𝑆1, . . . , 𝑆𝑡). By the correctness of list-recovery, this

produces (with high probability) a poly-size list of all 𝑧 ∈ 𝑍 for which (𝑥, 𝑧) ∈

�̃�𝐶 .

The runtime of this entire enumeration procedure is a fixed polynomial poly(𝑇, 𝑡, |𝑌 |).

Finally, we recall that in [CCH+19] (see [CLW18] Section 3.1), it was noted that if

ℋ is 𝜖-CI for time-𝑇 ′ computable functions, then it is 𝜖
𝑇 ′ -CI for time-𝑇 ′ enumerable

relations (and in particular �̃�); thus, we conclude that ℋ′ is CI for 𝑅 with the claimed

quantitative parameters.
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5.3.2 Handling Large Alphabets via Subsampling

While Theorem 5.36 could plausibly apply to product relations in 𝑋 ×𝑌 𝑡 with |𝑌 | =

𝜆𝜔(1), our instantiations (Theorems 5.42 and 5.56) can only directly handle alphabets

of size |𝑌 | = poly(𝜆); this is because we employ list-recovery algorithms that take

as input (uncompressed) lists of size |𝑌 |Ω(1) (and we also explicitly assume that 𝑡 ≥

|𝑌 |Ω(1) in our code constructions).

However, we can achieve correlation intractability even for large values of |𝑌 | —

assuming we have sparsity 𝜌 ≤ 1 − 1
poly(𝜆) . We do so by first subsampling a random

sub-alphabet 𝑌 ⊆ 𝑌 and restricting the relation 𝑅 to this sub-alphabet. That is,

given a relation 𝑅 ⊆ 𝑋 × 𝑌 𝑡 and alphabet 𝑌 ⊆ 𝑌 , we define

𝑅𝑌 = 𝑅 ∩
(︁
𝑋 × 𝑌 𝑡) (5.3)

We note that:

• If membership in a set 𝑆𝑖 can be verified in time 𝑇 , then membership in 𝑆𝑖 ∩ 𝑌

can be verified in time 𝑇 + |𝑌 | log |𝑌 |.

• A hash function that is CI for 𝑅𝑌 is also CI for 𝑅 when viewed as a hash

function with output space 𝑌 𝑡 ⊆ 𝑌 𝑡.

Moreover, we note that a sufficiently large (random) subset of 𝑌 preserves the

sparsity of the 𝑆𝑖 under intersection.

Lemma 5.37. Suppose that 𝑅 ⊆ 𝑋 × 𝑌 𝑡 is an 𝛼-approximate product relation with

product sparsity 𝜌. For some 𝜖 > 0 and 𝜆 ∈ Z+, let 𝑌 ⊆ 𝑌 be a uniformly random

subset of size 𝑞 ≥ log |𝑋|+log 𝑡+𝜆
𝜖2 , i.e. 𝑌 is sampled uniformly at random from

(︁
𝑌
𝑞

)︁
.

Then 𝑅𝑌 as defined in Eq. (5.3) is an 𝛼-approximate product relation that, with

probability 1− 2−𝜆 over the choice of 𝑌 ←
(︁

𝑌
𝑞

)︁
, has product sparsity ≤ 𝜌 + 𝜖.

Proof. This follows from union bounding over |𝑋| · 𝑡 subsets 𝑆𝑖𝑗 ⊆ 𝑌 (depending on

the relation and indexed by 𝑖 ∈ 𝑋, 𝑗 ∈ [𝑡]), each of size at most 𝜌|𝑌 |. For each such

𝑆𝑖𝑗, when 𝑌 is sampled as above, it holds with probability at least 1− (𝑡 · |𝑋| · 2𝜆)−2
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that the intersection 𝑆𝑖𝑗∩𝑌 has size at most (𝜌+𝜖) · |𝑌 |. This follows from a standard

Chernoff bound (Theorem 5.29).

We conclude that sub-sampling gives a reduction from CI over large alphabets to

CI over polynomial-size alphabets.

Corollary 5.38. Let 𝑅 ⊆ 𝑋 × 𝑌 𝑡 be an 𝛼-approximate product relation with product

sparsity 𝜌, and let 𝑞 = 𝑞(𝜆) be an integer such that 𝑞 ≥ log |𝑋|+log 𝑡+𝜆
𝜖2 , where 𝜆 is a

computational security parameter.

Suppose that for each 𝑌 ∈
(︁

𝑌
𝑞

)︁
, ℋ𝑌 is a family of hash functions mapping 𝑋 → 𝑌 𝑡

that is CI for 𝛼-approximate product relations with product sparsity 𝜌 + 𝜖. Then the

hash family ℋ, where a random element of ℋ is sampled as ℎ ← ℋ𝑌 for uniformly

random 𝑌 ←
(︁

𝑌
𝑞

)︁
, is CI for 𝑅.

Corollary 5.38 will be used in Section 5.5 and Section 5.6 to obtain CI hash

functions with large output alphabets, which in turn yields Fiat-Shamir instantiations

for parallel repetitions of interactive proofs with large verifier challenge spaces.

5.4 Basic List Recovery Bounds

In this section, we recall and rephrase some facts about the list-recoverability of

three objects from the coding-theory literature: Parvaresh-Vardy codes [PV05,GR08],

random codes (as analyzed by [GI01]), and generic code concatenation [For66]. These

bounds will be used in Section 5.5 and Section 5.6 to build new codes that combine

with Theorem 5.36 in different ways.

We begin with a description of what is achieved by Parvaresh-Vardy codes.

Theorem 5.39 (Parvaresh-Vardy codes [PV05,GR08]). There is an explicit code

𝐶 : [𝑞]𝑘 → [𝑞𝑠]𝑞,

parameterized by integers 𝑠, 𝑘, 𝑞 ∈ Z+ (with 𝑞 a power of two) such that for every

𝛼 ∈ [0, 1], the code is (efficiently) (𝛼, ℓ, 𝐿)-list recoverable in time poly
(︁
(2𝑠)𝑠, 𝑞, ℓ

)︁
as
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long as

ℓ <
(︂

𝛼

𝑠 + 1

)︂𝑠+1
· 𝑞𝑠

𝑘𝑠

and

𝐿 > 𝑐 · (2𝑠)𝑠 · 𝑞ℓ

𝑘

for some absolute constant 𝑐.

𝐶 can be evaluated in time less than the above bound on the time required to list

recover.

We also need bounds on the list-recoverability of random codes. List-recovery

bounds for random (and flavors of pseudorandom) codes were stated (but not proved)

in [GI01]; for completeness we prove here the results that we use. We first give the

fully parameterized result and then specialize to parameter regimes of interest.

Theorem 5.40. There exists a constant 𝑐 > 0 such that for any 𝑞, 𝑄, 𝛼, ℓ, and 𝐿

(all of which are functions of 𝑛), a random function 𝑓 : [𝑄]→ [𝑞]𝑛 is combinatorially

(𝛼, ℓ, 𝐿)-list recoverable with probability 1− 2−Ω(𝐿) as long as

𝐿 ≥ 𝑐 ·
(︂

𝑄 · 𝜌 + ℓ · 𝑛 · log
(︂

𝑞

ℓ

)︂)︂
, (5.4)

where the parameter 𝜌 is

𝜌
def= Pr

[︁
Binom

(︁
𝑛, ℓ/𝑞

)︁
≥ 𝛼𝑛

]︁
.

This list recovery can be done (by brute force) in time 𝑂(𝑄 ·𝑛 ·ℓ · log 𝑞). Evaluation

of 𝑓 can be done in time 𝑂(𝑄 · 𝑛 · log 𝑞).

Theorem 5.40 follows by a straightforward application of the probabilistic method,

details follow.

Proof. Let 𝑓 be a random function mapping [𝑄]→ [𝑞]𝑛. We want to show that with

high probability, for all sets 𝑆1, . . . , 𝑆𝑛 ⊆ [𝑞] of size ℓ, the size of the set 𝑓−1(𝐵) is at
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most 𝐿, where by 𝐵 we denote

𝐵
def=
{︂

𝑧 ∈ [𝑞]𝑛 : |𝑖 ∈ [𝑛] : 𝑧𝑖 ∈ 𝑆𝑖| ≥ 𝛼𝑛
}︂

.

We analyze this by union bounding over
(︁

𝑞
ℓ

)︁𝑛
≤
(︁

𝑞·𝑒
ℓ

)︁ℓ𝑛
events corresponding to the

possible choices of 𝑆1, . . . , 𝑆𝑛.

To analyze an individual one of these events, we note that for fixed sets 𝑆1, . . . , 𝑆𝑛,

the random variable |𝑓−1(𝐵)| follows a binomial distribution Binom (𝑄, 𝜌), for

𝜌
def= Pr

𝑧←[𝑞]𝑛

[︂
𝑧 ∈ 𝐵

]︂
= Pr

𝑧←[𝑞]𝑛

[︂⃒⃒⃒⃒
𝑖 ∈ [𝑛] : 𝑧𝑖 ∈ 𝑆𝑖

⃒⃒⃒⃒
≥ 𝛼𝑛

]︂
≤ Pr

[︁
Binom

(︁
𝑛, ℓ/𝑞

)︁
≥ 𝛼𝑛

]︁
= 𝜌.

A multiplicative Chernoff bound (Corollary 5.28) implies that for some constant 𝑐0 >

0,

Pr
[︁⃒⃒⃒

𝑓−1(𝐵)
⃒⃒⃒
> 𝐿

]︁
< 𝑐−𝐿

0 ,

provided that 𝐿 > 3𝜌 ·𝑄.

Then, the union bound gives the desired conclusion about 𝑓 as long as

𝑐−𝐿
0 ·

(︂
𝑞 · 𝑒

ℓ

)︂ℓ𝑛

≤ 2−Ω(𝐿),

which holds if 𝐿 ≥ 𝑐1 · ℓ𝑛 · log
(︁

𝑞
ℓ

)︁
for some absolute constant 𝑐1 > 0. Combining

these two conditions on 𝐿 yields Theorem 5.40.

We also make use of the (known) fact that concatenated codes inherit list recov-

erability from their constituent parts.

Lemma 5.41. Suppose that

• 𝐶 :ℳ→ [𝑄]𝑁 is an (𝛼−𝛽
1−𝛽

, ℓ′, 𝐿)-list recoverable code and

266



• 𝑐 : [𝑄]→ [𝑞]𝑛 is a (𝛽, ℓ, ℓ′)-list recoverable code

for 1 ≥ 𝛼 > 𝛽 > 0 and ℓ, 𝐿 ∈ Z+. Then 𝐶 ∘ 𝑐 is (𝛼, ℓ, 𝐿)-list recoverable. Moreover, if

list-recovery for 𝐶 can be computed in time 𝑇 and list-recovery for 𝑐 can be computed

in time 𝑡, then list-recovery for 𝐶 ∘ 𝑐 can be computed in time 𝑇 + 𝑛 · 𝑡.

In the special case of errorless list recovery (𝛼 = 1), it suffices for 𝐶 to be (ℓ′, 𝐿)-

list recoverable and 𝑐 to be (ℓ′, ℓ)-list recoverable to imply that 𝐶 ∘ 𝑐 is (ℓ, 𝐿)-list

recoverable.

Proof. Let {𝑆𝑖,𝑗}𝑖∈[𝑁 ],𝑗∈[𝑛] be subsets of [𝑞] of size at most ℓ. We want to bound the

size of the set

𝑆
def= {𝑚 ∈ℳ : (𝐶 ∘ 𝑐)(𝑚)𝑖,𝑗 ∈ 𝑆𝑖,𝑗 for at least 𝛼𝑛𝑁 choices of (𝑖, 𝑗)} .

To do this, we note that by Markov’s inequality, for any 𝑚 ∈ 𝑆 with (𝐶 ∘ 𝑐)(𝑚) =

𝑧1,1, . . . , 𝑧𝑁,𝑛, we have

⃒⃒⃒⃒
{𝑖 ∈ [𝑁 ] : 𝑧𝑖,𝑗 ∈ 𝑆𝑖,𝑗 for at least 𝛽 · 𝑛 choices of 𝑗 ∈ [𝑛]}

⃒⃒⃒⃒
≥ 𝛼− 𝛽

1− 𝛽
𝑁.

Therefore, the (𝛽, ℓ′, ℓ)-list recoverability of 𝑐 implies that there exist lists 𝐿(1), . . . , 𝐿(𝑁) ⊆

[𝑄] of size at most ℓ′ such that for all such 𝑚, 𝐶(𝑚)𝑖 ∈ 𝐿(𝑖) for at least 𝛼−𝛽
1−𝛽

𝑁 choices

of 𝑖. By the (𝛼−𝛽
1−𝛽

, ℓ, 𝐿)-list recoverability of 𝐶1, there are at most 𝐿 such messages

𝑚.

Moreover, the collection of such messages can be recovered in time 𝑇 + 𝑁 · 𝑡 via

the following algorithm:

• Given the collection of sets {𝑆𝑖,𝑗}, compute the lists 𝐿(1), . . . , 𝐿(𝑁) defined by

these sets (with respect to 𝑐) in (total) time 𝑁 · 𝑡.

• Then, run the list recovery algorithm for 𝐶 on 𝐿(1), . . . , 𝐿(𝑁) to obtain the final

list.
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Finally, in the case of errorless list recovery, we have by assumption that all

symbols 𝑧𝑖,𝑗 of each block have to lie in the appropriate 𝑆𝑖,𝑗, so the claim follows.

5.5 Fiat-Shamir for Commit-And-Open Protocols

In this section, we obtain our positive results for Fiat-Shamir by applying Theo-

rem 5.36.

In Section 5.5.1, give a CI instantiation for product relations (Theorem 5.42). To

prove this theorem, we give a randomized construction of codes that are (ℓ, 𝐿)-list

recoverable for large values of ℓ; the codes are obtained by concatenating Parvaresh-

Vardy codes [PV05] with a random code. We carefully choose the parameters of the

two codes to optimize the block-length of the concatenation. We augment Theo-

rem 5.42 with alphabet reduction (Corollary 5.38) to handle larger alphabets.

In Sections 5.5.2 and 5.5.3, we state and prove our Fiat-Shamir instantiations.

We give a general result for (parallel repetitions of) 3-message protocols with effi-

ciently verifiable bad challenges, and then focus on commit-and-open protocols (Def-

inition 5.51) as a special case. Finally, in Section 5.5.4, we state our negative results

on parallel repeated zero knowledge, which are obtained by invoking [DNRS99].

5.5.1 Correlation Intractability for Efficiently Verifiable Prod-

uct Relations

Our main result in this section is a construction of correlation intractable hash families

for product relations over polynomial-size alphabets.

Theorem 5.42. Let 𝑅 = 𝑅𝜆 ⊆ 𝑋𝜆 × 𝑌 𝑡𝜆
𝜆 be an ensemble of product relations that

are time-𝑇 (𝜆) product-verifiable as in Definition 5.32 with product sparsity at most 𝜌,

where |𝑌𝜆|, log |𝑋𝜆|, 𝑇 (𝜆), and 𝑡𝜆 are all upper bounded by 𝜆𝑂(1) and 𝑡𝜆 ≥ 𝜆/ log(1/𝜌).

Then there exists a hash family ℋ = {ℋ𝜆 : 𝑋𝜆 → 𝑌 𝑡𝜆
𝜆 }𝜆∈Z+ that is correla-

tion intractable for 𝑅 under the LWE assumption. Moreover, ℋ depends only on

(𝑋, 𝑌, 𝜌, 𝑡, 𝑇 ) (and is otherwise independent of 𝑅) and can be evaluated in time
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poly(log |𝑋|, |𝑌 |, 𝑡, 𝑇 ).

Several remarks follow on the efficiency properties of Theorem 5.42:

• The dependence of the evaluation time on ℋ on |𝑌 | can be reduced if 𝑅’s

product decomposition can be computed explicitly in time ≪ |𝑌 | · 𝑇 (which is

the generic bound for a time 𝑇 -product verifiable relation). This can apply in

situations where 𝜌 is very small. Alternatively, all dependencies on |𝑌 | can be

generically reduced via alphabet reduction (see Theorem 5.46).

• If we write 𝜌 = 1− 𝜖, it suffices to have 𝑡𝜆 ≥ 𝜆/𝜖 (which approaches 𝜆/ log(1/𝜌)

for small 𝜖).

• With our usual “polynomial hardness” notions of security—that is, requiring

that any poly(𝜆)-size adversary cannot win correlation intractability games with

probability 𝜆−Ω(1)—it is equivalent (by a standard scaling argument) to replace

this requirement by the seemingly weaker requirement that 𝑡𝜆 ≥ 𝜆𝛿/ log(1/𝜌)

for any arbitrarily small constant 𝛿 > 0.

• Under a sub-exponential variant of LWE, the requirement that 𝑡𝜆 ≥ 𝜆/ log(1/𝜌)

can be weakened to 𝑡𝜆 ≥ log𝑐 𝜆/ log(1/𝜌) for a large enough constant 𝑐, while

still retaining standard polynomial security in the correlation intractability of

the resulting hash family.

• On the other hand, correlation intractability against larger adversaries (or

smaller success probabilities) is also achievable by increasing 𝑡𝜆. For exam-

ple, assuming sub-exponential LWE, it is possible to achieve security against

size-2𝜆 adversaries by requiring 𝑡𝜆 ≥ 𝜆𝑐/ log(1/𝜌) for a sufficiently large constant

𝑐.

To prove Theorem 5.42, we first construct a family of list-recoverable codes for our

parameter regime of interest. We start with the following proposition, which follows

immediately from Theorem 5.39 and gives list recoverable codes in the errorless case

(i.e., 𝛼 = 1), with polynomial input list sizes, output list size, alphabet and block

length.
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Proposition 5.43. For all constants 𝑐 and all ℓ = ℓ(𝑘) ≤ 𝑘𝑐, there exists a con-

structable ensemble of codes

𝐶 =
{︂

𝐶𝑘 : {0, 1}𝑘 → [𝑄𝑘]𝑂(𝑘2)
}︂

𝑘∈Z+

for some ℓ ≤ 𝑄𝑘 ≤ 𝑂(ℓ4) such that 𝐶𝑘 is
(︁
ℓ, 𝑂(𝑘ℓ)

)︁
-list recoverable in time poly(𝑘, ℓ, 𝑐𝑐).

Proof. Suppose we are given a polynomially bounded function ℓ(·). We obtain such

an ensemble from Theorem 5.39 by setting:

• 𝛼 = 1;

• 𝑠 = 2 log𝑘(ℓ), which is bounded by a constant depending on ℓ(·); and

• 𝑞 is the smallest power of two that is at least 𝑘2,

which results in 𝑄𝑘 ≤ (2𝑘2)𝑠 ≤ 𝑂(ℓ4).

We remark that it is also possible to set 𝑞 = 𝑂(𝑘1+𝜖) for an arbitrarily small

constant 𝜖 > 0, which would result in a slightly better bound for the block length of

𝐶, but no qualitatively new applications for Fiat-Shamir.

We additionally use the following bound on the list recoverability of random func-

tions (without errors), which follows from Theorem 5.40

Proposition 5.44. For all ℓ = ℓ(𝑘), 𝑞 = 𝑞(𝑘), 𝐿 = 𝐿(𝑘), and 𝑄 = 𝑄(𝑘) satisfying

ℓ < 𝑞 and 𝐿 ≥ ℓ ·𝜔(log 𝑄), setting 𝑛 = 𝑛(𝑘) =
⌈︂

log 𝑄
log(𝑞/ℓ)

⌉︂
, a random function 𝑓 : [𝑄]→

[𝑞]𝑛 is combinatorially
(︁
ℓ, 𝐿

)︁
-list recoverable with probability 1− 2−Ω(𝐿).

Proof. We apply Theorem 5.40 with 𝛼 = 1 and 𝑛 =
⌈︂

log 𝑄
log(𝑞/ℓ)

⌉︂
, which ensures that

𝜌
def= (ℓ/𝑞)𝑛 is at most 1/𝑄. Because 𝑛 · log(𝑞/ℓ) is 𝑂(log 𝑄), we have that 𝐿 ≥

𝜔
(︁
𝑄 ·𝜌+ ℓ ·𝑛 · log 𝑞

ℓ

)︁
, from which it follows by Theorem 5.40 that 𝑓 is combinatorially

(ℓ, 𝐿)-list recoverable with probability 1− 2−Ω(𝐿).

Concatenating the codes of Propositions 5.43 and 5.44 yields codes with list re-

coverability parameters that are useful for our applications.
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Lemma 5.45. For all ℓ = ℓ(𝑘), 𝑞 = 𝑞(𝑘) with ℓ < 𝑞 ≤ 𝑘𝑂(1), there exists a proba-

bilistically constructable ensemble of codes

{︁
𝐶𝑘 : {0, 1}𝑘 → [𝑞]𝑂

(︁
𝑘2 log(𝑘)
log(𝑞/ℓ)

)︁}︁

such that each 𝐶𝑘 is
(︁
ℓ, 𝑂(𝑘2ℓ)

)︁
-list recoverable in time 𝑘𝑂(1) with all but 2−Ω(𝑘) prob-

ability.

More precisely, the running time is a fixed polynomial in 𝑘, ℓ, log𝑘(ℓ)log𝑘(ℓ), and
1

log(𝑞/ℓ) .

Proof. Consider any choice of ℓ = ℓ(𝑘) and 𝑞 = 𝑞(𝑘) as above. Then by Propo-

sition 5.43, there is some 𝑄 = 𝑄𝑘 ≤
(︁
𝑘ℓ
)︁4

and a constructable ensemble of codes

𝐶 ′ = {𝐶 ′𝑘 : {0, 1}𝑘 → [𝑄]𝑂(𝑘2)} that is
(︁
𝑘ℓ, 𝑂(𝑘2ℓ)

)︁
-list recoverable in time 𝑘𝑂(1). For

this 𝑄, Proposition 5.44 guarantees that with 𝑛 = 𝑛(𝑘) =
⌈︂

log 𝑄
log(𝑞/ℓ)

⌉︂
, a random func-

tion 𝑓 = 𝑓𝑘 : [𝑄] → [𝑞]𝑛 is combinatorially (ℓ, 𝑘ℓ)-list recoverable with probability

1−2−Ω(𝑘ℓ). Such an 𝑓 is sampleable in time (𝑘ℓ)4 ·𝑛 log(𝑞) because 𝑄𝑘 ≤ (𝑘ℓ)4. Simi-

larly, the brute-force (ℓ, 𝑘ℓ)-list recovery algorithm for 𝑓 runs in time (𝑘ℓ)4 · ℓ𝑛 log(𝑞).

Concatenating 𝐶 ′ with 𝑓 yields the desired ensemble:

{︁
(𝐶 ′𝑘 ∘ 𝑓𝑘) : {0, 1}𝑘 → [𝑞]𝑘2·𝑛

}︁
𝑘∈Z+

is
(︁
ℓ(𝑘), 𝑂(𝑘2ℓ)

)︁
-list recoverable in 𝑘𝑂(1) time by Lemma 5.41.

Proof of Theorem 5.42. We are finally ready to prove our main theorem. We

compose (a random instance of) the code from Lemma 5.45 with the CI hash family

of Theorem 5.20. Theorem 5.36 then implies that the composition yields a good

correlation-intractable hash family for the claimed relations.

The Large Alphabet Case. Finally, we combine Theorem 5.42 with Corollary 5.38

to obtain the following result on CI for product relations over large alphabets. We
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specialize this result to the case 𝜌 = 1− 𝜖 for convenience.25

Theorem 5.46. Let 𝑅 ⊆ 𝑋𝜆 × 𝑌 𝑡𝜆
𝜆 be a product relation that is time-𝑇 product-

verifiable (where log |𝑋|, 𝑇, 𝑡 = poly(𝜆)) with product sparsity at most 1 − 𝜖 for 𝜖 ≥

𝜆−𝑂(1).

Then, if 𝑡 ≥ 𝜆/𝜖, there exists a hash family ℋ = {ℋ𝜆 : 𝑋𝜆 → 𝑌 𝑡𝜆
𝜆 }𝜆∈Z+ that is

correlation intractable for 𝑅 under the LWE assumption. Moreover, ℋ depends only

on (𝑋𝜆, 𝑌𝜆, 𝑇𝜆, 𝑡𝜆, 𝜖) and can be evaluated in time poly(log |𝑋|, 𝑡, 𝑇 ).

5.5.2 Fiat-Shamir for Trapdoor 3-Message Protocols

We now describe a general Fiat-Shamir instantiation for 3-message public coin inter-

active proofs with trapdoor decidable bad challenges, defined below. This notion is a

generalization of (instance-dependent) trapdoor Σ-protocols as defined in [CCH+19].

Definition 5.47 (Bad-Challenge Relation). Let Π denote a 3-message public coin

interactive proof system for a language ℒ in the (possibly empty) CRS model. We

define the bad challenge relation 𝑅(Π,crs) for Π (with a fixed CRS crs) to be

𝑅(Π,crs) =
{︂

(𝑥|𝛼, 𝛽) : 𝑥 ̸∈ ℒ and ∃𝛾 : 𝑉 (crs, 𝑥, 𝛼, 𝛽, 𝛾) = 1
}︂

.

For an instance 𝑥 ̸∈ ℒ, we define the non-adaptive bad challenge relation 𝑅(Π,crs,𝑥) to

be

𝑅(Π,crs,𝑥) =
{︂

(𝛼, 𝛽) : ∃𝛾 : 𝑉 (crs, 𝑥, 𝛼, 𝛽, 𝛾) = 1
}︂

.

Definition 5.48 (Trapdoor Decidable Bad Challenges). We say that a 3-message

public-coin proof system Π for a language ℒ in the CRS model has (time-𝑇 ) trapdoor

decidable bad challenges if there exist

• An efficient algorithm TrapGen(1𝜆) that outputs a pair (crs, td);

• A sparse binary relation 𝑅(td); and
25The approximations incurred by this specialization cost at most a factor of 𝑂(log(𝜆)) in the

number of repetitions our techniques can achieve for exact product relations.
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• An algorithm BadChallengeTest(td, 𝑥, 𝛼, 𝛽) that takes as input the trapdoor td,

the instance 𝑥, a first message 𝛼, and a second message (or challenge) 𝛽,

satisfying the following properties:

• When sampling (crs, td) ← TrapGen(1𝜆), the distribution of crs is statistically

indistinguishable from that of an honestly generated CRS.

• 𝑅(td) contains the bad-challenge relation 𝑅(Π,crs) (Definition 5.47).

• BadChallengeTest(td, 𝑥, 𝛼, 𝛽) runs in time 𝑇 and outputs 1 if and only if (𝑥|𝛼, 𝛽) ∈

𝑅(crs).

Definition 5.49. We say that Π has (time-𝑇 ) instance-dependent trapdoor decidable

bad challenges if it satisfies Definition 5.48 with the following modifications:

• TrapGen(1𝜆, 𝑤) also takes as input non-uniform advice 𝑤 about the instance 𝑥;

and

• BadChallengeTest and 𝑅(td,𝑥) are defined with respect to the non-adaptive bad

challenge relation 𝑅(Π,crs,𝑥) instead of with respect to 𝑅(Π,crs).

• CRS indistinguishability is only required to be computational.

By applying Theorems 5.42 and 5.46, we obtain Fiat-Shamir instantiations for

3-message proof systems Π with (instance-dependent) trapdoor decidable bad chal-

lenges.

Theorem 5.50. Suppose that Π is a 3-message public coin proof system that has time-

𝑇 trapdoor decidable bad challenges, such that the relation 𝑅(td) in Definition 5.48 has

sparsity at most 1−𝜖 for 𝜖 ≥ 𝜆−𝑂(1). Then, for any 𝑡 ≥ 𝜆/𝜖, there exists a hash family

ℋ that is FS-compatible with Π(𝑡) (guaranteeing adaptive soundness).

Similarly, if Π has time-𝑇 instance-dependent trapdoor decidable bad challenges

and each 𝑅(td,𝑥) has sparsity at most 1−𝜖, then there exists an ℋ that is FS-compatible

with Π(𝑡) (guaranteeing selective soundness).

In both cases, ℋ can be evaluated in time poly(𝑇, 𝑡, 𝜆).
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Proof Sketch. By (statistical) CRS indistinguishability, we may assume that crs is

sampled as (crs, td) ← TrapGen(1𝜆) in the (adaptive) soundness security game. If

Π is repeated 𝑡 times in parallel, then following [CCH+19], we know that ℋ is FS-

compatible with Π(𝑡) if it is CI for the relation

𝑅 =
{︂(︁

𝑥|𝛼1| . . . |𝛼𝑡, 𝛽1| . . . |𝛽𝑡

)︁
: ∃𝛾 : 𝑉 (𝑥, 𝛼𝑖, 𝛽𝑖, 𝛾𝑖) = 1 for all 𝑖.

}︂
By the definition of BadChallengeTest, 𝑅 is contained in the relation

𝑅′ =
{︂(︁

𝑥|𝛼1| . . . |𝛼𝑡, 𝛽1| . . . |𝛽𝑡

)︁
: BadChallengeTest(td, 𝑥, 𝛼𝑖, 𝛽𝑖) = 1 for all 𝑖

}︂
,

By assumption on TrapGen, 𝑅′ is a time 𝑇 verifiable product relation with product

sparsity at most 1− 𝜖. Thus, the theorem follows from Theorem 5.42. The proof for

the non-adaptive case is analogous.

5.5.3 Commit and Open Protocols

A commit-and-open protocol is a ubiquitous type of protocol that always has trapdoor-

decidable bad challenges when the commitment scheme is instantiated using public-

key encryption.

Definition 5.51 (3-Message Commit-and-Open Protocol). An interactive proof sys-

tem for a language ℒ is said to be commit-and-open if it is defined relative to a

statistically binding commitment oracle Com and has the following structure.

1. The verifier takes as an input a string 𝑥 ∈ {0, 1}𝑛.

2. The prover sends a message 𝛼 consisting of a string of commitments (com𝑖)𝑖∈[𝑀 ]

for some 𝑀 = 𝑀(𝑛) ≤ 𝑛𝑂(1).

3. The verifier 𝑉 sends a random challenge 𝛽 ← [𝑞] for some 𝑞 = 𝑞(𝑛).

4. The prover sends a message 𝛾 containing openings of the commitments (com𝑖)𝑖∈𝑆𝛽
,

where 𝑆𝛽 ⊆ [𝑀 ] is a set that is efficiently computable from 𝛽. We denote the

𝑖𝑡ℎ such opening by (𝑏𝑖, 𝑑𝑖).
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5. The verifier checks that for each 𝑖 ∈ 𝑆𝛽, (𝑏𝑖, 𝑑𝑖) is a valid opening of com𝑖 (and

otherwise rejects). If so, the verifier accepts if some predicate 𝑉
(︁
𝑥, 𝛼, 𝛽, (𝑏𝑖)

|𝑆𝛽 |
𝑖=1

)︁
=

1. In particular, this predicate ignores the 𝑑𝑖’s.

The important attributes of Definition 5.51 (that distinguish commit-and-open

protocols from arbitrary 3-message protocols) are that the third message only con-

sists of openings, and that the verifier rejects incorrect openings and otherwise ignores

the decommitments 𝑑𝑖. Therefore, by instantiating Com using a public-key encryp-

tion scheme, the PKE decryption key sk allows for efficient verification of whether a

challenge 𝛽 is “bad” for a pair (𝑥, 𝛼), because the bits (𝑏𝑖) for a valid decommitment

can be extracted from 𝛼 using sk.

Lemma 5.52. Let Π denote a 3-message commit-and-open protocol. Then, if Com

is instantiated using a public-key encryption scheme as in Remark 5.16, then Π has

time-𝑇 trapdoor decidable bad challenges, where 𝑇 is equal to the runtime of 𝑉 (·) plus

a fixed polynomial in the security parameter.

Proof. We give Π the syntax of a protocol with trapdoor decidable bad challenges as

follows:

• TrapGen(1𝜆) is defined to sample (pk, sk)← Gen(1𝜆) and output (crs = pk, td =

sk).

• The relation 𝑅(td) is defined as

𝑅(td) =
{︂

(𝑥|𝛼, 𝛽) : 𝑉 (𝑥, 𝛼, (𝑏𝑖)
|𝑆𝛽 |
𝑖=1 ) = 1, for 𝑏𝑖 = Dec(sk, com𝑖)

}︂
.

• The algorithm BadChallengeTest(td, 𝑥, 𝛼, 𝛽) parses 𝛼 = (com𝑖), computes 𝑏𝑖 =

Dec(sk, com𝑖) for all 𝑖 ∈ 𝑆𝛽, and computes 𝑉 (𝑥, 𝛼, (𝑏𝑖)
|𝑆𝛽 |
𝑖=1 ).

Correctness follows immediately from the decryption correctness property of PKE.

Given Lemma 5.52, Theorem 5.46 implies that all commit-and-open protocols

have sound Fiat-Shamir instantiations when sufficiently repeated in parallel.
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Theorem 5.53. Assume that LWE holds, and let Π be any 3-message commit-and-

open interactive proof with soundness error 1−𝜖, where 𝜖 ≥ 𝜆−𝑂(1) for a computational

security parameter 𝜆. Let the commitment scheme in Π be instantiated using public-

key encryption as in Remark 5.16.

Then for any 𝑡 = 𝑡(𝜆) ≥ 𝜆/𝜖, there is a hash family ℋ that is Fiat-Shamir

compatible with Π𝑡 as in Definition 5.22. The hash functions in ℋ are evaluable in

time 𝑇 · poly(𝜆), where 𝑇 = 𝑇 (𝑛) is the running time of the verifier for Π, and 𝑛 is

the length of an input for Π.

Proof. This follows immediately from Theorem 5.50 and Lemma 5.52.

5.5.4 Zero Knowledge is Not Preserved by Parallel Repeti-

tion

Finally, we invoke [DNRS99] to conclude that parallel repetition of commit-and-open

protocols (such as GMW) does not preserve zero-knowledge.

Theorem 5.54. Assume that LWE holds. Then, there exists a commitment scheme

𝐶 such that for every 3-message commit-and-open proof-system Π in the commitment

oracle model (as per Definition 5.51) for a language 𝐿 /∈ BPP with soundness error

1 − 𝜖, it holds that (Π𝐶)𝑡 is not zero-knowledge, where Π𝐶 denotes the instantiation

of the commitment oracle in Π by 𝐶 and 𝑡 = 𝜆/𝜖 for a security parameter 𝜆.

Proof. Fix 𝐶 to be the public-key encryption based commitment-scheme of Remark 5.16.

Let Π be a 3-message commit-and-open proof-system with soundness error 1− 𝜖 (in

the commitment oracle model). Denote by Π𝐶 the instantiation of Π using 𝐶 in place

of the commitment oracle. By Theorem 5.53, there exists a hash function family ℋ

such that FSℋ[(Π𝐶)𝑡] is computationally sound, where 𝑡 = 𝜆/𝜖. In other words, ℋ is

FS-compatible with (Π𝐶)𝑡.

Thus, by Theorem 5.23, and using the assumption that 𝐿 /∈ BPP, we have that

(Π𝐶)𝑡 is not zero-knowledge.
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Remark 5.55. Assuming the subexponential variant of LWE, the number of repeti-

tions 𝑡 in Theorem 5.54 can be reduced to log𝑐 𝜆
𝜖

for some constant 𝑐 > 1 (in fact, under

the strongest plausible LWE assumption 𝑐 can even be 1+𝛿(𝑛) for some 𝛿(𝑛) = 𝑜(1)).

This still leaves open the somewhat bizarre possibility that for some very specific val-

ues of 𝑡 (e.g., 𝑡 = log(𝜆) · log⋆(𝜆)), the parallel repeated protocol Π𝑡 is both sound and

zero knowledge.

In fact, it is known that this sort of gap is difficult to avoid: [BLV03] show that for

any HVZK commit-and-open protocol Π with poly-size challenge space, if Circuit-SAT

has a 2𝑜(𝑛) time algorithm, then some 𝜔(1)-parallel repetition of Π is zero knowledge.

Thus, resolving this gap implies an exponential lower bound for Circuit-SAT.

5.6 Fiat-Shamir for Round-By-Round Sound Pro-

tocols

In this section, we extend the results of Section 5.5 to the setting of Fiat-Shamir for

multi-round protocols. We achieve this in three steps.

• In Section 5.6.1, we construct a (probabilistic) code with efficient list recovery

in the presence of errors.

• We then combine this code with Lemma 5.35 to obtain a CI hash family for

efficiently verifiable approximate product relations.

• In Section 5.6.2, we apply our new CI hash family to instantiate FS for a

family of round-by-round sound interactive proofs. There are three variants

of this result, depending on the precise efficiency requirement imposed on the

interactive proof. In particular, we achieve FS instantiations for a larger class

of protocols by making use of lossy correlation intractability [JKKZ21].
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5.6.1 CI for Efficiently Verifiable Approximate Product Re-

lations

Our main result in this section is a construction of correlation intractable hash families

for approximate product relations (see Definition 5.31) over polynomial-size alphabets.

Theorem 5.56. Let 𝑅 ⊆ 𝑋×𝑌 𝑡 be a time-𝑇 verifiable 𝛼-approximate product relation

with product sparsity at most 𝜌 < 𝛼.

Set 𝜆 = 𝑡 · (𝛼 − 𝜌)3. Then, assuming that all poly(𝑇, 𝜆)-time adversaries solve

LWE26 with probability at most 𝜖, there is a hash family ℋ = ℋ𝑛 that is
(︁
𝑇 +poly(𝜆), 𝜖·

poly(𝜆)
)︁
-correlation intractable for 𝑅.

Moreover, ℋ depends only on (𝑋, 𝑌, 𝑇, 𝑡, 𝛼) (and not otherwise on 𝑅).

Remark 5.57. By pre-composing our hash family ℋ with a lossy trapdoor function,

we also obtain a hash family ℋ′ satisfying lossy correlation intractability [JKKZ21]

for the same class ℛ of relations.

To prove Theorem 5.56, we first construct a family of list-recoverable codes in

the presence of errors. We begin by describing the salient list recovery (with errors)

properties of Parvaresh-Vardy codes, which follow as a corollary of Theorem 5.39.

Proposition 5.58. For every 𝛼 = 𝛼(𝑘) ≥ 𝑘−𝑂(1) and every ℓ = ℓ(𝑘) ≤ 𝑘𝑂(1), there

exists 𝑄(𝑘) ≤ 𝑘𝑂(1) and a constructable ensemble of codes

{︁
𝐶𝑘 : {0, 1}𝑘 → [𝑄(𝑘)]𝑂(𝑘2/𝛼)

}︁
𝑘∈Z+

that is (𝛼, ℓ, 𝑂(𝑘ℓ/𝛼))-list recoverable in time 𝑘𝑂(1), where the exponent depends on

all previous parameters.

More precisely, 𝑄(𝑘) is bounded by
(︁
2𝑘2/𝛼(𝑘)

)︁2 log𝑘(ℓ/𝛼)
and the list recovery algo-

rithm’s running time is a fixed polynomial in 𝑘, ℓ, 1/𝛼, and log𝑘(ℓ/𝛼)log𝑘(ℓ/𝛼).

Proof. We obtain such an ensemble from Theorem 5.39 by setting:
26Specifically, we need to assume the hardness of LWE𝑛,𝑚,𝑞,𝜒 for 𝑛 = 𝑂( 𝜆

log 𝜆 ), 𝑚 = 2𝑛 log 𝑞,
𝑞 = 𝜆𝑂(1), and 𝜒 the uniform distribution on [−𝐵, 𝐵] for some 𝐵 = 𝜆Ω(1), as in Definition 5.17.
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• 𝑞 to be the smallest power of two that is at least 𝑘2/𝛼(𝑘) (which is 𝑘𝑂(1) because

𝛼(𝑘) is 𝑘−𝑂(1));

• 𝑠 to be a large enough constant (depending on 𝛼) so that
(︁

𝛼
𝑠+1

)︁𝑠+1
· 𝑞𝑠

𝑘𝑠 > ℓ for

all sufficiently large 𝑘. Specifically, one should set 𝑠 to be the smallest integer

that is at least log𝑘(ℓ/𝛼).

Next, we describe a corollary of Theorem 5.40, which (similarly to Proposi-

tion 5.44) focuses on asymptotics, this time for list recovery with errors.

Proposition 5.59. For all 𝑞 = 𝑞(𝑘), ℓ = ℓ(𝑘), 𝑄 = 𝑄(𝑘), and 𝛼 = 𝛼(𝑘), ℓ < 𝑞, and

𝛼 > ℓ
𝑞
, there exists 𝐿 = 𝐿(𝑘) ≤ 𝑂

(︂
ℓ·log(𝑄)·log 𝑞

ℓ

(𝛼−ℓ/𝑞)2

)︂
such that a random function

𝑓 : [𝑄]→ [𝑞]
log 𝑄

2(𝛼−ℓ/𝑞)2

is combinatorially (𝛼, ℓ, 𝐿)-list recoverable with all but 2−Ω(𝐿) probability.

Proof. Given 𝑞, ℓ, 𝐿, and 𝛼 as above, define 𝑛 = 𝑛(𝑘) = log 𝑄
2(𝛼−ℓ/𝑞)2 . This 𝑛 is big

enough that by the additive Chernoff bound (Theorem 5.29), we have

𝜌
def= Pr[Binom(𝑛, ℓ/𝑞) ≥ 𝛼𝑛] ≤ 1/𝑄.

Then setting 𝐿 = 𝑐 ·
(︂

𝑄 · 𝜌 + ℓ · 𝑛 · log 𝑞
ℓ

)︂
for a large enough constant 𝑐 and applying

Theorem 5.40 implies the corollary.

By concatenating the two codes above (with carefully chosen parameters), we

obtain codes with list recoverability parameters that are useful for our applications.

Lemma 5.60. For every ℓ = ℓ(𝑘), 𝑞 = 𝑞(𝑘), 𝛼 = 𝛼(𝑘) with ℓ < 𝑞 ≤ 𝑘𝑂(1) and

𝛼 ≥ ℓ/𝑞 + 𝑘−𝑂(1), there is a probabilistically constructable ensemble of codes

{︂
𝐶𝑘 : {0, 1}𝑘 → [𝑞]𝑂

(︁
𝑘2 log 𝑘

(𝛼−ℓ/𝑞)3

)︁}︂
𝑘∈Z+

that is (𝛼, ℓ, 𝑘𝑂(1))-list recoverable in time 𝑘𝑂(1) with all but 2−Ω(𝑘) probability.
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More precisely,27 the running time of the list recovery algorithm is a fixed polyno-

mial in 𝑘, ℓ, 1
𝛼−ℓ/𝑞

, and 𝑄* for

log𝑘(𝑄*) ≤ 2 log𝑘

⎛⎜⎝8ℓ𝑘 log(𝑞/ℓ)(︁
𝛼− ℓ

𝑞

)︁3

⎞⎟⎠ log𝑘

⎛⎝ 4𝑘2

𝛼− ℓ
𝑞

⎞⎠ = 𝑂(1).

Proof. Suppose we are given ℓ, 𝑞, and 𝛼 as above. Let 𝛽
def= 1

2(𝛼+ ℓ
𝑞
). Proposition 5.59

guarantees that for all 𝑄 = 𝑄(𝑘) ≤ 𝑘𝑂(1), there is some 𝐿𝑄 = 𝐿𝑄(𝑘) ≤ 𝑘𝑂(1) such

that with 𝑛(𝑘) = log 𝑄
2(𝛽−ℓ/𝑞)2 , a random function 𝑓𝑄 : [𝑄] → [𝑞]𝑛 is combinatorially

(𝛽, ℓ, 𝐿𝑄)-list recoverable with all but 2−Ω(𝐿𝑄) probability. More precisely, this 𝐿𝑄(𝑘)

satisfies 𝐿𝑄(𝑘) ≤ 𝑂
(︂

ℓ·log(𝑄)·log 𝑞
ℓ

(𝛽−ℓ/𝑞)2

)︂
, which is 𝑂

(︂
ℓ·log 𝑘·log 𝑞

ℓ

(𝛽−ℓ/𝑞)2

)︂
because we required that

𝑄 ≤ 𝑘𝑂(1). For the same reason, the brute force list recovery algorithm for such an

𝑓𝑄 is efficient (running in time 𝑂(𝑄 · 𝑛 · log 𝑞) = 𝑘𝑂(1)).

Let 𝐿⋆ = 𝐿⋆(𝑘) satisfy 𝜔
(︂

ℓ·log(𝑄)·log 𝑞
ℓ

(𝛽−ℓ/𝑞)2

)︂
≤ 𝐿⋆ ≤ 𝑘𝑂(1) (for instance, set 𝐿⋆ =

ℓ·𝑘·log 𝑞
ℓ

(𝛽−ℓ/𝑞)2 ). Setting �̃� = 𝛼−𝛽
1−𝛽

, Proposition 5.58 guarantees the existence of 𝑄⋆ = 𝑄⋆(𝑘) ≤

𝑘𝑂(1) such that there is a constructable ensemble of codes

𝐶 =
{︁
𝐶𝑘 : {0, 1}𝑘 → [𝑄*(𝑘)]𝑂(𝑘2/�̃�)

}︁

that is
(︂

�̃�, 𝐿⋆, 𝑂
(︁

𝑘𝐿⋆

�̃�

)︁)︂
-list recoverable. More precisely, Proposition 5.58 gives 𝑄⋆(𝑘) ≤

(2𝑘2/�̃�)2 log𝑘(𝐿⋆/�̃�). Also note that

�̃� = 𝛼− 𝛽

1− 𝛽
≥ 𝛼− 𝛽 = 1

2 · (𝛼− ℓ/𝑞) ≥ 𝑘−𝑂(1)

and

𝛽 − ℓ

𝑞
= 1

2(𝛼− ℓ

𝑞
).

Choosing 𝑓𝑄 = 𝑓𝑄⋆ from above, we conclude that the concatenation

𝐶 ∘ 𝑓 : {0, 1}𝑘 → [𝑞]𝑂(𝑛𝑘2/�̃�).

27We write down this explicit expression because it determines the runtime of the Fiat-Shamir
hash functions in Theorem 5.68.
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satisfies our desired properties by Lemma 5.41.

By plugging the (randomized) code from Lemma 5.60 and the hash family of

Theorem 5.20 into Theorem 5.36, we obtain Theorem 5.56.

5.6.2 Applications to Fiat-Shamir for Round-by-Round Sound

Protocols

Following [CCH+18, CCH+19], we consider the notion of round-by-round soundness

to capture a form of soundness for interactive proofs of greater than 3 messages that

is compatible with the notion of correlation intractability.

Definition 5.61 (Round-by-Round Soundness, [CCH+18,CCH+19]). Let Π = (𝑃, 𝑉 )

be a 2𝑟 + 1-message public coin interactive proof system for a language 𝐿. We say

that Π has round-by-round soundness error 𝛿(·) (or is 𝛿-RBR sound) if there is a deter-

ministic (not necessarily efficiently computable) function State, which takes as input

an instance 𝑥 and a transcript prefix 𝜏 and outputs either acc or rej such that the

following holds:

1. If 𝑥 ̸∈ 𝐿, then State(𝑥, ∅) = rej, where ∅ denotes the empty transcript.

2. For every input 𝑥 and partial transcript 𝜏 = 𝜏𝑖, if State(𝑥, 𝜏) = rej, then for

every potential prover message 𝛼𝑖+1, it holds that

Pr
𝛽𝑖+1

[︂
State

(︁
𝑥, 𝜏 |𝛼𝑖+1|𝛽𝑖+1

)︁
= acc

]︂
≤ 𝛿(𝑛).

3. For any full transcript 𝜏 (i.e., consisting of 2𝑟+1 messages), if State(𝑥, 𝜏) = rej

then 𝑉 (𝑥, 𝜏) = 0.

We say that Π is round-by-round sound if it has round-by-round soundness error 𝛿

for some 𝛿(𝑛) = negl(𝑛).

By a union bound, a proof system with round-by-round soundness error 𝛿 has

standard soundness error at most 𝑟 · 𝛿.
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Canetti et al. [CCH+18] related the soundness of Fiat-Shamir, when applied to a

round-by-round sound protocol, to the correlation intractability of the hash function

ℋ.

Theorem 5.62 ( [CCH+18, Theorem 5.8]). Suppose that Π = (𝑃, 𝑉 ) is a 2𝑟 + 1-

message public-coin interactive proof for a language 𝐿 with perfect completeness and

round-by-round soundness with state function State. Let 𝑋𝑛 denote the set of partial

transcripts (including the input and all messages sent) and let 𝑌𝑛 denote the set of

verifier messages when Π is executed on an input of length 𝑛.

Finally, define the relation ensemble 𝑅 = 𝑅State as follows:

𝑅
(𝑛)
State

def=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(︂(︁

𝑥, 𝜏 |𝛼
)︁
, 𝛽
)︂

:
𝑥 ∈ {0, 1}𝑛,

State(𝑥, 𝜏) = rej, and

State(𝑥, 𝜏 |𝛼|𝛽) = acc

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

If a hash family ℋ = {ℋ𝑛 : 𝑋𝑛 → 𝑌𝑛} is correlation intractable for 𝑅, then the

non-interactive protocol ΠFS,ℋ is an adaptively sound argument system for 𝐿.

In this work, we consider protocols Π with round-by-round soundness error 𝜌 < 1
𝑟
.

We then consider applying the Fiat-Shamir transform to a parallel repetition Π𝑡 (for

sufficiently large 𝑡). To analyze this, we must also analyze how parallel repetition

works for round-by-round sound protocols.28

Definition 5.63 (Threshold State Function). Let Π denote a 2𝑟 + 1-message public-

coin interactive proof system with round-by-round soundness 𝛿 and corresponding state

function State. We then define the threshold state function State(𝑡) defined on the 𝑡-fold

parallel repetition Π𝑡: decomposing a (partial) transcript of Π(𝑡) as a tuple (𝜏1, . . . , 𝜏𝑡)

(where each 𝜏𝑖 is a partial transcript for Π), we define

State(𝑡)(𝑥, 𝜏1, . . . , 𝜏𝑡) = rej ⇐⇒
⃒⃒⃒⃒
{𝑖 ∈ [𝑡] : State(𝑥, 𝜏𝑖) = rej}

⃒⃒⃒⃒
≥ 1 + 𝑟 − 𝑗

𝑟
· (𝑡− 1),

28In [CCH+18,CCH+19], it is noted that sufficient parallel repetition of any public-coin interactive
proof results in a round-by-round sound protocol, but this transformation results in a rather complex
State function; we want a transformation that roughly preserves the State function of the starting
protocol (which we assume to satisfy some form of RBR soundness).
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where 𝑗 is the number of verifier messages in each 𝜏𝑖.

Lemma 5.64. If Π is a protocol as in Definition 5.63, then State(𝑡) gives Π(𝑡) the

structure of a round-by-round sound proof system with RBR soundness error bounded

by

𝛿(𝑡) := exp
(︃
−2

(︂
𝑡− 1
𝑟 · 𝑡

− 𝛿
)︂2

𝑡

)︃
,

provided that 𝑡−1
𝑟·𝑡 > 𝛿.

Proof. This follows from the fact that for any partial transcript (𝑥, 𝜏1, . . . , 𝜏𝑡), if

State(𝑡)(𝑥, 𝜏1, . . . , 𝜏𝑡) = rej but State(𝑡)(𝑥, 𝜏1|𝛼1,𝑗+1|𝛽1,𝑗+1, . . . , 𝜏𝑡|𝛼𝑡,𝑗+1|𝛽𝑡,𝑗+1) = acc,

then at least 𝑡−1
𝑟

“slots” of 𝜏 changed from rej to acc according to State. Thus, for

any 𝜏 such that State(𝑡)(𝑥, 𝜏) = rej and any 𝛼 = (𝛼1,𝑗+1, . . . , 𝛼𝑡,𝑗+1), the probability

over 𝛽 that State(𝑡)(𝑥, 𝜏 |𝛼|𝛽) = acc is at most the probability that at least 𝑡−1
𝑟

out of

𝑡 i.i.d. Bernoulli events with mean 𝛿 occur. By a Chernoff bound, this happens with

probability at most 𝛿(𝑡), as desired.

The proof of Lemma 5.64 in fact shows that the “bad challenge relation” for

(Π(𝑡), State(𝑡)) is an 𝛼-approximate product relation with product sparsity 𝛿, where 𝛼 =
𝑡−1
𝑟·𝑡 . Therefore, if the relation 𝑅State(𝑡) is efficiently product-verifiable (or, equivalently,

the relation 𝑅State is efficiently verifiable), we can apply Theorem 5.56 to obtain a

sound Fiat-Shamir instantiation for the protocol Π(𝑡), provided that 𝑡 is large enough.

Notions of Bad Challenge Efficient Decidability

In this section, let Π be a 2𝑟 + 1-message (public-coin) interactive proof system for a

language ℒ.

Definition 5.65 (Trapdoor Decidable Bad Challenges). We say that public-coin in-

teractive proof Π for a language ℒ in the CRS model has round-by-round soundness

error 𝛿 with time-𝑇 trapdoor decidable bad challenges if there exist

• An efficient algorithm TrapGen(1𝜆) that outputs a pair (crs, td);

283



• A 𝛿-sparse binary relation 𝑅(td); and

• An algorithm BadChallengeTest(td, 𝑥, 𝑗, 𝜏𝑗−1|𝛼𝑗, 𝛽𝑗) that takes as input the trap-

door td, the instance 𝑥, a transcript prefix 𝜏𝑗−1|𝛼𝑗 (consisting of 𝑗 prover mes-

sages and 𝑗 − 1 verifier messages), and a verifier message 𝛽𝑗,

satisfying the following properties:

• When sampling (crs, td) ← TrapGen(1𝜆), the distribution of crs is statistically

indistinguishable from that of an honestly generated CRS.

• 𝑅(td) contains the bad-challenge relation 𝑅State (Definition 5.47).

• BadChallengeTest(td, 𝑥, 𝑗, 𝜏𝑗−1|𝛼𝑗, 𝛽𝑗) runs in time 𝑇 and outputs 1 if and only

if (𝑥|𝜏𝑗−1|𝛼𝑗, 𝛽𝑗) ∈ 𝑅(State).

Definition 5.65 is a strict generalization of Definition 5.48 and captures the multi-

round protocols for which we can instantiate Fiat-Shamir based on polynomial hard-

ness of appropriately chosen CI hash families. As in Section 5.5.3, a similar definition

captures non-adaptively sound Fiat-Shamir instantiations.

Definition 5.66. We say that Π has round-by-round soundness error 𝛿 with time-𝑇

instance-dependent trapdoor decidable bad challenges if it satisfies Definition 5.65 with

the following modifications:

• TrapGen(1𝜆, 𝑤) also takes as input non-uniform advice 𝑤 about the instance 𝑥;

and

• BadChallengeTest and 𝑅(td,𝑥) are defined with respect to the non-adaptive bad

challenge relation

𝑅State,𝑥 =

⎧⎪⎨⎪⎩(𝜏 |𝛼, 𝛽) :
State(𝑥, 𝜏) = rej, and

State(𝑥, 𝜏 |𝛼|𝛽) = acc

⎫⎪⎬⎪⎭ .

instead of with respect to 𝑅State.

• CRS indistinguishability is only required to be computational.
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Finally, we give a third definition further generalizing the previous two in a way

that captures the Sumcheck and GKR protocols with succinct bad challenge testing.

However, this variant requires stronger assumptions on the CI hash compiler.

Definition 5.67. We say that Π has round-by-round soundness error 𝛿 with time-𝑇

prefix-dependent trapdoor decidable bad challenges if it satisfies Definition 5.65 with

the following modifications:

• TrapGen(1𝜆, 𝑧𝛽*) also takes as input non-uniform advice 𝑧 = 𝑓(𝑥, 𝛽*) about the

instance 𝑥 and a string 𝛽* = (𝛽*1 , . . . , 𝛽*𝑟 ) consisting of (fixed) verifier messages.

• BadChallengeTest and 𝑅(td,𝑥) are defined with respect to the non-adaptive bad

challenge relation 𝑅(State,𝑥) instead of with respect to 𝑅State. Moreover, “correct-

ness” is relaxed to the following set containment: for all rounds 𝑗 and strings

𝛽*, when sampling (crs, td)← TrapGen(1𝜆, 𝑓(𝑥, 𝛽*)),

𝑅(td,𝑥) ⊇
{︂

(𝜏 |𝛼𝑗, 𝛽𝑗) ∈ 𝑅(State,𝑥) : (𝛽1, . . . , 𝛽𝑗−1) = (𝛽*1 , . . . , 𝛽*𝑗−1)
}︂

.

• CRS indistinguishability is only required to be computational.

Putting Everything Together

Given our efficient bad challenge notions from Section 5.6.2 and our CI hash family

from Section 5.6.1, we are ready to state our Fiat-Shamir result for round-by-round

sound protocols.

Theorem 5.68. Let Π be a 2𝑟 + 1-message (public-coin) interactive proof system for

a language ℒ in which the verifier’s messages are uniformly random on [𝑞] for some

𝑞 ∈ Z+ and prover messages are bit strings of length 𝑎 = 𝑎(𝑛). Let 𝛿 = 𝛿(𝑛) ∈ (0, 1)

and 𝜆 = 𝜆(𝑛) ∈ Z+ be functions, and define

𝑡 = 𝜆

( 1
2𝑟
− 𝛿)3 .
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Then, there exists 𝑇Dec = 𝑇Dec(𝑛) that is a polynomial in 𝜆, 𝛿𝑞, 1
1

2𝑟
−𝛿

, and 𝑄⋆, where

log𝜆 𝑄⋆ = log𝜆

⎛⎜⎝8𝛿𝑞 log(1/𝛿)(︁
1
2𝑟
− 𝛿

)︁3

⎞⎟⎠ log𝜆

(︃
𝜆2

1
2𝑟
− 𝛿

)︃
,

such that:

• If Π has round-by-round soundness error 𝛿 with time-𝑇 trapdoor decidable bad

challenges, then assuming the hardness of LWE there is a hash family ℋ that

is adaptively FS-compatible with Π𝑡 as in Definition 5.22.

• If Π has round-by-round soundness error 𝛿 with time-𝑇 instance-dependent trap-

door decidable bad challenges, then assuming the hardness of LWE there is a

hash family ℋ that is non-adaptively FS-compatible with Π𝑡.

• If Π has round-by-round soundness error 𝛿 with time-𝑇 prefix-dependent trap-

door decidable bad challenges, then under the subexponential advantage vari-

ant of the LWE assumption, there is a hash family ℋ that is non-adaptively

FS-compatible with Π𝑡.

Moreover,

• Assuming subexponential hardness for LWE, the first two results extend to also

give FS-compatibility with SubExp(𝜆) quantitative security.

• These hash families depend only on (𝑎(·), 𝑞(·), 𝛿(·), 𝑇 (·), 𝜆(·), 𝑟(·)) and otherwise

do not depend on Π.

• Hash function evaluation can be done in time that is 𝑂
(︁
(𝑞𝑇 + 𝑇Dec) · poly(𝜆)

)︁
.

The 𝑞𝑇 term can also be replaced by the amount of time required to enumerate

bad challenges for Π.

Example Application: Fiat-Shamir for GKR We now sketch how, assuming

subexponential LWE, Theorem 5.68 allows us to soundly apply the Fiat-Shamir trans-

form to the doubly-efficient public-coin interactive proof of Goldwasser, Kalai, and

286



Rothblum [GKR08]. This interactive proof, which we refer to as GKR, is applicable

to (log-space uniform) bounded-depth computations.

We will fix some family of (log-space uniform) circuits with depth 𝑑 = 𝑑(𝑛) and

size 𝑠 = 𝑠(𝑛). GKR is additionally parameterized by a finite field of order 𝑞 = 𝑞(𝑛).

The best efficiency (in our case) is achieved for 𝑞 a power of two, which yields the

following parameters:

• The round complexity is 𝑂(𝑑 · log 𝑛);

• The prover runs in time poly(𝑠, log 𝑞);

• The verifier runs in time 𝑛 · poly(𝑑, log 𝑠, log 𝑞);

• The proof system has round-by-round soundness error 𝛿 = 𝛿(𝑛) with time-𝑇 (=

𝑇 (𝑛)) prefix-dependent trapdoor decidable bad challenges, where 𝛿 = 𝑂( log 𝑛
𝑞

)

and 𝑇 = poly(log 𝑛, log 𝑠, log 𝑞).

In particular, the number of bad verifier challenges at any round is ℓ = 𝑂(log 𝑛)

When applying the Fiat-Shamir transform to GKR, we would like to preserve the

feature that the verifier’s running time is much less than (and ideally polylogarithmic

in) the time required to evaluate the circuit. Specifically, we would like the Fiat-

Shamir hash functions to be evaluable in time 𝑛 · poly(𝑑, log 𝑞, log 𝑠, log 𝑛). This was

done by [JKKZ21] for very large 𝑞, i.e. 𝑞 > (𝑑ℓ)𝜅1/𝜖 for a computational security

parameter 𝜅. Here we focus on the other extreme of parameter settings, where 𝑞 is

small (say polylog(𝑛)), and soundness is amplified by parallel repetition.

To accomplish this, when applying Theorem 5.68 we set 𝜆 = (𝑑 log 𝑛) ·𝜅1/𝜖, where

𝜖 denotes the exponent of our subexponential LWE assumption. Applying Theo-

rem 5.68, we bound the runtime of the verifier as follows. First, note that

1
2𝑟
− 𝛿 ≥ 1

4𝑟
= 1

4𝑑 log(𝑛) ,

and so log𝜆(𝑄⋆) = 𝑂(𝐴 ·𝐵) for

𝐴 = log𝜆(8𝑑ℓ log(𝜆) log(𝑛)) = 𝑂(1)
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and

𝐵 = log𝜆(𝜆2𝑑 log(𝑛))) = 𝑂(1).

Therefore, 𝑄⋆ = poly(𝜆) = poly(𝑑, 𝜅) and so verification runs in time 𝑛·poly(𝑑, 𝜅, log 𝑠, 𝑞, log 𝑛),

which is 𝑛 · poly(𝑑, 𝜅, log 𝑠, log 𝑛) by the assumption that 𝑞 is polylog(𝑛).

Finally, we note that:

• Because Theorem 5.68 gives us sub-exponential security in 𝜅, if our goal is

to achieve poly(𝑛) security (i.e., negl(𝑛) soundness error against poly(𝑛) size

provers), we can set 𝜅 = polylog(𝑛). Then, the hash function evaluation time

(and hence the verifier running time) will be �̃�(𝑛).

• By using a root-finding algorithm (see [CCH+19, JKKZ21]) instead of a root

verification algorithm (as used in Theorem 5.68 above) in our CI analysis, we

can reduce the verifier runtime dependence on 𝑞 to poly(ℓ, log 𝑞) (instead of

poly(𝑞)), enabling us to handle all field sizes (not just polylogarithmic).

• At the expense of a larger number of repetitions (incurring a multiplicative

overhead of 𝑞), we could replace our Parvaresh-Vardy based code with a con-

catenation of a Reed-Solomon code with a random code for a faster running

time of the hash function (i.e. some fixed polynomial in (𝜆, 𝑑) for all choices of

𝜆, 𝑑 instead of explicitly requiring 𝜆 ≥ 𝑑 log(𝑛)).
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Chapter 6

2-Message Publicly Verifiable WI

from (Subexponential) LWE

6.1 Introduction

In this note, we consider the question of constructing 2-message witness indistinguish-

able (WI) arguments for NP that are publicly verifiable; that is, the argument system

consists of a single verifier message followed by a single prover message, and anyone

can verify a proof given only the transcript.

In a seminal work, Dwork and Naor [DN00] showed that such argument systems

can be constructed given any non-interactive zero knowledge (NIZK) proof system

in the common random string model; given the state-of-the-art on NIZK, this yields

constructions assuming the hardness of factoring [FLS90] as well as under falsifiable

assumptions on bilinear maps [CHK03,GOS06].

In recent work, Canetti et al. [CCH+19] and Peikert and Shiehian [PS19] gave con-

structions of NIZK argument systems from lattice assumptions1; however, the [DN00]

transformation cannot be directly applied to these constructions in order to obtain

2-message WI arguments. The issue is that both of these works construct NIZKs

that are either (1) statistically sound, but requiring a structured common reference

1 [CCH+19] gave a construction from a circular-secure variant of the learning with errors (LWE)
assumption, while [PS19] weakened the assumption to plain LWE.
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string, or (2) using a uniformly random CRS, but only satisfying soundness against

computationally bounded provers. On the other hand, the [DN00] transformation

crucially assumes that the underlying NIZK satisfies statistical soundness and uses a

uniformly random CRS.

In this work, we show that a slight modification of the [DN00] transformation

can be applied to the [CCH+19, PS19] NIZKs in order to obtain 2-message publicly

verifiable WI arguments for NP. Unlike the [DN00] construction, we rely on complexity

leveraging in order to prove soundness of the 2-message argument system, so we must

rely on the subexponential hardness of LWE in order to prove security. As a result,

we obtain the following theorem.

Theorem 6.1. Assuming the subexponential hardness of LWE, there exist two-message

publicly verifiable WI arguments for NP.

We construct two variants of such an argument system: in one variant, soundness

is adaptive (that is, soundness holds even when the cheating prover is allowed to

choose the false statement that he wants to prove), while in the other, the protocol is

public-coin (that is, the verifier message is a uniformly random string). Both variants

are “delayed-input” protocols – meaning that the verifier message does not depend on

the instance 𝑥 – so in either variant, the verifier message can be reused across many

executions (even for different statements).

While our construction can be seen as a new variant of the [DN00] transforma-

tion from NIZKs to 2-message arguments, we choose to present the construction

as a compiler from (sufficiently structured) “trapdoor Σ-protocols” [CCH+19] to 2-

message arguments, combining a special-purpose instantiation of the Fiat-Shamir

heuristic with a [DN00]-like transformation. More specifically, we give a construc-

tion combining dual Regev encryption with the correlation intractable hash families

of [CCH+19,PS19].
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6.1.1 Concurrent Work

In concurrent and independent works, Badrinarayan et al. [BFJ+20] and Jain and

Jin [JJ19] note essentially the same construction of 2-message WI arguments from

LWE. Moreover, they give an exciting extension of the result that yields a 2-message

(publicly verifiable) WI argument system satisfying statistical witness indistinguisha-

bility. Such argument systems were not previously known under any standard cryp-

tographic assumption, and we do not give such a construction in this note.

6.2 Preliminaries

We say that a function 𝜇(𝜆) is negligible if 𝜇(𝜆) = 𝑂(𝜆−𝑐) for every constant 𝑐,

and that two distribution ensembles 𝑋 = {𝑋𝜆} and 𝑌 = {𝑌𝜆} are computationally

indistinguishable (𝑋 ≈𝑐 𝑌 ) if for all polynomial-sized circuit ensembles {𝒜𝜆},

⃒⃒⃒⃒
Pr [𝒜𝜆(𝑋𝜆) = 1]− Pr [𝒜𝑛(𝑌𝜆) = 1]

⃒⃒⃒⃒
= negl(𝜆).

6.2.1 Witness Indistinguishable Arguments

Definition 6.2. A witness indistinguishable arugment system Π for an NP relation 𝑅

consists of ppt interactive algorithms (𝑃, 𝑉 ) with the following syntax.

• 𝑃 (𝑥, 𝑤) is an interactive algorithm that takes as input an instance 𝑥 and witness

𝑤 that (𝑥, 𝑤) ∈ 𝑅.

• 𝑉 (𝑥) is an interactive algorithm that takes as input an instance 𝑥. At the end of

an interaction, it outputs a bit 𝑏. If 𝑏 = 1, we say that 𝑉 accepts, and otherwise

we say that 𝑉 rejects.

The proof system Π must satisfy the following requirements for every polynomial func-

tion 𝑛 = 𝑛(𝜆). Recall that ℒ(𝑅) denotes the language {𝑥 : ∃𝑤 s.t. (𝑥, 𝑤) ∈ 𝑅} and

𝑅𝑛 denotes the set 𝑅 ∩ ({0, 1}𝑛 × {0, 1}*).
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• Completeness. For every (𝑥, 𝑤) ∈ 𝑅, it holds with probability 1 that 𝑉 accepts

at the end of an interaction ⟨𝑃 (𝑥, 𝑤), 𝑉 (𝑥)⟩.

• Soundness. For every
{︁
𝑥𝑛 ∈ {0, 1}𝑛 ∖ ℒ(𝑅)

}︁
and every polynomial size 𝑃 * =

{𝑃 *𝜆}, there is a negligible function 𝜈 such that 𝑉 accepts with probability 𝜈(𝜆)

at the end of an interaction ⟨𝑃 *(𝑥), 𝑉 (𝑥)⟩.

• Witness Indistinguishability. For every ppt (malicious) verifier 𝑉 * and ev-

ery ensemble
{︁
(𝑥𝑛, (𝑤0,𝑛, 𝑤1,𝑛), 𝑧𝑛) : (𝑥𝑛, 𝑤0,𝑛), (𝑥𝑛, 𝑤1,𝑛) ∈ 𝑅𝑛

}︁
, the distribution

ensembles

view𝑉 *⟨𝑃 (𝑥, 𝑤0), 𝑉 *(𝑥, 𝑤0, 𝑤1, 𝑧)⟩

and

view𝑉 *⟨𝑃 (𝑥, 𝑤1), 𝑉 *(𝑥, 𝑤0, 𝑤1, 𝑧)⟩

are computationally indistinguishable.

In the work, we focus on obtaining two message WI arguments for NP. A (two

message) WI argument system can also satisfy various stronger properties. We list

some important variants below.

• Publicly Verifiable: A WI argument system is publicly verifiable if the veri-

fier’s accept/reject algorithm is an efficiently computable function of the tran-

script (independent of the verifier’s internal state).

• Public Coin: A WI argument system is public coin if all (honest) verifier

messages are uniformly random strings (sampled independently of the protocol

so far). Note that any public coin protocol is publicly verifiable.

• Delayed Input: A two-message WI argument system is delayed input if the

(honestly sampled) verifier message does not depend on the instance 𝑥.

• Adaptive Soundness: A two-message, delayed-input protocol Π is adaptively

sound if for every polynomial size algorithm 𝑃 * = {𝑃 *𝜆}, there is a negligible
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function 𝜈 such that for all 𝜆,

Pr
crs←𝑉 (𝑥)

(𝑥,𝜋):=𝑃 *
𝜆 (crs)

[𝑥 /∈ ℒ(𝑅) ∧ 𝑉 (crs, 𝑥, 𝜋) = 1] ≤ 𝜈(𝜆).

6.3 Correlation Intractable Hash Families

In this section, we recall the notion of correlation intractability [CGH98], special-

ization to “efficiently-searchable relations” [CCH+19], and LWE-based instantiation

[PS19].

Definition 6.3. For a pair of efficiently computable functions (𝑛(·), 𝑚(·)), a hash

family with input length 𝑛 and output length 𝑚 is a collection ℋ = {ℎ𝜆 : {0, 1}𝑠(𝜆) ×

{0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆)}𝜆∈N of keyed hash functions, along with a pair of p.p.t. algo-

rithms:

• ℋ.Gen(1𝜆) outputs a hash key 𝑘 ∈ {0, 1}𝑠(𝜆).

• ℋ.Hash(𝑘, 𝑥) computes the function ℎ𝜆(𝑘, 𝑥). We may use the notation ℎ(𝑘, 𝑥)

to denote hash evaluation when the hash family is clear from context.

We cay that ℋ is public-coin2 if ℋ.Gen outputs a uniformly random string 𝑘 ←

{0, 1}𝑠(𝜆).

Definition 6.4 (Correlation Intractability). For a given relation ensemble 𝑅 =

{𝑅𝜆 ⊆ {0, 1}𝑛(𝜆) × {0, 1}𝑚(𝜆)}, a hash family ℋ = {ℎ𝜆 : {0, 1}𝑠(𝜆) × {0, 1}𝑛(𝜆) →

{0, 1}𝑚(𝜆)} is said to be 𝑅-correlation intractable with security (𝑠, 𝛿) if for every 𝑠-size

𝒜 = {𝒜𝜆},

Pr
𝑘←ℋ.Gen(1𝜆)

𝑥←𝒜(𝑘)

[︂(︁
𝑥, ℎ(𝑘, 𝑥)

)︁
∈ 𝑅

]︂
= 𝑂(𝛿(𝜆)).

We say that ℋ is 𝑅-correlation intractable with security 𝛿 if it is (𝜆𝑐, 𝛿)-correlation

intractable for all 𝑐 > 1. Finally, we say that ℋ is 𝑅-correlation intractable if it is

(𝜆𝑐, 1
𝜆𝑐 )-correlation intractable for all 𝑐 > 1.

2Sometimes “public-coin” hash families are defined to be hash families whose security properties
hold even when the adversary is given the random coins used to sample 𝑘 ← ℋ.Gen(1𝜆). For our
purposes (e.g. ignoring compactness), this definition is equivalent to ours.
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If ℛ is a collection of relation ensembles, then ℋ is said to be uniformly ℛ-

correlation intractable if for every polynomial-size 𝒜, there exists a function 𝜈(𝜆) =

negl(𝜆) such that for every 𝑅 ∈ ℛ,

Pr
𝑘←ℋ.Gen(1𝜆)

𝑥←𝒜(𝑘)

[︁
(𝑥, ℎ(𝑘, 𝑥)) ∈ 𝑅

]︁
≤ 𝜈(𝜆).

6.3.1 Efficiently Searchable Relations

As in [CCH+19,PS19] we make use of hash functions that are correlation intractable

for relations 𝑅 with a unique output 𝑦 = 𝑓(𝑥) associated to each input 𝑥, and such

that 𝑦 = 𝑓(𝑥) is an efficiently computable function of 𝑥.

Definition 6.5 (Unique Output Relation). We say that a relation 𝑅 is a unique

output relation if for every input 𝑥, there exists at most one output 𝑦 such that

(𝑥, 𝑦) ∈ 𝑅.

Definition 6.6 (Efficiently Searchable Relation, [CLW18]). We say that a (necessar-

ily unique-output) relation ensemble 𝑅 is searchable in (non-uniform) time 𝑇 if there

exists a function 𝑓 = 𝑓𝑅 : {0, 1}* → {0, 1}* computable in (non-uniform) time 𝑇 such

that for any input 𝑥, if (𝑥, 𝑦) ∈ 𝑅 then 𝑦 = 𝑓(𝑥); that is, 𝑓(𝑥) is the unique 𝑦 such

that (𝑥, 𝑦) ∈ 𝑅, provided that such a 𝑦 exists. We say that 𝑅 is efficiently searchable

if it is searchable in time poly(𝑛).

In this work, we make use of the hash functions of [PS19], which are correlation-

intractable for efficiently searchable relations under the LWE assumption (with poly-

nomial modulus). Moreover, we use the fact that under subexponential LWE, the

[PS19] hash family is in fact 2−𝑚𝛿 -correlation intractable for some 𝛿 > 0.

Theorem 6.7 ( [PS19]). Assume the subexponential hardness of LWE. Then, there

exists some 𝛿 > 0 such that for all polynomial functions (𝑛(·), 𝑚(·), 𝑇 (·)), there is

a hash family ℋ = {ℎ𝜆 : {0, 1}𝑠 × {0, 1}𝑛 → {0, 1}𝑚} that is 2−𝑚(𝜆)𝛿-correlation

intractable for all relations searchable in time 𝑇 .
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6.4 Reverse Randomization-Compatible Trapdoor

Σ-Protocols

In this section, we present a variant of “trapdoor Σ-protocols” [CCH+19] that suffice

for our transformation. The key differences as compared to the trapdoor Σ-protocols

of [CCH+19] are as follows.

• We require that the honestly generated CRS is uniformly random and that the

“fake CRS” distribution is statistically close to uniform.

• We require malicious-verifier witness indistinguishability rather than just honest-

verifier zero knowledge (these two properties are equivalent for protocols with

polynomial-size challenge spaces and their parallel repetitions).

As we will explain, this can be achieved by instantiating the generic commitment

scheme used in the [Blu86,FLS90] Σ-protocols using dual Regev encryption.

Definition 6.8 (Reverse Randomization-Compatible Trapdoor Σ-Protocol). We say

that a 3-message protocol Π = (Gen, 𝑃, 𝑉 ) in the CRS model is a reverse randomization-

compatible trapdoor Σ-protocol if there are p.p.t. algorithms TrapGen, BadChallenge

with the following syntax.

• TrapGen(1𝜆) takes as input the security parameter. It outputs a common refer-

ence string crs ∈ {0, 1}ℓ along with a trapdoor td.

• BadChallenge(td, crs, 𝑥, a) takes as input a trapdoor td, common reference string

crs, instance 𝑥, and first message a. It outputs a challenge e.

We additionally require the following properties.

• Witness Indistinguishability with Uniform CRS.

• CRS Indistinguishability: The crs distribution output by TrapGen(1𝜆) is

statistically indistinguishable from the uniform distribution 𝑈ℓ.
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• Efficient Special Soundness: for every instance 𝑥 ̸∈ 𝐿 and for all (crs, td)←

TrapGen(1𝜆), if (crs, 𝑥, a, e, z) is a valid transcript for Π, then e = BadChallenge(td, crs, 𝑥, a).

Remark 6.9. Assuming the (polynomial) hardness of LWE, there is a reverse randomization-

compatible trapdoor Σ-protocol for all of NP.

Proof. We instantiate Blum’s Hamiltonicity protocol [Blu86] (or the [FLS90] Hamil-

tonicity protocol) in the CRS model using dual Regev encryption [GPV08]. The fact

that these schemes satisfy efficient special soundness was already argued in [CCH+19].

Since dual Regev public keys are statistically indistinguishable from uniformly ran-

dom, we are done.

6.5 Constructing 2-Message WI

In this section, we show that correlation intractable hash functions for efficiently

searchable relations (Section 6.3) can be combined with reverse randomization-compatible

trapdoor Σ-protocols (Section 6.4) to obtain 2-message publicly verifiable WI argu-

ments.

As we described in the introduction, this can be seen as an extension of the Dwork-

Naor “reverse randomization” paradigm to the setting of comptuational soundness.

Construction 6.10 (2-Message WI Protocol). Let Π be a reverse randomization-

compatible trapdoor Σ-protocol with the following three efficiency properties:

• Common reference strings have length ℓ(𝜆).

• Challenges have length 𝑚(𝜆) for some polynomial function 𝑚(·).

• The algorithm BadChallenge(𝜏, crs, 𝑥, a) is computable by a size 𝑇 circuit for

some polynomial function 𝑇 (𝜆, 𝑛(𝜆)).

Moreover, let ℋ denote a hash family that is 2−ℓnegl(𝜆)-correlation intractable

for relations searchable in time 𝑇 . We then define the following 2-message protocol̃︀Π, which is a combination of the Fiat-Shamir transform (using ℋ) and [DN00]-style

“reverse randomization.”
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• Verifier message: the verifier samples 𝜆 common random strings crs1, . . . , crs𝑡
$←

{0, 1}ℓ (for 𝑡 = 2ℓ) along with a hash key 𝑘 ← ℋ.Gen(1𝜆).

• Prover message: given an instance 𝑥, witness 𝑤, and verifier message (crs1, . . . , crs𝑡, 𝑘),

the prover does the following.

– Sample a random string crs𝑃
$← {0, 1}ℓ and set ̃︁crs𝑖 = crs𝑃 ⊕ crs𝑖.

– For 1 ≤ 𝑖 ≤ 𝑡, compute a𝑖 ← Π.𝑃 (̃︁crs𝑖, 𝑥, 𝑤), e𝑖 = ℎ(𝑘, 𝑥||a𝑖), z =

Π.𝑃 (̃︁crs𝑖, 𝑥, 𝑤, a𝑖, e𝑖).

– Output (a𝑖, e𝑖, z𝑖)𝑡
𝑖=1.

• The verifier accepts a transcript
(︂

(crs𝑖)𝑖≤𝑡, 𝑘, 𝑥, crs𝑃 , (a𝑖, e𝑖, z𝑖)𝑖≤𝑡

)︂
if for all 𝑖,

e𝑖 = ℎ(𝑘, 𝑥||a𝑖) and Π.𝑉 (̃︁crs𝑖, 𝑥, a𝑖, e𝑖, z𝑖) = 1.

We claim that this construction yields a 2-message (publicly verifiable) WI argu-

ment system for NP. Completeness and public verifiability are clear by construction,

so we proceed to prove that this protocol is both WI and sound.

Lemma 6.11. Assuming that Π is WI, ̃︀Π is also WI.

Proof. This is identical to the [DN00] proof of witness indistinguishability, which we

sketch here. Fix a malicious verifier 𝑉 * along with a statement, pair of witnesses,

and auxiliary information (𝑥, 𝑤1, 𝑤2, 𝑧). Then, consider the following views view(𝑗) for

0 ≤ 𝑗 ≤ 𝑡: for every 𝑗, let

𝜏 (𝑗) =
(︂

(crs𝑖)𝑖≤𝑡, 𝑘, 𝑥, crs𝑃 , (a𝑖, e𝑖, z𝑖)𝑖≤𝑡

)︂

and view(𝑗) = (𝜏 (𝑗), 𝑟), where:

• 𝑟 is the internal randomness of 𝑉 *, and
(︂

(crs𝑖)𝑖≤𝑡, 𝑘
)︂

= 𝑉 *(𝑥, 𝑤1, 𝑤2, 𝑧; 𝑟).

• For every 𝑖, (a𝑖, e𝑖, z𝑖) is computed using ̃︁crs𝑖 := crs𝑖 ⊕ crs𝑃 . Moreover, it is

computed using witness 𝑤1 if and only if 𝑗 ≥ 𝑖 (and witness 𝑤2 otherwise).
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By construction, view(0) is the view of 𝑉 * in an interaction with an honest prover

using 𝑤1, and view(𝑡) is the interaction between 𝑉 * and an honest prover using 𝑤2.

The computational indistinguishability of view(𝑗) and view(𝑗+1) for every 𝑗 follows

from the (malicious verifier) witness indistinguishability of Π.

Lemma 6.12. Assuming that ℋ is 2−ℓnegl(𝜆)-correlation intractable for all relations

searchable in time 𝑇 (𝜆, 𝑛(𝜆)), ̃︀Π is adaptively sound.

Proof. Suppose that 𝑃 * is an efficient cheating prover that breaks the adaptive sound-

ness of ̃︀Π with non-negligible probability, meaning that

Pr
(crs1,...,crs𝑡),𝑘

(𝑥,crs𝑃 ,�̃�)←𝑃 (crs1,...,crs𝑡,𝑘)

[𝑥 ̸∈ 𝐿 ∧ 𝑉 accepts (𝑥, crs1, . . . , crs𝑡, 𝑘, crs𝑃 , �̃�)] = 𝜖(𝜆)

for some non-negligible function 𝜖(·). We proceed to define a sequence of hybrid

experiments where we change the underlying distributions and win conditions. Let

crs* ← {0, 1}ℓ denote a uniformly random string of length ℓ sampled independently

of the above random variables. Then, we have that

Pr
crs*,(crs1,...,crs𝑡),𝑘

(𝑥,crs𝑃 ,�̃�)←𝑃 (crs1,...,crs𝑡,𝑘)

[𝑥 ̸∈ 𝐿 ∧ 𝑉 accepts (𝑥, crs1, . . . , crs𝑡, 𝑘, crs𝑃 , �̃�) ∧ crs𝑃 = crs*] = 𝜖(𝜆)2−ℓ.

Next, in order to invoke correlation intractability, we need to argue that 𝑃 * must win

while some ̃︁crs𝑖 has a valid trapdoor. In order to have a uniform security reduction,

we argue as follows. Since the CRS distribution output by TrapGen(1𝜆) is statisti-

cally close to uniform, we know that there exists a set 𝒮 ⊆ {0, 1}ℓ of size 1
22ℓ such

that for every crs ∈ 𝒮, TrapGen(1𝜆) outputs crs with probability at least 1
22−ℓ. By

independence, we conclude that for every fixed string crs*,

Pr
crs1,...,crs𝑡

[crs* ⊕ crs𝑖 ̸∈ 𝒮 for all i] = 2−𝑡 = 2−2ℓ,
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so we have that

Pr
crs*,(crs1,...,crs𝑡),𝑘

(𝑥,crs𝑃 ,�̃�)←𝑃 (crs1,...,crs𝑡,𝑘)

[𝑥 ̸∈ 𝐿 ∧ 𝑉 accepts ∧ crs𝑃 = crs* ∧ ̃︁crs𝑖 ∈ 𝒮 for some 𝑖] ≥ 𝜖2−ℓ−2−2ℓ.

Picking a uniformly random 𝑖*
$← [𝑡], we further see that

Pr
𝑖*,crs*,(crs1,...,crs𝑡),𝑘

(𝑥,crs𝑃 ,�̃�)←𝑃 (crs1,...,crs𝑡,𝑘)

[𝑥 ̸∈ 𝐿 ∧ 𝑉 accepts ∧ crs𝑃 = crs* ∧ ̃︁crs𝑖* ∈ 𝒮] ≥ 1
4ℓ

𝜖2−ℓ.

We next consider an alternate experiment in which the uniformly random crs𝑖* is

replaced by the string crs* ⊕ crs𝑖* for (crs𝑖* , td𝑖*) ← TrapGen(1𝜆). Since every string

in 𝒮 has weight at least 1
22−ℓ in the TrapGen crs distribution, we see that

Pr
𝑖*,crs*,crs𝑖* ,(crs1,...,crs𝑡),𝑘

(𝑥,crs𝑃 ,�̃�)←𝑃 (crs1,...,crs*⊕crs𝑖* ,...,crs𝑡,𝑘)

[𝑥 ̸∈ 𝐿 ∧ 𝑉 accepts ∧ crs𝑃 = crs* ∧ ̃︁crs𝑖* ∈ 𝒮] ≥ 1
8ℓ

𝜖2−ℓ.

Finally, we claim that this violates the 2−ℓnegl(𝜆)-correlation intractability of ℋ.

Formally, an adversary 𝒜′ can sample 𝑖*, (crs𝑖* , td𝑖*) and declare the relation

𝑅crs𝑖* ,td𝑖* = {(𝑥||a, e) : e = BadChallenge(td𝑖* , crs𝑖* , 𝑥, a).}

Then, upon receiving a hash key 𝑘, 𝒜′ can sample crs* and (crs1, . . . , crs𝑡) itself

and call (𝑥, crs𝑃 , �̃�) ← 𝑃 *(crs1, . . . , crs* ⊕ crs𝑖, . . . , crs𝑡). Finally, 𝒜′ outputs the pair

(𝑥, a𝑖*). Whenever 𝑥 ̸∈ 𝐿, crs𝑃 = crs*, and 𝑉 accepts the output of 𝑃 * in the

above experiment, by the efficient special soundness of Π, we will have that (𝑥, a𝑖*) ∈

𝑅crs𝑖* ,td𝑖* , completing the reduction.

6.5.1 Parameter Settings and Instantiation

Combining Section 6.5 with Theorem 6.7 and Remark 6.9, we obtain the following

LWE-based instantiation of 2-message publicly verifiable WI. Assume that LWE is

2−𝜆𝛿 · negl(𝜆)-hard for some fixed 𝛿 > 0.
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• Using dual Regev encryption and the [Blu86] proof system for Hamiltonicity

(repeated 𝜆
2
𝛿 times in parallel), there is a reverse randomization-compatible

trapdoor Σ-protocol Π with a crs of size 𝜆 and challenges of length 𝜆
2
𝛿 .

• Using Theorem 6.7, there is a hash family that is 2−𝜆2 · negl(𝜆)-correlation

intractable for all relations that are searchable in time 𝑇 (𝜆) sufficient to compute

the BadChallenge function associated to Π.

• Applying Section 6.5, we conclude that the protocol ̃︀Π in Construction 6.10

(using these building blocks) is a 2-message publicly verifiaible WI argument

system for NP. Moreover, it satisfies adaptive soundness (again by Section 6.5).

Finally, since hash keys in the hash family ℋ are pseudorandom, we conclude

that another variant of ̃︀Π (in which the verifier message is uniformly random)

is a non-adaptively sound publicly-verifiable WI argument.
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Chapter 7

One-Way Product Functions and

their Applications

7.1 Introduction

Cryptographically secure hash functions are a fundamental building block in cryptog-

raphy. Some of their most ubiquitous applications include the construction of digital

signature schemes [NY89], efficient CCA-secure encryption [BR93], succinct delega-

tion of computation [Kil92], and removing interaction from protocols [FS87]. In their

most general form, hash functions can be modeled as “random oracles” [BR93], in

which case it is heuristically assumed that an explicitly described hash function 𝐻

(possibly sampled at random from a family) behaves like a random function, as far

as a computationally bounded adversary can tell.

One of the most basic properties one might desire from a hash function is collision

resistance, which requires that a computationally bounded adversary, given an explicit

(shrinking) function 𝐻, cannot find a pair of distinct inputs (𝑥, 𝑦) such that 𝐻(𝑥) =

𝐻(𝑦). Since their introduction [Dam88], collision-resistant hash functions have proved

extremely useful in designing cryptographic primitives and protocols. As such, the

following problem has received much attention in theoretical cryptography.

Question 7.1. What are the assumptions from which collision-resistant hash func-

303



tions can be built? In particular, can they be built from an arbitrary one-way function?

The question of building CRHFs from arbitrary one-way functions is particularly

intriguing because OWFs are sufficient to construct a wide class of cryptographic

primitives, including: pseudorandom generators [HILL99], pseudorandom functions

[GGM84] and secret-key encryption, universal one-way hash functions [Rom90] and

digital signatures, commitment schemes [Nao91], zero-knowledge proofs [GMW86],

and garbled circuits [Yao86,LP09].

Unfortunately, all known constructions of CRHFs have required assumptions be-

yond general one-way functions, such as structured generic assumptions (e.g. the

existence of claw-free pairs of permutations) or the hardness of specific problems (e.g.

computing discrete logarithms or finding approximately short vectors on lattices).

Even worse, there are strong negative results on the prospect of constructing CRHFs

from arbitrary OWFs in the form of black-box impossibility results. The first such

result is due to Simon [Sim98].

Theorem 7.2 ([Sim98], informal). There is an oracle relative to which no collision-

resistant hash functions exist, but exponentially secure one-way permutations exist.

In fact, CRHFs have proved to be an extremely frustrating primitive in theoretical

cryptography, as they have evaded attempts to describe a hierarchy of cryptographic

primitives (with “weaker” objects implied by the existence of “stronger” objects). In

a stark demonstration of this problem, Asharov and Segev [AS15] proved that CRHFs

are not even implied (in a black box1 way) by one-way functions and the extremely

powerful notion of indistinguishability obfuscation [BGI+01,GGH+13].

Theorem 7.3 ([AS15], informal). There is an oracle relative to which no collision-

resistant hash functions exist, but exponentially secure one-way permutations and

indistinguishability obfuscation exist.

These negative results indicate substantial barriers to building CRHFs from OWFs
1“Black box” usage of IO and one-way functions is formalized through the notion of obfuscation

for oracle-aided circuits. We refer the reader to [AS15] for details.
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(or OWPs, or indeed from any of the vast array of primitives implied by IO and

OWPs).

Collision resistance is also just one desirable property of random oracles, and our

question above is a special case of the following more ambitious question.

Question 7.4. Which random oracle properties can be guaranteed under standard

cryptographic assumptions, and how weak can these assumptions be made?

It is known that some random oracle properties are not realizable in the standard

model [CGH98,GK03]. However, there has been a recent line of work [CCR16,KRR17,

CCRR18] showing that under strong assumptions, many random oracle properties

(specifically in the context of “single input correlation intractability”) can be realized,

and Question 7.4 in its full generality remains wide open.

7.1.1 Our Contributions

In this work, we make progress on all of the above questions by defining a natu-

ral strengthening of exponentially secure OWFs2 that suffices for building CRHFs

and more. An “uber” version of our assumption – which we state for the pur-

pose of intuition but is quantitatively and qualitatively much stronger than what

we actually require – states that for every 𝑘 = poly(𝑛), there exists an injective

(polynomial-time computable) function 𝑓 : {0, 1}* → {0, 1}* with the following

“batch one-wayness” property: For every polynomial-size adversary 𝒜, the probabil-

ity that 𝒜(𝑓(𝑋1), . . . , 𝑓(𝑋𝑘)) = (𝑋1, . . . , 𝑋𝑘) for 𝑋1, . . . , 𝑋𝑘
i.i.d.← {0, 1}𝑛 is bounded

by 2−𝑘𝑛 · poly(𝑛).

Based on various significant weakenings of this uber-assumption, we construct:

• Collision-resistant hash families whose security against polynomial-time adver-

saries matches that of a random oracle.

• More generally, for every 𝑘, we construct hash families ℋ that are “𝑘-ary out-

put intractable” (inspired by a related definition of Zhandry [Zha16]). Loosely
2Actually, OWFs where any polynomial-time algorithm can invert with only exponentially small

probability
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speaking, given 𝐻 ← ℋ, it is computationally hard to find distinct inputs

𝑋1, . . . , 𝑋𝑘 such that (𝐻(𝑋1), . . . , 𝐻(𝑋𝑘)) satisfy any fixed sparse relation 𝑅.

The quantitative hardness that we achieve again matches that of a random

oracle.

We are able to construct even stronger hash families if we additionally assume

sub-exponentially secure indistinguishability obfuscation. This construction allows

for applications including an instantiation of the Fiat-Shamir heuristic [FS87] for a

natural class of interactive proofs.

Our main results and contributions are, in more detail, as follows.

Defining OWPFs.

We introduce the notion of a family of one-way 𝑘-product functions (𝑘-OWPFs), which

is a family of 𝑘-tuples of functions (𝑓1, . . . , 𝑓𝑘) that are jointly “extremely one-way”.

Such a family is most interesting when the hardness of inversion exceeds that of any

individual 𝑓𝑖. For simplicity, suppose that each 𝑓𝑖 is injective. In this case, we consider

the assumption that no polynomial-time algorithm can recover 𝑋1, . . . , 𝑋𝑘
i.i.d.← {0, 1}𝑛

given (𝑓1(𝑋1), . . . , 𝑓𝑘(𝑋𝑘)) with probability better than 𝛿. Ideally, this could be true

for 𝛿 as large as 2−(𝑘−𝑜(𝑘))𝑛. We call this a 𝛿-hardness assumption of batch inversion

for (𝑓1, . . . , 𝑓𝑘).

The existence of such a family would follow from the following two conditions:

• A 𝛿1/𝑘-secure injective one-way function 𝑓 , and

• An optimal parallel repetition theorem for the hardness of 𝑓 , i.e. one which

states that if a function 𝑓 is (𝑠, 𝛿)-hard to invert, then its 𝑘-wise repetition 𝑓𝑘

is (𝑠, 𝛿𝑘)-hard to invert.

While such a dream parallel repetition property likely does not hold for general

𝑓 [DJMW12], the counterexample presented therein does not preclude a similar result

for a broad class of functions 𝑓 .

In fact, the parallel repetition framework described above yields a special kind of

OWPF family: one in which all 𝑘 functions 𝑓1, . . . , 𝑓𝑘 are equal. We say that such
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OWPF families are symmetric. Another special case of interest, which we call a one-

way power family, is a OWPF family of the form ℱ𝑘, meaning that the 𝑘 functions

𝑓1, . . . , 𝑓𝑘 are sampled independently at random from a fixed family ℱ .

Our constructions (that do not require obfuscation) are based directly on symmet-

ric injective OWPFs as a building block rather than general OWPFs. We augment

these constructions by providing generic transformations between different notions

of OWPFs, including constructions of (weaker) symmetric OWPFs from (stronger)

general OWPFs, and constructions of injective 𝑘-OWPFs from arbitrary 𝑘-OWPFs

(with some security loss).

One of our main contributions in this work is initiating the study of OWPFs and

establishing their basic properties. We expect that OWPFs will prove useful in future

work.

On Extreme Hardness Amplification

For all of our constructions without obfuscation, we actually rely on symmetric OWPF

families. That is, we want a family ℱ = {ℱ𝑛} such that if we sample 𝑓 ← ℱ𝑛 and

𝑥1, . . . , 𝑥𝑘 ← {0, 1}𝑛, it is 𝛿𝑘-hard to simultaneously invert 𝑓(𝑥1), . . . , 𝑓(𝑥𝑘). Clearly

a necessary condition for this is that ℱ is a 𝛿-secure one-way function family. But is

this sufficient? The answer in general is no, as we discuss next.

First of all, this type of attempted hardness amplification fails for any family

whose functions have short trapdoors that enable polynomial-time inversion. Given

𝑓, 𝑓(𝑥1), . . . , 𝑓(𝑥𝑘), an adversary can simply guess the trapdoor for 𝑓 , succeed with

some small probability that does not depend on 𝑘, and conditioned on guessing cor-

rectly can efficiently invert 𝑓(𝑥1), . . . , 𝑓(𝑥𝑘).

It is natural to next consider functions (or ensembles of functions {𝑓𝑛 : {0, 1}𝑛 →

{0, 1}*}𝑛 indexed only by input length) that are secure against non-uniform adver-

saries, and in particular do not have any trapdoors. However, [DJMW12] present an

example of a single one-way function 𝑓 for which it is as easy to invert 𝑓(𝑥1), . . . , 𝑓(𝑥𝑘)

as it is to invert a single 𝑓(𝑥). Although their counterexample heavily relies on the

fact that there are multiple permissible solutions to each instance 𝑥, there is also
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evidence that parallel repetition sometimes fails to increase the security of injective

one-way functions [Wic18].

Despite the above negative results, we emphasize that symmetric OWPFs only

require direct products to amplify hardness for specific functions, rather than broad

classes of functions. Moreover, one-way product functions may exist even if parallel

repetition does not amplify the hardness of any function 𝑓 beyond negligible. In

particular, 𝑓1, . . . , 𝑓𝑘 may not all be the same function, and may be sampled from a

joint distribution on 𝑘-tuples of functions. These observations leave us with at least

two promising avenues towards constructing OWPF candidates:

1. Given the contrived nature of known counterexamples to one-way function par-

allel repetition, any “natural” 𝛿-secure injective OWF family also serves as a

candidate one-way power family with security roughly 𝛿𝑘.

2. It may be possible to “fortify” any one-way function family ℱ into a related

family ℱ ′ whose security does amplify to an extreme degree, yielding symmetric

OWPFs.

Finally, we mention a concrete candidate symmetric OWPF family based on the

multiple discrete logarithm problem. That is, in some group G𝑛 of order |G𝑛| ≈ 2𝑛,

the problem is to simultaneously compute 𝑘 discrete logarithms 𝑋1, . . . , 𝑋𝑘
i.i.d.← [2𝑛]

given input (𝑔, 𝑔𝑋1 , . . . , 𝑔𝑋𝑘), where 𝑔 is a generator for G𝑛. In [CK18], evidence for

the hardness of computing multiple discrete logarithms is given in the form of lower

bounds in the generic group model [Sho97]. In particular, [CK18] show that (in our

language) 𝑘-batch inversion is nearly 2−𝑘𝑛-hard for polynomial-time generic-group

algorithms.

Constructions from OWPFs

Our first application of OWPFs is a construction of a collision-resistant hash family

from suitably secure symmetric 2-OWPFs. Informally, we prove

Theorem 7.5. Suppose that there exist symmetric injective 2-OWPFs with security

2−𝑛−𝜔(log 𝑛). Then, there exists a collision-resistant hash family.

308



This type of OWPF does not follow in a black-box way from even exponentially-

hard one-way permutations; this is how we avoid the [Sim98, AS15] impossibility

results.

Through one of our generic transformations of OWPFs, we also obtain a construc-

tion that does not assume injectivity:

Theorem 7.6. Suppose that there exist symmetric 2-OWPFs with security 2−(1.6+𝜖)𝑛.

Then, there exists a collision-resistant hash family.

Optimality and Implications of Theorem 7.5.

While we have explained how our result is not captured by the [Sim98,AS15] frame-

work, one could question the necessity of this new OWPF assumption. For exam-

ple, [AS15] only rules out black-box constructions of CRHFs from 2−𝜖𝑛-secure IO

and one-way permutations (for 𝜖 = 1
50 in particular), and [Sim98] proves a quantita-

tively similar impossibility. What about assuming only 2−𝑛/2-secure OWPs, which are

weaker and more standard than our symmetric OWPFs? As a complementary result,

we show that these are insufficient – we strengthen the Asharov-Segev analysis to rule

out black box constructions from IO and even 2−𝑛-secure one-way permutations.

Theorem 7.7 (Extension of [AS15] Theorem 1.1, informal). There is no black-box

construction of CRHFs from sub-exponentially secure IO, sub-exponentially secure

OWPs, and OWPs that ppt algorithms 𝒜 can invert with probability at most size(𝒜)𝑐 ·

2−𝑛 for some absolute constant 𝑐.

Theorem 7.7 indicates a sharp limit on directly improving Theorem 7.5; in the

latter, we show that injective 2-OWPFs that are 2−𝑛 · negl(𝑛)-hard to invert suffice

for constructing CRHFs from IO, while the former result says that improving the

2−𝑛 · negl(𝑛) to 2−𝑛

negl(𝑛) is impossible for black-box constructions. In particular, for

black-box constructions, exponentially secure one-way permutations (in the usual

sense) are insufficient.
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Extension to Output Intractability

Theorem 7.5 can be substantially generalized beyond collision-resistance. In particu-

lar, given a 2𝑘-ary relation, we consider the problem of finding 𝑋1, . . . , 𝑋𝑘 such that

(𝑋1, . . . , 𝑋𝑘, 𝐻(𝑋1), . . . , 𝐻(𝑋𝑘)) ∈ 𝑅 for 𝐻 ← ℋ𝑛. If this problem is hard, then

ℋ is said to be multi-input correlation intractable for 𝑅, a notion due to [CGH98].

Collision-resistance is the special case when 𝑘 = 2 and

𝑅 = {(𝑥1, 𝑥2, 𝑦1, 𝑦2) : (𝑥1 ̸= 𝑥2) ∧ (𝑦1 = 𝑦2)} .

Random oracles are correlation intractable for any sparse relation 𝑅 – that is, as

long as for every x = (𝑥1, . . . , 𝑥𝑘), PrY←({0,1}𝑛−1)𝑘 [(x, Y) ∈ 𝑅] ≤ negl(𝑛). In many

applications, this correlation-intractability is the crucial property of a random oracle,

and a fundamental theoretical question is whether it can be achieved by concrete hash

families.

Despite the initial negative result of [CGH98], which ruled out correlation in-

tractability for arbitrary (e.g., unbounded-arity) relations, there has been substantial

work on constructing hash families that are correlation intractable for “bounded”

single-input/output relations [CCR16,KRR17,CCRR18] as well as hash families that

are “output intractable” [Zha16], that is, correlation intractable with respect to rela-

tions of the form “(𝑥𝑖 ̸= 𝑥𝑗 for all 𝑖 ̸= 𝑗) ∧𝑅(𝑦1, . . . , 𝑦𝑘) = 1.”3

Using suitably secure 𝑘-OWPFs, we construct hash families that are output in-

tractable for all sparse output relations (with known bounded arity). The quantitative

intractability that we prove depends on the sparsity of the relation, similarly to the

situation for a true random oracle. Equivalently, we rely on weaker assumptions to

show correlation-intractability of sparser relations.

A simplified version of our result is as follows.

Theorem 7.8 (informal). Suppose that there exists a family of symmetric injective

𝑘-OWPFs with security (𝑠 + poly(𝑛), 𝛿), let 𝑚 = 𝑚(𝑛) denote any output length, and

let 𝑝 = 𝑝(𝑛) denote any sparsity. Then, there exists a hash family ℋ = {ℋ𝑛,𝑚(𝑛)} that
3 [Zha16] considers a slightly different notion of output intractability. We elaborate on this later.
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is output intractable, with security (𝑠, 𝛿 · 𝑝 · 2𝑘𝑛), with respect to all 𝑘-ary relations of

sparsity 𝑝.

In particular, if the 𝑘-OWPF family has optimal (2−𝑘𝑛) security, then the hash

family constructed in Theorem 7.8 has output intractability matching that of a ran-

dom oracle.

As an interesting special case, we note that Theorem 7.8 gives a construction

of 𝑘-multi-collision resistant hash functions (formally introduced in [KNY17] and

further studied in [BDRV18, BKP18, KNY18]) from symmetric injective 𝑘-OWPFs

with security 2−𝑛−𝑘 log(𝑘) · negl(𝑛), an assumption that (up to a lower order term in

the exponent) becomes weaker as 𝑘 increases from 2 to any 𝑜( 𝑛
log(𝑛)). As any multi-

collision-resistant hash family implies the existence of constant round statistically

hiding commitments [BDRV18,KNY18], this yields constant round statistically hiding

commitments from 2−𝑛 · negl(𝑛)-secure (injective and symmetric) 𝑘-OWPFs for any

𝑘 = 𝑜( 𝑛
log(𝑛)). Unlike the assumptions required for collision resistance, this assumption

would follow from optimal parallel repetition for any polynomially secure (injective)

one-way function.

Combining OWPFs with Indistinguishability Obfuscation

Our results above, Theorem 7.5 and Theorem 7.8, are constructions of cryptographic

hash families from (symmetric) OWPFs alone, and hence (partially) address the ques-

tion of what hash families can be constructed from assumptions in the realm of one-

wayness.

We additionally consider which hash families can be constructed in the plain model

under stronger assumptions. Namely, we combine OWPFs with the powerful notion

of indistinguishability obfuscation [BGI+01, GGH+13]. This line of reasoning yields

another construction of CRHFs, and more generally a construction of multi-input

correlation intractable hash functions for a broader class of relations than achieved

by Theorem 7.8. In our IO-based construction, we are able to handle relations 𝑅

which depend on both the input variables x and the output variables y, as long

as the relation 𝑅 is efficiently locally samplable. Informally, we need to be able to
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efficiently sample a random output Y such that (x, Y) ∈ 𝑅 such that each output

𝑌𝑖 is sampled only knowing the corresponding input 𝑥𝑖 (with arbitrary preprocessed

shared randomness “between the variables”).

Moreover, our construction is extremely simple and confirms typical intuition

about obfuscation: our hash family is an obfuscated (puncturable) PRF 𝒪(𝐹𝑠(·)). We

only require the existence of suitably secure OWPFs in the security proof; they are not

needed in the construction. This result extends the framework of [CCR16,KRR17] on

constructing strong hash functions from obfuscation (and additional assumptions).

Our main result utilizing obfuscation (Theorem 7.57) is stated and proved in

Section 7.6.3. The result is proved by viewing OWPFs themselves as a (weak) form

of obfuscation: an injective 𝑘-OWPF (𝑓1, · · · , 𝑓𝑘) allows us to obfuscate multi-point

functions, i.e., programs of the form

𝑃𝑥1,...,𝑥𝑘
(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝑖 𝑥 = 𝑥𝑖 for some 𝑖

0 otherwise.

Since this construction is oblivious to whether or not the OWPF family ℱ is

symmetric, this yields a construction of correlation intractable hash families (and

in particular, of CRHFs) relying on weaker OWPF assumptions, at the cost of ad-

ditionally assuming IO. That is, the assumptions on asymmetric OWPFs required

here are quantitatively (and even qualitatively) weaker than those required without

obfuscation, as we avoid the cost of converting asymmetric OWPFs into symmetric

OWPFs.

As an interesting special case, the notion of correlation intractability that we

achieve in Theorem 7.57 is powerful enough to capture nontrivial cases of the Fiat-

Shamir paradigm for converting (constant round, public-coin) interactive proof sys-

tems into non-interactive argument systems. One such formal result is stated in

Theorem 7.62, but the main intuition is that we can instantiate the Fiat-Shamir

transform for proof systems with the property that a malicious prover can efficiently

determine which verifier messages he can cheat on. This intuition captures protocols
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that follow the “commit-challenge-response” framework using a generic commitment

scheme (which is the case that Theorem 7.62 handles). This approach yields a con-

struction of NIZK argument schemes (in the common reference string model) through

the Fiat-Shamir transform whose security relies on IO and the existence of exponen-

tially secure one-way functions – no OWPF assumptions are needed in this case.

7.1.2 Related Work

Multi-Instance Security. There are a few other cryptographic constructions in the

literature that are secure assuming a strong form of hardness amplification for

one-way functions, or more generally some notion of multi-instance security.

Several notable examples, although not a comprehensive listing, are as follows.

• In the context of password-based cryptography, [BRT12] study the multi-

instance security of encryption schemes and key derivation functions. Their

work is motivated by the common practice of “salting”, which is intended

to insure that the running time required for an adversary to compromise

𝑘 users scales linearly with 𝑘.

• In the context of chosen ciphertext security, [RS09] consider the problem of

simultaneously inverting (𝑓(𝑥1), . . . , 𝑓(𝑥𝑘)) where (𝑥1, . . . , 𝑥𝑘) are sampled

from a joint distribution (rather than i.i.d.). In contrast to our work, they

only ask that the inversion probability should be negl(𝜆); that is, they

do not ask for hardness to amplify. They show that trapdoor functions

satisfying certain security properties of this flavor suffice to construct CCA-

secure public key encryption.

• Inspired by Merkle puzzles, [BGI08] construct a public-key encryption

scheme that allows for adversaries that run in time at most quadratically

larger than that of the honest parties. They prove the security of their

scheme under the assumption that there is a injective one-way function 𝑓 ,

a polynomial 𝑘 = 𝑘(𝑛), a constant 0 < 𝛿 < 1
2 , and a (randomized) “multi-

source hard-core predicate” 𝐻 such that for random 𝑥1, . . . , 𝑥𝑘 ← {0, 1}𝑛,
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every algorithm running in time 2(1−𝛿)𝑛 on input
(︁
𝑓(𝑥1), . . . , 𝑓(𝑥𝑘), 𝑟

)︁
suc-

cessfully guesses 𝐻(𝑥1, . . . , 𝑥𝑘, 𝑟) with advantage at most 2−𝜔(𝑛).

• In concurrent and independent work, Bitansky and Lin [BL18] introduce

the notion of an amplifiable one-way function. Roughly speaking, a one-

way function 𝑓 is (sub-exponentially) amplifiable if for all 𝑘 = poly(𝑛)

there exists a hard-core predicate hcb for 𝑓 and an efficiently computable

combiner 𝐶 such that given (𝑦1 = 𝑓(𝑥1), . . . , 𝑦𝑘 = 𝑓(𝑥𝑘)) it is 2−𝑘𝜖-hard (for

2𝑛𝜖-time algorithms) to predict the combined hard-core bit 𝐶(hcb(𝑥1), . . . , hcb(𝑥𝑘)).

The work [BL18] shows that such a one-way function is useful in the con-

struction of a one message non-malleable commitment scheme.

Extremely Lossy Functions. [Zha16] introduces the notion of an extremely lossy

function (ELF). In [Zha16], ELFs are used as a central building block to con-

struct several hash families with strong security properties. In particular, they

can be used to construct hash functions satisfying a notion of output intractabil-

ity that is incomparable to we achieve in Section 7.5. Informally, [Zha16] con-

siders the more general setting of 𝑘 + 1-ary relations 𝑅(𝑦1, . . . , 𝑦𝑘, 𝑤) with the

property that for random (𝑦1, . . . , 𝑦𝑘), it is computationally hard to find a wit-

ness 𝑤 for which 𝑅(𝑦1, . . . , 𝑦𝑘, 𝑤) = 1 (where our notion would correspond to

the case that for random (𝑦1, . . . , 𝑦𝑘), no such witness exists), and constructs

hash functions that are correlation intractable for such relations 𝑅 that are

efficiently decidable.

The only current construction of ELFs relies on an exponentially strong DDH

assumption. An interesting open question is whether OWPFs imply the exis-

tence of ELFs, or even ordinary (i.e. moderately) lossy one-way functions.

CRHFs from Extremely Strong LPN. Two recent works [YZW+17, BLVW18]

give constructions of CRHFs from the Learning Parity with Noise (LPN) prob-

lem in parameter settings that resemble an exponential hardness assumption.

We note that one of the same works [BLVW18] proves that these particular

LPN assumptions imply hardness in the complexity class BPPSZK, placing this
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construction on similar complexity-theoretic ground as prior constructions from

discrete logarithm and SIS. The LPN-based CRHFs are also provably broken in

quasi-polynomial time, while our CRHF is plausibly as collision-resistant as a

random oracle.

Single-Input Correlation Intractability. Correlation intractability [CGH98] is a

clean but powerful property of random oracles that has drawn considerable in-

terest, particularly for its relevance to the Fiat-Shamir transform [FS87,BR93].

Circumventing the negative results of [CGH98,GK03,BDG+13], there has been

a recent line of work [CCR16,KRR17,CCRR18] on constructing (single input)

correlation intractable hash functions and instantiating the Fiat-Shamir heuris-

tic in the standard model, under strong assumptions. We build on this line

of work, particularly the work of [KRR17], to achieve results for special cases

of multi-input correlation intractability under weaker or incomparable assump-

tions than are required in these previous works.

CRHFs from IO and SZK-hardness. [BDV17] constructs CRHFs from indistin-

guishability obfuscation and any average-case hard problem in the complexity

class SZK0,1. We consider SZK-hardness to be a “structured assumption” which

makes it different from (even very strong) assumptions on injective one-way

functions; indeed, the same work proves an Asharov-Segev-like impossibility re-

sult for constructing (even worst-case) hard SZK instances from IO and OWPs.

A fascinating open question is whether OWPFs (with or without IO) imply

SZK-hardness of any form.

7.1.3 Technical Overview

We now outline some of our constructions in more detail. In order to clearly demon-

strate the power of OWPFs and our techniques, we focus on the following two special

cases: constructing CRHFs from symmetric 2-OWPFs, and constructing CRHFs from

IO and (asymmetric) injective 2-OWPFs.
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Construction of CHRFs

For simplicity, we first assume that we have an ensemble of one-way permutations

{𝑓𝑛 : {0, 1}𝑛 → {0, 1}𝑛}, where for every constant 𝑐 > 0, double inversion is 2−𝑛 · 𝑛−𝑐

hard for size-𝑛𝑐 adversaries. In this case, we construct a particularly simple CRHF:

to sample a collision-resistant 𝐻 : {0, 1}𝑛 → {0, 1}𝑛−1, first sample 𝑃 : {0, 1}𝑛 →

{0, 1}𝑛−1 from a pairwise independent hash family 𝒫4 𝐻 = 𝑃 ∘ 𝑓𝑛. This and similar

constructions have proved very useful in prior works [NY89,PW08,Zha16].

We now sketch the proof of security. Assume for contradiction that some poly-size

algorithm 𝒜 finds collisions in 𝐻 with probability 𝜖 = 𝜖(𝑛). We show how to use 𝒜

to simultaneously find 𝑋*1 = 𝑓−1
𝑛 (𝑌 *1 ) and 𝑋*2 = 𝑓−1

𝑛 (𝑌 *2 ) with probability roughly

𝜖 · 2−𝑛, given uniformly random 𝑌 *1 , 𝑌 *2
i.i.d.← {0, 1}𝑛. Specifically, we will invoke 𝒜 not

on a uniformly sampled 𝐻 = 𝑃 ∘ 𝑓𝑛, but on a differently defined 𝐻 = 𝑃plant ∘ 𝑓𝑛,

where 𝑃plant is sampled from 𝒫 conditioned on 𝑃plant(𝑌 *1 ) = 𝑃plant(𝑌 *2 ).

Intuitively, we now argue (by a purely statistical argument) that (𝑋*1 , 𝑋*2 ) looks

sufficiently like a uniformly random collision of 𝐻 that 𝒜 must output that exact

collision with probability roughly 𝜖·2−𝑛. To make this intuition rigorous, suppose first

that we ignore 𝑌 *1 and 𝑌 *2 , and simply invoke 𝒜 on a randomly sampled 𝐻 = 𝑃 ∘ 𝑓𝑛.

Then with probability 𝜖, 𝒜 will find a collision (𝑋1, 𝑋2) in 𝐻. Conditioned on this

event, (𝑋1, 𝑋2) will be equal to (𝑋*1 , 𝑋*2 ) with probability 2−2𝑛, for a total probability

of 𝜖 · 2−2𝑛 that both events occur. But (𝑋*1 , 𝑋*2 ) is a collision in 𝐻 with probability

only 2−(𝑛−1). Thus, conditioning on this event (i.e., sampling 𝐻 = 𝑃plant∘𝑓𝑛 instead of

𝐻 = 𝑃 ∘𝑓𝑛) boosts the probability that 𝒜 outputs (𝑋*1 , 𝑋*2 ) to 𝜖·2−2𝑛 ·2𝑛−1 = 𝜖·2−𝑛−1.

Therefore, the CRHF we constructed satisfies the standard notion of security:

every polynomial-size adversary finds collisions with probability that is negligible in

𝑛. From stronger hardness assumptions on {𝑓𝑛}, i.e. that double-inversion is 𝛿(𝑛)-

hard for size-𝑠(𝑛) adversaries, one obtains a correspondingly more secure CRHF.

4We also require that the hash family is programmable at any two points, meaning that it is
possible to sample a uniformly random 𝑝← 𝒫 subject to the condition that 𝑝(𝑦1) = 𝑧1 and 𝑝(𝑦2) =
𝑧2. See Definition 7.14.
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Beyond Permutations and Injective One-Way Functions The above argu-

ment actually does not rely in any way on 𝑓𝑛 being a permutation. It is, however,

important that 𝑓𝑛 is injective, so that all collisions in 𝑃 ∘ 𝑓𝑛 are due to 𝑃 , and thus

in some sense are randomly distributed.

We also show that the injectivity requirement can be traded off against a stronger

hardness assumption. In fact, if {𝑓𝑛} is extremely secure to begin with, we can

construct a family of functions which is statistically injective, and still nearly as

secure.

For simplicity, we illustrate this transformation for one-way functions. Suppose

that {𝑓𝑛} is 𝛿(𝑛)-hard to invert for polynomial-time adversaries (think of 𝛿(𝑛) =

2−(1−𝑜(1))𝑛, although such extreme parameters are not necessary). We first observe

that {𝑓𝑛} cannot be “extremely” non-injective; if one independently samples 𝑋1 ←

{0, 1}𝑛 and 𝑋2 ← {0, 1}𝑛, then the probability that 𝑓𝑛(𝑋1) = 𝑓𝑛(𝑋2) must be at

most 𝛿 (otherwise one could break the security of 𝑓𝑛 by random guessing). This can

be leveraged to obtain a fully injective function (with some small error probability),

as follows.

Set 𝑛 to be any function of 𝑛′ (think of 𝑛(𝑛′) = 3𝑛′). Then define the ensemble

of function families ℱ = {ℱ𝑛′} as follows. To sample a function 𝑓 ← ℱ𝑛′ , sample 𝑃 :

{0, 1}𝑛′ → {0, 1}𝑛 from a pairwise independent hash family, and define 𝑓𝑛′ = 𝑓𝑛 ∘ 𝑃 .

A simple pairwise independence argument shows that ℱ is statistically injective, with

failure probability at most 22𝑛′ · 𝛿(𝑛) (with the suggested parameters in mind, this is

2−(1−𝑜(1))𝑛′).

Security of ℱ follows from observing that if an adversary cannot invert 𝑓𝑛(𝑋)

with probability better than 𝛿 when sampling 𝑋 ← {0, 1}𝑛, then for any subset

𝒳 ⊆ {0, 1}𝑛, the adversary cannot invert 𝑓𝑛(𝑋 ′) with probability better than 𝛿 · 2𝑛

|𝒳 |

when sampling 𝑋 ′ ← 𝒳 . With good probability (1 − 22𝑛′−𝑛, or with our suggested

parameters 1− 2−𝑛′), it holds that 𝑃 : {0, 1}𝑛′ → {0, 1}𝑛 is actually injective, so that

inverting 𝑓𝑛 ∘𝑃 corresponds to inverting 𝑓𝑛 when inputs are drawn from the uniform

distribution on Img(𝑃 ). The above discussion shows that this is 𝛿 · 2𝑛−𝑛′-hard (or

with our suggested parameters 2−(1−𝑜(1))𝑛′-hard) even for adversaries that are given
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arbitrary advice about 𝑃 .

While the above description refers to the case of one-way functions (i.e. 1-

OWPFs), similar arguments can be made for arbitrary OWPFs (with different quan-

titative tradeoffs), as discussed in Section 7.3.3.

Constructions Using Obfuscation

We now outline our general proof strategy – which we informally refer to as the

planting technique – for all of our constructions based on IO, using collision resistance

as an example. The planting technique is inspired by the recent work of Kalai,

Rothblum, and Rothblum [KRR17] on instantiating the Fiat-Shamir heuristic using

obfuscation.

For simplicity, we focus on hash functions that shrink by a single bit. Our con-

struction is then simply an obfuscation 𝐻
def= 𝒪(𝐹𝑆) of a puncturable pseudorandom

function 𝐹𝑆 : {0, 1}𝑛 → {0, 1}𝑛−1, where 𝒪 is an indistinguishability obfuscator. Re-

call that we also assume the existence of an injective but not necessarily symmetric

2-OWPF that cannot be inverted in polynomial time with probability better than

2−𝑛−𝜔(log 𝑛).

The proof of security then proceeds as follows. Assume for contradiction that

some ppt algorithm 𝒜 finds a collision (𝑋1, 𝑋2) of 𝐻 with non-negligible5 probability

𝜖. We then consider the behavior of 𝒜 on an obfuscation of a different program

𝐻plant which overrides the functionality of 𝐹𝑆 with a hard-coded planted collision

𝐻plant(𝑋*1 ) = 𝐻plant(𝑋*2 ) = 𝑌 *, for independent and uniformly random 𝑋*1 , 𝑋*2 , and

𝑌 *. That is, the functionality of 𝐻plant is

𝐻plant(𝑥) def=

⎧⎪⎪⎨⎪⎪⎩
𝑌 * if 𝑥 = 𝑋*1 or 𝑥 = 𝑋*2

𝐹𝑆(𝑥) otherwise.

We then prove two contradictory claims.

5In fact, our approach readily generalizes to obtain exponentially-secure CRHFs, at the cost of
quantitatively stronger computational assumptions.
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Claim 1 (informal): The probability that 𝒜 outputs (𝑋*1 , 𝑋*2 ) is approximately

𝜖 · 2−𝑛−1, i.e. 2−𝑛−𝑂(log 𝑛).

This claim is argued as follows.

(a) If 𝒜 is given an obfuscation of a program 𝐻punc that (in contrast to 𝐻plant)

overrides 𝐹𝑆 with hard-coded mappings 𝑋*1 ↦→ 𝑌 *1 and 𝑋*2 ↦→ 𝑌 *2 for in-

dependent uniform 𝑌 *1 , 𝑌 *2 ← {0, 1}𝑛−1, then the probability that 𝒜 suc-

cessfully produces a collision and that collision is (𝑋*1 , 𝑋*2 ) is very nearly

𝜖 · 2−2𝑛 by the security of 𝒪 and 𝐹𝑆.

(b) (𝑋*1 , 𝑋*2 ) is only a valid collision of 𝐻punc when 𝑌 *1 = 𝑌 *2 , so the probability

that 𝒜 outputs (𝑋*1 , 𝑋*2 ) conditioned on 𝑌 *1 = 𝑌 *2 is approximately 𝜖 ·2−2𝑛 ·

2𝑛−1 = 𝜖 · 2−𝑛−1. But the distribution of 𝐻punc conditioned on 𝑌 *1 = 𝑌 *2 is

exactly the distribution of 𝐻plant.

Claim 2 (informal): The probability that 𝒜 outputs (𝑋*1 , 𝑋*2 ) is 2−𝑛−𝜔(log 𝑛).

Since IO is the “best-possible” obfuscation [GR07], it suffices for there to ex-

ist some obfuscation of 𝐻plant that hides (𝑋*1 , 𝑋*2 ). This would follow from a

“special-purpose” obfuscator 𝒪′ for membership testing in two-element sets (in

our case {𝑋*1 , 𝑋*2}). The security property we need is that every ppt algorithm

recovers (𝑋*1 , 𝑋*2 ) from 𝒪′({𝑋*1 , 𝑋*2}) with probability bounded by 2−𝑛−𝜔(log 𝑛).

This is a variant of “point function obfuscation”, a notion which was studied

by [Can97, CMR98, Wee05]. Our variant (with uniformly random 𝑋*1 , 𝑋*2 ) ad-

mits a particularly easy construction from injective 2-OWPFs – the obfuscation

is (𝑊 *
1 = 𝑓1(𝑋*1 ), 𝑊 *

2 = 𝑓2(𝑋*2 )), and is evaluated on an input 𝑥 as

⎧⎪⎪⎨⎪⎪⎩
1 if 𝑓1(𝑥) = 𝑊 *

1 or 𝑓2(𝑥) = 𝑊 *
2

0 otherwise.

There are conceivably other ways to obtain this point function obfuscation, but

for this particular construction, security is equivalent to the hardness of batch
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inverting (𝑓1, 𝑓2).

7.1.4 Conclusions and Questions

In this work, we have introduced a new family of computational assumptions – namely,

the existence of various flavors of one-way product functions (OWPFs). We find these

assumptions to be clean, plausible, and useful.

In terms of power, OWPFs allow the construction of hash families that achieve sev-

eral elusive random oracle-like properties. In particular, our black-box construction of

CRHFs shows that OWPFs are more powerful than black box usage of exponentially-

secure one-way functions.

OWPFs are also extremely plausible. Depending on 𝑠, 𝛿, and 𝑘, we view (𝑠, 𝛿)-

secure 𝑘-OWPFs as somewhere between standard and exponentially-secure one-way

functions. The plausibility is supported by a concrete candidate instantiation – the

discrete log problem, which is provably a nearly optimal OWPF in the generic group

model.

Indeed, this particular combination of plausibility and usefulness gives us some

hope that CRHFs can be constructed solely based on exponentially strong one-way

functions. More generally, our results suggest a possible blueprint for circumventing

black-box impossibility results from OWFs:

1. Build OWPFs from OWFs (using necessarily non-black-box techniques).

2. Build primitives in a black-box way from OWPFs.

One bonus of this approach is that it could result in constructions that are non-black-

box only in the security proof, and thus has the potential for practical efficiency.

Independently, OWPFs satisfy several desirable properties for a cryptographic

assumption. For example, for any family ℱ , the assumption “ℱ is a 𝑘-OWPF” is a

search complexity assumption [GK16]: for some efficiently sampleable distribution 𝒟

and efficiently checkable relation ℛ, the assumption is equivalent to requiring that

on input 𝑥 ∼ 𝒟, every bounded-time algorithm has bounded probability of finding 𝑦

such that (𝑥, 𝑦) ∈ ℛ.
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Questions

There remain many intriguing questions about the precise power of OWPFs. In

particular:

• What are the complexity-theoretic implications of OWPFs? For example, do

they imply hardness in SZK? We emphasize that all prior constructions of

CRHFs have been from assumptions that imply (average-case) SZK hardness,

but CRHFs themselves are not known to imply any sort of SZK hardness.

• What implies OWPFs? Is it possible to construct non-trivial 𝑘-OWPFs from

previously studied cryptographic assumptions? Above we outlined an approach

to generically constructing OWPFs, but it is also possible that OWPFs can be

based on concrete, structured assumptions.

7.1.5 Organization

The rest of the paper is organized as follows. In Section 7.3, we define OWPFs

and discuss the associated hardness assumptions, including a concrete candidate:

the multiple discrete logarithm problem. We also prove generic reductions between

OWPF notions. In Section 7.4, we present our construction of collision-resistant hash

functions from (suitably secure) symmetric 2-OWPFs. In Section 7.5, we generalize

the construction from Section 7.4 to obtain output intractable hash functions from

symmetric OWPFs. In Section 7.6, we show that any (IO-)obfuscated puncturable

PRF satisfies a broader notion of correlation intractability assuming that suitable

OWPFs exist. This includes collision-resistant hash functions and output intractable

hash functions from weaker OWPF assumptions as well as an instantiation of the

Fiat-Shamir transform for “commit-challenge-response” proof systems. Finally, in

Section 7.7, we formally state and prove Theorem 7.7, our complementary result

showing that Theorem 7.5 is optimal.
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7.2 Preliminaries

We write ppt to denote probabilistic polynomial-time. We say that two distribution

ensembles {𝑋𝑛} and {𝑌𝑛} are 𝛿-indistinguishable if for all polynomial-sized circuit

ensembles {𝒜𝑛},

⃒⃒⃒⃒
Pr [𝒜𝑛(𝑋𝑛) = 1]− Pr [𝒜𝑛(𝑌𝑛) = 1]

⃒⃒⃒⃒
≤ 𝑂(𝛿(𝑛)).

For a relation 𝑅, we say that 𝑅(𝑥) = 1 if 𝑥 ∈ 𝑅 and 𝑅(𝑥) = 0 otherwise.

For any primitive 𝒫 whose security is parametrized by a pair (𝑠(𝜆), 𝛿(𝜆)) (denoting

time and advantage), we say that 𝒫 is polynomially secure if 𝒫 is (𝜆𝑐, 1/𝜆𝑐)-secure

for all 𝑐 > 0. We say that 𝒫 is sub-exponentially secure if there exists some 𝜖 > 0

such that 𝒫 is (2𝜆𝜖
, 2−𝜆𝜖)-secure. We say that 𝒫 is 𝛿-secure if 𝒫 is (𝜆𝑐, 𝛿)-secure for

all 𝑐 > 0, and we say that 𝒫 is sub-exponential advantage-secure if there exists some

𝜖 > 0 such that 𝒫 is 2−𝑛𝜖-secure.

7.2.1 One-Way Functions

Definition 7.9 (One-Way Functions). A polynomial-time computable function 𝑓 :

{0, 1}* → {0, 1}* is a (𝑠, 𝛿)-secure one-way function (OWF) if for every 𝜆 ∈ N and

every circuit ensemble {𝒜𝜆} of size |𝒜𝜆| ≤ 𝑠(𝜆), it holds that

Pr
𝑥←{0,1}𝜆

𝑥′←𝒜𝜆(𝑓(𝑥))

[𝑓(𝑥′) = 𝑓(𝑥)] ≤ 𝑂(𝛿(𝜆)).

Definition 7.10 (Families of One-Way Functions). ℱ = {𝑓𝐼 : 𝒟𝐼 → ℛ𝐼}𝐼∈ℐ is a

(𝑠, 𝛿)-secure family of one-way functions if there are ppt algorithms (Gen, Samp) and

a deterministic polynomial-time algorithm Eval with the following syntax:

• Gen takes as input a security parameter 1𝜆 and outputs an index 𝐼 ∈ ℐ.

• Samp takes as input an index 𝐼 ∈ ℐ, and outputs 𝑥 ∈ 𝒟𝐼 .

• Eval takes as input an index 𝐼 ∈ ℐ and 𝑥 ∈ 𝒟𝐼 , and outputs 𝑦 = 𝑓𝐼(𝑥).
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Additionally, there is a security requirement that for every circuit 𝒜 of size 𝑠(𝜆),

Pr
𝐼←Gen(1𝜆)
𝑥←Samp(𝐼)

𝑥′←𝒜(𝐼,𝑓𝐼(𝑥))

[𝑓𝐼(𝑥′) = 𝑓𝐼(𝑥)] ≤ 𝑂(𝛿(𝜆)).

For simplicity, we will only consider function families over the domain {0, 1}𝜆.

7.2.2 Cryptographic Hash Functions

The following definitions are adopted (with modification) from [Gol04].

Definition 7.11 (Cryptographic Hash Function). Fix a function 𝑚 : N → N such

that 1𝑚(𝑛) is computable from 1𝑛 in polynomial time. A family of functions

ℋ = {ℎ𝐼 : {0, 1}𝑛(𝐼) → {0, 1}𝑚(𝑛(𝐼))}𝐼∈ℐ

is a (cryptographic) hash family if there is a ppt algorithm Gen and a deterministic

polynomial-time Eval such that:

• (Efficient Sampling) On input 1𝑛, Gen outputs an index 𝐼 ∈ ℐ such that 𝑛(𝐼) =

𝑛.

• (Admissible Indexing – technical6) There is a polynomial-time algorithm that

when given 𝐼 ← Gen(1𝑛) as input, outputs 1𝑛.

• (Efficient Evaluation) For all 𝐼 ∈ ℐ and all 𝑥 ∈ {0, 1}𝑛(|𝐼|), Eval(𝐼, 𝑥) = ℎ𝐼(𝑥).

The above definition details the functionality of a hash function; there are several

security notions that one could require. We first focus on the notion of 𝑘-collision-

resistance, recovering the usual definition of a collision-resistant hash family when

𝑘 = 2.

6Roughly, we would like the notion of polynomial-time in the description length of a hash function
to coincide with the notion of polynomial-time in the security parameter
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Definition 7.12 (𝑘-collision-resistance). A family of cryptographic hash functions

ℋ = {ℎ𝐼 : {0, 1}𝑛(𝐼) → {0, 1}𝑚(𝑛(𝐼))}𝐼∈ℐ

is a (length-restricted) 𝑘-collision-resistant hash family (𝑘-CRHF) with security 𝛿 =

𝛿(𝑚(·)) if the following two conditions hold.

• (Shrinking) 𝑚(𝑛) ≤ 𝑛− log(𝑘).

• (𝑘-Collision-Resistance) For all polynomial-size circuits 𝒜,

Pr
𝐼←Gen(1𝑛)

(𝑋1,...,𝑋𝑘)←𝒜𝑛(𝐼)

[ℎ𝐼(𝑋1) = . . . = ℎ𝐼(𝑋𝑘) but 𝑋1, . . . , 𝑋𝑘 are all distinct] ≤ 𝑂(𝛿(𝑚(𝑛))).

We say that ℋ is polynomially secure if ℋ is 1/𝑚(𝑛)𝑐-secure for all 𝑐 > 0.

Definition 7.13 (Universal One-Way Hash Families). A universal one-way hash fam-

ily (UOWHF) is a family of cryptographic hash functions

ℋ = {ℎ𝐼 : {0, 1}𝑛(|𝐼|) → {0, 1}𝑚(𝑛(|𝐼|))}𝐼∈ℐ

as in Definition 7.11 which are shrinking as in Definition 7.12, but (2-)collision-

resistance is weakened to require only that for all polynomial-size circuits 𝒜0,𝒜1,

there is a negligible function 𝜈(·) such that

Pr
(𝑋,st)←𝒜0(1𝑛)

𝐼←Gen(1𝑛)
𝑋′←𝒜1(𝐼,st)

[ℎ𝐼(𝑋) = ℎ𝐼(𝑋 ′) ∧𝑋 ̸= 𝑋 ′] ≤ 𝜈(𝑚(𝑛)).

Finally, we define 𝑘-wise independent hash functions, which exist unconditionally.

Definition 7.14 ((Programmable) 𝑘-wise Independent Hash Functions). A family of

𝑘-wise independent hash functions is a family of hash functions

ℋ = {ℎ𝐼 : {0, 1}𝑛(|𝐼|) → {0, 1}𝑚(𝑛(|𝐼|))}𝐼∈ℐ
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as in Definition 7.11 with the property that for every collection 𝑥1, . . . , 𝑥𝑘 ∈ {0, 1}𝑛 of

distinct inputs, and every collection 𝑦1, . . . , 𝑦𝑘 ∈ {0, 1}𝑚 of (not necessarily distinct)

outputs, we have

Pr
𝐼←Gen(1𝑛)

[ℎ𝐼(𝑥𝑖) = 𝑦𝑖 for all 𝑖] = 1
2𝑘𝑚

.

Moreover, we say that ℋ is programmable if there is an efficient sampling algorithm

CondGen(x, y) with the property that for every x = (𝑥1, . . . , 𝑥𝑘) and y = (𝑦1, . . . , 𝑦𝑘)

as above, CondGen(x, y) samples from the distribution of 𝐼 ← Gen(1𝑛) subject to the

condition that ℎ𝐼(𝑥𝑖) = 𝑦𝑖 for all 𝑖.

7.3 One-Way Product Functions: Definitions and

Reductions

In this section, we define one-way product functions and their associated batch inver-

sion problems, we discuss the discrete log problem as a concrete candidate, and we

establish reductions between different notions of OWPFs.

Definition 7.15 (𝑘-Batch Inversion, 𝑘-OWPFs). Let ℱ be a family of 𝑘-tuples of

functions, i.e.,

ℱ = {(𝑓1,𝐼 , 𝑓2,𝐼 , . . . , 𝑓𝑘,𝐼)}𝐼∈ℐ ,

where each 𝑓𝑖,𝐼 : 𝐷𝑖,𝐼 → 𝑅𝑖,𝐼 . We say that 𝑘-batch inversion is (𝑠(𝜆), 𝛿(𝜆))-hard for ℱ

(equivalently ℱ is a (𝑠, 𝛿)-secure 𝑘-OWPF family) if for every size-𝑠(𝜆) circuit 𝒜, we

have

Pr [∀𝑖 ∈ [𝑘], 𝑓𝑖,𝐼(𝑋 ′𝑖) = 𝑓𝑖,𝐼(𝑋𝑖)] ≤ 𝑂(𝛿(𝜆))

in the probability space defined by sampling

1. 𝐼 ← Gen(1𝜆).

2. For 𝑖 = 1, . . . , 𝑘, 𝑋𝑖 ← Samp(𝐼𝑖).

3. (𝑋 ′1, . . . , 𝑋 ′𝑘)← 𝒜(𝐼, 𝑓1,𝐼(𝑋1), . . . , 𝑓𝑘,𝐼(𝑋𝑘)).
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In the special case 𝑘 = 2, we refer to 2-batch inversion as “double inversion”.

For the rest of this paper, we will work only over a fixed domain 𝒟 = {0, 1}𝜆 for

simplicity.

Remark 7.16. For any family ℱ as above, if any of the families ℱ𝑖 := {𝑓𝑖,𝐼}𝐼∈ℐ is a

family of (𝑠, 𝛿)-secure one-way functions, then 𝑘-batch inversion is (𝑠, 𝛿)-hard for ℱ .

That is, (𝑠, 𝛿)-secure 𝑘-OWPFs follow from (𝑠, 𝛿)-secure OWFs.

Given Remark 7.16 above, we note that batch inversion assumptions are most

naturally suited to the setting where 𝛿 ≤ 2𝑐𝜆 for some 𝑐, i.e., 𝛿 is exponentially

small. Moreover, the batch inversion problem is quite plausibly (poly(𝜆), 𝛿)-hard for

𝛿 < 2−𝜆, i.e. where 𝛿 is so small that any one-way function can trivially be inverted

with probability 𝛿 (by outputting a uniformly random guess).

For any family of 𝑘-tuples of functions ℱ , we now state the strongest quantitative

assumption that is plausible regarding batch inversion for ℱ (and in particular, such

families exist in the random oracle model).

Definition 7.17 (Optimal Batch Inversion Assumption for ℱ). There exists a uni-

versal constant 𝑐 such that for every function 𝑠 = 𝑠(𝜆), the 𝑘-batch inversion problem

for ℱ is (𝑠(𝜆), 𝑠(𝜆)𝑐𝑘2−𝑘𝜆)-hard.

This assumption, while not technically falsifiable in the framework of [Nao03,

GW11], is still “morally” falsifiable, and in particular is a complexity assumption in

the framework of [GK16].

We now consider two important special cases of 𝑘-OWPFs.

Definition 7.18 (Symmetric 𝑘-OWPFs). We say that a family ℱ ′ of 𝑘-OWPFs is

symmetric if for all indices 𝐼 ∈ ℐ, we have 𝑓1,𝐼 = 𝑓2,𝐼 = . . . = 𝑓𝑘,𝐼 . In other words,

ℱ ′ is a family of symmetric 𝑘-OWPFs if there is a family ℱ = {𝑓𝐼}𝐼∈ℐ such that (1)

ℱ ′ = {(𝑓𝐼 , 𝑓𝐼 , . . . , 𝑓𝐼)}𝐼∈ℐ and (2) ℱ ′ is a family of 𝑘-OWPFs.

As described in the introduction, the existence of a family of 𝛿-secure symmetric

𝑘-OWPFs would follow from the following two conditions:
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• A 𝛿1/𝑘-secure family ℱ of injective one-way functions, and

• An optimal parallel repetition theorem for the hardness of ℱ , i.e. one which

states that if a function 𝑓 ← ℱ is (𝑠, 𝛿)-hard to invert, then its 𝑘-wise repetition

𝑓𝑘 is (𝑠, 𝛿𝑘)-hard to invert.

However, such a “dream parallel repetition theorem” (even for a specific family ℱ)

is not required for 𝛿-secure 𝑘-OWPFs to exist. As an example, for any 𝑘 ≪ 𝑛
log(𝑛) ,

consider the question of obtaining 2−𝑛-secure symmetric 𝑘-OWPFs; this is a parameter

setting of interest for the application of 𝑘-multi-collision resistant hash functions.

The existence of such a family would also follow from a 2−𝑐𝑛-secure injective OWF

family ℱ , along with a much weaker parallel repetition theorem for the hardness of

ℱ ; hardness would only have to amplify by a factor of 1
𝑐

in the exponent after 𝑘

repetitions.

Definition 7.19 (One-Way Power Families). We say that a function family ℱ ′ is

a one-way power family if there is a family ℱ = {𝑓𝐼}𝐼∈ℐ such that (1) ℱ ′ = ℱ𝑘 =

{(𝑓𝐼1 , 𝑓𝐼2 , . . . , 𝑓𝐼𝑘
)}(𝐼1,...,𝐼𝑘)∈ℐ𝑘 and (2) ℱ ′ is a family of 𝑘-OWPFs.

In constrast to symmetric OWPFs, (𝑠, 𝛿)-secure one-way power families follow

from the following two conditions.

• A 𝛿
1
𝑘 -secure family ℱ of injective one-way functions, and

• A different form of (optimal) parallel repetition for ℱ , i.e. one which states

that if a function 𝑓 ← ℱ is (𝑠, 𝛿)-hard to invert, then 𝑘 independently sampled

functions 𝑓1, . . . , 𝑓𝑘 ← ℱ are (𝑠, 𝛿𝑘) hard to simultaneously invert.

This alternative form of parallel repetition avoids the issue of breaking 𝑓𝑘 by

brute-forcing a short trapdoor for 𝑓 ; in the case of one-way power families, each of

the 𝑘 functions would have a different trapdoor.

We again emphasize that these optimal parallel repetition results are far stronger

than what is required to obtain many of our applications of OWPFs.
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7.3.1 Concrete Candidate: Discrete Logarithm

The optimal batch inversion assumption above, even in the setting of symmetric

𝑘-OWPFs, is supported by the work of [CK18], who consider the multiple discrete

logarithm problem:

Definition 7.20 (Multiple Discrete Logarithm Problem, informal). Given a sequence

of groups 𝒢 = {𝐺𝜆, 𝜆 ∈ N} (with efficiently computable operations and sampling

algorithms), the multiple discrete logarithm problem is, given as input (𝑔, 𝑦1, . . . , 𝑦𝑘) =

(𝑔, 𝑔𝑥1 , . . . , 𝑔𝑥𝑘) (for uniformly random 𝑥1, . . . , 𝑥𝑘), to return all 𝑘 discrete logarithms

(𝑥1, . . . , 𝑥𝑘).

In [CK18], evidence for the hardness of computing multiple discrete logarithms is

given in the form of lower bounds in the generic group model [Sho97]. Specifically,

they show

Theorem 7.21 ( [CK18] Theorem 8, interpreted). Any generic group algorithm for

the multiple discrete logarithm problem running in time 𝑇 in a group of order Θ(2𝜆)

has success probability at most 𝑇 2𝑘2−𝜆𝑘poly(log(𝑇 ), 𝜆, 𝑘)𝑘.

In other words, the optimal batch inversion assumption holds for generic group

discrete logarithms. Moreover, the best known algorithms for multiple discrete loga-

rithm over elliptic curve groups are these generic algorithms, and hence the optimal

batch inversion assumption over elliptic curve groups is plausible. This yields a can-

didate family of symmetric 𝑘-OWPFs satisfying optimal batch inversion hardness.

The multiple discrete logarithm problem (as defined above) provides a candidate

symmetric OWPF family. We could alternatively consider the problem of computing

𝑘 discrete logarithms, each over an entirely different group; this would constitue a

candidate (asymmetric) OWPF family. In the special case where the 𝑘 groups are

sampled independently at random from some family, this would constitute a candidate

one-way power family.
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7.3.2 OWPFs that are Sufficient for CRHFs

In order to build collision-resistant hash functions, we do not need the optimal dou-

ble inversion assumption, but the following weaker assumption (albeit for injective

functions).

Conjecture 2. There is a 2−𝜆−𝜔(log 𝜆)-secure injective 2-OWPF family.

That is, we require that double inversion is 2−𝜆 · negl(𝜆)-hard (rather than 2−2𝜆-

hard) for polynomial time algorithms. Our correlation intractability results are also

achieved under assumptions significantly weaker than the optimal assumption (we

state the necessary assumptions in Section 7.5 and Section 7.6.3).

In the rest of this section, we describe how to obtain OWPFs of a special form – ei-

ther symmetric, injective, or both – from more general OWPFs through a few different

transformations. We consider these transformations with the goal of obtaining im-

portant applications of (symmetric injective) OWPFs, such as multi-collision-resistant

hash functions, in mind.

7.3.3 From OWPFs to Injective OWPFs

Our symmetric OWPF-based constructions most naturally work with (statistically)

injective symmetric OWPFs, but an arbitrary OWPF family may be far from in-

jective. To handle this issue, we present a modular transformation which converts,

with some security loss, any symmetric OWPF family into a (statistically) injective

symmetric OWPF family. In the rest of the paper, we will often assume that our

symmetric OWPF families are statistically injective, which can be guaranteed using

this transformation.

In addition, we provide a second transformation which converts arbitrary OWPF

families into (statistially) injective OWPF families with the property that one-way

power families (Definition 7.19) are mapped to one-way power families under this

transformation. The security loss in the “one-way power family” case matches the

security loss in the symmetric case, while the security loss for general OWPFs is

quantitatively worse (for reasons that will become clear). This transformation allows
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for additional constructions from general OWPFs (and one-way power families), both

with and without obfuscation.

We begin with the symmetric case. Let ℱ = {{(𝑓𝐼 : {0, 1}𝜆 → {0, 1}*)𝑘}𝐼∈ℐ𝜆
}𝜆∈N

be a family of symmetric OWPFs. We consider the following family ℱ ′ of OWPFs

with input domain {0, 1}𝑛. We show that with an appropriate choice of 𝑛, it is a

statistically injective 𝑘-OWPF.

Construction 7.22. Given a family of OWPFs ℱ and a function 𝜆 = poly(𝑛), define

the OWPF family ℱ ′ as follows. Let ℋ𝑛 : {0, 1}𝑛 → {0, 1}𝜆 be a pairwise independent

hash family.

ℱ ′.Gen: On input 1𝑛 sample 𝐻 ← ℋ𝑛, sample 𝐼 ← ℐ, and output (𝐻, 𝐼).

ℱ ′.Samp: On input (𝐻, 𝐼), output a uniformly random 𝑊 ← {0, 1}𝑛.

ℱ ′.Eval: On input
(︁
(𝐻, 𝐼), 𝑊

)︁
, output 𝑓𝐼(𝐻(𝑊 )).

We use the notation 𝑓 ′𝐼,𝐻 as shorthand for a member of the family ℱ ′. We first

describe the parameter settings in which ℱ ′ is statistically injective. Let Inj denote

the event (over the randomness of ℱ ′.Gen) that the function 𝑓 ′𝐼,𝐻 is injective.

Claim 7.22.1. Suppose that ℱ is a family of 𝛿-secure 𝑘-OWPFs. Then, the proba-

bility of ¬Inj is at most 22𝑛 · 𝛿(𝜆) 1
𝑘 .

Proof. Let 𝑁 denote the random variable equal to the number of distinct pairs

(𝑤1, 𝑤2) for which 𝑓𝐼(𝐻(𝑤1)) = 𝑓𝐼(𝐻(𝑤2)). Then we have Pr[¬Inj] = Pr[𝑁 ≥ 1],

which by Markov’s inequality is at most E[𝑁 ].

Let 𝐶(𝑤1, 𝑤2) denote the event that 𝑓𝐼(𝐻(𝑤1)) = 𝑓𝐼(𝐻(𝑤2)), and let 1𝐶(𝑤1,𝑤2)

denote the corresponding indicator random variable, so that 𝑁 = ∑︀
𝑤1 ̸=𝑤2 1𝐶(𝑤1,𝑤2).

For every 𝑤1 ̸= 𝑤2 and every 𝑖, the pairwise independence of ℋ𝑛 implies that

E[1𝐶(𝑤1,𝑤2)|𝐼 = 𝑖] = Pr
𝑥1,𝑥2

i.i.d.← {0,1}𝜆

[𝑓𝑖(𝑥1) = 𝑓𝑖(𝑥2)] .

We call the latter probability the collision probability of 𝑖, and denote it by CP(𝑖). By

the above, E[𝑁 |𝐼 = 𝑖] =
(︁

2𝑛

2

)︁
· CP(𝑖).
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In order for the trivial attack (guess 𝑥1, 𝑥2, . . . , 𝑥𝑘 uniformly at random) to not

violate the 𝛿-security of ℱ as a 𝑘-OWPF, it must be that

E
[︁
CP(𝐼)𝑘

]︁
≤ 𝛿(𝜆). (7.1)

Thus, we have

Pr[¬Inj] ≤ E[𝑁 ]

= E
[︁
E[𝑁 |𝐼]

]︁
= E

[︃(︃
2𝑛

2

)︃
· CP(𝐼)

]︃

=
(︃

2𝑛

2

)︃
· E[CP(𝐼)]

≤ 22𝑛 · 𝛿(𝜆) 1
𝑘 ,

where the last inequality follows from Jensen’s inequality together with Eq. (7.1).

Having analyzed the injectivity of ℱ ′, we now argue about its security.

Proposition 7.23. If ℱ is a family of
(︁
𝑠(𝜆) + poly(𝜆), 𝛿(𝜆)

)︁
-secure 𝑘-OWPFs, then

for any non-constant 𝜆 = poly(𝑛), it holds that ℱ ′ is an
(︁
𝑠(𝜆), 𝛿′(𝑛)

)︁
-secure family

of 𝑘-OWPFs, where 𝛿′(𝑛) is the maximum of:

• 𝛿(𝜆) ·
(︁

2−𝑛

2−𝜆

)︁𝑘
and

• 2−𝜆 · 22𝑛.

Given the bounds proved in Proposition 7.23 and Claim 7.22.1, we now consider

the special case 𝛿(𝜆) = 2−𝜃𝑘𝑛 for intuition. In one reasonable setting of parameters,

we can choose

𝜆(𝑛) = 𝑘 + 2
(1− 𝜃)𝑘 + 𝜃

𝑛,

which yields a OWPF family with security and non-injectivity probability both bounded

by
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𝛿′(𝑛) = 2−
𝜃(𝑘+2)

(1−𝜃)𝑘+𝜃
𝑛.

As an example, this yields a 2−𝑛 · negl(𝑛)-secure injective symmetric 𝑘-OWPF

(which is sufficient for 𝑘-multi collision-resistant hash functions when 𝑘 = 𝑜( 𝑛
log(𝑛))

for any 𝜃 > 3𝑘
4𝑘−1 . This implies a construction of collision-resistant hash functions

from 2 2𝑛
7 −2𝑛-secure symmetric 2-OWPFs.7

Proof of Proposition 7.23. Let 𝑃 (𝑛) denote the distribution of (𝐻, X) in the experi-

ment defined by independently sampling 𝐻 ← ℋ𝑛 and W ← ({0, 1}𝑛)𝑘, and then

defining 𝑋1 = 𝐻(𝑊1), . . . , 𝑋𝑘 = 𝐻(𝑊𝑘). Specifically, we have

𝑃 (𝑛)(ℎ, x) = Pr
𝐻←ℋ𝑛

[𝐻 = ℎ] ·
∏︀𝑘

𝑖=1

⃒⃒⃒
{𝑤 : ℎ(𝑤) = 𝑥𝑖}

⃒⃒⃒
2𝑘𝑛

. (7.2)

Let 𝑄(𝑛) denote the distribution of (𝐻, X) in the experiment defined by indepen-

dently sampling 𝐻 ← ℋ𝑛 and X← ({0, 1}𝜆)𝑘. Specifically, we have

𝑄(𝑛)(ℎ, x) = Pr
𝐻←ℋ𝑛

[𝐻 = ℎ] · Pr
X←({0,1}𝜆)𝑘

[X = x]. (7.3)

We first note that if ℎ is an injective function, then 𝑃 (𝑛)(ℎ, x) ≤ 2𝑘𝜆2−𝑘𝑛𝑄(𝑛)(ℎ, x)

for all x ∈ {0, 1}𝜆.

Now, to prove Proposition 7.23, consider the event Win𝑛 that consists of the out-

comes (𝐼, ℎ, x) for which 𝒜𝑛

(︁
𝐼, ℎ, 𝑓𝐼(𝑥1), . . . , 𝑓𝐼(𝑥𝑘)

)︁
outputs (𝑤1, . . . , 𝑤𝑘) such that

for each 𝑖 ∈ [𝑘], 𝑓𝐼

(︁
ℎ(𝑤𝑖)

)︁
= 𝑓𝐼(𝑥𝑖). Now suppose that 𝒜 wins the 𝑘-inversion game

for ℱ ′ with probability greater than 2𝛿′; this exactly means that 𝑃 (Win𝑛) ≥ 2𝛿′.

Then, consider the algorithm ℬ𝑛 that on input 𝑌1, . . . , 𝑌𝑘 samples 𝐻 ← ℋ𝑛, com-

putes (𝑊1, . . . , 𝑊𝑘) ← 𝒜𝑛(𝐻, 𝑌1, . . . , 𝑌𝑘), and outputs
(︁
𝐻(𝑊1), . . . , 𝐻(𝑊𝑘)

)︁
. The

probability of ℬ𝑛 winning the 𝑘-inversion game for 𝑓 (on security parameter 𝜆(𝑛)) is

7For the specific application of polynomially secure (M)CRHFs, one can tweak parameters differ-
ently and obtain a construction from 2

−2𝑘
3𝑘−1 𝑘𝑛-secure symmetric 𝑘-OWPFs. This is because it suffices

to have non-injectivity probability negl(𝑛) for the later construction to work.
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just 𝑄(𝑛)(Win𝑛). However, we now note that

𝑄(𝑛)(Win𝑛) ≥ 𝑄(𝑛)(Win𝑛 ∧ ℎ injective)

≥ 2𝑘(𝑛−𝜆)𝑃 (𝑛)(Win𝑛 ∧ ℎ injective)

≥ 2𝑘(𝑛−𝜆)
(︂

𝑃 (𝑛)(Win𝑛)− Pr
𝐻←ℋ𝑛

[𝐻 not injective]
)︂

≥ 2𝑘(𝑛−𝜆)(2𝛿′ − 2−𝜆+2𝑛)

≥ 2𝑘(𝑛−𝜆)𝛿′ ≥ 𝛿.

This contradicts the security of ℱ , so we have proved Proposition 7.23.

Having handled the symmetric case, we now turn to our second transformation.

Construction 7.24. Given a family of OWPFs ℱ and a function 𝜆 = poly(𝑛), define

the OWPF family ℱ ′ as follows. Let ℋ𝑛 : {0, 1}𝑛 → {0, 1}𝜆 be a pairwise independent

hash family.

ℱ ′.Gen: On input 1𝑛 sample 𝐻1, . . . 𝐻𝑘 ← ℋ𝑛 independently at random, sample 𝐼 ←

ℐ, and output (𝐻1, . . . , 𝐻𝑘, 𝐼).

ℱ ′.Samp: On input (𝑗, (𝐻1, . . . , 𝐻𝑘, 𝐼)), output a uniformly random 𝑊 ← {0, 1}𝑛.

ℱ ′.Eval: On input
(︁
𝑗, (𝐻1, . . . , 𝐻𝑘, 𝐼), 𝑊

)︁
, output 𝑓𝑗,𝐼(𝐻𝑗(𝑊 )).

Note that if ℱ is a one-way power family, then so is ℱ ′. We now argue about the

security of ℱ ′, with an argument that works for any OWPF family.

Proposition 7.25. If ℱ is a family of
(︁
𝑠(𝜆) + poly(𝜆), 𝛿(𝜆)

)︁
-secure 𝑘-OWPFs, then

for any non-constant 𝜆 = poly(𝑛), it holds that ℱ ′ is an
(︁
𝑠(𝜆), 𝛿′(𝑛)

)︁
-secure family

of 𝑘-OWPFs, where 𝛿′(𝑛) is the maximum of:

• 𝛿(𝜆) ·
(︁

2−𝑛

2−𝜆

)︁𝑘
and

• 𝑘 · 2−𝜆 · 22𝑛.

Proof. This follows by an argument almost identical to that of Proposition 7.23.
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Let 𝑃 (𝑛) denote the distribution of (𝐻1, . . . , 𝐻𝑘, X) in the experiment defined by

independently sampling 𝐻1, . . . , 𝐻𝑘 ← ℋ𝑛 and W ← ({0, 1}𝑛)𝑘, and then defining

𝑋1 = 𝐻1(𝑊1), . . . , 𝑋𝑘 = 𝐻𝑘(𝑊𝑘). Specifically, we have

𝑃 (𝑛)(ℎ1, . . . , ℎ𝑘, x) =
𝑘∏︁

𝑖=1
Pr

𝐻𝑖←ℋ𝑛

[𝐻𝑖 = ℎ𝑖] ·
∏︀𝑘

𝑖=1

⃒⃒⃒
{𝑤 : ℎ(𝑤) = 𝑥𝑖}

⃒⃒⃒
2𝑘𝑛

. (7.4)

Let 𝑄(𝑛) denote the distribution of (𝐻1, . . . , 𝐻𝑘, X) in the experiment defined by

independently sampling 𝐻1, . . . , 𝐻𝑘 ← ℋ𝑛 and X← ({0, 1}𝜆)𝑘. Specifically, we have

𝑄(𝑛)(ℎ1, . . . , ℎ𝑘, x) =
𝑘∏︁

𝑖=1
Pr

𝐻𝑖←ℋ𝑛

[𝐻𝑖 = ℎ𝑖] · Pr
X←({0,1}𝜆)𝑘

[X = x]. (7.5)

We first note that if ℎ1, . . . , ℎ𝑘 are all injective functions, then 𝑃 (𝑛)(ℎ1, . . . , ℎ𝑘, x) ≤

2𝑘𝜆2−𝑘𝑛· 𝑄(𝑛)(ℎ1, . . . , ℎ𝑘, x) for all x ∈ {0, 1}𝜆. We also note that by a union bound,

the 𝑘 hash functions 𝐻1, . . . , 𝐻𝑘 are all injective with probability at least 1−𝑘 ·22𝑛2−𝜆.

Thus, the security of ℱ ′ follows from the security of ℱ by an identical reduction as

in Proposition 7.23.

Moreover, when ℱ = 𝒢𝑘 is a one-way power family, then ℱ ′ is also statistically

injective with (essentially) the same parameters as in Claim 7.22.1. For each 𝑗, let

Inj𝑗 denote the event that 𝑓 ′𝐼𝑗 ,𝐻𝑗
is injective, and let Inj = ⋃︀

𝑗 Inj𝑗.

Claim 7.25.1. Suppose that ℱ = 𝒢𝑘 is a 𝛿-secure one-way power family. Then,

Pr[¬Inj] ≤ 𝑘 · 22𝑛 · 𝛿(𝜆) 1
𝑘 .

Proof. By symmetry, Pr[Inj𝑗] is independent of 𝑗, and moreover the Inj𝑗 are inde-

pendent events. Therefore, we have

Pr[Inj] ≤
∑︁

𝑗

Pr[Inj𝑗] = 𝑘
∏︁
𝑗

Pr[Inj𝑗]
1
𝑘 = 𝑘 Pr[Inj1 ∧ . . . ∧ Inj𝑘] 1

𝑘 .

But Pr[Inj1 ∧ . . .∧ Inj𝑘] is at most 22𝑘𝑛 · 𝛿 by the same reasoning as in Claim 7.22.1.

Namely, Pr[Inj1∧. . .∧Inj𝑘] is at most 22𝑘𝑛 ·CP[1:𝑘], where CP[1:𝑘] denotes the probabil-
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ity that a uniformly random 𝑘-tuple of pairs ((𝑥1,1, 𝑥1,2), . . . , (𝑥𝑘,1, 𝑥𝑘,2)) ∈ ({0, 1}𝜆)2𝑘

satisfies 𝑓𝐼𝑗
(𝑥𝑗,1) = 𝑓𝐼𝑗

(𝑥𝑗,2) for every 𝑗; this follows from the pairwise independence

of ℋ𝑛 and the fact that 𝐻1, . . . , 𝐻𝑘 are sampled independently.

Moreover, CP[1:𝑘] is at most 𝛿(𝜆), as an adversary that on input (𝐼1, . . . , 𝐼𝑘, 𝑦1, . . . , 𝑦𝑘)

guesses 𝑥1, . . . , 𝑥𝑘 uniformly at random succeeds in batch inverting ℱ with probability

at most 𝛿, but succeeds with probability at least CP[1:𝑘]. This completes the proof of

Claim 7.25.1.

Thus, we have a transformation from one-way power families to statistically in-

jective one-way power families with essentially the same security loss as in the case

of symmetric 𝑘-OWPFs.

On the other hand, for general OWPFs, we can only prove the following weaker

claim about injectivity.

Claim 7.25.2. Suppose that ℱ is a 𝛿-secure 𝑘-OWPF family. Then, Pr[¬Inj] ≤

𝑘 · 22𝑛 · 𝛿 · 2(𝑘−1)𝜆.

The parameters in this claim are tight for the following reason: suppose that 𝒢 is

a perfectly secure (𝑘− 1)-OWPF family and ℱ is defined so that a member of ℱ is a

member of 𝒢 combined with a constant function (as the 𝑘th function 𝑓𝑘). Then, no

𝑘-tuple of functions in ℱ ′ consists of 𝑘 injective functions.

Proof of Claim 7.25.2. We claim that for any fixed 𝑗, Pr[¬Inj𝑗] ≤ 22𝑛 · 𝛿 · 2(𝑘−1)𝜆; the

desired result then follows from a union bound.

The fact that Pr[¬Inj𝑗] ≤ 22𝑛 · 𝛿 · 2(𝑘−1)𝑛 follows by a similar argument to that

of Claim 7.22.1. Namely, Pr[¬Inj𝑗] is at most 22𝑛 · CP𝑗, where CP𝑗 denotes the

probability that a random pair (𝑥1, 𝑥2) ∈ ({0, 1}𝜆)2 satisfies 𝑓 ′𝑗,𝐼(𝑥1) = 𝑓 ′𝑗,𝐼(𝑥2); this

follows from the pairwise independence of ℋ𝑛. But this probability in turn is at most

𝛿 ·2(𝑘−1)𝜆, as an adversary that on input (𝐼, 𝑦1, . . . , 𝑦𝑘) guesses 𝑥1, . . . , 𝑥𝑘 uniformly at

random succeeds in batch inverting ℱ with probability at most 𝛿, but succeeds with

probability at least 2−(𝑘−1)𝜆 · CP𝑗.

This completes the proof of Claim 7.25.2.
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7.3.4 From OWPFs to Symmetric OWPFs

In this section, we will construct families of symmetric OWPFs in two different ways:

one construction is from general OWPF families, while the other is from one-way

power families (Definition 7.19). The two reductions will have different security losses.

As usual, we assume that all functions in a fixed OWPF family have input domain

{0, 1}𝑛.

Theorem 7.26. Let ℱ = {(𝑓1,𝐼 , . . . , 𝑓𝑘,𝐼)}𝐼∈ℐ be a (𝑠 + poly(𝑛), 𝛿)-secure family

of 𝑘-OWPFs with domain {0, 1}𝑛. Then, for any 𝐿, the function family ℱ ′ =

{(𝑓 ′𝐼 , 𝑓 ′𝐼 , . . . , 𝑓 ′𝐼)}𝐼∈ℐ is a (𝑠, 𝛿′)-secure family of symmetric 𝐿-OWPFs, where 𝑓 ′𝐼(𝑥||𝑗) =

𝑗||𝑓𝑗,𝐼(𝑥) and

𝛿′ = 𝛿 + 𝑘(1− 1
𝑘

)𝐿 min(𝛿 · 2(𝑘−1)𝑛, 1).

Remark 7.27. Note that if all 𝑓𝑗,𝐼 are injective with probability 1−𝜂, then a random

element of the family ℱ ′ is injective with probability at least 1− 𝜂.

Proof. Suppose that some size 𝑠 adversary 𝒜(𝑦′1, . . . , 𝑦′𝐿) wins the OWPF security

game for ℱ ′ with probability 𝜖, where 𝑦′𝑖 = 𝑗𝑖||𝑓𝑗𝑖,𝐼(𝑥𝑖) for each 𝑖. Let Win denote

the event that 𝒜 produces 𝐿 valid inverses (i.e. it wins the security game), and let

Distinct be the event that {𝑗1, . . . , 𝑗𝐿} contains at least 𝑘 distinct elements. We

prove two claims about the behavior of 𝒜.

Claim 7.27.1. Pr[Win ∧Distinct] ≤ 𝛿.

Proof. This follows from the (𝑠 + poly(𝑛), 𝛿)-security of ℱ . Namely, a 𝑘-OWPF ad-

versary 𝒜′ given (ℐ, 𝑦1, . . . , 𝑦𝑘) can select 𝑗1, . . . , 𝑗𝐿
$← [𝑘] at random and prepare a

𝐿-OWPF challenge for 𝒜 containing each 𝑦𝑖 in a location 𝑡 with 𝑗𝑡 = 𝑖 (not including

the challenge 𝑦𝑖 if there is no such location). This perfectly simulates the OWPF se-

curity game for 𝒜, and in the event that Win∧Distinct occurs, 𝒜′ obtains inverses

to all 𝑘 of its challenges. Thus, we conclude the claim by the security of ℱ .

Claim 7.27.2. Pr[Win | ¬Distinct] ≤ 𝛿 · 2(𝑘−1)𝑛.
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Proof. This also follows from the (𝑠 + poly(𝑛), 𝛿)-security of ℱ . Namely, a 𝑘-OWPF

adversary 𝒜′ given (ℐ, 𝑦1, . . . , 𝑦𝑘) can select 𝑗1, . . . , 𝑗𝐿
$← [𝑘] subject to the event

¬Distinct (this can be done efficiently) and prepare a 𝐿-OWPF challenge for 𝒜

containing 𝑦𝑗1 in location 1. Whenever 𝒜 successfully inverts its first challenge, 𝒜′

can guess its other 𝑘 − 1 challenges uniformly at random and win with probability

2−(𝑘−1)𝑛. Thus, we conclude the claim by the security of ℱ .

Finally, we note the combinatorial fact that Pr[Distinct] ≤ 𝑘(1 − 1
𝑘
)𝐿. Combining

the two claims and this fact, we obtain the statement of Theorem 7.26.

Remark 7.28. Setting 𝐿 ≈ 𝑘 log(1
𝛿
) < 𝑘2𝑛, we see that the family ℱ ′ defined above

is a (𝑠, 𝛿(1 + 𝑜(1)))-secure family of symmetric 𝐿-OWPFs.

Remark 7.29. If we instead set 𝑘 = 2, log1.1(𝑛) < 𝐿 < 𝑛
log1.1(𝑛) , and 𝛿 = 2−2𝑛+ 𝐿

2 , we

obtain a construction of 2−𝑛−𝐿 log(𝐿)·negl(𝑛)-secure symmetric 𝐿-OWPFs from suitably

strong (asymmetric) 2-OWPFs. This is sufficient for 𝐿-multi-collision resistant hash

functions (MCRHFs) if the original family ℱ is also statistically injective. While this

requires almost perfect security from the original OWPF family, we see this as a proof

of concept that the most general notion of OWPF can be used without obfuscation to

build more expressive primitives, such as MCRHFs.

We now give a construction of symmetric OWPFs from one-way power families

that has a milder security loss than the construction of Theorem 7.26; in the event

that the one-way power family is public coin, the security loss can be improved even

further.

Theorem 7.30. Let ℱ𝑘 = {(𝑓𝐼1 , . . . , 𝑓𝐼𝑘
)}(𝐼1,...,𝐼𝑘)∈ℐ𝑘 be a public coin (𝑘𝑠+poly(𝑛), 𝛿)-

secure one way 𝑘-power family with domain {0, 1}𝑛. Moreover, for any 𝑁 = 2𝜈(𝑛),

and suppose that ℋ is a family of programmable 𝑘-wise independent hash functions

from [𝑁 ] → ℐ, where ℐ is the key space for ℱ .8 Then, for any 𝐿, the function

family ℱ ′𝐿 = {(𝑓 ′ℎ, 𝑓 ′ℎ, . . . , 𝑓 ′ℎ)}ℎ∈ℋ is a (𝑠, 𝛿′)-secure family of 𝐿-OWPFs with domain
8This is possible when either (1) ℱ is public coin, or (2) 𝑁 = poly(𝑛, 𝑘), in which case sampling

from ℋ consists of sampling 𝑁 independent keys from ℐ.
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{0, 1}𝑛+𝜈(𝑛), where

𝑓 ′ℎ(𝑥||𝜌) = 𝜌||𝑓ℎ(𝜌)(𝑥)

and

𝛿′ = 𝛿 + (𝑘 − 1) · max
1≤𝑑≤𝑘−1

⎡⎣𝑑𝑑

𝑑!

(︃
𝑑

𝑁

)︃𝐿−𝑑

𝛿
1

⌈𝑘/𝑑⌉

⎤⎦ .

In the special case that 𝑁 = poly(𝑛, 𝑘) and a member of the “hash family” ℋ

consists of 𝑁 independently sampled 𝐼1, . . . , 𝐼𝑁 ∈ ℐ, we obtain the same conclusion

when ℱ is not public coin.

Remark 7.31. Note that if all members of the family ℱ are injective, then 𝑓 ′ℎ is

injective for every choice of hash function ℎ.

Proof. Suppose that some size 𝑠 adversary 𝒜(ℎ, 𝑦′1, . . . , 𝑦′𝐿) wins the OWPF security

game for ℱ ′𝑘 with probability 𝜖, where 𝑦′𝑖 = 𝜌𝑖||𝑓𝐼𝑖
(𝑥𝑖) and 𝐼𝑖 = ℱ .Samp(𝜌𝑖) for each 𝑖.

Let Win denote the event that 𝒜 produces 𝐿 valid inverses (i.e. it wins the security

game), and let 𝑑-Distinct be the event that {𝜌1, . . . , 𝜌𝐿} contains exactly 𝑑 distinct

elements. We prove the following claim about the behavior of 𝒜.

Claim 7.31.1. Pr[Win | 𝑑-Distinct] ≤ 𝛿
1

⌈𝑘/𝑑⌉ .

Proof. This follows from a two-part argument. First, we note that the family ℱ𝑑 is a

public coin (𝑠, 𝛿
1

⌈𝑘/𝑑⌉ )-secure one-way 𝑑-power family. This is because any algorithm

breaking ℱ𝑑 could be used ⌈𝑘/𝑑⌉ times independently to break ℱ𝑘.

Thus, we prove the claim by reducing from the one-wayness of ℱ𝑑. In particular,

an adversary 𝒜′ given 𝑑 independently drawn indices 𝐼1, . . . , 𝐼𝑑 and values 𝑦𝑖 = 𝑓𝐼𝑖
(𝑥𝑖)

to invert could use 𝒜 to break ℱ𝑑 in the following way.

• First, sample 𝐿 uniformly random values 𝜌1, . . . , 𝜌𝐿 ← [𝑁 ] such that there are

exactly 𝑑 distinct 𝜌𝑖. Call these values 𝜌*1, . . . , 𝜌*𝑑.

• Sample a hash function ℎ ← ℋ.CondGen(𝜌*, I), i.e., a hash function subject to

the constraints that ℎ(𝜌*𝑖 ) = 𝐼𝑖. Here, we think of the indices 𝐼𝑖 as public coins

so that this sampling is possible.
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• Run 𝒜(ℎ, 𝑦′1, . . . , 𝑦′𝐿), where 𝑦′𝑖 = 𝜌𝑖||𝑦𝑖.

By the conditional sampling property of ℋ (and 𝑘-wise independence), the input

distribution to𝒜 in this experiment is exactly the correct input distribution (a random

input subject to the constraint 𝑑-Distinct), so by the 𝛿
1

⌈𝑘/𝑑⌉ -hardness of ℱ𝑑, we

conclude the claim.

Finally, we note that by a counting argument,

Pr[𝑑-Distinct] =
(︃

𝑁

𝑑

)︃(︃
𝑑

𝑁

)︃𝐿

≤ 𝑑𝑑

𝑑!

(︃
𝑑

𝑁

)︃𝐿−𝑑

.

Thus, we conclude Theorem 7.30 by a standard probability calculation.

Corollary 7.32. Consider the case when ℱ is public coin, 𝑘 = 2 and 𝐿 = 3, and set

𝜈(𝑛) = 1
4 log(1

𝛿
). Then, we have

𝛿′ = 𝛿 + 1
𝑁2 𝛿

1
2 = 2𝛿,

with a new security parameter of 𝑛′ = 𝑛 + 1
4 log(1

𝛿
). For example, this yields a 2−𝑛′ ·

negl(𝑛′)-secure symmetric 3-OWPF family from 2−4𝑛/3 · negl(𝑛)-secure (public coin)

2-one-way power families (which suffice for 3-MCRHFs if ℱ is also injective), and a

2(−4/3+𝑜(1))𝑛 ·negl(𝑛)-secure symmetric 3-OWPF family from 2(−2+𝑜(1))𝑛-secure (public

coin) one-way 2-power families.

Corollary 7.33. Consider the case when ℱ is public coin, 𝐿 = 𝑘(1 + log(𝑛)) and set

𝜈(𝑛) = 𝑛
log(𝑛) . Then, we have

𝛿′ < 𝛿 + 𝑘𝐿2−𝑘𝑛,

yielding essentially a (𝑠, 𝛿)-secure symmetric 𝐿-OWPF family from 𝛿-secure (public

coin) one-way 𝑘-power families. This reduction suffices for many of the applications

in Section 7.5 if ℱ is injective.

Corollary 7.34. Consider the case 𝑁 = 𝑒𝑘·(𝑛𝑘)𝑐; then, setting 𝐿 = 𝑘+ 1
𝑐 log(𝑘𝑛) log(1

𝛿
),
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we obtain 𝛿′ < (1 + 𝑜(1))𝛿. This yields 𝐿-MCRHFs from any statistically injective9,

𝛿-secure one-way 𝑘-power families with 𝛿 <
(︁
2−𝑛−𝑘 log(𝑘)

)︁ 1
1−1/𝑐 .10 We therefore also ob-

tain 𝐿-MCRHFs from sufficiently secure (not necessarily injective) one-way 𝑘-power

families by first applying Construction 7.24 and then applying the construction of

Theorem 7.30.

7.4 Collision Resistance from OWPFs

Having defined and explored the foundations of OWPFs in Section 7.3, we now turn

to applications of OWPFs. In this section, we prove our main theorem on collision

resistance. As usual, we assume that all OWPFs used have domain {0, 1}𝑛.

Theorem 7.35. Suppose that ℱ is an (𝑠(𝑛), 𝛿(𝑛))-secure symmetric 2-OWPF-family

ℱ that is injective with probability 1− 𝜂. Then, for every 𝑚 = 𝑚(𝑛), the hash family

ℋ := ℋℱ ,𝑛,𝑚(𝑛) in Construction 7.36 is (𝑠′, 𝛿′)-collision-resistant for 𝑠′ = 𝑠 + poly(𝑛)

and 𝛿′ = 𝜂 + 𝛿 · 22𝑛−𝑚.

Construction 7.36. Given input and output lengths 𝑛 and 𝑚, and a symmetric 2-

OWPF-family ℱ = {(𝑓𝐼 , 𝑓𝐼)}𝐼∈ℐ given by algorithms (ℱ .Gen,ℱ .Eval), define the hash

family ℋ = ℋℱ ,𝑛,𝑚 by (ℋ.Gen,ℋ.Eval) as follows. Let ℓ = poly(𝜆) denote a bound on

the output length of 𝑓𝐼 for 𝐼 in the support of ℱ .Gen(1𝜆).

ℋ.Gen: On input 1𝜆 sample 𝐼 ← ℱ .Gen(1𝜆), and sample 𝐻out : {0, 1}ℓ → {0, 1}𝑚

from a programmable pairwise independent hash family. Output (𝐼, 𝐻out) as the

hash function description.

ℋ.Eval: On input
(︁
(𝐼, 𝐻out), 𝑥

)︁
, output 𝐻out(𝑓𝐼(𝑥)).

Corollary 7.37 (Follows from Theorem 7.35 and Section 7.3.3). If there exists a

(poly(𝑛), 2−𝑛 · negl(𝑛))-secure symmetric 2-OWPF family that is injective with prob-

ability 1 − negl(𝑛), then collision resistant hash families exist. Also, if there exists
9If ℱ is statistically injective, then ℱ ′ is statistically injective because with overwhelming prob-

ability, all 𝑁 of the sampled function keys 𝐼1, . . . , 𝐼𝑛 will be injective.
10This follows from the inequality 𝛿 < 2−(𝑛+𝜈(𝑛))2−𝐿 log(𝐿).

340



a (poly(𝑛), 2−1.6𝑛 · negl(𝑛))-secure symmetric 2-OWPF family (with no injectivity hy-

pothesis), then there exist collision-resistant hash families. Finally, if symmetric

2-OWPFs with nearly optimal security (i.e., security (𝑠, 2−2𝑛(1+𝑜(1))𝑠𝑐)) exist, then

CRHFs with nearly optimal security also exist.

Informally, we will define 𝐻𝑖,ℎout(𝑥) := ℎout(𝑓𝑖(𝑥)) for 𝑖 ∈ ℐ and ℎout ∈ ℋout and refer

to Construction 7.36 as the “outer hash construction.”

For any 2-OWPF family ℱ and associated outer hash construction ℋ = ℋℱ ,𝑚, we

first prove that it is hard to find a certain type of “outer” collisions in ℋ.

Definition 7.38 (Outer and Inner Collisions). Let ℱ be a 2-OWPF family and ℋ =

ℋℱ ,𝑚 be an associated outer hash construction. We say that (𝑥0, 𝑥1) ∈ {0, 1}𝑛 is an

outer collision with respect to (𝑖, ℎout) if 𝐻𝑖,ℎout(𝑥0) = 𝐻𝑖,ℎout(𝑥1) but 𝑓𝑖(𝑥0) ̸= 𝑓𝑖(𝑥1).

We say that (𝑥0, 𝑥1) is an inner collision if 𝑓𝑖(𝑥0) = 𝑓𝑖(𝑥1).

Our result is as follows.

Theorem 7.39 (Outer Hash Lemma). For any polynomial 𝑚(𝑛), there exists11 a

polynomial 𝑝(𝑛) such that for any
(︁
𝑠(𝑛) + 𝑝(𝑛), 𝛿(𝑛)

)︁
-secure family ℱ of symmetric

2-OWPFs, it is
(︁
𝑠(𝑛), 𝛿(𝑛) · 22𝑛−𝑚(𝑛)

)︁
-hard to find any outer collision in ℋℱ ,𝑚, given

(𝐼, 𝐻out)← ℋ.Gen(1𝑛).

Proof. Suppose for the sake of contradiction that there is an adversary𝒜 = {𝒜𝑛} that

violates the
(︁
𝑠(𝑛), 𝛿(𝑛) · 22𝑛−𝑚(𝑛)

)︁
-hardness of finding outer collisions for ℋ𝑓,𝑚. That

is, (1) the size of 𝒜𝑛 is at most 𝑠(𝑛), and (2) for infinitely many 𝑛, the probability that

(𝑋0, 𝑋1) is an outer collision with respect to (𝐼, 𝐻out) is some 𝜖(𝑛) > 𝛿(𝑛) · 22𝑛−𝑚(𝑛)

in the probability space defined by sampling (𝐼, 𝐻out)← ℋ.Gen(1𝑛) and (𝑋0, 𝑋1)←

𝒜𝑛(𝐼, 𝐻out).

We let Expt(0)
𝑛 and Pr(0)

𝑛 respectively denote the experiment described above and

the probability measure that it induces. In Expt(0), let Win denote the event that

(𝑋0, 𝑋1) is an outer collision with respect to (𝐼, 𝐻out). We now define a sequence of re-
11In fact, 𝑝(𝑛) = poly(𝑛, 𝑚(𝑛)) for some polynomial poly that depends only on the programmable

pairwise hash family ℋout.
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lated probability experiments
{︁
Expt(𝑗)

𝑛

}︁
𝑗∈{1,2,3}

, and let {Pr(𝑗)
𝑛 } denote the probability

measures that they induce.

• Let Expt(1)
𝑛 denote the following modification of Expt(0)

𝑛 :

1. Sample (𝐼, 𝐻out)← ℋ.Gen(1𝑛)

2. Sample 𝑋*0 , 𝑋*1
i.i.d.← {0, 1}𝑛.

3. Compute (𝑋0, 𝑋1)← 𝒜𝑛(𝐼, 𝐻out).

In Expt(1)
𝑛 , let Win denote the event that (𝑋0, 𝑋1) is an outer collision with

respect to (𝐼, 𝐻out). It holds that

Pr(1)
𝑛

[︁
Win ∧

(︁
(𝑋0, 𝑋1) = (𝑋*0 , 𝑋*1 )

)︁]︁
= Pr(0)

𝑛 [Win] · 2−2𝑛 ≥ 𝜖(𝑛)
22𝑛

.

• Let Expt(2)
𝑛 denote the following further modification.

1. Sample (𝐼, 𝑋*0 , 𝑋*1 ) as in Expt(1)
𝑛 . If 𝑓𝐼(𝑋*0 ) = 𝑓𝐼(𝑋*1 ), abort.

2. Sample 𝑍*0 , 𝑍*1
i.i.d.← {0, 1}𝑚(𝑛).

3. Sample 𝐻out ← ℋ.CondGen(Y*, Z*), where Y* = (𝑓𝐼(𝑋*0 ), 𝑓𝐼(𝑋*1 )) and

Z* = (𝑍*0 , 𝑍*1).

4. Compute (𝑋0, 𝑋1)← 𝒜𝑛(𝐼, 𝐻out).

In Expt(2)
𝑛 , let Win denote the event that (1) 𝑓𝐼(𝑋*0 ) ̸= 𝑓𝐼(𝑋*1 ) (so that the

experiment proceeds to completion) and (2) (𝑋0, 𝑋1) is an outer collision with

respect to (𝐼, 𝐻out). Then, it holds that

Pr(2)
𝑛

[︁
Win ∧

(︁
(𝑋0, 𝑋1) = (𝑋*0 , 𝑋*1 )

)︁]︁
= Pr(1)

𝑛

[︁
Win ∧

(︁
(𝑋0, 𝑋1) = (𝑋*0 , 𝑋*1 )

)︁]︁
≥ 𝜖

22𝑛
.

by the pairwise independence and programmability of ℋout (and the fact that

Z* was chosen uniformly at random).

• Let Expt(3) denote the following further modification.
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1. Sample (𝐼, 𝑋*0 , 𝑋*1 ) as in Expt(1). If 𝑓𝐼(𝑋*0 ) = 𝑓𝐼(𝑋*1 ), abort.

2. Sample 𝑍* ← {0, 1}𝑚(𝑛) and define 𝑍*0 = 𝑍*1 = 𝑍*.

3. Sample 𝐻out ← ℋ.CondGen(Y*, Z*), where Y* = (𝑓𝐼(𝑋*0 ), 𝑓𝐼(𝑋*1 )) and

Z* = (𝑍*0 , 𝑍*1).

4. Compute (𝑋0, 𝑋1)← 𝒜𝑛(𝐼, 𝐻out).

In Expt(3)
𝑛 , let the event Win be defined as in Expt(2)

𝑛 . Then

Pr(3)
𝑛 [(𝑋0, 𝑋1) = (𝑋*0 , 𝑋*1 )] ≥ Pr(3)

𝑛 [Win ∧ (𝑋0, 𝑋1) = (𝑋*0 , 𝑋*1 )]

= Pr(2)
𝑛 [Win ∧ (𝑋0, 𝑋1) = (𝑋*0 , 𝑋*1 )|𝑍*0 = 𝑍*1 ]

= Pr(2)
𝑛 [Win ∧ (𝑋0, 𝑋1) = (𝑋*0 , 𝑋*1 )]

Pr(2)
𝑛 [𝑍*0 = 𝑍*1 ]

(7.6)

≥ 𝜖 · 2−2𝑛

2−𝑚(𝑛) = 𝜖 · 2𝑚(𝑛)−2𝑛. (7.7)

where Eq. (7.6) follows because the event “Win∧ (𝑋0, 𝑋1) = (𝑋*0 , 𝑋*1 )” occurs

only when 𝑍*0 = 𝑍*1 .

We now deduce the existence of an
(︁
𝑠(𝑛) + poly(𝑛), 𝜖(𝑛) · 2𝑚(𝑛)−2𝑛

)︁
-attack on the

2-OWPF security of ℱ . The attack is given by the following algorithm ℬ = {ℬ𝑛}.

On input (𝐼, 𝑌 *0 , 𝑌 *1 ), ℬ𝑛 does the following:

1. Sample 𝑍* ← {0, 1}𝑚(𝑛)

2. Sample 𝐻out ← ℋout.CondGen(Y*, (𝑍*, 𝑍*))

3. Compute and output (𝑋0, 𝑋1)← 𝒜𝑛(𝐼, 𝐻out).

Suppose that as in the 2-OWPF security game, ℬ𝑛’s input (𝐼, 𝑌 *0 , 𝑌 *1 ) is generated by

sampling 𝐼 ← ℱ .Gen(1𝑛); 𝑋*0 , 𝑋*1
i.i.d.← {0, 1}𝑛; and 𝑌 *𝑏 = 𝑓𝐼(𝑋*𝑏 ) for each 𝑏 ∈ {0, 1}.

Then all of our named random variables are jointly distributed exactly as in Expt(3)
𝑛 .

Thus the output (𝑋0, 𝑋1) of ℬ𝑛 is equal to (𝑋*0 , 𝑋*1 ) (and in particular ℬ𝑛 has inverted

both 𝑌 *0 and 𝑌 *1 ) with probability at least 𝜖(𝑛) · 2𝑚(𝑛)−2𝑛 > 𝛿(𝑛).

This concludes the proof of Theorem 7.39.
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Finally, we give a proof of Theorem 7.35.

Proof of Theorem 7.35. Suppose there is some size 𝑠 adversary 𝒜 that on input

(𝐼, 𝐻out) outputs 𝑥1 ̸= 𝑥2 such that 𝐻𝐼,𝐻out(𝑥1) = 𝐻𝐼,𝐻out(𝑥2) with probability 𝛿′;

that is, 𝒜 finds a collision with this probability. Note that with probability 1−𝜂 over

the randomness of ℋ.Gen, no inner collisions exist in 𝐻𝐼,𝐻out . Moreover, note that by

Theorem 7.39, 𝒜 outputs an outer collision with probability at most 𝛿 · 22𝑛−𝑚. We

conclude Theorem 7.35 by a union bound.

7.4.1 Parameter Settings and Discussion

When we aim for polynomially-secure CRHFs from {0, 1}𝑛 → {0, 1}𝑚, the 2-OWPF

assumption required by Theorem 7.35– namely, 2𝑚−2𝑛 · negl(𝑛)-secure injective sym-

metric 2-OWPFs – is plausible for any 𝑚 = 𝜔(log(𝑛)).

We also obtain “optimally hard” collision resistant hash functions under plausible

assumptions (which, for example, are satisfied by our “double discrete logarithm”

candidate). The relevant result is sketched in Corollary 7.37, but to be more specific,

our hash function is collision-resistant with 2−𝑚(1−𝜖)-security assuming the existence

of a 2−2𝑛+𝜖𝑚 · negl(𝑛)-secure (injective symmetric) 2-OWPF, which is plausible for

any 𝑚 = 𝜔( log(𝑛)
𝜖

). This yields (for any super-logarithmic output length) a collision

resistant hash family with security nearly matching the trivial attack of outputting

two uniformly random points 𝑥1, 𝑥2. Moreover, by Section 7.3.3, the injectivity re-

quirement on the 2-OWPF family can be removed (with slightly more security loss).

In terms of optimality, we recall that by Theorem 7.7 (see Section 7.7), the con-

struction of CRHFs from 2−𝑛 ·negl(𝑛)-secure injective symmetric 2-OWPFs cannot be

quantitatively improved (with black box techniques); indeed, even one-way permuta-

tions with security 2−𝑛

negl(𝑛) do not imply CRHFs in a black-box way. Thus, constructing

2−𝑛 · negl(𝑛)-secure injective symmetric 2-OWPFs from 2−𝑛
2 · negl(𝑛)-secure one-way

permutations (or even 2−.99𝑛-secure one-way permutations) is an extremely interesting

open question.

As a final note on collision resistance, recall that Corollary 7.37 shows that CRHFs
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exist as long as sufficiently secure symmetric 2-OWPFs exist (without having to as-

sume injectivity), but none of our OWPF transformations currently suffice to build

CRHFs from asymmetric OWPFs. We leave the question of whether CRHFs can be

constructed from (sufficiently secure) arbitrary 2-OWPFs open.

7.5 Output Intractability from OWPFs

In this section, we generalize the proof strategy of Section 7.4 to build correlation

intractable hash functions for all 𝑘-ary output relations (“𝑘-output intractable hash

functions”) assuming suitably secure 𝑘-OWPF families exist. The hardness that we

need depends quantitatively on the sparsity of the relation 𝑅.

We now define the relevant objects and assumptions for our construction.

Definition 7.40 (Correlation Intractability). A hash family ℋ = {ℎ𝐼}𝐼∈ℐ (as in

Definition 7.11) is said to be (𝑠, 𝛿)-multi-input correlation intractable for a class ℛ of

relations if for every 2𝑘-ary relation 𝑅 ∈ ℛ and every size-𝑠(·) circuit ensemble {𝒜𝑛},

Pr
𝐼←Gen(1𝜆)

(𝑥1,...,𝑥𝑘)←𝒜𝜆(𝐼)

[(𝑥1, . . . , 𝑥𝑘, ℎ𝐼(𝑥1), . . . , ℎ𝐼(𝑥𝑘)) ∈ 𝑅] ≤ 𝑂(𝛿(𝜆)).

Additionally, ℋ is said to be 𝛿-multi-input correlation intractable with respect to ℛ if

ℋ is (𝑛𝑐, 𝛿) multi-input correlation intractable for every 𝑐 > 0, and ℋ is said to be

multi-input correlation intractable with respect to ℛ if ℋ is (𝑛𝑐, 𝑚(𝑛)−𝑐) multi-input

correlation intractable for every 𝑐 > 0.

Correlation intractability is a useful and versatile property of random oracles that

we would like to guarantee in the standard model. However, even a random oracle 𝒪

is not correlation intractable with respect to relations 𝑅 whose accepting inputs are

sufficiently dense. To avoid this problem, we restrict our relations 𝑅 to be sparse as

in Definition 7.41 below.

Definition 7.41 (Sparsity). For any relation 𝑅 ⊆ ({0, 1}*)𝑘× ({0, 1}*)𝑘, we say that
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𝑅 is 𝑝(·)-sparse if for any x ∈ ({0, 1}*)𝑘,

Pr
y←({0,1}𝑚)𝑘

[(x, y) ∈ 𝑅] ≤ 𝑝(𝑚).

When 𝑝 is a negligible function, we say simply that 𝑅 is sparse.

Ideally, we would construct a hash family that is correlation intractable for all

sparse relations. However, our OWPF-based construction is only able to handle 𝑘-

ary relations 𝑅 that depend only on the outputs of ℋ rather than the inputs.

Definition 7.42 (Output Intractability). We say that a hash family ℋ is (𝑠, 𝛿)-output

intractable for a class ℛ of relations if ℋ is (𝑠, 𝛿)-multi-input correlation intractable

for ℛ, and every relation in ℛ (1) requires that 𝑥1, . . . , 𝑥𝑘 are distinct, and (2) is

otherwise only a function of the outputs 𝑦𝑖 of ℋ (and not the inputs).

We note that requiring distinct inputs 𝑥1, . . . , 𝑥𝑘 is necessary in order for our no-

tion of sparsity to be applicable; this is because the random variable (𝐻(𝑥1), . . . , 𝐻(𝑥𝑘))𝐻←ℋ

cannot be a uniformly random 𝑘-tuple if 𝑥𝑖 = 𝑥𝑗 for some 𝑖 ̸= 𝑗. However, every 𝑘-ary

relation 𝑅(𝑦1, . . . , 𝑦𝑘) can be thought of as a union of at most 𝑘𝑘 relations to which

Definition 7.42 can be applied.

Moreover, we note that in Section 7.6.3, we are able to construct hash functions

that go beyond output intractability, at the cost of introducing indistinguishability

obfuscation as an additional assumption.

Finally, we discuss the notion of samplability of a relation, which will prove useful

in our security proof.

Definition 7.43 (𝑡-Samplability of a relation 𝑅). An output relation 𝑅 ⊆ ({0, 1}𝑚)𝑘

is samplable in time 𝑡 if there is a sampling algorithm 𝑆 such that (1) 𝑆(1𝑛, 1𝑘) runs

in time 𝑡 = 𝑡(𝑛), and (2) for every y ∈ 𝑅,

Pr[𝑆(1𝑛, 1𝑘) = 𝑦𝑖 for all 𝑖] = Pr
Y←({0,1}𝑚)𝑘

[Y = y | 𝑅(Y) = 1].

In other words, the distribution sampled by 𝑆(1𝑛, 1𝑘) is the uniform distribution on

the set of y for which 𝑅(y) = 1.
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We say that 𝑅 is efficiently samplable if it is samplable in time poly(𝑛, 𝑘).

Remark 7.44. Any output relation 𝑅 ⊆ ({0, 1}𝑚)𝑘 is samplable by a non-uniform al-

gorithm running in time 𝑡 = 22𝑘𝑚·poly(𝑚) by enumerating over all outputs (𝑦1, . . . , 𝑦𝑘),

computing each 𝑅(𝑦1, . . . , 𝑦𝑘) (using a circuit of size 2𝑘𝑚), and selecting a uniformly

random 𝑘-tuple out of those satisfying 𝑅.

Let ℛout
𝑘,𝑝,𝑡 denote the class of 𝑘-ary output relations

𝑅 = {𝑅𝑛 ⊆ ({0, 1}𝑛)𝑘(𝑛) × ({0, 1}𝑚)𝑘(𝑛)}

that are 𝑝-sparse and samplable in time 𝑡,12 and let ℛout
𝑘,𝑝 = ⋃︀

𝑡ℛout
𝑘,𝑝,𝑡 denote the class

of 𝑘-ary output relations that are 𝑝-sparse. For any 𝑅 ∈ ℛout
𝑘,𝑝 , we will abuse notation

and think of 𝑅 as both a relation on ({0, 1}𝑚)𝑘 (i.e. the outputs) and a relation on

({0, 1}𝑛)𝑘 × ({0, 1}𝑚)𝑘 (the output relation along with the constraint that the inputs

𝑥𝑖 are all distinct).

We now state our results on output intractability.

Theorem 7.45. Suppose that ℱ = {𝑓𝐼 : {0, 1}𝑛 → {0, 1}ℓ(𝑛)}𝐼∈ℐ} is a family of

symmetric 𝑘-OWPFs with security (𝑠 + poly(𝑛), 𝛿), and suppose further that ℱ is

injective with probability 1 − 𝜂. For every 𝑚 = 𝑚(𝑛), let ℋ := ℋℱ ,𝑛,𝑚(𝑛) denote

the hash family in Construction 7.36. Then, for every sparsity 𝑝, ℋ is (𝑠, 𝛿′)-output

intractable for ℛout
𝑘,𝑝 with 𝛿′ = 𝜂 + 𝛿 · 𝑝 · 2𝑘𝑛.

Moreover, if a relation 𝑅 ∈ ℛout
𝑘,𝑝,𝑡 is samplable in uniform time 𝑡, then there is a

uniform reduction to OWPF security with an additional loss of 𝑡 time.

Construction 7.46. Suppose we are given a symmetric 𝑘-OWPF family ℱ = {𝑓𝐼}

with input space {0, 1}𝑛 and output space {0, 1}ℓ(𝑛) given by algorithms (ℱ .Gen,ℱ .Eval).

We define the hash family ℋ = ℋℱ ,𝑛,𝑚 by (ℋ.Gen,ℋ.Eval) as follows.

ℋ.Gen: On input 1𝜆 sample 𝐼 ← ℱ .Gen(1𝜆), and sample 𝐻out : {0, 1}ℓ → {0, 1}𝑚

from a programmable 𝑘-wise independent hash family ℋout. Output (𝐼, 𝐻out) as

the hash function description.
12We may consider both uniform and non-uniform versions of this definition.
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ℋ.Eval: On input
(︁
(𝐼, 𝐻out), 𝑥

)︁
, output 𝐻out(ℱ .Eval(𝐼, 𝑥)).

Remark 7.47. For various parameter settings, Theorem 7.45 can be combined with

the reductions of Section 7.3.3 and Section 7.3.4 to obtain constructions from certain

asymmetric and/or non-injective OWPFs. See Proposition 7.23 and Section 7.3.4 for

some examples.

Informally, we will define 𝐻𝐼,ℎout(𝑥) := ℎout(𝑓𝐼(𝑥)) for 𝐼 ∈ ℐ and ℎout ∈ ℋout and

call Construction 7.46 the “(generalized) outer hash construction.”

We will prove Theorem 7.45 by generalizing the outer hash lemma (Theorem 7.39)

to the case of general output intractability. That is, for any 𝑘-OWPF family ℱ

and associated outer hash construction ℋ = ℋℱ ,𝑛,𝑚, and for any output relation

𝑅 ∈ ℛout
𝑘,𝑝,𝑡, we prove that ℋ is correlation intractable with respect to a modified

relation 𝑅ℱ :

Definition 7.48 (Post-Composed Relation 𝑅𝑓 ). For any output relation 𝑅 ⊆ ({0, 1}𝑚)𝑘

and any function 𝑓 : {0, 1}𝑛 → {0, 1}ℓ(𝑛), we define the post-composed relation 𝑅𝑓 by

𝑅𝑓 (x, y) = 1 if and only if 𝑅(y) = 1 and 𝑓(𝑥1), . . . , 𝑓(𝑥𝑘) are distinct.

In the case of collision resistance, this definition corresponds to the notion of an “outer

collision.”

Our result is as follows.

Theorem 7.49 (Generalized Outer Hash Lemma). Let 𝑡′ be the runtime of the sam-

pling algorithm ℋout.CondGen. If ℱ is a (𝑠+𝑡′+𝑡, 𝛿)-secure 𝑘-OWPF against uniform

adversaries and 𝑅 ∈ ℛout
𝑘,𝑝,𝑡, then ℋ is (𝑠, 𝛿 · 2𝑘𝑛

𝑝
)-correlation intractable with respect

to 𝑅ℱ (i.e. the relation 𝑅𝑓𝐼
depends on the hash function (𝐼,ℋout)← ℋ.Gen). More-

over, the same conclusion holds if ℱ is a (𝑠 + 𝑡′, 𝛿)-secure 𝑘-OWPF with respect to

nonuniform adversaries.

Proof. Suppose that some 𝑠-time adversary 𝒜, on input (𝐼, 𝐻out)← ℋ.Gen(1𝑛), pro-

duces with probability 𝜖 an input x such that 𝑅𝑓𝐼
(x, y) = 1, where 𝑦𝑖 = 𝐻𝐼,𝐻out(𝑥𝑖) for
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each 𝑖. Let the random variable X = (𝑋1, . . . , 𝑋𝑘) denote the output of 𝒜(𝐼, 𝐻out),

let 𝑌𝑖 = 𝐻𝐼,𝐻out(𝑋𝑖) for all 𝑖, and let the random variable Win denote the event that

𝑅𝑓𝐼
(X, Y) = 1. We will call Expt(0) the security game described above.

• Consider the following modified experiment Expt(1). A challenger generates

(𝐼, 𝐻out) ← ℋ.Gen(1𝑛), chooses uniformly random X* $← ({0, 1}𝑛)𝑘, and sends

(𝐼, 𝐻out) to 𝒜, which in turn outputs X. Then, we have

Pr(1) [Win ∧ (X = X*)] = Pr(0) [Win] · 2−𝑘𝑛 ≥ 𝜖

2𝑘𝑛
.

We note that if the variables 𝑌 *𝑖 := 𝑓𝐼(𝑋*𝑖 ) are not distinct in Expt(1) then 𝒜

necessarily loses, so we redefine the game to immediately end if this occurs.

• Consider the further modified experiment Expt(2), defined as follows. The chal-

lenger generates (𝐼, X*) as above, and additionally generates Z* $← ({0, 1}𝑚)𝑘

uniformly at random. The challenger then samples 𝐻out ← ℋ.CondGen(Y*, Z*)

and sends (𝐼, 𝐻out) to 𝒜. Then, we have

Pr(2) [Win ∧ (X = X*)] = Pr(1) [Win ∧ (X = X*)] ≥ 𝜖

2𝑘𝑛

by the programmability correctness of ℋout (and the fact that Z* was chosen

uniformly at random).

• Consider an experiment Expt(3) which differs from Expt(2) only in that Z* is

instead sampled by 𝑆(1𝑛, 1𝑘), the sampling algorithm associated to 𝑅. Then

Pr(3) [X = X*] ≥ Pr(3) [Win ∧X = X*]

= Pr(2) [Win ∧X = X*|𝑅(Z*) = 1] (7.8)

= Pr(2) [Win ∧X = X*]
Pr(2) [𝑅(Z*) = 1]

(7.9)

≥ 𝜖 · 2−𝑘𝑛

𝑝
. (7.10)

where Eq. (7.8) follows from our correctness requirement of the sampling algo-
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rithm 𝑆, Eq. (7.9) follows because the event “Win∧X = X*” occurs only when

𝑅(Z*) = 1, and Eq. (7.10) follows from the 𝑝-sparsity of 𝑅.

• Finally, we note that Expt(3) leads to a (𝑠 + 𝑡 + 𝑡′, 𝜖 · 2−𝑘𝑛

𝑝
)-attack on the 𝑘-

OWPF security of ℱ . The attack is as follows: an adversary 𝒜′ given (𝐼, Y*)

as in the 𝑘-OWPF security game can sample Z* ← 𝑆(1𝑛, 1𝑘), sample 𝐻out ←

ℋout.CondGen(Y*, Z*), and run 𝒜(𝐼, 𝐻out). This perfectly simulates Expt(3),

and hence 𝒜′ recovers X* (which in particular satisfies 𝑓𝐼(𝑋*𝑖 ) = 𝑌 *𝑖 for all 𝑖)

with probability at least 𝜖 · 2−𝑘𝑛

𝑝
.

As a uniform algorithm, the OWPF adversary 𝒜′ runs in time 𝑠 + 𝑡′ + 𝑡, but since

the sampling step Z* ← 𝑆(1𝑛, 1𝑘) is oblivious to the OWPF challenge Y*, by an

averaging argument there exists some string z* ∈ ({0, 1}𝑚)𝑘 such that 𝒜′ with Z* :=

z* hardwired also inverts Y* with probability 𝜖 · 2−𝑘𝑛

𝑝
, which yields a nonuniform

attack running in time 𝑠 + 𝑡′. This concludes the proof of Theorem 7.49.

Finally, we give a proof of Theorem 7.45.

Proof of Theorem 7.45. Suppose there is some size 𝑠 adversary 𝒜 that on input

(𝐼, 𝐻out) outputs x such that all 𝑥𝑖 are distinct and 𝑅(y) = 1, where 𝑦𝑖 = 𝐻𝐼,𝐻out(𝑥𝑖)

for all 𝑖, with probability 𝛿′. Note that with probability 1 − 𝜂 over the randomness

of ℋ.Gen, the function 𝑓𝐼 is injective, so by a union bound, 𝒜 wins its security game

and 𝑓𝐼 is injective with probability at least 𝛿′ − 𝜂. However, if 𝒜 wins its security

game and 𝑓𝐼 is injective, then 𝒜 has produced an input x such that 𝑅𝑓𝐼
(x, y) = 1.

But by Theorem 7.49, this can happen with probability at most 𝛿 · 2𝑘𝑛 · 𝑝. Thus, we

conclude that 𝛿′ ≤ 𝜂 + 𝛿 · 2𝑘𝑛 · 𝑝, as desired.

7.5.1 Examples Arising from Theorem 7.45

We now we describe some of the consequences of Theorem 7.45 for particular relations

𝑅 of interest.
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Collision Resistance

As a direct consequence of Theorem 7.45, we recover our theorem on collision resis-

tance, Theorem 7.35. The relevant output relation is defined as follows: 𝑅(𝑦1, 𝑦2) = 1

if and only if 𝑦1 = 𝑦2. 𝑅 has sparsity 2−𝑚, where 𝑚 is the output length of our

hash function 𝐻 : {0, 1}𝑛 → {0, 1}𝑚. Moreover, the set {y : 𝑅(y) = 1} is exactly

{(𝑟, 𝑟) : 𝑟 ∈ {0, 1}𝑚} and is therefore polynomial-time samplable (meaning that we

do not have to rely on a non-uniform reduction).

Thus, we recover Theorem 7.35 from Theorem 7.45, as the distinguishing advan-

tage 𝛿 produced by Theorem 7.45 is 𝛿 = 2−2𝑛 · 2𝑚 · negl(𝑛) for any negligible function

negl(𝑛).

Multi-Collision Resistance

By considering the 𝑘-ary output relation

𝑅(y) = 1 if and only if 𝑦1 = 𝑦2 = . . . = 𝑦𝑘,

we obtain a result on 𝑘-collision resistance [KNY17,BDRV18,BKP18,KNY18] for any

𝑘. This relation has sparsity 2−(𝑘−1)𝑚 (if the hash function has output length 𝑚), and

we can efficiently sample a random y such that 𝑅(y) = 1 by choosing a uniformly

random 𝑟 ← {0, 1}𝑚 and outputting (𝑟, . . . , 𝑟). Thus, by Theorem 7.45, we have the

following result.

Corollary 7.50. If there exists an injective symmetric OWPF family with security

(𝑠, 𝛿), then there exists a family of 𝑘-MCRHFs mapping {0, 1}𝑛 → {0, 1}𝑚 with secu-

rity roughly (𝑠, 𝛿 · 2𝑘𝑛 · 2−(𝑘−1)𝑚). (Moreover, this is proved by a uniform reduction.)

In particular, for any 𝑚 = 𝜔(log 𝑛), a plausible setting of 𝛿 yields a 𝑘-collision

resistant hash family whose security matches the trivial attack of outputting 𝑘 uni-

formly random points 𝑥1, . . . , 𝑥𝑘.

Finally, we consider the special case 𝑚 = 𝑛− log(𝑘) (the minimal compression to

guarantee 𝑘-collisions) and polynomial security, in which case we require an injective
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OWPF that is 2−𝑛−𝑘 log(𝑘) · negl(𝑛)-secure. For example, in the case of 𝑘 = 𝛼𝑛
log(𝑛) ,

we require 2−(1+𝛼)𝑛-hardness of a problem for which the naive algorithm has suc-

cess probability 2−
𝛼2𝑛2

log2(𝑛) . This is a substantially weaker OWPF assumption than is

required for collision resistance.

We note that by [BDRV18, KNY18], 𝑘-collision-resistant hash functions (for any

𝑘) suffice to build constant-round statistically-hiding commitments, another primitive

which we currently do not know how to construct from IO and one-way functions

alone.

Additionally, the quantitatively weaker (injective symmetric) OWPF requirements

for 𝑘-MCRHFs allow us to use reductions from both Section 7.3.3 and Section 7.3.4 to

obtain constructions from various kinds of asymmetric and/or non-injective OWPFs.

We refer the reader to these previous sections for details.

7.6 Constructions from IO and OWPFs

In this section, we combine OWPFs with the powerful notion of indistinguishability

obfuscation in the hopes of obtaining better constructions of hash functions. We

successfully obtain:

• A better quantitative tradeoff than in constructions based on general (i.e. asym-

metric) OWPFs, avoiding a costly intermediate reduction such as Theorem 7.26.

For example, we obtain a construction of CRHFs from IO and 2−𝑛·negl(𝑛)-secure

injective 2-OWPFs (without any symmetry requirement).

• A hash family that is correlation intractable with respect to a broader class of

relations than achievable with (symmetric) OWPFs alone. As described later,

this includes an instantiation of the Fiat-Shamir transform for an expressive

class of interactive proofs.

Moreover, our constuction is extremely simple: our hash function is an obfus-

cated (puncturable) PRF 𝒪(𝐹𝑠(·)), and we only require the existence of OWPFs in

the security proofs. As a byproduct, this construction confirms our intuition that
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obfuscated (puncturable) PRFs should satisfy many random oracle properties (in-

cluding collision-resistance, despite the negative result of [AS15]). Our work in this

section extends the proof technique of [KRR17], who show that an obfuscated punc-

turable PRF suffices for Fiat-Shamir assuming the existence of strong point function

obfuscation.

7.6.1 Preliminaries

Indistinguishability Obfuscation

An obfuscator for all circuits is a ppt algorithm 𝒪 such that for every circuit 𝐶,

𝒪(𝐶) is with probability 1 a circuit 𝐶 with the same functionality as 𝐶. Various

security properties may be defined for an obfuscator; the one most relevant to us is

indistinguishability obfuscation [BGI+01].

Definition 7.51 (Indistinguishability Obfuscation). 𝒪 is a (𝑠, 𝛿)-secure indistin-

guishability obfuscator (IO) if for all pairs of functionally equivalent circuits 𝐶0 and

𝐶1 of size |𝐶0| = |𝐶1| = 𝜆, and all circuits 𝒜 of size 𝑠(𝜆), it holds that

Pr[𝒜(𝒪(𝐶0)) = 1]− Pr[𝒜(𝒪(𝐶1)) = 1] ≤ 𝑂(𝛿(𝜆)).

Puncturable PRFs

Definition 7.52 (Puncturable PRF [BW13,BGI14,KPTZ13,SW14]). A PPRF fam-

ily is a family of functions

ℱ =
{︁
𝐹𝑛,𝑠 : {0, 1}𝑛 → {0, 1}𝑚(𝑛)

}︁
𝑛∈N,𝑠∈{0,1}ℓ(𝑛)

with associated (deterministic) polynomial-time algorithms (ℱ .Eval,ℱ .Puncture,ℱ .PuncEval)

satisfying

• For all 𝑥 ∈ {0, 1}𝑛 and all 𝑠 ∈ {0, 1}ℓ(𝑛), ℱ .Eval(𝑠, 𝑥) = 𝐹𝑛,𝑠(𝑥).

• For all distinct 𝑥, 𝑥′ ∈ {0, 1}𝑛 and all 𝑠 ∈ {0, 1}ℓ(𝑛), ℱ .PuncEval(ℱ .Puncture(𝑠, 𝑥), 𝑥′) =

ℱ .Eval(𝑠, 𝑥′).
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For ease of notation, we write 𝐹𝑠(𝑥) and ℱ .Eval(𝑠, 𝑥) interchangeably, and we write

𝑠{𝑥} to denote ℱ .Puncture(𝑠, 𝑥).

ℱ is said to be (𝑠, 𝛿)-secure if for every {𝑥(𝑛) ∈ {0, 1}𝑛}𝑛∈N, the following two

distribution ensembles (indexed by 𝑛) are 𝛿(𝑛)-indistinguishable to circuits of size

𝑠(𝑛):

(𝑆{𝑥(𝑛)}, 𝐹𝑆(𝑥(𝑛))) where 𝑆 ← {0, 1}ℓ(𝑛)

and

(𝑆{𝑥(𝑛)}, 𝑈) where 𝑆 ← {0, 1}ℓ(𝑛), 𝑈 ← {0, 1}𝑚(𝑛).

Theorem 7.53 ( [GGM84,KPTZ13,BW13,BGI14,SW14]). If {polynomially secure,

subexponentially secure, subexponential advantage-secure} one-way functions exist,

then for all functions 𝑚 : N → N (with 1𝑚(𝑛) polynomial-time computable from 1𝑛),

and all 𝛿 : N→ [0, 1] with 𝛿(𝑛) ≥ 2−poly(𝑛), there is a polynomial ℓ(𝑛) and a {polyno-

mially secure, (1
𝛿
, 𝛿)-secure, 𝛿-secure} PPRF family

ℱ𝑚 =
{︁
𝐹𝑛,𝑠 : {0, 1}𝑛 → {0, 1}𝑚(𝑛)}𝑛∈N,𝑠∈{0,1}ℓ(𝑛)

}︁
.

7.6.2 Warm-Up: Target Collision Resistance

To demonstrate the power of our technique, we first show that an obfuscated PPRF

𝒪(𝐹𝑠) is target collision-resistant (i.e. a UOWHF), only making use of the additional

assumption that injective one-way functions exist. This result may be of independent

interest – although one-way functions imply UOWHFs without additional assump-

tions [Rom90], we are not aware of any prior proof that 𝒪(𝐹𝑠) (with suitable padding)

is a UOWHF.13 This result also demonstrates that the planting technique can be used

without making any exponential assumptions.

Theorem 7.54. Let 𝑚 : N→ N be a polynomial time computable function such that

𝑛 > 𝑚(𝑛) ≥ 𝑛−𝑂(log 𝑛). Suppose that

• 𝒪 is a sub-exponential advantage-secure indistinguishability obfuscator.
13In contrast, a standard puncturing argument suffices to prove that 𝒪(𝐺 ∘𝐹 ′𝑠) is target collision-

resistant, where 𝐺 denotes a PRG and 𝐹 ′𝑠 denotes a PRF with output length 𝑚
2 .
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• ℱ =
{︁
{𝐹𝑛,𝑠 : {0, 1}𝑛 → {0, 1}𝑚(𝑛)}𝑠∈{0,1}ℓ(𝑛)

}︁
𝑛∈{0,1}*

is a family of 2−2𝑛-secure

puncturable PRFs. We will use the notation 𝐹𝑠(·) as shorthand.

• There exists a family ℱinj of (polynomially secure) injective one-way functions.

Then, there is a polynomial 𝑝 : N → N such that the hash family ℋ defined by

𝐻 ← 𝒪(𝑃𝑠) is a UOWHF family, where 𝑃𝑠 is a program padded to have size 𝑝(𝑛)

which on input 𝑥 ∈ {0, 1}𝑛 outputs 𝐹𝑠(𝑥).

Proof Overview We will show that if an adversary 𝒜 finds collisions in 𝐻 with no-

ticeable probability, then it also finds a random planted collision in 𝐻 with noticeable

probability. On the other hand, we hide the planted collision with an special-purpose

obfuscator (based on any injective one-way function), which exactly prevents 𝒜 from

finding the planted collision with noticeable probability.

Proof. The polynomial 𝑝(𝑛) is chosen to be large enough so that 𝒪 is 2−2𝑛-secure for

programs of length 𝑝(𝑛), and so that all circuits obfuscated in our proof’s hybrids

have size at most 𝑝(𝑛) (in particular, 𝑝(𝑛) must be at least as large as the description

of a function in ℱinj).

Suppose thatℋ is not a UOWHF – namely, for some ppt (𝒜0,𝒜1), some 𝑐 > 0, and

infinitely many 𝑛, in the experiment Expt(0) defined by sampling (𝑋, st) ← 𝒜0(1𝑛),

𝑆 ← {0, 1}ℓ(𝑛), 𝐻 ← 𝒪(𝑃𝑆) and 𝑋 ′ := 𝒜1(𝐻, st), it holds that

Pr(0) [Win] > 𝑚(𝑛)−𝑐 := 𝑚−𝑐,

where Win denotes the event that 𝑋 ̸= 𝑋 ′ but 𝐻(𝑋) = 𝐻(𝑋 ′).

• Consider an experiment Expt(1) which differs from Expt(0) only in that we ad-

ditionally (and independently) sample 𝑋* ← {0, 1}𝑛. Then clearly

Pr(1) [Win ∧ (𝑋 ′ = 𝑋*)] = Pr(0) [Win] · 2−𝑛 >
1

2𝑛𝑚𝑐
.

• Consider an experiment Expt(2) which differs from Expt(1) only in the definition

of 𝐻. Namely, 𝐻 is defined not as 𝒪(𝑃𝑆), but as 𝒪(𝑃𝑆,𝑋*,𝐹𝑆(𝑋*)), where 𝑃𝑠,𝑥*,𝑦*
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is the appropriately padded circuit (with 𝑠{𝑥*}, 𝑥*, and 𝑦* hard-coded) that

computes

𝑃𝑠,𝑥*,𝑦*(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝑦* if 𝑥 = 𝑥*

PuncEval(𝑠{𝑥*}, 𝑥) otherwise.

Because 𝑃𝑆,𝑋*,𝐹𝑠(𝑋*) is functionally equivalent to 𝑃𝑆, the 2−2𝑛 security of 𝒪

implies that

Pr(2) [Win ∧ (𝑋 ′ = 𝑋*)] ≥ Pr(1) [Win ∧ (𝑋 ′ = 𝑋*)]− 2−2𝑛 >
1

2𝑛𝑚𝑐
− 2−2𝑛.

• Consider an experiment Expt(3) which differs from Expt(2) only in the defini-

tion of 𝐻. Namely, 𝐻 is now sampled as 𝒪(𝑃𝑆,𝑋*,𝑌 *) for independently and

uniformly random 𝑌 * ← {0, 1}𝑚. Now the 2−2𝑛 punctured pseudorandomness

of 𝐹𝑠 at 𝑋* implies that

Pr(3) [Win ∧ (𝑋 ′ = 𝑋*)] ≥ Pr(2) [Win ∧ (𝑋 ′ = 𝑋*)]− 2−2𝑛 >
1

2𝑛𝑚𝑐
− 2 · 2−2𝑛.

• Consider an experiment Expt(4) which differs from Expt(3) only in that 𝑌 * is

now defined as 𝑌 * := 𝐹𝑆(𝑋). Then

Pr(4) [𝑋 ′ = 𝑋*] ≥ Pr(4) [Win ∧ (𝑋 ′ = 𝑋*)]

= Pr(3) [Win ∧ (𝑋 ′ = 𝑋*)|𝑌 * = 𝐹𝑠(𝑋)]

= Pr(3) [Win ∧ (𝑋 ′ = 𝑋*)]
Pr(3) [𝑌 * = 𝐹𝑠(𝑋)]

(7.11)

>
(︂ 1

2𝑛𝑚𝑐
− 2 · 2−2𝑛

)︂
2𝑚 ≥ 1

𝑚𝑐 · 2𝑂(log(𝑛)) = non-negl(𝑛),

where Eq. (7.11) follows because the event “Win ∧ (𝑋 ′ = 𝑋*)” occurs only

when 𝑌 * = 𝐹𝑆(𝑋).

• Finally, consider an experiment Expt(5) which differs from Expt(4) only in that

𝐻 is now sampled as 𝒪(𝑃𝑆,𝑓𝐼(𝑋*),𝑌 *), where 𝑓𝐼 ← ℱinj is sampled from the

family of injective one-way functions, and 𝑃𝑠,𝑤*,𝑦* is the circuit (with 𝑠, 𝑤*, and
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𝑦* hard-coded) that computes

𝑃𝑠,𝑤*,𝑦*(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝑦* if 𝑓𝐼(𝑥) = 𝑤*

𝐹𝑠(𝑥) otherwise.

Since 𝑓𝐼 is injective, we know that 𝑃𝑆,𝑓𝐼(𝑋*),𝑌 * is functionally equivalent to

𝑃𝑆,𝑋*,𝑌 * . We then have that Pr(5)[𝑋 ′ = 𝑋*] = non-negl(𝑛) by the security of

𝒪.

• However, this constitutes a polynomial-time inversion attack on ℱinj. Even if 𝒜

were given 𝑃𝑆,𝑓inj(𝑋*),𝑌 * in the clear, 𝒜 should be unable to produce an inverse

to 𝑓inj(𝑋*), as 𝑋* is uniformly random and independent of 𝑆 and 𝑌 *. This

contradicts the one-wayness of the family ℱinj, and so we have proved that ℋ

is a UOWHF.

7.6.3 Multi-Input Correlation Intractability

In this section, we generalize the proof strategy of Section 7.6.2 to build multi-input

correlation intractable hash functions – for a special class of relations that we define

below – assuming the existence of IO, puncturable PRFs, and suitably secure injective

𝑘-OWPF families. The hardness that we need depends quantitatively on the sparsity

of the relation 𝑅. Our proof relies on the observation that injective 𝑘-OWPFs allow

us to obfuscate programs of the form

𝑃𝑥1,...,𝑥𝑘
(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝑖 𝑥 = 𝑥𝑖 for some 𝑖

0 otherwise.

Moreover, by combining our result here with Construction 7.24, we obtain a con-

struction from suitably secure (asymmetric and non-injective) 𝑘-OWPFs.

We refer the reader to Section 7.5 for the relevant definitions about correlation in-

tractability. We again note that ideally, we would prove that an obfuscated (punc-

turable) PRF is correlation intractable for all sparse relations. Indeed, our proof
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reduces correlation intractability for any sparse 𝑅 to the existence of an (extremely

secure) special-purpose obfuscator that depends on 𝑅.14 When 𝑅 is a 𝑘-ary relation

that satisfies a “local sampleability” property, we construct such an obfuscator from

injective OWPFs.

Definition 7.55 (Local Approximate Sampling with Setup). A relation 𝑅 ⊆ ({0, 1}𝑛)𝑘×

({0, 1}𝑚)𝑘 is locally 𝜖-approximately samplable with 𝑡-setup if there are 𝑘 polynomial

time algorithms 𝑆1, 𝑆2, . . . , 𝑆𝑘 and a probabilistic algorithm Setup such that:

• Setup(1𝑛, 1𝑘) runs in time 𝑡 and outputs a string CRS of length poly(𝑛, 𝑘).

• For every (x, y) ∈ 𝑅,

Pr
CRS

[𝑆𝑖(𝑥𝑖; CRS) = 𝑦𝑖 for all 𝑖] ≥ 𝜖 · Pr
Y←({0,1}𝑚)𝑘

[Y = y | 𝑅(x, Y) = 1].

In other words, for every x, the distribution (𝑆𝑖(𝑥𝑖; CRS))𝑖 approximates the

uniform distribution on the set of y for which 𝑅(x, y) = 1 as long as this set is

non-empty.

We further restrict our attention to “distinct-input” relations, as we do in Sec-

tion 7.5.

Definition 7.56 (Distinct-Input Relation). A 𝑘-ary relation 𝑅 ∈ ({0, 1}𝑛)𝑘×({0, 1}𝑚)𝑘

is a distinct-input relation if 𝑅(x, y) = 0 whenever 𝑥𝑖 = 𝑥𝑗 for some 𝑖 ̸= 𝑗 ∈ [𝑘].

Let ℛ𝑘,𝑡,𝜖,𝑝 denote the class of distinct-input 𝑘-ary relations

𝑅 = {𝑅𝑛 ⊆ ({0, 1}𝑛)𝑘(𝑛) × ({0, 1}𝑚)𝑘(𝑛)}

that are 𝑝-sparse and locally 𝜖-approximately samplable with 𝑡-setup, and letℛ𝑘,𝜖,𝑝 :=⋃︀
𝑡ℛ𝑘,𝑡,𝜖,𝑝 denote the class of distinct-input 𝑘-ary relations that are 𝑝-sparse and locally

𝜖-approximately samplable (with any setup time).

We now state our most general result on multi-input correlation intractability.
14In general, it is not clear when such obfuscators exist, and upon which assumptions they can be

based.
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Theorem 7.57. Let 𝜈 : N→ R be a function satisfying 𝜈(𝑛) ≥ 2−poly(𝑛), let 𝑘 : N→ N

be any polynomial, let 𝑇, 𝑡 : N → N satisfy 𝑡(𝑛) ≤ 2poly(𝑛) and 𝑇 (𝑛) ≤ 𝑘(𝑛) · 2𝑛.

Suppose also that

• 𝒪 is a sub-exponentially secure15 indistinguishability obfuscator.

• ℱ =
{︁
{𝐹𝑛,𝑠 : {0, 1}𝑛 → {0, 1}𝑚(𝑛)}𝑠∈{0,1}ℓ(𝑛)

}︁
𝑛∈N

is a family of (22𝑘𝑛, 𝜈(𝑚(𝑛)) ·

2−2𝑘𝑛)-secure puncturable PRFs. We will use the notation 𝐹𝑠(·) as shorthand

for 𝐹𝑛,𝑠(·).

• There exists a (𝑇 + poly(𝑛), 𝛿)-secure injective 𝑘-OWPF family ℱinj for some

𝛿 = 2−𝑘𝑛 · 𝜖
𝑝
· 𝜈(𝑚).

Then, there is a polynomial 𝑝 : N → N such that the hash family ℋ defined by

𝐻 ← 𝒪(𝑃𝑠) is (𝑇, 𝜈(𝑚(·))-correlation intractable for ℛ𝑘,𝜖,𝑝, where 𝑃𝑠 is a circuit that

evaluates 𝐹𝑠 (padded to size 𝑝(𝑛)).

Moreover, for the restricted class ℛ𝑘,𝑡,𝜖,𝑝, the reduction to OWPF security can be

made uniform with an additional loss of 𝑡 time.

Remark 7.58. The restriction to distinct-input relations is primarily for ease of pre-

sentation; in particular, any 2𝑘-ary relation 𝑅 is a union of at most 𝑘𝑘 distinct-input

relations, so at the cost of parameters that are worse by a factor of 𝑘𝑘, Theorem 7.57

can be applied to sparse relations not necessarily satisfying the distinct-input condi-

tion.

Proof. The polynomial 𝑝(𝑛) is chosen to be large enough so that𝒪 is (𝑡+22𝑘𝑛, 𝜈(𝑚(𝑛))·

2−2𝑘𝑛 · 𝜖)-secure for programs of length 𝑝(𝑛), and so that all circuits obfuscated in our

proof’s hybrids have size at most 𝑝(𝑛).

Let 𝑅 be any relation in ℛ𝑘,𝑡,𝜖,𝑝, and suppose that an adversary 𝒜 breaks the

(𝑇, 𝜈(𝑚(·)))-correlation intractability of ℋ for 𝑅. We define Expt(0) to be the 𝑅-

correlation intractability game: 𝑆 ← {0, 1}ℓ(𝑛), 𝐻 ← 𝒪(𝑃𝑆), and X := (𝑋1, . . . , 𝑋𝑘)←
15Correlation intractability for any fixed relation 𝑅 can be achieved from a potentially weaker

assumption; 𝒪 and ℱ must be secure against circuits of size that depends on 𝑡 and the time to
decide 𝑅.
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𝒜(𝐻). Moreover, we define Y := 𝑌1|| . . . ||𝑌𝑘 := 𝐻(𝑋1)|| . . . ||𝐻(𝑋𝑘), and define Win

to be the event that 𝑅(X, Y) = 1. We then argue as follows.

• Consider an experiment Expt(1) which differs from Expt(0) only in that we ad-

ditionally (and independently) sample X* := (𝑋*1 , . . . , 𝑋*𝑘)← ({0, 1}𝑛)𝑘. Then,

Pr(1) [Win ∧ (X = X*)] = Pr(0) [Win] · 2−𝑘𝑛 > 𝜔(𝜈(𝑚)) · 2−𝑘𝑛.

Note that when (𝑋*1 , . . . , 𝑋*𝑖 ) are not distinct in Expt(1), 𝒜 necessarily loses, so

we re-define the game to immediately end if this event occurs.

• Consider an experiment Expt(2) which differs from Expt(1) only in the definition

of 𝐻. Namely, 𝐻 is sampled not as 𝒪(𝑃𝑆), but as 𝒪(𝑃𝑆,X*,Y*), where Y* :=

(𝑌 *1 , . . . , 𝑌 *𝑘 ) ← ({0, 1}𝑚)𝑘 is drawn uniformly at random, and 𝑃𝑠,x*,y* is the

appropriately padded circuit (with 𝑠, x*, and y* hard-coded) that computes

𝑃𝑠,x*,y*(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦*1 if 𝑥 = 𝑥*1

... ...

𝑦*𝑘 if 𝑥 = 𝑥*𝑘

𝐹𝑠(𝑥) otherwise.

Then, we have that

Pr(2) [Win ∧X = X*] ≥ Pr(1) [Win ∧X = X*]−𝑂(𝑘 · 2−2𝑘𝑛)

>
𝜔(𝜈(𝑚))

2𝑘𝑛
−𝑂(𝑘 · 𝜈(𝑚) · 2−2𝑘𝑛) = 𝜔(𝜈(𝑚))

2𝑘𝑛
.

where we have invoked the (22𝑘𝑛, 𝜈(𝑚(𝑛)) · 2−2𝑘𝑛) security16 of 𝒪 (𝑘 + 1 times)

and the (22𝑘𝑛, 𝜈(𝑚(𝑛)) · 2−2𝑘𝑛) security of ℱ (𝑘 times) to puncture the program

𝑃𝑆 at each 𝑋*𝑖 .

• Consider an experiment Expt(3) which differs from Expt(2) only in how Y* is
16This level of security is required because determining whether Win occurs requires deciding 𝑅.
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sampled. Specifically, conditioned on X* = x*, its distribution is uniform on

{y ∈ ({0, 1}𝑚)𝑘 : 𝑅(x*, y) = 1} whenever this set is non-empty. Then,

Pr(3) [X = X*] ≥ Pr(3) [Win ∧X = X*]

= 2−𝑘𝑛
∑︁
x*

Pr(3) [Win ∧X = X*|X* = x*]

= 2−𝑘𝑛
∑︁
x*

Pr(2) [Win ∧𝑅(x*, Y*) = 1 ∧X = X*|X* = x*]

= 2−𝑘𝑛
∑︁
x*

Pr(2) [Win ∧X = X* | X* = x*]
Pr(2) [𝑅(x*, Y*) = 1]

(7.12)

≥ 2−𝑘𝑛
∑︁
x*

Pr(2) [Win ∧X = X* | X* = x*]
𝑝

(7.13)

= Pr(2) [Win ∧X = X*]
𝑝

= 𝜔(𝜈(𝑚))
2𝑘𝑛 · 𝑝

where Eq. (7.12) follows because the event “Win ∧X = x*” occurs only when

𝑅(x*, Y*) = 1, and Eq. (7.13) follows from the 𝑝-sparsity of 𝑅.

• Consider an experiment Expt(4) which differs from Expt(3) only in how Y* is

sampled. Specifically, conditioned on X* = x*, Y* is equal to (𝑆𝑖(𝑥*𝑖 , CRS))𝑘
𝑖=1,

where CRS← Setup(1𝑛||1𝑘)}. Then,

Pr(4) [X = X*] =
∑︁

x*,y*
Pr(4)

[︂
X = X* | (X*, Y*) = (x*, y*)

]︂
Pr(4)

[︂
(X*, Y*) = (x*, y*)

]︂

= 2−𝑘𝑛
∑︁

x*,y*
Pr(4)

[︂
X = X* | (X*, Y*) = (x*, y*)

]︂
Pr(4)

[︂
Y* = y* | X* = x*

]︂

≥ 𝜖 · 2−𝑘𝑛
∑︁

x*,y*
Pr(3)

[︂
X = X* | (X*, Y*) = (x*, y*)

]︂
Pr(3)

[︂
Y* = y* | X* = x*

]︂
(7.14)

= 𝜖 · Pr(3) [X = X*] = 𝜖 · 𝜔(𝜈(𝑚))
2𝑘𝑛 · 𝑝

where Eq. (7.14) follows from the approximate sampling condition for (𝑆1, . . . , 𝑆𝑘)

and the fact that Expt(4) and Expt(3) only differ in the sampling of y*.

• Finally, consider an experiment Expt(5) which differs from Expt(4) only in that

361



𝐻 is now sampled as 𝒪(𝑃𝑆,W*,CRS), where 𝑊 *
𝑖 := 𝑓𝑖(𝑋*𝑖 ), (𝑓1, . . . , 𝑓𝑘)← ℱinj is

sampled from the OWPF family, and 𝑃𝑠,w*,crs is the circuit (with 𝑠, w*, and crs

hard-coded) that computes

𝑃𝑠,w*,crs(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝑆𝑖(𝑥; crs) if 𝑓𝑖(𝑥) = 𝑤*𝑖 for some 𝑖

𝐹𝑠(𝑥) otherwise.

Since the 𝑓𝑖 are all injective, we know that 𝑃𝑆,W*,crs is functionally equivalent

to 𝑃𝑆,X*,Y* for Y* = (𝑆𝑖(𝑋*𝑖 ; CRS))𝑘
𝑖=1. We then have that Pr(5)[X = X*] =

𝜖·𝜔(𝜈(𝑚))
2𝑘𝑛·𝑝 by the (𝑇 + 𝑡 + poly(𝑛), 𝜖 · 𝜈(𝑚) · 2−2𝑘𝑛)-security of 𝒪.

• However, the adversary’s success in Expt(5) contradicts the (𝑡 + poly(𝑛), 2−𝑘𝑛 ·
𝜖
𝑝
· 𝜈(𝑚))-security of ℱinj. In particular, a modified adversary ℬ given only

𝑊 *
𝑖 := 𝑓𝑖(𝑋*𝑖 ) for all 𝑖 could sample 𝑃𝑆,W*,CRS itself in time 𝑡 + poly(𝑛) and feed

this output to 𝒜, solving the batch inversion problem with probability 𝜖·𝜔(𝜈(𝑚))
2𝑘𝑛·𝑝 .

This constitutes a (𝑇 + 𝑡+poly(𝑛), 𝜖·𝜔(𝜈(𝑚))
2𝑘𝑛·𝑝 ) attack on the OWPF family, which

completes the claimed uniform reduction. Moreover, we note that the CRS

sampling algorithm Setup(1𝑛, 1𝑘) is oblivious to the OWPF challenge, so by an

averaging argument there exists some string crs such that ℬ with CRS := crs

hardcoded wins the OWPF security game with the same probability. This

completes the nonuniform reduction, proving correlation intractability for every

𝑅 ∈ ℛ𝑘,𝜖,𝑝.

7.6.4 Examples Arising from Theorem 7.57

We now we describe some of the consequences of Theorem 7.57 for particular relations

𝑅 of interest.

Collision Resistance

As a direct consequence of Theorem 7.57, we obtain a second construction of collision-

resistant hash functions. Similarly to before, the relevant relation is defined as follows:
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𝑅(𝑥1, 𝑥2, 𝑦1, 𝑦2) = 1 if and only if 𝑥1 ̸= 𝑥2 and 𝑦1 = 𝑦2. As noted in Section 7.5.1,

𝑅 has sparsity 2−𝑚, and the set {y : 𝑅(x, y) = 1} is efficiently sampleable in a

way that is oblivious to the input x. Thus 𝑅 is clearly locally 1-sampleable with

polynomial-time setup.

Thus, we obtain the following corollary.

Corollary 7.59. If 𝒪 is a sub-exponential advantage-secure indistinguishability ob-

fuscator, ℱ is a sub-exponential advantage-secure puncturable PRF, and there exists

a 𝛿-secure injective 2-OWPF family, then an 𝒪-obfuscation of a (sufficiently padded)

PRF chosen from ℱ is 𝛿 · 22𝑛 · 2−𝑚- collision resistant (by a uniform reduction).

This exactly matches the quantitative parameters of Theorem 7.35. However,

there are significant differences between the two results, namely:

• Corollary 7.59 requires the existence of sub-exponential advantage-secure IO,

but

• Corollary 7.59 only requires (injective) OWPFs rather than symmetric (injec-

tive) OWPFs. Moreover, Corollary 7.59 only requires that such OWPFs exist;

they are not required in the construction itself. Theorem 7.39, even when com-

bined with the reductions of Section 7.3, was unable to produce a construction

of CRHFs from (injective) asymmetric OWPFs.

Since the quantitative parameters of Corollary 7.59 match those of Theorem 7.35, this

also yields CRHFs with optimal security under plausible OWPF assumptions (and

IO).

Output Intractability

We also obtain an analog to Theorem 7.45; that is, a result on output intractability.

Corollary 7.60. If 𝒪 is a sub-exponentially secure indistinguishability obfuscator, ℱ

is a sub-exponentially secure puncturable PRF, and there exists a 𝛿-secure injective

𝑘-OWPF family, then a 𝒪-obfuscation of a (sufficiently padded) PRF chosen from
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ℱ is 𝛿 · 2𝑘𝑛 · 𝑝-output intractable for all 𝑘-ary output relations 𝑅. Moreover, this

reduction can be made uniform (with a time 𝑡 loss) if 𝑅 is 𝑡-samplable.

Again, this involves the same quantitative OWPF parameters as in Theorem 7.45,

with the same tradeoff as in the collision resistance example above.

An Example Falling Outside the Output Intractability Framework

All of our previous examples are special cases of output intractability as defined

in [Zha16] (albeit with possibly unbounded relations, unlike [Zha16]). On the other

hand, consider the following relation on ({0, 1}𝑛)2 × ({0, 1}𝑚)2, parametrized by a

matrix A ∈ F𝑚×𝑛
2 :

𝑅A(𝑥1, 𝑥2, 𝑦1, 𝑦2) = 1 if 𝑥1 ̸= 𝑥2 and 𝑦1 ⊕ 𝑦2 = A(𝑥1 ⊕ 𝑥2).

This is clearly not a special case of output intractability (the relation depends

explicitly on both the inputs and outputs). However, it falls into the framework

captured by Theorem 7.57. The relation 𝑅A has sparsity 2−𝑚. We can also sample,

for any 𝑥1 ̸= 𝑥2 ∈ {0, 1}𝑚, a random (𝑦1, 𝑦2) such that 𝑅A(𝑥1, 𝑥2, 𝑦1, 𝑦2) = 1 with the

algorithms

𝑆𝑖(𝑥𝑖; 𝑟) = 𝑟 ⊕A𝑥𝑖.

Thus, we see that an obfuscated PRF is correlation intractable for these relations as-

suming an injective 2-OWPF family with the exact same parameters as those required

for collision resistance.

In fact, this example extends to the following relation on ({0, 1}𝑛)2 × ({0, 1}𝑚)2,

parametrized by a matrix A ∈ F𝑑×𝑛
2 and a full-rank matrix B ∈ F𝑑×𝑚

2 , as long as

2−𝑑 = negl(𝑛):

𝑅A,B(𝑥1, 𝑥2, 𝑦1, 𝑦2) = 1 if 𝑥1 ̸= 𝑥2 and B(𝑦1 ⊕ 𝑦2) = A(𝑥1 ⊕ 𝑥2).
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The Fiat-Shamir Transform for Commit-Challenge-Response Proofs

Theorem 7.57 is also applicable in the case 𝑘 = 1: we give new sufficient conditions

for the provably secure instantiation of the Fiat-Shamir heuristic [FS87], for an ex-

pressive class of interactive proof systems. Namely, we consider the familiar example

of “commit-challenge-response” proofs.

Definition 7.61 (Commit-Challenge-Response Proof System). A 3-message proof

system Π = (𝑃, 𝑉 ) is called a commit-challenge-response proof system for a language

𝐿 if it satisfies the following properties.

1. The first message is sent by the prover to the verifier. This message, which we

denote by 𝑎, consists of a block-wise commitment (under a statistically binding

commitment scheme) to a string 𝑦 that is a function of both the common input

𝑥 and the prover’s private input 𝑤.

2. The second message, which we denote by 𝑒 and refer to as the verifier’s “chal-

lenge”, is sent by the verifier to the prover and is sampled uniformly at random

from a poly(𝜆)-size alphabet Σ.

3. The third and final message, which we denote by 𝑧, is sent by the prover to the

verifier, and consists of a decommitment to 𝑦𝑇 , i.e., a subset 𝑇 of the blocks of

𝑦. Here, 𝑇 is a function of the challenge 𝑒.

4. The verifier 𝑉 accepts if and only if (1) 𝑧 is a valid decommitment of 𝑎𝑇 , and

(2) the tuple (𝑥, 𝑦𝑇 , 𝑒) passes some efficient test Check, where 𝑦𝑇 is the value

to which 𝑎𝑇 was decommitted.

Examples of commit-challenge-response proof systems include the classical 3-

message zero knowledge protocol for 3-coloring [GMW86] as well as the 3-message zero

knowledge protocol for Hamiltonicity given by [FLS90] (with a slight modification).

As we will see shortly, it is possible to use Theorem 7.57 to instantiate the Fiat-

Shamir heuristic for any commit-challenge-response protocol (repeated in parallel).
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The key advantage to using our approach over that of [KRR17], or the more re-

cent work of [CCRR18], is that we prove security only assuming that IO and expo-

nentially secure one-way functions exist, rather than needing (exponentially secure)

input-hiding obfuscation for arbitrary multi-bit point functions (for [KRR17]) or expo-

nentially secure KDM-secure secret key encryption with respect to arbitrary functions

(for [CCRR18]).

Theorem 7.62. Let Π = (𝑃, 𝑉 ) be a commit-challenge-response proof system for

some language 𝐿 ∈ NP with soundness error 𝜇 = 𝜇(𝑛), where 𝑛 denotes the length

of a first message 𝑎. Moreover, let |Σ| = |Σ(𝑛)| be the number of possible challenges

associated to a single commit message 𝑎 ∈ {0, 1}𝑛, let 𝑁 = 𝜆|Σ|𝑛 (for arbitrarily

related 𝑛 = poly(𝜆)), and suppose that

• 𝒪 is a sub-exponential advantage secure indistinguishability obfuscator.

• ℱ =
{︁
{𝐹𝑛,𝜆,𝑠 : {0, 1}𝑁 → {0, 1}𝜆|Σ| log |Σ|}𝑠∈{0,1}ℓ(𝑛)

}︁
𝑛∈N

is a family of (poly(𝑁), 2−2𝑁)-

secure puncturable PRFs. We will use the notation 𝐹𝑠(·) as shorthand for

𝐹𝑛,𝑠(·).

• There exists a 𝛿-secure injective OWF family ℱinj for some 𝛿 = 2−𝑁 · ( 1
𝜇
)𝜆|Σ| ·

negl(𝑁) taking inputs of length 𝑁 .

Then, if Π is instantiated using a public key encryption scheme to commit (where

the public key is provided as a common reference string and commitment is encryp-

tion), then there is a polynomial 𝑝 : N→ N and a such that the hash family ℋ defined

by 𝐻 ← 𝒪(𝑃𝑠) instantiates the Fiat-Shamir heuristic17 for a 𝜆|Σ|-wise parallel repe-

tition of Π, where 𝑃𝑠 is a circuit (padded to size 𝑝(𝑛)) that evaluates 𝐹𝑠.

Moreover, if Π is honest verifier zero-knowledge, then the new 1-message proof

system Π′ is also zero knowledge (with a programmable CRS).

Remark 7.63. By Section 7.3.3, the same result holds if there exists a 𝛿′-secure (not

necessarily injective) OWF family for some 𝛿′(𝑁) = 2−𝑁 · 2𝑁
3 𝛿(𝑁

3 ).

17in the common reference string model
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Applying Theorem 7.62 to either the 3-colorability protocol of [GMW86] or the

Hamiltonicity protocol of [FLS90] yields a construction of NIZK arguments (in the

common reference string model). While NIZK proofs from IO and OWFs are already

known by [BP15], this yields a construction of NIZK arguments through the Fiat-

Shamir transform.

Proof of Theorem 7.62. Let 𝑥 be any string not in the language 𝐿, and let crs be

a random CRS for the commitment scheme used in Π. We would like to apply

Theorem 7.57 to the single input-output relation

𝑅 =
{︃

𝑅𝜆 :=
{︁
(a, e) : there exists z such that (a, e, z) is an accepting transcript for Π𝜆|Σ|

}︁}︃
,

which is a 𝜇𝜆|Σ|-sparse relation for any 𝑥 ̸∈ 𝐿. Unfortunately, it is not clear that 𝑅

satisfies the hypotheses of Theorem 7.57; namely, it is unclear whether 𝑅 is efficiently

samplable. This issue can be fixed with two modifications:

• We instantiate the commitment scheme using a public key encryption scheme,

where the public key is provided as a common reference string.

• We replace the relation 𝑅𝜆 with a relaxed relation �̃�𝜆,sk that is in ℛ1,0,𝜇𝜆|Σ| .

More specifically, the modified relation �̃�𝜆,sk is defined as follows:

�̃�𝜆,sk =
{︁
(a, e) : Check

(︁
𝑥, 𝑦

(𝑖)
𝑇 (𝑒(𝑖)), 𝑒(𝑖)

)︁
= 1 for all 𝑖, where y = Dec(sk, a)

}︁
.

We first note that �̃�𝜆,sk is a strict relaxation (superset) of 𝑅𝜆 when the commitment

scheme for Π is instantiated with a public key encryption scheme. This follows from

(1) the definition of a commit-challenge-response protocol, and (2) the fact that given

a first message 𝑎(𝑖), the only possible valid decommitment to any block of 𝑎(𝑖) is the

corresponding block of Dec(sk, 𝑎(𝑖)).

Moreover, it is easy to see that �̃�𝜆,sk is efficiently (locally) samplable. The sam-

pling algorithm is as follows: given a = 𝑎(1)|| . . . ||𝑎(𝜆|Σ|) and sk, compute y =
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Dec(sk, a). Then, for every 𝑖 ∈ [𝜆], do the following procedure: for every 𝑒 ∈ Σ,

run Check(𝑥, 𝑦
(𝑖)
𝑇 (𝑒), 𝑒), and then sample 𝑒(𝑖) uniformly at random from the set of 𝑒 for

which Check outputs 1. The sampling algorithm outputs e = 𝑒(1)|| . . . ||𝑒(𝜆|Σ|).

Since �̃�𝜆,sk is efficiently (locally) samplable and has sparsity 𝜇𝜆|Σ|, we conclude that

the hash familyℋ is correlation intractable for �̃�𝜆,sk by Theorem 7.57. Moreover, since

�̃�𝜆,sk is a relaxation of the relation 𝑅𝜆, we conclude that it is hard for an efficient

adversary 𝒜(𝐻) to produce any message a such that (a, 𝐻(a), z) is an accepting

transcript for any possible z. Thus, the Fiat-Shamir 1-message protocol is sound, as

desired.

To show that the protocol is zero knowledge (if Π is honest verifier zero knowledge),

we define the simulator Sim′ for the 1-message protocol in terms of an honest-verifier

simulator Sim for Π:

1. Sample a public key pk for the public key encryption scheme.

2. Run Sim(𝑥, pk) independently 𝜆|Σ| times to obtain simulated transcripts (�̃�(𝑖), 𝑒(𝑖), 𝑧(𝑖))𝑖≤𝜆|Σ|.

3. Letting ã = (�̃�(1), . . . , �̃�(𝜆|Σ|)), ẽ = (𝑒(1), . . . , 𝑒(𝜆|Σ|)), and z̃ = (𝑧(1), . . . , 𝑧(𝜆|Σ|)),

compute the obfuscated program �̃� = 𝒪(𝑃𝑠,ã,ẽ), where

𝑃𝑠,ã,ẽ(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
ẽ if 𝑥 = ã

𝐹𝑠(𝑥) otherwise.

4. Output ( ̃︂CRS, �̃�) =
(︁
(pk, �̃�), (ã, z̃)

)︁
.

The proof that Sim′ samples from a distribution computationally indistinguish-

able from an honest proof follows by a hybrid argument: first, convert (ã, ẽ, z̃) to a

collection (a, e, z) of 𝜆|Σ| honest Π-proofs by the security of Sim, and then convert

the obfuscated program 𝒪(𝑃𝑠,a,e) into an obfuscated program 𝒪(𝑃𝑠) by obfuscation

and puncturing security.
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7.7 A Proof of the Refined Asharov-Segev Bound

In this section, we prove Theorem 7.7 (a refined analysis of the Asharov-Segev im-

possibility result [AS15]). We now formally state Theorem 7.7.

Theorem 7.64. There exists an oracle Γ′ and an oracle Γ = (Γ′, CollFindΓ′) such

that no hash function built relative to Γ′ is collision-resistant relative to Γ, and such

that the following cryptographic primitives can be built relative to Γ′ (and are secure

relative to Γ):

1. (2 𝑛
15 , 2− 𝑛

40 )-secure indistinguishability obfuscation

2. (2 𝑛
50 , 2− 𝑛

50 )-secure one-way permutations.

3. A one-way permutation which is (𝑞(𝑛), 𝑞(𝑛)𝑐 ·𝑛·2−𝑛)-secure for every polynomial

𝑞 (for some absolute constant 𝑐).

As in [AS15], the oracle Γ is defined as follows.

Definition 7.65 (Asharov-Segev Oracle). The Asharov-Segev oracle Γ = (Γ′, CollFindΓ′) =

(𝑓,𝒪, Eval𝑓,𝒪, CollFind𝑓,𝒪,Eval
)︁

consists of four parts:

1. A uniformly random permutation 𝑓 = 𝑓 (𝑛) : {0, 1}𝑛 → {0, 1}𝑛 for every input

length 𝑛.

2. A uniformly random permutation 𝒪 = 𝒪(𝑛) : {0, 1}2𝑛 → {0, 1}2𝑛 for every input

length 𝑛.

3. The function Eval𝑓,𝒪, on input (𝑧, 𝑥) ∈ {0, 1}*×{0, 1}*, finds the unique string

𝐷||𝑟 such that 𝒪(𝐷||𝑟) = 𝑧 and outputs 𝐷𝑓 (𝑥). The combination of 𝒪 and Eval

will serve as our indistinguishability obfuscator.

4. A collision-finding oracle CollFind𝑓,𝒪,Eval: on any input 𝐶𝑓,𝒪,Eval (which is a

circuit with 𝑓,𝒪, and Eval-gates), CollFind outputs a random 𝑤
$← {0, 1}𝑡 (where

𝑡 is the input length of 𝐶), as well as a uniformly random 𝑤′ of the same input

length subject to the condition that 𝐶𝑓,𝒪,Eval(𝑤) = 𝐶𝑓,𝒪,Eval(𝑤′).
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We refer the reader to [AS15] for details on Γ (in particular, on the specific imple-

mentation of CollFind).

In [AS15], it is shown that CRHFs (implementable relative to Γ′) do not exist

relative to Γ (Claim 3.5 in [AS15]), (2 𝑛
15 , 2− 𝑛

40 )-secure indistinguishability obfuscation

exists relative to Γ (Theorem 3.8 in [AS15]), and (2 𝑛
50 , 2− 𝑛

50 )-secure one way per-

mutations exist relative to Γ (Theorem 3.20 in [AS15]). In particular, the one-way

permutation they prove secure is 𝑓 itself. We now strengthen their result to show

that 𝑓 is (nearly) 2−𝑛-secure.

Lemma 7.66. Let 𝑞(𝑛) denote any polynomial function of 𝑛. Then, any adversary

𝒜Γ which is given 𝑦 = 𝑓(𝑥) (for 𝑥
$← {0, 1}𝑛) and makes at most 𝑞(𝑛) queries to Γ

(each of size at most 𝑞(𝑛)) will output 𝑥 with probability at most 𝑞(𝑛)𝑐 · 𝑛 · 2−𝑛, for

some absolute constant 𝑐. The probability here is taken over the choice of 𝑥 as well

as the choice of oracles (𝑓 (𝑛), CollFind) (but holds for any oracle 𝒪).

The rest of this section is devoted to establishing Lemma 7.66 with the help

of [AS15]. The proof proceeds as follows.

Suppose that some adversary 𝒜Γ is given 𝑦 = 𝑓(𝑥) (for 𝑥
$← {0, 1}𝑛) and outputs

𝑥 with probability 𝜖. Define Win𝒜 to be the event that 𝑓(𝒜Γ(𝑦)) = 𝑦. Moreover,

define the CollHit𝑦,𝒜 to be the event that 𝒜 makes some call to the CollFind oracle

which outputs (𝑤, 𝑤′) with one of the following two properties:

1. Some 𝑓 -gate in the circuit evalutation 𝐶𝑓,𝒪,Eval(𝑤) or 𝐶𝑓,𝒪,Eval(𝑤′) has output

𝑦, OR

2. Some Eval-gate in 𝐶𝑓,𝒪,Eval(𝑤) or 𝐶𝑓,𝒪,Eval(𝑤′) has input (�̂�, 𝑎) such that 𝐷𝑓 (𝑎)

has an 𝑓 -gate with output 𝑦, where 𝐷 is the unique circuit such that 𝒪(𝐷, 𝑟) =

�̂� for some 𝑟.

Our refined analysis (as compared to [AS15]) is the following claim (and proof).

Claim 7.66.1. Given 𝒜 as above, there exists an algorithm ℬ𝑓,𝒪,Eval,CollFind which

makes at most 3𝑞(𝑛)3 queries to 𝑓 , 𝑞(𝑛) queries to Eval, and 𝑞(𝑛) queries to CollFind,
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such that

Pr[Winℬ ∧ CollHit𝑦,ℬ] ≥
𝜖

6 .

Proof. We may assume that

Pr[Win𝒜 ∧ CollHit𝑦,𝒜] ≥ 𝜖

2 ,

because otherwise we may just set ℬ = 𝒜. In the remaining case, we define ℬ as

follows: ℬ𝑓,𝒪,Eval,CollFind(𝑦) executes 𝒜𝑓,𝒪,Eval,CollFind(𝑦), except that whenever 𝒜 would

make a query 𝐶 to CollFind, it first samples a random 𝑧 ← {0, 1}𝑡 (where 𝑡 is the

input length of the circuit 𝐶), explicitly evaluates 𝐶𝑓,𝒪(𝑧) without invoking Eval18,

and checks if this evaluation has any 𝑓 -gate with output 𝑦. If so, ℬ returns the input

to this 𝑓 -gate and halts; otherwise, ℬ continues the execution of 𝒜.

It was already noted in [AS15] that ℬ makes at most 3𝑞(𝑛)3 queries to 𝑓 , and at

most 𝑞(𝑛) queries to Eval and CollFind, respectively. To prove the desired inequal-

ity, we define Guess𝑦,ℬ to be the event that ℬ successfully inverts 𝑦 in one of its

𝑧-experiments as described above. Then, we see that

Pr[Winℬ ∧ (Guess𝑦,ℬ ∨ CollHit𝑦,ℬ)] ≥ Pr[Win𝒜 ∧ CollHit𝑦,𝒜] ≥ 𝜖

2 .

This inequality follows by considering a third algorithm 𝒞 which acts as ℬ does but

does not halt after any 𝑧-experiment (𝒞 instead entirely ignores the outcome of this

experiment); it is clear that

Pr[Winℬ ∧ (Guess𝑦,ℬ ∨ CollHit𝑦,ℬ)] ≥ Pr[Win𝒞 ∧ CollHit𝑦,𝒞] = Pr[Win𝒜 ∧ CollHit𝑦,𝒜].

Next, we show that

Pr[Winℬ ∧ Guess𝑦,ℬ ∧ CollHit𝑦,ℬ] ≥
1
2 Pr[Winℬ ∧ CollHit𝑦,ℬ].

18In other words, for every query (�̂�, 𝑎) to Eval, ℬ will make exponentially many calls to 𝒪 to
brute-force recover 𝐷 from �̂�, and then evaluate 𝐷𝑓 (𝑎).
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To see this, we write

Pr[Winℬ ∧ Guess𝑦,ℬ ∧ CollHit𝑦,ℬ] =
𝑞∑︁

𝑖=1
Pr[Guess𝑖],

where Guess𝑖 is the event that ℬ does not invert 𝑦 in the first 𝑖− 1 𝑧-experiments it

runs, does not invert 𝑦 with one of the first 𝑖 − 1 CollFind queries, but does invert 𝑦

in the 𝑖th 𝑧-experiment. Similarly, we write

Pr[Winℬ ∧ CollHit𝑦,ℬ] ≤
𝑞∑︁

𝑖=1
[CollHit𝑖],

where CollHit𝑖 is the event that ℬ does not invert 𝑦 in the first 𝑖− 1 𝑧-experiments it

runs, does not invert 𝑦 with one of the first 𝑖 − 1 CollFind queries, but does invert 𝑦

in its 𝑖th CollFind query. Our claim now follows from the inqualities

Pr[Guess𝑖] ≥
1
2 Pr[CollFind𝑖],

which holds because given that no inversion has occurred in the first 𝑖−1 𝑧-experiments

and CollFind queries, the probability that the 𝑖th CollFind query produces (𝑤, 𝑤′) lead-

ing to a 𝑦-inversion is at most twice the probability that 𝑤 (the first input) leads to

a 𝑦-inversion, which is identical to the probability that the 𝑖th 𝑧-experiment leads to

a 𝑦-inversion (because 𝑧 and 𝑤 are both just uniformly random inputs to 𝐶𝑖, the 𝑖th

CollFind query).

Finally, we conclude the desired result by the calculation

Pr[Winℬ ∧ CollHit𝑦,ℬ] ≥ Pr[Winℬ ∧ Guess𝑦,ℬ ∧ CollHit𝑦,ℬ]

≥ 1
3 Pr[Winℬ ∧ (Guess𝑦,ℬ ∨ CollHit𝑦,ℬ)]

≥ 1
3 Pr[Win𝒜 ∧ CollHit𝑦,𝒜]

≥ 𝜖

6 .

To conclude Theorem 7.64, we combine Claim 7.66.1 with the following additional
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claim from [AS15] (minimally modified).

Claim 7.66.2 ( [AS15], Claim 3.27). If any algorithm ℬ makes at most 𝑄 queries to

𝑓 , Eval, and CollFind (each), then

Pr[Winℬ ∧ CollHit𝑦,ℬ] ≤ 𝛿 + 2
−𝛿2𝑛

3𝑄(𝑛)3

for every 𝛿 > 0.

In particular, setting 𝛿 = 3𝑛 ·𝑄(𝑛)32−𝑛, we see that

Pr[Winℬ ∧ CollHit𝑦,ℬ] ≤ (3𝑛 ·𝑄(𝑛)3 + 1)2−𝑛

for any such ℬ. Using the ℬ we produced from 𝒜 in Claim 7.66.1, we conclude that

𝜖

6 ≤ Pr[Winℬ ∧ CollHit𝑦,ℬ] ≤ (81𝑛 · 𝑞(𝑛)3 + 1)2−𝑛,

yielding the desired bound on 𝜖 = Pr[Win𝒜], and hence Theorem 7.64.
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Chapter 8

Correlation-Intractable Hash

Functions via Shift Hiding

8.1 Introduction

The random oracle model [BR93] is a powerful but controversial paradigm in cryp-

tography in which the proof of security of a cryptographic scheme assumes that a

certain publicly computable function 𝐻 that is used in the scheme behaves like a

random function to the adversary. The random oracle model is hugely influential in

designing concretely efficient cryptosystems, but is inherently problematic theoreti-

cally: how could a public, and therefore completely predictable, function behave in

all aspects like a random function? Indeed, Canetti, Goldreich and Halevi [CGH98]

demonstrated cryptographic schemes that one could prove secure in the random or-

acle model, but which are insecure no matter how one tries to instantiate the oracle

with a concrete function (or even a function chosen at random from an exponential-

size family). Nevertheless, this negative result and the notions introduced therein

led to a long line of research that asked what concrete properties of a random ora-

cle are instantiable in the standard model (see, e.g., [CMR98] for an early work in

this direction), and opened the door to groundbreaking positive results two decades

later [CCR16,KRR17,CCRR18,HL18,CCH+19,PS19].

The key notion introduced in [CGH98] is that of correlation intractability (CI),
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which captures a general and powerful form of cryptographic hardness for a hash

family ℋ. For any binary relation 𝑅(𝑥, 𝑦), a hash family ℋ is correlation-intractable

for 𝑅 if it is computationally hard (given a hash function ℎ ← ℋ) to find an input

𝑥 such that 𝑅(𝑥, ℎ(𝑥)) is true. For this definition to make sense, we require that the

relation 𝑅 is sparse: for any 𝑥, all but a negligible fraction of 𝑦 do not satisfy the

relation with 𝑥.

For decades, there was little progress on building correlation-intractable hash func-

tions in the standard model outside of a few extremely simple cases (such as one-way

functions). However, there has been much recent work [CCR16, KRR17, CCRR18,

HL18,CCH+19,PS19,BKM20,LV20a] on instantiating restricted but expressive vari-

ants of CI. Namely, these works made the following simplifications:

• Starting with [CCR16, HL18], additional efficiency requirements were placed

on the relation 𝑅. For example, one can require that 𝑅(𝑥, 𝑦) is decidable in

(bounded) polynomial time.

• Starting with [CCH+19], the relation 𝑅 was further specialized to represent an

efficiently computable function 𝑓 . A hash family ℋ is CI for 𝑓 if it is hard, given

ℎ, to find an input 𝑥 such that ℎ(𝑥) = 𝑓(𝑥).

While these restrictions may seem extreme, these limited forms of CI remain

expressive and powerful. In particular, even CI for efficiently computable functions

has implications for the instantiability of the Fiat-Shamir transform [FS87] in the

standard model [DNRS99,BLV03,CCR16] for constant-round public-coin interactive

proof systems. Most notably, [CCH+19, PS19] construct hash families ℋ that are

CI for efficiently computable functions under standard cryptographic assumptions

related to the learning with errors (LWE) problem, and use these hash families to

build the first lattice-based non-interactive zero-knowledge (NIZK) proof systems for

NP.

Let us recall the [CCH+19,PS19] constructions at a high level. [CCH+19] gives a

generic construction using fully homomorphic encryption (FHE) [Gen09,BV11]. The

construction is simple: a hash function ℎ← ℋ is parameterized by a FHE ciphertext
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Enc(𝑔) for some (dummy) function 𝑔. To evaluate ℎ(𝑥), simply homomorphically

evaluate 𝑔 on 𝑥 to obtain some ciphertext of the form Enc(𝑔(𝑥)). One can show that

this hash family is CI for a function 𝑓 if the FHE scheme is circular secure: since

𝑔 is computationally hidden, we can replace it in the security proof with a function

𝑔*(𝑥) = Decsk(𝑓(𝑥)) + 1 specifically designed to avoid 𝑓(𝑥) at the ciphertext level.

While this construction is both simple and generic, it has the significant drawback

that it relies on the circular security (rather than semantic security) of the FHE, and

therefore cannot be proven secure under the plain LWE assumption. Peikert and

Shiehian [PS19] then gave an ingenious construction of CI based on plain LWE.

Their construction uses the algebra of the [GSW13] FHE scheme to give a special-

purpose variant of the [CCH+19] approach that avoids reliance on circular security.

However, this requires making a number of changes to the hash function: at a high

level, they “downgrade” plain LWE-based GSW ciphertexts after evaluation to Regev

“ciphertexts” (where the plaintext space is Z𝑞 and decryption correctness is only

approximate) with circular dependencies. This results in a LWE-based CI hash family,

but loses the conceptual simplicity of the [CCH+19] construction.

8.1.1 Our Results and Techniques

Our main result is a new framework for constructing CI hash functions using a cryp-

tographic primitive called shift-hiding shiftable functions (SHSFs) [PS18], a twist on

private constrained pseudorandom functions [BW13,BGI14,KPTZ13]. A SHSF fam-

ily is a function family {𝐹msk} that additionally supports the ability to delegate a

constrained key sk𝑓 that enables computation of the map 𝑥 ↦→ 𝐹msk(𝑥) + 𝑓(𝑥), with-

out revealing the “shift function” 𝑓 . Shift-hiding shiftable functions were originally

introduced for the purpose of constructing private constrained PRFs, but have since

found several other applications [PS20,DVW20].

In a nutshell, we show that SHSFs are intimately tied to correlation intractability

via an extremely short proof. We further develop this framework in three directions.

1. We obtain a conceptually simple construction of CI for functions based on LWE.
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This construction can replace the FHE-based approach of [CCH+19,PS19] and

shows that the prior function family of [PS18] (constructed for an entirely dif-

ferent purpose) was already a good CI hash family.

2. We show that our construction transparently generalizes to new variants of

multi-input CI, which is currently poorly understood.

3. We give additional instantiations of our framework (which are new, in both

the single- and multi-input settings) using indistinguishability obfuscation and

other standard assumptions.

Moreover, we believe that our framework and new approach to constructing CI

hash functions may be useful for future progress on and understanding of this primi-

tive.

Lifting CI. We begin with a description of (1). Our main technique is a lifting

theorem (Theorem 8.23) that allows us to construct CI hash functions for complex

relations starting from CI hash functions for simpler relations. In the single-input

setting, it states that any SHSF family (for a function class ℱ) satisfying a very weak

form of correlation intractability is essentially already a CI hash family for ℱ .

Theorem 8.1 (Informal). Suppose that SHSF = {𝐹msk} is a family of SHSFs for

a function class ℱ , and suppose that 𝐹msk satisfies either of the following two one-

wayness properties:

• Given msk, it is hard to find an element in 𝐹−1
msk(0), or

• Given msk and a uniformly random target 𝑟, it is hard to find an element in

𝐹−1
msk(𝑟).

Then, the shifted evaluation algorithm of SHSF describes a hash family ℋ that is

correlation-intractable for all functions 𝑓 ∈ ℱ .

The CI hash function is extremely simple to describe. Hash keys are shifted keys

sk𝒵 for the all-zero function 𝒵, and hash function evaluation is simply the shifted
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evaluation using sk𝒵 which computes exactly the function 𝐹msk. (Philosophically, the

CI hash family constructed in this theorem is a form of “obfuscated PRF evaluation”

although shift-hiding functions are decidedly more complex to construct than PRFs.)

The proof of Theorem 8.1 is also simple.

Proof Sketch. If an adversary 𝒜, given a hash key sk𝒵 , finds an input 𝑥 such that

Hash(𝑥) := 𝐹sk𝒵 (𝑥) = 𝑓(𝑥) ,

then by the shift-hiding property of SHSF, 𝒜 also produces such an 𝑥 when given sk𝑓

instead of sk𝒵 . In that case, 𝒜 solves the equation

𝑓(𝑥) = 𝐹sk𝑓
(𝑥) = 𝐹msk(𝑥) + 𝑓(𝑥),

which is equivalent to the equation 𝐹msk(𝑥) = 0. This yields a 0-inversion attack on

𝐹msk. The “random target” version of the theorem holds by the same argument, using

a shifted key sk𝑓𝑟 for the function 𝑓𝑟(𝑥) = 𝑓(𝑥)− 𝑟.

We note that Theorem 8.1 could be proved under a weaker one-wayness assump-

tion, namely, that it is hard to find an input 𝑥 such that 𝐹msk(𝑥) = 0, given a shifted

key sk𝑓 for any pre-specified 𝑓” (as opposed to being given msk in the clear). How-

ever, we phrase Theorem 8.1 under the assumption that 𝐹msk is one-way (given msk in

the clear) because this is a clean, 𝑓 -independent security property, which also makes

it more amenable to instantiation/proof. In our constructions below, we prove the

stronger one-wayness property of 𝐹msk.

Instantiation from LWE. Given Theorem 8.1, it remains to construct an SHSF

family satisfying this one-wayness property. We show that a variant of the Peikert-

Shiehian SHSF [PS18] satisfies this.

Theorem 8.2 (Informal, see Theorem 8.24). Assuming the hardness of standard
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lattice problems (LWE and 1-dimensional SIS variants), the [PS18] SHSF1 is one-

way.

We now sketch our proof assuming some knowledge of LWE-based cryptography.

Proof Sketch. In the Peikert-Shiehian SHSF construction, msk = s ∈ Z𝑛
𝑞 is an LWE

secret, and

𝐹msk(𝑥) = ⌊sA𝑥 + u ·G−1(A𝑥)⌉𝑝 ∈ Z𝜇
𝑝

where G ∈ Z𝑛×𝑚
𝑞 is the gadget matrix, u ∈ Z𝑚

𝑞 is a uniformly random row vector,

A𝑥 ∈ Z𝑛×𝜇
𝑞 is a matrix constructed out of (uniformly random) matrices A1, . . . , Aℓ

using the gadget homomorphisms from [BGG+14], and ⌊·⌉𝑝 denotes the rounding

operation that (roughly speaking) keeps the top log 𝑝 bits of the argument and dis-

cards the rest. By [PS18], this family is shift-hiding under the LWE assumption and

(computationally) correct under the 1D-SIS assumption (Definition 8.21).

If the adversary finds an 𝑥 such that 𝐹msk(𝑥) = 0, there are two cases; the first

case is when G−1(A𝑥) is non-zero. This gives an approximate subset sum solution

for the instance sG + u, that is,

(sG + u)G−1(A𝑥) ∈ 𝑞Z𝜇 + [−𝑞

𝑝
,
𝑞

𝑝
]𝜇.

This violates (on whichever column of G−1(A𝑥) is nonzero) a natural one-dimensional

variant of SIS (Definition 8.19) that we show is as hard as worst-case lattice problems

provided that 𝑝 is large enough2 (see Section 8.2.3).

The second case is when the adversary finds an 𝑥 such that G−1(A𝑥) = 0, which

implies that A𝑥 = 0. We show that the adversary cannot make this happen without

violating SIS (again!) Roughly speaking, we use the fact that if we program the

matrices A𝑖 = AR𝑖 + ℎ𝑖G where R𝑖 are matrices with small entries and ℎ is the

description of a constant function with image 𝑦 ̸= 0 ∈ Z𝜇
𝑞 , the following equation

1Compared to [PS18], (1) our construction is slightly modified for ease of proof, and (2) particular
parameter settings are required.

2Some care must be taken to set parameters so that the SHSF security reductions still hold for
this choice of 𝑝.
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holds for each column a(𝑗)
𝑥 of A𝑥 due to the gadget homomorphisms of Boneh et

al. [BGG+14]:

a(𝑗)
𝑥 = Ar(𝑗)

𝑥 + 𝑦𝑗u1

(where u1 is the first standard basis vector) for some r(𝑗)
𝑥 that is a function of

R1, . . . , Rℓ. We know by assumption that A𝑥 = 0. Since 𝑦 ̸= 0, this means that

the adversary found a valid solution R𝑥 =
[︂
r(1)

𝑥 . . . r(𝜇)
𝑥

]︂
to the (inhomogenous)

SIS problem AR𝑥 = −u1𝑦
⊤ ∈ Z𝑛×𝜇

𝑞 , which is hard assuming that worst-case lattice

problems are hard. This finishes the proof of one-wayness.

Combining Theorem 8.2 with Theorem 8.1, we already recover a similar result

to [PS19]. That is, assuming the hardness of standard lattice problems, there ex-

ists a hash family that is correlation-intractable for all bounded-size functions. By

appealing to [CCH+19], this also gives a lattice-based NIZK argument system for

NP. However, our approach leverages this new, conceptually simple connection to

SHSFs and shows that [PS18] were “most of the way” to LWE-based CI. Besides the

extremely simple bootstrapping theorem, the missing piece was whether a natural

PRF construction [PS18] satisfies a one-wayness property given msk in the clear. A

similar question was previously studied for the GGM PRF family [CK16], but does

not appear to have been addressed for other concrete PRF families.

Next, we describe how our techniques extend to give new feasibility results in two

different directions:

• They immediately generalize to setting of multi-input CI, and

• They allow for new generic instantiations based on indistinguishability obfus-

cation.

We remark that constructing (single- or multi-input) CI hash functions even as-

suming indistinguishability obfuscation is far from straightforward. Indeed, the initial

works [CCR16,KRR17,HL18] in this line all made non-standard assumptions in ad-

dition to iO. Non-standard assumptions were required until the work of [CCH+19]
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which constructed single-input CI hash functions under circular-secure LWE. How-

ever, they only managed to do this for a tiny subset of relations that [CCR16,KRR17]

achieved. In particular, replicating the results of [KRR17] or even [CCR16] assuming

only iO (plus standard assumptions) is a challenging open problem.

8.1.2 Applications: Multi-Input CI from LWE and CI from

iO

So far, we have only discussed single-input CI; that is, we considered CI for rela-

tions with a single input 𝑥 and single corresponding output 𝑦. However, there is

a natural generalization of CI to relations with many input-output pairs: a hash

family ℋ is defined to be CI for a relation 𝑅(𝑥1, . . . , 𝑥𝑡, 𝑦1, . . . , 𝑦𝑡) if it is compu-

tationally hard (given a hash function ℎ ← ℋ) to find inputs 𝑥1, . . . , 𝑥𝑡 such that

(𝑥1, . . . , 𝑥𝑡, ℎ(𝑥1), . . . , ℎ(𝑥𝑡)) ∈ 𝑅. In contrast to the single-input case, multi-input

correlation intractability (for any 𝑡 ≥ 2) is a far less well-understood primitive. Per-

haps the simplest nontrivial example of multi-input CI is for the relation 𝑅 where

𝑅(𝑥1, 𝑥2, 𝑦1, 𝑦2) = 1 if and only if 𝑦1 = 𝑦2 but 𝑥1 ̸= 𝑥2. A CI hash family for 𝑅 is

precisely a collision-resistant hash family. However, most multi-input relations do not

correspond to security notions that are simple-to-understand or previously studied.

CI for more general multi-input relations also has interesting applications, including:

1. As a useful tool for the untrusted setup of public parameters [CCR16, Zha16]:

Multi-input CI hash functions allow 𝑛 parties 𝑃1, . . . , 𝑃𝑛 with inputs 𝑥1, . . . , 𝑥𝑛

to compute public outputs 𝑦𝑖 = 𝐻(𝑥𝑖) that can be used to generate public pa-

rameters for a multi-party protocol. Correlation intractability of 𝐻 is necessary

to ensure that a “bad CRS” is not accidentally (or maliciously) agreed on.

2. As a hash function in proof-of-work protocols [CCR16,CCRR18]: In the bitcoin

protocol [Nak08], a miner succeeds in adding a block to the blockchain when

she finds an 𝑥 such that 𝑦 = 𝐻(𝑥||𝐵𝑖) starts with a specified number of zeroes

(here, 𝐵𝑖 is the 𝑖-th block and once found, 𝑦 is placed in the next block 𝐵𝑖+1).

A very desirable property in this setting is that a single miner (or collection
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of colluding miners) cannot find multiple consecutive blocks with significantly

less effort than finding them sequentially. This property can be formalized as a

quantitatively precise3 variant of multi-input CI. For example, in the case of two

consecutive blocks, simplifying the setting a little, we require a 2-input CI for

the relation 𝑅 where 𝑅(𝑥1, 𝑥2, 𝑦1, 𝑦2) = 1 iff 𝑦1 and 𝑦2 start with a pre-specified

number ℓ of zeroes, and 𝑦1 is a suffix of 𝑥2.

Unfortunately, multi-input CI has so far proved hard to achieve. In particular, the

constructions of [CCR16, KRR17, CCRR18, CCH+19, PS19, BKM20] are only known

to achieve single-input CI. Holmgren and Lombardi [HL18] do achieve multi-input CI

for a large class of relations that they call locally sampleable relations. However, they

require both an indistinguishability obfuscation (iO) scheme [BGI+01] as well as an

“optimally-secure” one-way product function [HL18]. While iO can now be achieved

under relatively standard assumptions [JLS21,GP21,BDGM20b,WW21], the latter is

a very strong “brute force is optimal”-type assumption. Zhandry [Zha16] constructed

a hash family satisfying a very special form of multi-input CI called “output in-

tractability”. Output intractability is a form of CI for relations 𝑅(𝑥1, . . . , 𝑥𝑡, 𝑦1, . . . , 𝑦𝑡)

that depend only on the 𝑦𝑖, which captures some variants of application (1) above.

On the plus side, the construction is based on the exponential hardness of the Diffie-

Hellman problem.4 To summarize, multi-input CI is either known for a small class

of relations under standard assumptions, or for a larger class of relations under very

strong assumptions. We refer the reader to Section 8.1.3 for more details and further

comparisons.

Multi-Input CI via Shift-Hiding. One consequence of our shift-hiding technique

is a collection of feasibility results for multi-input correlation intractability based on

standard assumptions. We obtain two flavors of results: constructions from standard
3As noted in [CCR16], CI following the (poly, negl) security definition framework is insufficient

for this application. Instead, these protocols desire a concrete “moderately small” probability of
breaking CI and a tight gap between honest and adversarial parties’ probabilities of doing so in a
fixed runtime. We do not attempt to address this subtlety in this work.

4Moreover, given an inverse-subexponential lower bound on the sparsity of the relation, Zhandry’s
construction is secure under (the more standard) sub-exponential DDH.
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(lattice) assumptions, and constructions from indistinguishability obfuscation.

Our results are obtained via a generalization of our lifting theorem (Theorem 8.1)

to multi-input relations. This gives us three new constructions of multi-CI hash

functions under different assumptions:

• Our first construction considers the shifted linear relation

ℛlin = {(𝑥1, . . . , 𝑥𝑡, 𝑦1, . . . , 𝑦𝑡) :
∑︁

𝑤𝑖𝑦𝑖 =
∑︁

𝑤𝑖𝑓(𝑥𝑖) (mod 𝑝)}

where 𝑝 is some large integer (roughly 2𝜆), 𝑤𝑖 are small weights and 𝑓 is an

arbitrary polynomial-time computable function. We construct a multi-input CI

hash function for ℛlin under the same lattice assumptions as in the single-input

case (all approximation ratios are larger by a factor of 𝑡).

• Our second and third constructions consider the shifted general relation

ℛ = {(𝑥1, . . . , 𝑥𝑡, 𝑦1, . . . , 𝑦𝑡) : ℛ0(𝑦1 − 𝑓(𝑥1), . . . , 𝑦𝑖 − 𝑓(𝑥𝑖)) = 1}

where ℛ0 is any polynomial-time decidable relation. In particular, our second

construction achieves a multi-input CI hash function for ℛ under subexponen-

tial iO, subexponential OWFs, and (sufficiently) lossy functions.

Our Generalized Lifting Theorem. Given any output-only relation ℛ0, we say

that a hash family ℋ is ℛ0-output intractable if it is hard (given ℎ) to find distinct5

inputs 𝑥1, . . . , 𝑥𝑡 such that (𝑦1, . . . , 𝑦𝑡) ∈ ℛ0 for 𝑦𝑖 = ℎ(𝑥𝑖). Output intractability as

a standalone property (like collision-resistance) is known to be instantiable based on

standard cryptographic assumptions (e.g., lossy functions [PW08]) as we discuss in

Section 8.1.3. Our generalization of Theorem 8.1 states that SHSFs that are output-

intractable lead to interesting new CI constructions.

5For the relation
∑︀

𝑖 𝑤𝑖𝑦𝑖 = 0 implicitly described above, it is enough to assume that the inputs 𝑥𝑖

are not all equal for the relation to be sparse. We elaborate on this weakening of output intractability
as compared to [Zha16,HL18] in Section 8.2.
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Theorem 8.3 (Also see Theorem 8.23). Suppose that SHSF is a shift-hiding shiftable

function family. Assume that it is hard, given msk, to find distinct 𝑥1, . . . , 𝑥𝑡 such that

ℛ0(𝑦1, . . . , 𝑦𝑡) = 1 where 𝑦𝑖 = 𝐹msk(𝑥𝑖) and ℛ0 is some polynomial-time computable

relation. Then, there is a CI hash family for the shifted output relation

ℛ = {(𝑥1, . . . , 𝑥𝑡, 𝑦1, . . . , 𝑦𝑡) : ℛ0(𝑦1 − 𝑓(𝑥1), . . . , 𝑦𝑖 − 𝑓(𝑥𝑖)) = 1}

The proof of Theorem 8.3 follows from that of the single-input CI case mutatis

mutandis. Thus, all that remains is to construct SHSFs that are output-intractable.

We show three constructions.

Instantiation from LWE. To obtain a form of multi-input CI from LWE, we

combine Theorem 8.3 with a generalization of Theorem 8.2:

Theorem 8.4. Under standard lattice assumptions, there exists a SHSF family SHSF

satisfying the following form of correlation intractability: for every nonzero vector

𝑤 ∈ {−1, 0, 1}𝑡, it is hard (given msk) to find 𝑡 distinct inputs 𝑥1, . . . , 𝑥𝑡 such that

∑︁
𝑖

𝑤𝑖 · 𝐹msk(𝑥𝑖) = 0,

where the sum is computed modulo some (large enough) integer 𝑝.

Our modification of the Peikert-Shiehian [PS18] construction satisfies this more

general form of output intractability (for small linear equations), although the proof

(in “Case 2” above) is more complicated (see Section 8.4.5). Note that this is a strict

generalization of both single-input CI for functions (where 𝑡 = 1, 𝑤 = 1) and collision-

resistance (where 𝑡 = 2, 𝑤 = (−1, 1) and 𝑓 is the constant function). Previously, this

form of correlation intractability was only known assuming iO and (extremely hard)

one-way product functions [HL18].

Instantiation from IO + lossiness. Our second construction achieves correlation

intractability for shifted ℛ0-output relations for a large class of ℛ0 simultaneously
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(as opposed to linear ℛ0 as in the LWE case above). It can be thought of as a (non-

black-box) combination of our approach with a construction due to Zhandry [Zha16]

of output-intractable hash functions.

Theorem 8.5. Assume the existence of subexponential iO, subexponential OWFs, and

lossy functions with input domain {0, 1}𝑛 with a range of size ≤ 2ℓ in lossy mode.

Then, there exists a hash family ℋ that is CI for all (efficiently decidable) shifted

𝑡-ary output relations with sparsity at most 2−𝑡ℓ.

As a corollary, we conclude that additionally assuming the existence of extremely

lossy functions [Zha16], there is a hash familyℋ that is CI for all (efficiently decidable)

shifted 𝑡-ary output relations with sparsity 2−𝜔(𝑡). As another corollary, we note

that by combining Theorem 8.5 with [CCH+19], we obtain a construction of dual-

mode NIZKs for NP based on iO, (injective) lossy functions, and lossy encryption.

This closely matches the assumptions used in the work [HU19] but with a simpler

construction. The corollary follows because the hash family from Theorem 8.5 satisfies

“somewhere statistical correlation intractability.”

A Separation between Single-Input and Multi-Input CI. Finally, we show

that single-input and multi-input CI hash functions are fundamentally different prim-

itives by demonstrating a separation between them. This follows from our third new

CI instantiation, which is interesting even in the single-input setting.

Theorem 8.6. Assume the existence of subexponentially secure indistinguishability

obfuscation, subexponentially secure one-way functions, and a hash family ℋ such that

ℋ is ℛ0-output intractable, and for a random input 𝑋, ℎ𝑘(𝑋) is 2−𝑛-indistinguishable

from uniform (even given 𝑘). Then, there exists a hash family that is CI for shifted

ℛ0-relations.

This theorem says that assuming subexponential iO and one-way functions, shifted-

CI for ℛ0 can be constructed (semi-)generically from output intractability for ℛ0.

Theorem 8.6 is proved by combining Theorem 8.3 with a construction of an ℛ0-
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output intractable SHSF using iO, puncturable PRFs, and an output-intractable hash

function satisfying the above statistical requirement.

We note that as a corollary to Theorem 8.6, we obtain a construction of single-

input CI for all efficient functions from iO and one-way permutations.6

Corollary 8.7. If subexponential iO, subexponential OWFs, and (polynomially-secure)

OWPs exist, then there exists a hash family that is CI for all efficient functions, that

is, relations ℛ(𝑥, 𝑦) which is true iff 𝑦 = 𝑓(𝑥).

Corollary 8.7 follows from Theorem 8.6 by setting the output-intractable hash

function ℋ to be ℎ𝑘(𝑥) := 𝑓(𝑥) + 𝑘, where 𝑓 is a one-way permutation7 and 𝑘 is

a uniformly random key. This construction is notable in that it separates single-

input correlation intractability (theoretically) from two-input correlation intractabil-

ity: due to an impossibility result of Asharov-Segev [AS15], it is known that there is

no (black-box) construction of CRHFs from iO and one-way permutations (even with

exponential security). A similar separation was shown in [HL18], but the “positive

result” required assuming optimally hard one-way functions along with iO to obtain

CI for all efficient functions (and more). In contrast, our construction is based on

assumptions in the quantitatively standard regime.

8.1.3 Additional Related Work Discussion

Multi-Input Correlation Intractability We summarize what was previously

known regarding multi-input correlation intractability:

• For subexponentially sparse output relations ℛ0, output intractability for ℛ0

can be constructed based on lossy functions (following [Zha16], but relying

on less extreme forms of lossiness). Based on “extremely lossy functions”,
6As is common [GR13], one must be careful about which definitions of “one-way permutation”

suffice for this result. In our proof (which suffices for the separation), we assume that the one-way
permutation has domain {0, 1}𝑛. It turns out that the proof can be made to work for discrete
log-based one-way permutations, but does not appear to work for the (trapdoor) permutations
constructed based on iO [BPW16].

7It suffices for 𝑓 to be a OWF whose output distribution is close to uniform, e.g., a surjective
regular OWF.
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Zhandry [Zha16] constructs a hash family that is CI for all sparse (efficiently

decidable) output relations.8

• Similarly to Zhandry [Zha16], the construction 𝑥 ↦→ 𝑝(𝐻𝑘(𝑥)) (where 𝐻𝑘 is a

sufficiently shrinking collision-resistant hash function and 𝑝 is sampled from a

𝑡-wise independent hash family) also yields output intractability for subexpo-

nentially sparse (and efficiently decidable) output relations.

• Holmgren and Lombardi [HL18] construct output-intractable hash functions for

all sparse (even inefficient) 𝑅 based on “one-way product functions” (OWPFs),

OWFs satisfying a quantitiatively extreme assumption about the hardness of

inverting many one-way function challenges in parallel. OWPFs (in different pa-

rameter regimes) are existentially incomparable to lossy functions and CHRFs.

Under sufficiently strong assumptions, these hash families achieve quantitia-

tively better security than is possible for the previous two constructionss.

• Holmgren and Lombardi [HL18] also construct correlation-intractable hash fam-

ilies for relations 𝑅(x, y) that include all shifted output relations. However, they

rely on both indistinguishability obfuscation and OWPFs (as above).

Comparison with Peikert-Shiehian [PS19]. [PS19] constructs single-input CI

based on the LWE (or SIS) assumption. Their construction improves upon the con-

struction of [CCH+19] based on circular-secure FHE: by making use of special prop-

erties of the [GSW13] (and related) FHE schemes, they can remove the need for a

circular ciphertext Enc(sk, sk) in a specific GSW-based construction. By comparison,

we show that any SHSF that is one-way is also CI for bounded functions, and that

(essentially) the [PS18] SHSF is one-way. It does not seem easy to abstract out a sim-

ple, generic property of the [PS19] hash function that implies multi-input correlation

intractability.

Given our generalization to multi-input CI, it is also reasonable to ask whether the

[PS19] hash function also satisfies a form of multi-input CI. In fact, it appears likely
8This is a special case of Zhandry’s actual result; we refer the reader to [Zha16] for more details.
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that it satisfies CI for shifted-sum relations (just like our construction). However, a

proof of this fact requires some of our analysis in the security proof of our multi-input

CI construction (Theorem 8.4).

Comparison with Brakerski-Koppula-Mour [BKM20]. We also note that

our construction shares some conceptual similarity to the recent CI construction

of [BKM20]. We highlight the similarity here:

• In [BKM20], they show that a hash function 𝑥 ↦→ ℎ𝑘(𝑥) − 𝑟 (for a random

𝑟) is CI for a (low-degree) function 𝑓 by writing down an indistinguishable

key distribution 𝑘𝑓 so that ℎ𝑘𝑓
(𝑥) − 𝑓(𝑥) lies in some sparse set 𝑆𝑓 . Then,

ℎ𝑘𝑓
(𝑥)− 𝑓(𝑥) = 𝑟 typically has no (information theoretic) solution.

• In our construction, we show that a hash function 𝑥 ↦→ ℎ𝑘(𝑥)− 𝑟 is CI for 𝑓 by

writing down an indistinguishable key distribution 𝑘𝑓 so that ℎ𝑘𝑓
(𝑥) − 𝑓(𝑥) is

the evaluation of a PRF PRF𝑠(𝑥). Then, as long as it is computationally hard

to find a PRF inverse 𝐹−1
𝑠 (𝑟) (i.e. as long as 𝐹𝑠 is one-way), we can conclude

that the equation ℎ𝑘𝑓
(𝑥)− 𝑓(𝑥) = 𝑟 is computationally hard to solve.

8.2 Preliminaries

Some of the preliminaries below are adapted from [HL18,CCH+19].

8.2.1 Hash Functions and Correlation Intractability

Definition 8.8. For a pair of efficiently computable functions (𝜈(·), 𝜇(·)), a hash

family with input length 𝜈 and output length 𝜇 is a collection ℋ = {ℎ𝜆 : {0, 1}𝜅(𝜆) ×

{0, 1}𝜈(𝜆) → {0, 1}𝜇(𝜆)}𝜆∈N of keyed hash functions, along with a pair of p.p.t. algo-

rithms:

• ℋ.Gen(1𝜆) outputs a hash key 𝑘 ∈ {0, 1}𝜅(𝜆) describing a hash function ℎ.

• ℋ.Hash(𝑘, 𝑥) computes the function ℎ𝜆(𝑘, 𝑥) = ℎ(𝑥). We may use the notation

ℎ(𝑥) to denote hash evaluation when the hash family is clear from context.
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Following [HL18, CCH+19], we consider the security notion of correlation in-

tractability [CGH98] for multi-input relations.

Definition 8.9 (Multi-Input Correlation Intractability). For a given relation en-

semble 𝑅 = {𝑅𝜆 ⊆ ({0, 1}𝜈(𝜆))𝑡(𝜆) × ({0, 1}𝜇(𝜆))𝑡(𝜆)}, a hash family ℋ = {ℎ𝜆 :

{0, 1}𝜅(𝜆) × {0, 1}𝜈(𝜆) → {0, 1}𝜇(𝜆)} is said to be 𝑅-correlation intractable with secu-

rity (𝑠, 𝛿) if for every 𝑠-size adversary 𝒜 = {𝒜𝜆},

Pr
𝑘←ℋ.Gen(1𝜆)

x=(𝑥1,...,𝑥𝑡)←𝒜(𝑘)

[︂(︁
x, y = (ℎ(𝑥1), . . . , ℎ(𝑥𝑡))

)︁
∈ 𝑅

]︂
= 𝑂(𝛿(𝜆)).

We say that ℋ is 𝑅-correlation intractable with security 𝛿 if it is (𝜆𝑐, 𝛿)-correlation

intractable for all 𝑐 > 1. Finally, we say that ℋ is 𝑅-correlation intractable if it is

(𝜆𝑐, 1
𝜆𝑐 )-correlation intractable for all 𝑐 > 1.

A random oracle is correlation intractable for relations that are sparse, defined as

follows:

Definition 8.10 (Sparsity). A relation ensemble 𝑅 = {𝑅𝜆 ⊆ ({0, 1}𝜈(𝜆))𝑡(𝜆)×({0, 1}𝜇(𝜆))𝑡(𝜆)},

is 𝜌(𝜆)-sparse if for every x ∈ ({0, 1}𝜈(𝜆))𝑡(𝜆),

Pr
y←({0,1}𝜇(𝜆))𝑡(𝜆)

[(x, y) ∈ 𝑅] ≤ 𝜌(𝜆).

We say that 𝑅 is sparse if it is negl(𝜆)-sparse.

In this work, we focus on distinct input relations, i.e., relations 𝑅 such that for

any (x, y) ∈ 𝑅, we have that 𝑥𝑖 ̸= 𝑥𝑗 for any pair (𝑖, 𝑗).

We now describe some special cases of the above definition. Two of them (CI

for efficient functions and Output Intractability) have been discussed in prior works

[Zha16,HL18,CCH+19,PS19], while a third – which we call “CI for shifted relations”

– we introduce in this work.

Definition 8.11 (Correlation Intractability for Functions). For a given function en-

semble ℱ = {𝑓𝜆 : {0, 1}𝜈(𝜆) → {0, 1}𝜇(𝜆)}, a hash family ℋ = {ℎ𝜆 : {0, 1}𝜅(𝜆) ×
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{0, 1}𝜈(𝜆) → {0, 1}𝜇(𝜆)} is said to be 𝑓 -correlation intractable if it is 𝑅-correlation

intractable for the single-input relation

𝑅 =
{︂

(𝑥, 𝑓(𝑥)) : 𝑥 ∈ {0, 1}*
}︂

.

Formally, the requirement is that for every poly-size 𝒜 = {𝒜𝜆},

Pr
𝑘←ℋ.Gen(1𝜆)

𝑥←𝒜(𝑘)

[︂
ℎ(𝑘, 𝑥) = 𝑓(𝑥)

]︂
= negl(𝜆).

Definition 8.12 (Output Intractability). For a given relation ensemble 𝑅out =

{𝑅out,𝜆 ⊆ ({0, 1}𝜇(𝜆))𝑡(𝜆)}, a hash family ℋ = {ℎ𝜆 : {0, 1}𝜅(𝜆)×{0, 1}𝜈(𝜆) → {0, 1}𝜇(𝜆)}

is said to be 𝑅out-output intractable if it is 𝑅-correlation intractable for the relation

𝑅 =
{︂

(x, y) : y ∈ 𝑅out and 𝑥𝑖 ̸= 𝑥𝑗 for all 𝑖 ̸= 𝑗
}︂

.

Formally, the requirement is that for every poly-size 𝒜 = {𝒜𝜆},

Pr
𝑘←ℋ.Gen(1𝜆)

x=(𝑥1,...,𝑥𝑡)←𝒜(𝑘)

[︂
𝑥𝑖 ̸= 𝑥𝑗 for all 𝑖 ̸= 𝑗 and

(︁
y = (ℎ(𝑥1), . . . , ℎ(𝑥𝑡)) ∈ 𝑅out

]︂
= negl(𝜆).

In this work, we also consider a strengthening of 𝑅out-output intractability (as

defined above) in which the inputs 𝑥1, . . . , 𝑥𝑡 are not required to be distinct; of course,

this larger relation must still be sparse in order for correlation intractability to be

feasible.

Definition 8.13 (Not-All-Equal (NAE) Output Intractability). For a given relation

ensemble 𝑅out = {𝑅out,𝜆 ⊆ ({0, 1}𝜇(𝜆))𝑡(𝜆)}, a hash family ℋ = {ℎ𝜆 : {0, 1}𝜅(𝜆) ×

{0, 1}𝜈(𝜆) → {0, 1}𝜇(𝜆)} is said to be not-all-equal 𝑅out-output intractable if it is 𝑅-

correlation intractable for the relation

𝑅 =
{︂

(x, y) : y ∈ 𝑅out and 𝑥1, . . . , 𝑥𝑡 are not all equal
}︂

.

When 𝑡 is a constant, not-all-equal output intractability for a 𝑡-output relation
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𝑅out follows from standard output intractability for ≤ 𝑡𝑡 different relations defined

based on 𝑅out (there is one distinct-input relation for each partition of [t]). When 𝑡

is superconstant it becomes better to prove the security property directly (without

incurring a 𝑡𝑡 security loss).

Definition 8.14 ((Not-All-Equal) Multi-Input CI for Z𝑝-Shifted Relations). Let 𝑝 =

𝑝(𝜆) be an efficiently computable function of 𝜆.

For a given function ensemble ℱ = {𝑓𝜆 : {0, 1}𝜈(𝜆) → Z𝜇(𝜆)
𝑝 } and relation ensemble

𝑅out = {𝑅out,𝜆 ⊆ (Z𝜇(𝜆)
𝑝 )𝑡(𝜆)}, a hash family ℋ = {ℎ𝜆 : {0, 1}𝜅(𝜆) × {0, 1}𝜈(𝜆) →

Z𝜇(𝜆)
𝑝 } is said to be (𝑅out, 𝑓)-correlation intractable (respectively,not-all-equal (𝑅out, 𝑓)-

correlation intractable) if it is correlation intractable for the shifted relation

𝑅 =
{︂

(x, y) : 𝑥𝑖 ̸= 𝑥𝑗 for all 𝑖 ̸= 𝑗 and (𝑦1 − 𝑓(𝑥1), . . . , 𝑦𝑡 − 𝑓(𝑥𝑡)) ∈ 𝑅out

}︂
,

respectively,

𝑅NAE =
{︂

(x, y) : 𝑥1, . . . , 𝑥𝑡 are not all equal (𝑦1 − 𝑓(𝑥1), . . . , 𝑦𝑡 − 𝑓(𝑥𝑡)) ∈ 𝑅out.
}︂

We note that Definition 8.14 generalizes both Definition 8.11 and Definition 8.12/Def-

inition 8.13. In particular, when 𝑝(𝜆) is a power-of-two, Definitions 8.12 and 8.13 can

be recovered (identifying Z𝜇
𝑝 = {0, 1}𝜇 log 𝑝) by setting 𝑓 to be the all-zero function,

while Definition 8.11 can be recovered by setting 𝑅out = {0𝜇 ∈ Z𝜇
𝑝 = {0, 1}𝜇 log 𝑝}.

Finally, we describe an interesting special case of Definition 8.14 that we securely

instantiate under LWE.

Definition 8.15 (Weighted Sum Resistance mod 𝑝). Let 𝑡 = 𝑡(𝜆). A hash function

family ℋ with output space Z𝜇
𝑝 is weighted sum resistant mod 𝑝 with weights 𝑤 ∈

{−1, 0, 1}𝑡 if it is output intractable for the 𝑡-output relation

𝑅out =
{︂

y :
𝑡∑︁

𝑖=1
𝑤𝑖𝑦𝑖 = 0𝜇 (mod 𝑝)

}︂
.

Similarly, it is not-all-equal weighted sum resistant mod 𝑝 with weights 𝑤 if it is

392



NAE output intractable for 𝑅out.

We say that ℋ is weighted sum resistant if it is sum resistant for all nonzero weight

vectors 𝑤, and NAE-weighted sum resistant if it is NAE-sum resistant for all weight

vectors 𝑤 such that ∑︀𝑖 𝑤𝑖 ̸= 0. As shown in Section 8.4, our LWE-based hash family

satisfies (NAE) multi-input CI for (both variants of) shifted weighted sum resistance

mod 𝑝 with 𝑝 ≈ 2𝜆.

8.2.2 Shift-Hiding Shiftable Functions

We consider a weakening of the original definition of Peikert and Shiehian [PS18] that

does not give the adversary oracle access to the SHSF. We also consider a modified def-

inition with exact correctness rather than approximate correctness (this corresponds

to the “rounded version” of the [PS18] construction).

Definition 8.16 (Shift-Hiding Shiftable Functions [PS18]). Let 𝑝 = 𝑝(𝜆) be an effi-

ciently computable function of 𝜆. We define a family of shift-hiding shiftable functions

with input space {0, 1}𝜈(𝜆) and output space Z𝜇(𝜆)
𝑝 = {0, 1}𝜇(𝜆) log 𝑝(𝜆) for arbitrary poly-

nomial functions (𝜈(𝜆), 𝜇(𝜆)).

For a given class 𝒞 of function ensembles ℱ = {𝑓𝜆 : {0, 1}𝜈(𝜆) → Z𝜇(𝜆)
𝑝 }, a shift-

hiding shiftable function family SHSF = (Gen, Shift, Eval, SEval) consists of four PPT

algorithms:

• Gen(1𝜆) outputs a master secret key msk and public parameters pp.

• Shift(msk, 𝑓) takes as input a secret key msk and a function 𝑓 ∈ ℱ . It outputs

a shifted key sk𝑓 .

• Eval(pp, msk, 𝑥), given a secret key msk and input 𝑥 ∈ {0, 1}𝜈(𝜆), outputs an

evaluation 𝑦 ∈ Z𝜇(𝜆)
𝑝 .

• SEval(pp, sk𝑓 , 𝑥), given a shifted key sk𝑓 and input 𝑥 ∈ {0, 1}𝜈(𝜆), outputs an

evaluation 𝑦 ∈ Z𝜇(𝜆)
𝑝 .
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We will sometimes use the notation 𝐹sk(𝑥) to mean either Eval(sk, 𝑥) or SEval(sk, 𝑥)

when the context is clear.

We require that SHSF satisfies the following two properties:

• Computational Correctness: for any function 𝑓 ∈ 𝒞, given public param-

eters pp and a shifted key sk𝑓 ← Shift(msk, 𝑓) (for (pp, msk) ← Gen(1𝜆)), it is

computationally hard to find an input 𝑥 ∈ {0, 1}𝜈(𝜆) such that Eval(sk𝑓 , 𝑥) ̸=

Eval(msk, 𝑥) + 𝑓(𝑥) (mod 𝑝). In other words, the equation

𝐹sk𝑓
(𝑥) = 𝐹msk(𝑥) + 𝑓(𝑥)

holds computationally (mod 𝑝).

• Shift Hiding: for any pair of functions 𝑓, 𝑔 ∈ 𝒞,

sk𝑓 ≈𝑐 sk𝑔,

where sk𝑓 ← Shift(msk, 𝑓), sk𝑔 ← Shift(msk, 𝑔), and msk← Gen(1𝜆).

8.2.3 Learning with Errors and (One-Dimensional) Short In-

teger Solution

We begin with definitions of the learning with errors (LWE) and sort integer solution

(SIS) problems, following Peikert’s survey [Pei16]. We refer the reader to [Pei16] for

definitions of worst-case lattice problems such as SIVP and GapSVP.

Definition 8.17 (Learning with Errors). For integers 𝑛, 𝑚, 𝑞 ∈ N and error distri-

bution 𝜒, the learning with errors problem LWE𝑛,𝑚,𝑞,𝜒 is defined to be the following

average-case decision problem: distinguish between a uniformly random matrix-vector

pair

(A← Z𝑛×𝑚
𝑞 , u← Z𝑚

𝑞 )

394



and an approximate linear equation

(A← Z𝑛×𝑚
𝑞 , sA + e)

with s← Z𝑛
𝑞 and e← 𝜒𝑚.

Definition 8.18 (Short Integer Solution). For integers 𝑛, 𝑚, 𝑞, 𝐵 ∈ N, the short

integer solution problem SIS𝑛,𝑚,𝑞,𝐵 is defined to be the following search problem: given

a uniformly random matrix

A← Z𝑛×𝑚
𝑞

find a vector v ∈ Z𝑚
𝑞 such that ||v||∞ ≤ 𝐵 and Av = 0𝑛.

One-Dimensional SIS Variants

We also explicitly consider two different “one-dimensional” variants of SIS that come

up in our security proofs. One variant is the “1D-R-SIS problem” as defined by [BV15];

the other is a variant implicitly considered by [Ajt96] and explicitly considered by

[Reg04,BV15] that we will call “(approximate) Z𝑞-SIS.”9

These problems are no easier to solve than LWE, but for clarity, as was done

in [BV15,PS18], it is convenient to define them separately.

Definition 8.19 (Approximate Z𝑞-SIS). For positive integers 𝑞, 𝑚, 𝐵, 𝐸 ∈ N, the

approximate Z𝑞-SIS problem is defined as follows: given a uniformly random vector

v ∈ Z𝑚
𝑞 , find a nonzero vector z ∈ Z𝑚 such that:

• ||z||∞ ≤ 𝐵; and

• ⟨v, z⟩ (mod 𝑞) ∈ [−𝐸, 𝐸].

In [Reg04,BV15], it is shown that Z𝑞-SIS is as hard as worst-case lattice problems

in the following parameter regime (among others):

9The problem called “1D-SIS” in [BV15] is a special case of approximate Z𝑞-SIS; the two error
parameters (𝐵, 𝐸) in Definition 8.19 below are set to be equal to each other in [BV15].
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Fact 8.20. If 𝑞 = ∏︀𝑛
𝑖=1 𝑝𝑖 and each 𝑝𝑖 ≥ 𝐵 · 𝜔(

√︁
𝑚𝑛 log(𝑛)), then Z𝑞-SIS𝑚,𝑞,𝐵,𝐸=𝐵 is

as hard as SIVP𝐵·�̃�(
√

𝑚𝑛) and GapSVP𝐵·�̃�(
√

𝑚𝑛) for 𝑛-dimensional lattices.

However, we will be interested in a variant of approximate Z𝑞-SIS where 𝐸 is very

large compared to 𝐵; therefore, we appeal to a simple modulus switching [BV11]

reduction.

Claim 8.20.1. The approximate Z𝑞-SIS problem with parameters (𝑞, 𝑚, 𝛽, 𝜂) reduces

to the approximate Z𝑄-SIS problem with parameters (𝑄, 𝑚, 𝐵, 𝐸) if 𝛽 ≥ 𝐵 and

𝜂

𝑞
≥ 𝐸

𝑄
+ 𝑚𝐵

𝑄
+ 𝑚𝐵

𝑞

We will invoke this claim (see Section 8.4.5) in a setting where 𝑄≫ 𝑞 (in fact, we

will set 𝑞 ≪ 𝑄
𝐸

so that the first term in this sum is insignificant).

Proof. Given v ∈ Z𝑚
𝑞 (interpreted as an integer vector), define V ∈ Z𝑚

𝑄 so that each

coordinate satisfies 𝑉𝑖 =
⌈︁

𝑄
𝑞
𝑣𝑖 + 𝑟𝑖

⌋︁
, where 𝑟𝑖 is a uniformly random real number in

the range [0, 𝑄
𝑞
]. We then have that

V = 𝑄

𝑞
v + 𝜖

for a vector 𝜖 ∈ R𝑚 such that ||𝜖||∞ ≤ 1 + 𝑄
𝑞
. Note that V is a uniformly random

element of Z𝑚
𝑄 , so the reduction is valid. Now, assuming that the Z𝑄-SIS problem is

solved correctly, we are given a vector z such that

⟨V, z⟩ = 𝑄 · ℓ + 𝑒

and |𝑒| ≤ 𝐸. Then,

⟨v, z⟩ = 𝑞ℓ + 𝑞

𝑄
𝑒− 𝑞

𝑄
⟨𝜖, z⟩,

which breaks approximate Z𝑞-SIS with parameters (𝑞, 𝑚, 𝐵, 𝜂) as long as

𝜂 ≥ 𝑞

𝑄
𝐸 + 𝑚

𝑞

𝑄
(1 + 𝑄

𝑞
)𝐵
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= 𝑞

𝑄
𝐸 + 𝑞

𝑄
·𝑚𝐵 + 𝑚𝐵

In addition to approximate Z𝑞-SIS, we consider a slight variant of 1D-R-SIS [BV15]

due to [BKM17].

Definition 8.21 (1D-R-SIS [BV15, BKM17]). Let 𝑝 ∈ N and 𝑝1 < 𝑝2 < . . . < 𝑝𝑛 be

pairwise coprime and relatively prime to 𝑝. Let 𝑞 = 𝑝 · ∏︀𝑛
𝑖=1 𝑝𝑖. Then, for positive

integers 𝑚 ∈ N and 𝐵, the 1D-R-SIS𝑚,𝑝,𝑞,𝐵 problem is as follows: given a uniformly

random vector v ∈ Z𝑚
𝑞 , find a nonzero vector z ∈ Z𝑚 such that

• ||z||∞ ≤ 𝐵; and

• ⟨v, z⟩ (mod 𝑞) ∈ 𝑞
𝑝
· (Z + 1

2) + [−𝐵, 𝐵].

Fact 8.22. ( [Ajt96, BV15, BKM17]) For sufficiently large 𝑝𝑖 ≥ 𝐵 · poly(𝑛, log 𝑞),

solving 1D-R-SIS is at least as hard as approximating SIVP and SVP on arbitrary

𝑛-dimensional lattices to within 𝐵 · poly(𝑛) factors.

8.3 Correlation Intractability from Shift-Hiding Shiftable

Functions

In this section, we show that shift-hiding shiftable functions (Definition 8.16) that are

output intractable (Definitions 8.12 and 8.13) can be used to construct correlation-

intractable hash functions for shifted relations (Definition 8.14). As a special case, this

shows that SHSFs that are hard to invert yield correlation-intractable hash functions

for all circuits (Definition 8.11) supported by the SHSF function class 𝒞. In other

words, SHSFs allow us to lift a form of output intractability to a more general form

of correlation intractability.

Formally, let SHSF = (Gen, Shift, Eval) be a SHSF family that represents functions

of the form 𝐹sk : {0, 1}𝜈(𝜆) → Z𝜇(𝜆)
𝑝 and supports shifts for functions 𝑓 ∈ 𝒞, where 𝒞 is

some class that contains the all zero function ensemble. We then consider two hash

functions ℋplain,ℋshift:
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• ℋplain uses msk as a hash key, and computes the function ℎ(msk, 𝑥) = 𝐹msk(𝑥).

• ℋshift uses sk𝑍 as a hash key, where 𝑍 : {0, 1}𝜈 → Z𝜇
𝑝 is an identically zero

function. It computes the function ℎ(sk𝑍 , 𝑥) = 𝐹sk𝑍
(𝑥).

Theorem 8.23. Let 𝑅out be an efficiently decidable output relation. If SHSF is a

shift-hiding shiftable function family for 𝒞 and ℋplain is 𝑅out-output intractable, then

ℋshift is (𝑅, 𝑓)-correlation intractable for any 𝑓 ∈ 𝒞.

Moreover, if ℋplain is NAE-𝑅out-output intractable, then ℋshift is NAE-(𝑅, 𝑓)-CI

for any 𝑓 ∈ 𝒞.

Proof. Suppose that a PPT adversary 𝒜 breaks the (𝑅, 𝑓)-correlation intractability

of ℋshift, which means that 𝒜 wins the following challenger-based security game with

non-negligible probability:

1. The challenger samples msk← Gen(1𝜆).

2. The challenger samples sk = sk𝑍 ← Shift(msk, 𝑍) and sends sk to 𝒜.

3. 𝒜(sk) outputs x = (𝑥1, . . . , 𝑥𝑡).

4. 𝒜 wins if (i) the inputs 𝑥𝑖 are distinct, and (ii) for 𝑦𝑖 = 𝐹sk(𝑥𝑖) − 𝑓(𝑥𝑖), the

relation 𝑅out(y) holds.

Then, 𝒜 also wins each of the following modified security games with non-negligible

probability.

• Hybrid Hyb1: same as the honest security game, except that in step (2), we

sample

sk𝑓 ← Shift(msk, 𝑓)

This is indistinguishable from the original security game by the shift-hiding of

SHSF.

• Hybrid Hyb2: same as Hyb1, except that in step (4), we change the win condition

(ii) so that 𝒜 wins if for 𝑦𝑖 = 𝐹msk(𝑥𝑖), the relation 𝑅out(y) holds.

This is indistinguishable from Hyb1 by the computational correctness of SHSF.
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Finally, we show that 𝒜’s success in Hyb2 leads to an attack 𝒜′ on the 𝑅out-output

intractability of ℋplain. The attack works as follows:

1. The challenger samples msk← Gen(1𝜆) and sends msk to 𝒜′.

2. 𝒜′(msk) samples sk = sk𝑓 ← Shift(msk, 𝑓).

3. 𝒜′ then calls 𝒜(sk𝑓 ) and outputs x = (𝑥1, . . . , 𝑥ℓ).

4. By definition, 𝒜′ wins if (i) the 𝑥𝑖 are distinct, and (ii) for 𝑦𝑖 = 𝐹msk(𝑥𝑖), the

relation 𝑅out(y) holds.

By construction, 𝒜′ above wins with the same probability that 𝒜 wins in Hyb2,

contradicting the 𝑅out-output intractability of ℋplain.

The same argument as above applies to NAE-CI, with the condition (i) replaced

by “the inputs 𝑥𝑖 are not all equal.” This completes the proof of Theorem 8.23.

8.4 Construction of (Weighted) Sum-Resistant SHSF

We show the (weighted) sum-resistance of a variant of the Peikert-Shiehian construc-

tion of shift-hiding shiftable functions [PS18]. We start by describing the ingredients

that we use in the construction; the construction itself is described in Section 8.4.2.

We include proof sketches of computational correctness in Section 8.4.3 and shift-

hiding in Section 8.4.4 for completeness, although these follow the original [PS18]

result. Finally, the proof of sum-resistance (which is new to this work) is in Sec-

tion 8.4.5. Appropriate parameter balancing must be done to ensure that the three

security reductions are simultaneously valid for a single set of parameters.

8.4.1 The Ingredients

The Gadget Matrix. An important ingredient in many lattice-based constructions

is the gadget matrix G and the operator G−1 associated to it. Let

g = [1, 2, 4, . . . , 2⌈log 𝑞⌉−1] ∈ Z1×⌈log 𝑞⌉
𝑞
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The gadget matrix G = I𝑛 ⊗ g is a block diagonal matrix with copies of g on the

diagonal. In fact, we will extend G to 𝑚 columns for any 𝑚 ≥ 𝑛⌈log 𝑞⌉ by appending

zero columns.

An important property of G ∈ Z𝑛×𝑚
𝑞 is that for every vector v ∈ Z𝑛

𝑞 , there is a 0-1

vector v′ ∈ {0, 1}𝑚 such that Gv′ = v (mod 𝑞). This leads us to define the operator

G−1 : Z𝑛
𝑞 → {0, 1}𝑚 which has the property that

1. G−1(v) ∈ {0, 1}𝑚 for every vector v ∈ Z𝑛
𝑞 ; and

2. G ·G−1(v) = v (mod 𝑞).

We will extend G−1 to matrices V by acting on each column of the matrix separately.

We caution the reader that G−1 refers to a (non-linear) operator, and has little to do

with matrix inverses.

Gadget Homomorphisms. The key idea in the SHSF construction is the notion

of gadget homomorphisms originating from [BGG+14]. For LWE matrices A1, A2 ∈

Z𝑛×𝑚
𝑞 , define the sum and product matrices

A+ = A1 + A2 and A× = −A1G−1(A2) (8.1)

where G is the gadget matrix and G−1 is the bit decomposition operator defined

above. The gadget homomorphisms allow us to start from LWE encodings c1 ≈

s(A1 + 𝑥1G) and c2 ≈ s(A2 + 𝑥2G) w.r.t. an LWE secret s ∈ Z𝑛
𝑞 (where we suppress

the LWE errors for clarity) and compute

c+ ≈ s(A+ + (𝑥1 + 𝑥2)G) and c× ≈ s(A× + 𝑥1𝑥2G) (8.2)

In particular, this is accomplished by setting

c+ = c1 + c2 ≈ s(A1 + A2 + (𝑥1 + 𝑥2)G) = s(A+ + (𝑥1 + 𝑥2)G)
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and

c× = −c1G−1(A2) + 𝑥1c2

≈ −s(A1 + 𝑥1G) ·G−1(A2) + s(A2 + 𝑥2G) · 𝑥1

= s(−A1G−1(A2) + 𝑥1𝑥2G)

= s(A× + 𝑥1𝑥2G)

Crucially, this computation does not require the knowledge of either 𝑥1 or 𝑥2 to

compute the sum. It does require the knowledge of 𝑥1 (but not 𝑥2) to compute the

product. This asymmetry will prove invaluable to us down the line. We will ensure

that the inputs 𝑥𝑖 as well as the intermediate values in the computation are bits, in

order to control the error growth.

More generally, we define the following two algorithms.

• Gadget.MEval(𝑔, A1, . . . , Aℓ), the matrix homomorphism, takes as input a func-

tion 𝑔 : {0, 1}ℓ → {0, 1} and ℓ matrices A1, . . . , Aℓ and outputs the matrix

A𝑔 obtained by composing together the addition and multiplication operations

in Equation 8.1.

• Gadget.VEval(𝑔, 𝑥, c1, . . . , cℓ), the vector homomorphism, takes as input a func-

tion 𝑔 : {0, 1}ℓ → {0, 1}, an input 𝑥 = 𝑥1𝑥2 . . . 𝑥ℓ and LWE encodings

c1 = s(A1 + 𝑥1G) + e1, . . . , cℓ = s(Aℓ + 𝑥ℓG) + eℓ

of 𝑥 w.r.t. A1, . . . , Aℓ, and outputs a vector c𝑔 obtained by composing together

the addition and multiplication operations in Equation 8.2.

Correctness tells us that if c1, . . . , cℓ have poly(𝑛)-bounded error, then

c𝑔 ≈ s(A𝑔 + 𝑔(𝑥)G) (8.3)

where the difference is an LWE error whose magnitude is 𝑂((𝑛 log 𝑞)𝑂(𝑑𝑔)) where 𝜆 is

a security parameter and 𝑑𝑔 is the depth of the circuit 𝑔. Looking ahead, we make
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two important observations on these algorithms:

1. First, if the function 𝑔 is of a special form, namely 𝑔(𝑥1, 𝑥2) = ⟨𝑥1, 𝑓(𝑥2)⟩ for

some 𝑥 = 𝑥1||𝑥2, then Gadget.VEval does not require the knowledge of 𝑥1, rather

only 𝑥2. Furthermore, while we required all the numbers in a computation to

be bits so far, a terminal inner product (i.e. an inner product at the end of a

computation) can support 𝑥1 being a vector consisting of large numbers. These

observations are due to [AFV11,GVW15] where they were used to construct a

predicate encryption scheme.

2. Secondly, if the first coordinate of s is 1 (which we can set without loss of

security) then we have

𝑐𝑔 ≈ sa𝑔 + 𝑔(𝑥) (8.4)

where 𝑐𝑔 is the first coordinate of c𝑔 and a𝑔 is the first column of A𝑔. This is

because the first column of G is the unit vector with 1 in the first coordinate

and 0 everywhere else.

FHE with Almost Linear Decryption. We require the existence of a (secret-

key) FHE scheme where the secret key fsk is a vector s ∈ Ẑ︀𝑛𝑞 , ciphertexts fct of

messages 𝑚 ∈ Z𝑝 are vectors c ∈ Ẑ︀𝑛𝑞 and decryption proceeds by first doing a linear

operation which gives

⟨fsk, fct⟩ = 𝑚 ·
⌊︃

𝑞

𝑝

⌉︃
+ 𝑒 (mod 𝑞) (8.5)

where 𝑒 is a small error. In particular, we will ask that if initial ciphertexts have

polynomially bounded error, then ||𝑒|| should be bounded by (�̂� log 𝑞)𝑂(𝑑), where 𝑑

is the depth of the homomorphic computation. Prior LWE-based FHE schemes, as

constructed in [BV11,BGV12,GSW13,BV14,AP14], have this form (based on different

variants of LWE). We will let FHE.Enc denote the encryption algorithm and FHE.Eval

denote the evaluation algorithm.
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8.4.2 The Shift-Hiding Shiftable Function

Let the class of functions 𝒞 consist of functions 𝑓 : {0, 1}𝜈 → Z𝜇
𝑝 computable by

circuits of size at most 𝑠 = 𝑠(𝜆). We require that 𝑝 = 𝑝(𝜆) is a sufficiently large

function of 𝜆; for simplicity, we will choose 𝑝 so that 𝑝 = 2Θ(𝜆) (further specified

later). Since we allow 𝜇(𝜆), 𝜈(𝜆) to be arbitrary polynomial functions, every function

family with polynomially related input and output length can be expressed in such a

way.

• Gen(1𝜆): picks LWE parameters 𝑛 = 𝑛(𝜆), 𝑚 = 𝑚(𝜆) and 𝑞 = 𝑞(𝜆), where 𝑞 =

2(𝑑𝜆)𝑂(1/𝜖) is a sufficiently large product of primes to be specified later. We pick

the LWE error distribution to be polynomially bounded, and set 𝑛 ≥ (𝑑𝜆)𝑂(1/𝜖2)

so that the LWE assumption follows from worst-case hardness of GapSVP with

subexponential approximation factors. Generate the public parameters

pp = (A1, . . . , Aℓ, u)← (Z𝑛×𝑚
𝑞 )ℓ × Z1×𝑚

𝑞

for a certain ℓ = ℓ(𝑠, 𝜆) (also specified later).

Choose a uniformly random vector s← Z𝑛
𝑞 whose first coordinate s[1] = 1. Let

msk = s.

• Eval(msk, 𝑥): Let FHE be a (leveled) fully homomorphic encryption scheme with

almost linear decryption (as defined above in Equation 8.5) with plaintext space

Z𝑝. Construct the functions 𝑔(𝑖)
𝑥 that, on input a pair (fsk, fct), output10

𝑔(𝑖)
𝑥 (fsk, fct) =

⟨
fsk, FHE.Eval(fct,𝒰 (𝑖)

𝑥 )
⟩

(mod 𝑞)

where 𝒰 (𝑖)
𝑥 is a universal circuit that takes as input the description of a circuit

𝑓 and outputs the 𝑖𝑡ℎ Z𝑝-block of 𝑓(𝑥). The parameter ℓ = poly(𝜈, 𝜇, 𝜆) is set

to be large enough so that the functions 𝑔(𝑖)
𝑥 have description length at most ℓ.

10The function 𝑔
(𝑖)
𝑥 does not actually have a binary output, but as was done in [BV15, GVW15],

the [BGG+14] homomorphism can be extended to this function.
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Define

A(𝑖)
𝑥 = Gadget.MEval(𝑔(𝑖)

𝑥 , A1, . . . , Aℓ) ∈ Z𝑛×𝑚
𝑞 ,

let a(𝑖)
𝑥 denote the first column of A(𝑖)

𝑥 and let

A𝑥 := [a(1)
𝑥 ||a(2)

𝑥 || . . . ||a(𝜇)
𝑥 ] ∈ Z𝑛×𝜇

𝑞

denote the concatenation of a(𝑖)
𝑥 . The output is

⌊sA𝑥 + uG−1(A𝑥)⌉𝑝 :=
⌊︃

𝑝

𝑞
· (sA𝑥 + uG−1(A𝑥))

⌉︃
∈ Z1×𝜇

𝑝

• Shift(msk, 𝑓): Choose an FHE secret key fsk ∈ Ẑ︀𝑛𝑞 , encrypt the description of 𝑓

into an FHE ciphertext fct, let 𝜑 := fct||fsk, and let

A𝑓 := [A1 + 𝜑1G|| . . . ||Aℓ + 𝜑ℓG]

Output as the shift key

sk𝑓 := (fct, sA𝑓 + e)

where e is drawn from the LWE noise distribution.

Note that ℓ is the bit-length of fsk||fct and is poly(𝑠, 𝜆).

• SEval(sk𝑓 , 𝑥): Let the circuits 𝑔(𝑖)
𝑥 be as in the definition of Eval.

c(𝑖)
𝑥 = Gadget.VEval(𝑔(𝑖)

𝑥 , fct, c1, . . . , cℓ) ∈ Z𝑛
𝑞

where c𝑖 = s[A𝑖 + 𝜑𝑖G]. Note that crucially, Gadget.VEval does not require fsk

as input because, by observation (1) above, 𝑔(𝑖)
𝑥 only linearly depends on it. Let

𝑐(𝑖)
𝑥 denote the first element of c(𝑖)

𝑥 and let c𝑥 be the concatenation of all 𝑐(𝑖)
𝑥 .

Output

⌊c𝑥 + uG−1(A𝑥)⌉𝑝

as the shifted evaluation.
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8.4.3 Proof of Computational Correctness

Computational correctness follows from a similar argument in [PS18], although with

slightly different parameter choices. We sketch it here for completeness.

Basic Correctness. We first sketch correctness of SEval for any fixed 𝑥. By the

correctness of the gadget homomorphisms (equation 8.4), we know that

𝑐(𝑖)
𝑥 ≈ sa(𝑖)

𝑥 + 𝑔(𝑖)
𝑥 (fsk, fct)

= sa(𝑖)
𝑥 + ⟨fsk, FHE.Eval(fct,𝒰 (𝑖)

𝑥 )⟩

≈ sa(𝑖)
𝑥 + 𝒰 (𝑖)

𝑥 (𝑓) ·
⌊︃

𝑞

𝑝

⌉︃

= sa(𝑖)
𝑥 + 𝑓 (𝑖)(𝑥) ·

⌊︃
𝑞

𝑝

⌉︃
(8.6)

where the second equation is by the definition of 𝑔(𝑖)
𝑥 , the third (approximate) equation

is by the correctness of FHE decryption (equation 8.5), and the fourth equation is

by the definition of the universal circuit 𝒰 . The approximation error is equal to the

gadget homomorphic evaluation error plus the FHE decryption error, which is

𝑂((𝑛 log 𝑞)𝑂(𝑑′) + (�̂� log 𝑞)𝑂(𝑑)) = 𝜆𝑂( 1
𝜖4 ·𝑑 log(𝑑𝜆))

where 𝑑 is the depth of the circuit 𝒰 (𝑖)
𝑥 and 𝑑′ = 𝑂(𝑑 · log(𝑛 log 𝑞)) is the depth of

the circuit 𝑔(𝑖)
𝑥 that homomorphically evaluates 𝒰 (𝑖)

𝑥 and decrypts. Since we chose

𝑞 = 2𝜆Θ(1/𝜖) , this error is very small relative to 𝑞.

Now, as long as 𝑐(𝑖)
𝑥 does not fall too close to the boundaries of multiples of 𝑞/𝑝,

we have

SEval(sk𝑓 ,𝑥) = ⌊c𝑥 + uG−1(A𝑥)⌉𝑝

= ⌊sA𝑥 + uG−1(A𝑥)⌉𝑝 + 𝑓(𝑥) = Eval(msk, 𝑥) + 𝑓(𝑥) (mod 𝑝) (8.7)

It turns out that for any fixed 𝑥, the boundary event happens with a negligible

probability. Moreover, adapting arguments from [BV15,PS18], we will now show that
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it is computationally hard to find an 𝑥 for which correctness (that is, equation 8.7)

fails. (This is stronger than basic correctness in that it holds for any adaptively

chosen 𝑥, and weaker because the guarantee is computational; adaptive statistical

correctness does not hold for this construction.)

Computational Correctness. By the calculation in equation 8.6, we know that

for each 𝑖 ∈ [𝜇],

𝑐(𝑖)
𝑥 = sa(𝑖)

𝑥 + 𝑓 (𝑖)(𝑥) ·
⌊︃

𝑞

𝑝

⌉︃
+ 𝑒𝑖

where |𝑒𝑖| ≤ 𝐵 := 𝜆𝑂( 1
𝜖4 𝑑 log(𝑑𝜆)).

Assume that there is an adversary that, given the shift key sk𝑓 ← Shift(msk, 𝑓)

for some 𝑓 of his choice, produces an 𝑥 such that

SEval(sk𝑓 , 𝑥) ̸= Eval(msk, 𝑥)

meaning that they differ in some coordinate, say 𝑖.

Then, by the expressions for SEval and Eval, we have

SEval(sk𝑓 , 𝑥)|𝑖 =
⌊︃

𝑝

𝑞
𝑐(𝑖)

𝑥

⌉︃
=
⌊︃

𝑝

𝑞
· (sa(𝑖)

𝑥 + 𝑓 (𝑖)(𝑥) ·
⌊︃

𝑞

𝑝

⌉︃
+ 𝑒𝑖)

⌉︃

=
⌊︃

𝑝

𝑞
· (sa(𝑖)

𝑥 + 𝑓 (𝑖)(𝑥) · 𝑞

𝑝
+ 𝑒′𝑖)

⌉︃

̸=
⌊︃

𝑝

𝑞
· (sa(𝑖)

𝑥 + 𝑓 (𝑖)(𝑥) · 𝑞

𝑝
)
⌉︃

=
⌊︃

𝑝

𝑞
· sa(𝑖)

𝑥

⌉︃
+ 𝑓 (𝑖)(𝑥) = Eval(msk, 𝑥)|𝑖

where 𝜖′𝑖 = 𝜖𝑖 + 𝑓 (𝑖)(𝑥)
(︁⌊︁

𝑞
𝑝

⌉︁
− 𝑞

𝑝

)︁
∈ [−(𝐵 + 𝑝), (𝐵 + 𝑝)]. This can only happen when

𝑝

𝑞
𝑐(𝑖)

𝑥 ∈ Z + 1
2 + 𝑝

𝑞
· [−(𝐵 + 𝑝), 𝐵 + 𝑝],

or, equivalently,

𝑐(𝑖)
𝑥 ∈

𝑞

𝑝
(Z + 1

2) + [−(𝐵 + 1/2), 𝐵 + 1/2].
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Now, observe that

𝑐(𝑖)
𝑥 = [c1|| . . . ||cℓ] · h(𝑖)

for some vector h(𝑖) of low norm 𝐵 = 𝜆𝑂( 1
𝜖4 𝑑 log(𝑑𝜆))). Since c𝑖 are pseudorandom, this

gives us a solution to the 1D-SISℓ,𝑝,𝑞,𝐵 problem. For this choice of 𝐵, Fact 8.22 tells

us that provided 𝑞 = 𝑝
∏︀𝑛′

𝑖=1 𝑝𝑖 such that each 𝑝𝑖 ≥ poly(𝐵), this 1D-SIS variant is

as hard as SIVP/GapSVP on 𝑛′-dimensional lattices with an approximation factor of

poly(𝐵). Given all of the parameter constraints, we can set 𝑛′ ≥ (𝑑𝜆)𝑂(1/𝜖) so that

2(𝑛′)𝜖 ≥ poly(𝐵), allowing us to rely on the claimed hardness assumption.

8.4.4 Proof of Shift-Hiding

We wish to show that for any two functions 𝑓0, 𝑓1 ∈ 𝒞,

(Shift(msk, 𝑓0), pp) ≈𝑐 (Shift(msk, 𝑓1), pp)

where (pp, msk) ← Setup(1𝜆). This also follows from [PS18] (up to minor defini-

tion/notation changes), but we sketch a proof for completeness. Shift-hiding follows

by the following sequence of hybrids.

Hybrid 0. This is the distribution generated by picking (pp, msk) ← Setup(1𝜆) and

outputting pp together with

sk𝑓0 ← Shift(msk, 𝑓0)

That is,

sk𝑓0 := (fct, sA𝑓0 + e)

where fct is an FHE encryption of 𝑓0 under an FHE secret key fsk, and

A𝑓0 = [A1 + 𝜑1G|| . . . ||Aℓ + 𝜑ℓG]

where 𝜑 = fsk||fct and the matrices A𝑖 live in the public parameters.
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Hybrid 1. Generate fct = FHE.Enc(fsk, 𝑓0) as above, and let 𝜑 = fsk||fct. Choose

A𝑓0 = [A′1|| . . . ||A′ℓ]

to be a truly random LWE matrix of the appropriate dimensions, and program A𝑖 in

the public parameters to be A′𝑖 − 𝜑𝑖G. Hybrid 1 is distributed identically to that in

Hybrid 0.

Hybrid 2. Replace sA𝑓0 + e in Hybrid 1 with a uniformly random vector. This

is computationally indistinguishable from Hybrid 1 by an application of LWE with

respect to the uniformly random matrix A𝑓0 .

Hybrid 3. Replace the public parameters by uniformly random matrices A𝑖. This

hybrid is distributed identically to Hybrid 2. Note that the distribution in this hybrid

is independent of the FHE secret key fsk.

Hybrid 4. Replace fct in Hybrid 3 with an encryption of 𝑓1 instead of 𝑓0. This is

computationally indistinguishable from Hybrid 3 by an application of FHE semantic

security.

The remaining hybrids backtrack through hybrids 2 back to 0 using 𝑓1 instead of 𝑓0.

Hybrid 5–7. This is identical to Hybrid 2–0, except that fct is an encryption of 𝑓1.

Putting the hybrid argument together, we have that given the public parameters pp,

the shift keys for 𝑓0 and 𝑓1 are computationally indistinguishable. Indistinguishability

relies on LWE for matrices in Z𝑛×𝑚
𝑞 as well as the semantic security of an FHE scheme

(with almost linear decryption) over Z𝑞 with messages in Z𝑝, which can both be

arranged to follow from the hardness of GapSVP with subexponential approximation

factors.
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8.4.5 Proof of Sum-Resistance

Assume that an adversary 𝒜, given msk and pp, comes up with weights 𝑤1, . . . , 𝑤𝑡 ∈

{−1, 0, 1}𝑡 ∖ {0𝑡} and inputs 𝑥1, . . . , 𝑥𝑡 such that

𝑡∑︁
𝑖=1

𝑤𝑖 · Eval(msk, 𝑥𝑖) = 0 (mod 𝑝)

and either the 𝑥𝑖 are all distinct, or the 𝑥𝑖 are not all equal and ∑︀
𝑖 𝑤𝑖 ̸= 0. The

equation above says that

𝑡∑︁
𝑖=1

𝑤𝑖 · ⌊sA𝑥𝑖
+ uG−1(A𝑥𝑖

)⌉𝑝 = 0 (mod 𝑝)

Rewriting this, we have

𝑡∑︁
𝑖=1

𝑤𝑖 · ⌊(sG + u)G−1(A𝑥𝑖
)⌉𝑝 =

𝑡∑︁
𝑖=1

𝑤𝑖 ·
⌊︃

𝑝

𝑞
· (sG + u)G−1(A𝑥𝑖

)
⌉︃

= 0 (mod 𝑝)

Writing v for sG + u, and isolating the rounding errors 𝜖𝑖 ∈
(︁

1
𝑞
Z
)︁𝜇

, we have

𝑝

𝑞
· v ·

𝑡∑︁
𝑖=1

𝑤𝑖 ·G−1(A𝑥𝑖
) =

𝑡∑︁
𝑖=1

𝑤𝑖𝜖𝑖 (mod 𝑝)

Note that
⃒⃒⃒⃒⃒⃒∑︀𝑡

𝑖=1 𝑤𝑖𝜖𝑖

⃒⃒⃒⃒⃒⃒
∞
≤ 𝑡 since ||𝜖𝑖||∞ ≤ 1 for all 𝑖. Multiplying both sides by 𝑞/𝑝,

v ·
𝑡∑︁

𝑖=1
𝑤𝑖 ·G−1(A𝑥𝑖

) = 𝑞

𝑝
·

𝑡∑︁
𝑖=1

𝑤𝑖𝜖𝑖 := 𝜖 (mod 𝑞)

where 𝜖 ∈ Z𝜇 and ||𝜖||∞ ≤ 𝑞𝑡/𝑝. Now, we have two possibilities:

Case 1. ∑︀𝑡
𝑖=1 𝑤𝑖 ·G−1(A𝑥𝑖

) ̸= 0 (mod 𝑞). In this case, the matrix Z = ∑︀𝑡
𝑖=1 𝑤𝑖 ·

G−1(A𝑥𝑖
) — or any nonzero column z of Z — constitutes an approximate Z𝑞-SIS

(Definition 8.19) solution on instance v, with input norm bound ||z||∞ ≤ 𝑡 and

output error bound 𝐸 = 𝑞𝑡
𝑝

.

By Claim 8.20.1, this variant of Z𝑞-SIS is as hard as approximate Z̃︀𝑞-SIS with the

following parameters:
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• Modulus ̃︀𝑞 = ̃︀Θ(√𝑝)

• Input norm bound 𝛽 = 𝑡

• Output error bound 𝜂 = ̃︀𝑞𝑡
𝑝

+ 2𝑚𝑡 = ̃︀𝑂( 𝑡√
𝑝
) + 2𝑚𝑡 ≤ 2𝑚𝑡 + 𝑂(1) (since 𝑝 =

2Θ(𝜆)).

By Fact 8.20, setting ̃︀𝑞 to be the product of the first ̃︀𝜆 ≥ 𝜆1/3 primes, this problem is

at least as hard as SIVP/GapSVP over lattices of dimension 𝜆1/3 with approximation

ratio poly(𝜆, 𝑚, 𝑡).

Case 2. ∑︀𝑡
𝑖=1 𝑤𝑖 ·G−1(A𝑥𝑖

) = 0 (mod 𝑞). In this case, we know that

G ·
𝑡∑︁

𝑖=1
𝑤𝑖 ·G−1(A𝑥𝑖

) =
𝑡∑︁

𝑖=1
𝑤𝑖A𝑥𝑖

= 0 (mod 𝑞)

We now show how to use this to break SIS.

Let ℎ = ℎ1 . . . ℎℓ be the description of a random function chosen from a 𝑡-wise

independent hash family with range Z𝜇
𝑞 . Moreover, let 𝑥1, . . . 𝑥𝑡 denote the inputs

returned by any fixed execution of 𝒜. Then, let

𝑦 =
𝑡∑︁

𝑖=1
𝑤𝑖ℎ(𝑥𝑖) (mod 𝑞).

We note that with high probability over the choice of ℎ, we have 𝑦 ̸= 0. This

follows directly from the 𝑡-wise independence of ℎ: if the 𝑥𝑖 are distinct, then indeed∑︀𝑡
𝑖=1 𝑤𝑖ℎ(𝑥𝑖) is uniformly random (since each ℎ(𝑥𝑖) is uniform and independent of the

other ℎ(𝑥𝑗)). Similarly, if the 𝑥𝑖 are not-all-equal and ∑︀
𝑖 𝑤𝑖 ̸= 0, then there exists

a term ∑︀
𝑖∈𝑆 𝑤𝑖ℎ(𝑥𝑖) corresponding to one “super-variable” where ∑︀𝑖∈𝑆 𝑤𝑖 ̸= 0, again

implying that the overall sum is uniformly random. Therefore, we conclude that with

non-negligible probability over the randomness of 𝒜, msk, ℎ, 𝒜 outputs x such that∑︀𝑡
𝑖=1 𝑤𝑖G−1(A𝑥𝑖

) = 0 and 𝑦 ̸= 0.
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Now, imagine the experiment where A𝑗 is picked as AR𝑗 + ℎ𝑗G. Here,

A =

⎡⎢⎣ a

A

⎤⎥⎦
where A is an SIS challenge matrix and a is uniformly random. This is statistically

indistinguishable from above, so the same claimed property holds. Now,

A(𝑖)
𝑥 = Gadget.MEval(𝒰 (𝑖)

𝑥 , A1, . . . , Aℓ) = AR𝑥,𝑖 + ℎ(𝑥)|𝑖G

and

a(𝑖)
𝑥 = Ar𝑥,𝑖 + ℎ(𝑥)|𝑖u1

where u1 is the first unit vector. (Technically, A(𝑖)
𝑥 is computed by doing a homomor-

phic evaluation of ℎ and then decrypting. However, this complication does not make

a significant difference to our argument below.)

We know that for each 𝑖 ∈ [𝜇],

𝑡∑︁
𝑗=1

𝑤𝑗a(𝑖)
𝑥𝑗

= 0 (mod 𝑞).

Defining R𝑥𝑗
=
[︂
r𝑥𝑗 ,1 . . . r𝑥𝑗 ,𝜇

]︂
, we conclude that

A ·
𝑡∑︁

𝑗=1
𝑤𝑗R𝑥𝑗⏟  ⏞  
:=R

+

⎡⎢⎢⎣
𝑡∑︁

𝑗=1
𝑤𝑗ℎ1(𝑥𝑗)⏟  ⏞  

=𝑦1

u1|| . . . ||
𝑡∑︁

𝑗=1
𝑤𝑗ℎ𝜇(𝑥𝑗)⏟  ⏞  

=𝑦𝜇

u1

⎤⎥⎥⎦ = 0 (mod 𝑞)

Whenever 𝑦 ̸= 0 (mod 𝑞), it follows that R is not zero. Now, we have AR = 0

(mod 𝑞) (since u1 = 0) and R ̸= 0 giving us a SIS solution w.r.t. A. This finishes

the proof of weighted 𝑡-sum-resistance.
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8.4.6 Putting it Together: Weighted Sum-Resistant SHSFs

Combining the results of Section 8.4.4, Section 8.4.3, and Section 8.4.5, we obtain the

following theorem.

Theorem 8.24. Assume that there is some 𝜖 > 0 for which it is hard to approximate

short vector problems in worst case 𝑛-dimensional lattices to within 2𝑛𝜖 factor. Let

SHSF = (Gen, Shift, Eval) be the SHSF family constructed above. Then, the hash

function family ℋplain that uses (pp, msk)← Gen(1𝜆) as a hash key, and computes the

function

ℎ((pp, msk), 𝑥) = Eval(pp, msk, 𝑥)

is 𝑡-weighted-sum-resistant for every 𝑡 = poly(𝜆).

Combining Theorem 8.24 and Theorem 8.23 (the CI lifting theorem), we get a

hash family that is CI for shifted (weighted) sum relations.

Theorem 8.25. Under the same assumption as in Theorem 8.24, there is a hash

function family ℋ that is (𝑅out, 𝑓)-correlation intractable (as in Definition 8.14),

where 𝑅out is the weighted sum relation as in Definition 8.15 and 𝑓 is any efficiently

computable function. That is, ℋ is correlation-intractable for shifted (weighted) sum

relations.

8.5 Output-Intractable SHSFs from iO

In this section, we present constructions of Output-Intractable SHSFs from iO (The-

orem 8.6 and Theorem 8.5). For simplicity, we set the shift modulus 𝑝 = 2 for SHSFs

in the remainder of this section.

8.5.1 IO-Related Preliminaries

Indistinguishability Obfuscation

An obfuscator for all circuits is a PPT algorithm 𝒪 such that for every circuit 𝐶,

𝒪(𝐶) is with probability 1 a circuit 𝐶 with the same functionality as 𝐶.
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Definition 8.26 (Indistinguishability Obfuscation [BGI+01]). 𝒪 is a (𝑠, 𝛿)-secure

indistinguishability obfuscator (iO) if for all pairs of functionally equivalent circuits 𝐶0

and 𝐶1 of size |𝐶0| = |𝐶1| = 𝜆, and all circuits 𝒜 of size 𝑠(𝜆), it holds that

Pr[𝒜(𝒪(𝐶0)) = 1]− Pr[𝒜(𝒪(𝐶1)) = 1] ≤ 𝑂(𝛿(𝜆)).

Puncturable PRFs

Definition 8.27 (Puncturable PRF [BW13,BGI14,KPTZ13,SW14]). A puncturable

PRF family is a family of functions

ℱ =
{︁
𝐹𝜆,𝑠 : {0, 1}𝜈(𝜆) → {0, 1}𝜇(𝜆)

}︁
𝜆∈N,𝑠∈{0,1}ℓ(𝜆)

with associated (deterministic) polynomial-time algorithms (ℱ .Eval,ℱ .Puncture,ℱ .PuncEval)

satisfying

• For all 𝑥 ∈ {0, 1}𝜈(𝜆) and all 𝑠 ∈ {0, 1}ℓ(𝜆), ℱ .Eval(𝑠, 𝑥) = 𝐹𝜆,𝑠(𝑥).

• For all distinct 𝑥, 𝑥′ ∈ {0, 1}𝜈(𝜆) and all 𝑠 ∈ {0, 1}ℓ(𝜆),

ℱ .PuncEval(ℱ .Puncture(𝑠, 𝑥), 𝑥′) = ℱ .Eval(𝑠, 𝑥′)

For ease of notation, we write 𝐹𝑠(𝑥) and ℱ .Eval(𝑠, 𝑥) interchangeably, and we write

𝑠{𝑥} to denote ℱ .Puncture(𝑠, 𝑥).

ℱ is said to be (𝑠, 𝛿)-secure if for every {𝑥(𝜆) ∈ {0, 1}𝜈(𝜆)}𝜆∈N, the following two

distribution ensembles (indexed by 𝜆) are 𝛿(𝜆)-indistinguishable to circuits of size

𝑠(𝜆):

(𝑆{𝑥(𝜆)}, 𝐹𝑆(𝑥(𝜆))) where 𝑆 ← {0, 1}ℓ(𝜆)

and

(𝑆{𝑥(𝜆)}, 𝑈) where 𝑆 ← {0, 1}ℓ(𝜆), 𝑈 ← {0, 1}𝜇(𝜆).

Theorem 8.28 ( [GGM84, KPTZ13, BW13, BGI14, SW14]). If {polynomially se-

cure, subexponentially secure} one-way functions exist, then for all functions 𝜇 :
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N → N (with 1𝜇(𝜈) polynomial-time computable from 1𝜈), and all 𝛿 : N → [0, 1]

with 𝛿(𝜈) ≥ 2−poly(𝜈), there are polynomials ℓ(𝜆), 𝜈(𝜆) and a {polynomially secure,

( 1
𝛿(𝜈(𝜆)) , 𝛿(𝜈(𝜆)))-secure} puncturable PRF family

ℱ𝜇 =
{︁
𝐹𝜆,𝑠 : {0, 1}𝜈(𝜆) → {0, 1}𝜇(𝜈(𝜆))}𝜆∈N,𝑠∈{0,1}ℓ(𝜆)

}︁
.

Lossy Functions

Definition 8.29 (Lossy Functions [PW08]). A lossy function family LF = (LF.Gen, LF.Eval)

consists of two PPT algorithms:

• LF.Gen(1𝜆, injective/lossy) outputs an evaluation key ek either in “injective mode”

or “lossy mode.”

• LF.Eval(ek, 𝑥) takes an evaluation key ek as well as an input 𝑥 ∈ {0, 1}𝜈(𝜆). It

returns a deterministic output 𝑦 ∈ {0, 1}𝑁(𝜆).

We require that LF satisfies three properties:

• Injectivity: With probability 1−negl(𝜆) over the randomness of ek← LF.Gen(1𝜆, injective),

the function LF.Eval(ek, ·) is injective.

• Lossiness (with parameter ℓ(𝜆)): With probability 1 − negl(𝜆) over the ran-

domness of ek ← LF.Gen(1𝜆, lossy), the range of the function LF.Eval(ek, ·) has

size at most 2ℓ(𝜆).

• Key Indistinguishability: randomly sampled injective and lossy keys are

computationally indistinguishable.

8.5.2 Output-Intractable SHSFs from iO + Output-Intractable

Puncturable PRFs

In this section, we note that the natural construction of SHSFs from (subexponen-

tial) iO and puncturable PRFs (following the [BLW17] construction of private con-

strained PRFs from iO) also yields output-intractable SHSFs from iO along with
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output-intractable puncturable PRFs. This fact will be used in all of our iO-based

constructions.

Construction 8.30 (SHSF from IO). Let PRF = {𝐹𝑠 : {0, 1}𝜈(𝜆) → {0, 1}𝜇(𝜆)} denote

a (puncturable) PRF family and let 𝒪 denote an indistinguishability obfuscator. Then,

PRF can be augmented with the algorithm Shift, defined as follows:

Shift(𝑠, 𝑓) = 𝒪
(︂

𝑥 ↦→ PRF𝑠(𝑥) + 𝑓(𝑥)
)︂

.

Moreover, a shifted key sk𝑓 ← Shift(𝑠, 𝑓) can be evaluated on an input 𝑥 simply

by interpreting sk𝑓 as a program and evaluating sk𝑓 (𝑥).

Lemma 8.31. Suppose that PRF is a 2−𝜈(𝜆) · negl(𝜆)-secure puncturable PRF (Def-

inition 8.27), and 𝒪 is a 2−𝜈(𝜆) · negl(𝜆) secure indistinguishability obfuscator (Defi-

nition 8.26).

Then, (PRF, Shift) is a SHSF for bounded-size shift functions. Moreover, if the

hash familyℋplain(msk, 𝑥) = PRFmsk(𝑥) is output-intractable (or NAE-output-intractable)

for a relation 𝑅out, then the same is true for SHSF.

Proof. For the first claim, it suffices to show that (PRF, Shift) satisfies correctness

and shift-hiding. Correctness follows immediately from the correctness of 𝒪.

To see that (PRF, Shift) is shift-hiding – namely, that sk𝑓 ≈𝑐 sk𝑔 for any pair

of (bounded-size) circuits (𝑓, 𝑔), we closely follows the CHCPRF security proof in

[BLW17]. Namely, we appeal to a hybrid argument with 2𝜈 + 2 hybrid distributions

on keys sk, defined as follows:

• Hyb−1: sk = sk𝑓 ← Shift(𝑠, 𝑓) = 𝒪 (𝑥 ↦→ PRF𝑠(𝑥) + 𝑓(𝑥)).

• For every 0 ≤ 𝑥* ≤ 2𝜈 − 1 (interpreting 𝑥* as both an integer and a string

Hyb𝑥* = sk← 𝒪 (𝑥 ↦→ PRF𝑠(𝑥) + 𝑔(𝑥) if 𝑥 < 𝑥*, 𝑥 ↦→ PRF𝑠(𝑥) + 𝑓(𝑥) if 𝑥 ≥ 𝑥*)

• Hyb2𝜈 : sk = sk𝑔 ← Shift(𝑠, 𝑔) = 𝒪 (𝑥 ↦→ PRF𝑠(𝑥) + 𝑔(𝑥)).

We note that Hyb−1 ≈𝑐,2−𝜈negl(𝜆) Hyb0 and Hyb2𝜈−1 ≈𝑐,2−𝜈negl(𝜆) Hyb2𝜈 by the 2−𝜈 ·

negl(𝜆)-security of 𝒪. Additionally, we note that Hyb𝑥* ≈𝑐,𝑂(2−𝜈 ·negl(𝜆)) Hyb𝑥*+1 for
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every 0 ≤ 𝑥* ≤ 2𝜈 − 2 by a standard puncturing argument. This relies on the

2−𝜈 ·negl(𝜆)-security of both the obfuscator and the puncturable PRF. This completes

the proof of shift-hiding.

Finally, since the honest evaluation of the SHSF in Construction 8.30 is identical

to a puncturable PRF evaluation (with the same secret key), we note that the SHSF

SHSF is (NAE) output-intractable for a relation 𝑅out if and only if PRF is (NAE)

output-intractable for the same relation 𝑅out. Thus, by Theorem 8.23, in order to ob-

tain correlation-intractable hash functions based on IO, we have reduced the problem

to constructing output-intractable 2−𝜈-secure puncturable PRFs.

We now present two constructions of 2−𝜈-secure puncturable PRFs, based on dif-

ferent assumptions.

8.5.3 Construction 1: Postcomposition with an Output-Intractable

Hash

Construction 8.32. Let PRF denote a puncturable PRF family mapping {0, 1}𝜈(𝜆) →

{0, 1}𝑁(𝜆). Let ℋ denote an 𝑅out-output intractable hash family mapping {0, 1}𝑁(𝜆) →

{0, 1}𝜇(𝜆). Then, we define the PRF family PRFℋ = ℋ ∘ PRF as follows:

• A secret key for PRFℋ is a pair (𝑘, sk) with 𝑘 ← ℋ.Gen(1𝜆) and sk← PRF.Gen(1𝜆).

• Evaluation is defined to be

PRFℋ(𝑘, sk, 𝑥) = ℎ(𝑘, PRFsk(𝑥)).

Lemma 8.33. Suppose that PRF is a 2−𝜈 ·negl(𝜆)-secure puncturable PRF family that

is injective with high probability, ℋ is 𝑅out-output intractable (or NAE-𝑅out-output

intractable), and ℋ has a nearly uniform output distribution, meaning that

{︁
𝑘 ← ℋ.Gen(1𝜆), 𝑥← {0, 1}𝑁(𝜆) : (𝑘, ℎ(𝑥))

}︁
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≈𝑐,2−𝜈 ·negl(𝜆)
{︁
𝑘 ← ℋ.Gen(1𝜆), 𝑦 ← {0, 1}𝜇(𝜆) : (𝑘, 𝑦)

}︁
.

Then, PRFℋ is a 2−𝜈 ·negl(𝜆)-secure puncturable PRF family that is also 𝑅out-output

intractable (or NAE-𝑅out-output intractable).

Proof. We first show output intractability. If an adversary 𝒜(𝑘, sk) finds distinct (re-

spectively, not-all-equal) inputs (𝑥1, . . . , 𝑥𝑡) such that (ℎ𝑘(PRFsk(𝑥1), . . . , ℎ𝑘(PRFsk(𝑥𝑡))) ∈

𝑅out with non-negligible probability, then we claim that this violates the 𝑅out-output

intractability of ℋ. This holds because with all but negligible probability, PRFsk is

an injective function, in which case the inputs PRFsk(𝑥1), . . . , PRFsk(𝑥𝑡) to ℎ𝑘 are

distinct (respectively, not-all-equal) as long as 𝑥1, . . . , 𝑥𝑡 are distinct (respectively,

not-all-equal). This gives an attack on the 𝑅out-output intractability of ℋ: given

a key 𝑘, an adversary 𝒜′ can sample sk, call (𝑥1, . . . , 𝑥𝑡) ← 𝒜(𝑘, sk), and output

(PRFsk(𝑥1), . . . , PRFsk(𝑥𝑡)).

Next, we show that PRFℋ is a 2−𝜈negl(𝜆)-secure puncturable PRF family. To do

so, we define a puncturing algorithm:

PRFℋ.Puncture(𝑘, sk, 𝑥*) = (𝑘, sk{𝑥*}).

One can then verify that for 𝑥 ̸= 𝑥*

PuncEval((𝑘, sk){𝑥*}, 𝑥) = PRFℋ(𝑘, sk, 𝑥).

Finally, 2−𝜈 · negl(𝜆)-pseudorandomness at punctured points follows from the anal-

ogous property for PRF along with the fact that ℋ has a nearly uniform output

distribution.

8.5.4 Construction 2: Precomposition with a Lossy Function

Construction 8.34. Let PRF denote a puncturable PRF family mapping {0, 1}𝑁(𝜆) →

{0, 1}𝜇(𝜆). Let LF = (LF.Gen, LF.Eval) denote a lossy function family mapping {0, 1}𝜈(𝜆) →

{0, 1}𝑁(𝜆) and lossiness parameter ℓ(𝜆). Then, we define the PRF family PRFLF =
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PRF ∘ LF as follows:

• A secret key for PRFLF is a pair (sk, ek) with ek ← LF.Gen(1𝜆, injective) and

sk← PRF.Gen(1𝜆).

• Evaluation is defined to be

PRFLF(sk, ek, 𝑥) = PRF(sk, LF.Eval(ek, 𝑥)).

Lemma 8.35. Suppose that PRF is a
(︁
2𝑁(𝜆)+ℓ(𝜆)𝑡(𝜆), 2−𝜈(𝜆) · negl(𝜆)

)︁
-secure punc-

turable PRF family, and suppose that LF is a lossy function family with lossiness

parameter 𝜏(𝜆).

Then, for any relation 𝑅out with sparsity at most 2−𝑡(𝜆)ℓ(𝜆) · negl(𝜆), PRFLF is a 2−𝜈 ·

negl(𝜆)-secure puncturable PRF family that is also 𝑅out-output intractable.

Moreover, if 𝑅out is also sparse whenever the inputs 𝑥1, . . . , 𝑥𝑡 are not-all-equal,

then the PRF family satisfies NAE-𝑅out-output intractability.

Proof. We first show puncturing-pseudorandomness. To do so, we define a puncturing

algorithm

PRFℋ.Puncture(sk, ek, 𝑥*) = (𝑘, sk{LF.Eval(𝑥*)}).

Punctured evaluation correctness (with all but negligible probability over the sam-

pling of (sk, ek)) follows from the fact that ek is sampled in injective mode. Pseudo-

randomness follows directly from the pseudorandomness of PRF.

We next show output intractability. If an adversary 𝒜(sk, ek) finds distinct (re-

spectively, not-all-equal) inputs (𝑥1, . . . , 𝑥𝑡) such that

(PRFsk(LF.Eval(ek, 𝑥1)), . . . , PRFsk(LF.Eval(ek, 𝑥𝑡))) ∈ 𝑅out

with non-negligible probability 𝜖, then since ek is sampled in injective mode, the same

claim holds where (LF.Eval(ek, 𝑥1), . . . , LF.Eval(ek, 𝑥𝑡)) are distinct (respectively, not-

all-equal).
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Then, by the security of LF, we also know that when ek ← LF.Gen(1𝜆, lossy) is

sampled from the lossy distribution, we have that

(𝑥1, . . . , 𝑥𝑡)← 𝒜(sk, ek) : (LF.Eval(ek, 𝑥1), . . . , LF.Eval(ek, 𝑥𝑡)) are distinct

and (PRFLF(sk, ek, 𝑥1), . . . , PRFLF(sk, ek, 𝑥𝑡)) ∈ 𝑅out ≥ 𝜖− negl(𝜆).

Finally, we claim that in reality, with high probability over (sk, ek), there do not

exist such input tuples. This follows from the pseudorandomness of PRF: for any fixed

set 𝑆 of size 2ℓ(𝜆), the probability that a random function 𝐹 has an 𝑡-tuple of distinct

(respectively, not-all-equal) inputs 𝑧1, . . . , 𝑧𝑡 from 𝑆 such that (𝐹 (𝑧1), . . . , 𝐹 (𝑧𝑡)) ∈

𝑅out is at most |𝑆|𝑡 ·𝛽 if 𝑅out has sparsity 𝛽, which is negligible under our hypotheses.

Picking 𝑆 = Im(LF(ek, ·)), we conclude that the same holds for the PRF family PRFsk,

as this condition can be tested in time 2𝑁(𝜆)+ℓ(𝜆)𝑡(𝜆) by enumeration. Thus, we obtain

a contradiction, completing the proof of Lemma 8.35.

8.5.5 Putting it Together

Combining Theorem 8.23 and Lemma 8.31 with Lemma 8.33 and Lemma 8.35, re-

spectively, we obtain our final constructions of correlation intractable hash families

based on obfuscation. We restate the results (Theorem 8.6 and Theorem 8.5) from

the introduction for completeness.

Theorem 8.36 (Theorem 8.6, restated). Assume the existence of

1. Subexponentially secure indistinguishability obfuscation,

2. Subexponentially secure one-way functions, and

3. A hash family ℋ such that (i) ℋ is 𝑅out-output intractable, and (ii) for a random

input 𝑋, ℎ𝑘(𝑋) is 2−𝜈 · negl(𝜆)-indistinguishable from uniform (even given 𝑘).

Then, there exists a hash family that is CI for shifted 𝑅out-relations.
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This follows by combining Theorem 8.23, Lemma 8.31, and Lemma 8.33.

Theorem 8.37 (Theorem 8.5, restated). Assume the existence of

1. Subexponential IO,

2. Subexponential OWFs, and

3. Lossy functions with input domain {0, 1}𝜈 with a range of size ≤ 2ℓ in lossy

mode.

Then, there exists a hash family ℋ that is CI for all (efficiently decidable) shifted

𝑡-ary output relations with sparsity at most 2−𝑡ℓ.

This follows by combining Theorem 8.23, Lemma 8.31, and Lemma 8.35.
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Appendix A

Fiat-Shamir from CI, without

using a Commitment Trapdoor

In this brief chapter, which is appendix from [CLMQ21], we address the following

nagging issue about all (other) Fiat-Shamir instantiations in this thesis. Consider

using a hash function family ℋ to instantiate the Fiat-Shamir heuristic for a protocol

Π. If we want to prove security of ΠFS,ℋ solely based on the fact that ℋ is correlation-

intractable for efficiently computable functions, we have needed the interactive pro-

tocol Π to have some “trapdoor” enabling an efficient algorithm for computing bad

challenges for Π. For example, if Π is Blum’s Hamiltonicity protocol [Blu86], then

we needed to instantiate the (generic) commitment scheme as an extractable commit-

ment scheme (e.g. using public-key encryption). While this is a valid and interesting

instantiation, it does not address what happens for other choices of commitment

scheme.

Are there ways to instantiate the commitment scheme without resorting to public-

key cryptography, while still allowing for a Fiat-Shamir instantiation from standard

assumptions? In this section, we note one such way: one can also use a random-oracle

based commitment! Of course, the whole point of this thesis is to use concrete cryp-

tographic primitives and not resort to heuristic models. Nevertheless, we leave this

short result as a philosophical point that, in contrast to “trapdoored” commitment

schemes that have been used so far, Blum’s protocol using a “maximally unstruc-
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tured” commitment scheme also admits standard-model Fiat-Shamir hash functions.

Specifically, in this section, we show that correlation intractability for efficiently

computable functions [CCH+19, PS19] implies a sound instantiation of Fiat-Shamir

for the following idealized variant of the Blum Hamiltonicity protocol [Blu86].

𝑃 (𝐺, 𝜎) 𝑉 (𝐺)
𝜋 ← 𝑆𝑛, 𝐺′ = 𝜋(𝐺)
𝛼← Com(𝐺′||𝜋)

𝛼

𝛽 𝛽 ← {0, 1}

If 𝛽 = 0, decommit to (𝐺′, 𝜋).
If 𝛽 = 1, reveal 𝜋 ∘ 𝜎 and decommit
to the edges in 𝐺′ corresponding to
the cycle 𝜋 ∘ 𝜎.

𝛾
Accept if all decommitments are correct and:
either 𝛽 = 0 and 𝐺′ = 𝜋(𝐺)
or 𝛽 = 1 and all edge decommitments are 1.

Figure A-1: A Modified Idealized Blum Protocol Π

As is typical for these results, we require the prover to additionally commit to the

permutation 𝜋 and decommit to 𝜋 if 𝛽 = 0. In this case, the verifier checks that 𝜋 is

a valid permutation and that 𝐺′ = 𝜋(𝐺). The reason this modification is made is so

that given a (partial) decommitment to the first message 𝛼, it is possible to efficiently

decide which challenge is answerable using this decommitment. In the original Blum

protocol, the analogous computation requires solving a graph isomorphism problem.

Next, we instantiate Com(𝑏; 𝑟) = 𝒪(𝑏, 𝑟) using a random oracle. Concretely, we

set |𝑟| = 𝜆 = 𝜆(𝑛) and |𝒪(𝑏, 𝑟)| = 𝜅 = 𝜅(𝑛) to be arbitrary polynomial functions in

𝑛 = |𝑉 (𝐺)|. The protocol above is then repeated 𝑡 = 𝑡(𝑛) times in parallel to obtain

negligible soundness error. We then prove:

Theorem A.1. Suppose that for every (efficiently computable) 𝑠(𝑛) = poly(𝑛), there

exists a hash family ℋ = {ℎ𝑘 : {0, 1}𝑚(𝑛)𝜅(𝑛)𝑡(𝑛) → {0, 1}𝑡(𝑛)}𝑘∈{0,1}ℓ(𝑛) (for 𝑚(𝑛) =

𝑛2+𝑛) that is correlation intractable for all functions computable by size 𝑠(𝑛) circuits.

Then, for an appropriate fixed choice of function 𝑠(·), the same hash family ℋ

soundly instantiates the Fiat-Shamir heuristic for the protocol Π𝑡 in the random oracle

model.

Proof. Let ℋ be a family of correlation-intractable hash functions with parameters
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as above (for 𝑠 = 𝑠(𝑛) chosen appropriately large). Since correlation-intractable

hash functions imply the existence of one-way functions, we additionally let 𝐹𝑠 :

{0, 1}𝜅(𝑛)−1 → {0, 1} be a PRF family computable by a family of circuits of size 𝑠(𝑛).

Now, suppose that an efficient adversary 𝒜𝒪(·), given a non-Hamiltonian graph 𝐺

and random hash function ℎ, breaks the soundness of Π𝑡
FS,ℋ on 𝐺.

Let 𝜏 = 𝜏(𝒜,𝒪) denote the transcript of 𝒪-queries made by 𝒜; that is, for every

𝑖, 𝜏𝑖 = (𝑏𝑖, 𝑟𝑖, 𝑐𝑖) where (𝑏𝑖, 𝑟𝑖) is the 𝑖th query made by 𝒜 to 𝒪, and 𝑐𝑖 = 𝒪(𝑏𝑖, 𝑟𝑖).

Finally, let (𝛼*, 𝛽*, 𝛾*) denote the output of 𝒜.

Given an arbitrary first message 𝛼 and transcript 𝜏 , we say that a challenge 𝛽 is

a bad challenge for (𝛼, 𝜏) if the following conditions hold:

• For every 𝑖 such that 𝛽𝑖 = 0, the string of commitments 𝛼𝑖 = (𝑐𝑖,0, . . . , 𝑐𝑖,𝑚)

is entirely contained within the transcript 𝜏 , and the corresponding bits {𝑏𝑖,𝑗}

consist of a permutation 𝜋 and the graph 𝜋(𝐺).

• For every 𝑖 such that 𝛽𝑖 = 1, the transcript 𝜏 contains a substring of 𝛼𝑖 consisting

of commitments to a cycle.

We now note a sequence of facts about the execution of 𝒜.

Claim A.1.1. The probability that 𝒜𝒪(·) wins with output (𝛼*, 𝛽*, 𝛾*) and 𝛽* is not

a bad challenge for (𝛼*, 𝜏) is negligible.

This claim follows from binding properties of the (random oracle) commitment

scheme. This is because if 𝛽* is not bad for (𝛼*, 𝜏) but (𝛼*, 𝛽*, 𝛾*) is accepting, then

𝛾* contains decommitments to bits that are not present in 𝜏 ; this means that 𝒜𝒪(·)

solves an (unconditionally) hard problem in the random oracle model.

Claim A.1.2. The probability that (𝛼*, 𝜏) has multiple bad challenges associated to

it is negligible.

This again follows from binding properties of the commitment scheme, and the

fact that 𝐺 is not Hamiltonian. Since 𝐺 is Hamiltonian, if no string 𝑐 appears twice

(for two different choices of (𝑏, 𝑟)) in the transcript 𝜏 , bad challenges for any (𝛼, 𝜏)
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are unique (as each 𝛼𝑖 cannot have an opening to both a permutation of 𝐺 and a

Hamiltonian graph simultaneously). However, 𝜏 only contains the same commitment

string 𝑐 twice with negligible probability, since it is (unconditionally) hard to find

𝒪-collisions.

Thus, given a transcript 𝜏 and message 𝛼, we define the efficiently computable

“transcript bad-challenge function” 𝑓(𝜏, 𝛼) as follows:

• If 𝛼𝑖 is present in 𝜏 as a commitment to (𝐺′, 𝜋) and 𝐺′ = 𝜋(𝐺), set 𝛽𝑖 = 0.

• Otherwise, set 𝛽𝑖 = 1.

• Output 𝛽 = (𝛽1, . . . , 𝛽𝑡).

By the above analysis, we conclude:

Claim A.1.3. With non-negligible probability, the adversary 𝒜𝒪(𝐺, ℎ) outputs (𝛼*, 𝛽*, 𝛾*)

such that

• 𝛽* = ℎ(𝛼*) = 𝑓(𝛼*, 𝜏), and

• 𝜏 contains all necessary decommitments to answer the challenge 𝛽*.

Note that Claim A.1.3 is an efficiently decidable property of (𝜏, 𝛼*, 𝛽*). Thus,

Claim A.1.3 also holds if we replace the truly random oracle 𝒪 with the following

oracle distribution 𝒪′:

• 𝒪′ has a hard-coded random seed 𝑠 for the PRF 𝐹𝑠 : {0, 1}𝜅(𝑛)−1 → {0, 1}

• 𝒪′(𝑏, 𝑟) samples a uniformly random 𝑟′ ← {0, 1}𝜅(𝑛)−1 and outputs (𝑟′, 𝐹𝑠(𝑟′)⊕

𝑏).

This follows directly from the pseudorandomness property of the PRF family.

Finally, we define the following efficiently computable function 𝑔𝑠 : {0, 1}𝑚(𝑛)𝜅(𝑛)𝑡(𝑛) →

{0, 1}𝑡(𝑛).

• Input: 𝛼 = (𝛼1, . . . , 𝛼𝑛)
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• For all 𝑖, let 𝛼𝑖 = (𝑐𝑖,1, . . . , 𝑐𝑖,𝑚(𝑛)) and 𝑐𝑖,𝑗 = 𝑟′𝑖,𝑗||𝑏′𝑖,𝑗. Compute 𝑏𝑖,𝑗 = 𝐹𝑠(𝑟′𝑖,𝑗)⊕

𝑏′𝑖,𝑗.

• Let 𝜏 denote a transcript containing triples of the form (𝑏𝑖,𝑗, 𝑟𝑖,𝑗, 𝑐𝑖,𝑗) where 𝑟𝑖,𝑗

are arbitrary.

• Output 𝑓(𝛼, 𝜏).

We claim that 𝒜𝒪′(·) breaks the correlation intractability of ℋ with respect to the

function 𝑔𝑠. Indeed, whenever the conditions of Claim A.1.3 hold, we also claim that

ℎ(𝛼*) = 𝑔𝑠(𝛼*). To see this, we note that any commitment 𝑐 = (𝑟′, 𝑏′) occurring as

(𝑏, 𝑟, 𝑐) in the transcript 𝜏 must satisfy the property 𝑏′ = 𝐹𝑠(𝑟′)⊕ 𝑏. Thus, the 𝑖th bit

𝑓(𝛼*, 𝜏)𝑖 = 0 if and only if the 𝑖th bit 𝑔𝑠(𝛼*)𝑖 = 0.

We conclude that 𝒜𝒪′(·), which can be implemented efficiently given the PRF seed

𝑠, contradicts the correlation intractability of ℋ with respect to 𝑔𝑠. Therefore, the

protocol Π𝑡
FS,ℋ is indeed sound in the ROM.

425



426



Bibliography

[AABN02] Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprem-
pre. From identification to signatures via the Fiat-Shamir transform:
Minimizing assumptions for security and forward-security. In Lars R.
Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 418–
433. Springer, Heidelberg, April / May 2002.

[ABF+20] Martin Albrecht, Shi Bai, Pierre-Alain Fouque, Paul Kirchner, Damien
Stehlé, and Weiqiang Wen. Faster enumeration-based lattice reduction:
Root hermite factor 𝑘1/(2𝑘) in time 𝑘𝑘/8+𝑜(𝑘). In CRYPTO, 2020.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast
cryptographic primitives and circular-secure encryption based on hard
learning problems. In Advances in Cryptology-CRYPTO 2009, pages
595–618. Springer, 2009.

[AD97] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-
case/average-case equivalence. In Proceedings of the twenty-ninth annual
ACM symposium on Theory of computing, pages 284–293. ACM, 1997.

[Adl79] Leonard Adleman. A subexponential algorithm for the discrete loga-
rithm problem with applications to cryptography. In 20th Annual Sym-
posium on Foundations of Computer Science (SFCS 1979), pages 55–60.
IEEE, 1979.

[ADRS15] Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-
Davidowitz. Solving the shortest vector problem in 2n time using dis-
crete gaussian sampling. In STOC 2015, pages 733–742, 2015.

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan.
Functional encryption for inner product predicates from learning
with errors. In Dong Hoon Lee and Xiaoyun Wang, editors, ASI-
ACRYPT 2011, volume 7073 of LNCS, pages 21–40. Springer, Heidel-
berg, December 2011.

[AG11] Sanjeev Arora and Rong Ge. New algorithms for learning in presence
of errors. In Automata, Languages and Programming - 38th Interna-
tional Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011,
Proceedings, Part I, pages 403–415, 2011.

427



[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography
in nc0. In Foundations of Computer Science, 2004. Proceedings. 45th
Annual IEEE Symposium on, pages 166–175. IEEE, 2004.

[AIK11] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to gar-
ble arithmetic circuits. In Proceedings of the 2011 IEEE 52nd Annual
Symposium on Foundations of Computer Science, pages 120–129. IEEE
Computer Society, 2011.

[AJL+19] Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit
Sahai. Indistinguishability obfuscation without multilinear maps: New
paradigms via low degree weak pseudorandomness and security ampli-
fication. In CRYPTO, 2019.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended
abstract). In 28th ACM STOC, pages 99–108. ACM Press, May 1996.

[AK97] Vikraman Arvind and Johannes Köbler. On resource-bounded measure
and pseudorandomness. In International Conference on Foundations of
Software Technology and Theoretical Computer Science, pages 235–249.
Springer, 1997.

[AKS01] Miklós Ajtai, Ravi Kumar, and Dandapani Sivakumar. A sieve algo-
rithm for the shortest lattice vector problem. In Proceedings of the thirty-
third annual ACM symposium on Theory of computing, pages 601–610.
ACM, 2001.

[AKV04] Tim Abbot, Daniel Kane, and Paul Valiant. On algorithms for nash
equilibria. Unpublished manuscript, page 1, 2004.

[ALM+92] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and
Mario Szegedy. Proof verification and hardness of approximation prob-
lems. In 33rd FOCS, pages 14–23. IEEE Computer Society Press, Oc-
tober 1992.

[AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with
polynomial error. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 297–314. Springer,
Heidelberg, August 2014.

[App11] Benny Applebaum. Key-dependent message security: Generic ampli-
fication and completeness. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques (EUROCRYPT),
pages 527–546. Springer, 2011.

[AS15] Gilad Asharov and Gil Segev. Limits on the power of indistinguishability
obfuscation and functional encryption. In Venkatesan Guruswami, edi-
tor, 56th FOCS, pages 191–209. IEEE Computer Society Press, October
2015.

428



[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In 42nd
FOCS, pages 106–115. IEEE Computer Society Press, October 2001.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifi-
able delay functions. In Annual International Cryptology Conference
(EUROCRYPT 2018), pages 757–788. Springer, 2018.

[BBC+14] Boaz Barak, Nir Bitansky, Ran Canetti, Yael Tauman Kalai, Omer
Paneth, and Amit Sahai. Obfuscation for evasive functions. In Yehuda
Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 26–51. Springer,
Heidelberg, February 2014.

[BBH+19] James Bartusek, Liron Bronfman, Justin Holmgren, Fermi Ma, and
Ron D. Rothblum. On the (in)security of kilian-based SNARGs. In
Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part II, volume
11892 of LNCS, pages 522–551. Springer, Heidelberg, December 2019.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recur-
sive composition and bootstrapping for snarks and proof-carrying data.
In Proceedings of the forty-fifth annual ACM symposium on Theory of
computing, pages 111–120. ACM, 2013.

[BCKP14] Nir Bitansky, Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On
virtual grey box obfuscation for general circuits. In International Cryp-
tology Conference, pages 108–125. Springer, 2014.

[BCM+18] Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh V. Vazi-
rani, and Thomas Vidick. A cryptographic test of quantumness and
certifiable randomness from a single quantum device. In Mikkel Tho-
rup, editor, 59th FOCS, pages 320–331. IEEE Computer Society Press,
October 2018.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive
oracle proofs. In Martin Hirt and Adam D. Smith, editors, TCC 2016-
B, Part II, volume 9986 of LNCS, pages 31–60. Springer, Heidelberg,
October / November 2016.

[BDG+13] Nir Bitansky, Dana Dachman-Soled, Sanjam Garg, Abhishek Jain,
Yael Tauman Kalai, Adriana López-Alt, and Daniel Wichs. Why “Fiat-
Shamir for proofs” lacks a proof. In Amit Sahai, editor, TCC 2013,
volume 7785 of LNCS, pages 182–201. Springer, Heidelberg, March 2013.

[BDGM20a] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta.
Candidate io from homomorphic encryption schemes. In EUROCRYPT
2020, pages 79–109. Springer, 2020.

[BDGM20b] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta.
Factoring and pairings are not necessary for io: Circular-secure lwe suf-
fices. IACR Cryptology ePrint Archive, 2020:1024, 2020.

429



[BDRV18] Itay Berman, Akshay Degwekar, Ron D. Rothblum, and Prashant Nalini
Vasudevan. Multi-collision resistant hash functions and their applica-
tions. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part II, volume 10821 of LNCS, pages 133–161. Springer,
Heidelberg, April / May 2018.

[BDSG+13] Nir Bitansky, Dana Dachman-Soled, Sanjam Garg, Abhishek Jain,
Yael Tauman Kalai, Adriana López-Alt, and Daniel Wichs. Why “fiat-
shamir for proofs” lacks a proof. In Theory of cryptography conference,
pages 182–201. Springer, 2013.

[BDV17] Nir Bitansky, Akshay Degwekar, and Vinod Vaikuntanathan. Struc-
ture vs. hardness through the obfuscation lens. In Annual International
Cryptology Conference – CRYPTO 2017, pages 696–723. Springer, 2017.

[BFJ+20] Saikrishna Badrinarayanan, Rex Fernando, Aayush Jain, Dakshita Khu-
rana, and Amit Sahai. Statistical ZAP arguments. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part III, volume 12107
of LNCS, pages 642–667. Springer, Heidelberg, May 2020.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy.
Checking computations in polylogarithmic time. In 23rd ACM STOC,
pages 21–31. ACM Press, May 1991.

[BFM88] M Blum, P Feldman, and S Micali. Non-interactive zero-knowledge
proof systems and applications,. In Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, pages 103–112, 1988.

[BG10] Zvika Brakerski and Shafi Goldwasser. Circular and leakage resilient
public-key encryption under subgroup indistinguishability. In Annual
Cryptology Conference, pages 1–20. Springer, 2010.

[BG14] Shi Bai and Steven D. Galbraith. Lattice decoding attacks on binary
LWE. In ACISP, volume 8544 of Lecture Notes in Computer Science,
pages 322–337. Springer, 2014.

[BG20] Nir Bitansky and Idan Gerichter. On the cryptographic hardness of local
search. In 11th Innovations in Theoretical Computer Science Conference
(ITCS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[BGG90] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Randomness in
interactive proofs. In 31st FOCS, pages 563–572. IEEE Computer Soci-
ety Press, October 1990.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Niko-
laenko, Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayaga-
murthy. Fully key-homomorphic encryption, arithmetic circuit ABE

430



and compact garbled circuits. In Phong Q. Nguyen and Elisabeth Os-
wald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 533–
556. Springer, Heidelberg, May 2014.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfus-
cating programs. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of
LNCS, pages 1–18. Springer, Heidelberg, August 2001.

[BGI08] Eli Biham, Yaron J. Goren, and Yuval Ishai. Basing weak public-key
cryptography on strong one-way functions. In TCC, volume 4948 of
Lecture Notes in Computer Science, pages 55–72. Springer, 2008.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures
and pseudorandom functions. In Hugo Krawczyk, editor, PKC 2014,
volume 8383 of LNCS, pages 501–519. Springer, Heidelberg, March 2014.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled)
fully homomorphic encryption without bootstrapping. In Shafi Gold-
wasser, editor, ITCS 2012, pages 309–325. ACM, January 2012.

[BHHI10] Boaz Barak, Iftach Haitner, Dennis Hofheinz, and Yuval Ishai. Bounded
key-dependent message security. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques (EURO-
CRYPT), pages 423–444. Springer, 2010.

[BHHO08] Dan Boneh, Shai Halevi, Mike Hamburg, and Rafail Ostrovsky. Circular-
secure encryption from decision diffie-hellman. In Annual International
Cryptology Conference, pages 108–125. Springer, 2008.

[BHK17] Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-
interactive delegation and batch NP verification from standard compu-
tational assumptions. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 474–482, 2017.

[BHY09] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impos-
sibility results for encryption and commitment secure under selective
opening. In Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, pages 1–35. Springer, 2009.

[BKM17] Dan Boneh, Sam Kim, and Hart William Montgomery. Private
puncturable PRFs from standard lattice assumptions. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part I, volume 10210 of LNCS, pages 415–445. Springer, Heidelberg,
April / May 2017.

431



[BKM20] Zvika Brakerski, Venkata Koppula, and Tamer Mour. NIZK from
LPN and trapdoor hash via correlation intractability for approximable
relations. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 738–767.
Springer, Heidelberg, August 2020.

[BKP18] Nir Bitansky, Yael Tauman Kalai, and Omer Paneth. Multi-collision
resistance: a paradigm for keyless hash functions. In Ilias Diakonikolas,
David Kempe, and Monika Henzinger, editors, 50th ACM STOC, pages
671–684. ACM Press, June 2018.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning,
the parity problem, and the statistical query model. Journal of the ACM
(JACM), 50(4):506–519, 2003.

[BL18] Nir Bitansky and Huijia Lin. One-message zero knowledge and non-
malleable commitments. 2018.

[BLMR13] Dan Boneh, Kevin Lewi, Hart Montgomery, and Ananth Raghu-
nathan. Key homomorphic prfs and their applications. In Advances
in Cryptology–CRYPTO 2013, pages 410–428. Springer, 2013.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and
Damien Stehlé. Classical hardness of learning with errors. In Proceed-
ings of the forty-fifth annual ACM symposium on Theory of computing,
pages 575–584. ACM, 2013.

[BLS16] Shi Bai, Thijs Laarhoven, and Damien Stehlé. Tuple lattice sieving.
LMS Journal of Computation and Mathematics, 19(A):146–162, 2016.

[BLSV18] Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan.
Anonymous IBE, leakage resilience and circular security from new as-
sumptions. In Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, pages 535–564. Springer, 2018.

[Blu86] Manuel Blum. How to prove a theorem so no one else can claim it. In
Proceedings of the International Congress of Mathematicians, volume 1,
page 2. Citeseer, 1986.

[BLV03] Boaz Barak, Yehuda Lindell, and Salil P. Vadhan. Lower bounds for
non-black-box zero knowledge. In 44th FOCS, pages 384–393. IEEE
Computer Society Press, October 2003.

[BLVW18] Zvika Brakerski, Vadim Lyubashevsky, Vinod Vaikuntanathan, and
Daniel Wichs. Cryptographic hashing and worst-case hardness for lpn
via code smoothing. 2018.

432



[BLW17] Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom
functions privately. In Serge Fehr, editor, PKC 2017, Part II, volume
10175 of LNCS, pages 494–524. Springer, Heidelberg, March 2017.

[BM82] Manuel Blum and Silvio Micali. How to generate cryptographically
strong sequences of pseudo random bits. In 23rd FOCS, pages 112–117.
IEEE Computer Society Press, November 1982.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complex-
ity of secure protocols. In Proceedings of the twenty-second annual ACM
symposium on Theory of computing, pages 503–513. ACM, 1990.

[BP15] Nir Bitansky and Omer Paneth. ZAPs and Non-Interactive Witness
Indistinguishability from Indistinguishability Obfuscation. In Theory of
Cryptography - TCC 2015, 2015.

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic
hardness of finding a nash equilibrium. In FOCS 2015. IEEE, 2015.

[BPW16] Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect structure on the
edge of chaos - trapdoor permutations from indistinguishability obfusca-
tion. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I,
volume 9562 of LNCS, pages 474–502. Springer, Heidelberg, January
2016.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Dorothy E. Denning, Ray-
mond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors,
ACM CCS 93, pages 62–73. ACM Press, November 1993.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus
switching from classical GapSVP. In Advances in Cryptology–CRYPTO
2012, pages 868–886. Springer, 2012.

[BRT12] Mihir Bellare, Thomas Ristenpart, and Stefano Tessaro. Multi-
instance security and its application to password-based cryptography.
In CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages
312–329. Springer, 2012.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomor-
phic encryption from (standard) LWE. In Rafail Ostrovsky, editor, 52nd
FOCS, pages 97–106. IEEE Computer Society Press, October 2011.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as se-
cure as PKE. In Moni Naor, editor, ITCS 2014, pages 1–12. ACM,
January 2014.

433



[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-
homomorphic PRFs from standard lattice assumptions - or: How to
secretly embed a circuit in your PRF. In Yevgeniy Dodis and Jes-
per Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS,
pages 1–30. Springer, Heidelberg, March 2015.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions
and their applications. In Kazue Sako and Palash Sarkar, editors, ASI-
ACRYPT 2013, Part II, volume 8270 of LNCS, pages 280–300. Springer,
Heidelberg, December 2013.

[Can97] Ran Canetti. Towards realizing random oracles: Hash functions that
hide all partial information. IACR Cryptology ePrint Archive, 1997:7,
1997.

[CC17] Ran Canetti and Yilei Chen. Constraint-hiding constrained prfs for nc1
from lwe. In Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, pages 446–476. Springer, 2017.

[CCH+18] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N
Rothblum, and Ron D Rothblum. Fiat-Shamir from simpler assump-
tions. IACR Cryptology ePrint Archive, 2018:1004, 2018. https:
//eprint.iacr.org/2018/1004. Part I of [CCH+19].

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N.
Rothblum, Ron D. Rothblum, and Daniel Wichs. Fiat-Shamir: from
practice to theory. In Moses Charikar and Edith Cohen, editors, 51st
ACM STOC, pages 1082–1090. ACM Press, June 2019.

[CCR16] Ran Canetti, Yilei Chen, and Leonid Reyzin. On the correlation in-
tractability of obfuscated pseudorandom functions. In Eyal Kushilevitz
and Tal Malkin, editors, TCC 2016-A, Part I, volume 9562 of LNCS,
pages 389–415. Springer, Heidelberg, January 2016.

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-
Shamir and correlation intractability from strong KDM-secure encryp-
tion. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part I, volume 10820 of LNCS, pages 91–122. Springer,
Heidelberg, April / May 2018.

[CDT09] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity
of computing two-player nash equilibria. Journal of the ACM (JACM),
56(3):1–57, 2009.

[CEP83] E Rodney Canfield, Paul Erdös, and Carl Pomerance. On a problem
of oppenheim concerning “factorisatio numerorum”. Journal of Number
Theory, 17(1):1–28, 1983.

434

https://eprint.iacr.org/2018/1004
https://eprint.iacr.org/2018/1004


[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Re-
settable zero-knowledge. In STOC 2000, pages 235–244, 2000.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle
methodology, revisited (preliminary version). In 30th ACM STOC, pages
209–218. ACM Press, May 1998.

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-
key encryption scheme. IACR Cryptology ePrint Archive, 2003:83, 2003.

[CHK+19a] Arka Rai Choudhuri, Pavel Hubácek, Chethan Kamath, Krzysztof
Pietrzak, Alon Rosen, and Guy N. Rothblum. Finding a nash equi-
librium is no easier than breaking Fiat-Shamir. In Moses Charikar and
Edith Cohen, editors, 51st ACM STOC, pages 1103–1114. ACM Press,
June 2019.

[CHK+19b] Arka Rai Choudhuri, Pavel Hubácek, Chethan Kamath, Krzysztof
Pietrzak, Alon Rosen, and Guy N Rothblum. Ppad-hardness via iter-
ated squaring modulo a composite. Cryptology ePrint Archive, Report
2019/667, 2019., 2019.

[CJJ21a] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-
interactive batch arguments for NP from standard assumptions. In Tal
Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume
12828 of LNCS, pages 394–423, Virtual Event, August 2021. Springer,
Heidelberg.

[CJJ21b] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for
P from LWE. 2021. Proceedings of FOCS 2021, to appear.

[CK16] Aloni Cohen and Saleet Klein. The GGM function family is a weakly
one-way family of functions. In Martin Hirt and Adam D. Smith, editors,
TCC 2016-B, Part I, volume 9985 of LNCS, pages 84–107. Springer,
Heidelberg, October / November 2016.

[CK18] Henry Corrigan-Gibbs and Dmitry Kogan. The discrete-logarithm prob-
lem with preprocessing. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques – EUROCRYPT
2018, 2018.

[CLMQ21] Yilei Chen, Alex Lombardi, Fermi Ma, and Willy Quach. Does fiat-
shamir require a cryptographic hash function? In Tal Malkin and Chris
Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS, pages
334–363, Virtual Event, August 2021. Springer, Heidelberg.

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan.
Obfuscation of probabilistic circuits and applications. In Theory of
Cryptography Conference, pages 468–497. Springer, 2015.

435



[CLW18] Ran Canetti, Alex Lombardi, and Daniel Wichs. Fiat-Shamir: From
practice to theory, part II (NIZK and correlation intractability from
circular-secure FHE). Cryptology ePrint Archive, 2018. https://
eprint.iacr.org/2018/1248. Part II of [CCH+19].

[CM19] Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed
ledger. Theoretical Computer Science, 777:155–183, 2019.

[CMR98] Ran Canetti, Daniele Micciancio, and Omer Reingold. Perfectly one-
way probabilistic hash functions (preliminary version). In 30th ACM
STOC, pages 131–140. ACM Press, May 1998.

[CN11] Yuanmi Chen and Phong Q Nguyen. BKZ 2.0: Better lattice security
estimates. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 1–20. Springer, 2011.

[CZ81] David G Cantor and Hans Zassenhaus. A new algorithm for factoring
polynomials over finite fields. Mathematics of Computation, pages 587–
592, 1981.

[Dam88] Ivan Damgård. Collision free hash functions and public key signature
schemes. In David Chaum and Wyn L. Price, editors, EUROCRYPT’87,
volume 304 of LNCS, pages 203–216. Springer, Heidelberg, April 1988.

[dFMPS19] Luca de Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Ver-
ifiable delay functions from supersingular isogenies and pairings. In
International Conference on the Theory and Application of Cryptology
and Information Security, pages 248–277. Springer, 2019.

[DGP06] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadim-
itriou. The complexity of computing a Nash equilibrium. In Jon M.
Kleinberg, editor, 38th ACM STOC, pages 71–78. ACM Press, May
2006.

[DH76] Whitfield Diffie and Martin E Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6), 1976.

[Dix81] John D Dixon. Asymptotically fast factorization of integers. Mathemat-
ics of computation, 36(153):255–260, 1981.

[DJMW12] Yevgeniy Dodis, Abhishek Jain, Tal Moran, and Daniel Wichs. Coun-
terexamples to hardness amplification beyond negligible. In Theory of
Cryptography Conference, pages 476–493. Springer, 2012.

[DN00] Cynthia Dwork and Moni Naor. Zaps and their applications. In FOCS
2000, pages 283–293. IEEE, 2000.

436

https://eprint.iacr.org/2018/1248
https://eprint.iacr.org/2018/1248


[DN01] Ivan Damgård and Jesper Buus Nielsen. Perfect hiding and perfect
binding universally composable commitment schemes with constant ex-
pansion factor. IACR Cryptology ePrint Archive, 2001:91, 2001.

[DNRS99] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer.
Magic functions. In 40th FOCS, pages 523–534. IEEE Computer Society
Press, October 1999.

[DP11] Constantinos Daskalakis and Christos Papadimitriou. Continuous local
search. In SODA 2011, pages 790–804. SIAM, 2011.

[DS11] Yevgeniy Dodis and John P. Steinberger. Domain extension for MACs
beyond the birthday barrier. In Kenneth G. Paterson, editor, EURO-
CRYPT 2011, volume 6632 of LNCS, pages 323–342. Springer, Heidel-
berg, May 2011.

[DVW20] Yevgeniy Dodis, Vinod Vaikuntanathan, and Daniel Wichs. Extract-
ing randomness from extractor-dependent sources. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of
LNCS, pages 313–342. Springer, Heidelberg, May 2020.

[DW20] Dean Doron and Mary Wootters. High-probability list-recovery, and
applications to heavy hitters. ECCC, 2020. https://eccc.weizmann.
ac.il/report/2020/162/.

[EFKP19] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass.
Continuous verifiable delay functions. In EUROCRYPT 2020, 2019.

[Fab19] After 20 years, someone finally solved this mit puzzle, 2019.

[FGJ18] Nils Fleischhacker, Vipul Goyal, and Abhishek Jain. On the existence of
three round zero-knowledge proofs. In Jesper Buus Nielsen and Vincent
Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS,
pages 3–33. Springer, Heidelberg, April / May 2018.

[FGL+91] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario
Szegedy. Approximating clique is almost NP-complete (preliminary ver-
sion). In 32nd FOCS, pages 2–12. IEEE Computer Society Press, Octo-
ber 1991.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero
knowledge proofs based on a single random string (extended abstract).
In 31st FOCS, pages 308–317. IEEE Computer Society Press, October
1990.

[For66] G David Forney. Concatenated codes. 1966.

437

https://eccc.weizmann.ac.il/report/2020/162/
https://eccc.weizmann.ac.il/report/2020/162/


[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Michael Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM
Press, May / June 2009.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sa-
hai, and Brent Waters. Candidate Indistinguishability Obfuscation and
Functional Encryption for all Circuits. In Foundations of Computer
Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 40–49,
2013.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions (extended abstract). In 25th FOCS, pages 464–479.
IEEE Computer Society Press, October 1984.

[GI01] Venkatesan Guruswami and Piotr Indyk. Expander-based constructions
of efficiently decodable codes. In 42nd FOCS, pages 658–667. IEEE
Computer Society Press, October 2001.

[GI02] Venkatesan Guruswami and Piotr Indyk. Near-optimal linear-time codes
for unique decoding and new list-decodable codes over smaller alphabets.
In 34th ACM STOC, pages 812–821. ACM Press, May 2002.

[GI03] Venkatesan Guruswami and Piotr Indyk. Linear time encodable and list
decodable codes. In 35th ACM STOC, pages 126–135. ACM Press, June
2003.

[GI04] Venkatesan Guruswami and Piotr Indyk. Linear-time list decoding
in error-free settings: (extended abstract). In Josep Díaz, Juhani
Karhumäki, Arto Lepistö, and Donald Sannella, editors, ICALP 2004,
volume 3142 of LNCS, pages 695–707. Springer, Heidelberg, July 2004.

[GJJM20] Vipul Goyal, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta.
Statistical zaps and new oblivious transfer protocols. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part III, volume 12107
of LNCS, pages 668–699. Springer, Heidelberg, May 2020.

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-
knowledge proof systems. SIAM Journal on Computing, 25(1):169–192,
1996.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the
Fiat-Shamir paradigm. In 44th FOCS, pages 102–115. IEEE Computer
Society Press, October 2003.

438



[GK16] Shafi Goldwasser and Yael Tauman Kalai. Cryptographic assumptions:
A position paper. In Theory of Cryptography Conference, pages 505–522.
Springer, 2016.

[GKP+13] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan,
and Nickolai Zeldovich. Reusable garbled circuits and succinct func-
tional encryption. In Proceedings of the forty-fifth annual ACM sympo-
sium on Theory of computing, pages 555–564. ACM, 2013.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegat-
ing computation: interactive proofs for muggles. In Richard E. Ladner
and Cynthia Dwork, editors, 40th ACM STOC, pages 113–122. ACM
Press, May 2008.

[GKW17a] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfus-
cation. In Foundations of Computer Science (FOCS), 2017 IEEE 58th
Annual Symposium on, pages 612–621. IEEE, 2017.

[GKW17b] Rishab Goyal, Venkata Koppula, and Brent Waters. Separating seman-
tic and circular security for symmetric-key bit encryption from the learn-
ing with errors assumption. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 528–557.
Springer, 2017.

[GKW18] Rishab Goyal, Venkata Koppula, and Brent Waters. Collusion resistant
traitor tracing from learning with errors. In Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, pages 660–
670. ACM, 2018.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal
of computer and system sciences, 28(2):270–299, 1984.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof-systems (extended abstract). In 17th
ACM STOC, pages 291–304. ACM Press, May 1985.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield
nothing but their validity and a methodology of cryptographic proto-
col design (extended abstract). In 27th FOCS, pages 174–187. IEEE
Computer Society Press, October 1986.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any
mental game or A completeness theorem for protocols with honest ma-
jority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM
Press, May 1987.

[GN08] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction.
In EUROCRYPT, volume 4965 of Lecture Notes in Computer Science,
pages 31–51. Springer, 2008.

439



[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-
knowledge proof systems. Journal of Cryptology, 7(1):1–32, December
1994.

[Gol99] Oded Goldreich. Modern cryptography, probabilistic proofs and pseu-
dorandomness, volume 17 of Algorithms and Combinatorics. Springer-
Verlag, 1999.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic
Applications. Cambridge University Press, 2004.

[Gol07] Oded Goldreich. Foundations of cryptography: volume 1, basic tools.
Cambridge university press, 2007.

[Gol11] Oded Goldreich. A sample of samplers: A computational perspective
on sampling. In Studies in Complexity and Cryptography. Miscellanea
on the Interplay between Randomness and Computation, pages 302–332.
Springer, 2011.

[Gol17] Oded Goldreich. On the doubly-efficient interactive proof systems of
GKR. Electronic Colloquium on Computational Complexity (ECCC),
24:101, 2017.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and
new techniques for nizk. In Annual International Cryptology Conference,
pages 97–111. Springer, 2006.

[GP21] Romain Gay and Rafael Pass. Indistinguishability obfuscation from cir-
cular security. In Proceedings of the 53rd Annual ACM SIGACT Sym-
posium on Theory of Computing, pages 736–749, 2021.

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting
the cryptographic hardness of finding a nash equilibrium. In CRYPTO,
pages 579–604. Springer, 2016.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors
for hard lattices and new cryptographic constructions. In Proceedings
of the fortieth annual ACM symposium on Theory of computing, pages
197–206. ACM, 2008.

[GR07] Shafi Goldwasser and Guy N Rothblum. On best-possible obfuscation.
In Theory of Cryptography Conference, pages 194–213. Springer, 2007.

[GR08] Venkatesan Guruswami and Atri Rudra. Soft decoding, dual bch codes,
and better list-decodable e-biased codes. In 2008 23rd Annual IEEE
Conference on Computational Complexity, pages 163–174. IEEE, 2008.

[GR13] Oded Goldreich and Ron D. Rothblum. Enhancements of trapdoor per-
mutations. Journal of Cryptology, 26(3):484–512, July 2013.

440



[Gra08] Andrew Granville. Smooth numbers: computational number theory and
beyond. Algorithmic number theory: lattices, number fields, curves and
cryptography, 44:267–323, 2008.

[GS86] Shafi Goldwasser and Michael Sipser. Private coins versus public coins
in interactive proof systems. In 18th ACM STOC, pages 59–68. ACM
Press, May 1986.

[GS98] Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-
Solomon and algebraic-geometric codes. In 39th FOCS, pages 28–39.
IEEE Computer Society Press, November 1998.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryp-
tion from learning with errors: Conceptually-simpler, asymptotically-
faster, attribute-based. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 75–92. Springer,
Heidelberg, August 2013.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Un-
balanced expanders and randomness extractors from parvaresh–vardy
codes. Journal of the ACM (JACM), 56(4):1–34, 2009.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-
based encryption for circuits. In Proceedings of the forty-fifth annual
ACM symposium on Theory of computing, pages 545–554. ACM, 2013.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate
encryption for circuits from LWE. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS,
pages 503–523. Springer, Heidelberg, August 2015.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive
arguments from all falsifiable assumptions. In Lance Fortnow and Salil P.
Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM Press, June
2011.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A Levin, and Michael Luby.
A pseudorandom generator from any one-way function. SIAM Journal
on Computing, 28(4):1364–1396, 1999.

[HIOS15] Iftach Haitner, Yuval Ishai, Eran Omri, and Ronen Shaltiel. Parallel
hashing via list recoverability. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages
173–190. Springer, Heidelberg, August 2015.

[HJKS22] James Hulett, Ruta Jawale, Dakshita Khurana, and Akshayaram Srini-
vasan. Snargs for p from sub-exponential ddh and qr. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques, pages 520–549. Springer, 2022.

441



[HL18] Justin Holmgren and Alex Lombardi. Cryptographic hashing from
strong one-way functions (or: One-way product functions and their ap-
plications). In Mikkel Thorup, editor, 59th FOCS, pages 850–858. IEEE
Computer Society Press, October 2018.

[HLR21] Justin Holmgren, Alex Lombardi, and Ron D. Rothblum. Fiat-Shamir
via list-recoverable codes (or: Parallel repetition of GMW is not zero-
knowledge). Cryptology ePrint Archive, Report 2021/286, 2021. https:
//eprint.iacr.org/2021/286. Proceedings of STOC 2021.

[HMR08] Shai Halevi, Steven Myers, and Charles Rackoff. On seed-incompressible
functions. In Theory of Cryptography Conference, pages 19–36. Springer,
2008.

[HU19] Dennis Hofheinz and Bogdan Ursu. Dual-mode NIZKs from obfuscation.
In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019,
Part I, volume 11921 of LNCS, pages 311–341. Springer, Heidelberg,
December 2019.

[HW15a] Brett Hemenway and Mary Wootters. Linear-time list recovery of high-
rate expander codes. In Magnús M. Halldórsson, Kazuo Iwama, Naoki
Kobayashi, and Bettina Speckmann, editors, ICALP 2015, Part I, vol-
ume 9134 of LNCS, pages 701–712. Springer, Heidelberg, July 2015.

[HW15b] Pavel Hubacek and Daniel Wichs. On the communication complexity of
secure function evaluation with long output. In Proceedings of the 2015
Conference on Innovations in Theoretical Computer Science, pages 163–
172. ACM, 2015.

[HY17] Pavel Hubáček and Eylon Yogev. Hardness of continuous local search:
Query complexity and cryptographic lower bounds. In SODA 2017,
pages 1352–1371. SIAM, 2017.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure compu-
tation via perfect randomizing polynomials. In International Colloquium
on Automata, Languages, and Programming, pages 244–256. Springer,
2002.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from secure multiparty computation. In David S. Johnson
and Uriel Feige, editors, 39th ACM STOC, pages 21–30. ACM Press,
June 2007.

[Ish20] Yuval Ishai. Zero-knowledge proofs from information-theoretic
proof systems. 2020. https://zkproof.org/2020/08/12/
information-theoretic-proof-systems/.

442

https://eprint.iacr.org/2021/286
https://eprint.iacr.org/2021/286
https://zkproof.org/2020/08/12/information-theoretic-proof-systems/
https://zkproof.org/2020/08/12/information-theoretic-proof-systems/


[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires expo-
nential circuits: Derandomizing the XOR lemma. In 29th ACM STOC,
pages 220–229. ACM Press, May 1997.

[JJ19] Abhishek Jain and Zhengzhong Jin. Statistical zap arguments from
quasi-polynomial LWE. Cryptology ePrint Archive, Report 2019/839,
2019. https://eprint.iacr.org/2019/839.

[JJ21] Abhishek Jain and Zhengzhong Jin. Non-interactive zero knowledge
from sub-exponential DDH. In Anne Canteaut and François-Xavier
Standaert, editors, EUROCRYPT 2021, Part I, volume 12696 of LNCS,
pages 3–32. Springer, Heidelberg, October 2021.

[JKKZ21] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Zhang.
SNARGs for bounded depth computations and ppad hardness from sub-
exponential LWE. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages 708–721, 2021.

[JLMS19] Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to
leverage hardness of constant-degree expanding polynomials over r to
build io. In Proceedings of EUROCRYPT 2019, 2019.

[JLS19] Aayush Jain, Huijia Lin, and Amit Sahai. Simplifying constructions
and assumptions for 𝑖𝒪. Cryptology ePrint Archive, Report 2019/1252,
2019.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfusca-
tion from well-founded assumptions. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing, pages 60–73, 2021.

[JOP14] Antoine Joux, Andrew Odlyzko, and Cécile Pierrot. The past, evolving
present, and future of the discrete logarithm. In Open Problems in
Mathematics and Computational Science, pages 5–36. Springer, 2014.

[Kan83] Ravi Kannan. Improved algorithms for integer programming and related
lattice problems. In STOC 1983, pages 193–206, 1983.

[Kan87] Ravi Kannan. Minkowski’s convex body theorem and integer program-
ming. Mathematics of operations research, 12(3):415–440, 1987.

[KF16] Paul Kirchner and Pierre-Alain Fouque. Time-memory trade-off for
lattice enumeration in a ball. IACR Cryptology ePrint Archive, 2016:222,
2016.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments
(extended abstract). In 24th ACM STOC, pages 723–732. ACM Press,
May 1992.

443

https://eprint.iacr.org/2019/839


[KN08] Gillat Kol and Moni Naor. Cryptography and game theory: Design-
ing protocols for exchanging information. In Theory of Cryptography
Conference, pages 320–339. Springer, 2008.

[KNY17] Ilan Komargodski, Moni Naor, and Eylon Yogev. White-box vs. black-
box complexity of search problems: Ramsey and graph property testing.
In Chris Umans, editor, 58th FOCS, pages 622–632. IEEE Computer
Society Press, October 2017.

[KNY18] Ilan Komargodski, Moni Naor, and Eylon Yogev. Collision resistant
hashing for paranoids: Dealing with multiple collisions. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, vol-
ume 10821 of LNCS, pages 162–194. Springer, Heidelberg, April / May
2018.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and
Thomas Zacharias. Delegatable pseudorandom functions and applica-
tions. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors,
ACM CCS 2013, pages 669–684. ACM Press, November 2013.

[KPY18] Yael Kalai, Omer Paneth, and Lisa Yang. On publicly verifiable del-
egation from standard assumptions. IACR Cryptology ePrint Archive,
2018:776, 2018.

[KPY19] Yael Kalai, Omer Paneth, and Lisa Yang. How to delegate computations
publicly. In Proceedings of the fifty-first annual ACM Symposium on
Theory of Computing, volume 2019, 2019.

[KPY20] Yael Kalai, Omer Paneth, and Lisa Yang. Ppad-hardness and delegation
with unambiguous and updatable proofs. In CRYPTO 2020, 2020.

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate
computations: the power of no-signaling proofs. In Symposium on The-
ory of Computing, STOC 2014, New York, NY, USA, May 31 - June
03, 2014, pages 485–494, 2014.

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From
obfuscation to the security of Fiat-Shamir for proofs. In Jonathan Katz
and Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of
LNCS, pages 224–251. Springer, Heidelberg, August 2017.

[KV16] Seungki Kim and Akshay Venkatesh. The behavior of random reduced
bases. International Mathematics Research Notices, 2016.

[KVZ21] Yael Tauman Kalai, Vinod Vaikuntanathan, and Rachel Yun Zhang.
Somewhere statistical soundness, post-quantum security, and snargs. In
Theory of Cryptography Conference, pages 330–368. Springer, 2021.

444



[Lev73] Leonid Anatolevich Levin. Universal sequential search problems. Prob-
lemy Peredachi Informatsii, 9(3):115–116, 1973.

[LFKN90] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan.
Algebraic methods for interactive proof systems. In 31st FOCS, pages
2–10. IEEE Computer Society Press, October 1990.

[LLL82] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Fac-
toring polynomials with rational coefficients. Mathematische Annalen,
261(4):515–534, 1982.

[LLMP90] Arjen K Lenstra, Hendrik W Lenstra Jr, Mark S Manasse, and John M
Pollard. The number field sieve. In STOC 1990, pages 564–572, 1990.

[LNPT19] Benoît Libert, Khoa Nguyen, Alain Passelègue, and Radu Titiu.
Simulation-sound arguments for LWE and applications to KDM-CCA2
security. Cryptology ePrint Archive, Report 2019/908, 2019. https:
//eprint.iacr.org/2019/908.

[LNPY20] Benoît Libert, Khoa Nguyen, Thomas Peters, and Moti Yung. One-
shot fiat-shamir-based nizk arguments of composite residuosity in the
standard model. Cryptology ePrint Archive, Report 2020/1334, 2020.
https://eprint.iacr.org/2020/1334.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol
for two-party computation. Journal of Cryptology, 22(2):161–188, 2009.

[LV20a] Alex Lombardi and Vinod Vaikuntanathan. Fiat-shamir for repeated
squaring with applications to PPAD-hardness and VDFs. In Daniele
Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III,
volume 12172 of LNCS, pages 632–651. Springer, Heidelberg, August
2020.

[LV20b] Alex Lombardi and Vinod Vaikuntanathan. Multi-input correlation in-
tractable hash functions via shift-hiding, 2020. To appear in ITCS 2022.
https://eprint.iacr.org/2020/1378.

[LVW19] Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. 2-message
publicly verifiable WI from (subexponential) LWE. Cryptology ePrint
Archive, Report 2019/808, 2019. https://eprint.iacr.org/2019/
808.

[Mah18] Urmila Mahadev. Classical verification of quantum computations. In
Mikkel Thorup, editor, 59th FOCS, pages 259–267. IEEE Computer
Society Press, October 2018.

[Mer79] Ralph Charles Merkle. Secrecy, authentication, and public key systems.
Stanford university, 1979.

445

https://eprint.iacr.org/2019/908
https://eprint.iacr.org/2019/908
https://eprint.iacr.org/2020/1334
https://eprint.iacr.org/2020/1378
https://eprint.iacr.org/2019/808
https://eprint.iacr.org/2019/808


[Mer88] Ralph C. Merkle. A digital signature based on a conventional encryption
function. In Carl Pomerance, editor, CRYPTO’87, volume 293 of LNCS,
pages 369–378. Springer, Heidelberg, August 1988.

[Mic94] Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages
436–453. IEEE Computer Society Press, November 1994.

[Mou21] Tamer Mour. Correlation intractability vs. one-wayness. Cryptology
ePrint Archive, 2021.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with
small parameters. In Advances in Cryptology–CRYPTO 2013, pages
21–39. Springer, 2013.

[MR09] Daniele Micciancio and Oded Regev. Lattice-based cryptography. In
Post-quantum cryptography, pages 147–191. Springer, 2009.

[MT07] Ueli M. Maurer and Stefano Tessaro. Domain extension of public ran-
dom functions: Beyond the birthday barrier. In Alfred Menezes, editor,
CRYPTO 2007, volume 4622 of LNCS, pages 187–204. Springer, Hei-
delberg, August 2007.

[MW16] Daniele Micciancio and Michael Walter. Practical, predictable lattice
basis reduction. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 820–849. Springer,
2016.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. De-
centralized Business Review, page 21260, 2008.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of cryp-
tology, 4(2):151–158, 1991.

[Nao03] Moni Naor. On cryptographic assumptions and challenges (invited talk).
In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 96–
109. Springer, Heidelberg, August 2003.

[NS06] Phong Q. Nguyen and Damien Stehlé. LLL on the average. In ANTS,
volume 4076 of Lecture Notes in Computer Science, pages 238–256.
Springer, 2006.

[NW88] Noam Nisan and Avi Wigderson. Hardness vs. randomness (extended
abstract). In 29th FOCS, pages 2–11. IEEE Computer Society Press,
October 1988.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their
cryptographic applications. In 21st ACM STOC, pages 33–43. ACM
Press, May 1989.

446



[Oka93] Tatsuaki Okamoto. Provably secure and practical identification schemes
and corresponding signature schemes. In Ernest F. Brickell, editor,
CRYPTO’92, volume 740 of LNCS, pages 31–53. Springer, Heidelberg,
August 1993.

[Pap94] Christos H Papadimitriou. On the complexity of the parity argument
and other inefficient proofs of existence. Journal of Computer and system
Sciences, 48(3):498–532, 1994.

[Pas13] Rafael Pass. Unprovable security of perfect nizk and non-interactive non-
malleable commitments. In Proceedings of the 10th theory of cryptog-
raphy conference on Theory of Cryptography, pages 334–354. Springer-
Verlag, 2013.

[Pei16] Chris Peikert. A decade of lattice cryptography. Foundations and Trends
in Theoretical Computer Science, 10(4):283–424, 2016.

[Pie18] Krzysztof Pietrzak. Simple Verifiable Delay Functions. In Avrim Blum,
editor, 10th Innovations in Theoretical Computer Science Conference
(ITCS 2019), volume 124 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 60:1–60:15, Dagstuhl, Germany, 2018. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[Pom87] Carl Pomerance. Fast, rigorous factorization and discrete logarithm
algorithms. In Discrete algorithms and complexity, pages 119–143. El-
sevier, 1987.

[PR17] Omer Paneth and Guy N. Rothblum. On zero-testable homomorphic
encryption and publicly verifiable non-interactive arguments. In TCC
(2), volume 10678 of Lecture Notes in Computer Science, pages 283–315.
Springer, 2017.

[PRSD17] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudo-
randomness of ring-lwe for any ring and modulus. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, pages
461–473. ACM, 2017.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature
schemes. In Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070
of LNCS, pages 387–398. Springer, Heidelberg, May 1996.

[PS18] Chris Peikert and Sina Shiehian. Privately constraining and program-
ming PRFs, the LWE way. In Michel Abdalla and Ricardo Dahab,
editors, PKC 2018, Part II, volume 10770 of LNCS, pages 675–701.
Springer, Heidelberg, March 2018.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP
from (plain) learning with errors. In Alexandra Boldyreva and Daniele

447



Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS,
pages 89–114. Springer, Heidelberg, August 2019.

[PS20] Chris Peikert and Sina Shiehian. Constraining and watermarking PRFs
from milder assumptions. In Aggelos Kiayias, Markulf Kohlweiss, Petros
Wallden, and Vassilis Zikas, editors, PKC 2020, Part I, volume 12110
of LNCS, pages 431–461. Springer, Heidelberg, May 2020.

[PV05] Farzad Parvaresh and Alexander Vardy. Correcting errors beyond the
Guruswami-Sudan radius in polynomial time. In 46th FOCS, pages 285–
294. IEEE Computer Society Press, October 2005.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework
for efficient and composable oblivious transfer. In Annual international
cryptology conference, pages 554–571. Springer, 2008.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their
applications. In Richard E. Ladner and Cynthia Dwork, editors, 40th
ACM STOC, pages 187–196. ACM Press, May 2008.

[Ran38] Robert Alexander Rankin. The difference between consecutive prime
numbers. Journal of the London Mathematical Society, 1(4):242–247,
1938.

[Reg04] Oded Regev. Lattices in computer science - average case hardness, 2004.
Lecture Notes for Class (scribe: Elad Verbin). https://cims.nyu.edu/
~regev/teaching/lattices_fall_2004/ln/averagecase.pdf.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes,
and cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th
ACM STOC, pages 84–93. ACM Press, May 2005.

[Riv99] Description of the lcs35 time capsule crypto-puzzle, 1999.

[Rog91] Phillip Rogaway. The Round Complexity of secure Protocols. PhD thesis,
Massachusetts Institute of Technology, 1991.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure
signatures. In STOC, pages 387–394. ACM, 1990.

[Rot13] Ron D Rothblum. On the circular security of bit-encryption. In Theory
of Cryptography, pages 579–598. Springer, 2013.

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-
round interactive proofs for delegating computation. In Daniel Wichs
and Yishay Mansour, editors, 48th ACM STOC, pages 49–62. ACM
Press, June 2016.

448

https://cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/averagecase.pdf
https://cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/averagecase.pdf


[RS09] Alon Rosen and Gil Segev. Chosen-ciphertext security via corre-
lated products. In Theory of Cryptography Conference, pages 419–436.
Springer, 2009.

[RSW96] Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles
and timed-release crypto. 1996.

[RW18] Atri Rudra and Mary Wootters. Average-radius list-recoverability of
random linear codes. In Artur Czumaj, editor, 29th SODA, pages 644–
662. ACM-SIAM, January 2018.

[SCG+14] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized
anonymous payments from bitcoin. In 2014 IEEE Symposium on Secu-
rity and Privacy, pages 459–474. IEEE, 2014.

[Sch87] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis re-
duction algorithms. Theor. Comput. Sci., 53:201–224, 1987.

[Sch89] Claus-Peter Schnorr. Efficient identification and signatures for smart
cards. In CRYPTO 1989, pages 239–252. Springer, 1989.

[SE94] Claus-Peter Schnorr and Martin Euchner. Lattice basis reduction: Im-
proved practical algorithms and solving subset sum problems. Mathe-
matical programming, 66(1-3):181–199, 1994.

[Sha90] Adi Shamir. IP=PSPACE. In 31st FOCS, pages 11–15. IEEE Computer
Society Press, October 1990.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related prob-
lems. In International Conference on the Theory and Applications of
Cryptographic Techniques, pages 256–266. Springer, 1997.

[Sim98] Daniel R. Simon. Finding collisions on a one-way street: Can secure
hash functions be based on general assumptions? In Kaisa Nyberg, edi-
tor, EUROCRYPT’98, volume 1403 of LNCS, pages 334–345. Springer,
Heidelberg, May / June 1998.

[SS94] Michael Sipser and Daniel A. Spielman. Expander codes. In 35th FOCS,
pages 566–576. IEEE Computer Society Press, November 1994.

[Sta] Stanford Center for Blockchain Research. The Stanford center for
blockchain research. https://cbr.stanford.edu/.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfusca-
tion: deniable encryption, and more. In David B. Shmoys, editor, 46th
ACM STOC, pages 475–484. ACM Press, May / June 2014.

449

https://cbr.stanford.edu/


[Vad12] Salil P. Vadhan. Pseudorandomness. Now Publishers Inc., 2012. https:
//people.seas.harvard.edu/~salil/pseudorandomness/.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowl-
edge imply time/space efficiency. In Ran Canetti, editor, TCC 2008,
volume 4948 of LNCS, pages 1–18. Springer, Heidelberg, March 2008.

[W+14] Gavin Wood et al. Ethereum: A secure decentralised generalised trans-
action ledger. Ethereum project yellow paper, 151(2014):1–32, 2014.

[Wee05] Hoeteck Wee. On obfuscating point functions. In Proceedings of the
thirty-seventh annual ACM symposium on Theory of computing, pages
523–532. ACM, 2005.

[Wes19] Benjamin Wesolowski. Efficient verifiable delay functions. In EURO-
CRYPT 2019, pages 379–407. Springer, 2019.

[Wic18] Daniel Wichs. personal communication, April 2018.

[WTs+18] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael
Walfish. Doubly-efficient zkSNARKs without trusted setup. In 2018
IEEE Symposium on Security and Privacy, pages 926–943. IEEE Com-
puter Society Press, May 2018.

[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious
LWE sampling. In Anne Canteaut and François-Xavier Standaert, edi-
tors, EUROCRYPT 2021, Part III, volume 12698 of LNCS, pages 127–
156. Springer, Heidelberg, October 2021.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare
programs under lwe. In 2017 IEEE 58th Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 600–611. IEEE, 2017.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th
Annual Symposium on Foundations of Computer Science (sfcs 1986),
pages 162–167. IEEE, 1986.

[YD17] Yang Yu and Léo Ducas. Second order statistical behavior of LLL and
BKZ. In International Conference on Selected Areas in Cryptography,
pages 3–22. Springer, 2017.

[YZW+17] Yu Yu, Jiang Zhang, Jian Weng, Chun Guo, and Xiangxue Li. Learning
parity with noise implies collision resistant hashing. 2017. https://
eprint.iacr.org/2017/1260.pdf.

[Zha16] Mark Zhandry. The magic of ELFs. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 479–
508. Springer, Heidelberg, August 2016.

450

https://people.seas.harvard.edu/~salil/pseudorandomness/
https://people.seas.harvard.edu/~salil/pseudorandomness/
https://eprint.iacr.org/2017/1260.pdf
https://eprint.iacr.org/2017/1260.pdf


[ZKP] ZKProof. Zero-knowledge proof standardization. https://zkproof.
org/.

451

https://zkproof.org/
https://zkproof.org/

	Introduction
	The Fiat-Shamir Heuristic
	Cryptographic Hash Functions and Correlation Intractability
	Results
	Results in Part I
	Results in Part II
	Results in Part III

	Techniques
	Correlation Intractability and Fiat-Shamir for Proofs
	Our Methodology in a Nutshell
	An Example: Fiat-Shamir for the Blum Protocol
	Our Methodology, Revisited

	Conclusion and Open Problems

	I The Basic Framework and Initial Constructions
	Fiat-Shamir from Simpler Assumptions
	Introduction
	Our Contributions
	Related Work

	Our Techniques
	Round-By-Round Soundness
	Bounded Correlation Intractable Hash Families
	Constructing Optimal Bounded-KDM Secure Encryption

	Correlation Intractability from KDM-Secure Encryption
	Correlation Intractable Hash Functions
	Encryption Schemes and Key-Dependent Message (KDM) Security
	Correlation Intractability from Strong KDM Security

	Optimally KDM-Secure Encryption From Simpler Assumptions
	Learning with Errors
	(P/Poly)-KDM Security via Fully Homomorphic Encryption
	SIZE(c)-KDM Security via Randomized Encodings

	Round-by-Round Soundness and Fiat-Shamir
	Definitions: Interactive Proofs and Arguments
	Round-by-Round Soundness
	Round-by-Round Soundness and Fiat-Shamir

	Publicly Verifiable SNARG
	Fields and Polynomials
	GKR: Round by Round Soundness and Efficient Sampleability
	Publicly Verifiable Delegation for Log-Space Uniform NC

	Non-Interactive Zero Knowledge
	Non-Interactive Zero Knowledge Arguments
	NIZK from Bounded Correlation Intractability
	Our NIZK Protocol

	Success probability of polynomial time algorithms on LWE
	The success probability of the lattice basis reduction approach


	Non-Interactive Zero Knowledge and Correlation Intractability from Circular-Secure FHE
	Introduction
	Our Contributions
	Prior Work on Correlation Intractability and Fiat-Shamir
	Our Techniques
	Subsequent Work
	Organization

	Preliminaries
	(Lossy) Public Key Encryption
	Fully Homomorphic Encryption and Circular Security
	Non-Interactive Zero Knowledge Arguments (and Proofs)

	Somewhere Statistically Correlation Intractable Hash Families
	Efficiently Searchable Relations
	Programmability

	Correlation Intractability via Fully Homomorphic Encryption
	Correlation Intractability for Efficiently Searchable Relations
	Universal Correlation Intractability from LWE
	Multi-Input Correlation Intractability

	Non-Interactive Zero Knowledge Arguments
	The FOCS:FeiLapSha90 Protocol
	Our NIZK Protocol
	Obtaining thm:main-nizk-proof, thm:main-nizk-complicated, and LWE-based Instantiation

	Fiat-Shamir for (Instance-Dependent) Trapdoor -protocols
	Instance-Dependent Trapdoor -Protocols
	Examples and Implications



	II CI Self-Reductions and Further Applications to Protocols
	Fiat-Shamir for Repeated Squaring and Applications to PPAD-Hardness and VDFs
	Introduction
	Our Results
	Comparison with Prior Work
	Additional Related Work
	Technical Overview

	Preliminaries
	Repeated Squaring modulo a Composite
	Learning with Errors
	Correlation Intractable Hash Families
	Interactive Proofs and Arguments
	Non-trivial Preprocessing Algorithms for the Discrete Logarithm Problem

	Correlation Intractability for Special Inefficient Functions
	A Self-Reduction for Correlation Intractability
	CI for Efficient Functions Relative to Discrete-Log

	Round-by-Round (Unambiguous) Soundness and Fiat-Shamir
	Fiat-Shamir for the Repeated Squaring Protocol
	Our Variant of the Repeated Squaring Protocol
	Unambiguous Round-by-Round Soundness and Bad-Challenge Function

	Applications to PPAD-Hardness and VDFs
	Hardness in PPAD and CLS
	Verifiable Delay Functions


	Fiat-Shamir via List-Recoverable Codes (or: Parallel Repetition of GMW is Not Zero Knowledge)
	Introduction
	Securely Instantiating Fiat-Shamir
	Technical Overview
	Reflections: Fiat-Shamir via Coding Theory
	Related Work

	Preliminaries
	Interactive Proofs and Zero-Knowledge
	Cryptographic Primitives and Assumptions
	Correlation-Intractable Hash Functions
	The Fiat-Shamir Transform
	Error Correcting Codes and List Recovery
	Concentration Inequalities

	Derandomization for Correlation Intractability
	Correlation Intractability via List Recovery
	Handling Large Alphabets via Subsampling

	Basic List Recovery Bounds
	Fiat-Shamir for Commit-And-Open Protocols
	Correlation Intractability for Efficiently Verifiable Product Relations
	Fiat-Shamir for Trapdoor 3-Message Protocols
	Commit and Open Protocols
	Zero Knowledge is Not Preserved by Parallel Repetition

	Fiat-Shamir for Round-By-Round Sound Protocols
	CI for Efficiently Verifiable Approximate Product Relations
	Applications to Fiat-Shamir for Round-by-Round Sound Protocols


	2-Message Publicly Verifiable WI from (Subexponential) LWE
	Introduction
	Concurrent Work

	Preliminaries
	Witness Indistinguishable Arguments

	Correlation Intractable Hash Families
	Efficiently Searchable Relations

	Reverse Randomization-Compatible Trapdoor -Protocols
	Constructing 2-Message WI
	Parameter Settings and Instantiation



	III Multi-Input Correlation Intractability
	One-Way Product Functions and their Applications
	Introduction
	Our Contributions
	Related Work
	Technical Overview
	Conclusions and Questions
	Organization

	Preliminaries
	One-Way Functions
	Cryptographic Hash Functions

	One-Way Product Functions: Definitions and Reductions
	Concrete Candidate: Discrete Logarithm
	OWPFs that are Sufficient for CRHFs
	From OWPFs to Injective OWPFs
	From OWPFs to Symmetric OWPFs

	Collision Resistance from OWPFs
	Parameter Settings and Discussion

	Output Intractability from OWPFs
	Examples Arising from thm:output-intractability

	Constructions from IO and OWPFs
	Preliminaries
	Warm-Up: Target Collision Resistance
	Multi-Input Correlation Intractability
	Examples Arising from thm:correlation-intractability

	A Proof of the Refined Asharov-Segev Bound

	Correlation-Intractable Hash Functions via Shift Hiding
	Introduction
	Our Results and Techniques
	Applications: Multi-Input CI from LWE and CI from iO
	Additional Related Work Discussion

	Preliminaries
	Hash Functions and Correlation Intractability
	Shift-Hiding Shiftable Functions
	Learning with Errors and (One-Dimensional) Short Integer Solution

	Correlation Intractability from Shift-Hiding Shiftable Functions
	Construction of (Weighted) Sum-Resistant SHSF
	The Ingredients
	The Shift-Hiding Shiftable Function
	Proof of Computational Correctness
	Proof of Shift-Hiding
	Proof of Sum-Resistance
	Putting it Together: Weighted Sum-Resistant SHSFs

	Output-Intractable SHSFs from iO
	IO-Related Preliminaries
	Output-Intractable SHSFs from iO + Output-Intractable Puncturable PRFs
	Construction 1: Postcomposition with an Output-Intractable Hash
	Construction 2: Precomposition with a Lossy Function
	Putting it Together


	Fiat-Shamir from CI, without using a Commitment Trapdoor


