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Abstract

There are many situations when the use of a communication channel is limited by con-
straints on energy rather than bandwidth. Examples of such channels are broadband addi-
tive Gaussian noise channels, fading dispersive channels and qﬁantum optical channels. The
above cases can be modeled by a discrete-time, discrete-input, continuous-output, memory-
less channel, with constraints on the composition of codes for the channel. First we restrict

our attention to a single user channel, and evaluate the channel capacity and reliability

function for the case of a Rayleigh fading channel.

We also consider multiaccess use of such channels, and evaluate the possible throughput

in the case of equal energy, equal rate users. Also given is a simple test to compare random

access with frequency division multiplexing, in the above mentioned situations.
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Chapter 1
Introduction

In many communication situations the use of a communication channel is limited by con-
straints on energy rather than bandwidth. Equivalently, the number of degrees of free-
dom offered by the channel may be too large for a user to utilize effectively. Examples
of such channels are broadband additive Gaussian noise channels, fading dispersive chan-
nels [Ken 69] and quantum optical channels.

The above cases can be modeled by a discrete-time, discrete-input, continuous-output,
memoryless channel, with constraints on the composition of codes for the channel. First we
restrict our attention to a single user, binary input case, with symbol O representing the zero
energy input and symbol 1 representing the positive energy input. The energy constraint
is incorporated by restricting the fraction of 1’s in any given code-word.

In [Gal 87] the channel capacity for such channels are calculated and bounds are given
for the reliability function, both quantities normalized with respect to energy. In the limit
of infinite bandwidth, it is shown that the reliability function can be evaluated exactly, and
the restriction to binary inputs is shown to be essentially optimal.

In the present work, taking the Rayleigh fading channel as a model, we investigate
the dependence of channel capacity and reliability function to energy constraints, and how
these quantities approach their limiting behavior as constraints get tight. We also consider
multiaccess use of such channels, and evaluate the possible throughput in the case of equal
energy, equal rate users. A simple test to compare random access with frequency division
multiplexing is developed for the above mentioned situation.

Chapter 2 formally introduces the concepts from information theory which are used in

the later chapters. Chapter 3 presents the single user instance of the energy limited com-
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munication problem. It is well known that, for a Gaussian channel with infinite bandwidth,
the channel capacity in terms of bits/power is independent of the input power. Also, the
channel capacity of a Rayleigh fading channel with infinite bandwidth approaches that of
the Gaussian channel if the signal to noise ratio is high. We will show that, the Rayleigh
fading channel approaches this infinite bandwidth behavior much slower than the Gaussian
channel. Chapter 4 investigates the multiuser case, in which we mainly concentrate on the

case of a large number of users.




Chapter 2 |
Background

In this chapter we present some notions from information theory which will be used in the
later chapters. Apart from Section 2.5 the chapter is a summary of the first five chapters
of [Gal 68]. Section 2.5 on the other hand mainly follows [CsK 81].

2.1 Communication Systems

For the purposes of information theory, a communication system can be modeled as shown

Source Encoder Channel Decoder Destination

Figure 2.1: Model of a Communication System.

in Figure 2.1. The elements of the model are the following:

Source: The source is modeled by a stochastic process, usually a random sequence of letters

drawn from a countable source alphabet.

Encoder: The encoder processes the source output, and prepares it for transmission over

the channel.

Channel: The channel represents the transmission medium and will be specified by the
triplet of the channel input alphabet, channel output alphabet and a probability

measure on the set of output sequences for each input sequence.



Decoder: The task of the decoder is to undo the operations performed by the encoder and

to prepare the channel output for the destination.
Destination: The destination is the intended receiver of the message the source generates.

One of the most important results of information theory is that encoding and decoding
can be performed in two steps: source encoding and decoding, and channel encoding and
decoding. With this result the encoding operation is broken down into two independent
steps. In the first the source output is encoded into a string of binary symbols, which serve as
a universal medium into which all sources are mapped. The channel encoder then operates
on the binary sequences and performs a mapping between the set of binary sequences and
the set of channel input sequences.

A particularly simple class of channels is the class of discrete memoryless channels. In
this channel model, the input and output alphabets of the channel are finite, and each
letter in the output sequence is statistically dependent only on the corresponding letter in
the input sequence. Hence the probability law relating the output sequence and the input
sequence can be described by a conditional probability assignment P (5 | k), with k and j

representing the channel input and output symbols respectively.

2.2 Definitions

A discrete source is a sequence {u;}2, of random variables taking values in a finite set
U; = U called the source alphabet. A source is called stationary if the joint distribution of
Uit1,-- ., Ui4n is independent of ¢ for any n.

Given an ensemble X, i.e., a set X with a probability assignment P on its elements, we

say the entropy of X is

H(X)= Z P(z)log P (z). (2.1)
z€X

For a stationary source we define
1
Hy(U)= ZH(Ula---;UL)’ (2.2)

where H (Uy,...,UL) denotes the entropy of the Jjoint ensemble Uy x --- x Ur. Hy (U) is



nonincreasing with L and we define
Hoo(U) = Jim Hy (0). 23)
Given two ensembles X and Y we define the entropy of X conditional on Y as
H(X|Y)=)_ > P(z,y)logP(z]y). (2.4)
zeX yeY
We also define the mutual information between these two ensembles as
y|z
106Y) = & 5 Play)iop 2212 (25)
zeX yeY
Given three ensembles X,Y and Z, the mutual information between X and Y conditional
on Z is defined as
T,z
IX;Y2)=5 3 S P(z,y,2) log Y1 % 2) P“("Iz)) (2.6)
zeX yeY 2€2
Given finite sets X and Y, a discrete channel with input alphabet X and output al-
phabet Y is a set of conditional probability assignments Py (yN | =V ) for each N, yN =

(y1,.-., yN) €YV, and zV = (z4,... ,Zn) € X¥. A channel is called memoryless if

N
Py (yN l :N) = H P(y,, I zn) (2'7)
n=1

for some P. Hence a discrete memoryless channel is specified by a transition probability
matrix P (7| {), with ¢ ranging over the channel inputs and j ranging over the channel
outputs. The capacity C of a discrete memoryless channel is defined as the maximum

mutual information between the channel input and output ensembles,

2iP(G19Q®)

where Q ranges over all possible input probability distributions. The capacity of the channel

C=maxI(X;¥) =msx - 5°Q (K) P (5 | ¥)log PGIE__ (59
k j

turns out to be an important quantity as the next two sections will show.

2.3 Converse to the Coding Theorem

In this section we will prove the converse to the coding theorem, which states that reliable

transmission is not possible over a channel at rates above capacity. The way we prove the
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theorem is to lower bound the information between the source and destination alphabets,
and then to relate the uncertainty left in the input alphabet to the probability of error. The
first section, will show that information behaves like an incompressible fluid when passed

through a channel.

2.3.1 Data Processing Theorem

Given a communication system with a discrete source emitting a source sequence uy, u,,...,
an encoder which generates z;,z3,..., a channel with output yi,y2,..., and a decoder

generating vy, v, ..., as shown in Figure 2.2.

: u=\(\ug,...,ur X=(Z1,...,ZN
%lg’&i ize (b, ) Encoder (=2, )
Channel
. ) vV ={v1,...,vL Y=W1,.---,Yn
Destination (1, ) Decoder (v, )

Figure 2.2: A Communication System.

The implication of the model is that the sequences u,X,y,v form a Markov chain. In

this case we have the following theorem:

Theorem 2.1 (Data Processing Theorem) If the sequences u,X,y,v form a Markov
chain, then

I(vhvi) <1 (x¥;v ). | (2.9)

Proof. Since I (UL;YN) + I (XM;Y¥ | ) = I(XN;YN) +1(U5YY | X¥) and
I(ukyn | XV) =0,
I(UL;YN) < I(X";YN).
Similarly,
I(UL;VL) < I(UL;YN) )

9



hence completing the proof. O

2.3.2 Fano’s Inequality

The following lemma relates conditional uncertainty to the probability of error. The result
shows that a lower bound on conditional uncertainty implies a lower bound to the probability

of error.

Lemma 2.2 (Fano’s Inequality) Let U,V be a Joint ensemble in which the U and V
sample spaces contain the same M elements. Let P, be the probability that the u and v

outcomes are different, i.e.,

P.=)" P(u,v).

uy
" Then

P log(M -1)+X (P.)> H(U |V), (2.10)

where ¥ (P,) = —P.log P, — (1 — P.)log (1 - P,).
Proof. Let E be a binary ensemble with e = 1 for u #v,and e=0 for u=v. Then
HUE|V)=H(U|V)+H(E|UV).
since E is completely determined by U and V', H (E|UV) =0, hence
H(U|V)=H(UE|V)=H(E|V)+H(U |VE)

=H(E|V)+PH(U |V,e=1)+(1-P)H(U |V,e=0).

Since e = 0 and V completely determine U, the last term above is zero,also H (E | V) <
H(E)= ¥ (P.), and H (U | V,e=1) < log(M — 1), hence

H(U|V)< Plog(M—1)+ ¥ (M—1).
a

The above result can be extended to apply to sequences of arbitrary length as follows.
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Theorem 2.3 Let UL, VZ be a joint ensemble of length L sequences, (uy,...,ur) and
(v1,...,vuL), where each u; and v, belongs to the U and V ensembles respectively. Also
assume that U and V' ensembles consist of the same M elements. Let (P,) = %Ef’zl P,,
where P, is the probability that us # v,. Then
1
(Pe)log (M ~ 1)+ X ((P)) 2 TH (v |vE) (2.11)
Proof.
H (vt |VE) = H (0 |VE) + H (U2 | UVE) 4
+H (UL | ViU, "’UL—l)

L
< D H(U|V).
=1
Using Fano’s inequality on each term of the summation,

H(U"|vE) < ZLj [Pe,elog (M — 1) + ¥ (P.,0)]
=1

L
%H (UL | VL) < (Pe)log (M -1) + %; H(Pey) -

Since ¥ is a concave function, the latter term is less than ¥ ({(P.)), thus completing

the proof. O
We can now combine the data processing theorem with the above result and obtain

Theorem 2.4 Let a discrete stationary source with alphabet size M have entropy H, )=
limg o H (U) where Hy (U) = (1/L)H (UL). Let a discrete memoryless channel have a

capacity C, and let source sequences of length L be transmitted via N channel uses. Then

for any L, ‘
(P.)log (M — 1) + X ((P.)) > Heo (U) - %c (2.12)
Proof. Using Fano’s inequality,
(P)log (M~ 1)+ X ((P.) > %H (V% 1VE) = B (0) - %I (v vE)

> HL(U)—%I(XN;YN).

For a discrete memoryless channel, I (XN; YN) < NC,and Hy (U) > Hy (U), hence

the proof is complete. O
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2.4 Direct Part to the Coding Theorem

In the preceding section we showed that it is not possible to transmit information over a
channel at a rate higher than the capacity of the channel. In this section we will show that
it is possible to transmit information reliably at rates lower than the capacity. Notice that
to show the direct part it is sufficient to establish the existence of a particular transmission

scheme, thus we restrict our attention to particular encoding and decoding procedures.

2.4.1 Block Codes and Maximum Likelihood Decoding

An (N, R) block encoder is an encoder which provides a sequence of N channel input symbols
to each of M possible messages, where M > eNE. The sequence of N channel input
symbols corresponding to message m is called the codeword for message m and is denoted
by X = (ZTm1,...,Zmn). We will refer to the collection of {xm}fn{=1 as the block code.
The decoding of a block code can be described by a partitioning of the set of channel
output sequences of length N, Y into M disjoint subsets {Yin f;{=1. The decoder decides
on message m if the output sequence belongs to Y;,. Thus, the probability of error, given

message m is sent, is

Pem= ) Pn(y|%xm), (2.13)
YEYy,

with Y%, denoting the complement of the set Y,,. The overall probability of error is then
given by
P, = Z Pr(m| P, (2.14)
m

where Pr[m)] is the a-priori probability of message m.
Among possible decoding rules, i.e., choosing the sets Ym, the mazimum likelihood de-
coding will be of particular interest in the following development. This decoding rule assigns

the output sequence y to the decoding set Y, if

Vm'#m Py (y|%m) 2 Pa(y | Xm) (2.15)

with ties broken arbitrarily. Notice that this decoding rule is optimal if the M messages are
equally likely. Throughout the rest of this section we will assume that the decoding scheme

is maximum likelihood.

12



2.4.2 The Random Coding Bound

Our goal in this section is to derive bounds on the error probability of block codes, so as
to prove the direct part of the coding theorem. The approach we take is to analyze an
ensemble of codes, and to find a bound for the average error probability of the ensemble.
To define the ensemble we must define a probability assignment for codes. To this end,
let @~ (x) be a probability assignment on the set of channel input sequences of length N.
Consider an ensemble of codes for which each codeword is independently selected from the
set of channel input sequences according to the distribution Qn~. Then the probability of a

particular code, xj,...,Xay, is

M
H N (xm) .

m=1

Hence if C is a code and P, (C) is the average error probability associated with it then we
will bound the expectation P, of P, (C) over the ensemble of codes. Since the expectation
1s an upper bound to the minimum, this will also be an upper bound to the average error
probability of the best code in the ensemble.

To find the upper bound we will make use of the following result.

Lemma 2.5 Given a collection of events {Am}"Mml, forany0< p <1,

i ; M 0
Pr ((JAn| < (Z Pr[A,,.]) .

m=1

Proof. Since we have

" 1 M
Pr |l JAn gmin{l, ZPr[Am]},
L m d m=1

and for0< p <1

the desired result follows. O

For a fixed xpm, and a fixed received sequence y, under maximum likelihood decoding

we will make a decoding error, only if there exists some other codeword Xyt With
PN(lem') ZPN(YIxm)-

13



Defining A, as the event that the codeword X, is as above,

m'#m m'#m

Pr [error | m,xpm,y] < Pr [ U Am:] < ( E Pr [Amn]) 0<p<l1.

Pr{An] = > QN (Xm’)

Xyt PN (Y X 1) 2Py (¥ [Xim)

;QN (x) (M). for any s > 0,

IA

P (y | xm)
yielding
Pr [error | mxm,y] < [(M ~)Ten () (%,';2))]
Since
P = xz > QN (Xm) Pv (¥ | Xm) Pr [error | m, Xm,¥],
we have "

Pem < (M-1)P>" [EQN (xm) P (¥ lxm)l_'p] [E QN (x)Pn (v | X)’] .

b4
Choosing s =1/ (1 + p),

1+p
Pem < (M= 1Py [E QN (x)Pn (¥ | x)l/(””)] ' i (2.16)

y

For a discrete memoryless channel, Py (y | x) = [I)_; P (yn | zn). Choosing Qn (x) as
v, e (zn) for a distribution Q (k),k = 0,...,K — 1 over the channel input alphabet,
equation (2.16) simplifies to

J-1[K-1 1+p) N
Pem < (M-1)°{ 3" [Z QWP k)‘f‘“”] :
=0 Lk=0

Considering an (N, R) block code, M — 1 < eMNE < M, thus,

Pem < exp{—N [Es(p,Q) — pR]}, (2.17)
where
-1 TK-1 1+p
Eo(p,Q)=-In)_ |> Q(K)P(j| k)‘/‘”")] : (2.18)
. 7=0 Lk=0

14
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Since the above is valid for every m,

M
?e < E Pr [m] ?c.m < exP{_N [EO (Pa Q) - pR]} . (2'19)

m=1
Also since p and Q are arbitrary, we can maximize Ey (p, Q) — pR over all choices of p and

Q to obtain the tightest bound on P,. Thus we define the random coding ezponent as
E.(R) = Jax mcg.x [Eo (0, Q) — pR). (2.20)
Hence we have,

Theorem 2.6 (Random Coding Bound) Given a discrete memoryless channel with tran-
sition probabilities P (5 | k), any positive integer N and a positive number R, consider
the ensemble of (N, R) block codes in which each letter of each codeword is indepen-
dently selected according to the probability assignment Q (k). Then, for each message
m, 1<m< [eN R] » and all p,0 < p < 1, the ensemble average probability of error using

maximum likelihood decoding satisfies

Pc,m < exp [_NEr (R)] ) (221)

moreover

P, < exp[-NE, (R)]. (2.22)

Corollary 2.7 Given any discrete memoryless channel, any N and any R, there exists an

(N, R) block code, with
P.m <4exp[-NE,(R)] 1<m<M= [ eNE]. (2.23)

Proof. Choosing a code with 2M codewords for which, for equally likely messages,

1 ™ In2M
P¢=WZP¢,m$exp[—NE,( N )]

=1

and removing M codewords including those for which!

Py > Zexp [—NE, (ID;M)] ,

!Notice that there cannot be more than M codewords with P, ,, > 2P,.

15
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we are left with a code such that, for each remaining codeword

P,m < 2exp [—NE, (anZVM)] .

anM) S —ln—2+E,. (lnl\lrvf

- N
P, ., < 4exp {—NE, (ln}é\/[)] ,

Since E, ( ), we have

completing the proof. O

Noticing that Ey (0,Q) = 0, and making use of

K-1J-1 N

and since all functions involved are continuous, for R < I (X;Y’), there exists some 0 < p<1

such that
Eo(p,Q) - pR > 0.
Since I(X;Y) can be set equal to C by an appropriate choice of Q (see equation 2.8 and
notice that the space of Q is compact), for R < C, we have E, (R) > 0. Thus for R < C,
the probability of error can be made arbitrarily small by choosing N large enough.
One also observes that E, (R) is the supremum of nonincreasing, linear functions. Then
it follows that E, (R) is a convex, nonincreasing function.

Using more complicated arguments one can also derive lower bounds for the error prob-

ability of block codes [SGB 67]. Here we state the following result:
Theorem 2.8 For any (N, R) block code for a discrete memoryless channel,
P.> exp{~N [E,p (R - o (N) + o (N)]}, (2.24)

where
E,p (R) = sup [max Eo (p,Q) - pR] , (2.25)
>0 Q

and o (N) denotes quantities that approach zero as N gets large.

16



The above two theorems show the tightness of the random coding bound. If the max-
imizing p in (2.24) is contained in the interval [0,1], which is the case for rates close to

capacity, then the upper and lower bounds to the error probability coincide for large V.

with constrained inputs [Gal 68, Section 7.3]. In this case we constraig our codewords
Xm = (T, ... »TmN) to satisfy

2/ (Zmn) < NE
for a given function f: X - R deﬁne; over the channel input alphabet, and a real number

€. In this case we have the following theorem [Gal 68, Theorem 7.3.2].

Theorem 2.9 Given a discrete memoryless channel with transition probabilities P (5 | k),

a positive number R, and an Input constraint f ()< €. Let E<E, (R) where

E (R) = oot s0 ™% [Bo (p,7,Q) - pE] (2.28)
with 14
Ey(p,r,Q)=-InY" [EQ (k) eV ®=E1p (| g1/ “*"’] (2.27)
7 k

and the maximum is taken over all Q such that
D fkQ) <e.
k

Then for all sufficiently large N , there exists a block code of length N with M — ( eV R]

codewords x;, . . . » XM, each satisfying

Zf(zmn) < Nfa

and

Fem < exp(~NE). (2.28)

2.5 Multiaccess Channels

Given a collection of finite sets {XJ'}}’=1’ Y, a multiaccess channel with input alphabets

{X_;};-I:l and output alphabet V is a set of probability distributions
P (¥ | <8, <)

17
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for each N, y¥ € YV, and z}v € X,N . A memoryless multiaccess channel has the property
that

N
Py (yV | 2,....zY) = TL P(vn | 21n,..., 20n) (2.29)

for some P.

An (N, Ry,...,R;) multiaccess block encoder is a collection of (N, R;) block encoders,
J=1,...,J, the jth encoder providing a mapping from a set of M; messages to X ;v , With
M; > eNV®i. Notice that this definition of encoding does not allow joint encoding of the
sources.

The decoder for such a code is a mapping from the set of N-length channel output
sequences YV to {1,..., My} x --- x {1,..., My}

Given a multiaccess channel we say the rate vector Ry,..., Ry is achievable if for every
€ >0, and § > 0, there exists a (N, R},..., R}) multi-access block code with R; > R; - 6,
and a corresponding decoder with average probability of error less than ¢. The set of
achievable vectors is called the capacity region. We have the following characterization of

the capacity region of a multiaccess channel [Ulr 75, see also [CsK 81]].

Theorem 2.10 (Multiaccess Channel Coding Theorem) The capacity region of a mul-

tiaccess channel is the convex hull of the set of rate vectors satisfying

VS c{l,...,J} 0<Y R <I(X(S);Y|X(S9)) (2.30)
iE€ES

where X (S) denoting {X;},cg, and the convex hull is taken over all possible product form
probability distributions over the set Xj X --- X X;.

The above form of the theorem, although precise, is not very insightful at the first look.

For conceptual simplicity consider the case J = 2. Then 2.30 becomes

R]_ S I(X]_,Y l Xz) N
Ry < I(Xz;YIXl),
Ri+R, < I(X1X2;Y) .

The last equation is simply a restatement of the single user channel coding theorem, the

total information transmitted over the channel is bounded by the mutual information. The

18



first equation bounds the rate of the first user if the decoder has the knowledge of the second
user’s data, the second equation similarly bounds the rate of the second user if the decoder
has the knowledge of the first user’s data. A typical sketch of the above constraints is shown

in Figure 2.3.

R,

— R

Figure 2.3: Typical sketch of constraints.

The union over distributions is analogous to our definition of the capacity as the mazi-
mum possible mutual information in the single user case. Le., for each distribution, we can
choose codewords randomly as in Section 2.4.2, and satisfy the above constraints; taking
the union, we take into account all such coding schemes. Taking the union only over product
form distributions is to ensure that encoding is done independently, and finally, the convex

hull operation corresponds to the time sharing between the coding schemes.
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Chapter 3
Point to Point Communication

In this chapter we present results on the single user channel under energy constraints. The
channel model we use in this case is a waveform channel and we introduce the concept
of the number of degrees of freedom, defined as the dimensionality of the space of channel
waveforms. As an example, a noiseless channel which has bandwidth W has approximately
2WT degrees of freedom,! if the duration of channel use is 7.

The communication situations we are interested in are such that the number of degrees of
freedom offered by the channel is very large. Examples of such channels are the broadband
additive Gaussian noise channels, fading dispersive channels, and quantum optical channels.
In these cases it may not be possible to utilize all the degrees of freedom effectively because
of energy limitations. We describe this situation by imposing a code composition constraint

on the codes we use on the channel; this is described in the next section.

3.1 Models and Definitions

Our basic model for communication situations described above is the following [Gal 87]:

¢ The channel has a binary input alphabet and a continuous output alphabet. The
input symbols will be denoted by 0 and 1, and the output space Y, will be the real
numbers, R. The channel is then described by two probability density functions pq (v)

and p; (y), distribution of the output conditional on the respective input symbol.

1The statement immediately follows from the sampling theorem, & low-pass waveform can be uniquely

represented by a sequence of 2WT real numbers.
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¢ The input symbol 0 corresponds to the zero energy input, and the input symbol 1 is

assumed to cost an energy a > 0 for transmission.

e The channel encoder uses a block code with M codewords of constraint length N.
The codewords are denoted by xi,...,Xar, and each codeword X = (Zi1, ..., ZiN) is

constrained to satisfy
1
I Z z;; < 6. (3.1)
)

The memoryless channel assumption implies the independence of the transmissions of
symbols in a codeword. Thus the block length N can be interpreted as the number
of degrees of freedom of the channel. In this case the user is constrained to use the

positive energy symbol only in a § fraction of the available degrees of freedom.

We define the rate of such a code by

B= ETI;IJ (3.2)

Notice that the rate defined as such differs from the traditional rate In M /N of Section 2.4
by a factor of § and measﬁres the amount of information transmitted for each use of symbol
1.

Given a code and a decoder, the probability of error is the average probability of incorrect
decoding of a codeword, with the average taken over all codewords. Given a constraint
length N and rate ft’,.let P, (N s ft’, 5) be the minimum error probability for any block code
of constraint length N, rate at least Ti.’, and satisfying (3.1). The reliability function is then
defined by

£ (R,8) = limsup - & P[ A(,; i

Similar to ﬁ.’, E is a measure of the channel reliability with respect to the use of 1’s.

(3.3)

Lemma 3.1 E (ﬁ, 5) is nonincreasing with §.

Proof. Given 6, there exists an increasing sequence {N;}2, of integers, such that

~InP. (N, B, 5)
lim
1—o00 [N,‘&J

=E(R,5).
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Given §' < 6, let N| be such that |6'N!| = |6N;|. This can be done since &' < 1.

Consider the codes with (N.-,fi,’, 6). The number of codewords in each of these
codes is at least elNié]R , and by appending N} — N; zeros to each codeword, we obtain
a (N,!,Ti, 6’) code. The decoder can simply discard the trailing N} — N; channel
outputs, hence P, (N.-',ﬁ’, 5') <P (N,-,f%,&). Then we have,

- N - . R
E(ﬁ, 6') > liﬁ?::p IDP[A(é:,']R,ﬁ) > li::_)j:p lnP[l\(,f\;,J,R,S) — (fl,5) ,

completing the proof. O

g

Applying the random coding argument as in Section 2.4.2, we find that
B (fz, 5) > E, (R, 6) , (3.4)
where E',, the random coding ezponent, is given by

E, (7?, 5) = ofax [E‘o (p,r,6) — pﬁ] (3.5)

Bo(p,r,8) = —=1n [ [(1-8) po (4)/(+9) =76 4 5p, ()00 =01 4 (36)
) Y

The channel capacity C is the maximum rate for which reliable communication is pos-
sible, i.e., c (6) = sup {Ti B (T't‘, 5) > 0}, and is measured in nats per use of symbol 1.
Equivalently,

C= %mq;xI(X;Y) ,
where the maximum is taken over the input distributions that satisfy Q (1) < 6. To this
end, define dyax as the unconstrained optimal value of Q (1). Then the constrained optimal
value of Q (1) will be
) for § < bmax
Q)=
Smax else.

Since our main interest lies in the case of small § , we will assume that the first case holds.

Then

1| -0 [ re@inm ) dy+5 [ g () inp () dy

C(6) = 5 (3.7)

= J, 10~ 820 (4) + 691 ()12 [ ~ 8)po () + 61 (1)
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We also define another set of parameters which measure the performance with respect
to a, the actual energy used per degree of freedom. In this context we treat « as a variable
and we assume that the conditional probability density p; depends on «. This assumption is
equivalent to assuming a nonbinary channel input alphabet, or again equivalently, assuming
that we first choose what energy to use on the channel, and then design our codes using
only a binary alphabet. In either case, the next section will show that the restriction to
binary inputs is essentially optimal for small §, and resolve the issue. The quantities we

define are then
a~ InM

" e -
the rate of the code in nats/energy, and
R -InP, (N, R,4,0)
é =1 .
E(R, ,oz) h;rn_.s:p V6] = y (3.9

the channel reliability on a per unit energy basis. Here P, (N , R, 5, a) denotes the smallest
probability of error for block codes with constraint length N, rate R and satisfying (3.1). As
a consequence of lemma 3.1, for any fixed o, £ (fi’, d, a) is nonincreasing with §. Moreover,
being the supremum of nonincreasing functions, Sup, E (Ti, 5, a) is also nonincreasing with
5.

We also define the channel capacity per unit energy, c , as the maximum rate for which
reliable communication is possible, i.e, C (6, @) = sup {Ti’ : B (fi, 5, a) > O}. Thus we have
c (6,a) = c (6) /a. Again from lemma 3.1 we can conclude that both ¢ and & are nonin-

creasing in 6.

3.2 Tightness of Random Coding and Non-binary Set of
Inputs

In Section 2.4.2 we showed that the random coding bound is tight for high rates around
capacity. Gallager in [Gal 87, Theorems 1 and 2] shows a stronger result for energy limited

binary input channels:

Theorem 3.2 For all B > o,
E(Rs) <k, (R) (3.10)



and
r

lim E (R,6) = E. () (3.11)

where E, (T?) = }i_r‘xtl) E, (R, 5) = max [— (1+p) ln/ypo (y)ﬂ/(1+p) P (y)ll(1+p) dy — pfg}

The result shows that in the limit of small 6 the reliability function can be found exactly
for all rates.

Now consider channels with a non-binary input alphabet, say with X = {0,..., K}.
The channel is then described by a set of conditional output probability distributions,
{pk (y)}f:O, Pk (y) corresponding to the condition that input symbol is k. Assume that _
with each input k there is a energy h (k) associated with it, and also assume that & (@) =o.

The constraint we now have on each codeword is

Ly
— h(zmn) < 6.
N n=1

In [Gal 87] Gallager shows that for a broad class of channels, in the limit of § — 0, Theo-

rem 3.2 is essentially valid. More precisely, if

2uk0 > max YK, IZ{:JI‘{=1 Qi?k#a'k
h (k) q 2i=1 gk (5)

(3.12)

max
k

where p;; = —In / pi (v) pk (y) dy and the second maximum is taken over all probability
Y

vectors g, then

E (R) = max EYORTIIR
B (o) = may (LT P) o/(1+9) 1/(1+5)
Eo (p) = max AR /; po (v) Pk (v) dy.

That is, in the limit of § — 0, for any given rate Ti’, there is a nonzero symbol k, to be used
together with 0, to give an optimum performance over the channel. Thus the restriction to

binary inputs is essentially optimal.
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3.3 Rayleigh Fading Channel

For each degree of freedom, the Rayleigh fading channel can be described by the conditional
probability assignment [Ken 69|

p(v I u) = 20 26"”2/(1"’“2)’

14+u
where u is the input signal, v is the output signal and under the assumption of a unit
amount of noise power. Here we should note the subtlety of assuming that each degree
of freedom is independent. This assumption is approximately valid if we do not partition
the time and frequency “too finely.” That is to say, the the number of degrees of freedom
the channel can offer is limited by the time dispersion and the frequency dispersion of the
channel [Ken 69]. If the partitions are such that the time slots are wider than the time
dispersion, and frequency slots are wider than the frequency dispersion, then each of the
degrees of freedom can be treated as independent.

For ease of analytical manipulations, we model the Rayleigh fading channel in terms
of power. In this case, the distribution of the output (power), y, conditional on the input
(power), z, is given by

e v/(1+2)

P(y|=)=1+z

Assuming we use power a for symbol 1 and no power for symbol zero, we obtain

eV y>0, L v/(1e) y >0,
po(y) = py)={ 1te (3.13)
0 else, 0 else.

Notice that each different value of « provides us with an additional input symbol. Thus,

(3.12) should be checked:

o 1 24 a+p
= - [ a B —
U (a, ﬂ) lnL \/(1 T a) (1 T ﬁ) e II[I/(1+ )+1/(1+ )] dy ln 2\/(1 T a) (1 . ﬁ)’

hence u (e, B) is nonincreasing with « for a < . Noticing p (e, 8) = (B, @), we have

(e, ) < max{p(0,a),u(0,8)} < u(0,e)+ 1 (0,8),

the last inequality following from the nonnegativity of u. Also taking into account k (@) = «,

ff«J(a)fq;/a%c;;ﬂ) dadf < 2“}02(’;52;:3!“ < 2sup ﬂ(i,a)’
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verifying (3.12).
The next few sections will present the results on the capacity and error exponents for

the Rayleigh fading channel, assuming the above distributions.

3.3.1 Capacity Calculations

Making use of (3.7) the capacity C can be calculated as?

0 oo 1 1
Y v v/(1+a) —v/(1+a)
(1 5)-/(; € Ine dy+5'/; 1 € In(l € ) dy

1
1+«

1
1) o0 L, 1
—/0 [(1—5)e +61+a

s 1 1l/a
= —ln(1+a)—%ln(1—1:a)+lia/ s t 5 dt
0 {T+a)(1=5)

1 5
= -l(i+a)- i (1- I:‘Q)Jrlzar(a,a), (3.14)

#0491 [(1 - 5) v 4.5 v/ gy

1 tl/a o
with T (o, §) = / ———— dt. Notice that
o t+ Tra)d=3) 1+ a
function [GrR 80],

T (c,6) is Gauss’ hypergeometric

a ' 1 1 6
—1+aT(a,5)—2F1 (1,1+;,2+2,—&(1+a)(1_5)). '

An interesting fact about T (a, ) is that it is not uniformly continuous in & at § = 0.
For this reason we have ,}an}oé (6 =0,a) # gil% ali{xgoé (6).
~ N 1
For §=0,C(6=0)=a~-In(l1+a). Thus C(§=0,a) =1 - M, and hence
o
lim € (6§ =0,a) = 1.
a—00

For 6 > 0, we will show that al_i_’ngo c (6,c) = 0. To see this let € € (0,1) be arbitrary,

and consider

1 1 1 tl/a 1 1
el/"/ dt</ *dt<T(a,6)</ dt
e (t+ ] e t+ é 0 (t + é )
(I+a)(1-3) (1+a)(1=3) (1+a)(1-9)

1+ & _
/o) | —1+a)a-4) (1"'“6 =8 | . T(a,6) < In (1+W) .
€+ ra)a=s §

2For the intermediate steps see the appendix at the end of this chapter
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Figure 3.1: C vs. a for the Rayleigh fading channel for different values of §.

Chosing® € = 2y In ¢, we have

1/a 1+ - _
(%lng) In - ail+aii1 665 < T(a,(S) < ln (1+(1+a)6¢> .
o0 ar B § + e

Thus we see that lim —1—-T (a,6) = 0, and hence,
a—oo ]l +

In(l1+a) 1 ( ab ) 1 ]_
a aﬁln 1 1+a +1+aT(a’5) =0

®This choice of € approximates the value of e that gives the tightest bound.

lim € (6,a) = Jim [

ax— 00
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Figure 3.2: Optimized Error Exponent, sup E (TZ, d, a) vs. R.
a

Figure 3.1 displays the capacity of the Rayleigh fading channel as a function of a, for
various values of §. The figure illustrates the point of above discussion, as the peak of the
curves shift towards infinity as § gets smaller. Another conclusion from the figure is that,
to get C close to unity, one must choose very small values of § which is very nonpractical.
As an example, the last curve in the figure corresponds to § = 10~%9, and to design such
codes, one needs block lengths of at least 105°. Even if one is able to design such codes,
the amount of time required to transmit such codes is extremely large, even under most

optimistic assumptions about available bandwidth.
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Figure 3.3: Optimizing a, argsup & (R, 6, a) vs. R.
a

In the limit of infinite bandwidth, Le., § — 0, and for large SNR, lLe., o, we see that
the Rayleigh fading channel has a capacity C = 1. For an additive Gaussian noise channel
in the limit of infinjte bandwidth, & = 1 regardless of the value of SNR. Thus the above
figure also indicates that, although the additive Gaussian nojse channel and the Rayleigh
fading channel have the Same capacity in the limiting case of infinite bandwidth and large
signal to noise ratio, the Rayleigh fading channel approaches this limit much slower than

the Gaussian channel.
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3.3.2 Exponent Calculations and Optimum SNR

Using (3.5), we can calculate the random coding exponent E,. (fi’, 5) , for any TE, providing
a lower bound to the actual error exponent £ (Ti, 6) . From the results in Section 2.4.2 this
lower bound will be tight for rates close to capacity. Also from Section 3.2 we know that
lims_0 E, (ﬁ, 5) provides an upper bound to the actual error exponent.

The results of Section 3.2 can be carried over to £ and E‘,.. Thus we have

E (R,a, a) > B, (fz,a, a) : (3.15)
where
E, (fi’, 5, a) = pe[g,lla]?:zo [Eo (p,r,8,a) — pﬁ] (3.18)

Bolp,r8,0) = =goln [ (1= 8) o (1)) et 4 8y ()/049) -] 4 (3.19)

The resulting error exponent can then be optimized over a to find the optimal SNR and
the error exponent. Figure 3.2 shows the dependence of the optimized error exponent to
the rate for different values of §. The companion Figure 3.3 shows the optimizing value of
a, (SNR), vs. rate, R. The maximization over a is a very costly process due to the difficulty
of the computation of the objective function. Another complication is that, the maximum
occurs in a broad range of «, hence it becomes even more difficult to find the maximizing

a. For this reason in Figure 3.3 we provide upper and lower bounds for the optimal SNR.
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3.A Appendix: Derivation of C for the Rayleigh Fading
Channel

In this section we show the steps in obtaining (3.14) from (3.7). With

1
eV Yy 2 0: _e—y/ﬁ Yy > 0,

po(y) = and p;(y) =
0 else, 0 else,

where 8 L+ @, equation (3.7) becomes

o0
(1-6) / e VIneVdy+6 / ®L v, (le-v/ﬂ) dy
0 Jo B B

- [ (1—5)e'v+61e-"/ﬁ In (1—6)e"”+61e_"/’3 dy
J ? ?

~ 1
C ==
1

. 1 _ 1 _ .
Noticing that for a > 0, ;¢ u/a]p (—e "/") du = —1 — In a, the above can be written
0 a

as

&=+ [—1 —5Inp - fow [(1 —8)e v+ 5%5"//9] In [(1 —8) eV + 5%6--"/'9] dy} .

Defining z = ¢ ¥/#  dy = pdz/z, the above integral becomes
1 )
/ [(1-6) gz~ + §]In [(1 - 6)zf + Ea:] dz.
0

)
The new integral can be decomposed by writing § as E +46 (1 - %)

1 ' 1
/ [(1 - 68)pzP~1 + ﬁ] In [(1 ~-6)zf + Ez] dz+ 6 (1 - l) / In [(1 - 68)zf + Ez] dz.
0 B g B/ Jo B
The first integral can be evaluated by defining u = [(1 - 6)zf + %::]:

P mssam s ()]s (- 3)] - -0 - 3]

The integrand of the second integral can be written as Inz + ln [(1 —6)zf1 4 %], and

noticing that fol Inzdz = -1, we can write

e I G ]
B Y (R (P P
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Defining t = z#~1, the last term in the above expression becomes

f 1 _5_ _ -1+1/(p-1)
ﬂj;ln[ﬂ+(1 5)t]t dt.

Integrating by parts, we obtain:

1] S Ry )

~ 1 1/(8-1)
c=—1nﬁ—11n[1-5(1—1)]+(1—1)/ e
6 I B/ Jo t+m

which is equal to (3.14) with 8 = o + 1.

hence
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Chapter 4
Multiaccess Communication

In this chapter, we consider the use of a channel with a very large number of degrees of
freedom by more than one user, as opposed to the single user of the previous chapter. Again
we will assume that each user has a limited amount of energy, and will find the maximum

possible user rate in the special case of equal rate, equal energy users.

4.1 Models and Definitions

The basic model we choose for multiaccess use is a cascade of a combiner and a point to

point channel as shown in Fig. 4.1.

Iy —cJ

g — =

Ty ——

Figure 4.1: Multiaccess Communication Model
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In this case a set of J users access a point to point channel C via a combiner D :
X1 X -+ X X5 — Z. Usual choices for the combiner are the OR-channel and the ADD-
channel, which at their outputs respectively do not and do provide information about the
number of users utilizing a particular degree of freedom. That is, for the OR-channel, the
output of the combiner is the logical OR of the set of inputs, and for the A DD-channel, the
output of the combiner is the arithmetic sum of the set of inputs. The above model with a
noiseless channel has been studied by many researchers, e.g. [ChW 81]. It is also important
to realize that the above model is the chanhel model per degree of freedom. Also notice
that the ADD-channel is the most general model for a symmetrical set of users.

We will further assume that each of the input alphabets X;, { = 1,...,J is binary, and
similar to Section 3.1, we constrain the codewords of user J to contain no more than a 0;
fraction of 1’s. Thus associated with a multiple access block code, we have a rate vector R
and a constraint vector § = (&y,...,6;).

The multiaccess coding theorem of Section 2.5 can be extended [Gal 87] to include the
energy limitations. The main difference between the unconstrained multiaccess theorem
and the constrained multiaccess theorem lies in the timesharing (convex hull) operation.
The twist in the constrained case is that we may obtain a code which meets the constraint
by timesharing between two codes, both of which violate the constraint individually.

As an example of this consider a set of non-negative numbers €1,...,&s, that sum to
unity, and consider the time sharing of J coding schemes, the jth scheme used &; fraction
of the time. Suppose the jth scheme has a rate R; = Rje;/€; and meets the constraint
6; = bje;/€;, where e; denotes the jth unit vector. Then the overall code has a rate
R = (Ry,...,R;) and meets the constraint § = (61,...,6s). This particular coding scheme
will be referred to as the FDM scheme.

To take into account the above fact, we define the following:

o The pair (R, §) is directly achievable if, for some joint product input distribution Q
satisfying V5 Q; (1) < §;,
VS c{1,...,J} 0<Y R <I(X(S);Y|X(S9). (4.1)
1ES

The above is just a generalization of Theorem 2.10.
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o The pair (R, §) is achievable if, it is in the convex hull of the directly achievable region.

Notice that the convex hull is taken over both the elements of the pair, not just R.
With the above definitions we have the following Theorem [Gal 87].

Theorem 4.1 The capacity region of a multiaccess channel with energy constraint 6 is the

set of rates R, for which (R,6) is achievable.

4.2 Rayleigh Fading Channel

Consider a set of J users accessing a Rayleigh Fading channel. Suppose the transmitter of
each user has the same power o (per degree of freedom), and suppose the noise power (per
degree of freedom) in the channel is unity. If the transmitters of the users are non-coherent,
- l.e, they have random phase with respect to each other, then we conclude that the power
in a particular degree of freedom is the sum of the powers of individual users utilizing that
particular degree of freedom. Thus the appropriate combiner model is the 4 DD-combiner.
Then the distribution of the output of the Rayleigh fading channel conditional on k users

using the channel is given by

ie_"'/""‘ for y > 0,
pe(y)=4{ % (4.2)

0 else,

where o = 1+ ka.

Consider a case in which the constraint for each user is the same, 1.e., §; = 6. If § is
small enough, the directly achievable region will be obtained for an input distribution such
that the users are independent and each user has a probability & of using a 1. Then the

unconditional output distribution becomes
J

py (v) =D (j) 5 (1-6)" 7 p (y), (4.3)

§=0
and the directly achievable region is characterized by

vsc{1,....,J} 0<> R <
)
I\ (T -5\ ... fiany [ i ()
. . &I -6 I=(i+7) i+7 In Piti \Y d s
22 ()75 )er a0 o Tia () y

i=0 j=0 &k (1 - 5)8—)‘ Pi+k (y)
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where s is the cardinality of S.
Due to the computational intractability of the above set of equations, we turn our

attention to a simpler case of a large number of users with equal rates.

4.2.1 Infinite User Case

Suppose now that J is very large and §; = A/J for each user J. With equal rate users
R; = R, j-= 1,...,J, Section 4.3, will show that the FDM region will not be larger than
the directly achievable region. Although in general the capacity region may be larger than
both the FDM and directly achievable regions, usually the FDM and directly achievable
regions are of more interest. We also note that the directly achievable region is also referred
as the random access region. Thus, the maximum possible rate (for random access) will be
derived from 4.1. However, the binding constraint in 4.1 is the constraint corresponding to
S={1,...,J},
JRLI(Xy---X13Y),

k< ;.r(xl---x,;y). (4.4)

By symmetry, the value of the bound is maximized by a distribution over the users for

which each user uses input 1 with probability A/J. The output distribution then becomes
J i J—j
NANO N A ’
r)=3 ()G (-3) " mw.

Noticing that for large J,

we can write

pr(v) = 3 usps ). (45)

2
where p; = e
J'

Equation 4.4 then becomes

R s;- iﬂk‘/owpk (¥) Inpk (v) dy—/owpy (y) Inpy (v) dy]-
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Figure 4.2: f%max vs. A for different values of a.

The terms appearing in the first summation easily evaluate to

f0°°m () Inpx (v) dy = — (1 + In o),

but the second integral does not lend itself to any simplifications. See the appendix at the
end of this chapter for a result on the behavior of py (y). As in the previous chapter, we
define the rate of a user with respect to energy as B = fi/ a. Figure 4.2 shows the value
of the rate, ﬁ, achievable by random access as a function of A, the expected number of
users utilizing one degree of freedom. The figure clearly shows that throughput (in terms of

nats/energy) decreases as A increases, this is due to the increased interference of the users.
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On the other hand we see that an increase in a does not necessarily increase the throughput
(again in terms of nats/energy). Figure 4.3 on page 39 illustrates this more clearly. Thus

for any given A, there is an optimum a for which throughput is maximized.

4.3 Comparison of FDM and Directly Achievable Region
for the Binary Input Adder Channel

With FDM, the highest possible rate of each user is given by

Lloa-w /Y Po (y)Inpo (y) dy + A /Y p1(v)Inps (v) dy

éFDM (A) = - (4.6)

- /;, [(1 = A)po(y) +Ap1 (¥)]1n [(1 - A) po (y) + Ap1 (v)] dy

Notice that the above is the same as 3.7 with A replacing §.

With random access, however, the rate of each user is given by
Cra (V) = ; [; P /Y P (v) Inpk (y) dy — /Y [zk: HEPE (y)] In [Zk: PEDk (y)] dy] . (47)
We notice that for all well behaved functions py (y),
lim Crom (V) = lim Cra ().

On the other hand,

CFDM(/\) CRA ,\)) /P y)lnpl(y)d ——/Pz( )lnP2(y)

3
a,\[ o(v) Y

Hence the RA scheme will outperform the FDM scheme for small A, if,

/; P2 (y)In Pz Ey; dy — / 71 (v) ln;:—&g dy > 0. (4.8)

Conversely if

_/sz (y)In z: 8; dy - 2/;?1 (¥)In z: g; dy <0,

then FDM performs better than random access. In case of equality, we need to look at
higher order derivatives to reach a conclusion.
Here we should note that the result is valid only if the users are restricted to binary

inputs. If the users were allowed to use a continuous alphabet, then by FDM each user can
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Figure 4.3: Comparison of the FDM and Random Access schemes.

use the point to point channel to its full capacity, which is not possible with random access.
Thus, for this case FDM would perform better than random access.
For the Rayleigh fading channel with the ADD-combiner, the test quantity in (4.8)

evaluates to

o 1 y/az o 1 —y/oy 2
/ — e v/e2)y £ dy—2/ —e v/ S dy=lnﬂ+a2+1—2a1,
0o Q2 agzeV 0o o aye v (2]

using o = 1 + ka, the above becomes

2 2
o1 _ g, 1t2ete’ o

1
B 1+2a
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Hence for the Rayleigh fading channel with the A DD-combiner there is always a region of A
| for which random access outperforms FDM. Figure 4.3 shows the comparison of the FDM
and random access for the Rayleigh fading channel with the ADD-combiner. The figure
suggests that random access is superior to FDM not only for small A but for all \.

It is interesting to note that, if the combiner were an OR-combiner, i.e.,

Vk>0 pr(y)=p1(y),

then we would héve

P2 (v) p1(y)
/p (y)In 2( )dy-Z/;m(y)lnpo(y)d

/y 1 (v )hpog;dyﬁfym(y)—po(y) dy=0

where the last inequality follows from In z < z—1, with equality, if and only if, po (v) =p1(y)

almost everywhere. Thus for the OR-combiner, regardless of the nature of the channel FDM

will perform at least as well as random access, for some region of A.
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4.A  Appendix: The Limiting Behavior of py (y)

In Section 4.2.1 we had derived that, for a Rayleigh fading channel used by an infinite
number of users each accessing the channel with a vanishingly small probability, the channel

output distribution, py (y), is given by

[0 o]
py (v) =D mpk (v), (4.9)
k=0
where
L AR
Be = e AE’ (4.10)
pr(y) = —evim (4.11)
o ’
ar = 1+ ka. (4.12)

In this section we will investigate the behavior of py (y) for large y. We begin by

considering the characteristic function Wy (s) = E [exp sY] of the random variable Y. Then

Ty (s) = 3 e (s),
k=0

where
oo
Uy (s) = / e""ie_"/"'" dy
0 Qk
= 1z e for s < 1/a.
Hence,
Wy(s):i ad. for s < 0.
prowd 1— ags -

The above characteristic function exhibits a rare behavior of not existing on any open
interval containing the origin. The conclusion is that, py (y) decays slower than any expo-
nential. It is also interesting to note that all the finite moments of ¥ are finite, hence py (y)
decays faster than any inverse power.

We state the following result on the behavior of py (y) :

Lermma 4.2

0 for 8 > —\/2/a,
lim e AV¥Inipy (y) = (4.13)

y—oo
oo forf < —/2/a.
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Proof. Let ai (y) = e PVVInv,, p, (y). Then for large k,

—-A 3
ak (y) = ae\/gexp [—klnk+k— Elnk— ﬁ —ﬂvulny+0(k)]s

where o (k) denotes terms which approach zero as k — oo, independent of y. Now

consider a sequence yy = ak®Ink. Then yx — oo as k — oo, and

-2 [ In(alnk 3
ak(yk)=ai/ﬂexp [—ﬂ\/Zaklnk 1+-I]‘,(ZTTI;:)-—2klnk—§1nk+o(k)

For 8 < —/2/«, the above term becomes arbitrarily large as k — oco. Since

[o o)
e PVIEIRB Dy (1) = > ar (y2)
=0

and all terms are non-negative, e #VVk "V py (1,) becomes arbitrarily large as k — oo,
resulting in the second half of the lemma.

Now consider 8 > —+/2/a. Then we claim that ai (y) — O uniformly in k as
y — oo. To prove the claim we proceed as follows:

It suffices to show that the largest of the terms {a (y)};>, approaches zero as y
approaches co. To this end we observe that the maximal term for large y satisfies

k2. Inkm.x =y, kmax is an increasing function of y, and kpax — o0 as y — oco. In

this case
1
N — BV Bk In kgt |1+ (10 Finax)
Qs (¥) = —— exp 21 Emax
max a 27r

3
—2kmax In kpas — 2 In kmax + 0 (kmax)

With 8 > —+/2/a, the above term approaches 0, hence the proof of the claim.

Also since 3 ax (y) converges for every y, and ay (y) are non-negative, we have

[o ] (o]
Jim, kZ_%ak (v) = lgyli,!g, ak (y) =0,

completing the proof. O
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Chapter 5
Conclusion

The performance of a class of channels under energy limitations is studied with particular
interest in the Rayleigh fading channel. It is shown that to achieve high capacities on
a Rayleigh fading channel, in terms of bits/energy, very complex encoding and decoding
schemes are necessary. For the case of single user communication, the channel capacity C,
and the random coding exponent E',-, are evaluated and the dependence of these quantities
on the energy constraint § and the channel SNR « is investigated.

The multiaccess performance of the Rayleigh fading channel is evaluated for the special
case of a large number of equal rate, equal energy users, and a comparison of FDM and
random access schemes is presented. It is shown that the random access scheme performs
better than FDM for at least small access rates.

A few problems remain open, however:

* In Section 3.2 we stated conditions under which the binary use of a non-binary channel
is essentially optimal. These conditions seem to hold for any well behaved channel. A
better understanding of these conditions seem essential to the further development of

the area.

¢ In Section 4.2.1 we just considered the FDM and random access regions, and assumed
that the directly achievable region will not expand in the direction of the main diagonal
(equal rates) if we take the convex hull. This statement is not true in general, and
is difficult to verify even in simple cases. A simple test to guarantee the statement

would be very useful.
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