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Positron Annihilation Lifetime Spectroscopy: When is it feasible to

decompose the spectrum?
J. V. Logan,1, 2, a) S. W. McAlpine,1 P. T. Webster,2 C. P. Morath,2 and M. P. Short1
1)Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge,

MA 02139 USA
2)Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, NM 87117 USA

(Dated: 21 September 2021)

Positron annihilation lifetime spectroscopy (PALS) has the potential to determine open volume defect identities and

concentrations, only if the spectrum can be accurately decomposed into its constituent parts. The intrinsic difficulty of

decomposing PALS spectra into their constituent lifetimes and intensities is demonstrated, and it is shown that the global

minimum of the objective function does not represent the true solution for a range of typical experimental scenarios. We

show that the function currently employed in standard fitting methods cannot be improved upon with alternate weighting

schemes. Resolution function width minimally impacts fit decomposition quality, but errors are reduced with higher

counts. A regression model is developed based on the experimental count, intensity of the defect component, and

difference between the defect and bulk lifetime which predicts the anticipated intrinsic error of the objective function

global minimum in estimating the fraction of positrons which annihilate in the bulk. This can be employed to determine

whether a given PALS spectrum can be successfully decomposed into defect types and lifetimes.

I. INTRODUCTION

Positron annihilation lifetime spectroscopy (PALS) is a

powerful material characterization technique that can be used

to characterize concentrations and types of open volume de-

fects in materials. When positrons enter perfect crystals,

they will thermalize, diffuse, and eventually annihilate with

a bulk lifetime characteristic of the material. If the mate-

rial contains open volume defects, whether by design, by

off-stoichiometry, or due to radiation damage, the positron

may become trapped by their attractive potential and annihi-

late, with a lifetime characteristic to the defect. The positron

lifetime is a function of the electron density at the annihila-

tion site, with lower electron density associated with longer

positron lifetimes. The fraction of positrons annihilating with

different lifetimes can allow one to experimentally assess

open volume defect concentrations and types. This attribu-

tion is predicated on the ability to decompose the experimen-

tal spectrum to obtain the lifetimes and intensities. This de-

composition is an inherently ill-conditioned problem due to

incompleteness in the data and noise.1,2

The difficulty of achieving a consistent decomposition is il-

lustrated in a literature review of recent PALS studies.3 The

deviation between groups of the values reported for the bulk

lifetime is significantly larger than statistical errors reported.

For example, considering five recent studies, the standard de-

viation for the fit bulk lifetime in GaAs is 5.043 ps and for

ZnO is 6.618 ps.3 The deviation in defect lifetimes is even

larger. This inconsistency can lead to significant errors in re-

ported defect types and concentrations.3 Many studies present

only the average lifetime or the average lifetime alongside the

decomposition while questioning the validity of the presented

2-component decomposition.4–11 This is done because the av-

erage lifetime is statistically accurate even if an incorrect life-

a)Electronic mail: jvl2xv@mit.edu.

time decomposition is obtained. However, the average life-

time value inherently contains less information than would a

decomposition.2,3

The experimentally obtained PALS spectrum N(t) is the

probability of a positron to annihilate at time t (time derivative

of the probability that a positron exists at time t), which is a

summation over annihilation in the bulk and in d defect types

(d + 1 components). In a theoretical experiment with no un-

certainty, this spectrum represents the total count of positrons

annihilating at time t

Ntheo(t) =
d+1

∑
i=1

Iiλie
−λi(t−T0) (1)

in which λi = 1/τi is the characteristic annihilation rate (in-

verse lifetime) and Ii(t) is the normalized intensity of the ith

annihilation component. T0 is an offset in time caused by

signal propagation delay in experiment cables. Experimental

spectra will also be convolved with an instrument resolution

function (IRF) due to uncertainties in the acquisition system,

which is often taken to be the weighted sum of g Gaussian

functions which are permitted to be shifted with respect to

each other.12 The resulting convolution has an analytical form,

given by

N(t) =
1

2

d+1

∑
i=1

Iiλi

g

∑
j=1

w je
−λiu j+

1
2 λ 2

i σ 2
j erfc

(

λiσ
2
j − u j

√
2σ j

)

(2)

in which erfc() is the complementary error function, u j =
(t − T0 − ∆ j), and σ j, ∆ j, and w j are the standard devia-

tion, shift, and weight of each Gaussian component.12 The

lifetime intensities and Gaussian weights are normalized, so

each of the fit parameter numbers can be reduced by one

given that Id+1 = 1.0−∑
d
i=1 Ii and wg = 1.0−∑

g−1
i= j w j . Spec-

tra will conventionally be composed of bulk annihilation, a

given number of defect lifetime(s), one lifetime for surface
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FIG. 1. Representative, simulated, ideal PALS spectrum for

monocrystalline Si. This spectrum represents 35% annihilation in

bulk with τB = 0.22 ns, 60% in monovacancies with τ2 = 0.25 ns,

and 5% in salt with τ3 = 0.37 ns. The IRF has two components and

a FWHM of 0.19 ns (Table I). The spectra are simulated with rep-

resentative Poisson noise, shown for realistic annihilation counts of

1,000,000 and 5,000,000. These are generated employing Eq. 2 and

Poisson sampling.

TABLE I. Parameters of the IRF assumed in this analysis. These

parameters are representative of those which can be obtained experi-

mentally. The fit extends to 8.0 ns with 0.02 ns bins, the background

fraction is 0.001, and the T0 is equal to 0.8 ns. Fitting begins to the

left of the maximum at the bin associated with half the maximum.

Parameter Gaussian 1 Gaussian 2

FWHM [ns] 0.18 0.18

Shift ∆ [ns] -0.05 0.0

Weight w [frac] 0.5 0.5

positronium2, and an annihilation component associated with

the positron source itself (annihilation in source 22NaCl salt

and any foils used for source encapsulation). Although, it

should be noted that use of a slow positron beam or direct
22NaCl deposition on the sample surface can remove some

of these additional terms. Illustrative, idealized PALS spec-

tra for monocrystalline Si are given in Fig. 1, assuming 35%

annihilation in bulk with τB = 0.22 ns13–15, 60% in monova-

cancies with τ2 = 0.25 ns, and 5% in salt with τ3 = 0.37 ns;

a 2-component IRF of full-width-at-half-maximum (FWHM)

of 0.19 ns; and Poisson noise associated with experimental

counts of 1,000,000 and 5,000,000. These are generated em-

ploying Eq. 2 and Poisson sampling. The resolution function

parameters and other relevant spectral properties are summa-

rized in Table I. This simple yet representative spectrum and

IRF are used throughout this analysis as the base fitting case.

The experimental spectrum is typically fit to the function

defined in Eq. 2 with the fitting parameters being positron

lifetimes, intensities, and Gaussian parameters (standard devi-

ations, shifts, and weights). Due to the large number of param-

eters to be fit, the IRF parameters are typically obtained in pre-

liminary fits,12 reducing the number of fit parameters to just

the intensity and lifetime of the bulk and each defect present

in the material. The bulk lifetime of most common materials

has been determined experimentally and through simulation

in literature, as have some characteristic defect lifetimes, al-

though there exists substantial uncertainty.2,3 This uncertainty

stems mostly from the difficulty of the fitting problem.2

The bulk lifetime is related to other parameters through2

τB =

(

d+1

∑
i=1

Ii

τi

)−1

(3)

As such, confident knowledge of the bulk lifetime can permit

reduction in the number of lifetimes fit by one (or this relation

can be used to check the potential validity of a decomposi-

tion). In the PALS spectrum, the defect lifetimes measured

will be equal to their characteristic values, but the first ’bulk’

lifetime value will vary based on defect identities and concen-

trations. For this reason, the first bulk lifetime value should be

the one which is solved for if the defect identities are known

and their lifetimes can be fixed to known values.

A commonly employed fitting software is PALSFIT3,

which uses an iterative, separable, least-squares fitting

method to fit the spectrum in which some parameters enter

nonlinearly.2 As an objective function to be minimized, this

software employs a statistically weighted least-squares crite-

rion

Φ =
n

∑
k=1

wk(yk − fk(b1, ...,bm))
2 (4)

in which n is the number of data in the spectrum, yk is the mea-

sured spectral value in time bin k, wk is the weight applied to

the error in count in bin k, and fk(b1, ...,bm) is the evaluation

of Eq. 2 at time bin k given fit parameters b1, ...,bm. PALS-

FIT3 employs a statistical weighting in which the weight is

the inverse variance of the counts. Due to the fact that this is

a Poisson random process, wk =
1

σ 2
k

= 1
yk

.12

For the spectrum visualized in Fig. 1 (5,000,000 counts)

and using the objective function in Eq. 4, one can sample

the potential parameter space for this spectrum and obtain the

multi-dimensional objective function surface. This is signifi-

cant because the existence of a clear global minimum which

represents the true solution would imply that fitting algorithms

should be able to obtain the correct solution. Assuming per-

fect knowledge of the IRF and sampling the space of potential

3-lifetime value and intensity combinations (with τ1 solved

for using Eq. 3 and knowledge of τB of Si, and I1 found

through normalization) surrounding and including the true pa-

rameters for the Fig. 1 spectrum, the objective function space

is plotted in Fig. 2 projected onto the I1 axis. The point asso-

ciated with the parameter combination which yields the mini-

mum objective function is shown in red (cross) and the points

associated with the next four minimal objective function pa-

rameter combinations are shown in blue (circles). The vertical
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FIG. 2. Objective function surface projected onto the I1 parameter for

the 5,000,000 count spectrum visualized in Fig. 1 assuming perfect

knowledge of the IRF (Table I) and sampling the entire parameter

space surrounding and including the true solution. The point asso-

ciated with the parameter combination which yields the minimum

objective function (global minimum) is shown as a red cross, and

the points associated with the next four minimal objective function

parameter combinations are shown as blue circles. The vertical line

represents the correct I1 = 35%. The inset shows a magnification

near the minimal objective function values.

line represents the correct I1 = 35%. It is clear that the global

minimum of the objective function yields an incorrect solu-

tion. It should be recalled that this inability to identify the

global minimum occurs in a semi-ideal case in which we have

perfect knowledge of the IRF and large defect intensity.

Frequently in literature, if the authors are unable to obtain

realistic fits with physical meaning, only the average positron

lifetime (center of mass of the lifetime spectrum) given by

τavg =
d+1

∑
i=1

Iiτi (5)

is reported. This value can be calculated with high reliabil-

ity and allows defect concentration trends to be confidently

reported, theoretically independent of the accuracy of the par-

ticular defect decomposition. Average lifetime differences of

less than 1 ps can be consistently observed experimentally, re-

sulting in a precise, repeatable measurements.2,16 For exam-

ple, the average lifetime for the spectrum visualized in Fig. 1

is 0.231 ns (again an idealized case), which differs substan-

tially from the experimentally known, bulk lifetime in Si of

0.220 ns.

In this study, we improve upon standard PALS spectral de-

composition methods by performing the following: (1) ana-

lyze the optimality of the most commonly employed objective

function (Eq. 4); (2) assess the impact on fitting accuracy

caused by different experimental design considerations; and,

(3) provide a criterion to predict whether for a given physical

scenario one should anticipate that an accurate lifetime de-

composition can be obtained, or whether τavg in Eq. 5 should

be reported instead.

II. RESULTS

A. Objective Function Optimality

In this section, we assess the optimality of the objective

function employed by the most commonly used fitting soft-

ware, given in Eq. 4, and consider others12. In doing so, we

assume the most ideal case in which the IRF is known with

perfect accuracy (the parameters of which are given in Table

I). Six different weighting schemes are considered: (1) di-

vision by counts [1/c], (2) division by counts squared [1/c2],

(3) division by the square root of the counts [1/
√

c], (4) multi-

plication by the square root of the counts [
√

c], (5) multiplica-

tion by the counts [c], and (6) unweighted. Unweighted fitting

routines inherently prioritize high intensity data (and therefore

shorter lifetimes in PALS) in the decay, as the least-squares

residual will be most effectively minimized by reducing error

in the high intensity side of the curve at the expense of poor fit

quality several orders of magnitude down in the low intensity,

long positron lifetime regime. On the other hand, weighting

the data with counts in the denominator serves to "normalize"

the least-squares minimization, so that a percentage error on

the high intensity side is weighted identically to the same per-

centage error on the low intensity side. The result is that fits

weighted by 1/c are more capable of characterizing features

in positron lifetime data spanning several orders of magnitude,

as is the case here where low intensity, long lifetime signals

from defects may only be resolvable after the high intensity,

short lifetime signal from the bulk has substantially decayed.

Using the experimental spectrum visualized in Fig. 1 with 50

different variants based on repeated Poisson noise sampling

and resolution summarized in Table I, each objective function

is judged in terms of the absolute value of the error in I1 of its

global minimum. The error bars in Fig. 3 show the standard

deviation of the 50 samples for each objective function. From

this figure, one cannot statistically distinguish the objective

functions, but the traditionally employed division by experi-

mental count provides the minimum average error and is used

in the remainder of this analysis.

The meaning of this division by counts weighting is visu-

alized in Fig. 4. This figure shows the raw objective function

values for the true solution (red) and negative of the raw objec-

tive function values for the global minimum of the objective

function (blue) as a function of spectral time bin. The cumu-

lative difference between these two is shown in black and the

spectrum itself (without noise) is superimposed for compari-

son in gray. It is shown that the contributions to the objective

function are of the same order of magnitude over the entire fit

range, but that the global minimum makes itself superior in

the region where the spectrum is less than one quarter of its
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FIG. 3. For 50 Poisson noise variants of the 5,000,000 count spec-

trum visualized in Fig. 1 (IRF summarized in Table I), the average

absolute error of the global minimum of the objective function in the

first bulk lifetime intensity I1. The error bars show the standard devi-

ation over the 50 Poisson spectrum distributions. This is shown as a

function of the weighting used in the objective function with c being

the experimental count in each time bin.

maximum value (where longer lifetimes dominate) as shown

in the yellow shaded region of Fig. 4. The reason why long-

time objective function maxima have no impact on the cumu-

lative objective function difference is because both the true

and global minimum spectra fail to capture this noise in the

spectrum to the same degree. In contrast for an unweighted

objective function or an objective function weighted by count,

the dominant contributions to the difference in the objective

function occur at shorter time scales, however, this approach

is shown in Fig. 3 not to improve accuracy of the objective

function in indicating the true lifetime decomposition.

B. Experimental Parameter Optimization

There exist many experimental and fitting parameters that

can have impact on the ability of the objective function to ap-

propriately indicate the true solution. These include: (1) the

experimental count; (2) the IRF width; (3) the error in the IRF

estimation; (4) the time-bin width in the acquired spectrum

(for equivalent total count); (5) the time bin at which fitting

begins; (6) the time bin at which fitting ends; and, (7) smooth-

ing of experimental data. When not otherwise specified, val-

ues indicated in Table I and Fig. 1 are used throughout this

optimization.

The dependence of the absolute value of the error of the

first lifetime (bulk) intensity [%] of the global minimum ob-

jective function on the experimental count is visualized in

Fig. 5. It is observed that for unrealistic counts on the or-

FIG. 4. The cumulative objective function difference for the true

spectrum and the minimum of the objective function (black) as a

function of spectral time [ns] for a 5,000,000 count spectrum visual-

ized in Fig. 1 (IRF summarized in Table I). The individual objective

functions for the true and global minimum solutions are visualized in

red and blue respectively as a function of spectral time [ns] and the

spectrum itself (without noise) is visualized in gray. The time scales

over which the objective function minimum distinguishes itself from

the true solution are highlighted in yellow.

der of 100,000,000 the error and statistical spread in the fit

errors approaches zero due to the excellent statistics. Acquir-

ing feasible counts of 107 rather than 1-2×106, is shown to

result in lower mean error and smaller statistical variability,

underscoring the need to acquire more data than is sometimes

published.17–22

The IRF width is found to have negligible impact on the

ability of the objective function global minimum to be repre-

sentative of the true solution (Appendix Fig. 8). This does not

necessarily indicate that IRF width is unimportant, because it

may be easier experimentally to estimate IRF parameters if

the overall IRF FWHM is smaller. These findings agree with

previous literature in which higher counts are recommended

at the expense of IRF width.23 Errors in IRF width estimation

are found to significantly impact the ability to fit (Appendix

Fig. 9), with overestimation leading to more severe errors than

underestimation. If the IRF width is underestimated (overesti-

mated), the intensity of the bulk lifetime component is under-

estimated (overestimated) because a larger (smaller) contribu-

tion of the larger defect lifetimes is required to compensate for

the underestimation (overestimation).

For the experimental time bin width (for equivalent total

5,000,000 counts), it is generally preferred to have larger time

bins due to less statistical variability per bin associated with

the larger counts per bin, but this effect saturates at time bins

of ∼0.06 ns because the spectrum starts to be undersampled

and trends start to be missed (Fig. 10). For the bounds of
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FIG. 5. Dependence of absolute value of the error of the first lifetime

(bulk) intensity [%] of the global minimum objective function on the

experimental count. The error bars show the standard deviation under

10 Poisson samples of the true function. All unspecified spectral

parameters are given in Fig. 1 and Table I.

the fit, minimal impact is realized unless the fit start (Ap-

pendix Fig. 11) or fit end (Appendix Fig. 12) approach spec-

tral time bins where significant lifetime trends are present. No

detriment is observed to fitting out to long time scales on the

order of 100 ns. This makes sense with reference to Fig. 3

where it is shown that long-time-scale objective function val-

ues do not differentiate the true solution from the global mini-

mum because both fits will have the same errors at these long

time scales driven only by experimental statistical variability.

Smoothing of the experimental data is found to not improve

the ability of the objective function global minimum to ap-

proximate the true solution (Appendix Fig. 13).

C. Criterion for Fit Potential

Under optimal fitting, there are still experimental condi-

tions in which the objective function global minimum does not

accurately predict the correct lifetime decomposition (Fig. 2).

In this section, we develop a criterion which can be used to

predict whether under optimal conditions, a reliable decom-

position could be obtained (in which the global minimum is

clearly representative of the true solution). In general, this

condition is met when the defect lifetime(s) present are of

large magnitude and have lifetimes which are clearly sep-

arated from the bulk lifetime. This trend is visualized in

Fig. 6. Each row represents increasing defect lifetime (above

the 0.22 ns bulk lifetime of Si) and the first column is for

25% and the second for 75% annihilation in the defect. It

is observed that generally for a defect intensity of 25%, a de-

fect lifetime of over 0.34 ns is required to obtain a consistent

FIG. 6. Objective function surface projected onto the I1 parameter

for an altered 5,000,000 count spectrum visualized in Fig. 1 (dif-

ferent defect intensities in columns and different defect lifetimes in

rows) assuming perfect knowledge of the IRF (Table I) and sampling

the entire parameter space surrounding and including the true solu-

tion. The point associated with the parameter combination which

yields the minimum objective function (global minimum) is shown

in green and the points associated with the next four minimal ob-

jective function parameter combinations are shown in blue (in some

cases, two are overlapping). The vertical line represents the correct

I1 (70% column 1, 20% column 1). The defect lifetime increases

with rows varying from 0.25 ns to 0.34 ns.

global minimum (more than the divacancy lifetime in Si). In

comparison, for defect concentration of 75%, defect lifetimes

of 0.28 ns are sufficient. These effects are studied systemati-

cally in this section to provide a criterion to be used to deter-

mine if a consistent fit can realistically be obtained.

A regression model is developed to predict mean error of

the global minima in predicting the intensity of the bulk life-

time component I1. In developing the dataset for the model,

bulk lifetimes of 0.18 ns to 0.24 ns, counts of 1,000,000 to

50,000,000, differences between bulk and defect lifetimes (τ2-

τB) of 0.02 to 0.1 ns, and defect intensities I2 of 10% to 90%

are sampled. The IRF is assumed to be perfectly known (pa-

rameters in Table I). The objective function surface is ob-

tained for each parameter combination for 50 Poisson variants

of the resulting distribution. The global minimum is identified

for each and the average error for the 50 variants is used for

model building. This dataset is shown in Fig. 7. It is shown

that (τ2-τB) and I2 are strong predictors of the ability to ac-

curately decompose the lifetime spectrum. The spread in this

data results mainly from statistical variability as well as dif-

ferent number of counts in the spectra analyzed.

Through regression, the bulk lifetime is not found to be
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FIG. 7. Data used to develop regression model for predicting error in

estimation of the first lifetime component intensity I1 [%]. The box-

plots represent the interquartile range (25%-75%) with the median

shown. The x-axis represents the defect intensity and the individual

boxplots for each represent increasing difference between the defect

and bulk lifetime. Spread in the data represents statistical variabil-

ity, variability due to different number of counts in the distribution,

and any differences due to different bulk lifetime. The whiskers are

allowed to extend 22x the interquartile range to make obvious the

trends of reduced width with increased I2 and difference between

bulk and defect lifetime (points outside this range are defined as out-

liers and are plotted as diamonds.)

a statistically significant predictor, but counts, (τ2-τB), and

I2 are found to be statistically significant predictors with p-

values of less than 0.001. This p-value less than 0.01 indicates

that there is sufficient evidence to reject the null hypothesis

and conclude that variability in these independent variables is

correlated with changes in the dependent variable at the popu-

lation level. Models with normalized and non-normalized pa-

rameters are considered, and the two are found to have identi-

cal R2 statistic (0.740), indicating approximately equal predic-

tive goodness. The non-normalised parameters are presented

in Eq. 6 for ease of experimental use (raw experimental pa-

rameters can be directly used). All lifetime values should be

given in ns, I2 should be given as a fractional value, and counts

should be given as raw counts in the spectrum. The predicted

absolute error in I1 (%) for the global minimum is given by

E(I1) = 28.0− 165.1(τ2− τB)− 19.2I2−
Counts

1.2× 107
(6)

In this formula, the coefficients of counts, (τ2-τB), and I2

are all negative because increasing each of these values re-

sults in improved ability to decompose the spectrum correctly

into its lifetime components. Application of this formula per-

mits experimentalists to predict if there is any potential to ac-

curately decompose their spectra, although accuracy is not en-

sured because errors in the resolution function estimation may

obscure the proper decomposition. Eq. 6 should primarily be

used within the range of the data used to generate the model,

otherwise extrapolation error will result. Most relevantly, this

includes counts of 1,000,000 to 50,000,000, differences be-

tween bulk and defect lifetimes (τ2-τB) of 0.02 to 0.1 ns, and

defect intensities I2 of 10% to 90%. It should also be empha-

sized that this formulation assumes perfect knowledge of the

IRF. If a negative error is predicted, this indicates that the ex-

perimental situation nears or moves outside the range of appli-

cability and that a reasonable decomposition is likely feasible.

III. CONCLUSION

The intrinsic difficulty of decomposing the PALS spectrum

into its constituent lifetimes and intensities is demonstrated,

and a methodology for determining whether an optimum de-

composition into physically significant lifetimes can be ob-

tained is developed. In a range of typical experimental sce-

narios, the global minimum of the objective function does not

represent the true solution. The optimality of different objec-

tive functions is considered and it is concluded that the func-

tion currently employed in standard fitting methods cannot be

improved upon with alternate count weighting schemes. IRF

width is shown to have minimal impact on the ability of the

objective function to indicate the true solution, but errors are

reduced with larger counts. A regression model is developed

based on the experimental counts, intensity of the defect life-

time component of the spectrum, and the difference between

the defect and bulk lifetime which predicts the anticipated,

intrinsic error of the objective function global minimum in es-

timating the fraction of positrons which annihilate in the bulk.

This can be employed to determine whether there is poten-

tial to achieve a successful decomposition, or if the average

positron lifetime should be reported instead. By using Equa-

tion 6, if the predicted error falls below ∼10%, then spectral

decomposition will be the preferred PALS spectrum analysis

method over average lifetime analysis.
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FIG. 8. Error in absolute value of the intensity of the first (bulk)

lifetime [%] associated with the objective function global minimum

as a function of resolution function FWHM. The error bars show the

standard deviation under 10 Poisson samples of the true function. All

unspecified spectral parameters are given in Fig. 1 and Table I.

FIG. 9. Error in absolute value of the intensity of the first (bulk)

lifetime [%] associated with the objective function global minimum

as a function of error in resolution function FWHM error. The error

bars show the standard deviation under 10 Poisson samples of the

true function. All unspecified spectral parameters are given in Fig. 1

and Table I

FIG. 10. Error in absolute value of the intensity of the first (bulk)

lifetime [%] associated with the objective function global minimum

as a function of spectrum time bin width. The error bars show the

standard deviation under 10 Poisson samples of the true function.

All unspecified spectral parameters are given in Fig. 1 and Table I

FIG. 11. Error in absolute value of the intensity of the first (bulk)

lifetime [%] associated with the objective function global minimum

as a function of fit start bin (associated with where counts on the

left-hand side of the maximum reach a given percentage of the max-

imum). The error bars show the standard deviation under 10 Poisson

samples of the true function. All unspecified spectral parameters are

given in Fig. 1 and Table I
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FIG. 12. Error in absolute value of the intensity of the first (bulk)

lifetime [%] associated with the objective function global minimum

as a function of where in time the fit ends (as quantified by fit length).

The error bars show the standard deviation under 10 Poisson samples

of the true function. All unspecified spectral parameters are given in

Fig. 1 and Table I

FIG. 13. Error in absolute value of the intensity of the first (bulk)

lifetime [%] associated with the objective function global minimum

as a function of smoothing window size (Savitzky-Golay filter of

order=min(3,window-2)). The error bars show the standard devia-

tion under 10 Poisson samples of the true function. All unspecified

spectral parameters are given in Fig. 1 and Table I
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