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Although shape correspondence is a central problem in geometry processing, most methods for this task apply only to two-

dimensional surfaces. The neglected task of volumetric correspondenceÐa natural extension relevant to shapes extracted from

simulation, medical imaging, and volume renderingÐpresents unique challenges that do not appear in the two-dimensional

case. In this work, we propose a method for mapping between volumes represented as tetrahedral meshes. Our formulation

minimizes a distortion energy designed to extract maps symmetrically, i.e., without dependence on the ordering of the source

and target domains. We accompany our method with theoretical discussion describing the consequences of this symmetry

assumption, leading us to select a symmetrized ARAP energy that favors isometric correspondences. Our inal formulation

optimizes for near-isometry while matching the boundary. We demonstrate our method on a diverse geometric dataset,

producing low-distortion matchings that align closely to the boundary.

CCS Concepts: · Computing methodologies→ Volumetric models; Shape analysis.

Additional Key Words and Phrases: correspondence, volumes, tetrahedral meshes, as-rigid-as-possible, symmetry

1 INTRODUCTION

Shape correspondences are at the core of many applications in graphics and geometry processing, including texture
and segmentation transfer, animation, and statistical shape analysis. The central objective of these applications is
to compute a dense map between two input shapes, facilitating semantically-meaningful information transfer
with minimal distortion.

The vast majority of shape correspondence algorithms focus on mapping two-dimensional surfaces. These
approaches leverage geometric properties that are unique to surfaces. For example, key shape properties like
curvature are deined over the entire surface domain, rather than only on the boundary as in the volumetric
case. As a result, one can even ind reasonable correspondences by matching geometric features directly, without
incorporating any notion of distortion [Ovsjanikov et al. 2010]. Other methods use Tutte’s embedding or notions
of discrete conformality speciic to surfaces to achieve key properties like invertibility [Lipman and Funkhouser
2009; Schmidt et al. 2019].
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Mapping Between Two Volumes With Our Method

(Visualized at Di�erent Depths) 

Fig. 1. Our method produces low-distortion correspondences between volumes, visualized as checkerboard textures through

the sliced volumes.

In contrast, here we consider the problem of mapping volumes to volumes rather than surfaces to surfaces.
Volumetric correspondence is beneicial for several tasks. In graphics and CAD, boundary representations of
shapes are used to represent objects, so even the input geometry used to evaluate surface-to-surface mapping
techniques typically expresses a volumetric domain. Hence, inding volumetric correspondences may improve
correspondences of these boundary representations, since volumetric reasoning is needed to preserve thin features
and prevent volumetric collapse; for example to prevent the candy wrapper artifact, where regions twist about a
point and change orientation. In these cases, surface area is roughly maintained while volume degenerates. See
Fig. 2 (top) for an illustration using the surface mapping approach of Ezuz et al. [2019]. From a surface isometry
perspective, the candy wrapper artifact has little distortion as only few edges have deformed. However, from a
volumetric perspective, the shape’s volume has completely degenerated. In other applications, such as medical
imaging, data is acquired in a regular 3D grid and shape correspondence is used for volumetric texture transfer
or alignment. Consequently, extending surface correspondences to the interior of volumetric shapes is nontrivial,
so volumetric mapping approaches are needed.

Volumes do not share many of the geometric properties that have enabled mapping techniques for surfaces, so
new approaches are needed. The closest existing methods to volumetric mapping tackle volumetric deformation
and parameterization. In these applications, one starts with a volume in its rest pose and deforms the volume to
a target domain or to conform to a set of target handle positions in a fashion that minimizes distortion. These
approaches difer from volumetric mapping in several ways. First, volumetric deformation and parameterization
methods typically assume a reasonable initial guess (e.g., the source shape) and lexibility in the target domain
(e.g., unconstrained geometry away from the handles) or specialize to a single target (e.g., a ball). In contrast,
in mapping, the source and target domains are geometrically distinct shapes so a reasonable initialization is
not given. One may need to start with a coarse map to a known set of landmarks [Aigerman et al. 2014; Ezuz
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Fig. 2. Illustration of possible map degeneration when using a surface-mapping approach. Top row: Mapping using the

surface-based approach of Ezuz et al. [2019] initialized with four landmark points (yellow spheres) leads to the candy wrapper

artifact, where regions of the mapped shape twist 180◦, causing a change in orientation accompanied by a collapse in volume

(red circles). The dark gray regions of the surface map show the backs of the triangles. Botom row: mapping with two

landmarks at the ends of the rods corrects the issue. In both cases, our volumetric approach maintains volumetric integrity

and preserves orientation.

et al. 2019]. Furthermore, mapping problems are typically symmetric, in the sense that the computed map should
be invariant to the ordering of the source and target domains; there is no notion of a łrest posež typical in
deformation. Consequently, we seek a distortion energy that is symmetric with respect to the source and target.

We propose an algorithm for mapping between volumes represented as tetrahedral meshes. Our method draws
insight from 2D surface mapping and 3D deformation. It builds on the discretization of maps used in a state-
of-the-art surface mapping algorithm [Ezuz et al. 2019] but requires new objective functions and optimization
methods to be efective. In particular, we propose a set of symmetrized distortion energies that are invariant to
the domain over which the map is applied and aim to produce inversion-free, low-distortion matchings that
conform closely to the boundary (Fig. 1).

Contributions. This paper contributes the following:

• We present a method for computing volumetric correspondences between far-from-isometric shapes by
minimizing a symmetric distortion energy.
• We analyze the concept of a symmetric distortion energy, which is agnostic to the ordering of source and target
domains, and provide a recipe for symmetrizing a distortion energy. We propose a set of desirable properties
for a symmetric distortion energy and analyze well-known measures of distortion within our framework.
• We demonstrate our method on a diverse dataset of examples, showing that our method reliably extracts
correspondences with low distortion.
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1.1 Approach

Weind a dense correspondence between two volumetric shapes�1 and�2 represented as tetrahedral meshes. Our
algorithm simultaneously optimizes for a map � : �1 → �2 and its (approximate) inverse� ≈ �−1 : �2 → �1,
which both take vertices of one mesh to (interiors or boundaries of) tetrahedra in the other. Our approach handles
meshes of difering connectivity and facilitates inding maps between far-from-isometric shapes.

Existing volumetric mapping methods use deformation techniques to place or repair interior tetrahedra, given
a ixed map between the boundaries ��1 and ��2. In contrast, we include the boundary map as a variable. Our
method can repair poorly-initialized surface maps and compute maps using only landmark correspondences as
initialization.

Our formulation is symmetric in that the computedmap is invariant to the labeling of the łsourcež and the łtargetž
among�1 and�2. The motivation for symmetry comes from several applications where the selection of a source
or target shape is unnecessary. For example, in medical imaging, one is interested in inding correspondences
between brain shapes extracted from magnetic resonance images (MRI) to perform comparisons of local cortical
(brain tissue) thickness [Aganj et al. 2015]. Similar symmetry arises when seeking a correspondence between two
humans standing in the same pose, and in general for applications seeking to align two shapes. The arbitrary
choice of the source shape is a consequence of algorithm design rather than application need. Consequently,
this choice can inluence the correspondence result, introducing bias. As shown in Fig. 3, an asymmetric method
like [Kovalsky et al. 2015] may result in unequal performance dictated by the choice of map direction. Further,
the asymmetry of previous approaches in medical imaging have introduced bias in estimating the efects of
Alzheimer’s disease [Fox et al. 2011; Hua et al. 2011; Yushkevich et al. 2010].

A reasonable expectation is to produce the same mapśup to inversionśregardless of the choice of the source
and target shape, i.e., the ordering of �1 and �2. One way to achieve this is to use a symmetric energy. An
energy � is symmetric if � (�) = � (�−1) [Cachier and Rey 2000; Schmidt et al. 2019]. Since �−1 is challenging
to compute in practice, and does not exist for maps initialized with lipped tetrahedra, we introduce � ≈ �−1

and propose a symmetric approach by optimizing � (�) + � (� ). Optimizing with this pair of maps is a common
way of guaranteeing symmetry [Cachier and Rey 2000; Christensen and Johnson 2001; Ezuz et al. 2019; Schmidt
et al. 2019; Schreiner et al. 2004], and we show via change-of-variables that optimizing this sum is equivalent to
optimizing a diferent distortion energy �Sym (�) on just the forward map � .

Key to computing a high-quality map is the proper choice of distortion energy � or its symmetrized counterpart
�Sym. We analyze the efect of symmetrizing several widely-used distortion energies, showing that several sym-
metrized energies violate typical desiderata used to design mapping algorithms. For example, several symmetrized
energies no longer favor local isometry. Following this analysis, we select the symmetrized ARAP energy as our
distortion measure, eliminating solutions that locally favor collapsing or shrinking maps.

2 RELATED WORK

Volumetric correspondence poses a new set of challenges that has not been addressed in surface-based methods.
Although relatively few works consider precisely the problem tackled in this paper, we draw insights from
volumetric parameterization, volumetric deformation, and surface mapping and focus our review on relevant
work on these topics.

Volumetric parameterization and deformation. Parameterization and deformation algorithms provide means of
deforming tetrahedral meshes into prescribed poses or domains with minimal distortion.

A parameterization is a deformation of a volume to a simpler domain, such as a topological ball [Abulnaga et al.
2022; Garanzha et al. 2021; Paillé and Poulin 2012; Wang et al. 2003; Yueh et al. 2019] or a polycube [Aigerman
and Lipman 2013; Fu and Liu 2016; Li et al. 2021; Paillé and Poulin 2012; Wang et al. 2008b; Xia et al. 2010]. The
better-studied instance of parameterization in graphics maps, possibly with cuts, two-dimensional surfaces (rather
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Fig. 3. Comparison between our symmetric approach and an asymmetric baseline. A symmetric approach is necessary when

there is no clear source or target shape to produce high-quality bidirectional maps.

than volumes) into the plane; see [Floater and Hormann 2005; Fu et al. 2021; Shefer et al. 2007] for discussion of
this broad area of research.
In deformation, the task is to deform a volume by moving a set of handles to a set of target positions. These

methods are often based on physical models of strain [Irving et al. 2004] and aim to produce elastic deformations
minimizing a prescribed energy choice [Chao et al. 2010; Fu et al. 2015; Irving et al. 2004; Kovalsky et al. 2014;
Müller et al. 2002; Sahillioğlu and Kavan 2015; Smith et al. 2018, 2019]. In the 2D case, both skeleton-based [Lewis
et al. 2000] and physical models [Nealen et al. 2006] can be used. See [Gain and Bechmann 2008; Selim and
Koomullil 2016; Sieger et al. 2015] for general discussion.

In both problems above, one computes a deformation from the rest pose to the target. Optimization methods
are used to match the target while minimizing distortion, where the distortion is measured using an energy
that quantiies the deformation of the Jacobian matrix of each tetrahedron. Since these models start with a good
initialization, namely the rest pose, one can optimize using a combination of energies with lip-free barriers and
a constrained line search, arriving at solutions that are both lip-free and have low distortion; see e.g. [Smith
and Schaefer 2015] for a representative example. In contrast to these past works, we produce maps between
far-from-isometric domains without an obvious efective initialization. Consequently, our choice of energies is
designed to be resilient to poor initial maps that are not foldover-free.

Volumetric mappings. Some methods consider the task of computing correspondences between volumetric
shapes. To our knowledge, all past methods can be understood as special cases of the deformation methods where
the task is to extend a ixed boundary map to the interior of a volume.
Kovalsky et al. [2015] present a local-global alternating algorithm targeting maps with bounded distortion.

Their method takes an initial surface map and computes a similar map with bounded condition number. They
demonstrate their algorithm on two volumetric correspondence examples and show one example (their Figure
11) where relaxing prescribed boundary constraints at the end of the optimization procedure can help recover
from minor artifacts. Su et al. [2019] also target computation of foldover-free volumetric maps with prescribed
boundary; they extend the method of Kovalsky et al. [2015] by automatically inding a suitable bound on the
condition number. Their method has impressive levels of eiciency but targets a speciic notion of conformal
distortion. Stein et al. [2021] propose an operator splitting technique to optimize nonconvex distortion energies
to yield a lip-free parameterization; they demonstrate a few examples of volumetric correspondence.
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The approaches above require a prescribed boundary map and minimize distortion of the interior. In contrast,
our method optimizes the boundary map to minimize global distortion and does not need a bijective, orientation-
preserving boundary map as an initializer. Indeed, it is not always obvious how to design a boundary map so that
the induced volumetric correspondence has low isometric disortion. We also optimize an alternative objective
function that targets symmetry and isometry rather than bounded distortion or conformal structure preservation.
A few mapping methods reduce a mapping problem between volumetric domains to a sequence of surface-

mapping problems between leaves of foliations of the two domains. Campen et al. [2016] propose a volumetric
parametrization approach relying on a foliation. Their algorithm requires the domain to be a topological ball
whose tetrahedral mesh is bishellable. Cohen and Ben-Chen [2019] describe an alternative method to compute
foliations of more-general volumetric domains using a Hele-Shaw low along a potential function from a Möbius
inversion of the domain boundary to a sphere. Unlike these methods that decompose the domain into surfaces,
our method does end-to-end optimization of a mapping over an entire volume at once.

Symmetric maps. Symmetric mapping methods are invariant to the ordering of the source and target shapes.
Several works in 2D surface mapping do so by optimizing for the average of the forward and reverse map
distortion [Ezuz et al. 2019; Hass and Koehl 2017; Schmidt et al. 2019; Schreiner et al. 2004]. In medical imaging,
mapping is referred to as registration, where the problem is to learn a displacement ield deined on a 3D grid.
Symmetry, or łinverse-consistency" [Christensen and Johnson 2001] is achieved using a similar approach of
averaging the map distortions [Aganj et al. 2015; Cachier and Rey 2000; Leow et al. 2005; Sabuncu et al. 2009], or
by optimizing in a mid-space between the two images [Avants et al. 2008; Joshi et al. 2004]. Many of these works
demonstrate that symmetry improves consistency of mapping, improves accuracy, and eliminate bias.
We use a similar formulation to achieve symmetry. We analyze several common distortion energies sym-

metrized in this way and show thatÐsurprisinglyÐthe choice of energy can have counterintuitive consequences.
In particular, distortion energies that favor isometry in one direction may not do so when optimizing their
symmetrized counterparts. To prevent this undesired behavior, Hass and Koehl [2017] developed a symmetric
distortion energy that measures the distance of a conformal map from an isometry. Their distortion energy is
restricted to conformal maps between genus-0 surfaces. Extending it to the volumetric case is nontrivial due to
the lack of conformal maps in 3D.
We develop the concept of a symmetric energy that is invariant to the choice of optimization domain over

which it is taken, in the sense that the energy of the inverse map matches that of the forward map. Although it is
a sensible choice in our setting, we note the term łsymmetricž is somewhat overloaded in the parameterization
and mapping literature. Several distortion measures have been deemed symmetric because they equally penalize
scaling and shrinking, such as the symmetric Dirichlet energy [Schreiner et al. 2004; Smith and Schaefer 2015]
and the symmetric ARAP energy [Shtengel et al. 2017]. Our analysis shows that in fact these energies do not
necessarily satisfy our notion of symmetry.

Surface maps. Two-dimensional surface mapping can generally be divided into (at least) three sets of approaches:
methods that use an intermediate domain, methods that rely on descriptors, and methods that directly extract a
map from one mesh into another. We refer the reader to one of several surveys for a broad overview [Li and
Iyengar 2014; Sahillioğlu 2020; Van Kaick et al. 2011].
The irst two groups of approaches cannot be directly extended to the volumetric case. In particular, while

Tutte’s parameterization provides a natural means of mapping surfaces bijectively to an intermediate domain
and thus provides a natural means of initializing maps in the irst category, no such canonical parameterization
exists for volumes. Moreover, volumetric geometry descriptors do not appear to be suiciently reliable for
correspondence tasks.
Methods that ind correspondences through an intermediate domain employ a bijective parameterization of

each input to a simple domain such as the plane [Kraevoy and Shefer 2004], the sphere [Gotsman et al. 2003;
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Haker et al. 2000; Lee and Kazhdan 2019], or a quotient manifold [Aigerman and Lipman 2015, 2016; Aigerman
et al. 2014, 2015; Bright et al. 2017; Schmidt et al. 2019]. We also note methods like [Kim et al. 2011; Lipman
and Funkhouser 2009], which average multiple maps computed in a similar fashion. These approaches admit
no obvious extension to volumes. First, the existence of a bijection to a simpler intermediate domain does not
always exist. Second, many of these methods require introducing cutting seams [Aigerman et al. 2015], which
becomes substantially more diicult in three dimensions. Furthermore, these may not result in low-distortion
maps, as minimizing the composition of the maps in the intermediate domain may result in high distortion in the
inal surface-to-surface map.
The second set of methods computes maps that match descriptors, possibly with added regularization. De-

scriptors are often distance-based [Bronstein et al. 2008b; Huang et al. 2008], spectral [Jain et al. 2007; Mateus
et al. 2008; Ovsjanikov et al. 2010; Vestner et al. 2017], extrinsic [Ankerst et al. 1999; Salti et al. 2014], or a
combination [Dubrovina and Kimmel 2011; Kim et al. 2011; Litman and Bronstein 2013]. Many correspondence
methods in this category are built on the functional maps framework [Ovsjanikov et al. 2012, 2016], which
inds correspondences by matching functions deined on the shapes. Relatively few descriptors are available for
volumetric geometry, whose structure is still inherited from the boundary surface.

The third class of approaches directly optimize for inter-surface maps. These methods compute a map between
surfaces by matching features or landmarks while minimizing distortion [Ezuz et al. 2019; Mandad et al. 2017;
Schreiner et al. 2004; Solomon et al. 2012, 2016].

Ezuz et al. [2019] produce a map between surfaces by minimizing the geodesic Dirichlet energy of the forward
and reverse map and encouraging bijectivity through a reversibility energy. Our algorithm extends many of their
ideas to the volumetric case. In our case, however, a new algorithm is required.

Medical image registration. Medical image registration is a form of volumetric shape correspondence in
Euclidean space. Here, the task is to ind correspondences between two volumes deined on a dense 3D grid. The
correspondence is driven by matching voxel signal intensities, for example using mutual information [Klein et al.
2007] or cross-correlation [Avants et al. 2008]. The optimization seeks to ind a displacement ield deined at the
grid coordinates. Similar to our formulation, the transformation is governed by any of several regularization terms,
for example to compute a difeomorphic transformation [Beg et al. 2005]. We refer the reader to surveys [Oliveira
and Tavares 2014; Sotiras et al. 2013; Viergever et al. 2016]. While both our approach and registration methods
aim to ind volumetric correspondences, the techniques used in medical image registration are not applicable, as
they operate on a dense Euclidean grid and are driven by intensity rather than geometry.

3 MAPPING PROBLEM

We develop a volumetric mapping method that is symmetric, in that the resulting maps are invariant to the
ordering of the source and target shapes. We compute the map by minimizing an objective function that measures
distortion symmetrically while satisfying a set of constraints. In this section, we investigate the consequences of
the symmetry assumption on our algorithmic design.

3.1 Preliminaries

Given two bounded volumes�1, �2 ⊂ R
3 with smooth boundaries ��1, ��2, we seek a map� : �1 → �2. Several

considerations inform our choice of � , detailed below. Note that this problem is not the same as deformation

(sometimes referred to as łmappingž in past literature), which aims to ind a low-distortion deformation of
�1 ⊂ R

3 given prescribed target positions for a few handles rather than the geometry of�2.
Many algorithms for mapping and deformation can be viewed as optimizing a distortion energy of the form

�� [�] :=

∫

�1

� (�� (x)) �� (x), (1)

ACM Trans. Graph.
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where �� ∈ R
3×3 is the map Jacobian and �� (x) is the volume form on�1.

The distortion function � : R3×3 → R≥0 usually measures local deviation of the map from isometry. Typical
choices favor rigidity [Rabinovich et al. 2017]. For example, the as-rigid-as-possible distortion function (ARAP) [Liu
et al. 2008] measures the deviation of the Jacobian from the set of rotation matrices SO(3):

�ARAP (� ) = min
�∈SO(3)

∥ � − �∥2� .

In contrast, the Dirichlet energy functional

�D (� ) = ∥ � ∥
2
�

favors the as-constant-as-possible map [Schreiner et al. 2004]. Selection of the distortion function is application-
dependent. For example, one might choose � to model physical strain for deformation. Alternatively, one might
select � to encourage injectivity.

In almost all applications, � is chosen to be rotation invariant, relecting the fact that rigid motions of�1 and
�2 should not afect the computed map. In this case, � (� ) is a function of the singular values � (� ), the elements
of the diagonal matrix Σ in the singular value decomposition (SVD) � = � Σ�⊤. In a slight abuse of notation, in
our subsequent discussion we will use � to denote both a function on matrices in R3×3 and vectors of singular
values in R3, with � (� ) := � (� (� )).

In addition to inding a map with low distortion, we are concerned with inding one that satisies a desired set
of constraints. For example, we can constrain the boundary of the source volume to be mapped to the boundary
of the target, i.e. � (��1) = ��2. We use P to denote the constrained feasible set. One might imagine other
constraints, for example ensuring a set of landmark points are mapped to the pre-speciied locations, further
restricting P. Moreover, regularizing objective terms, Reg[�] could be added. So, our optimization problem
becomes

argmin
�

∫

�1

� (�� (x)) �� (x) + Reg[�]

subject to � ∈ P .

(2)

3.2 Symmetrized Energy Functions

For correspondence problems where there is no clear distinction between the rest pose and the target pose, it is
desirable for a volumetric correspondence method to be symmetric, meaning that it is invariant to the ordering of
the łsourcež domain�1 and łtargetž domain�2. Symmetry requires �� [�] = �� [�

−1]. In this section, we arrive
at a set of conditions on � to check if an energy is symmetric, and propose a symmetrization procedure to obtain
the symmetrized form of a distortion function � . We later investigate the efects on computing a map using the
symmetrized form of � .

Following [Cachier and Rey 2000; Christensen and Johnson 2001; Ezuz et al. 2019; Schmidt et al. 2019; Schreiner
et al. 2004], one simple way to achieve symmetry is to optimize the average of the distortion energy of a map
with the distortion energy of its inverse. Ezuz et al. [2019] and Schreiner et al. [2004] use the simplest choice of
energies to symmetrizeÐthe Dirichlet energyÐwhile Schmidt et al. [2019] use the symmetric Dirichlet energy to
prevent foldovers. Below, we analyze the consequences of using these energies and other possible choices of �
not considered in prior work. Surprisingly, our analysis will show that the Dirichlet energy and several other
seemingly reasonable choices do not yield an efective notion of distortion after symmetrization, leading us to
employ an alternative in our technique.
We start by deriving conditions on � that ensure the distortion energy �� is invariant to the ordering of the

source and target. Let�1 and�2 be open subsets of R� and � : �1 → �2 a difeomorphism between them. For
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Dirichlet Symmetric Dirichlet MIPS Symmetric gradient Hencky strain ARAP

�

� Sym

Fig. 4. Level sets of distortion functions � (top) and their symmetrized counterparts � Sym (botom) evaluated at (�1, �2, 1)

for (�1, �2) ∈ [0, 2]
2 .We mark (1, 1) as a white dot and the location of the minimum as a circle. In the parlance of ğ3.3, all

energies except the Dirichlet energy preserve structure (� minimized at (1, 1, 1)), while only the Hencky strain and ARAP

energies favor isometry (� Sym minimized at (1, 1, 1)). Only Dirichlet and ARAP are nonsingular, since the level sets do not

diverge as singular values approach 0.

simplicity, assume�1 and�2 are normalized to have volume 1. We can compute the distortion of the map � by
applying Eq. (1) in both directions:

�� [�] =

∫

�1

�
(
�� (x)

)
��1 (x) (3)

�� [�
−1] =

∫

�2

�
(
��−1 (y)

)
��2 (y). (4)

Pulling back the integral in Eq. (4) to�1, we use a change of variables to y = � (u) to show

�� [�
−1] =

∫

�1

�
(
��−1 (� (u))

) ��det �� (u)
�� ��1 (u). (5)

By the inverse function theorem,

�� [�
−1] =

∫

�1

�
( (
�� (u)

)−1) ��det �� (u)
�� ��1 (u). (6)

For invariance with respect to the integration domain, Eq. (3) must agree with Eq. (6). Matching the integrands,

� (� ) = |det � | �
(
� −1

)
, (7)

is suicient for this equivalence. In terms of the singular values, we obtain

� (�) =

�����

�∏

�=1

��

�����
�

(
1

�1
, . . . ,

1

��

)
. (8)

Here and in our subsequent discussion, we will use � to refer to the dimensionality of the domains�1, �2 when
the result under discussion applies to maps in any dimension; � = 3 in our application. This condition was irst
proposed by Cachier and Rey [2000] to propose symmetrization by averaging the distortion function in both
mapping directions. This motivates the following deinition:
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Deinition 3.1 (Symmetric energy). A distortion energy �� whose distortion function � satisies Eq. (7)Ðor
Eq. (8) in terms of singular valuesÐis a symmetric energy.

Our symmetric energy condition is both necessary and suicient for symmetric distortion measures, in the
following sense:

Proposition 3.2. �� [�] = �� [�
−1] for all�1,�2, and � as deined above if and only if � is a symmetric energy.

Proof. Substituting (7) into (6) shows that any � satisfying (7) automatically satisies �� [�] = �� [�
−1]. We

now show the converse. Since �� [�] = �� [�
−1] ∀�1,�2, � as deined above, we can choose�1 = �1 (0) ⊂ R

� ,
the open ball of radius 1. Consider any invertible � ∈ R�×� , and deine a map � (x) := �x, whose Jacobian is given
by �� (x) = � . Take�2 := � (�1). Applying (3),

�� [�] = � (� ) · vol (�1 (0)) . (9)

Similarly, applying (6) yields
�� [�

−1] = �
(
� −1

)
|det � | · vol (�1 (0)) . (10)

Equating Eq. (9) and Eq. (10) and dividing by vol (�1 (0)) completes the proof. □

Not all distortion energies are symmetric, but there is a simple procedure to construct a symmetric distortion
function � Sym from any distortion function � . For any distortion function � , we can obtain a corresponding � Sym

fulilling Eq. (7) byÐin efectÐcomputing 1
2�� [�] +

1
2�� [�

−1] via our symmetrization procedure:

� Sym (� ) =
1

2
� (� ) +

1

2
|det � | �

(
� −1

)
, (11)

or in terms of singular values,

� Sym (�) =
1

2
� (�) +

1

2

�����

�∏

�=1

��

�����
�

(
1

�1
, . . . ,

1

��

)
. (12)

For example, suppose �D (� ) = ∥ � ∥
2
�
is the distortion function of the Dirichlet energy. Then, the average of the

Dirichlet energy of the forward map and of the inverse map yields the distortion function:

�
Sym
D (� ) =

1

2
∥ � ∥2� +

1

2
| det � |∥ � −1∥2� , (13)

or for � = 3,

�
Sym
D (�1, �2, �3) =

1

2

3︁

�=1

�2� +
1

2
(�1�2�3)

(
3︁

�=1

�−2�

)

(14)

This is not the łsymmetricž Dirichlet energy from past work on parameterization [Rabinovich et al. 2017; Smith
and Schaefer 2015], which has the form 1

2 ∥ � ∥
2
�
+ 1

2 ∥ �
−1∥2

�
. Incidentally, in 2D, the second term in Eq. (13) is the

objective function of the inverse harmonic mapping problem used to obtain foldover-free mappings by Garanzha
et al. [2021]. This term is also known as the inverse Dirichlet energy [Knupp 1995].
Eq. (13) is a model for the objective function for mapping surfaces in [Ezuz et al. 2019; Schreiner et al. 2004],

and one could reasonably attempt to reuse the same formulation for volumes. More careful examination of this
function, however, indicates some undesirable properties. In particular, as illustrated in Fig. 4, the distortion

function �
Sym
D (�) is not minimized at (1, 1, 1), the singular values of a rigid map. That is, the distortion function

of the symmetrized Dirichlet energy �
���

D favors non-isometric maps, even though it is symmetric.
The counterintuitive behavior of energies like in Eq. (13) suggests that algorithms optimizing the sum of the

distortion of a map and the distortion of its inverse can have unpredictable behavior, even for standard choices of
distortion functions. We examine this efect empirically in §6.6.
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3.3 Designing Symmetric Distortion Energies

In this section, we extend the previous analysis to compute the symmetrized form of several commonly used
distortion functions and examine their behavior in computing a volumetric map. We propose a list of desiderata
to guide the selection of a desirable distortion function � .

Several properties are desirable when selecting � :

• Favors isometry: � Sym is minimized at (1, 1, 1).
• Preserves structure: � is minimized at (1, 1, 1).
• Nonsingular: � is deined for all matrices.

Favoring isometry and preserving structure are similar but not identical conditions, and they are desirable for
diferent reasons. Distortion energy functions that favor isometry are the typical choice for geometry processing
applications, and this condition simply expresses a preference for maps � that are rigid. On the other hand,
structure-preserving choices of � facilitate optimization routines like ours that alternate between estimating
� and� , ensuring that both alternating steps work toward a common goal. Similarly, nonsingular functions �
avoid the need for barrier optimization techniques and feasible initialization.

The following proposition provides a necessary condition that can be used to rule out many standard choices
of � when considering the properties above:

Proposition 3.3. Suppose a diferentiable function � : R3 → R≥0 favors isometry and preserves structure, i.e.,

� (�) and � Sym are minimized at (1, 1, 1). Then, � (1, 1, 1) = 0 and ∇� (1, 1, 1) = (0, 0, 0).

Proof. Structure preservation immediately implies ∇� (1, 1, 1) = (0, 0, 0) since (1, 1, 1) is a local minimum.
Similarly, to favor isometry, we must have that ∇� Sym (1, 1, 1) = (0, 0, 0). Taking the derivative of (12) in one
singular value �� , we ind

�� Sym

���
=
1

2

��

���
+
1

2

�����

∏

�≠�

� �

�����

[
�

(
1

�1
, . . . ,

1

��

)
−

1

|�� |

��

���

(
1

�1
, . . . ,

1

��

)]
.

Substituting �1 = · · · = �� = 1,

0 =
�� Sym

���
(1, . . . , 1) =

1

2
� (1, . . . , 1) .

This expression yields our irst condition. □

The result above may feel somewhat counterintuitive, since constant shifts in � afect whether � favors
isometry. But, adding a constant to � changes the efect of the volume form on the distortion energy, explaining
the result above.

In Table 1, we list several distortion functions � (� ), their equivalent forms in terms of the Jacobian � ’s singular
values � (�), and their symmetrized forms � Sym (� ), � Sym (�). We check if the symmetrized distortion functions
satisfy the isometry favoring property above by examining the behavior of �min, the singular values that minimize
� Sym (�). We verify the other properties in a similar way by studying � (�). Table 2 summarizes the result. Figure
4 visualizes these properties by showing level sets of � and � Sym for examples drawn from Table 1.

Tables 1 and 2 reveal several valuable properties that can inform our choice of � . None of the distortion energies
in Table 1 is symmetric in its standard form. A surprising result is that, after symmetrization, no distortion
energy except for ARAP and Hencky strain favors isometry. Despite the fact that minimizing these energies in
the forward or reverse direction independently would lead to an isometry, minimizing for the average of the two
does not (see Fig. 4). For example, the symmetric Dirichlet energy and the AMIPS energy after symmetrization
prefer maps that tend to shrink (�min < 1). We also observe that the symmetrized Dirichlet, the symmetrized
3rd-order Dirichlet, and the symmetrized MIPS energies favor maps that collapse, that is, they are minimized
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� Sym (�1, �2, 1) � (�, �, �) and � Sym (�, �, �)

Fig. 5. Mathematical boundary case: Comparison of symmetrized ARAP energy
∑
� (�� − 1)

2 to symmetrized fourth-power

ARAP energy
∑
� (�� − 1)

4, using level sets similar to Figure 4 (let) and by ploting the diagonal where � = �1 = �2 = �3
(right). As discussed in ğ3.3 (Remark), the fourth-power alternative blows up when approaching (0, 0, 0) from any direction,

while conventional ARAP admits a path to (0, 0, 0) where the energy density remains finite.

close to �min ≈ (0, 0, 0). While the (asymmetric) Dirichlet energy favors maps with � = 0, the MIPS energy does
not. The 3rd-order Dirichlet energy is used in 3D for �1 continuity [Iwaniec and Onninen 2010].
From Table 2, only the symmetrized ARAP energy, which we will refer to as sARAP, satisies all the desired

properties. To implement the sARAP energy, we optimize the average of the ARAP energy of the forward and
reverse maps. This objective function has the added beneit of removing the requirement of a lip-free initialization,
which is often not available for correspondence tasks.

If �1 and �2 have diferent volumes, then the forward and backward terms in Eqs. (3), (4) might prefer
distortion of one direction over another. In practice, we normalize our models to have volume 1, so that the
integrals in Eqs. (3),(4) measure average local distortion of the two maps; Schreiner et al. [2004] equivalently
rescales the forward and backward terms.
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Remark (Avoiding zero singular values). The symmetric Dirichlet energy [Smith and Schaefer 2015], sym-

metric gradient energy [Stein et al. 2021], and others used for bijective parameterization blow up as singular values

approach zero; this property provides a barrier ensuring existence of a locally-optimal parameterization without

collapsed or inverted elements. Our nonsingular property actually prefers the opposite of this scenario, allowing

inverted Jacobians so that we can recover from poor initialization, but this is a property of �Ðemployed during

optimizationÐrather than � Sym, the actual distortion energy being optimized in the symmetrized formulation.

A nonsingular � can actually admit a function � Sym that blows up as singular values approach 0, as is the

case for the ARAP and Dirichlet energies. This property suggests that even a nonsingular choice of � can favor

orientation-preserving symmetric maps.

For completeness, we note that �
Sym

ARAP
is not a perfect barrier, in the following sense (also illustrated in Figure 5):

For �1 = 1 and �2, �3 → 0, we have �
Sym

ARAP
(�) → 1. This technicality can be addressed using an � that grows faster

than cubically in the singular values, e.g. � (�) =
∑

� (�� − 1)
4, but in practice such an adjustment did not yield better

maps.

Remark (Role of boundary conditions). Several prior works optimize symmetric energies without the desired
properties at the beginning of this section [Ezuz et al. 2019; Schmidt et al. 2019; Schreiner et al. 2004]. Although

their distortion energies do not promote isometry directly, these methods are still able to ind low-distortion and even

bijective correspondences. Indeed, the symmetrized energy analysis above does not tell the whole story. In particular,

these methods include energy terms, boundary conditions, and other constraints that favor bijectivity and semantic

correspondences. These constraints counteract the energy’s unexpected local properties and can afect the resulting

map quality. For example, optimizing the symmetrized Dirichlet energy in the space of surjective or bijective maps

will prevent the map from collapsing, but the map quality is essentially upheld by the boundary condition rather

than the constitutive model used in the objective function. We hypothesize that the success of these methods lies in

balancing competing terms and constraints. We leave detailed theoretical analysis of these intriguing global questions

to future work.

3.4 Symmetric Optimization Problem

Following the previous section’s analysis, we revise the the generic formulation of our optimization problem
in Eq. (2) to be symmetric. We optimize an energy of the form 1

2�� [�] +
1
2�� [� ], where we maintain separate

estimates of the map � : �1 → �2 and its inverse � ≈ �−1 : �2 → �1. This is done for practical reasons:
The existence of a lip-free initial map is not guaranteed, so �−1 may not exist to start. Additionally, this form
is advantageous as � is necessarily nonsingular for initializations with lipped elements, while � Sym can be
orientation-preserving as is the case for sARAP. Finally, even if � is not symmetric, the resulting energy is roughly
of the form in Eq. (11) and hence our analysis in §3.2 applies. This leads to the modiied problem:

argmin
�,�

1

2

∫

�1

�ARAP (�� (x)) �� (x)

+
1

2

∫

�2

�ARAP (�� (y)) �� (y) + Reg[�,� ]

subject to � ∈ P ,� ∈ Q,

(15)

where Q denotes the constraint� (��2) ⊂ ��1. In practice, the constraints that deine P and Q can be made soft
and modeled in Reg[�,� ]. The estimate� ≈ �−1 can be enforced as a soft or hard constraint. In practice, we use
a soft constraint modeled in Reg[�,� ] as described in §4.3.
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Table 1. Several distortion measures and their symmetrized forms. In this table, we consider orientation-preserving maps,

so that | det � | = det � . We use an interior-point method constrained to search over non-negative � to compute the set of

singular values �min that minimize the symmetrized energy � Sym (�).

Name � ( � ) � (� ) � Sym ( � ) � Sym (� ) �min

Dirichlet ∥ � ∥2
�

∑�
�=1 �

2
�

1
2 ∥ � ∥

2
�
+ 1

2 (det � )
(
∥ � −1 ∥2

�

) 1
2

∑�
�=1 �

2
�

+ 12

(∏�
�=1 � �

) (∑�
�=1

�−2
�

) ≈ (0, 0, 0)

Dirichlet (3rd order) ∥ � ∥3
�

∑3
�=1 �

3
�

1
2 ∥ � ∥

3
�
+ 1

2 (det � )
(
∥ � −1 ∥3

�

) 1
2

∑3
�=1 �

3
�

+ 12

(∏3
�=1 � �

) (∑3
�=1

�−3
�

) ≈ (0, 0, 0)

Symmetric Dirichlet ∥ � ∥2
�
+ ∥ � −1 ∥2

�

∑�
�=1

(
�2
� + �

−2
�

)
1
2 (det � + 1)

(
∥ � ∥2

�
+ ∥ � −1 ∥2

�

)
1
2

(∏�
�=1 �� + 1

) (∑�
�=1

(
�2
� + �

−2
�

))
≈ (0.77, 0.77, 0.77)

MIPS (3D) 1
8

(
∥ � ∥2

�
· ∥ � −1 ∥2

�
− 1

)
1
8

∏3
�=1

(
��

��+1
+

��+1
��

)
1
16 (det � + 1)

(
∥ � ∥2

�
· ∥ � −1 ∥2

�
− 1

)
1
16

(
1 +

∏3
�=1 ��

) (∏3
�=1

( ��+1
��
+

��
��+1

))
≈ (0, 0, 0)

AMIPS (3D)

1
16

(
∥ � ∥2

�
· ∥ � −1 ∥2

�
− 1

)

+ 12

(
det � + (det � )−1

)
1
16

∏3
�=1

(
��

��+1
+

��+1
��

)

+ 12

(∏3
�=1 � � +

∏�
�=1

�−1
�

)

det � +1
32

(
∥ � ∥2

�
· ∥ � −1 ∥2

�
− 1

)

+ 14

(
det � + (det � )−1

)

+ 14

(
(det � )2 + 1

)

1
32

(
1 +

∏3
�=1 ��

) (∏�
�=1

( ��
��+1

+
��+1
��

))

+ 14

(∏3
�=1

�� +
∏�

�=1
�−1
�

)

+ 14

(∏3
�=1 �

2
�

)
≈ (0.8, 0.8, 0.8)

Conformal AMIPS
tr

(
�� �

)

(det � )
2
3

(
∏3

�=1 �
− 2
3

�

) (∑3
�=1 �

2
�

) 1
2 (det � )

− 2
3 tr

(
�� �

)

+ 12 (det � )
1
3 tr

(
� −� � −1

)
1
2

(
∏3

�=1 �
− 2
3

�

) (∑3
�=1 �

2
�

)

+ 12

(
∏3

�=1
�
− 1
2

�

) (∑3
�=1

�−2
�

) ≈ (0.032, 0.032, 0.032)

Symmetric gradient 1
2 ∥ � ∥

2
�
− log (det � ) 1

2

∑�
�=1 �

2
� − log

(∏�
�=1 ��

) 1
4 ∥ � ∥

2
�
− 1

2 log (det � )

+ 14 det � · ∥ � −1 ∥2
�

+ 18 det � · log (det � )

1
4

∑�
�=1 �

2
� −

1
2 log

(∏�
�=1 � �

)

+ 14

(∏�
�=1

��

) [ ∑�
�=1

�−2
�

+ 12 log
(∏�

�=1 ��

) ]
≈ (0.61, 0.61, 0.61)

Hencky strain ∥ log �� � ∥2
�

∑�
�=1 log

2 (�� )
1
2 ∥ log �

� � ∥2
�

+ 12 det � · ∥ log � −� � −1 ∥2
�

1
2

∑�
�=1 log

2 (�� )

+ 12

(∏�
�=1 � �

) (∑�
�=1

log2 (�� )
) (1, 1, 1)

ARAP ∥ � − � ∥2
�

∑�
�=1 (�� − 1)2

1
2 ∥ � − � ∥

2
�

+ 12 det � · ∥ � −1 − � ∥2
�

1
2

∑�
�=1 (�� − 1)2+

1
2

(∏�
�=1 � �

) (∑�
�=1
(�−1

�
− 1)2

) (1, 1, 1)

4 DISCRETIZATION AND MODEL

We build on our analysis in §3.2 and §3.3 to discretize the optimization problem in Eq. (15) and develop an
algorithm to compute a volumetric map that is invariant to the ordering of the source and target shapes. In this
section, we deine our map discretization and map constraints, and develop the objective function used in the
optimization.

4.1 Notation

We represent volumetric shapes as tetrahedral meshes. We letV� , E� , F� , T� denote the sets of vertices, edges,
faces, and tetrahedra of mesh�� , for � ∈ {1, 2}. We represent the coordinates ofV� as a matrix �� ∈ R

��×3, where

�� denotes the number of vertices in mesh�� . We represent tetrahedron � in mesh � as the matrix ���
� ∈ R

4×3

whose rows are the coordinates of the vertices of tetrahedron � . We use � to denote the boundary of a mesh, and
�V� , �E� , �F� , �T� denote sets of boundary vertices, edges, faces, and tetrahedra, respectively. Boundary tetrahedra
are those that contain one or more boundary faces.
We use a piecewise linear discretization to model the maps � and � , with each tetrahedron being mapped

ainely. The map on each tetrahedron is determined by its transformed vertex coordinates. We use matrix

�� ∈ R
�1×3 to denote the coordinates of the transformed vertices of mesh �� , and �

��
� ∈ R

4×3 to denote the
transformed tetrahedron � of mesh�� . The Jacobian matrix

� (�
��
� ) =

(
��

��
�

) (
��

��
�

)−1
(16)

deines the map diferential of tetrahedron � based on the transformed coordinates ���
� . The constant matrix

� ∈ R3×4 extracts vectors parallel to the edges of the tetrahedron.
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Table 2. Summary of distortion energy function properties

Name
Favors

isometry

Preserves

structure

Nonsingular

Dirichlet ✗ ✗ ✓

Dirichlet (3rd order) ✗ ✗ ✓

Symm. Dirichlet ✗ ✓ ✗

MIPS (3D) ✗ ✓ ✗

AMIPS (3D) ✗ ✓ ✗

Conformal AMIPS ✗ ✓ ✗

Symm. Gradient ✗ ✓ ✗

Hencky strain ✓ ✓ ✗

ARAP ✓ ✓ ✓

4.2 Map Representation

We wish to constrain each map to lie within the target shape, i.e., � (�1) ⊂ �2 and� (�2) ⊂ �1. We extend the
strategy of Ezuz et al. [2019] to tetrahedral meshes to enforce these constraints.
We represent the map � as a matrix �12 ∈ [0, 1]

�1×�2 and the map� as �21 ∈ [0, 1]
�2×�1 . Matrices �12 and �21

use barycentric coordinates to encode the vertex-to-tetrahedron map and ensure the mapped vertices lie in the
target mesh. This representation is also beneicial to map between meshes with difering connectivity. Suppose
�12 maps vertex � of mesh �1 into tetrahedron �� = (�, �, �, �) ∈ T2 in mesh �2, where (�, �, �, �) ∈ {1, . . . , �2}
are the indices of the vertices of�� . Then, row � of �12 contains the barycentric coordinates of the image of vertex
� in columns �, �, �, � , and zeros elsewhere. Map �21 is constructed analogously. We can enforce the constraint
that boundary vertices are mapped to boundary faces by constraining the sparsity patterns of �12 and �21. A
limitation in the discretization is that we are unable to enforce that the interior of boundary faces and edges are
mapped inside the target shape, since our map representation is vertex-based. In practice, this efect is minimized
using high-resolution meshes.

We denote the set of all feasible maps satisfying the boundary constraints as P★

� � ; we use P� � to denote the set

of feasible maps that may map the boundary ��� to the interior of� � .
We use half-quadratic splitting [Geman and Yang 1995] to express our problem in a form that is amenable to

eicient optimization [Ezuz et al. 2019; Wang et al. 2008a; Zoran and Weiss 2011]. In particular, we introduce the
auxiliary variable �� � to model the image of verticesV� under the map to mesh� � , where �� � ≈ �� ��� .

4.3 Objective Terms

We deine several objective terms used to ind the correspondence and model the soft constraints on the map.

4.3.1 Auxiliary and reversibility energy functions. Our irst two terms are adapted from Ezuz et al. [2019] and
extended for volumetric meshes. The irst term is the auxiliary energy that encourages �� � ≈ �� ��� :

�� [�12, �21, �12, �21] =
︁

�, �∈{1,2}
�≠�

1

��� �



�� � − �� ���



2
��
, (17)

where �� , � � are the total volumes of meshes�� and� � , and ∥ · ∥
2
��

denotes the Frobenius norm with respect to

�� . For a matrix � , ∥� ∥2
��

= tr(�����), where �� is the lumped diagonal vertex mass matrix of�� .
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The second term is the reversibility energy that encourages bijectivity:

�� [�12, �21, �12, �21] =
︁

�, �∈{1,2}
�≠�

1

�2�
∥�� �� �� −�� ∥

2
��
.

(18)

This energy measures the distance between the original vertex positions�� and the back projection of their image
under the map �� � , �� � .

4.3.2 ARAP energy. Central to the computation of a volumetric map is the proper selection of a distortion energy.
From our analysis in §3.3, we select the sARAP energy as it is both symmetric and promotes rigidity.

We use 1
2����� [�] +

1
2����� [� ] to approximate ������ [�]. We approximate the integral over the volumetric

domain by measuring the distortion energy per tetrahedron. For tetrahedron � of mesh � , the ARAP distortion
function is given by

�����

(
�
(
�
��
� �

))
=

3︁

�=1

(��,� − 1)
2, (19)

where ��,� is the �
�ℎ signed singular value of � (���

� � ). We use the convention laid out by Irving et al. [2004] to

deine the signed singular value decomposition unambiguously. For � = � Σ�� , this convention allows the sign
of the smallest singular value ���� to be negative, sign(����) = sign(det � ), and� ,� ∈ SO(3).

The total ARAP energy is then

����� [�12, �21] =
︁

�, �∈{1,2}
�≠�

1

2��

︁

�� ∈T�

� (�� ) �����

(
�
(
�� �

)��
)
,

(20)

where � (�� ) denotes the volume of tetrahedron � .

4.3.3 Projection Energy. We encourage preserving the boundary of the source and target meshes by using
forward and backward projection energies. We compute the forward projection energy ��,� as

��,� [�12, �21] =
︁

�, �∈{1,2}
�≠�

1

��





(
�� �

)
���
− proj

(
(�� � )���

, �� �

)



2

���

, (21)
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Fig. 6. Parameter sweep over � and � , comparing the tradeof between �̂��� and 1 − det �̂ , where det �̂ is the normalized

determinant of the Jacobian. We select � = 0.5, � = 25 as they achieve a reasonable tradeof between conforming to the

target boundary while maintaining map quality.
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Interior

Optimized

Inversions

Repaired

Full Map

Optimized
Post-Repair

Source

Target

a) b) c) d) e) f)

17,277 5,395 8 47 1

Fig. 7. Flowchart depicting each step of our method: a) initial source and target shapes, with landmarks shown as yellow

spheres; mapped shape; b) at initialization; c) ater optimization converges while keeping the boundary fixed; d) ater

tetrahedron inversion repair; e) at convergence; and f) ater post-convergence tetrahedron repair. Top row shows the

boundary of the mapped shape at every step and the botom row shows a cut through the interior, revealing interior

tetrahedra. Inverted and collapsed tetrahedra are red. The number of inverted tetrahedra is listed under each cut-through

mesh. Our initial map b) has all interior tetrahedra collapsed to the boundary, resulting in 17,277 (46%) degenerate or

flipped tetrahedra. Steps c) and d) optimize and repair the interior, resulting in 8 flipped tets. The tetrahedron repair step

restores elements of the map to match the source, as the hands and feet rotate. The final optimization followed by the

post-convergence repair produces a map that closely matches the boundary with negligible inversions (1 flipped tetrahedron).

where proj
( (
�� �

)
���

, �� �

)
denotes the Euclidean projection of the boundary vertices of ��� with coordinates

�� � onto the boundary mesh �� � , �� denotes the total surface area of ��1 and ∥ · ∥
2
���

denotes the Frobenius

norm with respect to boundary triangle mesh ��� .
The backward projection energy ��,� is given by

��,� [�12, �21] =
︁

�, �∈{1,2}
�≠�

1

��



�� − proj
(
�� , �� �

(
� ��

) )

2
���

, (22)

where �� �
(
� ��

)
denotes the boundary of mesh� � with vertices given by � �� .

The full projection energy is then

�� [�12, �21] = ��,� [�12, �21] + ��,� [�12, �21] . (23)

4.4 Optimization Problem

Combining the distortion and regularization energies, our optimization problem becomes

argmin
�12,�21,�12,�21

� [�12, �21, �12, �21]

subject to �12 ∈ P12 , �21 ∈ P21,
(24)
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Fig. 8. Optimization of Eq. (24) using a landmark initialization. Despite a coarse initialization, our algorithm approximates

the target shape ater one iteration. Further optimization decreases surface distortion and improves interior regularity as

visualized by the checkerboard paterns. At iteration 41, the inverted tetrahedron repair is performed, causing a jump in the

projection energy �� , from which our algorithm quickly recovers.

where
� [�12, �21, �12, �21] =
︁

�, �∈{1,2}
�≠�

������ [�� � ] + (1 − �)�� [�� � , � �� ]

+ ��� [�� � ] + ��� [�� � , �� � ] .

(25)

Several parameters govern the strength of the distortion energies and soft constraints. The parameter � ∈ [0, 1]
models the tradeof between a reversible map (small � → 0) and one that maintains the rest shape ( � → 1).
The parameter � ∈ R≥0 weighs the projection term that models the soft constraint for matching to the target
boundary. The parameter � controls the soft constraint on the auxiliary variables. As recommended by [Ezuz
et al. 2019; Wang et al. 2008a], � should use an update schedule tailored per application. In our experiments,
since we start with a coarse initialization of the interior, we initialize � = 0.25 and increase � linearly to 5 over 20
iterations. We found our approach to be insensitive to the update schedule.
In this formulation, we use a soft constraint measured by �� to map to the target boundary. While we could

use a hard constraint by setting � = 0 and requiring �12 ∈ P
★

12, �21 ∈ P
★

21, we did not ind that this hard constraint
had a substantial efect on our inal output.

5 OPTIMIZATION

In this section, we outline our optimization procedure. We discuss strategies for initializing the map and propose
an approach to uninvert tetrahedra. We conclude by presenting our algorithm for minimizing Eq. (24) using block
coordinate descent.

5.1 Initialization

Objective function (24) includes four variables: �12, �21, �12, and �21. In this section, we provide strategies
for initializing the variables �� � before running our optimization procedure. We initialize the �� � variables via
�� � ← �� ��� .
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Landmark-based initialization. If we are given landmark pairs (p� , q� ), where pi ∈ �1, qi ∈ �2, we can initialize
each landmark’s target by copying the target of its closest landmark.

2D surface map initialization. A second approach is to initialize the boundaries of �1, �2 using an existing
surface-to-surface mapping approach. We initialize the interior vertices identically to landmark-based initializa-
tion, where we consider every boundary vertex to be a landmark.
We do not hold the landmark or surface map vertices ixed during the optimization.

5.2 Alternating Minimization

Weuse coordinate descent, alternating between optimizing over�� � and �� � . Ourmulti-step optimization procedure
ensures strong conformation to the boundary while avoiding inverted tetrahedra.

Optimizing for �� � . Optimizing for �� � while holding the �� � variables ixed is a smooth optimization problem,
for which we use the Limited-memory BroydenśFletcherśGoldfarbśShanno (L-BFGS) algorithm [Zhu et al. 1997].
We compute the gradient of each energy term in Eq. (25). The gradients for �� , �� are straightforward as

they are matrix norms. We compute the gradient of ����� using the chain rule. First, we compute the gradient
of ����� (� ) with respect to a Jacobian � , ∇� ����� [� ] = � diag (∇� ����� (�))�

� . Using the chain rule, we then

compute the gradient with respect to the elements of tetrahedron �� ∈ T� , with coordinates ���
� � ,

������ (�
��
� � )

�(�
��
� � )

=

((
��

��
�

)−�
�

) (
� diag (∇� ����� (�))�

�
)�

(26)

The gradient with respect to each vertex is found by gathering the gradients of each tetrahedron adjacent to
that vertex.

Optimizing for �� � . Fixing �12, �21, the remaining energy terms with respect to �� � are of the form ∥�� ��−�∥
2
��

with � ∈ R� �×6, � ∈ R��×6. Following Ezuz et al. [2019], this minimization can be understood as a projection
problem solved independently for each row of �� � .

In our case, we need to project the points in � to the 6−dimensional tetrahedral mesh with vertices �, whose
connectivity is the same as� � . The presence of several additional energy terms in our formulation also leads to a
unique projection problem. Since the problem can be solved independently, we implement an eicient solution
using CUDA programming. To enforce a hard boundary-to-boundary constraint, we map rows of� corresponding
to the boundary of�� to the boundary of the target embedding.

5.3 Inverted Tetrahedron Repair

The initial maps suggested in §5.1 are straightforward to compute, but they are quite distant from our desired
output; indeed, the majority of tetrahedra in our initial maps have zero volume. Although alternating between
the two steps above is guaranteed to decrease the objective function in each step, empirically we ind in the
initial stages our algorithm can get stuck in local optima due to inverted elements. Here, we describe a heuristic
strategy that empirically can improve the quality of our output.
In this tetrahedron repair step, we ind all inverted tetrahedra. We then take the 1−ring neighborhood of the

vertices in the inverted tetrahedra and use L-BFGS to minimize ����� with the remaining vertices ixed.

5.4 Full Algorithm and Stopping Criteria

Overall, our optimization procedure follows four broad steps:

(1) map initialization (§5.1);
(2) optimization while keeping the boundary ixed (§5.2);
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Algorithm 1 Coordinate decent with tetrahedra uninversion

Input: initial maps �12, �21
Output: optimized maps �12, �21, �12, �21

1: ��
(0)
12 ← �12 (��1, :) // initial boundary map

2: ��
(0)
21 ← �21 (��2, :)

3: �12 ← �12�2 // initial vertex map

4: �21 ← �21�1
5:

6: while !converged do // optimize boundary map

7: for (�, �) ∈ {(1, 2), (2, 1)} do

8: �� � ← argmin�∈P� � �̄� [�,� �� ] + �̄� [�,�� � ]

9: �� � ← argmin� ∈R�� ×6 �̄���� [�� � ]

+�̄� [�� � , � �� ] + �̄� [�� � ] + �̄� [�� � , �� � ]

10: ��� � ← ��
(0)
� � // restore boundary

11:

12: // inverted tetrahedron repair

13: idx← det � (���
� ) ≤ 0,∀�� ∈ T� // ind inverted tetrahedra

14: �� � (���) ← argmin� ∈R�� ×6 �̄���� [�� � (���)] // 1-ring nbhd.

15:

16: while !converged do // optimize full map

17: for (�, �) ∈ {(1, 2), (2, 1)} do

18: �� � ← argmin�∈P� � �̄� [�,� �� ] + �̄� [�,�� � ]

19: �� � ← argmin� ∈R�� ×6 �̄���� [�� � ]

+�̄� [�� � , � �� ] + �̄� [�� � ] + �̄� [�� � , �� � ]

(3) inverted tetrahedron repair (§5.3);
(4) optimization of all vertices (§5.2); and
(5) post-convergence inverted tetrahedron repair (§5.3).

For stages 2 and 4, we set as our convergence criteria one of (i) the norm of the gradient < 10−6, (ii) the
objective function decreases by less than 10−7 between successive iterations, or (iii) run for 50 iterations; the third
criterion is a fallback that rarely occurs in practice. For stage 5, we limit vertex displacement to preserve map
quality by limiting to 100 steps of L-BFGS and we restrict optimization to only vertices in inverted tetrahedra.

Algorithm 1 summarizes our full procedure.

5.5 Implementation Details

Unless otherwise noted, all igures are generated using identical parameters. We use grid search to identify
reasonable parameters; the results of our analysis are provided in Fig. 6. We set the rigidity parameter � = 0.5

and the boundary conformation parameter � = 25, achieving a reasonable trade of between average distance

to the target and maintaining per-tetrahedron map quality as measured using det �̂ , the normalized Jacobian
determinant. To ind these values, we initialize � = 0.25 and increase linearly to � = 5 over 20 iterations. In
practice, we found our method was insensitive to the choice of � .
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We generate tetrahedral meshes using fTetWild [Hu et al. 2020]. Prior to mapping, we normalize each mesh to
have volume 1. We perform one tetrahedron repair step as we found negligible improvement after performing
more.

We implement our method inMATLAB, using CUDA to optimize the projection step by extending the projection
code in [Li et al. 2021] to R6. Our code is available at https://github.com/mabulnaga/symmetric-volume-maps.

6 EXPERIMENTS

We measure map quality by assessing distortion and closeness to matching the target shapes (§6.1). We validate
our method by mapping pairs of shapes from four datasets (§6.2) and report visualizations and numerical scores
evaluating the result (§6.3). We also compare our method to several variants of a baseline mapping approach
(§6.4). We test the robustness of our method in §6.5 and evaluate the choice of symmetrized energy on computing
a map in §6.6.

6.1 uality Metrics

We validate our method using the metrics outlined below.

Boundary matching. We measure it to the target boundary using the Hausdorf distance �max and the chamfer
distance �avg deined as follows:

�max (�1, �2) = max

{

sup
x∈�1

inf
y∈�2

� (x, y), sup
y∈�2

inf
x∈�1

� (x, y)

}

(27)

�avg (�1, �2) =
1

|V1 | + |V2 |



︁

v� ∈V1

� (v� , �2) +
︁

v� ∈V2

� (v� , �1)


. (28)

Here, V1 and V2 denote the sets of vertices of �1 and �2, respectively. To make the measures above scale-
independent, we normalize both quantities by the length of the diagonal of the bounding box enclosing the target

mesh. We use hats to denote normalized quantities: �̂max and �̂avg.
To visualize the distortion in the interiors of tetrahedral meshes, we use a mapped checkerboard pattern. In

each map visualization, using Houdini, we slice the source shape with a plane and place an extrinsic checkerboard
pattern on the intersection, using rounding and modulo operations on coordinates. We push forward the planar
intersection surface through our map and render the result using a custom shader that looks back to the
corresponding coordinate in the source and evaluates the checkerboard function. Interpolation happens by
inding the closest element (xyzdist) and then transferring coordinates (primuv).

Distortion and inversion. We measure the quality of the transformation by computing the number of inverted

tetrahedra (����) and the mean normalized Jacobian determinant det �̂ (weighted by tetrahedron volume), where

Table 3. Map uality Evaluation

Map
(Initialization)

Time
(min.)

��
(×10−3 )

�����

(×10−3 )
����

�̂���

(×10−2)
�̂���

(×10−2)
det �̂

�� �

(Surface)
31
±21

1.47
±1.9

81.7
±78.5

7.7
±9.1

2.5
±1.2

0.10
±0.046

0.98
±0.02

�� �
(Surface)

31
±21

1.29
±1.65

134.5
±115.4

649
±549

1.9
±0.78

0.072
±0.028

0.96
±0.04

�� �

(Landmark)
107
±53

7.45
±10.7

93.6
±73.3

15.8
±10.9

2.7
±1.0

0.12
±0.046

0.97
±0.02

�� �
(Landmark)

107
±53

6.67
±9.7

176.6
±145.4

723
±515

2.6
±1.0

0.11
±0.038

0.94
±0.04
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Fig. 9. Forward and reverse maps on related pairs of shapes. We observe smooth paterns of distortion on the boundary

while capturing distinguishing geometric features, such as the transformation of the tail of the cat and movement of the

bear’s ears. Distortion is uniform throughout the interior.

the columns of � are normalized as in [Li et al. 2021]. Figures containing qualitative results depict distortion per
tetrahedron using the ARAP energy

∑3
�=1 ( |�� | − 1)

2.

6.2 Datasets

We evaluate our method on 24 mesh pairs from four datasets. For datasets where only triangle meshes are available,
we tessellate the interiors. We randomly select pairs of shapes distorted non-isometrically from the SHREC19
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Fig. 10. Forward and reverse maps on far-from-isometric shapes. Our maps capture the extreme deformations, for example

by growing and collapsing the airplane rudder and deforming the ears of the horse and cow pair. Matching boundary

features expectantly leads to high local distortion, as a large volume change is required to model these transformations. The

checkerboard patern reveals that regions with high boundary distortions also cause interior distortion (see airplane), but the

computed maps are uniform and smooth elsewhere.

dataset [Dyke et al. 2019]. We also randomly select matching and non-matching pairs of humans and animals
for nonrigid correspondence from the TOSCA dataset [Bronstein et al. 2008a]. Finally, we obtain tetrahedral
meshes of models of natural objects and CAD models from [Fu et al. 2016; Li et al. 2021], from Thingi10k [Zhou
and Jacobson 2016], and from Thingiverse [Japan 2022]. The resulting meshes had (mean±standard deviation)
50, 010± 34, 663 tetrahedra. We manually choose landmarks on the boundary surfaces for every mapping example
(marked on most igures); Table 5 provides the number of landmarks and number of tetrahedra for each pair.
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Source Target Initial Result Source

Fig. 11. Resulting map when initialized using only a sparse set of landmark points. Despite an initialization that collapses

the mesh to a set of landmarks, we produce a map that captures sharp geometric features of the target including the hands

and bends of the legs. The distortion is smooth and uniform throughout the boundary and interior.

6.3 Validation

In this section, we demonstrate our maps on several pairs.

Quantitative evaluation and map selection. Table 3 measures performance of both sets of maps, �� � and �� � ,
using surface map initialization and landmark initialization. Using the image of the map �� � , we achieve close
matchings to the target boundary with negligible tetrahedron inversions and while efectively maintaining
tetrahedron quality. The landmark-based initialization achieves comparable performance, with slightly higher

�̂��� . These results indicate our method is robust to the choice of initialization. The constrained maps �� � have
signiicantly higher tetrahedron inversion due to the constraint �� � ∈ P� � , which results in boundary tetrahedron
foldovers. Since the boundary matching metrics are comparable for both maps, we use �� � as the inal map. The
low number of tetrahedron inversions (����) and small �� indicate the resultant maps are nearly inverses of one
another. Table 5 presents results for all pairs in our dataset.

Algorithm lowchart. We demonstrate each step of our algorithm in Fig. 7. First, we compute an initial boundary
map using the method of Ezuz et al. [2019]. This initial map is interpolated from the boundary to the interior by
mapping each interior vertex to the target of its closest boundary vertex, as described in §5.1. This procedure
results in a signiicant number of inverted or collapsed tetrahedra (Fig. 7b). The interior is then improved by
minimizing the map energy over the interior vertices (Fig. 7c). Then, we repair inverted tetrahedra, dramatically
reducing the number of lipped tetrahedra, as described in §5.3. The mapped mesh start to restore its source pose;
the hands and feet rotate (Fig. 7d). We compute the inal map by optimizing over all vertices (Fig. 7e) and then
perform post-convergence tetrahedron repair, arriving at a solution that closely conforms to the target boundary
while minimizing distortion (Fig. 7f).

Fig. 8 visualizes our optimization routine initialization with landmarks. A few intermediate shapes are demon-
strated. Our algorithm quickly recovers the target shape and the optimization improves surface matching, and
reduces boundary and interior distortion.

Map results. We demonstrate our method on several pairs. Fig. 9 shows the forward and reverse maps between
pairs of deformations from the same domain. In both examples, distortion is smooth throughout the boundary,
and our map successfully matches geometric features, for example the curved tail and the ears in the cat pairs.
The checkerboard patterns demonstrate that our maps are smooth in the interior.
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Source Target Baseline Ours Source

(interior)
1 0 1 0log scale

Fig. 12. Comparison of our map with the baseline approach using � = 25 with landmark equality constraints. Red ovals

indicate distorted regions in the baseline where our method succeeds. Our approach efectively preserves geometric features

and produces high quality maps.

Fig. 10 shows results for the more challenging problem of mapping between pairs of shapes from diferent
domains. Distortions are mainly smooth on the boundary but are expectantly high in regions with large displace-
ments, e.g., in the nose and rudder of the airplane in the forward direction. Here, the volume of the nose has to
shrink substantially while the rudder has to expand in height. Similarly, we see large distortion in the cow-horse
pair, particularly in the ears in the reverse map and in the knees and feet in the forward map. Our boundary term
yields maps that closely conform to the target at the cost of greater tetrahedral distortion.

Fig. 11 demonstrates our resultant map when initialized using a sparse set of landmark points (§5.1, landmark-
based initialization). While the initial map is unintelligible, our output matches the target shape closely. The inal
map has low distortion throughout the boundary and captures the narrow features of the target, including the
ingers and bends in the legs. Furthermore, the checkerboard pattern reveals uniform distortion in the interior.

6.4 Baseline Comparison

We compare to the volumetric mapping approach of Kovalsky et al. [2015]. Their method inputs a surface map
with optimized interior and computes a similar map that is orientation-preserving with bounded condition
number � . Linear equality constraints on the vertices are used to ix parts of the map.

ACM Trans. Graph.



26 • S. Mazdak Abulnaga, Oded Stein, Polina Golland, and Justin Solomon

Source Target Initialization Baseline Ours

Fig. 13. Refinement of the initial boundary map using [Ezuz et al. 2019] and comparison to the baseline with landmark

equality constraints. The backs of boundary triangles are shown in black. The initial map produces areas of the surface turned

inside out and collapses regions like the hands of the human and tail of the dog. Both our method and the baseline can

produce orientation-preserving correspondences. Compared to the baseline, our approach restores collapsed and distorted

regions and efectively matches the target shape (red ovals). This experiment also reveals that our method can recover from

poor initialization.

We compute the initial volumetric map by irst computing a surface map as in §5.1 and then repairing degenerate
tetrahedra by minimizing the Dirichlet energy while keeping the boundary ixed, as was done by Kovalsky et al.
[2015]. We test four diferent sets of equality constraints for extracting the inal volumetric maps: (1) ixing the
boundary map; (2) ixing the boundary map for vertices not in inverted tetrahedra; (3) ixing landmarks; and (4)
preserving center of mass. We use conformality bound � ∈ {5, 25, 50, 100}.
Table 4 compares map quality across the dataset for each equality constraint using � = 25. Similar behavior

arose for other values of � , so they are not shown. We compare with the matching forward maps from our

Table 4. Map quality comparison to the baseline for � = 25.

Constraint ����
�̂���

(×10−2)
�̂���

(×10−2)
det �̂

Ours 8 ± 13.8 2.35 ± 1.45 0.097 ± 0.05 0.98 ± 0.02

B
as
el
in
e Boundary 2740 ± 2210 2.84 ± 1.06 0.085 ± 0.049 0.82 ± 0.17

Boundary (no lip) 11.1 ± 31.8 7.9 ± 8.5 0.33 ± 0.38 0.89 ± 0.1
Landmark 1.8 ± 3.2 5.2 ± 3.1 0.7 ± 0.26 0.89 ± 0.11
Center of mass 1.7 ± 2.6 7.2 ± 0.58 0.8 ± 1.2 0.89 ± 0.11
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Polycube → Smooth (Reverse)

Smooth → Polycube (Forward)

Source Target Our map Our map

(interior)
Source

(interior)

Fig. 14. Map between smooth and polycube shapes. Our method produces close matchings in both directions, though higher

distortion arises in the corner regions of the polycube.

method. The ixed boundary map results in comparably low �̂max, �̂avg to our method, but with a signiicantly

large number of lipped tetrahedra and poor map quality (det �̂ = 0.82) compared to our approach (det �̂ = 0.98).
The strongest baseline uses the landmark equality constraints, resulting in improved ���� , at the cost of map
quality and boundary matching.

Fig. 12 compares our map with the baseline using the ixed landmark constraint. Our method correctly maps
features that are distorted by the baseline, such as the arm and leg of the human and hooves of the horse. The
baseline approach performs well on the armadillo, a map between shapes of the same domain, but produces higher
distortion. These visual and quantitative results demonstrate the strength in our free-boundary formulation,
which efectively matches geometric features.

Surface map repair. Fig. 13 shows how our algorithm recovers artifacts in the 2D surface map initialization
procedure (§5.1) and compares with the baseline using the ixed landmark constraint. Starting from our landmarks,
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[Ezuz et al. 2019] results in parts of the surface that are folded inside out (the backs of triangles are shown in black),
as seen on the arms and legs of the human and the paws of the dog; the initial maps also have collapsed boundary
features (hand of the human, tail of the dog). Both our method and the baseline target orientation-preserving
maps and correct these inverted areas. Unlike the baseline, our method recovers from the inverted regions to
match the target shape. Furthermore, we ill small regions such as the tail of the dog and the hands and feet of
the human.

6.5 Map Robustness

We test the robustness of our method on challenging mapping cases. We irst assess the ability to map from
smooth, high-resolution shapes to coarse meshes with sharp features. Fig. 14 demonstrates mapping to polycube
shapes from [Fu et al. 2016], using the �� � maps. We successfully map bidirectionally between the smooth and
coarse shapes, although expectantly higher distortion arises in the corner regions.
Fig. 15 tests matching between nonisometric pairings. We stretch one arm and leg of the human mesh and

obtain close matchings in both directions, although higher distortion arises at the ends of the stretched regions
due to large changes in volume required to match to the target.
Fig. 16 tests the robustness of our method to mesh quality. Fig. 16 (top) maps a high-resolution horse to

progressively downsampled versions. Despite diferences in mesh resolution, we successfully map to the target
shapes with minimal inversions, although small features like the ears of the horse are distorted. This artifact is
due to few tetrahedra representing these regions in the downsampled mesh. Fig. 16 (bottom) assess the sensitivity
of our method to mesh quality by mapping a bird with thin, elongated tetrahedra faces to one with regular
tetrahedra. We achieve a close matching, suggesting our method is robust to mesh quality.

6.6 Symmetrized Energy Choice

We experiment with the choice of symmetrized energy and its efect on producing a map. As described in §3.3,
several symmetrized energies do not favor isometry while our choice, the sARAP energy, does. Fig. 17 compares
the output when optimizing using the sARAP, the symmetrized Dirichlet (sDir), and the 3rd-order symmetrized
Dirichlet (sDir3) energies. The 3rd-order Dirichlet is used since tri-harmonic functions are used to achieve �1

continuity in 3D [Iwaniec and Onninen 2010]. In these experiments, we remove the tetrahedron repair step,
which made the artifacts worse. We compare two choices of � and visualize the resultant maps.

Both the sDir and sDir3 energy completely collapse the map for � = 0.1, since the projection term has little
efect at keeping the map intact. Similarly, parts of the mapped mesh degenerate with � = 25. In both cases, the

Mesh 1 Mesh 2 M
1
→M

2
M

2
→M

1

Fig. 15. Nonisometric mapping of a stretched human. Close matchings are obtained, though higher distortion arises in the

stretched regions.
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Fig. 16. Map sensitivity to mesh quality. Top: mapping a high-resolution horse mesh to progressively downsampled versions

(boundary triangle faces indicated). Botom: mapping a bird with thin, elongated tetrahedra faces to one with regular

tetrahedra. In all cases, the targets are matched closely with few inversions (maximum of ���� = 2), though in the horse

examples, small geometric features, such as the ears, are lost due to limited representation.

sDir3 energy however maintains continuity. In contrast, the sARAP energy does not produce a collapsed map,
although it starts to restore the source when � = 0.1.

This experiment veriies our analysis in §3.2 and additionally shows that methods using energies that do not
favor isometry can be sensitive to parameter choice.

Source Target sDir

γ=0.1

sDir

γ=25

sDir3

γ=0.1

sDir3

γ=25

sARAP

γ=0.1

sARAP

γ=25

Fig. 17. Comparison of maps when optimizing with the symmetrized Dirichlet (sDir), the 3rd-order sDir3, and the sARAP

energies. sDir and sDir3 produce collapsed maps for both values of � , although � = 25 keeps parts of the map intact as it

pushes vertices to the boundary. The sARAP energy does not collapse, but starts to show the source shape for � = 0.1, as

expected.
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Source Target Our Map Source Target Our Map

Fig. 18. When the integral curves of an octahedral frame field are pushed forward from a source domain (let) to a target

domain (right), the result looks similar to the integral curves of a field computed directly on the target (center). The mapped

curves remain nearly orthogonal, illustrating the low metric distortion of our map.

7 EXAMPLES

Volumetric maps are useful for transporting data between domains. Below, we depict some use cases that would
beneit from our low-distortion, near-difeomorphic maps.

7.1 Internal geometry transfer

In contrast to pulling back functions on�2 to�1, we can also push forward maps into�1 to�2. This category
of data includes point clouds, collections of curves, and arbitrary subdomains� ⊂ �1.

As an example of how data can be easily transported using our maps, in Fig. 18 we push forward integral curves
of a frame ield on domain�1 through � : �1 → �2. The frame ields and their integral curves were generated us-
ing ARFF [Palmer et al. 2020]. Integral curves were pushed forward by mapping the curve vertices individually us-
ing piecewise linearity. The integral curves remain nearly orthogonal under the map, showing that it is close to iso-
metric.

O
u

r M
ap

Fig. 19. Internal curve-

skeleton transfer.

The pushed-forward integral curves closely match the integral curves computed directly
on�2, also relecting the map’s degree of metric preservation.

In another example, we simulate an internal geometry transfer task. As shown in Fig. 20,
we place several objects representing anatomy inside of our source mesh and push these
forward to our target. Despite rotation of the head and movement of the arm, structure is
largely maintained. For the meshes used in this example we credit [Averin 2017; Leemhuis
2018; Medical 2013; Reininger 2015; YEG 3D Printing 2015].
In a inal example, we transfer a curve-skeleton of a horse mesh to our target (Fig. 19). The source skeleton

is generated using the approach of Cao et al. [2015]. The transferred skeleton captures the deformation of the
horse, as evidenced by the curvature of the spine. Previous work has proposed skeleton transfer by inding a
rigid transformation between skeletons of two surface meshes [Seylan and Sahillioğlu 2019]. In contrast, our
volumetric approach facilitates internal geometry transfer and does not require computing matchings of internal
shapes.

7.2 Hex mesh transfer

Our maps can transport other volumetric structures. Hexahedral meshing remains diicult and often requires
extensive human intervention; our maps can transport expensive-to-compute hex meshes between domains.
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Object List

Our

Map

Fig. 20. Internal geometry transfer. We place several objects representing human anatomy in the interior of our source mesh

and push these forward to the target using our volumetric map.

Fig. 21 transports a hexahedral mesh designed using the method of Li et al. [2021] on one domain to a deformed
domain. Similar to how we push forward integral curves, we transport a hex mesh by mapping its vertices
individually, maintaining the combinatorial structure of the mesh. Due to the low metric distortion of the map,
the distortion of most of the hexahedra remains low, as measured by the scaled Jacobian. However, the right
foot of the mapped hex mesh has two toes joined together. This artifact is caused by projection to the wrong
boundary target, an artifact also encountered by Li et al. [2021]; as their approach has user interaction, they
suggest adding landmarks during the optimization to clarify diicult targets.

7.3 Volumetric data transfer

We demonstrate one example of volumetric data transfer using a dataset of placentas extracted from fetal
MRI [Abulnaga et al. 2022]. The mapping is done on data from two patients. The irst mapped pair contains two
scans acquired where the mother is lying in two positions: supine and left lateral. The second contains two scans
acquired ∼10 minutes apart. Fig. 22 presents the results. The igure marks one important anatomical landmark, a
cotyledon, which is responsible for the exchange of blood from the maternal side to the fetal side [Benirschke
and Driscoll 1967]. Cotyledons appear as hyperintense circular regions in MRI. We observe close correspondence
in the placental geometry. Similar patterns are seen in the mapped texture and the target. In this application,
neither example has a clearly deined source or target shape. The symmetry in our method is advantageous for
downstream tasks, such as statistical shape analysis or label propagation, as it prevents bias caused by arbitrarily
selecting a source and a target. We leave to future work a detailed study of our method’s relevance to MRI data.

8 DISCUSSION

We successfully map a collection of shapes of diverse geometry and demonstrate that our maps closely match
the target boundary with low distortion throughout the volume and a negligible amount of lipped tetrahedra.
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0

1

Target
Source 

Hex Mesh Transfered Hex Mesh

Source

Fig. 21. Hex mesh pushed forward from one volume to another using our map. We observe low distortion, as measured by

the scaled Jacobian overall, but there is some distortion in the mapped right foot. Hex meshes are visualized with HexaLab

[Bracci et al. 2019], which clamps negative scaled Jacobian values to 0.

Our method is robust to the choice of initialization (Figs. 8, 11, and 13) and can produce a dense correspondence
even when starting with a low-quality, many-to-one map (Fig. 8 and 11). Compared to the baseline, our free
boundary-based approach can recover from poor initialization (Fig. 13 and produce higher quality maps as shown
in Table 4 and Fig. 12). Our examples illustrate scenarios that require a volumetric correspondence, namely
internal geometry transfer, hex mesh transfer, and volumetric data transfer.
Key to the development of our algorithm was the analysis of symmetric distortion energies in §3.2-3.3. We

symmetrized several common distortion energies and found that only the sARAP energy had the desirable
properties of favoring isometry, preserving structure, and being nonsingular. We provide a simple way to
symmetrize a distortion energy and check if it satisies these properties. Fig. 17 also shows that some choices of
energy can lead to degenerate maps that are sensitive to the parameters used. The nonsingularity of the sARAP
energy is favorable for computing a map given a degenerate initialization. Since volumetric correspondence has
no obvious initializer, this property is key in our target applications, as we can recover from poor initialization.
Future work remains in designing symmetric distortion energies that satisfy more desirable properties.

The connection between the theoretical analysis in §3.2ś3.3 to our algorithm design relies on� = �−1. We use
soft constraints to encourage a bijection and produce maps with low reversibility energy (�� = (1.47±1.9) ×10−3)
and few lipped tetrahedra (7.7 ± 9.9). In practice, we cannot guarantee � = �−1 as our initialization is non-
invertible and the existence of an invertible map is not guaranteed. However, our experimental results demonstrate

the theoretical analysis is relevant, as our computed maps favor isometries (det �̂ = 0.98 ± 0.02) and do not
collapse (Fig. 17). It remains an open problem to guarantee� = �−1.
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Mapped 
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Target
Texture

Mapped 
Texture

Target
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Fig. 22. Volumetric data transfer of two fetal MRI volumes visualized as cross-sections of 3D MRI. The figure shows texture

transfer between two volumes in a scenario where the mother is lying in the supine and let lateral position (let), and in a

scenario where the two volumes are approximately 10 minutes apart (right). The circle marks the location of a cotyledon in

the target texture.

Cavity causes failure in our map
Screw threads

cause failure

Cavity in target only

slices through undeformed source and target

Fig. 23. Limitations. We were unable to map between the screw threads, as the map required removing or adding a large

amount of material, leading to significant distortion. In our second example, the target shape, a shark, had a large cavity in

its interior, while the source, a dolphin, did not.

8.1 Limitations

We observed a few failure cases as can be seen in Fig. 23. First, we encountered shapes where inding a
volumetric map was simply infeasible. In the screw threads example, the required map would have to add
or remove a large amount of volume, which would lead to substantial distortion. Furthermore, the threads
on the boundary difer in number, making it impossible to match sharp features. In the second case, we
were unable to map a shark with a cavity in its interior to a dolphin with a solid interior. The cavity is a
large hollow area to which a volumetric approach is highly sensitive. Furthermore, our method is unable
to change topology when mapping between shapes of diferent genus (Fig. 24) and we are unable to pre-
scribe topological constraints. Another limitation is that our method may not be suitable for partial volume
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matching, since we normalize input meshes to have volume 1. Last, as demonstrated in Fig. 21, our method
can join together small features in the boundary (e.g., armadillo toes). This artifact is caused by an incor-
rect boundary projection. A potential ix would be to have soft landmark constraints in the optimization.

M
2
→M

1

M
1
→M

2

M
1

g=1

M
2

g=0

Fig. 24. Highly dis-

torted region (red

circle) when mapping

from a genus-1 to a

genus-0 shape.

Finally, our method takes between minutes and hours to compute the correspondences.
The computational cost is problematic if desiring mapping a collection of shapes, despite
our algorithm being advantageous in that we can map between shapes that are far-
from-isometries, and we do not require the same connectivity between shapes. The
computational bottleneck is computing the SVD for each tetrahedron many times on
the CPU to approximate the gradient of the objective function. A future direction is to
improve the convergence time by using a second-order method and to use the GPU for
parallelization.

8.2 Future Work

An exciting future direction is to develop application-speciic volumetric correspondences.
We provided a few examples of tasks where volumetric correspondence is useful. Our ex-
ample of mapping MRI signals demonstrated that while matching geometries can improve
correspondence, a method that incorporates both the geometry and signal intensities is
needed. One framework could be to combine our vertex-based approach with functional
maps.
We envision this work to be a starting point for dense volumetric correspondence

applicable to a broad set of shapes. The nascent area of volumetric correspondence is largely unexplored, and our
theoretical discussion suggests many intriguing mathematical questions and algorithmic design challenges.
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